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Chapter 1

Introduction and conclusion

The 2012 discovery of a relatively light Higgs boson with a mass of approximately
125 GeV at the Large Hadron Collider in CERN was a major milestone in our un-
derstanding of the Standard Model of particle physics and the electro-weak sector in
particular [1,2]. The discovery provided the last missing piece of the Standard Model
which successfully describes the visible Universe with astonishing precision. The high
precision achieved is only possible as a result of very precise theoretical calculations
based on the Standard Model and very precise measurements at our accelerators, per-
formed over the course of the past 40 years.

Even though the discovery crowned the Standand Model as the most precise and
most detailed description of the elementary particles and their interactions, there are a
number of shortcomings that are nevertheless present. These shortcomings are not new
but gained further prominence by the precise knowledge of the Higgs mass, which was
a free parameter prior to 2012. One of these shortcomings is inherent to the Standard
Model itself and is usually referred to as the hierarchy problem or fine tuning problem.
More specifically, the 125 GeV Higgs mass in the Standard Model is a result of an
enormous cancellation between two terms with typical sizes 1019 GeV but opposite
signs. Technically, this cancellation is necessary to account for the 125 GeV mass
because the Higgs particle is described by an elementary spin-0 scalar field whose
mass is not protected by any symmetries. The Planck scale 1019 GeV comes about
as the highest possible scale where the Standard Model can still be valid, beyond
that quantum graviational effects certainly kick in. This large hierarchy of scales or
the necessary associated fine tuning is highly unnatural and certainly not something
we have seen in other phenomena in Nature. The only way to resolve this apparent
paradox is to introduce new hitherto unobserved particle sectors well below the Planck
scale, i.e. new physics beyond the Standard Model.

The other set of shortcomings of the Standard Model come from cosmological
observations and also call for new physics. It is well established by now that only about
5% of the Universe is visible i.e. the Standard Model only applies to this small fraction.
The remaining 95% consists of two parts, about 27% dark matter and 68% dark energy,
the latter of which may be accounted for by a cosmological constant. The dark matter
sector can not be explained by any particle content already present in the Standard
Model (such as neutral hadrons or neutrinos) as direct detection experiments [3–6]
would have seen it already. The only concievable way to have a description for this
approximately 27% of the Universe is to introduce new particles and new interactions
to the Standard Model. Any new model of dark matter will be tested by experimental
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results from dedicated detectors (XENON [3], LUX [4], CDMS [5], among others), the
Large Hadron Collider and by cosmological observations.

There are (infinitely) many ways in which the Standard Model can be extended
to account for dark matter or any new physics which solves the hierarchy problem.
Present and past experimental results set stringent constraints of course, but the pos-
sibilities are still vast. The only way forward seems to be reasonable guidelines or
general principles which proved useful in particle physics before and are sufficiently
well-motivated. One of these guidelines that I find most persuasive is the observation
that the mass in the well-understood 5% of the Universe is the result of strong inter-
actions. Even though according to the Standard Model the Higgs particle provides
masses to the leptons and quarks (along with the W and Z bosons) the vast majority
of the observed mass of stable particles in the visible Universe is originating from the
strongly interacting dynamics of Quantum Chromodynamics (QCD) [7]. In QCD the
elementary building blocks, quarks and gluons, are not observed directly as stable par-
ticles but rather only their composits, baryons or potentially glueballs. Incidentally,
QCD is free from any fine tuning problems and is truely a fundamental theory. Hence
it is natural to assume that viable theories beyond the Standard Model will be based
on strongly interacting models and the observable particles will be composits of more
elementary building blocks. This is especially likely for dark matter since about the
only aspect we are certain about it is that it contributes a large fraction of the total
mass of the Universe. This approach, if applied to the Higgs sector of the Standard
Model, also leads to the possibility that the Higgs boson is a composite particle itself
and hence the fine tuning problem is averted for the lack of an elementary spin-0 scalar
particle.

A key feature of QCD is that it is an asymptotically free non-abelian gauge theory.
Asymptotic freedom guarantees the lack of a fine tuning problem, although the more
lax requirement of asymptotic safety would also be sufficient. The very nature of
non-abelian gauge theories is that they are generically strongly interacting and hence
are notoriously difficult to study quantitatively. The experience from QCD and more
recently strongly interacting extensions of the Standard Model nevertheless suggests
that numerical simulations will be able to allow for robust and quantitative conclusions
regarding specific models for physics beyond the Standard Model.

Our class of extensions replaces the essentially weakly coupled Higgs sector by
strong coupling dynamics, the idea being guided by analogies from QCD [8,9]. Electro-
weak symmetry breaking in the Standard Model is then the analog of spontaneous
chiral symmetry breaking in QCD and hypothetical new particles called technifermions
and technigluons are analogs of fermions and gluons in QCD. This analogy is appealing
because symmetry breaking becomes a dynamical phenomenon and the fine tuning
problem is solved. Models based on this analogy are often called Strong Dynamics
models and will of course only be viable if all constraints given by the known and
confirmed sectors of the Standard Model are fulfilled.

One such constraint is that the coupling constant of the model should not change
much over a considerable energy range and should be large, i.e. the coupling constant
should walk. The reason for walking is that without it a tension exists between the
observed smallness of Flavor Changing Neutral Currents and the fermion masses [10,
11]. Walking behavior is expected to occur for theories just below the conformal
window, i.e. below the range of flavor number Nf where the model possesses an
infrared fixed point. A model just below the conformal window is expected to be
“almost” conformal and hence the coupling constant is expected to be slowly changing
over a large energy range.
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Another strong constraint from electro-weak precision data is the smallness of the
S-parameter, related to the spectrum of vector and axial resonances of the model [12].
Perturbation theory suggests that it is proportional to Nf which would indicate that
scaled-up QCD where Nf needs to be around 10− 12 in order to have walking is not
compatible with a small S-parameter. There is no reason however to trust perturbation
theory close to the lower end of the conformal window due to strong coupling, hence
the fundamental model deserves further study. In any case the fermion content of the
model can be increased also by increasing the dimension of the fermion representation.
This would have the advantageous effect that the conformal window would move to
lower Nf values resulting in a hopefully smaller S-parameter [13,14]. This observation
suggests the use of the sextet representation for gauge group SU(3) where perturbative
estimates indicate Nf = 2 might already be walking.

The most recent constraint on model building is the 2012 discovery of a relatively
light new boson at the LHC. Its mass of 125 GeV can only be incorporated into an
extension of the Standard Model by strong dynamics if the chosen model contains such
a light composite particle in its spectrum. The Nf = 2 sextet model with gauge group
SU(3) is a promising candidate in this respect as well [15]. If the model is close to the
conformal window a light dilaton-like particle might exist in the spectrum. In QCD
language this would be the scalar flavor singlet f0 (or σ) meson. In QCD it is heavy
and broad but in a theory close to the conformal window it might be light due to the
mild breaking of conformal symmetry [16], although a dilaton-like interpretation is far
from being clear [17,18] . In any case it would be a composite particle.

Yet another reason why the Nf = 2 sextet model is appealing from a phenomeno-
logical point of view is the fact that the pattern of chiral symmetry breaking (if indeed
the model is below the conformal window) is SU(2)× SU(2)→ SU(2), i.e. the same
as in QCD. Hence exactly 3 Goldstone bosons are produced, the right number for the
W and Z bosons to “eat”.

Since non-abelian gauge theories are strongly coupled just below the conformal
window a non-perturbative method is needed in order to test whether the needed
properties are indeed present in any given candidate model. The only tool that does not
invoke uncontrolled assumptions and is non-perturbative is a lattice field theoretical
approach. Chapter 2 contains a review of the necessary field theory concepts. The
lattice field theory literature addressing Strong Dynamics beyond the Standard Model
in general and of each technique and method in particular is also reviewed there.
Several subtle issues are emphasized which are frequently overlooked in the literature
but which are necessary for a critical assessment of the progress in our field. We will
make use of these techniques in the subsequent chapters.

Chapter 4 includes our results on the sextet composite Higgs model.
Even though I believe the most promising model from a phenomenological point

of view is the sextet model, the fundamental representation deserves study on its own,
our results are presented in chapter 5. Many of the new techniques were first tested
in the fundamental models and hence chronologically the results from chapter 5 were
obtained prior to the results in chapter 4.

It should be kept in mind that the main reason we believe that the Standard Model
needs to be extended by new sectors not only at the Planck scale but well below is
the principle of Naturalness. Even though this principle is a convincing one there is
no guarantee that it will not mislead us. It is possible that eventually it will turn out
that the Standard Model is valid up to the Planck scale where a quantum theory of
gravity combined with the Standard Model takes over. If this scenario is realized in
Nature we will not see new physics in Earth based particle accelerators in the forseeable
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future. I find this outcome unlikely but in any case the current Run 2 program of the
LHC and the further physics program beyond that as well as currently planned new
accelerators will definitely shed light on this issue at least up to the energy range they
are able to push the energy frontier. Those results will either find new physics or not.
If not, several extensions of the Standard Model will be ruled out (whether strongly
interacting or not). If new physics is unambiguously found the experimental results
need to be compared with theoretical calculations in order to rule out or confirm any
particular model. In my work in the past 8 or so years I have studied a class of strongly
interacting extensions and a particular realization in detail (the sextet model) in order
to have the theoretical results in the event new physics is indeed found.
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Chapter 2

Review of the field,
techniques and methods

2.1 Introduction

Even though the Standard Model and its electroweak sector in particular are extraor-
dinarily successful in terms of both experimental and theoretical precision the idea of
dynamical symmetry breaking came about already in the late 70’s [8–10]. The main
motivation was and continues to be naturalness and the associated fine tuning problem.
In the early technicolor paradigm, scaled up QCD with Λ ∼ O(TeV ) was envisioned to
take the place of the Higgs sector, and spontaneous chiral symmetry breaking would
be responsible for electroweak symmetry breaking. The resulting Goldstone bosons
or techni pions would be eaten by the W and Z bosons and hence the latter would
become massive. In particular the model would be either Higgsless or would feature a
heavy composite Higgs, analogous to the σ or f0 meson of QCD, at least according to
early expectations.

The initial proposal faced numerous problems including a potentially large S-
parameter [12] and the tension between the observed fermion masses and potentially
large flavor changing neutral currents [19]. The idea of walking [20,21] was introduced
to circumvent some of these issues by assuming that the renormalized coupling was
running slowly between two well separated energy scales ΛTC and ΛETC , where ETC
stands for extended technicolor [10,22]. In addition a large mass anomalous dimension
was assumed to be generated along the renormalization group trajectory. The large
anomalous dimension would guarantee that flavor changing neutral currents remain
small while the mass of the top quark is the correct one. At the same time the precise
mechanism for fermion mass generation, dubbed extended technicolor, is pushed to a
high scale ΛETC and essentially decouples from the mechanism of electroweak sym-
metry breaking. Hence the techni gauge sector responsible for electroweak symmetry
breaking is thought to be an effective theory only, even though in principle it could be
a fundamental theory as QCD.

A natural way to look for models with a coupling that walks is by considering
non-abelian gauge theories in the parameter space (G,Nf , R) where G is the gauge
group and Nf the number of massless fermion flavors in representation R. In the
original technicolor proposals, usually G = SU(N) and the fundamental representation
was considered. More generally, once G and R are fixed, Nf may be viewed as a
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variable and the model may be in one of three phases depending on the value of
Nf . Clearly, if Nf is too high asymptotic freedom is lost because the first β-function
coefficient will cease to be negative and the theory is trivial. The requirement of
asymptotic freedom limits Nf < NAF

f from above and the bound NAF
f is obtained

exactly by the 1-loop β-function. Just below this upper bound the model has a Banks-
Zaks fixed point with a coupling that is small and can be obtained from a 2-loop
calculation [23, 24]. Consequently such a model is a weakly coupled conformal field
theory at long distances and all of its properties such as anomalous dimensions, etc.,
are calculable perturbatively in a reliable way. As Nf is decreased further the fixed
point coupling grows. At some critical value N∗f the coupling becomes strong enough to
generate spontaneous symmetry breaking and a dynamical scale like in QCD. Further
decreasing Nf towards zero does not change the infrared dynamics in a substantial way
although as we will see the detailed properties will be very sensitive to the difference
N∗f −Nf . The range N∗f < Nf < NAF

f is called the conformal window and of course
depends on the gauge group G and the representation R. In contrast to the upper
end of the conformal window NAF

f , the lower end of the conformal window N∗f is not
calculable in perturbation theory.

It should be noted that the above picture assumes that the flavor number can
change continuously which is obviously not the case. For fixed G and R there is only
a discrete set of flavor numbers below the upper end of the conformal window NAF

f

and the arguments based on a continuous change in Nf may or may not be a good
guide. This state of affairs also calls for non-perturbative lattice calculations which in
principle can scan all available flavor numbers Nf < NAF

f and determine the infrared
properties for each.

A relatively recent development was the realization that higher dimensional repre-
sentations R have a lower N∗f and hence lower fermion flavor number would be needed
for the theory just below the conformal window. As a result the S-parameter can be
hoped to be lower, relative to the fundamental representation, and potentially con-
sistent with electroweak precision data [13, 25, 26]. Compatibility of LHC data and a
composite Higgs of the type considered here, including its couplings to the W and Z
gauge bosons was scrutinized recently in detail [27].

The present review has a very limited scope and focuses on a selection of topics
mostly related to lattice studies. The literature on the subject of dynamical elec-
troweak symmetry breaking, technicolor in its many variants and IR-conformal gauge
theories is vast. Extensive reviews on the phenomenological, experimental and for-
mal aspects are available [11, 28–32] as well as more extended reviews of the lattice
aspects [33–35].

In section 2.2 we discuss the possibility of a light scalar in strongly coupled gauge
theories. In section 2.3 a pedagogical and elementary introduction to the main differ-
ences between chirally broken and conformal gauge theories is given, focusing on the
scaling properties of the mass spectrum. In section 2.4 we discuss some lattice specific
issues and we review the main results on the spectrum for a number of models. In
section 2.5 we discuss different definitions of the running coupling, and review related
lattice results. Finally in section 2.6 we end with an outlook.

It should be noted that due to the lack of space various very useful approaches
of distinguishing conformal and chiral symmetry broken models and studying their
properties on the lattice are not discussed in the present review. These include finite
temperature studies [36–41], finite size scaling [42–48], radial quantization [49,50], non-
degenerate fermion masses for many flavors in order to interpolate between different
flavor numbers [51,52] and the spectral properties of the Dirac operator [54–58].
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2.2 Strong dynamics and a light scalar

Even though the original technicolor paradigm of the late 70’s envisioned a Higgsless
electroweak sector or one with a heavy Higgs, the possibility of a light composite
Higgs was nevertheless actively debated [17,18]. It is important to note that the scalar
isosinglet mass, naturally, needs to be measured against some other mass scale and its
lightness will depend on what scale it is compared to. From a phenomenological point
of view the relevant comparison is the mass ratio of the scalar, mσ, and some other
massive state (for instance the vector isotriplet meson m%) which also stays non-zero in
the chiral limit, assuming the model breaks chiral symmetry. This ratio would indicate
how far the light scalar is separated from the tower of other massive particle states.

Recent lattice simulations in the (G,Nf , R) parameter space of non-abelian gauge
theories show that as the model approaches the conformal window from below the
scalar isosinglet meson in fact becomes light, relative to the vector meson, % in QCD.
The lattice evidence comes primarily from simulations of SU(3) gauge theory. In the
Nf = 8 fundamental model with SU(3) lattice calculations indicate that approximately
mσ/m% ∼ 1/2 can be reached with the available lattice volumes and fermion masses
[91–93]. Another model which seems to be close to the conformal window, SU(3) with
Nf = 2 sextet fermions, also features a light scalar according to lattice calculations.
In this model approximately mσ/m% ∼ 1/4 was observed [94–96] predicting an even
larger separation between the scalar and the rest of the spectrum. These observations
make it plausible that a composite Higgs may emerge from a near-conformal gauge
theory with its 125 GeV mass obtained after electro-weak corrections are taken into
account, most notably the contribution of the top quark [97].

The generation of the Standard Model fermion masses is still left to higher scales
and the models are still thought of as effective theories only.

The natural question is what mechanism produces a light scalar out of a strongly
interacting non-abelian gauge theory. Again it is important to note what we mean
by light. Since just below the conformal window chiral symmetry is broken, all states
have masses ∼ Λ except the Goldstones. What is required is that the ratio of the
scalar mass and all other massive states is small. Clearly, there is no small parameter
in the theory for fixed (G,Nf , R). One could think of N∗f −Nf as a small parameter,
if one approaches the conformal window from below (leaving aside the issue that Nf
is discrete). Then one would be tempted to further argue that as N∗f − Nf goes to
zero, the theory becomes conformal and the β-function vanishes. Hence, as this line
of argumentation would go, the mass of the scalar must go to zero as N∗f −Nf goes to
zero, since inside the conformal window it is massless. Therefore if N∗f −Nf is non-zero
but small, the mass of the scalar will be small as well. However, this argument, based
on restoration of conformal symmetry, applies equally well to all massive states, like
the vector meson discussed above. All massive states become massless as N∗f −Nf goes
to zero but we have no information on the ratios. Depending on the rate at which the
masses go to zero, the ratios may stay constant, may go to zero or may go to infinity.
Hence there is no a priori reason for the scalar to be light relative to for example the
vector meson even if N∗f −Nf is small.
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2.3 Gauge theories inside and outside the conformal
window

The first goal of any lattice simulation of a given model is to determine whether
chiral symmetry is spontaneously broken or not. There are many phenomena that are
markedly different in the two cases and a pedagogical overview of the basic differences
is given in this section.

The phenomenological motivation limits our interest to conformal gauge theories
where a suitably defined β-function is not identically zero, but rather has an isolated
zero of first order. Hence the prototypical example of N = 4 SUSY Yang-Mills theory
with an identically zero β-function is outside the scope of our discussion. The main
difference between an identically zero β-function and one with an isolated zero is that
in the former case a theory can be constructed at any value of the coupling such that
correlation functions fall off as power-laws on all scales whereas in the latter case there
is a single value of the coupling where this is possible.

2.3.1 Infinite volume, zero mass

The behavior of a spontaneously broken or QCD-like gauge theory at short distances
can be described by perturbation theory. A dynamical scale Λ is generated and corre-
lation functions behave as in free theories with logarithmic corrections,

〈O(x)O(0)〉 =
1
x2p

(
A

log2α(xΛ)
+ . . .

)
, |x| � Λ−1 (2.1)

with some constants, A, α and where p is the engineering or naive dimension of the
operator O. The constant α is zero if the anomalous dimension of O is zero, for
instance if it is a conserved current. In writing eq. (2.1) we assume that operators are
already renormalized in a suitable scheme at scale µ ∼ Λ.

The particle spectrum consists of the massless Goldstone bosons originating from
the spontaneous breaking of chiral symmetry as well as a tower of massive bound states.
The mass of the non-Goldstone bound states are all proportional to Λ. Consequently,
deep in the large distance regime, more precisely for Λ−1 � |x| only power-laws
originating from the pions survive. In this regime interaction between the pions can
also be neglected and all correlation functions take on the form of a free theory of
pions. This deep infrared limit can formally be realized by Λ → ∞, explicitly taking
the mass of all massive bound states to infinity hence decoupling them from the low
lying spectrum of massless (non-interacting) pions. In this sense chirally broken gauge
theories are infrared free. Note however that the weakly interacting degrees of freedom
at short distances (gluons and fermions) are different from the weakly interacting
degrees of freedom at large distances (pions).

A gauge theory inside the conformal window, on the other hand, may behave in
one of two distinct ways, see figure 2.1. Note that the Lagrangian is the same in the
two cases. A suitably defined renormalized running coupling may be constant on all
scales, or may reach the fixed point for large distances only. We will call the former
case conformal and the latter IR-conformal for definiteness. For a detailed discussion
on the running coupling and its behavior both inside and outside the conformal window
see section 2.5.

In the IR-conformal case a dynamically generated scale Λ is present and correlation
functions at short distances behave similarly to a chirally broken theory given by (2.1).
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Figure 2.1: Two realizations of the running coupling inside the conformal window. The
Lagrangian is the same in the two cases. The n-point functions fall off as power-laws
on all scales (green) or fall off as power-laws for large distances but their behavior
for short distances is described by asymptotic freedom (red). In order to make the
difference clear we will refer to the former (green) as conformal and the latter (red) as
IR-conformal.

At large distances correlation functions behave as power-laws,

〈O(x)O(0)〉 =
A

x2p(xΛ)2γ
+ . . . , |x| � Λ−1 , (2.2)

where again p is the engineering or naive dimension and γ is the anomalous dimension
of the operator O.

Clearly, in (2.2) one may rescale the coordinate x and operator O by Λ to get rid
of the dynamical scale at large distances. Hence if,

z = xΛ

OIR(z) =
O(z/Λ)

Λp
(2.3)

then in the infrared 2-point functions are simply,

〈OIR(z)OIR(0)〉 =
A

z2p+2γ
+ . . . , z � 1 . (2.4)

In the above equation everything is expressed in dimensionless quantities and the
dynamical scale Λ indeed dropped out.

In the second realization of a gauge theory inside the conformal window, where
correlation functions are power-laws on all scales an arbitrary dimensionful scale Λ may
nevertheless be introduced from dimensional analysis of the classical theory. Then in
this case correlation functions behave as equations (2.2) and (2.4) without corrections
represented by . . ., i.e. for all x and z.

One may imagine regularizing a gauge theory inside the conformal window by a
UV-cutoff ΛUV or a−1 in which case all quantities can be measured from the start in
ΛUV or a−1 units and one would automatically end up with dimensionless quantities.
This slight difference in computation, keeping the dynamical scale Λ and only getting
rid of it in the infrared by rescaling, or working with dimensionless quantities from
the start is clearly irrelevant as far as the infrared behavior is concerned, but in order
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to distinguish the conformal and IR-conformal scenarios depicted in figure 2.1 the
dynamical scale Λ needs to be kept.

In any case the lack of exponentially falling correlation functions at large distances
indicates that all channels are massless. Note that there is a smooth limit between the
two realizations inside the conformal window by formally taking Λ→∞, i.e. Λ|x| → ∞
while |x| is fixed. This limit will turn all correlation functions into power-laws on all
scales. Even though the lack of a dimensionful scale will of course not make it possible
to measure absolute distance scales, measuring distances relative to each other is still
meaningful. The Λ → ∞ limit, as defined here, inside the conformal window simply
extends the power-law IR behavior to all scales but does not alter the (un)particle [98]
content. On the other hand, in a chirally broken gauge theory, this limit corresponds
to removing all massive states and ending up with only massless pions, i.e. it reduces
the number of particle species.

2.3.2 Finite volume, non-zero mass

The previous discussion was valid in infinite volume and zero fermion mass. A finite
volume and non-zero fermion mass are both useful tools in lattice calculations as
well as unwanted effects that make the distinction between a gauge theory inside and
outside the conformal window more blurred. The chief reason is that massive fermions
introduce massive particle states and exponentially falling correlation functions even
inside the conformal window and finite volume limits the direct ability to probe the
system at large distances.

Nevertheless a finite volume and fermion mass can indeed be used as useful tools
since the behavior of a gauge theory inside or outside the conformal window differ
markedly in well defined regimes. First let us discuss the still massless but finite
volume setup, i.e. the theory is formulated on T 3 × R with a linear size L for the
spatial volume. One naturally has to impose boundary conditions for both the gauge
fields and fermions in the spatial directions and it is expected that in small volumes,
LΛ � 1, the boundary conditions are relevant and may alter the behavior of the
theory substantially whereas for large volumes, LΛ� 1, their influence is expected to
be small (either algebraic or exponential, depending on the quantity in question).

Asymptotic freedom ensures that at small volume, LΛ � 1, perturbation theory
is applicable. In this regime, often called “femto-world”, chirally broken and IR-
conformal theories behave very similarly. A perturbative Hamiltonian framework can
be set up in a straightforward manner and in this case all eigenvalues of the Hamilto-
nian and hence all masses behave as

M(L) =
1
L

(
A+

B

log2α(LΛ)
+ . . .

)
L� Λ−1 , (2.5)

where the constants A,B and α depend on the quantum numbers of the state and on
the boundary conditions. If the boundary conditions are chosen such that the vacuum
is degenerate, tunnelling events will produce splittings which are small relative to
the logarithmic corrections above but are nevertheless reliably calculable for small
volume [99,100].

For large volumes, on the other hand, masses inside and outside the conformal
window behave very differently. In the IR-conformal case we have,

M(L) =
1
L

(
A+

B

(LΛ)ω
+ . . .

)
L� Λ−1 , (2.6)
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where the exponent ω may be obtained from the β-function of the theory, see section
2.5.

On the other hand, if the theory is chirally broken the large volume spectrum,
L� Λ−1, will behave markedly differently. In this regime, familiar as the δ-regime of
chiral perturbation theory [101], there are modes whose volume dependence is

M(L) =
1

L(LΛ)2

(
A+

B

(LΛ)2
+ . . .

)
L� Λ−1 (2.7)

which will ultimately become the pions at infinite volume and there are also modes
whose volume dependence is rather

M(L) = Λ
(
A+

B

(LΛ)2
+ . . .

)
, L� Λ−1 (2.8)

which at infinite volume become the tower of massive bound states.
Now let us turn to the situation of infinite volume, but finite (bare) fermion mass,

m. In this case particle states will be massive even in the conformal case and correlation
functions will have an exponential fall off for large distances. The masses of gauge
singlet particles are of course physical quantities and as such are renormalization group
invariant, however the fermion mass m is not. Let us choose a renormalization scheme
for the fermion mass and denote by m̃(m) an RG invariant mass. Then the physical
masses of particles states will behave as

M(m) = AΛ
(
m̃

Λ

) 1
1+γ

+ . . . (2.9)

for m̃/Λ � 1 in conformal theories with γ the mass anomalous dimension [102, 103].
The coefficient A as well as the function m̃(m) depends on the renormalization scheme
but the exponent γ does not.

In the chirally broken case the fermion mass dependence of the Goldstone bosons
is determined by the p-regime of chiral perturbation theory [104],

M(m) = Λ
(
m̃

Λ

)1/2(
A+B

m̃

Λ
+ C

m̃

Λ
log

m̃

Λ
+ . . .

)
(2.10)

and the fermion mass dependence of all other states is

M(m) = Λ
(
A+B

(
m̃

Λ

)α
+ . . .

)
(2.11)

with some exponent α > 0, typically α = 1. It should be noted that the above
expressions receive next to leading order corrections in the chiral expansion which can
only be assumed to be small if indeed m̃/Λ is sufficiently small. Furthermore, at finite
m̃/Λ ratio, or in other words at finite Goldstone mass a further assumption needs to
hold, namely that all states are sufficiently heavier than the Goldstone itself. This
is because the conventional chiral Lagrangian from which (2.10) and expansions of
all other low energy quantities are obtained is only sensitive to the Goldstones as all
further states are assumed to be integrated out. However at finite fermion mass it
may happen that the mass of further states, which are non-zero in the chiral limit,
become comparable to the mass of the Goldstones in which case they must be included
as correction terms in the chiral Lagrangian. A potential example is the 0++ meson.
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Close to the conformal window direct lattice calculations seem to indicate that indeed
the scalar meson does not separate from the Goldstones even at the smallest fermion
masses accessible to numerical simulations.

Apart from expressions like (2.10) chiral perturbation theory in the p-regime pre-
dicts relationships between a host of quantities, like the GMOR relation, as well as
the fermion mass dependence of decay constants. In particular the chiral Lagrangian
dictates that the decay constant of the Goldstone bosons in the chirally broken case
behaves as, at leading order,

F (m) = Λ
(
A+B

m̃

Λ
+ C

m̃

Λ
log

m̃

Λ
+ . . .

)
(2.12)

where the A,B,C parameters are different from the similarly named parameters in
(2.10), but chiral perturbation theory establishes relationships between them. In the
conformal case, on the other hand,

F (m) = AΛ
(
m̃

Λ

) 1
1+γ

+ . . . (2.13)

is expected for small enough fermion mass m.

2.4 Mass spectrum as a probe for IR-conformality

So far our discussion was in the continuum. Any lattice simulation is naturally set
up in finite 4-volume and finite lattice spacing. As far as the study of the spectrum
is concerned in large volumes the fermion mass also needs to be finite for technical
reasons. The first goal of any lattice simulation is to establish whether the simulated
theory is inside or outside the conformal window at infinite volume and zero fermion
mass. This is a non-trivial task since in order to make use of the continuum expressions
which clearly distinguish the two cases, one needs to ensure that both the asymptotic
requirements for their validity hold and also that the lattice spacing, a, is sufficiently
small. In practice this means that ΛL � 1 and M(m)L � 1 for the smallest mass
M(m) is required in order to have small finite volume effects. Furthermore aΛ � 1
and aM(m)� 1 needs to hold for small cut-off effects.

2.4.1 Finite volume effects

The most direct way to probe the infrared of a given theory on the lattice is to study its
mass spectrum in large volumes keeping the necessary inequalities as well as one can,
given the practical constraints of the available computer. Even though this approach is
theoretically sound the inequalities are hard to fulfill as one approaches the conformal
window from below, as finite volume effects become more and more severe. In practice
this means that even though the general rule of thumb in QCD, Mπ(m)L > 4, ensures
small finite volume effects in spectral quantities, in theories close to the conformal
window Mπ(m)L > 5 or even Mπ(m)L > 10 is required [15, 105]. In addition if
one wants to employ infinite volume chiral perturbation theory, for example (2.10) or
(2.12), then FπL ≥ 1 is also needed which condition is analogous to the general ΛL ≥ 1
expression. Note that the latter constraint is particularly hard to maintain close to
the conformal window with a small fermion mass because Fπ(m) varies rapidly as a
function of m. The coefficient B is apparently larger just below the conformal window
than in QCD in equation (2.12).
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For a model inside the conformal window finite volume effects are even more severe
and Mπ(m)L > 15 was reported to be necessary to have negligible finite volume effects
at finite fermion mass for the SU(2) model with Nf = 2 adjoint fermions [106].

Not completely controlling finite volume effects, i.e. having not sufficiently large
volumes in the simulations is not only problematic for applying infinite volume chiral
perturbation theory or hyperscaling formulae but also more generally. We have seen in
the previous section that at small ΛL IR-conformal and chirally broken theories behave
very similarly, simply because both are asymptotically free and at not sufficiently large
ΛL the simulation can not probe deeply enough in the infrared to distinguish them.
The above mentioned general observation that Fπ(m) drops more steeply as a function
of m for small m if the model is closer to the conformal window results in the need for
ever larger lattice volumes.

In intermediate volumes, where ΛL ∼ 1 there are no theoretical expectations for
the volume dependence or the fermion mass dependence. Increasing the fermion mass
in order to increase Fπ(m) will ensure Fπ(m)L� 1 however Mπ(m) also grows and the
asymptotic expressions for small mass will lose their validity both inside and outside
the conformal window. As a result simulations with practical constraints on the lattice
volume given by the available computer often find themselves between a rock and a
hard place: either intermediate volume or intermediate fermion mass, neither of which
has a theoretically sound description.

2.4.2 Finite lattice spacing effects

Furthermore, even though the physical volume in a lattice calculation can be increased
at fixed lattice volume by increasing the lattice spacing via increasing the bare gauge
coupling, this will introduce larger cut-off effects and the aΛ� 1 constraint will hold to
a lesser degree. Consequently the conclusions will be less indicative of the continuum
theory and perhaps will be specific to the chosen discretization only. In addition there
might be bulk phase transitions at some critical bare gauge coupling, which is specific
to the given discretization and has nothing to do with the continuum dynamics of the
model. In order to draw conclusions which have a chance to describe the continuum
theory the bare coupling g2

0 needs to be smaller than the critical value and this alone
might force the simulation into a regime where the physical volume is not large enough,
unless very large lattice volumes are used which might not be affordable on a given
computer.

2.4.3 Low lying scalar and chiral perturbation theory

A further issue, as mentioned, is that if the scalar meson becomes lighter and lighter,
the chiral expansion becomes more and more invalid. Just below the conformal window
the scalar meson mass seems to become light indeed. In practice it becomes hard to
simulate at light enough masses, such that the pion becomes lighter than the scalar,
and this complicates the application of chiral perturbation theory formulae [107–110].
On the other hand, just inside the conformal window one may need to use very small
fermion masses in order to fit the data with the leading expression (2.9) and in practice
one is forced to use subleading terms in the fits increasing the number of fit parameters.
Similarly, the number of fit parameters will grow due to cut-off effects as well, in a
chirally broken theory the chiral expansion will have new terms which are vanishing
in the continuum but can be sizable at finite cut-off.
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2.4.4 Selected lattice results

Since simulations of the mass spectrum close to the conformal window are plagued
by the above difficulties, it is all the more important to gather as much evidence as
possible, before conclusions are drawn from numerical data. For instance, if for a
model chiral symmetry breaking appears to take place it is important to verify this
from as many observables as possible. Good chiral fits of the Goldstone mass and decay
constant is preferrably complemented by a verification of the GMOR relation and by
checking the Random Matrix Theory predictions for the low lying Dirac eigenvalues
in the ε-regime. Furthermore there are relations between the various chiral fits in
the p-regime since the same low energy constants appear in all of them, allowing for
powerful consistency checks. Similarly, it is desirable to complement the conformal
scaling tests of the mass spectrum by calculations of the running coupling showing an
infrared fixed point (see section 2.5) in the conformal case. Also, the mass anomalous
dimension γ from the spectrum should be independent from the channel from which
it is extracted. Furthermore it ought to agree with the running mass anomalous
dimension at the infrared fixed point, as well as with the one obtained from the scaling
of the Dirac spectrum, providing powerful checks in the conformal case too. Note that
the study of the Dirac spectrum has its own source of systematic effects, namely
definitive conclusions can only be drawn from small eigenvalues as far as the infrared
is concerned and this range is particularly distorted by finite volume effects [111].

Despite the above complications, the mass spectra of numerous models were cal-
culated on the lattice keeping the needed inequalities to varying degrees.

As far as SU(2) is concerned there is broad agreement that the Nf = 2 model in
the adjoint representation is conformal, the mass spectrum in particular was studied
in detail [106, 112–117]. The Nf = 1 case was also investigated [47] and asymptotic
freedom is lost at Nf = 2.75. In the fundamental representation asymptotic freedom
is lost at Nf = 11. Detailed studies of the particle spectrum for Nf = 2, 4, 6 are
available [105, 118, 119] with Nf = 6 being thought to be at around the lower end
of the conformal window. Severe finite volume effects at Nf = 6 however prohibited
a conclusive result as to whether the model is chirally broken or already inside the
conformal window.

The gauge group SU(3) was studied on the lattice by many groups. Since the
fundamental representation is particularly familiar from QCD applications, this model
was the first to be investigated in detail. The Nf = 6 model is certainly outside the
conformal window. The mass spectrum of the Nf = 8 model was studied extensively
[91–93, 120–122], results for both Nf = 9 [120] and Nf = 10 [123] are available as
well as Nf = 12 [66, 124, 125]. There seems to be disagreement about the Nf =
12 model, whether it is already inside or just below the conformal window and the
study of the running coupling does not seem to resolve this issue (see section 2.5).
Beyond the fundamental representation the most promising candidate model from a
phenomenological point of view is the sextet with Nf = 2 flavors [13, 25, 26]. The
mass spectrum was investigated in detail [15, 94–96, 126], along with various chiral
properties. The results seem to be consistent with chiral symmetry breaking although
see also [126].

The adjoint of SU(2) or the sextet of SU(3) are the two index symmetric represen-
tations and generalizing it further, a first study of SU(4) gauge theory with Nf = 2
flavors in the two index symmetric was recently performed [127].

As mentioned in section 2.2 one of the most important conclusions drawn from
lattice studies of gauge theories close to the conformal window is the appearance of

18

dc_1357_16

Powered by TCPDF (www.tcpdf.org)



a light composite scalar meson. Here by light we mean its mass mσ relative to the
mass m% of the vector meson. In the SU(3) model with Nf = 8 fundamental fermions
approximately mσ/m% ∼ 1/2 was observed, whereas with Nf = 2 sextet fermions
approximately mσ/m% ∼ 1/4. These observations make it plausible that a composite
Higgs may emerge from a near-conformal gauge theory with its 125 GeV mass obtained
after electro-weak corrections are taken into account [97].

Beyond the unitary gauge group, the mass spectrum of SO(4) was studied [128]
with Nf = 2 flavors in the fundamental representation, showing consistency with chiral
symmetry breaking.

Due to the practical difficulties alternative approaches were also explored in lattice
calculations. One area where lot of effort was concentrated is the calculation of the
β-function of the models, outlined in the next section.

2.5 Running coupling as a probe for IR-conformality

The basic idea behind the running coupling studies is that an IR fixed point would be
characterized by the property that the running coupling goes to a finite value in the
limit of zero energy. Typically a very general definition of running coupling is adopted:
any observable g2(µ) which depends on a single energy scale µ and which admits the
following perturbative expansion

g2(µ) = g2
r(µ) +

∞∑
n=1

cng
2n
r (µ) , (2.14)

valid for µ→∞ is said to be a running coupling. A reference renormalization scheme
r has to be assumed in this definition. The MS can be considered for definiteness, but
other schemes might be used as well. It is worth reminding that the above series is
only formal, it does not converge and it does not imply analyticity. We will say that
a given coupling g2(µ) is a good probe for IR-conformality if it diverges in the µ → 0
limit in theories with spontaneous chiral symmetry breaking (SχSB) and goes to a
finite nonzero value in IR-conformal theories. Throughout this section we will assume
that we are setting the quark masses equal to zero, and IR-conformality is possibly
broken only by a finite volume.

Unfortunately eq. (2.14) is not enough to guarantee that the running coupling
g2(µ) is a good probe for IR-conformality. It is easy to construct observables g2(µ)
satisfying (2.14) that do not diverge in theories with SχSB. In general, given a running
coupling g2(µ) that diverges in the µ → 0 limit, it is always possible to construct
another running coupling

g̃2(µ) =
g2(µ)

1 + g2(µ)
(2.15)

that goes to 1 in the µ → 0 limit. Later on we will show how a coupling defined in
terms of the vector-current two-point function does not diverge in the IR limit even if
chiral symmetry breaks, exactly because of pion physics.

It is also easy to produce examples of couplings that diverge in the IR limit in case
of IR-conformality. Let us assume that g2(µ) behaves in the IR limit accordingly to
standard Wilsonian RG behaviour

g2(µ) ' g2
∗ −Aω(µ/Λ)ω + . . . , (2.16)
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where Aω and ω are positive numbers. In particular ω is related to the anomalous
dimension of the first irrelevant operator at the IR fixed point. Define now the following
coupling

g̃2(µ) = −b0g
6(µ)

µ∂g
2(µ)
∂µ

, (2.17)

where −b0 is the first coefficient of the expansion of the beta function around g2 = 0
and ensures the validity of the representation (2.14). In the IR limit

g̃2(µ) ' b0g
6
∗

ωAω
(µ/Λ)−ω + . . . , (2.18)

which shows that g̃2(µ) diverges. This example shows that the standard Wilsonian
RG treatment does not work for the coupling g̃2(µ). The reason is that Wilsonian
RG assumes regularity properties that might not hold, and in fact one should not
expect to be valid especially if the considered theory is strongly coupled. Typically
couplings defined at high energies and satisfying eq. (2.14) capture the interaction
strength between quarks, and they have nothing to do with large distance physics.
Both in the case of spontaneous χSB and IR-conformality the large-distance degrees
of freedom are in fact colorless and can be approximated as quark bound states in case
of a weakly coupled Banks-Zaks fixed point. [23, 24]

We believe that whenever a coupling g2(µ) satisfying eq. (2.14) is proposed to
study IR-conformality, then a proof of the property that g2(µ) is also a good probe
for IR-conformality should be provided which is not based merely on perturbative
Wilsonian RG, but maybe on more general effective-theory analysis, before definitive
conclusions are drawn. Surprisingly enough this logical issue has been largely ignored
in the literature. We will review some possible definitions of running couplings, trying
to highlight what we know or we do not know about their IR-behaviour.

2.5.1 Static potential

The force F (r) between static quarks can be defined in terms of rectangular Wilson
loops with size r × t as

F (r) = lim
t→∞

1
t

∂

∂r
lnW (r, t) . (2.19)

We assume for simplicity that we have already taken the zero-mass and infinite-volume
limits. At small r the force between static quarks has a perturbative expansion

F (r) = −k g
2
r(r−1) +O(g4

r)
r2

, (2.20)

where k is a positive constant. A running coupling can be defined as

g2
F (µ) = − k−1r2F (r)

∣∣
r=µ−1 . (2.21)

The static force provides a physically motivated definition of the running coupling, at
least for short distances or in other words in the perturbative regime. If the model
exhibits SχSB, the force is governed by the dynamics of the effective string at interme-
diate distances and F (r) ' −σ. At large enough distances, in theories that generate
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string-breaking (like QCD), the effective string is broken by generation of a light quark-
antiquark pair, and each dynamical quark binds to a static one forming heavy-light
mesons. In this regime F (r) becomes the force between these mesons, rather than
between static quarks. At asymptotically large distances it is dominated by one-pion
exchange. Since we are in the chiral limit, the pion is massless and the induced in-
teraction is Coulombic, i.e. the force vanishes proportionally to r−2. Therefore the
coupling g2

F (µ) grows quadratically at intermediate distances and goes to a constant
at very large distances. It is worth mentioning that this problem is avoided in theories
with a residual center symmetry (e.g. confining theories with fermions in the adjoint
representation): in this case string breaking does not occur and the running coupling
grows quadratically at asymptotically large distances.

In case of IR conformality, the force is expected to be Coulombic at large distance
and the coupling g2

F (µ) is expected to go to a non-zero finite value. In conclusion,
even though in some intermediate regime the quantity g2

F (µ) is expected to behave
differently in case of IR-conformality and SχSB, its behavior at asymptotically large
distance is not sufficient to unambiguously differentiate between the two cases. Em-
pirically one sees that the regime in which the effective string breaks is very hard to
reach in typical numerical simulations, and in practice only short and intermediate dis-
tances are explored. Earlier results using variations of this scheme include e.g. Creutz
ratios [120], or the twisted Polyakov loop (TPL) coupling [129,130] to investigate IR-
conformality. It is instructive to notice that the TPL coupling is expected to go to a
constant in the low-energy limit even in pure Yang-Mills theory [131], because of an
algebraic cancelation very similar in spirit to the one in eq. (2.15). In the case with
dynamical fermions a similar saturation effect is expected [129,130].

2.5.2 Vector current

We consider the two-point function of the non-singlet vector current, calculated in
infinite volume:

CV (x) = 〈V aµ (x)V aµ (0)〉 , V aµ (x) = ψ̄τaγµψ(x) . (2.22)

At small x the two-point function admits a perturbative expansion x6CV (x) = c0 +
c1g

2
r(x−1) + . . . where the c0 and c1 coefficients can be analytically worked out (see

section 2.3). Therefore one can define a legitimate running coupling as follows

g2
V (µ) =

x6CV (x)− c0
c1

∣∣∣∣
x=µ−1

. (2.23)

This running coupling has never been used in studies of the conformal window. How-
ever it possesses very interesting features that are worth highlighting. If the theory is
IR-conformal, the large distance behaviour is determined by the scaling dimension of
the vector current. Since V aµ (x) is a conserved current, its scaling dimension is equal to
its engineering one. This means that the vector two-point function decays like x−6 at
large distances. Therefore the coupling g2

V (µ) goes to a constant in the µ→ 0 limit as
expected. If chiral symmetry is spontaneously broken, then the vector current couples
to two-pion states at large distance. If π is the pion field, at the leading order in chiral
perturbation theory, the vector current is represented by the operator Tr τaπ∂µπ up to
total derivatives. [104] It is easy to check by power counting that the vector two-point
function decays like x−6 (one x−2 per pion propagator and one x−1 per derivative).
Therefore the running coupling g2

V (µ) goes to a constant in the µ → 0 limit even if
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chiral symmetry is spontaneously broken. Notice that this constant is predicted by
chiral perturbation theory.

2.5.3 Schrödinger functional (SF) coupling

Most studies which aim at determining IR conformality in gauge theories have used
finite-volume renormalization schemes. The idea is to define the running coupling as
some observable calculated in a hypercubic box and to identify the renormalization
scale µ with the inverse of the box size L. This approach has the advantage to remove or
dramatically reduce two sources of systematic errors in typical lattice simulations: (1)
the infinite-volume extrapolation, and (2) the chiral extrapolation. In finite volume,
if boundary conditions are properly chosen, the Dirac operator has a gap even in
the massless limit and simulations at the chiral point are possible. If fermions with
a residual chiral symmetry are employed then one can simulate exactly at zero bare
mass. In case of Wilson fermions the chiral limit is reached at an unknown value of the
bare mass which can be found by interpolation (rather than extrapolation). In these
kinds of calculations one still has systematic errors that come from the continuum
extrapolation, on which we will comment later. It is worth noticing that in order
to ensure a perturbative expansion of the type (2.14) one needs to use boundary
conditions such that the vacuum is unique at tree level. One can relax this condition
by choosing boundary conditions such that the vacuum is degenerate at tree-level but
the degeneracy is completely lifted at one-loop, provided that more general expansions
than (2.14) are considered. [132]

One can consider a hypercubic box with periodic boundary conditions in the three
spatial directions, and SF boundary conditions [133, 134] for the gauge field at the
boundaries x0 = 0 and x0 = L. Typically one chooses

Ak(0, ~x) =
ηλ1

L
, Ak(L, ~x) =

λ0 − ηλ1

L
, (2.24)

where λ0 and λ1 are color matrices and η is a free parameter. Also the fermion fields
satisfy some appropriate boundary conditions, whose explicit form plays no role in the
present discussion. The boundary conditions induce a background chromomagnetic
field. If the background field is properly chosen, uniqueness of the tree-level vacuum is
ensured. The variation of the free energy with respect to the boundary fields turns out
to be proportional to the inverse of the squared coupling, and can be used to define a
running coupling [135], as in

1
g2

SF(µ)

∣∣∣∣
µ=L−1

= k
d

dη

∣∣∣∣
η=0

lnZSF(η) , (2.25)

where ZSF is the partition function with SF boundary conditions and k is a con-
stant that ensures the correct normalization. The renormalizability of QFT with SF
boundary conditions and the existence of the continuum limit of the SF coupling are
nontrivial issues and have been discussed in the literature. [135–139]

Empirically one observes that in pure Yang-Mills and QCD the SF coupling diverges
at L → ∞. In pure Yang-Mills one can easily argue that this is in fact the case
by using the existence of a mass gap. [140] In a theory with spontaneous χSB, the
leading contribution to the running coupling at large volume will come from multi-
pion exchange between the two boundaries or from pions traveling around the periodic
direction. These contributions are powers in L, and depending on the exponent they
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could lead to a vanishing, finite or divergent behaviour of the running coupling at low
energies. In principle this power can be determined by representing the SF running
coupling in terms of operators of the chiral Lagrangian. It is interesting to notice that
this issue has not been addressed from the theoretical point of view.

In case of IR conformality one would like to argue that the SF running coupling
must go to a constant in the L → ∞ limit. This is most probably the case, but the
issue is far from being completely trivial. By working out the derivative with respect
to the boundary conditions in eq. (2.25) one finds out that the SF running coupling
can be represented in terms of expectation values of operators on the boundaries

1
g2

SF(µ)

∣∣∣∣
µ=L−1

=
k0

L

∫
L3
d3x 〈Trλ1F0k(0, ~x)〉SF +

kL
L

∫
L3
d3x 〈Trλ1F0k(L, ~x)〉SF .

(2.26)

In fact this is the way in which the SF running coupling is calculated in numerical
simulations. Notice that the operator Trλ1F0k is not gauge invariant, but this is not
a problem as the boundary conditions are not invariant under gauge transformations.
At the fixed point, the bulk theory is scale invariant. The finite volume breaks scale
invariance softly, which means that the trace of the energy momentum tensor is zero in
the bulk, but not necessarily on the SF boundary. If no dynamical scale is generated on
the boundary, then by dimensional analysis the expectation value of Trλ1F0k should
be proportional to L−2 yielding a finite limit for the running coupling for L → ∞.
However notice that the boundary field is not invariant under (3-dimensional) dilations,
therefore we expect the trace of the energy momentum tensor to get a non-vanishing
contribution at the boundary, and a dynamical scale could be generated if the relevant
or marginal operators of the boundary theory get anomalous dimensions. This issue
might well turn out to be trivial, but it is surely worth to be analyzed in detail.

In conclusion it looks very plausible that the SF coupling turns out to be a good
probe for IR conformality, however more theoretical work is needed in order to un-
derstand its low-energy limit. The SF coupling has been widely used to investigate
IR conformality in various theories mostly until 2013, and then it has been almost
completely replaced by the much more precise gradient-flow coupling. All SF-coupling
studies [141–144] agree on the existence of an IR fixed point in SU(2) with 2 adjoint
fermions. Concerning SU(2) with Nf fundamental fermions, the SF-coupling runs
away for Nf = 4 [145], and an IR-fixed point is found for Nf = 10 [145]. The case
Nf = 6 collects evidence in favour of slow running of the SF-coupling [145, 146] and
against it [147]. The SU(3) gauge theory with 8 fundamental fermions collected evi-
dence for strong running of the SF-coupling [64,148]. The same studies report evidence
for an IR-fixed point in the SU(3) gauge theory with 12 fundamental fermions. Slow
running of the SF-coupling has been reported also in the SU(3) theory with 2 sextet
fermions [149–151], in the SU(3) theory with 2 adjoint fermions and in the SU(4)
theory with 6 antisymmetric two-index fermions [152] and in the SU(4) theory with 2
symmetric two-index fermions [153].

2.5.4 Gradient flow (GF) coupling

The gauge field Bt at positive flowtime t is defined as a function of the fundamental
gauge field A through the differential equation

∂tBt,µ = Dt,µGt,µν , B0,µ = Aµ , (2.27)
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where Dt,µ and Gt,µν are respectively the covariant derivative and the field strength
tensor built with the gauge field Bt,µ. The GF coupling [154,155] is defined in a finite
hypercubic box with some given boundary conditions as

g2
G(µ) = N (c) t2〈TrG2

t 〉
∣∣
µ=L−1=c(8t)−1/2 , (2.28)

where c is some arbitrarily chosen constant and N (c) gives the correct normalization
of the coupling. The boundary conditions are often chosen in such a way that the
perturbative expansion is non-degenerate and a representation of the type (2.14) holds,
however this is not necessary to define a possible probe for IR conformality. The
existence of the continuum limit of the GF coupling is non trivial and we refer to the
relevant literature for its proof. [156]

As for the SF coupling, no proof is available of the expectation that the GF coupling
diverges in case of SχSB. As for the SF functional one might want to represent the GF
coupling in terms of operators in the framework of chiral perturbation theory. This
might allow us to understand the IR behaviour of the coupling in terms of pion physics.
Notice that operators at some nonzero but fixed flowtime are non-local, but the range
of nonlocality is small with respect to the pion Compton length. Therefore they can
be represented as local operators in terms of the pion fields [157]. However the IR
behavior of the GF coupling is obtained in the t → ∞ limit and it is not obvious a
priori that this regime is correctly captured by chiral perturbation theory.

In the case of IR-conformality, one can argue that operators at positive flowtime
do not get anomalous dimensions, and therefore 〈TrG2

t 〉 vanishes proportionally to
t−2 in the large t limit. This immediately implies that the GF coupling goes to a
constant in the IR limit. In order to see this it is useful to think of the flowtime as a
real coordinate [156]. Operators at positive flowtime are mapped into local operators
in a 5-dimensional theory with boundary (t = 0). At the IR fixed point, the original
4-dimensional theory becomes scale invariant. One would like to understand whether
the full 5-dimensional theory is scale invariant as well. Notice that the GF equation is
scale invariant which implies that the bulk theory is scale invariant. Moreover the bulk
theory is classical so no anomalous dimensions will be generated. Because of the inter-
action of the 4-dimensional theory with the bulk theory, new boundary operators are
generated. In order to estabilish scale invariance of the full 5-dimensional theory, one
needs to make sure that no relevant operators are generated on the boundary because
of the interaction with the bulk. This is surely true if the fixed point is sufficienlty
weakly coupled. It would be interesting to understand whether stronger results could
be estabilished, e.g. whether the absence of chirally-invariant relevant operators in
the original 4-dimensional theory implies the absence of relevant interaction boundary
operators.

The GF coupling has the great advantage over other couplings to come with small
statistical errors in numerical simulations. For this reason it has practically become the
coupling of choice in studies of IR-conformality. Concerning the SU(3) gauge theory
with Nf fundamental fermions, clear indication for fast running has been observed for
Nf = 4, 8 [158–160]. Slow running has been confirmed forNf = 12 [48] even though the
authors observe no compatibility with IR-conformal finite-size scaling. Compatibility
with an IR fixed point has been observed for SU(2) with 2 adjoint fermions [161],
consistently with previous studies. Studies of the running coupling of SU(3) with two
sextet fermions show some tension [162,163]. Interestingly the studies of the spectrum
of this theory seem to point towards SχSB with strong non-QCD like features.
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2.5.5 Nucleon mass

Finally we give an example of a possible coupling whose IR behaviour is very easy
to predict and is deeply related to the physics that we would like to probe. We
consider a generic gauge theory coupled to a number of massless Dirac fermions in
some representation of the gauge group, such that twisted boundary conditions à la ’t
Hooft [164] can be used. We consider a T 3 × R box with linear spatial size equal to
L, and with twisted boundary conditions in some of the spatial planes. In this setup
it is possible to extract the mass gap M(L) in the sector at baryon number equal to
one from the long-distance behaviour of some properly defined two-point function. At
small volume the mass gap has a perturbative expansion:

LM(L) = c0 + c1 g
2
r(L−1) +O(g4

r) . (2.29)

where the c0 and c1 coefficients are calculable analytically. Therefore one can define a
running coupling satisfying eq. (2.14) as follows

g2
M (µ) =

LM(L)− c0
c1

∣∣∣∣
L=µ−1

. (2.30)

If chiral symmetry is spontaneously broken, then the gap is expected to survive in
infinite volume and the coupling diverges. If the theory is IR-conformal, the gap is
expected to vanish proportionally to 1/L, and the coupling goes to a constant. A
similar construction with the pion mass instead of the nucleon mass would provide a
running coupling that behaves in a funny way. In fact in the chiral limit the pion mass
vanishes in the infinite-volume limit irrespectively of the long distance properties. The
chiral symmetry broken and IR-conformal scenarios are discriminated by how fast the
pion mass vanishes. In case of IR-conformality the pion mass would vanish like L−1

as any other mass. In contrast the large volume limit in the case of spontaneous chiral
symmetry breaking (a.k.a. δ regime) is dominated by the rotor physics and the pion
mass vanishes like L−3, as already discussed in section 2.3. A running coupling defined
like in (2.30) with the pion mass would go to a non-zero constant in the case of IR-
conformality and would vanish in the case of spontaneous chiral symmetry breaking,
in the µ → 0 limit. One might be tempted to use other mesonic states other than
the pion, for instance the mass of the ground state in the non-singlet vector channel.
However notice that in case of chiral symmetry breaking and in large volume, this
state is a state of two weakly-interacting pions (and not the ρ resonance). Therefore
its energy vanishes as L−3, like for the single-pion state.

2.5.6 Continuum limit of finite-volume couplings

We want to comment on the largest source of systematic error in running coupling
determinations, i.e. the continuum extrapolation. The material discussed here is
trivial for lattice practitioners, but might be useful for physicists of other communities
who try to interpret the meaning and quality of lattice data. We discuss the setup that
is usually employed to calculate the running coupling in finite volume schemes. Again,
this means that the running coupling is measured in a finite hypercubic box with length
L and the renormalization scale is identified with L−1. The primary observable that
one measures on the lattice is not the running coupling itself, but rather the so-called
step-scaling function σ(u, s) defined by the implicit equation

σ(u, s) = g2(sL)
∣∣
g2(L)=u

, (2.31)
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in terms of which one can define the discrete beta function e.g. as

B(u, s) =
g2(sL)− g2(L)

ln s

∣∣∣∣
g2(L)=u

=
σ(u, s)− u

ln s
. (2.32)

Note that the s → 1 limit reproduces the infinitesimal beta function familiar from
continuum perturbation theory. However on the lattice a finite and rational value for
s is chosen, since the lattice size in units of the lattice spacing is always an integer.
In an asymptotically free theory B(u, s) is always positive. Moreover B(u, s) vanishes
when it approaches fixed points. Often in the lattice literature the ratio σ(u, s)/u is
considered instead of the discrete beta function.

In lattice simulations one measures Σ(u, s,N), a discretized version of σ(u, s), which
is function of the lattice size in lattice units N = L/a. The continuum limit a→ 0 is
reached if N = L/a goes to infinity

ĝ2(g0, N) = u , (2.33)

determines g0 as a function of the target value u of the running coupling and the num-
ber of points N . We will denote g0(N, u) this function. Notice that in the continuum
the running coupling g2(L) is actually a function of LΛ, where Λ is the dynamically
generated scale. Assuming that g2(L) is a monotonous function of LΛ, fixing the value
of the running coupling through eq. (2.33) actually means to fix the box size L in units
of Λ−1.

In analogy with eq. (2.31), the step-scaling function is defined in the lattice dis-
cretized theory as

Σ(u, s,N) =
ĝ2(g0, sN)

u

∣∣∣∣
ĝ2(g0,N)=u

. (2.34)

The continuum limit a → 0 is reached if N = L/a goes to infinity while L is kept
fixed, i.e. while condition (2.33) is satisfied. This happens at the Gaussian fixed point

lim
N→∞

g0(N, u) = 0 , (2.35)

which is the fixed point that defines the continuum limit in asymptotically free theories.
Therefore the step-scaling function in the continuum is given by

σ(u, s) = lim
a/L→0

Σ(u, s, a/L) . (2.36)

In practice this limit is obtained by fitting the following simple functional form to the
data

Σ(u, s, a/L) = σ(u, s) + α(u, s)
a2

L2
. (2.37)

This is motivated by the Symanzik effective description of the lattice artefacts in
an O(a)-improved setup. At very small values of a the physics at the cutoff scale
is always governed by the Gaussian fixed point, irrespectivily of the existence of an
IR fixed point. The truncation in (2.37) assumes that O(a4) terms are subleading.
If the theory is IR conformal and u is close enough to its IR fixed-point value for
typical values of a/L, which means a � Λ−1, it is reasonable to expect that higher
orders become important. In fact detailed study of the systematic errors due to the
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truncation of the series in (2.37) typically show that the O(a4) cannot be neglected and
this generally results in very large systematic errors for the continuum extrapolation
close enough to the IR fixed point. Clearly the value of the coupling at which the
validity of the truncation breaks down depends on the particular discretization of the
action. However the general message to take home is that even with step-scaling
procedure large lattices are still necessary in order to investigate IR-conformality.

2.5.7 Anomalous dimension of ψ̄ψ

Finite volume and the step-scaling procedure can be used also to calculate the renor-
malization factor of ψ̄ψ (or of the mass), from which one can extract the correspond-
ing anomalous dimension γ(g) as a function of the running coupling, or its value γ∗
at the fixed point if the fixed-point value of the coupling is known. This technique
has been widely used in a variety of theories which we will not review here in de-
tail. [58, 142, 143, 146, 150–153] The ψ̄ψ anomalous dimension can be extracted also
from other techniques, which do not require knowledge of the value of the coupling
at the fixed point, including fit of infinite-volume masses to hyperscaling relations,
finite-size scaling analysis of masses [42–48] and power-law fits of the spectral density
of the Dirac operator. [47, 54–58]

2.6 Outlook

Lattice simulations of 4-dimensional non-abelian gauge theories close to the lower edge
of the conformal window are difficult. There are systematic effects which are rather
mild for QCD but become dominant as the conformal window is approached from
below. We have reviewed two approaches in detail (1) study of the mass spectrum at
finite fermion mass in infinite volume; and (2) study of the running coupling in the
massless case in finite volume. There are numerous other very useful and promising
approaches but the no-free-lunch theorem seems to apply: if one aspect of the cal-
culation manages to suppress some unwanted systematic effect, another aspect will
unavoidably bring back a different, potentially more severe, one. In order to judge the
quality of any given lattice result there is no simple rule of thumb to apply but rather
all the potential sources of systematic effects, specific to the given approach used, have
to be scrutinized. This is, admittedly, not an easy task. Not fully controlling all sys-
tematic effects leads to lattice results which are on occasion not fully consistent, but
we believe further work in understanding these both theoretically and algorithmically
will eventually provide a mature set of results similar to QCD.

What has nevertheless consistently emerged from the non-perturbative lattice in-
vestigations is important for model building and phenomenology. The particle spec-
trum of models close to the conformal window seems to contain a light scalar (relative
to for example the vector meson) which might be interpreted as a composite Higgs
particle. How the other composite particles of the spectrum of any potential strongly
interacting model fit into the Standard Model or extensions thereof is not entirely clear
at the moment. Hopefully further lattice investigations together with progress on the
experimental side will provide further constraints to help separate the viable from the
non-viable models. In the meantime toy models are extremely important for the un-
expected systematic effects that may arise in walking models in other words models
which are close to the conformal window [59]. One such toy model is introduced in
the next chapter.
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Chapter 3

A toy model of confining,
walking and conformal gauge
theories

3.1 Introduction

Lattice simulations of technicolor inspired models are plagued by known systematic
uncertainties [60–63, 120]. Although the models under consideration are QCD-like
in that they are four dimensional non-abelian gauge theories coupled to dynamical
fermions the systematic effects of the interesting models (those that are either confor-
mal or walking) are much more difficult to control than in actual QCD. As a result
currently there are disagreements between various approaches, discretizations, etc, and
universality is not immediately evident [64–67,224]. Clearly the general expectation is
that once all systematic effects are controlled and taken into account the results from
different approaches and regularizations will agree as they should.

In this paper a toy model is proposed which mimics many of the features of non-
abelian gauge theories in the hope that systematic effects can be fully explored. Hope-
fully these will help controlling the corresponding effects in the much more complicated
gauge theories. The proposed model is the two dimensional O(3) non-linear sigma
model with a θ term. At θ = 0 the model served as a toy model of QCD for a long
time since it is asymptotically free, features instantons, confinement and dimensional
transmutation [68]. It is exactly solvable [69] even at finite volume [70–72]. Since the
topological term is invisible in perturbation theory the model is asymptotically free
for arbitrary θ. The dynamics in the infra red is however expected to be very sensitive
to θ.

At θ = π the model is conjectured [73,74] to have a non-trivial infra red fixed point
governed by the SU(2) WZNW model at level k = 1 and, if the conjecture holds, is
also exactly solvable. Some numerical evidence in support of the conjecture has been
presented in [75] and a recent very detailed study confirming it in [76]. The infra
red fixed point implies a zero of the β-function. This situation is analogous to gauge
theories in the conformal window.

For 0 < θ < π exact solvability is lost but based on continuity one expects that for
θ not much below π the β-function develops a near zero and the renormalized coupling
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will walk. This arrangement is analogous to gauge theories just below the conformal
window. Hence dialing θ corresponds to dialing the number of flavors Nf in the gauge
theory.

In all three scenarios (confining, walking, conformal) one may also introduce an
external magnetic field to mimic the effect of a finite quark mass.

Before exploring the analogies further and investigating the origins of the severe
systematic effects the first task is to establish non-perturbatively that the θ-term is
actually a relevant operator and also what the singularity structure of the theory is
for θ > 0. This is not immediately obvious largely because of the unusual scaling
properties of the topological susceptibility and a class of similar observables.

It is well known that small size instantons render the topological susceptibility
χ = 〈Q2〉/V ill defined in the semi-classical approximation [77]. Going beyond the
semi-classical approximation fully non-perturbative lattice studies have shown that
regardless how one improves the details of the lattice implementation a logarithmically
divergent susceptibility is obtained at finite physical volume in the continuum limit.
Moreover, all even moments of the total topological charge distribution 〈Q2m〉/V have
the same property.

However, the model at θ = 0 is exactly solvable and both the exact solution and
the continuum limit of lattice simulations agree that correlators of the topological
charge density, e.g. 〈q(x)q(0)〉 are finite. The above two observations, namely that
certain statistical properties of the total charge distribution P (Q) are ill defined while
at the same time correlators of q(x) are finite, might make one wonder whether the
total charge operator Q is an irrelevant operator while q(x) is not. If so, the only
consistent continuum value of 〈Q2m〉 would be zero and the apparent divergences in
the lattice calculations would be regarded as artifacts. This scenario would imply
that the theory defined on the lattice at non-zero θ leads to an identical continuum
theory as the one defined at θ = 0. Equivalently, the total charge operator inserted
into any correlation function would be zero in the continuum theory 〈Q . . .〉 = 0, while
correlation functions of the type 〈q(x) . . .〉 are finite. This scenario would of course
invalidate Haldane’s conjecture about the equivalence of the θ = π theory with a
non-trivial interacting conformal field theory.

In this work it is shown that there exist quantities built out of the total topolog-
ical charge operator Q which have well defined continuum limits and are non-zero.
These observables are differences of connected correlation functions of the topological
charge, in other words the cumulants. Each term is logarithmically divergent but the
divergence cancels in the difference and moreover they scale correctly in the continuum
limit to non-zero values. Showing correct scaling towards the continuum limit in itself
would not be sufficient to prove that the θ-term is a relevant operator because the
continuum limit value could be zero. Since all cumulant differences are finite there is
only a single UV-divergent parameter in the partition function Z(θ) but otherwise it
is finite.

While preparing this manuscript the preprint [76] appeared also with the conclusion
that θ is a relevant coupling. The method was different though, in [76] it was shown
to high precision that a well defined observable is different in the continuum limit
for three different values of θ implying that θ can not be irrelevant. In the current
work all simulations are carried out at θ = 0 and the same conclusion is reached by
showing that certain combinations of the topological charge operator are non-zero in
the continuum.
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3.2 O(3) sigma model with a θ-term

The model in Euclidean continuum notation is defined by the action

S =
1

2g2
0

∫
d2x∂µsa∂µsa (3.1)

for the unit 3-vectors s, s2
1 + s2

2 + s2
3 = 1, where g0 is the bare coupling. Only a torus

geometry will be considered corresponding to a box of finite linear size L which will
be regularized by a symmetric lattice.

The corresponding partition function, free energy per unit volume and topological
charge distribution of the model at non-zero θ and volume V is given by

Z(θ) = 〈eiθQ〉 = e−V f(θ) =
∑
Q

P (Q)eiθQ , (3.2)

with the normalization Z(0) =
∑
Q P (Q) = 1. Since physics is periodic with period

2π in θ and θ → −θ is a symmetry the free energy per unit volume can be Fourier
expanded

f(θ) =
∞∑
n=1

(1− cos(nθ)) fn . (3.3)

It has been pointed out in [78] that in the semi-classical or dilute gas approximation
all fn coefficients vanish except for f1 which is UV divergent due to instantons of size
a � ρ � ξ where a is the lattice cut-off and ξ is the physical correlation length.
The remaining coefficients come from interactions between instantons. Semi-classical
arguments also suggest that for instantons causing the UV divergence in f1 the ratio
between their size and their average separation goes to zero in the continuum limit.
This would imply that the interactions responsible for the fn>1 coefficients are small
in the continuum limit hence will not cause them to diverge.

To summarize, the semi-classical approximation accounts for a UV divergent f1

and finite fn>1 coefficients. A suitable way of addressing whether this statement is
true beyond the semi-classical approximation is to consider observables that can be
expressed by the fn>1 coefficients only and calculating them fully non-perturbatively.
The simplest choice is to take the connected correlation functions of the topological
charge,

χ2m = (−1)m+1 d
2mf

dθ2m

∣∣∣∣
θ=0

(3.4)

and consider their differences,

∆χ2m = χ2m − χ2m+2 =
∞∑
n=2

fnn
2m(1− n2) (3.5)

from which f1 drops out. The first few such correlation functions are

χ2 =
〈Q2〉
V

χ4 =
〈Q4〉 − 3〈Q2〉2

V
(3.6)

χ6 =
〈Q6〉 − 15〈Q4〉〈Q2〉+ 30〈Q2〉3

V
.
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All of these are expected to diverge in the continuum limit but their differences are
expected to be finite. Some numerical evidence has been presented in [78] in favor of
correct scaling behavior for ∆χ2 but whether the continuum value is zero or non-zero
has not been discussed.

In the following it will be shown to high precision that the expectations from the
semi-classical analysis indeed hold non-perturbatively and all moments 〈Q2m〉 and all
cumulants χ2m are logarithmically divergent but the differences ∆χ2m are finite. This
implies that there is a single ill-defined constant in f(θ) namely f1 but otherwise it is
finite. The constant f1 can be removed by an appropriate renormalization condition
leading to a finite and universal free energy and partition function for arbitrary θ.

3.3 Numerical simulation

It is convenient to take the continuum limit on a symmetric periodic lattice L2 of
fixed physical volume. Physical length and mass is defined by the second moment
correlation length ξ2 [79],

1
ξ2(L)2

=
(

sin πa
L

πa
L

)2(
2
M0

M2
− 4π2

L2

)
(3.7)

where

M2n =
(
L

2π

)2n∑
t

(
2 sin

πt

L

)2n

C(t) (3.8)

is given in terms of the zero spatial momentum projection of the 2-point correlation
function C(t) =

∑
x〈sa(t, x)sa(0, 0)〉 of the field s. Let us introduce m(L) = 1/ξ2(L).

Note that in this notationm(L) is not the mass gap in finite volume but rather is simply
defined as the inverse of ξ2 (which for L → ∞ agrees with the mass gap but not for
finite L). The physical volume is fixed to m(L)L = 4. A novel [80–82] topological
lattice action is used for the simulations,

S =
∑
〈i,j〉

S(si, sj) (3.9)

where the sum is over all neighboring sites and

S(si, sj) =
{

0 if si · sj > cos δ
∞ otherwise (3.10)

In other words the action is zero for two neighboring vectors if their relative angle is
smaller than δ and infinite otherwise. The continuum limit is taken by tuning the bare
coupling δ towards zero. This action is topological because small perturbations of the
field s do not change the action nevertheless it has been shown that it is in the right
universality class [82].

If δ < π/2 powerful improvements exist for the measurement of the topological
charge distribution [75] based on a generalization of the usual cluster algorithms [83,
84]. The topological charge operator from [85] is used assigning an integer charge to
each configuration even at finite lattice spacing.

The continuum extrapolation of the cumulant differences will be done through 12
lattice spacings using the parameter values from [82] listed in table 3.1. The measured
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L/a δ/π m(L)L L2χ2 L2χ4 L2χ6 L2∆χ2 L2∆χ4

60 0.48490 4.0017(14) 1.2957(2) 0.8812(8) -0.019(5) 0.4145(8) 1.069(5)
80 0.47260 4.0032(19) 1.4651(2) 1.0292(8) -0.011(6) 0.4359(7) 1.143(6)
100 0.46370 4.0007(19) 1.6018(3) 1.1512(9) -0.035(8) 0.4507(9) 1.186(7)
120 0.45680 3.9939(20) 1.7155(3) 1.257(1) 0.033(9) 0.459(1) 1.224(8)
160 0.44680 4.0011(14) 1.9214(4) 1.444(1) 0.16(1) 0.477(1) 1.28(1)
200 0.43950 4.0015(17) 2.0836(3) 1.596(1) 0.24(1) 0.488(1) 1.35(1)
240 0.43385 3.9998(14) 2.2208(3) 1.729(1) 0.40(1) 0.492(1) 1.33(1)
320 0.42545 4.0010(17) 2.4476(4) 1.946(1) 0.57(1) 0.502(1) 1.37(1)
400 0.41930 3.9983(14) 2.6259(4) 2.118(2) 0.71(2) 0.508(2) 1.41(2)
480 0.41455 4.0014(19) 2.7845(4) 2.274(2) 0.88(2) 0.511(2) 1.39(2)
640 0.40740 4.0021(18) 3.0347(4) 2.521(2) 1.07(3) 0.514(2) 1.45(3)
800 0.40210 3.9952(19) 3.2221(3) 2.704(2) 1.20(3) 0.518(2) 1.50(3)

Table 3.1: Results for the first few cumulants and their differences for fixed physical
volume m(L)L = 4. The bare parameters δ are taken from [82].

correlation lengths and topological susceptibilities are in agreement with those in [82].
In the present work O(108) configurations were generated at each volume and every
10th was measured for the topological charge distribution and correlation length. The
large number of configurations was necessary because there are huge cancellations
between the various terms in the difference of cumulants, especially for ∆χ4. The
third difference, ∆χ6, was already impossible to obtain with the current statistics.

The results for the cumulant differences ∆χ2 and ∆χ4 are shown on figure 3.1.
Obtaining continuum estimates is not entirely trivial since the precise form of the
leading and sub leading cut-off effects is not known a priori. Using the results of [86,87]
one may expect the leading corrections to be O((a/L)2) with possibly large logarithmic
corrections. Fits of the form

C + (a/L)2

 m∑
j=n

Aj logj(L/a)

 (3.11)

with (n,m) = (0, 3), (1, 3), (2, 3), (0, 2) all work quite well with χ2/dof values close to
unity for ∆χ2 and slightly higher, around 1.8 for ∆χ4. The continuum extrapolated
values agree in both cases among the four fit function choices and the four curves lie
almost entirely on top of each other. In both cases the (n,m) = (0, 2) choice is shown
on the plots leading to continuum estimates C = 0.523(2) and 1.48(2) for L2∆χ2 and
L2∆χ4, respectively. Clearly, both values are non-zero.

3.4 Summary and conclusion

It has been known for a long time that the topological susceptibility in the two di-
mensional O(3) model is ill-defined in the continuum. Consequently the topological
charge distribution P (Q) does not have a finite continuum limit. The semi-classical
analysis predicts precisely what part of P (Q) is actually divergent and what part of
it is finite. In this work non-perturbative evidence has been presented supporting the
semi-classical result. The only divergent quantity is the first Fourier coefficient of the
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Figure 3.1: Continuum extrapolation for the first two cumulant differences multiplied
by the volume, L2∆χ2 and L2∆χ4.

free energy density,

f1 = −
∫ π

0

f(θ) cos(θ)
dθ

2π
, (3.12)

while the remaining part
∑
n>1(1 − cos(nθ))fn is finite and non-zero. Hence the

quantity

fR(θ) = f(θ)− (1− cos(θ))f1 (3.13)

is finite and universal and one may consider the subtraction an additive renormaliza-
tion. Similarly the renormalized partition function ZR(θ) = exp(−V fR(θ)) is finite
and universal and related to the bare partition function by a multiplicative renormal-
ization. Instead of subtracting f1 it is sufficient to subtract only its divergent piece.
The logarithmic singularity is expected to be volume independent1. Let us then de-
note this singular quantity by f1s. Since χ2 = f1 +

∑
n>1 n

2fn a suitable definition of
f1s is the logarithmic singularity in the topological susceptibility which can directly
be measured in lattice calculations. A natural renormalization procedure is then the
following: one defines the theory for non-zero θ by the action

S(θ) = S(θ = 0)− iθQ− (1− cos(θ))V f1s (3.14)

and all resulting correlation functions related to topology (i.e. derivatives with respect
to θ) become finite. The last term in the full action above is a non-perturbatively
generated counter term. It is important to note that the above renormalization does
not mean that θ itself gets renormalized, the bare θ is still a physical quantity which
does not require renormalization. It would of course be very interesting to check the
volume independence of f1s in lattice simulations.

The finite quantities fn>1 and ∆χ2m are not volume independent and are non-
trivial functions of z = m(L)L. Since the model is exactly solvable at θ = 0 it would
be interesting to derive the first few cumulant differences ∆χ2m(z) from the exact
solution or at least their value in the infinite volume limit.

1I thank Ferenc Niedermayer for pointing this out.
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In any case the finite and non-zero cumulant differences naturally lead to the con-
clusion that θ is a relevant coupling of the theory and the total topological charge
operator Q is a relevant operator despite the ill-defined nature of the moments 〈Q2m〉.

The original motivation was the study of a toy model mimicking confining, walk-
ing and conformal behavior in four dimensional gauge theories in order to study the
severe systematic effects of the latter. It was proposed that increasing θ is analogous
to increasing the number of flavors Nf because as θ goes from zero to π the model
goes from confining to walking and to conformal. In the toy model a suitable renor-
malized coupling is g2

R(L) = m(L)L which would then run with the finite volume L. A
necessary condition for this analogy to hold was establishing precisely the divergence
structure of the partition function at non-zero θ.

A particular difficulty of the gauge theory calculation can also be studied in the
toy model. It is very difficult to distinguish numerically the following two cases: the
theory with zero quark mass just below the conformal window and the theory with a
small but non-zero quark mass just inside the conformal window. Both theories walk,
the former for the usual reason of being just below the conformal window while the
latter because even though it would be conformal for zero quark mass, the non-zero
mass drives the coupling away from the would-be fixed point as soon as the running
scale goes below the massive fermionic states. This phenomenon can be mimicked in
the toy model by considering it at zero external magnetic field and θ = π− ε and also
at a small but non-zero external magnetic field and θ = π. Both theories are expected
to walk and it would be interesting to explore in the toy model what intrinsic features
are different despite the similar behavior of the walking coupling constant.

There are a couple of differences between the toy model and gauge theory though.
Less important is the fact that while θ does not enter the perturbative β-function, Nf
does. More significant is the fact that due to the θ → −θ symmetry and periodicity by
2π the two values θ − ε and θ + ε lead to the same continuum theory and it does not
have an infra red fixed point (for non-zero ε the coupling walks). This means that the
zero of the β-function at θ = π is eliminated by arbitrary perturbations of θ meaning
that this zero is a second order zero, unlike in the gauge theory where generically the
zero is expected to be first order and is preserved by small perturbations. Hence the
θ = π model is really analogous to a gauge theory which is exactly at the lower edge
of the conformal window. It would be interesting to find a simple toy model which
possesses all essential features and in addition the infra red fixed point is a first order
zero of the β-function and disappears by joining with a non-trivial UV fixed point as
expected in gauge theory [88–90].
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Chapter 4

Sextet composite Higgs model

4.1 Introduction

An important strongly coupled near-conformal gauge theory built on the minimally
required SU(2) bsm-flavor doublet of two massless fermions, with a confining gauge
force at the TeV scale in the sextet representation of the new SU(3) BSM color gauge
group is an intriguing possibility for the minimal realization of the composite Higgs
mechanism. Early discussions of the model as a BSM candidate were initiated in
systematic explorations of higher fermion representations of color gauge groups [13,25,
26] for extensions of the original Higgsless Technicolor paradigm [8,9]. In fact, the first
appearance of the particular two-index symmetric SU(3) fermion representation can
be traced even further back to Quantum Chromodynamics (QCD) where a doublet
of sextet quarks was proposed as a mechanism for Electroweak symmetry breaking
(EWSB) without an elementary Higgs field [165]. This idea had to be replaced by
a new gauge force at the TeV scale, orders of magnitude stronger than in QCD, to
facilitate the dynamics of EWSB just below the lower edge of the conformal window in
the new BSM paradigm [13,25,26]. It should be noted that throughout its early history
the important near-conformal behavior of the model was not known and definitive
results had to wait for recent non-perturbative investigations with lattice gauge theory
methods as used in our work.

Near-conformal BSM theories raise the possibility of a light composite scalar, per-
haps a Higgs impostor, to emerge from new strong dynamics, far separated from the
associated composite resonance spectrum in the few TeV mass range with interesting
and testable predictions for the Large Hadron Collider (LHC). This scenario is very
different from what was expected from QCD when scaled up to the Electroweak scale,
as illustrated by the failure of the Higgsless Technicolor paradigm. Given the discovery
of the 125 GeV Higgs particle at the LHC, any realistic BSM theory must contain a
Higgs-like state, perhaps with some hidden composite structure.

Based on our ab initio non-perturbative lattice calculations we find accumulating
evidence for near-conformal behavior in the sextet theory with the emergent low mass
0++ scalar state far separated from the composite resonance spectrum of bosonic and
baryonic excitations in the 2-3 TeV energy range [15, 94, 96, 166]. The identification
of the light scalar state is numerically challenging since it requires the evaluation of
disconnected fermion loop contributions to correlators with vacuum quantum numbers
in the range of light fermion masses we explore. The evidence to date is very promising
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that the 0++ scalar is light in the chiral limit and that the model at this stage remains
an important BSM candidate.

4.2 Electroweak multiplet structure, gauge anoma-
lies, and baryons

As in the minimal scheme of Susskind [9] and Weinberg [8], the gauge group of the
theory is SU(3)bsm⊗SU(3)c⊗SU(2)w⊗U(1)Y where SU(3)c designates the QCD color
gauge group and SU(3)bsm represents the BSM color gauge group of the new strong
gauge force. In addition to quarks and leptons of the Standard Model, we include one
SU(2) bsm-flavor doublet (u,d) of fermions which are SU(3)c singlets and transform in
the six-dimensional sextet representation of BSM color, distinct from the fundamental
color representation of fermions in the original Technicolor scheme [8, 9]. The formal
designation (u,d) for the bsm-flavor doublet of sextet fermions uses a similar nota-
tion to the two light quarks of QCD but describes completely different physics. The
massless sextet fermions form two chiral doublets (u,d)L and (u,d)R under the global
symmetry group SU(2)L⊗SU(2)R ⊗U(1)B. Baryon number is conserved for quarks of
the Standard Model separate from baryon number conservation for sextet fermions
which carry 1/3 of BSM baryon charge associated with the BSM sector of the global
U(1)B symmetry group.

4.2.1 Electroweak multiplet structure

It is straightforward to define consistent multiplets for the sextet fermion flavor doublet
under the SU(2)w⊗U(1)Y Electroweak gauge group with hypercharge assignments for
left- and right-handed fermions transforming under the SU(2)w weak isospin group.
The two fermion flavors uab and dab of the strongly coupled sector carry six colors
in two-index symmetric tensor notation, a,b = 1, 2, 3, associated with the gauge force
of the SU(3)bsm group. This is equivalent to a six-dimensional vector notation in the
sextet representation. The fermions transform as left-handed weak isospin doublets
and right-handed weak isospin singlets for each color,

ψab
L =

(
uab

L

dab
L

)
, ψab

R = (uab
R , dab

R ). (4.1)

With this choice of representations, the normalization for the hypercharge Y of the
U(1)Y gauge group is defined by the relation Y = 2(Q− T3), with T3 designating the
third component of weak isospin.

Once Electroweak gauge interactions are turned on, the chiral symmetry breaking
pattern SU(2)L⊗SU(2)R → SU(2)V of strong dynamics breaks Electroweak symmetry
in the expected pattern, SU(2)w ×U(1)Y → U(1)em, and with the simultaneous dy-
namical realization of the composite Higgs mechanism. It is important to note that
the dynamical Higgs mechanism is facilitated through the electroweak gauge couplings
of the sextet fermions and does not depend on the hypercharge assignments of the
multiplets [9]. Recently, we presented a detailed analysis on anomaly constraints of
hypercharge assignments [167]. In this report we summarize what is relevant for the
sextet baryon analysis of our existing gauge ensembles with dark matter and model
viability implications [167].
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4.2.2 Anomaly conditions

Anomaly constraints have a long history in Technicolor motivated BSM model build-
ing with representative examples in [26, 168–171]. The first condition for model con-
struction with left-handed doublets is the global Witten anomaly constraint which
requires an even number of left-handed SU(2) multiplets to avoid inconsistency in
the theory from a vanishing fermion determinant of the partition function [172].
In addition, gauge anomaly constraints also have to be satisfied [173]. With vec-
tor current Vi

µ(x) = ψTiγµψ(x) and axial current Ai
µ(x) = ψTiγµγ5ψ(x) constructed

from fermion fields and internal symmetry matrices Ti in some group representa-
tion R for fermions, the anomaly in the axial vector Ward identity is proportional to
tr({Ti(R),Tj(R)}Tk(R)) and must vanish. In the sextet theory fermions are either
left-handed doublets or right-handed singlets under the SU(2)w gauge group. The ma-
trices Ti will be either the τ i Pauli matrices or the diagonal U(1) hypercharge Y. Since
the SU(2) group is anomaly free, tr({τ i, τ j}τk) = 0, we only need to consider anomalies
where at least one Ti is the hypercharge Y. The non-trivial constraints come from two
conditions on hypercharge traces,

tr(Y) = 0, tr(Y3) ∝ tr(Q2T3 −QT2
3) = 0 , (4.2)

where Y = 2(Q− T3) with electric charge Q, and T3 as the third component of weak
isospin. There are two simple solutions for BSM model building with sextet fermions
to satisfy the Witten anomaly condition and gauge anomaly constraints on tr(Y) and
tr(Y3) in Eq. (4.2). The first solution with the choice Y(fL) = 0 for doublets of left-
handed sextet fermions (fL) leads to half-integer electric charges for composite baryons.
The second solution with the choice Y(fL) = 1/3 for doublets of left-handed sextet
fermions leads to integer electric charges for composite baryons. The hypercharges of
right-handed singlets are automatically set from consistent electric charge assignments
in both cases. The two choices have very different implications for sextet baryons.

4.2.3 Sextet baryons and the Early Universe

In the sextet BSM theory we do not have direct observations of new heavy baryons to
set unique hypercharge assignments for left-handed doublets and right-handed singlets
of sextet fermions from two alternate solutions to the anomaly conditions. Viability of
the choices Y(fL) = 0, or Y(fL) = 1/3, is affected by the different electric charge assign-
ments they imply. With heavy sextet baryon masses in the 3 TeV range, as determined
from our recent lattice simulations [167], the seemingly minimal solution with Y = 0
for left-handed doublets would lead to intriguing predictions of baryon states with
half-integer electric charges for future accelerator searches and relics with fractional
electric charges from the early Universe with observable consequences. Problems with
half-integer electric charges, from the choice Y(fL) = 0 in our case, were anticipated
earlier from strong observational limits on stable fractional charges in the early Uni-
verse and their terrestrial relics [174,175]. The non-controversial Y(fL) = 1/3 anomaly
solution for the sextet model has new dark matter implications [167] which require
new lattice calculations proposed here.

4.2.4 Ongoing lattice work on sextet baryons

The lightest baryons in the strongly coupled sextet gauge sector are expected to form
isospin flavor doublets (uud,udd), similar to the pattern in QCD. As we noted ear-
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lier, baryons in the sextet model should carry integer multiples of electric charges if
Y(fL) 6= 0 to avoid problems with the relics of the early Universe. This leads to the
simplest choice Y(fL) = 1/3 with gauge anomalies to be compensated. A new pair of
left-handed lepton doublets emerged from this choice as the simplest manifestation
of the anomalies and the Electroweak extension of the strongly coupled sextet gauge
sector [167].

Neutron-like udd sextet model baryons (n6) will carry no electric charge and proton-
like uud sextet model baryons (p6) have one unit of positive electric charge from the
choice Y(fL) = 1/3. The two baryon masses are split by electromagnetic interactions.
The ordering of the two baryon masses in the chiral limit of massless sextet fermions
will require non-perturbative ab initio lattice calculations of the electromagnetic mass
shifts to confirm intuitive expectations that the neutron-like n6 baryon has lower mass
than the proton-like p6 baryon. In QCD this pattern was confirmed by recent lattice
calculations [176]. We expect the same ordering in the sextet model so that the
proton-like p6 baryon will decay very fast, p6 → n6 + ..., with a lifetime τ � 1 second.
It is unlikely for rapidly decaying p6 baryons to leave any relic footprints from dark
nucleosynthesis before they decay.

With BSM baryon number conservation the neutral n6 baryon is stable and ob-
servational limits on its direct detection from experiments like XENON100 [3] and
LUX2013 [4] have to be estimated. In charge symmetric thermal evolution sextet
model baryons are produced with relic number density ratio nB6/nB ≈ 3 · 10−7. For
3 TeV sextet model baryon masses we can estimate the detectable dark matter ratio
of respective mass densities ρB6 and ρB as ρB6/ρB ≈ 10−4, about 5 · 104 times less
than the full amount of unaccounted dark mass, ρdark ≈ 5 · ρB. We will use this mass
density estimate to guide observational limits on relic sextet model baryons emerging
from charge symmetric thermal evolution where tests of dark baryon detection come
from elastic collisions with nuclei in dark matter detectors [167]. The neutral and sta-
ble n6 baryon can interact several different ways with heavy nuclei in direct detection
experiments including (a) magnetic dipole interaction, (b) Z-boson exchange, (c) Higgs
boson exchange, and (d) electric polarizability. It turns out that cross sections from
(a) and (b) can be parametrized and estimated even without lattice simulations. Cross
sections from (c) and (d) require lattice calculations using our existing gauge ensembles
and capacity computing from new allocation we request for gpu capacity computing.
Based on these estimates we expect to show that the sextet BSM model is consistent
with observational limits and stable baryons will contribute a small fraction to the
missing dark matter content. New physics implied by gauge anomaly constraints, like
new lepton generations with neutrinos [167], can also contribute to the relic abundance
of dark matter. These are important and interesting issue for future investigations.

4.3 Mass-deformed chiral perturbation theory and
the chiral condensate

One of the most important goals of lattice BSM models is to accurately set the Elec-
troweak scale as a function of the lattice spacing. This allows control on the continuum
limit when the cutoff is removed and phenomenologically relevant BSM predictions are
made. The chiral SU(2)L × SU(2)R symmetry of the model is dynamically broken to
the diagonal vector symmetry SU(2)V and three associated Goldstone pions facilitate
the minimal realization of the Higgs mechanism after the Electroweak interactions are
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turned on. The Electroweak scale in finite lattice spacing units is set from the decay
constant Fπ of the Goldstone pion in the chiral limit with F = 250 GeV in continuum
physics notation. It can be identified as the fundamental scale of the theory related to
the chiral (Higgs) condensate through the GMOR relation.

4.3.1 Taste breaking cutoff effects in the staggered pion spec-
trum

Since the determination of the Goldstone decay constant F in the chiral limit is crit-
ically important for the location of the light scalar mass and the well-separated reso-
nance spectrum in the 2-3 TeV range, we carefully monitor taste breaking effects in
the pion spectrum with the goal of removing cutoff effects from physics predictions.
This also serves as guidance for our choice of lattice spacings for new configuration
generation.

To illustrate cutoff dependent taste breaking effects, spectra of mass-deformed non-
Goldstone pion states are shown in Figure 4.1 from our newest data with the definition
of the relevant correlators and quantum numbers given in [15,66]. In the fermion mass
range of our data set the taste breaking pattern is different from QCD where the
residual ∆ mass shifts of the non-Goldstome pions are equispaced in the chiral limit
with approximately degenerate SO(4) taste multiplets and with parallel slopes for finite
fermion mass deformations of Goldstone and non-Goldstone pion states [177]. For
example, as part of the equispaced split of degenerate SO(4) multiplets, the observed
approximate split ∆ij ∼ 2∆sc of two multiplets in QCD appears to have collapsed in
the sextet model. The other distinct difference from QCD is the non-parallel slopes
which fan out in Goldstone and non-Goldstone mass deformations of the pion spectrum
as shown in Figure 4.1. While the ∆ additive mass shifts are LO taste breaking effects
in the chiral Lagrangian [177,178], the taste breaking slope corrections δ can plausibly
be identified with NLO analytic terms in rooted staggered chiral perturbation theory
(rsχPT) [179]. The corrected mass relation is M2

NLO = M2
LO(1 + δ) where δ depends

on the taste quantum number of the pion state. Several relations constrain the δ taste
breaking corrections [179]. The pion spectrum with taste breaking cutoff effects is the
input to analyze the fundamental parameters of rsχPT as worked out for the SU(3)
group in [178]. Our adaptation to the SU(2) group of rsχPT in the sextet model is
straightforward.

4.3.2 Fundamental parameters from rooted staggered chiral
perturbation theory (p-regime)

For the SU(2) analysis we adapted the procedure from [178]. There are two fundamen-
tal parameters F and B in the SU(2) chiral Lagrangian. The fundamental parameter
F of χPT, defined as the chiral limit of the pion decay constant Fπ, sets the Elec-
troweak scale and the fundamental parameter B sets the fermion mass deformation of
the Goldstone spectrum. With bare fermion mass m, the RG invariant combination
m · BF2 is related to the chiral condensate via the GMOR relation.

We apply rooted staggered chiral perturbation theory to the mass-deformed pion
spectrum and Fπ. The fitting procedure in the p-regime proceeds in several steps. In
the first step finite volume correction is applied to the Mπ and Fπ data from 1-loop
continuum χPT. This is sufficient to assure that in the next step the fitting procedure
is applied to data free from volume dependence. A linear fit is applied to the quadratic
masses of the non-Goldstone pion spectrum to determine their mass shifts and slopes.
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Thursday, March 17, 16Figure 4.1: To illustrate cutoff dependent taste breaking effects, spectra of mass-
deformed non-Goldstone pion states are shown from our newest data with the definition
of the relevant correlators and quantum numbers given in [15,66]. In the fermion mass
range of our data set the taste breaking pattern is different from QCD where the
residual ∆ mass shifts of the non-Goldstone pions are equispaced in the chiral limit
with approximately degenerate SO(4) taste multiplets and with parallel slopes for finite
fermion mass deformations of Goldstone and non-Goldstone pion states [177]. For
example, as part of the equispaced split of degenerate SO(4) multiplets, the observed
approximate split ∆ij ∼ 2∆sc of two multiplets in QCD appears to have collapsed in
the sextet model. The other distinct difference from QCD is the non-parallel slopes
which fan out in Goldstone and non-Goldstone mass deformations of the pion spectrum
as shown. While the ∆ additive mass shifts are LO taste breaking effects in the chiral
Lagrangian [177,178], the taste breaking slope corrections δ can plausibly be identified
with NLO analytic terms in the chiral analysis [179]. The corrected mass relation is
M2

NLO = M2
LO(1 + δ) where δ depends on the taste quantum number of the pion state.

Several relations constrain the δ taste breaking corrections [179].
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Figure 4.2: Preliminary results from rooted χPT are shown from fits at gauge coupling
β = 3.20 which corresponds to our coarser lattice of the two extended sets of gauge
ensembles. The upper left panel shows the linear fits to the quadratic masses of the
non-Goldstone pions to determine their mass shifts and slopes as input. The upper
right panel shows the rooted χPT fit to Fπ as a function of fermion mass deformations
away from the chiral limit. The two lower panels show rooted χPT fits to Mπ as a
function of fermion mass deformations away from the chiral limit. We have similar
analysis for M2

π and Fπ at β = 3.25.

In the final analysis of rooted chiral perturbation theory, non-Goldstone pion states
run in the chiral loops including their mass splittings and fan-out slope structure from
taste breaking as determined from the linear fits to the non-Goldstone spectrum. We
applied this analysis at two values of the gauge coupling where we have extensive
ensembles.

For illustration, preliminary results from rsχPT are shown in Figure 4.2 from fits at
gauge coupling β = 3.20 which corresponds to our coarser lattice of the two extended
sets of gauge ensembles. The upper left panel shows the linear fits to the quadratic
masses of the non-Goldstone pions to determine their mass shifts and slopes as input.
The upper right panel shows the rsχPT fit to Fπ as a function of fermion mass defor-
mations away from the chiral limit. The two lower panels show rsχPT fits to Mπ as
a function of fermion mass deformations away from the chiral limit. Fits at the finer
lattice spacing β = 3.25 are quite similar in quality but with lower confidence level.
The unambiguous determination of the cutoff dependent F and B parameters and their

41

dc_1357_16

Powered by TCPDF (www.tcpdf.org)



continuum limit from rsχPT will require extended analysis. Partial quenching with
valence fermions is the first added step to make the ongoing analysis more robust.

Although our results are consistent with chiral symmetry breaking and rsχPT,
ongoing work will require considerable extensions for definitive results. Important
new work, besides partial quenching includes a solution to the entanglement problem
of the light scalar with the low pion spectrum in perturbation theory with comparable
masses in the rsχPT regime, crossover analysis from the p-regime to the ε-regime
and applications of Random Matrix Theory (RMT) in the ε-regime. Coupled chiral
dynamics of the low mass scalar 0++ state with the pions requires new analysis based on
an extended effective theory. We are using the modified effective field theory of χPT on
existing gauge ensembles but new gauge configuration generation is also needed in the
crossover to the ε regime. For independent control on the results for the fundamental
parameters F and B we developed and apply now mixed actions with improved chiral
symmetry without taste breaking in the valence sector of the analysis. Ongoing new
efforts in the p-regime and RMT based ε-regime in mixed action setting will resolve
important aspects of rsχPT with better determination of F and B.

4.3.3 Epsilon-regime, RMT, and mixed action in the valence
sector

Safe extrapolation from the entangled regime of the low mass 0++ scalar with pions to
the massless fermion limit is enabled by crossover to the ε-regime of χPT at low enough
scales λ where Goldstone dynamics begins to decouple from the scalar state. This is
demanding and requires significant resources. To control taste breaking we cannot go
to lattice spacings coarser than the one set by β = 3.20. The uncertainties in the value
of F ∼ 0.018− 0.025 with limitations from rooted chiral perturbation theory at this
lattice spacing requires large V = 563 × 96 and V = 483 × 96 lattice volumes to control
the F · L ≥ 1 condition which is necessary for convergent expansion in all regimes of
χPT, including the ε-regime. Even for our largest V = 563 × 96 and V = 483 × 96
lattice volumes control with F · L ∼ 1 is just barely sufficient. For the lowest fermion
mass m = 0.0010, we have now at these volumes and at this lattice spacing, the scaling
variable mΣV ∼ 80 is very large and more appropriate for the p-regime analysis of
χPT. Reaching the ε-regime requires substantial decrease in the scaling variable mΣV
targeting m = 0.0003 which presents considerable algorithmic challenge for accelerated
inversion methods and also calls for mixed action innovation. We deploy accelerated
inverters in configuration generation to the m = 0.0010− 0.0003 range and analyze
these configurations with mixed valence actions of good chiral properties as described
below. Our limited resources this year allowed us to test these methods without
comprehensive deployment for phenomenologically relevant results like the M0++/F
ratio in the continuum limit.

The m = 0.0010− 0.0003 range is in the crossover from the p-regime to the ε-regime
where known methods of χPT are based on partial quenching and mixed action anal-
ysis. For reliable testing, we performed χPT analysis in the crossover to the ε-regime
with partial quenching and a mixed valence action with improved chiral symmetries.
We take the p-regime gauge configurations of the lowest fermion masses on the largest
lattice volumes and analyze the fermion condensate and the Dirac spectrum with va-
lence fermion action where the original gauge link variables are replaced with the ones
with a fixed number of small stout steps which corresponds to fixed gradient flow time
t in lattice spacing units at each gauge coupling. This strategy can be viewed as a
mixed action based analysis with very good chiral properties of the fermion valence
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FIG. 1: Quadratically divergent diagrams contributing to the Higgs mass, with the interaction vertices

given by (2). The gauge boson exchanges are computed in Landau gauge: then the seagull diagrams,

with a single W and Z exchange, are the only quadratically divergent one-loop diagrams with gauge

boson exchanges.

by the breaking of the electroweak symmetry, U = exp
�
i�aTa/v

�
, with covariant derivative DµU �

�µU � igWa
µTaU + ig�UBµT3, 2Ta are the Pauli matrices, with a = 1, 2, 3, and V[H] is the TC Higgs

potential. �S is the contribution to the S parameter from the physics at the cuto� scale, and is

assumed to vanish in the M� � � limit. The interactions contributing to the Higgs self-energy

are
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The tree-level SM is recovered for

r� = s� = rt = rb = 1 . (3)

We divide the radiative corrections to the TC Higgs mass into two classes: external contributions,

corresponding to loop corrections involving elementary SM fields, and TC contributions, corre-

sponding to loop corrections involving TC composites only. The latter contribute to the dynamical

mass M0
H, whose size will be estimated in the next section by non-perturbative analysis. In order

to isolate the SM contributions we work in Landau gauge. Here transversely polarized gauge

boson propagators correspond to elementary fields, and massless Goldstone boson propagators

correspond to TC composites. The only SM contributions to the TC Higgs mass which are quadrat-

ically divergent in the cuto� come from the diagrams of Fig. 1. Retaining only the quadratically

divergent terms leads to a physical mass MH given by

M2
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where �M2
H

(4��F�) is the scale-dependent counterterm and � is a order unity number. To be able

to provide a physical estimate we assume that the counterterm is negligible at the scale 4��F�,

5

where F� is the TC pion decay constant and � scales like 1/
�

d(RTC) if the cuto� is identified

with the technirho mass, or is a constant if the cuto� is of the order of 4�F�. Provided rt is also

of order one, the dominant radiative correction is due to the top quark. For instance, if F� = v,

which is appropriate for a TC theory with one weak technidoublet, then �M2
H � �12�2r2

t m2
t �

��2r2
t (600 GeV)2. This demonstrates that the dynamical mass of the TC Higgs can be substantially

heavier than the physical mass, MH � 125 GeV.

III. THE DYNAMICAL MASS OF THE TC HIGGS

In QCD the lightest scalar is the �meson (also termed f0(500) in PDG), with a measured mass

between 400 and 550 MeV [23] in agreement with early determinations [11]. Scaling up two-flavor

QCD yields a TC Higgs dynamical mass in the 1.0 TeV � M0
H � 1.4 TeV range. This estimate

changes when considering TC theories which are not an exact replica of two-flavor QCD. Here we

determine the geometric scaling of the TC Higgs dynamical mass, i.e. the value of M0
H as function of

the TC matter representation d(RTC), NTC and the number of techniflavors NTF for a given SU(NTC)

gauge theory. For a generalization to di�erent gauge groups see [24, 25]. We then discuss possible

e�ects of walking dynamics on M0
H, which are not automatically included in the geometric scaling.

Taking into account the SM induced radiative corrections discussed in Sec. II, we argue that TC can

accommodate a TC Higgs with a physical mass of 125 GeV, with or without e�ects from walking.

A. Geometric Scaling of the TC Higgs mass

We will consider at most two-index representations for TC matter, since at large NTC even

higher representations loose quickly asymptotic freedom [26]. The relevant scaling rules are:

F2
� � d(RTC) m2

TC , v2 = NTD F2
� , (5)

where F� is the technipion decay constant, mTC is the dynamically generated constituent techni-

quark mass, and NTD = N�TF/2, where N�TF is the actual number of techniflavors arranged in weak

doublets and therefore N�TF � NTF. v = 246 GeV is the electroweak vacuum expectation value and

will be kept fix in the following.

The squared mass of any large NTC leading technimeson scales like:

(M0
H)2 =

3
d(RTC)

1
NTD

v2

f 2
�

m2
� . (6)
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Figure 8: Schematic view of the emerging resonance spectrum. The parameters  and rt are defined in [40].
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Figure 9: The upper right panel demonstrates the correct index theorem and the lower right panel displays the lowest eigenval-
ues in the epsilon regime.

20

Figure 4.3: The upper left panel shows the RMT distribution of four degenerate quar-
tets showing that the ε-regime is reached with the scaling variable λΣmixedV ∼ 10
where the fermion mass is replaced by the scale of the gradient flow defined valence
Dirac spectrum (m→ λ). The lower left panel shows the infrared part of the directly
calculated Dirac spectral density on the gauge configurations and its Chebyshev ex-
pansion based approximation. The lower right panel shows the pion decay constant
Fπ fitted with the mixed action for fixed sea mass as a function of valence masses.

action.
The newest test results are shown in Figure 4.3. The valence action is defined with

a large number of very small stout steps which corresponds to gradient flow time t = 3
in cutoff units. We checked the eigenvalues of the Dirac operator which order into
nearly degenerate quartets with the smeared gauge links of the gradient flow. The
degenerate eigenvalues follow the index theorem count matching the topology of each
gauge configuration as measured from the topological charge operator on the gradient
flow. The upper left panel shows the RMT distribution of four degenerate quartets
showing that the ε-regime is reached with the scaling variable λΣmixedV ∼ 10 where
the fermion mass is replaced by the scale of the gradient flow defined valence Dirac
spectrum (m→ λ). The fermion condensate Σmixed, not RG invariant itself, is consis-
tently determined from the gradient flow defined valence Dirac operator. The upper
right panel illustrates the perfect degeneracy of the Goldstone pion with one selected
non-Goldstone pion (scPion in the plot). We checked that the degeneracy holds for
all non-Goldstone pion states. The lower left panel shows the infrared part of the di-
rectly calculated Dirac spectral density on the gauge configurations and its Chebyshev
expansion based approximation. The lower right panel shows the pion decay constant
Fπ fitted with the mixed action for fixed sea mass as a function of valence masses.

43

dc_1357_16

Powered by TCPDF (www.tcpdf.org)



Continued future work is needed for definitive results of BSM phenomenology.

4.4 The light 0++ scalar and the resonance spectrum

The most important goals of our lattice Higgs project are to establish the emergence
of the light scalar state with 0++ quantum numbers and the resonance spectrum far
separated from the light composite scalar.

4.4.1 The light scalar state

The f0 meson (in QCD terminology) has 0++ quantum numbers and acts as the scalar
state in the sextet model (σ particle in QCD). Close to the conformal window, the f0
meson of the sextet model is not expected to be similar to its counterpart in QCD.
If it turns out to be light, it can replace the elementary Higgs particle and pose as
the Higgs impostor. Two types of different 0++ operators, the fermionic one and the
gluonic one (0++ glueball), are expected to mix in the relevant correlation functions
for mass determination. Such mixing was not included in the pilot study [94] but
becomes an important goal of our ongoing effort. We will report our new results
without including these mixing effects.

A particular flavor-singlet correlator is needed to capture the 0++ scalar state
with vacuum quantum numbers. It requires connected and disconnected diagrams
of fermion loop propagators on ensemble gauge configurations. The connected dia-
gram corresponds to the non-singlet correlator Cnon−singlet(t). The correlator of the
disconnected diagram is D(t) at time separation t. The f0 correlator Csinglet(t) is
defined as Csinglet(t) ≡ Cnon−singlet(t) + D(t). The transfer matrix has the spectral
decomposition of the Csinglet(t) correlator in terms of the sum of all energy levels
Ei(0++), i = 0, 1, 2, ... and their parity partners Ej(0−+), j = 0, 1, 2, ... but at large time
separation t the lowest states E0(0++) and E0(0−+) dominate. They correspond to mf0

and mηsc . The relevant non-singlet staggered correlator can be fitted well with non-
oscillating a0 contribution and oscillating πsc contribution, with the non-Goldstone
pion πsc discussed in Section 3. One of the most important new developments in
our analysis is to use correlators which project out non-zero momentum states of the
scalar. This projection eliminates the vacuum contribution in the disconnected part
and improves the mass extraction procedure.

We estimate the connected and disconnected diagrams with stochastic source vec-
tors of fermion propagators. To evaluate the disconnected diagram, we need to calcu-
late closed loops of quark propagators. We introduce Z2 noise sources on the lattice
where each source is defined on individual time-slice t0 for color a. The scheme can be
viewed as a “dilution” scheme which is fully diluted in time and color and even/odd
diluted in space. Results from the original pilot study [94] on 323× 64 lattice volumes
at β = 3.20 could only extend down to the lowest fermion mass at m = 0.003. From
our new analysis some representative examples of 0++ effective mass fits are shown
in Figure 4.4 probing the light scalar closer to the chiral limit than before at fermion
mass m = 0.0015. The upper left panel is at β = 3.20 with 483 × 96 lattice volume
and the upper right panel is at β = 3.20 with 563× 96 lattice volume to check against
finite volume dependence in this low fermion mass range. The two lower panels of the
plot show results at β = 3.25.

Although our original estimate M0++/F ∼ 1− 3 for the chiral limit remains con-
sistent with the ongoing new analysis, important further work is needed on the light
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Figure 4.4: Representative fits of the low mass scalar from two ensembles using double
Jackknife procedure on the covariance matrix with Principal Component Analysis
(PCA).

f0 scalar with 0++ quantum numbers. We want better control on the slowly changing
topology of the RHMC algorithm and the related dependence of the extracted masses
on the topological quantum numbers of the gauge configurations. We are also in the
process of a closely related study of the η′ problem which is particularly interesting and
important in the staggered fermion formulation. Fermion mass deformations of the
low-lying f0 state and the Goldstone pion are expected to be entangled which requires
extended χPT analysis. Our ongoing work will have to address these issues.

4.4.2 The emerging resonance spectroscopy

It is important to investigate the chiral limit of composite hadron states separated
from the Goldstones and the light scalar by finite mass gaps. The baryon mass gap
in the chiral limit, for example, provides further evidence for χSB. Resonance masses
of parity partners provide important additional information with split parity masses
in the chiral limit. This is particularly important for consistency with χSB and for a
first estimate of the S parameter when probing the model via Electroweak precision
tests [12].

A remarkable resonance spectrum is emerging in our new analysis which is sketched
in Figure 4.5 for illustration only. The scale is set by F in TeV units at both lattice
spacings with caveats from discussions in Section 3 of the report. Any conclusion about
χSB or conformal behavior from eyeballed inspection of the data would be inappro-
priate and misleading. Although with more work needed for confirmation, the sextet
model appears to be close to the conformal window and due to χSB exhibits the right
Goldstone spectrum for the minimal realization of the composite Higgs mechanism
with a light scalar separated from the associated resonance spectrum in the 2-3 TeV
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Figure 4.5: New resonance spectroscopy results are shown in the plot for illustration
only. The scale is set by F=250 GeV at both lattice spacings with caveats from
discussions in Section 3 of the report. Any conclusion about χSB or conformal behavior
from eyeballed inspection of the data would be inappropriate and misleading.

region. Chiral symmetry breaking and a very small beta function are not sufficient to
guarantee a light dilaton-like state as the natural interpretation for the emergence of
the light scalar. Consistent with our observations, a light Higgs-like scalar is still ex-
pected to emerge near the conformal window as a composite state with 0++ quantum
numbers, but not necessarily with a dilaton interpretation. This scalar state has to
be light but is not required to match exactly the observed 125 GeV mass. The light
scalar from composite strong dynamics gets lighter from electroweak loop corrections,
dominated by the large negative mass shift from the top quark loop [97,180,181].

4.5 Running coupling

4.5.1 The gradient flow running coupling scheme

The gradient flow [154, 156, 182–186] is a particularly useful tool for studying the
running coupling of a non-abelian gauge theory. There are various finite volume setups
which mainly differ in the choice of boundary conditions for the gauge field [155,187–
193]. In the present work we follow [155,187] where the gauge field is taken as periodic
in all four directions. For the fermions on the other hand we impose anti-periodic
boundary conditions again in all four directions. Other applications of the gradient
flow can be found in [194–196].

More precisely, in our scheme a 1-parameter family of couplings is defined in finite
4-volume L4 by

g2
c =

128π2〈t2E(t)〉
3(N2 − 1)(1 + δ(c))

, E(t) = −1
2

TrFµνFµν(t) (4.3)
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where t is the flow parameter, N corresponds to the gauge group SU(N), c =
√

8t/L
is a constant, E(t) is the field strength squared at t > 0 and the numerical factor

δ(c) = −c
4π2

3
+ ϑ4

(
e−1/c2

)
− 1 (4.4)

is chosen such that at leading order g2
c agrees with the coupling in MS for all c; ϑ is

the 3rd Jacobi elliptic function. Hence the coupling gc(µ) runs via the scale µ = 1/L,
for more details see [155,187].

There is a peculiarity of our running coupling scheme related to the fact that we
impose periodicity on the gauge fields, leading to zero modes [99, 197–204]. These
gauge zero modes cause the perturbative expansion of g2

c in gMS to contain both even
and odd powers and potentially logarithms too. However for N > 2 logarithms do not
appear in the first two non-trivial orders, only polynomials [187]. The first unusual
odd power results in only the 1-loop β-function coefficient being the same as in MS.

The constant 0 < c ≤ 1/2 specifying the scheme can in principle be chosen at
will. However, as discussed in [155,187], a small c leads to small statistical errors but
large cut-off effects and a larger c results in larger statistical errors and smaller cut-off
effects. In the present work we set c = 7/20, slightly higher than the value c = 3/10
in [155,160], in order to reduce cut-off effects.

4.5.2 Rooted staggered formulation

The fermion doublet in the staggered fermion implementation requires the square root
of the fermion determinant, also known as the rooting procedure. With the mass of the
fermion doublet set to zero, the continuum step β-function as determined from a scale-
dependent renormalized coupling g2

R(L) shows no sign of turning zero in the explored
range, as we will see. Our results are consistent with chiral symmetry breaking when
probed with finite fermion mass deformations in the p-regime [96].

Some preliminary work, with goals similar to ours but in the Wilson fermion formu-
lation, reports consistency with a zero in the β-function in the renormalized running
coupling in the same range where our β-function is positive and monotonically grow-
ing. If confirmed and further supported with conformal scaling laws, the new work
in Wilson formulation might suggest a conformal infrared fixed point at vanishing
fermion mass in the sextet model, inconsistent with our results and spontaneously
broken chiral symmetry.

Motivated by this controversy, doubts were raised about our results questioning the
application of the rooting procedure with the mass of the staggered fermion doublet
set to zero in the simulations at finite lattice spacing. This lead to the speculation
that in the staggered rooting procedure setting the fermion mass m to zero at fixed
finite lattice spacing a might be incorrect because of the non-locality of the rooted
staggered action we appear to deploy by interchanging the so-called required limit of
a→ 0 first, while holding the fermion mass non-zero before taking the m→ 0 limit in
the continuum theory as the last step, after the cutoff is removed. As a consequence
of this issue of non-locality concerns were raised whether a rooted staggered theory
is in the correct universality class of the continuum theory and whether rooting can
identify a conformal theory.

To alleviate the concerns, we will show that the rooting procedure is correct when
the fermion mass is set to zero at finite lattice spacing while the finite physical volume
of the continuum limit is held fixed. Consequently, the conformality of a model would
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not be missed and the rooted staggered formulation in finite physical volume and in
the infinite volume limit are expected to remain in the correct universality class.

4.5.3 Review of rooting in infinite volume

The method to address the rooting procedure properly has been developed in a series of
papers by Bernard, Golterman, Shamir, and Sharpe [205–211] when the renormalized
fermion mass is kept finite before the continuum limit is taken. We adapt their analysis
to our model in finite physical volumes to demonstrate that the rooting procedure we
apply at vanishing fermion mass and finite lattice spacing a should remain valid on
the level of their reasoning.

The main results of the analysis at finite fermion mass and infinite volume are
summarized first from two succinct exposures of the rooting issues [209, 211] that we
closely follow here. Accordingly, the rooted staggered action is defined on a fine-
grained lattice with lattice spacing af and connected with infrared physics using n
renormalization group steps to a blocked physically equivalent lattice action on a
coarse lattice with lattice spacing ac which is held fixed on some physical scale [209,
211]. At fixed acΛIR, where ΛIR designates some non-perturbative infrared scale, the
continuum limit af → 0 is investigated when n→∞.

In the technical implementation of the RG procedure, the blocked and unrooted
staggered Dirac operator Dstag,n is split into the taste invariant part Dinv,n = Dn⊗14

with exact taste symmetry of four degenerate fermions and the taste breaking part ∆n

after each blocking step,

Dstag,n = Dinv,n + ∆n, Dn =
1
4

Tr (Dstag,n) , (4.5)

where Tr denotes the trace in taste space. The trace of ∆n vanishes in taste space, and
14 designates the taste identity matrix. The local taste invariant theory represented
by Dn ⊗ 14 has four degenerate fermions in taste space and the fourth root of the
fermion determinant is trivially given by

Det1/4(Dn ⊗ 14) = Det(Dn) . (4.6)

After taking the fourth root of Dstag,n, an estimate is needed to show the convergence
of Det1/4(Dstag,n) to the local single taste determinant Det(Dn) in the n → ∞ limit.
As shown in Eq. (4.9), the convergence of this expansion is controlled by ‖D−1

inv,n∆n‖.
We need to estimate ‖ac∆n‖ and ‖(acDinv,n)−1‖ separately on the scale of the coarse
lattice.

Following [209] we can safely assume the bound ‖ac∆n‖ <∼ af/ac to hold on
the coarse lattice and scaling with af . This is a basic feature of unrooted fermions
simply stating that taste-breaking disappears in the continuum limit. By exploiting
the proximity of the local re-weighted theory defined with Dinv,n after a large number
n of blocking steps, it was argued that the bound ‖ac∆n‖ <∼ af/ac and its scaling
with af/ac is also valid in rooted theories [209]. We will adapt this argument. The
estimate for the upper bound on the inverse of the taste invariant operator is given by
‖(acDinv,n)−1‖ ≤ 1/(acmR(ac)) with the renormalized fermion mass set at the physical
scale ac. The important combined estimate follows with

‖D−1
inv,n∆n‖ ≤ af/(a2

cmR(ac)) (4.7)
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and the small expansion parameter

εn = ‖ac∆n‖ · ‖(acDinv,n)−1‖ ≤ af/(a2
cmR(ac)) =

1
2n+1acmR(ac)

(4.8)

where in the first step the lattice spacing is doubled by the change from staggered
fermion basis to Dirac basis followed by n blocking steps in the Dirac basis. This small
expansion parameter implies the convergence of the rooted staggered theory to a local
action of a single taste in the n→∞ limit,

Det1/4 (Dn ⊗ 14 + ∆n) = Det(Dn) exp
[

1
4

Tr log
(
14 +D−1

inv,n∆n

)]
= Det(Dn)

(
1 +O

(
af

a2
cmR(ac)

))
. (4.9)

It is important to note that in estimating a lower bound on the norm of (acDinv,n)−1

the finite renormalized fermion mass mR(ac) provides the infrared cutoff of the Dirac
spectrum when the volume is infinite. Since renormalization is multiplicative in the
staggered formulation, it is implemented on the physical scale ac requiring the adjust-
ment of the bare mass in the n→∞ limit which is equivalent to the af → 0 continuum
limit. The choice mR(ac) is arbitrary once a physical scale ac is set in the theory. This
is expected because the RG invariant fermion mass related to mR(ac) is arbitrary but
as long as it is kept finite in the estimate of the expansion in Eq. (4.9) the convergence
of the rooted theory to the local single taste action is assured.

This line of reasoning, based on [209, 211], explains why the sextet model of the
rooted fermion doublet with finite renormalized mass is expected to be in the correct
universality class when the continuum limit is taken. In our simulations of the volume
dependent renormalized coupling g2

R the renormalized fermion mass mR(ac) is set to
zero on any physical scale ac since the bare mass m itself is set to zero and the mass
renormalization is multiplicative from the chiral symmetry of the staggered formula-
tion. Since the estimate of the expansion for the convergence of the rooted determinant
to the local single taste determinant as given in Eq. (4.9) is not applicable in the work
presented here, the rooting procedure at mR(ac) = 0 requires separate discussion.

4.5.4 Rooting in finite physical volume at zero bare mass

It is important to precisely define our rooting procedure where the required limit
suggested by Eq. (4.9) is not followed. In all of the simulations reported here the bare
fermion mass is set to zero at finite lattice spacing a. This also sets the renormalized
mass to zero on any choice of physical scale ac on the coarse lattice. Although the
estimate on the bound and its scaling with the RG steps in Eq. (4.8) is lost, there
is no problem with the rooting procedure since anti-periodic boundary conditions are
imposed on the fermions in all four directions.

As we will now show, the choice of anti-periodic boundary conditions for the
fermions restores the validity of the rooting procedure. The simulations always target
some chosen values of the scale-dependent renormalized coupling. Each choice selects
the corresponding linear size L of the physical volume in the continuum. The renor-
malized coupling g2

R(ac) in the finite volume L also depends on the ratio ac/L from a
1-parameter family of schemes. As the number of RG steps keeps increasing toward the
continuum limit, the coupling on the scale af (bare coupling on the cutoff scale) has
to be adjusted while g2

R(ac) is held fixed, and similarly the lattice size measured in af
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units is adjusted to keep the physical size L fixed together with ac/L. The scheme we
introduced in section 4.5.1 defines a different but related finite volume scheme without
affecting the reasoning. The former is built on the RG procedure and the other is
defined on the gradient flow.

In the finite volume scheme a finite gap λgap(ac) is created in the Dirac spectrum
which depends on g2

R(ac). Weak couplings correspond to small physical scales and the
gap is approximately determined by the minimum momentum π/L in each direction
with O(g2

R(ac)) corrections. As the renormalized coupling become stronger with in-
creasing volume and the interacting energy levels increasingly repel, they settle into a
gradually decreasing but finite gap λgap(ac) set by the physical scale of the volume.
The estimate for the bound on the taste breaking operator remains unchanged with
‖ac∆n‖ <∼ af/ac. The new estimate for the upper bound on the inverse of the taste
invariant operator is given by ‖(acDinv,n)−1‖ ≤ 1/(acλgap(ac)) with the gap of the
spectrum set at the physical scale ac. The important combined estimate follows with
‖D−1

inv,n∆n‖ ≤ af/(a2
cλgap(ac)) and the small expansion parameter is changed to

εn = ‖ac∆n‖ · ‖(acDinv,n)−1‖ ≤ af/(a2
cλgap(ac)) =

1
2n+1acλgap(ac)

. (4.10)

The finite gap in the Dirac spectrum implies the convergence of the rooted staggered
theory to a local action of a single taste in the n→∞ limit,

Det1/4 (Dn ⊗ 14 + ∆n) = Det(Dn) exp
[

1
4

Tr log
(
14 +D−1

inv,n∆n

)]
= Det(Dn)

(
1 +O

(
af

a2
cλgap(ac)

))
. (4.11)

The conclusion from this simple analysis is that in the calculation of the volume
dependent running coupling with a rooted and massless fermion doublet the role of
the renormalized mass mR(ac) on the physical scale is replaced by the λgap(ac) gap
of the Dirac operator in the finite physical volume set by the targeted renormalized
coupling g2

R(ac) for fixed ac/L. It is easy to see how this works at weak coupling and
is sustained with growing volume if the gap does not collapse to zero at some critical
volume size. At any targeted value of g2

R(L) while holding the physical size L fixed,
the eigenvalues of the infrared Dirac spectrum will collapse into degenerate quartets
in the af → 0 limit, consistent with the locality of the rooted action in the continuum
limit.

We know, however, that although the simulations become increasingly difficult
with increasing volume, the ensemble-averaged gap cannot disappear in finite physical
volumes not even after some rapid crossover into the phase which either has chiral
symmetry breaking or is instead conformal. With chiral symmetry breaking, the low
end of the spectrum is expected to scale as λ ∼ 1/V which protects the gap. In the
conformal theory the spectral density is expected to scale as ρ(λ) ∼ λα with some
critical exponent α and λ ∼ (1/L)4/(1+α) for the low infrared part of the spectrum
which also protects the gap from complete collapse. The finite gap cannot disappear
in finite physical volumes even if the rooted model is conformal. In the conformal case
the beta function is expected to turn zero at some critical coupling g2

crit which can
only be reached asymptotically at infinite volume. Our method with rooted staggered
fermions can clearly distinguish a conformal model from one with chiral symmetry
breaking.
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The simulations, as reported here, reach a limited range in the renormalized cou-
pling without any sign of the β function turning zero. Beyond our reach, the results
do not rule out conformality in large volumes, although they remain consistent with
chiral symmetry breaking. Although it is tempting to pursue further simulations in
large volumes at vanishing fermion mass, it is not practical at very small values of the
gap in the Dirac spectrum.

4.5.5 The bridge to large volume physics and simulations at
finite cutoff af

Studying small fermion mass deformations in large volumes at finite cutoff af can
clearly differentiate between phases with chiral symmetry breaking, or conformality.
Taste breaking at finite af is described by operators in the Symanzik effective theory
(SET) as calculated in [177, 179]. As pointed out in [211], when the goal is to match
the rooted theory to the Symanzik effective theory the acmR(ac) term can be dropped
from the denominator in Eq. (4.7) since matching to the taste breaking operators is
done at some finite momentum p� ΛIR which serves in the matching loop diagrams
as an IR cutoff.

The bound in Eq. (4.7) is much weaker than needed in the derivation of the SET,
and it implies for infinite volume that the chiral m → 0 limit can only be taken
after the continuum (af → 0) limit. In Eq. (4.7) the role of mR(ac) was to establish
the existence of the correct continuum limit of the full rooted theory on any scale
including the far infrared when the volume is infinite [209]. It follows from [211] that
the Symanzik effective theory is well-defined in the chiral limit, together with the
chiral effective theory that can be derived from the SET. The requirement that the
zero mass limit for staggered fermions should be taken only after the continuum limit
is then reproduced by calculations within staggered ChPT [205] for certain operators.

To bridge the current work with inherently non-perturbative large volume analysis
we follow the procedure just outlined with mass deformed analysis at finite cutoff.
What we observe is consistent with chiral symmetry breaking of the non-perturbative
phase in large volumes. To build the bridge to the results presented here we are
interested in a scale-dependent and volume independent renormalized coupling in the
symmetry breaking phase matching the scale dependent coupling g2

R(ac) presented
here. This would leave no room for the β function turning zero on any scale. This
strategy is outlined in more detail in [96] with results of a preliminary implementation.

4.5.6 Numerical simulation

The details of the simulations are similar to [155, 160]. In particular we use the stag-
gered fermion action with 4 steps of stout improvement [182] and stout parameter
% = 0.12. The bare fermion mass is set to zero, anti-periodic boundary conditions in
all four directions are imposed on the fermions and the gauge field is periodic. The
gauge action is the tree-level improved Symanzik action [212, 213]. For integration
along the gradient flow we use both the Wilson plaquette and the tree-level improved
Symanzik discretizations. The observable E(t) is discretized as in [154]. Hence, in the
terminology of [214], we consider the discretizations WSC and SSC for Wilson-flow
and tree-level improved Symanzik-flow, respectively.

As detailed in section 4.5.2 a gap in the Dirac spectrum is needed for the validity
of rooting hence the available physical volume is limited. This translates into the
limitation that the renormalized coupling cannot be explored above a certain value
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Figure 4.6: Monte-Carlo history of the lowest Dirac eigenvalue, measurements were
done for every 10th trajectory. The total number of trajectories are between 8000 and
20000.

with a given set of lattice volumes. This limitation is however not unique to our
running coupling scheme and not even unique to staggered fermions. All running
coupling studies that are directly at the massless limit (by either setting the mass to
zero using staggered or chiral fermions, or tuning κ to the massless point κc using
Wilson fermions) will be limited to a certain renormalized coupling range with a given
set of lattice volumes. This is because on a given set of lattice volumes a quite large
renormalized coupling can only be achieved by increasing the bare gauge coupling
which in turn will produce small Dirac eigenvalues which in turn will cause the (R)HMC
algorithm to break down because the condition number of the Dirac operator might
be very large on some configurations.

We will see that in our scheme we are able to explore the range 0 < g2
R < 6.5 which

is however quite large and includes the location of the 3-loop and 4-loop fixed point
in the MS scheme [215,216].

There is also a practical issue related to the rooting procedure. Rooting is imple-
mented by the RHMC algorithm which relies on the Remez algorithm. The latter is
used for the computation of the coefficients in the partial fraction expansion of the
fourth root. A necessary input for the Remez algorithm is an upper and lower bound
on the spectrum of the Dirac operator squared D†D. For m > 0 a strict lower bound
with staggered fermions is m2. However we set m = 0 and use the anti-periodic bound-
ary conditions to produce a gap in the spectrum and no strict lower bound is available
in this case. Hence we first need to measure the lowest and highest Dirac eigenvalues
in all runs and then set the lower and upper bounds accordingly for the subsequent
production runs. We found that this procedure is robust and a carefully chosen lower
and upper bound on the spectrum is not violated in the production runs. Histories
of the lowest eigenvalue for various parameters are shown for illustration in figure 4.6.
As expected, increasing β leads to a larger lowest eigenvalue and similarly decreasing
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L/a β 3.2 3.4 3.6 4.0 5.0 7.0 11.0
8 6.90(1) 5.92(1) 5.011(8) 3.58(1) 1.982(5) 1.058(3) 0.547(1)
12 7.19(2) 6.33(1) 5.44(2) 4.02(1) 2.289(5) 1.220(4) 0.632(2)
16 7.34(2) 6.47(2) 5.66(2) 4.19(2) 2.410(9) 1.281(3) 0.666(3)
18 7.41(3) 6.57(2) 5.72(4) 4.31(1) 2.46(1) 1.311(4) 0.682(2)
20 6.65(3) 5.82(2) 4.34(1) 2.49(1) 1.337(5) 0.688(1)
24 7.69(4) 6.73(3) 5.906(9) 4.45(2) 2.56(1) 1.373(8) 0.702(3)
30 6.86(5) 6.07(7) 4.59(4) 2.66(2) 1.379(6) 0.713(4)
36 7.08(4) 6.24(3) 4.65(4) 2.64(3) 1.40(2) 0.714(7)

Table 4.1: Measured renormalized coupling values in the SSC setup for c = 7/20.

L/a β 3.2 3.4 3.6 4.0 5.0 7.0 11.0
8 9.27(1) 7.76(1) 6.410(9) 4.43(1) 2.380(5) 1.247(3) 0.638(1)
12 8.38(2) 7.29(1) 6.21(2) 4.51(1) 2.520(6) 1.328(4) 0.684(2)
16 8.05(2) 7.04(2) 6.12(2) 4.49(2) 2.554(9) 1.349(3) 0.698(3)
18 7.97(3) 7.03(2) 6.09(4) 4.55(1) 2.58(1) 1.366(4) 0.708(2)
20 7.04(3) 6.13(2) 4.54(1) 2.59(1) 1.383(5) 0.709(1)
24 8.02(4) 7.01(3) 6.131(9) 4.60(2) 2.63(1) 1.406(8) 0.717(3)
30 7.04(5) 6.22(7) 4.70(4) 2.70(2) 1.401(6) 0.723(4)
36 7.22(4) 6.35(3) 4.72(4) 2.67(3) 1.41(2) 0.721(7)

Table 4.2: Measured renormalized coupling values in the WSC setup for c = 7/20.

the lattice volume also leads to larger lowest eigenvalues.
In a lattice setting a convenient and practical method of calculating the running

coupling or its β-function is via step scaling [138,217]. In this context the finite volume
L is increased by a factor s and the change of the coupling, (g2(sL)− g2(L))/ log(s2),
is defined as the discrete β-function. Note that in this convention asymptotic freedom
corresponds to a positive discrete β-function for small values of the renormalized cou-
pling. If the ordinary infinitesimal β-function of the theory possesses a fixed point,
the discrete β-function will have a zero as well. Note that as s → 1 the discrete
β-function turns into the infinitesimal variant. On the lattice the linear size L is eas-
ily increased to sL by simply increasing the volume in lattice units, L/a → sL/a at
fixed bare gauge coupling. In the current work we set s = 3/2 and use volume pairs
84 → 124, 124 → 184, 164 → 244, 204 → 304 and 244 → 364. The continuum limit
corresponds to L/a → ∞. Hence our data set has 5 pairs of lattice volumes over a
range of lattice spacings to cover a desired range of renormalized couplings.

The collected number of thermalized unit length trajectories at each bare coupling
and volume was between 2000 and 20000 depending on the parameters and every 10th

was used for measurements. The acceptance rates were between 65% and 95%. The
measured renormalized coupling values are listed in tables 4.1 and 4.2 and the resulting
discrete β-functions are shown in figure 4.7 for the two discretizations we considered,
SSC and WSC.

Clearly, at finite lattice spacing, or equivalently at finite lattice volume, the qualita-
tive features of the two discretizations are quite different. While the discrete β-function
is positive for the SSC setup it turns negative for the four roughest lattice spacings,
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Figure 4.7: Measured discrete β-function in the SSC (top) and WSC (bottom) dis-
cretizations; the data correspond to five sets of matched lattice volumes L→ sL with
s = 3/2.
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i.e. 84 → 124, 124 → 184, 164 → 244 and 204 → 304 for the WSC setup. On the finest
lattice spacings, corresponding to 244 → 364, it does stay positive even in the WSC
case, however. It is important to point out that the observed zeros of the discrete
β-functions of the WSC setup for the roughest four lattice spacings are however such
that as the lattice spacing decreases, the location of the zero increases.

Let us emphasize that the behavior of the discrete β-function at finite lattice vol-
ume, whether it crosses zero or not, is entirely irrelevant as far as the continuum model
is concerned. The measured data at finite lattice volume need to be continuum ex-
trapolated and zeros of the discrete β-function may or may not survive the continuum
limit. It will turn out in the next section that in fact the zeros of the WSC setup
do disappear in the continuum limit while there aren’t any zeros to begin with in the
SSC setup, and the continuum results for the WSC and SSC setups agree, as they
should, and show no sign of a fixed point in the explored coupling range.

4.5.7 Continuum extrapolation

The simplest way to perform the continuum extrapolation of our data is to interpolate
the renormalized coupling, g2(β), as a function of the bare coupling β at each lattice
volume. We choose the interpolating functions as

β

6
− 1
g2(β)

=
n∑

m=0

cm

(
6
β

)m
, (4.12)

similarly to [218]. The order of the above polynomial is allowed to be n = 3, 4 or 5 for
the volumes L/a = 8, 12, 16, 18, 24 and n = 3 or 4 for the volumes L/a = 20, 30, 36.
The corresponding degrees of freedom of the fits are 1, 2 or 3 for the first set and 1 or
2 for the second set.

Once the parametrized curves g2(β) are obtained for all volumes the discrete β-
function (g2(sL)− g2(L))/ log(s2) can be computed for arbitrary g2(L) for fixed L/a
and s = 3/2. Then assuming that corrections are linear in a2/L2 the continuum
extrapolation can be performed for each g2(L).

In [214, 219] we calculated the tree-level improvement of our observables in order
to have smaller slopes in the continuum extrapolations. For the SU(3) fundamental
model with Nf = 4 tree-level improvement did indeed decrease the slopes over the
full considered coupling range, however with Nf = 8 we observed in [160] that tree-
level improvement only decreased the slopes for small couplings but in fact increased
it for larger couplings. In the current work we observe the same. More precisely
for approximately g2(L) < 3.0 tree-level improvement decreased the absolute value
of the slope of the continuum extrapolation but for g2(L) > 3.0 it increased it. The
reason most probably is the same as for Nf = 8, namely that the large fermion
content enhances the fermion loops which are completely absent from the tree-level
calculation and these fermion loops are bound to increase with increasing coupling.
For this reason we do not include tree-level improvement in the current work because
the phenomenologically interesting region is in the larger coupling range, g2(L) ∼ 6.

At small values of the renormalized coupling the continuum discrete β-function can
be reliably calculated in continuum perturbation theory. For the SU(3) sextet model
with Nf = 2 we have,

g2(sL)− g2(L)
log(s2)

= b1
g4(L)
16π2

+
(
b21 log(s2) + b2

) g6(L)
(16π2)2

+ . . . (4.13)
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where b1 = 13/3 and b2 = −194/3. Due to the small volume gauge dynamics men-
tioned in section 4.5.1 only the first coefficient is the same in our finite volume scheme
as above, but nevertheless for comparison we show both the 1-loop and 2-loop ex-
pressions. The numerical results, after continuum extrapolation, should agree with
the perturbative result for small renormalized coupling and this test is an important
cross-check of our procedures.

Following the above procedure with a fixed polynomial order for each volume for
the interpolations one obtains a continuum result for both the SSC and WSC setups.
The interpolations (4.12) are linear in the free parameters hence the statistical errors
are easy to propagate to the final result. Of course one needs to make sure that the
continuum extrapolations are acceptable from a statistical point of view, for example
the χ2/dof values are not very large, and one needs to test whether all 5, or perhaps
only 4, or perhaps only 3 lattice spacings are in fact in the scaling region. The more
lattice spacings that are useable in the continuum extrapolation, the more reliable the
result is.

4.5.8 Systematic error estimate

Apart from the statistical errors we would like to estimate the systematic errors too
as precisely as possible. The only source of systematic error is the continuum extrapo-
lation. However two distinct types of systematic errors are present in our procedures.
One, various polynomial orders can be used for the interpolation (4.12) for each lattice
volume and two, one may perform the continuum extrapolation using 5 or 4 lattice
spacings (assuming of course that all 5 lattice spacings are actually in the scaling re-
gion), i.e. dropping the roughest lattice spacing. As we discussed in section 4.5.6 the
rooting trick of the staggered formulation itself does not introduce unwanted system-
atic effects.

We will apply the histogram method [7] in order to estimate the systematic uncer-
tainties. The polynomial order n for the interpolation (4.12) is allowed to be n = 3, 4, 5
for L/a = 8, 12, 16, 18, 24 and n = 3, 4 for L/a = 20, 30, 36. All together this leads
to 35 · 23 = 1944 interpolations and correspondingly to 1944 continuum results for
a given discretization. Following [176] a Kolmogorov-Smirnov test is applied to the
1944 interpolations and only those are deemed acceptable to which the Kolmogorov-
Smirnov test assigns at least a 30% probability. This requirement results in 240 and
306 acceptable interpolations for the SSC and WSC cases, respectively. These all
correspond to continuum extrapolations using 5 lattice spacings.

In order to include the systematic effect coming from performing continuum ex-
trapolations using 4 lattice spacings only, i.e. dropping the roughest, 84 → 124, we
include such extrapolations too. Using the volumes L/a = 12, 16, 18, 20, 24, 30, 36 only
with the polynomial orders as above, we have a total number of 34 · 23 = 648 interpo-
lations. Out of these the Kolmogorov-Smirnov test allows 240 and 249 for the SSC
and WSC cases, respectively1.

Summarizing the above, we have 240 + 240 = 480 continuum results for the SSC
case and 306 + 249 = 555 continuum results for the WSC case. In both cases these
are binned into a weighted histogram where the weights are given by the Akaike In-
formation Criterion (AIC). We take 68% of the full distribution around the average to
estimate the systematic error. Further details are given in [160] where it is explained

1The fact that the number of allowed interpolations is the same, 240, for the SSC case for both
the 5-point extrapolation and the 4-point extrapolations is purely accidental.
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Figure 4.8: Right: the weighted histograms of all possible continuum extrapolations
used for estimating the systematic uncertainty for the SSC setup. Left: a representa-
tive example of the continuum extrapolations for g2(L) = 1.0, 2.0, 3.0. For comparison
we also show a representative example continuum extrapolation in the WSC setup.
In each case the χ2/dof of the fit is shown in the legend. If both 5-point and 4-point
continuum extrapolations can be found around the peak of the histogram, then we
show examples from both, otherwise only a 4-point extrapolation. See text for more
details.
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Figure 4.9: Right: the weighted histograms of all possible continuum extrapolations
used for estimating the systematic uncertainty for the SSC setup. Left: a representa-
tive example of the continuum extrapolations for g2(L) = 4.0, 5.0, 6.0. For comparison
we also show a representative example continuum extrapolation in the WSC setup.
In each case the χ2/dof of the fit is shown in the legend. If both 5-point and 4-point
continuum extrapolations can be found around the peak of the histogram, then we
show examples from both, otherwise only a 4-point extrapolation. See text for more
details.
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how to perform the Kolmogorov-Smirnov test in a running coupling setup and also for
the precise definition of the AIC weights.

4.5.9 Final results

In the final continuum result the statistical and systematic errors are added in quadra-
ture. Examples of the weighted histograms for g2(L) = 1.0, . . . , 6.0 in the SSC setup
are shown in the right panels of figures 4.8 and 4.9. For the same renormalized cou-
pling values we show in the left panels some representative examples of continuum
extrapolations for both the SSC and WSC setups and indicate the χ2/dof values of
the fits in the legend. If all 5 lattice spacings are in the scaling region we include an
example with 5 lattice spacings and also one with 4 lattice spacings. From these plots
the following can be inferred.

For approximately g2(L) < 2.5 all 5 lattice spacings are in the scaling region and
the 4-point and 5-point continuum extrapolations agree for the WSC setup, while the
same is true for the SSC setup for g2(L) < 5.5, i.e. on a much larger range. Hence
for g2(L) > 2.5 only the 4-point continuum extrapolations contribute for the WSC
setup, as the 5-point extrapolations are completely suppressed by the AIC weights
due to the large χ2. On the other hand for the SSC setup over almost the entire
range of renormalized couplings all 5 lattice spacings are in the scaling regime and the
4-point and 5-point extrapolations agree. For this reason in the final result we only
use the SSC data. However the listed examples in figures 4.8 and 4.9 show that the
final continuum result using the WSC data actually agrees within errors with the one
obtained using the SSC data. This agreement between two different discretizations
is a reassuring consistency check of our procedures, especially because we have seen
in the WSC case in figure 4.7 that at the smaller lattice volumes the β-functions did
cross zero. A remnant of the small lattice volume β-functions crossing zero is that
for approximately g2(L) > 5.0 some of the β-function values that are used in the
extrapolation are negative. But it is clear from figure 4.9 that the continuum value is
positive for both g2(L) = 5.0 and 6.0 and in fact over the entire range. The zeros of
the small volume β-functions hence did not survive the continuum limit and the WSC
and SSC final results agree within errors.

It is worth emphasizing again: in a given discretization the finite (perhaps small)
volume discrete β-functions can perfectly well cross zero while in another discretization
the same thing may not happen. This in itself however is in no way indicative of the
behavior in the continuum as these small volume zeros may disappear in the continuum.
The present model, SU(3) gauge theory with Nf = 2 flavors of sextet massless fermions
using the WSC and SSC discretizations serves as an example.

Another cautionary note is in order regarding small volumes. It is clear from
figures 4.8 and 4.9 that for approximately g2(L) < 5.5 using only the 3 roughest lattice
spacings, 84 → 124, 124 → 184 and 164 → 244 would in fact give a continuum result
compatible with the one including all 5 lattice spacings in the SSC setup. Only at
around g2(L) ∼ 6.0 the 3 roughest lattice spacings alone are not usable in a continuum
extrapolation. The same, however, is not the case for the WSC discretization. Already
for approximately g2(L) > 2.5 the 3-point continuum extrapolations using only 84 →
124, 124 → 184 and 164 → 244 would result in very high χ2/dof values. If one were to
use 84 → 124 and 124 → 184 only as an estimate, this would lead to a continuum result
which is much lower than the reliable 4-point or 5-point continuum extrapolations.
Hence the larger volumes L/a > 24 are essential, without these one may obtain a
much smaller β-function which actually would be totally unreliable. This is all the
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Figure 4.10: Continuum extrapolated discrete β-function for s = 3/2 and c = 7/20
using the SSC setup.

more important in the phenomenologically important larger coupling region g2(L) ∼ 6.
Preliminary results were reported by Anna Hasenfratz and collaborators on the

sextet model favoring an infrared fixed point in the continuum. The scheme used
is the same as ours except that the fermions were anti-periodic in one direction only.
The lattice discretization was different, Wilson fermions were used, however the largest
lattice volumes used in the step function were 164 → 244. We speculate the reported
fixed point was a lattice artefact due to the large cut-off effects inherent in using
small lattice volumes. This scenario would be analogous to some extent with our
WSC setup and using only our roughest 3 lattice spacings. Similarly, the inconclusive
findings in [149, 150] we speculate are also the result of using small lattice volumes
without reaching the scaling regime.

If one were to work with a fixed discretization one of course would not know a
priori how large volumes are needed for a reliable continuum extrapolation. That is
why it is extremely important to consider several discretizations, check that the lattice
spacings are in fact in the scaling region, estimate the systematic uncertainty coming
from the continuum extrapolation reliably, and only trust results in the continuum
if they agree for the considered discretizations. In our work we have performed this
analysis in a fully controlled fashion.

We show the final continuum result in figure 4.10. Clearly the β-function stays
positive over the entire range and is monotonically increasing, and agreement is found
for g2(L) < 2.5 between our result and the 2-loop perturbative result within 1.3σ.
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Chapter 5

Many fundamental flavors

The lattice investigations of strong dynamics beyond the Standard Model initially
started with fermions in the fundamental representation. The reason was of course
simply that the fundamental representation is familiar from QCD. The SU(3) gauge
group is the most studied example again because of QCD. Asymptotic freedom for
SU(3) and the fundamental representation is lost at Nf = 16.5 and perturbative
estimates for the lower end of the conformal window are around N∗f ∼ 10− 12, hence
the focus quickly became to study many massless flavor models.

It should be noted that the phenomenological relevance of the fundamental repre-
sentation with gauge group SU(3) is questionable. There are two main reasons. First,
electro-weak precision measurements put stringent bounds on the S-parameter, in par-
ticular it can not be too large. Since the model needs to be close to the lower end of
the conformal window the expectation is that flavor numbers Nf ∼ 8 − 12 would be
required. A perturbative calculation of the S-parameter results in it being proportional
to Nf hence a many flavor model would automatically lead to a large S-parameter.
There are however ways around this line of reasoning, namely non-perturbative effects
may decrease the S-parameter close to the conformal window, but also one may en-
vision only coupling some of the flavors to the electro-weak SU(2). The second issue
is that with many flavors chiral symmetry breaking leads to many massless Goldstone
bosons, N2

f − 1. This large number of new massless particles needs to be accounted
for. They may be promoted to dark matter particles for instance but it is far from
clear that they can be made consistent with all electro-weak precision measurement
results.

Both issues raised above are open problems for the phenomenology of the funda-
mental SU(3) models. In any case as far as lattice investigations are concerned the
fundamental model serves as a good testing ground. The models themselves are well-
defined quantum field theories and so the non-perturbative results are interesting on
their own right. The simulations are over more control than the virtually uncharted
territory of higher dimensional representations simply because a vast literature exists
for QCD.

We have also investigated the fundamental model motivated by the above obser-
vation and certainly much less by the phenomenological relevance of these models.
The first task is to determine N∗f by studying the model at various flavor numbers
Nf and determining whether at that particular Nf chiral symmetry breaking takes
place or not. Preferrably a variety of methods are employed and consistency in their
conclusions is sought.

61

dc_1357_16

Powered by TCPDF (www.tcpdf.org)



5.1 Chiral symmetry breaking below the conformal
window

We will identify in lattice simulations the chirally broken phases with Nf = 4, 8, 9
flavors of staggered fermions in the fundamental SU(3) color representation using finite
volume analysis. The staggered fermions are deployed with a special 6-step exponential
(stout) smearing procedure [182] in the lattice action to reduce well-known cutoff
effects with taste breaking in the Goldstone spectrum. The presence of taste breaking
requires a brief explanation of how staggered chiral perturbation theory is applied in
our analysis. The important work of Lee, Sharpe, Aubin and Bernard [177, 178, 220]
is closely followed in the discussion.

5.1.1 Staggered chiral perturbation theory

Starting with the Nf = 4 example [177], the spontaneous breakdown of SU(4)L ×
SU(4)R to vector SU(4) gives rise to 15 Goldstone modes, described by fields φi.
These can be organized into an SU(4) matrix

Σ(x) = exp
(
i
φ√
2F

)
, φ =

15∑
a=1

φaTa , (5.1)

where F is the Goldstone decay constant in the chiral limit and the normalization
Ta = {ξµ, iξµ5, iξµν , ξ5} is used for the flavor generators. The leading order chiral
Lagrangian is given by

L(4)
χ =

F 2

4
Tr(∂µΣ∂µΣ†)− 1

2
Bmq F

2Tr(Σ + Σ†) , (5.2)

with the fundamental parameters F and B measured on the technicolor scale ΛTC

which replaced ΛQCD in the new theory. Expanding the chiral Lagrangian in powers
of φ one finds 15 degenerate pions with masses given by

M2
π = 2Bmq [1 +O(mq/ΛTC)] . (5.3)

The leading order term is the tree-level result, while the corrections come from loop
diagrams and from higher order terms in the chiral Lagrangian.

The addition of a2L(6)
χ breaks chiral symmetry and lifts the degeneracy of the

Goldstone pions. Correction terms are added to Eq. (5.3) which becomes

M2
π = C(Ta) · a2Λ4

TC + 2Bmq

[
1 +O(mq/ΛTC) +O(a2Λ2

TC)
]

(5.4)

where the representation dependent C(Ta) is a constant of order unity. Contributions
proportional to a2 are due to L(6)

χ , and lead to massive Goldstone pions even in the
mq → 0 chiral limit. The only exception is the pion with flavor ξ5 which remains
massless because the U(1)A symmetry is protected.

Lee and Sharpe observe that the part of L(6)
χ without derivatives, defining the

potential V(6)
χ , is invariant under flavor SO(4) transformations and gives rise to the

a2 term in M2
π . Terms in L(6)

χ involving derivatives break SO(4) further down to the
lattice symmetry group and give rise to non-leading terms proportional to a2m and
a4.

The taste breaking potential is given by
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−V(6)
χ = C1Tr (ξ5Σξ5Σ†)

+C2
1
2
[
Tr (Σ2)− Tr (ξ5Σξ5Σ) + h.c.

]
+C3

1
2

∑
ν

[Tr (ξνΣξνΣ) + h.c.]

+C4
1
2

∑
ν

[Tr (ξν5Σξ5νΣ) + h.c.]

+C5
1
2

∑
ν

[
Tr (ξνΣξνΣ†)− Tr (ξν5Σξ5νΣ†)

]
+C6

∑
µ<ν

Tr (ξµνΣξνµΣ†) . (5.5)

The six unknown coefficients Ci are all of size Λ6
TC.

In the continuum, the pions form a 15-plet of flavor SU(4), and are degenerate.
On the lattice, states are classified by the symmetries of the transfer matrix and the
Goldstone pions fall into 7 irreducible representations: four 3-dimensional represen-
tations with flavors ξi, ξi5, ξij and ξi4, and three 1-dimensional representations with
flavors ξ4, ξ45 and ξ5.

Close to both the chiral and continuum limits, the pion masses are given by

Mπ(Ta)2 = 2Bmq + a2∆(Ta) +O(a2mq) +O(a4) , (5.6)

with ∆(Ta) ∼ Λ4
TC arising from V(6)

χ . Since V(6)
χ respects flavor SO(4), the 15 Gold-

stone pions fall into SO(4) representations:

∆(ξ5) = 0 , (5.7)

∆(ξµ) =
8
F 2

(C1 + C2 + C3 + 3C4 + C5 + 3C6) , (5.8)

∆(ξµ5) =
8
F 2

(C1 + C2 + 3C3 + C4 − C5 + 3C6) , (5.9)

∆(ξµν) =
8
F 2

(2C3 + 2C4 + 4C6) . (5.10)

In the chiral limit at finite lattice spacing the lattice irreducible representations
with flavors ξi and ξ4 are degenerate, those with flavors ξi5 and ξ45, and those with
flavors ξij and ξi4 are degenerate as well. No predictions can be made for the ordering
or splittings of the mass shifts. We also cannot predict the sign of the shifts, although
our simulations indicate that they are all positive with the exponentially smeared
staggered action we use. This makes the existence of an Aoki phase [177] unlikely.

The method of [177] has been generalized in a nontrivial way to the Nf > 4
case [178, 220] which we adopted in our calculations with help from Bernard and
Sharpe. The procedure cannot be reviewed here but it will be used in the interpretation
of our Nf = 8 simulations.

5.1.2 Finite volume analysis in the p-regime

Three different regimes can be selected in simulations to identify the chirally broken
phase from finite volume spectra and correlators. For a lattice size L3

s×Lt in euclidean
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Figure 5.1: The crossover from the p-regime to the δ-regime is shown for the π and
πi5 states at Nf = 4.

space and in the limit Lt � Ls, the conditions FπLs > 1 and MπLs > 1 select the the
p-regime, in analogy with low momentum counting [221,222].

For arbitrary Nf , in the continuum and in infinite volume, the one-loop chiral
corrections to Mπ and Fπ of the degenerate Goldstone pions are given by

M2
π = M2

[
1− M2

8π2NfF 2
ln

(
Λ3

M

)]
, (5.11)

Fπ = F

[
1 +

NfM
2

16π2F 2
ln

(
Λ4

M

)]
, (5.12)

where M2 = 2B ·mq and F,B,Λ3,Λ4 are four fundamental parameters of the chiral
Lagrangian, and the small quark mass mq explicitly breaks the symmetry [104]. The
chiral parameters F,B appear in the leading part of the Lagrangian in Eq. (5.2), while
Λ3,Λ4 enter in next order. There is the well-known GMOR relation Σcond = BF 2 in
the mq → 0 limit for the chiral condensate per unit flavor [223]. It is important to
note that the one-loop correction to the pion coupling constant Fπ is enhanced by a
factor N2

f compared to M2
π . The chiral expansion for large Nf will break down for Fπ

much faster for a given Mπ/Fπ ratio.
The finite volume corrections to Mπ and Fπ are given in the p-regime by

Mπ(Ls, η) = Mπ

[
1 +

1
2Nf

M2

16π2F 2
· g̃1(λ, η)

]
, (5.13)

Fπ(Ls, η) = Fπ

[
1− Nf

2
M2

16π2F 2
· g̃1(λ, η)

]
, (5.14)

where g̃1(λ, η) describes the finite volume corrections with λ = M · Ls and aspect
ratio η = Lt/Ls. The form of g̃1(λ, η) is a complicated infinite sum which contains
Bessel functions and requires numerical evaluation [222]. Eqs. (5.11-5.14) provide the
foundation of the p-regime fits in our simulations.

5.1.3 δ-regime and ε-regime

At fixed Ls and in cylindrical geometry Lt/Ls � 1, a crossover occurs from the p-
regime to the δ-regime when mq → 0. The dynamics is dominated by the rotator states
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of the chiral condensate in this limit [101] which is characterized by the conditions
FLs > 1 and MLs � 1. The densely spaced rotator spectrum scales with gaps of
the order ∼ 1/F 2L3

s, and at mq = 0 the chiral symmetry is apparently restored.
However, the rotator spectrum, even at mq = 0 in the finite volume, will signal that
the infinite system is in the chirally broken phase for the particular parameter set of the
Lagrangian. This is often misunderstood in the interpretation of lattice simulations.
Measuring finite energy levels with pion quantum numbers at fixed Ls in the mq → 0
limit is not a signal for chiral symmetry restoration of the infinite system [224].

If Lt ∼ Ls under the conditions FLs > 1 and MLs � 1, the system will be
driven into the ε-regime which can be viewed as the high temperature limit of the
δ-regime quantum rotator. Although the δ-regime and ε-regime have an overlapping
region, there is an important difference in their dynamics. In the δ-regime of the quan-
tum rotator, the zero spatial momentum of the pion field U(x) dominates with time-
dependent quantum dynamics. The ε-regime is dominated by the four-dimensional
zero momentum mode of the chiral Lagrangian.

We report simulation results of all three regimes in the chirally broken phase of the
technicolor models we investigate. The analysis of the three regimes complement each
other and provide cross-checks for the correct identification of the phases. First, we
will probe Eqs.(5.11-5.14) in the p-regime, and follow with the study of Dirac spectra
and RMT eigenvalue distributions in the ε-regime. The spectrum in the δ-regime is
used as a signal to monitor p-regime spectra as mq decreases. Fig. 5.1 is an illustrative
example for this crossover in our simulations.

5.2 Simulations results in the p-regime

The tree level improved Symanzik gauge action was used in our simulations. The
link variables in the staggered fermion matrix were exponentially smeared with six
stout steps at Nf = 4, 8 and four stout steps at Nf = 9. The RHMC algorithm was
deployed in all runs but rooting of the fermion determinant only affected the Nf = 9
simulations. The results shown in Fig. 5.2 are from the p-regime of the chirally broken
phase with the conditions Mπ · Ls � 1 and Fπ · L ∼ 1 when the chiral condensate
begins to follow the expected behavior of infinite volume chiral perturbation theory
from Eqs. (5.11,5.12) with calculable finite volume corrections from Eqs. (5.13,5.14).

The Nf = 4 simulations work in the p-regime as expected. The pion spectrum is
clearly separated from the technicolor scale of the ρ-meson whose quadratic fit is just
to guide the eye. Moving towards the continuum limit with increasing β = 6/g2, we see
the split pion spectrum collapsing onto the true Goldstone pion. The true Goldstone
pion and two additional split pion states are shown. ∆ is the measure of the small
quadratic pion mass splittings in lattice units. Their origin was discussed in Section 2
in Eqs. (5.7-5.10). The spectrum is parallel and the gaps appear to be equally spaced
consistent with the earlier observation in QCD where the C4 term seems to dominate
taste breaking accounting for the equally spaced pion levels [177]. The simultaneous
chiral fit of M2

π/mq and Fπ based on Eqs. (5.11-5.14) works when the chiral loop term
corrects the tree level value of M2

π/mq = 2B. This is a chirally broken phase and the
picture holds in the mq → 0 limit. The fit to determine the Nf = 4 chiral condensate
for mq = 0 is shown in the second row on the right. It sets the scale of electroweak
symmetry breaking in the Higgs mechanism.

As we move to the Nf = 8 p-regime simulations summarized in the third and forth
rows of Fig. 5.2 we observe the weakening of the chiral condensate and increased diffi-
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Figure 5.2: The first two rows of the composite figure show Nf = 4 simulation results in the p-
regime. The first row depicts the collapsing pion spectrum and the techni-rho as the continuum limit
is approached. The second row shows the chiral fits to M2

π/mq and Fπ based on Eqs. (5.11-5.14).
The third and fourth rows summarize the simulation results for Nf = 8. The third row shows the
collapsing pion spectrum and the techni-rho as the continuum limit is approached. The chiral fit
to M2

π/mq is shown based on Eq. (5.11). The fifth row illustrates our first simulation results for
Nf = 9. It shows the split pion spectrum, chiral fit to M2

π/mq and the Fπ data points are outside
the convergence range of the chiral expansion.

66

dc_1357_16

Powered by TCPDF (www.tcpdf.org)



culties in passing the chiral tests. The pion spectrum is still clearly separated from the
technicolor scale of the ρ-meson. Moving towards the continuum limit with increasing
β = 6/g2, we see the split pion spectrum collapsing toward the true Goldstone pion
with a new distinguished feature. The true Goldstone pion and two additional split
pion states are shown with different slopes as mq increases. Towards mq = 0 the pion
spectrum is collapsed at fixed gauge coupling, indicating that the effects of leading
order taste breaking operators, the generalization of those from Nf = 4 to Nf = 8
as discussed in Section 2, are smaller than at Nf = 4 in the explored coupling con-
stant range. This is somewhat unexpected and unexplained. Next to leading order
taste breaking operators are responsible for the spread of the slopes and they seem
to dominate. They were identified in Eq. (5.6) as the last two terms. It is reassur-
ing to see that this structure is collapsing as we move toward the continuum limit.
We analyzed this pattern within staggered perturbation theory in its generalized form
beyond four flavors [178, 220]. The simultaneous chiral fit of M2

π/mq and Fπ based
on Eqs. (5.11-5.14) cannot be done at Nf = 8 within the reach of the largest lattice
sizes we deploy since the value of aF is too small even at L=24 for coupling constants
where taste breaking drops to an acceptable level. The chiral fit to M2

π/mq is shown
based on Eq. (5.11) only since the Fπ data points are outside the convergence range
of the chiral expansion. We would need much bigger lattices to drop further down in
the p-regime with mq to the region where the simultaneous fit could be made. It is
also important to note that the chiral condensate is very small in the mq → 0 limit in
the region where taste breaking is not large. This is shown in row four of Fig. 5.2 on
the right side.

The Nf = 9 p-regime simulations are summarized in the fifth row of Fig. 5.2
where we observe the continued weakening of the chiral condensate and the increased
difficulties in passing the chiral tests. The pion spectrum is still clearly separated from
the technicolor scale of the ρ-meson. Moving towards the continuum limit to see the
split pion spectrum collapsing toward the true Goldstone pion is increasingly difficult.
The true Goldstone pion and two additional split pion states are shown again with
different slopes as mq increases. Forcing the collapse of the split pion spectrum will
require larger lattices with smaller gauge couplings. The trends and the underlying
explanation is very similar to the Nf = 8 case. The chiral fit to M2

π/mq is shown
based on Eq. (5.11) only since the Fπ data points are outside the convergence range
of the chiral expansion.

In summary, we have shown that according to p-regime tests the Nf = 4, 8, 9
systems are all in the chirally broken phase close to the continuum limit. Currently we
are investigating Nf = 9, 10, 11, 12 on larger lattices to determine the lower edge of the
conformal window. Lessons from the Dirac spectra and RMT to complement p-regime
tests are discussed in the next section including comments about the controversial
Nf = 12 case.

5.3 Epsilon regime, Dirac spectrum and RMT

If the bare parameters of a gauge theory are tuned to the ε-regime in the chirally
broken phase, the low-lying Dirac spectrum follows the predictions of random matrix
theory. The corresponding random matrix model is only sensitive to the pattern of
chiral symmetry breaking, the topological charge and the rescaled fermion mass once
the eigenvalues are also rescaled by the same factor ΣcondV . This idea has been
confirmed in various settings both in quenched and fully dynamical simulations. The
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Figure 5.3: From simulations at Nf = 4 the first row shows the approach to quartet
degeneracy of the spectrum as β increases. The second row shows the integrated dis-
tribution of the two lowest quartets averaged. The solid line compares this procedure
to RMT with Nf = 4.

same method is applied here to nearly conformal gauge models.
The connection between the eigenvalues λ of the Dirac operator and chiral sym-

metry breaking is given in the Banks-Casher relation [225],

Σcond = −〈Ψ̄Ψ〉 = lim
λ→0

lim
m→0

lim
V→∞

πρ(λ)
V

,

where Σcond designates the quark condensate normalized to a single flavor. To
generate a non-zero density ρ(0), the smallest eigenvalues must become densely packed
as the volume increases, with an eigenvalue spacing ∆λ ≈ 1/ρ(0) = π/(ΣcondV ).
This allows a crude estimate of the quark condensate Σcond. One can do better by
exploring the ε-regime: If chiral symmetry is spontaneously broken, tune the volume
and quark mass such that 1

Fπ
� L � 1

Mπ
, so that the pion is much lighter than the

physical value, and finite-volume effects are dominant as we discussed in Section 2.
The chiral Lagrangian of Eq. (5.2) is dominated by the zero-momentum mode from
the mass term and all kinetic terms are suppressed. In this limit, the distributions
of the lowest eigenvalues are identical to those of random matrix theory, a theory
of large matrices obeying certain symmetries [226–228]. To connect with RMT, the
eigenvalues and quark mass are rescaled as z = λΣcondV and µ = mqΣcondV , and
the eigenvalue distributions also depend on the topological charge ν and the number
of quark flavors Nf . RMT is a very useful tool to calculate analytically all of the
eigenvalue distributions. The eigenvalue distributions in various topological sectors
are measured via lattice simulations, and via comparison with RMT, the value of the
condensate Σcond can be extracted.

After we generate large thermalized ensembles, we calculate the lowest twenty
eigenvalues of the Dirac operator using the PRIMME package. In the continuum limit,
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Figure 5.4: The solid lines compare the integrated distribution of the two lowest quartet
averages to RMT predictions with Nf = 8.

the staggered eigenvalues form degenerate quartets, with restored taste symmetry. The
first row of Fig. 5.3 shows the change in the eigenvalue structure for Nf = 4 as the
coupling constant is varied. At β = 3.6 grouping into quartets is not seen, the pions
are noticeably split, and staggered perturbation theory is just beginning to kick in. At
β = 3.8 doublet pairing appears and at β = 4.0 the quartets are nearly degenerate.
The Dirac spectrum is collapsed as required by the Banks-Casher relation. In the
second row we show the integrated distributions of the two lowest eigenvalue quartet
averages, ∫ λ

0

pk(λ′)dλ′, k = 1, 2 (5.15)

which is only justified close to quartet degeneracy. All low eigenvalues are selected
with zero topology. To compare with RMT, we vary µ = mqΣcondV until we satisfy

〈λ1〉sim
m

=
〈z1〉RMT

µ
, (5.16)

where 〈λ1〉sim is the lowest quartet average from simulations and the RMT average
〈z〉RMT depends implicitly on µ and Nf . With this optimal value of µ, we can predict
the shapes of pk(λ) and their integrated distributions, and compare to the simulations.
The agreement with the two lowest integrated RMT eigenvalue shapes is excellent for
the larger β values.

The main qualitative features of the RMT spectrum are very similar in our Nf = 8
simulations as shown in Fig. 5.4. One marked quantitative difference is a noticeable
slowdown in response to change in the coupling constant. As β grows the recovery
of the quartet degeneracy is considerably delayed in comparison with the onset of p-
regime Goldstone dynamics. Overall, for the Nf = 4, 8 models we find consistency
between the p-regime analysis and the RMT tests. Earlier, using Asqtad fermions at
a particular β value, we found agreement with RMT even at Nf = 12 which indicated
a chirally broken phase [229]. Strong taste breaking with Asqtad fermion leaves the
quartet averaging in question and the bulk pronounced crossover of the Asqtad action
as β grows is also an issue. Currently we are investigating the RMT picture for
Nf = 9, 10, 11, 12 with our much improved action with four and six stout steps. This
action shows no artifact transitions and handles taste breaking much more effectively.
Firm conclusions on the Nf = 12 model will require continued investigations.
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5.4 Inside the conformal window

We start our investigation and simulations of the conformal window at Nf = 16
which is the most accessible for analytic methods. We are particularly interested in
the qualitative behavior of the finite volume spectrum of the model and the running
coupling with its associated beta function which is expected to have a weak coupling
fixed point around g∗2 ≈ 0.5, as estimated from the scheme independent two-loop beta
function [230].

5.4.1 Conformal dynamics in finite volume

A distinguished feature of the Nf = 16 conformal model is how the renormalized
coupling g2(L) runs with L, the linear size of the spatial volume in a Hamiltonian or
Transfer Matrix description. On very small scales the running coupling g2(L) grows
with L as in any other asymptotically free theory. However, g2(L) will not grow large,
and in the L → ∞ limit it will converge to the fixed point g∗2 which is rather weak,
within the reach of perturbation theory. There is nontrivial small volume dynamics
which is illustrated first in the pure gauge sector.

At small g2, without fermions, the zero momentum components of the gauge field
are known to dominate the dynamics [99,100,164]. With SU(3) gauge group, there are
twenty seven degenerate vacuum states, separated by energy barriers which are gen-
erated by the integrated effects of the non-zero momentum components of the gauge
field in the Born-Oppenheimer approximation. The lowest energy excitations of the
gauge field Hamiltonian scale as ∼ g2/3(L)/L evolving into glueball states and be-
coming independent of the volume as the coupling constant grows with L. Nontrivial
dynamics evolves through three stages as L grows. In the first regime, in very small
boxes, tunneling is suppressed between vacua which remain isolated. In the second
regime, for larger L, tunneling sets in and electric flux states will not be exponentially
suppressed. Both regimes represent small worlds with zero momentum spectra sepa-
rated from higher momentum modes of the theory with energies on the scale of 2π/L.
At large enough L the gauge dynamics overcomes the energy barrier, and wave func-
tions spread over the vacuum valley. This third regime is the crossover to confinement
where the electric fluxes collapse into thin string states wrapping around the box.

It is likely that a conformal theory with a weak coupling fixed point at Nf = 16 will
have only the first two regimes which are common with QCD. Now the calculations have
to include fermion loops [199,231]. The vacuum structure in small enough volumes, for
which the wave functional is sufficiently localized around the vacuum configuration,
remains calculable by adding in one loop order the quantum effects of the fermion field
fluctuations. The spatially constant abelian gauge fields parametrizing the vacuum
valley are given by Ai(x) = T aCai /L where Ta are the (N-1) generators for the Cartan
subalgebra of SU(N). For SU(3), T1 = λ3/2 and T2 = λ8/2. With Nf flavors of
massless fermion fields the effective potential of the constant mode is given by

V k
eff(Cb) =

∑
i>j

V (Cb[µ(i)
b − µ(j)

b ])−Nf
∑
i

V (Cbµ
(i)
b + πk), (5.17)

with k = 0 for periodic, or k = (1, 1, 1), for anti-periodic boundary conditions on the
fermion fields. The function V (C) is the one-loop effective potential for Nf = 0 and
the weight vectors µ(i) are determined by the eigenvalues of the abelian generators.
For SU(3) µ(1) = (1, 1,−2)/

√
12 and µ(2) = 1

2 (1,−1, 0). The correct quantum vacuum
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Figure 5.5: Polyakov loop distributions, blue in the time-like and red in the space-like
directions, from our Nf = 16 simulation with 164 volume at β = 18 with tree level
Symanzik improve gauge action and staggered fermions with six stout steps. The
fermion boundary condition is anti-periodic in the time direction and periodic in the
spatial directions.

is found at the minimum of this effective potential which is dramatically changed by
the fermion loop contributions.

The Polyakov loop observables remain center elements at the new vacuum config-
urations with complex values

Pj =
1
N

Tr
(
exp(iCbjTb)

)
=

1
N

∑
n

exp(iµ(n)
b Cbj ) = exp(2πilj/N), (5.18)

for SU(N). This implies that µ(n)
b Cb = 2πl/N (mod 2π), independent of n, and

V k
eff = −NfNV (2πl/N + πk). In the case of anti-periodic boundary conditions, k =

(1, 1, 1), this is minimal only when l = 0 (mod 2π). The quantum vacuum in this
case is the naive one, A = 0 (Pj = 1). In the case of periodic boundary conditions,
k = 0, the vacua have l 6= 0, so that Pj correspond to non-trivial center elements.
For SU(3), there are now 8 degenerate vacua characterized by eight different Polyakov
loops, Pj = exp(±2πi/3). Since they are related by coordinate reflections, in a small
volume parity (P) and charge conjugation (C) are spontaneously broken, although CP
is still a good symmetry [199]. As shown in Fig. 5.5, our simulations in the Nf = 16
model near the fixed point g∗2 confirm this picture. In the weak coupling phase of the
conformal window the time-like Polyakov loop takes the real root, while the space-like
Polyakov loops always take the two other complex values, as expected on the basis of
the above picture. Next we will describe our method to probe the running coupling
inside the conformal window. It is a pilot study for more comprehensive investigations
of weak and strong coupling conformal dynamics.

5.4.2 Running coupling and beta function

Consider Wilson loops W (R, T, L), where R and T are the space-like and time-like
extents of the loop, and the lattice volume is L4 (all dimensionful quantities are ex-
pressed in units of the lattice spacing a). A renormalized coupling can be defined
by
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g2(R/L,L) = − R2

k(R/L)
∂2

∂R∂T
ln〈W (R, T, L)〉 |T=R , (5.19)

where for convenience the definition will be restricted to Wilson loops with T = R,
and 〈...〉 is the expectation value of some quantity over the full path integral. This
definition can be motivated by perturbation theory, where the leading term is simply
the bare coupling g2

0 . The renormalization scheme is defined by holding R/L to some
fixed value. The quantity k(R/L) is a geometric factor which can be determined by
calculating the Wilson loop expectation values in lattice perturbation theory. The role
of lattice simulations will be to measure non-perturbatively the expectation values. On
the lattice, derivatives are replaced by finite differences, so the renormalized coupling
is defined to be

g2((R+ 1/2)/L,L) =
1

k(R/L)
(R+ 1/2)2χ(R+ 1/2, L) ,

χ(R+ 1/2, L) = − ln
[
W (R+ 1, T + 1, L)W (R, T, L)
W (R+ 1, T, L)W (R, T + 1, L)

]
|T=R ,

where χ is the Creutz ratio [232], and the renormalization scheme is defined by
holding the value of r = (R+ 1/2)/L fixed.

With this definition, the renormalized coupling g2 is a function of the lattice size L
and the fixed value of r. The coupling is non-perturbatively defined, as the expectation
values are calculated via lattice simulations, which integrate over the full phase space
of the theory. By measuring g2(r, L) non-perturbatively for fixed r and various L
values, the running of the renormalized coupling is mapped out. In a QCD-like theory,
g2 increases with increasing L as we flow in the infrared direction. In a conformal
theory, g2 flows towards some non-trivial infrared fixed point as L increases, whereas
in a trivial theory, g2 decreases with L. The advantage of this method is that no other
energy scale is required to find the renormalization group flow. The renormalized
coupling g2 is also a function of the bare coupling g2

0 , which is related to the lattice
spacing a. Keeping the lattice spacing fixed, the running of g2(r, L) is affected by the
lattice cut-off. The running has to be calculated in the continuum limit, extrapolating
to zero lattice spacing. A similar method was developed independently in [233].

One way to measure the running of the renormalized coupling in the continuum
limit is via step-scaling. The bare lattice coupling is defined in the usual way β = 6/g2

0

as it appears in the lattice action. Some initial value of g2 is picked from which the
renormalization group flow is started. On a sequence of lattice sizes L1, L2, ..., Ln, the
bare coupling is tuned on each lattice so that exactly the same value g2(r, Li, βi) is
measured from simulations. Now a new set of simulations is performed, on a sequence
of lattice sizes 2L1, 2L2, ..., 2Ln, using the corresponding tuned couplings β1, β2, ..., βn.
From the simulations, one measures g2(r, 2Li, βi), which will vary with the bare cou-
pling viz. the lattice spacing. These data can be extrapolated to the continuum as a
function of 1/Li. This gives one blocking step L → 2L in the continuum renormal-
ization group flow. The whole procedure is then iterated. The chain of measurements
gives the flow g2(r, L) → g2(r, 2L) → g2(r, 4L) → g2(r, 8L) → ..., as far as is feasi-
ble (Fig. 5.6). One is free to choose a different blocking factor, say L → (3/2)L, in
which case more blocking steps are required to cover the same energy range.

We applied the above procedure to the running coupling inside the conformal win-
dow with Nf = 16 flavors. The shortcut of this pilot study ignores the extrapolation
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Figure 3: The measured coupling g2(2L) for 2L = 20, 24, 28 and 32, where βi is tuned such that
g2(L) = 1.44. A linear continuum extrapolation gives g2(2L) = 1.636(23) (statistical error), with
χ2/dof = 0.57/2.
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Figure 8: The running coupling g2(L), combining analytic lattice perturbation theory and the
simulation results, as described in the text. The running starts at the point g2(L0) = 0.825. For
almost all couplings there is excellent agreement with continuum 2-loop running. At the strongest
coupling, the simulation results begin to break away from perturbation theory.

– 20 –

Figure 5.6: The method and the main test result for pure-gauge theory are shown in the
figure. In the upper figure the extrapolation procedure picks up the leading a2/L2 cutoff
correction term in the step function. It gives the fit to the continuum limit value of the
step function. In the lower figure, the running coupling g2(L) is shown. The blue points are
from results on Creutz ratios using analytic/numeric Wilson loop lattice calculations in finite
volumes with fixed value of r. In this procedure we start from the one-loop expansion of Wilson
loops in finite volumes based on the bare coupling [234]. The series is re-expanded in the
boosted coupling constant at the relevant scale of the the Creutz ratio [235] to obtain realistic
estimates of our running coupling without direct simulations. The rest of the procedure for
the blue points follows what we described in the text. The green points are direct simulation
results, following our procedure. The running starts at the point g2(L0) = 0.825. For almost
all couplings there is excellent agreement with continuum 2-loop running. At the strongest
coupling, the simulation results begin to break away from perturbation theory.

β L fermion mass trajectories g2(L)
5 12 0.01 318 2.06(2)

16 0.01 74 1.67(11)
7 12 0.01 317 1.207(5)

12 0.001 116 1.207(12)
16 0.01 198 1.13(1)

12 12 0.01 162 0.590(4)
16 0.01 69 0.577(9)

15 12 0.01 144 0.447(3)
12 0.001 91 0.460(5)
16 0.01 62 0.444(7)

25 12 0.01 190 0.255(1)
16 0.01 156 0.253(2)

Table 5.1: Running couplings bracketing the conformal fixed point of the Nf = 16 model in
the conformal window.
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to the continuum limit. The running coupling therefore is still contaminated with
finite cutoff effects. If the linear lattice size L is large enough, the trend from the
volume dependence of g2(L, a2) should indicate the location of the fixed point. For
g2(L, a2) > g∗2 we expect the decrease of the running coupling as L grows although
the cutoff of the flow cannot be removed above the fixed point. Below the fixed point
with g2(L, a2) < g∗2 we expect the running coupling to grow as L increases and the
continuum limit of the flow could be determined. The first results are summarized in
Table 1. They are consistent with the presented picture. For example, at bare cou-
plings β = 5, 7, 12 the cutoff dependent renormalized coupling is larger than 0.5 and
decreasing with growing L. At small bare couplings the renormalized coupling is flat
within errors and the flow direction is not determined. The independence of the re-
sults from the small quark mass of the simulations is tested in two runs at mq = 0.001.
Precise determination of the conformal fixed point in the contiuum requires further
studies.

5.5 Gradient flow running coupling Nf = 4

5.5.1 Introduction and summary

The Yang-Mills gradient flow – or Wilson flow – has proved to be a useful tool in
lattice gauge theory. In the context of the Nicolai map it was studied in [184]; see
also [183] for an earlier appearance. A systematic investigation, including suggestions
for possible applications, has appeared relatively recently [154,156,185]. See also [186].
The first concrete very useful application of the flow for high precision setting of the
physical scale in QCD simulations has been presented in [194]. The flow in QCD
applications has so far been considered in infinite volume which is most appropriate
for low energies.

In the present section the flow is calculated on the four dimensional torus, i.e. in
a finite four dimensional box. The motivation for doing so is to obtain a new running
coupling scheme in which the renormalized coupling runs with the linear size of the
box. In principle the original infinite volume flow can also be used for defining a
renormalized running coupling gR(q) with q = 1/

√
8t where t is the flow time, but the

control of finite volume corrections is an additional concern in this case. This issue is
eliminated if the running gR(L) is with the linear size L. In particular, a step scaling
analysis can be performed [138,217].

Due to asymptotic freedom perturbation theory is reliable for small volumes hence
the appropriate framework is the small volume expansion or femto world [99,197–200];
see also [201–204]. The usual complication associated with calculations in the femto
world is the presence of gauge zero modes which dominate the dynamics and are not
Gaussian. They need to be treated exactly while the gauge non-zero modes can be
integrated out in perturbation theory. As will be shown, the contribution of the non-
zero modes renormalizes the bare coupling according to the 1-loop β-function and
generates an effective action for the zero modes.

The quantity which turns out to be the most useful for our purposes is the one
that has already been calculated in infinite volume in [154], namely the field strength
squared at t > 0 flow time,

E(t) = −1
2

TrFµνFµν(t) . (5.20)

74

dc_1357_16

Powered by TCPDF (www.tcpdf.org)



The expansion of its expectation value in finite volume is our main result and to leading
order in the MS scheme it is given by

〈t2E(t)〉 = g2
R(µ)

3(N2 − 1)
128π2

(1 + δ) (5.21)

where µ is the dimensional regularization scale, g2
R(µ) is the renormalized coupling in

the MS scheme. The correction factor δ = δa+δe is a sum of algebraic and exponential
terms,

δa = −64t2π2

3L4

δe = ϑ4

(
exp

(
−L

2

8t

))
− 1 = 8 exp

(
−L

2

8t

)
+ 24 exp

(
−L

2

4t

)
+ . . . , (5.22)

and where ϑ(q) is the standard Jacobi elliptic function (normally called ϑ3(q)) . Indeed,
the infinite volume result in [154] is reproduced.

Equation (5.21) can be used to define a running coupling gR(L) which will run
with the linear size once the dimensionless combination c =

√
8t/L is held fixed and

µ = 1/L is set. Different choices for c correspond to different schemes.
The organization of this section is as follows. In section 5.5.2 the small volume

expansion is given on T 4 and the finite effective action for the gauge zero modes is cal-
culated by integrating out the non-zero modes to 1-loop. In order for the presentation
to be self-contained all details are spelled out although the methods are by no means
new. In section 5.5.3 the gradient flow is considered and the expectation value of the
quantity E(t) is calculated by again treating the non-zero modes in 1-loop perturba-
tion theory and using the previously obtained effective action for the zero modes. The
result is then used in section 5.5.4 to define a renormalization scheme for the gauge
coupling. As an illustration of the method, numerical simulations are used to compute
the running coupling in SU(3) gauge theory coupled to Nf = 4 massless quarks.

5.5.2 Small volume expansion

On the four dimensional Euclidean torus T 4 with periodic boundary conditions for the
gauge field the zero momentum (constant) gauge mode is separated from the first non-
zero momentum mode by the gap 2π/L and dominates the low energy small volume
dynamics [99]; see also [197–204]. This dynamics is non-linear because of the quartic
interaction and needs to be treated exactly while the dynamics of the non-zero modes
can be treated perturbatively. Correspondingly the gauge field is split

Aµ(x) = Bµ +Qµ(x) ,
∫
d4xQµ(x) = 0 (5.23)

into the zero mode Bµ and non-zero modes Qµ(x). The action for Nf flavors of
massless Dirac fermions in representation R is

S = − 1
2g2

0

∫
d4xTrFµνFµν +

Nf∑
f=1

∫
d4xψ̄f /Dψf . (5.24)

where g0 is the bare coupling constant. The boundary condition for the fermions is
assumed to be anti-periodic in at least one direction. It is convenient to introduce
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∂µ + Bµ = Dµ(B) acting in either the adjoint or representation R depending on
whether it is applied to a gauge field or fermion.

Gauge fixing is only required for the gauge non-zero modes and a convenient gauge
choice is the background gauge χ = Dµ(B)Qµ = 0. The constant gauge transforma-
tions do not need to be fixed as their volume is finite.

Neglecting interactions which are higher order in Qµ and the ghost field one ob-
tains the leading order Faddeev-Popov operator as Dµ(B)2 which is understood in
the adjoint representation and acts on ghosts without zero-modes. The corresponding
effective action for the zero mode Bµ is then

Sgh(B) = − ln det (Dµ(B)2) . (5.25)

The quadratic term in Qµ from the gauge action is

1
2g2

0

∫
d4xTrQµ

(
Dρ(B)2δµν −Dµ(B)Dν(B) + 2[Bµ, Bν ]

)
Qν . (5.26)

A convenient way of implementing gauge fixing is by adding χ2/2g2
0 to the action which

allows integrating out the Qµ field without the gauge constraint. The effective action
from this bosonic integral is then,

SQ(B) =
1
2

ln det
(
Dρ(B)2δµν + 2[Bµ, Bν ]

)
. (5.27)

In the fermionic action one may neglect the interaction between the Qµ fields and
the fermions. To leading order one obtains the effective action

SF (B) = − ln det ( /D(B))Nf = − ln det
(
Dµ(B)2 +

1
2
σµν [Bµ, Bν ]

)Nf/2
, (5.28)

where σµν = [γµ, γν ]/2. Here the operators act on fermions with the appropriate
boundary condition. The various determinants will be evaluated using dimensional
regularization and all subsequent calculations are done in dimension d = 4− 2ε.

The total effective action after integrating out the gauge non-zero modes, the ghosts
and the fermions is then

Seff (B) = − L4

2g2
0(µL)2ε

Tr [Bµ, Bν ]2 + SQ(B) + Sgh(B) + SF (B) , (5.29)

where the first term is the tree level action for the constant mode and µ is the scale
of dimensional regularization.

Now we will proceed to evaluating the various determinants. They will be Taylor-
expanded in Bµ and we will see later that it is enough to expand them to fourth
order for our purposes. Higher orders in Bµ will correspond to higher orders in the
renormalized coupling. The expansion is around the free Bµ = 0 determinants and
these (infinite) constants are dropped as usual.

The derivatives in SQ and Sgh are replaced by 2πinµ/L where nµ are integers
and n2 6= 0. In SF the derivatives are replaced by 2πi(nµ − kµ)/L where kµ is 1/2
in all anti-periodic fermion directions and the rest of its components are zero. We
will assume k2 6= 0. It is furthermore convenient to introduce the hermitian matrices
Cµ = LBµ/2πi.

Straightforward calculation yields that up to fourth order in Cµ the following holds

SQ(C) + Sgh(C) = Tr ad log(Dµ(C)2) + γ Tr ad[Cµ, Cν ]2 , (5.30)
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where the traces are in the adjoint representation and

γ =
∑
n6=0

1
n4

. (5.31)

Similarly, the fermionic contribution to the effective action up to fourth order in Cµ is

SF (C) = −2Nf

(
TrR log(Dµ(C)2) +

γ(k)
4

TrR[Cµ, Cν ]2
)
, (5.32)

where all traces are in the representation R and

γ(k) =
∑
n

1
(n− k)4

. (5.33)

Equations (5.30) and (5.32) show that only the Laplacian is needed in the background
of Cµ in arbitrary representation and with arbitrary boundary condition in order to
evaluate the full effective action.

First, let us evaluate all determinants with periodic boundary condition and get
back to the case of non-trivial boundary conditions for the fermions later. Explicit
calculation yields up to fourth order in Cµ,

−TrR log(Dµ(C)2) = δ
2− d
d

TrRC2 + γ
d− 8

2d
TrRC4 +

+ 4
∑
n 6=0

nµnνnρnσ
n8

TrRCµCνCρCσ , (5.34)

where the new constant δ has been introduced and C2 = CµCµ and C4 = (CµCµ)2 are
SO(4) invariant combinations. It is useful to define two more constants α and β by

δ =
∑
n 6=0

1
n2

, α =
∑
n 6=0

n4
1

n8
, β =

∑
n 6=0

n2
1n

2
2

n8
. (5.35)

Using these the following is easy to show,∑
n 6=0

nµnνnρnσ
n8

TrRCµCνCρCσ = (α− 3β)
∑
µ

C4
µ + β

(
3TrRC4 +

1
2

TrR[Cµ, Cν ]2
)
. (5.36)

Since the torus breaks rotations the SO(4)-breaking first term on the right hand side
is allowed. Combining equations (5.34) and (5.36) we obtain,

−TrR log(Dµ(C)2) = δ
ε− 1
2− εTrRC2 + 4(α− 3β)

∑
µ

C4
µ + (5.37)

+
(

12β − γ 2 + ε

4− 2ε

)
TrRC4 + 2β TrR[Cµ, Cν ]2 .

Even though α, β and γ are all divergent the combinations appearing above for the
terms that were not present at tree level, namely C2, C4 and

∑
µ C

4
µ, are all finite.

Only the coefficient of [Cµ, Cν ]2 is divergent.
Now the full effective action (5.29) is easily written down using (5.37) in the adjoint

representation together with (5.30) and in representation R together with (5.32). The
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traces of the product of two Lie algebra elements in different representations can be
all converted to the fundamental representation using the trace normalization factors
T (R) via TrR(· ·) = 2T (R) Tr (· ·). Let us first collect the terms proportional to
Tr [Cµ, Cν ]2 which is the only divergent term. Using T (ad) = N and the poles of β
and γ we obtain,

Seff (C)|div = − (2π)4

2

(
1

g2
0(µL)2ε

−
11
3 N − 4

3T (R)Nf
16π2ε

+ finite
)

Tr [Cµ, Cν ]2 (5.38)

Clearly, by introducing the renormalized coupling gR(µ) of the MS scheme,

1
g2
R(µ)

=
1

g2
0(µL)2ε

−
11
3 N − 4

3T (R)Nf
16π2ε

, (5.39)

in place of the bare coupling g0 a finite effective action is obtained. Going from MS to
MS scheme only modifies the finite terms.

Up until this point the momentum sums corresponding to the fermions were com-
puted with periodic boundary conditions, however we are interested in fermions that
are anti-periodic in at least one direction. Instead of the coefficients α, β and γ we
should have considered αµ(k), βµν(k) and γ(k),

αµ(k) =
∑
n

(nµ − kµ)4

(n− k)8

βµν(k) =
∑
n

(nµ − kµ)2(nν − kν)2

(n− k)8
(5.40)

γ(k) =
∑
n

1
(n− k)4

,

where kµ 6= 0 determines the boundary conditions. However, it is easy to see that the
differences αµ(k)−α, βµν(k)−β and γ(k)−γ are all finite. This is expected because UV
divergences are insensitive to boundary conditions. Hence once the UV divergences are
canceled only the finite terms can be effected by the change of boundary conditions.

Summarizing this section, a finite effective action is obtained for the gauge zero
modes of the form,

Seff (C) = − (2π)4

2g2
R(µ)

Tr [Cµ, Cν ]2 + (5.41)

+u1TrC2 + u2TrRC4 + u3Tr adC4 +

+u4

∑
µ

TrRC4
µ + u5

∑
µ

Tr adC4
µ ,

where the finite expressions u1, . . . , u5 depend onN , Nf , R and the boundary condition
for the fermions. These are all known although in a bit cumbersome form. Their values
will not be important for what follows, the only property we need is their finiteness.
From now on we set µ = 1/L.

5.5.3 Yang-Mills gradient flow on T 4

Now that a finite action is obtained for the gauge zero modes Cµ let us turn to our
observable of interest, the field strength squared E(t) at positive flow time (5.20). It
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will be evaluated by treating the gauge non-zero modes in perturbation theory and
the zero mode Cµ exactly, similarly to the effective action. Let us first write down the
Yang-Mills gradient flow,

dAµ
dt

= DνFνµ . (5.42)

Using the decomposition (5.23) we obtain a coupled flow for the zero and non-zero
modes. After taking into account gauge fixing and dropping terms higher order in Qµ
we arrive at,

dBµ
dt

= [Bν , [Bν , Bµ]] (5.43)

dQµ
dt

=
(
Dρ(B)2δµν + 2[Bµ, Bν ]

)
Qν .

Since we are interested in a perturbative expansion let us rescale Qµ → gRQµ. The
consistent rescaling of the zero mode is Bµ → g

1/2
R Bµ. After the rescaling the gradient

flow becomes

dBµ
dt

= gR[Bν , [Bν , Bµ]] (5.44)

dQµ
dt

= ∆Qµ +O(g1/2
R ) .

Clearly, to leading order in the coupling the zero mode is constant Bµ(t) = Bµ and
the solution for the non-zero mode is

Qµ(t) = et∆Qµ(0) . (5.45)

In the path integral one integrates over the fields at t = 0, i.e. Qµ(0) and Bµ.
The rescaling also effects the observable E(t) and keeping the leading order term

only we obtain,

E(t) = −g
2
R

2
Tr [Bµ, Bν ]2 +

g2
R

2
Tr Qµe2t∆ (∆δµν − ∂µ∂ν)Qν (5.46)

where Qµ now stands for Qµ(0) for the sake of brevity.
Let us evaluate 〈E(t)〉 by first integrating over Qµ while Bµ is kept fixed. The first

term in (5.46) is independent of Qµ and the second term is quadratic, leading to

〈E(t)〉B = −g
2
R

2
Tr [Bµ, Bν ]2 +

g2
R

2L4
Tr e2t∆ (∆δµν − ∂µ∂ν)

δµν
∆

(5.47)

where only the leading order propagator is taken into account from the action. The
integral and trace in the second term is given by,

3(N2 − 1)
∑
n 6=0

e−π
2n28t/L2

= (5.48)

= 3(N2 − 1)
(
ϑ4(e−π

2c2)− 1
)

= 3(N2 − 1)
(

1
π2c4

ϑ4
(
e−1/c2

)
− 1
)
,

where the ratio c =
√

8t/L was introduced. The factor 3 comes from the trace over
the Euclidean indices and the factor N2 − 1 comes from the gauge trace.
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Figure 5.7: Finite volume correction factor δ(c).

Let us now integrate over Bµ using the effective action (5.41). One needs to keep
the tree level part only, all further terms are higher order in gR. The second term in
(5.47) is independent of Bµ while for the first term we need the matrix integral

−
∫
dB 1

2Tr [Bµ, Bν ]2 exp
(
L4

2 Tr [Bµ, Bν ]2
)

∫
dB exp

(
L4

2 Tr [Bµ, Bν ]2
) =

N2 − 1
L4

. (5.49)

Even though the integral is quartic it can easily be done with the result N2 − 1
essentially determined by the dimensionality of the integral. Combining (5.47), (5.48)
and (5.49) we obtain,

〈t2E(t)〉 = g2
R

3(N2 − 1)
128π2

(
1 + ϑ4

(
e−1/c2

)
− 1− c4π2

3

)
(5.50)

which is the advertised final result (5.21). The finite volume correction term δ(c) is
plotted on figure 5.7 as a function of the ratio c. As can be seen the correction never
reaches 10% for 0 ≤ c ≤ 1/2.

5.5.4 Running coupling

The result (5.50) can be used to define a non-perturbative running coupling scheme in
which the running scale is µ = 1/L. As one changes the scale one keeps c fixed. Then
the scheme is defined by the coupling constant

g2
c (L) =

128π2〈t2E(t)〉
3(N2 − 1)(1 + δ(c))

(5.51)

where now the expectation value on the right hand side is understood non-perturbatively.
The results from the preceding sections ensure that the above defined coupling for
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Figure 5.8: Discrete β-function of SU(3) gauge theory coupled to Nf = 4 flavors of
massless fundamental fermions for a scale change of s = 3/2. The results at 3 lattice
spacings are shown together with the continuum 1 and 2-loop result from (5.54) for
comparison.

small L will run according to the universal 1-loop β-function. Different choices for c
correspond to different schemes.

A note is in order about the 2-loop β-function. As is well known both the 1
and 2 loop coefficients are universal under a scheme change of the type g̃ = g(1 +
O(g2)) where the expansion on the right hand side only contains even powers of the
coupling. However if one allows scheme changes of the type g̃ = g(1 +O(g)) where the
expansion contains both even and odd powers then only the 1-loop coefficient remains
scheme independent. Our scheme is related to the MS scheme by such an expansion
since it is easy to see that both even and odd powers of the coupling will appear
as subleading terms to the leading result (5.21) but fractional powers will not. Our
scheme is nevertheless well-defined and has for instance the property that if a theory
has an infrared fixed point in one scheme it will have a fixed point in our scheme as
well.

In order for the system to be controlled by a single scale L the bare fermion mass was
set to zero in the preceding sections. The spectrum of the Dirac operator nevertheless
has a gap ∼ 1/L due to the non-trivial boundary conditions for the fermions.

5.5.5 Numerical results

We have tested the new running coupling scheme in SU(3) gauge theory coupled to
Nf = 4 massless fundamental fermions. The Schrödinger functional analysis of the
same model can be found in [218, 236]. The fermion action was the 4-step stout
improved [182] staggered action with smearing parameter % = 0.12. Since the number
of flavors is a multiple of four no rooting was necessary. For the gauge sector tree level
improved Symanzik action [212,213] was used. The hybrid Monte Carlo algorithm [237]
was used together with multiple time scales [238] and Omelyan integrator [239].

81

dc_1357_16

Powered by TCPDF (www.tcpdf.org)



L/a β 4.25 4.50 4.75 5.00 5.50 6.00 7.00 8.00
12 5.08(1) 3.96(1) 3.241(6) 2.764(9) 2.146(8) 1.757(3) 1.289(2) 1.027(2)
16 6.41(3) 4.79(2) 3.84(2) 3.23(1) 2.446(6) 1.974(5) 1.432(2) 1.132(3)
18 7.05(3) 5.17(3) 4.13(3) 3.41(1) 2.569(9) 2.056(3) 1.486(3) 1.166(2)
24 6.34(4) 4.83(3) 3.93(2) 2.89(1) 2.257(9) 1.605(5) 1.239(4)
36 6.19(5) 4.88(4) 3.39(3) 2.58(2) 1.77(1) 1.352(8)

Table 5.2: Measured renormalized couplings g2
c (L) from (5.51) at c = 0.3 and given

bare couplings β and lattice volumes L/a.

The observable E(t) and the flow itself can be discretized in a number of ways.
Both the discretization in [154] and also the tree level improved Symanzik discretiza-
tion of [194] was measured. We have found that the latter displays better scaling as
expected hence in the following only the results from the Symanzik discretization will
be presented. The bare quark mass was set to zero and anti-periodic boundary condi-
tions were used for the fermions in all four directions. As mentioned in the previous
section this leads to a gap ∼ 1/L in the spectrum of the Dirac operator. The gauge
field was periodic in all directions.

The choice of 0 ≤ c ≤ 1/2 is limited by the observations that a small c leads to
large cut-off effects while large c leads to large statistical errors. We found that c = 0.3
is a convenient choice and from here on will drop the index c or R on the renormalized
coupling g2.

The discrete version of the β-function, or step scaling function, was computed for
a scale change of s = 3/2. Three lattice spacings are used corresponding to 124 → 184,
164 → 244 and 244 → 364. Then the discrete β-function

g2(sL)− g2(L)
log(s2)

(5.52)

can be calculated as a function of g2(L). Holding L fixed in physical units the contin-
uum limit corresponds to L/a→∞.

The numerical results can be compared with the perturbative β-function for small
renormalized couplings. The 2-loop β-function is given by

L2 dg
2

dL2
= b1

g4

16π2
+ b2

g6

(16π2)2
, b1 =

25
3
, b2 =

154
3

. (5.53)

The discrete β-function up to 2 loops for a finite scale change s is then

g2(sL)− g2(L)
log(s2)

= b1
g4(L)
16π2

+
(
b21 log(s2) + b2

) g6(L)
(16π2)2

, (5.54)

which will be used for comparison although the zero mode of our finite volume scheme
will introduce modifications which have not yet been calculated.

The measured results for the renormalized coupling at each bare coupling and
lattice volume are tabulated in table 5.2. At the volumes 124, 164, 184, 244 and
364 the number of equilibrium trajectories were 10000, 10000, 10000, 8000 and 4000,
respectively and every 10th configuration was used for measurements. Auto correlation
times were also measured and are around 10− 30, 10− 40, 10− 70, 30− 100, 30− 100
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Figure 5.9: Parametrization of the curves g2(β) at fixed lattice volumes using the
expression (5.55). Red: 124, green: 164, dark blue: 184, magenta: 244, light blue: 364.

for the five volumes, respectively. The lower auto correlation times in the indicated
intervals correspond to larger β and the higher ones to smaller β.

The discrete β-function obtained from the data is shown on figure 5.8. The contin-
uum extrapolation can be performed in (at least) two different ways. In the first
method a cubic spline interpolation is done at fixed L/a → sL/a for (g2(sL) −
g2(L))/ log(s2) as a function of g2(L). Then the resulting three curves together with
their errors are used for the continuum limit at each fixed g2(L). The continuum
extrapolation is linear in a2/L2 since both the action and the observable only contain
O(a2) corrections. This latter step is repeated for each value of g2(L).

In the second method, similarly to [218], the dependence of g2(β) on β at fixed
L/a is parametrized by the expression

β

6
− 1
g2(β)

=
3∑

m=0

cm

(
6
β

)m
, (5.55)

and the coefficients cm are fixed by fitting to the measured values. The χ2/dof values
from the fits for the five volumes are 1.59, 0.39, 0.45, 1.11 and 0.08, respectively from
124 to 364. The fitted curves together with the data are shown on figure 5.9. Since
the parametrization is linear in the coefficients cm the error on the fitted curve can
be computed in a straightforward manner. Then g2(L) together with the discrete β-
function (g2(sL)− g2(L))/ log(s2) and its error can be obtained for any β for all three
lattice spacings corresponding to 124 → 184, 164 → 244 and 244 → 364. From here
the procedure is identical to the previous method; at fixed g2(L) the three discrete
β-function values are extrapolated to the continuum assuming O(a2/L2) corrections.

The continuum extrapolation is shown on figure 5.10 for both methods and for four
representative values of g2(L), 1.4, 2.2, 3.0 and 3.8 together with the χ2/dof values of
the fits. The continuum results agree nicely between the two methods.
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Figure 5.10: Continuum extrapolations of the discrete β-function for four selected
g2(L) values 1.4, 2.2, 3.0 and 3.8. Both methods are shown together with the χ2/dof
values of the fits.

It is reassuring to note that the continuum extrapolations from the two methods
yield continuum results that agree with each other within error showing the robustness
of the procedures. Also the continuum result is quite insensitive to the order of the
polynomial used in (5.55) or other details of the fitting procedures.

The final continuum extrapolated result agrees approximately with the 2-loop per-
turbative expression (5.54) as shown on figure 5.11 (only the final result from the first
method is shown, but the second one gives a result which agrees with it within errors
in the entire g2(L) range). As noted in section 5.5.4 our scheme is related to the MS
scheme via g2

c = g2
MS

(1 + a1(c)gMS + . . .) where a1(c) is non-zero leaving only the
first β-function coefficient scheme independent. It can be shown from the measured
gradient flow at c = 0.2 that the discrete β-function in figure 5.11 is not sensitive
to the volume beyond the leading δ(c) correction factor. This explains the approxi-
mate agreement with the 2-loop universal β-function keeping contributions from a1(c)
undetectable within errors.

5.6 Gradient flow running coupling Nf = 8

In this section the same technique is applied as for Nf = 4 to obtain the discrete
β-function of the Nf = 8 model. This flavor number is expected to be close to the
conformal window hence a slower running is expected.
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Figure 5.11: Discrete β-function of SU(3) gauge theory coupled to Nf = 4 flavors
of massless fundamental fermions for a scale change of s = 3/2. The continuum
extrapolated result from method 1 (see text for details) is shown together with the 1
and 2-loop results from (5.54) for comparison.

5.6.1 Numerical simulation

The technical details of the simulations closely follow our work on Nf = 4 in [155,187].
In particular we use the staggered fermion action with 4 steps of stout improvement
with % = 0.12 [182]. The bare fermion mass is set to zero and anti-periodic boundary
conditions in all four directions are imposed on the fermions and the gauge field is
periodic. The gauge action is the tree-level improved Symanzik action [212,213]. The
observable E(t) is discretized by the clover-type construction as in [154].

Along the gradient flow we use two discretizations, the Wilson plaquette action and
the tree-level improved Symanzik gauge action. These setups correspond to the WSC
and SSC cases in the terminology of [214]: the notation is Flow-Action-Observable
and W stands for Wilson plaquette action, S for tree-level improved Symanzik action
and C for the clover discretization. Both setups lead to the same continuum limit,
only the size of cut-off effects is different. This fact allows for the introduction of yet
another coupling definition at finite lattice spacing, which however again leads to the
same continuum limit,

g2
X = Xg2

SSC + (1−X)g2
WSC . (5.56)

Here the parameter X is arbitrary, the choice of the two coefficients, X and 1 − X,
guarantees that the continuum limit of g2

X is the same as that of g2
SSC or g2

WSC , i.e.
the correct one. It is important to note that X is a constant and does not depend on
the bare gauge coupling β or the lattice volume L/a. In practice we have found that
the choice X = 1.75 is most useful. Note that in principle X could depend on the
renormalized coupling but in the present work we do not explore this possibility.

Just as in [155, 187] where Nf = 4 was considered we do not need to take the
root of the fermion determinant. Hence the results do not depend on the validity of
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L/a β 3.5 3.6 3.7 4.0 4.5 5.0
12 6.42(4) 5.85(4) 5.29(2) 4.00(2) 2.775(7) 2.12(1)
16 7.66(6) 6.94(4) 6.28(2) 4.67(4) 3.19(1) 2.43(2)
18 8.17(7) 6.6(1) 4.95(3) 3.36(2) 2.52(1)
20 8.55(5) 7.77(4) 6.98(3) 5.17(3) 3.51(2) 2.63(1)
24 9.33(8) 8.51(5) 5.50(7) 3.68(2) 2.76(2)
30 10.4(1) 8.3(1) 6.03(9) 4.02(4) 2.93(3)
36 10.2(1) 6.52(8) 4.19(4) 3.07(4)

L/a β 6.0 7.0 8.0 9.5 15.0
12 1.444(6) 1.098(4) 0.890(2) 0.696(2) 0.383(2)
16 1.64(1) 1.242(6) 1.000(6) 0.774(3) 0.426(1)
18 1.704(6) 1.288(4) 1.035(7) 0.799(4) 0.437(1)
20 1.757(8) 1.322(5) 1.062(5) 0.820(1) 0.449(2)
24 1.84(1) 1.376(7) 1.099(6) 0.847(4) 0.463(2)
30 1.93(2) 1.43(1) 1.141(4) 0.880(4) 0.481(3)
36 2.00(2) 1.48(2) 1.17(1) 0.90(1)

Table 5.3: Measured renormalized couplings g2(L) for given bare couplings β and
lattice sizes L/a using the linear combination method with X = 1.75 at c = 3/10.

the fourth-root-trick commonly used for QCD. The evolution along a trajectory of the
hybrid Monte Carlo algorithm [237] is implemented with multiple time scales [238] and
Omelyan integrator [239].

In a lattice setting the most practical method of calculating the running coupling or
its β-function is via step scaling [138,217]. In this context the linear size L is increased
by a factor s and the difference of couplings

g2(sL)− g2(L)
log(s2)

, (5.57)

is defined as the discrete β-function. If the ordinary infinitesimal β-function of the
theory possesses an infrared fixed point, the discrete β-function will have a zero as
well. On the lattice the linear size L is easily increased to sL by simply increasing the
volume in lattice units, L/a→ sL/a at fixed bare gauge coupling. In the current work
we set s = 3/2 and use volumes 124 → 184, 164 → 244, 204 → 304 and 244 → 364.
The continuum limit corresponds to L/a→∞. These lattice volumes determine the β-
function at 4 lattice spacings, allowing for a fully controlled continuum extrapolation.
Leading cut-off effects are known to be O(a2/L2).

The collected number of thermalized trajectories at each bare coupling and volume
was in the range between 5000 and 10000 and every 10th was used for measurement.
The measured renormalized couplings at each β and lattice volume are shown in table
5.3 for the definition (5.56) using X = 1.75. By taking the difference of renormalized
couplings for lattice volumes scaled by a factor s = 3/2 and at the same bare β one
obtains the discrete β-function at finite lattice spacings; see figure 5.12. Clearly, there
is no sign of a fixed point, the running is monotonically increasing, at least at finite
lattice spacing, i.e. finite lattice volumes. However we are of course interested in the
behavior of the continuum model and the behavior of the discrete β-function on finite
lattice volumes is irrelevant. It is a priori possible that the discrete β-functions on
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Figure 5.12: Measured discrete β-function for the linear combination setup with X =
1.75 and c = 3/10; data corresponding to four lattice spacings.

several finite lattice volumes, corresponding to a fixed set of L/a→ sL/a steps, cross
zero but the continuum extrapolated result does not have a zero and conversely it is
possible that none of the finite lattice volume β-functions cross zero yet the continuum
extrapolated result does have a zero. Hence we turn to the continuum extrapolation
next.

5.6.2 Continuum extrapolation

In order to perform a continuum extrapolation we parametrize the renormalized cou-
pling as a function of the bare coupling, g2(β) at each fixed lattice volume L/a by

1
g2(β)

=
β

6

n∑
m=0

Cm

(
6
β

)m
, (5.58)

similarly as in [218]. The order n of the polynomial may be chosen such that acceptable
fits are obtained, however in this work we would like to estimate the systematic errors
that come from various choices for n; see section 5.6.3.

Using the parametrized curves the discrete β-function (5.57) can be obtained for
arbitrary g2(L) for fixed L/a and s = 3/2. Estimating the error on the interpolated
values is straightforward because the interpolation is linear in the fit parameters Cm.
Then assuming that corrections are linear in a2/L2 the continuum extrapolation can
be performed.

5.6.3 Systematic error

In our previous work [155, 187] the polynomial order for the interpolation (5.58) was
fixed at each lattice volume. However different choices lead to similarly acceptable
interpolating fits and these in turn lead to slightly different continuum results. Even
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Figure 5.13: Right: the weighted histograms of all possible continuum extrapolations
used for estimating the systematic uncertainty. Left: a representative example of the
continuum extrapolations for g2(L) = 1.0, 2.0, 3.0; the 1-loop and 2-loop results are
also shown for comparison. All data is with c = 3/10 and using the linear combination
method with X = 1.75.
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Figure 5.14: Right: the weighted histograms of all possible continuum extrapolations
used for estimating the systematic uncertainty. Left: a representative example of the
continuum extrapolations for g2(L) = 4.0, 5.0, 6.0; the 1-loop and 2-loop results are
also shown for comparison. All data is with c = 3/10 and using the linear combination
method with X = 1.75.
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though the final continuum result varies only a bit and generally within 1-σ of the
statistical error in the current work we would like to estimate the systematic error as
precisely as possible. In order to achieve this the histogram method introduced in [7] is
used. There are two sources of systematic uncertainties. First, it is a priori unknown
what interpolation function to use for the renormalized coupling as a function of β at
fixed lattice volumes, and second, one may perform continuum extrapolations using 3
or 4 lattice spacings.

We interpolate using (5.58) for each lattice volume, 124, 164, 184, 204, 244, 304,
364, with three choices of polynomial orders, n = 4, 5 and 6. All together these
produce 37 = 2187 combination of interpolations and correspondingly lead to 2187
different continuum results. Since the data on different volumes at different β are all
independent we perform a Kolmogorov-Smirnov test on the 2187 interpolations and
demand that only those assignments of polynomial orders are allowed to which the
Kolmogorov-Smirnov test assigns at least a 30% probability, similarly to [176].

The Kolmogorov-Smirnov test is applied as follows [176]. The χ2 values of inde-
pendent fits are distributed according to the χ2-distribution. The goodness of fits, or
q-values, are on the other hand distributed uniformly. The Kolmogorov-Smirnov test
is an estimate of the probability that the actual measured q-values were indeed dis-
tributed uniformly. The cumulative distribution function of the uniform distribution
is a straight line and the Kolmogorov-Smirnov test takes as input the largest distance
between the actual measured cumulative distribution function and the expected cu-
mulative distribution function (straight line). Call this largest distance D. Then the
Kolmogorov-Smirnov probability is defined by

P = Q

(
D

(√
N + 0.12 +

0.11√
N

))
, Q(x) = 1− ϑ4

(
e−2x2

)
(5.59)

where ϑ4 is the 4th Jacobi elliptic function and N is the sample size.
The Kolmogorov-Smirnov test with P > 0.3 reduced the total number of allowed

interpolations from 2187 to 1233 as far as 4 lattice spacings are concerned correspond-
ing to 124 → 184, 164 → 244, 204 → 304 and 244 → 364.

In order to include the systematic uncertainty from the continuum extrapolation
itself, as opposed to the interpolation at fixed lattice volume, we consider dropping
the roughest lattice spacing corresponding to 124 → 184 and use only 164 → 244,
204 → 304 and 244 → 364. From the 1233 continuum extrapolations using 4 lattice
spacings only those extrapolations using 3 lattice spacings are kept to which again
the Kolmogorov-Smirnov test assigns a probability larger than 30%, in terms of the 5
independent volumes, 164, 204, 244, 304, 364. This test leads to 813 continuum extrap-
olations using 3 lattice spacings. Some of these are of course the same, but needs to
be counted in order to have the proper weight in the final histogram.

The 1233+813 = 2046 continuum results at each g2(L) can be binned in a weighted
histogram and the weight can be the goodness of the fit, a weight provided by the
Akaike information criterion (AIC) or no weight at all. If a fit has p free parameters
its associated AIC weight is ∼ exp(−χ2/2−p). Examples of AIC-weighted histograms
are shown in figures 5.13-5.14.

Our continuum central values at each g2(L) are the medians of the histograms
and the systematic uncertainty can then be determined by counting 68% of the total
starting symmetrically from the central value. The three types of weights lead to
compatible results and for our final results we use the AIC-weighted histograms.

The systematic and statistical errors are of the same order, there is never a larger
factor between them than two.
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5.6.4 Final results

At 6 chosen values of g2(L) the histograms of the discrete β-function for all continuum
extrapolations are shown in the right panels of figures 5.13-5.14. On the left we show
typical continuum extrapolations from within a 1 − σ systematic uncertainty around
the median of the histograms. Clearly, all 4 lattice spacings are in the scaling region
and nicely fit on a straight line with good χ2/dof . In fact, the choice X = 1.75 was
motivated by exactly the requirement that all 4 lattice spacings should be in the scaling
region. This is not a sharp requirement, one may choose any value in the approximate
range 1.6 < X < 1.9.

It is quite instructive to look at the details of these figures and discuss the source
of the most important systematic error, the continuum extrapolation. Our theory is
a confining one in which large bare couplings (small βs) correspond to large lattice
spacings. As table 5.3 shows large renormalized couplings are obtained with large
lattice volumes and small β values. Thus, for a given renormalized coupling one
reaches the continuum limit by increasing both β and the lattice volume. Since the
largest volume, independently of β, was 364, large renormalized couplings correspond
within our parameter set to large lattice spacings and obviously large cutoff effects.

It is of obvious interest to turn this qualitative statement to a quantitative one
and to determine the size of the systematic uncertainty related to this question. Most
importantly, we want to know where to stop with the present lattice sizes because no
controlled continuum extrapolation can be carried out any further. As our g2 = 6 case
illustrates for this large value of the renormalized coupling one has a two peak structure
for the histogram. The two peaks are the result of the significant difference between
using only the finer lattices with 3 points or taking 4 points (including also the coarsest
lattices) for the continuum extrapolations. This phenomenon clearly indicates that the
results from the coarsest lattices are starting to deviate from the a2 scaling showed
by the finer lattices. The difference between the peaks still quantifies the systematic
uncertainty for g2 = 6 and tells us that for even larger g2 values the control over this
systematic effect could be lost and finer lattices with larger lattice volumes are needed.

The discrete β-function may reliably be calculated in (continuum) perturbation
theory for small values of the renormalized coupling. In terms of the well-known
infinitesimal 1 and 2 loop β-function coefficients, b1 and b2 the discrete variant is
given by

g2(sL)− g2(L)
log(s2)

= b1
g4(L)
16π2

+
(
b21 log(s2) + b2

) g6(L)
(16π2)2

+ . . . (5.60)

As noted already in our finite volume gradient flow scheme only b1 is the same as
in every other well-defined scheme. The reason is a well-understood feature of the
finite 4-volume or femtoworld [155, 187]. Nevertheless we include not only the 1-loop
continuum β-function but also the 2-loop approximation in our comparisons, even
though strictly speaking agreement is only expected with the 1-loop result.

Had we not used the linear combination (5.56) only 3 lattice spacings would have
been in the scaling region, 164 → 244, 204 → 304 and 244 → 364 assuming a fit
linear in O(a2/L2). As mentioned in section 5.6.1 tree-level improvement [214] did
not reduce the slope of the continuum extrapolations as dramatically as for Nf = 4 in
our previous study. The reason is presumably that the larger fermion content results
in larger fermionic contributions which are, of course, completely absent from the
tree-level expressions. We illustrate both points, the smaller scaling region without
employing the linear combination (5.56) and the less effective tree-level improvement
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Figure 5.15: Comparison of the tree-level improved and unimproved continuum ex-
trapolations for the SSC and WSC cases at c = 3/10. Clearly the roughest lattice
spacing corresponding to 124 → 184 is not in the scaling region. The choice X = 1.75
does bring this point also into the scaling region however; see text for details.

in figure 5.15. Clearly, the continuum results are always consistent, as they should
be, the various choices (improvement vs. non-improvement, linear combination vs.
no linear combination) only affect the slopes of the extrapolations and the size of the
scaling region.

In figure 5.16 we illustrate another aspect mentioned in section 5.6.1, namely c-
dependence. Different choices of c define different schemes, i.e. the β-function will be
c-dependent. For small coupling the difference should be very small since regardless
of what c is, agreement is expected with the perturbative 1-loop result. Furthermore,
the expectation is that a smaller c leads to smaller statistical errors because of smaller
autocorrelations and also to larger cut-off effects because of the smaller flow time t.
This is illustrated in figure 5.16 where the continuum extrapolation is shown for g2 = 3
and both for c = 3/10 and c = 1/5.

Finally, in figure 5.17 we show the continuum extrapolated β-function over the
entire 0.9 < g2 < 6.3 range accessible to our simulations together with the 1-loop and
2-loop results. The linear combination method (5.56) was used with X = 1.75 and
c = 3/10 was chosen. Our non-perturbative continuum result is in nice agreement
with the perturbative results for small renormalized coupling and deviates from it for
larger values. Most importantly, the deviation from the perturbative 1-loop result is
downward. This could have been expected because at some higher Nf value we do
expect a fixed point and by continuity one might argue that this is only possible if the
running is slower than the monotonically increasing 1-loop result, at least for some Nf
value which is not far below the conformal window. At Nf = 8 we do not see a sign
of a fixed point in any case, at least in the explored range 0.9 < g2 < 6.3.
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Figure 5.17: Our final result for the continuum extrapolated discrete β-function for
Nf = 8.
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5.7 Gradient flow running coupling Nf = 12

5.7.1 Introduction and motivation

Investigations of strongly coupled gauge theories with massless fermions in the fun-
damental or two-index symmetric (sextet) representation of the SU(3) color gauge
group serve considerable theoretical interest with added relevance as important build-
ing blocks of composite Higgs theories beyond the Standard Model (BSM). Two com-
plementary aspects of the composite Higgs paradigm are investigated in this large
class of theories: (1) a near-conformal and unexpectedly light scalar particle, perhaps
dilaton-like with mass at the Electroweak scale or (2) a parametrically light pseudo
Nambu-Goldstone boson (PNGB) combined with partial compositeness for fermion
mass generation to avoid the flavor problem. Both paradigms are based on strongly
coupled gauge dynamics to address important aspects of conformal and chiral sym-
metries and their symmetry breaking patterns in BSM theories. The precise deter-
mination of near-conformal or conformal behavior of SU(3) gauge theory with twelve
flavors is relevant for both paradigms.

(1) Light scalar, perhaps dilaton-like?
Near-conformal strong dynamics with spontaneous chiral symmetry breaking (χSB)

is focused on its emergent light scalar with 0++ quantum numbers of the σ-meson, per-
haps with dilaton-like properties. With early results reviewed in [240], this paradigm
is very different from scaled up Quantum Chromodynamics (QCD) which was the pro-
totype of old Higgs-less Technicolor. Comparing near-conformal models, with details
explained in Figure 5.21, a light composite scalar of the massless SU(2) flavor doublet
in the sextet fermion representation of SU(3) color was reported in [94, 240] whereas
the Nf = 8 light scalar with fermions in the fundamental representation was discovered
in [91] and confirmed recently [93]. The sextet model β-function, with the minimal fla-
vor doublet required for the composite Higgs mechanism, indicates the closest position
to the lower edge of the conformal window (CW) among recently investigated SU(3)
gauge theories, exhibiting the lightest scalar accordingly. The β-function of the sextet
theory with three massless flavors has a weakly coupled conformal fixed point close to
the upper end of the CW [241] with apparent crossing into the CW between two and
three flavors. In contrast, uncertainties in crossing into the CW with fermions in the
fundamental representation appear to extend into the wider Nf = 8–12 flavor range.
For example, it is not known if for more than eight flavors the theory gets very close to
the CW with a much lighter scalar mass than at Nf = 8. Based on the findings of [158]
and a similar zero in the β-function reported earlier [148], the Nf = 12 model has been
investigated as a composite Higgs model built on a conformal fixed point inside the
CW [52]. The importance of the question warrants independent determination [53].

(2) PNGB with partial compositeness? Challenges for the near-conformal light
scalar paradigm to generate fermion masses and Yukawa couplings motivates the al-
ternate PNGB scenario with a massless scalar boson emerging from vacuum misalign-
ment of χSB as reviewed recently [242]. Model studies with a parametrically light
Higgs based on Nf = nf + νf fermion flavors in the fundamental representation of
the SU(3) color gauge group could address the hierarchy problem and fermion mass
generation with partial compositeness, if Nf is large enough to bring the theory inside
the CW before mass deformations of conformal symmetries are turned on [242–244].
For the simple choice nf = 4, the global flavor symmetry SU(4)×SU(4) is broken
to the diagonal SU(4) flavor group and a Higgs-like scalar state is identified in the
PNGB set via χSB. The custodial SO(4) symmetry of the Standard Model remains
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protected [243, 244] while a large enough νf is required to bring the theory close to
a strongly coupled IRFP with expectations of large baryon anomalous dimensions as
the key ingredients of partial compositeness. The Nf = 12 choice with nf = 4 and
νf = 8 for this PNGB paradigm is discussed in [52] building on the conformal fixed
point of twelve flavors, warranting again independent confirmation.

5.7.2 Lattice implementation of the step β-function

The gradient flow based diffusion of the gauge fields of lattice configurations from
Hybrid Monte Carlo (HMC) simulations became the method of choice for studying
renormalization effects with great accuracy [154, 156, 182–186]. In particular, we
adapted the method and introduced the scale-dependent renormalized gauge coupling
g2(L) where the scale is set by the linear size L of the finite volume [155, 187]. This
implementation is based on the gauge invariant trace of the non-Abelian quadratic field
strength, E(t) = − 1

2TrFµνFµν(t), renormalized as a composite operator at gradient
flow time t on the gauge configurations and measured from the discretized lattice
implementation, as in [154] . Following [155,187], we define the one-parameter family
of renormalized non-perturbative gauge couplings for strongly coupled gauge theories
built on the SU(N) color group with Nf massless dynamical fermions,

g2
c (t(L)) =

128π2〈t2E(t)〉
3(N2 − 1)(1 + δ(c))

, (5.61)

where the volume-dependent gradient flow time t(L) is set by the constant c =
√

8t/L
from the one-parameter family of renormalization schemes, with c = 0.2 chosen in this
work. The factor δ(c) is given by equation (4.4) and is chosen to match g2

c (t(L)) to the
conventional coupling g2

MS
(t(L)) in leading order of perturbation theory for any choice

of c and with periodic boundary conditions for the gauge fields in all four directions.
The origin of the 3rd Jacobi elliptic function ϑ in Eq. (4.4) was explained in [155]
including the treatment of zero modes from periodic gauge fields in finite volumes
[99,199,202,203,245].

A scale-dependent renormalized gauge coupling g2(L) was introduced earlier to
probe the step β-function, defined as (g2(sL) − g2(L))/ log(s2) for some preset finite
scale change s in the linear physical size L of the four-dimensional volume in the
continuum limit of lattice discretization [138, 217]. The gauge coupling g2(L) for the
determination of the step β-function is identified in our case with the definition in
Eq. (5.61) as we drop the preset label c in the notation and t(L) is simply replaced
by L. The renormalization scheme with the preset choice c = 0.2 and the preset scale
factor s = 2 in our work is identical to the one of the previous study [158] including
the boundary conditions on gauge fields and fermion fields. In the continuum limit,
the monotonic function g2(L) implies in any of the volume-dependent schemes that a
selected value of the renormalized gauge coupling sets the physical size L measured
in some particular dimensionful physical unit. Fixed physical size L on the lattice
is equivalent to holding g2(L) fixed at some selected value as the lattice spacing a is
varied and the fixed physical length L is held by the variation of the dimensionless
linear scale L/a as the bare lattice coupling is tuned without changing the selected
fixed value of the renormalized gauge coupling. The continuum limit at fixed g2(L)
is obtained by a2/L2 → 0 extrapolation of the residual cut-off dependence in the step
β-function at the target gauge coupling.

In the convention we use, asymptotic freedom in the UV regime corresponds to a
positive step β-function given by the perturbative loop expansion for small values of the
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renormalized coupling. In the infinitesimal derivative limit s→ 1 the step β-function
turns into the conventional one. If the conventional β-function of the theory possesses
a fixed point, the step β-function will have a zero at the same critical gauge coupling
g2
∗ as well. The scale-dependence of the gauge coupling g2(L) can be determined from

repeated application of the step β-function starting at some scale L0 set by the initial
gauge coupling g2(L0) we choose.

5.7.3 Simulation setup

The algorithmic details of our new Nf = 12 simulations are similar to [155, 160].
Periodic boundary conditions already defined on the gauge fields, the fermion fields are
chosen to be anti-periodic in all four directions. We utilize the staggered fermion action
with massless fermions and 4 steps of stout smearing with stout parameter % = 0.12
on the gauge links [182]. The gauge action is the tree-level improved Symanzik action
[212,213]. The evolution along a trajectory of the Hybrid Monte Carlo algorithm [237]
is implemented with multiple time scales [238] and Omelyan integrator [239]. For
integration along the gradient flow we use the tree-level improved Symanzik action
based discretization scheme. The observable E(t) is discretized as in [154].

The final 28 runs of Table 5.4 ranged in length between 5,000 and 20,000 time
units of molecular dynamics. The statistical analysis of the renormalized gauge cou-
pling of each run followed [246] and used similar software. Autocorrelation times were
measured for each run in two independent ways, using estimates from the autocorre-
lation function of each run, and from Jackknifed blocking procedure. Errors on the
renormalized couplings were consistent from the two procedures and the one from au-
tocorrelation functions is listed in Table 5.4. Each run went through thermalization
and these segments were not included in the analysis. For detection of residual ther-
malization effects the replica method of [246] was used in the analysis. All 28 runs
passed Q value tests when mean values and statistical errors of the replica segments
were compared for thermal and other variations.

Target A Target B Target C
L/a 6/g2

0 g2 6/g2
0 g2 6/g2

0 g2

16 3.1519 5.9801(29) 3.0830 6.1786(39) 3.0110 6.3930(30)
32 3.1519 5.9952(79) 3.0830 6.1597(64) 3.0110 6.3233(74)
18 3.1510 5.9767(40) 3.0785 6.1871(37) 3.0055 6.3909(51)
36 3.1510 6.0101(71) 3.0785 6.1840(81) 3.0055 6.3446(64)
20 3.1499 5.9828(64) 3.0704 6.1922(64) 2.9896 6.3942(59)
40 3.1499 6.0419(73) 3.0704 6.2137(67) 2.9896 6.4000(67)
24 3.1480 5.9784(68) 3.0680 6.1861(55) 2.9800 6.3976(60)
48 3.1480 6.0758(84) 3.0680 6.2497(109) 2.9800 6.4404(122)
28 3.0698 6.1839(58) 2.9819 6.3900(37)
56 3.0698 6.2792(142) 2.9819 6.4610(124)

Table 5.4: The final 28 runs are tabulated with 14 tuned runs and 14 paired steps.

We targeted the step β-function at three preselected values of the renormalized
gauge coupling to cover the interval where the IRFP was reported [158]. In Table 5.4
results are shown for gauge ensembles from the three target groups A, B, C of the
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Figure 5.18: The statistical significance of precise tuning to three targeted gauge
couplings is shown by fitting a constant to each g2 at the lower L/a values of the
steps.

final run sets. The 28 runs were grouped into 14 steps of pairs where the lower L/a
value was precisely tuned to the target value of the renormalized gauge coupling. The
higher L/a volume at the doubled physical size determined the step β-function at
finite lattice spacing. The first group with 4 steps is target A at g2(L) = 5.979(2)
with L/a = 16→ 32, 18→ 36, 20→ 40, 24→ 48. Both target B at g2(L) = 6.185(2)
and target C at g2(L) = 6.393(2) have an added fifth step of L/a = 28 → 56 for
more robust continuum extrapolation. Precise tuning for g2

0 of the 14 steps of the
three targets eliminated the largest systematic uncertainty in the step β-function from
model-dependent interpolation in the bare gauge coupling. Figure 5.18 shows the
remarkable accuracy of tuning for the three targets at better than per mille accuracy
level, like for the entries of Table 5.4.

5.7.4 Continuum extrapolation

Cut-off effects have to be removed from the step β-functions at finite lattice spacing.
The leading cut-off effects are a2/L2 corrections in each L/a → 2L/a pair for the

step β-function at the targeted renormalized couplings. Linear fits to the lattice step
functions in a2/L2 allows continuum extrapolation to the a2/L2 → 0 limit, as shown
in Figure 5.19. For all three targets linear four-point fits of the step functions were
used with consistently good χ2 results.

The final results of our continuum step β-function are shown in Figure 5.20 with
overwhelming statistical evidence against the IRFP of [158] in the targeted interval.
Leaving open the existence of the IRFP in [158], a new study of the β-function appeared
recently in a different renormalization scheme of the model and without our targeted
goal [48].

5.7.5 Conclusions

Curiously, a conjectured inequality fIR ≤ fUV of the free energy comparing the
infrared and ultraviolet limits in models with SU(N) color would predict an up-
per limit N crit

f ≤ 4
√
N2 − 16/81 before the theory becomes conformal, numerically
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Figure 5.19: Linear fits in a2/L2 are shown as explained in the text. The 16 → 32
steps of target B and target C are not included in the 4-point fits without any influence
on the overwhelming statistical significance of the results. When they are included,
the continuum step β-function drops lower by approximately one standard deviation
with comparable errors and increased χ2/dof ∼ 1.5, perhaps hinting at sub-leading
small a4/L4 cutoff corrections at low L/a when the renormalized gauge coupling gets
stronger.
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Figure 5.20: Our step β-function demonstrates that the conformal fixed point of [158]
is eliminated in the targeted interval with overwhelming statistical evidence.

N crit
f ≤ 11.87 for the crossing point for N = 3 colors [247]. Avoiding the violation

of the conjecture for the inequality of the free energy in the model would require a
credible fixed point identified at strong coupling above the [6.0-6.4] interval.

Credible proof of conformal behavior based on the β-function requires two necessary
steps in strongly coupled gauge theories. First, the critical gauge coupling g2

∗ has
to be determined where the scheme-dependent β-function vanishes and signals the
location of the conformal IRFP. The slope of the β-function at the fixed point is a
scheme-independent scaling exponent ω which controls the leading conformal scaling
corrections to fermion mass deformations close to the IRFP [44, 102, 240, 248]. The
choice in scheme dependence can move the position of the conformal IRFP but cannot
destroy its existence, or change the universal scaling exponent ω. We were unable
to find in the published literature of the model any IRFP which would satisfy these
demanding criteria.

Other lattice efforts to determine the precise position of the Nf = 12 model with
respect to the conformal window were discussed in a recent review [35] surveying with
extensive references the scaling analysis of the mass-deformed composite spectrum,
the finite temperature phase transition, the study of the fermion mass anomalous
dimension, and hunt for fixed point zeros in the β-function featuring the conformal
IRFP discussed here. Contrary to [35], we do not find compelling evidence in the survey
for conformal behavior in the model. Close to the CW, scaling analysis of the mass-
deformed composite spectrum cannot be conclusive before the massless fermion limit
and the continuum limit are taken under controlled conditions. If the misidentified
near-conformal theory with χSB is forced to a small volume where the most basic
condition F · L � 1, set by the Goldstone decay constant F in the chiral limit, is
violated and instead the gauge theory is squeezed into the F ·L� 1 condition, the only
relevant non-conformal scale F is lost and the theory begins to show confused leading
conformal exponents without consistent scaling correction exponent ω, a problem never
critically addressed before.
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Figure 5.21: The continuum extrapolated discrete β-function for various SU(3) models.
Where available also the 0++ scalar mass in F units in the chiral limit is also estimated.

5.8 Running coupling summary

Using the finite volume gradient flow scheme the continuum β-functions of the funda-
mental Nf = 4, 8, 12 and the sextet Nf = 2 models were obtained. In these models
we also have estimates for the mσ/F ratio in the chiral limit. Here mσ is the mass
of the 0++ scalar. A curious correlation between this ratio and the β-function can be
observed as summarized on figure 5.21.

As the flavor content approaches the conformal window the β-function becomes
smaller smaller and the mσ/F ratio becomes smaller and smaller as well. At the same
time, the m%/F ratio is largely insensitive to the flavor content and m%/F ∼ 8 for
SU(3) regardless of Nf and even the representation (fundamental or sextet) as long
as the model is outside the conformal window. Hence as the conformal window is
approached the ratio mσ/m% becomes smaller and smaller. One might argue that
the scalar becomes parameterically light relative to the rest of the spectrum as the
conformal window is approached and the β-function becomes smaller and smaller.
This is precisely the scenario of a dilaton-like scalar although it is not at all clear
how the breaking of scale invariance indeed leads to a dilaton-like effective theory
for the strongly interacting gauge theories we consider here [17, 18]. Nevertheless the
numerical evidence so far seems to favor this scenario.
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