dc_1350_16

MTA DOKTORI ÉRTEKEZÉS TÉZISEI

MONOTERPÉNVÁZAS β- ÉS γ-AMINOSAVSZÁRMAZÉKOK ÉS 3-AMINO-1,2-DIOLOK SZTEREOSZELEKTÍV SZINTÉZISE ÉS ALKALMAZÁSAI

SZAKONYI ZSOLT

SZEGEDI TUDOMÁNYEGYETEM GYÓGYSZERKÉMIAI INTÉZET

SZEGED, 2017

1. BEVEZETÉS ÉS CÉLKITŰZÉSEK

A gyógyszer- és szerves kémiai kutatások napjainkban folyamatosan növekvő igénye az enantiomertiszta vegyületek előállítására jól mérhető az enantioszelektív szintézisek területén megjelenő publikációk és szabadalmi eljárások számának folytonos növekedésével.

A királis vegyületek előállításának alaptétele, hogy magukat a vegyületeket is valamilyen (lehetőleg olcsó) királis ágens indukciójával készíthetőek. Ezek jelentős része nehéz hozzáférhetősége vagy magas ára miatt nem alkalmas nagyobb mennyiségű anyag előállítására. Fontos tehát, hogy a királis kiindulási anyag preparatív mennyiségben olcsón elérhető legyen. Erre a problémára nyújthat megoldást olyan, már eleve a természet adta kiralitással rendelkező kiindulási anyagok alkalmazása, amelyekben a már meglévő aszimmetria centrumok irányítását ki tudjuk használni új aszimmetria centrumok kiépítésre. Ilyenek például az olcsón, nagy mennyiségben elérhető mono- és biciklusos monoterpének és természetes származékaik, melyek gyakran használt kiindulási anyagai bioaktív vegyületeknek, aszimmetrikus szintézisek királis segédanyagainak és katalizátorainak. A belőlük előállítható 1,2-, 1,3-bifunkciós, illetve trifunkciós vegyületek változatosan felhasználható építőelemek, mind változatos 5-, 6-, ill. 7- tagú heterociklusok szintézisére, mind komplex szerkezetű természetes vegyületek és azok bioekvivalens analógjainak előállítására [1].

Az Intézet általam vezetett kutatócsoportjában munkánk fő célja volt, hogy könnyen hozzáférhető, királis monoterpénvázas alkének, alkoholok és aldehidek (I-V) átalakításaival széles körben használható β-aminosav alapú enantiomertiszta építőelemekből álló 1,3bifunkciós vegyülettárat (VI-X) hozzunk létre, tanulmányozzuk a monoterpénváz sztérikus és elektronikus irányító hatását a reakciók sztereoszelektivitására (1. ábra).

Ugyancsak célul tűztük ki a fenti monoterpénekből 3-amino-1,2-diol típusú vegyületek sztereoszelektív előállítását, és ezek alkalmazhatóságának vizsgálatát királis katalizátorok és 1,3-heterociklusok szintézise során (1. ábra).

Vizsgálni kívántuk a kapott 1,3-bifunkciós és 1,2,3-trifunkciós vegyületek gyűrűzárási készségét a monoterpénváz, illetve annak szubsztituensei függvényében.

Érdekesnek tűnt a kapott 1,3-aminoalkoholok, 1,3-diaminok, 1,3-diolok és 3-amino-1,2diolok, valamint gyűrűzárt származékaik (oxazolidinek és 1,3-oxazinok) alkalmazhatóságának vizsgálata a modellreakciónak választott szén-szén kapcsolási reakcióban, dietil-cink aldehidekre történő enantioszelektív addíciója során.

2. ALKALMAZOTT MÓDSZEREK

Munkánk során a szintéziseket és kémiai átalakításokat klasszikus és modern szerveskémiai módszerekkel, félmikro és mikro méretben valósítottuk meg. A kémiai reakciók követésére és az előállított vegyületek tisztaságának ellenőrzésére vékonyréteg-kromatográfiás, esetenként királis gázkromatográfiás és HPLC vizsgálatokat végeztünk. Az előállított új vegyületek szerkezetét és térszerkezetét elsősorban egy- és kétdimenziós ¹H-, ¹³C-NMR módszerek alkalmazásával, esetenként tömegspektroszkópiai vizsgálatokkal, illetve egykristály röntgendiffrakciós analízissel határoztuk meg.

3. ÚJ TUDOMÁNYOS EREDMÉNYEK

Az elmúlt években végzett kutatómunkánk célja volt, hogy kereskedelmi forgalomban kapható monoterpén enantiomerekből vagy azokból néhány egyszerű lépésben előállítható monoterpén származékokból kiindulva enantiomertiszta aliciklusos bi- illetve trifunkciós vegyületkönyvtárat építsünk ki. E munka során a kiindulási vegyületek eredendő kiralitás irányító hatását felhasználva sztereoszelektív, ill. centrumainak sztereokontrollált módszerekkel monoterpénvázas β- és γ-aminosav, valamint β-hidroxiészter származékokat és 3-amino-1,2-diolokat állítottunk elő. A β-aminosav származékok előállítása két alapvető stratégiát követett: az első módszer során a monoterpén kettőskötésére történő regio- és sztereoszelektív cikloaddícióval β-laktám gyűrűt alakítottunk ki, majd ennek gyűrűnyitásával, és a kapott *cisz*-aminosav származékok bázis katalizálta izomerizációjával jutottunk a kulcs vegyületeinkhez. Az alternatív eljárás során a lítium-amidoknak a megfelelő monoterpénvázas α,β -telítetlen észterre történő addíciója volt a kulcslépés. A β -aminosav származékok gyűrűzárásaival változatos szerkezetű, farmakológiai szempontból is értékes 1.3heterociklusokhoz jutottunk.

Részletesen vizsgáltuk a monoterpénvázas aminodiolok konstitúciós, és azon belül is regioizomerjeinek sztereoszelektív előállítási lehetőségeit, és a kapott trifunkciós vegyületek gyűrűzárási készségét. Az 1,3-difunkciós és 1,2,3-trifunkciós vegyületeket dietil-cink és aldehidek modelreakciójában alkalmazva, a fejlesztőmunka eredményeképpen kiváló királis katalizátorokat sikerült találnunk mind a reakció R és S konfigurációjú termékeinek előállítására. Túl a szerves kémiai alkalmazásokon, mind a β -aminosav származékokból, mind az aminodiolokból kiindulva farmakológiai szempontból is figyelemre méltó vegyületcsaládokat állítottunk elő.

1. Monoterpénvázas β- és γ-aminosav származékok sztereoszelektív előállítása és alkalmazása

1.1. α-Pinénből, 3-karénből, apopinénből és δ-pinénből kiinduló β-aminosav származék szintézisek és átalakítások

I. α-Pinénből (1), 3-karénből (2), mirtenalból egylépésben előállított apopinénből (3) és δpinénből (4) kiindulva, klórszulfonil-izocianát regio- és sztereospecifikus cikloaddíciójával sztereoegységes azetidinonokat (5-8) állítottunk elő [2-6]. A β-laktám gyűrűk nyitása során lényeges különbséget állapítottunk meg az egyes monoterpén származékok között. Az anellációban metil szubsztituált triciklusok savérzékenysége miatt a laktám gyűrű csak enyhe körülmények között, aktiválás után volt nyitható [2,3,7], míg a δ -pinén [4] és apopinán származékok [5,6] savas körülmények között is jó termeléssel adták a β -aminosav származékokat (13,14). Ugyancsak lényeges különbséget tapasztaltunk az α -pinénből és δ pinénből levezethető *cisz*-aminosavészterek és az analóg apopinánvázas vegyületek izomerizációs készsége között. Míg az előbbiek izomerizációja a *transz* analógokká sikertelen volt, az apopinánvázas aminosavészter (13) bázis katalizálta izomerizációja kiváló termeléssel szolgáltatta a megfelelő *transz* származékokat (15) [6]. Ezekből a β -aminosav származékokból (11-19) további értékes, változatosan szubsztituált építőelemeket, F-moc- és Boc-védett aminosavakat, β -aminosavamidokat, 1,3-aminoalkoholokat és 1,3-diaminokat, illetve ez utóbbiak *N*-tozil védett származékait (20-26) állítottunk elő (2. ábra) [2,3,5,7-9].

\mathbf{a}	/ 1	1
,	2	hro
<i>L</i> .	a	ла

II. A rendelkezésre álló apopinánvázas β -aminosavból (27) kiindulva UGI négy centrumú, három komponensű (UGI-4C-3C) reakcióban^[25] *N*-szubsztituált triciklusos β -laktám vegyülettárat (**31a,b**) építettünk ki (3.ábra). A reakciók során négy aldehid (**28**), illetve két izonitril (**30**) alkalmazásával tanulmányoztuk a szubsztituensek és az oldószerek hatását a reakció hozamára és diasztereoszelektivitására. Minden esetben nagyfokú diasztereoszelektivitást tapasztaltunk [10]. Megállapítottuk, hogy az alkalmazott szerves oldószer mellett – bizonyos megkötésekkel – a reakciók környezetbarát vizes közegben vagy akár oldószermentes körülmények között is végrehajthatóak.

3.	ábra

III. Pinánvázas β -laktámok (5,7) etil-benzimidátos gyűrűbővülési reakciójával, illetve az aminosavészterek (9,13) izocianátos és izotiocianátos adduktumainak gyűrűzárásaival monoterpénekkel kondenzált nukleozid analógokhoz (33-35) jutottunk (4. ábra) [2,11]. Lényeges különbséget találtunk az aminocsoport mellett metil szubsztituenst tartalmazó pinánvázas származékok és az ún. apopinán származékok reaktivitása között. Míg az anellációban metil szubsztituált laktám (5, R = Me) gyűrűbővülési reakciója sikertelen volt, a dezmetil analóg (7, R = H) jó hozammal szolgáltatta a 33 pirimidin-4-onokat. Lényeges különbséget tapasztaltunk az aminosavészterekből előállított tiokarbamid adduktok bázis, illetve savkatalizálta gyűrűzárásai során is.

4. ábra

IV. Az 1,3-aminoalkoholokat tartalmazó vegyületkönyvtárból (20,21,25 és 26) kiindulva, arilizotiocianátokkal készített tiokarbamid adduktok gyűrűzárásával 2-fenilimino-1,3-oxazinokhoz (40-43) jutottunk, melyek célzott farmakológiai vizsgálata során figyelemre méltó citosztatikus aktivitást találtunk több humán daganatos sejtvonalon is (5. ábra) [11,12].

5. ábra

V. A monoterpénvázas 1,3-aminoalkoholokat (20,21,25 és 26) tartalmazó vegyületkönyvtárból kiindulva, aril-izotiocianátokkal készített tiokarbamid adduktok gyűrűzárásával 2-fenilimino-1,3-tiazinok (48-51) újszerű szintézisét dolgoztuk ki (6. ábra) [13]. A kidolgozott eljárással olyan monoterpénvázzal kondenzált 1,3-tiazinok szintézisét is megvalósítottuk, melyek előállítása korábbi, irodalmi módszerekkel nem vezetett eredményre. A módszert sikeresen terjesztettük ki egyéb cikloalkánvázas 1,3-tiazinok szintézisére is. A 2-arilimino-1,3-tiazinok célzott farmakológiai vizsgálata során figyelemre méltó citosztatikus aktivitást találtunk több humán daganatos sejtvonalon is. Mind a 2-imino-1,3-oxazinok, mind az 1,3-tiazin analógok esetében egyértelmű hatás-szerkezet összefüggéseket állapítottunk meg.

^{6.} ábra

VI. A természetes eredetű, olcsó (-)-β-pinénből egy lépésben előállított nopinonból (**56**), mint kulcsintermedierből kiindulva, diasztereoszelektív Mannich-reakciót követő redukcióval 2aminometil-1-cikloalkanol-típusú monoterpénvázas vegyületkönyvtárat (**58-60**) hoztunk létre (7. ábra). Ugyancsak a nopinonból kiindulva *cisz*- és *transz*-β-hidroxiésztereken (61,62)
 keresztül analóg monoterpénvázas diolokat (63,64) állítottunk elő [14].

7. ábra

1.2 β-Aminosav származékok előállítása aza-Michael-addíción keresztül

VII. (1*R*)-(-)-Mirtenalból és 2-karén-3-karbaldehidől kiindulva pinán- és karánvázas β aminosavszármazékok diasztereoszelektív előállítását végeztük el. Kulcsintermedierként az aldehidekből 2 lépésben α , β -telítetlen *terc*-butil-észtereket (**65**,**69**) állítottunk elő. Ezt követte *szekunder* lítium-amidok sztereospecifikus Michael-addíciója. A szintézis során már az akirális lítium-dibenzilamid alkalmazása esetén is kiváló sztereoszelektivitást tapasztaltunk [15,16]. Az így kapott aminosavészterből (**66**,**70**) 2 lépésben a korábban cikloaddícióval nyert apopinánvázas *transz* β -aminosavak regioizomerjét (**68**) és az ezzel analóg karánvázas β aminosavat (**72**) kaptuk (8. ábra).

VIII. (S)-Perillaldehidből kiindulva β-aminosav származékok diasztereoszelektív előállítását végeztük el. Első lépésként a perillaldehidet a megfelelő telítetlen karbonsavvá oxidáltuk, melyből *terc*-butil észtert (73) állítottunk elő. Ezt követte szekunder lítium-amidok sztereospecifikus Michael-addíciója. A szintézis során akirális lítium-dibenzilamid alkalmazása esetén közepes szelektivitást tapasztaltunk, amikor is mind a 4 lehetséges diasztereoizomer aminosavésztert (74A-D) sikerült izolálnunk és karakterizálnunk (9. ábra) [17]. Az egyes diasztereoizomerek egymásba alakításával megoldottuk az 1%-ban keletkező minor komponens (74D) grammos előállítását is. Ugyanakkor királis lítium-amid alkalmazása során kiváló diasztereoszelektivitást tapasztaltunk (74A: de: 100%). Az így kapott N,Naminosavészterekből debenzilezést hidrolízissel diszubsztituált követően észter diasztereoizomer limonénvázas β-aminosavakat (75A-D) kaptunk.

IX. (1*R*)-Mirtenalból kiindulva pinánvázas γ -aminosavszármazékok diasztereoszelektív előállítását végeztük el (10. ábra). A mirtenalból két lépésben jutottunk a kulcsintermedier α , β -telítetlen metil-észterhez (76), melyre a nitrometán konjugált addícióját elvégezve közepes diasztereoszelektivitással kaptuk a 77 és 78 γ -nitro-észtereket. A major termék (77) nitrocsoportjának katalitikus redukciója nem a várt γ -aminoésztert, hanem a 79 γ -laktámot eredményezte, melynek savas hidrolízisét a pinánváz savérzékenysége miatt nem tudtuk megvalósítani. A kívánt 81 γ -aminosavhoz ezért alternatív úton, az észter funkciós csoportot

enyhén lúgos közegben hidrolizálva, majd a kapott **80** γ -nitrosavat katalitikusan redukálva jutottunk el (10. ábra) [15].

X. A fenti munkánk továbbfejlesztéseként (*S*)-(-)-perillaldehidből kiindulva karánvázas γaminosavszármazékok diasztereoszelektív előállítását végeztük el (11. ábra). Első lépésként a perillaldehidből 2-karén-3-aldehidet, majd ebből α ,β-telítetlen metil- (**82**) és benzil-észtert (**83**) állítottunk elő. Az α ,β-telítetlen metil-, illetve benzil-észter nitrometános konjugált addíciója, majd a nitrocsoport redukciója a várt γ-aminosavésztereket (**84-87**) eredményezte. Míg azonban az *N*-benzil származékból katalitikus debenzilezéssel a várt **88** γ-aminosavat kaptuk, addig a metil-észter savas hidrolízise egy váratlan gyűrűátrendeződéssel egy monoterpénvázas aminolaktont (**89**) eredményezett (11. ábra) [16].

11. ábra

dc_1350_16

1.3. Monoterpénvázas 1,3-bifunkciós vegyületek alkalmazása katalizátorként dietil-cink és aromás aldehidek reakciójában

XI. Az optikailag aktív monoterpénvázas kétfogú ligandumokat (20-26, 1,3-aminoalkoholokat, 1,3-diaminokat, 1,3-diolokat és β-aminokarboxamidokat) dietil-cink benzaldehidre történő aszimmetrikus addíciós reakciójában katalizátorként alkalmazva a katalitikus aktivitásukat befolyásoló szerkezeti tényezők, illetve a katalizátorok alkalmazhatóságának vizsgálata történt meg. Megállapítottuk, hogy a pinánvázas 1,3-aminoalkoholok (23) közepes, illetve jó szelektivitást biztosítottak. E katalizátoroknál nitrogénszubsztituens függő enantioszelektivitás változását figyeltünk meg, elsőként az 1,3-aminoalkoholok körében [8]. A regióizomernek tekinthető, nopinonból származtatható transz 1,3-aminoalkoholok, valamint a velük rokon szerkezetű cisz és transz 1,3-dilok és β-hidroxikarboxamidok (59-64) lényegesen gyengébb katalitikus aktivitást mutattak [14]. Ugyancsak megállapítottuk, hogy a modellreakció enantioszelektivitása az N-szulfonilsavamidok és 1,3-diaminok (22-24) esetében a savamid, illetve amin funkció szubsztituáltsága függvényében változott: a primer és tercier βaminosavamidok, illetve a *tercier* diaminok esetén az (R) volt a major termék, a szekunder savamid funkciót hordozó származékok esetében a főtermék az (S) enantiomer volt [9]. A pinánvázas aminoalkoholok esetében a reakció során képződő Noyori µ-oxo átmeneti állapot energia minimumait, és ezáltal a reakció sztereokémia lefutását DFT szintű ab initio módszerekkel (RHF/LANL2DZ) tanulmányoztuk és megállapítottuk, hogy az elméleti számítások és a kísérleti tapasztalatok jó egyezést mutatnak.

Monoterpénvázas 3-amino-1,2-diolok sztereoszelektív előállítása és átalakításai 3-Amino-1,2-diolok sztereoszelektív előállítása β-hidroxi-epoxidokon keresztül

XII. Kereskedelmi forgalomban kapható (-)- és (+)-α-pinénből (1), valamint (+)-3-karénből (2) kiindulva 3 lépésben, diasztereoszelektív úton^[26] monoterpénvázas epoxialkoholokat (92,93) állítottunk elő (12. ábra). Az epoxidgyűrű aminokkal történő nyitásával, majd további átalakításokkal pinán- és karánvázas 3-amino-1,2-diolokból álló vegyületkönyvtárakat (94,95) hoztunk létre [18,19]. A két vegyület-család gyűrűzárásai során alapvető különbséget találtunk: a pinánvázas vegyületek gyűrűzárása spiro-oxazolidineket (96-98) [18,20]. míg a karánvázas aminodiolok gyűrűzárása karánnal kondenzált 1,3-oxazinokat (99) eredményezett [19]. A gyűrűzárás mindkét esetben regiószelektíven ment végbe.

2.2. 3-Amino-1,2-diolok előállítása védett allilaminok dihidroxilálásán keresztül

XIII. A kereskedelmi forgalomban kapható (-)-mirtenolból (100) kiindulva, Overmannátrendeződésen keresztül monoterpénvázas allilamidhoz (101) jutottunk, melyből több lépésben, diasztereoszelektív úton monoterpénvázas primer aminodiolt (103), majd ennek további átalakításaival pinánvázas 3-amino-1,2-diolokból álló vegyülettárat (104) hoztunk létre (13. ábra) [21]. Az így kapott vegyületek regioszelektív gyűrűzárásával, szemben a XII. pontban bemutatott regioizomer aminodiolokkal, pinánvázzal kondenzált oxazolidinekhez (105) jutottunk. A legfontosabbnak ítélt vegyületek enantiomer párjának előállítását a (+)- α pinénből 2 lépésben nyert (+)-mirtenolból is elvégeztük.

13. ábra

XIV. (*S*)-Perillaldehidből 2 lépésben kulcsintermedierként grammos mennyiségben nyert 2karén-3-karbaldehidből (**106**) kiindulva, reduktív aminálást követően diasztereoszelektív dihidroxilálással, majd a védőcsoportok eltávolításával, illetve átalakításával a **XII.** pontban bemutatott aminodiolok regioizomerjeihez (**109**) jutottunk (14. ábra) [22]. Vizsgáltuk a kapott aminodiolok gyűrűzárásának regioszelektivitását és megállapítottuk, hogy a modelreakcióként használt formaldehides gyűrűzárás minden esetben a karánvázzal kondenzált 1,3-oxazinokat (**110**) eredményezett.

14. ábra

XV. (+)-Pulegonból redukcióval kapott pulegolt (**111**) két lépésben, Overmann-átrendeződés során allil-triklóracetamid származékká (**112**) alakítottuk. Az így kapott vegyületet OsO₄/NMO rendszerrel dihidroxilálva két diasztereomer aminodiol származék 1:1 arányú keletkezését tapasztaltuk. A triklóracetil védőcsoport eltávolítását követően a kapott *primer* aminodiolokat reduktív alkilezéssel *N*-szubsztituált származékokká alakítottuk (**113,114**), melyek formaldehiddel történő gyűrűzárási reakcióját is vizsgáltuk (15. ábra) [23]. Ellentétben a korábban vizsgált pinán- és karánvázas aminodiolokkal, mind 1,3-oxazin (**115**), mind oxazolidin gyűrű (**116**) keletkezését, továbbá a két gyűrűzárt származék gyűrű-gyűrű tautomériáját figyeltük meg, és kísérleti tapasztalatainkat DFT számításokkal értelmeztük.

15. ábra

2.3. 3-Amino-1,2-diolok alkalmazása enantioszelektív átalakításokban

XVI. Részletesen vizsgáltuk az a 2.1-2. pontokban bemutatott 3-amino-1,2-diolok és a belőlük előállított 1,3-heterociklusok, mint királis katalizátorok felhasználhatóságát dietil-cink aldehidre történő addíciója során. A pinánvázas aminodiolok (**94,104**) esetében gyenge – jó katalitikus hatást tapasztaltunk [18,21]. Összefüggéseket találtunk az enatioszelektivitás és az aminodiolok nitrogénjének szubsztituáltsága között. Ugyanakkor a pinánvázzal spiro kapcsolt (**96**), illetve kondenzált (**105**) oxazolidinek esetében gyenge szelektivitást figyeltünk meg. A pulegonból előállított aminodiol származékok (**113-116**) esetében mérsékelt szelektivitást tapasztaltunk [23]. A karánvázas aminodiolok (**109**) tekintetében a legjobb *R* szelektivitást (*ee:* 86%) a *szekunder* aminocsoportot tartalmazó karánvázas aminodioloknál találtuk [19,22]. A karánvázas aminodiolok regioszelektívitás megfordulását (*S*), és kiváló (*ee:* 97%) enantioszelektivitást tapasztaltunk, továbbá a reakciót sikeresen terjesztettük ki aliciklusos és nyíltláncú aldehidekre is. Kísérleti eredményeinket elméleti számításokkal is alátámasztottuk, utóbbit sikeresen alkalmaztuk katalizátorunk optimalizálására is.

XVII. Királis, monoterpénvázas nukleozidanalógok előállítása

Az α-pinénből előállított királis primer aminodiolból (94), illetve ennek közvetlen előanyagaként is használt epoxi-alkoholból (92) kiindulva monoterpénvázas nukleozid analógokat állítottunk elő. Az aminodiolokból kiindulva 1-5 lépésben jutottunk pirimidin, illetve purin bázist tartalmazó célvegyületekhez (120), míg az epoxialkohol és a megfelelő bázisok reakciója egy lépésben szolgáltatta a kívánt vegyületeket (117-119) (16. ábra) [24]. A

két reakcióút összehasonlítása során megállapítottuk, hogy míg az első módszer hátránya a relatíve alacsony össztermelés, a második eljárás nem alkalmazható 2-amino, illetve 5helyzetben elektronszívó csoporttal szubsztituált bázisok esetében. Az így nyert nukleozid analógok között jelentős Na⁺/Ca²⁺ kicserélő (NCX) gátló tulajdonsággal rendelkező vegyületeket azonosítottunk, melyek jó kiindulási alapot jelenthetnek az akut miokardiális infarktust is kísérő iszkémia alapú aritmiafajták kivédésében használható vegyületek kifejlesztéséhez.^[27]

16. ábra

4. AZ EREDMÉNYEK GYAKORLATI HASZNOSÍTÁSA

A bemutatott munka egyik legfontosabb eredményének tartom, hogy természetes, az enantiomertiszta vegyületekre nézve olcsó monoterpén származékokból kiindulva, grammos mennyiségben tudtunk változatos szerkezetű 1,3-bifunkciós, illetve 1,2,3-trifunkciós, széleskörűen felhasználható, enantiomertiszta építőelemeket előállítani. Az α -pinénből kiinduló szintézisek esetében mindkét enantiomer β -aminosav, aminosavészter, illetve 1,3-aminoalkoholok előállítását megvalósítottuk, míg az apopinénből és perillaldehidből kiinduló szintézisek esetén négy epimer gram méretű szintézisét dolgoztuk ki, ezáltal az így előállítható királis építőelemek bioaktív potenciális farmakonok, katalizátorok, változatos 1,3-heterociklusok előállításában alkalmazhatóak (ilyen irányú felhasználásuk már ismert az irodalomban).

Az előállított védett β -aminosavakat az elmúlt időszakban sikeresen alkalmaztuk peptidszintézisekben, mint speciális, lipofil és sztérikusan zsúfolt építőelemeket,^[28-30] és e grammos mennyiségben is előállítható vegyületek további alkalmazása is várható. E β -

aminosav enantiomerek HPLC vizsgálata érdekes információval bővítheti ismereteinket a királis HPLC kolonnák aktív kötőhelyeinek vizsgálata terén is.^[31-33]

Az 1,3-aminoalkoholokból előállított, több humán daganatos sejtvonalon citosztatikus aktivitást mutató 2-imino-1,3-oxazinok és 1,3-tiazinok, valamint az aminodiolokból nyert antiaritmiás hatású nukleozidanalógok ígéretes kiindulási pontját jelenthetik további potenciális farmakonok kifejlesztésének.

Az 1,3-aminoalkoholok és 3-amino-1,2-diolok alkalmazásával általunk vizsgált dietilcink – aromás aldehidek reakciója során a katalitikus aktivitásról szerzett ismereteink hozzájárulhatnak még potensebb katalizátorok kifejlesztéséhez.

A könnyen hozzáférhető, enantiomertiszta monoterpénekből előállított változatos szerkezetű monoterpénvázas 3-amino-1,2-diolok, és az azokból néhány lépésben, grammos mennyiségben nyerhető származékok széles bázist jelenthetnek további enantioszelektív átalakítások potenciális katalizátorainak a kifejlesztéséhez.

AZ ÉRTEKEZÉS ALAPJÁUL SZOLGÁLÓ KÖZLEMÉNYEK

- [1] Szakonyi, Z.; Fülöp, F. Amino Acids 2011, 41, 597–608.
- [2] Szakonyi, Z.; Martinek, T.; Hetényi, A.; Fülöp, F. *Tetrahedron Asymmetry* 2000, *11*, 4571–4579.
- [3] Gyónfalvi, S.; Szakonyi, Z.; Fülöp, F. Tetrahedron Asymmetry 2003, 14, 3965–3972.
- [4] Szakonyi, Z.; Martinek, T. A.; Sillanpää, R.; Fülöp, F. *Tetrahedron Asymmetry* 2007, *18*, 2442–2447.
- [5] Fülöp, F.; Szakonyi, Z. Preparation of chiral cyclic β-amino acids and their derivatives having multidrug-resistance reversing effect. WO 2008059299, 2008.
- [6] Szakonyi, Z.; Martinek, T. A.; Sillanpää, R.; Fülöp, F. *Tetrahedron Asymmetry* 2008, 19, 2296–2303.
- [7] Szakonyi, Z.; Fülöp, F. *Arkivoc* 2003, *xiv*, 225–232.
- [8] Szakonyi, Z.; Balázs, Á.; Martinek, T. A.; Fülöp, F. Tetrahedron Asymmetry 2006, 17, 199–204.
- [9] Csillag, K.; Szakonyi, Z.; Fülöp, F. Tetrahedron Asymmetry 2013, 24, 553–561.
- [10] Szakonyi, Z.; Sillanpää, R.; Fülöp, F. Mol. Divers. 2010, 14, 59–65.

- [11] Fülöp, F.; Szakonyi, Z.; Pallai, V. P. 1,3-Heterocycles condensed with a monoterpene skeleton, their use and pharmaceutical compositions comprising such compounds. WO 2010070365, 2010.
- [12] Szakonyi, Z.; Zupkó, I. Fülöp, F. Curr. Org. Synth. 2017, doi: 10.2174/1570179414666161116110813
- [13] Szakonyi, Z.; Zupkó, I.; Sillanpää, R.; Fülöp, F. Molecules 2014, 19, 15918–15937.
- [14] Szakonyi, Z.; Gonda, T.; Ötvös, S. B.; Fülöp, F. *Tetrahedron Asymmetry* 2014, 25, 1138–1145.
- [15] Szakonyi, Z.; Balázs, Á.; Martinek, T. A.; Fülöp, F. *Tetrahedron Asymmetry* 2010, 21, 2498–2504.
- [16] Szakonyi, Z.; Csőr, Á.; Haukka, M.; Fülöp, F. Tetrahedron 2015, 71, 4846–4852.
- [17] Szakonyi, Z.; Sillanpää, R.; Fülöp, F. Beilstein J. Org. Chem. 2014, 10, 2738–2742.
- [18] Szakonyi, Z.; Hetényi, A.; Fülöp, F. Tetrahedron 2008, 64, 1034–1039.
- [19] Szakonyi, Z.; Csillag, K.; Fülöp, F. Tetrahedron Asymmetry 2011, 22, 1021–1027.
- [20] Szakonyi, Z.; Hetényi, A.; Fülöp, F. Arkivoc 2008, iii, 33–42.
- [21] Csillag, K.; Németh, L.; Martinek, T. A.; Szakonyi, Z.; Fülöp, F. *Tetrahedron Asymmetry* 2012, 23, 144–150.
- [22] Szakonyi, Z.; Csőr, Á.; Csámpai, A.; Fülöp, F. Chem. Eur. J. 2016, 22, 7163–7173.
- [23] Gonda, T.; Szakonyi, Z.; Csámpai, A.; Haukka, M.; Fülöp, F. *Tetrahedron Asymmetry* 2016, 27, 480–486.
- [24] Szakonyi, Z.; Fülöp, F. Tetrahedron Asymmetry 2010, 21, 831–836.

AZ ÉRTEKEZÉSHEZ KAPCSOLÓDÓ EGYÉB SAJÁT KÖZLEMÉNYEK

- [25] Kanizsai, I.; Gyónfalvi, S.; Szakonyi, Z.; Sillanpää, R.; Fülöp, F. Green Chem. 2007, 9, 357–360.
- [26] Hetényi, A.; Szakonyi, Z.; Klika, K. D.; Pihlaja, K.; Fülöp, F. J. Org. Chem. 2003, 68, 2175–2182.
- Geramipour, A.; Kohajda, Z.; Corici, C.; Prorok, J.; Szakonyi, Z.; Oravecz, K.; Márton,
 Z.; Nagy, N.; Tóth, A.; Acsai, K.; Virág, L.; Varró, A.; Jost, N. Can. J. Physiol.
 Pharmacol. 2016, 94, 1090–1101.
- [28] Hetényi, A.; Szakonyi, Z.; Mándity, I. M.; Szolnoki, É.; Tóth, G. K.; Martinek, T. A.;
 Fülöp, F. *Chem. Commun.* 2009, 177–179.

- ^[29] Szolnoki, É.; Hetényi, A.; Martinek, T. A.; Szakonyi, Z.; Fülöp, F. Org. Biomol. Chem.
 2012, 10, 255–259.
- ^[30] Olajos, G.; Hetényi, A.; Wéber, E.; Németh, L. J.; Szakonyi, Z.; Fülöp, F.; Martinek, T.
 A. *Chem. Eur. J.* 2015, *21*, 6173–6180.
- [31] Sipos, L.; Ilisz, I.; Pataj, Z.; Szakonyi, Z.; Fülöp, F.; Armstrong, D. W.; Péter, A. J. Chromatogr. A 2010, 1217, 6956–6963.
- ^[32] Pataj, Z.; Ilisz, I.; Gecse, Z.; Szakonyi, Z.; Fülöp, F.; Lindner, W.; Péter, A. J. Sep. Sci.
 2014, 37, 1075–1082.
- ^[33] Ilisz, I.; Pataj, Z.; Gecse, Z.; Szakonyi, Z.; Fülöp, F.; Lindner, W.; Péter, A. *Chirality* 2014, 26, 385–393.
- [34] Rodriguez, Y. C.; Duarte, T. M.; Szakonyi, Z.; Forró, E.; Fülöp, F.; Wenzel, T. J. *Chirality* 2015, 27, 708–715.
- [35] Kanizsai, I.; Szakonyi, Z.; Sillanpää, R.; Fülöp, F. *Tetrahedron Lett.* 2006, 47, 9113–9116.
- [36] Szakonyi, Z.; Gyónfalvi, S.; Forró, E.; Hetényi, A.; De Kimpe, N.; Fülöp, F. *Eur. J. Org. Chem.* 2005, 4017–4023.
- ^[37] Balázs, Á.; Szakonyi, Z.; Fülöp, F. J. Heterocycl. Chem. 2007, 44, 403–406.
- ^[38] Csillag, K.; Szakonyi, Zs.; Fülöp, F. Magyar Kémikusok Lapja 2013, 68, 293–296.
- ^[39] Szakonyi, Zs. Magyar Kémikusok Lapja 2016, 71, 3–4.