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1 Introduction

Group actions on sets and vector spaces are an indispensable and powerful tool to answer
many questions in different areas of mathematics. The latter gives rise to representation
theory. Both group theory and representation theory are among the oldest and most
active branches of modern mathematics.

Groups manifest themselves as symmetry groups of various physical systems, such as
crystals, atoms and molecules. Thus group theory and the closely related representation
theory have many applications in physics and chemistry.

One of the highlights of twentieth century mathematics is the celebrated Classification
Theorem of Finite Simple Groups, announced in 1983 and completed in 2004. This
theorem is notable not only for the wealth of the ideas involved in proving it but also
for the number of applications it has. It is a work of over a hundred mathematicians
over a period of a century.

One may think that this massive theorem put an end to finite group theory. This
is certainly not the case. Tremendous effort has been made not only to shorten the
proof of the theorem, but to better understand the properties of finite simple groups
for the various applications. There are statements in finite group theory for which,
mysteriously, the only proof known is via the classification. At the time when the proof
of the classification theorem was foreseen, Richard Brauer was asked whether this would
be the end of finite group theory. He said “this is just the beginning”.

Indeed, in the representation theory of finite groups, for example, the Classification
Theorem of Finite Simple Groups became a major and indispensable tool in attacking
several deep conjectures. In the past decade there has been significant progress towards
the solutions of McKay’s conjecture, Alperin’s weight conjecture, and Brauer’s height
zero conjecture.

The topic of this thesis lies on the borderline of finite group theory and the represen-
tation theory of finite groups. The central theme is finite groups acting on finite vector
spaces. We use structural information and representation theoretic tools to study special
invariants of finite groups such as size, number of conjugacy classes, base size, number
of certain characters, dimension of fixed point spaces. The thesis is influenced indirectly
but significantly by problems of Brauer.

We begin with a problem of Brauer whose roots are more than a century old.

A group acts on itself by conjugation and the orbits of this action are called the
conjugacy classes of the group. For a finite group G we denote the number of conjugacy
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classes of G by k(G). One reason why this invariant is important in finite group theory
is that it is equal to the number of complex irreducible characters of the group.

Answering a question of Frobenius, Landau [70] proved in 1903 that for a given k
there are only finitely many finite groups having k£ conjugacy classes. Making this result
explicit, we have k(G) > loglog |G| for any non-trivial finite group G (see Brauer [6],
Erdés and Turdn [20], Newman [88]). (Here and throughout the thesis the base of the
logarithms will always be 2 unless otherwise stated.) Problem 3 of Brauer’s famous list
of problems [6] is to give a substantially better lower bound for k(G) than this.

The first general lower bound, beyond the methods of Landau, for the number of
conjugacy classes of an arbitrary finite group, was obtained by Pyber in [94] where it is
shown that there exists a universal constant € > 0 such that every finite group of order
at least n > 4 has at least € - (logn/(loglogn)®) conjugacy classes. In 2011 Keller [61]
improved an ingredient of Pyber’s proof concerning solvable groups. In particular he
showed that there exists a universal constant ¢ > 0 such that every finite solvable group
G with trivial Frattini subgroup satisfies £(G) > |G|°. This enabled him to show that
there exists a universal constant ¢ > 0 such that the following two statements hold:
every finite group G of order n > 4 has at least ¢ - (logn/(loglogn)”) conjugacy classes,
furthermore if G is solvable then it has at least € - (logn/loglogn) conjugacy classes.

In [4] (but not in this thesis) we obtain the strongest lower bound to date for the
number of conjugacy classes of an arbitrary finite group in terms of its order.

Theorem 1.1 (Baumeister, Maréti, Tong-Viet; [4]). For every € > 0 there exists a 6 > 0
such that every finite group of order n > 4 has at least 0 - (log n/(loglog n)3+6) conjugacy
classes.

The conjecture whether there exists a universal constant ¢ > 0 such that k(G) >
clog |G| for any finite group G has been intensively studied by many mathematicians
including Bertram. He speculates whether k(G) > logs |G| is true for every finite group
G. In [4] (but not in this thesis) we answer Bertram’s question in the affirmative for
groups with a trivial solvable radical.

Theorem 1.2 (Baumeister, Maréti, Tong-Viet; [4]). Let G be a finite group with a
trivial solvable radical. Then k(G) > logs |G].

Brauer’s above-mentioned Problem 3 has a modular version and this is Problem 21
(see [6]). To state this problem we will need some definitions.

Brauer initiated the study of the modular representation theory of finite groups. A-
mong many objects he introduced the notion of a block and a defect group. Let G
be a finite group, p a prime, and F' an algebraically closed field of characteristic p. A
(p-)block of G is defined to be a minimal two sided ideal of the group algebra F'G. For
every simple F'G-module M there is a unique block B of G which does not annihilate M.
In this case we say that M belongs to or is contained in B. It is also said that the Brauer
character of M is contained in B. A Brauer character of GG is a certain complex valued
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class function on the set of so-called p-regular elements of GG, that is, on the set of those
elements of G which have orders not divisible by p. This suggests a way to associate a
complex irreducible character y of G to a block B of G. Let x be the class function of
G obtained by restricting x to the set of p-regular elements of G. It turns out that x is
not only the sum of Brauer characters of G, but the sum of such Brauer characters of G
which belong to a unique block B of G. In this case we say that x belongs to B. Finally
let k(B) denote the number of complex irreducible characters of G which belong to the
block B.

The invariant k(B) is closely related to the size of a defect group of B. Loosely
speaking, a defect group of a block B is a Sylow p-subgroup of the centralizer of a
certain element of G which can be associated to B. Alternatively, the block B, viewed
as an F[G x G]-module, has a vertex which is a diagonal subgroup of G x G whose
projection to any of the two coordinates is a p-subgroup, called a defect group of B.
(Here, by definition, B is an indecomposable F[G x G]-module, and a vertex @ of B is
defined to be a p-subgroup of G x GG, unique up to conjugacy in G x G, such that B is
a direct summand of (By)®*¢ for a subgroup H of G x G, if and only if, H contains
a conjugate of ).) This means that the set of defect groups of a block of G form a
single conjugacy class of p-subgroups in G. The size |D| = p? of a defect group D of a
block B of a finite group G is a measure of the deviation of B, as an algebra, from being
semisimple. The integer d is called the defect of B.

In Problem 21 of his famous list of problems, Brauer [6] asks for a lower bound f(|D|)
for k(B), where D is a defect group of the p-block B of a finite group G, such that
f(D|) — oo as |D| — oo. This conjecture was solved for p-solvable groups G by
Kiilshammer [68]. In this thesis we aim to give a weaker but explicit lower bound, not
for k(B), but for k(G).

Let G be a finite group such that the order of G contains a prime p with exact
exponent 1. Pyber observed that results of Brauer [5] imply that G contains at least
2/p — 1 conjugacy classes. Motivated by this observation Pyber asked various questions
concerning lower bounds for k£(G) in terms of the prime divisors of |G|. In response to
these questions (and motivated by trying to find explicit lower bounds for the number of
complex irreducible characters in a block) Héthelyi and Kiilshammer obtained various
results [48], [49] for solvable groups. For example they proved in [48] that every solvable
finite group G whose order is divisible by p has at least 24/p — 1 conjugacy classes. Later
Malle [77, Section 2] showed that if G is a minimal counterexample to the inequality
k(G) > 2y/p — 1 with p dividing |G| then G has the form HV where V is an irreducible
faithful H-module for a finite group H with (|H|,|V|) = 1 where p is the prime dividing
|V|. He also showed that H cannot be an almost quasisimple group. Using these results,
Keller [60] showed that there exists a universal constant C' so that whenever p > C then
kE(G) > 24/p—1. In a later paper Héthelyi, Horvath, Keller and Maréti [47] proved
that by disregarding at most finitely many non-solvable p-solvable groups G, we have
k(G) > 2y/p — 1 with equality if and only if v/p — T is an integer, G = C}, x C 5= and
Cq(Cp) = Cp. However since the constant C' in Keller’s theorem was unspecified, there
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had been no quantitative information on what was meant by at most finitely many in
the afore-mentioned theorem.

In this thesis we answer this question for all primes p.

Theorem 1.3 (Maréti; [83]). Every finite group G whose order is divisible by a prime

p has at least 24/p — 1 conjugacy classes. Equality occurs if and only if \/p —1 is an
integer, G = Cp X C\/ﬁ and CG(CP) = C).

Can a stronger lower bound for k(G) be given in case a higher (than 1) power of the
prime p divides the order of a finite group G7? Héthelyi and Kiilshammer [49] proved
that if G is a finite solvable group whose order is divisible by the square of a prime
p then k(G) > (49p + 1)/60. However this line of thought has a limit in view of an
example of Kovdcs and Leedham-Green [63] of groups G of orders p? (p odd) with
k(G) = 3(»® — p* + p+1) (see also [94]).

Going back to blocks, Héthelyi and Kiilshammer [48, Page 671] asks whether k(B) >
24/p — 1 holds for any p-block B of positive defect for any finite group. No general result
is known about this question.

Problem 21 of Brauer and also the above-mentioned results of Héthelyi and Kiilsham-
mer are closely linked to the so-called McKay conjecture. Let p be a prime and G
a finite group. Denote the set of complex irreducible characters of G whose degrees
are prime to p by Irry(G). The McKay conjecture (in its original form) states that
[Irr,y (G)| = |Irry (Ng(P))| where Ng(P) is the normalizer of a Sylow p-subgroup P
in G. This conjecture is known for various classes of finite groups including solvable
groups and more generally including p-solvable groups. Here we only mention a paper by
Isaacs, Malle, Navarro [58] in which McKay’s conjecture was reduced to a set of questions
on quasisimple groups. (Following this influential paper other deep conjectures in the
representation theory of finite groups were recently reduced to certain problems about
quasisimple groups.) Using [58] Malle and Spéth [79] very recently established McKay’s
conjecture for p = 2.

There is a (stronger) block version of McKay’s conjecture which was shown [69] to
imply Brauer’s Problem 21.

Theorem 1.3 and its proof can be used (but not in this thesis) to bound |Irry (G)| for
any finite group G and prime p.

Theorem 1.4 (Malle, Maréti; [78]). Let G be a finite group and p a prime divisor of
the order of G. Then |Irry (G)| > 24/p — 1.

Our proof of Theorem 1.4 shows that |Irr,/ (G)| is smallest possible for a finite group G
whose order is divisible by a prime p if and only if the normalizer of a Sylow p-subgroup
of G has a certain special structure. This may be natural in view of the (unsolved)
McKay conjecture. In [78] there is a complete description of finite groups G with the
property that |Irr, (G)| = 2/p —1 for a prime divisor p of the order of G, consistent
with the McKay conjecture.
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For any prime p with v/p — 1 an integer there are in fact infinitely many finite solvable
groups G with |Irr,y (G)| = 24/p — 1. We remark that it is an open problem first posed
by Landau whether there are infinitely many primes p with /p — 1 an integer.

So far we discussed topics on lower bounds for the number of conjugacy classes of a
finite group. There are also questions on precise formulas for k(G) where G is a finite
group. A famous open problem due to Higman asks if the number of conjugacy classes
in the group of n-by-n unipotent upper triangular matrices over the field with g elements
can be expressed as a polynomial function of ¢ for every fixed n. This problem has a long
history and here we only mention one recent publication, that of Halasi and Palfy [44].

There are many upper bounds in the literature for k£(G) where G is a finite group
and these seem to originate from one of the deepest unsolved problems of representation
theory. Brauer’s k(B) problem [7] was posed in 1959 and is the following. If B is any
block of any finite group, then k(B) < |D| where D is a defect group of B. It is known [7]
that k(B) < (1/4)|D|> + 1. In 1962 Nagao [84] showed that for p-solvable groups the
k(B) problem is equivalent to the so-called k(GV') problem which is the following. Let
V be a finite faithful F'G-module for some finite field F' and finite group G. Form the
semidirect product GV of V by G and denote the number of conjugacy classes in GV
by k(GV). The k(GV) problem is to show that k(GV') < |V| whenever |G| is coprime
to |F|. This bound is sharp when G is a Singer cycle acting on V. Building on a work of
Robinson and Thompson [98], the k(GV')-problem was eventually solved [31] in 2004 by
combined efforts of many mathematicians. The full proof is approximately 500 journal
pages long. Schmid has written a book [100] about the solution of this problem. The
so-called non-coprime k(GV') problem [42] is stated and considered (see also [38]) in
order to generalize the previous works and to gain deeper understanding of Brauer’s
k(B)-problem.

We remark here that there are ongoing efforts, in the spirit of [58], to reduce Brauer’s
k(B) problem to questions on linear group actions and questions on quasisimple groups.

An important special case and tool in the proof of the k(GV') theorem, the non-coprime
kE(GV') problem, and beyond is to bound k(G) when G is a permutation group of degree
n. Kovacs and Robinson [65] proved that k(G) < 5"~ ! and reduced the proposed bound
of k(G) < 27! to the case when G is an almost simple group. This latter bound
was later proved by Liebeck and Pyber [72] for arbitrary finite groups G. Kovécs and
Robinson [65] also proved that k(G) < 3("~1/2 for G a solvable permutation group of
degree n > 3. Later Riese and Schmid [97] proved the same bound for 3’, 5 and 7'
groups, and in [82] Maréti obtained the bound k(G) < 3(*~D/2 for an arbitrary finite
permutation group G of degree n > 3.

By imposing restrictions on the set of composition factors of the permutation group
G, one can obtain stronger bounds on k(G). For example, in [82] it was shown that
k(G) < (5/3)" whenever G has no composition factor isomorphic to C3, and more
recently Schmid [99] proved that k(G) < 7(*~1/4 for n > 5 where G has no non-Abelian
composition factor isomorphic to an alternating group or a group in [10]. However it
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seems hard to generalize these bounds for arbitrary groups. In this thesis the following
is proved.

Theorem 1.5 (Garonzi, Maréti; [28]). A permutation group of degree n > 4 has at most
5(n=1/3 conjugacy classes.

The direct product of n/4 copies of Sy or Dg is a permutation group of degree n with
exactly 5"/4 conjugacy classes (whenever n is a multiple of 4). But even more can be
said. Pyber has pointed out (see [65] and also [72]) that for each constant 0 < ¢ < 5'/4
there are infinitely many transitive permutation groups G with k(G) > ¢*~!. In fact, G
can be taken to be the transitive 2-group Dg (), 4 < S, whenever n is a power of 2 at
least 4. (This can be seen by (1) of Lemma 3.1.)

For special subgroups of primitive permutation groups (G, one may give better than
exponential bounds for £(G). A transitive permutation group G is called primitive if the
stabilizer of any point is a maximal subgroup in GG. This is equivalent to saying that the
only blocks of imprimitivity for G are the singleton sets and the whole set on which G
acts. The symmetric group S, is always primitive and it is easy to see that k(S,,) = p(n),
the number of partitions of n. Hardy and Ramanujan [46] and independently but later
Uspensky [109] gave an asymptotic formula for p(n) and this is less than exponential.
It is a natural question whether k£(G) < p(n) for any primitive permutation group of
degree n. This was shown to be true for sufficiently large n by Liebeck and Pyber [72]
and later for all normal subgroups of all primitive groups by Maréti [81]. In this thesis
we go even further by showing that for any subgroup H of any primitive permutation
group G of degree n, apart from the alternating group A,, and S,,, we have k(H) < p(n)
(see Theorem 3.4). This result is used to give a general upper bound for k(G) for a
transitive permutation group G from knowledge of the partition function (see Theorem
3.6). Finally, this result is used to derive Theorem 1.5.

Weaker bounds as in Theorem 1.5 were used in key steps of the solution of the k(GV)
problem. This fact may seem natural to the reader, however the proof of the k(GV') the-
orem remains mysterious. The general idea is that if V' is a vector space on which a finite
group G acts with (|G|, |V]) = 1 and if V' contains a (single) vector v such that Cg(v)
has a suitable property then we automatically have k(GV) < |V|. Such conditions on
centralizers are called centralizer criteria. From the several centralizer criteria developed
towards the proof of the £(GV') theorem here we mention an unexpected consequence of
one of these. Halasi and Podoski [45] showed that if G is a finite group acting faithfully
on a finite vector space V with (|G|, |V|) = 1, then there exist v, w in V such that
Ca(v)NCq(w) = 1.

This result of Halasi and Podoski [45] can be viewed as a theorem on base size. For a
finite permutation group H < Sym(f2), a subset of the finite set 2 is called a base, if its
pointwise stabilizer in H is the identity. The minimal base size of H (on ) is denoted
by b(H). Notice that [H| < [Q*D).

One of the highlights of the vast literature on base sizes of permutation groups is the

10
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celebrated paper of Seress [104] in which it is proved that b(H) < 4 whenever H is a
solvable primitive permutation group. Since a solvable primitive permutation group is of
affine type, this result is equivalent to saying that a solvable irreducible linear subgroup
G of GL(V) has a base of size at most 3 (in its natural action on V') where V is a finite
vector space.

There are a number of results on base sizes of linear groups. For example, Gluck and
Magaard [30, Corollary 3.3] have shown that a subgroup G of GL(V') with (|G|, |V]) =1
admits a base of size at most 94. If in addition it is assumed that G is supersolvable or of
odd order then b(G) < 2 by results of Wolf [116, Theorem A] and Dolfi [15, Theorem 1.3].
Later Dolfi [16, Theorem 1.1] and Vdovin [111, Theorem 1.1] generalized this result to
solvable coprime linear groups. Finally, Halasi and Podoski [45, Theorem 1.1] improved
this result significantly, by proving that even the solvability assumption can be dropped,
and b(G) < 2 for any coprime linear group G.

We note that for a solvable subgroup G of GL(V') acting completely reducibly on V'
we have b(G) < 2 if the Sylow 2-subgroups of GV are Abelian (see [17, Theorem 2]) or
if |G| is not divisible by 3 (see [117, Theorem 2.3]).

The following definition has been introduced by Liebeck and Shalev in [73]. For a
linear group G < GL(V) we say that {vi,...,vx} C V is a strong base for G if any
element of G fixing (v;) for every 1 <1i < k is a scalar transformation. The minimal size
of a strong base for G is denoted by b*(G). It is known that b(G) < b*(G) < b(G) + 1
(see [73, Lemma 3.1]). Furthermore, also b*(G) < 2 holds for coprime linear groups
by [45, Lemma 3.3 and Theorem 1.1].

The following theorem generalizes the above-mentioned result of Seress [104] and ex-
tends that of Halasi and Podoski [45] to p-solvable groups.

Theorem 1.6 (Halasi, Mardti; [43]). Let V be a finite vector space over a field of order
q and of characteristic p. If G < GL(V) is a p-solvable group acting completely reducibly
on V, then b*(G) < 2 unless ¢ < 4. Moreover if ¢ < 4 then b*(G) < 3.

We note that the bounds in Theorem 1.6 are best possible for all values of ¢q. Indeed,
there are infinitely many irreducible solvable linear groups G < GL(V) with |G| > |V |?
for ¢ = 2 or 3 (see [89, Theorem 1] or [115, Proposition 3.2]) and there are even infinitely
many odd order completely reducible linear groups G < GL(V) with |G| > |V| for
g > 5 (see [90, Theorem 3B| and the remark that follows). For ¢ = 4 we note that [27]
shows that there are primitive, irreducible solvable linear subgroups H of GL3(4) with
b(H) = 3 and thus there are infinitely many imprimitive, irreducible solvable linear
groups G = H1S < GL3,(4) with b(G) = 3 where S is a solvable transitive permutation
group of degree r.

Theorem 1.6 has been applied in [11] to Gluck’s conjecture.

One of the motivations of Seress [104] was a famous result of Pélfy [89, Theorem 1]
and Wolf [115, Theorem 3.1] from 1982 stating that a solvable primitive permutation
group of degree n has order at most 24~ /3n!T¢1 where ¢; = logg(48 - 241/%) = 2.243 .. .,

11
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that is to say, a solvable irreducible subgroup G of GL(V) has size at most 24~/3|V|".
(This bound is attained for infinitely many groups.) In the following we generalize this
result to p-solvable linear groups G.

Theorem 1.7 (Halasi, Maréti; [43]). Let V' be a finite vector space over a field of
characteristic p. If G < GL(V') is a p-solvable group acting completely reducibly on V,
then |G| < 2471/3|V|* where ¢; is as above.

Theorem 1.7 will be used to show the more general Theorem 1.12, however this latter
result has a long story. The core of the proofs of the following results involve finite linear
group actions.

Aschbacher and Guralnick showed [3] that if A is a finite permutation group of degree
n and A’ is its commutator subgroup, then |A : A’| < 3"/3, furthermore if A is primitive,
then |A : A’| < n. These results were motivated by a problem in Galois theory. For
another motivation we need a definition. Let A be a normal series for a finite group
X such that every quotient in N either involves only noncentral chief factors or is an
elementary Abelian group with at least one central chief factor. Define u(N) to be the
product of the exponents of the quotients which involve central chief factors. Let pu(X)
be the minimum of the p(N) for all possible choices of A/. This invariant is an upper
bound for the exponent of X/X’. In [34] it was shown that if A is a permutation group
of degree n, then p(A) < 33, furthermore if A is transitive, then p(A) < n, and if A
is primitive with A” # 1, then the exponent of A/A’ is at most 2 - n'/2. These results
were also motivated by Galois theory. In this thesis we prove similar statements.

Let G be a normal subgroup of a permutation group A of finite degree n. In this
thesis the factor group A/G is studied. It is often assumed that G is transitive (this is
very natural from the point of view of Galois groups and the results are much weaker
without this assumption). As mentioned earlier, throughout the thesis the base of the
logarithms is 2 unless otherwise stated.

Theorem 1.8 (Guralnick, Maréti, Pyber; [40]). Let G and A be permutation groups of
finite degree n with G < A. Suppose that G is primitive. Then |A/G| < n unless G is
an affine primitive permutation group and the pair (n, A/G) is (3*,05 (2), (5%, Sp4(2)),
(3,05 (2)), (35,505 (2)), (3% 0¢ (2)), (3% S0F (2)), (5% Spg(2)), (3%, 05 (2),
(316,805 (2)), (315,04 (2)), or (315,807 (2)). Moreover if A/G is not a section of T'L1(q)
when n = q is a prime power, then |A/G| < n'/?logn for n > 214000,

The n — 1 bound in Theorem 1.8 is sharp when n is prime and G is a cyclic group
of order n. For more information about the eleven exceptions in Theorem 1.8 and for
a few other examples see Section 5.2. Note that for every prime p there are infinitely
many primes 7 such that the primitive permutation group G < AT'Li(q) of order np =
qp = rP~!p satisfies |Ng, (G)/G| = (n —1)(p —1)/p. Tt will also be clear from our proofs
that the bound n!/2logn in Theorem 1.8 is asymptotically sharp apart from a constant
factor at least logg 8 and at most 1.

12
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We next consider the size of the outer automorphism group Out(G) of a primitive
subgroup G of the finite symmetric group S,.

Theorem 1.9 (Guralnick, Maréti, Pyber; [40]). Let G < S,, be a primitive permutation
group. Then |Out(G)| < n unless G is an affine primitive permutation group and one
of the following holds.

1. n=3% G =(C3)": (DgoQg) and Out(G) = O, (2).

2. n=>5% G=(C5)": (Cyo0DgoDg) and Out(G ) >~ Sp,(2).

3. n=3% G=(C3)%: (DgoDgoQg) and Out(G) = Og (2).

4. n=3% G=(C3)%: (DgoDgoDg) and Out(G) = OF (2).

5. n=5% G=(C5)®:(CyoDgoDgoDg) and Out(G) = Spg(2).
6. n =39, G = (C3)": (Dgo Dgo DgoQg) and Out(G) = Og (2).
7. n =39, G = (C3)"%: (Dg o Dg o Dg o Dg) and Out(G) = OF (2).

8 n=q® withq=2°e>1, G =(Cy)* : Ly(q) and | Out(G)| = q(q — 1)e.

If G is any of the groups in (1)-(7) of Theorem 1.9, then Out(G) = Ng,(G)/G. This
indicates why there are only seven exceptional groups in the statement of Theorem 1.9
and not eleven as in the statement of Theorem 1.8. (For in four cases in Theorem 1.8
the group A has index 2 in Ng,(G).)

Next we state an asymptotic version of Theorem 1.9. For this we need a definition.
Let C be the class of all affine primitive permutation groups GG with an almost simple
point-stabilizer H with the property that the socle Soc(H) of H acts irreducibly on
the socle of G and Soc(H) is isomorphic to a finite simple classical group such that its
natural module has dimension at most 6.

Theorem 1.10 (Guralnick, Maréti, Pyber; [40]). Let G < S,, be a primitive permutation
group. Suppose that if n = q is a prime power then G is not a subgroup of ATL1(q). If G
is not a member of the infinite sequence of examples in Theorem 1.9, then | Out(G)| <
2-n3/% for n > 21400 Moreover if G is not a member of C, then | Out(G)| < n'/?logn
for n > 214000,

As mentioned earlier, the bound n'/2 logn in Theorem 1.10 is asymptotically sharp
apart from a constant factor close to 1.

The proof of Theorem 1.8 requires a careful analysis of the Abelian and the non-
Abelian composition factors of A/G where A and G are finite groups. For this purpose
for a finite group X we denote the product of the orders of the Abelian and the non-
Abelian composition factors of a composition series for X by a(X) and b(X) respectively.
(The latter invariant is different from the minimal base size defined earlier.) Clearly
| X| = a(X)b(X).

The next result deals with b(A/G) in the general case when G is transitive and in the
more special situation when G is primitive.

13
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Theorem 1.11 (Guralnick, Maréti, Pyber; [40]). Let A and G be permutation groups
with G < A < S,,. If G is transitive, then b(A/G) < nl°8™. If G is primitive, then
b(A/G) < (logn)?°81°e",

In order to give a sharp bound for a(A/G) when G is a primitive permutation group,
interestingly, it is first necessary to bound a(A) (for A primitive). As mentioned earlier,
in 1982 Palfy [89] and Wolf [115] independently showed that |A] < 24~ 1/3nl*er for a
solvable primitive permutation group A of degree n. Equality occurs infinitely often. In
fact a(A) < 24~ 1/3pl*e holds [95] for any primitive permutation group A of degree n.
Using the Classification Theorem of Finite Simple Groups we extend these results to the
following, where for a finite group X and a prime p we denote the product of the orders
of the p-solvable composition factors of X by a,(X).

Theorem 1.12 (Guralnick, Maréti, Pyber; [40]). Let G < S,, be primitive, let p be a
prime divisor of n and let ¢ be as before. Then ay(G)| Out(G)| < 247 1/3plter,

Wolf [115] also showed that if G is a finite nilpotent group acting faithfully and com-
pletely reducibly on a finite vector space V, then |G| < |V|®/2 where ¢z is the constant
logg 32 close to 1.57732. In order to generalize this result we set ¢(X) to be the product
of the orders of the central chief factors in a chief series of a finite group X. In particular
we have ¢(X) = |X]| for a nilpotent group X. The following theorem (whose proof is
omitted from this thesis) extends Wolf’s result.

Theorem 1.13 (Guralnick, Maréti, Pyber; [40]). Let G < S,, be a primitive permutation
group. Then ¢(G) < n®/2 where ¢y is as above.

The invariant ncf(G) := |G|/c(G) will be investigated later.

Some technical, module theoretic results enable us to show that if G < A < S,, are
transitive permutation groups, then a(A4/G) < 6™/* (see Theorem 5.22). In fact, we
show that a(A/G) < 4™ VI°8™ whenever n > 2 (see Theorem 5.24). This together with
Theorem 1.11 give the following.

Theorem 1.14 (Guralnick, Maréti, Pyber; [40]). We have |A : G| < 47/Vioen . plogn
whenever G and A are transitive permutation groups with G < A <S,, and n > 2.

For an exponential bound in Theorem 1.14 we can have 168(*~1)/7 (see Theorem 5.33).
See [95, Proposition 4.3] for examples of transitive p-groups (p a prime) showing that
Theorem 1.14 is essentially the best one could hope for apart from the constant 4. It is
also worth mentioning that a ¢/ Viogn type bound fails in case we relax the condition
G < A to G << A. Indeed, if A is a Sylow 2-subgroup of S,, for n a power of 2 and
G is a regular elementary Abelian subgroup inside A, then |A : G| = 2"/2n. The next
result shows that an exponential bound in n holds in general for the index of a transitive
subnormal subgroup of a permutation group of degree n.

Theorem 1.15 (Guralnick, Maréti, Pyber; [40]). Let G <1 A < S,,. If G is transitive,
then |A: G| < 5" 1L,

14
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The proof of Theorem 1.15 is omitted from this thesis and it avoids the use of the
Classification Theorem for Finite Simple Groups. Using the classification it is possible
to replace 5"~! from the bound with 3"~!. It would be interesting to know whether
|A : G| < 2™ holds for transitive permutation groups G and A with G << A < S,,.

We note that we have sharp bounds for |A : G|, b(A/G) and a(A/G) in case A is a
primitive permutation group of degree n and G is a transitive normal subgroup of A.
These are n'°8™ in the first two cases (see [80] and Theorem 5.10), and it is 24~ 1/3n¢ in
the third case (see Corollary 5.17).

Let G be a finite group, F' a field, and V a finite dimensional F'G-module. If one
wishes to bound k(GV') directly, it is necessary to know the number of orbits of G on
V', which, by the orbit counting theorem, is the arithmetic mean of the sizes of the fixed
point spaces of the elements of G acting on V. Motivated by this observation here we
consider a slightly different invariant.

For a non-empty subset S of G we define

avgdim(S, V) ]S] Zdlm Cy (s

sSES

to be the arithmetic average dimension of the fixed point spaces of all elements of S on V.
Here Cy(s) is the set of fixed points of s on V. In his 1966 DPhil thesis Neumann [86]
conjectured that if V' is an irreducible non-trivial FG-module then avgdim(G,V) <
(1/2)dim V. This problem was restated in 1977 by Neumann and Vaughan-Lee [87] and
was posted in 1982 by Vaughan-Lee in The Kourovka Notebook [66] as Problem 8.5.
The conjecture was proved by Neumann and Vaughan-Lee [87] for solvable groups G
and also in the case when |G| is invertible in F'. Later Segal and Shalev [103] showed
that avgdim(G, V) < (3/4) dim V for an arbitrary finite group G. This was improved by
Isaacs, Keller, Meierfrankenfeld, and Moreté [57] to avgdim(G, V) < ((p+1)/2p) dim V'
where p is the smallest prime factor of |G|. Here we prove the following.

Theorem 1.16 (Guralnick, Maréti; [39]). Let G be a finite group, F a field, and V
a finite dimensional FG-module. Let N be a normal subgroup of G that has no trivial
composition factor on V. Then avgdim(Ng,V) < (1/p)dim V' for every g € G where p
is the smallest prime factor of the order of G.

The previous theorem not only solves the above-mentioned conjecture of Neumann
and Vaughan-Lee but it also generalizes and improves the result in many ways. First
of all, G need not be irreducible on V'; the only restriction we impose is that G has no
trivial composition factor on V. Secondly, we prove the bound (1/2) dim V' not just for
avgdim(G, V) but for avgdim(S, V') where S is an arbitrary coset of a normal subgroup
of G with a certain property. Thirdly, Theorem 1.16 involves a better general bound,
namely (1/p)dim V' where p is the smallest prime divisor of |G]|.

We next turn to the question of when we can have equality in Theorem 1.16. Note that
the example [57, Page 3129] of a completely reducible F'G-module V for an elementary
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Abelian p-group G shows that avgdim(G, V) = (1/p) dim V' can occur in Theorem 1.16.
There are examples for equality in Theorem 1.16 even when V is an irreducible module.
Let p be an arbitrary odd prime, let G be the extraspecial p-group of order p'*2¢ (for
a positive integer a) of exponent p, let N = Z(G), let F' be an algebraically closed field
of characteristic different from p, and let V' be an irreducible F'G-module of dimension
p*. Then for every element x € G\ N we have dimCy(z) = (1/p)dimV and so
avgdim(Ng,V) = (1/p)dim V for every g € G. In particular we have avgdim(H,V') =
(1/p)dim V for every subgroup H of G containing N.

We give a different proof of Theorem 1.16 in characteristic 0 and combine the ideas
of that proof with Theorem 1.16 to show:

Theorem 1.17 (Guralnick, Maréti; [39]). Let G be a finite group, F a field, and V a
finite dimensional FG-module with no trivial composition factor. Let p be the smallest
prime factor of |G|. Then avgdim(G,V) = (1/p)dimV if and only if G/Cq(V) is a

group of exponent p.

In his DPhil thesis [86] Neumann showed that if V' is a non-trivial irreducible FG-
module for a field F' and a finite solvable group G then there exists an element of G
with small fixed point space. Specifically, he showed that there exists g € G with
dim Cy (g) < (7/18) dim V. Neumann conjectured that in fact, there should exists g € G
such that dim Cy(g) < (1/3) dim V. Segal and Shalev [103] proved, for an arbitrary finite
group G, that there exists an element g € G with dim Cy(¢g) < (1/2) dim V. Later, under
milder conditions (V is a completely reducible FG-module with Cy(G) = 0), Isaacs,
Keller, Meierfrankenfeld, and Moreté [57] showed that there exists an element g € G
with dim Cy (g) < (1/p) dim(V') where p is the smallest prime divisor of |G|. Under even
weaker conditions we improve this latter result.

Corollary 1.18 (Guralnick, Maréti; [39]). Let G be a finite group, F a field, and V
a finite dimensional FG-module. Let N be a normal subgroup of G that has no trivial
composition factor on V. Let x be an element of G and let p be the smallest prime factor
of the order of G. Then there exists an element g € Nz with dim Cy (g) < (1/p) dim V'
and there exists an element g € N with dim Cy(g) < (1/p) dim V.

Note that Corollary 1.18 follows directly from Theorem 1.16 just by noticing that
dim Cy (1) = dim V. Note also that if V' is irreducible and faithful in Corollary 1.18 then
no non-trivial normal subgroup of G has a non-zero fixed point on V and so the N above
can be any non-trivial normal subgroup of G. Neumann’s above-mentioned conjecture
was proved in [37]; if V' is a non-trivial irreducible F'G-module for a finite group G then
there exists an element g € G such that dim Cy(g) < (1/3)dim V.

We continue with the first application of our result. Let clg(g) denote the conjugacy
class of an element g in a finite group G, and for a positive integer n and a prime p let n,
denote the p-part of n. In [57] Isaacs, Keller, Meierfrankenfeld, and Moret6 conjecture
that for any primitive complex irreducible character x of a finite group G the degree
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of x divides |clg(g)| for some element g of G. Using their result mentioned before the
statement of Corollary 1.18 they showed that if y is an arbitrary primitive complex
irreducible character of a finite solvable group G and p is a prime divisor of |G| then
x(1), divides (|clg(g)|)? for some g € G. Using Theorem 1.16 we may prove more than
this.

Corollary 1.19 (Guralnick, Maréti; [39]). Let x be an arbitrary primitive complex ir-
reducible character of a finite solvable group G and let p be a prime divisor of |G|. Then
the number of g € G for which x(1), divides (|cla(g)|)® is at least (2|G])/(1 + k) where
k =log, |G|,. Furthermore if x(1), > 1 then there exists a p'-element g € G for which

- X(1)p divides (|cla(g)])”.

Recall that a chief factor of a finite group is a section X/Y of G with ¥ < X both
normal in GG such that there is no normal subgroup of G strictly between X and Y. Note
that X/Y is a direct product of isomorphic simple groups. If X/Y is Abelian, then it
is an irreducible G-module. If X/Y is non-Abelian, then G permutes the direct factors
transitively. A chief factor is called central if G acts trivially on X/Y and non-central
otherwise. Let GG be a finite group acting on another finite group Z by conjugation. For
a non-empty subset S of G define

1/]8]
geom(S, Z) (H |Cz(s )

seS

to be the geometric mean of the sizes of the centralizers of elements of S acting on Z.
Similarly, for a non-empty subset S of G define

avg(S, Z) Z]CZ

sES

to be the arithmetic mean of the sizes of the centralizers of elements of S acting on Z.
Our next result is a non-Abelian version of Theorem 1.16 proved using some recent work
of Fulman and Guralnick [25].

Theorem 1.20 (Guralnick, Maréti; [39]). Let G be a finite group with XY = M a
non-Abelian chief factor of G with X and Y mnormal subgroups in G. Then, for any
g € G, we find that geom(X g, M) < avg(Xg, M) < ]M|0'41.

In Theorem 1.13 we considered the invariant ¢(G) for a finite group G. Next we will
continue our investigations.

Let ¢(G) and ncf(G) be the product of the orders of all central and non-central chief
factors (respectively) of a finite group G. (In case these are not defined put them equal
to 1.) These invariants are independent of the choice of the chief series of G. Let F(QG)
denote the Fitting subgroup of G. Note that F(G) acts trivially on every chief factor of
G. Using Theorems 1.16 and 1.20 we prove
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Theorem 1.21 (Guralnick, Maréti; [39]). Let G be a finite group. Then
geom(G, G) < (@) - (ncf(G))P
where p is the smallest prime factor (if such exists) of the order of G/F(G).

By taking the reciprocals of both sides of the inequality of Theorem 1.21 and multi-
plying by |G|, we obtain the following result.

Corollary 1.22 (Guralnick, Maréti; [39]). Let G be a finite group. Then

net(@) < ([ teetol)” """

geG

where p is the smallest prime factor (if such exists) of the order of G/F(G).

A group is said to be a BFC group if its conjugacy classes are finite and of bounded
size. A group G is called an n-BFC group if it is a BFC group and the least upper bound
for the sizes of the conjugacy classes of G is n. One of B. H. Neumann’s discoveries was
that in a BFC group the commutator subgroup G’ is finite [85]. One of the purposes of
this thesis is to give an upper bound for |G’| in terms of n for an n-BFC group G. Note
that C(G’) is a finite index nilpotent subgroup. Thus, F(G) is well defined for BFC
groups.

If G is a BFC group, then there is a finitely generated subgroup H with H = G’
and G = HCg(G') = HF(G). Then H has a finite index central torsionfree subgroup
N. Set J = H/N. So J' and G’ are G-isomorphic. In particular, ncf(J) = ncf(G).
Clearly, G/F(G) = J/F(J). Thus, for the next result, it suffices to consider finite
groups. Our first main theorem on BFC groups follows from Corollary 1.22 (by noticing
that |clg(1)] = 1 and that in that result, we may always assume the action is faithful).

Theorem 1.23 (Guralnick, Maréti; [39]). Let G be an n-BFC group with n > 1. Then
we have ncf(G) < nP/(P=1) < n2, where p is the smallest prime factor (if such exists) of
the order of G/F(QG).

Theorem 1.23 solves [87, Conjecture Al.

Not long after B. H. Neumann’s proof that the commutator subgroup G’ of a BFC
group is finite, Wiegold [114] produced a bound for |G’| for an n-BFC group G in
terms of n and conjectured that |G| < n(1/2+°8n) where the logarithm is to base
2. Later Macdonald [76] showed that |G'| < nbrogn)’ and Vaughan-Lee [110] proved
Wiegold’s conjecture for nilpotent groups. For solvable groups the best bound to date
is |G| < n1/2)(GHoen) ohtained by Neumann and Vaughan-Lee [87]. In the same paper
they showed that for an arbitrary n-BFC group G we have |G'| < n(1/2)3+5logn) - Uging
the Classification Theorem of Finite Simple Groups Cartwright [9] improved this bound
to |G'| < n(1/2MA1+logn) which was later further sharpened by Segal and Shalev [103]
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who obtained |G’ < n(1/2)/(13+lgn) = Applyving Theorem 1.23 at the bottom of [103, Page
511] we arrive at a further improvement of the general bound on the order of the derived
subgroup of an n-BFC group.

Theorem 1.24 (Guralnick, Mar6ti; [39]). Let G be an n-BFC group with n > 1. Then
we have |G| < n(1/2)(T+logn)

A word w is an element of a free group of finite rank. If the expression for w involves
k different indeterminates, then for every group G, we obtain a function from G¥ to
G by substituting group elements for the indeterminates. Thus we can consider the
set G, of all values taken by this function. The subgroup generated by G, is called
the verbal subgroup of w in G and is denoted by w(G). An outer commutator word
is a word obtained by nesting commutators but using always different indeterminates.
In [23] Ferndndez-Alcober and Morigi proved that if w is an outer commutator word and
G is any group with |G| = m for some positive integer m then |w(G)| < (m — 1)1,
They suspect that this bound can be improved to a bound close to one obtainable for
the commutator word w = [z, z2]. By noticing that every conjugacy class of a group G
has size at most the number of commutators of G we see that Theorem 1.24 yields

Corollary 1.25 (Guralnick, Maréti; [39]). Let G be a group with m commutators for
some positive integer m at least 2. Then |G'| < m(1/2)(T+logm)

Segal and Shalev [103] showed that if G is an n-BFC group with no non-trivial Abelian
normal subgroup then |G| < n*. We improve and generalize this result in Theorem 1.26.
As before, for a finite group X, let k(X)) denote the number of conjugacy classes of X.

Theorem 1.26 (Guralnick, Maréti; [39]). Let G be an n-BFC group with n > 1. If the
Fitting subgroup F(G) of G is finite, then |G| < n?k(F(Q)). In particular, if G has no

non-trivial Abelian normal subgroup then |G| < n?.

Since F(G) has finite index in G, the hypotheses of Theorem 1.26 imply that G is
finite. Note that even more is true than Theorem 1.26; if G is a finite group then
|G| < a®k(F(Q)) where a = |G|/k(G) is the (arithmetic) average size of a conjugacy
class in G (this is [41, Theorem 10 (i)]). If b denotes the maximal size of a set of pairwise
non-commuting elements in G then, by Turdn’s theorem [108] applied to the complement
of the commuting graph of G, we have a < b+ 1. Thus if G is a finite group with no
non-trivial Abelian normal subgroup then |G| < (b+ 1)2. This should be compared
with the bound |G| < c(1°8 b’ holding for some universal constant ¢ with ¢ > 220 which
implicitly follows from [93, Lemma 3.3 (ii)] and should also be compared with the remark
in [93, Page 294] that for a non-Abelian finite simple group G we have |G| < 27 - b3.

The final main result concerns n-BFC groups with a given number of generators. Segal
and Shalev [103] proved that in such groups the order of the commutator subgroup is
bounded by a polynomial function of n. In particular they obtained the bound |G’| <
n®4+4 for an arbitrary n-BFC group G that can be generated by d elements. By applying
Theorem 1.23 to [103, Page 515] we may improve this result.
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Corollary 1.27 (Guralnick, Maréti; [39]). Let G be an n-BFC group that can be ge-
nerated by d elements. Then |G'| < n3%+2,

Finally, the following immediate consequence of Corollary 1.27 sharpens [103, Corol-
lary 1.5].

Corollary 1.28 (Guralnick, Maréti; [39]). Let G be a d-generator group. Then

{lz,9) : 2,y € G} > &34,

We remark here that every non-Abelian finite simple group G can be generated by 2
elements (see [2]) and, by the recent solution [71] of Ore’s conjecture, every element of
G is a commutator.

The example T, (p) [87, Page 213| shows that Theorem 1.24, Corollary 1.25, Corollary
1.27, and Corollary 1.28 are close to best possible.

We point out that Theorem 1.16 for p odd requires only the Feit-Thompson Odd Order
Theorem [22]. However, most of the results above depend on the Classification Theorem
of Finite Simple Groups as the results in [103] and [57] do (for groups of even order).
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2 A lower bound for the number of classes

Let p be a prime divisor of the order of G. In a work of Brauer, Pyber noticed that k(G)
could perhaps be bounded from below only in terms of p. Héthelyi and Kiilshammer
confirmed this speculation for solvable GG. In this chapter we give such an explicit
bound, namely k(G) > 2y/p — 1, holding for any finite group G. More specifically, we
will establish Theorem 1.3. This is related to Brauer’s problem 21 which may be viewed
as a block version of Brauer’s problem 3.

2.1 A reduction to linear groups

Let G be a minimal counterexample to the statement of Theorem 1.3. By [48] (and the
equality by [47, Theorem 2.1]) we know that G is not solvable. Also, by [47, Theorem
3.1], we may assume that G is a p-solvable group (whose order is divisible by p). Now we
may proceed as in [47, Page 428]. Let V be a minimal normal subgroup in G. If |G/V/|
is divisible by p then, by the minimality of G, we have k(G) > k(G/V) > 2/p—1, a
contradiction. So p divides |V|, and since G is p-solvable, we see that V' is an elementary
Abelian p-group. By this argument we see that V' is the unique minimal normal subgroup
of G. By the Schur-Zassenhaus theorem, there is a complement H of V in G. So G has
the form HV where V is a coprime, faithful and irreducible H-module.

In the papers [112] and [113] all non-nilpotent finite groups are classified with at most
14 conjugacy classes. By going through these lists of groups we see that no group G of
the form described in the previous paragraph is a counterexample to Theorem 1.3. So
we have k(G) > 15. This means that we can assume that 2,/p — 1 > 15 is true. In other
words, that p > 59.

There is a well-known expression for k(G) = k(HV') which is a consequence of the
so-called Clifford-Gallagher formula. Let n(H, V') denote the number of H-orbits on V'
and let vq,...,v,(H,v) be representatives of these orbits. [100, Proposition 3.1b] says

that k(HV) = S V) k(Cy(vy)). This is at least k(H) + n(H, V) — 1.

Theorem 1.3 is then a consequence of the following result (with the roles of H and G
interchanged).

Theorem 2.1. Let V' be an irreducible and faithful FG-module for some finite group
G and finite field F of characteristic p at least 59. Suppose that p does not divide |G)|.
Then we have k(G) +n(G,V) — 1 > 24/p — 1 with equality if and only if \/p—1 is an
integer, |V| = |F|=p and |G| = /p — 1.
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Theorem 2.1 has implicitly been proved in [48] in case G is solvable, without a con-
sideration of when equality can occur.

2.2 Basic results, notation and assumptions

In the rest of the chapter we are going to prove Theorem 2.1. For this purpose let us fix
some notation and assumptions.

Let V' be an irreducible and faithful F'G-module for some finite group G and finite
field F' of characteristic p. Suppose that p does not divide |G| and it is at least 59. The
size of the field F' will be denoted by ¢, the dimension of V' over F' by n, and the center
of GL,(q) by Z. We denote the number of orbits of G on V by n(G,V). We will use

the following trivial observation throughout the chapter.

Lemma 2.2. With the notation and assumptions above, |V|/|G| < n(G,V).

However we will also need a more sophisticated lower bound for n(G,V'). For this we
must introduce some more notation (which will also be valid for the rest of the chapter).

Suppose that G transitively permutes a set {Vi,...,V;} of subspaces of V' with ¢ an
integer with 1 < t < n as large as possible with the property that V =V, & -.- & V;.
Let B be the kernel of this action of G on the set of subspaces. Note that G/B is a
transitive permutation group of degree t. The subgroup B is isomorphic to a subdirect
product of ¢ copies of a finite group 7. In other words B is isomorphic to a subgroup of
T1 X - -+ x Ty where for each ¢ with 1 <14 <t the vector space V; is a faithful T;-module
and T; =2 T. Let Hy be the stabilizer of V; in G. Let k be the number of orbits of H;
on V1. Then the following is true.

Lemma 2.3. With the above notation and assumptions,

t+k—-1

t+1,k} <
max{t + 1, }_( I

> <n(G,V).

Proof. This is [24, Lemma 2.6]. O

When G is solvable we will also use the following consequence of a result of Seager [102,
Theorem 1].

Proposition 2.4. Let V be a faithful primitive FG-module for a finite solvable group G
not contained in TL(1,p"™) where F' is a field of prime order p > 59 and |V| = p™. Then
p2/12n < n(G, V).

As is suggested by Lemma 2.2, in various situations it will be useful to bound the
size of G from above. A useful tool in doing so is the following result of Palfy and
Pyber [91, Proposition 4].
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2.3 A special class of linear groups

Proposition 2.5. Let X be any subgroup of the symmetric group Sy, whose order is
coprime to a prime p. If m > 1 then | X| < p™ L.

A third means to attack Theorem 2.1 is to bound k(G).

Lemma 2.6. If G has an Abelian subgroup of index at most \V\1/2/(2\/p— 1) and
n(G,V) <2yp—1, then 2¢/p — 1 < k(G).

Proof. If G has an Abelian subgroup A with |G : A| < |V|1/2/(2\/p — 1), then

Gl(2v/p = 1)/IV'? < |A.

Now |A|/|G : A| < k(G), by a result of Ernest [21, page 502] saying that whenever
Y is a subgroup of a finite group X then we have k(Y)/|X : Y| < k(X). This gives
(4(p—1)|G])/|V| < k(G). Then, by Lemma 2.2, we obtain 2\/p — 1 < k(G). O

2.3 A special class of linear groups

Our first aim in proving Theorem 2.1 is to describe (as much as possible) the possibilities
for G and V with the condition that n(G,V) < 2/¢ —1 where ¢ is the size of the
underlying field F'. For this we need to introduce a class of pairs (G, V') which we denote
by Cy.

In this paragraph we define a class of pairs (G, V') where V' is an FG-module. Let W be
a not necessarily faithful but coprime Q H-module for some finite field extension @ of F
and some finite group H. We write S‘cabg1 (H, W) for the class of pairs (H, W) with the
property that W7 is a Q1 Hi-module with F' < @1 < @ where W is just W viewed as a
Q1-vector space and H; is some group with the following property. If ¢ : H; — GL(Wh)
and ¢ : H — GL(W) denote the natural, not necessarily injective homomorphisms,
then ¢(H1) NGL(W) = ¢(H). We write Ind(H, W) for the class of pairs (Hy, W;) with
the property that Wp = Indgl(W) for some group H; with H < Hj. Finally, let C,
be the class of all pairs (G,V) with the property that V is a finite, faithful, coprime
and irreducible F'G-module so that (G, V') can be obtained by repeated applications of
Stabgf and Ind starting with (H, W) where W is a 1-dimensional Q H-module with @ a
field extension of F'.

If (G,V) € C, then there exist a sequence of field extensions

F,>Fy, ,>...2F,=F,
a normal series 1 < Ng<Njd...4Noy,—1 = G, and integers ni, ..., Nm, Nm+1 = 1 so that
the following hold. The normal subgroup Ny of G is a subgroup of the direct product of
log |V'|/log gy, copies of a cyclic group of order ¢, — 1. For each i with 1 < i < m the
factor group Ng;_1/Na; is a subgroup of the direct product of n; < log|V|/log Gm—i+1
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copies of a cyclic group of order log ¢,,—i+1/10g ¢m—i and the factor group No;/No;_1 is
a subgroup of a permutation group on n; points which is a direct power of n;y1 copies
of a permutation group on n;/n;+1 points.

The main results of this section are Lemmas 2.7 and 2.8.

Lemma 2.7. Let (G,V) € C; and n(G,V) < 2y/q—1. If ¢ > 59, then |G| < V|32

Proof. Fix an Fy-vector space V of dimension n where gy = ¢. Suppose that (G,V) € C,
with n(G,V) < 2y/¢ — 1 and G of maximal possible size. Then there exists a sequence
of field extensions Fy,, > F, > ... > Fy, so that

m
’G| < (qm o 1)log\V\/10gqm . (H (10g Qi/ log qi_l)10g|V\/logqi) .plog\v|/1ogqm_1
i=1

where the first factor is equal to the size of the direct product of log|V|/log ¢, copies
of a cyclic group of order ¢,, — 1, the second factor is an upper bound for the product of
all the factors with which the sizes of the relevant groups increase by taking normalizers
when viewing the linear groups over smaller fields, and the third factor is the product of
the sizes of all factor groups (viewed as permutation groups) which arise after inducing
smaller modules (this product is at most the size of a p’-subgroup of the symmetric
group on log |V'|/log ¢, points which we can bound using Proposition 2.5).

We now proceed to bound the three factors in the product above. The first factor
is clearly less than |V|. Let us consider the second factor. Define the positive in-
tegers ki,...,km,kmi1 5o that ¢ = ¢, @@ = ¢"%2, ... qn, = ¢"*2Fm and |V| =
qkle"'kmkm+1. We may assume that all the k;’s are at least 2 for 1 < i < m (while we
allow k41 to be 1). Then we can write the second factor as

m m
H kR kman < H kv (Faeoki)
i=1 i=1
where n = log |V|/logq. But by taking logarithms it is easy to see that

H nzl/(nlnl) < 32/3
i=1

for any sequence ni,ns,... of integers at least 2. Thus the second factor is at most
32/3 < |V|018 since ¢ > 59.

Suppose first that g, > ¢*. Then we can show that |G| < |V|"**. This is clear for
@m > ¢'° since the second factor considered above is less than |V|%!® while the third

factor is less than ]V|1/ 10, By bounding the second factor more carefully in cases ¢, = ¢*
(4 <i<9), we see that it is less than |V|0-3971/7,

Thus we may assume that g, = ¢, ¢> or ¢. In the first two cases m = 1 while in the
third, m = 0.
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Suppose that the first case holds. Then we can bound the second factor by 3n/3 <
|V|%-09. By Lemma 2.3 and by using the fact that n(G,V) < 2y/q — 1, we certainly have
n/3 < £ :=2y/q — 1. So the third factor is at most

(n/3)! < 03 < (4. q)V6 < |V |/

since ¢ > 59. So we get |G| < |V|!34.

Suppose that the second case holds. Then we can bound the second factor by 2/2 <
|V|%-09 By Lemma 2.3 and by using the fact that n(G,V) < 2y/q — 1, we certainly have
n/2 < £ :=2y/q — 1. So the third factor is at most

(n/2)! < "2 < (4-q)"™* < |V|*34,

So we get |G| < |[V|143.

Suppose that the third case holds. Then the second factor is 1. Also, by Lemma 2.3,
we can replace the third factor by n! where n < 24/q — 1. Here 24/q¢ — 1 > 15. This gives
nl < (Vg=1)" < q"/2 = V|2 We get |G| < |V]*/2. O

The following can be considered as a refined version of Lemma 2.7.

Lemma 2.8. Let (G,V) € C; and n(G,V) < 2¢/q—1. If p > 59, then at least one of
the following holds.

1. G has an Abelian subgroup of index at most \V|1/2/(2\/p —-1).

2. |F| = p, the module V is induced from a 1-dimensional module, and G has a factor
group isomorphic to A, or S, where n = dimp (V). In this case we either have
n=1, or 15 <n <180 and p < 8192.

Proof. If G < T'L(1,¢"), then the result is clear, since n < |V|1/2/(2\/p— 1) ((1) is
satisfied).

Let us consider the proof (and the notation) of Lemma 2.7. Clearly, an upper bound
for the index of an Abelian (subnormal) subgroup of G is the product of the second and
third factors. For ¢, > ¢* this was \V]O'?’g, for g,, = ¢° this was \V!O'?’A‘, and for g, = ¢*
this was |V|%43. These are at most |V|"/2/(2y/p — 1) unless n < 6 (in the first case),
n = 3 (in the second case), and n < 8 (in the third case). In all these exceptional cases
we have G < T'L(1,¢") (the case treated in the previous paragraph) unless ¢,, = ¢ and
n = 4, 6, or 8. But in all these exceptional cases there exists an Abelian (subnormal)
subgroup of index at most 2(n/2)! < ¢"/?/(2y/p — 1) where this latter inequality follows
from ¢ > p > 59 and n < 8. Thus (1) is satisfied in all these cases, and we may assume
that ¢, = ¢ in case (G,V) € C,.

Now let t and B be defined for G as in Section 2.2. By Lemma 2.3, we may assume
that ¢t < 24/p — 1 —1. Put £ to be the integer part of 24/p — 1 — 1. Then it is easy to see
that |G/B| < 01/* < (£/2.2549) since p > 59. This gives |G/B| < 0.89" - p'/2.
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Suppose that ¢ = n. Then G contains an Abelian (normal) subgroup of index less
than 0.89™ - p™/2 < ¢™2/(2y/p — 1) unless 1.27" < 4(p — 1) (in which case this previous
inequality fails). By taking logarithms of both sides we get n < 10logp. But then
|G/B| < ((10/2.2549) logp)" < (4.5logp)".

Suppose for a contradiction that part (1) fails. Then

q"?/(2y/p—1) <|G/B| < (4.5logp)".
This gives (,/q/(4.5logp))" < 2¢/p — 1. But on the other hand we also have |G/B| < n!
which, together with our assumption, gives the inequality p"~! < 4(n!)2. Since p > 59,
we certainly have 59"~ < 4(n!)?. From this we get n > 15. Then (\/a/(11.5logp))15 <
2+/p — 1, which forces ¢ = p < 8192 and thus n = ¢ < 180.

It is easy to see that a transitive subgroup of S,, not containing A,, has index at least
3n for n > 15. (This is clear for a primitive subgroup by the bound of Praeger and
Saxl [92], while for imprimitive groups a more direct calculation is necessary.) So if G/B
does not contain the alternating group A,, then we can refine our upper bound above
for |G/ B| by multiplying the result by 1/3n. But then 9-n? - 1.27" < 4(p — 1) follows.
However since n > 15 we also get 73026 < n? - 1.27" < 4(p — 1) which forces 18257 < p.
But this is a contradiction because we already deduced that p < 8192. This proves the
result in case t = n. O

2.4 Some absolutely irreducible representations

As mentioned earlier we will be interested in pairs (G, V) for which n(G,V) < 2y/¢ — 1.
In this section we consider two special cases, the case when G is a central product of an
almost quasisimple group H and Z and the case when G is the normalizer of a group of
symplectic type. We will also make some more assumptions on the F'G-module V.

Proposition 2.9. Suppose that p is a prime at least 59. Let H be a finite subgroup
of GL,,(q) with generalized Fitting subgroup a quasisimple group where q is a power of
p. Put G = Z o H where Z is the multiplicative group of F'. Furthermore suppose that
V' is an absolutely irreducible F'T-module for every non-central normal subgroup T of
G. Suppose also that |G| is not divisible by p. Then n(G,V) > 2,/q — 1 unless possibly
if n = 2, q is in the range 59 < g < 14389, it is congruent to +1 modulo 10, and
G=702As5.

Proof. First suppose that H cannot be realized over a proper subfield of F.

In this paragraph suppose also that (n, H) is different from the pairs (2, 2.43), (3, 3. Ag),
(3,L2(7)), or (4,2.54(3)). Let P(V) denote the set of 1-dimensional subspaces of V.
Since |H| is not divisible by p and p > 59, we see by [77, Satz 3.4], that all orbits of
G on P(V) have lengths less than (¢" ' —1)/(¢ — 1). As a result, the number of or-
bits of G on P(V) is larger than (¢" — 1)/(¢"~! — 1). But then n(G,V) is larger than

(" =1/t =1)>2/qg—1.
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Suppose that n = 2 and G = Z02.45. We may assume that n(G, V) < 2,/¢q — 1. From
this we get |V|/|G] < 2y/q —1. It readily follows that ¢ < 14400. Since ¢ must be a
prime power, we must have 59 < ¢ < 14389. According to Dickson’s theorem [54, Kapitel
I1, 8.27] ¢ must be congruent to +1 modulo 10. This accounts for the exception in the
statement of the proposition.

Suppose that n = 3 and G = Z o 3.4¢. From the inequality |V|/|G|] < 2y/q—1 it
follows that ¢ < 80. Since ¢ is a prime power, we must have 59 < ¢ < 79. However only
p = 61 is to be considered since v/—3 and also /5 must lie in F. In this case a direct
computation shows that there are 21 > 2v/60 orbits of G on P(V').

Suppose that n = 3 and G = Z x Ly(7). From the inequality |V|/|G| < 2/¢—1 it
follows that ¢ < 48. A contradiction.

Suppose that n = 4 and G = Z 0 2.54(3). From the inequality |V|/|G| < 2/q—1 it
follows that ¢ < 76. Since ¢ is a prime power, we must have 59 < ¢ < 73. However only
the cases p = 61, 67, and 73 are to be considered since v/—3 must lie in F. In these
cases there are 30, 33, and 43 orbits of G on P(V), respectively. These are all greater

than 2+/72.

Now suppose that H can be realized over a proper subfield of F. Then clearly ¢ > 592.
Let S be the generalized Fitting subgroup of H which by assumption is quasisimple. We
now discuss the possibilities for S according to the classification.

If n = 2 then, by Dickson’s theorem [54, Kapitel II, 8.27], S is a covering group of Aj
and H = S. This is an exception in the statement of the proposition since as before we
get ¢ < 14389 and ¢ = £1 (mod 10). From now on assume that n > 3.

Since ¢ > 592, it can easily be checked, just by order considerations and using the
fact that |G| is coprime to p, that none of the (generic examples of) groups G with S
appearing in Table 2 of [50] have fewer than 24/¢ — 1 orbits on V. Then, using Table
3 of [51] together with the condition that ¢ > 592, one can check, essentially just by
comparing log;o(¢"2) and log;y(|G|), that no group G has fewer than 2,/q — 1 orbits
on V with n < 250.

So assume that n > 250. We can rule out S being a covering group of a sporadic simple
group since |G| is much smaller than 59*°®. For a similar reason as when considering
Table 2 of [50], we see that S cannot be a covering group of an alternating group A,,
(for we can assume that m > 9 and so n > m — 2 by [62, Proposition 5.3.7 (i)]).

Suppose that S is a covering group of a classical group Ci(d,r) where r is a prime
power and d is chosen as small as possible (here d is the dimension of the vector space
naturally associated to the classical group). If d > 6 then

n > max{251, (r¥/? — 1)/2}

by [62, Corollary 5.3.10 (iv)] and by n > 250. But then ¢"3 > r? follows by using the
fact that ¢ > 592. This implies that we must have d < 5.

So suppose that d < 5. Then [62, Table 5.3.A] shows that n > max{251, (r — 1)/2}.
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But then ¢" 3 > rd’ certainly follows for » > 32. So suppose that » < 32. Then
q”_3 > 59496 ~ 3925 > 4. This finishes the treatment of the case when S is a covering
group of a classical group.

Suppose that S is a covering group of an exceptional simple group of Lie type. Then
[62, Tables 5.1.B and 5.3.A] can be used to show that G must have at least 2y/q — 1
orbits on V. O

Let us now turn to our second important case of an absolutely irreducible F'G-module
V. Suppose that the group G has a unique normal subgroup R which is minimal subject
to being non-central. Suppose that R is an r-group of symplectic type for some prime
r (this is an r-group all of whose characteristic Abelian subgroups are cyclic). Suppose
that V is an absolutely irreducible F'R-module. Let |R/Z(R)| = 72 for some positive
integer a. Then the dimension of the module is n = r®. Suppose that Z < G. The group
G/(RZ) can be considered as a subgroup of the symplectic group Sps,(r). As always,
we assume that ¢ > p > 59.

Proposition 2.10. Suppose that V and G satisfy the assumptions of the previous para-
graph. If n(G,V) < 2y/q—1, then n=2,59 < qg=p <2297, and |G/Z| < 24.

Proof. Suppose that V and G satisfy the assumptions of the paragraph preceding the
statement of the proposition. Then |V|/|G| < 2v/¢ — 1.

Suppose first that (r,a) is different from any of the pairs (2,1), (3,1), and (2,2).
Then |G| < q -2 - |Spy,(r)| < ¢ - r2¥*+3¢ We wish to show that this is less than
¢! < |V|/(2y/g—1). By taking logarithms of both sides, it is sufficient to see the
inequality (2a2 +3a)logr < (r® —2)log q. But this is true by using the assumption that
g > p >59. This is a contradiction to the fact that |V|/|G| < 2y/q — 1.

If (r,a) = (2,2) then a more careful but similar computation as in the previous para-
graph yields a contradiction. For (r,a) = (3,1) we do the same and get a contradiction
whenever ¢ > 61. Also, ¢ cannot be 59 in this case since 3 does not divide 58.

So only (r,a) = (2,1) can occur. In this case we must have n = 2, |G/Z| < 24, and
thus ¢ is in the range 59 < ¢ = p < 2297. ]

2.5 Bounding the number of orbits

The purpose of this section is to describe as much as possible pairs (G, V') for which

n(G,V) < 2,/g— 1.

Theorem 2.11. Let V be a finite, faithful, coprime and irreducible F'G-module. Suppose
that the characteristic p of the underlying field F is at least 59. Put q = |F| and |V | = ¢".
Let the center of GLy(q) be Z. Then n(G,V) > 2\/q — 1 unless possibly if one of the
following cases holds.
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1. (G,V)eClCy;

2. V =Ind% (W) for some 2-dimensional F H-module W where H is as G in Propo-
sition 2.9 or Proposition 2.10 satisfying one of the following.

a) 59 < q < 14389, ¢ = £1 (mod 10), and 2.A5 < H/Cy(W) < Z 0 2. As;
b) 59 < q=1p <2297 and |(H/Cua(W))/Z(H/Cg(W))| < 24.

In order to prove Theorem 2.11 we need a bound on the orders of groups among the
exceptions in the statement of the theorem. The following extends Lemma 2.7.

Lemma 2.12. Let (G,V) be a pair among the exceptions in Theorem 2.11, satisfying
n(G,V) < 2\/q—1. Then |G| < |V]3/2.

Proof. If (G,V) is of type (1) then Lemma 2.7 gives the result. If (G, V) is of type (2/a)
or (2/b) then it is easy to see that |G| < |V[*/? by using Proposition 2.5 and the fact
that p > 59. O

We can now turn to the proof of Theorem 2.11. In this we follow the reduction
argument found in [45, Section 6].

Let G be a counterexample to Theorem 2.11 with n minimal.

Suppose that V' is an imprimitive F'G-module which is induced from a primitive F' H-
module W for some proper subgroup H of G. If n(H,W) > 2,/q — 1 then n(G,V) >
2y/q — 1, by Lemma 2.3. So assume that n(H, W) < 2y/¢ — 1. By the minimality of n,
the pair (H/Cy (W), W) must be of type (1) or (2) of the statement of the theorem.
But then (G, V) is also of type (1) or (2). A contradiction.

So we may assume that V' is a primitive FG-module.

We first claim that we can assume that every irreducible F'N-submodule of V' is ab-
solutely irreducible for any normal subgroup N of G. For this purpose let N be a
normal subgroup of G. Then V is a homogeneous FN-module, so V =V & --- &V,
where the V;’s are isomorphic irreducible FN-modules. Let K ~ Endpy (V7). As-
suming that the V;’s are not absolutely irreducible, K is a proper field extension of
F, and Cqrvy(N) = Endpy (V) N GL(V) ~ GL.(K) for some r. Furthermore, L =
Z(Carwy(N)) ~ Z(GL,(K)) ~ K*. Now, by using L, we can extend V' to a K-vector
space of dimension ¢ := dimg V' < n. As G < Ngpv)(L), in this way we get an inclu-
sion G < T'L(¢, K). Now G contains the normal subgroup H = G N GLy(K) of index at
most n. Clearly V' is a homogeneous and faithful K H-module. Let W be a simple K H-
submodule of V. Then, by the minimality of n, we get n(H,V) > n(H,W) > 2/|K| — 1
unless (H, W) is one of the examples listed in the statement of the theorem. If H is none
of the possibilities listed in the statement of the theorem, then n(G,V) > n(H,V)/n >
2y/q — 1, a contradiction, since we are assuming p > 59. If (H,W) is of possibility (1)
then so is (G, V) of possibility (1) unless W < V. If W < V and W is not of dimen-
sion 1 over K then Lemma 2.7 shows that n(H,V) > |V|/|H| > 2/|K| -1, and so
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n(G,V) >n(H,V)/n > 2\/q—1, as before. If W is of dimension 1 over K then a more
careful consideration is necessary to obtain the same conclusion. If H is of possibility
(2) of the statement of the theorem, then H is of index 2 in G and so |G| < 120(¢® — 1).
But then n(G,V) > |V|/|G| > ¢%>/120 > 2/q — 1 since ¢ > 59. This shows the claim.

Let N be a normal subgroup of G and let V =V, ®---® V,. be a direct sum decompo-
sition of V' into isomorphic absolutely irreducible F N-modules. By choosing a suitable
basis in Vi, Va,...,V,, we can assume that G < GL,(F') such that any element of N is
of the form A® I, for some A € Ny; < GL,,/,(F'). By using [62, Lemma 4.4.3(ii)] we get

Nar,(r)(N) ={B®C|B € NgL, ,,(r)(Nv,), C € GL,(F)}.

Let
G1={g1 € GL,,(F)|3g € G, g2 € GL,(F) such that g = g1 ® go}.

We define G2 < GL,(F') in an analogous way. Then G < G1 ® G2. Here G and G are
not homomorphic images of G, since g = g1 ® g2 = Ag1 ® A "Lgo for any A\ € F*, so the
map g = g1 ® g2 — g1 is not well-defined. However, they both have orders coprime to p.
Since G1 ® G4 preserves a tensor product structure V = W7 ® W, so does G.

We claim that G does not preserve a proper tensor product structure. For a proof
suppose that G preserves a tensor product structure V.= W1 @ Wy with r; = dimW; > 1
and ro = dim Wy > 1. Without loss of generality assume that r; < ro and n = ryrs.
Then G < G1®G> for some groups GG1 and G acting on Wy and Ws respectively. Assume
also that these groups have orders coprime to p. We also assume that G acts primitively
and irreducibly on V' and Z < G. Notice that the G;’s act irreducibly on the W;’s (for if
0 < U; < W; would be a G1-submodule then Uy ® Wa would be a G ® Ga-submodule).
Also, the G;’s act primitively on the V;’s. (For if G; would act imprimitively on W7, say,
then there would be a proper subspace U; in W whose stabilizer has index |Wi|/|Uy].
But then U; ® W5 would be a subspace of V' whose stabilizer in G; ® G5 has the same
index. But then, by [105, Theorem 3, page 105], we see that G; ® G9, and in particular
G, acts imprimitively on V, a contradiction.) If n(G;, W;) > 2y/q — 1 for any of the i’s,
then we are done. (Forif n(G1,W1) > 2y/q — 1, say, and vy, ..., vy are representatives of
[ orbits of G on Wy with f > 2y/¢ — 1, then v1 ® w, ..., vs ® w will be representatives
of f orbits of G on V where w is a non-zero vector in Ws.) So by the minimality of n
we know that both G and G5 are exceptions in the statement of the theorem. If G is
solvable, then Proposition 2.4 gives a contradiction (since n > 4). So we may assume
that G is non-solvable. Notice that |G| < (|G1]| - |G2])/(¢ — 1).

Let 71 = 2. Then |G| < 2 - ¢®/2m2+! by Lemma 2.12. But then if o > 5 then
[V1/IG| > 24/q¢ —1, a contradiction. We get the same conclusion when r; > 3 and
ro > 5 (apply Lemma 2.12). So we conclude that 2 < ry < r9 < 4. In fact, since G is
non-solvable, this forces r1 = 2 and G of type (2/a).

Let ro = 2. To maximize |G| we may assume that Gy is of type (1) or (2/a). But
then we again have 2y/¢ — 1 < |V|/|G], a contradiction. So r2 = 3 or 4. But then Gs
is of type (1). In both cases G2 must be solvable. Let ro = 4. If G2 is not a semilinear
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group of order dividing 4(q* — 1), then Proposition 2.4 gives what we want. Otherwise
2/q—1 < ¢®/|G|. Solet 7y = 3. Then |Ga| < 3(¢® — 1) (since G is primitive) and so
2/q—1<¢%Gl.

We conclude that G does not preserve a proper tensor product structure.

From now on assume that N is a normal subgroup of G which is minimal with respect
to being non-central. Then N/Z(N) is a direct product of isomorphic simple groups.

If N is Abelian then it is central in G. A contradiction.

If N/Z(N) is elementary Abelian of rank at least 2, then G is of symplectic type and
Proposition 2.10 gives us a contradiction.

Now let N/Z(N) be a direct product of m > 2 isomorphic non-Abelian simple groups.
Then N = Ly xLo*---x Ly, is a central product of isomorphic groups such that for every
1 <i¢<mwehave Z < L;, L;/Z is simple. Furthermore, conjugation by elements of G
permutes the subgroups L1, Lo, ..., L, in a transitive way. By choosing an irreducible
FLi-module V; < V, and a set of coset representatives g7 = 1,92,...,9m € G of
G1 = Ng (Vi) such that L; = g; L4 9; 1, we get that V; := ¢;V} is an absolutely irreducible
FL;-module for each 1 <7< m. Now, V 2 Vi@Va®---®V,, and G permutes the factors
of this tensor product. It follows that G is embedded into the central wreath product
G1 e Sy and that Gy is non-solvable. Now G acts irreducibly on V; for otherwise there
are proper G1-submodules W; of V; for each i with 1 < i < m, sothat W = W1 ®---@W,,
is a proper G-submodule of V. If n(G1, V1) > 2y/q¢ — 1, then so is n(G,V) > 2y/q — 1.
(For let vy, ...,v, be members of n(G1, V1) — 2 non-trivial orbits of G; on V;. Clearly
r > 2 and these vectors are non-zero and pairwise not multiples of each other. Let v,
be a fixed non-zero vector not in an orbit of any of the vectors listed above. Then the
vectors w; = v; @ Upa1 ® ... @ vpy1 for 1 < ¢ < r + 1 are all non-zero and are all in
different G-orbits.) So G is a group among the exceptions in Theorem 2.11. So we
have |G| < |[V4|*? by Lemma 2.12. Using this we can show that |V|/|G| > 2y/q— 1
provided that dim V7 > 4. So assume that dim V; = 2 or 3. Since (7 is non-solvable, we
must then have dimV; = 2 and G = Z 0 2.45. But then |G| < (¢ — 1)60™p™ ! where
the last factor follows from Proposition 2.5 and n = 2. However when m = 2 then by
using just a factor of 2 in place of p™ 1, we get 2¢/q — 1 < |V|/|G|. We get the same
conclusion in case m > 3, by Proposition 2.5.

The remaining case is when N/Z(N) is a non-Abelian finite simple group. But then
the generalized Fitting subgroup of G is a central product of the center of G with a
quasisimple group (by the above reductions) and Proposition 2.9 yields a contradiction.

This proves Theorem 2.11.

2.6 Bounding the number of classes of a linear group

In order to prove Theorem 2.1 we now also have to take k(G) into account.
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Theorem 2.13. Let V' be an irreducible and faithful FG-module for some finite group
G and finite field F' of characteristic p at least 59. Suppose that p does not divide |G)|.
Then we have at least one of the following.

. n(G,V)>2yp—1.

2. k(G) >2yp—1.

3. /p—1is an integer, |V| = |F| =p and |G| = /p — 1.
4

. Case (2/a) of Theorem 2.11 holds with p = 59 and 1 < t < 14, or p = 61 and
t=1,0r61l <p<119 and 2 <t < 4.

. Case (2/b) of Theorem 2.11 holds with t < 4.

~

Ot

Proof. Let V be an irreducible and faithful F'G-module as in the statement of the theo-
rem. Suppose that n(G, V) < 24/p — 1. Suppose also that case (3) is not satisfied. More
in general, suppose that |V| = |F| = p is not satisfied.

We are then in one of the two exceptional cases of Theorem 2.11. First suppose that
(G,V) € C4. Then case (1) or case (2) of Lemma 2.8 holds. In case (1) we may apply
Lemma 2.6. So suppose that case (2) of Lemma 2.8 holds.

Suppose that G/B contains A,,. Then
k(G) > K(G/B) > k(Sy)/2 > 385/2 > 2,/p— 1,

for n > 18 and p < 8192. So we must have n = 15, 16, or 17.

Since k(G) > k(G/B) > k(A15) = 94, we may assume that 94 < 2,/p — 1, that is,
2210 < p. We may assume that p"~1 < 4(n!)? (otherwise we are in case (1) of Lemma
2.8). By the fact that 2210 < p, we get 2210771 < 4(n!)2. But this is a contradiction
for n = 15, 16, or 17.

We are now in case (2) of Theorem 2.11.
First we consider case (2/a) of Theorem 2.11.

Let us first assume that V' is a primitive F'G-module. Let C' be the center of G. Then
G contains at least (|C|/2) - k(As) = (5/2)|C| conjugacy classes. Thus we may assume
that |C| < (4/5)y/p — 1. But we also have |V|/(2y/p — 1|G/C|) < |C|. From this we
have |V| < (8/5)(p — 1) - 60, that is ¢ < 96(p — 1). Thus we certainly have p < 96 but
also ¢ = p. Thus we are left with the cases ¢ = p = 59, 71, 79, and 89 (note that we are
excluding 61 here).

Let ¢ = 59. Then |C| < 6 by the previous paragraph. But since |C| must divide
g—1=>58 and is even, we have |C| = 2. So G has at least (if not exactly) 29 non-trivial
orbits on V, which is larger than 2+/58.

Let ¢ = 71. Then |C| < 6. But since |C| must divide ¢ — 1 = 70 and is even, we have
|C| = 2. So G has at least 42 non-trivial orbits on V', which is larger than 21/70.
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Let ¢ =79. Then |C| < 7. But since |C| must divide ¢ — 1 = 78, we have |C| < 6. So
G has at least 18 non-trivial orbits on V', which is larger than 2+/78.

Let ¢ = 89. Then |C| < 7. But since |C| must divide ¢ — 1 = 88, we have |C| < 4. So
G has at least 33 non-trivial orbits on V', which is larger than 2/88.

Now assume that V' is an imprimitive FG-module. Let T, ¢, n, B, Vi, H; and k be
as above. Son >4 and t > 2.

Suppose that p > 1000. Then the number of orbits of H; on V; is at least 3 (since
H,/Cp, (V1) cannot be a transitive linear group by Hering’s theorem (see [55, Chapter
XII])). But then n(G,V) > (tf) by Lemma 2.3. So we may assume that 2./p — 1 >
("1?), which forces 2p'/* > t. From this we get |G/B| < 2p'/%. Since t = n/2, we have
|G/B| < 27/?p™/8 < pO176n (for p > 1000). There exists a central subgroup A = Z(B)

in B of index at most 60"/2. So
k(@) > k(B)/|G : B| = |Al/|G : B| > |A]/p*1Tom.
We have |G| > |V|/(2y/p — 1) from which
A1 2 |G/ (607 2175%) > V] /(6072 - g7 23/ = T),

This gives k(G) > |V|/(60™2 - p°3527 . 2./p—T). But this is larger than 2,/p — I for
n > 4.

Now let 121 < p < 1000. Then it is easy to see that n(Hy, Vi) > 4. So we have
n(G,V) > (t§3) by Lemma 2.3. So we may assume that 24/p — 1 > (t§3) > t3/6. From
this 121/3p/6 > ¢. Since p < 1000, we get ¢t < 7. In fact by looking more closely at
the bound using the binomial coefficient, we get ¢ < 5. We claim that H;/Cp, (V1) has
center of order at most (¢ — 1)/4. Otherwise k(H1) > ((¢ —1)/4) - k(A45) > ¢ — 1. But
then

k(G) > k(H1)/5>(q—1)/5>2q—1
since ¢ > 121. But then going back to the place where we calculated orbits, we see
that n(Hy, Vi) > 10. So n(G,V) > ("1?) > (V) =220 > 64 > 2/p — I (for ¢ > 3 and
p < 1000), by Lemma 2.3. So t = 2. We claim that H;/Cq, (V1) has center of order
at most (¢ — 1)/8. Otherwise k(G) > k(H1)/2 > ((¢ —1)/8-k(As5))/2 > 24/p— 1. But
then going back to the place where we calculated orbits, we see that n(Hp,V;) > 18. So
n(G,V) > (%) =171 > 64 > 2¢/p — 1 (for p < 1000), by Lemma 2.3.

So the only remaining cases are: t > 2, and p = 59, 61, 71, 79, 89, 91, 101, 109, or
119. If p = 59 then it can happen that n(H;, Vi) = 2, so in this case we can only say
that ¢ < 14. In all other cases n(Hy, Vi) > 3, s0t < 4.

Finally we consider (2/b) of Theorem 2.11.

Let Hi/Cq, (V1) < GLa(p) be as above. This group is solvable, primitive and its

center has index at most 24. We may assume that ¢ > 5. But then, by Lemma 2.3,
n(G,V) > (k-gz;)_ Thus we can assume that (kJ5F4) <n(G,V) < 2y/p—1. Since we may
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also assume that k > 3 by order considerations, from this previous inequality we get
113 < p. But then, by Proposition 2.4, we have k > p/24. However, since 113 < p,
we also have k > max{5,p/24}. Just by using the bound k > 5 we can conclude that
p > 3970. This is a contradiction. O

2.7 Bounding n(G,V) and k(G)

We prove Theorems 2.1 (and so 1.3) by going through the cases of Theorem 2.13.

Since both k(G) and n(G,V) are at least 2, there is nothing to do in cases (1) and
(2). Groups in cases (3) and (5) are solvable, so the argument of [48] applies. Let us
assume then that case (4) of Theorem 2.13 is satisfied.

Let ¢, Vi, Hi, and k be as above. Let C' denote the center of Hy/Cp, (V).

Suppose first that p = 59 and ¢ is an integer with 2 < ¢ < 14. In this case we need
kE(G) +n(G,V)—1>16. If C has size 58 then k(H) > 29 -5 = 145. So k(G) > 145/t.
But n(G,V) > t+1,s0 k(G)+n(G,V)—1> 145/t +t > 16. (This also works for ¢t = 1.)
So we know that H; has at least 3 orbits on V; by Hering’s theorem (see [55, Chapter
XII]). But then n(G,V) > (tJ2r2) by Lemma 2.3. This is at least 16 unless ¢ < 4.

Let t = 4. Then n(G,V) > 15 by Lemma 2.3. The result follows from k(G) > 2.

Let ¢ = 3. Then n(G,V) > 10 by Lemma 2.3. So we would need k(G) > 7. Then
k(G) > (k(As)|C|)/2t = (5/2)|C|/3. If |C] > 9 then we are finished. Otherwise
n(Hy,V1) > 9. Son(G,V) > (131) > 22 by Lemma 2.3.

Let ¢ = 2. Then n(G,V) > 6 by Lemma 2.3. So we would need k(G) > 11. Then
k(G) > (k(As)|C|)/2t = (5/2)|C|/2. If |C| > 9 then we are finished. Otherwise
n(Hy, V1) > 9. So n(G,V) is at least (120) =45 > 11 by Lemma 2.3.

Let ¢ =61 and t = 1. Then |C| < 6. So G has at least 11 non-trivial orbits on V. So
n(G,V)+k(G)—1> 11+ k(G) > 16 > 21/60, a contradiction.

Suppose that 61 < p < 119 and 2 < t < 4. Then k£ > 3 by Hering’s theorem
(see [55, Chapter XII)).

Let t = 4. Then n(G,V) > 15 by Lemma 2.3. So we would need k(G) > 8 (since
2V/118 is a bit smaller than 22). Then k(G) > (k(A5)|C|)/2t = (5/2)|C|/4. If |C| > 13
then we are finished. Otherwise n(Hy,Vi) > 6. So n(G,V) > (Z) > 22 by Lemma 2.3.

Let t = 3. Then n(G,V) > 10 by Lemma 2.3. So we would need k(G) > 13. Then
kE(G) > (k(A5)|C])/2t = (5/2)|C|/3. If |C| > 16 then we are finished. Otherwise
n(Hy, Vi) > 5. Son(G,V) is at least (Z) = 35 > 22 by Lemma 2.3.

Let ¢ = 2. Then n(G,V) > 6 by Lemma 2.3. So we would need k(G) > 17. Then
kE(G) > (k(A5)|C|)/2t = (5/2)|C|/2. If |C| > 14 then we are finished. Otherwise
n(Hy, Vi) > 6. Son(G,V) is at least (;) = 21 by Lemma 2.3. But k(G) > 2.
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In many situations it is useful to have upper bounds for the number of conjugacy classes
of a permutation group. For example, such bounds are needed in the proof of the
kE(GV') theorem and they are applied to the non-coprime k(GV') problem (which is to
bound k(GV') for the semidirect product GV where V' is a completely reducible faithful
G-module).

Let G be a permutation group of degree n. Kovacs and Robinson [65] proved that
k(G) < 5" 1 and reduced the proposed bound of k(G) < 2"~! to the case when G is an
almost simple group. This latter bound was later proved by Liebeck and Pyber [72] for
arbitrary finite groups G. Kovics and Robinson [65] also proved that k(G) < 3(»—1/2
for G a solvable permutation group of degree n > 3. Later Riese and Schmid [97]
proved the same bound for 3', 5 and 7’-groups, and in [81] Mar6ti obtained the bound
k(G) < 3(»=1/2 for an arbitrary finite permutation group G of degree n > 3. In this
chapter we prove the even stronger Theorem 1.5.

3.1 Preliminaries

The following lemma collects basic information on the number of conjugacy classes in a
subgroup and in a normal subgroup of a finite group.

Lemma 3.1. Let H be a subgroup and N be a normal subgroup of a finite group G.
Then

1. k(H)/|G : H| < k(G) < k(H) - |G : H|;

2. k(H) < /|GIk(G); and

3. k(G) < k(N) - k(G/N).

Proof. Statements (1) and (3) can be found in [26] (see also [84]). Statement (2) follows
from (1). O

In special cases we will need a straightforward consequence of the Clifford-Gallagher
formula [100, Page 18]. The second statement of the following lemma follows from [100,
Proposition 8.5d].

Lemma 3.2. Let Irr(N) denote the set of complex irreducible characters of a normal
subgroup N of a finite group G. Then S = G/N acts on Irr(N) in a natural way and let
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Is(0) denote the stabilizer of a character 6 in Irr(N). Then we have

KG) < ) k(Is(0)/1S : 1s(6)]-

Oclrr(N)

Moreover if N is a full direct power of a finite group T and S permutes the factors of N
transitively and faithfully, then k(G) < k(T .S).

For a non-negative integer n let the number of partitions of n be denoted by p(n).
This is the number of conjugacy classes of the symmetric group S,. In 1918 Hardy
and Ramanujan [46] and independently but later Uspensky [109] proved the following

asymptotic formula.
™V 2n/3

n)~———.
p(n) ~ =~ 7
In 1937 Rademacher [96] gave a convergent series expression for p(n), however here we
will only need the following lower and upper bounds.

Lemma 3.3. Let n > 1 be an integer. Then e25V™/13n < p(n) < e™V2"/3,

Proof. For the upper bound see [19] and for the lower bound see [81]. O

3.2 Conjugacy classes in primitive permutation groups

A transitive permutation group G is called primitive if the stabilizer of any point is a
maximal subgroup in G. This is equivalent to saying that the only blocks of imprimitivity
for G are the singleton sets and the whole set on which G acts. The symmetric and
alternating groups, S,, and A,, are examples of primitive permutation groups. In this
section we will extend Corollary 2.15 (i) of [72] and [82, Theorem 1.3 (i)] to prove
Theorem 3.4. This result heavily depends on [80, Theorem 1.1] and also on [27].

Theorem 3.4. Let G be a primitive permutation group of degree n different from A,
and Sy,. Then we have k(H) < p(n) for every subgroup H of G.

Proof. Let G be a primitive permutation group of degree n. If H < G are subgroups of
Sm 1Sy in its product action on n = (?)T points where m > 5 and 5, acts on k-subsets
for some k with 1 < k < n, then k(H) < 2™ ~! by [72, Theorem 2]. But for (k,r) # (1,1)

we have
2.5(m

13n
where the second inequality follows from Lemma 3.3. Thus we may exclude these cases
from the discussion.

By [80, Theorem 1.1], we then know that |G| < n!*l°82(")] or G is one of the Mathieu
groups in their 4-transitive action.

e
2l < < p(n),
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Again by Lemma 3.3, we see that |G| < n'tl1°82(M)] < p(n) for n > 1500. Furthermore,
by using the exact values of p(n) available in [27], |G| < p(n) is true even for n > 1133.

If 120 < n < 1133 then p(n) < |G| < n'tlos2(] holds only if n = 1024 and G =
AGL19(2), n =512 and G = AGLg(2), n = 256 and G = AGLg(2), or n = 511, 255, 190,
171, 153, 144, 136, 128, 127, 121, or 120 (this was also obtained by [27]).

If G is any of these exceptional cases (with n > 120) and is not a subgroup of S, 1 .S,
in its product action discussed above, then k(G)|G| < p(n)?, which forces k(H) < p(n)
for any subgroup H of G (by (2) of Lemma 3.1). Furthermore if n < 119 then we again
have k(G)|G| < p(n)?, unless n = 64 and G = AGLg(2), or n < 32 and G is almost
simple or of affine type. Both these statements were derived by [27].

For almost simple primitive groups G of degrees n at most 32 (including the 4-
transitive Mathieu groups but excluding A, and S,) we can compute the subgroup
lattice of G by [27] and so the claim can be checked for all subgroups H of G. Thus we
may assume that G is an affine primitive permutation group of degree 64 or at most 32.

We must show that if H is a subgroup of AGL,,(p) with n = p™ < 64, then k(H) <
p(n). If m =1 then it is easy to see that k(H) <p=n <p(n). f m=2and p=>5 or
7, or if p™ = 27, then |AGLy(p)|k(AGLy(p)) < p(n)* and we may apply (2) of Lemma
3.1. Thus we may assume that p = 2 or 3. The full subgroup lattice of AGL,,(p) can be
computed by [27] for all remaining cases except (m,p) = (5,2) and (m,p) = (6,2), and
thus the validity of the inequality k(H) < p(n) can be checked directly.

Let m =5 and p = 2. Any subgroup of GL5(2) has less than 260 conjugacy classes
(this can be obtained by [27] by viewing GLs5(2) as a permutation group on 31 points),
and so (3) of Lemma 3.1 gives k(H) < 260 - 32 < p(32) for any subgroup H of AGL5(2).

Let m = 6 and p = 2. Put N = O2(H). The factor group H/N can be viewed as a
completely reducible subgroup on a vector space of size 64 (see [72, Page 554]). We claim
that k(H/N) < 63. For this observe that for irreducible linear subgroups T of GL(V)
we have k(T) < |V| whenever V is a vector space of size a power of 2 at most 64. (This
can be checked by [27] by going through stabilizers of all affine primitive permutation
groups of degrees a power of 2 at most 64.) Then, by using part (3) of Lemma 3.1,
induction, and noting that a normal subgroup of a completely reducible linear group
also acts completely reducibly on the same vector space (Clifford’s theorem), we obtain
the claim.

Let S be a Sylow 2-subgroup of AGLg(2) containing N. Suppose that |S : N| > 64.
Then (3) of Lemma 3.1 gives k(H) < |N| - k(H/N) < 2!%.63 < 22! < p(64). Now
suppose that |S : N| < 16. Then k(N) < |S : N|-k(S) < 16 - 1430, by (1) of Lemma
3.1, and so k(H) < k(N) - k(H/N) < 16 - 1430 - 63 < p(64). So the only case missing
is when |S : N| = 32. We would like to bound k() in this case. Let S; be a maximal
subgroup of S containing N. By [27] we know that k(S7) < 1723 or k(S;) = 1768.
In the first case we have k(N) < 16 - 1723, and so k(H) < 16 - 1723 - 63 < p(64).
So suppose that the second case holds. Then let S be a maximal subgroup in S
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containing N. By [27] again, we know that k(S2) < 2240, and so k(N) < 8 -2240. This
gives k(H) < 82240 - 63 < p(64). O

A straightforward consequence of Theorem 3.4 is the following.

Corollary 3.5. If H is a subnormal subgroup of a primitive permutation group of degree
n, then k(H) < p(n).

Proof. If H = S,, then this is clear. If H = A,,, then this follows from [82, Lemma 2.3].
Otherwise apply Theorem 3.4. O

3.3 Conjugacy classes in transitive permutation groups

In this section we will give an upper bound in terms of the partition function for k(G)
when G is a transitive permutation group. This result depends on Theorem 3.4 and is
used in the proof of Theorem 1.3.

Theorem 3.6. Let G be a transitive permutation group of degree n with point stabilizer
H. Consider the chain
H=Hy<Hi<..<H =G

with H; mazimal in Hiyq fori=0,...,t —1 and call a; :== |H; : Hi—1| fori=1,...,t,
so that ay---a; = |G : H| =n. Then

k‘(G) < (p(al)l/alp(ag)l/“1“2 . _p(at_l)l/al-v-at,lp(at)l/al..-at)n‘

Proof. Let G be a minimal counterexample to the statement of the theorem with a fixed
chain of subgroups. By Corollary 3.5, we may assume that ¢ > 2. We now construct
a subnormal filtration as in [99]. Let By be the core of Hj in G, so that G/By is a
transitive permutation group of degree n/aj. Let N be the core of H = Hy in Hy, so
that Hy/N is a primitive permutation group of degree a;. Let {mi}lgign/al be a set
of representatives for the right cosets of Hy in G, with x; = 1, and define inductively
B;:= B;_1 N N¥ for i > 1. Then B, = B;_1 N B{" and since N is normal in H; and H
is core-free,

n/a1
Buay © [ N"=[N9C () H={1}.
i=1 geG geCG

We obtain a subnormal filtration (grading) B = By > By > -+ > B, /,, = {1}. Observe
that B; 9 By for all 0 <14 < n/ay, this is easily seen by induction on i: since By <G we
have BY" < Bj' = By and hence B; = B;_1 N Bf" I By. Let L := ByN N. We have

Bi/Bi+1 = Bl/Bz N leiJrl = BZ/BZ N LT+ = _BZ'L:EZ""'l/LQUH'1 < .B()/Lx“'1 = Bo/L

Since By/L = BoN/N < H;/N, each B;/B;;1 is isomorphic to a subnormal subgroup
of the primitive group Hy/N of degree a;. By Corollary 3.5, k(B;/B;+1) < p(ay) for
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all .. Now consider the chain H,/B < Hy/B < ... < H;_1/B < H;/B = G/B. Each
subgroup of the chain is maximal in the following one hence by minimality of G the
theorem holds for G/B relative to this chain and hence

n/ai—1

K(G) < k(BIKG/B) < ( T kBi/Bi1)) - K(G/B)
=0
(a1)™ 4 - (p(ag) /@2 .. p(q,)(n/a1)/(azae)y

ai
al)n/alp(cw)n/ma2 o 'P(atfl)n/almatilp(at)'

IN

p
= p(

The proof is complete. O

3.4 Arbitrary permutation groups

In this section we will prove Theorem 1.5. The first lemma enables us to deal with cases
when n is relatively small.

Lemma 3.7. If G is a permutation group of degree n all of whose orbits have lengths
at most 23 then k(G) < 5™/*,

Proof. By induction on n, as in Lemma 3.1 of [82], we may assume that G is transitive.
For transitive groups the claim can be checked by [27]. O

By [53] all transitive permutation groups of degree at most 30 are known therefore
the 23 in Lemma 3.7 could perhaps be replaced by 30 (or even 31) but it is not clear to
what extent this possible improvement could be of help.

Now we proceed to the proof of Theorem 1.3. Many of the computations below have
been performed by [27], but we will not point this out in all cases.

Let G be as in the statement of the theorem. It acts faithfully on a set €2 of size n.

We proceed by induction on n. By Lemma 3.7 we can assume that n > 24. Suppose
G is intransitive and let O be a nontrivial orbit of G of size 1 < r < n. Let N be the
kernel of the action of G on O. Then N acts faithfully on n — r points and G/N acts
faithfully on r points hence if r,n — r > 4 then

k(G) < k(N) - k(G/N) < 5(nr=0/3 . 5(r=1/3  5(n=1)/3,

If » < 3 then k(G/N) < r, and if n — r < 3 then k(N) < n — r, from which the result
follows likewise. Hence we may assume that G is transitive.

Let H be the stabilizer of o €  in GG. If H is maximal in G then G is a primitive
permutation group and thus by Theorem 3.6 and Lemma 3.3 we have k(G) < p(n) <

e™V/20/3 and this is at most 5D/3 for n > 25.
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Assume that H is not maximal in G and let K be such that H < K < G. Let
a = |K : H| and b := |G : K|. Notice that the K-orbit A containing « is a block
of imprimitivity for the action of G. Let B be the kernel of the action of G on the
block system ¥ associated to A, in other words, B is the normal core of K in G. G/B
is a transitive permutation group of degree b. By taking subsequent kernels on the
blocks (i.e. arguing as in the proof of Theorem 3.6) we find a subnormal sequence
By= B> B;>...> By = {1} such that each factor group B;/B;;1 can be considered
as a permutation group of degree a.

If @ and b are both at least 4 then we may apply induction to find
k(G) < k(B)-k(G/B) < (5(a—1)/3)b L5(0-1/3 _ 5(n=1)/3
So we may assume that whenever H < L < G either |G : L| <3 or |L: H| <3.

If both a¢ and b are at most 3 then n < 9 and the result follows from Lemma 3.7.
Assume that 4 < a < 23 and b < 3. Then k(G/B) < 3 hence since the orbits of B all
have size at most 23 by Lemma 3.7 we have k(G) < k(B)k(G/B) < 5™/* . 3 which is at
most 5("=1/3 since n > 24,

We are in one of the following cases.

1. H is maximal in K and b = |G : K| € {2,3}, a > 24 (consider the block system
associated to K).

2. K is maximal in G and a« = |K : H| € {2, 3}.

3. There exists a subgroup L < G such that H < K < L < G with K maximal in L,
a=|K:H|e€{23},c=|G: Ll €{2,3},and ¢ = |L: K| > 24/a (consider the
block system associated to L).

We consider the cases separately. In the following “filtration argument” refers to the
argument used in the proof of Theorem 3.6. If B < A are subgroups of G, by “filtration
associated to A and B” we mean the filtration of the kernel of the action of A on the
system of blocks associated to B obtained as in the proof of Theorem 3.6.

Case 1. By Theorem 3.6, since p(b) < b we have k(G) < p(a)®b. Thus it is sufficient
to show that p(a)’h < 5@=1/3 je. p(a) < ((5(%=1/3)/b)1/°. For this it is sufficient to
show that p(a) < ((52¢=1/3)/3)1/3 for a > 24. If a > 55 this follows from the bound
pla) < emV/2n/3 (Lemma 3.3), and if 24 < a < 54 it follows by inspection.

Case 2. In this case G/B is a primitive group of degree b. Applying the filtration
argument used in the proof of Theorem 3.6, since p(a) < a we find k(G) < a’k(G/B) and
it is enough to prove that a’k(G/B) < 5(®=D/3 ie. (*) k(G/B) < ((5@=1/3)/ab) =
(5(a=1/0)/3 /)b Recall that ab=n > 24. If a = 3 then b > 8, now p(b) < (5(3-1/8)/3 /3)b
follows from the bound p(b) < emV/2/3 (Lemma 3.3) if b > 34 and by inspection if
8 < b < 33. Suppose now a = 2, so that b > 12. If b = 12 let S be a block stabilizer,
then |G : S| = b and S is a permutation group on 24 points having at least 2 orbits
hence by Lemma 3.7 we have k(G) < 12 - k(S) < 12-5% and this is less than 523/3,
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Let b € {13,14,15}. Then using the fact that any primitive group of degree b different
from S, has at most k(Ap) conjugacy classes we see that (*) holds unless G/B = S,
If B is not elementary Abelian of rank b then the filtration argument implies k(G) <
a*~'k(G/B) < 5(@=1/3_ S0 assume that B = C} and G/B = S,. Then by the Clifford-
Gallagher formula (Lemma 3.2) k(G) < k(C5 1 Sy) which is at most 5~ 1/3 by [27]. If
16 < b < 55 then (*) holds by inspection using k(G/B) < p(b), and if b > 56 it follows

from the bound p(b) < e™V?*/3 (Lemma 3.3).

Case 3. By Theorem 3.6, since p(a) < a and p(c) < ¢ we have k(G) < a’p(q)°c where
b = gc. We want to prove that k(G) < 5("~D/3 where n = ab = age. If a = 3 then
it is sufficient to prove that pr(q)cc < 5@ae=1/3 for ¢ > 8. Raising both sides to the
power 1/c and rearranging, using the fact that ct/¢ < 1.5 we see that it is sufficient to
prove that p(q) < ﬁ(5%(3_1/16)/3)q for ¢ > 8. If ¢ > 31 this follows from the bound

p(q) < e™V?4/3 (Lemma 3.3), and the case 8 < ¢ < 30 is checked by inspection.

Now assume that a = 2 and ¢ > 16. We prove that (**) 27 . p(q)¢ - ¢ < 52ca=1/3,
Raising both sides of (**) to the power 1/c¢ and rearranging we see that it is enough

to prove that p(q) < %(5%(271/32)/2)‘1, and for this it is enough to prove that p(q) <

-(1.43)7. If ¢ > 60 this follows from the bound p(q) < €™V 24/3 (Lemma 3.3), and if
16 < ¢ < 59 inequality (**) can be checked by inspection.

Now assume that a = 2 and either 13 < ¢ < 15 or (¢,c¢) = (12,3). Every nontrivial
subnormal subgroup of any primitive group of degree ¢ is a primitive group of degree g,
a primitive group of degree ¢ which is not the full symmetric group S, has at most k(A,)
conjugacy classes, and we have k(A12) = 43, k(Ai13) = 55, k(A1) = 72, k(A15) = 94.
Moreover, the ratio 5(~1/3/(2¢0 . p(q)® - ¢) is less than 2. Thus we may assume that
the kernel of the action of G on the system of blocks associated to the primitive group
K/Hg is a direct product C3? = C3%, indeed if this is not the case then using the
filtration argument we see that k(G) < 2991 p(q)¢- ¢ < 5(*=1/3 Consider the filtration
J1 associated to L and K. The two factors of this filtration are isomorphic to subnormal
subgroups of the primitive group L/K, of degree q. Consider the filtration F» associated
to L and H. By the Clifford-Gallagher formula (Lemma 3.2) a fixed factor of F; has at
most k(S2? A) conjugacy classes, where A is a permutation group of degree ¢ isomorphic
to a factor of Fi. If no factor of F; is isomorphic to S, then it is enough to show that
c-k(A,)°-2¢9 < 5(m=1/3 which is true, and if there is a factor of Fj isomorphic to S, then
since k(S20S13) = 1770, k(S20514) = 2665 and k(521515) = 3956 by the Clifford-Gallagher
formula (Lemma 3.2) it is enough to show that ¢ - k(S21S,) - 29¢=1) . p(g)e~! < 5(=1/3
which is true.

Now assume that (a,q,c) = (2,12,2). K is the stabilizer of a block of size 2 (there
are 24 such blocks). It acts on the 24 points of a block system consisting of 12 blocks of
size 2 intransitively, hence if N denotes the kernel of this action we deduce k(K/N) <
5%4/4 = 55, Now look at the (faithful) action of N on the remaining 24 points. If this
action is intransitive then k(N) < 5244 by Lemma 3.7. If it is transitive then there is
an induced transitive action of N on the second block system of twelve blocks of size
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2. Since any transitive group of degree 12 has at most p(12) = 77 conjugacy classes
(by [27]), by Theorem 3.6 we deduce k(N) < 2'2.77 and even k(N) < 2! .77, in which
case k(G) < |G : K| -k(K/N)-k(N) < 24-5%.211.77 < 547/3 unless the kernel of
the action of N on the 12 blocks of size 2 is a full direct product C12. Suppose this
is the case. Let R be the kernel of the transitive action of N on the twelve blocks
of size 2 of the second block system. If k(N/R) ¢ {65,77} then k(N/R) < 55 and
k(G) < |G : K| - k(K/N) k(N) < 24-5%.212.55 < 547/3 50 now assume k(N/R) €
{65,77}. It can be checked by [27] that k(S2? N/R) € {1165,1265,1960,2210}. By the
Clifford-Gallagher formula (Lemma 3.2), k(N) < k(S2 ! N/R) < 2210 hence we have
that k(G) < |G : K| - k(K/N)-k(N) < 24-55.2210 < 547/3,
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4 The minimal base size of a linear group

The solution of the k(G'V') problem has consequences on the minimal base size of a linear
group. In this chapter we will see such an application. Let V be a finite vector space
over a finite field of order ¢ and of characteristic p. Let G < GL(V) be a p-solvable
completely reducible linear group. Theorem 1.6 states that there exists a base for G on
V' of size at most 2 unless ¢ < 4 in which case there exists a base of size at most 3.
This extends a recent result of Halasi and Podoski and generalizes a theorem of Seress.
In this chapter we will also establish Theorem 1.7. This result will be used in the next
chapter.

4.1 Preliminaries

Throughout this chapter let F, be a finite field of characteristic p and let V' be an n-
dimensional vector space over F,. Furthermore, let G < GL(V) be a linear group acting
on V in the natural way, let b(G) denote its minimal base size, and let b*(G) denote its
minimal strong base size (both notions defined in Chapter 1).

If the vector space V is fixed, then the group of scalar transformations of V' (the
center of GL(V')) will be denoted by Z. Thus Z ~ F, the multiplicative group of the
base field. As G < GL(V) is p-solvable if and only if GZ is p-solvable, we can (and we
will) always assume, in the proofs of Theorems 1.6 and 1.7, that G contains Z. After
choosing a basis {v1,...,v,} C V, we will always identify the group GL(V') with the
group GL,(q).

Put t(q) = 3 for ¢ < 4 and t(q) = 2 for ¢ > 5.

Finally, if G < GL(V) and X C V|, then Cq(X) ={g € G | g(z) =2 Yz € X} and
Ng(X)={9€ G | g(x) € X Vx € X} will denote the pointwise and setwise stabilizer
of X in G, respectively.

4.2 Special bases in linear groups

In this section we will show that there exist bases of special kinds for certain linear
groups. As a consequence (Corollary 4.3), we derive that it is sufficient to establish the
required bounds in Theorem 1.6 for b(G) rather than for b*(G).
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Theorem 4.1. Let V' be an n-dimensional vector space over Fy, a field of characteristic
p and let Z < G < GL(V') be a p-solvable linear group.

1. If n =2 and q > 5, then at least one of the following holds.
a) There is a basis z,y € V such that Ng((z)) C Na((y)).

b) p = 2 and there is a basis x,y € V such that Ng((x)) = Z x Cy and the
involution g in Ng({(z)) satisfies g(x) =z and g(y) =y + z.

2. If n =3 and q = 3 or 4, then at least one of the following holds.
a) There is a basis z,y,z € V such that Ng({x)) N Na((y)) C Na((z)).
b) There is a basis x,y,z € V such that Ng({y,z)) =G.

Proof. If G < GL(V) leaves invariant a 1-dimensional subspace of V', then 1/(a) or 2/(a)
is satisfied. If n = 3 and G leaves invariant a 2-dimensional subspace of V' then 2/(b) is
satisfied. Thus we may assume that G acts irreducibly on V.

If G acts imprimitively on V' then it embeds in Cyq_1 1 S, where the base group acts
on (z) @ (y) if n =2 and on (z) & (y) & (2) if n = 3, for some vectors z, y, z € V. In the
first case Ng((x)) is diagonalizable and thus 1/(a) is satisfied, while in the second case
Nea((z)) N Ng((y)) is diagonalizable and thus 2/(a) is satisfied. We may thus assume
that G acts primitively (and irreducibly) on V.

Since G is p-solvable by assumption, we see that G does not contain SL(V).

First consider statement (1). By considering the action of G on the set S of 1-
dimensional subspaces of V', we may assume that the number of Sylow p-subgroups of
G is equal to |S| = ¢ + 1. For otherwise there exists (z) € S whose stabilizer in G is
a p/-group and thus Maschke’s theorem gives 1/(a). For ¢ = p any subgroup of GL(V)
with ¢ + 1 Sylow p-subgroups contains SL(V'), so in this case we are done. So assume
that g > p.

Since G acts transitively on the set of Sylow p-subgroups of G and every Sylow p-
subgroup stabilizes a unique subspace in S, it follows that G acts transitively on S.
Moreover since Z < G it also follows that G acts transitively on the set of non-zero
vectors of V.

By Hering’s theorem (see [55, Chapter XII, Remark 7.5 (a)]) we see that if ¢ is odd (and
not a prime by assumption) then ¢ must be 9 and G has a normal subgroup isomorphic
to SLa(5) (case (5)). But then G is not 3-solvable and so we can rule out this possibility.
Similarly, if ¢ is even, then the only possibility is that G > Z normalizes a Singer cycle
GL1(¢?) (case (1)). The only such group not satisfying 1/(a) is the full semilinear group
I'(1,¢%) ~ GL1(¢?).2. In this case taking = to be any non-zero vector in V we have
N¢g((z)) = Z x Cq and the involution ¢ in Ng((z)) satisfies g(x) = z and g(y) =y +
for some y € V.

Finally, statement (2) has been checked with [27] by using the list of all primitive
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permutation groups of degrees 27 and 64, respectively. O

As a direct consequence we get the following.

Corollary 4.2. Let us assume that Z < G < GL(V) is a p-solvable linear group with
b(G) < t(q).

1. If ¢ > 5, then one of the following holds.
a) There exists a base x,y € V such that Ng((z)) N Ng({z,y)) € Na((y)).

b) p =2 and there exists a base x,y € V such that any non-identity element of
Ca(z) N Ng((z,y)) takes y to y + x.

2. If ¢ < 4, then at least one of the following holds.
a) There exists a base x,y,z € V such that

Ng({z)) N Na((y)) N Na((z,y,2)) € Na((2)).

b) There exists a base x,y,z € V such that Ng({(z,y,2)) C Na((y,z)) with
z ¢ (y, 2).

Proof. First, 1/(a) or 2/(a) holds if dim(V') < t(g) so assume that dim(V') > ¢(¢). Both
parts of the corollary can be proved by choosing a subspace U < V of dimension t(q)
generated by a base for G and by restricting N (U) to this subspace. Notice that the
image of this restriction is also p-solvable, so Theorem 4.1 can be applied. ]

Corollary 4.3. Let V' be a vector space over the field F of characteristic p. Let Z <
G < GL(V) be p-solvable with b(G) < t(q). Then b*(G) < t(q).

Proof. We may assume that dim(V') > ¢(q) and that ¢ > 2. Let us choose a base for G
of size t(q) satisfying the property given in Corollary 4.2. For ¢ > 5, if x,y € V is such
a base, then z,x + y is a strong base for GG. Likewise, for ¢ =3 or 4, if x,y,z € V is a
base satisfying (2/a) of Corollary 4.2, then x,y, x +y + z is a strong base for G. Finally,
in case x,y,z € V is a base for G satisfying (2/b) of Corollary 4.2, then z,y + z,z + =
is a strong base for G. O

4.3 Further reductions

Let us use induction on the dimension n of V in the proofs of Theorems 1.6 and 1.7.
The case n = 1 is clear. Let us assume that n > 1 and that both Theorems 1.6 and 1.7
are true for dimensions less than n.

First we reduce the proof of both theorems for the case when G < GL(V) acts irre-
ducibly on V. For otherwise let V=V, & Vo & --- @ Vi be a decomposition of V' to
irreducible [F,G-modules.
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By induction, there exist vectors x;1,...,2;q) in V; for 1 <14 < k with the property
that Co({wi1,...,%itq)}) is precisely the kernel of the action of G on V;. Now put

wj = Y @ for 1 < j < t(q). One can see that Ca({z1, ..., 24y }) = NE,Ca(V;) = L.

For Theorem 1.7 notice that GG is a subgroup of a direct product x leHi of p-solvable
groups H; acting irreducibly and faithfully on the V;’s. Hence we have

k k
Gl < [T 1ml < [T (2472 wifer) = 247 v
=1 =1

by induction.
So from now on we will assume that G < GL(V) acts irreducibly on V.

For Theorem 1.6 we may also assume that ¢ # 2, 4. Otherwise, GG is solvable by the
Odd Order Theorem and we can use the result of Seress [104].

For Theorem 1.7 we may assume that |G| > |V|2. If |G| < |V|? then |V|* < 24~ V/3|V |
for |V| > 79, so we may assume that |V| < 73. If |V] is a prime or p = 2 then G is
solvable and the theorem of Pélfy [89] and Wolf [115] can be applied. Hence the cases
|V| = 52,72, 3% or 32 remain to be examined. But in these cases there is no non-solvable,
p-solvable irreducible subgroup of GL(V') (see [27]).

Now, if b(G) < 2 then |G| < |V|?. So, once Theorem 1.1 is proved, it remains to prove
Theorem 1.7 only in case ¢ = 3 and b(G) > 2.

4.4 Imprimitive linear groups

In this section we show that we may assume (for the proofs of Theorems 1.6 and 1.7)
that G is a primitive (irreducible) subgroup of GL(V).

We first consider Theorem 1.6.

For G < GL(V') an irreducible imprimitive linear group, let V.=V, @ --- @ V}, be a
decomposition of V into subspaces such that G permutes these subspaces in a transitive

and primitive way. This action of G defines a homomorphism from G into the symmetric
group Sym(2) for Q = {V1,..., Vi} with kernel N.

The factor group G/N < Sy is p-solvable, so it does not involve A, for ¢ > 5 and it
does not involve Aj for ¢ = 3. By using [45, Theorem 2.3] it follows that for ¢ > 5 there
is a vector a = (a1,...,ax) € F¥ such that Cg/n(a) = 1. (Here, G/N acts on F¥ by
permuting coordinates.) If ¢ = 3 then again by [45, Theorem 2.3] we know that there
is a 5 (and thus 9) part partition of {2 whose stabilizer in G/N is trivial. This implies
that, for ¢ = 3, there is a pair of vectors a = (ay,...,ax), b = (b,...,b;) € F& such
that CG/N(G’) N CG/N(b) =1.

In fact for ¢ > 8 even we can say a bit more. For such a ¢ let S be a subset of F, of
size ¢/2 with the property that for each ¢ € F, exactly one of ¢ and ¢+ 1 is contained in
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S. By [14, Lemma 1 (c)], there is a 4 < ¢/2 part partition of {2 whose stabilizer in G is
N, so there exists a vector a = (a1, ...,a) € S* such that Cg/y(a) = 1. (Actually, in
our case, this already follows from [29, Theorem 1] by noting that since g is even, p = 2,
and thus G/N is a solvable primitive permutation group.)

For each 1 <i < k let H; = Ng(V;), so N = N;H;. By induction (on the dimension),
there is a base in Vj of size t(q) for Hy/Cp, (V1).

Now we can use Corollary 4.2. First let ¢ > 5. Then there is a base x1,y; € Vi for
K, = H,/Cq, (V1) < GL(Vy) such that Ng, ((x1)) N Nk, ({(z1,y1)) € Nk, ({y1)) or that
any non-identity element of Ck, (1) N N, ((x1,91)) takes y1 to y1 + ;.

Let {g1 = 1,92,...,9x} be a set of left coset representatives for H; in G and z; =
gir1, yi = g;y1 for every 7. Now let z = Zle z; and y = Zle Y + a; ;.

In case ¢ = 3 let x1,y1,21 € V1 be a base for K1 = H;/Cq, (V1) < GL(V}) satisfying
(2/a) or (2/b) of Corollary 4.2. Again, let {¢1 = 1,92,...,9k} be a set of left coset
representatives for Hy in G and z; = g;x1, y; = ¢iyY1, 2; = gi;z1 for every i. Depending
on which part of part (2) of Corollary 4.2 is satisfied for x1,y1, 21 let

k k k
=Yz, Y= _ui 2= (z+bwi+ay) if (2/a) holds,
i=1 i=1 i=1
k k k
xr = in, Y= Z(y@ + a;x;) z= Z(ZZ + bix;) if (2/b) holds.
i=1 i=1 i=1

In each case, it is easy to see that the given set of vectors is a base for G by using similar
arguments as in the proof of [45, Theorem 2.6]. For the convenience of the reader, we
present a proof here for the case (2/a).

Let x,y, z given as above and g € Cg(z) N Cq(y) N Cq(z). Furthermore, let o € Sy
be the permutation associated to the action of g on Q@ = {Vi,...,Vi}. Then g(x) =
z, g(y) =y implies that g(z;) = T,(;), 9(¥i) = Yo(;) for every 1 <i < k. Using also that
g9(z) = z we get that

Zo(i) F Do(i)To(i) T Go(i) Yo i) = 9(2i + bixi + aiyi) = g(2i) + biTo(s) + QYo ()
thus, g(z1) = 2o(5) + (bo(s) = b1)Zo(s) + (ao() = @i)Ys()- Now, h =g i g9; € Hy satisfies

h(z1) = 21, h(y1) = y1, h(z1) = 21 + (bos) — bi)71 + (ag() — ai)y1.

By part (2/a) of Corollary 4.2 we conclude that b,;) = b; and a,;) = a; for every
1 < ¢ < k. In other words, o fixes both (ay,...,ax) and (b1,...,b;). By the defintion of
these vectors we get that o = 1, i.e. ¢ € N;H; = N. Furthermore, for every 1 <i < k
we also have g(z;) = x;, 9(vi) = vi, 9(zi + bizi + a;y;)) = z + bix; + a;y;.  Since
Ti, Yi, zi + bizi + a;y; € V; is a base for H;/Ch, (V;), we get that g = N;Cq,(V;) = 1.

Now we turn to the reduction of Theorem 1.7 to primitive groups. Notice that N is
a p-solvable group and V is the sum of at least k irreducible F,N-modules, so we have
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|N| < 247%/3|V|°* by Section 4.3. By the last paragraph of Section 4, we may assume that
¢ = 3 (and p = 3). In particular, the permutation group G/N < S} is 3-solvable, and so
it does not contain any non-Abelian alternating composition factor. Now [80, Corollary
1.5] implies that |G/N| < 24 =1/3. But then |G| = |N||G/N| < 24=Y3|V|°* which is
exactly what we wanted.

4.5 Groups of semilinear transformations

In this section we reduce Theorems 1.6 and 1.7 to the case when every irreducible F,/N-
submodule of V is absolutely irreducible for any normal subgroup N of G.

For this purpose let N <t G be a normal subgroup of G. Then V is a homogeneous
FyN-module, so V =V, ® Vo @ --- ® V}, where the V;’s are isomorphic irreducible F -
modules. Let T':= Endp, ~(V1). Assuming that the V;’s are not absolutely irreducible,
T is a proper field extension of F,, and

CGL(V)(N) = EnquN(V) N GL(V) ~ GLk(T),

since Endp, (V) is isomorphic to the matrix algebra My (T') by [18, Theorem 1.7.5]

Furthermore, L = Z(Cgrv)(N)) ~ Z(GLk(T)) ~ T*. Now, by using L, we can
extend V' to a T-vector space of dimension [ := dimr V' < dimp, V. As G < Ngpv)(L),
in this way we get an inclusion G < T'Ly(T). We proceed by proving the following
theorem.

Theorem 4.4. For a proper field extension T of Fy let G < T'Ly(T) be a semilinear
group acting on the Fy-space V' and let H = G N GL;(T). Suppose that G is p-solvable
and that b(H) < t(|T|). Then b(G) < t(|T)).

Proof. We modify the proof of [45, Lemma 6.1] to make it work in this more general
setting.

Clearly we may assume that |7'| > 8 is different from a prime. In these cases ¢(|T'|) = 2.

Let w1, us be a base for H. By Corollary 4.2, we may also assume that

Ni((u1)) 0 Na ((ur, u2)) € Ni((uz))
or that every non-identity element of Crr(u1) N Ng((uy, u2)) takes ug to ug + ui. (The
latter case occurs only if p = 2.)

For every o € T let H, = Cg(u1) N Cg(ug + auy) < G. Our goal is to prove that
H, =1 for some a € T. If g € (UH,), then g(u;) = u; and g(uz) = ug + duy for some
o0eT.

We claim that [(UH,) N H| < 2. Let h € (UH,) N H. On the one hand, the action of
h on V is T-linear, since h € H. On the other hand, h(u1) = u; and h(uz) = ug + duy
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for some § € T. By our assumption above, either h € Ny ((ug)) and § = 0, or h is an
involution and ¢ = 1. Thus we obtain the claim since Cy(u1) N Cx(u2) = 1.

Let z be the generator of the group (UH,) N H. This is a central element in (UH,).
For every g € G let o4 € Gal(T|F;) denote the action of g on 7.

Let g and h be two elements of (UH,). Since G/H is embedded into Gal(T|F,), we
get o4 # oy unless g = h or g = hz. Furthermore, a routine calculation shows that the
subfields of T" fixed by o, and o}, are the same if and only if (g) = (h) or (g) = (hz).

If g € Hy N Hp, then g(uz) = us + (v — a%9)uy = ug + (8 — B99)uq, so o — 3 is fixed
by 04. Let K, = {a € T | g € Hy}. The previous calculation shows that K, is an
additive coset of the subfield fixed by o, so |K,| = p? for some d | f = log, |T|. Since
for any d | f there is a unique p?-element subfield of T, we get |K,| # |K}| unless the
subfields fixed by o4 and o}, are the same. As we have seen, this means that (g) = (h)
or (g) = (hz). Consequently, |K4| # | K| unless K, = K}, or K, = Kj,. Hence we get

U Kl<2 > ¢f<2) ¢t<f =11

gEUHA\{1} dif,d<f a<f

So there is a v € T which is not contained in K, for any g € UH,, \ {1}. This exactly
means that H, = Cg(u1) N Cg(uz +yu1) = 1. O

Using Theorem 4.4, we can assume that G < GLy(T). As [ = dim7 V' < dimg,(V), we
can use induction on the dimension of V, thus b(G) < 2.

By the last paragraph of Section 4.3, we need not consider Theorem 1.7 here.

Hence in the following we assume that V' is a direct sum of isomorphic absolutely
irreducible IF; N-modules for any N <1 G.

4.6 Stabilizers of tensor product decompositions

Let N < Gandlet V=V, ®---® Vi be a direct decomposition of V' into isomorphic
absolutely irreducible F,/N-modules. By choosing a suitable basis in V1, Va,...,V}, we
can assume that G < GL,(¢) such that any element of N is of the form A ® I} for some
A€ Ny, <GL, /;(q). By using [62, Lemma 4.4.3(ii)] we get

NaL,(q(N) ={B® C|B € NgL, ,(¢)(Nv1), C € GLy(q)}-

Let G1 = {g1 € GL,/(q) |39 € G,g2 € GLi(q) such that g = g1 ® g2}. We define
G2 < GLg(¢) in an analogous way. Then G < G1 ® Ga. Here G/Z ~ (G1/Z) x (G2/Z),
hence G1 < GL,/(q) and G2 < GLg(q) are p-solvable irreducible linear groups. If
1 < k < n, then by using induction for G1 < GL,/;(q) and G2 < GLi(q) we get
b(G1) < t(q) and b(G2) < t(q). Furthermore b*(Gy) < t(q) and b*(G2) < t(q) by
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Corollary 4.3. Thus [73, Lemma 3.3 (ii)] gives us b(G) < b(G1 ® G2) < b*(G; ® G3) <
max(b*(G1), b*(Ga)) < #(q).

For the reduction of Theorem 1.7, by using induction on the dimension, we have
|G| < |G| - |G| < 2471 /3gn/Rer o471 gker < oa =13y,

Thus, from now on we can assume that for every normal subgroup N < G either N < Z
or V is absolutely irreducible as an F,N-module.

4.7 Groups of symplectic type

From now on assume that N is a normal subgroup of G containing Z such that N/Z is
a minimal normal subgroup of G/Z. Then N/Z is a direct product of isomorphic simple
groups. In this section we examine the situation when N/Z is an elementary Abelian

group.

If N is Abelian then it is central in G. So assume that N is non-Abelian.

If N/Z is elementary Abelian of rank at least 2, then G is of symplectic type. Such
groups were examined in [45, Section 5| (see also Remark 5.20 in [45]) where it was
proved that b(G) < 2 unless ¢ € {3,4}, when b(G) < 3 holds.

For the reduction of Theorem 1.7, we need only examine the case ¢ = 3, n = 2*. For
this we can use the fact that G/N can be considered as a subgroup of the symplectic
group Spyy(2). By the theorem of Pélfy [89] and Wolf [115], we may assume that G is a
non-solvable (and 3-solvable) group. Thus we must have a composition factor of G (and
thus of G/N) isomorphic to a Suzuki group. Since the smallest Suzuki group Suz(8) has
order larger than |Sp,(2)|, we must have £ > 3. On the other hand, since the second
largest Suzuki group Suz(32) has order larger than |Spg(2)| and since Suz(8) is not a
section of Spg(2) (since 13 divides the order of the first group but not the order of the
second), we see that k # 3. But for k > 4 we clearly have |G| = |N||G/N| < 22k*+3k+3 <
24=1/3|V|1, by use of the formula for the order of Spy(2).

4.8 Tensor product actions

Now let N/Z be a direct product of ¢ > 2 isomorphic non-Abelian simple groups. Then
N = LixLo*- - %L, is a central product of isomorphic groups such that for every 1 <i <t
we have Z < L;, L;/Z is simple. Furthermore, conjugation by elements of G permutes
the subgroups L1, Lo, ..., L; in a transitive way. By choosing an irreducible IF, L1-module
V1 <V, and a set of coset representatives g1 = 1,g9,...,g: € G of G1 = Ng(V7) such
that L; = g;L1g, 1 we get that Vj := ¢;V; is an absolutely irreducible F,L;-module for
each 1 <i <t Now, V~1V®VW®- ---®V;, and G permutes the factors of this tensor
product. It follows that GG is embedded into the central wreath product GG12..5; defined to
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be a split extension of the base group G; ® G1 ® - -+ ® G by S;. Clearly G; < GL(V}) is

t factors

a p-solvable irreducible linear group. Thus b(G1) < t(q) and b*(G1) < t(q) by induction
on the dimension m of V; and by Corollary 4.3.

First let ¢ > 5. Then t(q) = 2. Thus b(G) < 2 follows from [45, Theorem 3.6]
unless (m,t) = (2,2). In case (m,t) = (2,2), that is, G < Gy % S2 < GLy(q) for
some p-solvable group G1 < GLa(q) let x1,y1 € Vi be a basis of V; satisfying either
N¢, ((z1)) € Ng, ((y1)) or the property that every non-identity element of C, (1) takes
y1 to y1 +x1. (Such a basis exists by Theorem 4.1.) We claim that if & € F,\ {0,1} then
r1 w1, Y1 @ (y1 + axp) is a base for G1 . S2 > G. Indeed, let g = (A® B)o € G1 1 So
with A, B € Gy, o € Ss fixing these two vectors. Then g(z; ® 1) = z1 ® x; implies
that Az; = Az, Br; = A~ lxy for some \ € Fy. If Ng,({z1)) € Ng,({y1)), then
Ayr = ay1, By1 = by for some a,b € F;. Hence

Y1 @ (y1 + ar1) = g(y1 @ (y1 + ax1)) = abys @ y1 + Oza)\_l(lh ® x1)7.

Comparing the coefficients of y; ® y1 and y; ® x1 in the above equality we get ab =
ax™'=1land o =1. So, A= M, B= X1 and g =1, as claimed. Similarly, if every
non-identity element of Cg, (71) takes y1 to y1 + 1, then by multiplying A with A=! and
B with A, we can assume that A = 1. Then for some ¢4, ¢;, € {0,1} we have

g
v @ (1 +az1) = g © (1 +aw1) = (1 +201) © (1 + (@ +25)an)) -
Comparing the coefficients of 1 ® 21,21 ® y1 and y; ® 1 we get e, =, =0, 0 =1, so
g = 1 follows.

Now, let ¢ = 3. Let z1,y1,21 € V1 be a strong base for G;. Then the stabilizer of
1 Rr® - -Qxy € V is of the form H = Hj . St, where y1,2z1 € V) is a strong base

t factors

for H = Ng,(x1), so b*(Hy) < 2. If (m,t) # (2,2) then b(H) < 2 by [45, Theorem 3.6],
which results in b(G) < 3. Finally, let (m,t) = (2,2). By choosing a basis z1,y1 € V1, it
is easy to see that 1 ® z1,y1 @ y1,21 ® y1 € V is a base for GL(V1) . S2 > G.

As for the order of GG notice that G < G1 . S where S < S} is a 3-solvable group.
Thus by induction and by [80, Corollary 1.5] we have

‘G| < |G1MS’ < 247t/3|V1’c1t24(t71)/3 _ 2471/3“/’01_

4.9 Almost quasisimple groups

Finally, let Z < N < G be such that N/Z is a non-Abelian simple group. Let N; =
[N, N] <t G and let V; be an irreducible F, Ni-submodule of V and G; = {g € G| g(V1) =
Vi} be the stabilizer of Vi. By using the same argument as in the last paragraph
of [45, Page 29] we get that G is included in GL(V;) and we have a chain of subgroups
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N1 < G1 < GL(Vy) where G is p-solvable, Nj is quasisimple and V} is irreducible as an
F,Ni-module.

Suppose that b(G1) < 2 in the action of G; on Vi, that is, there exist x,y € V4 <V
such that Cg, () N Cg,(y) = 1. For any element g € G with g(x) = x we have that
Niz = {nz|n € Ni} is a g-invariant subset. As the Fj,-subspace generated by Nz is
exactly V1, we get that g € G1. This proves that Cq(z) NCq(y) = Ca, () NCqy (y) = 1.
Thus b(G) < 2.

Hence if we manage to show that b(G1) < 2 then we are finished with the proofs of
both Theorems 1.6 and 1.7.

So assume that G = G1, N = Ny, and V = V;. By the first three paragraphs of this
section, we have that ¢ = p. To summarize, G < GL(V) is a group having a quasisimple
irreducible normal subgroup N and Z < G.

We can assume that G/Z is almost simple. For this it is sufficient to see that N/Z is
the unique minimal normal subgroup of G/Z. For let M/Z be another minimal normal
subgroup of G/Z. By Section 4.7, we may assume that M/Z is non-Abelian. Further-
more the group M N is a central product and so [M, N| = 1. But this is impossible since
the centralizer of N in G must be Abelian.

Lemma 4.5. If N has a regular orbit on V' then b(G) < 2.

Proof. Since N is normal in G, a regular N-orbit A containing a given vector v is a block
of imprimitivity inside the G-orbit containing v. Hence the group Cg(v)N is transitive
on A and N is regular on A. Thus for every h € Cg(v) the number [fix(h)| of fixed
points of h on A is |Cn(h)|. To prove that G has a base of size at most 2 on V| it is
sufficient to see that there exists a vector w in A that is not fixed by any non-trivial
element of Cg(v).

First notice that if N/Z(N) is isomorphic to the non-Abelian finite simple group S
then |Cg(v)] < |Out(S)| < m(S) where m(S) is the minimal index of a proper subgroup
of S. This latter inequality follows from [3, Lemma 2.7 (i)].

But Y [fix(h)| = > |Cn(h)| < |Ca(v)|- (|N|/m(S)) < |N| where the sums are over all
non-identity elements h in Cg(v). This completes the proof of the lemma. O]

By Lemma 4.5, in the following we may assume that N does not have a regular orbit
on V. Our final theorem finishes the proofs of Theorems 1.6 and 1.7.

Theorem 4.6. Under the current assumptions G is a p'-group and b(G) < 2.

Proof. By using Goodwin’s theorem [32, Theorem 1], Kéhler and Pahlings [67, Theorem
2.2] gave a complete list of (irreducible) quasisimple p’-groups N such that N does not
have a regular orbit on V. In all these exceptional cases, when N/Z is simple, |Out(N/Z)|
is divisible by no prime larger than 3 while p is always at least 5. So G itself is a p’-group.
But then G admits a base of size 2 on V' by [45, Theorem 4.4]. O
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Let G be a transitive normal subgroup of a permutation group A of finite degree n. The
factor group A/G can be considered as a certain Galois group and one would like to
bound its size. One of the results of this chapter is that |[A/G| < n if G is primitive
unless n = 3%, 5%, 3%, 58, or 3'6. This bound is sharp when n is prime. In fact, when G
is primitive, | Out(G)| < n unless G is a member of a given infinite sequence of primitive
groups and n is different from the previously listed integers. In this chapter many other
results of this flavor are established not only for permutation groups but also for linear
groups.

5.1 Basic results on non-Abelian composition factors

If G is a finite group, define b(G) to be the product of the orders of all the non-Abelian
simple composition factors of G in a composition series for G. Two trivial observations
that we shall use without comment are:

1. if G is normal in A, then b(A) = b(A/G)b(G); and

2. if A < B, then b(A) < b(B) (choose a normal series for B and intersect A with
this series — Abelian quotients stay Abelian and the non-Abelian quotients can only get
smaller).

The first lemma of the chapter is not used in later parts of the work, nevertheless it
is worth mentioning.

Lemma 5.1. Let Xy and X5 be two finite groups, A < X1 x X9, and G A. Fori=1,2
let m; denote the projection into X;. (We consider m;(A) and 7;(G) as subgroups of X;.)
Then

b(A/G) < b(m1(A)/m1(G))b(me(A) /2 (G)).

Proof. Let K denote the kernel of m; on A. Notice that if 2 € m(K) and y € ma(G)
then [z,y] € m(G N K). Hence b((m2(K) Nm2(G))/m2(K NG)) = 1. From this we get

b(K/(KNG)) = b(m(K)/(ma(K N G))) = b(ma(K)/(ma(K) N72(G))) =

= b(m2(K)m2(G)/m2(G)) < b(me(A)/ma(G)).
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Since b(A/G) = b(A/GK)b(GK/G) = b(m1(A)/m1(G))b(K/(K N G)), the result follows.
O

The next lemma is needed for a technical result (see Theorem 5.3) for dealing with
non-Abelian composition factors.

Lemma 5.2. Let J <Y := X; x --- x Xy and assume that m;(J) = X; for all i (where
7; 18 the projection onto the ith factor). Then Ny (J)/J is solvable.

Proof. Set N = Ny(J). Let M be the final term in the derived series of N. Let
B; = ker 7, N J where 7} is the projection of Y onto the direct product of all but the ith
term (so B; = J N Xj;).

Set R = By x --- x B;. Note that R < J and that R is also normal in Y since
mi(J) = X; for all ¢, whence we may pass to Y/R. If we prove the result in this case,
then MR/R < J/R, and so M < J. Hence we may assume from now on that R = 1. If
we prove the result in this case, then MR/R < J/R, whence M < J.

We induct on t. If ¢ = 1, the result is clear.

Suppose that t = 2. Since R = 1, we may identify J as a diagonal subgroup of X7 x X»
and the normalizer N is J(Z x Z) where Z = Z(J), whence the result.

So now assume that ¢ > 2. By induction, we have 7/(M) < w.(J), whence M <
J(N (1 X;). Note that [N N X;, X;] = [N N X;,J] < X; N J = 1. Thus, M = [M, M] <
[J(NNX;),J(NNX;)] <J as claimed. O

Note that the proof shows that the derived length of Ny (J)/J is at most t — 1.

We now come to one of our major tools in studying b(A/G).

Theorem 5.3. Assume that G < A < B = X 1Sy = (X1 x --- x X3).5y = Y.S; and
that G acts transitively on {X1,..., Xy} by conjugation. Assume that the projection of
Na(X;) into X; is X; (note that Na(X;) < X; x X[ for an obvious choice of X!). Let
N; = N¢(X;) and set M; to be the projection of N; into X;. Let K be the subgroup of A
normalizing each X;. Then

b(A/G) < b(A/GEK)b(X1/M).

Proof. We have that b(A/G) = b(A/GK)b(GK/G). So we only need to show that
b(GK/G) < b(X1/Mj). Let M = My x -+ x My. Let I = Jy x -+ x J; where J; is the
projection of J = K NG into X;.

Note first that [K, K N M] < I (since [K,N;] < [K,G] < J). In particular, (K N
M)/(K N 1I)is Abelian. By Lemma 5.2, (K N 1I)/J is solvable. Thus, (K N M)/J is
solvable and in particular, b((K N M)/J) = 1. Thus,

b(GK/G) = b(K/J) = b(K/(K N M)) = b(KM/M).
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Put H ={y €Y : [g,y] € Mforallg € G}. Notice that KM < H. From this
KM/M < H/M < Y/M follows. Since G permutes the ¢ direct factors transitively,
we see that H/M (and so KM /M) is contained in a full diagonal subgroup of Y/M =
[1(Xi/M;). Thus, (KM /M) < b(X1/M;) as claimed. O

We will use the following lemma.

Lemma 5.4. Suppose that n = m!. Then

7flogt(log7n)loglogm < (lOg n)loglogn.

Proof. Tt suffices to prove that (logt)? + (loglogm)? < (loglogn)?. The right-hand side
is equal to (logt + loglog m)?, whence the result. O

5.2 Some examples

In this section, we consider several examples with G < A < S,, always with A and G
transitive. The first example shows that |[A/G| = n — 1 may hold even with G primitive
and that b(A/G) can be on the order of n'°8™ if we only assume that G is transitive (note
that when n = 29 for an integer a, then it is easy to see that n2 198" < ILa(2)] < nlogn).
The third example shows that b(A/G) can be close to (logn)2!°81°8™ even when G is
primitive.

Example 5.5. Let p be a prime. Let V' be a vector space over F), of dimension a. Let
A = AGL,(p) = AGL(V) be the full group of affine transformations of V.. Let G be the

normal subgroup of translations.

1. G < A, G is transitive on 'V and A is primitive on V;
2. If a =1, then G is primitive on V and |A/G| =p —1;
3. Ifa>1 and (p,a) # (2,2),(2,3), then b(A/G) = |L.(p)|.

Example 5.6. Let C <0 D be transitive groups of degree t. Let A = A5 D and G =
A5 C. Then G < A and they both act primitively on a set of cardinality 5'. Then
b(A/G) = b(D/C). In particular, considering the previous example yields examples of
primitive A and G with b(A/G) > t3logt > (3 log n)(%loglog”)_z.

For the third example and for later use the full symplectic group of dimension 2a (a and
integer) over the prime field of order p is denoted by Sps,(p). Its order is p“2 [T, (p*-1).
The group Sps,(p) has a center of size (2,p — 1), the greatest common divisor of 2 and
p—1, and the corresponding factor group is denoted by PSps,(p). We will also need the
orthogonal groups in this chapter however only for the field of size 2 (apart from Lemma
5.25). We denote the full orthogonal groups of dimension 2a (a and integer) over the
field of order 2 by 05, (2) where ¢ = +1. Their order is 2 -2¢@~1) (2% —¢) H?;ll(QQi —1).
The groups 05,(2) have a subgroup of index 2 which we denote by SO%,(2).
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Example 5.7. Let p be a prime. Let R be a p-group of symplectic type — i.e. Z(R) is
cyclic of order p or 4, R/Z(R) is elementary Abelian of order p*® for an integer a and
R has exponent p for p odd and exponent 4 for p = 2. Let q be a prime power such
that ¢ — 1 is a multiple of p and a multiple of 4 if |Z(R)| = 4. Then R embeds in the
group GLpa(q) = GL(V'). Let N be the normalizer of R in GL(V) and Z the group of
scalars. Then N/RZ = Spy,(p) or N/RZ = 05,(2) with the latter possibility occurring
when p = 2 and Z(R) is cyclic of order 2. In particular (except for some very small
cases), b(N/R) = |PSpy,(p)| or |SO5,(2)|. Let G = VR and A = VN. Then A and
G are primitive permutation groups on V and b(A/G) = |PSpay,(p)| or [SO5,(2)|. In
particular, when g = 3, p = 2 we obtain examples where b(A/G) has size approximately
(log n)2loglogn.

For the proof of Theorem 1.9 we will need more information about 2-groups of sym-
plectic type. By [1, (23.14)] there are, for each positive integer a, two extraspecial groups
of order 2221, These are the central product of a copies of Dg and the central product
of a — 1 copies of Dg with one copy of (Js. The first can be thought of as an orthogonal
space of + type and the other an orthogonal space of — type. The central product of a
copies of Dg with one copy of Cy can be thought of as a symplectic space.

5.3 Normalizers of irreducible linear groups — Non-Abelian
composition factors

In this section, we consider G < A < GL(V) = GLg4(q) where V is a vector space
of dimension d over the finite field of order ¢ and want to bound b(A/G) when G is
irreducible on V. Of course, this is a special case of the problem for general pairs of
primitive groups — this is equivalent to the setup for the case of groups acting primitively
on an affine space.

Recall that a subgroup A of GL(V) is called primitive if it preserves no additive
decomposition of V' (i.e. there is no A-invariant collection of subspaces Vi,...,V; with
V = @;V;). In particular, this implies that A is irreducible and every normal subgroup
of A acts homogeneously on V' (i.e. any two simple submodules are isomorphic). Recall
also the definition of a p-group of symplectic type (see Example 5.7).

Theorem 5.8. Let G <t A < GL(V) = GLg(q). Set n = q¢¢ > 3. Assume that G acts
irreducibly on V' and that A acts primitively on V. Assume that every irreducible J-

submodule of V' is absolutely irreducible for any normal subgroup J of G. Then b(A/G) <
(log n)?log logn'

Proof. As we have already noted, every normal subgroup of A acts homogeneously on
V. In particular, any Abelian normal subgroup acts homogeneously and so is cyclic by
Schur’s Lemma. By hypothesis, it must be central. There is no harm in assuming that
G contains all solvable normal subgroups of A (since that does not affect b(A4/QG)).
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We claim that any normal subgroup R of A which is minimal with respect to being
non-central is contained in G.

By the first paragraph we may assume that R is not solvable.

So Z(R) < Z(A) consists of scalars and R/Z(R) is characteristically simple. So either
R is a central product of say ¢ quasisimple groups @Q; (with @Q;/Z(Q;) all isomorphic)
or R/Z(R) is an elementary Abelian r-group for some prime r. In the second case it
follows easily that R is of symplectic type with |R/Z(R)| = r® for some a, however we
may exclude this case in the proof of the claim since R must be non-solvable.

So R is perfect. Since G acts irreducibly, Cy(G) = Z(A). In particular, R cannot
centralize G. Suppose that R is not contained in G. Then GN R < Z(A). It follows by
the Three Subgroup Lemma [1, Page 26] that R = [R, R] centralizes G, a contradiction.

This proves our claim that every normal subgroup of A which is minimal with respect
to being non-central is contained in G.

Let Ji,..., Ji denote the distinct normal subgroups of A that are minimal with respect
to being noncentral in A. Let J = J; - -- Ji be the central product of these subgroups.
We have shown that J < G. Then Cx(J) = Z(A) (for otherwise the normal subgroup
Ca(J) of A would contain a normal subgroup, say J; of A which is minimal with respect
to being non-central, then J; < Z(J) which implies that J; is Abelian).

Thus, A/Z(A)J embeds into the direct product of the outer automorphism groups of
the normal subgroups of A which are minimal subject to being non-central. If J; is such
a normal subgroup and is perfect with ¢ components, then either ¢ < 5 and this outer
automorphism group is solvable or t > 5 and modulo its solvable radical is S;.

If J; is of symplectic type with |.J;/Z(J;)| = 722, then this outer automorphism group
has at most one non-solvable composition factor — PSp,, (1) or SO5,(2).

This gives us our upper bound on b(A/J) and so also on b(A/G). Let W be an
irreducible constitutent for J. Since A is primitive on V, it follows that J acts homoge-
neously on V. It follows by [62, Lemma 5.5.5, page 205 and Lemma 2.10.1, pages 47-48|
that W 2 Uy ® - - ® U where Uj; is an irreducible J;-module. In particular, if J; is the
central product of ¢ copies of a non-Abelian simple group, then dim U; > 2¢ and if J; is
of symplectic type with J;/Z(J;) of order r2%, then dim U; = r%. Moreover, since Uj; is
absolutely irreducible, r|(g — 1).

A straightforward computation shows that [], b(Out(J;)) < (logn)?!°&loem and this
finishes the proof. O

Theorem 5.9. Let G <9 A < GL(V) = GLy(q). Set n = ¢% > 3. Assume that G acts
irreducibly on V.. Then b(A/G) < (log n)210g10gn_

Proof. Consider a counterexample with d minimal. We claim that G acts absolutely
irreducibly on V. If not, let E = Endg (V) and let C' be the group of units in the field
E. So |E| =¢° > q.
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There is no harm in replacing G by GC and A by AC' and so assume C < G. Let
Ap = CA(C). Then A/Ay is Abelian (since it embeds in the automorphism group of C)
and so b(A/G) = b(Ay/G). Also, viewing V as a vector space over E, G (and so Ay)
certainly act irreducibly. Since dimpg (V) < d we obtain a contradiction.

So we assume that G (and so A) acts absolutely irreducibly on V.

Suppose that A preserves a field extension structure on V over Fye with e > 1. Let
Ag = ANGLy, /e(qe) and Gg = GNAy. Let U denote V considered as a vector space over
Fge (and as an Fge[Ag]-module). Then A embeds in GLg/(¢%).e. Let W =V ®p, Fge.
Now

W = @scGal(Fye[r) U
as an Ag-module. Then A permutes the U?. Moreover, Gy acts irreducibly on U (or
G acts reducibly on W, a contradiction to the fact that V is absolutely irreducible as
a G-module). Also, Ay acts faithfully on U (z trivial on U implies that z is trivial on
U? for all o, whence z is trivial on W). Then b(A/G) = b(Ag/Go) < (logn)?loelosn
contradicts the minimality of d (noting that n = |U|).

Suppose that A acts imprimitively on V. —so V = V1 @ --- @ V; with t > 1 and
A permutes the V;. Note that G must permute the V; transitively as well since G
is irreducible. Let K be the subgroup of A fixing each V;. Let A; be the action of
NA(V;) on V; and define G; in an analogous way. By Theorem 5.3, we have b(A/G) <
b(A/GK)b(A1/G1). By Theorem 5.10 (see the next section), b(A/GK) < t°8¢. Now G
must act irreducibly on Vi (otherwise K N G and so G would act reducibly on V') and
so by minimality, b(A1/G1) < (logm)?'°81°8™ where m = |V;|. Note that n = m!. So

b(A/G) < tlogt(log m)21°gl°gm.
The desired conclusion follows from Lemma 5.4.

The remaining case is that G is absolutely irreducibly on V, A is primitive on V
and preserves no field extension structure on V. Let J be a normal subgroup of A.
Then J must act homogeneously on V' (by the primitivity hypothesis) and moreover,
the irreducible constituents for J must be absolutely irreducible (otherwise the center
of End j(V') is Fge for some e > 1 and would be normalized by A, whence A preserves a
field extension structure on V). Now the result follows by Theorem 5.8. Ul

5.4 Normalizers of transitive and primitive groups —
Non-Abelian composition factors

We consider the situation G < A < S,,. We wish to bound b(A/G) when G is transitive
and when G is primitive. It is easy to see that even if one is only interested in the
primitive case, one needs an answer in the transitive case as well.

We first consider the case when G is merely transitive. We have already used this
result in the previous section.
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5.4 Normalizers of transitive and primitive groups

Theorem 5.10. Let G and A be nontrivial transitive groups with G << A < S,,. Then
b(A/G) < nlosm,

Proof. Suppose the theorem is false and consider a counterexample with n minimal.
First suppose that A is primitive.

Let E := F*(A) be the generalized Fitting subgroup of A. By the Aschbacher-O’Nan-
Scott theorem, either E is a minimal normal subgroup or ¥ = Fy x Fo with Fy = Es a
direct product of t copies of a simple non-Abelian subgroup L of order m.

In the latter case, n = m!, G must contain one of the F; and by the structure theorem
together with Schreier’s conjecture, we see that b(A/G) < n(t!)/2 < nl°e™.

In the other cases, G' contains E and so we may assume that G = E. If F is Abelian,
then A/G embeds in GL4(p) with n = p® for an integer a and so b(A/G) < |La(p)| <
nl°e” If F is non-Abelian and is the product of ¢ copies of a non-Abelian simple group
L, then either ¢ < 4 and A/G is solvable or n > 5! and b(A4/G) < (#)/2 < nlos™.

Suppose that A is not primitive. Let {Bi,..., By} be an A-invariant partition of the
underlying set on which A acts. Let A; denote the action of the stabilizer of B; in A
on B;. Then A embeds in A;!S; and G permutes transitively the subgroups A;. Let
G; denote the action of the stabilizer of B; in G on B;. We apply Theorem 5.3 and
induction to conclude that b(A/G) < t°8th(A1/G1) < 1851985 where n = st. Thus, the
result holds. O

The previous and the next theorem imply Theorem 1.11.

Theorem 5.11. Let G and A be primitive groups with G <1 A <'S,, and n > 3. Then
b(A/G) < (logn)?losloen,

Proof. We consider the various cases in the Aschbacher-O’Nan-Scott theorem.

In all cases, G contains F := F*(A). The result follows by Theorem 5.9 if E is Abelian.
So we may assume that F is a direct product of ¢ copies of a non-Abelian simple group L
of order m. Let K denote the subgroup of A stabilizing all the components of a minimal
normal subgroup of A. Clearly K contains F.

Suppose first that £ = E; X Es with E1 = FEs the two minimal normal subgroups of
A. In this case t = 2s and n = |Eq| = m®. Then GK/K < A/K are transitive subgroups
of Ss and so by Theorem 5.10, b(A/GK) < s'°8%. On the other hand, K/F is solvable
(because it is contained in the direct product of copies of the outer automorphism group
of L). Thus, b(A/G) = b(A/GK) < 5'°8% < (logn)lslos™,

In the remaining cases, ' is the unique minimal normal subgroup of A, the groups
GK/K < A/K are transitive subgroups of S; and so, as in the previous case, we see that
b(A/G) < t°8t. Tt follows by the Aschbacher-O’Nan-Scott theorem that n > 5! and so
tlogt < (log n)loglogn_ ]
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5.5 p-solvable composition factors of primitive groups

If G is a finite group, define a(G) to be the product of the orders of all the Abelian (i.e.
cyclic) simple composition factors of G in a composition series for G. The bounds we
will give in this section for a(G) extend naturally to results about a,(G) defined to be
the product of the orders of all composition factors of G' which are either p-groups or
p/-groups for a given prime p. Clearly a(G) < a,(G) for any prime p and, by the Odd
Order Theorem, a2(G) = a(G).

It is easy to see that a,(G) (and a(G)) is bounded by the order of some p-solvable
(solvable) subgroup S < G (e.g., this follows from Theorem 5.15 below). By a theorem

of Dixon [12] this implies (see also Dixon-Mortimer [13]) that a(G) is at most 24(~1)/3
for any subgroup G of S,,. We state the following more general result.

Proposition 5.12. Let G < S,. The product of the orders of all composition factors
of G which are not isomorphic to alternating groups of degrees larger than d > 4 is at
most ™D/ " In particular, ax(G) and a3(G) are at most 24=1/3 and ap(G) <
(p— 1)!(”_1)/(p_2) forp>5.

Proof. The first statement follows from [80, Corollary 1.5] by using the argument implicit
in the proof of Theorem 1.13 found in [40]. O

Recall that a subgroup [ is intravariant in a group G if for all automorphisms « of
G, the subgroup I* is G-conjugate to I.

Lemma 5.13. Let G be a finite group and let G = Go > Gy > --- > G, = 1 be a normal
series with each G; <\ G. Let G; = G;_1/G;. Let p be a fized prime. Suppose for each
i that I; is an intravariant p'-subgroup of G;. Then G has a p'-subgroup H such that
|H| > [Tiz |4l

Proof. This is a special case of [106, Theorem 5.3.17]. O

We also need a consequence [72, Lemma 2.9] of the classification theorem of finite
simple groups.

Lemma 5.14. Let G be a non-Abelian finite simple group and p a prime. Then G has
a solvable intravariant p'-subgroup I such that 2| Out(G)|, < |I].

Now we prove a useful reduction result.

Theorem 5.15. Let G be a finite group and p a prime. Then ap(G) < |S| for some
p-solvable subgroup S of G.

Proof. We may assume that the largest normal p-solvable subgroup of G is trivial.
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5.5 p-solvable composition factors

The socle L of G is a direct product L = L1 X --- X L; of non-Abelian simple groups
L; and G is embedded in Aut(L). Denote the kernel of the action of G on the set of
subgroups L; by K. Then G/K is a permutation group of degree ¢ and |G/K]|, < 2".

Let Iy,...,I; be solvable intravariant p’-subgroups of maximal orders in the groups
Ly,...,L;. Since K/L is isomorphic to a subgroup of Hle Out(L;), using Lemma 5.14
we see that |I1| |Ia| - - |It| > 2" |K/L|, > |G/L,

It is easy to see that the subgroup I = I11s - - - I} is intravariant in L.

Consider now a normal series G = Gy > G1 > -+ > G,._1 = L such that the groups
G;/L form a chief series of G/L. Every p'-factor G;/G;41 can be considered as an
intravariant p’-subgroup of itself. Applying Lemma 5.13 we see that G has a p’-subgroup
S whose order is greater or equal to the product of the orders of these p’-factors and
|G/L|,. Therefore we have |S| > a,(G) as required. O

Combining Theorem 5.15 with well-known results of Pélfy [89] and Wolf [115] one
obtains sharp bounds for a(X) for irreducible linear groups and primitive permutation

groups X. Using Theorem 1.7 we extend these results even further. In the next three
results ¢; = logg (48 - 241/3) which is close to 2.24399.

Theorem 5.16. If A is a finite group acting faithfully and completely reducibly on a
finite vector space of size n in characteristic p, then a(A) < a,(A) < 24-1/3pc1,

Proof. By Theorem 5.15 we know that there is a p-solvable subgroup S of A such that
ap(A) < |S|. Moreover, by the construction implicit in the proof of Theorem 5.15, we
may assume that Op,(S) =1 (since Op(A) =1). Thus S can be viewed as a finite group
acting faithfully and completely reducibly on a vector space of size n. By [43, Theorem
1.2] we have |S| < 24~ 1/3pc1, O

Corollary 5.17. Let 1 # G < A < S,, with A primitive. Let p be a prime dividing n.
Then a(A)G) < ay(A/G) < 247 1/3per,

Proof. We use the Aschbacher-O’Nan-Scott Theorem. The affine case follows from The-
orem 5.16 by noting that |G| may be taken to be n. So assume that F*(A) is non-Abelian
and it is the direct product of ¢ copies of a non-Abelian simple group L. By our choice
of p the group L (and thus F*(A)) is not p-solvable.

If F*(A) is the unique minimal normal subgroup of A, then n > m! for some divisor
m of |L| which is at least the minimal degree of a permutation representation for L. In
this case a,(A) < |Out(L)|"a,(T) where T is a transitive permutation group on t letters.
By [3, Lemma 2.7 (i)] we have |Out(L)| < (2/3)m, and by Proposition 5.12 we have
ay(T) < n (since m can be chosen such that m > p). These give a,(A) < (2/3)n?. This
is less than 24731 unless n < 15 (and thus t = 1). If n < 15, then a,(A) is at most
|Out(L)] < m=mn < 24~ Y3n,
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Finally assume that F*(A) is the direct product of two minimal normal subgroups of
A. In this case n = /2 where | = |L| > 60. Again by [3, Lemma 2.7 (i)] and Proposition
5.12 we find that a,(A) < (2/3)n? < 247 3n for n > 60 (since ['/2 > p). O

This immediately implies the following sharp result (which extends the main result
of [89] and [115]).

Corollary 5.18. If A is a primitive permutation group of degree n and p is a prime
divisor of n, then a(A) < ay(A) < 247 3plter,

This proves a part of Theorem 1.12.

5.6 Basic results on Abelian composition factors

Our earlier results on non-Abelian composition factors in wreath products do not help in
considering Abelian composition factors. We use different methods for studying Abelian
composition factors.

The following lemma and its consequences will be crucial in proving Theorem 1.8 on
the indices of primitive groups in their normalizers.

If V is a G-module over a field, let tG(V) denote the smallest number r such that
every submodule of V' can be generated by r elements.

Lemma 5.19. Let H < G with |G : H| =t > 1. Let W be an H-module over an
arbitrary field and let V = Wg be the induced module. Then we have the following.

1) ta(V) < 3dimV.
2) If t # 2" for any integer n, then tg(V) < 3 dim V.
3) If H 1 G and G/H = C3, then tg(V) < ¢ dim V' where ¢, = QL"(LH%J)'

4) If t = 2™ for an integer n, then tg(V) < %dim V', unless H is normal in G and
G/H = Cy or C3. Moreover tg(V) < & dimV for t > 32.

Proof. First we prove 1) and 2). By extension of scalars, we may assume that the ground
field k is algebraically closed. Let p be the largest prime dividing ¢ and let S be a Sylow
p-subgroup of G.

Consider the restricted module Vg. By the Mackey decomposition, this is a direct sum
of induced modules of the form (Wg)st with ¢ € G. Now p divides ¢, so H9N S is
a proper subgroup of S for all g € GG. If we manage to show the proposed bounds for
ts(Vs) then we are finished since tg (V') < t5(Vs). Since tg is subadditive with respective
to a direct sum decomposition of Vg, it is sufficient to bound tg((1WY )igﬁ g) for a given
g € G. But this means that we may assume that S = G and H9 = H.
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Now let ¢ € G be an element which does not lie in any conjugate of H and let C' = (c).
Then, as above, C N HY is proper in C for all g € G, so by restricting V' to C' we may
assume that G is a nontrivial cyclic p-group.

We can also assume that W is irreducible. Since H is cyclic, W is 1-dimensional and
the induced module V' consists of a single Jordan block, thus it can be generated by one
element. That is, tg(V) =1 < %dimV < 1dimV as required.

Now if ¢ # 2™, then p > 2 and 2) follows.

Now we turn to the proof of 3) and 4). If ¢ = 2", then let P be the permutation
representation of G on the set of left cosets of H and let T" be a Sylow 2-subgroup of
G, the image of S in the permutation representation P. Then T is transitive and so the
restricted module Vg is simply the induced module quﬁ > by the Mackey decomposition.

Instead of V and W, we will consider the restricted modules Vg and Wgny. If
char(k) # 2, then Vg is semisimple and tg(V) < tg(V) < dim W holds. So we can
assume that char(k) = 2. Then we can assume that Wgny is irreducible, so the action
of SN H on Wgnp is trivial, i.e., Wgng is the trivial 1-dimensional module. (For this
notice that a composition series of Wgng corresponds naturally to a series of dim W
submodules of V. For any submodule A of V we can view the intersection of A with the
members of the previous series. We obtain the claim after summing dimensions corre-
sponding to factor modules of A and by noticing that ¢, can be viewed as a constant.)
Then Vg is isomorphic to the regular representation module of C%'. Now using [64, 3.2]
we see that tg(V) <tg(V) < ¢, dimV, as required.

In proving 4), we need the following.

Claim. Let D be the permutational wreath product of a regular elementary Abelian
2-group R and Cs. If g is an element of order 4 in D, then the cycle decomposition of g
consists of 4-cycles.

To see this, write g in the form g = (a,b)T where (a,b) is an element of the base
group R; X Ry (here Ry and Ry are naturally identified with R) and 7 is the involution
in the top group. Then ¢g? = (a,b)7(a,b)T = (ab,ba). Since g?> # 1, we see that ab
and ba = (ab)~! are both different from the identity, hence they are fixed point free
involutions and so is g? which implies the claim.

Now we will prove 4).

If T itself is not isomorphic to the regular action of C¥, then we prove that tg(V) <
idimV from which 4) follows. We argue by induction. Let Bj, By be a T-invariant
partition. Let K be the stabiliser of the partition. Since K has index 2 in T, K acts
as a transitive group K; on B; so using the inductive hypothesis, we are done unless K;
(or equivalently, K») is isomorphic to the regular action of Cg_l. Then T embeds into
the wreath product K; ! Cs. Now T has an element g of order 4, otherwise 17" would
be regular elementary Abelian. By our claim, the cycle decomposition of g consists of
4-cycles. Now using the preimage of g in G we see that tg(V) < idim V.
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If T is isomorphic to C3 then our claim follows from 3). ]

Lemma 5.19 is used in the following result.

Lemma 5.20. Let Xq,...,X; be finite groups, X their direct product, and let G be
an automorphism group of X which permutes the factors transitively. Let K < X
be a G-invariant subgroup, such that for each projection m; of X onto X; we have
mi(K) << X;. Set J = [G, K] (and note that J is normal in K and G-invariant).
Then a(K/J) < (a(X1)2. If t # 2,4 then a(K/J) < (a(X1))*/® and if t > 17 then
a(K/J) < (a(X1))"/?.

Proof. Let Y7 be a minimal characteristic subgroup of X7 and let ¥ = ¥} x ... x Y}
where Y; are the images of Y7 under GG. Note that

a(K/J)=a(K/J(KNY))a((KNY)J/J)=a(KY/JY)a((KNY)/(JNY)).
So by induction on the length of a characteristic series in X7, we might assume that X;

is characteristically simple.

If X; is elementary Abelian, then X is an induced module and the result follows by
Lemma 5.19. Suppose that X; is a direct product of isomorphic copies of a non-Abelian
simple group. Since 7;(K) <<1 X;, the same is true for each m;(K), whence K is also a
direct product of copies of a non-Abelian simple group. Since J < K, K/J also has the
same form, whence a(K/J) = 1.

If t # 2,4 or t > 17, the same argument applies (using the stronger conclusions in
Lemma 5.19). O

We will use Lemma 5.20 in the above form, however in one case we will need a refined
version.

Lemma 5.21. Use the notations and assumptions of Lemma 5.20. Let t = 4 and for
each i with 1 < i <t suppose that X; = GLa(3). Then a(K/J) < 162 - 3.

Proof. In the notation of Lemma 5.19 we have (V) < 1 dim V in general, and t¢(V) <
$dimV for t = 4 and char(k) = 3. Since |GL2(3)| = 16 - 3, the proof of Lemma 5.20
gives a(K/J) < 1642 - 31/ = 16% - 3. O

We will need the following explicit exponential estimate.

Theorem 5.22. Let G <1 A < S, with G transitive. Then a(A/G) < 6™/%,

Proof. If A is primitive, then our statement follows from Corollary 5.17 for n > 12 and
from [27] for n < 11.

64



dc_1451 17

5.6 Basic results on Abelian composition factors

If A is not primitive, then choose a non-trivial partition {Bi,...,B;} that is A-
invariant with 1 < ¢ < n maximal. Denote by A; the action of the stabilizer of By
in A on By and denote by K the stabilizer of the partition in A. Write n = st. Then

a(A)G) < a(A/KG)a(K/G N K) < a(A/KG)a(K/ [G, K]).

First suppose that t is different from 2 and 4. Then induction and Lemma 5.20 yield
a(A/G) < 61/* . a(A;)3/8. By Proposition 5.12, a(A;) < 246-1/3 and so

a(A/G) S 6t/4 . 24(871)75/8 < 6t/4 . 6(371)t/4 — 68t/4 — 6n/4

Now let ¢ = 2 or t = 4. Then by [80, Corollary 1.4] we see that a(A;) < 6(~1/2 unless
s = 4. This and the previous argument using Lemma 5.20 give the desired conclusion
unless the set of prime divisors of |A| is {2,3} and n = 8 or n = 16. But even in this
case [27] gives the result. O

An asymptotically better version of Lemma 5.19 has been obtained by Lucchini,
Menegazzo and Morigi [74]. The constant in their result has been evaluated by Tracey
[107, Corollary 4.2].

Lemma 5.23. Let H < G with |G : H| =t > 1. Let W be an H-module and let

V = W§ be the induced module. Then tg(V) < 4\/12? dim W.

Combining this lemma with other ideas above one can easily prove the following.

Theorem 5.24. Let G and A be transitive permutation groups of degree n > 1 with
G < A. Then a(A)G) < 4™/ Vlogn,

Proof. We use the bound, the notation and the argument of Theorem 5.22. By the 6/4
bound we see that we may assume that n > 512. Also, by Corollary 5.17, it is easy to
see that we may assume that A is an imprimitive transitive group. Let ¢ and s be as in
the proof of Theorem 5.22. By use of Lemma 5.20 and Corollary 5.18, the result follows
for s > 32 as in the proof of Theorem 5.22. If 6 < s < 32, then we obtain the result
using the fact that ¢ > 16. Finally, if 2 < s < 5, then ¢ > 100 and the bound follows. [

As pointed out in the Introduction, Theorems 5.24 and 5.10 imply Theorem 1.14.

We will also use various bounds for the orders of outer automorphism groups of simple
groups. We state the following from [40] without proof.

Lemma 5.25. Let S be a non-Abelian finite simple group and suppose that S has a
nontrivial permutation representation of degree n. Then | Out(S)| < 2logn or S = Ly(q)
with d > 2 or S = PQF(3°) with e an integer, and | Out(S)| < 3logn. In all cases we
have | Out(S)| < 2y/n. Moreover, |Out(S)| < /n unless S = Ag, Lo(27), L3(4) or
L3(16).
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We remark that Lemma 5.25 may be considered as a sharper version of the observation
[3] that if S # Ag, then 2| Out(S)| < n.

A handy consequence of Lemma 5.25 is that for all non-Abelian finite simple groups
S we have |Out(S)| < {/|S| unless S = L3(4). This follows from the known fact
that the minimal degree of a permutation representation of S is less than m , when
| Out(S)| < y/n, and directly in the remaining cases.

We end this section with a result about dimensions versus outer automorphism groups
for simple groups.

Lemma 5.26. Let S be a non-Abelian simple section of SLy(p) where p is a prime.
Then | Out(S)| < 4n.

Proof. For sporadic and alternating groups the result is obvious.

Suppose that S is a group in Lie(p’) over F, of (untwisted) rank ¢. By [72, Lemma
3.1] in this case we have n > min{R,(S),r’} where R,(S) is the minimal degree of a
projective representation of S in characteristic p. Using the lower bounds of Landazuri
and Seitz for R,(S) (slightly corrected in [62, Table 5.3A]) and [62, Table 5.1A], where
values of | Out(S)| are given, the result follows by easy inspection.

Suppose now that S is a group in Lie(p). If the order of S is divisible by a primitive
prime divisor of p”* — 1 then clearly n > m holds. A list of the largest such numbers m
is given in [62, Table 5.2C]. Using this we see that in all cases 4m > | Out(S)| holds.
This completes the proof. O

5.7 Normalizers of primitive groups — Abelian composition
factors

We consider the situation G << A < S,;, G primitive and want to bound a(A/G). We
first consider the case when the socle of GG is Abelian. To deal with this case, we need
the following result on primitive linear groups.

Theorem 5.27. Let V be a finite vector space of order n = p° defined over a field
of prime order p. Let B be a subgroup of GL(V') = GLy(p) which acts primitively (and
irreducibly) on V. Let F' be a mazimal field such that B embeds in TLp(V). Let |F| = p/
and let d = dimp V' (so d =b/f). Then one of the following holds.

I.d=1and a(B) < (n—1)f < (n—1)logn; or
2. d>1 and a(B) < n for n > 316,

Furthermore a(B) < n?/6'/2 unless n = 9 and B = GLy(3).

Proof. Every normal subgroup of a primitive linear subgroup of GL(V') acts homoge-
neously on V. In particular, any Abelian subgroup normalized by B acts homogeneously
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and so is cyclic by Schur’s Lemma. Let C' be the subgroup of nonzero elements in F
(viewing F' as a subring of End(V')). Note that C' is normalized by B and, for d = 1,
contains the centralizer of B. We may replace B by BC and so assume that C' < B.

Let £ = Endp(V) with ¢ = |E|. The algebra generated by C is F' and |F| = ¢¢ for
some integer e.

Let By be the centralizer of C' in B. Note that C' is the center of By. We claim that
By acts irreducibly on V' considered as a vector space over F. For let U denote V as a
Bo-module over F. Then V' :=V @ F = ®U?, where the sum is over the elements of
Gal(F' | E). Since B acts absolutely irreducibly on V' (over E), B acts irreducibly on
V’. Note that B/By acts regularly on the set {U?} and so By must act irreducibly on
each U? and so, in particular, on U as claimed.

Note that a(B) = a(By)e for B/By is cyclic of order e.

Let R be a normal subgroup of B contained in By minimal with respect to not being
contained in C. If none exists, then By = C, d = 1 and B’ is cyclic and the first
conclusion allowed holds. So assume that this is not the case. Let W be an irreducible
F[R]-submodule of V', which, as an F[R]-module, is a direct sum of copies of W. Let
F' = Endgr(W).

We claim that F' = F. The center of the centralizer of R in GL(V) is the group of
units of F’. This is normalized by B and so by the choice of C' must just be C', whence
F = F'. Let dgr denote dimp W.

Notice that R cannot be Abelian. For if R is Abelian, then so is RC. But then RC
is cyclic by Schur’s Lemma and so RC' = C by our choice of C. This is a contradiction
since we chose R not to be contained in C. (By this same argument we also see that
every characteristic Abelian subgroup of By is central and contained in C'.)

So there are two possibilities for R.

1. R is of symplectic type with R/Z(R) of order r?® for some prime r and integer a.
Since Z(R) < C, it follows that r|¢® — 1 and dr = r®. By [75, Lemma 1.7] in this case
R/Z(R) is a completely reducible F, By-module under conjugation.

2. R is the central product of ¢ isomorphic quasisimple groups @;,1 < i < t. Since R
acts homogeneously on V and since F’ = F, it follows that W is of the form Wi ®- - -@ W,
where W; is absolutely irreducible over F' (and the tensor product is taken over F'). Thus
dR = (dlmF Wl)t.

Choose a maximal collection of non-cyclic subgroups described above which pairwise
commute. Denote these by Jy, ..., Jpy. Let J = Ji -+ - Ji,, be the central product of these
subgroups.

We next claim that Cp,(J) = C. Suppose not. By the maximality condition, any
B-normal subgroup of Cp,(J) minimal with respect to not being contained in C' is one
of the J;. However, J; is non-Abelian and so is not contained in Cpg,(J).
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In particular By/C embeds in the direct product of the automorphism groups of the
Ji/Z(J;). Since J is the central product of the J;, J acts homogeneously and F' is a
splitting field for the irreducible constituents for each J;, it follows that d = dimp V >
[1d;i where d; = dj,.

Thus, a(B) < f(p! — 1) ] ei, where the e; are defined as follows.

If J; is of symplectic type with J;/Z(J;) of order 7"1-2 % then if B; denotes the (com-
pletely reducible) action of By on J;/Z(J;), we have a(B;) < (r7%)%2 by Theorem 5.16.
In this case we set e; = r;"”"".

If J;/Z(J;) = Ly x --- x Ly # 1 for non-Abelian simple groups L;, then if S; denotes
the action of By permuting the L;, we have a(S5;) < 24(t=1)/3 by Proposition 5.12. In
this case we set e; = | Out(Lq)[*24*~1)/3, Using Lemma 5.26 we see that

e; < 4t dy - ft . 24(t71)/3 < (dJ )4.53f[longi].

Altogether we see that a(B) < pf - fi+logd . 465 On the other hand n = p/<.

From this, by a tedious calculation, it follows that a(B) < n whenever n > 240 (for
d > 1). With more calculations it is possible to show that a(B) < n whenever n > 316
and d > 1.

Finally, consider the last statement of the theorem. By similar calculations as before,
it follows that a(B) < n?/6'/? whenever n > 2'6 (even if d = 1). So assume that n < 216
and also that d > 1.

If pf = 2 then no J; is a group of symplectic type and so a closer look at our previous
estimates yields a(B) < n?/6'/2 and a(B) < n (if d > 1).

Let p/ = 3. Then d < 10, a J; can be a group of symplectic type, but, in this case,
we must have r; = 2. Using this observation, a simple calculation gives a(B) < n?/6'/2
whenever n > 81.

Let p/ = 4. Then d < 7, a J; can be a group of symplectic type, but, in this case,
we must have r; = 3 and a; = 1. Using the fact that |Spy(3)| = 24, the exponent 6.5
in the above estimate can be improved in this special case and we get a(B) < n?/6'/2
whenever n > 64. The same bound holds even in case d = 1 and n > 64.

Let p/ > 5. Here d < 6 and a very similar argument yields the desired bound.

Thus we only need to check the last statement of the theorem for n < 81. This was
done by GAP [27]. O

Theorem 5.28. Let G <t A < GL(V) with |V| = p/ = n. Assume that G acts irreducibly
on V. Then either A is metacyclic and |A/G| < n or a(A/G) < n for n > 316.

Proof. Consider a counterexample with n minimal.

If A acts primitively on V', then, by Theorem 5.27, either a(A) < n, or A’ is cyclic, A
embeds in 'Ly (p/) and |A| = a(A) < nf.
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Consider the latter case. Since G acts irreducibly on V' over the prime field, it follows
that |G| > f (a group of order less than f will not have an irreducible module of
dimension f). Thus |A/G| < n.

So we may assume that A acts imprimitively.

SoV =Vi®---@&V; witht > 1 and A permutes the V;. Note that since G is irreducible,
G must permute the V; transitively as well. We may assume that this is done in such a
way that V; has minimal dimension over F,. Set m = [V;|. Since ¢t > 1 and since A is
irreducible on V', we have m > 2.

Let K be the subgroup of A fixing each V;. Let A; be the image of N4(V;) acting on
V; and define G; similarly. Since V; is minimal, it follows that A; acts primitively on V;.

Now a(A/G) < a(A/GK)a(K/(G N K). By Theorem 5.22, a(A/GK) < 6/ By
Lemma 5.20 and Theorem 5.27, a(K/(G N K) < a(A1)? < (m?/6'/2)!/2 unless m is 9
and A; = GLy(3). Thus, if m # 9, we have a(A/G) < 6"/4(m?/6Y/2)!/? = n.

Assume now that m =9 and A; = GLa(3).

By the restriction n > 36, we have t # 2, 4. Then Lemma 5.20 implies that a(K/(G'N
K)) < a(A;)3/® = 483/8, Hence a(A/G) < (61/4483/8)t <m!=n. O

Theorem 5.29. Let G and A be primitive permutation groups of degree n with G <1 A.
Then a(A/G) < n for n > 316,

Proof. We consider the various cases in the Aschbacher-O’Nan-Scott Theorem.

In all cases, G contains E := F*(A). The result follows by Theorem 5.28 if E is
Abelian. So we may assume that F is a direct product of ¢ copies of a non-Abelian simple
group L of order [. Let K denote the subgroup of A stabilizing all the components.

Suppose first that £ = F; x Ey with E] =2 FE5 the two minimal normal subgroups
of A. In this case t = 2s for some integer s and n = |Fy| = [*. Then the groups
GK/K < A/K can be considered as transitive subgroups of Sg and so by Theorem
5.22, a(A/GK) < 6%/*. By Lemma 5.20, a(GK/G) = a(K/G N K) < | Out(L)|*. Hence
a(A/G) <n'/*.6%* unless L = L3(4) by a remark after Lemma 5.25. This is certainly
less than n since | > 60. The same follows for L = L3(4) by direct computation.

In the remaining cases, E is the unique minimal normal subgroup of A, the groups
GK/K < A/K are transitive subgroups of S; and so as in the previous case, we see
that a(A/GK) < 6Y% Here n > m' where m is at least the minimal degree of a
nontrivial permutation representation of L. By Lemmas 5.20 and 5.25 it follows that
a(GK/G) < |Out(L)|"/? < (2y/m)"/?. Hence a(A/G) < n'/*.2t/2.6!/* which is less than
n if m > 5. O
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5.8 Normalizers of primitive groups — Sizes

We continue to consider the situation G <« A < S,,, G primitive and want to bound
|A/G|. We first consider the case when the socle of G is Abelian. To deal with this case,
we need the following result on primitive linear groups.

Theorem 5.30. Let V be a finite vector space of order n = p® defined over a field of
prime order p. Let A be a subgroup of GL(V) = GLy(p) which acts primitively (and
irreducibly) on V. Let F' be a maximal field such that A embeds in TLp(V'). Let G be a
normal subgroup of A which acts irreducibly on' V. Let |F| =p/ and let d = dimp V (so
d=0b/f). Then a(A)b(A/G) < f-pf - d?losd+3,

Proof. We use the description of the structure of A found in the proof of Theorem 5.27
(where this group was denoted by B). By the fourth paragraph of the proof of Theorem
5.8 we see that GG contains every non-solvable normal subgroup of A which is minimal
with respect to being non-central. From this the result easily follows. O

We note here that, with little modification and in case J # 1, the proof of Theorem
5.8 essentially bounds |A|/(b(G)|J]) = (a(A)b(A/G))/|J|, where J is the product of all
solvable normal subgroups of A (satisfying the conditions of Theorem 5.8) which are
minimal with respect to being non-central. We also note that (logn)?'%!°8™ is close to
d?°ed  However the argument in Theorem 5.27 is to be used together with Lemma 5.26
but excluding Theorem 5.16.

We continue with a simple lemma.

Lemma 5.31. Let us use the notations and assumptions of the statement of Theorem
5.30. Put Ag = ANGLp(V). Suppose that A has a unique normal subgroup J contained
in Ag which is minimal subject to being not contained in the multiplicative group C of

F viewed as a subset of End(V'). If |A/G| > n, then J < G.

Proof. Let the multiplicative group of the field K = Endg(V) be L.

We may assume that G is not cyclic. Indeed, otherwise |A| < |L| - |G| < n - |G| since
A acts on G by conjugation with kernel contained in L.

By the facts that G is not cyclic and a Singer cycle is self centralizing, we must have
df > 2 and |K| < p¥/" where r is the smallest prime factor of df.

We may also assume that G is metacyclic. Indeed, Gy = G N Ay is normal in A, is
contained in Ag, thus it may be assumed that Gy < C'is cyclic and thus G is metacyclic.

By considering the action of Ag on G, we see that |Ag| < |L| - |G| since the kernel
of the action is L N Ay, Go < Z(Ap), and G/G is cyclic. From this we have |A/G| <
foLl< fop¥r<p¥ =n. O

We next present two useful bounds for |4/G| in terms of n.
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Lemma 5.32. Letn, A and G be as in Theorem 5.30. Then we have the following.
1. |A/G| < n for n > 316;
2. a(A)b(A/G) < n?/6'/2 unless n =9 and A = GLy(3).

Proof. In case A/G is solvable, this follows from Theorems 5.28 and 5.27. Thus we may
assume that A/G is not solvable. An easy computation using Theorem 5.30 shows that
|A/G| < n for n > 2136 and a(A)b(A/G) < n?/6Y/2 for n > 234, Tt is easy to see by the
structure of a primitive linear group (see Theorem 5.27), that if pf = 2 (where p and
f are as in Theorem 5.30) and A/G is not solvable, then n > 2243, Thus we may also
assume that p/ > 3 (and d > 4, where d is as in Theorem 5.30).

Now straightforward calculations using Theorem 5.30 give |A/G| < n for n > 3>* and
a(A)b(A/G) < n?/6Y/% for n > 314

Let us adopt the notations and assumptions of the proof of Theorem 5.27 (with B
replaced by A and By replaced by Ap).

Assume that pf = 3. Then we may assume that 16 < d < 53 and d < 13 in the
respective cases. A J; can be a group of symplectic type, but, in this case, we must
have r; = 2. As in Example 5.7 the normalizer N; in GLags; (3) of such a J; satisfies
N;/(JiZ) = 05, (2) where Z is the group of scalars. (This is because |Z(J;)| must be 2
since it divides p/ — 1.) A straightforward computation using the structure of A (and
G) gives the result.

We only comment on the bound (1) in case n = 332 and when the product J of all
normal subgroups of A contained in Ag which are not contained in the multiplicative
group, C of F viewed as a subset of End(V), is solvable. When J is itself a normal
subgroup of A contained in Ay which is minimal subject to being not contained in C' (a
unique such), then J < G, by Lemma 5.31, and so we find that |[A/G| < n. Otherwise,
if J is a product of more than one J;, then |A| < n by the fact that the index of a proper
subgroup in O§,(2), apart from the simple subgroup SO{,(2) whose index is 2, is at least
495.

Assume that pf = 4. Then 13 < d <42 and d < 11 in the respective cases. A .J; can
be a group of symplectic type, but, in this case, we must have r; = 3. We are assuming
that A/G is not solvable. As a result, for (2), only the case d = 9 has to be checked.
The bound in (1) is slightly more complicated to establish (but true).

To finish the proof of (2) we may assume that pf > 5. Then 4 < d < 9. Using this
information and Theorem 5.30 we see that a(A)b(A/G) < f - pl - d?logd+3 < p2/61/2,
Thus from now on we only consider (1).

Let pf = 5. Then we may assume that 11 < d < 36. In fact, by use of Theorem 5.30
we may assume that d < 29. With a computation similar to the ones above it is possible
to deduce (1) in this special case.

We only comment on the case n = 5'6 and when the product J of all normal subgroups
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of A contained in Ag which are minimal subject to being not contained in C' is solvable.
When J is itself a normal subgroup of A contained in Ay which is minimal subject to
being not contained in C' (a unique such), then J < G, by Lemma 5.31, and so we find
that |A/G| < n. Otherwise, if J is a product of more than one J;, then |A| < n by
the fact that the subgroups Spg(2) x Spy(2) and Spy(2) x Spy(2) of Spg(2) are relatively
small.

Let pf = 7. We may assume that 10 < d < 17 (by use of Theorem 5.30). A
straightforward computation gives the result.

Similarly, if p/ = 8, 9 or 11, then we may assume that d satisfies 9 < d < 16,9 < d < 15
or 8 < d < 11 in the respective cases. Straightforward computations give the result.

Let p/ = 13. We may assume that d = 7, 8 or 9. A straightforward computation gives
the result except when d = 8 and A does not contain a non-solvable normal subgroup
which is minimal subject to being not contained in C. In this latter case we may proceed
as in the case n = 5'6 described above.

Let p/ = 16. We may assume that d = 7 or d = 8. In this case there is nothing to do
since we are assuming that A/G is non-solvable.

Let p/ = 17. We may assume that d = 7 and so there is nothing to do.

Let p/ = 19. We may assume that d = 6. However there is nothing to do since A/G
is non-solvable.

By p/ > 23 and Theorem 5.30, we have d = 4 or d = 5. Both these cases can easily
be handled using the assumption that n > 316.

This finishes the proof of the lemma. O

We next state without proof the following result from [40].

Theorem 5.33. Let G <1 A <S,,. If G is transitive, then |A : G| < 168D/,

Theorem 5.33 is used in the proof of the following result.

Theorem 5.34. Let G <1 A < GL(V) with |V| = p? = n. Assume that G acts irreducibly
on' V. Then |A/G| < n forn > 3.

Proof. By Lemma 5.32 we may assume that A acts imprimitively on V. By Theorem
5.28 we may also assume that A/G is not solvable.

We may proceed almost as in the relevant paragraph of Theorem 5.9. We may de-
compose V in the form V =V, @& .- ® V; with ¢ > 1 maximal such that A permutes the
V;. Note that G must permute the V; transitively as well since G is irreducible. Let K
be the subgroup of A fixing each V;. Let A; be the action of N4(V;) on V; and define G;
similarly.
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Now G must act irreducibly on Vi and so by Theorem 5.30 we have the inequality
a(A))b(A1/Gy) < f1-ph 'dflogdlﬁ, where m = |V;| = p1® for certain integers f; and
d;. Note that n = m!.

By Theorem 5.3, we have

|A/G| = a(A/G)b(A/G) < a(A/GK)D(A/GK) - a(K/(G N K))b(A1/Gh).

We have b(A/GK) < t°! by Theorem 5.10. We also have a(A/GK) < 64 by
Theorem 5.22. Thus Lemma 5.20, Theorem 5.27, and Theorem 5.9 give

|A/G| < 6t/4 . tlogt . a(Al)t/Q . b(Al/Gl) < 6t/4 . tlogt . (m2/61/2)t/2 . (logm)Qloglogm7
provided that m # 9. However we can improve this bound by use of the inequality
a(A1)"*b(A1/G1) < f(m)"* (a(A1)b(A1/G))/ f(m),

where f(m) is any upper bound for a(A;). For example if m # 9 then we get

t/2

[A/G| < 6% 180 (m?/61/2)"" - (a(A1)b(A1/G1))/(m?/61/2).

First it will be convenient to deal with the case whent = 2 or t = 4. Then m # 9. Since
b(A/GK) = 1, the previous inequality shows that we are done unless b(A;/G1) # 1. On
the other hand, if b(A1/G1) # 1, then Lemma 5.32 gives

a(A1)b(A1/Gy) < m?/6Y2,

provided that m # 9.
Now let ¢ be different from 2 and 4 but at most 16.
Assume first that m # 4. By Lemma 5.20 and Theorem 5.33,

3t/8

[A/G| < 168 D/T- (m/? /16832177 - (a(A1)b(A1/Gr)) [ (m®/? 168°/2) <

< mt - (a(A)b(A1/G1))/(mB/3/168%/21) . 1687 1/7

(since m®/3/168%/21 > m?2/61/2 > a(A;) for m > 5 (and m different from 9), and
m®/3/168%/21 > a(A;) for m = 3 and m = 9). Again, we are finished if b(A;/G1) = 1.
Assume that b(A1/G1) # 1. If m = 81 then we can use GAP [27] to arrive to a
conclusion. Otherwise it is easy to see that m > 625. Since d; > 4, we certainly have

a(A)b(A1)G) < fi-pTt - d2OF BT < B3 1683/

for m > 625, unless possibly if p/ = 2 or pf = 3. If p/ = 2, then d; > 3°, by the structure
of A1, and so the previous inequality holds. We also have the previous inequality in case
p! = 3 since we may assume by the structure of A; that d; > 8.

73



dc_1451 17

5 Normalizers of primitive permutation groups

If m = 4 then Lemma 5.20 and Theorem 5.33 give us |A/G| < 168(¢~1/7 . §34/8 This
is not necessarily less than 4%, however it is for ¢t < 16.

Now let ¢t > 17.
By Lemma 5.20 and Theorem 5.33,

%

|A/G| < 168FV/T . (m3/168%/7)"" . (a(A1)b(A1/G1))/(m>/168% ) <

<mt - (a(A])b(A1/G1))/(m>/168%7) . 1687 /7

(since m3/168%/7 > m?/6'/2 when m > 4, and m?/168%/7 > a(A;) for m = 3 and
m =9). We may assume that b(A;/G1) # 1. Then m = 81 or m > 625 by the structure
of Ay. If m = 81 then we have a(A1)b(A1/G1) < m?/168%/7 by use of GAP [27]. If
m > 625 then we arrive to a conclusion by use of three paragraphs up, noting that
m®/3 /168821 < m3 /16837 for m > 3. O

Theorem 5.35. Let G and A be permutation groups with G < A < S,,. Suppose that G
is primitive and |A/G| > n. Then A and G are affine primitive permutation groups and
n < 316,

Proof. If Ais an affine primitive permutation group then the result follows from Theorem
5.34. Otherwise we may mimic the proof of Theorem 5.29 by noting that we must replace
6°/* by 168%/7 and 6'/* by 168%/7 in the respective cases (due to Schreier’s conjecture
and Theorem 5.33). O

5.9 Small linear groups

In this section we will finish the proof of the first half of Theorem 1.8.

Let G and A be permutation groups with G <« A < S,,. Suppose that G is primitive
and |A/G| > n. We must show that the pair (n, A/G) is one of the eleven exceptions in
Theorem 1.8.

By Theorem 5.35 it is sufficient to consider affine primitive permutation groups of
degrees at most 316,

Let V be a finite vector space of size n with n < 3'6. Opposed to the notation of the
statement of the theorem, let G and A be groups such that G < A < GL(V'). Assume
that G (and thus A) acts irreducibly on V. We must classify all possibilities for which
|A/G| > n.

Let us first assume that A acts primitively on V. We use the notations and assumptions
of Theorem 5.27 and its proof (with B replaced by A and By replaced by Agp). We
put n = p’ for a prime p and integer b with the property that A is a subgroup of
GL(V) = GLy(p) acting primitively (and irreducibly) on V. Let F' be a maximal field
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such that A embeds in I'Lp(V). Let |F| = p/ and let d = dimg V (so d = b/f). Let the
multiplicative group of F', viewed as a subset of End(V'), be denoted by C.

If d = 1 then Theorem 5.28 gives |A/G| < n. Thus assume that d > 1.

As in the proof of Theorem 5.27, let J be the product of all normal subgroups of A
contained in Ag which are minimal subject to not being contained in C.

Assume that d is a prime. Then, by the proof of Theorem 5.27, J itself is a normal
subgroup of A contained in Ay which is minimal subject to not being contained in
C. Moreover J is either a quasisimple group or is a group of symplectic type with
|J/Z(J)| = d?. In both of these cases we must have J < G, by Lemma 5.31.

Assume that J is a quasisimple group. By Lemma 5.26 (and the proof of Theorem
5.27), we have |A/G| < 4(p/ — 1)df?. This is less than p¥ for d > 5. Assume that
d = 2. If Az is a factor group of J, then |A/G| < 2f(pf — 1) < p?/. Otherwise, by
Dickson’s theorem on subgroups of GLa(p/), we have |A/G| < 2f2(p/ — 1) < p?/ if
p is odd, and |A/G| < f2(pf — 1) < p*f if p = 2. Now assume that d = 3. Then,
by information from [62], we find that |A/G| < 6f2(p/ — 1). This is smaller than p3/
unless p = f = 2. If d = 3 and p = f = 2, then, by [27], we get the desired estimate
|A/G| < 4f(pf —1) =24 < 64 = n.

Let J be a group of symplectic type with |J/Z(J)| = d* where d is a prime. Then
|A/G| < [Spo(d)|f(pf —1) < d®f(p —1) < n for d > 5, and also for d = 3 and pf > 4.
If d = 3 and p/ = 4, then |A/G| < d®f = 54 < 64. Let d = 2. Tt is then easy to see that
|A/G| < 6f((pf —1)/2) < p?f since p > 2.

From now on we assume that d is not a prime and larger than 1.

In this paragraph let p/ = 2. By the structure of A described in the proof of Theorem
5.27 we know that all normal subgroups of A contained in Ay and minimal with respect
to being not contained in C' are non-solvable. Moreover J has at most two non-Abelian
simple composition factors, since d < 25. By this, we immediately see, as in the proof of
Theorem 5.27, that |A/G| < 32d. This is less than 2% unless d < 8. If d = 6 or 8, then
|A/G| < 4d < 2¢. For d = 4 the result follows by [27].

From now on we assume that pf > 2.

In this paragraph we deal with the cases when d = 6, 10, 14, or 15. In these cases
d is a product of two primes r1; and r9. First suppose that J is not solvable. If A has
no solvable normal subgroup contained in Ay which is minimal with respect to being
noncentral, then it is easy to see that |A/G| < f(pf — 1) - 42f%d < p/? since pf > 2.
Otherwise we get |A/G| < f2(p! — 1) -4ry - r5° (for a certain choice of r; and 7). This
is always less than p% unless d = 6 and p/f = 3 or 4. If d = 6 and p/ = 3, then in
the previous bound we must have 1, = 2 and thus |A/G| < n. If d = 6 and p/ = 4,
then we must have r; = 2 and r9 = 3. In this special case we can modify our bound to
|A/G| < f(pf —1)-2-3° =12-3% < 4% = n. Thus we may assume that .J is solvable. In
this case d divides p/ — 1, and since n < 36, we are left to consider only the case d = 6
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and p/ =7 or 13 when |A| < n.
We are left to consider the cases when d = 4, 8, 9, 12, or 16.
Let d = 4.

First assume that J is solvable and it is the unique normal subgroup of A contained in
Agp which is minimal subject to being not contained in C. By Lemma 5.31 we may assume
that J < G. For p/ > 7 we can bound |A/G| by f((¢/ —1)/2)|Sp4(2)| = 360f(¢/ —1) <
p*. We are left to consider the cases when p/ = 3 and p/ = 5. If p/f =3, d = 4 and
|A/G| > 81, then (n,A/G) = (3*,0;(2)), while if p/ = 5, d = 4 and |A/G| > 625,
then (n, A/G) = (5% Sp,(2)). Now assume that .J is solvable and it is the product of
two normal subgroups, say Ji and Jz of A contained in Ay which are minimal subject
to being not contained in C. If f =1 then G contains one (if not both) of these normal
subgroups, say Ji. Furthermore, since J; is not irreducible on V', the irreducible group
G properly contains J;. Thus |A/G| < 4-36- ((pf —1)/2) - (1/2) = 36(p — 1) < p™.
We may now assume that f > 2 (and also that p is odd). In this case we only use the
fact that |G| > 4 to conclude that |A/G| < f(pf —1)16-36 - (1/4) = 144f(pf — 1). We
already know from the same paragraph that this is less than p*/ for p/ > 9.

Secondly assume that A has no solvable normal subgroup contained in Ay which is
minimal subject to not being contained in C'. In this case J has at most two non-Abelian
composition factors and so |A/G| < f3(pf —1)-43.2 = 128 f3(p/ — 1), by the second half
of the proof of Theorem 5.27. From this we get |A/G| < p*/ unless possibly if pf = 3, 4,
8, 9 or 16. When J has a unique non-Abelian composition factor, then we may sharpen
our bound to |A/G| < 16f%(p/ — 1), and this is smaller than p*/ for the remaining five
values of pf. Thus J has exactly two non-Abelian composition factors. In this case we
can apply Dickson’s theorem on subgroups of GLa(p/) to refine our bound on |A/G|
even further. This is 8 3(pf — 1) which is smaller than p*/ for the remaining five values
of pf.

Thirdly there are two normal subgroups of A contained in Ay which are minimal
subject to not being contained in C'. One is Ji, a symplectic 2-group, and one is Js, a
quasisimple group. In this case we have |A/G| < f(pf —1)-2f-24 = 48f%(p/ —1). This
is less than p*/ where p > 2, unless pf = 3. But p/ = 3 cannot occur in this case since
Jo < GLy(3) is solvable.

From now on let d be 8, 9, 12 or 16.

In this paragraph suppose that A has no solvable normal subgroup contained in Ag
which is minimal subject to not being contained in C. In this case the number, say
r of non-Abelian composition factors of J is at most 4. If r = 4 then d = 16 and
so p/ = 3. In this case it is easy to see that |A/G| < 98304f°(p/ — 1) < 3'6. Let
r = 3. Then d = 8 or d > 12. In the first case we can use Dickson’s theorem to
conclude that a quasisimple subgroup @ of GLa(p/) satisfies | Out(S/Z(S))| < 2f. This
implies that |A/G| < 48f*(p’ — 1) < p8/. In case d > 12 we can use our usual bound
|A/G| < fApf —1)-43.16-6 = 6144f4(p/ — 1) < p'*/. Finally let » < 2. Then
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|A/G| < 512f3(p/ — 1). This is less than p/? for d > 8 (and p/ > 2).

In the remaining cases A has a solvable normal subgroup contained in Ay which is
minimal subject to not being contained in C. This implies that the greatest common
divisor of d and p/ — 1 is larger than 1. This, the above, and the fact that n < 36 imply
that the only cases to deal with are the following: d = 8 and p/ =3, 5,7, 9; d = 9 and
pl =4,7:d=12 and p/ =3, 4; and d = 16 and p/ = 3.

Let d = 8. We may assume that A has a solvable normal subgroup contained in
Ag which is minimal subject to not being contained in C. First suppose that J is not
solvable. Then J has one or two non-Abelian composition factors. Such a composition
factor can be considered as a subgroup of La(pf) or of Ly(pf). In the first case we
must have p/ > 5. Suppose J has exactly one non-Abelian composition factor. If
this is a subgroup of Lg(p/), then, by Dickson’s theorem, we have the estimate |A/G| <
f(pf —1)-2f-1Sp4(2)]-2* < p87 for p! > 5. If this is considered as a subgroups of Ly(p/),
then |A/G| < f(p/ —1)-16f-|Spy(2)|-4 < p8/. Finally, if J has exactly two non-Abelian
composition factors, then these must be subgroups of Lg(pf), and we have |A/G| <
ff —1)-(2f)*-2-1Spo(2)| -4 < p®7 for pf > 5. Thus we may assume that J is solvable.
First assume that p/ = 9. If A has more than one normal subgroup contained in Ag which
is minimal subject to not being contained in C, then |A| < 2-8-|Sp,(2)]|Spy(2)]-2°% < 98.
Otherwise we may assume that J < G, by Lemma 5.31, and so | A/G| < 2-8-|Spg(2)] < 98.
We may now assume that p/ = 3, 5, or 7. In all of these cases Ay = A. First suppose that
A has more than one normal subgroup which is minimal subject to not being contained
in C. If p/ # 3, then |A/G| < 16 -3 - |Sp,(2)||Spy(2)| < p¥/. Let p/ = 3. If |G| > 16,
then |A/G| < 8105 (2)]|05 (2)] < 3%. Otherwise |G N J| = 8 and in fact |G| = 8. But
such a group G cannot act irreducibly on V. We conclude that J is the unique normal
subgroup of A which is minimal subject to not being contained in C. Thus J < G. If
p/ =17, then |A/G| < |05 (2)] < 78. Let p/ = 5. Assume that A is the full normalizer
of J in GL(V). If G = J, then (n, A/G) = (5%,Spg(2)). Otherwise, since A/J = Spg(2)
is simple, G = A. Thus we may assume that A/J is a proper subgroup of Spg(2).
By [13, pp. 319], we have |A/G| < |A/J| < |Spg(2)]/28 < 5%. We remain with the case
pf =3. If G = J and J < A has index at most 2 in the full normalizer of J in GL(V),
then |A/G| > n and (n, A/G) = (38,05 (2)), (35,505 (2)), (3%,0¢ (2)) or (38,504 (2)).
Suppose now that J < A has index larger than 2 in the full normalizer of J in GL(V).
Since SO (2) = Ag and SOg (2) = Uy(2) are simple groups with minimal index of a
proper subgroup 8 and 27 respectively (for the latter see [13, pp. 317]), we immediately
get |A/G| < |A/J| < 3% in the remaining cases.

Let d = 9. We may assume that A has a solvable normal subgroup contained in Ag
which is minimal subject to not being contained in C. If J is non-solvable, then, by
the structure of A (and G), |A/G| < f(p!f —1)-4-3f-3%-|Spy(3)| < p*!. Thus J is
solvable. If p/ = 7 then an easy computation yields |A|] < 6-81-|Sp,(3)| < 7°. We
assume that p/ = 4. Now J is the product of one or two normal subgroups of A not
contained in C. If one, then we may assume by Lemma 5.31 that J < G. In this case
we get |A/G| < 2-[Sp,(3)] < 4°. In the other case we get |A| < 6- 81 -|Spy(3)|>. Since
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|G| > 2, we see that |A/G| < 4.

Let d = 12. We may again assume that A has a solvable normal subgroup contained
in Ag which is minimal subject to not being contained in C. We may also assume that
J is not solvable since p/ is 3 or 4. If J has one non-Abelian composition factor, then
|A/G| < f(p! —1)-4-6f-16-|07(2)] = f2(p' — 1) - 46080 < p'2/ for both p/ = 3
and p/ = 4. Finally, if J has two non-Abelian composition factors, then |A/G| <
flpf —1)-42-4-f2.2.9-|Spy(3)| = f3(p/ —1)-27648 < p'?/ for both p/ = 3 and p/ = 4.

Let d = 16. Then p/ = 3 and Ay = A. From the above we may assume that
A has a solvable normal subgroup which is minimal subject to not being contained
in C. Assume first that J is not solvable. Since GL2(3) is solvable and 3 does not
divide 16, we know that J has a unique non-Abelian composition factor and this can
be considered as a subgroup of L4(3). From this we arrive to a conclusion by |A/G| <
fpf —1)-4-(4f) -0, (2)] - 2* < 3. Thus we may assume that J is solvable. First
assume that A contains more than one normal subgroup which is minimal subject to not
being contained in C. In this case |A/G| is at most 2° - |05 (2)]|05 (2)| < 36, Thus we
may assume that J is the unique normal subgroup of A which is minimal subject to not
being contained in C. This implies that J < G. If G = J and J < A has index at most
2 in the full normalizer of J in GL(V), then |A/G| > n and (n, A/G) is (3'6,05(2)),
(316,505 (2)), (315,04 (2)) or (316,507 (2)). Now SOg(2) are simple groups with the
property that every proper subgroup has index at least 119 (see [13, pp. 319-320]). This
implies that if J < A has index larger than 2 in the full normalizer of J in GL(V'), then
|A/G| < |A/J| < 316,

We may now assume that A acts imprimitively on V. By the proofs of Theorems 5.28
and 5.34 we see that we may assume, in the notations of these proofs, that m = 9 and
t =2ort =4. In these cases n = 3% or n = 3%. If n = 3%, then [27] gives |A/G| < n. So
assume that the second case holds. The group A is clearly solvable and so by Lemmas
5.21 and 5.22 we have |A/G| < 6 - 162 - 3. This is less than 38.

This completes the proof of the first half of Theorem 1.8.

5.10 Normalizers and outer automorphism groups of primitive
groups

In this section we prove Theorem 1.9.

Let G be a primitive permutation group of degree n. Assume first that the generalized
Fitting subgroup E = F*(G) of G is non-Abelian. Now Aut(G) has a natural embedding
into Aut(FE) and it acts transitively on the components of E (this is also true if G has
two minimal normal subgroups). The bound follows as in the proof of the bound for

|4/G|.
So suppose that F*(G) =V is Abelian. If V is central, then n is a prime, G is cyclic
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and Out(G) is cyclic of order n—1. So assume that Z(G) = 1. In this case the centralizer
of Gin S, is 1.

Lemma 5.36. Let G be a primitive affine permutation group of degree n and H a point
stabilizer. Let V = F(G) = F*(G). Then |Aut(G) : Ns,(G)| = |H'(H,V)|.

Proof. Let N be the normalizer of G in S,, then N embeds into A = Aut(G). Moreover
an element ¢ € A is in N exactly when the image of a point stabilizer H of G under ¢
is also a point stabilizer [13, 4.2B].

It is easy to see that A acts tramsitively on the complements of V' hence it acts
transitively on the G-conjugacy classes of such complements. It follows that |A: N|
equals the number of G-conjugacy classes of complements, that is, |H(H, V)’ O

In particular, if H*(H,V) = 0, our previous estimates apply. So now we consider the
case with H'(H,V) # 0. So G = VH with H acting faithfully and irreducibly on V.
We first point out the following result in [2, 2.7 (c)]. See also [33].

Lemma 5.37. Suppose that H is a finite group acting irreducibly and faithfully on V' with
HY(H,V) #0. Then H has a unique minimal normal subgroup N of the form L1 x---x Ly
with L; =2 L a non-Abelian simple group. Set Ly = Cn(L;) (the product of all the other
L;). Moreover, V = &;V; where V; = [L;,V] = Cy(Ly) and |H'(H,V)| < |HY(Ly, W),

where W is any nontrivial irreducible L;-submodule of V;.

Now we obtain bounds on the size of outer automorphism groups for such groups.

First an example. Let ¢ = 2°,e > 1 and H = Ly(q). Let V be the natural module for
H (i.e. 2-dimensional over Fy). Consider G = V.La(q) acting on V. Then G is primitive
and |Out(G)| = |[HY(H,V)||Ns,(G) : G| = q(q — 1)e < (nlogn)/2 but |Out(G)| > n
and indeed has order roughly (nlogn)/2. We now show that this is the only example
with | Out(G)| > n, completing the proof of Theorem 1.9..

Theorem 5.38. Let G be a primitive affine permutation group of degree n. Let V =
F(G) = F*(G) and H # 1 a point stabilizer. Assume that H'(H,V) # 0. Then either
| Out(G)| < n orn = q* with ¢g=2%e > 1 and H = La(q).

Proof. We use the lemma above and write V' = @V where V; = [L;,V]. Let N be the
normalizer of Li. Then N preserves V; and indeed N is precisely the stabilizer of V.
Since H is irreducible on V', N is irreducible on V;. Let E = Endg (V). So E is a field of
size ¢. By Frobenius reciprocity, £ = Endy (V). Let d = dimg V; and hy = |HY(H, V).

So HY(H,V) embeds in H'(Ly,U;) where Uy is an Li-submodule of V;. Now we know
that | Out(G)| < (¢ — 1)hi|Ny(H)/H| where J = Aut(L) ! S;.

Suppose that ¢ = 1. Then F*(H) = L and | Out(G)| < (¢ — 1)hi|Out(L)|. We first

consider some special cases.
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If d = 2, then (since we are assuming that h; > 1), h; = ¢. This implies (see [35])
that L = La(q) with ¢ = 2¢ > 2. Moreover, the equality on h; implies that H = L and
we are as in the example above.

Suppose that d = 3. Then also by the main result in [35], it follows that h; = g. So
|Out(G)| < q(qg —1)\/(¢> —1)/(¢ — 1) < ¢* unless possibly L = Ag, L2(27), Ls(4) or
L3(16) (see Lemma 5.25). In these exceptional cases | Out(L)| has order 4,6,12 or 24
respectively and the result holds unless possibly ¢ < | Out(L)|. This easily rules out the
first two cases (there are no 3-dimensional representations over a field of size ¢ < | Out(L)|
cf. [59]). For the latter two groups, there are no 3-dimensional representations (only
projective representations).

So assume that d > 4.

Suppose that |[H'(H, V)| < |V|'/2. Since (by construction), V" is an irreducible F,[H]-
module, |H'(H,V)| < ¢/¥/?~1 if d is even and |H'(H, V)| < ¢4=1/2 if d is odd.

In this case, the same argument as above applies. We only need to deal with the
four groups as above and only for representations where | Out(L)| > 1/(¢? — 1)/(q — 1).
From [59] we see that the only possibility is that L = Ag and ¢ = 2, d = 4. In that case,
|H'(H,V)| <2 and we still have the result.

The remaining case is when |[H'(H,V)| = |V|"2. This can only occur for d = 2
except if H = Ag, ¢ = 3 and d = 4 [35]. So n = 81. In that case, we see that
|Out(G)| <9-2-4 =72 and the result still holds.

Now suppose that ¢ > 1 and n = ¢% where d = dimg V4. Then we have |N;(H)/H| <
| Out(L)[*/2b; where b; is the analogous bound for transitive groups of degree t. Thus
by [35], |Out(@)| < (¢ — 1)¢%?| Out(L)|*/?b;. By Theorem 5.10 and Theorem 5.22, we
have b, < 2¢ - t1°8% and it is easy to see that if ¢ < 7 then in fact b; < 2¢ holds. Unless
L = Ag (which we assume) we have | Out(L)| < ¢%/(2(q — 1)) by [3, Lemma 2.7].

Assuming first that ¢ # 2 we see that | Out(G)| < ¢X(#/2+D¢logt Tt is also clear that
(since Lg(3) is solvable) in this case we have ¢ > 16 and |Out(G)| < ¢% follows for
t > 8 (and even for ¢ < 7 by the observation a few lines above).

Finally let ¢ = 2. Then we see that | Out(G)| < 2(¢+t+d)/2 flogt 1f g > 4 and t > 8,
then this is less than 2%. Otherwise L = L3(2) and in this case for ¢ > 8 we have
|Out(G)| < 2-24/2. 2t . tlogt < 93 Tf t < 7, then | Out(G)| < 2% follows, using b; < 2!
and Lemma 5.25, in all cases, except when L = Ag = L2(9). Finally, if L = Ag = L2(9),
then d > 6 and | Out(G)| < 2% follows easily. O

5.11 p-solvable composition factors and outer automorphism
groups

The purpose of this section is to complete the proof of Theorem 1.12.
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Fix a prime p. Throughout this section we put ¢ to be 24'/3 if p < 3 and (p — 1)!1/(7772)
if p>5.

The first result concerns transitive permutation groups.
Theorem 5.39. Let G <1 A < S,, be transitive permutation groups of degree n. Let p be
a prime. Then a,(G)|A/G| < " L.
Proof. We prove the result by induction on n.

First let A be a primitive permutation group. If A contains A,, then the bound is
clear. Otherwise we have |A| < 24("=1/3 by [80].

Now let A be an imprimitive permutation group. Let {Bj,..., B;} be an A-invariant
partition of the underlying set on which A acts, with 1 < t < n. Let A; denote the
action of the stabilizer of B; in A on B;. Then A embeds in A4;S; and G permutes
transitively the subgroups A;. Let G; denote the action of the stabilizer of B; in G on
B;. By Theorem 5.3 we have b(A/G) < b(A/GK)b(A1/G1) where K denotes the kernel
of the action of A on {Bjy,...,B;}.

In order to bound a,(G) we first set s = |By|, that is n = st. We have
a,(G) = ay(G/K N G) - ap(KNG) < ap(GK/K) - ap(K N G).
Let N be the kernel of the action of K on By. We have
ap,(KNG)-a(K/(KNG)) < apy(KNG)N) - a(K/(KNG)N) =
= (K NG)N/N) - ay(N) - a(K/(K N G)N) < ay(G1) - a(A1/Gh) - ay(N).
We are now in position to bound a,(G) - |4/G| = a,(G) - a(A/G) - b(A/G). We have
a,(G) - |A/G| < a,(GK/K) - |A/GK]| - ay(K N G) - a(K/(K N G)) - b(A1/G1) <
< (ap(GK/K) - |AJGK]) - (a,(Gh) - |A1 /G - ap(N).

By induction (noting that GK/K and G are transitive on {Bi,...,B;} and Bj re-
spectively), we have a,(GK/K) - |A/GK| < /™1 and a,(Gy) - |[41/G1| < ¢~ 1. More-
over by repeated use of Proposition 5.12, we see that a,(N) < =D | These give
ap(G)|A/G| < b les—1a(s—1)(t-1) — -1 n

We next need a lemma which depends on the existence of regular orbits under certain
coprime actions.

Lemma 5.40. Let A be a primitive linear subgroup ofFLd(pf) for a prime p and integers
f and d with d as small as possible. Put Ay = GL4(p/) N A. Let Jy be the product of
all normal subgroups of A contained in Ag which are nonsolvable, have orders coprime
to p, and are minimal with respect to being noncentral in Ay. Then either pf =7, d =14
or 5, and b(Jy) = |[PSp,(3)|, or b(Jy) < pf?.
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Proof. The group Jy is a central product of quasisimple groups Ji,...,J, for some r.
Since Jy < A and A is primitive, Jy acts homogeneously on the underlying vector
space. Let W be an irreducible Jp-submodule. As in the proof of Theorem 5.8, we may
use [62, Lemma 5.5.5, page 205 and Lemma 2.10.1, pages 47-48] to write W in the form
W1 ® --- ® W, where for each i the J;-module W; (defined over a possibly larger field)
is irreducible.

Assume first that » = 1. If Jy has a regular orbit on W, then the result is clear. If
Jo does not have a regular orbit on W, then [100, Theorem 7.2.a] says that (Jo, W) is
a permutation pair in the sense of [100, Example 5.1.a] or (Jy, W) is listed in the table
on [100, Page 112]. In all these exceptional cases we have |Jy/Z(Jy)| < |W| unless W is
a 4 or 5 dimensional module over the field of size 7 and Jy/Z(Jp) = PSp4(3). Moreover
|Jo/Z(Jo)| < p?® or |W| = p’? and one of the previous exceptional cases holds.

Assume that r > 1. For each i we have b(.J;) < |W;| or |W;| = 7% or 7° and b(J;) <
[W;|*3!. From these it follows that b(Jy) < |[W| < pf@. O

The next lemma may be viewed as a sharper version of Theorem 5.16 under the
assumption that p > 7.

Lemma 5.41. Let G be a finite group acting faithfully and completely reducibly on a
finite vector space V in characteristic p. Then a,(G) < |V /e.

Proof. By Theorem 5.16, we may assume that p > 5. By [43, Theorem 1.1], the strong
base size of a p-solvable finite group S acting completely reducibly and faithfully on a
vector space of size n over a field of characteristic p > 5 is at most 2. Thus |S| < n?/(p—
1). By the proof of Theorem 5.16 we then have a,(G) < |[V|*/(p — 1) < |V /ec. O

Theorem 5.39 is used in the proof of the following result which could be compared
with Theorem 5.16.

Theorem 5.42. Let G < A < GL(V) be linear groups acting irreducibly on a finite
vector space V' of size n and characteristic p. Then a,(G)|A/G| < 24~ 1/3per,

Proof. We prove the result by induction on n.

Assume that A acts primitively on V. If a,(G) = a(G), then the result follows from
part (2) of Lemma 5.32. In fact, in our argument to show Theorem 1.8 we naturally took
G to be as small as possible and our calculations actually gave |A/(G N Z(A)J)| < n
apart from the eleven exceptions listed in Theorem 1.8 (when a,(G) = a(G)). Here,
as usual, J denotes the central product of all normal subgroups of A contained in Ag
(where Ag = GLg(p/) N A and d is smallest with A < I'Ly(p/) and n = p/) subject to
being noncentral. Thus we are finished if the product of the orders of the non-Abelian
composition factors of J which are p’-groups is at most 24=1/3pc1—1 " Let Jy be as in
Lemma 5.40. By Lemma 5.40 we have b(Jy) < 247 '/3nc =1 unless n < 81 or pf = 7
and d = 4 or 5. It can be checked by GAP [27] that the bound holds in case n < 81.
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Thus assume that p/ = 7 and d = 4 or 5 with |b(Jo)| = |PSp,(3)|. Then A is a 7'-group
by [100, Theorem 7.2.a] and so a7(G)|A/G| = |A| < 241/3p by [43, Theorem 1.2].

Assume that A acts (irreducibly and) imprimitively on V. Let V =V, & ---®V; be a
direct sum decomposition of the vector space V such that 1 < ¢ and A (and so G) acts
transitively on the set {Vi,...V;}. Set m = |Vj|. Let K be the kernel of the action of A
on {Vi,...V;} and let A; and G be the action of N4(V}) and Ng(Vi) on Vi respectively.
As in the proof of Theorem 5.39, we have

ap(G) - |A/G| < (ap(GK/K) - |[A/GK]) - (ap(G1) - [A1/Ghl) - ap(N),

where, in this case, NV denotes the kernel of the action of K on Vj. Since the groups
GK/K < A/K can be viewed as transitive permutation groups acting on ¢ points,
Theorem 5.39 gives a,(GK/K)|A/GK| < ¢!=1. In the proof of Theorem 5.9 it was noted
that G1 must act irreducibly on V. Thus, by the induction hypothesis, a,(G1)[A41/G1| <
24=1/3mc1 . Since N is subnormal in the irreducible group A, it must be completely
reducible. By repeated use of Lemma 5.41 we have a,(N) < m@(t=1 /ct=1. Applying
these three estimates to the displayed inequality above, we get a,(G) - |4/G| < 71 -
(24—1/3mc1) X (mcl(t—l)/ct—l) — 24_1/37101. H

We are now in the position to complete the proof of Theorem 1.12 in the special case
that G is an affine primitive permutation group.

Theorem 5.43. Let G be an affine primitive permutation group of degree n, a power of
a prime p. Then a,(G)| Out(G)| < 247 /3plter,

Proof. Let H be a point stabilizer in G. We may assume that H # 1. Clearly H
acts irreducibly and faithfully on a vector space V of size n. If H'(H,V) = {0}, then
Theorem 5.42 gives the result, by Lemma 5.36. So assume that H'(H,V) # {0}. By
Lemma 5.37, F*(H) = L1 X - - - X Ly where L; = L are non-Abelian simple groups viewed
as subgroups of GL(V;) where the V; are vector spaces with V = @!_,V;. For each i put
|V;| = p? for a prime p and integer d. (See Lemma 5.37 and the proof of Theorem 5.38.)

If n = ¢® with ¢ = 2¢ for an integer e > 1 and H = La(q), then, by Section 5.10,
az(G)| Out(@)| < (n?logn)/2 < 24=1/3p1+¢1 Thus, by Theorem 5.38, we may assume
that | Out(G)| < n.

Assume first that L is not p-solvable. By Lemma 5.26 and Proposition 5.12, we have
the estimate a,(H) < (4d)'¢~! where ¢ is as in the beginning of this section, depending
onp. Ford=2andp >5 d=3andp >3, ord=4andp >3, ord >5
we have (4d)'ct1 < 2471/3pder—1) giving the desired bound for a,(H) and thus for
ap(G)| Out(G)| in these cases. The only exceptions are d = 3 and p = 2, and d = 4
and p = 2. However in these cases in the previous two estimates we may replace 4d,
we obtained from Lemma 5.26, by 1 and 4 respectively. Thus we may assume that L is
p-solvable (and p > 3).
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Let A be the full normalizer of G in S,,. Assume that p > 5 and that A/G is not p-
solvable. By Schreier’s conjecture and the proof of Theorem 5.10 we must then have t >
8. By the proof of Lemma 5.41 we have a,(A) < n?/4. Thus, by the main result of [35],
Lemma 5.37 and Theorem 5.10, we have the estimate a,(G)| Out(G)| < (n®/4)-t'8t.pd/2.
Furthermore, by the proof of Theorem 5.38, we may also assume that d > 3 as well as
t > 8. Under these conditions it easily follows that (n3/4) - tl°8t . pd/2 < 24=1/3pl+er,
Assume now that p > 5 and A/G is p-solvable. Then we must bound a,(A)|H(H,V)| <
(n®/4) - p%2. Using Lemma 5.26 this is smaller than the desired estimate unless t < 2.
Using Lemma 5.40 we can deduce the result if ¢ < 2 and d > 4. By the proof of Theorem
5.38 we cannot have d = 2 since H'(H,V) # {0} and p # 2. Thus ¢t <2 and d = 3. We
then have by the proof of Lemma 5.41 that a,(A)|H'(H,V)| < (n®/(p — 1)) - p which
is, for n > 343, less than 24~ Y3pl*e1. This forces p = 5, d = 3 and ¢ = 1 with |L| not
divisible by 5. GAP [27] shows that there is no such possibility.

We are left to consider the case when p = 3 and L is 3-solvable, that is, a Suzuki group.
In this case F*(H) has a regular orbit on V' by [100, Theorem 7.2.a]. We also have 1 <
|H'(H, V)| < n'/™ by [52, Table 2] and so we may assume by Lemma 5.37 that d > 14.
By these, Proposition 5.12 and a remark after Lemma 5.25, az(A)|H'(H,V)| < n3 <
24~1/3pl*er for n > 3. We may thus assume that a3(G)| Out(G)| > az(A)|H(H, V).
Then ¢t > 8 as in the previous paragraph and so a3(G)| Out(G)| < n? - 8t . pd/14 <
24-1/3p1+e1 whenever n > 3814, O

Finally we finish the proof of Theorem 1.12. By Theorem 5.43 we may assume that G is
a primitive permutation group of degree n with non-Abelian socle E which is isomorphic
to a direct product of ¢ copies of a non-Abelian simple group L. By Theorem 1.9 we
know that | Out(G)| < n in this case and so it is sufficient to show a,(G) < 2471/3p%
for every prime divisor p of n. This follows from the proof of Corollary 5.17.

5.12 Asymptotics

In this section the second half of Theorem 1.8 and Theorem 1.10 are proved.

Let G be a primitive permutation group of degree n and let A be the full normalizer
of G in S,,. Assume that A is not an (affine) subgroup of AI'Li;(¢) for a prime power ¢
equal to n. We will show that for n > 2190 we have |A/G| < n'/?logn.

Assume first that A is an affine primitive permutation group. Then so is G. In fact we
may change notation and assume that A and G are linear groups acting irreducibly on a
finite vector space V of size n with G <1 A. First assume that A acts primitively on V.
Let us use the notation of Theorem 5.30. By assumption, we have d > 2. If d = 2 then,
by the structure of A, we have that |A/G| is at most (3/2)(v/n — 1)logsn < n'/?logn
if A is solvable and |A/G| < n'/?logn if A is nonsolvable (using Dickson’s theorem). If
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d > 3, then, by Theorem 5.30,
’A/G’ < n1/3 . (logn) . J2logd+3 < n1/3(10g n)2loglogn+4 < n1/2

for n > 28192,

Assume now that A acts imprimitively on V and that it preserves a direct sum de-
composition V3 @ --- @ V; of V where t > 1 is as large as possible. Let K denote the
kernel of the (transitive) action of A on {Vi,...,V;}. As in the proof of Theorem 5.28,
let A be the action of N4(V1) on Vi. The group A; acts primitively and irreducibly on
V1. By Theorem 5.27, we have a(A;) < mlogm for m = |V;| > 316, In the notation of
Lemma 5.20 for t > 27 we have a(K/J) < (a(X1))"/3¢, by use of Lemma 5.23, where
c1 is as in Theorem 1.12. From this and by the proof of Theorem 5.28 together with
part (2) of Lemma 5.32 and Theorem 1.14, for t > 27 we get

|A/G| < |AJGK]|- (a(A1)b(A1/G))/3 < 161/ VIcgt . pl/3 < pl/2,

Otherwise, if ¢ is bounded (is at most 272%) but ¢ # 2, 4, then, again by the proof of
Theorem 5.28 and by Lemma 5.20 and Theorems 1.14 and 5.9, we have, for n > 28192,

|A/G| < |A/GK]|-b(A1/G1) - (a(A1))*8 < 16Y/VI08 . (log m)?loslos™ ., 7/16 ~ p1/2,

If t = 2 and m > 22048 then |A/G| < b(A1/G1)a(A;) < mlogm < n'/?logn.

Let t = 4. Then |[A/G| < 6 - b(A1/G1) - (a(A4;))*. Using the notation d (for A;) as
in Theorem 5.30, by the argument above, we see that for d > 2 and m > 22048 we have
b(A1/G1) - a(A1) < 16 - m'/?logm. This gives |A/G| < n'/?logn for n > 28192 under
the assumption that d > 2. Thus assume that d = 1. Here we use the observation made
in Lemma 5.21. Write a(A;) = |A;| in the form 2% where 7 is odd and ¢ is an integer.
Then we have |A/G| < 6- 2% - 7. From this the result follows if |A;] < 6m. Otherwise,
by Zsigmondy’s theorem, 2¢ < m. Now |A;| < mlog, m where g is the size of the field
over which A; and A are defined. From this 2%¢.7 < m? log, m giving [A/G| < n'/2logn
unless ¢ = 2. If ¢ = 2, then 2¢ < logm, and so |A/G| < 6 - m(logm)2 < n'2logn for
m > 22048.

Assume that A is a primitive permutation group which is not of affine type. In this case
we use the notation, assumptions and the argument in the last two paragraphs of Section
5.7. However, we use Theorem 1.14. If A has two minimal normal subgroups, then we
have |A/G| = a(A/G)b(A/G) < nl/3 . 45/VIogs . (Jog p)?loBlo8™  p1/2 for p > 28192
if s # 1, and also when s = 1. Finally assume that A has a unique minimal normal
subgroup. We first claim that we may assume that ¢t > 512. If |Out(L)| < /m and
t < 512, then |A/G| < n/*.16!/VI8t < p1/2_ 1f |Out(L)| is larger than \/m, then L is
one of the exceptions in Lemma 5.25 and so ¢ > 512 by use of n > 214000 If ¢+ > 512,
then, for n > 211990 we have |A/G| < |Out(L)|*/3 - 4t/VIosT . flogt < p1/2 g p.

This proves the second half of Theorem 1.8.
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So far we showed Theorem 1.10 in case |Out(G)| = |A/G|. In fact by the same
calculation as in the previous paragraph we established Theorem 1.10 in case G is not
of affine type. Thus assume that G is of affine type and H'(H,V) # 0 where V is the
minimal normal subgroup of G and H # 1 is a point stabilizer in G. Let us use the
notation and assumptions of the proof of Theorem 5.38.

Let us first assume that ¢ > 1 and | Out(G)| < (¢ — 1)¢!%?| Out(L)|"/?b; with d > 2
where by < 4%/VI08T . flogt 1y Theorem 1.14 and | Out(L)| < 4(logn)/t, by Lemma 5.26.
Here n = ¢%. Thus |Out(G)| < ¢l#/2+1. (ﬁl(logn)/t)t/2 - 4t/Viogt . glogt 1f > 3 or
¢t > 3, then this is less than n'/2 logn for n > 21000 Finally, if d = 2 and ¢t = 2, then

| Out(G)| < n'/?logn since | Out(L)| < logn by use of Dickson’s theorem on subgroups
L of GLg(q).

Finally assume that in the proof of Theorem 5.38 we have ¢ = 1, that is, H is an
almost simple group with socle L. Then | Out(G)| < (¢ — 1)|H' (L, W)|| Out(L)| where
W is a nontrivial irreducible L-module of size dividing n and defined over a field of size
g. By Lemma 5.26, | Out(L)| < 4logn.

By the main result of [35], we have | Out(G)| < 4(¢— 1)|VV|1/2 logn. Assume first that
[W| < n. If dim W > 3, then | Out(G)| < 4 - n®/2logn, which is less than n'/?logn for
n > 214000 If dim W = 2, then |Out(G)| < n'/?| Out(L)| which is less than n'/2logn
by using Dickson’s theorem once again. Thus assume that |IW| = n = ¢?. Furthermore,
as observed in the proof of Theorem 5.38, we may assume that d > 3 (otherwise G is a
member of the infinite sequence of examples in Theorem 1.9). Then, by [35], it is easy
to see that |Out(G)| < 2-n®*, at least for n > 21409 (In this previous bound the
factor 2 comes from the fact that the full normalizer in GL4(q) of Ag acting on the fully
deleted permutation module of dimension 4 in characteristic 3 over the field of size g has
size (¢ — 1)|Se| since the dimension of the fixed point space of a 3-cycle in Ag is different
from the dimension of the fixed point space of an element in Ag which is the product of
two 3-cycles.) This proves the first statement of Theorem 1.10.

If L is an alternating group of degree at least 7, a sporadic simple group or the
Tits group, then dim(H'(L,W)) < (1/4)dim(W) by [36, Corollary 3] and [35]. Thus
in these cases we have |Out(G)| < 2-n'/2 < n'/?logn. If L is a simple group of
exceptional type, then dim(H!(L,W)) < (1/3)dim(W) by [52], thus if d > 7 then
| Out(@)| < 4-n%/Tlogn < n'/?logn for n > 214090 Otherwise d = 6 and L = Go(r) with
revenor 4 < d <6 and L is a Suzuki group (by [62, Table 5.3.A] and [62, Table 5.4.C]).
However in these cases dim(H'(L,W)) < 1, by [52], and so | Out(G)| < n'/?logn. We
may now assume that L is a classical simple group.

Since we are assuming that the dimension of the natural module for L is at least
7, we see from [62, Table 5.4.C] and [62, Table 5.3.A] that d > 7. By [52] we also
have dim(H'(L,W)) < (1/3)dim(W). Thus | Out(G)| < 4 - n*7logn < n'/?logn for
n > 214000

This completes the proof of Theorem 1.10.
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In this last chapter of the thesis we consider fixed point spaces of elements of linear
groups. Let G be a finite group, F' a field, and V a finite dimensional F'G-module such
that G has no trivial composition factor on V. Then the arithmetic average dimension
of the fixed point spaces of elements of G on V is at most (1/p)dimV where p is the
smallest prime divisor of the order of G. This answers and generalizes a 1966 conjecture
of Neumann [86] which also appeared in a paper of Neumann and Vaughan-Lee [87]
and also as a problem in The Kourovka Notebook posted by Vaughan-Lee. Our result
also generalizes a recent theorem of Isaacs, Keller, Meierfrankenfeld, and Moret [57].
We also classify precisely when equality can occur. Various applications are given. For
example, another conjecture of Neumann and Vaughan-Lee is proven and some results
of Segal and Shalev [103] are improved and/or generalized concerning BFC groups.

6.1 The proofs

Our first lemma sharpens and generalizes [87, Theorem 6.1].

Lemma 6.1. Let G be a finite group, F a field, and V a finite dimensional FG-module.
Let N be an elementary Abelian normal subgroup of G such that Cyy(N) = 0. Then
avgdim(Ng, V) < (1/p)dim V' for every g € G where p is the smallest prime factor of
the order of G.

Proof. We may assume that F' is algebraically closed. Let us consider a counterexample
with |G| and dim V' minimal. It clearly suffices to assume that G = (g, N). We may
assume that V' is irreducible (since if we have the inequality on each composition factor
of V' we have it on V). Finally, we may assume that N acts faithfully on V. If N does
not act homogeneously on V', then g transitively permutes the components in an orbit
of size t > p and so every element in Ng has a fixed point space of dimension at most
(1/t)dimV < (1/p)dimV. So we may assume that the elementary Abelian group N
acts homogeneously on V. This means that it acts as scalars on V. Thus N < Z(G)
and G/Z(G) is cyclic. It follows that G is Abelian and so dim V' = 1. At most 1 element
in the coset Ng is the identity and so avgdim(Ng,V) < (1/|N])dimV < (1/p)dim V.
The result follows. O

We first need a result about generation of finite groups. This is an easy consequence
of the proof of the main results of [8].
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Theorem 6.2. Let G be a finite group with a minimal normal subgroup N = L1 X...xX Ly
for some positive integer t with L; = L for all i with 1 < i <t for a non-Abelian simple
group L. Assume that G/N = (xN) for some x € G. Then there exists an element
s€ Ly < N such that |{g € Nz : G = (g,s)}| > (1/2)|N]|.

Proof. First suppose that ¢ = 1. This is an immediate consequence of [8, Theorem 1.4]
unless G is one of Spy,,(2),n > 2, Sopmi1 or L= QF (2) or As.

If G = Spy,(2),n > 2, then the result follows by [8, Proposition 5.8]. If G = Sop,41,
then apply [8, Proposition 6.8].

Suppose that L = Ag. Note that the proper overgroups of s of order 5 in Ag are two
subgroups isomorphic to As (of different conjugacy classes) and the normalizer of the
subgroup generated by s. The result follows trivially from this observation.

Finally consider L = QJ (2). We take s to be an element of order 15. It follows by the
discussion in [8, Section 4.1] that given G, there is an element of order 15 satisfying the
result (although it is possible that the choice of s depends on which G occurs).

Now assume that ¢ > 1. Write x = (u1,...,u;)o where o just cyclically permutes the
coordinates of N (sending L; to L;11 for ¢ < t) and u; € Aut(L;). By conjugating by an
element of the group Aut(L;) X ... x Aut(L;) we may assume that ug = ... = u; = 1

(we do not need to do this but it just makes the computations easier).

Let f: Nx — Aut(L;) be the map sending wz to the projection of (wz)! in Aut(Ly).
Write w = (wyq,...,w;) with w; € L;. Then f(wz) = wawi—y...wiuy is in Liu;.
Moreover, we see that every fiber of f has the same size. By the case t = 1, we know
that the probability that (f(wzx),s) = (L1,u1) is greater than 1/2.

We claim that if L; < (f(wx), s), then G = (wz, s). The claim then implies the result.
So assume that Ly < ((f(wz),s) and set H = (wx, s). Let M < N be the normal closure
of s in J := ((wx)!,s). This projects onto Li by assumption, but is also contained in
L1, whence M = L;. So L; < H. Since any element of Nz acts transitively on the L;,
it follows that N < H and so G = H. O

The next result we need is Scott’s Lemma [101].

Lemma 6.3 (Scott’s Lemma). Let G be a subgroup of GL((V')) with V' a finite dimen-
sional vector space. Suppose that G = {(g1,...,9y) with g1---g, = 1. Then

> dim[g;, V] > dim V + dim[G, V] — dim Cy (G).
i=1

We will apply this in the case » = 3. Noting that dim V' = dim[z, V] 4+ dim Cy (z) for
any x, we can restate this as:
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3
Y " dim Cy(g;) < dimV + dim Cy (G) + dim V/[G, V].
i=1

Theorem 6.4. Let G be a finite group. Assume that G has a normal subgroup E that
is a central product of quasisimple groups. Let V be a finite dimensional FG-module
for some field F' such that E has no trivial composition factor on V. If g € G, then
avgdim(gFE,V) < (1/2)dim V.

Proof. Let us consider a counterexample with |G| and dim V' minimal. There is no
loss of generality in assuming that F' is algebraically closed, G = (E,g), and then
assuming that V' is an irreducible (hence absolutely irreducible) and faithful F'G-module.
If Z(E) # 1, the result follows by Lemma 6.1 (by taking N = Z(F) and noting that Z(E)
is completely reducible on V' with Cy(Z(E)) = 0 (since V is a faithful FG-module)).
So we may assume that F is a direct product of non-Abelian simple groups. If V' is not
a homogeneous F'E-module, then g transitively permutes the homogeneous components
and so any element in gF has fixed point space of dimension at most (1/2)dim V. So we
may assume that V' is a homogeneous F'E-module. Thus £ = L X...X L, with the L;’s
non-Abelian simple groups. So V is a direct sum of say t copies of V1 ® ... ® V},, where
V; is an irreducible nontrivial F'L;-module. (Since G/E is cyclic and V is irreducible, it
follows that ¢ = 1 (by Clifford theory) but we will not use this fact.) We may replace F by
a minimal normal subgroup of G contained in E (the hypothesis on the minimal normal
subgroup will hold by Clifford’s theorem) and so assume that g transitively permutes
the isomorphic subgroups L, ..., L.

Let s € L1 < E be chosen so that Y := {y € gE : (y,s) = G} has size larger than
(1/2)|E|. Such an element exists by Theorem 6.2. Set ¢ = dim Cy (s). If y € Y then, by
Lemma 6.3 (applied to the triple (y, s, (ys)~!)), we have

¢+ dim Cy(y) + dim Cy(ys) < dim V.
For any y € Y/ := gE \ 'Y, we at least have

dim Cy (y) +dim Cy (ys) < dimV + c.

Thus,
23 dimCy(y) = Y (dim Cy (y) + dim C'V(ys)>
yegk yegk
is at most
Y|(dimV —¢) + [Y'|(dimV + ¢) < |E|dim V.
This gives avgdim(gF) < (1/2)dim V' as required. O

We now prove Theorem 1.16. As usual, we may assume that F' is algebraically closed,
V' is an irreducible FG-module, and N acts faithfully on V. Let A be a minimal normal
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subgroup of GG contained in N. Since V is a faithful completely reducible F'N-module,
A has no trivial composition factor on V. Now apply Lemma 6.1 and Theorem 6.4 to
conclude that avgdim(Ag, V) < (1/p) dim V' where p is the smallest prime divisor of |G|.
Since Ng is the union of cosets of A, the result follows.

We next consider fields of characteristic 0.

Lemma 6.5. Let G be a finite group, C the field of compler numbers, and V a finite
dimensional CG-module. For an element g € G and a root of unity a € C let a, denote
the multiplicity of a as an eigenvalue of g. Then deG ag = deG by as long as a and
b have the same order in C*.

Proof. Let a and b be roots of unity of the same order. Let m be the exponent of G
with p a primitive m-th root of unity. Let ¢ be an element of the automorphism group
of the field Q(u) with o(a) = b. Let e be a positive integer such that o(u) = pu¢. Then
e is relatively prime to m and hence also to |G|. Thus, the map G — G with g — ¢° is
a bijection on G and s0 3 by = > e bge = D e a9, Whence the result. O

The Mobius function p(n) of a positive integer n is 0 if n is not square free and is
(—1)™ if n is square free and the number of (distinct) prime divisors of n is m. For a
positive integer n let s(n) be the sum of primitive nth roots of unity (in C). We recall
the following well known result.

Lemma 6.6. For a positive integer n we have s(n) = u(n).

Proposition 6.7. Let G be a finite group, let F' be a field such that |G| is invertible
i F, let V be a finite dimensional FG-module with no trivial F'G-composition factor,
and let p be the smallest prime divisor of the order of G/Cq(V). Then avgdim(G, V') <
(1/p) dim V" with equality if and only if the exponent of G/Cqg(V') is p.

Proof. By avgdim(G,V) = avgdim(G/Cq(V), V) we see that it is sufficient to assume
that Cq(V) = 1. Since |G| is invertible, there is no loss in assuming that char(F') = 0.
Let x be the character of the F'G-module V. Then, by hypothesis, (1, x) = 0, that

is, deG x(g9) = 0. Let ni,ng,...,ny, be the possible distinct orders of elements of G
with n; = 1 and ny = p. Since x(g) is the sum of the eigenvalues of the matrix of g

acting on V, Lemma 6.5 shows that there exist positive integers k1, ko, . . ., ky,, with
m
0= Z x(g) = Z kis(n;).
geG =1

Letting ¢(n) denote the Euler function of n, we may write the previous equation as

0= (kie(n))(s(ni)/o(ns)) > kr — (|G| dim V — k1) (1/(p — 1))
i=1
since s(n;)/p(n;) > (=1)/(p—1) for all ¢ with 2 < i < m. This gives k1 < (1/p)|G|dim V'
with equality if and only if the exponent of G is p. O
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Now we prove Theorem 1.17. By Proposition 6.7, we know that equality always occurs
when G/Cg(V) is a group of exponent p. Hence, it remains to show that whenever
avgdim(G,V) = (1/p) dim V', then G/Cq(V) is a group of exponent p.

Choose a minimal counterexample to this latter statement with respect to |G| and
dim V. As before, we may assume that Cg(V) = 1. By Proposition 6.7, we may also
assume that r := char(F") divides the order of G.

We claim that V is an irreducible F'G-module. For suppose not and W is a non-trivial
proper submodule of V. By the minimality of dim V' and by the fact that

avgdim(G, V) < avgdim(G, W) + avgdim(G, V/W) < (1/p) dim W + (1/p) dim V/W,

we have that G/Cq(W) and G/Cq(V/W) are groups of exponent p. Let N be the
normal subgroup of G which acts trivially on both W and V/W. Note that N is an
r-group. So G = PN where P is a Sylow p-subgroup of G of exponent p. Since
G is a counterexample to the above statement, N # 1. For any element ¢ € P we
have avgdim(gN, V) < dim Cy(g). (This can be seen by observing that some power of
an arbitrary element gn is conjugate to g. Moreover, avgdim(N,V) < (1/r)dimV <
(1/p)dim V. Thus,

avedim(G., V) = |P|™'Y " avedim(gN, V) < avedim(P, N) = (1/p)dim V,
gdim(G,V) = |P| gdim(gN, g s P :
geP

a contradiction.

So we may assume that V' is an irreducible F'G-module. Let M be a minimal normal
subgroup of G. By Theorem 1.16, we have avgdim(Mg, V) < (1/p) dim V for each coset
Mg of M in G, so avgdim(Mg,V) = (1/p)dim V must hold for each coset Mg of M
in G. In particular, by the minimality of G, the group M is an elementary Abelian
p-group. Since G is not a p-group, we can choose g € G of prime order s > p such that
G = (g, M) (by the minimality of G). (The module V remains an irreducible FG-module
(by the minimality of dim V') and C¢(V') = 1 continues to hold since both M and g acts
faithfully on V.) If M is central in G, then G is Abelian and dim V' = 1. In this case
avgdim(G,V) = (1/|G|)dimV < (1/p) dim V', a contradiction. If M is not central, then
g permutes the eigenspaces of M in an orbit of size s > p (for some divisor ¢ of s) and
so avgdim(Mg,V) < (1/t)dimV < (1/p)dimV, which is again a contradiction. This
proves Theorem 1.17.

Let us next prove the first statement of Corollary 1.19. By making the assumptions
of the proof of [57, Corollary D], it is sufficient to show that the number of g € G such
that dim Cy (g) < (1/2)dim V is at least

206 2]
1+log, |G|, = 2+dim V"

But this is clear by Theorem 1.16 noting that dim V' is even.
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Let us prove the second statement of Corollary 1.19. Use the notations and assump-
tions of the last part of the proof of [57, Corollary D]. Let H be a Hall p’-subgroup of
G. Since V is a completely reducible G-module with Cy (G) = 0, the vector space V is
also a completely reducible H-module with Cy (H) = 0. Hence applying Corollary 1.18
to the H-module V' we get that there exists ¢ € H with dim Cy(g) < (1/2)dim V. So
the last displayed inequality of the proof of [57, Corollary D] becomes

lcla(9)],
p

> x(1)'?

since dim V' is even. From this we get that p®x(1) < |clg(g),"

In the next two paragraphs we prove Theorem 1.20.

Note that Y centralizes M and so there is no loss in working in G/Y and assuming
that X = M is a minimal normal subgroup of G. Set H = (M, g) and so assume that g
acts transitively on the direct factors of M.

We compute the arithmetic mean of the positive integers |Cys(x)| for z € gM. All
elements in a given M-conjugacy class in gM have the same centralizer size. If h € gM,
then the M-conjugacy class of h has |M : Cjy(h)| elements. Thus, we see that the
arithmetic mean is precisely the number of M-conjugacy classes in gM. By [25, Lemma
2.1], this is at most k(M), the number of conjugacy classes in M. By [25, Proposition
5.3], this is at most |M|*!. Since the geometric mean is bounded above by the arithmetic
mean, the result follows.

We end this chapter by proving Theorem 1.21.

Let us fix a chief series for a finite group G. Let N be the set of non-central chief
factors of this series. Let p be the smallest prime factor of the order of G/F(G). If
N € N is Abelian then, by Theorem 1.16 (noting that F'(G) acts trivially on N), we
have geom(G, N) < |[N|"/P. If N € A is non-Abelian then, by Theorem 1.20 and the
Feit-Thompson Odd Order Theorem [22], we again have geom(G, N) < |N|/P. Notice
also that for any g € G' we have the inequality |Cg(g)| < ccf(G) [[yepn [Cn(g)|. From
these observations Theorem 1.21 already follows since

geom(@.¢) = ([T 1a(9)) " < cct@) (T IT lowta))) " =
geG geG NeN
= ccf(G)( H H \CN(Q)DI/‘G‘ = ccf(G)( H geom(G,N)) <
NeN gei NeN
< ccf(G)( I1 |N|1/p) = ccf(Q) - (nef(G))V/7.
NeN
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