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ABSTRACT

Erlang defined and solved the first queueing model 100 years ago to characterize the number
of active calls in a telephone exchange. Since then, queueing theory has been an essential
tool in the research of telecommunication systems.

The application of classical queueing models for the analysis of modern telecommunication
networks is increasingly challenging: both the stochastic behavior of the traffic and the sched-
ulers forwarding the packets in the network devices are becoming more and more complex.
The so-called matrix-analytic methods allow to solve many of the corresponding complex
queueing systems efficiently, with Markovian tools. This dissertation provides an overview
on these modern techniques of queueing theory and presents several new results.

In the first part the main tools of the Markovian workload characterization, the phase-type
distributions and the Markovian arrival processes are considered. For both traffic models,
the role of the representations is discussed, special representations are introduced and new
moment matching methods are developed. These results make it possible to create Markovian
models for the network traffic, that can be used both in simulation based and in analytical
performance analysis.

The second part of the dissertation presents the solution of single-class and multi-class
queues with correlated arrival processes and Markovian service times. In the multi-class
case both the first-come-first-served and the priority service policy are considered. Many
performance measures are derived based on the analysis of the queue length process, the
workload process and the age process. The characteristics of the traffic departing from these
queues are also investigated.

In the third part a novel queueing network solution approach is described, that integrates
the results of the first two parts. In this approach the traffic of the queueing network is
characterized by Markovian arrival processes discussed in the first part, and the nodes of the
network are the queues discussed in the second part of the dissertation. TheMarkovian arrival
processes representing the internal traffic are obtained by moment matching. An extensive
numerical study investigates the behavior of the presented approach and compares it with
other existing solutions from the literature.
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1
I N TRODUCT ION

1.1 motivation

1.1.1 Queueing theory for analyzing computer and communication systems

The application of queueing theory in the field of telecommunication has a long history.
At the beginning of the last century, the wide spread deployment of plain old telephone

systems established the need for efficient dimensioning methods. The goal was to determine
the number of trunks required to meat a certain level of service quality. Erlang was the first
to model the number of active calls with a queueing system. He proved that the telephone
traffic can be modeled by a Poisson process and created the classic formulas for call loss and
waiting time. This was the first engineering problem that was solved by queueing theory.

Over time, newer and newer telecommunication technologies have been developed. With
the appearance of data traffic the packet switched communication method started to gain pop-
ularity, packet based technologies like the ATM (Asynchronous Transfer Mode) and the IP (In-
ternet Protocol) have slowly superseded the circuit switched technology. The packet switched
networking gave an other boost to the application of queueing models in telecommunica-
tion. Since the quality of service (QoS) measures like packet loss and delay are associated
with the buffers in the network nodes (where packets are residing temporarily before get-
ting forwarded to the next node), open queueing networks appeared to be the ideal modeling
tools for performance analysis [32, 15].

Compared to the detailed simulation of the system, the analytical solution of queueingmod-
els usually need less input data (hence easier to use) and is usually very fast. Consequently, it
enables the fast evaluation of different possibilities for providing service, performing param-
eter sensitivity analysis, or just to gain insight into the behavior of the system.

Modern telecommunication systems, however, have some unique properties that make the
application of queueingmodels increasingly challenging. Some of the reasons are listed below.

• The characteristic of the traffic has changed considerably in the recent decades. While
the Poisson process is still a reasonable model for voice call arrivals, the data traffic be-
haves differently. Statistical properties like long-term correlations, self-similar behav-
ior and heavy tailed distributions make the direct application of the classical queueing
models difficult [38].

• The network traffic is grouped into various classes according to the quality demands.
While there are some basic queueing models available that support such traffic differ-
entiation, more general queueing models are substantially more difficult to solve in the
multi-class case.

1
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2 introduction

• Communication technologies are becoming very complex: the underlying protocols
have multiple interacting layers, and use several (possibly interfering) flow control al-
gorithms. It is becoming increasingly difficult to identify the components of the system
that have the dominant impact on the overall performance. Analytical models for such
complex systems have to introduce many assumptions and simplifications.

Looking for answers for these challenges has been the main driver of queueing theory re-
search in the recent years.

1.1.2 Further application fields of queueing theory

Although the modeling of telecommunication systems is still the most popular application
area of queueing theory, there are several other fields where queueing models are used fre-
quently.

One of these emerging application fields is healthcare ([31]), where queueing systems are
applied to optimize the cost by minimizing the inefficiencies and delays. In a healthcare pro-
cess the demands waiting in the queue are the patients, and the servers are the doctors or any
other specialized equipment (like an operating room). Compared to telecommunication sys-
tems, queues in healthcare have some specialties, including that

• patients are impatient,

• the arrival rate is varying and depends on the state of the system (patients do not join
the waiting line when it is too long),

• the service discipline is more complex.

Queueing models can be used for health care system design (to determine the optimal num-
ber of beds, ambulance cars, etc.), for health care operation (for the optimal scheduling of
resources, patients, appointments, bed and staff management, etc.) and also in health care
system analysis (to calculate the utilization, cost, delays, etc.) [55].

Queueing network models are used in the design and analysis of manufacturing systems
since the 1950s as well ([34]). In a manufacturing system there are resources (machines),
which perform various processing steps on products. From queueing point of view the cus-
tomers are the parts, which, after arriving into the queue, have to wait till the suitable ma-
chines (that are the servers in queueing terminology) become available. Both the arrival pro-
cess and the processing times are stochastic. A manufacturing system typically consists of
many processing stationswith their own buffers for the parts, and the parts have to go through
many processing stations to become a final product. Hence, a queueing network model is a
natural choice both for performance evaluation and optimization purposes, thus to analyze
or optimize the material flow in the system, the utilization of the machines, the capacity of
the buffers, etc.

Apart of these two application fields, queueing models have been successfully applied in
many other areas as well, including vehicular traffic analysis [4], inventory systems [35],
housing [52], banking [29], or even to optimize crowd sourcing systems [24].

1.2 markovian performance analysis

The solution of many tractable queueing models is based on the analysis of a closely related
Markov chain.
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1.2 markovian performance analysis 3

The queue length of basic queues having memoryless inter-arrival and service times (in-
cluding the M/M/1, M/M/m, M/M/m/m queues [53], etc.) can be represented by a Markov
chain directly, that, due to the regular tri-diagonal structure of the generator has a simple and
explicit stationary solution, even for infinite systems.

The analysis of more complex queueing systems, were either the arrival or the service times
are generally distributed, is based on the solution of an appropriately definedMarkov chain as
well. In case of G/M/1 (M/G/1) systems the Markov chain characterizing the queue length
at specific embedded time instants has an upper Hessenberg (lower Hessenberg) structure,
respectively. The regular structure enables the efficient solution of these systems.

Starting from the eighties, Markovian performance modeling has undergone an enormous
development. The introduction of phase-type distributions and Markovian arrival processes
made it possible to characterize a reasonably general class of arrival and service processes in a
Markovian way. The generators of the Markov chains describing the related queues also have
a regular structure, at block level. An elegant, numerically efficient solution methodology has
been developed to solve such block-structured Markov chains, called matrix-analytic method
([65, 57]), which became one of the cornerstones of modern queueing theory.

The results derived in this dissertation rely on matrix-analytic methods heavily.

1.2.1 Workload models

To obtain relevant, meaningful results from a queueing model the workload must be char-
acterized as accurately as possible. The workload characterization has two ingredients: the
characterization of the arrival process of the demands and the characterization of the work
brought into the system by a single demand.

Workload modes have to provide an appropriate balance between accuracy and tractability.
A very accurate workload model can easily be useless if it can not be incorporated into an
analytical or into a simulationmodel. The simplest workloadmodels consisting of exponential
distributions are easy to apply both in analytical and simulation models, but they might not
capture the real behavior accurate enough making the result of the performance evaluation
irrelevant [69].

Phase-type distributions andMarkovian arrival processes provide a reasonable compromise
between accuracy and tractability.

The convolution and the probabilistic (Bernoulli-) mixture of several exponential distribu-
tions, namely the Erlang and the hyper-exponential distributions, have been used for a long
time to represent non-exponential behavior. The phase-type (PH) distributions ([65]), asso-
ciated with the absorption time of transient Markov chains, are the generalizations of this
concept. PH distributions have some very appealing properties, as listed below.

• The expressions providing the properties of PH distributions like the density function,
moments, etc. are similar to those of the exponential distributions. PH distributions
are the matrix-based counterparts of exponential distributions.

• They are proven to be dense, which means that any distribution can be approximated
with a sufficiently large PH distribution.

• Several specific, widely used distributions including the Erlang-, hyper-exponential-
and exponential distributions are the sub-classes of PH distributions.

• The sum, minimum, maximum and the mixture of PH distributed random variables are
PH distributed as well.
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4 introduction

• It is easy to replace exponentially distributed state transitions in a Markov model by
PH distributed ones.

• PH distributed random variates can be generated efficiently in discrete event simula-
tions.

Markovian arrival processes (MAPs) can characterize correlated point processes like inter-
arrival times or a sequence of correlated service times. Similar to PH distributions, they are
composed by exponential phases; they can be interpreted as Markov chains in which (arrival)
events are generated when the Markov chain traverses some marked transitions.

The application of MAPs has many benefits:

• The differential equations characterizing the number of events generated by a MAP up
to a given point of time are similar to those of a Poisson process, but are defined with
matrices instead of scalars.

• MAPs are proven to be dense, hence, with the necessary number of states MAPs can
approximate any point processes arbitrary close.

• MAPs include the Poisson process as a special case.

• The aggregation (superposition) and probabilistic splitting of MAPs remain MAPs as
well.

• Queueing models involving Poisson processes can usually be extended to the more
general MAPs easily.

• MAPs are easy to incorporate into simulation models.

The applicability of PH distributions and MAPs relies on the availability of effective fitting
methods which obtain these models based on the real, empirical behavior.

Many PH fitting methods have been published in the literature. Some of them perform an
optimization on the underlying Markov chain, while others aim to capture some statistical
parameters exactly and compute the parameters of the PH directly by solving a system of
(typically not linear) equations. Methods falling into the first category are the expectation-
maximization basedmethods ([6]) and other optimization basedmethods like [46]. The second
category is often referred to as matching. Examples for methods belonging to this group are
the moment matching methods ([13]), and the Feldmann-Whitt algorithm aiming to match
the density function at certain points [30].

There are much fewer results available on fitting MAPs since it is a more complex task. The
first ones were the expectation-maximization based methods ([16]), but due to the computa-
tional complexity they were applicable only on small measurement traces. A number of MAP
fitting methods were published when the“two-step” approach appeared ([50]), that suggested
to split the fitting task to two steps: fitting of the inter-arrival times in the first step by a PH
fitting method and fitting the correlations in the second step. However, it is still an open ques-
tion what are the statistics that capture the correlation structure of the traffic the best. Recent
results on the characterization of MAPs [81] revealed the importance of joint moments of
two consecutive inter-arrival times, and that these joint moments can be better suited to de-
scribe the correlations of MAPs than the auto-correlation function used traditionally for this
purpose.
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1.2 markovian performance analysis 5

According to our numerical experience, the moment and joint-moment based fitting meth-
ods for PH distributions and MAPs perform well in the practice. The moment based repre-
sentation is compact, a few moments represent the distribution or the process relatively well.
Additionally, there are performance measures of some queueing systems that are insensitive
to moments higher than a given order (like the mean waiting time of M/G/1 queue, which
depends only on the first two moments of the service time distribution). Hence, in this dis-
sertation we are going to focus on moment based fitting methods: new fitting methods will
be developed of such kind, and these methods will be used every time a PH distribution or a
MAP needs to be created for a queueing system.

1.2.2 Queues

The purpose of queueing analysis is to obtain various performance measures like

• properties of the number of customers in the system or the queue length,

• properties of the sojourn time or waiting time of customers,

• the utilization of the system,

• the properties of the departure process,

• etc.,

given the arrival process, the service process and the service discipline.
There are three frequently used approaches to analyze queues:

• based on the queue length process,

• based on the workload process,

• and based on the age process.

The queue length process based approach is perhaps the most well-know method, upon
which most classical textbooks are building. According to the queue length based approach
a Markov chain is constructed to keep track of the queue length either at arbitrary time or at
some embedded time instants. The queue length related performance measures are easy to
derive from such a model. The sojourn times are usually calculated based on the law of total
probability, by characterizing the time to leave the system conditioning on the queue length
at customer arrivals.

In theworkload process based approach the first step of the solution is the stationary analysis
of the workload of the system. The workload (or backlog) of the system increases at arrival
instants by the amount of work brought into the system, and decreases at a slope of one
between arrivals expressing that the server is processing the backlog (see Figure 27). The
sojourn time and waiting time related performance measures are given by the workload at
arrival instants. The queue length properties, however, are a bit more challenging to derive
by this method.

The age process based approach derives all performance measures from the age process,
which represents the age of the oldest customer (the total time spent) in the system (Figure
25). It increases by a slope of one, and decreases at customer departures, when the next
(younger) customer becomes the oldest one. The sojourn time of a customer is its age right
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6 introduction

before the departure, and the queue length is the number of arrivals during the age of the
oldest customer.

The queue length process based analysis of queues like theMAP/PH/1, MAP/G/1, G/MAP/1,
etc. queues leads toMarkov chainswith a regular block structure, that can be solved efficiently
by matrix-analytic methods since the late 1980s. The sojourn time properties of these queues
are much easier to characterize based on the workload or the age process, that, as opposed
to the queue length process, are continuous state processes, for which the solution method-
ology appeared only later. Some important results were published in [75] and [78], but the
numerically efficient (matrix-analytic) solution became possible only by the combination of
[71] and [28], since year 2005. Furthermore, it has been recognized that the workload and age
process based approaches are the only reasonable ways to analyze multi-type queues like the
MMAP[K]/PH[K]/1 and the MAP/G/1-Priority queues [41, 78].

Consequently, the matrix-analytic solution of the workload and age processes, and its ap-
plication to the analysis of multi-class queues is a recent, elegant, and very effective analysis
technology in modern queueing theory.

In this dissertation all three solution approaches are applied for different purposes.

1.2.3 Queueing networks

Open queueing networks are popular modeling tools for the performance analysis of com-
puter and telecommunication systems. Exact solution methods are available only for net-
works with Poisson traffic input, specific service time distributions and service disciplines.
These restrictive assumptions make the exact solutions unlikely to use in the practice. The
main reason is that in real systems the Poisson process is usually not a good model for the
traffic behavior. Instead, the real traffic can be bursty and correlated, and the service times
in the service stations can be correlated as well. Since these features have an impact on the
performance measures, they have to be taken into consideration.

The attempts to analyze queueing networks with non-Poisson traffic and non-exponential
service time distributions dates back to the second half of the last century. The first attempts
were to consider the second moments of the inter-arrival and the service time distributions in
the computations. A widely applied approximation of this kind was integrated into the QNA
tool [87, 88]. The intrinsic assumption in these approximations is that the consecutive inter-
arrival times and the consecutive service times are independent. The evolution of packet
switched communication networks during the eighties and nineties resulted in traffic with
significant correlation which lead to the development of new modeling paradigms.

Several modeling approaches were developed to describe the properties of packet traffic
better [73]. One of the lines of research is based on Markovian models with the aim of ex-
tending the Poisson arrival process in order to capture more statistical properties of the traffic
behavior. A long series of efforts resulted in the application of MAPs. The main advantage of
using MAPs for traffic description of queues is that they are closed for the basic traffic oper-
ations like superposition and splitting, and that the queueing models driven by MAPs can be
solved in a numerically efficient way by matrix-analytic methods. Using MAPs for the traffic
description gave a new impulse to the research on queueing network analysis [74, 42].

In this dissertation we present a new method along this line of research which is based on
a recent result about the joint moment based representation of MAPs.
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1.3 the structure of the dissertation

The topic of Part I of the dissertation is workload modeling.
Chapter 2 introduces the PH distribution and its main properties. PH distributions will be

used to represent the service times in the queueing models defined throughout the disserta-
tion. It is demonstrated that a PH distribution can have many representations. Various tools
and theorems are provided to perform representation transformations. After these preliminar-
ies, the canonical representations are introduced, which, apart of their theoretical importance,
are shown to be beneficial for PH fitting as well. The chapter ends with a moment match-
ing method based on a special, so-called generalized hyper-Erlang representation, that will
be used many times in the subsequent chapters.

The MAPs, and their multi-class extensions, the marked Markovian arrival processes
(MMAPs) are discussed in details in Chapter 3. After introducing the representation trans-
formations and the significance of Markovian representations, the main results are presented,
namely the lag-1 joint moment based representation ofMAPs, and the correspondingmoment
matching method. The results in this chapter can be applied to create MAPs based on em-
pirical measurement data. Furthermore, the joint moments play a principal role in the novel
queueing network analysis approach introduced in the last chapter.

The PH distributions and MMAPs obtained by the presented procedures can be applied to
represent packet service times and packet inter-arrival times for both analytical and simula-
tion based performance evaluation of telecommunication systems.

The performance analysis of various queueing models are covered in Part II of the disserta-
tion.

Chapter 4 lays down the theoretical background by providing an overview on discrete and
continuous state-space skip-free processes.

Chapter 5 is still an introductory chapter, that demonstrates how to use the queue length
based, the workload process based and the age process based analysis techniques to obtain
the performance measures of the well known MAP/MAP/1 queue. At the end of the chapter,
the lag-1 joint moments of the departure process are also derived that will be essential for the
queueing network analysis.

The multi-type first-come-first-served (FCFS) MMAP[K]/PH[K]/1 queue is considered in
Chapter 6. What makes this system interesting is that it can not be solved by the classical
queue length based approach. All performance measures, including the ones related to the
departure process, are obtained from the age process.

In Chapter 7 an other multi-type system, with preemptive and non-preemptive priority
queue is investigated. This system has been analyzed several times in the past, and the solu-
tion is proven to be challenging. With some transformations of the workload process of the
system, however, it becomes possible to derive all performance measures efficiently.

The results of all the above mentioned chapters are integrated in Part III, where a novel
queueing network solution approach is described. In the proposed method the traffic of the
internal links of the network are characterized by MAPs, that are created from the lag-1 joint
moments of the departure processes of the associated queues. The presented numerical exam-
ples demonstrate that this approach has several advantages: the MAPs of the internal traffic
are compact, there are no scalability problems, and the performance measures approximate
the exact results with a reasonable accuracy.
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2
PHASE -T YPE D I STR I BU T IONS

Phase-type distributions are non-negative distributions with a Markovian structure [65, 57].
Due to their computational advantages and easy integration in complex stochastic models,
they are widely used for modeling the workload in telecommunication systems.

2.1 introduction to phase-type distributions

2.1.1 Matrix-exponential distributions

Before providing the definition of PH distributions we first define the more general
matrix-exponential (ME) distributions. Historically, PH distributions were introduced before
ME distributions, but to show their (non-trivial) relation it is better to discuss them in the re-
verse order.

Definition 1. A row vector σ = {σi, i = 1, . . . , N}, σ1 = 1 and square matrix S =

{qij, i, j = 1, . . . , N} define a ME distribution if the probability density function (pdf) given
by

f (x) = σeSx(−S)1 (1)

is non-negative for x ≥ 0.

Thevector-matrix pair (σ, S) is called the representation of theME distribution, and N is the
size of the representation. From (1) it follows that the cumulative distribution function (cdf)
denoted by F(x), the Laplace-Stieltjes transform (LST) of the cdf f ∗(s) and the kth moment
of a ME(σ,S) distributed random variable F are

F(x) = P(F < x) = 1− σeSx1, (2)

f ∗(s) = E(e−sF ) = σ(sI − S)−1(−S)1, (3)

mk = E(F k) =
∫ ∞

0
xk f (x)dx = k!σ(−S)−k1, (4)

where 1 is a column vector of ones and I is the identity matrix of appropriate size.

Definition 2. A (σ, S) representation is called a Markovian representation if

• the entries of vector σ are valid probabilities (0 ≤ σi ≤ 1, i = 1, . . . , N),

• matrix S is a valid generator of a transient continuous time Markov chain (CTMC), thus,
qii < 0 and qij ≥ 0, ∀i 6= j,

• and for the row sum we have that ∑N
j=1 qij ≤ 0, i = 1, . . . , N, with at least one state

where the row sum is strictly negative.

11
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12 phase-type distributions

Otherwise the representation is called non-Markovian.

In the example below, (σ, S) is a Markovian, while (γ, G) is a non-Markovian representa-
tion of a ME distribution:

σ =
[
0.5 0.4 0.1

]
, γ =

[
0.3 −0.5 1.2

]
,

S =

−8 1 0

2 −6 4

0 2 −4

 , G =

−7 2 1

5 −10 10

3 −2 −1

 . (5)

The pdf f (x) can be expressed in a spectral form, too. Suppose the number of distinct
eigenvalues of S is nd. Let us denote the eigenvalues by −λi, and their multiplicity by ri
(∑nd

i=1 ri = K ≤ N). From (1) we have

f (x) =
nd

∑
i=1

ri

∑
j=1

bij
(λix)j−1

(j− 1)!
λie−λix. (6)

Note that if λi ∈ C\R then ∃j 6= i : λj = λ̄i (λ̄i denotes the complex conjugate of λi).
To define a valid distribution the integral of the density function must exist, implying that
the real part of all eigenvalues must be strictly negative, hence re〈λi〉 > 0, i = 1, . . . , nd
must hold. Furthermore, as a consequence of the Perron-Frobenius theorem the dominant
eigenvalue (i.e., the eigenvalue with the largest real part) must be real.

When K = N, the (σ,S) representation is called minimal. If K < N then matrix S has at
least one eigenvalue that does not play a role in the pdf, because the corresponding coefficient
is zero.

2.1.2 Representation transformations

It is easy to see that the representation of a ME distribution given by (σ, S) is not unique
[26, 66]. For instance, applying a permutation on the elements of σ and S leads to a different
representation while the distribution remains obviously the same. However, there are many
more possibilities to create different representations of the same ME distribution. With any
non-singular square matrix B satisfying B1 = 1 the cdf given by (1) can be transformed as

F(x) = 1− σeSx1 = 1− σBeB−1SBxB−11

= 1− γeGx1,
(7)

with γ = σB and G = B−1SB. Hence, representations (σ, S) and (γ, G) are different, but
define the exactly same cdf, thus the exactly same ME distribution. For example, the two
representations (σ, S) and (γ, G), as defined by (5), correspond to the same distribution, and
the transformation matrix relating them is

B =

0.5 −1 1.5

0 0 1

0.5 0 0.5

 . (8)

The definitions, results and properties regarding the representation transformation are elab-
orated in the following theorems.
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2.1 introduction to phase-type distributions 13

Theorem1. [81] Let (σ, S) of size N and (γ, G) of size N represent twoME distributions with cdf
FF (x) and FG(x), respectively. The two distributions are identical if there exists a non-singular
matrix B of size N × N, such that γ = σB, G = B−1SB and B1 = 1.

Proof. See (7) for the derivation.

Theorem 1 uses the square matrix B to transform between representations of the same size.
This operation is called a similarity transformation in the sequel.

Definition 3. The similarity transform of (σ, S) with matrix B is (σB, B−1SB) if B is non-
singular and B1 = 1.

The main properties of a similarity transformation are as follows (cf. [11])

• (σ, S) and (σB, B−1SB) have the same size,

• the eigenvalues of S and B−1SB are identical,

• if (σ, S) is Markovian then (σB, B−1SB) can be both Markovian and non-Markovian.

Representations with different sizes can be transformed into each other in a similar manner,
using a non-square transformation matrix. This is stated by the following two theorems,
which are symmetric to each other.

Theorem 2. [66, 21] Let (σ, S) of size N and (γ, G) of size M (M > N) be two ME distributions
with cdf FF (x) and FG(x), respectively. If there exists a matrix V of size M × N, such that
σ = γV , VS = GV , V1 = 1 then the distributions given by (σ, S) and (γ, G) are identical.

Proof. If σ = γV , VS = GV , V1 = 1 then

FF (x) = 1− σeSx1 = 1− σ
∞

∑
i=0

Si xi

i!
1 = 1− γV

∞

∑
i=0

Si xi

i!
1

= 1− γ
∞

∑
i=0

Gi xi

i!
V1 = 1− γ

∞

∑
i=0

Gi xi

i!
1 = 1− γeGx1 = FG(x).

(9)

Theorem 3. [21] Let (σ, S) of size N and (γ, G) of size M (M > N) be two ME distributions
with cdf FF (x) and FG(x), respectively. If there exists a matrix W of size N × M, such that
σW = γ, SW = WG, W1 = 1 then the distributions given by (σ, S) and (γ, G) are identical.

Proof. If σW = γ, SW = WG, W1 = 1 then

FF (x) = 1− σeSx1 = 1− σ
∞

∑
i=0

Si xi

i!
1 = 1− σ

∞

∑
i=0

Si xi

i!
W1

= 1− σW
∞

∑
i=0

Gi xi

i!
1 = 1− γ

∞

∑
i=0

Gi xi

i!
1 = 1− γeGx1 = FG(x).

(10)

For equivalent representations with different sizes we have the following properties.

• The eigenvalues of S are all eigenvalues of G with at least the same multiplicity.

• If (σ, S) is Markovian then (γ, G) can be either Markovian or non-Markovian.
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14 phase-type distributions

σ2 = 0.4

σ1 = 0.5

σ3 = 0.1

1

2

4

2

7

2

Figure 1.: The transient Markov chain belonging to (5)

σ1 = 1

λ λ λ λ

Figure 2.: An Erlang distribution

2.1.3 Phase-type distributions

PH distributions of size N are the subclass of ME distributions of the same size having a
Markovian representation.

If (σ,S) is a Markovian representation of a ME distributed random variable F , then the
corresponding PH distribution has a probabilistic interpretation: F is the time to absorption
of a transient Markov chain with sub-generator S and initial state probability vector σ for the
non-absorbing states. The transient Markov chain and the initial state probabilities belonging
to (σ, S) defined in (5) are depicted in Figure 1.

There exist order N non-Markovian (σ, S) representations that define a valid (non-
negative) density function but can not be transformed to an order N Markovian represen-
tation. These distributions do not belong to the PH class, while they are still ME distributions.
Consequently, the set of ME distributions is a superset of the one of PH distributions, thus we
have PH(N) ⊂ ME(N).

The significance of PH distributions in Markovian performance modeling is a consequence
of two properties. First, it is proven in [67] that PH distributions form a dense subset of the
set of all positive-valued distributions, which means that any distribution having a positive
density in (0, ∞) can be approximated arbitrarily well by a PH distribution. The second ben-
efit of using PH distributions is their closeness on many operations: the sum, the minimum
and the maximum of independent PH distributed random variables are PH distributed as well.

2.1.4 Important representations

There are some particular, frequently used representations of PH distributions.
The most well-known PH sub-classes are the Erlang (Figure 2), the hyper-exponential and

the hyper-Erlang (Figure 3) distributions. These distributions have especially simple pdf and
moment formula, enabling efficient simulation, moment matching, fitting, and analytical stud-
ies.

There are two further representations playing an essential role in the theory of PH distri-
butions: the acyclic and the monocyclic representations.
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σ1

σ2

σ3

λ1

λ2

λ3

σ1

σ2

σ3

λ1 λ1

λ1

λ2

λ3

λ3

Figure 3.: Hyper-exponential and hyper-Erlang distributions

σ1 σ2 σ3 σ4

λ1 λ2 λ3 λ4

Figure 4.: One of the canonical forms of acyclic PH distributions

ac yc l i c p h d i s t r i b u t i on s have either upper or lower triangular generators, thus
their state transition graph does not have any loops. Their distinguishing feature is that they
haveminimal, unique (so-called canonical) representations. In [26] three such canonical forms
have been defined, the first one (for four states) is depicted in Figure 4. This structure consists
of a row of exponential stages with possibly different, but increasing transition rates, and an
arbitrary initial distribution. In the following example (σ, S) is an acyclic representation and
(γ, G) is its canonical form:

σ =
[
0.1 0.2 0.7

]
, γ =

[
0.34 0.3 0.36

]
,

S =

−5 2 1

0 −4 3

0 0 −2

 , G =

−2 2 0

0 −4 4

0 0 −5

 . (11)

mono c yc l i c r e p r e s e n tat i on s have been defined in [64]. They consists of
feedback Erlang blocks (FEBs) arranged in a row. The ith feedback Erlang block FEBi is char-
acterized by a rate parameter νi, a size parameter ki and a feedback probability zi (see Figure
5, where k1 = 1, k2 = 4, k3 = 1).

Monocyclic representations have a unique feature phrased by the following theorem.

σ1 σ2 σ3 σ4 σ5 σ6

ν1 ν2 ν2 ν2 (1− z)ν2

zν2

ν3

FEB-1 FEB-2 FEB-3

Figure 5.: Monocyclic representation of a PH distribution
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16 phase-type distributions

Theorem 4. [64] Every ME distribution has a finite-dimensional Markovian monocyclic repre-
sentation, if the density function f (x) satisfies f (x) > 0, x ∈ (0, ∞).

[64] provides a constructive algorithm to obtain the appropriate Markovian monocyclic
representation. The transformation of a non-Markovian representation (σ, S) to a possibly
larger Markovian (monocyclic) representation (γ, G) consists of the following steps.

1. In the first step matrix G is constructed. Each FEB implements one real eigenvalue or a
conjugate complex eigenvalue pair of S. Let us denote the jth eigenvalue of S by −λj,
or, if it is a complex conjugate eigenvalue pair, by −λj = aj + bji and −λ̄j = aj − bji.

• If λj is real, the parameters of the jth FEB are νj = λj, k j = 1, zj = 0.

• If λj is complex, the parameters of the corresponding FEB are determined as

k j = the smallest integer for which aj/bj > tan(π/k j), (12)

νj =
1
2

(
2aj − bj tan

π

k j
+ bj cot

π

k j

)
, (13)

zj =

(
1−

(
aj − bj tan

π

k j

))k j

. (14)

With these parameters matrix G is Markovian by construction and contains all eigen-
values of S with the proper multiplicities. However, the size of matrix G can be larger
than the size of matrix S, meaning that new eigenvalues are introduced. These extra
eigenvalues can not play a role in the pdf, thus vector γ must ensure that their coeffi-
cients in the spectral form of the pdf are zeros.

2. The second step of the procedure is calculating the initial vector γ. To this end, we need
to obtain the transformation matrix W that transforms matrix S to matrix G.

According to Theorem 3 matrix W is the solution of SW = WG, W1 = 1, which
is a linear system of equations with regards to the entries of W . With the presented
construction of G, this linear system always has a unique solution. If the size of S is
N, and the size of G is M, equation SW = WG has N × M unknowns and defines
N×M equations. However, only N×M− N equations will be independent, since N
eigenvalues of S and G are the same. By adding W1 = 1 we get N ×M independent
equations and obtain a unique solution.

The initial vector is then given by γ = σW , which may contain negative entries, hence
may not be a valid Markovian probability vector.

3. The third, last step is necessary only if vector γ is not a proper probability vector. In this
case, an Erlang tail (a number of extra phases with the same transition rates) needs to be
appended to the row of FEBs. This Erlang tail is added to matrix G, the corresponding
transformation matrix W is re-calculated, and we get a new initial vector. It is proven
in [64] that an appropriate Erlang tail always makes the representation Markovian, if
(σ, S) defines aME distribution with positive density. Unfortunately there is no explicit
way to obtain the size and the rate parameters of the Erlang tail to be added. One can
apply a simple heuristic algorithm that increases the size of the Erlang tail successively
and applies the secantmethod to find the rate parameter thatmakes γ a valid probability
vector.
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0.013545 0.0072743 0.010133 0.016458 0.075044 0.87755

1 2.8845 2.8845 2.883 3.3047

0.00148

3.3047

FEB-1 FEB-2 Erlang tail

Figure 6.: Monocyclic representation of example (15)

As demonstration, the non-Markovian representation

σ =
[
0.1 0.2 0.7

]
, S =

−1 0 0

0 −3 0.2

0 −0.2 −3

 , (15)

is transformed to a monocyclic representation with the procedure outlined above. The result-
ing initial vector and transient generator are

γ =
[
0.013545 0.0072743 0.010133 0.016458 0.075044 0.87755

]
,

G =



−1 1 0 0 0 0

0 −2.8845 2.8845 0 0 0

0 0 −2.8845 2.8845 0 0

0 0.0014803 0 −2.8845 2.883 0

0 0 0 0 −3.3047 3.3047

0 0 0 0 0 −3.3047


,

(16)

and the corresponding state transition graph is depicted in Figure 6. The original (σ, S)
representation has a real eigenvalue (λ1 = −1), and a complex conjugate eigenvalue pair
(λ2,3 = −3± 0.2i). The first, degenerate FEB (lacking a real feedback) realizes λ1. The sec-
ond FEB realizes λ2 and λ3, but also introduces an extra eigenvalue. The initial vector ensures
that the coefficient of this eigenvalue is zero in the spectral form of the pdf (see (6)). After
the second FEB an Erlang tail follows, with the eigenvalues introduced there having zero co-
efficients as well. Without the Erlang tail (or with a shorter one) the initial vector remains
non-Markovian, containing negative elements.

Theorem 4 has a striking consequence: every ME can be converted to a PH distribution
with more states, blurring the difference between the two distribution classes.

2.2 canonical forms

As seen in the previous sections, the (σ, S) representation of PH distributions is known to be
non-unique and can be non-minimal, thus there can be many (γ, G) representations defining
the same distribution. Furthermore, the number of parameters (non-determined elements)
of this representation is N2 + N − 1 when the size of vector σ and square matrix S is N
(since S has N2 elements and σ has N− 1), while the spectral form of the pdf of order N PH
distributions (6) has only at most 2N − 1 parameters.

To overcome these drawbacks unique, minimal, hence canonical representations are re-
quired. Canonical forms (among other benefits) make the PH fitting procedures more efficient,
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18 phase-type distributions

p 1− p

λ1 λ2

Figure 7.: Canonical representation of PH(2) distributions

since the underlying optimization procedure does not have to go back and forth between very
different representations of almost the same distribution.

As mentioned earlier, canonical representations are available for a long time for acyclic PH
distributions ([26]). For general (non-acyclic) PHs, however, finding canonical forms is more
challenging.

2.2.1 Canonical representation of PH(2) distributions

According to [25], any ME(2) distribution can be transformed to an acyclic form, for which a
canonical form exists due to [26]. This way the same canonical form is applicable for all (not
only acyclic and even for non-Markovian) PH(2) representations.

Theorem 5. The distribution sets ME(2), PH(2) and APH(2) are equivalent, i.e., ME(2) ≡
PH(2) ≡ APH(2).

Proof. Based on the definition of these classes, we have ME(2) ⊃ PH(2) ⊃ APH(2). Here,
we only prove that any ME(2) distribution has an APH(2) representation.

From [25] we have that the LST f ∗(s) for a second-order representation (σ, S) has the form

f ∗(s) =
1 + s/α

(1 + s/λ1) · (1 + s/λ2)
, (17)

where λ1 and λ2 denote the eigenvalues of −S. This LST corresponds to a valid density
function if and only if λ1, λ2 and α are all real and

0 < min (λ1, λ2) ≤ α ≤ ∞ (18)

is satisfied.
Let us rewrite this LST as

f ∗(s) =
1− λ1/α

(1 + s/λ1) · (1 + s/λ2)
+

λ1/α

(1 + s/λ2)
.

This structure reveals an analogy to a Laplace transform of a Bernoulli mixture of a hypo-
exponential density and an exponential density, which leads us to the following matrix-
exponential representation

γ =
[

p 1− p
]

, G =

[
−λ1 λ1

0 −λ2

]
, (19)

with p = 1− λ1
α . Figure 7 visualizes this acyclic PH(2) representation. It is easily verified that

(3) with these settings for γ and G yields (17). Due to condition (18), i.e., λ1 ≤ α, it follows
0 ≤ λ1

α ≤ 1 so that (19) is indeed a valid APH(2) representation.
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p3 p2 p1

x3 x2 x1 − x13

x13

Figure 8.: The structure of the considered PH(3) distribution

In the example below the non-Markovian (σ, S) representation is transformed to the canon-
ical form (γ, G):

σ =
[
−1.4 2.4

]
, γ =

[
0.8 0.2

]
,

S =

[
−22 24

−15 16

]
, G =

[
−4 4

0 −2

]
. (20)

The steps of the transformation were:

• creating matrix G, where −λ1 and −λ2 are the eigenvalues of S,

• obtaining the transformationmatrix B by solving the linear system BG = SB, B1 = 1,

• obtaining the initial vector of the canonical form from γ = σB.

2.2.2 Canonical representation of PH(3) distributions

Since the dominant eigenvalue must be real, the pdf of PH(2) distributions can not have com-
plex eigenvalues. Order-3 PH distributions, however, can have complex eigenvalues. This
essential difference leads to a more complicated canonical form, which is more involved to
derive.

In [40] it is proven that every PH(3) distribution given by aMarkovian representation can be
transformed to a unicyclic form (see Figure 8), which is almost the same as a canonical acyclic
structure, but has an extra feedback arc.

The theorem below summarizes the results of [40].

Theorem 6. [40] If (σ, S) is a Markovian representation of a PH(3) distribution then it can be
similarity transformed to the Markovian unicyclic representation

γ =
[
γ1 γ2 γ3

]
, G =

−x1 0 x13

x2 −x2 0

0 x3 −x3

 , (21)

where x1 ≥ x2 ≥ x3 > 0, 0 ≤ x13 < x1, 0 ≤ γ1, γ2, γ3, γ1 + γ2 + γ3 = 1.

The structure of the resulting unicyclic PH distribution is depicted in Figure 8.
Theorem 6 and the corresponding algorithm assume that the initial representation (σ, S) is

Markovian; if this assumption is violated, hence the input is a non-Markovian representation,
the algorithm returns invalid results with possibly complex entries. This assumption can be
restrictive in many situations including moment matching (discussed later in Section 2.3),
since the moment matching procedures typically return non-Markovian representations.
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20 phase-type distributions

Hence, in the rest of this section we introduce an alternative algorithm that is able to per-
form the canonical transformation of any non-Markovian (σ, S) representations as well.

Let λ1, λ2, λ3 denote the eigenvalues of −S which are ordered such that re〈λ1〉 ≥
re〈λ2〉 ≥ re〈λ3〉 and a0, a1, a2 the coefficients of the characteristic polynomial of −S, i.e.,

a0 = λ1λ2λ3, a1 = λ1λ2 + λ1λ3 + λ2λ3, a2 = λ1 + λ2 + λ3. (22)

The next lemma provides the similarity transformation matrix B connecting (σ, S) and
(γ, G), and relates its elements with the coefficients of the characteristic polynomial.

Lemma 1. The similarity transformation matrix B, composed by the column vectors [b1, b2, b3],
to transform an arbitrary size 3 matrix S to a unicyclic representation is given by

b1 =
1

x13 − x1
S1,

b2 =
1

(x13 − x1)x2
(x1I + S)S1,

b3 =
1

(x13 − x1)x2x3
(x2I + S)(x1I + S)S1,

(23)

and

x13 = x1 −
a0

x2
1 − a2x1 + a1

,

x2 =
a2 − x1 +

√
(a2 − x1)2 − 4(x2

1 − a2x1 + a1)

2
,

x3 =
a2 − x1 −

√
(a2 − x1)2 − 4(x2

1 − a2x1 + a1)

2
.

(24)

The proof of the Lemma can be found in Appendix B.1.
The transformationmatrix B and the transformed unicyclic representation G depend on the

choice of x1. [40] showed the following properties of PH(3) distributions and this similarity
transform.

P1) When S is a Markovian generator then

ϑu =
a2 + 2

√
a2

2 − 3a1

3
, (25)

ϑ0 =
a2 +

√
a2

2 − 3a1

3
, (26)

ϑ` =

{
λ1, if λ1 ∈ R,

ϑ0, if λ1 ∈ C
(27)

are real and positive such that ϑ` ≤ ϑu.

P2) When ϑ` ≤ x1 ≤ ϑu then the transformed generatormatrix, G = B−1SB is Markovian
such that x1 ≥ x2 ≥ x3 > 0.

Indeed, property P2 holds also for any non-Markovian matrix S if its eigenvalues satisfy
the requirements of PH(3) distributions:
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2.2 canonical forms 21

• λ3, the dominant eigenvalue, is real and positive,

• a2
2 − 3a1 ≥ 0.

Due to the fact that the similarity transform leaves the eigenvalues unchanged, this general-
ization of property P2 is a consequence of property P1 and Theorem 6.

We can summarize the results of [40] as follows. It defines a similarity transformation of
PH(3) distributions to a unicyclic representation. This transformation depends on a parameter,
x1. [40] also defines the range of parameter x1, (ϑ`, ϑu), where the transformed generator
matrix is Markovian. The critical step is how to set parameter x1 such that the initial vector
is Markovian, i.e., is a proper probability vector. Unfortunately the way the algorithm in [40]
sets x1 is not sufficient when we have a non-Markovian (σ, S) representation.

Next we investigate the range of x1 where the initial vector is Markovian.
Using the similarity matrix defined in (23) the elements of the initial vector γ = σB are:

γ1 =
−σS1

x1 − x13
=

d1

x1 − x13
, (28)

γ2 =
−σ(x1I + S)S1
(x1 − x13)x2

=
x1d1 + d2

(x1 − x13)x2
, (29)

γ3 =
−σ(x2I + S)(x1I + S)S1

(x1 − x13)x2x3
=

x1x2d1 + (x1 + x2)d2 + d3

(x1 − x13)x2x3
, (30)

where di = −σSi1, i = {1, 2, 3}. The derivatives of the density function at zero are closely
related to these parameters since f (i)(0) = di+1 = −σSi+11. Consequently, for a Markovian
(σ, S) pair

P3) either d1 > 0, or d1 = 0 and d2 ≥ 0,

must hold for having a non-negative density around zero.
The canonical form we propose in this section is based on the following theorem.

Theorem 7. If (σ, S) has aMarkovian representation, then the similarity transformwith matrix
B, defined in (23), with parameter

x1 =

{
max{ϑ2, ϑ`}, if σ S1 < 0,

ϑ`, if σ S1 = 0,
(31)

ϑ2 = −σS21

σS1
, (32)

provides a Markovian representation.

The proof of the Theorem is provided in Appendix B.2.
The corresponding transformation procedure is presented in Figure 1. If the procedure fails

to produce a valid Markovian output then the input does not represent a PH(3) distribution.
If the procedure completes, it gives back the canonical representation of the given PH(3) dis-
tribution, which is Markovian, minimal and unique.

If σ is an arbitrary vector and S is an arbitrary matrix of order three such that (σ, S) repre-
sents an order three PH distribution, then (γ, G) is a Markovian representation of this PH(3)
distribution.
(γ, G) is unique, in the sense that for any (σ, S) representation of a PH(3) distribution the

procedure provides the same (γ, G) pair.
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22 phase-type distributions

Algorithm 1 Canonical transformation of PH(3) distributions
procedure Canonical–PH(3)–transformation(σ, S) . (σ, S) can be non-Markovian

λ1, λ2, λ3 ← decreasingly ordered eigenvalues of −S
a0 ← λ1 λ2 λ3, a1 ← λ1 λ2 + λ1 λ3 + λ2 λ3, a2 ← λ1 + λ2 + λ3

ϑu ← 1
3 (a2 + 2

√
a2

2 − 3 a1), ϑ0 ← 1
3 (a2 +

√
a2

2 − 3 a1)

ϑ` ←
{

λ1 if λ1 ∈ R
ϑ0 if λ1 ∈ C

ϑ2 ←
{
−σH21/σH1 if σH1 < 0

0 if σH1 = 0
x1 ← max {ϑ2, ϑ`}
x13 ← x1 − a0 / (x2

1 − a2 x1 + a1)

x2 ← 1
2

(
a2 − x1 +

√
(a2 − x1)2 − 4 (x2

1 − a2 x1 + a1)
)

x3 ← 1
2

(
a2 − x1 −

√
(a2 − x1)2 − 4 (x2

1 − a2 x1 + a1)
)

γ1 ← σ S1 / (x13 − x1)

γ2 ← σ (x1 I + S) S1 / ((x13 − x1) x2)
γ3 ← σ (x2 I + S) (x1 I + S) S1 / ((x13 − x1) x2 x3)

return γ =
[
γ1 γ2 γ3

]
, G =

−x1 0 x13

x2 −x2 0

0 x3 −x3


end procedure

The PH(3) distributions are known to be determined by five parameters. E.g., the first five
moments or the five coefficients of the Laplace rational transform uniquely determine a PH(3)
distribution. Although not obvious at the first sight, the presented canonical form is also
determined by exactly five independent parameters. In the unicyclic form [40] there are six
parameters (x1, x2, x3, x13, γ1, γ2) and in the transformation procedure just presented one of
these parameters is additionally set to a special value. The following constraint decreases the
number of parameters to five:

f1) λ1 ∈ R, γ2 < ϑ` → x13 = 0,

f2) λ1 ∈ C, γ2 < ϑ` → x1 = x2,

f3) ϑ` < γ2 → γ2 = 0.

Indeed, these cases represent three different forms of the canonical representation. Applying
the procedure for the example defined in (15) the output is

γ =
[
0.9683 0 0.0317

]
,

G =

−3.0221 0 0.027123

2.9572 −2.9572 0

0 1.0207 −1.0207

 ,
(33)

hence form f3) is returned for this particular case.
It is an additional nice feature of the proposed canonical form that it is compatible with

the widely used canonical representation of acyclic PH distributions [26], since when (σ, S)
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2.2 canonical forms 23

represents an order 3 acyclic PH distribution, then form f1 gives Cumani’s canonical repre-
sentation of that distribution. For instance, for (σ, S) defined in example (11) it returns the
same (γ, G) as given there.

2.2.3 Canonical representation of PH(4) distributions

Based on the structure of the canonical representation of PH(3) distributions this section stud-
ies the following unicyclic PH(4) structure.

Let (σ, S) be a general matrix representation of a PH(4) distribution and {λ1, λ2, λ3, λ4}
its eigenvalues. The characteristic polynomial of S is x4 + a3x3 + a2x2 + a1x + a0 where

a0 = λ1λ2λ3λ4, (34)
a1 = λ1λ2λ3 + λ1λ2λ4 + λ1λ3λ4 + λ2λ3λ4, (35)
a2 = λ1λ2 + λ1λ3 + λ2λ3 + λ1λ4 + λ2λ4 + λ3λ4, (36)
a3 = λ1 + λ2 + λ3 + λ4 (37)

Theorem 8. The (σ, S) representation can be transformed to the (γ, G) unicyclic form where
γ = σB, G = B−1SB, B1 = 1, and matrix G has the form

G =


−x1 0 x13 x14

x2 −x2 0 0

0 x3 −x3 0

0 0 x4 −x4

 .

The similarity matrix of this transformation, B = [b1, b2, b3, b4], is composed by the following
column vectors

b1 =
−S1

x1 − x13 − x14
, b2 =

(x1I + S)b1

x2
,

b3 =
(x2I + S)b2

x3
, b4 =

(x3I + S)b3

x4
− x13b1

x4
,

where x1 and x13 are arbitrary parameters and x14, x2, x3, x4 are the solution of the following
set of equations

a0 = (x1 − x13 − x14)x2x3x4, (38)
a1 = (x1 − x13)x2x3 + x1x2x4 + x1x3x4 + x2x3x4, (39)
a2 = x1x2 + x1x3 + x2x3 + x1x4 + x2x4 + x3x4, (40)
a3 = x1 + x2 + x3 + x4 . (41)

Proof. The coefficients of the characteristic polynomial of G are given at the right hand side
of (38)-(41). S and G are similar since their characteristic polynomials are identical due to
(38)-(41). The columns of the similarity matrix B can be obtained from the columns of the
matrix equation SB = BG, which are

Sb1 = −x1b1 + x2b2 , (42)
Sb2 = −x2b2 + x3b3 , (43)
Sb3 = −x3b3 + x4b4 + x13b1 , (44)
Sb4 = −x4b4 + x14b1 . (45)
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24 phase-type distributions

Summing up (42)-(45) and using B1 = 1 we have

S1 = −x1b1 + x13b1 + x14b1 , (46)

from which b1 =
−S1

x1 − x13 − x14
. Consecutively substituting the result into (42)-(44) we

obtain b2, b3, b4, respectively.

Corollary 1. Starting from (38) - (41) and having x1 and x13 fixed, x14, x2, x3, x4 are obtained
as the solution of an order-6 equation.
Consequently, there is no symbolic transformation method to the (γ, G) unicyclic form.

Corollary 1 remains valid also when x13 = 0.
We have implemented the transformation method defined in Theorem 8 and additionally

we have implemented transformation methods to the following simple order-4 generators

G14 = G with x13 = 0,

G13 =


−x1 0 x13 0

x2 −x2 0 0

0 x3 −x3 0

0 0 x4 −x4

 , G24 =


−x1 0 0 0

x2 −x2 0 x24

0 x3 −x3 0

0 0 x4 −x4

 .

Having these transformation methods we checked if general PH(4) distributions can be trans-
formed to the given specific forms. We found that none of the G13, G14 and G24 forms are
sufficiently general to transform all PH(4) distributions into that form. However, we found
that it is usually impossible to transform between these forms. I.e., having a PH(4) distribu-
tion whose generator has the form of G24, it is commonly not possible to transform it to the
form of G13 and G14, and so on.

In contrast, we found that the (γ, G) representation, with properly chosen x1 and x13

parameters, is general enough to cover all PH(4) examples we tried with.
The (γ, G) representation is defined by nine parameters, x1, x2, x3, x4, x13, x14, γ1, γ2, γ3.
Assuming that the (γ, G) representation is a candidate for the canonical representation

of PH(4) distributions and that the canonical representation of PH(4) distributions contains
the minimal number of parameters (which is seven), two additional constraints should apply.
Some of the possible constraints are x13 = 0, x14 = 0, π2 = 0, π3 = 0, x1 = x2, x2 = x3,
x3 = x4. Considering only these constraints we have a wide variety of different constraint-
pairs. Some of them might be too restrictive, but e.g., x13 = x14 = 0 results in the acyclic
subclass of PH(4) distributions.

2.3 ph fitting with canonical forms

The applicability of PH distributions for modeling real systems relies on efficient fitting proce-
dures. A fitting procedure constructs a PH distribution based on empirical samples or based
on an other known distribution. This section demonstrates the benefits of canonical forms in
PH distribution fitting.
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2.3.1 Moment matching

In case of moment matching a PH distribution is created that has the same moments as the
target distribution. Recall that PH(2) distributions have 3, and PH(3) distributions have 5 free
parameters, thus they can match 3 and 5 moments, respectively.

Moment matching is not straight forward, since it involves the solution of a polynomial
system of equations (see (4)). Apart from the low order cases, such equations have no explicit
solutions.

Nevertheless, there exists a procedure, published in [82], that solves the moment problem.
For a given set of {m1, . . . m2N−1}moments this algorithm creates a size N vector and matrix
pair, (σ, S), for which i!σ(−S)−i1 = mi, i = 1, . . . , 2N − 1 holds1.

The output of the procedure (σ, S), however, while providing the appropriate moments,
can have arbitrary elements. It is either a non-Markovian representation of a PH distribution,
or not even a distribution at all (as the density is negative at some points). Transforming this
(σ, S) to the canonical representation gives the answer to this question. If the transformation
to the canonical form fails (the result is not a Markovian representation), then (σ, S) is either
not a valid distribution or does not have an order N Markovian representation.

In the next example the moments to fit are extracted from a real measurement trace file,
which captures the packet inter-arrival times over two hours of wide-area TCP traffic2. In this
trace the first five moments of the inter-arrival times are {1, 2.942, 16.84, 150.73, 1876.8}.

First a PH(2) is created based on the first three moments. The procedure of [82] returns

σ(2) =
[
0.5 0.5

]
, S(2) =

[
−1.5779 −0.11239

−0.5 −0.5

]
,

which is clearly non-Markovian. Transforming it to the canonical form described in Section
2.2.1 gives

γ(2) =
[
0.1736 0.8264

]
, G(2) =

[
−0.45017 0.45017

0 −1.6277

]
,

which is a PH(2) distribution with a Markovian representation, matching the first three target
moments. Repeating these steps with 5 moments and 3 states yields

σ(3) =
[
1/3 1/3 1/3

]
, S(3) =

 −1.7356 0.34074 −0.95214

−0.18575 −0.63031 −0.042169

−0.48092 −0.036353 −0.6245


in the first step and leads to

γ(3) =
[
0.71787 0.26156 0.02057

]
, G(3) =

−2.0185 0 0

0.63653 −0.63653 0

0 0.33542 −0.33542

 ,

1 The original procedure in [82] obtains the result in a slightly different form with the closing vector being different
from 1, that can be transformed to the ME representation used in this section by applying a simple similarity
transformation

2 Downloaded from http://ita.ee.lbl.gov/html/contrib/LBL-TCP-3.html
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Figure 9.: Results of moment matching with canonical forms

after the canonical transformation by Algorithm 1. Figure 9 depicts the original (empirical)
pdf and the pdf of PH distributions (γ(2), G(2)) and (γ(3), G(3)). Both PH distributions ap-
proximate the target distribution relatively well, the 3-state one being a bit closer, especially
in the log-log plot.

2.3.2 Fitting the density function

There is a large number of PH distribution fitting methods available in the literature (for a
survey see [56]). Some of them operate on the full PH class while others look for the solution
in a subclass of the PH distributions. Themost commonly used sub-classes for fitting purposes
are the APH class, the hyper-exponential distributions and the hyper-Erlang structure. At the
first sight these structural restrictions seem to decrease the efficiency of the fitting methods,
since they look for the best fit in a smaller class of distributions. However, based on practical
experiments, the opposite seems to be true: fitting a distributionwith a restricted PH sub-class
often provides better results, both in terms of distance and speed. The reason is that methods
optimizing the full PH generator matrix and initial probability vector are often circling around
different representations of the same distribution. Methods operating on the restricted PH
sub-classes have an easier job, since they optimize fewer parameters.

The canonical forms of PH(2) and PH(3) distributions can be utilized to develop more effi-
cient PH fitting methods. These canonical forms are minimal representations having minimal
number of parameters while covering the whole PH(2) and PH(3) classes, consequently the
optimization methods find the solution more easily.

To show the benefits of canonical forms in distribution fitting some numerical examples
are presented. We developed a simple fitting method in MATLAB based on the line search
algorithm with the subject function set to the relative entropy. Relative entropy ([14], also
known as the Kullback–Leibler divergence) is a popular quantity to measure the goodness of
fit (for discrete samples it is equal to the log-likelihood). It is defined by

D( f , f̂ ) =
∫ ∞

0
f (x)| log

f (x)
f̂ (x)
|dx, (47)

where f̂ (t) is the density function of the fitting PH distribution and f (t) denotes the pdf of
the distribution to fit.

The initial point was the best selected from hundred random PHs distributions.

dc_1412_17

Powered by TCPDF (www.tcpdf.org)
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W1 U1 ME BC

Full PH3: 1.9532 · 10−3 0.16659 0.89605 0.14093

Form f1): 1.9531 · 10−3 0.16659 0.90059 0.14087

Form f2): 1.9532 · 10−3 0.16659 0.89605 0.27127

Form f3): 4.5383 · 10−3 0.16659 0.89605 0.28222

Table 1.: Minimal distance obtained by optimizing with different representations

W1 U1 ME BC

Full PH3: 1.2 · 10−4 1.4 · 10−5 1.9 · 10−4 4.3 · 10−3

Form f1): 2.6 · 10−7 1.4 · 10−5 6.9 · 10−5 3.5 · 10−3

Form f2): 8.5 · 10−7 3.7 · 10−4 4.1 · 10−5 6.2 · 10−3

Form f3): 2.3 · 10−4 3.2 · 10−4 1.2 · 10−4 6.3 · 10−4

Table 2.: Distance variances obtained by optimizing with different representations

During the numerical experiments the target distributions were W1, U1 and ME distribu-
tions defined in [14]:

fW1(x) =
β

η

(
x
η

)β−1

e−
(

x
η

)β

with η = 1, β = 1.5,

fU1(x) = 1, 0 ≤ x ≤ 1,

fME(x) =
(

1 +
1

(2π)2

)
(1− cos(2πx))e−x.

Anon-synthetic distribution taken from real timemeasurements is included in the experiment
as well. These real time measurements record one million packet arrivals on an Ethernet
network3, and will be referred to as BC in the sequel.

Since in case of PH(3) there are three different canonical forms, the optimization has to be
performed with all three structures and the best fit should be selected as a final result.

The optimization has been performed 100 times with different random initial points. The
best (minimal) distance obtained out of the 100 runs is shown in Table 1. In case of the W1
distribution the f1 canonical form turned out to be the best. All representations gave the
same result in the U1 case. For the ME distribution, the APH structure (f1) was not able
to capture the characteristics of the target distribution, but all other representations returned
the same result. For real traffic fitting (BC case) the APH was found to be the most suitable,
the full representation is not far behind. These examples also demonstrate the capabilities
of the built-in optimization function of MATLAB, it found the solution even with redundant
(non-minimal) representations.

According to Tables 2 and 3, however, the benefits of canonical forms in optimization are
clear. The optimization finds the solution in fewer iterations (Table 3), and the solution de-
pends less on the initial guess (Table 2).

3 Downloaded from http://ita.ee.lbl.gov/html/contrib/BC.html
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W1 U1 ME BC

Full PH3: 150.98 110.4 117.49 146.6

Form f1): 52.04 43.34 40.56 119.62

Form f2): 64.27 55.22 52.53 111.14

Form f3): 108.49 71.33 71.84 122.93

Table 3.: Number of iterations when optimizing with different representations

2.4 ph fitting with a flexible structure

Flexible structure PH fitting methods use representations that havemore free parameters than
the number of parameters to match. A set of parameters are set to ensure the matching of
moments or some other subject function, while the remaining parameters add extra degrees
of freedom to obtain a valid PH distribution to match any set of moments. Such a method is
described in [51], which uses a representation calledmixture of Erlang distributions of common
order (MECO). Mixing K Erlang distributions of common order has 2K parameters: K− 1 ini-
tial probabilities (which Erlang component to choose, sums up to 1), the intensity parameters
of the Erlang distributions (there are K of them), and the common order of the Erlang distri-
butions (1 parameter). With these 2K parameters this procedure can match 2K− 1 moments.
The free parameter not involved in moment matching is the order parameter, which is com-
mon for all Erlang components. The moment matching is performed with order=1, order=2,
etc., the order is increased till a Markovian solution is found. If order R Erlang branches are
needed to get aMarkovian representation, the procedure results in an order N = K ·R PH dis-
tribution. It is guaranteed that, with appropriately large order, this procedure is able to match
any set of 2K− 1 moments belonging to a positive distribution. An other method operating
on a flexible structure has been published in [13]. It matches 3 moments with an exponential
and an Erlang distribution connected after each other in a row. The degree of freedom is the
order of the Erlang component again. It is proven that, by choosing the order of the Erlang
component appropriately large, it is possible to match any 3 moments with this structure.

In this section we propose a new sub-class of PH distributions for matching any number of
moments.

Definition 4. Random variableF has order-K generalized hyper-Erlang distribution iff its den-
sity function is

f (x) =
K

∑
i=1

σi
(λix)ri−1

(ri − 1)!
λie−λix, (48)

with f (x) ≥ 0 and
∫ ∞

0 f (x)dx = 1. For the parameters we have that λi ∈ C, re〈λj〉 ≥ 0, σj ∈
C, ∑K

i=1 σi = 1 and ri ∈ N for i = 1, . . . , K.

Thus, generalized hyper-Erlang distributions (GHErD) are similar to hyper-Erlang distribu-
tions, the difference is that coefficients σi do not need to be valid probabilities, and that λi can
be complex as well. The kth moment of generalized hyper-Erlang distributions is calculated
as

mk =
∫ ∞

0
xk f (x)dx =

K

∑
i=1

σi
(k + ri − 1)!
(ri − 1)!

1
λk

i
, k ≥ 0. (49)

(Note that m0 = 1).
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2.4.1 Solution of the moment matching problem with fixed ri parameters

For matching moments m1, . . . , m2K−1 with order-K GHErD having the ri parameters fixed
we have to solve a system of polynomial equations defined by (49) for k = 0, . . . , 2K − 1,
such that the unknown variables are λ = {λi, i = 1, . . . , K} and β = {σi, i = 1, . . . , K},
which give 2K unknowns in total.

Due to the structure of the system of polynomial equations it is not possible to derive an
explicit solution for arbitrary K. However, there are excellent tools available that are able to
solve polynomial systems numerically4. It is important to emphasize that this does not mean
that we are applying a non-linear programming or other optimization methods to find the
solution of the moment matching problem (as it was done in [18]). What we are doing is the
numerical solution of the polynomial system, that is able to provide all the solutions of the
system of polynomial equations.

This polynomial system has typically several solutions, and it is also possible that it has no
solutions at all (it can be inconsistent). If it does have solutions, each solution either defines
a valid PH distribution, or it does not. To decide if a solution is valid, we try to obtain a
Markovian monocyclic representation by using the method described in Section 2.1.4. From
a solution given by vectors λ and β the initial (non-Markovian) representation is obtained in
a direct way as

σ =
[
σ1 0 . . . 0︸ ︷︷ ︸

r1−1

σ2 0 . . . 0︸ ︷︷ ︸
r2−1

σK 0 . . . 0︸ ︷︷ ︸
rK−1

]
,

S =



−λ1 λ1
. . . . . .

−λ1

−λ2 λ2
. . . . . .

−λ2
. . .

−λK λK
. . . . . .

−λK



.

 r1

 r2

 rK

(50)

If the output (γ, G) of the algorithm of Section 2.1.4 is Markovian, then we found a valid
solution. Given vector r = {ri, i = 1, . . . , K} it may happen that several different PH distri-
butions are found, but it is also possible that no solutions exist. In the latter case the entries
of vector r need to be increased to obtain a valid solution.

2.4.2 Optimizing the ri parameters

Finding the appropriate vector r can be made automatic as well. In this case the user just
has to enter a single parameter, R, and the algorithm repeats the moment matching with all
vectors r satisfying ∑K

i=1 ri ≤ R.

4 For this purpose, we are using PHCpack (see [85]), which is a multi-platform open-source tool and is under
continuous development and refinement
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30 phase-type distributions

As the MECO is a sub-class of GHErD, and according to [51] it is always possible to find
a MECO for any set of moments, this procedure always finds a Markovian solution with an
appropriately large R parameter.

Algorithm 2 GHErD fitting algorithm based on moment matching
1: procedure FitGHErD(m1, . . . , m2K−1, R, D(·))
2: res← ∅
3: for all r = [r1 . . . rK] with ∑K

i=1 ri ≤ R do
4: {(λ, β)i} ← Solve polynomial equations of (49) for k = 0, . . . , 2K− 1
5: for each solution (λ, β) do
6: (σ, S)← Create non-Markovian representation based on (50)
7: (γ, G)← Transform (σ, S) to a monocyclic representation (Section 2.1.4)
8: if (γ, G) is Markovian then
9: Add (γ, G) to set res

10: end if
11: end for
12: end for
13: if res = ∅ then
14: error ”No solutions found up to size R. Parameter R has to be increased.”
15: end if
16: (γ, G)← arg min(γ,G)∈res D(γ, G)

17: return (γ, G)

18: end procedure

The proposed algorithm is depicted in Algorithm 2. First, the algorithm solves the moment
matching problem with different r vectors up to ∑K

i=1 ri ≤ R and collects all solutions that
have a Markovian representation in set res. Notice that all solutions in res match the first
2K − 1 moments of the target distribution. In the second step (last line of the algorithm)
the best solution is selected according to a secondary distance function D(·). Any distance
function can be used that quantifies the distance between two distributions. Two possible
distance functions are:

• Moment distance (MD): the sum of the squared relative difference of the moments up
to moment M. Denoting the kth moment of the target distribution by m̂k this means

D(γ, G) =
M

∑
k=1

(
m(γ,G)

k − m̂k

m̂k

)2

. (51)

(Note that for k ≤ 2K− 1 we have m(γ,G)
k = m̂k).

• Relative entropy (RE): as defined by (47).

Both distance functions have their advantage. The moment distance relies only on the
moments, thus the exact shape of the target pdf is not required. The relative entropy, however,
quantifies the similarity of the shapes of the density functions better. Both distance functions
will be evaluated in the subsequent numerical examples.
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# of moments # of different # of valid Execution
to match r vectors solutions speed

3 100 88 28 sec
5 237 688 337 sec
7 408 3920 810 min

Table 4.: The number of different r vectors, the number of valid solutions, and the total execution time
in the LBL example

2.4.3 Numerical examples

In this section we apply the presented fitting method on two well known traffic measurement
traces, the BC-pAug89 trace (also used in Section 2.3.2) and the LBL-TCP-3 trace (used in
Section 2.3.1).

Algorithm 2 has been implemented in MATLAB. To solve the system of polynomial equa-
tions we used PHCpack v2.3.765. All the results have been obtained on an average PC with a
CPU clocked at 3.4 GHz and 4 GB of memory.

In the subsequent case studies the following 4 flexible moment matching-based PH fitting
methods are compared:

1. The presented method, where the PH distribution with the smallest moment distance
(up to 10 moments) is selected from the set of all PH distributions matching the mo-
ments of the trace;

2. The presented method, where the PH distribution with the lowest relative entropy is
selected from the set of all PH distributions matching the moments of the trace;

3. Moment matching with a mixture of Erlang distributions of common order (MECO,
[51]);

4. The method of [13], which is able to match the first three moments only.

e x p e r im ent s w i th th e l b l t r ac e

In this example the R parameter (the sum of the multiplicities of the eigenvalues) is set to
20. According to Algorithm 2 this means that the moment matching is performed with all
vectors r satisfying ∑K

i=1 ri ≤ R. With a given vector r, the moment matching problem can
result in several different valid PH distributions. At the end we have a large number of PH
distributions from which we can select the best according to some distance function. Table 4
shows how many r vectors and valid solutions there are, and how long the execution time of
the algorithm is.

The numerical results are shown in Table 5. When the first three moments were matched,
all methods found the same solution. Even if a large number of r vectors have been checked
by our method, the best solution has been found to be the same according to both distance
functions.

5 It can be obtained from http://homepages.math.uic.edu/~jan/download.html
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32 phase-type distributions

Num. of moms. Method MD RE Num. of states

3

Our method (MD) 1.786 0.3024 2 (r = [1 1])
Our method (RE) 1.786 0.3024 2 (r = [1 1])
MECO [51] 1.786 0.3024 2 (r = [1 1])
ErlExp [13] 1.786 0.3024 2

5
Our method (MD) 0.0072 0.0984 3 (r = [1 1 1])
Our method (RE) 0.0386 0.0953 5 (r = [1 1 2])
MECO [51] 0.0072 0.0984 3 (r = [1 1 1])

7
Our method (MD) 8.26× 10−6 3.9727 20 (r = [2 2 3 13])
Our method (RE) 0.00499 0.0727 8 (r = [1 1 3 3])
MECO [51] 0.00475 0.1339 8 (r = [2 2 2 2])

Table 5.: Results of the fitting of the LBL trace

When 5 moments were matched, the MECO matching method returned a hyper-
exponential distribution that was found to be optimal by our method as well according to
the distance of moments. However, our method was able to find a PH distribution that has
lower relative entropy. This PH distribution has 5 states and the corresponding r vector is
r = [1 1 2]. The sum of the elements of vector r is only 4, which means that a new eigen-
value has been introduced and the size of the PH has been increased by 1 to obtain a Marko-
vian representation (this new eigenvalue cancels out, it has no effect on the pdf).

The advantage and the flexibility of the proposed method can be seen the best when 7
moments are matched. This method was able to find a PH distribution with significantly
lower moment distance, and an other one with significantly lower relative entropy as well.

Figures 10, 11 and 12 plot the density functions belonging to themethods discussed, both on
linear and on logarithmic scale. While the tail of the pdf is fitted well by all methods, the plots
differ significantly in the body of the pdf. Based on a visual comparison, the solution found
by our method by matching 7 moments and selecting the best according to the RE distance
seems to capture the shape of the pdf best.

e x p e r im ent s w i th th e b c t rac e

The numerical results corresponding to the BC trace are summarized in Table 6. When
fitting the first 3 moments, the same hyper-exponential distribution turned out to be optimal
by all the methods involved into the comparison. When fitting 5 phases, the proposed method
has found a PH distribution with very slightly lower relative entropy. In the case when 7
moments are matched, we have a PH distribution with better moment distance, and an other
one with significantly better relative entropy than the MECO based method.

The density functions corresponding to the investigated cases are depicted in Figure 13, 14
and 15. Figure 14 demonstrates how different the shapes of the density functions can be even if
the first 7 moments are the same. The MECO-based method looks to be the least successful in
this example, while the proposed method with the relative entropy based selection managed
to capture the characteristics of the density function reasonably well.
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Figure 10.: Comparison of the density functions matching 3 moments of the LBL trace
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Figure 11.: Comparison of the density functions matching 7 moments of the LBL trace
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Figure 12.: Comparison of the results of our method, matching 3, 5 and 7 moments
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Figure 13.: Comparison of the density functions matching 3 moments of the BC trace
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Figure 14.: Comparison of the density functions matching 7 moments of the BC trace
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Figure 15.: Comparison of the results of our method, matching 3, 5 and 7 moments
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Num. of moms. Method MD RE Num. of states

3

Our method (MD) 3.0509 0.30244 2 (r = [1 1])
Our method (RE) 3.0509 0.30244 2 (r = [1 1])
MECO [51] 3.0509 0.30244 2 (r = [1 1])
ErlExp [13] 3.0509 0.30244 2

5
Our method (MD) 0.00198 0.30521 14 (r = [1 4 8])
Our method (RE) 55.4699 0.30212 5 (r = [1 1 2])
MECO [51] 55.4699 0.30212 3 (r = [1 1 1])

7
Our method (MD) 0.0056 0.48178 20 (r = [1 2 2 15])
Our method (RE) 0.0072 0.185 19 (r = [1 1 2 15])
MECO [51] 0.0391 0.3536 16 (r = [4 4 4 4])

Table 6.: Results of the fitting of the BC trace
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3
MARKOV IAN ARR I VAL PROCES SE S

In many practical applications (including computer networks and telecommunication sys-
tems) the inter-arrival times of the demands are correlated. Markovian arrival processes are
able to characterize such correlated point processes with Markovian tools, they serve as the
arrival process in many queueing systems.

3.1 introduction to markovian arrival processes

3.1.1 Definition and basic properties

First we introduce the rational arrival processes (RAPs), fromwhich theMAPs are derived. Let
F (t) be a point process with joint probability density function of inter-event times denoted
by f (x0, x1, . . . , xk) for k ≥ 1.

Definition 5. The square matrix pair of size N, (D0, D1), satisfying (D0 + D1) 1 = 0 defines
a stationary RAP iff the joint density function of the inter-arrival times

f (x1, . . . , xk) = αeD0x1 D1eD0x2 D1 . . . eD0xk D11 (52)

is non-negative for all k ≥ 1 and x1, x2, . . . , xk ≥ 0 and α is the unique solution of
α(−D0)−1D1 = α, α1 = 1.

A RAP is a point process in which the inter-arrival times are ME distributed [5, 62]. RAPs
inherit several properties from ME distributions. The real parts of the eigenvalues of matrix
D0 are negative; consequently the matrix is non-singular. Furthermore, the dominant eigen-
value of D0, having the maximal real part, must be real.

The non-negativity of the joint density function of RAPs is hard to check. Next, we intro-
duce a Markovian subset of RAPs that have a stochastic interpretation and can be easily used
in Markovian performance models.

Definition 6. If F (t) is a RAP(D0, D1), where D0 and D1 have the following properties:

• D1ij ≥ 0,

• D0ii < 0, D0ij ≥ 0 for i 6= j, D01 ≤ 0,

then we say that F (t) is a MAP with representation (D0, D1).

In case of MAPs one can interpret the off-diagonal elements of matrix D0 and the elements
of D1 as transition rates corresponding to ”hidden” and ”visible” events, respectively. The
sum of the matrices D = D0 + D1 is the generator of a CTMC, whose states are referred
to as phases in this context. Whenever the CTMC traverses a transition in D1, an arrival is

37
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1
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0 0 3

2 0 0

0 0 0



Figure 16.: An example for a MAP

generated (this is the ”visible” event), while transitions in matrix D0 are not accompanied by
arrivals (they are ”hidden” events). As a consequence of the probabilistic interpretation the
joint density function (52) of MAPs is always positive. Figure 16 depicts the Markov chain
and the corresponding matrices of a MAP.

By this interpretation matrix P = (−D0)−1D1 is the transition probability matrix of the
discrete timeMarkov chain (DTMC) describing the phase transitions right after arrival events,
and vector α is its stationary distribution, hence the phase distribution at arrivals.

Consequently, the distribution of the inter-arrival times F is PH distributed with initial
vector α and transient generator D0, thus (see (1))

P(F < t) = 1− αeD0t1. (53)

The marginal moments of the inter-arrival times are then (see (4))

mk = E(F k) = k!α(−D0)
−k1, (54)

thus the mean arrival rate is λ = 1/m1. Themean arrival rate can be derived in an alternative
way as well. If the stationary distribution of the background process is θ (which is the unique
solution to θD = 0, θ1 = 1), then we also have that λ = θD11.

The joint moments of the inter-arrival times play an important role in the minimal repre-
sentation of MAPs and will be used frequently in the forthcoming sections. By denoting the
`th inter-arrival time by F`, the joint moments of the a0 = 0 < a1 < a2 < · · · < ak-th inter
arrival times can be derived as

E(F i0
0 F

i1
a1 . . .F ik

ak) = αi0!(−D0)−i0 Pa1−a0 i1!(−D0)−i1 . . . Pak−ak−1 ik!(−D0)−ik1.
(55)

Throughout this dissertation the lag-1 joint moments appear frequently, therefore we intro-
duce a shorter notation here as

ηij = E(F i
0F

j
1) = αi!(−D0)

−iPj!(−D0)
−j1. (56)

Several statistical quantities can be used in the practice to characterize the dependency
structure of the inter-arrival times generated by MAPs. One of the most popular ones is the
lag-k auto-correlation, ρk, which is the correlation between F0 and Fk. It can be expressed
from the lag-k joint moment as

ρk =
E(F0Fk)−m2

1

m2 −m2
1

. (57)

MAPs have the following appealing features that make them suitable to model the internal
traffic of queueing networks:
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3.1 introduction to markovian arrival processes 39

• The departure process of the waist majority of queues is correlated (apart from the
simplest cases), and MAPs are able to capture correlations in a Markovian way.

• The superposition of two MAPs is a MAP as well. If the two MAPs to superpose are
represented by matrices (D0

(1), D1
(1)) and (D0

(2), D1
(2)), then the matrices represent-

ing the superposed process are

D0
(superposed) = D0

(1) ⊕ D0
(2),

D1
(superposed) = D1

(1) ⊕ D1
(2).

(58)

(For the definition and properties of the Kronecker summation operator⊕ see Appendix
A.1).

• The probabilistic splitting of a MAP is also a MAP. If the departing jobs are directed to
a given consecutive node with probability p, then this traffic is represented by matrices

D0
(split) = D0 + (1− p)D1,

D1
(split) = pD1.

(59)

MAPs have some distinguished special sub-classes, which are used frequently in the prac-
tice.

• PH renewal processes are point processes where the inter-arrival times are independent
and identically distributed (iid.). If the vector-matrix representation of the PH distribu-
tion is denoted by (σ, S), then the matrices of the corresponding MAP are

D0 = S,

D1 = (−S)1 · σ,
(60)

which means that transitions to the absorbing state are accompanied by an arrival and
at the same time the PH is re-initialized according to probability distribution σ.

• Markov-modulated Poisson processes are arrival processes that have a CTMCbackground
process with generator matrix Q, and arrivals are generated according to a Poisson
process with state-dependent rates. If the vector of the arrival rates is r = {ri, i =

1, . . . , N}, then the matrix parameters of the MAP are

D0 = Q− diag〈r〉,
D1 = diag〈r〉.

(61)

3.1.2 Marked Markovian arrival processes

A MAP defines a point process where there is no difference between the arrival events. In
many practical applications, however, several types (or classes) of arrivals can be distin-
guished. E.g., some arrival types need longer, some others need shorter service, or some
arrival types need more urgent service than others.

MMAPs are the multi-type extensions of MAPs ([39]). Let us start the discussion with
a more general model class, the multi-type extension of RAPs, the marked rational arrival
processes (MRAPs) ([9]).
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Figure 17.: An example for a MMAP

Definition 7. A set of square matrices of size N, (D0, D1, . . . , DK), satisfying ∑K
k=0 Dk 1 = 0,

defines a stationary MRAP with K event types iff the joint density function of the arrival sequence
(consecutive interarrival times and event types)

f (x1, k1, . . . , xn, kn) = αeD0x1 Dk1 eD0x2 Dk2 . . . eD0xn Dkn1 (62)

is non-negative for all j ≥ 1 and x1, x2, . . . , xn ≥ 0, 1 ≤ k1, k2, . . . , kn ≤ K and α is the unique
solution of α(−D0)−1 ∑K

k=1 Dk = α, α1 = 1.

The following definition introduces the Markovian sub-class of MRAPs, similar to the
single-type case.

Definition 8. If for the matrices of a MRAP D0, . . . , DK we have that

• Dkij ≥ 0, for k = 1, . . . , K,

• D0ii < 0, D0ij ≥ 0 for i 6= j, D01 ≤ 0,

then we say that this MRAP is a MMAP with representation (D0, . . . , DK).

Obviously, the class of MRAPs contains MMAPs.
In the single-type case MAPs were interpreted as Markov chains with two kinds of tran-

sitions: transitions generating arrivals and transitions not accompanied by arrivals. The
stochastic interpretation of the multi-type variant is similar: there is a CTMC modulating
the arrivals with generator D = ∑K

k=1 Dk (which is assumed to be irreducible), where the
transitions are marked. Transitions in D0 are just internal transitions, while transitions in
matrix Dk are accompanied by type-k arrivals. In the example in Figure 17 the transitions
leading to type-1 and type-2 arrivals are denoted by dotted and dashed lines, respectively.

The transition probability matrix of the DTMC embedded to arrival instants (of any type)
is P = (−D0)−1 ∑K

k=1 Dk, and its stationary probability vector is α. Hence, like in the single-
class case, the steady state distribution of the inter-arrival times F is PH distributed with
initial vector α and transient generator D0, see (53), and the marginal moments are computed
according to (54).

If the stationary phase distribution of the background process D is vector θ, the arrival
intensity of type-k customers is given by λk = θDk1. The total arrival rate, λ = ∑K

k=1 λk,
can also be obtained as the inverse of the mean of the inter-arrival times λ = 1/m1.

Let F (k)
i be Fi (the inter-arrival time between the ith and the i+1th arrival) if the i+1th

arrival is of class k and 0 otherwise. Then, the joint moments of the joint distribution (62),
playing a central role in the queuing network analysis approach proposed in this dissertation,
are

E
((
F (k0)

0

)i0 (
F (k1)

1

)i1
. . .
(
F (kn)

n

)in
)
=

α i0!(−D0)
−i0−1Dk0 i1!(−D0)

−i1−1Dk1 . . . in!(−D0)
−in−1Dkn1.

(63)
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Particularly, the lag-1 joint moments of two consecutive arrivals, denoted by η
(k)
i,j will be used

frequently in the sequel:

η
(k)
i,j = E

(
(F (k)

0 )i(F1)
j
)
= i!j! α(−D0)

−i−1Dk(−D0)
−j1, i > 0, j ≥ 0, (64)

and for i = 0 we define η
(k)
0,j as

η
(k)
0,j = Pr(F (k)

0 > 0)E
(
(F1)

j
)
= j! α(−D0)

−1Dk(−D0)
−j1, j ≥ 0. (65)

Like the single-type MAPs, MMAPs are also closed for the superposition and random split-
ting operation. Superposing MMAPs (D0

(1), . . . , DK
(1)) and (D0

(2), . . . , DK
(2)) the result is

also a MMAP with representation

Dk
(superposed) = Dk

(1) ⊕ Dk
(2), for k = 0, . . . , K. (66)

Similarly, if the type-k arrivals of a MMAP characterized by (D0, . . . , DK) are directed to a
given direction with probability pk, the MMAP describing the traffic is

D0
(split) = D0 +

K

∑
k=1

(1− pk)Dk,

Dk
(split) = pkDk, for k = 1, . . . , K.

(67)

3.1.3 Representation transformation

Section 2.1.2 showed that the vector-matrix representation of ME (and also PH) distributions
is not unique. The same holds for the (D0, . . . , DK) representation of MMAPs as well. The
joint distribution defined by (62) can be transformed with any non-singular square matrix B
satisfying B1 = 1 as

f (x1, k1, . . . , xn, kn) = αeD0x1 Dk1 eD0x2 Dk2 . . . eD0xn Dkn1

= αBeB−1D0Bx1 B−1Dk1 BeB−1D0Bx2 B−1Dk2 B . . . BeB−1D0Bxn B−1Dkn BB−11

= γeG0x1 Gk1 eG0x2 Gk2 . . . eG0xn Gkn1,

(68)

which means that the MMAPs given by representations (Dk, k = 0, . . . , K) and (Gk =

B−1DkB, k = 0, . . . , K) are the same, even though the representations are different.
Similarity transformations can be extended to matrix representations of different sizes [21]

as well. We recall the possible similarity transformations without proof (the proofs are similar
to the ones of Theorems 2 and 3).

Theorem 9 ([21],Theorem 1). If there is a matrix V ∈ RN,M, M ≥ N such that 1 = V1 and
DkV = VGk for k = 0, . . . , K then (D0, . . . , DK) and (G0, . . . , GK) define the same MRAP.

Theorem 10 ([21],Theorem 2). If there is a matrix W ∈ RM,N , M ≥ N such that 1 = W1

and W Dk = GkW for k = 0, . . . , K then (D0, . . . , DK) and (G0, . . . , GK) define the same
MRAP.

Like in case of PH distributions, the existence of multiple representations defining the same
process makes many analytical investigations and also the development of matching/fitting
procedures relatively hard.
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42 markovian arrival processes

3.2 minimal characterization of mmaps and a moment matching method

As shown in Section 3.1.3, the traditional representation of MMAPs, given by matrices
(D0, . . . , DK), hence (K + 1)N2 parameters, is redundant, there are infinitely many matrix
sets defining the exactly same stochastic process. This section addresses two related questions:

• If (K + 1)N2 parameters are twomuch, what is the minimal number of parameters that
determine MMAPs uniquely?

• What exactly are the parameters that determine MMAPs uniquely?

3.2.1 Minimal characterization of single-type RAPs

For technical simplicity, let us define the double transform of the number of arrivals in the
(0, t) interval starting from an arrival at time 0. If N (t) is the number of arrivals generated
up to time t, from [57] we have that the double transform of N (t) is

f (s, z) =
∫ ∞

t=0
e−stE(zN (t))dt = α(sI − D0 − zD1)

−11. (69)

The next definition introduces the non-redundant property of RAPs, that will be assumed
to hold in all forthcoming results of this section.

Definition 9. RAP(D0, D1) is non-redundant if its rank equals to its order, where the rank is
the size the square matrices D0 and D1, and the order is the degree of the denominator of f (s, z)
as a polynomial of s.

In the following theorem we prove that the joint moments, defined by (55), determine a
RAP completely.

Theorem 11. If the joint moments of the a0 = 0 < a1 < a2 < . . . < ak-th inter-arrival
times of RAP(D0, D1) and RAP(D′

0, D′
1) are identical for all k ≥ 0; i0, . . . , ik and a1, . . . , ak then

f (s, z) ≡ f ′(s, z).

Proof. In the convergence region of f (s, z) we have

f (s, z) = α(sI − D0 − zD1)
−11 = α

(
s(−D0)

−1 + I − zP
)−1

(−D0)
−11

=
∞

∑
i=0

α
(
−s(−D0)

−1 + zP
)i

(−D0)
−11.

(70)

The ith term of the above sum, α(−s(−D0)−1 + zP)i(−D0)−11, is composed by the per-
mutations of the (−D0)−1 and the P matrices. The permutations that start with αPj can be
simplified to the

α(−D0)
−i0 Pj0(−D0)

−i1 . . . Pjk−1(−D0)
−ik1 (71)

form, since α = αP. Indeed, (71) is E(F i0
0 F

i1
a1 . . .F ik

ak)/(i0!i1! . . . ik!), where ak = ∑k−1
`=0 j`.

Due to the equality of the joint moments of RAP(D0, D1) and RAP(D′
0, D′

1) all terms of the
(70) composition of f (s, z) and f ′(s, z) are identical, which implies the theorem.

Themain theorem below provides the minimal number of parameters characterizing a RAP.
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Theorem 12. The distribution of an order-N non-redundant irreducible RAP is determined by
at most N2 independent parameters.

Proof. To prove the theorem we provide a description of all joint moments based on N2 pa-
rameters and Theorem 11 ensures that this description also defines the distribution.

Let−D0
−1 = Γ−1EΓ be the Jordan decomposition of−D0

−1 normalized such that Γ1 = 1

and R = ΓPΓ−1. The E matrix has the Jordan-block structure E = diag〈Ej〉 and R satisfies
R1 = 1 since ΓPΓ−11 = ΓP1 = Γ1 = 1.

Using these notations the joint moments can be written as

E(F i0
a0
F i1

a1
. . .F ik

ak)/(i0!i1! . . . ik!)

= α(−D0)
−i0 Pa1−a0(−D0)

−i1 . . . Pak−ak−1(−D0)
−ik1

= α Γ−1Ei0 Γ Pa1−a0 Γ−1Ei1 Γ . . . Pak−ak−1 Γ−1Eik Γ 1

= vEi0 Ra1−a0 Ei1 . . . Rak−ak−1 Eik1.

(72)

where v = αΓ−1. Vector v is determined by R because vR = v and v1 = 1, since

v = αΓ−1 = αPΓ−1 = αΓ−1ΓPΓ−1 = vR, (73)

and

v1 = αΓ−11 = α1 = 1. (74)

Based on (72) any joint moment is determined by E and R. Matrix E is determined by the
N (potentially partially coinciding, potentially complex) eigenvalues of (−D0)−1. Matrix R
is determined by its N(N − 1) (potentially complex) elements, since R1 = 1. All together
these give N2 parameters.

3.2.2 A moment matching method

Theorem 12 has answered the first question arisen at the top of the section, thus N2 param-
eters uniquely determine a RAP. Next, a moment matching method is provided that actually
creates a RAP based on N2 moment and joint moment related parameters.

This procedure consists of two steps: matrix D0 is created in the first, matrix D1 in the
second step.

Observe that the distribution of the inter-arrival times (see (53)) depends solely on matrix
D0. Consequently, this matrix is constructed from the marginal moments, while the joint
moments characterizing the correlations are ignored in this step. Hence, first we create a PH
distribution based on 2N− 1 marginal moments of the inter-arrival time, m1, . . . , m2N−1. The
algorithm presented in [82] (also used in Section 2.3.1) returns a vector-matrix pair (σ, S) such
that mn = n!σ(−S)−n1 holds for n = 1, . . . , 2N − 1. Matrix E of Theorem 12, containing
the eigenvalues of matrix (−D0)−1, is given by E = (−S)−1.

The second step of the procedure is to obtain matrix R from the joint moments ηij, i, j =
1, . . . , N − 1. (Note that ηi0 = η0i = mi.) Based on the (σ, S) representation of the inter-
arrival times, the mi = E(F i

0), i = 1, . . . , N − 1 moments and the ηij = E(F i
0F

j
1), i, j =

1, . . . , N − 1 joint moments we compose 3 matrices of size N × N. Matrix N contains the
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44 markovian arrival processes

moments such that Nij = ηi−1,j−1, matrix Λσ and Λ1 are such that the ith row of Λσ is
σ(i−1)!S−(i−1) and the jth column of Λ1 is (j−1)!S−(j−1)1. That is

N =


1 m1 m2 . . .

m1 η1,1 η1,2 . . .

m2 η2,1 η2,2 · · ·
...

...
... . . .

 , Λσ =


σ

σE

2!σE2

...

 , Λ1 =

1 E1 2!E21 . . .

 .

Observe that with these matrices we have that N = ΛσRΛ1, since

N ij = ηi−1,j−1 = E(F i−1
0 F j−1

1 ) = σ(i−1)!Ei−1 R (j−1)!Ej−11. (75)

Thus, matrix R is obtained as R = Λ−1
σ NΛ−1

1 .
Now we have matrix E created from 2N − 1 marginal moments, and matrix R created

from (N − 1)2 additional joint moments, hence these two matrices were constructed from
(N − 1)2 + 2N − 1 = N2, that is, minimal number of parameters. It remains to obtain the
traditional (D0, D1) representation of the RAP from E and R.

Matrices E and R have been defined in the proof of Theorem 12 such that they are similar
(in the sense of a similarity transformation) to matrices (−D0)−1 and P = (−D0)−1D1,
respectively. This means that matrices D0 = (−E)−1 = S and D1 = −SR form a proper
(possibly non-Markovian) representation of the RAP having the target marginal and joint
moments.

3.2.3 Extension to the multi-type case

In this section we will show that an appropriately chosen set of marginal and joint moments
provide a unique representation of a MRAP and present a method to obtain a MRAP from a
set of joint moments.

Theorem 13. Consider a non-redundant MRAP of order N whose moments and joint moments
are mi and η

(k)
i,j ( ∀i, j ≥ 0, k = 1, . . . , K). If a vector σ and a matrix S of order N are such that

mi = i! σ(−S)i1, ∀i ≥ 0 then

D0 = S, Dk = −D0Λ−1
σ NkΛ−1

1 , 1 ≤ k ≤ K, (76)

is a representation of the MRAP where

Nk =


η
(k)
0,0 η

(k)
0,1 . . . η

(k)
0,N−1

η
(k)
1,0 η

(k)
1,1 . . . η

(k)
1,N−1

...
...

...

η
(k)
N−1,0 η

(k)
N−1,1 · · · η

(k)
N−1,N−1

 , (77)

Λσ =


σ

σE
...

(N−1)!σEN−1

 , (78)
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Λ1 =

 1 E1 . . . (N−1)!EN−11

 , (79)

with E = (−S)−1.

Proof. The following is a direct consequence of results of Theorem 12 for RAPs: for a non-
redundant MRAP

• Λσ and Λ1 are non-singular;

• the first 2N− 1 moments of the inter-arrival time completely determine its distribution;

• the first joint moments of 2 consecutive inter-arrival intervals, in particular, η
(k)
i,j , i, j =

0, . . . , n− 1, 1 ≤ k ≤ K define the whole process.

The vector σ and the matrix S is a non-redundant matrix exponential representation of the
inter-arrival time distribution, i.e., σ eSx(−S)1 = f (x), and can be computed by the algo-
rithm presented in [82].

It remains to show that the joint moments of the MRAP with representation D0, Dk (k =

1, . . . , K) are η
(k)
i,j , i, j = 0, . . . , N − 1, 1 ≤ k ≤ K. The lag-1 joint moments of the MRAP

given by Dk, k = 0, . . . , K are

ϑ
(k)
i,j = i!j! σ(−D0)

−i−1Dk(−D0)
−j1 = i! σEi︸ ︷︷ ︸

row of Λσ

Λ−1
σ NkΛ−1

1 j! Ej1︸ ︷︷ ︸
column of Λ1

. (80)

Matrix Θk is defined such that its i, j element is ϑ
(k)
i,j . Based on (80) we have

Θk = ΛσΛ−1
σ NkΛ−1

1 Λ1 = Nk (81)

which implies that ϑ
(k)
i,j = η

(k)
i,j for i, j = 0, . . . , N − 1, 1 ≤ k ≤ K.

Theorem 13 makes it possible to construct a representation for a MRAP when its moments
and joint moments are known.

An important consequence of Theorem 13 is that the number of parameters to define a
non-redundant MRAP of order N is KN2. The first 2N− 1 (marginal) moments of F0 define
the distribution of the inter-arrival times (σ and S) and the matrices of the joint moments Nk

are given by their KN2 elements. All together there are KN2 + 2N − 1 parameters but they
are not independent. For i = 0, . . . , N − 1 we have

mi = i!α(−D0)
−i1 = i!α(−D0)

−i−1(−D0)1

= i!α(−D0)
−i−1

K

∑
k=1

Dk1 =
K

∑
k=1

η
(k)
i,0 ,

where we utilized that the row sum of D is zero. Similarly, for j = 0, . . . , N − 1 we have

mj = E
(
F j

1

)
=

K

∑
k=1

Pr(F (k)
0 > 0)E

(
F j

1

)
=

K

∑
k=1

η
(k)
0,j .

These two sets of equations result in 2N − 1 additional linear relations among the moments
and the joint moments reducing the number of independent parameters to NK2.
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46 markovian arrival processes

3.2.4 Obtaining Markovian representation with successive transformations

Section 3.2.3 presents a method to create a MRAP from KN2 parameters, from which 2N− 1
are marginal moments and the remaining ones are joint moments. The result of this method,
however, is typically non-Markovian, and is not even necessarily a valid MRAP, there is no
guarantee that the joint density function (62) is non-negative. There are no ways to check
the non-negativity of all finite dimensional joint density functions. The only possibility to
ensure that the result corresponds to a valid arrival process is trying to transform it to a
Markovian representation (to a MMAP), which, by stochastic interpretation, always defines
a valid arrival process.

In order to transform a non-Markovian representation (D0, . . . , DK) to a Markovian one
(G0, . . . , GK)weneed to find an appropriate non-singular transformationmatrix B, for which
B1 = 1 and Gk = B−1DkB, k = 0, . . . , K holds.

Hence, the transformation matrix has to be such that the elements of B−1DkB, k =

1, . . . , K, and the off-diagonal elements of B−1D0B are non-negative. The non-positive con-
straint on the diagonal elements of B−1D0B is automatically fulfilled in this case, since for a
valid MAP ∑K

k=0 Dk1 = 0 and from B1 = 1 we have ∑K
k=0 Gk1 = B−1 ∑K

k=0 DkB1 = 0.
We apply an iterative numerical optimization method to find such matrix B. The cost func-

tion is defined to penalize the negative elements, hence we are looking for a representation
that minimizes

E(D0, . . . , DK) = − ∑
i,j,i 6=j

min{0, D0i,j} −
K

∑
k=1

∑
i,j

min{0, Dki,j}. (82)

The minimization consists of the successive application of elementary similarity transfor-
mations. Elementary transformations are defined by matrix

Bi,j(b) =

i



1 0 0 0 . . .

0 1 0 0 . . .
...

... . . . . . . . . .

0 b 0 1− b 0

0 0 0 0 1


j

, (83)

and have three parameters: b is the step size controlling the coarseness of the transformation
and parameters i, j determine which elements of the representation are affected by the trans-
formation.

In each step of the optimization similarity transformations are applied to the current rep-
resentation. The i, j parameters are selected to minimize the object function E . A large step
size b results in a faster convergence, but the algorithm may stop quickly without finding a
Markovian solution. Hence, b parameter is decreased gradually in subsequent steps of the op-
timization.

The details of the procedure are described by Algorithm 3. This algorithm usually finds a
solution if the input has a Markovian representation, and never finds a solution if it does not.
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Algorithm3Thealgorithm to transform a non-Markovian representation to aMarkovian one
procedure Transform-to-Markovian(D0, . . . , DK)

Gk ← Dk, for k = 0, . . . , K
b← 0.5
while b > precision do

repeat
i∗, j∗ ← arg mini,j E(Bi,j(b)−1G0Bi,j(b), . . . , Bi,j(b)−1GKBi,j(b))
Gk ← Bi∗,j∗(b)−1GkBi∗,j∗(b), for k = 0, . . . , K
i∗, j∗ ← arg mini,j E(Bi,j(−b)−1G0Bi,j(−b), . . . , Bi,j(−b)−1GKBi,j(−b))
Gk ← Bi∗,j∗(−b)−1GkBi∗,j∗(−b), for k = 0, . . . , K

until no further improvement
b← b/2

end while
return (G0, . . . , GK)

end procedure

Let us consider a numerical example for the moment matching procedure. The marginal
and lag-1 joint moments for this example were taken from the LBL trace (also used in Section
2.3.1, consisting of TCP traffic measurements), which was normalized to m1 = 1:

{m1, m2, m3, m4, m5} = {1, 2.942, 16.84, 150.73, 1876.8},

N =

 1 m1 m2

m1 η1,1 η1,2

m2 η2,1 η2,2

 =

 1 1 2.942

1 1.3013 4.5056

2.942 4.5 17.416

 .

First (σ, S) is obtained by procedure [82] based on the marginal moments m1, . . . , m5, result-
ing

σ =
[
0.33333 0.33333 0.33333

]
,

S =

 −1.7356 0.34074 −0.95214

−0.18575 −0.63031 −0.042169

−0.48092 −0.036353 −0.6245

 .

Then, matrices Λσ, Λ1 are built and R is computed from the matrix of joint moments. The
(non-Markovian) representation of the resulting RAP is

D0=

 −1.7356 0.34074 −0.95214

−0.18575 −0.63031 −0.042169

−0.48092 −0.036353 −0.6245

, D1=

 1.4612 −0.24037 1.1263

0.1905 0.53436 0.13337

0.47616 0.1323 0.5333

 .

Finally, (D0, D1) was transformed to a valid MAP with Algorithm 3 (in less than a second),
giving

G0=

−2.0161 0.091134 0.029499

0.014955 −0.63564 0.0079826

0.08378 0.062089 −0.33873

, G1=

 1.8439 0.04524 0.0063419

0.063835 0.54292 0.0059518

0.047433 0.003395 0.14203

 .
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48 markovian arrival processes

3.3 obtaining an approximate markovian representation

The procedure presented in Section 3.2.4 does not always succeed to return a valid Markovian
representation. For instance, if the output of the moment matching procedure is such that the
(joint) density of the inter-arrival times is negative, then the process itself is invalid, which
can not be fixed by any similarity transformations.

In such cases the goal is to find a valid MMAP that is as “close” as possible to the invalid
process. This section presents two algorithms developed for this purpose.

3.3.1 The two-step fitting approach

Compared to PH fitting methods, developing MMAP fitting algorithms is substantially more
complex computationally. MMAPs have much more parameters, and it is not obvious either
what kind of distance function to use during the optimization.

The idea appearing in [50], referred to as the two-step fitting approach, simplifies the fitting
process significantly by cutting the complex fitting process into two much smaller non-linear
optimization problems. Generally speaking, the main idea of the applied approach is that the
D0 and the D1 matrices are constructed separately.

• In the first step, the inter-arrival time distribution is fitted by a PH distribution, which
determines matrix D0 (the generator of the PH distribution) and vector α (the initial
probability vector of the PH distribution).

• Then matrix D1 is constructed, such that the inter-arrival time distribution of the re-
sulting MAP is kept the same, and its correlation structure approximates the one of the
target process as much as possible. In this step matrix D1 has to satisfy the following
two constraints to maintain the inter-arrival time distribution determined in the first
step:

C1: D11 = − D01,

C2: α(−D0)−1D1 = α.

The first step is a PH fitting problem for which any PH fitting procedure can be used.
In the second step a non-linear optimization program needs to be solved. In the next sub-

sections the goal function of the optimization is the L2 distance of the lag-1 joint moments
(Section 3.3.3) and the lag-1 joint densities (Section 3.3.4). However, the two-phase MMAP
fitting approach is more general, many alternative statistical quantities can be taken into ac-
count in the optimization to approximate the correlation of the inter-arrival times.

3.3.2 Fitting the distribution of the inter-arrival times

The inter-arrival time distribution is fitted by a PHdistribution providingmatrix D0 and vector
α. However, it does matter what the structure of this PH distribution is: it determines how
successful the second step of the two-step MMAP fitting method is going to be. The preferred
PH distribution has a structure by which constraints C1 and C2 leave enough ”degrees of
freedom” for the optimization.

E.g., if the PH distribution is such that the absorbing state is reachable only from a single
state, then due to constraintC1matrix D1 can have only a single non-zero row, implying that
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Figure 18.: Example for a hyper-FEB PH distribution

the resulting MMAP can have no correlation at all. This means that the canonical forms for
APH distributions (see Figure 4) are not suitable for the two-step fitting approach.

Similarly, no correlation can be achieved due to C2 if vector α of the PH distribution has
only a single non-zero element.

In the literature several articles investigate the optimal PH structure for MMAP fitting (see
[17] or [50]) proposing various heuristic transformation methods, but exact solution for this
problem does not exist yet.

According to our numerical experiments, special PH structures, e.g., hyper-exponential and
hyper-Erlang distributions (Figure 3) perform very well in this algorithm, since they have
many non-zero elements both in vector α and in vector D01.

To solve this problem [23] develops a moment matching method that returns a hyper-
exponential distribution of order N based on 2N − 1 moments, if it is possible. An other
solution published in [51] is based on a hyper-Erlang distribution of common order, which
always succeeds if an appropriately large Erlang order is chosen.

Our method of choice, however, is a slight modification of the algorithm presented in Sec-
tion 2.4, which is the generalization of the former two. It constructs PH distributions from
FEBs (see Section 2.1.4), where each FEB implements an eigenvalue of the target distribution.
A FEB consisting of a single state represents a real eigenvalue. With FEBs it is possible to rep-
resent complex eigenvalues as well, as opposed to the previously mentioned methods. The
original method in Section 2.4 puts the FEBs in a row (as in Figure 5), which is not appropri-
ate for our goals, since there is only a single state connected to the absorbing state, implying
that no correlation can be realized.

However, the original method can be modified in a straight forward way to return a hyper-
FEB structure (as shown in Figure 18). In this modification the vector-matrix pair (σ, S) given
by (50) is transformed to a hyper-FEB representation instead of themonocyclic representation.

3.3.3 Approximate Markovian representation by fitting the joint moments

As in case of PH distributions, the fitting problem can be made simpler with an appropriately
defined subclass in case of MMAPs as well.

In this section we are going to use a sub-class of MMAPs called structured marked Marko-
vian arrival processes (SMMAPs), that are the multi-type extensions of structured Markovian
arrival processes (SMAPs) introduced in [8], which are the generalizations of the ER-CHMM
structure introduced in [68].
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50 markovian arrival processes

In a SMMAP we have M PH distributed branches with branch i consisting of Ni phases.
The phases of the entire system have a two-dimensional identifier: phase (i, n) identifies state
n in branch i. Each inter-arrival time is PH distributed, and the choice determining which
branch generates the next inter-arrival time is Markovian. The parameters characterizing
this process are as follows.

• A size M set of PH distributions characterized by {(σ(i), S(i)), i = 1, . . . , M}, called
components. Each inter-arrival time is generated by one of the component PH distribu-
tions.

• Probabilities p(k)i,j with k = 1, . . . , K, i, j = 1, . . . , M. p(k)i,j represents the probability
that the next inter-arrival timewill be generated by component j given that the previous
one was generated by component i resulting in a type k arrival.

According to the definition matrix D0 is given by

D0 =


S(1)

S(2)

. . .

S(M)

 , (84)

and matrices Dk, k = 1, . . . , K, are

Dk =


s(1)σ(1)p(k)1,1 s(1)σ(2)p(k)1,2 . . . s(1)σ(M)p(k)1,M

s(2)σ(1)p(k)2,1 s(2)σ(2)p(k)2,2 . . . s(2)σ(M)p(k)2,M
...

... . . . ...
s(M)σ(1)p(k)M,1 s(M)σ(2)p(k)M,2 . . . s(M)σ(M)p(k)M,M

 , (85)

where column vector s(i) = (−S(i))1, i = 1, . . . , M.
Introducing matrices P(k) = {p(k)i,j , i, j = 1, . . . , M} and P = ∑K

k=1 P(k), the row vector
π = {πi, i = 1, . . . , M} describing the steady state probabilities of the components is the
solution of linear system πP = π, π1 = 1. One of the major benefits of using SMMAPs is
that the marginal and joint moments are given by simple formulas as

mi = E
(
F i
)
=

M

∑
a=1

πam(a)
i , (86)

η
(k)
i,j = E

(
(F (k)

0 )i(F1)
j
)
=

M

∑
a=1

M

∑
b=1

πa p(k)a,b m(a)
i m(b)

j , (87)

where m(a)
i is the ith moment of component PH distribution a.

In the two-step fitting framework the inter-arrival times and the correlation of the arrival
process are fitted consecutively. Section 3.3.2 proposes a hyper-FEB PH structure for the
former step. The hyper-FEB PH structure makes it easy to derive the component distributions:
each FEB branch constitutes one component. Matrix S(i) is the generator of the ith branch,
and vector σ(i) is composed by the (normalized) initial probabilities of branch i. Furthermore,
the inter-arrival time distribution imposes a constraint for correlation fitting: the steady state
component probability πi is the probability of starting from FEB branch i, thus πi is the sum
of the corresponding elements of vector σ.
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3.3 obtaining an approximate markovian representation 51

For fitting the correlations of the inter-arrival times, the subject function is the relative L2

distance of the lag-1 joint moments, thus the optimization problem can be formulated as

P1, . . . , PK = arg min
P1,...,PK

K

∑
k=1

R

∑
i=1

R

∑
j=1

η
(k)
i,j − η̂

(k)
i,j

η̂
(k)
i,j

2

, (88)

where η̂
(k)
i,j denotes the target joint moments and R is the number of joint moments to approx-

imate.
Inserting (87) into (88) leads to

P1, . . . , PK = arg min
P1,...,PK

K

∑
k=1

R

∑
i=1

R

∑
j=1

∑M
a=1 ∑M

b=1 πa p(k)a,b m(a)
i m(b)

j − η̂
(k)
i,j

η̂
(k)
i,j

2

, (89)

where the variables to optimize are only the elements of matrices Pk, k = 1, . . . , K, everything
else is given. The constraints of the optimization are

π
K

∑
k=1

Pk = π,

K

∑
k=1

Pk1 = 1,

Pk ≥ 0, for k = 1, . . . , K.

(90)

Observe that this nonlinear program is a non-negative least-squares (NNLS) problemwith lin-
ear equality and inequality constraints ([37],[59]), which is a relatively easy to solve subclass
of non-linear optimization problems1.

A similar approach has been applied in [19] on the basis of the overall state space of the
Markov chain where matrix D1 was fitted for given matrix D0. In [19] the equations for
several joint moments were composed to a single NNLS favoring higher order joint moments,
so that the fitting of lower order joint moments got worse. One possibility to cope with
this problem is to introduce weight functions to privilege lower order moments, but there
is no general rule which weight functions are appropriate [19]. To avoid weighting of the
joint moments of different order we propose a step-by-step fitting algorithm here. In the nth
step, joint moments η

(k)
i,j , i + j = n are the subject of fitting while keeping the already fitted

η
(k)
i,j , i + j < n moments unchanged.
In the first step, only the joint moments of order i = 1, j = 1 are the subject of fitting, and

the only linear constraints are the “standard” ones, given by (90). Suppose η̃
(k)
1,1 , k = 1, . . . , K

are the optimal solutions. In the next step the NNLS problem is formulated for joint moments
of order i + j = 3, and new linear constraints are added that ensure that the lower order joint
moments found to be optimal in the previous step are preserved. These additional constraints
have a form of η̃

(k)
1,1 = ∑M

a=1 ∑M
b=1 πa p(k)a,b m(a)

1 m(b)
1 for k = 1, . . . , K. In each step, only the

joint moments belonging to the same order are optimized and the optimal results for lower
order joint moments are preserved with the appropriate additional linear constraints.

Algorithm 4 gives the formal description of the procedure. The inputs of the algorithm are
the target marginal and joint moments to fit, and the algorithm returns the matrices charac-
terizing a valid MMAP.

1 A possible implementation is available at http://suvrit.de/software.html
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52 markovian arrival processes

Algorithm 4 Step-by-step fitting of lag-1 joint moments

procedure Fit-joint-moms(m̂i, i = 1, . . . , 2M− 1, η̂
(k)
i,j , i, j = 1, . . . , R, k = 1, . . . , K)

P ← hyper-FEB solutions of moment matching based on m̂1, m̂2, . . .
{D∗

0 , . . . , D∗
K} ← ∅

for each solution (σ, S) in P do
obtain component parameters (σ(i), S(i)) and πi from (σ, S) for i = 1, . . . , M
eqns← {πP = π, P1 = 1}
for n = 2, . . . , 2R do

Solve Q1, . . . , QK ← arg min
P1,...,PK

K
∑

k=1

n−1
∑

i=1

n−i
∑

j=1

(
∑M

a=1 ∑M
b=1 πa p(k)a,b m(a)

i m(b)
j −η̂

(k)
i,j

η̂
(k)
i,j

)2

Subject to eqns and Pk ≥ 0, k = 1, . . . , K
for i, j = 1, . . . , R with i + j = n and k = 1, . . . , K do

η
(k)
i,j = ∑M

a=1 ∑M
b=1 πaq(k)a,b m(a)

i m(b)
j

Add new constraint eqns← eqns ∪
{

η
(k)
i,j = ∑M

a=1 ∑M
b=1 πa p(k)a,b m(a)

i m(b)
j

}
end for

end for
Build matrices {D0, . . . , DK} based on (84) and (85)
if solution is better than {D∗

0 , . . . , D∗
K} then

{D∗
0 , . . . , D∗

K} ← {D0, . . . , DK}
end if

end for
return {D∗

0 , . . . , D∗
K}

end procedure
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Alternatively, the step-by-step fitting of the joint moments of different orders can be omit-
ted by performing the fitting in a single NNLS step involving all the joint moments up to or-
der R, i.e. the for-loop of Algorithm 4 is replaced by a single NNLS problem with the initial
equations as conditions. This (simpler) variant of the algorithm will be referred to as one-step
method in the sequel.

To demonstrate the behavior of the algorithm, we are going to fit a MAP for the BC-pAug89
trace (also used in Section 2.3.2 and in Section 2.4.3) consisting of measurements on an Ether-
net network. The moment matching procedure introduced in Section 3.2.2 returned matrices
that we failed to transform to a Markovian representation. Executing the step-by-step variant
of the presented fitting method, however, returned a valid MAP characterized by

D0 =

−0.051901 0 0

0 −0.15118 0

0 0 −1.2404

 ,

D1 =

 0 5.19 · 10−7 0.0519

0 0.092536 0.05864

0.0001297 0.016444 1.2238

 .

(91)

The first five marginal moments of this MAP are exact, they are the same as the ones of the
measurements. The joint moments are approximated reasonably well as well. The matrix
of joint moments corresponding to the measurements (NBC) and to the step-by-step fitting
procedure (Nstep−by−step) are

NBC =

1.6449 13.786 256.48

13.786 159.62 3116.1

256.48 3116.1 61177

 , Nstep−by−step =

1.6449 11.484 203.36

10.916 106.58 2169.4

191.23 2300.8 54775

 .

Observe that η1,1, which determines the lag-1 auto-correlation, is exact. The one-step variant
of the algorithm achieves slightly better results in the higher joint moments (although not
everywhere), but fails to capture the lower ones. The corresponding joint moments are

None−step =

1.5842 11.28 197.15

11.194 109.62 2254

192.6 2218.5 54349

 . (92)

3.3.4 Approximate Markovian representation by fitting the joint distribution

The procedure presented in this section provides an alternative method to construct matrices
Dk, k = 1, . . . , K of the process to approximate (remember that matrix D0 and vector α are
already available due to Section 3.3.2).

While Section 3.3.3 created matrices Dk, k = 1, . . . , K such that the L2 distance of the joint
moments are minimized, the goal here is to minimize the L2 distance of the joint density
functions up to a given lag k.

Before formalizing and solving the optimization problem we first provide an exact defini-
tion of the distance function and provide an efficient numerical procedure to evaluate it. The
efficient evaluation of the distance function ensures the quick termination of the optimization
algorithm.
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54 markovian arrival processes

Let us consider two MMAPs, F = (D0, . . . , DK) and G = (G0, . . . , GK). The squared
difference (L2 distance) of the joint density of the inter-arrival times up to lag-k is defined by

Dk{F ,G} =
K

∑
n1=1
· · ·

K

∑
nk−1=1

K

∑
nk=1

∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

0(
αF eD0x1 Dn1 · · · eD0xk−1 Dnk−1 · e

D0xk Dnk1

− αG eG0x1 Gn1 · · · eG0xk−1 Gnk−1 · e
G0xk Gnk1

)2

dx1 . . . dxk−1 dxk,

(93)

where αF and αG denote the stationary phase distributions of MMAPs F and G at arrival
instants. The squared distance is summed up for all combinations of arrival types up to lag k.
The square term expands to

Dk{F ,G} = Lk(F ,F )− 2Lk(F ,G) + Lk(G,G), (94)

where Lk(F ,G) represents the integral

Lk(F ,G) =
K

∑
n1=1
· · ·

K

∑
nk−1=1

K

∑
nk=1

∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

0

αF eD0x1 Dn1 · · · eD0xk−1 Dnk−1 · e
D0xk Dnk1

· αG eG0x1 Gn1 · · · eG0xk−1 Gnk−1 · e
G0xk Gnk1 dx1 . . . dxk−1 dxk.

(95)

The following theorem provides a procedure to evaluate this integral with recursive solu-
tions of k Sylvester equations.

Theorem 14. Lk(F ,G) can be expressed by

Lk(F ,G) =
K

∑
n=1

1TGn
T · Yk · Dn1, (96)

where matrix Yk is the solution of the recursive Sylvester equation−∑K
n=1 Gn

TYk−1Dn = G0
TYk + YkD0 for k > 1,

−αT
GαF = G0

TY1 + Y1D0 for k = 1.
(97)

Proof. We start by transforming (95) as

Lk(F ,G)

=
K

∑
nk=1

K

∑
nk−1=1

· · ·
K

∑
n1=1

∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

0
1TGnk

TeG0
T xk Gnk−1

TeG0
T xk−1 · · ·Gn1

TeG0
T x1 αT

G

· αF eD0x1 Dn1 · · · eD0xk−1 Dnk−1 · e
D0xk Dnk1 dx1 . . . dxk−1 dxk

=
K

∑
nk=1

1TGnk
T

(
K

∑
nk−1=1

· · ·
K

∑
n1=1

∫ ∞

0
· · ·

∫ ∞

0

∫ ∞

0
eG0

T xk Gnk−1
TeG0

T xk−1 · · ·Gn1
TeG0

T x1 αT
G

· αF eD0x1 Dn1 · · · eD0xk−1 Dnk−1 · e
D0xk dx1 . . . dxk−1 dxk

)
· Dnk1.
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Let us denote the term in the parenthesis by Yk. For k > 1, separating the first and the last
terms leads to the recursion

Yk =
K

∑
nk−1=1

∫ ∞

0
eG0

T xk ·Gnk−1
T

(
K

∑
nk−2=1

· · ·
K

∑
n1=1

∫ ∞

0
· · ·

∫ ∞

0
eG0

T xk−1 Gnk−2
T · · ·Gn1

TeG0
T x1 αT

G

· αF eD0x1 Dn1 · · · eD0xk−1 dx1 . . . dxk−1

)
Dnk−1 · e

D0xk dxk

=
K

∑
nk−1=1

∫ ∞

0
eG0

T xk Gnk−1
T · Yk−1 · Dnk−1 eD0xk dxk,

(98)

which is the solution of Sylvester equation −∑K
n=1 Gn

TYk−1Dn = G0
TYk + YkD0 (see The-

orem 36 in Appendix A.2). The equation for k = 1 is obtained similarly.

Note that the solution of (97) is always unique as matrices D0 and G0 are sub-generators.
Having defined the distance function, the optimization problem providing matrices

Gk, k = 1, . . . , K can be formulated by

(G1, . . . , GK) = arg min
G1,...,GK

Dk{(D0, . . . , DK), (G0, . . . , GK)}, (99)

where matrices (D0, . . . , DK) correspond to the MRAP to approximate (not having a Marko-
vian representation or possibly not a valid process at all), and matrices (G0, . . . , GK) are the
matrices of a valid MMAP.

In the single-type case (K = 1), if the approximation is based on the lag-1 behavior only and
ignores the distance of higher dimensional joint densities, then the optimization (99) reduces
to a quadratic programming problem.

Theorem 15. Given that αG and G0 are available, matrix G1 minimizing D2{F ,G} is the
solution of the quadratic program

min
G1

{
vec〈G1〉T(WBB ⊗ YBB)vec〈G1〉 − 2vec〈D1〉T(WAB ⊗ YAB)vec〈G1〉

}
(100)

subject to(
I ⊗ αG(−G0)

−1
)
vec〈G1〉 = αF , (101)

(1T ⊗ I)vec〈G1〉 = −G01. (102)

Matrices WAB, WBB, YAB and YBB are the solutions to Sylvester equations

D0WAB + WABG0
T = −D01 · 1TG0

T, (103)

G0WBB + WBBG0
T = −G01 · 1TG0

T, (104)

D0
TYAB + YABG0 = −αT

F · αG , (105)

G0
TYBB + YBBG0 = −αT

G · αG . (106)

Proof. Let us first apply the vec〈〉 operator (column stacking, see Appendix A.1) on (96) at
K = 1, k = 2. Utilizing the identity (353) and the identity (354) we get

vec〈L2(F ,G)〉 = (1TD0
T ⊗ 1TG0

T) · vec〈Y2〉 = vec〈G01·1TD0
T〉T · vec〈Y2〉. (107)
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Applying the vec〈〉 operator on both sides of (97) and using (353) again leads to

−(I ⊗G1
TY1)vec〈D1〉 = (I ⊗G0

T)vec〈Y2〉+ (D0
T ⊗ I)vec〈Y2〉, (108)

from which vec〈Y2〉 is expressed by

vec〈Y2〉 = (−D0
T ⊕G0

T)−1(I ⊗G1
T)(I ⊗ YAB)vec〈D1〉, (109)

since Y1 = YAB. Thus we have

vec〈L2(F ,G)〉 = vec〈G01·1TD0
T〉T(−D0

T ⊕G0
T)−1︸ ︷︷ ︸

vec〈WAB〉T

(I ⊗G1
T)(I ⊗ YAB)vec〈D1〉, (110)

where we recognized that the transpose of vec〈WAB〉 expressed from (103) matches the first
two terms of the expression. Using the identities of the vec〈〉 operator yields

vec〈WAB〉T(I ⊗G1
T) = vec〈G1

TWAB〉T = vec〈G1〉T(WAB ⊗ I). (111)

Finally, putting together (110) and (111) gives

vec〈L2(F ,G)〉 = vec〈G1〉T(WAB ⊗ YAB)vec〈D1〉. (112)

From the components of D2{F ,G} (see (94)) L2(F ,F ) plays no role in the optimization as
it does not depend on G1, the term L2(F ,G) yields the linear term in (100) according to (112),
and L2(G,G) introduces the quadratic term, based on (112) after replacing F by G .

According to the first constraint (101) and the second constraint (102) the solution must
satisfy αG(−G0)−1G1 = αG and G11 = −G01, respectively.

Theorem 16. Matrix WBB ⊗ YBB is positive definite, thus the quadratic optimization problem
of Theorem 15 is convex.

Proof. If WBB and YBB are positive definite, then their Kronecker product is positive definite
as well. First we show that matrix YBB is positive definite, thus z YBB zT > 0 holds for
any non-zero row vector z. Since YBB is the solution of a Sylvester equation, we have that
YBB =

∫ ∞
0 eG0

T xαT
G · αGeG0x dx. Hence

z YBB zT =
∫ ∞

0
zeG0

T xαT
G · αGeG0xzT dx =

∫ ∞

0

(
αGeG0xzT

)2
dx, (113)

which can not be negative, furthermore, apart from a finite number of x values αGeG0xzT can
not be zero either. Thus, the integral is always strictly positive.

The positive definiteness of matrix WBB can be proven similarly.

Being able to formalize the optimization ofD2{F ,G} as a quadratic programming problem
means that obtaining the optimal matrix G1 is efficient: it is fast, and there is a single optimum
which is always found.

If we intend to take higher lag joint density differences also into account (k > 2) and/or
there are multiple arrival types (K > 1), the objective function is not quadratic. However,
our numerical experience indicates that the built-in non-linear optimization tool in MATLAB
(fmincon) is able to return the solution quickly, independent of the initial point. We have a
strong suspicion that the returned solution is the global optimum, however we can not prove
the convexity of the objective function formally.
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Algorithm 5 Algorithm for fitting the joint density up to lag k
procedure Fit-joint-density(D0, . . . , DK)

m̂1, m̂2, · · · ← marginal moments of the input MRAP
P ← hyper-FEB solutions of moment matching based on m̂1, m̂2, . . .
{D∗

0 , . . . , D∗
K} ← ∅

for each solution (σ, S) in P do
G0 ← S
αG ← σ

Solve (G1, . . . , GK) = arg min
G1,...,GK

Dk((D0, . . . , DK), (G0, . . . , GK)),

if solution is better than {D∗
0 , . . . , D∗

K} then
{D∗

0 , . . . , D∗
K} ← {G0, . . . , GK}

end if
end for
return {D∗

0 , . . . , D∗
K}

end procedure

The pseudo-code of the procedure to transform a non-Markovian or invalid MRAP to a
valid Markovian representation is presented by Algorithm 5.

In the first numerical example 7 marginal moments and 9 lag-1 joint moments are extracted
from the BC trace (also used in Section 3.3.3) to create a RAP of order 4 with the moment
matching method presented in Section 3.2.2. The obtained matrices are:

G0=


−0.579 −0.402 −0.364 −0.348

−0.368 −0.205 −0.315 −0.36

1.32 −0.845 0.701 1.13

−1.7 0.3 −1.14 −1.52

 , G1=


0.576 0.262 0.41 0.446

0.168 0.501 0.313 0.266

0.29 −1.69 −0.598 −0.302

0.292 1.94 1.03 0.786

 .

The RAP characterized by G = (G0, G1), however, apart of being non-Markovian, is not
a valid stochastic process as the joint density given by (52) is negative since f2(0.5, 8) =

−0.000357. This invalid RAP is the target of our approximation in this section.
Let us now construct a MAP F (1) = (D(1)

0 , D(1)
1 ) which minimizes the squared distance

of the lag-1 joint density with G . The distribution of the inter-arrival times, characterized by
αF , D(1)

0 are obtained by the moment matchingmethod andmatrix D(1)
1 has been determined

by the quadratic program provided by Theorem 15. The matrices of the MAP are

D(1)
0 =



−0.074 0 0 0 0

0 −0.27 0.27 0 0

0 0 −0.27 0.27 0

0 0 0 −0.27 0

0 0 0 0 −1.2


, D(1)

1 =



0.0065 0.024 0 5.5·10−8 0.044

0 0 0 0 0

0 0 0 0 0

0.017 0.086 0 0 0.17

0 0.012 0 0 1.2


,

and the squared distance in the lag-1 joint pdf is D2{F (1),G} = 0.000105. The quadratic
program has been solved in less than a second. Next, we repeat the same procedure, but
instead of focusing on the lag-1 distance, we optimize on the squared distance of the joint pdf
up to lag-10. This can not be formalized as a quadratic program anymore, but the optimization
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Figure 19.: Comparison of the density functions of the marginal distribution
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Figure 20.: Comparison of the lag-1 and lag-10 joint density functions

is still fast, lasting only 1-2 seconds. In this case the hyper-exponential marginal distribution
provided the best results (D11{F (10),B} = 4.37 · 10−5). The matrices are

D(10)
0 =

−0.0519 0 0

0 −0.151 0

0 0 −1.24

 , D(10)
1 =

 10−6 0.0519 10−6

10−6 0.151 0.000465

0.000129 10−6 1.24

 .

To evaluate the quality of the approximation Figure 19 compares the marginal density func-
tions of G,F (1) and F (10). The plots are hiding each other, the approximation is very accu-
rate. To demonstrate that the lag-1 and the lag-10 joint densities are also accurate, Figure 20
depicts them at x2 = 0.5, 1 and 1.5.
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4
SK I P - F REE PROCES SE S

This chapter introduces two important tools in Markovian modeling: the quasi birth-death
processes and the Markovian fluid models. The subsequent chapters rely on these two tools
heavily.

• In case of the MAP/MAP/1 queues in Chapter 5, quasi birth-death processes (QBDs) are
used for the analysis of the queue length and the departure processes, while Markovian
fluid models (MFMs) are used for the analysis of the sojourn time of customers.

• In case of MMAP[K]/PH[K]/1-FCFS queues in Chapter 6 all performance metrics are
derived using the age process, which is transformed to a MFM.

• The analysis of the MMAP[K]/PH[K]/1 priority queue in Chapter 7 relies on the work-
load process, which is transformed to a MFM to make the solution numerically efficient.

4.1 qasi birth-death processes

4.1.1 Simple birth-death processes

ACTMC {L(t), t ≥ 0} over state spaceN = {0, 1, 2, . . . } is called an infinite birth-death pro-
cess when it has only two kinds of state transitions: forward (“birth”) and backward (“death”)
transitions moving the CTMC to the next and to the previous state, respectively. The genera-
tor matrix Q is tri-diagonal in this case, thus

Q =


−λ0 λ0

µ1 −λ1 − µ1 λ1

µ2 −λ2 − µ2 λ2
. . . . . . . . .

 . (114)

The Markov chain L(t) is called a homogeneous birth-death process when all forward rates
and all backward rates are identical, thus λi = λ, ∀i ≥ 0 and µi = µ, ∀i > 0. Homoge-
neous birth-death processes have a great practical importance. Basic queueing systems, like
the M/M/1-FCFS queue (used to model simple buffers with single server and first-come-first-
served service) and the M/M/∞-PS queue (used to model infinite server systems where the
total service capacity is fixed and shared among the servers) can both be modeled by such a
Markov chain ([53]). An attractive feature of homogeneous birth-death processes is that their
analysis is simple. Assuming stability (hence λ < µ) the stationary distribution is geometric,
given by

πk = lim
t→∞

P(L(t) = k) = (1− ρ)ρk, k = 0, . . . , ∞, (115)
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…
λ0

µ1

λ1

µ2

λ2

µ3

λ3

µ4

Figure 21.: A simple birth-death process
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Figure 22.: A quasi birth-death process

where ρ = λ/µ.

4.1.2 Quasi birth-death processes

In simple birth-death processes the sojourn time of the states is exponentially distributed
(with parameter λi + µi in state i), and the distribution of the next state does not depend on
the time spent in the previous state (it moves to the next state with probability λi/(λi + µi)

and to the previous one with probability µi/(λi + µi)).

To model more general systems where these two properties do not hold, they have intro-
duced quasi birth-death processes (QBDs, [65]). QBDs are two-dimensional continuous time
Markov chains {L(t),J (t), t ≥ 0}, where L(t) is referred to as the level process and J (t) is
called the phase process. In a QBD only state transitions to the next and to the previous levels
are allowed (see Figures 22 and 23). Due to this behavior QBDs are skip-free to both to the left
and to the right.

In the sequel we restrict our attention to the case when the level process is infinite, L(t) ∈
[0, ∞] and the phase process is finite J (t) ∈ [1, N]. As a consequence of the skip-free
property the generator matrix is block tri-diagonal with the appropriate state ordering, thus

Q =


L0 F0

B1 L1 F1

B2 L2 F2
. . . . . . . . .

 , (116)

where blocks F i, Li and Bi denote the matrices containing the rates of level forward, local,
and level backward transitions, respectively. If these matrix blocks are the same at each level,
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L(t)

t

Figure 23.: The trajectory of a QBD process

thus F i = F, ∀i ≥ 0 and Li = L, Bi = B, ∀i > 0 then the process is called a homogeneous
QBD. In the forthcoming chapters homogeneous QBDs with generator

Q =


L0 F

B L F

B L F
. . . . . . . . .

 (117)

are applied many times for various modeling purposes.

4.1.3 Stationary solution of QBDs

In the regular part of the state space (above level 0) the generator of the CTMC characterizing
the phase process is given by A = F + L + B. Assuming that A is irreducible, the stationary
phase distribution vector ν is the solution of νA = 0, ν1 = 1. The stationary drift of the
QBD, which is the difference between the mean level forward and level backward transition
rates, is given by

d = νF1− νB1. (118)

The stability condition for QBDs is d < 0 (see [65]).
Let us denote the stationary distribution of the QBD by πi,j = limt→∞ P(L(t) = i,J (t) =

j), and introduce vectors π and πi such that πi = {πi,j, j = 1, . . . , N} and π = {πi, i =
0, . . . , ∞}. Due to the block structure of the generator (117) and the structure of vector π the
stationary equation πQ = 0, π1 = 1 translates to

π0L0 + π1B = 0, (119)
πi−1F + πiL + πi+1B = 0, for i = 1, . . . , ∞, (120)

∞

∑
i=0

πi1 = 1. (121)

From [65] it is known that the solution of such matrix recursions is matrix-geometric, thus

πi = π0Ri, (122)

which has two parameters: matrix R and vector π0. Notice how similar the matrix-geometric
solution (122) is to the geometric solution of simple birth-death systems given by (115).
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To obtain matrix R, the solution (122) is inserted to the stationary equation (120), from
which it follows that R has to satisfy the matrix-quadratic equation

F + RL + R2B = 0. (123)

This matrix quadratic equation has several different solutions. In [65] it is proven that the R
we need is the minimal non-negative solution of this equation. The elements of matrix R have
a stochastic interpretation as well: (R)i,j is the mean time spent at level n + 1 and phase j,
staring at level n and phase i, before returning to level n− 1. Observe that due to the spatial
homogeneity of the system this quantity does not depend on level n.

Vector π0 can be derived from the boundary equation (119). Making use of π1 = π0R
(119) becomes

π0(L0 + RF) = 0. (124)

This linear system is, however, rank deficient. To make it full rank, the normalization condi-
tion

1 = π0

∞

∑
i=0

Ri1 = π0(I − R)−11 (125)

must be added as well.
In the stationary analysis of QBDs the most challenging computational step is the solution

of the matrix quadratic equation providing R. Several approaches have been published, in-
cluding the spectral solution in [63], the invariant subspace method in [2] and an iterative
solution in [65].

The simplest algorithm for matrix R is a functional iteration based on simple substitutions.
According to this method matrix R0 is set to 0 initially, and the steps

Rn = (−L)−1 (F + BR2
n−1
)

(126)

are repeated iteratively as long as the relative change in the matrix elements elements gets
negligible. A drawback of this algorithm is that it suffers from linear convergence, thus the
error term vanishes at a linear speed with the number of iterations taken. More advanced
algorithms with quadratic convergence have been introduced as well, with the most popular
one being the cyclic reduction (CR) algorithm ([12]). The iterations of the CR algorithm are
more complex, but the solution is found in much fewer iterations than in case of the simple
substitution method.

The CR algorithm is remarkably robust (as well as some more recent algorithms), it allows
to solve QBDs with many thousands of phases in just a couple of seconds without numerical
issues. In the rest of the dissertation, every time the solution of a QBD is required, the CR
algorithm will be used to obtain matrix R.

4.1.4 Busy period analysis

Matrix R plays a fundamental role in the analysis of QBDs, but there are some other important
matrix quantities related to QBDs as well. One of those matrices is traditionally denoted by
G, and will be used several times in the upcoming chapters.

Matrix G contains the phase transition probabilities over the busy period. If random vari-
able B denotes the duration of the busy period, thus B = inf(t > 0,L(t) = 0), the formal
definition of the elements are

(G)i,j = P(J (B) = j|L(0) = 0,J (0) = j). (127)
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Observe that due to the spatial homogeneity the scope of matrix G is not restricted to level 0
only. The entries (G)i,j also provide the probability that starting from any level n and phase
i the phase will be j at the first return to level n− 1.

The matrix equation for G can be derived along this interpretation. The QBD can either
leave level n by moving right to level n − 1, marking the end of the “time till first return”
period, the corresponding phase transitions are given by (−L)−1B. Or it can leave level n by
moving to the next level, which is accompanied by phase transitions (−L)−1F. In this case,
however, level n − 1 can be reached only by two subsequent “first return” periods. Hence,
the equation for G is G = (−L)−1B + (−L)−1FG2, that, pre-multiplying by L leads to

B + LG + FG2 = 0, (128)

which is very similar to (123).
The algorithms developed for matrix R can be adopted to compute matrix G. Actually,

there are formulas available to express any of these matrices with the other one.

4.2 markovian fluid models

QBDs are popular in the performance evaluation of a wide range of engineering systems, due
to their algorithmic tractability which is the consequence of the skip-free behavior.

MFMs are the continuous counterparts of QBDs, where the level processL(t) is continuous.
MFMs, similar to QBDs, are skip free both to the left and to the right. There are significant
similarities in the solution methods for QBDs and MFMs as well, which have been discovered
only in the last two decades (starting with [71]), and the effort towards adapting the research
results available for QBDs to MFMs is still ongoing. The appearance of efficient stationary
analysis algorithms for MFMs enabled the efficient solution of many multi-class queues as
demonstrated in the next three chapters.

4.2.1 Model definition

MFMs (also known as Markovian fluid flows) are characterized by a two-dimensional Markov
process {L(t),J (t), t > 0}, whereL(t) represents the fluid level andJ (t) is the underlying
CTMC with state space N of size |N | = N and generator matrix Q that modulates the rate
at which fluid is accumulated in the fluid buffer.

The rate at which the level of the buffer changes in state i of the background process is de-
noted by ri ∈ R. The diagonal matrix R is composed by fluid rates ri, i = 1, . . . , N. Formally,
the behavior of the fluid buffer is as follows,

d
dt
L(t) =

{
rJ (t), if L(t) > 0,

max{0, rJ (t)}, if L(t) = 0.
(129)

In Figure 24 the solid line depicts a trajectory of the fluid level, and the dotted line represents
the current state of the background process (the rates are r1 = r2 = 1, r3 = −1).

4.2.2 Stationary solution

If the stationary distribution of the background CTMC is denoted by ν, the mean fluid drift is
given by

d = νR1. (130)
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L(t)

t

J (t)

t

Figure 24.: The trajectory of a Markovian fluid model

The MFM is stable if d < 0 holds. In the sequel we are considering stable systems only.
Let us denote the row vector of the stationary distribution of the fluid level for x > 0 by

π(x) = {πi(x), i ∈ N} with πi(x) = limt→∞ lim∆→0(1/∆)P(L(t) ∈ (x, x + ∆),J (t) =
i), and the row vector of the stationary probabilities of empty buffer by p = {pi, i ∈ N}
with pi = limt→∞ P(J (t) = i,L(t) = 0).

Vectors π(x) and p are the solutions of the matrix differential equation [54]

d
dx

π(x)R = π(x)Q, (131)

with boundary conditions

π(0)R = p Q, pi = 0, ∀i : ri > 0, (132)

and normalizing condition

p1+
∫ ∞

0
π(x)1 dx = 1. (133)

These systems of equations are the continuous counterparts of (120), (119) and (121), respec-
tively.

In the recent decades it has been recognized that the matrix-analytic approach allowing
the efficient analysis of QBDs can be applied to MFMs as well, making it possible to solve
fluid models with a large number of states (up to several thousand) in a numerically stable
way (see [71],[76]). MFMs where |ri| = 1, ∀i ∈ N are referred to as canonical fluid models,
and are especially simple to analyze. Here we summarize the main steps of the analysis of
canonical fluid models. We assume that the state space is partitioned according to the sign of
the associated fluid rates to two sets N+ = {i ∈ N , ri = 1} and N− = {i ∈ N , ri = −1}
(N+ = |N+|, N− = |N−|) as

Q =

[
Q++ Q+−

Q−+ Q−−

]
, R =

[
I

−I

]
. (134)

The analysis is based on two fundamental matrices, matrix Ψ and K (see [71]). Matrix Ψ

has a simple probabilistic interpretation: entry (Ψ)i,j, i ∈ N+, j ∈ N− is the probability that
the background process is in state j when the fluid level returns to 0 given that it was in state
i when the busy period (a non-empty period of the fluid queue) was initiated. Matrix Ψ is the
solution to the non-symmetric algebraic Riccati equation (NARE)

ΨQ−+Ψ + ΨQ−− + Q++Ψ + Q+− = 0. (135)
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The efficient solution of this NARE is as crucial for the analysis of MFMs as the solution of the
matrix-quadratic equation is for the analysis of QBDs. The state-of-the art algorithms are the
Structure-preserving Doubling Algorithm (SDA) [36] and the Alternating-Directional Dou-
bling Algorithm (ADDA) [86], both of these algorithms have quadratic convergence speed.

Matrix K has an important role as well. Entry i, j of matrix eKx is the expected number of
crossings of fluid level x in phase j ∈ N+ starting from level 0 and phase i ∈ N+, before re-
turning to level 0. If the mean fluid rate is negative, all eigenvalues of matrix K have negative
real parts (thus it is full rank and invertible) and can be expressed from Ψ as

K = Q++ + ΨQ−+. (136)

Based on these matrices the stationary fluid level density vector π and the stationary prob-
ability vector of the idle buffer p can be computed by the following theorem.

Theorem 17. If the drift of the queue is negative, vector π(x) is given by

π(x) =
[
π+(x) π−(x)

]
= p−Q−+eKx

[
I Ψ

]
, x ≥ 0, (137)

and the probability mass vector p is equal to

p =
[
0 p−

]
, (138)

where p− is the solution to the set of linear equations

p−(Q−− + Q−+Ψ) = 0, (139)

p−Q−+(−K)−1
[

I Ψ

]
1+ p−1 = 1. (140)

Proof. The theorem is based on [76], especially on Theorem 2.2.

Let us now investigate the similarities between QBDs and MFMs. While the stationary dis-
tribution is matrix-geometric for QBDs (122), it is matrix-exponential for MFMs (137). Matri-
ces K and Ψ in MFMs play the same role as matrices R and G in QBDs. Furthermore, both
for R (123) and K (136) the iterative solutions of some kind of quadratic equations are neces-
sary.

4.2.3 Busy period analysis of Markovian fluid models

In this section we briefly summarize the most essential results of [1] and [72] on the busy
period analysis of fluid models, they will be necessary in Chapter 7 for the solution of priority
queues.

As mentioned above, Ψ is the phase transition probability matrix between the beginning
and the end of the busy period. If the duration of the busy period is also of interest, we can
introduce matrix Ψ(t), the time dependent counterpart of Ψ. Entry (Ψ(t))i,j, i ∈ N+, j ∈
N−, t > 0 is the joint probability that the duration of the busy period is less than t and the
underlying Markov chain is in state j when the fluid level returns to 0 given that it was in
state i when the busy period was initiated.

According to Theorem 1 of [72], the LST of Ψ(t), denoted by Ψ∗(s) satisfies the NARE

Ψ∗(s)Q−+Ψ∗(s) + Ψ∗(s)Q−− + Q++Ψ∗(s) + Q+− = 2sΨ∗(s). (141)
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(Note that setting s→ 0 gives back (135)).
Let the random variable B denote the length of the busy period of a canonical fluid queue

characterized by matrix Q given that the state probability vector of the background CTMC is
κ = {κi, i = 1, . . . , N+} when the busy period starts.

Theorem 18. The LST of the busy period f ∗B(s) = E(e−sB) is given by

f ∗B(s) = κ Ψ∗(s)1. (142)

Proof. The theorem follows from the probabilistic interpretation of Ψ(t).

Theorem 19. The kth moment of the busy period is given by

E(Bk) = κ (−1)kΨ(k)1, (143)

where Ψ(0) = Ψ and matrices Ψ(k), k > 0 are defined recursively as

(Q+++ΨQ−+)Ψ(k) + Ψ(k)(Q−−+Q−+Ψ)

= 2kΨ(k−1) −
k−1

∑
i=1

(
k
i

)
Ψ(i)Q−+Ψ(k−i).

(144)

Proof. (144) follows from routine derivations with Ψ(k) = dk

dsk Ψ∗(s)|s=0.

Since (135) providing Ψ(0) is a NARE and (144) providing Ψ(k), k > 0 is a Sylvester equa-
tion, the LST of the busy period and the moments can be obtained in a numerically efficient
way. The distribution function in time domain, FB(t) = P(B < t) = κ Ψ(t)1 is, however,
more involved to calculate. One can rely on a generic numerical Laplace transform inversion
procedure, but according to our experience they are not always reliable up to the machine
precision, and need complex arithmetic. Instead, a simple and elegant procedure called Erlan-
gization is available [72], according to which the order-n approximation F(n)

B (t) is

F(n)
B (t) =

∫ ∞

0
fE(n,n/t)(u) · FB(u) du, (145)

where fE(n,n/t)(u) is the density of an order-n Erlang distribution with rate parameter ν =

n/t and we have that F(n)
B (t) → FB(t) as n → ∞. F(n)

B (t) is basically the probability that
the busy period is shorter than an Erlang(n, ν) variable.

Specifically for the busy period analysis F(n)
B (t) can be obtained according to the next the-

orem.

Theorem 20. ([72], Theorem 4) The order-n approximation of the busy period distribution is

F(n)
B (t) = κ

n−1

∑
k=0

Ψν
k1, (146)

where matrices Ψν
k are defined recursively as

(Q+++Ψν
0Q−+−νI)Ψν

k + Ψν
k(Q−−+Q−+Ψν

0−νI)

= −2νΨν
k−1 −

k−1

∑
i=1

Ψν
i Q−+Ψν

k−i,
(147)

for k > 0, and Ψν
0 is the solution to the NARE

Ψν
0Q−+Ψν

0 + Ψν
0(Q−− − νI) + (Q++ − νI)Ψν

0 + Q+− = 0. (148)
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For the detailed proof of the theorem, see [72]. The idea is to construct a special fluid
model which counts the number of Exp(ν) events during the busy period. Matrix Ψν

k is the
probability that k such events occur before the end of busy period (with the usual phase-
transition probabilities being the entries of the matrix). If the number of Exp(ν) events is less
than n, then the busy period is shorter than an Erlang(n, ν) variable, providing (145).
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5
ANALYS I S O F THE MAP /MAP / 1 QUEUE

The MAP/MAP/1 queue is a FCFS queue where the arrivals of customers are given by a MAP
characterized by matrices D0 and D1, and the service process is described by a MAP as well,
given by matrices S0 and S1.

Thus, both the inter-arrival and the service times can be non-exponential and correlated.
Themajority of queueingmodels consider iid. service times, which is a reasonable assumption
in many practical systems. For this specific queue, however, modeling the service process by
a MAP makes the discussion simpler, and since the PH renewal processes are the sub-classes
of MAPs, this choice makes the queueing model more general (it is described in Section 3.1.1
how to represent PH service times with a MAP).

The performance measures in this system, including the queue length and the sojourn time
distributions, can be derived by standardmethods and are known for a couple of decades. Nev-
ertheless, we are going to present them in Sections 5.1 and 5.2 as they provide an introduction
to the apparatus applied for the analysis of more complex systems described in the subsequent
chapters. In Section 5.3.3 several approximations for the departure process are discussed, in-
cluding the joint moment based one, which plays an essential role in the queueing network
analysis approach proposed in Chapter 8.

5.1 analysis of the number of customers in the system

If we denote the mean arrival rate by λ = θAD11 and the mean service rate by µ = θSS11

(with θA and θS being the stationary phase distributions of the arrival and service processes,
respectively), the utilization of the queue is given by ρ = λ/µ. In this chapter it is assumed
that the system is stable, thus ρ < 1.

To analyze the number of customers in the system, a CTMC is created to model the queue
length process. While this seems to be a natural choice, it will be clear in Chapter 6 and 7 that
in many systems this approach is either too complex or infeasible.

The CTMC characterizing the queue length process needs to keep track of 1) Y(t), the
number of customers in the system, 2) JA(t), the phase of the arrival process, and 3) JS(t),
the phase of the service process. By introducing the finite state CTMC J (t) as the direct
product of JA(t) and JS(t), the queue length process leads to a homogeneous QBD (see
Section 4.1.2), where the generator has a block tri-diagonal structure given by (117). The
matrix blocks of the generator are defined by the following Kronecker operations:

F = D1 ⊗ I,

L = D0 ⊕ S0,

B = I ⊗ S1,

L0 = D0 ⊗ I.

(149)

71

dc_1412_17

Powered by TCPDF (www.tcpdf.org)



72 analysis of the map/map/1 qeue

The discussion of the basic properties of the Kronecker operations and how to use them to
create the generator of independent, parallel Markov chains is provided in Appendix A.1.
The meaning of the Kronecker summation giving matrix L is that the arrival and the service
MAPs are evolving in parallel moving along their internal transitions. The Kronecker product
providing F (and B) are those transition rates of the arrival (and service) MAPs evolving in
parallel that lead to arrivals (and services), respectively. Arrival events are accompanied by
level forward and service events by level backward transitions in the QBD. At level 0, where
the system is empty, the service MAP gets frozen.

If the arrival MAP has NA phases and the service MAP has NS phases, the cardinality of
the superposed phase process (which is the size of the blocks of the generator) is N = NA ·NS.

Let us denote the joint stationary distribution of the number of customers in the system
and the phase process by vector yi = {limt→∞ P(Y(t) = i,J (t) = j), j = 1, . . . , N}.
According to (122) yi has a matrix-geometric distribution, thus

yi = y0Ri, i ≥ 0. (150)

The details to obtain vector y0 and matrix R are described in Section 4.1.2.
The simplicity of the matrix-geometric distribution enables the efficient computation of

many performance measures. E.g., the kth factorial moment of the number of customers in
the system E(Y k) can be computed as

E(Y k) =
∞

∑
i=0

i(i− 1) · · · (i− k + 1) y0Ri1 = k!y0Rk(I − R)−(k+1)1, (151)

and the generating function (GF) Y(z) = ∑∞
i=0 ziyi1 is

Y(z) =
∞

∑
i=0

zi y0Ri1 = y0(I − zR)−11. (152)

For the departure process analysis the distribution of the number of customers embedded
just after the departures, xi, will be necessary. This distribution is computed by “weighting”
the elements of the stationary distribution with the transition rates leading to a departure,
thus

xi =
yi+1B

∑∞
k=1 ykB1

=
1
λ

yi+1B, i ≥ 0. (153)

The normalization constant, the denominator of (153) is the mean departure intensity which
equals the mean arrival intensity λ when the queue is stable.

5.2 sojourn time analysis

In this section we introduce two modeling tools, the age process and the workload process,
that play an important role in modern queueing theory. Here we use them only to derive the
sojourn time distribution of the MAP/MAP/1 queue, but in the next two chapters they will be
the fundamental tools of the analysis. The entire solution of the MMAP[K]/PH[K]/1 queue
(including the analysis of the queue length, the sojourn time and the departure process, in
Chapter 6) is based on the age process analysis. Similarly, the workload process analysis will
be essential to solve priority queues in Chapter 7.
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Figure 25.: Evolution of the age process

5.2.1 Sojourn time analysis based on the age process

The age process tracks the age of the customer under service [41]. The age of the customer
in service increases linearly between the service instants and jumps downwards when the
customer leaves the server (since the next customer is younger than the current one). The
length of the downward jump is equal to the inter-arrival time between the customer leaving
the system and the next customer who is about to enter the server (see Figure 25), unless the
server becomes idle for a while.

There are various ways to deal with idle periods when using an age process: (i) negative
values could be allowed for the age, the absolute value of which is the time until the server
becomes busy again (ii) these idle periods could be skipped or (iii) the age is said to equal zero
until the server becomes occupied again. We will make use of the latter approach and define
the age process {A(t),J (t), t ≥ 0} as follows.
A(t) represents the age of the customer in service at time t, that is, t−A(t) represents

the time of arrival of the customer in service, it is equal to zero in case the server is idle. If
A(t) > 0, then J (t) keeps track of (a) the current phase of the service MAP and (b) the
phase of the arrival MAP at time t−A(t). If A(t) = 0, then J (t) simply reflects the state
of the arrival MAP at time t.

The direct analysis of the age process (exhibiting a skip free to the right behavior) seems
hard due to the jumps. Observe that in our model the size of the jumps is not arbitrary, it is
governed by the MAP generating the arrivals, which can be exploited to develop an efficient
analysis method. We use the approach taken in [83], which was a generalization of [28]. The
basic idea is to construct a canonical Markovian fluid model (Section 4.2) that is skip-free in
both directions and to derive the steady state distribution of the age process from the steady
state distribution of this fluid queue.

The background process of the fluid queue has two sets of phases according to the following
considerations:

• The first set of phases corresponds to the evolution of the age process when A(t) in-
creases. The fluid rates in this set of phases are equal to 1, since the age of the customer
in the server increases according to a slope of one (see the solid line in Figure 26).

• The second set of phases is used whenever a customer leaves the system. In this case
the age of the customer in service has to be decreased by the inter-arrival time between
the customer leaving and the one who is about to enter the server.

According to the definition of the age process, this decrease is immediate: it is a jump.
As the inter-arrival time follows a MAP, the same amount of age decrease can be
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t

L(t)
Inter-arrival timeService time

Figure 26.: Canonical MFM for the age process

achieved in an alternative way as well. Let us set the fluid rate to −1 and start the
evolution of the MAP where it has been stopped before (the dotted line in Figure 26).
When the MAP generates an arrival, the queue level representing the age process has
been decreased appropriately, so the MAP can be frozen again and the fluid queue can
go back to the first set of phases corresponding to the service periods.

To obtain the age process, the second set of phases (the dotted line in Figure 26) has to be
censored out. Consequently, the age process will be analyzed using a canonical MFM: in
the first set of phases the fluid rates are +1, in the second set of phases they are −1. The
corresponding phase space partitions are denoted by N+ and N−, respectively, and their
sizes are |N+| = |N−| = N. The first (second) set of phases will be referred to as positive
(negative) phases in the sequel.

The generator matrix of the fluid model is

Q =

[
Q++ Q+−

Q−+ Q−−

]
=

[
S0 ⊗ I S1 ⊗ I

I ⊗ D1 I ⊗ D0

]
. (154)

In the positive phases (belonging to the intervals between jumps of the age process) the evo-
lution of the background process is determined by the evolution of the service MAP, and the
arrival MAP is frozen. After service completion there is a transition to the negative phases
where the service MAP gets frozen, and the arrival MAP is resumed to decrease the age as
much as younger the next customer is. When the arrival occurs, the background process goes
back to the positive states and the service of the next customer starts.

The steady state pdf of the fluid model, π(x) = p−Q−+eKx
[

I Ψ

]
, is given by Theorem

17 in Section 4.2.2. The steady state distribution of the age process is obtained by censoring
the results of the fluid queue on the positive phases. Let us denote the steady state joint
density of the age process and the phase of the background process by ai(x) defined as

ai(x) = lim
t→∞

d
dx

P(A(t) < x,J (t) = i), (155)

for x ≥ 0 and i = 1, . . . , N, and the corresponding vector by a(x) = {ai(x), i = 1, . . . , N}.
Vector a(x) of the age process is obtained from the stationary solution of the fluid model

as follows:

a(x) =
π+(x)∫ ∞

y=0 π+(y)1 dy
=

p−(I ⊗ D1)eKx

p−(I ⊗ D1)(−K)−11
= a(0)eTx, x ≥ 0, (156)
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Figure 27.: The workload process of the MAP/MAP/1 queue

where in the last step we switched to the traditional representation of the age process. (The
relation between the parameters of the MFM and the ones of the age process is T = K,
a(0) = p−(I⊗D1)

p−(I⊗D1)(−K)−11
).

Finally, the sojourn time of customers is equal to their age when they leave the system (this
is the time instant right before the age process jumps downwards). Hence, the distribution of
the sojourn time T is given by

FT (t) = P(T < t) =

∫ t
0 a(x)(S1 ⊗ I)1 dx∫ ∞

0 a(x)(S1 ⊗ I)1 dx
= 1− a(0)eTt(−T)−1(S1 ⊗ I)1

a(0)(−T)−1(S1 ⊗ I)1
, (157)

while the LST of the sojourn time f ∗T (s) = E(e−T s) and kth moment E(T k) are

f ∗T (s) =
a(0)(sI − T)−1(S1 ⊗ I)1

a(0)(−T)−1(S1 ⊗ I)1
, (158)

E(T k) =
k! a(0)(−T)−k−1(S1 ⊗ I)1

a(0)(−T)−1(S1 ⊗ I)1
. (159)

5.2.2 Sojourn time analysis based on the workload process

Besides the age process, an other useful tool to analyze the sojourn time of various queues is
the workload process.

The workload process {V(t), t ≥ 0} is the amount of work in the system at time t, thus
the time needed to process all the customers in the queue if the arrival process was frozen.
V(t) decreases by a slope of one between the arrival epochs (the server processes the work-
load), and jumps upwards at arrival epochs according to the service time requirement of the
customer arrived (see Figure 27). Thus, V(t) is skip-free to the left. (As opposed to the age
process, which is skip-free to the right).

As before, to characterize the sojourn time the two dimensional process {V(t),J (t), t ≥
0} has to be studied. Here, V(t) is the workload of the queue at time t and J (t) is the phase
process keeping track of the phase of the arrival MAP at time t and the phase of the service
MAP right after the arrival of the last customer before t.

As the workload process has jumps, it is not straight forward to analyze its stationary
behavior. However, the fact that the upward jumps are related to the service times and that
the service times are determined by a MAP, it is possible to transform the skip-free to the left
process to aMFMwhich is skip-free to both directions. Themain idea is the same as in Section
5.2.1. At an arrival instant the amount of workload increment, which is given by a jump in
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Figure 28.: The canonical MFM for the workload process

the original workload process, is accumulated in a time-continuous way in the transformed
process.

For this transformation the state space is duplicated. In the first set of states (service peri-
ods) the workload decreases by a slope of one. When the MAP generates a customer arrival,
the background Markov chain moves to the second set of states, which is responsible to in-
crease theworkload by the amount given by the service time requirement of the new customer.
After increasing the workload the background process returns to the first set of states.

The transformed process is depicted by Figure 28. The generator of the associated canonical
fluid model is

Q =

[
Q++ Q+−

Q−+ Q−−

]
=

[
S0 ⊗ I S1 ⊗ I

I ⊗ D1 I ⊗ D0

]
, (160)

which is exactly the same as the generator of the transformed age process (154).

In the transformed workload process the sojourn time of the customers is given by V(t) at
N+ → N− transitions. These are the points where a new customer arrives and the workload
has been incremented by its service time requirement. The time necessary to leave the system,
hence the sojourn time of the customer, is given by V(t) at these points.

These particular points on the transformed workload process are the same as the ones on
the transformed age process, hence the sojourn time distribution is the same as (157), we just
arrived to it using a different modeling approach.

5.3 departure process analysis

The exact departure process of a MAP/MAP/1 queue is a MAP with infinitely many phases,
given by matrices H(∞)

0 and H(∞)
1 . The phase process of this departure MAP is the QBD

type Markov chain {Y(t),J (t)} representing the joint evolution of the queue length and
the phases of the arrival and service processes (defined in Section 5.1).

In this phase process the level backward transitions correspond to customer departures,
which are the arrival events of the departure MAP, hence the corresponding transition rates
are collected to matrix H(∞)

1 . All other transitions of the QBD (local and level forward tran-
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sitions) are not accompanied by a departure event, hence their rates are comprised by matrix
H(∞)

0 . Consequently, matrices H(∞)
0 and H(∞)

1 have the following structure:

H(∞)
0 =


L0 F 0 0 0 . . .

0 L F 0 0 . . .

0 0 L F 0 . . .
...

... . . . . . .

 , H(∞)
1 =


0 0 0 0 . . .

B 0 0 0 . . .

0 B 0 0 . . .
...

... . . .

 . (161)

In [10] an approximation method is proposed for the departure process of MAP/PH/1
queues that is based on the truncation of the exact infinite MAP. Two further results ap-
peared in the literature that are based on the same idea but can be applied to MAP/MAP/1
queues as well. Both of them truncate the infinite MAP at level n, but in different ways. The
structure of the approximating departure process is the same

H(n)
0 =



L0 F 0 0 0 . . .

0 L F 0 0 . . .

0 0 L F 0 . . .
...

... . . . . . .

0 0 0 0 L F

0 0 0 0 0 L̂


, H(n)

1 =



0 0 0 0 0 . . .

B 0 0 0 0 . . .

0 B 0 0 0 . . .
...

... . . .

0 0 0 B 0 0

0 0 0 0 B̂ B̃


, (162)

only the definition of the special matrix blocks, B̂ and B̃ differs.
The next two subsection provide a short overview on these methods.

5.3.1 Level probability based truncation method

The basic idea of the truncation method of [74] is that all the levels i ≥ n of the exact model
are merged into the last level (referred to as the clipping level) of the truncated model. All
the level forward and local transitions of the infinite MAP correspond to local transitions in
the truncated MAP, that gives L̂ = F + L.

However, in case of departures there are two cases when the truncated model is at the
clipping level.

According to [74], the probability that the exact model is at level i = n when the truncated
process is at clipping level n is approximated using vector yn and the probability that the exact
model is at level i > n when the truncated process is at clipping level n is approximated using
vector y+n = ∑∞

k=n+1 yk. Indeed, [74] approximates the probability that a departure of the
truncated process at clipping level n and phase j moves the truncated process to level n− 1
as [yn]j/([y+n ]j + [yn]j), where [yn]j denotes the jth element of yn. Thus the related blocks
of the truncated MAP are the following:

B̂ = diag〈yn〉diag〈yn + y+n 〉−1B,

B̃ = diag〈y+n 〉diag〈yn + y+n 〉−1B,
(163)

where diag〈vec〉 denotes the diagonal matrix composed by the elements of vector vec. Since

diag〈yn〉diag〈yn + y+n 〉−1 + diag〈y+n 〉diag〈yn + y+n 〉−1 = I, (164)

this definition ensures that B̂ + B̃ = B.
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5.3.2 ETAQA truncation method

The method of [74] has been enhanced in [44]. The authors of [44] refer to their method as
ETAQA truncation method. The blocks of the ETAQA truncated model are defined as

L̂ = F + L,

B̂ = B− FG,

B̃ = FG,

(165)

where matrix G is the phase transition probability matrix over the busy period of the QBD
(see Section 4.1.4)

This construction (based on the idea of the ETAQA methodology) ensures that the steady
state probabilities of the truncated process ŷk and of the exact model yk are the same up to
the clipping level, and for the clipping level ŷn = ∑∞

k=n yk holds. As a consequence, the inter-
departure times and the lag correlations up to the truncation level n are preserved exactly.

5.3.3 Joint moment based departure process approximation

The joint moment based description of the departure process differs significantly from the
truncation based approximation approaches described in Section 5.3.1 and 5.3.2. Those tech-
niques construct an approximate departure process directly based on the behavior of the
MAP/MAP/1 queue. Our proposed approach instead first computes dominant parameters
of the departure process, namely the lag-1 joint moments of the consecutive inter-departure
times, and then creates a MAP that realizes these parameters.

To describe themoments of the departure process we need the following notations. The row
vector d(D)

k (s(D)
k ) denotes the phase distribution of the arrival (service) MAP after a departure

which left k customers in the system. The ith elements of d(D)
k and s(D)

k are extracted from xk
(see (153)) as

[d(D)
k ]i = xk(e

T
i ⊗ 1) and [s(D)

k ]i = xk(1⊗ eT
i ). (166)

ei is the row vector whose ith element is one and the others are zero. Matrix U0 of size
NA × NS is composed by the elements of vector x0, such that [U0]i,j = [x0](i−1)NA+j. I.e.,
[U0]i,j is the probability that a departure leaves the MAP/MAP/1 queue empty, the phase of
the arrival MAP is i and the phase of the departure MAP is j. Furthermore, d0 = −D01 and
s0 = −S01 are the state dependent arrival and departure rates, respectively.

Theorem 21. The stationary inter-departure time of a MAP/MAP/1 queue has a matrix expo-
nential representation of order NA + NS with initial vector u, generator M and closing vector
w. That is, the cdf of the inter departure time distribution is 1− ueMtw, where

u =
[
dT

0 s(D)
1+

]
, (167)

M =

[
D0

T U0

0 S0

]
, (168)
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w =

[
(−D0

T)−1U01

1

]
, (169)

s(D)
1+ =

∞

∑
k=1

xk(1⊗ eT
i ) =

1
λ

y0R2(I − R)−1B(1⊗ eT
i ), (170)

where the subscript 1+ refers to the cases when there is at least one customer in the system and
s(D)

1+ is obtained according to (166).

Proof. If a departure leaves the MAP/MAP/1 queue busy such that the phase of the service
MAP is j then the time to the next departure is phase type distributed time with initial vector
ej and generator S0.

If a departure leaves the MAP/MAP/1 queue empty such that the phase of the arrival MAP
is i and service MAP is j then the time to the next departure is the sum of two phase type
distributed times, the first one with initial vector ei and generator D0 and the second one with
initial vector ej and generator S0.

The Laplace transform of the stationary inter departure time,H, is

E(e−sH) =
m

∑
j=1

[s(D)
1+ ]j ej(sI − S0)

−1s0 +
m

∑
i=1

m

∑
j=1

[U0]i,j ei(sI − D0)
−1d0 ej(sI − S0)

−1s0

where

ei(sI − D0)
−1d0 = dT

0 ((sI − D0)
−1)TeT

i = dT
0 (sI − D0

T)−1eT
i .

Using this we have

E(e−sH) = s(D)
1+ (sI − S0)−1s0 + dT

0 ((sI − D0
T)−1U0(sI − S0)−1s0.

Partitioning the Laplace transform of the matrix exponential distribution with representa-
tion u, M, w we have

u(sI −M)−1(−M)w =[
dT

0 s(D)
1+

] [sI − D0
T −U0

0 sI − S0

]−1 [
−D0

T −U0

0 −S0

] [
(−D0

T)−1U01

1

]
=

[
dT

0 s(D)
1+

] [(sI − D0
T)−1 (sI − D0

T)−1U0(sI − S0)−1

0 (sI − S0)−1

] [
0

s0

]
=

dT
0 (sI − D0

T)−1U0(sI − S0)−1s0 + s(D)
1+ (sI − S0)−1s0.

Corollary 2. When in a MAP/MAP/1 queue the order of the arrival MAP is NA and that of the
service MAP is NS, then the order of the phase type distributed inter-departure time distribution
is at most NA + NS and consequently the number of independent inter-departure time moments
is at most 2(NA + NS)− 1.

Proof. The corollary is a straight forward consequence of Theorem 21.
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Theorem 22. The stationary lag-1 joint moments of two consecutive inter-departure times H0

andH1 of a MAP/MAP/1 queue can be computed as

E(Hi
0H

j
1) = z i!(−H0)−i−1H1 j!(−H0)−j1, (171)

where

z =
[

x0 x1 x2+

]
, (172)

x2+ =
∞

∑
k=2

xk =
1
λ

y0R3(I − R)−1B, (173)

H0 =

 L0 F 0

0 L F

0 0 L + F

 , (174)

H1 =

0 0 0

B 0 0

0 B 0

 . (175)

Proof. Since we focus on the joint moments of two consecutive inter-departure times we have
to consider the following three cases:

• a departure leaves the queue empty, with probability x0;

• a departure leaves one customer in the queue, with probability x1;

• a departure leaves at least two customers in the queue, with probability x2+.

For all the three cases, the computation of the joint moments of inter-departure times is based
on constructing theMAP that generates the departures and then computing the jointmoments
based on (55).

The process evolution up to the second departure is different in the three cases. Let us first
consider the third case which is the simplest. If there are at least two customers in the queue
at a departure, then the queue can not become empty before the next two departures. For this
reason the joint moments of the next two inter-departure times do not depend on the arrivals.
Consequently, in this case, it is enough to consider the state transitions which are assigned
to a departure, B, and the ones which are not, L0 + F. As a result, in this case the lag-1 joint
moments can be computed as

E(Hi
0H

j
1 I{Y(0)≥2}) = x2+ i!(−L− F)−i(−L− F)−1B j!(−L− F)−j1

= x2+ i!(−L− F)−i−1B j!(−L− F)−j1,
(176)

where Y(t) denotes the number of customers at time t, we assume that a departure occurred
at t = 0 and I{A} equals one when A is true and zero otherwise. In the second case, i.e.,
when a departure leaves one customer in the queue, we need to take into consideration one
arrival as well in order to compute the joint moments of the next two inter-departure times.
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This arrival can happen either before or after the first departure and is taken into account by
the block F in position (2, 3) of H0 in (174).

Since in the third case the queue is left empty, for the calculation of the joint moments of
the next two inter-departure times we have to consider two arrivals. The first happens before
the first departure and is taken into account by the block F in position (1, 2) of H0 in (174).
The second arrival can happen either before the first departure or after the first departure and
is considered the same way as the arrival in the second case.

The three cases can be organized in a single compact form as presented in (171-175).

Note that also the marginal moments of the inter-departure times can be computed based
on Theorem 22 by setting j to 0 in (171). Having computed the marginal moments and the
lag-1 joint moments of the departure process of a queue, we apply the method described in
Section 3.2.4 to construct a MAPwith such parameters and use this MAP as an approximation
of the output process. If this method does not return a valid Markovian representation, the
solutions recommended in Section 3.3.3 are the remedy.

It is important to note that

• the MAP defined by H0 and H1 in (174) and (175) is not a good output process model
of the MAP/MAP/1 queue,

• the embedded stationary distribution of the MAP defined by H0 and H1 is different
from z,

• the finite dimensional matrix expression in (171) is exact, because vector z represents
the effect of the infinite queue.
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6
ANALYS I S O F THE MMAP [K ] / PH [K ] / 1 - FC F S QUEUE

The MMAP[K]/PH[K]/1-FCFS queue is the multi-class variant of the MAP/PH/1-FCFS queue
in which the arrival process is a MMAP, the service times are phase-type distributed, and
different classes of customers can have different service time distributions.

Let us denote the number of customer types by K. The matrices characterizing the MMAP
of the arrivals are denoted by Dk, k = 0, . . . , K, and the arrival rate of type k customers is λk
(see Section 3.1.2).

The initial vector and transient generator of the PH distribution representing the type k
service times Sk are denoted by σk, Sk, k = 1, . . . , K, respectively. Vector βk is the stationary
phase distribution of the service process, that is, the unique solution of βk(Sk − Sk1σk) =

0, βk1 = 1. The service rate of type k customers is then µk = βk(−Sk)1.
With these notations the load of the queue ρ is given by ρ = ∑K

k=1 λk/µk, representing the
fraction of time when the server is busy (provided that ρ < 1).

In case of the MAP/MAP/1 queue the distribution of the number of customers in the system
was derived using the direct analysis of the queue length process. In the multi-class case,
however, the corresponding Markov chain has a structure for which no explicit solutions
are available in the literature. Therefore, in case of the MMAP[K]/PH[K]/1-FCFS queue all
performance measures are derived by the analysis of the age process.

6.1 the distribution of the age process

The class of MMAP[K]/PH[K]/1 queues forms a subclass of the semi-Markovian
SM[K]/PH[K]/1 queues, the age process of which was considered in [41]. The matrix-
exponential stationary solution of the distribution of the (skip-free to the right) age process
is also derived in [41].

Nevertheless, we describe an alternative solution method here, which is based on the trans-
formation of the age process to a fluid model (following [83], as we did in Section 5.2.1, too).
This approach has several advantages over the direct solution [41], including that

• it is much easier to work with processes that are skip-free both to the left and to the
right technically;

• it allows tomake use of themature, well proven numerical procedures for the stationary
solution of MFMs in the age process analysis. In particular, to obtain the parameters
of the matrix-exponentially distributed age distribution [41] describes only a linearly
convergent functional iteration, while theMFMs based solution allows to compute these
parameters by quadratically convergent iterative algorithms.

The rest of this section focuses on the stationary solution of the multi-dimensional process
{A(t),JA(t),JS(t), C(t)}, that keeps track of 1) the age process A(t), 2) the phase of the
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arrival process JA(t), 3) the phase of the service process JS(t), and the type (class) of the
customer in the server C(t). Performance measures related to both the number of customers
in the system and the sojourn time of customers can be derived from this multi-dimensional
process.

In order to simplify the analysis, the two dimensional process {C(t),JS(t), t ≥ 0} describ-
ing the type (class) of the customer currently in service and the current service phase will be
represented by a (generalized) PH distribution of size NS = ∑K

k=1 Nk with generator

S =


S1

S2
. . .

SK

 ,

and the initial vector given that a type k customer is going to be served next is

σ(k) = [0, . . . , 0︸ ︷︷ ︸
∑k−1

j=1 Nj

, σk, 0, . . . , 0︸ ︷︷ ︸
∑K

j=k+1 Nj

], k = 1, . . . , K,

where Nk is the size of the PH representation of Sk, the service time of type k customers.
Thus, the “large” generator S is composed by all the generators associated with the various

customer classes, and the “large” PH distribution is initialized in a class dependent way. For
later use, let N = NA · NS, with NA being the number of phases of the MMAP generating
the arrivals.

The proposed representation of the service times allows to adapt the method described
in Section 5.2.1 to the analysis of the above introduced multi-dimensional process. Hence,
{A(t),JA,JS(t)} is transformed to a skip-free canonical fluid model with generator

Q =

[
Q++ Q+−

Q−+ Q−−

]
. (177)

Matrix Q++ describes the evolution of the system between arrivals. We have

Q++ = S⊗ I, (178)

thus the type of the current customer, its service phase and the phase of the MMAP at the
last arrival instant are all encoded in the state space. When the service ends (with rates
(−S)1), the arrival process is resumed and the transformed process moves to the negative
states responsible for generating the downward jump of the age process, thus

Q+− = (−S)1⊗ I. (179)

In the negative states only the arrival process is active, leading to

Q−− = D0. (180)

Finally, when a customer arrives, a transition occurs to the positive states, and the PH distri-
bution associated with the type of the new customer is initiated. Thus we have

Q−+ =
K

∑
k=1

σ(k) ⊗ Dk. (181)
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Like in Section 5.2.1, the stationary distribution of the age process is obtained from the
solution of the fluid model by censoring to the positive states. If the solution of the canonical
fluid model is given in form π(x) = p−Q−+eKx

[
I Ψ

]
, the pdf of the age process, a(x)

can be expressed by

a(x) =
π+(x)∫ ∞

y=0 π+(y)1 dy
=

p−Q−+

p−Q−+(−K)−11
eKx = a(0)eTx, x ≥ 0, (182)

where in the last step we again switched to the traditional representation of the age process
(used in the literature since [75]).

According to (182) the pdf at x = 0 is a(0) = p−Q−+

p−Q−+(−K)−11
. In [41] the same quantity is

expressed in the following closed form as well:

a(0) =
1
ρ

K

∑
k=1

λk

µk

(
[0, . . . , 0, βk, 0, . . . , 0]⊗ θDk

λk

)
(−T), (183)

In this formula the right-hand term of the Kronecker product is the phase distribution of the
MMAP at the type k arrival epochs, and vector βk denotes the steady state phase distribution
of the type k service process.

6.2 deriving the sojourn time from the age process

The sojourn time of a customer is equal to its age when it leaves the system. Hence, the
density function of the sojourn time of class k customers is

FTk(t) = P(Tk < t) =

∫ t
0 a(x)(s(k) ⊗ 1) dx∫ ∞

0 a(x)(s(k) ⊗ 1) dx
= 1− a(0)eTt(−T)−1(s(k) ⊗ 1)

a(0)(−T)−1(s(k) ⊗ 1)
,

where column vector s(k) consists of the class k service completion rates in various states of
background process, thus

s(k) =
[
0 . . . 0 (−Sk1)

T 0 . . . 0
]T

. (184)

As we did in Section 5.2.1 in the single-class case, we provide the LST of the type k sojourn
time f ∗Tk

(s) and the nth moment E(T n
k ) for completeness:

f ∗Tk
(s) =

a(0)(sI − T)−1(s(k) ⊗ 1)
a(0)(−T)−1(s(k) ⊗ 1)

, (185)

E(T n
k ) =

n! a(0)(−T)−n−1(s(k) ⊗ 1)
a(0)(−T)−1(s(k) ⊗ 1)

. (186)

6.3 analysis of the number of customers

To express the distribution of the total number of customers in the system we first need to
express the distribution of the number of customers waiting in the queue. At time t the age
of the customer in the server isA(t), thus at time t those customers are waiting in the queue
that arrived in (0, t). The probability that n = {nk, k = 1, . . . , K} arrivals are generated by
a MMAP in (0, t), denoted by P(n, t), is given by the differential equation (see [39])

d
dt

P(n, t) = P(n, t)D0 +
K

∑
k=1

P(n− ek, t)Dk, (187)
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where ek is a column vector containing zeros except the kth index, where it is 1.
Let us now introduce matrix L(n), which is related to the probability that n customers

arrive over the (stationary) age of the current customer in the service, as follows:

L(n) =
∫ ∞

0
eTx(P(n, x)⊗ I) dx. (188)

Here, eTx is the density that the age of the current customer is x, and P(n, x) ⊗ I is the
probability that n customers arrived (including various classes) over time x.

Inserting the differential equation (187) into (188) and integrating by parts gives ([41], ex-
ample 5.2)

L(n) =
∫ ∞

0
eTx(P(n, x)⊗ I)

= T−1

( [
eTx(P(n, x)⊗ I)

]∞
0 −

∫ ∞

0
eTx(P′(n, x)⊗ I) dx

)

= T−1

( [
eTx(P(n, x)⊗ I)

]∞
0 −

∫ ∞

0
eTx(P(n, x)⊗ I) dx︸ ︷︷ ︸

L(n)

(D0 ⊗ I)

−
K

∑
k=1,nk>0

∫ ∞

0
eTx(P(n− ek, x)⊗ I) dx︸ ︷︷ ︸

L(n−ek)

(Dk ⊗ I)

)
,

(189)

which, after pre-multiplying by T , leads to a matrix recursion composed by Sylvester equa-
tions. Since

[
eTx(P(n, x)⊗ I)

]∞
0 is −I when n = 0 and 0 otherwise, we get

TL(0) + L(0)(D0 ⊗ I) = −I, (190)

TL(n) + L(n)(D0 ⊗ I) = −
K

∑
k=1,nk>0

L(n− ek)(Dk ⊗ I), n 6= 0. (191)

Thus, the distribution of the number of waiting customers in the system (belonging to
different types) is

w(n) =

1− ρ + a(0)L(0)1, n = 0,

a(0)L(n)1, n 6= 0,
(192)

where, according to the first case (n = 0), there are two situations leading to zero waiting
customers: with probability 1− ρ the entire system is empty, and with probability a(0)L(0)1
there is a customer in the server (the age process is positive), but no further customers are
waiting behind it.

To obtain the total number of customers, the customer in the server has to be taken into
consideration as well. Let us introduce column vector hk that sums over the states where a
type k customer is in the server, thus

hk = 1NA ⊗
[
0N1

· · · 0Nk−1
1T

Nk
0Nk+1

· · · 0NK

]T
. (193)

Finally, the distribution of the number of customers in the system, denoted by y(n) = P(Y1 =

n1, . . . ,YK = nk), is given by

y(n) =

1− ρ, n = 0,

a(0)∑K
k=1,nk>0 L(n− ek)hk, n 6= 0,

(194)
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6.4 analysis of the departure process 87

where a(0)L(n − ek)hk is the probability that there is a type k customer in the server and
n− ek customers are waiting in the queue, hence there are n customers in the system in total.

6.4 analysis of the departure process

6.4.1 Distribution of the age process at departure instants

We are focusing on the departure process in this section, hence we will be interested in the
age process embedded at service completion instants. Since the state-dependent service com-
pletion rate is −S1, the density of the age process just before service completion instants
aD(x) = {(aD(x))i, i = 1, . . . , NA} can be expressed as

aD(x) =
1
λ
(ρa(0)eTx)(−S1⊗ I), x > 0, (195)

where λ is the normalization constant. Integrating aD(x) over x and making use of (183) for
a(0) gives

∫ ∞

x=0
aD(x) dx =

K

∑
k=1

1
µk

(
[0, . . . , 0, βk, 0, . . . , 0](−S1)⊗ θDk

λ

)
= α, (196)

which is the stationary phase distribution of theMMAP at arrival instants. In (196) we utilized
that µk = βk(−Sk)1 and that α = ∑K

k=1 θDk/λ.

6.4.2 Phase transitions over the busy period of the age process

In [75] it is proven that matrix T is the minimal solution of the matrix equation

T = S⊗ I +
∫ ∞

x=0
eTx (−S1⊗ I) eD0xdx︸ ︷︷ ︸

Y0

K

∑
k=1

(
σ(k) ⊗ Dk

)
. (197)

Theorem 4.4 in [41] also indicates that all the eigenvalues of T lie in the open left half plane.
The integral term of the matrix equation (197) involving two matrix exponentials has a

closed form solution. Theorem 36 (in Appendix A.2) implies that Y0 is the unique solution of
the following Sylvester matrix equation:

TY0 + Y0D0 = (S1)⊗ I. (198)

Matrix Y0 has an important role in the departure process analysis, that has a stochastic
interpretation as well. Entry (Y0)i,j of this matrix is the probability that the age process
returns to level 0 in phase j for the first time, given that it left level 0 in phase i.

One way to compute Y0 from matrix T is the solution of (198). However, matrix Ψ of the
MFM corresponding to the transformed age process (Section 6.1) gives exactly this quantity,
hence Y0 = Ψ.

6.4.3 The lag-n joint transform of the departure process

In this section we derive an expression for the joint LST of the 1st and (n + 1)th inter-
departure time. Let Tn denote the nth departure time with T0 = 0 and let Hn = Tn − Tn−1

dc_1412_17

Powered by TCPDF (www.tcpdf.org)
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denote the nth inter-departure time for n ≥ 1. Furthermore, let Cn denote the type of the
nth departing customer. Then f (k,p)∗

H(n) (s1, s2), the LST of the joint distribution of two inter-
departure times and the corresponding customer types can be defined as

f (k,p)∗
H(n) (s1, s2) =

∫ ∞

t1=0

∫ ∞

t2=0
e−s1t1−s2t2 dP(H1 < t1,Hn+1 < t2, C1 = k, Cn+1 = p),

(199)

for p, k ∈ {1, . . . , K} and n ≥ 1.
Observe that the inter-departure times are

• either equal to service times (during the busy periods of the queue),

• or, if a customer arrives to an idle queue, they are equal to the service time of the
customer plus the preceding idle time.

Due to this kind of relation between the busy periods and the inter-departure times we intro-
duce several busy period related quantities before providing the solution for (199).

Denote Ii = [I 0 . . . 0] and Ji = [0 . . . 0 I]T such that they have size NA × i · NA and
i · NA × NA, respectively. Further, let Ji,j = [Jj

T 0 . . . 0]T such that it is a size i · NA × NA
matrix.

We start by defining (Mk,i(t))j,j′ , for i ≥ 1, k ∈ {1, . . . , K} and j, j′ ∈ {1, . . . , NA}, as
the probability that i customers get served during a busy period that was initiated by a type k
arrival, while the service time of the initial type k customer is at most t and the MMAP phase
equals j at the start and j′ at the end of the busy period. Let Mk,i(t) be the matrix with entry
(j, j′) equal to (Mk,i(t))j,j′ . Let M∗

k,i(s) be the LST of Mk,i(t) and denote M∗
k,i(0) = Mk,i(∞)

as Mk,i.
The following lemma gives an expression for the matrices M∗

k,i(s). We note that the final
results do note require the computation (nor the inversion) of the size i ·NA× i ·NA matrices
Qi defined in this lemma.

Lemma 2. The matrices M∗
k,i(s) can be expressed recursively as

M∗
k,i(s) = (σk ⊗ Ii)((sI − Sk)⊕Qi)

−1(−Sk1⊗ Ji). (200)

where Q1 = D0 and Qi is the size i · NA × i · NA block Toeplitz matrix given by

Qi =


D0 ∑K

q=1 Dq Mq,1 . . . ∑K
q=1 Dq Mq,i−1

. . . . . .
...

D0 ∑K
q=1 Dq Mq,1

D0

 . (201)

Proof. As eA⊗I = eA ⊗ I, eI⊗B = I ⊗ eB and eA+B = eAeB if A and B commute, (200) can
be rewritten as

M∗
k,i(s) = (σk ⊗ Ii)

∫ ∞

y=0

(
e(Sk−sI)y ⊗ I

) (
I ⊗ eQiy

)
dy(−Sk1⊗ Ji)

=
∫ ∞

y=0

(
σkeSky(−Sk)1e−sy

)
⊗
(

IieQiy Ji

)
dy.

(For the identities of the Kronecker operations see Appendix A.1).
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6.4 analysis of the departure process 89

As such it suffices to prove that

M∗
k,i(s) =

∫ ∞

y=0
fSk(y)e

−sy IieQiy Ji dy, (202)

with Qi given by (201). The result for i = 1 is immediate as I1 = I = J1, Q1 = D0 and

Mk,1(t) =
∫ t

y=0
fSk(y)e

D0y dy,

as there should be no arrivals during the service of the type k customer that initiated the busy
period.

To establish the general case, we assume that the order of service is preemptive (resume)
last-come-first-served instead of FCFS. Notice, the probabilities (Mk,i(t))j,j′ are not affected
by the order of service and therefore the expressions are also valid for the FCFS order consid-
ered in this chapter.

Assume that the type k customer is in service and that the first arrival that occurs during
the service is of type q. Then with probability (Mq,r1)j,j′ this arrival induces its own sub-
busy period during which r1 customers are served, while the MMAP phase changes from
j to j′. Hence, when the type k customer resumes service the MMAP phase equals j′. If an-
other customer arrives while the type k customer is served, this customer will induce another
sub-busy period during which r2 customers are served, etc. Hence, when the initial type k
customer gets interrupted for the n-th time, the MMAP phase changes according to the ma-
trix ∑K

q=1 Dq Mq,rn . In order to have exactly i customers served, the sum of all the rn values
should equal i− 1. Hence, if the service time of the initial type k customer equals y, we there-
fore find that (IieQiy Ji)j,j′ represents the probability that i customers are served during the
busy period initiated by the type k customer, while the MMAP phase equals j at the start and
j′ at the end of the busy period. This suffices to establish (202).

Define the (Zk,i(t))j,j′ , for i ≥ 1, k ∈ {1, . . . , K} and j, j′ ∈ {1, . . . , NA}, as the probability
that the ith customers leaves the server idle at departure time, given that a type k arrival
(called the 1st customer) initiated a busy period, the service time of customer 1 is at most t
and the MMAP phase equals j at the start of the busy period and j′ when the ith customer
leaves. Note, the ith customer marks the end of a busy period, but not necessarily the one
initiated by customer 1 (unless i = 1). Let Zk,i(t) be the matrix with entry (j, j′) equal to
(Zk,i(t))j,j′ . Let Z∗

k,i(s) be the LST of Zk,i(t) and denote Z∗
k,i(0) = Zk,i(∞) as Zk,i.

Lemma 3. The NA × NA matrices Z∗
k,i(s) can be expressed recursively as

Z∗
k,1(s) = M∗

k,1(s),

Z∗
k,i(s) = M∗

k,i(s) +
i−1

∑
j=1

M∗
k,j(s)

(
K

∑
q=1

PqZq,i−j

)
,

(203)

for i ≥ 2.

Proof. Theequality Z∗
k,1(s) = M∗

k,1(s) is immediate as (Zk,1(t))j,j′ and (Mk,1(t))j,j′ represent
the same probability. For i ≥ 2, there are two options: either the busy period initiated by
customer 1 ends when the i-th customer leaves (which corresponds to M∗

k,i(s)) or it ends
when the jth customer leaves with j < i. In the latter case assume the j + 1th customer is of
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type q, then this customer initiates another busy period and we still demand that customer
i > j leaves the server idle. Hence, in the latter case we find

Zk,i(t) =
i−1

∑
j=1

Mk,j(t)

(
K

∑
q=1

(D0)
−1DqZq,i−j

)
,

which implies (203).

Define the (Hk,n(t, x))j,j′ , for n ≥ 1, k ∈ {1, . . . , K} and j, j′ ∈ {1, . . . , NA}, as the
following conditional probability: given that an age x customer (labeled customer 0) departs
and the MMAP phase at its arrival time was j, (Hk,n(t, x))j,j′ holds the probability that (a)
the next customer (labeled customer 1) is of type k, (b) the inter-departure time between
customers 0 and 1 is at most t, (c) customer n leaves the server idle and (d) the MMAP phase
equals j′ when customer n departs. Let Hk,n(t, x) be the matrix with entry (j, j′) equal to
(Hk,n(t, x))j,j′ . Let H∗

k,n(s, x) be the LST of Hk,n(t, x) and denote H∗
k,n(0, x) = Hk,n(∞, x)

as Hk,n(x).

Lemma 4. The NA × NA matrices H∗
k,n(s, x) can be computed as

H∗
k,n(s, x) = eD0x(sI − D0)

−1DkZ∗
k,n(s)+

In+1eQ∗
k,n+1(s)x

[
Jn+1 +

n−1

∑
i=1

Jn+1,i+1

(
K

∑
q=1

PqZq,n−i

)]
,

(204)

with

Q∗
k,n+1(s) =


D0 Dk M∗

k,1(s) . . . Dk M∗
k,n(s)

Qn

 .

Proof. The probabilities (Hk,n(t, x))j,j′ are not affected by the amount of time that customer 0
had to wait, we may therefore assume that customer 0 initiated a busy period and his service
time equals x.

We consider two cases. First, with probability eD0x, there are no arrivals while customer 0
is in the system. In this case the inter-departure time between customer 0 and 1 consists of
an idle period plus the service time of customer 1. Hence, by the probabilistic interpretation
of Zk,n(t), the first case results in

H∗
k,n(t, x, cust. 0 leaves the queue empty) = eD0x

∫ t

a=0
eD0aDkZk,n(t− a)da,

which yields the first term appearing in (204).
Second, if there is at least one arrival while customer 0 is in the system, then the inter-

departure time between customer 0 and 1 equals the service time of customer 1. Hence, in
this case (Hk,n(t, x))j,j′ is also equal to the following conditional probability: given that a
customer (labeled customer 0) initiates a busy period, requires service time x and the MMAP
phase at its arrival time was j, (Hk,n(t, x))j,j′ holds the probability that (a) at least one arrival
occurs during the service of customer 0 and the first arrival is of type k (labeled customer
1), (b) the service time of customer 1 is at most t, (c) customer n leaves the server idle and
(d) the MMAP phase equals j′ when customer n departs. Note, the above probability is not
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affected by the order of service either. In this case we may therefore think in terms of a
preemptive (resume) last-come-first-served system in which customer 0 has service time x.
The first arrival during the service of customer 0 must be of type k, its service time should be at
most t and the MMAP phase when customer 0 resumes service is determined by Dk Mk,r1(t),
provided that customer 1 induces a sub-busy period during which r1 customers are served.
A possible second arrival of some type q will cause the MMAP phase to change according to
Dq Mq,r2 , for some r2, etc. Notice, in this case there is no restriction on the service time of the
type q customer. Hence, for i = 1, . . . , n

In+1e



D0 Dk Mk,1(t) . . . Dk Mk,n(t)

Qn


x

Jn+1,i+1.

is an NA × NA matrix with entry (j, j′) equal to the following conditional probability: given
that customer 0 initiates a busy period, has a service time of x and the MMAP phase at its
arrival time was j, entry (j, j′) holds the probability that (a) customer 1 is of type k and arrives
while customer 0 is in the system, (b) the service time of customer 1 is at most t, (c) customer i
leaves the server idle and (d) the MMAP phase equals j′ when customer i departs. If i = n this
results in the term containing Jn+1 in (204). Otherwise, we need another arrival of some type
q (labeled customer i + 1) that initiates a busy period such that customer n leaves the server
idle. This explains the terms containing ∑K

q=1 PqZq,n−i in (204), for i = 1, . . . , n− 1.

Define (vk,n(t))j, for n ≥ 1, k ∈ {1, . . . , K} and j ∈ {1, . . . , NA}, as the probability of
the following event: assume we observe the system at an arbitrary departure instant, then
the next inter-departure time is at most t and involves a type k customer (labeled customer
1), while customer n leaves the server idle and the phase of the MMAP is j when customer n
departs. Let vk,n(t) be the vector with entry j equal to (vk,n(t))j. Let v∗k,n(s) be the LST of
vk,n(t).

Finally, let (v0)j, for j ∈ {1, . . . , NA}, be the probability that the server becomes idle at
an arbitrary departure instant while the MMAP phase equals j. Denote v0 as the vector with
entry j equal to (v0)j.

Lemma 5. The 1× NA vectors v∗k,n(s) can be expressed as

v∗k,n(s) =
ρa(0)

λ

∫ ∞

x=0
eTx(−S1⊗ I)H∗

k,n(s, x)dx, (205)

while v0 = ρa(0)Y0/λ, where a(0) and Y0 are defined by (183) and (197).

Proof. From the probabilistic interpretation of Hk,n(t, x) it is clear that

vk,n(t) =
∫ ∞

x=0
aD(x)Hk,n(t, x)dx,

where aD(x) is the density of the age process at departure times. The expression in (205)
therefore follows from (195). The expression for v0 is immediate from

v0 =
∫ ∞

x=0
aD(x)eD0xdx,

and the definition of a(0) and Y0.
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Theorem 23. The LST of the joint distribution of the 1st and (n + 1)th inter-departure time
with the first one being of type k and the n + 1th of type p is given by

f (k,p)∗
H(n) (s1, s2) =[
(α− v0)(−D0)

−1 + v0(s1I − D0)
−1
]

DkPn−1Pp1 f ∗Sk
(s1) f ∗Sp

(s2)

+ v∗k,n(s1)
[
(s2I − D0)

−1 − (−D0)
−1
]

Dp1 f ∗Sp
(s2).

(206)

Proof. We can write the joint LST as the sum of the joint LST in the case that the server is
idle at the start of the (n + 1)th inter-departure time and the joint LST in the case it is not.
Due to the probabilistic interpretation of the vector v∗k,n(s1), the LST for the case where the
server is idle at the start of the (n + 1)th inter-departure time is given by

v∗k,n(s1)(s2I − D0)
−1Dp1 f ∗Sp

(s2). (207)

The vector v0 and α− v0 correspond to the cases where the 1st inter-departure time starts
with and without an idle period, respectively. Hence, the term[

(α− v0)(−D0)
−1 + v0(s1I − D0)

−1
]

DkPn−1Pp1 f ∗Sk
(s1)

in (206) holds the LST of the first inter-departure time when the (n + 1)th inter-departure
time involves a type p customer, denoted by f (k,p)∗

H(n) (s1, 0). This implies that

f (k,p)∗
H(n) (s1, 0)− v∗k,n(s1)(−D0)

−1Dp1

holds the LST of the first inter-departure time when the (n + 1)th inter-departure time in-
volves a type p customer in case the server is not idle at the start of the (n + 1)th inter-
departure time. If the server is not idle at the start of the (n + 1)th inter-departure time,
its LST is given by f ∗Sp

(s2), as it is equal to the LST of the service time of the (n + 1)th cus-
tomer, the type of which is p. Hence, the joint LST in case the server is busy at the start of
the (n + 1)th inter-departure time is given by

f (k,p)∗
H(n) (s1, 0) f ∗Sp

(s2)− v∗k,n(s1)(−D0)
−1Dp1 f ∗Sp

(s2). (208)

Combining (207) and (208) establishes (206).

6.4.4 The inter-departure time distribution and lag-1 joint moments

In this section we determine an expression for the moments of the inter-departure time dis-
tribution as well as the joint lag-1 moments via Theorem 23. Based on the lag-1 moments it
is possible to plug the MMAP[K]/PH[K]/1 FCFS queue into the queueing network analysis
framework introduced in Chapter 8.

We start by defining (v(k)1 )j, for j ∈ {1, . . . , NA} and k ∈ {1, . . . , K}, as the probability
that an arbitrary departing customer leaves a single customer behind, the type of which is k,
while the MMAP phase at the departure epoch is j. Denote v(k)1 as the vector with entry j
equal to (v(k)1 )j.

Lemma 6. The 1× NA vectors v(k)1 can be computed as v(k)1 = ρa(0)Y(k)
1 /λ, where the matri-

ces Y(k)
1 , for k = 1, . . . , K, are the unique solutions to the Sylvester matrix equations

TY(k)
1 + Y(k)

1 D0 = −Y0Dk. (209)
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Proof. A departure leaves a single (type k) customer behind if the MMAP generates a single
(type k) arrival during the sojourn time of the departing customer. By conditioning on the
arrival time of this type k customer we get

v(k)1 =
∫ ∞

x=0
aD(x)

∫ x

a=0
eD0aDkeD0(x−a)da dx, (210)

which yields (due to Theorem 37)

v(k)1 =
ρa(0)

λ

∫ ∞

x=0
eTx(−S1⊗ I)I2e

D0 Dk

D0

x

J2dx,

due to (195). Hence, due to Theorem 36, v(k)1 = ρa(0)X(k) J2/λ, where the NS× 2NA matrix
X(k) is the unique solution of the Sylvester matrix equation

TX(k) + X(k)

[
D0 Dk

D0

]
= (S1⊗ I)I2︸ ︷︷ ︸[

S1⊗ I 0
] . (211)

Due to (198), it is easy to verify that X(k) = [Y0 Y(k)
1 ] satisfies (211) if Y(k)

1 is the unique
solution of (209).

Theorem 24. The LST f ∗H(s) of the inter-departure time distribution is given by

f ∗H(s) =
[
(α− v0)(−D0)

−1 + v0(sI − D0)
−1
] ( K

∑
k=1

Dk1 f ∗Sk
(s)

)
. (212)

The joint LST f (k)∗H (s1, s2) of two consecutive inter-departure times where the type of the first
customer is k, can be expressed as

f (k)∗H (s1, s2) =
[
(α− v0)(−D0)

−1 + v0(s1I − D0)
−1
]

Dk·(
K

∑
p=1

Pp1 f ∗Sp
(s2)

)
f ∗Sk

(s1) +
[
v0(s1I − D0)

−1Dk + v(k)1

]
M∗

k,1(s1)·

(
(s2I − D0)

−1 − (−D0)
−1
)( K

∑
p=1

Dp1 f ∗Sp
(s2)

)
.

(213)

Proof. As f ∗H(s) = ∑K
p=1 ∑K

k=1 f (k,p)∗
H(n) (s, 0), (212) follows from (206). To establish (213), it

suffices to sum (206) over p for n = 1 and to note that

v∗k,1(s) = (v0(sI − D0)
−1Dk + v(k)1 )M∗

k,1(s),

due to the probabilistic interpretation of v0, v(k)1 , Mk,1(t) and vk,1(t). The above equality can
also be proven algebraically as follows. Combining (205) and (204) yields

v∗k,1(s) =
ρa(0)

λ

∫ ∞

x=0
eTx(−S1⊗ I)eD0xdx(sI − D0)

−1Dk M∗
k,1(s)+

ρa(0)
λ

∫ ∞

x=0
eTx(−S1⊗ I)I2e

D0 Dk M∗
k,1(s)

D0

x

J2dx.
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Equation (197) and Lemma 5 imply that the first term reduces to

v0(sI − D0)
−1Dk M∗

k,1(s),

while the second equals ρa(0)X J2/λ (due to Theorem 36), with X the unique solution of

TX + X

[
D0 Dk M∗

k,1(s)

D0

]
= (S1⊗ I)I2.

It is easy to verify that X = [Y0 Y(k)
1 M∗

k,1(s)] provided that

TY(k)
1 M∗

k,1(s) + Y(k)
1 M∗

k,1(s)D0 = −Y0Dk M∗
k,1(s).

As the matrix D0 commutes with M∗
k,1(s), this equation follows from (209) and we may con-

clude that ρa(0)X J2/λ = v(k)1 M∗
k,1(s) as required.

The nth moment of the inter-departure times is given by E(Hn) = (−1)n dn

dsn f ∗H(s)|s=0.
Instead of computing the moments directly, we introduce the so-called reduced moments

Ê(Hn) = E(Hn)/n!, Ê(Sn
k ) = E(Sn

k )/n!,

because they make the forthcoming expressions simpler.

Corollary 3. The nth reduced moment of the inter-departure time distribution is given by

Ê(Hn) =
K

∑
k=1

(
λk

λ
Ê(Sn

k ) + v0

n

∑
`=1

(−D0)
−`−1Dk1Ê(Sn−`

k )

)
,

Proof. As E(Hn) = (−1)n dn

dsn f ∗H(s)|s=0, (212) implies

Ê(Hn) =
K

∑
k=1

(
(α− v0)(−D0)

−1Dk1
E(Sn

k )

n!
+

v0

n!

n

∑
`=0

(
n
`

)
(`!)(−D0)

−`−1Dk1E(Sn−`
k )

)
,

which establishes the result as

α(−D0)
−1Dk1 = θ

(
K

∑
s=1

Ds

)
(−D0)

−1Dk1/λ = θDk1/λ = λk/λ.

Taking the derivatives of f (k)∗H (s1, s2) gives the joint moments of two consecutive inter-
departure times. Again, for simplicity we use the reduced moments instead of the standard
ones. The (n1, n2)th reduced joint moment is denoted by η̂

(k)
n1,n2 and is obtained from the LST

as

η̂
(k)
n1,n2 =

(−1)n1+n2

n1!n2!
∂n1

∂sn1
1

∂n2

∂sn2
2

f (k)∗H (s1, s2)|s1=0,s2=0.
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Corollary 4. The (n1, n2)th reduced joint moment of the inter-departure times are given by

η̂
(k)
n1,n2 =

[
αPkÊ(Sn1

k ) + v0

n1

∑
`=1

(−D0)
−`PkÊ(Sn1−`

k )

](
K

∑
q=1

Pq1Ê(Sn2
q )

)

+

[
v(k)1 M̄n1

k,1 + v0

n1

∑
`=0

(−D0)
−`Pk M̄n1−`

k,1

]
n2

∑
d=1

(−D0)
−d

(
K

∑
q=1

Pq1Ê(Sn2−d
q )

)
,

(214)

where M̄n
k,1 is defined and computed as follows:

M̄n
k,1 =

(−1)n

n!
dn

dsn M∗
k,1(s)|s=0 = (σk ⊗ I)((−Sk)⊕ D0)

−n−1(−Sk1⊗ I). (215)
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7
ANALYS I S O F THE MMAP [K ] / PH [K ] / 1 PR IOR I T Y QUEUE

In the MMAP[K]/PH[K]/1 queue K types (classes) of customers are distinguished. The arrival
process of customers is described by a MMAP, and the service times are PH distributed. There
is a single server, which always picks the customer having the highest priority for service.
If the ongoing service can not be interrupted when a higher priority customer arrives, the
service is called to be non-preemptive. In the preemptive resume case (also referred to as the
preemptive case for simplicity), however, the service of customers can be interrupted, and
resumed later when all higher priority customers leave the system.

To introduce the analysis approach, the two-class case (K = 2) is considered throughout
the chapter, and the extension to the general case (K > 2) is provided in [49].

Similar to Chapter 6, the MMAP characterizing the arrivals is given by the size NA × NA
matrices D0, DH and DL containing the rates of internal transitions and transitions accom-
panied by high and low priority customers. The mean arrival rate of high (low) priority cus-
tomers is denoted by λH (λL), and it is calculated by λH = θDH1 (λL = θDL1), respectively,
where θ is the stationary distribution of the phase process of the MMAP (see Section 3.1.2).

The random variable representing the service times of the low priority customers SL is
PH distributed with NL phases, characterized by σL, SL and sL. Row vector σL is the initial
vector, matrix SL is the transient generator and column vector sL holds the transition rates
to the absorbing state, thus sL = −SL1. The mean service rate is µL = 1/E(SL). The PH
distribution corresponding to the high priority service times and its properties are defined
similarly, using subscript H instead of L.

The load of the queue is ρ = λH/µH + λL/µL. In this chapter ρ < 1 is assumed.

7.1 analysis of the preemptive resume priority qeue

Priority queues are extensively studied since the middle of the last century [61], starting with
themost basic variantwith Poisson arrival process and exponentially distributed service times.
In the last two decades most research activity on priority queues has considered more general
arrival processes like MAPs or MMAPs.

In [78] the MAP/G/1 preemptive priority queue is analyzed based on the workload process,
and the LST of the sojourn time distribution of the customers is derived. The non-preemptive
case is investigated in [79] and [80], where the LST of the sojourn time, the moments of the
sojourn time, the GF of the queue length, the queue length moments and the queue length
probabilities are provided.

After this overview one may think that not too much has left to be done in the field of MAP
driven priority queues. However, all the aforementioned results assume a general distribution
for the service times, which makes the solution complex and often difficult to implement in
a proper way (in the numerical sense). To address this issue the generally distributed service
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t

V(t) Workload after low priority arrivals

Inter-arrival
time

Service time

Figure 29.: The workload process of the priority queue

times can be replaced by PH distributed ones in the hope of the simpler and numerically more
tractable solution.

In [3] the (discrete-time) MAP/PH/1 priority queue is considered by representing the state
space with a QBD and exploiting the special structure of the related fundamental matrices.
While this approach is elegant and seems promising, there are some computational bottle-
necks (as pointed out in [48]). There have been efforts to make it more efficient (see [45] and
[48]), but apart from the queue length moments all performance measures can be computed
only in case of a very limited number of phases.

Our approach is based on the analysis of the workload process, just like [78] in the context
of MAP/G/1 preemptive priority queues. However, by exploiting the technical simplicity of
the PH distributed service times we are able to arrive to amore intuitive, simpler to implement
and numerically more beneficial solution.

7.1.1 The workload of the system just after low priority arrival instants

For the analysis of the sojourn time we first need to derive the distribution of the workload a
low priority arrival finds in the system (see Section 5.2.2).

The workload process {V(t), t > 0} is the amount of work in the system at time t, thus
the time needed to process all the customers in the queue if the arrival process is frozen.
V(t) decreases by a slope of one between the arrival epochs, and jumps up at arrival epochs
according to the service time requirement of the arrival; thus, V(t) is skip-free to the left. An
example to the workload process is depicted in Figure 29. As we have two customer classes,
there are two kinds of jumps in the figure, the dotted one corresponds to the high, the dashed
one to the low priority customers.

To completely characterize the situation an arriving low priority customer finds in the
system, the stationary solution of {V(t),J (t)}, thus the joint distribution of the workload
and the MMAP phase needs to be derived.

In our case the inter-arrival times are given by a MMAP and the size of the jumps is PH
distributed, which makes it possible to apply the method of [28] to transform V(t), which is
skip-free to the left, toL(t), which is skip-free to both directions (like it was done in the single
class case in Section 5.2.2). More precisely, the continuous process with jumps {V(t),J (t)},
is transformed to {L(t),Z(t)} from which the stationary distribution of {V(t),J (t)} at
low priority arrivals is computed.
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t

L(t) Workload after low priority arrivals

Inter-arrival
time

Service
time

Figure 30.: The modified workload process of the queue

The transformation to the skip-free process is performed as follows. Let {L(t),Z(t)} be
a canonical MFM where Z(t) is the underlying CTMC with generator matrix Q given by

Q++ =

[
I ⊗ SL

I ⊗ SH

]
, Q+− =

[
I ⊗ sL

I ⊗ sH

]
, (216)

Q−+ =
[

DL ⊗ σL DH ⊗ σH

]
, Q−− = D0.

This fluid model behaves like {V(t),J (t)} between arrivals, when it stays in the negative
states N−. Whenever an arrival occurs, however, it switches to one of the positive state
groups (depending on the class of the entering customer), and accumulates the workload
increment with a slope of 1. Thus, the jumps are eliminated and replaced by progressive
workload accumulations. The transformed process obtained from Figure 29 is depicted in
Figure 30.

Observe that the joint stationary density of the workload and the MMAP phase at low
priority arrivals are the same in the original and in the transformed process. The stationary
solution π(x) of the transformed process (that is a canonical MFM) is given by Theorem
17, from which, by embedding at just after low priority arrivals we get a matrix-exponential
solution

π̂(x) =
1
ĉ

π(x)

I ⊗ sL

0

0

 =
1
ĉ

p−Q−+eKx
[

I Ψ

] I ⊗ sL

0

0


=

1
ĉ

p−Q−+︸ ︷︷ ︸
β̂

eKx

[
I ⊗ sL

0

]
︸ ︷︷ ︸

B̂

= β̂eKxB̂,

(217)

where the normalization constant is ĉ = p−Q−+(−K)−1B̂1. Notice that from the three
blocks in the last matrix term the upper two belong to N+ and the lower belongs to N−.

Due to technical reasons (which will be discussed later) the representation given by (217)
will not be appropriate in the forthcoming derivations, because in general K1 + B̂1 6= 0.
The following theorem provides the representation transformation that ensures the proper
row-sums.

Theorem 25. The joint density of the workload and the phase probability of the MMAP just after
low priority arrivals π̂(x) can be obtained by

π̂(x) = β̂′eK′xB̂′, (218)
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t

R(t)
High priority arrivalsInitial work-
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Low priority sojourn time TL

t=0

Figure 31.: The remaining sojourn time of a low priority customer

with β̂′ = β̂ · diag〈∆〉, K′ = diag〈∆〉−1 · K · diag〈∆〉 and B̂′ = diag〈∆〉−1 · B̂, where ∆ =

(−K)−1B̂1. Furthermore, we have that

K′1+ B̂′1 = 0. (219)

Proof. The fact that (218) equals (217) can be proven by

π̂(x) = β̂′eK′xB̂′ = β̂ · diag〈∆〉 · ediag〈∆〉−1·K·diag〈∆〉xdiag〈∆〉−1 · B̂
= β̂ · diag〈∆〉 · diag〈∆〉−1 · eKx · diag〈∆〉diag〈∆〉−1 · B̂ = β̂eKxB̂.

(220)

To prove that (219) holds we have

K′1+ B̂′1 = diag〈∆〉−1(K(−K)−1B̂1+ B̂1) = 0. (221)

7.1.2 The sojourn time of low priority customers

For the sojourn time analysis of low priority customers we introduce the remaining sojourn
time process {R(t), t ≥ 0}. At t = 0,R(t) is the workload seen by a low priority customer
when it arrives. For t > 0,R(t) decreases by a slope of one till a high priority arrival occurs,
when R(t) has a jump with size given by a high priority service time. When R(t) reaches
zero, it remains zero and the corresponding low priority customer leaves the system (see
Figure 31). Hence, the sojourn time of low priority customers TL is

TL = inf{t > 0 : R(t) = 0}. (222)

Just like the workload process V(t), the remaining sojourn time process R(t) is skip-free
to the left and has upward jumps. As we did with the workload process, we transform R(t)
to a skip-free process which is easier to handle numerically, and derive the properties ofR(t)
from the transformed process.

Let us introduce a canonical fluid model {R̃(t), Z̃(t)} where the generator Q̃ of the un-
derlying CTMC is defined by

Q̃++ =

[
K′

I ⊗ SH

]
, Q̃+−=

[
B̂′

I ⊗ sH

]
, (223)

Q̃−+ =
[
0 DH ⊗ σH

]
, Q̃−− = D0 + DL,
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Figure 32.: The fluid model for the sojourn time analysis

furthermore, let the distribution of Z̃(t) at t = 0 be

κ̃ = {P(Z̃+(0) = i)} =
[

β̂′ 0
]

. (224)

This fluid model has three state groups: there are two state groups inN+, andN− is the third
one.

The role of the first state group is the accumulation of the initial workload, experienced by
a low priority customer when it enters the system. Observe that the sojourn time density
of the first state group, when started from κ̃, is exactly π̂(x), which is the density of the
initial workload. The second group of states is activated when an arrival occurs, and the
corresponding workload increment is accumulated. The third group of states, the negative
ones represent the periods when the server is processing the low priority workload and is
decreasing the remaining sojourn time of the tagged low priority customer.

Note that due to Theorem 25 the usual property of Markovian generators Q̃1 = 0 holds.
The correctness of the solution with the non-Markovian components K′ and B̂′ is ensured by
[20].

The main idea in this section is that, by construction, the relation between the duration
of the busy period B̃ of the fluid model characterized by (κ̃, Q̃) and the sojourn time of low
priority customers TL is

TL = B̃/2. (225)

This relation is clearly visible when looking at Figures 31 and 32.
Finally, the following corollary expresses the properties of the sojourn time with the prop-

erties of the busy period (detailed in Section 4.2.3).

Corollary 5. The distribution of TL in time domain, in LST domain, and its moments can be
expressed by

FTL(t) = P(TL < t) = FB̃(2t), (226)

f ∗TL
(s) = E(e−sTL) = f ∗B̃(s/2), (227)

E(T k
L ) = E(B̃k)/2k. (228)

7.1.3 Number of low priority customers in the system

First we derive the distribution of the number of low priority customers at low priority depar-
ture epochs (the corresponding random variable is denoted by XL), then the one at a random
point in time (denoted by YL).

dc_1412_17

Powered by TCPDF (www.tcpdf.org)



102 analysis of the mmap[k]/ph[k]/1 priority qeue

When a low priority customer leaves the system, the number of customers behind it equals
the number of low priority arrivals during its sojourn in the system. To analyze this quantity,
let us go back to the remaining sojourn time introduced in Section 7.1.2, and modify the
background process of the related fluid model such that it counts the number of low priority
arrivals. Instead of Q̃ we get Q̃′ defined by

Q̃′ =


F0 F1

F0 F1

F0
. . .
. . .

 , (229)

where matrices F0 and F1 are

F0 =

[
Q̃++ Q̃+−

Q̃−+ D0

]
, F1 =

[
0 0

0 DL

]
. (230)

With this generator, matrix Ψ̃′ of the corresponding canonical Markovian fluid model has an
upper block-Toeplitz structure like

Ψ̃′ =


Ψ̃0 Ψ̃1 Ψ̃2 · · ·

Ψ̃0 Ψ̃1 · · ·
Ψ̃0 · · ·

. . .

 , (231)

where the entry (Ψ̃i)k,` is the probability that i low priority arrivals occur during the sojourn
time of a low priority customer and the phase of the MMAP is ` at the departure given that
the phase was k when it entered the system.

The reason of the upper block-Toeplitz structure is that the number of low-priority arrivals
during the sojourn time can only increase, and that the MMAP generating the arrivals is
independent of the queue length.

Theorem 26. Matrix Ψ̃0 is the solution to the NARE

Ψ̃0Q̃−+Ψ̃0 + Ψ̃0D0 + Q̃++Ψ̃0 + Q̃+− = 0, (232)

and for i > 0 matrices Ψ̃i can be obtained recursively by solving the Sylvester equation

(Q̃+++Ψ̃0Q̃−+)Ψ̃i + Ψ̃i(D0+Q̃−+Ψ̃0) = −Ψ̃i−1DL −
i−1

∑
j=1

Ψ̃jQ̃−+Ψ̃i−j. (233)

Proof. Let us partition matrix Q̃′ according to the positive and negative states. We get

Q̃′′ =

[
Q̃′′

++ Q̃′′
+−

Q̃′′
−+ Q̃′′

−−

]
=


Q̃++ Q̃+−

Q̃++ Q̃+−
. . . . . .

Q̃−+ D0 DL
Q̃−+ D0 DL

. . . . . .

 . (234)

Substituting (234) and (231) into the NARE (135) provides the theorem after some algebraic
manipulation.
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7.1 analysis of the preemptive resume priority qeue 103

The probabilities for the number of low priority customers at low priority departures xL
i =

P(XL = i) are obtained from Ψ̃i by taking into consideration the initial probability vector of
the busy period κ̃. For later use, we also introduce row vector xL

i = {P(XL = i,J = j), j =
1, . . . , NA}, the joint probability of the number of customers and the phase of the MMAP at
departures (obviously, xL

i = xL
i 1).

Corollary 6. For the distribution of the number of low priority customers at low priority depar-
tures we have

xL
i = κ̃Ψ̃i. (235)

The significance of (235) lies in the fact that the consecutive queue length probabilities
can be obtained by consecutive solutions of Sylvester equations calculating Ψ̃i. The prior
procedures of the related literature are far more expensive computationally.

Corollary 7. The GF of the distribution of the number of customers at departures XL(z) =

∑∞
i=0 zixL

i can be obtained by

XL(z) = κ̃Ψ̃(z), (236)

where matrix Ψ̃(z) satisfies the NARE

Ψ̃(z)Q̃−+Ψ̃(z) + Ψ̃(z)(D0 + zDL) + Q̃++Ψ̃(z) + Q̃+− = 0. (237)

Proof. Multiplying (233) by zi, summing it from 1 to infinity, then adding (232) provides (237).

Finally, the factorial moments of XL can be calculated by taking the derivatives of the
generating function, hence

E(X k
L) =

∞

∑
i=0

ikxL
i =

dk

dzk XL(z)|z=11, (238)

yielding a recursion introduced by the next corollary.

Corollary 8. For the kth factorial moment of XL we have

E(X k
L) = κ̃Ψ̃

(k), E(X k
L) = E(X k

L)1, (239)

where Ψ̃
(k)

= dk

dzk Ψ̃(z)|z=1. Matrix Ψ̃
(0)

= Ψ̃ and for k > 0 matrices Ψ̃
(k) are obtained

recursively by solving the following Sylvester equations

(Q̃+++Ψ̃
(0)Q̃−+)Ψ̃

(k)
+ Ψ̃

(k)
(Q̃−−+Q̃−+Ψ̃

(0)
)

= −kΨ̃
(k−1)DL −

k−1

∑
i=1

(
k
i

)
Ψ̃

(i)Q̃−+Ψ̃
(k−i).

(240)

In the rest of the section we calculate various properties of the number of low priority
customers at random point in time denoted by YL. Our contribution in this subsection ends
here, since the relations between XL and YL are extensively studied in [79], that we provide
here for the sake of completeness.

Let us introduce row vector yL
i = {P(YL = i,J = j), j = 1, . . . , NA}.

dc_1412_17

Powered by TCPDF (www.tcpdf.org)



104 analysis of the mmap[k]/ph[k]/1 priority qeue

Theorem 27. ([79], Theorem 4.6) The GF of yL
i , denoted by YL(z) = ∑∞

i=0 ziyL
i is related to

XL(z) as

YL(z)(D0 + DH + zDL) = λL(z− 1)XL(z). (241)

Corollary 9. ([79], Corollary 3.11) Vectors yL
i , i ≥ 0 are recursively obtained by

yL
0 = λLxL

0 (−D0 − DH)
−1,

yL
i = (yL

i−1DL + λLxL
i − λLxL

i−1)(−D0 − DH)
−1, i > 0.

(242)

Corollary 10. ([79], Corollary 3.10) The factorial moments of the number of low priority cus-
tomers at random point in time are obtained recursively as

E(Y k
L) = E(X k

L) + k
(
E(X k−1

L )− E(Y k−1
L )DL/λL

)
(1θ − D)−1DL1,

E(Y k
L) = E(Y k

L)θ + k
(
E(Y k−1

L )DL − λLE(X k−1
L )

)
(1θ − D)−1,

(243)

for k > 0, and E(Y0
L) = θ.

7.1.4 The analysis of the high priority class

In case of the preemptive resume service policy the high priority class can be analyzed in
separation, as a single-class MAP/PH/1 queue with arrival process given by matrices (D0 +

DL, DH) and service time distribution given by (σH, SH). The details of the analysis of this
queue can be found in Chapter 5.

7.2 analysis of the non-preemptive priority qeue

In the non-preemptive case the service of a low priority customer can not be interrupted. It
turns out that the analysis approach developed in Section 7.1 can still be used with a small
difference. Instead of analyzing the sojourn time and the number of customers in the system,
in the non-preemptive case we will focus on the waiting time (which can be interrupted by a
high priority arrival any time) and the number of waiting customers in the system. The non-
interruptible service time and the number of arrivals during it will be added afterwards to
obtain the sojourn time and the number of customers in the system.

7.2.1 The workload of the system just before low priority arrival instants

When a low priority customer enters the system, its waiting time equals the workload of the
system just before its arrival (thus without its own service time) plus the service times of all
high priority customers arrived during waiting in the queue. To find out the workload just
before the arrival in the example of Figure 29 this means that we need the distribution of V(t)
just before the jumps, instead of just after the jumps.
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7.2 analysis of the non-preemptive priority qeue 105

This distribution can be obtained by applying the same transformation procedure which re-
sults in a canonical Markovian fluid model with stationary fluid density π(x) and probability
mass at level zero p. Embedding right before low priority arrivals we get the density

π̌(x) =
1
č

π(x)

 0

0

DL

 =
1
č

p−Q−+eKx
[

I Ψ

]  0

0

DL


=

1
č

p−Q−+︸ ︷︷ ︸
β̌

eKx ΨDL︸︷︷︸
B̌

= β̌eKxB̌.

(244)

Notice that the workload just before the arrival can be exactly zero as well, with probability
mass

p̌ =
1
č

p−DL. (245)

The normalization constant is č = p−DL1+ p−Q−+(−K)−1B̌1.
Similar to Theorem 25, it is again possible to similarity transform the representation β̌, K

and B̌ to β̌′, K′ and B̌′ such that K′1+ B̌′1 = 0 holds.

7.2.2 The sojourn time of low priority customers

As mentioned before, first the waiting time (denoted byWL) is characterized, then the service
time is added afterwards to get the sojourn time.

As done in Section 7.1.2, it is possible to introduce the remainingwaiting time processW(t)
and construct a canonical fluid model {W̄(t), Z̄(t)} whose busy period B̄ is closely related
to the waiting time. The blocks of the generator of this fluid model are

Q̄++ =

[
K′

I ⊗ SH

]
, Q̄+−=

[
B̌′

I ⊗ sH

]
, (246)

Q̄−+ =
[
0 DH ⊗ σH

]
, Q̄−− = D0 + DL, (247)

and the distribution of Z̄(t) at t = 0 (that defines the initial distribution of the busy period)
is

κ̄ = {P(Z̄+(0) = i)} =
[

β̌′ 0
]

. (248)

Notice that everything is the same as in Section 7.1.2, except the parameters of the initial
workload distribution. Hence, it is not surprising thatWL = B̄/2.

Corollary 11. The distribution ofWL in time domain, in LST domain, and its moments can be
expressed by

FWL(t) = FB̄(2t), f ∗WL
(s) = f ∗B̄(s/2), E(W k

L) = E(B̄k)/2k. (249)

As TL = WL + SL holds, it is straight forward to obtain the LST of the distribution of TL

and its moments.

Corollary 12. The LST of the distribution of TL is given by

f ∗TL
(s) = f ∗WL

(s) f ∗SL
(s). (250)
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Taking the derivatives of f ∗TL
(s) with respect to s and tending s → 0 yields the moments

of the sojourn time.

Corollary 13. The moments of the sojourn time TL are given by

E(T k
L ) =

k

∑
i=0

(
k
i

)
E(W i

L)E(S k−i
L ). (251)

The distribution function of the sojourn time is more involved to obtain. One could directly
express it as a continuous time convolution of FWL(t) and fSL(t), but it would involve an
integral which can be evaluated only numerically. Remind that both FTL(t) in the preemptive
resume case and FWL(t) in the non-preemptive case are derived from the distribution of the
busy period of an appropriate fluid model, which is computed in terms of Erlangization (see
Section 4.2.3), meaning that an order-n approximation is applied where increasing n improves
the accuracy. For the preemptive resume case we had that the order-n approximation is

F(n)
TL,preemp.(t) = P(B̃/2<Erlang(n,

n
t
)) = P(B̃ < Erlang(n,

n
2t
)) = κ̃

n−1

∑
k=0

Ψ̃
ν
k1,

with ν = n/(2t) and κ̃Ψ̃
ν
k1 holding the probabilities that k Exp(ν) events occur during the

busy period.
In the non-preemptive case, however, busy period B̄ corresponds to the waiting time only.

Thus, we have that the sojourn time distribution is

F(n)
TL

(t) = P(B̄/2 + SL < Erlang(n,
n
t
)).

Theorem 28. The order-n approximation of the distribution function of TL is

F(n)
TL

(t) = κ̄
n−1

∑
k=0

Ψ̄
ν
k1dn−k + p̌1dn, (252)

where ν = n/(2t), matrices Ψ̄
ν
k are defined by Theorem 20 with using Q̄ instead of Q, and

probabilities dn are given by

dn = 1− σL
(

I − SL/(2ν)
)−n

1. (253)

Proof. We have that

F(n)
TL

(t) = P(B̄/2 + SL < Erlang(n,
n
t
)) = P(B̄ + 2SL < Erlang(n, ν))

= κ̄
n−1

∑
k=0

Ψ̄
ν
k1 · P(2SL < Erlang(n− k, ν))︸ ︷︷ ︸

dn−k

+ p̌1 · P(2SL < Erlang(n, ν))︸ ︷︷ ︸
dn

,

where the second term corresponds to the case when WL = 0. The d` probabilities can be
derived as

dn = P(2SL < Erlang(n, ν)) = P(SL < Erlang(n, 2ν))

= 1−
∫ ∞

u=0

(2νu)n−1

(n− 1)!
2νe−2νuσLeSLu1du

= 1− (−ν)n−1

(n− 1)!
2νσL

∫ ∞

u=0

dn−1

dνn−1 e−2νueSLu1du

= 1− (−ν)n−1

(n− 1)!
2νσL

dn−1

dνn−1 (2νI − SL)
−11 = 1− (2ν)nσL(2νI − SL)

−n1,

that equals to (253).
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7.2.3 The number of low priority customers

As in the preemptive resume case, first the number of low priority customers at low priority
departures is analyzed, from which the results corresponding to a random point in time are
derived.

To obtain the number of low priority customers at low priority departures (XL) a tagged
low priority customer is picked, and the number of low priority arrivals is counted during its
stay in the system. This quantity consists of two components: the number of arrivals during
the waiting time, and the number of additional arrivals during the service time.

The number of arrivals during the waiting time can be derived from the fluid model repre-
senting the remaining waiting time process introduced in Section 7.2.2. We follow the exactly
same recipe as in Section 7.1.3 with the preemptive case, thus we modify the background pro-
cess of the fluid model Q̄ such that it counts the number of arrivals during the busy period
and get Q̄′. The blocks of the corresponding Ψ̄

′ matrix, Ψ̄k are holding the probabilities that
k arrivals occurred during the busy period (that is, during the waiting time) given the initial
phase of the MMAP. These matrices can be calculated as Theorem 26 does in the preemptive
resume case, the only difference is that matrix Q̄ needs to be used instead of matrix Q̃.

As for the second component, let us introduce matrices Ai, i ≥ 0 whose (k, `)th entry is
the probability that the MMAP generates i low priority arrivals during a low priority service
time starting from phase k and the MMAP phase at the end of service is `. Matrices Ai are
matrix-geometric

Ai = α · Aia, i ≥ 0, (254)

where

α = I ⊗ σL, (255)

A = (−(D0 + DH)⊕ SL)
−1 (DL ⊗ I), (256)

a = (−(D0 + DH)⊕ SL)
−1 (I ⊗ sL). (257)

Theorem 29. The joint probability of the number of low priority customers in the system and
the phase of the MMAP at low priority departure instants is

xL
i = hi · a + p̌Ai, (258)

where vector h0 = κ̄Ψ̄0 and hi, i > 0 is defined recursively as

hi = hi−1 · A + κ̄Ψ̄iα. (259)

Proof. Let us sum the number of arrivals during the waiting time and during the service time
by convolution, yielding

xL
i =

i

∑
k=0

κ̄Ψ̄k Ai−k + p̌Ai =
i

∑
k=0

κ̄Ψ̄kαAi−k

︸ ︷︷ ︸
hi

a + p̌Ai. (260)

The recursion for hi can be shown by

hi =
i

∑
k=0

κ̄Ψ̄kαAi−k =
i−1

∑
k=0

κ̄Ψ̄kαAi−1−k

︸ ︷︷ ︸
hi−1

·A + κ̄Ψ̄iα. (261)
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t

V ′H(t) Workload after high priority arrivals

Low priority customer leaves the system

Figure 33.: The modified workload process of the high priority class

By introducing the GFs Ψ̄(z) = ∑∞
i=0 ziΨ̄i and A(z) = ∑∞

i=0 zi Ai, the GF XL(z) =

∑∞
i=0 zixL

i is easy to obtain from (260) and (254).

Corollary 14. XL(z) is expressed by

XL(z) = κ̄Ψ̄(z)A(z) + p̌A(z), (262)

where matrix A(z) = ∑∞
i=0 zi Ai has the following closed form formula

A(z) = α(I − zA)−1a. (263)

Based on (238) the factorial moments at departures are calculated by routine derivations of
(262).

Corollary 15. For the kth factorial moment of the number of low priority customers at low
priority departures we have

E(X k
L) =

k

∑
i=0

(
k
i

)
κ̄Ψ̄

(i)A(k−i) + p̌A(k), (264)

where matrices Ψ̄
(i)

= di

dzi Ψ̄(z)|z=1 are obtained similar to (240) and matrices A(i) =
di

dzi A(z)|z=1 have the following closed form:

A(i) = i!α(I − A)−i−1Aia. (265)

Having characterized the number of low priority customers at low priority departure
epochs, the properties of the number of low priority customers at a random point in time
are given by Theorem 27 and Corollaries 9 and 10.

7.2.4 The analysis of the high priority class

In the non-preemptive case the high priority class can not be analyzed in separation, since a
high priority customer can not be served immediately when a low priority customer is in the
server.

We use the workload process of the high priority class denoted by {VH(t), t > 0} to derive
the performance measures1. The trajectory of VH(t) contains intervals where the slope is

1 Contrary to Sections 7.1.1 and 7.2.1, where the workload process of the entire system is discussed, the workload
process considered here applies only to the high priority class.
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7.2 analysis of the non-preemptive priority qeue 109

zero corresponding to the periods when the server serves low priority customers. As before,
VH(t) is transformed to a fluid model (see Figure 33 for an example).

The blocks of the generator matrix of this fluid model are defined by

QH
++ =

[
I ⊗ I ⊗ SH

I ⊗ SH

]
, QH

+−=

[
0

I ⊗ sH

]
, QH

+0 =

[
I ⊗ I ⊗ sH

0

]
,

QH
−+ =

[
0 DH ⊗ σH

]
, QH

−− = D0 + DL, QH
−0 = 0,

QH
0+ =

[
DH ⊗ I ⊗ σH 0

]
, QH

0− = I ⊗ sL, QH
00 = (D0+DL)⊕ SL.

Four state groups can be identified in the generator. The two state groups of N+ both cor-
respond to the workload accumulation due to a new high priority arrival. The difference is
that in the first state group the server works on a low priority customer, thus the phase of its
service needs to be maintained during the workload accumulation. In the negative statesN−
the server is working on a high, in the zero states N0 the server is working on a low priority
customer.

The probability of the phases when the workload process leaves level zero, denoted by
vector κH , is not easy to obtain. Regarding this vector we are relying on the results of [79],
which we re-formulate and simplify at several points due to the PH distributed service times.

Let us investigate the system at the departures that leave the high priority queue empty,
and introduce two probability vectors, φ and φ0 associated to this embedded process. The ith
entry of φ0 is the probability that the whole system is empty at the embedded instant and the
phase of the MMAP is i. Entry i of vector φ is the probability that the embedded process is
in state i in the product space of the MMAP phase and the phase of the low priority service
time.

Theorem 30. Vector φ0 is given by

φ0 =
(1− ρ)p−(−D0)

λL p−1+ (1− ρ)p−DH1
, (266)

where p− is the probability mass vector of the fluid queue representing the workload process of
the whole system (see Sections 7.1.1 and 7.2.1).

Vector φ is the unique solution to the linear system

φ = (φ− φ0)(I⊗σL)(−(D0+DL)⊕SL)
−1
[

DH⊗I⊗σH 0
]

ΨH

+ (φ− φ0)(I⊗σL)(−(D0+DL)⊕SL)
−1(I ⊗ sL)

+ φ0(−D0)
−1(DL⊗σL)(−(D0+DL)⊕SL)

−1
[

DH⊗I⊗σH 0
]

ΨH

+ φ0(−D0)
−1(DL⊗σL)(−(D0+DL)⊕SL)

−1(I ⊗ sL)

+ φ0(−D0)
−1
[
0 DH⊗σH

]
ΨH,

(267)

φ1 = 1, (268)

where ΨH is the solution of the NARE

ΨHQH
−+ΨH + ΨHQH

−− + (QH
++ + QH

+0(−QH
00)
−1QH

0+)Ψ
H

+ QH
+− + QH

+0(−QH
00)
−1QH

0− = 0.
(269)
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Proof. Eq. (266) follows from [79], Theorem 3.1 and [79], Lemma 3.2.
Eq. (267) has 5 terms. The first one corresponds to the case when there are low priority

customers in the system when the last high priority customer leaves. The server starts to
serve a low priority customer. The PH of the service process and the MMAP evolve together,
and the MMAP generates a high priority arrival before the current service is completed, and
initiates the workload process (see Figure 33). The next departure leaving the high priority
class empty occurs when the workload of the high priority class returns to level zero, with the
corresponding phase transitions given by ΨH (which satisfies the usual NARE after censoring
out the zero states). According to the second term the low priority service is completed before
the MMAP generates a high priority customer, providing the phase of the next embedded
point. In the third and fourth term the last high priority customer leaves the system empty,
and the next arriving customer is a low priority one, while in the last term the next arriving
customer is a high priority one.

Let us introduce vectors qH
L and qH

0 as the stationary phase probabilities that the server is
working on a low priority customer and that the system is idle when there are no high priority
customers in the system, respectively. These probability vectors can be obtained from φ and
φ0 by taking into account the mean amount of time spent in various phases in the system,
yielding

qH
L =

1
cH (φ− φ0 + φ0(−D0)

−1DL)(I⊗σL)(−(D0+DL)⊕SL)
−1,

qH
0 =

1
cH φ0(−D0)

−1,
(270)

where cH is a normalization constant. From these vectors the initial phase distribution vector
for the high priority workload process denoted by κH is given by

κH = qH
L

[
DH⊗I⊗σH 0

]
+ qH

0

[
0 DH⊗σH

]
= qH

L QH
0+ + qH

0 QH
−+. (271)

Finally, the next two theorems provide the performance measures for the high priority
customers.

Theorem31. The pdf of the sojourn time of high priority customers fTH (t) is matrix-exponential

fTH (t) = ζeZtv, (272)

with parameters

ζ =
[
κH 0

]
/c, Z =

KH

[
1⊗ I ⊗ sH

0

]
0 SL

 , v =

 0

1⊗ sH

sL

 , (273)

where KH = QH
++ + QH

+0(−QH
00)
−1QH

0+ + ΨHQH
−+ and c is the normalization constant.

Proof. The density of the workload at high priority arrival including the service time require-
ment the customer brought to the system is κHeKH xQH

+0 if the server works on a low priority
customer and it is κHeKH xQH

+− otherwise (see the points marked by circles in Figure 33). In
the latter case the sojourn time of the entering customer is x. In the former case, however,
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the remaining service time of the low priority customer has to be taken into account as well.
The phase of the low priority service is also encoded in the background process, hencewe have

fTH (t) =
(

κH
∫ ∞

x=0
eKH xQH

+0(1⊗ I)eSL(t−x)sL dt + κHeKH xQH
+−1

)
/c. (274)

The convolution of the two matrix exponentials with parameters KH and SL can be repre-
sented by a single matrix exponential with parameter Z according toTheorem 37. The second
term can be expressed using ζeZt as well, by adding transitions from the first matrix block to

the absorbing state with rates QH
+−1 =

[
0

1⊗ sH

]
. Putting together the two terms provides

the theorem.

Corollary 16. The LST of the distribution function and the moments of TH are given by

f ∗TH
(s) = ζ(sI − Z)−1v, E(T k

H) = k!ζ(−Z)−k−1v. (275)

For the analysis of the number of high priority customers in the system we introduce a
QBD, where the matrices corresponding to level backward, local and level forward transitions
(denoted by B, L and F, respectively) are

L =

[
(D0 + DL)⊕ SL I ⊗ sLσH

(D0 + DL)⊕ SH

]
,

B =

[
I ⊗ sHσH

]
, F =

[
DH ⊗ I

DH ⊗ I

]
.

In the first group of states the server is working on a low, in the second one it is working on
a high priority customer. It is possible to move from the first state group to second one (see
matrix L), but not the way around at levels > 0.

The entries of vector yH
i are the probabilities that there are i high priority customers in the

system and the background process is in different phases. It is well known that QBDs have a
matrix geometric distribution.

Theorem 32. Vectors yH
i have the following matrix geometric form:

yH
i = yH

0 Ri, (276)

where matrix R is the minimal non-negative solution to the matrix-quadratic equation

F + RL + R2B = 0, (277)

and the probability of level 0 is yH
0 =

[
qH

L qH
0

]
/c′. The normalization constant is c′ =[

qH
L qH

0

]
(I − R)−11.

Proof. By definition in (270), vectors qH
L and qH

0 are the stationary phase probability vectors
given that there are no high priority customers in the system. The matrix-geometric station-
ary distribution is a standard property of QBDs (see Section 4.1.3).

Corollary 17. The GF of the number of high priority customers YH(z) = ∑∞
i=0 ziyH

i 1 and the
factorial moments E(Y k

H) are given by

YH(z) = yH
0 (I − zR)−11, E(Y k

H) = k!yH
0 Rk(I − R)−k−11. (278)
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7.3 numerical behavior

The steps of the presented analysis procedure are significantly less computationally demand-
ing than the past methods published in the literature considering the same queueing system.

In this section we compare our procedure with three prior methods: the method of [3]
(transformed to continuous time), its improved version published in [45], and the procedure
of [48]. Note that the latter two procedures are far less general than [3] or the proposed one.
They can handle only preemptive resume service, they do not analyze the sojourn time at all,
and [48] is only able to provide the moments of the number of customers.

Since all involved procedures are exact, only the scalability is investigated, that is, the
analysis time as the function of the number of phases.

For this purpose let us define the MMAP matrices as

D0
(K) =


• Kν
γ • (K− 1)ν

. . . . . . . . .
(K− 1)γ • ν

Kγ •

 , DL
(K) =


0

rL/K
2rL/K

. . .
rL

 ,

and matrix DH
(K) is defined similarly. The diagonal entries denoted by • are determined

uniquely such that the row sums of D0
(K) + DL

(K) + DH
(K) are zeroes.

The service times are characterized by order-2 PH distributions with parameters

σH =
[
0.16667 0.83333

]
, σL=

[
0.58824 0.41176

]
,

SH =

[
−0.66667 0.66667

0 −4

]
, SL=

[
−3.2941 3.2941

0 −5.6

]
,

having service rates µL = 2.8 and µH = 2. The utilization depends on K, it varies between
0.6 and 0.75.

Figure 34 depicts the analysis time required to obtain the first 10 moments of the number
of low priority customers in the system in the preemptive case as the function of K2. (This is
the only performancemeasure that is supported by all the procedures). It is clearly visible that
the presentedmethod is at least an order of magnitude faster than the prior ones, and is able to
solve systems with a large number of phases. No numerical problems were encountered even
with the largest model. Additionally, as opposed to [45] and [48], the presented procedure
can provide sojourn time related performance measures, and is able to handle the case of
non-preemptive service as well.

7.4 departure process analysis of priority qeues

This section describes a method to obtain the multi-class lag-1 joint moments of the inter-
departure times of priority queues. From these moments it is possible to create a MMAP
(based on the results of Section 3.2.3) in order to approximate the departure process in a
Markovian way.

The approach to derive the multi-class joint moments of the inter-departure times is similar
to the one presented in 5.3.3 for the single-class case. For simplicity, we discuss only the

2 In our MATLAB implementation the NARE problems are solved by the ADDA procedure [86] and the Sylvester
equations are solved by the lyap function of MATLAB, which is based on the Hessenberg-Schur algorithm [33].
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Figure 34.: Comparison of the execution times of various procedures

two-class case with preemptive resume priority, but the procedure itself can be extended to
handle more general systems as well.

The main idea is that the stochastic behavior of two consecutive departure intervals is inde-
pendent on the number of customers in the queue when there are at least two customers. The
reason is that the system cannot become idle during the two consecutive departure intervals
in this case. As a consequence, we have to distinguish just six cases, as follows:

• 0, 0: the last departure left the system empty,

• 1, 0: at the last departure one high and zero low priority customers are left in the system,

• 1, 1+: at the last departure one high and at least one low priority customers are left in
the system,

• 2+, 0+: at the last departure at least two high priority customers are left in the system,

• 0, 1: at the last departure zero high and one low priority customers are left in the system,

• 0, 2+: at the last departure zero high and at least two low priority customers are left in
the system.

(Note that there were only three cases to distinguish in the single-class MAP/MAP/1 system.)
The analysis method presented in Sections 7.1 and 7.2 provides only per-class performance

measures and does not allow the analysis of the joint behavior of the priority classes. Hence,
a different approach is needed to obtain the probabilities of the above listed these six cases.

The approach we are going to use is based on [3], where the analysis of the discrete time
DMAP/PH/1 priority queue is presented. In contrast to [3], here we consider the continuous
time model and extend the results of that paper in several ways. We provide new closed
formulas and more efficient algorithms than the existing ones.

7.4.1 The MMAP[K]/PH[K]/1 preemptive priority queue as a QBD process

It is possible to define a three dimensional CTMC to model the queue length behavior. One
dimension keeps track of the length of the high priority queue, the second one the length
of the low priority queue, and the third dimension describes the phase of the arrival MMAP
together with the phases of the low and high priority service PH distributions.
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With proper numbering of the states the structure of the generator of this Markov chain is

Q =


L0 F

B L F

B L F
. . . . . . . . .

 , (279)

where the blocks of the generator are infinite matrices corresponding to the same number of
high priority customers but different number of low priority customers and different phases
of the arrival and service processes. The blocks of Q are defined as

F = diag〈EH〉 (280)

B = diag〈J(H)
1 〉 (281)

L =


E0 + J(H)

0 EL

E0 + J(H)
0 EL

E0 + J(H)
0 EL

. . . . . .

 , (282)

L0 =


E0 EL

J(L)
1 E0 + J(L)

0 EL

J(L)
1 E0 + J(L)

0 EL
. . . . . .

 , (283)

with the notation

Ei = Di ⊗ I ⊗ I , i = {0, L, H},

J(H)
0 = I ⊗ SH ⊗ I , J(H)

1 = I ⊗ sHσH ⊗ I ,

J(L)
0 = I ⊗ I ⊗ SL , J(L)

1 = I ⊗ I ⊗ sLσL .

(284)

With these definitions matrices EL (and EH ) contain the transition rates accompanied by low
(and high) priority arrivals, while J(L)

1 (and J(H)
1 ) are the ones accompanied by low (and high)

priority services, respectively.
Since the generator is a QBD (with infinite number of phases), the solution is matrix-

geometric (see Section 4.1.3), thus we have

yk = y0Rk , k ≥ 0, (285)

where yk is the vector of the steady state probability of the states with k high priority cus-
tomers. This vector can be partitioned according the number of low priority customers,
yk = {yk,j, j ≥ 0}, where yk,j denotes the vector of steady state probabilities for the states
with k high and j low priority customers. Furthermore, we denote the marginal steady state
probability vectors of the classes as

y(H)
i =

∞

∑
j=0

yi,j, y(L)
i =

∞

∑
j=0

yj,i .
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Due to the definition of the blocks of the generator, both matrices R and G exhibit an upper-
block-Toeplitz structure, since the number of low priority arrivals and the number of cus-
tomers in the system are independent given the phase of the arrival and service processes
(shown in [3]). Thus we have:

G =


G(L)

0 G(L)
1 G(L)

2 · · ·
G(L)

0 G(L)
1 · · ·

G(L)
0 · · ·

. . .

 , R =


R(L)

0 R(L)
1 R(L)

2 · · ·
R(L)

0 R(L)
1 · · ·

R(L)
0 · · ·

. . .

 . (286)

As in every homogeneous QBD, these matrices are the minimal non-negative solutions to
the matrix quadratic equations (see (123) and (128))

0 = B + LG + FG2. (287)
0 = F + RL + R2B, (288)

Applying the definitions of matrices B, L and F, and exploiting the upper-block-Toeplitz
structure of matrices R and G we can derive relationships for matrices R(L)

i and G(L)
i , i ≥ 0

(see [3]).
The equations for matrices G(L)

i are as follows:

for i = 0 : 0 = J(H)
1 + (E0 + J(H)

0 )G(L)
0 + EH G(L)

0
2
, (289)

for i > 0 : 0 = ELG(L)
i−1 + (E0 + J(H)

0 )G(L)
i + EH

i

∑
k=0

G(L)
k G(L)

i−k. (290)

Matrices G(L)
i have important probabilistic interpretations. Entry (a, b) of matrix G(L)

i is
the conditional probability that starting from level n with the background process being in
phase a, (1) the first visit to level n − 1 occurs in phase b, (2) i low probability customers
arrive during the first passage time.

The following expressions can be obtained for matrices R(L)
i :

for i = 0 : 0 = EH + R(L)
0 (E0 + J(H)

0 ) + R(L)
0

2
J(H)

1 , (291)

for i > 0 : 0 = R(L)
i−1EL + R(L)

i (E0 + J(H)
0 ) +

i

∑
k=0

R(L)
k R(L)

i−k J(H)
1 . (292)

Interestingly, summing up equations (290) from i = 1 to ∞ and adding (289) leads to a
matrix quadratic equation for Ĝ(L) = ∑∞

i=0 G(L)
i , since

0 = J(H)
1 + (E0 + EL + J(H)

0 )Ĝ(L) + EH Ĝ(L)2
. (293)

Similarly, the sum of matrices R(L)
i , denoted by R̂(L) = ∑∞

i=0 R(L)
i , can be obtained as the

minimal non-negative solution of a matrix quadratic equation as well, as

0 = EH + R̂(L)(E0 + EL + J(H)
0 ) + R̂(L)2

J(H)
1 . (294)

The generating function of matrix series G(L)
i defined by G(L)(z) = ∑∞

k=0 zkG(L)
k will be

used several times in the sequel. From (290) and (289) we have that G(L)(z) is the solution of
the following matrix-quadratic equation:

0 = J(H)
1 + (E0 + zEL + J(H)

0 )G(L)(z) + EH G(L)(z)
2
. (295)
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Finally, based on (285) and the block structure of matrix R the steady state probability
vector of the number of high and low priority customers in the system can be expressed as

yi,j =
j

∑
k=0

yi−1,kR(L)
j−k , i ≥ 1, j ≥ 0, (296)

To completely characterize the joint distribution of the number of high and low priority
customers, it remains to derive the stationary probability vector at level 0, y0 = {y0,j, j ≥ 0}.

7.4.2 Analysis of level zero

Relations for vector y0 can be derived from the boundary equations yQ = 0 as

y0L0 + y0RB = 0, y0,01 = 1− λ(H)/µ(H) − λ(L)/µ(L). (297)

Due to the structure of matrices L0, B and R, (297) is equivalent to the solution of an
M/G/1 type CTMC (see [90]). However, by using the relation RB = FG (see e.g. [57], page
144) it is possible to re-formulate (297) and the corresponding M/G/1 type CTMC to a more
appropriate form. The equations for y0 by using G instead of R are then

y0L0 + y0FG = 0, y0,01 = 1− λ(H)/µ(H) − λ(L)/µ(L), (298)

and the generator of the related M/G/1 type CTMC becomes

Q0 = L0 + FG =
E0 + EH G(L)

0 EL + EH G(L)
1 EH G(L)

2 EH G(L)
3 . . .

J(L)
1 E0 + J(L)

0 + EH G(L)
0 EL + EH G(L)

1 EH G(L)
2 . . .

J(L)
1 E0 + J(L)

0 + EH G(L)
0 EL + EH G(L)

1 . . .
. . . . . . . . . . . .

 .

(299)

The solution ofM/G/1-typeMarkov chains is based on their invariant matrix GH0 whose entry
in position (i, j) is the probability that starting in phase i at level n the first phase visited at
level n− 1 is state j [57]. (Hence, this matrix plays the same role as the matrix G of QBDs).
In this particular M/G/1-type system matrix GH0 is the minimal non-negative solution to the
matrix polynomial equation

0 = J(L)
1 + (E0 + J(L)

0 )GH0 + ELGH0
2 + EH

∞

∑
i=0

G(L)
i GH0

i ·GH0 . (300)

The stationary probability vectors y0,i can be calculated recursively using the Ramaswami
formula [70]. Tailoring it to this particular system gives

y0,i =

(
i−1

∑
k=0

y0,kTi−k

)
(−T0)

−1, i ≥ 1, (301)

where matrices Ti are defined by

Ti =
∞

∑
k=i

EH G(L)
k GH0

k−i, i ≥ 2,

T1 = EL +
∞

∑
k=1

EH G(L)
k GH0

k−1,

T0 = E0 + J(L)
0 + EH G(L)

0 + T1GH0 ,

(302)
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and, vector y0,0 is the solution of the linear system

y0,0

(
E0 + EH G(L)

0 + T1(−T0)
−1 J(L)

1

)
= 0,

y0,01 = 1− λ(H)/µ(H) − λ(L)/µ(L),
(303)

which, utilizing that T0GH0 = −J(L)
1 can be simplified to

y0,0

(
E0 + ELGH0 + EH

∞

∑
i=0

G(L)
i GH0

i

)
= 0,

y0,01 = 1− λ(H)/µ(H) − λ(L)/µ(L).

(304)

(Observe that the matrix in the parenthesis is the generator of the background process re-
stricted to level (0, 0)).

7.4.3 The joint moments of the departure process

As shown in Section 5.3.3, the departure process of a MAP/MAP/1 queue is an infinite state
MAP. Similarly, the departure process of the MMAP[K]/PH[K]/1 priority queue is an infinite
MMAP as well. This MMAP generates a high priority (low priority) arrival when a high pri-
ority (low priority) departure occurs in the system. The computation of the joint moments of
the departure process, η

(L)
i,j , η

(H)
i,j , is rather difficult based on this infinite MMAP representa-

tion. Instead of using this representation directly, we construct a finite MMAP (considering
the 6 cases listed above in the beginning of Section 7.4), such that the joint distribution of the
first two arrivals of this MMAP – starting from the appropriate initial distribution – is identi-
cal with the one of two consecutive stationary departures of the MMAP[K]/PH[K]/1 priority
queue.

The blocks of the matrices of this finite MMAP are constructed from the block matrices of
the QBD describing the queue length process ((280)-(283)), such that the transitions between
the 6 listed cases are taken into consideration. The initial probability distribution is computed
according to the stationary distribution of the queue length process just after a departure
considering the 6 listed cases.

The matrices of the resulting MMAP representation are as follows:

H0 =



M1 EH EL

M2 EL EH

M3 EH

M4

EH M5 EL

EH M6


, (305)

HH =



0 0 0 0 0 0

J(H)
1 0

J(H)
1 0

J(H)
1 0

0

0


, HL =



0 0 0 0 0 0

0

0

0

J(L)
1 0

J(L)
1


, (306)
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where the diagonal blocks of H0 are:

M1 = E0,

M2 = E0 + J(H)
0 ,

M3 = E0 + EL + J(H)
0 ,

M4 = E0 + EH + EL + J(H)
0 ,

M5 = E0 + J(L)
0 ,

M6 = E0 + EL + J(L)
0 .

Matrices H0, HL and HH can be interpreted as follows. The first set of states correspond to
case 0, 0. From this state, a high priority arrival moves the Markov chain to state 1, 0, and a
low priority arrival to state 0, 1. No service events can occur in 0, 0. From state 1, 0 (second
set of states) there are transitions to 1, 1+ due to a low priority arrival (EL), to 2+, 0 due to
a high priority arrival (EH ), and to 0, 0 due to a high priority service (J(H)

1 ). The latter one
is accompanied by a high priority departure event, hence the corresponding matrix block is
located in HH . The rest of the blocks can be interpreted similarly.

The steady-state distribution of the MMAP[K]/PH[K]/1 queue just after a departure can be
calculated from the stationary distribution as

xi,j =


yi+1,j J

(H)
1

λ(L) + λ(H)
, i > 0, j ≥ 0

y1,j J
(H)
1 + y0,j+1 J(L)

1

λ(L) + λ(H)
, i = 0, j ≥ 0.

(307)

The initial probability distribution of the 6 cases, v = [x0,0, x1,0, x1,1+, x2+,0+, x0,1, x0,2+],
are computed based on (307) and (296) as

x0,0 =
y1,0 J(H)

1 + y0,1 J(L)
1

λ(L) + λ(H)
=

y0,0R(L)
0 J(H)

1 + y0,1 J(L)
1

λ(L) + λ(H)
, (308)

x1,0 =
y2,0 J(H)

1

λ(L) + λ(H)
=

y0,0R(L)
0

2
J(H)

1

λ(L) + λ(H)
, (309)

x1,1+ =
∑∞

j=1 y2,j J
(H)
1

λ(L) + λ(H)
=

∑∞
j=0 ∑

j
k=0 ∑k

l=0 y0,l R
(L)
k−l R

(L)
j−k J(H)

1 − y0,0R(L)
0

2
J(H)

1

λ(L) + λ(H)

=
∑∞

l=0 y0,l R̂(L)2
J(H)

1 − y0,0R(L)
0

2
J(H)

1

λ(L) + λ(H)
=

y(H)
0 R̂(L)2

J(H)
1 − y0,0R(L)

0
2
J(H)

1

λ(L) + λ(H)
,

(310)

x2+,0+ =
∑∞

i=3 ∑∞
j=0 yi,j J

(H)
1

λ(L) + λ(H)
=

∑∞
i=3 y(H)

i J(H)
1

λ(L) + λ(H)
=

∑∞
i=3 y(H)

0 R̂(L)i
J(H)

1

λ(L) + λ(H)

=
y(H)

0 R̂(L)3
(I − R̂(L))−1 J(H)

1

λ(L) + λ(H)
,

(311)
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x0,1 =
y1,1 J(H)

1 + y0,2 J(L)
1

λ(L) + λ(H)
=

(y0,0R(L)
1 + y0,1R(L)

0 )J(H)
1 + y0,2 J(L)

1

λ(L) + λ(H)
, (312)

x0,2+ =
∑∞

j=3 y0,j J
(L)
1 + ∑∞

j=2 y1,j J
(H)
1

λ(L) + λ(H)

=
(y(H)

0 −y0,0−y0,1−y0,2)J(L)
1 + (∑∞

j=0 y1,j−y0,0R(L)
0 −y0,0R(L)

1 −y0,1R(L)
0 )J(H)

1

λ(L) + λ(H)

=
(y(H)

0 − y0,0 − y0,1 − y0,2)J(L)
1

λ(L) + λ(H)

+
(∑∞

j=0 ∑
j
k=0 y0,kR(L)

j−k − y0,0R(L)
0 − y0,0R(L)

1 − y0,1R(L)
0 )J(H)

1

λ(L) + λ(H)

=
(y(H)

0 −y0,0−y0,1−y0,2)J(L)
1 +(y(H)

0 R̂(L)−y0,0R(L)
0 −y0,0R(L)

1 −y0,1R(L)
0 )J(H)

1

λ(L) + λ(H)
,

(313)

where vector y(H)
0 denotes the probability vector that there are no high priority customers in

the system, thus y(H)
0 = ∑∞

i=0 y0,i.
Having computed the vector v and the matrices H0, HH and HL, the joint moments of the

departure process are obtained according to (64), hence

η
(c)
i,j = i!j! v(−H0)

−i−1Hc(−H0)
−j1, i, j ≥ 0, c = {H, L}. (314)

7.4.4 An efficient, truncation-free procedure

Section 7.4.2 describes how to calculate the steady state joint distribution of the number of
customers, based on which Section 7.4.3 derives the joint moments of the inter-departure
times. These results, however, are not straight forward to implement in an efficient way. The
potential numerical pitfalls are:

• To obtain matrix GH0 the matrix polynomial equation (300) has to be solved, but this
matrix equation has infinitely many terms, and relies on infinitely many elements of
matrix series G(L)

i .

• To obtain vectors y0,j, j ≥ 0, matrices Ti are required (see (301)), that are defined by
infinite summations (302).

• To obtain vectors yi,j, i > 0, j ≥ 0, a convolution like formula needs to be evaluated
that gets slower and slower with increasing i (see (296)).

• To obtain vector v, vectors like x2+,0+ are necessary to compute, which involves infinite
summations of vectors y0,j.

The naive numerical implementation of such a procedure evaluates the infinite summa-
tions by truncation. In order to avoid the loss of accuracy, the truncation threshold must be
high, depending on the parameters (in particular, the load) of the system, which makes the
procedure slow.
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Fortunately, it is possible to develop a numerically efficient procedure that addresses all
the above listed critical steps without using any truncation. The efficient solution of (300)
is addressed in Section 7.4.4.1, while the accurate calculation of the vectors y0,i and further
related quantities is discussed in Section 7.4.4.2.

7.4.4.1 Two fundamental matrices and their relations

There are two matrices that play key roles in the efficient analysis of the system. One of them
is GH0 , that is the solution of (300), and the other one is matrix Z, defined by

Z =
∞

∑
i=0

G(L)
i GH0

i. (315)

Theorem 33. If the algebraic multiplicities of the eigenvalues of matrices GH0 and Z are one,
GH0 Z = ZGH0 holds.

To prove this theorem we first need the following Lemma:

Lemma 7. If the algebraic multiplicities of the eigenvalues of matrix G(L)(z) and matrix E0 +

zEL + EH G(L)(z) are one, the eigenvectors of G(L)(z) and E0 + zEL + EH G(L)(z) are the
same.

Proof of the Lemma. The proof uses the same techniques as in [47].
Let νi and ui be the eigenvalue and the corresponding right eigenvector of G(L)(z) (for

simplicity we assume that G(L)(z) has distinct eigenvalues). As G(L)(z) satisfies the matrix-
quadratic equation of (295), νi satisfies

det
[

J(H)
1 + (E0 + zEL + J(H)

0 )νi + EHν2
i

]
= 0, (316)

and the associated right eigenvector ui is the solution of[
J(H)

1 + (E0 + zEL + J(H)
0 )νi + EHν2

i

]
· ui = 0. (317)

Note that both νi and vectors ui are functions of z.
By substituting (284) into (316) and by some basic manipulations we get

det
[( (

νiD0 + νizDL + ν2
i DH

)︸ ︷︷ ︸
M1

⊕
(
sHσH + νiSH

)︸ ︷︷ ︸
M2

)
⊗ I
]
= 0, (318)

from which it follows that M1⊕M2 has a zero eigenvalue. Let δj and σk denote the eigenval-
ues of M1 and M2, respectively. Since the eigenvalues of M1⊕M2 are δj + σk, to have a zero
eigenvalue there must exist j′ and k′ such that δj′ = −σk′ . The eigenvector of M1 belonging
to δj′ is denoted by θ j′ , the one of M2 belonging to σk′ is denoted by ψk′ . Let us introduce
φi = θ j′ ⊗ ψk′ ⊗ 1.

Now we show that φi is an eigenvector of G(L)(z) associated with νi, thus it satisfies (317):[
J(H)

1 + (E0 + zEL + J(H)
0 )νi + EHν2

i

]
· φi

= [I ⊗M2 ⊗ I + M1 ⊗ I ⊗ I] · (θ j′ ⊗ ψk′ ⊗ 1)
= θ j′ ⊗ (σk′ψk′)⊗ 1+ (δj′θ j′)⊗ ψk′ ⊗ 1 = 0.

(319)
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Next, we show that φi is an eigenvector of E0 + zEL + EH G(L)(z):[
E0 + zEL + EH G(L)(z)

]
· φi = [E0 + zEL + EHνi] · φi

= [D0 ⊗ I ⊗ I + zDL ⊗ I ⊗ I + DHνi ⊗ I ⊗ I] · (θ j′ ⊗ ψk′ ⊗ 1)
= (M1/νi ⊗ I ⊗ I) · (θ j′ ⊗ ψk′ ⊗ 1) = δj′/νi · φi.

(320)

Proof of Theorem 33. First observe that matrices G(L)
i can be written as G(L)

i = G̃(L)
i ⊗ I

since the service process of the low priority class is stopped during the busy period of the
high priority class.

The proof will be similar to the one of Lemma 7, using the same techniques as in [47] again.
Let λk and vk be the eigenvalue and the corresponding right eigenvector of GH0 (for sim-

plicity we assume that GH0 has distinct eigenvalues). As GH0 satisfies the matrix equation of
(300), λk satisfies

det

[
J(L)

1 + (E0 + J(L)
0 )λk + ELλ2

k + EH

∞

∑
i=0

(G̃(L)
i ⊗ I)λi

k · λk

]
= 0, (321)

and the associated right eigenvector vk is the solution of[
J(L)

1 + (E0 + J(L)
0 )λk + ELλ2

k + EH

∞

∑
i=0

(G̃(L)
i ⊗ I)λi

k · λk

]
· vk = 0. (322)

By substituting (284) into (321) and by some basic manipulation we get

det
[(

λkD0⊗I + λ2
k DL⊗I +

∞

∑
i=0

λi+1
k (DH⊗I)G̃(L)

i

)
︸ ︷︷ ︸

N1

⊕ (sLσL + λkSL)︸ ︷︷ ︸
N2

]
= 0,

from which it follows that N1⊕ N2 has a zero eigenvalue. Let αj and βh denote the eigenval-
ues of N1 and N2, respectively. Since the eigenvalues of N1 ⊕ N2 are αj + βh, to have a zero
eigenvalue there must exist j′ and h′ such that αj′ = −βh′ . The eigenvector of N1 belonging
to αj′ is denoted by ζ j′ , the one of N2 belonging to βh′ is denoted by ξh′ . Let us introduce
µk = ζ j′ ⊗ ξh′ .

Now we show that µk is an eigenvector of GH0 , thus it satisfies (322):

(N1 ⊕ N2) · µk = (N1 ⊗ I + I ⊗ N2) · (ζ j′ ⊗ ξh′) =

= αj′ζ j′ ⊗ ξh′ + ζ j′ ⊗ (βh′ξh′) = 0.
(323)

Next, we show that µk is an eigenvector of Z. Observe that µk is an eigenvector of Z if and
only if it is an eigenvector of G(L)(z)|z=λk since

Z · µk =
∞

∑
i=0

G(L)
i GH0

i · µk =
∞

∑
i=0

G(L)
i λi

kµk = G(L)(z)|z=λk · µk. (324)
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As Lemma 7 states that the eigenvectors ofmatrix G(L)(z) andmatrix E0 + zEL +EH G(L)(z)
are the same, it is enough to prove that µk is an eigenvector of (E0 + zEL + EH G(L)(z))|z=λk :

(E0 + λkEL + EH G(L)(λk)) · µk

=

[
(D0 ⊗ I ⊗ I + λkDL ⊗ I ⊗ I +

∞

∑
i=0

λi
k(DH ⊗ I ⊗ I)(G̃(L)

i ⊗ I)

]
· (ζ j′ ⊗ ξh′)

= [N1/λk ⊗ I] · (ζ j′ ⊗ ξh′) = αj′/λk(ζ j′ ⊗ ξh′).

(325)

As GH0 and Z have the same eigenvectors, the same matrix diagonalizes them, consequently
they commute.

Note that the theorem can be generalized to the case when the eigenvalues are not distinct,
but it requires the detailed discussion of the combination of the multiplicities of the eigenval-
ues of M1 and M2 (N1 and N2) that we neglect here.

Based on this commutative property, the next theorem enables the efficient computation
of GH0 and Z.

Theorem 34. Matrices GH0 and Z satisfy the following coupled matrix-quadratic equations:

0 = J(H)
1 + (E0 + J(H)

0 )Z + ELGH0 Z + EH Z2,

0 = J(L)
1 + (E0 + J(L)

0 )GH0 + EH ZGH0 + ELGH0
2.

(326)

Proof. To obtain equations for Z, we multiply (290) by GH0
i from the right, sum it from i = 1

to ∞, and add (289) to it. By using (315) we get

0 = J(H)
1 + ELZGH0 + (E0 + J(H)

0 )Z + EH

∞

∑
i=0

i

∑
k=0

G(L)
k G(L)

i−kGH0
i. (327)

The last term becomes EH Z2 by swapping the sums and exploiting that GH0 and Z commute,
providing the first matrix quadratic equation. The second matrix quadratic equation can be
obtained from (300), when the definition of Z is applied.

Interestingly, the two matrix equations show perfect symmetry. While the solution of cou-
pled Sylvester equations has an extensive literature (e.g. [27, 60, 89] are recent methods),
there are no methods available for coupled matrix quadratic equations (according to our best
knowledge). A very simple method is given by Algorithm 6. (We are sure that more efficient
solution methods can be developed as well, but even this simple method performs very well
in our numerical examples.)

Note that Algorithm 6 needs only successive solution of matrix quadratic equations, that
is much more efficient than the direct application of the results of Section 7.4.2 both in time
and in space requirement, since the infinite series of G(L)

i matrices and the solution of (300)
are not needed.

Although the results above have been derived in an algebraic way, matrices GH0 and Z
have important probabilistic interpretations. Let us denote by (nH, nL) the set of states in
which there are nH high and nL low priority customers in the queue. Then, entry (a, b) of
matrix GH0 is the conditional probability that starting from state a in (0, 1) the first visit to
(0, 0) occurs in state b. Similarly, the entry (a, b) of matrix Z is the conditional probability that
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7.4 departure process analysis of priority qeues 123

Algorithm 6 Solving the coupled matrix quadratic equations of (326)

procedure GH0 , Z = SolveCoupled(E0, EH , EL, J(H)
0 , J(H)

1 , J(L)
0 , J(L)

1 )
k← 0
GH0

(0) ← I
repeat

Solve 0 = J(H)
1 + (E0 + J(H)

0 + ELGH0
(k))Z(k+1) + EH Z(k+1)2

for Z(k+1)

Solve 0 = J(L)
1 + (E0 + J(L)

0 + EH Z(k+1))GH0
(k+1) + ELGH0

(k+1)2
for GH0

(k+1)

k← k + 1
until ‖GH0

(k) −GH0
(k−1)‖ < ε and ‖Z(k) − Z(k−1)‖ < ε

return GH0
(k), Z(k)

end procedure

starting from state a in (1, 0) the first visit to (0, 0) occurs in state b. Using these probabilistic
interpretations it is easy to see that Z and GH0 commute: let us investigate the busy period
generated by a high and a low priority customer, thus the system is in (1, 1) initially. Since
the probability that the first passage to (0, 0) occurs in state b is not affected by the order of
service, we immediately have that GH0 Z = ZGH0 .

7.4.4.2 The boundary distribution

Matrices Ti, i ≥ 0, that are necessary to compute boundary probabilities y0,i, are defined by
infinite summations (see (302)). To obtain matrices Ti efficiently we introduce closely related
matrices An defined by

An =
∞

∑
i=n

G(L)
i GH0

i−n, n ≥ 0. (328)

Theorem 35. Matrices An can be obtained recursively as the solutions of discrete Sylvester-type
matrix equations

0 = (−E0 − J(H)
0 − EH G(L)

0 )−1

(
EL An−1 + EH

n−1

∑
k=1

G(L)
k An−k

)
− An

+ (−E0 − J(H)
0 − EH G(L)

0 )−1EH AnZ

(329)

for n > 0, and for n = 0 we have that A0 = Z.

Proof. The case of n = 0 is trivial (see (315) for the definition of Z).
To derive equations for n > 0, let us multiply equations (290) by GH0

i−n from the right
and sum them up from i = n to ∞. We get

0 = EL

∞

∑
i=n

G(L)
i−1GH0

i−n

︸ ︷︷ ︸
An−1

+(E0 + J(H)
0 )

∞

∑
i=n

G(L)
i GH0

i−n

︸ ︷︷ ︸
An

+EH

∞

∑
i=n

i

∑
k=0

G(L)
k G(L)

i−kGH0
i−n.
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The last term can be transformed further by swapping the order of the two summations, lead-
ing to

EH

∞

∑
i=n

i

∑
k=0

G(L)
k G(L)

i−kGH0
i−n =

EH

n−1

∑
k=0

G(L)
k

∞

∑
i=n

G(L)
i−kGH0

i−n

︸ ︷︷ ︸
An−k

+EH

∞

∑
k=n

G(L)
k

∞

∑
i=k

G(L)
i−kGH0

i−k

︸ ︷︷ ︸
Z

GH0
k−n

︸ ︷︷ ︸
AnZ

, (330)

where the commuting property of matrices Z and GH0 was utilized. Collecting all parts of
the equation gives

0 = EL An−1 + EH

n−1

∑
k=1

G(L)
k An−k + (E0 + J(H)

0 + EH G(L)
0 )An + EH AnZ. (331)

Multiplying by (−E0− J(H)
0 − EH G(L)

0 )−1 from the left yields the traditional form of discrete
Sylvester equations, establishing the theorem.

Observe that the Sylvester equation for An depends only on matrices Ai, i < n, that are
already available in step n.

A consequence of Theorem 35 is that matrices Ti can be expressed explicitly.

Corollary 18. Matrices Ti, i ≥ 0, can be obtained as

Ti =


EH Ai, for i > 1,

EL + EH A1, for i = 1,

E0 + J(H)
0 + ELGH0 + EH Z, for i = 0.

(332)

Finally, it is possible to solve the sum of matrices An explicitly as well, that will be useful
later.

Corollary 19. The sum of matrices Ai, denoted by Â = ∑∞
i=0 Ai, is the solution of the discrete

Sylvester equation

0 = (−EL − EH Ĝ(L) − E0 − J(H)
0 )−1(−EH Z− EH Ĝ(L) − E0 − J(H)

0 )Z− Â

+ (−EL − EH Ĝ(L) − E0 − J(H)
0 )−1EH ÂZ.

(333)

Proof. Summing equations (329) from n = 1 to ∞, swapping the sums, and applying the
definition of Â provides the corollary after some simple algebraic manipulations.

Corollary 20. The sum of matrices Ti, denoted by T̂ = ∑∞
i=0 Ti, is given by

T̂ = E0 + J(H)
1 + ELGH0 + EL + EH Â. (334)

Proof. The corollary follows from Corollaries 18 and 19.
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7.4.4.3 Calculating the joint moments of the departure process

The steps to obtain the quantities necessary for the departure process analysis are as follows.

1. First solve matrices GH0 and Z with Algorithm 6.

2. Solve the matrix quadratic equations to obtain matrices Ĝ(L) and R̂(L).

3. Calculate matrices Gi for i = 0, 1, 2 based on (289) and (290), matrices Ri for i = 0, 1
based on (291) and (292), matrices Ai for i = 1, 2 based on (329), and matrices Ti for
i = 1, 2 based on Corollary 18.

4. Compute matrix Â by solving (333) and matrix T̂ from (334).

After this preparation the required stationary probabilities are calculated.

• Vectors y0,0, y0,1 and y0,2 are computed directly from (304) and (301) using the Ti ma-
trices computed above.

• To derive vector y(H)
0 = ∑∞

i=0 y0,i, equations (301) are summed up from i = 1 to ∞, and
(304) is added leading to

0 =
∞

∑
i=1

i

∑
k=0

y0,kTi−k︸ ︷︷ ︸
from (301)

+ y0,0T0 − y0,0 J(L)
0︸ ︷︷ ︸

from (304)

=
∞

∑
k=0

y0,k︸ ︷︷ ︸
y(H)

0

∞

∑
i=k

Ti−k︸ ︷︷ ︸
T̂

−y0,0 J(L)
0 ,

(335)

implying y(H)
0 = y0,0 J(L)

0 T̂−1.

Using the quantities calculated so far, it is possible to obtain all the six components of vector
v, namely x0,0, x1,0, x1,1+, x2+,0+, x0,1 and x0,2+. The joint moments of the departure process
are given by (314).
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8
QUEUE ING NETWORK ANALYS I S BASED ON THE JO IN T MOMEN TS

8.1 traffic based decomposition for the analysis of qeueing networks

At the beginning the queueing network models were restricted to have Poisson arrival pro-
cesses with iid. service times in the nodes. More general and multi-class queueing network
models are also available for a while [7], but the inter-dependency of the traffic classes is not
captured in these classical models. Apart of the exact analytical results which are based on
the product form of the stationary distribution of the number of customers at the queueing
nodes, a set of approximate analysis methods were developed. One of the most commonly
applied approximate analysis methods for queueing networks is the traffic based decomposi-
tion, where the nodes of the queueing network are evaluated sequentially, in isolation [42]. A
node analysis is composed by four main steps (also depicted in Figure 35),

1. the aggregation of the input streams of the node,

2. the queueing analysis of node (computing the performance measures),

3. the characterization of the departure process,

4. and splitting the departure process according to the routing of the traffic.

The evolution of MAP and MMAP based traffic models allowed the extension of the traffic
based queueing network analysis to cope with dependent inter-arrival and service times [42,
43]. An important benefit of MAPs andMMAPs is that from the four node analysis steps listed
above, three can be performed in an exact and efficient way. These trafficmodels are closed for
the aggregation and splitting operations (see Sections 3.1.1 and 3.1.2), and the related queueing
models can be solved by matrix-analytic methods. The only step where an approximation
is needed is the modeling of the departure process. The accuracy of the queueing network
analysis depends on who well the departure process of the queues is characterized.

This chapter puts the different parts of the dissertation together. TheMAP andMMAP char-
acterization results described in Chapter 3 will be used for the internal traffic representation
and basic traffic operations (the first and the fourth step in the list above), while Chapters 5,

Node

Traffic
aggregation

Traffic
splitting

Performance
analysis

Departure process
approximation

Figure 35.: Steps of the node analysis in traffic-based decomposition
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130 qeueing network analysis based on the joint moments

6 and 7 provide the apparatus for the performance analysis of the nodes (step 2) and the char-
acterization of the departure process (step 3).

In the rest of the chapter we restrict our attention to feed-forward queueing networks with-
out loops, where the stability condition is satisfied for all nodes.

8.2 single-type qeueing networks

Several approaches are available in the literature to model the departure process of
MAP/MAP/1 queues by a MAP. This section provides a numerical study to compare the
noteworthy algorithms published in the past with the lag-1 joint moment based approach
presented by this dissertation.

8.2.1 MAP based approximations for the departure process

A MAP is a suitable approximation for the departure process of a node if it satisfies the fol-
lowing properties:

• Obviously, it must capture the behavior of the departure process reasonably well.

• The approximating MAP must have a Markovian representation, otherwise it is impos-
sible to decide if it is a valid process or not. Remember that all performance measures
obtained with an invalid arrival process are invalid.

• The MAP representation for the departure process should not be considerably larger
than the one for the input process. Otherwise the MAP describing the traffic gets larger
and larger every time it passes through a node, making the analysis of large queueing
networks problematic.

The methods involved in the comparison study are introduced below.

p o i s s on mod e l

According to the simplest possible method the network traffic is approximated by a Poisson
process, hence the representation of the MAP describing the departure process of node i is
given by

H0
(i) = −λ(i), H1

(i) = λ(i), (336)

where λ(i) is the traffic rate of the node. The Poisson approximation is included in the com-
parison only to demonstrate the effect of ignoring the burstiness and the correlation of the
traffic to the accuracy of the approximation.

This approximation is alwaysMarkovian (λ(i) > 0), and the representation of the departure
process is not larger than the one of the arrival process (both are of size 1).

s c a l e d s e r v i c e p r o c e s s mod e l l

According to this model (introduced in [22]), the departure process is obtained from the
service process with appropriate scaling, thus

H0
(i) = ρ(i)S0

(i), H1
(i) = ρ(i)S1

(i), (337)
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where ρ(i) is the utilization of node i. This approximation is accurate when ρ(i) → 1, since in
this case there are customers in the queue in almost all of the time, implying that the inter-
departure times are given by the service times. At lower load, however, the accuracy of the
approximation is expected to be worse.

This departure model is always Markovian, and its size always equals the size of the service
process, hence the traffic model does not grow when passing through many nodes after each
other.

b u s y p e r i o d ana ly s i s b a s e d me thod

The departure process is modeled in a uniqueway in [42]. It is based on the observation that
the inter-departure times are equal to the service times as long as the queue is busy, and they
are equal to a remaining arrival time plus a service time if the last customer left the system
idle. According to the procedure in [42] a 2-phase discrete PH distribution is created to fit the
first three moments of the number of departures in a busy period, and a MAP is constructed
for the departure process along the aforementioned interpretation.

The busy period based method always gives a Markovian representation, but the model for
the departure process is larger (has more phases) than the one of the arrival process, hence the
MAP characterizing the traffic grows every time when it goes through a queue. Consequently,
only queueing networks with a low number of nodes can be analyzed by this method.

t r un cat i on ba s e d me thod s

As mentioned in Section 5.3 the exact departure process of a MAP/MAP/1 queue is a MAP
with infinitely many phases. There were several efforts to truncate this infinite process (in-
cluding [10],[74]), with perhaps themost sophisticated one being the ETAQA truncation ([44]).
The ETAQA truncation preserves the joint densities of the inter-departure time up to the
truncation level exactly. The construction of the MAP matrices of the departure process are
provided in Section 5.3.2.

The ETAQA truncation model has two important drawbacks. First, it gives a non-
Markovian representation in almost all cases. The other issue is that the resulting repre-
sentation is huge, making the analysis of even the simplest tandem networks numerically
challenging.

l ag - 1 j o i n t moment ba s e d a p p r oach

As proven in Section 3.2, size N MAPs can be characterized by N2 marginal moments
and joint moments. According to this approach a number of such moments are calculated
from the infinite, but exact MAP representation of the departure process and a finite, but
approximate MAP representation is created based on these moments. The construction of the
matrices characterizing this MAP is detailed in Section 5.3.3.

The representation created this way is, however, typically non-Markovian. The transforma-
tion method introduced in Section 3.2.4 solves this issue in many cases. In case this trans-
formation fails, the procedures presented in Section 3.3 can be applied to find the closest
possible MAP according to the joint moment distance (Section 3.3.3) and according to the
distance of the joint densities (Section 3.3.4), respectively.

As a result, the representation is always Markovian, and the size is very compact, indepen-
dent on the size of the input and service processes of the queue.
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Node 1 Node 2

(D0
(1), D1

(1))

Figure 36.: A tandem queueing network with two nodes

8.2.2 Numerical results with a tandem network

For the first numerical study let us consider a simple 2-node tandem queueing network as
shown by Figure 36. Traffic entering the network is directed to node 1, after getting served it
is forwarded to node 2.

The parameters of the system are taken from real traffic measurements. For the first sce-
nario the input MAP has been created from the inter-arrival times of the LBL trace based on
5 marginal and 2× 2 joint moments using the moment matching procedure described in Sec-
tion 3.2. The matrices of this MAP are

D0
(LBL)=

−448.802 47.2474 4.0836

18.261 −112.979 0.5703

5.644 5.7994 −50.103

 , D1
(LBL)=

395.093 1.701 0.677

9.577 82.983 1.5877

4.1416 21.419 13.099

 .

(338)

With these parameters the arrival rate of the packets is λ = 188.29, the squared coefficient
of variation of the inter-arrival times is c2

A = 2.183, and the lag-1 auto-correlation is 0.159.
The same LBL trace file contains information on the packet sizes as well. Matching the first

two moments of the packet sizes we got the following PH distribution:

σ =
[
0.19937 0.80063

]
, S =

[
−0.0028715 0.0028715

0 −0.014403

]
, (339)

by which the mean packet size is 138.86 and the squared coefficient of variation is 2.508. The
packet size distribution and the speed of the transmission line Ci at node i together determine
the service process of the packets as

S0
(i) = Ci · S,

S1
(i) = Ci · (−S)1 · σ.

The values of Ci are set such that utilization of both queues are equal to the desired value ρ.
All the methods for departure process approximation introduced in Section 8.2.1 are com-

pared with simulation results in Figure 37, which depicts the mean queue length at node 2
as the function of the utilization. In the figure, the ”Joint moment based” curve covers all
methods based on the lag-1 joint moments, they gave exactly the same results in this partic-
ular example. The lag-1 joint moment based procedure has been tested both with matching
4 (marginal- and joint-) moments and with matching 9 moments, the difference between the
results were marginal in this queueing network. As expected, the Poisson approximation per-
formed worst, and the lag-1 based methods turned out to be the most accurate. The simple
approximation based on the scaling of the service process was surprisingly accurate in this
test case, but looking at the low utilization cases (right plot in Figure 37) reveals the superior-
ity of the lag-1 based methods.

In Figure 38, comparing the squared coefficient of variation (SCV) of the number of cus-
tomers, the lag-1 joint moment based method achieved the highest accuracy again. In this
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case, however, increasing the number of joint moments to match had a positive impact on the
accuracy, the one matching 9 moments managed to reproduce the simulation results almost
perfectly.

Table 7 provides further interesting properties of the algorithms. The second column con-
tains the size of the MAP modeling the departure process. It does not depend on the size of
the arrival and service processes in the Poisson and in the lag-1 joint moment based methods.
The ETAQA truncation method produces the largest departure process, at the minimal trun-
cation level (at level 2) it needs 18 phases, however, to improve accuracy, the truncation level
should be increased. The number of non-Markovian results from the 36 executions (vary-
ing the utilization between 0.2 and 0.9) is given in the second column. The ETAQA method
did not manage to produce a Markovian representation in any of the cases. The lag-1 based
method matching 9 moments occasionally returned a non-Markovian result as well, which
were possible to fix with the algorithms described in Section 3.3. The last column indicates
the mean relative absolute error compared to the simulation results for the mean number of
customers and for the squared coefficient of variation (SCV) of the number of customers at
node 2 (separated by a slash character). The most accurate results are given by the ETAQA
methodwith a high truncation level, but it is a huge and non-Markovian representation which
is not tractable analytically.

In this scenario the input was taken from real traffic measurements, the packet inter-arrival
times were relatively busty (with squared coefficient of variation 2.183) and positively cor-
related. In the next scenario the input will be a synthetically generated MAP that has the
“opposite” behavior: it is more deterministic (the squared coefficient of variation is 0.7278),
and negatively correlated (the lag-1 auto-correlation is −0.2119). The corresponding matrix
parameters are

D0 =


−2 2 0 0

0 −2 2 0

0 0 −2.5 0

0 0 0 −2.5

 , D1 =


0 0 0 0

0 0 0 0

0.8 0 0 1.7

2.3 0 0 0.2

 .

The packet size distribution is the same as before.
Themean and the squared coefficient of variation of the number of customers at node 2 is de-

picted in Figures 39 and 40. (The Poisson and the scaled service process based approximations
are omitted to make it easier to distinguish between the curves). In this scenario the Lag-1
based method results in a non-valid stochastic process in many cases. The performance mea-
sures returned by the queueing analysis are invalid if the queue is fed by an invalid stochas-
tic process, which is clearly visible in the figure. This is a clear example demonstrating how
important it is to stick with Markovian representations, and how essential the role of Algo-
rithms 4 and 5 is. These algorithms, by fitting an invalid process with a valid one, managed to
produce a MAP with only very slightly different statistics, that approximate the queue length
behavior of node 2 with a reasonable accuracy.

As visible in Table 8, this high accuracy is achieved by a compact representation, with
2 or 3 states only. Since the moment matching returned invalid processes, the difference
between Algorithms 4 and 5 becomes visible, they follow different approaches to approximate
the invalid process. In this particular example the accurate fitting of the joint moments turned
out to be a slight better strategy, but both perform similarly well.
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Figure 37.: Mean number of customers at node 2 of the tandem network with LBL input
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Figure 38.: Squared coefficient of variation of the number of customers at node 2 of the tandemnetwork
with LBL input

Approximation algorithm # of phases # of non-Mar. Error

Poisson process 1 0/36 0.3569/0.1396
Scaled service process 2 0/36 0.1477/0.0961
Busy period based 12 0/36 0.119/0.219

ETAQA, truncation level=2 18 36/36 0.1364/0.068
ETAQA, truncation level=50 306 36/36 0.0034/0.007

Lag-1, 4 moments, Algorithm 3 2 0/36 0.1116/0.0695
Lag-1, 4 moments, Algorithm 5 2 0/36 0.1116/0.0695
Lag-1, 4 moments, Algorithm 4 2 0/36 0.1116/0.0695
Lag-1, 9 moments, Algorithm 3 3 12/36 0.076/0.0511
Lag-1, 9 moments, Algorithm 5 3 0/36 0.076/0.0511
Lag-1, 9 moments, Algorithm 4 3 0/36 0.076/0.0511

Table 7.: Properties of the departure process approximations for the tandem example with LBL input
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Figure 39.: Mean number of customers at node 2 of the tandem network with negatively correlated
input
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Figure 40.: Squared coefficient of variation of the number of customers at node 2 of the tandemnetwork
with negatively correlated input

Approximation algorithm # of phases # of non-Mar. Error

Busy period based 14 0/36 0.2654/0.2686
ETAQA, truncation level=2 24 36/36 0.0567/0.0303
ETAQA, truncation level=50 408 36/36 0.0011/0.002

Lag-1, 4 moments, Algorithm 3 2 18/36 –/–
Lag-1, 4 moments, Algorithm 5 2 0/36 0.0413/0.0566
Lag-1, 4 moments, Algorithm 4 2 0/36 0.0411/0.052
Lag-1, 9 moments, Algorithm 3 3 36/36 –/–
Lag-1, 9 moments, Algorithm 5 3 0/36 0.0513/0.0615
Lag-1, 9 moments, Algorithm 4 3 0/36 0.037/0.0596

Table 8.: Properties of the departure process approximations for the tandem example with negatively
correlated input
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Figure 41.: A more complex queueing network with 4 nodes

8.2.3 A more complex numerical example

The next example considers a more complex queueing network with four nodes and superpo-
sition (see Figure 41).

The traffic parameters are taken from real measurements. The input of node 1 is the MAP
defined by (338) created from the LBL trace by Algorithm 3, while the traffic entering node 2
is a three state MAP obtained by Algorithm 5 from the BC trace. The matrices characterizing
this MAP are

D0
(BC)=

−16.5173 0 0

0 −48.1036 0

0 0 −394.677

, D1
(BC)=

0.1359 1.4837 14.8977

0.0006 35.837 12.266

0.0408 3.4362 391.2

.

(340)

The packet sizes are represented by the same PH distributions at all nodes, given by parame-
ters (339). The capacities of the links are set to ensure the same utilization at all nodes.

The mean number of customers at node 3 and 4 are depicted in Figure 42. There is only
a single curve for all lag-1 based methods (involving 9 moments) because their results are
almost identical. At both nodes the Poisson approximation performs worst (as expected), the
busy-period based and lag-1 based methods perform best. Similar tendency can be seen in
Figure 43 for the squared coefficient of variations. The scaled service process method delivers
surprisingly accurate results in this example.

The absolute relative errors in the mean and the squared coefficient of variations of the
number of customers are given by Table 9 (for node 3) and Table 10 (for node 4). The size
of the traffic representation is also provided in the table, where the limitations of the busy
period based method are clearly demonstrated: an additional node in the network would lead
to a huge model size making the analysis infeasible numerically.

8.2.4 Summary of the single-type results

The presented numerical examples have proven that the lag-1 joint moment based queueing
network analysis approach provides reasonable accuracy with a very compact MAP represen-
tation of the internal traffic.

We believe that increasing the number of marginal and joint moments involved in the de-
parture process approximation increases the accuracy of the results. Nevertheless, there is a
critical step in the algorithm that currently does not allow involving more that 5 (or some-
times 7) marginal moments. This step is the moment-matching method providing matrix D0.
At one hand, the solution of the corresponding polynomial system becomes intolerably slow
when matching more than 7 moments. At the other hand, the more moments are matched,
the more difficult is to find a PH structure that is able to realize those moments.
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Figure 42.: Mean number of customers at node 3 and node 4 in the more complex single-type example
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Figure 43.: Squared coefficient of variation of the number of customers at node 3 and 4 of the more
complex single-type example

Approximation algorithm # of phases # of non-Mar. Error

Poisson process 1 0/36 0.3029/0.1226
Scaled service process 4 0/36 0.1194/0.1528
Busy period based 144 0/36 0.0699/0.2686

Lag-1, 9 moments, Algorithm 3 9 36/36 0.0461/0.0171
Lag-1, 9 moments, Algorithm 5 9 0/36 0.0495/0.0186
Lag-1, 9 moments, Algorithm 4 9 0/36 0.0301/0.0145

Table 9.: Properties of the departure process approximations forming the input of node 3

Approximation algorithm # of phases # of non-Mar. Error

Poisson process 1 0/36 0.3194/0.1135
Scaled service process 2 0/36 0.1043/0.0675
Busy period based 294 0/36 0.1414/0.3408

Lag-1, 9 moments, Algorithm 3 3 33/36 0.1016/0.0602
Lag-1, 9 moments, Algorithm 5 3 0/36 0.1029/0.0604
Lag-1, 9 moments, Algorithm 4 3 0/36 0.0934/0.0554

Table 10.: Properties of the departure process approximations forming the input of node 4
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To overcome these limitations it is necessary to develop new, efficient PH moment fitting
algorithms, that, instead of seeking after the exact solution, are able to give up some accuracy
when the target moments can not be matched with the given number of phases.

8.3 multi-type qeueing networks

Introducing multiple traffic types makes the queueing network analysis much more involved.
To the best of our knowledge, the lag-1 joint moment based approach is the only reasonable
procedure for the traffic decomposition based analysis.

The truncation methods (including the ETAQA truncation) and the busy period based
method introduced in Section 8.2.1 can not be generalized to the multi-type case.

The Poisson and the scaled service process approximations can be used in a multi-type
setting, however, these methods do not take the service policy into consideration, i.e., these
methods treat the departure process of the multi-type FCFS and priority queue the same.

8.3.1 Studying the effect of the service discipline

In this example we consider a two-station tandem network, where the service discipline at
the second station is FCFS. Two cases are compared: the case when the first station has a
preemptive priority and the case when it has an FCFS server.

The input of the first station is created from the BC trace. Two arrival types are distin-
guished, arrivals of packets shorter than 256 bytes and arrivals with packet size≥ 256. From
the multi-type lag-1 joint moments extracted from the trace Algorithm 4 produced the follow-
ing matrices:

D0
(BC) =

−16.5173 0 0

0 −48.1036 0

0 0 −394.677

 ,

D1
(BC) =

1.3043 4.21 4.427

0 10.658 37.427

0.0104 10.485 265.7307

 ,

D2
(BC) =

 0 0 6.576

0.0028 0.016 0

0.0269 0 118.424

 .

(341)

The packet size distribution has been determined from the trace by moment matching as well.
The parameters are

σ1 =
[
0.588 0.412

]
, σ2 =

[
0.879 0 0.121

]
, (342)

S1 =

[
−0.0086 0.0086

0 −0.0146

]
, S2 =

−0.00227 0.00227 0

0 −0.00227 0.00227

0 0 −0.00258

 , (343)

where (σ1, S1) represents the distribution of the small and (σ2, S2) the one of the large pack-
ets. The utilization of both queues is set to 0.8.
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Approximation FCFS Priority
algorithm Class 1. Class 2. Class 1. Class 2.

Simulation 5.115/1.612 2.215/1.322 4.023/1.949 2.242/1.36
Poisson process 3.688/1.634 2.056/1.257 3.688/1.634 2.056/1.257

Scaled service process 2.492/1.417 1.58/1.041 2.492/1.417 1.58/1.041
Lag-1, Algorithm 4 (single step) 5.161/1.457 2.47/1.271 4.425/1.624 2.392/1.295
Lag-1, Algorithm 4 (step-by-step) 4.495/1.506 2.088/1.202 4.006/1.761 2.184/1.258

Table 11.: Tandem multi-type network with the service at the first node set to FCFS and Priority

The results are summarized in Table 11. The numbers in the columns are the class 1 and
class 2 performance measures of node 2 given that the service policy at node 1 is FCFS and
preemptive priority, respectively. The two performance measures separated by a slash (/)
character are the mean and the squared coefficient of variation of the queue length.

Algorithm 3 is excluded from the comparison, since it returned an invalid process, making
the analysis of node 2 impossible. Algorithm 5 is also excluded, since its attempt to approxi-
mate a substantially invalid (negative) joint pdf resulting in a bad approximation for the de-
parture process.

Algorithm 4, aiming to match the joint moments, is, however, always possible to apply. The
insensitivity of the Poisson and scaled service algorithms to the service discipline is clearly
visible in the table. The lag-1 joint moment based methods have a significant error as well,
although they are still the best in this comparison. These methods managed to reflect the
effect of the service discipline: class-1 packets have significantly higher, class-2 packet have
slightly lower queue lengths in the FCFS case. The tendencies in the squared coefficient of
variations are captured correctly as well.

The reason for the relatively inferior performance of the lag-1 moment based methods is
that the joint moments turned out to be difficult to approximate. When the first node has a
priority scheduler, the exact joint moments of the departure process are

N1 =

0.70978 0.60515 1.4979

0.70454 0.73155 3.4185

2.4417 4.3264 36.899

 , N2 =

0.29022 0.39485 1.5011

0.29546 0.45836 2.2186

0.55721 0.9696 5.5256

 . (344)

From these jointmoments, the step-by-step variant of Algorithm 4managed to create aMMAP
whose joint moments are

N̂1 =

0.70978 0.66435 1.5013

0.66435 0.73155 2.4865

1.7544 3.5115 22.134

 , N̂2 =

0.29022 0.33565 1.4977

0.33565 0.45836 3.1559

1.2446 2.131 20.454

 , (345)

while the single-step variant of the algorithm created a MMAP with joint moments

Ň1 =

0.70978 0.70978 2.1286

0.70978 0.70978 2.1286

2.1286 2.1286 6.3837

 , Ň2 =

0.29022 0.29022 0.87038

0.29022 0.29022 0.87038

0.87038 0.87038 2.6103

 . (346)

Both of them are relatively poor approximations of joint moments (344).
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Figure 44.: Mean number of customers at node 2 in the tandem network with two classes and FCFS
service
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Figure 45.: Squared coefficient of variation of the number of customers at node 2 in the tandemnetwork
with two classes and FCFS service

Approximation algorithm Error, type 1 Error, type 2

Lag-1, Algorithm 4, single-step 0.1392/0.1063 0.1595/0.078
Lag-1, Algorithm 4, step-by-step 0.1842/0.09 0.0584/0.0494

Table 12.: Errors of the departure process approximations, FCFS case

8.3.2 A two-node tandem network

In this section the two-class variant of the tandem network example of Section 8.2.2 is stud-
ied. The input traffic of the first node is the two-class MMAP generated from the BC trace,
characterized by matrices (341). Two scenarios are considered: in the first one both nodes
have an FCFS scheduler, in the second one they both have a priority scheduler.

The Poisson and the scaled service process based approximations are omitted due to their
insensitivity to the service discipline. The moment matching algorithm (Algorithm 3) and the
joint density minimization based approximation (Algorithm 5) are also omitted; the former
one returned invalid process in every case, and the latter one performed bad when attempting
to approximate the invalid joint density function.

The plots comparing the mean and the SCV as the function of the utilization corresponding
to the FCFS and the priority service are presented by Figures 44, 45, 46 and 47, respectively.
Interestingly, the approximation methods performed better in the second scenario, with the
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Figure 46.: Mean number of customers at node 2 in the tandem network with two classes and priority
service
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Figure 47.: Squared coefficient of variation of the number of customers at node 2 in the tandemnetwork
with two classes and priority service

Approximation algorithm Error, type 2 Error, type 2

Lag-1, Algorithm 4, single-step 0.0739/0.0438 0.006/0.0049
Lag-1, Algorithm 4, step-by-step 0.0474/0.0733 0.0051/0.0042

Table 13.: Errors of the departure process approximations, priority case

priority server. In the FCFS case the relative absolute error was below 20%, and it was well
bellow 10% in the priority case. (The exact values of the average relative errors of the mean
and the SCV, separated by a slash, are shown in Tables 12 and 13).

8.3.3 The more complex example with two customer types

In the final numerical example the four node network presented in Section 8.2.3 is investigated.
The service policy is set to FCFS at nodes 1,2 and 4, and it is set to preemptive priority at node
3. The input of nodes 1 and 2 are the same as in the previous section, defined by (341).

As shown in Figures 48 and 49, the presented lag-1 based departure process approximation
methods are able to reproduce the simulation results relatively well. The relative errors, how-
ever, are higher in this complex example, they can be as high as 25% according to Table 14.

Observe that the shape of the curves in the plots are not always smooth. The reason is that
the moment matching algorithm producing matrix D0 needed sometimes less, sometimes
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Figure 48.: Mean number of customers at node 3 in the four node network with two classes

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

6

8

10

Utilization

M
ea

n
nu

m
be

ro
ft

yp
e

1
cu

st
om

er
s Simulation

Joint moment fitting, single-step
Joint moment fitting, step-by-step

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

2

4

Utilization

M
ea

n
nu

m
be

ro
ft

yp
e

2
cu

st
om

er
s Simulation

Joint moment fitting, single-step
Joint moment fitting, step-by-step

Figure 49.: Mean number of customers at node 4 in the four node network with two classes

more states to realize the target moments. The varying number of states leaded to sharp
changes for the constraints while fitting the joint moments, leading to jagged curves in the
figure.

Approximation Node 3 Node 4
algorithm type 1 type 2 type 1 type 2

Lag-1, Algorithm 4, single-step 0.0655 0.2227 0.2582 0.2123
Lag-1, Algorithm 4, step-by-step 0.0608 0.1086 0.1811 0.1559

Table 14.: Errors of the departure process approximations in the four node network with two classes

8.3.4 Summary of the multi-type results

The performance of the lag-1 based method turned out to be slightly less convincing in case
of multi-type queueing networks.

In the single class case, with an N-state approximation of the departure process N2 mo-
ments were matched or approximated to create matrices D0 and D1 consisting of 2N2 entries.
Hence, with the redundancy factor of 2, there is a significant degree of freedom left to find a
valid Markovian representation. In case of two customer types, 2N2 moments determine an
N-state MMAP, which is characterized by 3N2 parameters, hence the redundancy factor is
just 1.5, the representation transformation algorithms have much less degree of freedom to
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obtain a Markovian solution. The decreasing redundancy factor is one possible reason for the
sub-optimal performance observed with more customer types.

It is worth noting, however, that the lag-1 joint moment based approach is still the only
possibility to analyze multi-class queuing networks with nodes having MMAP input and PH
distributed service times. The alternative procedures developed for single-type queueing net-
works are either impossible to generalize to the multi-type case or are not able to take the
service policy into account.
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9
CONCLUD ING REMARKS AND F U T URE WORK

The dissertation provides an overview on many elements of matrix-analytic methods, and
several new results are provided as well.

In the field of traffic characterization, themost valuable contributionmight be the canonical
form of order-3 PH distributions and the lag-1 joint moments based representation of MMAPs
Themost interesting direction to continue this line of research in the future is the development
of adaptive joint moment matching algorithms that can adjust the size of the representation
automatically depending on the target moment set.

Themain novelties in the second part are the departure process analysis of three queues. For
the three queues the solution did not follow the same methodology, though. TheMAP/MAP/1
queue was the first system for which the lag-1 joint moments of the departure process were
derived. In case of the multi-class MMAP[K]/PH[K]/1 queue a completely different approach,
based on the age process, turned out to be the key to the solution. The main challenge in
the departure process of the MMAP[K]/PH[K]/1 priority queue was to make the solution
numerically tractable.

Priority queues have been investigated many times in the past. Results exist for the
MMAP[K]/G/1 system, which is similar to the one discussed in the dissertation as well, but
the procedure presented here is the first one that is robust enough to be used in practical ap-
plications with a large number of phases.

The joint moment based queueing network analysis method, which combines all the re-
sults of the first two parts of the dissertation has proven to be a viable solution according
to our numerical experiments. A possible direction for improvements can be the application
of the adaptive moment matching algorithms mentioned above, and to take higher lag joint
moments into consideration when characterizing the internal traffic.

In the future we plan to adapt these results to continuous systems as well, where the jobs
are not discrete but infinitesimally small, considered as fluid drops. We already have solved
and published many elements of the analysis of such fluid queueing systems, but there is still
more work to be done, especially in the field of fluid traffic characterization and fitting.

145
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10
SUMMARY

organization of the theses

The dissertation consists of three parts building upon each other, hence the theses are grouped
into three thesis groups.

In the first thesis group the main tools of the Markovian workload characterization, the
phase-type distributions and the Markovian arrival processes are considered. Thesis 1.1 states
that all size 3 PH distributions can be transformed to a given canonical form, which can be
exploited to make PH fitting methods more efficient. A new moment matching procedure is
presented by Thesis 1.2, that can adapt the size of the PH representation to match the target
moment set automatically. Important MAP and MMAP characterization results are provided
by Thesis 1.3, together with a joint moment matching method for both single and multi-type
arrival processes. This thesis is supplemented by three numerical methods to transform the
result of the moment matching method to a Markovian representation. These results make it
possible to create Markovian models for the network traffic, that can be used both in simula-
tion based and in analytical performance analysis.

The second thesis group is related to the solution of single-class and multi-class queues
with correlated arrival processes and Markovian service times. In the multi-class case both
the first-come-first-served (FCFS) and the priority service policies are considered. Thesis 2.4
provides the performance analysis of the priority queue with MMAP arrival process and PH
distributed service times, based on the workload process. The distribution and the moments
of the sojourn times and of the number of customers in the system are derived both for the
preemptive resume and the non-preemptive service policy. Theses 2.1, 2.2 and 2.3 provide
the characterization of the departure processes of the single class MAP/MAP/1 and the multi-
class MMAP[K]/PH[K]/1 FCFS and priority queues, respectively. (For the three queues the
solution did not follow the same methodology, though).

Queueing networks are considered in the third thesis group, that consists of a single thesis.
In Thesis 3.1 a novel queueing network solution approach is introduced, that integrates the
results of the first two thesis groups. In this approach the traffic of the queueing network is
characterized by Markovian arrival processes discussed in the first part of the dissertation,
and the nodes are the queues discussed in the second part of the dissertation. The Markovian
arrival processes representing the internal traffic are obtained by moment matching.

147
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thesis group 1

Thesis 1.1

I have proven that every order-3 PH distribution can be transformed to one of the following three
canonical forms with an appropriate similarity transformation:

γ(1) =
[
γ1 γ2 γ3

]
, γ(2) =

[
γ1 γ2 γ3

]
, γ(3) =

[
γ1 0 γ3

]
,

G(1) =

−x1 0 0

x2 −x2 0

0 x3 −x3

 ,G(2) =

−x1 0 x13

x1 −x1 0

0 x3 −x3

 ,G(3) =

−x1 0 x13

x2 −x2 0

0 x3 −x3

 .

The results of this thesis have been published in [94] and [95].

Thesis 1.2

I have introduced a special PH structure, called generalized hyper-Erlang distribution, and pro-
posed a flexible moment matching algorithm that adapts the size of the representation automat-
ically according to the moments to match.

The corresponding results have been published in [93].

Thesis 1.3

I have pointed out that an order N non-redundant MMAP is uniquely determined by N2 inde-
pendent parameters. I have introduced a moment matching method that creates a MAP based
on 2N − 1 marginal moments and (N − 1)2 lag-1 joint moments. The results have been gen-
eralized to marked MAPs as well: I have shown that an order N non-redundant MMAP with C
arrival types is uniquely determined by C · N2 independent parameters. I have developed a mo-
ment matching method for MMAPs as well.

The corresponding results have been published in [81] for the single-type case and in [45]
for the multi-type case. Further closely related publications are [50], [91] and [96].

thesis group 2

Thesis 2.1

I have derived the lag-1 joint moments of the departure process of the MAP/MAP/1 queue.

The corresponding results have been published in [92].
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Thesis 2.2

I have derived the multi-class lag-1 joint moments of the departure process of the two-class
MAP/MAP/1 priority queue.

The corresponding results have been published in [45] and in [48].

Thesis 2.3

I have provided the detailed departure process analysis of the multi-class MMAP[K]/PH[K]/1-
FCFS queue. The analysis follows an entirely new approach: it is based on the age process instead
of the queue length process.

The corresponding results have been published in [97].

Thesis 2.4

I have developed an analysis method for the MMAP[K]/PH[K]/1 priority queue, both for the
preemptive resume and the non-preemptive scheduling policy. Efficient numerical procedures
are provided to obtain the distribution function, its Laplace-Stieltjes transform and the moments
for the both the sojourn times and the number of customers in the system.

The corresponding results have been published in [49].

thesis group 3

Thesis 3.1

I have introduced a lag-1 joint moment based method for the analysis of multi-class open queue-
ing networks.

The corresponding results have been published in [92] and in [45].
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A
F UNDAMEN TAL RELAT IONS

a.1 kronecker operations

The Kronecker product of matrix A of size NA×MA and matrix B of size NB×MB is defined
by

A⊗ B =


a1,1B a1,2B . . . a1,MA B

a2,1B a2,2B . . . a2,MA B
...

... . . . ...
aNA,1B aNA,2B . . . aNA,MA B

 , (347)

where ai,j is the i, jthe entry of matrix A. The size of the Kronecker product is NANB ×
MA MB. For square matrices the definition of the Kronecker sum of matrices A and B is

A⊕ B = A⊗ I + I ⊗ B. (348)

The Kronecker operations are useful to express the joint generator matrix of independent
Markov chains in a compact way.

If there are two DTMCs with generators P1 and P2 of size N1 and N2, then the generator of
their joint behavior is given by P = P1 ⊗ P2. If (i, j) identifies the state where the first and
the second DTMCs are in state i and j, respectively, then the states in the Kronecker multi-
plied generator are ordered as (1, 1), . . . , (1, N2), (2, 1), . . . , (2, N2), . . . (N1, N2). Figure 50
presents an example where a two-state and a three-state DTMC is superposed.

Similarly, in case of two CTMC generators Q1 and Q2 the generator of the joint process is
obtained by the Kronecker summation Q = Q1 ⊕Q2 (see Figure 51 for an example).

Some identities related to Kronecker operations which are used many times in the disser-
tation are ([77]):

AC⊗ BD = (A⊗ B)(C⊗ D), (349)
(cA)⊗ B = A⊗ (cB) = c(A⊗ B), (350)

(A + B)⊗ C = A⊗ C + B⊗ C, (351)

e(A⊕B)x = e(A⊗I)xe(I⊗B)x = eAx ⊗ eBx, (352)

An other useful operator on matrices that is closely related to Kronecker operations is the
column stacking vec〈〉 operator, which copies the columns of a martrix below each other.
Assuming compatible matrices, some identities of the vec〈〉 operator are:

vec〈AXB〉 = (BT ⊗ A)vec〈X〉, (353)

vec〈uT v〉 = (vT ⊗ uT), (354)

where u and v are row vectors (see [77]).
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1

2

3 1

0.3

0.70.4

0.6

⊗ 1 2

0.1

0.9

0.2

0.8=
1,1

2,1

3,1

2,2

3,2

1,2

 0 0 1

0.3 0 0.7

0 0.4 0.6

⊗
[

0.9 0.1

0.2 0.8

]
=



0 0 0 0 0.9 0.1

0 0 0 0 0.2 0.8

0.27 0.03 0 0 0.63 0.07

0.06 0.24 0 0 0.14 0.56

0 0 0.36 0.04 0.54 0.06

0 0 0.08 0.32 0.12 0.48


Figure 50.: Example for the Kronecker product of two DTMCs

1

2

3 9

3

74 ⊕ 1 2

1

2

= 1,1

2,1

3,1

2,2

3,2

1,2

−9 0 9

3 −10 7

0 4 −4

⊕
[
−1 1

2 −2

]
=



−10 1 0 0 9 0

2 −11 0 0 0 9

3 0 −11 1 7 0

0 3 2 −12 0 7

0 0 4 0 −5 1

0 0 0 4 2 −6


Figure 51.: Example for the Kronecker summation of two CTMCs
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a.2 properties of the matrix-exponential function

Working with matrix-exponential functions has the benefit that several related integral quan-
tities have an efficient or even an explicit solution.

Theorem 36. ([58, Theorem 13.19]) For compatible matrices A, B, C the integral

X =
∫ ∞

0
eAxCeBx dx (355)

satisfies the Sylvester equation

AX + XB + C = 0. (356)

This Sylvester equation has a unique solution if the eigenvalues of matrices A and B have real
parts in the open left half-plane.

There are two existing approaches to solve Sylvester equations of form (356).
The first approach relies on Kronecker operations. Applying the vec〈〉 operation on both

sides of (356) and making use of the identity (353) gives

(I ⊗ A)vec〈X〉+ (BT ⊗ I)vec〈X〉+ vec〈C〉 = 0, (357)

from which the elements of matrix X can be explicitly obtained by

vec〈X〉 =
(
−BT ⊕ A

)−1
vec〈C〉. (358)

The second approach to solve (356) is the direct numerical solution, which is much more
efficient both in computational and memory complexity, since these direct methods operate
on smaller matrices and avoid Kronecker operations. One of the fastest and most widely used
direct solution method for Sylvester equations is the Hessenberg-Schur method [33].

Convolution integrals involving matrix-exponentials have explicit solution as well. The
next theorem provides the basis of the solution.

Theorem 37 (Theorem 1 in [84]). If A and B are square matrices with

X =

[
A C

0 B

]
, (359)

then

eXt =

[
eAt

∫ t
a=0 eAaCeB(t−a)da

0 eBt

]
. (360)

Hence, the convolution of two matrix-exponentials can be expressed explicitly as a single
matrix exponential with larger size, as given by the following corollary.

Corollary 21. The solution of the convolution integral
∫ t

a=0 eAaCeB(t−a)da is

∫ t

a=0
eAaCeB(t−a)da =

[
I 0

]
eXt

[
0

I

]
, (361)

where matrix X is defined by (359).
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B
PROOF S OF THEOREMS

b.1 proof of lemma 1

According to Theorem 1 the transformation matrix satisfies the linear equations BG =

SB, B1 = 1. Furthermore, a property of the similarity transformation is that the eigen-
values hence the characteristic polynomials of S and G are the same.

First we show that the columns of B, defined by (23), satisfy the necessary linear equations.
The product BG can be expressed by

BG =
1

x13 − x1
S1
[
−x1 0 x13

]
+

1
(x13 − x1)x2

(x1I + S)S1
[

x2 −x2 0
]

+
1

(x13 − x1)x2x3
(x2I + S)(x1I + S)S1

[
0 x3 −x3

]
,

whose first column is
1

x13 − x1
S1 · (−x1) +

1
(x13 − x1)x2

(x1I + S)S1 · x2 =
1

x13 − x1
S21 = Sb1,

the second column is
1

(x13 − x1)x2
(x1I + S)S1 · (−x2) +

1
(x13 − x1)x2x3

(x2I + S)(x1I + S)S1 · x3

=
1

(x13 − x1)x2
(x1I + S)S21 = Sb2,

and the third column is
1

x13 − x1
S1 · x13 +

1
(x13 − x1)x2x3

(x2I + S)(x1I + S)S1 · (−x3)

= S1− 1
(x13−x1)x2

(x1I+S)S21− 1
(x13−x1)x2

(x1I+S)S21 = S(1−b1−b2).

Finally, we prove that b1 + b2 + b3 = 1. The sum of these vectors is

1
(x13 − x1)x2x3

S(x2x3 + x3(x1I + S) + (x2I + S)(x1I + S))1

=
1

(x13 − x1)x2x3
S(x1x2 + x1x3 + x2x3 + (x1 + x2 + x3)S + S2)1.

(362)

However, exploiting the fact that the resulting generator G has the same characteristic poly-
nomial as the original S, the parameters (24) are obtained from the solution of the equations

a0 = (x1 − x13)x2x3, a1 = x1x2 + x2x3 + x3x1, a2 = x1 + x2 + x3. (363)

With these parameters (362) can be rewritten as 1
−a0

S(a1 + a2S2)1 that equals 1 since a2S2 +

a1S + a0 = 0 holds due to the Cayley–Hamilton theorem.
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b.2 proof of theorem 7

Due to Theorem 6 and B1 = 1, if (σ, S) has a Markovian representation, then B−1SB is
Markovian, and x1 − x13, x2, x3 are positive, when x1 is in the [ϑ`, ϑu] interval. Thus, it
is enough to prove that vector

[
γ1 γ2 γ3

]
, defined in (28)-(30), is non-negative when x1

takes is value according to (31).
γ1 = d1

x1−x13
≥ 0 follows immediately from d1 = f (0) = −σS1 >= 0, since if (σ, S) has

a Markovian representation, then its density is non-negative at zero.
When σS1 = 0, γ2 = x1d1+d2

(x1−x13)x2
must be non-negative according to property P3.

When σS1 < 0, we can re-write (29) as:

γ2 =
−σS1

(x1 − x13)x2
(x1 − ϑ2). (364)

The first term of (364) is positive and the second term is non-negative when x1 =

max{ϑ2, ϑ`} according to (31).
For the analysis of γ3 we re-write (30) as

γ3 =
1

(x1 − x13)x2x3
(x1x2d1 + (x1 + x2)d2 + d3)︸ ︷︷ ︸

g(x1)

(365)

The first term is positive again, thus it remains to prove that g(x1) ≥ 0 if x1 is according to
(31). The first derivative of g(x1) has at most two roots:

d
dx1

g(x1) = 0 ⇔ x1 =
a2 ±

√
a2

2 − 3a1

3
. (366)

If
√

a2
2 − 3a1 = 0 then ϑu = ϑ` = ϑ0 and x1 = ϑ` is the only valid value according to

Theorem 6.
If
√

a2
2 − 3a1 > 0 then the larger root of (366) equals ϑ0, hence g(x1) is a monotone

function when x1 > ϑ0. In the x1 > ϑ0 region the increasing/decreasing behaviour of g(x1)

is determined by the sign of the second derivative at x1 = ϑ0:

d2

dx2
1

g(x1)|x1=ϑ0 =
−2(a2d1 + 4d1

√
a2

2 − 3a1 + 3d2)

3
√

a2
2 − 3a1

(367)

When d1 = −σS1 = 0, then (367) is non-positive because the numerator is non-positive due
to property P3 and the denominator is positive. In this case we have 2 subcases. If d2 = 0,
then g(x1) is constant and x1 does not effect the sign of γ3, when ϑ` ≤ x1 ≤ ϑu. If d2 > 0,
then g(x1) is monotone decreasing and theminimal x1 value of the valid range (ϑ` ≤ x1 ≤ ϑu

and ϑ2 ≤ x1) ensures the non-negativity of γ3 (assuming that a Markovian representation
exists).
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When d1 = −σS1 > 0 we have

d2

dx2
1

g(x1)|x1=ϑ0 =
−2 d1 (a2 + 4

√
a2

2 − 3a1 − 3ϑ2)

3
√

a2
2 − 3a1

= − 2 d1

3
√

a2
2 − 3a1︸ ︷︷ ︸
>0

3 (ϑu − ϑ2)︸ ︷︷ ︸
≥0

+ (3ϑu − a2)︸ ︷︷ ︸
>0

 ≤ 0,
(368)

where the positivity of the under-braced terms follows from
√

a2
2 − 3a1 > 0, and the non-

negativity of the second term must hold since (σ, S) has a Markovian representation (accord-
ing to the condition of the theorem) and according to Theorem 6 it must have a unicyclic
representation (x1 ≤ ϑu) with a non-negative γ2 (x1 ≥ ϑ2).

If the second derivative in (368) is negative then g(x1) is monotone decreasing at x1 > ϑ0

and the minimal x1 value of the valid range (ϑ` ≤ x1 ≤ ϑu and ϑ2 ≤ x1) ensures the non-
negativity of γ3 (assuming that a Markovian representation exists).

If the second derivative in (368) equals zero (i.e., ϑu = ϑ2) it means that there is only a
single x1 value, x1 = ϑu = ϑ2, which results in a Markovian representation, because for
x1 > ϑu matrix G is non-Markovian and for x1 < ϑ2 vector γ is not a probability vector.

When
√

a2
2 − 3a1 > 0, the possible behaviors of g(x1) and the associated choices of x1 are

summarized in the following table.

Cases g(x1) at x1 > ϑ0 constraint of x1 choice of x1

d1 = 0, d2 > 0 mon. decreasing minimal value
d1 = 0, d2 = 0 constant minimal value

d1 > 0, ϑu > ϑ2 mon. decreasing minimal value
d1 > 0, ϑu = ϑ2 x1 = ϑu = ϑ2 constraint

That is, (31) sets x1 such that the obtained representation is Markovian when a Markovian
representation exists.
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