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Chapter 1

Introduction

Scheduling theory is a �ourishing �eld of operations research. This is in-
dicated by the large number of papers published in scienti�c journals and
conference proceedings, as well as by the many practical applications. It is
a �eld, where practical needs frequently lead to new research avenues, which
is the case for most of the problems studied in this book.

Brie�y stated, in the course of solving a (project) scheduling problem, we
allocate resources, and time intervals to a set of activities, while respecting
a number of constraints and minimizing some objective function(s).

Resources in (project) scheduling can be classi�ed in two main categories
according to the type of constraints on their usage: (i) renewable resources ,
and (ii) non-renewable resources . The consumption of renewable resources
is limited in any time moment t, whereas the total consumption of each non-
renewable resource is bounded in every time interval [0, t). We mention that
if a resource has both type of bounds, then it is called doubly constrained .

First of all, the basic resource constrained project scheduling problem
(RCPSP) will be de�ned, whose variants and extensions constitute the pro-
blems studied in the following chapters.

In RCPSP, there is a �nite set of activities , J , a �nite set of resources, R,
containing only renewable resources, and a precedence relation E ⊂ J × J .
Each activity j ∈ J has a processing time pj ≥ 0, and has some requirements
aij ≥ 0 from each resource i ∈ R, and each resource i ∈ R has a capacity
bi > 0. The execution of the activities cannot be interrupted, i.e., if some
activity j ∈ J starts at time Sj, then it will complete at time Sj + pj.
Throughout the execution, activity j reserves aij units from each resource
i ∈ R. The total amount reserved from any resource cannot exceed its
capacity at any time moment, i.e., if S ∈ RJ+ is the vector of starting times

1
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2 CHAPTER 1. INTRODUCTION

of the activities, then the inequalities∑
j∈J : Sj≤t≤Sj+pj

aij ≤ bi, ∀i ∈ R, t ≥ 0 (1.1)

must be respected. The precedence relations must be satis�ed as well:

Sj + pj ≤ Sk, ∀(j, k) ∈ E (1.2)

Those vectors S ∈ RJ+ that satisfy (1.1) and (1.2) are called feasible
schedules . The most widely studied objective function is the minimization
of maximum activity completion time, or makespan, de�ned as Cmax(S) =
maxj Cj(S), where Cj(S) = Sj + pj. Being an NP-hard optimization pro-
blem, several exact and heuristic approaches have been proposed in the lite-
rature for solving the basic project scheduling problem, see e.g., [49, 105].

We will present several results for machine scheduling problems. Machi-
nes are renewable resources of unit capacity, and each activity requires 0 or
1 unit of them.

In this dissertation I will present modeling, complexity and algorithmic
results on scheduling problems, where (i) resources play a central role either
in the objective function, or in the constraints, and where (ii) two problems
in a subordinate relationship have to be solved.

The dissertation is divided into 3 chapters:

• Chapter 2 deals with resource leveling problems, where we are given
renewable resources, and the objective is to minimize a function of the
resource usage of the activities over time.

• Chapter 3 is devoted to machine scheduling problems with additional
non-renewable resources.

• Chapter 4 is concerned with scheduling problems in a subordinate re-
lationship.

In each chapter I will introduce the problem area, the most important pre-
vious work, and present new results authored or co-authored by myself.

Notation of results

For all the results presented in this thesis, the source is indicated, such as
[45], and with the consent of my co-authors, those results reached by myself
alone are marked by an asterisk, e.g., [45]∗.
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Chapter 2

Resource leveling problems

In a resource leveling problem we are given the maximum job completion
time T , and a feasible schedule S is sought which minimizes some function
of the resource usage over time, i.e.,

min
∑
i∈R

fi(A
S
i ) (2.1)

subject to (1.1), (1.2), 0 ≤ Sj ≤ T − pj, j ∈ J ,

where ASi : [0, T ] → Q is a mapping with ASi (t) :=
∑

j∈J ,Sj≤t<Sj+pj aij, and
fi(·) is a real-valued function for each i ∈ R. Among the many type of
functions studied in the literature, the most well-known are

flin(ASi ) :=

∫ T

0

wit max{0, ASi (t)− Li}dt, (2.2)

that is, minimize the weighted resource usage above given limit Li, and

fquad(ASi ) :=

∫ T

0

wit(A
S
i (t)− Li)2dt, (2.3)

in words, minimize the weighted squared di�erence between given resource
limit Li and the resource usage determined by S. Neumann and Zimmer-
mann [86] have devised methods to solve the problem with respect to various
functions f while observing, as well as neglecting the resource constraints
(1.1).

In Section 2.1 we will study a resource leveling problem with f equal to
(2.2), but in which the utilization of resources, unlike in the basic RCPSP,
may change from time period to time period. Such a model is called resource
constrained project scheduling with variable intensity activities (RCPSVP).

3
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4 CHAPTER 2. RESOURCE LEVELING PROBLEMS

In that model, each activity j ∈ J has a time interval [rj, dj] in which it
must be entirely processed. Further on, for each unit-length time period
t ∈ [rj, dj], it has an intensity xjt to be determined. The intensity represents
the fraction completed during a unit-length time period, and it may vary
between 0 and a constant maximum intensity, denoted by hj for activity
j. The sum of the intensities must be 1 for each activity. The amount of
resources reserved for the activities are proportional to their intensities, i.e.,
for j ∈ J it is aitxjt for each resource i ∈ R and t ∈ [rj, dj]. Firstly, it is
shown that the problem is NP-hard in the strong sense. Then, a new mixed
integer linear program (MIP) is introduced for modeling the problem, and
new valid inequalities are derived to strengthen the LP relaxation. Finally,
computational result are summarized.

In Section 2.2 the RCPSVP model is extended with feeding precedence
constraints. A feeding precedence constraint is described by an ordered triple
(j, k, φ), where j, k ∈ J and 0 ≤ φ ≤ 1 is a rational parameter expressing
the fraction of j to be completed before k may be started. If φ < 1, then
k may start before j �nishes, but it is required that the total fraction of
j completed up to any time period t cannot be less than that of k, i.e.,∑t

τ=rj
xjt ≥

∑t
τ=rk

xkt for all t ∈ [rj + pφj , dj] ∩ [rk, dk], where p
φ
j is the

minimum number of time periods needed to �nish the φ fraction of j, i.e.,
pφj = dφ/hje. Notice that for φ = 1 we get back the familiar end-to-start
precedence constraints. For this problem the results of RCPSVP will be
generalized and new computational results will be presented.

In Section 2.3 resource leveling problems in a machine environment are
discussed. Recall that machines are renewable resources with constant 1
availability, and each activity may require 0 or 1 unit from them. We will
consider a multiple-machine environment, where each job is dedicated to a
machine, but the starting times of the jobs on each machine have to be
determined in order to minimize the objective function (2.1) for linear (2.2)
or quadratic (2.3) functions. We will study the complexity of the problem,
and determine the borderline between NP-hard and tractable cases.

The content of Section 2.1 is based on Kis [64], that of Section 2.2 on
Kis [65], and Section 2.3 presents selected results from Drótos and Kis [29].

2.1 Project scheduling with variable intensity

activities

Most results on the resource-constrained project scheduling problem (RCPSP)
assume �xed activity durations and a constant rate of resource usage while
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2.1. VARIABLE INTENSITY ACTIVITIES 5

performing every activity. Extensions to RCPSP relaxing at least one of
these assumptions comprise preemption of activity execution, the discrete
time/resource trade-o� , the time/cost trade-o� and themulti-mode resource-
constrained project scheduling problems (see e.g Herroelen et al. [50], Brucker
et al. [14] and Demeulemeester and Herroelen [25]). We will study a further
extension, called RCPSVP , in which the intensity of each activity may vary
over time and the resource-usage is proportional to the intensity.

An instance of the problem is given by a �nite set J of activities , a
�nite set R of continuously divisible renewable resources and a precedence
relation E ⊂ J × J among the activities. The time horizon is divided
into T unit-length periods, which will be indexed as t = 1, . . . , T . For each
activity j ∈ J a release time rj and a deadline dj specify an interval of time
periods {rj, . . . , dj} in which the activity must entirely be executed, where
1 ≤ rj ≤ dj ≤ T . In each time period t ∈ {rj, . . . , dj} at most an hj ≤ 1
fraction of activity j may be completed. Activity j requires a total of aij
units of resource i, for each i ∈ R. If the intensity of activity j is xjt in
time period t, where 0 ≤ xjt ≤ hj and

∑dj
t=rj

xjt = 1 hold, then it requires
aij ·xjt units of resource i in that period. Each resource i ∈ R has an internal
capacity of bit units that is available free of charge, and it has an additional
external capacity of bit units at the expense of cit for each external unit used.

The scheduling problem consists of determining for each activity j an
intensity xjt in each time period t ∈ {rj, . . . , dj} such that 0 ≤ xjt ≤ hj,∑dj

t=rj
xjt = 1, the precedence constraints among the activities are ful�lled,

the resource demand does not exceed the resource availability (internal +
external) in any time period, and the total cost of using external capacity is
minimized.

Figure 2.1: Resource usage of activities.

Example 1. To illustrate the above concepts consider a problem instance
with 2 renewable resources and 3 activities. All activities have the same time
window rj = 1, . . . , dj = 3, while the maximum intensities are h1 = h2 = 1/2,
and h3 = 1. Activities 1 and 2 require a11 = 1, a21 = 2 unit of resource 1,
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6 CHAPTER 2. RESOURCE LEVELING PROBLEMS

respectively, and activity 3 requires a32 = 1 unit of resource 2. The internal
capacity of both resources is 1, and there is no external capacity available.
As for precedence constraints, activity 1 must precede activity 3.

The unique solution to this instance is given by the intensity assignments
x1 = (1/2, 1/2, 0), x2 = (1/4, 1/4, 1/2) and x3 = (0, 0, 1), respectively, where
the t-th component of xj represents the intensity of activity j in time period
t. Fig. 2.1 depicts the resource usage of the activities with respect to x.

2.1.1 Previous work

Project scheduling with variable intensity activities has been studied by se-
veral authors. Weglarz [104] proposes a continuous time model for alloca-
ting a single, doubly constrained resource to a set of activities over time,
the objective being to minimize project duration. The single resource may
be allocated to activities in arbitrary amounts within given intervals. The
performance-speed or intensity of each activity is determined by a continu-
ous, non-decreasing function of the amount of resource allocated to it at
any moment. Weglarz provides several analytical results and discusses a few
numerical examples. Leachman et al. [78] study a discrete time version of
the model of Weglarz in which all the di�erent types of resources required
by an activity are applied proportionally to the (varying) intensity of the
activity. The authors propose a heuristic algorithm for minimizing the ma-
kespan. For modeling and solving the special case where all lower bounds on
activity intensities are 0, Tavares [99], [100] suggests a non-linear program,
containing products of decision variables, which is solved by a standard non-
linear optimization software. Finally, Hans [47] discusses in Chapter 6 of his
Ph.D. thesis exactly the same model which is the topic of this section. His
approach is branch-and-price, which is dual to our branch-and-cut approach.
Hans obtains an initial upper bound by various constructive heuristics based
on LP rounding techniques and by iterative improvement. In the column ge-
neration phase he uses a fast pricing algorithm and also rounding heuristics
to obtain feasible solutions.

2.1.2 Summary of main contributions

We propose a new mixed integer-linear program formulation of RCPSVP,
where the novelty lies in the modeling of the precedence constraints (Section 2.1.3).
It is also shown how other objective functions �t in our framework. The pro's
and con's of the alternative formulations are discussed in Section 2.1.4. In
Section 2.1.5 we prove that RCPSVP is NP-hard in the strong sense. In
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2.1. VARIABLE INTENSITY ACTIVITIES 7

Section 2.1.6, we analyze the polytope Kjk of all feasible intensity assign-
ments to a pair of variable-intensity activities j and k with (j, k) ∈ E . This
polytope is decomposed into two smaller dimensional polytopes which, in
fact, are instances of the same polytope K. Valid inequalities for K along
with a separation algorithm is provided next. In Section 2.1.7 we show that
the inequalities found previously completely describe the convex hull of K
and also that of Kjk and establish conditions under which the inequalities
represent facets of these polytopes. In Section 2.1.8 we describe a branch-
and-cut algorithm based on our polyhedral results and summarize various
computational experiments with it. In particular, we compare our method
to that of Hans for RCPSVP and also a variant of our method to the approach
of Tavares for minimizing the makespan.

2.1.3 New formulations

Since resources must be allocated to activities over discrete time periods, it
is natural to use a time-indexed formulation with the following variables:

xjt = intensity of activity j in time period t,
zjt = mask of activity j in time period t. zjt = 1 if activity j may be

executed in time period t and 0 otherwise,
yit = external capacity of resource i ∈ R used in time period t.

Let pj = d1/hje denote the minimum time to complete activity j. Now
suppose (j, k) ∈ E , i.e., activity j must complete before activity j may start.
Since activity j cannot complete before rj + pj, w.l.o.g. we may assume that
rj + pj ≤ rk. Similarly, activity j must complete not later than dk − pk, that
is, we may assume that dj ≤ dk − pk. After these preliminaries, the weak
formulation for RCPSVP is as follows:

Minimize
∑
i∈R

∑
t∈{1,...,T}

cit · yit

subject to
dj∑
t=rj

xjt = 1, j ∈ J , (2.4a)

xjt ≤ hj · zjt, j ∈ J , t ∈ {rj + pj, . . . , dj} (2.4b)
xkt ≤ hk · (1− zjt), (j, k) ∈ E , t ∈ {rk, . . . , dj} (2.4c)
zjt ≥ zj,t+1, j ∈ J , t ∈ {rj + pj, . . . , dj − 1}, (2.4d)
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8 CHAPTER 2. RESOURCE LEVELING PROBLEMS∑
j: rj≤t≤dj

aij · xjt ≤ bit + yit, i ∈ R, t ∈ {1, . . . , T}, (2.4e)

0 ≤ yit ≤ bit, i ∈ R, t ∈ {1, . . . , T} (2.4f)
0 ≤ xjt ≤ hj, j ∈ J , t ∈ {rj, . . . , dj} (2.4g)
zjt ∈ {0, 1}, j ∈ J , t ∈ {rj + pj, . . . , dj} (2.4h)

The objective is to minimize the weighted sum of external capacity used.
By (2.4a), every activity must entirely be executed between its release time
and deadline. The precedences between the activities are forced by (2.4b)�
(2.4d). That is, activity j can be executed at time t only if zjt = 1 (cf.
(2.4b)). However, when zjt = 1, no activity k with (j, k) ∈ A may be
executed, due to (2.4c). Finally, (2.4d) ensures that there is a time point
t0 ∈ {rj + pj, . . . , dj + 1} such that zjt = 1 for all t ∈ {rj + pj, . . . , t0 − 1}
and zjt = 0 for all t ∈ {t0, . . . , dj}, hence, activity j has to complete before
activity j may start. Since activity j cannot complete before rj + pj, we
have no zjt variables for t ∈ {rj, . . . , rj + pj − 1}. The external capacity yit
of resource i used in time period t is determined by (2.4e) and it cannot be
more than bit, due to (2.4f). Finally, the domains of the variables xjt and zjt
are given by (2.4g) and (2.4h), respectively.

If activity j has no successors in E , then zjt can be set to 1 for all t ∈ {rj+
pj, . . . , dj}, and similarly yit can be set to 0 if no activity may require resource
i at time t, i.e., t /∈ {rj, . . . , dj} for all j ∈ J with aij > 0. A further reduction
is possible for (j, k) ∈ E . Since j precedes k, the di�erence zkt − zjt must be
0 or 1 in any feasible solution. Hence, the inequalities xkt ≤ hk · (zkt − zjt),
t ∈ {rk + pk, . . . , dj}, are satis�ed by all feasible solutions and are stronger
than (2.4b) for activity j and (2.4c) for (j, k) together. Therefore, we may
replace (2.4b) and (2.4c) by the following set of inequalities:

xkt ≤


hk · (1− zjt), t ∈ {rk, . . . ,min{rk + pk − 1, dj}},
hk · (zkt − zjt), t ∈ {rk + pk, . . . , dj},
hk · zkt, t ∈ {max{dj + 1, rk + pk}, . . . , dk}.

(j, k) ∈ E

(2.4bc)
Notice that some of the intervals may be empty depending on the parti-

cular dj and rk values. We call the resulting program the strong formulation.
Besides minimizing the cost of using external resources, our model is

suitable for other criteria as well. In the following three problems the external
resource capacities are neglected. The project duration or makespan can be
minimized by �nding the smallest T (using dichotomic search between some
lower and upper bounds), such that when setting all activity deadlines to
T , the linear program (2.4) has a feasible solution. When a due-date d̃j is
speci�ed for each activity j, we may minimize the maximum tardiness by
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2.1. VARIABLE INTENSITY ACTIVITIES 9

�nding the smallest Tmax such that system (2.4) admits a feasible solution
with activity deadlines dj = d̃j+Tmax. Again, the minimum value of Tmax can
be found by dichotomic search. In addition, when weights wj are also given,
we can minimize the weighted tardiness

∑
j wj(max{0, Cj− d̃j}), where Cj is

the completion time of activity j. That is, de�ne new weights wjt as follows:
wjt = 0 if t ≤ d̃j and wjt = wj for all t ∈ {d̃j+1, . . . , T}. Then, the minimum
value of

∑
wjt · zjt is the minimum weighted tardiness with respect to time

horizon T .
The polyhedral results and the branch-and-cut approach presented in this

paper can be used to solve the RCPSVP with respect to any of the above
optimization criteria.

2.1.4 Comparison of alternative formulations

In this section we discuss the advantages and disadvantages of the alternative
formulations for RCPSVP, the emphasis being on integer-linear programming
approaches. As all approaches model the resource constraints in essentially
the same way, we focus on the modeling of precedence constraints.

Suppose activity j must precede activity k, i.e., (j, k) ∈ E . Tavares [100]
models this situation by a set of constraints equivalent to the following: dj∑

t=t0

xjt

xk,t0 = 0, ∀ t0 ∈ {rk, . . . , dk}.

Tavares shows that the project duration can be minimized by de�ning
new auxiliary variables zt with 0 ≤ zt ≤ 1, t ∈ {1, . . . , T}, and adding the
constraints (∑

j∈J

T∑
t=t0

xjt

)
zt0 = 0, ∀ t0 ∈ {1, . . . , T}.

to the model. Notice that if zt0 > 0, then no activity can be performed after
t0. Therefore, the above constraints along with the objective min(T −

∑
t zt)

express the makespan minimization problem. Since the constraints are clearly
non-linear in the variables x and z, Tavares used a non-linear optimization
software for solving the problem w.r.t. the makespan objective.

In contrast, Hans [47] models the precedence constraints using a set of bi-
nary vectors {βπ ∈ {0, 1}|J |×T | π ∈ Π} consisting of the supports of all feasi-
ble intensity assignments to the activities. Although Hans considered distinct
projects among which there were no precedence constraints, to simplify no-
tation we assume that all activities belong to the same project. Notice that a
binary vector β ∈ {0, 1}|J |×T is the support of a feasible intensity assignment
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10 CHAPTER 2. RESOURCE LEVELING PROBLEMS

if and only if
∑T

t=1 βjt ≥ pj, min{t | βjt = 1} ≥ rj, max{t | βjt = 1} ≤ dj,
and if (j, k) ∈ E , then max{t | βjt = 1} < min{t | βkt = 1}. Clearly, precisely
one vector βπ must be chosen. To this end, Hans has introduced new binary
variables zh, h ∈ Π, together with the following constraints:∑

π∈Π

zπ = 1,

zπ ∈ {0, 1}, π ∈ Π,

0 ≤ xjt ≤ hj

(∑
π∈Π

βπi,tzπ

)
, ∀j ∈ J , t ∈ {rj, . . . , T}

The �rst two constraints ensure that exactly one vector βπ is chosen. The
third one speci�es that xjt is either 0, or is between 0 and hj, depending on
whether βhit is 0 or 1. In addition, Hans' formulation also contains constraints
equivalent to (2.4a) and (2.4e), and instead of (2.4f) it has yit ≥ 0, and∑

i∈R yit ≤ bt, for all t, where bt is a cumulative upper bound for all resources.
As the size of Π can be enormous, column generation is the only viable
approach to handle this formulation.

The primary advantage is that any objective function which depends
linearly on the cost associated with the vector βπ, whatever this cost be, can
be optimized by the same solver, provided that the pricing problem can be
solved e�ciently. The main drawback is that a huge number of columns must
be handled, and enlarging all activity deadlines by only one time period may
multiply the size of Π which may increase considerably the running time of
the pricing algorithm.

In contrast, if all activity deadlines are increased by one time period in
our formulation, the number of variables grows only by O(|J |+ |R|) and the
increase in the number of constraints is in O(|J |+ |R|+ |E|). The drawback
is that good cutting planes must be supplied to the solver. Nevertheless, for
the objective function studied in this paper our method is competitive with
that of Hans, see Section 2.1.8.

2.1.5 Computational complexity

In this section we will prove that RCPSVP is NP-complete in the strong sense.
To this end, we will show that RCPSVP contains the preemptive �owshop
scheduling problem (PFSP) as a special case. As the latter problem has
been shown NP-complete in the strong sense by Gonzalez and Sahni [39], our
claim follows. For fundamental de�nitions and results of scheduling theory
see e.g. Graham et al. [40] and Blazewicz et al. [8].
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2.1. VARIABLE INTENSITY ACTIVITIES 11

Recall that in a preemptive �owshop a �nite set of jobs , JB, must be
processed by a �nite set of m processors , M. A processor can process at
most one job at a time. The processing time of job k on processor i is given
by a positive integer number πik specifying that job k must be processed for
exactly pik time units on processor i. If pik = 0 then job k is not processed
by processor i. The processing of a job may be interrupted at any (integral)
time point and resumed later. Each job k must visit the processors in the
same order, that is, if pi1,k > 0, pi2,k > 0, and i1 precedes i2 in the order of
processors, then job k must be processed for a total of pi1,k time units on
processor i1 before its processing may be started on processor i2. All jobs can
be started at time 1 and the question is whether all jobs can be completed
by a given time point C.

A solution σ to the PFSP speci�es the time points in which a job is
being processed by a processor. That is, σ(k, i, t) = 1 if job k is processed
by processor i in the interval [t, t + 1] (t is an integer), and 0 otherwise. A
solution is feasible if and only if it satis�es the following conditions:

(i)
∑

t σ(k, i, t) = pik for all jobs k and processors i,

(ii)
∑

k σ(k, i, t) ∈ {0, 1} for all processors i and time periods t,

(iii) max{t | σ(k, i1, t) = 1} < min{t′ | σ(k, i2, t
′) = 1} for all jobs k and pairs

of processors i1, i2 such that i1 precedes i2 in the order of processors,
and pi1,k, pi2,k > 0 hold.

Below we describe a transformation f from PFSP to RCPSVP. Let I be
an instance of PFSP, in the corresponding instance f(I) of RCPSVP the set
of resources R coincides with the set of processorsM. The set of activities
J contains an activity for each job-processor pair such that the job has a
positive processing time on the processor. The precedence relation E speci�es
the processing order of the activities, i.e., E consists of all the pairs (j, j′)
of activities such that j and j′ represents the processing of some job k on
consecutive processors. If activity j represents the processing of job k on
processor i (when pik > 0), then the maximum intensity of activity j is
hj = 1/pik, and it requires aij = pik units of resource (processor) i and no
other resources. All activities can be started in time period 1 and they must
all be completed at latest in time period C. The internal capacity of each
resource is 1 in each time period and its external capacity is always 0. We
have the following:

Lemma 1. [64]∗An instance I of PFSP admits a feasible solution if and only
if the corresponding instance f(I) of RCPSVP admits a feasible solution.
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12 CHAPTER 2. RESOURCE LEVELING PROBLEMS

Proof. Suppose �rst that the instance of PFSP has a solution σ. If activity j
represents the processing of job k on processor i then set xjt = σ(k, i, t)/πik.
Moreover, set zjt = 1 if and only if there exists t′ ≥ t with xjt′ > 0, and
0 otherwise. Finally, set yit = 0 for all resources (processors) i and time
periods t. One can verify that the above (x, y, z) satis�es system (2.4).

Conversely, suppose system (2.4) admits a feasible solution (x′, y′, z′). We
will prove that in this case there exists a possibly di�erent feasible solution
(x, y, z) of the system such that xjt = hj or 0, y = y′ and z = z′. From this
claim it follows that the schedule σ, de�ned by σ(k, i, t) = xjt/hj for each k,
i, t and j such that activity j represents the processing of job k by processor
i, is a feasible solution for the PFSP instance. It is enough to verify property
(ii), as the other two requirements of feasible schedules easily follow from
the properties of feasible solutions of system (2.4). We have the following
estimation on the number of jobs requiring a processor i in time period t:∑

k

σ(k, i, t) =
∑
j

xjt/hj =
∑

j:aij>0,t∈{rj ,...,dj}

aij · xjt ≤ 1.

Here, the second summation is over all activities j representing the processing
of a job k by processor (resource) i. The second equation follows from the
de�nition of hj and aij and the inequality is due to the fact that (x, y, z)
satis�es (2.4e) and y must be all 0 since all external resource capacities are
0.

To prove our claim, observe that in any feasible solution of (2.4), z is a 0/1
vector. Let U j be the subset of time points where activity j may be executed,
i.e., zjt = 1 and zj′,t = 0 for all j′ such that (j′, j) ∈ E (cf. constraints (2.4b)
and (2.4c)). Since all components of z are �xed to 0 or 1, we may rewrite
the system (2.4) as follows:

dj∑
t=rj

xjt = 1, ∀j ∈ J , (2.5a)

∑
j:aij>0

(1/hj) · xjt ≤ 1, ∀i ∈ R, t ∈ {1, . . . , T} (2.5b)

0 ≤ xjt ≤ hj, ∀j ∈ J , t ∈ U j (2.5c)

xjt = 0, j ∈ J , t /∈ U j. (2.5d)

Multiply the constraints (2.5a),(2.5c) and (2.5d) by 1/hj and replace
(1/hj) · xjt by a new variable x̃jt. The resulting system, depicted below,
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2.1. VARIABLE INTENSITY ACTIVITIES 13

is a transportation problem.

dj∑
t=rj

x̃jt = 1/hj, j ∈ J (2.6a)

∑
j:aij>0

x̃jt ≤ 1, ∀i ∈ R, t ∈ {1, . . . , T} (2.6b)

0 ≤ x̃jt ≤ 1, i ∈ J, t ∈ U j (2.6c)

x̃jt = 0, j ∈ J , t /∈ U j. (2.6d)

Since the constraint matrix of (2.6) is totally unimodular and the right
hand side is integral (since every hj is the inverse of some pik ∈ Z+), the
Ho�man-Kruskal theorem on unimodular matrices [51] implies that there
exists an integral solution x. Since xjt is between 0 and 1, x is a 0-1 vector.
Then, xjt = hj · xjt is a solution of (2.5) such that xjt = 0 or hj, as claimed.

Before proving strong NP-completeness of RCPSVP notice that the max-
imum numbers Max[I] and Max′[f(I)] in an instance I of PFSP and in the
corresponding instance f(I) of RCPSVP, respectively, are the same, i.e., both
have the value max{max pij, C}.

Corollary 1. [64]∗RCPSVP is NP-complete in the strong sense.

ProofMembership in NP is straightforward. To show strong NP-completeness
it su�ces to verify that f is a pseudo-polynomial transformation (Garey and
Johnson [36], p. 101) from PFSP to RCPSVP. Namely, an instance I of
PFSP admits a feasible solution if and only if the corresponding instance
f(I) of RCPSVP has a feasible solution, by Lemma 1. Moreover, f can be
computed in time polynomial in the length of I and Max[I]. The length
of f(I) is not smaller than the length of I and Max′[f(I)] is bounded by a
two-variable polynomial in the length of I and Max[I], since they are the
same.

As a consequence, RCPSVP cannot be solved in pseudo-polynomial time,
unless P=NP. Hence, we will propose a branch-and-cut algorithm using
strong valid inequalities which is the topic of the next section.

2.1.6 Polyhedral results for RCPSVP

If we omit the resource capacity constraints (2.4e) from the weak (or from the
strong) formulation of RCPSVP, then the feasible solutions of the remaining
system are all the intensity assignments to activities respecting the release
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14 CHAPTER 2. RESOURCE LEVELING PROBLEMS

times, deadlines, maximum intensities and precedence constraints. We may
consider this system as a collection of subsystems each describing the feasi-
ble intensity assignments to a pair of activities connected by a precedence
constraint. In this and the next section we will obtain a complete description
of the polytope associated with such a subsystem.

Feasible intensity assignments to a pair of activities

Let j, k be a pair of activities with (j, k) ∈ E . If dj < rk, then this precedence
constraint is meaningless, so we may assume that rk ≤ dj. Recall also that
rj + pj ≤ rk and dj ≤ dk − pk. We de�ne the polytope Kjk as the convex
hull of all feasible intensity assignments to j and k such that j completes
before k starts. That is, Kjk is the convex hull of all points (xj, xk, zj) ∈
Rsj ×Rsj ×{0, 1}sj−pj , where sj = dj− rj + 1 and sk = dk− rk + 1, satisfying
the following constraints:

dj∑
t=rj

xjt = 1, (2.7a)

0 ≤ xjt ≤ hj, t ∈ {rj, . . . , rj + pj − 1} (2.7b)
0 ≤ xjt ≤ hj · zjt, t ∈ {rj + pj, . . . , dj} (2.7c)

zjt ≥ zj,t+1, t ∈ {rj + pj, . . . , rk − 1} (2.7d)
zjt ≥ zj,t+1, t ∈ {rk, . . . , dj − 1} (2.7e)

dk∑
t=rk

xkt = 1, (2.7f)

0 ≤ xkt ≤ hk · (1− zjt), t ∈ {rk, . . . , dj} (2.7g)
0 ≤ xkt ≤ hk, t ∈ {dj + 1, . . . , dk} (2.7h)

In order to �nd a linear representation of Kjk consider the polytopes Kj∗
and K∗k derived from Kjk as follows:

Kj∗ = conv
{

(xj, zj) ∈ Rsj × {0, 1}sj−pj | (xj, zj) satis�es (2.7a)− (2.7e)
}
,

K∗k = conv
{

(xk, z̃j) ∈ Rsk × {0, 1}dj−rk+1 | (xk, z̃j) satis�es (2.7e)− (2.7h)
}
.

A feasible intensity assignment to a pair of acitivities is shown in Figure 2.2.
The main result of this section is the following:

Lemma 2. [64]∗Let (xj, xk, zj) be any point in Rsj × Rsk × Rsj−pj . Then
(xj, xk, zj) ∈ Kjk if and only if (xj, zj) ∈ Kj∗ and (xk, z̃j) ∈ K∗k, where
z̃jt = zjt for all t ∈ {rk, . . . , dj}.
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2.1. VARIABLE INTENSITY ACTIVITIES 15
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Figure 2.2: Feasible intensity assignment to a pair of activities (j, k) ∈ E .

Before the proof we derive some common properties of Kj∗ and K∗k. In
fact, Kj∗ and K∗k are both equivalent to the polytope K de�ned next. Let
1 ≤ m < n be integer numbers, and 0 < h ≤ 1 a real number such that
(n−m)h ≥ 1. Then K is the convex hull of all points (x, z) ∈ Rn × {0, 1}m
satisfying the following linear constraints:

n∑
t=1

xt = 1 (2.8a)

xt ≤ h · (1− zt), t ∈ {1, . . . ,m} (2.8b)
xt ≤ h, t ∈ {m+ 1, . . . , n} (2.8c)
zt ≥ zt+1, t ∈ {1, . . . ,m− 1} (2.8d)
xt ≥ 0, t ∈ {1 . . . , n}. (2.8e)

We obtain a polytope equivalent to Kj∗ by the substitutions m = sj−pj,
n = sj, h = hj, zt = 1 − zj,dj−t+1, t ∈ {1, . . . ,m}, and xt = xj,dj−t+1,
t ∈ {1, . . . , n}. We get a polytope equivalent toK∗k by settingm = dj−rk+1,
n = sk, h = hk, zt = z̃j,t+rk−1, t ∈ {1, . . . ,m}, and xt = xk,t+rk−1, t ∈
{1, . . . , n}.

A necessary and su�cient condition for a vector (x, z) ∈ Rn × Rm to be
in K is provided next. First of all, if (x̂, ẑ) is a vertex of K, then ẑ is one of
the following vectors z` ∈ {0, 1}m:

z`t =

{
1 if t ∈ {1, . . . , `− 1},
0 if t ∈ {`, . . . ,m}, ` ∈ {1, . . . ,m+ 1}.

Moreover, if ẑ = z` for some vertex (x̂, ẑ) and some `, then x̂t = 0 for all
t ∈ {1, . . . , ` − 1}, 0 ≤ x̂t ≤ a for all t ∈ {`, . . . , n} and

∑n
t=1 x̂t = 1. After

these preparations, we can prove the following:

Lemma 3. [64]∗Let (x, z) be any point in Rn ×Rm. Then (x, z) ∈ K if and
only if the numbers λ1 = 1−z1, λ` = z`−1−z` (` ∈ {2, . . . ,m}) and λm+1 = zm
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16 CHAPTER 2. RESOURCE LEVELING PROBLEMS

are all non-negative and there exist vectors x` ∈ Rn, ` ∈ {1, . . . ,m+1}, such
that

∑m+1
`=1 λ`x

` = x and every (x`, z`) belongs to K.

Proof. (Necessity) If (x, z) is a point in K and the points (x̂θ, ẑθ), θ ∈ Θ,
constitute the set of vertices of K, then there exist reals ωθ ≥ 0 such that
(x, z) =

∑
θ∈Θ ωθ(x̂

θ, ẑθ),
∑

θ∈Θ ωθ = 1.
Let λ` =

∑
θ:ẑθ=z` ωθ, ` ∈ {1, . . . ,m + 1}. Then λ` ≥ 0 and

∑
` λ` = 1.

If λ` > 0, let x` =
∑

θ:ẑθ=z`(ωθ/λ`)x̂
θ. Otherwise, if λ` = 0, choose an

arbitrary x` such that (x`, z`) ∈ K. Then every (x`, z`) belongs to K and∑
` λ`(x

`, z`) = (x, z). Using this and the fact that z`m = 1 if and only if
` = m + 1, λm+1 = zm follows. An inductive argument proves that the rest
of the λ` must also equal the speci�ed values.

(Su�ciency) Observe that
∑m+1

`=1 λ` = 1 and also
∑m+1

`=1 λ`z
` = z. Conse-

quently, if there exist vectors x` satisfying the conditions of the lemma, then
(x, z) is a convex combination of the points (x`, z`). Since the vectors (x`, z`)
all belong to K, (x, z) ∈ K.
Proof of Lemma 2 By the de�nitions, if (xj, xk, zj) ∈ Kjk, then (xj, zj) ∈
Kj∗ and (xk, z̃j) ∈ K∗k, where z̃jt = zjt for all t ∈ {rk, . . . , dj}.

Conversely, suppose (xj, zj) ∈ Kj∗ and (xk, z̃j) ∈ K∗k, where z̃jt = zkt for
all t ∈ {rk, . . . , dj}. In order to apply the previous lemma to Kj∗ and K∗k,
de�ne the vectors z`j ∈ {0, 1}sj−pj and z`k ∈ {0, 1}dj−rk+1 as follows.

z`jt =

{
1 if t ∈ {rj + pj, . . . , `− 1},
0 if t ∈ {`, . . . , dj}

` ∈ {rj + pj, . . . , dj + 1}.

For each ` ∈ {rk, . . . , dj + 1}, let z`kt = z`jt for all t ∈ {rk, . . . , dj}.
Applying Lemma 3 to Kj∗ yields vectors x`j and coe�cients λ`, ` ∈ {rj +

pj, . . . , dj + 1} such that
∑dj+1

`=rj+pj
λ`(x

`
j, z

`
j) = (xj, zj), (x`j, z

`
j) ∈ Kj∗ for

each `, λrj+pj = 1 − zrj+pj , λ` = zj,`−1 − zj`, ` ∈ {rj + pj + 1, . . . , dj}, and
λdj+1 = zj,dj .

For K∗k we get vectors x`k and coe�cients α`, ` ∈ {rk, . . . , dj + 1} such
that

∑dj+1
`=rk

α`(x
`
k, z

`
k) = (xk, z̃j), (x`j, z

`
j) ∈ K∗k for each `, αrk = 1 − z̃j,rk ,

α` = z̃j,`−1 − z̃j,`, ` ∈ {rk + 1, . . . , dj}, and αdj+1 = z̃j,dj .
Since zjt = z̃jt, t ∈ {rk, . . . , dj} by assumption, it follows that α` = λ`,

` ∈ {rk + 1, . . . , dj + 1}, and αrk = 1−
∑dj+1

`=rk+1 λ` =
∑rk

`=rj+pj
λ`.

Letting x`k = xrkk for each ` ∈ {rj + pj, . . . , rk − 1}, we have (xj, xk, zj) =∑dj+1
`=rj+pj

λ`(x
`
j, x

`
k, z

`
j). Since each (x`j, x

`
k, z

`
j) belongs to Kjk by the de�nition

of the polytopes Kj∗ and K∗k, (xj, xk, zj) ∈ Kjk as well.

Corollary 2. [64]∗If Kj∗ = {(xj, zj) | Aj∗xj + Bj∗zj ≤ bj∗} and K∗k =
{(xk, z̃j) | A∗kxk + B∗kz̃j ≤ b∗k}, then Kjk = {(xj, xk, zj) | Aj∗xj + Bj∗zj ≤
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2.1. VARIABLE INTENSITY ACTIVITIES 17

bj∗, A∗kxk + [0, B∗k]zj ≤ b∗k}, where 0 is a null matrix with rk − rj − pj
columns and appropriate number of rows.

We will provide a minimal linear representation of K in Section 2.1.7,
which can trivially be transformed to one for Kj∗ and for K∗k, respectively.
We will prove that putting together these two representations yields a mini-
mal linear representation of Kjk.

Relation to �xed-charge network �ows

In [89], the �xed charge network (or variable upper-bound) �ow model is
de�ned. That is, P= = conv{(x, z) ∈ Rn × {0, 1}n |

∑n
t=1 xt = g, 0 ≤ xt ≤

htzt, t = 1, . . . , n}, where g and the hts are constants. The system de�ning the
polytope P= models a fragment of a network consisting of a node u and arcs
entering u. The total �ow through the arcs has to meet a speci�ed demand
g. The upper bounds on the arcs are variable as they are determined by the
binary variables zt. In the de�nition of polytope K, there is an ordering on
the arcs by the constraints zt ≥ zt+1. That is, if zt0 is set to 1, then for all
t ∈ {1, . . . , t0} the upper bound on xt is �xed at h and if zt0 = 0 then the
upper bound is 0 on all arc �ows xt with t ∈ {t0, . . . ,m}. As we will see,
these extra constraints yield a new set of facets, di�erent to the �ow-cover
inequalities of [89].

Valid inequalities and a separation algorithm for K

Clearly, the equation (2.8a) and the inequalities (2.8b)-(2.8e) are all valid for
K. Moreover, the inequality

zm ≥ 0 (2.8f)

is also valid for K. We derive a new class of valid inequalities below.
Denote p = d1/he and hrem = 1 − (p − 1)h. Since (n − m)h ≥ 1 by

de�nition, m+ p ≤ n.

Lemma 4. [64]∗Let ∅ 6= S1 ⊆ {1, . . . ,m} and S2 ⊆ {m + 1, . . . , n} be such
that |S1| + |S2| = p and let t1 be the smallest element of S1. The (S1, S2)
inequality

hremzt1 + h
∑

t∈S1−{t1}

zt ≤
∑

t∈{t1,...,n}−(S1∪S2)

xt (2.8g)

is valid for K.

Proof As K is a convex polytope, it su�ces to show that any vertex of
K satis�es (2.8g). Since the inequalities are valid for any vertex (x̂, ẑ) with
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18 CHAPTER 2. RESOURCE LEVELING PROBLEMS

ẑt1 = 0, assume ẑt1 = 1. Therefore, x̂t1 = 0 by (2.8b), and the total processing
in {t1, . . . , n} − (S1 ∪ S2), that is, the right hand side of (2.8g), is at least
1 minus the maximum processing in S1 ∪ S2 − {t1}. The latter is h|S2| +
h
∑

t∈S1−{t1}(1− ẑt). Plugging all this together, the statement follows.
The usefulness of the (S1, S2) inequalities is illustrated by the following:

Example 2. Suppose m = 4, n = 7 and h = 2/5. Then p = 3 and hrem =
1/5. The vector (x, z), where x = (1/10, 0, 0, 3/10, 2/5, 1/5, 0) ∈ R7 and
z = (3/4, 1/2, 1/2, 1/4) ∈ R4, satis�es (2.8a)-(2.8f), but violates (2.8g) for
S1 = {1, 4} and S2 = {5}. Namely, we have

hremz1 + hz4 =
1

5
· 3

4
+

2

5
· 1

4
=

1

4
>

1

5
= 0 + 0 +

1

5
+ 0

= x2 + x3 + x6 + x7 =
∑

t∈{1,...,7}−(S1∪S2)

xt.

We close this section by a separation algorithm for the (S1, S2) inequali-
ties. For each t1 ∈ {1, . . . ,m}, the procedure tries to �nd a violated (S1, S2)
inequality with t1 being the smallest element of S1. Namely, rewrite (2.8g)
as follows:

∑
t∈S1−{t1}

(h · zt + xt) +
∑
t∈S2

xt ≤

 ∑
t∈{t1+1,...,n}

xt

− hremzt1 .

Now consider the following optimization problem:

max
∑

t∈S1−{t1}

(h · zt + xt) +
∑
t∈S2

xt, (2.9)

where the max is over all set pairs (S1, S2) such that t1 ∈ S1 ⊆ {t1, . . . ,m},
S2 ⊂ {m + 1, . . . , n} and |S1| + |S2| = p. The maximum is greater than the
constant

∑
t∈{t1+1,...,n} xt−hremzt1 if and only if at least one (S1, S2) inequality

with t1 being the smallest element of S1 is violated by (x, z).
In order to solve problem (2.9), de�ne a set of items I(t1) = {t1+1, . . . , n}

with item weights w(t) = h · zt + xt if t1 + 1 ≤ t ≤ m, and xt if m + 1 ≤
t ≤ n. Then the p − 1 largest-weight items constitute an optimal solution
to (2.9). In fact, this problem can be seen as �nding a maximum weight
basis in the uniform matroid over I(t1) in which every p− 1 items is a basis.
Repeating this procedure for each t1 ∈ {1, . . . ,m} we can �nd a violated
(S1, S2) inequality or conclude that none exists.

For e�cient implementation notice that the item weights do not depend
on t1 and thus it is enough to sort the elements of the set I(1) in decreasing
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2.1. VARIABLE INTENSITY ACTIVITIES 19

order of their weights. Then, after increasing t1 by 1, eliminate from the
ordered list t1. By using appropriate data structures, the time complexity of
the entire separation procedure is O(n log n).

Proposition 1. [64] Inequalities (2.8g) can be separated in O(n log n) time.

2.1.7 Minimal linear representations for K and Kjk

In this section we will prove that the inequalities (2.8a)-(2.8g) constitute
a linear representation of K. Moreover, we will establish conditions under
which these inequalities represent facets of K. Finally, we will extend these
results to Kjk.

A linear representation of K

Let P be the polytope consisting of all points (x, z) ∈ Rn×Rm satisfying the
system (2.8a)-(2.8g). Since the equation (2.8a) and the inequalities (2.8b)-
(2.8g) are all valid for K, K ⊆ P . Our main goal is to prove the following:

Theorem 1. [64]∗P ⊆ K.

Proof Assuming the contrary, �x some (x, z) ∈ P \ K. Since (x, z) /∈ K,
it is not a convex combination of points in K. We will show that then
(2.8g) is violated for a pair of sets (S1, S2) which contradicts the assumption
(x, z) ∈ P .

To this end, de�ne the capacitated network G(x, z) = (V,E) with node
set V consisting of a source s, a sink q, a node v` for each ` ∈ {1, . . . ,m+ 1}
and a node wt for each t ∈ {1, . . . , n}. The source s is connected to every
v` by one arc (s, v`) with capacity c(s, v`) = λ`, where the λ` are de�ned in
Lemma 3. Moreover, there is one arc from each wt to sink q with capacity
c(wt, q) = xt. Finally, for each ` ∈ {1, . . . ,m+ 1} and t ∈ {`, . . . , n} there is
an arc (v`, wt) with capacity c(v`, wt) = h ·λ`. This construction is illustrated
in Fig. 2.3. Since (x, z) ∈ P , all arc capacities in G(x, z) are non-negative.

Let c(δ(S)) =
∑

(u,v)∈δ(S) c(u, v) denote the capacity of an s−q cut δ(S) =

{(u, v) ∈ E | u ∈ S, v ∈ S}, where s ∈ S ⊆ V \ {q} and S = V \ S. The
minimum capacity of an s − q cut in G(x, z) is at most 1, as c(δ({s})) =∑

` λ` = 1.

Claim 1. The minimum capacity of an s−q cut in G(x, z) is strictly smaller
than 1.

Proof Assuming the contrary, it follows that there exists a compatible �ow
f in G(x, z) of value 1, due to the MAX-FLOW MIN-CUT Theorem of Ford
and Fulkerson [31]. For each ` ∈ {1, . . . ,m + 1} de�ne a vector x` ∈ Rn as
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Figure 2.3: The construction of G(x, z).

follows. If λ` > 0, then let x`t = f(v`, wt)/λ` for t ∈ {`, . . . , n}, and x`t = 0 for
t ∈ {1, . . . , `− 1}. On the other hand, when λ` = 0, choose any x` such that
(x`, z`) ∈ K. Hence, every (x`, z`) belongs to K and

∑
` λ`x

`
t ≤ xt for each t.

But
∑

t

∑
` λ`x

`
t = 1, since f is feasible, and

∑
t xt = 1 as (x, z) ∈ P , whence,∑

` λ`x
` = x. Then Lemma 3 ensures that (x, z) ∈ K, a contradiction.

Let N(v`) = {wt ∈ V | (v`, wt) ∈ E} denote the set of nodes reachable
from v` by one arc. If S is a subset of nodes, then let NS(v`) = N(v`) ∩ S.

Proposition 2. Let S be an s − q cut of G(x, z). If ` < κ then NS(vκ) ⊆
NS(v`).

Claim 2. There exists a minimum capacity s − q cut δ(S) in G(x, z) with
the following structure:

(i) there exists t1 ∈ {1, . . . ,m} such that v` ∈ S for all ` ∈ {1, . . . , t1} and
v` ∈ S for all ` ∈ {t1 + 1, . . . ,m+ 1},

(ii) wt ∈ S for all t ∈ {1, . . . , t1},

(iii) for every v` ∈ S, |NS(v`)| ≤ p− 1,

(iv) |NS(vt1+1)| = p− 1.

Proof Let δ(S) be a minimum capacity s−q cut ofG(x, z). Clearly, c(δ(S)) <
1 holds by assumption. First we claim that there exists ` ∈ {1, . . . ,m + 1}
such that v` ∈ S. Indeed, otherwise the arcs (s, v`) all leave S, whence
c(δ(S)) ≥

∑m+1
`=1 c(s, v`) =

∑m+1
`=1 λ` = 1, contradicting c(δ(S)) < 1.

Proof of part (iii): Suppose there exists v` ∈ S with |NS(v`)| ≥ p. If
λ` = 0, we can replace S by S − {v`} without changing the capacity of the
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cut. So assume λ` > 0. From �ow theory (see e.g., Ahuja et al. [1]) we know
that any maximum value s− q �ow f saturates all arcs leaving S, since δ(S)
is of minimum capacity. In particular, f(v`, wt) = c(v`, wt) = h · λ` holds for
all arcs (v`, wt) ∈ E with wt ∈ NS(v`). Using conservation of �ow we can
derive that

λ` ≥ f(s, v`) =
∑

(v`,wt)∈E

f(v`, wt) ≥ |NS(v`)| · h · λ`.

Since p · h ≥ 1 by the de�nition of p and |NS(v`)| ≥ p by assumption,
it must be the case that |NS(v`)| = p and p · h = 1, otherwise there is a
contradiction. Hence, we may replace S by S − {v`} without changing the
capacity of the cut.

Proof of part (i): Since S contains at least one of the nodes v`, there
exists a unique t1 ∈ {0, . . . ,m} such that v` /∈ S for all ` ∈ {1, . . . , t1} and
vt1+1 ∈ S. Suppose there exists κ > t1 + 1 such that vκ /∈ S. If λκ = 0,
we can add vκ to S yielding a cut with the same capacity. Assume λκ > 0.
Since NS(vκ) ⊆ NS(vt1+1) by Property 2 and |NS(vt1+1)| ≤ p − 1 by part
(iii), we also have |NS(vκ)| ≤ p− 1. Since the capacity of the cut determined
by S ∪ {vκ} is

c(δ(S ∪ {vκ})) = c(δ(S))− c(s, vκ) +
∑

wt∈NS(vκ)

c(vκ, wt)

≤ c(δ(S))− λκ + (p− 1) · h · λκ < c(δ(S)),

(2.10)

δ(S) is not of minimum capacity, which is a contradiction. It remains to show
that t1 ≥ 1. Suppose t1 = 0. To simplify notation, we introduce dummy zt
symbols with value 0, for t ∈ {m + 1, . . . , n}. Then S contains the source
node s, all nodes v` and some of the nodes wt. Denoting by U the indices t
such that wt /∈ S, we determine the capacity of δ(S) below:

c(δ(S)) =
∑
t∈U

min(m+1,t)∑
`=1

h · λ` +
∑

t∈{1,...,n}−U

xt =

=
∑
t∈U

(1− zt)h+
∑

t∈{1,...,n}−U

xt ≥
∑

t∈{1,...,n}

xt,

where we exploited that
∑min(m+1,t)

`=1 λ` = 1− zt and that (1− zt)h ≥ xt, for
(x, z) satis�es (2.8b) by assumption. But

∑n
t=1 xt = 1, hence c(δ(S)) ≥ 1, a

contradiction.
Proof of part (ii): Suppose there exists wt ∈ S with t ∈ {1, . . . , t1}. Then

(wt, q) ∈ E is an arc leaving S. Since wt is not connected to any other node
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in S, the capacity of δ(S) can be decreased by xt unless xt = 0. Since δ(S)
is of minimum capacity by assumption, it must be the case that xt = 0.
However, in this case wt can be removed from S yielding a cut with the same
capacity.

Proof of part (iv): Consider the node vt1 . Since wt1 /∈ S by part (ii), it
follows thatNS(vt1) = NS(vt1+1)∪{wt1}. Consequently, if |NS(vt1+1)| < p−1,
then |NS(vt1)| < p. If λt1 = 0, then c(δ(S∪{vt1})) = c(δ(S)), whence we can
replace S by S ∪{vt1} and repeat the whole analysis. Assume λt1 > 0. Then
adding vt1 to S would decrease the capacity of the cut, a contradiction.

To �nish the proof of the theorem, de�ne the sets S1 = {t1} ∪ {t ∈
{t1 + 1, . . . ,m} | wt ∈ S} and S2 = {t ∈ {m + 1, . . . , n} | wt ∈ S}, where
S is the node set found in Claim 2. Notice that ∅ 6= S1 ⊆ {1, . . . ,m},
S2 ⊆ {m + 1, . . . , n} and |S1 ∪ S2| = p, by part (iv) of Claim 2. To simplify
the following presentation, de�ne new symbols zt with value 0 for all t ∈
{m+ 1, . . . , n}. Since the capacity of δ(S) is strictly smaller than 1, we have

1 >

t1∑
t=1

c(s, vt) +
m∑

`=t1+1

∑
t∈{`,...,n}∩(S1∪S2)

c(v`, wt) +
∑

t∈{t1,...,n}\(S1∪S2)

c(wt, q).

Using the de�nition of arc capacities and that of the λ`, this can be rewritten
as

= 1− zt1 + h
∑

t∈(S1∪S2)\{t1}

t∑
`=t1+1

(z`−1 − z`) +
∑

t∈{t1,...,n}\(S1∪S2)

xt

= 1− zt1 + h
∑

t∈(S1∪S2)\{t1}

(zt1 − zt) +
∑

t∈{t1,...,n}\(S1∪S2)

xt.

Since zt = 0 for all t ∈ {m+ 1, . . . , n} and |S1 ∪S2| = p, this is equivalent to

= 1− zt1 + h(p− 1)zt1 − h
∑

t∈S1\{t1}

zt +
∑

t∈{t1,...,n}\(S1∪S2)

xt.

Now, as −zt1 + h(p − 1)zt1 = −hremzt1 , it follows that (2.8g) is violated for
the sets (S1, S2), that is, (x, z) /∈ P , a contradiction.

Facets of K

In order to �nd a minimal linear representation of polytope K, it su�ces to
consider only the system (2.8a)-(2.8g), by Theorem 1. To show that a valid
inequality αx + βz ≤ γ from (2.8b)-(2.8g) represents a facet of K we will
use the standard proof technique consisting in exhibiting a point (x, z) in K
such that αx + βz = γ and (x, z) satis�es all other inequalities with strict
inequality, see e.g., Schrijver [94].
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Lemma 5. [64]∗The inequalities (2.8b), (2.8d), (2.8f) always represent facets
of K. The inequalities (2.8c) represent facets i� h < 1. For 1 ≤ t ≤ n
inequality (2.8e)t represents a facet i� h > 1/(n − 1) and if t ≥ m + 1,
p < n−m. Finally, for each ∅ 6= S1 ⊆ {1, . . . ,m}, S2 ⊂ {m+ 1, . . . , n} with
|S1|+ |S2| = p the corresponding inequality in (2.8g) represents a facet unless
t1 = 1 and h = 1/p.

Proof Firstly, we show that there exists a point in K satisfying all inequa-
lities (2.8b)-(2.8g) with strict inequality. One may verify that if ε > 0 is a
su�ciently small positive number, the vector (x, z) given by

xt = 1/n, t ∈ {1, . . . , n} and zt = εt, t ∈ {1, . . . ,m} (2.11)

is in K satisfying every inequality in (2.8b)-(2.8g) with strict inequality.
The construction of an appropriate point in K for (2.8b), (2.8d) and

(2.8f) being straightforward, we turn directly to the inequalities (2.8c). If
h = 1 then xt = 1 implies xt′ = 0 for all t′ ∈ {1, . . . , n} − {t}, proving the
necessity of the condition. Conversely, if h < 1, the vector (x, z) with xt = h,
xt′ = (1−h)/(n− 1), t′ ∈ {1, . . . , n}−{t}, and z as in (2.11) satis�es xt = h
with equality, while all other inequalities are strict if ε is su�ciently small.

Concerning (2.8e), if h = 1/(n − 1) then xt = 0 implies xt′ = h for
all t′ ∈ {1, . . . , n} − {t}, proving the necessity of the condition. Moreover, if
t ≥ m+1 andm+p = n, then xt ≥ 0 is implied by the (S1, S2) inequality with
t1 = m, S1 = {m}, S2 = {m+ 1, . . . , n} − {t}. Now suppose h > 1/(n− 1).
The vector (x, z) with xt = 0, xt′ = 1/(n− 1), t′ ∈ {1, . . . , n}− {t}, and z as
in (2.11) satis�es xt = 0 with equality while all other inequalities are strict
if ε is su�ciently small and when t ≥ m+ 1, m+ p < n.

Finally, consider an inequality in (2.8g). If t1 = 1 ∈ S1 and h = 1/p,
then this inequality is implied by the inequalities xt ≤ h(1− zt), t ∈ S1, and
xt ≤ a, t ∈ S2. Namely, since h = 1/p, hrem = h follows. Therefore, we have∑

t∈S1

azt ≤
∑
t∈S1

hzt +
∑
t∈S2

(h− xt) ≤
∑
t∈S1

(h− xt) +
∑
t∈S2

(h− xt)

= hp−
∑

t∈S1∪S2

xt = 1−
∑

t∈S1∪S2

xt =
∑

{1,...,n}−(S1∪S2)

xt.

On the other hand, when t1 ≥ 2 or hp > 1, we will de�ne a point (x, z)
in K such that

hremzt1 + h
∑

t∈S1−{t1}

zt =
∑

t∈{t1,...,n}−(S1∪S2)

xt (2.12)

while all other inequalities will be strict. Let ε and φ be small positive
numbers to be chosen later. Denote U = {t1, . . . , n} − (S1 ∪ S2) and k =
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|U | = n− t1 + 1− p. Notice that 1 /∈ U even if t1 = 1. Therefore, k ≤ n− 1.
Finally, k ≥ 1, since t1 ≤ m, |S1 ∪ S2| = p and m + p ≤ n. Observe that
h(n− k) = h(t1 − 1 + p) > 1, since t1 ≥ 2 or hp > 1 by assumption.

De�ne z as in (2.11), while let x be given by

xt =

{
φ, t ∈ U
(1− kφ)/(n− k), t ∈ {1, . . . , n} − U.

Now, by substituting the de�nitions for x and z in (2.12) we obtain the
following relation between ε and φ:

hremε
t1 + h

∑
t∈S1−{t1}

εt = kφ. (2.13)

Observe that the left hand side is polynomial in terms of ε and that
all coe�cients are positive. Consequently, the left hand side is a monotone
increasing and continuous function of ε. Hence, for any φ > 0 there exists a
unique ε > 0 satisfying eq. (2.13) and vice versa.

Clearly, (x, z) satis�es equation (2.8a) and the inequalities (2.8d)-(2.8f)
with strict inequality. Concerning (2.8c), for each t ∈ U , xt < a if φ is small.
If t ∈ {1, . . . , n}−U , then xt = (1−kφ)/(n−k) < 1/(n−k) = 1/(t1−1+p) ≤
1/p ≤ a. Checking (2.8b) is a bit tricky. For each t ∈ U strict inequality
holds if ε and φ are su�ciently small. It remains to show that for each t /∈ U ,
xt = (1 − kφ)/(n − k) < h(1 − εt) = h(1 − zt). This can be rewritten as
h(n− k)εt < h(n− k)− 1 + kφ. Since h(n− k) > 1, any ε < 1− 1/(h(n− k))
will do for arbitrary φ.

Now consider (2.8g) for any (S ′1, S
′
2) 6= (S1, S2). Let U ′ = {t′1, . . . , n} −

(S ′1 ∪ S ′2). Since |S ′1|+ |S ′2| = p = |S1|+ |S2|, at least one of the sets U − U ′
and U ′ − U is not empty. First suppose U ′ − U is not empty. The left hand
side of (2.8g) on (S ′1, S

′
2) is at most

hremε+ h

min(p,m)∑
t=2

εt. (2.14)

We claim that the right hand side is greater than (2.14) if ε is su�ciently
small. Namely, choose t′ ∈ U ′−U arbitrarily. As t′ /∈ U , xt′ = (1−kφ)/(n−
k). Since (1−kφ)/(n−k) ≥ 1/n when 0 ≤ φ ≤ 1/n, it follows that xt′ ≥ 1/n
for φ su�ciently small. Hence, the right hand side of (2.8g) on (S ′1, S

′
2) is at

least 1/n. So, choose ε > 0 independently from the particular (S ′1, S
′
2) so that

the quantity (2.14) is strictly smaller than 1/n. The chosen ε determines φ
by (2.13). If φ > 1/n, decrease φ and proportionally also ε.
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If U ′−U is empty, then U −U ′ cannot be empty. These conditions along
with |S1| + |S2| = p = |S ′1| + |S ′2| imply that t1 < t′1. Since εt

′
1/εt1 can be

made arbitrarily close to 0 by decreasing ε, the left hand side of (2.8g) on
(S ′1, S

′
2) can be made smaller than φ while maintaining eq. (2.13). Since the

right hand side of (2.8g) is at least φ, we have shown that the inequality is
strict.

Finally, our demonstration also shows that every facet inducing inequality
in (2.8b)-(2.8g) represents a distinct facet of K.

A minimal linear representation of Kjk

To obtain a minimal linear representation of Kjk we �rst determine one for
Kj∗ and K∗k, respectively, as follows. De�ne the polytope K with respect to
Kj∗ (using appropriate substitutions). Take the minimal linear representa-
tion of K and convert it back to one for Kj∗, let Aj∗xj +Bj∗zj ≤ bj∗ denote
this system. We can get a minimal linear representation A∗kxk +B∗kz̃j ≤ b∗k

for K∗k by a similar procedure. We will show that almost every inequality in
the combined system Aj∗xj +Bj∗zj ≤ bj∗, A∗jxk + [0, B∗k]zj ≤ b∗k represents
a facet of Kjk.

First observe that (2.8f) becomes 1− zj,rj+pj ≥ 0 in polytope Kj∗ and it
becomes zj,dj ≥ 0 in polytope K∗k. Clearly zj,dj ≥ 0 is implied by the facet-
representing inequalities xj,dj ≥ 0 and xj,dj ≤ hjzj,dj for Kj∗. Therefore,
zj,dj ≥ 0 is super�uous in the linear representation of Kjk. Now consider
zj,rj+pj ≤ 1. If rj + pj = rk, then this inequality is implied by the facet-
representing inequalities xk,dk ≥ 0 and xk,rk ≤ hk(1 − zj,rk) for K∗k. As a
by-product, zj,rk ≤ 1 never represents a facet of Kjk. We have the following:

Theorem 2. [64]∗The system Aj∗xj + Bj∗zj ≤ bj∗, A∗kxk + [0, B∗k]zj ≤ b∗k

without zj,dj ≥ 0 and without zj,rj+pj ≤ 1 if rj + pj = rk, is a minimal linear
representation of Kjk.

Proof By Corollary 2, the linear system in the statement represents Kjk.
Now consider e.g., a facet representing inequality αxj + βzj ≤ β0 for Kj∗.
First suppose αxj + βzj ≤ β0 is not one among (2.7e). There exists a point
(xj, zj) ∈ Kj∗ satisfying this inequality with equality while all other inequa-
lities in the minimal linear representation of Kj∗ are strict. In particular,
zjt > zj,t+1 for t ∈ {rk, . . . , dj − 1} by assumption and w.l.o.g. zj,dj > 0,
since this inequality does not represent a facet of Kj∗. By the same token,
we may also assume that zj,rk < 1. We have to show that there exists a
point (xk, z̃j) ∈ K∗k, where z̃jt = zjt for each t ∈ {rk, . . . , dj}, such that all
inequalities in the minimal linear representation of K∗k are strict. To this
end, we construct a point in the polytope K which can be transformed to
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a point in K∗k with the desired properties. Let m = dj − rk + 1, n = sk,
λ1 = 1−zj,rk , λ` = zj,`+rk−2−zj,`+rk−1, ` ∈ {2, . . . ,m}, and λm+1 = zj,dj . We
clearly have

∑m+1
`=1 λ` = 1, and λ` > 0 for each `. De�ne the vectors x` ∈ Rn

as follows:

x`t =

{
0 if 1 ≤ t ≤ `− 1
1/(n− `+ 1) if ` ≤ t ≤ n

` ∈ {1, . . . ,m+ 1}.

Hence, (x`, z`) ∈ K for each `. Moreover, for each inequality in the system
(2.8b)-(2.8g) there exists at least one vector (x`, z`) on which that inequality
is strict, as one may verify. Therefore, (x, z) =

∑
` λ`(x

`, z`) is a point in K
such that all inequalities on it are strict, since each λ` > 0.

The cases when αxj + βzj ≤ β0 is one among (2.7e) (in which case it
represents a facet of both Kj∗ and K∗k) or αxk + βz̃j ≤ β0 represents a facet
of K∗k can be handled similarly.

2.1.8 Implementation and computational evaluation

We implemented two branch-and-cut algorithms, B+ and B−, for solving the
mixed integer-linear program (2.4). We assume familiarity with this techni-
que, for an introduction see e.g. Padberg and Rinaldi [88] and Jünger et
al. [55]. The LP relaxation of RCPSVP is obtained from the strong formu-
lation by relaxing the constraint (2.4h) to 0 ≤ zjt ≤ 1, ∀ i, t. The algorithm
B+ uses the following classes of valid inequalities to cut o� a solution (x, y, z)
of the LP relaxation with fractional z:

(i) To each pair of activities (j, k) ∈ E corresponds a polytope Kjk. The
algorithm checks whether (xj, xk, zj) ∈ Kjk by �nding the most violated
(S1, S2) inequalities for Kj∗ and also for K∗k.

(ii) Flow cover inequalities. These inequalities are de�ned in [89]. Although
they are not needed to describe the polytopes Kj∗ and K∗k, the con-
straints (2.4e) along with (2.4bc), (2.4g) and (2.4h) give rise to variable
upper bound �ow problems.

(iii) Gomory fractional cuts, see e.g., Nemhauser and Wolsey [83].

Algorithm B− is identical to B+ except it does not separate class (i)
inequalities. Both algorithms start from scratch, i.e., without setting any
initial upper bound.

We coded algorithms B+ and B− in C++ using the ILOG CPLEX 7.5
branch-and-cut solver [54]. Besides modeling the problem and calling the
solver, we coded only the separation algorithm described in Section 2.1.6 for
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class (i) and we let the solver �nd violated inequalities in classes (ii) and
(iii). The LPs were solved by the built-in dual-simplex method and we also
used the built-in heuristic to �nd feasible solutions. In B+ the separation
algorithm for class (i) inequalities was called in the root and then in every
�fth node during the search. The numerical tables of this section can be
found in Section 5.1.

Comparison to Branch-and-Price

In this section we compare and evaluate three algorithms: the branch-and-
price algorithm of Hans [47], denoted by H, and the algorithms B+ and B−.
Hans evaluated his method on the benchmark instances of De Boer [24]. Each
instance consists of one project only whose precedence graph was generated
by the randomized procedure of Kolisch et al. [71]. The maximal intensity
hj of each activity j is given by 1/pj, where pj was chosen randomly between
1 and 5. Moreover, every activity may require up to 5 distinct resources. In
each time period the internal capacity of each resource is �nite, and its exter-
nal capacity is in�nite with cost uniformly 1. The instances are subdivided
into classes characterized by common parameter values such as the number
of activities in the project n, the number of resources r and the average
slack s =

∑n
i=1(sj − pj)/n. For each combination of the parameter values

n = 10, 20, 50, r = 3, 10, 20 and s = 2, 5, 10, 15, 20, ten random instances
were generated yielding a total of 450 instances.

The computing environment of Hans was a PC with a 600 MHz Pentium
3 processor, Windows 2000 operating system, Borland Delphi 5 programming
language and CPLEX 7.0. Hans stopped the algorithm after 1800 seconds.
We performed the tests on a PC with a 1.6 GHz Pentium 4 processor under
Windows 2000, and terminated the search after 675 seconds. The computa-
tional results of algorithm H reported here are slightly better than those in
[47], since we used the latest data (fall of 2003) from E. Hans [48]. In the fol-
lowing ub(A) and lb(A) denote the best upper and lower bound, respectively,
obtained by algorithm A, where A is one of H, B+ and B−.

Table 5.1 shows how often the three algorithms found provably optimal
solutions. For each class of instances the upper number indicates the number
of times algorithm H proved optimality, while the other two numbers show
the performance of B+ and B−, respectively. Notice that either variant of
our branch-and-cut algorithm proved optimality in considerably more cases
than algorithm H and we got better results with B+.

Table 5.2 summarizes the average ub(B+)/ub(H) ratio over the ten in-
stances in each class, and also, when di�erent, the average ub(B−)/ub(H)
ratio. In almost all classes B+ gives at least as good results as algorithm H
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on average, the only exception being when n = 50, r = 20 and s = 15, but
B− is inferior to H in four classes consisting of hard instances. Moreover,
both B+ and B− improved on the best upper bounds in several cases. Com-
paring this table to Table 5.1 reveals that algorithm H found the optimum
in more cases than it was able to prove optimality.

The performance of our branch-and-cut algorithms can also be measured
by the ratio of the lower bound to the upper bound on every instance. Ta-
ble 5.3 depicts for each class the average lb(B+)/ub(B+) ratio and also, when
di�erent, the average lb(B−)/ub(B−) ratio. In either case the ratio decreases
when both the number of activities and the average slack tend to be high.
However, the gap between the lower and upper bounds is signi�cantly bigger
when the (S1, S2) inequalities are not used.

Finally, some details of the computations are provided in Table 5.4. For
technical reasons we give this data for algorithm B+ only. There are three
groups corresponding to the three problem sizes in terms of the number of
activities. Averages are taken over the 150 instances constituting a group.

In summary, our algorithms proved optimality in considerably more cases
than branch-and-price and we also improved on the previously known upper
bounds. Finally, it is advantageous to use (S1, S2) inequalities especially
when solving hard instances with a large number of activities and large slack.

Results on Tavares' instances

Tavares [99] proposed a non-linear program for the makespan minimization
problem (cf. Section 2.1.4). In his book, computational results are reported
for two test cases (Case A and Case B) with the following main characte-
ristics. There is only one resource with �nite constant internal capacity and
with no external capacity. For each activity j, rj = 0, hj = 1/pj, where pj
is the given integer minimum duration of activity j, and a1,j = 10pj. The
precedences between the activities are given by an acyclic directed graph.

In Case A there is a project network with 75 activities. However, the same
network gives rise to a series of problem instances by varying the capacity of
the single resource. The tested values are 120, 100, 80, 75, 70, 65 giving rise
to six distinct problem instances. In Case B the project network consists of
150 activities and there is a problem instance for each of the resource capacity
limits 240, 200, 180, 120. For more details of the instance generation we refer
to [100].

A lower bound on the minimum makespan is the length of the longest
path in the project network, denoted by lbp, which is computed after �xing
the activity durations to the given minimum values. Clearly, this bound
does not depend on the resource capacity limit. For all Case A instances
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2.1. VARIABLE INTENSITY ACTIVITIES 29

lbp = 27, whereas for all Case B instances lbp = 21. A resource based lower
bound , lbr, can be computed by dividing the total resource requirement of
the activities by the capacity of the resource, which was communicated to us
by J. Coelho [21]. Clearly, lbmax = max{lbp, lbr} is a valid lower bound on
the makespan.

We solved the makespan minimization problem by a binary search pro-
cedure with run-time limits τ1 = 3600 and τ2 = 600 seconds. Table 5.5
summarizes our computational results on Case A and Case B, respectively,
and also compare them to those of Tavares. Column rcap indicates the re-
source capacity, ub(Tav) is the upper bound obtained by Tavares [99] (the
starred values are optimal) and Opt is our upper bound which was always
optimal. Some details of computations are given in terms of the CPU time
(in seconds), the total number of Gomory fractional cuts added (#frac cut),
and the total number of (S1, S2) cuts added, #(S1, S2). Since CPLEX never
generated any �ow cover cuts, we do not indicate their number. In every case
algorithm B+ found a feasible solution for T = lbmax which, therefore, was
always optimal. In addition, the optimal solution was always found already
in the root node of the branch-and-bound tree. For all but the last instance
in Case A, J. Coelho obtained the same bounds as ours by using metaheuris-
tics [21]. However, we improved on the upper bounds of Tavares in �ve out
of ten cases in a short computation time.

Evaluation on PSPLIB

We also evaluated our makespan minimization procedure on the well-known
PSPLIB instances that were originally designed for the non-preemptive re-
source constrained project scheduling problem [70]. In each PSPLIB instance
there are 4 resources each having a �nite constant internal capacity and no
external capacity. Each activity j has a deterministic duration pj, which we
interpret as the inverse of the maximum intensity of activity j, that is, let
hj = 1/pj. In each time period of execution, activity j requires ρij units of
resource i. Therefore, we set aij = ρijpj, for each resource i.

We tested our algorithm on 30-activity (j30) and 60-activity (j60) in-
stances, respectively. On the j30 instances the run-time limit of the two
phases were set as τ1 = τ2 = 300 seconds, whereas on j60 instances we set
τ1 = 1800, τ2 = 600 seconds. We divide the j30 as well as j60 instances into
two subclasses: those on which the total CPU time (through all invocations
of B+) of the algorithm was less than 60 seconds and the rest. Thus we have
four classes: j30−, j60− (less than 60 seconds total CPU time), j30+, j60+

(more than 60 seconds total CPU time). Every j30 instace has been solved,
i.e., a feasible solution has been found, but fourteen j60+ instances have re-
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30 CHAPTER 2. RESOURCE LEVELING PROBLEMS

mained unsolved. Table 5.6 has four rows corresponding to these subclasses.
The second column indicates the number of instances in the class, and, when
di�erent, the number of instances solved. Moreover, the third and fourth
columns indicate the average as well as minimum ratio of the strongest lower
bound to the best upper bound over all solved instances in the class. We
measured the total CPU time and gathered the total search tree nodes, and
the total number of �ow, fractional and (S1, S2) cuts added through all invo-
cations of B+ while solving each instance. The averages of these data over
all solved instances in a class are given in the next �ve columns of the table.
Notice that the majority of instances were solved to optimality in less than
3 seconds. On hard instances the computation time can be 1 hour or more,
but was never more than 1.5 hours.

2.2 RCPSVP with feeding precedence constraints

Feeding precedence constraints extend traditional ones by allowing partial
overlap between pairs of activities. Such a constraint can model e.g. the �ow
of material or information between pairs of activities. It is described by a
triple (j, k, φ), where j and k are activities, and φ is a rational parameter
from the set [0, 1]. Let xjt and xkt denote the intensity of activity j and k,
respectively, in time period t. Then the constraint is satis�ed if (i) activity k
starts only after an φ fraction of activity j is completed, i.e.,

∑t
τ=rk

xkτ = 0

unless
∑t−1

τ=rj
xjτ ≥ φ, and (ii) for every time period t, the total fraction of

activity j until t is at least the total fraction completed of k until t, i.e.,∑t
τ=rj

xjτ ≥
∑t

τ=rk
xkτ . This concept is illustrated in Figure 2.4.
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Figure 2.4: Variable intensity activities connected by a feeding precedence
constraint.

In order to model feeding precedence constraints we have to modify the
MIP formulation (2.4). First of all, the set variables zjt, t ∈ {rj +pj, . . . , dj},
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2.2. RCPSVP WITH FEEDING PRECEDENCE CONSTRAINTS 31

has to be replaced by new sets of variables zφjt, t ∈ {rj + pφj , . . . , dj}, for
each distinct values of φ ∈ Fj := {φjk | ∃k such that (j, k, φjk) ∈ E}, and
pφj := dφ/hje is the minimum number of time periods to complete an φ

fraction of activity j. The meaning of zφjt is the following:

zφjt =

 1 if less than an φ fraction of activity j is processed
up to period t.

0 otherwise.

After these preliminaries, the MIP model for RCPSVP with feeding prece-
dence constraints is

min
∑
i∈R

T∑
t=1

cityit (2.15a)

subject to

dj∑
t=rj

xjt = 1, ∀j ∈ J , (2.15b)

`−1∑
t=rj

xjt ≥ φ(1− zφj`),
∀j ∈ J , φ ∈ Fj,
` ∈ {rj + pφj , . . . , dj},

(2.15c)

xkt ≤ hk(1− zφjt), ∀j ∈ J , (j, k, φ) ∈ E , (2.15d)∑̀
t=rj

xjt ≥
∑̀
t=rk

xkt,
∀j ∈ J , (j, k, φ) ∈ E ,
` ∈ {max{rj, rk}, . . . ,min{dj, dk}},

(2.15e)

zφjt ≥ zφj,t+1,
∀j ∈ J , φ ∈ Fj,
t ∈ {rj + pφj , . . . , dj − 1}, (2.15f)∑

j:rj≤t≤dj

aij · xjt ≤ bit + yit, ∀i ∈ R, t ∈ {1, . . . , T}, (2.15g)

0 ≤ xjt ≤ hj, ∀j ∈ J , t ∈ {rj, . . . , dj}, (2.15h)
0 ≤ yit ≤ b̄it, ∀i ∈ R, t ∈ {1, . . . , T}, (2.15i)

zφjt ∈ {0, 1}, ∀j ∈ J , φ ∈ Fj,
t ∈ {rj + pφj , . . . , dj}.

(2.15j)

The main di�erence between the two formulations (2.4) and (2.15) lies in
the modeling of precedence constraints. In particular, (2.15c) ensures that
zφj` = 1 as long as

∑`−1
t=rj

xjt < φ.
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32 CHAPTER 2. RESOURCE LEVELING PROBLEMS

2.2.1 Preprocessing

First, when 0 ∈ Fj, there is no need for the variables z0
jt, and these varia-

bles along with all constraints involving any of them can be eliminated. A
further reduction is possible by using the earliest and latest start times of
the activities, respectively. These parameters can be computed, as usual,
by �rst determining a topological order of the activities with respect to the
precedence constraints and then scanning the list forward and backward, re-
spectively. In the forward pass the earliest start time, est(k), of activity k is
determined by the formula:

est(k) = max{rk,max{est(j) + pφj | ∃j ∈ J , (j, k, φ) ∈ E}}.

Let pj = d1/hje. The latest start time, lst(j), of activity j is computed
in the backward pass as follows:

lst(j) = min{dj − pj + 1,min{lst(k)− pφj | ∃k ∈ J , (j, k, φ) ∈ E}}.

Using the values computed above, the release times and the deadlines of
the activities can be tightened. Namely, for any activity j, rj can be increased
to est(j). Moreover, dj can be decreased to lst(j) + pj, provided that there
exists (j, k, φ) ∈ E with φ = 1.0, in which case pφj = pj and the activity must
complete by lst(j) + pj. In addition, the variables zφjt has to be de�ned only
for t ∈ {rφj , . . . , d

φ
j }, where r

φ
j = est(j) + pφj and dφj = lst(j) + pφj − 1. If

φ < 1.0, we add the constraint
∑dφj

t=rj xjt ≥ φ to the model.
Since est(j) and lst(j) can be computed in linear time, the time complex-

ity of the reduction is linear in the size of the problem.
A necessary condition for the existence of a feasible solution is that

est(j) ≤ lst(j) for all j ∈ J . This condition is also su�cient when all yit are
unbounded. Therefore, preprocessing may provide important information
about the feasibility status of the problem at hand.

2.2.2 Valid inequalities

In order to generalize the results of Section 2.1 to feeding precedence con-
straints, �rstly we adapt the system (2.7), which was the starting point of
strengthening the LP relaxation. Let (j, k, φ) ∈ E be a feeding precedence
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2.2. RCPSVP WITH FEEDING PRECEDENCE CONSTRAINTS 33

constraint. The corresponding part of (2.15) is

dj∑
t=rj

xjt = 1, (2.16a)

0 ≤ xjt ≤ hj, ∀t ∈ {rj, . . . , dj} (2.16b)
t−1∑
τ=rj

xjτ ≥ φ · (1− zφjt), ∀t ∈ {rφj , . . . , d
φ
j } (2.16c)

zφjt ≥ zφj,t+1, ∀t ∈ {rφj , . . . , rk − 1} (2.16d)

zφjt ≥ zφj,t+1, ∀t ∈ {rk, . . . , dφj − 1} (2.16e)
dk∑
t=rk

xkt = 1, (2.16f)

0 ≤ xkt ≤ hk · (1− zφjt), ∀t ∈ {rk, . . . , dφj } (2.16g)

0 ≤ xkt ≤ hk, ∀t ∈ {dφj + 1, . . . , dk} (2.16h)∑̀
t=ri

xit ≥
∑̀
t=rj

xjt , ∀` ∈ {max{ri, rj}, . . . ,min{di, dj}}. (2.16i)

We de�ne the polytopes Kφ
j∗ and K

φ
∗k analogously to Kj∗ and K∗k (de�ned

in Section 2.1.6) as follows:

Kφ
j∗ = conv

{
(xj, zj) ∈ Rsj × {0, 1}d

φ
j−r

φ
j +1 | (xj, zj) satis�es (2.16a)− (2.16e)

}
,

Kφ
∗k = conv

{
(xk, z̃j) ∈ Rsk × {0, 1}d

φ
j−rk+1 | (xk, z̃j) satis�es (2.16e)− (2.16h)

}
.

Analogously to Lemma 2, one can prove the following, more general, result:

Lemma 6. [65]∗(xj, xk, z
φ
j ) ∈ Kφ

jk if and only if (xj, z
φ
j ) ∈ Kφ

j∗, (xk, z̃
φ
j ) ∈

Kφ
∗k, z

φ
jt = z̃φjt for t ∈ {rk, . . . , d

φ
j }, and (xj, xk, z

φ
j ) satis�es ineq. (2.16i).

Notice that the de�nitions of K∗k and that of Kφ
∗k are almost identical,

the only di�erence being that in the latter we use the variables zφjt instead of
the zjt. In contrast, the de�nition of Kj∗ and K

φ
j∗ di�er signi�cantly. So, we

focus on Kφ
j∗. In fact, Kφ

j∗ is equivalent to the polyhedron Kφ, which is the
convex hull of all the vectors (x, z) ∈ Rn × {0, 1}m−p satisfying the following
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34 CHAPTER 2. RESOURCE LEVELING PROBLEMS

conditions

n∑
t=1

xt = 1, (2.17a)

t−1∑
τ=1

xτ ≥ φ · (1− zt), ∀t ∈ {p+ 1, . . . ,m} (2.17b)

m∑
τ=1

xτ ≥ φ (2.17c)

zt ≥ zt+1, ∀t ∈ {p+ 1, . . . ,m− 1} (2.17d)
0 ≤ xt ≤ h, ∀t ∈ {1, . . . , n}, (2.17e)

where h = hj, p = pφj , m = dφj − rj + 1, and n = dj − rj + 1. In any vertex
(x̂, ẑ) of Kφ, ẑ is equal to precisely one of the following vectors in {0, 1}m−p:

z`t =

{
1, t ∈ {p+ 1, . . . , `},
0, t ∈ {`+ 1, . . . ,m}, ` ∈ {p, . . . ,m}.

A generalization of Lemma 3 can be easily derived:

Lemma 7. [65]∗A vector (x, z) ∈ Rn
+ × Rm−p

+ belongs to Kφ if and only if
the scalars

λ` =


1− zp+1 ` = p,
z` − z`+1, ` ∈ {p+ 1, . . . ,m− 1},
zm, ` = m.

are all non-negative, and there exist vectors x` ∈ [0, h]n, ∀` ∈ {p, . . . ,m},
such that

∑`
t=1 x

`
t ≥ φ,

∑n
t=1 x

`
t = 1, and

∑m
`=p λ`(x

`, z`) = (x, z).

In order to �nd a linear representation of Kφ, we de�ne a new network
�ow model Gφ(x, z). The set of nodes contains a unique source s, a unique
sink q, the pairs of nodes v1

t , v
2
t for t = p, . . . ,m, and the nodes wt for

t ∈ {1, . . . , n}. There is an arc from source s to each node v1
` with capacity

c(s, v1
` ) = λ`, ` = p, . . . ,m. There is an arc from v1

` to each wt with 1 ≤
t ≤ `, having capacity c(v1

` , wt) = h · λ`, and an arc (v1
` , v

2
` ) with capacity

c(v1
` , v

2
` ) = λ`(1− f). v2

` is connected to each wt with `+ 1 ≤ t ≤ n with an
arc of capacity c(v2

` , wt) = h ·λ`. Finally, each wt is connected to sink q with
an arc of capacity xt.

Using Lemma 7, we can show the following result:

Lemma 8. [65]∗(x, z) ∈ Kφ if and only if (x, z) satis�es (2.17a), (2.17d),
(2.17e), and the minimum capacity of an s− q cut in Gφ(x, z) is 1.
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2.2. RCPSVP WITH FEEDING PRECEDENCE CONSTRAINTS 35

Consequently, we can apply the same technique as in Section 2.1 to derive
a linear representation of Kφ. Let hr = φ− (p− 1) · h.

Theorem 3. [65]∗Kφ equals the set of vectors (x, z) in [0, h]n× [0, 1]m−p that
satisfy (2.17a)-(2.17e), and the following linear constraints:

hrzt1 + h
∑

t∈S1\{t1}

zt +
∑

t∈{1,...,t1}\(S1∪S2)

xt ≥ φ− h|S2|, (2.17f)

for every ∅ 6= S1 ⊆ {p + 1, . . . ,m}, S2 ⊂ {1, . . . , p}, |S1| + |S2| = p, and t1
being the greatest element of S1;

(φ− 1 + h|U2
` |)z` + h

∑
t∈U1

`

zt +
∑

t∈{1,...,n}\(U1
` ∪U

2
` )

xt ≥ φ, (2.17g)

for ` ∈ {p+1, . . . ,m}, U1
` ⊆ {p+1, . . . , `}, U2

` ⊆ {`+1, . . . , n}, h|U1
` ∪U2

` | ≤
1, and h|U2

` | ≤ 1− φ;

h
∑
t∈U

zt +
∑

t∈{1,...,m}\U

xt ≥ φ, (2.17h)

for U ⊆ {p+ 1, . . . ,m} with h|U | ≤ 1.

Proof. (sketch) The main idea of the proof is that by Lemma 8, if (x, z) /∈ Kφ,
but it satis�es (2.17a), (2.17d), (2.17e), then the minimum capacity of an s−q
cut of Gφ(x, z) is smaller than 1. Then one can show that the set of nodes
inducing a minimum capacity s− q cut takes one of the following forms:

• S = {s} ∪ {v1
i : i = p, . . . ,m} ∪ {v2

i : i = t1, . . . ,m} ∪ {wt : t ∈
{1, . . . , n}\(S1∪S2)}, where S1 and S2 satisfy the conditions of (2.17f).

• S = {s} ∪ {v1
i : i = p, . . . ,m} ∪ {v2

i : i = `, . . . ,m}} ∪ {wt :
t ∈ {1, . . . , n} \ (U1

` ∪ U2
` )}, where U1

` and U2
` satisfy the conditions of

(2.17g).

• S = {s} ∪ {v1
i : i = p, . . . ,m} ∪ {wt : t ∈ {1, . . . ,m} \ U}, where U

satis�es the conditions of (2.17h).

Notice that if φ = 1, then inequalities (2.17f) are equivalent to (2.8g)
when applied to Kj∗.

Proposition 3. Inequalities (2.17f) can be separated in O(n log n) time,
(2.17g) in O(n2) time, and (2.17h) in O(n) time.
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2.2.3 Implementation and computational evaluation

In order to assess the appropriateness of the MIP formulation and the po-
wer of the cutting planes developed in the present paper, we implemented
a Branch-and-Cut based solver for our problem along the lines as already
described in Section 2.1.8.

The Branch-and-Cut algorithm

In our Branch-and-Cut algorithm, we have assessed the merits of inequalities
(2.17f)-(2.17h), which are are valid for Kφ = Kφ

j∗, and the inequalities (2.8g)
valid for K = Kφ

∗k.
Preliminary computations had shown that the inequalities (2.17g) and

(2.17h) had been violated only very rarely, therefore, in the following tests
they were not used.

In our tests we compared two algorithms: B+ and B−. The algorithm
B+ separates the following cuts:

(i) for each Kφ
jk, the inequalities (2.17f) for K

φ
j∗, and the inequalities (2.8g)

adapted to Kφ
∗k = K∗j.

(ii) Flow Cover inequalities, as de�ned by [89].

(iii) Gomory's fractional cuts, see e.g., [83].

The cuts (2.17f) and (2.8g) will be called together (S1, S2) cuts.
The algorithm B− separates only the inequalities (ii) and (iii) above.
Both algorithms were implemented in C++ using the ILOG MIP Library

ver. 7.5 through the ILOG Concert Technology interface (these are products
of ILOG). Each algorithm started with preprocessing that sometimes eli-
minated hundreds of rows and columns. The inequalities in class (i) were
separated by our procedure, while those in classes (ii) and (iii) were separa-
ted automatically by the solver. Moreover, we used the built-in heuristic to
�nd feasible solutions during the search.

Test instances

Being not aware of any benchmark instances to the problem at hand, we
have modi�ed the instances of [24]. These instances were devised for the
problem with �nish-to-start precedence constraints (cf. Section 2.1). The
most important parameters are the following:

• number of activities, n,
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2.2. RCPSVP WITH FEEDING PRECEDENCE CONSTRAINTS 37

• number of resources, r,

• average slack, s, which is computed as s =
∑n

j=1(dj − rj + 1 − pj)/n,
where pj is the minimum time to complete activity j.

The processing times and the precedence relations were generated at
random. De Boer obtained a total of 450 instances by generating 10 random
instances for each combinations of the above parameters, where n ∈ {10, 20, 50},
r ∈ {3, 10, 20} and s ∈ {2, 5, 10, 15, 20}. We modi�ed each instance by set-
ting φjk = 0.5 for each pair of activities (j, k) connected by a precedence
constraint. That is, we replaced each �nish-to-start precedence constraint by
a feeding precedence constraint with an overlap of 0.5.

Results

We run each of the algorithms B+ and B− on each instance for 420 seconds
of CPU time on a PC with a 2.4GHz Pentium 4 processor and Windows 2000
operating system. When the time limit was hit, the search terminated and
the algorithms returned the best upper and lower bounds found so far. Let
ub+ and lb+ denote the best upper and lower bounds, respectively, found by
algorithm B+. Similarly, let ub− and lb− denote the best upper and lower
bounds determined by B−. The numerical tables of this section can be found
in Section 5.2.

Table 5.7 summarizes the average ub/lb values for both algorithms. Avera-
ges are taken over the ten instances in each class de�ned by the parameters
(n, r, s). For each class there are two numbers, the �rst one gives the perfor-
mance for algorithm B+, whereas the second one gives that of algorithm B−.
A value of 1 indicates that all instances in the class were solved to optimality
within the given time limit. As can be seen, algorithm B+ performs slightly
better than algorithm B−, except in the class with (n = 50, r = 20, s = 20).
In fact, in this class B+ did not obtain a feasible solution for 3 out of the 10
instances within the 420 CPU seconds time limit.

Table 5.8 compares the upper and the lower bounds obtained by the two
algorithms. Notice that in each class (n, r, s), the �rst row contains the
average ratio ub+/ub−, while the second row comprises the average lb+/lb−

value. When ub+/ub− < 1, the algorithm B+ found a better feasible solution
than B− on average. In contrast, when lb+/lb− < 1, then algorithm B+

proved a weaker lower bound than algorithm B− on average. Again, in most
cases the two algorithms found the same lower and upper bounds, and in
a few classes B+ outperformed B−, while the converse essentially happened
only in the class (n = 50, r = 20, s = 20).

dc_1311_16

Powered by TCPDF (www.tcpdf.org)



38 CHAPTER 2. RESOURCE LEVELING PROBLEMS

Finally, Tables 5.9 and 5.10 summarize the most important aspects of the
computations with algorithm B+ and B−, respectively. For B+ we provide
the average CPU time (in seconds), the average number of search-tree nodes,
and the average number of Flow Cover, Gomory's fractional and the (S1, S2)
cuts generated over the ten instances in each class (n, r, s). For the algorithm
B−, only average CPU times and average number of search-tree nodes are
provided.

Observe that adding our problem speci�c cutting planes is not always ad-
vantageous. The di�erence between the performance of the two algorithms is
minor. In contrast, for the special case with �nish-to-start precedence con-
straints discussed in Section 2.1, there was a clear cut between the results
obtained with and without problem speci�c cutting planes: it was evident
that by adding problem speci�c cuts we got better results. A partial ex-
planation can be that in case of feeding precedence constraints, the smaller
φ, the larger the overlap allowed between the pairs of activities j, k with
(j, k, φ) ∈ E , and the problem is less constrained.

Note however that we also run the two algorithms B+ and B− of this
section on the instances with �nish-to-start precedence constraints and found
that the results were inferior to those obtained in Section 2.1.8 using a dif-
ferent MIP formulation and problem speci�c cuts. However, we got better
results in terms of the ratio of the upper and lower bounds for the problem
with feeding precedence constraints than in case of �nish-to-start precedence
constraints using the best method. This hints that project scheduling with
feeding precedence constraints is an easier problem than that with �nish-to-
start precedence constraints.

2.2.4 Outlook to applications and extensions

The results of this section have been used in applications developed partly by
the author. In [80, 67] a planning system is described for supporting project
planning in a machining factory, and in [73, 103] a hierarchical planning and
scheduling system is sketched, where the long time plans were obtained by
the models and methods described above.

Since the publication of these results, feeding precedence constraints, al-
ong with our modeling approach, has received a considerable attention by
others, see e.g., [2, 6, 82, 92]. In addition, we have also used these ideas
for solving a large scale industrial job shop scheduling problem [28], where
our task was to devise an automatic scheduling system for the light-source
(incandescent lamps) production facility of General Electric in Nagykanizsa,
Hungary.
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Finally, our polyhedral results have been extended to arbitrary partial
orders on the arcs of a �ow set polyhedron by Atamtürk and Zhang [3].

2.3 Resource leveling in a machine environment

In this section we consider resource leveling problems in a dedicated parallel
machine environment. There are m machines, M1 through Mm, a �nite set
R of renewable resources along with target levels Li ∈ Q, i ∈ R, and a set of
n tasks, J , partitioned into m disjoint subsets J = J1 ∪J2 · · · ∪ Jm. Those
tasks in Ji have to be processed exclusively on machine Ji. Each task j has a
processing time pj, release time rj, a deadline dj (all integral numbers), and
resource requirements aij ∈ Q, i ∈ R. Preemption of tasks is not allowed.
Let T := (maxj∈J dj). No machine can process more than one task at a time,
but there is no limitation on the maximum parallel usage of the resources.
A schedule S speci�es the starting time of every task, i.e, S = (S1, . . . , Sn),
where Sj is the starting time of task j. A schedule is feasible if rj ≤ Sj and
Sj ≤ dj − pj hold for every task j, and the processing of any pair of tasks
j and j′ on the same machine is performed in disjoint time periods, i.e.,
[Sj, Sj + pj)∩ [Sj′ , Sj′ + pj′) = ∅ for j, j′ ∈ Nk with j 6= j′. For each resource
i ∈ R, the resource pro�le of schedule S is a mapping ASi : [0, T ] → Q with
ASi (t) :=

∑
j∈J :Sj≤t<Sj+pj aij. We will consider the following type of objective

functions:

f(AS) :=
∑
i∈R

∫ T

0

f̂i(A
S
i (t), Li)dt, (2.18)

where the functions f̂i : Q+ × Q+ → Q+ satisfy f̂i(x, y − z) = f̂i(x + z, y).
For the functions f̂i we will consider the functions flin and fquad de�ned in
(2.2) and (2.3), respectively.

A typical application area is workforce leveling, or smooth energy utili-
zation.

We begin with a brief literature review in Sect. 2.3.1. Then we study the
complexity of the one machine resource leveling problem in which the starting
times of all tasks on all but one machines are �xed. We will show that this
problem is NP-hard, but if the ordering of tasks on the remaining machine
is �xed, then the optimal starting times can be computed in polynomial time
(Sect. 2.3.2).

2.3.1 Previous work

One of the �rst heuristics for resource leveling is due to Burgess and Kille-
brew [15]. This procedure is applicable to CPM/PERT networks consisting
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40 CHAPTER 2. RESOURCE LEVELING PROBLEMS

of activities (nodes) and temporal relations between them (arcs). It aims
at �nding the best starting times of the activities by shifting them to the
right step-by-step in several rounds. This method has been extended to
the multi-project, multi-resource case by Woodworth and Willie [106]. The
above procedures cannot handle resource constraints. To the best of our kno-
wledge, the �rst constructive heuristic for the resource leveling problem with
resource constraints has been proposed by Neumann and Zimmermann [85],
where it is shown that the general resource leveling problem in which there
are precedence constraints between the tasks is NP-hard in the ordinary
sense. A local search heuristic and an exact method is evaluated in [86]. The
computational results of the exact method are limited to instances with 20
tasks only. In Ballestin et al [5], resource leveling is applied in make-to-order
manufacturing (but without resource constraints). For a recent review of
resource constrained project scheduling, see [49]. Further information on the
topic, including several models and algorithms, can be found in [25].

There is a considerable literature on machine scheduling with additional
resources. Blazewicz et al. [9] propose a classi�cation scheme and provide
several complexity results for machine scheduling under resource constraints.
For a more comprehensive overview and references, see the textbook [8]. Kel-
lerer and Strusevich [62, 63] consider dedicated parallel machines and one or
more additional resources under various assumptions. However, in all these
works resources occur only in the constraints of the problem, and the ob-
jective function is related to the completion times of the jobs. Caramia and
Dell'Olmo [17] discuss various resource leveling problems, where tasks have
unit length and instead of machines, there is an incompatibility relation bet-
ween the tasks such that only compatible tasks may be executed in parallel.
The authors discuss the computational complexity of several variants and
propose a heuristic algorithm for solving those problems. A heuristic algo-
rithm for scheduling workers of di�erent skills is presented in Valls et al. [102],
where one of the objectives is to minimize the deviation of resource usage
from the average load.

2.3.2 The one machine resource leveling problem

Suppose the starting times of the tasks on all but one machine are �xed,
and we want to solve the resource leveling problem by �nding the optimal
sequence and starting times for the set of tasks J1 assigned to the remaining
unscheduled machine. Let minj∈J rj = v1 < v2 < · · · < vK < vK+1 =
maxj∈J dj be the set of time points when some job starts or �nishes in the
�xed part of the schedule augmented with the minimum job release date
and the maximum deadline. Clearly, the resource usage for all resources is
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2.3. RESOURCE LEVELING IN A MACHINE ENVIRONMENT 41

constant in each interval [vk, vk+1), and let F v
i (k) denote the free capacity of

resource i ∈ R in this interval, i.e., F v
i (k) := Li−

∑
j∈J\J1.Sj≤vk<Sj+pj aij. In

the Single Machine Resource Leveling Problem (SMRLP), a feasible schedule
S1 of the tasks in J1 is sought such that an objective function

f(AS1) :=
∑
j∈J1

K∑
k=1

∆(Sj, Sj + pj, vk, vk+1)
∑
i∈R

f̂i(aij, F
v
i (k)) (2.19)

is minimized, where ∆(`1, u1, `2, u2) := max{0,min{u1, u2} − max{`1, `2}}
is the size of the intersection of two intervals [`1, u1) and [`2, u2). Since
f̂i(aij, F

v
i (k)) = f̂i(aij +

∑
j′∈J\J1:Sj′≤vk<Sj′+pj′

aij′ , Li) by the assumption on

f̂i, (2.19) is equivalent (2.18) for the problem SMRLP (the Sj are �xed for
j ∈ J \ J1). We can de�ne flin and fquad using f̂`(x, y) = wi max{0, x − y}
and f̂i(x, y) = w`(x− y)2, wi ≥ 0, respectively.

Proposition 4. [29]∗SMRLP is NP-complete in the strong sense both for
flin and fquad even if a feasible schedule exists.

Proof. Throughout this proof we assume that there is only one resource, and
thus the subscript of the resource is omitted. In order to prove that SMRLP
belongs to NP, a non-deterministic algorithm need only guess a schedule S,
and check in polynomial time whether S is feasible and has value at most U .
The feasibility of S for an instance I can certainly be veri�ed in polynomial
time. We give an algorithm to compute the value of flin or fquad on S.
That is, for each task j, determine those intervals [vk, vk+1) with non-empty
intersection with [Sj, Sj +pj) in O(K) time. Then for each of these intervals,
determine the value max{0, aj − F v(k)} or (aj − F v(k))2 and multiply it
with the size of the intersection, which is min{Sj + pj, vk+1} −max{Sj, vk}.
Adding up these values gives the objective function value on S.

To show that SMRLP is NP-hard, we give a polynomial time Turing
reduction from 3-Partition to SMRLP.
3-Partition

Instance: A set E consisting of 3q elements, a size s(e) ∈ Z+ for each
element in E, and a bound B ∈ Z+ such that B/4 < s(e) < B/2 for each
e ∈ E.
Question: Can E be partitioned into q disjoint sets E1, E2, . . . , Eq such
that each Ei contains three elements of E, and such that, for 1 ≤ i ≤ q,∑

e∈Ei s(e) = B ?
For an instance of 3-Partition, the corresponding instance of SMRLP

consists of 4q−1 tasks, one machine and one resource. There is a one-to-one
correspondence between the �rst 3q tasks and the elements of E. For e ∈ E,
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42 CHAPTER 2. RESOURCE LEVELING PROBLEMS

pe = s(e), re = 0, de = q(B + 1) − 1, ae = 1. All of the remaining q − 1
tasks have processing time 1, resource requirement 2, earliest start time 0
and deadline q(B + 1)− 1. The free capacity of the resource is 1, except in
the time periods [`(B+ 1)− 1, `(B+ 1)), for 1 ≤ ` < q, in which it is 2. This
can be encoded by 2q− 1 intervals, i.e., v2`−1 = `(B+ 1)− 1, v2` = `(B+ 1),
F v(2` − 1) = 1, and F v(2`) = 2 for 1 ≤ ` < q, and F v(2q − 1) = 1. Since
the total processing time of all tasks is q(B+ 1)− 1, any sequence of tasks is
feasible. Finally, the answer is 'YES' to the instance of 3-Partition if and
only if the corresponding instance of SMRLP has a feasible solution of value
0.

A special case of SMRLP is when a total ordering of the tasks on the
unscheduled machine is given and the optimum starting times respecting the
�xed ordering is sought. That is, without loss of generality, the tasks have to
be scheduled in the order 1 through n, where n = |J1|. Under this assump-
tion, we will prove that an optimal solution can be found in polynomial time.
We may assume that rj+pj ≤ rj+1 and that dj ≤ dj+1−pj+1 for 1 ≤ j ≤ n−1.
The cost of starting task j in time point t can be speci�ed by a closed-form
expression as ĉj(t) =

∑K
k=1 ∆(t, t + pj, vk, vk+1)

∑
i∈R f̂i(aij, F

v
i (k)). This

function is de�ned for t ∈ [rj, dj − pj], it is piecewise linear and continuous
with at most 2K breakpoints, since ĉj may have a breakpoint when task j
starts or completes at some time point vk.
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Figure 2.5: Illustration for the example SMRLP problem.

Example. There are 2 machines, a single resource of capacity 3, and 5 jobs,
J1 through J5, with processing times p1 = p5 = 3, p2 = 1, p3 = p4 = 2,
and resource requirements a1 = a2 = a3 = 2, a4 = 1, a5 = 3. Moreover,
rj = 0 and dj = 7 for every job j and w1 = 1. Jobs J1 and J2 are assigned
to the �rst machine, while jobs J3, J4 and J5 to M2. Suppose the schedule
of M2 is �xed as in Fig. 2.5 (a). The height of the rectangles indicate the
requirements from the single resource. However, the schedule of M1 is not
�xed, but J1 and J2 have to be processed in this order. Fig. 2.5 (b) depicts
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2.3. RESOURCE LEVELING IN A MACHINE ENVIRONMENT 43

the free capacity of the resource over time with fat horizontal line segments,
as well as the functions ĉ1 and ĉ2 for the flin objective function.

Let fj(t) be the minimum cost when the problem is restricted to the �rst
j tasks and task j starts not later than time t. We de�ne fj(t) recursively
by using an auxiliary function, gj(t). That is,

f1(t) = min
r1≤t′≤min{t,d1−p1}

ĉ1(t′), for t ≥ r1

gj(t) = fj−1(t− pj−1) + ĉj(t), for j = 2, . . . , n, t ≥ rj,

fj(t) = min
rj≤t′≤min{t,dj−pj}

gj(t
′), for j = 2, . . . , n, t ≥ rj.

Clearly, fj is decreasing, i.e., fj(t1) ≥ fj(t2) for t1 ≤ t2 by de�nition. The
overall optimum objective function value is given by fn(dn − pn). We have
to prove that the optimum solution can be computed in polynomial time in
the input length. It su�ces to show that every function fj is piecewise linear
with a polynomial number of line segments in the input length, see Fig. 2.5
(c).

Proposition 5. [29]∗The functions fj and gj are piecewise linear and con-
tinuous.

Proof. Apply induction on j and use the fact that the sum of piecewise linear
continuous functions is piecewise linear and continuous.

Proposition 6. [29]∗Let uj and hj be the number of line-segments of the
graph of fj(t) and ĉj(t), respectively. Then uj ≤ uj−1 + hj.

Proof. The claim clearly holds for f1(t). By induction, suppose that fj−1(t)
satis�es the claimed property, and verify it for fj(t). Since the graph of
fj−1(t − pj) and ĉj(t) consists of uj−1 and hj line-segments, respectively,
gj(t) has at most uj−1 + hj line-segments. Let s1 < s2 < · · · , < sK′ be
the breakpoints between the line-segments of gj(t). Starting with s1 and s2,
we determine fj(t) between the consecutive pairs of breakpoints. Clearly,
fj(rj) = gj(rj) and suppose fj(t) is determined until sk. We distinguish
between two cases:

• fj(sk) ≤ gj(sk+1). Since gj(t) is linear and continuous on [sk, sk+1] and
fj(sk) ≤ gj(sk) by de�nition, we have fj(t) = fj(sk) for t ∈ (sk, sk+1].

• fj(sk) > gj(sk+1). We know that fj(sk) ≤ gj(sk) by de�nition. If
gj(sk) = fj(sk), then on the interval [sk, sk+1], fj(t) = gj(t). Otherwise,
we must have gj(sk) > fj(sk). Then, since both functions fj(t) and
gj(t) are piecewise linear and continuous, there exists a unique time
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44 CHAPTER 2. RESOURCE LEVELING PROBLEMS

point t1 ∈ (sk, sk+1) such that gj(t1) = fj(t1). Then fj(t) = fj(sk)
for t ∈ (sk, t1], and fj(t) = gj(t) for t ∈ (t1, sk+1]. Hence, t1 is a new
breakpoint, but sk will not be a breakpoint of fj, since gj(sk) > fj(sk)
and both functions are continuous.

In all cases, the number of breakpoints of the graph of fj until sk+1 is not
more than that of gj, which is at most uj−1 + hj.

Theorem 4. [29]∗fn(dn − pn) can be computed in O(nK) time.

Proof. We proceed by induction. First notice that in order to determine ĉj
for any j ∈ J1, it su�ces to evaluate it in its breakpoints, which can be
accomplished in O(K) time. Therefore, f1 can be computed in O(K) time.
Now consider fj. Since both gj and fj has at most

∑j
i=1 hi breakpoints, and

hi ≤ 2K, fj can be computed in O(jK) time, and the statement follows.

In order to recover the optimum solution, we have to keep all of the fj,
represented by (breakpoint, value) pairs. Then working backward, we can
�nd the starting times of the tasks in the optimal solution.

The single machine resource leveling problem is repeatedly solved in a
branch-and-bound procedure which was designed for the m-machine pro-
blem with jobs dedicated to machines. It has several other ingredients, like
fast heuristics for �nding a good ordering of jobs on the machines, special
branching rules, etc. The method is very e�cient in practice both for the
linear and for the quadratic objective function, since it �nds better solutions
than CPLEX solver (ver 11.2) in a limited computation time, for details see
Drótos and Kis [29].

dc_1311_16

Powered by TCPDF (www.tcpdf.org)



Chapter 3

Machine scheduling with

non-renewable resources

In this chapter we will study machine scheduling problems amended with
non-renewable resource constraints. We will consider problems, where jobs
consume non-renewable resources. On the other hand, we will also tackle
problems, where the jobs produce some products, that we also call resources.
One reason for our terminology is that we will show that the two types of
problems are equivalent for certain objective functions.

Our primary focus is on computational complexity and approximability.
That is, we will identify the borderline between tractable and hard problems,
and we will describe approximation algorithms and also inapproximability
results.

In our terminology, we will follow Garey and Johnson [36]. Recall that
an optimization problem Π is given by a tripe (D,S, c), where D is the set
of problem instances , for each I ∈ D, S(I) is the set of feasible solutions (it
may be empty), and for each σ ∈ S(I), c(I, σ) ∈ R is the value of solution σ
(see [36], Section 6.1). If S(I) is not empty, then let σ∗(I) denote an optimal
solution, i.e., in case of minimization problems, c(I, σ∗) ≤ c(I, σ) for each
σ ∈ S(I), and in case of maximization problems, c(I, σ∗) ≥ c(I, σ) for each
σ ∈ S(I). The value of the optimal solution will be denoted by OPT (I) :=
c(I, σ∗(I)). An approximation algorithm A for an optimization problem Π
determines a feasible solution for each instance I of Π with nonempty S(I).
We require that A be of polynomial time complexity. For each instance I
of Π, let A(I) denote the value of the solution returned by A. The relative
error of A in case of minimization [maximization] problems is

RA(I) :=
A(I)

OPT (I)

[
RA(I) :=

OPT (I)

A(I)

]
.

45
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46 CHAPTER 3. NON-RENEWABLE RESOURCES

Notice that by this de�nition, RA(I) ≥ 1 both for minimization and maxi-
mization problems. The approximation ratio of A is

RA := min{r ≥ 1 | RA(I) ≤ r,∀I ∈ D}.

The approximability of an optimization problem Π can be measured by
the smallest r for which there exists an approximation algorithm A with
RA ≤ r. Notice that r may not be a constant, and may depend on some
parameters of the problem instances. Approximation schemes play a central
role in the theory of approximation algorithms. A set of algorithms {Aε}ε>0

constitutes a polynomial time approximation scheme (PTAS) for an optimi-
zation problem Π if RAε ≤ 1 + ε for each ε > 0. Notice that each Aε must
be of polynomial time complexity on the instances of Π. If, in addition, each
Aε of the scheme has polynomial time complexity in 1/ε as well, then we say
that {Aε}ε>0 is a fully polynomial time approximation scheme (FPTAS). A
very useful tool for proving the existence/non-existence of approximation al-
gorithms with given properties for an optimization problem is the application
of approximation preserving reduction. The main de�nitions are summarized
in Section 5.4 of the Appendix.

In Section 3.1 we will study the relationships between three classes of op-
timization problems: (i) single-machine scheduling problems with resource
consuming jobs, (ii) single-machine scheduling problems with resource pro-
ducing jobs, and (iii) knapsack problems. We will provide approximation
preserving reductions between these problem classes. With the help of these
reductions, we obtain approximation algorithms and inapproximability re-
sults for various special cases of the scheduling problems.

In Section 3.2 we describe positive and negative results on the approxi-
mability of parallel machine scheduling problems with the makespan and the
maximum lateness objective, respectively.

The results of this section are based on the papers Drótos and Kis [30],
Györgyi and Kis [42], Györgyi and Kis [43], Györgyi and Kis [44], Kis [66],
Györgyi and Kis [45].

3.1 Single-machine problems

In this section we consider single-machine problems involving some non-
renewable resources. The primary focus is on approximation preserving re-
ductions between scheduling problems and variants of the knapsack problem.
Firstly, we de�ne the scheduling problems as well as the variants of the knap-
sack problems that we will use later.
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3.1. SINGLE-MACHINE PROBLEMS 47

3.1.1 Resource Scheduling Problems

In this section we de�ne the two resource scheduling problems, the Delivery
tardiness problem (see [30]) and theMaterial consumption problem (see [19]).

In the Delivery tardiness problem (DTP r
q ) we have a single machine, a

�nite set of n jobs, and a set of r materials produced by the jobs. The machine
can perform only one job at a time, and preemption is not allowed. Job Jj,
j ∈ {1, . . . , n}, has a processing time pj ∈ Z+, and produces some materials,
which is described by an r-dimensional non-negative vector aj ∈ Zr+. There
are due dates along with required shipments, i.e., pairs (u`, b`) with u` ∈ Z+,
and b` ∈ Zr+, ` = 1, . . . , q, and 0 ≤ u1 < · · · < uq. The solution of the
problem is a sequence σ of the jobs. The starting time of the ith job is then
Sσ(i) =

∑i−1
k=1 pσ(k). A shipment (u`, b`) is met by S, if the total production of

those jobs �nishing by u` is at least b̃` :=
∑`

k=1 bk, i.e.,
∑

(j : Sj+pj≤u`) aj ≥ b̃`
(coordinate wise), otherwise it is tardy. Let C`(S) be the earliest time point
t ≥ 0 with

∑
(j : Sj+pj≤t) aj ≥ b̃`. The tardiness of a shipment is T`(S) :=

max{0, C`(S) − u`}. The maximum tardiness of a schedule is Tmax(S) :=
max` T`(S). The objective is to minimize the maximum tardiness. We denote
this problem by 1|dm = r|Tmax, where 'dm = r' indicates that the number of
products is �xed to r (not part of the input). An important special case of
this problem is when there are only two time points (0 ≤ u1 < u2) when some
product is due (denoted by 1|dm = r, q = 2|Tmax). Since Tmax can be 0 in
an optimal solution, we will consider the shifted delivery tardiness objective
function de�ned as T smax := Tmax + const, where const is a positive constant,
depending on the problem data. This problem was �rst introduced in Drótos
and Kis [30].

In the Material consumption problem (MCP r
q ) there is a single machine,

a �nite set of n jobs, and a set of r materials consumed by the jobs. The
machine can perform only one job at a time, and preemption is not allowed.
There are n jobs Jj, j = 1, . . . , n, each characterized by two numbers: pro-
cessing time pj and quantities consumed from the resources aj ∈ Zr+. The
resources have initial stocks, and they are replenished at given moments in
time, i.e., there are q pairs (u1, b̃1), . . . , (uq, b̃q), with 0 = u1 < · · · < uq
being the time points and the b̃` ∈ Zr+ the quantities supplied. A schedule
S speci�es a starting time for each job such that the jobs do not overlap
in time, and the total material supply up to the starting time of every job
is at least the total request of those jobs starting not later than Sj, i.e.,∑

(` : u`≤Sj) b̃` ≥
∑

(j′ : Sj′≤Sj)
aj′ (coordinate wise). The objective is to mini-

mize the makespan de�ned as the maximum job completion time. We denote
this problem by 1|nr = r|Cmax, where 'nr = r' indicates that the number of
the raw materials is �xed to r (not part of the input). An important spe-
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cial case of this problem is when there are only two time points (u1 = 0 and
u2 > 0) when some resource is supplied (1|nr = r, q = 2|Cmax). This problem
was �rst introduced by Carlier [19]. For shorter notation, let b` :=

∑`
k=1 b̃k.

Assumption 1. In both problems
∑

` b̃` =
∑

j aj holds without loss of gene-
rality.

3.1.2 Knapsack Problems

In the (basic) Knapsack Problem (KP ) there is a set of n items j with pro�t
vj and weight wj. One has to select a subset of the items with the largest
total pro�t so that the total weight of the selected items is at most a given
constant ('capacity') b′. Formally:

OPTKP := max
n∑
j=1

vjxj (3.1)

n∑
j=1

wjxj ≤ b′ (3.2)

xj ∈ {0, 1}, j = 1, . . . , n. (3.3)

We assume that wj ≤ b′ for each item j. We will use the notation OPTKP
for the optimal value of this problem.

In the r-dimensional Knapsack Problem (r-DKP) each item has r weights
and there are r constraints:

OPTr−DKP := max
n∑
j=1

vjxj (3.4)

n∑
j=1

wijxj ≤ b′i, i = 1, . . . , r (3.5)

xj ∈ {0, 1}, j = 1, . . . , n. (3.6)

The optimum value of this problem is denoted by OPTr−DKP .

3.1.3 Previous work

Scheduling problems with producer jobs only is also known as scheduling
of inventory releasing jobs , and this model has been recently proposed by
Boysen et al. [10]. They studied the problem of minimizing inventory levels
while satisfying all the external demands on time (there, the delivery requests
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have strict deadlines). They proved the NP-hardness of the problem and
proposed polynomial algorithms for several variants.

Scheduling of jobs consuming some non-renewable resources (like raw ma-
terials, money, energy, etc.) is an old problem class: the original model was
described by Carlier [19] and by Carlier and Rinnooy Kan [18] in the early
80's. Since then several authors studied scheduling problems with jobs con-
suming non-renewable resources (e.g. [96], [101], [84], [41], [11], [35], [12]. In
particular, Carlier and Rinnooy Kan [18] de�ned the problem with prece-
dence constraints, but without machines, and derived polynomial algorithms
for various special cases. Carlier [19] showed algorithmic and complexity
results. Slowinski [96] studied problems with preemptive jobs on parallel
unrelated machines with renewable and non-renewable resources. Toker et
al. [101] proved that the problem 1|nr = 1|Cmax reduces to the 2-machine
�ow shop problem provided that the resource has a unit supply at each time
period. Grigoriev et al. [41] studied problems with one machine and pre-
sented some basic complexity results and simple approximation algorithms.
Gafarov et al. [35] complemented the �ndings of Grigoriev et al. by additio-
nal complexity results. Neumann and Schwindt [84] studied general project
scheduling problems with inventory constraints in a more general setting,
where jobs (activities) may consume as well as produce non-renewable re-
sources. In case of a single machine, the problem was proved NP-hard in
the strong sense by Kellerer et al. [59], and for minimizing the maximum
stock level, the authors proposed three di�erent approximation algorithms
with relative error 2, 8/5, 3/2, respectively. Briskorn et al. [11] provided
complexity results for several variants, while Briskorn et al. [12] described
an exact algorithm for minimizing the weighted sum of the job completion
times on a single machine.

Knapsack problems are among the most-studied problems in combinato-
rial optimization. There are many variants and methods of all kinds have
been devised over the years to get some solutions, see e.g. the book of Kel-
lerer et al. [61] for an excellent overview. These problems have played an
important role in the design of algorithms for scheduling problems, see e.g.,
[76], [72], [98], [32] to mention but a few examples.

3.1.4 Summary of main results

The reductions between the di�erent problems proved subsequently are sum-
marized in Figure 3.1 and Table 3.1. In the �gure, a directed arc from
problem Π1 to problem Π2 labeled by some reduction indicates that Π1 is
reducible to Π2 by that kind of reduction. In the table we summarize the
implications in terms of algorithms of the reductions among the problems.
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r-DKP

MCPr2 DTPr2

FPTASFPTAS
Strict

Strict

Strict

Strict

MCPrq DTPrq

Strict

Strict

(a) (b)

Figure 3.1: Summary of approximation preserving reductions between sche-
duling and knapsack problems.

The most important results are: (i) There is a Strict reduction from the pro-
blem of minimizing the makespan with consumer jobs, and the scheduling
problem with producer jobs and the shifted delivery tardiness objective, and
vice versa. This �nding allows us to convert approximation algorithms for
one type of scheduling problems to the other (part (a) of the �gure). (ii) If
there are only two supply periods, and a single raw material, then scheduling
of consumer jobs to minimize the makespan admits a Strict reduction to the
basic knapsack problem (part (b) of the �gure), which yields a PTAS as well
as an FPTAS for the former problem, i.e., we can use any approximation
algorithm devised for the knapsack problem to solve the scheduling problem.
(iii) There is no FPTAS for the scheduling problem with consumer jobs and
at least two non-renewable resources unless P = NP , because there is an
FPTAS reduction from the multi-dimensional knapsack problem to the sche-
duling problem (part (b) of the �gure), and the multi-dimensional knapsack
problem does not admit an FPTAS unless P = NP if the number of dimen-
sions is at least two. (iv) The problems MCP const

const and DTP
const
const both admit

a PTAS. (v) The problem 1|nr = 1, q = 2|
∑
wjCj admits an FPTAS, but if

q is part of the input, then no FPTAS exists, unless P = NP .

3.1.5 Strict reductions between MCP r
q and DTP r

q

In this section we prove that there is a Strict-reduction between DTP r
q and

MCP r
q in both directions. To illustrate the main idea, we present an ex-

ample in Figure 3.2. In the top, there is a schedule for an instance of the
DTP 1

4 problem, and in the bottom, a schedule for the MCP 1
4 problem. The

rectangles are the jobs, where the horizontal width indicates the processing
time, and the vertical height the amount of resource produced (DTP pro-
blem), or the material required (MCP problem). The two schedules consist
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Problem Result Source
MCP 1

2 1|nr = 1, q = 2|Cmax FPTAS Section 3.1.6
MCP const

2 1|nr = const, q = 2|Cmax no FPTASa Section 3.1.7
MCP ∗2 1|nr, q = 2|Cmax no PTAS Section 3.1.8
MCP const

const 1|nr = const, q = const, rj|Cmax PTASb Section 3.1.8
1|nr = 1|

∑
wjCj no FPTAS Section 3.1.9

1|nr = 1, q = 2|
∑
wjCj FPTAS Section 3.1.9

DTP 1
2 1|dm = 1, q = 2|Tmax FPTAS Section 3.1.6

DTP const
2 1|dm = const, q = 2|Tmax no FPTASc Section 3.1.7

DTP ∗2 1|dm, q = 2|Tmax no PTAS Section 3.1.8
DTP const

const 1|dm = const, q = const|Tmax PTAS Section 3.1.8

aif nr is a constant of at least 2
bJobs may have release dates
cIf dm is a constant of at least 2

Table 3.1: Approximation schemes and unapproximability results for single-
machine problems.

of the same jobs, and the sequence in the bottom is just the reverse of that
in the top. The delay in the top indicates the late delivery by job Jj∗ with
respect to due date u3, whereas in the bottom, the same delay occurs before
job Jj∗ due to waiting for resource supply.

Lemma 9. [43]∗Given an instance ID = {n, q, (pj, aj)nj=1, (u`, b̃`)
q
`=1} of the

Delivery tardiness problem. De�ne an instance IM = {n, q, (pj, aj)nj=1, (u
′
`, b
′
`)
q
`=1}

of the Material consumption problem:

u′` = uq − uq+1−`

b′` = b̃q+1−`
` = 1, . . . , q.

Then, if σ is a sequence of jobs giving a maximum delivery tardiness of
T σmax for ID, then scheduling the jobs in reverse σ order gives a schedule of
makespan uq + T σmax for instance IM .

Proof. Without loss of generality, σ = (J1, . . . , Jn), and then the reverse
order of jobs is σ−1 = (Jn, Jn−1, . . . , J1). For the problem instance I ′, let
S(σ−1) be the schedule obtained by scheduling the jobs in the order of σ−1,
and scheduling each job to start as early as possible while respecting the
resource constraints. By contradiction, suppose the makespan C

S(σ−1)
max of

schedule S(σ−1) is larger than uq + T σmax (notice that uq is the last due-
date of problem instance I of the Delivery tardiness problem). Then by the
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t

S

u1 u2 u3 u4

Jj∗

delay

1. shipment2. shipment 3. shipment 4. shipment

Cumulative demand

Cumulative

production

t

S

u′2 u′3 u′4u′1 Cmax

Jj∗

delay Cumulative supply

Cumulative

consumption

1. supply 2. supply 3. supply 4. supply

Figure 3.2: Corresponding schedules for the DTP (top) and MCP (bottom)
problems.

de�nition of the makespan, there exist a resource supply date u′`∗ and a job
index j∗ such that

CS(σ−1)
max = u′`∗ +

j∗∑
j=1

pj (3.7)

Take the earliest such `∗ and the corresponding index j∗. Since job Jj∗ is
scheduled at the earliest possible time, we also have

n∑
j=j∗+1

aj ≤
`∗−1∑
`=1

b′` (3.8)

n∑
j=j∗

aj >
`∗−1∑
`=1

b′` (3.9)
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Notice that if `∗ = 1, then since u′1 = 0 by de�nition, it follows that j∗ = n
(the makespan is the sum of processing times of all the jobs, since no job
may start before time 0), and the right-hand-sides in (3.8), and (3.9) are 0.
Since

∑
` b̃` =

∑
j aj, (3.8) and (3.9) are equivalent to

j∗∑
j=1

aj ≥
q∑

`=`∗

b′` =

q∑
`=`∗

b̃q+1−` =

q−`∗+1∑
`=1

b̃` (3.10)

j∗−1∑
j=1

aj <

q∑
`=`∗

b′` =

q−`∗+1∑
`=1

b̃` (3.11)

This means that in the instance I of the Delivery tadiness problem, the �rst
j∗ − 1 jobs are not enough to satisfy the demand of the �rst q − `∗ + 1 time
periods. Since u′`∗ = uq − uq−`∗+1, we have

uq + T σmax < CS(σ−1)
max = u′`∗ +

j∗∑
j=1

pj = uq − uq−`∗+1 +

j∗∑
j=1

pj,

where the �rst inequality follows from our indirect assumption, and the se-
cond and third equations from the de�nition. However, this implies

T σmax <

j∗∑
j=1

pj − uq−`∗+1.

Therefore, schedule σ for instance ID of the Delivery tardiness problem can-
not have maximum tardiness T σmax, a contradiction.

Lemma 10. [43]∗Given an instance IM = {n, q, (pj, aj)nj=1, (u`, b̃`)
q
`=1} of the

Material consumption problem. De�ne an instance ID = {n, q, (pj, aj)nj=1, (u
′
`, b
′
`)
q
`=1}

of the Delivery tardiness problem:

u′` = uq − uq+1−`

b′` = bq+1−`
` = 1, . . . , q.

Then, if S is a schedule with a makespan of CS
max for IM , then scheduling

the jobs in reverse order (without any delays among them) gives a schedule
of maximum tardiness at most CS

max − uq for instance ID.

Proof. Suppose S completes the jobs in the order σ = (J1, . . . , Jn). The
reverse order is σ−1 = (Jn, . . . , J1). Let S(σ−1) be the schedule corresponding
to the reverse order σ−1, i.e., Sj(σ−1) :=

∑n
j′=j+1 pj′ . By contradiction,
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suppose Tmax(S(σ−1)) > CS
max− uq. By the de�nition of Tmax(S(σ−1)), there

exist `∗ ∈ {1, . . . , q}, and some job j∗ such that

Tmax(S(σ−1)) =
n∑

j=j∗

pj − u′`∗ .

Moreover,

n∑
j=j∗

aj ≥
`∗∑
`=1

b′` (3.12)

n∑
j=j∗+1

aj <
`∗∑
`=1

b′` (3.13)

Observe that

CS
max − uq < Tmax(S(σ−1)) =

n∑
j=j∗

pj − u′`∗ =
n∑

j=j∗

pj − (uq − uq+1−`∗),

which implies

CS
max < uq+1−`∗ +

n∑
j=j∗

pj. (3.14)

In addition (3.12) and (3.13) and the assumption
∑

` b̃` =
∑

j aj imply

j∗−1∑
j=1

aj ≤
q∑

`=`∗+1

b′` =

q∑
`=`∗+1

b̃q−`+1 =

q−`∗∑
`=1

b̃` (3.15)

j∗∑
j=1

aj >

q∑
`=`∗+1

b′` =

q−`∗∑
`=1

b̃` (3.16)

However, (3.15) and (3.16) mean that the �rst j∗ jobs in instance I of the
Material consumption problem require more resource than that supplied in
the �rst q− `∗ supply periods. Therefore, the makespan of the schedule is at
least uq−`∗+1 +

∑n
j=j∗ pj, which is more than the makespan of schedule S by

(3.14), a contradiction.

Corollary 3. [43]∗Let (ID, IM) be corresponding instances of the Delivery
tardiness and the Material consumption problems. Then the optimum value
T ∗max(ID) of the Delivery tardiness problem equals C∗max(IM)−uq, the optimum
value of the Material consumption problem minus uq, where uq is the last
material shipment date in IM .
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Now we turn to reductions. Since Tmax may be 0 in an optimal solution
to DTP r

q , we shift the objective function by a positive constant depending
on the problem data: T smax := max` T` + uq − u1, where u1 and uq are the
�rst, and the the last due-date in the DTP r

q problem instance, respectively.
Now we prove the following:

Theorem 5. [43]∗There is a Strict-reduction from the Material consumption
problem to the Delivery tardiness problem, and vice versa, there is a Strict-
reduction from the Delivery tardiness problem to the Material consumption
problem.

Proof. Firstly, we show that there is a Strict-reduction fromMCP r
q toDTP

r
q .

We use the transformation of Lemma 10 to construct function f which maps
instances of MCP r

q to that of DTP r
q . Clearly, the transformation can be

computed in linear time in the size of any instance IM of MCP r
q . Let IM

be any instance of MCP r
q , and let 0 = u1 < u2 < · · · < uq be the dates

when some resource is supplied. Then in the corresponding instance ID :=
f(IM) of DTP r

q , the due-dates are u′1 = uq − uq = 0, u′2 = uq − uq−1, . . . ,
u′q = uq − u1 = uq. Let σD be the order of jobs any solution of instance ID.
The inverse transformation g consists of reversing σD. Then, by Lemma 9
we have

Cmax(S(σ−1
D ))− uq + uq ≤ Tmax(S(σD)) + uq = T smax(σD) = (1 + ε)(T smax(ID))∗

= (1 + ε)(Tmax(ID)∗ + uq) = (1 + ε)((C∗max(IM)− uq) + uq),

where ε ≥ 0 is chosen such that T smax(σD) = (1 + ε)(T smax(ID))∗, and the
second equation follows from u′q = uq and u′1 = 0.

Now we prove that there is a Strict-reduction from DTP r
q to MCP r

q .
We use the transformation of Lemma 9 to construct the function f which
maps instances of DTP r

q to that of MCP r
q . Let ID be any instance of DTP r

q

with due-dates 0 ≤ u1 < · · · < uq. Then in the corresponding instance
IM := f(ID) of MCP r

q , u
′
1 = uq − uq = 0,. . . , u′q = uq − u1. Let σM be the

order of jobs in any solution to IM . The inverse transformation g reverses
the order of jobs in σM . We use Lemma 10 to derive

T smax(S(σ−1
M )) = Tmax(S(σ−1

M )) + uq − u1 ≤ Cmax(S(σD))− u′q + (uq − u1)

= (1 + ε)C∗max(IM) = (1 + ε)(T ∗max(ID) + u′q) = (1 + ε)(T ∗max(ID) + uq − u1),

where ε ≥ 0 is chosen such that Cmax(S(σD)) = (1 + ε)C∗max(IM).

As a consequence, if we manage to get some kind of approximation algo-
rithm from MCP r

q , then this yields immediately essentially the same algo-
rithm for DTP r

q with the shifted delivery tardiness objective, and vice versa.
Therefore, from now on, we deal with variants of MCP r

q only.
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3.1.6 Reductions between KP and MCP1
2

In this section we prove that there is a Strict-reduction from the problem
MCP 1

2 to the knapsack problem, and there is an FPTAS-reduction in the
opposite direction. Since every Strict-reduction is an FPTAS-reduction as
well, we can use the Strict-reduction to the knapsack problem to obtain an
FPTAS for MCP 1

2 by using any known FTPAS for the knapsack problem.
First, consider the Material Consumption Problem. Let S be a schedule

for 1|nr = 1, q = 2|Cmax (MCP 1
2 ). We say that a job j is assigned to the

time point u1 if and only if the total requirement of the jobs that start not
later than j in S is at most b1. Let P1(S) denote the sum of processing times
of these jobs and P2(S) denote the total processing time of the remaining
jobs. Clearly, P1(S) + P2(S) = P , where P :=

∑n
j=1 pj.

Observation 1. [43] Let S∗ be an optimal schedule for MCP r
2 . We have

i) C∗max = max{P1(S∗) + P2(S∗), u2 + P2(S∗)}.

ii) C∗max ≥ P and C∗max > u2.

Proof. Notice that

i) P1(S∗) ≥ u2 implies C∗max = P1(S∗) + P2(S∗) and P1(S∗) < u2 implies
C∗max = u2 + P1(S∗).

ii) C∗max ≥ P is obvious from the previous point, and C∗max > u2 holds
because of Assumption 1.

Lemma 11. [43] Consider the following two problems :

Knapsack Problem (KP): There are n items with pro�ts vj, item weights wj
(j = 1, . . . , n), and the knapsack has a capacity of b′.

Material consumption problem: 1|nr = 1, q = 2|Cmax (MCP 1
2 ) with proces-

sing times pj, resource requirements aj (j = 1, . . . , n), and supply dates
0 = u1 < u2, and amount of resource supplied b1 and b2 at u1 and u2,
respectively.

Suppose pj = vj, aj = wj (∀j ∈ J ), b̃1 = b′ and b̃2 =
∑

j aj− b̃1. Let OPTKP
denote the optimum value of KP, and C∗max that of the Material consumption
problem.
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i) If P1(S∗) < u2 for some optimal schedule S∗ of the scheduling problem,
then P1(S ′) < u2, C

∗
max = u2 + P2(S ′) and OPTKP = P1(S ′) for every

optimal schedule S ′.

ii) If P1(S∗) ≥ u2 for an optimal schedule S∗, then C∗max = P1(S ′)+P2(S ′) =
P for every optimal schedule S ′, and OPTKP ≥ u2.

Proof. i) Firstly, notice that P1(S ′) = P (S∗) for every optimal schedule
S ′, because if there were an optimal schedules S ′ such that P1(S∗) <
P1(S ′), then P2(S∗) > P2(S ′) would follow, and thus C∗max = Cmax(S∗) =
u2 + P2(S∗) > max{u2 + P2(S ′), P1(S ′) + P2(S ′)} = Cmax(S ′), which
contradicts the optimality of S∗. Since P2(S ′) = P − P1(S ′), C∗max =
u2 + P2(S ′) follows.

Consider an optimal schedule S∗. Pack the items to the knapsack that
correspond to the jobs assigned to u1 in schedule S∗. Since b′ = b̃1, this
is a feasible packing and the total pro�t is P1(S∗), therefore OPTKP ≥
P1(S∗).

It remains to prove OPTKP ≤ P1(S∗). Let K denote the set of the
packed items in an optimal solution of KP. Now we build a new schedule
S ′ by scheduling the jobs that correspond to the items in K in arbitrary
order from t = 0 without any gaps, and schedule the remaining jobs in
arbitrary order from t = max{u2, p(K)} without any gaps. Since b̃1 = b′,
S ′ is feasible, hence, Cmax(S ′) = max{u2 + P2(S ′), P1(S ′) + P2(S ′)} ≥
u2 + P2(S∗) = Cmax(S∗). Since P1(S ′) + P2(S ′) = P < u2 + P2(S∗), as
P1(S∗) < u2 by assumption, we must have Cmax(S ′) = u2 + P2(S ′), and
therefore, OPTKP = p(K) = P1(S ′) ≤ P1(S∗).

ii) The �rst part of the statement is trivial. For the second part consider
the schedule S∗. Pack those items into the knapsack that correspond to
the jobs assigned to u1 in schedule S∗. Since S∗ is a feasible schedule
and b′ = b1, this yields a feasible packing for KP of pro�t P1(S∗), and
thus OPTKP ≥ P1(S∗). Since P1(S∗) ≥ u2 by assumption, we deduce
OPTKP ≥ P1(S∗) ≥ u2.

The �rst main result of this section is a strict reduction from MCP 1
2 to

KP . That is, we show that any instance I of MCP 1
2 can be mapped to an

instance f(I) of KP in such a way that any solution y of f(I) can be mapped
back to a solution g(I, y) of MCP 1

2 with the property that the ratio of the
value of the solution g(I, y) and the value of an optimal solution to I is not
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K

OPTKP

a)

t

u1 u2P1
OPTKP = P ∗1 C∗max = u2 + P ∗2

Cmax

K J \ K

b1)

t

u1 u2P1
P ∗1

OPTKP
C∗max = P

Cmax

K J \ K

b2)

t

u1 u2 P1 OPTKP Cmax = C∗max = PP ∗1

K J \ K

Figure 3.3: The corresponding solutions of KP and MCP 1
2 . On the left: the

approximate and optimal solutions of KP (the height indicates the value of
a solution). On the right: the approximate and optimal solution of MCP 1

2

in case of a) P ∗1 < u2, b1) P ∗1 ≥ u2 > P1 and b2) P1, P
∗
1 ≥ u2. The

length of the red zigzag line equals OPTKP , that of the blue wavy line equals
OPTKP −

∑
j∈K pj, and the length of the green dashed line is P −OPTKP .

greater than the ratio of the optimum value of f(I) and the value of the
solution y. The idea of the transformation is shown in Figure 3.3. There is a
one-to-one correspondence between the jobs of the scheduling problem, and
the items of the corresponding instance of the knapsack problem. Moreover, if
K is the set of items packed into the knapsack in a feasible solution of theKP
problem instance, then the corresponding jobs are scheduled consecutively
from time 0 on, and the remaining jobs from time max{u2,

∑
j∈K pj} on. Let

Pk := Pk(g(I, y)) and P ∗k := Pk(S
∗) for k = 1, 2 where S∗ is an optimal

schedule to I. The three schedules on the right of Figure 3.3 depend on the
relations between P1, P ∗1 , and u2, and will be elaborated in the proof of the
next statement.

Theorem 6. [43] MCP 1
2 ≤Strict KP .

Proof. Firstly, we de�ne functions f and g. For a given instance I = {n,
(pj, aj)

n
j=1, (u`, b`)

2
`=1} ofMCP 1

2 , let f(I) := {n, (vj, wj)nj=1, b
′} be an instance

of KP with vj = pj, wj = aj, j = 1, . . . , n, and b′ = b1. For a given feasible
solution y of instance f(I) of KP, let K be the set of items that are packed
into the knapsack. De�ne a solution g(I, y) of the Material consumption
problem as follows: schedule the jobs that correspond to the items in K in
arbitrary order from time t = 0 without any gaps. De�ne p(K) :=

∑
j∈K vj
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which equals
∑

j∈K pj by the de�nition of the vj. Schedule the remaining
jobs in arbitrary order after max{u2, p(K)} without any gaps. Since b′ = b1,
g(I, y) is a feasible solution of the scheduling problem, and let Cmax denote
its makespan.

Let y be an approximate solution to f(I). It su�ces to prove that for any
solution y to the instance f(I) of KP, RMCP 1

2
(I, g(I, y)) ≤ RKP (f(I), y). Let

ε ≥ 0 be such that RKP (f(I), y) = 1/(1 − ε). Since RKP (f(I), y) ≥ 1, ε is
well de�ned, and ε < 1. It is enough to show that RMCP 1

2
(I, g(I, y)) ≤ 1 + ε,

since 1 + ε < 1/(1 − ε) for any 0 ≤ ε < 1. Let S∗ be an optimal schedule,
P ∗k := Pk(S

∗) for k = 1, 2. Let P1 := p(K), and P2 := P − P1. Using Lemma
11, we distinguish between two cases:

a) P ∗1 < u2: in this case C∗max = u2 +P ∗2 , and OPTKP = P ∗1 (see Figure 3.3a)
for illustration). By the de�nition of ε, P1 = (1 − ε)OPTKP . Therefore,
P2 = P − (1− ε)OPTKP . Since P ∗1 < u2 by assumption, we have Cmax =
u2 +P2 = u2 +P − (1− ε)OPTKP . Since P ∗2 = P −P ∗1 = P −OPTKP , we
have C∗max = u2+P−OPTKP , hence Cmax = C∗max+(1−(1−ε))OPTKP ≤
(1 + ε)C∗max.

b) P ∗1 ≥ u2: in this case C∗max = P ∗1 + P ∗2 = P , and OPTKP ≥ u2, thus
p(K) ≥ (1 − ε)u2 (see Figure 3.3 b1) and b2) for illustration). Then
P2 ≤ P − (1 − ε)u2. Notice that Cmax = max{P1 + P2;u2 + P2} by
Observation 1. Since P1 + P2 = P = C∗max, we only have to prove that
u2 +P2 ≤ (1+ε)C∗max: u2 +P2 ≤ u2 +P−(1−ε)u2 = P +(1−(1−ε))u2 ≤
(1 + ε)C∗max.

Finally, notice that both of the transformations f and g take linear time and
space in the size of I.

Corollary 4. [43] There is an FPTAS forMCP 1
2 in O(n·min{log n, log(1/ε)}+

(1/ε2) log(1/ε) ·min{n, (1/ε) log(1/ε)}) time and in O(n+ 1/ε2) space.

Proof. Since every Strict-reduction is an FPTAS-reduction and there is an
FPTAS for KP (see e.g. [53]) we can use Lemma 26 to obtain an FP-
TAS for MCP 1

2 . Since the currently best FPTAS for KP requires O(n ·
min{log n, log(1/ε)}+(1/ε2) log(1/ε)·min{n, (1/ε) log(1/ε)}) time and O(n+
1/ε2) space (see [60]), and the transformations f and g take linear time and
space, we have proved the complexity results.

Corollary 5. [43] There is an 3/2-approximation algorithm for MCP 1
2 of

time complexity O(n log n).
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t

u1 u2 = UKPvKP = P y
1

P ∗1 C∗max Cy
max

=

OPTKP

F J \ F

F

vKP

OPTKP

UKP

Figure 3.4: The corresponding solutions of MCP 1
2 (on the left) and KP

(on the right, the height of a solution indicates its value). The length of
the red zigzag line equals P ∗1 = OPTKP , that of the blue wavy line equals
OPTKP − vKP , and the length of the green dashed line is P −OPTKP .

Proof. We have shown in the proof of Theorem 6 that if KP admits a
(1/(1 − ε))-approximation algorithm (A) then MCP 1

2 admits an (1 + ε)-
approximation algorithm. The complexity of this algorithm is that of A plus
the linear time transformation. Let ε := 1/2 and use the 2-approximation
algorithm for KP (see e.g. [61]).

Notice that one can create other approximation algorithms for MCP 1
2 if

we transform other algorithms originally devised for KP (for an overview of
these algorithms see [61]).

Before we prove a converse reduction, observe that there is an easily
computable upper bound UKP on the optimum value of KP with OPTKP ≤
UKP ≤ 2 ·OPTKP . Let ej := vj/wj denote the e�ciency of item j. Sort the
items by their e�ciency in decreasing order (assume that e1 ≥ . . . ≥ en). Let
k be the smallest index such that w1 + · · ·+ wk ≥ b′, unless

∑n
j=1 wj < b′ in

which case k := n, and let UKP := v1 + · · · + vk. Further on, n · OPTKP ≥∑n
j=1 vj.

Theorem 7. [43] KP ≤FPTAS MCP 1
2 .

Proof. Let us de�ne functions f and g as follows. For a given instance
I = {n, (p′j, w′j)nj=1, b

′} of KP, let f(I, ε) := {n, (pj, aj)nj=1, (u`, b̃`)
2
`=1} be

an instance of MCP 1
2 with pj = p′j, aj = w′j, j = 1, . . . , n, b̃1 = b′, b̃2 =∑n

j=1 w
′
j − b′, u1 = 0, u2 = UKP (where UKP is an upper bound for OPTKP

with OPTKP ≤ UKP ≤ 2 · OPTKP , see section 3.1.2). For a given feasible
solution y of instance f(I, ε) of MCP 1

2 , let F be the set of jobs that are
assigned to u1 in y. De�ne a solution g(I, y, ε) of the Knapsack Problem
as follows: put the items into the knapsack that correspond to the jobs in
F . Let vKP denote the total pro�t of the items in F . See Figure 3.4 for
illustration.
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Since b̃1 = b′, g(I, y, ε) is a feasible solution for KP. Notice that the
transformation of instance x to f(I) and that of the solution of f(I, ε) back
to a solution of x all take linear time and space in the size of I.

Let α(I, ε) := ε/((1 + ε)(n + 1)), and suppose that y is an α(I, ε)-
approximate solution (schedule) to f(I, ε). We have to show that g(I, y, ε) is
an (1+ε)-approximate solution for KP. Notice that 1/α(I, ε) = (n+1)(1+ε)/ε
is bounded by a polynomial in |I| and 1/ε for any constant bound on ε
(cf. Remark 4 after the de�nition of the FPTAS-reduction in Section 5.4) of
the Appendix. Let Cy

max denote the makespan of the approximate solution y,
P y
k := Pk(y) for k = 1, 2, and δ := ε/((1 + ε)(n + 1)). Let S∗ be an optimal

solution to the scheduling problem of makespan C∗max, and let P ∗k := Pk(S
∗)

for k = 1, 2.
We know that OPTKP ≤ UKP , thus P ∗1 ≤ u2, C∗max = u2 + P ∗2 (see

Lemma 11) and Cy
max = u2 + P y

2 ≤ (1 + δ)C∗max. We have vKP = P y
1 =

P − P y
2 = P + u2 −Cy

max. Since OPTKP = P ∗1 from Lemma 11, thus C∗max =
u2 + P − OPTKP , therefore vKP ≥ P + u2 − (1 + δ)C∗max = P + u2 − (1 +
δ)u2 − (1 + δ)P + (1 + δ)OPTKP = −δP − δu2 + (1 + δ)OPTKP . Since
u2 = UKP ≤ 2OPTKP , P ≤ n · OPTKP and δ > 0, we deduce that vKP ≥
−δn · OPTKP − 2δOPTKP + (1 + δ)OPTKP = (1 − (n + 1)δ)OPTKP =
(1− ε/(1 + ε))OPTKP = OPTKP/(1 + ε).

Remark 1. Since the best FPTAS for MCP 1
2 is built on the best FPTAS

for KP, this theorem does not have any practical use. However, we can draw
an important conclusion from a generalized version of this result for MCP r

2

(see Corollary 9).

Corollary 6. [43] DTP 1
2 ≤Strict KP and KP ≤FPTAS DTP 1

2 .

Proof. It is a trivial corollary from Lemmas 27, 28 and from Theorems 5, 6
and 7.

From this we get the following, like we have got Corollaries 4 and 5 from
Theorem 6:

Corollary 7. [43] There is an FPTAS for DTP 1
2 in O(n·min{log n, log(1/ε)}+

(1/ε2) log(1/ε) ·min{n, (1/ε) log(1/ε)}) time and in O(n+ 1/ε2) space, it re-
quires O(n7 · 1/ε4)). There is an 3/2-approximation algorithm for DTP 1

2 of
time complexity O(n log n).
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3.1.7 Reductions between r-DKP and MCPr
2

It is easy to generalize the results of the previous sections: there are very
similar connections between the problems r-DKP and MCP r

2 . With these
results we can prove that there is no FPTAS for the problem MCP r

2 if r ≥ 2
unless P = NP .

We generalize Lemma 11 to r-DKP and MCP r
2 :

Lemma 12. [43] Consider the following two problems :

r-Dimensional Knapsack Problem (r-DKP): There are n items with pro�ts
vj, item weights wij (i = 1, . . . , r; j = 1, . . . , n), and there are capacities
of b′i (i = 1, . . . , r).

Material Consumption Problem: 1|nr = r, q = 2|Cmax (MCP r
2 ) with proces-

sing times pj, resource requirements aij (i = 1, . . . , r; j = 1, . . . , n), and
supply dates 0 = u1 < u2, and amount of resource i supplied b1,i, b2,i at
u1 and u2, respectively.

Suppose pj = vj, aij = wij (∀i ∈ R and ∀j ∈ J ), b̃1,i = b′i and b̃2i =∑
j aij − b̃1,i (∀i ∈ R). Let OPTr−DKP denote the optimum value of r-DKP,

and C∗max that of the Material consumption problem.

i) If P1(S∗) < u2 for some optimal schedule S∗ of the scheduling problem,
then P1(S ′) < u2, C

∗
max = u2 +P2(S ′) and OPTr−DKP = P1(S ′) for every

optimal schedule S ′.

ii) If P1(S∗) ≥ u2 for an optimal schedule, then C∗max = P1(S ′)+P2(S ′) = P
for every optimal schedule S ′, and OPTr−DKP ≥ u2.

Theorem 8. [43] MCP r
2 ≤Strict r −DKP

The proof is identical to that of Theorem 6.

Corollary 8. [43] For any �xed r, there is a PTAS for MCP r
2 .

The corollary follows from a result of [16], which provides a PTAS for
r-DKP for any �xed r.

Theorem 9. [43] r-DKP ≤FPTAS MCP r
2 .

The proof is very similar to that of Theorem 7, the crucial di�erence being
that we use Lemma 12 instead of Lemma 11. That is, let Ur−DKP :=

∑n
j=1 vj

be a trivial upper bound on the optimum value OPTr−DKP of r−DKP . Now,
let u2 = Ur−DKP in the transformation of an instance of r − DKP to that
of MCP r

2 , and we use the bound Ur−DKP ≤ n · OPTr−DKP in the proof.
Remark 2 shows what we can prove exactly:
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Remark 2. For any ε > 0, if MCP r
2 admits an

(
1 +

ε

(2n− 1)(1 + ε)

)
-

approximation algorithm, then there is an (1 + ε)-approximation algorithm
for r-DKP.

Corollary 9. [43] If r ≥ 2 then there is no FPTAS for MCP r
2 unless P =

NP.

Proof. If there were an FPTAS forMCP r
2 , then there would exist an FPTAS

for r − DKP by Lemma 26 and Theorem 9. However, there is no FPTAS
for 2−DKP unless P = NP (see e.g., [38]), a contradiction.

Corollary 10. [43] DTP r
2 ≤Strict r −DKP and r −DKP ≤FPTAS DTP r

2 .

Proof. Follows from Lemmas 27, 28 and from Theorems 5, 8 and 9.

Corollary 11. [43] For any �xed r, there is a PTAS for DTP r
2 . If r ≥ 2

then there is no FPTAS for DTP r
2 unless P = NP.

3.1.8 Approximability of 1|nr|Cmax

In this section we present approximation schemes, and an inapproximability
result for single machine problems with resource consuming jobs with the
makespan objective. Notice that these algorithms immediately give rise to
approximation algorithms for the delivery tardiness problem with the same
guarantee and complexity, by Theorem 5. We emphasize that prior to our
work, the only constant factor approximation algorithm for 1|nr = 1|Cmax

was that of Grigoriev et al [41] with a worst-case guarantee of 2.
For the problem 1|nr = const, q = const|Cmax we present a PTAS based

on LP-rounding. We will also prove that if the number of resources is not a
constant, then 1|nr, q = 2|Cmax is APX-complete. Before all these approxi-
mability results, we discuss the computational complexity of 1|nr|Cmax. The
�rst complexity results have been established by Carlier [19], we mention
only two of them:

Proposition 7 (Carlier [19]). Problem 1|nr = 1, q = 2|Cmax is NP-hard in
the ordinary sense.

Proposition 8 (Carlier [19]). Problem 1|nr = 1|Cmax is NP-hard in the
strong sense.

In Györgyi and Kis [42] a pseudo-polynomial time algorithm is proposed
when both the number of resources and that of the supply dates are constants.
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Proposition 9. [42]∗1|nr = const, q = const|Cmax can be solved in pseudo-
polynomial time.

The latter algorithm directly leads to an FPTAS for 1|nr = 1, q = 2|Cmax

as described in the same paper. However, an FPTAS exists for the same
problem with a much better time complexity by reducing it to the knapsack
problem, see Corollary 4. Unfortunately, it is unknown if an FPTAS exists
for 1|nr = 1, q = const|Cmax, i.e., if we have a constant number of supply
periods, where the constant is greater than 2.

Inapproximability of 1|nr, q = 2|Cmax

In this section we will prove that if the number of resources is part of the
input (not a constant), then there is a small constant ε0 > 0 such that it is
NP-hard to approximate 1|nr, q = 2|Cmax better that 1 + ε0. To this end,
we will reduce the APX-complete Vertex Cover Problem in Bounded-degree
graphs (VERTEX-COVER-B) to 1|nr, q = 2|Cmax. In VERTEX-COVER-
B, given a connected graph and a constant B, such that the degree of any
vertex is bounded by B. One has to �nd a subset U of vertices of minimum
cardinality such that each edge of the graph is adjacent to some vertex in U .
The following result was shown by [90]:

Theorem 10. For any constant B ≥ 4, there is a constant δ > 0, such that
it is NP-hard to approximate VERTEX-COVER-B better than 1 + δ.

We can state the following well-known observation.

Proposition 10. In a connected graph on n vertices in which the maximum
degree of any vertex is B, the size of the minimum vertex cover is at least
d(n− 1)/Be.

Now we are ready to prove the main result of this section.

Theorem 11. [44]∗There is some constant ε > 0 such that it is NP-hard to
approximate the problem 1|nr, q = 2|Cmax better than 1 + ε if the number of
resources is part of the input.

Proof. We will transform instances of VERTEX-COVER-B to instances of
1|nr, q = 2|Cmax and show that if the latter problem admits a polynomial time
(1 + ε)-approximation algorithm for any ε > 0, then VERTEX-COVER-B
has a (1+(B+1)ε)-approximation algorithm for any ε > 0, which contradicts
Theorem 10.

In the course of the transformation, we map a connected graph G =
(V,E) of maximum degree B with n = |V | vertices and m = |E| edges to a
scheduling problem instance with n jobs and r = m non-renewable resources,
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and q = 2 supply dates. For each vertex v ∈ V of the graph, we de�ne one
job, denoted by Jv, of processing time 1, and for each edge e ∈ E we de�ne
one resource Re. The resource requirements of job Jv are determined by the
edges adjacent to the corresponding vertex v, that is, if edge e is adjacent to
v, then job Jv requires one unit of the resource Re. Let u1 = 0, u2 = n− 1,
b̃1,e = 1, and b̃2,e = 1 for each resource Re, i.e., from each resource one unit
is supplied at time 0, and one more unit at time u2.

What does a schedule of minimum length represent in the graph? Observe
that in any feasible schedule, in the time interval u1 and u2 no two jobs
requiring the same resource may be scheduled, since the initial supply from
each resource is 1 unit. Let I be the set of vertices indexing those jobs
scheduled between u1 and u2. Since no two jobs Jv and Jw with v 6= w ∈ I
may require the same resource (since b̃1,e = 1 for each resource Re), nodes v
and w are not adjacent in the graph. Hence, I is an independent set in G.
But then the vertices of G indexing those jobs scheduled after u2 constitute
a vertex cover of G (since the complement of an independent set is a vertex
cover in any graph). Since u2 = (n − 1), and the graph is connected, in a
schedule of minimum length, the vertices of G indexing those jobs scheduled
after u2 constitute an optimal vertex cover of G. Let vc∗ denote the size of a
minimum vertex cover ofG. Then, the optimum makespan is C∗max = u2+vc∗.

Now we claim that if there is an (1 + ε)-approximation algorithm for
1|nr, q = 2|Cmax, then there is a (1 + (B + 1)ε)-approximation algorithm for
VERTEX-COVER-B. So suppose we have an (1+ε)-approximation algorithm
for 1|nr, q = 2|Cmax. The schedule supplied by this algorithm on the set of
instances constructed above satis�es the following:

Cmax = (n− 1) + k ≤ ((n− 1) + vc∗)(1 + ε),

where k is the number of jobs scheduled after u2 = (n− 1). Notice that k is
the size of the vertex cover in G determined by the jobs scheduled after u2.
After rearranging terms we get

k ≤ (n− 1)ε+ vc∗(1 + ε).

Finally, using Proposition 10 we obtain

k ≤ (n− 1)

B
(εB) + vc∗(1 + ε) ≤ vc∗(1 + (B + 1)ε).

That is, the schedule determines a vertex cover of size at most vc∗(1 + (B +
1)ε).

Notice that in the above proof we have provided an L-reduction from
VERTEX-COVER-B to 1|nr|Cmax with parameters α = (B + 1), and β = 1.
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Since the problem 1|nr|Cmax admits a 2-approximation algorithm [41],
and 1|nr, q = 2|Cmax is just a special case, we can deduce the following:

Corollary 12. [44]∗1|nr, q = 2|Cmax is APX-complete.

PTAS for 1|nr = const, q = const, rj|Cmax based on LP-rounding

In this section we describe a polynomial time approximation scheme for sche-
duling resource consuming jobs on a single machine and with a constant num-
ber of non-renewable resources and supply dates. Firstly, we will assume that
the number of distinct job release dates before uq is bounded by a constant,
and then we will waive this extra constraint. The objective is to minimize
the makespan. The PTAS presented is based on LP-rounding, however, for
the problem 1|nr = 1, q = const, rj|Cmax there is a PTAS based purely on
combinatorial enumeration, for details see Györgyi and Kis [42].

We can model our scheduling problem by means of a mathematical pro-
gram. To this end, �rstly we construct a set of time points T consisting of
all the distinct values from the set of time moments u`, ` = 1, . . . , q, (when
some non-renewable resource is supplied), and the set of release dates of the
jobs rj, j ∈ J . Suppose T has τ elements, denoted by v1 through vτ , with
v1 = 0. We de�ne the values b`i :=

∑
k : uk≤v` b̃ki for i ∈ R, that is, b`i equals

the total amount supplied from resource i up to time point v`.
We introduce τ · |J | binary decision variables xj`, (j ∈ J , ` = 1, . . . , τ)

such that xj` = 1 if and only if job j is assigned to the time point v`,
which means that the requirements of job j must be satis�ed by the resource
supplies up to time point v`. The mathematical program is

C∗max = min max
v`∈T

(
v` +

∑
j∈J

τ∑
ν=`

pjxjν

)
(3.17)

s.t.∑
j∈J

∑̀
ν=1

aijxjν ≤ b`i, v` ∈ T , i ∈ R (3.18)

τ∑
`=1

xj` = 1, j ∈ J (3.19)

xj` = 0, j ∈ J , v` ∈ T such that rj > v` (3.20)
xj` ∈ {0, 1}, j ∈ J , v` ∈ T . (3.21)

The objective function expresses the completion time of the job �nished last
using the observation that there is a time point, either a release date of some

dc_1311_16

Powered by TCPDF (www.tcpdf.org)



3.1. SINGLE-MACHINE PROBLEMS 67

job, or when some resource is supplied, from which the machine processes
the jobs without idle times. Constraints (3.18) ensure that the jobs assigned
to time points v1 through v` use only the resources supplied up to time v`.
Equations (3.19) ensure that all jobs are assigned to some time point. Finally,
no job may be assigned to a time point before its release date by (3.20). Any
feasible job assignment x̄ gives rise to a set of schedules which di�er only in
the ordering of jobs assigned to the same time point v`.

Notice that in a feasible solution x̂ of (3.17)-(3.21) there can be more than
one jobs assigned to the same time point v`. We obtain a schedule of the
jobs by putting them on the machine in the order of their assignment to the
time points in T . That is, �rst we schedule in any order without idle times
the jobs with x̂j1 = 1 from time v1 on. Let C1 be the completion time of
these jobs. In a general step ` ≥ 2, we schedule the jobs with x̂j` = 1 in any
order after max{C`−1, v`}, and we denote by C` the completion time of the
job �nished last in this group. The schedule obtained in this way is feasible,
and its makespan is the completion time of the job �nished last, which is
necessarily equal to the objective function value of solution x̂. Let Cmax(x̂)
denote this value.

Let psum :=
∑

j∈J pj denote the sum of the processing times of all the
jobs. For a �xed ε > 0, let B := {j ∈ J | pj ≥ εpsum} be the set of
big jobs, and S := J \ B the set of small jobs. We divide further the set
of small jobs according to their release dates, that is, we de�ne the sets
Sb := {j ∈ S | rj < uq}, and Sa := S \ Sb. Let T b := {v` ∈ T | v` < uq}
be the set of time points v` before uq. The following observation reduces the
number of solutions of (3.17)-(3.21) to be examined.

Proposition 11. [44]∗From any feasible solution x̂ of (3.17)-(3.21), we
can obtain a solution x̃ with Cmax(x̃) ≤ Cmax(x̂) such that each job Jj is
assigned to some time point v` (x̃j` = 1), satisfying either v` < uq, or
v` = max{uq, rj}.

Proof. Let J a(x̂) be the subset of jobs with x̂j` = 1 for some v` > uq. We
de�ne a new solution x̃ in which those jobs in J a(x̂) are reassigned to new
time points and show that Cmax(x̃) ≤ Cmax(x̂). Let x̃ ∈ {0, 1}J×T be a
binary vector which agrees with x̂ for those jobs in J \ J a(x̂). For each
j ∈ J a(x̂), let x̃j` = 1 for v` = max{uq, rj}, and 0 otherwise. We claim
that x̃ is a feasible solution of (3.17)-(3.21), and that Cmax(x̃) ≤ Cmax(x̂).
Feasibility of x̃ follows from the fact that uq is the last time point when some
resource is supplied, and that no job is assigned to some time point before its
release date. As for the second claim, consider the objective function (3.17).
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We will verify that for each ` = 1, . . . , τ ,

v` +
∑
j∈J

τ∑
ν=`

pjx̃jν ≤ v` +
∑
j∈J

τ∑
ν=`

pjx̂jν , (3.22)

from which the claim follows. If v` ≤ uq, the left and the right-hand sides in
(3.22) are equal. Now consider any ` with v` > uq. Since no job in J a(x̂) is
assigned to a later time point in x̃ than in x̂, the inequality (3.22) is veri�ed
again.

Notice that Proposition 11 also follows form a result of Lawler [75], which
implies that if we have a single machine and a set of jobs with release dates,
and the objective is the minimum makespan, then it is optimal to sequence
the jobs in non-decreasing release date order.

An assignment of big jobs to the time points v1 through vτ is given by
a partial solution xbig ∈ {0, 1}B×T which assigns each big job to some time
point v`. An assignment xbig of big jobs is feasible if the vector x = (xbig , 0) ∈
{0, 1}J×T satis�es (3.18), (3.20) and also (3.19) for the big jobs. Consider
any feasible assignment xbig of big jobs. If we �x the assignment of the
big jobs in (3.18)-(3.20) to xbig , then the supply from any resource i up to
time point v` is decreased by the requirements of those big jobs assigned
to time points v1 through v`. Hence, we de�ne the residual resource supply

up to time point v` as b̄`i := b`i −
∑

j∈B aij

(∑`
µ=1 x

big
jµ

)
. Further on, let

C̄B` := maxµ=1,...,`(vµ+
∑`

κ=µ

∑
j∈B pjx

big
jκ ) denote the earliest time point when

the big jobs assigned to v1 through v` may �nish.
In order to assign approximately the small jobs, we will solve a linear

program and round its solution. Our linear programming formulation relies
on the following result.

Proposition 12. [44]∗There exists an optimal solution (x̂big , x̂small) of (3.17)-
(3.21) such that for each v` ∈ T b:∑

j∈Sb
pjx̂

small
j` ≤ max{0, v`+1 − C̄B` }+ εpsum. (3.23)

Proof. Suppose (x̂big , x̂small) is an optimal solution which does not meet the
property claimed. Without loss of generality, we may assume that in the
optimal schedule corresponding to (x̂big , x̂small), for each vk ∈ T , small jobs
assigned to vk follow the big ones assigned to vk. Let v` ∈ T b be the smallest
time point for which (3.23) is violated. Then some small jobs assigned to
v` necessarily start after v`+1 in any schedule corresponding to (x̂big , x̂small).
Since all small jobs are of processing time less than εpsum, we can reassign
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some of the small jobs from time point v` to v`+1 until (3.23) is satis�ed for
v`. Clearly, such a reassignment of small jobs does not increase the length of
the schedule. Then we proceed with the next time point in T until we get a
schedule meeting (3.23).

Now, the linear program is de�ned with respect to any feasible assignment
xbig of the big jobs:

max
∑
v`∈T b

∑
j∈Sb

pjx
small
j` (3.24)

s.t.∑
j∈Sb

∑̀
ν=1

aijx
small
jν ≤ b̄`i, v` ∈ T b, i ∈ R (3.25)

∑
j∈Sb

pjx
small
j` ≤ max{0, v`+1 − C̄B` }+ εpsum, v` ∈ T b (3.26)

∑
v`∈T b∪{uq}

xsmall
j` = 1, j ∈ Sb (3.27)

xsmall
j` = 0, j ∈ Sb, v` ∈ T such that v` < rj, or v` > uq (3.28)

xsmall
j` ≥ 0, j ∈ Sb, v` ∈ T . (3.29)

The objective function (3.24) maximizes the total processing time of those
small jobs assigned to some time point v` before uq. Constraints (3.25) make
sure that no resource is overused taking into account the �xed assignment
of big jobs as well. Inequalities (3.26) ensure that the small jobs assigned
to v` �t into the interval [C̄B` , v`+1 + εpsum). Due to (3.27), small jobs are
assigned to some time point in T b ∪ {uq}. The release dates of those jobs in
Sb, and Proposition 11 are taken care of by (3.28). Finally, we require that
the values xsmall

j` be non-negative.
Notice that this linear program always has a �nite optimum provided that

xbig is a feasible assignment of the big jobs. Let x̄small be any feasible solution
of the linear program. Job j ∈ Sb is integral in x̄small if there exists v` ∈ T
with x̄small

j` = 1, otherwise it is fractional. After all these preliminaries, the
PTAS is as follows.

Algorithm A [44]∗

1. Assign the big jobs to time points v1 through vτ in all possible ways
which satis�es Proposition 11, and for each feasible assignment xbig do
steps 2-5:
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2. De�ne and solve linear program (3.24)-(3.29), and let x̄small be an op-
timal basic solution.

3. Round each fractional value in x̄small down to 0, and let xsmall :=
bx̄smallc be the resulting partial assignment of small jobs, and U ⊂ Sb
the set of fractional jobs in x̄small .

4. Finally, each j ∈ U is assigned to time point uq ∈ T by letting xsmall
j` :=

1 for all j ∈ U where v` = uq, and all jobs in Sa are assigned to their
release dates by setting xsmall

j` := 1 for all j ∈ Sa, where v` = rj (recall
that the release dates of jobs belong to set T ).

5. If the value of the complete assignment (xbig , xsmall) of all the jobs is
better than the best solution found so far, then update the best solution
to (xbig , xsmall).

6. After examining each feasible assignment of big jobs, output the best
complete solution found.

We have to verify that the solution found by the above algorithm is fe-
asible for (3.17)-(3.21), its value is not too far from the optimum, and that
the algorithm runs in polynomial time in the size of the input. We intro-
duce some terminology to facilitate the following discussion. A 0/1-vector
(xbig , xsmall) satisfying constraints (3.18) and (3.20) constitutes a complete
solution if every job is assigned to some time point v`, i.e., it satis�es also
the equations (3.19), otherwise it is a partial solution.

Lemma 13. [44]∗Every complete solution (xbig , xsmall) constructed by the
algorithm is feasible for (3.17)-(3.21).

Proof. Since the algorithm examines only feasible assignments of big jobs,
(xbig , 0) satis�es (3.18), (3.20), (3.21), and also (3.19) for all jobs in B by de-
�nition. The binary vector (xbig , bx̄smallc, 0) consists of the assignment of big
jobs, and of those small jobs in Sb which are integral in the optimal solution
x̄small of the linear program. Notice that the fractional jobs in x̄small , and
all jobs in Sa are unassigned. The partial solution (xbig , bx̄smallc, 0) satis�es
(3.18), (3.20), (3.21), and also (3.19) for all jobs in B∪{j ∈ Sb | j is integral in x̄small},
since x̄small is a feasible solution of (3.24)-(3.29). Finally, since uq is the last
time point when some resource is supplied and all job in Sa ∪U are assigned
to some time points not before uq, the 0/1-vector (xbig , xsmall) is feasible for
(3.17)-(3.21).

We will need the following result:
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Proposition 13. [44]∗In any basic solution of the linear program (3.24)-
(3.29), there are at most (|R|+ 1) · |T b| fractional jobs.

Proof. Let x̄small be a basic solution of the linear program in which f jobs of
Sb are assigned fractionally, and e = |Sb| − f jobs integrally. Clearly, each
integral job gives rise to precisely one positive value, and each fractionally
assigned job to at least two. This program has |Sb| · |T b| decision variables,
and m = |Sb| + (|R| + 1) · |T b| constraints. Therefore, in x̄small there are at
most m positive values, as no variable may be nonbasic with a positive value.
Hence,

e+ 2f ≤ |Sb|+ (|R|+ 1) · |T b| = e+ f + (|R|+ 1) · |T b|.

This implies
f ≤ (|R|+ 1) · |T b|

as claimed.

Lemma 14. [44]∗The algorithm constructs at least one complete assignment
(xbig , xsmall) whose value is at most (1 +O(ε)) times the optimum makespan
C∗max.

Proof. Consider an optimal solution (x̂big , x̂small) of (3.17)-(3.21), consisting
of the assignment of big jobs and that of the small jobs. We can sup-
pose that this solution satis�es the condition of Proposition 11. The al-
gorithm will examine x̂big , being a feasible assignment of the big jobs. Let
xa ∈ {0, 1}Sa×T be an assignment of the small jobs in Sa with xaj` = 1 if
and only if rj = v`. Let Cmax((x̂big , 0, xa)) be the value of the partial as-
signment (x̂big , 0, xa) in which no job in Sb is assigned to any time point.
Clearly, Cmax((x̂big , 0, xa)) ≤ Cmax((x̂big , x̂small)) = C∗max. Now, let us consi-
der the assignment of the small jobs in Sb constructed by the algorithm. Let
bx̄smallc ∈ {0, 1}Sb×(T b∪{uq}) be the assignment of the small jobs in Sb assig-
ned by Algorithm A integrally. Let Cmax((x̂big , bx̄smallc, xa)) be the value of
the partial assignment (x̂big , bx̄smallc, xa).

Since x̄small is a feasible solution of (3.24)-(3.29), the partial solution
(x̂big , bx̄smallc, xa) may assign small jobs of total processing time at most
max{0, v`+1 − C̄B` } + εpsum to each v` ∈ T b (in addition to the big jobs
assigned by xbig). Hence, the jobs assigned to time points vk ≥ uq may be
pushed to the right by at most |T b|εpsum by the small jobs assigned to time
points in T b. Since the linear program maximizes

∑
v`∈T b

∑
j∈Sb pjxj`, thus∑

j∈Sb,v`=uq pjx̄j` ≤
∑

j∈Sb,v`=uq pjx̂j` , therefore Cmax((x̂big , bx̄smallc, xa)) ≤
Cmax((x̂big , x̂small)) + |T b|εpsum = C∗max + |T b|εpsum.
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Finally, we bound the total processing time of those jobs in set U . By
Proposition 13, the size of U is at most (|R| + 1) · |T b|. But then, the total
processing time of those small jobs from Sb that are moved to the end of the
schedule is at most (|R|+ 1) · |T b| · εpsum. To summarize, we have

Cmax((x̂big , xsmall)) ≤ Cmax((x̂big , bx̄smallc, xa)) + (|R|+ 1) · |T b| · εpsum

≤ C∗max + (|R|+ 2) · |T b| · εpsum ≤ (1 +O(ε))C∗max,

where the �rst and the second inequality follows from the above discussion,
and the last from the fact that both |R| and |T b| are bounded by constants
by assumption and from the observation that psum ≤ C∗max.

Lemma 15. [44]∗For any �xed ε > 0, the running time of the algorithm is
polynomial in the size of the input.

Proof. Since the processing time of each big job is at least εpsum, the number
of big jobs is at most b1/εc, a constant, since ε is constant by assumption.
Since the number of time points in T is also constant by assumption, the
total number of assignments of big jobs to time point in T is also constant.
For each feasible assignment, a linear program of polynomial size in the
input must be solved. This can be accomplished by the Ellipsoid method in
polynomial time [34]. Rounding the solution takes linear time in the number
of small jobs. Hence, the entire running time is polynomial in the size of the
input, as claimed.

Theorem 12. [44]∗There is a PTAS for the problem 1|nr = const., q =
const.,#{rj : rj < uq} = const.|Cmax.

Proof. We show that Algorithm A is a PTAS for 1|nr = const, q = const,#{rj :
rj < uq} = const.|Cmax. The polynomial time complexity of the algorithm
in the size of the input was shown in Lemma 15. In Lemma 14 it was shown
that the performance ratio is (1 +O(ε)), where the constant factor c in O(·)
does not depend on the input. Hence, to reach a desired performance ratio
δ, we let ε := δ/c, and perform the computations with this choice of ε.

Now we show how to waive the restriction #{rj : rj < uq} = const in
the previous statement. To this end, for a �xed δ > 0, we modify some of
the job release dates to de�ne a new problem instance in which there are at
most 1/δ di�erent job release dates before uq. That is,

r′j :=

{
rj if rj ≥ uq
g(rj) · δuq if rj < uq
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where g : Z≥1 → Z≥1, and g(rj) equals the smallest non-negative integer z
such that z · δuq ≥ rj. Let Cr

max(x) denote the value of some solution x of
the modi�ed problem instance, and Cr∗

max the optimum makespan.

Lemma 16. [44] Cr∗
max ≤ C∗max + δuq.

Proof. Consider an optimal schedule of the original problem, and let S∗j de-
note the starting time of job j ∈ J . Let S ′j = S∗j + δuq for each j ∈ J . We
claim that S ′ is a feasible schedule for the modi�ed problem with makespan
C∗max + δuq. Both claims follow from the following easy observation:

r′j ≤ rj + δuq ≤ S∗j + δuq = S ′j, ∀j ∈ J .

Apply the PTAS of the previous section with error parameter δ to the
modi�ed problem instance to obtain a δ-approximate solution x̂r. We show
that x̂r is a 3δ-approximate solution for the original problem instance.

Theorem 13. [44] There is a PTAS for the problem 1|nr = const, q =
const, rj|Cmax.

Proof. We will show that for any 0 < δ ≤ 1, Cmax(x̂r) ≤ (1 + 3δ)C∗max, and
thus the above algorithm for 1|rj, rm = const., q = const.|Cmax is a PTAS.

We have

Cmax(x̂r) ≤ Cr
max(x̂r) ≤ (1 + δ)Cr∗

max ≤ (1 + δ)(C∗max + δuq) ≤ (1 + 3δ)C∗max,

where the �rst inequality follows from rj ≤ r′j, the second from the fact that
we have applied a PTAS with error parameter δ to the modi�ed problem
instance, the third form Lemma 16, and the last one from uq < C∗max (by
Assumption 1), and from elementary calculations.

3.1.9 Approximability of 1|nr|
∑
wjCj

In this section �rst we discuss the computational complexity of 1|nr =
1|
∑
wjCj and then we describe an FPTAS for 1|nr = 1, q = 2|

∑
wjCj.

To our best knowledge, the only paper dealing with machine scheduling
with a non-renewable resource and a min-sum type criterion (the average
completion time) is by Gafarov et al. [35], who proved that minimizing the
average completion time of the jobs (1|nr = 1|

∑
j Cj) is NP-hard in the

ordinary sense when the number of supply dates is not a constant. In this
section, we will sharpen the result of Gafarov et al. [35] by showing that
1|nr = 1|

∑
j Cj is NP-hard in the strong sense. we will also prove that if
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there are only q = 2 supplies, then the problem 1|nr = 1, q = 2|
∑

j Cj is
NP-hard in the ordinary sense. Further on, we will describe an FPTAS for
this special case.

The scheduling problem studied in this section has the following charac-
teristics. There is a single machine, a set of n jobs J , and a non-renewable
resource consumed by the jobs. The machine can process only one job at
a time, and preemption of processing is not allowed. Each job Jj, j ∈ J ,
has a processing time pj ∈ Z≥1, a weight wj ∈ Z≥0, and a resource re-
quirement aj ∈ Z≥0. The resource is supplied in q di�erent moments in
time, 0 = u1 < u2 < . . . < uq; the scalar b̃` ∈ Z≥1, for ` = 1, . . . , q,
represents the quantity supplied at u`. A schedule σ speci�es a starting
time Sj ∈ Z≥0 for each job j ∈ J , and it is feasible if (i) the jobs do not
overlap in time and if (ii) at any time point t the total supply from the re-
source is at least the total request of those jobs starting not later than t, i.e.,∑

(b̃` | ` ∈ {1, . . . , q} : u` ≤ t) ≥
∑

(aj | j ∈ J : Sj ≤ t). The objective is to
minimize the total weighted completion time

∑
j wjCj, where Cj = Sj + pj,

Sj being the starting time of job Jj, j ∈ J , in some feasible schedule.
We have assumed that pj ≥ 1 for all j ∈ J , which is a slight restriction,

but this helps to keep the presentation simple. In contrast, job j having zero
resource requirement, i.e. aj = 0, is possible.

By Assumption 1, there must exist a feasible solution (if every job starts
not before uq, the last supply date) and at least one job must start not before
uq (since all the supplies are positive).

The di�culty of this problem stems from the fact that distinct jobs may
have di�erent processing times and resource requirements, and sometimes
jobs have to be delayed until a su�cient amount of the resource is supplied
in order to start them.

The above problem is a generalization of the single machine scheduling
problem with the total weighted job completion time objective, 1||

∑
wjCj,

the latter being a very well understood and widely studied problem of sche-
duling theory. In fact, an optimal schedule can here be obtained by Smith's
ratio rule [97], i.e., by scheduling the jobs in non-increasing wj/pj order. The
structure of the polyhedron of feasible job completion times is also known
[91]. More on the use of 1||

∑
wjCj in scheduling theory can be found in

[7, 13]. As even a single non-renewable resource constraint renders the pro-
blem intractable, see below, gaining more insight is a challenging research
direction. As a practical application, consider a production line which pro-
cesses a set of jobs, and the jobs require some raw materials that arrive
over time. Finding a good ordering of the jobs with di�erent material re-
quirements, or processing times such that the weighted completion time of
the jobs is minimized can be modeled by the scheduling problem described
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above.

The NP-hardness proofs

We reduce the single machine scheduling problem with release dates and the
average completion time objective (1|rj|

∑
j Cj) to our scheduling problem.

In this problem, jobs have release dates specifying their earliest possible start
times. We will consider the subset of instances in which exactly one job has
a positive release date, and all other jobs have a release date equal to 0.
Rinnooy Kan [56] has shown that minimizing the total completion time in
this subclass is already NP-hard. We use his result to establish the following
theorem:

Proposition 14. [66]∗Minimizing the average completion time on a single
machine with resource consuming jobs and one resource with q = 2 supply
periods is NP-hard (1|nr = 1, q = 2|

∑
j Cj).

Proof. We provide a transformation from the subclass of 1|rj|
∑

j Cj in which
there is precisely one job with a positive release date, while all other jobs have
release date equal to 0, to our scheduling problem. Take any instance I in
this subclass, the corresponding instance I ′ of our scheduling problem has
one machine, one non-renewable resource, and the same set of jobs as I.
Suppose Jk is the job with a positive release date in I. Then in I ′, the
second supply date is u2 = rk, when an amount of one unit is supplied from
the single resource, the �rst supply date is u1 = 0 with an initial stock level
0. In I ′, all jobs have release date 0, but job Jk has a requirement of 1 unit
from the non-renewable resource. Clearly, since the initial supply from the
non-renewable resource is 0, Jk cannot start earlier than u2 = rk in I ′. Hence,
the instances I and I ′ are equivalent in the sense that all jobs except Jk can
start at time 0, and job Jk can start at rk or later. Consequently, I has a
solution with objective function value not greater than a given constant D if
and only if I ′ has a solution with objective function value at most D.

Rinnooy Kan also claims that the 3-PARTITION problem can be reduced
to 1|rj|

∑
j Cj by adapting the strong NP-hardness proof of Garey et al. [37]

of the two-machine �ow-shop scheduling problem with the average comple-
tion time objective (F2||

∑
j Cj). Recall that an instance of 3-PARTITION

consists of 3q items each having a non-negative integer size, and a bound
B such that each item size is between B/4 and B/2, and the question is
whether the items can be grouped into q 3-element groups of total item size
B each. By inspecting the latter proof, one can observe that in the claimed
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strong NP-hardness proof of 1|rj|
∑

j Cj there are q jobs with q distinct re-
lease dates, and all other jobs have release dates 0. We can easily adapt the
proof of Proposition 14 to this case. By this, we obtain the following result.

Theorem 14. [66]∗Minimizing the average completion time on a single ma-
chine with resource consuming jobs and one resource is NP-hard in the strong
sense (1|nr = 1|

∑
j Cj).

An FPTAS for 1|nr = 1, q = 2|
∑

j wjCj

In this section we describe a fully polynomial time approximation scheme for
the special case in which there is a single resource having an initial stock,
and one additional supply at date u2 > 0. Recall that an FPTAS for an
optimization problem is a class of algorithms, which, for each 0 < ε < 1, has
an algorithm Aε which runs in polynomial time in the size of the input and in
1/ε, and produces a feasible solution of cost at most (1+ε) times the cost of an
optimal solution in case of minimization problems, and at least (1− ε) times
the cost of an optimal solution in case of maximization problems [95]. Our
algorithm has a very simple structure and uses standard techniques, see [95].
The only interesting part is the transformation of the scheduling problem
1|nr = 1, q = 2|

∑
j wjCj to �nding a shortest path in an appropriately

de�ned graph, but the twist is that the shortest path computation is needed
for �nding a resource feasible solution, instead of computing the cost of the
solution.

In order to get more insight into our scheduling problem, consider any
instance in the subclass studied in this section, and any feasible solution to
that instance. Since there are only two supply dates, u1 and u2, with u1 = 0
and corresponding supply b̃1, and u2 > 0 with corresponding supply b̃2, we
know that the set of jobs is partitioned into J 1 and J 2, where the jobs in
J 1 use only the initial supply available at u1, while the remaining jobs use
that arriving at u2 and the supply from b̃1 left by the jobs in J 1. Moreover,
the jobs in J 2 are scheduled after all the jobs in J 1. Now we prove that
there is an optimal solution with a special structure, and this will serve as a
basis for our FPTAS.

Proposition 15. [66]∗The problem 1|nr = 1, q = 2|
∑

j wjCj always admits
an optimal solution of the following structure:

i) The set of jobs is partitioned into subsets J 1 and J 2, the jobs in J 1 use
only the initial supply and are scheduled consecutively from time u1 on,
while the jobs in J 2 use the supply left from b̃1 and also the supply b̃2,
and are scheduled consecutively from the time point max{u2,

∑
j∈J 1 pj}.
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ii) The jobs in both of J 1 and J 2 are scheduled in non-increasing wj/pj
order, and there is at most one job in J 1 which �nishes after u2, and if
such a job exists, it starts before u2.

Proof. Take any optimal solution, and let J 1 consist of those jobs starting
before u2, and J 2 contain the remaining jobs. Then, part i) holds, as one
may easily verify. Moreover, there is at most one job in J 1 which �nishes
after u2, and this job must start before u2 by de�nition. Further on, the
jobs in J 2 must be scheduled in non-increasing wj/pj order, otherwise the
schedule is not optimal as a simple job-exchange argument shows (notice that
after u2, the resource is completely supplied, and there is nothing which could
prevent such an ordering of the jobs in J 2). Finally, suppose that the jobs
in J 1 are not scheduled in non-increasing wj/pj order, then again, a simple
exchange argument shows that the schedule is not optimal, a contradiction,
which proves part ii).

In light of Proposition 15, we can express the objective function value of
a schedule with a given partitioning J 1 and J 2 of the jobs (assuming that
the jobs are indexed such that w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn), as follows:

∑
j∈J 1

wj

 ∑
k∈J 1,k≤j

pk

+
∑
j∈J 2

wj

max

{
u2,
∑
k∈J 1

pk

}
+

∑
k∈J 2,k≤j

pk

 . (3.30)

Notice that the �rst half of this expression calculates the weighted completion
time of the jobs in J 1 when scheduled in non-increasing wj/pj order, and
the second half does the same for the jobs in J 2.

In the following, denote, for any subset H of jobs, p(H) :=
∑

j∈H pj, and
w(H) :=

∑
j∈H wj.

In the approximation algorithm for some 0 < ε < 1, we will round some
partial sums of the problem data, and guess the value of max {u2, p(J 1)}.
We de�ne a rounding function f(s) which assigns to any nonnegative number
s ≥ 0 a number from a discrete set as follows. Let ∆ := 1 + ε/4n. Then, we
de�ne

f(s) :=

{
0, s = 0
∆dlog∆ se, s > 0

,

where dxe is the smallest integer z ≥ x for any x ∈ R. Notice that s ≤
f(s) ≤ s ·∆ holds for any s ≥ 0, since ∆ > 1. We will round iteratively sums
of numbers, i.e., the iterative rounding of a sum of the form x1 +x2 + · · ·+xk
is de�ned with the formula gt := f(xt + gt−1) for t = 1, . . . , k, where g0 := 0.

Proposition 16. [66]∗If xt ≥ 0 for all t = 1, . . . , k, then
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i) x1 + · · ·+ xt ≤ gt, for t = 1, . . . , k.

ii) gt ≤ ∆t(x1 + · · ·+ xt), for t = 1, . . . , k.

Proof. For showing i), it is enough to note that the rounding function f(·)
rounds up any value s ≥ 1 to the least value ∆k ≥ s, with k ∈ Z≥0.

The set of inequalities ii) is veri�ed by induction on t. For t = 1, we
have g1 = f(x1) ≤ ∆x1, by using the de�nition of f(·). So assume that the
inequality is proved for t − 1, and we verify it for t: gt = f(xt + gt−1) ≤
(xt + gt−1)∆ ≤ (xt + ∆t−1(

∑t−1
i=1 xi))∆ ≤ ∆t(x1 + · · · + xt), where the �rst

inequality follows from the de�nition of f(·), the second from the induction
hypothesis, and the third from ∆ > 1.

This rounding scheme has been used e.g., in [95] (Section 0.5.1: Makespan
on two identical machines).

We will guess the value of max {u2, p(J 1)} by picking a member from
the set G := {u2∆z : z = 0, . . . , dlog∆((u2 + p(J ))/u2)e}. Notice that the
largest value in G is bounded by (u2 + p(J ))∆.

With this data, we build a directed graph Dδ for each δ ∈ G. Firstly,
we re-index the jobs such that w1/p1 ≥ w2/p2 ≥ · · · ≥ wn/pn. The nodes
of Dδ represent all the distinct partitioning of the �rst t jobs, for all t ∈
{1, . . . , n}, noting that the same node for a given t may represent several
distinct partitionings of the �rst t jobs. We associate a vector with each
node, that is, a node with the �rst t jobs has a vector (t, P ′1, PW

′
1, P

′
2, PW

′
2),

where P ′1 is the iterative rounding of the total processing times of those
jobs assigned to the time period [u1, δ] out of the �rst t jobs, and PW ′

1 is
the iterative rounding of the total weighted completion times of these jobs.
Likewise, P ′2, and PW ′

2 are the iteratively rounded total processing times,
and the iteratively rounded total weighted completion times, respectively,
of those jobs assigned to the time period [δ,∞), i.e., these jobs start at
time δ. The unique source node (with zero in-degree) represents the empty
schedule, when no job is chosen (t = 0). Then we gradually assign the
jobs to time periods, and add more nodes to the graph, until all the jobs
are assigned. Consider a node with vector (t, P ′1, PW

′
1, P

′
2, PW

′
2). It has

two successor nodes, giving rise to two directed arcs. One of the successors
corresponds to assigning job Jt+1 to the time period [u1, δ], and the other
successor to assigning Jt+1 to the time period [δ,∞). The vectors associated
with these two nodes can be easily computed from (t, P ′1, PW

′
1, P

′
2, PW

′
2):

if Jt+1 is assigned to the time period [u1, δ], then the associated vector is
(t + 1, f(P ′1 + pt+1), f(PW ′

1 + wt+1(P ′1 + pt+1)), P ′2, PW
′
2), and the vector of

the other node can be computed as (t + 1, P ′1, PW
′
1, f(P ′2 + pt+1), f(PW ′

2 +
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wt+1(δ+P ′2 + pt+1))). Clearly, the same node can be the successor of several
other nodes. The arcs representing the assignment of job Jt+1 to the time
period [u1, δ] have weight at+1, while all other arcs have weight 0, for all
t = 0, . . . , n− 1. The nodes that contain a partitioning of all the n jobs are
called terminal nodes . A terminal node with vector (n, P ′1, PW

′
1, P

′
2, PW

′
2) is

feasible if it satis�es both of the following conditions: (i) P ′1 ≤ δ, and (ii)
the shortest path from the source node to this node has total arc length at
most b̃1. We say that Dδ gives rise to a feasible solution if and only if Dδ

admits a feasible terminal node. The value of a feasible terminal node with
vector (n, P ′1, PW

′
1, P

′
2, PW

′
2) is PW ′

1 + PW ′
2. After these preliminaries, the

complete FPTAS is as follows.

1. Determine the set G.

2. For each δ ∈ G, compute the graph Dδ, and determine if Dδ gives rise to
a feasible solution.

3. Choose Dδ∗ which gives rise to a feasible solution with the smallest value
overall.

4. Recover a schedule by following a shortest path in Dδ∗ from the unique
source node to a feasible terminal node of smallest rounded objective
function value, and forming the sets J 1

∗ and J 2
∗ such that a job Jj is put

in J 1
∗ if and only if Jj is assigned to time period [u1, δ

∗], and put into J 2
∗

otherwise.

Theorem 15. [66]∗The algorithm is an FPTAS for 1|nr = 1, q = 2|
∑

j wjCj.

Proof. Take any instance I of 1|nr = 1, q = 2|
∑

j wjCj, and consider an
optimal solution with the structure speci�ed in Proposition 15. In particular,
let J 1 be the set of jobs starting before u2. Let δ be the largest member of G
with δ < ∆n+1 max{u2, p(J 1)} (since u2 ∈ G, such a member exists). Since
∆n ≤ 1 + ε/2 (using the fact that (1 + x/n)n ≤ 1 + 2x for 0 ≤ x ≤ 1, see
[95]), we derive δ < ∆n+1 max{u2, p(J 1)} ≤ (1 + ε) max{u2, p(J 1)}. Notice
that since δ = u2∆k for some k ∈ Z≥0, δ ≥ ∆np(J 1) follows.

InDδ consider a terminal node with associated vector (n, P ′1, PW
′
1, P

′
2, PW

′
2)

which corresponds to the partitioning of jobs J 1,J 2 in the optimal solution.
Then this must be a feasible terminal node of Dδ, since we started out from
a feasible schedule, and δ ≥ ∆np(J 1) ≥ P ′1 ≥ p(J 1), where the �rst inequa-
lity is from the preceding paragraph, while the second and third follow from
Proposition 16. The value of this node is PW ′

1 + PW ′
2. How much bigger is
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PW ′
1 + PW ′

2 than the objective function value (3.30)? We compute

PW ′
1 + PW ′

2 < ∆n

∑
j∈J 1

wj

 ∑
k∈J 1,k≤j

pk

+
∑
j∈J 2

wj

δ +
∑

k∈J 2,k≤j

pk

 <

∆n

∑
j∈J 1

wj

 ∑
k∈J 1,k≤j

pk

+
∑
j∈J 2

wj

(1 + ε) max{u2, p(J 1)}+
∑

k∈J 2,k≤j

pk


≤ ∆n(1 + ε)

∑
j∈J 1

wj

 ∑
k∈J 1,k≤j

pk

+
∑
j∈J 2

wj

max
{
u2, p(J 1)

}
+

∑
k∈J 2,k≤j

pk


≤ (1 + 2ε)

∑
j∈J 1

wj

 ∑
k∈J 1,k≤j

pk

+
∑
j∈J 2

wj

max
{
u2, p(J 1)

}
+

∑
k∈J 2,k≤j

pk

 ,

where the �rst inequality follows from the properties of iterative rounding
(Proposition 16), the second from the inequality δ < (1 + ε) max{u2, p(J 1)}
shown in the �rst paragraph of this proof, and the rest from the inequalities
∆n ≤ 1 + ε/2 and (1 + ε)(1 + ε/2) ≤ 1 + 2ε for 0 ≤ ε ≤ 1. Since the
algorithm chooses a feasible terminal node with smallest rounded value, we
know that the value of the best solution found is also at most (1 + 2ε) times
the optimum.

The time complexity of the algorithm is determined by the cardinality
of G, and the size of the graphs Dδ. The former set has dlog∆((p(J ) +
u2)/u2)e = dln((p(J )+u2)/u2)/ ln ∆e elements, which is bounded by CG :=
d(ln((p(J ) + u2)/u2))(1 + 4n)/εe, a polynomial in the size of the input and
in 1/ε, since ln(1 + ε/4n) ≥ ε/(ε + 4n) ≥ ε/(1 + 4n), and ln z ≥ (z − 1)/z,
see [95]. On the other hand, the number of nodes of Dδ is bounded by
the number of distinct (t, P ′1, PW

′
1, P

′
2, PW

′
2) vectors. Since both of P ′1 and

P ′2 take values from the set {0} ∪ {∆z : z ∈ {0, . . . , n + dlog∆ p(J )e}},
and both of PW ′

1 and PW ′
2 take values from the set {0} ∪ {∆z : z ∈

{0, . . . , n+dlog∆w(J )(u2 +p(J ))e}}, we deduce that both of P ′1 and P ′2 may
take at most CP := n+dln p(J )e(1+4n)/ε distinct values, and that both of
PW ′

1 and PW
′
2 may take at most CPW := n+dlnw(J )(u2+p(J ))e(1+4n)/ε

distinct values. Therefore, the number of nodes is bounded by a polynomial
in the size of the input, and in 1/ε. Since the out-degree of each non-terminal
node is 2, we know that the size of Dδ is also polynomial in the size of the
input and in 1/ε, and thus the shortest path to all the terminal nodes can
be computed in polynomial time in the size of the input (in linear time in
the size of the graph, since Dδ is acyclic), and in 1/ε. Therefore, we have an
FPTAS with running time O(CG · n · CP 2 · CPW 2).
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3.2 Parallel machine problems

In this section we discuss scheduling problems with parallel machines and
jobs consuming non-renewable resources. Again, our focus is on the approx-
imability of various special cases.

We have m parallel machines,M = {M1, . . . ,Mm}, a �nite set of n jobs
J = {J1, . . . , Jn}, and a �nite set of non-renewable resources R consumed by
the jobs. Each job Jj has a processing time pj ∈ Z≥1, a release date rj, and
resource requirements aij ∈ Z≥1 from the resources i ∈ R. Preemption of jobs
is not allowed and each machine can process at most one job at a time. The
resources are supplied in q di�erent time moments, 0 = u1 < u2 < . . . < uq;
the vector b̃` ∈ Z|R|≥1 represents the quantities supplied at u`. A schedule σ
speci�es a machine and the starting time Sj of each job and it is feasible if (i)
on every machine the jobs do not overlap in time, (ii) Sj ≥ rj for each j ∈ J ,
and if (iii) at any time point t the total supply from each resource is at least
the total request of those jobs starting not later than t, i.e.,

∑
(` : u`≤t) b̃`i ≥∑

(j : Sj≤t) aij, ∀i ∈ R. We will consider two types of objective functions:
the minimization of the maximum job completion time (makespan) de�ned
by Cmax = maxj∈J Cj; and the minimization of the maximum lateness, i.e.,
each job has a due-date dj, j ∈ J , and Lmax := maxj∈J (Cj − dj). Clearly,
Lmax is a generalization of Cmax.

Parallel machine scheduling with the Cmax and Lmax objectives, respecti-
vely, (without non-renewable resources), is a well-studied problems in the
literature. A straightforward transformation from the 3-PARTITION pro-
blem shows that minimizing the makespan (and thus the maximum lateness)
is NP-hard in the strong sense, and a similarly straightforward reduction from
the PARTITION problem proves that these problems remain NP-hard in
the ordinary sense even if the number of machines is 2, see e.g., Garey and
Johnson [36]. The most important result, from our point of view, is that the
parallel machine scheduling problem with the maximum lateness objective
and with job release dates, P |rj|Lmax (and thus also the special case P ||Cmax),
admits a PTAS [46]. In fact, we will reuse this PTAS in our polynomial time
approximation scheme for Pm|nr = const , q = const |Cmax and, when there
is a single resource and the processing times are proportional to the resource
requirements (or vice versa) Pm|nr = 1, q = const , pj = aj|Lmax.

In Section 3.2.1 we describe a negative result showing that the makespan
minimization problem with arbitrary number of machines and with 2 non-
renewable resources only does not admit a PTAS unless P = NP . This
is the motivation for considering a �xed number of machines subsequently.
In Section 3.2.2 we describe a PTAS for Pm|nr = 1, pj = aj|Lmax, i.e., the
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number of machines is a constant, there is only one non-renewable resource,
the number of the supply dates is a constant, and the processing time of each
job equals its resource requirement.

3.2.1 Inapproximability results

In this section we prove that if the number of machines is part of the input,
then P |nr = 2, q = 2, pj = 1|Cmax cannot be approximated better than
3/2− ε for any ε > 0 unless P = NP .

Theorem 16. [45]∗ Deciding whether there is a schedule of makespan 2
with two non-renewable resources, two supply dates and unit-time jobs on
an arbitrary number of machines (P |nr = 2, q = 2, pj = 1|Cmax ≤ 2) is
NP-hard.

Proof. We reduce the EVEN-PARTITION problem to the problem P |nr =
2, q = 2, pj = 1|Cmax, and argue that deciding whether a schedule of ma-
kespan two exists is as hard as �nding a solution for EVEN-PARTITION.
Recall that an instance of the EVEN-PARTITION problem consists of 2t
items, for some integer t, of sizes a1, . . . , a2t ∈ Z≥1. The decision problem
asks whether the set of items can be partitioned into two subsets S and S̄
of cardinality t each, such that

∑
i∈S ai =

∑
i∈S̄ ai? This problem is NP-

hard in the ordinary sense, see [36]. Clearly, a necessary condition for the
existence of set S is that the total size of all items is an even integer, i.e.,∑2t

i=1 ai = 2A, for some A ∈ Z≥1.
We map an instance I of EVEN-PARTITION to the following instance

of P |nr = 2, q = 2, pj = 1|Cmax. There are n := 2t jobs, and m := t
machines. All the jobs have unit processing time, i.e., pj = 1 for all j. The
job corresponding to the jth item in I has resource requirements a1,j := aj
and a2,j := A − aj. The initial supply at u1 = 0 from the two resources is
b̃1,1 := A and b̃1,2 := (t − 1)A, and the second supply at time u2 = 1 has
b̃2,1 := A, and b̃2,2 := (t−1)A. We have to decide whether a feasible schedule
of makespan two exists.

First, suppose that I has a solution S. Then we schedule all the jobs
corresponding to the items in S at time 0, each on a separate machine. Since
S contains t items, and the number of machines is t as well, this is feasible.
Moreover, the total resource requirement from the �rst resource is precisely
A, whereas that from the second one is

∑
j∈S a2,j =

∑
j∈S(A−aj) = (t−1)A.

The rest of the jobs are scheduled at time 1. Since their number is t, and
since u2 = 1 is the second and last supply date, all the resources are supplied
and the jobs can start promptly at time 1.
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Conversely, suppose there is a feasible schedule of makespan two. Then,
there are t jobs scheduled at time 0, and the remaining t jobs at time 1. Let S
denote the set of the jobs scheduled at time 0. The resource requirements of
those jobs in S equal the supply at time u1 = 0, because

∑
j∈S aj = A follows

from the resource constraints: on the one hand
∑

j∈S aj =
∑

j∈S a1,j ≤ A,
and on the other hand

∑
j∈S a2,j =

∑
j∈S(A−aj) = tA−

∑
j∈S aj ≤ (t−1)A,

thus A ≤
∑

j∈S aj. Hence S is a feasible solution of the EVEN-PARTITION
problem instance.

Corollary 13. [45]∗ It is NP-hard to approximate problem P |nr = 2, q =
2, pj = 1|Cmax ≤ 2 better than 3/2− ε for any ε > 0.

By Assumption 1, the optimum makespan is at least uq, therefore, a
straightforward three-approximation algorithm would apply list scheduling
(list scheduling has an approximation guarantee of 2− 1/m for P ||Cmax) to
schedule all the jobs after uq. Therefore, we have the following result.

Corollary 14. [45]∗ P |nr = 2, q = 2, pj = 1|Cmax is APX-complete.

3.2.2 PTAS for Pm|nr = 1, pj = aj|Lmax

The lateness objective is special in the sense that it can take 0 on negative
values in an optimal solution. Therefore, as usual, throughout this section
we consider a shifted lateness objective L′max := D + maxj∈J Lj, where D =
uq+maxj∈J dj is the o�set. By de�nition, L′max ≥ uq for any feasible schedule.

Throughout this section we assume that ε > 0 is a small constant with
1/ε ∈ Z. At the expense of increasing the optimum value by at most εuq, we
may assume that every supply date is an integer multiple of εuq. This can
be achieved by increasing each supply date by at most εuq. More precisely,
we de�ne the supply dates u′` = `εuq for ` = 1, . . . , 1/ε. The total supply
of the resource at u′` is

∑
k:u′`−1<uk≤u

′
`
b̃`. Then, any schedule S feasible with

respect to the original supplies can be turned into a schedule feasible with
respect to the shifted supply dates and aggregated supply quantities, all we
have to do is to increase each Sj by εuq. Clearly, this increases the lateness
of the schedule by εuq.

Let S ′ := {j ∈ J |pj ≤ ε2uq} be the set of tiny jobs, and B′ := J \ S ′
be the set of huge jobs. Note that between two consecutive supply dates at
most 1/ε huge jobs can start, thus we can assume

∑
j∈B′ xj`k ≤ 1/ε, if ` < q

and k ∈M, therefore there are at most (n+1)(1/ε)qm di�erent assignments of
huge jobs to the supply dates u1 through uq−1. We can examine all of them,
since m and ε are constants. The remaining huge jobs are assigned to uq,
but we assign them to machines later. For each huge job assignment we will
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guess approximately the total processing time of those tiny jobs that start
in the interval [u`, u`+1) on machine Mk, ` = 1, . . . , q − 1, and k = 1, . . . ,m.
A guess is a number of the form gk,` · (ε2uq), where 0 ≤ gk,` ≤ 1/ε + 1 is an
integer. A guess for all the q − 1 supply dates and all the m machines can
be represented by a m× (q − 1)-tuple g = (gk,`), and let G denote the set of
all possible guesses. The algorithm is as follows:

Algorithm B [45]
Initialization: Sbest is a schedule where each job is scheduled on M1 after uq.

1. For each feasible partial assignment x̂huge,b of huge jobs to machines and
supply dates u1 through uq−1, perform the following steps.

2. For each tuple g ∈ G, do steps 3 - 6:

3. We create a feasible partial assignment x̂b by assigning also the tiny jobs
to machines and supply dates u1 through uq−1. Initially x̂b is the same as
x̂huge,b . Let L be the list of tiny jobs sorted in non-decreasing d′j order. Jobs
from L are assigned to machines and to supply dates u1 through uq−1 until
all jobs from L get assigned or all the supply dates from u1 through uq−1

are processed. When processing supply date u`, ` ∈ {1, . . . , q − 1}, we �rst
assign jobs to M1, then to M2, etc. Let Mk be the next machine to receive
some jobs. Let hk,` be the smallest number of tiny jobs from the beginning
of L with a total processing time of at least gk,`(ε

2uq), and let zk,` be the
maximum number of tiny jobs from the beginning of L that can be assigned
to u` without violating the resource constraint. Assign min{hk,`, zk,`} jobs
from the beginning of L to supply date u` on Mk, and remove them from L.
Then proceed with the next machine until all machines are processed or L
becomes empty.

4. Create a partial schedule Spart from x̂b with Subroutine Sch.

5. Let Cpart
max (k) be the time when Mk �nishes Spart. Invoke the PTAS of [45]

for the problem P |preassign, rj |Lmax with max{Cpart
max (k), uq} amount of pre-

assigned work on Mk (k = 1, 2, . . . ,m) to schedule the remaining jobs. Let
Sact be the resulting schedule.

6. If L′max(Sact) < L′max(Sbest), then let Sbest := Sact.

7. After examining each feasible assignment of huge jobs before uq, output S
best.

Notice that in Step 5 we use the PTAS of Györgyi and Kis [45] (which
is an easy extension of the PTAS of Hall and Shmoys for P |rj|Lmax) for
solving the problem P |preassign, rj|Lmax which is like P |rj|Lmax, but on each
machine there can be some pre-assigned work which must precede any newly
scheduled jobs.
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Subroutine Sch Input: J̄ ⊆ J and x̄ such that for each j ∈ J̄ there exists a
unique (`, k) with x̄j`k = 1.

Output: partial schedule Spart of the jobs in J̄ .
1. Spart is initially empty, then we schedule the jobs on each machine in incre-

asing u` order (�rst we schedule those jobs assigned to u1, and then those
assigned to u2, etc.):

2. For each machine Mk, and supply date u`, always schedule �rst the tiny jobs
and then the huge jobs. When scheduling the next job with x̄j`k = 1, then it
is scheduled at time max{u`, Clast(k)}, where Clast(k) is the completion time
of the last job scheduled on machine Mk, or 0 if no job has been scheduled
yet on Mk.

The �nal schedule Sbest of Algorithm B is obviously feasible and the run-
ning time is polynomial in the size of the input, since the number of possible
huge job assignments before uq can be bounded by O((n + 1)(1/ε)qm), the
number of the tuples is (1/ε+2)m(q−1), steps 3 and 4 require O(n log n) time,
while step 5 also requires polynomial time, see [45].

For the sake of proving that Algorithm B is a PTAS, we construct an
intermediate schedule S̃ which, on the one hand, has a similar structure
to that of an optimal schedule, and on the other hand, not far from the
schedule computed by Algorithm B. S̃ is derived from an optimal schedule
S∗ as follows. Let g∗k,` (k ∈ {1, . . . ,m} and ` ∈ {1, . . . , q−1}) be the smallest
integer such that (g∗k,`− 1) · (ε2uq) is at least the total processing time of the
tiny jobs starting in [u`, u`+1) on Mk in S∗ unless there is no such tiny job,
in which case g∗k,` = 0. First perform Steps 3 and 4 of Algorithm B with the
partial huge job assignment (xhuge,b)∗ that corresponds to S∗, and the tuple g∗

just de�ned. After that, schedule the remaining huge jobs at S̃j := S∗j + 5εuq
on the same machine as in S∗ and �nally schedule the remaining tiny jobs in
earliest-due-date (EDD) order after max{Cpart

max , uq} at the earliest idle time
on any machine.

In order to compare S̃ with Sbest (Proposition 17), and with S∗ (Propo-
sition 18), �rst we make two observations. Let J̃`,k denote the set of tiny
jobs that are assigned to u` and Mk in S̃ and J ∗`,k denote the set of tiny jobs
with u` ≤ S∗j < u`+1 on machine k. J̃` := ∪kJ̃`,k and J ∗` := ∪kJ ∗`,k. Let
M∗

` denote the set of those machines with at least one tiny job that starts
in [u`, u`+1) in S∗.

Observation 2. [45] For each ` < q and Mk ∈M, p(J̃`,k) < p(J ∗`,k) + 3ε2uq
and p(∪ν≤`J̃ν) ≥ p(∪ν≤`J ∗ν )− ε2uq.

Proof. The �rst part follows from p(J ∗`,k)+3ε2uq > (g∗k,`−2)(ε2uq)+3ε2uq =

(g∗k,` + 1)(ε2uq) > p(J̃`,k) (the �rst inequality follows from the choice of g∗,
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while the second from the construction of S̃). For the second part, let `′ ≤ `
denote the last period where the algorithm had to proceed with the next
period, because there was not enough resource to schedule the next tiny job,
butM∗

`′ 6= ∅. The huge jobs that are assigned to a time period until u`′ in
S̃ are scheduled before u`′+1 in S∗, thus, since pj = aj and S∗ is feasible,
p(∪ν≤`′J̃ν) ≥ p(∪ν≤`′J ∗ν ) − ε2uq follows, because otherwise there would be
enough resource to assign at least one more tiny job to u`′ in S̃. According
to the de�nition of `′ and the rules of Algorithm B, we have p(J̃ν) ≥ p(J ∗ν )
for each ν = `′ + 1, . . . , `, thus the observation follows.

Observation 3. [45] After processing supply date u` in Step 3 of Algorithm
B, then at least one of the following conditions holds: (i) there is not enough
resource to assign the next tiny job, (ii) p(∪ν≤`J̃ν) ≥ p(∪ν≤`J ∗ν ) or (iii)
M∗

` = ∅.

Proof. If (i) and (iii) are not true, then we have p(J ∗` ) ≤
∑

k∈M∗`
(g∗k,` − 1) ·

(ε2uq) ≤ p(J̃`) − ε2uq, where the �rst inequality follows from the de�nition
of g∗, the second from the rule of Algorithm B (step 3). Consequently,
the observation follows from the second part of Observation 2 (using it for
`− 1).

Proposition 17. [45] S̃ is feasible, and L′max(S
best) ≤ (1 + ε)L′max(S̃).

Proof. S̃ cannot violate the resource constraints by the rules of Algorithm
B, and due to Observation 2, the jobs scheduled on an arbitrary machineMk

must end before a huge job scheduled in the last stage of the construction of
S̃ would start, since for all those huge jobs, S̃j = S∗j + 5εuq by de�nition. In
some iteration, Algorithm B will consider the huge job assignment and the
tuple that we used to de�ne S̃. Hence, after step 4, S̃ and Spart coincide.
Therefore, the Proposition follows from [46].

Proposition 18. [45] L′max(S̃) ≤ L′max(S∗) + 6εuq.

Proof. Let j be such that L′j(S̃) = L′max(S̃). First suppose that j is huge.
If j is scheduled at step 4 (since it is assigned to a supply date u` and a
machine Mk), then the jobs assigned to Mk and to a u`′ with `′ < `, are
completed at most 3(` − 1)ε2uq later in S̃ than the jobs with S∗j′ < u` on
Mk in S∗ (Observation 2). The total processing time of the jobs that are
assigned to u` and Mk and scheduled before j in S̃ is at most εuq + 3ε2uq,
thus C̃j ≤ C∗j + 5εuq follows. If it is scheduled at step 5, then originally we
have S̃j = S∗j + 5εuq and we may push j to the right by at most ε2uq, thus
C̃j ≤ C∗j + 6εuq.

Now suppose that j is tiny.
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Claim 3. min{dj′ : j′ ∈ ∪ν≥`J̃ν} ≥ min{dj′ : j′ ∈ ∪ν≥`J ∗ν }, for each ` ≤ q.

Proof. Assume for a contradiction that there exists an ` ≤ q and j1 ∈ J̃`
such that

dj1 = min{dj′ : j′ ∈ J̃`} = min{dj′ : j′ ∈ ∪ν≥`J̃ν} < min{dj′ : j′ ∈ ∪ν≥`J ∗ν },
(3.31)

where the second equation follows from the EDD scheduling of tiny jobs
in S̃. Let H := {j′ ∈ S ′ : dj′ ≤ dj1}. Let `′ < ` be the largest index
such that M∗

`′ 6= ∅. If there is no such `′, then the claim follows, since we
have

⋃
ν<` J̃ν =

⋃
ν<` J ∗ν = ∅ from the de�nition of S̃. Otherwise, for each

ν = `′ + 1, . . . , ` − 1, since M∗
ν = ∅, we have J ∗ν = J̃ν = ∅. Furthermore,

from (3.31), it follows that all the jobs in H start before u`′+1 in S∗ by our
indirect assumption. Therefore,

p(∪ν≤`′J̃ν) < p(H) ≤ p(∪ν≤`′J ∗ν ),

where the �rst inequality follows from the fact that H comprises all the tiny
jobs assigned to any time period uν < u` in S̃, and j1 as well, which is
assigned to u` by de�nition. Hence, case (i) of the Observation 3 must hold
for `′. Thus, there was not enough resource to schedule all the tiny jobs in H
before u`′+1 in S̃. On the other hand, all the jobs in H are scheduled before
u`′+1 in S∗, thus the resource consumption of the tiny jobs starting before
u`′+1 in S∗ is not smaller than that in S̃. Moreover, the huge job assignment
of the two schedules before uq is the same. Since S∗ is feasible, this is a
contradiction.

If j is assigned to an u` with ` < q, then according to Claim 3, there exists
a job j∗ with dj∗ ≤ dj and S∗j∗ ≥ u`. Let Mk be the machine which processes
j in S̃. We have S̃j ≤ u` + (εuq + 3ε2uq) + 3(q − 2)ε2uq = u` + 4εuq, since,
on the one hand, the total processing time of the tiny jobs assigned to u` on
Mk in S̃ is at most εuq + 3ε2uq, and, on the other hand, for each ν < ` the
total processing time of the tiny jobs assigned to uν and Mk in S̃ is greater
by at most 3ε2uq than the same amount in S∗ (Observation 2) and the huge
job assignment is the same in S̃ and S∗. Therefore L′j(S̃) = C̃j − dj + D ≤
u`+ 5εuq−dj +D ≤ u`+ 5εuq−dj∗ +D ≤ L′j∗(S

∗) + 5εuq ≤ L′max(S∗) + 5εuq
follows.

Now suppose that j is scheduled at step 5. We will show that there
exists a tiny job j∗ such that S∗j∗ ≥ S̃j − 5εuq with dj∗ ≤ dj. From this the
proposition follows, since 0 < pj, pj∗ ≤ ε2uq by de�nition. Let Ã(t) denote
the set of tiny jobs j′ that are scheduled at step 5 such that S̃j′ ≥ t, and
B̃(t) := S ′ \ Ã(t). Likewise, let A∗(t) denote the set of tiny jobs j′ with
S∗j′ ≥ t, and B∗(t) := S ′ \ A∗(t).
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Claim 4. If t ≥ uq, then p(Ã(t+ 5εuq)) ≤ p(A∗(t)).

Proof of Claim 4. Note that, if t ≥ uq then the total processing time of
the huge jobs in [max{Cpart

max (k), uq}, t] on any Mk in S∗ is at least the total
processing time of the huge jobs in [max{Cpart

max (k), uq}, t + 5εuq] on Mk in
S̃, because S̃j′ ≥ S∗j′ + 5εuq if j′ is huge and S∗j′ ≥ uq. Since p(Ã(uq)) ≤
p(A∗(uq)) + ε2uq (apply Observation 2 to ` = q − 1), and there is no gap
before any tiny job on any machine Mk in S̃ after max{Cpart

max (k), uq}, the
claim follows, because there is more time to schedule tiny jobs until t+ 5εuq
in S̃ on any machine for any t ≥ uq than until t in S∗.

From the claim we deduce p(B̃(S̃j)) ≥ p(B∗(S̃j − 5εuq)). It follows that
there exists j∗ ∈ {j} ∪ B̃(S̃j) such that j∗ ∈ A∗(S̃j − 5εuq). Since the tiny
jobs are scheduled in EDD order in S̃, we have dj∗ ≤ dj, and we are done.

Theorem 17. [45] Pm|nr = 1, pj = aj|L′max admits a PTAS.

Proof. If we put together the above results we get that Algorithm B con-
structs a feasible schedule in polynomial time and the (shifted) lateness of this
schedule is at most L′max(Sbest) ≤ (1+ε)L′max(S̃) ≤ (1+ε)(L′max(S∗)+6εuq) ≤
(1 + 8ε)L′max(S∗) by Propositions 17 and 18.

3.2.3 Outlook to further results

The makespan minimization problem has also been investigated in Györgyi
and Kis [45]:

Theorem 18. The problem Pm|nr = const |Cmax admits a PTAS.

We do not provide a detailed proof of this result, as it is similar to that
of Theorem 17. Moreover, it is a a generalization of that of Theorem 13, but
it is more involved, since we have to deal with m parallel machines instead
of a single machine. Notice that this result is the strongest possible for the
makespan objective, sine the problem is NP-hard in the strong sense (see
Proposition 8), and if the number of machines, or the number of resources
are not constants, then the problem becomes APX-hard (see Corollary 13
and Theorem 11).
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Chapter 4

Bilevel scheduling problems

In this chapter we are concerned with scheduling problems formulated as bi-
level optimisation problems, which has its origins in market economy theory,
and in particular in Stackelberg games [27]. Bilevel optimization is concerned
with two-level optimization problems, in which there is a top level decision
maker or leader , and one (or more) bottom level decision maker(s) or fol-
lower(s). The leader decides �rst, and �xes those decision variables that
are under her control. While making her decisions, she takes into account
the possible responses of the follower in order to optimize her own objective
function. The leader's decisions a�ect the constraints and/or the objective
function of the follower. The follower decides second, and makes its decisions
in view of those of the leader. However, its decisions a�ect the objective
function of the leader or even the feasibility of the leader's solution. The fol-
lower also wants to optimize its own objective function. When solving bilevel
optimization problems, we want to support the leader in making optimal de-
cisions. In the optimistic case, the leader assumes that the follower chooses
an optimal solution which is the most favorable for her, while in the pessi-
mistic case the leader assumes that the follower chooses an optimal solution
with the worst outcome for her. For an overview and references on bilevel
optimizaiton, see Dempe [26, 27]. However, there are only sporadic results
on bilevel machine scheduling problems, see e.g., [57], [79]. The connection
between bilevel optimization and multi-criteria optimiozation in the context
of linear programming has been explored by Fülöp [33].

We will consider two bilevel scheduling problems. In the �rst one, there is
a parallel machine environment, and the leader has to assign jobs to machines,
whereas the follower orders the jobs on each machine (Section 4.1). At both
levels the objective function is the weighted sum of job completion times, but
with di�erent job weights at the two levels. We will study the complexity
of the problem, its relation to multi-criteria optimization, and then we will
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90 CHAPTER 4. BILEVEL SCHEDULING PROBLEMS

analyze various special cases. An important by-product is that we present a
new polynomially solvable special case of the MAX-CUT problem in graphs.
In the second problem class (Section 4.2) there is only a single machine,
and each job has a deadline. The leader has to accept or reject jobs while
maximizing the total weight of accepted jobs. On the other hand, the follower
aims at minimizing the weighted sum of the completion time of the accepted
jobs. Again, we will analyze the complexity, and consider various special
cases.

We will frequently refer to the weighted shortest processing time order of
the jobs with respect to some job weights wj (WSPT order for short), in
which job j precedes job k, if wj/pj > wk/pk, and there may be additional
tie-breaking rules. Finally, we call a schedule non-delayed , if no job may be
started earlier without violating some of the constraints of the scheduling
problem.

The results of this chapter are based on Kis and Kovács [68].

4.1 The bilevel weighted completion time pro-

blem

In the bilevel weighted completion time problem, there are n jobs andm identi-
cal parallel machines. Each job has a processing time pj and two non-negative
weights, w1

j and w
2
j . The leader assigns jobs to machines, and the follower or-

ders the jobs assigned to each machine. Let Cj denote the completion time of
job j in a solution. The follower's objective is to minimize

∑m
i=1

∑
j∈Ji w

2
jCj,

where Ji is the set of those jobs assigned to machine i. In the optimistic case,
the leader's objective is to minimize the total completion time

∑n
j=1w

1
jCj,

where the minimum is taken over all job assignment J1, . . . , Jm. In contrast,
in the pessimistic case the leader wants to �nd an assignment of jobs to ma-
chines such that the maximum total weighted completion time is minimal
by minimizing (over all job assignments) max

∑n
j=1w

1
jCj, where the max-

imum is taken over all optimal solutions of the follower with respect to a
job assignment. The leader aims to �nd the sets Ji, i = 1, . . . ,m, such that
her decision is optimal in the optimistic or in the pessimistic sense. Notice
that such a solution cannot be modeled by imposing precedence constraints
among the jobs, because the assignment of jobs to machines is not known in
advance.
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4.1.1 Preliminaries

The bilevel weighted completion time problem is a generalization of the pa-
rallel machine weighted completion time problem, which is as follows. There
are m identical parallel machines, and n jobs each with a processing time
pj and weight wj. Each job has to be assigned to a machine, and the jobs
assigned to the same machine have to be sequenced such that the objective
function

∑
j wjCj is minimized, Cj being the completion time of job j. In

the α|β|γ notation this problem is denoted as P ||
∑

j wjCj. This problem is
NP-hard [93], strong NP-hardness is claimed by Lenstra (cf. Brucker [13]).
The special case P ||

∑
j Cj is solvable in polynomial time by network �ow

techniques. An important property of the optimal solutions is that on each
machine the jobs are processed in non-decreasing processing time order, see
e.g., [13].

4.1.2 Bilevel weighted completion time and Pareto op-

timality

Multi-criteria scheduling problems are thoroughly discussed in the literature,
see e.g., the review of Hoogeveen [52]. In those problems, there are two or
more criteria to evaluate solutions, and we associate with each solution a
vector of objective function values. A central notion of multi-criteria optimi-
zation is that of Pareto optimality . Suppose there are k criteria, and S1, S2

are two solutions with values (f 1
1 , . . . , f

1
k ), and (f 2

1 , . . . , f
2
k ), respectively. We

say that S1 Pareto-dominates S2 if f 1
i ≤ f 2

i for each i = 1, . . . , k. The
Pareto-dominance is strict if f 1

i < f 2
i for at least one i. Then, a solution is

Pareto optimal if it is not strictly Pareto-dominated by some other solution.
Now we demonstrate that the optimal solution of the bilevel weighted

completion time problem is not Pareto optimal in general. In fact, we des-
cribe an instance where every optimal solution of the bilevel problem is
strictly dominated by a feasible solution. This shows that the two notions of
optimality are di�erent.

3

S*

3 50

2 1

6

5 4

9

3

S '

3 70

21

1

5
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8

Figure 4.1: Two schedules for the bilevel weighted completion time problem.

Suppose there are 5 jobs, with processing times pj = j for j = 1, . . . , 5.
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92 CHAPTER 4. BILEVEL SCHEDULING PROBLEMS

The weights of the jobs are as follows: w1
j = 1, and w2

j = pj(c + pj) for
every job j, where c is a constant to be chosen later. Notice that w2

j induces
a decreasing processing time order, since w2

j/pj ≥ w2
k/pk is equivalent to

c + pj ≥ c + pk. Therefore, in any optimal solution of the bilevel scheduling
problem, the machines process the assigned jobs in decreasing processing
time order, otherwise the solution is not optimal for the follower.

It can be shown that this problem admits the unique optimal solution S∗

(up to permutation of the machines) in which J∗1 = {3, 2, 1} and J∗2 = {5, 4},
and the machines process the assigned jobs in the given order. In this solution
the job completion times for j ∈ J∗1 are C∗3 = 3, C∗2 = 5, C∗1 = 6, and those
for j ∈ J∗2 are C∗5 = 5, C∗4 = 9, see Figure 4.1. Therefore, the optimal
objective function value of the leader is

∑5
j=1C

∗
j = 28. On the other hand,

the followers' objective function value is
∑5

j=1w
2
jC
∗
j = 86c+ 322. Therefore,

the vector of objective function values is (f ∗1 , f
∗
2 ) = (28, 86c+ 322).

We construct another solution S ′: let J ′1 = {1, 2, 4} and J ′2 = {3, 5},
and suppose the machines process the assigned jobs in increasing processing
time order. Then C ′1 = 1, C ′2 = 3, C ′4 = 7, and C ′3 = 3, C ′5 = 8. The
leader's objective function value is

∑5
j=1 C

′
j = 22. On the other hand, the

follower's objective function value on this solution is
∑5

j=1w
2
jC
′
j = 84c+352.

Therefore, (f ′1, f
′
2) = (22, 84c+ 352). Clearly, this solution is not optimal for

the follower, since by reversing the processing order on the two machines the
objective function would decrease.

Now we compare the solutions S∗ and S ′. S ′ strictly Pareto-dominates
S∗, i.e.,

(f ∗1 , f
∗
2 ) = (28, 86c+ 322) > (22, 84c+ 352) = (f ′1, f

′
2)

if c > 15. Therefore, S∗ is strictly Pareto-dominated.

4.1.3 Global ordering of jobs

Given the leader's decision about the job assignments Ji, i = 1, . . . ,m, the
follower faces m independent 1||

∑
j∈Ji w

2
jCj problems, one for each machine.

Hence, the follower is going to minimize the objective function
∑m

i=1

∑
j∈Ji w

2
jCj

by sequencing the jobs according to the WSPT rule using the weights w2,
with ties broken according to w1 (the direction of tie-braking di�ers in the
optimistic and in the pessimistic case). Since the processing times and weig-
hts of the jobs do not depend on the machine assignment, the sequence on
each machine is a sub-sequence of one global partial ordering. The global
partial ordering in the optimistic case is:
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4.1. THE BILEVEL WEIGHTED COMPLETION TIME PROBLEM 93

job j precedes job k if w2
j/pj > w2

k/pk or (w
2
j/pj = w2

k/pk and w
1
j/pj > w1

k/pk)
(4.1)

while in the pessimistic case it is:

job j precedes job k if w2
j/pj > w2

k/pk or (w
2
j/pj = w2

k/pk and w
1
j/pj < w1

k/pk)
(4.2)

The above ordering is partial because it does not decide which of jobs j
and k should be scheduled �rst if w2

j/pj = w2
k/pk and w

1
j/pj = w1

k/pk.

Proposition 19. [68]∗In the optimistic case there always exists an optimal
non-delayed schedule for any non-negative job-weights. In the pessimistic
case, if there exists a job j with w2

j = 0 and w1
j > 0, then the pessimistic

bilevel scheduling problem admits no �nite optimum. Otherwise, it always
has a �nite optimum.

Proof. In the optimistic case, the follower always chooses the most favourable
schedule for the leader among its optimal solutions with respect to a speci�c
assignment of jobs to machines. Therefore, it always chooses a non-delay
schedule, since w2

j ≥ 0 for all jobs, and therefore, there is no gain in delaying
a job. Since there exist only a �nite number of non-delayed schedules, the
problem always admits a �nite optimum.

In contrast, in the pessimistic case, the leader assumes that the follower
plays against her. Hence, if w2

j = 0 and w1
j > 0 for some job j, then the

optimum value of the leader is in�nite, since the follower has an optimal
schedule with an arbitrarily large Cj value for any assignment of jobs to
machines. If w2

j = w1
j = 0, then w1

jCj = 0, and therefore such jobs can be
scheduled arbitrarily by the follower after those jobs with w2

k > 0 without
a�ecting the objective function of the leader. Finally, if w2

j > 0 for all the
jobs, then any optimal solution of the follower is a non-delayed schedule, and
therefore, the problem has a �nite optimum.

The above technical di�culties can be avoided by assuming that the follo-
wer always chooses a non-delayed optimal solution, which is quite reasonable
in practice.

Lemma 17. [68]∗The optimistic weighted completion time problem always
admits an optimum solution of �nite value such that on each machine the
jobs are ordered according to (4.1).

Proof. The existence of an optimal schedule is guaranteed by Proposition 19.
As for the structure of optimal schedules, the key observation is that once
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the assignment of jobs to machines is �xed, the follower always chooses an
optimal ordering of the set of jobs assigned to each machine. However, the
single machine problem of machine i with job-set Ji is 1||

∑
j∈Ji w

2
jCj, which

can be solved by the WSPT rule. If the order of two jobs is arbitrary in
an optimal solution, i.e., w2

j/pj = w2
k/pk, then the leader's preference can be

taken into account which is expressed in the ordering (4.1).

Lemma 18. [68]∗If there exists no job j with w2
j = 0 and w1

j > 0, or the
follower has to choose a non-delayed optimal schedule, then the pessimistic
weighted completion time problem admits an optimal solution of �nite value
such that on each machine the jobs are ordered according to (4.2).

Proof. Similar to the optimistic case.

The following lemma shows that in general it is possible to change the
followers' weights so that w2 alone de�nes one unambiguous complete glo-
bal ordering of jobs, and the sequences on individual machines will be sub-
sequences of that global ordering. This is useful, because it ensures that �
whenever this conversion can be performed � our propositions hold both for
the optimistic and the pessimistic cases.

Lemma 19. [68]∗Any instance Π of the bilevel weighted completion time
problem can be converted into an instance Π̄ such that the followers' WSPT
order is unique, and all the optimal solutions of Π̄ are optimal for Π as well.

Proof. We de�ne new follower's job weights w̄2 as follows: In the optimistic
case re-index the jobs (i.e., j < k i� job j precedes k) with respect to partial
order (4.1), break ties arbitrarily, while in the pessimistic case with respect
to (4.2). We de�ne the instance Π̄ with n jobs having processing times
pj, leader's weights w1

j and followers' weights w̄2
j = (n − j + 1)pj. Since

w̄2
j/pj = n− j + 1, it follows that job j precedes job k i� j precedes k in the

selected global ordering of jobs. Moreover, the WSPT order with respect to
w̄2
j induces a total order of jobs.

4.1.4 Complexity

Below we prove that the decision version of the bilevel weighted completion
time problem is NP-complete in the strong sense. The decision version of
the bilevel scheduling problem asks whether there is a feasible solution with
a leader's objective function value not worse than a given bound K. Notice
that such a solution has to be optimal for the follower.
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Proposition 20. [68]∗The bilevel weighted completion time problem is NP-
complete in the strong sense.

Proof. Membership to NP : The witness consists of a partitioning J1, . . . , Jm
of the jobs, and a completion time C̄j for each job j. One can easily verify
whether

∑n
j=1 w

1
j C̄j ≤ K. Moreover, for each machine i, an instance of the

problem 1||
∑

j wjCj is speci�ed by job-set Ji using weights w2
j . Each of

these problems can be solved in polynomial time by the WSPT rule and let
W ∗
i denote the optimum value for machine i. The job-completion times C̄j,

j ∈ Ji, correspond to an optimal schedule, if the jobs in Ji do not overlap,
and

∑
j∈Ji w

2
j C̄j = W ∗

i . All these computations can be done in polynomial
time in the length of the input and that of the witness given above.
NP-hardness : The bilevel problem contains the stronglyNP-hard P ||

∑
wjCj

problem, which can be seen by assigning w1
j = w2

j := wj. Then, any solution
is optimal (and feasible) to the bilevel problem if and only if it is an optimal
solution to the parallel machine problem as well.

Remark 3. An open problem is whether the problem remains NP-hard if
w1
j = 1 or pj = p for all jobs j.

Next we show the connection to the MAX m-CUT problem, which is as
follows. Given a complete graph Kn with edge weights c(i, j), determine a
partitioning of the nodes into m nonempty subsets such that the total weight
of edges connecting the nodes in the di�erent subsets is maximal.

Now, the bilevel scheduling problem is equivalent to a MAX m-CUT
problem (unlessm ≥ n, in which case the scheduling problem is trivial). This
can be shown by assigning weights to the edges as follows: order the vertices
with respect to (4.1) in the optimistic case, and (4.2) in the pessimistic case.
The weight of edge (j, k) is

c(j, k) := pjw
1
k if job j precedes job k in the ordering. (4.3)

Theorem 19. [68]∗The optimal solution of the MAX m-CUT problem with
edge weights (4.3) yields an optimal solution of the bilevel scheduling problem,
and vice versa.

Proof. Consider �rst the optimistic case. By Lemma 17, there is an opti-
mal solution respecting the ordering (4.1) on each machine. In this orde-
ring, the total weighted completion time on machine i with set of jobs Ji is∑

j∈Ji w
1
jCj =

∑
j∈Ji w

1
j (pj +

∑
k∈Ji:k≺j pk), where k ≺ j i� job k precedes job

j. The term
∑

j∈Ji w
1
jpj being constant, the problem can be reformulated as
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follows:

min{
m∑
i=1

∑
j∈Ji

∑
k∈Ji:k≺j

pkw
1
j | J1, . . . Jm is a partitioning of J},

where J = {1, . . . , n}. Since the total weight of all arcs is
∑

j∈J
∑

k≺j pkw
1
j ,

the total weight of those arcs connecting nodes in di�erent subsets of a par-
titioning J1, . . . , Jm of J is∑

j∈J

∑
k≺j

pkw
1
j −

m∑
i=1

∑
j∈Ji

∑
k∈Ji:k≺j

pkw
1
j .

Therefore, minimizing
∑m

i=1

∑
j∈Ji

∑
k∈Ji:k≺j pkw

1
j is equivalent to maximi-

zing the total weight of those arcs connecting nodes in di�erent subsets of a
partitioning.

The proof of the pessimistic case goes along the same lines using Lemma 18
and ordering (4.2).

Consequently, by solving the MAX m-CUT problem in the complete n-
graph with appropriate edge-weights, we can solve the bilevel scheduling
problem to optimality. Since the MAX m-CUT problem is NP-hard in the
strong sense in general even for m = 2 [58], we do not have a polynomial
time algorithm at hand for solving our bilevel scheduling problem. Next we
study some special cases.

4.1.5 Special cases

In this section we consider two polynomially solvable special cases of the
bilevel scheduling problem. We say that weights w1 and w2 induce the same
ordering of jobs if w1

j/pj ≤ w1
k/pk if and only if w2

j/pj ≤ w2
k/pk for each pair

of jobs j and k.

Proposition 21. [68]∗Suppose w1 and w2 induce the same ordering of jobs.
Then an optimal solution of the bilevel scheduling problem is obtained by
solving the (single level) problem P ||

∑
wjCj with wj = w1

j .

The above parallel machine scheduling problem is NP-hard in general.
An important special case is when all the weights are equal to 1.

Further special cases occur when w1 ≡ 1, but w2 induces an increasing
or decreasing processing time order, i.e., w2

j/pj > w2
k/pk if and only if (1)

pj < pk, or (2) pj > pk. For instance, the weights w2
j = pj + 1 induce an

increasing processing time order, whereas the weights w2
j = pj − 1 induce a

decreasing processing time order.
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w1 ≡ 1 and w2 induces a non-decreasing processing time order

If w1 ≡ 1, then it would be optimal for the leader to process the jobs in non-
decreasing processing time order on each machine. Notice that w2 induces the
same order on the machines. Therefore, by Proposition 21 we know that the
problem is equivalent to a single level parallel machine scheduling problem.
Moreover, since w1 ≡ 1, this single level problem takes the from P ||

∑
j Cj,

which can be solved in polynomial time by network �ow techniques, cf. [13].

Proposition 22. [68]∗The bilevel weighted completion time scheduling pro-
blem with w1 ≡ 1 and w2 inducing a non-decreasing processing time order
can be solved in polynomial time.

w1 ≡ 1, and w2 induces a non-increasing processing time order

Suppose the jobs are indexed in non-increasing processing time order, i.e.,
p1 ≥ p2 ≥ · · · ≥ pn. We claim that the bilevel scheduling problem admits
an optimal solution such that each of the m machines processes consecutive
jobs in the above ordering. Moreover, an optimal solution can be found in
polynomial time. We say that job k is a successor of job j if k succeeds j in
the non-increasing processing time order.

Lemma 20. [68]∗If w1 ≡ 1, and w2 induces a non-increasing processing time
order, then the bilevel scheduling problem admits an optimal solution such
that the set of jobs Ji assigned to machine i consists of the jobs πi−1+1, . . . , πi,
where π0 = 0, and 1 ≤ π1 ≤ π2 ≤ · · · ≤ πm = n.

Proof. We will exploit the equivalence to the MAX m-CUT problem. Since
w1
j = 1 for each job j, and w2 induces a non-increasing processing time order,

we can model the bilevel scheduling problem by a complete graph Kn with
nodes identi�ed with the jobs, and for each pair of distinct nodes (j, k), the
weight of the edge incident with j and k is c(j, k) := max{pj, pk}. Clearly, if
job k is a successor of job j, then c(j, k) = pj, otherwise c(j, k) = pk.

Any optimal solution of the bilevel scheduling problem can be fully cha-
racterised by an assignment of jobs to machines, since the order of jobs
assigned to a machine is determined by the decreasing processing time order.
In terms of the MAX m-CUT problem, the optimal assignment is equiva-
lent to an m-partition S1, . . . , Sm of the nodes of Kn such that the total
weight of those edges connecting nodes in distinct subsets in the partitio-
ning is maximal. Let C = {(j, k) | ∃i 6= ` such that j ∈ Si and k ∈ S`}.
W.l.o.g. suppose 1 ∈ S1, and assume that there exist k1 ≥ 1 and k2 > k1

such that {1, . . . , k1 − 1, k2} ⊂ S1, but k1 ∈ Si and Si 6= S1. We apply the
following transformation to S1, . . . , Sm. Let S∗ = S1 ∪ Si, and then let S ′i
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consist of the last max{|S1| − k1 + 1, |Si|} jobs of S∗ in the decreasing pro-
cessing time order, S ′1 := S∗ \S ′i, and S ′` := S` for ` ∈ {1, . . . ,m}\{1, i}. Let
C ′ consist of those edges of Kn connecting nodes in distinct subsets of the
partitioning S ′1, . . . , S

′
m of the nodes of Kn. We claim that the total weight

of edges in C ′ is not smaller than that of C. Since S ′1, . . . , S
′
m is equivalent

to an assignment of jobs to machines (since the machines are identical), this
means that the objective function of the bilevel scheduling problem does not
increase with the above transformation. Since this transformation ensures
that S1 contains all the jobs 1, . . . , k1, by repeated application we can make
sure that S1 consists of consecutive jobs. Repeating this argument for each
subset of the partitioning, we obtain the desired optimal solution.

To prove our claim, let C(S1, Si) ⊆ C denote the set of edges connecting
the nodes in S1 and Si. Similarly, let C ′(S ′1, S

′
i) ⊆ C ′ be the set of edges

with endpoints in S ′1 and S ′i. Since C and C ′ di�er only in the set of arcs
connecting S1 and Si, and S ′1 and S

′
i, respectively, we have∑

(j,k)∈C

c(j, k)−
∑

(j,k)∈C(S1,Si)

c(j, k) =
∑

(j,k)∈C′
c(j, k)−

∑
(j,k)∈C′(S′1,S′i)

c(j, k).

Therefore, it su�ces to show that∑
(j,k)∈C(S1,Si)

c(j, k) ≤
∑

(j,k)∈C′(S′1,S′i)

c(j, k).

For each job j ∈ S1 ∪ Si, let nj and n′j denote the number of arcs (j, k) in
C(S1, Si) and C ′(S ′1, S

′
i), respectively, such that k succeeds j. We clearly

have ∑
j∈S1∪Si

nj ≤ |S1| · |Si| ≤ |S ′1| · |S ′i| =
∑
j∈S′1

n′j.

The �rst inequality trivially holds. The second inequality is ensured by the
transformation. The last equality follows from the fact that any job in S ′i
succeeds all jobs in S ′1. Since n

′
j ≤ |S ′i| for every j ∈ S ′1, we also have n′j = |S ′i|.

Moreover, for each j ∈ S1, nj ≤ |Si|, and for each j ∈ Si, nj ≤ |S1| − k1 + 1
(since jobs 1, . . . , k1 − 1 all belong to S1 and all jobs succeed them). Since
|S ′i| = max{|Si|, |S1| − k1 + 1}, we also have nj ≤ |S ′i|. Now, we have∑

(j,k)∈C′(S′1,S′i)

c(j, k) =
∑
j∈S′1

n′jpj.

On the other hand,∑
(j,k)∈C(S1,Si)

c(j, k) =
∑

j∈S1∪Si

njpj ≤
∑
j∈S′1

n′jpj.
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Here, the last inequality follows, since nj ≤ |S ′i| for each j ∈ S1∪Si, n′j = |S ′i|,
for each j ∈ S ′1,

∑
j∈S1∪Si nj ≤

∑
j∈S′1

n′j, S1 ∪Si = S ′1 ∪S ′i, and all jobs in S ′i
succeed all jobs in S ′1. However, this implies our claim.

Theorem 20. [68]∗The special case with w1 ≡ 1 and w2 inducing a decrea-
sing processing time order can be solved in polynomial time.

Proof. We de�ne a directed graph. Each node is a tuple ([j1, j2], `), where
[j1, j2] is an interval of jobs, and ` is a depth label with 1 ≤ ` ≤ m. Mo-
reover, there is an initial node ([0, 0], 0). We direct an arc from ([j1, j2], `)
to ([j3, j4], ` + 1) i� j3 = j2 + 1. In particular, there is an arc from the ini-
tial node to each node of the form ([1, j2], 1). The cost of any arc directed
to node ([j3, j4], `) is the total completion time of the jobs in the interval
[j3, j4], i.e., the sum

∑
j∈[j3,j4](mj + 1)pj, where mj is the number of those

jobs k ∈ [j3, j4] that succeed j. A shortest path from node ([0, 0], 0) to one
of the form ([j, n],m) gives an optimal solution to the scheduling problem.
Namely, such a path has m + 1 nodes with depth labels 0 through m, the
intervals are disjoint and contain all the jobs, and for each 1 ≤ ` ≤ m, the
node with depth label ` represents the assignment of jobs to the `-th ma-
chine. Since this graph has O(mn2) nodes, and is acyclic, the shortest path
can be found in polynomial time in the size of the input.

4.1.6 Polynomially solvable special cases of the MAX

m-CUT problem

For the sake of completeness, we reformulate the results of the previous
section in terms of the MAX m-CUT problem.

Theorem 21. [68]∗Consider the complete graph Kn with a weight pj ≥ 0
associated with each node j. Let c(j, k) = max{pj, pk}. Then the MAX
m-CUT problem for Kn with edge-weights c(j, k) is solvable in polynomial
time.

Proof. Order the nodes of Kn in non-increasing pj order, and apply Theorem
19 and Theorem 20.

Further on, Proposition 22 and Theorem 19 imply the following result:

Theorem 22. ∗Consider the complete graph Kn with a weight pj ≥ 0 asso-
ciated with each node j. Let c(j, k) = min{pj, pk}. Then the MAX m-CUT
problem for Kn with edge-weights c(j, k) is solvable in polynomial time.
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4.1.7 Beyond the w1 ≡ 1 special case

If the job weights of the leader are not uniform, then the bilevel total weigh-
ted completion time problem is not easier to approximate than its single level
special case. This can be seen by considering the instances with w2 ≡ w1.
Therefore, we cannot hope for stronger approximation results than in the
single level case in general. For the problem P2||

∑
j wjCj, Sahni [93] descri-

bes an (1 + ε)-approximation algorithm with O(n2/ε) time complexity (an
FPTAS). For any �xed number of machines, the FPTAS of Schuurman and
Wöginger [95] for Pm||

∑
j wjCj can be generalised to our problem. To ap-

ply their algorithm to the bilevel total weighted completion time problem,
it su�ces to note that the FPTAS for Pm||

∑
j wjCj is based on a dynamic

program which processes the jobs in decreasing wj/pj order. In our case, we
apply the same algorithm for a job sequence (4.1) in the optimistic case, and
(4.2) in the pessimistic case. Therefore, we have

Theorem 23. [68]∗There is an FPTAS for the bilevel total weighted com-
pletion time problem with a �xed number of machines.

The time complexity of the FPTAS is O(nLm), where L = dlog∆ psume
with psum =

∑n
j=1 pj, and ∆ = 1 + ε

2n
, ε being the desired relative error.

4.2 The bilevel order acceptance problem

In the bilevel order-acceptance problem There are n jobs and a single machine.
Each job has a processing time pj, a deadline dj, and two non-negative weig-
hts, w1

j and w2
j . The weight w1

j is the leader's penalty (loss of pro�t) of
rejecting job j, and w2

j is the weight for the follower. The leader has to se-
lect a subset of jobs that have to be completed by their respective deadlines.
However, the follower aims to minimize the weighted completion time of the
accepted jobs, but it is not obliged to take into consideration the deadlines.
More formally, the leader's objective is min

∑
j w

1
jRj, where Rj = 1 if and

only if job j is rejected. In turn, the follower's objective is min
∑

j∈J ′ w
2
jCj,

where J ′ = {j | Rj = 0} is the set of accepted jobs, and Cj is the completion
time of job j. The leader's objective function is the same in the optimistic
and in the pessimistic cases. In the optimistic case, the leader has to accept
a subset of jobs such that there exists at least one optimal sequence for the
follower which respects all the job-deadlines of the accepted jobs. On the
other hand, in the pessimistic case, the leader has to choose a subset of jobs
such that all the optimal solutions of the follower observes all the deadlines
of the accepted jobs.
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4.2. THE BILEVEL ORDER ACCEPTANCE PROBLEM 101

This is a bilevel optimization problem, because the leader can only accept
or reject the jobs, while the follower determines an optimal sequence without
regarding the jobs' deadlines. If the follower's solution violates some of the
job-deadlines, then this solution is unfeasible.

4.2.1 Preliminaries

The bilevel order acceptance problem is a generalization of the single-machine
weighted number of late jobs problem. In that problem there are n jobs, each
job has a processing time pj, a due-date dj, and a weight wj. A sequence
of jobs is sought such that the total weight of those jobs competed after
their due-dates is minimal. This problem is denoted by 1||

∑
j wjUj. In the

decision version of the problem, there is also given a constant K and one asks
whether there is a feasible solution with total weight of late jobs not greater
than K. It is well-known that there always exists an optimal solution such
that those jobs completed on time are processed in earliest due-date order
(EDD order for short), i.e., if both of the jobs j and k are completed before
their due-dates, then j is processed before k, if dj ≤ dk (cf. [20]).

4.2.2 Bilevel order acceptance and Pareto optimality

Consider the instance of the bilevel order acceptance problem in Table 4.1.
There are only four candidate job sets that may be selected by the leader:
{1}, {2}, {3}, and {1, 2}, and it is easy to verify that no other job set may be
completed on time. The job set {1, 2} admits two sequences, S1 = (1, 2) and

Table 4.1: Problem data for the bilevel order acceptance problem.

Job j pj dj w1
j w2

j

1 1 1 2 1
2 1 2 2 3
3 2 2 3 10

S2 = (2, 1). The leader's objective function value is f 1
1 = f 2

1 = w1
3 = 3 for

both schedules. However, schedule S1 is not optimal for the follower, because
in the WSPT order job 2 precedes job 1, since w2

2/p2 = 3 > 1 = w2
1/p1.

Therefore, S1 cannot be an optimal solution of the bilevel scheduling problem.
On the other hand, in S2 job 1 completes after its due-date, therefore, it is not
feasible for the leader. In S1 the job completion times are C1

1 = 1 and C1
2 = 2,

whence the objective function value of the follower is
∑

j∈{1,2}w
2
jC

1
j = 7. The
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Figure 4.2: Three schedules for the bilevel order acceptance problem.

value of S1 is (f 1
1 , f

1
2 ) = (3, 7), see Fig. 4.2. Now consider the job set {3},

the corresponding schedule is S3 = (3). Clearly, (f 3
1 , f

3
2 ) = (4, 20). It is

easy to verify that S3 is the unique optimal solution of the bilevel scheduling
problem.

Comparing the values of S1 and S3, we see that S1 strictly Pareto-
dominates S3.

4.2.3 Global ordering of jobs

Given the leader's decision about the selection of jobs J ′ to be completed
on time, the follower sequences the jobs in WSPT order (with respect to
weights w2

j ) to minimize its objective function. In case of ties, there is a
distinction between the optimistic and the pessimistic cases. We de�ne two
global orderings of jobs such that the optimal optimistic and pessimistic
solutions, respectively, are sub-sequences of the global job orders. In the
optimistic case the global order is

job j precedes job k if w2
j/pj > w2

k/pk, or ( w
2
j/pj = w2

k/pk and dj < dk),
(4.4)

while in the pessimistic case it is

job j precedes job k if w2
j/pj > w2

k/pk, or ( w
2
j/pj = w2

k/pk and dj > dk).
(4.5)

Proposition 23. [68] Both the optimistic and the pessimistic order accep-
tance problem always admits an optimal non-delayed schedule. In particular,
in the pessimistic case, no job with w2

j = 0 can be accepted.

Proof. First notice that it is feasible for the leader not to choose any jobs, so
the set of feasible solutions is not empty. Moreover, in both the optimistic
and the pessimistic case, the follower schedules those accepted jobs j with
w2
j > 0 without any delay before them. The same holds in the optimistic

case for accepted jobs j with w2
j = 0 as well, since such schedules are the

most favorable for the leader.
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4.2. THE BILEVEL ORDER ACCEPTANCE PROBLEM 103

Now consider the pessimistic case and suppose the leader accepts some
jobs with w2

j = 0 (if such a job exists). Since the follower plays against the
leader, it may answer a schedule which delays some of the accepted jobs j
with w2

j = 0 beyond their deadlines. Such a schedule is though optimal for
the follower, but it is unfeasible for the leader. Therefore, the leader cannot
accept any jobs with w2

j = 0.

If the follower must choose a non-delayed optimal schedule, then also in
the pessimistic case jobs with w2

j = 0 can be accepted by the leader.

Lemma 21. [68] There exists an optimal solution for the optimistic bilevel
order acceptance problem such that the jobs are sequenced according to (4.4).

Proof. The existence of an optimal schedule is ensured by Proposition 23.
Let J∗ be the leader's optimal selection of jobs. The follower schedules the
jobs in J∗ by the WSPT rule with job-weights w2

j . In case of ties, i.e.,
w2
j/pj = w2

k/pk, it can always schedule �rst the job with smaller due-date,
which is expressed in (4.4).

Lemma 22. [68] There exists an optimal solution for the pessimistic bilevel
order acceptance problem such that the jobs are sequenced according to (4.5).

Proof. The existence of an optimal solution is guaranteed by Proposition 23.
Let J∗ be the leader's optimal selection of jobs. If w2

j > 0 for all j ∈ J∗, or
no job may be delayed unnecessarily, the follower schedules the jobs in J∗ by
the WSPT rule with job-weights w2

j . The worst case for the leader is that
in case of ties, i.e., w2

j/pj = w2
k/pk, the job with larger due-date is scheduled

�rst, which is expressed in (4.5).

Finally, similarly to Lemma 19, one can prove the following:

Lemma 23. [68] Any instance Π of the bilevel order acceptance problem
can be converted into an instance Π̄ such that the followers' WSPT order is
unique, and all the optimal solutions of Π̄ are optimal for Π as well.

4.2.4 Complexity

Given a constant K, in the optimistic case the decision version of the bilevel
order acceptance problem asks whether there exists a subset J ′ ⊆ J of jobs
such that

1.
∑

j∈J\J ′ wj ≤ K, and
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104 CHAPTER 4. BILEVEL SCHEDULING PROBLEMS

2. there exists a WSPT order ≺ of the jobs in J ′ with Cj ≤ dj for all
j ∈ J ′, where Cj = pj +

∑
k∈J ′:k≺j pk is the completion time of job j in

the order ≺.

In contrast, in the pessimistic case the decision problem asks whether there
exists J ′ ⊆ J such that

1.
∑

j∈J\J ′ wj ≤ K, and

2. for every WSPT order ≺ of the jobs in J ′, Cj ≤ dj for all j ∈ J ′, where
Cj = pj +

∑
k∈J ′:k≺j pk is the completion time of job j in the order ≺.

Notice that if the WSPT order is unique for each subset of jobs, then the
optimistic and the pessimistic cases of the problem coincide.

Proposition 24. [68] The bilevel order acceptance problem is NP-complete
both in the optimistic and in the pessimistic cases.

Proof. Membership of NP follows from the fact that the follower's problem
can be solved in polynomial time. ConcerningNP-hardness, for any instance
Π1 of the single-level 1||

∑
j wjUj problem, we de�ne an instance of the bilevel

order acceptance problem Π2 with n jobs, processing times pj, and job weights
w1
j = wj, and w2

j inducing an EDD order, i.e., w2
j/pj ≥ w2

k/pk if and only if
dj ≤ dk (such weights clearly exist). Moreover, w2

j can be chosen such that
the EDD order is unique. Therefore, the optimistic and the pessimistic cases
coincide. Finally, Π2 has the same constant K as Π1.

First suppose Π1 admits a solution with value at most K. Since we may
assume that those jobs completed on time are processed in EDD order, this
immediately yields a feasible solution for the bilevel scheduling problem with
the same objective function value for the leader. Conversely, suppose the
bilevel problem instance Π2 admits a feasible solution with value at most K.
Then this solution is also feasible for the single-level problem instance Π1

with the same value.

The problem is not strongly NP-hard, since it is solvable in pseudo-
polynomial time, see below.

Notice that the above proof shows that if the job weights w2
j induce an

EDD order, then the bilevel problem becomes equivalent to the single level
1||
∑

j wjUj problem. But, this is not true in general.
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4.2.5 A dynamic program for the general case

A modi�ed version of the dynamic program proposed by Lawler & Moore [77]
for 1||

∑
j wjUj is applicable for solving our bilevel problem. In that algorithm

the jobs are processed in EDD order, i.e., the jobs are reindexed such that
d1 ≤ d2 ≤ · · · ≤ dn. Let Fj(t) be the value of the optimal schedule of the
problem involving jobs 1, . . . , j that ends at time t. If 0 ≤ t ≤ dj and job j
is on time in the schedule corresponding to Fj(t), then Fj(t) = Fj−1(t− pj).
Otherwise, Fj(t) = Fj−1(t) +wj. If t > dj, then Fj(t) = Fj−1(t) +wj because
job j is late.

We modify the algorithm of Lawler & Moore by processing the jobs in
order (4.4) in the optimistic case, and in order (4.5) in the pessimistic case,
and the jobs are reindexed to re�ect the appropriate ordering. Let T =∑

j∈J pj. The recursion from j − 1 to j is:

Fj(t) =

{
min{ Fj−1(t− pj), Fj−1(t) + w1

j } for t = 0, . . . , dj,

Fj−1(t) + w1
j for t = dj + 1, . . . , T ,

with F0(0) = 0, Fj(t) = ∞ for t < 0, and j = 0, . . . , n; or j = 0 and
1 ≤ t ≤ T .

The smallest Fn(t) gives the optimum value, and by some book-keeping
one also gets the optimal solution. Namely, let vj(t) = 0 if Fj(t) = Fj−1(t−
pj), and vj(t) = 1 otherwise. Suppose Fn(t∗) ≤ Fn(t) for all t. Starting from
vn(t∗), we can determine the optimal solution by visiting the jobs backward.
In the general step, if vj(t) = 1, then job j is rejected, and we proceed
with vj−1(t). Otherwise, job j is accepted, and we proceed with vj−1(t− pj).
Repeating this until all the jobs are checked, we get a subset of accepted jobs.
Since vj(t) = 0 only if t ≤ dj, in the resulting solution all accepted jobs are
completed on time. Moreover, the processing order respects the follower's
WSPT order by construction.

The time and space complexity of the algorithm is O(nT ). Therefore, we
have proved the following result.

Theorem 24. [68] The bilevel order acceptance problem can be solved in
O(nT ) time.

4.2.6 Polynomial time algorithm for the w1 ≡ 1 special

case

This special case can be solved by a modi�ed version of the Moore-Hogdson
algorithm [81]. In that algorithm, the jobs are processed in EDD order.
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Starting with an empty schedule, the jobs are appended to the end of the
growing schedule one-by-one. If the appended job j completes late, then the
job k in the partial schedule with the largest processing time pk is rejected
and removed from the schedule (j = k is allowed). Note that removing at
most one job from the schedule always yields a feasible schedule.

We modify the Moore-Hogdson algorithm by processing the jobs in the
order (4.4) (optimistic case) or (4.5) (pessimistic case). Our modi�ed algo-
rithm appends jobs to the end of the schedule one-by-one and removes the
actual lengthiest job when necessary exactly as the original Moore-Hogdson
algorithm. The algorithm runs in O(n log n) time.

We adapt the proof of [13], page 86, of the soundness of the Moore-
Hogdson algorithm to our more general case. In the following proof, |σ|
denotes the number of jobs in some schedule σ.

Theorem 25. [68] The Modi�ed Moore-Hogdson algorithm provides an op-
timal solution to the Bilevel order acceptance problem.

Proof. If all the jobs can be processed on time, then the algorithm obviously
�nds this optimal solution. Otherwise, the algorithm removes at least one job
from the schedule being constructed. Let j be the job that is removed �rst, in
the step where job k is appended to the schedule. This implies that at least
one of the jobs 1, ..., k is missing from every feasible schedule. Since j has the
longest processing time among these jobs, any partial schedule σ′ of the �rst
k jobs that includes j but misses job h with 1 ≤ h ≤ k, completes not earlier
than the partial schedule σjh = σ′ \ {j} ∪ {h} obtained by replacing j with
h (the jobs are sequenced in the global order). Moreover, if no job is late in
σ′, then so is in σjh, because σjh schedules a subset of jobs in {1, . . . , k − 1}
and the global ordering of the latter yields a schedule in which no job is late.
Hence, there exists an optimal schedule that does not contain j.

The rest of the proof goes by induction on the number of jobs n. Clearly,
the algorithm is sound for n = 1. Assume it is correct for all instances
involving n − 1 jobs. For n jobs, let σ be the schedule constructed by the
algorithm and σ∗ an optimal schedule with j 6∈ σ∗, where j is the �rst job
removed while constructing σ. Observe that when our algorithm is applied
to the problem involving jobs {1, ..., j − 1, j + 1, ..., n} only, it constructs σ
again, and this schedule is optimal for the reduced problem. Since σ∗ is also
a feasible solution for the reduced problem, we have |σ| ≥ |σ∗|, and hence, σ
is optimal for the original problem, too.
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4.2.7 Outlook to further results

The results of this chapter are of theoretical �avor, however, in Kis and
Kovács [68] a linear programming based heuristic procedure is devised for
solving the variant where the leader has unit weights for all the jobs, but the
follower may have arbitrary job weights. The computational results show
that our algorithm is able to �nd solutions 23% o� the optimum in the worst
case. Furthermore, in [74] we propose a practical algorithm for the Bilevel
order acceptance problem based on constraint programming. Our method
is far more e�cient on a large variety of instances than general constraint
programming methods. In Kis and Kovács [69] we have de�ned and analyzed
the bilevel lotsizing problem, where both the leader and the follower solves
an uncapacitated lot-sizing problem, but the follower's demand is set by the
leader.
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Chapter 5

Appendices

5.1 Numerical results for Section 2.1

Table 5.1: Number of times algorithms H, B+ and B− proved optimality in
each class.

n = 10 n = 20 n = 50
s r = 3 10 20 3 10 20 3 10 20
2 10 10 10 10 10 10 7 5 0

10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10
5 10 10 10 7 1 0 0 0 0

10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/10 10/8
10 10 4 5 0 0 0 0 0 0

10/10 10/10 10/10 10/10 10/10 10/10 10/8 2/1 0/0
15 1 0 2 0 0 0 0 0 0

10/10 10/10 10/10 10/10 7/7 10/5 2/0 0/0 0/0
20 1 1 1 0 0 0 0 0 0

10/10 10/10 10/10 9/8 4/2 3/2 0/0 0/0 0/0
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Table 5.2: The average of ub(B+)/ub(H) and, when di�erent, the average of
ub(B−)/ub(H).

n = 10 n = 20 n = 50
s r = 3 10 20 3 10 20 3 10 20
2 1 1 1 1 1 1 1 1 1
5 1 1 1 0.99 0.99 0.99 0.95 0.96 0.99
10 1 1 0.99 0.86 0.97 0.98 0.73 0.94/0.96 0.97/0.99
15 0.88 0.98 0.98 0.63 0.94 0.97 0.63/0.74 0.92/1.08 1.03/1.11
20 0.89 0.98 0.98 0.71 0.91 0.97 0.56/0.69 0.92/1.1 0.96/1.21

Table 5.3: The average of lb(B+)/ub(B+) and, when di�erent, the average
of lb(B−)/ub(B−).

n = 10 n = 20 n = 50
s r = 3 10 20 3 10 20 3 10 20
2 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1/0.99 0.96/0.90 0.93/0.88
15 1 1 1 1 0.99 1 0.86/0.68 0.85/0.70 0.80/0.70
20 1 1 1 0.99 0.97/0.95 0.98/0.96 0.77/0.51 0.66/0.49 0.72/0.53

Table 5.4: Some details of the computations of algorithm B+.

n = 10 n = 20 n = 50
Avg. time horizon T 28 36 45.08
Avg. CPU time in seconds 4.3 125 372
Avg. no. of search tree nodes 176 1697 1096
Avg. no. of �ow cover cuts added 111 189 239
Avg. no. of fractional cuts added 9 12 13
Avg. no. of (S1, S2) cuts added 21 76 193
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Table 5.5: Results on Case A and Case B instances of Tavares.

rcap ub(Tav) Opt CPU time #frac cut #(S1, S2)
Case A 120 27∗ 27 0.04 0 0

100 27∗ 27 0.06 0 0
80 27∗ 27 0.23 1 7
75 29 27 0.25 27 11
70 29 27 0.29 19 17
65 30 28 0.57 8 15

Case B 240 21∗ 21 0.09 4 1
200 21∗ 21 0.11 0 0
180 24 21 0.06 0 0
120 27 25 14.46 0 93

Table 5.6: Results on PSPLIB instances
#inst. avg. min nodes CPU #�ow #frac #(S1, S2)

lb/ub lb/ub time cut cut cut
j30− 413 1.00 1.00 60.95 1.46 6.60 3.36 15.84
j30+ 67 0.95 0.72 2613 442 72 11 554
j60− 380 1.00 1.00 2.7 2.07 2.00 1.35 12.92
j60+ 100/86 0.93 0.67 591 2118 30 43 903
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5.2 Numerical results for Section 2.2

Table 5.7: Average ub/lb values for algorithm B+ (�rst row), and B− (second
row), respectively, in each class (n, r, s).

n = 10 n = 20 n = 50
s r = 3 10 20 3 10 20 3 10 20

2
1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

5
1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

10
1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

15
1
1

1
1

1
1

1
1

1
1

1
1

1
1.02

1.02
1.03

1.06
1.07

20
1
1

1
1

1
1

1
1

1
1.01

1.01
1.01

1.01
1.01

1.37
1.5

1.17
1.16

Table 5.8: Average ub+/ub− (�rst row), and lb+/lb− (second row).
n = 10 n = 20 n = 50

s r = 3 10 20 3 10 20 3 10 20

2
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

5
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

10
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

15
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

0.981
1.000

0.999
1.001

0.994
1.001

20
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

0.996
0.999

1.000
0.999

0.998
1.003

0.952
1.013

1.010
0.998
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5.3 The α|β|γ notation of scheduling problems

The α|β|γ notation for succintly denote scheduling problems has been pro-
posed by Graham et al. [40].

• The α �eld indicates the machining environment. Some of the possible
values:

� 1 : single machine

� P : parallel identical machines

� Pm : constant m parallel identical machines

• The β �eld contains the set of restrictions. Some of the restrictions:

� rj : job release dates

� pj = 1 : processing times are uniformly 1

� ddc : jobs are dedicated to machines

� pmtn : jobs can be interrupted and resumed processing later on
the same or on a di�erent machine

� res : additional renewable resources

� nr : additional non-renewable resources

� nr = const : constant number of non-renewable resources

� q = const : constant number of supplies

� dm : delivery of intermediate products

� dm = const : constant number of product types to deliver

• The γ �eld holds the objective function. Some objective functions:

� Cmax := maxCj : maximum job completion time, or makespan

� Lmax := maxLj, where Lj = Cj − dj : maximum lateness

�
∑
wjCj : total weighted job completion times

5.4 Approximation preserving reductions

In this section we recapitulate the basic de�nitions of approximation preser-
ving reductions between pairs of optimization problems, and in particular we
provide formal de�nitions of the Strict-, the PTAS-, and FPTAS-reductions.
Our discussion closely follows [23] and [22], see also [4] and [87].
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Formally, a reduction is a pair of functions f and g, where f maps the
instances of optimization problem Π1 to that of optimization problem Π2, and
g provides a feasible solution for instance I1 of problem Π1 from a feasible
solution y for the corresponding instance f(I1) of Π2. The following diagram
illustrates the functions f and g:

Problems: Π1 Π2

Instances: I1 −→f f(I1)y
Solutions: g(I1, y) g ←− y

(f, g) is a Strict-reduction from problem Π1 to problem Π2 (Π1 ≤Strict Π2)
if f and g are computable in polynomial time in the size of their parameters,
and for every instance I1 of Π1, and for every solution y to f(I1) we have

RΠ1(I1, g(I1, y)) ≤ RΠ2(f(I1), y).

A reduction (f, g) is a PTAS-reduction from problem Π1 to problem Π2

(Π1 ≤PTAS Π2) if there exists a function α(·) such that

i) for any instance I1 of Π1, and for any ε > 0, f(I1, ε) is an instance of Π2

and it is computable in tf (|I1|, ε) time,

ii) for any solution y of f(I1, ε), g(I1, y, ε) is a solution to I1, and it is
computable in tg(|I1|, |y|, ε) time,

iii) for every �xed ε > 0, both tf (·, ε) and tg(·, ·, ε) are bounded by a poly-
nomial, and

iv) α maps error parameters for problem Π1 to that for problem Π2 such
that for every solution y to f(I1, ε):

RΠ2(f(I1, ε), y) ≤ 1 + α(ε) implies RΠ1(I1, g(I1, y, ε)) ≤ 1 + ε. (5.1)

The following statement is from [23].

Lemma 24. Let Π1 and Π2 be optimization problems such that Π1 ≤PTAS Π2.
If Π2 admits a PTAS, then there is a PTAS for Π1 as well.

The following lemma shows the connection between the Strict-reduction
and the PTAS-reduction (for a proof see [22]):

Lemma 25. Every Strict-reduction is a PTAS-reduction as well.
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5.4. APPROXIMATION PRESERVING REDUCTIONS 117

Therefore, Lemma 24 remains valid if we replace the PTAS-reduction
by Strict-reduction in the statement. Finally, an FPTAS-reduction is like a
PTAS-reduction with the following modi�cations:

iii') Both tf (·, ε) and tg(·, ·, ε) must be bounded by a polynomial in 1/ε as
well.

iv') α maps instances and error parameters for problem Π1 to error para-
meters for Π2 such that for every solution y to f(I1, ε):

RΠ2(f(I1, ε), y) ≤ 1+α(I1, ε) implies RΠ1(I1, g(I1, y, ε)) ≤ 1+ε. (5.2)

That is, (5.2) replaces (5.1) in the de�nition of FPTAS.

v') α can be computed in polynomial time in |I1| and 1/ε.

vi') There exists a two-variable polynomial poly(·, ·) such that 1/α(I1, ε) ≤
poly(|I1|, 1/ε) for any ε > 0.

Remark 4. In the above de�nition, ε may be restricted 0 < ε ≤ c, where c
is a positive constant, since we usually want to choose ε arbitrarily close to
0.

In [23] the following statement was proved:

Lemma 26. If there is an FPTAS-reduction (f, g) from problem Π1 to pro-
blem Π2, and if Π2 admits an FPTAS, then there is an FPTAS for Π1 as
well.

Observe that an FPTAS-reduction is not a PTAS-reduction in general.
To see this, suppose we have a pair of optimization problems Π1 and Π2,
and there is an FPTAS-reduction from Π1 to Π2 with α(I1, ε) := ε/n, where
n is the number of some objects in I1, and the n objects in I1 are map-
ped to n objects in f(I1, ε). Moreover, suppose we have a PTAS for Π2 of
running time O(n1/ω), where ω is the desired error ratio. Now, the running
time of the PTAS on instance f(I1, ε) with error parameter ω := α(I1, ε)
is O(n1/α(I1,ε)) = O(nn/ε), which is not polynomial in n. Clearly, a PTAS-
reduction is not an FPTAS-reduction in general, since the time complexity
of computing f and g is not required to be bounded by a polynomial in 1/ε,
cf. condition iii) of the PTAS-reduction.

As in the case of PTAS reductions, one can show the following:

Lemma 27. Every Strict-reduction is an FPTAS-reduction as well.

The next lemma follows from [23] and [87]:

Lemma 28. The de�ned reductions are transitive.
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