
Referee’s report on the D.Sc. dissertation Weak convergence of Galerkin

finite element approximations of stochastic evolution equations with additive

noise by Mihály Kovács

The main topic of the dissertation concerns weak error estimates, that is, bounds on

quantities of the form

|E(ϕ(Xn)− ϕ(X))|
where X is the solution of an infinite-dimensional stochastic evolution equation

∂tX − LX = f(X) + ξ, (1)

Xn is a temporal/spatial/full discretisation of it, and ϕ is a functional on the target space

of X. The main examples of the linear operator L are the Laplacian, bi-Laplacian, wave

operator, and time-convolution operator of Volterra equations. The latter example adds a

twist of a non-Markovian setting. The nonlinearity f appears only in Chapter 2, where it

is of 0 order (i.e. contains no derivatives), and the forcing ξ is either a Wiener or a Lévy

noise. When f is not present, X is not actually an unknown quantity: it is given exactly

by the Duhamel formula

X(t) = S(t)X(0) +

∫ t

0
S(t− s)“ξ(s)ds”, (2)

where S(t) is the solution operator process of L, which in most examples admits a closed

form, and “ξ(s)ds” is interpreted as an Itô stochastic integral. The thesis is composed of

3 chapters, with varying assumptions of the above objects and various choices of approxi-

mations. In addition to the weak error estimates, in some of the cases the strong error is

also discussed.

In Chapter 1, f = 0 and ξ is a Wiener noise. The class of ϕ considered here are of

the form ϕ(X) = g(X(T )), for some sufficiently regular function g. The error estimates

are based on the use of a drift-free backward Kolmogorov equation associated to a trans-

formed process, a nice trick introduced by Debussche and Printemps. The main tool is

summarised in a general setting in Theorem 1.2.1. It reduces controlling the weak error

of approximating stochastic convolutions like the one above to the control of the solution

of the Kolmogorov equation and the difference of the integrands. The former is automatic

by posing sufficient assumptions on g (bounded second derivative typically suffices), while

the for the latter one can invoke the deterministic bounds between the solution operator

process S(t) and its discretised counterparts. This is the strategy employed throughout

the majority of the dissertation in Chapters 1 and 3.

First this method is applied to the wave equation. For the temporal approximation a

family of discretisation is considered, parametrised by p ∈ N, including standard methods

like the implicit Euler scheme or the Crank-Nicholson scheme. The spatial discretisation



is a Galerkin finite element method parametrised by N 3 r ≥ 2, although as pointed out in

Remark 1.3.10., the practical implementation for r > 2 gets quite involved: the existence

and the construction of the finite elements becomes nontrivial and poses a number of

assumptions on the domain. A final parameter β describes the pointwise in time L2-

based Sobolev regularity of the solution - which at the end of the day parametrises the

regularity assumptions on the noise and the initial condition. With these notations in

hand, Theorem 1.3.13. establishes a weak error rate of min(2β r
r+1 , r) (spatially) and

min(2β p
p+1 , 1) (temporally).

Next the linearised CHC equation is considered. This corresponds to L = −∆2 - I admit

I do not understand the reason for the terminology: not only is the nonlinear term omitted

from the true CHC equation, but the Laplacian as well, and so one in fact ends up with

the biharmonic heat equation. The parameters are more specific in this case: the p = 1,

r = 2, 3, β ∈ (0, r/2] case is considered. The weak rate is shown to be 2β spatially and

β/2 temporally in Theorem 1.4.1.

Finally, for Volterra equations, the spatial discretisation is like above, with r = 2,

but the temporal discretisation requires some additional care due to the time-convolution

involved in LX(t) =
∫ t
0 b(t−s)AX(s) ds. This is done by a quadrature rule due to Lubich.

The weak rate is established in Theorem 1.5.33. to be 2β spatially and ρβ temporally,

in the regularity range β ∈ (0, 1/ρ], where ρ ∈ (1, 2) is the parameter for describing the

smoothing effect of the equation. The latter appears in many forms, for instance via the

bounds ‖AsS(t)‖ . t−sρ or ‖AsṠ(t)‖ . t−sρ−1, cf. the ρ = 1 in the Markovian case

formally obtained by taking b = δ0. In particular the larger ρ is, the more regular the

noise is required to be to guarantee X taking values in Hβ.

Chapter 3 is close in spirit to Chapter 1: it considers still the linear case f = 0,

functionals ϕ of the same form as above, but ξ this time is a Lévy process. The methodology

is also very similar: once the weak error is represented via a drift-free Kolmogorov equation

(Theorem 3.2.6.), one can use deterministic estimates between the true and approximate

solution operator processes. The results are analogous to the Gaussian case: for the heat

equation (with p = 1, r = 2, β ∈ (0, 1]) Theorem 3.3.4. shows the weak rate to be 2β

and β, for Volterra equations (with r = 2, β ∈ (0, 1/ρ]) Theorem 3.4.1. shows the weak

rate to be 2β and ρβ, and for the wave equation (with general parameters) Theorem 3.5.3.

shows the weak rate to be min(2β r
r+1 , r) and min(2β p

p+1 , 1), spatially and temporally,

respectively.

Chapter 2 moves away from the linear setting. The scope of the semilinear term f

includes relevant examples like Nemytskii operators X → F ◦X with sufficiently regular

F . It however excludes nonlinearities with more than linear growth or depending also on

derivatives - for example in the true CHC equation the nonlinearity ∆u3 violates both



conditions. The class of functionals is quite a bit larger than above: they are assumed to

be of the form

Z 7→
k∏
i=1

ϕi
( ∫ T

0
Z(t) dνi(t)

)
,

with some sufficiently regular functions ϕi and finite Borel measures νi. The strategy is

also different: loosely speaking it makes use of the fact that very rough estimates like

E
(
g(X(T ))− g(Xn(T ))

)
= E

(∫ 1

0
g′(X(T ) + λ(Xn(T )−X(T ))) dλ

)
(Xn(T )−X(T ))

. sup
x
|g′(x)|E|X(T )−Xn(T )|

can be much improved via Malliavin calculus, using instead appropriate dual Malliavin

norms in the final inequality. Denoting by M1,p,q the space of Lpω random variables with

LpωL
q
t Malliavin derivative and by (M1,p,q)∗ its dual in the Gelfand triple M1,p,q ⊂ L2

ω ⊂
(M1,p,q)∗, Proposition 2.2.1. first establishes the uniform M1,p,q-regularity of the true

solution and its approximation. Then Lemma 2.3.6. proves the desired rate of convergence

for the strong error in the weak norm (M1,p,q)∗. Putting the two together, the weak rate

follows easily, this is formulated in the main result of the chapter Theorem 2.3.7.

All of this is set up in an general abstract framework, with the assumptions on the

equation and its approximations formulated in Sections 2.1. and 2.3.1. The chapter

concludes with Section 2.4., where the abstract assumptions are briefly verified for two

concrete examples.

While the topic of numerical analysis is typically motivated with computational consid-

erations in mind, the thesis does not detail applications or simulations, and therefore I view

it as a primarily theoretical one. Nevertheless, one natural application-related question

that arises:

Q1. What is the practical motivation behind studying weak convergence for infinite-

dimensional systems? What is the typical ϕ that appears?

The error representation Theorem 1.2.1. is set up in an elegant abstract way to simulta-

neously handle different leading order operators, as illustrated with parabolic, hyperbolic,

as well as some non-Markovian examples. On the other hand, linear equations with addi-

tive noise are rather special in that an exact solution formula (2) is available, which seems

to be used in a crucial way, so the robustness of the methods is not clear. The author

himself notes in the introduction that the method of Chapters 1 and 3 no longer work

when f 6= 0, citing the issue of Markovianity for Volterra equations.

Q2. Let us consider only, say, parabolic equations, where Markovianity is not an prob-

lem. Is there an example where the bounds and/or the strategy in the linear additive case

can be used in either a nonlinear or a multiplicative (w.r.t. the noise) equation?



Q3. When applying the error representation formula, the bounds used on the deriva-

tives of u are the ones that immediately follow from differentiating (1.1.21) (or (3.2.4)).

Are there more sophisticated regularity results available for the Kolmogorov equation con-

sidered here that could relax certain assumptions? For instance could analogues of the

finite dimensional bounds

∂tu+ ∆u = 0, u(T, x) = g(x) ⇒ |uxx(T − t, x)| . t−1/2 sup
y
|g′(y)|

relax the condition g ∈ C2?

In Chapter 2 the Malliavin regularity of the solution is established in the M1,p,q spaces.

This is sort of ‘orthogonal’ to the question of spatial regularity, which is made use of in

the other chapters.

Q4. The variation of constants formula (2.1.2) together with the smoothing effect (2.1.1)

readily implies some Sobolev regularity of the solution. Could this spatial regularity be

used to allow f to lose regularity, i.e. map from H to H−δ
′

for some δ′ > 0 (perhaps

different from δ)?

Q5. How important is the role of boundary conditions? In some examples Dirichlet, in

others Neumann is chosen, is there a particular reason for these choices?

The results of the dissertation are novel and due to the author. Upon a successful

defense I recommend awarding the title Doctor of the Hungarian Academy of Sciences.
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