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Introduction

An algebraic structure A is said to be congruence permutable if α ◦β = β ◦α is
satisfied for arbitrary congruences α and β on A, where ◦ is the usual composi-
tion of binary relations. The congruence permutable algebraic structures occur
in a number of examinations. Here we refer to only papers [HM73], [Idz89],
[Kea93], [Nau74] and [VW91] in which congruence permutable varieties of alge-
braic structures are in the centre of examinations. The congruence permutable
algebraic structures are also in the focus of a famous problem (see [Schm69,
Problem 3] or [RTW07, Problem CPP]) solved negatively in [RTW07]: Is ev-
ery distributive algebraic lattice isomorphic to the congruence lattice of some
algebraic structure with permuting congruences?

The groups and the rings are well known examples for congruence per-
mutable algebraic structures. Every algebraic structure whose congruence lat-
tice is a chain with respect to inclusion is also congruence permutable. The
valuation rings, the Galois rings are well-known examples for algebraic struc-
tures whose congruence lattice is a chain with respect to inclusion.

The semigroups are common generalizations of groups and rings. In some
respect the theory of semigroups is similar to group theory and ring theory and
so the semigroup theoretical investigations are often motivated by comparisons
with groups and rings. The semigroups are not congruence permutable, in
general. As the groups and the rings are congruence permutable, and the chain
rings play an important role in the theory of rings, it is not surprising that a
number of papers are published in which the congruence permutable semigroups,
especially the ∆-semigroups (semigroups whose lattices of congruences form a
chain with respect to inclusion) are investigated in special subclasses of the class
of all semigroups.

The aim of this dissertation is to present my results on ∆-semigroups and
congruence permutable semigroups. We present our results published in papers
[Nag84], [Nag90], [Nag92], [Nag98], [Nag00], [NJ04], [Nag05], [Nag08], [Nag13],
[DN10], [JN03], [NZ16].

The dissertation contains an introduction and seven numbered chapters.
Chapter 1 contains those basic notions and results which are used in the disser-
tation. The other chapters are devoted to special subclasses of the class of all
semigroups. In Chapter 2, we give a complete description of weakly exponential
∆-semigroups. In Chapter 3, we determine all ∆-semigroups in the class of
all RGCn-commutative semigroups. In Chapter 4, we focus our attention on
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semigroups which satisfy a non-trivial permutation identity (these semigroups
are called permutative semigroups). The main result is that every congruence
permutable permutative semigroup is necessarily medial (that is, it satisfies the
identity axyb = ayxb). In Chapter 5 we deal with the medial semigroups. We
determine all medial ∆-semigroups, and characterize a type of medial congru-
ence permutable semigroups. We define the notion of the left and the right
reflection on semigroups, and show how we can get a type of congruence per-
mutable medial semigroups from the similar type of commutative congruence
permutable semigroups. In Chapter 6, we focus our attention on finite con-
gruence permutable Putcha semigroups. Two types of them are constructed
and characterized, using Lemma 3 of the paper [PP80] published by P.P. Pálfy
and P. Pudlák. In Chapter 7, we give an application of congruence permutable
semigroups.

In the literature of the semigroup theory, the first two papers on the subject
were published on ∆-semigroups, in 1969. These two papers are [Sch69] and
[Tam69], in which B.M. Schein and T. Tamura, independently, described the
commutative ∆-semigroups. By their result, a semigroup is a commutative ∆-
semigroup if and only if it is isomorphic to one of the following semigroups:
(i) G or G0, where G is a non-trivial subgroup of a quasicyclic p-group (p is a
prime); (ii) a two-element semilattice; (iii) a commutative nil semigroup with
chain ordered principal ideals; (iv) N1, where N is a non-trivial commutative
nil semigroup with chain ordered principal ideals.

The first paper on congruence permutable semigroups was published in 1975
by H. Hamilton. In his paper [Ham75], the commutative congruence permutable
semigroups were described. It is proved that a commutative semigroup is con-
gruence permutable if and only if it is either a commutative group or a commu-
tative nil semigroup with chain ordered principal ideals or an ideal extension
of a commutative nil semigroup N by a commutative group G with a zero ad-
joined such that the orbits of N under the action by G form a commutative nil
semigroup with chain ordered principal ideals.

The above mentioned results on commutative semigroups started a process
in which many results have been published on ∆-semigroups and congruence
permutable semigroups in special subclasses of the class of all semigroups. Here
we give a chronological summary of them, focusing on our own results.

1976: In papers [TS72] and [TN72], the authors (T. Tamura, T.E. Nordahl
J. Shafer) described the structure of exponential semigroups (a semigroup is
called an exponential semigroup if it satisfies the identity (ab)n = anbn for every
positive integer n). Using these result, P.G. Trotter generalized the results of
[Sch69] and [Tam69]. He proved in [Tro76] that a semigroup S is an exponential
∆-semigroup if and only if it is isomorphic to one of the following semigroups:
(i) G or G0, where G is a non-trivial subgroup of a quasicyclic p-group (p is
a prime); (ii) a two-element semilattice; (iii) B or B0 or B1, where B is a
two-element rectangular band; (iv) an exponential nil semigroup with chain
ordered principal ideals; (v) an exponential T1 semigroup or an exponential
T2R semigroup or an exponential T2L semigroup (see Definition 2.2.1).

1981: The Trotter’s result inspired A. Cherubini and C. Bonzini to examine
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the congruence permutable semigroups in a special subclass of the class of all
exponential semigroups. In their paper [BC81], they dealt with the congruence
permutable medial semigroups.

1984: In my paper [Nag84], I generalized the results of [Tro76] such that
I extended them to a class of semigroups which class is wider than the class
of exponential semigroups. I introduced the notion of the weakly exponen-
tial semigroup. A semigroup S is said to be weakly exponential if, for every
(a, b) ∈ S×S and every positive integer m, there is a non-negative integer k such
that (ab)m+k = ambm(ab)k = (ab)kambm. I proved that every weakly exponen-
tial semigroup is a semilattice of weakly exponential archimedean semigroups.
Moreover, a semigroup is a weakly exponential archimedean ∆-semigroup if and
only if it is isomorphic to either G or B or N , where G is a non-trivial subgroup
of a quasicyclic p-group (p is a prime), B is a two-element rectangular band,
and N is a nil semigroup with chain ordered principal ideals.

1990: Continuing the above investigation, in my paper [Nag90], I gave a
complete description of weakly exponential ∆-semigroups. I proved that a semi-
group is a weakly exponential ∆-semigroup if and only if it is isomorphic to one
of the following semigroups: (i) G or G0, where G is a non-trivial subgroup of a
quasicyclic p-group (p is a prime); (ii) a two-element semilattice; (iii) B or B0

or B1, where B is a two-element rectangular band; (iv) a nil semigroup with
chain ordered principal ideals; (v) a T1 semigroup or a T2R semigroup or a T2L
semigroup. These results will be presented in Chapter 2 of this dissertation.

1992: In my paper [Nag92], I introduced the notion of the RC-commutative
semigroup and determined the RC-commutative ∆-semigroups. I proved that a
semigroup is an RC-commutative ∆-semigroup if and only if it is isomorphic to
one of the following semigroups: (i) G or G0, where G is a non-trivial subgroup
of a quasicyclic p-group (p is a prime); (ii) a two-element semilattice; (iii) R
or R0, where R is a two-element right zero semigroup; (iv) a commutative nil
semigroup with chain ordered principal ideals; (v) N1, where N is a non-trivial
commutative nil semigroup with chain ordered principal ideals. The results of
[Nag92] are presented at the end of Chapter 3 of this dissertation.

1995: My above mentioned results on RC-commutative semigroups pub-
lished in [Nag92] gave an impulse for further examinations of RC-commutative
semigroups. In [Jia95], Z. Jiang gave a complete description of congruence per-
mutable LC-commutative semigroups (the LC-commutativity is the dual of the
RC-commutativity).

1998-1999: In my paper [Nag98], I introduced the notions of the GCn-
commutativity of semigroups. For a positive integer n, a semigroup is said to be
GCn-commutative if it satisfies the identity anbai = aiban for every integer i ≥ 2.
It is clear that the GCn-commutativity is a generalization of the conditionally
commutativity. In [Nag98], I proved some basic results on GCn-commutative
semigroups and such GCn-commutative semigroups which also has the property
R-commutativity. A semigroup satisfying both of the GCn-commutativity and
the R-commutativity is called an RGCn-commutative semigroup. In [Nag98]
and in the collected paper [JN03] (published in 1999 together with J. Ziang) we
described the RGCn-commutative ∆-semigroups. We proved that a semigroup
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is an RGCn-commutative ∆-semigroup if and only if it is isomorphic to one of
the following semigroups: (i) G or G0, where G is a non-trivial subgroup of a
quasicyclic p-group (p is a prime); (ii) a two-element semilattice; (iii) R or R0

or R1, where R is a two-element right zero semigroup; (iv) a commutative nil
semigroup with chain ordered principal ideals; (v) N1, where N is a non-trivial
commutative nil semigroup with chain ordered principal ideals. The results of
[Nag98] and [JN03] are presented in Chapter 3 of the dissertation.

2004: The GCn-commutativity together with theR-commutativity has proven
useful in our studies. In their paper [JC04], Z. Jiang and L. Chen associated
the notion of the GCn-commutativity to the right duo property of semigroups (a
semigroup is said to be right duo if every right ideal of S is a two sided ideal). A
semigroup having both properies is said to be RDGCn-commutative. The com-
bination of the above mentioned two properties also worked well. Using also the
results of my paper [Nag98], Z. Jiang and L. Chen determined all congruence
permutable RDGCn-commutative semigroups.

2004: In his Ph.D. dissertation [Ett70] (supervisor is: T. Tamura), W.A.
Etterbeek dealt with the medial ∆-semigroups. The dissertation has often been
cited in the literature, but it contains false assertions. The main theorem (The-
orem 3.49) of the dissertation states that, apart from the two-element left and
right zero semigroups, with or without adjoined zero, all such semigroups are
commutative. In the proof of Theorem 3.49 Etterbeek used Theorem 3.45 in
which it was asserted that if S = S0 ∪ {e} is a right commutative ∆-semigroup
such that S0 is a nil semigroup and e is a right identity element of S, then S
is necessarily commutative. The Example of my paper [Nag00] shows that this
assertion is false. In our collected paper together with P.R. Jones [NJ04], we
gave a review of the Etterbeek’s dissertation. We pointed at the incorrect part
of the Ph.D. dissertation. We proved that every permutative ∆-semigroup is
medial and gave a correct description of the medial ∆-semigroups. We proved
that a semigroup S is a medial ∆-semigroup if and only if one of the following
conditions holds: (i) S is a commutative ∆-semigroup; (ii) S is isomorphic to
either R or R0, where R is a two-element right zero semigroup; (iii) S is isomor-
phic to the semigroup Z = {0, e, a}, obtained by adjoining to a zero semigroup
{0, a} an idempotent element e that is both a right identity element of Z and
a left annihilator of {0, a}; (iv) S is isomorphic to the dual of a semigroup of
type (ii) or (iii). These results are presented in Capter 4 and Chapter 5 of this
dissertation.

2005: The fact that every permutative ∆-semigroup is medial inspired me
to generalize this result to congruence permutable semigroups. In may paper
[Nag05], I begun to deal with the following problem: Is every permutative con-
gruence permutable semigroup medial? I gave a partial answer for this question.
I proved that every permutative congruence permutable semigroup is either me-
dial or an ideal extension of a rectangular band by a non-trivial commutative
nil semigroup.

2006: P.R. Jones ([Jon06]) and A. Deák ([Dea06]) independently proved
that if a permutative congruence permutable semigroup S is an ideal extension
of a rectangular band by a non-trivial commutative nil semigroup, then S is
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medial. This and my results published in [Nag05] together imply that every
permutative congruence permutable semigroup is medial. These results are
presented in Chapter 4 of this dissertation.

2008: In their paper [BC81] published in 1981, A. Cherubini and C. Bonzini
described the congruence permutable medial semigroups. They defined three
kinds of semigroups, and showed that every non-archimedean congruence per-
mutable medial semigroup is isomorphic to one of them. In my paper [Nag08],
I defined the notion of the left [right] reflection of semigroups, and showed that
the congruence permutable medial semigroup of the first kind can be obtained
from the non-archimedean commutative congruence permutable semigroups by
using the notion of the right and the left reflection. This result is presented in
Chapter 5.

2009: In our collected paper [DN10] published together with A. Deák, we
investigated the finite congruence permutable Putcha semigroups. We shoved
that the finite archimedean congruence permutable semigroups are exactly the
finite cyclic nilpotent semigroups and the finite completely simple congruence
permutable semigroups. We also shown that if S is a finite non-archimedean
congruence permutable Putcha semigroup, then it is a semilattice of a com-
pletely simple semigroup S1 = M(I,G, J ;P ) with |I|, |J | ≤ 2 and a semigroup
S0 such that S1S0 ⊆ S0 and S0 is an ideal extension of a completely simple
semigroup by a nilpotent semigroup. Dealing with some special cases, we give
a complete characterization of two types of finite congruence permutable non-
archimedean Putcha semigroups. In our investigation we used Lemma 3 of the
paper [PP80] published by P.P. Pálfy and P. Pudlák several times. The re-
sults on finite congruence permutable Putcha semigroups will be presented in
Chapter 6 of this dissertation.

2016: In our collected paper [NZ16] published together with M. Zubor, we
give an application of congruence permutable semigroups. For an ideal J of a
semigroup algebra F[S], let %J denote the congruence on the semigroup S which
is the restriction of the congruence on F[S] defined by the ideal J . We show that
if S is a semilattice or a rectangular band, then the mapping ϕ{S;F} : J 7→ %J
is a ◦-homomorphism if and only if S is congruence permutable. These results
of this paper is presented in Chapter 7 of this dissertation.
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Chapter 1

Preliminaries

In this chapter we present those basic notions and results on arbitrary semi-
groups, congruence permutable semigroups and ∆-semigroups which are used
in this dissertation. For notations and notions not defined here we refer to the
books [CP61], [CP67], [How76] and [Okn91].

1.1 Basic notions and results; general case

A semigroup is a groupoid in which the operation is associative. A semigroup
containing an identity element is called a monoid .

Let S be a semigroup, and 1 be a symbol not representing any element of
S. Extend the given binary operation in S to one in S ∪ {1} by defining 11 = 1
and 1s = s1 = s for every s ∈ S. Then S ∪ {1} is a monoid (with the identity
element 1). We say that this monoid is obtained from S by adjunction an
identity element to S.

Similarly, one may adjoin an element 0 to S by defining 00 = 0s = s0 = 0
for every s ∈ S. Then S ∪ {0} is a semigroup with the zero 0.

We shall use the following notations. For an arbitrary semigroup S, let

S1 =

{
S if S has an identity element,

S ∪ {1} otherwise;

and

S0 =

{
S if S has a zero element, and |S| > 1,

S ∪ {0} otherwise.

Bands

An element e of a semigroup S is called an idempotent element if e2 = e. An
element a of a semigroup S is called a regular element if there is an element
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x ∈ S such that axa = a is satisfied. It is easy to see that axa = a implies
that ax and xa are idempotent elements of S. It is clear that every idempotent
element of a semigroup is regular. Thus a semigroup contains an idempotent
element if and only if it has a regular element.

A semigroup S is called a band if every element of S is an idempotent
element. A commutative band is called a semilattice .

A semigroup satisfying the identity ab = a [ab = b] is called a left zero
semigroup [right zero semigroup]. A semigroup satisfying the identity
aba = a is called a rectangular band . It is known ([Pet77, II.1.5. Lemma])
that a semigroup is a rectangular band if and only if it is a direct product of a
left zero semigroup and a right zero semigroup.

A direct product of a group and a rectangular band is called a rectangular
group. If the group is commutative, then we say that the semigroup is a
rectangular abelian group. A direct product of a group and a left zero [right
zero] semigroup is called a left group [right group].

Congruences on semigroups

Let X be a non-empty set. For arbitrary binary relations α and β on X, α ◦ β
denotes the binary relation on X defined by (a, b) ∈ α ◦ β if and only if there is
an element x ∈ X such that (a, x) ∈ α and (x, b) ∈ β. The set BX of all binary
relations on X is a semigroup with respect to the operation ◦.

Definition 1.1.1 ([Lja63]) A non-empty subset H of a semigroup S is called a
normal complex of S if xHy ∩H 6= ∅ implies xHy ⊆ H for every x, y ∈ S1.

Theorem 1.1.2 ([Lja63]) If H is a normal complex of a semigroup S, then the
relation αH defined by a αH b if and only if a = b or there is a positive integer
n and there are elements xi, yi ∈ S1 and pi, qi ∈ H (i = 1, 2, . . . , n) such that

a = x1p1y1, x1q1y1 = x2p2y2, . . . , xnqnyn = b

is the least congruence on S such that H is a congruence class. u

A non-empty subset H of a semigroup S is said to be a left [right] unitary
subset of S if, for every a, b ∈ S, the assumption ab, a ∈ H [ba, a ∈ H] implies
b ∈ H. A left and right unitary subset of a semigroup is said to be a unitary
subset of S.

A non-empty subset H of a semigroup S is called a reflexive subset of S
if, for every a, b ∈ S, ab ∈ H if and only if ba ∈ H.

For a non-empty subset H of a semigroup S, let

RH = {(a, b) ∈ S × S : (∀x ∈ S) ax ∈ H iff bx ∈ H}.
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It is easy to see thatRH is a right congruence on S which is called the principal
right congruence on S. Let LH denote the dual of RH , and let

PH = {(a, b) ∈ S × S : (∀x, y ∈ S) xay ∈ H iff xby ∈ H}.

It is easy to see that if H is a reflexive unitary subsemigroup of a semigroup
S, then RH = LH = PH . Moreover, the next theorem is true.

Theorem 1.1.3 ([CP67]) If H is a reflexive unitary subsemigroup of a semi-
group S, then RH is a group or a group with zero congruence on S such that H
is an identity element of S/RH .

Conversely, if α is a group or a group with zero congruence on a semigroup
S and H denotes the α-class of S which is the identity of S/α, then H is a
reflexive unitary subsemigroup of S and α = RH .

The right residue WH = {x ∈ S : (∀a ∈ S) xa /∈ H} of H is not empty if
and only if S/α has a zero element. In this case the zero of S/α equals WH . u

Ideals, simple and completely simple semigroups

A non-empty subset A of a semigroup S is called a left ideal [right ideal ] of
S if sa ∈ A [as ∈ A] for every a ∈ A and s ∈ S. A non-empty subset A of a
semigroup is called an ideal of S if it is a left ideal and a right ideal of S, that
is, as, sa ∈ A for every a ∈ A and s ∈ S.

For an element a of a semigroup S, let L(a) [R(a) J(a)] denote the left ideal
[right ideal, ideal] of S generated by a. It is clear that L(a) = S1a, R(a) = aS1

and J(a) = S1aS1.

For an arbitrary semigroup S,

L = {(a, b) ∈ S × S : L(a) = L(b)},

R = {(a, b) ∈ S × S : R(a) = R(b)}

and

J = {(a, b) ∈ S × S : J(a) = J(b)}

are equivalences on S. These equivalences are called the Green’s equivalences
on S.

If B is an ideal of an ideal A of a semigroup S, then B is not an ideal of S, in
general. But the following theorem is true, which will be used in the dissertation
several times.

Theorem 1.1.4 (Exercises 4. (a) for §2.6 of [CP61]) If A is an ideal of a
semigroup S, and if B is an ideal of A such that B2 = B, then B is an ideal of
S. u
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If A is an ideal of a semigroup S, then the relation

%A = {(a, b) ∈ S × S : a = b or a, b ∈ A}

is a congruence on S. This congruence is called the Rees congruence on S
defined by the ideal A. The factor semigroup S/%A is said to be the Rees
factor semigroup of S defined by the ideal A. This factor semigroup is also
denoted by S/A.

If A is an ideal of a semigroup S and Q denotes the Rees factor semigroup
S/A, then we also say that S is an ideal extension (briefly: an extension) of
the semigroup A by the semigroup Q.

If A is an ideal of a semigroup S such that there is a homomorphism ϕ of
S onto A which leaves the elements of A fixed, then we say that S is a retract
extension of A (by Q = S/A). If this is the case, then the homomorphism ϕ
is called a retract homomorphism of S onto A, and the ideals A is said to
be a retract ideal of S.

It is easy to see that if a semigroup S is an ideal extension of a subgroup G
(with an identity element e) of S, then s 7→ es is a retract homomorphism of
S onto G. Thus an ideal extension of a group by a semigroup with a zero is a
retract extension.

An ideal A of a semigroup S is called a dense ideal of S if, for every
congruence α on S, the assumption that the restriction of α to A is the identity
relation on A implies that α is the identity relation on S.

An ideal A of a semigroup S is called a proper ideal of S if A 6= S. A
semigroup S is called a simple semigroup if it has no proper ideal.

For arbitrary idempotent elements e and f of a semigroup S, let e ≤ f denote
the fact that ef = fe = e. It is known that ≤ is a partial ordering on the set
E(S) of all idempotent elements of a semigroup S. If a semigroup contains
a zero element 0, then 0 ≤ e is satisfied for every e ∈ E(S). An idempotent
element e of a semigroup S is said to be a primitive idempoten element of
S if the only idempotents of S under e are itself e and 0 (if S has a zero) and
e 6= 0.

We say that a semigroup S is a completely simple semigroup if either
|S| = 1 or |S| ≥ 2 and S is a simple semigroup containing a primitive idempo-
tent.

The next theorem characterizes the completely simple semigroups.

Theorem 1.1.5 ([How76, Theorem 2.11. of Chapter III]) Let G be a group,
let I, Λ be non-empty sets, and let P = (pλi) be a Λ× I matrix with entries in
G. Let S = I ×G× Λ, and define a binary operation on S by the role that

(i, a, λ)(j, b, µ) = (i, apλjb, µ).

Then S is a completely simple semigroup, which will be denoted byM(G; I,Λ;P ).
Conversely, any completely simple semigroup is isomorphic to one of con-

structed in this manner. u
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The semigroup M(G; I,Λ;P ) is called a Rees I × Λ matrix semigroup
over the group G with sandwich matrix P .

We say that the sandwich matrix P is normalized if all the elements in a
given row and in a given column are the identity element of G. By [CP61,
Lemma 3.6.], we can suppose that P is normalized.

A monoid S with the identity element e is called a bicyclic semigroup if
it is generated by two elements a, b with the single generating relation ab = e.

If a semigroup S is simple but not completely simple, then |S| ≥ 2 and so it
does not contain a zero. By the proof of Theorem 2.54 of [CP61], the following
theorem holds.

Theorem 1.1.6 If e is an idempotent element of a simple semigroup S which
is not completely simple, then S contains a bicyclic subsemigroup having e as
the identity element. u

Semilattice decomposition of semigroups

A congruence α of a semigroup S is called a semilattice congruence if the
factor semigroup I = S/α is a semilattice. The α-classes Si (i ∈ I) are sub-
semigroups of S such that SiSj ⊆ Sij , where ij is the product of i and j in the
semilattice I. We also say that the semigroup S is a semilattice I of subsemi-
groups Si (i ∈ I).

A semigroup S is said to be semilattice indecomposable if the universal
relation ωS is the only semilattice congruence on S.

Let S be a semigroup and σ a relation on S defined by aσ b if and only if a
divides some power of b, that is, xay = bm for some x, y ∈ S1 and some positive
integer m. Let % be the transitive closure of σ, and let %′ defined by a %′ b if
and only if a% b and b% a.

Theorem 1.1.7 ([Tam68, THEOREM]) %′ is a smallest semilattice congruence
on a semigroup S, and each %′-class is a semilattice indecomposable semigroup.
u

With other words: every semigroup is decomposable into a semilattice of
semilattice indecomposable semigroups. The next result is a consequence of
Theorem 1.1.7.

Theorem 1.1.8 ([Tam68, COROLLARY]) A semigroup S is semilattice inde-
composable if and only if, for every a, b ∈ S, there is a sequence

a = a0, a1, . . . , ak−1, ak = b

of elements of S such that ai−1 divides some power of ai, (i = 1, . . . , k). u
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Definition 1.1.9 A semigroup S is called a left [right] archimedean semigroup
if, for every a, b ∈ S, there are positive integers m and n such that am ∈ S1b and
bn ∈ S1a [am ∈ bS1 and bn ∈ aS1]. A semigroup S is said to be an archimedean
semigroup if, for every a, b ∈ S, there are positive integers m and n such that
am ∈ S1bS1 and bn ∈ S1aS1.

It is clear that every left archimedean and every right archimedean semigroup
is archimedean. By Theorem 1.1.8, the archimedean semigroups (and so the
left archimedean semigroups and the right archimedean semigroups) are special
semilattice indecomposable semigroups.

Definition 1.1.10 A semigroup S is called a left [right] Putcha semigroup
if, for every x, y ∈ S, the assumption y ∈ xS1 [y ∈ S1x] implies ym ∈ x2S1

[ym ∈ S1x2] for some positive integer m.
A semigroup S is called a Putcha semigroup if, for every x, y ∈ S, the

assumption y ∈ S1xS1 implies ym ∈ S1x2S1 for some positive integer m.

The next theorem is about a connection between the archimedean semi-
groups and the Putcha semigroups.

Theorem 1.1.11 ([Put73]) A semigroup S is a semilattice of archimedean
semigroups if and only if S is a Putcha semigroup. In such a case the cor-
responding semilattice congruence on S equals

η = {(a, b) ∈ S × S : am ∈ SbS, bn ∈ SaS for some positive integers m,n}

and is the least semilattice congruence on S. u

The next theorem is a characterization of archimedean semigroups contain-
ing at least one idempotent element. This result will be used in the dissertation
several times.

Theorem 1.1.12 ([Chr69]) A semigroup S is archimedean and contains at
least one idempotent element if and only if it is an ideal extension of a sim-
ple semigroup containing an idempotent by a nil semigroup.

A special type of left weakly commutative semigroups will be examined in
Chaptert 3.

Definition 1.1.13 A semigroup S is called a left [right] weakly commuta-
tive semigroup if, for every a, b ∈ S, there exist x ∈ S and a positive integer
n such that (ab)n = bx.

The following theorem shows the connection of the left [right] weakly com-
mutative semigroups and the right [left] archimedean semigroups.
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Theorem 1.1.14 ([Nag01, Theorem 4.2]) A semigroup is left [right] weakly
commutative if and only if it is a semilattice of right [left] archimedean semi-
groups. u

As every right [left] archimedean semigroup is archimedean, the following
assertion is true.

Corollary 1.1.15 Every left [right] weakly commutative semigroup is a semi-
lattice of archimedean semigroups.

Lemma 1.1.16 ([Mar92]) A left [right] Putcha semigroup is a Putcha semi-
group.

By Theorem 1.1.11 and Lemma 1.1.16, the following assertion is true.

Corollary 1.1.17 Every left [right] Putcha semigroup is decomposable into a
semilattice of archimedean semigroups.

The following two theorems will be used in the dissertation several times.

Theorem 1.1.18 ([Mar92]) A semigroup is a simple left and right Putcha
semigroup if and only if it is completely simple.

Theorem 1.1.19 ([Mar92]) A semigroup is an archimedean left and right Putcha
semigroup containing at least one idempotent element if and only if it is a retract
extension of a completely simple semigroup by a nil semigroup.

Semigroup Algebra

By the semigroup algebra F[S] of a semigroup S over a field F, we mean
the set of all functions f : S 7→ F such that the support of f (that is the set
of all s in S such that f(s) 6= 0) is finite or empty, with operation defined for
every f, g ∈ F[S], s ∈ S, α ∈ F as follows:

(f + g)(s) = f(s) + g(s)

(αf)(s) = αf(s)

(fg)(s) =

{∑
(t,u)∈A(s) f(t)g(u) if A(s) 6= ∅,

0 if A(s) = ∅,

where A(s) = {(t, u) ∈ S×S : tu = s}. F[S] is an associative F-algebra subject
to these operations.

For any s ∈ S, let fs : S 7→ F be the function such that fs(s) = 1, fs(t) = 0
if t 6= s. Then {fs : s ∈ S} is a subsemigroup of the multiplicative semigroup of
F[S], which is an F-basis of F[S]. Moreover s 7→ fs is a semigroup isomorphism.
Thus, as usual, F[S] will be identified with the set of all finite sums

∑
αss,

αs ∈ F, s ∈ S, so that it is an F-space with a basis S and the multiplication
induced by the multiplication in S.
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1.2 Congruence permutable semigroups

Definition 1.2.1 We say that a semigroup S is a congruence permutable
semigroup (or briefly: permutable semigroup) if α ◦ β = β ◦ α is satisfied
for every congruences α and β on S.

In this dissertation we use the expression ”congruence permutable”.

It is clear that a semigroup S is congruence permutable if and only if the con-
gruences on S form a subsemigroup of the semigroup BS of all binary relations
on S.

Theorem 1.2.2 ([Ham75]) If S is a congruence permutable semigroup, then
the ideals of S form a chain with respect to inclusion. u

The next result will be used in the dissertation several times.

Theorem 1.2.3 ([Sza70]) The ideals of a semigroup S form a chain with re-
spect to inclusion if and only if the principal ideals of S do it.

The next two theorem are very useful in our investigation.

Theorem 1.2.4 ([Ham75]) If S is a congruence permutable semigroup and S
is homomorphic onto T , then T is a congruence permutable semigroup. u

Theorem 1.2.5 ([Ham75]) A semilattice Γ is congruence permutable if and
only if |Γ| ≤ 2. u

Remark 1.2.6 By Theorem 1.1.7, every semigroup is a semilattice of semi-
lattice indecomposable semigroups. Thus Theorem 1.2.4 and Theorem 1.2.5 to-
gether imply that every congruence permutable semigroup is either semilattice
indecomposable or a semilattice of two semilattice indecomposable semigroups
S0 and S1 such that S0S1 ⊆ S0.

Theorem 1.2.7 ([Ham75]) If a congruence permutable semigroup S is a semi-
lattice of two semilattice indecomposable subsemigroups S1 and S0 such that
S0S1 ⊆ S0, then S1 is simple. u

Theorem 1.2.8 ([Ham75]) If a congruence permutable semigroup S has a proper
ideal, then S has no non-trivial group homomorphic image. u

Lemma 1.2.9 ([Tam67]) Let I be an ideal of a semigroup S. If f is a homo-
morphism of I onto a non-trivial group G, then there is a homomorphism g of
S onto G such that f is the restriction of g to I. u
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Remark 1.2.10 By Lemma 1.2.9 and Theorem 1.2.8, if a congruence per-
mutable semigroup S has a proper ideal I, then neither S nor I has a non-trivial
group homomorphic image.

The next theorem shows the connection between the congruence classes and
the ideals of congruence permutable semigroups.

Theorem 1.2.11 ([Jia95]) If I is an ideal and α is a congruence of a congru-
ence permutable semigroup, then I is a union of α-classes or is contained in an
α-class.

The class of all ∆-semigroups is a subclass of the class of all congruence per-
mutable semigroups. In the next we present those basic results on ∆-semigroups
which will be use in the dissertation.

1.3 ∆-semigroups

Definition 1.3.1 A semigroup S is called a ∆-semigroup if the lattice L(S)
of all congruences of S is a chain with respect to inclusion.

Remark 1.3.2 If S1 or S0 is a ∆-semigroup, then S is also a ∆-semigroup.

Theorem 1.3.3 ([Tam69]) Every homomorphic image of a ∆-semigroup is also
a ∆-semigroup.

Theorem 1.3.4 ([Sch69, Tam69]) A semigroup S is a commutative ∆-semigroup
if and only if it satisfies one of the following conditions:

(i) S is isomorphic to G or G0, where G is a non-trivial subgroup of a quasi-
cyclic p-group (p is a prime).

(ii) S is isomorphic to a two-element semilattice.

(iii) S is isomorphic to a commutative nil semigroup with chain ordered prin-
cipal ideals.

(iv) S is isomorphic to N1, where N is a non-trivial commutative nil semigroup
with chain ordered principal ideals.

From Theorem 1.3.4, we have the following result which will be used in the
dissertation several times.

Theorem 1.3.5 A semilattice is a ∆-semigroup if and only if it contains at
most two elements.
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Remark 1.3.6 Theorem 1.3.5 and Theorem 1.3.3 together imply that if a semi-
group S is a ∆-semigroup, then it is either semilattice indecomposable or a semi-
lattice of two semilattice indecomposable semigroups S0 and S1 with S0S1 ⊆ S0.

The next theorem is a consequence of Remark 1.2.10.

Theorem 1.3.7 ([Tam69]) If a ∆-semigroup S contains a proper ideal I, then
neither S nor I has a non-trivial group homomorphic image.

The following theorem is a consequence of Theorem 1.2.2.

Theorem 1.3.8 If S is a ∆-semigroup, then all the ideals of S form a chain
with respect to inclusion.

The next theorem is about nil ∆-semigroups. A semigroup S with a zero
element 0 is called a nil semigroup if, for every a ∈ S, there is a positive
integer n such that an = 0.

Theorem 1.3.9 ([Nag01, Theorem 1.54 and Theorem 1.56]) Let S be a nil
semigroup. The following are equivalent:

(i) S is a ∆-semigroup;

(ii) the ideals of S form a chain with respect to inclusion;

(iii) the principal ideals of S form a chain with respect to inclusion

(iv) S is a chain with respect to the divisibility ordering.

In that case, each congruence on S is the Rees congruence corresponding to the
ideal consisting of the congruence class of 0.

By Theorem 1.2.2 and Theorem 1.3.9, we have the following result.

Theorem 1.3.10 A nil semigroup is congruence permutable if and only if it is
a ∆-semigroup.

The next theorem is about the non-identity, non Rees congruences on ∆-
semigroups.

Theorem 1.3.11 ([Tro76]) Let S be a ∆-semigroup and σ be a non-identity
congruence on S which is not a Rees congruence. Then, for some a ∈ S,

[b]σ = Ia, if J(b) ⊂ J(a),

[b]σ ⊆ Ja, if J(b) = J(a),

[b]σ = {b}, if J(b) ⊃ J(a),

where Ja denotes the J -class of S containing a and Ia = J(a)− Ja.
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As a ∆-semigroup is congruence permutable and a non-trivial nil semigroup
is not simple, the following theorem is a consequence of Theorem 1.3.12.

Theorem 1.3.12 ([Nag01, Theorem 1.57]) If a ∆-semigroup S is a semilattice
of a nil semigroup S1 and an ideal S0 of S, then |S1| = 1.

The next theorem will be used in Chapter 2, when we will characterize the
T1 semigroups.

Theorem 1.3.13 ([Nag01, Theorem 1.58]) Let S be a semigroup which is a
disjoint union S = P ∪N of a one-element subsemigroup P = {e} of S and an
ideal N of S such that N is a nil semigroup. Then S is a ∆-semigroup if and
only if N is a ∆-semigroup and S1eS1 = S. u

Here is a consequence of the previous theorem.

Corollary 1.3.14 ([Nag01, Corollary 1.2]) A nil semigroup with an identity
adjoined N1 is a ∆-semigroup if and only if N is a ∆-semigroup.

The next theorem will be used sevaral times.

Theorem 1.3.15 ([Tro76], [Nag01, Theorem 1.59]) If a ∆-semigroup S is a
semilattice of a subgroup P of a quasicyclic p-group (p is a prime) and a nil
semigroup N with NP ⊆ N , then either |N | = 1 or |P | = 1.

Theorem 1.3.16 ([Nag01, Theorem 1.60]) Let S be a semigroup in which α∩
β = idS implies α = idS or β = idS for every congruences α and β on S. If S
is an ideal extension of a rectangular group K by a semigroup with zero, then
K is either a subgroup or a left zero subsemigroup or a right zero subsemigroup
of S.

Corollary 1.3.17 ([Nag01, Corollary 1.3]) If a ∆-semigroup S is an ideal ex-
tension of a rectangular group K by a semigroup with zero, then K is either a
subgroup or a left zero subsemigroup or a right zero subsemigroup of S. As a
special case: if a ∆-semigroup S is a rectangular group, then S is either a group
or a left zero semigroup or a right zero semigroup.

Theorem 1.3.18 ([Tro76]) A non-trivial band is a ∆-semigroup if and only if
it is isomorphic to either R or R1 or R0, where R is a two-element right zero
semigroup, or L or L1 or L0, where L is a two-element left zero semigroup, or
F , where F is a two-element semilattice.

The next theorem is a consequence of the previous one.

Theorem 1.3.19 A left (right) zero semigroup is a ∆-semigroup if and only if
it has at most two elements.
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Chapter 2

Weakly exponential
semigroups

In [TK54], T. Tamura and N. Kimura proved basic results on the structure of
commutative semigroups. They proved that every commutative semigroup is a
semilattice of commutative archimedean semigroups. It was also shown that a
commutative archimedean semigroup containing an idempotent element is an
ideal extension of a commutative group by a commutative nil semigroup. In
the literature of the theory of semigroups we can find a number of papers in
which the authors extended these results to special classes of semigroups. In
[Chr69], J.L. Chrislock defined the notion of the medial semigroup (a semi-
group which satisfies the identity axyb = ayxb), and generalized the results
of T. Tamura and N. Kimura to medial semigroups. He proved that every
medial semigroup is a semilattice of medial archimedean semigroups. More-
over, a medial semigroup is archimedean and contains an idempotent element
if and only if it is an ideal extension of a rectangular abelian group by a nil
semigroup. In [TS72], T. Tamura and J. Shafer introduced the notion of the
exponential semigroup (a semigroup which satisfies the identity (ab)n = anbn

for every positive integer n), and generalized the results of J.L. Chrislock to
this new kind of semigroups. They proved that every exponential semigroup
is a semilattice of exponential archimedean semigroups. Moreover, if an expo-
nential archimedean semigroup contains an idempotent element, then it is an
ideal extension of a rectangular abelian group by an exponential nil semigroup.
In [TN72], T. Tamura and T.E. Nordahl proved further results on exponential
archimedean semigroups. They proved that a semigroup S is an exponential
archimedean semigroup containing at least one idempotent element if and only
if S is a strict ideal extension of a rectangular abelian group by an exponen-
tial nil semigroup. Using these results, P.G. Trotter generalized Schein’s results
on commutative ∆-semigroups ([Sch69]) to exponential semigroups. In [Tro76],
P.G. Trotter determined all possible exponential ∆-semigroups. In order to
generalize the results on exponential semigroups, I introduced the notion of the
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weakly exponential semigroup: a semigroup S with the property that, for every
(a, b) ∈ S × S and every integer m ≥ 2, there is a positive integer k such that
(ab)m+k = ambm(ab)k = (ab)kambm ([Nag84]). The structure of weakly expo-
nential semigroups and weakly exponential ∆-semigroups are described in my
papers [Nag84], [Nag90] and [Nag13]. In this chapter we present the results of
them. The chapter contains three sections.

In the first section we deal with the semilattice decomposition of weakly
exponential semigroups. We show that every weakly exponential semigroup is
a semilattice of weakly exponential archimedean semigroups. We proved that
a semigroup is simple and weakly exponential if and only if it is a rectangular
abelian group. Using also this result, we show that a semigroup is a weakly
exponential archimedean semigroup containing at least one idempotent element
if and only if it is a retract extension of a rectangular abelian group by a nil
semigroup. We also prove that every weakly exponential archimedean semigroup
without idempotent elements has a non-trivial group homomorphic image.

In the second section we characterize all weakly exponential ∆-semigroups.
We show that a semigroup is a weakly exponential ∆-semigroup if and only if
it is isomorphic one of the following semigroups: (i) G or G0, where G is a
non-trivial subgroup of a quasicyclic p-group (p is a prime); (ii) a two-element
semilattice; (iii) R or R0 or R1, where R is a two-element right zero semigroup;
(iv) L or L0 or L1, where L is a two-element left zero semigroup; (v) a nil
semigroup with chain ordered principal ideals; (vi) a T1 or a T2R or a T2L
semigroup (see Definition 2.2.1).

In the third section we characterize the T1 semigroups and the T2R (T2L)
semigroups.

2.1 Semilattice decomposition of weakly expo-
nential semigroups

Definition 2.1.1 ([Nag84]) A semigroup S is called a weakly exponential semi-
group if, for every (a, b) ∈ S × S and every integer m ≥ 2, there is a positive
integer k such that (ab)m+k = ambm(ab)k = (ab)kambm.

We note that, in Definition 2.1.1, the condition that k is a positive integer
can be changed over the condition that k is a non-negative integer.

Theorem 2.1.2 [Nag01, Theorem14.1]) Every weakly exponential semigroup is
a left and right Putcha semigroup.

Proof. Let S be a weakly exponential semigroup. To prove that S is a left
Putcha semigroup, assume that b ∈ aS1 is satisfied for some elements a and b
of S. We must to show that there is a positive integer m such that bm ∈ a2S1.
We can suppose a 6= b. Then there is an element y ∈ S such that b = ay. As S
is weakly exponential, for the integer 2, there is a positive integer k such that

b2+k = (ay)2+k = a2y2(ay)k ∈ a2S1.
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Hence S is a left Putcha semigroup. We can prove, in a similar way, that S is
a right Putcha semigroup. u

Theorem 2.1.3 ([Nag84]) Every weakly exponential semigroup is decomposable
into a semilattice of weakly exponential archimedean semigroups.

Proof. Let S be a weakly exponential semigroup. Then S is a left and right
Putcha semigroup by Theorem 2.1.2. Then, by Corollary 1.1.17, S is a semilat-
tice Y of archimedean semigroups Sα (α ∈ Y ). It is clear that the semigroup
Sα is weakly exponential for every α ∈ Y . u

Theorem 2.1.4 ([Nag84], [Nag85]) A semigroup is simple and weakly expo-
nential if and only if it is a rectangular abelian group.

Proof. Let S be a simple weakly exponential semigroup. By Theorem 2.1.2, S
is a left and right Putcha semigroup and so, by Theorem 1.1.18, it is completely
simple. Then, by Theorem 1.1.5, S is isomorphic with a Rees matrix semigroup
M(G; I, J ;P ) over a group G with a sandwich matrix P . Assume that P is
normalized by pj0,i = pi,j0 = e for all i ∈ I, j ∈ J and some i0 ∈ I, j0 ∈ J ,
where e is the identity element of G. Then, for an arbitrary integer m ≥ 2 and
every g ∈ G, i ∈ I, j ∈ J , there is a positive integer k such that

(i, g(pj,ig)m+k−1, j) = (i, g, j)m+k = ((i, g, j0)(i0, e, j))
m+k

= (i, g, j0)m(i0, e, j)
m(i, g, j)k = (i, gm, j0)(i0, e, j)(i, g, j)

k

= (i, gm, j)(i, g, j)k = (i, gm, j)(i, g(pj,ig)k−1, j)

= (i, gmpj,ig(pj,ig)k−1, j)

and so

g(pj,ig)m+k−1 = gmpj,ig(pj,ig)k−1,

that is,

(gpj,i)
m = gmpj,i.

Then, letting g = e, it follows that

pm−1j,i = e.

Moreover, for a positive integer t and every g, h ∈ G, we get

(i0, (gh)m+t, j0) = (i0, gh, j0)m+t = ((i0, g, j0)(i0, h, j0))m+t

= (i0, g, j0)m(i0, h, j0)m((i0, g, j0)(i0, h, j0))t

(i0, g
mhm, j0)(i0, (gh)t, j0) = (i0, g

mhm(gh)t, j0)

and so

(gh)m+t = gmhm(gh)t
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from which it follows that

(gh)m = gmhm.

If we apply our above results for m = 2, then we get

(gh)2 = g2h2, pj,i = e

for every g, h ∈ G and i ∈ I, j ∈ J . Hence G is a commutative group and so
M(G; I, J ;P ) is isomorphic to a rectangular abelian group.

As the converse statement is obvious, the theorem is proved. u

Theorem 2.1.5 ([Nag84]) A retract extension of a weakly exponential semi-
group by a weakly exponential semigroup with a zero is also weakly exponential.

Proof. Let S be a semigroup which is a retract extension of a weakly expo-
nential semigroup I by a weakly exponential semigroup Q with a zero. Then I
is an ideal of S and the Rees factor semigroup S/I is isomorphic to Q. Let p
denote a retract homomorphism of S onto I. Let x and y be arbitrary elements
of S. Let n be an arbitrary fixed positive integer (with n ≥ 2). Then there is a
positive integer t such that

(p(x)p(y))n+t = (p(x))n(p(y))n(p(x)p(y))t = (p(x)p(y))t(p(x))n(p(y))n.

If x or y is in I, then

(xy)n+t = p((xy)n+t) = (p(x)p(y))n+t = (p(x))n(p(y))n(p(x)p(y))t =

= p(xnyn(xy)t) = xnyn(xy)t.

Similarly,

(xy)n+t = (xy)txnyn.

Consider the case when x, y /∈ I. Then x and y can be considered as the non-
zero elements of Q. As Q is a weakly exponential semigroup by the assumption,
there is a positive integer k such that (in Q),

(xy)n+k = xnyn(xy)k = (xy)kxnyn.

Let

T = {t ∈ N+ : (p(x)p(y))n+t = (p(x))n(p(y))n(p(x)p(y))t =

= (p(x)p(y))t(p(x))n(p(y))n}

and

K = {k ∈ N+ : (xy)n+k = xnyn(xy)k = (xy)kxnyn = (xy)kxnyn in Q}.

It is clear that there are positive integers t0 and k0 such that T = [t0,∞) and
K = [k0,∞).
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If there is a positive integer k in K such that (xy)n+k 6= 0 in Q, that is,
(xy)n+k /∈ I in S, then

(xy)n+k = xnyn(xy)k = (xy)kxnyn

holds in S. Consider the case when (xy)n+k = 0 in Q for every k ∈ K (that
is, (xy)n+k ∈ I for every k ∈ K). Let t be a positive integer which belongs to
K ∩ T . As t ∈ K, we have (xy)n+t ∈ I and (xy)n+k = xnyn(xy)k in Q. Thus
xnyn(xy)t ∈ I in S. From this and t ∈ T , we get in S:

(xy)n+t = p((xy)n+t) = (p(x)p(y))n+t = (p(x))n(p(y))n(p(x)p(y))t =

p(xnyn(xy)t) = xnyn(xy)t.

Similarly,
(xy)n+t = (xy)txnyn.

Thus, in all cases, there is a positive integer m such that

(xy)n+m = xnyn(xy)m = (xy)mxnyn

is satisfied in S. Consequently S is a weakly exponential semigroup. u

Theorem 2.1.6 ([Nag84]) A semigroup is a weakly exponential archimedean
semigroup containing at least one idempotent element if and only if it is a retract
extension of a rectangular abelian group by a nil semigroup.

Proof. Let S be a weakly exponential archimedean semigroup containing at
least one idempotent element. By Theorem 2.1.2, S is a left and right Putcha
semigroup. Then, by Theorem 1.1.19 and Theorem 2.1.4, S is a retract extension
of a rectangular abelian group by a nil semigroup.

As the rectangular abelian groups and the nil semigroups are weakly expo-
nential, the converse follows from Theorem 1.1.12 and Theorem 2.1.5. u

Lemma 2.1.7 ([Nag84]) If S is a weakly exponential semigroup then, for every
a ∈ S,

Sa = {x ∈ S : aixaj = ah for some positive integers i, j, k}

is the least reflexive unitary subsemigroup of S containing a.

Proof. Let S be a weakly exponential semigroup and a ∈ S be arbitrary. To
show that Sa is a subsemigroup of S, let x, y ∈ Sa be arbitrary. Then there are
positive integers i, j, k, h,m, n such that

aixaj = ak

and
amyan = ah.
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As S is a weakly exponential semigroup, (for the integer 2) there is a positive
integer t such that

(xaj+myan+i)2+t = (xaj+my)2a2(n+i)(xaj+myan+i)t.

As S is weakly exponential, (for the integer 2 + t) there is a positive integer s
such that

(aixaj+myan+i)2+t+s = ai(2+t)(xaj+myan+i)2+t(aixaj+myan+i)s.

Let p := k + h. Then

a(p+i)(2+t+s) = (aixaj+myan+i)2+t+s

= a(2+t)i(xaj+myan+i)2+t(ap+i)s

(∗) = a(2+t)i(xaj+my)2a2(n+i)(xaj+myan+i)tas(p+i)

= a(1+t)iaixaj(amyxaj)(amyan)an+i((aixaj)(amyan))taias(p+i)

= a(1+t)i+k+myxaj+h+n+p(t+s)+i(s+2).

Hence
yx ∈ Sa,

that is, Sa is a subsemigroup of S.
We show that Sa is left unitary. Assume x, xy ∈ Sa for some x, y ∈ S. Then

there are positive integers i, j, k,m, n, h such that

aixaj = ak

and
amxyan = ah.

Let r denote a positive integer which satisfies r ≥ max{i −m, j − h}. As S is
weakly exponential, (for the integer 2) there is a positive integer t such that

(ar+mxyan)2+t = (ar+mx)2(yan)2(ar+mxyan)t.

From this we get

a(2+t)(r+h) = (ar+h)2+t = (ar+mxyan)2+t

= (ar+mx)2(yan)2(ar+mxyan)t

= ar+mxar+mxyanyanat(r+h)

= ar+mxar+hyat(r+h)+n

= am+r−iaixajar+h−jyat(r+k)+n

= a2r+m+h+k−i−jyat(r+h)+n.
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Hence y ∈ Sa. Consequently, Sa is a left unitary subsemigroup of S. We can
prove, in a similar way, that Sa is right unitary in S.

We show that Sa is reflexive in S. Assume xy ∈ Sa for some x, y ∈ S. As S
is weakly exponential, there is a positive integer k such that

(xy)3+k = x(yx)2+ky = xy2x2(yx)ky = (xy)(yx)(xy)k+1 ∈ Sa.

As Sa is unitary in S, we have

yx ∈ Sa.

Hence Sa is reflexive in S. It is clear that a ∈ Sa. We show that Sa is the least
reflexive unitary subsemigroup of S which contains a. Assume, in an indirect
way, that S has a reflexive unitary subsemigroup V such that a ∈ V and V ⊂ Sa.
Then there is an element x ∈ Sa − V such that

aixaj = ak ∈ V

for some positive integers i, j, k. As V is unitary in S, we get x ∈ V which
contradict the choosing of x. Thus the lemma is proved. u

Theorem 2.1.8 ([Nag84]) Every weakly exponential archimedean semigroup
without idempotent element has a non-trivial group homomorphic image.

Proof. Let S be a weakly exponential archimedean semigroup without idem-
potent element. Assume that Sa 6= S for some a ∈ S. By Lemma 2.1.7, Sa is a
reflexive unitary subsemigroup of S. Let x ∈ S be an arbitrary element. As S
is archimedean, there are element t, s ∈ S such that txs = an for some positive
integer n. As Sa is a reflexive subsemigroup of S containing a, we get xst ∈ Sa.
Consequently the right residue of Sa is empty. Then, by Theorem 1.1.3, the
principal right congruence RSa is a group congruence on S. Hence the factor
semigroup S/RSa

is a non-trivial group homomorphic image of S.
Consider the case when Sa = S for every a ∈ S. Then, for every a ∈ S, we

have a ∈ Sa2 and so there are positive integers i, j, k such that a2iaa2j = a2k,
that is, a2(i+j)+1 = a2k. One of the exponents is even, the other is odd. From
this it follows that the order of a is finite and so S contains an idempotent
element. This contradicts the assumption. u

2.2 Weakly exponential ∆-semigroups

Definition 2.2.1 Let S be a ∆-semigroup which is a semilattice of a semigroup
P and a non-trivial nil semigroup N such that NP ⊆ N . Then S is called

(1) a T1 semigroup if P has only one element,

(2) a T2L semigroup if P is a two-element left zero semigroup,

(3) a T2R semigroup if P is a two-element right zero semigroup.
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It is easy to check that the T1 semigroups, the T2R semigroups and the T2L
semigroups are weakly exponential. In the next we formulate our main theorem
on weakly exponential ∆-semigroups.

Theorem 2.2.2 ([Nag90]) A semigroup S is a weakly exponential ∆-semigroup
if and only if one of the following satisfied.

(i) S ∼= G or G0, where G is a non-trivial subgroup of a quasicyclic p-group
(p is a prime).

(ii) S ∼= F , where F is a two-element semilattice.

(iii) S ∼= R or R0 or R1, where R is a two-element right zero semigroup.

(iv) S ∼= L or L0 or L1, where L is a two-element left zero semigroup.

(v) S is a nil semigroup whose principal ideals form a chain with respect to
inclusion.

(vi) S is a T1 or a T2R or a T2L semigroup (see Definition 2.2.1).

Proof. Let S be a weakly exponential ∆-semigroup. Then, by Theorem 2.1.3,
it is a semilattice of archimedean weakly exponential semigroups. By Re-
mark 1.3.6, S is either archimedean or a disjoint union S = S0 ∪ S1 of an ideal
S0 and a subsemigroup S1 of S which are archimedean and weakly exponential.

First, assume that S is archimedean. If S has a zero element, then it is a
nil semigroup. By Theorem 1.3.9, the principal ideals of S form a chain with
respect to inclusion.

In the next, we consider the case when S has no zero element. Then |S| ≥ 2.
If S is simple, then it is a rectangular abelian group by Theorem 2.1.4, that is,
S is a direct product of a left zero semigroup L, a right zero semigroup R and
an abelian group G. Then, by Corollary 1.3.17, we have either S = L or S = R
or S = G. In the first case S is a two-element left zero semigroup by Theorem
1.3.18. In the second case (using also Theorem 1.3.18) S is a two-element right
zero semigroup. In the third case S is a non-trivial subgroup of a quasicyclic
p-group (p is a prime) by Theorem 1.3.4.

Consider the case when S is not simple (and S has no zero element). Then,
by Theorem 2.1.8 and Theorem 1.3.7, S has an idempotent element. By Theo-
rem 2.1.6, S is a retract extension of a rectangular abelian group K (|K| > 1)
by a nil semigroup N . Let δ denote the congruence on S determined by the
retract homomorphism. Then

δ ∩ ρK = idS ,

where ρK denotes the Rees congruence of S defined by the ideal K of S. As S
is a ∆-semigroup and |K| > 1, we have

δ = idS .
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Then S = K which contradicts the assumption that S is not simple.
Next, consider the case when S is a disjoint union S = S0 ∪ S1 of an ideal

S0 and a subsemigroup S1 of S, where S0 and S1 are archimedean. By The-
orem 1.3.3 the Rees factor semigroup S/S0

∼= S0
1 is a ∆-semigroup. By Re-

mark 1.3.2, S1 is an archimedean weakly exponential ∆-semigroup. If S1 is a
nil semigroup, then|S1| = 1 by Theorem 1.3.12. Thus S1 is either a two-element
left zero semigroup L or a two-element right zero semigroup R or a subgroup G
of a quasicyclic p-group (p is a prime).

If |S0| = 1, then either S = L0 or S = R0 or S = G0 (if |G| = 1, then S is a
two-element semilattice).

Next, we can suppose that |S0| > 1. Recall that S0 is a weakly exponential
archimedean semigroup. By Theorem 2.1.8 and Theorem 1.3.7, S0 has an idem-
potent element. By Theorem 2.1.6, S0 is a retract extension of a rectangular
abelian group K = L × R × G (L is a left zero semigroup, R is a right zero
semigroup, G is an abelian group) by a nil semigroup. By Theorem 1.3.7, K
has no non-trivial group homomorphic images. Hence K = L×R. As K2 = K,
Theorem 1.1.4 implies that K is an ideal of S. Consider the case when |K| > 1.
By Corollary 1.3.17, K = L or K = R. Assume that K = L. It is easy to see
that

α = {(a, b) ∈ S × S : ax = bx for all x ∈ L}

is a congruence on S such that

α|L = idL.

As L is a dense ideal, it follows that

α = idS .

Let x ∈ L and c ∈ S be arbitrary elements. Then there is a positive integer k
such that

cx = (cx)2+k = c2x2(cx)k = c2x

which means that

(c, c2) ∈ α.

Then

c = c2.

Consequently, S is a band and S0 = L. By Theorem 1.3.18, S = S1
0 and S0 is a

two-element left zero semigroup. We get, in a similar way, that S0 = K and S is
a band in that case when K is a right zero semigroup and so, by Theorem 1.3.18,
S = S1

0 and S0 is a two-element right zero semigroup.
Next, consider the case when |K| = 1. Then S0 is a (non-trivial) nil semi-

group.
If |S1| = 1, then S is a T1 semigroup. If S1 is a two-element right zero semi-

group, then S is a T2R semigroup. If S1 is a two-element left zero semigroup,
then S is a T2L semigroup.
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If S1 was a non-trivial subgroup G of a quasicyclic p-group (p is a prime),
then S0 would be trivial by Theorem 1.3.15, which contradicts the assumption
that |S0| > 1. Thus the first part of the theorem is proved.

As the semigroups listed in the theorem are weakly exponential ∆-semigroups,
the proof is complete. u

2.3 Semigroups T1 and T2R (T2L)

Recall that, if a is an arbitrary element of a semigroup S, then J(a) denotes
the ideal of S generated by a. It is known that J(a) = S1aS1. The set of all
elements s of S with J(s) = J(a) is denoted by Ja. The set J(a)−Ja is denoted
by Ia. It is known that Ia is either empty or an ideal of S.

Lemma 2.3.1 If S is a T1 semigroup, then Ja = {a} for every a ∈ S.

Proof. Let S be a T1 semigroup. It is clear that Je = {e}. Let a ∈ S0 be an
arbitrary element. Assume

J(a) = J(b)

for some b ∈ S with b 6= a. Then b ∈ S0, and

ras = b, pbq = a

for some r, s, p, q ∈ S1. Thus

prasq = a and rpbqs = b.

As a 6= b and S0 is a nil semigroup, we get r, s, p, q /∈ S0. Then r, s, p, q are in
the semilattice S1 − S0. Thus

ras = b = rbs

and so
b = rpbqs = prbsq = pbq = a

which is a contradiction. Thus Ja = {a}. u

Theorem 2.3.2 ([Nag90]) S is a T1 semigroup if and only if it is a semilattice
of a non-trivial nil ∆-semigroup S0 and a one-element semigroup S1 = {e} such
that S0S1 ⊆ S0 and S1eS1 = S.

Proof. Assume that S is a T1 semigroup. Then it is a ∆-semigroup and a
semilattice of a non-trivial nil ∆-semigroup S0 and a one-element semigroup
S1 = {e} such that S0S1 ⊆ S0. Let a ∈ S0 be an arbitrary element. Applying
the proof of Lemma 3.3 of [Tro76], the ideal J(a) of S generated by the element
a equals the ideal of S0 generated by a. As the principal ideals of S form a
chain with respect to inclusion (by Theorem 1.3.8), the principal ideals of S0

form a chain with respect to inclusion. By Theorem 1.3.9, S0 is a ∆-semigroup.
As S1eS1 and S0 are ideals of S such that e /∈ S0, we get S1eS1 = S.
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Conversely, let S be a semigroup which is a semilattice of a non-trivial nil
∆-semigroup S0 and a one-element semigroup S1 = {e} such that S0S1 ⊆ S0

and S1eS1 = S. Let α be a non-identity congruence on S. Assume (e, a) ∈ α
for some a ∈ S0. Then (e, ae) ∈ α which implies (e, ame) ∈ α for every positive
integer m. As S0 is a nil semigroup, we get (e, 0) ∈ α, where 0 denotes the zero
of S0. Then, for every x, y ∈ S1, we have (xey, 0) ∈ α. As S1eS1 = S, we get
(s, 0) ∈ S for every s ∈ S. Consequently, α is the universal relation on S. It
means that {e} is an α-class for every non-universal congruence on S. Thus the
congruences of S form a chain with respect to inclusion. u

Theorem 2.3.3 ([Nag90]) Let S be a T2R semigroup. Then, for every element
a ∈ S, we have

Ja =

{
aS1, if a ∈ SS1

{a} otherwise.

Proof. Let u and v denote the elements of S1. Assume a ∈ SS1. Then, for
example, a = su for some s ∈ S. It is clear that au = a. First we show that
av ∈ Ja. The inclusion J(av) ⊆ J(a) is obvious. As S1 is a right zero semigroup,
a = au = avu and so J(a) ⊆ J(av). Hence J(a) = J(av) which means that
av ∈ Ja. From the previous results, we have

aS1 ⊆ Ja.

Next we show that a 6= b ∈ Ja implies b = bv. As b ∈ Ja, we have J(a) = J(b)
and so there are elements x, y, t, s ∈ S1 such that

xay = b and tbs = a.

From this it follows that

xtbsy = b and txays = a.

Moreover,
(xt)kb(sy)k = b and (tx)ka(ys)k = a

for every positive integer k. As S0 is a nil semigroup, we get x, y, t, s ∈ S1
1 . In

the opposite case a = b = 0 which contradicts the assumption a 6= b.
If x = 1, then xay = b implies ay = b. As b 6= a, we get y = v (applying also

au = a). Hence b = av.
Assume x 6= 1. Then x ∈ S1 and so tx = x. As txays = a, we get

a = xays = bs.

As a 6= b, we get s ∈ S1. Thus ys = s and so

a = xays = xas.

From this we get
a = au = xasu = xau = xa.
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Thus
b = xay = ay.

If y = 1 or y = u, then a = b; this is a contradiction. Thus y = v and so b = av.
In both cases we get b = av. Hence

Ja ⊆ aS1.

Consequently Ja = aS1.
In the second part of the proof assume that a is an element of S with

a /∈ SS1. We show that, for every b ∈ S, the assumption J(a) = J(b) implies
a = b. Assume

J(a) = J(b)

for an element b ∈ S. Then there are elements x, y, t, s ∈ S1 such that

xay = b and tbs = a.

Thus
xtbsy = b and txays = a.

If one of the elements x, y, t, s is in S0, then a = 0 = b. Thus we can consider
the case x, y, t, s ∈ S1

1 . If ys ∈ S1, then

a = txays ∈ SS1

which is impossible by the assumption a /∈ SS1. Hence y = s = 1. If t = 1, then

a = tbs = b.

If x = 1, then
b = xay = a.

Consider the case when x, t ∈ S1. Then xt = t and tx = x. As y = s = 1
implies xtb = b and txa = a, we get b = xtb = tb. On the other hand, tbs = a
implies tb = a (because s = 1). Thus

b = tb = a.

In all cases we get a = b. Consequently

Ja = {a}.

u

Theorem 2.3.4 ([Nag90]) A semigroup S is a T2R semigroup if and only if it
satisfies all of the following five conditions.

(i) S is semilattice of a nil semigroup S0 and a two-element right zero semi-
group S1 with S0S1 ⊆ S0;
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(ii) The principal ideals (equivalently, the ideals) of S form a chain with respect
to inclusion;

(iii) For every b ∈ S0, either b ∈ bS1 or bS1 ⊆ S1bS0;

(iv) For every b ∈ S0, either S1b = {b} or S1b ∩ (S0bS
1 ∪ S1bS0 6= ∅;

(v) For every b ∈ S, if |Jb| = 2 and Ib 6= {0}, then, for every a ∈ Ib there are
elements x, y ∈ S1 such that xJby ∩ Ja 6= ∅, but xJby 6⊆ Ja.

Proof. Let S be a T2R semigroup. Then (i) and (ii) are satisfied. We prove
that (iii), (iv) and (v) are also satisfied.

The proof of (iii): Let the elements of S1 denoted by u and v. Assume, in
an indirect way, that there is an element b ∈ S0 such that

b /∈ bS1 and bS1 6⊆ S1bS0.

From this it follows that b 6= 0. If bu ∈ S1bS0, then bv = buv ∈ S1bS0. Similarly,
bv ∈ S1bS0 implies bu = bvu ∈ S1bS0. Consequently,

bS1 ∩ S1bS0 = ∅. (2.1)

We show that bS1
1 is a normal complex of S. Let x, y ∈ S1 be elements with

xbS1
1y ∩ bS1

1 6= ∅.

Then there are elements t, s ∈ S1
1 such that

xbty = bs. (2.2)

and so
xbtyu = bsu = bu.

As bu /∈ S1bS0, we have y /∈ S0 and so y ∈ S1
1 . Then

xbtyu = xbu

and so
xbu = bu.

Hence
xnbu = bu

for every non-negative integer n. From this it follows that x /∈ S0, because S0

is a nil semigroup, 0 ∈ S1bS0 and bu /∈ S1bS0. Consequently x ∈ S1
1 . Thus

x, y ∈ S1
1 .

We have four cases.
Case 1: s = t = 1. In this case (2.2) is b = xby. If y 6= 1, then

bS1
1y = {xby} = {b} ⊆ bS1

1 .
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If y = 1, then (2.2) is b = xb and so xbS1
1 = bS1

1 , from this it follows that

xbS1
1y = bS1

1 .

Case 2: s = 1, t 6= 1. In this case b ∈ J(bt), that is J(b) ⊆ J(bt). As
J(bt) ⊆ J(b), we have

J(b) = J(bt).

As bt ∈ SS1, Theorem 2.3.3 implies Jbt = bS1. Then

b ∈ bS1,

which contradicts the assumption b /∈ bS1.
Case 3: s 6= 1 and t = 1. In this case (2.2) is xby = bs. If y 6= 1, then

xbS1
1y = {xby} = {bs} ⊆ bS1

1 .

If y = 1, then
xbS1

1 = bsS1
1 = bS1.

(We note that 1 6= s ∈ S1
1 and so sS1

1 = S1, because S1 is a right zero semigroup.)
Thus

xbS1
1y = xbS1 ⊆ xbS1

1 = bS1 ⊆ bS1
1 .

Case 4: s 6= 1 and t 6= 1. If y 6= 1, then

xbS1
1y = {xby} = {xbty} = {bs} ⊆ bS1

1 .

If y = 1, then we can suppose that x 6= 1. We note that if bu = ubu, then

bv = buv = ubuv = ubv

and so
vbv = vubv = ubv = bv.

Similarly, bv = vbv implies bu = ubu. Thus bu = ubu is satisfied if and only if
bv = vbv is satisfied.

Case 4a: bu 6= ubu and bv 6= vbv. As y = 1, (2.2) has the form xbt = bs.
Thus, for every p ∈ S1,

pbp = pbsp = pxbtp = xbp = bp

which is a contradiction.
Case 4b: bu = ubu and bv = vbv. We show that

S1b = {b} or S1b ∩ (S1bS0 ∪ S0bS
1) 6= ∅.

We shall use that S1bu = {bu} and S1bv = {bv}, which follows from

S1bu = S1ubu = {ubu} = {bu}
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and
S1bv = S1vbv = {vbv} = {bv}.

Assume, in an indirect way, that

S1b 6= {b} and S1b ∩ (S1bS0 ∪ S0bS
1) = ∅.

First we show that S1
1b is a normal complex of S. Let z, w ∈ S1 be arbitrary

elements with
zS1

1bw ∩ S1
1b 6= ∅.

Then there are elements p, q ∈ S1
1 such that

zpbw = qb.

It is clear that
qb /∈ (S1bS0 ∪ S0bS

1).

(If q = 1, then qb = b ∈ (S1bS0 ∪ S0bS
1) would imply b ∈ S1bS0 or b ∈ S0bS

1

from which we would get that b = 0; this is a contradiction. If q ∈ S1, then
qb ∈ S1b and so qb /∈ (S1bS0∪S0bS

1) by the indirect assumption S1b∩ (S1bS0∪
S0bS

1)). As qb /∈ (S1bS0 ∪ S0bS
1), we have z, w ∈ S1

1 .
If w = 1, then

zS1
1bw = sS1

1b ⊆ S1
1b.

Consider the case when w 6= 1. Then w ∈ S1. If pz = 1, then p = 1 and z = 1
and so

qb = zpbw = bw.

If pz 6= 1, then pz ∈ S1 and so

qb = (pz)bw ∈ S1(bw) = {bw}

(see the above: S1bu = {bu} and S1bv = {bv}). In both cases we get qb = bw
from which we get

zS1
1bw = S1

1qb ⊆ S1
1b.

Consequently S1
1b is a normal complex of S. By Theorem 1.1.2, there is a

congruence α on S such that S1
1b is an α-class of S. The congruence α is not

a Rees congruence. If α was a Rees congruence on S, then we would get that
|S1

1b| = 1 or S1
1b is an ideal of S.

In the first case S1
1b = {b} which contradicts S1b 6= {b}. Consider the second

case. Let s be an arbitrary element of S0. Then

ubs ∈ S1
1b.

If ubs = b, then
ukbsk = b

for every positive integer. As s ∈ S0 and S0 is a nil semigroup, we have b = 0
which is a contradiction.
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If ubs = ub or ubs = vb, then

S1b ∩ (S1bS0 ∪ S0bS
1) 6= ∅

which is also a contradiction. Consequently α is not a Rees congruence on S,
indeed. By Theorem 1.3.11 and the above result, S1

1b is not an ideal and

S1
1b 6= {b} and S1

1b ⊆ Jb.

By Theorem 2.3.3, Jb = bS1 or Jb = {b}. Thus

S1
1b ⊆ bS1 or S1

1b = {b}.

The second case is not true (see the above result). In the first case it follows
that

b = bu or b = bv.

If b = bu, then

ub = ubu = bu = b and vb = vub = ub = b

and so S1b = {b} which is a contradiction. The equation b = bv gives a contra-
diction in a similar way. As we get a contradiction in all cases, we have

S1b = {b} or S1b ∩ (S1bS0 ∪ S0bS
1) 6= ∅

as it was asserted in the beginning of Case 4b. Do not forget that we want to
show that bS1

1 is a normal complex (we can use s 6= 1, t 6= 1 and S1b = {b} or
S1b ∩ (S1bS0 ∪ S0bS

1) 6= ∅).
If S1b = {b}, then

xbS1
1y ⊆ xbS1

1 = bS1
1 .

Consider the case when S1b ∩ (S1bS0 ∪ S0bS
1) 6= ∅. Without loss of generality,

we can suppose
ub ∈ (S1bS0 ∪ S0bS

1).

If ub ∈ S1bS0, then
bu = ubu ∈ S1bS0

which is a contradiction.
If ub ∈ S0bS

1, then ub = rbz for some r ∈ S0 and z ∈ S1. As bu = ubu =
rb(zu) and bu /∈ S1bS0 (because bS1 ∩ S1bS0 = ∅; see the beginning of the
proof), we get z ∈ S1

1 . Thus bu = rbu and so

bu = rkbu

for every positive integer k. As r ∈ S0 and S0 is a nil semigroup, we get

bu = 0 ∈ S1bS0

which is a contradiction.
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Summarising our results: in all cases we get either a contradiction or the
inclusion xbS1

1y ⊆ bS1
1 . Consequently the indirect assumptions b /∈ bS1 and

bS1 6⊆ S1bS0 imply that bS1
1 is a normal complex of S. By Theorem 1.1.2,

there is a congruence β on S such hat bS1
1 is a β-class of S. If β was a Rees

congruence, then we would have that bS1
1 = {b} or bS1

1 is an ideal of S.
The equation bS1

1 = {b} contradicts the assumption b /∈ bS1 (see the begin-
ning of the proof of (iii)).

If bS1
1 was an ideal of S, then the zero 0 of S would be in bS1

1 and so 0
would be in bS1, because b 6= 0. Then we would have bS1 ∩ S1bS0 6= ∅ which
contradicts (2.1). Thus β is not a Rees congruence on S. It is clear that

[b]β = bS1
1 .

By Theorem 1.3.11, there is an element a ∈ S such that

[b]β = Ia or [b]β ⊆ Ja or [b]β = {b}.

In the first case bS1
1 is an ideal; this is a contradiction (see the previus result).

In the third case bS1
1 = {b} which is also a contradiction (see the above result).

Hence
bS1

1 = [b]β ⊆ Ja = Jb.

By Theorem 2.3.3,
Jb = bS1 or Jb = {b}.

In the firs case
b ∈ bS1

1 ⊆ Jb = bS1

which is a contradiction.
In the second case bS1

1 = {b} and so b ∈ S1. This is a contradiction. As we
get a contradiction in all cases, the indirect assumption b /∈ bS1 and bS1 6⊆ S1bS0

is not true. Thus
b ∈ bS1 or bS1 ⊆ S1bS0

as it is asserted in (iii).
The proof of (iv): Assume, in an indirect way, that there is an element b ∈ S0

such that
{b} 6= S1b and S1b ∩ (S0bS

1 ∪ S1bS0) = ∅. (2.3)

In this case b 6= 0. We show that S1
1b is a normal complex of S. Assume

xS1
1by ∩ S1

1 6= ∅

for some x, y ∈ S1. We have to show that

xS1
1by ⊆ S1

1 . (2.4)

By the assumption xS1
1by ∩ S1

1 6= ∅, there are elements t, s ∈ S1
1 such that

xtby = sb. (2.5)
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If x ∈ S0 or y ∈ S0, then

sb = xtby ∈ S0bS
1 ∪ S1bS0.

If s ∈ S1, then

S1b ∩ (S0bS
1 ∪ S1bS0) 6= ∅

which contradicts the second assumption in (2.3).
If s = 1, then b = (xt)by implies

b = (xt)kbyk

for every positive integer k and so b = 0, because S0 is a nil semigroup. This is
also a contradiction.

Hence x, y ∈ S1
1 . From this we get

sby = (xtby)y = xtby2 = xtby.

We have two cases.
Case 1*: s = 1. In this case (2.5) has the following form: xtby = b. We have

two subcases.
Case 1*a: t = 1. In this case

xby = b.

If x = 1, then S1
1b = S1

1by and so

S1
1b = xS1

1b = xS1
1by;

the inclusion (2.4) is satisfied.
If x 6= 1, then x ∈ S1 and so S1x = {x} from which we get

S1b = S1xby = {xby}.

Thus

S1by = {xby2} = {xby} = S1b

and so

xS1
1by = ({x} ∪ S1)by = xby ∪ S1by = {b} ∪ S1b = S1

1b.

Thus the inclusion (2.4) is satisfied.
Case 1*b: t 6= 1. In this case b = tby and so

ub = utby = tby = b

and

vb = vtby = tby = b,

Thus S1b = {b} which is a contradiction (see (2.3)).
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Case 2*: s 6= 1. Introduce the following notation. If p ∈ S1, then let p′

denote the element of S1 − {p}. We show that if pbq ∈ S1b (p, q ∈ S1), then

p′bq ∈ S1b (2.6)

is also satisfied. Assume pbq ∈ S1b for some p, q ∈ S1. By condition (iii) of our
theorem,

b ∈ bS1 or bS1 ⊆ S1bS0.

If bS1 ⊆ S1bS0, then

pbq ∈ S1bS0.

As pbq ∈ S1b (by the assumption), we get

pbq ∈ S1b ∩ (S0bS
1 ∪ S1bS0)

which contradict the second assumption in (2.3).
Consider the case when b ∈ bS1. If b = bq, then

p′bq = p′b ∈ S1b

and so (2.6) is satisfied. Examine the case when b 6= bq. Then b = bq′ and so

S1b = S1bq
′. (2.7)

We show that S1
1bS

1
1 is a normal complex of S. Let x′′, y′′ ∈ S1 be elements

such that

x′′S1
1bS

1
1y
′′ ∩ S1

1bS
1
1 6= ∅. (2.8)

Then there are elements t1, t2, s1, s2 ∈ S1
1 such that

x′′t1bt2y
′′ = s1bs2. (2.9)

Then

x′′t1bt2y
′′q′ = s1bs2q

′ = s1bq
′ = s1b

applying the above assumption b = bq′. As S0 is a nil semigroup,

b /∈ S1bS0 ∪ S0bS
1.

This and the second assumption in (2.3) together imply that

s1b /∈ (S1bS0 ∪ S0bS
1).

Thus x′′, y′′ ∈ S1
1 . Hence

x′′S1
1bS

1
1y
′′ ⊆ S1

1bS
1
1

and so S1
1bS

1
1 is a normal complex of S. By Theorem 1.1.2, there is a congruence

γ on S such that S1
1bS

1
1 is a γ-class of S. There are two cases: S1

1bS
1
1 = {b} or

S1
1bS

1
1 is an ideal of S.
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If S1
1bS

1
1 = {b}, then S1b = {b} which contradict the first assumption in

(2.3). If S1
1bS

1
1 is an ideal of S, then

0 ∈ S1
1bS

1
1 ∩ (S0bS

1 ∪ S0bS
1).

Hence
S1
1bS

1
1 ∩ (S0bS

1 ∪ S0bS
1) 6= ∅.

Using the above b = bq′ and S1b = S1bq
′, we have

S1
1bS

1
1 = S1

1b ∪ S1
1bq.

If S1
1b ∩ (S0bS

1 ∪ S1bS0) 6= ∅, then

S1b ∩ (S0bS
1 ∪ S1bS0) 6= ∅,

because b 6= 0 and S0 is a nil semigroup. But this contradict the second as-
sumption in (2.3).

If S1
1bq ∩ (S0bS

1 ∪ S1bS0) 6= ∅, then there is an element u ∈ S1
1 such that

ubq ∈ (S0bS
1 ∪ S1bS0).

As (S0bS
1 ∪ S1bS0 is an ideal of S,

ubqq′ ∈ (S0bS
1 ∪ S1bS0).

On the other hand,
ubqq′ = ubq′ = ub ∈ S1

1b.

Hence
S1
1b ∩ (S0bS

1 ∪ S1bS0) 6= ∅.

This case is the above one. As we get a contradiction in both cases, γ is not a
Rees congruence. By Theorem 1.3.11 and the previous results,

S1
1bS

1
1 ⊆ Jb.

By Theorem 2.3.3,
Jb = {b} or Jb = bS1.

In the first case
S1
1bS

1
1 = {b}

which is a contradiction (see the previous result).
If Jb = bS1, then the earlier assumptions b 6= bq and b = bq′ implies |bS1| = 2.

Thus |S1
1bS

1
1 | = 2, because S1

1bS
1
1 ⊆ Jb = bS1 and S1

1bS
1
1 = {b} is impossible.

As b = bq′ and bq are in S1
1bS

1
1 , we get

S1
1bS

1
1 = {b, bq}.

Hence
S1bq ⊆ S1

1bS
1
1 = {b, bq},
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that is,
p′bq = b or p′bq = bq.

In the case when p′bp = b, we get

p′bq = p′p′bq = p′b ∈ S1b.

In the case when p′bq = bg, we get

p′bq = (pp′)bq = p(p′bq) = pbq ∈ S1b.

In all cases we get either a contradiction or the inclusion p′bq ∈ S1b. Thus we
have proved that pbq ∈ S1b implies p′bq ∈ S1b for every p, q ∈ S1. In the next,
we consider two subcases.

Case 2*a: t = 1 and (s ∈ S1). In this case (2.5) has the following form:
xby = sb.

If y = 1, then xb = sb and so

xS1
1by = xS1

1b = {xb} ∪ xS1b = {sb} ∪ S1b ⊆ S1
1b.

Thus (2.4) is satisfied.
If y 6= 1, then xbx = sb. Assume x = 1. Then S1by = S1sb = {sb} and so

xS1
1by = {by} ∪ S1by = {sb} supS1sb = {sb} ⊆ S1

1b.

Thus (2.4) is satisfied. In the next consider the case x 6= 1. Do not forget that
y 6= 1 and s ∈ S1. In this case

xS1
1by = {xby} ∪ xS1by = {xby} ∪ S1by = {sb} ∪ {x, x′}by = {sb} ∪ {x′by}.

As x, y ∈ S1 and xby = sb ∈ S1b, we get (see above) x′by ∈ S1b. Consequently
the above xS1

1by = {sb}∪{x′by} equation implies that xS1
1by ∈ S1

1b. Thus (2.4)
is satisfied.

Case 2*b: t 6= 1 (and s ∈ S1) In this case tby = sb and

xS1
1by = {{xby} ∪ xS1by = {xby} ∪ S1by =

= {xby} ∪ {t, t′}by = {xby, tby, t′by} = {xby, sb, t′by}.

If y = 1, then
{xby, sb, t′by} ⊆ S1

1b.

In this case
xS1

1by ⊆ S1
1b

and so (2.4) is satisfied.
If y 6= 1, that is, y ∈ S1, then tby = sb ∈ S1b implies (see above) that

t′by ∈ S1b. As x = t or x = t′, the above inclusions imply xby ∈ S1b. Hence

{xby, sb, t′by} ⊆ S1b ⊆ S1
1b.
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Consequently
xS1

1by ⊆ S1
1b.

Thus (2.4) is satisfied. From the previous results it follows that S1
1b is a normal

complex of S, indeed. By Theorem 1.1.2, there is a congruence δ on S such that
S1
1b is a δ-class of S.

If S1
1b = {b}, then {b} = S1b which contradicts the first assumption in (2.3).

If S1
1b is an ideal of S, then

S1
1b ∩ (S0bS

1 ∪ S1bS0) 6= ∅.

As S1b ∩ (S0bS
1 ∪ S1bS0) = ∅ by the second assumption in (2.3), we have

b ∈ S0bS
1 ∪ S1bS0

which implies b = 0 because S0 is a nil semigroup. This contradicts b 6= 0. Thus
δ is not a Rees congruence on S. The above results and Theorem 2.3.3 imply
that S1

1b ⊆ Jb. From this it follows that b and ub (recall that S1 = {u, v})
generate the same two-sided ideal of S. From this it follows that there are
elements x, y ∈ S1 such that

xuby = b.

Then
(xu)kbyk = b

for every positive integer k. As S0 is a nil semigroup, x, y /∈ S0, that is x, y ∈ S1
1 .

Thus
xuby = uby

and so
uby = b.

Multiply this equation by u (on the left), we get

ub = uuby = uby = b.

If we apply the above idea for v (instead of u), we get vb = b. Thus S1b = {b}.
This contradict the first assumption in (2.3). As we get a contradiction, the
indirect assumption is not true. Hence (iv) must be satisfied.

The proof of (v): Let b be an arbitrary element of S such that |Jb| = 2 and
Ib 6= {0}. Let a ∈ Ib be an arbitrary element. Since Ib ⊆ J(b), then there are
elements x, y ∈ S1 such that a = xby. Thus xJby ∩ Ja 6= ∅. Assume that, for
every x, y ∈ S1, the assumption xJby∩Ja 6= ∅ implies xJby ⊆ Ja. We show that
this is impossible which proves (v). Consider the congruence

P ∗Ja = {(c, d) ∈ S × S : (∀s, t ∈ S1) sct ∈ Ja iff sdt ∈ Ja}.

It is easy to see that Ja is a union of P ∗Ja -classes of S, and Ja ⊂ Ib. As S is a
∆-semigroup, P ∗Ja ⊆ %Ib , where %Ib denotes the Rees congruence on S defined
by the ideal Ib of S.
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Let b and b′ (b 6= b′) denote the elements of Jb. If sbt ∈ Ja for some
s, t ∈ S1, then sJbt∩Ja 6= ∅ and so, by our previous assumption, sJbt ⊆ Ja and
so sb′t ∈ Ja. Similarly, if sb′t ∈ Ja for some s, t ∈ S1, then sbt ∈ Ja. Hence
(b, b′) ∈ P ∗Ja . As P ∗Ja ⊆ %Ib , we get (b, b′) ∈ %Ib which implies b = b′, because
b, b′ /∈ Ib. This contradict the assumption b 6= b′.

Consequently, there are elements x, y ∈ S1 such that xJbx ∩ Ja 6= ∅ and
xJby 6⊆ Ja, that is, (v) is satisfied.

Conversely, assume that S is a semigroup which satisfies all of the conditions
(i) - (v). First we show that S is weakly exponential. Let a and b be arbitrary
elements of S. Let n be a positive integer. As S1 is a right zero semigroup, it is
sufficient to deal with the case when one of a and b is in S0. In this case ab ∈ S0.
As S0 is a nil semigroup, there is a positive integer k such that (ab)k = 0 and
so (ab)n+k = 0 = anbn(ab)k = (ab)kanbn. Thus S is weakly exponential.

Next we show that S is a ∆-semigroup. Let λ be an arbitrary non-universal
congruence on S. Let Iλ denote the λ-class of S containing the zero 0 of S. It
is obvious that Iλ is an ideal of S. Let a, b ∈ S − Iλ be arbitrary elements such
that (a, b) ∈ λ. We show that J(a) = J(b). As the ideals of S form a chain with
respect to inclusion, we have

J(a) ⊆ J(b) or J(b) ⊆ J(a).

By the symmetry, we can consider, for example, the case J(a) ⊆ J(b).
If a ∈ S1, then we have J(a) = S by (ii), and so J(b) = S. Assume

a ∈ S0. As J(a) ⊆ J(b), there are elements p, q ∈ S1 such that a = pbq. Then
(b, pbq) ∈ λ and so

(b, pkbqk) ∈ λ

for every positive integer k. As S0 is a nil semigroup and (b, 0) /∈ λ, we get
p, q ∈ S1

1 . From this it follows that b ∈ S0 (because a ∈ S0 and a = pbq). We
have three cases.

Case 1: p = 1. In this case a = bq. We can suppose that q 6= 1. From
condition (iii) it follows that

bq ∈ S1bS0 or b ∈ bS1.

If bq was in S1bS0, then would be elements x ∈ S1 and y ∈ S0 such that
bq = xby. This equation implies (b, xby) ∈ λ from which it follows that

(b, xkbyk) ∈ λ

for every positive integer k. As S0 is a nil semigroup, we would get (b, 0) ∈ λ
which contradict b ∈ S − Iλ. Hence b ∈ bS1. (Recall that q ∈ S1.)

If b = bq, then a = b (and so J(a) = J(b)). If b = bq′ (q′ is the other element
of S1), then

aq′ = bqq′ = bq′ = b.

This equation together with a = bq imply that J(a) = J(b).
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Case 2: q = 1. In this case a = pb. We can suppose that p 6= 1. By condition
(iv),

S1b = {b} or S1b ∩ (S0bS
1 ∪ S1bS0) 6= ∅.

If S1b = {b}, then pb = b and so a = b. Thus we can consider the case
S1b ∩ (S0bS

1 ∪ S1bS0) 6= ∅. We show that this case is impossible. As S1b =
{pb, p′b}, we have that one of the elements pb and p′b is in the ideal S1bS0∪S0bS

1.
Assume pb ∈ S1bS0 ∪ S0bS

1. Then there are elements x, y ∈ S1 such that
pb = xby and one of x and y is in S0. As pb = a and (a, b) ∈ λ, we get
(xby, b) ∈ λ. From this it follows that

(xkbyk, b) ∈ λ

for every positive integer k. As S0 is a nil semigroup and one of x and y in in
S0, we get (0, b) ∈ λ which contradicts b /∈ Iλ.

Consider the case p′b ∈ (S1bS0 ∪ S0bS
1). As a = pb, we have

p′a = p′(pb) = (p′p)b = pb,

because S1 is a right zero semigroup. As (a, b) ∈ λ, we have (p′a, p′b) ∈ λ. The
equation p′a = pb implies (pb, p′b) ∈ λ. As p′b ∈ (S1bS0 ∪ S0bS

1), there are
elements x, y ∈ S1 such that x or y is in S0 and p′b = xby. As a = pb, we have
(b, pb) ∈ λ. This and the above (pb, p′b) ∈ λ together imply that (b, p′b) ∈ λ
and so (b, xby) ∈ λ. From this it follows (see the above) that (b, 0) ∈ λ which is
a contradiction.

Case 3: p 6= 1 and q 6= 1. In this case p, q ∈ S1 and a = (pb)q. Recall that
b ∈ S0. By condition (iv),

{b} = S1b or S1b ∩ (S1bS0 ∪ S0bS
1) 6= ∅.

If {b} = S1b, then pb = b and so a = bq. This is the Case 1. Assume S1b ∩
(S1bS0 ∪ S0bS

1) 6= ∅. Then pb or p′b in in the ideal S1bS0 ∪ S0bS
1 and so

pbq or p′bq is in S1bS0 ∪ S0bS
1. If pbq ∈ (S1bS0 ∪ S0bS

1), then pbq = xby for
some x, y ∈ S1 such that x or y is in S0. Thus (b, xby) ∈ λ from which we get
(b, 0) ∈ λ (see above). This contradicts b /∈ Iλ. If p′bq ∈ (S1bS0 ∪ S0bS

1), then
(a, b) ∈ λ, p′ab = p′(pbq)q = pbq = a and (p′bq, p′aq) ∈ λ together imply that
(b, p′bq) ∈ λ. As p′bq ∈ (S1bS0 ∪ S0bS

1), there are elements x, y ∈ S1 such that
p′bq = xby and x or y is in S0. Then (b, xby) ∈ λ. From this we get (as above)
that (b, 0) ∈ λ which is a contradiction.

Summarizing our results, we get J(a) = J(b). Thus (a, b) ∈ λ implies
J(a) = J(b) for every a, b ∈ S − Iλ. From this it follows that if b ∈ S − Iλ is an
arbitrary element, then [b]λ ⊆ Jb. It is clear that Jb∩ = ∅ for every b ∈ S − Iλ.

In the next we show that |Jb| ≤ 2 for every b ∈ S − Iλ. Let b ∈ S − Iλ be an
arbitrary element. Assume that there are element a and c in S − Iλ such that
a, b, c are pairwise different, and J(a) = J(b) = J(c). As J(a) = J(b), there
are elements x, y, p, q ∈ S1 such that b = xcy and c = pbq. Thus

b = xpbqy and c = pxcyq.
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Moreover
b = (xp)kb(qy)k

for every positive integer k. As b 6= 0 and S0 is a nil semigroup, we get x, y, p, q ∈
S1
1 . Thus x, y, p, q are idempotent elements and so by = b, cq = c. Hence

by = b = xpbqy = p(xp)b(qy)(qy) = p(xpbqy)qy = (pbq)y = cy

and
cq = c = pxcyq = x(px)cyqyq = x(pxcyq)yq = xcyq = bq.

As b 6= c, we have y, q ∈ S1 and y 6= q. If we apply the previous result for b and
a, and for c and a, the we get

by′ = b = ay′,

aq′ = a = bq′,

cy′′ = c = ay′′,

aq′′ = a = cq′′

for some y′, q′, y′′, q′′ ∈ S1 with y′ 6= q′ and y′′ 6= q′′. We show that y′′ = y = y′.
Assume y 6= y′. As q′ 6= y′, q′, y′ ∈ S1 and |S1| = 2, we get y = q′. In this
case b = by = bq′ = a which is a contradiction. Assume y 6= y′′. As q′′ 6= y′′,
and q′′, y′′ ∈ S1, we get y = q′′. In this case b = cy = cq′′ = a which is a
contradiction. We get a contradiction in every case. Thus |Jb| ≤ 2 for every
b ∈ S − Iλ.

Let b ∈ S − Iλ be an arbitrary element such that |[b]λ| = 2. As [b]λ ⊆ Jb,
|Jb| ≤ 2 and |[b]λ| = 2, we have Jb = [b]λ. We show that J(b) = Jb∪Iλ. Assume,
in an indirect way, that J(b) 6= Jb ∪ Iλ. It is obvious that J(b) ⊃ Jb ∪ Iλ. Let
a ∈ J(b)− (Jb ∪ Iλ) be an arbitrary element. Then 0 6= a ∈ Ib and so Ib 6= {0}.
By condition (v), there are elements x, y ∈ S1 such that xJby ∩ Ja 6= ∅ but
xJby 6⊆ Ja. As a /∈ (Jb ∪ Iλ), we get [a]λ ∩ (Jb ∪ Iλ) = ∅. As xJby ∩ Ja 6= ∅,
there are elements t ∈ Jb and p ∈ Ja such that xty = p. As Jb = [b]λ, we get
(xty, xry) ∈ λ for every r ∈ Jb. Thus xJby ∈ [p]λ ⊆ Jp = Ja which contradict
the above xJby 6⊂ Ja. Consequently J(b) = Jb ∪ Iλ.

Let e and f be arbitrary elements in S−Iλ such that |[e]λ| = 2 and |[f ]λ| = 2.
Then, by the previous results, J(e) = Je ∪ Iλ and J(f) = Jf ∪ Iλ. By condition
(ii), we have J(e) ⊆ J(f) or J(f) ⊆ J(e) from which we get Je = Jf and so
(e, f) ∈ λ. From this it follows that S − Iλ can contain at most one λ-class
which contains two elements.

Let λ1 and λ2 be arbitrary congruences on S. Assume Iλ1
= Iλ2

. If λ1 and
λ2 are Rees congruences, then λ1 = λ2. Assume that one of them (for example,
λ1) is not a Rees congruence. Then, by the above results, there is an element
b ∈ S − Iλ such that J(b) = Jb ∪ Iλ1

, |Jb| = 2 and the λ1-classes of S are Iλ1
,

Jb and the one-element subsets of S − J(b). If λ2 is a Rees congruence on S,
then λ2 ⊆ λ1. If λ2 is not a Rees congruence on S, then there is an element
c ∈ S − Iλ1

such that J(c) = Jc ∪ Iλ1
, |Jc| = 2 and the λ2-classes of S are
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Iλ1 , Jc and the one-element subsets of S − J(c). By condition (ii), J(b) ⊆ J(c)
or J(c) ⊆ J(b). In both cases we get Jb = Jc and so λ1 = Λ2. Consequently,
λ1 ⊆ λ2 or λ2 ⊆ λ1.

Consider the case when Iλ1
6= Iλ2

. Then Iλ1
⊂ Iλ2

or Iλ2
⊂ Iλ1

. By the
symmetry , we may assume Iλ1

⊂ Iλ2
. Let a, b ∈ S be arbitrary elements with

(a, b) ∈ λ1. We show that (a, b) ∈ λ2. We may assume a 6= b. If a, b ∈ Iλ1 ,
then a, b ∈ Iλ2 and so (a, b) ∈ λ2. If a, b /∈ Iλ1 , then [a]λ1 = {a, b} and
J(a) = Iλ1

∪ {a, b}. By condition (ii), J(a) ⊆ Iλ2
or Iλ2

⊆ J(a). If J(a) ⊆ Iλ2
,

then a, b ∈ Iλ2
and so (a, b) ∈ λ2. The case Iλ2

⊂ J(a) is not possible, because
Iλ1
⊂ Iλ2

and J(a) = Ja ∪ Iλ1
. Consequently λ1 ⊆ λ2. Hence S is a ∆-

semigroup. u

Proposition 2.3.5 ([Nag13]) If b is an element of a T2R semigroup S such
that |Jb| = 2 and Ib = {0}, then , for every x, y ∈ S1, either 0 /∈ xJby or
xJby = {0}. Moreover, JbS0 = S0Jb = {0} and either S1Jb = {0} or S1Jb = Jb.

Proof. Let b be an element of a T2R semigroup S such that |Jb| = 2 and
Ib = {0}. Then b ∈ S0. By Theorem 2.3.3, Jb = bS1 = {bu, bv}. By [BC80,
Lemma 2.7], Jb is a normal complex, that is, xJby ∩ Jb 6= ∅ implies xJby ⊆ Jb
for every x, y ∈ S1. As xJby ⊆ J(b) = Jb ∪ {0}, we get either 0 /∈ xJby or
xJby = {0} for every x, y ∈ S1.

Next we show that JbS0 = S0Jb = {0}. If Jby 6= {0} for some y ∈ S0, then
0 /∈ Jby and so buy ∈ Jb. Thus buyu = bu from which we get bu(yu)n = bu for
every positive integer n. As S0 is a nil semigroup and yu ∈ S0, we have bu = 0.
This is a contradiction. Hence JbS0 = {0}. If xJb 6= {0} for some x ∈ S0, then
0 /∈ xJb and so xbu ∈ Jb. Then xbu = bu. From this we get xnbu = bu for every
positive integer n. As x ∈ S0 and S0 is a nil semigroup, we get bu = 0. This is
a contradiction. Hence S0Jb = {0}.

Next we show that uJb = {0} if and only if vJb = {0}. Assume uJb = {0}
and vJb 6= {0}. Then 0 /∈ vJb and so vbu ∈ Jb. Then vbu = bu from this we
get bu = vbu = uvbu = ubu = 0. This is a contradiction. Thus uJb = {0}
implies vJb = {0}. Similarly, vJb = {0} implies uJb = {0}. Hence uJb = {0} iff
vJb = {0}.

Next we show that either S1Jb = {0} or S1Jb = Jb. First of all, we note
that S1Jb = Jb is satisfied if and only if ef = f is satisfied for every e ∈ S1

and f ∈ Jb. Assume S1Jb 6= {0}. As uJb = {0} iff vJb = {0}, uJb 6= {0} and
vJb 6= {0}. Thus 0 /∈ uJb and 0 /∈ vJb from which we get that, for every x ∈ S1,
there are elements y, z ∈ S1 such that ubx = by and vbx = bz. Then uw = w
and vw = w for every w ∈ Jb, that is, S1Jb = Jb. u

Corollary 2.3.6 ([Nag13]) If S is a T2R semigroup and b ∈ S0 is arbitrary
with |Jb| = 2, then S0Jb ⊆ Ib, JbS0 ⊆ Ib and either S1Jb ⊆ Ib or S1Jb = Jb.

Proof. Let b ∈ S0 be an arbitrary element of a T2R semigroup S such that
|Jb| = 2. Using Theorem 1.3.3, it is easy to see that the Rees factor semigroup
of S by the ideal Ib is a T2R semigroup, in which J(b) = Jb ∪ {0}. Thus our
assertion follows from Proposition 2.3.5. u
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Proposition 2.3.7 ([Nag13]) If S is a T2R semigroup, then there is an element
b ∈ S0 such that |Jb| = 2.

Proof. Assume, in an indirect way, that S is a T2R semigroup in which
|Jb| 6= 2 for every b ∈ S0. Then, by Theorem 2.3.3, Jb = {b} for every b ∈ S0.

First we show that u and v are left identity elements of S. Let a ∈ S0 be an
arbitrary element. Then a ∈ I(u) = S0 6= {0}. By (v) of Theorem 2.3.4, there
are elements x, y ∈ S1 such that xJuy ∩ Ja 6= ∅ and xJuy 6⊆ Ja. As Ja = {a},
we have xuy = a and xvy 6= a or xvy = a and xuy 6= a.

By the symmetry, we can consider only one of the above two cases. Assume,
for example, xuy = a, xvy 6= a. If x ∈ S0, then xu ∈ SS1 and so (by The-
orem 2.3.3) Jxu = xuS1 = {xu, xv}. As xu ∈ S0, we have |Jxu| = 1 and so
xu = xv. From this it follows that xuy = xvy which is a contradiction. Thus
x ∈ S1

1 and so xu = u. From uy = xuy = a we get ua = a and so we also have
va = a. Thus u and v are left identity elements of S.

By the previous part of the proof, if a is an arbitrary element of S0, then
there is an element y ∈ S0 such that uy = a and vy 6= a or vy = a and uy 6= a.
Both cases are impossible, because uy = a is satisfied if and only if y = a if and
only if vy = a, because u and v are left identity elements of S. u

Proposition 2.3.8 ([Nag13]) If there exists a T2R semigroup, then there exists
a T2R semigroup S which contains an element b ∈ S0 with |Jb| = 2 and Ib =
{0}.

Proof. Suppose that there exist a T2R semigroup H which is a semilattice
of a non-trivial nil semigroup H0 and a two-element right zero semigroup H1.
By Proposition 2.3.7, there is a element b ∈ H0 such that |Jb| = 2. Denote S
the Rees factor semigroup H/Ib defined by the ideal Ib. By Theorem 1.3.3, S
is a ∆-semigroup. It is clear that S is a T2R-semigroup in which S1 = H1 and
S0 = H0/Ib. Identifying the elements of S−{0} and H− Ib, for b ∈ S0, we have
(in S) |Jb| = 2 and Ib = {0}. u

Proposition 2.3.9 ([Nag13]) In every T2R semigroup S there is an element
b ∈ S0 such that ub 6= b and vb 6= b.

Proof. Assume, in an indirect way, that there is a T2R semigroup S in which
ub = vb = b is satisfied for every b ∈ S0. Let b ∈ S0 be an arbitrary element with
|Jb| = 2. By Proposition 2.3.7, such element exists. By (v) of Theorem 2.3.4,
there are elements x, y ∈ S1 such that xJuy∩Jb 6= ∅ and xJuy 6⊆ Jb. Let b∗ ∈ Jb
denote the element for which b∗ ∈ xJuy is satisfied. Then xuy = b∗ or xvy = b∗.
Consider the case xuy = b∗ (the proof is similar in the case xvy = b∗). By
xJuy 6⊆ Jb, we have xvy /∈ Jb. Then xuy = b∗ and xvy 6= b∗ and so uy 6= vy
from which we get y /∈ S, that is, y = 1. Then xvy = xv = xuv = b∗v ∈ Jb
which contradicts xvy /∈ Jb. u

Proposition 2.3.10 ([Nag13]) In every T2R semigroup S, S2
0 = S0.
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Proof. It is sufficient to show that, in every T2R semigroup S, S2
0 6= {0}.

This implies our assertion, because if S2
0 6= S0 was in a T2R semigroup S,

then the Rees factor semigroup H = S/S2
0 would be a T2R semigroup in which

H0 = S0/S
2
0 would satisfy H2

0 = {0} contradicting our result.
Assume, in an indirect way, that there is a T2R semigroup S in which

S2
0 = {0}. By Proposition 2.3.9, uS0 6= S0 (and vS0 6= S0). Let a ∈ S0 − uS0

be an arbitrary element. By (v) of Theorem 2.3.4, there are elements x, y ∈ S1

such that xJuy ∩ Ja 6= ∅ and xJuy 6⊆ Ja. Let a∗ ∈ Ja denote the element for
which a∗ ∈ xJuy is satisfied. Then xuy = a∗ or xvy = a∗. Consider the case
xuy = a∗ (the proof is similar in case xvy = a∗). Then xvy 6= a∗. If |Ja| = 1,
then a = a∗ and so ua∗ 6= a∗. If |Ja| = 2, then a ∈ Ja = Ja∗ = {a∗u, a∗v} and
so there is an element x ∈ {u, v} such that a = a∗x. Then ua∗ 6= a∗, because
the opposite case implies

a = a∗x = (ua∗)x = u(a∗x) = ua

which is a contradiction. Consequently (in both cases) a∗ /∈ uS0. Thus, from the
above equation xuy = a∗, it follows that x ∈ S0. If y = 1, then a∗ = xu ∈ SS1

and so, by Theorem 2.3.3, Ja = Ja∗ = {a∗u, a∗v}. Then

xvy = xv = xuv = a∗v ∈ Ja∗ = Ja

which is a contradiction. If y ∈ S1, then uy = vy and so

xvy = xuy = a∗

which is also a contradiction. If y ∈ S0, then, using also x ∈ S0, we have

a∗ = xuy ∈ S0
2 = {0}

from which we get
a∗ = ua∗ ∈ uS0.

This is a contradiction. As in all cases we get a contradiction, the indirect
assumption is not true. u

Corollary 2.3.11 ([Nag13]) There is no finite T2R (T2L) semigroup.

Proof. Assume that S is a finite T2R semigroup. As S0 is a finite nil semi-
group, it is nilpotent, that is, Sk0 = {0} for some positive integer k. Then, by
Proposition 2.3.10, S0 = {0} which contradict the assumption that S0 contains
at least two different elements. u

Open problem: Is there an infinite T2R (or a T2L) semigroup?
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Chapter 3

RGCn-commutative
semigroups

By Definition 1.1.13, a semigroup S is called a left weakly commutative semi-
group if, for every a, b ∈ S, there exist x ∈ S and a positive integer n such that
(ab)n = bx. In this chapter a special type of left weakly commutative semi-
groups is considered. In [Nag92], I introduced the notion of the R-commutative
semigroup. A semigroup S is said to be R-commutative if, for every elements
a, b ∈ S, there is an element x ∈ S1 such that ab = bax. It is clear that every
R-commutative semigroup is left weakly commutative. In my paper [Nag92],
I examined R-commutative semigroups S which have also the property that,
for every a, b ∈ S, ab = ba implies axb = bxa for all x ∈ S. A semigroup
with this last property is called a conditionally commutative semigroup, and
a semigroup which is R-commutative and conditionally commutative is called
an RC-commutative semigroup. In [Nag92], I determined all RC-commutative
∆-semigroups. In the examinations the conditionally commutativity of a semi-
group S was used only in the following form: S satisfies the identity aba2 = a2ba.
In [Pon94], a semigroup satisfying this identity is called a generalized condition-
ally commutative (briefly, GC-commutative) semigroup, and it was proved that
every GC-commutative semigroup satisfies the identity axai = aixa for every
integer i ≥ 2. In [Nag98], I generalized the notion of the GC-commutative semi-
group. I defined the notion of the GCn-commutative semigroup (n is a positive
integer) as a semigroup which satisfies the identity anbai = aiban for every
integer i ≥ 2. I examined semigroups which are R-commutative and also GCn-
commutative; these semigroups are called RGCn-commutative semigroups. In
[Nag92] and [JN03] we described the RGCn-commutative ∆-semigroups. In this
chapter we present the results of [Nag92], [Nag98] and [JN03]. The chapter
contains four sections.

In the first section we present those results on R-commutative semigroups
which will be used in the chapter.

In the second section the GCn-commutative semigroups are investigated. We
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prove that a semigroup is simple and GCn-commutative if and only if it is a Rees
matrix semigroup over a commutative group.

In the third section the RGCn-commutative semigroups are considered. We
prove that everyRGCn-commutative semigroup is a semilattice of GCn-commutative
archimedean semigroups. Moreover, a semigroup is simple andRGCn-commutative
if and only if it is a right abelian group. Using this result, we prove that every
archimedean RGCn-commutative semigroup with an idempotent element is an
ideal extension of a right abelian group by a commutative nil semigroup.

In the fourth section we determine all RGCn-commutative ∆-semigroups.
We show that a semigroup is an RGCn-commutative ∆-semigroup if and only
if it is isomorphic to one of the following semigroups: (i) G or G0, where G is a
non-trivial subgroup of a quasicyclic p-group (p is a prime); (ii) a two-element
semilattice; (iii) R or R0 or R1, where R is a two-element right zero semigroup;
(iv) a commutative nil semigroup with chain ordered principal ideals; (v) N1,
where N is a non-trivial commutative nil semigroup with chain ordered principal
ideals. At the end of the section, we present our main result onRC-commutative
∆-semigroups (which was published in [Nag92]).

3.1 R-commutative semigroups

Definition 3.1.1 A semigroup S is called an R-commutative semigroup if, for
every elements a, b ∈ S, there is an element x ∈ S1 such that ab = bax.

Remark 3.1.2 Every R-commutative semigroup is left weakly commutative.

Theorem 3.1.3 Every R-commutative semigroup is decomposable into a semi-
lattice of archimedean semigroups.

Proof. Let S be an R-commutative semigroup. Then, by Remark 3.1.2, it
is left weakly commutative. Then, by Corollary 1.1.15, S is a semilattice of
archimedean semigroups. u

Theorem 3.1.4 ([Nag01, Theorem 5.2]) A semigroup S is R-commutative if
and only if the Green’s equivalence R on S is a commutative congruence on S.

Proof. Let S be an R-commutative semigroup and a, b, s ∈ S be arbitrary
elements with a 6= b and (a, b) ∈ R. Then

aS1 = bS1

and so
a = by,

b = ax

for some x, y ∈ S. As as = bys = bsyt and bs = axs = asxt′ for some t, t′ ∈ S1,
we get

asS1 = bsS1,
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that is,
(as, bs) ∈ R.

Hence R is right compatible. As R is a left congruence on an arbitrary semi-
group, it is a congruence on S. As ab = bax and ba = aby for some x, y ∈ S1,
we have

(ab, ba) ∈ R.
Hence R is a commutative congruence on S.

Conversely, assume that S is a semigroup in which the Green’s equivalence
R is a congruence. Then, for arbitrary elements a, b ∈ S,

(ab, ba) ∈ R

and so
ab = bax

for some x ∈ S1. Hence S is R-commutative. u

Corollary 3.1.5 ([Nag92]) Every R-commutative nil semigroup is commuta-
tive.

Proof. Let S be an R-commutative nil semigroup. It is easy to see that
the Green’s equivalence R is the identity relation on a nil semigroup. Thus
S/R ∼= S. By Theorem 3.1.4, S is commutative. u

We note that the subsemigroups (and so the archimedean components) of
an R-commutative semigroup are not necessarily R-commutative.

Lemma 3.1.6 ([Nag92]) Every right ideal of an R-commutative semigroup is
a two-sided ideal.

Proof. Let R be a right ideal of an R-commutative semigroup. Then, for every
r ∈ R and s ∈ S, there is an element x in S1 such that

sr = rsx ∈ R.

So
SR ⊆ R,

that is, R is also a left ideal of S. u

Lemma 3.1.7 ([Nag92]) If K is an ideal of an R-commutative semigroup such
that K is simple, then K is an R-commutative semigroup.

Proof. Let k1, k2 be arbitrary elements of K. It is evident that k2k1K is a
right ideal of S. By Lemma 3.1.6, k2k1K is a two-sided ideal of S and so of K.
As K is simple, we get

k2k1K = K.

Then there is an element k in K such that

k1k2 = k2k1k.

Hence K is R-commutative. u
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3.2 GCn-commutative semigroups

Definition 3.2.1 For a positive integer n, a semigroup is called generalized
conditionally n-commutative (or GCn-commutative) if it satisfies the identity
anxai = aixan for every integer i ≥ 2.

We note that if S is a non commutative band with an identity element, then
S is GCn-commutative for every positive integer n, but it is not conditionally
commutative. Thus the conditionally commutative semigroups form a proper
subclass in the class of GCn-commutative semigroups for every positive integer
n.

Lemma 3.2.2 ([Nag98]) Every GCn-commutative semigroup satisfies the iden-
tity atnbak = akbatn for every positive integer t and every integer k ≥ 2t.

Proof. By induction for t. If t = 1, then the assertion holds by definition.
Assume that the identity holds in a GCn-commutative semigroup S for some
positive integer t and every integer k ≥ 2t. Let a, b ∈ S be arbitrary elements
and k ≥ 2(t+ 1) an arbitrary integer. Then k − 2 ≥ 2t and so

a(t+1)nbak = atnanbak−2a2 = ak−2anbatna2 =

ak−2a2batnan = akba(t+1)n.

u

The simple GCn-commutative and the simpleRGCn-commutative semigroups
are very important in our investigation. Before describing them, we prove the
following lemma.

Lemma 3.2.3 ([Nag98] If S is a GCn-commutative semigroup such that a =
xa6ny holds for some a ∈ S and x, y ∈ S1, then S has an idempotent element.

Proof. Let S be a semigroup satisfying the condition of the lemma. Then

a3n = anaan−1an = anxa6nyan−1an = [anxa3n][a3n(yan−1)an].

By Lemma 3.2.2,

anxa3n = a3nxan

and

a3n(yan−1)an = an(yan−1)a3n.

Thus

a3n = a3n(xa2nyan−1)a3n.

Hence, a3n is a regular element of S. Consequently S contains an idempotent
element. u
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Theorem 3.2.4 ([Nag98] A semigroup is simple and GCn-commutative if and
only if it is isomorphic with a Rees matrix semigroup M(G; I, J ;P ) over a
commutative group G.

Proof. Let S be a simple GCn-commutative semigroup. We can suppose that
|S| ≥ 2. Then S has no a zero element. As S is simple, for an arbitrary element
a ∈ S, there are elements x, y ∈ S1 such that a = xa6ny. By Lemma 3.2.3, S
has an idempotent element f . We show that S is completely simple. Assume,
in an indirect way, that S is not completely simple. Then, using Theorem 1.1.6,
we can conclude that S contains a bicyclic semigroup C(p, q) such that pq = f ,
qp 6= f . It is clear that C(p, q) must be GCn-commutative and so

qnpn+1 = qnpn+1p2q2 = pn+3qn+2 = p

which is a contradiction. Consequently S is completely simple and it is isomor-
phic with a Rees matrix semigroup M(G; I, J ;P ) over a group G with a J × I
sandwich matrix P . Suppose that P is normalized, that is, there are elements
i0 ∈ I and j0 ∈ J such that pj0,i = pj,i0 = e for all i ∈ I, j ∈ J , where e denotes
the identity element of G. Let g and h be arbitrary elements in G. Then

(i0, g
nhgn+1, j0) = (i0, g, j0)n(i0h, j0)(i0, g, j0)n+1 =

(i0, g, j0)n+1(i0h, j0)(i0, g, j0)n = (i0, g
n+1hgn, j0)

which implies that
gnhgn+1 = gn+1hgn,

that is,
hg = gh.

Hence G is commutative. Thus the first part of the theorem is proved.
Conversely, assume that a semigroup S is isomorphic with a Rees matrix

semigroup over a commutative group. It is a matter of checking to see that S
is GCn-commutative. Thus S is a simple GCn-commutative semigroup. u

3.3 RGCn-commutative semigroups

Definition 3.3.1 ([Nag98]) A semigroup which is R-commutative and GCn-
commutative will be called an RGCn-commutative semigroup .

We note that if S = R1, where R is a non-trivial right zero semigroup, then
S is an RGCn-commutative semigroup for every positive integer n such that
it is not conditionally commutative. Consequently, for every positive integer
n ≥ 2, the class of RC-commutative semigroups is a proper subclass in the class
of RGCn-commutative semigroups.

Theorem 3.3.2 Every RGCn-commutative semigroup is a semilattice of
archimedean GCn-commutative semigroups.
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Proof. By Theorem 3.1.3, it is obvious. u

Theorem 3.3.3 ([Nag98]) A semigroup is simple and RGCn-commutative if
and only if it is a right abelian group.

Proof. Let S be an RGCn-commutative simple semigroup. By Theorem 3.2.4,
S is isomorphic with a Rees matrix semigroupM(G; I, J ;P ) over a commutative
group G. Assume that P is normalized (pj0,i = pj,i0 = e for some i0 ∈ I, j0 ∈ J
and for all i ∈ I, j ∈ J). Let a = (i0, g, j0) and b = (m,h, j0) be elements of S
for some g, h ∈ G and m ∈ I. As S is simple, ab = xbay for some x, y ∈ S. As
S is R-commutative, xba = baxz for some z ∈ S1. Let xzy = (k, r, l). Then

(i0, gh, j0) = ab = xbay = ba(xzy) = (m,hgr, l)

from which we get m = i0 for all m ∈ I. Thus |I| = 1. Consequently, P has only
one column and every element of P equals to the identity element e of G. It is
clear that J can be considered as a right zero semigroup and (i0, g, j) → (g, j)
is an isomorphism of S onto the direct product G×J of the commutative group
G and the right zero semigroup J . Thus S is a right abelian group.

As every right abelian group is simple and RGCn-commutative, the theorem
is proved. u

Theorem 3.3.4 ([Nag98]) Every RGCn-commutative archimedean semigroup
containing at least one idempotent element is an ideal extension of a right abelian
group by a commutative nil semigroup.

Proof. Let S be an RGCn-commutative archimedean semigroup containing
at least one idempotent element f . If S has a zero element, then it is a nil
semigroup. By Corollary 3.1.5, S is commutative. Next we suppose that S has
no zero element. Let f be an arbitrary idempotent of S. As S is archimedean,
f is contained by all ideals of S. Hence K = SfS is the kernel of S and so K
is simple. It is clear that K is GCn-commutative. By Lemma 3.1.7, K is also
R-commutative. Then, by Theorem 3.3.3, K is a right abelian group. As the
Rees factor semigroup S/K is nil and R-commutative, it is also commutative
(see Corollary 3.1.5). Thus the theorem is proved. u

Lemma 3.3.5 ([Nag98]) If S is an R-commutative semigroup and I is an ideal
of S such that I is GCn-commutative, then, for aritrary a ∈ I,

αa = {(x, y) ∈ I × I : xai = yaj for some positive integers i and j}

is a congruence on I.

Proof. It is clear that αa is a left congruence on I. We show that αa is also right
compatible. Let x, y, s ∈ I be arbitrary elements with (x, y) ∈ αa. Then, for
some positive integers i and j, xai = yaj . We can suppose that i ≥ j = tn ≥ 2
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for some positive integer t. As S is R-commutative, there is an element u ∈ S1

such that sai = aisu. Thus xsai = xaisu = yajsu and so

xsa2i = yajsuai.

If n = 1, then

ajsuai = ajsuaai−1 = asuajai−1 = asuaiaj−1 = aisuaj .

If n ≥ 2, then i ≥ j = tn ≥ 2t. Using Lemma 3.2.2 and the fact that I is
GCn-commutative, we get

ajsuai = atnsuai = aisuatn = aisuaj .

Consequently, ajsuai = aisuaj is satisfied in both cases. Hence

xsa2i = yajsuai = yaisuaj = ysaiaj = ysai+j .

Thus αa is right compatible and so it is a congruence on I. u

Theorem 3.3.6 ([Nag98]) If S is an R-commutative semigroup and I is an
ideal of S such that I is GCn-commutative and archimedean without idempotents,
then I has a non-trivial group homomorphic image.

Proof. By Lemma 3.3.5, αa is a congruence on I for arbitrary a ∈ I. As
(sa, s) ∈ αa for all s ∈ I, we get that the αa-class of I containing the element
a is a right identity element of I/αa. Let s ∈ I be arbitrary. Then there are
elements u, v ∈ I and a positive integer m such that am = usv, because I is
archimedean. As S is R-commutative, am = suwv for some w ∈ S1. Thus
a(am) = (suwv)a. As I is an ideal of S and v ∈ I, we have (a, suwv) ∈ αa
which means that the αa-class [uwv]αa

of I is a right inverse of the αa-class [s]αa

of I with respect to the right identity element [a]αa
of I/αa. Then the factor

semigroup I/αa is a group. Consequently I/αa is a group for arbitrary a ∈ I.
As I does not contain idempotents, (a, a2) /∈ αa2 (a is an arbitrary element of
I). Thus I/αa2 is a non-trivial group-homomorphic image of I. u

3.4 RGCn-commutative ∆-semigroups

Lemma 3.4.1 ([Nag98]) If S is an R-commutative semigroup, then, for arbi-
trary a ∈ S,

τa = {(x, y) ∈ S × S : xa = ya}

is a conguence on S.

Proof. It is clear that τa is a left congruence on S. To show that τa is also a
right congruence, let x, y, s ∈ S be arbitrary element with (x, y) ∈ τa. Then, for
some u ∈ S,

xsa = xasu = yasu = ysa,
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which means that
(xs, ys) ∈ τa.

Thus the lemma is proved. u

In this section we will use the following lemma several times.

Lemma 3.4.2 ([Nag98]) If S is an R-commutative ∆-semigroup and I is an
ideal of S such that I is GCn-commutative and a nil extension of a non-trivial
right zero semigroup R, then I = R.

Proof. Since R2 = R, then R is an ideal of S by Theorem 1.1.4. It can be
easily verified that

η = {(a, b) ∈ S × S : ra = rb for all r ∈ R}

is a congruence on S. It is evident that η|R = idR. Thus η ∩ %R = idS . As S is
a ∆-semigroup,

η ⊆ %R or %R ⊆ η.

Then
η = idS or %R = idS .

As |R| ≥ 2, we have η = idS . As I is GCn-commutative,

ran = rakran = ranrak = rak

for all a ∈ I, r ∈ R and k ≥ 2. It means that (an, ak) ∈ η and so an = ak

for all a ∈ I and k ≥ 2. As I is a nil extension of R, we get a2 ∈ R for all
a ∈ I. From a2 = a3, we get (a, a2) ∈ τa, where τa is defined in Lemma 3.4.1.
Assume I − R 6= ∅. Let a ∈ I − R be an arbitrary element. As a2 ∈ R, we
have (a, a2) /∈ %R. By the above, (a, a2) ∈ τa. As S is a ∆-semigroup, we get
%r ⊆ τa. As a2 ∈ R, we have (r, a2) ∈ %R ⊆ τa for all r ∈ R. As (a, a2) ∈ τa we
have (r, a) ∈ τa for all r ∈ R. Thus

ra = a2 = ra2

for all r ∈ R, because a2 ∈ R and R is a right zero semigroup. Then (a, a2) ∈ η.
As η = idS , we get a = a2 ∈ R which is a contradiction. Hence R = I. u

Theorem 3.4.3 ([Nag98]) A semigroup is an archimedean RGCn-commutative
∆-semigroup if and only if it is isomorphic to either G or R or N , where G is
a non-trivial subgroup of a quasicyclic p-group (p is a prime), R is a right zero
semigroup of order 2 and N is a commutative nil ∆-semigroup.

Proof. Let S be an archimedean RGCn-commutative ∆-semigroup. If S has a
zero element, then S is an R-commutative nil semigroup and so it is commuta-
tive by Corollary 3.1.5.

Next we can suppose that S has no zero element. First suppose that S has
no proper ideals. Then S is simple. By Theorem 3.3.3, S is a direct product
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of a commutative group G and a right zero semigroup R. Consequently S is
isomorphic with either G or R (see Corollary 1.3.17). In the first case Theo-
rem 1.3.4 implies that S is a subgroup of a quasicyclic p-group (p is a prime).
In the second case Theorem 1.3.19 implies that S is a right zero semigroup of
order 2.

Consider the case when S has a proper ideal. Then, By Theorem 1.3.7 and
Theorem 3.3.6, S has an idempotent element. Thus, by Theorem 3.3.4, S is a
nil extension of a direct product of a commutative group G and a right zero
semigroup R. By Theorem 1.3.7, |G| = 1. Thus S is a nil extension of the
right zero semigroup R. Applying Lemma 3.4.2 for I = S, we get S = R which
contradicts the assumption that S has a proper ideal.

As the semigroups listed in the theorem are archimedeanRGCn-commutative
∆-semigroups, the theorem is proved. u

Lemma 3.4.4 ([Nag98]) If an RGCn-commutative semigroup is a semilattice
of a commutative group S1 and a nil semigroup S0 such that S0S1 ⊆ S0, then
Hb ⊆ bS1 is satisfied for every subgroup H of S1 and every element b ∈ S1.

Proof. Let S be an RGCn-commutative semigroup satisfying the conditions
of the lemma. Let H be an arbitrary subgroup of S1 and b be an arbitrary
element in S1. We can suppose that b ∈ S. Let h ∈ H be arbitrary. As S is
R-commutative, there is an element t ∈ S1 such that hb = bht. If t ∈ S1

1 , then
hb ∈ bS1. If t ∈ S0, then bh = hbs for some s ∈ S1. As st ∈ S0, (st)n = 0 for
some positive integer n. Thus

hb = hb(st) = hb(st)n = 0

and also
bh = 0.

Let h∗ be an arbitrary element in H. Then h∗ = h′h for some h′ ∈ H. Thus

h∗b = h′hb = 0,

that is, Hb = {0}. Let g ∈ S1 be arbitrary. Then, for some h′′ ∈ S1, hh′′ = g
which implies that bg = bhh′′ = 0. Thus bS1 = {0}. Consequently, Hb ⊆ bS1.u

Lemma 3.4.5 If an RGCn-commutative ∆ semigroup is a semilattice of archimedean
semigroups S1 and S0 such that S0S1 ⊆ S0, then S0 is either a nil semigroup
or a non-trivial right zero semigroup.

Proof. By Theorem 3.3.6 and Theorem 1.3.7, S0 has an idempotent element.
If S0 contains a zero element, then it is a nil semigroup. Consider the case when
S0 does not contain a zero element. Let f be an idempotent element of S0. As
S0 is archimedean, K = S0fS0 is the kernel of S0 such that |K| ≥ 2 and S0

is a nil extension of K. It is clear that K is simple and GCn-commutative. As
K2 = K and K is an ideal of S0 (which is an ideal of S), Theorem 1.1.4 implies
that K is an ideal of S. As S is R-commutative and K is simple, Lemma 3.1.7
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implies that K is R-commutative. Hence K is an RGCn-commutative simple
semigroup. By Theorem 3.3.3, K is a direct product of a commutative group G
and a right zero semigroup R. By Theorem 1.3.7, we can suppose that K = R.
As S0 is a nil extension of R (|R| ≥ 2), Lemma 3.4.2 implies S0 = R. u

In the remainder of this section, S1 and S0 denote the semilattice components
of an RGCn-commutative ∆-semigroup S.

Lemma 3.4.6 ([Nag98, JN03]) If S is an RGCn-commutative ∆-semigroup
such that S1 is a commutative group, then either |S0| = 1 or S = S1

0 , where S0

is either a non-trivial commutative nil ∆-semigroup or a two-element right zero
semigroup.

Proof. Let S be a semilattice decomposable RGCn-commutative ∆-semi-
group such that S1 is a group (with an identity element e). By Lemma 3.1.6, eS
is a two-sided ideal of S and eS ∩ S1 6= ∅, eS ∩ S0 6= ∅. As S is a ∆-semigroup
and S1 is a group, we get eS = S. Hence e is a left identity element of S. By
Theorem 3.3.6 and Theorem 1.3.7, S0 has an idempotent element.

First consider the case when S0 has a zero element. Then S0 is a nil semi-
group, because it is archimedean.

Assume |S1| = 1. Let a be an arbitrary element of S0. Assume ae 6= a.
As S is an R-commutative semigroup, there is an element s ∈ S1 such that
a = ea = aes. From the assumption ae 6= a it follows that s ∈ S0. Then
a = aes = as, because e is a left identity element of S. Thus a = asi for
every positive integer i. As S0 is a nil semigroup and s ∈ S0, we get a = 0.
Therefore, |S0| = 1 or e is a (two-sided) identity element of S and |S0| > 1.
We can consider the second case. Then S = S1

0 . It is easy to see that S0 is
R-commutative. Then, by Corollary 3.1.5, S0 is a non-trivial commutative nil
semigroup.

Suppose |S1| > 1. By Theorem 1.3.3, S0
1 and therefore S1 are ∆-semigroups.

As S1 is archimedean, it is isomorphic to a non-trivial subgroup of a quasicyclic
p-group (p is a prime). Let H be the least non-trivial subgroup of S1. Assume
xHy∩H 6= ∅ for some x, y ∈ S1. Then x, y /∈ S0 and so xHy ⊆ H. Thus H is a
normal complex (Definition 1.1.1) in S and so there is a congruence β of S such
that H is a β-class. It is evident that β is not a Rees congruence on S. Then,
by Theorem 1.3.11, there is an element a ∈ S such that the β-classes are Ia,
the one-element subsets in the complement of J(a) and some classification of
Ja. If a ∈ S0, then J(a) ⊆ S0 which means that H contains only one element.
But this is a contradiction. Consequently a ∈ S1. Then J(a) = S and Ia = S0.
Let b ∈ S0 be an arbitrary element. Then (b, 0) ∈ β and so there are elements
xi, yi ∈ S1 and pi, qi ∈ H (i = 1, 2, . . . n) such that

b = x1p1y1, x1q1y1 = x2p2y2, . . . , xn−1qn−1yn−1 = xnpnyn, xnqnyn = 0.

Applying Lemma 3.4.4 for yi, we get piyi = yiui and qiyi = yivi for some
ui, vi ∈ S1. Then

b = x1y1u1, x1y1v1 = x2y2u2, . . . , xn−1yn−1vn−1 = xnynun, xnynvn = 0.
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As ui, vi ∈ S1, we have J(xiyiui) = J(xiyivi) for every i. Then

J(b) = J(x1y1u1) = J(x1y1v1) = · · · = J(xnynun) = J(xnynvn) = J(0).

Consequently b = 0. Thus |S0| = 1.
Next, consider the case when S0 has no a zero element. Then, by Lemma 3.4.5,

S0 is a right zero semigroup (|S0| ≥ 2). It is easy to see that η = {(a, b) ∈ S×S :
(∀r ∈ S0) ra = rb} is a congruence on S whose restriction to S0 is the identity
relation of S0. As S is a ∆-semigroup, S0 is a dense ideal of S and so η is the
identity relation on S. Let g ∈ S1 and r ∈ S0 be arbitrary elements. As S is
GCn-commutative,

gnrgn+1 = gn+1rgn

from which we get
erg = gre

(e is the identity element of S1). Then

rerg = rgre.

As re, rg ∈ S0 and S0 is a right zero semigroup, we have

rg = re

(for every r ∈ S0) and so
(g, e) ∈ η.

Then g = e which means that S1 = {e}. Thus S is a band. By Theorem 1.3.18,
S = S1

0 and |S0| = 2. The lemma is proved. u

Lemma 3.4.7 ([Nag98]) If S is an RGCn-commutative ∆-semigroup such that
S1 is a right zero semigroup of order two and S0 is a nil semigroup, then |S0| = 1.

Proof. Let S1 = {u, v}. As uS is a right ideal of S and S is R-commutative,
we get that uS is an ideal of S. As uS ∩ S1 6= ∅, uS ∩ S0 6= ∅ and S1 is simple,
we have uS = S. Thus u is a left identity element of S. Similarly, v is a left
identity element of S. It is easy to see that

τu = {(a, b) ∈ S × S : au = bu}

is a congruences on S such that (u, v) ∈ τu. As S is a ∆ semigroup, τu ⊆ %S0
or

%S0
⊆ τu, where %S0

denotes the Rees congruence of S modulo S0. As (u, v) ∈ τu
and (u, v) /∈ %S0

, we have %S0
⊆ τu. Hence, (a, 0) ∈ τu and so au = 0 for every

a ∈ S0, where 0 is the zero element of S0. Let a ∈ S0 be an arbitrary element.
As S is R-commutative, there is an element s ∈ S1 such that a = ua = aus = 0.
Therefore |S0| = 1. u

Theorem 3.4.8 ([JN03]) A semilattice decomposable RGCn-commutative semi-
group is a ∆-semigroup if and only if it is isomorphic to either G0 or F or R0

or R1 or N1, where G is a non-trivial subgroup of a quasicyclic p-group (p is a
prime), F is a two-element semilattice, R a right zero semigroup of order 2 and
N is a non-trivial commutative nil ∆-semigroup.
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Proof. Let S be a semilattice decomposable RGCn-commutative ∆-semi-
group. Then, by Theorem 1.3.3, the Rees factor semigroup S/S0 is a ∆-
semigroup. From this it follows that S1 is a semilattice indecomposable RGCn-
commutative ∆-semigroup. Then, by Theorem 3.4.3, S1 is isomorphic to either
a non-trivial subgroup of a quasicyclic p-group (p is a prime) or a commutative
nil semigroup whose ideals are chain ordered with respect to inclusion or a right
zero semigroup of order 2.

If S1 is a non-trivial subgroup G of a quasicyclic p-group (p is a prime), then
|S0| = 1 by Lemma 3.4.6, and so S = G0.

If S1 is a commutative nil ∆-semigroup, S0∪{f} is an ideal of S, where f is
the zero of S1. The Rees congruence on S modulo S0 ∪ {f} is comparable with
the least semilattice congruence on S in only that case when |S1| = 1. Hence,
by Lemma 3.4.6, S is a two-element semilattice or S = S1

0 where S0 is either a
non trivial commutative nil ∆-semigroup or a two-element right zero semigroup.

If S1 is a right zero semigroup of order 2, S0 is a proper ideal of S and
so, by Theorem 3.3.6 and Theorem 1.3.7, S0 has an idempotent element. By
Theorem 3.3.4, S0 is an ideal extension of a direct product D of a commutative
group G and a right zero semigroup R by a commutative nil semigroup N .
As D2 = D and D is an ideal of S0, we get that D is also an ideal of S
(Theorem 1.1.4). If |D| = 1, then S0 is isomorphic to N . Then, by Lemma 3.4.7,
|N | = 1 and so S = S0

1 . If |D| > 1, then |G| = 1 by Theorem 1.3.7, and so
D = R. Let φ denote the canonical homomorphism of S onto the Rees factor
semigroup of S modulo R. It is easy to see that φ(S) is an RGCn-commutative
∆-semigroup. φ(S) is semilattice decomposable, φ(S1) = S1 and φ(S0) = N .
Then, as above, |N | = 1 and so S0 = R. As S1 and S0 are right zero semigroups,
S is a (semilattice decomposable) band. As |S1| > 1, we have |R| = 1 by
Theorem 1.3.18 and so S = S0

1 . u

By Theorem 3.4.3 and Theorem 3.4.8, we can formulate our main result on
RGCn-commutative ∆-semigroups.

Theorem 3.4.9 ([JN03]) A semigroup S is an RGCn-commutative ∆-semigroup
if and only if it satisfies one of the following conditions.

(i) S is isomorphic to either G or G0 , where G is a non-trivial subgroup of
a quasicyclic p-group (p is a prime).

(ii) S is isomorphic to a two-element semilattice.

(iii) S is isomorphic to R or R0 or R1, where R is a two-element right zero
semigroup.

(iv) S is isomorphic to a commutative nil semigroup with chain ordered prin-
cipal ideals.

(v) S is isomorphic to N1, where N is a non trivial commutative nil semigroup
with chain ordered principal ideals. u
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In the next theorem we characterize the RC-commutative ∆-semigroups.

Theorem 3.4.10 ([Nag92]) A semigroup S is an RC-commutative ∆-semigroup
if and only if it satisfies one of the following conditions.

(i) S is isomorphic to either G or G0, where G is a non-trivial subgroup of a
quasicyclic p-group (p is a prime).

(ii) S is isomorphic to a two-element semilattice.

(iii) S is isomorphic to either R or R0, where R is a two-element right zero
semigroup.

(iv) S is isomorphic to a commutative nil semigroup with chain ordered prin-
cipal ideals.

(v) S is isomorphic to N1, where N is a non-trivial commutative nil semigroup
whit chain ordered principal ideals.

Proof. Let S be an RC-commutative ∆-semigroup. Then it is a RGCn-
commutative ∆-semigroup for every positive integer n. Then S is isomorphic to
one of the semigroups listed in Theorem 3.3.4. As a conditionally commutative
monoid is commutative, S ∼= R1 is impossible, because R is a two-element right
zero semigroup. As the semigroups listed in the theorem are RC-commutative
∆-semigroups, the theorem is proved. u

63

dc_1345_16

Powered by TCPDF (www.tcpdf.org)



64

dc_1345_16

Powered by TCPDF (www.tcpdf.org)



Chapter 4

Permutative semigroups

A semigroup S is called a permutative semigroup if there is an integer n ≥ 2
and there is a non-identity permutation σ of {1, 2, . . . , n} such that, for every
x1, x2, . . . , xn ∈ S, we have x1x2 . . . xn = xσ(1)xσ(2) . . . xσ(n). In this chapter we
deal with permutative semigroups. The chapter contains three sections.

In the first section we deal with the semilattice decomposition of permuta-
tive semigroups. It is known (see [Nor88]) that every permutative semigroup
is a semilattice of archimedean semigroups. We show that every permutative
archimedean semigroup containing at least one idempotent element is an ideal
extension of a rectangular abelian group by a nil semigroup. We also show that
every permutative archimedean semigroup without idempotent element has a
non-trivial commutative group homomorphic image.

In the second section of this chapter we deal with the permutative ∆-
semigroups. The main result of this section is that every permutative ∆-
semigroup is medial.

In the third section of this chapter we examine the permutative congruence
permutable semigroups. Using also the results of the second section, we show
that every permutative congruence permutable semigroup is medial. Especially,
every strictly permutative congruence permutable semigroup is commutative.

4.1 Semilattice decomposition of permutative semi-
groups

Definition 4.1.1 A semigroup S is called a permutative semigroup if there is
an integer n ≥ 2 and there is a non-identity permutation σ of {1, 2, . . . , n} such
that, for every x1, x2, . . . , xn ∈ S, the equation x1x2 . . . xn = xσ(1)xσ(2) . . . xσ(n)
is satisfied.

Theorem 4.1.2 ([Nor88, Corollary 1.4]) Every permutative semigroup is a
semilattice of archimedean semigroups. u
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Semigroups satisfying the identity axyb = ayxb form a subclass of the class
of all permutative semigroups; these semigroups are called medial semigroups.
The next theorem proved by M.S. Putcha and A. Yakub ([PY71]) shows that the
medial semigroups play a special role in the class of all permutative semigroups.
This theorem will be used in this chapter several times.

Theorem 4.1.3 ([PY71, Theorem 1]) If S is a permutative semigroup, then
there is a positive integer k such that, for all u, v ∈ Sk and all a, b ∈ S, we have
uabv = ubav. In particular, Sk is a medial semigroup. u

Using also the previous theorem, we prove the next result on permutative
simple semigroups.

Theorem 4.1.4 A semigroup is simple and permutative if and only if it a rect-
angular abelian group.

Proof. Let S be a simple permutative semigroup. Then, by Theorem 4.1.3, S
is a simple medial semigroup. As every medial semigroup is weakly exponential,
it follows from Theorem 2.1.4 that S is a rectangular abelian group.

It is easy to see that every rectangular abelian group is simple and satis-
fies the (non-identity) permutation identity x1x2x3x4 = x1x3x2x4. Thus the
converse assertion is obvious. u

The following theorem is on permutative archimedean semigroups containing
at least one idempotent element.

Theorem 4.1.5 ([NJ04]) Every permutative archimedean semigroup contain-
ing at least one idempotent element is an ideal extension of a rectangular abelian
group by a nil semigroup. u

Proof. Let S be a permutative archimedean semigroup containing at least one
idempotent element. By Theorem 1.1.12, S is an ideal extension of a simple
subsemigroup K containing an idempotent element by a nil semigroup. By
Theorem 4.1.4, K is a rectangular abelian group. u

The next lemma will be used in the proof of Theorem 4.1.7 in which the
permutative archimedean semigroups without idempotent elements will be ex-
amined.

Lemma 4.1.6 ([NJ04]) If a is an arbitrary element of a permutative semigroup
S, then

Sa = {x ∈ S : aixaj = ah for some positive integers i, j, k}

is the smallest reflexive unitary subsemigroup of S that contains a.
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Proof. Let S be a permutative semigroup. Then, by Theorem 4.1.3, there is a
positive integer k such that uabv = ubav for every u, v ∈ Sk and every a, b ∈ S.
Let a be an arbitrary element of S. It is clear that a ∈ Sa. To show that Sa is
a subsemigroup of S, let x, y ∈ Sa be arbitrary elements. Then

aixaj = ah and amyan = at

for some positive integers i, j, h,m, n, t. We can suppose that

i, n ≥ k.

Then
ah+t = aixajamyan = aixyaj+m+n

and so xy ∈ Sa. To show that Sa is left unitary, assume x, xy ∈ Sa for some
x, y ∈ S. Then

aixaj = ah and amxyan = at

for some positive integers i, j, h,m, n, t. We can suppose that

m ≥ j and i, n ≥ k.

Then

ai+t = aiamxyan = aixamyan = aixaja(m−j)yan = ah+m−jyan.

Hence y ∈ Sa. We can prove, in a similar way, that y, xy ∈ Sa implies x ∈ Sa.
Thus Sa is an unitary subsemigroup of S. Sa is reflexive, because it is unitary
and

(xy)3 = x(yx)2y = xy2x2y = xy(yx)xy

holds in S. Let B be a unitary subsemigroup of S such that a ∈ B. Then, for
an arbitrary element x ∈ Sa, there are positive integers i, j, k such that

aixaj = ak ∈ B.

Then x ∈ B and so Sa ⊆ B. u

Theorem 4.1.7 ([NJ04]) Every permutative archimedean semigroup without
idempotent element has a non-trivial commutative group homomorphic image.

Proof. Let S be a permutative archimedean semigroup without idempotent
element. Assume Sa 6= S for some a ∈ S. Then the principal right congruence
RSa

of S defined by the reflexive unitary subsemigroup Sa is a group congruence
on S (see Theorem 1.1.3) and so the factor semigroup S/RSa

is a non-trivial
group homomorphic image of S. Suppose Sa = S for all a ∈ S. Then, for any
a ∈ S, Sa2 = S and so a ∈ Sa2 . Then there are positive integers i, j, h such that
we have a2iaa2j = a2h, that is, a2(i+j)+1 = a2h. One of the exponents is even,
the other is odd. Thus the order of a is finite and so S contains an idempotent
element. This contradicts the assumption that S has no idempotent element. u
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4.2 Permutative ∆-semigroups

In this section we prove that every permutative ∆-semigroup is medial. First
we deal with permutative, archimedean ∆-semigroups. First of all, we prove
three lemmas that will be used in the proof of Theorem 4.2.7 below.

Recall that a semigroup S is called idempotent if S2 = S.

Lemma 4.2.1 ([NJ04]) Every nilpotent ∆-semigroup is finite cyclic. Every
non-nilpotent, nil permutative ∆-semigroup is idempotent. Hence any permuta-
tive nil ∆-semigroup is medial.

Proof. First, suppose that S is a non-idempotent nil ∆-semigroup. Let a, b ∈
S − S2. Since the ideals of S are totally ordered, we may assume without loss
of generality that S1bS1 ⊆ S1aS1. If b 6= a, then b = sat, where either s or t is
in S, contradicting b /∈ S2. Hence b = a and so S − S2 = {a}. Let k > 1 be an
arbitrary integer. If c ∈ Sk−1 − Sk, then c = c1c2 · · · ck−1 for some ci ∈ S − S2.
Hence c = ak−1.

If S is nilpotent, then Sj = {0} for some least positive integer j and, by the
above, S = {a, a2, . . . , aj = 0}. Clearly such a semigroup is medial.

If S is non-idempotent and nil, but non-nilpotent, then Sj 6= {0} for all
j ≥ 1. Let n be any positive integer such that an = 0. Let b ∈ S3n − {0},
b = b1b2 · · · b3n say. Since a /∈ S2, a /∈ S1biS

1 unless a = bi for each i. By the
total ordering on ideals of S, for each i, there are elements si, ti ∈ S1 such that
bi = siati. Now, for some index i < n, tisi+1 ∈ Sm − {0} for every m > 0, for
otherwise, the product

b = (s1at1)(s2at2) · · · (snatn) · · · (s2nat2n) · · · (s3nat3n)

involves the power an. Similarly, an element tjsj+1 has the same property for
some index j ≥ 2n.

If S is also permutative, then there exists k such that Sk is medial. Therefore
if n ≥ k, all the terms between tisi+1 and tjsj+1 in the product for b may be
commuted, yielding a term an, contradicting b 6= 0. Thus the second statement
in the lemma is proven. By Theorem 4.1.3, every idempotent, permutative
semigroup is medial. u

A semigroup is called a left [right] commutative semigroup if it satisfies the
identity xya = yxa [axy = ayx].

Proposition 4.2.2 ([NJ04]) If S is a left or right commutative nil ∆-semigroup,
then it is commutative.

Proof. We need only consider the identity abx = bax. Let ρ = {(a, b) ∈
S × S : as = bs for all s ∈ S}. It is well known that ρ is a congruence on S;
from the identity it follows that S/ρ is commutative.

By Theorem 1.3.9, ρ is the Rees ideal congruence modulo the ideal I = [0]ρ,
which is the left annihilator of S. Thus if a ∈ S, either aS = 0 or [a]ρ = {a}.
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Now let a, b ∈ S, a 6= b. If a, b, ab 6∈ I, then since S/ρ is commutative,
ab = ba. If a, b ∈ I, then ab = ba = 0.

If a, b 6∈ I then, since the principal ideals of S are totally ordered, without
loss of generality a = xby for some x, y ∈ S1. Since a 6∈ I, x, y 6∈ I. By the first
case above, x, b, y commute. Hence ab = ba.

Without loss of generality, the remaining case is where a ∈ I, b 6∈ I. As
above, a = xby for some x, y ∈ S1. If y 6= 1, then xby = bxy. Thus we may
assume that either a = bx or a = xb for some x ∈ S. If x 6∈ I, then by the
above result bx = xb and so ab = ba. Thus we may assume x ∈ I. Now we
may similarly write x = bx1 or x = x1b for some x1 ∈ S. If x1 6∈ I then, again
similarly, bx1 = x1b and so a = b2x1 or a = x1b

2, whence ab = ba. If x1 ∈ I,
continue this process by writing x1 = bx2 or x1 = x2b. By induction, either
some xi 6∈ I and then ab = ba, or for all i there exists xi such that a = bi+1xi
or a = xib

i+1. But S is nil, so it follows that a = 0, completing the proof. u

Theorem 4.2.3 ([NJ04]) If S is a medial nil ∆-semigroup, then S is commu-
tative.

Proof. Again, let ρ be the congruence {(a, b) ∈ S × S : as = bs for all s ∈
S}. From the medial identity it is clear that S/ρ is right commutative. Since it
is again a nil ∆-semigroup, it is commutative, by the previous proposition. Let
IL = [0]ρ. Let λ be the dual congruence, so that S/λ is also commutative. Let
IR = [0]λ. As in the proof of the proposition, for each a ∈ S, either [a]ρ = IL
or [a]ρ = {a}, and dually.

Since the ideals of S are totally ordered, without loss of generality IL ⊆ IR.
Let a, b ∈ S. If a, b 6∈ IL, then precisely as in the third and fourth paragraphs
of the proof of the previous proposition, ab = ba. Otherwise, without loss of
generality, a ∈ IL, so ab = 0. But also a ∈ IR, so ba = 0. u

Lemma 4.2.4 ([NJ04]) Let S be a permutative semigroup with a dense ideal
R that is a right zero semigroup. If R is non-trivial, then S/R is nilpotent.

Proof. Suppose S satisfies the identity x1x2 · · ·xn = xσ(1)xσ(2) · · ·xσ(n) for
some n > 1, where σ is a non-trivial permutation. Then σ(n) = n since,
otherwise, if r, s are distinct members of R, substituting r = xn and s = xσ(n)
(and substituting arbitrarily for any other variables) yields r = s. Let i be least
such that σ(j) = j for i ≤ j ≤ n. Clearly i > 2. Let r ∈ R and substitute
xi−1 = r. Then rxi · · ·xn = rwxi · · ·xn for every r ∈ R, where w is a non-empty
word in {x1, x2, . . . , xi−2}. It is easy to see that η = {(a, b) ∈ S × S : (∀r ∈
R) ra = rb} is a congruence on S such that the restriction η|R of η to R equals
idR. As R is a dense ideal of S, we have η = idS . As (xi · · ·xn, wxi · · ·xn) ∈ η,
we get that xi · · ·xn = wxi · · ·xn is an identity satisfied in S. Now by choosing
for any one of the variables in w an element of R, it follows that xi · · ·xn ∈ R
for all xi, . . . , xn ∈ S. Thus Sn−i+1 ∈ R; equivalently, (S/R)n−i+1 = {0}. u

The next lemma will be used in the proof of Lemma 4.2.6.
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Lemma 4.2.5 (Lemma 3.1 of [BC80]) No ∆-semigroup can contain an ideal
that is itself an ideal extension of a non-trivial right (or left) zero semigroup by
a non-trivial nil semigroup that is finite cyclic.

Lemma 4.2.6 ([NJ04]) No permutative ∆-semigroup can be an ideal extension
of a non-trivial right (or left) zero semigroup by a non-trivial nil semigroup.

Proof. Suppose such a semigroup S exists, with non-trivial right zero ideal R.
Let α be a congruence on S such that the restriction of α to R is the identity
relation on R. Then α∩ %R = idS , where %R denotes the Rees congruence on S
defined by the ideal R of S. As S is a ∆-semigroup and |R| > 1, we get α = idS .
Thus R is a dens ideal of S. By Lemma 4.2.4, S/R is nilpotent. Since S/R is
also a ∆-semigroup, it is finite cyclic. Then Lemma 4.2.5 applies. u

Theorem 4.2.7 ([NJ04]) Every permutative, archimedean ∆-semigroup is ei-
ther (a) simple, whence a group or a left or right zero semigroup, or (b) nil. In
any case, every such semigroup is medial.

Proof. Let S be such a semigroup. If S is simple, then S is a rectangular
abelian group by Theorem 4.1.4, and so (a) is satisfied by Corollary 1.3.17.

If S is not simple, then S contains an idempotent element by Theorem 4.1.7
and Theorem 1.3.7. By Theorem 4.1.5, Theorem 1.3.7 and Corollary 1.3.17, S
is an ideal extension of a right or left zero semigroup K by a non-trivial nil
semigroup. By Lemma 4.2.6, |K| = 1, that is, S is a non-trivial nil semigroup.
The mediality now follows by Lemma 4.2.1. u

Finally, we may consider the general permutative case. We can formulate
the main theorem of this section.

Theorem 4.2.8 ([NJ04]) Every permutative ∆-semigroup is medial.

Proof. Let S be such a semigroup. The archimedean case is covered by the pre-
ceding result. We have seen that the alternative case is when S is a semilattice
of two archimedean semigroups S1 and S0 with S0S1 ⊆ S0. By Theorem 1.3.3,
S0
1 and so S1 is an archimedean ∆-semigroup. It is clear that S1 is permutative.

Then S1 is either a group or a two-element right or left zero semigroup (see also
Theorem 1.3.12). In all three cases S2 ∩ S0 6= ∅ and S1 ⊆ S2. As the ideals
S0 and S2 of S are comparable, we have S2 = S, that is, S is idempotent. By
Theorem 4.1.3, S is a medial semigroup. u

4.3 Permutative congruence permutable semi-
groups

In the previous section we proved that every permutative ∆-semigroup is medial.
Using also this fact, in this section we generalize this result. We prove that
every permutative congruence permutable semigroup is medial. First we prove
the following lemma.
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Lemma 4.3.1 ([Nag05]) Every permutative congruence permutable nil semi-
group is commutative.

Proof. Let S be a permutative congruence permutable nil semigroup. By
Theorem 1.3.10, S is a ∆-semigroup. By Theorem 4.2.8, every permutative
∆-semigroup is medial. By Theorem 4.2.3, every medial nil ∆-semigroup is
commutative. Thus S is a commutative semigroup. u

Theorem 4.3.2 ([Nag05]) Every permutative congruence permutable semigroup
is medial or an ideal extension of a rectangular band by a non-trivial commuta-
tive nil semigroup.

Proof. Let S be a permutative congruence permutable semigroup. By The-
orem 4.1.2, S is a semilattice of permutative archimedean semigroups. As
every homomorphic image of a congruence permutable semigroup is congru-
ence permutable, and a congruence permutable semilattice has at most two ele-
ments, we have that S is either archimedean or a semilattice of two permutative
archimedean subsemigroups S1 and S0 such that S0S1 ⊆ S0.

Assume that S is archimedean. If S is simple, then Sk = S for every
positive integer k and so, by Theorem 4.1.3, S is a medial semigroup. If S
has a proper ideal, then it has no a non-trivial group homomorphic image by
Remark 1.2.10. Then, by Theorem 4.1.7, S has an idempotent element and so,
by Theorem 4.1.5, S is an ideal extension of a rectangular abelian group K by a
non-trivial permutative nil semigroup N . By Theorem 1.2.4 and Lemma 4.3.1,
N is commutative. K is the direct product of a rectangular band B and a
commutative group G. As G is a homomorphic image of the proper ideal K
of S, Remark 1.2.10 implies |G| = 1. Thus S is an ideal extension of the
rectangular band B by the non-trivial commutative nil semigroup N .

Now assume that S is a semilattice of two archimedean subsemigroups S1

and S0 such that S0S1 ⊆ S0. By Theorem 1.2.7, S1 is simple. As S2 ∩ S1 6= ∅
and S2 ∩ S0 6= ∅, we have S2 = S, because S2 is an ideal of S, the ideals of
S form a chain with respect to inclusion, S2 ∩ S1 is an ideal of S1 and S1 is
simple. Thus Sk = S for every positive integer k. Then, by Theorem 4.1.3, S
is a medial semigroup. u

Theorem 4.3.3 Every permutative congruence permutable semigroup is me-
dial. u

Proof. A. Deák ([Dea06]) and P.R. Jones ([Jon06]) proved that if a permutative
congruence permutable semigroup S is an ideal extension of a rectangular band
by a non-trivial commutative nil semigroup, then S is medial. This result and
Theorem 4.3.2 together imply the assertion of the theorem. u

Definition 4.3.4 A semigroup S is called strictly permutative if it satisfies a
permutation identity x1x2 . . . xn = xσ(1)xσ(2) . . . xσ(n) in which σ(1) 6= 1 and
σ(n) 6= n.
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Theorem 4.3.5 A semigroup is strictly permutative and simple if and only if
it is a commutative group.

Proof. Let S be a simple semigroup. Assume that S satisfies an identity
x1x2 . . . xn = xσ(1)xσ(2) . . . xσ(n) for a permutation σ of {1, 2, . . . , n} with con-
dition σ(1) 6= 1 and σ(n) 6= n. By Theorem 4.1.4, S is a direct product
of a left zero semigroup L, a commutative group G and a right zero semi-
group R. Let i0 ∈ L and j0 ∈ R be arbitrary fixed elements. For arbitrary
i ∈ L and j ∈ R, let x1 = (i0, e, j), xn = (i, e, j0) and (if n > 2, then)
x2 = · · · = xn−1 = (i, e, j), where e is the identity element of G. Then
x1x2 · · ·xn = (i0, e, j0) and xσ(1)xσ(2) · · ·xσ(n) = (i, e, j). From this it follows
that i = i0 and j = j0 for every i ∈ L and j ∈ R. Thus |L| = |R| = 1 and so S
is isomorphic to the commutative group G. The converse assertion is obvious.u

Theorem 4.3.6 ([Nag05]) Every strictly permutative congruence permutable
semigroup is commutative.

Proof. Let S be a congruence permutable semigroup such that S satisfies an
identity x1x2 . . . xn = xσ(1)xσ(2) . . . xσ(n) for a permutation σ of {1, 2, . . . , n}
with condition σ(1) 6= 1 and σ(n) 6= n.

First consider the case when S is archimedean. If S is simple, then S is a
commutative group by Theorem 4.3.5. Assume that S is not simple. Then S
contains an idempotent element by Theorem 1.2.8 and Theorem 4.1.7. Then, by
Theorem 4.1.5 and Theorem 4.3.5, S is an ideal extension of an abelian group G
by a permutative nil semigroup N . As an ideal extension of a group is a retract
extension, G is a homomorphic image of S. By Theorem 1.2.8, |G| = 1 and so S
is a permutative congruence permutable nil semigroup. Then, by Lemma 4.3.1,
N is commutative.

Next, suppose that S is a semilattice of two archimedean subsemigroups
S1 and S0 such that S0S1 ⊆ S0. Then, by Theorem 1.2.7, S1 is simple. By
Theorem 4.3.5, S1 is an abelian group. Let e be the identity element of S1.
Then, for every element s ∈ S,

se = (sen−1)e = ese = e(en−1s) = es.

Thus Se = eS is an ideal of S such that Se ∩ S1 6= ∅, Se ∩ S0 6= ∅. As the
ideals of a congruence permutable semigroups form a chain with respect to the
inclusion, Se = eS = S and so e is the identity element of S. Thus S = S2

and so, by Theorem 4.1.3, S is a medial semigroup. As e is the identity element
of S, it follows that ab = eabe = ebae = ba for every a, b ∈ S, and so S is
commutative. u

Corollary 4.3.7 ([Nag05]) Every strictly permutative ∆-semigroup is commu-
tative.

Proof. As every ∆-semigroup is congruence permutable, our assertion follows
from Theorem 4.3.6. u
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Chapter 5

Medial semigroups

In this chapter, which is a continuation of Chapter 4, we deal with the medial
semigroups. The chapter contains three sections.

The first section contains results on the semilattice decomposition of medial
semigroups and on medial archimedean semigroups. We prove that every medial
semigroup is a left and right Putcha semigroup and so a semilattice of medial
archimedean semigroups. Moreover, a semigroup is a medial archimedean semi-
group containing at least one idempotent element if and only if it is a retract
extension of a rectangular abelian group by a medial nil semigroup. We also
show that every medial archimedean semigroup without idempotent element has
a non-trivial commutative group homomorphic image.

In Chapter 4 it was proved that every permutative ∆-semigroup is medial. In
the second section of this chapter we describe the medial ∆-semigroups. W.A.
Etterbeek in his PhD dissertation [Ett70] dealt with the medial ∆-semigroups,
but the proof of Theorem 3.45 of the dissertation is false and so he gave an
incorrect list for medial ∆-semigroups in Theorem 3.49. In Theorem 3.45 it was
asserted that if S = S0 ∪ {e} is a right commutative ∆-semigroup such that S0

is a nil semigroup and e is a right identity element of S, then S is necessarily
commutative. The Example of my paper [Nag00] shows that this assertion is
false. It is easy to see that if S is a semigroup which can be obtained from
a zero semigroup {0, a} by adjunction an idempotent element e such that e is
a right identity element of S and a left annihilator of {0, a}, then S satisfies
the condition of Theorem 3.45 of [Ett70], but S is not commutative. In our
paper [NJ04], we revisited the results of Etterbeek. In this section we present
the results of [NJ04]. We give a correct list of medial ∆-semigroups. We show
that a semigroup S is a medial ∆-semigroup if and only if it satisfies one of the
following conditions: (i) S is a commutative ∆-semigroup; (ii) S is isomorphic
to either R or R0, where R is a two-element right zero semigroup; (iii) S is
isomorphic to the semigroup Z = {0, e, a}, obtained by adjoining to a zero
semigroup {0, a} an idempotent element e that is both a right identity element
of Z and a left annihilator of {0, a}; (iv) S is isomorphic to the dual of a
semigroup of type (ii) or (iii).
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In Chapter 4 it was proved that every permutative congruence permutable
semigroup is medial. In the third section of this chapter we deal with the medial
congruence permutable semigroups. In [BC81] B. Bonzini and A. Cherubini
defined three kinds of congruence permutable semigroups (first kind, second
kind, third kind), and showed that every medial non-archimedean congruence
permutable semigroup is one of them. In this section we concentrate our atten-
tion on medial congruence permutable semigroups of the first kind. We define
the notion of the left (right) reflection of semigroups, and show that the me-
dial congruence permutable semigroups of the first kind can be obtained from
the non-archimedean commutative congruence permutable semigroups applying
both of the left reflection and the right reflection.

5.1 Semilattice decopmosition of medial semi-
groups

Definition 5.1.1 A semigroup is called a medial semigroup if it satisfies the
identity xaby = xbay.

Theorem 5.1.2 ([Nag01, Theorem 9.2]) Every medial semigroup is a left and
right Putcha semigroup.

Proof. Let S be a medial semigroup and a, b ∈ S be arbitrary elements with
b ∈ aS1, that is, b = ax for some x ∈ S1. Then

b2 = (ax)2 = a2x2,

that is,
b2 ∈ a2S1.

Hence S is a left Putcha semigroup. We can prove, in a similar way, that S is
a right Putcha semigroup. u

Theorem 5.1.3 ([Nag01], [Chr69]) Every medial semigroup is a semilattice of
medial archimedean semigroups.

Proof. By Theorem 5.1.2, Lemma 1.1.16 and Theorem 1.1.11, our assertion is
obvious. u

The next theorem is a consequence of the proof of Theorem 4.1 of [Chr69].

Theorem 5.1.4 ([Chr69]) A semigroup is medial and simple if and only if it
is a rectangular abelian group. u

In [Chr69], J.L. Chrislock proved that a medial semigroup is archimedean
and contains at least one idempotent element if and only if it is an ideal extension
of a rectangular abelian group by a nil semigroup. In the next two theorems we
prove a little bit more.
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Theorem 5.1.5 If a semigroup S is a retract extension of a medial semigroup
by a medial semigroup with a zero, then S is medial.

Proof. Let S be a semigroup which is a retract extension of a medial semigroup
K by a medial semigroup Q with a zero 0. It is clear that S = K ∪Q∗, where
Q∗ = Q− {0}. Let ϕ be retract homomorphism of S onto K. Let a, x, y, b ∈ S
be arbitrary elements.

If axyb, ayxb /∈ K, then a, x, y, b ∈ Q∗ and axyb = ayxb in Q. Thus axyb =
ayxb in S.

Next consider the case when one of the products axyb and ayxb is in K. We
can suppose axyb ∈ K. The investigation of the other case is similar.

If a, x, y, b /∈ K. Then axyb = 0 in Q and so ayxb = 0 in Q. Thus ayxb ∈ K
and so

axyb = ϕ(axyb) = ϕ(a)ϕ(x)ϕ(y)ϕ(b) = ϕ(a)ϕ(y)ϕ(x)ϕ(b) = ϕ(ayxb) = ayxb.

If one of a, x, y, b is in K, then ayxb ∈ K because K is an ideal of S. Hence (as
in the previous case) axyb = ayxb is satisfied in S. u

Theorem 5.1.6 ([Nag01]) A semigroup is a medial archimedean semigroup
containing at least one idempotent element if and only if it is a retract extension
of a rectangular abelian group by a medial nil semigroup. u

Proof. Let S be a medial archimedean semigroup containing at least one idem-
potent element. Then, by Theorem 5.1.2, S is a left and a right Putcha semi-
group. By Theorem 1.1.19 and Theorem 5.1.4, S is a retract extension of a
rectangular abelian group by a nil semigroup N . It is clear that N is medial.

Conversely, assume that a semigroup S is a retract extension of a rectangular
abelian group K by a medial nil semigroup N . As K is completely simple,
Theorem 1.1.19 implies that S is an archimedean semigroup containing at least
one idempotent. As K and N are medial semigroups, Theorem 5.1.5 implies
that S is a medial semigroup. u

Theorem 5.1.7 ([Nag01, Theorem 9.11]) Every medial archimedean semigroup
without idempotent element has a non-trivial group homomorphic image.

Proof. As every medial semigroup is weakly exponential, our assertion follows
from Theorem 2.1.8. u

5.2 Medial ∆-semigroups

In Chapter 4 we proved that every permutative ∆-semigroup is medial. In this
section we describe the medial ∆-semigroups. First we prove a theorem about
the medial ∆-semigroups which is deduced from the next theorem (presented
by Trotter in [Tro76]).
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Theorem 5.2.1 ([Tro76]) A semigroup S is an exponential ∆-semigroup if and
only if one of the following satisfied.

(i) S ∼= G or G0, where G is a non-trivial subgroup of a quasicyclic p-group.

(ii) S ∼= F , where F is a two-element semilattice.

(iii) S ∼= R or R0 or R1, where R is a two-element right zero semigroup.

(iv) S ∼= L or L0 or L1, where L is a two-element left zero semigroup.

(v) S is an exponential nil semigroup whose principal ideals are chain ordered
by inclusion.

(vi) S is an exponential T1 or a T2R or a T2L semigroup.

Our first result on medial ∆-semigroups is the following (which was published
in [Nag01]).

Theorem 5.2.2 ([NJ04]) A semigroup S is a medial ∆-semigroup if and only
if it satisfies one of the following conditions.

(i) S is isomorphic to G or G0, where G is a non-trivial subgroup of a quasi-
cyclic p-group (p is a prime).

(ii) S is a two-element semilattice.

(iii) S is isomorphic to either R or R0, where R is a two-element right zero
semigroup.

(iv) S is isomorphic to either L or L0, where L is a two-element left zero
semigroup.

(v) S is a medial nil ∆-semigroup (that is, the principal ideals form a chain
with respect to inclusion).

(vi) S is a medial T1 semigroup (if S has an identity, then it is commutative).

Proof. Let S be a medial ∆-semigroup. Then S is an exponential ∆-semigroup
and so it is isomorphic one of the semigroups listed in Theorem 5.2.1.

It is obvious that a medial monoid is commutative. Thus the cases S ∼= R1

(in (iii) of Theorem 5.2.1) and S ∼= L1 (in (iv) of Theorem 5.2.1) are impossible.
Moreover, if S is a T1 semigroup (see (vi) of Theorem 5.2.1) with an identity
element, then S is commutative)

The proof will be complete if we show that the case is impossible when S
is a T2RL semigroup or a T2R semigroup. Assume, in an indirect way, that S
is a medial T2L semigroup. Then it is a semilattice of a two-element left zero
semigroup L = {u, v} and a non-trivial nil semigroup S0. Using also the fact
that u and v are idempotent elements, it is easy to verify that

τu = {(a, b) ∈ S × S : ua = ub}
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and
τv = {(a, b) ∈ S × S : va = vb}

are congruences of S such that (u, v) ∈ τu and (u, v) ∈ τv. As S is a ∆-
semigroup, we have ρS0

∈ τu and ρS0
∈ τv, where ρS0

denotes the Rees congru-
ence of S modulo S0. Thus (a, 0) ∈ τu and (a, 0) ∈ τv for every a ∈ S0, that is,
ua = va = 0 for every a ∈ S0. Let

I = {a ∈ S : au = av}.

It is easy to see that I is a left ideal of S. We show that I is also a right ideal
of S. Let a ∈ I and s ∈ S be arbitrary elements. Then

asu = asuu = ausu = avsu = asvu = asv

and so as ∈ I. Hence I is an ideal of S. It is clear that u, v ∈ I. As S is a
∆-semigroup, and u, v /∈ S0, we have I = S. Thus au = av for every a ∈ S0.
Let β be the following equivalence on S.

β = {(a, b) ∈ S × S : a = b or a, b ∈ S1}.

As ua = va and au = av for every a ∈ S0, we have that β is a congruence on S.
It is clear that β∩ρS0

= idS , where ρS0
is the Rees congruence on S determined

by the ideal S0 of S. As S is a ∆-semigroup, either β ⊆ ρS0
or ρS0

⊆ β and so
either β = idS or ρS0 = idS . As u 6= v, we would have only ρS0 = idS . Hence
|S0| = 1 which is a contradiction. Thus S is not a T2L semigroup. Dually, S is
not a T2R semigroup. Thus the theorem is proved. u

In the next, we shall refine Theorem 5.2.2. We shall first show that every me-
dial, nil ∆-semigroup is commutative; and then that every medial T1 semigroup
is either commutative or is isomorphic to the semigroup Z or its dual, where
Z = {0, e, a}, obtained by adjoining to a zero semigroup {0, a} an idempotent
element e that is both a right identity element of Z and a left annihilator of
{0, a}. The proof of Theorem 5.2.5 is then complete.

We now turn to T1 semigroups.

Lemma 5.2.3 [Tro76, Lemma 3.3], [Nag01, Theorem 1.58] Let S = N ∪ {e}
be any T1 semigroup. Then every ideal of N is also an ideal of S (and so N is
also a ∆-semigroup). u

Theorem 5.2.4 ([NJ04]) Let S = N ∪{e} be a medial T1 semigroup. Then N
is a commutative ∆-semigroup and S satisfies one of the following conditions.

(1) e acts as an identity element for N and S itself is commutative.

(2) e acts as a right identity and a left annihilator for N and S is isomorphic
to the semigroup Z = {0, e, a}, obtained by adjoining to a zero semigroup
{0, a} an idempotent element e that is both a right identity element of Z
and a left annihilator of {0, a}.
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(3) the dual of the previous case.

Proof. That N is commutative is immediate from Lemma 5.2.3 and Theo-
rem 4.2.3.

Now suppose that S is any T1 semigroup for which N is commutative. We
show first that for any a ∈ N , either ea = a or ea = 0. (The dual statement
obviously also holds.) Since N1aN1 is an ideal of N , then Lemma 5.2.3 implies
that it is also an ideal of S, whence it contains ea. Hence, if ea 6= a, then ea = at
for some t ∈ N . Then ea = eat = eatn for each n and, since t ∈ N , ea = 0.

Next suppose that ea = a for some nonzero a ∈ N . Let b ∈ N . Either
b = ax or a = bx, for some x ∈ S1. In the former case, eb = eax = ax = b;
in the latter case, suppose eb = 0: then ea = ebx = 0, a contradiction, so that
again eb = b. Hence e is either a left identity for S or a left annihilator for N .
Clearly the dual statement also holds.

Notice, however, that if N is nonzero, then e cannot be both a left and a
right annihilator for N . For in that event, given a ∈ N − {0}, S1aS1 ⊂ S1eS1,
so a = set for some s, t ∈ S1. Both s and t cannot belong to N , for then
se = et = 0. But otherwise, either a = ea or a = ae, contradicting the
assumption.

Thus e is either an identity for S, or is a right identity for S and a left
annihilator for N , or is a left identity for S and a right annihilator for N . In
the second of those three cases, let a, b ∈ N . Then ab = (ae)b = a(eb) = 0, that
is, N is a null semigroup. But every subset of N that contains 0 is an ideal, so
|N | ≤ 2. When N = {0}, e actually acts as an identity and so S falls under (1).
Otherwise, N = {a, 0}, say, where ae = a, ee = e and all other products are 0.
Clearly, the third case is dual. u

Finally, we can formulate the main theorem on medial ∆-semigroups.

Theorem 5.2.5 A semigroup S is a medial ∆-semigroup if and only if it sat-
isfies one of the following conditions.

(i) S is a commutative ∆-semigroup.

(ii) S is isomorphic to either R or R0, where R is a two-element right zero
semigroup.

(iii) S is isomorphic to the semigroup Z = {0, e, a}, obtained by adjoining to a
zero semigroup {0, a} an idempotent element e that is both a right identity
element of Z and a left annihilator of {0, a}.

(iv) S is isomorphic to the dual of a semigroup of type (ii) or (iii). u

Proof. By Theorem 5.2.2 and Theorem 5.2.4 it is obvious. u
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5.3 Medial congruence permutable semigroups

In the previous chapter it was proved that every permutative congruence per-
mutable semigroup is medial. In this section we deal with the medial congruence
permutable semigroups.

The medial congruence permutable semigroups are examined in [BC81]. Us-
ing the terminology of [BC81], a semigroup S is called a semigroup of type a if
it is a semilattice of a nil semigroup S0 and a rectangular group S1 = L×G×R
with |L| ≤ 2, |R| ≤ 2 (L is a left zero semigroup, G is a group, R is a right zero
semigroup). A semigroup S of type a is called of

(1) the first kind if a ∈ S1aS1 for every a ∈ S,

(2) the second kind if a ∈ S1a and aS1 = {0} for every a ∈ S0,

(3) the third kind if a ∈ aS1 and S1a = {0} for every a ∈ S0.

By Corollary 1.2 and Theorem 3.4 of [BC81], semigroup S is a medial con-
gruence permutable semigroup if and only if it satisfies one of the following
conditions.

(1) S is a commutative nil semigroup whose principal ideals form a chain with
respect to inclusion.

(2) S is a rectangular abelian group L×G×R, with |L| ≤ 2, |R| ≤ 2 (L is a
left zero semigroup, G is an abelian group, R is a right zero semigroup).

(3) S is a medial congruence permutable semigroup of the first or the second
or the third kind.

In [Bon83] a construction is given for medial congruence permutable semi-
groups of the second [the third] kind. In [Nag08], we dealt with medial con-
gruence permutable semigroups of the first kind. We showed that they can be
obtained from the commutative non-archimedean congruence permutable semi-
groups. In this section of the dissertation we present the results of [Nag08].
First of all we note that if S is a non-archimedean commutative congruence
permutable semigroup, then S is of type a, because it is a semilattice of a com-
mutative group G and a commutative nil semigroup. Moreover, the identity
element of G is the identity element of S, and so S is of the first kind.

Let S be a medial congruence permutable semigroup of the first kind. Then
S is a semilattice of a nil semigroup S0 and a rectangular abelian group S1 =
L × G × R with |L| ≤ 2, |R| ≤ 2 (L is a left zero semigroup, G is an abelian
group, R is a right zero semigroup). It is obvious that S1 is a rectangular band
L × R of disjoint subgroups Gij = {i} × G × {j} (i ∈ L, j ∈ R), and the
idempotent elements of S1 are the identity elements eij = (i, e, j) of Gij (here
e denotes the identity element of G).

Introduce the following notation: for an element t of a non-empty set T
containing at most two elements, let t̃ = t if |T | = 1, and let t̃ ∈ T − {t} if
|T | = 2.
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Lemma 5.3.1 ([Nag08]) Let S be a medial congruence permutable semigroup
of the first kind. Then, for every a ∈ S, i ∈ L and j ∈ R, we have

(1) eija = eij̃a,

(2) aeij = aeĩj.

Proof. As S is a medial semigroup, for every a ∈ S, i ∈ L and j ∈ R, we have

eija = eijeij̃eija = eijeijeij̃a = eij̃a

and
aeij = aeijeĩjeij = aeĩjeijeij = aeĩj .

�

Introduce the following notations. For arbitrary i ∈ L and j ∈ R, let

Ai = eijS = eij̃S

and
Bj = Seij = Seĩj .

It is clear that
Ai = Gij ∪Gij̃ ∪ eijS0

and
Bj = Gij ∪Gĩj ∪ S0eij .

A semigroup is said to be left [right] commutative if it satisfies the identity
abc = bac [abc = acb].

Lemma 5.3.2 ([Nag08]) Let S be a medial congruence permutable semigroup
of the first kind. Then Ai (i ∈ L) and Bj (j ∈ R) are left and right commutative
subsemigroups of S, respectively.

Proof. It is clear that eij is a left identity elements of Ai. Then, for arbitrary
elements a, x, y ∈ Ai,

xya = eijxya = eijyxa = yxa.

Hence Ai is left commutative. The proof of the assertion for Bj is similar. �

Lemma 5.3.3 ([Nag08]) Let S be a medial congruence permutable semigroup
of the first kind. Then

S = Ai ∪Aĩ = Bj ∪Bj̃ (i ∈ L, j ∈ R).

Moreover, Ai ∩Aĩ and Bj ∩Bj̃ (i ∈ L, j ∈ R) are ideals of S.
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Proof. Let S be a medial congruence permutable semigroup of the first kind.
Then, for every a ∈ S, there is an element eij ∈ E(S1) such that

a = eija ∈ Ai.

Thus
S = Ai ∪Aĩ (i ∈ L).

Similarly,
S = Bj ∪Bj̃ (j ∈ R).

It is clear that Ai ∩ Aĩ 6= ∅ is a right ideal of S. Let s ∈ S, a ∈ Ai ∩ Aĩ be
arbitrary elements. Then

et,ka = a

for every t ∈ L, k ∈ R. Assume s ∈ Ai (and so s = eijs for every j ∈ R). As Ai
is a subsemigroup of S, sa ∈ Ai. As S is of the first kind,

a = at

for an element t ∈ S1. Thus, for arbitrary j ∈ R,

eĩjsa = eĩjsat = ej̃iast = ast = eijast = eijsat = sa,

that is,
sa ∈ Aĩ.

Thus
sa ∈ Ai ∩Aĩ.

Hence Ai ∩Aĩ is an ideal of Ai. We can similarly prove that Ai ∩Aĩ is an ideal
of Aĩ. Hence Ai ∩ Aĩ is an ideal of S. The proof of the assertion that Bj ∩ Bj̃
is an ideal of S is similar. �

Lemma 5.3.4 ([Nag08]) If f is an idempotent element of a medial semigroup
S, then

λf = {(x, y) ∈ S × S : fx = fy}

and
ρf = {(x, y) ∈ S × S : xf = yf}

are congruences on S.

Proof. It is clear that λf is a right congruence. Let x, y, s be arbitrary elements
of S such that (x, y) ∈ λf Then

fsx = ffsx = fsfx = fsfy = ffsy = fsy

and so
(sx, sy) ∈ λf .

Hence λf is a congruence on S. The proof is similar for ρf . �
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Lemma 5.3.5 ([Nag08]) Let S be a medial congruence permutable semigroup
of the first kind. Then, for every i ∈ L and j ∈ R,

(1) λeij̃ = λeij = λeĩj = λeĩj̃,

(2) ρeĩj = ρeij = ρeij̃ = ρeĩj̃.

Proof. By Lemma 5.3.1,
λeij̃ = λeij

and
λeĩj = λeĩj̃ .

We show that λeij = λeĩj . Assume (a, b) ∈ λeij for some a, b ∈ S. Then

eija = eijb

and so
eĩja = eĩjeija = eĩjeijb = eĩjb.

Then
(a, b) ∈ λeĩj .

Thus
λeij ⊆ λeĩj .

Similarly,
λeĩj ⊆ λeij .

Thus
λeij = λeĩj

and so (1) is satisfied. The proof of (2) is similar. �

Introduce the following notations: let

ρ = ρeij and λ = λeij

for some (for all) i ∈ L and j ∈ R.

Lemma 5.3.6 ([Nag08]) Let S be a medial congruence permutable semigroup
of the first kind. Then, for every i ∈ L and j ∈ R, Ai ∼= S/λ and Bj ∼= S/ρ.

Proof. Let [a]λ denote the λ-class of S containing the element a of S. We show
that [a]λ = (E(S1))a. Assume (x, y) ∈ λ for some x, y ∈ Ai. As eij is a left
identity element of Ai, we have

x = eijx = eijy = y.

Thus
λ|Ai = idAi ,
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where λ|Ai is the restriction of λ to Ai and idAi is the identity relation of Ai.
Let a ∈ S be an arbitrary element. Then, by Lemma 5.3.3,

S = Ai ∪Aĩ,

and so there is an element i ∈ L such that a ∈ Ai. As

eija = eijeĩja (j ∈ R),

we have
(a, eĩja) ∈ λ.

Thus
[a]λ = {a, eĩja}.

Since
a = eija = eij̃a

and
eĩj̃a = eĩj̃eĩjeĩj̃a = eĩj̃eĩj̃eĩja = eĩja,

we get
[a]λ = {a, eĩja} = (E(S1))a.

This result implies that
|Ai ∩ [a]λ| = 1

for every a ∈ S. Let Φi denote the mapping of S/λ to Ai defined by

Φi : [a]λ 7→ Ai ∩ [a]λ.

Then Φi is bijective. As

(Ai ∩ [a]λ)(Ai ∩ [b]λ) ∈ Ai ∩ [ab]λ,

we get
Φi(a)Φi(b) = (Ai ∩ [a]λ)(Ai ∩ [b]λ) = Ai ∩ [ab]λ = Φi(ab)

which means that Φi is a homomorphism. Thus Φi is an isomorphism of S/λ
onto Ai. The proof of Bj ∼= S/ρ is similar. �

Corollary 5.3.7 ([Nag08]) Let S be a medial congruence permutable semigroup
of the first kind. Then, for every i ∈ L and j ∈ R, φi : a 7→ a′ = eĩja (a ∈ Ai)
and ψj : b 7→ b′ = beij̃ (b ∈ Bj) are isomorphisms of Ai and Bj onto Aĩ and
Bj̃, respectively.

Proof. If S is a medial semigroup, then

eaeb = eab

and
aebe = abe

83

dc_1345_16

Powered by TCPDF (www.tcpdf.org)



for every a, b ∈ S and every idempotent element e of S. Thus φi and ψj are
homomorphisms. φi and ψj map S onto Aĩ and Bj̃ , respectively. Moreover,
kerφi = λ and kerψj = ρ. Thus, by the proof of the previous lemma, φi and
ψj are isomorphisms of Ai and Bj onto Aĩ and Bj̃ , respectively. �

Construction Let S be a semigroup and I be an ideal of S. Let φ : s 7→ s′

be an isomorphism of S onto a semigroup (S′; +) such that S ∩ S′ = I and φ
leaves the elements of I fixed. (We note that, for every a, b ∈ I, a+b = a′+b′ =
(ab)′ = ab.) On the set S′′ = S ∪ S′ we define an operation ∗ as follows. Let ∗
be an extension of both of the operations of S and S′. For arbitrary x ∈ S and
y′ ∈ S′, let x ∗ y′ = xy and y′ ∗ x = (yx)′. The groupoid (S′′; ∗) will be called
a left reflection of S (with respect to I) and will be denoted by (S; I, ∗)l. The
right reflection of S is the dual of the left reflection, which will be denoted by
(S; I, ∗)r. More precisely, the operation ∗ in a right reflection of S is defined by
x ∗ y′ = (xy)′ and y′ ∗ x = yx. If I 6= S, then the left and right reflection of S
will be called proper.

Introduce the following notation. Let S′′ be a left or right reflection of a
semigroup S. Then, for an element s ∈ S, let s′′ denote s or s′.

Lemma 5.3.8 ([Nag08]) The left reflection [right reflection] of any semigroup
is a semigroup.

Proof. Let S′′ = (S; I, ∗)l be a left reflection of a semigroup S. Let a′′, b′′ ∈ S′′
(a, b ∈ S) be arbitrary elements. Then, for arbitrary c ∈ S,

c ∗ (a′′ ∗ b′′) = c ∗ (ab)′′ = c(ab) = (ca)b = (ca) ∗ b′′ = (c ∗ a′′) ∗ b′′.

and

c′ ∗ (a′′ ∗ b′′) = c′ ∗ (ab)′′ = (c(ab))′ = ((ca)b)′ = (ca)′ ∗ b′′ = (c′ ∗ a′′) ∗ b′′.

Thus the operation ∗ is associative on S′′. The proof of the dual is similar. �

Lemma 5.3.9 ([Nag08]) If x1, . . . , xn are arbitrary elements of a semigroup S
then, in a left [right] reflection of S, we have

x1 ∗ x′′2 ∗ · · · ∗ x′′n = x1x2 . . . xn and x′1 ∗ x′′2 · · · ∗ x′′n = (x1x2 . . . xn)′

[x′′1 ∗ · · · ∗ x′′n−1 ∗ xn = x1 . . . xn−1xn and x′′1 ∗ · · · ∗ x′′n−1 ∗ x′n = (x1 . . . xn−1xn)′].

Proof. It is obvious. �

Lemma 5.3.10 ([Nag08]) A left [right] reflection of a commutative semigroup
is right [left] commutative.
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Proof. Let S′′ = (S; I, ∗)l be a left reflection of a commutative semigroup S.
Since S and S′ are commutative semigroups and, for every x, y, z ∈ S,

x ∗ (y ∗ z′) = x ∗ (yz) = x ∗ (zy) = x ∗ (zy)′ = x ∗ (z′ ∗ y),

x′ ∗ (y ∗ z′) = x′ ∗ (yz) = x′ ∗ (zy) = (x(zy))′ = x′ ∗ (zy)′ = x ∗′ (z′ ∗ y),

then the semigroup S′′ is right commutative. The proof of the dual assertion is
similar �

Lemma 5.3.11 ([Nag08]) A left reflection S′′ = (S; I, ∗)l [a right reflection
S′′ = (S; I, ∗)r] of a non-archimedean commutative congruence permutable semi-
group S is a right [left] commutative congruence permutable semigroup of the
first kind. If S′′ is a proper reflection of S, then S′′ is not left [right] commuta-
tive.

Proof. Let S′′ = (S; I, ∗)l be a left reflection of a non-archimedean commutative
congruence permutable semigroup S = G ∪ S0. By Lemma 5.3.10, S′′ is right
commutative. If S′′ is a proper reflection of S (that is, I 6= S), then I ⊆ S0,
because the ideals of a congruence permutable semigroup form a chain with
respect to inclusion (see Theorem 1.2.2). This implies that e 6= e′, where e is
the identity element of G. Then

e ∗ e′ ∗ e′ = e 6= e′ = e′ ∗ e ∗ e′

and so S′′ is not left commutative. To show that S′′ is congruence permutable,
we can suppose that I 6= S and so I ⊆ S0. It is easy to see that S′′ is a semilattice
of the left abelian group L = G∪G′ and the nil semigroup S′′0 = S0 ∪ S′0. Thus
S′′ is a semigroup of type a. Let a ∈ S be an arbitrary element. Then

S′′1 ∗ a′′ ∗ S′′1 = (G ∪G′) ∗ a′′ ∗ (G ∪G′) = GaG ∪ (GaG)′.

As S is of the first kind, a ∈ GaG and so

a′′ ∈ S′′1 ∗ a′′ ∗ S′′1 .

Thus S′′ is a semigroup of the first kind. As S = G ∪ S0 is a medial semigroup
of the first kind, [BC81, Lemma 3.3] implies that

ρ = {(a, b) ∈ S × S : GaG = GbG}

is the least congruence of S which has G as a class, and moreover, for every
a ∈ S,

[a]ρ = GaG.

As S is congruence permutable, [BC81, Theorem 3.5] implies that S/ρ is a ∆-
semigroup. As S′′ is a medial semigroup of the first kind, [BC81, Lemma 3.3]
implies that

ρ′′ = {(a′′, b′′) ∈ S′′ × S′′ : S′′1 ∗ a ∗ S′′1 = S′′1 ∗ b ∗ S′′1 }
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is the least congruence of S′′ which has S′′1 as a class, and moreover, for every
a ∈ S,

[a′′]ρ′′ = S′′1 ∗ a′′ ∗ S′′1 .

As S′′1 ∗ a ∗ S′′1 = GaG ∪ (GaG)′, we have

S ∩ [a]ρ′′ = [a]ρ ∪ ([a]ρ)
′.

Moreover,
S′′ = ∪a∈S [a]ρ′′ .

From these results it follows that the mapping ϕ of S′′/ρ′′ into S/ρ defined by

ϕ : [a′′]ρ′′ 7→ [a]ρ

is an isomorphism of S′′/ρ′′ onto S/ρ. As S/ρ is a ∆-semigroup, [BC81, Theorem
3.5] implies that S′′ is congruence permutable. �

Theorem 5.3.12 ([Nag08]) A semigroup is a right [left] commutative congru-
ence permutable semigroup of the first kind if and only if it is isomorphic to a
left [right] reflection of a non-archimedean commutative congruence permutable
semigroup.

Proof. By Lemma 5.3.10, a left reflection of a non-archimedean commuta-
tive congruence permutable semigroup is a right commutative congruence per-
mutable semigroup of the first kind.

Conversely, assume that F is a right commutative congruence permutable
semigroup of first kind. Then F = S1 ∪ S′′0 (S1 is a left abelian group, S′′0 is a
commutative nil semigroup).

If S1 is a group, then the identity element of G is an identity element of
F (because F is of the first kind) and so F is commutative. In this case F is
isomorphic to the left reflection (F ;F, ∗)l of F .

Assume that S1 is not a group. Then it is a left zero semigroup of two
disjoint isomorphic subgroups Gi and Gĩ (i ∈ L). Let ei denote the identity
element of Gi. By Lemma 5.3.1 and Lemma 5.3.3, Fei = Feĩ = F and so ei is an
identity element of Ai = eiF (i ∈ L). Thus Ai = Gi∪eiS0 is a non-archimedean
commutative subsemigroup of F . As S is of the first kind, Lemma 5.3.3 implies
that

F = Ai ∪Aĩ.

By Corollary 1,
φi : a 7→ eĩa (a ∈ Ai)

is an isomorphism of Ai onto Aĩ which leaves the elements of I = Ai ∩Aĩ fixed.
By Lemma 5.3.3, I is an ideal of F . If a′ denotes ψi(a), then, for arbitrary
a, b ∈ Ai, we have

ab′ = aeĩb = ab

and
b′a = eĩbeĩa = eĩ(ba) = (ba)′.
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Thus F is a left reflection of the non-archimedean commutative congruence
permutable semigroup Ai. The proof of the dual assertion is similar. �

Lemma 5.3.13 ([Nag08]) A left [right] reflection of a left [right] commutative
semigroup S is medial.

Proof. Let S′′ = (S; I, ∗)l be a left reflection of a left commutative congruence
permutable semigroup S = S1 ∪ S0. By Lemma 5.3.8, S′′ is a semigroup. From
Lemma 5.3.9, it follows that, for every a, b, x, y ∈ S,

a ∗ (x′′ ∗ y′′) ∗ b′′ = a(xy)b = a(yx)b = a ∗ (y′′ ∗ x′′) ∗ b′′

and

a′ ∗ (x′′ ∗ y′′) ∗ b′′ = (a(xy)b)′ = (a(yx)b)′ = a′ ∗ (y′′ ∗ x′′) ∗ b′′.

Thus S′′ is a medial semigroup. �

Lemma 5.3.14 ([Nag08]) A left reflection S′′ = (S; I, ∗)l [a right reflection
S′′ = (S; I, ∗)r] of a left [right] commutative congruence permutable semigroup
S of the first kind is a medial congruence permutable semigroup of the first kind.
If S′′ is a proper reflection of S, then S′′ is not left [right] commutative.

Proof. Let S′′ = (S; I, ∗)l be a left reflection of a left commutative congruence
permutable semigroup S = S1 ∪ S0 of the first kind. By Lemma 5.3.13, S′′ is a
medial semigroup. If S′′ is a proper reflection of S (that is, I 6= S), then I ⊆ S0

(see Theorem 1.2.2) and e 6= e′ for an idempotent element of S1. Then

e ∗ e′ ∗ e = e3 = e 6= e′ = (e3)′ = e′ ∗ e ∗ e,

which shows that S′′ is not left commutative. To show that S′′ is congruence
permutable, we can suppose that I 6= S. As S is congruence permutable, I ⊆ S0.
Thus S′′ is a semigroup of type a. Let a′′ ∈ S′′ be an arbitrary element (recall
that, for a ∈ S, a′′ denotes a or a′). Then

S′′1 a
′′S′′1 = (S1 ∪S′1) ∗ a′′ ∗S′′1 = S1 ∗ a′′ ∗S′′1 ∪S′1 ∗ a′′ ∗S′′1 = (S1aS1)∪ (S1aS1)′.

As a ∈ S1aS1, we get a′ ∈ (S1aS1)′ and so

a′′ ∈ S′′1 ∗ a′′ ∗ S′′1 .

Thus S′′ is a semigroup of the first kind. By [BC81, Lemma 3.3],

ρ = {(a, b) ∈ S × S : S1aS1 = S1bS1}

is the least congruence of S which has S1 as a class, and moreover, for every
a ∈ S,

[a]ρ = S1aS1.
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As S is congruence permutable, [BC81, Theorem 3.5] implies that S/ρ is a ∆-
semigroup. As S′′ is a medial semigroup of the first kind, [BC81, Lemma 3.3]
implies that

ρ′′ = {(a′′, b′′) ∈ S′′ × S′′ : S′′1 ∗ a′′ ∗ S′′1 = S′′1 ∗ b′′ ∗ S′′1 }

is the least congruence of S′′ which has S′′1 as a class, and moreover, for every
a′′ ∈ S′′,

[a′′]ρ′′ = S′′1 ∗ a′′ ∗ S′′1 = (S1aS1) ∪ (S1aS1)′ = [a]ρ ∪ ([a]ρ)
′.

Thus [a]ρ′′ = [a′]ρ′′ for every a ∈ S and so

F = ∪a∈S [a]ρ′′ .

Thus the mapping ϕ of S′′/ρ′′ into S/ρ defined by

ϕ : [a]ρ′′ 7→ [a]ρ

is an isomorphism of S′′/ρ′′ onto S/ρ. Thus S′′ is a medial semigroup of the
first kind such that S′′/ρ′′ is a ∆-semigroup. Then, by [BC81, Theorem 3.5],
S′′ is congruence permutable. The proof of the dual assertion is similar. �

Theorem 5.3.15 ([Nag08]) A semigroup is a medial congruence permutable
semigroup of the first kind if and only if it is

(1) a left reflection of a left commutative congruence permutable semigroup of
the first kind or

(2) a right reflection of a right commutative congruence permutable semigroup
of the first kind.

Proof. By Lemma 5.3.11, both a left reflection of a left commutative congruence
permutable semigroup of the first kind and a right reflection of a right commu-
tative congruence permutable semigroup of the first kind are medial congruence
permutable semigroups of the first kind.

Conversely, assume that F is a medial congruence permutable semigroup of
the first kind. Then F = S1 ∪ S′′0 (S1 = (L × G × R) is a rectangular abelian
group with |L| ≤ 2, |R| ≤ 2, S′′0 is a commutative nil semigroup).

If |L| = |R| = 1, then S1 is a group whose identity element is the identity
element of F . Then F is commutative. As F is a left and right reflection of
itself, (1) and (2) are satisfied for F .

Assume |L| = 2 and |R| = 1. Then S1 is a disjoint union of two isomorphic
subgroups Gi and Gĩ (i ∈ L). Let ei denote the identity element of Gi (i ∈ L).
It is clear that ei and eĩ are right identity elements of F . Then, for arbitrary
elements a, b, c ∈ F ,

abc = abcei = acbei = acb

for every a, b, c ∈ F . Thus F is right commutative. As F is a right reflection of
itself, (2) is satisfied for F .
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Assume |L| = 1 and |R| = 2. As in the previous part, we can prove that F
is left commutative, and so (1) is satisfied for F .

Assume |L| = |R| = 2. By Lemma 5.3.2, Ai (i ∈ L) is a left commutative
subsemigroup of F . By Lemma 5.3.6, Ai ∼= S/λ, and so Ai is congruence
permutable. Moreover, Aĩ is an isomorphic copy of Ai (φi : a 7→ a′ = eĩja is
the corresponding isomorphism by Corollary 5.3.7), and I = Ai ∩Aĩ is an ideal
of Ai. The isomorphism φi leaves the elements of I fixed. By Lemma 5.3.3

F = Ai ∪Aĩ (i ∈ L).

Since, for arbitrary a, b ∈ Ai,

ab′ = ei,jaeĩjb = eijeĩjab = eijab = ab

and
b′a = eĩjbeija = eĩjeijba = eĩjba = (ba)′,

then F is a left reflection of the left commutative congruence permutable semi-
group Ai (i ∈ L). Hence (1) is satisfied.

We note that F is also a right reflection of the right commutative congruence
permutable semigroup Bj (= Feij = F ẽij). Thus F also satisfies (2). �
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Chapter 6

Finite Putcha semigroups

In this chapter we examine finite congruence permutable Putcha semigroups.
The chapter contains two sections.

In the first section we describe the finite congruence permutable archimedean
semigroups. We show that the finite archimedean congruence permutable semi-
groups are exactly the finite cyclic nilpotent semigroups and the finite com-
pletely simple congruence permutable semigroups.

In the second section we deal with the finite congruence permutable non-
archimedean Putcha semigroups. We show that if S is a finite non-archimedean
congruence permutable Putcha semigroup, then it is a semilattice of a com-
pletely simple semigroup S1 = M(I,G, J ;P ) with |I|, |J | ≤ 2 and a semigroup
S0 such that S1S0 ⊆ S0 and S0 is an ideal extension of a completely simple
semigroup by a nilpotent semigroup. We only focus for the case when S1 is a
group. We prove that, in this case, S0 is either (i) a completely simple semi-
group or (ii) a non-trivial zero semigroup such that the identity element of the
group S1 is a right identity element of S and SN = {0} or (iii) a dual of the
previous case or (iv) an ideal extension of a completely simple semigroup K by a
non-trivial nilpotent semigroup such that the identity element of the group S1 is
the identity element of the factor semigroup S/K. We deal with only that cases
when S1 is a group and S0 is a non-trivial zero semigroup. We give a construc-
tion, and show that a finite semigroup S is a congruence permutable semigroup
which is a semilattice of a group G and a non-trivial zero semigroup N such
that the identity element of G is a right identity element of S and SN = {0} if
and only if S is isomorphic to a semigroup defined by this construction. We also
characterize finite congruence permutable semigroups S which are semilattice
of a group and a non-trivial nilpotent semigroup such that the identity element
of G is the identity element of S. In both investigations we use [PP80, Lemma
3] several times.
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6.1 Finite archimedean congruence permutable
semigroups

It is known that every finite semigroup has a kernel K which is completely
simple. Moreover, every finite nil semigroup is nilpotent. Thus we have the
following lemma.

Lemma 6.1.1 ([DN10]) A finite semigroup is archimedean if and only if it is
an ideal extension of a completely simple semigroup by a nilpotent semigroup.u

Theorem 6.1.2 ([DN10]) A finite semigroup is an archimedean congruence
permutable semigroup if and only if it is either a cyclic nilpotent semigroup or
a congruence permutable completely simple semigroup.

Proof. Let S be a finite congruence permutable archimedean semigroup. By
Lemma 6.1.1, S is an ideal extension of a completely simple semigroup K (K is
the kernel of S) by the nilpotent semigroup N = S/K. By Theorem 1.2.4 and
Lemma 4.2.1, N is a cyclic nilpotent semigroup. If |K| = 1, then S is isomorphic
to N . Consider the case when |K| > 1. We show that S = K. Assume, in an
indirect way, that K 6= S. By Theorem 1.1.5, K is isomorphic to a Rees matrix
semigroup M(G; I, J ;P ). As K is completely simple, the Green’s equivalences
R and L are congruences on K. We note that two elements (i, g, j) and (λ, h, µ)
of K are in R-relation if and only if i = λ; they are in L-relation if and only
if j = µ. Consider the equivalence relation R ∪ ιS on S. We show that it is a
congruence on S. Assume (a, b) ∈ R ∪ ιS for some a, b ∈ S. We can suppose
that a 6= b. Then a, b ∈ K and ax = b, by = a for some x, y ∈ K. Let s ∈ S be
an arbitrary element. Then sax = sb and sby = sa. As sa, sb, x ∈ K, we have
(sa, sb) ∈ R and so (sa, sb) ∈ R∪ ιS . Consequently R∪ ιS is a right congruence
on S. To show that R ∪ ιS is a left congruence, assume that a = (i, g, j),
b = (λ, h, µ), as = (i∗, g∗, j∗) and bs = (λ∗, h∗, µ∗). As (a, b) ∈ R, we have
i = λ. Then

(i∗, g∗, j∗) = as = (by)s = b(ys) = (λ, h, µ)(ys) = (i, h, µ)(ys)

and
(λ∗, h∗, µ∗) = bs = (ax)s = a(xs) = (i, g, j)(xs).

From this it follows that i∗ = i = λ∗ and so (as, bs) ∈ R. Hence (as, bs) ∈
R ∪ ιS . Thus R ∪ ιS is a left congruence on S. Hence R ∪ ιS is a congruence
on S. Similarly, L ∪ ιS is a congruence on S. It is clear that the kernels of
the quotient semigroups are, respectively, the left zero semigroup K/R and the
right zero semigroup K/L. By Theorem 1.2.8, K/R or K/L is non-trivial. By
symmetry, it can be assumed without loss of generality that K is a non-trivial
right zero semigroup. Let a ∈ S − K and let f = an ∈ K, so fai = f for all
positive integers i and xf = f for all x ∈ S. Let b ∈ K, b 6= f . Applying
Theorem 1.2.11, b is related to f under the congruence ρ on S generated by
(a, f), so there exists a sequence of elementary ρ-transitions from b to f that
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begins either b = sat 7→ sft or b = sft 7→ sat (s, t ∈ S1), where the right
hand side is distinct from b. In addition, since b = bb and f = bf , we can
assume without loss of generality that s = bs ∈ K. If t = 1, then b = sa (since
b 6= bf = f); otherwise, since K is right zero, t /∈ K, so t = ai for some i < n
and b = sai+1, since again b 6= sfai = f . In either case, b = ca for some c ∈ K,
c 6= f . Now the same argument applies to c and iterating the argument leads
to b = xan = xf = f , a contradiction. Thus the first part of the theorem is
proved. As the converse is obvious, the theorem is proved. u

6.2 Finite non-archimedean congruence permutable
Putcha semigroups

First of all we remark that a completely simple semigroup M = (G; I, J ;P ) is
congruence permutable if and only if |I| ≤ 2, |J | ≤ 2 (see [BC93]).

Lemma 6.2.1 ([DN10]) If S is a finite non-archimedean Putcha congruence
permutable semigroup, then it is a semilattice of a completely simple semi-
group S1 = M(G; I, J ;P ) such that |I|, |J | ≤ 2 and a semigroup S0 such that
S1S0 ⊆ S0 and S0 is an ideal extension of a completely simple semigroup K by
a nilpotent semigroup.

Proof. Let S be a finite congruence permutable non-archimedean Putcha-
semigroup. Then, by Theorem 1.2.4 and Theorem 1.2.5, S is a semilattice of
two archimedean semigroups S0 and S1 such that S0S1 ⊆ S0. As the Rees factor
S0
1 = S/S0 is congruence permutable by Theorem 1.2.4, S1 is a congruence

permutable archimedean semigroup. By Theorem 1.2.7 and Theorem 6.1.2, S1

is completely simple. Then S1 is a Rees matrix semigroup S1 =M(G; I, J ;P )
and |I|, |J | ≤ 2 by the remark before Lemma 6.2.1. By Lemma 6.1.1, S0 is an
ideal extension of a completely simple semigroup K by the nilpotent Rees factor
semigroup N = S0/K. u

We deal with only that case when S1 is a group.

Lemma 6.2.2 ([DN10]) If a finite congruence permutable semigroup S is a
semilattice of a group G and a nilpotent semigroup N such that NG ⊆ N , then
the identity element of G is a left identity element or a right identity element
of S.

Proof. Let a ∈ N be an arbitrary element. Then J(a) ⊆ J(e), where e denotes
the identity element of G. Then there are elements x, y ∈ S1 such that a = xey.
So N = eN ∪ Ne ∪ NeN . Since N is an ideal, Ne ∪ NeN and eN ∪ NeN
are ideals of S and so, by hypothesis, one is included in the other. Suppose
eN ⊆ Ne ∪NeN , so that

N = Ne ∪NeN = Ne ∪ (Ne)(eN) ⊆ Ne ∪ (Ne)(Ne ∪NeN) ⊆ Ne ∪ (Ne)2N.
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Inductively, N ⊆ Ne∪(Ne)iN for all positive integers i, and sinceN is nilpotent,
N = Ne, as required. In case Ne ⊆ eN ∪NeN , we get N = eN . u

Lemma 6.2.3 ([DN10]) Let S be a finite congruence permutable semigroup
which is a semilattice of a group G and a nilpotent semigroup N such that
GN ⊆ N . Let e denote the identity element of G. If Ne = N , then eN = {0}
or eN = N . Similarly, if eN = N , then Ne = {0} or Ne = N .

Proof: By the symmetry, we deal with only the first assertion of the lemma.
Assume N = Ne. Then SeN = eN ∪NeN , which is an ideal of S. If SeN = N ,
then N = eN∪NeN from which we get N = eN as in the proof of Lemma 6.2.2.
If SeN 6= N , then consider the equivalence

α = {(a, b) ∈ S × S : ea = eb}.

It is obvious that α is a right congruence. Let a, b, s be arbitrary elements of S
such that (a, b) ∈ α. As e is a right identity element of S, we get

sa = (se)a = s(ea) = s(eb) = (se)b = sb

and so
e(sa) = e(sb).

Thus α is also a left congruence of S, and so it is a congruence of S. Let x ∈ N
be an arbitrary element. As (x, ex) ∈ α and ex ∈ SeN , by Theorem 1.2.11,
the ideal SeN is contained by the α-class of x, and so (0, x) ∈ α, that is,
0 = e0 = ex. Hence eN = {0}. Thus the lemma is proved. u

Lemma 6.2.4 ([DN10]) Let S be a finite non-archimedean congruence per-
mutable semigroup which is a semilattice of a group G and an archimedean
semigroup S0 such that GS0 ⊆ S0. Then S0 is either

(1) completely simple,

(2) or a non-trivial zero semigroup N such that the identity element of G is
a right identity element of S and SN = {0},

(3) or a non-trivial zero semigroup N such that the identity element of G is
a left identity element of S and NS = {0},

(4) or an ideal extension of a completely simple semigroup K by a non-trivial
nilpotent semigroup N such that the identity element of G is an identity
element of the factor semigroup S/K.

Proof. By Lemma 6.1.1, S0 is an ideal extension of a completely simple semi-
group K by the Rees factor semigroup N = S0/K which is nilpotent. If S0 = K,
then (1) is satisfied.

Assume S0 6= K. As K = K2 is an ideal of S0 and S0 is an ideal of S,
we have that K is an ideal of S (see Theorem 1.1.4). Consider the Rees factor
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semigroup S/K which is a semilattice of G and a nilpotent semigroup which
is isomorphic to the non-trivial semigroup N = S0/K. By Lemma 6.2.2, the
identity element of G is the right identity element or the left identity element
of S/K.

First consider the case when the identity element e of G is the right identity
element but not a left identity element of S/K. Then, by Lemma 6.2.3, eS0 ⊆ K.
Now without loss of generality, if K is non-trivial it can be assumed to be either
left zero or right zero, but the two cases must be treated separately because of
the asymmetry of the hypothesis on S. In either case, let a ∈ S −K −G, such
that f = a2 ∈ K, and suppose b ∈ K, b 6= f . By Theorem 1.2.11, b is related to
f under the congruence ρ on S generated by (a, f), so there exists a sequence
of elementary ρ-transitions from b to f that begins either b = sat 7→ sft or
b = sft 7→ sat (s, t ∈ S1), where the right hand side is distinct from b. First
suppose that K is right zero. Then again t /∈ K. If t ∈ N , then at ∈ K and
so at = a(at) = ft, giving sat = sft, a contradiction. So t ∈ G and therefore
b = be. Hence K = Ke. As in the proof of Theorem 6.1.2, without loss of
generality, s ∈ K and so s = se. Also ea ∈ K. Then

sa = (se)a = s(ea) = ea = a(ea) = (ae)a = a2 = f = sf,

again giving the contradiction sat = sft. Next suppose K is left zero. Now,
without loss of generality, t ∈ K and s /∈ K. If s 6= 1, then since S ⊆ K,
sa = sasa = sa2 = sf (since sas = sa), a contradiction. So s = 1 and since
b 6= f = ft, b = at. But t ∈ K and t 6= f (since af = f) so similarly t = at′

for some t′, yielding the contradiction b = a2t′ = ft′ = f . From this it follows,
that |K| = 1 and so S0 = N . Let a ∈ S0 = N be arbitrary. As eN = {0} and
ea ∈ eN , we get ea = 0 and so, for every s ∈ S, sa = sea = 0. Thus SN = {0}
and so (2) is satisfied.

If the identity element of G is a left identity element but not a right identity
element of S/K, then (3) (the dual of (2)) is satisfied.

If the identity element of G is the identity element of S/K, then (4) is
satisfied. Thus the lemma is proved. u

Remark 6.2.5 If |S0| = 1 is satisfied in case (1) of Lemma 6.2.4, then S is a
group with a zero adjoined and so S is congruence permutable.

Remark 6.2.6 Condition (4) of Lemma 6.2.4 has two subcases:
(4a): |K| = 1 and so S0 is a non-trivial nilpotent semigroup such that the

identity element of G is an identity element of S.
(4b): |K| > 1, but K 6= S0.

We describe only that finite congruence permutable non-archimedean Putcha
semigroups which are semilattice of a group G and a semigroup S0 with GS0 ⊆
S0, where S0 satisfies either condition (2) or condition (3) of Lemma 6.2.4 or
condition (4a) of Remark 6.2.6.
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When the identity element of G is a right identity element of S

In this section we deal with only the right side case, but the main theorem
(Theorem 6.2.14) will be formulated for both right and left cases. First we prove
two lemmas.

For a non-trivial nil semigroup N , let N∗ = N − {0}, where 0 is the zero of N .

Lemma 6.2.7 ([DN10]) Let S be a finite congruence permutable semigroup
which is a semilattice of a group G and a non-trivial zero semigroup N such
that the identity element of G is a right identity element of S and SN = {0}.
Then aG = N∗ for every a ∈ N∗.

Proof. Let a ∈ N∗ be arbitrary. If ag = 0 for some g ∈ G, then a = ae =
agg−1 = 0 which is a contradiction. Thus aG ⊆ N∗. As S is finite and the
ideals of S form a chain, there is an element b ∈ N∗ such that S1bS1 = N .
Thus N = S1bS1 = (S ∪ 1)b(G ∪ N ∪ 1) = bG ∪ bN = bG ∪ {0}. Thus
bG = N∗. From this it follows that, for an arbitrary a ∈ N∗ and some x ∈ G,
aG = bxG = bG = N∗. u

Lemma 6.2.8 ([DN10]) If an arbitrary semigroup S is a semilattice of a group
G and a non-trivial null semigroup N such that GN = {0} and aG = N∗ for
every a ∈ N∗, then, for every non-universal congruence α of S, [0]α is either
{0} or N , and [g]α ⊆ G for every g ∈ G.

Proof. If g ∈ [0]α for some g ∈ G, then G ⊆ [0]α and so N∗ = aG ⊆ [0]α,
where a ∈ N∗ is an arbitrary element. Then [0]α = S. If α is not a universal
congruence of S, then [0]α ⊆ N . Assume [0]α 6= {0}. Then there is an element
a ∈ N∗ such that a ∈ [0]α, and so N∗ = aG ⊆ [0]α. Hence [0]α = N .

Assume (a, g) ∈ α for some a ∈ N, g ∈ G and a non-universal congruence α
of S. Then (ea, g) ∈ α, where e is the identity element of G. As ea = 0, we get
(0, g) ∈ α and so (0, h) ∈ α for every h ∈ G and so α is the universal congruence
of S by the above. It is a contradiction. Thus [g]α ⊆ G for every g ∈ G. u

Remark 6.2.9 If a semigroup S satisfies the conditions of Lemma 6.2.7, then
N∗ is a right G-set and G acts on N∗ transitively.

By Remark 6.2.9, we need an information on the congruence lattice of tran-
sitive group actions. We can use Lemma 3 of the paper [PP80] published by
P.P. Pálfy and P. Pudlák.

Lemma 6.2.10 ([PP80, Lemma 3]) If X is a right G-set such that the group
G acts on X transitively, then the congruence lattice Con(X) of the G-set X is
isomorphic to the interval [StabG(x), G] of the subgroup lattice of G for every
x ∈ X, where StabG(x) = {g ∈ G : xg = x}.
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Remark 6.2.11 We remark that the corresponding isomorphisms (in Lemma 6.2.10)
are

φ : α 7→ Hα = {g ∈ G : xg α x} (α ∈ Con(X ))

and

ψ : H 7→ αH = {(xg, xh) ∈ A×A : Hg = Hh} (H ∈ [StabG(x), G])

(which are inverses of each other).

By the previous lemma, we can formulate the following result.

Lemma 6.2.12 ([DN10]) Let X be a right G-set such that the group G acts on
X transitively. Let x ∈ X be an arbitrary fixed element. Then α ◦ β = β ◦ α
is satisfied for some congruences α, β ∈ Con(X) if and only if HαHβ = HβHα

is satisfied for Hα, Hβ ∈ [StabG(x), G]. Thus the congruences of the G-set
X commute with each other if and only if HK = KH is satisfied for every
subgroups H and K of G containing StabG(x). u

The following construction plays an important role in our investigation.

Construction 6.2.13 ([DN10]) Let G be a finite group and M be a subgroup
of G such that HK = KH is satisfied for all subgroups H,K of G containing
M . Let N∗ denote the right quotient set G/M , that is, the set of all right cosets
Mg (g ∈ G) of G defined by M . Let S = G ∪ N∗ ∪ {0}, where 0 is a symbol
not contained in G∪N∗. On S we define an operation as follows. For arbitrary
g, h ∈ G, let gh be the original product of g and h in G; let 0g = 0 for every
g ∈ G. If a ∈ N , then let sa = 0 for arbitrary s ∈ S. For arbitrary g ∈ G
and arbitrary Mh ∈ N∗, let (Mh)g = M(hg). It is easy to check that S is a
semigroup.

The main theorem of this section is the following.

Theorem 6.2.14 ([DN10]) A finite semigroup S is a congruence permutable
semigroup which is a semilattice of a group G and a non-trivial zero semigroup
such that the identity element of G is a right [left] identity element of S and
SN = {0} [NS = {0}] if and only if it is isomorphic to a semigroup defined in
Construction 6.2.13 [the dual of Construction 6.2.13].

Proof. First of all we show that the semigroup S defined in Construction 6.2.13,
is a congruence permutable semigroup. It is clear that S is a semilattice of the
group G and the non-trivial zero semigroup N = N∗ ∪{0} such that SN = {0}
and the identity element e of G is a right identity element of S. Moreover,
(Mg)G = N∗ for all Mg ∈ N∗. Thus N∗ is a right G-set and G acts on N∗

tranisitively. By Lemma 6.2.10, the congruence lattice Con(N ∗) of the G-set N∗

is isomorphic to the interval [StabG(M ),G ], where StabG(M ) = {g ∈ G ; Mg =
M } = M . Let α be a non-universal congruence of S. Then, by Lemma 6.2.8,
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[g]α ⊆ G for every g ∈ G and [0]α is either {0} or N . As N∗ is a right G-set and
G acts on N∗ transitively, moreover the restriction α∗ of α to N∗ is in Con(N∗),
there is a subgroup Hα∗ ∈ [M,G] which determines α on N∗.

Let α and β be arbitrary congruences of S. We show that α ◦ β = β ◦ α.
We can suppose that α and β are not the universal relations of S. Assume
(b, c) ∈ α◦β for arbitrary elements b and c of S. Then there is an element x ∈ S
such that (b, x) ∈ α, (x, c) ∈ β. We have two cases.
Case 1: x ∈ G. Then, by Lemma 6.2.8, b, c ∈ G. As every group is congruence
permutable, there is an element y ∈ G such that (b, y) ∈ β and (y, c) ∈ α. Hence
(b, c) ∈ β ◦ α.
Case 2: x ∈ N . Then, by Lemma 6.2.8, b, c ∈ N . If [0]α = N or [0]β = N ,
then (b, c) ∈ α or (b, c) ∈ β and so (b, c) ∈ β ◦ α. Consider the case when
[0]α = [0]β = {0}. Then N∗ is saturated by both α and β. If x = 0, then
b = c = 0 and so (b, c) ∈ β ◦ α. If x ∈ N∗, then b, c ∈ N∗. If α∗ and β∗

denote the restriction of α and β to N∗, respectively, then Hα∗ , Hβ∗ ⊇ M .
As Hα∗Hβ∗ = Hβ∗Hα∗ , we get α∗ ◦ β∗ = β∗ ◦ α∗ by Lemma 6.2.12. Hence
(b, c) ∈ β ◦ α.

Thus we have (b, c) ∈ β ◦ α in both cases. Consequently, α ◦ β ⊆ β ◦ α.
By the symmetry, we get α ◦ β = β ◦ α. Thus S is a congruence permutable
semigroup.

Conversely, assume that S is a congruence permutable semigroup which is
a semilattice of a group G and a non-trivial zero semigroup N such that the
identity element of G is a right identity element of S and SN = {0}. Then
aG = N∗ for every a ∈ N∗ by Lemma 6.2.7. Thus N∗ is a right G-set and G
acts on N∗ transitively. Fix an element a in N∗ and consider Ga = StabG(a) =
{g ∈ G : ag = a}. It is easy to check that ag = ah for some g, h ∈ G if and
only if Gag = Gah. Thus |N∗| = |G : Ga|. Let φ be the bijection of N∗ to
the factor set G/Ga defined by φ(b) = Gag if b = ag. It is clear that φ is well
defined. Moreover, for all g, h ∈ G, (Gag)h = Ga(gh) implies (φ(b))h = φ(bh).
If we identify every b ∈ N∗ with φ(b), then N∗ can be considered as the set
of all right cosets of G defined by Ga, and the operation on S is defined as in
the Construction 6.2.13. Let H and K be arbitrary subgroups of G containing
the subgroup Ga. Let α′H = αH ∪ 1S and α′K = αK ∪ 1S , where αH = ψ(H)
and αK = ψ(K) are congruences of the right G-set N∗ defined by H and K,
respectively (for ψ, we refer to Remark 6.2.11). It is easy to see that α′H and
α′K are congruences of S. As S is congruence permutable, they commute with
each other from which we get αH ◦ αK = αK ◦ αH . Hence HK = KH by
Lemma 6.2.12. Thus the theorem is proved. u

When the identity element of G is the identity element of S

Lemma 6.2.15 ([DN10]) If S is a finite congruence permutable semigroup
which is a semilattice of a group G and a non-trivial nilpotent semigroup N
of nilpotency degree t such that the identity element of G is an identity element
of S, then GaG = N i − N i+1 is satisfied for every i = 1, . . . , t − 1 and every
a ∈ N i −N i+1.
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Proof. Let i ∈ {1, . . . , t− 1} and a ∈ N i −N i+1 be arbitrary. As the identity
element of G is the identity element of S, the ideal of S generated by a equals
SaS. It is easy to see thatN i andN i+1 are ideals of S. As a ∈ N i−N i+1 and the
ideals of S form a chain with respect to inclusion, we have N i+1 ⊆ SaS ⊆ N i.
As S is finite, there is an element b ∈ N i −N i+1 such that SbS = N i. Since

N i = SbS = GbG ∪GbN ∪NbG ∪NbN ⊆ GbG ∪N i+1

and
GbG ∩N i+1 = ∅,

we get
GbG = N i −N i+1.

Thus a = gbh for some g, h ∈ G. Hence

GaG = GgbhG = GbG = N i −N i+1.

u

Lemma 6.2.16 ([DN10]) Let the finite semigroup S be a semilattice of a group
G and a non-trivial nilpotent semigroup N of nilpotency degree t such that, for
every a ∈ N i −N i+1 (i = 1, . . . t− 1), GaG = N i −N i+1 is satisfied. Then the
ideals of S are S,N,N2, . . . N t = {0}.

Proof. It is clear that S,N,N2, . . . , N t = {0} are ideals of S. Let I be an
arbitrary ideal of S. Let j be the least positive integer such that I ∩ N j 6= ∅.
If a ∈ I ∩ (N j − N j+1), then N j − N j+1 = GaG ⊆ I. Let b ∈ N j+1 − N j+2

supposing that N j+1 6= {0}. There are elements x1, . . . , xj+1 ∈ N − N2 such
that b = x1 . . . xj+1. It is clear that x1 . . . xj ∈ N j − N j+1 ⊆ I and so b ∈ I
which implies that N j+1 −N j+2 ⊆ I. Continouing this procedure, we get that
N j = I ∩ N . If I ∩ G = ∅, then I = N j . Assume that I ∩ G 6= ∅. Then
G ⊆ I. Moreover, for all i = 1, . . . , t − 1, and every a ∈ N i − N i+1, we have
N i −N i+1 = GaG ⊆ I which implies I = S. Thus the lemma is proved. u

Lemma 6.2.17 ([DN10]) Let S be a finite semigroup which is a semilattice
of a group G and a nilpotent semigroup N of nilpotency degree t such that,
for every i ∈ {1, . . . , t − 1} and for some (and so for every) a ∈ N i − N i+1,
GaG = N i − N i+1 is satisfied. Then, for every non-universal congruence α
of S, [0]α = N j for some positive integer j = 1, . . . , t and [g]α ⊆ G for every
g ∈ G, moreover [a]α ⊆ N i −N i+1 for every a ∈ N i −N i+1 (i = 1, . . . j − 1).

Proof. Let α be a non-universal congruence of S. If (g, a) ∈ α for some g ∈ G
and a ∈ N , then (gt, at) ∈ α. As at = 0, and (ugv, 0) ∈ α for all u, v ∈ G,
we get G ⊆ [0]α. Let a ∈ N be an arbitrary element. Then (gah, 0) ∈ α for
all g, h ∈ G and so N i − N i+1 ⊆ [0]α for everi i = 1, . . . t − 1. Thus S = [0]α
which is a contradiction. Hence [g]α ⊆ G for every g ∈ G. By Lemma 6.2.16,
the ideals of S are S,N,N2, . . . N t−1, N t = {0}. Then there is a least positive
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integer j ∈ {1, 2, . . . t} such that [0]α = N j . If j = 1 or j = 2, then the assertion
is true for α. Assume j ≥ 3. Let a ∈ N j−1 −N j be arbitrary. It is clear that
(a, b) /∈ α for every b ∈ N j . Assume (a, b) ∈ α for some b ∈ Nk−1−Nk for some
k < j. There are elements x1, . . . , xj−1 ∈ N −N2 such that

a = x1 . . . xk−1 . . . xj−1.

It is clear that
x1 . . . xj−2 ∈ N j−2,

x1 . . . xj−3 ∈ N j−3 −N j−2,

and finally,
c = x1 . . . xk−1 ∈ Nk−1 −Nk = GbG.

Then c = gbh for some g, h ∈ G. Thus (c, gah) ∈ α. As gah ∈ N j−1 − N j ,
d = gahxk . . . xj−1 ∈ N j and so a = cxk+1 . . . xj−1 implies (a, d) ∈ α which is
impossible. Hence [a]α ⊆ N j−1 −N j . Thus the lemma is proved. u

For an arbitrary group G, let G∗ denote the dual of G, that is, xy = u in
G∗ if and only if yx = u in G.

Theorem 6.2.18 ([DN10]) Let S be a finite semigroup which is a semilattice
of a group G and a non-trivial nilpotent semigroup N of nilpotency degree t
such that the identity element of G is the identity element of S. Then S is
congruence permutable if and only if, for all i = 1, . . . , t−1, there is an element
ai in N i −N i+1 such that GaiG = N i −N i+1, and HK = KH is satisfied for
all subgroups H,K ⊇ Gai = {(g, h) ∈ G∗ ×G : gaih = ai}.

Proof. Let S be a finite semigroup which is a semilattice of a group G and a
nilpotent semigroup N of nilpotency degree t such that the identity element of
G is the identity element of S. First assume that S is congruence permutable.
Let i ∈ {1, . . . , t − 1} be arbitrary. Then, for every ai ∈ N i − N i+1, GaiG =
N i −N i+1 is satisfied by Lemma 6.2.15. It is a matter of checking to see that
this result implies that N i − N i+1 is a right (G∗ × G)-set (a(g, h) = gah for
every a ∈ N∗ and every (g, h) ∈ G∗ × G) and G∗ × G acts on N i − N i+1

transitively. Let Gai = StabG∗×G(ai) = {(g, h) ∈ G∗ × G : gaih = ai}. By
Lemma 6.2.10 the congruence lattice Con(N i − N i+1) of the right (G∗ × G)-
set N i − N i+1 is isomorphic to [StabG∗×G(ai), G

∗ × G]. The corresponding

isomorphisms φ : αi 7→ Hαi
(αi ∈ Con(N i −N i+1) and ψ : H 7→ α

(i)
H (H ∈

[StabG∗×G(ai), G
∗ × G]) defined as in Remark 6.2.11. Let H be an arbitrary

subgroup of G∗ ×G containing the subgroup Gai . Let α′H be the relation of S
defined by (a, b) ∈ α′H if and only if a = b or a, b ∈ N i+1 or a, b ∈ N i − N i+1

and (a, b) ∈ α
(i)
H . It is clear that α′H is an equivalence relation. We show

that it is a congruence of S. Assume (a, b) ∈ α′H for some a, b ∈ S. We
can suppose that a 6= b. If a, b ∈ N i+1, then sa, sb, as, bs ∈ Nn+1 and so
(sa, sb) ∈ α′H and (as, bs) ∈ α′H . Consider the case when a, b ∈ N i − N i+1.

Then (a, b) ∈ α(i)
H and so, for every x ∈ G, we have (a(e, x), b(e, x)) ∈ α(i)

H and
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(a(x, e), b(x, e)) ∈ α(i)
H , because α

(i)
H is a congruence of the right (G∗ × G)-set

N i − N i+1. Thus (ax, bx) ∈ α
(i)
H and (xa, xb) ∈ α

(i)
H . Hence (ax, bx) ∈ α′H

and (xa, xb) ∈ α′H . If u ∈ N , then ua, ub, au, bu ∈ N i+1 and so (au, bu) ∈ α′H
and (ua, ub) ∈ α′H . Consequently, α′H is a congruence on S. Let H and K be
arbitrary subgroups of G∗ × G containing the subgroup Gai . Let α′H and α′K
be the congruences of S defined by H and K (see above). As S is congruence

permutable, α′H ◦ α′K = α′K ◦ α′H from which we get α
(i)
H ◦ α

(i)
K = α

(i)
K ◦ α

(i)
H .

Then HK = KH by Lemma 6.2.12. Thus the necessity of the permutability of
S is proved.

Conversely, assume that, for all i = 1, . . . , t − 1, there is an element ai in
N i − N i+1 such that GaiG = N i − N i+1, and HK = KH is satisfied for all
subgroups H,K ⊇ Gai = {(g, h) ∈ G∗ × G : gaih = ai}. We note that, from
GaiG = N i−N i+1, it follows that GaG = N i−N i+1 for every a ∈ N i−N i+1.
Thus N i−N i+1 is a right (G∗×G)-set and G∗×G acts on N i−N i+1 transitively.
By Lemma 6.2.10, the congruence lattice Con(N i − N i+1) of the (G∗ × G)-
set N i −N i+1 is isomorphic to [StabG∗×G(ai), G

∗ × G] (for the corresponding
isomorphisms we refer to Remark 6.2.11). By Lemma 6.2.16, the ideals of S
are S,N,N2, . . . , N t. Let α be a non-universal congruence on S. Then, by
Lemma 6.2.17, [0]α = N j for some positive integer j ∈ {1, . . . t}, [g]α ⊆ G for
every g ∈ G, and [a]α ⊆ N i −N i+1 for every a ∈ N i −N i+1 (i = 1, . . . j − 1).
Let αi denote the restriction of α to N i −N i+1, and let

H(i)
α = φ(αi) = {(g, h) ∈ G∗ ×G : ai(g, h) αi ai}

(ai ∈ N i−N i+1, i = 1, . . . t−1). H
(i)
α is a subgroup of G∗×G and Gai ⊆ H

(i)
α .

Let β be an arbitrary non-universal congruence on S. As Gai ⊆ H
(i)
β , we have

H
(i)
α H

(i)
β = H

(i)
β H

(i)
α . As αi and βi are in the congruence lattice Con(N i−N i+1)

of the right (G∗ × G)-set N i − N i+1, we have αi ◦ βi = βi ◦ αi. We show
that α ◦ β = β ◦ α. Assume (a, b) ∈ α ◦ β for some a, b ∈ S. Then there
is an element c ∈ S such that (a, c) ∈ α and (c, b) ∈ β. If c ∈ G, then
a, b ∈ G by Lemma 6.2.17. As every group is congruence permutable, we get
(a, b) ∈ β ◦ α. By Lemma 6.2.16 and Lemma 6.2.17, [0]α ⊆ [0]β or [0]β ⊆ [0]α.
Assume [0]α ⊆ [0]β . If c ∈ [0]β , then a, b ∈ [0]β and so (a, b) ∈ β, (b, b) ∈ α
implies (a, b) ∈ β ◦α. Assume c /∈ [0]β , c ∈ N i−N i+1. Then, by Lemma 6.2.17,
a, b ∈ N i −N i+1. Thus (a, b) ∈ αi ◦ βi = βi ◦ αi (see also Lemma 6.2.12). Thus
(a, b) ∈ β ◦α. The proof of (a, b) ∈ β ◦α is similar in that case when [0]β ⊆ [0]α.
Thus α ◦ β ⊆ β ◦ α. The proof of β ◦ α ⊆ α ◦ β is similar. Thus α ◦ β = β ◦ α.
Hence S is congruence permutable. u
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Chapter 7

An application for
semigroup algebras

In this section we deal with a semigroup algebraic problem in which the con-
gruence permutable semigroups are in the centre. For an ideal J of a semigroup
algebra F[S], let %J denote the congruence on the semigroup S which is the
restriction of the congruence on F[S] defined by the ideal J . We show that if S
is a semilattice or a rectangular band, then the mapping ϕ{S;F} : J 7→ %J is a
◦-homomorphism if and only if S is congruence permutable.

7.1 The general case

Let S be a semigroup and F be a field. For an arbitrary congruence α on S, let
F[α] denote the kernel of the extended canonical homomorphism F[S]→ F[S/α].
By Lemma 5 of Chapter 4 of [Okn91], for every semigroup S and every field F,
the mapping ϕ{S;F} : J 7→ %J is a surjective homomorphism of the semilattice
(Con(F[S]);∧) onto the semilattice (Con(S);∧) such that %F[α] = α for every
congruence α on S. As a homomorphic image of a semigroup is also a semigroup,
and α ◦ β = α ∨ β is satisfied for every congruences α and β of a congruence
permutable semigroup, the assertions of the following lemma are obvious.

Lemma 7.1.1 ([NZ16]) If S is a semigroup such that, for a field F, ϕ{S;F} :
J → %J is a homomorphism of the semigroup (Con(F[S]); ◦) into the semi-
group (BS ; ◦), then S is a congruence permutable semigroup. Moreover, if
S is a congruence permutable semigroup, then ϕ{S;F} is a homomorphism of
(Con(F[S]); ◦) onto the semigroup (Con(S); ◦) if and only if ϕ{S;F} is a homo-
morphism of the semilattice (Con(F[S]);∨) onto the semilattice (Con(S);∨),
that is, kerϕ{S;F} is ∨-compatible.
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The next example shows that the converse of the first assertion of Lemma 7.1.1
is not true, in general; for a congruence permutable semigroup S, the condition
”ϕ{S;F} is a homomorphism of (Con(F[S]); ◦) onto the semigroup (Con(S); ◦)”
depends on the field F.

Example Let C4, F3 and F2 denote the cyclic group of order 4, the 3-element
field, and the 2-element field, respectively. It is known that every group is a
congruence permutable semigroup. Denote the elements of C4 by 1, a, a2, a3 (1
is the identity element). It is easy to see that I = Span(1 + a2, a + a3) and
J = Span(1 + a, a + a2, a2 + a3) are ideals of F3[C4]. Moreover, ϕ{C4;F3}(I) =
%I = ιC4

, and ϕ{C4;F3}(J) = %J = αC2
, where αC2

denotes the congruence on
C4 defined by C2 = {1, a2}. From this it follows that

ϕ{C4;F3}(I) ∨ ϕ{C4;F3}(J) = %I ∨ %J 6= ωC4 = %(I+J) = %(I∨J) = ϕ{C4;F3}(I ∨ J).

Thus kerϕ{C4;F3}
is not ∨-compatible and so ϕ{C4;F3} is not a homomorphism

of Con(F3[C4]); ◦) onto the semigroup (Con(C4); ◦).
It is a matter of checking to see that the ideals of F2[C4] are {0}, F2[C4] and

F2[ωC4
] = {0, 1 + a+ a2 + a3, 1 + a2, a+ a3, 1 + a, a+ a2, a2 + a3, 1 + a3},

F2[αC2
] = {0, 1 + a+ a2 + a3, 1 + a2, a+ a3},

Span(1 + a+ a2 + a3) = {0, 1 + a+ a2 + a3}.

Thus Con(F2[C4]) is the next:

F2[C4]

F2[ωC4 ]

F2[αC2
]

Span(1 + a+ a2 + a3)

{0}

It is easy to see that kerϕ{C4;F2}
is ∨-compatible and so ϕ{C4;F2} is a homomor-

phism of Con(F2[C4]); ◦) onto the semigroup (Con(C4); ◦).

By Lemma 7.1.1 and the above Example, it is a natural idea to find all
couples (S,F) of congruence permutable semigroups S and fields F, for which
the mapping ϕ{S;F} is a homomorphism of the semigroup (Con(F[S]), ◦) onto the
semigroup (Con(S); ◦). In the next we show that if S is an arbitrary congruence
permutable semilattice or an arbitrary congruence permutable rectangular band,
then ϕ{S;F} satisfies the previous condition for an arbitrary field F.
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7.2 Semilattices

Theorem 7.2.1 ([NZ16]) Let S be a congruence permutable semilattice. Then,
for an arbitrary field F, ϕ{S;F} is a homomorphism of the semigroup (Con(F[S]), ◦)
onto the semigroup (Con(S); ◦).

Proof. Assume that S is a congruence permutable semilattice. Then, by
[Ham75, Lemma 2], |S| ≤ 2. We can consider the case when |S| = 2. Let

S = {e, f} (e 6= f).

Then
e2 = e, and f2 = f.

We can suppose that
ef = fe = e.

It is clear that S has two congruences: ιS and ωS .
Let F be an arbitrary field. It is easy to see that

Je = {αe : α ∈ F} and Je−f = {α(e− f) : α ∈ F}

are proper ideals of F[S]. As

dim(Je) = dim(Je−f ) = 1,

the ideals Je and Je−f are minimal ideals of F[S]. We show that the ideals of
F[S] are

{0}, Je, Je−f and F[S].

Let J 6= {0} be a proper ideal of F[S]. Clearly dim(J) = 1. Let

A = αe+ βf ∈ J

be a non-zero element. Then

(α+ β)e = e(αe+ βf) = eA ∈ J.

If α+ β 6= 0, then J = Je. If α+ β = 0, then J = Je−f .
Thus the ideals of F[S] are {0}, Je, Je−f , F[S]. So Con(F[S]) is the next:

{0}

Je−f

F[S]

Je

It is a matter of checking to see that the kerϕ{S;F} -classes of Con(F[S]) are
{{0}, Je} and {Je−f ,F[S]}. It is easy to see that kerϕ{S;F} is ∨-compatible and
so, by Lemma 7.1.1, ϕ{S;F} is a homomorphism of the semigroup (Con(F[S]), ◦)
onto the semigroup (Con(S); ◦). u
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Corollary 7.2.2 ([NZ16]) Let S be a semilattice. Then, for a field F, ϕ{S;F}
is a homomorphism of the semigroup (Con(F[S]), ◦) into the relation semigroup
(BS ; ◦) if and only if S is congruence permutable.

Proof. It is obvious by Lemma 7.1.1 and Theorem 7.2.1. u

7.3 Rectangular bands

Theorem 7.3.1 ([NZ16]) Let S = L × R be a congruence permutable rectan-
gular band (L is a left zero semigroup, R is a right zero semigroup). Then, for
an arbitrary field F, ϕ{S;F} is a homomorphism of the semigroup (Con(F[S]), ◦)
onto the semigroup (Con(S); ◦).

Proof. Let F be an arbitrary field and S = L×R be a congruence permutable
rectangular band. As a rectangular band satisfies the identity axyb = ayxb,
that is, every rectangular band is a medial semigroup, [BC81, Corollary 1.2]
implies |L| ≤ 2 and |R| ≤ 2.

First consider the case when |L| = 1. Then S is isomorphic to the right
zero semigroup R, and |S| ≤ 2. We can suppose that |S| = 2. Let S = {e, f}
(e 6= f). The congruences of S are ιS and ωS . We show that the ideals of F[S]
are

{0}, Je−f = F[ωS ] = {α(e− f) : α ∈ F} and F[S].

Let J 6= {0} be an arbitrary ideal. Assume that there is an element

0 6= α0e+ β0f ∈ J

for which
α0 + β0 6= 0

is satisfied. Then
(α0 + β0)e = (α0e+ β0f)e ∈ J

and so

e =
1

α0 + β0
(α0 + β0)e ∈ J

from which we get f = ef ∈ J . Consequently

J = F[S].

Next, consider the case when

α0 + β0 = 0

is satisfied for every
A = α0e+ β0f ∈ J.

Then β = −α0 and so

A = α0e+ β0f = α0e− α0f = α0(e− f) ∈ Je−f .
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Consequently,
J ⊆ Je−f .

As dim(Je−f ) = 1, the ideal Je−f is minimal. Hence

J = Je−f .

Thus the ideals of F[S] are {0}, Je−f and F[S], indeed. So Con(F[S]) is

F[S]

Je−f

{0}

It is a matter of checking to see that the kerϕ{S;F} -classes of Con(F[S]) are
{{0}} and {Je−f ,F[S]}. It is easy to see that kerϕ{S;F} is ∨-compatible and
so, by Lemma 7.1.1, ϕ{S;F} is a homomorphism of the semigroup (Con(F[S]), ◦)
onto the semigroup (Con(S); ◦).

If |R| = 1, then S is a left zero semigroup, and |S| ≤ 2. We can prove, as in
the previous part of the proof, that kerϕ{S;F} is ∨-compatible.

Next, consider the case when |L| = |R| = 2. Let

L = {a1, a2}, R = {b1, b2}.

Let αL and αR denote the kernels of the projection homomorphisms S 7→ L and
S 7→ R, respectively. The αL-classes of S are

{(a1, b1); (a1, b2)} and {(a2, b1); (a2, b2)}.

The αR-classes of S are

{(a1, b1); (a2, b1)} and {(a1, b2); (a2, b2)}.

It is easy to see that the congruences of S are ιS , αL, αR and ωS . We show
that the ideals of F[S] are

F[S],F[ωS ] = {
2∑

i,j=1

αi,j(ai, bj) :

2∑
i,j=1

αi,j = 0},

JL = F[αL], JR = F[αR], JL ∩ JR, {0}.

We note that
dim(F[ωS ]) = 3, dim(JL) = dim(JR) = 2.

First we show that J ⊆ F[ωS ] or J = F[S] for every ideal J of F[S]. Let J
be an arbitrary ideal of F[S]. Assume that there is an element

A = α1,1(a1, b1) + α1,2(a1, b2) + α2,1(a2, b1) + α2,2(a2, b2) ∈ J
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such that A /∈ F[ωS ], that is
∑2
i,j=1 αi,j 6= 0. Let i, j ∈ {1, 2} be arbitrary

elements. Then

(

2∑
i,j=1

αi,j)(ai, bj) = (ai, b1)A(a1, bj) ∈ J.

As
∑2
i,j=1 αi,j 6= 0, we get (ai, bj) ∈ J from which it follows that S ⊆ J .

Consequently, J = F[S]. Thus F[ωS ] is the only maximal ideal of F[S].
Next we show that JL ∩ JR is the only ideal of F[S] whose dimension is 1.

Let

A = α1,1(a1, b1) + α1,2(a1, b2) + α2,1(a2, b1) + α2,2(a2, b2) ∈ JL ∩ JR

be an arbitrary element. As

(a1, b1) αL (a1, b2) and (a2, b1) αL (a2, b2),

we have
α1,2 = −α1,1 and α2,2 = −α2,1.

As
(a1, b1) αR (a2, b1) and (a1, b2) αR (a2, b2),

we have
α2,1 = −α1,1 and α2,2 = −α1,2.

Thus
A = α1,1((a1, b1)− (a1, b2)− (a2, b1) + (a2, b2))

for some α ∈ F. Consequently, the ideal JL ∩ JR is generated by

(a1, b1)− (a1, b2)− (a2, b1) + (a2, b2).

Hence the dimension of JL ∩ JR is 1.
To show that JL∩JR is the only ideal of F[S] whose dimension is 1, consider

an ideal J of F[S] generated by an element

0 6= B = α1,1(a1, b1) + α1,2(a1, b2) + α2,1(a2, b1) + α2,2(a2, b2).

Then J ⊂ F[ωS ] and

(a1, b1)B = (α1,1 + α2,1)(a1, b1) + (α1,2 + α2,2)(a1, b2) ∈ J.

Thus there is a coefficient ξ ∈ F such that

(a1, b1)B = ξB.

Assume ξ 6= 0. Then α2,1 = α2,2 = 0 and so

B = α1,1(a1, b1) + α1,2(a1, b2).
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From
(a2, b2)B = α1,1(a2, b1) + α1,2(a2, b2) ∈ J

we can conclude that α1,1 = α1,2 = 0 and so B = 0. This is a contradiction.
Hence ξ = 0. Thus

B = α1,1(a1, b1) + α1,2(a1, b2)α1,1(a2, b1)− α1,2(a2, b2).

As
B(a1, b1) = (α1,1 + α1,2((a1, b1)− (a2, b1)) ∈ J,

we get B(a1, b1) = τB for some τ ∈ F. Assume τ 6= 0. Then α1,2 = 0 and so

B = α1,1(a1, b1)− α1,1(a2, b1).

From
B(a2, b2) = α1,1((a1, b2)− (a, 2, b2)) ∈ J

we can conclude that α1,1 = 0 and so B = 0. This is a contradiction. Hence
τ = 0. Thus α1,2 = −α1,1 and so

B = α1,1((a1, b1)− (a1, b2)− (a2, b1) + (a2, b2)) ∈ JL ∩ JR.

As J 6= {0} and JL ∩ JR is a minimal ideal of F[S], we get

J = JL ∩ JR,

that is, JL ∩ JR is the only ideal of F[S] whose dimension is 1.
As dim(JR + JL) > dimJR and F[ωS ] ⊇ JR + JL, we have

JR + JL = F[ωS ].

Let J be an arbitrary ideal of F[S] which differs from all of the ideals
F[S],F[ωS ], JL, JR, JL ∩ JR, {0}. Then J ⊂ F[ωS ] and dim(J) = 2.

If J ∩ JL = {0}, then dim(J + JL) = 4 which contradicts J + JL ⊆ F[ωS ].
Hence dim(J ∩ JL) = 1 and so JL ∩ JR = J ∩ JL. From this we get J ∩ JR =
JL ∩ JR. Recall that C = (a1, b1) − (a1, b2) − (a2, b1) + (a2, b2) generates the
ideal JL ∩ JR. Let A be an arbitrary element of J − (JL ∩ JR). Then A and C
are linearly independent. So

A = α(a1, b1) + β(a1, b2) + γ(a2, b1) + (−α− β − γ)(a2, b2).

If α = −γ, then A ∈ JR which is a contradiction. Thus α 6= −γ. Then

(a1, b1)A = (α+ γ)((a1, b1)− (a1, b2)) ∈ JL.

As J is an ideal and A ∈ J we have

(a1, b1)A ∈ J ∩ JL = JL ∩ JR.

It means α = −γ which is also contradiction. Thus Con(F[S]) is the next:
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JL ∩ JR

JR

F[ωS ]

JL

F[S]

{0}

It is a matter of checking to see that the kerϕ{S;F} -classes of Con(F[S]) are
{{0}, JL ∩ JR}, {JL}, {JR} and {F[ωS ],F[S]}. It is easy to see that kerϕ{S;F}

is ∨-compatible and so, by Lemma 7.1.1, ϕ{S;F} is a homomorphism of the

semigroup (Con(F[S]), ◦) onto the semigroup (Con(S); ◦). u

Corollary 7.3.2 ([NZ16]) Let S = L × R be a rectangular band. Then, for
a field F, ϕ{S;F} is a homomorphism of the semigroup (Con(F[S]), ◦) into the
relation semigroup (BS ; ◦) if and only if S is congruence permutable.

Proof. It is obvious by Lemma 7.1.1 and Theorem 7.3.1. u
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