
Answers to the questions raised by Máté Gerencsér, Ph.D.
in his referee report

First of all I would like to thank Máté Gerencsér, Ph.D. for his tho-
rough referee report. The questions raised in the report are answered
as follows.

Q1. What is the practical motivation behind studying weak convergence
for infinite-dimensional systems? What is the typical g that appears?

The motivation behind considering weak convergence is that in many
cases one is not interested in the solution itself but rather a functional of
the solution. Typical examples include moments; that is, g(x) = ‖x‖p,
p ≥ 1, or a smooth approximation of an indicator function such as,
for example, g(x) = Φ(M(x − δ)), where Φ(·) denotes the cumulative
distribution function for the standard normal distribution. In this case,
g approximates the indicator function of (δ,∞) when M > 0 is large
enough. For functionals that may depend on the orbit of the solution
one is often interested in statistical quantities such as covariances, or
higher order statistics, as in Corollary 2.3.8 of the dissertation.

Q2. Let us consider only, say, parabolic equations, where Markovianity
is not an problem. Is there an example where the bounds and/or the
strategy in the linear additive case can be used in either a nonlinear or
a multiplicative (w.r.t. the noise) equation?

The approach to weak error analysis via Kolmogorov’s equations has
been applied to various nonlinear problems. The key extra ingredient
is a Malliavin integration by parts to deal with the term that contains
the unbounded operator. This is the very term that can be eliminated
in the linear additive case using the special structure of the solution
but it will be present in the nonlinear setting. The first paper that in-
troduced the additional Malliavin integration by parts technique (semi-
linear equation with multiplicative white noise, time discretization in
1D) is [4]. Further examples, for the heat equation, are [5] (semilin-
ear equation with additive coloured noise, time discretization), and [1]
(semilinear equation with additive and multiplicative noise, finite ele-
ment space discretization).

Q3. When applying the error representation formula, the bounds used
on the derivatives of u are the ones that immediately follow from differ-
entiating (1.1.21) (or (3.2.4)). Are there more sophisticated regularity
results available for the Kolmogorov equation considered here that could
relax certain assumptions? For instance could analogues of the finite
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dimensional bounds

∂tu+ ∆u = 0, u(T, x) = g(x) =⇒ |uxx(T − t, x)| ≤ t−
1
2 sup

y
|g′(y)|

relax the condition g ∈ C2?

The situation in infinite dimensions is much less favourable. Even for
the simplest (forward) Kolmogorov equation

∂tu(t, x) =
1

2
Tr [QD2u(t, x)], t > 0, x ∈ H; u(0, x) = g(x), x ∈ H,

it is known that if dimH = ∞, then g being bounded and uniformly
continuous does not imply that u is continuously differentiable. In fact,
x→ u(t, x) might not even be Lipschitz continuous, see [6]. This phe-
nomenon transfers to the weak error as well. It is shown in [3] that if
g is Lipschitz continuous, then the weak rate, in general, is not better
than the strong rate. Therefore, it is not expected that one can signifi-
cantly reduce the regularity assumptions on g and still observe a weak
rate that is twice the strong rate. A small reduction in the regularity
requirement could be possible such as, for example, instead of asking
for g ∈ C2 only ask for g′ to be Lipschitz continuous. But this would
not be a major relaxation of the regularity requirements on g.

Q4. The variation of constants formula (2.1.2) together with the smooth-
ing effect (2.1.1) readily implies some Sobolev regularity of the solution.
Could this spatial regularity be used to allow f to lose regularity, i.e.
map from H → H−δ

′
for some δ′ > 0 (perhaps different from δ)?

There are existence and regularity results for stochastic Volterra equa-

tions under the assumptions that f : Ḣr−1+ 1
ρ → Ḣr−1 for some r < 1,

see [2]. Therefore, it is very likely that one can relax the assumptions
on f accordingly. The assumptions on f in the dissertation were put
in place to accommodate the situation when f is a Nemytskii opera-
tor. When f involves a gradient, then the suggested relaxed regularity
assumption could indeed be useful.

Q5. How important is the role of boundary conditions? In some ex-
amples Dirichlet, in others Neumann is chosen, is there a particular
reason for these choices?

From the point of view of the abstract theory the particular choice of
the boundary condition is not important as long as the linear opera-
tor with that particular choice satisfies the desired abstract spectral
properties. From a modelling point of view different boundary con-
ditions correspond to different physical situations. For example, in



case of the Cahn-Hilliard equation homogeneous Neumann boundary
condition means conservation of mass. This is often used in the liter-
ature. For a Volterra intergro-differential equation arising in viscole-
lasticity, assuming that the unknown function is the particle velocity,
homogenous Dirichlet boundary condition represent the so-called no-
slip boundary condition.
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