

VALIDATING AND APPLYING MODEL TRANSFORMATIONS

László Lengyel

Dissertation submitted
for the degree of Doctor of the Hungarian Academy of Sciences

Budapest, 2018

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

Contents	

	
Contents .. 2

List of Figures.. 5

Summary ... 7

Összefoglaló .. 8

Acknowledgements .. 9

1 Introduction ..11

1.1 Motivations ..12

1.2 Structure of the Thesis ..14

2 Backgrounds ...15

2.1 Internet of Things ...15

2.2 Software Development Methodologies ...17

2.2.1 Integrated Solutions ...17

2.2.2 Impacts of the Development Methodologies ...18

2.3 Software Modeling and Domain-Specific Languages ..20

2.4 Domain-Specific Modeling ..21

2.5 Semantics of Software Models ...22

2.6 Model-Driven Development and Model Processing ..22

2.7 Classification of Model Transformation Approaches ..23

2.8 Graph Rewriting-Based Model Transformation ..24

2.9 A Modeling and Model Transformation Framework ...25

3 Methods for Verifying and Validating Graph Rewriting-Based Model Transformations27

3.1 Introduction ...27

3.2 The Dynamic Validation Method..30

3.2.1 An Example ...30

3.2.2 A Validation Method for Rule-Based Systems ..32

3.3 Model Transformation Property Classes ...34

3.3.1 Syntactic Correctness Property Class – PrCSynt ...37

3.3.2 Liveness Property Class – PrCLives ..38

3.3.3 Completeness and Mapping Property Class – PrCComp ..40

3.3.4 Semantic Correctness Property Class – PrCSem ...40

3.3.5 Attribute Range Property Class – PrCAttr ..41

3.3.6 Architectural Property Class – PrCArch ..42

3.3.7 Summary ...42

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 3

3.4 A Method for Taming the Complexity of Model Transformation Verification/Validation
Processes.. 43

3.5 Test-Driven Verification/Validation of Model Transformations 46

3.6 Conclusions ... 51

4 Model-Driven Methods Based on Domain-Specific Languages and Model Processors 53

4.1 Introduction ... 53

4.2 Quality Assured Model-Driven Requirements Engineering and Software Development ... 53

4.2.1 Domain-Specific Languages for Requirements Engineering ... 56

4.2.2 Generating Software Artifacts ... 64

4.2.3 Evaluation of the Method .. 65

4.3 Developing and Managing Domain-Specific Models ... 66

4.4 Processing Mathworks Simulink Models with Graph Rewriting-Based Model
Transformations ... 67

4.4.1 Communication between Simulink and VMTS .. 68

4.4.2 Visual Debugging Support for Graph Rewriting-based Model Transformations 69

4.5 Managing Energy Efficiency-related Properties ... 70

4.5.1 Modeling and Generating Energy Efficient Applications ... 71

4.5.2 Discussion ... 73

4.6 Conclusions ... 74

5 Applying Domain-Specific Design Patterns and Validating Domain-Specific Properties 76

5.1 Introduction ... 76

5.2 Domain-Specific Design Patterns .. 76

5.3 Validating Domain-Specific Properties of Software Models ... 79

5.3.1 Examples for Validation-related Requirements .. 81

5.3.2 Extending the Transformation with Success and Negative Success Conditions to Validate
Domain-Specific Properties .. 81

5.4 Modularized Constraint Management .. 88

5.4.1 Managing Repetitive Constraints ... 89

5.4.2 Semi-Automatic Modularization of Transformation Constraints 92

5.5 Conclusions ... 95

6 Application of the Results... 97

6.1 Software Applications and Tools Developed within the Scope of the Research Activities. 99

6.1.1 Visual Modeling and Transformation System .. 100

6.1.2 SensorHUB Framework .. 100

6.1.3 Multi-domain IoT .. 106

6.2 Research and Development Projects Utilizing the Results .. 110

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

4

6.2.1 Modeling and Model Processing .. 110

6.2.2 Quality Assured Model-Driven Requirements Engineering and Software Development
 111

6.2.3 Model-Driven Technology to Support Multi-Mobile Application Development 111

6.2.4 Supporting Human Resource Management Frameworks with Rule Engine-Based
Solutions ... 111

6.2.5 Graf IEC .. 112

6.2.6 Several Domains, Big Data, Big Challenges, Great Opportunities 113

6.3 Conclusions ... 116

7 Summary... 117

7.1 Thesis I: Methods for Verifying and Validating Graph Rewriting-Based Model
Transformations .. 117

7.2 Thesis II: Model-Driven Methods Based on Domain-Specific Languages and Model
Processors ... 118

7.3 Thesis III: Applying Domain-Specific Design Patterns and Validating Domain-Specific
Properties .. 119

Publications Closely Related to the Thesis .. 120

Bibliography ... 123

 	

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 5

List	of	Figures	

Figure 2-1 Classification of model transformation approaches .. 23
Figure 2-2 Overview of the graph rewriting-based model transformation process.............................. 25
Figure 2-3 The VMTS domain modeling platform .. 26
In Figure 3-1 The Paths of model transformations .. 27
Figure 3-2 The DomainServers metamodel ... 30
Figure 3-3 Example model transformation: LoadBalancing .. 31
Figure 3-4 Example model transformation rules: (a) AddNewServer and (b) RearrangeTasks 31
Figure 3-5 Property classes... 35
Figure 3-6 Classifying Model Transformation Approaches by Model Processing Properties – Summary
of the Property View, Computational View and Path View .. 43
Figure 3-7 Taming the complexity of model transformation verification/validation processes 44
Figure 3-8 A test-driven method for validating model transformations .. 48
Figure 4-1 Assuring the quality of software development projects with model-driven techniques 55
Figure 4-2 Metamodel of the common language elements .. 57
Figure 4-3 The Use Case metamodel .. 58
Figure 4-4 A sample Use Case diagram .. 58
Figure 4-5 The Activity (user story) metamodel ... 59
Figure 4-6 A sample Activity diagram .. 60
Figure 4-7 The Requirements and the Concept dictionary metamodels.. 60
Figure 4-8 A sample Concept dictionary specification .. 61
Figure 4-9 The EEF editor of an Actor object ... 61
Figure 4-10 The SourceView of the Editor .. 62
Figure 4-11 The Reference chooser dialog window .. 62
Figure 4-12 Tooltip of a referred element ... 62
Figure 4-13 The Image browser dialog window and a sample inserted image placeholder with a tooltip
 .. 63
Figure 4-14 Supporting the transparent switch between the textual and visual views of semantic models
 .. 67
Figure 4-15 Processing Mathworks Simulink models with graph rewriting-based model transformations
(within the VMTS Framework) .. 69
Figure 4-16 Managing different aspects, including the energy efficient operating properties, of software
systems on the modeling level .. 72
Figure 5-1 Supporting domain-specific design patterns ... 77
Figure 5-2 Example of (a-b) invalid partial instances, (c) valid partial instance 78
Figure 5-3 Validating domain-specific properties of software models ... 80
Figure 5-4 Extending model transformations with validation transformation rules: (a) Original model
transformation, (b) Transformation extended with an intermediate SC, (c) Transformation extended with
a final SC, (d) Transformation extended with an intermediate NSC, (e) Transformation extended with a
final NSC. .. 82
Figure 5-5 Extending model transformations with complex validation: (a) Original transformation, (b)
Transformation implementing an optimized transitive closure, (c) Transformation extended, with
several transformation rules, (d) Transformation extended with a sub-transformation. 83
Figure 5-6 A Algorithm GENERATEVALIDATIONTRANSFORMATIONRULE: (a) Constraint serverLoad
and the generated rule, (b) Constraint largeThreadPools and the generated rule, (c) Constraint
serverQueueThreadNumbers and the generated rule. .. 85

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

6

Figure 5-7 Algorithm EXTENDTRANSFORMATIONWITHVALIDATIONRULES: (a) A success and a
negative success condition of the transformation, (b) Validation points, (c) Generated validation
transformation rules (RuleSC and RuleNSC), (d) The stages of the transformation control flow extension.
 ...86
Figure 5-8 Managing validating constraints in a modular way ...90
Figure 6-1 Novel scientific results and their application fields ...97
Figure 6-2 Architecture of the SensorHUB .. 101
Figure 6-3 The detailed architecture of the SensorHUB framework ... 103
Figure 6-4 SensorHUB data store variations .. 104
Figure 6-5 A possible deployment of the SensorHUB framework with client applications 105
Figure 6-6 The environment of an application that utilizes the SensorHUB framework 106
Figure 6-7 Overview of the Model-driven Multi-Domain IoT .. 107
Figure 6-8 Model processing ... 109
Figure 6-9 HR Rule Engine user interface in VMTS .. 112
Figure 6-10 Graf IEC user interface in VMTS ... 113

 	

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 7

Summary	

Software is a must to have artifact. We are continuously developing applications for every aspect of our
life, for business issues, for various large-scale, embedded and smart devices as well. We use different
development methods to support these activities. Applications and services continuously generate huge
data streams especially when new sensors, mobile devices, smart solutions and different modern tools
are considered. Storing, processing, analyzing, extracting actionable information and utilizing this data
requires domain knowledge, algorithms, processes, effective methods and powerful infrastructure. The
research results discussed in the thesis are supporting these activities by methods providing effective
system design and development. The core motivation is to utilize domain-specific modeling and model
processing to improve the quality of the model processors, and therefore, the quality of the generated
software artifacts.

The growing dimension and complexity of software systems have turned software modeling
technologies and model-driven development into an efficient tool in application development. Within
the modeling approaches, there exists a clear trend to move from universal modeling languages towards
domain-specific solutions. Domain-specific languages are strictly limited to a domain, but this limitation
also makes them much more efficient. The motivation behind domain-specific modeling is to understand
the rules and processes of the organization/domain that we are about to support with software artifacts.
Further goal is to understand the actual tasks and challenges of the organization, define them as domain
models, and derive the software system related requirements from these models. The focus point of the
research activities are to work out and apply methods for the following areas:

‒ Provide domain-specific methods to support effective requirements engineering, specification,
software modeling, model processing, i.e. development and maintenance.

‒ Work out methods for verifying and validating model processors to ensure high quality software
artifacts.

‒ Apply domain-specific design patterns and validate domain-specific properties.

Research directions are influenced by two main aspects. The first aspect is to follow the international
research trends, be an active and determining part of the community, furthermore, from time to time,
contribute outstanding results on certain areas. The second aspect is to support model-driven
development related industrial requirements. I believe that the real value of research results manifests
in their application and utilization. Therefore, the selection of research directions and working on them
have always been significantly affected by the strategies, goals and requirements of the application area.

The thesis emphasizes the necessity of domain-specific tools, and methods that make development
activities validated, discusses the different scenarios of model transformation verification and validation,
furthermore, introduces the principles of several novel model-driven methods and techniques for
validating domain-specific system properties.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

8

Összefoglaló	

A szoftver, legyen szó szolgáltatásokról vagy alkalmazásokról, a mindennapjaink része. Folyamatosan
fejlesztünk megoldásokat az élet változatos részeinek támogatására, különféle komplex irányításokra és
vezérlésekre, beágyazott rendszerekbe és okos eszközökre. Változatos módszereket és
fejlesztőeszközöket alkalmazunk és használunk ezen tevékenység során. Az alkalmazások és
szolgáltatások, különösen igaz ez nagyszámú szenzorral felszerelt rendszerek esetén, hatalmas
adatmennyiséget generálnak. Ezen adatok tárolása, feldolgozása, elemzése, a tettre fogható információ
kinyerése és hasznosítása szakterületi tudást, hatékony algoritmusokat, folyamatokat, módszereket,
valamint megbízható infrastruktúrát igényel. Az értekezésben tárgyalt kutatási eredmények ezen
célokhoz járulnak hozzá a rendszertervezést és a fejlesztést támogató módszerekkel. A kutatómunka
meghatározó motivációja a modellfeldolgozók, ezáltal a szoftvertermékek, minőségének növelése,
melynek központi eszközrendszere a szakterületi modellezés és modellvezérelt technikák alkalmazása.

A szoftverrendszerek növekvő komplexitása révén kerül előtérbe a modellvezérelt fejlesztés, mint
hatékony eszköz. Meghatározó eleme a szakterületi modellezés alkalmazása, melynek kiemelt célja
megérteni annak a szervezetnek és alkalmazási területnek a felépítését és működését, amelynek a
munkáját szoftvertermékekkel támogatni fogjuk. Cél megérteni a szervezet aktuális feladatait,
szakterületi modellek formájában rögzíteni, valamint származtatni a szoftverrendszerhez kapcsolódó
követelményeket. A kutatómunka célkitűzéseinek központi elemei a következők:

‒ A követelményelemzés, a szoftvermodellezés és a modellfeldolgozás támogatása, módszerek
kidolgozása a szakterület-specifikus elemek figyelembe vételével és alkalmazásával.

‒ A modellfeldolgozók helyességvizsgálatát támogató módszerek és megoldások kidolgozása és
alkalmazása.

‒ Szakterület-specifikus tulajdonságok validálását és szakterület-specifikus tervezési minták
alkalmazását támogató módszerek kidolgozása és használata.

A kutatási irányokat folyamatosan két fő szempont befolyásolta. Az első tényező a nemzetközi kutatási
trendek követése, szerepvállalás és bizonyos területeken kiemelkedő eredmények és teljesítmény
felmutatása. A második tényező a modellvezérelt fejlesztéshez kapcsolódó ipari igények támogatása.
Fontos pontnak tartom annak felismerését, hogy a tudományos eredmények valódi értéke az
alkalmazásukban is megmutatkozik. Ezért a kutatási témák megválasztásában és művelésében mindig
meghatározó szerepe volt az alkalmazói szféra stratégiájának, céljainak, valamint a tudományos
műhelyünktől elvárt eredményeknek.

Az értekezés hangsúlyosan foglalkozik a szakterületi eszközök szükségességével, a módszerek
fontosságával, melyek a fejlesztési aktivitásokat, a modellfeldolgozókat hivatottak validálni.
Tárgyalásra kerülnek a modellfeldolgozók validálásának különböző forgatókönyvei, valamint több új
módszer bevezetése történik meg a szoftverrendszerek szakterülti tulajdonságainak garantálására és a
modellfeldolgozók validálására.

 	

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 9

Acknowledgements	

This thesis could not have been created without the support of many people. First of all, I am grateful to
my family, because of their support, tolerance and understanding. Furthermore, I would like to thank
my friends the time spent together also helped my work.

I am indebted to Tihamér Levendovszky, who inspired my research activities during the early period. I
would like to thank him the long Friday afternoon consultations, and later the skype discussions. He has
motivated and guided me through this endeavor. This work could not have happened without him.

I am indebted to Hassan Charaf for providing the power and the human conditions of the work,
furthermore, his advices related both to research directions and not research related topics. I would like
to thank to István Vajk and Jenő Hetthéssy their stimulating words and advices.

I am grateful to Gergely Mezei for the common work in the implementation, and I would like to thank
him his useful research related questions and remarks. I would like to thank the colleges at the
Department of Automation and Applied Informatics (Budapest University of Technology and
Economics) their help. I also thank my coauthors for the common work.

Thanks to the reviewers of the papers their very useful advices, criticism, suggestions, remarks and
questions. The reviews helped me a lot during the work.

Finally, I would like to give thanks to God bringing all these people into my life.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 11

1 Introduction	

The information and communication technologies (ICT) play a horizontal role both in the society and
in the economy. ICT has a carrier role; it significantly contributes to the competitiveness of various
domains. Based on the industry-defined requirements, ICT supports the rapid application and utilization
of various research results in various domains. Our society requires more and more high-quality
applications and services. This motivates the ICT sector to work out convergent development
methodologies and provide sustainable development processes. We are continuously developing
applications for every aspect of our life, for the business issues and for different large scale, embedded
and smart devices as well. We use different development methods to support these activities. To increase
the effectiveness of development and improve the quality of software artifacts, we apply model-driven
methods, i.e. we move the design to higher abstraction level and derive source code, configuration files
and further artifacts from software models.

Model-driven software engineering is a discipline in software engineering that relies on models as first-
class artifacts that aim to develop, maintain, and evolve existing software through the implementation
of model transformations. Model-driven software engineering approaches emphasize the use of models
at all stages of system development. As the necessity for reliable systems increases, both the
specification of model transformations and the verification and validation of model transformation-
based approaches become emerging research fields. In this context, verification and validation mean
determining the accuracy of a model transformation and ensure that the output models of the
transformation satisfy certain conditions.

Model transformations appear in a variety of ways in the model-based development process
[Sztipanovits et al, 1997] [Sendall and Kozaczynski, 2003] [Küster, 2006]. A few representative
examples are as follows. (i) Refining the design to implementation [Barbosa, 2009] [6]; this is a basic
case of mapping platform-independent models to platform-specific models. An example of this exists
in the current MDA initiative [OMG MDA, 2014] which favors the use of model transformations, within
UML-based [OMG UML, 2015] development of software systems, for a variety of different purposes.
(ii) Transforming models into other domains, e.g., transforming system models into a mathematical
domain (transition systems, Petri nets, process algebras, etc.) to perform a formal analysis of the system
under design [Biermann et al, 2011] [Varró, 2004]. (iii) Aspect weaving; the integration of aspect
models/code into functional artifacts is considered a transformation on the design [Assmann and
Ludwig, 2000]. (iv) Analysis and verification: certain analysis algorithms can be expressed as
transformations on the design [Assmann, 1996] [5]. (v) Refactoring purposes: improving model
attributes and/or model structure while preserving the external semantic meaning [v. Gorp et al, 2003].
(vi) Simulation and execution of a model as operational semantics, migration, normalization and
optimization of the models [Amrani et al, 2012] [Taentzer et al, 2005].

As model transformations are being applied to so many diverse scenarios, there is a compelling need for
techniques and methodologies regarding their further development, and also for verifying/validating
them [Cabot et al, 2010].

There are methods, techniques and tools successfully applied to develop robust, large-scale software
systems. Their design, development, testing, operation and maintenance activities require reasonable
time and resources. However, with the growing volume of required software systems, these activities
should be optimized, better supported with methods and tools, in order to preserve or even increase the
quality with optimized resource allocation.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

12

Developing and then maintaining complex frameworks, e.g. AWS IoT [AWS IoT], Azure IoT Suite
[Azure IoT Suite] or SensorHUB [9], furthermore, designing/developing services and applications on
top of such extensive platforms, requires convergent development methods, appropriate tool support,
furthermore, effective management and application of architectural patterns, design patterns and best
practices. These elements, i.e. software products related patterns and best practices are basically domain-
specific or they are related to domain-specific rules and processes.

As a conclusion, we have found that the growing dimension and complexity of software systems have
turned software modeling technologies and domain-specific methods into efficient tools in application
design and development, i.e. during the whole process: requirements engineering and analysis,
specification, design, development, testing, documentation and maintenance.

We aim for model properties, for example in requirements’ models, important for the assessment, to be
transformed precisely into the output domain (software systems). During the design of such a
transformation, and later during the application of this transformation, we face the following questions:
What ensures that the transformation process to the output domain is correct? What type of properties
can a transformation preserve?

1.1 Motivations		
We often project models into another domains or formats, for example, into formal models. In addition,
we always ask, what ensures that the projection is free of conceptual errors? The central question of the
area is the following: how can we ensure that the model transformation does what it is intended to do?

For most software systems, the design process requires the continuous validation of the design decisions.
Modeling languages and general modelling tools control the syntactic of the models but could not
guarantee the correctness of the design. Therefore, during the design process of digital systems, we often
transform design models into various formal domains in order to perform analysis of the system under
design. These model transformations between the different representations should preserve key semantic
properties of the software models.

The goal of the transformations’ analysis is to show that in case of valid input models, certain properties
will be true for the output model. The analysis of a transformation is said to be static when the
implementation of the transformation and the language definition of the input and output models are
used during the analysis process, but we do not take concrete input models into account. In the case of
the dynamic approach, we analyze the transformation for a specific input model, and then check whether
certain properties hold for the output model during or after the successful application of the
transformation. The static technique is more general and poses the more complex challenges.

In order to further strengthen the motivation of the research area, the following paragraphs provide a
collection of challenging transformations defined by different research groups.

[Giese et al, 2006] discussed that the problem in using model-driven software development (MDD) is
the lack of verified transformations, especially in the area of safety-critical systems. The verification of
crucial safety properties on the model level is only useful if the automatic code generation is guaranteed
to be correct, i.e., the verified properties are guaranteed to hold for the generated code as well. This
means it is necessary to pay special attention to the checking of semantic equivalence, at least to a
moderate level, between the model specification and the generated code.

In the field of developing safety-critical systems, model analysis possesses advantages over the pure
testing of implemented systems. For example, required safety properties of a system under development
could be verified on the model level rather than trying to systematically test for the absence of failures.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 13

This and similar conditions require a guarantee that properties verified at the model level are transformed
correctly into source code.

[Narayanan and Karsai, 2008] summarized that, in model-based software development, a complete
design and analysis process involves designing the system using the design language, converting it into
the analysis language, and performing the verification on the analysis model. They stated that graph
transformations are a powerful and convenient method increasingly being used to automate this
conversion. In such a scenario, the transformation must ensure that the analysis model preserves the
semantics of the design model. Important semantic information can easily be lost or misinterpreted in a
complex transformation due to errors in the graph rewriting rules or in the processing of the
transformation. They concluded that methods are required to verify that the semantics used during the
analysis are indeed preserved across the transformation.

[de Lara and Taentzer, 2004] discussed the need for verified and validated model processing in the field
of Multi-Paradigm Modeling (MPM) [de Lara et al, 2004]. Software systems have components that may
require descriptions using different notations, due to different characteristics. For the analysis of certain
properties of the whole system, or its simulation, we transformed each component into a common single
formalism, in which appropriate analysis or simulation techniques are available.

A similar situation arises with object-oriented systems described in UML, where various views of the
system are described through different diagrams. For the analysis of such a system, the different
diagrams can be translated into a common semantic domain. These and similar model transformations
should ensure the preservation of relevant system properties.

[de Lara and Guerra, 2009] provided formal semantics for QVT-Relations (Query, Views,
Transformations) [OMG QVT, 2016], through the compilation into Colored Petri nets (CPNs), enabling
the execution and validation of QVT specifications. The theory of Petri nets provides useful techniques
to analyze transformations (e.g. reachability, model checking, boundedness and invariants) and to
determine their confluence and termination, given a starting model. This approach requires that
transformations, converting QVT-Relations models into CPNs, preserve the semantics relevant to the
analysis.

[Varró, and Pataricza, 2003] states that, for most computer-controlled systems, an effective design
process requires an early validation of the concepts and architectural choice. Therefore, during the
design of systems, models are frequently projected into various mathematical domains (such as Petri
nets, process algebras, etc.) in order to perform formal analysis via automatic model transformations.
Automation certainly increases the quality of such transformations as errors manually implanted into
transformation programs during implementation are eliminated. Consequently, verification and
validation of model transformations is required, which assures that conceptual flaws in transformation
design do not remain undetected.

[Varró, 2004] went on to state that, due to the increasing complexity of IT systems and modeling
languages, conceptual, human design errors will occur in any models on any high-level and even of the
formal modeling paradigm. Accordingly, the use of formal specification techniques alone does not
guarantee the functional correctness and consistency of the system under design. Therefore, automated
formal verification tools are required to verify the requirements fulfilled by the system model. As the
input language of model checker tools is too basic for direct use, model transformations are applied to
project behavioral models into the input languages of the model-checking tools.

To summarize, it is crucial to understand that model transformations themselves can be erroneous;
therefore, uncovering solutions to make model transformations free of conceptual errors is necessary.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

14

1.2 Structure	of	the	Thesis	
The Thesis has 7 chapters which are organized in the following way:

‒ Chapter 1 has provided the introduction, motivations and the main objectives related to the
research activities.

‒ Chapter 2 is the state of the art area, this chapter devoted to illustrate the research area: software
modeling and model processing, model-driven development, verification and validation of
model transformations.

‒ Chapter 3 discusses the novel methods for verifying and validating graph rewriting-based model
transformations. The chapter covers a suggested classification of model transformation
approaches by model processing properties, a method for validating rule-based systems,
suggestions for taming the complexity of model transformation verification/validation
processes, furthermore, a method and algorithms to support test-driven verification/validation
of model transformations.

‒ Chapter 4 suggests model-driven methods based on domain-specific languages and model
processors. The chapter introduces a method for assuring the quality of software development
projects with applying model-driven techniques and model-based tools, provides a method for
developing and managing domain-specific models, a method for supporting the transparent
switch between the textual and visual views of semantic models, a method for processing
Mathworks Simulink models with graph rewriting-based model transformations, furthermore
suggests a model-driven method for managing energy efficient operating properties.

‒ Chapter 5 provides methods for applying domain-specific design patterns and validating
domain-specific properties of software models. The chapter discusses a method to support
domain-specific design patterns, a method and algorithms for validating the domain-specific
properties of software models, furthermore, a method and algorithms for handling the validating
constraints in a modular way.

‒ Chapter 6 discusses the application fields of the achieved scientific results and introduces
several applications that utilize the research results. Furthermore, some Research &
Development projects are also introduced that utilized several elements of the results.

‒ Finally, Chapter 7 concludes the Thesis by summarizing the main scientific results.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 15

2 Backgrounds	

This section provides the state of the art overview of those information technology fields and research
areas that significantly contribute to the overall goal of the thesis, i.e. the verification and validation of
model transformations and the application of both domain-specific techniques and model-driven
solutions.

Technology trends continue by the unstoppable path towards cloud computing, big data, applications,
mobile devices, wearable gadgets, 3D printing, integrated ecosystems, and of course the Internet of
Things (IoT) as the next computing platform [Swan 2013] [Thibodeau, 2014].

2.1 Internet	of	Things	
The Internet of Things (IoT) is transforming the surrounding everyday physical objects into an
ecosystem of information that enriches our everyday life. The IoT represents the convergence of
advances in miniaturization, wireless connectivity and increased data storage and is driven by various
sensors. Sensors detect and measure changes in position, temperature, light, and many others,
furthermore, they are necessary to turn billions of objects into data-generating “things” that can report
on their status, and often interact with their environment.

The goal of the Internet of Things (IoT) is to increase the connectedness of people and things. The IoT
is the network of physical things equipped with electronics, software, sensors and connectivity that
provides greater value and better service by exchanging data with the manufacturer, operator and/or
other connected devices. Each element of the network, i.e. each thing, is uniquely identifiable through
its embedded computing system and is able to interoperate within the existing Internet infrastructure.

Things in the IoT can refer to a wide variety of devices such as biochips on farm animals, heart
monitoring implants, production line sensors in factories, vehicles with built-in sensors, or field
operation devices that assist firefighters. These devices collect useful data with the help of various
existing technologies, then autonomously flow the data between other devices and usually upload them
into a cloud environment for further processing.

The IoT together with the collected and analyzed data can help consumers achieve goals by greatly
improving their decision-making capacity via the augmented intelligence of the IoT. For businesses, the
Internet of Business Things helps companies achieve enhanced process optimization and efficiency by
collecting and reporting on data collected from the business environment. More and more businesses
are adding sensors to people, places, processes and products to gather and analyze information in order
to make better decisions and increase transparency.

Undoubtedly, the Internet of Things has reached and is about to dominate several domains. Top
industries investing in sensors and utilizing data collected by them are as follows (some of them are still
in active research phase, because of technical challenges and economic issues, but others are already
being implemented) [Sensing IoT, 2015]:

‒ Energy & Mining – Sensors continuously monitor and detect dangerous carbon monoxide levels
in mines to improve workplace safety.

‒ Power & Utilities – In the past, and mostly today, power usage is still measured on a yearly
basis. However, Internet-connected smart meters can measure power usage every 15 minutes
and provide feedback to the power consumer, often automatically adjusting the system’s
parameters.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

16

‒ Transportation and Vehicles – Sensors planted on the roads, working together with vehicle-
based sensors, are about to be used for hands-free driving, traffic pattern optimization and
accident avoidance.

‒ Industrial Internet (Industry 4.0) – A manufacturing plant distributes plant monitoring and
optimization tasks across several remote, interconnected control points. Specialists once needed
to maintain, service and optimize distributed plant operations are no longer required to be
physically present at the plant location, providing economies of scale. This is one of the areas
where significant improvements are expected in the near future.

‒ Hospitality and Healthcare – Electronic doorbells silently scan rooms with infrared sensors to
detect body heat, so the staff can clean when guests have left the room. Electro Cardio Graphy
(ECG) sensors work together with patients’ smartphones to monitor and transmit patients’
physical environment and vital signs to a central cloud-based system.

‒ Retail – Product and shelf sensors collect data throughout the entire supply chain. They often
provide from dock to shelf logs. Predictive analytics applications process these data and
optimize the supply chain.

‒ Technology – Hardware manufacturers continue to innovate by embedding sensors to measure
performance and predict maintenance needs.

‒ Financial Services – Telematics allows devices installed in the car to transmit data to drivers
and insurers. Applications like stolen vehicle recovery, automatic crash notification, and vehicle
data recording can minimize both direct and indirect costs while providing effective risk
management.

Wearable devices such as activity trackers, smart watches and smart glasses are good examples of the
Internet of Things (IoT), since they are part of the network of physical objects or things embedded with
electronics, software, sensors and connectivity to enable objects to exchange data with a manufacturer,
operator and other connected devices, without requiring human intervention.

Smart, connected products are products, assets and other things embedded with processors, sensors,
software and connectivity that allow data to be collected, aggregated, exchanged between the product
and its environment, manufacturer, operator or user, and further devices and systems. Connectivity also
enables some capabilities of the product to exist outside the physical device, i.e. in the cloud.

Smart Sensors are context (vehicle, forest, city, water, others) and domain (transportation, climate,
energy, smart city, smart building, others) aware and the collected data provide their real meaning, i.e.
their semantics, within the given environmental and time dimensions.

According to the surveys and estimations [BBC Research, 2017] [Slash Data, 2017a, 2017b] [Vision
Mobile, 2015a, 2015b], there will be 50 billion sensor-enabled objects connected to networks by 2020,
and 212 billion will be the total number of available sensor-enabled objects by 2020. The latter one is
28 times the total population of the world. Further numbers by 2020 are: 4 billion connected people, 25+
million applications, 25+ billion embedded and intelligent systems, 50 trillion GBs of data.

There are two aspects of the IoT world: the first one is collecting data, processing and analyzing it; the
second is providing services and applications on top of the analyzed data in order to support third-party
services and serve end-users. Data monetization, i.e. controlled data sharing, is part of the second aspect,
where well-defined slices (views) of the data represent valuable base information for different industrial
sectors.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 17

“Data is the new oil.” [Humbly, 2006] We often meet similar statements. IoT-based data collection, data
transmission, big data management, trusted cloud, and privacy issues are the main challenges of this
area. Frameworks help companies and research groups to contribute to the IoT ecosystem as well as to
the future design and to the development platforms. Based on the development results and ongoing
project activities, we can state that SensorHUB (Section 6.1.2) worked out by our team, utilizing a part
of the results summarized in this thesis, is such a framework.

2.2 Software	Development	Methodologies	
Software industry and information technology methods are affected and shaped by end-user, domain-
related and industrial requirements, trends and the fact that powerful hardware and communication
infrastructure are widely available. The goal of the currently emerging software solution approaches is
to address the values of unified development methods (targeting various devices and platforms,
including cloud-based services), software-intensive and zero maintenance requirements, energy-
efficient applications, cooperative behavior, software quality, lasting hardware and software solutions
(e.g., sensors with their embedded software).

There are several areas and capabilities of the ICT ecosystem that shapes the development processes
and have an effect on the elements and structures of the development methodologies.

Infrastructure, platform and software services are available in the cloud. These services are robust,
reliable, secure, scalable, and are always available with huge storage and powerful processing capacity.
Their availability is natural, we use and utilize them as a public utility.

We live in exponentially growing world, where ICT has a determining position and has a horizontal
role, i.e. responsible to make other domains competitive. Novel methodologies are about to be
sustainable, in order to make both development and maintenance efficient.

2.2.1 Integrated	Solutions	
There are given conditions and achieved results in both the hardware and the software areas,
furthermore, their combination has determined the current integrated solutions.

The hardware-related field, with its continuous development, contributes valuable conditions. Some
representative examples:

‒ Raspberry Pi zero, the 5 USD computer. Raspberry Pi is driving down the cost of computer
hardware, i.e. the programmable computer.

‒ Average price of IP-enabled sensors will be only 2 USD within years.

‒ Usage-based cloud services dominate the ICT area. Examples of cloud services include online
data storage and backup solutions, web-based e-mail services, hosted office suites and document
collaboration services, push notification, database processing, managed technical support
services and more.

‒ Huge storage and computing capacity (service) is available on reasonable price.

‒ Smart network is available: intelligent network solutions, i.e. routers, switches, network coding,
given infrastructure elements and their software components.

On the software area, there are also several achievements that support effective development and related
methodologies:

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

18

‒ Multi-platform development methodology [6]: a method, which increases the development
productivity of the same functionality for various platforms and ensures the quality of
applications.

‒ Several effective IDEs are available and ready to use. Examples are Eclipse, IDEA and Visual
Studio.

‒ IoT, big data analyses, business intelligence, reporting and visualization frameworks to increase
the productivity. Example frameworks are SensorHUB [9], AWS IoT [AWS Iot] and Azure IoT
Suite [Azure IoT Suite].

‒ Unified high-level language for software design: OMG’s UML [OMG UML, 2015].

‒ Domain-Specific Languages (DSLs) for dedicated domains to support the effective common
work of domain experts and software architects.

These points are examples to underpin, that both hardware infrastructure and software conditions are
developing, they are available for utilization, and our further added value should be in our research and
engineering capacities. Our next step is the capability that enables to realize real solutions in a
sustainable way and provide real value for the affected domains.

Integrated solutions, i.e. our present in the ICT field, are affected and labelled by these conditions. We
can summarize that software-intensive solutions dominate the ICT area and an increasing number of
domains. We are overwhelmed with a large number of applications. The digital enlightenment reaches
a wider range of population, i.e. more and more people can reach and use ICT-enabled services. The
wearable devices are about to conquer the near future. Autonomic computing, i.e. self-managing
characteristics of distributed computing resources, with the capability to adapt to unpredictable changes
also dominates the solutions area. Finally, the cost of human resources is rather high in the ICT field.

We see our future in the solutions area, which follows the further development of devices, e.g.
biosensor-enabled smartphones, latency issues (5G) with software-intensive solutions, automatic
updates in a pushed way. Furthermore, it provides a transparent handling method over the diversity of
devices, techniques, tools and methodologies. The significance of the domain knowledge is increasing,
which being combined with the common industrial requirements, enhances the weaving role of software
solutions (Weaving ICT), i.e. existing and novel research results can rapidly be applied for various
domains.

ICT companies see that business is shifting towards services. This development will naturally imply a
future business with more recurring software and services revenues. Hardware components would
always remain part of the solutions and will be one of the key differentiators. Companies now want to
make money when people use their services, not when people buy their devices.

In this area, software and the capability to efficiently develop high-quality, sustainable services and
applications have key role. Development processes require appropriate methodologies, tools and IT
specialists.

2.2.2 Impacts	of	the	Development	Methodologies	
Software development methodologies aim at four target groups of people, which can benefit from its
results. For each of the groups below, we specify tangible impact objectives with example measures and
justify the impact.

Software Developers

1. Productivity: Automation and shortening of cycle from requirements to code.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 19

2. Quality: Repeatable code generated from precise requirements leave much less space for errors.

3. Time to market: Higher productivity and quality (see above) results in faster release of systems
to the market.

4. Methodology, best practices, patterns, examples to follow: Defined, tested, documented
methods tested and verified by several senior developers, architects and researchers.

Software Tool Vendors

1. Tool offerings: Methods and technologies exhibit valuable benefits for software developers
which causes relevant prospects for related tool sales.

2. Customer base: Wider customer base is predicted due to effectiveness of the tools for domain
experts and end-users.

3. Market take-up: Methods and technologies are disseminated and gain attention of external tool
vendors due to validated benefits for software developers.

Software Users (Industry)

1. Compliance with requirements: Software generated from domain models better fulfils the end-
user needs. The end-users are able to control this compliance in a direct way.

2. Software acquisition: Due to market competition, software developers shift their savings from
increased productivity, in part to their clients.

3. Software reuse: UI-based reuse allows for high levels of recovery of application logic (use case
scenarios) into domain models. Lower levels can be achieved for services due to their
technology dependence.

4. End-user involvement: Project goal related results are developed from well-accepted standard
notations, suitable for communications with domain experts.

5. Software development framework: Supporting the effective development for multi-platform
environment in a unified way.

Software Engineering Educators and Researchers

1. Methodology, best practices, patterns, examples to follow: Defined, tested, documented
methods tested and verified by several senior developers, architects and researchers.

2. Course offerings: Methods and techniques have high potential in terms of novelty and coolness
to gain attention many software developers and end-users. This opens market for course
offerings both in commerce and in academia.

Appropriate software development methodologies significantly reduce effort to formulate requirements
and turn these requirements into working systems. Methods are about to adapt to the rapidly changing
conditions with putting the domain requirements into the center. In summary, development
methodologies promise productivity and quality increase. At the same time, novel methods are expected
to cause significant research community and industrial market take-up of its innovative methods and
thus contributing to competitiveness and growth of ICT research teams and software tool companies.

Based on the European ICT programs (H2020, Tools and Methods for Software Development),
development methodologies realize the following contribution towards expected impacts. Model-based
methods, domain-specific approaches, effective model-driven solutions highly contribute to these goals.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

20

1. A significant and substantiated productivity increase in the development, testing, verification,
deployment and maintenance of data-intensive systems and highly distributed applications.

o Efficient supporting methodologies, development of software at the level of
requirements, leveraging coarse grained reuse of available services.

o Concentration on domain models which facilitate processing of data within data-
intensive systems.

o Automatic translation of requirements models into application and cloud-enabled
service code ready for deployment in a selected highly distributed infrastructure.

o Instant testing and verification against requirements, through executing and simulating
code generated from these requirements.

o Extending the base for productivity increase by direct involvement of end-users
(domain experts) in the development of effective code.

2. Availability and market take-up of innovative tools for handling complex software systems. A
credible demonstration that larger and more complex problems can be effectively and securely
tackled.

o The main objective of the program is to make available a set of innovative methods,
patterns and best practices to handle complexity at the level of requirements. The
methods and technologies used within these tools will be prepared for easy take-up by
the software tool market, resulting in new innovative tool offerings.

o Domain experts can be effectively involved in formulating requirements.

3. At macro level, evidence of potential for productivity gains through appropriate use cases in
the industry.

2.3 Software	Modeling	and	Domain-Specific	Languages	
Software modeling is a key concept, which supports requirements engineering, requirements analysis,
facilitates the system definition and allows better communication on the appropriate abstraction level.
Furthermore, system models are the first-class artifacts in model-based development. Modeling and
model-based development gather several fields, such as UML [OMG UML, 2015], domain-specific
modeling, multi-paradigm modeling [de Lara et al, 2004], generative programming [Czarnecki and
Eisenecker, 2000] or model processing [Amrani et al, 2012] [Mens and v. Gorp, 2006] [Sendall and
Kozaczynski, 2003].

The growing dimension and complexity of software systems have turned software modeling
technologies into an efficient tool in application development. Within the modeling approaches, we are
moving from universal modeling languages towards domain-specific solutions.

In software development and domain engineering, a domain-specific language (DSL) [Fowler, 2010]
[Kelly and Tolvanen, 2008] is either a programming language or specification language dedicated to a
particular problem domain, a particular problem representation technique, and/or a particular solution
technique. DSLs are strictly limited to a domain, but this limitation also makes them much more efficient
than universal languages.

By domain-specific languages, we mean textual or visual languages that are used in a more specialized
way than in general-purpose programming. DSLs have limited expressive potential and can only
describe problems from a well-defined problem domain. These characteristics make them suitable to

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 21

achieve several different intents. Using domain-specific artifacts and enforcing the domain rules
automatically makes DSLs useful not only for software developers, but for domain experts as well.

A textual DSL is internal (or embedded) if it is implemented by using a general-purpose language in a
special, human-friendly way, for example, through macros or fluent interfaces [Fowler, 2010] [Kelly
and Tolvanen, 2008]. This allows for the reuse of the existing general-purpose language tooling, which
on the other hand, limits customizability and user-friendliness. Those textual DSLs that have their own
syntax are called external DSLs. These require an own parser but do not impose any limitations on the
syntax or on compiler messages.

DSLs are used for domain-specific problem descriptions. Because of the wide usage of DSLs, the
artifacts created with them (the instances of the language) have several different names. When dealing
with textual DSLs we usually speak about scripts, and visual DSL artifacts are generally called diagrams.
We may also use the terms program and model for any of the two kinds of DSLs because DSL scripts
and diagrams can be sometimes executable or in another case, it is practical to consider the stored
information as a model instance.

2.4 Domain-Specific	Modeling	
The key concept behind model-based software methods is to express vital information in the model and
let model processors accomplish the manual work of generating the code. This approach requires the
model to use a representation comfortable to express vital information; furthermore, the model and the
code generator together should provide all information required by the code generation. Domain-specific
modeling and model processing can successfully address these requirements.

Domain-specific modeling-based software development fundamentally raises the level of abstraction
while at the same time narrowing down the design space. With domain-specific languages, the problem
is solved only once by modeling the solution using familiar domain concepts. A reasonable part of final
products (source code, configuration files, and other artifacts) is then automatically generated from these
high-level specifications with domain-specific code generators. The automation of application
development is possible because the modeling language, the code generator, and the supporting
framework need to fit the requirements of a narrow application domain.

To raise the level of abstraction in model-driven development, both the modeling language and the
model processor (generator) need to be domain-specific. This approach improves both the performance
of the development and the quality of the final products. The benefits of the method are improved
productivity, better product quality, hiding complexity, and leveraging expertise.

We define a domain as an area of interest to a particular development effort. Domains can be a
horizontal, i.e. technical, such as persistency, user interface, communication, or transactions, or vertical,
i.e. functional, business domain, such as telecommunication, banking, robot control, insurance, or retail.
In practice, each domain-specific modeling solution focuses on even smaller domains because the
narrower focus enables better possibilities for automation and they are also easier to define.

Examining industrial cases and different application areas where models are used effectively as the
primary development artifact, we recognize that the modeling languages applied were not general
purpose but domain-specific. Some well-known examples are languages for database design and user
interface development.

Using DSLs has the benefit that domain experts do not have to learn new (programming) languages.
They can work with the already well-known domain concepts. By domain-specific modeling, domain
experts define the business processes and domain requirements using the concepts of the domain.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

22

Domain-specific models are rarely the final product of a modeling scenario. We can generate reports,
document templates, or statistics from models. Moreover, the specialization makes it possible to develop
a framework containing the base knowledge of the domain and generate code from models utilizing the
features of this framework. As a result, we reduce the amount of error-prone manual mappings from
domain concepts to design or to programming language concepts.

2.5 Semantics	of	Software	Models	
In computer science, the term semantics refers to the meaning of language constructs. Semantics
provides the rules for interpreting the syntax which do not provide the meaning directly but constrains
the possible interpretations of what is declared. Formal semantics, for instance, helps to write compilers,
better understand what a program (model transformation) is doing, prove language statements, support
optimization and refactoring by providing semantics and semantical comparison of models. There are
many approaches to formal semantics; these belong to three major classes:

‒ Operational semantics. The meaning of a construct is specified by the computation it induces
when it is executed on a machine. In particular, it is of interest how the effect of a computation
is produced.

‒ Denotational semantics. The meaning is modelled by mathematical objects that represent the
effect of executing the constructs. Therefore, only the effect is of interest, not how it is obtained.

‒ Axiomatic semantics. Specific properties of the effect of executing the constructs are expressed
as assertions. Therefore, there may be aspects of the executions that are ignored.

Apart from the choice between denotational, operational, or axiomatic approaches, most variation in
formal semantic systems arises from the choice of supporting mathematical formalism. Some variations
of formal semantics include the following: action semantics, algebraic semantics, attribute grammars,
categorical semantics using category theory as the core mathematical formalism, others.

2.6 Model-Driven	Development	and	Model	Processing	
Developers generally differentiate between modeling and coding. Models are used for designing
systems, understanding them better, specifying required functionality, and creating documentation.
Code is then written to implement the designs. Debugging, testing, and maintenance are done on the
code level as well. Quite often, these two different “media” are unnecessarily seen as being rather
disconnected, although there are various ways to align code and models.

In model-driven development, we use models as the primary artifacts in the development process: we
have source models instead of source code. It raises the level of abstraction and hides complexity.

Truly model-driven development uses automated transformations in a manner similar to the way a pure
coding approach uses compilers. Once models are created, target code can be generated and then
compiled or interpreted for execution. From a modeler’s perspective, generated code, of a specific area
or component, is complete and it does not need to be modified after generation. This means, however,
that the intelligence is not just in the models but also in the code generator and underlying framework.
Otherwise, there would be no raise in the level of abstraction and we would be round-tripping again.

While making a design before starting implementation makes a lot of sense, most companies want more
from the models than just throwaway specification or documentation that often does not reflect what is
actually built.

Domain-specific modeling does not expect that all code can be generated from models, but anything
that is modeled from the modelers’ perspective, generates complete finished code. Usually this is the

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 23

code of a software component or module. This completeness of the transformation has been the
cornerstone of automation and raising abstraction in the past.

The generator is written by a company’s own expert developer who has written several applications in
that domain. The code is thus just like the best in-house code at that particular company rather than the
one-size-fits-all code produced by a generator supplied by a modeling tool vendor.

Next section providing a classification discusses the popular model processing methods.

2.7 Classification	of	Model	Transformation	Approaches	
There are several model transformation approaches ranging from relational specifications [Akehurst and
Kent, 2002] to graph transformation techniques [Ehrig et al, 1999], to algorithmic techniques for
implementing a model transformation. Based on [Czarnecki and Helsen, 2006] and [Mens and v. Gorp,
2006], we distinguish between the following approaches (Figure 2-1).

Figure 2-1 Classification of model transformation approaches

‒ Traversal-based and direct manipulation approaches. Traversing model processors provide
mechanisms to visit the internal representation of a model and write text (source code or other
text, e.g., XML) to a stream while optimizing and generating models and other artifacts.
Furthermore, modeling and model processing approaches (aside from the model representation)
offer some API to manipulate the models. These approaches are usually implemented using an
imperative programming language [Vajk et al, 2009].

‒ Template-based approaches. Approaches in this category are mainly applied in the case of
model-to-code generation. A template usually consists of the target text containing splices of
source code (meta-code) used to access information from the source and to perform code
selection and iterative expansion. The meta-code may be imperative program code or
declarative queries as is the case with OCL [OMG OCL, 2014], XPath, or T4 Text Templates
[Microsoft T4].

‒ Relational approaches. These approaches declaratively map between source and target models.
This mapping is specified by constraints, which define the expected results, not the way in which
they are achieved. Some examples of this are Query, Views, Transformations (QVT) [OMG
QVT, 2016] and partially Triple Graph Grammars (TGGs) [Schürr, 1994].

‒ Graph rewriting-based approaches. Models are represented as typed, attributed, labeled graphs.
The theory of graph transformation is used to transform models. Some examples of these
approaches are AGG [AGG], AToM3 [AToM3], GReAT [GReAT], TGGs, VIATRA2
[VIATRA2] and VMTS [VMTS].

Traversal-based and direct
manipulation approaches Relational approaches

Template-based approaches

Graph rewriting-based
approaches

Hybrid approachesStructure-driven
approaches

Classification of Model Transformation Approaches

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

24

‒ Structure-driven approaches. The transformation is performed in phases: the first phase is
concerned with creating the hierarchical structure of the target model, whereas the second phase
sets the attributes and references for the target (e.g. OptimalJ and QVT).

‒ Hybrid approaches. Hybrid approaches combine two or more of the previous categories (e.g.,
ATL [ATL] combines template-based, direct manipulation, and graph rewriting-based
approaches. Another hybrid approach worth mentioning is TGGs).

One of the most popular model transformation approaches, taking both the literature and the industry
into consideration, is the graph rewriting-based approach. In this method, the concentration is on the
verification and validation capabilities of the graph transformation-based approaches. Therefore, the
next section summarizes the theoretical foundations of this approach.

2.8 Graph	Rewriting-Based	Model	Transformation	
Graph rewriting-based transformations are a widely used technique for model transformation [Karsai et
al, 2003] [de Lara et al, 2004]. Graph transformations have their roots in classical approaches to
rewriting, such as Chomsky grammars and term rewriting [Rozenberg, 1997]. There are many other
representations of this, which are not yet mentioned. In essence, a rewriting rule is composed of a left-
hand side (LHS) pattern and a right-hand side (RHS) pattern.

Operationally, a graph transformation from a graph G to a graph H follows these main steps:

1. Choose a rewriting rule.

2. Find an occurrence of the LHS in G satisfying the application conditions of the rule.

3. Finally, replace the subgraph matched in G by the RHS.

There are many different graph transformation approaches applying the above steps [Rozenberg, 1997]
[Syriani, 2009]. One of them is the popular algebraic approach, based on category theory with push-out
constructs on the category, as seen in Graph [Ehrig et al, 2006]. Algebraic graph transformations have
two branches: the Single-Push-Out (SPO) and the Double-Push-Out (DPO) approach.

The DPO approach has a large variety of graph types and other kinds of high-level structures, such as
labeled graphs, typed graphs, hypergraphs, attributed graphs, Petri nets, and algebraic specifications.
This extension from graphs to high-level structures was initiated in [Ehrig et al, 1991a] [Ehrig et al,
1991b] leading to the theory of high-level replacement (HLR) systems. In [Ehrig et al, 2004], the concept
of high-level replacement systems was joined with adhesive categories, introduced by Lack and
Sobocinski in [Lack and Sobocinski, 2004], leading to the algebraic construct of adhesive HLR
categories and systems. In general, an adhesive HLR system is based on the double-push-out method.
However, these are not only for the category of Graphs, also called rules, which describe, abstractly,
how objects in this system can be transformed [Ehrig et al, 2006], Ehrig et al. provides a detailed
presentation of adhesive HLR systems.

Graph transformations define the transformation of models. The LHS of a rule defines the pattern to be
found in the host model; therefore, the LHS is considered the positive application condition (PAC).
However, it is often necessary to specify what pattern should not be present. This is referred to as
negative application condition (NAC) [Habel et al, 1996]. Besides NACs, some approaches [AGG]
[VIATRA2] use other constraint languages, e.g., OCL, to define the execution conditions.

The scheduling of transformation rules can be achieved by explicit control structures or can be implicit
due to the nature of their rule specifications. Moreover, several rules may be applicable at the same time.
Blostein et al. [Blostein et al, 1996] have classified graph transformation organization in four categories.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 25

(i) An unordered graph-rewriting system simply consists of a set of graph-rewriting rules. Applicable
rules are selected non-deterministically until none are applicable. (ii) A graph grammar consists of the
rules, a start graph and terminal states. Graph grammars are used for generating language elements and
language recognition. (iii) In ordered graph-rewriting systems, a control mechanism explicitly orders
the rule application of a set of rewriting rules (e.g., priority-based, layered/phased, or with an explicit
control flow structure). (iv) In event-driven graph-rewriting systems, rule execution is triggered by
external events. This approach has recently seen a rise in popularity [Guerra and de Lara, 2007].

Controlled (or programmed) graph transformations impose a control structure over the transformation
rules to maintain a stricter ordering over the execution of a sequence of rules. Graph transformation,
control structure primitives may provide the following properties: atomicity, sequencing, branching,
looping, non-determinism, recursion, parallelism, backtracking and/or hierarchy [Lengyel, 2006]
[Rozenberg, 1997].

Some examples of control structures are as follows: AGG [AGG] uses layered graph grammars. The
layers fix the order in which rules are applied. The control mechanism of AToM3 [AToM3] is a priority-
based transformation flow. Fujaba [Fujaba] uses story diagrams to define model transformations. The
control structure language of GReAT [GReAT] uses a dataflow diagram notation. GReAT also has a
test rule construction; a test rule is a special expression that is used to change the control flow during
execution. VIATRA2 [VIATRA2] applies abstract state machines (ASM). VMTS [VMTS] uses
stereotyped UML activity diagrams to further specify control flow structures. The model transformation
process is depicted in Figure 2-2. In [Taentzer et al, 2005], a comparative study is provided that examines
the control structure capabilities of the tools AGG, AToM3, VIATRA2, and VMTS.

Figure 2-2 Overview of the graph rewriting-based model transformation process

2.9 A	Modeling	and	Model	Transformation	Framework	
More than fourteen years ago, our research team has analyzed existing modeling frameworks. We have
found that it is possible to create a solution, which is highly customizable, but fast and efficient as well.
We have created our own modeling and model-processing framework, Visual Modeling and
Transformation System [VMTS]. Since then, we have fine-tuned the framework several times based on
the industrial requests and the experiences gained. Current version of VMTS is heavily based on
generative techniques [Czarnecki and Eisenecker, 2000] and uses a modular structure. Generative
techniques are used to create efficient and highly flexible APIs from domain definitions, while the
modular design helps in creating a wide range of applications based on these APIs. The result is a
framework, where the user can decide at run-time whether to use customizability features or
performance optimized version, furthermore, we can also choose the appropriate storage type (e.g. file,
database, cloud storage). VMTS also offers customizable graphical and textual editors for editing the
domain models.

transform

instantiateinstantiate

Meta-level

Model-leveldefine

Metamodel A Metamodel B

Instance model A Instance model B

Rules and
control flow

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

26

The Visual Modeling and Transformation System is a graph-based, domain-specific (meta)modeling
and model processing framework, or more likely a complete domain modeling platform. VMTS
addresses the diversity, various storage types, model processors and performance issues of the modeling
area. During its design and improvement, we have continuously taken into consideration the requests
from our industrial partners, cutting-edge technology solutions, knowledge of other modeling
frameworks, and the conclusions of workshops, where VMTS has been presented.

Figure 2-3 The VMTS domain modeling platform

In VMTS, we create domain definitions in a modeling IDE referred to as VMTS Studio. Domain
definitions are described by a graphical language similar to UML Class diagram. Domain entities,
relations between entities, their attributes and operations can be specified in a user-friendly way. From
the domain definition, we can generate an assembly (a .dll file), which represents a domain-specific API.
The domain assembly allows us to load, or save domain models (in several formats and media types)
and acts as a base for all VMTS-related applications. For example, we can build or generate a graphical
editor for domain models, we can edit models as a declarative document or we can also use the built-in
run-time script evaluator and execute changes on models – using the domain API – on-the-fly. Although
the IDE of VMTS is highly customizable for domains, we can also build a lightweight, standalone
application not using the IDE, but still working on the domain models, enforcing the domain rules and
supporting model storage functionality.

VMTS is used not only for modeling, but for model processing (code generation) as well. The first step
here is always to ensure that the model is valid. Theoretically, the domain definition does not allow
invalid models at all; however, code generators may also have certain additional requirements. By using
the domain API, these validations can be appied. Model processing could be relatively simple, since we
have to traverse the model objects and add the appropriate code fragments to the result on each model
element.

The majority of the results presented in the thesis are implemented, measured and validated with the
help of the VMTS framework.

 	

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 27

3 Methods	for	Verifying	and	Validating	Graph	Rewriting-Based	Model	
Transformations	

3.1 Introduction	
Both the complexity of software systems and the necessity for reliable systems increases. This results
that the verification and validation of model transformation-based approaches and the specification of
model transformations become emerging research fields. This section of the thesis provides a
classification framework for model transformation verification and validation approaches. We introduce
three views, Path View, Computational View, and Property View, which serve as the pillars of our
classification system.

The Path View allows the classification of model transformation verification and validation approaches.
The Computational View analyses the complexity aspect of verification and validation approaches. The
Property View allows to explore the properties of both the model transformation definition and the target
models which can be verified and/or validated by model transformation approaches [7] [10].

The classification framework assists (i) end-users and the model transformation communities’
awareness of property classes that can and should be verified/validated by model transformations, (ii)
software developers to choose a particular model transformation approach that is best suited for their
needs, (iii) tool builders to provide the strengths and weaknesses of certain tools when compared to
others. Moreover, it can (iv) assist scientists in identifying approach-related limitations that need to be
overcome by improving the underlying techniques and formalisms.

We address the following questions: “What type of model and model transformation properties can be
verified/validated? What are the existing model transformation approaches and tools that support
verification and/or validation? Is it possible to develop automated validation and/or verification
techniques for graph transformation systems? What are the model transformation verification and/or
validation-related open issues?”

In Figure 3-1 The Paths of model transformations

First, we discuss the different scenarios of model transformation verification and validation. We refer
to these scenarios as Paths. In Figure 3-1 depicts the paths: the top half of the figure represents the
Operational part, and the bottom half depicts the verification/validation (V&V) part. The Operational
part is designed by the transformation engineer.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

28

The related verification/validation questions are as follows: Can we verify a property in one of the
operational domains (e.g. in the source model M1, the transformation T, or in the target model M2)? If
not, what other domains need to be involved (which Path of the In Figure 3-1 should be taken), where
the verification/validation can be performed or more aptly formed? In what way is the mapping arranged
between the operational domains and the verification/validation domains?

Sometimes properties that will be verified/validated cannot be expressed in the operational domains. To
address this, we have introduced the verification and validation (V&V) part including additional
domains. In In Figure 3-1, MM1 and MM2 are the language specifications (metamodels) and can define
only two domains. In special cases, MM1 and MM2 can be identical. M1 and M2 are instance models of
MM1 and MM2 respectively. The instantiation is defined by the mappings i1 and i2. Transformation T
converts M1 into M2. The mapping trace stores the relation between elements of models M1 and M2.
Based on this mapping, for each element of model M1, we can identify the appropriate target model
elements (image) in model M2, and vice versa; for each element of model M2, we can identify the
appropriate source model elements in model M1. Our goal is to verify the semantic correctness of the
transformation T; therefore, if the formalism used by M1, M2 and T is not adequate, then they are mapped
into a different semantic domain. Their images are S1, S2, and TS, respectively. The mapping is defined
by ms1, ms2, and tts. The correspondence between S1 and S2 is a specific knowledge: a special semantic
relationship expected by the transformation designer. This correspondence is verified in a semantic
domain. Next, assuming that the mappings, (ms1, ms2 and tts) from the domain-specific artifacts (M1, M2
and T) into the semantic domain (S1, S2, and TS), are correct, we can reason the correctness of the
transformation T [1] [7] [10].

Recall in In Figure 3-1, we demonstrated a general case scheme, incorporating several special cases.
The introduced scheme represents a one-way transformation, but the bi-directional scenario can be
constructed by repeating this structure in the opposite direction. In a general case, the two directions
require different mappings; only in special cases can the same mapping be applied.

Based on the architecture of the Paths, we have identified the following semantic verification/validation
types:

1. Verification of the models M1 and M2 (PathModels).

2. Verification of the transformation T (PathTransT).

3. Verification of the transformation TS (PathTransTS).

4. Verification of the correspondence (PathCorresp).

5. Hybrid verification: combines two or more of the previous verification types (PathHybrid).

Each of these verification/validation types defines a path. During the verification and validation, we
traverse the paths of the framework in the following ways.

PathModels. Verification of the models M1 and M2 means both M1 and T (M1) are verified separately. This
type of verification does not attempt to prove the validity of the graph transformation T, but verifies that
both of the models provide an appropriate solution to the problem. Typically, the conformance into
metamodels is validated with this path: the modeling tool allows the creation of appropriate model
elements only, while a constraint checker (e.g., OCL checker) is executed on the source model (M1).
Next, the transformation T processes the model and generates the output model (M2) which conforms to
the output metamodel (MM2). The validation of the output model M2 is performed again by the modeling
environment: validation of the metamodel convergence, including constraint checking.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 29

PathTransT. Most of the verification/validation approaches aim to check the correctness of the
transformation rules in general. There are both static (offline) and dynamic (online) approaches as well.
For example, Asztalos et al. [22] developed a formal language that is able to express a set of model
transformation properties. Basically, the language is appropriate to specify both the properties of the
output models and the properties of the relation between the input and output model pairs. They
introduced a final formula that describes the properties that remain true at the end of the transformation.
The approach is able to derive the proof or refutation of a verifiable property from the final formula. An
example dynamic approach is [Lengyel, 2006], in which the validation of the transformation is achieved
with constraints assigned to the transformation rules as pre- and postconditions.

PathTransTS. In the most generic case, transforming models into other domains means a projection from
the source language to the target language, possibly with an intentional loss of information. Therefore,
in certain cases, proving full semantic equivalence between source and target models is not the objective.
Instead, we can define transformation or language-specific (source and target domain) validation
properties that should be satisfied by the transformation.

The transformation definition describes the required model manipulation either in an imperative or a
declarative (mostly relational) way. This representation is often inappropriate as a subject of verifying
certain properties. Therefore, we map the transformation to a domain more suitable to perform formal
verification/validation. There are several approaches that map M1, M2 and T into a semantic domain and
perform the verification either on the image of the transformation (TS: PathTransTS) or on the
correspondence between the images of the source and generated models (S1 and S2: PathCorresp).

An example of PathTransTS is provided in [Varró et al, 2006]: model transformations are mapped into
Petri nets with the goal of performing the termination analysis in a more appropriate domain.

PathCorresp. The correspondence relation between the S1 and S2 is domain-specific knowledge; this is the
semantics expected by the language and/or model transformation designer. We should realize that the
source and the target domains (MM1 and MM2) could be quite distant from each other (e.g., abstraction
level, domain concepts, or model structure). Thus, the correspondence may be an optional domain-
specific knowledge that represents the semantic mapping between the images of source and target
models in a semantic domain.

In the context of our verification/validation classification framework, the equilibrium (property
preservation) between the source and generated models, that most of the approaches attempt to verify
(e.g., [Giese et al, 2006], [de Lara and Taentzer, 2004] and [Varró et al, 2003]), is a special mapping
among the source and the target domains. Similarly, other special mappings have already been
configured, e.g., bi-similarity: two systems can be said to be bi-similar if they behave in the same way,
i.e., one system simulates the other, and vice versa [Narayanan and Karsai, 2008].

An example for PathCorresp is the following: within the domains of the source and the target modeling
languages, it is hard to prove the correctness of the design. Therefore, the models are projected into a
formal domain, such as transition systems, and the formal analysis is performed in this domain e.g., by
applying bi-simulation [Narayanan and Karsai, 2008].

PathHybrid. This path combines two or more of the paths introduced above. For example, a certain
development scenario requires to verify/validate both transformation termination and some domain-
specific properties. PathTransTS is applied to verify termination and PathTransT is applied to validate the
required domain-specific properties, e.g., attribute value requirements.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

30

3.2 The	Dynamic	Validation	Method	

3.2.1 An	Example		
Figure 3-2 depicts the metamodel of a domain-specific language. This language defines that an
instance model contains Domain objects. A domain can contain sub-domains and domains can
also be linked to each other. A domain has Server objects. A server must belong to a domain. A
server contains a ServerName, Id, Type (enum attribute with values Web, Database, Mail, and
Gateway), and Load attributes. Servers contain sequentially ordered Tiers. A tier has the
following attributes: TierName, Id, Type (enum attribute with values CPU and I/O), OrderId,
ServiceTime, and VisitNumber. Each server has exactly one ThreadPool element. A ThreadPool
is comprised of ThreadPoolName, Id, and MaxNumberOfThreads attributes. The ThreadPool
contains Threads. Each thread has Id and State (enum attribute with values Ready and Occupied)
attributes. Servers have one or more Queues. A queue has QueueName, Id, and QueueLimit
attributes. A queue must belong to a server. Furthermore, servers and queues can contain Tasks.
Tasks assigned to servers are under processing, while tasks in a queue are in waiting state. A task
has the following attributes: TaskName, Id, Priority (enum attribute with values Normal, High,
and Urgent), and ProcessedState (enum attribute with values Waiting, Processing, and Complete).
There are also more specific task types inherited from Task: Email, BulkEmail, WebRequest,
DBRequest, and AuthorizationRequest. Each of these metamodel elements also includes further
attributes.

Figure 3-2 The DomainServers metamodel

Figure 3-3 introduces a control flow model of a rule-based system. The processing has three
transformation rules. The rule CheckServerLoad selects a Server which Load is over 80%. If there is no
such server, then the transformation terminates. Otherwise, a new server node, with a ThreadPool and

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 31

a Queue node, is inserted into the domain. Next, the transformation rule, RearrangeTasks, rearranges
tasks from the queue of the overloaded server to the queue of the new server. The RearrangeTasks rule
is executed in Exhaustive mode: it is continuously applied while the Load of the overloaded servers is
over 70%, and the Load of the new server remains under 70%. The transformation is executed in a loop.
This means, after easing the load of one server, the process continues and therefore, the transformation
can insert additional, new servers.

Figure 3-3 Example model transformation: LoadBalancing

Figure 3-4 depicts two example rules: AddNewServer and RearrangeTasks. The figure follows a
compact notation, containing no separated LHS and RHS pattern. The colors code the following: black
nodes and edges denote unmodified elements, blue ones indicate newly created elements, and red ones
mark the elements deleted by the rule. The transformation rule AddNewServer gets the Domain type
node as a parameter and creates the new Server with a ThreadPool, two Threads, a Tier, and a Queue.
The transformation rule, RearrangeTasks, receives the two servers with their queues as parameters and
performs the rearrangement as a single task. The rule is executed in Exhaustive mode, which enables
several tasks to be moved between the queues.

Figure 3-4 Example model transformation rules: (a) AddNewServer and (b) RearrangeTasks

Some example constraints assigned to the rules are as follows:
context Server inv serverCardinality:

Server.allInstances()->count() < 40

context Queue inv queueCardinality:

Queue.allInstances()->count() >= Server.allInstances()->count()

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

32

The constraints serverCardinality and queueCardinality define the number of specific type
elements in the model. These are cardinality issues related to the whole model.

context Queue inv queueLimit:

QueueLimit < 1500

The constraint queueLimit is an attribute value constraint that maximizes QueueLimit attribute of
Queue type nodes.

context Server inv largeThreadPools:

Server.allInstances->forall(s | s.ThreadPool.Threads->count()<= 50 OR

 (s.Tiers->exists(t | t.Type = Type::CPU) AND

 s.Tiers->exists(t | t.Type = Type::I/O)))

The constraint largeThreadPools defines that for each server, if the number of threads in the
ThreadPool exceeds 50, then separated CPU and I/O tiers are employed.

The presented constraints are assigned to the rules and guarantee our requirements. After a successful
rule execution, the conditions hold and the output is valid. The fact that the successful execution of the
rule guarantees the valid output cannot be achieved without these validation constraints.

3.2.2 A	Validation	Method	for	Rule-Based	Systems	
A rule-based system [Hayes-Roth, 1985] [Williams and Bainbridge, 1988] is a series of if-then
statements that utilizes a set of assertions, to which rules are created on how to act upon those assertions.
Rule-based systems often construct the basis of software artifacts, which can provide answers to
problems in place of human experts. Such systems are also referred as expert systems. Rule-based
solutions are also widely applied in artificial intelligence-based systems, and graph rewriting is one of
the most frequently applied implementation techniques for their realization. As the necessity for reliable
rule-based systems increases, so emerges the field of research regarding verification and validation of
graph rewriting-based approaches. In this section, we provide a dynamic (online) method to support the
validation of algorithms designed and executed in rule-based systems. The proposed approach is based
on a graph rewriting-based solution.

Rule-based systems provide an adaptable method, suitable for a number of different problems. Rule-
based systems are appropriate for fields, where the problem area can be written in the form of if-then
rule statements and for which the problem area is not extremely too expansive. In case of too many
rules, the system may become difficult to maintain and can result in decreased performance speeds.

A classic example of a rule-based system is a domain-specific expert system that uses rules to make
deductions or narrow down choices. For example, an expert system might help a doctor choose the
correct diagnosis based on a dozen symptoms, or select tactical moves when playing a game. Rule-based
systems can be used in natural language processing or to perform lexical analysis to compile or interpret
computer programs. Rule-based programming attempts to derive execution instructions from a starting
set of data and rules. This is a more indirect method than that employed by an imperative programming
language, which lists execution steps sequentially.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 33

As rule-based systems are being applied to many diverse scenarios, there is a need for methods that
support the verification and validation of the algorithms performed by these systems. Verification and
validation of a rule-based system is the process of ensuring that the rules meet specifications and fulfill
their intended purpose.

We have reviewed the different control structures of model transformations in Section 2.7. In the case
of rule-based systems, the application order of the rules is supported by a conflict resolution strategy.
The strategy may be determined by the actual area or may simply be a matter of preference. In any case,
it is vital as it controls which of the applicable rules are fired and thus the behavior of the entire system.
The most common strategies are as follows:

- First applicable: If the rules are in a specified order, firing the first applicable rule allows for
control over the order in which rules are fire.

- Random: Though it does not provide the predictability or control of the first-applicable strategy,
it does have certain advantages. For one, its unpredictability is an advantage in some
circumstances (e.g., in games). A random strategy simply chooses a single random rule to fire
from the conflict set. Another possibility for a random strategy is a fuzzy rule-based system in
which each rule has a factored probability, i.e., some rules are more likely to fire than others.

- Least recently used: Each of the rules is accompanied by a time or step stamp, which marks the
time of its last usage. This maximizes the number of individual rules that are fired at least once.
This strategy is perfect when all rules are needed for the solution of a given problem.

- Best rule: Each rule is given a weight, which specifies its comparative consideration to the
alternatives. The rule with the most preferable outcomes is chosen based on this weight.

Transformation rules can be made more relevant to software engineering models if the transformation
specifications allow the assigning of validation constraints to the transformation rules. The objective of
this research activity is to support the verification and validation of algorithms performed by rule-based
systems. The requirements, assigned to the rules are both input and output related requirements, i.e. we
define certain pre- and postconditions that should hold before and after the execution of the rule. In
several cases, rules do not contain certain node or edge types that are about to be included into our
verification and validation requirements. These requirements may relate to a temporary (during the
processing) or a final (following the processing) state of the input or generated models. Moreover,
several different directions can be followed; e.g. we can assert additional requirements to the input and
output models (metamodel constraints), or the rule-based system can be extended with the use of
appropriate testing and validating rules.

Dynamic validation covers both the attribute value and the structure validation, which can be expressed
in first-order logic extended with traversing capabilities. Example languages currently applied for
defining attribute value and interval conditions are Object Constraint Language (OCL), C, Java, and
Python. These conditions and requirements are pre- and postconditions of a transformation rule.

Definition (Precondition). A precondition assigned to a rule is a Boolean expression that must be true
at the moment of rule firing.

Definition (Postcondition). A postcondition assigned to a rule is a Boolean expression that must be true
after the completion of a rule.

If a precondition of a rule is not true, then the rule fails without being fired. If a postcondition of a rule
is not true after the execution of the rule, the rule fails.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

34

With pre- and postconditions the execution of a rule is as follows (Figure 2-2):

1. Finding the match according to the LHS structure.

2. Validating the constraints defined in LHS on the matched parts of the input model.

3. If a match satisfies all the constraints (preconditions), then executing the rule, otherwise the rule
fails.

4. Validating the constraints defined in RHS on the modified/generated model. If the result of the
rule satisfies the postconditions, then the rule was successful, otherwise the rule fails.

A direct corollary is that an expression in LHS is a precondition to the rule, and an expression in RHS
is a postcondition to the rule. A rule can be executed if and only if all conditions enlisted in LHS are
true. Also, if a rule finished successfully, then all conditions enlisted in RHS must be true.

If a finite sequence of rules is specified properly with the help of validation constraints, and the
sequence of rules has been executed successfully for the input model, then the modified/generated
output model is in accordance with the expected result that is described by the finite sequence of
transformation rules refined with the constraints.

Definition (Low-level construct). Pre- and postconditions defined as constraints and propagated
to the rules are low-level constructs.

Definition (High-level construct). Validation, preservation and guarantee properties are high-
level constructs.

Definition (Validated rule execution). A rule execution is validated if it satisfies a set of high-
level constructs.

To summarize, high-level constructs define the requirements in a higher abstraction level, e.g.
only non-abstract classes should be processed. Low-level constructs are the appropriate
constraints assigned to the appropriate rules. These constraints facilitate to achieve the required
conditions.

This method can be followed in Figure 3-4. Finding the structural match, the preconditions are
validated, and after performing the rule execution, postconditions are validated. Both of the
validations should be successful in order to the whole rule be successful.

With this method, the required properties can be defined on low-level, i.e. on the level of the rules.
In summary, we can state that the presented dynamic approach guarantees that if the execution of
a rule finishes successfully, the generated output is valid and fulfills the required conditions. The
validation of a rule-based system can be achieved with constraints assigned to the rules as pre-
and postconditions [27] [36].

3.3 Model	Transformation	Property	Classes	
This section investigates the following question: what can be and what needs to be verified/validated by
model transformations? In order to provide an answer for the question, we introduce the verification and
validation related property classes. The proposed property classes identify the different verification and
validation categories and discusses their specialties. The property classes make possible to clearly define
verification/validation requirements stated against model processors, furthermore, they help to classify
the existing approaches according to the verification and validation questions.

Based on [Abramski et al, 1993] and [Bundy, 1986], we can distinguish three main approaches: the
mathematical approach (graph transformation systems based on set theoretic or algebraic

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 35

characterizations), the formal approach (logical characterizations-based graph transformation systems),
and the model checking approach (translating graph transformation systems to Kripke-style models and
performing proofs via model checking).

The mathematical approach is expressive, domain-specific, intuitive, yet difficult to apply in an
automated way. The formal approach is also expressive and it is easier to apply in a programmed way.
The model checking approach is less expressive, but offers the most with respect to automation [Bisztray
et al, 2008b].

In the case of domain-specific modeling languages (DSMLs), the properties are domain-specific as well,
meaning they require versatile transformation properties to be verified. The emerging questions are as
follows: What are the properties that have been verified so far by researchers in the field? What are the
model transformation properties provided by a particular language or approach? What further domain
properties can be preserved or guaranteed by a transformation process / transformation language or
approach? In order to answer these questions and categorize both the transformation and target domain-
related properties, we introduce the property classes.

A property class is a set of properties regarding model transformations or models. A verification
approach supports a property class if the model transformation is able to reason the properties belonging
to the property class.

Figure 3-5 Property classes

Our property classes (Figure 3-5) cover both the properties that the already existing methods are able to
verify/validate, and the ones for which verification and validation would be useful. We take different
types of properties into account: (i) properties independent from modeling languages (source and target
domain), e.g., termination and global determinism, and (ii) properties specific to transformation or
modeling languages, e.g., semantic properties. The following list defines our property classes. These
property classes have a significant effect on the usability of model transformations and on the quality of
both model transformations and produced artifacts.

- Syntactic Correctness Property Class (PrCSynt). The simplest notion of correctness is syntactic
correctness: given a well-formed source model, it should be guaranteed that the produced target
model is also well-formulated. Model processing environments handle this requirement in two
different ways: in the first case, they do not require the syntactic correctness of the output model.
This responsibility is propagated to the compilers of the target platform: compilers validate the
syntactic correctness during the compilation process. In the second case, model processing
environments require the syntactic correctness of the output model. For example, there are tools
and approaches (e.g., [Anastasakis et al, 2007] [Cabot et al, 2008]) that can be used at the end
of model transformations to validate the generated output. Other model transformation tools and

Syntactic Correctness
Property Class (PrCSynt)

Completeness and Mapping
Property Class (PrCComp)

Liveness
Property Class (PrCLives)

Semantic Correctness
Property Class (PrCSem)

Architectural
Property Class (PrCArch)

Attribute Range
Property Class (PrCAttr)

Property Classes – property sets regarding model transformations or models

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

36

approaches (e.g., the BOTL approach [Braun and Marschall, 2003]) address the problems in
ensuring that a model transformation always produces syntactically correct models.

- Liveness Property Class (PrCLives). This property class includes control flow-related properties,
namely, the termination and global determinism. Termination and global determinism mean
that, given a set of transformation rules, their application should always lead to a result, i.e.,
they should terminate in a finite number of steps, and their results should be unique. These are
general and modeling language-independent semantic criteria for model transformations.

- Completeness and Mapping Property Class (PrCComp). The property class includes the
completeness and three mapping properties. Syntactic completeness requires that, for each
element in the source model, there should be a corresponding element in the target model that
can be created by the model transformation. In general, a transformation system is complete if,
for each valid source model, there is a valid target model satisfying the source model. Syntactic
completeness was discussed in [Varró et al, 2003] by planner algorithms, and in [Hausmann et
al, 2002] by graph transformation. The three mapping properties are as follows [Cabot et al,
2010]:

o Injective: a transformation system is injective if each target model has exactly one single
source model.

o Surjective: a transformation system is surjective if each target model can be produced
from a source model. This property is the reciprocal of property completeness.

o Bijective: a transformation system is bijective if it is injective and also surjective.

- Semantic Correctness Property Class (PrCSem). With this property class, we require the
fulfillment of certain semantic rules. The property class covers the domain-specific knowledge
included in the semantics expected from the transformation. The goal is that the produced target
model contains the expected semantic properties.

The domain-specific semantic properties could be verified on the transformation T, on its image
(TS), or on the domain-specific correspondence between the images of the source and the
generated models in a semantic domain. Typically, semantic properties are verified either on
the transformation itself (T) or with the analysis of the domain-specific correspondence.

- Attribute Range Property Class (PrCAttr). This property class covers the attribute value and
interval validation. An example is the definition of attribute constraints with Object Constraint
Language (OCL) [OMG OCL, 2014]. The validation has a local nature and the properties are
expressible in first-order logic, extended with traversing capabilities.

- Architectural Property Class (PrCArch). Architectural properties are output model related
properties. These properties are invariants, reachability and topological properties. They are
often expressible in second-order logic. Some notions can be modeled in modal logic and
verified by model checkers, others may require more expressive languages.

The following subsections provide examples and detailed discussions related to these property classes
and the incorporated properties. In each section, some important questions are investigated with respect
to verified/validated model transformation and a number of different approaches, that provide concrete
answers to our questions, are introduced. Based on our property classes, we are approaching answers to
our motivating questions.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 37

3.3.1 Syntactic	Correctness	Property	Class	–	PrCSynt	
Referring to the transformation result, the minimal requirement is to assure syntactic correctness, i.e., to
guarantee that the output model is a syntactically well-formulated instance of the target language.
However, often syntactic correctness properties are motivated by semantic notions, e.g., in an
automotive domain, an engine can belong to only one car. This requirement is semantically motivated
by the domain, but expressed with a multiplicity condition. In a stricter sense, we can state that there
exist cases in which the syntactic correctness property class verifies semantic properties.

As was mentioned earlier, model processing environments either do not ensure the syntactic correctness
of the output model, or they provide additional features to validate the syntactic correctness of the output
model.

In the first case, the syntactic validation of the output model is propagated to a separate tool or to the
target platform compilers. There are several tools and approaches addressing the consistency or
satisfiability problem for UML/OCL models [Anastasakis et al, 2007] [Cabot et al, 2008]: given a UML
class diagram annotated with OCL constraints it is necessary to decide whether there exists a legal
instance of the model which satisfies all graphical and OCL constraints. These tools and approaches can
be used at the end of model transformations to automatically validate the generated output. The same is
true of the current modeling environments that provide further domain-specific language (DSL) support
beyond the standard UML, i.e. designing and using DSLs [Kelly and Tolvanen, 2008].

In the second case, the syntactic validation of the output model requires additional effort at the end of
the model processing. The modeling environment enforces the creation of syntactically correct input
models. Next, a model processing tool generates the output model that should also be checked in
accordance with the output language definition. Currently, besides the syntactic correctness validation
of the model transformation definition, most of the graph rewriting-based model transformation tools
provide certain validation possibilities for syntactic correctness of the models produced by model
transformations.

Syntactic Correctness of a Transformation Rule. A model transformation is formed by transformation
rules. Within a model transformation, it is required that each rule be defined using an attributed type
graph. This type graph is obtained by regarding the metamodels of both the source and the target
languages. As a consequence, one requirement for rules is that both LHS and RHS be instances of their
corresponding metamodels.

Often this instance relationship is applied in a loose sense: we require that a model must be an instance
of the metamodel but should not necessarily conform to additional constraints (e.g. OCL constraints)
[Küster, 2006]. It should be noted that it does not affect cardinality constraints. There are two reasons
for this approach: (i) we do not want to define unnecessary restrictions when designing a model
transformation i.e., always requiring a complete model as LHS or RHS. (ii) We want to reduce the
number of rules by allowing abstract classes. Furthermore, certain tools (e.g., GReAT and VMTS) allow
us to use temporary edges and nodes during the transformation. These temporary edges and nodes are
created by the transformation, utilized during the execution, and deleted by the transformation in order
to be free of temporary elements at the end of the model processing.

Syntactic Correctness of a Transformation. The control expression of a transformation also has a
metamodel that defines the control structures. The control expression must be a valid instance of its
metamodel and can only reference accessible transformation rules, i.e., transformation rules defined by
the same transformation.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

38

Küster [Küster, 2006] concentrated on checking syntactic correctness in which the following two types
can be distinguished. When a language for expressing model transformations is available, then a
concrete model transformation must be syntactically correct, with respect to this language. It is worth
mentioning that such a model transformation language is not always mathematically formalized, but the
execution semantics may be hidden in a model transformation tool. A rather different form of syntactic
correctness is obtained by looking at the result of a model transformation. In this case, it is always
desirable that the results conform to the syntax of some target language.

3.3.2 Liveness	Property	Class	–	PrCLives	
The liveness property class incorporates the termination and the global determinism properties of model
transformations. This property class ensures that, given a source model, a model transformation always
produces a unique target model as a result. In the case of a non-terminating model transformation, the
transformation is not permitted to terminate on certain models. In the case of non-determinism, the
transformation may produce different target models when being applied to the same source model.

3.3.2.1 Termination	of	Model	Transformations	
A transformation terminates if it is ensured that the transformation stops after a finite number of steps.
In general, the termination of a graph rewriting system is indeterminate [Plump, 1998]. Therefore, in
general, given a graph transformation system, there are no mechanisms that support the automated
decision whether or not to terminate the system. Different termination criteria have been presented in
several papers [Bottoni et al, 2000] [Ehrig et al, 2005] [Levendovszky et al, 2007] and can be checked
to prove the termination. These approaches are based on layered grammars or measurement functions
of the execution order of rules. Therefore, termination can be achieved by providing a set of sufficient
criteria.

Levendovszky et al. [Levendovszky et al, 2007] provided termination criteria for graph and model
transformation systems with injective matches and a finite input structure. The approach proposes a
treatment for infinite sequencing of rule applications and accounts for attribute conditions, negative
application conditions, and type constraints. The termination criteria introduced by this approach
provides general productions allowing recursion within the scope of DPO and typed attributed graph
transformation. This is the theoretical basis to proving that certain control flows of rules are terminating.

Assmann [Assmann, 2000] introduced termination criteria for graph rewriting applied to program
transformation. The approach assumes that there cannot be parallel edges, with the same labels, between
two nodes. This leads to a termination criteria for specific rules if the label and node sets are finite. The
approach introduces the subtractive rule, which is conceptually similar to deletion layers examined by
Ehrig et al. [Ehrig et al, 2005].

Bottoni et al. [Bottoni et al, 2000] developed a theory for the DPO approach. It provides abstract
termination criteria via a measure function. Concrete termination criteria, based on the number of nodes
and edges, are provided.

Ehrig et al. [Ehrig et al, 2005] provided significant results regarding layered grammars. These results
correspond to and build upon the contributions provided by de Lara and Taentzer [de Lara and Taentzer,
2004] and Bottoni et al. [Bottoni et al, 2000]. The criterion provided guarantees that the creation of all
objects of a type should precede the deletion of the object of the same type. Thus, a layer deletion of an
object of a certain type cannot create such objects, neither can the subsequent rules. This means that the
productions in a deletion layer terminate for the reasons detailed above if object types are taken into
consideration.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 39

In general, concerning the termination of a transformation unit with control, the following observations
can be made: each rule that is applied only once does not pose a problem because it cannot lead to
infinite rule application sequences. However, if a set of rules can be applied as long as possible, it must
be guaranteed that there are no occurrences of infinite rule application.

3.3.2.2 Global	Determinism	of	Model	Transformations	
The termination of a transformation unit can be expressed through the analysis of a set of rules, being
applied as long as possible until their termination. However, the global determinism of a transformation
unit is more difficult to prove.

Most transformation systems provide control flow support. Some approaches allow non-deterministic
rule selection. In general, this means that the result of the transformation can be different although the
input model is the same. Informally, the global determinism property signifies that there is non-
deterministic rule selection and the result of the transformation will be the same.

A pair of transformations, G Þ* H1 (a transformation sequence from G to H1) and G Þ* H2, is confluent
if there are transformation sequences H1 Þ* X and H2 Þ* X. A graph transformation system is considered
confluent if all pairs of transformations G Þ* H1 and G Þ* H2 in the graph transformation system are
confluent. Often the weaker local confluence is stated, which requires that if there are two direct
transformations G Þp1 H1 and G Þp2 H2, they can then be rejoined (meaning that there exist such
transformation sequences H1 Þ* X and H2 Þ* X) [Ehrig et al, 2006]. Local confluence is influential
because of the role it plays in conjunction with termination. Based on Newman's lemma [Newman,
1942], it is proven that whenever a graph transformation system is locally confluent and terminating, it
is also confluent.

Termination is generally, indefinite and must be established through the careful designation of rules,
whereas local confluence can be shown for term rewriting and graph rewriting using the concept of
critical pairs.

Critical pair analysis [Heckel et al, 2002] is used to check whether a rewriting system is confluent.
Critical pair analysis has been generalized to graph transformations. This approach can be semi-
automated as implemented in the AGG 2.0 tool [Runge et al, 2011]. The Critical Pair Lemma states that
a term rewriting system is locally confluent if and only if all its critical pairs have common reducts
[Huet, 1980]. For hyper-graph rewriting, the Critical Pair Lemma guarantees local confluence if each
critical pair of a system has joining transformations that are compatible meaning they map certain nodes
to the same nodes in the common reduct [Plump, 2005].

Confluence is an important aspect of graph transformation systems, because confluent (typed) graph
transformation systems fulfill the requirements of global determinism: for each pair of terminating
(typed) graph transformations G Þ* H1 and G Þ* H2 with the same source graph also the target graphs
H1 and H2 are equal or isomorphic, where G Þ* H is called terminating if no (typed) graph
transformation rule in the graph transformation system is applicable to H any longer [Ehrig et al, 2006].

Heckel et al. [Heckel et al, 2002] has shown how confluence can be ensured for typed attributed graph
transformation systems. They have proved that an attributed graph transformation system is locally
confluent if all its critical pairs are confluent.

Küster [Küster, 2006] has established a set of criteria to check for termination and confluence at design
time through dynamic analysis of the transformation rules and the underlying metamodels.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

40

3.3.3 Completeness	and	Mapping	Property	Class	–	PrCComp	
The syntactic completeness property will soon completely cover the source language using
transformation rules. Completeness assures that there exists a corresponding element in the target model
for each element or structure in the source language.

Besides the mapping properties (bijection, injection, and surjection), there are classes of functions
distinguished by the manner in which the source and target models are related/mapped to each other. In
general, model transformation design tools do not include automatic methods to check these mapping
properties on model transformations. Even if both the implementation of such algorithms and their
execution require a reasonable amount of time and effort, in the case of complex transformations, these
algorithms still cannot deduce the mapping properties. Thus, in most of the cases, the verification of
these properties remains the responsibility of the transformation designer.

3.3.4 Semantic	Correctness	Property	Class	–	PrCSem	
It is worth mentioning that model transformations themselves can also be erroneous and therefore may
hinder the quality of a model transformation-driven development and transformation-based verification
and validation framework. Therefore, we have to deal with the model transformation itself in order to
be free of semantic errors [Varró et al, 2003].

In theory, a straightforward correctness criterion would require to prove the correct mapping (e.g.
semantic equivalence) of source and target models. However, as it was mentioned above, model
transformations may define a projection from the source language to the target language (with deliberate
loss of information) or transformation can add information independent from the source model into the
target model. Therefore, semantic equivalence between models cannot always be proved. Instead, we
define correctness properties (mapping) that are affirmative provided by the transformation. These
correctness properties are transformation-specific, i.e. the mapping is domain-specific.

Most of the verification and validation approaches attempt to provide solutions for the preservation of
the semantics, e.g. [Varró et al, 2003] [Giese et al, 2006] [de Lara and Taentzer, 2004] [Lengyel, 2006]
[Barbosa et al, 2009] [Hulsbusch et al, 2010]. The semantic equivalence or semantics preservation of a
model transformation ensures that the target model is semantically equivalent to the source model or
that the important properties are preserved by the transformation.

The most well-known examples of behavior-preserving transformations are refactoring-like
transformations. The term was introduced by Fowler [Fowler et al, 1999] to signify the restructuring of
object-oriented programs, and since this innovation, several proposals for formalization and verification
based on first-order logics and invariants have been created [Massoni et al, 2006].

Mens [Mens et al, 2002] presented the first formal approach to refactoring based on graph
transformations, where the focus relied on the analysis of conflicts and dependencies among rules. A
survey regarding software refactoring is elaborated in [Mens and Tourwe, 2004]. Based on our
classification framework, this mapping holds special significance: each refactoring-like transformation
has a domain-specific mapping that defines the properties, which are preserved by the transformation.

Although there are many different types of transformations that are useful in model-driven development,
each transformation preserves certain aspects of the source model in the transformed target model. The
properties that are preserved can differ significantly depending upon the transformation type. In regards
to refactoring or restructuring, the (external) behavior must be preserved, while the structure is modified
and with refinements, the preservation of the program correctness is paramount. The technical context
also heavily influences that which requires preservation. For example, in the case of a database
transformation, it is necessary to preserve the integrity of the database; while in the case of a program

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 41

transformation; syntactic well-formedness and the type correctness of the program are of the utmost
importance. These are all examples of domain-specific mapping. According to our classification
framework, a relevant part of these transformations (both domain and transformation properties) can be
verified in the semantic domain, either on the transformation image or based on the correspondence
between the source and target models.

The work related to semantic correctness criteria of model transformations is very limited. The
preservation of certain properties by the transformation is discussed by Varró et al. [Varró et al, 2003].
However, only a few approaches exist (e.g. [Assmann, 2000]) to analyze the semantic correctness of
arbitrary model transformations, when transformation-specific properties are targeted for verification.

Varró et al. [Varró et al, 2003] presented a partly-automated, language-independent, modeling
framework to provide formal verification through model checking. This framework examined model
transformations from an arbitrary, well-formed model instance, of the source modeling language, into
its corresponding target preserves language-specific properties.

The graph rewriting-based model transformations cover a wide-range of model processing. These
transformations implement a variety of semantic mappings. Verification and validation approaches
currently provide some specific mappings (e.g., equivalence preserving or bi-similarity in specific
domains). These mappings are developed individually, in order to extend them or to create new ones
requires a deep understanding of the verification/validation approach. Therefore, this field requires
further research and development to bring this approach to a wider audience (model transformation
designers) in order to further development in configuring the verification/validation related issues of
model transformations.

3.3.5 Attribute	Range	Property	Class	–	PrCAttr	
The attribute value property class is comprised of the attribute value and interval validation. These
properties can be expressed in first-order logic, extended with traversing capabilities. Example
languages for defining attribute value and interval conditions are OCL, C, Java, and Python.

Aside from basic structural conditions (PAC and NAC [Ehrig et al, 2010]), several approaches apply
constraint languages to define the execution conditions and requirements related to the results. These
conditions and requirements are pre- and post-conditions of transformation rules.

A precondition assigned to a transformation rule is a Boolean expression that must hold true at the
moment the transformation rule is fired. A post-condition assigned to a transformation rule is a Boolean
expression that must hold true following the completion of a transformation rule. If a precondition of a
transformation rule is not true, then the transformation rule fails without being fired. If a post-condition
of a transformation rule is not true following the execution of the transformation rule, the transformation
rule fails.

As was stated earlier, the execution of a transformation rule is as follows: (i) Finding the match
according to the structure of the LHS. (ii) Validating the constraints defined in LHS on the matched
parts of the input model. (iii) If a match satisfies the constraints (preconditions), then fires the
transformation rule, otherwise the rule fails. (iv) Validating the constraints, defined in RHS, on the
modified/generated model, i.e., if the result of the transformation satisfies the post-conditions, then the
rule was successful, otherwise the rule fails.

A direct corollary is an expression in LHS represented as a precondition to the transformation rule, and
an expression in RHS is a post-condition to the transformation rule. A transformation rule can be fired
if and only if all conditions established in LHS are true. Moreover, if a transformation rule completes
successfully, then all conditions enlisted in RHS must be true [Lengyel, 2006].

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

42

The definition of an attribute value and interval condition are supported e.g., in AGG (Java), AToM3
(Python), GReAT (OCL), Fujaba (Java), VIATRA2 (Java) and VMTS (OCL) tools. Application
conditions which are checked after the execution of a rule are supported by the approaches similarly to
preconditions. However, the semantics can differ: while in AToM3 the condition is checked only, AGG,
VIATRA2 and VMTS provide a rollback mechanism if the condition is not met.

3.3.6 Architectural	Property	Class	–	PrCArch	
Architectural properties are invariants, typically, reachability and topological properties of the model.
These are output, model-related properties. An invariant property should always hold on the model
elements. Every execution path, and therefore every rule of the model transformation, must guarantee
that invariant properties are always satisfied. An example invariant property is the following: Assuming
a water tank simulation system - we require that the temperature of the water in a specific water tank
always be between 45 °C and 90 °C. In order for the chemical process to be complete, the water must
be at least 45 °C. However, if the water temperature reaches 90 °C or above, the water tank will be
damaged. Therefore, each of the transformation rules must ensure the water temperature remains within
this range.

A reachability property describes a desired scenario, which can be reached through at least one execution
path. This means that there exists a sequence of rule executions that transport the input model into the
desired state. Examples of this are Statechart and Petri net processing transformations. A reachability
analysis can check whether a desired Statechart or Petri net configuration could be achieved using a
model transformation. Alongside this, the verification should account for the input model, or the class
of input models, for which the transformation provides the reachability properties.

The reachability of configurations allows us to check whether a given configuration can be reached
through a finite set of transformation rules. Many verification problems can be formulated as the
reachability (or non-reachability) of any given configuration of the system. Built around the technique
of graph parsing, one can decide whether the target configuration can be generated by the graph
transformation system, if beginning from a specific, initial model, thus providing the means for
backtracking reachability analysis [Baresi et al, 2003].

Both GROOVE [GROOVE] and CheckVML [Rensink et al, 2004] model-checker tools facilitate in
verifying invariant and reachability properties.

3.3.7 Summary	
This section has introduced and discussed the graph rewriting-based model transformations related
property classes. These property classes have been motivated by certain verification and validation
related questions. The property classes provide the answer to the question: what can be and what needs
to be verified/validated by model transformations. The property classes also make possible to classify
the existing approaches according to these verification and validation questions, i.e., (i) to define a
framework for comparing individual verification and validation approaches and tools, and (ii) to identify
and evaluate approaches and tools for a specific model transformation activity that requires verification
and validation capabilities.

We believe that our property classes contribute to efficient methods that provide comfortable ways of
verification/validation of model processors.

Figure 3-6 depicts a summary of the classification. This figure is an overview that can be used as a quick
guide related to the three views of the classification framework. The figure is assembled based on the
analysis and evaluation of more than 30 approaches and tools. Following a single column, we can

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 43

identify the functionalities of an individual tool or approach. Column groups (Graph Transformation
Approaches, Graph Transformation Tools, and Model Checker Tools) facilitate to overview the key
areas of a certain group. E.g., regarding to In Figure 3-1, the group Model Checker Tools belongs to the
PathTransTS category of the Path View and the Static category of the Computational View. Following a
single line, we can collect the tools and approaches supporting a specific attribute regarding a certain
view. For example, following the Dynamic category of the Computational View we can identify the
tools and approaches that provide dynamic type verification and validation. Furthermore, row groups
(Path View, Computational View, and Property View) make it possible to identify both the well
supported and the missing features. E.g., the PrCSynt and PrCComp properties in the Property View are
well covered by the tools and approaches, while only some of the examined tools and approaches belong
to the PathHybrid category of the Path View.

Figure 3-6 Classifying Model Transformation Approaches by Model Processing Properties – Summary of the

Property View, Computational View and Path View

3.4 A	 Method	 for	 Taming	 the	 Complexity	 of	 Model	 Transformation	
Verification/Validation	Processes	

This section introduces the concept of taming the complexity of the verification/validation solutions by
starting with the most general case and moving towards more specific solutions [36].

Several static approaches provide formalism and verify that the semantics are preserved or guaranteed
during the transformation of a model, e.g. approaches provided by Asztalos et al. [5], Biermann et al.
[Biermann et al, 2011], Bisztray et al. [Bisztray et al, 2008a], Cabot et al. [Cabot et al, 2010], or Schatz
[Schatz, 2008].

The approach of Asztalos et al. focuses on the static analysis of special model processing programs. This
approach provides the theoretical basis for a possible verification framework. It applies a final formula
that describes the properties that remain true at the end of the transformation. It is possible to derive
either proof or refutation of a verifiable property from this final formula. The approach provides
predefined components to deduct the desired properties.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

44

In the approach presented by Bisztray et al., Communicating Sequential Processes (CSP) are applied to
capture the behavior of processes both before and after the transformation in order to understand and
control the semantic consequences. The approach verifies semantic properties of the transformations at
the level of rules, such that every application of a rule has a known semantic effect.

In the approach of Bierman et al., model transformations are defined as a special kind of typed graph
transformations. The solution implements a formal approach to validate various functional behaviors
and consistencies of model transformations.

There exist noticeable differences between the complexity of static and dynamic verification and
validation approaches. The static technique is more general, because its responsibility is to determine if
the rule-based system itself meets certain requirements. Contrarily, in the case of the dynamic approach,
the transformation is analyzed based on a single specific input.

This is a common knowledge that the algorithmic complexity of verification and validation can be quite
challenging, if not altogether hopeless in a general sense. However, practical cases do not require
generality. The complexity-related questions are as follows: Does the problem contain specific
subclasses that are solvable, yet practically relevant? Is it necessary to analyze the algorithm of the
transformation system? Will it be sufficient to verify the system for a certain class of possible input
models?

Figure 3-7 Taming the complexity of model transformation verification/validation processes

Our classification says that the static approach is the most general and the dynamic is the most specific
of verification and validation methods (Figure 3-7a). In order to reduce verification and validation
complexity, we classify the verification and validation approaches from the complexity point of view.
In order to accomplish this, we begin with the general case (static verification) and create more specific
cases (dynamic verification). Between these two extreme approaches, we identify several complexity-
related restricting solutions (Figure 3-7b). These methods do not attempt to prove the semantic
correctness for one or all possible inputs (prove the properties of a transformation system), but instead
take a class of input types into consideration. We have identified the following complexity categories:

A. Static methods

B. Restricting solutions:

1. Language classes

2. Model transformation classes

3. Predefined components

C. Dynamic methods

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 45

A. Static methods. Model checker tools (e.g. Augur [König and Kozioura, 2008], CheckVML [Rensink
et al, 2004], or GROOVE [GROOVE]) apply static methods during the verification.

B1. Restricting solutions – Language classes. This approach defines a class of input models. Based on
a metamodel, a language class is defined by additional metamodel constraints or the simplification of
the metamodel, i.e. through the elimination of some domain concepts. As a result, the modified language
contains only a restricted class of original models, therefore, the complexity of the processing
transformation decreases along with the complexity of the transformation verification. Examples of
language classes are provided in OMG Query/View/Transformation Specification [OMG QVT, 2016].
The Annex A of the QVT specification introduces two language classes: Simple UML Metamodel and
Simple RDBMS Metamodel. These domains provide limited language elements and attributes that are
suitable for defining the required models, but do not provide additional, unnecessary language
constructions. For instance, a Table containing Keys can be modeled, but the Key type does not provide
attributes to specify further details. Another example is the limitation of the multiplicity to 1 or 0..1. A
third example presents itself when only finite input models are permitted. A sample language class was
introduced earlier in this chapter: DomainServers (Figure 3-2).

B2. Restricting solutions – Model transformation classes. This approach restricts the rule specification
language itself. We modify the metamodel of the rule specification language in order to allow for
transformation definitions with specific properties. An example of a transformation class is one in which
rule chains are allowed (successively applying several rules in a predefined order) but loops are
forbidden. Proving the termination of such transformation requires reasonably less complexity than in
the general case, when loops are permitted. For example, in the field of layered grammars [Ehrig et al,
2005], Bottoni et al. [Bottoni et al, 2000] developed a termination criterion which ensures that the
creation of all objects of a certain type should precede the deletion of an object of the same type.
Therefore, the layer deleting an object of a given type should not create such an object, nor should the
subsequent rules. This means the productions in a deletion layer will terminate. Therefore, the
termination analysis of transformations satisfying this criterion requires less complexity than the general
case.

B3. Restricting solutions – Predefined components. In this case, the verification procedure is
constructed from predefined components. We can state facts about the components, which the
verification process treats as axioms, therefore, the results of other tools or human analysis can be also
utilized. Applying these predefined components, we can deduce what output model properties are
provided by the given transformation for the provided input domain. For example, the formal language,
developed by Asztalos et al. [5], is able to express a set of model transformation properties. The language
is appropriate to specify both the properties of the output models and the properties of the relations
between the input and output model pairs. In most cases, the proofs within the class of predefined
components are conducted by dedicated checker tools (e.g. GROOVE [GROOVE] or CheckVML
[Rensink et al, 2004]) or through human analysis.

C. Dynamic methods. Examples of dynamic methods are provided by Lengyel [Lengyel, 2006]. In their
approach, the validation of a transformation system is achieved with constraints assigned to the rules as
pre- and postconditions. A similar approach was developed by Narayanan and Karsai [Narayanan and
Karsai, 2008], in which the semantic equivalence between inputs was guaranteed via bi-simulation
checks on the execution log of the transformation.

As a conclusion for the topic taming the complexity of model transformation verification/validation
processes, we can say that applying these restricting solutions, i.e. working with language classes,
transformation classes, or predefined components, we ensure that (i) the verification or validation of

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

46

model transformations, including transformation systems, requires less complexity than the classical
static verification and (ii) the verification or validation results are valid not only for a specific input, but
for a class of input models or transformation classes.

3.5 Test-Driven	Verification/Validation	of	Model	Transformations	
This section discusses a method and algorithms for test-driven verification/validation [7].

Software testing is an investigation conducted to provide stakeholders with information about the quality
of the product or service under test. Software testing can also provide an objective, independent view of
the software to allow the business to appreciate and understand the risks of software implementation.
Test techniques include, but are not limited to the process of executing a program or application with
the intent of finding software errors or other limitations. Software testing can be stated as the process of
validating and verifying that an artifact (i) meets the requirements that guided its design and
development, (ii) works as expected, (iii) can be implemented with the same characteristics, and (iv)
satisfies the needs of stakeholders. Model transformations are also software artifacts; therefore, model
transformation testing methods are also based on the widely used general testing principles.

Testing can never completely identify all the defects within software [Pan, 1999]. Instead, it compares
the state and behavior of the artifact by which someone (the software engineer or the domain specialist)
might recognize a problem [Leitner et al, 2007].

Testing model transformations is any activity aimed at evaluating an attribute or behavior of a model
processor and determining that it meets its required results. The difficulty in testing of model
transformations stems from the complexity. Testing is more than just debugging the execution of the
transformation. The purpose of testing are quality assurance and verification/validation [Hetzel, 1988].

A reasonable part of the defects in transformations are design errors. Bugs on software artifacts,
including model transformations, will almost always exist in any software module with moderate size.
This is not because architects, engineers and programmers are careless or irresponsible, but because the
complexity of software artifacts is generally hard to manage. Humans have only limited ability to handle
it. It is also true that for any complex system, design defects can never be completely eliminated [Kaner,
2006].

Because of the complexity, discovering the design defects in model transformations is difficult. All the
required properties need to be tested and verified, but complete testing is infeasible. A further
complication has to take into account that is the dynamic nature of software artifacts. If a failure occurs
during preliminary testing and the design is changed, the transformation may now work for a scenario
that it did not work for previously. However, its behavior on pre-error scenarios that it passed before
can no longer be guaranteed. To account for this possibility, testing should be restarted. The expense of
doing this is often too high.

Regardless of the limitations, testing is an integral part in model transformation development. In our
context, testing is usually performed to improve the quality and to verify/validate transformations.
Quality means the conformance to the specified design requirement. Being correct, the minimum
requirement of quality, means performing as required under specified circumstances.

Testing is heavily used as a tool in the verification and validation process of software artifacts. We
cannot test quality directly, but we can test related factors to make quality visible.

Tests with the purpose of validating the model transformation works are named clean tests, or positive
tests. The drawbacks are that it can only validate that the transformation works for the specified test
cases. A finite number of tests cannot validate that the transformation works for all situations. On the

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 47

contrary, only one failed test is sufficient enough to show that the transformation does not work. Testing
quality of software artifacts can be costly, but not testing software artifacts is even more expensive.

In summary, the primary purpose of testing is to detect software failures so that defects may be
discovered and corrected. Testing cannot establish that a product works properly under all conditions
but can only establish that it does not function properly under specific conditions [Kaner et al, 1990].
The scope of model transformation testing often includes examination of the transformation definition,
execution of that transformation in various conditions as well as examining the aspects of the
transformation: does it do what it is supposed to do and do what it needs to do. Information derived from
testing may be also used to correct the process by which the transformations are developed [Kolawa and
Huizinga, 2007].

The goal of the test-driven validation approach is to test graph rewriting-based model transformations
by automatically generating appropriate input models, executing the transformations and involving
domain specialists to verify the output models based on the input models. It is important that the
semantic correctness of the output models cannot be automatically verified, i.e. we need the domain
specialists during both the transformation design and testing.

The test-driven validation method needs a model transformation definition and the metamodels of both
the input and output domains. The method is about to automatically generate input models that cover all
execution paths of the transformation. Covering the whole transformation means that each of the rules
in the transformation will be executed at least ones. Furthermore, each of the decision points (branching
points, forks) are evaluated for both the true and the false branches, i.e. all of the paths in the control
flow model are traversed. The generated input models represent a set of input models. We use the
expression set for a bunch of input models that cover the whole transformation. The number of models
in the sets can vary based on the actual domain and on the actual transformation definition. An objective
of the solution is to make these model sets minimal, which means to minimize the number and the size
of these models.

The method should generate such typical models, which effectively cover the whole transformation. We
execute the transformation for these input models, then we involve domain specialists. We provide the
input model and output model pairs to the domain specialists. Then, based on the input and outputs, and
not taking into account the transformation definition, they can decide whether the transformation does
the right processing. Without the domain specialists, we cannot verify that the output model is really
correct, i.e. which is the appropriate output for a given input model.

As we have already mentioned, the input model sets should cover the whole transformation, therefore,
the main goal of the approach is to minimize the possibility that the transformation works perfectly for
N input models, but fails for the N+1th input model. What is even worse: generates the output for the
N+1th input model, but the output is not the expected one, i.e. there is a conceptual error within the
transformation definition.

Figure 3-8 introduces the architecture of the approach. Input model sets are automatically generated
based on the input metamodel (Metamodel A) and the transformation processes (transform) including
the transformation rules and the control flow model. The output models should instantiate the output
metamodel (Metamodel B). Finally, domain specialists verify the correspondence between the input and
output models (corresponds).

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

48

Figure 3-8 A test-driven method for validating model transformations

Scenarios that are targeted to be supported by the test-driven validation approach are as follows:

‒ Automatic generation of valid input models that support the testing of the model transformation.
The generation is based on the metamodel of the input domain and the transformation definition
(control flow model and the transformation rules).

‒ Automatic generation of valid input model sets that cover the whole model transformation, i.e.
executing the transformation with an input model set means that all of the transformation rules
will be executed, and all of the paths in the control flow model are traversed.

‒ Automatic generation of a valid and minimal input model set that covers the whole model
transformation.

‒ Automatic generation of valid input models that support the testing of one or more selected
transformation rules, i.e. executing the transformation with these input models means that the
transformation rules to be tested will be executed. However, other transformation rules of the
control flow model can be skipped in this scenario, e.g. certain branches or loops of the whole
transformation can be omitted. The main goal of this scenario is the debugging of the selected
transformation rules.

‒ Automatic generation of a valid and minimal input models that support the testing of one or
more selected transformation rules (e.g. a selected sequence of transformation rules within the
whole transformation definition).

Addressing the above scenarios, the test-driven validation approach can support the
verification/validation of graph rewriting-based model transformations.

During the analysis and implementation of the above scenarios we have to take into account the
following elements and aspects of model transformations and transformation rules:

‒ In order to cover all of the transformation rules, all LHS patterns should be either present in the
generated input model or should be established during the transformation execution before
reaching the rule requiring the pattern.

‒ The method should take into account the modifications performed by the rules. Rules can also
delete or break LHS patterns prepared for other rules. In addition, rules can prepare LHS

transform

instantiateinstantiate

Meta-level

define

corresponds
(performed by domain specialists)

generate

Metamodel A Metamodel BRules and
control flow

Input model set Output model set

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 49

patterns for other rules performed later. Therefore, deletion and creation of nodes and edges,
furthermore, the attribute value modification should also be considered.

‒ The control flow model of the model transformation has an effect on the processing. Not only
rule sequences, but also the effects of the conditional branches and the loops should be
considered.

‒ Different treatment is required by the in-place transformations and the transformations
generating a separate output model. We should take into account whether the transformation
modifies the input model.

‒ The generated input model is ideally connected, but it is not a strict requirement. This depends
on the actual domain and on the metamodel of the domain.

We have worked out two versions of the test-driven validation approach: the Basic and the Advanced
versions.

The Basic algorithm takes into account the following aspects of model transformation definitions:

‒ The transformation rules that should be covered by the generated input model.

‒ The LHS structure of the concerned rules.

The Advanced solution extends it with the following considerations:

‒ Collects the RHS patterns of the processed rules in a global store, and takes into account both
the actually generated input model and the RHS patterns of the already processed rules when
decides whether the LHS pattern of the next rule could be found in the processed model at a
certain point of the model processing.

‒ Takes into account rule sequences and their operations (node and edge deletion, creation and
attribute modifications).

o The solution applies rule concatenations to calculate the resulting RHS patterns at a
certain point of the transformation. Rule concatenation means to contract two rules in
order to derive one transformation rule which behavior functionally replaces the
application of the two original rules. The concatenation results a new rule with a new
LHS and RHS pattern. The calculated RHS pattern is also taken into account when the
method searches the LHS of the next patterns.

o Includes the conditional branches, therefore, considers the possible execution paths of
the transformation. This is also supported by the rule concatenation and can result
different rule execution sequences.

o Takes into account the loops of the control flow definition.

The GENERATETESTINPUT-BASIC algorithm gets the transformation definition, the collection of the
concerned rules and the input metamodel as parameters. Initializes a model based on the input
metamodel. This model is built by the following part of the algorithm. The core part of the algorithm is
a loop that takes the next transformation rule based on the control flow model of the transformation and
the collection of the rules that should be covered by the generated input model. Next, the algorithm
checks if the LHS of the actual rule is already present in the generated model. If not, then clones it and
attaches the copy of the LHS to the input model under generation. This method, attaching the LHS of
the actual rule, can happen in different ways. In the case of the basic algorithm, we search a common
node based on the metatype of the node, and we attach the new pattern utilizing this common point.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

50

Necessarily, this step considers the definition of the input metamodel in order to the generated model be
a valid instance of the metamodel. This step means that generating valid instances of the input
metamodel requires that the LHS structures of the transformation rules, that are attached to the generated
model, be valid partial instances (Section 5.2) of the input metamodel. This allows that the attached
model part, in case it is necessary, could be extended to a valid instance model by the further steps.

Algorithm. Pseudo code of the GENERATETESTINPUT-BASIC algorithm
00: GENERATETESTINPUT-BASIC(Transformation T, Collection RuleCollection, Model InputMetamodel): Model
01: Model InputModel = INITIALIZEMODEL(InputMetamodel)
02: while (Rule rule = T.GetNextRule(RuleCollection)) do
03: if not OutputModel.ContainsPattern(rule.LHS) then
04: Model temporaryPattern = CLONEMODEL(rule.LHS)
05: InputModel.ContainsStructure(temporaryPattern)
06: end if
07: end while
08: return InputModel

The GENERATETESTINPUT-ADVANCED algorithm extends the basic algorithm with the following steps:

‒ Stores the RHS patterns of the processed transformation rules in the RHS-Store. Furthermore,
the LHS of the actual rule is searched not only in the actual version of the generated model, but
also in the RHS-Store.

‒ The CALCULATERHSPATTERNVARIATIONS method applies rule concatenation technique and
calculates the different RHS pattern variations. The method gets the transformation, the actual
rule and the RHS patterns from the RHS-Store to utilize them during the calculation of the
pattern variations.

‒ The CALCULATERHSPATTERNVARIATIONS method also takes into account both the conditional
branches and the loops of the transformation definition.

These techniques of the GENERATETESTINPUT-ADVANCED algorithm make possible to generate
minimal model sets that support the testing of the whole transformation. This means that the techniques
help to minimize the number and the size of the generated models.

Algorithm. Pseudo code of the GENERATETESTINPUT-ADVANCED algorithm
00: GENERATETESTINPUT-ADVANCED(Transformation T, Collection RuleCollection, Model InputMetamodel): Model
01: Model InputModel = INITIALIZEMODEL(InputMetamodel)
03: PatternStore RHS-Store = INITIALIZEPATTERNSTORE()
04: while (Rule rule = T.GetNextRule(RuleCollection)) do
05: if not InputModel.ContainsPattern(rule.LHS) && not RHS-Store.ContainsPattern(rule.LHS) then
06: Model temporaryPattern = CLONEMODEL(rule.LHS)
07: InputModel.ContainsStructure(temporaryPattern)
08: RHS-Store.AddPattern(rule.RHS)
09: Pattern[] RHS-PatternVariations = CALCULATERHSPATTERNVARIATIONS(T, rule, RHS-Store)
10: RHS-Store.AddPatterns(RHS-PatternVariations)
11: end if
12: end while
13: return InputModel

The presented algorithms address the above requirements, i.e. applying these algorithms we can generate
valid input models that support the testing of one or more selected transformation rules. Utilizing these
algorithms with different input parameters, we can also generate valid and minimal input model sets that

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 51

cover whole model transformations. The details of certain parts of the algorithms, e.g. the get next rule
of the transformation (taking into account the branches and the loops), the pattern search in the generated
model and in the RHS-Store, and the CALCULATERHSPATTERNVARIATIONS method, can be
implemented in different ways. This also means that further optimization can be introduces, e.g. with
the application of various heuristics.

3.6 Conclusions	
Important semantic information can easily be lost or misinterpreted in a complex transformation due to
errors in the transformation rules or in the processing of the transformation. Methods are required to
verify that the semantics used during the analysis are indeed preserved across the transformation.
Automation certainly increases the quality of model transformations as errors manually implanted into
transformation programs during implementation are eliminated. Verification and validation of model
transformations is required, which assures that conceptual flaws in transformation design do not remain
undetected.

This chapter has emphasized the necessity of verification/validation methods that increase the quality
of model transformations and help to ensure that model transformations perform what they are intended
to do. Focusing on the graph rewriting-based model transformations, we have discussed the different
scenarios of model transformation verification and validation.

We have reviewed that rule-based systems can effectively automate problem solving standards. Such
systems provide a method for capturing and refining human expertise and affirm their relevance to the
industry. Instead of representing knowledge in a relatively declarative way, i.e., numerous things that
are known to be true, rule-based systems represent knowledge in terms of a collection of rules that tell
what should be done, i.e., what can be concluded from different situations? The motivation of this area
was to support the verification/validation of rule-based systems.

We have provided a method, which facilitates to apply the graph rewriting-based dynamic validation
results in the field of rule-based systems. The solution facilitates to validate single rules, rule chains,
and whole transformations as well. The validation is driven by the pre- and postconditions assigned to
the rules.

We have introduced and discussed the graph rewriting-based model transformations related property
classes. These property classes have been motivated by certain verification and validation related
questions. The property classes provide the answer for what can and what needed to be verified/validated
by model transformations. The property classes also make possible to classify the existing approaches
according to several verification and validation questions.

Next, we have introduced the concept of taming verification complexity. We have seen that the static
validation method is more general and raises challenges that are more complex. We have discussed the
possibilities of reducing the complexity of verification/validation and have introduced different
restricting solutions.

Then, we have provided our dynamic validation method, and we have introduced the key motivation
and challenging points of the test-driven validation approach. In addition, we have provided both the
Basic and the Advanced version of our solution that makes possible to generate the test input models for
model transformations.

The discussed area related selected scientific results from my research activities are summarized in
Section 7.1 (Thesis I: Methods for Verifying and Validating Graph Rewriting-Based Model

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

52

Transformations). I believe that my results and novel solutions contribute to the way to reach methods
that provide efficient solutions for verification/validation of model processors.

 	

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 53

4 Model-Driven	 Methods	 Based	 on	 Domain-Specific	 Languages	 and	
Model	Processors	

4.1 Introduction	
The utilization of model-driven methods and solutions supports the clarity and efficiency of
requirements analysis, contributes to the clear project scope definition, and ensures the quality
improvement of software products. The ultimate goal is to reach customer satisfaction and increase the
success rate of software projects [Davies, 2011] [Norbisrath, 2013].

Software development requires adequate methods for requirements engineering, design, development,
testing and maintenance. The more complex the system is, the more sophisticated methods should be
applied. A significant part of software projects is short on appropriate requirements engineering,
communication, development and testing method, furthermore, verification and validation processes. In
summary, not the right method is applied, and the project turns into ad-hoc design and development
decisions. This chapter introduces model-driven methods that assure model-driven requirements
engineering, support the creation and management of domain-specific languages, helps in model
processing and model transformation. The method is based on the modeling of the software requirements
in a way that these models can be used to automatically generate several artifacts during the engineering
process. [8]

As a further contribution to the above goals, we discuss a method that helps designing and managing
domain-specific languages and models; we introduce a possible way to transparently switch between
the textual and visual views of semantic models, furthermore, techniques are also provided how model-
driven methods are applied in software development processes.

4.2 Quality	Assured	Model-Driven	Requirements	Engineering	and	Software	
Development	

Developing software artifacts in enterprise environments should be based on mature methods.
Software products drive almost all parts of our life. However, software development methods and
the methods supporting the whole process still can be made more adequate. Appropriate
approaches can efficiently support unambiguous requirement definition, capture and define user
processes, allow effective development that results in quality products, and verified/validated
requirements. Adequate requirement engineering and analysis [Sommerville and Kotonya, 1998]
[Pohl, 2010] can define the obvious project scope and result in the agreement between the
customer and the developer team during the project and also in the end when deliverables should
be adjudged and accepted. The unambiguous requirement specification, being formal enough, can
drive the whole software project, including the development, testing, documentation generation,
and maintenance as well. Furthermore, it is still important to be able to accept the continuous
changes and run an iterative agile process cost effectively [Agile Manifesto, 2001].

There are several opportunities in the system development that motivates software architects and
developers to work out and use different methods. Notable motivating issues are the problem of
informal requirements specifications and the consequences of the ad-hoc project scope. These
issues can result in misunderstandings and losing the control over the project. We have assembled
a few points that further drive our activities and motivate us to develop more advanced and
adequate techniques in the development process:

‒ Inadequate requirements analysis method: The relevant customer processes are not or under
analyzed. Consequently, they are not addressed properly by the provided solutions.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

54

‒ Ambiguous scope definition: A textual description of the requirements can easily mean different
things for the customer and the solution providers. Without languages that are formal enough
and understandable both for the customer, i.e. domain experts, and the software experts, the
scope of the project and the real requirements can become unclear.

‒ Only software functions are defined but domain processes are not analyzed: This issue assumes
that the software drives the business and not the business requirements define the software
functions.

From the beginning, which goes back to the previous decade, our vision was to develop software
systems with a methodology that targets and supports the followings:

‒ Techniques supporting effective requirements analysis that ends with formal user stories, which
can be validated by the customer. This means that the customer understands the specification,
because it uses the domain concepts and defines their business processes.

‒ Domain-specific languages that are applied to define use cases, user stories (the business
processes that are required to be supported), domain dictionary, and the high-level requirements.
The languages facilitate cross-references between the model elements, i.e. referring domain
concepts and requirements from use case models and activity models (user stories).

‒ A method to build the semantic model based on the business processes defined by the user
stories.

‒ A technique to generate as much of the source code as possible from the requirements
specification. The generated code is based on supporting libraries and a framework that are
continuously developed by senior developers. The generated code covers those parts of the
implementation that are very similar in each project, e.g. data management (database-related
functionalities, concurrency management), communication between the client and the server.
Of course, there can be custom logic, which is hard and therefore is not worth modeling,
consequently, the related code is not generated.

‒ Each requirement is connected to the model elements that define the software development
activity even if it is generated or implemented manually. This makes possible to follow the
modifications and apply the required changes during the whole lifecycle of the system.

‒ A technique to automatically generate relevant test scenarios for the manually written modules
based on the formal user stories.

‒ A technique to automatically generate formal but user readable documentation, i.e., the
documentation is also driven by the identified user stories, automatically generated and
validated by the customer. The documentation includes the detailed specification that is easy to
read and validate by the end-users. Based on the documentation, the representatives of the
customer can decide if the specification meets their business requirements.

‒ A method to ensure the continuously up-to-date state of the semantic model (requirements
specification) all along the lifecycle of the given solution.

We have worked out a domain-specific modeling and model processing-based method for supporting
effective software development. The method covers the whole development process, including
requirements engineering, development, testing and documentation as well. Figure 4-1 introduces the
main concept of the suggested requirements engineering and development method. The requirements
engineering and analysis result in the Requirement specification, which is a collection of both human

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 55

readable and formal models. This means that these models can be easily understood by domain
specialists (customers) and also formal enough to serve the software artifact generation. The
specification includes use cases, activity (process definition) and further models collecting the user
requirements. These models define the high-level requirements, the domain vocabulary, the use cases
and the detailed user stories. The process definition models are step-by-step scenarios defining the exact
algorithm (workflow) of the business processes that should be covered with the solution. Based on the
requirements specification we generate the software artifacts, the relevant test scenarios and
documentation as well. The testing performed on the executables is based on the automatically generated
test scenarios. The verification and validation, performed on the generated and manually extended
software products, is also based on the requirements specification.

These all mean that the well-defined requirements specification drives the whole process. This is one of
the most important points of the entire method, i.e. the requirements specification is in the focus: the
customer and the developer team agree on the scope of the project with the help of the requirements
specification models. Next, this specification drives the whole process: we always go back to the
specification and derive each of the required artifacts based on it. The method provides an iterative
process: the continuously gained experience and the feedback improve the requirements specification
and therefore influence the next iteration as well: newly generated and altered software artifacts, test
scenarios, and the refreshed documentation.

Figure 4-1 Assuring the quality of software development projects with model-driven techniques

Now let us discuss how the method improves certain aspects of the software engineering process. Our
overall goal with the method is to increase the quality of the produced artifacts, the effectiveness of the
requirements analysis, the unambiguity of the project scope and development, and the customer
satisfaction. The scope of the method is as follows:

‒ To identify, which characteristics of the system to be developed, determine if the suggested
method could be applied for it. By system characteristics we mean the size of the system under

requirements
engineering

requirements
analysis

testing

verification and validation,
maintenance

generation

generation and
development

generation

feedback

manual
extension

Requirements
specification

Software artifacts

Test results

Test scenarios

Documentation

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

56

development, the architecture (e.g. web client, server, database layer), the technology (e.g.
Java), and the development method (e.g. waterfall, agile, other). We examined numerous
software development technologies and methods to be able to provide as generic method as it
is effectively necessary.

‒ To identify the target audience. The key is in the length of the lifecycle. The longer the software
system is maintained, the more changes must be applied during the lifecycle. By having a well-
understandable software model, the changes can be introduced at a significantly lower cost. We
believe that this affect can produce shorter ROI (Return of Investment) period if the method and
the tooling are harmonized. Our experiences show that our methodology aims bigger systems,
which require careful modeling, exact processes and workflows, furthermore detailed
documentation and deep testing. Such target audience can be banking applications, civil service,
public administration, insurance companies, medicine factories, etc.

‒ A method supporting the definition of software specifications on the level of abstraction high
enough for the domain experts and the further engineering process. The method and the tools
should produce the documentation and the basement of the following development activities.
Therefore, it provides a commonly used communication platform between the participants of a
software development project.

‒ The method and the provided supporting tools should be effective enough to make it easier to
follow the process than to sabotage it. In general, the overall goals of software projects are well
known, and every software expert understands their needs and agrees with them. However, they
still follow the “ad-hoc” approach, usually saying that we do not have enough time to be
systematic. We believe that an effective method and the appropriate tool support can break this
habit.

4.2.1 Domain-Specific	Languages	for	Requirements	Engineering		
Requirements engineering [Sommerville and Kotonya, 1998] is the process of formulating, documenting
and maintaining software requirements. Requirements engineering has a significant role in successful
software engineering processes. Requirements analysis in software engineering encompasses those tasks
that go into determining the needs or conditions to meet for a new or altered software product or artifact,
taking into account the possibly conflicting requirements of the various stakeholders, analyzing,
documenting, validating and managing software and system requirements.

The IEEE Standard Glossary of Software Engineering Technology [IEEE Standard Glossary, 1990]
defines a software requirement in the following way:

1. A condition or capability needed by a user to solve a problem or achieve an objective.

2. A condition or capability that must be met or possessed by a system or system component to
satisfy a contract, standard, specification, or other formally imposed document.

3. A documented representation of a condition or capability as in 1 or 2.

We have developed four DSLs and integrated their usage, which provide an extensive toolset to facilitate
the description and collection of the requirements in an efficient way:

‒ Use Case DSL: to describe the actors and the use cases of software systems,

‒ Activity DSL: to describe the workflows (user stories) related to specific user and test case
scenarios,

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 57

‒ Requirements DSL: a dictionary of the requirements to make it possible to reference them from
other models,

‒ Concept DSL: a glossary of domain related concepts that can be referenced from other model
elements.

The tool support of the method is implemented in the Eclipse Framework [Eclipse] as an Eclipse plugin
and further model processing components. We discuss the metamodels of the domain-specific
languages, introduce the plugin, which is based on the Eclipse Graphical Modeling Framework (GMF)
within the frame of Eclipse Graphical Modeling Project (GMP) [Eclipse GMP]. Furthermore, we share
some details about the realized editor using the Eclipse Extended Editing Framework [Eclipse EEF].

The domain-specific languages not only support the quality assured model-driven requirements
engineering method, but also serve as a basis for generating software artifacts. First, we introduce the
common elements of the four modeling languages, and then present the concept of each language
separately. Next, the tool support for the overall method is detailed. Finally, the processing of the
models, i.e. the methods that generate code, documentation and test scenarios are addressed.

4.2.1.1 Common	Elements	of	the	DSLs	
The four DSLs have a common tree view editor interface, a table view and a more intuitive graphical
view for visual editing. These DSLs are an improved and expanded version of the ubiquitous UML use
case and activity models [OMG UML, 2015]. We have modified the original UML languages, because
we wanted them to fit our needs to specify the requirements, these modifications are based on our
experiences distilled from several industrial case studies. Our improvements make the formulation of
user stories a simplified process. We used Eclipse Modeling Framework (EMF) to describe the
metamodels.

Figure 4-2 Metamodel of the common language elements

The four DSLs are realized as one monolith metamodel because of the requirement to be able to mix the
model elements from the different domains into one instance model as well. All languages are based on
a common metamodel fragment that is depicted in Figure 4-2. Each element of the metamodel derives
from AbstractType that facilitates the unified handling of all model elements: each model element has a
name, a real name (to provide a more meaningful name), a unique id, a description, and a sortorder that
specifies priority during documentation generation for a specific element. The description field contains
a rich text description (in XML format) that may contain cross references to other model elements as
well. This weak reference (stored in the XML document) is also expressed with modeled references
(referencingEntities / referencedEntities edges) to be able to discover dependencies without parsing all
the XML descriptions as well. The descriptions may embed images as well; this dependency is expressed
by the AttachedImage element (that points to a file-system element) and the images relationship.

According to the metamodel, all model elements can be organized into Packages that may also
correspond to real Java packages during code generation.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

58

4.2.1.2 The	Use	Case	and	the	Activity	DSLs	
The Use Case DSL is a model of how users connect to and interact with the system to handle problems.
The DSL describes the goals of the users, the interactions between the users and the system, and the
required behavior of the system to satisfy these goals. In the metamodel of the Use Case language
(Figure 4-3), the two main elements of the language are the UseCase and the Actor. Note that all the
elements in this metamodel inherit from the AbstractType element, so they all have a name, a
description, can be referenced, etc.

Figure 4-3 The Use Case metamodel

UseCases have the usual precondition, postcondition, purpose, and scenario attributes to precisely
define the use case. The attributes also contain rich text content in XML format, may contain references
to images or cross references to other model elements. UseCases may include and extend each other
corresponding to UML.

Figure 4-4 A sample Use Case diagram

By Actors, we distinguish User and System actors (ActorType) to be able to differentiate between the
different actors interacting with the system.

Models can be edited in the usual EMF tree view-based model editor, however, we can assign diagrams
to any of the packages as a root element, and visualize a model fragment in a graphical way as well. We
may place elements contained by another package than that of the diagram root onto the diagram,
however, in this case the element is placed as a shortcut (that is indicated by an arrow on the top of the

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 59

element). By deleting a shortcut, the element itself is not deleted from the model. In addition, a shortcut
is created when a model element is placed on the same diagram for a second or third time, e.g. to increase
transparency.

The complete DSL diagram editor application consists of the Project Explorer view, an Outline view
(or Navigator window), a drawing area (diagram), and the palettes, which provide the toolset for placing
elements on the drawing area (Figure 4-4). Elements can be inserted by clicking on an appropriate
element on the diagram palette and dropping it to the drawing view. The navigator window is used as
an instant summary of our model as a tree view. We can add, modify and delete new elements here and
diagrams as well.

The Activity DSL is used to display a sequence of activities. It is useful both to formalize user stories
and also to define test scenarios for validation. The metamodel of the language is provided in Figure
4-5. The user story or test workflow starts at a Start node, finishes at an End node, and each step (activity)
describes the test case to perform or the expected behavior in textual, human readable format
(description field). Activities are connected with Transition edges that symbolize a conditional (guard
attribute) transition between two activities. In addition to simple activities, we distinguish two special
kinds of activities as well: Assert and Output. Assert describes the main purpose of the test scenario, i.e.
the condition that must be satisfied in order to say that the test has been successful. The Output node
denotes an activity where the user performing the test must produce some kind of output (a screenshot
or a print), and attach it to the test log. These two special kinds of activities are used to emphasize their
roles on the user interface for the user and they are also taken into account later, for example, during the
automated test generation.

Figure 4-5 The Activity (user story) metamodel

All these techniques, based on the activity model, support the identification of relevant test cases.
Activity and use case models represent the business processes and the system level use cases. These
models serve as a communication platform at an appropriate level of abstraction. These artifacts can be
transformed to human readable and understandable documentations. Therefore, these artifacts are
typical products of the requirements handling and definition project phases. Based on the customer

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

60

feedbacks, we found that using our DSLs, the model and the generated documentation are compact and
unambiguous. The formal definition of the DSLs makes possible to use their keywords as instructions
during the analysis of the activity graph.

Activities may be hierarchical as well: an activity can be specified in more details in another activity
diagram. The end nodes of the contained activity model can be mapped to the leaving transitions of the
container activity node (originatingEnd reference), thus, we can specify which transition to follow for
each end state of the contained scenario.

To be able to organize activities by actors within a model, we have introduced a special element called
Swimbox. Swimboxes are similar to swimlanes (like in UML Sequence diagrams) with the difference
that they can be freely aligned on the screen thus we can achieve optimal layout. Each swimbox can be
connected to one specific user and a system actor.

For an activity, we can also exactly define those use cases realized by the activity (realizedUseCases
edge), and for each use case, we can assign a complete activity model, if the use case can be performed
by a complex workflow. An example activity model is depicted in Figure 4-6.

Figure 4-6 A sample Activity diagram

4.2.1.3 The	Requirements	and	Concept	Dictionary	DSLs	
The Requirements DSL and the Concept Dictionary DSL make it possible to summarize all the related
concepts and requirements of an actual software product. The metamodels are provided in Figure 4-7.
The implementation provides these dictionaries in a table format.

Figure 4-7 The Requirements and the Concept dictionary metamodels

The different dictionaries can be embedded into our model hierarchy. After creating the dictionaries in
the tree view of the model editor, we can edit them both in the table view and in the tree view. The table
view processes the actually opened model and organizes the related information to display the
dictionaries in a readable format in table cells.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 61

The Concept dictionary is a glossary of domain related concepts. We can refer to these concepts from
other model elements, such as activities or actors, and we can look up those model elements, in which
these concepts are affected. An example concept dictionary is presented in Figure 4-8.

Figure 4-8 A sample Concept dictionary specification

User requirements are collected in the requirements tables. The links between the requirement items and
model elements help us to follow which model parts realize a certain requirement, and vice versa, which
requirements are affected by a model element. The layout of the requirements dictionary matches that
of the concept dictionary.

4.2.1.4 EEF-based	Rich	Editing	Features		
The Extended Editing Framework [Eclipse EEF] is a presentation framework for the Eclipse Modeling
Framework. EEF makes possible to create rich user interfaces instead of the default grid-like property
editor panels to edit EMF models. The realized EEF-based Rich Editor is a great help during the
modeling. The capabilities of the realized EEF editor are discussed in this section.

Figure 4-9 The EEF editor of an Actor object

In addition to being able to edit the usual model element properties, we can edit the textual model
properties with the help of a rich text editor. Using this control, we can apply different font styles (bold,
italic) in the text; we can apply bulleted lists, and mark text fragments as source code with special

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

62

formatting. References that refer to model elements (e.g. an actor or activity) can be inserted into a text
as cross references. Besides, the images provided by the file system (the Eclipse workspace is the root
directory) can also be inserted as references (Figure 4-9).

Figure 4-10 The SourceView of the Editor

The formatted text is converted and stored in XML format that mostly uses the well-known HTML tags.
The XML format of the text is available and editable in the SourceView of the editor (Figure 4-10).
Pressing the More… button, a larger dialog window pops up and makes possible the more comfortable
editing of the text.

Figure 4-11 The Reference chooser dialog window

A separate dialog has been developed to serve the reference management (Figure 4-11). The window
represents the model elements in the hierarchy they are stored in the model. By selecting a model
element, the solution puts a reference into the source view of the text (e.g. <a href =
"/MyFolder/qsmodel.qsmodel#_h8XcYDfgEeOAZYngIZUwOw" mode = "name" />, where the code
after the hashmark character denotes the unique id of the referenced model element), and shows the
value of the Name attribute of the referred model element in the rich text. The name is shown as blue
underlined expression, and by moving a mouse over the name of the referred element, a tooltip shows
the path related to the model element (Figure 4-12).

Figure 4-12 Tooltip of a referred element

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 63

In a similar way, we can refer to images as shown in Figure 4-13. By selecting an image, the solution
puts a reference into the source view of the text (e.g. <img align = "center" caption = "MyCaptionText"
src = "\MyFolder\pana004_resized2.jpg" />), and shows an image placeholder. The tooltip of the
placeholder shows the path of the referred image file.

Figure 4-13 The Image browser dialog window and a sample inserted image placeholder with a tooltip

With the help of the developed editor interface, we are able to describe use case descriptions, activity
operations, etc. in a WYSIWYG format, and we can insert image references and cross references to
elements. The presented solution provides a comfortable way to manage cross references that can be
resolved during the generation of the documentation, while it also maintains a formal model in the
background that facilitates finding dependencies between various requirements and their implications.

4.2.1.5 Further	Domains	of	the	Environment	
Through a software development process, all the gathered information pieces should be organized in a
carefully designed repository structure. Usually the information is represented by plain text documents
and stored in separated repositories maintained by the different project partners. This method results in
extra administration cost during the software development process. Unfortunately, this type of
administration should be performed by highly qualified experts, because all information has its semantic
meaning. Misunderstanding the meaning of information can lead to communication problems and
further issues. Therefore, applying the appropriate DSLs and providing a consistent working
environment for the experts, we can significantly reduce the unnecessary administration and allow
experts focusing on their main objectives.

We have defined several further DSLs for the rest of the software development process. All DSLs are
about to capture the appropriate level of abstraction and help the communication between domain
experts and software engineers. These DSLs support the task management, definition of business
entities, user interfaces, etc.

Project tasks are automatically derived from the domain-specific models and provide an easy way to
follow the connections between the requirements and the daily activities. The well-formed domain
models support automatic code generation. This is important that in this case the code generation is not
equivalent with the visual programming technology. Domain models capture a higher level of
abstraction than source code. Models support the designer to make high-level decisions. Code generators
extend the models with platform-specific and implementation related details.

Business entities of the software systems are defined within a separate DSL. The instance models of this
DSL refer to relational database models. We also defined a DSL for capturing the graphical user
interface requirements. During the definition of our DSLs, we aimed that the different DSLs can refer

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

64

to each other. As a result, different domain models can refer to each other, and they utilize the objects
and constructs of each other.

4.2.2 Generating	Software	Artifacts		
Previous section has discussed the requirements engineering part and introduced the supporting
environment of our method. Hereby, we summarize the model processors that based on the requirement
models generate different artifacts: source code, tasks, documentation and relevant test scenarios.

4.2.2.1 Source	Code	and	Task	Generation	
The requirement models serve as a plan for all the activities done by different roles of the software
development process. They act like a design layout for a building. We found that ideally the great
majority of the development related tasks should be generated from the models. The more tasks are
generated from the models; the less inconsistency can be observed between the model and the reality.
Therefore, the first step is to solve the automatic and tool supported relationship between the model
elements and the tasks. The next step is to identify which tasks are well defined and can be expressed as
decision points in domain models. For these cases, we can address the generation of the given software
artifacts. We believe that this approach is quite important and should be followed; otherwise, a “l’art
pour l’art” effort could be taken: generating something that is not relevant or making all the decisions
already in the model space.

We apply source code generation to process the following domain models:

‒ From business object models, we generate the object persistency layer of the system.

‒ From the abstract user interface models, we generate the appropriate client source code.

‒ Furthermore, other artifacts are automatically produced like language resources and messages
based on the terminology of domain models. It is important to handle this issue in an automatic
way, because the same labels, domain expressions and messages should be generated in the
documentation, in the source code and on the user interface as well.

4.2.2.2 Generating	Relevant	Test	Scenarios	
Based on the business processes and the use case scenarios, the test cases are produced by traversing the
process graph and identifying its different paths. The processing generates the so-called relevant test
scenarios. Relevant test scenarios represent a subset of the complete test scenario set. The solution makes
possible to define test data sets that are harmonized with the decision points and the process graph. By
exhaustively traversing the whole process graph, we can generate all the test scenarios. However, in
case of knowing certain decisions (parameters or variable values) we should test only those branches of
the whole process graph that can occur. This makes the testing process more effective, because the
known parameters and variable values cut the problem space. For example, consider the following: there
is a decision point, where we can choose between the red and green paths. Assume that we select the
green one (e.g. based on an input parameter). Later, if the same decision arises, we should follow the
same path again. Therefore, there is no need to generate test scenarios covering the red path. In this way,
we can reduce the number of test cases.

4.2.2.3 Generating	Documentation	
In the approach, domain models drive the whole development process. However, end-user artifacts are
mainly documents, which are the readable layouts of the given domain models. The business process
models are a communication platform between the development team and the project stakeholders.
Therefore, the documentation generated based on these models should be well-formed, and furthermore,
easy to read and understand for the domain experts. To fulfill this requirement, the business process

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 65

model and every further DSL sections have their own documentation layout. The generator uses a
template-based technology by writing the document directly through an API. The generator can produce
documents of several hundred pages within a few seconds, i.e. the document generation solution is
effective. Note, that it is not a goal to generate verbose and too long documents. The length of the
documents depends on the sections related documentation layout, the size of the processed domain
models, and the document format settings (e.g. font size, margins and further paragraph settings).

Model element descriptions are formatted as rich text sections; furthermore, they handle inserted images
as well. Therefore, the generated document artifacts do not require any post-processing like manual
formatting or extending.

4.2.3 Evaluation	of	the	Method	
The result of this systematic approach leads to a close relationship between the original requirements,
the source code, the documentation, and the test cases used in the transition phase of the project. Based
on our experience, the method significantly reduces the project risks. The method is a strong tool for
supporting change management.

Generally, both parties (the customer and the solution provider) are interested in defining the system
requirements as precisely as possible. Our projects proved that extra efforts (e.g. a careful design)
performed at the preliminary phase save more efforts in the transition phase and significantly reduce the
risks. This was the main goal during developing and using this method.

The strengths of the method:

‒ Requirements models drive the whole development process: requirements analysis and
requirements engineering, artifact generation (development related tasks, source code, test
scenarios, and documentation), testing, verification/validation issues, maintenance, and
feedback management. This results a model-centered and strictly model-driven approach with
advantages of clear requirements management, direct connections and consequences during the
development process.

‒ Provides the frame of adequate analysis, unambiguous scope definition and involvement of the
domain experts (customers) into the development.

‒ Defines a clear connection between the requirements and the software components (system
functionalities).

‒ Puts the domain processes (workflows) into the focus of the requirements analysis and the
development.

‒ Ensures the continuously up-to-date state of the requirement models all along the lifecycle of
the given solution.

‒ The suggested method can be freely extended with optional number of DSLs and domain-
specific model processors. The key concept is that models should drive the artifact generation,
the testing process and also the maintenance.

The weaknesses of the approach:

‒ Each research team and developer company has its own rules and processes. The introduced
method is not about to redefine the working method, i.e. the method is not about to take and use
it as it is, but take and adapt it. We suggest thoughts and assets that are worth to follow in order
to make the software development process more effective and increase the quality of the resulted
artifacts.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

66

‒ The generated source code is based on organization-specific class libraries or frameworks. Some
of these libraries are developed for different application domains (e.g. financial sector,
governmental sector, pharmaceutical field, other) but the great majority of these libraries cover
enterprise software related issues, i.e., support the communication between the clients and the
server, the data access and database management issues. These libraries are team-related
artifacts, therefore, the generators should be redeveloped (or heavily reconfigured) by each
research team or company in order to target their own library capabilities.

The introduced method has various benefits for both the academy and the industry. By applying quality
assured methods in requirements analysis, user story definition, and requiring customer validation of the
business requirements, guarantees the unambiguous project scope definition, the appropriate quality
assurance, and the customer satisfaction. We believe that this method can significantly improve the
quality of the software artifacts, increase the development productivity, and decrease the required
resources and the time-to-market period. The methods and the introduced domain-specific languages
are tool independent, i.e. the results and the methods can be applied in different environments as well.

4.3 Developing	and	Managing	Domain-Specific	Models	
By domain-specific languages, we mean textual or visual languages that are used in a more specialized
way than in general-purpose programming. DSLs have limited expressive potential and can only
describe problems from a well-defined problem domain. These characteristics make them suitable to
achieve several different intents.

Domain-specific languages (DSLs) have been used for a long time in the software world as a means for
achieving better productivity and increasing the quality in final products. DSLs are used extensively, so
when we talk about productivity, it may refer to the efficiency of creating both physical products and
intellectual property, depending on the production environment. Some DSLs are destined to end-users.
In this case, they facilitate the use of a software product so that the end-users can work more efficiently.

Domain-specific languages play an important role in software modeling and model-driven methods. A
number of international journals and conferences discuss the topics of the professional development of
languages, their exploitation, furthermore the benefits and opportunities provided by their application.
Domain-specific languages are utilized in various scenarios, such as a tool specialized for a domain; as
a customized notation; as a modeling tool; as a software layer; or as addressing the challenges from a
different point of view. Development, implementation and utilization of domain-specific languages
requires mature decisions, analysis, design, implementation, introduction and maintenance [32].

We have worked out and tested a method with the goal to allow the effective, reason and utilization-
driven definition of domain-specific models. The method provides suggestions regarding to the
considerations and decisions we have to make during the analysis of the business needs and the
definition of domain-specific languages, supports the steps and tasks related to the introduction of
domain-specific languages. The method also provides suggestions regarding to the maintenance of
domain-specific languages.

Introducing a DSL is an investment, which should pay off. The characteristics of DSLs are much more
than just the limited expressive potential, i.e. focused intent, and higher abstraction view.

Usually, DSLs are defined as computer languages that use domain-specific notions to describe a
computer program. Designing a DSL also a kind of development that requires goals and scope. Before
we introduce a DSL, we need a clear vision, i.e. the motivating points to use a DSL, which aspects are
in focus and what are the goals to be achieved by their application. Furthermore, we should be aware of
the implications of the DSL implementation, the advantages and disadvantages, the challenges that we

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 67

face during the design, development, introduction, utilization and maintenance of the DSL. Often, we
handle a DSL as a specialized tool with a custom notation for a given area, for a given type of
development activities [32].

Figure 4-14 Supporting the transparent switch between the textual and visual views of semantic models

Figure 4-14 depicts the architecture of our method for managing domain-specific models, which
supports the transparent switch between the textual and visual views of the semantic models. In the
architecture, there are three layers: the repository layer; modeling and model processing services; and
views. The repository media can be a classical file or database storage, or even any communication
point, such as a web service, which can accept domain models and transparently provides them on
request. The core modeling and model processing service represents the semantics of the model,
furthermore, this layer is responsible for the model processing activities. Model processing engine,
validated model processing methods, code generators are all represented by this layer. A view is based
on the semantic model and provides optional textual and/or graphical representation for software
models. The approach is similar to the Model-View-Controller and the Document-View design patterns.
The various responsibilities of the modeling and model processing field are clearly separated and
transparently applied in order to provide an effective method for large-scale software projects.

The method allows the transparent switch between the visual and textual representations of semantic
models. Furthermore, it allows to freely decide, whether to use the textual and/or the visual
representation of domain-specific languages to define the structure or the operation of software systems.

4.4 Processing	 Mathworks	 Simulink	 Models	 with	 Graph	 Rewriting-Based	
Model	Transformations	

Simulink, developed by Mathworks, is a graphical programming environment for modeling, simulating
and analyzing multi-domain dynamic systems. Its primary interface is a graphical block diagramming
tool and a customizable set of block libraries. It offers tight integration with the rest of the MATLAB
environment and can either drive MATLAB or be scripted from it. Simulink is widely used in automatic
control and digital signal processing for multi-domain simulation and model-based design. [Simulink]

Views

Repositories

Core modeling and
model processing

services

Textual Representation Visual Representation

Database File (XML) Web Service

Semantic Model
Management

Model Processor
Engine

lexical analysis
parsing

tree paring
generating rendering analyzing

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

68

Simulink well demonstrates that increasing the abstraction level is a powerful tool to manage
complexity. Developer teams appreciate that model processors targeting embedded environments,
controlling systems, or signal processing, are also enable to generate software artifacts, e.g.
configuration files, execution lists. Simulink does not support the declarative definition of model
processors. Therefore, we have prepared VMTS modeling and model-processing framework to support
the communication with the Simulink environment. We define it as our integration between the Simulink
environment and the VMTS modeling and model processing framework. VMTS allows to define and
execute model processors. As a result, tasks are designed and solved on their appropriate abstraction
level, i.e., we traverse, optimize and alter models in the Simulink domain. The Simulink metamodel has
been automatically built in the VMTS environment, therefore, engineers use well-known Simulink
language elements during the design of model processors. This is the fundamental premise of Computer
Automated Multi-Paradigm Modeling; to use the most appropriate formalism for representing a problem
at the most appropriate level of abstraction [Mosterman and Vangheluwe, 2000].

The integration allows to load Simulink models and to perform the model processing rule-by-rule, while
continuously modifying the Simulink model and/or generating the output of the transformation [25]
[30].

While operating at a given level of abstraction, two mechanisms are often employed to scale system
complexity: partitioning and hierarchy [Mosterman et al, 2004]. In the Simulink environment, hierarchy
is supported as a purely syntactic construct by virtual subsystems and as a construct with semantic
implications by non-virtual subsystems. These subsystems are represented as blocks with input and
output ports that are used to connect subsystem blocks. Subsystem blocks may contain other subsystem
blocks or primitive blocks that represent behavior without being able to be further decomposed.

Before a Simulink model is executed, the engine creates an execution list with an order in which all of
the blocks are executed. The execution list is computed from the sorted list, which is also generated by
the Simulink engine based on the control and data dependencies that determine how the different blocks
can follow each other in an overall execution. To create this list, the semantically superfluous
hierarchical layers have to be flattened. So, the virtual subsystems that are only graphical syntax and
that have no bearing on execution semantics are flattened before the sorted list is generated.

We have applied the graph rewriting-based solution to flatten virtual subsystems in Simulink models.
Model transformations helped to raise the abstraction level of the transformation from the API
programming to the level of software modeling. The solution possesses all the advantageous
characteristic of the model transformation, for example, it is reusable, transparent, and platform
independent.

4.4.1 Communication	between	Simulink	and	VMTS		
Since models are defined in Simulink, which is a part of the MATLAB environment and the
transformation is defined in a different system (VMTS) there was a need to establish a communication
method between the two systems.

To be able to represent Simulink models in VMTS, the metamodel of the Simulink languages, which
are organized into different libraries (also called blocksets), is required. In Simulink, there is no hard
boundary between the different languages, that is, a given block can be connected to almost everything
else, a common Simulink metamodel was created. The metamodel contains all the elements of the
Simulink library. The generation of this metamodel consists of the following two steps.

First, a core metamodel was created that contains the Block element, which is the common ancestor of
all the nodes in Simulink models, and a descendant Subsystem node, which expresses the common

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 69

ancestor of Simulink Subsystems. This metamodel also contains the Signal edge and a Containment
edge to reflect containment hierarchy between nodes.

Then, by programmatically traversing the base Simulink library, this metamodel has been extended with
the other nodes found in the different specialized libraries. For each Simulink element, exactly one node
was generated. This resulted in several hundred new metamodel elements.

Figure 4-15 Processing Mathworks Simulink models with graph rewriting-based model transformations (within

the VMTS Framework)

In addition to the metamodel, the VMTS was prepared to read and write Simulink models. Thus, a new
kind of data exchange layer was generated for communicating with MATLAB. To modify Simulink
models, the P/Invoke technology [P/Invoke] has been chosen. This has the advantage that the MATLAB
interpreter can be called directly through DLL calls, instead of manipulating the textual model (mdl
extension) files. This way the VMTS is independent of file format changes, and the changes performed
on the VMTS model can be made visible, live during the transformation execution, on the Simulink
diagrams as well. Furthermore, the values that are only available during simulation time of a Simulink
model can be accessed also.

Figure 4-15 introduces the architecture of the Simulink and VMTS integration, i.e. the method for
processing MATLAB Simulink models with graph rewriting-based model transformations.

4.4.2 Visual	Debugging	Support	for	Graph	Rewriting-based	Model	Transformations		
Within VMTS, we have developed an interactive visual model transformation debugger, i.e. a visual
debugger for graph rewriting-based model transformations [31]. The motivation was mainly to support
the effective development of the MATLAB Simulink model processors.

Actual model processing tools support the definition of transformation rules in a visual or textual way.
Several tools support both forms. When developing a model processor for a domain-specific language,
the ability to efficiently trace and debug the operations performed by the model processor is also
important. Almost all software development tools facilitate the debugging of source code during the
execution. But only a few of the modeling tools support the continuous animation of the modifications
performed on the models, which makes the traceability and the debugging of transformations
challenging.

Simulink Models

Visual Modeling and Model Transformation

Semantic Model
Management

Model Processor
Engine

MATLAB API

reads Simulink
models

writes transformation
result generates further

textual output

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

70

We have worked out the concept of the visual model transformation debugger and realized it in the
VMTS. The solution facilitates the step-by-step execution of model transformations, breakpoints,
variable inspection, and the visualization of the overall state of the transformation. Furthermore, it
provides the possibility to influence the behavior of the transformation at runtime. The realized features
have successfully applied for the MATLAB Simulink and further domains.

4.5 Managing	Energy	Efficiency-related	Properties	
Energy efficiency is a critical attribute of mobile applications, but it is often difficult for the developers
to optimize the energy consumption on the code level. In this chapter, we explore how we could use a
model and code library based approach to assist the development. Our vision is that engineers can
specify the operation on a high level and the system automatically converts the model to an appropriate
software pattern. In this way, the developer can focus on the actual functionality of the application.

Research has shown that by developing applications in a smart way, major savings in energy
consumption can be achieved. For instance, [Hoque et al, 2013] show that up to 65% of the energy
consumed by wireless communication can be saved through traffic shaping when streaming video to a
mobile device, and [Nurminen and Noyranen, 2009] report 80% savings when data transfer happens
during voice calls. These results show that when an application is properly constructed it is possible to
fundamentally improve the energy efficiency of at least some classes of mobile applications.

Unlike energy efficiency improvements in hardware or low-level software, these application-level
techniques require extra development work. Increasing the awareness of energy efficient programming
techniques could be one way but educating the vast mass of mobile developers to know the needed
patterns is slower.

Increasing the abstraction level is a successful way to hide low-level details from the developers, which
makes it possible to use complex data structures without worrying too much how they are actually
implemented, or we can use a high-level communication protocol without worrying how the bits are
actually moving through the communication channel.

The key question we investigate is the following: How can we hide some of the complexity needed for
energy efficient operation behind a properly selected abstraction? Some related work exists that touches
the interface between applications and power management of mobile devices: [Anand et al, 2004]
propose specific kind of power management interfaces for I/O access that allow applications to query
the power state and propose middleware for adaptive disk cache management. In [Anand et al, 2005],
the authors propose to leverage application hints in power management. However, choosing the right
level of abstraction in order to make the energy efficient programming techniques and patterns widely
and easily available to the developers still seems to be an open issue and requires further exploration.
As far as we know, our approach was the first one to investigate how the techniques and coding-patterns
needed for energy efficient software could be made widely and easily available to the developers.

An ideal solution would also enable distributing newly discovered patterns and techniques later on to
the software developer community without requiring further efforts from the developers.

In summary, we propose a way to reduce the complexity of developing energy efficient mobile
applications. The key contributions are:

‒ We identify energy efficient software patterns that can reduce the cost of communication.

‒ We propose a way to hide most of the complexity of the patterns behind a high-level software
abstractions and discuss what kind of issues arise with such an approach and what are the
remaining open problems.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 71

‒ We specifically advocate a model-driven approach that is one of the possibilities to address our
goals, i.e. to effectively support the development of energy efficient mobile applications.

‒ In the discussion section, we collect the main questions and issues of the field and provide our
thoughts about them.

In [35], we provided all the details of these results. Here we focus on the modeling and model processing
aspects of the method.

We have identified and analyzed the following energy efficient communication patterns, that can
achieve smaller energy consumption compared to the unregulated transfer of data:

‒ Delayed Transfer. Data transfer requests are queued and transmissions happen in a batch after
a certain time has passed or the size of the data to be transferred is large enough. The energy
saving in this case is the result of the fewer bursts of data which means less energy overhead
from the switching of radio states.

‒ Bursty Transfer. Faster communication incurs lower energy per bit cost with radio
communication [Nurminen, 2010]. The main idea is that the two communicating partner
reschedules the transfer session in a way that the data is transferred in high rate bursts instead
of at a steady but slower rate. This differs from the delayed transfer pattern, where the complete
data payload is always sent in one burst.

‒ Compressed Transfer. The most generic solution to save energy [Barr and Asanovic, 2006]. It
involves compressing the data to be transferred at the sending device and decompressing it at
the recipient after the transfer session.

4.5.1 Modeling	and	Generating	Energy	Efficient	Applications		
In order to support the energy efficient patterns, we designed an architecture and implemented a
prototype system for Android platform. Based on the model, which describes the energy aspects of the
application, the generated code uses a library, which interacts with our runtime system. The runtime
system, also referred to as Energy Efficient Communication Service, implements various energy
efficient patterns and takes care of the related tasks.

Modeling and processing different aspects of mobile applications are performed in the VMTS
framework. We use mobile-specific languages to define the required structure and application logic.
Platform-specific model processors are applied to generate the executable artifacts for different target
mobile platforms. The generated code is based upon the previously assembled mobile-specific libraries.
These libraries provide energy efficient solutions for mobile applications through the runtime
component. (Figure 4-16)

Mobile-specific languages address the connection points and commonalities of the most popular mobile
platforms. These commonalities are the basis of further modeling and code generation methods. The
main areas, covered by these domain-specific languages, are the static structure, business logic (dynamic
behavior), database structure and communication protocol. Using these textual and visual languages, we
are able to define several parts of the mobile applications.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

72

Figure 4-16 Managing different aspects, including the energy efficient operating properties, of software systems

on the modeling level

The following example introduces a textual language-based sample for defining REST-based
(Representational State Transfer) communication-related interface. The solution can generate both the
server and client-side proxy classes supporting the communication based on these type of interface
definitions.
[RestApi]
public interface MyService
{
 [RestMethod(Url = "$client/insertuser.php", CommandType
 = CommandType.POST, ReturnFormat = FormatType.XML)]
 UserInfo InsertUser ([RestParam(Mapping = RestMethodMappingType.Custom)]string client,
 [RestParam(Name="usr", Mapping = RestMethodMappingType.Body)]string userName);
}

For each target platform, a separate transformation is realized since, at this step, we convert the platform-
independent models into platform-specific executable code. The transformation expects the existence of
the mobile frameworks and utilizes their methods. The generated source code is essentially a list of
parameterized activities (commands), that are certain functions of the mobile application. This means
that the core realization of the functions is not generated but utilized from mobile-platform specific
frameworks, i.e., the generated code contains the correct function calls in an adequate order, and with
appropriate parameters. The advantages of this solution are the followings:

‒ The software designer has easier task. The model processors are simpler. The model processing
is quicker. The generated source code is shorter and easier to read and understand.

‒ We use prepared mobile-specific libraries. These libraries are developed by senior engineers of
the actual mobile platform and subject. These solutions, applying the appropriate patterns, take
into account the questions of energy efficiency as well.

In order to handle the energy related aspects of mobile applications also on the modeling level, we
should introduce those attributes that enables to define the envisioned conditions and circumstances of
the data transfer. This include the amount of the data, the frequency of data transfer, and the tolerated
delay.

‒ The above example is the textual view of the model, of course the modeling framework makes
possible to provide a visual interface to edit these and other domain-specific models as well.

There are various solutions that can be utilized for code generation. We have chosen the Microsoft T4
(Text Template Transformation Toolkit) [Microsoft T4]. T4 is a mixture of static texts and procedural

Software Libraries

Software Models
(different aspects of the system)

Source Code

Generated
Code

Manually
Writen Codegenerate

use use

Static Structure
Dynamic Behavior
Database
Communication
Energy Efficiency
…

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 73

code: the static text is simply printed into the output while the procedural code is executed and it may
result in additional texts to be printed into the output.

4.5.2 Discussion	
The first of the aspects to be considered is where to place the logic that chooses and configures the
patterns to apply. One option is to integrate it into the client side library, which monitoring the current
device environment could then operate adaptively. The other option is that the pattern-related decisions
are made during the code generation phase by the model processor. As usual, there are pros and cons
for both approaches. Having the logic in the client side library is beneficial because it can be configured
adaptively. On the other hand, the developer may provide a hint for the library and in this way, the result
can be a clearer and more understandable source code.

The next questions are the followings: Why is it important to increase the abstraction level in mobile
application development? What are the benefits of modeling mobile applications? Why is it important
to include the modeling of energy efficient issues of mobile applications as well? To raise the level of
abstraction in model-driven development, both the modeling language and the model processor
(generator) need to be domain-specific. The approach can improve both the performance of the
development and the quality of the final products. The commonly identified benefits of the model-driven
approach are improved productivity, better product quality, hidden complexity, and reuse of expertise.

Moving certain parts of mobile application definition to the modeling level, including the energy
efficient settings, means that these aspects of the applications are also available on higher level. This
makes it possible to gain an overview of the applications, to analyze them from different points of view,
to verify or validate certain critical issues, and to generate the source code of the application from
models.

We believe that it is necessary to involve the software developers in making applications more energy
efficient at least to a certain extent. Solutions that delay traffic and are completely transparent to the
developer, like the one described in [Qualcomm, 2012] may not be optimal either because they might
lead to unexpected behavior from the developer’s viewpoint. From the perspective of a typical
developer, the model-driven approach may sound unnecessarily cumbersome.

However, from the perspective of the product owner, the project manager, the software architect, and
the customer it is worthwhile to move all possible aspects of mobile applications to a higher level of
abstraction because that is the level at which they typically operate. They cannot think on the level of
the libraries (source code), because they are responsible for a whole system with different parts: server
side, desktop client, web clients, mobile clients, cloud-related things and so on. Still, they want to see
the important aspects of each area. Modeling should concentrate on all key aspects of the mobile
applications, including energy efficiency.

Energy efficiency is typically context dependent. This applies especially for data communication where
the amount of Joules per bit spent depends on at least SNR (transmit power) and available bandwidth
that vary with location and time. Therefore, regardless of whether model-driven or purely library-based
approach is used, some logic should be executed at run time. For example, the energy utility of data
transfer (J/bit) depends on e.g. SNR and available bandwidth that are location and time dependent which
in turn impact the decision whether compressing specific type of content yields energy savings or not
[Xiao et al, 2010].

Our examples focus only on communication energy. Other sources of energy drain, such as CPU,
display, sensors, can be included to consideration as well. For example, the developer could decide to
execute a function that renders the display in the most energy efficient manner by adapting the colors

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

74

[Dong and Zhong, 2011]. As for sensors, the programmer could explicitly set the trade-off between
accuracy and energy consumption.

In summary, we can say that applying model-driven solutions in mobile application development is the
current trend, and in the case of energy efficiency, it is also advised to follow it. Obviously, there are
scenarios where modeling (higher abstraction level) does not provide immediate advantages. Our work
in this area was the starting point of a discussion within the research community concerning how to
effectively transfer the existing and novel energy efficiency techniques to the mobile application
development.

4.6 Conclusions	
Model transformation approaches are becoming increasingly valuable in software development
processes because of the ability to capture and apply domain knowledge on the appropriate abstraction
level and often in a declarative manner. This enables various steps in the software development to be
specified separate from one another with apparent advantages such as reuse. In system design, the
computational functionality moves through a series of design stages where different software
representations are used. For example, before generating the code that is to run on the final device or
platform, code may be generated that includes additional monitoring functionality.

As a design is being refined, models generally pass through a series of stages where details are
increasingly added as a form of model elaboration. Model elaboration can, at least in part, be automated
by sophisticated software tools.

A method has been worked out that supports the quality assurance of software development projects.
The method applies domain-specific languages to support the compilation and analyzes of business
requirements against the software.

We have developed a method that allows the definition and management of domain-specific models.
The method provides suggestions regarding to the considerations and decisions we have to make during
the analysis of the business needs and the definition of domain-specific languages, supports the steps
and tasks related to the introduction of domain-specific languages and finally, helps during the
maintenance of domain-specific languages. Furthermore, a method has been worked out that allows the
effective and transparent switch between the visual and textual representations of semantic models.

We have successfully worked out and applied a novel solution that raises the abstraction level of
processing Simulink models. This approach utilizes model-transformations defined in VMTS. Using
model transformation to reduce the risk of creating artificial algebraic loops, replace built-in solutions
with custom algorithms, and change data types helps raising the abstraction level from API
programming to software modeling. The solution possesses all the advantageous characteristics of the
model transformation, for example, it is reusable, transparent, and platform independent.

The transformations were implemented in the Visual Modeling and Transformation System (VMTS).
In order to transform Simulink models directly, the VMTS modeling framework communicates with the
Simulink environment and the technology for doing so was briefly introduced.

Finally, we have provided a method for defining and managing energy efficient operation properties of
mobile devices. The method allows defining the energy efficiency properties on the level of software
models. As a result of the solution, this aspect of software systems appears on the modeling level, which
provides a more detailed view about the whole system.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 75

The discussed area related selected scientific results from my research activities are summarized in
Section 7.2 (Thesis II: Model-Driven Methods Based on Domain-Specific Languages and Model
Processors).

I believe that my results, domain-specific languages and model processors driven methods, contribute
to the quality improvement of the software artifacts and increase the development productivity. Both the
discussed methods and the introduced domain-specific languages are tool independent, therefore, these
results can be utilized in various tools and for different circumstances.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

76

5 Applying	Domain-Specific	Design	Patterns	and	Validating	Domain-
Specific	Properties	

5.1 Introduction	
In the field of graphical languages, we use metamodeling as a widely applied technique to define both
modeling languages and highly configurable environments. These languages and environments support
the rapid development of domain-specific languages and model processors. Design patterns are efficient
solutions for recurring problems [Gamma et al, 1995]. With the popularity of domain-specific languages
and domain-specific model processors, there is a need for domain-specific design patterns to offer
solutions to problems reoccurring in different domains. This chapter introduces both theoretical results
and practical methods to support domain-specific model patterns, validating domain-specific properties
of software models and handling the validating constraints in a modular way.

5.2 Domain-Specific	Design	Patterns	
In [2] we discussed both the theoretical and practical foundations with the goal to support domain-
specific model patterns in metamodeling environments. In order to support the treatment of early model
parts, we weakened the instantiation relationship. We worked out various constructs that help relaxing
the instantiation rules, and showed that the utilization of these constructs allows to express domain-
specific patterns.

Metamodeling is a successful technique to define the rules of graphical modeling languages. The method
allows to define the metamodel itself and also provides an instantiation relationship. We say that a model
is valid if it can be obtained from the metamodel via the agreed instantiation relationships.

Since metamodels allow model descriptions, various language-related operations could be handled in a
more general way, if the metamodel is also present with the model. This leads us to the concept of reuse,
i.e. an operation assumes a metamodel description language, the instantiation method is the only fixed
element, the model and its metamodel become variable parameters, and in this way the features of a
modeling tool can be reused across any model in a metamodeling environment.

Domain-specific design patterns are design patterns inserted into domain-specific languages. They are
addressing a specific domain-related challenges [11]. In domain-specific languages, not only design
patterns can be developed, but model patterns for many other purposes. The modeling language patterns
in this broader sense are referred to as domain-specific model patterns. We have developed the method
and also the tool support for domain-specific model patterns. The features for pattern specification are
general, i.e. they exploit the benefits of metamodeling described above: the metamodels can be taken as
parameters in metamodeling environments. However, we need to weaken the instantiation rules to be
able to store premature model parts in a metamodeling environment.

In software modeling and graph rewriting-based model transformation, there are several recurring
problems that should be solved repeatedly in the context of different environments or different
transformations. A pattern is a reusable entity, which describes a frequent design or implementation
problem, and gives a general, but customizable solution for it.

Model transformations are formed using transformation rules. Within a model transformation, it is
required that each rule be defined over an attributed type graph. This type graph is obtained by regarding
the metamodels of both the source and the target languages. As a consequence, one requirement for rules
is that both LHS and RHS are instances of their corresponding metamodels.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 77

Often, this instance relationship is loosely applied: we require that a model or a transformation rule must
be an instance of the metamodel, but should not necessarily conform to additional constraints (e.g.
attribute value constraints). This does not affect cardinality constraints. The reasons of this method are
that we do not want to define unnecessary restrictions when designing a model transformation and we
aim to reduce the number of rules by allowing abstract classes.

Figure 5-1 illustrates that metamodel-based transformation rules are on the same level as metamodels,
furthermore, introduces the instantiation hierarchy applied in a metamodeling tool. The left-hand side
of the transformation rules is built based on the types and associations of the input metamodel. Similarly,
right-hand side of the transformation rules is built based on the types and associations of the output
metamodel. The figure summarizes the instantiation relationships between the meta-metamodel,
metamodels, instance models and transformation rules. Domain-specific design patterns are also valid
or relaxed instances of the metamodels. We apply and reuse these model patterns with the help of
transformation rules, i.e. transformation rules insert the model patterns into the appropriate parts of the
instance models.

Figure 5-1 Supporting domain-specific design patterns

In [2], the concepts of partial instantiation, relaxed multiplicity, and relaxed instantiation relationship
are introduced. In order to support the treatment of premature model parts, such as transformation rules
or model patterns, this approach also weakened the instantiation relationship.

In requiring valid intermediate models after each rule execution, the following question arises: Can we
use the same metamodel both for intermediate models and for the final output model? To support the
model transformation process with the same metamodel, certain relaxations should be allowed on the
instantiation relationship, i.e., special instantiation rules are necessary. In order to describe these special
instantiation rules, we need to introduce the concept of partial instantiation.

Definition (Partial instantiation). If a model can be extended to a valid instance model, it is a partial
instance of a metamodel. During the extension, it is not allowed to delete or modify any element or
attribute value of the partial instance model, but only extension functions, i.e., adding new elements and
initializing (uninitialized) attribute values is permitted.

In the majority of the practical cases, partial instantiation means relaxing the multiplicities on the edges
and the cardinalities of the nodes in the metamodel.

Assuming that a multiplicity interval is m1..m2, where m2 can be infinity. The relaxed version of this
multiplicity interval is 0..m2. Similarly, assuming that a cardinality interval c1..c2, where c2 can be
infinity. The relaxed version of this cardinality interval is 0..c2.

instantiate instantiate

instantiate instantiate

use use

instantiate /
isomorph

match

instantiate /
isomorph

match

Meta-metamodel

Metamodel B

Input Model Output Model

Metamodel A

Transformation rule

LHS RHS

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

78

With relaxing the multiplicities and cardinalities, we facilitate the omissions of certain nodes and edges.
However, the patterns in certain cases do not conform to the relaxed model. Assume the following
containment chain: Queue-Task-Subtask. When we define patterns, it would be desirable to model a
subchain of these chains. In general, this means that we allow transitive containment in the model.

Definition (Transitive containment). Assume a directed containment path between two nodes N1 and N2
in a metamodel. Transitive containment means that objects of N1 can contain objects of N2.

Assume that the modeler has constructed a pattern with the containment chain Queue-Subtask. In the
editor (at the concrete syntax level), it seems that the modeler must insert a Task between the Queue and
the Subtask to extend the pattern to a valid instance. However, it is not true on the abstract syntax level.
First, it must be allowed that a Subtask can be dropped onto a Queue. Second, on insertion, the tool must
disconnect the containment between the Subtask and a Queue. Finally, the tool must connect the inserted
Task to the existing Queue and Subtask. In general, it is not true that a model with transitive containment
can be extended to a valid instance by adding elements only.

We can state that a model allowing transitive containment with respect to its metamodel is not
necessarily a partial instance. An example preceded the statement that proves that there exists a case
where the transitive containment violates the rules of partial instantiation. If a model uses transitive
containment where the metamodel allows it, then the model is obviously still a partial instantiation.
Also, the multiplicities along the containment path are not considered in Definition of Transitive
containment, which can lead to another type of violation.

Definition (Dangling edge relaxation). Dangling edges are edges that are not connected to a node at
either end. Assuming two nodes with an edge between them, and this construct conforms to the
metamodel. Dangling edge relaxation means that either of the nodes is allowed to be omitted.

Definition (Incomplete attributes). Incomplete attributes are uninitialized attributes in a model element
with no default value.

In Figure 5-2, two invalid partial instances of our DomainServers metamodel (Figure 3-2) are presented.
In Figure 5-2a, the Queue is associated with two Server nodes. In Figure 5-2b, there is only one DB
Task. Without the deletion and modification of certain elements, these model patterns cannot be
extended to a complete instance model.

Figure 5-2 Example of (a-b) invalid partial instances, (c) valid partial instance

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 79

Figure 5-2c depicts a valid partial instance of the DomainServers metamodel. A server node contains a
tier. The server has a ThreadPool containing two threads, but the required Queue is missing. This partial
instance can be extended to a complete instance model by only adding new elements and providing
uninitialized attribute values.

The following statement shows further connections between the partial instantiation and the pattern
constructs presented above. If a model is created violating the instantiation rules in the following
respects only: dangling edge relaxation, and incomplete attributes, then the model is a partial
instantiation of its metamodel.

Relaxed instantiation relationship and relaxed multiplicity rules based on the above definitions support
the definition and utilization of domain-specific design patterns and model patterns.

The practical relevance of domain-specific model patterns, and the theoretical foundations for the issue,
i.e. that patterns are not always regular instances of the metamodel motivated us to provide tool support
for model patterns.

Defining domain-specific model patterns and reusing them in different domain-specific models offer
great perspectives for rapid application development and keep reliability at a high-level as well. VMTS
has been prepared to provide tool support to create general but customizable model patterns. The support
of domain-specific patterns also highlights the benefit of metamodeling.

An important rule is that patterns can be applied for models having the same metamodel as the patterns.
It is not enough to create patterns on their own; there is a natural need for the capability of organizing
them into pattern repositories and attaching some meta-information to the patterns as well. In this way,
a large number of patterns can be handled effectively. For this purpose, we have built a DSL with
metamodeling techniques. We have created pattern models that are independent from their target model
into which the patterns are inserted. For the catalog, a pattern metamodel is created. As a result, a pattern
repository domain-specific modeling language is created. Its nodes contain references to pattern models.
Thus, the models of this language behave as pattern repositories as they can contain numerous references
to real design pattern models.

Note that pattern models use the same metamodel as the target model. When inserting a pattern into a
model, we offer only those patterns that have the same meta-model as the model itself.

5.3 Validating	Domain-Specific	Properties	of	Software	Models	
Domain-specific rules and properties provide the essence of the domain itself. Methods and model
processors effectively supporting domains are based on this domain-related context.

Appropriate validation requires determining the accuracy of a model transformation, meaning the output
models of the transformation satisfy certain domain-related conditions. This section discusses an
approach that is based on the output model-related domain-specific properties. We extend model
transformations with additional transformation rules in order to verify/validate domain-specific
properties. Figure 5-3 summarizes the method and the related algorithms we worked out to validate the
domain-specific properties of software models.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

80

Figure 5-3 Validating domain-specific properties of software models

The goal is to require optional domain-specific properties from the output (modified or generated)
software models. Therefore, we introduce the concepts of Success Condition (SC) and Negative Success
Condition (NSC) [27].

Definition (Success Condition (SC)). A Success Condition defines a requirement that should be true for
the output model of a model transformation rule.

Definition (Negative Success Condition (NSC)). A Negative Success Condition defines a requirement
that must not be true for the output model of a model transformation rule.

There are different types of Success Conditions and Negative Success Conditions (SCs/NSCs):

1. Constraint-based SC/NSC. This type of SCs/NSCs is defined either in the metamodel of the
output model or in the model transformation. These constraints also include attribute value and
multiplicity constraints.

2. Pattern-based SC/NSC. This NSC is similar to the concept of Negative Application Condition
(NAC) in rewriting rules [Habel et al, 1996]. Both NAC and NSC define a pattern. NAC
specifies what pattern should not be found before the execution of the transformation rule.
Contrarily, NSC defines the pattern that should not be found after the execution of the
transformation rule. If the pattern defined by an NSC is present in the output model, then the
transformation fails. Similarly, if a pattern defined by an SC is not present in the output model,
then the transformation fails.

3. Hybrid SC/NSC. Requirements expressed by hybrid SCs/NSCs combine constraint-based
SCs/NSCs with pattern-based SCs/NSCs.

4. General SC/NSC. This type of SCs/NSCs requires that a transformation validates or guarantees
not only local, but also global output-model related requirements as well. General SCs/NSCs
could be constraint-based SCs/NSCs, pattern-based SCs/NSCs, or hybrid SCs/NSCs.

Corollary. SC and NSC definitions require that the conditions should be/must not be satisfied for the
output model of a transformation rule. If the selected rule is the last rule in the control flow model of the
transformation, then the conditions are stated against the whole transformation.

generate extend

Domain-Specific
Success Conditions

&
Negative Success

Conditions

Validation
Transformation Rules

&
Validation Points

Rules and
Control Flow

Extended Rules and
Control Flow

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 81

5.3.1 Examples	for	Validation-related	Requirements	
In order to support a better understanding of the SCs and NSCs, based on our sample domain-specific
language (DomainServers, Section 3.2.1), few examples are provided.

Define the number of specific type elements in the model (General SC). E.g., define the maximum
number of Server type nodes in the model, or define the minimum number of Queue type nodes, based
on the number of Server type nodes. These are cardinality issues related to the whole model.
context Server inv serverCardinality:
Server.allInstances()->count() < 40

context Queue inv queueCardinality:
Queue.allInstances()->count() >= Server.allInstances()->count()

At least one of the servers should be ready (Hybrid SC). This SC is similar to the following NSC: This
is not allowed that all of the servers be occupied (Hybrid NSC).
context Server inv serverLoad:
Server.allInstances()->exists(s | s.Load < 80 and
 s.ThereadPool.Threads->count(t | t.State = State::Ready) >= 4)

The constraint requires at least one Server type node in which the Load is under 80% and has at least
four Threads in Ready state.

In case of a large ThreadPool, separated CPU and I/O tiers are required (Hybrid SC). This SC defines
that for each server, if the number of threads in the ThreadPool exceeds 50, then separated CPU and I/O
tiers are employed.
context Server inv largeThreadPools:
Server.allInstances->forall(s | s.ThreadPool.Threads->count()<= 50 OR
 (s.Tiers->exists(t | t.Type = Type::CPU) AND
 s.Tiers->exists(t | t.Type = Type::I/O)))

Attribute value constraint (Constraint-based NSC). An example of attribute value constraint is the
following queueLimit constraint. It is an invariant type constraint for the QueueLimit attribute of Queue
type nodes.
context Queue inv queueLimit:
QueueLimit < 1200

These invariant type constraints can be defined as SCs/NSCs or as metamodel constraints. Validation
points assign SCs/NSCs to selected transformation rules. Therefore, these assignments control where to
validate these conditions. However, in the case of metamodel constraints, the transformation system
must require the constraints to always be satisfied during the transformation. Furthermore, the situation
is more complex if the source and the target metamodels are different. In this case, during the
transformation, the processed model could contain either elements from both of the metamodels, or
helper elements with general type (a metatype which is neither present in the input nor output
metamodel). The goal of this is to temporarily associate nodes from the source and the target models in
order to support the transformation process. The next section discusses possible approaches to ease the
rigid restrictions stated by metamodel constraints.

5.3.2 Extending	 the	 Transformation	 with	 Success	 and	 Negative	 Success	 Conditions	 to	
Validate	Domain-Specific	Properties	

The method extending the transformation with additional transformation rules (SCs and NSCs) to
validate domain-specific properties automatically creates transformation rules that implement SCs and
NSCs, and performs the validation. The original model transformation definition is extended with

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

82

generated transformation rules. As a result, the extended transformation performs the required
validation. This method supports the validation of domain-specific properties (Figure 5-3).

With SCs and NSCs, we can define output model related domain-specific requirements. Now we discuss
how to generate the necessary validation rules for different types of SCs/NSCs. First, we provide the
definitions of the Validation transformation rule and the Validation point, and then introduce the
different scenarios of the transformation extension. Next, we provide a method to generate validation
transformation rules from SCs/NSCs (Section 5.3.2.1). Finally, we discuss the topic of extending model
transformations with generated validation transformation rules (Section 5.3.2.2). We introduce
algorithms for generating validation transformation rules, as well as extending model transformations
with these rules.

Definition (Validation transformation rule). A validation transformation rule validates one or more
output, model-related, domain-specific properties.

The exact points in a model transformation, where certain SCs and NSCs should be validated, are
defined by validation points.

Definition (Validation point). A validation point designates a transformation rule in a model
transformation control flow and refers an SC or an NSC that should be validated following the selected
model transformation rule.

Figure 5-4 Extending model transformations with validation transformation rules: (a) Original model

transformation, (b) Transformation extended with an intermediate SC, (c) Transformation extended with a final
SC, (d) Transformation extended with an intermediate NSC, (e) Transformation extended with a final NSC.

Figure 5-4 introduces the scenarios in which model transformations can be extended with validation
transformation rules implementing SCs and NSCs. In Figure 5-4a, the original model transformation,
which has two transformation rules executed in a sequence, is presented. In Figure 5-4b, the
transformation is extended with a new validation transformation rule. The new rule is inserted after
Rule1 and in the case of successful validation, according to the original control flow, it is followed by
Rule2. In the case of failed validation, the transformation process stops with error. The scenario depicted
in Figure 5-4c is similar to the previous one, but in this case, the validation transformation rule is inserted
as the last (final) rule of the transformation. Scenarios shown in Figure 5-4d and Figure 5-4e are similar
to the scenarios b and c, but differ in that the NSCs are implemented by validation transformation rules.
Therefore, if a match can be found and the conditions of the NSC hold, the transformation should
terminate with error, otherwise the control flow continues.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 83

Definition (Validate Success Condition). A transformation T validates a success condition SC for an
input model H if executing the transformation T for the input model H results in an output model M that
satisfies the conditions defined by the success condition SC.

Definition (Validate Negative Success Condition). A transformation T validates a negative success
condition NSC for the input model H if executing the transformation T for the input model H results in
an output model M that does not satisfies the conditions defined by the negative success condition NSC.

Definition (Validated model transformation). A model transformation T is validated if output models
generated by transformation T satisfy a set of success conditions and/or negative success conditions.

Figure 5-5 Extending model transformations with complex validation: (a) Original transformation, (b)

Transformation implementing an optimized transitive closure, (c) Transformation extended, with several
transformation rules, (d) Transformation extended with a sub-transformation.

In order for a model transformation be able to validate the conditions defined by SCs and NSCs, the SCs
and NSCs should be implemented by transformation rules and should be inserted into the transformation
control flow. Different SC and NSC types require different treatment to prepare for transformation
validation.

1. Constraint-based SC/NSC. A method (algorithm) is required that generates validation
transformation rules from constraint-based SCs/NSCs.

2. Pattern-based SC/NSC. The pattern of this type of SCs/NSCs can be used as both the LHS and
the RHS of the appropriate validation transformation rule.

3. Hybrid SC/NSC. The pattern of this type of SCs/NSCs can be used as both the LHS and the
RHS of the appropriate validation transformation rule. The constraints should be propagated to
the LHS of the validation transformation rule.

4. General SC/NSC. We know that a general SC/NSC can be constraint-based, pattern-based, or
hybrid. General requirements that can be expressed with a single pattern or constraint can be
treated according to the previous points. In the case of more complex validation issues, e.g. one
that requires several rules to be implemented, different methods should be applied. Some
examples include traversing an inheritance hierarchy, within a UML class model, or identifying
whether an output model contains a directed loop.

These situations should be handled with several transformation rules, in which aggregated
behavior provides the required validation. In this case, we extend the original transformation

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

84

with several transformation rules or with a sub-transformation (if the control flow language
provides the feature of the hierarchical control flows). The structure of this scenario is
introduced in Figure 5-5. The original model transformation contains two transformation rules.
Figure 5-5b depicts a transformation in which the execution of a loop implements an optimized
transitive closure traversing algorithm. In Figure 5-5c, our original transformation is extended
with the validation implementing the transitive closure in inline mode. Figure 5-5d provides the
same functionality while calling a sub-transformation. In this case, the validation is
implemented in the form of a separated model transformation.

5.3.2.1 Generating	Validation	Transformation	Rules	
We use the algorithm GENERATEVALIDATIONTRANSFORMATIONRULE to generate validation
transformation rules from constraint-based SCs/NSCs. The input parameter (condition) of the algorithm
is an SC or an NSC. The algorithm creates a pattern with a single node, in which the metatype
corresponds to the context type of the constraint (line 2-3). The algorithm traverses the navigation paths
of the constraint. For each navigation step, the loop creates a new node and links it to the actual pattern
(line 4-7). Next, based on the pattern, a transformation rule is created: both the LHS and the RHS of the
rule is initialized with the pattern (line 8). The original constraint is propagated to the LHS of the rule
(line 9). The constraint is propagated to the node that is created based on the context type of the
constraint. Finally, the generated validation transformation rule is returned.

Algorithm. Pseudo code of the GENERATEVALIDATIONTRANSFORMATIONRULE algorithm
01: GENERATEVALIDATIONTRANSFORMATIONRULE (Constraint condition) : TransformationRule
02: RuleNode ruleNode = CREATERULENODE(condition.ContextType)
03: Pattern pattern = InitializePattern(ruleNode)
04: for all NavigationStep navigationStep in condition do
05: Node node = CREATENODE(navigationStep.DestinationNode.MetaType)
06: LINKNODE(pattern, node)
07: end for
08: TransformationRule rule = CreateTransformationRule(LHS = pattern, RHS = pattern)
09: PROPAGATECONSTRAINT(rule.LHS, ruleNode, condition)
10: return rule

Figure 5-6 introduces three constraints and their corresponding validation rewriting rules created by the
algorithm GENERATEVALIDATIONTRANSFORMATIONRULE. The context type of the constraints is
Server for all of the example constraints. In the case of constraint serverLoad, the path Server -
ThreadPool - Thread should be traversed. Similarly, the paths covered by the constraint
largeThreadPools are Server - Tier, Server - Tier, and Server - ThreadPool - Thread. In the case of
constraint serverQueueThreadNumbers the traversed paths are Server - ThreadPool - Thread and Server
- Queue.

Validation transformation rules validate output, model-related, domain-specific properties thus, they
instantiate the output metamodel. Note that the LHS and the RHS graphs of the generated validation
transformation rule have the same pattern. Given this structure a validation rule does not insert or delete
any node or edge from the output model. The only difference between the LHS and RHS of the generated
rule is the constraint that is propagated only to the LHS.

Based on the pseudo code of the algorithm GENERATEVALIDATIONTRANSFORMATIONRULE, we can
state that the validation transformation rule generated with algorithm
GENERATEVALIDATIONTRANSFORMATIONRULE does not modify the output model. Furthermore, we
can conclude that validation transformation rules generated with algorithm

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 85

GENERATEVALIDATIONTRANSFORMATIONRULE are not necessarily valid partial instances of the output
metamodel.

Figure 5-6 A Algorithm GENERATEVALIDATIONTRANSFORMATIONRULE: (a) Constraint serverLoad and the

generated rule, (b) Constraint largeThreadPools and the generated rule, (c) Constraint
serverQueueThreadNumbers and the generated rule.

5.3.2.2 Extending	Model	Transformations	with	Validation	Transformation	Rules	
We use the algorithm EXTENDTRANSFORMATIONWITHVALIDATIONRULES to extend the control flow
model of the transformation with the generated validation transformation rules. The input parameters of
the algorithm define the transformation T that should be extended, a condition list containing SCs and
NSCs, and the list of the validation points where SCs and NSCs should be validated. The algorithm
creates a flow final node (line 2) then, using a loop, processes the validation points (line 3-25). For each
validation point, the SC or NSC condition is selected from the conditionList (line 4). Next, based on the
representation type of the condition (ConstraintBased, PatternBased, or Hybrid), the algorithm creates
a validation transformation rule. In the case of ConstraintBased representation type, using the constraint
of the condition, the validation rule is created with algorithm
GENERATEVALIDATIONTRANSFORMATIONRULE (line 6-7). Otherwise, for conditions with
representation type PatternBased and Hybrid the validation rule is created based on the pattern of the
condition (line 10). Both the LHS and the RHS of the new validation rule is initialized with the pattern
of the condition. For Hybrid type conditions, the constraint of the SC or NSC is propagated to the LHS
of the validation rule (line 12-14). Then the algorithm assigns the new rule to the transformation T (line
15), and arranges the necessary flow edge modifications (line 16-24). During the creation and
rearrangement of the flow edges, we differentiate the success type of the conditions, i.e. SCs and NSCs
are handled in a different way. Figure 5-7 illustrates this part of the algorithm. In both of the cases the
new validation rule is inserted after the transformation rule selected by the validationPoint. The
difference is in the type of the flow edges beginning from the validation rule. In the case of SCs, a Fail
type edge goes to the flowFinal and Success type edges points to the original target rules or to the end
rule. Contrarily, in the case of NSCs, a Success type edge goes to the flowFinal and Fail type edges
point to the original target rules or to the end rule. Finally, the extended transformation definition is
returned.

Algorithm. Pseudo code of the EXTENDTRANSFORMATIONWITHVALIDATIONRULES algorithm
01: EXTENDTRANSFORMATIONWITHVALIDATIONRULES (Transformation T, List conditionList,
 List validationPointList) : Transformation
02: FlowFinal flowFinal = T.CreateFlowFinal()

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

86

03: for all ValidationPoint validationPoint in validationPointList do
04: Condition condition = conditionList.Get(validationPoint.ConditionReference)
05: TransformationRule validationRule = NULL
06: if (condition.RepresentationType == RepresentationType :: ConstraintBased) then
07: validationRule = GENERATEVALIDATIONTRANSFORMATIONRULE(condition.Constraint)
08: else
09: // executed for PatternBased and Hybrid type conditions
10: validationRule = CREATETRANSFORMATIONRULE(LHS=condition.Pattern, RHS=condition.Pattern)
11: end if
12: if (condition:RepresentationType == RepresentationType :: Hybrid) then
13: PROPAGATECONSTRAINT(validationRule.LHS, condition.Constraint)
14: end if
15: T.AddTransformationRule(validationRule)
16: if (validationPoint:SuccessT ype == SuccessType :: SC) then
17: CREATEFLOW(validationRule, flowFinal, FlowType :: Fail)
18: MODIFYFLOWS(validationPoint.TransformationPoint, validationRule, FlowType :: Success)
19: else
20: // executed for NSCs
21: CREATEFLOW(validationRule, flowFinal, FlowType :: Success)
22: MODIFYFLOWS(validationPoint.TransformationPoint, validationRule, FlowType :: Fail)
23: end if
24: CREATEFLOW(validationPoint.TransformationPoint, validationRule, FlowType :: Success)
25: end for
26: return T

Figure 5-7 Algorithm EXTENDTRANSFORMATIONWITHVALIDATIONRULES: (a) A success and a negative success
condition of the transformation, (b) Validation points, (c) Generated validation transformation rules (RuleSC and

RuleNSC), (d) The stages of the transformation control flow extension.

Figure 5-7 introduces the whole process of the transformation validation. Figure 5-7a defines a success
and a negative success condition that are stated against the transformation. In Figure 5-7b two validation

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 87

points are introduced. These validation points define where and which conditions should be validated.
Figure 5-7c1 depicts the validation rule created based on condition ConditionSC and Figure 5-7c2 shows
the validation rule created based on condition ConditionNSC. In Figure 5-7d1 the original
transformation is presented. Figure 5-7d2 shows the state after extending the transformation with a flow
final and the validation rule RuleSC. The flow edge between RuleSC and Rule3 is followed in the case
of successful validation, otherwise the control follows the new edge starting from RuleSC and pointing
to flow final node. Finally, Figure 5-7d3 presents the state of the control flow after extending it with the
validation rule RuleNSC. The flow edges are connected in a different way: in the case of satisfying the
conditions of NSC the successful edge is followed that points to the flow final, otherwise the control is
passed to Rule2.

The following statements and consequences summarize statements related to (i) the presented
algorithms, (ii) the transformations processed with these algorithms, and (iii) the models resulted by the
extended transformations.

‒ Assume an input model H, a model transformation T, and a success condition SC. A validation
transformation rule VR is generated from SC with the algorithm
GENERATEVALIDATIONTRANSFORMATIONRULE. Model transformation T is extended with the
algorithm EXTENDTRANSFORMATIONWITHVALIDATIONRULES, using the validation point
VP{T.LastTransformationRule, SC, SuccessType::SC}. The resulted transformation is T’. If the
transformation T validates the success condition SC for the input model H, then transformation
T’ also validates the success condition SC for the input model H. Transformations T and T’
generate the output models M and M’ respectively.

‒ Assume an input model H, a model transformation T, and a negative success condition NSC. A
validation transformation rule VR is generated from NSC with algorithm
GENERATEVALIDATIONTRANSFORMATIONRULE. Model transformation T is extended with
algorithm EXTENDTRANSFORMATIONWITHVALIDATIONRULES using the validation point
VP{T.LastTransformationRule, NSC, SuccessType::NSC}. The resulted transformation is T’. If
the transformation T validates the negative success condition NSC for the input model H, then
transformation T’ also validates the negative success condition NSC for the input model H.
Transformations T and T’ generate the output models M and M’ respectively.

‒ Assume an input model H, a model transformation T, a success condition SC and a validation
point VP{T.LastTransformationRule, SC, SuccessType::SC}. Based on the success condition
SC, a validation rule VR is generated with algorithm
GENERATEVALIDATIONTRANSFORMATIONRULE. The transformation T is extended by
algorithm EXTENDTRANSFORMATIONWITHVALIDATIONRULES, applying the validation point
VP. The resulted transformation is T’. If the transformation T’ finishes successfully for input
model H, generating the output model M’, then the original transformation T validates the
success condition SC for input model H while generating the output model M.

‒ Assume an input model H, a model transformation T, a negative success condition NSC, and a
validation point VP{T.LastTransformationRule, NSC, SuccessType::NSC}. Based on the
negative success condition NSC, a validation rule VR is generated with algorithm
GENERATEVALIDATIONTRANSFORMATIONRULE. The transformation T is extended by
algorithm EXTENDTRANSFORMATIONWITHVALIDATIONRULES applying the validation point
VP. The resulted transformation is T’. If transformation T’ finishes successfully for input model
H generating the output model M’, then the original transformation T validates the negative
success condition NSC for input model H while generating the output model M.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

88

‒ Assume that a transformation T terminates for an input model H. Applying the algorithm
EXTENDTRANSFORMATIONWITHVALIDATIONRULES we extend the transformation T with one
or more validation transformation rules. The resulted transformation is T’. Transformation T’
terminates for input model H.
We can see that these types of rules (do not perform modification) and this type of
transformation extension (no additional loops and the inserted rules are performed once in a
sequence) do not make the originally terminating transformation T non-terminating.

‒ Assume an input model H, a model transformation T, a success condition SC, a negative success
condition NSC, and two validation points VPSC{T.LastTransformationRule, SC,
SuccessType::SC} and VPNSC{T.LastTransformationRule, NSC, SuccessType::NSC}. The
generated validation rules for SC and NSC are RSC and RNSC respectively. The transformation T
is extended by the algorithm EXTENDTRANSFORMATIONWITHVALIDATIONRULES applying the
validation points VPSC and VPNSC. The resulted transformation is T’. Transformations T and T’
are executed for the same input model H, the output models are M and M’ respectively. If the
rules RSC and RNSC successfully validate the conditions, i.e. SC is present in the model and NSC
cannot be found in the model, then the resulted output models M and M’ are identical.
Note that in the case of validation error the output models M and M’ can be different. The reason
is that unsuccessful validation rules stop the transformation execution and all rules that follow
an unsuccessful validation rule in the control flow model are not executed.

This section has discussed a way of validating graph rewriting-based model transformations. We have
investigated the validation-related possibilities and have developed a novel approach for the verification
and validation of output, model-related, domain-specific properties. We have provided algorithms for
generating validation transformation rules and extend model transformations with the generated
validation rules. Finally, we have provided several statements regarding the discussed algorithms, the
transformations processed with these algorithms and the models resulting from extended
transformations.

5.4 Modularized	Constraint	Management		
The precise definition of graph rewriting-based model transformation requires that beyond the topology
of the rules, further textual constraints to be added. These constraints often appear repetitively in a
transformation; therefore, constraint concerns crosscut the transformation. It is conductive to define
often applied constraints as physically separated modules and indicate the places where to use them.
This effort provides solutions to structuring, modularizing and propagating repetitively occurring and
crosscutting constraints. We propose an aspect-oriented approach that allows for consistent constraint
management; in which repetitive and crosscutting constraints can be semi-automatically identified.

Often, we require validating several rules or whole transformations, which may cause the same
constraint concerns to appear numerous times in a transformation. Regarding this recurrence of
constraint concerns, it is beneficial to distinguish between the classical constraint repetition and the
crosscutting constraints. According to [Sutton and Rouvellou, 2002], the definition for the term concern
is, "any matter of interest in a software system".

The classical constraint repetition is similar to the frequently appearing lines of program code in a source
file (also known as, code clones). In the source code domain, this problem is handled with program
segmentation. In most cases, it is implemented with functions; the recurring lines of source code are
placed into a function and the function is then called from the appropriate position. This method can be

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 89

applied to model transformation constraints as well. This can be achieved by extracting the repetitive
constraints into separated components and, similarly to function calls, we designate those points in the
model transformation where they will be applied.

Regarding crosscutting concerns, the situation is significantly different. As opposed to repetitions,
crosscutting concerns of a design cannot be modularly separated. If a concern attempts to decompose,
according to a specified design principle, other concerns will crosscut this decomposition. This implies
that crosscutting is relative to each particular decomposition.

To summarize crosscutting concerns, there is no way to achieve a modular design. In the case of
repetitive constraints, consistent constraint management is difficult. In order to mitigate these issues,
our aim is to physically separate the different concerns, namely, the structure of the transformation rules
and constraints, and design them separately. Next, using a weaving mechanism, we generate the
executable artifact that combines the two concerns. This generated representation, containing both
repetitive and crosscutting constraints is similar to a binary file compiled from source code and is not
edited by the transformation engineer. Therefore, no problems arise, despite the generated artifact
concerns not being separated.

The approach presented in this section provides solutions for both repetitive and crosscutting constraints.
The novel results, provided by this approach are: (i) the distinction of repetitive and crosscutting
constraints in model transformations, (ii) the mechanism that handles the repetitive constraints and (iii)
a generalized, semi-automatic identification of repetitive and crosscutting constraints.

Figure 5-8 introduces the main elements and steps of the modularized constraint management, i.e.
summarizes the method and algorithms for handling the validating constraints in a modular way
[Lengyel, 2013].

5.4.1 Managing	Repetitive	Constraints	
In our approach, model transformation-related problems regarding validation constraint management
are separated into two groups: namely, the management of repetitively appearing constraints and the
management of crosscutting constraints. This section clarifies the differences between these two types
of constraints and discusses the methods applied for the handling of repetitive constraints.

In software engineering, it is advisable to follow the separation of concerns [Dijkstra, 1976] (SoC)
principle. In essence, this indicates that, in dealing with complex problems, the only possible solution is
to divide the problem into sub-problems, and then solve them separately. Next, combine the partial
solutions to create a complete solution. One type of concerns, such as rewriting rules, may smoothly be
encapsulated within building blocks, by means of conventional techniques of modularization and
decomposition, whereas the same is not possible for other types. More specifically, these types crosscut
the design and are therefore called crosscutting concerns. Because of their specialty, crosscutting
concerns arise two significant problems:

‒ The scattering problem: the design of certain concerns is scattered over many building blocks.

‒ The tangling problem: a building block can include the design of more than one concern.

Recall that in the validation of model transformations, there are two concerns: the functionality of the
transformation and the constraints ensuring the validation. Sometimes modularizing one of the two
concerns implies that the other concern will crosscut the transformation, and vice versa.

Both scattering and tangling have several negative consequences for the transformations they affect.
However, the aim of aspect-oriented methods is to alleviate these problems by modularizing crosscutting
concerns. Therefore, in the case of crosscutting constraints, aspect-oriented methods should be applied

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

90

in order to achieve consistent constraint management. Both logically coherent constraints (crosscutting
constraints) and repetitively appearing constraints should be physically maintained in a modularized
manner.

For the problem of crosscutting constraint management, a solution has been provided in [Lengyel, 2006]
and this solution has been summarized in Section 3 of the current thesis. Current section provides a
novel approach for handling repetitive constraints in model transformations.

5.4.1.1 The	Constraint	Management	Process	
As we previously stated, consistent constraint management requires a mechanism that supports the
handling of repetitive constraints. Our approach provides the following methods regarding their
management:

‒ Constraints are defined independently from transformation rules. This allows us to maintain the
constraints in a physically separated place.

‒ Constraint calls are defined along with the designation where the constraints should be applied.
Using the generalized version of the Global Constraint Weaver, the approach automatically
assigns the constraints to the indicated points of the transformation.

In this approach, the selection of the rules, where the aspect should be propagated (constraint calls), is
performed manually by the transformation designer. This method is supported by the weaver tool: the
potential transformation rule nodes are offered for the transformation designer, who can manually select
those which are required.

 Figure 5-8 Managing validating constraints in a modular way

The whole process of repetitive constraint handling, and its role in the model transformation, is
illustrated in Figure 5-8. Related to this process, we have identified four steps:

Step 4

Step 3Step 1 and Step 2

Step 1. Defining and maintaining constraints and transformations
Step 2. Selecting the appropriate rewriting rules (supported by type-based searching)
Step 3. Weaving the constraints to the transformation rules
Step 4. Executing the transformation

Constraints

Pointcuts
(Selected Rules)

Model Transformation
Definition

Constraint
Weaver

Model
Transformation

Engine
Input Model

Model
Transformation
Definition with

Constraints

Output Model
(generated artifact)

Defined by the
Designer

VMTS
Components Generated Artifacts

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 91

1. Defining and maintaining constraints and transformations. This step is performed by the
transformation designer.

2. Selecting the appropriate rewriting rules. This step is also completed by the transformation
designer. The result of this step is the constraint calls that designate the rewriting rules where to
propagate the constraints (from where the constraint validation should be called during the
transformation).

3. Propagating the constraints to the rules. This step is executed by the weaver component. The
weaving method gets the transformation, the constraints, and the constraint calls. The result of
the weaving process is the transformation definition with the assigned constraints.

4. Executing the transformation. This step is performed by the model transformation engine. The
inputs are the transformation definition that contains the constraints and the input model. The
output of the model transformation is the generated artifact that can also be a model or optional
text, e.g. source code.

5.4.1.2 Generalizing	the	Constraint	Weaving	
We have worked out the generalized constraint weaving mechanism. This Generalized GCW (GCW2)
method supports the weaving of the following constraint constructs:

‒ Aspect-oriented constraints driven by weaving constraints,

‒ Repetitive constraints driven by their constraint calls.

Aspect-oriented constraints are OCL constraints, we separate them physically from transformation rules.
Weaver algorithms weave them into the rules. The context information of the aspect-oriented constraints
is used as a type-based pointcut. This pointcut, based on the metatype information, selects the
appropriate rule nodes. This weaving process is referred to as type-based weaving. In order to further
develop the weaving procedure, we apply weaving constraints. A weaving constraint is similar to a
property-based pointcut. This is also an OCL constraint, which restricts the type-based weaving.
Obviously, weaving constraint is not added to. Weaving constraints allow for the verification of optional
conditions during the weaving process. We refer to it as constraint-based weaving. The physically
separated constraints require a weaver that applies type-based and constraint-based weaving
mechanisms, and facilitates the assignment of constraints to transformation rules.

In generalized constraint weaving approach, aspect-oriented constraints and repetitive constraints both
represent constraints, which are defined separately from model transformations. They are handled
separately, because their weaving is driven by different constructs. The weaving of aspect-oriented
constraints is supported by the weaving constraints and the weaving of repetitive constraints is driven
by constraint calls. Therefore, these two types of constraints are not mixed.

The inputs of the GCW2 algorithm include the transformation definition, the aspect-oriented constraints
with their weaving constraints, and the repetitive constraints with their constraint calls. The output of
the weaver is the constrained transformation. Algorithm GLOBALCONSTRAINTWEAVER2 depicts the
pseudo code of the GCW2 algorithm.

Algorithm. Pseudo code of the GLOBALCONSTRAINTWEAVER2 algorithm
1: GLOBALCONSTRAINTWEAVER2 (Transformation T, ConstraintList AOCs, ConstraintList, weavingCs,
 ConstraintList repetitiveCs, ConstraintCallList constraintCalls)
2: for all Constraint AOC in AOCs do
3: for all TransformationRule R in T do
4: nodesWithProperMetaT ype = GETNODESBYMETATYPE (context type of AOC, R)
5: nodesWithProperStructure = CHECKSTRUCTURE (nodesWithProperMetaT ype, R, AOC)

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

92

6: checkedNodes = CHECKWEAVINGCONSTRAINTS (nodesWithProperStructure, weavingCs)
7: WEAVECONSTRAINT (AOC, checkedNodes)
8: end for
9: end for
10: for all Constraint RC in repetitiveCs do
11: for all ConstraintCall CC in constraintCalls do
12: nodesToWeave = EVALUATECONSTRAINTCALL (CC, RC)
13: WEAVECONSTRAINT (RC, nodesToWeave)
14: end for
15: end for

The GCW2 algorithm is passed through a model transformation, a list of aspect-oriented constraints, a
list of weaving constraints, a list of repetitive constraints and a list of constraint calls. The algorithm,
using type-based weaving and applying weaving constraints, weaves the aspect-oriented constraints to
the appropriate nodes of the rules. Furthermore, the algorithm weaves the repetitive constraints to the
rules designated by the constraint calls.

The GCW2 algorithm uses different blocks to manage the aspect-oriented constraint weaving (line 2-
9), and the repetitive constraint weaving (line 10-15). In the first block, for each aspect-oriented
constraint and transformation rule pair, the algorithm identifies the possible places where the constraint
can be woven. It then checks the surrounding structures of these locations and evaluates the weaving
constraint for the appropriate places. Finally, the constraint is woven to the correct rules. In the second
block, for each repetitive constraint and constraint call pair, the algorithm decides where to weave the
actual repetitive constraint, and then performs the weaving.

The proposed method for handling repetitive constraints facilitates the definition of constraints
independent of transformation rules and designates the rewriting rules, i.e., where to apply them. The
approach automatically weaves the constraints to the designated points in the transformation. The benefit
of this approach is that the constraints are maintained in one place and in one copy. Furthermore, our
method supports a better understanding of both the transformations and constraints.

This section introduced the GCW2 algorithm, which facilitates the constraint weaving driven by both
weaving constraints and manually defined constraint calls. The next section discusses the method to
modularize transformation constraints if they already exist in model transformations.

5.4.2 Semi-Automatic	Modularization	of	Transformation	Constraints	
In [20], a mechanism is introduced for systematically identifying crosscutting constraints. This section
provides a generalized, semi-automatic method for modularizing both repetitive and crosscutting
constraints.

In model transformations, some validation or other concerns can be expressed by several constraints.
These concerns (expressed by more than one constraint) are the source of the crosscutting. In our
approach, transformation designers can aggregate constraints into groups, in which each group
represents a concern. The examples provided are the syntactic well-formedness and the semantic well-
formedness groups.

 Group_SyntacticWellFormedness {DanglingEdges1, DanglingEdges2,

 ClassAndItsParentAreTheSame}

 Group_SemanticWellFormedness {MultipleInheritance, CheckInternalCondition,

 CheckSealedCondition}

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 93

The inputs of the modularization method are the transformation itself and the grouping definitions. The
expected outputs are the modularized constraints and the constraint calls that support the weaving
process. For transformation designers, the modularized constraints are represented as physically
modularized concerns with the goal to support the management of validation requirements. The tasks
required by the modularization method are as follows:

1. Collect the constraints from the transformation.

2. Identify the crosscutting constraints.

3. Identify the repetitive constraints.

4. Extract the crosscutting constraints as aspects, and generate the constraint calls to support their
weaving.

5. Extract the repetitive constraints as aspects, and generate the constraint calls to support their
weaving.

In Step 2, the identification of crosscutting concerns is supported by the grouping definition. The
algorithm checks whether the semantically coherent concerns are, physically, in the same rule or
scattered across several rules. Concerns represented by single constraints cannot crosscut the
transformations, but if they are appearing several times they are classified as repetitive constraints.

The crosscutting constraint identification method provides the coloring and extracting algorithms. These
algorithms have been updated to support both the repetitive and crosscutting constraint modularization
in a general way. Based on the groups and the identified concerns, the reworked coloring algorithm
assigns different colors to the concerns of the transformation. The automatic concern identification also
accounts for the constraints not appearing in any of the user defined groups. In the output of the coloring
algorithm, each color represents a concern. These concerns should be modularized with the goal of
effective management. After the coloring, the extracting algorithm creates aspects from crosscutting and
repetitive constraints, as well as generates the constraint call definitions.

The subsequent sections elaborate upon the algorithms, and their operation is illustrated with the help
of our case study.

5.4.2.1 Generalized	Coloring	Algorithm	
The algorithm gets the transformation with its constraints and the grouping definitions. The expected
result is a concern list and a coloring table, which provides the transformation rule and affected concern
relations.

A concern is represented by a color and can be an optional condition or property expressed by one
(simple) or several constraints. Examples of this include the well-formedness concerns of our case study
as well as more simplified versions, namely, those including an attribute value or the existence of
adjacent nodes of a specific type.

The next algorithm shows the pseudo code of the COLORING algorithm. The model transformation T
and its corresponding groups are passed to the algorithm. The algorithm creates a list of rule-constraint
pairs. The list contains each transformation rule-constraint pair assignment, defined in transformation
T. Based on the rule-constraint assignments, the algorithm identifies the crosscutting concerns for each
group (line 5). Next, the coloring table is updated with the actual group information, even if there exists
no crosscutting related to the actual group. Then, the algorithm creates a concern (constraint) list (line
8), in which each member of the list represents a separated concern. This means that, if a constraint in
the transformation contains more than one concern, the constraint is decomposed into several

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

94

constraints. Therefore, more than one list member is created from such constraints. Groups are also
added to the concern list. Based on the constraints of the transformation and the list of concerns, the
algorithm identifies repetitive constraints (line 12) and updates the coloring table accordingly.

Algorithm. Pseudo code of the COLORING algorithm
1: COLORING (Transformation T, GroupList groups)
2: ColoringTable coloringTable = new ColoringTable();
3: RuleConstraintPairList ruleConstraintPairs = COLLECTRULECONSTRAINTPAIRS (T)
4: for all Group G in groups do
5: CrosscuttingList crosscuttings = IDENTIFYCROSSCUTTING (G, ruleConstraintPairs)
6: coloringTable.UPDATECOLORINGTABLE (G, ruleConstraintPairs, crosscuttings)
7: end for
8: ConcernList concerns = COLLECTSEPARATEDCONCERNCONSTRAINTS (T)
9: concerns.ADDGROUPS (groups)
10: ConstraintList constraints = T.GETCONSTRAINTS()
11: for all Constraint C in constraints do
12: ConstraintList repetitives = IDENTIFYREPETITIVECONSTRAINTS (C, concerns)
13: coloringTable.UPDATECOLORINGTABLE (C, constraints, repetitives)
14: end for

5.4.2.2 Generalized	Constraint	Extracting	Algorithm	
The algorithm gets the model transformation and the results of the coloring algorithm. The results of the
algorithm are the modularized constraints and the constraint calls supporting the weaving. Modularized
constraints can be represented as concerns, because transformation designers usually prefer this view to
work with validation conditions.

The algorithm creates the modularized constraints based on the provided concern list. The group
concerns are handled in a different way from simple constraints or constraint part concerns: each
member of the group concern is modularized into a different constraint but can be edited as a concern
with its member constraints. The second part of the extracting algorithm creates the constraint calls both
for crosscutting and repetitive constraints. These constraint calls contain the exact list of the rules from
which they should be called. In general, for modularized crosscutting constraints (aspects) we prefer to
use weaving constraints instead of the constraint calls. This is because with weaving constraints more
complex conditions can be defined, and this type of weaving definition is used when defining these
artifacts manually. In the current case, the artifacts are created by the extracting algorithm. The goal is
to provide an effective method that modularizes the concerns and creates such weaving artifacts that can
reproduce the original transformation, exactly. Therefore, creating constraint calls for crosscutting
constraints is the appropriate decision.

The EXTRACTING algorithm gets the transformation T, the concerns identified by the COLORING
algorithm and the coloringTable. The algorithm processes the concerns in two blocks. In the first block,
the group concerns (e.g. SyntacticWellFormedness and SemanticWellFormedness) are processed: each
constraint, although related to the group, is independent and is added to the modularized constraint list
(line 3-7). In the second block, the constraints of the non-group concerns are processed: simple
constraints and constraint parts (line 8-10). Next, using the coloring table (transformation rule –
concern/constraint mappings), the algorithm creates the constraint calls for each constraint.

Algorithm. Pseudo code of the EXTRACTING algorithm
01: EXTRACTING (Transformation T, ConcernList concerns, ColoringTable coloringTable)
02: ConstraintList modularizedConstraints = new ConstraintList ()
03: for all Concern groupConcern in concerns.GroupConcerns do
04: for all Constraint C in groupConcern do
05: modularizedConstraints.Add (C)
06: end for

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 95

07: end for
08: for all Concern nonGroupConcern in concerns.NonGroupConcerns do
09: modularizedConstraints.Add (nonGroupConcern.Constraint)
10: end for
11: ConstraintCallList constraintCalls = new ConstraintCallList()
12: for all ColoringItem coloringItem in coloringTable do
13: ConstraintCall constraintCall = CREATECONSTRAINTCALL(coloringItem, T)
14: constraintCalls.Add (constraintCall)
15: end for

We have discussed that in graph rewriting-based model transformations, the two main concerns are
functionality, defined by the transformation rules, and the validation properties, expressed through
constraints. Regarding to model transformations, we have introduced the problem of repetitive and
crosscutting constraints. We have identified the difference between repetitive and crosscutting
constraints. We have shown that, in certain cases, crosscutting cannot be eliminated, but could be solved
by applying aspect-oriented mechanisms. We have provided a mechanism for handling repetitive
constraints. Unifying their treatment, we have developed a generalized method with its algorithms for
semi-automatic modularization of repetitive and crosscutting constraints in model transformations.

5.5 Conclusions	
This chapter has discussed both theoretical and practical methods to support domain-specific model
patterns, validating domain-specific properties of software models and handling the validating
constraints in a modular way.

We have introduced the term partial instantiation, and we have discussed that this construct allows to
use the same metamodels for the pattern and the target model. We worked out various constructs that
help relaxing the instantiation rules with the goal to support the treatment of premature model parts, i.e.
patterns.

There are several modeling and metamodeling frameworks that support domain-specific user interface
and transformation modeling. Based on our investigations, none of these frameworks provides tool
support for domain-specific model patterns, however, the results of this area can be realized in several
of them. Also, there are several design pattern description languages. Most of them aim at a formal, and
more precise description than it can be achieved with UML. A comparative discussion of formal pattern
languages can be found in [Flores and Fillottrani, 2003]. The primary target of these specification
languages consists of object-oriented design patterns. The uniqueness of our approach is that we use the
same metamodel relaxed with certain rules for the design pattern as the model in which the design
pattern is going to be inserted.

Domain-specific design patterns have been successfully applied for domain-specific model processors,
i.e. both for the transformation rules and the control flow models.

We have provided a method and algorithms for validating domain-specific properties of software
models. We have introduced the success conditions (SCs) and the negative success conditions (NSCs),
which allow to define the required domain-specific properties and rules. We have discussed the
algorithms, which generate the validating constraints based on the success conditions. We have
introduced further algorithms that help to automatically extend the control flow models with validating
transformation rules. As a result, this approach provides a method for validating domain-specific
properties of software models during the model processing.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

96

Finally, we have worked out a method and supporting algorithms to handle validating constraints in a
modular way. The method is able to semi-automatically identify the crosscutting constraints in model
transformations.

The discussed area related selected scientific results from my research activities are summarized in
Section 7.3 (Thesis III: Applying Domain-Specific Design Patterns and Validating Domain-Specific
Properties).

These results allow both the effective work with domain-specific model patterns and the validation of
these patterns. My results contribute to the effective, domain-specific, model-based development
methods, i.e. increase the quality of the software artifacts and reduces both the development time and
the amount of the necessary resources.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 97

6 Application	of	the	Results	

Research groups are responsible to rapidly respond to industrial and technical requirements, be flexible
in various engineering tasks, react with up to date courses focusing on both theoretical and practical
aspects. As a university, we are exploring deeper knowledge beyond the direct needs of engineering,
research and training of the engineers. As a competent research team, we are in daily contact with the
industry. We listen to the industrial needs, utilize our research and development results, and provide
solutions for the real requirements in the form of applications and services.

A significant part of the presented results is motivated by R&D and industrial projects. Usually industrial
colleagues, university colleagues and students work together to achieve project goals. As a result,
besides the realization of the project, students are trained for a valuable, industry-relevant area,
furthermore, researchers collect a relevant industry-specific knowledge that can be utilized during the
courses, thereby these common projects result a multiplicative effect.

Over the past decade, model processors had a significant role in software development, during the
generation of software products, as well as in modification and optimization of software services.
Utilizing automated model processors, we could increase the quality of software products. Both our
research group and several industrial partners recognized that model transformation definitions, as they
are also software artifacts, could incorporate errors. The presented novel scientific results provide
verification / validation methods, furthermore, utilization and application practices that help the
exploration of the remained hidden conceptual defects.

Figure 6-1 Novel scientific results and their application fields

The developed verification and validation methods, furthermore, their supporting solutions allow the
development of higher-quality software products. Figure 6-1 summarizes both the research results
introduced in the thesis and their application areas.

Research Results

1. Methods for Verifying and Validating Graph Rewriting-Based Model Transformations

2. Model-Driven Methods Based on
Domain-Specific Languages and Model

Processors

3. Applying Domain-Specific Design
Patterns and Validating Domain-Specific

Properties

Application and Utilization of the Results

R&D projects, Innovation
Industrial projects
Education
International forums (workshops, conferences, tutorials, Tool contests)
Building international network (Horizon 2020)

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

98

Based on modeling and model processing techniques, furthermore, utilizing domain-specific capabilities
of domain-specific modeling and model processing, we have worked out methods, case studies,
developed frameworks, and realized software solutions. Research activities have been motived and the
scientific results have been utilized in the following selected projects:

‒ Metamodel-based model transformation, T-Mobile (2005-2006)

‒ Service modeling, T-Mobile (2006)

‒ Developing mobile services and applications with model-driven methods, Mobile Innovation
Centre (2007-2009)

‒ Software as a Service, T-Mobile (2008)

‒ Software development method and supporting framework, BME Innovation and Knowledge
Centre of Information Technology (IT)2 (2008-2009)

‒ Multiplatform mobile application development, Nokia (2010)

‒ Model-driven development framework for mobile applications, IBM (2010)

‒ Modeling and model processing, BME Research University (2010-2012)

‒ Model-driven application development for multiple mobile platforms, FuturICT (2012-2014)

‒ Quality assured model-driven requirements engineering and software development, Quattrosoft
(2013-2014)

‒ Model-driven technology to support multi-mobile application development, BME (2013-2014)

‒ Domain-specific modeling environment supporting IEC61131-3 standard, Infoware (2013-
2014)

‒ Rule engines in backend applications, model-driven solutions to configure software systems,
Nexon (2013-2014)

‒ SensorHUB: a multi-platform IoT Framework, BME AUT (2014-)

‒ URBMOBI – Urban Mobile Instruments for Environmental Modelling, European Institute of
Innovation and Technology (EIT) Climate-KIC (2013-2015)

‒ SOLSUN – Sustainable Outdoor Lighting & Sensory Urban Networks, Sustainable City
Systems, European Institute of Innovation and Technology (EIT) Climate-KIC (2015-2017)

Multi-Paradigm Modeling (MPM) workshop series has a significant role in disseminating the research
results at international level. MPM is held annually within the framework of the MODELS conference.
MODELS is perhaps the most important annual conference on software modeling and related
technologies. The workshop is organized since 2007 with an active and continuous involvement of our
research group.

The results of the research activities have been realized in the VMTS framework [VMTS]. The
framework has participated several times successfully on international Tool Contest competitions [18].

We have a strong and fruitful relationship with the Matlab Simulink R&D engineers. In 2012, we have
presented a joint tutorial at MODELS conference. The tutorial introduced how to process Simulink
models with VTMS applying graph rewriting-based model transformation [25].

Active participation in both national and international R&D projects, the application of the developed
methods, collection of the industrial feedback, furthermore the systematic and iterative processing of

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 99

these experiments are always present in our work. Results of the research activities appear in the
education: earlier in Model-driven paradigms MSc course, currently in both Distributed systems and
domain-specific modeling and Software development methods and paradigms MSc courses. We
continuously share our experience related to the education of the software modeling and model
processing. Most recently, in 2012, we have summarized our findings and suggestions on international
level at the Educators' Symposium held in MODELS conference [4]. In 2014, we provided again a
tutorial at MODELS conference, the topic of this tutorial was the effective creation of domain-specific
languages and the work with them [34].

Based on the common work with the industry, we see that industrial partners need the working solutions.
They are about to apply efficient methods in their development and implementation processes. We, as
research teams, should support the industrial community with high quality methods and solutions.

The following part of this chapter summarizes the software applications and tools developed within the
scope of the research activities, then, discusses few representative research and development projects
utilizing the results, finally, summarization is provided.

6.1 Software	 Applications	 and	 Tools	 Developed	 within	 the	 Scope	 of	 the	
Research	Activities	

The primary area, where the results have been applied, is the Visual Modeling and Transformation
System (VMTS) and the projects based on VMTS. Domain-specific modeling, furthermore, model
processing results and knowledge contribute to the VMTS framework and have been utilized in several
projects [6]. We have developed various graphical and textual languages covering several domains. The
first languages were the various UML dialects: class and object diagrams, activity diagrams, sequence
diagrams, use case diagrams, others were followed by languages to implement a variety of domains (for
example, bank, insurance, service tree, database, social network, server network, user interface,
communication protocols, workflow, feature models, robots, control, model processing languages).
Designed and developed model processors also cover a wide range: processing UML and further models,
generating source code, supporting the generative programming paradigm [Beuchat et al, 2006]
[Czarnecki and Eisenecker, 2000] [Donohoe, 2012] by normalizing and processing feature models,
generating source files targeting embedded systems, for example, generating code for Quantum
Framework [Samek, 2002] based on state charts, supporting software evolution, furthermore processing
various domain-specific models, generating configuration files, traversing and optimizing models.

VMTS framework provides both static and dynamic validation method. The results presented in the
thesis provides the dynamic approach.

By using VMTS Animation Framework, we have developed an interactive visual model transformation
debugger. The debugger can execute the transformation rules step-by-step [31]. The integration with the
Matlab Simulink system allows the animation of the Simulink models within the VMTS. This is
summarized in the introduced Method for Processing Mathworks Simulink Models with Graph
Rewriting-Based Model Transformations.

Application of the scientific results is not strictly limited to VMTS framework and the related projects.
For example, the results of the Assuring the Quality of Software Development Projects by Applying
Model-Driven Techniques and Model-Based Tools area, adapting the needs and the basic tools of the
industrial partner, have been realized in the Eclipse environment [Eclipse 2016] as an Eclipse plugin.

Several partners applied and still use modeling and model processing results developed in common
projects. E.g. T-Mobile, IBM, Quattrosoft, Nokia Research, Nokia Siemens Networks, Infoware and
Nexon.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

100

Beside the VMTS, our second key framework is the SensorHUB [9]. The following sections introduce
both the VMTS and SensorHUB frameworks, furthermore their integrated utilization, i.e. the multi-
domain IoT approach.

6.1.1 Visual	Modeling	and	Transformation	System	
Visual Modeling and Model Transformation System (VMTS) is a multipurpose modeling and model
processing framework. The framework is introduced in Section 2.9.

6.1.2 SensorHUB	Framework	
Software systems covering data collection, transmission, data processing, analysis, reporting, and
advanced querying are usually developed by strong method and framework background. Consolidated
development methods and frameworks provide the efficiency and ensure the quality of the software
artifacts. SensorHUB framework utilizes the state of the art open source technologies and provides a
unified tool chain for IoT related application and service development. SensorHUB is a platform as a
service (PaaS) solution for IoT and data-driven application development. The strength of the framework
is that it covers the whole data collection, analyzing and reporting process. SensorHUB provides a
unified toolchain for IoT-related application and service development. SensorHUB framework, next to
the IoT-related application and service development, supports the data monetization by providing a
method to define data views on top of different data sources and analyzed data. [9] [SensorHUB]

SensorHUB makes it possible to develop and reutilize domain-specific software blocks, for example,
components of the smart city domain or the vehicle domain that are implemented once and can be built
into multiple applications. The framework makes them available by default and provides various
features to support developers working in the field.

SensorHUB also provides tools to support application and domain-specific service development. The
architecture of the concept is depicted in Figure 6-2. The whole system contains the following areas:

1. Sensors, data collection, local processing, client side visualization, and data transmission
(bottom left)

2. Cloud-based backend with big data analysis and management (bottom right)

3. Domain-specific software components (middle)

4. Applications, services, visualization, business intelligence reports, dashboards (top)

Sensors cover different domains: health, smart city, vehicle, production line, weather and further areas.
Local processing and data transmission makes up a local platform, which performs core services, i.e.
data collection, data aggregation, visualization of raw measurements, secure communication, and data
transmission. This component also provides information as a local service interface for different
applications.

The cloud component provides historical data storage, big data management, domain-specific data
analysis, and extract-transform-load (ETL) mechanisms. Its architecture was designed specifically for
cloud deployments, although it can also be deployed on premises. In the core, we have designed a service
layer based on the microservice architecture. The loosely coupled services make up an important part of
the framework. The most notable domain-agnostic services are the data ingestion service and the general
querying service. Among the more domain-specific services are the push notification service, which is
applicable in all domains that have smartphones on the client side, and the proximity alert service, which
can be used to determine if the sensor is located inside a predefined area and is useful in the
transportation or agricultural domains.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 101

Figure 6-2 Architecture of the SensorHUB

The last layer comprises applications that implement specific user-facing functionalities. These data-
driven applications, independently of their purpose, eventually face the same problems repeatedly.
Without framework support, applications should find a way to collect data, to store large amounts of
data reliably and in a scalable way, to transform data into a format convenient for data analysis, or
present data on a dashboard. Solving these problems is not trivial, and can account for the majority of
the development effort if done one-by-one for every different application. The main purpose of the
SensorHUB framework is to function as a platform for these applications, providing the implementation
of the previously described areas, so the application developers can focus on the domain-specific issues
they intend to solve.

SensorHUB framework is developed in an incremental and iterative way, the loose coupling between
its modules makes us able to develop and update components independently.

We utilize the following technologies and components during the implementation of SensorHUB:

‒ Node.js is applied as a cross-platform runtime environment for server-side applications. It
provides an event-driven architecture and a non-blocking I/O API that optimizes an application's
throughput and scalability. [Node.js]

‒ Docker is an open-source software container framework. It provides virtual machine-like
separated environments with very little overhead. We used it for packaging and deploying the
microservices. [Docker]

data	collection,	storing,	data	processing,	
analysis,	searching,	sharing,	
visualization,	data	security

Data	collection,	location-based	
services,	visualization,	

communication

PUSH	–
Customized	
notification

Domain-Specific	
Software	Components	

Applications	and	Services

Intelligence	–
Analysis,	Decision

Vehicle	and	transport

Energetics

Production	lines

Smart	City

Industry	4.0

monitoring,	business	intelligence,	
control,	notification

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

102

‒ MQTT is a lightweight messaging protocol based on the publish-subscribe model working on
the top of the TCP/IP layer. We use an implementation of this protocol for direct two-way
communication with different sensors and devices. [MQTT]

‒ Apache Kafka is applied as a central hub performing load balancing, queuing and buffering
incoming data from various sources including MQTT brokers and the microservice layer. Kafka
is able to process thousands of incoming data packets per second, making it a perfect choice for
this task. [Apache Kafka]

‒ Apache Hadoop is used as a software framework for distributed storage and processing of large
data sets on computer clusters built from commodity hardware. It consists of a distributed file
system (HDFS) and a resource management platform (YARN), furthermore, it provides a basis
for a great deal of purpose-built frameworks, such as Apache Spark, Apache Hive and Cloudera
Impala. [Apache Hadoop]

‒ Apache Spark is a high-performance cluster computing framework. We utilize the high-level
functional API of Spark for data processing and Spark Streaming for effective real-time event-
processing. [Apache Spark]

‒ Apache Hive is applied as a data warehouse infrastructure built on top of Hadoop. It provides
an SQL interface for data stored on HDFS. We use it for ETL (extract, transform, load) batches,
which require high throughput instead of low latency. We also utilize Cloudera Impala for this
purpose, as it provides faster queries. [Apache Hive]

‒ Apache Cassandra is a distributed, massively scalable NoSQL database. SensorHUB
applications can use this form of data storage for quick queries against processed data.
Cassandra is capable of ingesting tremendous amounts of data very quickly; this makes it a great
choice for large-scale IoT applications. [Apache Cassandra]

6.1.2.1 Detailed	Framework	Architecture	
Given the scale the framework needs to operate on, we designed it to be deployed in cluster
environments (clouds). We have organized the different functionalities into microservices.
Microservices are light-weight server components that focus on a single task. This approach not only
makes the services more maintainable, easier to develop independently of each other and replaceable,
but also leads to components that boot fast, which is an essential requirement when deploying to the
cloud, as new instances must be fired up on the run as the load increases. Most of the framework’s
microservices are built using the Node.js framework or Java technology, because they are light-weight
and excels at I/O-heavy tasks.

We made the different microservices accessible for applications through an API Gateway, which unites
the microservices into a cohesive interface and hides all the service instantiation, discovery and load
balancing details from the applications. Further service of the API Gateway is to authenticate
applications before using the framework. Load balancing and authentication is based on the microservice
repository and the application repository. These two services, running and tracing service instances, and
registered client applications serve as the backbone of the framework.

The microservices are deployed in separate Docker containers. Docker is supported by all major cloud
providers and using this technology makes distributing and managing the framework seamless. The
clustered running and scaling of the components can be orchestrated with tools such as Kubernetes or
Docker Swarm. Based on the measurements, booting up a Node.js instance is relatively quick, compared
to a Java-based solution, furthermore, by keeping the services stateless, the load balancing task is

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 103

straightforward in any environment. Figure 6-3 provides a detailed overview of the framework
architecture.

Figure 6-3 The detailed architecture of the SensorHUB framework

Data ingestion and data querying microservices are the two pillars. Data is uploaded into a cluster of
machines running Hadoop by the Data Upload Service. Raw data can be queried using the Data Query
Service.

The framework also provides an MQTT-based way for data upload. In certain cases, sensors, actuators
or any client device can directly communicate with the platform, without the overhead of an application
backend and layers of microservices. For these use cases, we provide the MQTT-based endpoint. Using
this endpoint, the platform can receive data on large scales and is also capable of sending back control
or configuration instructions.

The MQTT and microservice-based ingestion methods load data into an Apache Kafka cluster, which
is the entry point for the Hadoop platform.

Providing a schema for the ingested data is not required. The schema is forced on the raw data by the
application itself. This method gives great flexibility, however, in certain cases, having a fixed schema
provides benefits, i.e. automatic code or job generation can be performed based on schema information.
Therefore, the framework allows to store schema for a given dataset or data source. A further advantage
of this hybrid approach is a standard query interface for the data that has a provided schema.
Applications, which do not support metadata, handle the query interface themselves. This is a reasonable
tradeoff between customizability and the ability to use general services provided by the framework.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

104

6.1.2.2 Data	Processing	
Although flexibility is an asset, in most cases the schema is known at the time of data ingestion. This is
the reason, why we apply a hybrid approach by providing an ETL engine. In this way, application
developers can configure loading their data into one of the supported query-optimized data stores.
Depending on the needs of the application, the data store can be one of the followings (Figure 6-4):

‒ HDFS file system as a Data Lake (a large-scale storage repository and processing engine): this
storage should never be modified and should serve as a secure and reliable historical data storage
for further processing or archive purposes.

‒ A compressed, partitioned, columnar data store, implemented on a massively parallel processing
engine (such as Apache Hive or Cloudera Impala with Parquet files) that is efficient for analytic
query patterns.

‒ A NoSQL data store (Apache Cassandra) that is utilized for fast data retrieval, data modification
and simple analytic queries, e.g. queries from client applications displaying live or historic data
to end-users.

‒ A traditional relational database (MySQL) with the advantage that it is well known to developers
has several associated tools and scales well for medium-sized services.

‒ Data can be piped into a stream processing module, which can be used to detect anomalies in
the incoming events and send immediate alert messages directly to client applications or do any
logic required by the application.

Figure 6-4 SensorHUB data store variations

In scenarios, where raw data is not necessarily stored, but is just processed in a streaming-like fashion,
using the Data Lake is optional, but recommended. As data in the Data Lake is never modified once
uploaded, application developers can always access data with arbitrarily complex processing algorithms
or by providing their own custom ETLs. These standard formats, supplemented by the capability of

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 105

defining further custom processing algorithms, enable developers to focus data at the abstraction level
that best fits their needs, contributing to the ease of development.

6.1.2.3 Deployment	
On top of the platform, there are the domain-specific web and mobile applications and services. Special
types of services are customized reports, data monitoring solutions, dashboards, and further business
intelligence solutions. As the platform itself is designed to be deployed on a backend infrastructure of
an internal network, it is recommended that these applications use their own separate servers to utilize
the capabilities of the platform. It is also possible to simply open the internal ports to client applications,
but this is not advised, because it would introduce security risks. Internal microservices are prepared to
authorize requests that are coming from a relatively safe, firewall-protected environment, not from the
outside world. In the current architecture, application of these strong security measures is the
responsibility of the application-specific web servers.

Figure 6-5 shows a possible setup, where the Hadoop Cluster and the SensorHUB platform are deployed
on internal network servers, and the different user-facing services deploy their own web servers. An
example would be an application that uses smartphones to collect data and provides services to the users.
Such smartphone applications would directly connect to their own backend servers, knowing nothing
about the SensorHUB framework. The application backend would wrap the services of the underlying
framework, and glue them together in a way best fitting for the application. One of the main strengths
of the SensorHUB framework is that it enables the application backend to remain a thin layer. In the
absence of the framework, every single application would need to implement its own version of the data
handling functionalities.

Figure 6-5 A possible deployment of the SensorHUB framework with client applications

In many of our SensorHUB utilizations, a smartphone running Android OS serves as a bridge between
a sensor and the infrastructure in the cloud. As many of these sensors have no direct internet access, but
are capable of communicating using Bluetooth or Wi-Fi, an Android smartphone with the capability of
Bluetooth/Wi-Fi connection and mobile internet access is ideal for this purpose.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

106

6.1.2.4 Client-side	Support	
In order to support the client application development, we provide client-side services. They are
implemented on the Android smartphone platform and distributed as an application library. This library
encapsulates the client-related services, and provides them as independent building blocks.

Figure 6-6 The environment of an application that utilizes the SensorHUB framework

The first part of these modules are client-side counterparts of the platform services available on the
infrastructure side. These are client-side utilities that support client services, such as transparent push
notification handling and device registration, or data querying.

The second part of the client modules are the utilities. These modules provide services for common
client-side domain-independent features, including reliable networking, secure communication, and
integration with social services (Figure 6-6).

6.1.2.5 SensorHUB	Summary	
SensorHUB is a general concept with a core platform implementation. We provide different realizations
(domain-specific software components), i.e. utilizations of the SensorHUB platform. The results are
different specialized platforms targeting a selected area.

The framework has been successfully applied as a development accelerator framework for the smart
city, vehicle, health, and production line domains. Several SensorHUB-driven systems, targeting smart
city, agriculture and health areas are also under design and development. Some of them are introduced
in the next sections of this chapter.

6.1.3 Multi-domain	IoT		
This section introduces the Model-driven Multi-Domain IoT concept. In a multi-domain IoT
environment, data comes from several sources: sensors that collect traffic, health, climate and further
information, posts on social networking sites, digital images and videos, records of purchase transactions
or mobile phone GPS signals to name some of the most significant. [9] [40]

We see Multi-Domain IoT as the actual frontier for innovation, competition, and productivity. The
introduced method supports effective service and application development and therefore covers the
following areas: connected devices (connectivity, intelligence), data collection (sensors, storage), data
access (cloud, standards, open APIs, security), complex analytics (big data tools), and unique value
(realization of the true potential driven by the connected society).

The key points of the worked out method and tool ecosystem are:

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 107

‒ Step 1. IoT (Measuring, Thinking and Doing). IoT is about to increase the connectedness of
people and things. IoT ecosystems can help consumers achieve goals by greatly improving their
decision-making capabilities via the augmented intelligence based on the collected and analyzed
data.

‒ Step 2. Multi-Domain IoT (SensorHUB). SensorHUB is both a method and a framework to
support IoT-related application and service development. Furthermore, it effectively supports
the discovery of data correlations that drives the product improvement, service development and
the efficiency of the business activities.

‒ Step 3. Model-driven Multi-Domain IoT (VMTS + SensorHUB). The utilization of software
modeling and model processing techniques is provided to enrich the service and application
development for the IoT area and improve its efficiency. As a result, we can increase both the
development productivity and the quality of software artifacts; furthermore, we can significantly
reduce the time-to-market.

Our team has developed both the SensorHUB and the Visual Modeling and Transformation System
frameworks. SensorHUB focuses on the IoT-enabled service and application development, including
the multi-domain support, while VMTS is our software modeling and model-processing environment.
The Model-driven Multi-Domain IoT concept utilizes the capabilities of both of them; furthermore, it
realizes model-driven, quality assured service and application development for the Multi-Domain IoT
area. The efficiency of the method is confirmed by several projects. Selected parts of these projects are
discussed in this thesis, in order to support understanding and serve utilization of the method.

Figure 6-7 Overview of the Model-driven Multi-Domain IoT

To achieve the goals of the Model-driven Multi-Domain IoT concept, we apply model-based methods.
The architecture of the application generation process is depicted in Figure 6-7. Using different domain-

SensorHUB Framework

Transformation	model

Domain-Specific	Models	
describing	the	various	aspects	
of	IoT services	and	applications

Transformation	Engine	supporting	
effective	code	generation

Hadoop-based	Big	Data	
Management

@

Generated	and	hand-
written	application	code

Domain-Specific	Applications	and	Services,	Data	
Monitoring,	BI	Reports	and	Dashboards

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

108

specific models, we describe various aspects of the IoT-based services and applications. We describe
the data collection interface as the configuration of the backend system, define the data processing rules,
push notification rules, data query capabilities, query parameters, service interfaces, application
features, and further aspects of the envisioned IoT system. With a help of the VMTS framework, we can
manage these languages and the domain models. We also apply domain-specific model transformations
to process system models and generate source code snippets and software components from the domain
models. Custom business logic can also manually added to the generated code and thus a complete
source code package is created. This package relies on the SensorHUB framework, i.e. the code utilizes
the framework APIs, class libraries and various services. This way, the generated code acts as a layer
on top of the framework, so that we can reuse the previously prepared, well-tested and effective
components of the SensorHUB framework. Usually, applications require custom design that is manually
prepared and applied for the web and mobile user interface components.

Regarding the SensorHUB framework, the role of domain modeling is to reduce the amount of repetitive
coding tasks, decrease the time to market when introducing a new component, or changing the
configuration of the framework and to increase clarity of the solutions used. At first, we have identified
steps, which can be aided by domain modeling and model-based solutions. We have chosen three
domains: (i) configuration files for Apache Flume, (ii) interface and data structure specification for
clients and for the server side based on Swagger, (iii) filter configuration for Big Data processing. While
creating environments for these domains, we consulted continuously with domain experts and fine-tuned
our solutions according to their suggestions.

6.1.3.1 Configuration	for	Apache	Flume	
Flume is a distributed and reliable service for efficient collecting, aggregating, and moving large
amounts of log data. Flume has a simple and flexible architecture based on streaming data flows [Apache
Flume]. In our solution, we have introduced a simplified graphical interface to specify Flume
configuration files earlier created manually. As a result, we obtain models, which are more compact,
easier to understand and faster to edit than the configuration files.

Based on the Flume specification [Apache Flume], we have created a simple, graphical DSL consisting
of Sources, Channels and Sinks. We have also defined subtypes of these elements, where each type has
attributes as defined in the specification. For example, we have an AvroSource (subtype of Source) with
attributes bind and port. Note that for the sake of clarity and simplicity, only those types and those
attributes were added to our language, which are used by the programmers. The language definition can
easily be extended later without losing previously created models.

When the basic language was completed and tested, we have also added useful advanced features, such
as multiplexing flows with selectors and Interceptors. Realizing Interceptors was challenging, since
users can create an Interceptor definition (list of fields) and then use and fill out this definition (using
the fields as variable slots) in Sources. E.g., a definition has two fields: MimeType and Encoding. Then,
in a HTTPSource, we can add an Interceptor using this definition and set the concrete values as
MimeType= text/html, Encoding= UTF8. This feature requires dynamic instance-level management of
Interceptor fields, for example, in case the definition is modified. We have realized it as the part of the
domain-specific modeling add-on in VMTS IDE.

We have created several example models, then extended the validation logic and finally added a code
generator as a part of the modeling add-on. The code generation is rather simple in this case: we have
to traverse the models and for each model element generate an appropriate set of code lines. The code
generator mostly consists of nested iterations listing the attributes of model elements.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 109

The language has been tested and the solution has been verified by the developers. As a result, it become
clearer and faster to apply changes in this domain environment than it was before by manual coding.

Figure 6-8 Model processing

6.1.3.2 Interface	Definition	by	Swagger	
Swagger is a RESTful API representation [Swagger]. Swagger definitions are used to generate interfaces
for client applications and for the server-side services.

Swagger definitions can describe method calls with parameters, return types and error codes. All three
parts have a type, which can be either one of the built-in primitive types, or a custom type consisting
one, or more fields, e.g. a custom type Person with FirstName and LastName fields. Types may have
additional attributes, such as Format, which acts as a constraint on the type (e.g. integers under 1000).
Earlier, Swagger definitions were written manually, which was error-prone, since the precise usage of
whitespace characters was required (e.g. the length of a tab was specified). Furthermore, there has been
no autocomplete feature in the editor; thus, the spelling of type names was also a common source of
errors.

We created a DSL to describe the types and the hierarchical relations between them. We have also
created a built-in read-only model describing the built-in types, thus users can use (refer to) them
automatically in their work. Based on this language, we built a domain environment. The environment
consists of dialogs, where the selected type components can be edited in a table editor. Since type names
are chosen from a dropdown list, spelling errors are automatically eliminated. Furthermore, the dialogs
can validate Format descriptions when the users close the dialogs. The language and the environment
were exhaustively tested. We can state that they are able of describing arbitrary type systems used in
practical case studies.

The second step in creating the model-based solution was to extend the language with method call
definitions. It was fairly simple, since method call definitions are rather similar to composite types (even

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

110

if they have parameters instead of fields), but we had to add several descriptors to the definitions as well
(e.g. post/get method, URL). We reused and extended our previous language in less than one day of
work.

By completing the language, we moved the focus to the code generator. As in the case of the Flume
domain, this step was simple: we had to traverse the model trees and generate the Swagger text by
applying the Visitor design pattern.

6.1.3.3 Filter	Configuration	for	Big	Data	
In the third domain, the basic motivation is to process the data of the sensors. The data has a large
amount of information fragments; we would like to understand these fragments, combine them and
obtain answers to several questions asked by the users. While processing the fragments, we often
transform them and filter out important parts while omitting everything else. For each question, we can
specify the series of data manipulation tasks referred to as filters, which produce the answer. This
process can be modeled quite well. Each filter has an interface definition, i.e. input and output
parameters. We created a graphical language, where filters are represented by boxes. Filter definitions
are managed similarly to type management in case of Swagger and boxes have input and output ports
representing the parameters of filters. Boxes are connected to each other through these ports. Input and
output data of the whole configuration is represented as the interface of the model itself. As the result,
we have a workflow language for filters and the filter configuration can be easily described in a user-
friendly way.

Code generation is also possible based on the graphical models; however, it is more complex comparing
to the previous two domains. For example, we have to obtain the correct sequence of execution from the
model. Fortunately, this can be applied by searching for a random filter in the model with no unprocessed
input and processing it. If we cannot find such a filter and there are still unprocessed filters, then the
model is invalid.

6.1.3.4 Summary	of	the	Model-driven	Multi-Domain	IoT	
The Model-driven Multi-Domain IoT concept utilizes the advantages of the model-driven system
development. Based on the advantages of the VMTS and SensorHUB frameworks, the Model-driven
Multi-Domain IoT provides a unified toolchain for IoT-related application and service development.

We have discussed the motivation, the objectives, the application areas and the domains of SensorHUB
framework and its extension to the Model-driven Multi-Domain IoT concept. Based on present
industrial trends, requirements, and needs, a SensorHUB-based method and framework is a data
monetization enabler. The framework supports the collection of various sensor data, enables the
processing and analysis of data, and makes it possible to define different views on top of the data
combined and compiled from different data sources. These data views and collections of datasets are
referred to as monetized data for various purposes, for example, supporting decision making and running
smart city services.

6.2 Research	and	Development	Projects	Utilizing	the	Results			
The following sections introduce research and development projects. These projects have utilized
several results introduced in this thesis. Beside the research activities, in each of the following projects
I played significant role both in project management and in research and development directions as well.

6.2.1 Modeling	and	Model	Processing	
Some of the results have been elaborated within the framework of the R&D projects such as Developing
mobile services and applications with model-driven methods, Mobile Innovation Centre (2007-2009);

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 111

Software Development Method and Supporting Framework, BME Innovation and Knowledge Centre
(IT)2 (2008-2009); Modeling and model processing, BME Research University (2010-2012); and
Model-driven application development for multiple mobile platforms, FuturICT.hu (2012-2014). The
four projects together cover a significant time interval. In each project, our research group had a
determining role. We achieved significant values in the field of domain-specific modeling and model
processing areas. We elaborated these results in VMTS, and they have been utilized during several
system design and application development activities, such as certain elements of the professional
modeling and model processing are utilized in the SensorHUB framework [9].

6.2.2 Quality	 Assured	 Model-Driven	 Requirements	 Engineering	 and	 Software	
Development	

Software development requires appropriate methods for requirements engineering, design,
development, testing, and maintenance. The more complex the system is, the more sophisticated
methods should be applied. A significant part of software projects is short on appropriate processes.
This project has developed a quality assured model-driven requirements engineering and software
development method. The method is based on the modeling of the software requirements in a way that
these models can be used to automatically generate several artifacts during the engineering process. This
method is continuously developed during the last twelve years driven by our software projects and by
the experience and lessons learned from these projects. In the 2013-2014 period, a new tool support has
been developed. The method is a framework to specify software requirements with four domain-specific
languages and automated methods to process the models. The project also collected and shared our best
practices on the field of model-driven requirements engineering and software development. Based on
the feedback from research groups and industrial entities, both the method and our experience-based
recommendations can be widely applied by other teams and projects. [8]

6.2.3 Model-Driven	Technology	to	Support	Multi-Mobile	Application	Development		
Mobile devices and mobile applications have a significant effect on the present and on the future of the
software industry. The diversity of mobile platforms necessitates the development of the same mobile
application for all major mobile platforms, which requires considerable development effort. Mobile
application developers are multiplatform developers, but they prioritize the platforms, therefore, not all
platforms are equally important for them. Appropriate methods, processes and tools are required to
support the development in order to achieve better productivity. The main motivation of our research
activity was to provide a method, which increases the development productivity and the quality of the
applications and reduces the time to market. We have provided a mobile, platform-independent, high-
abstraction level environment for mobile application design. We support it with domain-specific
languages and effective model processing solution.

The project provided significant model-driven results on the field of multi-mobile platform
development. Then, we continued the work to support mobile application developers, i.e. to extend the
capabilities of the introduced approach and framework by covering more areas of mobile applications.
[6]

6.2.4 Supporting	 Human	 Resource	 Management	 Frameworks	 with	 Rule	 Engine-Based	
Solutions	

The Human Resource (HR) rule engine calculations project targeted the HR domain, especially the rule-
based configuration of the work schedule and salary calculation algorithms and methods. The goals of
the project were to provide an efficient way to configure standalone installations of a HR framework.
These installations are based on a common source, they are customized according to country related
laws and company-based requirements. The motivation of the model-based solution was to support

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

112

several rule environments (area-based, company-based, law-based rules) in a transparent way; provide
efficient change management; filter out development errors; focus on domain solutions, not on coding
techniques; and fit into the existing architecture.

We have worked out two domain-specific languages and the supporting model processors. The
languages are the System level language and the Rule level language. On the system level, the solution
provides a graphical language for high abstraction level overview. This allows to define rules, functions,
data structures, and dependencies between rules. The rule level is designed to support calculation
algorithms with a complex, detailed but compact textual language.

With the project, we realized a more efficient change management process, provided support for
customization but kept the unified representation, models could be validated, code quality have been
improved. Furthermore, the solution is extendable on different levels (rules, data structures, built-in
functions), could be adopted to existing systems and the performance of the processing has been
significantly improved.

Figure 6-9 HR Rule Engine user interface in VMTS

6.2.5 Graf	IEC	
IEC 61131 is an industry standard for PLCs. The standard defines graphical and visual languages, and
rich sets of built-in functions and program function blocks. Several parts of the graphical and textual
languages are interchangeable.

The Graf IEC project provided a VMTS-based modeling environment with both textual and visual
domain-specific languages based on the IEC 61131 standard and further custom requirements: custom
built-in functions (e.g. for debug); different semantics for variables; code generation for C; code
generation for a custom macro language; ability of embedding resource files; simulation; and support
for domain-specific design patterns.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 113

The worked out software solution has addressed these requirements, provided a workbench for the IEC
61131 standard, supports code and documentation generation, model validation, and software-based
simulation as well.

Figure 6-10 Graf IEC user interface in VMTS

6.2.6 Several	Domains,	Big	Data,	Big	Challenges,	Great	Opportunities	
Challenges and opportunities of the IoT and big data areas include analysis, capture, search, sharing,
storage, transfer, and visualization of data and information. Management of the collected data and the
attendant security concerns are among the biggest challenges. What does data mean? – This is a key
point we often face. However, we believe that big data and the IoT world allow customers to get beyond
reactive and even beyond proactive, to become predictive. We can take a more holistic view of the tools
and their behavior.

Combining the experience and results from previous projects targeting various IoT domains, a
configurable set of general modules has emerged, which we call SensorHUB. The concept continuously
evolves, based on feedback from R&D and industrial projects.

VehicleICT platform is an implementation on top of the SensorHUB framework targeting the vehicle
domain. The implementation of the VehicleICT platform helped to distill the architecture of the
SensorHUB. VehicleICT utilizes the capabilities of the SensorHUB and provides a vehicle domain
related layer with several reusable components and features. This means that VehicleICT platform itself
can be considered as a test environment that verifies the different aspects of the SensorHUB framework.

The idea behind the VehicleICT platform was to identify a reasonably rich set of functionalities that
typical connected car applications need and then to implement and test these functionalities and finally
offer them as building blocks in a centralized manner. VehicleICT was one of the first projects, where
both the client and server parts of the SensorHUB framework have been utilized [Lengyel et al, 2015]
[VehicleICT].

We worked out the concept of our Social Driving solution, where the goal was to motivate and help car
owners to drive more efficiently. Social Driving application is based on VehicleICT platform. Social
Driving shows statistics about driving style, fuel consumption and CO2 emission. The solution runs in
the background, therefore, it does not interfere with other mobile applications. The application uses the
sensor data both from the OBD and the mobile phone. [Ekler et al, 2015]

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

114

6.2.6.1 Smart	City	Domain	
Within the frame of two EIT (European Institute of Innovation & Technology) Climate-KIC [EIT
Climate-KIC] projects, we utilize the framework. These Climate-KIC projects are referred to as
URBMOBI (Urban Mobile Instruments for Environmental Monitoring, i.e., a Mobile Measurement
Device for Urban Environmental Monitoring) [URBMOBI] and SOLSUN (Sustainable Outdoor
Lighting & Sensory Urban Networks) [SOLSUN].

The URBMOBI (Urban Mobile Instruments for Environmental Monitoring, i.e. a Mobile Measurement
Device for Urban Environmental Monitoring) project integrates a mobile measurement unit for
operation on vehicles in urban areas (i.e. local buses and trams), with data post-processing, inclusion in
enhanced environmental models and visualization techniques for climate related services, environmental
monitoring, planning and research needs.

URBMOBI is a mobile environmental sensor that (i) provides temporally and spatially distributed
environmental data, (ii) fulfills the need for monitoring at various places without the costs for a large
number of fixed measurement stations, (iii) integrates small and precise sensors in a system that can be
operated on buses, trams or other vehicles, (iv) focusses on urban heat and thermal comfort, and (v)
aims at providing climate services and integration with real-time climate models.

The URBMOBI solution provides a novel product that integrates state-of-the-art sensors for
environmental variables embedded in a system that allows mobile usage and data handling based on
geo-location technology and data transmission by telecommunication networks. Sensors can be operated
on buses, trams, taxis or similar vehicles in urban areas.

The data is geo-coded and post-processed depending on the type of variable, location and application.
Furthermore, the data is integrated into real-time models on climate and/or air quality relevant quantities
providing climate services and environmental data for a wide range of applications.

URBMOBI is utilizing the SensorHUB framework in data collection, local processing (data
aggregation), and data transmission. On the server side, URBMOBI measurements are combined with
atmospheric models in order to improve spatial coverage and calculate additional parameters (thermal
comfort). The data is analyzed with a climate domain related powerful tool. A part of the SensorHUB
architecture has been redesigned and improved based on the experience collected at the URBMOBI
project. As a result, we have obtained a clearer framework architecture.

URBMOBI project has been worked out between 2013 and 2015 by the following consortium: RWTH
Aachen University (Germany), Netherlands Organisation for Applied Scientific Research TNO
(Netherlands), ARIA Technologies (France), Budapest University of Technology and Economics
(Hungary), MEEO S.r.l - Meteorological and Environmental Earth Observation (Italy), and Aacener
Straßenbahn und Energieversorgungsbetrieb (Germany).

The SOLSUN (Sustainable Outdoor Lighting & Sensory Urban Networks) project is about to
demonstrate how intelligent city infrastructure can be created in a cost-effective and sustainable way by
re-using existing street lighting as the communications backbone. We apply different technologies and
methods to reduce energy consumption at the same time as turning streetlights into nodes on a scalable
network that is also expandable for other applications. Sensors capture data on air pollution, noise
pollution and traffic density; information gathered are used to address traffic congestion, another key
contributor of greenhouse gas emissions in cities.

SOLSUN project develops an integrated technology platform where both several components of the
SensorHUB framework and the knowledge of the SensorHUB team are utilized. The project brings
together a strong core of public, private and academic partners with the combined expertise to develop

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 115

outcomes that can be exploited on a global scale. The project is carried out between 2015 and 2017 by
the following partners: Select Innovations Limited (UK), British Telecommunications Plc (UK),
Municipality of the City of Budapest (Hungary), PANNON Pro Innovation Services Ltd (Hungary), and
Budapest University of Technology and Economics (Hungary).

Sensor and sensor network development is performed by Select Innovations Limited, the data collection,
storage, analysis and data-driven applications are mainly carried out on SensorHUB architecture.

According to the predictions, up to 100 billion devices will be connected to the Internet by 2020. The
SOLSUN technology is designed to be scalable to cope with the growing demand for networked devices.
The system can cater for 254 device types with 65,000 devices in one category; multiple protocols are
embraced with data sent back to a scalable cloud based Cluster Controller, with no upper limit on the
amount of Cluster Controllers. This enables providers to carry on using their preferred protocol but still
benefit from a web-based front end and/or application connection. To ensure scalability, connections
are made through stand-alone adapters; multiple adapters can be distributed and software can run on
many servers with no single point of redundancy.

6.2.6.2 Healthcare	Domain	
We have seen the emerging popularity of a phenomenon called „quantified self”. Followers of this
movement regard every aspect of their life as input data, which they record and store in order to improve
daily functioning. The history of self-tracking using wearable sensors in combination with wearable
computing and wireless communication already exists for many years, and also appeared, in the form
of sousveillance back in the 1970s [Swan 2013]. Today, healthcare sensors and different kinds of sport
trackers become cheaper and affordable, and even smart devices have sensors capable of performing
health related measurements.

The average user collecting self-tracking data is not a medical expert; it is difficult for him to interpret
his medical results or similar self-monitoring data in depth. The user is not aware of the importance of
the individual values or the meaning of deviance from normal intervals, nor can he combine different
measured values to infer his health status. What such users can do is paying for the doctor’s time or look
up some uncontrolled source on the Internet to learn the meaning of these data.

Motivated by increasing healthcare costs, using medical grade sensors is also regarded as a way of cost-
effectively observing the required biological signals of a patient [Pantelopoulos and Bourbakis, 2010].
This phenomenon transforms the healthcare industry in a form where remote experts decide, for
example, on the necessity of a surgical intervention for a given patient, based on sensor data collected
for days. Similar to knowledge engineering, it is possible to run learning algorithms on voluntary
provided sensor data of thousands of users to infer hidden correlations. Automated processes can even
warn the user if some suspicious results make it legitimate to visit a general practitioner or a specialist
[Clifton et al, 2014]. The experts can harness the availability of historical data during analysis.

A shortcoming of the current state-of-the-art systems for the described challenge is that they are closed
proprietary solutions. Sensor data from one system cannot be used with the system of another player on
the market, as the data or the provided service are holding market value. There is a couple of
manufacturers providing application programming interface for their sensors or trackers, however, most
of them cannot be integrated into third-party software. The reason is the sensibility of personal or
medical data, as their privacy cannot be guaranteed if they are offered for third parties via uncontrolled
interfaces.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

116

Combining the SensorHUB framework with medical sensors, we are concentrating on a method, which
enables the collection of various kinds of health data from different sensor sources, and then utilizing
the framework to infer the health status or find correlations and predictions.

A smartphone application is used as a gateway and controller for the measurements. Information about
an ongoing measurement can be shown on the mobile device of the user, together with the final result
and analysis at the end of the process. Users can utilize their own sensors or trackers for this process,
but it is also possible to share sensors among many users. The data analysis and storage is done on a
dedicated server. In order to insure scalability of the solution SensorHUB is used as the server-side
backend system.

Special care has to be taken with regard to the security of personal data. The approach also requires a
complex authentication system, which would encrypt medical data and authenticate the measurement
device and measurement process at the same time.

We have designed and implemented the application on the top of SensorHUB, and have named it
Sensible [Sensible]. We have selected a set of sensor types to be integrated into the system, both wired
and wireless. Wireless sensors can harness the connectivity of the smartphone device of the users. In
case of the wired sensors, there is an intermediary agent that receive the signals from those sensors, and
load the data into the SensorHUB. We use Raspberry Pi devices for this task, running our software and
the drivers of those sensors.

We believe that in the near future the sensors built on advanced technology will play an important role
in efficient healthcare services and in early recognition of illnesses. Our results contribute to achieve
this goal.

Besides the described domains, we are currently addressing two more domains, namely, the agriculture
and the production line (Industry 4.0 or Industrial Internet). The architecture is similar: data is collected
with domain-related sensors, locally processed and utilized, furthermore uploaded and analyzed.
Services from their part are driven by the distilled data. These projects develop domain-specific
solutions on top of the SensorHUB. Our experience shows that the aforementioned IoT projects, based
on the utilized components and both the way and results of the development, validate the SensorHUB
approach and its multi-domain capabilities. The reusability ratio of the framework components is rather
high. The similarity in the architecture of the realized systems motivated us to apply a higher abstraction
level development method, generate the configurable parts of the systems and increase product quality
based on high-level validation methods. This led us to creation of a model-based development method.

6.3 Conclusions	
I am sure that the worked out and presented methods and techniques contribute to the development of
various effective solutions, which provide convenient, widely applicable, industrially relevant tools and
methods for the verification and validation of model processors, as well as, effectively supports the
application of the domain-specific modeling and model-processing techniques. All this is confirmed by
the fact that most of the results have already been applied within various R&D projects and contribute
to several strategic directions and activities at our department.

 	

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 117

7 Summary	

This chapter summarizes the main scientific results of the thesis, furthermore, provides the selected and
closely related most important publications.

7.1 Thesis	I:	Methods	for	Verifying	and	Validating	Graph	Rewriting-Based	
Model	Transformations	

The results of Thesis I are the followings:

Classifying Model Transformation Approaches by Model Processing Properties
‒ I have worked out the model transformation property classes, and I have applied them for

supporting the classification of the verification and validation capabilities of model
transformation approaches. Based on the property classes, I support to define the requirements
against model transformation approaches and to categorize the already existing model
transformation approaches and tools.

‒ The property classes (i) support the comparison of different verification and validation
approaches and tools, (ii) support the identification of the appropriate verification/validation
approaches and tools for a certain verification/validation challenge, and (iii) provide an
overview about the research results and achievements of the graph transformation-based
verification and validation.

Method for Validating Rule-based Systems and Taming the Complexity of Model Transformation
Verification/Validation Processes

‒ Representing rule-based systems as graph rewriting systems, I have worked out a method for
validating rule-based systems. I have shown that if a finite sequence of transformation rules
with validating constraints (pre- and postconditions assigned to the rules) realizes a rule-based
system and the execution of this sequence of transformation rules is successful for an input
model, then the modified/output model satisfies the requirements defined by the validating
constraints.

‒ I have designed a method for taming the complexity of model transformation
verification/validation processes. I have shown that the taming method is applicable for rule-
based systems represented by graph rewriting systems.

Method for Test-Driven Verification/Validation
‒ I have worked out both Basic and Advanced versions of the test-driven verification/validation

method for model transformations defined with transformation rules and a control flow model.
For the Basic version of the method, I have shown that generating valid instances of the input
metamodel requires that the left-hand side (LHS) structures of the transformation rules be valid
partial instances (result from Thesis III) of the input metamodel.

Selected publications closely related to Thesis I: [1] [3] [5] [7] [10] [14] [17] [19] [21] [22] [23] [24]
[25] [31] [36].

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

118

	

7.2 Thesis	II:	Model-Driven	Methods	Based	on	Domain-Specific	Languages	
and	Model	Processors	

The results of Thesis II are the followings:

Assuring the Quality of Software Development Projects by Applying Model-Driven Techniques
and Model-Based Tools

‒ I have worked out a method that supports the quality assurance of software development
projects. The method utilizes model-driven techniques and model-based tools. I have worked
out a method for relevant test scenario generation. I have shown that generated test scenarios
cover the possible execution paths defined by the parameters and fixed variables, furthermore,
these scenarios represent a restricted set of the whole area, therefore, the method results a more
effective testing process. I have shown that, because of the domain-specific languages and
automated model processing, the approach results a close relation between the software
requirements and realized features.

Method for Developing and Managing Domain-Specific Models and Method for Supporting the
Transparent Switch between the Textual and Visual Views of Semantic Models

‒ A method has been worked out that allows the definition and management of domain-specific
models. The method provides suggestions regarding to the considerations and decisions we
have to make during the analysis of the business needs and the definition of domain-specific
languages, supports the steps and tasks related to the introduction of domain-specific languages
and finally, helps during the maintenance of domain-specific languages.

‒ I have worked out an architecture that makes possible the effective and transparent switch
between the visual and textual representations of semantic models.

Method for Processing Mathworks Simulink Models with Graph Rewriting-Based Model
Transformations

‒ An integration method has been worked out between the Mathworks Simulink environment and
the VMTS modeling and model processing framework. I have shown that the method for
validating the domain-specific properties of software models (result from Thesis III) is an
appropriate method for processing Simulink models with VMTS framework.

Model-Driven Method for Managing Energy Efficient Operating Properties
‒ A model-driven method has been worked out for managing the energy efficient operation

properties of mobile devices. The method allows to define the energy efficiency properties on
the level of software models. As a result of the solution, this aspect of software systems appears
on the modeling level, which provides a more detailed view about the whole system. This
supports both the more precise model-based analysis and the more relevant verification and
validation of the software systems.

Selected publications closely related to Thesis II: [4] [6] [8] [9] [16] [25] [29] [30] [32] [33] [34] [35]
[38] [39].

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 119

7.3 Thesis	 III:	 Applying	 Domain-Specific	 Design	 Patterns	 and	 Validating	
Domain-Specific	Properties	

The results of Thesis III are the followings:

Method to Support Domain-Specific Design Patterns
‒ I have worked out both the theoretical and practical basis to support the definition and

management of domain-specific design patterns in metamodeling environments. I have shown
that for metamodel level model transformation rules, a match for the left-hand side (LHS) of the
transformation rule can be found with the instantiation relation, furthermore, a given part of
the output model will be the instance of the right-hand side (RHS) of the transformation rule. It
has been proven that a model allowing transitive containment with respect to its metamodel is
not necessarily a partial instance. It has been shown that the relaxed instance models of a
metamodel violates the instantiation rules in the following respects only: (i) relaxed multiplicity
and cardinality, (ii) dangling edge relaxation, and (iii) incomplete attributes.

Method for Validating the Domain-Specific Properties of Software Models
‒ I have worked out a method for validating domain-specific properties of software models during

model processing. I have shown that success conditions and negative success conditions have
no effect on the result of the model processing. I have proven that validating transformation
rules do not modify the output model.

Algorithms for Handling the Validating Constraints in a Modular Way
‒ I have worked out a method for consistent handling of validating constraints. I have shown that

in case of model processing the crosscutting nature of validating constraints cannot be always
eliminated. I have worked out algorithms which semi-automatically identify the crosscutting
constraints in model transformations (coloring algorithm), furthermore, which, based on the
coloring, extracts the repetitive and crosscutting constraints and generates the constraint call
definitions.

Selected publications closely related to Thesis III: [2] [8] [10] [11] [12] [13] [15] [18] [20] [26] [27]
[28] [37] [40].

In summary, I highlight that the provided methods, algorithms and solutions are about to utilize domain-
specific modeling and model-driven techniques to contribute in achieving more efficient and errorless
software development processes. The goal was to provide methods and tools to support those parts of
the development cycle, which can be atomized, and to make more quality software artifacts. I believe
that the results introduced in the thesis are contributing to support effective validation of model
processors and the domain-specific properties of various software models.

 	

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

120

Publications	Closely	Related	to	the	Thesis	

[1] L. Lengyel, T. Levendovszky, H. Charaf, Validated model transformation-driven software development,
International Journal of Computer Applications in Technology, pp. 106-119, 2008.

[2] T. Levendovszky, L. Lengyel, T. Mészáros, Supporting domain-specific model patterns with metamodeling,
Software and System Modeling 8:(4), pp. 501-520, 2009. IF: 1,533

[3] M. Asztalos, I. Madari, L. Lengyel, Towards Formal Analysis of Multi-paradigm Model Transformations,
Simulation-Transactions of the Society for Computer simulation International 86:(7), pp. 429-452, 2010. IF: 0,611

[4] L. Lengyel, G. Mezei, Model-Driven Paradigms – The Evolution of a University Course., 8th edition of the
Educators' Symposium, Innsbruck, Austria, ACM, pp. 13-20. 2012.

[5] M. Asztalos, L. Lengyel, T. Levendovszky, Formal specification and analysis of functional properties of graph
rewriting-based model transformation, Software Testing Verification & Reliability 23:(5), pp. 405-435, 2013. IF:
1,2

[6] H. Charaf, P. Ekler, T. Mészáros, I. Kelényi, B. Kővári, I. Albert, B. Forstner, L. Lengyel, Mobile Platforms
and Multi-Mobile Platform Development, Acta Cybernetica 21:(4), pp. 529-552, 2014.

[7] L. Lengyel, H. Charaf, Test-driven verification/validation of model transformations, Frontiers of Information
Technology & Electronic Engineering 16:(2), pp. 85-97, 2015.

[8] L. Lengyel, T. Meszaros, M. Asztalos, P. Boros, A. Mate, G. Madacs, P. Hudak, K. Kovacs, A. Tresch, H.
Charaf, Quality Assured Model-Driven Requirements Engineering and Software Development, The Computer
Journal 58:(11), pp. 3171-3186, 2015. IF: 1,0

[9] L. Lengyel, P. Ekler, T. Ujj, T. Balogh, H. Charaf, SensorHUB – An IoT Driver Framework for Supporting
Sensor Networks and Data Analysis, International Journal of Distributed Sensor Networks 2015, Article ID
454379, 12 pages, 2015. IF: 0,906

[10] L. Lengyel, H. Charaf, Open Issues in Model Transformations for Multimodal Applications, Journal of
Multimodal User Interfaces 9:(4), pp. 377-385, 2015. IF: 1,017

[11] L. Lengyel, T. Levendovszky, T. Mészáros, H. Charaf, Supporting design patterns in graph rewriting-based
model transformation, 2nd Int. Working Conference on Evaluation of Novel Approaches to software Engineering,
Barcelona, pp. 25-32, 2007.

[12] L. Lengyel, T. Levendovszky, H. Charaf, Applying multi-paradigm modeling to multi-platform mobile
development, Workshop on Multi-Paradigm Modeling: Concepts and Tools, Nashville, USA, pp. 9-21, 2007.

[13] L. Lengyel, T. Levendovszky, H. Charaf, Identification of crosscutting concerns in constraint-driven
validated model transformations, Third Workshop on Models and Aspects - Handling Crosscutting Concerns,
Berlin, Germany, pp. 15-20, 2007.

[14] L. Lengyel, T. Levendovszky, G. Mezei, T. Vajk, H. Charaf, Practical uses of validated model transformation,
Eurocon 2007 - The International Conference on Computer as a Tool, Warsaw, Poland, pp. 2200-2207, 2007.

[15] T. Levendovszky, L. Lengyel, G. Mezei, T. Mészáros, Introducing the VMTS mobile toolkit., 3rd
International Symposium on Applications of Graph Transformations with Industrial Relevance, AGTIVE 2007.
Kassel, Germany, pp. 587-592, 2008.

[16] L. Angyal, M. Asztalos, L. Lengyel, T. Levendovszky, I. Madari, G. Mezei, T. Mészáros, L. Siroki, T. Vajk,
Towards a fast, efficient and customizable domain-specific modeling framework, IASTED International
Conference on Software Engineering, Innsbruck, Austria, pp. 11-16, 2009.

[17] M. Asztalos, L. Lengyel, T. Levendovszky, A formalism for describing modeling transformations for
verification, 6th International Workshop on Model-Driven Engineering, Verification and Validation: MoDeVVa
'09. Denver, USA, pp. 1-10, 2009.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 121

[18] M. Asztalos, T. Mészáros, L. Lengyel, Generating executable BPEL code from BPMN models, 5th
International Workshop on Graph-Based Tools - Graph Transformation Tool Contest. Zurich, Swiss, 2009.

[19] M. Asztalos, L. Lengyel, T. Levendovszky, Toward Automated Verification of Model Transformations: A
Case Study of Analysis of Refactoring Business Process Models, Electronic Communications of the EASST 21,
pp. 1-5, 2009.

[20] L. Lengyel, T. Levendovszky, L. Angyal, Identification of Crosscutting Constraints in Metamodel-Based
Model Transformations, International IEEE Conference Devoted to the 150-Anniversary of Alexander S Popov:
Eurocon 2009. Saint-Petersburg, Italy, pp. 359-364, 2009.

[21] M. Asztalos, P. Ekler, L. Lengyel, T. Levendovszky, T. Mészáros, G. Mezei, Automated Verification by
Declarative Description of Graph Rewriting-Based Model Transformations, Electronic Communications of the
EASST 42:(12), 2010.

[22] M. Asztalos, L. Lengyel, T. Levendovszky, Towards Automated, Formal Verification of Model
Transformations, 3rd International Conference on Software Testing, Verification and Validation, Paris, France,
pp. 15-24, 2010.

[23] M. Asztalos, P. Ekler, L. Lengyel, T. Levendovszky, Verification of Model Transformations to Refactoring
Mobile Social Networks, Electronic Communications of the EASST 32:(12), 2010.

[24] I. Madari, M. Asztalos, T. Mészáros, L. Lengyel, H. Charaf, Implementing QVT in a domain-specific
modeling framework, 5th International Conference on Software and Data Technologies, Athens, Greece, pp. 304-
307, 2010.

[25] P. Fehér, T. Mészáros, P. Mosterman, L. Lengyel, Processing Simulink Models with Graph Rewriting-Based
Model Transformation, ACM/IEEE 15th International Conference on Model Driven Engineering Languages and
Systems, MODELS 2012: Tutorials, Innsbruck, Austria, 2012.

[26] L. Lengyel, H. Charaf, Validating domain-specific properties with graph transformations, International
Conference on Innovative Technologies, Rijeka, Croatia, pp. 145-148, 2012.

[27] L. Lengyel, The Role of Graph Transformations in Validating Domain-Specific Properties, International
Journal of Computer Engineering and Technology 3:(3), pp. 406-425, 2012.

[28] L. Lengyel, Modularized Constraint Management in Model Transformation Frameworks, Acta Polytechnica
Hungarica 10:(1), pp. 101-119, 2013. IF: 0,471

[29] P. Fehér, T. Mészáros, P.J. Mosterman, L. Lengyel, A Novel Algorithm for Flattening Virtual Subsystems in
Simulink Models, Proceedings of the IEEE International Conference on System Science and Engineering,
Budapest, Hungary, pp. 369-375, 2013.

[30] P. Fehér, T. Mészáros, Pieter J Mosterman, L. Lengyel, Flattening Virtual Simulink Subsystems with Graph
Transformation, Workshop on Complex Systems Modelling and Simulation, Milan, Italy, pp. 39-60, 2013.

[31] T. Mészáros, P. Fehér, L. Lengyel, Visual Debugging Support for Graph Rewriting-based Model
Transformations, International Conference on Computer as a Tool, Eurocon 2013, Zagreb, Croatia, pp. 482-487,
2013.

[32] G. Kövesdán, M. Asztalos, L. Lengyel, A Classification of Domain-Specific Language Intents, International
Journal of Modeling and Optimization 4:(1) pp. 67-73, 2014.

[33] G. Kövesdán, M. Asztalos, L. Lengyel, Architectural Design Patterns for Language Parsers, Acta
Polytechnica Hungarica 11:(5) pp. 39-57, 2014. IF: 0,649

[34] G. Mezei, L. Lengyel, T. Mészáros, T. Vajk, Metamodeling, Model Processing and Simulation – Putting the
Puzzle Pieces Together Based on Industrial Experiences, ACM/IEEE 17th International Conference on Model
Driven Engineering Languages and Systems, MODELS 2014: Tutorials, Valencia, Spain, 2014.

[35] I. Kelényi, J. K. Nurminen, M. Siekkinek, L. Lengyel, Supporting Energy-Efficient Mobile Application
Development with Model-Driven Code Generation, Advanced Computational Methods for Knowledge
Engineering: Proceedings of the 2nd International Conference on Computer Science, Applied Mathematics and
Applications, Budapest, Hungary, pp. 143-156, 2014.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

122

[36] L. Lengyel, Validating Rule-based Algorithms, Acta Polytechnica Hungarica 12:(4), pp. 59-75, 2015. IF:
0,544

[37] G. Kövesdán, M. Asztalos, L. Lengyel, Aggregate Callback: A Design Pattern for Flexible and Robust
Runtime Model Building, 3rd International Conference on Model-Driven Engineering and Software Development,
Angers, France, pp. 149-156, 2015.

[38] P. Fehér, M. Asztalos, T. Mészáros, L. Lengyel, A MapReduce-based Approach for Finding Inexact Patterns
in Large Graphs, MODELSWARD 2015: Proceedings of the 3rd International Conference on Model-Driven
Engineering and Software Development, Angers, France, pp. 205-212, 2015.

[39] P. Fehér, M. Asztalos, T. Vajk, T. Mészáros, L. Lengyel, Detecting subgraph isomorphism with MapReduce,
Journal of Supercomputing 73:(5), pp. 1810-1851, 2017. IF: 1,088

[40] L. Lengyel, P. Ekler, I. Tömösvári, T. Balogh, G. Mezei, B. Forstner, H. Charaf, Model-Driven Multi-Domain
IoT, Book chapter in Emerging Trends and Applications of the Internet of Things, IGI Global, pp. 167-191, 2017.

[41] H. Hejazi, H. Rajab, T. Cinkler, L. Lengyel, Survey of Platforms for Massive IoT, 2018 IEEE International
Conference on Future IoT Technologies, Hungary, Paper 8, 2018.

[42] G. Kövesdán, L. Lengyel, Meta3: A Code Generator Framework for Domain-Specific Languages, Software
and Systems Modeling, Accepted, 2018. IF: 1,654

 	

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 123

Bibliography	

[Abramski et al, 1993] S. Abramski, M.D. Gabbay and T.S.E. Maibaum (ed), Handbook of Logic in Computer
Science 2, Oxford University Press, 1993.

[AGG] AGG: The Attributed Graph Grammar System, http://tfs.cs.tu-berlin.de/agg

[Agile Manifesto, 2001] Manifesto for Agile Software Development, 2001, http://agilemanifesto.org/

[Akehurst and Kent, 2002] D. Akehurst and S. Kent, A Relational Approach to Defining Transformations in a
Metamodel, In UML 2002 - The Unified Modeling Language, 5th International Conference, Dresden, Germany,
LNCS 2460, Springer-Verlag, pp. 243-258, 2002.

[Amrani et al, 2012] M. Amrani, J. Dingel, L. Lambers, L. Lúcio, R. Salay, G. Selim, E. Syriani and M. Wimmer,
Towards a model transformation intent catalog, In Proceedings of the First Workshop on the Analysis of Model
Transformations, ACM, New York, NY, USA, pp. 3-8, 2012.

[Anand et al, 2004] M. Anand, E. B. Nightingale and J. Flinn, Ghosts in the machine: interfaces for better power
management, in Proceedings of the 2nd international conference on Mobile systems, applications, and services,
MobiSys ’04, ACM, pp. 23-35, 2004.

[Anand et al, 2005] M. Anand, E. B. Nightingale and J. Flinn, Self-tuning wireless network power management,
Wirel. Netw 11, pp. 451-469, 2005.

[Anastasakis et al, 2007] K. Anastasakis, B. Bordbar, G. Georg and I. Ray, UML2Alloy: a challenging model
transformation, Proceedings of the MoDELS07, LNCS 4735, Springer, pp. 436-450, 2007.

[Apache Cassandra] Apache Cassandra, database, 2016, http://cassandra.apache.org

[Apache Flume] Apache Flume, service for collecting, aggregating, and moving large amounts of log data, 2017,
https://flume.apache.org

[Apache Hadoop] The Apache Software Foundation, Apache Hadoop, 2017, http://hadoop.apache.org/

[Apache Hive] Apache Hive, data warehouse platform, 2017, https://hive.apache.org

[Apache Kafka] Apache Kafka, publish-subscribe messaging rethought, 2017, http://kafka.apache.org

[Apache Spark] Apache Spark, General engine for large-scale data processing, 2017, https://spark.apache.org

[Assmann, 1996] U. Assmann, How to Uniformly specify Program Analysis and Transformation with Graph
Rewrite Systems, Proceedings of the 6 Int. Conference on Compiler Construction, LNCS 1060, Springer, 1996.

[Assmann, 2000] U. Assmann, Graph rewrite systems for program optimization, ACM TOPLAS 22, pp. 583-637,
2000.

[Assmann and Ludwig, 2000] U. Assmann and A. Ludwig, Aspect Weaving by Graph Rewriting, Generative
Componentbased Software Engineering, Lecture Notes in Computer Science 1799, Springer, 2000.

[ATL] ATL: ATLAS Transformation Language, 2018, http://eclipse.org/atl/

[AToM3] AToM3: A Tool for Multi-paradigm, Multi-formalism and Meta-modeling, http://atom3.cs.mcgill.ca

[AWS IoT] AWS IoT, 2017, https://aws.amazon.com/iot/

[Azure IoT Suite] Azure IoT Suite, 2018, https://azure.microsoft.com/en-us/suites/iot-suite/

[Barbosa et al, 2009] P. Barbosa, F. Ramalho, J. Figueiredo, A. Junior, A. Costa and L. Gomes, Checking
semantics equivalence of MDA transformations in concurrent systems, Journal of Universal Computer Science
15(11), pp. 2196–2224, 2009.

[Baresi et al, 2003] L. Baresi, R. Heckel, S. Thöne and D. Varró, Modeling and Analysis of Architectural Styles,
Proc ESEC 2003: 9th European Software Engineering Conference, Helsinki, Finland, ACM Press, pp. 68-77, 2003.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

124

[Barr and Asanovic, 2006] K. C. Barr and K. Asanovic, Energy-aware lossless data compression, ACM
Transactions on Computer Systems 24:(3), pp. 250-291, 2006.

[BBC Research, 2017] BBC Research, Global markets and technologies for sensors, BBC Research Report, March
2017, https://www.bccresearch.com/market-research/instrumentation-and-sensors/sensors-technologies-markets-
report-ias006h.html

[Beuche et al, 2006] D. Beuche and M. Dalgarno, Software product line engineering with feature models, Methods
and Tools, 2006.

[Biermann et al, 2011] E. Biermann, C. Ermel and G. Taentzer, Formal Foundation of Consistent EMF Model
Transformations by Algebraic Graph Transformation, Software and Systems Modeling 11:(2), Springer, pp. 227-
250, 2011.  

[Bisztray et al, 2008a] D. Bisztray, R. Heckel and H. Ehrig, Verification of architectural refactorings by rule
extraction, In Fundamental Approaches to Software Engineering, LNCS 4961, Springer, pp. 347-361, 2008.

[Bisztray et al, 2008b] D. Bisztray, K. Ehrig, R. Heckel, P. Torrini, A. Corradini, B. König, P. Baldan and L.
Baresi, Formal Analysis of Model Transformations, Software Engineering for Service-Oriented Overlay
Computers, Sensoria 016004 35, pp. 178-193, 2008.

[Blostein et al, 1996] D. Blostein, H. Fahmy and A. Grbavec, Issues in the practical use of graph rewriting. In
proceedings of the 5th International Workshop on Graph Grammars and Their Application to Computer Science,
Williamsburg, USA, LNCS 1073, Springer-Verlag, pp. 38-55, 1996.

[Bottoni et al, 2000] P. Bottoni, G. Taentzer and A. Schürr, Efficient Parsing of Visual Languages based on Critical
Pair Analysis and Contextual Layered Graph Transformation, Proceedings of the Visual Languages 2000 IEEE
Computer Society, pp. 59-60, 2000.

[Braun and Marschall, 2003] P. Braun and F. Marschall, BOTL - The bidirectional object-oriented transformation
language, Fakultat fur Informatik, Technische Universitat Munchen, Technical Report TUMI0307, 2003.

[Bundy, 1986] A. Bundy, The computer modelling of mathematical reasoning, Academic Press, 1986.

[Cabot et al, 2008] J. Cabot, R. Clariso and D. Riera, Verification of UML/OCL class diagrams using constraint
programming, In MoDeVVa 2008, ICST Workshop, pp. 73-80, 2008.

[Cabot et al, 2010] J. Cabot, R. Clariso, E. Guerra and J. de Lara, Verification and Validation of Declarative Model-
to-Model Transformations Through Invariants, Journal of Systems and Software 83:(2), pp. 283-302, 2009.

[Clifton et al, 2014] L. Clifton, D.A. Clifton, M.A.F. Pimentel, P.J. Watkinson and L. Tarassenko, Predictive
Monitoring of Mobile Patients by Combining Clinical Observations with Data from Wearable Sensors, Biomedical
and Health Informatics, IEEE Journal 18:(3), pp. 722-730, 2014.

[Czarnecki and Eisenecker, 2000] K. Czarnecki and U.W. Eisenecker, Generative programming: methods, tools,
and applications, Addison-Wesley, 2000.

[Czarnecki and Helsen, 2006] K. Czarnecki and S. Helsen, Feature-based survey of model transformation
approaches, IBM Systems Journal 45:(3), pp. 621-646, 2006.

[Davies, 2011] R. Davies, Non-Functional Requirements: Do User Stories Really Help?,
http://www.methodsandtools.com/archive/archive.php?id=113, 2011.

[Dijkstra, 1976] E.W. Dijkstra, A Discipline of Programming. Prentice Hall, Englewood Cliffs, NJ, 1976.

[Docker] Docker, A platform for distributed applications, 2018, https://www.docker.com

[Dong and Zhong, 2011] M. Dong and L. Zhong, Chameleon: A color-adaptive web browser for mobile oled
displays, In Proceedings of the 9th international conference on Mobile systems, applications, and services,
MobiSys ’11, ACM 11:(5), pp. 85-98, 2011.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 125

[Donohoe, 2012] P. Donohoe (ed.), Software Product Lines: Experience and Research Directions, Springer
Science & Business Media, 532 pages, 2012.

[Eclipse] Eclipse Framework, 2018, http://www.eclipse.org/

[Eclipse GMP] Eclipse Graphical Modeling Project, 2018, http://www.eclipse.org/modeling/gmp/

[Eclipse EEF] Eclipse Extended Editing Framework, 2018, http://www.eclipse.org/modeling/emft/?project=eef

[Ehrig et al, 1991a] H. Ehrig, A. Habel, H.-J. Kreowski and F. Parisi-Presicce, From Graph Grammars to High
Level Replacement Systems, In Graph Grammars and Their Application to Computer Science, LNCS 532,
Springer, pp. 269-291, 1991.

[Ehrig et al, 1991b] H. Ehrig, A. Habel, H.-J. Kreowski and F. Parisi-Presicce, Parallelism and Concurrency in
High-Level Replacement Systems, Mathematical Structures in Computer Science 1:(3), pp. 361-404, 1991.

[Ehrig et al, 1999] H. Ehrig, G. Engels, H.-J. Kreowski and G. Rozemberg (ed.), Handbook on graph grammars
and computing by graph transformation: Application, languages and tools, World Scientific 2, Singapore, 1999.

[Ehrig et al, 2004] H. Ehrig, A. Habel, J. Padberg and U. Prange, Adhesive High-Level Replacement Categories
and Systems, In proceedings of the ICGT 2004, LNCS 3256, Springer, pp. 144-160, 2004.

[Ehrig et al, 2005] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró and Sz. Varró-Gyapay, Termination
Criteria for Model Transformation, FASE 2005, LNCS, pp. 49-63, 2005.

[Ehrig et al, 2006] H. Ehrig, K. Ehrig, U. Prange and G. Taentzer, Fundamentals of algebraic graph transformation,
Monographs in Theoretical Computer Science, Springer, 2006.

[Ehrig et al, 2010] H. Ehrig, A Habel, L. Lambers, F. Orejas and U. Golas, Local Confluence for Rules with Nested
Application Conditions, Proceedings of ICGT'10, Springer, LNCS 6372, pp. 330-345, 2010.

[EIT Climate-KIC] EIT Climate-KIC, Knowledge & Innovation Community, http://www.climate-kic.org/

[Ekler et al, 2015] P. Ekler, T. Balogh, T. Ujj, H. Charaf and L. Lengyel, Social Driving in Connected Car
Environment, European Wireless 2015, 21th European Wireless Conference, Budapest, Hungary, pp. 136-141,
2015.

[Flores and Fillottrani, 2003] A. Flores and P. Fillottrani, Evaluation framework for Design pattern formal models,
Proceedings of the CACIC’03 IX Argentinean Conference on Computer Science, La Plata, Argentina, 2003.  

[Fowler, 2010] M. Fowler, Domain-specific languages, Addison-Wesley Professional, 2010.

[Fujaba] Fujaba Tool Suite, 2012, http://www.fujaba.de/

[Gamma et al, 1995] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design patterns: Elements of reusable
object-oriented software, Addison-Wesley Professional Computing Series, 1995.

[Giese et al, 2006] H. Giese, S. Glesner, J. Leitner, W. Schafer and R. Wagner, Towards verified model
transformations, In ModeVVa06, 2006.

[v. Gorp et al, 2003] P. v. Gorp, H. Stenten, T. Mens and S. Demeyer, Towards Automating Source-Consistent
UML Refactorings, In UML 2003 - The Unified Modeling Language. Modeling Languages and Applications, 6th
International Conference, San Francisco, USA, LNCS 2863, Springer- Verlag, pp. 144-158, 2003.

[GReAT] GReAT: Graph Rewriting and Transformation, http://www.isis.vanderbilt.edu/tools/GReAT

[GROOVE] GROOVE: GRaphs for Object-Oriented VErification, http://groove.sourceforge.net/groove-
index.html

[Guerra and de Lara, 2007] E. Guerra and J. de Lara, Event-driven grammars: Relating abstract and concrete levels
of visual languages, Software and System Modeling 6:(3), pp. 317-347, 2007.

[Habel et al, 1996] A. Habel, R. Heckel and G. Taentzer, Graph grammars with negative application conditions,
Fundamenta Informaticae 26, pp. 287-313, 1996.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

126

[Hausmann et al, 2002] J.H. Hausmann, R. Heckel and S. Sauer, Extended Model Relations with Graphical
Consistency Conditions, In UML 2002 Workshop on Consistency Problems in UML-based Software
Development, Blekinge Institute of Technology 6174, 2002.

[Hayes-Roth, 1985] F. Hayes-Roth, Rule-based systems, Communication of ACM 28:(9), pp. 921-932, 1985.

[Heckel et al, 2002] R. Heckel, J.M. Küster and G. Taentzer, Confluence of Typed Attributed Graph
Transformation Systems, Proceedings of the 1st international conference of graph transformation, LNCS 2505,
Springer, Berlin Heidelberg New York, pp. 161-176, 2002.

[Hetzel, 1988] W.C. Hetzel, The Complete Guide to Software Testing, 2nd ed., Wellesley, Mass. QED Information
Sciences, ISBN: 0894352423, 280 pages, 1988.

[Hoque et al, 2013] M. Hoque, M. Siekkinen and J. K. Nurminen, TCP receive buffer aware wireless multimedia
streaming - an energy efficient approach, in Proceedings of the 23rd ACM Workshop on Network and Operating
Systems Support for Digital Audio and Video, NOSSDAV’13, ACM, pp. 13-18, 2013.

[Huet, 1980] G. Huet, Confluent reductions, Abstract properties and applications to term rewriting systems,
Journal of the ACM 27:(4), pp. 797-821, 1980.

[Hulsbusch et al, 2010] M. Hulsbusch, B. Konig, A. Rensink, M. Semenyak, C. Soltenborn and H. Wehrheim,
Showing Full Semantics Preservation in Model Transformation - A Comparison of Techniques, Integrated Formal
Methods, Springer, LNCS 6396, pp. 183-198, 2010.

[Humbly, 2006] C. Humbly, Data is the New Oil, ANA Senior marketer’s summit, Kellogg School, 2006.

[IEEE Standard Glossary, 1990] IEEE Standard Glossary of Software Engineering Terminology, 610.12-1990,
1990.

[Kaner, 2006] C. Kaner, Exploratory Testing, Florida Institute of Technology, Quality Assurance Institute
Worldwide Annual Software Testing Conference, Orlando, FL, 2006.

[Kaner et al, 1990] C. Kaner, J. Falk and H.Q. Nguyen, Testing Computer Software, 2nd ed. New York, John
Wiley and Sons, Inc., ISBN 0-471-35846-0, 480 pages, 1990.

[Karsai et al, 2003] G. Karsai, A. Agrawal and F. Shi, On the Use of Graph Transformation in the Formal
Specification of Model Interpreters, Journal of Universal Computer Science 9(11), Special issue on Formal
Specification of CBS, pp. 1296-1321, 2003.

[Kelly and Tolvanen, 2008] S. Kelly and J.P. Tolvanen, Domain-specific modeling: enabling full code generation,
Wiley-IEEE Computer Society Pr, 2008.

[Kolawa and Huizinga, 2007] A. Kolawa and D. Huizinga, Automated Defect Prevention, Best Practices in
Software Management. Wiley-IEEE Computer Society Press, ISBN 0-470-04212-5, pp. 41-43, 2007.

[König and Kozioura, 2008] B. König and V. Kozioura, Augur 2 - A New Version of a Tool for the Analysis of
Graph Transformation Systems, Electronic Notes in Computer Science 211, pp. 201-201, 2008.

[Küster, 2006] J.M. Küster, Definition and validation of model transformations, Software and Systems Modeling
5:(3), pp. 233-259, 2006.

[Lack and Sobocinski, 2004] S. Lack and P. Sobocinski, Adhesive Categories, Proceedings of FOSSACS 2004,
LNCS 2987, Springer, pp. 273-288, 2004.

[de Lara and Taentzer, 2004] J. de Lara and G. Taentzer, Automated Model Transformation and its Validation
with AToM3 and AGG, in Diagrammatic Representation and Inference, Lecture Notes in Artificial Intelligence
2980, Springer, pp. 182-198, 2004.

[de Lara et al, 2004] J. de Lara, H. Vangheluwe and M. Alfonseca, Metamodelling and graph grammars for multi-
paradigm modelling in AToM3, Journal of Software and Systems Modeling 3:(3), pp. 194-209, 2004.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 127

[de Lara and Guerra, 2009] J. de Lara and E. Guerra, Formal Support for QVT-Relations with Coloured Petri Nets,
In Proceedings of the MODELS'09, LNCS 5795, Denver, USA, pp. 256-270, 2009.

[Leitner et al, 2007] A. Leitner, I. Ciupa, M. Oriol, B. Meyer and A. Fiva, Contract Driven Development = Test
Driven Development – Writing Test Cases, Proceedings of ESEC/FSE'07: European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, Croatia, 2007.

[Lengyel, 2006] L. Lengyel, Online Validation of Visual Model Transformations, PhD thesis, Budapest University
of Technology and Economics, Department of Automation and Applied Informatics, 2006.

[Lengyel et al, 2015] L. Lengyel, P. Ekler, T. Ujj, T. Balogh, H. Charaf, Zs. Szalay and L. Jereb, ICT IN ROAD
VEHICLES – The VehicleICT Platform, 4th International Conference on Models and Technologies for Intelligent
Transportation Systems, Budapest, Hungary, pp. 457-462, 2015.

[Levendovszky et al, 2007] T. Levendovszky, U. Prange and H. Ehrig, Termination Criteria for DPO
Transformations with Injective Matches, Electronic Notes in Theoretical Computer Science 175:(4), pp. 87-100.
2007.

[Massoni et al, 2006] T. Massoni, R. Gheyi and P. Borba, An approach to invariant-based program refactoring, In
Software Evolution through Transformations 2006. Electronic Communications of the EASST, 2006.

[Mens et al, 2002] T. Mens, S. Demeyer and D. Janssens, Formalising behaviour preserving program
transformations, Proceedings of the First International Conference on Graph Transformation, London, UK,
Springer-Verlag, pp. 286-301, 2002.

[Mens and Tourwe, 2004] T. Mens and T. Tourwe, A Survey of Software Refactoring, IEEE Transactions on
Software Engineering 30:(2), pp. 126-139, 2004.

[Mens and v. Gorp, 2006] T. Mens and P. v. Gorp, A taxonomy of model transformation, Electron. Notes
Theoretical Computer Science 152, pp. 125-142, 2006.

[Microsoft T4] Microsoft T4, Code Generation and T4 Text Templates, https://docs.microsoft.com/en-
us/visualstudio/modeling/code-generation-and-t4-text-templates

[Mosterman et al, 2004] P. J. Mosterman, J. Sztipanovits and S. Engell, Computer-automated multiparadigm
modeling in control systems technology, IEEE Transactions on Control Systems Technology 12:(2), pp. 223–234,
march 2004.

[Mosterman and Vangheluwe, 2000] P. J. Mosterman and H. Vangheluwe, Computer automated multi-paradigm
modeling in control system design. IEEE Transactions on Control System Technology 12, pp. 65–70, 2000.

[MQTT] MQTT, A machine-to-machine (M2M)/"Internet of Things" connectivity protocol, http://mqtt.org

[Narayanan and Karsai, 2008] A. Narayanan and G. Karsai, Towards verifying model transformations, ENTCS
211, pp. 191-200, 2008.

[Newman, 1942] M.H.A. Newman, On theories with a combinatorial definition of equivalence, In Annals of
Mathematics 43:(2), pp. 223-243, 1942.

[Node.js] Node.js, https://nodejs.org/

[Norbisrath, 2013] U. Norbisrath, R. Jubeh and A. Zündorf, Story Driven Modeling, CreateSpace Independent
Publishing Platform, 348 pages, 2013.

[Nurminen, 2010] J. Nurminen, Parallel connections and their effect on the battery consumption of a mobile phone,
in Consumer Communications and Networking Conference, 2010 7th IEEE, pp. 1-5, 2010.

[Nurminen and Noyranen, 2009] J. Nurminen and J. Noyranen, Parallel data transfer with voice calls for energy-
efficient mobile services, in Mobile Wireless Middleware, Operating Systems, and Applications, Lecture Notes of
the Institute for Computer Sciences 7, Social Informatics and Telecommunications Engineering, Springer Berlin
Heidelberg, pp. 87-100, 2009.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

128

[OMG MDA, 2014] OMG Model-Driven Architecture (MDA), 2014, http://www.omg.org/mda

[OMG OCL, 2014] OMG Object Constraint Language Specification, Object Management Group OMG document
formal/2014-02-03, 2014, http://www.omg.org/spec/OCL/

[OMG QVT, 2016] OMG Query/View/Transformation (QVT) Specification, Meta Object Facility 2.0
Query/Views/Transformation Specification, OMG document formal/2016-06-03, 2016,
http://www.omg.org/spec/QVT/

[OMG UML, 2015] OMG UML specification, version 2.5, OMG document formal/15-03-01, 2015,
http://www.omg.org/spec/UML/

[Pan, 1999] J. Pan, Software Testing, 18-849b Dependable Embedded Systems, Carnegie Mellon University, 1999.

[Pantelopoulos and Bourbakis, 2010] A. Pantelopoulos and N.G. Bourbakis, A survey on wearable sensor-based
systems for health monitoring and prognosis, IEEE Trans. Systems, Man, and Cybernetics, Part C: Applications
and Reviews 40:(1), pp. 1-12, 2010.

[Plump, 1998] D. Plump, Termination of graph rewriting is undecidable, In Fundam. Inf., Vol. 33(2), Amsterdam,
The Netherlands: IOS Press, pp. 201-209, 1998.

[Plump, 2005] D. Plump, Confluence of graph transformation revisited, LNCS 3838, Springer, pp. 280-308, 2005.

[Pohl, 2010] K. Pohl, Requirements Engineering: Fundamentals, Principles, and Techniques, Springer, 2010.

[P/Invoke] Marshaling Data with Platform Invoke, https://docs.microsoft.com/en-
us/dotnet/framework/interop/marshaling-data-with-platform-invoke

[Qualcomm, 2012] Qualcomm Inc., Managing background data traffic in mobile devices, 2012,
http://www.qualcomm.com/media/documents/managing-background-data-traffic-mobile-devices

[Rensink et al, 2004] A. Rensink, A. Schmidt and D. Varró, Model Checking Graph Transformations: A
Comparison of Two Approaches. Proceedings of the ICGT 2004: Second International Conference on Graph
Transformation, LNCS 3256, Springer, Rome, Italy, pp. 226-241, 2004.

[Rozenberg, 1997] G. Rozenberg (ed.), Handbook on graph grammars and computing by graph transformation:
Foundations 1, World Scientific, Singapore, 1997.

[Runge et al, 2011] O. Runge, C. Ermel and G. Taentzer, AGG 2.0 - New Features for Specifying and Analyzing
Algebraic Graph Transformations, AGTIVE 2011, International Symposium on Applications of Graph
Transformation with Industrial Relevance, Budapest, Hungary, 2011.

[Samek, 2002] M. Samek, Practical statecharts in C/C++, CMP Books, ISBN 1578201101, 2002.

[Schatz, 2008] B. Schatz, Formalization and Rule-Based Transformation of EMF Ecore-Based Models, Software
Language Engineering: First International Conference, SLE 2008, France, pp. 227-244, 2008.

[Schürr, 1994] A. Schürr, Specification of graph translators with triple graph grammars, Proceedings of the WG94
international workshop on graph-theoretic concepts in computer science, LNCS 903, Springer, Berlin Heidelberg
New York, pp. 151-163, 1994.

[Sendall and Kozaczynski, 2003] S. Sendall and W. Kozaczynski, Model transformation: the heart and soul of
model-driven software development, IEEE Software 20, pp. 42-45, 2003.

[Sensible] Sensible Project - IoT in Healthcare, https://www.aut.bme.hu/Pages/Research/Sensible

[Sensing IoT, 2015] Sensing the future of the Internet of Things, 2015, http://www.pwc.com/us/en/increasing-it-
effectiveness/assets/future-of-the-internet-of-things.pdf

[SensorHUB] The SensorHUB project, https://www.aut.bme.hu/SensorHUB/

[Simulink] Simulink. https://www.mathworks.com/products/simulink.html

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

 129

[Slash Data, 2017a] Slash Data, IoT Developer Landscape – The backgrounds, endeavours, challenges, and results
of IoT developers, 2017, https://www.slashdata.co/reports/iot-developer-landscape

[Slash Data, 2017b] Slash Data, How and where to reach IoT developers – Which communities, events, and other
channels do IoT developers use to stay up to date?, 2017, https://www.slashdata.co/reports/how-and-where-to-
reach-iot-developers

[SOLSUN] The SOLSUN project, http://solsun.co.uk/index.php/SOLSUN/

[Sommerville and Kotonya, 1998] I. Sommerville and G. Kotonya, Requirements Engineering: Processes and
Techniques, John Wiley & Sons, Inc. New York, NY, USA, 1998.

[Sutton and Rouvellou, 2002] S.M. Sutton, and I. Rouvellou, Modeling of Software Concerns in Cosmos, In
Proceedings of the 1st International Conference on Aspect-Oriented Software Development, ACM Press, pp. 127-
133, 2002.

[Swagger] Swagger, RESTful API representation, 2017, http://swagger.io

[Swan 2013] M. Swan, The Quantified Self: Fundamental Disruption in Big Data Science and Biological
Discovery, Big Data 1:(2), pp. 85-99, 2013.

[Syriani, 2009] E. Syriani, Matters of model transformation, McGill University, no. SOCS-TR-2009.2, School of
Computer Science, 2009.

[Sztipanovits et al, 1997] J. Sztipanovits and G. Karsai, Model-integrated computing, IEEE Computer, pp. 110-
112, 1997.

[Taentzer et al, 2005] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky, U. Prange, D.
Varró and Sz. Varró-Gyapay, Model Transformation by Graph Transformation: A Comparative Study,
Proceedings of the International Workshop on Model Transformations in Practice, MTiP 2005, Montego Bay,
Jamaica, pp. 1-48, 2005.

[Thibodeau, 2014] P. Thibodeau, The ABCs of the Internet of Things, Computerworld US, 2014,
http://www.techworld.com/networking/abcs-of-internet-of-things-3516134/3/

[URBMOBI] The URBMOBI project, http://www.climate-kic.org/case-studies/urban-resistance-to-the-effects-of-
climate-change/

[Vajk et al, 2009] T. Vajk, R. Kereskényi, T. Levendovszky and Á. Lédeczi, Raising the abstraction of domain-
specific model translator development, 16th IEEE Int. Conf. and Workshop on the Engineering of Computer Based
Systems, San Francisco, USA, pp. 31-37, 2009.

[Varró, 2004] D. Varró, Automated formal verification of visual modeling languages by model checking, Journal
on Software and System Modeling 3(2), pp. 85-113, 2004.

[Varró and Pataricza, 2003] D. Varró and A. Pataricza, Automated formal verification of model transformations,
Proceedings of theUML03 workshop, Technical Report, pp. 63-78, 2003.

[Varró et al, 2003] D. Varró and A. Pataricza, VPM: A visual, precise and multilevel metamodeling framework
for describing mathematical domains and UML, Journal of Software and Systems Modeling, 2003.

[Varró et al, 2006] D. Varró, Sz. Varró-Gyapay, H. Ehrig, U. Prange and G. Taentzer, Termination Analysis of
Model Transformations by Petri Nets, Lecture Notes in Computer Science 4178, pp. 260-274, 2006.

[VehicleICT] The VehicleICT project, https://www.aut.bme.hu/VehicleICT/

[VIATRA2] VIATRA2 (VIsual Automated model TRAnsformations) framework,
http://eclipse.org/gmt/VIATRA2

[Vision Mobile, 2015a] Vision Mobile, IoT Report series: The Wearables Landscape 2015 - Developer and
Platform Leaderboard for Wearables, 2015, http://www.visionmobile.com/product/iot-report-series-wearables-
landscape-2015/

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

130

[Vision Mobile, 2015b] Vision Mobile, IoT Megatrends 2016 – Six key trends in the IoT developer economy,
2015, http://www.visionmobile.com/product/iot-megatrends-2016/

[VMTS] Visual Modeling and Transformation System, http://www.aut.bme.hu/vmts/

[Williams and Bainbridge, 1988] T. Williams and B. Bainbridge, Rule based systems, In Approaches to knowledge
representation: an introduction, Research Studies Press Ltd., Taunton, UK, pp. 101-115, 1988.

[Xiao et al, 2010] Y. Xiao, M. Siekkinen and A. Yla-Jaaski, Framework for energy-aware lossless compression in
mobile services: The case of e-mail, IEEE International Conference on Communications, pp. 1-6, 2010.

dc_1522_18

Powered by TCPDF (www.tcpdf.org)

