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Introduction

The aim of this dissertation is to describe certain connections between two
seemingly far away fields of mathematics, namely set theory and analysis. This
connection is classical in the first chapter of the dissertation, which is concerned
with descriptive set theory, an area traditionally involving both set theory and
analysis. However, in the second chapter we present numerous instances of this
connection that are of rather surprising nature. Sometimes questions about
Hausdorfl measures turn out to be independent of the usual Zermelo-Fraenkel
Axioms (ZFC) of mathematics, sometimes the solutions of questions concerning
Hausdorff measures require set theoretical techniques, and in one instance a
purely set theoretical question is answered with the help of Hausdorff measures.

Let us now briefly outline the main results, and say a few words about the
organisation of the dissertation. First, in Chapters [I] and [2| we describe our
results, and also briefly indicate some key ingredients of the proofs. The formal
proofs are all postponed to Chapter

Chapter [I] is concerned with descriptive set theory, which is the study of
definable (open, closed, Gs, F,, Borel, etc.) subsets of R™, or more generally, of
Polish spaces. (A topological space is Polish, if it has a countable dense subset,
and its topology can be induced by a complete metric. For the basic notions
and terminology of the dissertation we refer the reader to the next chapter.)

Section presents the solution to and old problem of M. Laczkovich. In
the 1970s he posed the following problem: Let B;(X) denote the set of Baire
class 1 functions defined on an uncountable Polish space X equipped with the
pointwise ordering. (A function is of Baire class 1 if it is the pointwise limit of
continuous functions.)

Characterise the order types of the linearly ordered subsets of B1(X).

The main result of the section is a complete solution to this problem.

We prove that a linear order is isomorphic to a linearly ordered fam-
ily of Baire class 1 functions iff it is isomorphic to a subset of the follow-
ing linear order that we call (|0, 1]i°61, <atttez), Where [0,1]<%! is the set of
strictly decreasing transfinite sequences of reals in [0, 1] with last element 0, and
<altlez, the so called alternating lexicographical ordering, is defined as follows:
if (za)a<e, (@h)a<e € [0, 1]?61 are distinct, and ¢ is the minimal ordinal where
the two sequences differ then we say that

(Ta)a<e <attiex (Th)a<er < (0 is even and x5 < 2) or (4 is odd and x5 > ).

Using this characterisation we easily reprove all the known results and answer
all the known open questions of the topic. The material of this section can be
found in [32].
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Section [L.2] presents solutions to problems of J. Mycielski and D. H. Fremlin.
Polish groups have recently been playing a central role in modern descriptive
set theory. Let G be an abelian Polish group, e.g. a separable Banach space. A
subset A C G is called Haar null (in the sense of Christensen) if there exists a
Borel set B D A and a Borel probability measure p on G such that u(B+g) =0
for every g € G. The term shy is also commonly used for Haar null, and co-Haar
null sets are often called prevalent.

Answering an old question of J. Mycielski we show that if G is not locally
compact then there exists a Borel Haar null set that is not contained in any
G5 Haar null set. We also show that Gs can be replaced by any other class of
the Borel hierarchy, which implies that the so called additivity of the o-ideal of
Haar null sets is wy.

The definition of a generalised Haar null set is obtained by replacing the
Borelness of B in the above definition by universal measurability. We give an
example of a generalised Haar null set that is not Haar null, more precisely we
construct a coanalytic generalised Haar null set without a Borel Haar null hull.
This solves Problem GP from Fremlin’s problem list. Actually, all our results
readily generalise to all Polish groups that admit a two-sided invariant metric.

We also answer one half of Problem FC from Fremlin’s list, which asked
if we can simply leave out the Borel set B from the definition of Haar null
sets. Fremlin noted that the answer was in the negative under the Continuum
Hypothesis, but we provide a ZFC counterexample in R. The material of this
section can be found in [33] and [29].

Section solves a problem posed by the author and M. Laczkovich. In
1990 Kechris and Louveau developed the theory of three very natural ranks on
the Baire class 1 functions. A rank is a function assigning countable ordinals to
certain objects, typically measuring their complexity. We extend this theory to
the case of Baire class £ functions, and generalise most of the results from the
Baire class 1 case. We also show that their assumption of the compactness of
the underlying space can be eliminated. As an application, we solve a problem
concerning the so called solvability cardinals of systems of difference equations,
arising from the theory of geometric decompositions. We also indicate that
certain other very natural generalisations of the ranks of Kechris and Louveau
surprisingly turn out to be bounded in wi, and also that all ranks satisfying
some natural properties coincide for bounded functions. The material of this
section can be found in [24].

Section [1.4] investigates the four versions of the following problem. Does
there exist a monotone (wrt. inclusion) map that assigns a Borel/Gs hull to every
negligible/measurable subset of [0,1]? (A hull of A C [0,1] is a set H containing
A such that \*(H) = A\*(A).) We prove that all versions are independent of
ZFC. We also answer a question of Z. Gyenes and D. Palvdlgyi which asks if
monotone hulls can be defined for every chain (wrt. inclusion) of measurable
sets. We also comment on the problem of hulls of all subsets of [0,1]. The
material of this section can be found in [27].

Now we turn to Chapter

Section[2.I]deals with certain problems from the theory of cardinal invariants
of the continuum. One of the most often cited areas of set theory is that of the
so called Cichoii Diagram. This diagram does not only describe all the ZFC
inequalities between the ten most commonly used cardinal invariants, but it is
also known that every assignment of the cardinals w; and ws to these invariants
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that is permitted by the diagram is indeed consistent with ZFC.

The problem we consider in this section is how to fit the cardinal invariants of
the nullsets of Hausdorff measures into the diagram. Let 0 < r < n, and N be
the o-ideal of sets in R™ of r-dimensional Hausdorff measure zero. D. H. Fremlin
determined the position of the cardinal invariants of this o-ideal in the Cichon
Diagram, see the figure after Definition 2.1.] below. This required proving
numerous inequalities, but the hard and more useful questions are tipically if
the inequalities can be strict in certain models. For one of the remaining ones
Fremlin posed this as an open question in his monograph [38]. We answer this by
showing that consistently cov(N) > cov(N). We also prove that the remaining
two inequalities can be strict. The proofs use the technique of forcing.

To demonstrate how this result can be used outside of the theory of cardinal
invariants, we solve the following problem of P. Humke and M. Laczkovich [47].
Is it consistent that there is an ordering of the reals in which all proper initial
segments are Lebesgue null but for every ordering of the reals there is a proper
initial segment that is not null with respect to the 1/2-dimensional Hausdorff
measure? We determine the values of the cardinal invariants of the Cichon
Diagram as well as the invariants of the nullsets of Hausdorff measures in one of
the models of ZFC mentioned in the previous paragraph, and as an application
we answer this question of Humke and Laczkovich affirmatively. The material
of this section can be found in [31].

In Section [2:2] we answer a question of Darji and Keleti by proving that
there exists a compact set Cpgx C R (first considered by Erdds and Kakutani)
of measure zero such that for every nonempty perfect set P C R there exists
x € R such that (Cgx + x) N P is uncountable. Using this Cpx we answer a
question of Gruenhage by showing that it is consistent with ZFC (as it follows
e.g. from cof(N) < 2¥) that less than 2* many translates of a compact set of
measure zero can cover R. The material of this section can be found in [30].

In Section 2.3 we show that the Continuum Hypothesis implies that for every
0 < d; < dy < n the measure spaces (Rn,MHdl,Hdl) and (R”,Mq_ldz,?-[dz)
are isomorphic, where H? is d-dimensional Hausdorff measure and My is the
o-algebra of measurable sets with respect to H¢. This is motivated by the
well-known question (circulated by D. Preiss and sometimes attributed to B.
Weiss as well, and later solved in the negative by A. Mathé) whether such an
isomorphism exists if we replace measurable sets by Borel sets. The material of
this section can be found in [21].

Section [24] investigates the related question whether every continuous func-
tion (or the generic continuous function in the sense of Baire category) is Holder
continuous (or is of bounded variation) on a set of positive Hausdorff dimen-
sion. We proved some nonzero upper estimates for these dimensions, which later
turned out to be sharp. The material of this section can be found in [21].

Section [2.5 solves a problem of R. D. Mauldin by showing that the set of
Liouville numbers is either null or non-o-finite with respect to every translation
invariant Borel measure on R, in particular, with respect to every Hausdorff
measure HY with gauge function g. We also indicate that some other sim-
ply defined Borel sets like the set of non-normal or some Besicovitch-Eggleston
numbers, as well as all Borel subgroups of R that are not F, possess the above
property. We discuss that, apart from some trivial cases, the Borel class, Haus-
dorff or packing dimension of a Borel set with no such measure on it can be
arbitrary. The material of this section can be found in [23].

7
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Section [2.0] considers a question of J. Zapletal. He asked if all the forcing
notions considered in his monograph [80] are homogeneous. We prove that e.g.
the o-ideal consisting of Borel sets of o-finite 2-dimensional Hausdorff measure in
R3 is non-homogeneous. This is a surprising instance when Hausdorff measures
are used to answer a set theoretical question! The material of this section can
be found in [31].



dc_1437 17

Basic definitions, notation
and terminology

In this chapter we collect the notions and definitions that show up multiple
times throughout the dissertation. However, to keep the sections somewhat
self-contained, occasionally we will recall these notions and definitions when we
feel it is necessary. The notions that are only used in a single section are defined
within the section in question.

For descriptive set theory the basic reference is [51], for set theory it is [55]
and [50], and for geometric measure theory (mainly Hausdorff measures) it is
[67] and [35].

Throughout the dissertation, let X = (X, 7) = (X, 7(X)) be a Polish space,
that is, a separable and completely metrisable topological space.

We define the £th additive, multiplicative and ambiguous Borel classes of X,
in notation 32(X), I(X) and A(X), respectively, as follows.

Let, by transfinite recursion,

2{(X) = 7 = the class of open sets,

for every 1 < £ let
I)(X)={X\H:HeX{(X)},

and for or every 1 < £ let
B2UX) = {UZ H; : Vi H; € UpeII)(X)}.
Finally, for every 1 < & let
A(X) = (X)) NIIY(X).

We typically simply write X2, Hg and Ag, when there is no danger of confusion.
It is well known that this hierarchy, called the Borel hierarchy, stabilises at
20 (X) =102 (X) = the class of Borel sets.

For example, A € AY iff A is F,, (countable union of closed sets) and Gs
(countable intersection of open sets) at the same time.

Let us now turn to the hierarchy of functions. For f : X — R we define
f € Bo(X) if f is continuous, and for 1 < § we say that f € Be¢(X) if there
exists a sequence (f;)ie; C Up<eBy,;(X) converging pointwise to f. In such a
case we also say that f is of Baire class £&. Again, we typically drop X from
the notation. It is well known that this hierarchy, called the Baire hierarchy,
stabilises at B,, = the class of Borel measurable functions.

9
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For a real valued function f on X and a real number ¢, we let {f < ¢} =
{r € X : f(z) < c}. We use the notations {f > c}, {f <c}, {f > ¢}, {f =¢}
and {f # ¢} analogously. It is well-known that a function is of Baire class £ iff
the inverse image of every open set is in 2¢,, iff {f < ¢} and {f > ¢} are in
22+1 for every c € R.

Specifically, a function f is of Baire class 1 iff it is the pointwise limit of
continuous functions iff the preimage of every open set under f is in X9 iff
{f < ¢} and {f > ¢} are in X9 for every ¢ € R. This easily implies that a
characteristic function y 4 is of Baire class 1 if and only if A € AY. The above
equivalent definitions also imply that semi-continuous functions are of Baire
class 1.

A set is called analytic if it is the continuous image of a Borel subset of a
Polish space. A set is coanalytic if its complement is analytic. A set is called
universally measurable if it is measurable with respect to the completion of
every Borel probability measure. Analytic and coanalytic sets are known to be
universally measurable.

Let us now fix a compatible metric d on X. The symbol K(X) will stand
for the set of the nonempty compact subsets of X endowed with the Hausdorff
metric, that is, for K7, Ko € K(X)

dH(Kl,KQ) = inf{e Ky C UE(KQ), Ky C Ug(Kl)},

where U.(H) = {z € X : Jy € H d(z,y) < e}. It is well known that if
X is Polish then so is K(X), and the compactness of X is equivalent to the
compactness of K(X).

Every ordinal is identified with the set of its predecessors, in particular,
2 ={0,1}. The cardinality of the continuum is denoted by 2* and also by c.

For a set H we denote the closure, cardinality and complement of H by H,
|H| and H€, respectively.

Let Z be a o-ideal on a Polish space X, that is, a nonempty collection of
subsets of X closed under subsets and countable unions, and not containing X.
The two most important classical examples are NV, the class of Lebesgue nullsets,
and M, the class of meagre sets (a set is nowhere dense if it is not dense in any
nonempty open set, and a set is meagre if it is the countable union of nowhere
dense sets). Moreover, one also often encounters the o-ideal IC of subsets of the
irrational numbers that are coverable by countably many compact subsets of
the irrationals. For a o-ideal let us define the four main cardinal invariants as
follows.

add(Z) = min{|]4|: ACZ,JA¢TI},

cov(Z) = min{|A|: ACZ,JA= X},

non(Z) = min{|H|: HC X,H ¢ T},

cof(Z) = min{|A|: ACZ, VIe€ZI3Aec A IC A}

These invariants are called the additivity, covering number, uniformity, and
cofinality of I, respectively.
The r-dimensional Hausdorff measure of a set A C R™ is
"(A) = 1 5(A), wh
H"(A) 63&7—[(5( ), where

oo

?Q(A)zinf{E:@hmnwu)V:fic E)Ak,deMHﬂAk)<5}.

k=0 k=0

10
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The Hausdorff dimension of a set A is defined by
dimpy (A) = inf{r : H"(A) = 0}.

If g : [0,00) — [0,00) is a nondecreasing function with g(0) = 0 then we may
also define the generalised Hausdorff measure with gauge function g, in symbol,
‘H9 such that in the above definition we replace (diam(Ay))" with g(diam(Ay)).

A subset of a Polish space is called perfect if it is closed and has no isolated
points. Nonempty perfect sets are of cardinality continuum.

11
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Chapter 1

Descriptive set theory

1.1 Linearly ordered families of Baire class 1
functions

Let F(X) be a class of real valued functions defined on a Polish space X, e.g.
C(X), the set of continuous functions. The natural partial ordering on this space
is the pointwise ordering <,, that is, we say that f <, g if for every z € X we
have f(z) < g(z) and there exists at least one z such that f(z) < g(z). If we
would like to understand the structure of this partially ordered set (poset), the
first step is to describe its linearly ordered subsets.

For example, if X = [0,1] and F(X) = C([0,1]) then it is a well known
result that the possible order types of the linearly ordered subsets of C([0,1])
are the real order types (that is, the order types of the subsets of the reals).
Indeed, a real order type is clearly representable by constant functions, and
if £ c C([0,1]) is a linearly ordered family of continuous functions then (by
continuity) f — fol f is a strictly monotone map of £ into the reals.

The next natural class to look at is the class of Lebesgue measurable func-
tions. However, it is not hard to check that the assumption of measurability is
rather meaningless here. Indeed, if £ is a linearly ordered family of arbitrary
real functions and ¢ : R — R is a map that maps the Cantor set onto R and is
zero outside of the Cantor set then f +— f o ¢ is a strictly monotone map of £
into the class of Lebesgue measurable functions.

Therefore it is more natural to consider the class of Borel measurable func-
tions. However, P. Komjath [53] proved that it is already independent of ZFC
whether the class of Borel measurable functions contains a strictly increasing
transfinite sequence of length wo.

The next step is therefore to look at subclasses of the Borel measurable
functions, namely the Baire hierarchy. Komjath actually also proved that in his
above mentioned result the set of Borel measurable function can be replaced
by the set of Baire class 2 functions. This explains why the Baire class 1 case
seems to be the most interesting one. We note that Baire class 1 functions play
a central role in various branches of mathematics, most notably in Banach space
theory, see e.g. [I] or [45].

Back in the 1970s M. Laczkovich [59] posed the following problem:

13
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Problem 1.1.1. Characterise the order types of the linearly ordered subsets of
(B1(X), <p)-

We will use the following notation:

Definition 1.1.2. Let (P,<p) and (Q, <g) be two posets. We say that P
is embeddable into @, in symbols (P,<p) — (Q,<g), if there exists a map
® : P — @ such that for every p,q € P if p <p g then ®(p) <g ®(¢). (Note that
an embedding may not be 1-to-1 in general. However, an embedding of a linearly
ordered set is 1-to-1.) If (L, <) is a linear ordering and (L, <) — (Q,<q)
then we also say that L is representable in Q.

Whenever the ordering of a poset (P, <p) is clear from the context we will
use the notation P = (P, <p). Moreover, when @ is not specified, the term
“representable” will refer to representability in B (X).

The earliest result that is relevant to Laczkovich’s problem is due to Kura-
towski. He showed that for any Polish space X we have wy,w] ¥ Bi(X), or
in other words, there is no wi-long strictly increasing or decreasing sequence of
Baire class 1 functions (see [56] §24. II1.2.]).

It seems conceivable at first sight that this is the only obstruction, that is,
every linearly ordered set that does not contain wj;-long strictly increasing or
decreasing sequences is representable in B;(R). First, answering a question of
Gerlits and Petruska, this conjecture was consistently refuted by P. Komjath
[53] who showed that no Suslin line is representable in By (R). (A Suslin line
is a nonseparable linearly ordered set containing no uncountable family of dis-
joint non-degenerate intervals. The existence of a Suslin line is independent of
ZFC.) Komjath’s short and elegant proof uses the very difficult set theoretical
technique of forcing. Laczkovich [60] asked if a forcing-free proof exists.

The author and Steprans [28] improved upon the above example. On the one
hand we proved that consistently Kuratowski’s result is a characterisation for
order types of cardinality strictly less than the continuum (and the continuum
is large). On the other hand we strengthened Komjath’s result by constructing
in ZFC a linearly ordered set L not containing Suslin lines or w;-long strictly
increasing or decreasing sequences such that L is not representable in By (X).

Among other results, I [22] proved that if X and Y are both uncountable
o-compact or both non-o-compact Polish spaces then for every linearly ordered
set L we have L — By(X) <= L — By(Y). Then I asked if the same
holds if X is an uncountable o-compact and Y is a non-o-compact Polish space.
Moreover, I also asked whether the same linearly ordered sets can be embedded
into the set of characteristic functions in B1(X) as into By (X). Notice that a
characteristic function x 4 is of Baire class 1 if and only if A is simultaneously
F, and Gs (denoted by A € AY(X)). Moreover, xa <p x <= A S B,
hence the above question is equivalent to whether L — (B;1(X), <,) implies
L— (Ag(X ), S). T also asked if duplications and completions of representable
orders are themselves representable, where the duplication of L is L x {0, 1}
ordered lexicographically.

Our main result in this section is a complete answer to Problem and
consequently answers to all the above mentioned questions. The solution pro-
ceeds by constructing a universal linearly ordered set for B1(X), that is, a linear
order that is representable in B;(X) such that every representable linearly or-
dered set is embeddable into it. Of course such a linear order only provides a

14
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useful characterisation if it is sufficiently simple combinatorially to work with.
We demonstrate this by indicating new, simpler proofs of the known theorems
(including a forcing-free proof of Komjath’s theorem), and also by answering
the above mentioned open questions.

The universal linear ordering can be defined as follows.

Definition 1.1.3. Let [0, l]i“al be the set of strictly decreasing well-ordered
transfinite sequences in [0, 1] with last element zero. Let & = (zq)a<¢, T’ =
(x)a<er € 0, l]iual be distinct and let 6 be the minimal ordinal such that
x5 # xf5. We say that

(Ta)a<e <attiex (Th)a<er < (0 is even and x5 < 2) or (4 is odd and x5 > x%).
Now we can formulate the main result of the section.

Theorem 1.1.4. Let X be an uncountable Polish space. Then the following are
equivalent for a linear ordering (L, <):

(1) (L, <) = (Bi(X), <p),
(2) (Lv <) — ([Oa 1]if}61a <altlem)-
In fact, (B1(X), <p) and ([0, 1]i“61, Zaitles) are embeddable into each other.

Using this theorem one can reduce every question concerning the linearly
ordered subsets of B;(X) to a purely combinatorial problem. We were able
to answer all of the known such questions and we reproved easily the known
theorems as well. The most important results are:

e Answering another question of Laczkovich, we give a new, forcing free
proof of Komjath’s theorem.

e The class of ordered sets representable in B1(X) does not depend on the
uncountable Polish space X.

e There exists an embedding (B1(X),<,) < (A(X),$), hence a linear
ordering is representable by Baire class 1 functions iff it is representable
by Baire class 1 characteristic functions.

e The duplication of a representable linearly ordered set is representable.
More generally, countable lexicographical products of representable sets
are representable.

e There exists a linearly ordered set that is representable in B;(X) but none
of its completions are representable.

About the proofs. The proof of the main result consists of two parts. First we
prove that there exists an embedding B1(X) < [0, 1]i°51 building heavily on a
method of Kechris and Louveau [52] on how to write every bounded Baire class
1 function as an alternating series of a decreasing transfinite sequence of upper
semi-continuous functions. Unfortunately for us, they only consider the case of
compact Polish spaces, while it is of crucial importance in our proof to use their
theorem for arbitrary Polish spaces. Moreover, their proof seems to contain a
slight error. Hence it was unavoidable to reprove and generalise their result.
Then the second part is [0, 1]2‘61 — B1(X), which is also a delicate and long
argument somewhat building on a former construction in [28]. For the proof
of the main result see Section [3.I] for the proofs of the above listed corollaries
consult [32].

15
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1.2 Haar null sets in Polish groups

Polish groups have recently been playing a central role in modern descriptive
set theory. This section is concerned with an analogue of Lebesgue null sets in
this setting.

Throughout this section, let G be an abelian Polish group, that is, an abelian
topological group whose topology is Polish. The group operation will be denoted
by 4+ and the neutral element by 0. It is a well-known result of Birkhoff and
Kakutani that any metrisable group admits a left invariant metric [6, 1.1.1],
which is clearly two-sided invariant for abelian groups. Moreover, it is also well-
known that a two-sided invariant metric on a Polish group is complete [6], 1.2.2].
Hence from now on let d be a fixed complete two-sided invariant metric on G.
For the ease of notation we will restrict our attention to abelian groups, but
we remark that all our results easily generalise to all Polish groups admitting a
two-sided invariant metric.

If G is locally compact than there exists a Haar measure on G, that is, a
regular invariant Borel measure that is finite for compact sets and positive for
nonempty open sets. This measure, which is unique up to a positive multiplica-
tive constant, plays a fundamental role in the study of locally compact groups.
Unfortunately, it is known that non-locally compact Polish groups admit no
Haar measure. However, the notion of a Haar nullset has a very well-behaved
generalisation. The following definition was invented by Christensen [12], and
later rediscovered by Hunt, Sauer and Yorke [49]. (Actually, Christensen’s defi-
nition was what we call generalised Haar null below, but this subtlety will only
play a role later.)

Definition 1.2.1. A set A C G is called Haar null if there exists a Borel set
B D A and a Borel probability measure p on G such that u(B+g) = 0 for every
ge€q.

Note that the term shy is also commonly used for Haar null, and co-Haar
null sets are often called prevalent.

Christensen showed that the Haar null sets form a o-ideal, and also that in
locally compact groups a set is Haar null iff it is of measure zero with respect
to the Haar measure. During the last two decades Christensen’s notion has
been very useful in studying exceptional sets in diverse areas such as analysis,
functional analysis, dynamical systems, geometric measure theory, group theory,
and descriptive set theory.

Therefore it is very important to understand the fundamental properties of
this o-ideal, such as the Fubini properties, ccc-ness, and all other similarities
and differences between the locally compact and the general case.

One such example is the following very natural question, which was Problem
1 in Mycielski’s celebrated paper [69] more than 25 years ago, and was also
discussed e.g. in [20], [] and [75].

Question 1.2.2. (J. Mycielski) Let G be a Polish group. Can every Haar null
set be covered by a Gy Haar null set?

It is easy to see using the regularity of Haar measure that the answer is in
the affirmative if G is locally compact.
The first main goal of the present section is to answer this question.
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Theorem 1.2.3. If G is a non-locally compact abelian Polish group then there
exists a (Borel) Haar null set B C G that cannot be covered by a Gs Haar null
set.

Actually, the proof will immediately yield that Gs can be replaced by any
other class of the Borel hierarchy. As usual, Hg stands for the £&th multiplicative
class of the Borel hierarchy.

Theorem 1.2.4. If G is a non-locally compact abelian Polish group and 1 <
& < wy then there exists a (Borel) Haar null set B C G that cannot be covered
by a Hg Haar null set.

It was pointed out to us by Sz. Glab, see e.g. [8, Proposition 5.2] that an
easy but very surprising consequence of this theorem is the following.

Corollary 1.2.5. If G is a non-locally compact abelian Polish group then the
additivity of the o-ideal of Haar null sets is w1 .

In order to be able to formulate the next question we need to introduce
a slightly modified notion of Haar nullness. Numerous authors actually use
the following weaker definition, in which B is only required to be universally
measurable. (A set is called wniversally measurable if it is measurable with
respect to every Borel probability measure. Borel measures are identified with
their completions.)

Definition 1.2.6. A set A C G is called generalised Haar null if there exists a
universally measurable set B D A and a Borel probability measure p on G such
that u(B + g) =0 for every g € G.

In most applications A is actually Borel, so it does not matter which of the
above two definitions we use. Still, it is of substantial theoretical importance to
understand the relation between the two definitions. The next question is from
Fremlin’s problem list [39].

Question 1.2.7. (D. H. Fremlin, Problem GP) Is every generalised Haar null
set Haar null? In other words, can every generalised Haar null set be covered
by a Borel Haar null set?

Dougherty |20, p.86] showed that under the Continuum Hypothesis or Mar-
tin’s Axiom the answer is in the negative in every non-locally compact Polish
group with a two-sided invariant metric. Later Banakh [4] proved the same
under slightly different set theoretical assumptions. Dougherty uses transfinite
induction, and Banakh’s proof is basically an existence proof using that the co-
finality of the o-ideal of generalised Haar null sets is greater than the continuum
in some models, hence these examples are clearly very far from being Borel.

The second main goal of the section is to answer Fremlin’s problem in ZFC.

Recall that a set is analytic if it is the continuous image of a Borel set, and
coanalytic if its complement is analytic. Analytic and coanalytic sets are known
to be universally measurable. Since Solecki [75] proved that every analytic
generalised Haar null set is contained in a Borel Haar null set, the following
result is optimal.
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Theorem 1.2.8. Not every generalised Haar null set is Haar null. More pre-
cisely, if G is a non-locally compact abelian Polish group then there exists a
coanalytic generalised Haar null set P C G that cannot be covered by a Borel
Haar null set.

We also answer one half of Problem FC from Fremlin’s list, which essentially
asked the following.

Problem 1.2.9. Can one simply leave out the Borel set B from the definition
of Haar null sets?

Fremlin noted that the answer was in the negative under the Continuum
Hypothesis. The third main theorem of the section provides in ZFC a coun-
terexample in R.

Theorem 1.2.10. Problem[1.2.9 has a negative answer in R, that is, there exist
X C R with A(X) > 0 and a Borel probability measure p such that p(X +t) =0
for every t € R.

For more results concerning fundamental properties and applications of Haar
null sets in non-locally compact groups see e.g. [2], [3], [15], [18], [19], [29], [46],
[66], [76], [78].

About the proofs. Surprisingly, the proofs of Theorem and Theorem [1.2.8
are essentially identical. The hard part is to show that the potential hulls are
not Haar null. On the one hand we use uniformisation results and other tricks
to solve the toy problem when the potential witness measures are restricted to
be just the 1-dimensional Lebesgue measure on the y-axis in the plane, and
second we apply a nice result of Solecki to find pairwise disjoint translates of all
compact sets, and mimic the toy problem in each. See Section or [33].

As for Theorem the key idea is to find sufficiently ‘thin’ Cantor sets
supporting our witness measure p, and surprisingly this thinness is understood
in the sense of small fractal dimension! An interesting instance of fractals pop-
ping up unexpectedly. See Section or [29]

1.3 Ranks on the Baire class £ functions

It is well-known that f is of Baire class 1 iff it is the pointwise limit of a sequence
of continuous functions iff the inverse image of every open set is F,, iff there is
a point of continuity relative to every nonempty closed set [51]. Baire class 1
functions play a central role in various branches of mathematics, most notably
in Banach space theory, see e.g. [I] or [45]. A fundamental tool in the analysis of
Baire class 1 functions is the theory of ranks, that is, maps assigning countable
ordinals to Baire class 1 functions, typically measuring their complexity. In
their seminal paper [52], Kechris and Louveau systematically investigated three
very important ranks, called a;, 8 and -y, on the Baire class 1 functions. We only
spell out the rather technical definitions in Chapter [3| and only note here that
they correspond to above three equivalent definitions of Baire class 1 functions.
One can easily see that the theory has no straightforward generalisation to the
case of Baire class £ functions.
Hence the following very natural but somewhat vague question arises.
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Question 1.3.1. Is there a natural extension of the theory of Kechris and Lou-
veau to the case of Baire class & functions?

There is actually a very concrete version of this question that was raised
by the author and Laczkovich in [26]. In order to be able to formulate this
we need some preparation. For 6,6’ < w; let us define the relation § < 0" if
0 <w? = 6 < w" for every 1 < n < w; (we use ordinal exponentiation here).
Note that 8 < 6" implies 0 < ', while § < 0', 8/ > 0 implies § < ¢’ - w. We
will also use the notation § = 0" if 6 < ¢ and ¢ < . Then ~ is an equivalence
relation. Let us denote the set of Baire class £ functions defined on R by B¢ (R).
The characteristic function of a set H is denoted by xg. Define the translation
map T3 : R — R by Ti(x) = z + ¢ for every x € R.

Question 1.3.2. 26, Question 6.7] Is there a map p : B¢(R) — wy such that

e p is unbounded in wy, moreover, for every nonempty perfect set P C R
and ordinal { < wq there is a function f € Be(R) such that f is 0 outside

of P and p(f) = ¢,

o p is translation-invariant, i.e., p(f o Ty) = p(f) for every f € Be(R) and
teR,

o p is essentially linear, i.c., p(cf) ~ p(f) and p(f + g) < max{p(f), p(9)}
for every f,g € Be(R) and c € R\ {0},

o o(f-xr) S p(f) for every closed set F C R and f € Be(R)?

The problem is not formulated in this exact form in [26], but a careful
examination of the proofs there reveals that this is what we need for the results to
go through. Actually, there are numerous equivalent formulations, for example
we may simply replace < by < (indeed, just replace p satisfying the above
properties by p'(f) = min{w” : p(f) < w"}). However, it turns out, as it was
already also the case in [52], that < is more natural here.

Their original motivation came from the theory of paradoxical geometric
decompositions (like the Banach-Tarski paradox, Tarski’s problem of circling
the square, etc.). It has turned out that the solvability of certain systems of
difference equations plays a key role in this theory.

Definition 1.3.3. Let RF denote the set of functions from R to R. A difference
operator is a mapping D : R® — RE of the form

(Df)(z) = Zaif(x + b;),

where a; and b; are fixed real numbers.

Definition 1.3.4. A difference equation is a functional equation

Df =y,
where D is a difference operator, ¢ is a given function and f is the unknown.

Definition 1.3.5. A system of difference equations is

where [ is an arbitrary set of indices.
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It is not very hard to show that a system of difference equations is solvable
iff every finite subsystem is solvable. But if we are interested in continuous so-
lutions then this result is no longer true. However, if every countable subsystem
of a system has a continuous solution the the whole system has a continuous
solution as well. This motivates the following definition, which has turned out
to be a very useful tool for finding necessary conditions for the existence of
certain solutions.

Definition 1.3.6. Let 7 C RE be a class of real functions. The solvability
cardinal of F is the minimal cardinal sc(F) with the property that if every
subsystem of size less than sc(F) of a system of difference equations has a
solution in F then the whole system has a solution in F.

It was shown in [26] that the behavior of sc(F) is rather erratic. For ex-
ample, sc(polynomials) = 3 but sc(trigonometric polynomials) = wy, sc({f :
f is continuous}) = wy but sc({f : f is Darboux}) = (2¢)*, and sc(R¥) = w.

It is also proved in that paper that we < sc({f: fis Borel}) < (2¢)F,
therefore if we assume the Continuum Hypothesis then sc({f : f is Borel}) =
wy. Moreover, they obtained that sc(Bg) < (2¢)F for every 2 < < wy, and
asked if sc(Be¢) > wo. We noted that a positive answer to Question would
yield a positive answer here.

For more information on the connection between ranks, solvability cardinals,
systems of difference equations, liftings, and paradoxical decompositions consult
[26], [58], [57] and the references therein.

In order to be able to answer the above questions we need to address one
more problem. This is slightly unfortunate for us, but Kechris and Louveau
have only worked out their theory in compact metric spaces, while it is really
essential for our purposes to be able to apply the results in arbitrary Polish
spaces.

Question 1.3.7. Does the theory of Kechris and Louveau generalise from com-
pact metric spaces to arbitrary Polish spaces?

Now the main result of the section is that the answer to all the above ques-
tions is in the affirmative.

Theorem 1.3.8. The answers to Question[I.3.1, Question[I.3.9 and Question
[1-37 are all in the affirmative.

Corollary 1.3.9. Let 2 < & < w;. Then sc(Be) > wa, and hence if we assume
the Continuum Hypothesis then sc(Be) = wa.

Moreover, we propose numerous very natural ranks on the Baire class &
functions, using simply that these functions are limits of elements of the smaller
classes, which surprisingly turn out to be bounded in wy!

Also, we prove that if a rank has certain natural properties then it coincides
with the ranks «, 8 and v of Kechris and Louveau on the bounded Baire class 1
functions. We also indicate how one could generalise this to the bounded Baire
class & case.

About the proofs. The key idea is to apply topology refinement methods.
Namely, for a Baire class £ function f on a Polish space (X, 7) there is a finer
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Polish topology ™ C 22(7) such that f is of Baire class 1 with respect to 7.
This allows us to fix a rank on the Baire class 1 functions and obtain a new one
by taking the minimum of the ranks of the Baire class 1 functions obtained in
this way. We actually define four ranks on every Bg, but two of these turn out
to be essentially equal, and the resulting three ranks are very good analogues
of the original ranks of Kechris and Louveau.

Topology refinements do not preserve compactness, hence it was essential to
extend the results of Kechris and Louveau to the non-compact case. See Section

or [24].

1.4 Can we assign the Borel hulls in a monotone
way?

Let us denote by N, L, B and Gs the class of Lebesgue negligible, Lebesgue
measurable, Borel and Gs subsets of [0, 1], respectively. Let A(A) stand for the
Lebesgue measure of A, or, if A is nonmeasurable, the Lebesgue outer measure
of A.

Definition 1.4.1. A set H C [0,1] is a hull of A C [0,1], if H D A and
AH) = \A).

By regularity, every set has a Borel, even a G5 hull. It is then very natural
to ask whether ‘a bigger set has a bigger hull’. (For the two original motivations
of the problem see below.)

Definition 1.4.2. Let D and H be two subclasses of P([0,1]) (usually D is N
or £, and H is B or Gs). If there exists a map ¢ : D — H such that

1. ¢(D) is a hull of D for every D € D,
2. D C D' implies p(D) C p(D’),
then we say that a monotone H hull operation on D exists.

The four questions we address in this section are the following.

Question 1.4.3. Let D be either N or L, and let H be either B or Gs. Does
there exist a monotone H hull operation on D?

The problem was originally motivated by the following question.

Question 1.4.4. (Z. Gyenes and D. Pdlvdlgyi [42]) Suppose that C C L is a
chain of sets, i.e. for every C,C' € C either C C C’ or C' C C holds. Does
there exist a monotone B/Gs hull operation on C?

Remark 1.4.5. Another motivation for our set of problems is that it seems to
be very closely related to the huge theory of so called liftings. A mapl: L — L
is called a lifting if it preserves (), finite unions and complement, moreover, it
is constant on the equivalence classes modulo nullsets, and also it maps each
equivalence class to one of its members. Note that liftings are clearly monotone.
For a survey of this theory see the chapter by Strauss, Macheras and Musial in
[44], or the chapter by Fremlin in [43], or Fremlin [38]. Note that the existence
of Borel liftings is known to be independent of ZF'C, but the existence of a
lifting with range in a fixed Borel class is not known to be consistent.
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The next two theorems show that all four versions of our problem are inde-
pendent of ZFC.

Theorem 1.4.6. It is consistent with ZFC that there is no monotone Borel
hull operation on N

Theorem 1.4.7. It is consistent with ZFC' that there is a monotone Gs hull
operation on L.

From the latter result and the proof of the former one one readily obtains
the following.

Corollary 1.4.8. The question of Gyenes and Pdlvélgyi is also independent of
ZFC.

We also remark here that the results (and proofs) of this section remain valid
if we replace [0, 1] by R, or by R™, or more generally, by any uncountable Polish
space endowed with a nonzero continuous o-finite Borel measure. Moreover,
one can show using the so called density topology that the existence of hulls for
measurable sets is equivalent to the existence of hulls for all sets.

We would also like to mention that this line of research has been continued
in two papers of S. Shelah [71] [37], who is arguably the greatest set theorist
alive.

About the proofs. The negative statement holds in the so called Cohen model, the
positive one is a rather involved construction using the Continuum Hypothesis.

See Sections and or [27].
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Chapter 2

Set theory and Hausdorft
measures

Now we start describing other types of connections between set theory and
analysis.

2.1 Cardinal invariants of Hausdorff measures

Our next problem concerns fitting the cardinal invariants of the o-ideal of
nullsets of the Hausdorff measures into the Cichoni Diagram. For more informa-
tion on this diagram consult [5].

Definition 2.1.1. Let 0 < r < n and let
N, ={H CR":H"(H)=0}.

D. H. Fremlin [38] 534B| showed that the picture is as follows. An arrow
Kk — A means Kk < A.

cov(N) — cov(N?) — non(M) — cof(M) — cof(NF) = cof(N)
T 1)
o SR o
T T
add(N) = add(N!) — add(M) — cov(M) — non(N}) — non(N)

All but three arrows (= inequalities) are known to be strict in the appropriate
models (see e.g. [5] for the inequalities not involving A and [73] for non(N?) <
non(N)). Fremlin, addressing one of these three questions, asked the following.

Question 2.1.2. [38, 534Z, Problem (a)] Does cov(N) = cov(NT) hold in
ZFC?

The next theorem answers this question in the negative.

Theorem 2.1.3. It is consistent with ZFC' that cov(N) = w1 and cov(NT) =
w2.
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The next two theorems handle the two remaining open questions concern-
ing the consistent strictness of the inequalities in the above extended Chichon
Diagram.

Theorem 2.1.4. [t is consistent with ZFC' that cov(N]) = wy and non(M) =
wa.

Theorem 2.1.5. [t is consistent with ZFC that cov(M) = wy and non(N)) =
wa.

About the proofs. All three models are constructed by the method of forcing.
The first one is a ‘Zapletal-style’ iterated forcing with the o-ideal 1, o fin to be
defined in the next section (see Section or [31]), the second model is the so
called Laver model (see Section [3.8|or [31]), and the third one is a ‘Rostanowski-
Shelah-type’ creature forcing (see Section |3.9|or [31]).

As an application, we answer a problem that was formulated in a recent
preprint of P. Humke and M. Laczkovich [47]. Working on certain generalisations
of results of Sierpiniski and of Erdds they isolated the following definition.

Definition 2.1.6. For a o-ideal Z on R let us abbreviate the following statement
as

(x)z <= 3 an ordering of R such that all proper initial segments are in Z.

Using this notation our problem can be formulated as follows.

Question 2.1.7. [{7] Does () imply (x) 172 ?

1

We remark here that the answer is obviously true in some models of ZFC,|
e.g. if the Continuum Hypothesis holds, since in that case there exists an or-
dering of R such that all proper initial segments are countable.

The following is easy to see and is also shown in [47].

Claim 2.1.8. add(Z) = cov(Z) = (x)z = cov(Z) < non(Z).
Hence it suffices to answer the following question affirmatively.

Question 2.1.9. Is it consistent with ZFC that add(N) = cov(N) and
cov(N}/?) > non(N;/?) 2

Our next theorem provides the answer.

Theorem 2.1.10. It is consistent with ZFC that add(N) = cov(N) and
cov(Nll/Q) > non(Nll/Q).

About the proofs. The proof is the calculation of the values of the cardinal
invariants of the extended Cichori Diagram in the first model mentioned above.

See Section (3.7 or [31].
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2.2 Less than 2“ many translates of a compact
nullset may cover the real line

In this section we are interested in some variants of the cardinal invariant
cov(N). There are two natural ways to modify this definition. (See [5] Chap-
ters 2.6 and 2.7.) First, cov*(N\) is the least cardinal x for which it is possible
to cover R by x many translates of some nullset. In other words, cov*(N) =
min{|4| | ACR,IN e N;A+ N =R}, where A+ N ={a+n|a€ A,neN}.
The other possible modification is cov(c/N), that is the least cardinal  for which
it is possible to cover R by x many compact nullsets. (At this point we depart
from the terminology of [5] as this notion is denoted by cov (&) there. Moreover,
cN is not a o-ideal, so we should actually consider the sets that can be covered
by countably many compact nullsets, but this causes no difference here.) It can
be found in these two chapters of this monograph that both cov*(N) < 2% and
cov(cN') < 2% are consistent with ZFC.

G. Gruenhage posed the natural question whether cov*(cN) < 2¢ is also
consistent, that is, whether we can consistently cover R by less than continuum
many translates of a compact nullset.

The main goal of this section is to answer this question in the affirmative
via an answer (in ZFC) to a question of U. B. Darji and T. Keleti that is also
interesting in its own right.

We remark here that under CH (the Continuum Hypothesis, or more gener-
ally under cov(N) = 2¢) the real line obviously cannot be covered by less than
2¢ many nullsets. Therefore it is consistent that the type of covering we are
looking for does not exist.

So the interesting case is when the consistent inequality cov*(N') < 2¢ holds.
The nullset in this statement can obviously be chosen to be G5. So the content
of Gruenhage’s question actually is whether this can be an F, or closed or
compact nullset. We formulate the strongest version.

Question 2.2.1. (G. Gruenhage) Is it consistent that there exists a compact
set C' C R of Lebesgue measure zero and A C R of cardinality less than 2¢ such
that C+ A =R?

For example Gruenhage showed that no such covering is possible if C' is the
usual ternary Cantor set (see [16] and for another motivation of this question
see [41]).

Working on this question Darji and Keleti [I6] introduced the following no-
tion.

Definition 2.2.2. (U. B. Darji - T. Keleti) Let C C R be arbitrary. A set
P C Ris called a witness for C if P is nonempty perfect and for every translate
C + z of C we have that (C' + z) N P is countable.

Obviously, if there is a witness P for C' then less than 2¢ many translates of
C' cannot cover P (since nonempty perfect sets are of cardinality continuum),
so they cannot cover R as well. Motivated by a question of R. D. Mauldin, who
asked what can be said if C' is of Hausdorff dimension strictly less than 1, Darji

and Keleti proved the following. (For the definition of packing dimension see
[67] or [35].)
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Theorem 2.2.3. (U. B. Darji - T. Keleti) If C C R is a compact set of packing
dimension dim,(C) < 1 then there is a witness for C, and consequently less than
2% translates of C' cannot cover R.

They posed the following question, an affirmative answer to which would
also answer the original question of Gruenhage in the negative.

Question 2.2.4. (U. B. Darji - T. Keleti) Is there a witness for every compact
set C C R of Lebesque measure zero?

We will answer this question in the negative, which still leaves the original
question of Gruenhage open.

The following set is fairly well known in geometric measure theory, as it is
probably the most natural example of a compact set of measure zero but of
Hausdorff and packing dimension 1. It was investigated for example by Erddés
and Kakutani [34].

Definition 2.2.5. Denote

CEK{ZC:;;

n=2

Vndne{O,l,...,nZ}}.

Think of d,, as digits with “increasing base”; then all but countably many
x € [0,1] have a unique expansion

where z,, € {0,1,...,n — 1} for every n =2,3,...

Theorem 2.2.6. For every nonempty perfect set P C R there exists a translate
Crk + x of the compact nullset Crr such that (Crx + x) N P is uncountable.

Then we will show that using the same ideas it is also possible to give
an affirmative answer to Gruenhage’s question. Recall that A is the ideal of
measure zero sets, cof(N) is the minimal cardinality of a family F C N for
which every nullset is contained in some member of F, and also that there is a
model of ZFC' in which cof(N) < ¢, see [B, p. 388].

Theorem 2.2.7. R can be covered by cof(N') many translates of Cpx, conse-
quently there is a model of ZFC' in which R can be covered by less than contin-
uum many translates of a compact nullset.

We remark that building on our ideas A. Mathé [62] also answered Mauldin’s
question.

About the proofs. The key point was to realise that Gruenhage’s problem has
to do with fractal dimension. After that we had to find a compact Lebesgue
nullset of full Hausdorff dimension, namely the above Cgk, and use set theo-
retic techniques to prove the result. This technique was the theory of so called

slaloms. See Sections and or [30].
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2.3 Are all Hausdorff measures isomorphic?

The following problem was circulated by D. Preiss, while it is unclear, who
actually asked this first, see also [13], where the question is attributed to Preiss.
(Sometimes the problem is under the names of D. Preiss and B. Weiss.) Let B
denote the o-algebra of Borel subsets of R™. By isomorphism of two measure
spaces we mean a bijection f such that both f and f~! are measurable set and
measure preserving.

Question 2.3.1. Let 0 < di < dy < n. Are the measure spaces (R",B,?—ldl)
and (R”7 B, Hd2) isomorphic?

An equally natural question is whether such an isomorphism exists if we re-
place Borel sets by measurable sets with respect to Hausdorff measures. Denote
by My the o-algebra of measurable sets with respect to %%, in the usual sense
of Carathéodory.

Question 2.3.2. Let 0 < d; < dy < n. Are the measure spaces (R”, /\/ldl,?-ldl)
and (R”, Ma,, Hd2) isomorphic?

The main result of the section is the following affirmative answer to this
question assuming the Continuum Hypothesis.

Theorem 2.3.3. Under the Continuum Hypothesis, for every 0 < dy < dy <n
the measure spaces (R",Mdl,Hdl) and (R”,M@,'H(b) are isomorphic.

We do not know if the assumption of the Continuum Hypothesis can be
dropped in Theorem [2.3:3] However, it is rather unlikely as the following remark
shows. As above, denote by Ny the o-ideal of negligible sets with respect to
He. If it were known that in some model of set theory non(Ng,) # non(Ny,)
held, it would be proven that the Continuum Hypothesis cannot be dropped in
Theorem [2.3.3] However, so far the above statement is only known to hold in
some model when da = n (see [73]).

We note here that Question [2.3.1] was answered by A. Mathé in the negative
[63], first for certain values of d; and da using our methods outlined in the next
section, then in general using different techniques.

About the proofs. The proof is a rather involved transfinite construction, where
the key point was to make sure that certain strange sets are measurable. See

Section or [21].

2.4 Regular restrictions of functions

In this section, motivated by Question [2:3.1] we consider the following set of
problems.

Question 2.4.1. Can we find for every f : [0,1] = R continuous/Borel/typical
continuous (in the Baire category sense, see e.g. [10]) function a set of positive
Hausdorff dimension on which the function agrees with a function of bounded
variation/Lipschitz/Hdolder continuous function?
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For example it is clear that showing that every Borel function is Holder
continuous of some suitable exponent on a set of sufficiently large Hausdorff
dimension would answer Question in the negative. The other versions are
less closely related to our problem, however, they are of independent interest.
We prove the following two results.

Theorem 2.4.2. Fiz 0 < o < 1. A typical continuous function is not Hélder
continuous of exponent o on any set of Hausdorff dimension larger than 1 — c.

Theorem 2.4.3. A typical continuous function does not agree with any function
of bounded variation on any set of Hausdorff dimension larger than %

The second theorem is motivated by an analogous result of Humke and
Laczkovich [48], who proved that a typical continuous function is not monotonic
on any set of positive Hausdorff dimension. So one would expect the same for
functions of bounded variation.

However, A. Mathé showed in [64] that both these results are sharp!

About the proofs. See Sections and or [21].

2.5 Borel sets which are null or non-o-finite for
every translation invariant measure

In many branches of mathematics a standard tool is that ‘nicely defined’ sets
admit natural probability measures. For example, limit sets in the theory of
Iterated Function Systems or Conformal Dynamics as well as self-similar sets
in Geometric Measure Theory are usually naturally equipped with an invariant
Borel measure, very often with a Hausdorff or packing measure. In many sit-
uations the sets in consideration are unbounded, for example periodic, so we
cannot hope for an invariant probability measure. Similarly, the trajectories
of the Brownian motion are of positive o-finite H9-measure with probability
1, where the gauge function g is g(t) = t*loglog 7 in case of planar Brownian
motion and g(t) = t2 1og%log log 1og% in dimension 3 and higher. Therefore
the natural notion to work with is that of an invariant Borel measure that is
positive and o-finite on our set.

It is natural to ask if there is some sort of unified theory behind the existence
of these measures, for example, one is tempted to ask if every Borel subset
of R™ of some ‘regular structure’ is positive and o-finite for some generalised
Hausdorff measure, or at least for some invariant Borel measure. In particular,
R. D. Mauldin ([68], [14] and see [II] and [7] for partial and related results)
formulated this question about a specific well-known set of very nice structure;
the set of Liouville numbers, denoted by L:

Definition 2.5.1.

L{xER\Q:VnGNEIp,qu(qZQ)suchthat

1
xp|<}.
q q

Question 2.5.2. (R. D. Mauldin) Is there a translation invariant Borel measure
on R such that the set of Liouville numbers is of positive and o-finite measure?
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Note that we of course do not require that the measure be o-finite on R.
Not only because Hausdorff measures are non-o-finite on R, but also because
it is well-known that every o-finite translation invariant Borel measure on the
real line is a constant multiple of Lebesgue measure.

As we will answer this question in the negative, we introduce a definition.

Definition 2.5.3. A nonempty Borel set B C R is said to be immeasurable if
it is either null or non-o-finite for every translation invariant Borel measure on

R.
The main result of this section is an answer to Mauldin’s question.
Theorem 2.5.4. The set of Liouville numbers is immeasurable.

Moreover, we also showed using various methods that there are other well-
known ‘nice’ immeasurable sets. Specifically, the set of non-normal numbers,
the complement of the set of so called Besicovitch-Eggleston numbers, BE(1,0)
(one of the Besicovitch-Eggleston classes itself) are all immeasurable. One of
the main tools is that every Borel but not F, additive subgroup of R is immea-
surable. Using this we also show that there are immeasurable sets of arbitrary
Borel class (except of course open, as sets of positive Lebesgue measure are
obviously not immeasurable). Similarly, we provide examples of immeasurable
sets of arbitrary Hausdorff or packing dimension.

We note here that it is not only the regular structure of the sets consid-
ered here that makes it difficult to prove immeasurability. Even it is highly
nontrivial to construct some immeasurable set. The two papers [61] and [17]
containing the two known examples are entirely devoted to the constructions of
the immeasurable sets.

We remark here that numerous questions left open or raised in our paper
has been answered by A. Matheé [65].

About the proofs. It is only the proof that involves set theory here. We show,
using transfinite induction, that every nonempty G5 Lebesgue nullset with a
dense set of periods is immeasurable. See Section or [23].

2.6 Homogeneity of forcing notions and ideals

In order to be able to formulate the problem this section deals with, we need
some definitions. For more information on forcing one can consult [55] or [50].

Definition 2.6.1. A notion of forcing P is called homogeneous if for every p € P
the restriction of P below p (i. e. {¢ € P: ¢ < p}) is forcing equivalent to P.

In his monograph [80] J. Zapletal poses the following problem.

Problem 2.6.2. ([80, Question 7.1.3.]) “Prove that some of the forcings
presented in this book are not homogeneous.”

In fact, we will work with the following closely related notion, see [80, Defi-
nition 2.3.7.].

Definition 2.6.3. A o-ideal Z on a Polish space X is homogeneous if for every
Borel set B there is a Borel measurable function f : X — B such that [ € 7
implies f~1(I) € Z.
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Zapletal writes “In all cases encountered in this book the homogeneity of the
forcing and the underlying ideal always come together”. The aim of this section
is to show that an interesting example of ideals discussed in his book is actually
non-homogeneous.

Let us define the following o-ideal consisting of sets of o-finite r-dimensional
Hausdorff measure.

Definition 2.6.4.

r ={H CR":3H, CR", Uge, Hr = H, H"(Hy) < o for every k € w}.

n,o—fin
The next theorem solves this version of the problem.

Theorem 2.6.5. The o-ideal "

n.o— fin 1S nON-homogeneous.

About the proof. The proof is a surprisingly simple application of a theorem
of A. Mathé. I believe the reason why this question was open for so long is
that this may be the first instance when fractal geometry is applied to answer
a purely set theoretical problem! See or [31].
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Chapter 3

Proofs

3.1 Proof of Theorem [1.1.4

3.1.1 Preliminaries

Our terminology will mostly follow [51] and [77].

USC(X) stands for the set of upper semicontinuous functions, that is, the
set of functions f for which for every 7 € R the set f~!((—o0,r)) is open in X.
It is easy to see that the infimum of USC functions is also USC.

If F(X) is a class of real valued functions then we will denote by bF(X) and
FT(X) the set of bounded and nonnegative functions in F(X), respectively.

Recall that K£(X) will stand for the set of the nonempty compact subsets
of X endowed with the Hausdorff metric. It is well known (see [51, Section
4.F]) that if X is Polish then so is (X). Moreover, the compactness of X is
equivalent to the compactness of K(X).

Also recall that we denote the £th additive and multiplicative Borel classes
of a Polish space X by EQ(X ) and Hg(X ), respectively. We will also use the
notation A2(X) = 22(X) NIIY(X). We call a set A ambiguous, if A € AJ(X).
Sometimes the following equivalent definition is also used for the first Baire
class: f € Bi(X) <= the preimage of every open set under f is in X9(X)
(see |51], 24.10]). This easily implies that a characteristic function x 4 is of Baire
class 1 if and only if A € AJ(X). The above equivalent definition also implies
that USC functions are of Baire class 1.

In this section, somewhat unusually, because of the heavy use of subscripts
the z-section of a set H C X x Y will be denoted by H* = {y : (x,y) € H}.

For a function f : X — R the subgraph of f is the set sgr(f) = {(z,7) €
X xR:r < f(z)}. Notice that a function is USC if and only if its subgraph is
closed.

Let (P, <;,) be a poset. We follow the notation of S. Todorcevi¢ [77] letting

oP ={F:a— P|«isan ordinal, F is strictly increasing},

that is, o P is the set of well-ordered sequences in P. We will use the notation
o* P for the reverse well-ordered sequences, i. e.,

0*P={F:a— P|a«isan ordinal, F is strictly decreasing}.
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Then ¢*[0,1] is the set of strictly decreasing well-ordered transfinite se-
quences of reals in [0, 1].

For a poset P, if p € 0*P and the domain of p is £ then we will write p as
(Pa)a<e, where po, = p(a). We will call the ordinal £ the length of p, in symbols
(7).

Let H and H' be two subsets of the linearly ordered set (L, <z). We will
say that H <; H' or H < H' if for every h € H and h' € H' we have h <p h’
or h <y h/, respectively. A set H C L is called convez if for every a,b € H
and ¢ € L with a <, ¢ <p b we have ¢ € H. An interval is a set of the form
[a,00)(= {c : a <p ¢}), (a,b] or (a,b) etc. for some a,b € L. We say that
a linearly ordered set is densely ordered if it contains no neighboring points,
while it is said to be separable if it has a countable subset which intersects every
nonempty open interval. Finally, L is nowhere separable, if (a,b) N L is not
separable for every a,b € L.

Now if p,p’ € o*P and p ¢ p',p’ ¢ p then there exists a minimal ordinal §
such that ps # pjs. This ordinal is denoted by d(p,p’).

Le a be a successor ordinal, then o — 1 will stand for its predecessor. Now,
since every ordinal a can be uniquely written in the form o = v + n where ~ is
limit and n is finite, we let (—=1)* = (—1)" and refer to the parity of n as the
parity of a.

A poset (T, <) is called a tree if for every ¢t € T the ordering < restricted
to the set {s: s <r t} is a well-ordering. We denote by Lev,(T) the ath level
of T, that is, the set {t € T :<r |{s.5<,¢} has order type a}. If t € T" with
t € Levo(T) it can be identified with an enumeration (i. e., a strictly increasing
bijection) e; : o« +1 — {s € T : s <p t}. So, for an ordinal 5 we can talk
about t|z which is the map e;|g. In particular, if o is a successor (note that
t € Lev,(T)), we will denote by |, the predecessor of t.

An a-chain C is a subset of a tree such that <t |¢ is a well-ordering in type
«, whereas an antichain is a set that consists of <p-incomparable elements. A
set D C T is called dense if for every t € T there exists a p € D such that
t <p p. A set is called open if if for every p € D we have {t € T : t >7 p} C D.

A tree (T,<r) of cardinality Ny is called an Aronszajn tree, if for every
a < wy we have |Lev,(T)| < Rg and T' contains no wj-chains. An Aronszajn
tree is called a Suslin tree if it contains no uncountable antichains.

A Suslin line is a linearly ordered set that is ccc (it contains no uncountable
pairwise disjoint collection of nonempty open intervals) but not separable.

We will call a poset (P, <p) R-special (Q-special) if there exists an embed-
ding P = R (P <= Q).

Every ordinal is identified with the set of its predecessors, in particular,
2 ={0,1}.

3.1.2 Bi(X) = ([0, 15, <atttes)
Recall that
0,15 = {z € 0*[0,1] : minz = 0}

and also that for T = (24)a<e, &' = (2),)a<e € [0, l]ifsl distinct and § = 6(z, T')
we say that

(Ta)a<e <atties (Th)a<er <= (0 is even and x5 < z) or (& is odd and x5 > ).
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Theorem 3.1.1. Let X be a Polish space. Then B1(X) — [0, 1}261.

In order to prove the theorem we have to make some preparation. We will
use results of Kechris and Louveau [52]. They developed a method to decompose
a Baire class 1 function into a sum of a transfinite alternating series, which is
analogous to the well known Hausdorff-Kuratowski analysis of AY sets.

First we define the generalised sums.

Definition 3.1.2. ([52]) Suppose that (f3)s<q is a pointwise decreasing se-
quence of nonnegative bounded USC functions for an ordinal a < wi. Let
us define the generalised alternating sum Z;;<a(—1)ﬂf5 by induction on « as
follows:
E2<0(*1)5fﬁ =0
and
Va1 fs = Epear (D f5+ (-1)* o

if « is a successor and
Yhca(=1)7f5 = sup{E] _5(~1)7f, : 8 < @, 8 even}
if @ > 0 is a limit.

Every nonnegative bounded Baire class 1 function can be canonically de-
composed into such a sum. For this we need the notion of upper regularisation.

Definition 3.1.3. ([52]) Let f : X — R be a nonnegative bounded function.
The upper regularisation of f is defined as

f=inf{g: f <, 9,9 € USC(X)}.
_ Note that f is USC, since the infimum of USC functions is USC. Also, clearly
f=fif fis USC.
Definition 3.1.4. ([52]) Let

90:f7f0:.§\07

if v is a successor then let

Ja = foz—l - ga—lyfa = §o¢7

if @ > 0 is a limit then let

Ja = égg 9B and fo = Ga-

B even

Now if there exists a minimal {; such that fe;, = fe;41 then let ®(f) =
(fa)aéff‘

Note that we need some results of Kechris and Louveau for arbitrary Polish
spaces, however in [52] the authors proved the theorems only in the compact
Polish case, although the proofs still work for the general case as well. Un-
fortunately, in our proof the non-o-compact statement plays a significant role,
hence we must check the validity of their results on such spaces. The results
used are summarised in Proposition [3.1.5] and the proof can be found in Section
B-I.5 Notice that the original proof seems to contain a small error, but it can
be corrected without essential new ideas.
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Proposition 3.1.5. ([52]) Let X be a Polish space and f € bBy(X). Then
O(f) is defined, ®(f) € o*bUSC™ and we have

(1) F = Sheal 1P fs + (~1)ga for cvery a < &5,
(2) fe; =0,

() f=Yhee,(-1) .

PROOF. See Section B.I.5 O

Proposition 3.1.6. Let X be a Polish space and fo, fi € bB] (X). Suppose
that fo <, f1 and let (fo) = (]‘O)a<5fU and ®(f1) = (f} )a<§f Then ®(fo) #

O(f1) and if § = 6(P(fo), ®(f1)) then [ <, f& if § is even and f§ >, f} if 6 is
odd.

PRroOF.
First notice that if fo # f1 then by (3) of Proposition we have that

®(fo) # 2(f1)-
Let (gg) p<e;, and (gé) p<¢,, be the appropriate sequences (used in Definition

3.1.4) with g% = f};)

We bhOW by induction on § that for every even ordinal B < § we have
93 <p g5 and for every odd ordinal # < ¢ we have g0 >, 96

For 8 = 0 by definition gJ = fo and g§ = f1, so gJ <, g5-
Suppose that we are done for every v < .

e for limit 5 we have that

so by the inductive hypothesis obviously gﬂ <p gﬁ

e if 5 is an odd ordinal, since 8 — 1 < § we have fg_l = fé—1 S0

0 0 0 0 1 1 1
93 = fﬁ—l —95-12p f5—1 —98-1 = fé—l —93-1 = 93
by 8 — 1 being even and using the inductive hypothesis.

e if B is an even successor, the calculation is similar, using that gg_l > g,(lg_1
we obtain

0 0 0 0 1 1 1 1
95 = fa—1—95-1 <p fa-1—95-1= fp-1—95-1 = 9p-

Consequently, the mductlon shows that g9 <, g} if § is even and ¢§ >, g} if §

is odd. Therefore, since 95 [ we have that fQ <, f} if § is even and fa >n f6
if 4 is odd. But by the definition of § it is clear that f§ # f}, hence f? <, f if
§ is even and f? >, f} if § is odd. This finishes the proof of Proposition
O

Now to finish the proof of Theorem [3.1.1] we need the following folklore
lemma.
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Lemma 3.1.7. There exists an order preserving embedding Wo : USCT(X) —
[0,1] where the image of the function f = 0 is 0. In particular, there is no
uncountable strictly monotone transfinite sequence in USCH(X).

PrOOF. Fix a countable basis {B,, : n € w} of X x [0,00). Assign to each
feUSCT(X) the real

rp=1- > 2l

If f <, g then sgr(f) & sgr(g) so, as the subgraph of an USC function is a
closed set, there exists an n € w such that B,, is an open neighborhood of a
point in sgr(g) \ sgr(f). Thus, {n: B, Nsgr(f) =0} 2 {n: B, Nsgr(g) = 0}.
Consequently, ry < rg. OPROOF. [Proof of Theorem

Let ¥ : o*USC*(X) — 0*[0,1] be the map that applies the above ¥y to
every coordinate of the sequences in 0*USC™(X). Thus, ¥ is order preserving
coordinate-wise.

Clearly, h(x) = + arctan(z) + 1 is an order preserving homeomorphism from
R to (0,1) and for f € Bi(X) let H(f) = ho f. Composing the functions
in B1(X) with h we still have Baire class 1 functions and this does not effect
the pointwise ordering. Thus, H is an order preserving map from B (X) into
bB(X).

Let © = W o ® o H. Notice that as H : By(X) — bB{ (X), ® : b3 (X) —
o*bUSCT(X) and ¥ : c*USC(X) — ¢*[0,1], the map O is well defined.

Now, by Lemma [3.1.7] we have that ¥( maps the constant zero function to
zero and by (2) of Propositionwe have that for every function f its ® image
ends with the constant zero function. Thus, the © image of every function f
ends with zero. Therefore, © maps into [0, 1]2‘53

If fo <, fi are Baire class 1 functions then clearly H(fo) <, H(f1)
hence by Proposition we have that if § = §(P(H(fo)), P(H(f1))), then
D(H (fo))(8) <p D(H(F1))(6) if 8 is even and B(H(fo))(5) >, B(H(f1))(0) if
0 is odd. Since VU is order preserving coordinate-wise, we obtain that © is an
order preserving embedding of B;(X) into ([0, 1]i‘*51 , <altlez ), which finishes the
proof of the theorem. O

3.1.3 ([0, 1]§‘61, <altlez) — Bl (X)

Theorem 3.1.8. The linearly ordered set ([0, 1]§“61,<altlez) can be represented
by AY subsets of K([0,1]?) ordered by inclusion.

PRrROOF. First we define a map ¥ : [0, 1]i‘°81 — K([0,1]?), basically assigning to
each sequence its closure (as a subset of the unit interval). However, such a map
cannot distinguish between continuous sequences and sequences omitting a limit
point. To remedy this we place a line segment on each limit point contained in
the sequence.

Let z € [0, l}ifal, with Z = (24)a<e. Now let

U(z) ={(x4,0) : a« < E}U
U{{%‘} X [0,20 — Tat+1] : 0 <a<€and z, =inf{zs: < a}}.
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Lemma 3.1.9. U(Z) is a compact set for every T € [0, 1]i‘“61.
PROOF. Clearly, it is enough to show that if (pn,q,) — (p,q) is a convergent
sequence such that for every n we have

(Pnsan) € (3.1.1)

U{{xa} x[0,2q — Zay1] : f0<a <€ and z, =inf{zg: f < a}}

then (p,q) € ¥(z).

Obviously, p, = ., for some ordinals «,. First, if the sequence z,, is
eventually constant, then there exists an « such that p = x, and except for
finitely many n’s by we have g, € [0,24 — Tatr1]. So (p,q) € {wa} X
0,20 — Tat1] C U(T).

Now if the sequence (x,,, )new is not eventually constant, since the sequence
(Za)a<e is strictly decreasing and well-ordered then (passing to a subsequence
of (Za, )new if necessary) we can suppose that (2, )new is a strictly decreasing
sequence.

Using the fact that (24, )new is a strictly decreasing subset of (z4)a<e We
obtain that ., — Za,+1 < %o, — p. Hence from we obtain

0<g, < Lo, — LTa,+1 < To,, — P — 0
S0 ¢, = 0. Therefore,

(p,q) = (HILH;O Tq,,0) € {(24,0) : a <&} C V().

(]
Now we define a decreasing sequence of subsets of K([0,1]?) for each z =
(Za)a<e and a < & as follows:
HE ={WU(2): Z|o = Z|a, 2a < Ta ) (3.1.2)
We will use the following notations for an even ordinal o < &:
KZ =HZ(={¥(2): Z|la = Z|a) 20 < Ta)), (3.1.3)
and if « +1 < ¢ then
Lo =Hi 1 (= {P(2) 1 Zlat1 = Tla+1, zat1 < Tas1}). (3.1.4)

Finally, if o = £ then let £, = (. So K} and L, is defined for every even o < €.
Notice that the sequence (HZ)a<¢ is a decreasing sequence of closed sets.
To each T = (24 )a<¢ let us assign

AT= | wENLd).
a<f,a even

By |51}, 22.27], since A% is a transfinite difference of a decreasing sequence of
closed sets, we have A% € AJ(K([0,1]?)).
To overcome some technical difficulties we prove the following lemma.

Lemma 3.1.10. Let Z € [0, I]i“(’f and 8 be an ordinal such that f+1 <I(Z).
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(1) If K € H,,, B is a limit ordinal, inf{z, : v < B} = 25 and I(2) > B + 1
then (28,23 — 2p41) € K.

(2) If K € 7—[72 and B is a successor then (z3_1,0) € K.

(3) If K € Hj, B is a limit ordinal and inf{z, : v < B} > 25 or B is a successor
then

(a) KN ((z8,inf{z, : v < B}) x [0,1]) =0
(b) KN ({inf{z, : v < B}} x (0,1]) =0

(notice that if B is a successor then inf{z, : v < S} = 25-1).

PrRoOOF. For and just notice that by equation whenever ¥(w) €
H5 (M3, respectively) then W(w) contains the point (z5-1,0) (the point
(28,23 — #3+1)). Consequently, every compact set which is in the closure of
HF (or Hj, ) contains the point (25-1,0) (the point (25,25 — 2541)).

In order to see first observe the following: if U C [0,1]? is a relatively
open set and L € K([0,1]?) then the set S = {K € K([0,1]?): KNU =LNU}
is closed: if K,, — K with K,, € S then KNU D LNU is obvious. Now if there
was an ¢ € (K NU) \ L then there would be a (relatively) open set V.C U\ L
with € V. But then by x € K we would have that K, NV # 0 for a large
enough n, contradicting K, NV =LNV =, so S is indeed closed.

Now, by the definition of 7 for every w such that W(w) € H5 we have

P(@) N (25, 1] x [0,1]) = (2) N ((z5, 1] x [0, 1)).

Thus, since the set ((23, 1] x [0,1]) is relatively open in [0, 1]> we have
HE € {K € K([0, 1)) : K N ((25,1] x [0,1]) = 9(2) N (25, 1] x [0,1])},

as the latter set is closed and contains ”Hg. In particular, for every K € 7—[72 we
get that
KN ((zg,inf{zy : v < B}) x [0,1]) =0

and
K0 ({inf{z 17 < 8} % (0,1)) = 0
hold, which proves the lemma. O

In order to show that Z — A® is an embedding it is enough to prove the
following claim.

Main Claim. If T <gj4je, § then A® g AY.

To verify this we have to distinguish two cases.

Case 1. 0 = §(z,y) is even.

Then x5 < ys and 6 + 1 < I(g). We will show the following lemma.

Lemma 3.1.11. K§ & KY\ LY.
PROOF. [Proof of Lemma [3.1.11]] From z;5 < ys we have

{W(2): 2ls = 2[5, 25 < w5} C{Y(2) : 2|5 = Zs, 25 < ys}
so K% C KY.
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First, we prove that

KZ c K\ LY. 3.1.5
& [

Here we have to separate two subcases.
SUBCASE 1. ¢ is a limit ordinal and ys = inf{y, : @ < ¢}.
On the one hand, using of Lemma [3.1.10| (with z = § and 8 = ) we

obtain that for every K € LJ(= Hgﬂ) we have (ys,ys — Ys+1) € K.

On the other hand, from of Lemma (with z = Z and 8 = 0) we
have that for every K € Kf(= M) we have KN ({inf{z, : @ < d}} x(0,1]) = 0.
In particular, as ys = inf{y, : o < 0} = inf{z, : a < 0}, we have (ys5,ys —
Ys+1) & K. So we obtain KINLY = 0, hence by K C KY we have K C I\ LY.

SUBCASE 2. ¢ is a limit and y5 < inf{ys : ¢’ < 0} or 0 is a successor.

Using of Lemma [3.1.10] (with z = § and 3 = § + 1) we obtain that every
K e Li(= Hg—&-l) contains the point (ys,0). From of Lemma (with
z =2, B =) we have that for every K € KZ(= HZ) the set K N ((zs,inf{z,
a < 0}) x [0,1]) is empty. But y5 € (x5, inf{z, : & < 8}) so KF N LY = 0. This
finishes the proof of equation .

Second, in order to prove K¥ # K%\ LY let w be such that @|s = Z|s,
Ts,Ys+1 < ws < ys and wsq = 0. Clearly, ¥(w) € K.

By (Ba) of Lemma (used for z = 7 and § = §) we have that ¥(w) €
K% (= M%) would imply ¥(w)N ((z5,inf{z, : @ < 6}) x[0,1]) = 0, but (ws,0) €
(x5,ys) x [0,1] and inf{z, : o < ¢} = inf{y, : & < §} > ys; which is a
contradiction. Hence ¥(w) & KF.

Now we prove ¥ (w) & Eg. Suppose the contrary, then using of Lemma

3.1.10| (with z = 7 and 8 = §+1) one can obtain that for every K € L] (= HI,)

the set KN ((ys41,ys) % [0,1]) is empty. But clearly (ws,0) € W(w)N((ys+1,¥s) ¥
[0,1]), a contradiction. So W(w) & LY.
Thus, it follows that ¥(w) € (KY \ £Y) \ KF. From this and from equation

(3.1.5) we can conclude Lemma [3.1.11 O

Now we prove the Main Claim in Case 1. If ¢’ is even and ¢’ < 0, the
definitions (]3.1.3[) and (]3.1.4[) of K, and L§, depend only on (z4)a<s+1 SO

7 =Ky (3.1.6)
and )
5 =1L (3.1.7)

Now, from Lemma [3.1.11f we have A® C AY, since for every K € A® we have
either K € Kf, \ £F = K3, \ LY, for some §' < or K € KF.

~ Moreover, we claim that using Lemma [3.1.11) one can prove that A" &
AY. From the definition of A%, from the fact that the sequence (HZ)a<¢ =
(K&, LE, KT, LT, ...) is decreasing and from equations (3.1.6) and (3.1.7) follows
that

KnA”= | Ki\Lh= |J KI\LL=(K)NnA

§'<9, 8’ even §'<9, 0’ even
So A" C (K¥)° U KZE. Hence, if K € (K¥\ £Y)\ K% then
KeKI\L]cCA
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and ) . .
K ¢ (K{)FuUKks o A®

so indeed, we obtain that the containment is strict, hence we are done with Case
1.

Case 2. § = §(Z,¥) is odd.

Then x5 > ys and 6 + 1 < I(Z).
Notice that as the length of T is larger than ¢ + 1, the sets IC§+1 and £§+1 are
defined. )

Now for every even ¢’ < § — 1 the definition of Kj, and K¥, depend only on
(Ta)a<s’ = (Ya)a<s’- Thus for every even ¢’ < § —1

5 =Ky (3.1.8)
and also for every even §' < § — 1
5 =LY (3.1.9)
We will show the following:
Lemma 3.1.12. (1) K3_,\ £, C KL  \LY |
(2) K§ CK{\ LRy

PROOF. [Proof of Lemma [3.1.12}] .
It is easy to prove : from equation |D we get Kf_, = KJ_,. Moreover,

z y ;
L5 1 D L;_,, since

51 =1{9(z): 2ls = Zls, 25 <ws} D{U(Z) : 25 = Gls, 25 <ws} = L5,

holds by x5 > ys.

Now we show . First, K5 , C Kj_, = KY |, using that the sequence
(KZ)a<s41 is decreasing.

So it is suffices to show that K, N LY | =0. Using of Lemma
(with 2 = § and 3 = ) we obtain that for every K € LY (= HY), we have
KN ((ys,ys—1) x [0,1]) = 0.

However, by 1) of Lemma (used with z = Z and § = § + 1) if
K € K3 (= Hj,,) then (25,0) € K. Therefore, 5 € (ys,ys5-1) implies that
the intersection K% 1N Eg_l must be empty. So we are done with the lemma.
O

Now we prove the Main Claim in Case 2. By definition of A% and by the
fact that the sequence (H})a<¢ = (K§, L5, KT, LT,...) is decreasing we have
that if K € A" then either K € KJ, \ L%, = K, \ LY, for some even §’ < §—1 or
K e K _;\L5_, or K € K§, . Hence using equations (3.1.8) and (3.1.9) and
Lemma we obtain

AT C AV (3.1.10)
In order to show that A% # AY it is enough to find a w such that
U(w) e K§ 4\ LY, C A (3.1.11)
and i ) )
() & Ky U(L5-,)" D A" (3.1.12)
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Take w|s = g|s and ws such that z541,ys < ws < x5 and ws41 = 0.

Now, in order to see (3.1.11)) clearly W(w) € KY_ .. On the other hand
if K € £Y (= HY) by 1} of Lemma (with z = g and 8 = §) we
have K N ((y5,y5-1) x [0,1]) = 0. But y5 < ws < x5 < T5—1 = Ys—1, SO
(ws,0) € ¥(w) N ((ys,ys—1) x [0,1]). Therefore, ¥(w) & LY .

In order to prove %@D it is obvious that U(w) € L§ ;. Now using again
of Lemma [3.1.10[ (with Z = Z and 8 = § + 1) we obtain that whenever
K € K§ (= Hji,,) then KN ((z511,25) x [0,1]) = 0. However, ws € (541, %s)
hence (ws,0) € ¥(w) N ((z541,25) % [0,1]), so ¥(w) & KF,;.

So we can conclude that A¥ # AY. Thus, using equation (3.1.10) we can
finish the proof of the Main Claim in Case 2 and hence we obtain Theorem [3.1.§]
as well. (]

3.1.4 The main theorem

Theorem 3.1.13. (Main Theorem) Let X be an uncountable Polish space.
Then the following are equivalent for a linear ordering (L, <):

(1) (L, <) = (Bi(X), <p)
(2) (L, <) = ([0, 1]2‘8 » <altlex)
(X): %)

(A
In fact, ([0, l]io s <altiez), (A3(X),S) and (Bi1(X),<p) are embeddable into
each other.

(3) (L, <) =

PROOF.

(B1(X), <p) < ([0, 1]§“61, <altlez) : Theorem

([o, 1]i“6 s <attiez) = (A(X),S) : we proved in Theorem m that
([o, 1]§“6 , <attlez) — (AJ(K([0,1]%)),S). Now, [22, Theorem 1.2] states that
the class of linear orderings representable in AY coincide for all uncount-
able o-compact Polish spaces. Therefore, if C' is the Cantor space then

([o, 1]i‘6 , <attlez) < (AY(C),S). If X is an uncountable Polish space then

there exists a continuous injection h : C — X. Now, since h(C) is a
closed set in X we have that A — h(A) is an inclusion-preserving embedding
(AY(0),G) = (AY(X),G). Consequently, ([0, 1], <artter) = (AJ(X), S).
(AY(X),S) = (Bi(X),<p) : if Ais a AY set then x4 is a Baire class 1
function and A — x4 is an embedding (AJ(X), ) — (Bi(X), <p). O

3.1.5 Proof of Proposition [3.1.5

Proposition (J52]) Let X be a Polish space and f € bB; (X). Then
®(f) is defined, <I>(f) € o*bUSC* and we have

(1) f= Z*g<a(—1)ﬂfﬁ + (—=1)%*gq for every a < &,
(2) fﬁf =0,
(3) f = ZZ<§f(_1)afa-
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PROOF. First we show that ®(f) is defined and ®(f) € c*bUSC™. In order to
prove this, we will show the following lemma.

Lemma 3.1.14. The functions g, and f, (assigned to f in Deﬁm’tionm
are bounded nonnegative and the sequence (f,) is decreasing.

PROOF.
It follows trivially from the definition of the upper regularisation that if g is
an arbitrary function then

g is bounded = § exists, is bounded and g >, g. (3.1.13)

Now we prove the statement of the lemma by induction on a. If a = 0 then
go = f and fo = f, hence from f € bB{ (X) and clearly follows that go
and fy are bounded nonnegative functions.

If v is a successor then by definition g, = Ja_1 — ga—1 S0 by the second
part of we have g, >, 0. Moreover, since g,—1 is bounded g/a: is also
bounded. Thus, g, is the difference of two bounded functions, therefore it is also
bounded. Therefore, by fo exists (notice that we have defined the upper
regularisation only for bounded functions) and also bounded and nonnegative.

Now we show that the sequence (f,) is also decreasing. By the nonnegativity
of Ja—1 W€ have fafl — Ja-1 Sp foth 50

foz = fafl — Ja-1 ép fozfl = fa71~
For limit o we have
go = inf{gs : B < o and f is even}, (3.1.14)

so clearly g, >, 0 and g, is bounded. Hence using again (3.1.13) we obtain
that f, is bounded and nonnegative.
Now for every 8 we have gz <, fs. Therefore, if 5 is an even ordinal and

B < « then by (3.1.14)) we have
Ga Sp 95 Sp fﬁ,

SO fo = Ga <p ﬁ; = fg. But if B is odd, then 8 +1 is even and f+1 < . Using
we obtain g, <, gs+1 hence by the definition of f, and fz41 and the
inductive hypothesis we have fo <, fg+1 <p fg. This finishes the proof of the
lemma. (]

Clearly, by the definition of upper regularisation, the functions f,, are upper
semicontinuous. Therefore, by Lemma[3.1.14] we obtain that (f,) is a decreasing
sequence of nonnegative USC functions, so it must stabilise for some countable
ordinal & (Lemma. Therefore, for every function in f € bB] (X) we have
that ®(f) is defined and ®(f) € c*bUSCT(X).

Now we need the following lemma.

Lemma 3.1.15. Let (fo)a<e € c*USC™T. Then ZZ<£(—1)afa is a Baire class
1 function.

ProOOF. We prove the lemma by induction on &.
First, if £ is a successor just use that Baire class 1 functions are closed under
addition and subtraction.
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Second, if £ is a limit, by definition of the alternating sums we have that
Yree(-1) fo =sup{X5 (1) f5 1 a < £, a even}.
For even o < £ we have
E,@<a(_1)ﬁfﬁ = Z]B<oz-|-1(_1)ﬁfﬁ — fa- (*)
Again, for even «
Eﬁ<a(_1)6f5 + fa - foc+1 = 2[3<a+2(_1)6f5

so since the sequence (fq)a<¢ is decreasing the sequence (E;<a(—1)ﬁf5)a even
is increasing. Similarly, the sequence (ZZ<Q+1(_1)Bf5)a even 1S decreasing.
Notice that if (r3)s<q and (t3)s<q are decreasing transfinite sequences of non-
negative reals such that rg — tg is increasing, then

sup{rg —tg: B <a}=inf{rg: 8 <a} —inf{tg: § < a}.

Therefore, applying (x) and these facts we have
sup{zz<a(—l)5f5 ta< € even} =

inf{22<a+1(fl)ﬂf5 ta < € even} —inf{f, : o < & even}.

The infimum of USC functions is also USC, hence the right-hand side of the
equation is the difference of the infimum of a countable family of Baire class 1
functions and a USC function. Therefore, sup{zzgt(fl)ﬁfg ta < € event is
the infimum of a countable family of Baire class 1 functions. Moreover, by the
inductive hypothesis, this function is also the supremum of a countable family
of Baire class 1 functions. Now, using the fact that a function is Baire class
1 if and only if the preimage of every open set is $9(X) it is easy to see that
if a function A is the infimum of a countable family of Baire class 1 functions
then for every a € R we have that h=!((—o0,a)) is in £9(X). Similarly, if h
is the supremum of a countable family of Baire class 1 functions then the sets
h=1((a,0)) are also in X9(X). But this implies that a function that is both an
infimum and a supremum of countable families of Baire class 1 functions is also
Baire class 1.

So, as an infimum and supremum of countable families of Baire class 1
functions, the function sup{zzka(—l)ﬁfg ta < € even} is also a Baire class 1
function, which completes the inductive proof. O

Now we prove (1) of the Proposition by induction on a.
For o = 0 this is clear. If « is a successor, then go,_1 = fo—1 — ga, SO

F=Ea (1) o+ (-1)" T gay =

Y a1 (=12 f5 4+ (~ 1) (fact = ga) = Lhea(=1) f5 + (—1)%ga.

For limit « notice that we have by induction for every even 8 < «
f= 27<ﬂ(_1)va +9s.
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Then, using that (f3)s<q is decreasing, the sequence (22<B(71)7f7)[3 even 18
increasing, so (g3)g even is decreasing as their sum is constant f.

Notice that if (r3)s<q is an increasing and (¢g) g<4 is a decreasing transfinite
sequence of nonnegative reals such that rg 4 t3 = c is constant, then

c=sup{rg+tsg: B <a}=sup{rg: 8 <a}l+inf{ig: < a}.

So
P (S0 ) -

B even,f<a

sup 2o _z(—=1)'f, 4+  inf =30 (=1’ f5+ ga,
5 even?ﬁ<a 7<5( )7 fy 8 ovemB<a 9s 6<a( )7 fa + 9a
where the last equality follows from the definition of ZZ < a(—l)ﬁ fs and gq.
This proves the induction hypothesis, so we have (1).
After rearranging the equality in (1) we have that

*

(1) ga =X o (1) f5 — f.
By Lemma [3.1.75 we have that the sum on the right-hand side of the equation
is a Baire class 1 function, therefore g, is als/oEaire class 1. We have that
fe;+1 = fe;, s0 by Definition we have g¢, — ge; = ge,. Hence in order to
prove (2) it is enough to show the following claim.
Claim. If g is a nonnegative, bounded Baire class 1 function such that g = ’g\/—\g
then g = 0.
PROOF. [Proof of the Claim.| Suppose the contrary. Then there exists an ¢ > 0
such that {z : g(x) > e} #0. Let K = {x : g(x) > ¢}. Since g is a Baire class 1
function we have that there exists an open set V' such that

e>osc(g, KNV) (= sup |g(x)—gw)|)
z,ye KNV

and K NV is not empty (see [51] 24.15]).

The function limsup,_,, g(y) (here in the limsup we do not exclude those
sequences which contain z) is USC. Therefore, by definition g <, limsupg.
Hence letting h = g — g we have that

h <, limsup(g) — g. (3.1.15)

Now, we claim that
(limsup(g) — g)lvnx <e. (3.1.16)

Suppose the contrary, then there is x € V' N K such that (limsup,_,, g(z)) —
g(z) > e. Consequently, there exists a sequence y, — , such that
lim,, o0 g(yn) > g(z) + . Using the nonnegativity of g and the fact that
glge < e we get that y, € KNV except for finitely many n’s. But then
osc(g, KNV) > ¢, a contradiction. So we have and using we
obtain

h‘VﬂK <e. (3117)

Observe now that if for a bounded function f and an open set U we have that
flu <e, then f|y < e (clearly, if |f| < K then the function K - xyec +¢& - xu is
an USC upper bound of f).

43



dc_1437 17

By the above observation used for ¢ on K¢ we have that g|g. < g, in
particular from h = g — g <, g we obtain that h|ge < e. Then from
we get hly < e. So finally, using the above observation for h and V' we obtain
7l|V <e.

The set {x : g(z) > €} is dense in K, hence there exists an zg € V N {z :
(x) > e}. On the one hand g(zg) > g(zo) > €, on the other by z € V we get
(29) < e. This contradicts the assumption that § = h. O

So we have proved (2) of Proposition

(3) easily follows from Lemma [3.1.14} (1), (2) since 0 < g¢, < fe;, = 0. This
finishes the proof of the proposition. |

g
h

3.2 Proof of Theorems 1.2.4 and 1.2.§

3.2.1 Notation and basic facts

The following notions and facts can all be found in [51].

Let F(G) denote the family of closed subsets of G equipped with the so
called Effros Borel structure. Let K(G) be the family of compact subsets of
G equipped with the Hausdorff metric. Then KC(G) is a Borel subset of F(G)
and the inherited Borel structure on K(G) coincides with the one given by the
Hausdorff metric.

Let us denote by P(G) the set of Borel probability measures on G, where
by Borel probability measure we mean the completion of a probability measure
defined on the Borel sets. These measures form a Polish space equipped with
the weak*-topology. For u € P(G) we denote by supp(p) the support of pu, i.e.
the minimal closed subset F' of G so that u(F) = 1. Let P.(G) = {u € P(G) :
supp(u) is compact}.

Recall that Hg stands for the £th multiplicative level of the Borel hierarchy,
Al 31 and I} denote the classes of Borel, analytic and coanalytic sets, re-
spectively. For a Polish space X, Hg(X ), A1(X) etc. denote the collections of
subsets of X in the appropriate classes. Symbols I and A will denote one of the
above mentioned classes, and A = {A°: A € A}.

For a set H C X x Y we define its x-section as H, = {y € Y : (z,y) € H},
and similarly if H C X xY x Z then H, , = {z € Z : (z,y,2) € H}, etc. For
a function f: X XY — Z the x-section is the function f,: Y — Z defined by
fo(y) = f(z,y). We will sometimes also write f, = f(z,-).

For A, B C G let d(A, B) = inf{d(a,b):a € A,be Bt and A+ B={a+b:
a € A,b € B}. Let us denote by B(g,r) and B(g,r) the open and closed ball
centered at g of radius r.

Remark 3.2.1. Note that in the definition of Haar null sets certain authors
actually require that the measure p, which we will often refer to as a witness
measure, has compact support. This is quite important if the underlying group
is non-separable. However, in our case this would make no difference, since in a
Polish space for every Borel probability measure there exists a compact set with
positive measure [51, 17.11], and then restricting the measure to this set and
normalising yields a witness with a compact support. Therefore we may suppose
throughout the proofs that our witness measures have compact support.
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3.2.2 A function with a surprisingly thick graph

Throughout the proofs, let T = Aj and A = II{ for some 1 < & < wy, or let
[ =1IIj and A = Al

The following result will be the starting point of our constructions. For a
fixed measure p statement |2} below describes the following strange phenomenon:
There exists a Borel graph of a function in a product space such that every Gs
cover of the graph has a vertical section of positive measure.

Theorem 3.2.2. Let ' = Al and A = Hg for some 1 < & < wy, orlet T =11}
and A = Al. Then there erists a partial function f : P.(G) x 2 — G with
graph(f) € T satisfying the following properties: Y € P.(G)

1. (Vo € 29) (1) € dom(f) = f(u,) € supp(p)],
2. (VS € A(2¥ x @)) [(graph(f,) C S = (Fz € 2¥)(u(Sz) > 0)].
Before the proof we need several technical lemmas.

Lemma 3.2.3. P.(G) is a Borel subset of P(G).

PrOOF. The map p — supp(p) between P(G) and F(G) is Borel (see |51,
17.38]) and P.(G) is the preimage of K(G) under this map. O

Lemma 3.2.4. Let X be a Polish space and C C P.(G) x X x G with C € T.
Then {(p,x) : u(C,z) >0} €T

PROOF. Let first ' = Af. If Y is a Borel space and C' C Y x G is a Borel set then
the map ¢: Y x P.(G) — [0,1] defined by ¢(y, 1) = u(Cy) is Borel (|51, 17.25]).
Using this for Y = P.(G) x X we obtain that the map ¢: P.(G) x X — [0,1]

given by ¥(u, ) = o((p, z), 1) = p(Cl ) is also Borel. Then {(p, ) : p(Cpz) >
0} =v~=1((0,1]), hence Borel.
For ' = I1} this is simply a special case of [51} 36.23]. O

Lemma 3.2.5. The set {(u,g) : g € supp(i)} C Pe(G) x G is Borel.

PROOF. As mentioned above, the map p — supp(u) is Borel between P(G) and
F(G), hence its restriction to P.(G) is also Borel.

Let E = {(K,g) : K € K(G), g € K}, which clearly is a closed subset of
K(G) x G. If we denote by ¥ : P.(G) x G — K(G) x G the Borel map defined

by (i, 9) = (supp(u),g) then we obtain that {(x,g) : g € supp(n)} = ¥~1(E)
is Borel. O

Let us now prove Theorem [3.2.2]

PROOF. Let U € I'(2¥ x 2% x () be universal for the A subsets of 2 x G, that
is, for every A € A(2¥ x () there exists an @ € 2 such that U, = A (for the
existence of such a set see [51] 22.3, 26.1]). Notice that A CT". Let

U'=P(G) x U.
Define

U" ={(,2,9) € Pe(G) x 2 x G : (p,x,x,9) € U and pu(U! , ) >0},

T,
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then U” € T using that the map (u,z,9) — (u,x,z,g) is continuous and by
Lemma B.2.4] Let

U" ={(n,z,9) €U": g € supp(u)},

then U"”" € T by Lemma Clearly,

U/// _

w,x

Uiz OVsupp(p) if u(Uy, , 2) >0,
0 otherwise.

Since for all (u,x) the section U, is either empty or has positive ;1 mea-
sure, by the ’large section uniformisation theorem’ [5I, 18.6] and the coana-
lytic uniformisation theorem [51] 36.14| there exists a partial function f with
graph(f) € I' such that dom(f) = {(p,z) € Pe(G) x 2¢ : (U}, . ) > 0} and
graph(f) Cc U".

We claim that this f has all the required properties.

First, by the definition of U", clearly f(u,x) € supp(p) holds whenever

(u, ) € dom(f), hence Property [1} of Theorem holds.
Let us now prove Property Assume towards a contradiction that there

exists u € P.(G) and S € A(2¥ x G) such that graph(f,) C S and u(S;) =0
for every x € 2¥. Define B = (2% x G) \ S. By the universality of U there
exists x € 2“ such that U, = U;/L,z = B. Now, for every y € 2“ the section B, is
of positive (actually full) y measure, in particular p(U}, , ) > 0, and therefore
(u, z) € dom(f) and

f(,u,x) € U;/L/jw - U;IJ,/,a: = U;/A,w7w = Bﬂ?
However, f(u,z) € S; = G\ By, a contradiction. O

3.2.3 Translating the compact sets apart

This section heavily builds on ideas of Solecki [74], [75]. The main point is that
if G is non-locally compact then one can apply a translation (chosen in a Borel
way) to every compact subset of G so that the resulting translates are disjoint.
(For technical reasons we will need to consider continuum many copies of each
compact set and also to ‘blow them up’ by a fixed compact set C.)

Proposition 3.2.6. Let C € K(G) be fized. Then there exists a Borel map
t: K(G) x 2¥ x 2¥ — G so that

1. 4f (K, z,y) # (K',2",y") are elements of K(G) x 2¥ x 2¢ then

(K = C+t(K,2,y)) N (K' = C" + H(K',2,y)) =0

2. for every K € K(G) and y € 2% the map t(K,-,y) is continuous.

PROOF. We use Solecki’s arguments [74], [75], which he used for different pur-
poses, with some modifications. However, for the sake of completeness, we
repeat large parts of his proofs.

Fix an increasing sequence of finite sets Qp C G with 0 € Qg such that
Ukew@Qp is dense in G.
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Lemma 3.2.7. For every € > 0 there exists 6 > 0 and a sequence {gi }rew C
B(0,¢€) such that for every distinct k, k' € w

d(Qr + gk, Qr + grr) > 0.

PrROOF. Since G is not locally compact, there exists § > 0 and a countably
infinite set S C B(0,¢) such d(s,s’) > 26 for every distinct s,s" € S.

Now we define g inductively as follows. Suppose that we are done for i < k.
If for every s € S there are a € Q, i < k and b € Q; with d(a + s,b+ g;) < ¢
then there is a pair s, s’ of distinct members of S with the same a,7 and b. But
then

d(s,s') =d(a+s,a+s) <d(a+s,b+g;) +db+gi,a+s") <24,

a contradiction. Hence we can let g, = s for an appropriate s € S. O

It is easy to see that using the previous lemma repeatedly we can inductively
fix €,, 0, < &, and sequences {gy }rew such that for every n € w

hd {QZ}kEw - B(ann)a

o d(Qk + g7, Qu + gy) > 26, for every distinct k, k' € w,

[
o Zm>n €m < Tn

Note that the second property implies that for every n € w the function
k +— g is injective. Note also that ,, — 0 and hence J,, — 0, moreover, Y 4y,
is also convergent.

Let us also fix a Borel injection ¢ : K(G) x 2¥ x 2 — w* such that for
each K and y the map ¢(K,-,y) is continuous. (E.g. fix a Borel injection
¢ : K(G) — 2% and continuous injection ¢y : 2% X 2¢ x 2¢ — w* and let
C(K7.’E,y) = CZ(CI(K)7$>y)')

Our goal now is to define t(K,z,y), so let us fix a triple (K,x,y). First
we define a sequence {h, = h,(K,z,y)}new with h, € {97} rew as follows.
Suppose that we are given h; for ¢ < n. By the density of UpQ; we have
G = Ur(Qr+ B(0,6,/2)). Since K —C is compact, there exists a minimal index
kn(K,z,y) so that

K—=C+> hi CQu(kay + B(0,6,/2).

<n
Fix an injective map ¢ : w X w — w with ¢(4,j) > ¢ for every ¢ € w and let

hn = 9k (K ,2,y),0(K 2 (n)) (3.2.1)

and

HE,2,y) =Y I (3.2.2)

new

We claim that this function has the required properties.
First, it is well defined, that is, the sum is convergent since h,, € B(0,¢€,),
and hence for all n € w
> hm € B(0,5,/3). (3.2.3)

m>n
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In order to prove of the Proposition, let us now fix (K, z,y) # (K',2',y).
Then there exists an n € w such that ¢(K,z,y)(n) # ¢(K',z',y')(n). By the
injectivity of ¢ and of the sequence k — g} and also by we obtain that
hn(K,2,y) # hn(K',2',y"). Denote by h; and k) the elements h;(K,z,y) and
hi(K',x',y"), respectively. Set

k= ¢(kn(K,x,y),c(K,x,y)(n)) and k/ = ¢(kn(K,7$/,y/)7C(K/,xI7yl)(n)).

The condition ¢(i, j) > 4 implies k > k,, (K, x,y), hence Q. D Qy,, (i, and
similarly &' > k,(K',2',y'), s0 Qr O Qp,(k’,2',7)- Therefore, by the definition
of ki,

K—C+Y hi € Qu+B(0,6,/2) and K' — C+ Y 1} € Qu + B(0,5,/2),

<n i<n
hence
K—C+Y hi € Qet+hn+B(0,6,/2) and K'=C+> i € Qur+hy,+B(0,6,/2).
i<n i<n

Thus, using the triangle inequality and the second property of the g we obtain

dur—c+§:ch—c+§:m)zm@k+mew+hm—2f%:

i<n i<n

= d(Qk +91?,Qk' +917§/) — 0p > 20, — Op, = 0.

From this, using (3.2.3)), we obtain d(K — C+t(K,x,y), K' —C+t(K',z',y")) >
On — 2%" = %" > 0, which proves
What remains to show is that ¢ is a Borel map and for every K and y the map

t(K,-,y) is continuous. But (3.2.3) shows that the series defining ¢ in (3.2.2)) is
uniformly convergent, so the next lemma finishes the proof.

Lemma 3.2.8. For every n € w the map hy, is Borel and for every K and y
the map h, (K, -, y) is continuous.

Proor. We will actually prove more by induction on n. Define f,: K(G) x
2¥ x 2¥ = K(G) by

B zy)=K—C+Y hi(K,x,y). (3.2.4)
i<n
We claim that the maps f,, k, and h,, are Borel and for every K and y the
maps fn(K,-,y), kn(K,-,y) and h, (K, -,y) are locally constant.

Note that if a function takes its values from a discrete set than locally con-
stant is equivalent to continuous.

First we prove that the maps are Borel. Suppose that we are done for i < n.
Let us check that f, is Borel. Put n : (K,z,y) — (K, ., hi(K,z,y)) and
v (K,g) = K —C+ g, then f,, = ¢ on. Moreover, n is Borel by induction,
and v is easily seen to be continuous, hence f,, is Borel.

Next we show that k, is Borel. Since ran(k,) C w, we need to check that
for every fixed m € w the set B = {(K,x,y): k,(K,x,y) = m} is Borel. By the
definition of k, (K, x,y), clearly

B={(K,z,y): fa(K,z,y) CU and f,(K,z,y) £ V},
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where U = Qn + B(0,0,/2) and V = Q.1 + B(0,9,,/2) are fixed open sets.
Set Uy = {L € K(G) : L ¢ W}, which is open in K(G) for every open set
W C G. Then clearly
B = f (Uv) \ £ Uy),

hence Borel.

Since the functions k& — g and ¢ defined on countable sets are clearly Borel,
the Borelness of k,, and ¢ imply by that h,, is also Borel.

In order to prove that f,, k, and h, are locally constant in the second
variable, fix K and y and suppose that we are done for ¢ < n. Then
shows that f,, is locally constant in the second variable by induction. This
easily implies using the definition of k,, that k,, is also is locally constant in the
second variable. But from this, and from the fact that ¢(K, -, y)(n): 2* — w is
continuous, hence locally constant, it is also clear using that h,, is also
locally constant in the second variable, which finishes the proof of the Lemma.
O

Therefore the proof of the Proposition is also complete. O

3.2.4 Putting the ingredients together

Now we are ready to prove our main results, which are summarised in the
following theorem.

Theorem 3.2.9. Let T = A} and A = IT{ for some 1 <& < wy, orlet T = IIj
and A = AL, If G is a non-locally compact abelian Polish group then there
exists a (generalised, in the case of I' = 11} ) Haar null set E € T'(G) that is not
contained in any Haar null set H € A(G).

PROOF. Let f be given by Theorem [3:2:2]

Denote the Borel map p +— supp(p) by supp : P.(G) — K(G). Let us also
fix a Borel bijection ¢ : P.(G) — 2¢ (which we think of as a coding map) and
a continuous probability measure v on G with compact support C' containing 0
(compactly supported continuous measures exist on every Polish space without
isolated points, since such spaces contain copies of 2¢). Let ¢ : (G) x 2% x 2¥ —
G be the map from Proposition [3:2.6] with the C' fixed above, and define the
map U: P.(G) x 2¥ x G — G by

W (p, x,9) = g+ t(supp(p), z, c(u)). (3.2.5)
Finally, define E = ¥(graph(f)).
Claim 3.2.10. E €T

PROOF. W is clearly a Borel map. We claim that it is injective on D = {(u, z, g) :
1 € P(G),g € supp(p)}, which is Borel by Lemma and Lemma
Let (u,z,9) # (1,2',g") be elements of D, we need to check that ¥ takes
distinct values on them. The case (u,z) = (¢/,2’) is obvious, while the case
(1, z) # (', ') follows from Property [1] in Proposition [3.2.6] since ¥(u,z,g) €
supp(p) — C +t(supp(), z, c(u)) (recall that g € supp(u) and 0 € C). Therefore
U is a Borel isomorphism on D. By graph(f) C D this implies that £ =
WU (graph(f)) is in T' (for T' = Al see [51} 15.4], for I' = I} notice that by [51]
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25.A] a Borel isomorphism takes analytic sets to analytic sets, hence coanalytic
sets to coanalytic sets). (]

Claim 3.2.11. E is Haar null (generalised Haar null in the case of T = II1 ).

PrROOF. We prove that v is witnessing this fact. Actually, we prove more:
|CN(E+g)| <1 forevery g € G, or equivalently |(C + ¢g) N E| < 1 for every
g € G. Solet us fix g € G.

E = V(graph(f)) = {¥(u,z, f(p,x)) : (4, ) € dom(f)} =

{f(u, ) + t(supp(p), =, c(p)) : (p, ) € dom(f)},

hence the elements of E are of the form ¢** = f(u,z) + t(supp(u),z, c(u)).
This element g"* is clearly in A*® = supp(p) + t(supp(u), z, c(p)) by Property
of Theorem and the sets A** form a pairwise disjoint family as (u, )
ranges over dom(f), by Property [2l of Proposition Hence it suffices to
show that C + g can intersect at most one A**. But it can actually intersect
at most one set of the form K + ¢(K,z,y), since otherwise g would be in the
intersection of two distinct sets of the form K — C + ¢(K,x,y), contradicting
Property [2} of Proposition [3.2.6 O

Claim 3.2.12. There is no Haar null set H € A containing E.

Suppose that H € A is such a set. Then by Remark there exists a
probability measure p with compact support witnessing this fact. The section
map ¥, = U(u,-,-) is continuous by (3.2.5) and Property [2| of Proposition
Now let S =W, '(H), then S € A(2* x G).

It is easy to check that graph(f,) C S, and therefore, using Theorem
there exists x € 2¢ such that u(S;) > 0. By the definition of S we have that
U(p,x,5) C ¥,(S) C H. But ¥(u,2,-) : G — G is a translation, so a translate
of H contains S;, which is of positive u measure, contradicting that H is Haar
null with witness p. O

This concludes the proof. O

3.3 Proof of Theorem [1.2.10

The heart of the proof of this result is the following theorem, which is based on
ideas from [I6]. For the definition and basic properties of packing dimension,
denoted by dim, H, see [35] or [67].

Theorem 3.3.1. Let K’ C R be a Cantor set with dim, K’ < 1 and letT C R be
such that |T| < c. Then K'+ T contains no measurable set of positive measure.

PROOF. Suppose on the contrary that K’ + T contains a measurable set P of
positive measure. We may assume that P is compact. By throwing away all
portions (i.e. relatively open nonempty subsets) of measure zero, we may also
assume that every portion of P is of positive measure. In particular, P has no
isolated points. The idea of the proof will be to construct a Cantor set P’ C P
such that P’ N (K’ + r) is finite for every » € R. This clearly suffices, since
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a Cantor set is of cardinality continuum and hence less than continuum many
translates of K’ cannot cover P’, let alone P.

Let N be a positive integer and let us define Fy to be the set of N-tuples
that can be covered by a translate of K’, that is,

Fy ={(z0,...,on-1) € RY : 3¢ € R such that {zo,...,aNn_1} C K' +t}.

An easy compactness argument shows that Fj is closed. Reformulating the
definition one can easily check that

FN:(K/)N+R(1771)7

where (1,...,1) is a vector of N coordinates, and the operations are Minkowski
sum and Minkowski product. It is easy to see that Fiy is a Lipschitz image of
(K')N x R, and using that Lipschitz images do not increase packing dimension
as well as dim, (A x B) < dim, A + dim, B and dim, R = 1 we obtain

dim, Fy < Ndim, K’ + 1.

If we choose N large enough, actually if N >
hence

m, then Ndlmp K/+]. < N,

dim, Fy < N.
Let us fix such an N.

Lemma 3.3.2. Let J; CR (i < N) be closed intervals such that int J; NP # ()
(i < N). Then there are disjoint closed intervals I; C J; (i < N) such that
int ;NP #0 (i<N) and

[[tnP)nFy=0.

i<N

PROOF. Since every portion (i. e., nonempty relatively open subset) of
P is of positive measure, we obtain AN (HKN(int JiN P)) > 0, hence
dim,, (T[;cy(int J; N P)) = N > dim, Fy. Therefore (J,_y(intJ; N P)) \
Fyn # 0, and, since Fy is closed, [ ],y (int J;NP) contains a nonempty relatively
open set avoiding Fv. This open set contains a basic open set, so there are open
intervals J{ C int.J; (¢ < N) intersecting P such that [],_\(J;NP)N Fy = 0.

Finally, since P has no isolated points, it is easy to shrink every J! to a
closed interval I; such that they become disjoint but their interiors still meet
P. This finishes the proof of the lemma. O

Now we return to the proof of the theorem. All that remains is to construct
P’. We will actually prove

|P'N (K’ +7)| < N for every 7 € R. (3.3.1)

We construct a usual Cantor scheme, where the k" level £; will have the
following properties for all k € w.

(1) Ly consist of N¥ many disjoint closed intervals,

(2) VI € £k+1E|II eLy:IC I/,
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3) VI € Ly, there are N many I’ € £;,1 with I’ C I,

VIe Ly, :diam] <

)

) VI €Ly :intINP £,
) g
)

6) If In,...,In—1 € Ly, are distinct then [[,_ (LN P)N Fy = 0.

(
(
(5
(
(Note that the intervals in @ are not necessarily subsets of the same I' € L;_1.)
Assume first that such a Cantor scheme exists, and define

P= Lk

kew

It is easy to see that P’ is a Cantor set ([51]), while the closedness of P, (4) and
imply P’ € P. Let zg,...,zy_1 be N distinct points in P’. Clearly, there
is a k and distinct intervals Iy, ..., Iny_1 € L such that z; € I; (i < N). Then
@ shows that {zo,...,zy_1} cannot be covered by a translate of K’, which
proves (3.3.1}).

Finally, let us prove by induction that such a Cantor scheme exists. Let
Lo = {I}, where I is an arbitrary closed interval of length at most 1 whose
interior meets P. Assume that L£; have already been constructed with the
required properties. Let £j_ ; be a family of disjoint closed intervals of length
at most %ﬁ whose interiors meet P such that each I € £ contains N members
of £j ;. Then recursively shrinking these intervals by applying Lemma m
(N ;VH) times to all the possible N-tuples of distinct intervals we obtain L1
satisfying all assumptions. This concludes the proof of the theorem. O

Theorem 3.3.3. Let K C R be a Cantor set with dim, K < 1/2. Then there
exists X C R with A(X) > 0 such that |[K N (X +t)| <1 for every t € R.

PROOF. As above, let us enumerate the Borel sets of Lebesgue measure zero
as {Z, : a@ < ¢}. Since K — K is a Lipschitz image of K x K, we obtain
dim, (K — K) < 1. At stage « let us pick an

zoq ER\((K—K)+{z5:8<a})UZ,).
This is indeed possible by the above theorem applied to K/ = K — K. Set
X ={zq:a<c}.

Then z,, ¢ Z, shows that A(X) > 0. We still have to check that |[KN(X+t)| <1
for every t € R. Let x4, 23 € X with o > (3, and let us assume z,+t, x5+t € K.
Thent € K —xg, 2o € K — (K —23) = (K — K) + 2, contradicting the choice
of z,. O

Finally, from this we easily obtain Theorem [T.2.10]
PROOF. Let K be any Cantor set with dim, K’ < 1/2 (e.g. the “middle-o Cantor
set” is such a set for @ > 1/2). Let X be as in the previous theorem. Also,
let 1 be any atomless Borel probability measure on K. Then by the previous
theorem p(X +t) = 0 for every t € R. O
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3.4 Proof of Theorem [1.3.8

3.4.1 Preliminaries

Most of the following notations and facts can be found in [51].

Throughout the section let (X, 7) be an uncountable Polish space. We de-
note a compatible, complete metric for (X, 7) by d.

Recall that a Polish group is a topological group whose topology is Polish,
and also that a set H is ambiguous if H € AY.

If 7/ is a topology on X then we denote the family of real valued functions
defined on X that are of Baire class £ with respect to 7/ by Be(7’). In partic-
ular, B¢ = Be(7). If Y is another Polish space (whose topology is clear from
the context) then we also use the notation B¢(Y") for the family of Baire class ¢
functions defined on Y. Similarly, 22(7’) and Eg(Y) are both the set of Eg sub-
sets, with respect to 7/, and in Y, respectively. We use the analogous notation
for all the other pointclasses.

Recall that a nonempty perfect subset of a Polish space with the subspace
topology is an uncountable Polish space.

Recall that a function is of Baire class £ iff the inverse image of every open
set is in 22+1 iff {f < ¢} and {f > ¢} are in 2(5)+1 for every ¢ € R. Moreover,
the family of Baire class £ functions is closed under uniform limits.

For a set H C X x Y and an element z € X we denote the z-section of H
by H, ={y €Y :(x,y) € H}.

If H is a family of sets then

Hg—{LJm,HﬁeH}aM}Q—{(]m,HﬁeH}

neN neN

For 0,6’ < wy we use the relation § < 0" if /' < w" = 0 < w" for every
1 < 1 < wy (we use ordinal exponentiation here). Note that 6 < 6 implies
0 <0 and 6 <660 > 0implies § <0 -w. We write § ~ ¢’ if 6 <0 and 6/ < 6.
Then = is an equivalence relation. For every ordinal € we have 20 < 6 + w,
and since w" is a limit ordinal for every n > 1 we obtain that 26 ~ 6 for every
ordinal 6.

A rank p: Be — wi is called additive if p(f +g) < max{p(f),p(g)} for every
f.g € Be. It is called linear if it is additive and p(cf) = p(f) for every f € B¢
and ¢ € R\ {0}. If X is a Polish group then the left and right translation
operators are defined as L,,(z) = z¢-x (x € X) and Ry, (x) =z -9 (x € X). A
rank p : Be — wy is called translation-invariant if p(foLy,) = p(foRy,) = p(f)
for every f € B: and xg € X. We say that it is essentially additive, essentially
linear, and essentially translation-invariant if the corresponding inequalities and
equations hold with < and ~. Moreover, p is additive, essentially additive etc.
for bounded functions, if the corresponding relations hold whenever f and g are
bounded.

Let (F};)n<x be a (not necessarily strictly) decreasing sequence of sets. Let us
assume that Fy = X and that the sequence is continuous, that is, F, = ﬂkn Fy
for every limit n and if A is a limit then ﬂn < Fy = 0. We also use the convention
that F,, = 0 if n > A. We say that a set H is the transfinite difference of
(Fp)nex if H= n<r (Fy\ Fy41). It is well-known that a set is in A(g)+1 iff it

n even

is a transfinite difference of Hg sets see e.g. [51], 22.27]. We have to point out
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here that the monograph [51] does not assume that the decreasing sequences
are continuous, but when proving that every set in Ag 11 has a representation
as a transfinite difference they actually construct continuous sequences, hence
this issue causes no difficulty here.

The set of sequences of length k whose terms are elements of the set
{0,...,n — 1} is denoted by n*. For s € n* we denote the i-th term of s
by s(i). If 1 € {0,...,n — 1} then sl denotes the sequence in n**! whose first
k terms agree with those of s and whose k + 1st term is [.

3.4.2 Ranks on the Baire class 1 functions without com-
pactness

In this section we summarise some results concerning ranks on the Baire class
1 functions, following the work of Kechris and Louveau. We do not consider
most results in this section as original, we basically just carefully check that the
results of Kechris and Louveau hold without the assumption of compactness of
X. This is inevitable, since they assumed compactness throughout their paper
but we will need these results in Section [3.4.7] for arbitrary Polish spaces.

A notable exception is Theorem [3.4.33]stating that the three ranks essentially
coincide for bounded Baire class 1 functions. Since our highly non-trivial proof
for the case of general Polish spaces required completely new ideas, we consider
this result as original in the non-compact case.

The definitions of the ranks will use the notion of a derivative operation.

Definition 3.4.1. A derivative on the closed subsets of X is a map D :
M)(X) — MY(X) such that D(A) ¢ A and A C B = D(A) ¢ D(B) for
every A, B € TI(X).

Definition 3.4.2. For a derivative D we define the iterated derivatives of the
closed set F' as follows:

DY(F)=F,
D" H(F) = D(D"(F)),

D"(F) = (| D’(F) if n is a limit.
6<n

Definition 3.4.3. Let D be a derivative. The rank of D is the smallest ordinal
n, such that D"(X) = 0, if such ordinal exists, w; otherwise. We denote the
rank of D by rk(D).

Remark 3.4.4. In all our applications D satisfies D(F) g F for every
nonempty closed set F, and since in a Polish space there is no strictly de-
creasing sequence of closed sets of length w; (see e.g. [51), 6.9]), the rank of a
derivative is always a countable ordinal.

Proposition 3.4.5. If the derivatives D1 and Do satisfy D1(F) C Do(F) for
every closed subset F' C X then rk(Dy) < rk(D3).

PrROOF. It is enough to prove that DJ(X) C DJ(X) for every ordinal
1. We prove this by transfinite induction on n. For n = 0 this is obvi-
ous, since DY(X) = DY(X) = X. Now suppose this holds for n and we
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prove it for n + 1. Since DY(X) C DJ(X) and D; is a derivative, we have
D1(D}(X)) € Dy(DJ(X)). Using this observation and the condition of the
proposition for the closed set D%’(X)7 we have DT (X) = Dy(D](X)) C
D(DJ(X)) € Dy(DY(X)) = DY (X).

For limit 7 the claim is an easy consequence of the continuity of the se-
quences, hence the proof is complete. O

Proposition 3.4.6. Letn > 1 and D, Dy,...,D,_1 be derivative operations
on the closed subsets of X. Suppose that they satisfy the following conditions
for arbitrary closed sets F and F’:

n—1
D(F) c | Dn(F), (3.4.1)
k=0
D(FUF'") C D(F)UD(F"). (3.4.2)
Then for these derivatives
k(D) < r’?axrk(Dk). (3.4.3)
<n

PRrOOF. We will prove by induction on 7 that
n—1
D' (F) c | Dy (F) (3.4.4)
k=0

for every closed set F. It is easy to see that proving (3.4.4) is enough, since if 5
is an ordinal satisfying rk(Dj) < w" for every k < n then we have rk(D) < w™.

Now we prove (3.4.4). The case n = 0 is exactly (3.4.1). For limit n the
statement is obvious, since the sequences are decreasing and continuous. Hence,

it remains to prove (3.4.4) for n + 1 if it holds for n. For this it is enough to
show that for every m € w

n—1
p"m(F) C | Dyt (E), (3.4.5)
k=0

indeed,

n—1
D" (F) = () D" (P ¢ () (U Dz’""L(F)),
k=0

mew mew

hence = € Dwnﬂ(F) implies that without loss of generality z € D§"™(F)
for infinitely many m, but the sequence D§"™(F) is decreasing, hence z €
Ninew D™ (F) = Dg" " (F).

Now we prove (3.4.5). Let Fy = F, and for m € N, s € n™ and k < n let

Fonp = DY (Fy).
It is enough that for m > 1

p"™(F)c | F. (3.4.6)

sen™
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since it is easy to see that

U F.c O J{Fs s s e n™™ and |{i : s(i) = k}| > m},
k=0

senm

vielding (325), as

{Fe i s en™™ and |{i: s(i) = k}| > m} C DY""™(F).

It remains to prove (3.4.6)) by induction on m. For m = 1, this is only the
induction hypothesis of (3.4.4)) for n. By supposing (3.4.6) for m, we have

DD () = p (D“’"‘m(F)) c D’ ( U F) c

sen™

- U Dwn(FS)C U FS,

sen™ senmtl

where we used (3.4.2) w” many times for the second containment, and for the
last one we used the induction hypothesis, that is (3.4.4)) for . This finishes
the proof. O

3.4.3 The separation rank of Baire class 1 functions

This rank was first introduced by Bourgain [9].

Definition 3.4.7. Let A and B be two subsets of X. We associate a derivative
with them by

Dap(F)=FNANFNB. (3.4.7)

It is easy to see that Dy p(F') is closed, Da p(F) C F and Da p(F) C
D4, g(F") for every pair of sets A and B and every pair of closed sets F C F’,
hence D4 p is a derivative. We use the notation a(A, B) = k(D4 p).

Definition 3.4.8. The separation rank of a Baire class 1 function f is defined
as

a(f) = sup a{f <ph{f = q}). (3.4.8)

p,q€Q

Remark 3.4.9. Actually,

a(f) = sup a({f <z}, {f > y}),

<y
z,yeR

since if # < p < ¢ <y then o({f < z},{f = y}) < a({f < p},{f = q}), since
any set H € AY(X) separating the level sets { f < p} and {f > ¢} also separates

{f <a}and {f >y}

Proposition 3.4.10. If f is a Baire class 1 function then a(f) < w;.
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PROOF. From the definition of the rank and Remark [3:4.4] it is enough to prove
that for any pair of rational numbers p < ¢ and nonempty closed set F' C X,
Dy p(F) C F, where A = {f <p} and B={f > ¢}. Since f is of Baire class 1,
it has a point of continuity restricted to F', hence A and B cannot be both dense
in F. Consequently, Dy g(F) = FNANFNB C F, proving the proposition.
O

Next we prove that a(A, B) < w; iff A and B can be separated by a trans-
finite difference of closed sets.

Definition 3.4.11. If the sets A and B can be separated by a transfinite dif-
ference of closed sets then let (A, B) denote the length of the shortest such
sequence, otherwise let a1(A4, B) = w;. We define the modified separation rank
of a Baire class 1 function f as

ai(f) = sup a1({f <p}h{f >4q}). (3.4.9)

p<q
p,q€Q

Proposition 3.4.12. Let A and B two subsets of X. Then
a(A, B) < a1(A, B) < 2a(A, B), hence a(A, B) = a1 (4, B).

PROOF. For the first inequality we can assume that o4 (A4, B) < wy, so A and B
can be separated by a transfinite difference of closed sets. Let (F},),<x be such
a sequence, where A = a1 (A, B). Now we have

Ac |J (Fy\Fy)C B

n<A
7 even

It is enough to prove that DZ} (X)) C F, for every . We prove this by induc-
tion. For 7 = 0 this is obvious, since DY z(X) = Fy = X.

Now suppose that D p(X) C F,. We will show that D;’fé (X) =
D} g(X)NAND} z(X)N B C Fyya. If 7 is even then

DZ,B(X) \Fn+1 - F’r] \ FYI-H (- BC,

hence D} p(X) N B C F,y1. Since Fyq is closed, we obtain D} 5(X)N B C
F, 41, hence DZlTEl; C Fyt1. If nis odd then F;)\ Fy,11 is disjoint from |J p<x (F,\
Fy41), hence F))\ F;, 11 C A°, and an argument analogous to the above Z)Ii‘:ae;fields
D’ ;(X)NAC F,yy, hence D'y'5 C Fpyy.

If 7 is limit and DY p(X) C Fy for every § < 5 then D'y 5(X) C F, because
the sequences DZL p(X) and F,, are continuous.

For the second inequality we suppose that a(A, B) < wi, that is, the se-
quence D'} 5(X) terminates at the empty set at some countable ordinal. Let

Foy = DZI,B(X)a Fopy1 = DZ,B(X) nB.

Clearly, Fy = X and Fy, D Fy,y; for every 7. It is easily seen from the
definition of DZE(X ) that Fo, 1 D Fy,4o for every . Moreover, the sequence
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Fy, = D'} 5(X) is continuous. This implies that the sequence formed by the
F,’s is dec}easing and continuous.

Now we show that the transfinite difference of this sequence separates A and
B.

Every ring of the form Fy, \ Fb,11 is disjoint from B, so we only need to
prove that A is contained in the union of these rings. We show that A is disjoint
from the complement of this union by proving that

(Faps1 \ Fays2) 1A = (D} 5(X) N B\ DYA(X)) nA=10

for every n. From the definition of the derivative, DZJ’FEI;(X) =D} z(X)NAN
D’y p(X) N B. Using the fact that D 5(X) is closed, for a point = € AN
D’} p(X) N B we have 2 € D} 5(X) N A, hence = € DZ‘:;(X). O

Remark 3.4.13. It is claimed in [52] that if X is compact and (A4, B) = A+n
with A limit and 0 < n € w then a;i(A, B) is either A + 2n or A + 2n — 1.
However, this does not seem to be true. For a counterexample, let X be the
2n+1-dimensional cube in R+, Let A = (Fy\Fy)U(Fo\ F3)U- - -U(Fop\ Fani1),
where F; is a (2n + 1 — i)-dimensional face of X, and F;1; C F; for i < 2n. Let
B = X \ A. The definition of A shows that a;(A, B) < 2n + 2.

Now DY 5(X) = X = Fp, and by induction, DY 5(X) = F; for 0 <i < 2n+
1, since DYy p(X) = D(D}y 5(X)) = Dap(Fi-1) = F,1NANF,_1NB = F,
Now we have D%gz(X) = Dap(DYEY (X)) = Dap(Fani1) = 0, proving
that in this case a(A4, B) = 2n + 2. Using Proposition this shows that
a1(A4,B) = a(A, B) = 2n + 2.

We leave the proof of the following corollary to the reader.

Corollary 3.4.14. If f is a Baire class 1 function then

a(f) < a1(f) < 2a(f), hence a(f) = a1 (f).
Corollary 3.4.15. If f is a Baire class 1 function then a1 (f) < wi.

PROOF. It is an easy consequence of the previous corollary and Proposition
B3.4.10) O

3.4.4 The oscillation rank of Baire class 1 functions

This rank was investigated by numerous authors, see e.g. [45].
First, we define the oscillation of a function, then turn to the oscillation
rank.

Definition 3.4.16. The oscillation of a function f: X — R at a point x € X
restricted to a closed set F' C X is

w(f,z, F) = inf{ sup  |f(z1) — f(x2)|: U open, x € U} . (3.4.10)

z1,x0€UNF

Definition 3.4.17. For each € > 0 consider the derivative defined by

D¢ (F)={z € F:w(f,z,F)>¢}. (3.4.11)
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It is obvious that Dy .(F) is closed, Dy (F) C F and Dy .(F) C Dy (F")
for every function f : X — R, every ¢ > 0 and every pair of closed sets F C F”,
hence Dy . is a derivative. Let us denote the rank of Dy . by B(f,¢).

Definition 3.4.18. The oscillation rank of a function f is

B(f) =sup B(f,e). (3.4.12)

e>0
Proposition 3.4.19. If f is a Baire class 1 function then S(f) < w1.

PrOOF. Using Remark[3.4.4] it is enough to prove Dy (F) C F for every € > 0
and every nonempty closed set F' C X. And this is easy, since f restricted to F'
is continuous at a point « € F, and thus & D .(F'), hence Dy .(F) C F. O

3.4.5 The convergence rank of Baire class 1 functions

Now we turn to the convergence rank following Zalcwasser [79] and Gillespie
and Hurwitz [40].

Definition 3.4.20. Let (f,)nen be a sequence of real valued continuous func-
tions on X. The oscillation of this sequence at a point x restricted to a closed
set I C X is

e B : - .
W((fr)nen, z, F) U;gg ]lvréstup{Ifm(y) fn@®)]:n,m >N, ye UNF}
open

(3.4.13)

Definition 3.4.21. Consider a sequence ( f,,)nen of real valued continuous func-
tions, and for each € > 0, define a derivative as

Disyene(F) ={z € F:w((fa)nen, 2, F) > €} (3.4.14)

It is easy to see that Dy, ), _..c(F) is closed, Dy, _.(F) C F and
Dt ypene(F) € Dig)nene(F') for every sequence of continuous functions
(fn)nen, every € > 0 and every pair of closed sets /' C F', hence Dy, )
is a derivative. Let us denote the rank of D4,y _..c by 7((fn)nen, ).

neN,&

Definition 3.4.22. For a Baire class 1 function f let the convergence rank of
f be defined by

~(f) = min {sup Y((fn)nens €) : Yn fy, is continuous and f, — f pointwise} .
e>0
(3.415)

Proposition 3.4.23. If f is a Baire class 1 function then v(f) < w;.

ProOF. It suffices to show that Dy, ) .. -(F) C F for every ¢ > 0, every
nonempty closed set FF C X and every sequence of pointwise convergent con-
tinuous functions (f)nen. Suppose the contrary, then for every N the set
Gy ={z € F:3n,m >N |fy,(x) — fm(z)] > 5} is dense in F. It is also open
in F', hence by the Baire category theorem there is a point x € F such that
x € Gy for every N € N, hence the sequence (f,)nen does not converge at z,
contradicting our assumption. O
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3.4.6 Properties of the Baire class 1 ranks
Theorem 3.4.24. If f is a Baire class 1 function then a(f) < B8(f) <~(f).

ProOF. For the first inequality, it is enough to prove that for every p,q € Q,
p < g we can find ¢ > 0 such that o({f < p},{f > q}) < B(f,e). Let
A={f<p}, B={f>q} and € = p— q. Using Proposition [3.4.5]it suffices to
show that Da g(F) C Dyo(F) for every F € IIY(X). If x € F\ Dy (F) then
r has a neighbourhood U such that sup,, ,,cunr [f(71) — f(22)| <e=p—gq,
hence U cannot intersect both A and B. So = ¢ D4 g(F), proving the first
inequality.

For the second inequality, let (f,)neny be a sequence of continuous func-
tions converging pointwise to a function f. It is enough to show that
B(f,e) < v((fn)nen,e/3). As in the first paragraph we show that Dy (F) C
D4,y en,es3(F) for every F € IY(X). It is enough to show that if = €
F\ D,)ene/3(F) then 2 ¢ Dy (F). For such an z there is a neighbor-
hood U of z and an N € N such that for all n,m» > N and 2’ € FNU,
|fr(2") = fm(2")] < €/3. Letting m — oo we get |fn(a') — f(z')| < &/3 for
allm > N and 2/ € FNU. Let V C U be a neighborhood of x for which
supy fy — infy fy < e/6. Now for every «/,2” € V. N F we have

@) = F@")] < Unla') = ()] +25 < g <e

showing that « & Dy . (F). O

Proposition 3.4.25. If X is a Polish group then the ranks o, 8 and -y are
translation invariant.

ProOF. Note first that for a Baire class 1 function f and xg € X the functions
foLy, and fo R, are also of Baire class 1. Since the topology of a topological
group is translation invariant, and the the definitions of the ranks depend only
on the topology of the space, the proposition easily follows. O

Theorem 3.4.26. The ranks are unbounded in w1, actually unbounded already
on the characteristic functions.

We postpone the proof, since later we will prove the more general Theorem
0.4.42]

Proposition 3.4.27. If f is continuous then a(f) = B(f) =~(f) = 1.

PROOF. In order to prove a(f) = 1, consider the derivative Dys<,) (>4}, where
p < q is a pair of rational numbers. Since the level sets {f < p} and {f > ¢}
are disjoint closed sets, D{s<p} (7>q3(X) = 0.

For 5(f) = 1, note that a continuous function f has oscillation 0 at every
point restricted to every set, hence Dy (X) = 0 for every ¢ > 0.

And finally for v(f) = 1 consider the sequence of continuous functions
(fn)nen, for which f, = f for every n € N. It is easy to see that
w((fr)nen,x, F) = 0 for every point z € X and every closed set F C X.
Now we have that Dy, ), ...e(X) = 0 for every € > 0, hence v(f) = 1. O
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Theorem 3.4.28. If f is a Baire class 1 function and F C X is closed then
a(f-xr) <1+a(f), B(f-xr) <1+ B(f) and v(f - xr) < 1+7(f).

PRrOOF. First we prove the statement for the ranks « and 3. Let D be a
derivative either of the form D4 g or of the form Dy . where A = {f < p} and
B = {f > q} for a pair of rational numbers p < g and € > 0. Let D be the
corresponding derivative for the function f-yr, i.e. D= Dar g or D = Dy, e,
where A" = {f - xr <p}and B’ = {f - xr > q}.

Since the function f-y g is constant 0 on the open set X\ F', it is easy to check
that in both cases D(X) C F. And since the functions f and f-xr agree on F,

we have by transfinite induction that EH_"(X ) C D"(X) for every countable
ordinal 7, implying that a(f - xr) < 1+ a(f) and also B(f - xr) < 1+ B(f).
Now we prove the statement for v. Let (f,)nen be a sequence of continu-
ous functions converging pointwise to f with sup.<ov((fn)nen,€) = v(f). Let
gn(x) = 1 —min{l,n - d(z, F)} and set f(x) = fu(z) - gn(x). It is easy to
check that for every n the function f is continuous and f;, — f - xr pointwise.
For every x € X \ F there is a neighborhood of = such that for large enough n
the function f/, is 0 on this neighborhood, hence D41y, en,e(X) C F for every
€ > 0. From this point on the proof is similar to the previous cases, since the
sequences of functions (fy,)nen and (f))nen agree on F, hence, by transfinite

induction D(lzf)’neN,s(X) C D?fn)neNvg(X) for every ¢ > 0. From this we have

Y((fidnen;€) < 1+ 7((fa)nen,€) for every € > 0, hence v(f - xr) < 1+ 7(f).
Thus the proof of the theorem is complete. O

Theorem 3.4.29. The ranks B and vy are essentially linear.

PROOF. Tt is easy to see that B(cf) = B(f) and v(cf) = y(f) for every ¢ €
R\ {0}, hence it suffices to show that 8 and v are essentially additive.

First we consider a modification of the definition of the rank 3 as follows.
Let By be the rank obtained by simply replacing sup,, ,,cynr [f(71) = f(z2)] in
by sup,, cunr | (@) — f(z1)| in the definition of 3. Clearly, By(f,e) <
B(f,e) < Bo(f,e/2), hence actually By = . Therefore it is sufficient to prove
the theorem for .

To prove the theorem for fo, let Do = Dy /o, D1 = Dy .o and D = Dy .
(we use here the derivatives defining 5y). We show that the conditions of Propo-
sition [3.4.6] hold for these derivatives.

For condition , let € Dyygo(F). Since w(f +g,2,F) > ¢, we have
w(f,z,F) or w(g,z,F) >¢/2, hence x € Dy /o(F)U Dy . /o(F).

Condition is similar, let 2 € (F U F') \ (Dfyg,e(F)UDjsig(F)).
Since & € Dy 4(F), there is a neighbourhood U of z with [(f + g)(z) — (f +
9)(@')] <& <efor 2’ € UNF. And similarly, there is a neighborhood U’ with
[(f +9)(x) — (f +g)(2")] < & < efor 2’ € U NF'. Now the neighborhood
UNU’ shows that w(f + g,z, F UF’) < ¢, proving that € D4 (FUF’).

The proposition yields that So(f+g,¢) < max{Bo(f,£/2), Bo(g,c/2)}, hence
Bo(f + g) S max{By(f),Bo(g)}. This proves the statement for By, hence for 5.

For v, we do the same, prove the conditions of the proposition for Dy =
Dsynenes2s D1 = Dig)nenes2 @and D = Dy, g5 . e, and use the conclusion
of the proposition to finish the proof.

For condition (3.4.1), let € F \ (D(y,),cr.e/2(F) U D(g, ) cnc(F)). Now
we can choose a common open set © € U and a common N € N such that
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for all n,m > N and y € U N F we have |f,(y) — fm(y)| < & < €/2 and
lgn(y) — gm(y)| < &’ < &/2 (again, with a common &’ < £/2). But from this we
have |(fr + 9n) (W) — (fm + gm)(y)| <28’ <eforalln,m > N andy e UNF,
50 T & D(f, 19 nen,c(F), yielding (3:4.1)).

For let z € (FUF)\ (D4, +gm)neme(F) U D4, +g.)neme(F')). For this
x we have a neighborhood U of x, N € N and ¢’ < ¢, such that |(f, + gn)(y) —
(fm + gm)(y)| < € for every n,m > N and y € U N F. Similarly, we can find a
neighbourhood U’, N” € N and ¢” < ¢, such that |(fn+ ) () — (fm +9m)(y)| <
¢” for every n,m > N' and y € U'NF’. From this, w((fn + gn)nen, z, FUF') <
max{e’, "} < e, hence x & Dy, 1 gy, e (FUF).

Therefore the proof of the theorem is complete. O

Remark 3.4.30. The analogous result does not hold for the rank a.. To see this
note first that «(A, A°) can be arbitrarily large below w; when A ranges over
AY(X). This is a classical fact and we prove a more general result in Corollary
B.443

First we check that for every A € AY(X) the characteristic function x4
can be written as the difference of two upper semicontinuous (usc) functions.
Indeed, let (K,)new and (Ly,)new be increasing sequences of closed sets with
A=, K, and A° =J,, Ly, and let

f o 0 on K() U L(),
7Y =n on (KnULp)\ (Kp-1ULp_q) forn>1

and
0 on Ly,

f1 = —1 on (K()ULl)\LQ,
—n on (Kn—l U Ln) \ (Kn_g U Ln—l) for n > 2.

Then fy and f; are usc functions with x4 = fo — f1.

Now we complete the remark by showing that a(f) < 2 for every usc function
f. Forp < qglet A= {f <p}and B ={f > ¢q}. Then B is closed, so
Dap(X)=XNANXNB=XNANBC B. Hence D ;(X) C Dap(B) =
ANBNB=0NB=0.

Proposition 3.4.31. If the sequence of Baire class 1 functions f, converges

uniformly to f then B(f) < sup,, B(fn)-

PROOF. If |f — fo| < €/3 then |w(f,z,F) — w(fy, 2, F)| < 3¢ for every
and F. Therefore Dy .(F) C Dy, ./3(F) for every F, which in turn implies
B(f,e) < B(fn,e/3), from which the proposition easily follows. O

Proposition 3.4.32. If the sequence of Baire class 1 functions f, converges
uniformly to f then v(f) < supy(fn)-
n

ProoOF. By taking a subsequence we can suppose that |f,(z) — f(z)| < %

for every n € N and every z € X. With g,(z) = fo(x) — fu_1(z) we have
lgn(z)| < 3, hence Y7 | g, (x) is uniformly convergent, and f(z) = fo(z) +
> gn(z). Using Theorem [3.4.29 we have v(gn) < max{y(fn),7(fn-1)}.

oo

hence sup,, y(gn) < sup,, 7(fn). It is enough to prove that for g = > "~ | g, we
have v(g) < sup,, ¥(gn), since Theorem [3.4.29| yields v(f) < max{v(fo),v(9)}

62



dc_1437 17

Now for every n € N let (p%)ren be a sequence of continuous functions
converging pointwise to g, with sup.ov((¢F)ken, €) = 7(gn). It is easy to see
that we can suppose |pF (z)| < = for every n € N and k € N, since by replacing
(% )ken with (max (min (¢f, 5) ,—%))keN we have a sequence of continuous
functions satisfying this, and the sequence is still converging pointwise to g,
while v((¢F )ken, €) is not increased.

Let ¢, = ZZ:O k. We show that (¢ )ren converges pointwise to g and also
that 7(g) < sup..oV((¢k)ken,€) S sup, sup5oY(¢5)ken,€) = sup, v(gn),
which finishes the proof To prove pointwise convergence, let £ > 0 be arbitrary
and fix K € N with 5% <e. For k > K we have

K k
|61 () an <D ek —g@)|+] D @),
n=0 n=K+1

while the second is at most 5%. Hence limsupy_, . |¢x(z) — g(z)] < 25% < ¢
for every € > 0, showing that ¢ (z) — g(z).
Now fix an ¢ > 0 and K € N as before, it is enough to show that

Y((Pr)ren, 3e) S sup,, sup.o Y((©5 ) ken, €)-
For any € X and k,l > K we have

l
|6x(x) Zsﬁn =Y (@)
n=0 n=0
p . l (3.4.16)
<Y ek @) —en@)|+] YD eh@)|+| D eh@)].
n=0 n=K+1 n=K+1

As before, the sum of the last two terms is at most e. We want to use Proposition
for the derivatives D = D(4,),cy,3c and Dy = Digpy, o - for n < K.

Y K+1
To check condition ,let x € F'\ UnK 0 D(cpﬁ)keN,Kil (F). Then we have a

neighborhood U of x and an N € N such that ’gon oL (W) < 255 = for every
n < K, every y € UNF and every k,l > N. ThlS observation and ( m
yields that |¢g(y) — ¢i(y)| < 2e for every y € UNF and k,l > N showing that
T & Digy)en,ze(F).

Condition is similar, and it can be seen as in the proof of Theorem
Now Proposition [3.4.6] gives

£
Y((Sr)ken, 36) max ¥ ((wﬁ)kem K+1) < sgpiglgv((wa)keN,E),

completing the proof. O

Theorem 3.4.33. If f is a bounded Baire class 1 function then a(f) ~ B(f) =~
Y(f)-

PROOF. Using Theorem [3.4.24] it is enough to prove that v(f) < a(f). First,
we prove the theorem for characteristic functions.

Lemma 3.4.34. Suppose that A € AY. Then y(xa) < a(xa).
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PROOF. In order to prove this, first we have to produce a sequence of continuous
functions converging pointwise to x .

For this let (F),),<x be a continuous transfinite decreasing sequence of closed
sets, so that

A= U (Fn\FnJrl)

n<A
7 even

and A =~ a(xa) given by Corollary We can assume that the last element
of the sequence (F),)),<x is 0, hence every z € X is contained in a unique set of
the form F, \ F11

For each k € w and n < A let fk — [0,1] be a continuous function so
that fF[F, = 1, and whenever z € X and d(x, F,)) > 745 then ff(z) = 0. Such
a functlon exists by Urysohn’s lemma, since the sets F;, and {z € X d(z, F,) >
k%‘_l} are disjoint closed sets.

Now let (1,,) be an enumeration of A in type < w. Let us define

E : nn+1

n<k
Nn €ven

Since the functions fj are finite sums of continuous functions, they are con-
tinuous. We claim that fp — x4 as k — oc.

To see this, first let € X be arbitrary. Then there exists a unique m so
that z € F,,, \ F},,+1. Choose k € w so that k > m and d(z, F},, +1) >

Then if z € A then 7, even and

ST PR (@) = () =

n<k
7, even

1
k+1°

=| D @ =@ | DD @) = @) | @) ().

n<k n<k
Nn €ven MNn €ven
N <Nm Nn>Nm

The first sum is clearly 0 since f,’]“n =1on F if Ny, > mp. This is also
true for the second one, since if d(z, F,,) > k+1 then fF (#) = 0. Finally,

fom (@) =1 and fy, 1(2) =0, so fi(z) =
If x € A then n,, is odd and

Z nnJrl( ) =

n<k
N, even
k
Z 7771( 77n+1 Z 7]n+1( )
n<k n<k
N, €ven Ny €ven
Nn<Nm N >Nm

Now the previous argument gives fx(z) = 0.
So fr — x4 holds. Next we prove by induction on 7 that for every n < A
and every € > 0 we have
n
D(fk)keNvf(X) C By
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This will clearly complete the proof.
For n = 0 we have
0 _ v _
D(fk)keNyE(X) — X — FO.
If 7 is a limit ordinal, the statement is clear, since the sequence of derivatives

as well as (Fy)p<x are continuous.

Now let n = 6 + 1 and D(Ofk)kEN .(X) C Fy. For some m we have 0 = 1,,.
Let ¢ € F,, \ F};,.+1. Then it is enough to prove that « ¢ D?fk)%N’E(X). Let k
be so that d(z, F, 11) > 127

If d(z,y) < 747 and y € D? Oreme(X), theny € Fy '\ Fyy 41, From this,

l1,lo > k implies that f,l,1 (y) = f,lf (y) =1if n < 9y, and f,l,1 (y) = ff]’“ (y) =0if
n > nm. Hence fi, (y) — Jiy (y) =0.
So the sequence fy is eventually constant on a relative neighbourhood of x

in F;, . Therefore z ¢ D] (X), which finishes the proof. O

(fr)rene
Next we prove that v(f) < a(f) for every step function f. We still need the
following lemma.

Lemma 3.4.35. If A and B are ambiguous sets then

a(xanp) S max{a(xa),a(xs)}-

PROOF. It is enough to prove this for § since the previous lemma and Theorem
yields that the ranks essentially agree on characteristic functions. Theo-

rem [3.4.29| gives S(xa + xB) S max{B(xa), B(x5)}, hence it suffices to prove
that 8 (xanB) < B(xa+xp). But this easily follows, since one can readily check

that for every ¢ < 1 and F we have D, , o(F) C Dy ,4yp.e(F), finishing the
proof. O

Now let f be a step function, so f = Y .| ¢;xa,, where the A;’s are disjoint
ambiguous sets covering X, and we can also suppose that the ¢;’s form a strictly
increasing sequence of real numbers.

Lemma 3.4.36. max;{a(xa,)} S a(f).
PROOF. Let H; = U;'=1 A;. By the definition of the rank «, for every ¢ we have
a(H;, HY) < a(f). (3.4.17)
This shows that a(xa,) < a(f), and together with the previous lemma, for
i >1
a(XAi) = a(XHi,\Hi—l) = O‘(XHiﬂHf,l) S max{a(XHi)a O‘(XHf,I)}
= max{a(Hi7 H1C>7 a(Hi—la Hchl)} < Oé(f),

where the last but one inequality follows from the above lemma and the last
inequality from (3.4.17]). (]

Now we have
7(f) S max{y(xa)} = max{a(xa,)} S af),

where we used Theorem [3.4:29] this theorem for characteristic functions and
Lemma [3:4.36] proving the theorem for step functions.

In particular, a(f) < B(f) < v(f) (Theorem [3.4.24) gives the following
corollary.
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Corollary 3.4.37. If f = Z?zl ciXa,, where the A;’s are disjoint ambiguous
sets covering X and the ¢;’s are distinct then

a(f) ~ max{alxa,)}

and similarly for 8 and ~y.
Now let f be an arbitrary bounded Baire class 1 function.

Lemma 3.4.38. There is a sequence f, of step functions converging uniformly
to f, satisfying sup,, oa(fn) S a(f).

PROOF. Let p, i = k/2" for all k € Z and n € N. The level sets {f < ppr}
and {f > pp k+1} are disjoint Hg sets, hence they can be separated by a H,, 1, €
AY(X) (see e.g. |51, 22.16]). We can choose H,, ; to satisfy o (Hy i HY 1) <
2a(f) using Proposition

Since f is bounded, for fixed n there are only finitely many k € Z for which
Hy, o1 \ Hy i # 0. Set

f’ﬂ = an,k : XHn,k{»l\Hn,k'
kEZ

Now for each n, f, is a step function with |f — f,| < 2"7'. Hence f, — f
uniformly. Since the level sets of a function f,, are of the form H,, ; or H, ok for
some k € Z, we have a(f,) < 2a(f), proving the lemma.

Let f, be a sequence of step functions given by this lemma. Using Propo-
sition [3.4.32) and this theorem for step functions, we have v(f) < sup, v(fn) <

~

sup,, a(fn) < a(f), completing the proof. |

We have seen above that « is not essentially additive on the Baire class 1
functions but 8 and ~ are, therefore o cannot essentially coincide with 3 or .

Proposition 3.4.39. If the sequence of Baire class 1 functions f, converges
uniformly to f then a(f) < supa(fn).
n

Proor. If f is bounded (hence without loss of generality the f, are also
bounded) this is an easy consequence of Theorem and Proposition
For an arbitrary function g let ¢’ = arctanog. It is easy to show that
a(g’) = a(g) using Remark
If the functions f and f,, are given such that f, — f uniformly then f] —
/" uniformly, and these are bounded functions, so we have a(f) = a(f’) <

~

sglpa(fé) = Strllpa(fn). U

3.4.7 Well-behaved ranks on the Baire class ¢ functions

In this section we finally show that there actually exist ranks with very nice
properties. Two of these ranks will answer Question [I.3.1] and Question [I.3:2]
Throughout the section, let 1 < & < wy be fixed.

First we need a result concerning unboundedness.
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Definition 3.4.40. Let A and B be disjoint H2+1 sets. Then they can be
separated by a Ag_H set (see e.g. [5I 22.16]). Since every A2+1 set is the
transfinite difference of Hg sets, A and B can be separated by the transfinite
difference of such a sequence. Let a¢(A, B) denote the length of the shortest
such sequence.

Definition 3.4.41. Let f be a Baire class £ function, and p < ¢ € Q. Then
{f <p} and {f > ¢} are disjoint H2+1 sets. Let the separation rank of f be

ag(f) = Sup ac({f <p} {f>aq})
p,q€Q

Note that this really extends the definition of «;.

Theorem 3.4.42. For every 1 < & < w; the rank a¢ is unbounded in wy on the
characteristic Baire class & functions.

PROOF. Let U € H2(2‘” x X) be a universal set for Hg(X) sets, that is, for
every F C X, F € Hg(X) there exists a y € 2¥ such that /Y = F. For the
existence of such a set see [5I, 22.3]. Let us use the notation I'¢(X) for the
the family of sets H C X satisfying a¢(H, H®) < ¢. From [51] 22.27] we have
I'e(X)C A2+1(X). We will show that there exists a A2+1 set for every ¢ < w;
which is universal for the family of I'¢ sets. Since X is uncountable, there is
a continuous embedding of 2¢ into X (|51, 6.5]), hence no universal set exists
in 2¢ x X for the family of AQH(X) sets (easy corollary of [5I 22.7]). This
implies for every ( < w; that I'c # Ag 11, hence the rank is really unbounded.

Let p : ( xN — N be a bijection. For n < ¢ and y € 2* we define ¢(y), € 2
by ¢(y)n(n) = y(p(n,n)). First we check that for a fixed n < ¢ the map
y — ¢(y)y is continuous. Let U = {x € 2 : 2(0) = dp,...,2(n) = in} be a
set from the usual basis of 2¢. The preimage of U is the set {y € 2 : Vk <
n o(y)y(k) =ir} ={y € 2* : Vk <n y(p(n, k)) = i}, which is a basic open set,
too. Now Uy, = {(y,x) : (¢(y)n,x) € U} is a continuous preimage of a Hg set,
hence Uy, € TIY(2 x X) (see [51} 22.1]). Let

U ={(y,x) € 2* x X : the smallest ordinal 7 such that (y,z) € U, is odd,

if such an 7 exists, or no such 7 exists and ¢ is odd}.

Now we check that U’ € A2+1(2” x X). Let V; =y, Us, then these sets form
a continuous decreasing sequence of Hg sets and it is easy to see that U’ is
the transfinite difference of the sequence (V,)),<c¢+1, hence U’ € A2+17 proving

that U’ € AgH, since the family of A2+1 sets is closed under complements (see
51, 22.1)).

Now we show that U’ is universal. For a set H € I'¢(X) there is a sequence
(2zn)n<c in 2%, such that H is the transfinite difference of the sets ¢/*7. For
every sequence (2z)p<c we can find y € 2¢ such that ¢(y), = z,. Namely
y : p(n,n) — zp(n) makes sense (since p is a bijection), and works. Consequently,
for H there is y € 2“, such that H is the transfinite difference of the sets
U =UPWn = (U,)". Tt is easy to see that if H is the transfinite difference of
the sequence ((Z/In)y)n<< then

H = {z € X : the smallest ordinal n such that = & (i4,))? is odd,

if such an 7 exists, or no such 7 exists and ¢ is odd},
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hence H =U"Y. O

Corollary 3.4.43. For every 1 < ¢ < wy, every nonempty perfect set P C X
and every ordinal { < w1 there is a characteristic function xa € Be(X) with
A C P and ag(xa) > C.

PROOF. Since P is nonempty perfect, it is an uncountable Polish space with
the subspace topology, hence the rank ;¢ is unbounded on the characteristic
Baire class ¢ functions defined on P by the previous theorem. Hence we can
take a characteristic function f’ € B¢(P) with ag(f’) > ¢, and set

_J fl(z) ifzeP
f(x)_{ 0 ifreX\P.

It is easy to see that f € B¢(X), hence it is enough to prove that ae(f) > ¢.

For this, it is enough to prove that as({f" < p},{f" > ¢}) < a%({f <
p}, {f > q}) for every pair of rational numbers p < ¢. For this, let H € Ag;(X)
where {f < p} C H C {f > ¢}° and H is the transfinite difference of the sets
(Fy)n<r with A = ae({f <p},{f > ¢}) and F, € Hg(X) for every n < A.

Let H' = PN H and for every n < A let F} = PN F,. It is easy to see
that H’ separates the level sets {f’ < p} and {f’ > ¢} and H’ is the transfinite
difference of the sets (F}),<x. And since H' € Ag_H(P) and F) € Hg(P) for
every n < A ([oIl 22.A]), we have the desired inequality ag¢({f" < p},{f’ >

q}) < ae({f <p}.{f = q}). Thus the proof is complete. O

Let again f be of Baire class £. Let
Tre={7r":7" D7 Polish,7" C Eg(ﬂ,f € Bi(m)}.

So Tt is the set of those Polish refinements of the original topology that are
subsets of the Eg sets turning f into a Baire class 1 function.

Remark 3.4.44. Clearly, Ty = {7} for every Baire class 1 function f.

In order to show that the ranks we are about to construct are well-defined,
we need the following proposition.

Proposition 3.4.45. Ty # 0 for every Baire class & function f.

PRrROOF. By the previous remark we may assume £ > 2. For every rational p
the level sets {f < p} and {f > p} are Hg 41 sets, hence they are countable

intersections of 22 sets. In turn, these 22 sets are countable unions of sets from
Uy<e Hg(T). Clearly, U, ¢ H?I(T) C Ag for £ > 2. By Kuratowski’s theorem
[51 22.18], there exists a Polish refinement 7/ C 22(7) of 7 for which all these
countable many Ag sets are in AY(7/). Then for every rational p the level sets

are now IT9(7’) sets, and the same holds for irrational numbers too, since these
level sets can be written as countable intersection of rational level sets, proving
Tre # 0. O

We now define a rank on the Baire class £ functions starting from an arbitrary
rank on the Baire class 1 functions.
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Definition 3.4.46. Let p be a rank on the Baire class 1 functions. Then for a
Baire class ¢ function f let

pe(f) = o pr (f), (3.4.18)

where p,/(f) is the p-rank of f in the topology 7’.
Remark 3.4.47. From Remark [3.4.44]it is clear that p} = p for every p.

Proposition 3.4.48. Let p and n be ranks on the Baire class 1 functions. If
p=m,o0rp<mn, orpmmn, orpsn then pf =ni, or pf < g, or pi =g,
or pg < g, respectively. Moreover, the same implications hold relative to the
bounded Baire class 1 functions.

PROOF. The statement for = and < is immediate from the definitions, and
the case of ~ obviously follows from the case <, so it suffices to prove this

latter case only. So assume p < 7 (or p < 1 on the bounded Baire class 1
functions). Choose an optimal 7" € T ¢ for n, that is, i (f) = 0 (f). Then

p2(f) < por(f) S 1 (f) = ¢ (f), completing the proof. 0

Then the following two corollaries are immediate from Theorem and

Theorem [3.4.331
Corollary 3.4.49. of < 52‘ <.

Corollary 3.4.50. o(f) ~ Bi(f) =~ i (f) for every bounded Baire class §
function f.

Note that by repeating the argument of Remark one can show that
of differs from S and ~{.

Theorem 3.4.51. If X is a Polish group then the ranks ag, Bg and ¢ are
translation invariant.

PRrROOF. Note first that for a Baire class £ function f and zy € X the functions
f oLy, and f o R,, are also of Baire class £&. We prove the statement only for
the rank of, because an analogous argument works for the ranks 87 and .

Let f be a Baire class ¢ function and z¢ € X, first we prove that af(f) >
ag(foRy,). Let 7' € Ty ¢ be arbitrary and consider the topology 7 = {U-z5"
Uer'}. Themap ¢ : z — z - xal is a homeomorphism between the spaces
(X,7") and (X,7"), satisfying f(x) = (f o Ry,)(¢(z)). From this it is clear
that 77 € Tfor,,.¢ and since the definition of the rank « depends only on the
topology of the space, we have a,/ (f) = a;/(f o Ry,). Since 7/ € Ty, was
arbitrary, the fact that o (f) > af(f o Ry,) easily follows.

Repeating the argument with the function fo R, and element z 1 we have
@i (foRyy) = af(foRy, o RxJ1> = af(f), hence of(f) = a;(f o Ry,). For the
function f o L, we can do same using the topology 7" = {a:o_l U U e’}
and the homeomorphism ¢ : z +— mgl - x, yielding az(f) = a?(f o Ly,). This
finishes the proof. O

Theorem 3.4.52. If f is a Baire class £ function and F C X is a closed set
then f-xr is of Baire class &, and o (f-xr) < 1+a¢(f), B¢ (f-xr) < 1+B£(f)
and V¢ (f - xr) < 1+9E(f).
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PROOF. Examining the level sets of the function f - xr, it is easy to check that
it is of Baire class &.

Now let 7/ € T} ¢ be arbitrary. Clearly, f-xr is of Baire class 1 with respect
to 7/, and by Proposition we have a(f - xr) < 1+ a(f) for every
7' € Tre, hence af(f - xr) < 1+ ag(f). The other two inequalities follow
similarly. O

Proposition 3.4.53. If f is a Baire class ¢ function with ¢ < ¢ then o ()=
Be(f)=¢(f) =1
PROOF. Using Proposition [3.4:27] it is enough to show that there exists a

topology 7' € Ty ¢ such that f : (X,7') — R is continuous, and this is clear
from [51] 24.5]. O

Next we prove a useful lemma, and then investigate further properties of the
ranks o, B¢ and 7¢.

Lemma 3.4.54. For everyn let 7,, be a Polish refinement of T with T, C 22(7’).
Then there exists a common Polish refinement 7' of the 7,,’s also satisfying
0

' C Be(T).

PROOF. The case £ = 1 is again trivial, so we may assume & > 2. Take a base
{GF : k € N} for 7,. Since these sets are in 22(7'), they can be written as the
countable unions of sets flTom Uy<e H?] (7). Clearly, U, ¢ H?] (1) C Ag for & > 2.
As above, by Kuratowski’s theorem [51l 22.18], we have a Polish topology 7/,
for which these countably many Ag () sets are in AY(7') satisfying 7/ C Eg(r).
This 7/ works. O

Lemma 3.4.55. If 7/ C 7" are two Polish topologies with f € By(7') then
f € Bu(r"), moreover, Br(f) = Brr(f) and vr(f) = 7 (f)-

PROOF. To prove that f € Bi(7”) note that the level sets {f < c},{f > ¢} €
29(7"), hence {f < ¢}, {f > ¢} € BY(7"), so f € Bi(7").
Now recall the definition of the derivative defining 3:

w(f,x,F):inf{ sup |f(a:1)—f(m2):Uopen,a:€U},

x1,22€UNF
Dy (F)={z € F:w(f,z,F)>¢c}

Let us now fix f and € > 0 and let us denote the derivative D . with respect
to the topology 7/ by D,., and with respect to the topology 7" by D,. By
Proposition it is enough to prove that D, (F) C D, (F) for every closed
set ' C X.

For this it is enough to show that w.» (f, z, F) < w./ (f,z, F) for every x € F
where w,(f, x, F) is the oscillation with respect to the topology 7'. And this is
clear, since in the case of 7", the infimum in the definition goes through more
open set containing x, hence the resulting oscillation will be less.

For the rank -, we proceed similarly. First we recall the definition of ~:

_ . . _ . >
W((fn)nen, z, F) U;gg Jgé%sup{lfm(y) fn@)|:in,m >N, yeUNF},
open

D(fn)nEN»E(F) ={z € F:w((fu)nen,z,F) > €},

~(f) = min {sup Y((fr)nen, €) : Vn fy, is continuous and f, — f pointwise} .
e>0
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Let us fix a sequence (fy,)nen of 7/-continuous (hence also 7”-continuous)
functions converging pointwise to f, and also fix ¢ > 0. Let us denote the
derivative Dy, ). ...c With respect to 7" by D, and with respect to 7" by D».
Again, by Proposition it is enough to prove that D..(F) C D,/ (F) for
every closed set F' C X. And similarly to the previous case it is enough to prove
that the oscillation w((fy)nen, z, F') with respect to the topology 7" is at most
the oscillation with respect to 7/, but this is clear, since, as before, the infimum
goes through more open set in the case of 7. O

Theorem 3.4.56. The ranks ¢ and ¢ are essentially linear.

PrOOF. We only consider Bg, since the proof for the rank 72‘ is completely
analogous.

It is easy to see that Bf(cf) = B{(f) for every ¢ € R\ {0}, hence it suffices
to show that Sf is essentially additive.

For f and g let 7¢ and 7, be such that 8-, (f) = B¢ (f) and 8-, (9) = B¢ (9)-
Using Lemma we have a common refinement 7’ of 74 and 7, with 7/ C
22(7'). Now f,g € Bi(7'), so f + g € Bi(7'), hence 7/ € Ty14¢. Therefore
BE(f+9) < Br(f +9). By Lemma we have that 8./ (f) < 87, (f) (in fact
equality holds), and similarly for g. But g,/ is additive by Theorem SO

Be(f +9) < Br(f +9) S max{B(f), Br(9)} < max{p:.(f), Br,(9)} =
max{fz (f), B¢ (9)}-

Theorem 3.4.57. If f is a Baire class & function then

ag(f) < ag(f) < 2a¢(f), hence ag(f) = ag(f).

PrROOF. For £ =1 the claim is an easy consequence of the definition of the two
ranks and Corollary [3:4.14] From now on, we suppose that £ > 2.
For the first inequality, for every pair of rationals p < ¢ pick a sequence

(FS )e<ac(r) C Hg(X ), whose transfinite difference separates the level sets

{f <p}and {f = q}.
Every Hg(X ) set is the intersection of countably many Ag sets, hence ch, =

N HS gn» with HS € AL By Kuratowski’s theorem [51], 22.18], there is a

finer Polish topology 7 C 22(7'), for which ng e AY(7') for every p, ¢, n and
¢ < ag(f), hence F§, € (7).

This means that the level sets of f can be separated by transfinite differences
of closed sets with respect to 7/, hence they can be separated by sets in AY(7/).
Then it is easy to see that for every ¢ € R the level sets {f < ¢} and {f > ¢} are
countable intersections of AY(7') sets, hence they are TI9(7') sets, proving that
f € Bi(r'). Moreover, aq . (f) < ae(f) easily follows from the construction
(here o, is the rank oy with respect to 7'). And by Corollarywe have
ag < a(f) <o (f) < ae(f), proving the first inequality of the theorem.

For the second inequality, take a topology 7" with a,/(f) = i (f). Again,
by Corollary we have oy, (f) < 20./(f) = 20(f).

It remains to prove that ae(f) < a1 (f). A 7'-closed set is Hg with re-
spect to 7. Therefore, if (F),),<¢ is a decreasing continuous sequence of 7'-
closed sets whose transfinite difference separates {f < p} and {f > ¢} then the
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same sequence is a decreasing continuous sequence of sets from Hg(T), proving

ae(f) < ar o (f). O

Corollary 3.4.58. a¢ and az are essentially linear for bounded functions for
every &.

PROOF. a¢ = O‘Z by the previous theorem, O‘Z & ﬁé" for bounded functions by

Corollary and (7 is essentially linear by Theorem [3.4.56 (]

From Corollary [3.4.37| we can obtain the appropriate statement for the ranks
o, ﬁg and Ve
Proposition 3.4.59. If f = Y1 | cixa,, where the A;’s are disjoint A{, | sets
covering X and the ¢;’s are distinct then

o (f) ~ max{af (xa):
and similarly for B¢ and ~¢.

Proor. The additivity of o implies az(f) < max;{af(xa,)}. For the other
inequality let 7" be a topology for which f is Baire class 1. Then the characteris-
tic functions x 4, are also Baire class 1, and hence by Corollary [3.4.37 we obtain
ar(f) ~ max;{a;(xa;)}. But by the definition of af for every such topol-
ogy af (xa;) < ar(xa,), therefore maxi{az(XAi)} < max;{a(xa,)} = a(f).
Then choosing 7’ so that o/ (f) = «f(f) the proof is complete.

(I

Theorem 3.4.60. The ranks az, BZ and 72 are unbounded in wy. Moreover, for
every nonempty perfect set P C X and ordinal ( < wy there exists a character-
istic function xa € Be(X) with A C P such that o (xa), B¢ (xa), ¢ (xa) > ¢

PRroOF. In order to prove the theorem, by Corollary it suffices to prove
the statement for ag. Moreover, instead of af(xa) > ( it suffices to obtain
aZ(XA) 2 (. And this is clear from Theorem [3.4.57| and Corollary |3.4.43 O

Proposition 3.4.61. If f,,, f are Baire class & functions and f, — f uniformly
then B (f) < sup,, B (fu)-

PROOF. For every nlet 7, € T, ¢ with 3, (fn) = Bf(fn). Using Lemma|3.4.54

let 7’ be their common refinement satisfying 7 C E(E)(T)7 where 7 is the original
topology. Note that f,, € By(7') for every n, and the Baire class 1 functions
are closed under uniform limits [51}, 24.4], hence 7" € Ty ¢. Then by Proposition
3437 and Lemma we have

Be(f) < Br(f) < sup Br(fn) < sup Br, (fn) = sup B (fn)-
O

Proposition 3.4.62. If f,, f are Baire class & functions and f, — f uniformly
then o (f) < sup,, ag(fn) and v;(f) < sup, ¢ (fa)-

PROOF. Repeat the previous argument but apply Proposition [3.4.39 and Propo-
sition [3.4.32] instead of Proposition [3.4.31 (]
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3.5 Proof of Theorem [1.4.6

PRrROOF. We need two well-known facts. Firstly, non(N) = ws in this model [5].
Secondly, in this model there is no strictly increasing (wrt. inclusion) sequence
of Borel sets of length wy (this is proved in [54], see also [25]).

Assume that ¢ : N'— B is a monotone hull operation. Choose H = {z,, :
a <non(N)} ¢ N, and consider p({zg : f < a}) for @ < non(N). This is an
increasing ws long sequence of Borel sets, which cannot stabilise, since then H
would be contained in a nullset. But then we can select a strictly increasing
subsequence of length ws, a contradiction. O

3.6 Proof of Theorem [1.4.7]

Let us denote by AAB the symmetric difference of A and B.

Lemma 3.6.1. Assume the Continuum Hypothesis. Then there exists a mono-
tone map ¢ : L — Gs such that \(MAY(M)) = 0 for every M € L and that
AMAM') =0 implies Y(M) = p(M') for every M, M’ € L.

PROOF. Let us say that M, M’ € L are equivalent, if \(MAM') = 0. Denote
by [M] the equivalence class of M and by £/N the set of classes. We say that
[M;] < [My] if there are M € [M;] and M} € [Ma] such that M; C Mj.
It is sufficient to define ¥ : L/N — G5 so that [M] < [M’] implies U([M]) C
U([M']) for every M, M’ € L, and that ¥([M]) € [M] for every M € L.
Enumerate £/N as {{M,] : @ < w1}. For every @ < w; define

V(M) = () (M) rw(a<;§huu<ﬁ U m(M%ﬂ)uzw&)
IS0 <M

It is not hard to check that this is a G5 set such that [M,] < [M,] < [Mg]
implies U([M,]) C ¥([M,]) C ¥([Mg]), and that U([M,]) € [M,], hence the
construction works. O

The following lemma is the only result we can prove for B but not for Gs.

Lemma 3.6.2. Assume the Continuum Hypothesis. Then there exists a mono-
tone hull operation ¢ : N — B such that

1. (NUN") C o(N)Up(N') for every N,N' € N (subadditivity),
2. H{e(N): NC B, N e N}\BeN for every B € B.

PROOF. Let {N, : @ < wi} be a cofinal family in A, that is, VN € N Ja <
wy such that N C N,. (Such a family exists, since there are continuum many
Borel nullsets.) For every a < w; define, using transfinite recursion, A, =
a Gy hull of (U5<a Ag U N,). Clearly, {A, : @ < w1} is a cofinal increasing
sequence of G sets.

Set A%, = Ao \ Up., Ap. Enumerate B as {B, : @ < w1} and for every
« < wq define the countable set

Ba:{OB@.:nEN,Bi<a(0§i§n)}.
i=0
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Note that every B,, is closed under finite unions.

Now define
e)= U (a0 N B)
a<lan BeBa
NNA}CB

This is clearly a disjoint union. It is easy to see that ¢ is a monotone Borel hull
operation (note that p(N) C Aqy ).

For every a < wy define po(N) = A% N(N) (N € N). In order to check
subadditivity, let N, N' € /. We may assume ay < ay, so clearly ayun: =
an. It suffices to check that each ¢, is subadditive. If & > ayn then actually
Va(NUN') = po(N'), so we are done. Suppose now a < an. Let z € A}, such
that « ¢ ¢(N)U@(N'). Then there exist B D NN A and B 2 N'n A% in B,
such that = ¢ B, B’. But then BU B’ € B, witnesses that = ¢ o(N U N’) since
x¢ BUB' D (NUN')NA?.

Finally, to prove[d it is sufficient to show that N C B, implies ¢(N)\ B, C
A, for every N € N and o < wy. So let z € ¢3(N) for some > «. We have to
show = € B,. But this simply follows from the definition of ¢ since B, € Bg.
O

Lemma 3.6.3. Assume that there exists a monotone map 1 : L — B such that
AMAY(M)) = 0 for every M € L and also that there exists a monotone hull
operation ¢ : N — B such that

1. o(NUN") C o(N)Up(N') for every NN’ € N,
2. H{e(N): NC B,NeN}\BeN forevery B € B.
Then ¢ can be extended to a monotone hull operation ¢* : L — B.

Proor. We may assume that ¢(N) = @) for every N € N (by redefining ¢ on
N to be constant ), if necessary).

Define
e (M) = (M) Up(M\ (D)) Up( [ (V) \e(M)).
NCy(M)
0#ANeEN

Clearly ¢*(M) € B. As the union of first two terms contains M, we obtain
M C ¢*(M). Moreover, ¢*(M) is a hull of M, since the first term is equivalent
to M and the last two terms are nullsets. It is also easy to see that ¢* extends

®.
We still have to check monotonicity of ¢*. First we prove

N eN, M e L, N Ccyp(M) = o(N')C " (M). (3.6.1)

Indeed, the case N’ = () is trivial to check, otherwise

e U e U e\ e)) ueM)

NCp(M') NCyp(M')
D#ANEN D#ANEN
co( U e\ e)) v C gt (M),
NCy(M')
D#NEN
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which proves (3.6.1)).

Let now M C M’ be arbitrary elements of £. We need to show that all three
terms of ¢*(M) are contained in ¢*(M’).

Firstly, (M) C ¥(M").

Secondly, define N’ = (M \ ¥(M)) N1(M’). Using the subadditivity of ¢
and then we obtain

(M D) € o (M\(M)) Np(M')) Ui (M w(M)) \ (M)
C (N ) Up(M'\ (M) C " (M').
Thirdly, let
N=( U e\ en) e,
NC(M)

0£ANeEN

Using the subadditivity of ¢ and then (3.6.1) we obtain

o( U em\van)c

NCy(M)
DANEN
o(( U eean)nea))ue(( 1 e\en)\e()) c
NCy(M) NCy(M)
D#ANEN D#ANEN
coWue( U e\ e(r)) € g ().
NCp(M')
D#ANEN
This concludes the proof. O

The following lemma was pointed out to us by J. Swaczyna.

Lemma 3.6.4. Assume the Continuum Hypothesis. Then there exists a mono-
tone hull operation o : B — Gs.

PRrROOF. Enumerate B as B = {B, : @ < wy}. By transfinite induction define

0(Ba)=|aGshullof | (] o(Bs)UBa| |N [ o(Bs)

B<a B<a
BjsCBa Bp>Ba
It is straightforward to check that this works. O

Now we are ready to prove Theorem
PROOF. Lemma [3.6.1] and Lemma [3.6.2] show that the requirements of Lemma
B:6.3] can be satisfied, so we obtain a monotone Borel hull operation on L.
Composing this with ¢ from the previous lemma finishes the proof. O
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3.7 Proof of Theorems [2.1.3 and 2.1.10]

Recall that the symbol Z} . stands for the o-ideal consisting of sets of o-
finite r-dimensional Hausdorfl measure in R".

) = cov(NT).

) < cov(Ny) is clear by Ny CZ) ;. In
) be a cover of R™ by

Lemma 3.7.1. cov(Z"

n,o—fin

PROOF. The inequality cov(Z"

n,o—fin
order to prove the opposite inequalfity let {Ia}a«o\,(q o pin
sets of o-finite H"-measure. We can assume that they are actually of finite H"-
measure, and also that they are Borel (even Gs). By the Isomorphism Theorem
of Measures [51, Thm. 17.41] a Borel set of finite H"-measure can be covered
by cov(N) many H"-nullsets. Therefore R™ can be covered by cov(Z; ,_ ;) -
cov(N) many H'-nullsets. But Z); , ;. C N implies cov(Z}, ,_;,) > cov(N),
hence R™ can be covered by cov(Z” ) many H"-nullsets, proving cov(N) <

n,o—fin
COV(I;,a—fin)‘ U

The following theorem describes the values of all the cardinal invariants of
the extended Cichori diagram in a specific model of ZFC.

Theorem 3.7.2. It is consistent with ZFC that cov(N) = 0 = non(N) = w;
and cov(N]) = ¢ = ws.

PROOF. Most ingredients of this proof are actually present in [80]. Let V be
a ground model satisfying the Continuum Hypothesis, and let W be obtained
by the countable support iteration of Pzr o fin of length wy. Since the forcing
]P)I':,U—fin is proper by [80, 4.4.2] and adds a generic real avoiding the Borel
members of I .. coded in V, we obtain that cov(Z] , ;) = ¢ = w2 in
W. Hence, cov(N{f) = ¢ = wq in W by Lemma By [80, 4.4.8] Prr
adds no splitting reals, hence no Random reals, and this is well-known to be
preserved by the iteration, thus the Borel nullsets coded in V' cover the reals
of W, therefore cov(N) = wy in W. Moreover, by [80, Ex. 3.6.4] Z), , ., is
polar, which is preserved by the iteration, therefore it preserves outer Lebesgue
measure, hence the ground model is not null, thus non(A) = w; in W. Finally,
the forcing is w*-bounding by [80, 4.4.8], hence the same holds for the iteration,

therefore 0 = wy in W. O

The following are immediate.

Corollary 3.7.3. Consistently cov(N) < cov(N})), answering Fremlin’s ques-
tion.

Corollary 3.7.4. The answer to Question[2.1.9 is affirmative, hence so is the
answer to the question of Humke and Laczkovich.

3.8 Proof of Theorem 2.1.4]

ProoF. Let W be the Laver model, that is, the model obtained by iteratively
adding we Laver reals with countable support over a model V satisfying the
Continuum Hypothesis, see [5] for the definitions and basic properties of this
model. For example, it is well-known that non(M) = ws in this model.

On the other hand, W satisfies the so called Laver property, an equivalent
form of which is the following;:
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If0<r<nandxz €[], 25 NW then there is

Te [[12"3* nv
kEw
such that (k) € T(k) for all kK € w. This follows from [5, Lemma 6.3.32] by
letting f(k) = 2¥", S(k) = {x(k)}, and using and arbitrary positive rational
number s < 3.
The following argument takes place in W. For every k € w let ¥y be a
bijection from 2*" to the set of all cubes of the form

ok’ ok ok 7 ok

where j; € 2% for each i € n.
For every T € ]_[kew[Qk”]QkE define

Ne=() U &0

kew jeT (k)

First we show that Ny € N. Note that the diameter of a cube of
side-length 55 is y/ng. Clearly, for every k € w we have HL, (Np) <
Hee (Ujerg 0x()) < ITW)] (Vi)™ = 285 (Viig)" = Va2 7%, which
tends to 0 as k tends to oo, therefore H. (Nr) = 0 and consequently, (as
it is easy to check that H"(H) = 0 iff H (H) =0), H" (Nr) = 0.

Next we finish the proof by showing that {Np : T € erw[an}z’“% NV}isa
cover of [0, 1] (note that |V| = w; in W, and also that if w; members of N7 cover

the unit cube then the same holds for R™, hence this implies cov(N) = wy). So
let z € [0,1]", then there exists @ € [];,, 2" such that z € ¥ (z(k)) for each

kew. Let T € erw[Qk"]Qk% NV be such that (k) € T'(k) for all k € w, then
it is easy to check that z € Ny, finishing the proof. O

3.9 Proof of Theorem 2.1.5|

Now we turn to the consistency of cov(M) < non(N;). First we need some
preparation.
For each k € w let M} € w be so large that

|
ok v —. 3.9.1

<Mk> < o (3:9.1)
Definition 3.9.1. Let Cp be the set of all cubes of the form

j70j0+1 % % jn—l jn—1+1
M, My M, M, ’

where j; € My, for each i € n. Let Cy consist of all sets that can be written as
the union of 2 elements of Cy.

Lemma 3.9.2. For every partition Cy, = |J;cor Xi there is some i € 2% such
that UX,; = [0,1]™.
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PrOOF. Otherwise, pick ; ¢ UX; and cubes @; € Cj containing x;, then
Uieor @i € Cy belongs to one of the X, yielding a contradiction. O

Definition 3.9.3. Now we define the norm function v: ¢, P(Cr) — w as
follows. For X C Cj, define v(X) > 1 if UX = [0,1]" and define v(X) > j+ 1
if for every partition X = X, U X7 there is ¢ € 2 such that v(X;) > j.

Lemma 3.9.4. v(Cy) > k + 1.

PROOF. Otherwise, we could iteratively split Cy into pieces so that at stage m
we have a partition into 2 many sets each with norm at most & — m, hence
eventually we could have a partition into 2¥ many sets none of which covers
[0,1]™, contradicting the previous lemma. O

Lemma 3.9.5. If X C C, and v(X) > j andy € [0,1]" thenv({H € X : y €
H}) >j-1.

PROOF. We may assume j > 1. Let Xo ={H € X :y € H} and X; = {H €
X :y ¢ H}. Then either v(Xg) > j—1>1or v(X;) > j— 1> 1. But note
that v(X1) # 1 since y ¢ UX;. O

In this section a finite sequence will mean a function defined on a natural
number, the length of the sequence ¢, denoted by |¢| is simply dom(¢). Moreover,
a tree will mean a set of finite sequences closed under initial segments. Then for
t,s € T we have t C s iff s end-extends ¢ and this partial order is indeed a tree
in the usual sense. For a t € T let us denote by succy(t) the set of immediate
successors of t in T'.

Now let us define the following forcing notion.
Definition 3.9.6. Let T € P iff
1) T is a nonempty tree,
2) for every t € T and k < |t| we have t(k) € Cy,

(1)

(2)

(3) for every t € T' we have succr(t) # 0,

(4) for every t € T there exists s € T, s D t with |succr(s)| > 1,
()

5) for every K € w the set {¢t € T : |succy(t)| > 1 and v(sucer(t)) < K} is
finite.

If T,T' € P then define
T<pT <= TcCT.

We will usually simply write < for <p. Clearly, 1p is the set of all finite sequences
satisfying .

Remark 3.9.7. A ¢t € T with [succr(t)] > 1 is called a branching node. For
t €T define T[t] ={se€T:sCtors Dt} Itiseasytoseethatift €T P
then T[t] e Pand Tt < T.
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Remark 3.9.8. Forcing notions of this type are discussed in [72] in great gen-
erality. However, in order to keep the section relatively self-contained we also
include the rather standard proofs here, but note that most of the techniques
below can already be found in [72].

Lemma 3.9.9. P is proper.

PRrROOF. Let 9 be a countable elementary submodel, and recall that T € P
is M-generic if for every dense open subset D C P with D € 9t we have
TIF“GNDNM#Q”, where G is a name for the generic filter. Also recall
that properness means that whenever a condition T" € 91 is given then there
exists an M-generic T" < T. We construct this 7’ by a so called fusion argument.

Let the sequence Dg, D1, ... enumerate the dense open subsets of IP that are
in 9. During the construction we make sure that all objects we pick (¢, s, t/, ¢/,
Ly, L; Ss, etc.) are in M. The whole construction, and hence T”, will typically
not be in 9.

We define the set of branching notes of T” ‘level-by level’ as follows. Let
t € T be a branching node with v(succy(t)) > 0 and set Lo = {t}. Also define
L§ = sucer(t). Moreover, for every s € L also fix a S < T'[s] with Sy € Dy
(this is possible, since Dy is dense). This finishes the Oth step of the fusion.

Now, if Lg, L, , and for every s € L} a condition S5 < T'[s] have already
been defined then for every s € L we pick a t, € S, with v(succs, (1)) > k+1.
Let Lyy1 = {t, : s € L}, and define L, | = Users suces, (). Now, for every
s’ e LZ‘H pick a Sy < S,[s'] with Sy € Dgyq1. This finishes the k + 1st step of
the fusion.

Finally, define 7" as the closure of | J,,, L+ under initial segments (this is
the same as the closure of | J,,, L; under initial segments). It is easy to check
that 77 € P and 77 < T. It remains to show that 7" is 9-generic. So let k € w
be fixed, and we need to show that 7" I “ G N D, NI £ 0 7.

Before the proof let us make three remarks. First, it is easy to see from the
construction that if 7”7 < T” then for every k € w there exists s € Lﬁ nT".
Second, it can also be seen from the construction that 7"[s] < S, for every s.
Third, if S € D N then obviously S IF“ GNDNM#£B”, since SIF“S e
GNnDNM™.

Now we prove T IF “ G N D N9 # 0 7. We prove this by showing that
for every T" < T’ there exists T < T" forcing this. Let T" < T’ be given.
Then, by the above remark there exists s € Lf NT". Set 7" = T"[s], then
clearly 7" < T". Finally, 7" = T"[s] < T'[s] < Ss € Dy NI, hence S; IF
“GNDNM+£D”, hence T" forces the same, finishing the proof. O

Lemma 3.9.10. If (Hg)kew € HpewCr then H'(,,c., UkZm Hi) =0.
PROOF. For every m € w, using (3.9.1), we have

1o [ U He ) <HL | U He| <D #H (H) <

mew k>m k>m k>m
w (V" 11
<Y*(n) <Z e
k>m k>m
hence Hio (M,new Ursm Hi) = 0, therefore H" (N, c, Upsm Hr) = 0. O
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Remark 3.9.11. In the usual way, by slight abuse of notation, the generic
filter G can be thought of as a sequence G = (Gg)rew € HiewCr. What we will
formally need is that if a generic filter G is given, then ()., T defines such a
sequence, hence GG, makes sense.

Lemma 3.9.12. If G is a generic filter over a ground model V then V[G] E
VN [0,1" € Mypew Ursm Gr-

Proor. Fix y € VN [0,1]". In order to show that 1p IF “ V N [0,1]" C
Nincw Upsm G 7 we show that for every 7' € P there is 7" < T forcing this.
So let T be given, and define 7" as follows. Starting from the root of T, we
recursively thin out T' such that for every t € T with v(succp(t)) > 1 we cut
off all the nodes s € sucer(t) with y ¢ s(|s| — 1). One can easily check using
Lemma that T € P and 7" < T. So it suffices to show that for every
m € w we have T" IF “ y € Ups,m Gy 7. Hence let T” < T be given, we need
to find T" < T" forcing this. Pick ¢t € T" with |[t| > m and v(succy~(t)) > 1.
This implies that the successors of ¢ were thinned out, hence y € s(|s| — 1) for
every s € succrw (t). Fix such an s, and define 7" = T"'[s]. Then T"" = T"[s] I+
“ G‘S|,1 = s(|s| = 1) >y 7, finishing the proof. O

Lemma 3.9.13. P is w¥-bounding.

PrROOF. For f,g € w* we write f < g if f(n) < g(n) for every n € w. Let
f € w* be a name. We claim that 1p I “ 3g € V N w* such that f <g” It
suffices to show that for every T there exists 7" < T and g € V Nw® such that
T« f < g 7. We will construct this T” by a fusion argument similar to that
of Lemma [3.9.91

Let t € T be a node with v(succy(t)) > 0 and set Lo = {t}. Also define
L$ = sucer(t). Moreover, for every s € L also fix a Sy < T[s] and m, € w
such that S IF “ f(O) = my 7 (this is possible by the basic properties of forcing).
This finishes the Oth step of the fusion.

Now, if Lk,L:, and for every s € L; a condition Sy < T'[s| have already
been defined then for every s € L} we pick a t, € Ss with v(succg, (t,)) > k+1.
Let Lyy1 = {t, : s € L;}, and define L} | = USeL; succg, (t.). Now, for every
s’ e L;H pick a Sy < Ss[s'] and my € w with Sy IF f(k: +1) = mg 7. This
finishes the k + 1st step of the fusion.

Finally, define 7" as the closure of | J, ., Lg under initial segments. It is
easy to check that 77 € P and 7" < T. Define g(k) = max{ms : s € L} (the
maximum exists, since this set is finite). It remains to show that 7" I+ ¢ f <g”.
So let k € w be fixed, and let T < T’ be given. Pick s € 7" N L, and define
T" = T"[s]. Then T" = T"[s] < S, I+ “ f(k) = ms ", hence T" I+ “ f(k) <
g(k) 7, finishing the proof. O

Theorem 3.9.14. [t is consistent with ZFC that cov(M) < non(N7).
PROOF. Let V be a model satisfying the Continuum Hypothesis, and let V,,
be the model obtained by an ws-long countable support iteration of P. Let

(Va)a<w, denote the intermediate models. Since PP is proper and adds a real, by
standard arguments the continuum is wy in V,,,.
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On the one hand, P is w*-bounding, hence so is its iteration. Therefore the
iteration adds no Cohen reals, hence the meagre Borel sets coded in V' cover
Vo, NR™, hence cov(M) = wy.

On the other hand, if H € V,,|H| = w; then, by a standard reflection
argument, H C V, for some a < ws. Hence, by Lemma [3.9.12] and Lemma
we have Vyy1 | H"(H) = 0. Therefore, since H"(H) = 0 means the
existence of certain covers, and by absoluteness the corresponding covers exist
in V,,,, we obtain V,,, = H"(H) = 0. Hence, non(N;) = wy. Therefore the
proof is complete. O

3.10 Proof of Theorem 2.2.6

ProOOF. We will show that there exists a nonempty perfect set Q C P and y € R
such that @ + y C Cgg. This is clearly sufficient, as then for x = —y we get
Q C (Cgk + )N P, so this intersection is uncountable. First we will construct
Q via a dyadic tree of basic intervals, then we will construct the “digits” of .

By translating P if necessary we can assume that P intersects (0, é) Instead
of P we may as well work with any nonempty perfect subset of it, for if we find
the set () inside this subset then this @ also works for P. So we may find a
nonempty perfect subset of P in [0, 4] and therefore we can assume that P itself
is inside [0, 4;]. Moreover, as P is uncountable and the endpoints of the basic
intervals form a countable set, we can find a nonempty perfect subset of P that
is disjoint from the set of endpoints (we used here twice the well known fact
that every uncountable Borel set contains a nonempty perfect set). Therefore
we can assume that P itself is disjoint from the endpoints.

Now we recursively pick an increasing sequence of levels (I;)?2, and for every

k choose a set Z;, C B, of size 2¥ such that

1. for each I € 7j, there are exactly two intervals in Z;, ,, (at level l41) that
are contained in I, the so called successors of I

2. for each I € Z;, we have INP # ()
3.0, > 2k2 41,

The recursion is carried out as follows. Fix py € P. Let [y = 5, and at
level 5 we pick the (unique) basic interval I containing pg in its interior. Let
Ti, = Zs = {I}. The recursion step is as follows. As P is disjoint from the
endpoints of the basic intervals, each interval I € Z;, (at level ;) contains some
point p; € P in its interior by condition 2] As P is nonempty perfect, we can
choose a distinct point p; € P in I. We can find a large enough n such that the
2F+1 distinet points p; and p; (I € Z;,) are all separated by B,,. Define

lk+1 = max{n, ok+3 4 1}.

Clearly, condition [3]is also satisfied.

Let 7y, ,, be the subcollection of Bj, ,, consisting of the 25! basic intervals
containing all the points p; and p’ (I € Z;,). This recursion clearly provides a
system of intervals satisfying the required properties.
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Now we can define -
Q=UZ.
k=0

Let us extend this tree of intervals to the intermediate levels in the natural
way, that is, for every I € Z;, and successor J € 7, , and every n € (Ig,lp41)
let us add to the tree the unique basic interval of level n that is contained in
I and contains J. For n = 2,3,4,5 define Z,, = {[0, %]} Hence we get Z,, for
every n = 2,3,... so that

NUz=NUn =
n=2 k=0

Our next goal is to define y = >, ¥ so that Q +y C Cgk. Define
Yo = Y3 = ys = ys = 0. For every n > 6 there exists k such that I <n < lgyq.
Clearly, the size of Z, is 2¢*!, and Q C UZ,. This means that there are at
most 2FF1 possible values for g,, where ¢ € @ and ¢ = > 7, I (we do not
have to worry about nonunique expansions, as @@ C P so @ is disjoint from the
endpoints of the basic intervals). For every such ¢,, there are at most two values
of m such that g, +m € {n—2,n—1}. Hence altogether there are at most 2-2++1
such “bad” values, so if n — 1 > 2-2k*+1 then we can fix a 5, € {0,1,...,n —2}
such that ¢, + y, ¢ {n —2,n — 1} for every possible ¢,,. But our requirement
on n and k, namely n — 1 > 2-2F+1 is clearly satisfied as n > [, > 2¥*2 41 by
condition Bl

So we can define

so that for every n > 6 we have y,, € {0,1,...,n — 2} and that for every ¢ € Q
with ¢ = Y7, © we have ¢, +y, ¢ {n—2,n—1}. We claim that Q+y C Cgk,
which will complete the proof. Fix ¢ € Q with ¢ = >_°7, ¢ then

n=2 nl’
> qn + ¥y > qn +Y ne >\ ne
_ n n o n n - n n
Q+y*Z n! *Z n! +Z n!’
n=2 n=2 n=2

where ¢, is the “carried digit”, so

|0 ifgnt+y,<n—1
v =1 1 otherwise.

Continuing the above calculation we get

0 Gn +y ne 00 c 00 an +y ne 00 c

_ n n n n o n n n n+1l

Q+y_z n! +Z(n_1)!—22 n! +Z nl
n=

n=2 n=2 n=1
> gn + Y ne, + € > qn + Y Ney + €
o n n n n+1 n n n n+1
=&+ Z nl - Z nl )

n=2 n=2
since €2 = 0 by e.g. y2 = 0. We now check that for every n > 2 the numerator
Gn + Yn — nen + eny1 € {0,1,...,n — 2}, which shows that ¢ + y € Cgk. For
n < 6 this is clear, as y, = 0 and also ¢, = 0 by the assumption P C [0, %]
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For n > 6 recall that ¢, <n—1, y, < n—2,50 ¢, +yn < 2n — 3 and also
that g, + yn ¢ {n — 2,n — 1}. We separate the cases ¢, = 0 and &, = 1.
If ¢, = 0, then ¢, + y, < n — 1, but then also ¢, + y, < n — 3. Therefore
Gn + Yn —NEp +Ent1 = Gn + Yn +Ent1 < n —2, and we are done. On the other
hand, if €, = 1, then ¢, + y, —ne, <N —3,80 qp + Yn — NER + Ept1 <N — 2,
so this case is also done. This completes the proof. O

3.11 Proof of Theorem 2.2.7

PROOF. It is clearly sufficient to cover the unit interval.

Fix f:w)\ {0,1} — w\ {0}. A set of the form S = TI$2,A,, where
A, € {0,1,...,n — 1} is of cardinality at most f(n) for every n is called an
f-slalom. Suppose lim,,_,o f(n) = oo, f(2) = f(3) = f(4) = f(5) = 1 and
also that f(n) < "T_l for every n > 6. Combining [5, Thm 2.3.9] and [4I]
Thm 2.10| we obtain a cover of TI2° ,{0,1,...,n—1} by cof(N) many f-slaloms
{Sa| a < cof(N)}. (We actually obtain a cover of w* first, which is a larger
space, so it is trivial to restrict this cover to get a cover of IS ,{0,1,...,n—1}.
Moreover, [5] works with inclusion mod finite, but that makes no difference,
as we can replace each slalom by countably many slaloms to get around this

difficulty.) For a slalom S define

S*{j{jiﬁ

n=2

(Sn)peq € S} .

Clearly {S*| o < cof(N)} covers the unit interval. The following lemma will
complete the proof of the theorem.

Lemma 3.11.1. Let f be as above and S be an f-slalom. Than there exists
y € R such that S* +y C Cggk.

PROOF. The proof is based on the ideas used in Theorem [2:2.61 S* plays the
role of (). Our goal is to define

with y,, € {0,1,...,n— 2} so that for every (s,),—, € S and for every n > 6 we
have s, + yn, ¢ {n —2,n — 1}. But this is clearly possible by our assumptions
on f, as there are at most f(n) < 25+ possibilities for s,,, hence there are two
consecutive values excluded, and so we can find a suitable y,, € {0,1,...,n—2}.

Then by the same calculation as in the last part of the proof of Theorem
2.2.6] we check that

oo

Sy +
> € Coc
n!
n=2
This completes the proof of the lemma. O
Hence for every a < cof(N) there exists y, such that S* + y, C Cgk,
but than for z, = —y, we have S} C Cgx + z,, S0 we obtain a cover of the
unit interval by cof(N) many translates of Cryx and therefore the proof of the
theorem is also complete. O
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3.12 Proof of Theorem [2.3.3

First we present some lemmas we use in the sequel. Probably most of them
are well-known, however, we could not find suitable references, so we could not
avoid including them. Let A denote one-dimensional Lebesgue measure, then
M., is the class of Lebesgue measurable sets. A Borel isomorphism is a bijection
such that images and preimages of Borel sets are Borel.

Lemma 3.12.1. Let d > 0, B C R" be Borel such that 0 < H%(B) < oo and
let I = [0,H%(B)]. Then there exists an isomorphism f between the measure
spaces (B, Myga, H?) and (I, My, \) that is also a Borel isomorphism.

PROOF. We may clearly assume H?(B) = 1. It is stated in [51], 12.B] that every
Borel set, hence B is a standard Borel space (that is, B is Borel isomorphic to
some Polish space). Hence we can apply [51, 17.41] which states that every
continuous (that is, singletons are of measure zero) probability measure on a
standard Borel space is isomorphic by a Borel isomorphism to Lebesgue measure
on the unit interval. O

Lemma 3.12.2. Let B C R” be a Borel set of infinite but o-finite H*-measure.
Then there exists an isomorphism f between the measure spaces (B, My, H?)
and ([0,00), My, \) that is also a Borel isomorphism.

PROOF. Define a system A of pairwise disjoint Borel subsets of B by transfinite
recursion, such that #?%(A) = 1 for every A € A. By o-finiteness this procedure
stops at some countable ordinal, so A is countable. Put m = H4(B\ UA). As
we can always find a Borel subset of H%measure 1 inside a Borel set of -
measure at least 1 (see e.g. [67, 8.20]), we obtain m < 1. In particular, A is
infinite, say A = {Ao, A1, ... }. By the previous lemma B\ U2 A; is isomorphic
to the interval [—m,0) (or more precisely to [—m, 0], but these two intervals are
isomorphic again by the previous lemma), and A; is isomorphic to [i,i + 1)
for every i. Therefore B is clearly isomorphic to [—m,c0) which is obviously
isomorphic to [0, 00). O

Lemma 3.12.3. Letn € N, d > 0 and H C R" be arbitrary. Then the following
statements are equivalent:

(i) H is H%-measurable,
(ii) HYB) = HYB N H) + HYB N HC) for every Borel set B C R™ with
0 < HYB) < oo,
(i4i) HN B is He-measurable for every Borel set B C R™ with 0 < H4(B) < oo,

(iv) For every Borel set B C R™ with 0 < H%(B) < 0o, we have HNB = AUN,
where A is Borel and N is H-negligible.

ProoF. (i) < By definition, the set H is H%measurable in the sense
of Carathéodory if and only if H4(X) = HYX N H) + HUX N HY) for every
X C R™. As outer measures are subadditive, this is equivalent to H¢(X) >
HUXNH)+HYXNH) for every X C R™. Once this inequality fails to hold,
using the Borel regularity of Hausdorff measures (see e.g. [67), 4.5]), there is a
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Borel set B D X such that H4(B) < HY( X NH)+HY (X NH). Therefore B is
of finite measure, moreover, H%(B) < H4(BN H) + H¥(BN H®), in particular,
B is clearly of positive measure.

(i) <= The third condition obviously implies the second one as H¢
is additive on measurable sets. So suppose (ii). It is enough to show that
HA(A) > HYAN (HNB))+HYAN (HN B)Y) for every Borel set A C R”
with 0 < H4(A) < co. We can assume that H¢(AN B) > 0, otherwise the above
inequality clearly holds, as the first term on the right hand side is 0, while the
second term is not greater than the left hand side. Now

HYA) > HYANB)+HYANBC) >
HYWANB)NH) +HY((ANB)NHS) + HY (AN BY) >
HUAN(HNB))+HY (AN (HNB)Y),

where the first inequality holds as B is measurable, the second one is applied
to AN B, and the third one follows from the subadditivity of H? since AN (H N
B)¢ is the (disjoint) union of (AN B) N HY and AN BC.

= As negligible sets are measurable, the fourth condition implies
the third, while we immediately obtain the other direction if we apply Lemma

B121to B. O

Remark 3.12.4. We could also assume that the above B is compact, but we
will not need this fact.

The following lemma is essentially [36] 2.5.10]. Recall that C'H abbreviates
the Continuum Hypothesis.

Lemma 3.12.5. Let 0 < d < n and suppose CH holds. Then there exists a
disjoint family {Ba : o < w1} of Borel subsets of R™ of finite H-measure, such
that a set H C R™ is H%-measurable iff H N By is H-measurable for every
o < wi.

PrOOF. Let {A, : @ < w1} be an enumeration of the Borel subsets of R™ of
positive finite H%-measure, and put B, = A, \ (Us<aAp). These are clearly
pairwise disjoint Borel sets of finite H?%measure. The other direction being
trivial we only have to verify that if H C R” is such that H N B, is H’-
measurable for every a < wi, then H itself is He-measurable. By Lemma
we only have to show that H N A, is H%measurable for every o < w;.
But A, = Ug<aBg, therefore H N Ay = Ug<o(H N B,), which is clearly H4-
measurable, which completes the proof. 0

Lemma 3.12.6. Let 0 < d < n and suppose CH holds. Then there ezists a
disjoint family {Ss : o < wy} of Borel subsets of R™ of infinite but o-finite H?-
measure, such that a set H C R™ is H-measurable iff HN S, is H%-measurable
for every a < wy.

Proor. First we check that uncountably many B, of Lemma are of
positive H%-measure. Otherwise, as R” is not o-finite and as by [67, 8.20] every
Borel set of infinite %-measure contains a Borel set of H%-measure 1, we could
find a Borel set of positive and finite measure that is disjoint from these B,,.
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But this set was enumerated as A, for some «, moreover A, = Ug<oBg. Since
A, is disjoint from all Bg of positive measure, by CH, countably many zerosets
cover A, so it is a zeroset, a contradiction.

This obviously implies that for some integer N uncountably many B, are
of measure at least % Now we can recursively define a partition of the set of
countable ordinals into countable intervals {I, : @ < w;} such that for every
« the He-measure of Ugecr, Be is infinite. On the other hand, this measure is
clearly o-finite. Now we check that S, = Uges, By works. Every S, is clearly
a Borel subsets of R™ of infinite but o-finite H%measure. Now we have to
show that the last statement of the lemma holds, namely that H%measurability
“reflects” on the sets S,. One direction is trivial, so in order to prove the other
one let us assume that H NS, is H4-measurable for every a < wi. We have to
show that H is H%measurable. But this is obvious by the previous lemma, as
every B, can be covered by some Sg, hence H N B, = B, N (H N Sg) which is
measurable. |

Lemma 3.12.7. Assume CH. A set H C R" is of o-finite H-measure iff it
can be covered by countably many of the above S,,.

PROOF. One direction is trivial. For the other one we can assume that H C R"
is of finite H?-measure. There exists a Borel set B of positive finite H?-measure
containing H. This set was enumerated in Lemma [3.12.5 as A, for some «, so
by CH it can be covered by countably many B, hence also by countably many
Se- |

Now we are able to complete the proof of Theorem [2.3.3

PrROOF. Find two partitions {S% : o < w1} and {S% : o < wq} of R™ as in
Lemma By Lemma find isomorphisms f, : S& — S92 for every
a. Define f = Ug<w, fo- We have to check that f is an isomorphism. First we
prove that f preserves measurable sets. Suppose H € Myq4,. By Lemma|3.12.6
it is sufficient to show that f(H) N S% € My, for every . But f(H)NS% =
folH N S%) which is H%-measurable as f,, is an isomorphism. Similarly, f~*
also preserves measurable sets. Now we show that f preserves measure. (Again,
the same argument works for f~!.) As mentioned in the Introduction it is
enough to show this for measurable sets. First, f preserves non-o-finiteness
since it clearly preserves the property that characterises o-finiteness in Lemma
3.12.7] so we can restrict ourselves to o-finite sets. But such a set is partitioned
by the countably many S% that cover it, and the countably many isomorphisms
fa preserve measure, so the proof is complete. (Il

Remark 3.12.8. If d = 0 then all subsets of R™ are measurable, while if d = n
then H? is o-finite, therefore the theorem cannot be extended to these cases.

As we already mentioned in the Introduction, it is unknown whether CH
can be dropped from the theorem, but the paper [73] is a huge step in this
direction.

3.13 Proof of Theorem 2.4.2|

PRrOOF. Denote by C[0, 1] the Banach space of continuous real-valued functions
defined on [0,1]. We say that g € C[0,1] is Holder continuous of exponent «
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and constant K if [g(x) — g(y)| < K|z — y|* for every z,y € [0, 1]. Length of an
interval I is denoted by |I|.

First we show that it is sufficient to prove that for all integers N, M > 0 the
set

D(N,M) = {f € Cl0,1]: H " F ({f = g}) < 5

for every Holder function g of exponent o and constant 1}

contains a dense open subset of C[0,1]. Indeed, this implies that the set
D =nY_, N3g_y D(N, M) contains a dense G5 set, hence is residual, which in
turn implies that the typical continuous function does not agree with a Holder
continuous function of exponent « and constant 1 on any set of Hausdorff di-
mension larger than 1 — a. Moreover, the map f — K f is a homeomorphism of
C[0,1], hence KD = {K f : f € D} is residual for every K. Therefore N%¥_, KD
is also residual, and so the typical continuous function does not agree with a
Holder continuous function of exponent a on any set of Hausdorff dimension
larger than 1 — a.

Now we show that we can assume 0 < a < 1. Indeed, if the statement of
the theorem holds for 1 — % for every L, then intersecting the corresponding
sequence of residual subsets of C[0, 1] we obtain the case a = 1.

Now what remains to be proven is that D(N, M) contains a dense open set.
Let fo € C[0,1] and ro > 0 be given. The closed ball centred at fy and of
radius r¢ is denoted by B(fo,70). We have to find f; € C[0,1] and r; > 0 such
that B(f1,71) C B(fo,70) N D(N, M). By uniform continuity of fy, for a large
enough integer m, the inequality |z — y| < 2 implies |fo(x) — fo(y)| < 2. The
exact value of m will be chosen later. Let k& be another positive integer to be
fixed later. (For those who like to see the explicit choice of the constants in
advance, k and m will be chosen so that, in addition to the above requirement
concerning uniform continuity, the inequalities and below are
satisfied. The straightforward calculation that this choice is indeed possible can
be found in the last paragraph of the proof.)

Now we define the piecewise constant function f; as follows. For a pair of
integers 0 < i <m and 0 < j < k set
" i j i j+1
ok mtmE ST m T

fi(x) = fol

1 r
7) + ;10
m

Put fi(1) = fo(1). Now choose a finite system Z of pairwise disjoint open
intervals covering 1 and all numbers of the form = 4 -L- such that

1
STjirery < 53" (3.13.1)
IeT

We can clearly choose a continuous f; € C[0, 1] which is linear on each I € Z,
agrees with f outside UZ and satisfies f1(0) = fo(0) and f1(1) = fo(1). Denote
the supremum-norm of a not necessarily continuous function f by ||f||. One can
easily check that || fo — fi|| < 2ro and that ||f1 — f1|| < 2rg, hence || fo — f1]] <
2rg. So if we put ri = 5% < ™ then B(f1,71) C B(fo,70). Now we claim that

5 ~ 20k
the inequality
2 « To
— — 13.2
(mk:) < 10k (3.13.2)
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implies that for every f € B(fi,71), every Holder continuous function g of
exponent a and constant 1 and every fixed 0 < ¢ < m, there is at most one
0 < j < k such that ({f =g} N (L + ﬁ,# + %)) \ UZ # (). Indeed, by the
concavity of the function z® it is enough to check that for this fixed i the graph
of f and g cannot meet over two consecutive intervals of the k intervals of length

ﬁ, but this is clear from the fact that the value of f; ‘jumps’ by £%, moreover

£ — 211 = {g, and from (3.13.2)).
This means that {f = g} can be covered by the elements of Z and by m

ot L
intervals of length ﬁ Before we use this fact to estimate 7—[:}0 o {f =g},

we need some more preparations.

By rearranging (|3.13.2)) we obtain

1
r —a o
k<( 0 )1 mi-a,

10 - 2«
and we will also make sure that even the following holds.
1( 10 )’ %<k<( 10 )f = (3.13.3)
= mi-« mi-« 3.
2 \10 -2« 10 - 2«
The last condition we need for the estimation of the Hausdorff capacity is
that
1\t
— —. 3.13.4
" <mk> <3 (3:13.4)

Indeed, together with (3.13.1) this implies that Heo “" %({ f =g} < 4 for
every f € B(f1,r1) and every Holder continuous function g of exponent o and
constant 1. Using the left hand side of (3.13.3)) we obtain

C(l—a+ L
. 1 1—o¢+%< 1( ro )ﬁ ¢ +N)m1_(1_a+%)_a<1ﬁ:%>
mk 2 \10-2¢ ’

(3.13.5)
and as the exponent
1. all—a+) 1
1-(1- —) - N — 0
( a+N) 11—« (1—a)N< ’
we can choose a large enough m such that (3.13.4)) holds, and then we can fix k
according to (3.13.3)), so the proof is complete. O

3.14 Proof of Theorem [2.4.3|

PROOF. The proof is similar to that of Theorem As usual, total variation
of a function g is denoted by

n
Var(g) = sup {Z lg(z;) —g(zi—1)|:neN, 0=zp <1 < - <xp = 1} .
i=1
It is sufficient to prove that for all integers N, M > 0 the set
1.1 1
{f € C[0,1] : éOJ”{’ {f=9} < i for every g with Var(g) < 1} (3.14.1)
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contains a dense open set. Given f, and ro define f; as in Theorem with
m and k yet unspecified. (In fact, we will choose m = k so that |z —y| < 2
implies | fo(x) — fo(y)| < %2 and so that the right hand side of (3.14.3)) below is
smaller than 17.)

Choose 7 such that

1
STEtY < —, (3.14.2)
and define f; and ry as before.

Now for every f € B(f1,71), g as in (3.14.1)), and fixed 0 < ¢ < m, denote ;
the number of intervals over which the graph of f and g meet outside UZ; that

is,
i=#{is (=0 (s+ L S+ ) )z e).

As the ‘jumps’ of f; are of height £, moreover £ — 2ry = g, it is easily seen
that Var(g) > 37" (fo (i — 1)) = 2o (Z?izlll —m). Thus Var(g) <1

implies that Z:i_ll l;; that is, the number intervals of length ﬁ needed to
cover {f = g} \ UZ is at most m + %.

Choose k = m. Then HEOJF%({f = g}) can be estimated by (3.14.2)) and

1
1 1\2" 1
<m T Om> (2> - (0 4 1> m-%, (3.14.3)
To m To

which is smaller than ﬁ if m is large enough. O

el

3.15 Proof of Theorem 2.5.4]

It is well-known and easy to check that L is of Lebesgue measure zero, dense,
G5 and periodic mod Q (that is, L+ ¢ = L for every ¢ € Q). Hence our theorem
is a corollary to the following.

Theorem 3.15.1. Let B C R be a nonempty Gs set of Lebesgue measure zero.
Assume that {t € R: B+t C B} is dense in R. Then B is immeasurable.

The proof of Theorem will be based on two lemmas. The first one is
reminiscent of [70], where similar results are proved for finite measures using
more complicated methods.

Lemma 3.15.2. Let B be a Borel set of Lebesgue measure zero and pu a Borel
measure on R for which B is positive and o-finite. Then

(i) w(BN(B+1t)) =0 for A\-a.e. t,
(11) there exists a Borel set B' C B with u(B') > 0 and int(B' — B') =0,
(i11) there exists a compact set C' C B with p(C) > 0 and int(C' — C) =0

Lemma 3.15.3. Let B be a dense G5 set such that {t € R : B+t C B} is
dense in R, and C C B be a compact set with int(C — C') = 0. Then there are
uncountably many (in fact, continuum many) disjoint translates of C inside B.
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It is easy to see that applying Lemma [3.15.3| to C' of Lemma [3.15.2
yields Theorem

In the rest of the section we prove the two lemmas.
PROOF. (Lemma[3.15.2) (i) Let p: S — [0, 00] be the given measure, where S
is a o-algebra of subsets of R containing all Borel sets. Define a new measure
uB by
up(S) =pu(BNS) for every S € S.

up is clearly a o-finite Borel measure on R. Define
B=/{(z,y) eR*: 24y c B}.

This is clearly a Borel set, hence up X A-measurable. As both measures are
o-finite, we can apply the Fubini theorem to B. Vertical sections of B are of
the form

{yeR:z+yeB}={ycR:yeB—-z}=B—u,

therefore are all of Lebesgue measure zero. By Fubini, [ug x AJ(B) = 0, and
so A-a.e. horizontal section of B is of pp-measure zero. A horizontal section is
{zr e R:x+y € B} = B —y, therefore for M\-a.e. y we obtain 0 = up(B —y) =
w(BN (B —1y)). Replacing y by —t yields the result.

By @) we can choose a countable dense set D C R such that u(BnN (B +
d)) = 0 for every d € D. Define

B' =B\ | J(B+d).
deD

It is easy to check that u(B’) = u(B) > 0 and DN (B’ — B’) = 0, so the proof
of is complete.

It is sufficient to find a compact set C C B’ of positive y-measure. Since
B’ C B, B’ is o-finite for p. Let B’ = U2 ,S,,, where S, € S and u(S,) < oo.
Since p(B') > 0, there exists S = S,, C B’ such that 0 < u(S) < co. Define

ns(A) = p(SNA) for every Borel set A C R.

Note that in contrast with the above pp, this time the measure is defined only
for Borel sets.

s is clearly a finite measure on the Borel sets, hence inner regular
w.r.t. compact sets [5I, Thm 17.11]. Apply this to B’, a Borel set with
us(B") = p(SNB) = pu(S) > 0, and obtain a compact set C C B’ with
ps(C) =pu(SNC) > 0. So u(C) > 0 follows, and the proof of Lemma [3.15.2] is
complete. O

PROOF. (Lemma [3.15.3) Let
T={teR:C+tC B}.

B is G, so there are open sets U, such that B = NS U,,. Clearly C +1t C
Mo oUy iff C' 4+t C U, holds for every n € N. Therefore T' = N5 (G, where
G,={teR:C+tcCU,}. AsC is compact and U, is open, G,, is open. Note
that G, is also dense by our assumption.
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It is clearly sufficient to construct a Cantor set P C T with the property that
(C+po)N(C+p1) = (0 holds for every pair of distinct points pg, p1 € P. We define
P via a usual Cantor scheme as follows. Let 2™ stand for the set of 0-1 sequences
of length n. We define nondegenerate compact intervals I for every n € N and
s € 2" by induction on n (we also make sure that at level n all intervals are of
length at most 1). Fix Iy such that Iy C Go. Once I is already defined for some
s € 2™, we pick x € I;NG,41. As G4 is open dense and C'—C' is nowhere dense
we can find y € [I; N Gpyq] \ [(C — C) + z]. This ensures (C'+2z)N(C+y) =0,
as otherwise ¢y + & = ¢; + y for some co,c; € C, s0y = (cg —c1) + x, a
contradiction. By compactness we can find disjoint Is~¢, [s~1 C I;NGpq1 such
that z € I;~¢, y € Is~1 and (C + [SA()) N (O + Isﬁl) = 0.

Now define -
r= U L

n=0 se2™

Then clearly P is a Cantor set, P C T = N32,G,, as Iy C G, for every n and
s € 2. Moreover, if pg,p1 € P, pg # p1 then there are n and s € 2™ such that
po € Is~o and p; € I~ (or the other way around), but then (C+py)N(C+p1) =
() holds since (C' + Is~q) N (C + Is~1) = 0. This completes the proof of Lemma
9.19.9 |

3.16 Proof of Theorem 2.6.5|

PROOF. Let B C R? be an arbitrary Borel set with dimy(B) = 3. Let
f :R3® = B be an arbitrary Borel map. Then [67, Theorem 1.4] states that for
every Borel set A C R™, Borel map f: A — R™ and 0 < d < 1 there exists a
Borel set D C A such that dimy D = d-dimg A and dimy f(D) < d-dimg f(A).
Applying this withn=m =3, A=R3, and d = % we obtain that there exists
a Borel set D C R? with dimy (D) = & such that dimp (f(D)) < 1t -5 = 4.
Then dimy (D) > 2 and dimg(f(D)) < 2, therefore f(D) € I3, ;;,, but
f~Yf(D)) > D ¢1I;, ;, Since f was arbitrary, the choice I = f(D) shows

that I??)[F Fin is not homogeneous. O
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