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Introduction

The aim of this dissertation is to describe certain connections between two
seemingly far away fields of mathematics, namely set theory and analysis. This
connection is classical in the first chapter of the dissertation, which is concerned
with descriptive set theory, an area traditionally involving both set theory and
analysis. However, in the second chapter we present numerous instances of this
connection that are of rather surprising nature. Sometimes questions about
Hausdorff measures turn out to be independent of the usual Zermelo-Fraenkel
Axioms (ZFC) of mathematics, sometimes the solutions of questions concerning
Hausdorff measures require set theoretical techniques, and in one instance a
purely set theoretical question is answered with the help of Hausdorff measures.

Let us now briefly outline the main results, and say a few words about the
organisation of the dissertation. First, in Chapters 1 and 2 we describe our
results, and also briefly indicate some key ingredients of the proofs. The formal
proofs are all postponed to Chapter 3.

Chapter 1 is concerned with descriptive set theory, which is the study of
definable (open, closed, Gδ, Fσ, Borel, etc.) subsets of Rn, or more generally, of
Polish spaces. (A topological space is Polish, if it has a countable dense subset,
and its topology can be induced by a complete metric. For the basic notions
and terminology of the dissertation we refer the reader to the next chapter.)

Section 1.1 presents the solution to and old problem of M. Laczkovich. In
the 1970s he posed the following problem: Let B1(X) denote the set of Baire
class 1 functions defined on an uncountable Polish space X equipped with the
pointwise ordering. (A function is of Baire class 1 if it is the pointwise limit of
continuous functions.)

Characterise the order types of the linearly ordered subsets of B1(X).

The main result of the section is a complete solution to this problem.
We prove that a linear order is isomorphic to a linearly ordered fam-

ily of Baire class 1 functions iff it is isomorphic to a subset of the follow-
ing linear order that we call ([0, 1]<ω1

↘0 , <altlex), where [0, 1]<ω1

↘0 is the set of
strictly decreasing transfinite sequences of reals in [0, 1] with last element 0, and
<altlex, the so called alternating lexicographical ordering, is defined as follows:
if (xα)α≤ξ, (x

′
α)α≤ξ′ ∈ [0, 1]<ω1

↘0 are distinct, and δ is the minimal ordinal where
the two sequences differ then we say that

(xα)α≤ξ <altlex (x′α)α≤ξ′ ⇐⇒ (δ is even and xδ < x′δ) or (δ is odd and xδ > x′δ).

Using this characterisation we easily reprove all the known results and answer
all the known open questions of the topic. The material of this section can be
found in [32].
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Section 1.2 presents solutions to problems of J. Mycielski and D. H. Fremlin.
Polish groups have recently been playing a central role in modern descriptive
set theory. Let G be an abelian Polish group, e.g. a separable Banach space. A
subset A ⊂ G is called Haar null (in the sense of Christensen) if there exists a
Borel set B ⊃ A and a Borel probability measure µ on G such that µ(B+g) = 0
for every g ∈ G. The term shy is also commonly used for Haar null, and co-Haar
null sets are often called prevalent.

Answering an old question of J. Mycielski we show that if G is not locally
compact then there exists a Borel Haar null set that is not contained in any
Gδ Haar null set. We also show that Gδ can be replaced by any other class of
the Borel hierarchy, which implies that the so called additivity of the σ-ideal of
Haar null sets is ω1.

The definition of a generalised Haar null set is obtained by replacing the
Borelness of B in the above definition by universal measurability. We give an
example of a generalised Haar null set that is not Haar null, more precisely we
construct a coanalytic generalised Haar null set without a Borel Haar null hull.
This solves Problem GP from Fremlin’s problem list. Actually, all our results
readily generalise to all Polish groups that admit a two-sided invariant metric.

We also answer one half of Problem FC from Fremlin’s list, which asked
if we can simply leave out the Borel set B from the definition of Haar null
sets. Fremlin noted that the answer was in the negative under the Continuum
Hypothesis, but we provide a ZFC counterexample in R. The material of this
section can be found in [33] and [29].

Section 1.3 solves a problem posed by the author and M. Laczkovich. In
1990 Kechris and Louveau developed the theory of three very natural ranks on
the Baire class 1 functions. A rank is a function assigning countable ordinals to
certain objects, typically measuring their complexity. We extend this theory to
the case of Baire class ξ functions, and generalise most of the results from the
Baire class 1 case. We also show that their assumption of the compactness of
the underlying space can be eliminated. As an application, we solve a problem
concerning the so called solvability cardinals of systems of difference equations,
arising from the theory of geometric decompositions. We also indicate that
certain other very natural generalisations of the ranks of Kechris and Louveau
surprisingly turn out to be bounded in ω1, and also that all ranks satisfying
some natural properties coincide for bounded functions. The material of this
section can be found in [24].

Section 1.4 investigates the four versions of the following problem. Does
there exist a monotone (wrt. inclusion) map that assigns a Borel/Gδ hull to every
negligible/measurable subset of [0, 1]? (A hull of A ⊂ [0, 1] is a set H containing
A such that λ∗(H) = λ∗(A).) We prove that all versions are independent of
ZFC. We also answer a question of Z. Gyenes and D. Pálvölgyi which asks if
monotone hulls can be defined for every chain (wrt. inclusion) of measurable
sets. We also comment on the problem of hulls of all subsets of [0, 1]. The
material of this section can be found in [27].

Now we turn to Chapter 2.
Section 2.1 deals with certain problems from the theory of cardinal invariants

of the continuum. One of the most often cited areas of set theory is that of the
so called Cichoń Diagram. This diagram does not only describe all the ZFC
inequalities between the ten most commonly used cardinal invariants, but it is
also known that every assignment of the cardinals ω1 and ω2 to these invariants
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that is permitted by the diagram is indeed consistent with ZFC.
The problem we consider in this section is how to fit the cardinal invariants of

the nullsets of Hausdorff measures into the diagram. Let 0 < r < n, and N r
n be

the σ-ideal of sets in Rn of r-dimensional Hausdorff measure zero. D. H. Fremlin
determined the position of the cardinal invariants of this σ-ideal in the Cichoń
Diagram, see the figure after Definition 2.1.1 below. This required proving
numerous inequalities, but the hard and more useful questions are tipically if
the inequalities can be strict in certain models. For one of the remaining ones
Fremlin posed this as an open question in his monograph [38]. We answer this by
showing that consistently cov(N r

n) > cov(N ). We also prove that the remaining
two inequalities can be strict. The proofs use the technique of forcing.

To demonstrate how this result can be used outside of the theory of cardinal
invariants, we solve the following problem of P. Humke and M. Laczkovich [47].
Is it consistent that there is an ordering of the reals in which all proper initial
segments are Lebesgue null but for every ordering of the reals there is a proper
initial segment that is not null with respect to the 1/2-dimensional Hausdorff
measure? We determine the values of the cardinal invariants of the Cichoń
Diagram as well as the invariants of the nullsets of Hausdorff measures in one of
the models of ZFC mentioned in the previous paragraph, and as an application
we answer this question of Humke and Laczkovich affirmatively. The material
of this section can be found in [31].

In Section 2.2 we answer a question of Darji and Keleti by proving that
there exists a compact set CEK ⊂ R (first considered by Erdős and Kakutani)
of measure zero such that for every nonempty perfect set P ⊂ R there exists
x ∈ R such that (CEK + x) ∩ P is uncountable. Using this CEK we answer a
question of Gruenhage by showing that it is consistent with ZFC (as it follows
e.g. from cof(N ) < 2ω) that less than 2ω many translates of a compact set of
measure zero can cover R. The material of this section can be found in [30].

In Section 2.3 we show that the Continuum Hypothesis implies that for every
0 < d1 ≤ d2 < n the measure spaces

(
Rn,MHd1 ,Hd1

)
and

(
Rn,MHd2 ,Hd2

)
are isomorphic, where Hd is d-dimensional Hausdorff measure andMHd is the
σ-algebra of measurable sets with respect to Hd. This is motivated by the
well-known question (circulated by D. Preiss and sometimes attributed to B.
Weiss as well, and later solved in the negative by A. Máthé) whether such an
isomorphism exists if we replace measurable sets by Borel sets. The material of
this section can be found in [21].

Section 2.4 investigates the related question whether every continuous func-
tion (or the generic continuous function in the sense of Baire category) is Hölder
continuous (or is of bounded variation) on a set of positive Hausdorff dimen-
sion. We proved some nonzero upper estimates for these dimensions, which later
turned out to be sharp. The material of this section can be found in [21].

Section 2.5 solves a problem of R. D. Mauldin by showing that the set of
Liouville numbers is either null or non-σ-finite with respect to every translation
invariant Borel measure on R, in particular, with respect to every Hausdorff
measure Hg with gauge function g. We also indicate that some other sim-
ply defined Borel sets like the set of non-normal or some Besicovitch-Eggleston
numbers, as well as all Borel subgroups of R that are not Fσ possess the above
property. We discuss that, apart from some trivial cases, the Borel class, Haus-
dorff or packing dimension of a Borel set with no such measure on it can be
arbitrary. The material of this section can be found in [23].
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Section 2.6 considers a question of J. Zapletal. He asked if all the forcing
notions considered in his monograph [80] are homogeneous. We prove that e.g.
the σ-ideal consisting of Borel sets of σ-finite 2-dimensional Hausdorff measure in
R3 is non-homogeneous. This is a surprising instance when Hausdorff measures
are used to answer a set theoretical question! The material of this section can
be found in [31].
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Basic definitions, notation
and terminology

In this chapter we collect the notions and definitions that show up multiple
times throughout the dissertation. However, to keep the sections somewhat
self-contained, occasionally we will recall these notions and definitions when we
feel it is necessary. The notions that are only used in a single section are defined
within the section in question.

For descriptive set theory the basic reference is [51], for set theory it is [55]
and [50], and for geometric measure theory (mainly Hausdorff measures) it is
[67] and [35].

Throughout the dissertation, let X = (X, τ) = (X, τ(X)) be a Polish space,
that is, a separable and completely metrisable topological space.

We define the ξth additive, multiplicative and ambiguous Borel classes of X,
in notation Σ0

ξ(X), Π0
ξ(X) and ∆0

ξ(X), respectively, as follows.
Let, by transfinite recursion,

Σ0
1(X) = τ = the class of open sets,

for every 1 ≤ ξ let
Π0
ξ(X) = {X \H : H ∈ Σ0

ξ(X)},

and for or every 1 < ξ let

Σ0
ξ(X) = {∪∞i=1Hi : ∀i Hi ∈ ∪η<ξΠ0

η(X)}.

Finally, for every 1 ≤ ξ let

∆0
ξ(X) = Σ0

ξ(X) ∩Π0
ξ(X).

We typically simply write Σ0
ξ , Π

0
ξ and ∆0

ξ , when there is no danger of confusion.
It is well known that this hierarchy, called the Borel hierarchy, stabilises at
Σ0
ω1

(X) = Π0
ω1

(X) = the class of Borel sets.
For example, A ∈ ∆0

2 iff A is Fσ (countable union of closed sets) and Gδ
(countable intersection of open sets) at the same time.

Let us now turn to the hierarchy of functions. For f : X → R we define
f ∈ B0(X) if f is continuous, and for 1 < ξ we say that f ∈ Bξ(X) if there
exists a sequence (fi)

∞
i=1 ⊂ ∪η<ξBη(X) converging pointwise to f . In such a

case we also say that f is of Baire class ξ. Again, we typically drop X from
the notation. It is well known that this hierarchy, called the Baire hierarchy,
stabilises at Bω1 = the class of Borel measurable functions.
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For a real valued function f on X and a real number c, we let {f < c} =
{x ∈ X : f(x) < c}. We use the notations {f > c}, {f ≤ c}, {f ≥ c}, {f = c}
and {f 6= c} analogously. It is well-known that a function is of Baire class ξ iff
the inverse image of every open set is in Σ0

ξ+1 iff {f < c} and {f > c} are in
Σ0
ξ+1 for every c ∈ R.
Specifically, a function f is of Baire class 1 iff it is the pointwise limit of

continuous functions iff the preimage of every open set under f is in Σ0
2 iff

{f < c} and {f > c} are in Σ0
2 for every c ∈ R. This easily implies that a

characteristic function χA is of Baire class 1 if and only if A ∈ ∆0
2. The above

equivalent definitions also imply that semi-continuous functions are of Baire
class 1.

A set is called analytic if it is the continuous image of a Borel subset of a
Polish space. A set is coanalytic if its complement is analytic. A set is called
universally measurable if it is measurable with respect to the completion of
every Borel probability measure. Analytic and coanalytic sets are known to be
universally measurable.

Let us now fix a compatible metric d on X. The symbol K(X) will stand
for the set of the nonempty compact subsets of X endowed with the Hausdorff
metric, that is, for K1,K2 ∈ K(X)

dH(K1,K2) = inf{ε : K1 ⊂ Uε(K2), K2 ⊂ Uε(K1)},

where Uε(H) = {x ∈ X : ∃y ∈ H d(x, y) < ε}. It is well known that if
X is Polish then so is K(X), and the compactness of X is equivalent to the
compactness of K(X).

Every ordinal is identified with the set of its predecessors, in particular,
2 = {0, 1}. The cardinality of the continuum is denoted by 2ω and also by c.

For a set H we denote the closure, cardinality and complement of H by H,
|H| and Hc, respectively.

Let I be a σ-ideal on a Polish space X, that is, a nonempty collection of
subsets of X closed under subsets and countable unions, and not containing X.
The two most important classical examples areN , the class of Lebesgue nullsets,
andM, the class of meagre sets (a set is nowhere dense if it is not dense in any
nonempty open set, and a set is meagre if it is the countable union of nowhere
dense sets). Moreover, one also often encounters the σ-ideal K of subsets of the
irrational numbers that are coverable by countably many compact subsets of
the irrationals. For a σ-ideal let us define the four main cardinal invariants as
follows.

add(I) = min{|A| : A ⊂ I,
⋃
A /∈ I},

cov(I) = min{|A| : A ⊂ I,
⋃
A = X},

non(I) = min{|H| : H ⊂ X,H /∈ I},
cof(I) = min{|A| : A ⊂ I, ∀I ∈ I ∃A ∈ A, I ⊂ A}.

These invariants are called the additivity, covering number, uniformity, and
cofinality of I, respectively.

The r-dimensional Hausdorff measure of a set A ⊂ Rn is

Hr(A) = lim
δ→0+

Hrδ(A), where

Hrδ(A) = inf

{ ∞∑
k=0

(diam(Ak))r : A ⊂
∞⋃
k=0

Ak, ∀k diam(Ak) ≤ δ

}
.
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The Hausdorff dimension of a set A is defined by

dimH(A) = inf{r : Hr(A) = 0}.

If g : [0,∞)→ [0,∞) is a nondecreasing function with g(0) = 0 then we may
also define the generalised Hausdorff measure with gauge function g, in symbol,
Hg such that in the above definition we replace (diam(Ak))r with g(diam(Ak)).

A subset of a Polish space is called perfect if it is closed and has no isolated
points. Nonempty perfect sets are of cardinality continuum.
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Chapter 1

Descriptive set theory

1.1 Linearly ordered families of Baire class 1
functions

Let F(X) be a class of real valued functions defined on a Polish space X, e.g.
C(X), the set of continuous functions. The natural partial ordering on this space
is the pointwise ordering <p, that is, we say that f <p g if for every x ∈ X we
have f(x) ≤ g(x) and there exists at least one x such that f(x) < g(x). If we
would like to understand the structure of this partially ordered set (poset), the
first step is to describe its linearly ordered subsets.

For example, if X = [0, 1] and F(X) = C([0, 1]) then it is a well known
result that the possible order types of the linearly ordered subsets of C([0, 1])
are the real order types (that is, the order types of the subsets of the reals).
Indeed, a real order type is clearly representable by constant functions, and
if L ⊂ C([0, 1]) is a linearly ordered family of continuous functions then (by
continuity) f 7→

∫ 1

0
f is a strictly monotone map of L into the reals.

The next natural class to look at is the class of Lebesgue measurable func-
tions. However, it is not hard to check that the assumption of measurability is
rather meaningless here. Indeed, if L is a linearly ordered family of arbitrary
real functions and ϕ : R→ R is a map that maps the Cantor set onto R and is
zero outside of the Cantor set then f 7→ f ◦ ϕ is a strictly monotone map of L
into the class of Lebesgue measurable functions.

Therefore it is more natural to consider the class of Borel measurable func-
tions. However, P. Komjáth [53] proved that it is already independent of ZFC
whether the class of Borel measurable functions contains a strictly increasing
transfinite sequence of length ω2.

The next step is therefore to look at subclasses of the Borel measurable
functions, namely the Baire hierarchy. Komjáth actually also proved that in his
above mentioned result the set of Borel measurable function can be replaced
by the set of Baire class 2 functions. This explains why the Baire class 1 case
seems to be the most interesting one. We note that Baire class 1 functions play
a central role in various branches of mathematics, most notably in Banach space
theory, see e.g. [1] or [45].

Back in the 1970s M. Laczkovich [59] posed the following problem:
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Problem 1.1.1. Characterise the order types of the linearly ordered subsets of
(B1(X), <p).

We will use the following notation:

Definition 1.1.2. Let (P,<P ) and (Q,<Q) be two posets. We say that P
is embeddable into Q, in symbols (P,<P ) ↪→ (Q,<Q), if there exists a map
Φ : P → Q such that for every p, q ∈ P if p <P q then Φ(p) <Q Φ(q). (Note that
an embedding may not be 1-to-1 in general. However, an embedding of a linearly
ordered set is 1-to-1.) If (L,<L) is a linear ordering and (L,<L) ↪→ (Q,<Q)
then we also say that L is representable in Q.

Whenever the ordering of a poset (P,<P ) is clear from the context we will
use the notation P = (P,<P ). Moreover, when Q is not specified, the term
“representable” will refer to representability in B1(X).

The earliest result that is relevant to Laczkovich’s problem is due to Kura-
towski. He showed that for any Polish space X we have ω1, ω

∗
1 6↪→ B1(X), or

in other words, there is no ω1-long strictly increasing or decreasing sequence of
Baire class 1 functions (see [56, §24. III.2.]).

It seems conceivable at first sight that this is the only obstruction, that is,
every linearly ordered set that does not contain ω1-long strictly increasing or
decreasing sequences is representable in B1(R). First, answering a question of
Gerlits and Petruska, this conjecture was consistently refuted by P. Komjáth
[53] who showed that no Suslin line is representable in B1(R). (A Suslin line
is a nonseparable linearly ordered set containing no uncountable family of dis-
joint non-degenerate intervals. The existence of a Suslin line is independent of
ZFC.) Komjáth’s short and elegant proof uses the very difficult set theoretical
technique of forcing. Laczkovich [60] asked if a forcing-free proof exists.

The author and Steprāns [28] improved upon the above example. On the one
hand we proved that consistently Kuratowski’s result is a characterisation for
order types of cardinality strictly less than the continuum (and the continuum
is large). On the other hand we strengthened Komjáth’s result by constructing
in ZFC a linearly ordered set L not containing Suslin lines or ω1-long strictly
increasing or decreasing sequences such that L is not representable in B1(X).

Among other results, I [22] proved that if X and Y are both uncountable
σ-compact or both non-σ-compact Polish spaces then for every linearly ordered
set L we have L ↪→ B1(X) ⇐⇒ L ↪→ B1(Y ). Then I asked if the same
holds if X is an uncountable σ-compact and Y is a non-σ-compact Polish space.
Moreover, I also asked whether the same linearly ordered sets can be embedded
into the set of characteristic functions in B1(X) as into B1(X). Notice that a
characteristic function χA is of Baire class 1 if and only if A is simultaneously
Fσ and Gδ (denoted by A ∈ ∆0

2(X)). Moreover, χA <p χB ⇐⇒ A $ B,
hence the above question is equivalent to whether L ↪→ (B1(X), <p) implies
L ↪→ (∆

0
2(X),$). I also asked if duplications and completions of representable

orders are themselves representable, where the duplication of L is L × {0, 1}
ordered lexicographically.

Our main result in this section is a complete answer to Problem 1.1.1 and
consequently answers to all the above mentioned questions. The solution pro-
ceeds by constructing a universal linearly ordered set for B1(X), that is, a linear
order that is representable in B1(X) such that every representable linearly or-
dered set is embeddable into it. Of course such a linear order only provides a
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useful characterisation if it is sufficiently simple combinatorially to work with.
We demonstrate this by indicating new, simpler proofs of the known theorems
(including a forcing-free proof of Komjáth’s theorem), and also by answering
the above mentioned open questions.

The universal linear ordering can be defined as follows.

Definition 1.1.3. Let [0, 1]<ω1

↘0 be the set of strictly decreasing well-ordered
transfinite sequences in [0, 1] with last element zero. Let x̄ = (xα)α≤ξ, x̄

′ =
(x′α)α≤ξ′ ∈ [0, 1]<ω1

↘0 be distinct and let δ be the minimal ordinal such that
xδ 6= x′δ. We say that

(xα)α≤ξ <altlex (x′α)α≤ξ′ ⇐⇒ (δ is even and xδ < x′δ) or (δ is odd and xδ > x′δ).

Now we can formulate the main result of the section.

Theorem 1.1.4. Let X be an uncountable Polish space. Then the following are
equivalent for a linear ordering (L,<):

(1) (L,<) ↪→ (B1(X), <p),

(2) (L,<) ↪→ ([0, 1]<ω1

↘0 , <altlex).

In fact, (B1(X), <p) and ([0, 1]<ω1

↘0 , <altlex) are embeddable into each other.

Using this theorem one can reduce every question concerning the linearly
ordered subsets of B1(X) to a purely combinatorial problem. We were able
to answer all of the known such questions and we reproved easily the known
theorems as well. The most important results are:

• Answering another question of Laczkovich, we give a new, forcing free
proof of Komjáth’s theorem.

• The class of ordered sets representable in B1(X) does not depend on the
uncountable Polish space X.

• There exists an embedding (B1(X), <p) ↪→ (∆0
2(X),$), hence a linear

ordering is representable by Baire class 1 functions iff it is representable
by Baire class 1 characteristic functions.

• The duplication of a representable linearly ordered set is representable.
More generally, countable lexicographical products of representable sets
are representable.

• There exists a linearly ordered set that is representable in B1(X) but none
of its completions are representable.

About the proofs. The proof of the main result consists of two parts. First we
prove that there exists an embedding B1(X) ↪→ [0, 1]<ω1

↘0 building heavily on a
method of Kechris and Louveau [52] on how to write every bounded Baire class
1 function as an alternating series of a decreasing transfinite sequence of upper
semi-continuous functions. Unfortunately for us, they only consider the case of
compact Polish spaces, while it is of crucial importance in our proof to use their
theorem for arbitrary Polish spaces. Moreover, their proof seems to contain a
slight error. Hence it was unavoidable to reprove and generalise their result.
Then the second part is [0, 1]<ω1

↘0 ↪→ B1(X), which is also a delicate and long
argument somewhat building on a former construction in [28]. For the proof
of the main result see Section 3.1, for the proofs of the above listed corollaries
consult [32].
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1.2 Haar null sets in Polish groups

Polish groups have recently been playing a central role in modern descriptive
set theory. This section is concerned with an analogue of Lebesgue null sets in
this setting.

Throughout this section, let G be an abelian Polish group, that is, an abelian
topological group whose topology is Polish. The group operation will be denoted
by + and the neutral element by 0. It is a well-known result of Birkhoff and
Kakutani that any metrisable group admits a left invariant metric [6, 1.1.1],
which is clearly two-sided invariant for abelian groups. Moreover, it is also well-
known that a two-sided invariant metric on a Polish group is complete [6, 1.2.2].
Hence from now on let d be a fixed complete two-sided invariant metric on G.
For the ease of notation we will restrict our attention to abelian groups, but
we remark that all our results easily generalise to all Polish groups admitting a
two-sided invariant metric.

If G is locally compact than there exists a Haar measure on G, that is, a
regular invariant Borel measure that is finite for compact sets and positive for
nonempty open sets. This measure, which is unique up to a positive multiplica-
tive constant, plays a fundamental role in the study of locally compact groups.
Unfortunately, it is known that non-locally compact Polish groups admit no
Haar measure. However, the notion of a Haar nullset has a very well-behaved
generalisation. The following definition was invented by Christensen [12], and
later rediscovered by Hunt, Sauer and Yorke [49]. (Actually, Christensen’s defi-
nition was what we call generalised Haar null below, but this subtlety will only
play a role later.)

Definition 1.2.1. A set A ⊂ G is called Haar null if there exists a Borel set
B ⊃ A and a Borel probability measure µ on G such that µ(B+g) = 0 for every
g ∈ G.

Note that the term shy is also commonly used for Haar null, and co-Haar
null sets are often called prevalent.

Christensen showed that the Haar null sets form a σ-ideal, and also that in
locally compact groups a set is Haar null iff it is of measure zero with respect
to the Haar measure. During the last two decades Christensen’s notion has
been very useful in studying exceptional sets in diverse areas such as analysis,
functional analysis, dynamical systems, geometric measure theory, group theory,
and descriptive set theory.

Therefore it is very important to understand the fundamental properties of
this σ-ideal, such as the Fubini properties, ccc-ness, and all other similarities
and differences between the locally compact and the general case.

One such example is the following very natural question, which was Problem
1 in Mycielski’s celebrated paper [69] more than 25 years ago, and was also
discussed e.g. in [20], [4] and [75].

Question 1.2.2. (J. Mycielski) Let G be a Polish group. Can every Haar null
set be covered by a Gδ Haar null set?

It is easy to see using the regularity of Haar measure that the answer is in
the affirmative if G is locally compact.

The first main goal of the present section is to answer this question.
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Theorem 1.2.3. If G is a non-locally compact abelian Polish group then there
exists a (Borel) Haar null set B ⊂ G that cannot be covered by a Gδ Haar null
set.

Actually, the proof will immediately yield that Gδ can be replaced by any
other class of the Borel hierarchy. As usual, Π0

ξ stands for the ξth multiplicative
class of the Borel hierarchy.

Theorem 1.2.4. If G is a non-locally compact abelian Polish group and 1 ≤
ξ < ω1 then there exists a (Borel) Haar null set B ⊂ G that cannot be covered
by a Π0

ξ Haar null set.

It was pointed out to us by Sz. Gła̧b, see e.g. [8, Proposition 5.2] that an
easy but very surprising consequence of this theorem is the following.

Corollary 1.2.5. If G is a non-locally compact abelian Polish group then the
additivity of the σ-ideal of Haar null sets is ω1.

In order to be able to formulate the next question we need to introduce
a slightly modified notion of Haar nullness. Numerous authors actually use
the following weaker definition, in which B is only required to be universally
measurable. (A set is called universally measurable if it is measurable with
respect to every Borel probability measure. Borel measures are identified with
their completions.)

Definition 1.2.6. A set A ⊂ G is called generalised Haar null if there exists a
universally measurable set B ⊃ A and a Borel probability measure µ on G such
that µ(B + g) = 0 for every g ∈ G.

In most applications A is actually Borel, so it does not matter which of the
above two definitions we use. Still, it is of substantial theoretical importance to
understand the relation between the two definitions. The next question is from
Fremlin’s problem list [39].

Question 1.2.7. (D. H. Fremlin, Problem GP) Is every generalised Haar null
set Haar null? In other words, can every generalised Haar null set be covered
by a Borel Haar null set?

Dougherty [20, p.86] showed that under the Continuum Hypothesis or Mar-
tin’s Axiom the answer is in the negative in every non-locally compact Polish
group with a two-sided invariant metric. Later Banakh [4] proved the same
under slightly different set theoretical assumptions. Dougherty uses transfinite
induction, and Banakh’s proof is basically an existence proof using that the co-
finality of the σ-ideal of generalised Haar null sets is greater than the continuum
in some models, hence these examples are clearly very far from being Borel.

The second main goal of the section is to answer Fremlin’s problem in ZFC.

Recall that a set is analytic if it is the continuous image of a Borel set, and
coanalytic if its complement is analytic. Analytic and coanalytic sets are known
to be universally measurable. Since Solecki [75] proved that every analytic
generalised Haar null set is contained in a Borel Haar null set, the following
result is optimal.
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Theorem 1.2.8. Not every generalised Haar null set is Haar null. More pre-
cisely, if G is a non-locally compact abelian Polish group then there exists a
coanalytic generalised Haar null set P ⊂ G that cannot be covered by a Borel
Haar null set.

We also answer one half of Problem FC from Fremlin’s list, which essentially
asked the following.

Problem 1.2.9. Can one simply leave out the Borel set B from the definition
of Haar null sets?

Fremlin noted that the answer was in the negative under the Continuum
Hypothesis. The third main theorem of the section provides in ZFC a coun-
terexample in R.

Theorem 1.2.10. Problem 1.2.9 has a negative answer in R, that is, there exist
X ⊂ R with λ(X) > 0 and a Borel probability measure µ such that µ(X+ t) = 0
for every t ∈ R.

For more results concerning fundamental properties and applications of Haar
null sets in non-locally compact groups see e.g. [2], [3], [15], [18], [19], [29], [46],
[66], [76], [78].

About the proofs. Surprisingly, the proofs of Theorem 1.2.4 and Theorem 1.2.8
are essentially identical. The hard part is to show that the potential hulls are
not Haar null. On the one hand we use uniformisation results and other tricks
to solve the toy problem when the potential witness measures are restricted to
be just the 1-dimensional Lebesgue measure on the y-axis in the plane, and
second we apply a nice result of Solecki to find pairwise disjoint translates of all
compact sets, and mimic the toy problem in each. See Section 3.2 or [33].

As for Theorem 1.2.10, the key idea is to find sufficiently ‘thin’ Cantor sets
supporting our witness measure µ, and surprisingly this thinness is understood
in the sense of small fractal dimension! An interesting instance of fractals pop-
ping up unexpectedly. See Section 3.3 or [29]

1.3 Ranks on the Baire class ξ functions
It is well-known that f is of Baire class 1 iff it is the pointwise limit of a sequence
of continuous functions iff the inverse image of every open set is Fσ iff there is
a point of continuity relative to every nonempty closed set [51]. Baire class 1
functions play a central role in various branches of mathematics, most notably
in Banach space theory, see e.g. [1] or [45]. A fundamental tool in the analysis of
Baire class 1 functions is the theory of ranks, that is, maps assigning countable
ordinals to Baire class 1 functions, typically measuring their complexity. In
their seminal paper [52], Kechris and Louveau systematically investigated three
very important ranks, called α, β and γ, on the Baire class 1 functions. We only
spell out the rather technical definitions in Chapter 3, and only note here that
they correspond to above three equivalent definitions of Baire class 1 functions.
One can easily see that the theory has no straightforward generalisation to the
case of Baire class ξ functions.

Hence the following very natural but somewhat vague question arises.
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Question 1.3.1. Is there a natural extension of the theory of Kechris and Lou-
veau to the case of Baire class ξ functions?

There is actually a very concrete version of this question that was raised
by the author and Laczkovich in [26]. In order to be able to formulate this
we need some preparation. For θ, θ′ < ω1 let us define the relation θ . θ′ if
θ′ ≤ ωη =⇒ θ ≤ ωη for every 1 ≤ η < ω1 (we use ordinal exponentiation here).
Note that θ ≤ θ′ implies θ . θ′, while θ . θ′, θ′ > 0 implies θ ≤ θ′ · ω. We
will also use the notation θ ≈ θ′ if θ . θ′ and θ′ . θ. Then ≈ is an equivalence
relation. Let us denote the set of Baire class ξ functions defined on R by Bξ(R).
The characteristic function of a set H is denoted by χH . Define the translation
map Tt : R→ R by Tt(x) = x+ t for every x ∈ R.

Question 1.3.2. [26, Question 6.7] Is there a map ρ : Bξ(R)→ ω1 such that

• ρ is unbounded in ω1, moreover, for every nonempty perfect set P ⊂ R
and ordinal ζ < ω1 there is a function f ∈ Bξ(R) such that f is 0 outside
of P and ρ(f) ≥ ζ,

• ρ is translation-invariant, i.e., ρ(f ◦ Tt) = ρ(f) for every f ∈ Bξ(R) and
t ∈ R,

• ρ is essentially linear, i.e., ρ(cf) ≈ ρ(f) and ρ(f + g) . max{ρ(f), ρ(g)}
for every f, g ∈ Bξ(R) and c ∈ R \ {0},

• ρ(f · χF ) . ρ(f) for every closed set F ⊂ R and f ∈ Bξ(R)?

The problem is not formulated in this exact form in [26], but a careful
examination of the proofs there reveals that this is what we need for the results to
go through. Actually, there are numerous equivalent formulations, for example
we may simply replace . by ≤ (indeed, just replace ρ satisfying the above
properties by ρ′(f) = min{ωη : ρ(f) ≤ ωη}). However, it turns out, as it was
already also the case in [52], that . is more natural here.

Their original motivation came from the theory of paradoxical geometric
decompositions (like the Banach-Tarski paradox, Tarski’s problem of circling
the square, etc.). It has turned out that the solvability of certain systems of
difference equations plays a key role in this theory.

Definition 1.3.3. Let RR denote the set of functions from R to R. A difference
operator is a mapping D : RR → RR of the form

(Df)(x) =

n∑
i=1

aif(x+ bi),

where ai and bi are fixed real numbers.

Definition 1.3.4. A difference equation is a functional equation

Df = g,

where D is a difference operator, g is a given function and f is the unknown.

Definition 1.3.5. A system of difference equations is

Dif = gi (i ∈ I),

where I is an arbitrary set of indices.
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It is not very hard to show that a system of difference equations is solvable
iff every finite subsystem is solvable. But if we are interested in continuous so-
lutions then this result is no longer true. However, if every countable subsystem
of a system has a continuous solution the the whole system has a continuous
solution as well. This motivates the following definition, which has turned out
to be a very useful tool for finding necessary conditions for the existence of
certain solutions.

Definition 1.3.6. Let F ⊂ RR be a class of real functions. The solvability
cardinal of F is the minimal cardinal sc(F) with the property that if every
subsystem of size less than sc(F) of a system of difference equations has a
solution in F then the whole system has a solution in F .

It was shown in [26] that the behavior of sc(F) is rather erratic. For ex-
ample, sc(polynomials) = 3 but sc(trigonometric polynomials) = ω1, sc({f :
f is continuous}) = ω1 but sc({f : f is Darboux}) = (2ω)+, and sc(RR) = ω.

It is also proved in that paper that ω2 ≤ sc({f : f is Borel}) ≤ (2ω)+,
therefore if we assume the Continuum Hypothesis then sc({f : f is Borel}) =
ω2. Moreover, they obtained that sc(Bξ) ≤ (2ω)+ for every 2 ≤ ξ < ω1, and
asked if sc(Bξ) ≥ ω2. We noted that a positive answer to Question 1.3.2 would
yield a positive answer here.

For more information on the connection between ranks, solvability cardinals,
systems of difference equations, liftings, and paradoxical decompositions consult
[26], [58], [57] and the references therein.

In order to be able to answer the above questions we need to address one
more problem. This is slightly unfortunate for us, but Kechris and Louveau
have only worked out their theory in compact metric spaces, while it is really
essential for our purposes to be able to apply the results in arbitrary Polish
spaces.

Question 1.3.7. Does the theory of Kechris and Louveau generalise from com-
pact metric spaces to arbitrary Polish spaces?

Now the main result of the section is that the answer to all the above ques-
tions is in the affirmative.

Theorem 1.3.8. The answers to Question 1.3.1, Question 1.3.2 and Question
1.3.7 are all in the affirmative.

Corollary 1.3.9. Let 2 ≤ ξ < ω1. Then sc(Bξ) ≥ ω2, and hence if we assume
the Continuum Hypothesis then sc(Bξ) = ω2.

Moreover, we propose numerous very natural ranks on the Baire class ξ
functions, using simply that these functions are limits of elements of the smaller
classes, which surprisingly turn out to be bounded in ω1!

Also, we prove that if a rank has certain natural properties then it coincides
with the ranks α, β and γ of Kechris and Louveau on the bounded Baire class 1
functions. We also indicate how one could generalise this to the bounded Baire
class ξ case.

About the proofs. The key idea is to apply topology refinement methods.
Namely, for a Baire class ξ function f on a Polish space (X, τ) there is a finer
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Polish topology τ ′ ⊂ Σ0
ξ (τ) such that f is of Baire class 1 with respect to τ ′.

This allows us to fix a rank on the Baire class 1 functions and obtain a new one
by taking the minimum of the ranks of the Baire class 1 functions obtained in
this way. We actually define four ranks on every Bξ, but two of these turn out
to be essentially equal, and the resulting three ranks are very good analogues
of the original ranks of Kechris and Louveau.

Topology refinements do not preserve compactness, hence it was essential to
extend the results of Kechris and Louveau to the non-compact case. See Section
3.4 or [24].

1.4 Can we assign the Borel hulls in a monotone
way?

Let us denote by N ,L,B and Gδ the class of Lebesgue negligible, Lebesgue
measurable, Borel and Gδ subsets of [0, 1], respectively. Let λ(A) stand for the
Lebesgue measure of A, or, if A is nonmeasurable, the Lebesgue outer measure
of A.

Definition 1.4.1. A set H ⊂ [0, 1] is a hull of A ⊂ [0, 1], if H ⊃ A and
λ(H) = λ(A).

By regularity, every set has a Borel, even a Gδ hull. It is then very natural
to ask whether ‘a bigger set has a bigger hull’. (For the two original motivations
of the problem see below.)

Definition 1.4.2. Let D and H be two subclasses of P([0, 1]) (usually D is N
or L, and H is B or Gδ). If there exists a map ϕ : D → H such that

1. ϕ(D) is a hull of D for every D ∈ D,

2. D ⊂ D′ implies ϕ(D) ⊂ ϕ(D′),

then we say that a monotone H hull operation on D exists.

The four questions we address in this section are the following.

Question 1.4.3. Let D be either N or L, and let H be either B or Gδ. Does
there exist a monotone H hull operation on D?

The problem was originally motivated by the following question.

Question 1.4.4. (Z. Gyenes and D. Pálvölgyi [42]) Suppose that C ⊂ L is a
chain of sets, i.e. for every C,C ′ ∈ C either C ⊂ C ′ or C ′ ⊂ C holds. Does
there exist a monotone B/Gδ hull operation on C?

Remark 1.4.5. Another motivation for our set of problems is that it seems to
be very closely related to the huge theory of so called liftings. A map l : L → L
is called a lifting if it preserves ∅, finite unions and complement, moreover, it
is constant on the equivalence classes modulo nullsets, and also it maps each
equivalence class to one of its members. Note that liftings are clearly monotone.
For a survey of this theory see the chapter by Strauss, Macheras and Musiał in
[44], or the chapter by Fremlin in [43], or Fremlin [38]. Note that the existence
of Borel liftings is known to be independent of ZFC, but the existence of a
lifting with range in a fixed Borel class is not known to be consistent.
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The next two theorems show that all four versions of our problem are inde-
pendent of ZFC.

Theorem 1.4.6. It is consistent with ZFC that there is no monotone Borel
hull operation on N .

Theorem 1.4.7. It is consistent with ZFC that there is a monotone Gδ hull
operation on L.

From the latter result and the proof of the former one one readily obtains
the following.

Corollary 1.4.8. The question of Gyenes and Pálvölgyi is also independent of
ZFC.

We also remark here that the results (and proofs) of this section remain valid
if we replace [0, 1] by R, or by Rn, or more generally, by any uncountable Polish
space endowed with a nonzero continuous σ-finite Borel measure. Moreover,
one can show using the so called density topology that the existence of hulls for
measurable sets is equivalent to the existence of hulls for all sets.

We would also like to mention that this line of research has been continued
in two papers of S. Shelah [71, 37], who is arguably the greatest set theorist
alive.

About the proofs. The negative statement holds in the so called Cohen model, the
positive one is a rather involved construction using the Continuum Hypothesis.
See Sections 3.5 and 3.6 or [27].

22

dc_1437_17

Powered by TCPDF (www.tcpdf.org)



Chapter 2

Set theory and Hausdorff
measures

Now we start describing other types of connections between set theory and
analysis.

2.1 Cardinal invariants of Hausdorff measures
Our next problem concerns fitting the cardinal invariants of the σ-ideal of
nullsets of the Hausdorff measures into the Cichoń Diagram. For more informa-
tion on this diagram consult [5].

Definition 2.1.1. Let 0 < r < n and let

N r
n = {H ⊂ Rn : Hr(H) = 0}.

D. H. Fremlin [38, 534B] showed that the picture is as follows. An arrow
κ→ λ means κ ≤ λ.

cov(N ) → cov(N r
n) → non(M) → cof(M) → cof(N r

n) = cof(N )
↑ ↑x x b → d

x x
↑ ↑

add(N ) = add(N r
n) → add(M) → cov(M) → non(N r

n) → non(N )

All but three arrows (= inequalities) are known to be strict in the appropriate
models (see e.g. [5] for the inequalities not involving N r

n and [73] for non(N r
n) <

non(N )). Fremlin, addressing one of these three questions, asked the following.

Question 2.1.2. [38, 534Z, Problem (a)] Does cov(N ) = cov(N r
n) hold in

ZFC?

The next theorem answers this question in the negative.

Theorem 2.1.3. It is consistent with ZFC that cov(N ) = ω1 and cov(N r
n) =

ω2.
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The next two theorems handle the two remaining open questions concern-
ing the consistent strictness of the inequalities in the above extended Chichoń
Diagram.

Theorem 2.1.4. It is consistent with ZFC that cov(N r
n) = ω1 and non(M) =

ω2.

Theorem 2.1.5. It is consistent with ZFC that cov(M) = ω1 and non(N r
n) =

ω2.

About the proofs. All three models are constructed by the method of forcing.
The first one is a ‘Zapletal-style’ iterated forcing with the σ-ideal Irn,σ−fin to be
defined in the next section (see Section 3.7 or [31]), the second model is the so
called Laver model (see Section 3.8 or [31]), and the third one is a ‘Rosłanowski-
Shelah-type’ creature forcing (see Section 3.9 or [31]).

As an application, we answer a problem that was formulated in a recent
preprint of P. Humke and M. Laczkovich [47]. Working on certain generalisations
of results of Sierpiński and of Erdős they isolated the following definition.

Definition 2.1.6. For a σ-ideal I on R let us abbreviate the following statement
as

(∗)I ⇐⇒ ∃ an ordering of R such that all proper initial segments are in I.

Using this notation our problem can be formulated as follows.

Question 2.1.7. [47] Does (∗)N imply (∗)N 1/2
1

?

We remark here that the answer is obviously true in some models of ZFC,
e.g. if the Continuum Hypothesis holds, since in that case there exists an or-
dering of R such that all proper initial segments are countable.

The following is easy to see and is also shown in [47].

Claim 2.1.8. add(I) = cov(I) =⇒ (∗)I =⇒ cov(I) ≤ non(I).

Hence it suffices to answer the following question affirmatively.

Question 2.1.9. Is it consistent with ZFC that add(N ) = cov(N ) and
cov(N 1/2

1 ) > non(N 1/2
1 )?

Our next theorem provides the answer.

Theorem 2.1.10. It is consistent with ZFC that add(N ) = cov(N ) and
cov(N 1/2

1 ) > non(N 1/2
1 ).

About the proofs. The proof is the calculation of the values of the cardinal
invariants of the extended Cichoń Diagram in the first model mentioned above.
See Section 3.7 or [31].
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2.2 Less than 2ω many translates of a compact
nullset may cover the real line

In this section we are interested in some variants of the cardinal invariant
cov(N ). There are two natural ways to modify this definition. (See [5] Chap-
ters 2.6 and 2.7.) First, cov∗(N ) is the least cardinal κ for which it is possible
to cover R by κ many translates of some nullset. In other words, cov∗(N ) =
min{|A| | A ⊂ R,∃N ∈ N , A+N = R}, where A+N = {a+n | a ∈ A,n ∈ N}.
The other possible modification is cov(cN ), that is the least cardinal κ for which
it is possible to cover R by κ many compact nullsets. (At this point we depart
from the terminology of [5] as this notion is denoted by cov(E) there. Moreover,
cN is not a σ-ideal, so we should actually consider the sets that can be covered
by countably many compact nullsets, but this causes no difference here.) It can
be found in these two chapters of this monograph that both cov∗(N ) < 2ω and
cov(cN ) < 2ω are consistent with ZFC.

G. Gruenhage posed the natural question whether cov∗(cN ) < 2ω is also
consistent, that is, whether we can consistently cover R by less than continuum
many translates of a compact nullset.

The main goal of this section is to answer this question in the affirmative
via an answer (in ZFC) to a question of U. B. Darji and T. Keleti that is also
interesting in its own right.

We remark here that under CH (the Continuum Hypothesis, or more gener-
ally under cov(N ) = 2ω) the real line obviously cannot be covered by less than
2ω many nullsets. Therefore it is consistent that the type of covering we are
looking for does not exist.

So the interesting case is when the consistent inequality cov∗(N ) < 2ω holds.
The nullset in this statement can obviously be chosen to be Gδ. So the content
of Gruenhage’s question actually is whether this can be an Fσ or closed or
compact nullset. We formulate the strongest version.

Question 2.2.1. (G. Gruenhage) Is it consistent that there exists a compact
set C ⊂ R of Lebesgue measure zero and A ⊂ R of cardinality less than 2ω such
that C +A = R?

For example Gruenhage showed that no such covering is possible if C is the
usual ternary Cantor set (see [16] and for another motivation of this question
see [41]).

Working on this question Darji and Keleti [16] introduced the following no-
tion.

Definition 2.2.2. (U. B. Darji - T. Keleti) Let C ⊂ R be arbitrary. A set
P ⊂ R is called a witness for C if P is nonempty perfect and for every translate
C + x of C we have that (C + x) ∩ P is countable.

Obviously, if there is a witness P for C then less than 2ω many translates of
C cannot cover P (since nonempty perfect sets are of cardinality continuum),
so they cannot cover R as well. Motivated by a question of R. D. Mauldin, who
asked what can be said if C is of Hausdorff dimension strictly less than 1, Darji
and Keleti proved the following. (For the definition of packing dimension see
[67] or [35].)
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Theorem 2.2.3. (U. B. Darji - T. Keleti) If C ⊂ R is a compact set of packing
dimension dimp(C) < 1 then there is a witness for C, and consequently less than
2ω translates of C cannot cover R.

They posed the following question, an affirmative answer to which would
also answer the original question of Gruenhage in the negative.

Question 2.2.4. (U. B. Darji - T. Keleti) Is there a witness for every compact
set C ⊂ R of Lebesgue measure zero?

We will answer this question in the negative, which still leaves the original
question of Gruenhage open.

The following set is fairly well known in geometric measure theory, as it is
probably the most natural example of a compact set of measure zero but of
Hausdorff and packing dimension 1. It was investigated for example by Erdős
and Kakutani [34].

Definition 2.2.5. Denote

CEK =

{ ∞∑
n=2

dn
n!

∣∣∣∣∣ ∀n dn ∈ {0, 1, . . . , n− 2}

}
.

Think of dn as digits with “increasing base”; then all but countably many
x ∈ [0, 1] have a unique expansion

x =

∞∑
n=2

xn
n!
,

where xn ∈ {0, 1, . . . , n− 1} for every n = 2, 3, . . .

Theorem 2.2.6. For every nonempty perfect set P ⊂ R there exists a translate
CEK + x of the compact nullset CEK such that (CEK + x) ∩ P is uncountable.

Then we will show that using the same ideas it is also possible to give
an affirmative answer to Gruenhage’s question. Recall that N is the ideal of
measure zero sets, cof(N ) is the minimal cardinality of a family F ⊂ N for
which every nullset is contained in some member of F , and also that there is a
model of ZFC in which cof(N ) < c, see [5, p. 388].

Theorem 2.2.7. R can be covered by cof(N ) many translates of CEK , conse-
quently there is a model of ZFC in which R can be covered by less than contin-
uum many translates of a compact nullset.

We remark that building on our ideas A. Máthé [62] also answered Mauldin’s
question.

About the proofs. The key point was to realise that Gruenhage’s problem has
to do with fractal dimension. After that we had to find a compact Lebesgue
nullset of full Hausdorff dimension, namely the above CEK , and use set theo-
retic techniques to prove the result. This technique was the theory of so called
slaloms. See Sections 3.10 and 3.11 or [30].
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2.3 Are all Hausdorff measures isomorphic?

The following problem was circulated by D. Preiss, while it is unclear, who
actually asked this first, see also [13], where the question is attributed to Preiss.
(Sometimes the problem is under the names of D. Preiss and B. Weiss.) Let B
denote the σ-algebra of Borel subsets of Rn. By isomorphism of two measure
spaces we mean a bijection f such that both f and f−1 are measurable set and
measure preserving.

Question 2.3.1. Let 0 < d1 < d2 < n. Are the measure spaces
(
Rn,B,Hd1

)
and

(
Rn,B,Hd2

)
isomorphic?

An equally natural question is whether such an isomorphism exists if we re-
place Borel sets by measurable sets with respect to Hausdorff measures. Denote
byMd the σ-algebra of measurable sets with respect to Hd, in the usual sense
of Carathéodory.

Question 2.3.2. Let 0 < d1 < d2 < n. Are the measure spaces
(
Rn,Md1 ,Hd1

)
and

(
Rn,Md2 ,Hd2

)
isomorphic?

The main result of the section is the following affirmative answer to this
question assuming the Continuum Hypothesis.

Theorem 2.3.3. Under the Continuum Hypothesis, for every 0 < d1 ≤ d2 < n
the measure spaces

(
Rn,Md1 ,Hd1

)
and

(
Rn,Md2 ,Hd2

)
are isomorphic.

We do not know if the assumption of the Continuum Hypothesis can be
dropped in Theorem 2.3.3. However, it is rather unlikely as the following remark
shows. As above, denote by Nd the σ-ideal of negligible sets with respect to
Hd. If it were known that in some model of set theory non(Nd1) 6= non(Nd2)
held, it would be proven that the Continuum Hypothesis cannot be dropped in
Theorem 2.3.3. However, so far the above statement is only known to hold in
some model when d2 = n (see [73]).

We note here that Question 2.3.1 was answered by A. Máthé in the negative
[63], first for certain values of d1 and d2 using our methods outlined in the next
section, then in general using different techniques.

About the proofs. The proof is a rather involved transfinite construction, where
the key point was to make sure that certain strange sets are measurable. See
Section 3.12 or [21].

2.4 Regular restrictions of functions

In this section, motivated by Question 2.3.1, we consider the following set of
problems.

Question 2.4.1. Can we find for every f : [0, 1]→ R continuous/Borel/typical
continuous (in the Baire category sense, see e.g. [10]) function a set of positive
Hausdorff dimension on which the function agrees with a function of bounded
variation/Lipschitz/Hölder continuous function?
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For example it is clear that showing that every Borel function is Hölder
continuous of some suitable exponent on a set of sufficiently large Hausdorff
dimension would answer Question 2.3.1 in the negative. The other versions are
less closely related to our problem, however, they are of independent interest.
We prove the following two results.

Theorem 2.4.2. Fix 0 < α ≤ 1. A typical continuous function is not Hölder
continuous of exponent α on any set of Hausdorff dimension larger than 1− α.

Theorem 2.4.3. A typical continuous function does not agree with any function
of bounded variation on any set of Hausdorff dimension larger than 1

2 .

The second theorem is motivated by an analogous result of Humke and
Laczkovich [48], who proved that a typical continuous function is not monotonic
on any set of positive Hausdorff dimension. So one would expect the same for
functions of bounded variation.

However, A. Máthé showed in [64] that both these results are sharp!

About the proofs. See Sections 3.13 and 3.14 or [21].

2.5 Borel sets which are null or non-σ-finite for
every translation invariant measure

In many branches of mathematics a standard tool is that ‘nicely defined’ sets
admit natural probability measures. For example, limit sets in the theory of
Iterated Function Systems or Conformal Dynamics as well as self-similar sets
in Geometric Measure Theory are usually naturally equipped with an invariant
Borel measure, very often with a Hausdorff or packing measure. In many sit-
uations the sets in consideration are unbounded, for example periodic, so we
cannot hope for an invariant probability measure. Similarly, the trajectories
of the Brownian motion are of positive σ-finite Hg-measure with probability
1, where the gauge function g is g(t) = t2 log log 1

t in case of planar Brownian
motion and g(t) = t2 log 1

t log log log 1
t in dimension 3 and higher. Therefore

the natural notion to work with is that of an invariant Borel measure that is
positive and σ-finite on our set.

It is natural to ask if there is some sort of unified theory behind the existence
of these measures, for example, one is tempted to ask if every Borel subset
of Rn of some ‘regular structure’ is positive and σ-finite for some generalised
Hausdorff measure, or at least for some invariant Borel measure. In particular,
R. D. Mauldin ([68], [14] and see [11] and [7] for partial and related results)
formulated this question about a specific well-known set of very nice structure;
the set of Liouville numbers, denoted by L:

Definition 2.5.1.

L =

{
x ∈ R \Q : ∀n ∈ N ∃p, q ∈ N (q ≥ 2) such that

∣∣∣∣x− p

q

∣∣∣∣ < 1

qn

}
.

Question 2.5.2. (R. D. Mauldin) Is there a translation invariant Borel measure
on R such that the set of Liouville numbers is of positive and σ-finite measure?
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Note that we of course do not require that the measure be σ-finite on R.
Not only because Hausdorff measures are non-σ-finite on R, but also because
it is well-known that every σ-finite translation invariant Borel measure on the
real line is a constant multiple of Lebesgue measure.

As we will answer this question in the negative, we introduce a definition.

Definition 2.5.3. A nonempty Borel set B ⊂ R is said to be immeasurable if
it is either null or non-σ-finite for every translation invariant Borel measure on
R.

The main result of this section is an answer to Mauldin’s question.

Theorem 2.5.4. The set of Liouville numbers is immeasurable.

Moreover, we also showed using various methods that there are other well-
known ‘nice’ immeasurable sets. Specifically, the set of non-normal numbers,
the complement of the set of so called Besicovitch-Eggleston numbers, BE(1, 0)
(one of the Besicovitch-Eggleston classes itself) are all immeasurable. One of
the main tools is that every Borel but not Fσ additive subgroup of R is immea-
surable. Using this we also show that there are immeasurable sets of arbitrary
Borel class (except of course open, as sets of positive Lebesgue measure are
obviously not immeasurable). Similarly, we provide examples of immeasurable
sets of arbitrary Hausdorff or packing dimension.

We note here that it is not only the regular structure of the sets consid-
ered here that makes it difficult to prove immeasurability. Even it is highly
nontrivial to construct some immeasurable set. The two papers [61] and [17]
containing the two known examples are entirely devoted to the constructions of
the immeasurable sets.

We remark here that numerous questions left open or raised in our paper
has been answered by A. Máthé [65].

About the proofs. It is only the proof that involves set theory here. We show,
using transfinite induction, that every nonempty Gδ Lebesgue nullset with a
dense set of periods is immeasurable. See Section 3.15 or [23].

2.6 Homogeneity of forcing notions and ideals
In order to be able to formulate the problem this section deals with, we need
some definitions. For more information on forcing one can consult [55] or [50].

Definition 2.6.1. A notion of forcing P is called homogeneous if for every p ∈ P
the restriction of P below p (i. e. {q ∈ P : q ≤ p}) is forcing equivalent to P.

In his monograph [80] J. Zapletal poses the following problem.

Problem 2.6.2. ([80, Question 7.1.3.]) “Prove that some of the forcings
presented in this book are not homogeneous.”

In fact, we will work with the following closely related notion, see [80, Defi-
nition 2.3.7.].

Definition 2.6.3. A σ-ideal I on a Polish space X is homogeneous if for every
Borel set B there is a Borel measurable function f : X → B such that I ∈ I
implies f−1(I) ∈ I.
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Zapletal writes “In all cases encountered in this book the homogeneity of the
forcing and the underlying ideal always come together”. The aim of this section
is to show that an interesting example of ideals discussed in his book is actually
non-homogeneous.

Let us define the following σ-ideal consisting of sets of σ-finite r-dimensional
Hausdorff measure.

Definition 2.6.4.

Irn,σ−fin = {H ⊂ Rn : ∃Hk ⊂ Rn, ∪k∈ωHk = H, Hr(Hk) <∞ for every k ∈ ω}.

The next theorem solves this version of the problem.

Theorem 2.6.5. The σ-ideal Irn,σ−fin is non-homogeneous.

About the proof. The proof is a surprisingly simple application of a theorem
of A. Máthé. I believe the reason why this question was open for so long is
that this may be the first instance when fractal geometry is applied to answer
a purely set theoretical problem! See 3.16 or [31].
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Chapter 3

Proofs

3.1 Proof of Theorem 1.1.4

3.1.1 Preliminaries

Our terminology will mostly follow [51] and [77].
USC(X) stands for the set of upper semicontinuous functions, that is, the

set of functions f for which for every r ∈ R the set f−1((−∞, r)) is open in X.
It is easy to see that the infimum of USC functions is also USC.

If F(X) is a class of real valued functions then we will denote by bF(X) and
F+(X) the set of bounded and nonnegative functions in F(X), respectively.

Recall that K(X) will stand for the set of the nonempty compact subsets
of X endowed with the Hausdorff metric. It is well known (see [51, Section
4.F]) that if X is Polish then so is K(X). Moreover, the compactness of X is
equivalent to the compactness of K(X).

Also recall that we denote the ξth additive and multiplicative Borel classes
of a Polish space X by Σ0

ξ(X) and Π0
ξ(X), respectively. We will also use the

notation ∆0
ξ(X) = Σ0

ξ(X)∩Π0
ξ(X). We call a set A ambiguous, if A ∈∆0

2(X).
Sometimes the following equivalent definition is also used for the first Baire
class: f ∈ B1(X) ⇐⇒ the preimage of every open set under f is in Σ0

2(X)
(see [51, 24.10]). This easily implies that a characteristic function χA is of Baire
class 1 if and only if A ∈ ∆0

2(X). The above equivalent definition also implies
that USC functions are of Baire class 1.

In this section, somewhat unusually, because of the heavy use of subscripts
the x-section of a set H ⊂ X × Y will be denoted by Hx = {y : (x, y) ∈ H}.

For a function f : X → R the subgraph of f is the set sgr(f) = {(x, r) ∈
X × R : r ≤ f(x)}. Notice that a function is USC if and only if its subgraph is
closed.

Let (P,<p) be a poset. We follow the notation of S. Todorčević [77] letting

σP = {F : α→ P | α is an ordinal, F is strictly increasing},

that is, σP is the set of well-ordered sequences in P . We will use the notation
σ∗P for the reverse well-ordered sequences, i. e.,

σ∗P = {F : α→ P | α is an ordinal, F is strictly decreasing}.
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Then σ∗[0, 1] is the set of strictly decreasing well-ordered transfinite se-
quences of reals in [0, 1].

For a poset P , if p̄ ∈ σ∗P and the domain of p̄ is ξ then we will write p̄ as
(pα)α<ξ, where pα = p̄(α). We will call the ordinal ξ the length of p̄, in symbols
l(p̄).

Let H and H ′ be two subsets of the linearly ordered set (L,<L). We will
say that H ≤L H ′ or H <L H

′ if for every h ∈ H and h′ ∈ H ′ we have h ≤L h′
or h <L h′, respectively. A set H ⊂ L is called convex if for every a, b ∈ H
and c ∈ L with a <L c <L b we have c ∈ H. An interval is a set of the form
[a,∞)(= {c : a ≤L c}), (a, b] or (a, b) etc. for some a, b ∈ L. We say that
a linearly ordered set is densely ordered if it contains no neighboring points,
while it is said to be separable if it has a countable subset which intersects every
nonempty open interval. Finally, L is nowhere separable, if (a, b) ∩ L is not
separable for every a, b ∈ L.

Now if p̄, p̄′ ∈ σ∗P and p̄ 6⊂ p̄′, p̄′ 6⊂ p̄ then there exists a minimal ordinal δ
such that pδ 6= p′δ. This ordinal is denoted by δ(p̄, p̄′).

Le α be a successor ordinal, then α− 1 will stand for its predecessor. Now,
since every ordinal α can be uniquely written in the form α = γ + n where γ is
limit and n is finite, we let (−1)α = (−1)n and refer to the parity of n as the
parity of α.

A poset (T,<T ) is called a tree if for every t ∈ T the ordering <T restricted
to the set {s : s <T t} is a well-ordering. We denote by Levα(T ) the αth level
of T , that is, the set {t ∈ T :<T |{s:s<T t} has order type α}. If t ∈ T with
t ∈ Levα(T ) it can be identified with an enumeration (i. e., a strictly increasing
bijection) et : α + 1 → {s ∈ T : s ≤T t}. So, for an ordinal β we can talk
about t|β which is the map et|β . In particular, if α is a successor (note that
t ∈ Levα(T )), we will denote by t|α the predecessor of t.

An α-chain C is a subset of a tree such that <T |C is a well-ordering in type
α, whereas an antichain is a set that consists of ≤T -incomparable elements. A
set D ⊂ T is called dense if for every t ∈ T there exists a p ∈ D such that
t ≤T p. A set is called open if if for every p ∈ D we have {t ∈ T : t ≥T p} ⊂ D.

A tree (T,<T ) of cardinality ℵ1 is called an Aronszajn tree, if for every
α < ω1 we have |Levα(T )| ≤ ℵ0 and T contains no ω1-chains. An Aronszajn
tree is called a Suslin tree if it contains no uncountable antichains.

A Suslin line is a linearly ordered set that is ccc (it contains no uncountable
pairwise disjoint collection of nonempty open intervals) but not separable.

We will call a poset (P,<P ) R-special (Q-special) if there exists an embed-
ding P ↪→ R (P ↪→ Q).

Every ordinal is identified with the set of its predecessors, in particular,
2 = {0, 1}.

3.1.2 B1(X) ↪→ ([0, 1]<ω1
↘0 , <altlex)

Recall that
[0, 1]<ω1

↘0 = {x̄ ∈ σ∗[0, 1] : min x̄ = 0}

and also that for x̄ = (xα)α≤ξ, x̄
′ = (x′α)α≤ξ′ ∈ [0, 1]<ω1

↘0 distinct and δ = δ(x̄, x̄′)
we say that

(xα)α≤ξ <altlex (x′α)α≤ξ′ ⇐⇒ (δ is even and xδ < x′δ) or (δ is odd and xδ > x′δ).
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Theorem 3.1.1. Let X be a Polish space. Then B1(X) ↪→ [0, 1]<ω1

↘0 .

In order to prove the theorem we have to make some preparation. We will
use results of Kechris and Louveau [52]. They developed a method to decompose
a Baire class 1 function into a sum of a transfinite alternating series, which is
analogous to the well known Hausdorff-Kuratowski analysis of ∆0

2 sets.
First we define the generalised sums.

Definition 3.1.2. ([52]) Suppose that (fβ)β<α is a pointwise decreasing se-
quence of nonnegative bounded USC functions for an ordinal α < ω1. Let
us define the generalised alternating sum

∑∗
β<α(−1)βfβ by induction on α as

follows:
Σ∗β<0(−1)βfβ = 0

and
Σ∗β<α(−1)βfβ = Σ∗β<α−1(−1)βfβ + (−1)α−1fα−1

if α is a successor and

Σ∗β<α(−1)βfβ = sup{Σ∗γ<β(−1)γfγ : β < α, β even}

if α > 0 is a limit.

Every nonnegative bounded Baire class 1 function can be canonically de-
composed into such a sum. For this we need the notion of upper regularisation.

Definition 3.1.3. ([52]) Let f : X → R be a nonnegative bounded function.
The upper regularisation of f is defined as

f̂ = inf{g : f ≤p g, g ∈ USC(X)}.

Note that f̂ is USC, since the infimum of USC functions is USC. Also, clearly
f̂ = f if f is USC.

Definition 3.1.4. ([52]) Let

g0 = f, f0 = ĝ0,

if α is a successor then let

gα = fα−1 − gα−1, fα = ĝα,

if α > 0 is a limit then let

gα = inf
β<α
β even

gβ and fα = ĝα.

Now if there exists a minimal ξf such that fξf ≡ fξf+1 then let Φ(f) =
(fα)α≤ξf .

Note that we need some results of Kechris and Louveau for arbitrary Polish
spaces, however in [52] the authors proved the theorems only in the compact
Polish case, although the proofs still work for the general case as well. Un-
fortunately, in our proof the non-σ-compact statement plays a significant role,
hence we must check the validity of their results on such spaces. The results
used are summarised in Proposition 3.1.5 and the proof can be found in Section
3.1.5. Notice that the original proof seems to contain a small error, but it can
be corrected without essential new ideas.
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Proposition 3.1.5. ([52]) Let X be a Polish space and f ∈ bB+
1 (X). Then

Φ(f) is defined, Φ(f) ∈ σ∗bUSC+ and we have

(1) f =
∑∗
β<α(−1)βfβ + (−1)αgα for every α ≤ ξf ,

(2) fξf ≡ 0,

(3) f =
∑∗
α<ξf

(−1)αfα.

Proof. See Section 3.1.5. �

Proposition 3.1.6. Let X be a Polish space and f0, f1 ∈ bB+
1 (X). Suppose

that f0 <p f1 and let Φ(f0) = (f0
α)α≤ξf0 and Φ(f1) = (f1

α)α≤ξf1 . Then Φ(f0) 6=
Φ(f1) and if δ = δ(Φ(f0),Φ(f1)) then f0

δ <p f
1
δ if δ is even and f0

δ >p f
1
δ if δ is

odd.

Proof.
First notice that if f0 6= f1 then by (3) of Proposition 3.1.5 we have that

Φ(f0) 6= Φ(f1).
Let (g0

β)β≤ξf0 and (g1
β)β≤ξf1 be the appropriate sequences (used in Definition

3.1.4 with ĝiβ = f iβ).
We show by induction on β that for every even ordinal β ≤ δ we have

g0
β ≤p g1

β and for every odd ordinal β ≤ δ we have g0
β ≥p g1

β .
For β = 0 by definition g0

0 = f0 and g1
0 = f1, so g0

0 ≤p g1
0 .

Suppose that we are done for every γ < β.

• for limit β we have that
g0
β = inf

γ<β
γ even

g0
γ

so by the inductive hypothesis obviously g0
β ≤p g1

β .

• if β is an odd ordinal, since β − 1 < δ we have f0
β−1 = f1

β−1 so

g0
β = f0

β−1 − g0
β−1 ≥p f0

β−1 − g1
β−1 = f1

β−1 − g1
β−1 = g1

β

by β − 1 being even and using the inductive hypothesis.

• if β is an even successor, the calculation is similar, using that g0
β−1 ≥p g1

β−1

we obtain

g0
β = f0

β−1 − g0
β−1 ≤p f0

β−1 − g1
β−1 = f1

β−1 − g1
β−1 = g1

β .

Consequently, the induction shows that g0
δ ≤p g1

δ if δ is even and g0
δ ≥p g1

δ if δ
is odd. Therefore, since ĝiδ = f iδ we have that f

0
δ ≤p f1

δ if δ is even and f0
δ ≥p f1

δ

if δ is odd. But by the definition of δ it is clear that f0
δ 6= f1

δ , hence f
0
δ <p f

1
δ if

δ is even and f0
δ >p f

1
δ if δ is odd. This finishes the proof of Proposition 3.1.6.

�

Now to finish the proof of Theorem 3.1.1 we need the following folklore
lemma.
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Lemma 3.1.7. There exists an order preserving embedding Ψ0 : USC+(X) ↪→
[0, 1] where the image of the function f ≡ 0 is 0. In particular, there is no
uncountable strictly monotone transfinite sequence in USC+(X).

Proof. Fix a countable basis {Bn : n ∈ ω} of X × [0,∞). Assign to each
f ∈ USC+(X) the real

rf = 1−
∑

Bn∩sgr(f)=∅

2−n−1.

If f <p g then sgr(f) $ sgr(g) so, as the subgraph of an USC function is a
closed set, there exists an n ∈ ω such that Bn is an open neighborhood of a
point in sgr(g) \ sgr(f). Thus, {n : Bn ∩ sgr(f) = ∅} % {n : Bn ∩ sgr(g) = ∅}.
Consequently, rf < rg. �Proof. [Proof of Theorem

3.1.1] Let Ψ : σ∗USC+(X)→ σ∗[0, 1] be the map that applies the above Ψ0 to
every coordinate of the sequences in σ∗USC+(X). Thus, Ψ is order preserving
coordinate-wise.

Clearly, h(x) = 1
π arctan(x) + 1 is an order preserving homeomorphism from

R to (0, 1) and for f ∈ B1(X) let H(f) = h ◦ f . Composing the functions
in B1(X) with h we still have Baire class 1 functions and this does not effect
the pointwise ordering. Thus, H is an order preserving map from B1(X) into
bB+

1 (X).
Let Θ = Ψ ◦ Φ ◦ H. Notice that as H : B1(X) → bB+

1 (X), Φ : bB+
1 (X) →

σ∗bUSC+(X) and Ψ : σ∗USC(X)→ σ∗[0, 1], the map Θ is well defined.
Now, by Lemma 3.1.7 we have that Ψ0 maps the constant zero function to

zero and by (2) of Proposition 3.1.5 we have that for every function f its Φ image
ends with the constant zero function. Thus, the Θ image of every function f
ends with zero. Therefore, Θ maps into [0, 1]<ω1

↘0 .
If f0 <p f1 are Baire class 1 functions then clearly H(f0) <p H(f1)

hence by Proposition 3.1.6 we have that if δ = δ(Φ(H(f0)),Φ(H(f1))), then
Φ(H(f0))(δ) <p Φ(H(f1))(δ) if δ is even and Φ(H(f0))(δ) >p Φ(H(f1))(δ) if
δ is odd. Since Ψ is order preserving coordinate-wise, we obtain that Θ is an
order preserving embedding of B1(X) into ([0, 1]<ω1

↘0 , <altlex), which finishes the
proof of the theorem. �

3.1.3 ([0, 1]<ω1
↘0 , <altlex) ↪→ B1(X)

Theorem 3.1.8. The linearly ordered set ([0, 1]<ω1

↘0 , <altlex) can be represented
by ∆0

2 subsets of K([0, 1]2) ordered by inclusion.

Proof. First we define a map Ψ : [0, 1]<ω1

↘0 → K([0, 1]2), basically assigning to
each sequence its closure (as a subset of the unit interval). However, such a map
cannot distinguish between continuous sequences and sequences omitting a limit
point. To remedy this we place a line segment on each limit point contained in
the sequence.

Let x̄ ∈ [0, 1]<ω1

↘0 , with x̄ = (xα)α≤ξ. Now let

Ψ(x̄) = {(xα, 0) : α ≤ ξ}∪⋃
{{xα} × [0, xα − xα+1] : if 0 < α < ξ and xα = inf{xβ : β < α}}.
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Lemma 3.1.9. Ψ(x̄) is a compact set for every x̄ ∈ [0, 1]<ω1

↘0 .

Proof. Clearly, it is enough to show that if (pn, qn) → (p, q) is a convergent
sequence such that for every n we have

(pn, qn) ∈ (3.1.1)⋃
{{xα} × [0, xα − xα+1] : if 0 < α < ξ and xα = inf{xβ : β < α}}

then (p, q) ∈ Ψ(x̄).
Obviously, pn = xαn for some ordinals αn. First, if the sequence xαn is

eventually constant, then there exists an α such that p = xα and except for
finitely many n’s by (3.1.1) we have qn ∈ [0, xα − xα+1]. So (p, q) ∈ {xα} ×
[0, xα − xα+1] ⊂ Ψ(x̄).

Now if the sequence (xαn)n∈ω is not eventually constant, since the sequence
(xα)α≤ξ is strictly decreasing and well-ordered then (passing to a subsequence
of (xαn)n∈ω if necessary) we can suppose that (xαn)n∈ω is a strictly decreasing
sequence.

Using the fact that (xαn)n∈ω is a strictly decreasing subset of (xα)α≤ξ we
obtain that xαn − xαn+1 ≤ xαn − p. Hence from (3.1.1) we obtain

0 ≤ qn ≤ xαn − xαn+1 ≤ xαn − p→ 0

so qn = 0. Therefore,

(p, q) = ( lim
n→∞

xαn , 0) ∈ {(xα, 0) : α ≤ ξ} ⊂ Ψ(x̄).

�

Now we define a decreasing sequence of subsets of K([0, 1]2) for each x̄ =
(xα)α≤ξ and α ≤ ξ as follows:

Hx̄α = {Ψ(z̄) : z̄|α = x̄|α, zα ≤ xα}. (3.1.2)

We will use the following notations for an even ordinal α ≤ ξ:

Kx̄α = Hx̄α(= {Ψ(z̄) : z̄|α = x̄|α, zα ≤ xα}), (3.1.3)

and if α+ 1 ≤ ξ then

Lx̄α = Hx̄α+1(= {Ψ(z̄) : z̄|α+1 = x̄|α+1, zα+1 ≤ xα+1}). (3.1.4)

Finally, if α = ξ then let Lx̄α = ∅. So Kx̄α and Lx̄α is defined for every even α ≤ ξ.
Notice that the sequence (Hx̄α)α≤ξ is a decreasing sequence of closed sets.
To each x̄ = (xα)α≤ξ let us assign

Ax̄ =
⋃

α≤ξ,α even

(Kx̄α \ Lx̄α).

By [51, 22.27], since Ax̄ is a transfinite difference of a decreasing sequence of
closed sets, we have Ax̄ ∈∆0

2(K([0, 1]2)).
To overcome some technical difficulties we prove the following lemma.

Lemma 3.1.10. Let z̄ ∈ [0, 1]<ω1

↘0 and β be an ordinal such that β + 1 ≤ l(z̄).
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(1) If K ∈ Hz̄β+1, β is a limit ordinal, inf{zγ : γ < β} = zβ and l(z̄) > β + 1
then (zβ , zβ − zβ+1) ∈ K.

(2) If K ∈ Hz̄β and β is a successor then (zβ−1, 0) ∈ K.

(3) If K ∈ Hz̄β, β is a limit ordinal and inf{zγ : γ < β} > zβ or β is a successor
then

(a) K ∩ ((zβ , inf{zγ : γ < β})× [0, 1]) = ∅
(b) K ∩ ({inf{zγ : γ < β}} × (0, 1]) = ∅

(notice that if β is a successor then inf{zγ : γ < β} = zβ−1).

Proof. For (1) and (2) just notice that by equation (3.1.2) whenever Ψ(w̄) ∈
Hz̄β (Hz̄β+1, respectively) then Ψ(w̄) contains the point (zβ−1, 0) (the point
(zβ , zβ − zβ+1)). Consequently, every compact set which is in the closure of
Hz̄β (or Hz̄β+1) contains the point (zβ−1, 0) (the point (zβ , zβ − zβ+1)).

In order to see (3) first observe the following: if U ⊂ [0, 1]2 is a relatively
open set and L ∈ K([0, 1]2) then the set S = {K ∈ K([0, 1]2) : K ∩ U = L ∩ U}
is closed: if Kn → K with Kn ∈ S then K ∩U ⊃ L∩U is obvious. Now if there
was an x ∈ (K ∩ U) \ L then there would be a (relatively) open set V ⊂ U \ L
with x ∈ V . But then by x ∈ K we would have that Kn ∩ V 6= ∅ for a large
enough n, contradicting Kn ∩ V = L ∩ V = ∅, so S is indeed closed.

Now, by the definition of Hz̄β for every w̄ such that Ψ(w̄) ∈ Hz̄β we have

ψ(w̄) ∩ ((zβ , 1]× [0, 1]) = ψ(z̄) ∩ ((zβ , 1]× [0, 1]).

Thus, since the set ((zβ , 1]× [0, 1]) is relatively open in [0, 1]2 we have

Hz̄β ⊂ {K ∈ K([0, 1]2) : K ∩ ((zβ , 1]× [0, 1]) = ψ(z̄) ∩ ((zβ , 1]× [0, 1])},

as the latter set is closed and contains Hz̄β . In particular, for every K ∈ Hz̄β we
get that

K ∩ ((zβ , inf{zγ : γ < β})× [0, 1]) = ∅

and
K ∩ ({inf{zγ : γ < β}} × (0, 1]) = ∅

hold, which proves the lemma. �

In order to show that x̄ 7→ Ax̄ is an embedding it is enough to prove the
following claim.

Main Claim. If x̄ <altlex ȳ then Ax̄ $ Aȳ.
To verify this we have to distinguish two cases.
Case 1. δ = δ(x̄, ȳ) is even.
Then xδ < yδ and δ + 1 < l(ȳ). We will show the following lemma.

Lemma 3.1.11. Kx̄δ $ Kȳδ \ L
ȳ
δ .

Proof. [Proof of Lemma 3.1.11.] From xδ < yδ we have

{Ψ(z̄) : z̄|δ = x̄|δ, zδ ≤ xδ} ⊂ {Ψ(z̄) : z̄|δ = x̄|δ, zδ ≤ yδ}

so Kx̄δ ⊂ K
ȳ
δ .
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First, we prove that
Kx̄δ ⊂ K

ȳ
δ \ L

ȳ
δ . (3.1.5)

Here we have to separate two subcases.
Subcase 1. δ is a limit ordinal and yδ = inf{yα : α < δ}.
On the one hand, using (1) of Lemma 3.1.10 (with z̄ = ȳ and β = δ) we

obtain that for every K ∈ Lȳδ (= Hȳδ+1) we have (yδ, yδ − yδ+1) ∈ K.
On the other hand, from (3b) of Lemma 3.1.10 (with z̄ = x̄ and β = δ) we

have that for every K ∈ Kx̄δ (= Hx̄δ ) we have K∩ ({inf{xα : α < δ}}× (0, 1]) = ∅.
In particular, as yδ = inf{yα : α < δ} = inf{xα : α < δ}, we have (yδ, yδ −
yδ+1) 6∈ K. So we obtain Kx̄δ ∩L

ȳ
δ = ∅, hence by Kx̄δ ⊂ K

ȳ
δ we have Kx̄δ ⊂ K

ȳ
δ \L

ȳ
δ .

Subcase 2. δ is a limit and yδ < inf{yδ′ : δ′ < δ} or δ is a successor.
Using (2) of Lemma 3.1.10 (with z̄ = ȳ and β = δ+ 1) we obtain that every

K ∈ Lȳδ (= Hȳδ+1) contains the point (yδ, 0). From (3a) of Lemma 3.1.10 (with
z̄ = x̄, β = δ) we have that for every K ∈ Kx̄δ (= Hx̄δ ) the set K ∩ ((xδ, inf{xα :
α < δ})× [0, 1]) is empty. But yδ ∈ (xδ, inf{xα : α < δ}) so Kx̄δ ∩ L

ȳ
δ = ∅. This

finishes the proof of equation (3.1.5).
Second, in order to prove Kx̄δ 6= K

ȳ
δ \ L

ȳ
δ let w̄ be such that w̄|δ = x̄|δ,

xδ, yδ+1 < wδ < yδ and wδ+1 = 0. Clearly, Ψ(w̄) ∈ Kȳδ .
By (3a) of Lemma 3.1.10 (used for z̄ = x̄ and β = δ) we have that Ψ(w̄) ∈

Kx̄δ (= Hx̄δ ) would imply Ψ(w̄)∩ ((xδ, inf{xα : α < δ})× [0, 1]) = ∅, but (wδ, 0) ∈
(xδ, yδ) × [0, 1] and inf{xα : α < δ} = inf{yα : α < δ} ≥ yδ which is a
contradiction. Hence Ψ(w̄) 6∈ Kx̄δ .

Now we prove Ψ(w̄) 6∈ Lȳδ . Suppose the contrary, then using (3a) of Lemma
3.1.10 (with z̄ = ȳ and β = δ+1) one can obtain that for every K ∈ Lȳδ (= Hȳδ+1)
the setK∩((yδ+1, yδ)×[0, 1]) is empty. But clearly (wδ, 0) ∈ Ψ(w̄)∩((yδ+1, yδ)×
[0, 1]), a contradiction. So Ψ(w̄) 6∈ Lȳδ .

Thus, it follows that Ψ(w̄) ∈ (Kȳδ \ L
ȳ
δ ) \ Kx̄δ . From this and from equation

(3.1.5) we can conclude Lemma 3.1.11. �

Now we prove the Main Claim in Case 1. If δ′ is even and δ′ < δ, the
definitions (3.1.3) and (3.1.4) of Kȳδ′ and L

ȳ
δ′ depend only on (xα)α≤δ′+1 so

Kx̄δ′ = Kȳδ′ (3.1.6)

and
Lx̄δ′ = Lȳδ′ . (3.1.7)

Now, from Lemma 3.1.11 we have Ax̄ ⊂ Aȳ, since for every K ∈ Ax̄ we have
either K ∈ Kx̄δ′ \ Lx̄δ′ = Kȳδ′ \ L

ȳ
δ′ for some δ′ < δ or K ∈ Kx̄δ .

Moreover, we claim that using Lemma 3.1.11 one can prove that Ax̄ $
Aȳ. From the definition of Ax̄, from the fact that the sequence (Hx̄α)α≤ξ =
(Kx̄0 ,Lx̄0 ,Kx̄1 ,Lx̄1 , . . . ) is decreasing and from equations (3.1.6) and (3.1.7) follows
that

(Kx̄δ )c ∩ Ax̄ =
⋃

δ′<δ, δ′ even

Kx̄δ′ \ Lx̄δ′ =
⋃

δ′<δ, δ′ even

Kȳδ′ \ L
ȳ
δ′ = (Kȳδ )c ∩ Aȳ

So Ax̄ ⊂ (Kȳδ )c ∪ Kx̄δ . Hence, if K ∈ (Kȳδ \ L
ȳ
δ ) \ Kx̄δ then

K ∈ Kȳδ \ L
ȳ
δ ⊂ A

ȳ
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and
K 6∈ (Kȳδ )c ∪ Kx̄δ ⊃ Ax̄

so indeed, we obtain that the containment is strict, hence we are done with Case
1.

Case 2. δ = δ(x̄, ȳ) is odd.
Then xδ > yδ and δ + 1 < l(x̄).

Notice that as the length of x̄ is larger than δ + 1, the sets Kx̄δ+1 and Lx̄δ+1 are
defined.

Now for every even δ′ ≤ δ − 1 the definition of Kx̄δ′ and K
ȳ
δ′ depend only on

(xα)α≤δ′ = (yα)α≤δ′ . Thus for every even δ′ ≤ δ − 1

Kx̄δ′ = Kȳδ′ (3.1.8)

and also for every even δ′ < δ − 1

Lx̄δ′ = Lȳδ′ . (3.1.9)

We will show the following:

Lemma 3.1.12. (1) Kx̄δ−1 \ Lx̄δ−1 ⊂ K
ȳ
δ−1 \ L

ȳ
δ−1

(2) Kx̄δ+1 ⊂ K
ȳ
δ−1 \ L

ȳ
δ−1.

Proof. [Proof of Lemma 3.1.12.]
It is easy to prove (1): from equation (3.1.8) we get Kx̄δ−1 = Kȳδ−1. Moreover,

Lx̄δ−1 ⊃ L
ȳ
δ−1, since

Lx̄δ−1 = {Ψ(z̄) : z̄|δ = x̄|δ, zδ ≤ xδ} ⊃ {Ψ(z̄) : z̄|δ = ȳ|δ, zδ ≤ yδ} = Lȳδ−1

holds by xδ > yδ.
Now we show (2). First, Kx̄δ+1 ⊂ Kx̄δ−1 = Kȳδ−1, using that the sequence

(Kx̄α)α≤δ+1 is decreasing.
So it is suffices to show that Kx̄δ+1 ∩ L

ȳ
δ−1 = ∅. Using (3a) of Lemma 3.1.10

(with z̄ = ȳ and β = δ) we obtain that for every K ∈ Lȳδ−1(= Hȳδ ), we have
K ∩ ((yδ, yδ−1)× [0, 1]) = ∅.

However, by (2) of Lemma 3.1.10 (used with z̄ = x̄ and β = δ + 1) if
K ∈ Kx̄δ+1(= Hx̄δ+1) then (xδ, 0) ∈ K. Therefore, xδ ∈ (yδ, yδ−1) implies that
the intersection Kx̄δ+1 ∩ L

ȳ
δ−1 must be empty. So we are done with the lemma.

�

Now we prove the Main Claim in Case 2. By definition of Ax̄ and by the
fact that the sequence (Hx̄α)α≤ξ = (Kx̄0 ,Lx̄0 ,Kx̄1 ,Lx̄1 , . . . ) is decreasing we have
that if K ∈ Ax̄ then either K ∈ Kx̄δ′ \Lx̄δ′ = Kȳδ′ \L

ȳ
δ′ for some even δ′ < δ− 1 or

K ∈ Kx̄δ−1 \ Lx̄δ−1 or K ∈ Kx̄δ+1. Hence using equations (3.1.8) and (3.1.9) and
Lemma 3.1.12 we obtain

Ax̄ ⊂ Aȳ. (3.1.10)

In order to show that Ax̄ 6= Aȳ it is enough to find a w̄ such that

Ψ(w̄) ∈ Kȳδ−1 \ L
ȳ
δ−1 ⊂ A

ȳ (3.1.11)

and
Ψ(w̄) 6∈ Kx̄δ+1 ∪ (Lx̄δ−1)c ⊃ Ax̄. (3.1.12)
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Take w̄|δ = ȳ|δ and wδ such that xδ+1, yδ < wδ < xδ and wδ+1 = 0.
Now, in order to see (3.1.11) clearly Ψ(w̄) ∈ Kȳδ−1. On the other hand

if K ∈ Lȳδ−1(= Hȳδ ) by (3a) of Lemma 3.1.10 (with z̄ = ȳ and β = δ) we
have K ∩ ((yδ, yδ−1) × [0, 1]) = ∅. But yδ < wδ < xδ < xδ−1 = yδ−1, so
(wδ, 0) ∈ Ψ(w̄) ∩ ((yδ, yδ−1)× [0, 1]). Therefore, Ψ(w̄) 6∈ Lȳδ−1.

In order to prove (3.1.12) it is obvious that Ψ(w̄) ∈ Lx̄δ−1. Now using again
(3a) of Lemma 3.1.10 (with z̄ = x̄ and β = δ + 1) we obtain that whenever
K ∈ Kx̄δ+1(= Hx̄δ+1) then K ∩ ((xδ+1, xδ)× [0, 1]) = ∅. However, wδ ∈ (xδ+1, xδ)
hence (wδ, 0) ∈ Ψ(w̄) ∩ ((xδ+1, xδ)× [0, 1]), so Ψ(w̄) 6∈ Kx̄δ+1.

So we can conclude that Ax̄ 6= Aȳ. Thus, using equation (3.1.10) we can
finish the proof of the Main Claim in Case 2 and hence we obtain Theorem 3.1.8
as well. �

3.1.4 The main theorem

Theorem 3.1.13. (Main Theorem) Let X be an uncountable Polish space.
Then the following are equivalent for a linear ordering (L,<):

(1) (L,<) ↪→ (B1(X), <p)

(2) (L,<) ↪→ ([0, 1]<ω1

↘0 , <altlex)

(3) (L,<) ↪→ (∆0
2(X),$)

In fact, ([0, 1]<ω1

↘0 , <altlex), (∆0
2(X),$) and (B1(X), <p) are embeddable into

each other.

Proof.
(B1(X), <p) ↪→ ([0, 1]<ω1

↘0 , <altlex) : Theorem 3.1.1.
([0, 1]<ω1

↘0 , <altlex) ↪→ (∆0
2(X),$) : we proved in Theorem 3.1.8 that

([0, 1]<ω1

↘0 , <altlex) ↪→ (∆0
2(K([0, 1]2)),$). Now, [22, Theorem 1.2] states that

the class of linear orderings representable in ∆0
2 coincide for all uncount-

able σ-compact Polish spaces. Therefore, if C is the Cantor space then
([0, 1]<ω1

↘0 , <altlex) ↪→ (∆0
2(C),$). If X is an uncountable Polish space then

there exists a continuous injection h : C → X. Now, since h(C) is a
closed set in X we have that A 7→ h(A) is an inclusion-preserving embedding
(∆0

2(C),$) ↪→ (∆0
2(X),$). Consequently, ([0, 1]<ω1

↘0 , <altlex) ↪→ (∆0
2(X),$).

(∆0
2(X),$) ↪→ (B1(X), <p) : if A is a ∆0

2 set then χA is a Baire class 1
function and A 7→ χA is an embedding (∆0

2(X),$) ↪→ (B1(X), <p). �

3.1.5 Proof of Proposition 3.1.5

Proposition 3.1.5. ([52]) Let X be a Polish space and f ∈ bB+
1 (X). Then

Φ(f) is defined, Φ(f) ∈ σ∗bUSC+ and we have

(1) f =
∑∗
β<α(−1)βfβ + (−1)αgα for every α ≤ ξf ,

(2) fξf ≡ 0,

(3) f =
∑∗
α<ξf

(−1)αfα.
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Proof. First we show that Φ(f) is defined and Φ(f) ∈ σ∗bUSC+. In order to
prove this, we will show the following lemma.

Lemma 3.1.14. The functions gα and fα (assigned to f in Definition 3.1.4)
are bounded nonnegative and the sequence (fα) is decreasing.

Proof.
It follows trivially from the definition of the upper regularisation that if g is

an arbitrary function then

g is bounded⇒ ĝ exists, is bounded and ĝ ≥p g. (3.1.13)

Now we prove the statement of the lemma by induction on α. If α = 0 then
g0 = f and f0 = f̂ , hence from f ∈ bB+

1 (X) and (3.1.13) clearly follows that g0

and f0 are bounded nonnegative functions.
If α is a successor then by definition gα = ĝα−1 − gα−1 so by the second

part of (3.1.13) we have gα ≥p 0. Moreover, since gα−1 is bounded ĝα−1 is also
bounded. Thus, gα is the difference of two bounded functions, therefore it is also
bounded. Therefore, by (3.1.13) fα exists (notice that we have defined the upper
regularisation only for bounded functions) and also bounded and nonnegative.

Now we show that the sequence (fα) is also decreasing. By the nonnegativity
of gα−1 we have fα−1 − gα−1 ≤p fα−1, so

fα = ̂fα−1 − gα−1 ≤p f̂α−1 = fα−1.

For limit α we have

gα = inf{gβ : β < α and β is even}, (3.1.14)

so clearly gα ≥p 0 and gα is bounded. Hence using again (3.1.13) we obtain
that fα is bounded and nonnegative.

Now for every β we have gβ ≤p fβ . Therefore, if β is an even ordinal and
β < α then by (3.1.14) we have

gα ≤p gβ ≤p fβ ,

so fα = ĝα ≤p f̂β = fβ . But if β is odd, then β+1 is even and β+1 < α. Using
(3.1.14) we obtain gα ≤p gβ+1 hence by the definition of fα and fβ+1 and the
inductive hypothesis we have fα ≤p fβ+1 ≤p fβ . This finishes the proof of the
lemma. �

Clearly, by the definition of upper regularisation, the functions fα are upper
semicontinuous. Therefore, by Lemma 3.1.14 we obtain that (fα) is a decreasing
sequence of nonnegative USC functions, so it must stabilise for some countable
ordinal ξf (Lemma 3.1.7). Therefore, for every function in f ∈ bB+

1 (X) we have
that Φ(f) is defined and Φ(f) ∈ σ∗bUSC+(X).

Now we need the following lemma.

Lemma 3.1.15. Let (fα)α<ξ ∈ σ∗USC+. Then
∑∗
α<ξ(−1)αfα is a Baire class

1 function.

Proof. We prove the lemma by induction on ξ.
First, if ξ is a successor just use that Baire class 1 functions are closed under

addition and subtraction.

41

dc_1437_17

Powered by TCPDF (www.tcpdf.org)



Second, if ξ is a limit, by definition of the alternating sums we have that

Σ∗α<ξ(−1)αfα = sup{Σ∗β<α(−1)βfβ : α < ξ, α even}.

For even α < ξ we have

Σ∗β<α(−1)βfβ = Σ∗β<α+1(−1)βfβ − fα. (*)

Again, for even α

Σ∗β<α(−1)βfβ + fα − fα+1 = Σ∗β<α+2(−1)βfβ

so since the sequence (fα)α<ξ is decreasing the sequence (
∑∗
β<α(−1)βfβ)α even

is increasing. Similarly, the sequence (
∑∗
β<α+1(−1)βfβ)α even is decreasing.

Notice that if (rβ)β<α and (tβ)β<α are decreasing transfinite sequences of non-
negative reals such that rβ − tβ is increasing, then

sup{rβ − tβ : β < α} = inf{rβ : β < α} − inf{tβ : β < α}.

Therefore, applying (∗) and these facts we have

sup{Σ∗β<α(−1)βfβ : α < ξ even} =

inf{Σ∗β<α+1(−1)βfβ : α < ξ even} − inf{fα : α < ξ even}.

The infimum of USC functions is also USC, hence the right-hand side of the
equation is the difference of the infimum of a countable family of Baire class 1
functions and a USC function. Therefore, sup{

∑∗
β<α(−1)βfβ : α < ξ even} is

the infimum of a countable family of Baire class 1 functions. Moreover, by the
inductive hypothesis, this function is also the supremum of a countable family
of Baire class 1 functions. Now, using the fact that a function is Baire class
1 if and only if the preimage of every open set is Σ0

2(X) it is easy to see that
if a function h is the infimum of a countable family of Baire class 1 functions
then for every a ∈ R we have that h−1((−∞, a)) is in Σ0

2(X). Similarly, if h
is the supremum of a countable family of Baire class 1 functions then the sets
h−1((a,∞)) are also in Σ0

2(X). But this implies that a function that is both an
infimum and a supremum of countable families of Baire class 1 functions is also
Baire class 1.

So, as an infimum and supremum of countable families of Baire class 1
functions, the function sup{

∑∗
β<α(−1)βfβ : α < ξ even} is also a Baire class 1

function, which completes the inductive proof. �

Now we prove (1) of the Proposition by induction on α.
For α = 0 this is clear. If α is a successor, then gα−1 = fα−1 − gα, so

f = Σ∗β<α−1(−1)βfβ + (−1)α−1gα−1 =

Σ∗β<α−1(−1)βfβ + (−1)α−1(fα−1 − gα) = Σ∗β<α(−1)βfβ + (−1)αgα.

For limit α notice that we have by induction for every even β < α

f = Σ∗γ<β(−1)γfγ + gβ .
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Then, using that (fβ)β<α is decreasing, the sequence (Σ∗γ<β(−1)γfγ)β even is
increasing, so (gβ)β even is decreasing as their sum is constant f .

Notice that if (rβ)β<α is an increasing and (tβ)β<α is a decreasing transfinite
sequence of nonnegative reals such that rβ + tβ = c is constant, then

c = sup{rβ + tβ : β < α} = sup{rβ : β < α}+ inf{tβ : β < α}.

So
f = sup

β even,β<α

(
Σ∗γ<β(−1)γfγ + gβ

)
=

sup
β even,β<α

Σ∗γ<β(−1)γfγ + inf
β even,β<α

gβ = Σ∗β<α(−1)βfβ + gα,

where the last equality follows from the definition of
∑∗
β<α(−1)βfβ and gα.

This proves the induction hypothesis, so we have (1).
After rearranging the equality in (1) we have that

(−1)α+1gα = Σ∗β<α(−1)βfβ − f.

By Lemma 3.1.15 we have that the sum on the right-hand side of the equation
is a Baire class 1 function, therefore gα is also Baire class 1. We have that
fξf+1 ≡ fξf , so by Definition 3.1.4 we have ̂̂gξf − gξf = ĝξf . Hence in order to
prove (2) it is enough to show the following claim.
Claim. If g is a nonnegative, bounded Baire class 1 function such that ĝ = ̂̂g − g
then g ≡ 0.
Proof. [Proof of the Claim.] Suppose the contrary. Then there exists an ε > 0
such that {x : g(x) > ε} 6= ∅. Let K = {x : g(x) > ε}. Since g is a Baire class 1
function we have that there exists an open set V such that

ε > osc(g,K ∩ V ) (= sup
x,y∈K∩V

|g(x)− g(y)|)

and K ∩ V is not empty (see [51, 24.15]).
The function lim supy→x g(y) (here in the lim sup we do not exclude those

sequences which contain x) is USC. Therefore, by definition ĝ ≤p lim sup g.
Hence letting h = ĝ − g we have that

h ≤p lim sup(g)− g. (3.1.15)

Now, we claim that
(lim sup(g)− g)|V ∩K ≤ ε. (3.1.16)

Suppose the contrary, then there is x ∈ V ∩ K such that (lim supy→x g(x)) −
g(x) > ε. Consequently, there exists a sequence yn → x, such that
limn→∞ g(yn) > g(x) + ε. Using the nonnegativity of g and the fact that
g|Kc ≤ ε we get that yn ∈ K ∩ V except for finitely many n’s. But then
osc(g,K ∩ V ) > ε, a contradiction. So we have (3.1.16) and using (3.1.15) we
obtain

h|V ∩K ≤ ε. (3.1.17)

Observe now that if for a bounded function f and an open set U we have that
f |U ≤ ε, then f̂ |U ≤ ε (clearly, if |f | < K then the function K · χUc + ε · χU is
an USC upper bound of f).
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By the above observation used for g on Kc we have that ĝ|Kc ≤ ε, in
particular from h = ĝ − g ≤p ĝ we obtain that h|Kc ≤ ε. Then from (3.1.17)
we get h|V ≤ ε. So finally, using the above observation for h and V we obtain
ĥ|V ≤ ε.

The set {x : g(x) > ε} is dense in K, hence there exists an x0 ∈ V ∩ {x :
g(x) > ε}. On the one hand ĝ(x0) ≥ g(x0) > ε, on the other by x ∈ V we get
ĥ(x0) ≤ ε. This contradicts the assumption that ĝ = ĥ. �

So we have proved (2) of Proposition 3.1.5.
(3) easily follows from Lemma 3.1.14, (1), (2) since 0 ≤ gξf ≤ fξf ≡ 0. This

finishes the proof of the proposition. �

3.2 Proof of Theorems 1.2.4 and 1.2.8

3.2.1 Notation and basic facts

The following notions and facts can all be found in [51].
Let F(G) denote the family of closed subsets of G equipped with the so

called Effros Borel structure. Let K(G) be the family of compact subsets of
G equipped with the Hausdorff metric. Then K(G) is a Borel subset of F(G)
and the inherited Borel structure on K(G) coincides with the one given by the
Hausdorff metric.

Let us denote by P(G) the set of Borel probability measures on G, where
by Borel probability measure we mean the completion of a probability measure
defined on the Borel sets. These measures form a Polish space equipped with
the weak*-topology. For µ ∈ P(G) we denote by supp(µ) the support of µ, i.e.
the minimal closed subset F of G so that µ(F ) = 1. Let Pc(G) = {µ ∈ P(G) :
supp(µ) is compact}.

Recall that Π0
ξ stands for the ξth multiplicative level of the Borel hierarchy,

∆1
1, Σ1

1 and Π1
1 denote the classes of Borel, analytic and coanalytic sets, re-

spectively. For a Polish space X, Π0
ξ(X), ∆1

1(X) etc. denote the collections of
subsets of X in the appropriate classes. Symbols Γ and Λ will denote one of the
above mentioned classes, and Λ̌ = {Ac : A ∈ Λ}.

For a set H ⊂ X × Y we define its x-section as Hx = {y ∈ Y : (x, y) ∈ H},
and similarly if H ⊂ X × Y × Z then Hx,y = {z ∈ Z : (x, y, z) ∈ H}, etc. For
a function f : X × Y → Z the x-section is the function fx : Y → Z defined by
fx(y) = f(x, y). We will sometimes also write fx = f(x, ·).

For A,B ⊂ G let d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B} and A+B = {a+ b :
a ∈ A, b ∈ B}. Let us denote by B(g, r) and B̄(g, r) the open and closed ball
centered at g of radius r.

Remark 3.2.1. Note that in the definition of Haar null sets certain authors
actually require that the measure µ, which we will often refer to as a witness
measure, has compact support. This is quite important if the underlying group
is non-separable. However, in our case this would make no difference, since in a
Polish space for every Borel probability measure there exists a compact set with
positive measure [51, 17.11], and then restricting the measure to this set and
normalising yields a witness with a compact support. Therefore we may suppose
throughout the proofs that our witness measures have compact support.
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3.2.2 A function with a surprisingly thick graph
Throughout the proofs, let Γ = ∆1

1 and Λ = Π0
ξ for some 1 ≤ ξ < ω1, or let

Γ = Π1
1 and Λ = ∆1

1.
The following result will be the starting point of our constructions. For a

fixed measure µ statement 2. below describes the following strange phenomenon:
There exists a Borel graph of a function in a product space such that every Gδ
cover of the graph has a vertical section of positive measure.

Theorem 3.2.2. Let Γ = ∆1
1 and Λ = Π0

ξ for some 1 ≤ ξ < ω1, or let Γ = Π1
1

and Λ = ∆1
1. Then there exists a partial function f : Pc(G) × 2ω → G with

graph(f) ∈ Γ satisfying the following properties: ∀µ ∈ Pc(G)

1. (∀x ∈ 2ω) [(µ, x) ∈ dom(f)⇒ f(µ, x) ∈ supp(µ)],

2. (∀S ∈ Λ(2ω ×G)) [(graph(fµ) ⊂ S ⇒ (∃x ∈ 2ω)(µ(Sx) > 0)] .

Before the proof we need several technical lemmas.

Lemma 3.2.3. Pc(G) is a Borel subset of P(G).

Proof. The map µ 7→ supp(µ) between P(G) and F(G) is Borel (see [51,
17.38]) and Pc(G) is the preimage of K(G) under this map. �

Lemma 3.2.4. Let X be a Polish space and C ⊂ Pc(G)×X ×G with C ∈ Γ.
Then {(µ, x) : µ(Cµ,x) > 0} ∈ Γ.

Proof. Let first Γ = ∆1
1. If Y is a Borel space and C ⊂ Y ×G is a Borel set then

the map ϕ : Y ×Pc(G)→ [0, 1] defined by ϕ(y, µ) = µ(Cy) is Borel ([51, 17.25]).
Using this for Y = Pc(G) ×X we obtain that the map ψ : Pc(G) ×X → [0, 1]
given by ψ(µ, x) = ϕ((µ, x), µ) = µ(Cµ,x) is also Borel. Then {(µ, x) : µ(Cµ,x) >
0} = ψ−1((0, 1]), hence Borel.

For Γ = Π1
1 this is simply a special case of [51, 36.23]. �

Lemma 3.2.5. The set {(µ, g) : g ∈ supp(µ)} ⊂ Pc(G)×G is Borel.

Proof. As mentioned above, the map µ 7→ supp(µ) is Borel between P(G) and
F(G), hence its restriction to Pc(G) is also Borel.

Let E = {(K, g) : K ∈ K(G), g ∈ K}, which clearly is a closed subset of
K(G)×G. If we denote by Ψ : Pc(G)×G→ K(G)×G the Borel map defined
by (µ, g) 7→ (supp(µ), g) then we obtain that {(µ, g) : g ∈ supp(µ)} = Ψ−1(E)
is Borel. �

Let us now prove Theorem 3.2.2.

Proof. Let U ∈ Γ(2ω × 2ω ×G) be universal for the Λ̌ subsets of 2ω ×G, that
is, for every A ∈ Λ̌(2ω × G) there exists an x ∈ 2ω such that Ux = A (for the
existence of such a set see [51, 22.3, 26.1]). Notice that Λ̌ ⊂ Γ. Let

U ′ = Pc(G)× U.

Define

U ′′ = {(µ, x, g) ∈ Pc(G)× 2ω ×G : (µ, x, x, g) ∈ U ′ and µ(U ′µ,x,x) > 0},
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then U ′′ ∈ Γ using that the map (µ, x, g) 7→ (µ, x, x, g) is continuous and by
Lemma 3.2.4. Let

U ′′′ = {(µ, x, g) ∈ U ′′ : g ∈ supp(µ)},

then U ′′′ ∈ Γ by Lemma 3.2.5. Clearly,

U ′′′µ,x =

{
U ′µ,x,x ∩ supp(µ) if µ(U ′µ,x,x) > 0,

∅ otherwise.

Since for all (µ, x) the section U ′′′µ,x is either empty or has positive µ mea-
sure, by the ’large section uniformisation theorem’ [51, 18.6] and the coana-
lytic uniformisation theorem [51, 36.14] there exists a partial function f with
graph(f) ∈ Γ such that dom(f) = {(µ, x) ∈ Pc(G) × 2ω : µ(U ′µ,x,x) > 0} and
graph(f) ⊂ U ′′′.

We claim that this f has all the required properties.
First, by the definition of U ′′′, clearly f(µ, x) ∈ supp(µ) holds whenever

(µ, x) ∈ dom(f), hence Property 1. of Theorem 3.2.2 holds.
Let us now prove Property 2. Assume towards a contradiction that there

exists µ ∈ Pc(G) and S ∈ Λ(2ω × G) such that graph(fµ) ⊂ S and µ(Sx) = 0
for every x ∈ 2ω. Define B = (2ω × G) \ S. By the universality of U there
exists x ∈ 2ω such that Ux = U ′µ,x = B. Now, for every y ∈ 2ω the section By is
of positive (actually full) µ measure, in particular µ(U ′µ,x,x) > 0, and therefore
(µ, x) ∈ dom(f) and

f(µ, x) ∈ U ′′′µ,x ⊂ U ′′µ,x = U ′µ,x,x = Bx.

However, f(µ, x) ∈ Sx = G \Bx, a contradiction. �

3.2.3 Translating the compact sets apart
This section heavily builds on ideas of Solecki [74], [75]. The main point is that
if G is non-locally compact then one can apply a translation (chosen in a Borel
way) to every compact subset of G so that the resulting translates are disjoint.
(For technical reasons we will need to consider continuum many copies of each
compact set and also to ‘blow them up’ by a fixed compact set C.)

Proposition 3.2.6. Let C ∈ K(G) be fixed. Then there exists a Borel map
t : K(G)× 2ω × 2ω → G so that

1. if (K,x, y) 6= (K ′, x′, y′) are elements of K(G)× 2ω × 2ω then

(K − C + t(K,x, y)) ∩ (K ′ − C ′ + t(K ′, x′, y′)) = ∅

2. for every K ∈ K(G) and y ∈ 2ω the map t(K, ·, y) is continuous.

Proof. We use Solecki’s arguments [74], [75], which he used for different pur-
poses, with some modifications. However, for the sake of completeness, we
repeat large parts of his proofs.

Fix an increasing sequence of finite sets Qk ⊂ G with 0 ∈ Q0 such that
∪k∈ωQk is dense in G.
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Lemma 3.2.7. For every ε > 0 there exists δ > 0 and a sequence {gk}k∈ω ⊂
B(0, ε) such that for every distinct k, k′ ∈ ω

d(Qk + gk, Qk′ + gk′) ≥ δ.

Proof. Since G is not locally compact, there exists δ > 0 and a countably
infinite set S ⊂ B(0, ε) such d(s, s′) ≥ 2δ for every distinct s, s′ ∈ S.

Now we define gk inductively as follows. Suppose that we are done for i < k.
If for every s ∈ S there are a ∈ Qk, i < k and b ∈ Qi with d(a + s, b + gi) < δ
then there is a pair s, s′ of distinct members of S with the same a, i and b. But
then

d(s, s′) = d(a+ s, a+ s′) ≤ d(a+ s, b+ gi) + d(b+ gi, a+ s′) < 2δ,

a contradiction. Hence we can let gk = s for an appropriate s ∈ S. �

It is easy to see that using the previous lemma repeatedly we can inductively
fix εn, δn < εn and sequences {gnk }k∈ω such that for every n ∈ ω

• {gnk }k∈ω ⊂ B(0, εn),

• d(Qk + gnk , Qk′ + gnk′) ≥ 2δn for every distinct k, k′ ∈ ω,

•
∑
m>n εm < δn

3 .

Note that the second property implies that for every n ∈ ω the function
k 7→ gnk is injective. Note also that εn → 0 and hence δn → 0, moreover,

∑
δn

is also convergent.
Let us also fix a Borel injection c : K(G) × 2ω × 2ω → ωω such that for

each K and y the map c(K, ·, y) is continuous. (E.g. fix a Borel injection
c1 : K(G) → 2ω and continuous injection c2 : 2ω × 2ω × 2ω → ωω and let
c(K,x, y) = c2(c1(K), x, y).)

Our goal now is to define t(K,x, y), so let us fix a triple (K,x, y). First
we define a sequence {hn = hn(K,x, y)}n∈ω with hn ∈ {gnk }k∈ω as follows.
Suppose that we are given hi for i < n. By the density of ∪kQk we have
G = ∪k(Qk+B(0, δn/2)). Since K−C is compact, there exists a minimal index
kn(K,x, y) so that

K − C +
∑
i<n

hi ⊂ Qkn(K,x,y) +B(0, δn/2).

Fix an injective map φ : ω × ω → ω with φ(i, j) ≥ i for every i ∈ ω and let

hn = gnφ(kn(K,x,y),c(K,x,y)(n)) (3.2.1)

and
t(K,x, y) =

∑
n∈ω

hn. (3.2.2)

We claim that this function has the required properties.
First, it is well defined, that is, the sum is convergent since hn ∈ B(0, εn),

and hence for all n ∈ ω ∑
m>n

hm ∈ B̄(0, δn/3). (3.2.3)
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In order to prove 1. of the Proposition, let us now fix (K,x, y) 6= (K ′, x′, y′).
Then there exists an n ∈ ω such that c(K,x, y)(n) 6= c(K ′, x′, y′)(n). By the
injectivity of φ and of the sequence k 7→ gnk and also by (3.2.1) we obtain that
hn(K,x, y) 6= hn(K ′, x′, y′). Denote by hi and h′i the elements hi(K,x, y) and
hi(K

′, x′, y′), respectively. Set

k = φ(kn(K,x, y), c(K,x, y)(n)) and k′ = φ(kn(K ′, x′, y′), c(K ′, x′, y′)(n)).

The condition φ(i, j) ≥ i implies k ≥ kn(K,x, y), hence Qk ⊃ Qkn(K,x,y) and
similarly k′ ≥ kn(K ′, x′, y′), so Qk′ ⊃ Qkn(K′,x′,y′). Therefore, by the definition
of kn,

K − C +
∑
i<n

hi ∈ Qk +B(0, δn/2) and K ′ − C +
∑
i<n

h′i ∈ Qk′ +B(0, δn/2),

hence

K−C+
∑
i≤n

hi ∈ Qk+hn+B(0, δn/2) and K ′−C+
∑
i≤n

h′i ∈ Qk′+h′n+B(0, δn/2).

Thus, using the triangle inequality and the second property of the gnk we obtain

d(K − C +
∑
i≤n

hi,K
′ − C +

∑
i≤n

h′i) ≥ d(Qk + hn, Qk′ + h′n)− 2 · δn
2

=

= d(Qk + gnk , Qk′ + gnk′)− δn ≥ 2δn − δn = δn.

From this, using (3.2.3), we obtain d(K−C+t(K,x, y),K ′−C+t(K ′, x′, y′)) ≥
δn − 2 δn3 = δn

3 > 0, which proves 1.
What remains to show is that t is a Borel map and for everyK and y the map

t(K, ·, y) is continuous. But (3.2.3) shows that the series defining t in (3.2.2) is
uniformly convergent, so the next lemma finishes the proof.

Lemma 3.2.8. For every n ∈ ω the map hn is Borel and for every K and y
the map hn(K, ·, y) is continuous.

Proof. We will actually prove more by induction on n. Define fn : K(G) ×
2ω × 2ω → K(G) by

fn(K,x, y) = K − C +
∑
i<n

hi(K,x, y). (3.2.4)

We claim that the maps fn, kn and hn are Borel and for every K and y the
maps fn(K, ·, y), kn(K, ·, y) and hn(K, ·, y) are locally constant.

Note that if a function takes its values from a discrete set than locally con-
stant is equivalent to continuous.

First we prove that the maps are Borel. Suppose that we are done for i < n.
Let us check that fn is Borel. Put η : (K,x, y) 7→ (K,

∑
i<n hi(K,x, y)) and

ψ : (K, g) 7→ K − C + g, then fn = ψ ◦ η. Moreover, η is Borel by induction,
and ψ is easily seen to be continuous, hence fn is Borel.

Next we show that kn is Borel. Since ran(kn) ⊂ ω, we need to check that
for every fixed m ∈ ω the set B = {(K,x, y) : kn(K,x, y) = m} is Borel. By the
definition of kn(K,x, y), clearly

B = {(K,x, y) : fn(K,x, y) ⊂ U and fn(K,x, y) 6⊂ V },
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where U = Qm +B(0, δn/2) and V = Qm−1 +B(0, δn/2) are fixed open sets.
Set UW = {L ∈ K(G) : L ⊂ W}, which is open in K(G) for every open set

W ⊂ G. Then clearly
B = f−1

n (UU ) \ f−1
n (UV ),

hence Borel.
Since the functions k 7→ gnk and φ defined on countable sets are clearly Borel,

the Borelness of kn and c imply by (3.2.1) that hn is also Borel.
In order to prove that fn, kn and hn are locally constant in the second

variable, fix K and y and suppose that we are done for i < n. Then (3.2.4)
shows that fn is locally constant in the second variable by induction. This
easily implies using the definition of kn that kn is also is locally constant in the
second variable. But from this, and from the fact that c(K, ·, y)(n) : 2ω → ω is
continuous, hence locally constant, it is also clear using (3.2.1) that hn is also
locally constant in the second variable, which finishes the proof of the Lemma.
�

Therefore the proof of the Proposition is also complete. �

3.2.4 Putting the ingredients together
Now we are ready to prove our main results, which are summarised in the
following theorem.

Theorem 3.2.9. Let Γ = ∆1
1 and Λ = Π0

ξ for some 1 ≤ ξ < ω1, or let Γ = Π1
1

and Λ = ∆1
1. If G is a non-locally compact abelian Polish group then there

exists a (generalised, in the case of Γ = Π1
1) Haar null set E ∈ Γ(G) that is not

contained in any Haar null set H ∈ Λ(G).

Proof. Let f be given by Theorem 3.2.2.
Denote the Borel map µ 7→ supp(µ) by supp : Pc(G) → K(G). Let us also

fix a Borel bijection c : Pc(G) → 2ω (which we think of as a coding map) and
a continuous probability measure ν on G with compact support C containing 0
(compactly supported continuous measures exist on every Polish space without
isolated points, since such spaces contain copies of 2ω). Let t : K(G)×2ω×2ω →
G be the map from Proposition 3.2.6 with the C fixed above, and define the
map Ψ: Pc(G)× 2ω ×G→ G by

Ψ(µ, x, g) = g + t(supp(µ), x, c(µ)). (3.2.5)

Finally, define E = Ψ(graph(f)).

Claim 3.2.10. E ∈ Γ.

Proof. Ψ is clearly a Borel map. We claim that it is injective onD = {(µ, x, g) :
µ ∈ Pc(G), g ∈ supp(µ)}, which is Borel by Lemma 3.2.3 and Lemma 3.2.5.
Let (µ, x, g) 6= (µ′, x′, g′) be elements of D, we need to check that Ψ takes
distinct values on them. The case (µ, x) = (µ′, x′) is obvious, while the case
(µ, x) 6= (µ′, x′) follows from Property 1. in Proposition 3.2.6, since Ψ(µ, x, g) ∈
supp(µ)−C+t(supp(µ), x, c(µ)) (recall that g ∈ supp(µ) and 0 ∈ C). Therefore
Ψ is a Borel isomorphism on D. By graph(f) ⊂ D this implies that E =
Ψ(graph(f)) is in Γ (for Γ = ∆1

1 see [51, 15.4], for Γ = Π1
1 notice that by [51,
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25.A] a Borel isomorphism takes analytic sets to analytic sets, hence coanalytic
sets to coanalytic sets). �

Claim 3.2.11. E is Haar null (generalised Haar null in the case of Γ = Π1
1).

Proof. We prove that ν is witnessing this fact. Actually, we prove more:
|C ∩ (E + g)| ≤ 1 for every g ∈ G, or equivalently |(C + g) ∩ E| ≤ 1 for every
g ∈ G. So let us fix g ∈ G.

E = Ψ(graph(f)) = {Ψ(µ, x, f(µ, x)) : (µ, x) ∈ dom(f)} =

{f(µ, x) + t(supp(µ), x, c(µ)) : (µ, x) ∈ dom(f)},

hence the elements of E are of the form gµ,x = f(µ, x) + t(supp(µ), x, c(µ)).
This element gµ,x is clearly in Aµ,x = supp(µ) + t(supp(µ), x, c(µ)) by Property
1. of Theorem 3.2.2, and the sets Aµ,x form a pairwise disjoint family as (µ, x)
ranges over dom(f), by Property 2. of Proposition 3.2.6. Hence it suffices to
show that C + g can intersect at most one Aµ,x. But it can actually intersect
at most one set of the form K + t(K,x, y), since otherwise g would be in the
intersection of two distinct sets of the form K − C + t(K,x, y), contradicting
Property 2. of Proposition 3.2.6. �

Claim 3.2.12. There is no Haar null set H ∈ Λ containing E.

Suppose that H ∈ Λ is such a set. Then by Remark 3.2.1 there exists a
probability measure µ with compact support witnessing this fact. The section
map Ψµ = Ψ(µ, ·, ·) is continuous by (3.2.5) and Property 2. of Proposition
3.2.6. Now let S = Ψ−1

µ (H), then S ∈ Λ(2ω ×G).
It is easy to check that graph(fµ) ⊂ S, and therefore, using Theorem 3.2.2,

there exists x ∈ 2ω such that µ(Sx) > 0. By the definition of S we have that
Ψ(µ, x, Sx) ⊂ Ψµ(S) ⊂ H. But Ψ(µ, x, ·) : G→ G is a translation, so a translate
of H contains Sx, which is of positive µ measure, contradicting that H is Haar
null with witness µ. �

This concludes the proof. �

3.3 Proof of Theorem 1.2.10
The heart of the proof of this result is the following theorem, which is based on
ideas from [16]. For the definition and basic properties of packing dimension,
denoted by dimpH, see [35] or [67].

Theorem 3.3.1. Let K ′ ⊂ R be a Cantor set with dimpK
′ < 1 and let T ⊂ R be

such that |T | < c. Then K ′+T contains no measurable set of positive measure.

Proof. Suppose on the contrary that K ′ + T contains a measurable set P of
positive measure. We may assume that P is compact. By throwing away all
portions (i.e. relatively open nonempty subsets) of measure zero, we may also
assume that every portion of P is of positive measure. In particular, P has no
isolated points. The idea of the proof will be to construct a Cantor set P ′ ⊂ P
such that P ′ ∩ (K ′ + r) is finite for every r ∈ R. This clearly suffices, since
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a Cantor set is of cardinality continuum and hence less than continuum many
translates of K ′ cannot cover P ′, let alone P .

Let N be a positive integer and let us define FN to be the set of N -tuples
that can be covered by a translate of K ′, that is,

FN = {(x0, . . . , xN−1) ∈ RN : ∃t ∈ R such that {x0, . . . , xN−1} ⊂ K ′ + t}.

An easy compactness argument shows that FN is closed. Reformulating the
definition one can easily check that

FN = (K ′)N + R(1, . . . , 1),

where (1, . . . , 1) is a vector of N coordinates, and the operations are Minkowski
sum and Minkowski product. It is easy to see that FN is a Lipschitz image of
(K ′)N ×R, and using that Lipschitz images do not increase packing dimension
as well as dimp(A×B) ≤ dimpA+ dimpB and dimpR = 1 we obtain

dimp FN ≤ N dimpK
′ + 1.

If we chooseN large enough, actually ifN > 1
1−dimpK′

, thenN dimpK
′+1 < N ,

hence
dimp FN < N.

Let us fix such an N .

Lemma 3.3.2. Let Ji ⊂ R (i < N) be closed intervals such that int Ji ∩ P 6= ∅
(i < N). Then there are disjoint closed intervals Ii ⊂ Ji (i < N) such that
int Ii ∩ P 6= ∅ (i < N) and ∏

i<N

(Ii ∩ P ) ∩ FN = ∅.

Proof. Since every portion (i. e., nonempty relatively open subset) of
P is of positive measure, we obtain λN

(∏
i<N (int Ji ∩ P )

)
> 0, hence

dimp

(∏
i<N (int Ji ∩ P )

)
= N > dimp FN . Therefore

(∏
i<N (int Ji ∩ P )

)
\

FN 6= ∅, and, since FN is closed,
∏
i<N (intJi∩P ) contains a nonempty relatively

open set avoiding FN . This open set contains a basic open set, so there are open
intervals J ′i ⊂ int Ji (i < N) intersecting P such that

∏
i<N (J ′i ∩ P ) ∩ FN = ∅.

Finally, since P has no isolated points, it is easy to shrink every J ′i to a
closed interval Ii such that they become disjoint but their interiors still meet
P . This finishes the proof of the lemma. �

Now we return to the proof of the theorem. All that remains is to construct
P ′. We will actually prove

|P ′ ∩ (K ′ + r)| < N for every r ∈ R. (3.3.1)

We construct a usual Cantor scheme, where the kth level Lk will have the
following properties for all k ∈ ω.

(1) Lk consist of Nk many disjoint closed intervals,

(2) ∀I ∈ Lk+1∃I ′ ∈ Lk : I ⊂ I ′,
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(3) ∀I ∈ Lk there are N many I ′ ∈ Lk+1 with I ′ ⊂ I,

(4) ∀I ∈ Lk : int I ∩ P 6= ∅,

(5) ∀I ∈ Lk : diam I ≤ 1
k+1 ,

(6) If I0, . . . , IN−1 ∈ Lk are distinct then
∏
i<N (Ii ∩ P ) ∩ FN = ∅.

(Note that the intervals in (6) are not necessarily subsets of the same I ′ ∈ Lk−1.)
Assume first that such a Cantor scheme exists, and define

P ′ =
⋂
k∈ω

⋃
Lk.

It is easy to see that P ′ is a Cantor set ([51]), while the closedness of P , (4) and
(5) imply P ′ ⊂ P . Let x0, . . . , xN−1 be N distinct points in P ′. Clearly, there
is a k and distinct intervals I0, . . . , IN−1 ∈ Lk such that xi ∈ Ii (i < N). Then
(6) shows that {x0, . . . , xN−1} cannot be covered by a translate of K ′, which
proves (3.3.1).

Finally, let us prove by induction that such a Cantor scheme exists. Let
L0 = {I}, where I is an arbitrary closed interval of length at most 1 whose
interior meets P . Assume that Lk have already been constructed with the
required properties. Let L′k+1 be a family of disjoint closed intervals of length
at most 1

k+2 whose interiors meet P such that each I ∈ Lk contains N members
of L′k+1. Then recursively shrinking these intervals by applying Lemma 3.3.2(
Nk+1

N

)
times to all the possible N -tuples of distinct intervals we obtain Lk+1

satisfying all assumptions. This concludes the proof of the theorem. �

Theorem 3.3.3. Let K ⊂ R be a Cantor set with dimpK < 1/2. Then there
exists X ⊂ R with λ(X) > 0 such that |K ∩ (X + t)| ≤ 1 for every t ∈ R.

Proof. As above, let us enumerate the Borel sets of Lebesgue measure zero
as {Zα : α < c}. Since K − K is a Lipschitz image of K × K, we obtain
dimp(K −K) < 1. At stage α let us pick an

xα ∈ R \ (((K −K) + {xβ : β < α}) ∪ Zα) .

This is indeed possible by the above theorem applied to K ′ = K −K. Set

X = {xα : α < c}.

Then xα /∈ Zα shows that λ(X) > 0. We still have to check that |K∩(X+t)| ≤ 1
for every t ∈ R. Let xα, xβ ∈ X with α > β, and let us assume xα+t, xβ+t ∈ K.
Then t ∈ K −xβ , xα ∈ K − (K −xβ) = (K −K) +xβ , contradicting the choice
of xα. �

Finally, from this we easily obtain Theorem 1.2.10.
Proof. LetK be any Cantor set with dimpK < 1/2 (e.g. the “middle-α Cantor
set” is such a set for α > 1/2). Let X be as in the previous theorem. Also,
let µ be any atomless Borel probability measure on K. Then by the previous
theorem µ(X + t) = 0 for every t ∈ R. �
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3.4 Proof of Theorem 1.3.8

3.4.1 Preliminaries
Most of the following notations and facts can be found in [51].

Throughout the section let (X, τ) be an uncountable Polish space. We de-
note a compatible, complete metric for (X, τ) by d.

Recall that a Polish group is a topological group whose topology is Polish,
and also that a set H is ambiguous if H ∈∆0

2.
If τ ′ is a topology on X then we denote the family of real valued functions

defined on X that are of Baire class ξ with respect to τ ′ by Bξ(τ ′). In partic-
ular, Bξ = Bξ(τ). If Y is another Polish space (whose topology is clear from
the context) then we also use the notation Bξ(Y ) for the family of Baire class ξ
functions defined on Y . Similarly, Σ0

ξ(τ
′) and Σ0

ξ(Y ) are both the set of Σ0
ξ sub-

sets, with respect to τ ′, and in Y , respectively. We use the analogous notation
for all the other pointclasses.

Recall that a nonempty perfect subset of a Polish space with the subspace
topology is an uncountable Polish space.

Recall that a function is of Baire class ξ iff the inverse image of every open
set is in Σ0

ξ+1 iff {f < c} and {f > c} are in Σ0
ξ+1 for every c ∈ R. Moreover,

the family of Baire class ξ functions is closed under uniform limits.
For a set H ⊂ X × Y and an element x ∈ X we denote the x-section of H

by Hx = {y ∈ Y : (x, y) ∈ H}.
If H is a family of sets then

Hσ =

{⋃
n∈N

Hn : Hn ∈ H

}
and Hδ =

{⋂
n∈N

Hn : Hn ∈ H

}
.

For θ, θ′ < ω1 we use the relation θ . θ′ if θ′ ≤ ωη =⇒ θ ≤ ωη for every
1 ≤ η < ω1 (we use ordinal exponentiation here). Note that θ ≤ θ′ implies
θ . θ′ and θ . θ′, θ′ > 0 implies θ ≤ θ′ ·ω. We write θ ≈ θ′ if θ . θ′ and θ′ . θ.
Then ≈ is an equivalence relation. For every ordinal θ we have 2θ < θ + ω,
and since ωη is a limit ordinal for every η ≥ 1 we obtain that 2θ ≈ θ for every
ordinal θ.

A rank ρ : Bξ → ω1 is called additive if ρ(f + g) ≤ max{ρ(f), ρ(g)} for every
f, g ∈ Bξ. It is called linear if it is additive and ρ(cf) = ρ(f) for every f ∈ Bξ
and c ∈ R \ {0}. If X is a Polish group then the left and right translation
operators are defined as Lx0(x) = x0 ·x (x ∈ X) and Rx0(x) = x ·x0 (x ∈ X). A
rank ρ : Bξ → ω1 is called translation-invariant if ρ(f ◦Lx0) = ρ(f ◦Rx0) = ρ(f)
for every f ∈ Bξ and x0 ∈ X. We say that it is essentially additive, essentially
linear, and essentially translation-invariant if the corresponding inequalities and
equations hold with . and ≈. Moreover, ρ is additive, essentially additive etc.
for bounded functions, if the corresponding relations hold whenever f and g are
bounded.

Let (Fη)η<λ be a (not necessarily strictly) decreasing sequence of sets. Let us
assume that F0 = X and that the sequence is continuous, that is, Fη =

⋂
θ<η Fθ

for every limit η and if λ is a limit then
⋂
η<λ Fη = ∅. We also use the convention

that Fη = ∅ if η ≥ λ. We say that a set H is the transfinite difference of
(Fη)η<λ if H =

⋃
η<λ
η even

(Fη \ Fη+1). It is well-known that a set is in ∆0
ξ+1 iff it

is a transfinite difference of Π0
ξ sets see e.g. [51, 22.27]. We have to point out
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here that the monograph [51] does not assume that the decreasing sequences
are continuous, but when proving that every set in ∆0

ξ+1 has a representation
as a transfinite difference they actually construct continuous sequences, hence
this issue causes no difficulty here.

The set of sequences of length k whose terms are elements of the set
{0, . . . , n − 1} is denoted by nk. For s ∈ nk we denote the i-th term of s
by s(i). If l ∈ {0, . . . , n− 1} then s∧l denotes the sequence in nk+1 whose first
k terms agree with those of s and whose k + 1st term is l.

3.4.2 Ranks on the Baire class 1 functions without com-
pactness

In this section we summarise some results concerning ranks on the Baire class
1 functions, following the work of Kechris and Louveau. We do not consider
most results in this section as original, we basically just carefully check that the
results of Kechris and Louveau hold without the assumption of compactness of
X. This is inevitable, since they assumed compactness throughout their paper
but we will need these results in Section 3.4.7 for arbitrary Polish spaces.

A notable exception is Theorem 3.4.33 stating that the three ranks essentially
coincide for bounded Baire class 1 functions. Since our highly non-trivial proof
for the case of general Polish spaces required completely new ideas, we consider
this result as original in the non-compact case.

The definitions of the ranks will use the notion of a derivative operation.

Definition 3.4.1. A derivative on the closed subsets of X is a map D :
Π0

1(X) → Π0
1(X) such that D(A) ⊂ A and A ⊂ B ⇒ D(A) ⊂ D(B) for

every A,B ∈ Π0
1(X).

Definition 3.4.2. For a derivative D we define the iterated derivatives of the
closed set F as follows:

D0(F ) = F,

Dη+1(F ) = D(Dη(F )),

Dη(F ) =
⋂
θ<η

Dθ(F ) if η is a limit.

Definition 3.4.3. Let D be a derivative. The rank of D is the smallest ordinal
η, such that Dη(X) = ∅, if such ordinal exists, ω1 otherwise. We denote the
rank of D by rk(D).

Remark 3.4.4. In all our applications D satisfies D(F ) $ F for every
nonempty closed set F , and since in a Polish space there is no strictly de-
creasing sequence of closed sets of length ω1 (see e.g. [51, 6.9]), the rank of a
derivative is always a countable ordinal.

Proposition 3.4.5. If the derivatives D1 and D2 satisfy D1(F ) ⊂ D2(F ) for
every closed subset F ⊂ X then rk(D1) ≤ rk(D2).

Proof. It is enough to prove that Dη
1(X) ⊂ Dη

2(X) for every ordinal
η. We prove this by transfinite induction on η. For η = 0 this is obvi-
ous, since D0

1(X) = D0
2(X) = X. Now suppose this holds for η and we
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prove it for η + 1. Since Dη
1(X) ⊂ Dη

2(X) and D1 is a derivative, we have
D1(Dη

1(X)) ⊂ D1(Dη
2(X)). Using this observation and the condition of the

proposition for the closed set Dη
2(X), we have Dη+1

1 (X) = D1(Dη
1(X)) ⊂

D1(Dη
2(X)) ⊂ D2(Dη

2(X)) = Dη+1
2 (X).

For limit η the claim is an easy consequence of the continuity of the se-
quences, hence the proof is complete. �

Proposition 3.4.6. Let n ≥ 1 and D, D0, . . . , Dn−1 be derivative operations
on the closed subsets of X. Suppose that they satisfy the following conditions
for arbitrary closed sets F and F ′:

D(F ) ⊂
n−1⋃
k=0

Dk(F ), (3.4.1)

D(F ∪ F ′) ⊂ D(F ) ∪D(F ′). (3.4.2)

Then for these derivatives

rk(D) . max
k<n

rk(Dk). (3.4.3)

Proof. We will prove by induction on η that

Dωη (F ) ⊂
n−1⋃
k=0

Dωη

k (F ) (3.4.4)

for every closed set F . It is easy to see that proving (3.4.4) is enough, since if η
is an ordinal satisfying rk(Dk) ≤ ωη for every k < n then we have rk(D) ≤ ωη.

Now we prove (3.4.4). The case η = 0 is exactly (3.4.1). For limit η the
statement is obvious, since the sequences are decreasing and continuous. Hence,
it remains to prove (3.4.4) for η + 1 if it holds for η. For this it is enough to
show that for every m ∈ ω

Dωη·m·n(F ) ⊂
n−1⋃
k=0

Dωη·m
k (F ), (3.4.5)

indeed,

Dωη+1

(F ) =
⋂
m∈ω

Dωη·m·n(F ) ⊂
⋂
m∈ω

(
n−1⋃
k=0

Dωη·m
k (F )

)
,

hence x ∈ Dωη+1

(F ) implies that without loss of generality x ∈ Dωη·m
0 (F )

for infinitely many m, but the sequence Dωη·m
0 (F ) is decreasing, hence x ∈⋂

m∈ωD
ωη·m
0 (F ) = Dωη+1

0 (F ).
Now we prove (3.4.5). Let F∅ = F , and for m ∈ N, s ∈ nm and k < n let

Fs∧k = Dωη

k (Fs).

It is enough that for m ≥ 1

Dωη·m(F ) ⊂
⋃
s∈nm

Fs, (3.4.6)
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since it is easy to see that

⋃
s∈nm·n

Fs ⊂
n−1⋃
k=0

⋃
{Fs : s ∈ nm·n and |{i : s(i) = k}| ≥ m},

yielding (3.4.5), as⋃
{Fs : s ∈ nm·n and |{i : s(i) = k}| ≥ m} ⊂ Dωη·m

k (F ).

It remains to prove (3.4.6) by induction on m. For m = 1, this is only the
induction hypothesis of (3.4.4) for η. By supposing (3.4.6) for m, we have

Dωη·(m+1)(F ) = Dωη
(
Dωη·m(F )

)
⊂ Dωη

( ⋃
s∈nm

Fs

)
⊂

⊂
⋃
s∈nm

Dωη (Fs) ⊂
⋃

s∈nm+1

Fs,

where we used (3.4.2) ωη many times for the second containment, and for the
last one we used the induction hypothesis, that is (3.4.4) for η. This finishes
the proof. �

3.4.3 The separation rank of Baire class 1 functions

This rank was first introduced by Bourgain [9].

Definition 3.4.7. Let A and B be two subsets of X. We associate a derivative
with them by

DA,B(F ) = F ∩A ∩ F ∩B. (3.4.7)

It is easy to see that DA,B(F ) is closed, DA,B(F ) ⊂ F and DA,B(F ) ⊂
DA,B(F ′) for every pair of sets A and B and every pair of closed sets F ⊂ F ′,
hence DA,B is a derivative. We use the notation α(A,B) = rk(DA,B).

Definition 3.4.8. The separation rank of a Baire class 1 function f is defined
as

α(f) = sup
p<q
p,q∈Q

α({f ≤ p}, {f ≥ q}). (3.4.8)

Remark 3.4.9. Actually,

α(f) = sup
x<y
x,y∈R

α({f ≤ x}, {f ≥ y}),

since if x < p < q < y then α({f ≤ x}, {f ≥ y}) ≤ α({f ≤ p}, {f ≥ q}), since
any set H ∈∆0

2(X) separating the level sets {f ≤ p} and {f ≥ q} also separates
{f ≤ x} and {f ≥ y}.

Proposition 3.4.10. If f is a Baire class 1 function then α(f) < ω1.
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Proof. From the definition of the rank and Remark 3.4.4 it is enough to prove
that for any pair of rational numbers p < q and nonempty closed set F ⊂ X,
DA,B(F ) ( F , where A = {f ≤ p} and B = {f ≥ q}. Since f is of Baire class 1,
it has a point of continuity restricted to F , hence A and B cannot be both dense
in F . Consequently, DA,B(F ) = F ∩A ∩ F ∩B ( F , proving the proposition.
�

Next we prove that α(A,B) < ω1 iff A and B can be separated by a trans-
finite difference of closed sets.

Definition 3.4.11. If the sets A and B can be separated by a transfinite dif-
ference of closed sets then let α1(A,B) denote the length of the shortest such
sequence, otherwise let α1(A,B) = ω1. We define the modified separation rank
of a Baire class 1 function f as

α1(f) = sup
p<q
p,q∈Q

α1({f ≤ p}, {f ≥ q}). (3.4.9)

Proposition 3.4.12. Let A and B two subsets of X. Then

α(A,B) ≤ α1(A,B) ≤ 2α(A,B), hence α(A,B) ≈ α1(A,B).

Proof. For the first inequality we can assume that α1(A,B) < ω1, so A and B
can be separated by a transfinite difference of closed sets. Let (Fη)η<λ be such
a sequence, where λ = α1(A,B). Now we have

A ⊂
⋃
η<λ
η even

(Fη \ Fη+1) ⊂ Bc.

It is enough to prove that Dη
A,B(X) ⊂ Fη for every η. We prove this by induc-

tion. For η = 0 this is obvious, since D0
A,B(X) = F0 = X.

Now suppose that Dη
A,B(X) ⊂ Fη. We will show that Dη+1

A,B(X) =

Dη
A,B(X) ∩A ∩Dη

A,B(X) ∩B ⊂ Fη+1. If η is even then

Dη
A,B(X) \ Fη+1 ⊂ Fη \ Fη+1 ⊂ Bc,

hence Dη
A,B(X) ∩ B ⊂ Fη+1. Since Fη+1 is closed, we obtain Dη

A,B(X) ∩B ⊂
Fη+1, henceD

η+1
A,B ⊂ Fη+1. If η is odd then Fη\Fη+1 is disjoint from

⋃
η<λ
η even

(Fη\
Fη+1), hence Fη\Fη+1 ⊂ Ac, and an argument analogous to the above one yields
Dη
A,B(X) ∩A ⊂ Fη+1, hence D

η+1
A,B ⊂ Fη+1.

If η is limit and Dθ
A,B(X) ⊂ Fθ for every θ < η then Dη

A,B(X) ⊂ Fη because
the sequences Dη

A,B(X) and Fη are continuous.
For the second inequality we suppose that α(A,B) < ω1, that is, the se-

quence Dη
A,B(X) terminates at the empty set at some countable ordinal. Let

F2η = Dη
A,B(X), F2η+1 = Dη

A,B(X) ∩B.

Clearly, F0 = X and F2η ⊇ F2η+1 for every η. It is easily seen from the
definition of Dη+1

A,B(X) that F2η+1 ⊇ F2η+2 for every η. Moreover, the sequence
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F2η = Dη
A,B(X) is continuous. This implies that the sequence formed by the

Fη’s is decreasing and continuous.
Now we show that the transfinite difference of this sequence separates A and

B.
Every ring of the form F2η \ F2η+1 is disjoint from B, so we only need to

prove that A is contained in the union of these rings. We show that A is disjoint
from the complement of this union by proving that

(F2η+1 \ F2η+2) ∩A =
(
Dη
A,B(X) ∩B \Dη+1

A,B(X)
)
∩A = ∅

for every η. From the definition of the derivative, Dη+1
A,B(X) = Dη

A,B(X) ∩A ∩
Dη
A,B(X) ∩B. Using the fact that Dη

A,B(X) is closed, for a point x ∈ A ∩
Dη
A,B(X) ∩B we have x ∈ Dη

A,B(X) ∩A, hence x ∈ Dη+1
A,B(X). �

Remark 3.4.13. It is claimed in [52] that if X is compact and α(A,B) = λ+n
with λ limit and 0 < n ∈ ω then α1(A,B) is either λ + 2n or λ + 2n − 1.
However, this does not seem to be true. For a counterexample, let X be the
2n+1-dimensional cube in R2n+1. Let A = (F0\F1)∪(F2\F3)∪· · ·∪(F2n\F2n+1),
where Fi is a (2n+ 1− i)-dimensional face of X, and Fi+1 ⊂ Fi for i ≤ 2n. Let
B = X \A. The definition of A shows that α1(A,B) ≤ 2n+ 2.

Now D0
A,B(X) = X = F0, and by induction, Di

A,B(X) = Fi for 0 ≤ i ≤ 2n+

1, since Di
A,B(X) = D(Di−1

A,B(X)) = DA,B(Fi−1) = Fi−1 ∩A ∩ Fi−1 ∩B = Fi.
Now we have D2n+2

A,B (X) = DA,B(D2n+1
A,B (X)) = DA,B(F2n+1) = ∅, proving

that in this case α(A,B) = 2n + 2. Using Proposition 3.4.12 this shows that
α1(A,B) = α(A,B) = 2n+ 2.

We leave the proof of the following corollary to the reader.

Corollary 3.4.14. If f is a Baire class 1 function then

α(f) ≤ α1(f) ≤ 2α(f), hence α(f) ≈ α1(f).

Corollary 3.4.15. If f is a Baire class 1 function then α1(f) < ω1.

Proof. It is an easy consequence of the previous corollary and Proposition
3.4.10. �

3.4.4 The oscillation rank of Baire class 1 functions
This rank was investigated by numerous authors, see e.g. [45].

First, we define the oscillation of a function, then turn to the oscillation
rank.

Definition 3.4.16. The oscillation of a function f : X → R at a point x ∈ X
restricted to a closed set F ⊂ X is

ω(f, x, F ) = inf

{
sup

x1,x2∈U∩F
|f(x1)− f(x2)| : U open, x ∈ U

}
. (3.4.10)

Definition 3.4.17. For each ε > 0 consider the derivative defined by

Df,ε(F ) = {x ∈ F : ω(f, x, F ) ≥ ε} . (3.4.11)
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It is obvious that Df,ε(F ) is closed, Df,ε(F ) ⊂ F and Df,ε(F ) ⊂ Df,ε(F
′)

for every function f : X → R, every ε > 0 and every pair of closed sets F ⊂ F ′,
hence Df,ε is a derivative. Let us denote the rank of Df,ε by β(f, ε).

Definition 3.4.18. The oscillation rank of a function f is

β(f) = sup
ε>0

β(f, ε). (3.4.12)

Proposition 3.4.19. If f is a Baire class 1 function then β(f) < ω1.

Proof. Using Remark 3.4.4, it is enough to prove Df,ε(F ) ( F for every ε > 0
and every nonempty closed set F ⊂ X. And this is easy, since f restricted to F
is continuous at a point x ∈ F , and thus x 6∈ Df,ε(F ), hence Df,ε(F ) ( F . �

3.4.5 The convergence rank of Baire class 1 functions
Now we turn to the convergence rank following Zalcwasser [79] and Gillespie
and Hurwitz [40].

Definition 3.4.20. Let (fn)n∈N be a sequence of real valued continuous func-
tions on X. The oscillation of this sequence at a point x restricted to a closed
set F ⊂ X is

ω((fn)n∈N, x, F ) = inf
x∈U
U open

inf
N∈N

sup {|fm(y)− fn(y)| : n,m ≥ N, y ∈ U ∩ F} .

(3.4.13)

Definition 3.4.21. Consider a sequence (fn)n∈N of real valued continuous func-
tions, and for each ε > 0, define a derivative as

D(fn)n∈N,ε(F ) = {x ∈ F : ω((fn)n∈N, x, F ) ≥ ε} . (3.4.14)

It is easy to see that D(fn)n∈N,ε(F ) is closed, D(fn)n∈N,ε(F ) ⊂ F and
D(fn)n∈N,ε(F ) ⊂ D(fn)n∈N,ε(F

′) for every sequence of continuous functions
(fn)n∈N, every ε > 0 and every pair of closed sets F ⊂ F ′, hence D(fn)n∈N,ε

is a derivative. Let us denote the rank of D(fn)n∈N,ε by γ((fn)n∈N, ε).

Definition 3.4.22. For a Baire class 1 function f let the convergence rank of
f be defined by

γ(f) = min

{
sup
ε>0

γ((fn)n∈N, ε) : ∀n fn is continuous and fn → f pointwise
}
.

(3.4.15)

Proposition 3.4.23. If f is a Baire class 1 function then γ(f) < ω1.

Proof. It suffices to show that D(fn)n∈N,ε(F ) ( F for every ε > 0, every
nonempty closed set F ⊂ X and every sequence of pointwise convergent con-
tinuous functions (fn)n∈N. Suppose the contrary, then for every N the set
GN = {x ∈ F : ∃n,m ≥ N |fn(x) − fm(x)| > ε

2} is dense in F . It is also open
in F , hence by the Baire category theorem there is a point x ∈ F such that
x ∈ GN for every N ∈ N, hence the sequence (fn)n∈N does not converge at x,
contradicting our assumption. �
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3.4.6 Properties of the Baire class 1 ranks

Theorem 3.4.24. If f is a Baire class 1 function then α(f) ≤ β(f) ≤ γ(f).

Proof. For the first inequality, it is enough to prove that for every p, q ∈ Q,
p < q we can find ε > 0 such that α({f ≤ p}, {f ≥ q}) ≤ β(f, ε). Let
A = {f ≤ p}, B = {f ≥ q} and ε = p− q. Using Proposition 3.4.5 it suffices to
show that DA,B(F ) ⊂ Df,ε(F ) for every F ∈ Π0

1(X). If x ∈ F \Df,ε(F ) then
x has a neighbourhood U such that supx1,x2∈U∩F |f(x1) − f(x2)| < ε = p − q,
hence U cannot intersect both A and B. So x 6∈ DA,B(F ), proving the first
inequality.

For the second inequality, let (fn)n∈N be a sequence of continuous func-
tions converging pointwise to a function f . It is enough to show that
β(f, ε) ≤ γ((fn)n∈N, ε/3). As in the first paragraph we show that Df,ε(F ) ⊂
D(fn)n∈N,ε/3(F ) for every F ∈ Π0

1(X). It is enough to show that if x ∈
F \ D(fn)n∈N,ε/3(F ) then x /∈ Df,ε(F ). For such an x there is a neighbor-
hood U of x and an N ∈ N such that for all n,m ≥ N and x′ ∈ F ∩ U ,
|fn(x′) − fm(x′)| < ε/3. Letting m → ∞ we get |fn(x′) − f(x′)| ≤ ε/3 for
all n ≥ N and x′ ∈ F ∩ U . Let V ⊂ U be a neighborhood of x for which
supV fN − infV fN < ε/6. Now for every x′, x′′ ∈ V ∩ F we have

|f(x′)− f(x′′)| ≤ |fN (x′)− fN (x′′)|+ 2
ε

3
<

5

6
ε < ε,

showing that x 6∈ Df,ε(F ). �

Proposition 3.4.25. If X is a Polish group then the ranks α, β and γ are
translation invariant.

Proof. Note first that for a Baire class 1 function f and x0 ∈ X the functions
f ◦Lx0

and f ◦Rx0
are also of Baire class 1. Since the topology of a topological

group is translation invariant, and the the definitions of the ranks depend only
on the topology of the space, the proposition easily follows. �

Theorem 3.4.26. The ranks are unbounded in ω1, actually unbounded already
on the characteristic functions.

We postpone the proof, since later we will prove the more general Theorem
3.4.42.

Proposition 3.4.27. If f is continuous then α(f) = β(f) = γ(f) = 1.

Proof. In order to prove α(f) = 1, consider the derivativeD{f≤p},{f≥q}, where
p < q is a pair of rational numbers. Since the level sets {f ≤ p} and {f ≥ q}
are disjoint closed sets, D{f≤p},{f≥q}(X) = ∅.

For β(f) = 1, note that a continuous function f has oscillation 0 at every
point restricted to every set, hence Df,ε(X) = ∅ for every ε > 0.

And finally for γ(f) = 1 consider the sequence of continuous functions
(fn)n∈N, for which fn = f for every n ∈ N. It is easy to see that
ω((fn)n∈N, x, F ) = 0 for every point x ∈ X and every closed set F ⊂ X.
Now we have that D(fn)n∈N,ε(X) = ∅ for every ε > 0, hence γ(f) = 1. �
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Theorem 3.4.28. If f is a Baire class 1 function and F ⊂ X is closed then
α(f · χF ) ≤ 1 + α(f), β(f · χF ) ≤ 1 + β(f) and γ(f · χF ) ≤ 1 + γ(f).

Proof. First we prove the statement for the ranks α and β. Let D be a
derivative either of the form DA,B or of the form Df,ε where A = {f ≤ p} and
B = {f ≥ q} for a pair of rational numbers p < q and ε > 0. Let D be the
corresponding derivative for the function f ·χF , i.e. D = DA′,B′ or D = Df ·χF ,ε,
where A′ = {f · χF ≤ p} and B′ = {f · χF ≥ q}.

Since the function f ·χF is constant 0 on the open setX\F , it is easy to check
that in both cases D(X) ⊂ F . And since the functions f and f ·χF agree on F ,
we have by transfinite induction that D

1+η
(X) ⊂ Dη(X) for every countable

ordinal η, implying that α(f · χF ) ≤ 1 + α(f) and also β(f · χF ) ≤ 1 + β(f).
Now we prove the statement for γ. Let (fn)n∈N be a sequence of continu-

ous functions converging pointwise to f with supε>0 γ((fn)n∈N, ε) = γ(f). Let
gn(x) = 1 − min{1, n · d(x, F )} and set f ′n(x) = fn(x) · gn(x). It is easy to
check that for every n the function f ′n is continuous and f ′n → f ·χF pointwise.
For every x ∈ X \ F there is a neighborhood of x such that for large enough n
the function f ′n is 0 on this neighborhood, hence D(f ′n)n∈N,ε(X) ⊂ F for every
ε > 0. From this point on the proof is similar to the previous cases, since the
sequences of functions (fn)n∈N and (f ′n)n∈N agree on F , hence, by transfinite
induction D1+η

(f ′n)n∈N,ε
(X) ⊂ Dη

(fn)n∈N,ε
(X) for every ε > 0. From this we have

γ((f ′n)n∈N, ε) ≤ 1 + γ((fn)n∈N, ε) for every ε > 0, hence γ(f · χF ) ≤ 1 + γ(f).
Thus the proof of the theorem is complete. �

Theorem 3.4.29. The ranks β and γ are essentially linear.

Proof. It is easy to see that β(cf) = β(f) and γ(cf) = γ(f) for every c ∈
R \ {0}, hence it suffices to show that β and γ are essentially additive.

First we consider a modification of the definition of the rank β as follows.
Let β0 be the rank obtained by simply replacing supx1,x2∈U∩F |f(x1)−f(x2)| in
(3.4.10) by supx1∈U∩F |f(x) − f(x1)| in the definition of β. Clearly, β0(f, ε) ≤
β(f, ε) ≤ β0(f, ε/2), hence actually β0 = β. Therefore it is sufficient to prove
the theorem for β0.

To prove the theorem for β0, let D0 = Df,ε/2, D1 = Dg,ε/2 and D = Df+g,ε

(we use here the derivatives defining β0). We show that the conditions of Propo-
sition 3.4.6 hold for these derivatives.

For condition (3.4.1), let x ∈ Df+g,ε(F ). Since ω(f + g, x, F ) ≥ ε, we have
ω(f, x, F ) or ω(g, x, F ) ≥ ε/2, hence x ∈ Df,ε/2(F ) ∪Dg,ε/2(F ).

Condition (3.4.2) is similar, let x ∈ (F ∪ F ′) \ (Df+g,ε(F ) ∪Df+g,ε(F
′)).

Since x 6∈ Df+g,ε(F ), there is a neighbourhood U of x with |(f + g)(x) − (f +
g)(x′)| < ε′ < ε for x′ ∈ U ∩ F . And similarly, there is a neighborhood U ′ with
|(f + g)(x) − (f + g)(x′)| < ε′′ < ε for x′ ∈ U ′ ∩ F ′. Now the neighborhood
U ∩ U ′ shows that ω(f + g, x, F ∪ F ′) < ε, proving that x 6∈ Df+g,ε(F ∪ F ′).

The proposition yields that β0(f+g, ε) . max{β0(f, ε/2), β0(g, ε/2)}, hence
β0(f + g) . max{β0(f), β0(g)}. This proves the statement for β0, hence for β.

For γ, we do the same, prove the conditions of the proposition for D0 =
D(fn)n∈N,ε/2, D1 = D(gn)n∈N,ε/2 and D = D(fn+gn)n∈N,ε, and use the conclusion
of the proposition to finish the proof.

For condition (3.4.1), let x ∈ F \
(
D(fn)n∈N,ε/2(F ) ∪D(gn)n∈N,ε(F )

)
. Now

we can choose a common open set x ∈ U and a common N ∈ N such that
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for all n,m ≥ N and y ∈ U ∩ F we have |fn(y) − fm(y)| ≤ ε′ < ε/2 and
|gn(y)− gm(y)| ≤ ε′ < ε/2 (again, with a common ε′ < ε/2). But from this we
have |(fn + gn)(y) − (fm + gm)(y)| ≤ 2ε′ < ε for all n,m ≥ N and y ∈ U ∩ F ,
so x 6∈ D(fn+gn)n∈N,ε(F ), yielding (3.4.1).

For (3.4.2) let x ∈ (F∪F ′)\
(
D(fn+gn)n∈N,ε(F ) ∪D(fn+gn)n∈N,ε(F

′)
)
. For this

x we have a neighborhood U of x, N ∈ N and ε′ < ε, such that |(fn + gn)(y)−
(fm + gm)(y)| ≤ ε′ for every n,m ≥ N and y ∈ U ∩ F . Similarly, we can find a
neighbourhood U ′, N ′ ∈ N and ε′′ < ε, such that |(fn+gn)(y)−(fm+gm)(y)| ≤
ε′′ for every n,m ≥ N ′ and y ∈ U ′∩F ′. From this, ω((fn+gn)n∈N, x, F ∪F ′) ≤
max{ε′, ε′′} < ε, hence x 6∈ D(fn+gn)n∈N,ε(F ∪ F ′).

Therefore the proof of the theorem is complete. �

Remark 3.4.30. The analogous result does not hold for the rank α. To see this
note first that α(A,Ac) can be arbitrarily large below ω1 when A ranges over
∆0

2(X). This is a classical fact and we prove a more general result in Corollary
3.4.43.

First we check that for every A ∈ ∆0
2(X) the characteristic function χA

can be written as the difference of two upper semicontinuous (usc) functions.
Indeed, let (Kn)n∈ω and (Ln)n∈ω be increasing sequences of closed sets with
A =

⋃
nKn and Ac =

⋃
n Ln, and let

f0 =

{
0 on K0 ∪ L0,
−n on (Kn ∪ Ln) \ (Kn−1 ∪ Ln−1) for n ≥ 1

and

f1 =

 0 on L0,
−1 on (K0 ∪ L1) \ L0,
−n on (Kn−1 ∪ Ln) \ (Kn−2 ∪ Ln−1) for n ≥ 2.

Then f0 and f1 are usc functions with χA = f0 − f1.
Now we complete the remark by showing that α(f) ≤ 2 for every usc function

f . For p < q let A = {f ≤ p} and B = {f ≥ q}. Then B is closed, so
DA,B(X) = X ∩A ∩X ∩B = X ∩A ∩ B ⊂ B. Hence D2

A,B(X) ⊂ DA,B(B) =

A ∩B ∩B = ∅ ∩B = ∅.

Proposition 3.4.31. If the sequence of Baire class 1 functions fn converges
uniformly to f then β(f) ≤ supn β(fn).

Proof. If |f − fn| < ε/3 then |ω(f, x, F ) − ω(fn, x, F )| ≤ 2
3ε for every x

and F . Therefore Df,ε(F ) ⊂ Dfn,ε/3(F ) for every F , which in turn implies
β(f, ε) ≤ β(fn, ε/3), from which the proposition easily follows. �

Proposition 3.4.32. If the sequence of Baire class 1 functions fn converges
uniformly to f then γ(f) . sup

n
γ(fn).

Proof. By taking a subsequence we can suppose that |fn(x) − f(x)| ≤ 1
2n

for every n ∈ N and every x ∈ X. With gn(x) = fn(x) − fn−1(x) we have
|gn(x)| ≤ 3

2n , hence
∑∞
n=1 gn(x) is uniformly convergent, and f(x) = f0(x) +∑∞

n=1 gn(x). Using Theorem 3.4.29 we have γ(gn) . max{γ(fn), γ(fn−1)},
hence supn γ(gn) . supn γ(fn). It is enough to prove that for g =

∑∞
n=1 gn we

have γ(g) . supn γ(gn), since Theorem 3.4.29 yields γ(f) . max{γ(f0), γ(g)}.
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Now for every n ∈ N let (ϕkn)k∈N be a sequence of continuous functions
converging pointwise to gn with supε>0 γ((ϕkn)k∈N, ε) = γ(gn). It is easy to see
that we can suppose |ϕkn(x)| ≤ 3

2n for every n ∈ N and k ∈ N, since by replacing
(ϕkn)k∈N with

(
max

(
min

(
ϕkn,

3
2n

)
,− 3

2n

))
k∈N we have a sequence of continuous

functions satisfying this, and the sequence is still converging pointwise to gn,
while γ((ϕkn)k∈N, ε) is not increased.

Let φk =
∑k
n=0 ϕ

k
n. We show that (φk)k∈N converges pointwise to g and also

that γ(g) ≤ supε>0 γ((φk)k∈N, ε) . supn supε>0 γ((ϕkn)k∈N, ε) = supn γ(gn),
which finishes the proof. To prove pointwise convergence, let ε > 0 be arbitrary
and fix K ∈ N with 6

2K
< ε. For k > K we have

|φk(x)− g(x)| =

∣∣∣∣∣
k∑

n=0

ϕkn(x)− g(x)

∣∣∣∣∣ ≤
∣∣∣∣∣
K∑
n=0

ϕkn(x)− g(x)

∣∣∣∣∣+

∣∣∣∣∣
k∑

n=K+1

ϕkn(x)

∣∣∣∣∣ ,
where the first term of the last expression tends to

∣∣∣∑K
n=0 gn(x)− g(x)

∣∣∣ ≤ 3
2K

,

while the second is at most 3
2K

. Hence lim supk→∞ |φk(x)− g(x)| ≤ 2 3
2K

< ε
for every ε > 0, showing that φk(x)→ g(x).

Now fix an ε > 0 and K ∈ N as before, it is enough to show that
γ((φk)k∈N, 3ε) . supn supε>0 γ((ϕkn)k∈N, ε).

For any x ∈ X and k, l > K we have

|φk(x)− φl(x)| =

∣∣∣∣∣
k∑

n=0

ϕkn(x)−
l∑

n=0

ϕln(x)

∣∣∣∣∣
≤

K∑
n=0

∣∣ϕkn(x)− ϕln(x)
∣∣+

∣∣∣∣∣
k∑

n=K+1

ϕkn(x)

∣∣∣∣∣+

∣∣∣∣∣
l∑

n=K+1

ϕln(x)

∣∣∣∣∣ .
(3.4.16)

As before, the sum of the last two terms is at most ε. We want to use Proposition
3.4.6 for the derivatives D = D(φk)k∈N,3ε and Dn = D(ϕkn)k∈N,

ε
K+1

for n ≤ K.

To check condition (3.4.1), let x ∈ F \
⋃K
n=0D(ϕkn)k∈N,

ε
K+1

(F ). Then we have a
neighborhood U of x and an N ∈ N such that

∣∣ϕkn(y)− ϕln(y)
∣∣ < ε

K+1 for every
n ≤ K, every y ∈ U ∩ F and every k, l ≥ N . This observation and (3.4.16)
yields that |φk(y)− φl(y)| ≤ 2ε for every y ∈ U ∩ F and k, l ≥ N showing that
x 6∈ D(φk)k∈N,3ε(F ).

Condition (3.4.2) is similar, and it can be seen as in the proof of Theorem
3.4.29. Now Proposition 3.4.6 gives

γ((φk)k∈N, 3ε) . max
n≤K

γ

(
(ϕkn)k∈N,

ε

K + 1

)
≤ sup

n
sup
ε>0

γ((ϕkn)k∈N, ε),

completing the proof. �

Theorem 3.4.33. If f is a bounded Baire class 1 function then α(f) ≈ β(f) ≈
γ(f).

Proof. Using Theorem 3.4.24, it is enough to prove that γ(f) . α(f). First,
we prove the theorem for characteristic functions.

Lemma 3.4.34. Suppose that A ∈∆0
2. Then γ(χA) . α(χA).
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Proof. In order to prove this, first we have to produce a sequence of continuous
functions converging pointwise to χA.

For this let (Fη)η<λ be a continuous transfinite decreasing sequence of closed
sets, so that

A =
⋃
η<λ
η even

(Fη \ Fη+1)

and λ ≈ α(χA) given by Corollary 3.4.14. We can assume that the last element
of the sequence (Fη)η<λ is ∅, hence every x ∈ X is contained in a unique set of
the form Fη \ Fη+1.

For each k ∈ ω and η < λ let fkη : X → [0, 1] be a continuous function so
that fkη |Fη ≡ 1, and whenever x ∈ X and d(x, Fη) ≥ 1

k+1 then fkη (x) = 0. Such
a function exists by Urysohn’s lemma, since the sets Fη and {x ∈ X : d(x, Fη) ≥

1
k+1} are disjoint closed sets.

Now let (ηn) be an enumeration of λ in type ≤ ω. Let us define

fk =
∑
n≤k

ηn even

fkηn − f
k
ηn+1.

Since the functions fk are finite sums of continuous functions, they are con-
tinuous. We claim that fk → χA as k →∞.

To see this, first let x ∈ X be arbitrary. Then there exists a unique m so
that x ∈ Fηm \ Fηm+1. Choose k ∈ ω so that k ≥ m and d(x, Fηm+1) ≥ 1

k+1 .
Then if x ∈ A then ηm even and

fk(x) =
∑
n≤k

ηn even

fkηn(x)− fkηn+1(x) =

=

 ∑
n≤k

ηn even
ηn<ηm

fkηn(x)− fkηn+1(x)

+

 ∑
n≤k

ηn even
ηn>ηm

fkηn(x)− fkηn+1(x)

+fkηm(x)−fkηm+1(x).

The first sum is clearly 0 since fkηn ≡ 1 on Fηm if ηm > ηn. This is also
true for the second one, since if d(x, Fηn) ≥ 1

k+1 then fkηn(x) = 0. Finally,
fηm(x) = 1 and fηm+1(x) = 0, so fk(x) = 1.

If x 6∈ A then ηm is odd and

fk(x) =
∑
n≤k

ηn even

fkηn(x)− fkηn+1(x) =

=
∑
n≤k

ηn even
ηn<ηm

fkηn(x)− fkηn+1(x) +
∑
n≤k

ηn even
ηn>ηm

fkηn(x)− fkηn+1(x).

Now the previous argument gives fk(x) = 0.
So fk → χA holds. Next we prove by induction on η that for every η < λ

and every ε > 0 we have
Dη

(fk)k∈N,ε
(X) ⊂ Fη.

64

dc_1437_17

Powered by TCPDF (www.tcpdf.org)



This will clearly complete the proof.
For η = 0 we have

D0
(fk)k∈N,ε

(X) = X = F0.

If η is a limit ordinal, the statement is clear, since the sequence of derivatives
as well as (Fη)η<λ are continuous.

Now let η = θ + 1 and Dθ
(fk)k∈N,ε

(X) ⊂ Fθ. For some m we have θ = ηm.
Let x ∈ Fηm \ Fηm+1. Then it is enough to prove that x 6∈ Dη

(fk)k∈N,ε
(X). Let k

be so that d(x, Fηm+1) ≥ 2
k+1 .

If d(x, y) < 1
k+1 and y ∈ Dθ

(fk)k∈N,ε
(X), then y ∈ Fηm \ Fηm+1. From this,

l1, l2 ≥ k implies that f l1η (y) = f l2η (y) = 1 if η ≤ ηm, and f l1η (y) = f l2η (y) = 0 if
η > ηm. Hence fl1(y)− fl2(y) = 0.

So the sequence fk is eventually constant on a relative neighbourhood of x
in Fηm . Therefore x 6∈ D

η
(fk)k∈N,ε

(X), which finishes the proof. �

Next we prove that γ(f) . α(f) for every step function f . We still need the
following lemma.

Lemma 3.4.35. If A and B are ambiguous sets then

α (χA∩B) . max {α (χA) , α (χB)} .

Proof. It is enough to prove this for β since the previous lemma and Theorem
3.4.24 yields that the ranks essentially agree on characteristic functions. Theo-
rem 3.4.29 gives β(χA + χB) . max{β(χA), β(χB)}, hence it suffices to prove
that β (χA∩B) ≤ β(χA+χB). But this easily follows, since one can readily check
that for every ε < 1 and F we have DχA∩B ,ε(F ) ⊂ DχA+χB ,ε(F ), finishing the
proof. �

Now let f be a step function, so f =
∑n
i=1 ciχAi , where the Ai’s are disjoint

ambiguous sets covering X, and we can also suppose that the ci’s form a strictly
increasing sequence of real numbers.

Lemma 3.4.36. maxi{α(χAi)} . α(f).

Proof. Let Hi =
⋃i
j=1Aj . By the definition of the rank α, for every i we have

α(Hi, H
c
i ) ≤ α(f). (3.4.17)

This shows that α(χA1) . α(f), and together with the previous lemma, for
i > 1

α(χAi) = α(χHi\Hi−1
) = α(χHi∩Hci−1

) . max{α(χHi), α(χHci−1
)}

= max{α(Hi, H
c
i ), α(Hi−1, H

c
i−1)} ≤ α(f),

where the last but one inequality follows from the above lemma and the last
inequality from (3.4.17). �

Now we have

γ(f) . max
i
{γ(χAi)} ≈ max

i
{α(χAi)} . α(f),

where we used Theorem 3.4.29, this theorem for characteristic functions and
Lemma 3.4.36, proving the theorem for step functions.

In particular, α(f) ≤ β(f) ≤ γ(f) (Theorem 3.4.24) gives the following
corollary.
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Corollary 3.4.37. If f =
∑n
i=1 ciχAi , where the Ai’s are disjoint ambiguous

sets covering X and the ci’s are distinct then

α(f) ≈ max
i
{α(χAi)}

and similarly for β and γ.

Now let f be an arbitrary bounded Baire class 1 function.

Lemma 3.4.38. There is a sequence fn of step functions converging uniformly
to f , satisfying supn α(fn) . α(f).

Proof. Let pn,k = k/2n for all k ∈ Z and n ∈ N. The level sets {f ≤ pn,k}
and {f ≥ pn,k+1} are disjoint Π0

2 sets, hence they can be separated by a Hn,k ∈
∆0

2(X) (see e.g. [51, 22.16]). We can choose Hn,k to satisfy α1(Hn,k, H
c
n,k) ≤

2α(f) using Proposition 3.4.12.
Since f is bounded, for fixed n there are only finitely many k ∈ Z for which

Hn,k+1 \Hn,k 6= ∅. Set

fn =
∑
k∈Z

pn,k · χHn,k+1\Hn,k .

Now for each n, fn is a step function with |f − fn| ≤ 2n−1. Hence fn → f
uniformly. Since the level sets of a function fn are of the form Hn,k or Hc

n,k for
some k ∈ Z, we have α(fn) ≤ 2α(f), proving the lemma. �

Let fn be a sequence of step functions given by this lemma. Using Propo-
sition 3.4.32 and this theorem for step functions, we have γ(f) . supn γ(fn) .
supn α(fn) . α(f), completing the proof. �

We have seen above that α is not essentially additive on the Baire class 1
functions but β and γ are, therefore α cannot essentially coincide with β or γ.

Proposition 3.4.39. If the sequence of Baire class 1 functions fn converges
uniformly to f then α(f) . sup

n
α(fn).

Proof. If f is bounded (hence without loss of generality the fn are also
bounded) this is an easy consequence of Theorem 3.4.33 and Proposition 3.4.31.

For an arbitrary function g let g′ = arctan ◦g. It is easy to show that
α(g′) = α(g) using Remark 3.4.9.

If the functions f and fn are given such that fn → f uniformly then f ′n →
f ′ uniformly, and these are bounded functions, so we have α(f) = α(f ′) .
sup
n
α(f ′n) = sup

n
α(fn). �

3.4.7 Well-behaved ranks on the Baire class ξ functions

In this section we finally show that there actually exist ranks with very nice
properties. Two of these ranks will answer Question 1.3.1 and Question 1.3.2.
Throughout the section, let 1 ≤ ξ < ω1 be fixed.

First we need a result concerning unboundedness.
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Definition 3.4.40. Let A and B be disjoint Π0
ξ+1 sets. Then they can be

separated by a ∆0
ξ+1 set (see e.g. [51, 22.16]). Since every ∆0

ξ+1 set is the
transfinite difference of Π0

ξ sets, A and B can be separated by the transfinite
difference of such a sequence. Let αξ(A,B) denote the length of the shortest
such sequence.

Definition 3.4.41. Let f be a Baire class ξ function, and p < q ∈ Q. Then
{f ≤ p} and {f ≥ q} are disjoint Π0

ξ+1 sets. Let the separation rank of f be

αξ(f) = sup
p<q
p,q∈Q

αξ({f ≤ p}, {f ≥ q}).

Note that this really extends the definition of α1.

Theorem 3.4.42. For every 1 ≤ ξ < ω1 the rank αξ is unbounded in ω1 on the
characteristic Baire class ξ functions.

Proof. Let U ∈ Π0
ξ(2

ω × X) be a universal set for Π0
ξ(X) sets, that is, for

every F ⊂ X, F ∈ Π0
ξ(X) there exists a y ∈ 2ω such that Uy = F . For the

existence of such a set see [51, 22.3]. Let us use the notation Γζ(X) for the
the family of sets H ⊂ X satisfying αξ(H,Hc) < ζ. From [51, 22.27] we have
Γζ(X) ⊂∆0

ξ+1(X). We will show that there exists a ∆0
ξ+1 set for every ζ < ω1

which is universal for the family of Γζ sets. Since X is uncountable, there is
a continuous embedding of 2ω into X ([51, 6.5]), hence no universal set exists
in 2ω × X for the family of ∆0

ξ+1(X) sets (easy corollary of [51, 22.7]). This
implies for every ζ < ω1 that Γζ 6= ∆0

ξ+1, hence the rank is really unbounded.
Let p : ζ×N→ N be a bijection. For η < ζ and y ∈ 2ω we define φ(y)η ∈ 2ω

by φ(y)η(n) = y(p(η, n)). First we check that for a fixed η < ζ the map
y 7→ φ(y)η is continuous. Let U = {x ∈ 2ω : x(0) = i0, . . . , x(n) = in} be a
set from the usual basis of 2ω. The preimage of U is the set {y ∈ 2ω : ∀k ≤
n φ(y)η(k) = ik} = {y ∈ 2ω : ∀k ≤ n y(p(η, k)) = ik}, which is a basic open set,
too. Now Uη = {(y, x) : (φ(y)η, x) ∈ U} is a continuous preimage of a Π0

ξ set,
hence Uη ∈ Π0

ξ(2
ω ×X) (see [51, 22.1]). Let

U ′ = {(y, x) ∈ 2ω ×X : the smallest ordinal η such that (y, x) 6∈ Uη is odd,
if such an η exists, or no such η exists and ζ is odd}.

Now we check that U ′ ∈∆0
ξ+1(2ω×X). Let Vη =

⋂
θ<η Uθ, then these sets form

a continuous decreasing sequence of Π0
ξ sets and it is easy to see that U ′c is

the transfinite difference of the sequence (Vη)η<ζ+1, hence U ′c ∈∆0
ξ+1, proving

that U ′ ∈∆0
ξ+1, since the family of ∆0

ξ+1 sets is closed under complements (see
[51, 22.1]).

Now we show that U ′ is universal. For a set H ∈ Γζ(X) there is a sequence
(zη)η<ζ in 2ω, such that H is the transfinite difference of the sets Uzη . For
every sequence (zη)η<ζ we can find y ∈ 2ω such that φ(y)η = zη. Namely
y : p(η, n) 7→ zη(n) makes sense (since p is a bijection), and works. Consequently,
for H there is y ∈ 2ω, such that H is the transfinite difference of the sets
Uzη = Uφ(y)η = (Uη)

y. It is easy to see that if H is the transfinite difference of
the sequence ((Uη)

y
)η<ζ then

H = {x ∈ X : the smallest ordinal η such that x 6∈ (Uη)
y is odd,

if such an η exists, or no such η exists and ζ is odd},
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hence H = U ′y. �

Corollary 3.4.43. For every 1 ≤ ξ < ω1, every nonempty perfect set P ⊂ X
and every ordinal ζ < ω1 there is a characteristic function χA ∈ Bξ(X) with
A ⊂ P and αξ(χA) ≥ ζ.

Proof. Since P is nonempty perfect, it is an uncountable Polish space with
the subspace topology, hence the rank αξ is unbounded on the characteristic
Baire class ξ functions defined on P by the previous theorem. Hence we can
take a characteristic function f ′ ∈ Bξ(P ) with αξ(f ′) ≥ ζ, and set

f(x) =

{
f ′(x) if x ∈ P

0 if x ∈ X \ P .

It is easy to see that f ∈ Bξ(X), hence it is enough to prove that αξ(f) ≥ ζ.
For this, it is enough to prove that αξ({f ′ ≤ p}, {f ′ ≥ q}) ≤ αξ({f ≤

p}, {f ≥ q}) for every pair of rational numbers p < q. For this, letH ∈∆0
ξ+1(X)

where {f ≤ p} ⊂ H ⊂ {f ≥ q}c and H is the transfinite difference of the sets
(Fη)η<λ with λ = αξ({f ≤ p}, {f ≥ q}) and Fη ∈ Π0

ξ(X) for every η < λ.
Let H ′ = P ∩ H and for every η < λ let F ′η = P ∩ Fη. It is easy to see

that H ′ separates the level sets {f ′ ≤ p} and {f ′ ≥ q} and H ′ is the transfinite
difference of the sets (F ′η)η<λ. And since H ′ ∈ ∆0

ξ+1(P ) and F ′η ∈ Π0
ξ(P ) for

every η < λ ([51, 22.A]), we have the desired inequality αξ({f ′ ≤ p}, {f ′ ≥
q}) ≤ αξ({f ≤ p}, {f ≥ q}). Thus the proof is complete. �

Let again f be of Baire class ξ. Let

Tf,ξ = {τ ′ : τ ′ ⊇ τ Polish, τ ′ ⊂ Σ0
ξ(τ), f ∈ B1(τ ′)}.

So Tf,ξ is the set of those Polish refinements of the original topology that are
subsets of the Σ0

ξ sets turning f into a Baire class 1 function.

Remark 3.4.44. Clearly, Tf,1 = {τ} for every Baire class 1 function f .

In order to show that the ranks we are about to construct are well-defined,
we need the following proposition.

Proposition 3.4.45. Tf,ξ 6= ∅ for every Baire class ξ function f .

Proof. By the previous remark we may assume ξ ≥ 2. For every rational p
the level sets {f ≤ p} and {f ≥ p} are Π0

ξ+1 sets, hence they are countable
intersections of Σ0

ξ sets. In turn, these Σ0
ξ sets are countable unions of sets from⋃

η<ξΠ
0
η(τ). Clearly,

⋃
η<ξΠ

0
η(τ) ⊂ ∆0

ξ for ξ ≥ 2. By Kuratowski’s theorem
[51, 22.18], there exists a Polish refinement τ ′ ⊂ Σ0

ξ(τ) of τ for which all these
countable many ∆0

ξ sets are in ∆0
1(τ ′). Then for every rational p the level sets

are now Π0
2(τ ′) sets, and the same holds for irrational numbers too, since these

level sets can be written as countable intersection of rational level sets, proving
Tf,ξ 6= ∅. �

We now define a rank on the Baire class ξ functions starting from an arbitrary
rank on the Baire class 1 functions.
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Definition 3.4.46. Let ρ be a rank on the Baire class 1 functions. Then for a
Baire class ξ function f let

ρ∗ξ(f) = min
τ ′∈Tf,ξ

ρτ ′(f), (3.4.18)

where ρτ ′(f) is the ρ-rank of f in the topology τ ′.

Remark 3.4.47. From Remark 3.4.44 it is clear that ρ∗1 = ρ for every ρ.

Proposition 3.4.48. Let ρ and η be ranks on the Baire class 1 functions. If
ρ = η, or ρ ≤ η, or ρ ≈ η, or ρ . η then ρ∗ξ = η∗ξ , or ρ

∗
ξ ≤ η∗ξ , or ρ

∗
ξ ≈ η∗ξ ,

or ρ∗ξ . η∗ξ , respectively. Moreover, the same implications hold relative to the
bounded Baire class 1 functions.

Proof. The statement for = and ≤ is immediate from the definitions, and
the case of ≈ obviously follows from the case ., so it suffices to prove this
latter case only. So assume ρ . η (or ρ . η on the bounded Baire class 1
functions). Choose an optimal τ ′ ∈ Tf,ξ for η, that is, η∗ξ (f) = ητ ′(f). Then
ρ∗ξ(f) ≤ ρτ ′(f) . ητ ′(f) = η∗ξ (f), completing the proof. �

Then the following two corollaries are immediate from Theorem 3.4.24, and
Theorem 3.4.33.

Corollary 3.4.49. α∗ξ ≤ β∗ξ ≤ γ∗ξ .

Corollary 3.4.50. α∗ξ(f) ≈ β∗ξ (f) ≈ γ∗ξ (f) for every bounded Baire class ξ
function f .

Note that by repeating the argument of Remark 3.4.30 one can show that
α∗ξ differs from β∗ξ and γ∗ξ .

Theorem 3.4.51. If X is a Polish group then the ranks α∗ξ , β
∗
ξ and γ∗ξ are

translation invariant.

Proof. Note first that for a Baire class ξ function f and x0 ∈ X the functions
f ◦ Lx0

and f ◦ Rx0
are also of Baire class ξ. We prove the statement only for

the rank α∗ξ , because an analogous argument works for the ranks β∗ξ and γ∗ξ .
Let f be a Baire class ξ function and x0 ∈ X, first we prove that α∗ξ(f) ≥

α∗ξ(f ◦Rx0
). Let τ ′ ∈ Tf,ξ be arbitrary and consider the topology τ ′′ = {U ·x−1

0 :

U ∈ τ ′}. The map φ : x 7→ x · x−1
0 is a homeomorphism between the spaces

(X, τ ′) and (X, τ ′′), satisfying f(x) = (f ◦ Rx0
)(φ(x)). From this it is clear

that τ ′′ ∈ Tf◦Rx0 ,ξ and since the definition of the rank α depends only on the
topology of the space, we have ατ ′(f) = ατ ′′(f ◦ Rx0). Since τ ′ ∈ Tf,ξ was
arbitrary, the fact that α∗ξ(f) ≥ α∗ξ(f ◦Rx0

) easily follows.
Repeating the argument with the function f ◦Rx0 and element x−1

0 , we have
α∗ξ(f ◦Rx0

) ≥ α∗ξ(f ◦Rx0
◦Rx−1

0
) = α∗ξ(f), hence α∗ξ(f) = α∗ξ(f ◦Rx0

). For the
function f ◦ Lx0

we can do same using the topology τ ′′ = {x−1
0 · U : U ∈ τ ′}

and the homeomorphism φ : x 7→ x−1
0 · x, yielding α∗ξ(f) = α∗ξ(f ◦ Lx0

). This
finishes the proof. �

Theorem 3.4.52. If f is a Baire class ξ function and F ⊂ X is a closed set
then f ·χF is of Baire class ξ, and α∗ξ(f ·χF ) ≤ 1+α∗ξ(f), β∗ξ (f ·χF ) ≤ 1+β∗ξ (f)
and γ∗ξ (f · χF ) ≤ 1 + γ∗ξ (f).
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Proof. Examining the level sets of the function f ·χF , it is easy to check that
it is of Baire class ξ.

Now let τ ′ ∈ Tf,ξ be arbitrary. Clearly, f ·χF is of Baire class 1 with respect
to τ ′, and by Proposition 3.4.28 we have ατ ′(f · χF ) ≤ 1 + ατ ′(f) for every
τ ′ ∈ Tf,ξ, hence α∗ξ(f · χF ) ≤ 1 + α∗ξ(f). The other two inequalities follow
similarly. �

Proposition 3.4.53. If f is a Baire class ζ function with ζ < ξ then α∗ξ(f) =
β∗ξ (f) = γ∗ξ (f) = 1.

Proof. Using Proposition 3.4.27, it is enough to show that there exists a
topology τ ′ ∈ Tf,ξ such that f : (X, τ ′) → R is continuous, and this is clear
from [51, 24.5]. �

Next we prove a useful lemma, and then investigate further properties of the
ranks α∗ξ , β

∗
ξ and γ∗ξ .

Lemma 3.4.54. For every n let τn be a Polish refinement of τ with τn ⊂ Σ0
ξ(τ).

Then there exists a common Polish refinement τ ′ of the τn’s also satisfying
τ ′ ⊂ Σ0

ξ(τ).

Proof. The case ξ = 1 is again trivial, so we may assume ξ ≥ 2. Take a base
{Gkn : k ∈ N} for τn. Since these sets are in Σ0

ξ(τ), they can be written as the
countable unions of sets from

⋃
η<ξΠ

0
η(τ). Clearly,

⋃
η<ξΠ

0
η(τ) ⊂∆0

ξ for ξ ≥ 2.
As above, by Kuratowski’s theorem [51, 22.18], we have a Polish topology τ ′,
for which these countably many ∆0

ξ(τ) sets are in ∆0
1(τ ′) satisfying τ ′ ⊂ Σ0

ξ(τ).
This τ ′ works. �

Lemma 3.4.55. If τ ′ ⊂ τ ′′ are two Polish topologies with f ∈ B1(τ ′) then
f ∈ B1(τ ′′), moreover, βτ ′(f) ≥ βτ ′′(f) and γτ ′(f) ≥ γτ ′′(f).

Proof. To prove that f ∈ B1(τ ′′) note that the level sets {f < c}, {f > c} ∈
Σ0

2(τ ′), hence {f < c}, {f > c} ∈ Σ0
2(τ ′′), so f ∈ B1(τ ′′).

Now recall the definition of the derivative defining β:

ω(f, x, F ) = inf

{
sup

x1,x2∈U∩F
|f(x1)− f(x2)| : U open, x ∈ U

}
,

Df,ε(F ) = {x ∈ F : ω(f, x, F ) ≥ ε}.
Let us now fix f and ε > 0 and let us denote the derivative Df,ε with respect

to the topology τ ′ by Dτ ′ , and with respect to the topology τ ′′ by Dτ ′′ . By
Proposition 3.4.5 it is enough to prove that Dτ ′′(F ) ⊂ Dτ ′(F ) for every closed
set F ⊂ X.

For this it is enough to show that ωτ ′′(f, x, F ) ≤ ωτ ′(f, x, F ) for every x ∈ F
where ωτ ′(f, x, F ) is the oscillation with respect to the topology τ ′. And this is
clear, since in the case of τ ′′, the infimum in the definition goes through more
open set containing x, hence the resulting oscillation will be less.

For the rank γ, we proceed similarly. First we recall the definition of γ:

ω((fn)n∈N, x, F ) = inf
x∈U
U open

inf
N∈N

sup {|fm(y)− fn(y)| : n,m ≥ N, y ∈ U ∩ F} ,

D(fn)n∈N,ε(F ) = {x ∈ F : ω((fn)n∈N, x, F ) ≥ ε} ,

γ(f) = min

{
sup
ε>0

γ((fn)n∈N, ε) : ∀n fn is continuous and fn → f pointwise
}
.

70

dc_1437_17

Powered by TCPDF (www.tcpdf.org)



Let us fix a sequence (fn)n∈N of τ ′-continuous (hence also τ ′′-continuous)
functions converging pointwise to f , and also fix ε > 0. Let us denote the
derivative D(fn)n∈N,ε with respect to τ ′ by Dτ ′ and with respect to τ ′′ by Dτ ′′ .
Again, by Proposition 3.4.5 it is enough to prove that Dτ ′′(F ) ⊂ Dτ ′(F ) for
every closed set F ⊂ X. And similarly to the previous case it is enough to prove
that the oscillation ω((fn)n∈N, x, F ) with respect to the topology τ ′′ is at most
the oscillation with respect to τ ′, but this is clear, since, as before, the infimum
goes through more open set in the case of τ ′′. �

Theorem 3.4.56. The ranks β∗ξ and γ∗ξ are essentially linear.

Proof. We only consider β∗ξ , since the proof for the rank γ∗ξ is completely
analogous.

It is easy to see that β∗ξ (cf) = β∗ξ (f) for every c ∈ R \ {0}, hence it suffices
to show that β∗ξ is essentially additive.

For f and g let τf and τg be such that βτf (f) = β∗ξ (f) and βτg (g) = β∗ξ (g).
Using Lemma 3.4.54 we have a common refinement τ ′ of τf and τg with τ ′ ⊂
Σ0
ξ(τ). Now f, g ∈ B1(τ ′), so f + g ∈ B1(τ ′), hence τ ′ ∈ Tf+g,ξ. Therefore

β∗ξ (f + g) ≤ βτ ′(f + g). By Lemma 3.4.55 we have that βτ ′(f) ≤ βτf (f) (in fact
equality holds), and similarly for g. But βτ ′ is additive by Theorem 3.4.29, so

β∗ξ (f + g) ≤ βτ ′(f + g) . max{βτ ′(f), βτ ′(g)} ≤ max{βτf (f), βτg (g)} =

max{β∗ξ (f), β∗ξ (g)}.
�

Theorem 3.4.57. If f is a Baire class ξ function then

α∗ξ(f) ≤ αξ(f) ≤ 2α∗ξ(f), hence α∗ξ(f) ≈ αξ(f).

Proof. For ξ = 1 the claim is an easy consequence of the definition of the two
ranks and Corollary 3.4.14. From now on, we suppose that ξ ≥ 2.

For the first inequality, for every pair of rationals p < q pick a sequence
(F ζp,q)ζ<αξ(f) ⊂ Π0

ξ(X), whose transfinite difference separates the level sets
{f ≤ p} and {f ≥ q}.

Every Π0
ξ(X) set is the intersection of countably many ∆0

ξ sets, hence F ζp,q =⋂
nH

ζ
p,q,n, with Hζ

p,q,n ∈ ∆0
ξ . By Kuratowski’s theorem [51, 22.18], there is a

finer Polish topology τ ′ ⊂ Σ0
ξ(τ), for which Hζ

p,q,n ∈∆0
1(τ ′) for every p, q, n and

ζ < αξ(f), hence F ζp,q ∈ Π0
1(τ ′).

This means that the level sets of f can be separated by transfinite differences
of closed sets with respect to τ ′, hence they can be separated by sets in ∆0

2(τ ′).
Then it is easy to see that for every c ∈ R the level sets {f ≤ c} and {f ≥ c} are
countable intersections of ∆0

2(τ ′) sets, hence they are Π0
2(τ ′) sets, proving that

f ∈ B1(τ ′). Moreover, α1,τ ′(f) ≤ αξ(f) easily follows from the construction
(here α1,τ ′ is the rank α1 with respect to τ ′). And by Corollary 3.4.14 we have
α∗ξ ≤ ατ ′(f) ≤ α1,τ ′(f) ≤ αξ(f), proving the first inequality of the theorem.

For the second inequality, take a topology τ ′ with ατ ′(f) = α∗ξ(f). Again,
by Corollary 3.4.14, we have α1,τ ′(f) ≤ 2ατ ′(f) = 2α∗ξ(f).

It remains to prove that αξ(f) ≤ α1,τ ′(f). A τ ′-closed set is Π0
ξ with re-

spect to τ . Therefore, if (Fη)η<ζ is a decreasing continuous sequence of τ ′-
closed sets whose transfinite difference separates {f ≤ p} and {f ≥ q} then the
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same sequence is a decreasing continuous sequence of sets from Π0
ξ(τ), proving

αξ(f) ≤ α1,τ ′(f). �

Corollary 3.4.58. αξ and α∗ξ are essentially linear for bounded functions for
every ξ.

Proof. αξ ≈ α∗ξ by the previous theorem, α∗ξ ≈ β∗ξ for bounded functions by
Corollary 3.4.50, and β∗ξ is essentially linear by Theorem 3.4.56. �

From Corollary 3.4.37 we can obtain the appropriate statement for the ranks
α∗ξ , β

∗
ξ and γ∗ξ .

Proposition 3.4.59. If f =
∑n
i=1 ciχAi , where the Ai’s are disjoint ∆0

ξ+1 sets
covering X and the ci’s are distinct then

α∗ξ(f) ≈ max
i
{α∗ξ(χAi)},

and similarly for β∗ξ and γ∗ξ .

Proof. The additivity of α∗ξ implies α∗ξ(f) . maxi{α∗ξ(χAi)}. For the other
inequality let τ ′ be a topology for which f is Baire class 1. Then the characteris-
tic functions χAi are also Baire class 1, and hence by Corollary 3.4.37 we obtain
ατ ′(f) ≈ maxi{ατ ′(χAi)}. But by the definition of α∗ξ for every such topol-
ogy α∗ξ(χAi) ≤ ατ ′(χAi), therefore maxi{α∗ξ(χAi)} ≤ maxi{ατ ′(χAi)} ≈ ατ ′(f).
Then choosing τ ′ so that ατ ′(f) = α∗ξ(f) the proof is complete.

�

Theorem 3.4.60. The ranks α∗ξ , β
∗
ξ and γ∗ξ are unbounded in ω1. Moreover, for

every nonempty perfect set P ⊂ X and ordinal ζ < ω1 there exists a character-
istic function χA ∈ Bξ(X) with A ⊂ P such that α∗ξ(χA), β∗ξ (χA), γ∗ξ (χA) ≥ ζ.

Proof. In order to prove the theorem, by Corollary 3.4.49 it suffices to prove
the statement for α∗ξ . Moreover, instead of α∗ξ(χA) ≥ ζ it suffices to obtain
α∗ξ(χA) & ζ. And this is clear from Theorem 3.4.57 and Corollary 3.4.43. �

Proposition 3.4.61. If fn, f are Baire class ξ functions and fn → f uniformly
then β∗ξ (f) ≤ supn β

∗
ξ (fn).

Proof. For every n let τn ∈ Tfn,ξ with βτn(fn) = β∗ξ (fn). Using Lemma 3.4.54,
let τ ′ be their common refinement satisfying τ ′ ⊂ Σ0

ξ(τ), where τ is the original
topology. Note that fn ∈ B1(τ ′) for every n, and the Baire class 1 functions
are closed under uniform limits [51, 24.4], hence τ ′ ∈ Tf,ξ. Then by Proposition
3.4.31 and Lemma 3.4.55 we have

β∗ξ (f) ≤ βτ ′(f) ≤ sup
n
βτ ′(fn) ≤ sup

n
βτn(fn) = sup

n
β∗ξ (fn).

�

Proposition 3.4.62. If fn, f are Baire class ξ functions and fn → f uniformly
then α∗ξ(f) . supn α

∗
ξ(fn) and γ∗ξ (f) . supn γ

∗
ξ (fn).

Proof. Repeat the previous argument but apply Proposition 3.4.39 and Propo-
sition 3.4.32 instead of Proposition 3.4.31. �
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3.5 Proof of Theorem 1.4.6
Proof. We need two well-known facts. Firstly, non(N ) = ω2 in this model [5].
Secondly, in this model there is no strictly increasing (wrt. inclusion) sequence
of Borel sets of length ω2 (this is proved in [54], see also [25]).

Assume that ϕ : N → B is a monotone hull operation. Choose H = {xα :
α < non(N )} /∈ N , and consider ϕ({xβ : β < α}) for α < non(N ). This is an
increasing ω2 long sequence of Borel sets, which cannot stabilise, since then H
would be contained in a nullset. But then we can select a strictly increasing
subsequence of length ω2, a contradiction. �

3.6 Proof of Theorem 1.4.7
Let us denote by A∆B the symmetric difference of A and B.

Lemma 3.6.1. Assume the Continuum Hypothesis. Then there exists a mono-
tone map ψ : L → Gδ such that λ(M∆ψ(M)) = 0 for every M ∈ L and that
λ(M∆M ′) = 0 implies ψ(M) = ψ(M ′) for every M,M ′ ∈ L.

Proof. Let us say that M,M ′ ∈ L are equivalent, if λ(M∆M ′) = 0. Denote
by [M ] the equivalence class of M and by L/N the set of classes. We say that
[M1] ≤ [M2] if there are M ′1 ∈ [M1] and M ′2 ∈ [M2] such that M ′1 ⊂M ′2.

It is sufficient to define Ψ : L/N → Gδ so that [M ] ≤ [M ′] implies Ψ([M ]) ⊂
Ψ([M ′]) for every M,M ′ ∈ L, and that Ψ([M ]) ∈ [M ] for every M ∈ L.

Enumerate L/N as {[Mα] : α < ω1}. For every α < ω1 define

Ψ([Mα]) =
⋂
β<α

[Mβ ]≥[Mα]

Ψ([Mβ ]) ∩
(
a Gδ hull of

⋃
γ<α

[Mγ ]≤[Mα]

Ψ([Mγ ]) ∪Mα

)
.

It is not hard to check that this is a Gδ set such that [Mγ ] ≤ [Mα] ≤ [Mβ ]
implies Ψ([Mγ ]) ⊂ Ψ([Mα]) ⊂ Ψ([Mβ ]), and that Ψ([Mα]) ∈ [Mα], hence the
construction works. �

The following lemma is the only result we can prove for B but not for Gδ.

Lemma 3.6.2. Assume the Continuum Hypothesis. Then there exists a mono-
tone hull operation ϕ : N → B such that

1. ϕ(N ∪N ′) ⊂ ϕ(N) ∪ ϕ(N ′) for every N,N ′ ∈ N (subadditivity),

2.
⋃
{ϕ(N) : N ⊂ B, N ∈ N} \B ∈ N for every B ∈ B.

Proof. Let {Nα : α < ω1} be a cofinal family in N , that is, ∀N ∈ N ∃α <
ω1 such that N ⊂ Nα. (Such a family exists, since there are continuum many
Borel nullsets.) For every α < ω1 define, using transfinite recursion, Aα =
a Gδ hull of (

⋃
β<αAβ ∪ Nα). Clearly, {Aα : α < ω1} is a cofinal increasing

sequence of Gδ sets.
Set A∗α = Aα \

⋃
β<αAβ . Enumerate B as {Bα : α < ω1} and for every

α < ω1 define the countable set

Bα =
{ n⋃
i=0

Bβi : n ∈ N, βi < α (0 ≤ i ≤ n)
}
.
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Note that every Bα is closed under finite unions.
Now define

ϕ(N) =
⋃

α≤αN

(
A∗α ∩

⋂
B∈Bα

N∩A∗α⊂B

B
)
.

This is clearly a disjoint union. It is easy to see that ϕ is a monotone Borel hull
operation (note that ϕ(N) ⊂ AαN ).

For every α < ω1 define ϕα(N) = A∗α ∩ ϕ(N) (N ∈ N ). In order to check
subadditivity, let N,N ′ ∈ N . We may assume αN ≤ αN ′ , so clearly αN∪N ′ =
αN ′ . It suffices to check that each ϕα is subadditive. If α > αN then actually
ϕα(N ∪N ′) = ϕα(N ′), so we are done. Suppose now α ≤ αN . Let x ∈ A∗α such
that x /∈ ϕ(N)∪ϕ(N ′). Then there exist B ⊇ N ∩A∗α and B′ ⊇ N ′ ∩A∗α in Bα
such that x /∈ B,B′. But then B ∪B′ ∈ Bα witnesses that x /∈ ϕ(N ∪N ′) since
x /∈ B ∪B′ ⊇ (N ∪N ′) ∩A∗α.

Finally, to prove 2 it is sufficient to show that N ⊂ Bα implies ϕ(N) \Bα ⊂
Aα for every N ∈ N and α < ω1. So let x ∈ ϕβ(N) for some β > α. We have to
show x ∈ Bα. But this simply follows from the definition of ϕ since Bα ∈ Bβ .
�

Lemma 3.6.3. Assume that there exists a monotone map ψ : L → B such that
λ(M∆ψ(M)) = 0 for every M ∈ L and also that there exists a monotone hull
operation ϕ : N → B such that

1. ϕ(N ∪N ′) ⊂ ϕ(N) ∪ ϕ(N ′) for every N,N ′ ∈ N ,

2.
⋃
{ϕ(N) : N ⊂ B,N ∈ N} \B ∈ N for every B ∈ B.

Then ϕ can be extended to a monotone hull operation ϕ∗ : L → B.

Proof. We may assume that ψ(N) = ∅ for every N ∈ N (by redefining ψ on
N to be constant ∅, if necessary).

Define

ϕ∗(M) = ψ
(
M
)
∪ ϕ
(
M \ ψ(M)

)
∪ ϕ
( ⋃
N⊂ψ(M)
∅6=N∈N

ϕ(N) \ ψ(M)
)
.

Clearly ϕ∗(M) ∈ B. As the union of first two terms contains M , we obtain
M ⊂ ϕ∗(M). Moreover, ϕ∗(M) is a hull of M , since the first term is equivalent
to M and the last two terms are nullsets. It is also easy to see that ϕ∗ extends
ϕ.

We still have to check monotonicity of ϕ∗. First we prove

N ′ ∈ N , M ′ ∈ L, N ′ ⊂ ψ(M ′)⇒ ϕ(N ′) ⊂ ϕ∗(M ′). (3.6.1)

Indeed, the case N ′ = ∅ is trivial to check, otherwise

ϕ(N ′) ⊂
⋃

N⊂ψ(M ′)
∅6=N∈N

ϕ(N) ⊂
( ⋃
N⊂ψ(M ′)
∅6=N∈N

ϕ(N) \ ψ(M ′)
)
∪ ψ(M ′) ⊂

⊂ ϕ
( ⋃
N⊂ψ(M ′)
∅6=N∈N

ϕ(N) \ ψ(M ′)
)
∪ ψ(M ′) ⊂ ϕ∗(M ′),
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which proves (3.6.1).
Let nowM ⊂M ′ be arbitrary elements of L. We need to show that all three

terms of ϕ∗(M) are contained in ϕ∗(M ′).
Firstly, ψ(M) ⊂ ψ(M ′).
Secondly, define N ′ =

(
M \ ψ(M)

)
∩ ψ(M ′). Using the subadditivity of ϕ

and then (3.6.1) we obtain

ϕ
(
M \ ψ(M)

)
⊂ ϕ

((
M \ ψ(M)

)
∩ ψ(M ′)

)
∪ ϕ
((
M \ ψ(M)

)
\ ψ(M ′)

)
⊂

⊂ ϕ
(
N ′
)
∪ ϕ
(
M ′ \ ψ(M ′)

)
⊂ ϕ∗(M ′).

Thirdly, let

N ′ =
( ⋃
N⊂ψ(M)
∅6=N∈N

ϕ(N) \ ψ(M)
)
∩ ψ(M ′).

Using the subadditivity of ϕ and then (3.6.1) we obtain

ϕ
( ⋃
N⊂ψ(M)
∅6=N∈N

ϕ(N) \ ψ(M)
)
⊂

ϕ
(( ⋃

N⊂ψ(M)
∅6=N∈N

ϕ(N) \ψ(M)
)
∩ψ(M ′)

)
∪ϕ
(( ⋃

N⊂ψ(M)
∅6=N∈N

ϕ(N) \ψ(M)
)
\ψ(M ′)

)
⊂

⊂ ϕ(N ′) ∪ ϕ
( ⋃
N⊂ψ(M ′)
∅6=N∈N

ϕ(N) \ ψ(M ′)
)
⊂ ϕ∗(M ′).

This concludes the proof. �

The following lemma was pointed out to us by J. Swaczyna.

Lemma 3.6.4. Assume the Continuum Hypothesis. Then there exists a mono-
tone hull operation % : B → Gδ.

Proof. Enumerate B as B = {Bα : α < ω1}. By transfinite induction define

%(Bα) =

a Gδ hull of

 ⋃
β<α

Bβ⊂Bα

%(Bβ) ∪Bα


 ∩ ⋂

β<α
Bβ⊃Bα

%(Bβ).

It is straightforward to check that this works. �

Now we are ready to prove Theorem 1.4.7.
Proof. Lemma 3.6.1 and Lemma 3.6.2 show that the requirements of Lemma
3.6.3 can be satisfied, so we obtain a monotone Borel hull operation on L.
Composing this with % from the previous lemma finishes the proof. �
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3.7 Proof of Theorems 2.1.3 and 2.1.10
Recall that the symbol Irn,σ−fin stands for the σ-ideal consisting of sets of σ-
finite r-dimensional Hausdorff measure in Rn.

Lemma 3.7.1. cov(Irn,σ−fin) = cov(N r
n).

Proof. The inequality cov(Irn,σ−fin) ≤ cov(N r
n) is clear by N r

n ⊂ Irn,σ−fin. In
order to prove the opposite inequality let {Iα}α<cov(Irn,σ−fin) be a cover of Rn by
sets of σ-finite Hr-measure. We can assume that they are actually of finite Hr-
measure, and also that they are Borel (even Gδ). By the Isomorphism Theorem
of Measures [51, Thm. 17.41] a Borel set of finite Hr-measure can be covered
by cov(N ) many Hr-nullsets. Therefore Rn can be covered by cov(Irn,σ−fin) ·
cov(N ) many Hr-nullsets. But Irn,σ−fin ⊂ N implies cov(Irn,σ−fin) ≥ cov(N ),
hence Rn can be covered by cov(Irn,σ−fin) manyHr-nullsets, proving cov(N r

n) ≤
cov(Irn,σ−fin). �

The following theorem describes the values of all the cardinal invariants of
the extended Cichoń diagram in a specific model of ZFC.

Theorem 3.7.2. It is consistent with ZFC that cov(N ) = d = non(N ) = ω1

and cov(N r
n) = c = ω2.

Proof. Most ingredients of this proof are actually present in [80]. Let V be
a ground model satisfying the Continuum Hypothesis, and let W be obtained
by the countable support iteration of PIrn,σ−fin of length ω2. Since the forcing
PIrn,σ−fin is proper by [80, 4.4.2] and adds a generic real avoiding the Borel
members of Irn,σ−fin coded in V , we obtain that cov(Irn,σ−fin) = c = ω2 in
W . Hence, cov(N r

n) = c = ω2 in W by Lemma 3.7.1. By [80, 4.4.8] PIrn,σ−fin
adds no splitting reals, hence no Random reals, and this is well-known to be
preserved by the iteration, thus the Borel nullsets coded in V cover the reals
of W , therefore cov(N ) = ω1 in W . Moreover, by [80, Ex. 3.6.4] Irn,σ−fin is
polar, which is preserved by the iteration, therefore it preserves outer Lebesgue
measure, hence the ground model is not null, thus non(N ) = ω1 in W . Finally,
the forcing is ωω-bounding by [80, 4.4.8], hence the same holds for the iteration,
therefore d = ω1 in W . �

The following are immediate.

Corollary 3.7.3. Consistently cov(N ) < cov(N r
n), answering Fremlin’s ques-

tion.

Corollary 3.7.4. The answer to Question 2.1.9 is affirmative, hence so is the
answer to the question of Humke and Laczkovich.

3.8 Proof of Theorem 2.1.4
Proof. Let W be the Laver model, that is, the model obtained by iteratively
adding ω2 Laver reals with countable support over a model V satisfying the
Continuum Hypothesis, see [5] for the definitions and basic properties of this
model. For example, it is well-known that non(M) = ω2 in this model.

On the other hand, W satisfies the so called Laver property, an equivalent
form of which is the following:
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If 0 < r < n and x ∈
∏
k∈ω 2kn ∩W then there is

T ∈
∏
k∈ω

[2kn]2
k r

2 ∩ V

such that x(k) ∈ T (k) for all k ∈ ω. This follows from [5, Lemma 6.3.32] by
letting f(k) = 2kn, S(k) = {x(k)}, and using and arbitrary positive rational
number s < r

2 .
The following argument takes place in W . For every k ∈ ω let ψk be a

bijection from 2kn to the set of all cubes of the form[
j0
2k
,
j0 + 1

2k

]
× . . .×

[
jn−1

2k
,
jn−1 + 1

2k

]
,

where ji ∈ 2k for each i ∈ n.
For every T ∈

∏
k∈ω[2kn]2

k r
2 define

NT =
⋂
k∈ω

⋃
j∈T (k)

ψk(j).

First we show that NT ∈ N r
n . Note that the diameter of a cube of

side-length 1
2k

is
√
n 1

2k
. Clearly, for every k ∈ ω we have Hr∞ (NT ) ≤

Hr∞
(⋃

j∈T (k) ψk(j)
)
≤ |T (k)|

(√
n 1

2k

)r
= 2k

r
2

(√
n 1

2k

)r
=
√
n
r
2−k

r
2 , which

tends to 0 as k tends to ∞, therefore Hr∞ (NT ) = 0 and consequently, (as
it is easy to check that Hr(H) = 0 iff Hr∞(H) = 0), Hr (NT ) = 0.

Next we finish the proof by showing that {NT : T ∈
∏
k∈ω[2kn]2

k r
2 ∩ V } is a

cover of [0, 1]n (note that |V | = ω1 inW , and also that if ω1 members ofN r
n cover

the unit cube then the same holds for Rn, hence this implies cov(N r
n) = ω1). So

let z ∈ [0, 1]n, then there exists x ∈
∏
k∈ω 2kn such that z ∈ ψk(x(k)) for each

k ∈ ω. Let T ∈
∏
k∈ω[2kn]2

k r
2 ∩ V be such that x(k) ∈ T (k) for all k ∈ ω, then

it is easy to check that z ∈ NT , finishing the proof. �

3.9 Proof of Theorem 2.1.5
Now we turn to the consistency of cov(M) < non(N r

n). First we need some
preparation.

For each k ∈ ω let Mk ∈ ω be so large that

2k
(√

n

Mk

)r
<

1

2k
. (3.9.1)

Definition 3.9.1. Let Ck be the set of all cubes of the form[
j0
Mk

,
j0 + 1

Mk

]
× . . .×

[
jn−1

Mk
,
jn−1 + 1

Mk

]
,

where ji ∈ Mk for each i ∈ n. Let Ck consist of all sets that can be written as
the union of 2k elements of Ck.

Lemma 3.9.2. For every partition Ck =
⋃
i∈2k Xi there is some i ∈ 2k such

that ∪Xi = [0, 1]n.
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Proof. Otherwise, pick xi /∈ ∪Xi and cubes Qi ∈ Ck containing xi, then⋃
i∈2k Qi ∈ Ck belongs to one of the Xi, yielding a contradiction. �

Definition 3.9.3. Now we define the norm function ν :
⋃
k∈ω P(Ck) → ω as

follows. For X ⊂ Ck define ν(X) ≥ 1 if ∪X = [0, 1]n and define ν(X) ≥ j + 1
if for every partition X = X0 ∪X1 there is i ∈ 2 such that ν(Xi) ≥ j.

Lemma 3.9.4. ν(Ck) ≥ k + 1.

Proof. Otherwise, we could iteratively split Ck into pieces so that at stage m
we have a partition into 2m many sets each with norm at most k −m, hence
eventually we could have a partition into 2k many sets none of which covers
[0, 1]n, contradicting the previous lemma. �

Lemma 3.9.5. If X ⊂ Ck and ν(X) ≥ j and y ∈ [0, 1]n then ν({H ∈ X : y ∈
H}) ≥ j − 1.

Proof. We may assume j > 1. Let X0 = {H ∈ X : y ∈ H} and X1 = {H ∈
X : y /∈ H}. Then either ν(X0) ≥ j − 1 ≥ 1 or ν(X1) ≥ j − 1 ≥ 1. But note
that ν(X1) 6≥ 1 since y /∈ ∪X1. �

In this section a finite sequence will mean a function defined on a natural
number, the length of the sequence t, denoted by |t| is simply dom(t). Moreover,
a tree will mean a set of finite sequences closed under initial segments. Then for
t, s ∈ T we have t ⊂ s iff s end-extends t and this partial order is indeed a tree
in the usual sense. For a t ∈ T let us denote by succT (t) the set of immediate
successors of t in T .

Now let us define the following forcing notion.

Definition 3.9.6. Let T ∈ P iff

(1) T is a nonempty tree,

(2) for every t ∈ T and k < |t| we have t(k) ∈ Ck,

(3) for every t ∈ T we have succT (t) 6= ∅,

(4) for every t ∈ T there exists s ∈ T , s ⊃ t with |succT (s)| > 1,

(5) for every K ∈ ω the set {t ∈ T : |succT (t)| > 1 and ν(succT (t)) ≤ K} is
finite.

If T, T ′ ∈ P then define

T ≤P T
′ ⇐⇒ T ⊂ T ′.

We will usually simply write ≤ for ≤P. Clearly, 1P is the set of all finite sequences
satisfying (2).

Remark 3.9.7. A t ∈ T with |succT (t)| > 1 is called a branching node. For
t ∈ T define T [t] = {s ∈ T : s ⊂ t or s ⊃ t}. It is easy to see that if t ∈ T ∈ P
then T [t] ∈ P and T [t] ≤ T .
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Remark 3.9.8. Forcing notions of this type are discussed in [72] in great gen-
erality. However, in order to keep the section relatively self-contained we also
include the rather standard proofs here, but note that most of the techniques
below can already be found in [72].

Lemma 3.9.9. P is proper.

Proof. Let M be a countable elementary submodel, and recall that T ∈ P
is M-generic if for every dense open subset D ⊂ P with D ∈ M we have
T 
 “ Ġ ∩ D ∩M 6= ∅ ”, where Ġ is a name for the generic filter. Also recall
that properness means that whenever a condition T ∈ M is given then there
exists anM-generic T ′ ≤ T . We construct this T ′ by a so called fusion argument.

Let the sequence D0, D1, . . . enumerate the dense open subsets of P that are
in M. During the construction we make sure that all objects we pick (t, s, t′s, s′,
Lk, L+

k Ss, etc.) are in M. The whole construction, and hence T ′, will typically
not be in M.

We define the set of branching notes of T ′ ‘level-by level’ as follows. Let
t ∈ T be a branching node with ν(succT (t)) > 0 and set L0 = {t}. Also define
L+

0 = succT (t). Moreover, for every s ∈ L+
0 also fix a Ss ≤ T [s] with Ss ∈ D0

(this is possible, since D0 is dense). This finishes the 0th step of the fusion.
Now, if Lk, L+

k , and for every s ∈ L+
k a condition Ss ≤ T [s] have already

been defined then for every s ∈ L+
k we pick a t′s ∈ Ss with ν(succSs(t

′
s)) > k+1.

Let Lk+1 = {t′s : s ∈ L+
k }, and define L+

k+1 =
⋃
s∈L+

k
succSs(t

′
s). Now, for every

s′ ∈ L+
k+1 pick a Ss′ ≤ Ss[s′] with Ss′ ∈ Dk+1. This finishes the k + 1st step of

the fusion.
Finally, define T ′ as the closure of

⋃
k∈ω Lk under initial segments (this is

the same as the closure of
⋃
k∈ω L

+
k under initial segments). It is easy to check

that T ′ ∈ P and T ′ ≤ T . It remains to show that T ′ is M-generic. So let k ∈ ω
be fixed, and we need to show that T ′ 
 “ Ġ ∩Dk ∩M 6= ∅ ”.

Before the proof let us make three remarks. First, it is easy to see from the
construction that if T ′′ ≤ T ′ then for every k ∈ ω there exists s ∈ L+

k ∩ T ′′.
Second, it can also be seen from the construction that T ′[s] ≤ Ss for every s.
Third, if S ∈ D ∩M then obviously S 
 “ Ġ ∩D ∩M 6= ∅ ”, since S 
 “ S ∈
Ġ ∩D ∩M ”.

Now we prove T ′ 
 “ Ġ ∩ Dk ∩M 6= ∅ ”. We prove this by showing that
for every T ′′ ≤ T ′ there exists T ′′′ ≤ T ′′ forcing this. Let T ′′ ≤ T ′ be given.
Then, by the above remark there exists s ∈ L+

k ∩ T ′′. Set T ′′′ = T ′′[s], then
clearly T ′′′ ≤ T ′′. Finally, T ′′′ = T ′′[s] ≤ T ′[s] ≤ Ss ∈ Dk ∩M, hence Ss 

“ Ġ ∩Dk ∩M 6= ∅ ”, hence T ′′′ forces the same, finishing the proof. �

Lemma 3.9.10. If (Hk)k∈ω ∈ Πk∈ωCk then Hr(
⋂
m∈ω

⋃
k≥mHk) = 0.

Proof. For every m ∈ ω, using (3.9.1), we have

Hr∞

 ⋂
m∈ω

⋃
k≥m

Hk

 ≤ Hr∞
 ⋃
k≥m

Hk

 ≤ ∑
k≥m

Hr∞ (Hk) ≤

≤
∑
k≥m

2k
(√

n

Mk

)r
≤
∑
k≥m

1

2k
=

1

2m−1
,

hence Hr∞(
⋂
m∈ω

⋃
k≥mHk) = 0, therefore Hr(

⋂
m∈ω

⋃
k≥mHk) = 0. �
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Remark 3.9.11. In the usual way, by slight abuse of notation, the generic
filter G can be thought of as a sequence G = (Gk)k∈ω ∈ Πk∈ωCk. What we will
formally need is that if a generic filter G is given, then

⋂
T∈G T defines such a

sequence, hence Gk makes sense.

Lemma 3.9.12. If G is a generic filter over a ground model V then V [G] |=
V ∩ [0, 1]n ⊂

⋂
m∈ω

⋃
k≥mGk.

Proof. Fix y ∈ V ∩ [0, 1]n. In order to show that 1P 
 “ V ∩ [0, 1]n ⊂⋂
m∈ω

⋃
k≥m Ġk ” we show that for every T ∈ P there is T ′ ≤ T forcing this.

So let T be given, and define T ′ as follows. Starting from the root of T , we
recursively thin out T such that for every t ∈ T with ν(succT (t)) ≥ 1 we cut
off all the nodes s ∈ succT (t) with y /∈ s(|s| − 1). One can easily check using
Lemma 3.9.5 that T ′ ∈ P and T ′ ≤ T . So it suffices to show that for every
m ∈ ω we have T ′ 
 “ y ∈

⋃
k≥m Ġk ”. Hence let T ′′ ≤ T ′ be given, we need

to find T ′′′ ≤ T ′′ forcing this. Pick t ∈ T ′′ with |t| ≥ m and ν(succT ′′(t)) ≥ 1.
This implies that the successors of t were thinned out, hence y ∈ s(|s| − 1) for
every s ∈ succT ′′(t). Fix such an s, and define T ′′′ = T ′′[s]. Then T ′′′ = T ′′[s] 

“ Ġ|s|−1 = s(|s| − 1) 3 y ”, finishing the proof. �

Lemma 3.9.13. P is ωω-bounding.

Proof. For f, g ∈ ωω we write f ≤ g if f(n) ≤ g(n) for every n ∈ ω. Let
ḟ ∈ ωω be a name. We claim that 1P 
 “ ∃g ∈ V ∩ ωω such that ḟ ≤ g ”. It
suffices to show that for every T there exists T ′ ≤ T and g ∈ V ∩ ωω such that
T ′ 
 “ ḟ ≤ g ”. We will construct this T ′ by a fusion argument similar to that
of Lemma 3.9.9.

Let t ∈ T be a node with ν(succT (t)) > 0 and set L0 = {t}. Also define
L+

0 = succT (t). Moreover, for every s ∈ L+
0 also fix a Ss ≤ T [s] and ms ∈ ω

such that Ss 
 “ ḟ(0) = ms ” (this is possible by the basic properties of forcing).
This finishes the 0th step of the fusion.

Now, if Lk, L+
k , and for every s ∈ L+

k a condition Ss ≤ T [s] have already
been defined then for every s ∈ L+

k we pick a t′s ∈ Ss with ν(succSs(t
′
s)) > k+1.

Let Lk+1 = {t′s : s ∈ L+
k }, and define L+

k+1 =
⋃
s∈L+

k
succSs(t

′
s). Now, for every

s′ ∈ L+
k+1 pick a Ss′ ≤ Ss[s

′] and ms′ ∈ ω with Ss′ 
 “ ḟ(k + 1) = ms′ ”. This
finishes the k + 1st step of the fusion.

Finally, define T ′ as the closure of
⋃
k∈ω L

+
k under initial segments. It is

easy to check that T ′ ∈ P and T ′ ≤ T . Define g(k) = max{ms : s ∈ L+
k } (the

maximum exists, since this set is finite). It remains to show that T ′ 
 “ ḟ ≤ g ”.
So let k ∈ ω be fixed, and let T ′′ ≤ T ′ be given. Pick s ∈ T ′′ ∩ L+

k , and define
T ′′′ = T ′′[s]. Then T ′′′ = T ′′[s] ≤ Ss 
 “ ḟ(k) = ms ”, hence T ′′′ 
 “ ḟ(k) ≤
g(k) ”, finishing the proof. �

Theorem 3.9.14. It is consistent with ZFC that cov(M) < non(N r
n).

Proof. Let V be a model satisfying the Continuum Hypothesis, and let Vω2

be the model obtained by an ω2-long countable support iteration of P. Let
(Vα)α≤ω2

denote the intermediate models. Since P is proper and adds a real, by
standard arguments the continuum is ω2 in Vω2

.
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On the one hand, P is ωω-bounding, hence so is its iteration. Therefore the
iteration adds no Cohen reals, hence the meagre Borel sets coded in V cover
Vω2
∩ Rn, hence cov(M) = ω1.
On the other hand, if H ∈ Vω2

, |H| = ω1 then, by a standard reflection
argument, H ⊂ Vα for some α < ω2. Hence, by Lemma 3.9.12 and Lemma
3.9.10 we have Vα+1 |= Hr(H) = 0. Therefore, since Hr(H) = 0 means the
existence of certain covers, and by absoluteness the corresponding covers exist
in Vω2 , we obtain Vω2 |= Hr(H) = 0. Hence, non(N r

n) = ω2. Therefore the
proof is complete. �

3.10 Proof of Theorem 2.2.6

Proof. We will show that there exists a nonempty perfect set Q ⊂ P and y ∈ R
such that Q + y ⊂ CEK . This is clearly sufficient, as then for x = −y we get
Q ⊂ (CEK + x)∩P , so this intersection is uncountable. First we will construct
Q via a dyadic tree of basic intervals, then we will construct the “digits” of y.

By translating P if necessary we can assume that P intersects (0, 1
5! ). Instead

of P we may as well work with any nonempty perfect subset of it, for if we find
the set Q inside this subset then this Q also works for P . So we may find a
nonempty perfect subset of P in [0, 1

5! ] and therefore we can assume that P itself
is inside [0, 1

5! ]. Moreover, as P is uncountable and the endpoints of the basic
intervals form a countable set, we can find a nonempty perfect subset of P that
is disjoint from the set of endpoints (we used here twice the well known fact
that every uncountable Borel set contains a nonempty perfect set). Therefore
we can assume that P itself is disjoint from the endpoints.

Now we recursively pick an increasing sequence of levels (lk)∞k=0 and for every
k choose a set Ilk ⊂ Blk of size 2k such that

1. for each I ∈ Ilk there are exactly two intervals in Ilk+1
(at level lk+1) that

are contained in I, the so called successors of I

2. for each I ∈ Ilk we have I ∩ P 6= ∅

3. lk ≥ 2k+2 + 1.

The recursion is carried out as follows. Fix p0 ∈ P . Let l0 = 5, and at
level 5 we pick the (unique) basic interval I containing p0 in its interior. Let
Il0 = I5 = {I}. The recursion step is as follows. As P is disjoint from the
endpoints of the basic intervals, each interval I ∈ Ilk (at level lk) contains some
point pI ∈ P in its interior by condition 2. As P is nonempty perfect, we can
choose a distinct point p′I ∈ P in I. We can find a large enough n such that the
2k+1 distinct points pI and p′I (I ∈ Ilk) are all separated by Bn. Define

lk+1 = max{n, 2k+3 + 1}.

Clearly, condition 3 is also satisfied.
Let Ilk+1

be the subcollection of Blk+1
consisting of the 2k+1 basic intervals

containing all the points pI and p′I (I ∈ Ilk). This recursion clearly provides a
system of intervals satisfying the required properties.
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Now we can define

Q =

∞⋂
k=0

⋃
Ilk .

Let us extend this tree of intervals to the intermediate levels in the natural
way, that is, for every I ∈ Ilk and successor J ∈ Ilk+1

and every n ∈ (lk, lk+1)
let us add to the tree the unique basic interval of level n that is contained in
I and contains J . For n = 2, 3, 4, 5 define In = {[0, 1

n! ]}. Hence we get In for
every n = 2, 3, . . . so that

∞⋂
n=2

⋃
In =

∞⋂
k=0

⋃
Ilk = Q.

Our next goal is to define y =
∑∞
n=2

yn
n! so that Q + y ⊂ CEK . Define

y2 = y3 = y4 = y5 = 0. For every n ≥ 6 there exists k such that lk < n ≤ lk+1.
Clearly, the size of In is 2k+1, and Q ⊂ ∪In. This means that there are at
most 2k+1 possible values for qn, where q ∈ Q and q =

∑∞
n=2

qn
n! (we do not

have to worry about nonunique expansions, as Q ⊂ P so Q is disjoint from the
endpoints of the basic intervals). For every such qn there are at most two values
ofm such that qn+m ∈ {n−2, n−1}. Hence altogether there are at most 2·2k+1

such “bad” values, so if n− 1 > 2 · 2k+1 then we can fix a yn ∈ {0, 1, . . . , n− 2}
such that qn + yn /∈ {n − 2, n − 1} for every possible qn. But our requirement
on n and k, namely n− 1 > 2 · 2k+1, is clearly satisfied as n > lk ≥ 2k+2 + 1 by
condition 3.

So we can define

y =

∞∑
n=2

yn
n!

so that for every n ≥ 6 we have yn ∈ {0, 1, . . . , n− 2} and that for every q ∈ Q
with q =

∑∞
n=2

qn
n! we have qn+yn /∈ {n−2, n−1}. We claim that Q+y ⊂ CEK ,

which will complete the proof. Fix q ∈ Q with q =
∑∞
n=2

qn
n! , then

q + y =

∞∑
n=2

qn + yn
n!

=

∞∑
n=2

qn + yn − nεn
n!

+

∞∑
n=2

nεn
n!

,

where εn is the “carried digit”, so

εn =

{
0 if qn + yn ≤ n− 1
1 otherwise.

Continuing the above calculation we get

q + y =

∞∑
n=2

qn + yn − nεn
n!

+

∞∑
n=2

εn
(n− 1)!

=

∞∑
n=2

qn + yn − nεn
n!

+

∞∑
n=1

εn+1

n!
=

= ε2 +

∞∑
n=2

qn + yn − nεn + εn+1

n!
=

∞∑
n=2

qn + yn − nεn + εn+1

n!
,

since ε2 = 0 by e.g. y2 = 0. We now check that for every n ≥ 2 the numerator
qn + yn − nεn + εn+1 ∈ {0, 1, . . . , n − 2}, which shows that q + y ∈ CEK . For
n < 6 this is clear, as yn = 0 and also qn = 0 by the assumption P ⊂ [0, 1

5! ].
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For n ≥ 6 recall that qn ≤ n − 1, yn ≤ n − 2, so qn + yn ≤ 2n − 3 and also
that qn + yn /∈ {n − 2, n − 1}. We separate the cases εn = 0 and εn = 1.
If εn = 0, then qn + yn ≤ n − 1, but then also qn + yn ≤ n − 3. Therefore
qn + yn − nεn + εn+1 = qn + yn + εn+1 ≤ n− 2, and we are done. On the other
hand, if εn = 1, then qn + yn − nεn ≤ n− 3, so qn + yn − nεn + εn+1 ≤ n− 2,
so this case is also done. This completes the proof. �

3.11 Proof of Theorem 2.2.7
Proof. It is clearly sufficient to cover the unit interval.

Fix f : ω \ {0, 1} → ω \ {0}. A set of the form S = Π∞n=2An, where
An ⊂ {0, 1, . . . , n − 1} is of cardinality at most f(n) for every n is called an
f -slalom. Suppose limn→∞ f(n) = ∞, f(2) = f(3) = f(4) = f(5) = 1 and
also that f(n) < n−1

2 for every n ≥ 6. Combining [5, Thm 2.3.9] and [41,
Thm 2.10] we obtain a cover of Π∞n=2{0, 1, . . . , n−1} by cof(N ) many f -slaloms
{Sα | α < cof(N )} . (We actually obtain a cover of ωω first, which is a larger
space, so it is trivial to restrict this cover to get a cover of Π∞n=2{0, 1, . . . , n−1}.
Moreover, [5] works with inclusion mod finite, but that makes no difference,
as we can replace each slalom by countably many slaloms to get around this
difficulty.) For a slalom S define

S∗ =

{ ∞∑
n=2

sn
n!

∣∣∣∣∣ (sn)
∞
n=2 ∈ S

}
.

Clearly {S∗α | α < cof(N )} covers the unit interval. The following lemma will
complete the proof of the theorem.

Lemma 3.11.1. Let f be as above and S be an f -slalom. Than there exists
y ∈ R such that S∗ + y ⊂ CEK .

Proof. The proof is based on the ideas used in Theorem 2.2.6. S∗ plays the
role of Q. Our goal is to define

y =

∞∑
n=2

yn
n!

with yn ∈ {0, 1, . . . , n− 2} so that for every (sn)
∞
n=2 ∈ S and for every n ≥ 6 we

have sn + yn /∈ {n − 2, n − 1}. But this is clearly possible by our assumptions
on f , as there are at most f(n) < n−1

2 possibilities for sn, hence there are two
consecutive values excluded, and so we can find a suitable yn ∈ {0, 1, . . . , n−2}.

Then by the same calculation as in the last part of the proof of Theorem
2.2.6 we check that

∞∑
n=2

sn + yn
n!

∈ CEK .

This completes the proof of the lemma. �

Hence for every α < cof(N ) there exists yα such that S∗α + yα ⊂ CEK ,
but than for xα = −yα we have S∗α ⊂ CEK + xα, so we obtain a cover of the
unit interval by cof(N ) many translates of CEK and therefore the proof of the
theorem is also complete. �
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3.12 Proof of Theorem 2.3.3
First we present some lemmas we use in the sequel. Probably most of them
are well-known, however, we could not find suitable references, so we could not
avoid including them. Let λ denote one-dimensional Lebesgue measure, then
Mλ is the class of Lebesgue measurable sets. A Borel isomorphism is a bijection
such that images and preimages of Borel sets are Borel.

Lemma 3.12.1. Let d > 0, B ⊂ Rn be Borel such that 0 < Hd(B) < ∞ and
let I = [0,Hd(B)]. Then there exists an isomorphism f between the measure
spaces (B,MHd ,Hd) and (I,Mλ, λ) that is also a Borel isomorphism.

Proof. We may clearly assume Hd(B) = 1. It is stated in [51, 12.B] that every
Borel set, hence B is a standard Borel space (that is, B is Borel isomorphic to
some Polish space). Hence we can apply [51, 17.41] which states that every
continuous (that is, singletons are of measure zero) probability measure on a
standard Borel space is isomorphic by a Borel isomorphism to Lebesgue measure
on the unit interval. �

Lemma 3.12.2. Let B ⊂ Rn be a Borel set of infinite but σ-finite Hd-measure.
Then there exists an isomorphism f between the measure spaces (B,MHd ,Hd)
and ([0,∞),Mλ, λ) that is also a Borel isomorphism.

Proof. Define a system A of pairwise disjoint Borel subsets of B by transfinite
recursion, such that Hd(A) = 1 for every A ∈ A. By σ-finiteness this procedure
stops at some countable ordinal, so A is countable. Put m = Hd(B \ ∪A). As
we can always find a Borel subset of Hd-measure 1 inside a Borel set of Hd-
measure at least 1 (see e.g. [67, 8.20]), we obtain m < 1. In particular, A is
infinite, say A = {A0, A1, . . . }. By the previous lemma B\∪∞i=0Ai is isomorphic
to the interval [−m, 0) (or more precisely to [−m, 0], but these two intervals are
isomorphic again by the previous lemma), and Ai is isomorphic to [i, i + 1)
for every i. Therefore B is clearly isomorphic to [−m,∞) which is obviously
isomorphic to [0,∞). �

Lemma 3.12.3. Let n ∈ N, d ≥ 0 and H ⊂ Rn be arbitrary. Then the following
statements are equivalent:

(i) H is Hd-measurable,

(ii) Hd(B) = Hd(B ∩ H) + Hd(B ∩ HC) for every Borel set B ⊂ Rn with
0 < Hd(B) <∞,

(iii) H∩B is Hd-measurable for every Borel set B ⊂ Rn with 0 < Hd(B) <∞,

(iv) For every Borel set B ⊂ Rn with 0 < Hd(B) <∞, we have H∩B = A∪N ,
where A is Borel and N is Hd-negligible.

Proof. (i) ⇐⇒ (ii) By definition, the set H is Hd-measurable in the sense
of Carathéodory if and only if Hd(X) = Hd(X ∩H) +Hd(X ∩HC) for every
X ⊂ Rn. As outer measures are subadditive, this is equivalent to Hd(X) ≥
Hd(X ∩H) +Hd(X ∩HC) for every X ⊂ Rn. Once this inequality fails to hold,
using the Borel regularity of Hausdorff measures (see e.g. [67, 4.5]), there is a
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Borel set B ⊃ X such that Hd(B) < Hd(X ∩H) +Hd(X ∩HC). Therefore B is
of finite measure, moreover, Hd(B) < Hd(B ∩H) +Hd(B ∩HC), in particular,
B is clearly of positive measure.

(ii) ⇐⇒ (iii) The third condition obviously implies the second one as Hd
is additive on measurable sets. So suppose (ii). It is enough to show that
Hd(A) ≥ Hd(A ∩ (H ∩ B)) + Hd(A ∩ (H ∩ B)C) for every Borel set A ⊂ Rn
with 0 < Hd(A) <∞. We can assume that Hd(A∩B) > 0, otherwise the above
inequality clearly holds, as the first term on the right hand side is 0, while the
second term is not greater than the left hand side. Now

Hd(A) ≥ Hd(A ∩B) +Hd(A ∩BC) ≥

Hd((A ∩B) ∩H) +Hd((A ∩B) ∩HC) +Hd(A ∩BC) ≥

Hd(A ∩ (H ∩B)) +Hd(A ∩ (H ∩B)C),

where the first inequality holds as B is measurable, the second one is (ii) applied
to A∩B, and the third one follows from the subadditivity of Hd since A∩ (H ∩
B)C is the (disjoint) union of (A ∩B) ∩HC and A ∩BC .

(iii) ⇐⇒ (iv) As negligible sets are measurable, the fourth condition implies
the third, while we immediately obtain the other direction if we apply Lemma
3.12.1 to B. �

Remark 3.12.4. We could also assume that the above B is compact, but we
will not need this fact.

The following lemma is essentially [36, 2.5.10]. Recall that CH abbreviates
the Continuum Hypothesis.

Lemma 3.12.5. Let 0 < d < n and suppose CH holds. Then there exists a
disjoint family {Bα : α < ω1} of Borel subsets of Rn of finite Hd-measure, such
that a set H ⊂ Rn is Hd-measurable iff H ∩ Bα is Hd-measurable for every
α < ω1.

Proof. Let {Aα : α < ω1} be an enumeration of the Borel subsets of Rn of
positive finite Hd-measure, and put Bα = Aα \ (∪β<αAβ). These are clearly
pairwise disjoint Borel sets of finite Hd-measure. The other direction being
trivial we only have to verify that if H ⊂ Rn is such that H ∩ Bα is Hd-
measurable for every α < ω1, then H itself is Hd-measurable. By Lemma
3.12.3 we only have to show that H ∩ Aα is Hd-measurable for every α < ω1.
But Aα = ∪β≤αBβ , therefore H ∩ Aα = ∪β≤α(H ∩ Bα), which is clearly Hd-
measurable, which completes the proof. �

Lemma 3.12.6. Let 0 < d < n and suppose CH holds. Then there exists a
disjoint family {Sα : α < ω1} of Borel subsets of Rn of infinite but σ-finite Hd-
measure, such that a set H ⊂ Rn is Hd-measurable iff H ∩Sα is Hd-measurable
for every α < ω1.

Proof. First we check that uncountably many Bα of Lemma 3.12.5 are of
positive Hd-measure. Otherwise, as Rn is not σ-finite and as by [67, 8.20] every
Borel set of infinite Hd-measure contains a Borel set of Hd-measure 1, we could
find a Borel set of positive and finite measure that is disjoint from these Bα.
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But this set was enumerated as Aα for some α, moreover Aα = ∪β≤αBβ . Since
Aα is disjoint from all Bβ of positive measure, by CH, countably many zerosets
cover Aα, so it is a zeroset, a contradiction.

This obviously implies that for some integer N uncountably many Bα are
of measure at least 1

N . Now we can recursively define a partition of the set of
countable ordinals into countable intervals {Iα : α < ω1} such that for every
α the Hd-measure of ∪ξ∈IαBξ is infinite. On the other hand, this measure is
clearly σ-finite. Now we check that Sα = ∪ξ∈IαBξ works. Every Sα is clearly
a Borel subsets of Rn of infinite but σ-finite Hd-measure. Now we have to
show that the last statement of the lemma holds, namely that Hd-measurability
“reflects” on the sets Sα. One direction is trivial, so in order to prove the other
one let us assume that H ∩ Sα is Hd-measurable for every α < ω1. We have to
show that H is Hd-measurable. But this is obvious by the previous lemma, as
every Bα can be covered by some Sβ , hence H ∩Bα = Bα ∩ (H ∩ Sβ) which is
measurable. �

Lemma 3.12.7. Assume CH. A set H ⊂ Rn is of σ-finite Hd-measure iff it
can be covered by countably many of the above Sα.

Proof. One direction is trivial. For the other one we can assume that H ⊂ Rn
is of finite Hd-measure. There exists a Borel set B of positive finite Hd-measure
containing H. This set was enumerated in Lemma 3.12.5 as Aα for some α, so
by CH it can be covered by countably many Bα hence also by countably many
Sα. �

Now we are able to complete the proof of Theorem 2.3.3.

Proof. Find two partitions {Sd1α : α < ω1} and {Sd2α : α < ω1} of Rn as in
Lemma 3.12.6. By Lemma 3.12.2 find isomorphisms fα : Sd1α → Sd2α for every
α. Define f = ∪α<ω1fα. We have to check that f is an isomorphism. First we
prove that f preserves measurable sets. Suppose H ∈MHd1 . By Lemma 3.12.6
it is sufficient to show that f(H)∩ Sd2α ∈MHd2 for every α. But f(H)∩ Sd2α =
fα(H ∩ Sd1α ) which is Hd2-measurable as fα is an isomorphism. Similarly, f−1

also preserves measurable sets. Now we show that f preserves measure. (Again,
the same argument works for f−1.) As mentioned in the Introduction it is
enough to show this for measurable sets. First, f preserves non-σ-finiteness
since it clearly preserves the property that characterises σ-finiteness in Lemma
3.12.7, so we can restrict ourselves to σ-finite sets. But such a set is partitioned
by the countably many Sd1α that cover it, and the countably many isomorphisms
fα preserve measure, so the proof is complete. �

Remark 3.12.8. If d = 0 then all subsets of Rn are measurable, while if d = n
then Hd is σ-finite, therefore the theorem cannot be extended to these cases.

As we already mentioned in the Introduction, it is unknown whether CH
can be dropped from the theorem, but the paper [73] is a huge step in this
direction.

3.13 Proof of Theorem 2.4.2
Proof. Denote by C[0, 1] the Banach space of continuous real-valued functions
defined on [0, 1]. We say that g ∈ C[0, 1] is Hölder continuous of exponent α
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and constant K if |g(x)− g(y)| ≤ K|x− y|α for every x, y ∈ [0, 1]. Length of an
interval I is denoted by |I|.

First we show that it is sufficient to prove that for all integers N,M > 0 the
set

D(N,M) = {f ∈ C[0, 1] : H1−α+ 1
N∞ ({f = g}) < 1

M

for every Hölder function g of exponent α and constant 1}

contains a dense open subset of C[0, 1]. Indeed, this implies that the set
D = ∩∞N=1 ∩∞M=1 D(N,M) contains a dense Gδ set, hence is residual, which in
turn implies that the typical continuous function does not agree with a Hölder
continuous function of exponent α and constant 1 on any set of Hausdorff di-
mension larger than 1−α. Moreover, the map f 7→ Kf is a homeomorphism of
C[0, 1], hence KD = {Kf : f ∈ D} is residual for every K. Therefore ∩∞K=1KD
is also residual, and so the typical continuous function does not agree with a
Hölder continuous function of exponent α on any set of Hausdorff dimension
larger than 1− α.

Now we show that we can assume 0 < α < 1. Indeed, if the statement of
the theorem holds for 1 − 1

L for every L, then intersecting the corresponding
sequence of residual subsets of C[0, 1] we obtain the case α = 1.

Now what remains to be proven is that D(N,M) contains a dense open set.
Let f0 ∈ C[0, 1] and r0 > 0 be given. The closed ball centred at f0 and of
radius r0 is denoted by B(f0, r0). We have to find f1 ∈ C[0, 1] and r1 > 0 such
that B(f1, r1) ⊂ B(f0, r0) ∩D(N,M). By uniform continuity of f0, for a large
enough integer m, the inequality |x− y| < 2

m implies |f0(x)− f0(y)| < r0
5 . The

exact value of m will be chosen later. Let k be another positive integer to be
fixed later. (For those who like to see the explicit choice of the constants in
advance, k and m will be chosen so that, in addition to the above requirement
concerning uniform continuity, the inequalities (3.13.3) and (3.13.4) below are
satisfied. The straightforward calculation that this choice is indeed possible can
be found in the last paragraph of the proof.)

Now we define the piecewise constant function f̄1 as follows. For a pair of
integers 0 ≤ i < m and 0 ≤ j < k set

f̄1(x) = f0(
i

m
) + j

r0

5k
for

i

m
+

j

mk
≤ x < i

m
+
j + 1

mk
.

Put f̄1(1) = f0(1). Now choose a finite system I of pairwise disjoint open
intervals covering 1 and all numbers of the form i

m + j
mk such that∑

I∈I
|I|1−α+ 1

N <
1

2M
. (3.13.1)

We can clearly choose a continuous f1 ∈ C[0, 1] which is linear on each I ∈ I,
agrees with f̄1 outside ∪I and satisfies f1(0) = f0(0) and f1(1) = f0(1). Denote
the supremum-norm of a not necessarily continuous function f by ||f ||. One can
easily check that ||f0 − f̄1|| ≤ 2

5r0 and that ||f̄1 − f1|| ≤ 2
5r0, hence ||f0 − f1|| ≤

4
5r0. So if we put r1 = r0

20k ≤
r0
5 then B(f1, r1) ⊂ B(f0, r0). Now we claim that

the inequality (
2

mk

)α
<

r0

10k
(3.13.2)
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implies that for every f ∈ B(f1, r1), every Hölder continuous function g of
exponent α and constant 1 and every fixed 0 ≤ i < m, there is at most one
0 ≤ j < k such that

(
{f = g} ∩

(
i
m + j

mk ,
i
m + j+1

mk

))
\ ∪I 6= ∅. Indeed, by the

concavity of the function xα it is enough to check that for this fixed i the graph
of f and g cannot meet over two consecutive intervals of the k intervals of length

1
mk , but this is clear from the fact that the value of f̄1 ‘jumps’ by r0

5k , moreover
r0
5k − 2r1 = r0

10k , and from (3.13.2).
This means that {f = g} can be covered by the elements of I and by m

intervals of length 1
mk . Before we use this fact to estimate H1−α+ 1

N∞ ({f = g}),
we need some more preparations.

By rearranging (3.13.2) we obtain

k <
( r0

10 · 2α
) 1

1−α
m

α
1−α ,

and we will also make sure that even the following holds.

1

2

( r0

10 · 2α
) 1

1−α
m

α
1−α < k <

( r0

10 · 2α
) 1

1−α
m

α
1−α (3.13.3)

The last condition we need for the estimation of the Hausdorff capacity is
that

m

(
1

mk

)1−α+ 1
N

<
1

2M
. (3.13.4)

Indeed, together with (3.13.1) this implies that H1−α+ 1
N∞ ({f = g}) < 1

M for
every f ∈ B(f1, r1) and every Hölder continuous function g of exponent α and
constant 1. Using the left hand side of (3.13.3) we obtain

m

(
1

mk

)1−α+ 1
N

<

(
1

2

( r0

10 · 2α
) 1

1−α
)−(1−α+ 1

N )

m1−(1−α+ 1
N )−

α(1−α+ 1
N

)

1−α ,

(3.13.5)
and as the exponent

1− (1− α+
1

N
)−

α(1− α+ 1
N )

1− α
= − 1

(1− α)N
< 0,

we can choose a large enough m such that (3.13.4) holds, and then we can fix k
according to (3.13.3), so the proof is complete. �

3.14 Proof of Theorem 2.4.3
Proof. The proof is similar to that of Theorem 2.4.2. As usual, total variation
of a function g is denoted by

V ar(g) = sup

{
n∑
i=1

|g(xi)− g(xi−1)| : n ∈ N, 0 = x0 < x1 < · · · < xn = 1

}
.

It is sufficient to prove that for all integers N,M > 0 the set{
f ∈ C[0, 1] : H

1
2 + 1

N∞ ({f = g}) < 1

M
for every g with V ar(g) ≤ 1

}
(3.14.1)
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contains a dense open set. Given f0 and r0 define f̄1 as in Theorem 2.4.2 with
m and k yet unspecified. (In fact, we will choose m = k so that |x − y| < 2

m
implies |f0(x)− f0(y)| < r0

5 and so that the right hand side of (3.14.3) below is
smaller than 1

2M .)
Choose I such that ∑

I∈I
|I| 12 + 1

N <
1

2M
, (3.14.2)

and define f1 and r1 as before.
Now for every f ∈ B(f1, r1), g as in (3.14.1), and fixed 0 ≤ i < m, denote li

the number of intervals over which the graph of f and g meet outside ∪I; that
is,

li = #

{
j :

(
{f = g} ∩

(
i

m
+

j

mk
,
i

m
+
j + 1

mk

))
\ ∪I 6= ∅

}
.

As the ‘jumps’ of f̄1 are of height r0
5k , moreover r0

5k − 2r1 = r0
10k , it is easily seen

that V ar(g) ≥
∑m−1
i=1

(
r0

10k (li − 1)
)

= r0
10k

(∑m−1
i=1 li −m

)
. Thus V ar(g) ≤ 1

implies that
∑m−1
i=1 li; that is, the number intervals of length 1

mk needed to
cover {f = g} \ ∪I is at most m+ 10k

r0
.

Choose k = m. Then H
1
2 + 1

N∞ ({f = g}) can be estimated by (3.14.2) and(
m+

10m

r0

)(
1

m2

) 1
2 + 1

N

=

(
10

r0
+ 1

)
m−

2
N , (3.14.3)

which is smaller than 1
2M if m is large enough. �

3.15 Proof of Theorem 2.5.4
It is well-known and easy to check that L is of Lebesgue measure zero, dense,
Gδ and periodic mod Q (that is, L+q = L for every q ∈ Q). Hence our theorem
is a corollary to the following.

Theorem 3.15.1. Let B ⊂ R be a nonempty Gδ set of Lebesgue measure zero.
Assume that {t ∈ R : B + t ⊂ B} is dense in R. Then B is immeasurable.

The proof of Theorem 2.5.4 will be based on two lemmas. The first one is
reminiscent of [70], where similar results are proved for finite measures using
more complicated methods.

Lemma 3.15.2. Let B be a Borel set of Lebesgue measure zero and µ a Borel
measure on R for which B is positive and σ-finite. Then

(i) µ(B ∩ (B + t)) = 0 for λ-a.e. t,

(ii) there exists a Borel set B′ ⊂ B with µ(B′) > 0 and int(B′ −B′) = ∅,

(iii) there exists a compact set C ⊂ B with µ(C) > 0 and int(C − C) = ∅

Lemma 3.15.3. Let B be a dense Gδ set such that {t ∈ R : B + t ⊂ B} is
dense in R, and C ⊂ B be a compact set with int(C − C) = ∅. Then there are
uncountably many (in fact, continuum many) disjoint translates of C inside B.
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It is easy to see that applying Lemma 3.15.3 to C of Lemma 3.15.2 (iii)
yields Theorem 2.5.4.

In the rest of the section we prove the two lemmas.
Proof. (Lemma 3.15.2) (i) Let µ : S → [0,∞] be the given measure, where S
is a σ-algebra of subsets of R containing all Borel sets. Define a new measure
µB by

µB(S) = µ(B ∩ S) for every S ∈ S.

µB is clearly a σ-finite Borel measure on R. Define

B̃ = {(x, y) ∈ R2 : x+ y ∈ B}.

This is clearly a Borel set, hence µB × λ-measurable. As both measures are
σ-finite, we can apply the Fubini theorem to B̃. Vertical sections of B̃ are of
the form

{y ∈ R : x+ y ∈ B} = {y ∈ R : y ∈ B − x} = B − x,

therefore are all of Lebesgue measure zero. By Fubini, [µB × λ](B̃) = 0, and
so λ-a.e. horizontal section of B̃ is of µB-measure zero. A horizontal section is
{x ∈ R : x+ y ∈ B} = B − y, therefore for λ-a.e. y we obtain 0 = µB(B − y) =
µ(B ∩ (B − y)). Replacing y by −t yields the result.

(ii) By (i) we can choose a countable dense set D ⊂ R such that µ(B∩ (B+
d)) = 0 for every d ∈ D. Define

B′ = B \
⋃
d∈D

(B + d).

It is easy to check that µ(B′) = µ(B) > 0 and D ∩ (B′ − B′) = ∅, so the proof
of (ii) is complete.

(iii) It is sufficient to find a compact set C ⊂ B′ of positive µ-measure. Since
B′ ⊂ B, B′ is σ-finite for µ. Let B′ = ∪∞n=0Sn, where Sn ∈ S and µ(Sn) <∞.
Since µ(B′) > 0, there exists S = Sn ⊂ B′ such that 0 < µ(S) <∞. Define

µS(A) = µ(S ∩A) for every Borel set A ⊂ R.

Note that in contrast with the above µB , this time the measure is defined only
for Borel sets.

µS is clearly a finite measure on the Borel sets, hence inner regular
w.r.t. compact sets [51, Thm 17.11]. Apply this to B′, a Borel set with
µS(B′) = µ(S ∩ B′) = µ(S) > 0, and obtain a compact set C ⊂ B′ with
µS(C) = µ(S ∩ C) > 0. So µ(C) > 0 follows, and the proof of Lemma 3.15.2 is
complete. �

Proof. (Lemma 3.15.3) Let

T = {t ∈ R : C + t ⊂ B}.

B is Gδ, so there are open sets Un such that B = ∩∞n=0Un. Clearly C + t ⊂
∩∞n=0Un iff C + t ⊂ Un holds for every n ∈ N. Therefore T = ∩∞n=0Gn, where
Gn = {t ∈ R : C + t ⊂ Un}. As C is compact and Un is open, Gn is open. Note
that Gn is also dense by our assumption.
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It is clearly sufficient to construct a Cantor set P ⊂ T with the property that
(C+p0)∩(C+p1) = ∅ holds for every pair of distinct points p0, p1 ∈ P . We define
P via a usual Cantor scheme as follows. Let 2n stand for the set of 0–1 sequences
of length n. We define nondegenerate compact intervals Is for every n ∈ N and
s ∈ 2n by induction on n (we also make sure that at level n all intervals are of
length at most 1

n ). Fix I∅ such that I∅ ⊂ G0. Once Is is already defined for some
s ∈ 2n, we pick x ∈ Is∩Gn+1. As Gn+1 is open dense and C−C is nowhere dense
we can find y ∈ [Is ∩Gn+1] \ [(C − C) + x]. This ensures (C+x)∩ (C+ y) = ∅,
as otherwise c0 + x = c1 + y for some c0, c1 ∈ C, so y = (c0 − c1) + x, a
contradiction. By compactness we can find disjoint Is_0, Is_1 ⊂ Is∩Gn+1 such
that x ∈ Is_0, y ∈ Is_1 and (C + Is_0) ∩ (C + Is_1) = ∅.

Now define

P =

∞⋂
n=0

⋃
s∈2n

Is.

Then clearly P is a Cantor set, P ⊂ T = ∩∞n=0Gn as Is ⊂ Gn for every n and
s ∈ 2n. Moreover, if p0, p1 ∈ P , p0 6= p1 then there are n and s ∈ 2n such that
p0 ∈ Is_0 and p1 ∈ Is_1 (or the other way around), but then (C+p0)∩(C+p1) =
∅ holds since (C + Is_0)∩ (C + Is_1) = ∅. This completes the proof of Lemma
3.15.3. �

3.16 Proof of Theorem 2.6.5
Proof. Let B ⊂ R3 be an arbitrary Borel set with dimH(B) = 5

2 . Let
f : R3 → B be an arbitrary Borel map. Then [67, Theorem 1.4] states that for
every Borel set A ⊂ Rn, Borel map f : A → Rm and 0 ≤ d ≤ 1 there exists a
Borel setD ⊂ A such that dimH D = d·dimH A and dimH f(D) ≤ d·dimH f(A).
Applying this with n = m = 3, A = R3, and d = 11

15 we obtain that there exists
a Borel set D ⊂ R3 with dimH(D) = 11

5 such that dimH(f(D)) ≤ 11
15 ·

5
2 = 11

6 .
Then dimH(D) > 2 and dimH(f(D)) < 2, therefore f(D) ∈ I2

3,σ−fin, but
f−1(f(D)) ⊃ D /∈ I2

3,σ−fin. Since f was arbitrary, the choice I = f(D) shows
that I2

3,σ−fin is not homogeneous. �

91

dc_1437_17

Powered by TCPDF (www.tcpdf.org)



92

dc_1437_17

Powered by TCPDF (www.tcpdf.org)



Bibliography

[1] S. A. Argyros, G. Godefroy, H. P. Rosenthal, Descriptive set theory and
Banach spaces. Handbook of the geometry of Banach spaces, Vol. 2, 1007–
1069, North-Holland, Amsterdam, 2003.

[2] J. Aubry, F. Bastin, S. Dispa, Prevalence of multifractal functions in Sν
spaces, J. Fourier Anal. Appl., 13 (2007), no. 2, 175–185.

[3] R. Balka, U. B. Darji, M. Elekes, Bruckner-Garg-type results with respect
to Haar null sets in C[0, 1], Proc. Edinb. Math. Soc. (2), 60 (2017), no. 1,
17–30.

[4] T. Banakh, Cardinal characteristics of the ideal of Haar null sets, Com-
ment. Math. Univ. Carolinae 45 (2004), no. 1, 119–137.

[5] T. Bartoszyński and H. Judah, Set theory. On the structure of the real
line. A K Peters, Ltd., Wellesley, MA, 1995.

[6] H. Becker, A. S. Kechris, The descriptive set theory of Polish group ac-
tions. London Mathematical Society Lecture Note Series, 232. Cambridge
University Press, Cambridge, 1996.

[7] C. E. Bluhm, Liouville numbers, Rajchman measures, and small Cantor
sets, Proc. Amer. Math. Soc. 128 (2000), no. 9, 2637–2640.

[8] P. Borodulin-Nadzieja, Sz. Gła̧b, Ideals with bases of unbounded Borel
complexity, MLQ Math. Log. Q. 57 (2011), no. 6, 582–590.

[9] J. Bourgain, On convergent sequences of continuous functions, Bull. Soc.
Math. Belg. Sér. B 32 (1980), 235–249.

[10] A. M. Bruckner: Differentiation of Real Functions. Lecture Notes in Math-
ematics No. 659, Springer-Verlag, 1978. Second edition: CRM Monograph
Series No. 5, American Math. Soc., Providence, RI, 1994.

[11] Y. Bugeaud, M. M. Dodson and S. Kristensen, Zero-infinity laws in Dio-
phantine approximation, Q. J. Math. 56 (2005), no. 3, 311–320.

[12] J. P. R. Christensen, On sets of Haar measure zero in abelian Polish
groups, Israel J. Math. 13 (1972), 255–260.

[13] M. Csörnyei, Open Problems, see e.g.
http://users.uoa.gr/~apgiannop/csornyei.ps

93

dc_1437_17

Powered by TCPDF (www.tcpdf.org)

http://users.uoa.gr/~apgiannop/csornyei.ps


[14] M. Csörnyei, Open Problems. Compiled and edited by M. Csörnyei, Pro-
ceedings from the conference ‘Dimensions and Dynamics’, Miskolc, Hun-
gary, July 20-24, 1998. Periodica Math. Hung. 37 (1998), 227–237.

[15] U. B. Darji, On Haar meager sets, Topology Appl. 160 (2013), no. 18,
2396–2400.

[16] U. B. Darji and T. Keleti, Covering R with translates of a compact set,
Proc. Amer. Math. Soc. 131 (2003), no. 8, 2593–2596.

[17] R. O. Davies, Sets which are null or non-sigma-finite for every transla-
tion-invariant measure. Mathematika 18 (1971), 161–162.

[18] P. Dodos, On certain regularity properties of Haar-null sets, Fund. Math.
181 (2004), no. 2, 97–109.

[19] P. Dodos, The Steinhaus property and Haar-null sets, Bull. Lond. Math.
Soc. 41 (2009), 377–384.

[20] R. Dougherty, Examples of non-shy sets, Fund. Math. 144 (1994), 73–88.

[21] M. Elekes, Hausdorff measures of different dimensions are isomorphic un-
der the Continuum Hypothesis, Real Anal. Exchange 30 (2004/05), no. 2,
605–616.

[22] M. Elekes, Linearly ordered families of Baire 1 functions, Real Anal. Ex-
change, 27 (2001/02), no. 1, 49–63.

[23] M. Elekes, T. Keleti, Borel sets which are null or non-σ-finite for every
translation invariant measure, Adv. Math. 201 (2006), 102–115.

[24] M. Elekes, V. Kiss, Z. Vidnyánszky, Ranks on the Baire class ξ functions,
Trans. Amer. Math. Soc., 368 (2016), no. 11, 8111–8143.

[25] M. Elekes, K. Kunen, Transfinite sequences of continuous and Baire class
1 functions, Proc. Amer. Math. Soc. 131 (2003), no. 8, 2453–2457.

[26] M. Elekes, M. Laczkovich, A cardinal number connected to the solvability
of systems of difference equations in a given function class, J. Anal. Math.
101 (2007), 199–218.

[27] M. Elekes, A. Máthé, Can we assign the Borel hulls in a monotone way?,
Fund. Math. 205 (2009), no. 2, 105–115.
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