
Causality, Lo
ality, and Probability

in Quantum Theory

Gábor Hofer-Szabó

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



2

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



Prefa
e

In this volume I 
olle
ted my main resear
h results a
hieved in the past

several years in the philosophi
al foundations of quantum theory. All these

results are related to the question as to how the notion of 
ausality, lo
al-

ity and probability 
an be implemented into quantum theory. The volume


ontains 10 of my re
ently published resear
h papers on these subje
t issues.

Although philosophy of physi
s is generally pursued as a team work, and

indeed many of my papers are also produ
ed by 
ollaborating with various


olleagues, in the present book I pi
ked only papers written without 
ollab-

oration. My intention was not to make up a self-
ontained monograph sin
e

all the results of this volume have already appeared or will appear in one or

other of the books re
ently published with 
o-authors.

The main topi
s and prin
iples analyzed in this volume are Bell's notion

of lo
al 
ausality, the Common Cause Prin
iple, the Causal Markov Condi-

tion, d-separation, Bell's inequalities and the EPR s
enario. Ea
h 
hapter

of the volume is a di�erent paper, with a separate abstra
t, introdu
tion,

bibliography and sometimes appendix. To make the volume 
oherent and

to provide an overview of the general lands
ape I inserted an extra 
hapter,

the Introdu
tion, at the beginning of the book where I summarize the main

themes and results of the subsequent 
hapters and their interdependen
e.

The 
hapters of the volume are the following papers:

Chapter 1. Gábor Hofer-Szabó, "Quantum me
hani
s as a representation

of 
lassi
al 
onditional probabilities," Journal of Mathemati
al Physi
s

(submitted).

Chapter 2. Gábor Hofer-Szabó, "Three prin
iples leading to the Bell in-

equalities," Belgrade Philosophi
al Annual, 29, 57-66 (2016).

Chapter 3. Gábor Hofer-Szabó, "How man and nature shake hands: the

role of no-
onspira
y in physi
al theories," Studies in the History and

Philosophy of Modern Physi
s, 57, 89-97 (2017).
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Chapter 4. Gábor Hofer-Szabó, "Relating Bell's lo
al 
ausality to the Causal

Markov Condition," Foundations of Physi
s 45 (9) 1110-1136 (2015).

Chapter 5. Gábor Hofer-Szabó, "Bell's lo
al 
ausality is a d-separation


riterion," Springer Pro
eedings in Mathemati
s and Statisti
s (forth-


oming).

Chapter 6. Gábor Hofer-Szabó, "Lo
al 
ausality and 
omplete spe
i�
a-

tion: a reply to Seevin
k and U�nk," in U. Mäki et al. (eds), Re-


ent Developments in the Philosophy of S
ien
e: EPSA13 Helsinki,

Springer Verlag, 209-226 (2015).

Chapter 7. Gábor Hofer-Szabó, "Non
ommutative 
ausality in algebrai


quantum �eld theory," in M. C. Galavotti, D. Dieks, W. J. Gonzalez,

S. Hartmann, Th. Uebel, M. Weber (eds.), The Philosophy of S
ien
e

in a European Perspe
tive, Vol. 5., 543-554 (2014).

Chapter 8. Gábor Hofer-Szabó, "On the relation between the probabilis-

ti
 
hara
terization of the 
ommon 
ause and Bell's notion of lo
al


ausality," Studies in the History and Philosophy of Modern Physi
s,

49, 32-41. (2015).

Chapter 9. Gábor Hofer-Szabó, "Separate 
ommon 
ausal explanation and

the Bell inequalities," International Journal of Theoreti
al Physi
s, 51

110-123 (2012).

Chapter 10. Gábor Hofer-Szabó, "EPR 
orrelations, Bell inequalities and


ommon 
ause systems," in D. Aerts, S. Aerts and C. de Ronde (eds.),

Probing the Meaning of Quantum Me
hani
s: Physi
al, Philosophi
al

and Logi
al Perspe
tives, 263-277 (2014).

The results in the above papers have been presented at more than 60 inter-

national workshops and department seminars. I thank the audien
e of these

workshop and seminars for their valuable 
omments. The papers bene�ted

a lot from these dis
ussions.

Gábor Hofer-Szabó

De
ember, 2017
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Introdu
tion and overview

The philosophi
al understanding of the foundations of quantum theory is

one of the most thrilling questions in today's philosophy of s
ien
e. What is

the 
orre
t 
on
eptual basis of quantum me
hani
s? How 
an our most fun-

damental philosophi
al 
on
epts su
h as '
ausality', 'probability' or 'lo
ality'

be a

ommodated in this theory?

There is a very in�uential approa
h to the foundational problems of quan-

tum theory whi
h intends to a

ommodate quantum phenomena in a so-


alled 
lassi
al, lo
ally 
ausal world pi
ture. This world pi
ture is 
lassi
al

sin
e it adopts a 
lassi
al ontology of events represented by a Boolean math-

emati
al stru
ture in a 
lassi
al spa
etime; it is lo
al, sin
e the events in

question are lo
alized in a well-de�ned region of the spa
etime; and �nally

it is 
ausal in the sense that the relation between these events meets the

relativisti
 requirement of 'no superluminal propagation'. The �rst advo
ate

of su
h a theory was John Bell. In a number of seminal papers Bell 
arefully

studied the philosophi
al intuitions lying behind our 
on
ept of lo
ality and


ausality. His major 
ontribution, however, 
onsisted in translating these

intri
ate notions into a simple probabilisti
 framework whi
h made these no-

tions tra
table both for mathemati
al treatment and later for experimental

testability. Sin
e the 
entral question was as to whether quantum theory


an be a

ommodated in a 
lassi
al framework, therefore both Bell and the

subsequent authors used a 
lassi
al probabilisti
 language in their analysis.

Events were understood as 
lassi
al events represented by a 
ommutative

mathemati
al stru
ture and all the assumptions representing lo
ality and


ausality were formulated in the 
lassi
al probability theory.

This 
lassi
al, lo
al and 
ausal framework, however, turned out soon to

be inappropriate to a

ount for quantum theory. Bell showed that these 
las-

si
al probabilisti
 assumptions lead to some mathemati
al 
onstraints�the

so-
alled Bell inequalities�whi
h were shown to be violated in some quan-

tum s
enarios, thereby inhibiting a 
lassi
al, lo
ally 
ausal interpretation of

quantum me
hani
s. Bell's work has been followed by an extensive resear
h

9
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to lo
ate the assumptions responsible for the violation of the Bell inequali-

ties, and many authors analyzed the philosophi
al 
onsequen
es of giving up

either the one or the other of these assumptions. Sin
e these assumptions

represented our natural intuitions 
on
erning lo
ality and 
ausality, aban-

doning any of them resulted in a
knowledging the limits of a lo
ally 
ausal

interpretation of quantum me
hani
s.

Many of the papers 
ontained in this anthology 
an be 
onsidered as an

attempt to make a 
ompletely new start in the lo
ally 
ausal approa
h to

quantum theory. The 
ore idea in brief is this: let us give up the 
lassi
al

ontology in order to save lo
ality and 
ausality. In other words, 
ontrary to

the standard strategy, we should not sti
k to a 
lassi
al ontology at the pri
e

of making our explanation either nonlo
al, non-
ausal or introdu
ing other

undesirable features, but we should straightly abandon the 
lassi
al�that is,


ommutative�
hara
ter of 
ausality, and investigate what we may gain and

what philosophi
al pri
e we must pay for su
h a 
hange in our 
on
eptual

framework. Non
ommutativity has a well-established pla
e in the formalism

of quantum theory, but its role in 
ausal explanation is 
ompletely unex-

plored. Exploring the 
ausal explanatory role of non
ommutativity in lo
al


ausality, introdu
ing non
ommutative 
ausal 
on
epts into our explanatory

framework 
an both broaden our formal strategies to 
ausally a

ount for

quantum phenomena, and also deepen our understanding of the non
lassi
al

nature of 
ausality in quantum theory.

There is, however, another more 
onservative resear
h line pursued in this

volume. This follows the down-to-Earth Humean tradition and asks how far

we get by adhering to the standard ontology of physi
s whi
h is both lo
al

and 
lassi
al. How 
an quantum theory be re
onstru
ted from this ontology

and how quantum probabilities 
an be a

ounted for in terms of 
lassi
al

relative frequen
ies. What kind of 
ausal and probabilisti
 independen
ies

one should assume between the elements of reality of this 
lassi
al ontology

on the one hand and measurement 
hoi
es of the experimenter on the other

hand?

These are the main questions and topi
s of this volume.

The �rst three 
hapters of anthology lie on the 
onservative side. The topi


of Chapter 1 is to analyze the re
onstru
tability of quantum me
hani
s from


lassi
al 
onditional probabilities representing measurement out
omes 
on-

ditioned on measurement 
hoi
es. It will be investigated how the quantum

me
hani
al representation of 
lassi
al 
onditional probabilities is situated

within the broader frame of non
ommutative representations. To this goal,

I adopted some parts of the quantum formalism and asked whether empiri-
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al data 
an 
onstrain the rest of the representation to 
onform to quantum

me
hani
s. I will show that as the set of empiri
al data grows 
onventional

elements in the representation gradually shrink and the non
ommutative rep-

resentations narrow down to the unique quantum me
hani
al representation.

Chapter 2 sheds light on the broader lands
ape of the relation among

the most notorious prin
iples in the foundations of quantum me
hani
s. I


ompare here three prin
iples a

ounting for 
orrelations, namely Rei
hen-

ba
h's Common Cause Prin
iple, Bell's Lo
al Causality Prin
iple, and Ein-

stein's Reality Criterion and relate them to the Bell inequalities. I show

that there are two routes 
onne
ting the prin
iples to the Bell inequali-

ties. In 
ase of Rei
henba
h's Common Cause Prin
iple and Bell's Lo
al

Causality Prin
iple one assumes a non-
onspiratorial joint 
ommon 
ause

for a set of 
orrelations. In 
ase of Einstein's Reality Criterion one assumes

strongly non-
onspiratorial separate 
ommon 
auses for a set of perfe
t 
or-

relations. Strongly non-
onspiratorial separate 
ommon 
auses for perfe
t


orrelations, however, form a non-
onspiratorial joint 
ommon 
ause. Hen
e

the two routes leading the Bell inequalities meet.

Chapter 3 addresses the problem of the so-
alled no-
onspira
y. No-


onspira
y is the requirement that measurement settings should be proba-

bilisti
ally independent of the elements of reality responsible for the mea-

surement out
omes. In this 
hapter I investigate what role no-
onspira
y

generally plays in a physi
al theory; how it in�uen
es the semanti
al role of

the event types of the theory; and how it relates to su
h other 
on
epts as

separability, 
ompatibility, 
ausality, lo
ality and 
ontextuality.

In Chapters 4-6 I turn towards the de�nition of Bell's notion of lo
al


ausality in lo
al physi
al theories. The questions asked here are how lo
al


ausality is related to Causal Markov Condition, d-separation and whether


omplete spe
i�
ation is in 
ontradi
tion with no-
onspira
y.

The aim of Chapter 4 is to relate Bell's notion of lo
al 
ausality to the

Causal Markov Condition. To this end, �rst a framework, 
alled lo
al phys-

i
al theory, will be introdu
ed integrating spatiotemporal and probabilisti


entities and the notions of lo
al 
ausality and Markovity will be de�ned.

Then, illustrated in a simple sto
hasti
 model, it will be shown how a dis-


rete lo
al physi
al theory transforms into a Bayesian network and how the

Causal Markov Condition arises as a spe
ial 
ase of Bell's lo
al 
ausality and

Markovity.

Chapter 5 aims to motivate Bell's notion of lo
al 
ausality by means of

Bayesian networks. In a lo
ally 
ausal theory any superluminal 
orrelation

should be s
reened o� by atomi
 events lo
alized in any so-
alled shielder-o�

region in the past of one of the 
orrelating events. In a Bayesian network
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any 
orrelation between non-des
endant random variables are s
reened o� by

any so-
alled d-separating set of variables. I will argue that the shielder-o�

regions in the de�nition of lo
al 
ausality 
onform in a well de�ned sense to

the d-separating sets in Bayesian networks.

A physi
al theory is 
alled lo
ally 
ausal if any 
orrelation between spa
e-

like separated events is s
reened-o� by lo
al beables 
ompletely spe
ifying an

appropriately 
hosen region in the past of the events. In Chapter 6 I will

de�ne lo
al 
ausality in a 
lear-
ut framework, 
alled lo
al physi
al the-

ory whi
h integrates both probabilisti
 and spatiotemporal entities. Then I

will argue that, 
ontrary to the 
laim of Seevin
k and U�nk (2011), 
om-

plete spe
i�
ation does not stand in 
ontradi
tion to the free variable (no-


onspira
y) assumption.

In Chapter 7 it will be argued that embra
ing non
ommuting 
ommon


auses in the 
ausal explanation of quantum 
orrelations in algebrai
 quan-

tum �eld theory has the following two bene�
ial 
onsequen
es: it helps (i) to

maintain the validity of Rei
henba
h's Common Causal Prin
iple and (ii) to

provide a lo
al 
ommon 
ausal explanation for a set of 
orrelations violating

the Bell inequality.

In Chapter 8 the relation between the standard probabilisti
 
hara
teri-

zation of the 
ommon 
ause (used for the derivation of the Bell inequalities)

and Bell's notion of lo
al 
ausality will be investigated in the isotone net

framework borrowed from algebrai
 quantum �eld theory. The logi
al role

of two 
omponents in Bell's de�nition will be s
rutinized; namely that the


ommon 
ause is lo
alized in the interse
tion of the past of the 
orrelated

events; and that it provides a 
omplete spe
i�
ation of the `beables' of this

interse
tion.

In Chapter 9 I ask how the following two fa
ts are related: (i) a set of


orrelations has a lo
al, non-
onspiratorial separate 
ommon 
ausal expla-

nation; (ii) the set satis�es the Bell inequalities. My answer will be partial:

we show that no set of 
orrelations violating the Clauser�Horne inequalities


an be given a lo
al, non-
onspiratorial separate 
ommon 
ausal model if

the model is deterministi
.

Chapter 10 is again devoted to separate 
ommon 
ause systems. Namely,

standard 
ommon 
ausal explanations of the EPR situation assume a so-


alled joint 
ommon 
ause system that is a 
ommon 
ause for all 
orrela-

tions. However, the assumption of a joint 
ommon 
ause system together

with some other physi
ally motivated assumptions 
on
erning lo
ality and

no-
onspira
y results in various Bell inequalities. Sin
e Bell inequalities are

violated for appropriate measurement settings, a lo
al, non-
onspiratorial

joint 
ommon 
ausal explanation of the EPR situation is ruled out. But

12
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why do we assume that a 
ommon 
ausal explanation of a set of 
orrelation


onsists in �nding a joint 
ommon 
ause system for all 
orrelations and not

just in �nding separate 
ommon 
ause systems for the di�erent 
orrelations?

What are the perspe
tives of a lo
al, non-
onspiratorial separate 
ommon


ausal explanation for the EPR s
enario? And �nally, how do Bell inequali-

ties relate to the weaker assumption of separate 
ommon 
ause systems?

13
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Chapter 1

Quantum me
hani
s as a

non
ommutative representation

of 
lassi
al 
onditional

probabilities

The aim of this paper is to analyze the re
onstru
tability of quantum me-


hani
s from 
lassi
al 
onditional probabilities representing measurement

out
omes 
onditioned on measurement 
hoi
es. We will investigate how the

quantum me
hani
al representation of 
lassi
al 
onditional probabilities is

situated within the broader frame of non
ommutative representations. To

this goal, we adopt some parts of the quantum formalism and ask whether

empiri
al data 
an 
onstrain the rest of the representation to 
onform to

quantum me
hani
s. We will show that as the set of empiri
al data grows


onventional elements in the representation gradually shrink and the non-


ommutative representations narrow down to the unique quantum me
han-

i
al representation.

1.1 Introdu
tion

In the quantum information theoreti
al paradigm one is usually looking for

the re
onstru
tion of quantum me
hani
s from information-theoreti
 �rst

prin
iples (Hardy, 2008; Chiribella, D'Ariano and Perinotti, 2015). This

approa
h has produ
ed many fas
inating mathemati
al results and greatly


ontributed to a better understanding of the 
omplex formal stru
ture of

15
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quantum me
hani
s. As a top-down approa
h, however, its prime aim was

to 
larify the relation of the theory to higher-order (rationality, information-

theoreti
, et
.) prin
iples and payed less attention to the �legs� of the theory


onne
ting it to experien
e.

In this paper we take an opposite, bottom-up route and ask�in the

spirit of the good old empiri
ist tradition�as to how the theory 
an be

re
onstru
ted not from �rst prin
iples but from experien
e. More pre
isely,

we will ask whether we 
an re
onstru
t the formalism of quantum me
hani
s

from using simply 
lassi
al 
onditional probabilities.

Why 
lassi
al 
onditional probabilities?

Quantum me
hani
s as a probabilisti
 theory provides us quantum prob-

abilities for 
ertain observables. The question is how to 
onne
t these quan-

tum probabilities to experien
e. The 
orre
t answer is that the probabilities

provided by the Born rule should be interpreted as 
lassi
al 
onditional prob-

abilities. They are 
lassi
al sin
e they are nothing but the long-run relative

frequen
y of 
ertain measurement out
omes expli
itly testable in the lab;

and they are 
onditional on the fa
t that a 
ertain measurement had been


hosen and performed (E. Szabó, 2008). For example, the quantum prob-

ability of the out
ome �spin-up� in dire
tion z is the relative frequen
y of

the out
omes �up��but not in the statisti
al ensemble of all measurement

out
omes (whi
h may also 
omprise spin measurements in other dire
tions)

but only in the subensemble when spin was measured in dire
tion z.
What does it mean to re
onstru
t quantum me
hani
s from 
lassi
al


onditional probabilities?

First note that all we are empiri
ally given are 
lassi
al 
onditional prob-

abilities. The question is how to represent these empiri
al data. As it was

shown in (Bana and Durt 1997), (E. Szabó 2001) and (Rédei 2010) 
lassi-


al 
onditional probabilities 
onforming to the probabilisti
 predi
tions of

quantum me
hani
s need not ne
essarily be represented in the formalism of

quantum me
hani
s. The so-
alled �Kolmogorovian Censorship Hypothesis�

(or better, Proposition) states that there is always a Kolmogorovian repre-

sentation of the quantum probabilities if the measurement 
onditions also

make part of the representation. Thus, a stubborn 
lassi
ist will always �nd

a way to represent the empiri
al 
ontent of quantum me
hani
s in a purely


lassi
al framework.

On the other hand, quantum me
hani
s has proved to be an extremely

elegant and e
onomi
 representation of these empiri
al data. It provides a

prin
ipled representation of an enormous 
olle
tion of 
onditional probabili-

ties together with their dynami
al evolution.

Our paper is a kind of interpolation between the two sides. Our strategy
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will be to a

ept some parts of the quantum me
hani
al representation of


lassi
al 
onditional probabilities and ask whether the rest follows. More

pre
isely, we a

ept the non
ommutative probability theory whi
h in our


ase will boil down to representing observables and states by linear opera-

tors. We also adopt the Born rule 
onne
ting the quantum probabilities to

real-world 
lassi
al 
onditional probabilities; and the quantum me
hani
al

representation of measurement settings and measurement out
omes. The

only �free variable� will be the representation of the state of the system. Our

main question will then be as to what empiri
al data ensure that the state

of a system is represented by a density operator.

By this strategy we are going to analyze how quantum me
hani
s is situ-

ated within a non
ommutative probability theory and to study whether the

spe
i�
 quantum me
hani
al representation of 
lassi
al 
onditional probabil-

ities within this broader frame 
an be tra
ed ba
k to purely empiri
al fa
ts

or is partly of 
onventional nature.

In the paper we will pro
eed as follows. In Se
tion 2 we introdu
e the

general s
heme of a non
ommutative representation of 
lassi
al 
onditional

probabilities. In the subsequent three se
tions we gradually enhan
e the

set of empiri
al data that is the set of 
lassi
al 
onditional probability of

measurement out
omes. We ask whether by in
reasing the set of empiri
al

data the non
ommutative representation of these data ne
essarily narrows

down to the quantum me
hani
al representation or some extra 
onventional

elements are also needed. The empiri
al situation we are going to represent

will be three yes-no measurements in Se
tion 3, k measurements ea
h with

n out
omes in Se
tion 4, and �nally a 
ontinuum set of measurements with

n out
omes in Se
tion 5. We will see how the 
onventional part gradually

shrinks as experien
e grows until the representation �nally zooms in on the

quantum me
hani
al representation. We dis
uss our results in Se
tion 6.

1.2 Quantum me
hani
al and non
ommutative rep-

resentation

Suppose there is a physi
al system in state s and we perform a set {ai} (i ∈ I)
of measurements on the system. Denote the out
omes of measurement ai by
{Aj

i} (j ∈ J). Suppose that by repeating the measurements many times we

obtain a probability ps(A
j
i |ai) that is a stable long-run relative frequen
y

for ea
h out
ome Aj
i given measurement ai is performed. Now, quantum

me
hani
s represents these 
onditional probabilities as it is summarized in

the following table:

17

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



Quantum me
hani
al representation:

Operator assignment: Born rule:

System −→ H: Hilbert spa
e
Measurements: ai −→ Oi: self-adjoint operators

Out
omes: Aj
i −→ P j

i : spe
tral proje
tions of Oi

States: s −→ Ws: density operators

ps(A
j
i |ai) = Tr(WsP

j
i )

In the table the di�erent 
on
epts are presented. On the left hand side of the

arrow/equation sign stand the empiri
al 
on
epts to be represented; on the

right hand side stand the mathemati
al representation of the empiri
al 
on-


epts. The two are not to be mixed. Although we do not use �hat� to denote

operators, throughout the paper we 
arefully distinguish empiri
al 
on
epts

(measurements, out
omes, states) from their representation (self-adjoint op-

erators, proje
tions, density operators). Thus, the physi
al system under

investigation is asso
iated to a Hilbert spa
e H; ea
h measurement ai is rep-
resented by a self-adjoint operator Oi; the out
omes Aj

i of ai are represented
by the orthogonal spe
tral proje
tions of Oi; and the state s of the system
is represented by a density operator Ws, a self-adjoint, positive semide�nite

operator with tra
e equal to 1. In the se
ond 
olumn the mathemati
al rep-

resentation is 
onne
ted to experien
e by the Born rule: the representation

is 
orre
t only if the quantum me
hani
al tra
e formula Tr(WsP
j
i ) 
orre
tly

yields the empiri
al 
onditional probability ps(A
j
i |ai) for any out
ome Aj

i of

measurement ai and any state s.

Note the following two fa
ts. First, the tra
e formula is asso
iated to a


onditional probability, not to a probability simpli
iter. This means, among

others, that in joint measurements one always needs to 
ombine di�erent

measurement 
onditions. Se
ond, the tra
e formula is �holisti
� in the sense

that the empiri
ally testable 
onditional probabilities are asso
iated to the

tra
e of the produ
t of two operators, one representing the state and the

other representing the measurement. This leaves a lot of freedom to a

ount

for the same empiri
al 
ontent in terms of operators.

The main question of our paper is whether the above quantum me
hani
al

representation of 
lassi
al 
onditional probabilities is 
onstrained upon us if

the set of empiri
al data is large enough or whether we need some extra

theoreti
al, aestheti
 et
. 
onsiderations to arrive at it. In order to de
ide

on this question, we 
onsider �rst a wider 
lass of representations whi
h

we will 
all non
ommutative representations. We will then ask whether a

non
ommutative representation of a set of large enough data is ne
essarily
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a quantum me
hani
al representation.

What is a non
ommutative representation?

Generally, a non
ommutative representation is simply an asso
iation of

measurements and states to linear operators a
ting on a Hilbert spa
e su
h

that some fun
tional of the representants provides the 
orre
t empiri
al 
on-

ditional probabilities. Obviously this asso
iation 
an be done in many dif-

ferent ways. In our paper we pi
k a spe
ial non
ommutative representation

whi
h is very 
lose to the quantum me
hani
al representation: We retain

all the assignments (denoted by −→) of the above table ex
ept the last one.

That is we will represent the system by a Hilbert spa
e, the measurements by

self-adjoint operators, and the out
omes by the orthogonal spe
tral proje
-

tions. We also retain the Born rule 
onne
ting the formalism to experien
e.

The only part of the representation whi
h we let vary will be the asso
iation

of the state of the system to linear operators. That is we do not demand that

states should ne
essarily be represented by density operators. We summarize

this s
heme in the following table:

Non
ommutative representation:

Operator assignment: Born rule:

System −→ H: Hilbert spa
e
Measurements: ai −→ Oi: self-adjoint operators

Out
omes: Aj
i −→ P j

i : spe
tral proje
tions of Oi

States: s −→ Ws: linear operators

ps(A
j
i |ai) = Tr(WsP

j
i )

Obviously, our non
ommutative representation is only one spe
ial 
hoi
e

among many. One 
ould well take di�erent routes. For example one 
ould

demand that the state should be represented by density operators but aban-

don that the proje
tions representing the out
omes should be orthogonal.

Or one 
ould repla
e the Born rule by another expression 
onne
ting the

formalism to the world. As said above, the 
onne
tion of the formalism of

quantum me
hani
s and experien
e is of holisti
 nature; one 
an �x one part

of the formalism and see how the rest may vary su
h that the resulting prob-

abilities are in tune with experien
e. With respe
t to our aim whi
h is to

see how we are 
ompelled to adopt the quantum me
hani
al representation

by in
reasing the number of 
onditional probabilities to be represented, our

above 
hoi
e is just as good as any other.

What we will test in the subsequent se
tions is whether our non
ommu-

tative representation is ne
essarily a quantum me
hani
al representation. In
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other words, we will test whether for any 
hoi
e of operators representing a


ertain set of measurements and the out
omes su
h that the Born rule yields

the 
orre
t 
onditional probabilities, the state will ne
essarily be represented

by a density operator. In Se
tion 3 we start o� as a warm-up with three mea-

surements; in Se
tion 4 we 
ontinue with k measurements; and in Se
tion 5

we end up by un
ountably many measurements. It will turn out that the gap

between non
ommutative and quantum me
hani
al representation gradually

shrinks as the set of empiri
al data grows.

1.3 Case 1: Three yes-no measurements

Consider a box �lled with balls. Denote the preparation of the box by s.
Suppose you 
an perform three di�erent measurements on the system; you


an measure the 
olor, the size or the shape of the balls. Denote the three

measurements as follows:

a: Color measurement

b: Size measurement

c: Shape measurement

Suppose that ea
h measurement 
an have only two out
omes:

A+
: Bla
k A−

: White

B+
: Large B−

: Small

C+
: Round C−

: Oval

Suppose you pi
k a measurement, perform it many times (putting the balls

always ba
k into the box), and 
ount the probability, that is the long-run

relative frequen
y, of the out
omes. What you obtain is the 
onditional

probability of the out
omes given the measurement you pi
ked is performed

on the system prepared in state s:

p±a := ps(A
±|a) (1.1)

p±b := ps(B
±|b) (1.2)

p±c := ps(C
±|c) (1.3)

Now, suppose you are going to represent the above empiri
al fa
ts not in

the standard 
lassi
al probability theory but in a quantum fashion. Sin
e

our model 
ontains only two-valued (yes-no) measurements, it su�
es to use

only a minor fragment of quantum me
hani
s. Again, we summarize it in a

table:
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Quantum me
hani
al representation:

Operator assignment: Born rule:

System: −→ C2

Color: a −→ Oa = aσ

Size: b −→ Ob = bσ

Shape: c −→ Oc = cσ

Bla
k/White: A± −→ P±
a = 1

2
(1± aσ)

Large/Small: B± −→ P±

b = 1

2
(1± bσ)

Round/Oval: C± −→ P±
c = 1

2
(1± cσ)

State: s −→ Ws =
1

2
(1+ sσ)

p±a = Tr(WsP
±
a ) = 1

2
(1± sa)

p±b = Tr(WsP
±

b ) = 1

2
(1± sb)

p±c = Tr(WsP
±
c ) = 1

2
(1± sc)

Here, the Hilbert spa
e asso
iated to the system is the two-dimensional 
om-

plex spa
e C2; and the operators asso
iated to the measurements, out
omes

and the state are all self-adjoint operators a
ting on C2. A

ording to this

representation, 
alled the Blo
h sphere representation, a self-adjoint opera-

tor Oa asso
iated to measurement a 
an be represented by the inner produ
t

of a unit ve
tor a = (ax, ay, az) in R
3
and the Pauli ve
tor σ = (σx, σy, σz).

The two out
omes A±
of measurement a are asso
iated to the spe
tral pro-

je
tions P±
a = 1

2
(1 ± aσ) of Oa, where 1 is the two-dimensional identity

operator. Finally, the density operator Ws asso
iated to the state s of the

system is of the formW = 1

2
(1+sσ), where s = (sx, sy, sz) is in the unit ball

B = {r ∈ R
3 : |r| 6 1} of R3

. If |s| = 1, then s is said to be a pure state,

otherwise a mixed state. Again, the empiri
al 
ontent of the representation

is ensured by the Born rule whi
h in this two-dimensional 
ase boils down

to the inner produ
t: p±a = 1

2
(1± sa). (Similarly for b and c.)

Now, to give a quantum me
hani
al representation for the above situation

we need to asso
iate the three measurements to three Blo
h ve
tors and

the state of the system to a fourth Blo
h ve
tors (either unit or smaller)

su
h that the Born rule (the tra
e formula) yields the pre-given 
onditional

probabilities (1.1)-(1.3). Thus, assign to ea
h measurement a unit ve
tor in

R
3
:

{a, b, c} 7→ {a,b, c} (1.4)

Suppose that the ve
tors a, b and c are linearly independent. First, we show

that given three pairs of empiri
al 
onditional probabilities p±a , p
±

b and p±c
and also the assignment (1.4), the operator Ws asso
iated to the state s gets
uniquely �xed. S
hemati
ally,

p±a , p
±

b , p
±

c & a, b, c =⇒ Ws
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To see this, observe that any linear operator a
ting on C2 
an be written as

Ws = s01+ sσ + i(s′01+ s
′
σ)

where s0, s
′
0 ∈ R and s, s′ ∈ R

3
. Now, applying the Born rule to the three

measurements we get:

p±a = Tr(WsP
±

a ) = s0 ± sa+ i(s′0 ± s
′
a)

p±b = Tr(WsP
±

b ) = s0 ± sb+ i(s′0 ± s
′
b)

p±c = Tr(WsP
±

c ) = s0 ± sc+ i(s′0 ± s
′
c)

whi
h, assuming that p±a , p
±

b and p±c are real and a, b and c are linearly

independent, yield

s0 =
1

2
s′0 = 0 s

′ = 0

and hen
e

p±a =
1

2
± sa

p±b =
1

2
± sb

p±c =
1

2
± sc

the solution of whi
h is Ws =
1

2
(1+ sσ) with

s =
(p+a − 1

2
)(b× c) + (p+b − 1

2
)(c× a) + (p+c − 1

2
)(a× b)

a · (b× c)

where × is the 
ross produ
t. (The linear independen
e of a, b and c is

needed for the triple produ
t in the denominator not to be zero.)

This is a well-known result. Sin
e the late 60s and early 70s there has

begun an intensive resear
h for the empiri
al determination of the state of

a quantum system. In a series of papers Band and Park (1970, 1971) have

extensively investigated how the expe
tation value of 
ertain observables

determine the state of a system. They investigated the minimal number of

observables, 
alled the quorum, needed for su
h state determinations; the

stru
ture and geometry of this set; and many other important features. The

study of the quorum has be
ome an eminent resear
h proje
t also in the new

quantum informational paradigm. Quantum tomography, quantum state
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re
onstru
tion, quantum state estimation et
. all follow the same path: they

start from a set of observables and aim to end up with a more-or-less �xed

state using empiri
al input (see for example (D'Ariano, Ma

one and Paris,

2001)).

However, all these endeavors have a 
ommon pre-assumption, namely

that the asso
iation of measurements to operators is already settled. They

all start from a set of operators and (by means of a set of empiri
al proba-

bilities) aim to re
onstru
t the quantum state of a system. But an operator

is not a measurement but only a representation of a measurement. Calling

operators observables overshadows the fa
t that the operators are already

on the mathemati
al side of the proje
t and without providing an asso
ia-

tion of measurements to operators the state determination 
annot rightly be


alled �empiri
al�. This measurement-operator assignment is that whi
h we

are going to make expli
it in what 
omes.

Consider the following measurement-operator assignment in the 
ontext of

our above model: we asso
iate the following three Blo
h ve
tors to the mea-

surements a, b and c:

a = x = (1, 0, 0) (1.5)

b = (0, cosϕ,− sinϕ) (1.6)

c = z = (0, 0, 1) (1.7)

and for the sake of simpli
ity we set the 
onditional probabilities as follow:

p+a = p+b = p+c =: p (1.8)

The Blo
h ve
tor s for these spe
ial dire
tions and empiri
al probabilities

will then be the following:

s = (p − 1

2
)

(

1,
1 + cosϕ+ sinϕ

1 + cosϕ− sinϕ
, 1

)

(1.9)

But the operator Ws asso
iated to the Blo
h ve
tor s will not ne
essarily be

a density operator. For example for any

p ∈ [0.76, 1] and ϕ ∈ [π/3, π/2) (1.10)

the ve
tor s will be longer than 1 and hen
e Ws will not be positive semidef-

inite, that is, a density operator.

Thus, we have provided a non
ommutative but not quantum me
hani
al

representation of the above s
enario. All the assignments of the table at the
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beginning of this se
tion hold ex
ept the last one: the state of the system is

represented by a linear operator but not a density operator.

This toy-example is, however, spe
ial in two senses: (i) the number of

measurements is �nite and (ii) the number of out
omes is two, that is, the

s
enario is represented in the two-dimensional Hilbert spa
e whi
h is always

a spe
ial 
ase. We ta
kle point (ii) in the next se
tion and point (i) in the

one after the next.

1.4 Case 2: k measurements with n out
omes

Let us then see whether a larger set of probabilities 
an also be given a

non
ommutative but not quantum me
hani
al representation. Suppose we

perform k measurements on a system su
h that ea
h measurement 
an have

n out
omes. Suppose we obtain the following empiri
al 
onditional proba-

bilities:

pji := p(Aj
i |ai) > 0 with

∑

i

pji = 1 for all i = 1 . . . k; j = 1 . . . n

Just as above we represent ea
h measurement ai by a self-adjoint operator

Oi in the Hilbert spa
e Hn and the measurement out
omes {Aj
i} of ai by

the orthogonal spe
tral proje
tions {P j
i }. The representation is 
onne
ted

to experien
e by the Born rule:

pji := p(Aj
i |ai) = Tr(WsP

j
i )

where Ws is a linear operator representing the state s of the system. Again,

we do not assume that Ws is a density operator; our task is just to see

whether it follows that Ws is always a density operator.

Now, the empiri
ally given probability distributions together with the


onventionally 
hosen sets of minimal orthogonal proje
tions provide 
on-

straints on Ws via the Born rule. For a 
ertain number of measurements Ws

gets 
ompletely �xed. S
hemati
ally,

{pj
1
}, {pj

2
} . . . {pjk} & {P j

1
}, {P j

2
} . . . {P j

k} =⇒ Ws

How many measurements are needed to uniquely �x Ws?

Ws gets uniquely �xed if Tr(WsA) is given for n2 linearly independent

operators A. Our operators are minimal proje
tions. The �rst set of mini-

mal orthogonal proje
tions provides n linearly independent equations. Any

further linearly independent set of orthogonal proje
tion provides n−1 extra
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equations sin
e in ea
h set the proje
tions sum up to the unity. That is k lin-
early independent sets of minimal orthogonal proje
tions provide k(n−1)+1
linearly independent equations whi
h is equal to n2 if k = n+1. Thus, per-
forming k = n + 1 measurements on our system (resulting in k = n + 1
probability distributions) and representing all the out
omes by orthogonal

proje
tions in Hn, the linear operator Ws gets uniquely �xed.

But it will not ne
essarily be a density operator!

Our question is then: Do k = n+ 1 measurements 
onstrain Ws to be a

density operator for all linearly independent sets of orthogonal proje
tions

representing the out
omes and all probability distributions generated from

the proje
tions by the Born rule? Again, what we test here is whether a

non
ommutative representation is ne
essarily a quantum me
hani
al repre-

sentation.

Now, we show that the answer is: no.

As said above, a density operator is a self-adjoint, positive semide�nite

operator with tra
e equal to 1. Self-adjoint operators in Hn form a ve
tor

spa
e V over the �eld of real numbers. This ve
tor spa
e 
an also be endowed

with an inner produ
t indu
ed by the tra
e: (A,B) := Tr(AB). The oper-

ators with tra
e equal to 1 form an a�n subspa
e E in V and the positive

semide�nite operators form a 
onvex 
one C+. (A subset C of a real ve
tor

spa
e V that linearly spans V is a 
onvex 
one if for any A1, A2 ∈ C and

r1, r2 ∈ R+, r1A1+r2A2 ∈ C and A,−A ∈ C ⇒ A = 0). The interse
tion of

the two, C+∩E, is a 
onvex set in the a�n subspa
e. The extremal elements

of this set are the minimal proje
tions in Hn. Denote this set of minimal

proje
tions in Hn by Pn.
Now, for any 
one C in V , the dual 
one C∗

is de�ned as

C∗ := {A ∈ V |Tr(AB) > 0 for all B ∈ C}
A

ording to Fejér's Tra
e Theorem the 
one of the positive semide�nite

operators is self-dual that is C∗
+ = C+.

Now, let us return to our example. Consider the k = n + 1 linearly

independent sets of orthogonal proje
tions representing the measurement

out
omes in Hn. Let D be the 
onvex 
one expanded by these proje
tions

in Pn as extremal elements. Obviously, D ⊂ C+ and 
onsequently D∗ ⊃
C∗
+ = C+. Pi
k an element from (D∗ \C+)∩E and 
all it Ws. Lying outside

C+, Ws will not be positive semide�nite but, lying in E, Ws will be of tra
e

1. Hen
e for any set of orthogonal proje
tions it generates a probability

distribution by the Born rule.

Thus, we have found a 
ounter-example (a
tually, 
ontinuously many


ounter-examples): k = n + 1 linearly independent sets of orthogonal pro-

25

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



je
tions representing measurement out
omes and k = n+ 1 probability dis-

tributions su
h that the latter is generated from the former by the Born rule

with an operator Ws whi
h is not a density operator (sin
e is not positive

semide�nite). Hen
e, we have provided a non
ommutative but not quantum

me
hani
al representation for a situation in whi
h k = n+ 1 measurements

with n out
omes are performed on a system. This shows that our previous

result is not a 
onsequen
e of the fa
t that the Hilbert spa
e is the spe
ial

H2. Conditional probabilities of �nitely many measurements with �nitely

many out
omes 
an always be given a non
ommutative but not quantum

me
hani
al representation.

But what is the situation if we are going to the 
ontinuum limit? Does

our 
ounter-example survive if the 
ardinality of the set of 
onditional proba-

bilities to be represented is un
ountable? To this we turn in the next se
tion.

1.5 Case 3: A 
ontinuum set of measurements with

n out
omes

There is a theorem whi
h immediately 
omes to one's mind when going to

the 
ontinuum limit, namely Gleason's theorem.

Suppose we are given a 
ontinuum set of probability distributions of

measurements with, say, n out
omes. We are to represent this set in an

n-dimensional Hilbert spa
e Hn. Now, suppose that we assign self-adjoint

operators to the measurements su
h that the spe
tral proje
tions of the var-

ious operators together 
over the full set Pn of minimal proje
tions in Hn.

In other words, there is no minimal proje
tion in Pn whi
h does not repre-

sent a measurement out
ome. In this 
ase we 
an invoke Gleason's theorem

to de
ide on the question as to whether there exist non
ommutative repre-

sentations whi
h are not the quantum me
hani
al representation. Gleason's

theorem answers this question in the negative.

Gleason's theorem namely 
laims that for every state φ in a Hilbert

spa
e with dimension greater than 2 there is a density operator W (and vi
a

versa) su
h that the Born rule φ(P ) = Tr(PW ) holds for all proje
tions. In
other words, if all proje
tions are 
onsidered, then the state will uniquely be

represented by a density operator. Translating it into our 
ase, the theorem


laims that if one represents the 
ontinuum set of measurement out
omes

by the full set Pn of proje
tions of a given Hilbert spa
e, then one has no

other 
hoi
e to a

ount for the whole set of 
onditional probabilities, than

to represent the state by a density operator.

Note, however, that the previous senten
e is a 
onditional: if we rep-
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resent the measurement out
omes by the full set Pn then Gleason's theo-

rem tells us that the only representation is the quantum me
hani
al. This

raises the following question: Are we 
ompelled to represent a 
ontinuum

set of measurement out
omes ne
essarily by the full set of minimal proje
-

tions? Can we not �
ompress� somehow the set of proje
tions representing

the measurement out
omes su
h that (i) the out
ome-proje
tion assignment

is inje
tive (no two out
omes of di�erent measurements are represented by

the same proje
tion), still (ii) the set of proje
tions is only a proper subset of

Pn? As we saw in the previous se
tion, in this 
ase we 
an always represent

the state of the system by a linear operator whi
h is not a density operator.

Or to put it brie�y, 
an we avoid Gleason's theorem by not making use of

all minimal proje
tions of Pn?
As stressed in Se
tion 2, it is of 
ru
ial importan
e to dis
ern physi
al

measurements from operators mathemati
ally representing them. When we

use Gleason's theorem we intuitively assume that all proje
tions in a Hilbert

spa
e represent a measurement out
ome for a real-world physi
al measure-

ment. The 
ase of spin enfor
es this intuition sin
e the Blo
h sphere rep-

resentation of spin-half parti
les ni
ely pairs the spatial orientations of the

Stern-Gerla
h apparatus with the proje
tions of P2. In general, however, we

have no a priori knowledge of the measurement-operator assignment. Par-

ti
ularly, we 
annot assume that a set of measurements just be
ause it is an

un
ountable set has be represented by the full set of proje
tions of a given

Hilbert spa
e. A priori it is perfe
tly 
on
eivable that a set of real-world

measurements, even if its 
ardinality is un
ountable, 
an be represented by

a proper subset of Pn.
The question of how the 
ardinality of the empiri
al data in�uen
es the

possible representations should be dis
erned from another question, namely

the 
ontent of the empiri
al data. What is the empiri
al data that we are

going to represent? It is the empiri
al 
ontent of quantum me
hani
s itself

� one may respond. But what is that?

Suppose that for a given Hilbert spa
e Hn all the self-adjoint operators

on Hn represent a real-world empiri
al measurement with n out
omes and

all states on Hn represent a real-world preparation of the system to be mea-

sured. In other words, take it at fa
e value that the full formalism of an

n-dimensional quantum me
hani
s has empiri
al meaning. Again, this as-

sumption is legitimate for n = 2 where one 
an see how self-adjoint operators

in H2 ni
ely align with real-world spin measurements of ele
trons in di�er-

ent spatial dire
tions. This mat
hing for, say, n = 13, however, is not so

obvious. Be as it may, suppose we 
oin the term �empiri
al 
ontent of the

n-dimensional quantum me
hani
s� for the (
ontinuum) set of 
onditional
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probabilities provided by the Born rule that is gained by taking the tra
e

of the all the di�erent spe
tral proje
tions multiplied by the all the di�er-

ent density operators on Hn. Then our question is this: 
an the empiri
al


ontent of the n-dimensional quantum me
hani
s be represented in Hn in a

non
ommutative but not quantum me
hani
al way?

Thus, we have two di�erent questions. 1. Is a non
ommutative represen-

tation of a set of empiri
al probabilities ne
essarily a quantum me
hani
al

representation if the 
ardinality of the set is 
ontinuum? 2. Is a non
om-

mutative re-representation of the empiri
al 
ontent of quantum me
hani
s

is ne
essarily a quantum me
hani
al representation? In what 
omes we will

show that the answer to the �rst question is no and the answer to the se
ond

question is yes.

We start with the �rst question. Our task is to represent a 
ontinuum set

of empiri
al probabilities in a non
ommutative but not quantum me
hani
al

way. The set we pi
k will be the set of probabilities of spin measurements in

all the di�erent spatial dire
tions performed on an ele
tron prepared in one

given state. This set is obviously a 
ontinuum set but not yet the full em-

piri
al 
ontent of the two-dimensional quantum me
hani
s sin
e we 
onsider

only one state. The 
ontinuum set of empiri
al 
onditional probabilities is

the following:

{

p±a := ps(A
±|a); s is �xed

}

(1.11)

Here a denotes the spin measurement in dire
tion a and A±
are the two spin

out
omes. Now, in the Blo
h sphere representation one asso
iates two unit

ve
tors

a = (1, ϑ, ϕ)

s = (1, 0, 0)

to the spin measurement a and state s of the system, respe
tively, su
h that

the Born rule yields the 
onditional probabilities (1.11):

Operator assignment: Born rule:

Out
omes: A± −→ P±
a = 1

2
(1± aσ) a ∈ R

3, |a| = 1
Pure state: s −→ Ws =

1

2
(1+ sσ) s ∈ R

3, |s| = 1
p±a = Tr(WsP

±
a )

As is well-known, the measurement out
omes in the Blo
h sphere represen-

tation are asso
iated to the full set of minimal proje
tions P2, and hen
e

Ws must be represented by a density operator due to Gleason's theorem.
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However, the Blo
h sphere representation is not the only possible non
om-

mutative representation of (1.11). Here is an alternative.

Consider the following two fun
tions:

f : S2 → S2; a 7→ f(a)

g : S2 → R
3; s 7→ g(s)

and suppose that instead of a and s we asso
iate

f(a) = (1, ϑ′, ϕ′)

g(s) = (r, 0, 0)

to a and s, respe
tively, where

ϑ′ = arccos

(

cos(ϑ)

r

)

for ϕ ∈ [0, 2π] (1.12)

ϕ′ =







0 for ϑ = 0
ϕ for ϑ ∈ (0, π)
π for ϑ = π

(1.13)

and r > 1. Observe that f is inje
tive but not surje
tive: a spheri
al 
ap

around the �North Pole� and �South Pole� is not in the image of f . It

is easy to 
he
k that by these asso
iations we obtain a non
ommutative

representation for the 
onditional probabilities (1.11):

Operator assignment: Born rule:

Out
omes: A± −→ P±
a = 1

2
(1± f(a)σ) f(a) ∈ R

3, |f(a)| = 1
Pure state: s −→ Ws =

1

2
(1+ g(s)σ) g(s) ∈ R

3, |g(s)| > 1
p±a = Tr(WsP

±
a )

The representation is a non
ommutative but not a quantum me
hani
al rep-

resentation sin
e Ws is not positive semide�nite and hen
e not a density

operator. Note again that we have avoided Gleason's theorem be
ause we

did not use the full Blo
h sphere to represent measurement out
omes but

only a �belt� de�ned by the angles (1.12)-(1.13). To sum up, even though the

set of measurements is un
ountable, the non
ommutative representation is

not ne
essarily quantum me
hani
al sin
e the set of proje
tions representing

the out
omes is not the full set of proje
tions P2 of the Hilbert spa
e H2.

However, (1.11) 
ontains only the 
onditional probabilities of the spin mea-

surement for one state. Can we apply the above te
hnique of �pe
king a hole�

in the surfa
e of the Blo
h sphere and �pushing out� s su
h that Ws will not
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be a density operator in the 
ase when we take into 
onsideration all states?

In other words, 
an we provide a non
ommutative but not quantum me-


hani
al representation for the full empiri
al 
ontent of the two-dimensional

quantum me
hani
s? This was our se
ond question above.

This is point where the representation of the set of 
onditional prob-

abilities gets rigid. It will turn out that if one is to represent the 
ondi-

tional probability of all measurement out
omes of all spin measurement in

all states, then there is no other non
ommutative representation but the

quantum me
hani
al. We prove it by the following lemma.

Lemma 1. Consider the Blo
h sphere representation of spin. That is let

a and s two unit ve
tors asso
iated to the spin measurement a and state s
of the system, respe
tively, su
h that the Born rule yields the 
onditional

probabilities:

Tr(WsP
±

a ) = Tr

(

1

2
(1+ sσ)

1

2
(1± aσ)

)

=
1

2
(1± sa) (1.14)

Then, if there are two fun
tions

f : S2 → S2; a 7→ f(a)

g : S2 → R
3; s 7→ g(s)

su
h that all the 
onditional probabilities (1.14) are preserved that is

as = f(a)g(s) (1.15)

for all a, s ∈ S2
, then

(i) f and g are the restri
tions of the bije
tive linear maps

f̂ : R3 → R
3

ĝ : R3 → R
3

to S2
, respe
tively;

(ii) f̂ is the orthogonal transformation;

(iii) ĝ = f̂ .

For the proof of Lemma 1 see the Appendix.

Lemma 1 shows that there is no other transformation of the Blo
h ve
tors

whi
h preserve all the empiri
al 
onditional probabilities en
oded in the inner
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produ
t but the orthogonal transformation. Consequently, one 
annot avoid

Gleason's theorem and provide a 
ounter-example of the above type in whi
h

the state is represented by a linear but not density operator.

In the rest of the se
tion we prove that this result holds not only in H2

but in any n-dimensional Hilbert spa
e. We show that one 
annot preserve

all the empiri
al 
onditional probabilities en
oded in the inner produ
t of

the Hilbert spa
e by other transformation than the unitary transformation.

Thus, �
ompressing� the empiri
al 
ontent in a proper subset of Pn of a

given Hilbert spa
e is not a viable route to follow. If all the inner produ
ts

of minimal proje
tions have an empiri
al meaning then the only way to

represent them is via quantum me
hani
s.

Lemma 2. Let H be an n-dimensional Hilbert spa
e and let Pn be the set

of minimal proje
tions in B(H) ≃Mn(C). If there are two fun
tions

f : Pn → Pn
g : Pn →Mn(C)

su
h that

Tr(PQ) = Tr(f(P )g(Q)) (1.16)

for all P,Q ∈ Pn then

(i) f and g are the restri
tions of the bije
tive linear maps

f̂ : Mn(C)→Mn(C)

ĝ : Mn(C)→Mn(C)

to Pn, respe
tively;

(ii) f̂ is unitary with respe
t to the inner produ
t on Mn(C) provided by

the tra
e;

(iii) ĝ = f̂ .

For the proof of Lemma 2 see again the Appendix.

1

1

I thank Péter Ve
sernyés for his help in proving both Lemma 1 and 2.
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1.6 Dis
ussion

Is quantum me
hani
s the only possible way to represent an empiri
ally given

set of 
lassi
al 
onditional probabilities in a non
ommutative way; or is this

representation pi
ked out from a broader set of representations by 
onven-

tion? Ultimately, this was the question we posed in this paper. To make

this question pre
ise, we spe
i�ed a set of representations, 
alled non
om-

mutative representations, in whi
h measurement 
hoi
es and measurement

out
omes were represented in the quantum fashion and the Born rule 
on-

ne
ting the quantum probabilities to 
lassi
al 
onditional probabilities was

respe
ted. We asked whether experien
e 
an ensure that this representation

be
omes not just partly but fully quantum me
hani
al, that is, the state will

be represented by a density operator. Our answer was the following:

1. In 
ase of �nitely many measurements with �nitely many out
omes the

probability distribution of out
omes 
an always be given a non
ommu-

tative but not quantum me
hani
al representation.

2. In 
ase of in�nitely many measurements the probability distributions


an be given a non
ommutative but not quantum me
hani
al repre-

sentation only if one 
an avoid Gleason's theorem by not using all the

proje
tions of the Hilbert spa
e in representing measurement out
omes.

3. If the physi
al situation is so 
omplex that the inner produ
t of any

pair of minimal proje
tions is of empiri
al meaning, then there exists

no non
ommutative representation whi
h is not quantum me
hani
al.

The relation between point 2 and 3 is very subtle. It shows that simply

the 
ardinality of the set of measurements does not de
ide on whether the

situation 
an be given a non
ommutative but not quantum me
hani
al rep-

resentation. By �
ompressing� the proje
tions representing measurement

out
omes into a real subset of the full set of minimal proje
tions of the given

Hilbert spa
e one 
an go beyond the quantum me
hani
al representation.

The representation be
omes rigid only if the inner produ
t of any pair of

minimal proje
tions in a Hilbert spa
e 
an be given an empiri
al 
ontent.

This is 
ase for spin-half parti
les where proje
tions 
an dire
tly be asso
i-

ated to preparation and measurement dire
tions. Whether one 
an provide

a similar empiri
al a

ount for the inner produ
t of any pair of minimal pro-

je
tions in a Hilbert spa
e of higher dimension, is a question whi
h 
annot

be de
ided a priori.
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Appendix

Proof of Lemma 1. (i) Let {e1, e2, e3} ⊂ S2
be an orthonormal basis in R

3
.

Then due to (1.15) the sets {f(e1), f(e2), f(e3)} and {g(e1), g(e2), g(e3)}
are biorthogonal:

(f(ei), g(ej)) = δi,j i, j = 1, 2, 3

Biorthogonal sets with 
ardinality d in R
d
form (in general two di�erent)

linear bases of R
d
. Hen
e, if a =

∑

i αiei ∈ S2
and f(a) =

∑

i α
f
i f(ei) ∈ R

3

with αi, α
f
i ∈ R, then

αi = (a, ei) = (f(a), g(ei)) =
∑

j

αf
j (f(ej), g(ei)) = αf

i , i = 1, 2, 3 (1.17)

Hen
e, f(
∑

i αiei) =
∑

i αif(ei), that is f is the restri
tion of the bije
tive

linear map f̂ 
hara
terized by the image linear basis {f(e1), f(e2, f(e3)} of
the orthonormal basis {e1, e2, e3}. A similar argument shows that g is the

restri
tion of the bije
tive linear map ĝ to S2
.

(ii) Using polarization identity

(a,b) =
1

4

[

(a+ b,a+ b)− (a+ b,a+ b)
]

, a,b ∈ R
3

it is enough to show that

(a,a) = (f̂(a), f̂(a)), a ∈ R
3

whi
h, however, holds sin
e

1 = (a,a) = (f(a), f(a)) = (f̂(a), f̂(a)), a ∈ S2

and f̂ is linear.

(iii) Using (1.15) and the orthogonality of f̂ one has

(a,b) = (f̂(a), ĝ(b)) = (a, f̂−1(ĝ(b))), a,b ∈ R
3.

Hen
e, ĝ = f̂ due to the uniqueness of the inverse map.

Proof of Lemma 2. (i) Sin
e the tra
e is a faithful positive linear fun
tional

on Mn(C),
(A,B) := Tr(A∗B), A,B ∈Mn(C)
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de�nes an inner produ
t on the n2-dimensional 
omplex linear spa
eMn(C).
The real linear 
ombinations of the proje
tions in Pn span the real ve
tor

spa
e of self-adjoint elements in Mn(C), and the 
omplex linear 
ombina-

tions span the 
omplex ve
tor spa
e Mn(C). Let {Pi, i = 1, . . . , n2} ⊂ Pn
be a linear basis in Mn(C). Then the inner produ
t matrix g ∈ Mn2(C)
given by matrix elements gij := (Pi, Pj) ≥ 0 is an invertible matrix. Sin
e

Tr(f(Pi)g(Pj)) = gij due to (1.16) {f(Pi), i = 1, . . . , n2} ⊂ Pn and {g(Pi), i =
1, . . . , n2} ⊂ Mn(C) are linear bases in Mn(C) due to invertibility of g.
De�ning the bije
tive linear maps f̂ , ĝ : Mn(C) → Mn(C) by the linear ex-

tension of these image bases for P =
∑

i αiPi ∈ Pn one has

(f(P ), g(Pj)) = (P,Pj) = (
∑

i

αiPi, Pj) =
∑

i

αi(Pi, Pj) =
∑

i

αi(f(Pi), g(Pj))

= (
∑

i

αif(Pi), g(Pj)) =: (f̂(
∑

i

αiPi), g(Pj)) = (f̂(P ), g(Pj)), j = 1, . . . , n2.

Hen
e, f is the restri
tion of the bije
tive linear map f̂ to Pn, indeed. A

similar argument shows that g is the restri
tion of the bije
tive linear map

ĝ to Pn.
(ii) Using polarization identity

(A,B) =
1

4

[

(A+B,A+B)− (A−B,A−B)
]

, A,B ∈Mn(C)

it is enough to show unitarity on `diagonal' inner produ
ts:

(A,A) = (f̂(A), f̂ (A)), A ∈Mn(C)

Sin
e f(Pn) ⊂ Pn by assumption, using the normalization Tr(P ) = 1, P ∈
Pn of the tra
e it follows that

(P,P ) = 1 = (f(P ), f(P )) = (f̂(P ), f̂(P )), P ∈ Pn

i.e. f̂ is unitary on diagonals from Pn. Using a spe
tral de
omposition of

self-adjoint elements by orthogonal minimal proje
tions one 
on
ludes that

f̂ maps the real ve
tor spa
e of self-adjoint elements in Mn(C) into itself,

moreover, it is unitary on diagonals from the spa
e of self-adjoint elements.

Sin
e A ∈Mn(C) 
an be written uniquely as a sum of self-adjoint elements:

A = R+ iI with R := (A+A∗)/2 and I := (A−A∗)/2i it follows that

(A,A) = (R + iI,R+ iI) = (R,R) + (I, I) = (f̂(R), f̂(R)) + (f̂(I), f̂(I))

= (f̂(R) + if̂(I), f̂ (R) + if̂(I)) = (f̂(A), f̂(A)),
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that is f̂ is unitary on diagonals from Mn(C), whi
h provides unitarity of f̂ .

(iii) Using (1.16) and unitarity of f̂ one has

(A,B) = (f̂(A), ĝ(B)) = (A, f̂−1(ĝ(B))), A,B ∈Mn(C).

Hen
e, ĝ = f̂ due to the uniqueness of the inverse map.
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Chapter 2

Three prin
iples leading to the

Bell inequalities

In the paper we 
ompare three prin
iples a

ounting for 
orrelations, namely Re-

i
henba
h's Common Cause Prin
iple, Bell's Lo
al Causality Prin
iple, and Ein-

stein's Reality Criterion and relate them to the Bell inequalities. We show that

there are two routes 
onne
ting the prin
iples to the Bell inequalities. In 
ase of

Rei
henba
h's Common Cause Prin
iple and Bell's Lo
al Causality Prin
iple one

assumes a non-
onspiratorial joint 
ommon 
ause for a set of 
orrelations. In 
ase of

Einstein's Reality Criterion one assumes strongly non-
onspiratorial separate 
om-

mon 
auses for a set of perfe
t 
orrelations. Strongly non-
onspiratorial separate


ommon 
auses for perfe
t 
orrelations, however, form a non-
onspiratorial joint


ommon 
ause. Hen
e the two routes leading the Bell inequalities meet.

2.1 Introdu
tion

Many were pondering on the histori
al reasons of why it took thirty years to get

from the EPR argument to the Bell inequalities. (See for example (Bell 1964/2004);

(Howard 1985); (Redhead 1987); (Hájek and Bub 1992); (Fine 1996); (Norton

2004); (Szabó 2008); (Goldstein et al. 2011); (Maudlin 2014) and (Lewis 2015).)

This paper has nothing to say about these histori
al and 
on
eptual reasons. It

rather intends to show that the route leading from Einstein's Reality Criterion to

the Bell inequalities is no longer than the route starting o� from two other prin-


iples standardly used to 
ausally a

ount for 
orrelations, namely Rei
henba
h's

Common Cause Prin
iple and Bell's Lo
al Causality Prin
iple.

In the paper we will handle the three prin
iples side by side and show how they

relate to one another and to the Bell inequalities. In Se
tion 2 we show how the

prin
iples are used to 
ausally a

ount for 
orrelations; in Se
tion 3 we use them

to explain 
onditional 
orrelations; and in Se
tion 4 we tra
e the routes leading

from the prin
iples to the Bell inequalities. In the paper we deliberately keep the
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philosophi
al analysis short so that the formal parallelism will not be lost sight of.

2.2 Explaining 
orrelations

Let A and B be two 
orrelated but 
ausally separated events represented in a


lassi
al probability spa
e (Σ, p):

p(A ∧B) 6= p(A) p(B) (2.1)

One 
an invoke three prin
iples to 
ausally a

ount for this 
orrelation. If one is


on
erned only with the probabilisti
 aspe
ts, one 
an apply

Rei
henba
h's Common Cause Prin
iple: If there is a 
orrelation between two

events and there is no dire
t 
ausal (or logi
al) 
onne
tion between the 
orrelated

events, then there always exists a 
ommon 
ause of the 
orrelation.

Formally, a 
ommon 
ause of the 
orrelation (10.1) is a partition {Ck} (k ∈ K) in

(Σ, p)�or in an extension of (Σ, p); see (Hofer-Szabó, Rédei and Szabó 2013)�su
h

that for any k ∈ K:

p(A ∧B|Ck) = p(A|Ck) p(B|Ck) (2.2)

If one furthermore assumes that the events A and B also have spatiotemporal

lo
alization, for example they are lo
ated in spatially separated regions, VA and VB ,
respe
tively, then to 
ausally a

ount for them, one 
an invoke a further prin
iple:

Bell's Lo
al Causality Prin
iple: �A theory will be said to be lo
ally 
ausal if

the probabilities atta
hed to values of lo
al beables in a spa
e-time region VA are

unaltered by spe
i�
ation of values of lo
al beables in a spatially separated region

VB , when what happens in the ba
kward light 
one of VA is already su�
iently

spe
i�ed, for example by a full spe
i�
ation of lo
al beables in a spa
e-time region

VC .� (Bell 1990/2004, 239-240)

The �gure Bell is atta
hing to this formulation is reprodu
ed in Fig. 6.1 with the

original 
aption. In a lo
ally 
ausal theory for any 
orrelation between events A
and B lo
alized in spatially separated regions VA and VB , respe
tively, the atomi

partition {Ck} (k ∈ K) in the probability spa
e (Σ, p) asso
iated to any region VC

ausally shielding-o� VA from the 
ommon past of VA and VB as depi
ted Fig. 6.1

should satisfy (2.2).

Finally, suppose we interpret the 
orrelation (10.1) epistemologi
ally as a pre-

di
tion. That is we interpret A as a predi
ting event and B as a predi
ted event and

the predi
tion as a 
orrelation between the two. After all, a predi
tion is ontologi-


ally nothing but an (ideally strong) 
orrelation between two event types. Weather

fore
ast is simply a 
orrelation between the today announ
ement and the tomorrow

weather. Moreover, in a predi
tion the predi
ted event 
annot 
ausally in�uen
e

the predi
ting events. One 
an predi
t the tomorrow weather but not the yesterday

weather.
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V

V V

C

A B

Figure 2.1: Full spe
i�
ation of what happens in VC makes events in VB
irrelevant for predi
tions about VA in a lo
ally 
ausal theory.

Suppose furthermore that the following two requirements also hold: (i) The

predi
ting event is also 
ausally irrelevant for the predi
ted event. This 
an hap-

pen for example when the two events are spatially separated. (ii) The 
orrelation

between A and B is perfe
t :

p(A ∧B) = p(A) = p(B) (2.3)

If all these hold, then we have a third prin
iple to a

ount for the 
orrelation (2.3):

Einstein's Reality Criterion: �If, without in any way disturbing a system, we


an predi
t with 
ertainty (i.e. with probability equal to unity) the value of a

physi
al quantity, then there exists an element of physi
al reality 
orresponding to

this physi
al quantity.� (EPR 1935, 777-778)

Observe, that the term �without in any way disturbing a system� is just 
ondition (i)

above, and the term �predi
t with 
ertainty� is just 
ondition (ii). What Einstein's

Reality Criterion requires is that in 
ase of a perfe
t predi
tion, that is perfe
t


orrelation between 
ausally separated events, an element of reality should a

ount

for the 
orrelation.

What is an element of reality?

The distin
tive feature of an element of reality (see (Gömöri and Hofer-Szabó

2017) for the details) is that it determines the predi
ted event with 
ertainty. For-

mally, an element of reality is a partition {C+, C−} in (Σ, p) su
h that the following
holds:

p(A ∧B|C+) = 1 (2.4)

p(A ∧B|C−) = 0 (2.5)

Now, let us go ba
k to the Rei
henba
h's Common Cause Prin
iple. It is well known

that for perfe
t 
orrelations a 
ommon 
ause that is a partition {Ck} (k ∈ K)
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satisfying (2.2) is deterministi
: for any k ∈ K

p(A ∧B|Ck) ∈ {0, 1} (2.6)

Hen
e, the indi
es k ∈ K 
an be grouped into two groups K+
and K−

with K+ ∨
K− = K su
h that

C+ = ∨k∈K+Ck (2.7)

C− = ∨k∈K−Ck (2.8)

and {C+, C−} satis�es (2.4)-(2.5). Common 
auses for perfe
t 
orrelations under-

stood as predi
tions are just elements of reality.

To sum up, a 
orrelation between two events depending on whether we under-

stand it purely probabilisti
ally or spatiotemporally or in the 
ontext of predi
tions


an be explained by three di�erent prin
iples: by Rei
henba
h's Common Cause

Prin
iple, by Bell's Lo
al Causality Prin
iple or by Einstein's Reality Criterion.

2.3 Explaining 
onditional 
orrelations

Now, let us apply the above reasoning to measurements. Let ai and bj (i ∈ I, j ∈ J)
be measurement 
hoi
es and let {Ai, A

′
i} and {Bj, B

′
j} be binary measurement

out
omes on two spatially separated systems. We will represent the measurement


hoi
es as two partitions {ai} (i ∈ I) and {bj} (j ∈ J) in a 
lassi
al probability

spa
e (Σ, p), and the measurement out
omes by further partitioning the appropriate

measurement 
hoi
es ai and bj, respe
tively:

Ai ∧ A′
i = 0 Ai ∨ A′

i = ai (2.9)

Bj ∧B′
j = 0 Bj ∨B′

j = bj (2.10)

Suppose that for a given i ∈ I and j ∈ J the measurement out
omes Ai and

Bj are 
onditionally 
orrelated in the following sense:

p(Ai ∧Bj |ai ∧ bj) 6= p(Ai|ai) p(Bj |bj) (2.11)

What is the 
ausal explanation of this 
onditional 
orrelation?

Before we turn to the above prin
iples, we make the following stipulation:

Whatever explains the above 
orrelations, it has to be 
ausally and hen
e prob-

abilisti
ally independent of the measurement 
hoi
es. In other words, in applying

the above prin
iples we will always require:

No-
onspira
y: If a partition {Ck} (k ∈ K) represents a set of events explaining

the 
orrelation (10.13), then for any k ∈ K the following relation is required:

p(ai ∧ bj ∧ Ck) = p(ai ∧ bj) p(Ck) (2.12)

Next, we formulate the three prin
iples 
ausally a

ounting for the 
onditional


orrelation between the measurement out
omes given 
ertain measurement 
hoi
es:
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Rei
henba
h's Common Cause Prin
iple: The 
ommon 
ause of the 
ondi-

tional 
orrelation (10.13) is a partition {Ck} in (Σ, p) su
h that for any k ∈ K:

p(Ai ∧Bj |ai ∧ bj ∧ Ck) = p(Ai|ai ∧ Ck) p(Bj |bj ∧ Ck) (2.13)

p(ai ∧ bj ∧ Ck) = p(ai ∧ bj) p(Ck) (2.14)

Bell's Lo
al Causality Prin
iple: Suppose there is a 
onditional 
orrelation

(10.13) between measurement out
omes Ai and Bj given measurement 
hoi
es ai
and bj . Suppose further that Ai and ai are lo
alized in regions VA and Bj and bj are
lo
alized in regions VB spatially separated from VA. Then, if the theory a

ounting
for this 
orrelation is lo
ally 
ausal, then the atomi
 partition {Ck} (k ∈ K) in

(Σ, p) asso
iated to the region VC (see Fig. 6.1) should satisfy (2.13)-(3.3).

Einstein's Reality Criterion: Suppose that the 
onditional 
orrelation (10.13)

represents now a predi
tion. That is let Ai denote the out
ome of a predi
ting event

ai and let Bj denote the out
ome of the predi
ted event bj . Suppose furthermore

that Ai, ai and Bj , bj are 
ausally separated. Also suppose that we 
an predi
t the

out
ome Bj of the measurement bj by obtaining out
ome Ai for the predi
tion ai
for sure. In other words, suppose that the 
onditional 
orrelation is perfe
t:

p(Ai ∧Bj |ai ∧ bj) = p(Ai|ai) = p(Bj |bj) (2.15)

Then Einstein's Reality Criterion 
laims that there are elements of reality that is

a partition {C+, C−} in (Σ, p) explaining 
orrelation (2.15) in the following sense:

p(Ai ∧Bj |ai ∧ bj ∧ C+) = 1 (2.16)

p(Ai ∧Bj |ai ∧ bj ∧ C−) = 0 (2.17)

p(ai ∧ bj ∧ C+) = p(ai ∧ bj) p(C+) (2.18)

p(ai ∧ bj ∧ C−) = p(ai ∧ bj) p(C−) (2.19)

Just as above, in 
ase of a perfe
t 
orrelation a 
ommon 
ause {Ck} (k ∈ K)

satisfying (2.13)-(3.3) is deterministi
, hen
e a suitable grouping of the Ck-s via

(2.7)-(2.8) will yield the elements of reality C+
and C−

. In short, Einstein's Reality

Criterion is a spe
ial 
ase of Rei
henba
h's Common Cause Prin
iple when the


orrelation is perfe
t. (For the details see Gömöri and Hofer-Szabó 2017.)

To sum up, the 
ore of all three prin
iples is to a

ount for 
orrelations in

terms of a non-
onspiratorial 
ommon 
ause. In 
ase of Rei
henba
h's Common

Cause Prin
iple only the probabilisti
 aspe
ts (2.13)-(3.3) of the 
ommon 
ause

are taken into 
onsideration. In 
ase of Bell's Lo
al Causality Prin
iple both the


orrelated events and also the 
ommon 
ause have a spatiotemporal lo
alization.

In 
ase of Einstein's Reality Criterion the whole 
orrelation s
enario is interpreted

in the framework of a predi
tion and the 
orrelation is taken to be perfe
t.

Before we move on to the relation of the prin
iples to the Bell inequalities, let us see

how the 
onditional and un
onditional 
orrelations and their explanations relate to

one another.
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First, observe that if the measurement 
hoi
es are 
ausally and therefore prob-

abilisti
ally independent, that is if for any i ∈ I and j ∈ J :
p(ai ∧ bj) = p(ai) p(bj) (2.20)

and the algebrai
 in
lusions (2.9)-(2.10) hold, then the out
omes Ai and Bj are


orrelated in the 
onditional sense

p(Ai ∧Bj |ai ∧ bj) 6= p(Ai|ai) p(Bj |bj) (2.21)

if and only if they are 
orrelated in the un
onditional sense

p(Ai ∧Bj) 6= p(Ai) p(Bj) (2.22)

Se
ond, given (2.9)-(2.10) and (2.20), {Ck} is a non-
onspiratorial 
ommon 
ause

of the 
onditional 
orrelation (2.21):

p(Ai ∧Bj |ai ∧ bj ∧ Ck) = p(Ai|ai ∧ Ck) p(Bj |bj ∧Ck) (2.23)

p(ai ∧ bj ∧ Ck) = p(ai ∧ bj) p(Ck) (2.24)

if and only if {Ck} is a non-
onspiratorial 
ommon 
ause of the un
onditional


orrelation (2.22):

p(Ai ∧Bj |Ck) = p(Ai|Ck) p(Bj |Ck) (2.25)

p(ai ∧ bj ∧ Ck) = p(ai ∧ bj) p(Ck) (2.26)

(For the proof see (Hofer-Szabó, Rédei and Szabó 2013, Lemma 9.8).) Therefore,

on the assumptions (2.9)-(2.10) and (2.20), the 
ommon 
ausal explanations (2.23)-

(3.5) and (2.25)-(3.19) are inter
hangeable.

2.4 From the prin
iples to the Bell inequalities

How the above three prin
iples serving for a 
ausal explanation of 
orrelations re-

late to the Bell inequalities? The 
ru
ial point is to see how the di�erent prin
iples

relate to the 
ommon 
ausal explanation of more 
orrelations. Prin
ipally, there are

two possible ways: either the di�erent 
orrelations are explained by a joint 
ommon


ause or ea
h 
orrelation is explained by a separate 
ommon 
ause. The standard

derivation of the Bell inequalities from Rei
henba
h's Common Cause Prin
iple and

Bell's Lo
al Causality Prin
iple assumes a joint 
ommon 
ause; whereas the deriva-

tion of the Bell inequalities from Einstein's Reality Criterion assumes only separate


ommon 
auses. Sin
e the assumption of separate 
ommon 
auses is weaker than

that of a joint 
ommon 
ause, the derivation of the Bell inequalities from Einstein's

Reality Criterion needs a stronger version of no-
onspira
y.

Let us see the derivations in turn:

Rei
henba
h's Common Cause Prin
iple. Suppose that I = J = {1, 2} and
the events Ai and Bj are all 
onditionally 
orrelated that is for any i, j ∈ I:

p(Ai ∧Bj |ai ∧ bj) 6= p(Ai|ai)p(Bj |bj) (2.27)
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The four 
orrelations are said to have a non-
onspiratorial joint 
ommon 
ause if

there is a single partition {Ck} (k ∈ K) in (Σ, p) (or in an extension of (Σ, p)) su
h
that for all i, j ∈ I and k ∈ K the following hold:

p(Ai ∧Bj |ai ∧ bj ∧ Ck) = p(Ai|ai ∧ Ck) p(Bj |bj ∧ Ck) (2.28)

p(ai ∧ bj ∧ Ck) = p(ai ∧ bj) p(Ck) (2.29)

We 
laim that the events Ai, Bj , ai and bj with a non-
onspiratorial joint 
ommon


ausal explanation satisfy the Clauser�Horne inequalities that is for any i, i′, j, j′ ∈
I and i 6= i′, j 6= j′:

−1 6 p(Ai ∧Bj |ai ∧ bj) + p(Ai ∧Bj′ |ai ∧ bj′)
+p(Ai′ ∧Bj |ai′ ∧ bj)− p(Ai′ ∧Bj′ |ai′ ∧ bj′)
−p(Ai|ai)− p(Bj |bj) 6 0 (2.30)

For the proof see the Appendix.

Bell's Lo
al Causality Prin
iple. Again, let I = J = {1, 2}. Suppose that the
events Ai and Bj lo
alized in spatially separated regions VA and VB respe
tively,

are all 
onditionally 
orrelated in the sense of (2.27). In a lo
ally 
ausal theory

the atomi
 partition of the lo
al algebra asso
iated to VC (see again Fig. 6.1)

is a non-
onspiratorial joint 
ommon 
ause in the sense of (2.28)-(2.29). Hen
e

the Clauser�Horne inequalities (9.24) follow, just as in the 
ase of Rei
henba
h's

Common Cause Prin
iple.

Einstein's Reality Criterion. Suppose now that I = J = {1, 2, 3, 4} and there

is a perfe
t 
onditional 
orrelation between (the predi
ting events) Ai and (the

predi
ted events) Bj for any i = j ∈ I:

p(Ai ∧Bi|ai ∧ bi) = p(Ai|ai) = p(Bi|bi) (2.31)

First, observe that the four 
orrelations in (2.31) are not the same as the 
orrelations

(2.27) above. In (2.27) I = J = {1, 2} and the four 
orrelations were not ne
essarily
perfe
t; in (2.31) I = J = {1, 2, 3, 4} and the four 
orrelations are the i = j perfe
t

orrelations.

Now, Einstein's Reality Criterion does not assume that all four 
orrelations in

(2.31) have a joint 
ommon 
ause. All it assumes is that there are separate elements

of reality to ea
h 
orrelation, that is for any i ∈ I there is a partition {C+
i , C

−
i }

satisfying

p(Ai ∧Bi|ai ∧ bi ∧ C+
i ) = 1 (2.32)

p(Ai ∧Bi|ai ∧ bi ∧ C−
i ) = 0 (2.33)

However, instead of simply requiring no-
onspira
y:

p(ai ∧ bj ∧ C+
k ) = p(ai ∧ bj) p(C+

k ) (2.34)

p(ai ∧ bj ∧ C−
k ) = p(ai ∧ bj) p(C−

k ) (2.35)
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(i, j, k ∈ I) one requires strong no-
onspira
y, namely that any element C in the

Boolean algebra generated by the four pairs of elements of reality {C±
k } should be

independent of any 
ombination of the measurement 
hoi
es:

p(ai ∧ bj ∧ C) = p(ai ∧ bj) p(C) (2.36)

In short, in 
ase of more 
orrelations Einstein's Reality Criterion requires less than

the other two prin
iples sin
e it requires only separate elements of reality for the dif-

ferent 
orrelations, but also requiresmore sin
e it requires all Boolean 
ombinations

of the elements of reality to be independent of the measurement 
hoi
es.

The derivation of the Clauser�Horne inequalities (9.24) from a strongly non-


onspiratorial separate 
ommon 
ausal explanation is straightforward. From (2.31),

(2.32)-(2.33) and (2.36) it follows that for any i, j ∈ I:

p(Ai|ai) = p(Bi|bi) = p(C+
i ) (2.37)

p(Ai ∧Bj |ai ∧ bj) = p(C+
i ∧ C+

j ) (2.38)

Now, it is an elementary fa
t of 
lassi
al probability theory that for any four events

C+
i , C

+
i′ , C

+
j and C+

j′ in (Σ, p) we have:

−1 6 p(C+
i ∧ C+

j ) + p(C+
i ∧ C+

j′ ) + p(C+
i′ ∧ C+

j )

−p(C+
i′ ∧ C+

j′ )− p(C+
i )− p(C+

j ) 6 0 (2.39)

Substituting (2.37)-(2.38) into (2.39) one arrives at (9.24).

What one proves here is that the atomi
 partition 
omposed of the interse
tions

of strongly non-
onspiratorial separate 
ommon 
auses for perfe
t 
orrelations form

a non-
onspiratorial joint 
ommon 
ause for all 
orrelations. Note that in the

general 
ase that is for non-perfe
t 
orrelations the relation between separate and

joint 
ommon 
auses is not so straightforward and the relation of strongly non-


onspiratorial separate 
ommon 
auses to the Bell inequalities is not known. (See

(Hofer-Szabó, Rédei and Szabó 2013, Conje
ture 9.11.))

To sum up, one 
an arrive at the Bell inequalities from the three prin
iples on

two di�erent routes. In the standard derivation based on Rei
henba
h's Common

Cause Prin
iple or Bell's Lo
al Causality Prin
iple one takes four 
orrelations and

assumes that they have a non-
onspiratorial joint 
ommon 
ause. In 
ase of Ein-

stein's Reality Criterion one takes four perfe
t 
orrelations and assumes that ea
h

has a separate 
ommon 
ause whi
h together are strongly non-
onspiratorial. Both

routes lead dire
tly to the Clauser-Horne inequalities.

2.5 Con
lusions

In this paper we 
ompared three prin
iples a

ounting for 
orrelations and related

them to the Bell inequalities. Rei
henba
h's Common Cause Prin
iple, in the orig-

inal sense at least, refers only to one 
orrelation: it demands a 
ommon 
ause for

a given 
orrelation if the dire
t 
ausal link between the 
orrelata 
an be ex
luded.
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In the derivation of the Bell inequalities, however, the prin
iple had to be used in

a stronger sense, namely demanding one and the same 
ause for a set of 
orrela-

tions. Bell's Lo
al Causality Prin
iple has already been formulated originally in

this strong sense: all 
orrelations lo
alized in spatially separated regions were to

be s
reened-o� by the �full spe
i�
ation� of an appropriately lo
alized third spa
e-

time region. In this sense Bell's Lo
al Causality Prin
iple is a stronger prin
iple

than Rei
henba
h's Common Cause Prin
iple. Finally, Einstein's Reality Criterion

again assumes elements of reality to ea
h 
orrelation separately, similarly to Re-

i
henba
h's Common Cause Prin
iple. Moreover, it does so only in 
ase of perfe
t


orrelations. In this sense Einstein's Reality Criterion seems to be even weaker

than Rei
henba
h's Common Cause Prin
iple.

Note, however, that not even the strongest of the three prin
iples, namely

Bell's Lo
al Causality Prin
iple implies the Bell inequalities on its own. Even this

prin
iple needs to assume that the 
ommon 
auses or elements of reality 
ausally

responsible for the 
orrelations are 
ausally and hen
e probabilisti
ally independent

from the measurement 
hoi
es. To be sure, no-
onspira
y seems to be a natural

requirement for an element of reality to deserve its name. No-
onspira
y, however,


an be de�ned in di�erent strength. And this is the point where the prin
iples far-

ing worse at the beginning 
an 
at
h up. Even though Einstein's Reality Criterion

provides only separate elements of reality for the 
orrelations, if these elements of

reality are strongly non-
onspiratorial, then they su�
e to derive the Bell inequal-

ities. In short, no-
onspira
y together with joint elements of reality and strong

no-
onspira
y together with separate elements of reality fare equally well in the

derivation of the Bell inequalities.

Appendix

Proof. It is an elementary fa
t of arithmeti
 that for any α, α′, β, β′ ∈ [0, 1] we have

−1 6 αβ + αβ′ + α′β − α′β′ − α− β 6 0 (2.40)

Now, let α, α′, β, β′
be

α = p(Ai|ai ∧ Ck) (2.41)

α′ = p(Ai′ |ai′ ∧ Ck) (2.42)

β = p(Bj |bj ∧ Ck) (2.43)

β′ = p(Bj′ |bj′ ∧ Ck) (2.44)

Substituting (9.26)�(9.29) into (9.25) we get

−1 6 p(Ai|ai ∧Ck)p(Bj |bj ∧ Ck) + p(Ai|ai ∧ Ck)p(Bj′ |bj′ ∧ Ck)

+p(Ai′ |ai′ ∧ Ck)p(Bj |bj ∧ Ck)− p(Ai′ |ai′ ∧ Ck)p(Bj′ |bj′ ∧ Ck)

−p(Ai|ai ∧ Ck)− p(Bj |bj ∧ Ck) 6 0 (2.45)
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Using the s
reener-o� 
ondition (2.28) we obtain

−1 6 p(Ai ∧Bj |ai ∧ bj ∧ Ck) + p(Ai ∧Bj′ |ai ∧ bj′ ∧ Ck)

+p(Ai′ ∧Bj |ai′ ∧ bj ∧Ck)− p(Ai′ ∧Bj′ |ai′ ∧ bj′ ∧ Ck)

−p(Ai|ai ∧ Ck)− p(Bj |bj ∧ Ck) 6 0 (2.46)

Multiplying by p(Ck), using no-
onspira
y (2.29) and summing up for k one arrives
at (9.24).
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Chapter 3

How human and nature shake

hands: the role of

no-
onspira
y in physi
al

theories

No-
onspira
y is the requirement that measurement settings should be probabilis-

ti
ally independent of the elements of reality responsible for the measurement out-


omes. In this paper we investigate what role no-
onspira
y generally plays in a

physi
al theory; how it in�uen
es the semanti
al role of the event types of the

theory; and how it relates to su
h other 
on
epts as separability, 
ompatibility,


ausality, lo
ality and 
ontextuality.

3.1 Introdu
tion

As the old bon mot has it, in experiment human and nature shake hands. This

portrayal of the experiment as the 
elebration of a good business pa
t between

two parties highlights two features of experimentation, namely that both human

and nature are equally 
ontributing to its su

ess and that both parties are being

independent. This independen
e is the topi
 of the present paper.

In the foundations of quantum me
hani
s probably the most signi�
ant resear
h

proje
t has been for de
ades to pre
isely identify and 
on
eptually analyze those

assumptions that go into the derivation of the Bell inequalities and 
an be made

responsible for their violation in the EPR s
enario. Lo
ality, fa
torization, Com-

mon Cause Prin
iple, determinism�these were the main 
on
epts and prin
iples

on the table. There was, however, one additional premise whi
h, though being in-

dispensable in the derivation of the Bell inequalities, remained mu
h more obs
ure


on
erning its status, meaning and relation to the other premises.
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The palpable eviden
e for this embarrassment around this assumption is that

there has not even been 
oined a name for it. It has been referred to by many

names su
h as (no) �
onspiratorial entanglement� (Bell, 1981), �hidden autonomy�

(Van Fraassen, 1982), �independen
e assumption� (Pri
e 1996), �free will assump-

tion� (Tumulka, 2007), �measurement independen
e� (Sanpedro, 2013), (no) �su-

perdeterminism� (Pri
e and Wharton, 2015), and�probably in its most well-known

form��no-
onspira
y� (Hofer-Szabó, Rédei and Szabó, 1999; Pla
ek and Wro«ski,

2009). This latter is the phrase we are going to use in this paper.

The fa
t that no-
onspira
y has been used by so many names attests that there

is a wide range of topi
s whi
h it 
an be related to. It has been expli
itly addressed

by Bell in his 1981 paper and its reje
tion has been quali�ed as �even more mind

boggling than one in whi
h 
ausal 
hains go faster than light� (Bell, 1981, p. 57).

No-
onspira
y made its way into the philosophy of physi
s via Van Fraassen's 1982


areful analysis of the assumptions leading to the Bell inequalities. Ever sin
e

these two in�uential papers no-
onspira
y has been given some attention in the

philosophy of s
ien
e. A topi
 gaining probably the greatest philosophi
al interest

was that how no-
onspira
y is related to free will. The �rst to identify 
onspira
y

as a la
k of free will was Bell (1977, 1981) himself and has been followed by many

others (Pri
e 1996; Conway and Ko
hen, 2006; Tumulka, 2007, Pri
e and Wharton,

2015).

The present paper does not 
on
ern any of the topi
s mentioned above: neither

free will, nor EPR, nor Bell inequalities. It does not investigate no-
onspira
y at

the level of the spe
i�
 s
ienti�
 theories su
h as quantum me
hani
s, quantum

�eld theory, et
. (For this see (Bell, 1977, 1981), (Butter�eld, 1995), (Sanpedro,

2013, 2014), (Hofer-Szabó, Rédei and Szabó, 2013), (Pri
e and Wharton, 2015)).

Our aim is more general: to investigate what role no-
onspira
y plays in a physi
al

theory. To this aim in Se
tion 2 we will �rst unfold a general s
heme of the ontology

of a physi
al theory. We will dis
ern two event types making the ontology: mea-

surement event types and elements of reality. Measurement event types 
an be of

two types: measurement settings and measurement out
omes. We will 
larify how

measurement settings and measurement out
omes provide semanti
s for a physi
al

theory. To illustrate the general s
heme we introdu
e a toy model in Se
tion 3

whi
h will then be used throughout the paper. No-
onspira
y enters in Se
tion 4.

Here we show how the presen
e of no-
onspira
y 
an deprive measurement settings

and measurement out
omes of their semanti
al role and dire
ts them into pragmat-

i
s. In Se
tion 5 some examples will be given for situations when no-
onspira
y

is violated. In Se
tions 6 to 10 we will investigate in turn the relationship of no-


onspira
y to su
h 
on
epts as separability, 
ompatibility, 
ausality, lo
ality and


ontextuality. We 
on
lude with a dis
ussion in Se
tion 11.

This paper is written in the down-to-earth physi
alist philosophy of László E.

Szabó to whom I dedi
ate it.
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3.2 The ontology of experiment

In this Se
tion we expose the main philosophi
al ideas lying behind our approa
h

in a 
on
ise manner. In the following Se
tion all these general 
onsiderations will

be made 
on
rete on a simple toy model. The approa
h we are following here is a

stri
t a
tualist approa
h where the key 
on
epts su
h as 
ausality, probability, et
.

all supervene on parti
ulars instantiating 
ertain event types in a Humean manner.

This framework is 
ertainly not ne
essary to address the question of no-
onspira
y;

I presume that most 
laims of the paper also hold in other metaphysi
al frameworks.

I follow this approa
h simply be
ause the present paper is part of a larger resear
h

proje
t aiming to explore how far one 
an get in understanding physi
al theories

and espe
ially quantum me
hani
s within a Humean framework.

A physi
al theory 
an be re
onstru
ted as a formal system plus a semanti
s


onne
ting the formal system to the world. The formal system 
onsists of a formal

language with some logi
al axioms and derivation rules, some mathemati
al and

physi
al axioms. The semanti
s provides an interpretation for the formalism; it


onne
ts the formal system to reality. Note that here 'semanti
s' does not mean a


onne
tion between the formal system and some models of the system as in model

theory; here semanti
s means a down-to-earth physi
al interpretation of the formal

system. We stress again that the semanti
s is an indispensable part of a physi
al

theory. A formal system in itself is not yet a physi
al theory (Szabó, 2011).

The semanti
s settles the ontology of the theory. This 
an be done in many

ways but typi
ally the semanti
s �xes the ontologi
al types or 
ategories out there

in the world and provides some means to de
ide when a 
ertain token falls in

the 
ategory of a given type making a 
ertain senten
e of the theory true. The

types and tokens whi
h we will be interested in here are event types and token

events. The ontology of a physi
al theory is an event algebra 
onstru
ted from

these event types. Note that 
on
erning the ontology of the types our approa
h is

not 
ommitted metaphysi
ally either to the realist nor to the nominalist 
amp.

Physi
al theories are veri�ed by experiments. The rough pi
ture of an ex-

periment is the following. An experimenter performs a pro
edure by setting a

measurement apparatus in a 
ertain way, obtaining a measurement out
ome and

repeating this pro
edure many times. The two essential ontologi
al 
ategories of an

experiment are the measurement settings and the measurement out
omes. These


ategories are event types just as the other ontologi
al types of the theory. The

token events are the instan
es of these event types in the di�erent runs of the ex-

periment. Sometimes I will simply refer to these token events as the runs of the

experiment.

Measurement settings and measurement out
omes do not appear dire
tly in the

textbook form of a theory but they are indispensable part of the semanti
s (not of

pragmati
s!): without them the theory 
annot be linked to reality. More than that,

these two types are the only types an experimenter has dire
t empiri
al a

ess to.

Everything else posited by the theory has to ultimately boil down to some relations

between these observable 
ategories. To be more spe
i�
, any dedu
tive or indu
tive

relation between the ontologi
al types of the theory has to be a

ounted for in terms
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of 
orrelations between the token events falling in the 
ategory of measurement

settings and measurement out
omes. As the empiri
ist thesis tea
hes, one has no

other a

ess to physi
al reality than via observation.

Correlations between measurement settings and measurement out
omes 
an be

a

ounted for in terms of probabilities. In our a
tualist framework the probability of

an out
ome type is understood as the long-run relative frequen
y of those runs of the

experiment whi
h fall in that type if the experiment is repeated appropriately many

times. Spe
i�
ally, the probability of an out
ome given a 
ertain measurement

setting is simply the number of those runs whi
h fall in both the type of the out
ome

and the setting divided by the number of those runs whi
h fall in the type of the

setting. More importantly, any probability assignment to any ontologi
al type to

whi
h we have no dire
t empiri
al a

ess must be based on type assignments to the

individual runs of the experiment in the long-run frequen
y sense: the probability

of a given type is p only if the relative frequen
y of the individual runs (instan
es)

falling in the type in question is p. Probability supervenes on the Humean mosai


of token events.

In order to a

ount for the observable measurement out
omes physi
al theories

typi
ally introdu
e a further, not dire
tly a

essible event type, whi
h we will 
all

elements of reality. In this sense our approa
h is s
ienti�
ally realist. Elements of

reality 
ome in two sorts: they 
an either determine the measurement out
omes

for a given measurement setting for sure, or they 
an �x only the probability of

the measurement out
omes. We will 
all the �rst event type property and the

se
ond event type propensity. Whereas measurement out
omes are 
learly 
ausally

in�uen
ed by and therefore probabilisti
ally dependent on the elements of reality,

it is not a priori 
lear what the relation between the measurement settings and the

elements of reality should be. This is what we are going to analyze in what 
omes.

3.3 A toy model

Let us make these abstra
t 
onsiderations more 
on
rete on a simple model. (For a

general s
heme of a physi
al theory see the Appendix.) Consider a box 
ontaining


olored di
e (Szabó, 2008). Let us try to develop a physi
al theory of this system.

Whatever theory we develop, the semanti
s of the theory has to minimally spe
ify

the measurement settings and measurement out
omes. These are the 
ategories

whi
h are dire
tly a

essible for an experimenter. Suppose that the measurement

settings are the following:

a1: drawing a die from the box and 
he
king its 
olor

a2: drawing a die from the box, throwing it and 
he
king the number on its

upper fa
e

Suppose furthermore that the measurement out
omes are

Ai
1: the 
olor of the die is bla
k (A1

1) or white (A2
1)

Aj
2: the number on the upper fa
e of the die is j (j = 1 . . . 6)
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So the semanti
s of the theory posits the following event types: the measurement

settings a with two sub
ategories a1 and a2, and the measurement out
omes A with

two plus six sub-sub
ategories Ai
1 and Aj

2.

As the experimenter is repeating the experiment, the token events, that is the

runs falling in the di�erent event types, are a

umulating giving rise to a proba-

bilisti
 des
ription of the experiment. She 
an 
al
ulate for example the 
onditional

probability of obtaining a bla
k die on the 
ondition that she had performed the


olor measurement:

p(A1
1|a1) =

#(A1
1 ∧ a1)

#(a1)

This probability is empiri
ally a

essible: one just reads o� from the relative fre-

quen
y of the measurement out
omes and measurement settings. (Here we set aside

problems 
on
erning the 
onvergen
e of the relative frequen
ies.)

The experimenter 
an of 
ourse try to enri
h her theory and introdu
e a new

ontologi
al 
ategory into her theory. The motivation behind this move is to obtain

an answer to the question: �Why was the out
ome of the 
olor measurement bla
k

in a 
ertain run of the experiment?� A natural answer to this question is to say:

�Be
ause the die itself was bla
k.� This answer amounts to introdu
ing a third

event type into our ontology, whi
h we will 
all property. What is a property?

The de�ning feature of the property bla
k is the following: whenever a die with

the property bla
k is subje
ted to a 
olor measurement, the out
ome will always

be bla
k. Denote the property bla
k by α1
1 and the property white by α2

1. (So

our notation is the following: we use lower 
ase Latin letter for the measurement

settings (a); 
apital Latin letters for the measurement out
omes (A); and Greek

letters for the elements of reality (α).) The property bla
k is an event type and

ea
h token event that is ea
h run of the experiment 
an be 
hara
terized by either

falling into this event type or not. Therefore, one 
an also meaningfully speak about

the probability of the property bla
k, p(α1
1), as the long-run relative frequen
y of

those runs of the experiment whi
h fall into the event type α1
1. Consequently, one


an also express the de�ning feature of the property bla
k and white in terms of

probabilities as follows:

p(Ai
1|a1 ∧ αk

1) = δik i, k = 1, 2 (3.1)

That is in ea
h run of the experiment when the die was bla
k and the 
olor has

been measured, the out
ome was bla
k and never white; and in ea
h run of the

experiment when the die was white and the 
olor has been measured, the out
ome

was white and never bla
k. A property is nothing but an event type whi
h, if

instantiated and measured in a 
ertain run of experiment, brings with it a de�nite

out
ome.

Let us now go over to the 
ase of throwing the di
e and ask a similar question to

that of the 
olor measurement: �Why does the out
ome six 
ome up with a 
ertain

probability in the experiment?� Here the natural answer is this: �Be
ause the die

has a 
ertain mass distribution.� This leads us to introdu
ing another event type

whi
h we will 
all propensity.
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Suppose that the box is 
ontaining di
e with two di�erent mass distributions.

Denote them by α1
2 and α

2
2. Here the lower index 2 indi
ates that the measurement

setting is of the se
ond type, namely 
he
king the upper fa
e of the die (and not

the 
olor), and the upper index dis
erns the two mass distributions. The mass

distribution α1
2 is again an event type just as α1

1, the property bla
k was. In every

single run of the experiment it is either instantiated or not that is ea
h die has

either the mass distribution α1
2 or not. Hen
e one 
an speak about the probability

p(α1
2) as the relative frequen
y of those runs whi
h fall into the event type α1

2. If

a die with mass distribution α1
2 is drawn from the box and thrown, then let the

probability of its 
oming up j be denoted by qj1. Similarly, if a die with mass

distribution α2
2 is drawn from the box and thrown, then the probability of 
oming

up j is qj2. This means that the mass distribution of a given die �xes the probability

of the die 
oming up with a 
ertain fa
e upon throwing. In terms of probabilities

this 
an be expressed as follows:

p(Aj
2|a2 ∧ αl

2) = qjl j = 1 . . . 6, l = 1, 2 (3.2)

where

∑

j q
jl = 1 for l = 1, 2.

Metaphysi
ally, the new event type α2 is the propensity of the die to 
ome

up with a 
ertain fa
e in the se
ond type of measurement setting. Note that the

propensity here is not something whi
h the notion of probability should be redu
ed

to as in the literature on the interpretations of probability. Here propensity is an

event type and probability is simply long-run relative frequen
y. Moreover, one 
an

meaningfully speak about the �probability of a given propensity� as the long-run

frequen
y of those token events whi
h instantiate the event type of the propensity

in question.

Also observe that a property mathemati
ally di�ers from a propensity only

in that the qjl-s �xing the 
onditional probabilities are all either 0 or 1 for the

properties, whereas they 
an be any number between 0 and 1 for the propensities.

Being bla
k �xes the measurement out
omes for the 
olor measurement, whereas

having mass distribution α1
2 �xes only the probability of obtaining a six. The

de�ning equation (3.1) of properties is a spe
ial 
ase of the de�ning equation (3.2)

of propensities. Still, it is worth dis
erning these two event types. If in a given

theory the probabilities, 
orrelations, et
. of the measurement out
omes 
an all

be a

ounted for by postulating purely properties then the theory 
an rightly be


alled deterministi
, whereas if propensities are also needed then the theory is

indeterministi
.

To sum up, in our �theory of di
e� we have two measurement event types, the

event type of measurement settings and the event type of measurement out
omes.

Beyond these we 
an introdu
e into our ontology two elements of reality for ex-

planatory purposes, the event type of properties, α1, with two sub
ategories α1
1

(bla
k) and α2
1 (white); and the event type of propensities, α2, with two sub
at-

egories α1
2 (�rst mass distribution) and α2

2 (se
ond mass distribution). From now

on we will 
oin the term measurement event type for measurement settings and

measurement out
omes and element of reality for properties and propensities. The

event algebra of the theory will be 
omposed as the Boolean 
ombination of the
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measurement event types and elements of reality. This algebra will be built up

from 2 · (2 ·6) · (2 ·2) atomi
 events asso
iated to the di�erent 
ombinations of mea-

surement settings, measurement out
omes, properties and propensities. Ea
h run

of the experiment will instantiate an element of this algebra. Probabilities enter

the theory by simply 
ounting how many runs are instantiating 
ertain elements of

the algebra.

3.4 No-
onspira
y

So far, so good. But physi
s is a pro
edure to move from the observable to the

unobservable. Do we have any means to infer from the �rst two event types to

the se
ond two? Can we say something about properties and propensities based on

measurement settings and measurement out
omes?

Here is a su�
ient 
ondition whi
h entitles us to su
h an inferen
e. Suppose

that the elements of reality are probabilisti
ally independent of the measurement

settings. In 
ase of the properties this means that

p(a1 ∧ αk
1) = p(a1) p(α

k
1) k = 1, 2 (3.3)

in 
ase of the propensities:

p(a2 ∧ αl
2) = p(a2) p(α

l
2) l = 1, 2 (3.4)

Taking the 
onjun
tions we obtain:

p(a1 ∧ a2 ∧ αk
1 ∧ αl

2) = p(a1 ∧ a2) p(αk
1 ∧ αl

2) k, l = 1, 2 (3.5)

Now, 
onsider all those other equations whi
h arise from (3.5) by substituting one

or more event types by their 
omplements; for example:

p(∼a1 ∧ a2 ∧ αk
1∧ ∼αl

2) = p(∼a1 ∧ a2) p(αk
1∧ ∼αl

2) k, l = 1, 2 (3.6)

In
luding (3.5) one obtains thus altogether 2 ·2 ·4 ·4 = 64 equations. Let us refer to
this set of 64 equations as no-
onspira
y. No-
onspira
y expresses a probabilisti


independen
e between the various Boolean 
ombinations of measurement settings

and the various Boolean 
ombinations of elements of reality. To make referen
e

easier we will sometimes refer solely to (3.5) as no-
onspira
y requirement without

mentioning the other 63 equations arising from 
omplementation.

No-
onspira
y does us a great servi
e: we 
an reprodu
e the observable prob-

abilities of the theory in terms of the probabilities of the elements of reality. For

example the 
onditional probability p(A1
1|a1) of obtaining a bla
k die upon 
olor

measurement turns out to be just the probability p(α1
1) of the property bla
k:

p(A1
1|a1) =

p(A1
1 ∧ a1)
p(a1)

=

∑

k p(A
1
1 ∧ a1 ∧ αk

1)

p(a1)
=

∑

k p(A
1
1|a1 ∧ αk

1)p(a1 ∧ αk
1)

p(a1)

=

∑

k p(A
1
1|a1 ∧ αk

1)p(a1)p(α
k
1)

p(a1)
=

∑

k

p(A1
1|a1 ∧ αk

1)p(α
k
1)

=
∑

k

δ1kp(α
k
1) = p(α1

1) (3.7)
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where we used only the theorem of total probability, the de�ning feature (3.1) of a

property and no-
onspira
y (3.3).

By similar reasoning we 
an reprodu
e the 
onditional probability p(A6
2|a2) of

obtaining the out
ome six upon �upper fa
e� measurement in terms of weighted

averages of the probability of propensities p(αl
2):

p(A6
2|a2) = q61 p(α1

2) + q62 p(α2
2) (3.8)

Equations (3.7) and (3.8) are of 
entral importan
e. They explain why in the

text book form of a physi
al theory one need not speak about measurement settings

and measurement out
omes. If no-
onspira
y holds, then the 
onditional probabil-

ities of the measurement out
omes on measurement settings simply mirror the (un-


onditional) probabilities of the elements of reality (properties and propensities).

Consequently, the dedu
tive and indu
tive relations between the measurement event

types simply reveal dedu
tive and indu
tive relations between the elements of re-

ality. For example, observing the relation that the probability of a die 
oming up

six is higher than that of being bla
k

p(A6
2|a2) > p(A1

1|a1) (3.9)

reveals the unobservable fa
t that

q61 p(α1
2) + q62 p(α2

2) > p(α1
1) (3.10)

More than that, the relations between measurement settings and measurement out-


omes do not just reveal the hidden relations between the unobservable 
ategories

but by the same move they also seem to make measurement event types super�u-

ous. If the role of these �surfa
e� relations is simply to re�e
t the deep stru
tural

relationships of the unobservable 
ategories with whi
h real physi
s is 
on
erned�

then why one would 
are about them? Why one would 
are about measurement

settings and measurement out
omes if one 
an also speak about the �real stu�� di-

re
tly? In short, no-
onspira
y 
an 
ontribute to delegating measurement settings

and measurement out
omes from semanti
s to mere pragmati
s.

May this rationale be as fruitful in displaying textbook theories as it is, in a

philosophi
al re�e
tion, I think, one should not 
on
ede that no-
onspira
y blurs

the general semanti
al role of measurement settings and measurement out
omes.

Just re
all the general frame: a physi
al theory is a formal system plus a semanti
s


onne
ting the formal system to the world. The very two 
ategories whi
h lend

empiri
al meaning to a physi
al theory are the measurement settings and the mea-

surement out
omes. They are the only event types whi
h an observer have dire
t

a

ess to. Consequently, they 
annot be eliminated from a physi
al theory�neither

by appealing to no-
onspira
y, nor by appealing to anything else. Otherwise the

whole theory would lose its empiri
al 
ontent. It would turn into an uninterpreted

formalism. No 
onsideration 
an deprive a physi
al theory of those 
onstituents

whi
h make up its semanti
s.

But let us return now to no-
onspira
y. What if no-
onspira
y does not hold?

In this 
ase the inferen
e from the measurement event types to the elements of
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reality via (3.7) and (3.8) is not possible. But does it make the knowledge of the

unobservable 
ategories impossible? Is no-
onspira
y a kind of Kantian �
ondition

of the possibility of experien
e�?

Some seem to think so. In his famous '
at' paper S
hrödinger (1935) likens

the free measurement 
hoi
e of the EPR experiment to a situation when a 
lass of

students are asked a set of question su
h that ea
h student may be asked any of

questions. If the answer to the questions are all 
orre
t, then one 
an 
on
lude that

all students know all answers. Analyzing S
hrödinger's example Maudlin (2014)

writes the following:

�Re
all S
hrödinger's 
lass of identi
ally prepared students. We are

told they 
an all answer any of a set of questions 
orre
tly, but ea
h


an only answer one, and then forgets the answers to the rest. It's an

odd idea, but we 
an still test it: we ask the questions at random, and

�nd that we always get the right answer. Of 
ourse it is possible that

ea
h student only knows the answer to one question, whi
h always

happens to be the very one we ask! But that would require a mas-

sive 
oin
iden
e, on a s
ale that would under
ut the whole s
ienti�


method.� (Maudlin, 2014 p. 23)

In short, the independen
e of the measurement 
hoi
es and the elements of reality

is a pre
ondition of pursuing s
ien
e per se. But is it really so?

3.5 When no-
onspira
y does not hold

Consider the following examples:

Example 1. Suppose that the bla
k painting on the di
e is not durable enough: if

you just tou
h the di
e, the bla
k 
olor is wearing o� it and it turns white.

Example 2. Suppose that ea
h die is �lled with a high vis
osity �uid whi
h 
an

stream and swirl inside the die. By every throw the �uid is put in motion whi
h


hanges the mass distribution of the die and hen
e the propensity of the out
ome

at that very throw.

Example 3 is spe
ial 
ase of Example 2. Suppose again that the di
e are �lled with

a �uid whi
h 
an stream inside them before tossing. But by tossing the di
e (due

to the heavy shaking, say) the �uid �freezes out� in su
h a biased way that the di
e


an 
ome up with only one de�nite fa
e.

The above three examples are all illustrating a situation when no-
onspira
y is

violated. In the �rst example the property α1
1 (bla
k) has turned into another

property α2
1 (white) as a result of the measurement setting a1 (drawing a die from

the box). In the se
ond example the propensity α1
2 (�rst mass distribution) has

turned into another propensity α2
2 (se
ond mass distribution) as a result of the

measurement setting a2 (tossing a die). Finally, in the third example we �nd a


hange of 
ategory. Re
all that properties and propensities di�ered only in whether
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they determined the out
ome for sure or only up to a 
ertain probability. In the

third example there was some non-trivial probability for the di�erent fa
es of the

di
e to 
ome up before the throw. After the tossing, however, the die 
ould 
ome

up only with a given fa
e. That means that here a propensity (one sort of mass

distribution) has been turned into a property (a spe
ial mass distribution exa
tly

�xing the out
ome) as a result of the measurement setting a2 (tossing a die). In

ea
h 
ase no-
onspira
y is violated. (For the relevan
e of these examples to the

interpretations of quantum me
hani
s see (Gömöri and Hofer-Szabó, 2016).)

In the above three examples no-
onspira
y was violated due to the 
ausal in�u-

en
e of the measurement settings on the elements of reality. But it 
an also fail due

to an opposite 
ausal 
onne
tion when the elements of reality have 
ausal in�uen
e

on the measurement settings:

Example 4. Suppose that tou
hing the di
e of the se
ond mass distribution is

unpleasant for your hand; so you toss them hastily rather then keep them in hand

and 
he
k the 
olor.

Yet another example for the violation of no-
onspira
y is a 
ommon 
ausal 
on-

ne
tion between the elements of reality and the measurement settings. It is a


ombination of example 1 and 4.

Example 5. Suppose that the di
e of the se
ond mass distribution are too heavy

to be tossed; so you rather perform a 
olor measurement on them. Suppose fur-

thermore that being heavy and having a se
ond mass distribution have a 
ommon


ause�say, these di
e are being made in the same fa
tory.

In all the above examples no-
onspira
y was violated due to a 
ausal 
onne
tion

between the measurement settings and the elements of reality. But is 
ausal 
on-

ne
tion the only way to violate no-
onspira
y? We 
ome ba
k to this question in

Se
tion 8.

Now, we go over to our 
entral question: Under what 
ir
umstan
es 
an we

adopt no-
onspira
y in our physi
al theory, and when are we for
ed to abandon

it? In the up
oming �ve Se
tions we investigate �ve 
on
epts in turn whi
h 
an

qualify the de
ision. They are separability, 
ompatibility, 
ausality, lo
ality and


ontextuality.

3.6 Separability

Niels Bohr's notorious insisten
e on the use of 
lassi
al 
on
epts in the des
ription

of quantum phenomena is one of the hallmarks of his philosophy. In his 
ontribution

to the 1949 Einstein Fests
hrift Bohr writes:

It is de
isive to re
ognize that, however far the phenomena trans
end

the s
ope of 
lassi
al physi
al explanation, the a

ount of all eviden
e

must be expressed in 
lassi
al terms. The argument is simply that by

the word �experiment� we refer to a situation where we 
an tell others
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what we have done and what we have learned and that, therefore,

the a

ount of the experimental arrangement and of the results of the

observations must be expressed in unambiguous language with suitable

appli
ation of the terminology of 
lassi
al physi
s. (Bohr 1949, p. 209).

Many Bohr s
holars have made signi�
ant e�orts to understand the meaning and

role of Bohr's do
trine on the prima
y of 
lassi
al 
on
epts. Camilleri and S
hlosshauer

(2015) argue that Bohr's do
trine is primarily a general epistemologi
al thesis ar-

ti
ulating the epistemology of experiment rather than a spe
ial interpretation of

quantum me
hani
s (for this see also (Zinkernagel, 2015)). The epistemologi
al

problem a

ording to Bohr is that whereas the very notion of experiment presup-

poses that the measured obje
ts possess a de�nite state whi
h is independent from

the state of the measurement apparatus, quantum me
hani
s makes this distin
tion

between obje
t and apparatus ambiguous by treating the two as a single, 
omposite,

entangled system:

. . . the impossibility of subdividing the individual quantum e�e
ts and

of separating the behaviour of the obje
ts from their intera
tion with

the measuring instruments serving to de�ne the 
onditions under whi
h

the phenomena appear implies an ambiguity in assigning 
onventional

attributes to atomi
 obje
ts whi
h 
alls for a re
onsideration of our

attitude towards the problem of physi
al explanation. (Bohr 1948, p.

317).

If entanglement between obje
t and apparatus is the obsta
le to an unambiguous

des
ription of quantum phenomena, then su
h a des
ription in 
lassi
al terms 
an

be realized when the subsystems are not entangled, that is when they are separable.

This is exa
tly Don Howard's (1994) suggestion for the re
onstru
tion of Bohr's

do
trine on 
lassi
al 
on
epts:

. . . for Bohr, 
lassi
al 
on
epts are ne
essary be
ause they embody the

assumption of instrument-obje
t separability, and that su
h separa-

bility must be assumed, in spite of its denial by quantum me
hani
s,

in order to se
ure an unambiguous and thus obje
tive des
ription of

quantum phenomena. (Howard 1994, p. 209).

Howard's suggestion to analyze 
lassi
al des
ription in terms of separability boils

down to the requirement to reprodu
e the statisti
al predi
tions of a given quantum

phenomenon in terms of an �appropriate mixture.� The state of a 
omposite system

is 
alled separable, if it is a mixture that is a 
onvex sum of produ
t states of the


omponents. Sin
e produ
t states represent probabilisti
ally independent 
ompo-

nents, a mixture is simply a 
onvex 
ombination of these states whi
h expresses a


lassi
al probabilisti
 
orrelation between the 
omponents. Mixtures give rise to a


lassi
al, ignoran
e interpretation of the statisti
s of the phenomenon under inves-

tigation. This analysis via the notion of an �appropriate mixture� has been pi
ked

up for example by Halvorson and Clifton (2002) who provide an elegant analysis of

the EPR experiment from Bohr's perspe
tive along the lines suggested by Howard.

59

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



But how separability as a re
onstru
tion of Bohr's demand on 
lassi
ality relates

to no-
onspira
y as a kind of independen
e prin
iple between measurement settings

and the elements of reality attributed to the system? Clearly, separability is a

broader 
on
ept than no-
onspira
y: separability simply requires that the relation

between the measurement settings and elements of reality should be expressed as a

mixture of probabilisti
 independen
es; whereas no-
onspira
y requires that the two

should be probabilisti
ally independent. In our toy model for example separability

requires the probability of the 
olor measuring and the system's possessing the

property bla
k to be the following:

p(a1 ∧ α1
1) = λ1 p(a1) p(α

1
1) + λ2 p(a1) p(∼α1

1) + λ3 p(∼a1) p(α1
1) + λ4 p(∼a1) p(∼α1

1)(3.11)

with any λi ∈ [0, 1] and
∑4

i=1 λi = 1; whereas no-
onspira
y requires that

p(a1 ∧ α1
1) = p(a1) p(α

1
1) (3.12)

Observe that separability (3.11) does not give any restri
tion in our 
ase; it sim-

ply means that p is a 
lassi
al probability whi
h we already knew sin
e we took

probabilities to be relative frequen
ies.

All the �ve examples in the previous Se
tion, though violating no-
onspira
y,

are 
ompletely 
lassi
al; they provide an unambiguous des
ription of how the un-

observable properties or propensities 
hange upon throwing the di
e. They even

provide a me
hanism for the 
ausal dependen
e. In Example 1 for instan
e when

upon drawing the bla
k 
olor is wearing o� the di
e, obviously

p(a2 ∧ α1
1) 6= p(a2) p(α

1
1) (3.13)

Throwing the di
e and being bla
k will not be probabilisti
ally independent due to

the 
ausal relation between the two event types.

Thus, the �unambiguous language� requires only to attribute some properties to

the system whi
h stand in some 
lassi
al probabilisti
 relation to the measurement

settings but it does not require them to be probabilisti
ally independent of one an-

other. Hen
e, separability as a weaker requirement than no-
onspira
y 
annot be

used to ba
k the latter. (In addition, a

ording to Howard even the demand on 
las-

si
ality as separability is too restri
tive from perspe
tive of a general epistemology

of experiment.)

3.7 Compatibility

Now, let us go over to our se
ond 
on
ept whi
h is 
ompatibility of the measurement

settings. Up to now we have 
onsidered measurement settings only separately. Let

us see now what happens when we perform a joint measurement.

Again, 
onsider our toy model and suppose that we perform the measurement

a1 ∧ a2 that is we are drawing a die from the box, throwing it and 
he
king its


olor and also the number on its upper fa
e. Suppose that after performing both

measurements we disregard the upper fa
e and 
onsider only the 
olor. Suppose

60

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



that we observe that the probability of the out
ome bla
k in this joint measurement

is not the same as in the measurement a1. That is we �nd that

p(A1
1|a1 ∧ a2) 6= p(A1

1|a1) (3.14)

Let us 
all (3.14) in
ompatibility of the two measurements. Note that in
ompati-

bility does not mean here that a1 ∧ a2 
annot be performed; it means that a1 and

a2 are disturbing one another.

What is in
ompatibility a sign of?

First, observe that the 
ondition a1 on the right hand side of (3.14) does not

mean that we performed only a1�this would be a1∧∼a2. The 
ondition a1 means

that we 
onsider all the runs in whi
h a1 has been performed, irrespe
tively whether

a2 has been performed or not�that is a1 = (a1 ∧ a2) ∨ (a1∧∼a2). So what (3.14)

expresses is that whether we perform a2 or not does 
ount in measuring a1 and

produ
ing out
ome A1
1.

Generally, one 
an take two positions towards in
ompatibility. I will 
all the

�rst the purist or Bridgmanian strategy and the se
ond the stubborn strategy.

A

ording to the purist strategy if the probability of the out
ome of a given

measurement 
an vary depending whether another measurement is performed or

not, then this measurement is not yet well de�ned. Consider the following example.

In a regiment two tests are performed: it is tested how good shots are the soldiers

(a1) and how mu
h al
ohol they 
an drink (a2). Obviously, whether the se
ond

test is performed or not, 
ru
ially in�uen
es the out
ome of the �rst. So the two

tests are in
ompatible in the above sense (and not in the sense that they 
annot

be performed at the same time: they 
an�although it is not re
ommended). So

the 
orre
t de�nition of the �rst test is this: let the soldiers shoot but do not give

them al
ohol (a1∧∼a2).
So the purist attitude towards (3.14) is that a1 in itself is not yet a well de�ned

measurement pro
edure sin
e the probability of the out
omes depends on whether

a2 is performed or not. So instead of taking two measurement settings, a1 and a2,
we should rather take four, a1 ∧a2, a1∧∼a2,∼a1∧a2 and∼a1∧∼a2 (in this latter


ase we do nothing). By this move we 
an eliminate in
ompatibility sin
e the four

new measurements are logi
ally mutually ex
lusive. They 
annot be 
o-performed

and hen
e 
annot disturb one another. Generally, the purist strategy is to take the


onjun
tions of in
ompatible measurements until they be
ome either 
ompatible or

logi
ally ex
lusive.

We 
all this strategy Bridgmanian sin
e it is in tune with Bridgman's ideas on

the 
orre
t de�nition of measurement unfolded for example in The Logi
 of Modern

Physi
s :

Implied in this re
ognition of the possibility of new experien
e beyond

our present range, is the re
ognition that no element of a physi
al situ-

ation, no matter how apparently irrelevant or trivial, may be dismissed

as without e�e
t on the �nal result until proved to be without e�e
t

by a
tual experiment. (Bridgman 1958, p. 3)

61

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



Returning to no-
onspira
y, the Bridgmanian strategy renders all 
o-measurable

measurements 
ompatible with one another. Therefore, the problem of in
ompat-

ibility disappears and we are ba
k to our single 
ase measurement s
enario. The

purist strategy tea
hes nothing new about no-
onspira
y.

Let us go over to the stubborn strategy. I 
all it stubborn sin
e it takes a1 and a2
to be 
orre
t measurement settings in spite of their in
ompatibility (3.14)? What

does then (3.14) say about no-
onspira
y?

This is a point where we need to go one step further 
on
erning the relation

between measurement event types and elements of reality. We need to spe
ify how

the elements of reality behave when jointly measured. Therefore suppose that the

following relation also holds (in addition to (3.1) and (3.2)):

p(Ai
1 ∧ Aj

2|a1 ∧ a2 ∧ αk
1 ∧ αl

2) = δik q
jl i, k, l = 1, 2; j = 1 . . . 6 (3.15)

Requirement (3.15) expresses a kind of non-disturban
e relation between the mea-

surements whi
h 
an be better seen if we sum up �rst for i then for j:

p(Ai
1|a1 ∧ a2 ∧ αk

1 ∧ αl
2) = δik = p(Ai

1|a1 ∧ αk
1) (3.16)

p(Aj
2|a1 ∧ a2 ∧ αk

1 ∧ αl
2) = qjl = p(Aj

2|a2 ∧ αl
2) (3.17)

(Here the se
ond equation in both rows are due to the de�ning equation (3.1) of

the property and (3.2) of the propensity, respe
tively.) (3.16) and (3.17) express

that the probability of an out
ome 
onditioned on an element of reality and a

measurement setting does not 
hange by further 
onditioning it on other elements

of reality or measurement settings. From (3.16) (where the element of reality is a

property) it also follows that

p(Ai
1|a1 ∧ a2 ∧ αk

1) = p(Ai
1|a1 ∧ αk

1 ∧ αl
2) = p(Ai

1|a1 ∧ αk
1) (3.18)

Now, suppose that no-
onspira
y also holds that is

p(a1 ∧ a2 ∧ αk
1 ∧ αl

2) = p(a1 ∧ a2) p(αk
1 ∧ αl

2) k, l = 1, 2 (3.19)

From (3.15) and (3.19) it is easy to show (via a derivation similar to (3.7)) that

p(A1
1|a1 ∧ a2) = p(A1

1|a1) (3.20)

in 
ontradi
tion to in
ompatibility (3.14). This means that in
ompatibility between

the measurements implies that we have to abandon either the non-disturban
e of

the measurement pro
edures (3.15) or no-
onspira
y (3.19).

Thus, in 
ase of the stubborn strategy 
ompatibility of the measurement settings

is a good sign of that both non-disturban
e and no-
onspira
y hold; and in
ompat-

ibility is a good sign of that either the one or the other is violated. Whether to

blame the one or the other is a question for further investigation.
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3.8 Causality

Our third 
on
ept in the row is 
ausality. In Se
tion 5 we saw several examples for


ausal 
onne
tions between the measurement settings and the elements of reality.

In Example 1 for instan
e we supposed that the bla
k painting on the di
e is not

durable enough and if one tou
hes the di
e, the 
olor bla
k is wearing o�. Causal


onne
tion between elements of reality and measurement settings is a prime sour
e

of no-
onspira
y.

Causal 
onne
tion 
omes in two sorts. It 
an be either a dire
t 
ausal 
onne
-

tion as in Examples 1 to 4; or it 
an be a 
ommon 
ausal 
onne
tion as in Example

5. Rei
henba
h's Common Cause Prin
iple states that all 
orrelations should be

a

ounted for by one of the two 
ausal 
onne
tions. On the other hand, proba-

bilisti
 independen
e between the measurement settings and the elements of reality

is a sign of 
ausal independen
e (assuming that 
ausal e�e
ts do not 
an
el one

another). Hen
e, no-
onspira
y 
an be ensured if any 
ausal 
onne
tion between

the measurement settings and the elements of reality 
an be ex
luded.

Before turning to this point, �rst we need to 
larify what we mean by a 
ausal


onne
tion between two event types, say, the 
olor measurement, a1, and the prop-

erty bla
k, α1
1. By that we mean that the 
olor measurement and the property bla
k

are 
ausally related in a tokenwise manner. In other words, there is a pairing of

token events instantiating these two types su
h that for ea
h pair the token events

of the pair stand in either a dire
t or a 
ommon 
ausal 
onne
tion to one another.

But how to 
reate pairs?

Consider a 
ertain run of the experiment whi
h instantiates a1∧α1
1. Up to now

we treated this run of the experiment as one single run in whi
h one performed a


olor measurement and the property of the di
e whi
h has been drawn was bla
k.

How 
an the 
olor measurement 
ause the property bla
k in this single run? If

this run of the experiment is taken as one single token event, then there 
an be

no tokenwise 
ausal 
onne
tion; simply be
ause we have only one token. In order

to have a 
ausal 
onne
tion, one needs to de
ompose this one single run of the

experiment instantiating a1∧α1
1 into a pair of token events su
h that the one token

event instantiates a1 and the other token event instantiates α1
1. In order to speak

about a tokenwise 
ausal relation, one token event is not enough. One possibility

to perform this de
omposition is to say that the �rst token event o

urred here

and the other token event o

urred over there. Lo
alization is a typi
al method for

individuation. We 
ome ba
k to the question of lo
alization in the next Se
tion.

Now, suppose that we 
an separately individuate the token events of the 
olor

measurement and the token events of the property bla
k. Then a 
ausal 
onne
tion

between a1 and α1
1 means that for ea
h pair either the token instantiating a1 is

the 
ause of the token instantiating α1
1; or vi
e versa; or there is a third token

instantiating a third event type whi
h is the 
ommon 
ause of both. Is there a way

to ex
lude both a dire
t and also a 
ommon 
ausal 
onne
tion between the token

events and by this to ensure no-
onspira
y? What might 
ome to mind �rst is to

rely on some lo
ality 
onsideration. This is the topi
 of the next Se
tion.
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3.9 Lo
ality

Is there a spatiotemporal arrangement of the event types a1 and α1
1 su
h that one


an safely say that all possible 
ausal 
onne
tions between the measurement settings

and the elements of reality are shielded o�? Suppose that we take a snapshot of

the world and it turns out that the pairs of token events instantiating the 
olor

measurement and the property bla
k are lo
alized in spa
elike separated regions.

Thus, in the �rst run of the experiment the token event instantiating a1 is spa
elike
separated from the token event instantiating α1

1; and similarly for the se
ond, third,

et
. run. This is the best s
enario a spa
etime lo
alization 
an provide for 
ausal

independen
e. Does it guarantee that there is no 
ausal and hen
e probabilisti


dependen
e between a1 and α
1
1? As one expe
ts, the answer to this question is no.

Even if the token events of ea
h pair are spa
elike separated, they 
an still be


ausally related to one another both in a dire
t and also in a 
ommon 
ausal way.

As for dire
t 
ausal 
onne
tion, just note that in order to produ
e a measurement

out
ome these two token events need to intera
t somewhere in spa
etime. Hen
e

even if they are spa
elike separated at a 
ertain moment, they will not be so at the

moment of bringing about the out
ome bla
k. Therefore their dire
t 
ausal e�e
t

on one another at the time of their intera
tion 
annot be ex
luded based on the

fa
t that at a previous time they were lo
alized in a spa
elike separated way. The

situation is similar or even worse in 
ase of a 
ommon 
ause. Even if the two token

events are spa
elike separated, there well 
an be a 
ommon 
ause in their 
ommon

past 
ausally in�uen
ing both.

To sum up, lo
ality 
onsiderations do not help us in ex
luding 
ausal 
onne
-

tions and hen
e to ensure no-
onspira
y. Thus, we have fallen ba
k to the situation

in the previous Se
tion: to guarantee no-
onspira
y we need to ex
lude 
ausal 
on-

ne
tion in some way without making use of spatiotemporal 
onsiderations.

3.10 Contextuality

Up to now it may have appeared that the only sour
e for the violation of no-


onspira
y is a 
ausal 
onne
tion between the elements of reality and the measure-

ment settings. However, there is a further way to violate no-
onspira
y whi
h is not

related to 
ausality. Two events 
an be 
orrelated even if they are not 
ausally re-

lated; namely if they logi
ally depend on one another. This leads us to the problem

of 
ontextuality.

A little re�e
tion on the de�nition of property and propensity 
an 
onvin
e

us that (3.1) and (3.2) say nothing about whether the elements of reality and the

measurement settings are logi
ally independent or not. It 
an well be the 
ase that

by spe
ifying the measurement setting we partly spe
ify also the elements of reality.

Consider the following example:

Example 6. Let α1
2(x) denote the following property of the di
e: the mass dis-

tribution of the di
e is of the �rst type and the initial 
onditions (position plus

momentum) of its toss is x. α1
2(x) is obviously a property sin
e together with the
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toss a2 it determines the upper fa
e for sure; that is

p(Aj
2|a2 ∧ α1

2(x))

is either 0 or 1 for any j and x.

However, a2 and α1
2(x) are not logi
ally independent. If you tossed the die, then

the initial velo
ity is surely not zero and the die must have been lo
ated somewhere

around the table. That is the measurement setting partly spe
i�es the initial 
ondi-

tions. This logi
al dependen
e between the element of reality and the measurement

setting is 
alled 
ontextuality.

How 
ontextuality leads to the failure of no-
onspira
y? First, 
onsider an

initial 
ondition x whi
h 
an reasonably be regarded as �tossing the di
e� (that is

for the tossing of the die with x, it will land on the table and after a 
ouple of rolls

it will stop on the table, et
.). For su
h an x, α1
2(x) is algebrai
ally 
ontained in

a2, therefore

p(a2 ∧ α1
2(x)) = p(α1

2(x)) 6= p(a2) p(α
1
2(x)) (3.21)

if p(a2) 6= 1 and hen
e no-
onspira
y is violated. Se
ond, suppose that x does not


ount as �tossing the di
e� (the die �ies over the table, say). Then a2 and α1
2(x)

are algebrai
ally disjoint and hen
e

p(a2 ∧ α1
2(x)) = 0 6= p(a2) p(α

1
2(x)) (3.22)

if p(a2) 6= 0 and no-
onspira
y is again violated. In short, the logi
al dependen
e

between the measurement settings and the elements of reality dire
tly implies (for

non-extremal probabilities, that is typi
ally) a probabilisti
 dependen
e between

them; that is a violation of no-
onspira
y.

To sum up, even if the elements of reality and the measurement settings are 
ausally

deta
hed, they 
an still violate no-
onspira
y if the measurement settings wholly

or partially 
ontribute to the de�nition of the elements of reality. Su
h a situation


annot be ex
luded a priori; at least the de�nitions of the property and the propen-

sity do not ex
lude it. The logi
al dependen
e between elements of reality and

measurement settings su�
es to establish 
onspira
y. Contextuality is the other

main sour
e for the violation of no-
onspira
y.

3.11 Dis
ussion

In this paper we have adopted the following empiri
ist philosophi
al position. A

physi
al theory was re
onstru
ted as a formal system plus a semanti
s 
onne
ting

the formal system to the world. The semanti
s has to minimally spe
ify what

event types inhabit the world. Event types 
an be of two sorts: measurement event

types and elements of reality. Typi
ally we have dire
t a

ess to the former but

not to the latter. There are two measurement event types: measurement settings

and measurement out
omes and there are also two types of elements of reality:
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properties and propensities. The probability of an event type is understood as

simply the long-run relative frequen
y of the token events instantiating the event

type in question. In an experiment the token events are the runs of the experiment.

Adopting the above philosophi
al position we have argued for the following.

No-
onspira
y is the requirement that elements of reality should be probabilisti-


ally independent of the measurement settings. There is no a priori guarantee that

no-
onspira
y does hold. If it does, probabilisti
 relations between the measure-

ment event types will mirror probabilisti
 relations between the elements of reality.

This li
enses physi
s to forget about measurement settings and measurement out-


omes and to talk dire
tly about elements of reality. The temptation to delete

measurement event types from the semanti
s of the theory, however, should be

resisted.

No-
onspira
y is a 
on
ept situated within a web of related 
on
epts su
h as

separability, 
ompatibility, 
ausality, lo
ality and 
ontextuality. In the paper I


on
entrated only on those threads of the web whi
h 
onne
ted these notions to

no-
onspira
y. But 
ertainly there are many other inter
onne
tions. Causality and


ontextuality are 
omplementary terms: the more the measurement settings and

elements of reality are logi
ally depend on one another, the less room there is for


ausal 
onne
tion between them. Separability and spa
etime lo
alization do not

orient us about 
ausal 
onne
tions between measurement settings and elements of

reality; whereas in
ompatibility is often due to a dire
t 
ausal link between them;

as in 
ase of the soldiers' shooting and drinking.

Going ba
k to no-
onspira
y, the following 
an be said. Three of the �ve 
on-


epts, namely separability, 
ompatibility and lo
ality do not bring us 
loser to

no-
onspira
y. Separability is a weaker 
on
ept than no-
onspira
y, so one 
annot

ba
k the latter by the former. Compatibility of measurement settings is empty

in 
ase of a purist strategy and only a partial motivation in 
ase of the stubborn

strategy. Finally, lo
ality 
annot be used to support no-
onspira
y at all. How-

ever, the remaining two 
on
epts, namely 
ausality and 
ontextuality, are 
losely

linked to no-
onspira
y. No-
onspira
y 
an be guaranteed if both 
ausal and logi
al

dependen
e between the measurement settings and the elements of reality 
an be

ex
luded. In the �rst 
ase one needs to ensure that there is no dire
t or 
ommon


ausal 
onne
tion between the individual runs of the experiment. In the se
ond


ase that measurement settings should not 
ontribute to the very de�nition of the

elements of reality.

Whether this 
an be done and hen
e a non-
onspiratorial physi
al theory 
an

be provided for a given phenomena is a question that 
an be answered only by

a thorough s
rutiny of the phenomena in question. Whether any 
onspiratorial

des
ription of a physi
al s
enario 
an be repla
ed by a �better� non-
onspiratorial

one; whether adopting no-
onspira
y 
an be in 
on�i
t, as in the EPR-Bell s
enario,

with other prin
iples su
h as lo
al 
ausality, Common Cause Prin
iple, et
.�well,

these questions 
annot be de
ided at a general metaphysi
al level. No-
onspira
y

is neither an analyti
 nor a trans
endental truth; it is an extra 
onstraint on theory


onstru
tion the su

ess of whi
h 
an be de
ided only on a 
ase-by-
ase basis.
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Appendix

Throughout the paper we used a simple toy model for a physi
al theory. Here we

provide a general mathemati
al pi
ture of a physi
al theory.

Let ai (i = 1 . . . I) be the measurement settings in a given theory and let

Aji
i (ji = 1 . . . Ji) denote the jth out
ome of the ith measurement. Suppose fur-

thermore that there is an element of reality αki

i (ki = 1 . . .Ki) (either a property

or a propensity) asso
iated to ea
h measurement setting ai su
h that

p(Aji
i |ai ∧ αki

i ) = qjiki

i (3.23)

where

∑Ji

ji=1 q
jiki

i = 1 for any i = 1 . . . I and ki = 1 . . .Ki. For a given i ∈ I the

element of reality αki

i is a property i� Ji = Ki and q
jiki

i = δjiki
. Otherwise αki

i is

a propensity.

Suppose that the elements of reality are related ni
ely to the measurement

event types not only in 
ase of a single measurement but also in 
ase of a joint

measurement. (Note the word �single� does not mean that the other measurements

are not performed; it means rather that it is not taken into 
onsideration whether

they are performed or not.) Therefore, sele
t I ′ measurement settings out of the

possible I and let now the index i run from 1 to I ′. What we require is that for

any su
h sele
tion (among them the no-sele
tion) the following should hold:

p(Aj1
1 ∧ . . . ∧ A

jI′
I′ |a1 ∧ . . . ∧ aI′ ∧ αk1

1 ∧ . . . ∧ α
kI′

I′ ) = qj1k1

1 × · · · × qjI′kI′

I′ (3.24)

Now, the elements of reality {αki

i } are said to satisfy no-
onspira
y i�

p(a1 ∧ . . . ∧ aI ∧ αk1

1 ∧ . . . ∧ αkI

I ) = p(a1 ∧ . . . ∧ aI) p(αk1

1 ∧ . . . ∧ αkI

I ) (3.25)

holds together with those �
omplemented� variants of (3.25) where one or more

event types are substituted by their 
omplements. From no-
onspira
y it follows

that they also satisfy no-
onspira
y for all sele
tions, among them

p(ai ∧ αki

i ) = p(ai) p(α
ki

i ) (3.26)

By means of (3.24) and no-
onspira
y (3.25) one 
an transform for any sele
tion

the probabilisti
 relations among the measurement event types into probabilisti


relations among elements of reality as follows:

p(Aj1
1 ∧ . . . ∧A

jI′
I′ |a1 ∧ . . . ∧ aI′) =

∑

k1...kI′

qj1k1

1 × · · · × qjI′kI′

I′ p(αk1

1 ∧ . . . ∧ α
kI′

I′ )(3.27)

Spe
i�
ally, if all the event types {αki

i } are properties, then (3.27) reads as

p(Aj1
1 ∧ . . . ∧ A

jI′
I′ |a1 ∧ . . . ∧ aI′) = p(αj1

1 ∧ . . . ∧ α
jI′
I′ ) (3.28)

and in the spe
ial 
ase of a single measurement as

p(Aji
i |ai) = p(αji

i ) (3.29)

67

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



for all i = 1 . . . I. Equation (3.27) shows that the probability of the out
omes 
ondi-

tioned on the measurement settings is mirrored in the probability of the properties.
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Chapter 4

Relating Bell's lo
al 
ausality

to the Causal Markov

Condition

The aim of the paper is to relate Bell's notion of lo
al 
ausality to the Causal

Markov Condition. To this end, �rst a framework, 
alled lo
al physi
al theory, will

be introdu
ed integrating spatiotemporal and probabilisti
 entities and the notions

of lo
al 
ausality and Markovity will be de�ned. Then, illustrated in a simple

sto
hasti
 model, it will be shown how a dis
rete lo
al physi
al theory transforms

into a Bayesian network and how the Causal Markov Condition arises as a spe
ial


ase of Bell's lo
al 
ausality and Markovity.

4.1 Introdu
tion

Lo
al 
ausality is a 
on
ept introdu
ed into the foundations of quantum theory

by John Stewart Bell. A physi
al theory is said to be lo
ally 
ausal if, �xing its

past, any event happening in a given spa
etime region will be probabilisti
ally

independent of any other event lo
alized in a spatially separated region.

Causal Markov Condition is the 
entral notion of the theory of Bayesian net-

works. Here events are represented both as random variables in a probability spa
e

and also as verti
es in a 
ausal graph. A set of events is said to satisfy the Causal

Markov Condition relative to the graph, if, 
onditioned on its 
ausal parents, any

event will be probabilisti
ally independent of any of its 
ausal non-des
endants.

The similarity between the logi
al s
hema of both prin
iples is 
onspi
uous even

at �rst blush: if events are lo
alized in the spa
etime/
ausal graph in a 
ertain way,

then they are to satisfy 
ertain probabilisti
 independen
ies. In this paper I will

argue that this intuition is 
orre
t: Bell's lo
al 
ausality, read in an appropriate

way, is a Causal Markov Condition. Causal Markov Condition relates random
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variables to 
ausal stru
tures, lo
al 
ausality relates them to a net of spa
etime

regions. We will show that the 
ausal graph generated by the net stru
ture of a

lo
al physi
al theory transforms the theory into a Bayesian network and yields the

Causal Markov Condition as a kind of 
omposition of Bell's lo
al 
ausality plus a

similar s
reening-o� 
ondition, 
alled Markovity.

To treat physi
al events both as probabilisti
 and also as spatiotemporal/
ausal

entities in a uni�ed framework and to be able to infer from spatiotemporal/
ausal

relations to probabilisti
 independen
ies one needs to have a 
ommon 
on
eptual

s
hema integrating both spatiotemporal/
ausal and probabilisti
 
on
epts. This

formalism is thoroughly worked out in the theory of Bayesian networks. Here

Causal Markov Condition is fun
tioning as a 'bridge law' 
onne
ting the 
ausal and

the probabilisti
 side of the theory. In the foundations of quantum physi
s, however,

lo
al 
ausality is used in a mu
h more intuitive way. Here one simply �reads o��

probabilisti
 independen
ies from the spatiotemporal lo
alization of the events in

question. Hen
e our �rst task is to introdu
e a mathemati
ally well-de�ned and

physi
ally well-motivated framework whi
h treats probabilisti
 and spatiotemporal

entities in a 
ommon mathemati
al formalism. We will 
all su
h a theory a lo
al

physi
al theory. We will borrow a lot from the most elaborate physi
al theory

o�ering su
h a general framework, namely algebrai
 quantum �eld theory (AQFT).

Having su
h a framework integrating spatiotemporal and probabilisti
 aspe
ts, we

will be able to provide a 
lear-
ut formulation of Bell's notion of lo
al 
ausality.

To relate Bell's lo
al 
ausality to the Causal Markov Condition, we will in-

trodu
e a simple sto
hasti
 lo
al 
lassi
al theory on a dis
retized two dimensional

spa
etime. This toy theory will display all the features previously de�ned in an

abstra
t way, and provide us a useful tool to study the properties of lo
al 
ausal-

ity in a more manageable way, and to tra
e its 
onne
tions to the Causal Markov

Condition.

In the paper we will pro
eed as follows. In Se
tion 2 we make a histori
al detour

and take a 
loser look at Bell's di�erent de�nitions of lo
al 
ausality. In Se
tion 3

we introdu
e the 
on
ept of a lo
al physi
al theory and give a pre
ise mathemati
al

de�nition of Bell's notion of lo
al 
ausality together with Markovity within this

framework. In Se
tion 4 our sto
hasti
 lo
al 
lassi
al theory will be introdu
ed. In

Se
tion 5 we de�ne the Causal Markov Condition and show how a lo
al physi
al

theory gives rise to a Bayesian network and how lo
al 
ausality plus Markovity go

over to the Causal Markov Condition. We will 
on
lude in Se
tion 6.

There is a huge literature available relating the Causal Markov Condition to

the EPR s
enario and to the Bell inequalities. The standard way to derive the Bell

inequalities is to start with Rei
henba
h's Common Cause Prin
iple together with

some lo
ality 
onditions. Sin
e Rei
henba
h's Common Cause Prin
iple is a spe
ial


ase of the Causal Markov Condition, many authors start the derivation dire
tly

from this latter. Glymour (2006) shows that the EPR 
ase has no 
ausal expla-

nation 
ompatible with the Causal Markov Condition. Suárez and Iniaki (2011)

systemati
ally apply the Causal Markov Condition to the EPR s
enario and make

a 
onne
tion to the robustness 
ondition, a probabilisti
 
ausality 
ondition thor-

oughly dis
ussed in the early 1990's. On the other hand, Hausman and Woodward
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(1999) argue that the Causal Markov Condition is inappli
able to the EPR s
enario

sin
e the non-separability of the quantum state renders interventions, a ne
essary


riterion for appli
ability, unavailable. As a reply to their 
laim see Suárez (2013).

Hofer-Szabó, Rédei and Szabó (2013) 
onne
t the Causal Markov Condition both

to the so-
alled 
ommon-
ommon-
ausal and also to the separate-
ommon-
ausal

explanation of the EPR 
ase. They show that hidden lo
ality, an assumption of the

standard derivation of the Bell inequalities, 
an be justi�ed by the Causal Markov

Condition only in 
ase of 
ommon 
ommon 
auses but not in 
ase of separate 
om-

mon 
auses.

Despite the ri
h literature on the topi
 I am unaware of any work relating the

Causal Markov Condition dire
tly to Bell's notion of lo
al 
ausality. This paper

intends to �ll this gap.

4.2 Bell's three de�nitions of lo
al 
ausality

Lo
al 
ausality is the idea that 
ausal pro
esses propagate though spa
e 
ontinu-

ously and with velo
ity less than the speed of light. John Stewart Bell formulates

this intuition in a 1988 interview as follows:

�[Lo
al 
ausality℄ is the idea that what you do has 
onsequen
es only

nearby, and that any 
onsequen
es at a distant pla
e will be weaker

and will arrive there only after the time permitted by the velo
ity of

light. Lo
ality is the idea that 
onsequen
es propagate 
ontinuously,

that they don't leap over distan
es.� (Mann and Crease, 1988)

Bell has returned to this intuitive idea of lo
al 
ausality from time to time and

provided a more and more elaborate formulation of it. First he addressed the notion

of lo
al 
ausality in his �The theory of lo
al beables� delivered at the Sixth GIFT

Seminar in 1975; later in a footnote added to his 1986 paper �EPR 
orrelations and

EPW distributions� intending to 
lean up the �rst version; and �nally in the most

elaborate form in his �La nouvelle 
uisine� posthumously published in 1990. Below

I will overview the di�erent versions brie�y 
ommenting on ea
h of them.

Version 1. Bell's �rst de�nition of lo
al 
ausality reads as follows:

�Consider a theory in whi
h the assignment of values to some beables

Λ implies, not ne
essarily a parti
ular value, but a probability distri-

bution, for another beable A. Let p(A|Λ) denote1 the probability of a

parti
ular value A given parti
ular values Λ. Let A be lo
alized in a

spa
e-time region A. Let B be a se
ond beable lo
alized in a se
ond

region B separated from A in a spa
elike way. (Fig. 4.1.) Now my

intuitive notion of lo
al 
ausality is that events in B should not be

`
auses' of events in A, and vi
e versa. But this does not mean that

1

For the sake of uniformity throughout the paper I slightly 
hanged Bell's denotation

and �gures.
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A B

Λ

Figure 4.1: Bell's �rst �gure illustrating lo
al 
ausality (1975).

the two sets of events should be un
orrelated, for they 
ould have 
om-

mon 
auses in the overlap of their ba
kward light 
ones. It is perfe
tly

intelligible then that if Λ in (8.6) does not 
ontain a 
omplete re
ord of

events in that overlap, it 
an be usefully supplemented by information

from region B. So in general it is expe
ted that

p(A|Λ, B) 6= p(A|Λ) (4.1)

However, in the parti
ular 
ase that Λ 
ontains already a 
omplete

spe
i�
ation of beables in the overlap of the light 
ones, supplemen-

tary information from region B 
ould reasonably be expe
ted to be

redundant.

Let C2 denote a spe
i�
ation of all beables, of some theory, belonging

to the overlap of the ba
kward light 
ones of spa
elike regions A and

B. Let C1 be a spe
i�
ation of some beables from the remainder of the

A B

CC1 2

Figure 4.2: Bell's se
ond �gure illustrating lo
al 
ausality (1975).

ba
kward light 
one of A, and B of some beables in the region B. (See
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Fig. 4.2.) Then in a lo
ally 
ausal theory

p(A|C1, C2, B) = p(A|C1, C2) (4.2)

whenever both probabilities are given by the theory.� (Bell, 1975/2004,

p. 54)

First, let us 
omment brie�y on the terminology Bell is using in his �rst version of

lo
al 
ausality.

The term �beable� has been introdu
ed into the literature by Bell himself. It

is intended to be opposed to the term �observable� used in quantum theory and to

refer to something that �really� exists. �The word 'beable' will also be used to 
arry

another distin
tion already in 
lassi
al theory between 'physi
al' and 'non-physi
al'

quantities. In Maxwell's ele
tromagneti
 theory, for example, the �elds E and H

are physi
al (beables, we will say) but potentials A and φ are non-physi
al.� (Bell,

1975/2004, p. 52) Without the 
lari�
ation of what the �beables� of a given theory

really are, one 
annot even formulate lo
al theory.

�Beables� are to be lo
al. �We will be parti
ularly 
on
erned with lo
al beables,

those whi
h (unlike for example the total energy) 
an be assigned to some bounded

spa
e-time region. For example, in Maxwell's theory the beables lo
al to a given

region are just the �elds E andH, in that region, and all fun
tionals thereof.� (Bell,

1975/2004, p. 53)

Finally, the beables lo
alized in the region C1 are to provide a �
ompletely

spe
i�
ation� of the region in question. We will 
ome ba
k to this point later on.

Although the beables are to be lo
al, in his s
reening-o� 
ondition (8.7) Bell

takes into a

ount the whole 
ausal past of the events in question. He does not

assume some kind of Markovity rendering super�uous the remote past regions below

a 
ertain Cau
hy surfa
e. The se
ond version of his formulation of lo
al 
ausality


an be regarded as a step towards this Markovian dire
tion.

Version 2.

�The notion of lo
al 
ausality presented in this referen
e [namely in

(Bell, 1975/2004)℄ involves 
omplete spe
i�
ation of the beables in an

in�nite spa
e-time region. The following 
on
eption is more attra
tive

in this respe
t: In a lo
ally-
ausal theory, probabilities atta
hed to

values of lo
al beables in one spa
e-time region, when values are spe
i-

�ed for all lo
al beables in a se
ond spa
e-time region fully obstru
ting

the ba
kward light 
one of the �rst, are unaltered by spe
i�
ation of

values of lo
al beables in a third region with spa
elike separation from

the �rst two.� (Bell, 1986/2004, p. 200)

Bell's se
ond version is in a footnote; it is very su

in
t and 
ontains no �gure.

The new element is the phrasing �spa
e-time region fully obstru
ting the ba
kward

light 
one of the �rst�. This idea gets a more pre
ise exposition in Bell's third, �nal

version of lo
al 
ausality.

Version 3.
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�A theory will be said to be lo
ally 
ausal if the probabilities atta
hed

to values of lo
al beables in a spa
e-time region A are unaltered by

spe
i�
ation of values of lo
al beables in a spa
e-like separated region

B, when what happens in the ba
kward light 
one of A is already

su�
iently spe
i�ed, for example by a full spe
i�
ation of lo
al beables

in a spa
e-time region C (Fig. 4.3).� (Bell, 1990/2004, p. 239-240)

A B

C

Figure 4.3: Bell's �gure illustrating lo
al 
ausality (1990).

The lo
alization of region C is of 
ru
ial importan
e. It is not enough that C

ompletely 
uts a
ross the 
ausal past of region A; it also has to �obstru
t the

ba
kward light
one of the �rst�. Bell expli
itly stresses this point: �It is important

that region C 
ompletely shields o� from A the overlap of the ba
kward light 
ones

of A and B.� (Bell, 1990/2004, p. 240) This requirement will play a 
entral role in

our investigation on the relation of lo
al 
ausality to the Causal Markov Condition.

We will 
ome ba
k to that having de�ned lo
al 
ausality in the next Se
tion.

4.3 Lo
al 
ausality in lo
al physi
al theories

The framework integrating probabilisti
 and spatiotemporal entities 
an be de�ned

as follows. (For the details and motivations of the de�nition see (Hofer-Szabó and

Ve
sernyés, 2015a,b).)

De�nition 1. A PK-
ovariant lo
al physi
al theory is a net {A(V ), V ∈ K} asso
i-
ating algebras of events to spa
etime regions whi
h satis�es isotony, mi
ro
ausality

and 
ovarian
e de�ned as follows (Haag, 1992):

Isotony. Let M be a globally hyperboli
 spa
etime and let K be a 
overing


olle
tion of bounded, globally hyperboli
 subspa
etime regions of M su
h

that (K,⊆) is a dire
ted poset under in
lusion ⊆. The net of lo
al observables
is given by the isotone map K ∋ V 7→ A(V ) to unital C∗

-algebras, that

is V1 ⊆ V2 implies that A(V1) is a unital C∗
-subalgebra of A(V2). The

quasilo
al algebra A is de�ned to be the indu
tive limit C∗
-algebra of the net

{A(V ), V ∈ K} of lo
al C∗
-algebras.
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Mi
ro
ausality (also 
alled as Einstein 
ausality) is the requirement that A(V ′)′∩
A ⊇ A(V ), V ∈ K, where primes denote spa
elike 
omplement and algebra


ommutant, respe
tively.

Spa
etime 
ovarian
e. Let PK be the subgroup of the group P of geometri
 sym-

metries of M leaving the 
olle
tion K invariant. A group homomorphism

α : PK → AutA is given su
h that the automorphisms αg, g ∈ PK of A a
t


ovariantly on the observable net: αg(A(V )) = A(g · V ), V ∈ K.
If the quasilo
al algebra A of the lo
al physi
al theory is 
ommutative, we speak

about a lo
al 
lassi
al theory ; if it is non
ommutative, we speak about a lo
al

quantum theory. For lo
al 
lassi
al theories mi
ro
ausality ful�lls trivially.

A state φ in a lo
al physi
al theory is de�ned as a normalized positive lin-

ear fun
tional on the quasilo
al observable algebra A. The 
orresponding GNS

representation πφ : A → B(Hφ) 
onverts the net of C∗
-algebras into a net of C∗

-

subalgebras of B(Hφ). Closing these subalgebras in the weak topology one arrives

at a net of lo
al von Neumann observable algebras: N (V ) := πφ(A(V ))′′, V ∈ K.
Von Neumann algebras are generated by their proje
tions representing quantum

events. The net {N (V ), V ∈ K} of lo
al von Neumann algebras also obeys isotony,

mi
ro
ausality, and PK-
ovarian
e, hen
e one 
an also refer to a net {N (V ), V ∈ K}
of lo
al von Neumann algebras as a lo
al physi
al theory.

Why von Neumann algebras?

Classi
al �eld theories are 
hara
terized by their sets of �eld 
on�gurations.

Taking the equivalen
e 
lasses of those �eld 
on�gurations whi
h have the same �eld

values on a given spa
etime region one 
an generate lo
al (
ylindri
al) σ-algebras.
One 
an translate σ-algebras into the language of abelian von Neumann algebras

and then generalize this framework also for non-abelian von Neumann algebras. We


ome ba
k to the details of this pro
edure in the next se
tion when we introdu
e our

sto
hasti
 lo
al 
lassi
al theory. Thus, we translate Bell's term �lo
al beables� into

the language of lo
al physi
al theories simply as �elements of a lo
al von Neumann

algebra�. Now, how to translate the term �a 
omplete spe
i�
ation of beables�? We

are of the opinion that the natural translation of this term is simply �an atomi


event of a lo
al von Neumann algebra� (Henson, 2013). Here it is assumed that the

lo
al algebras of the net are atomi
, whi
h is not the 
ase, for example, in Poin
aré


ovariant algebrai
 quantum �eld theory. (For a more general de�nition of lo
al


ausality see (Hofer-Szabó and Ve
sernyés, 2015a).) With these notions in hand

now one 
an formulate Bell's notion of lo
al 
ausality in a lo
al physi
al theory as

follows:

De�nition 2. A lo
al physi
al theory represented by a net {N (V ), V ∈ K} of von
Neumann algebras is 
alled lo
ally 
ausal, if for any pairA ∈ N (VA) andB ∈ N (VB)
of proje
tions supported in spa
elike separated regions VA, VB ∈ K and for every

lo
ally normal and faithful state φ establishing a 
orrelation φ(AB) 6= φ(A)φ(B)
between A and B, and for any spa
etime region VC su
h that

(i) VC ⊂ J−(VA),

77

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



(ii) VA ⊂ V ′′
C ,

(iii) J−(VA) ∩ J−(VB) ∩
(

J+(VC) \ VC
)

= ∅,
(see Fig. 6.2) and for any atomi
 event Ck of A(VC) (k ∈ K), the following holds:

VA B

C

V

V

Figure 4.4: A region VC satisfying Requirements (i)-(iii).

φ(CkABCk)

φ(Ck)
=
φ(CkACk)

φ(Ck)

φ(CkBCk)

φ(Ck)
(4.3)

In 
ase of lo
al 
lassi
al theories a lo
ally faithful state φ determines uniquely

a lo
ally nonzero probability measure p by p(A) := φ(A), A ∈ P(N (V )). By means

of this (6.1) 
an be written both in the symmetri
 form

p(AB|Ck) = p(A|Ck)p(B|Ck) (4.4)

and also in the equivalent asymmetri
 form

p(A|BCk) = p(A|Ck) (4.5)

featuring in Bell's �rst version of lo
al 
ausality.

Now, the lo
alization of region VC by Requirements (i)-(iii) is a bit more liberal

than that required in Bell's se
ond version. Although VC �
ompletely shields o��

region VA from the 
ommon past of VA and VB, it is not spa
elike separated from

VB (as is, for example, region VC in Fig. 4.3). But why not to be more liberal? Why

Requirement (iii) is needed at all? Why does a region VC su
h as the one depi
ted

in Fig. 4.5 not su�
e? The brief answer to this question is that the region above VC
(lighter shaded in Fig. 4.5) 
an 
ontain sto
hasti
 events whi
h, though 
ompletely

spe
i�ed by the region VC , still, being sto
hasti
, 
ould establish a 
orrelation

between A and B in a 
lassi
al sto
hasti
 theory (Norsen, 2011; Seevin
k and

U�nk 2011; Hofer-Szabó 2015
). Indeed, exa
tly this will be the 
ase in our model

introdu
ed in the next se
tion.

In order to relate Bell's lo
al 
ausality to the Causal Markov Condition we need to

introdu
e a s
reening-o� 
ondition similar to lo
al 
ausality, namely Markovity:
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VA B

C

V

V

Figure 4.5: A region VC for whi
h Requirement (iii) does not hold.

De�nition 3. A lo
al physi
al theory represented by a net {N (V ), V ∈ K} of von
Neumann algebras is 
alled Markov, if for any pair A ∈ N (VA) and B ∈ N (VB) of
proje
tions supported in regions VA, VB ∈ K with VB ⊂ I−(VA) and for every lo
ally
normal and lo
ally faithful state φ establishing a 
orrelation φ(AB) 6= φ(A)φ(B)
between A and B, and for any spa
etime region VC su
h that

(i) VC ⊂ J−(VA),
(ii) VA ⊂ V ′′

C ,

(iii') VB ⊂ J−(VC),
(see Fig. 4.6) and for any atomi
 event Ck of A(VC) (k ∈ K) (6.1) holds.

A

C

VB

V

V

Figure 4.6: A region VC satisfying Requirements (i)-(iii') of Markovity.

The relation between lo
al 
ausality and Markovity is straightforward. In both


ases events lo
alized in region VA and VB , respe
tively are s
reened-o� by the

atomi
 events in region VC . If VA and VB are spa
elike separated and VC is lo
alized

a

ording to Requirements (i)-(iii), then (6.1) expresses lo
al 
ausality. If VA and
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VB are timelike separated and VC is lo
alized a

ording to Requirements (i)-(iii'),

then (6.1) expresses Markovity. As we will see later Causal Markov Condition will

be a spe
ial 
ase of the 
omposition of lo
al 
ausality and Markovity.

4.4 A simple sto
hasti
 lo
al 
lassi
al theory

In this se
tion we will develop a simple sto
hasti
 lo
al 
lassi
al theory. Before

introdu
ing it in a full-�edged form, let us sket
h it in brief. The spa
etime of

the theory will be a 1+1 dimensional dis
retized Minkowski spa
etime 
overed by

minimal double 
ones. (See Fig. 4.7.) The �eld 
on�gurations of the theory are

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

+
+

−
−

++
+

+
+

−
+

−
−

−
−

−

Figure 4.7: A simple sto
hasti
 lo
al 
lassi
al theory.

given by mappings assigning a + or a − to ea
h minimal double 
one. The dynami
s

of the theory is generated by the following transition probabilities : The value + or

− in a given minimal double 
one is probabilisti
ally �xed by the produ
t of the

values in the three minimal double 
ones adja
ent to it from below, irrespe
tively of

the value in other minimal double 
ones, like earlier or spatially separated ones. The

probabilisti
 dependen
e is this: If the produ
t of the values in the three adja
ent

minimal double 
ones is +, then the value in the upper minimal double 
one will

be + with probability p and − with probability 1 − p; if the produ
t is −, the
value will be − with probability p and + with probability 1 − p. The pro
ess is

deterministi
, if p ∈ {0, 1} and sto
hasti
, if p ∈ (0, 1). Now, let us see the theory
in a more detailed way.

Consider a dis
retized version of the two dimensional Minkowski spa
etimeM2

whi
h is 
omposed of minimal double 
ones V m(t, i) of unit diameter with their


enter in (t, i) for t, i ∈ Z or t, i ∈ Z + 1/2. The set {V m(t, i), i ∈ 1
2Z} of su
h

minimal double 
ones with t = 0,−1/2 de�nes a `thi
kened' Cau
hy surfa
e in this
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spa
etime, denoted by S0. For double 
ones sitting on S0 we will drop the time


oordinate and simply write V m
i . (See Fig. 8.14.)

V
V

V
V

m m

m mm 0

1/2

1V m

3/2

−1
V−1/2

Figure 4.8: Two dimensional dis
rete Minkowski spa
etime with a `thi
kened'

Cau
hy surfa
e.

A double 
one V (t, i; s, j) is de�ned to be the smallest double 
one 
ontaining

both V m(t, i) and V m(s, j), that is generated by them: V (t, i; s, j) := V m(t, i) ∨
V m(s, j). The dire
ted poset of su
h double 
ones is denoted by Km

and the

dire
ted poset of double 
ones generated by minimal double 
ones sti
ked to the

Cau
hy surfa
e S0 is denoted by Km
0 . Obviously, Km

0 will be left invariant by

integer spa
e translations and Km
will be left invariant by integer spa
e and time

translations. By shifting the time 
oordinates of the minimal double 
ones by t one

an similarly de�ne the Cau
hy surfa
e St and the net Km

t .

Let Sm
denote the set of minimal double 
ones ofM2

and let Z2 be the mul-

tipli
ative group of the integers {1,−1}. De�ne the set C of 
on�gurations of the

theory as: C := {c : Sm → Z2}. The maximal σ-algebra of 
lassi
al events (C,P(C))
is given by the power set P(C) of the set of 
on�gurations. But one 
an also obtain

a narrower σ-algebra in tune with the net stru
ture Km
. This is done by taking

the equivalen
e 
lasses of those 
on�gurations whi
h have the same �eld values on

a given region in Km
. The sets CV of lo
al equivalen
e 
lasses (the `
ylindri
al sub-

sets' of C 
on
entrated on V ) are obtained by the equivalen
e relation: c ∼V c′ if
c|V = c′|V . Clearly, CV 
ontains 2|V |

elements, where |V | is the number of minimal

double 
ones in V . One 
an get the power set P(CV ) of CV by de�ning the following

map ZV for V ∈ Km
:

ZV : P(C)→ P(C), C 7→ {c′ ∈ C |∃c ∈ C : c|V = c′|V } (4.6)

For a given V ∈ Km
the image sets of ZV de�ne a unital σ-subalgebra Σ(V ) of

P(C), whi
h is isomorphi
 to the power set P(CV ) of CV . By ranging over V ∈ Km
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one obtains an isotone net stru
ture {(C,Σ(V )), V ∈ Km}. The 2|V |
dimensional

abelian lo
al von Neumann algebraN (V ) 
orresponding to the lo
al σ-algebra Σ(V )
is spanned by the orthogonal set of minimal proje
tions P c

V , c ∈ CV 
orresponding to


hara
teristi
 fun
tions χc
V : C → C whi
h are 1 on the 
ylindri
al subset c ∈ CV of

C and 0 otherwise. Clearly, {N (V ), V ∈ Km} is an isotone net of �nite dimensional

abelian von Neumann algebras, hen
e it de�nes a lo
al 
lassi
al theory.

The quasilo
al C∗
-algebra A is given by the indu
tive limit of the lo
al von

Neumann algebras N (V ), V ∈ Km
, and similarly the unital C∗

-subalgebras A0 of

A is given by the indu
tive limit of the lo
al von Neumann algebrasN (V ), V ∈ Km
0 .

Now, a sto
hasti
 theory 
an be regarded as a state extension pro
edure from the

subalgebra A0 (or from any At) to the quasilo
al algebra A by means of so-
alled

transition probabilities. This is done in the following way.

Let V (t+ 1
2 ) be a �nite set of minimal double 
ones on the time sli
e t+ 1

2 . De�ne

the nearest past of V (t + 1
2 ) as follows: Pt(V (t + 1

2 )) ≡ St ∩ (St \ J−(V (t + 1
2 )))

′
.

Spe
i�
ally, the nearest past Pt(V
m(t+ 1

2 , i)) of the minimal double 
one V m(t+ 1
2 , i)


ontains the three minimal double 
ones adja
ent to V m(t+ 1
2 , i) from below, namely

V m(t, i− 1
2 ), V

m(t− 1
2 , i) and V

m(t, i+ 1
2 ). For a given 
on�guration c ∈ C de�ne

the generating transition probabilities from the equivalen
e 
lass cPt(V m(t+ 1
2
,i)) to

the equivalen
e 
lass cV m(t+ 1
2
,i) as follows:

p(cV m(t+ 1
2
,i)|cPt(V m(t+ 1

2
,i))) :=

{

p, if c(t+ 1
2 , i) = c(t, i− 1

2 )c(t− 1
2 , i)c(t, i+

1
2 )

1− p, if c(t+ 1
2 , i) = −c(t, i− 1

2 )c(t− 1
2 , i)c(t, i+

1
2 )

(4.7)

where c(t, i) is short for c(V m(t, i)), the value of the 
on�guration c at the minimal

double 
one V m(t, i). Assuming that the generating transition probabilities are

independent with respe
t to spa
elike separation, one 
an de�ne the transition

probabilities from the Cau
hy surfa
e St to the time sli
e t+ 1
2 as:

p(cV (t+ 1
2
)|cPt(V (t+ 1

2
))) :=

∏

V m(t+ 1
2
,i)∈V (t+ 1

2
)

p(cV m(t+ 1
2
,i)|cPt(V m(t+ 1

2
,i))) (4.8)

Intuitively, these transition probabilities do the following: The value + or − in a

given minimal double 
one is probabilisti
ally �xed purely by the produ
t of the

values in the three minimal double 
ones adja
ent to it from below. (See again

Fig. 4.7.) Negatively speaking, they do not depend on the value of other minimal

double 
ones, like earlier or spatially separated ones. As we will see, these two

independen
ies are 
losely 
onne
ted to Markovity and lo
al 
ausality, respe
tively.

If the produ
t is +, then the value is + with probability p and − with probability

1− p; if the produ
t is −, the value is − with probability p and + with probability

1− p.
Finally, let U(t) be a �nite set of minimal double 
ones on the Cau
hy surfa
e

St. We de�ne the state on the equivalen
e 
lass cV (t+ 1
2
) ∩ cU(t) as follows:

φ(cV (t+ 1
2
) ∩ cU(t)) := p(cV (t+ 1

2
)|cPt(V (t+ 1

2
)))φ(cPt(V (t+ 1

2
)) ∩ cU(t)) (4.9)

Thus, starting from φ0 on A0 one 
an re
ursively de�ne the state φ on the whole

A. (For the Cau
hy surfa
es below S0 we use Bayes theorem for the extension.)
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To simplify things, introdu
e the following denotation. Let i+ and i− denote three

di�erent things at the same time: the two 
ylindri
al subsets of CV m
i


on
entrated

on the minimal double 
one V m
i on the Cau
hy surfa
e S0; the two 
orrespond-

ing 
hara
teristi
 fun
tions; and also the two 
orresponding orthogonal proje
tions

in N (V m
i ). If we are not spe
ifying whi
h of the two sets/
hara
teristi
 fun
-

tions/proje
tions we are speaking about, we simply write i. The nth forward and

ba
kward spa
e translates of i will be denoted by (i + n) and (i − n), respe
tively
(n ∈ 1

2N); the tth forward and ba
kward time translates will be denoted by it and
i−t, respe
tively (t ∈ N).

Let, furthermore,

i · (i + 1

2
) . . . (j − 1

2
) · j

denote the produ
t of a sequen
e of proje
tions lo
alized on the Cau
hy surfa
e S0
between minimal double 
ones V m

i and V m
j , and let pi...j denote the probability

thereof in state φ. Sin
e we will deal only with proje
tions of abelian von Neumann

algebras, from now on instead of φ we simply write p. Finally, we will express the

ondition

c(t+
1

2
, i) = c(t, i− 1

2
)c(t− 1

2
, i)c(t, i+

1

2
)

in (4.7) by the Dira
 delta symbol

δc(t+ 1
2
,i),c(t,i− 1

2
)c(t− 1

2
,i)c(t,i+ 1

2
)

or in the short form

δi1,(i− 1
2
)i(i+ 1

2
)

Now, let A = it and B = js be two proje
tions lo
alized in the minimal double


ones V m(t, i) and V m(s, j), respe
tively, with i < j. Suppose that V m(t, i) and
V m(s, j) are spatially separated, that is |j−i| > |s−t|. To 
al
ulate the probability
of A, B and AB, we need a little geometry. (See Fig. 4.9.) Consider the minimal

double 
one V m(u, k) (striped horizontally) at the 'top of the 
ommon past' of

regions V m(t, i) and V m(s, j). The 
oordinates of V m(u, k) are the following:

u =
1

2
(t+ s+ i− j) k =

1

2
(i+ j + t− s) (4.10)

Consider now the Cau
hy surfa
e S⌈u⌉ �tting V m(u, k), where the 
eiling fun
tion

⌈·⌉ in the subs
ript is just to round up the u 
oordinates if half integers. Let the

number of minimal double 
ones in the 
ausal past of V m(t, i) above S0 (in
luding
V m(t, i) but not in
luding double 
ones on S0) be denoted by n, and the number

of minimal double 
ones in the 
ausal past of V m(t, i) above S⌈u⌉ (again in
luding

V m(t, i) but not in
luding double 
ones on S⌈u⌉) by n′
. Similarly, the number of

minimal double 
ones in the 
ausal past of Vm(s, j) above S0 and S⌈u⌉ be denoted
by m and m′

, respe
tively. Finally, denote the number of minimal double 
ones in

the 
ausal past of V m(u, k) above S0 by l. The numbers n, n′
, m′

, m and l are the
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Figure 4.9: A little geometry.

following fun
tions of i, j, t and s:

n =

{

−t+ 4
∑t

x=1 x, if i ∈ N
t+ 4

∑t
x=1(x− 1), if i ∈ 1

2N
(4.11)

n′ =

{

−t+ 4
∑t

x=⌈u⌉ x, if i ∈ N

t+ 4
∑t

x=⌈u⌉(x− 1), if i ∈ 1
2N

(4.12)

m =

{

−s+ 4
∑s

x=1 x, if j ∈ N
s+ 4

∑s

x=1(x− 1), if j ∈ 1
2N

(4.13)

m′ =

{ −s+ 4
∑s

x=⌈u⌉ x, if j ∈ N
s+ 4

∑s

x=⌈u⌉(x− 1), if j ∈ 1
2N

(4.14)

l =

{

−⌈u⌉+ 4
∑⌈u⌉

x=1 x, if k ∈ N

⌈u⌉+ 4
∑⌈u⌉

x=1(x− 1), if k ∈ 1
2N

(4.15)

In Fig. ??, for example, n = m = 3, n′ = m′ = 21 and l = 6. With these numbers

one 
an also 
al
ulate the number r of minimal double 
ones between S⌈u⌉ and S0
(in
luding double 
ones on S⌈u⌉ but not on S0):

r = n− n′ +m−m′ − l (4.16)

whi
h is 30 in Fig. 4.9. Now, using the above numbers (4.11)-(4.16) the probability
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of A, B and AB will be the following:

p(A) =
∑

(i−t−{i+ 1
2
}),...,(i+t+{i+ 1

2
})

[

qnδit,(i−t+{i})...(i+t−{i})

+(1− qn)δ−it,(i−t+{i})...(i+t−{i})

]

p(i−t−{i+ 1
2
})...(i+t+{i+ 1

2
}) (4.17)

p(B) =
∑

(j−s−{j+ 1
2
}),...,(j+s+{j+ 1

2
})

[

qmδjs,(j−s+{j})...(j+s−{j})

+(1− qm)δ−js,(j−s+{j})...(j+s−{j})

]

p(j−s−{j+ 1
2
})...(j+s+{j+ 1

2
}) (4.18)

p(AB) =
∑

(i−t+{i}),...,(j+s−{j})

[

qn′qm′qr δit,(i−t+{i})...(i+t−{i})δjs,(j−s+{j})...(j+s−{j})

+qn′(1 − qm′)qr δit,(i−t+{i})...(i+t−{i})δ−js,(j−s+{j})...(j+s−{j})

+(1− qn′)qm′qr δ−it,(i−t+{i})...(i+t−{i})δjs,(j−s+{j})...(j+s−{j})

+(1− qn′)(1− qm′)qr δ−it,(i−t+{i})...(i+t−{i})δ−js,(j−s+{j})...(j+s−{j})

]

×p(i−t−{i+ 1
2
})...(j+s+{j+ 1

2
}) (4.19)

where the fra
tional part fun
tion {·} in the subs
ript is again to treat integer and

half integer 
oordinates together, and qx (x = n, n′,m,m′, r) is the even part of the

binomial expression:

qx := px +

(

x

2

)

px−2(1 − p)2 +
(

x

4

)

px−4(1− p)4 + . . . (4.20)

Obviously, in the general 
ase:

p(AB) 6= p(A)p(B) (4.21)

so there is a superluminal 
orrelation between A and B.

Example 1. As an example, let A = i+1 and B = j+1 , where j = i+ 2 ∈ N+ 1
2 . (See

Fig. 8.16.) Let the 'prior' probabilities p(i−1)...(j+1) on S0 be �xed as follows:

p+++++++++ =
1

2
(4.22)

p+++++++−+ =
1

4
(4.23)

p+−+++++++ =
1

4
(4.24)

and all the other 
ombinations be 0. Then the probability of A, B and AB is the

85

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

ji+1i
i+1/2

i−1 j+1
i−1/2 j−1/2 j+1/2

+ +
11

ji

Figure 4.10: Superluminally 
orrelating events i+
1
and j+

1
.

following:

p(A) =
∑

(i−1),...,(i+1)

[

p δi+
1
,(i− 1

2
)i(i+ 1

2
) + (1− p)δ−i

+

1
,(i− 1

2
)i(i+ 1

2
)

]

p(i−1)...(i+1) =
1

2

(

1

2
+ p

)

(4.25)

p(B) =
∑

(j−1),...,(j+1)

[

p δj+
1
,(j− 1

2
)j(j+ 1

2
) + (1− p)δ−j

+

1
,(j− 1

2
)j(j+ 1

2
)

]

p(j−1)...(j+1) =
1

2

(

1

2
+ p

)

(4.26)

p(AB) =
∑

(i−1),...,(j+1)

[

p2 δi+
1
,(i− 1

2
)i(i+ 1

2
)δj+

1
,(j− 1

2
)j(j+ 1

2
) + p(1− p)δi+

1
,(i− 1

2
)i(i+ 1

2
)δ−j

+

1
,(j− 1

2
)j(j+ 1

2
)

+(1− p)p δ−i
+

1
,(i− 1

2
)i(i+ 1

2
)δj+

1
,(j− 1

2
)j(j+ 1

2
) + (1− p)2δ−i

+

1
,(i− 1

2
)i(i+ 1

2
)δ−j

+

1
,(j− 1

2
)j(j+ 1

2
)

]

p(i−1)

=
1

2
p (4.27)

thus A and B are 
orrelating whenever p 6= 1
2 .

Example 2. In the se
ond example, let A = i+2 and B = j+2 , where again j = i+2 ∈
N+ 1

2 . (See Fig. 8.17.) With the 'prior' probabilities p(i−2)...(j+2):

p+++++++++++++ =
1

2
(4.28)

p+++++++++++−+ =
1

4
(4.29)

p+−+++++++++++ =
1

4
(4.30)
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Figure 4.11: Superluminally 
orrelating events i+
2
and j+

2
.

(and the rest is 0) one obtains the probability of A, B and AB as:

p(A) =
∑

(i−2),...,(i+2)

[

q6 δi+
2
,(i− 3

2
)...(i+ 3

2
) + (1− q6)δ−i

+

2
,(i− 3

2
)...(i+ 3

2
)

]

p(i−2)...(i+2)

=
1

2

(

1

2
+ q6

)

(4.31)

p(B) =
∑

(j−2),...,(j+2)

[

q6 δj+
2
,(j− 3

2
)...(j+ 3

2
) + (1− q6)δ−j

+

2
,(j− 3

2
)...(j+ 3

2
)

]

p(j−2)...(j+2)

=
1

2

(

1

2
+ q6

)

(4.32)

p(AB) =
∑

(i−2),...,(j+2)

[

p2q9 δi+
2
,(i− 3

2
)...(i+ 3

2
)δj+

2
,(j− 3

2
)...(j+ 3

2
)

+p (1− p) q9 δi+
2
,(i− 3

2
)...(i+ 3

2
)δ−j

+

2
,(j− 3

2
)...(j+ 3

2
)

+(1− p) p q9 δ−i
+

2
,(i− 3

2
)...(i+ 3

2
)δj+

2
,(j− 3

2
)...(j+ 3

2
)

+(1− p)2q9 δ−i
+

2
,(i− 3

2
)...(i+ 3

2
)δ−j

+

2
,(j− 3

2
)...(j+ 3

2
)

]

p(i−2)...(j+2) =
1

2
pq9(4.33)

thus A and B are 
orrelating whenever

1
4 (

1
2 + q6)

2 6= 1
2pq9 whi
h is the typi
al 
ase.

The di�eren
e between Example 1 and 2 is that in Example 1 there is no minimal

double 
one above S0 in the 
ommon past of A and B, whereas in Example 2 there
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is su
h a minimal double 
one, namely V m(1, i + 1).2 This di�eren
e will have


ru
ial 
onsequen
es 
on
erning lo
al 
ausality to whi
h we turn now.

First, we prove that the above lo
al 
lassi
al theory is lo
ally 
ausal. A
tually,

we prove a little less: lo
al 
ausality for a spe
i�
 
hoi
e of VA, VB and VC . (For
a general proof see (Hofer-Szabó and Ve
sernyés 2015a).) Let VA = Vm(t, i) and
VB = V m(s, j) be two spatially separated minimal double 
ones with i < j, and let

VC be generated by the interse
tion of the 
ausal past of VA and a Cau
hy surfa
e

�shielding o�� VA from the 
ommon past of VA and VB. Any Cau
hy surfa
e Sv
with ⌈u⌉ 6 v 6 t will be su
h a �shielder-o�� Cau
hy surfa
e, where u is de�ned in

(4.10). (For a �shielder-o�� Cau
hy surfa
e see Fig. 4.9.) The region VC generated

by this interse
tion will obviously satisfy Requirements (i)-(iii) in De�nition 6 of

lo
al 
ausality.

Now, we prove lo
al 
ausality with respe
t to these regions.

Proposition 1. The sto
hasti
 lo
al 
lassi
al theory {N (V ), V ∈ Km} is lo
ally

ausal for any three regions VA, VB and VC spe
i�ed above.

Proof. Let A = it and B = js be two proje
tions lo
alized in VA and VB, respe
-
tively, and 
orrelating in the probability measure p. We are to show that for any

atomi
 event

C =

(

i− t+ v − {i+ 1

2
}
)

v

. . .

(

i+ t− v + {i+ 1

2
}
)

v

of VC the following holds:

p(AB|C) = p(A|C)p(B|C) (4.34)

First, for the sake of 
onvenien
e, shift the Cau
hy surfa
e S0 up to Sv and denote

the new time 
oordinates by a prime: t′ := t − v and s′ := s − v. Similarly let

q′n and q′m denote the appropriate number of minimal double 
ones with respe
t to

the shifted Cau
hy surfa
e. With this notation the 
onditional probabilities are the

2

See also our remark in the last paragraph of Se
tion 3.

88

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



following:

p(A|C) =

[

q′nδit′ ,(i−t′+{i})...(i+t′−{i}) + (1− q′n)δ−it′ ,(i−t′+{i})...(i+t′−{i})

]

(4.35)

p(B|C) =
∑

(j−s′−{j+ 1
2
}),...,(j+s′+{j+ 1

2
})

[

q′mδjs′ ,(j−s′+{j})...(j+s′−{j})

+(1− q′m)δ−js′ ,(j−s′+{j})...(j+s′−{j})

]

pC(j−s′−{j+ 1
2
})...(j+s′+{j+ 1

2
}) (4.36)

p(AB|C) =
∑

(j−s′−{j+ 1
2
}),...,(j+s′+{j+ 1

2
})

[

q′nq
′
m δit′ ,(i−t′+{i})...(i+t′−{i})δjs′ ,(j−s′+{j})...(j+s′−{j})

+q′n(1 − q′m) δit′ ,(i−t′+{i})...(i+t′−{i})δ−js′ ,(j−s′+{j})...(j+s′−{j})

+(1− q′n)q′m δ−it′ ,(i−t′+{i})...(i+t′−{i})δjs′ ,(j−s′+{j})...(j+s′−{j})

+(1− q′n)(1− q′m) δ−it′ ,(i−t′+{i})...(i+t′−{i})δ−js′ ,(j−s′+{j})...(j+s′−{j})

]

×pC(j−s′−{j+ 1
2
})...(j+s′+{j+ 1

2
}) (4.37)

where pC(j−s′−{j+ 1
2
})...(j+s′+{j+ 1

2
}) is a short for

p(i−t′−{i+ 1
2
}...(i+t′+{i+ 1

2
})(j−s′−{j+ 1

2
})...(j+s′+{j+ 1

2
})

From (4.35)-(4.37) the s
reening-o� (6.2) follows immediately.

One 
an see from the proof that if VC is a segment of Cau
hy surfa
e satisfying

Requirements (i)-(iii) in De�nition 6, that is a segment of Cau
hy surfa
e lo
ated

at or above the top of the 
ommon 
ausal past of the 
orrelating events A and

B, then from (4.19) the qr terms will drop out leaving no 
orrelation between the


onditional probabilities. Note that VC need not ne
essarily be above the 
ommon

past of A and B, it 
an also interse
t with the top of it (see again Fig. 4.5). All

is needed is that there is no region above VC in the 
ommon past. Su
h a region,

namely, 
an 
ontain sto
hasti
 events whi
h 
ould establish a 
orrelation between

A and B. Mathemati
ally this means that from (4.19) the qr terms would not drop

out and hen
e the 
orrelation would not be s
reened o� by the atomi
 events of

VC . Requirement (iii) in the de�nition of lo
al 
ausality is just to ex
lude this 
ase.

The next proposition shows that Requirement (iii) also is a ne
essary 
ondition in

the lo
alization of VC .

Proposition 2. The lo
al 
lassi
al theory {N (V ), V ∈ Km} would not be lo
ally


ausal if Requirement (iii) was dropped from De�nition 6.

Proof. Consider Example 2 of the previous Se
tion that is let A = i+2 and B =
(i+2)+2 and the prior probabilities those �xed in (4.28)-(4.30). Let C be the minimal

proje
tion

(i − 2)+(i− 3

2
)+(i− 1)+(i− 1

2
)+i+(i+

1

2
)+(i + 1)+(i +

3

2
)+(i+ 2)+
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Figure 4.12: A region VC for whi
h Requirement (iii) does not hold.

lo
alized in region VC . (See Fig. 4.12.) For the region VC Requirement (iii) does

not hold sin
e there is a minimal double 
one, V m(1, i+1) (the one with horizontal

stripes) above region VC in the 
ommon past of VA and VB .

Using the identity

∑

(i+ 5
2
),(i+3),(i+ 7

2
),(i+4)

(i+
5

2
)(i + 3)(i+

7

2
)(i+ 4) = 1 (4.38)

it is easy to see that C does not s
reen o� the 
orrelation between A and B sin
e

p(A|C) = q6 (4.39)

p(B|C) =

∑

(i+ 5
2
),(i+3),(i+ 7

2
),(i+4) p

(

B
∣

∣C(i + 5
2 ), (i+ 3), (i+ 7

2 ), (i + 4)
)

pC(i+ 5
2
),(i+3),(i+ 7

2
),(i+4)

p(C)

=
1

3
(1 + q6) (4.40)

p(AB|C) =

∑

(i+ 5
2
),(i+3),(i+ 7

2
),(i+4) p

(

AB
∣

∣C(i + 5
2 ), (i + 3), (i+ 7

2 ), (i+ 4)
)

pC(i+ 5
2
),(i+3),(i+ 7

2
),(i+4)

p(C)

=
1

3
(1 + p)pq9 (4.41)

for any C of non-zero measure. But typi
ally

1

3
q6(1 + q6) 6= 1

3
(1 + p)pq9 (4.42)

sin
e the left and right hand side are of di�erent ordo in p.
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Next we prove that the above lo
al 
lassi
al theory is also Markov. Again, we

prove a little less: lo
al 
ausality for a minimal double 
one VA = Vm(t, i), another
minimal double 
one VB = V m(s, j) lying in the 
ausal past of VA, and a third

region VC generated by the interse
tion of the 
ausal past of VA and a Cau
hy

surfa
e �shielding o�� VA from VB. (See Fig. 4.13.) VC will obviously satisfy

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

�����
�����
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�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

A

C

B

V

V

V

Figure 4.13: The regions VA, VB and VC for whi
h Markovity holds.

Requirements (i)-(iii') in De�nition 3 of Markovity.

Proposition 3. The sto
hasti
 lo
al 
lassi
al theory {N (V ), V ∈ Km} is Markov

for any three regions VA, VB and VC spe
i�ed above.

Proof. Let A = it and B = js be two proje
tions lo
alized in VA and VB , respe
-
tively, and 
orrelating in the probability measure p. We are to show that for any

atomi
 event

C =

(

i− t+ v − {i+ 1

2
}
)

v

. . .

(

i+ t− v + {i+ 1

2
}
)

v

of VC with s < v < t the following holds:

p(A|C) = p(A|CB) (4.43)

But it does, sin
e both sides of (6.3) are simply

q′nδit′ ,(i−t′+{i})...(i+t′−{i}) + (1− q′n)δ−it′ ,(i−t′+{i})...(i+t′−{i})

where again t′ := t− v and q′n denotes the appropriate number of minimal double


ones with respe
t to the shifted Cau
hy surfa
e.
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4.5 Lo
al Causality, Causal Markov Condition and

d-separation

Now, I 
onne
t lo
al 
ausality and Markovity to the Causal Markov Condition used

in the theory of Bayesian networks (see (Pearl, 2000) and (Spirtes, Glymour and

S
heines, 2000)). Consider a dire
ted a
y
li
 graph G and a set of random variables

V on a 
lassi
al probability spa
e (Σ, p) su
h that the elements X,Y . . . of V are

represented by the verti
es of G and the arrows X → Y on the graph represent

that X is 
ausally relevant for Y . For any X ∈ V let Par(X), the parents of X ,

be the set of verti
es that have dire
ted edges in X ; let Anc(X), the an
estors of

X , be the set of verti
es from whi
h a dire
ted paths is leading to X ; and �nally

let Des(X), the des
endants of X , be the set of verti
es that are endpoints of a

dire
ted paths from X . The set V is said to satisfy the Causal Markov Condition

relative to the graph G if for any X ∈ V and any Y /∈ Des(X) the following is true:

p(X |Par(X) ∧ Y ) = p(X |Par(X)) (4.44)

In other words, 
onditioning on its parents the random variableX will be probabilis-

ti
ally independent from any of its non-des
endant. Non-des
endants ofX 
an be of

two types: either an
estors or non-relatives (non-des
endants and non-an
estors).

As we will see, being independent of an
estors is related to the Markovity, whereas

being independent of non-relatives is related to lo
al 
ausality.

We say that the set V is faithful relative to the graph G if all probabilisti
 inde-

penden
ies between the random variables of V are implied by the Causal Markov

Condition. This impli
ation 
an neatly be depi
ted graphi
ally by the so-
alled

d-separation 
riterion. Let P be a path in G. A variable C on P is a 
ollider if

there are arrows to C from both its neighbors on P . Now, let X , Y and Z be three

disjoint sets of verti
es in G. X and Y are said to be d-
onne
ted by Z in G i� there

exists a path P between some vertex in X and some vertex in Y su
h that for every


ollider C on P , either C or a des
endant of C is in Z, and no non-
ollider on P is

in Z. X and Y are said to be d-separated by Z in G i� they are not d-
onne
ted

by Z in G. Spe
i�
ally, the Causal Markov Condition entails that the variables X
and Y are probabilisti
ally independent 
onditional upon the subset Z just in 
ase

Z d-separates X and Y in G.
Now, 
onsider the sto
hasti
 lo
al 
lassi
al theory {N (V ), V ∈ Km} introdu
ed

in the previous Se
tion. A lo
al von Neumann algebra N (V ) of the theory gives

rise to a graph G(V ) and a set of random variables V(V ) on a 
lassi
al probability

spa
e (Σ, p) in the following way. Consider a region V in Km
with the set {V m} of

minimal double 
ones 
ontained in V . Let the minimal double 
ones be the verti
es

of a 
ausal graph and draw an arrow to every minimal double 
one V m(t, i) from the

three minimal double 
ones adja
ent to it from below, that is from V m(t− 1
2 , i− 1

2 ),
V m(t− 1, i) and V m(t− 1

2 , i+
1
2 ), if all 
ontained in V . (See Fig. 4.14.) The set of

verti
es and arrows will uniquely determine a 
ausal graph G(V ) asso
iated to V .
As for the set of random variables V(V ), to ea
h minimal double 
one V m(t, i)

in V assign simply the two 
ylindri
al subsets of CV (t,i), denoted by c+
V m(t,i) and
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Figure 4.14: The 
ausal graph G(V ) asso
iated to V .

c−
V m(t,i), or equivalently the proje
tions i+t and i+t , respe
tively. Thus, the parents

of a given random variable will be the proje
tions in the three past timelike related

adja
ent minimal double 
ones, the des
endants of a random variable will be the

proje
tions in the future timelike related minimal double 
ones, et
. The pair

(

G(V ),V(V )
)

will form a Bayesian network.

The translation manual between the vo
abulary of the theory of Bayesian net-

works and that of the sto
hasti
 lo
al 
lassi
al theory {N (V ), V ∈ Km} is shown
in the following table:
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Theory of Bayesian networks Sto
hasti
 lo
al 
lassi
al theory

Bayesian network

(

G(V ),V(V )
)

Asso
iated to every V ∈ Km

Causal graph G(V ) Lo
al von Neumann algebra N (V )
with V ∈ Km

Verti
es Minimal double 
ones in V
Arrows Pointing to future timelike related

adja
ent minimal double 
ones

Random variables V(V ) Proje
tions lo
alized in the

minimal double 
ones 
ontained in V
Parents Proje
tions in past timelike related

adja
ent minimal double 
ones

An
estors Proje
tions in past timelike related

minimal double 
ones

Des
endants Proje
tions in future timelike related

minimal double 
ones

Causal Markov Condition Bell's lo
al 
ausality plus Markovity

The last line of the table 
ontains the 
entral point of our dis
ussion, namely:

1. The Causal Markov Condition is a 
onsequen
e of Bell's lo
al 
ausality and

Markovity when applied to the parents of a random variable.

2. Bell's lo
al 
ausality/Markovity are 
onsequen
es of the Causal Markov Con-

dition, sin
e the set of random variables lo
alized in a region satisfying Re-

quirements (i)-(iii)/(iii') is d-separating.

We prove the �rst 
laim in the following proposition and illustrate the se
ond in

the subsequent examples.

Proposition 4. Let {N (V ), V ∈ Km} be the sto
hasti
 lo
al 
lassi
al theory

introdu
ed above satisfying lo
al 
ausality and Markovity. Then for any pair

(

G(V ),V(V )
)

asso
iated to any V ∈ Km
the Causal Markov Condition holds.

Proof. First we prove Causal Markov Condition for non-relatives whi
h follows

from the theory being lo
ally 
ausal. Let V ∈ Km
and let Vm(t, i) and V m(s, j)

be two minimal double 
ones in V su
h that i < j. Suppose that V m(t, i) and

V m(s, j) are spatially separated (non-relatives), that is |j − i| > |s − t|. Without

loss of generality we also 
an assume that t = 1
2 and s > t, as depi
ted in Fig.

4.15. We are to show that the Causal Markov Condition (5.1) holds for X = i1 and
Y = js in the Bayesian network

(

G(V ),V(V )
)

asso
iated to V .
First, observe the parents of the variable i1 are (i − 1

2 ), i and (i + 1
2 ). Thus,

the Causal Markov Condition (5.1) reads as follows:

p

(

i1

∣

∣

∣

∣

(i− 1

2
)i(i +

1

2
) js

)

= p

(

i1

∣

∣

∣

∣

(i− 1

2
)i(i+

1

2
)

)

(4.45)

or equivalently

p

(

i1js

∣

∣

∣

∣

(i − 1

2
)i(i+

1

2
)

)

= p

(

i1

∣

∣

∣

∣

(i− 1

2
)i(i+

1

2
)

)

p

(

js

∣

∣

∣

∣

(i− 1

2
)i(i+

1

2
)

)

(4.46)
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Figure 4.15: Causal Markov Condition follows from Bell's lo
al 
ausality

relative to the parents.

Or in other words, the atomi
 events (i− 1
2 )i(i+

1
2 ) s
reen o� the 
orrelation between

i1 and js. But (4.46) does hold, sin
e from (4.35)-(4.37) it follows that

p

(

i1

∣

∣

∣

∣

(i− 1

2
)i(i +

1

2
)

)

=

[

pδi1,(i− 1
2
)i(i+ 1

2
) + (1 − p)δ−i1,(i−

1
2
)i(i+ 1

2
)

]

(4.47)

p

(

js

∣

∣

∣

∣

(i− 1

2
)i(i +

1

2
)

)

=
∑

(i− 1
2
),...,(j+s+{j+ 1

2
})

[

qmδjs,(j−s+{j})...(j+s−{j})

+(1− qm)δ−js,(j−s+{j})...(j+s−{j})

]

p(i− 1
2
)i(i+ 1

2
)(j−s+{j})...(j+s−{j})(4.48)

p

(

i1js

∣

∣

∣

∣

(i− 1

2
)i(i +

1

2
)

)

=

[

pδi1,(i− 1
2
)i(i+ 1

2
) + (1 − p)δ−i1,(i−

1
2
)i(i+ 1

2
)

]

×
∑

(i− 1
2
),...,(j+s+{j+ 1

2
})

[

qmδjs,(j−s+{j})...(j+s−{j})

+(1− qm)δ−js,(j−s+{j})...(j+s−{j})

]

p(i− 1
2
)i(i+ 1

2
)(j−s+{j})...(j+s−{j})(4.49)

Next we prove Causal Markov Condition for an
estors whi
h follows from the

theory being Markov. Let again V ∈ Km
and let V m(t, i) and V m(s, j) be two

minimal double 
ones in V su
h that V m(s, j) is in the 
ausal past (is an an
estor)

of V m(t, i), that is |j − i| 6 |s− t|. Again, we 
an assume that t = 1
2 and s > t, as

depi
ted in Fig. 4.16. To prove (4.45) just observe that both sides equal to

pδi1,(i− 1
2
)i(i+ 1

2
) + (1− p)δ−i1,(i−

1
2
)i(i+ 1

2
)

This 
ompletes the proof.
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Figure 4.16: Causal Markov Condition follows from Markovity relative to

the parents.

Thus, the Causal Markov Condition is a spe
ial 
ase of Bell's lo
al 
ausality and

Markovity in the sto
hasti
 lo
al 
lassi
al theory {N (V ), V ∈ Km}, namely when

VC is a spe
ial spa
etime region: the union of the three parental minimal double


ones, that is minimal double 
ones adja
ent to a given minimal double 
one from

below. We stress again that Causal Markov Condition is a 
omposition of two

s
reening-o� 
onditions: one for the an
estors and the other for the non-relatives.

The �rst is the 
onsequen
e of Markovity, the se
ond is the 
onsequen
e of lo
al


ausality.

Now, we go over to our inverse 
laim, namely that Bell's lo
al 
ausality/Markovity

are 
onsequen
es of the Causal Markov Condition, sin
e the set of random variables

lo
alized in a region VC satisfying Requirements (i)-(iii)/(iii') is d-separating. Here

we do not prove this 
laim generally, but only illustrate the 
onne
tion of Require-

ments (i)-(iii) in the de�nition of lo
al 
ausality to d-separation on our previous

two examples.

Example 1. Consider the smallest region V ∈ Km
in our Example 1 (in Se
tion 4)


ontaining the superluminally 
orrelating events i+1 and j+1 with j = i+ 2 ∈ N+ 1
2

and a region VC satisfying Requirements (i)-(iii) in the de�nition of lo
al 
ausality.

(See Fig. 4.17.)

Now, 
onsider the Bayesian network

(

G(V ),V(V )
)

asso
iated to this V . The


ausal graph of the network is illustrated in Fig. 4.18. Let the variables be X = i1,
Y = j1 and the subset Z be de�ned as:

Z :=

{

(i − 1), (i− 1

2
), i, (i+

1

2
), (i+ 1)

}

In other words, Z 
ontains the random variables asso
iated to the minimal double


ones of VC .

96

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

ji+1i
i+1/2

i−1 j+1
i−1/2 j−1/2 j+1/2

+ +
11

ji

Figure 4.17: The smallest region 
ontaining the s
enario of Example 1.

i−1 i i+1

i j

j j+1

i−1/2 i+1/2 j−1/2 j+1/2

11

Figure 4.18: A d-separating s
enario.

Now, Z d-separates i1 and j1 in G(V ), sin
e for every path P 
onne
ting i1 and
j1 in G(V ) there is a non-
ollider in Z, namely, (i + 1). Therefore, i1 and j1 are

probabilisti
ally independent 
onditional upon any atomi
 event

(i− 1)±(i− 1

2
)±i±(i +

1

2
)±(i+ 1)±

This fa
t is the Bayesian network analogon of the situation illustrated in Fig. 8.16

where VC is su
h that there is no minimal double 
one above VC in the interse
tion

of the 
ausal past of the 
orrelating events. As said before, this is due to the fa
t that

VC satis�es Requirement (iii) in the de�nition of lo
al 
ausality. If Requirement (iii)

does not ful�l, region VC turns into d-
onne
ting, as is shown in the next example.

Example 2. Consider the smallest region V ∈ Km
in our Example 2 
ontaining the

superluminally 
orrelating events i+2 and j+2 with j = i+2 ∈ N+ 1
2 and a region VC

still in the 
ausal past of i+2 but not satisfying Requirement (iii). (See Fig. 4.19.)

The 
ausal graph G of the network is illustrated in Fig. 4.20. Let the variables

be X = i2, Y = j2 and let

Z :=

{

(i− 3

2
), (i − 1), (i− 1

2
), i, (i+

1

2
), (i+ 1), (i+

3

2
) = (j − 1

2
)

}

again a subset 
ontaining the random variables asso
iated to the minimal double


ones within VC .
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Figure 4.19: The smallest region 
ontaining the s
enario of Example 2.

i j
2 2

ii−1 i+1 j j+1 j+2

i−3/2

i−2

i+1/2i−1/2 j−1/2 j+1/2 j+3/2

Figure 4.20: A d-
onne
ting s
enario.

Now, Z does not d-separate i2 and j2 in G, sin
e the path

P :=

{

i2, (i+
1

2
)1, (i+ 1)1, (j −

1

2
)1, j2

}

(denoted by a broken line in Fig. 4.20) 
onne
ting i2 and j2 in G(V ) 
ontains only
non-
olliders whi
h are outside Z. Therefore, the probabilisti
 independen
e of i1
and j1 
onditional upon the atomi
 events

(i− 3

2
)±(i− 1)±(i− 1

2
)±i±(i+

1

2
)±(i+ 1)±(i +

3

2
)±

is not ensured by the Causal Markov Condition (and if the graph is faithful, it is even

ex
luded). This fa
t is the Bayesian network analogon of the situation illustrated

in Fig. 8.17 where VC does not satisfy Requirement (iii) in the de�nition of lo
al


ausality.

These examples point in the same dire
tion: the Causal Markov Condition and

the d-separation together ensure that Bell's lo
al 
ausality will hold for the atomi
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proje
tions lo
alized in a region satisfying Requirements (i)-(iii). Moreover, they

also show that Requirements (iii) is a ne
essary 
ondition.

4.6 Con
lusions

In the paper I was arguing, based on a simple sto
hasti
 lo
al 
lassi
al model, that

Bell's lo
al 
ausality, read in an appropriate way, is a Causal Markov Condition. I

have not though provided a general proof. This would amount to solve the following

Open problem. Let {N (V ), V ∈ K} be a dis
rete lo
al physi
al theory, dis
rete

in the sense that every V ∈ K 
ontains only a �nite number of elements of K
and the lo
al von Neumann algebrasN (V ) are �nite. Constru
t the Bayesian
network

(

G(V ),V(V )
)

asso
iated to a region V in K. Prove (or falsify) that
{N (V ), V ∈ K} is Markov and lo
ally 
ausal in Bell's sense i�

(

G(V ),V(V )
)

ful�ls the Causal Markov Condition for every V ∈ K.

A
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Chapter 5

Bell's lo
al 
ausality is a

d-separation 
riterion

This paper aims to motivate Bell's notion of lo
al 
ausality by means of Bayesian

networks. In a lo
ally 
ausal theory any superluminal 
orrelation should be s
reened

o� by atomi
 events lo
alized in any so-
alled shielder-o� region in the past of one

of the 
orrelating events. In a Bayesian network any 
orrelation between non-

des
endant random variables are s
reened o� by any so-
alled d-separating set of

variables. We will argue that the shielder-o� regions in the de�nition of lo
al 
ausal-

ity 
onform in a well de�ned sense to the d-separating sets in Bayesian networks.

5.1 Introdu
tion

John Bell's notion of lo
al 
ausality is one of the 
entral notions in the foundations

of relativisti
 quantum physi
s. Bell himself has returned to the notion of lo
al


ausality from time to time providing a more and more re�ned formulation for it.

The �nal formulation stems from Bell's posthumously published paper �La nouvelle


uisine.� It reads as follows:

1

A theory will be said to be lo
ally 
ausal if the probabilities atta
hed

to values of lo
al beables in a spa
e-time region VA are unaltered by

spe
i�
ation of values of lo
al beables in a spa
e-like separated region

VB , when what happens in the ba
kward light 
one of VA is already

su�
iently spe
i�ed, for example by a full spe
i�
ation of lo
al beables

in a spa
e-time region VC . (Bell, 1990/2004, p. 239-240)

The �gure Bell is atta
hing to his formulation of lo
al 
ausality is reprodu
ed in

Fig. 5.1 with Bell's original 
aption. In a rough translation, a theory is lo
ally


ausal if any superluminal 
orrelation 
an be s
reened-o� by a �full spe
i�
ation of

lo
al beables in a spa
e-time region� in the past of one of the 
orrelating events.

1

For the sake of uniformity we slightly 
hanged Bell's notation and �gure.
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CV

VA VB

Figure 5.1: Full spe
i�
ation of what happens in VC makes events in VB
irrelevant for predi
tions about VA in a lo
ally 
ausal theory.

The terms in quotation marks, however, need 
lari�
ation. What are �lo
al

beables�? What is �full spe
i�
ation� and why is it important? Whi
h are those re-

gions in spa
etime whi
h, if fully spe
i�ed, render superluminally 
orrelating events

probabilisti
ally independent? The �rst two questions have attra
ted mu
h inter-

est among philosophers of s
ien
e. As Bell puts it, �beables of the theory are those

entities in it whi
h are, at least tentatively, to be taken seriously, as 
orresponding

to something real� (Bell, 1990/2004, p. 234). Furthermore, �it is important that

events in VC be spe
i�ed 
ompletely. Otherwise the tra
es in region VB of 
auses

of events in VA 
ould well supplement whatever else was being used for 
al
ulating

probabilities about VA� (Bell, 1990/2004, p. 240).

The third question, however, 
on
erning the lo
alization of the s
reener-o�

regions has gained mu
h less attention in the literature. How to 
hara
terize the

regions whi
h region VC in Fig. 5.1 is an example of? Bell's answer is instru
tive

but brief: �It is important that region VC 
ompletely shields o� from VA the overlap

of the ba
kward light 
ones of VA and VB .� (Bell, 1990/2004, p. 240) But why to

shield o� the 
ommon past of the 
orrelating events? Why the region VC 
annot

be in the remote past of VA as for example in Figure 5.2? Well, intuition di
tates

V

VA VB

C

Figure 5.2: A not 
ompletely shielding-o� region VC .
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that in this latter 
ase some event might o

ur above the shielder-o� region but

still within the 
ommon past establishing a 
orrelation between events in VA and

VB. This intuition is 
orre
t. The aim of this paper, however, is to provide a more

pre
ise explanation for the lo
alization of the shielder-o� regions in spa
etime. This

explanation will 
onsists in drawing a parallel between lo
al physi
al theories and

Bayesian networks. It will turn out that the shielder-o� regions in the de�nition of

lo
al 
ausality play an analogous role to the so-
alled d-separating sets of random

variables in Bayesian networks.

There is a renewed interest in Bell's notion of lo
al 
ausality (Norsen, 2009, 2011;

Maudlin 2014), its relation to separability (Henson, 2013b); the role of full spe
i-

�
ation in lo
al 
ausality (Seevin
k and U�nk, 2011; Hofer-Szabó 2015a); its role

in relativisti
 
ausality (Butter�eld 2007; Earman and Valente, 2014; Rédei 2014);

its status as a lo
al 
ausality prin
iple (Henson, 2005; Rédei and San Pedro, 2012;

Henson 2013a). A similar 
losely related topi
, the Common Cause Prin
iple is

also given mu
h attention (Rédei 1997; Rédei and Summers 2002; Hofer-Szabó and

Ve
sernyés 2012a, 2013a). On the other hand, there is also an intensive dis
ussion

on the appli
ability of the Causal Markov Condition in the EPR s
enario (Gly-

mour, 2006; Suárez and Iniaki, 2011; Hausman and Woodward, 1999; Suárez, 2013;

Hofer-Szabó, Rédei and Szabó, 2013). Despite the ri
h and growing literature on

the topi
 I am unaware of any work relating Bayesian networks and espe
ially d-

separation dire
tly to lo
al 
ausality. This paper intends to �ll this gap. For a

pre
ursor of this paper investigating Causal Markov Condition in a spe
i�
 lo
al

physi
al theory see (Hofer-Szabó, 2015b). For a 
omprehensive formally rigorous

investigation of the relation of Bell's lo
al 
ausality to the Common Cause Prin
iple

and other relativisti
 lo
ality 
on
epts see (Hofer-Szabó and Ve
sernyés, 2015); for

a more philosopher-friendly version see (Hofer-Szabó and Ve
sernyés, 2016).

In the paper we will pro
eed as follows. In Se
tion 2 we introdu
e the basi
s of

the theory of Bayesian networks and the notion of d-separation and m-separation.

In Se
tion 3 we de�ne the notion of a lo
al physi
al theory and formulate Bell's

notion of lo
al 
ausality within this framework. We prove our main 
laim in Se
tion

4 and 
on
lude in Se
tion 5.

5.2 Bayesian networks and d-separation

A Bayesian network (Pearl, 2000; Glymour, S
heines and Spirtes, 2000) is a pair

(G,V) where G is a dire
ted a
y
li
 graph and V is a set of random variables on

a 
lassi
al probability spa
e (X,Σ, p) su
h that the elements A,B . . . of V are

represented by the verti
es of G and the arrows (dire
ted edges) A → B on the

graph represent that A is 
ausally relevant for B. Two verti
es are 
alled adja
ent

if they are 
onne
ted by an arrow. For a given A ∈ V , the set of verti
es that

have dire
ted edges in A is 
alled the parents of A, denoted by Par(A); the set of
verti
es from whi
h a dire
ted paths is leading to A is 
alled the an
estors of A,
denoted by Anc(A); and �nally the set of verti
es that are endpoints of a dire
ted

paths from A is 
alled the des
endants of A, denoted by Des(A). For a set C of
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verti
es Par(C), Anc(C) and Des(C) are de�ned similarly.

The set V is said to satisfy the Causal Markov Condition relative to the graph

G if for any A ∈ V and any B /∈ Des(A) the following is true:

p(A |Par(A) ∧B) = p(A |Par(A)) (5.1)

or equivalently

p(A ∧B |Par(A)) = p(A |Par(A)) p(B |Par(A)) (5.2)

That is 
onditioning on its parents any random variable will be probabilisti
ally

independent from any of its non-des
endant. Non-des
endants 
an be of two types:

either an
estors or 
ollaterals (non-des
endants and non-an
estors). As we will see,

being independent of 
ollaterals is what relates the Causal Markov Condition to

Bell's lo
al 
ausality.

Causal Markov Condition establishes a spe
ial 
onditional independen
e rela-

tion between some random variables of V . But there are many other 
onditional

independen
es. In a faithful Bayesian network these other 
onditional indepen-

den
es are all implied by the Causal Markov Condition by means of the so-
alled

d-separation 
riterion. Let P be a path in G, that is a sequen
e of adja
ent verti
es.
A variable E on P is a 
ollider if there are arrows to E from both its neighbors on

P (D → E ← F ). Now, let C be a set of verti
es and let A and B two di�erent

verti
es not in C. The verti
es A and B are said to be d-
onne
ted by C in G i�

there exists a path P between A and B su
h that every non-
ollider on P is not in

C and every 
ollider is in Anc(C). A and B are said to be d-separated by C in G, i�
they are not d-
onne
ted by C in G.

The intuition behind d-separation is the following. A vertex E on a path (not at

the endpoints) 
an be either a 
ollider (D → E ← F ), an intermediary 
ause (D →
E → F ) or a 
ommon 
ause (D ← E → F ). The idea here is that only intermediary

and 
ommon 
auses (together 
alled non-
olliders) 
an transmit 
ausal dependen
e

and hen
e establish probabilisti
 dependen
e. This dependen
e 
an be blo
ked by


onditioning on the non-
ollider. Colliders behave just the opposite way. They

represent two events 
ausing a 
ommon e�e
t. These two 
auses are 
ausally and

probabilisti
ally independent, but be
ome dependent upon 
onditioning on their


ommon e�e
t. Moreover, they also be
ome dependent upon 
onditioning on any

of the des
endants of the e�e
t. Putting these together, the 
ausal dependen
e on

a path P 
onne
ting two verti
es is blo
ked by a set C if either there is at least one
non-
ollider on P whi
h is in C or there is at least one 
ollider E on P su
h that

either E or a des
endant of E is not in C. The two verti
es are d-separated by C if

ausal dependen
e is blo
ked on every path 
onne
ting them.

As an example for d-
onne
tion and d-separation 
onsider the 
ausal graph in

Fig. 5.3. (The arrows are dire
ted to up, left up and right up.) Let A be the left

�peak� and B the right �peak� in the graph and let C, C′ and C′′ be the sets shown
in the �gure 
ontaining 3, 5 and 7 verti
es, respe
tively. Then A and B are d-

separated by C sin
e the parents are always d-separating due to the Causal Markov

Condition. A and B are d-separated also by C′ sin
e for every path 
onne
ting the
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A B

C’’

C’

C

Figure 5.3: A and B are d-separated by C and C′ but d-
onne
ted by C′′.

peaks there is a non-
ollider in C′. However, A and B are d-
onne
ted by C′′ sin
e
there is a path (denoted by a broken line in Fig. 5.3) 
onne
ting the peaks whi
h


ontains only non-
olliders outside C′′. Consequently, the following probabilisti


relations hold:

p(A ∧B | C) = p(A | C) p(B | C) (5.3)

p(A ∧B | C′) = p(A | C′) p(B | C′) (5.4)

p(A ∧B | C′′) 6= p(A | C′′) p(B | C′′) (5.5)

Looking at in Fig. 5.3, what stands out immediately is that a set whi
h is too

far in the 
ausal past of A 
annot d-separate A from a 
ollateral event sin
e there

might be paths 
onne
ting them �above� the set. As we will see, a similar moral

will be valid in 
ase of lo
al 
ausality: regions with are too far in the 
ausal past

of an event 
annot s
reen it o� from a spa
elike separated event sin
e there might

be events �above� the region whi
h 
an establish 
orrelation between them.

In analyzing lo
al 
ausality sometimes we need to go beyond dire
ted a
y
li
 graphs.

A graph whi
h may 
ontain both dire
ted (A→ B) and bi-dire
ted (A↔ B) edges
is 
alled mixed. The d-separation 
riterion extended to mixed a
y
li
 graphs is


alled m-separation. (Ri
hardson and Spirtes, 2002; Sadeghi and Lauritzen, 2014)

Two verti
es A and B are said to be m-
onne
ted by C in a mixed a
y
li
 graph G
i� there exists a path P between A and B su
h that every non-
ollider on P is not

in C and every 
ollider is in Anc(C). A and B are said to be m-separated by C in

G, i� they are not m-
onne
ted by C in G. In a dire
ted a
y
li
 graph m-separation

redu
es to d-separation.

An example for a mixed a
y
li
 graph is depi
ted in Fig. 5.4. Here the bi-

dire
ted edges are represented by dotted lines. Again, let A be the left �peak� and

B the right �peak� in the graph and let C, C′ and C′′ be the sets shown in the �gure


ontaining 3, 5 and 7 verti
es, respe
tively. Then A and B are m-separated by

C but m-
onne
ted by both C′ and C′′. The 
onne
ting path is the shortest path
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C’

C

C’’

A B

Figure 5.4: A and B are m-separated by C but m-
onne
ted by both C′ and
C′′.


onne
ting A and B.

Now, let us 
onne
t the terminology of Bayesian networks to that of standard

physi
s. Before doing that note that probability is 
ommonly interpreted in Bayesian-

ism subje
tively as partial belief and in physi
s obje
tively as long-run relative fre-

quen
y. This interpretative di�eren
e, however, does not undermine the analogy

between lo
al 
ausality and d-separation, sin
e Bayesian networks are well open to

statisti
al interpretation and, 
onversely, there is a growing tenden
y to understand

quantum physi
s in a subje
tivist way.

Let us start with random variables. A random variable is a real-valued Borel-

measurable fun
tion on X . Ea
h random variable A ∈ V generates a sub-σ-algebra
of Σ by the inverse image of the Borel sets:

σ(A) :=
{

A−1(b) | b ∈ B(R)
}

(5.6)

Similarly, ea
h set C of n random variables generates a sub-σ-algebra of Σ by the

inverse image of the n-dimensional Borel sets:

σ(C) :=
{

(C1, C2 . . . Cn)
−1(b) |Ci ∈ C, b ∈ B(Rn)

}

(5.7)

From this perspe
tive d-separation tells us whi
h sub-σ-algebras are probabilisti-


ally independent 
onditioned on whi
h other sub-σ-algebras of Σ.
Now, instead of using σ-algebras it is more instru
tive to use a ri
her stru
ture in

physi
s, namely von Neumann algebras. Consider the 
hara
teristi
 fun
tions on X
proje
ting on the elements of Σ, 
alled events. The set {χS |S ∈ Σ} of 
hara
teristi

fun
tions generates an abelian von Neumann algebra, namely L∞(X,Σ, p), the
spa
e of essentially bounded 
omplex-valued fun
tions on X . Starting from the


hara
teristi
 fun
tions of the sub-σ-algebra σ(A), one arrives at a subalgebra of

L∞(X,Σ, p). Denote this abelian von Neumann algebra determined by the random

variable A by NA. Similarly, denote by NC the von Neumann algebra determined

by a set C of random variables.
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Instead of using a probability measure on Σ or on a sub-σ-algebra σ(A), one

an also use a state on the 
orresponding von Neumann algebra NA. A state φ is a

positive linear fun
tional of norm 1 on a von Neumann algebra. States on NA and

probability measures on σ(A) mutually determine one another: a state restri
ted to

the 
hara
teristi
 fun
tions in NA is a probability measure on σ(A); and vi
e versa,

integrating elements of NA a

ording to a probability measure on σ(A) yields a

state on NA.

Therefore, a 
onditional independen
e between random variables A and B given

the set C

p(A ∧B | C) = p(A | C) p(B | C) (5.8)


an be rewritten as follows: for any proje
tion A ∈ NA, B ∈ NB and C ∈ NC :

φ(A ∧B ∧ C)
φ(C)

=
φ(A ∧ C)
φ(C)

φ(B ∧ C)
φ(C)

(5.9)

Although in this paper we stay at the 
lassi
al level, the theory of von Neumann

algebras is wide enough to in
orporate also quantum physi
s. In this 
ase the von

Neumann algebras are nonabelian. The events, just like in the 
lassi
al 
ase, are

represented by proje
tions of the von Neumann algebras. In the quantum 
ase


onditional independen
e between the proje
tion A ∈ NA and B ∈ NB given

C ∈ NC reads as follows:

φ(CABC)

φ(C)
=
φ(CAC)

φ(C)

φ(CBC)

φ(C)
(5.10)

whi
h in the 
lassi
al 
ase redu
es to (5.9).

The last point in 
onverting the formalism of Bayesian networks into physi
s,

is to swap the 
ausal graph for spa
etime. We 
an then repla
e the 
ausal relations

embodied in the 
ausal graph by spatiotemporal relations of a given spa
etime.

Instead of saying that a random variable is the an
estor of another variable we

will then say that an event is in the past of the other. But to do so �rst we need

to lo
alize events in spa
etime that is we need to have an asso
iation of algebras

of events to spa
etime regions. Su
h a prin
ipled asso
iation is o�ered by the

formalism of algebrai
 quantum �eld theory. Hen
e, in the next se
tion we will

introdu
e some elements of algebrai
 quantum �eld theory whi
h is indispensable

for our purpose whi
h is to 
ome up with a mathemati
ally pre
ise de�nition of

Bell's notion of lo
al 
ausality.

5.3 Bell's lo
al 
ausality in a lo
al physi
al theory

Let M be a globally hyperboli
 spa
etime and let K be a 
overing 
olle
tion of

bounded, globally hyperboli
 subspa
etime regions of M su
h that (K,⊆) is a

dire
ted poset under in
lusion ⊆. A lo
al physi
al theory is a net {A(V ), V ∈
K} asso
iating algebras of events to spa
etime regions whi
h satis�es isotony and
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mi
ro
ausality de�ned as follows (Haag, 1992; Halvorson 2007; Hofer-Szabó and

Ve
sernyés 2015, 2016):

Isotony. The net of lo
al observables is given by the isotone map K ∋ V 7→ A(V )
to unital C∗

-algebras, that is V1 ⊆ V2 implies that A(V1) is a unital C∗
-subalgebra

of A(V2). The quasilo
al algebra A is de�ned to be the indu
tive limit C∗
-algebra

of the net {A(V ), V ∈ K} of lo
al C∗
-algebras.

Mi
ro
ausality : A(V ′)′ ∩ A ⊇ A(V ), V ∈ K, where primes denote spa
elike 
om-

plement and algebra 
ommutant, respe
tively.

If the quasilo
al algebra A of the lo
al physi
al theory is 
ommutative, we speak

about a lo
al 
lassi
al theory ; if A is non
ommutative, we speak about a lo
al

quantum theory. For lo
al 
lassi
al theories mi
ro
ausality ful�lls trivially.

Given a state φ on the quasilo
al algebra A, the 
orresponding GNS represen-

tation πφ : A → B(Hφ) 
onverts the net of C
∗
-algebras into a net of C∗

-subalgebras

of B(Hφ). Closing these subalgebras in the weak topology one arrives at a net of

lo
al von Neumann observable algebras: N (V ) := πφ(A(V ))′′, V ∈ K. The net

{N (V ), V ∈ K} of lo
al von Neumann algebras also obeys isotony and mi
ro
ausal-

ity, hen
e we 
an also refer to it as a lo
al physi
al theory.

Given a lo
al physi
al theory, we 
an turn now to the de�nition of Bell's notion

of lo
al 
ausality. Re
all that a

ording to Bell a theory is lo
ally 
ausal if any

superluminal 
orrelation is s
reened-o� by a �full spe
i�
ation of lo
al beables in a

spa
e-time region VC � as shown in Fig. 5.1. As indi
ated in the Introdu
tion we need
to address three questions. What are �lo
al beables�? What is �full spe
i�
ation�?

Whi
h are the shielder-o� regions? The brief answer to the �rst two questions is

the following. In a lo
al physi
al theory a �lo
al beable� in a region V is an element

of the lo
al von Neumann algebra N (V ). A �full spe
i�
ation� of lo
al beables

in region V is an atomi
 element of the lo
al von Neumann algebra N (V ). In

this paper we do not 
omment on these two answers. For a more thoroughgoing

dis
ussion on why we think this to be the 
orre
t translation of Bell's intuition into

our framework see (Hofer-Szabó and Ve
sernyés, 2015, 2016).

To the third question, whi
h is the topi
 of our paper, the answer is this: a

shielder-o� region VC is a region in the 
ausal past of VA whi
h 
an blo
k any


ausal in�uen
e on VA arriving from the 
ommon past of VA and VB . But there

is an ambiguity in this answer. Bell's Fig. 5.1 suggests that a shielder-o� region

should not interse
t with the 
ommon past. Whereas the requirement of simply

blo
king 
ausal in�uen
es from the past allows for also regions depi
ted in Fig. 5.5

interse
ting with the 
ommon past. This means that one 
an de�ne a shielder-o�

region of VA relative to VB either as a region VC satisfying:

L1 : VC ⊂ J−(VA) (VC is in the 
ausal past of VA),

L2 : VA ⊂ V ′′
C (VC is wide enough su
h that its 
ausal shadow 
ontains

VA),

L

Q
3 : VC ⊂ V ′

B (VC is spa
elike separated from VB)
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V

VA VB

C

Figure 5.5: A 
ompletely shielding-o� region VC interse
ting with the 
om-

mon past of VA and VB .

in tune with Bell's Fig. 5.1; or one 
an repla
e LQ
3 by the weaker requirement

L

C
3 : J−(VC) ⊃ J−(VA) ∩ J−(VB) (The 
ausal past of VC 
ontains the


ommon past of VA and VB)

allowing for regions su
h as in Fig. 5.2. It turns out that (with respe
t to the Bell

inequalities, see (Hofer-Szabó and Ve
sernyés, 2012b, 2013b)) it is more appropriate

to demand LQ
3 in 
ase of a lo
al quantum theory and LC

3 in 
ase of a lo
al 
lassi
al

theory (hen
e the supers
ripts). But note that as the 
overing regions be
ome

in�nitely thin shrinking down to a Cau
hy surfa
e, requirement LC
3 
oin
ides with

requirement LQ
3 .

With all these 
onsiderations in mind Bell's notion of lo
al 
ausality in the

framework of a lo
al physi
al theory will be the following:

De�nition 4. A lo
al physi
al theory represented by a net {N (V ), V ∈ K} of von
Neumann algebras is 
alled lo
ally 
ausal (in Bell's sense), if

1. for any pair A ∈ N (VA) and B ∈ N (VB) of events represented by proje
tions
in spa
elike separated regions VA, VB ∈ K;

2. for every lo
ally normal and faithful state φ establishing a 
orrelation φ(AB) 6=
φ(A)φ(B) between A and B;

3. for any spa
etime shielder-o� region VC de�ned by requirements L1, L2 and

LQ
3 /L

C
3 ;

4. for any event C in the set C of atomi
 events in A(VC)
the following s
reening-o� 
ondition holds:

φ(CABC)

φ(C)
=
φ(CAC)

φ(C)

φ(CBC)

φ(C)
(5.11)

whi
h for a lo
al 
lassi
al theory is equivalent to

p(A ∧B | C) = p(A | C) p(B | C) (5.12)
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In short, a lo
al physi
al theory is lo
ally 
ausal in Bell's sense if every superluminal


orrelation is s
reened o� by all atomi
 events in all shielder-o� region. (For many

deli
ate questions su
h as what if the algebras are non-atomi
, how this de�nition

of lo
al 
ausality relates to the Common Cause Prin
iple and the Bell inequalities

see again (Hofer-Szabó and Ve
sernyés, 2015, 2016).)

The question left is, however: why shielder-o� regions are 
hara
terized by

requirements L1, L2 and L
Q
3 /L

C
3 ? To this we turn in the next Se
tion.

5.4 Shielder-o� regions are d-separating

The point we are going to make in this Se
tion is that shielder-o� regions in the

de�nition of lo
al 
ausality 
onform to d-separating sets in dire
ted a
y
li
 graphs

and to m-separating sets in mixed a
y
li
 graphs.

First we show how a lo
al physi
al theory gives rise to a 
ausal graph. Consider

a lo
al 
lassi
al theory {N (V ), V ∈ K} where the 
overing 
olle
tion is indu
ed by

a partition T of a spa
etimeM. By partition we mean a 
ountable set of disjoint,

bounded spa
etime regions su
h that their union isM. Whether we demand global

hyperboli
ity from the elements of the partition will turn out to play an important

role in the type of the graph we 
an 
onstru
t. For some spe
i�
 globally hyperboli



overings we will get dire
ted a
y
li
 graphs, otherwise only a mixed graph.

Let the verti
es of the G be the regions in the partition, {V ∈ T }. Denote the
vertex 
orresponding to the region V ∈ T by AV and the region 
orresponding to

a vertex A by VA. Similarly, denote the set of verti
es 
orresponding to the region

V ∈ K by CV and the region 
orresponding to a set of verti
es C by VC . De�ne the
an
estors of a vertex B as:

Anc(B) := {A ∈ V |A 6= B, VA ∩ J−(VB) 6= ∅}

and the parents of B, Par(B), as those elements in Anc(B) for whi
h there is a


ausal 
urve 
onne
ting VA and VB dire
tly (that is without entering a third region

between them). Now, let there be an arrow A→ B between vertex A and B in T
if and only if A ∈ Par(B). It will turn out that the type of the graph we obtain

is 
ru
ially depending on the partition T of the spa
etime. Let us see the di�erent


ases.

If M is the 1+1 dimensional Minkowski spa
etime, then it 
an be 
overed by

double 
ones of equal size. (See Fig. 5.6.) Double 
ones are globally hyperboli
.

(For the details of this example see (Hofer-Szabó, 2015b).) The 
ausal graph 
or-

responding to this 
overing emerges simply by 
onne
ting the midpoints of those

adja
ent double 
ones whi
h lie in the 
ausal past of one another. What we get is

just the dire
ted a
y
li
 graph depi
ted in Fig. 5.3 in Se
tion 2.

Fig. 5.6 is a kind of �superposition� of a spa
etime diagram and a Bayesian

network. Consider for example region VC′
. Reading Fig. 5.6 as a spa
etime diagram,

one sees that VC′
is a shielder-o� region (similar to the one depi
ted in Fig. 5.5).

Reading Fig. 5.6 as a 
ausal graph, one observes that the set C′ 
orresponding to

VC′
(depi
ted in Fig. 5.3) is a d-separating set. Similarly, one 
an 
he
k that the
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V V

V

A B

C’

Figure 5.6: The dire
ted a
y
li
 graph generated by double 
ones of equal

size 
overing the 1+1 dimensional Minkowski spa
etime.

region asso
iated to the d-separating set C in Fig. 5.3 is a shielder-o� region and

the region asso
iated to the d-
onne
ting set C′′ is not a shielder-o� region.

A general spa
etime M 
annot be partitioned to globally hyperboli
 regions,

let alone to double 
ones. Still one 
an 
onstru
t the 
ausal graph 
orresponding to

a partition T . In Fig. 5.7 we illustrate su
h a 
onstru
tion where a 1+1 dimensional

V

V V
BA

C’

Figure 5.7: The mixed a
y
li
 graph generated by boxes of equals size 
ov-

ering of the 1+1 dimensional Minkowski spa
etime.

Minkowski spa
etime is 
overed by boxes of equals size. (This example, in 
ontrast

to the previous one, 
an be generalized for a 3+1-dimensional Minkowski spa
etime


overed by 3+1-dimensional boxes of equals size.) The 
ausal graph emerging from

this 
onstru
tion is not a dire
ted a
y
li
 graph sin
e it 
ontains bi-dire
ted edges:

spa
elike neighboring boxes will be spouses. What we get is a mixed a
y
li
 graph

depi
ted in Fig. 5.4. Again, 
onfronting Fig. 5.4 and Fig. 5.7 one 
an see that the

set C′ is not an m-separating set and at the same time the 
orresponding region
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VC′
is not a shielder-o� region of VA relative to VB .

The exa
t 
hara
terization of the graphs emerging from a di�erent 
overings of a

given spa
etime is a subtle question whi
h we do not go into here. Instead we turn

now to the 
onstru
tion of random variables. Let N (V ) be the lo
al von Neumann

algebra asso
iated to the spa
etime region V ∈ T . Denote by σ(V ) the sigma-

algebra of the proje
tions of N (V ). Let the random variable (also denoted by) AV

asso
iated to V be any Borel-measurable fun
tion from σ(V ) to B(R). Any state φ
will then de�ne a probability measure p on σ(V ) for any V ∈ T and, due to isotony

of the net, also for any V whi
h is a �nite union of regions in T . (Note that σ(M)
may not be a sigma-algebra sin
e the quasilo
al algebra A is not ne
essarily a von

Neumann algebra, so it may not 
ontain proje
tions.)

In sum, any �nite set of regions of a lo
al 
lassi
al theory {N (V ), V ∈ K}
generated by a globally hyperboli
 partition ofM de�nes a Bayesian network (G,V).
If global hyperboli
ity is not required, then G is not a dire
ted a
y
li
 but only a

mixed graph.

Now, we state and prove the main 
laim of the paper.

Proposition 5. Let G be a dire
ted/mixed a
y
li
 graph 
onstru
ted from a lo
al


lassi
al theory {N (V ), V ∈ K} where K is generated by a partition T of M.

Suppose that {N (V ), V ∈ K} is lo
ally 
ausal in the sense of De�nition 4. Then

for any shielder-o� region V de�ned by L1, L2 and LC
3 , the 
orresponding set CV

is d-separating/m-separating.

Proof. Let A and B two 
ollateral verti
es in G 
orresponding to two spa
elike

separated regions VA and VB, respe
tively (VA, VB ∈ T ). Call a set C of random

variables a shielder-o� set (for A relative to B), if VC is a shielder-o� region (for VA
relative to VB). Shielder-o� sets blo
k every dire
ted path from Anc(A)∧Anc(B),
the set of 
ommon an
estors of A and B, to A (that is every dire
ted path has to

pass through C).
We show that shielder-o� sets are d-separating/m-separating. Let C be a

shielder-o� set for A relative to B. We have to show that C blo
ks every path 
on-

ne
ting A and B. First 
onsider those paths that 
ontain no 
olliders. These paths

need to pass through the set of 
ommon an
estors of A and B, Anc(A) ∧ Anc(B).
Hen
e, the shielder-o� set C blo
ks them. So there remain only those paths to be

blo
ked whi
h 
ontain at least one 
ollider. It is easy to see that these latter paths

need to 
ontain at least one 
ollider E su
h that E /∈ Anc(A). But then neither E
nor any des
endant of E is in C, hen
e C blo
ks also these paths.

The 
onverse of Proposition 13 is not true: d-separating sets are not ne
essarily

shielder-o� sets. Tian, Paz, and Pearl (1998) list algorithms to �nd the so-
alled

minimal d-separating sets for two random variables A and B, that is sets that

are d-separating but taking away any vertex from the set they will 
ease to be

d-separating. It turns out that any minimal d-separating set is sitting in the union

of the an
estors of A and B (in
luding also A and B), Anc(A) ∨ Anc(B) ∨ A ∨B.
However, a minimal d-separating set need not satisfy relations L1, L2 and L

C
3 . For
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example the sets D, D′
and D′′

in Fig. 5.8 are all minimal d-separating sets but not

shielder-o� regions for A relative to B.

A B

D D’ D’’

Figure 5.8: Minimal d-separating but not shielder-o� regions.

At any event, shielder-o� regions are d-separating, and this was to be shown in

this paper.

5.5 Con
lusions

The aim of the paper was to motivate Bell's de�nition of lo
al 
ausality by means

of Bayesian networks. To this aim, �rst we 
onstru
ted a 
ausal graph from the


overing 
olle
tion of a spa
etime. In 
ertain 
ases the graph was a dire
ted a
y
li


graph, in other 
ases only a mixed a
y
li
 graph. Similarly, we have asso
iated

random variables to the lo
al algebras of a lo
al physi
al theory. By this move

shielder-o� regions turned out be spe
i�
 d-separation (m-separating) sets on the


ausal graph. Hen
e, Bell's de�nition of lo
al 
ausality requiring that spa
elike

separated events should be s
reened-o� by events in a shielder-o� region turned

out to be a d-separation 
riterion.
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Chapter 6

Lo
al 
ausality and 
omplete

spe
i�
ation: a reply to

Seevin
k and U�nk

A physi
al theory is 
alled lo
ally 
ausal if any 
orrelation between spa
elike sepa-

rated events is s
reened-o� by lo
al beables 
ompletely spe
ifying an appropriately


hosen region in the past of the events. In this paper I will de�ne lo
al 
ausality

in a 
lear-
ut framework, 
alled lo
al physi
al theory whi
h integrates both proba-

bilisti
 and spatiotemporal entities. Then I will argue that, 
ontrary to the 
laim of

Seevin
k and U�nk (2011), 
omplete spe
i�
ation does not stand in 
ontradi
tion

to the free variable (no-
onspira
y) assumption.

6.1 Introdu
tion

Lo
al 
ausality is the idea that 
ausal pro
esses propagate though spa
e 
ontinu-

ously and with velo
ity less than the speed of light. John Stewart Bell formulates

this intuition in a 1988 interview as follows:

�[Lo
al 
ausality℄ is the idea that what you do has 
onsequen
es only

nearby, and that any 
onsequen
es at a distant pla
e will be weaker and

will arrive there only after the time permitted by the velo
ity of light.

Lo
ality [= lo
al 
ausality℄ is the idea that 
onsequen
es propagate


ontinuously, that they don't leap over distan
es.� (Mann and Crease,

1988)

Bell has returned to this intuitive idea of lo
al 
ausality from time to time and

provided a more and more elaborate formulation of it. First he addressed the notion

of lo
al 
ausality in his �The theory of lo
al beables� delivered at the Sixth GIFT

Seminar in 1975; later in a footnote added to his 1986 paper �EPR 
orrelations and

EPW distributions� intending to 
lean up the �rst version; and �nally in the most
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elaborate form in his �La nouvelle 
uisine� posthumously published in 1990. In this

latter paper lo
al 
ausality obtains the following formulation:

1

�A theory will be said to be lo
ally 
ausal if the probabilities atta
hed

to values of lo
al beables in a spa
e-time region VA are unaltered by

spe
i�
ation of values of lo
al beables in a spa
e-like separated region

VB , when what happens in the ba
kward light 
one of VA is already

su�
iently spe
i�ed, for example by a full spe
i�
ation of lo
al beables

in a spa
e-time region VC .� (Bell, 1990/2004, p. 239-240)

We reprodu
e the �gure Bell is atta
hing to his formulation in Fig. 6.1. (The


aptation is Bell's original.)

V

V V

C

A B

Figure 6.1: Full spe
i�
ation of what happens in VC makes events in VB
irrelevant for predi
tions about VA in a lo
ally 
ausal theory.

Some brief remarks 
on
erning Bell's terminology are in pla
e here (for a de-

tailed analysis see (Norsen 2009, 2011)):

(i) The term �beable� in the quote is Bell's own neologism and is 
ontrasted to

the term �observable� used in quantum theory. �The beables of the theory

are those entities in it whi
h are, at least tentatively, to be taken seriously,

as 
orresponding to something real� (Bell, 1990/2004, p. 234).

(ii) Beables are to be lo
al: �Lo
al beables are those whi
h are de�nitely asso-


iated with parti
ular spa
e-time regions. The ele
tri
 and magneti
 �elds

of 
lassi
al ele
tromagnetism, E(t, x) and B(t, x) are again examples.� (p.

234).

(iii) Lo
al beables in region VC are to be �fully spe
i�ed� in order to blo
k 
ausal

in�uen
es arriving at VA from the 
ommon past of VA and VB .

This latter point is of 
entral importan
e and is also stressed by Bell:

2

1

For the sake of 
onformity with the rest of the paper I slightly 
hanged Bell's notation

and �gure.

2

But, to be fair, see (Bell 1980/2004, p. 106), (Bell 1980/2004, p. 152) and the above

(Bell 1990/2004, p. 234) for Bell's hesitation on the issue.
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�It is important that region VC 
ompletely shields o� from VA the

overlap of the ba
kward light 
ones of VA and VB. And it is important

that events in VC be spe
i�ed 
ompletely. Otherwise the tra
es in

region VB of 
auses of events in VA 
ould well supplement whatever else

was being used for 
al
ulating probabilities about VA. The hypothesis
is that any su
h information about VB be
omes redundant when VC is

spe
i�ed 
ompletely.� (Bell, 1990/2004, p. 240)

In a re
ent paper Mi
hael Seevin
k and Jos U�nk (2011) have questioned the

ne
essary role of 
omplete spe
i�
ation in the de�nition of lo
al 
ausality and re
-

ommended su�
ient spe
i�
ation instead. They argue that 
omplete spe
i�
ation

is too strong: it 
ontradi
ts to the so-
alled no-
onspira
y (free variable) 
ondi-

tion whi
h requires that the 
ommon 
ause of the 
orrelation be probabilisti
ally

independent of the 
hoi
e of the measurement settings.

I do not see this 
ontradi
tion and my aim in this paper is to arti
ulate my point.

I will pro
eed as follows. The logi
al s
hema of Bell's de�nition of lo
al 
ausality is

the following: if events are lo
alized in the spa
etime in su
h-and-su
h a way, then

these events are to satisfy su
h-and-su
h probabilisti
 independen
ies. This s
hema

is highly intuitive and easily appli
able in the physi
al praxis, however, in order

to a

ount for these inferen
es from spatiotemporal to probabilisti
 relations in a

mathemati
ally transparent way, one needs to have a framework integrating both

spatiotemporal and also probabilisti
 entities. Only after having su
h a 
ommon

framework 
an one de�ne Bell's notion of lo
al 
ausality in a 
lear-
ut way. Thus,

in Se
tion 2 �rst this framework, 
alled lo
al physi
al theory, will be introdu
ed and

then Bell's notion of lo
al 
ausality will be formulated within this framework. In

Se
tion 3 the relation of lo
al 
ausality to the Bell inequalities will be expli
ated.

The main se
tion is Se
tion 4; here it will be argued that there is no tension between


omplete spe
i�
ation and no-
onspira
y. I 
on
lude in Se
tion 5.

6.2 Bell's lo
al 
ausality in a lo
al physi
al theory

In developing the notion of a lo
al physi
al theory one is lead by the following

intuitions. A lo
al physi
al theory is to des
ribe �beables,� let them be 
lassi
al or

non
lassi
al; it is to a

ount for the logi
al 
ombination of these events; these events

should be 
apable of bearing a probabilisti
 interpretation; the theory is to provide

some way to lo
alize these event in the spa
etime, and is also to provide some

physi
ally well-motivated prin
iples guiding the asso
iation of spa
etime regions to

physi
al events; the theory is to guarantee that the symmetries of the spa
etime

are in tune with the symmetries of the events. (For the details see (Hofer-Szabó

and Ve
sernyés, 2015 a,b).) All these preliminary intuitions are 
aptured in the

following de�nition (Haag, 1992):

De�nition 5. A PK-
ovariant lo
al physi
al theory is a net {A(V ), V ∈ K} asso
i-
ating algebras of events to spa
etime regions whi
h satis�es isotony, mi
ro
ausality

and 
ovarian
e de�ned as follows:
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1. Isotony. LetM be a globally hyperboli
 spa
etime and let K be a 
overing


olle
tion of bounded, globally hyperboli
 subspa
etime regions of M su
h

that (K,⊆) is a dire
ted poset under in
lusion ⊆. The net of lo
al observables
is given by the isotone map K ∋ V 7→ A(V ) to unital C∗

-algebras, that

is V1 ⊆ V2 implies that A(V1) is a unital C∗
-subalgebra of A(V2). The

quasilo
al algebra A is de�ned to be the indu
tive limit C∗
-algebra of the net

{A(V ), V ∈ K} of lo
al C∗
-algebras.

2. Mi
ro
ausality (also 
alled as Einstein 
ausality) is the requirement that

A(V ′)′ ∩ A ⊇ A(V ), V ∈ K, where primes denote spa
elike 
omplement and

algebra 
ommutant, respe
tively.

3. Spa
etime 
ovarian
e. Let PK be the subgroup of the group P of geometri


symmetries ofM leaving the 
olle
tion K invariant. A group homomorphism

α : PK → AutA is given su
h that the automorphisms αg, g ∈ PK of A a
t


ovariantly on the observable net: αg(A(V )) = A(g · V ), V ∈ K.
If the quasilo
al algebra A of the lo
al physi
al theory is 
ommutative, we speak

about a lo
al 
lassi
al theory, if it is non
ommutative, we speak about a lo
al quan-

tum theory. For lo
al 
lassi
al theories mi
ro
ausality ful�lls trivially.

A state φ in a lo
al physi
al theory is de�ned as a normalized positive lin-

ear fun
tional on the quasilo
al observable algebra A. The 
orresponding GNS

representation πφ : A → B(Hφ) 
onverts the net of C∗
-algebras into a net of C∗

-

subalgebras of B(Hφ). Closing these subalgebras in the weak topology one arrives

at a net of lo
al von Neumann observable algebras: N (V ) := πφ(A(V ))′′, V ∈ K.
Von Neumann algebras are generated by their proje
tions, whi
h are 
alled quan-

tum events sin
e they 
an be interpreted as 0-1�valued observables. The net

{N (V ), V ∈ K} of lo
al von Neumann algebras given above also obeys isotony,

mi
ro
ausality, and PK-
ovarian
e, hen
e we 
an also refer to a net {N (V ), V ∈ K}
of lo
al von Neumann algebras as a lo
al physi
al theory.

Now, a lo
al physi
al theory is lo
ally 
ausal in Bell's sense if any 
orrelation be-

tween spatially separated events is s
reened o� by �lo
al beables� whi
h are lo
alized

in a �shielding-o�� region and whi
h �
ompletely spe
ify� that region. How to trans-

late Bell's terms of �lo
al beable� and �
omplete spe
i�
ation� into the language of

a lo
al physi
al theory?

In a 
lassi
al �eld theory beables are 
hara
terized by sets of �eld 
on�gurations.

Taking the equivalen
e 
lasses of those �eld 
on�gurations whi
h have the same �eld

values on a given spa
etime region one 
an generate lo
al (
ylindri
al) σ-algebras.
Translating σ-algebras into the language of abelian von Neumann algebras one


an represent Bell's notion of �lo
al beables� in the framework of lo
al physi
al

theories. In a more general way, one 
an also use the term �lo
al beables� both for

abelian and non-abelian lo
al von Neumann algebras, hen
e treating lo
al 
lassi
al

and quantum theories on an equal footing. Translating �lo
al beables� simply as

�elements of a lo
al algebra� naturally brings with it the translation of the term �a


omplete spe
i�
ation of beables� as �an atomi
 event of a lo
al algebra� (Henson,
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2013). To be sure, here it is assumed that the lo
al algebras of the net are atomi
,

whi
h is typi
ally not the 
ase, for example, in Poin
aré 
ovariant algebrai
 quantum

�eld theory. (For the relation between σ-algebras and von Neumann algebras and

for a more general de�nition of lo
al 
ausality see (Hofer-Szabó and Ve
sernyés,

2015 a,b).) With these notions in hand now one 
an formulate Bell's notion of lo
al


ausality in a lo
al physi
al theory as follows:

De�nition 6. A lo
al physi
al theory represented by a net {N (V ), V ∈ K} of von
Neumann algebras is 
alled lo
ally 
ausal (in Bell's sense), if for any pair A ∈ N (VA)
and B ∈ N (VB) of proje
tions supported in spa
elike separated regions VA, VB ∈ K
and for every lo
ally normal and faithful state φ establishing a 
orrelation φ(AB) 6=
φ(A)φ(B) between A and B, and for any spa
etime region VC su
h that

(i) VC ⊂ J−(VA),
(ii) VA ⊂ V ′′

C ,

(iii) J−(VA) ∩ J−(VB) ∩
(

J+(VC) \ VC
)

= ∅,
(see Fig. 6.2) and for any atomi
 event Ck of A(VC) (k ∈ K), the following holds:

VA B

C

V

V

Figure 6.2: A region VC satisfying Requirements (i)-(iii).

φ(CkABCk)

φ(Ck)
=
φ(CkACk)

φ(Ck)

φ(CkBCk)

φ(Ck)
(6.1)

Remarks:

1. A lo
ally normal state is a normal state on the lo
al von Neumann algebras.

A lo
ally faithful state φ means that any proje
tion A ∈ P(N (V )) in the

lo
al von Neumann algebra N (V ) has nonzero expe
tation value. In 
ase of

lo
al 
lassi
al theories a lo
ally faithful state φ determines uniquely a lo
ally

nonzero probability measure p by p(A) := φ(A), A ∈ P(N (V )). By means of

this (6.1) 
an be written in the following 'symmetri
' form:

p(AB|Ck) = p(A|Ck)p(B|Ck) (6.2)
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whi
h further is equivalent to the 'asymmetri
' s
reening-o� 
ondition:

p(A|BCk) = p(A|Ck) (6.3)

sometimes used in the literature (for example in (Bell, 1975/2004 , p. 54)).

2. The role of Requirement (iii) in the de�nition is to ensure that �VC shields o�

from VA the overlap of the ba
kward light 
ones of VA and VB�. A spa
etime

region above VC in the 
ommon past of the 
orrelating events (see Fig. 6.3)

namely may 
ontain sto
hasti
 events whi
h 
ould establish a 
orrelation

VA B

C

V

V

Figure 6.3: A region VC for whi
h Requirement (iii) does not hold.

between A and B in a 
lassi
al sto
hasti
 theory (Norsen, 2011; Seevin
k

and U�nk 2011). Requirement (iii) is somewhat weaker than Bell's original

lo
alization (see Fig. 6.1) whi
h 
an be formulated as:

(iv) J−(VA) ∩ J−(VB) ∩ VC = ∅
The di�eren
e is that Requirement (iii) does, but Requirement (iv) does not

allow for region VC to penetrate into the 'top part' of the 
ommon past. How-

ever, both requirements 
oin
ide, if VC 'shrinks down' to a Cau
hy surfa
e.

In lo
al 
lassi
al theories it su�
es to use Requirement (iii).

Finally, note that the question whether a given lo
al 
lassi
al or quantum theory is

lo
ally 
ausal is a highly nontrivial question depending on su
h fa
tors as the atom-

i
ity of the lo
al algebras, the ful�lment of the so-
alled lo
al primitive 
ausality,

3

or whether there exists a 
ausal dynami
s in the theory, et
. (For the details see

again (Hofer-Szabó and Ve
sernyés, 2015 a,b).)

Next I turn to the relation of Bell's lo
al 
ausality to the Bell inequalities.

6.3 Lo
al 
ausality and the Bell inequalities

From this se
tion on we restri
t ourselves to lo
al 
lassi
al theories sin
e beables

are standardly taken to be 
lassi
al entities. Consider a lo
al 
lassi
al theory rep-

3

For any globally hyperboli
 bounded subspa
etime regions V ∈ K, A(V ′′) = A(V ).
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resented by a net {N (V ), V ∈ K} of lo
al abelian von Neumann algebras. Suppose

that Bell's lo
al 
ausality holds in this theory. Let VA and VB be two spatially

separated regions inM, and VC a third region (see Fig. 6.4) su
h that

V VA B

VC

Figure 6.4: Lo
alization of regions VA, VB and VC .

VC ⊂ J−(VA ∪ VB) (6.4)

(VA ∪ VB) ⊂ V ′′
C (6.5)

J−(VA) ∩ J−(VB) ∩
(

J+(VC) \ VC
)

= ∅ (6.6)

Divide VC into six regions V L
C , V L

C′ , VM
C , VM

C′ , V R
C and V R

C′ , for example as de-

pi
ted in Fig. 6.5. Here the supers
ripts L,M and R stand for 'left', 'middle'

and 'right', representing those parts of VC whi
h fall into region J−(VA) \ J−(VB),
J−(VA)∩J−(VB) and J−(VB)\J−(VA), respe
tively. Now, let the various events be

V VA B

V VVV VC’ C’ C’CVC C ML RL M R

Figure 6.5: Dividing up region VC .

lo
alized in these regions as follows. Let Ai and Bj be measurement out
omes and

ai, bj measurement 
hoi
es lo
alized in the appropriate regions: Ai, ai ∈ A(VA),
Bj , bj ∈ A(VB). (See Fig. 6.6.) Let, furthermore, CL

k , C
′L
l , CM

m , C′M
n , CR

p , C
′R
q be

atomi
 events (minimal proje
tions) in A(V L
C ), A(V L

C′ ), A(V M
C ), A(V M

C′ ), A(V R
C )
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A B
a b

C C’ C C’C’
L MM RR

C
L

i

i

j

j

k l m n p q

Figure 6.6: Lo
alization of the various events.

and A(V R
C′), respe
tively, where the indi
es i, j, k . . . are taken from appropriate

index sets. Now, the di�eren
e between the primed and the unprimed events in VC
is that the primed events probabilisti
ally depend on the the measurement 
hoi
es

ai and bj , whereas the unprimed events are probabilisti
ally 
ompletely independent

of them:

p(aibjC
L
l C

M
m CR

p ) = p(ai)p(bj)p(C
L
l )p(C

M
m )p(CR

p ) (6.7)

p(aibjC
L
l C

M
m ) = p(ai)p(bj)p(C

L
l )p(C

M
m ) (6.8)

. . . (6.9)

p(aibjC
R
p ) = p(ai)p(bj)p(C

R
p ) (6.10)

Let us 
all these 
onditions no-
onspira
y 
onditions.

To sum up, here we assume that any of the left, middle and right region of

VC , respe
tively 
an be de
omposed into two subregions su
h that ea
h of these

subregions 
ontains ex
lusively either events 'in�uen
ing' the measurement 
hoi
es

or events being independent of them. Obviously, only this latter 
lass of events


an be regarded as the 
ommon 
ause of the 
orrelation between the measurement

out
omes; the former events are playing a role in �xing the measurement settings.

As we will see later, this assumption of the de
omposability of VC into six regions

is too tolerant if our aim is to derive the Bell inequalities. It will turn out that

there are only �ve regions, the middle region 
an 
ontain only unprimed events.

Now, lo
al 
ausality of lo
al physi
al theory represented by a net {N (V ), V ∈
K} implies (among others) the following 
onditional independen
ies:

p(Aiai|BjbjC
L
k C

′L
l CM

m C′M
n CR

p C
′R
q ) = p(Aiai|CL

k C
′L
l CM

m C′M
n ) (6.11)

p(Bjbj|CL
k C

′L
l CM

m C′M
n CR

p C
′R
q ) = p(Bjbj |CM

m C′M
n CR

p C
′R
q ) (6.12)

p(ai|bjCL
k C

′L
l CM

m C′M
n CR

p C
′R
q ) = p(ai|CL

k C
′L
l CM

m C′M
n ) (6.13)

p(bj|CL
k C

′L
l CM

m C′M
n CR

p C
′R
q ) = p(bj |CM

m C′M
n CR

p C
′R
q ) (6.14)

whi
h together with the 
omplete independen
e of the events CL
k , C

′L
l , CM

m , C′M
n ,

124

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



CR
p and C′R

q :

p(CL
k C

′L
l CM

m C′M
n CR

p C
′R
q ) = p(CL

k )p(C
′L
l )p(CM

m )p(C′M
n )p(CR

p )p(C′R
q )(6.15)

p(CL
k C

′L
l CM

m C′M
n CR

p ) = p(CL
k )p(C

′L
l )p(CM

m )p(C′M
n )p(CR

p ) (6.16)

. . . (6.17)

p(CR
p C

′R
q ) = p(CR

p )p(C′R
q ) (6.18)

yield the following s
reening-o� or fa
torization 
onditions :

p(AiBj |aibjCL
k C

′L
l CM

m C′M
n CR

p C
′R
q ) = p(Ai|aiCL

k C
′L
l CM

m C′M
n )p(Bj |bjCM

m C′M
n CR

p C
′R
q )(6.19)

p(AiBj |aibjCL
k C

M
m C′M

n CR
p ) = p(Ai|aiCL

k C
M
m C′M

n )p(Bj |bjCM
m C′M

n CR
p ) (6.20)

p(AiBj |aibjC′L
l CM

m C′M
n C′R

q ) = p(Ai|aiC′L
l CM

m C′M
n )p(Bj |bjCM

m C′M
n C′R

q ) (6.21)

p(AiBj |aibjCM
m C′M

n ) = p(Ai|aiCM
m C′M

n )p(Bj |bjCM
m C′M

n ) (6.22)

(For the proof see Appendix A.) These equations show that not only the atomi


events CL
k C

′L
l CM

m C′M
n CR

p C
′R
q lo
alized in the entire VC s
reen o� the 
onditional


orrelation

p(AiBj |aibj) 6= p(Ai|ai)p(Bj |bj) (6.23)

but one 
an freely sum up for any of the primed and unprimed events both in the

left and the right region without vitiating the s
reening-o�. In other words, the

non-atomi
 (
oarse-grained) events CL
k C

M
m C′M

n CR
p , C

′L
l CM

m C′M
n C′R

q and CM
m C′M

n ,

respe
tively lo
alized in appropriate subregions of VC will all be s
reener-o�s for

the 
orrelation (10.1).

4

That one 
an freely sum up for both the primed and the

unprimed events is a 
onsequen
e of the fa
t that in the derivation of (6.19)-(6.22)

no-
onspira
y (6.7)-(6.10) does not play a role.

However, for events lo
alized in the middle region one 
annot sum up! As a


onsequen
e, one 
annot get rid of the primed terms C′M
n in equations (6.19)-(6.22).

So for example it will not be generally true that

p(AiBj |aibjCM
m ) = p(Ai|aiCM

m )p(Bj |bjCM
m ) (6.24)

(See Appendix B.) However, if we 
annot get rid of the primed terms C′M
n , we will

not be able to derive the Bell inequalities sin
e in the derivation we need to use

no-
onspira
y (6.7)-(6.10) whi
h holds only for the unprimed terms. (See Appendix

C.)

This shows that our de
omposition of region VC into six regions was too liberal.

We have to make one step ba
k and restri
t our previous s
hema to the one depi
ted

in Fig. 6.7. Outside the 
ommon past of the 
orrelating events one 
an have both

primed and unprimed events that is events in�uen
ing the measurement 
hoi
es and

events being independent of them. However, within the 
ommon past there 
an be

4

Note again that the term '
ommon 
ause' is used only for those s
reener-o�s whi
h

are 
omposed of unprimed events.
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V VA B

V VVVC’ C’CCL RL RMCV

Figure 6.7: The most general s
enario from whi
h the Bell inequalities 
an

be derived.

only events whi
h are probabilisti
ally independent of the measurement 
hoi
es.

Within this s
hema the Bell inequalities 
an be derived.

To sum up, given a lo
ally 
ausal lo
al 
lassi
al theory represented by a net

{N (V ), V ∈ K} with regions lo
alized as in Fig. 6.7 and elements in the appro-

priate regions, 
omplete independen
e (6.15)-(6.18) and no-
onspira
y (6.7)-(6.10)

together imply the Bell inequalities.

6.4 Complete versus su�
ient spe
i�
ation

Now I turn to the question of '
omplete versus su�
ient spe
i�
ation' raised by

Norsen (2009) and unfolded by Seevin
k and U�nk (2011). In his illuminating

paper, 
omparing the notion of '
ompleteness' used in Bell's vs. Jarrett's writings,

Norsen (2009) raised the following 
on
ern:

5

Sin
e �the past light 
ones of [the

measurement 
hoi
es℄ a and b overlap with the region 
ontaining C � and C by

de�nition is supposed to 
ontain a 
omplete spe
i�
ation of beables in this region

. . . one wonders how a and b 
ould possibly not be 
ausally in�uen
ed by C (in a

lo
ally 
ausal theory)� (Norsen 2009, p. 283.) Seevin
k and U�nk take Norsen's

point and argue that 
omplete spe
i�
ation is too strong �when formalising the

notion of lo
al 
ausality. It is only needed that the spe
i�
ation is su�
iently

spe
i�ed, in the relevant sense� (p. 5); and then they go on to develop this relevant

sense in terms of Fisher's statisti
al 
on
ept of su�
ien
y.

The argument of Seevin
k and U�nk against 
omplete spe
i�
ation is put in

the form of a dilemma:

�C 
annot be expe
ted to be a 
omplete spe
i�
ation of region VC
be
ause one must allow for the possibility of tra
es in region VC of the


ausal past of both the settings [measurement 
hoi
es℄, and given the

5

Again for the sake of 
onsisten
y I 
hanged the notation of both Norsen (2009) and

Seevin
k and U�nk (2011).
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independen
e of C and the settings, these tra
es 
annot be in
luded in

C.

An alternative understanding of this point is that one is here fa
ed

with a dilemma. That is, the following two assumptions 
annot both

hold: (i) the free variables [no-
onspira
y℄ assumption, and (ii) the

assumption that C is 
ompletely spe
i�ed, i.e., 
ontains the des
ription

of all and every beable in region VC .� (Seevin
k and U�nk, 2011, p.

5)

In brief, the 
omplete spe
i�
ation of region VC 
ontradi
ts to the no-
onspira
y


ondition sin
e if C 
ompletely spe
i�es region VC , then it also spe
i�es the measure-

ment 
hoi
es a and b, and hen
e C and a, b 
annot be probabilisti
ally independent.
I see, however, no 
ontradi
tion between 
omplete spe
i�
ation and no-
onspira
y.

I have a weaker and a stronger 
laim supporting my point. I start with the weaker

one. The upshot of this weaker 
laim is that the events whi
h satisfy 
omplete

spe
i�
ation need not be the same as the events whi
h satisfy no-
onspira
y.

Complete spe
i�
ation of a spa
etime region, as said before, is simply an atomi


event in that region. If our �
andidate theory� represented by a net of lo
al algebras

is given, then to every bounded region VC there is an algebra A(VC) asso
iated; and
if the algebra is atomi
, the 
omplete spe
i�
ations that is the atomi
 events of the

region are also given. Consider region VC in Fig. 6.7. The event CL
k C

′L
l CM

m CR
p C

′R
q

is a 
omplete spe
i�
ation in VC , but the unprimed event CkCmCp and the primed

event C′
lC

′R
q separately are not. These latter two play di�erent theoreti
al roles:

No-
onspira
y holds for CkCmCp, therefore it is interpreted as a (possible) 
ommon


ause of the 
onditional 
orrelation (10.1). For C′
lC

′R
q no-
onspira
y does not hold

(and a fortiori neither does for the 
omplete spe
i�
ation CL
k C

′L
l CM

m CR
p C

′R
q ). Thus

C′
lC

′R
q has another interpretation: it allows �for the possibility of tra
es in region

VC of the 
ausal past of both the settings.� This 'division of labor' between the

unprimed CkCmCp and the primed C′
lC

′R
q , however, is no worry: together they

provide a 
omplete spe
i�
ation of region VC and enable the derivation of the Bell

inequalities as long as the middle region, VC ∩ VA ∩ VB 
ontains no primed term

violating no-
onspira
y. In short, in order to derive the Bell inequalities from lo
al


ausality, those events whi
h 
ompletely spe
ify region VC need not be the same

events as those satisfying no-
onspira
y.

But here is my stronger 
laim: they 
an. Namely, there is no 
ontradi
tion

between 
omplete spe
i�
ation and no-
onspira
y even if we require them to hold

for the same events. To see this, simply 
onsider the 
ase when the subregions V L
C′

and V R
C′ are empty, that is when VC 
ontains ex
lusively unprimed elements (see

Fig. 6.8). In this 
ase the event CL
k C

M
m CR

p will both 
ompletely spe
ify region VC
and satisfy no-
onspira
y. Consequently, the Bell inequalities will follow. More

importantly, this independen
e between the 
ommon 
auses and the measurement


hoi
es does not trivialize the theory, for example by dissolving the 
onditional


orrelation (10.1) between the measurement out
omes.

The next proposition illustrates this latter point.
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Figure 6.8: No 
ontradi
tion between 
omplete spe
i�
ation and no-


onspira
y.

Proposition 6. There exists a lo
ally 
ausal lo
al 
lassi
al theory with events

Ai, ai ∈ A(VA), Bj , bj ∈ A(VB) in spatially separated regions VA and VB 
on-

ditionally 
orrelating in the sense of (10.1), and atomi
 events CL
k ∈ A(V L

C ),
CM

m ∈ A(VM
C ) and CR

p ∈ A(V R
C ), where VC = V L

C ∪VM
C ∪V R

C satis�es requirements

(6.4)-(6.6), su
h that no-
onspira
y (6.7)-(6.10), moreover 
omplete independen
e

(6.15)-(6.18) hold.

Proof. Let Ai, ai, Bj , bj , C
L
k , C

M
m and CR

p be events lo
alized as in Fig. 6.8.

Suppose that for the atomi
 events CL
k , C

M
m and CR

p 
ompletely spe
ifying region

VC both 
omplete independen
e

p(CL
k C

M
m CR

p ) = p(CL
k C

M
m )p(CR

p ) = p(CL
k )p(C

M
m CR

p ) = p(CM
m )p(CL

k C
R
p ) = p(CL

k )p(C
M
m )p(CR

p )(6.25)

and also no-
onspira
y

p(aibjC
L
k C

M
m CR

p ) = p(aibj)p(C
L
k C

M
m CR

p ) = · · · = p(ai)p(bj)p(C
L
k )p(C

M
m )p(CR

p )(6.26)

hold for any 
ombination of the indi
es. Let the net 
ontaining the events be lo
ally


ausal; for example let

p(AiBj |aibjCL
k C

M
m CR

p ) = p(Ai|aiCL
k C

M
m )p(Bj |bjCM

m CR
p ) = (pLi δ1kδ1m)(pRj δ1mδ1p)(6.27)
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where

∑

i p
L
i =

∑

j p
R
j = 1. Now, the 
onditional probabilities are given as follows:

p(Ai|ai) =
∑

k,m

p(Ai|aiCL
k C

M
m )p(CL

k C
M
m ) = pLi p(C

L
1 )p(C

M
1 ) (6.28)

p(Bj |bj) =
∑

m,p

p(Bj |bjCM
m CR

p )p(CM
m CR

p ) = pRj p(C
M
1 )p(CR

1 ) (6.29)

p(AiBj |aibj) =
∑

k,m,p

p(AiBj |aibjCL
k C

M
m CR

p )p(CL
k C

M
m CR

p )

=
∑

k,m,p

p(Ai|aiCL
k C

M
m )p(Bj |bjCM

m CR
p )p(CL

k )p(C
M
m )p(CR

p )

= pLi p
R
j p(C

L
1 )p(C

M
1 )p(CR

1 ) (6.30)

Thus, there is a 
onditional 
orrelation (10.1) between Ai andBj whenever p(C
M
1 ) 6=

0 or 1.

Consequently, there is no 
ontradi
tion between 
omplete spe
i�
ation and no-


onspira
y even if both are applied to the same events, namely the atomi
 events

of the entire VC . The measurement 
hoi
es 
an be free of the 
ommon 
auses

even if the 
ausal past of the region 
ontaining them is 
ompletely spe
i�ed. This

independen
e does not abolish the 
onditional 
orrelation between the measurement

out
omes: atomi
 events 
an be probabilisti
ally irrelevant to the measurement


hoi
es and at the same time relevant to the measurement out
omes. Moreover,

the independen
e of the measurement 
hoi
es of the atomi
 events does not mean

that the former are not 'determined' (probabilisti
ally) by the latter. They are: the


onditional probabilities p(aibj|CL
k C

M
m CR

p ) are set in a lo
al physi
al theory, even

if they are equal to p(aibj).
Thus, based on these two 
laims, I think, there is no need to repla
e '
omplete

spe
i�
ation' in Bell's de�nition of lo
al 
ausality by 'su�
ient spe
i�
ation'.

6.5 Con
lusions

The main 
laims of this paper were the following:

(i) The de�nition of Bell's notion of lo
al 
ausality presupposes a 
lear-
ut frame-

work in whi
h probabilisti
 and spatiotemporal entities 
an be related. This

goal 
an be met by introdu
ing the notion of a lo
al physi
al theory repre-

sented by an isotone net of algebras.

(ii) In a lo
al 
lassi
al theory the measurement out
omes, measurement 
hoi
es

and 
ommon 
ause 
an be lo
alized in the spa
etime su
h that one 
an derive

the Bell inequalities from lo
al 
ausality, no-
onspira
y and independen
e.

(iii) Contrary to the 
laim of Seevin
k and U�nk, there is no need to weaken the

requirement of 
omplete spe
i�
ation in the de�nition of lo
al 
ausality on

the ground that it 
ontradi
ts to no-
onspira
y.
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Appendix A

First we prove equation (6.22) from lo
al 
ausality (6.11)-(6.14) and the 
omplete

independen
e 
ondition (6.15)-(6.18):

p(AiBj |aibjCM
m C′M

n ) =
p(AiBjaibjC

M
m C′M

n )

p(aibjCM
m C′M

n )

=

∑

klpq p(AiBjaibjC
L
k C

′L
l CM

m C′M
n CR

p C
′R
q )

∑

klpq p(aibjC
L
k C

′L
l CM

m C′M
n CR

p C
′R
q )

=

∑

klpq p(AiBjaibj |CL
k C

′L
l CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

∑

klpq p(aibj |CL
k C

′L
l CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

=

∑

klpq p(Aiai|BjbjC
L
k C

′L
l CM

m C′M
n CR

p C
′R
q )p(Bjbj |CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

∑

klpq p(ai|bjCL
k C

′L
l CM

m C′M
n CR

p C
′R
q )p(bj |CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

(6.11)−(6.14)
=

∑

klpq p(Aiai|CL
k C

′L
l CM

m C′M
n )p(Bjbj|CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

∑

klpq p(ai|CL
k C

′L
l CM

m C′M
n )p(bj |CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

(6.15)−(6.18)
=

∑

klpq p(Aiai|CL
k C

′L
l CM

m C′M
n )p(Bjbj|CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n )p(CR

p C
′R
q )

∑

klpq p(ai|CL
k C

′L
l CM

m C′M
n )p(bj |CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n )p(CR

p C
′R
q )

=

(∑

kl p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kl p(ai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

pq p(Bjbj |CM
m C′M

n CR
p C

′R
q )p(CR

p C
′R
q )

∑

pq p(bj |CM
m C′M

n CR
p C

′R
q CR

p )p(CR
p C

′R
q )

)

=

(∑

kl p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kl p(ai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

pq p(Bjbj |CM
m C′M

n CR
p C

′R
q )p(CR

p C
′R
q )

∑

pq p(bj |CM
m C′M

n CR
p C

′R
q )p(CR

p C
′R
q )

)(

p(CM
m

p(CM
m

(6.15)−(6.18)
=

(∑

kl p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kl p(ai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

pq p(Bjbj |CM
m C′M

n CR
p C

′R
q )p(CM

m C′M
n CR

p C
′R
q )

∑

pq p(bj |CM
m C′M

n CR
p C

′R
q )p(CM

m C′M
n CR

p C
′R
q )

=

(∑

kl p(AiaiC
L
k C

′L
l CM

m C′M
n )

∑

kl p(aiC
L
k C

′L
l CM

m C′M
n )

)(

∑

pq p(BjbjC
M
m C′M

n CR
p C

′R
q )

∑

pq p(bjC
M
m C′M

n CR
p C

′R
q )

)

=

(

p(AiaiC
M
m C′M

n )

p(aiCM
m C′M

n )

)(

p(BjbjC
M
m C′M

n )

p(bjCM
m C′M

n )

)

= p(Ai|aiCM
m C′M

n )p(Bj |bjCM
m C′M

n ) (6.31)

where the numbers over the equation signs refer to the equation used at that step.

The proof of (6.21), (6.20) and (6.19), respe
tively 
an be obtained from the

above proof by simply omitting 
ertain summations. For (6.21) just omit summa-

tion for l and r; for (6.20) omit summation for k and q; and for (6.19) omit all

four.

Appendix B

Here we prove that (6.24) does not generally hold. The proof follows that in Ap-

pendix A, ex
ept that here there is an extra summation also for n, whi
h 
auses
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the trouble in the row below starting with a 6= sign:

p(AiBj |aibjCM
m ) =

p(AiBjaibjC
M
m )

p(aibjCM
m )

=

∑

klnpq p(AiBjaibjC
L
k C

′L
l CM

m C′M
n CR

p C
′R
q )

∑

klnpq p(aibjC
L
k C

′L
l CM

m C′M
n CR

p C
′R
q )

=

∑

klnpq p(AiBjaibj|CL
k C

′L
l CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

∑

klnpq p(aibj|CL
k C

′L
l CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

=

∑

klnpq p(Aiai|BjbjC
L
k C

′L
l CM

m C′M
n CR

p C
′R
q )p(Bjbj |CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C
∑

klnpq p(ai|bjCL
k C

′L
l CM

m C′M
n CR

p C
′R
q )p(bj |CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n C

(6.11)−(6.14)
=

∑

klnpq p(Aiai|CL
k C

′L
l CM

m C′M
n )p(Bjbj |CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

∑

klnpq p(ai|CL
k C

′L
l CM

m C′M
n )p(bj |CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

(6.15)−(6.18)
=

∑

klnpq p(Aiai|CL
k C

′L
l CM

m C′M
n )p(Bjbj |CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n )p(CR

p C
′R
q )

∑

klnpq p(ai|CL
k C

′L
l CM

m C′M
n )p(bj |CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n )p(CR

p C
′R
q )

=

∑

n

(

∑

kl p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

pq p(Bjbj |CM
m C′M

n CR
p C

′R
q )p(CR

p C

∑

n

(

∑

kl p(ai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

pq p(bj |CM
m C′M

n CR
p C

′R
q )p(CR

p C
′R
q

=

∑

n

(

∑

kl p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

pq p(Bjbj |CM
m C′M

n CR
p C

′R
q )p(CR

p C

∑

n

(

∑

kl p(ai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

pq p(bj |CM
m C′M

n CR
p C

′R
q )p(CR

p C
′R
q

6=
(∑

kln p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kln p(ai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

npq p(Bjbj|CM
m C′M

n CR
p C

′R
q )p(CM

m
∑

npq p(bj|CM
m C′M

n CR
p C

′R
q )p(CM

m

(6.15)−(6.18)
=

(∑

kln p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kln p(ai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

npq p(Bjbj|CM
m C′M

n CR
p C

′R
q )p(CL

k
∑

npq p(bj|CM
m C′M

n CR
p C

′R
q )p(CL

k C

=

(∑

kln p(AiaiC
L
k C

′L
l CM

m C′M
n )

∑

kln p(aiC
L
k C

′L
l CM

m C′M
n )

)(

∑

npq p(BjbjC
M
m C′M

n CR
p C

′R
q )

∑

npq p(bjC
M
m C′M

n CR
p C

′R
q )

)

=

(

p(AiaiC
M
m )

p(aiCM
m )

)(

p(BjbjC
M
m )

p(bjCM
m )

)

= p(Ai|aiCM
m )p(Bj |bjCM

m ) (6.32)

where again the numbers over the equation signs refer to the equation used at that

step.

Appendix C

Here we prove why in the derivation of the Clauser-Horne inequality

−1 6 p(AiBj |aibj) + p(AiBj′ |aibj′) + p(Ai′Bj |ai′bj)− p(Ai′Bj′ |ai′bj′)− p(Ai|aibj)− p(Bj |aibj) 6 0(6.33)

one should use (6.24) instead of (6.22). The standard derivation goes as follows:
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It is a simple arithmeti
 fa
t that for any α, α′, β, β′ ∈ [0, 1]:

−1 6 αβ + αβ′ + α′β − α′β′ − α− β 6 0 (6.34)

Now let α, α′, β, β′
�rst be the 
onditional probabilities taken from (6.22):

α ≡ p(Ai|aiCM
m C′M

n ) (6.35)

α′ ≡ p(Ai′ |ai′CM
m C′M

n ) (6.36)

β ≡ p(Bj |bjCM
m C′M

n ) (6.37)

β′ ≡ p(Bj′ |bj′CM
m C′M

n ) (6.38)

Plugging (9.26)-(9.29) into (9.25) one obtains

−1 6 p(Ai|aiCM
m C′M

n )p(Bj |bjCM
m C′M

n ) + p(Ai|aiCM
m C′M

n )p(Bj′ |bj′CM
m C′M

n )

+p(Ai′ |ai′CM
m C′M

n )p(Bj |bjCM
m C′M

n )− p(Ai′ |ai′CM
m C′M

n )p(Bj′ |bj′CM
m C′M

n )

−p(Ai|aiCM
m C′M

n )− p(Bj |bjCM
m C′M

n ) 6 0(6.39)

whi
h using (6.22) transforms into

−1 6 p(AiBj |aibjCM
m C′M

n ) + p(AiBj′ |aibj′CM
m C′M

n )

+p(Ai′Bj |ai′bjCM
m C′M

n )− p(Ai′Bj′ |ai′bj′CM
m C′M

n )

−p(Ai|aiCM
m C′M

n )− p(Bj |bjCM
m C′M

n ) 6 0 (6.40)

Finally, multiplying the above inequality by p(CM
m C′M

n ) and summing up for the

indi
es m,n one obtains

−1 6
∑

mn

[

p(AiBj |aibjCM
m C′M

n ) + p(AiBj′ |aibj′CM
m C′M

n )

+p(Ai′Bj |ai′bjCM
m C′M

n )− p(Ai′Bj′ |ai′bj′CM
m C′M

n )

−p(Ai|aiCM
m C′M

n )− p(Bj |bjCM
m C′M

n )

]

p(CM
m C′M

n ) 6 0 (6.41)

whi
h is equivalent to (9.24) only if

p(aibjC
M
m C′M

n ) = p(aibj)p(C
M
m C′M

n ) (6.42)

were the 
ase, whi
h is not, sin
e C′M
n is not independent of ai and bj .

Now, starting the whole reasoning again with 
onditional probabilities taken

from (6.24):

α ≡ p(Ai|aiCM
m ) (6.43)

α′ ≡ p(Ai′ |ai′CM
m ) (6.44)

β ≡ p(Bj |bjCM
m ) (6.45)

β′ ≡ p(Bj′ |bj′CM
m ) (6.46)
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the derivation goes through sin
e instead of (6.42) one is to use

p(aibjC
M
m ) = p(aibj)p(C

M
m ) (6.47)

whi
h is one of the no-
onspira
y 
onditions (6.7)-(6.10). Thus one 
an use (6.24)

in the derivation of the Clauser-Horne inequality but not (6.22).
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Chapter 7

Non
ommutative 
ausality in

algebrai
 quantum �eld theory

In the paper it will be argued that embra
ing non
ommuting 
ommon 
auses in the


ausal explanation of quantum 
orrelations in algebrai
 quantum �eld theory has

the following two bene�
ial 
onsequen
es: it helps (i) to maintain the validity of

Rei
henba
h's Common Causal Prin
iple and (ii) to provide a lo
al 
ommon 
ausal

explanation for a set of 
orrelations violating the Bell inequality.

7.1 Introdu
tion

Algebrai
 quantum �eld theory (AQFT) is a mathemati
ally transparent quan-

tum theory with 
lear 
on
eptions of lo
ality and 
ausality (see (Haag, 1992) and

(Halvorson, 2007)). In this theory observables are represened by a net of lo
al C∗
-

algebras asso
iated to bounded regions of a given spa
etime. This 
orresponden
e

is established due to the axioms of the theory su
h as isotony, mi
ro
ausality and


ovarian
e. A state φ in this theory is de�ned as a normalized positive linear fun
-

tional on the quasilo
al observable algebra A whi
h is the indu
tive limit of lo
al

observable algebras. The representation πφ : A → B(H) 
orresponding to the state

φ transforms the net of C∗
-algebras into a net of von Neumann observable algebras

by 
losures in the weak topology.

In AQFT events are typi
ally represented by proje
tions of a von Neumann

algebra. Although due to the axiom of mi
ro
ausality two proje
tions A and B

ommute if they are 
ontained in lo
al algebras supported in spa
elike separated

regions, they 
an still be 
orrelating in a state φ, that is

φ(AB) 6= φ(A)φ(B) (7.1)

in general. In this 
ase the 
orrelation between these events is said to be super-

luminal. A remarkable 
hara
teristi
s of Poin
aré 
ovariant theories is that there

exist �many� normal states establishing superluminal 
orrelations (for the pre
ise
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meaning of �many� see (Summers, Werner 1988) and (Halvorson, Clifton 2000)).

Sin
e spa
elike separation ex
ludes dire
t 
ausal in�uen
e, one may look for a 
ausal

explanation of these superluminal 
orrelations in terms of 
ommon 
auses.

The �rst probabilisti
 de�nition of the 
ommon 
ause is due to Hans Rei
hen-

ba
h (1956). Rei
henba
h 
hara
terizes the notion of the 
ommon 
ause in the

following probabilisti
 way. Let (Σ, p) be a 
lassi
al probability measure spa
e and

let A and B be two positively 
orrelating events in Σ that is let

p(A ∧B) > p(A) p(B). (7.2)

De�nition 7. An event C ∈ Σ is said to be the 
ommon 
ause of the 
orrelation

(A,B) if the following 
onditions hold:

p(A ∧B|C) = p(A|C)p(B|C) (7.3)

p(A ∧B|C⊥) = p(A|C⊥)p(B|C⊥) (7.4)

p(A|C) > p(A|C⊥) (7.5)

p(B|C) > p(B|C⊥) (7.6)

where C⊥
denotes the ortho
omplement of C and p( · | · ) is the 
onditional proba-

bility.

The above de�nition, however, is too spe
i�
 to be applied in AQFT sin
e (i)

it allows only for 
auses with a positive impa
t on their e�e
ts, (ii) it ex
ludes

the possibility of a set of 
ooperating 
ommon 
auses, (iii) it is silent about the

spatiotemporal lo
alization of the events and (iv) most importantly, it is 
lassi
al.

Therefore we need to generalize Rei
henba
h's original de�nition of the 
ommon


ause. For the sake of brevity, we do not repeat here all the intermediate steps of

the entire de�nitional pro
ess (for this see (Hofer-Szabó and Ve
sernyés, 2012a)),

but jump dire
tly to the most general de�nition of the 
ommon 
ause in AQFT.

Let P(N ) be the non-distributive latti
e of proje
tions (events) in a von Neu-

mann algebra N and let φ : N → C be a state on it. A set of mutually orthogonal

proje
tions {Ck}k∈K ⊂ P(N ) is 
alled a partition of the unit 1 ∈ N if

∑

k Ck = 1.

Su
h a partition de�nes a 
onditional expe
tation

E : N → C, A 7→ E(A) :=
∑

k∈K

CkACk, (7.7)

that is a unit preserving positive surje
tion onto the unital C∗
-subalgebra C ⊆ N

obeying the bimodule property E(B1AB2) = B1E(A)B2;A ∈ N , B1, B2 ∈ C. We

note that C 
ontains exa
tly those elements of N that 
ommute with Ck, k ∈ K.

Re
all that φ ◦ E is also a state on N .

Now, let A,B ∈ P(N ) be two 
ommuting events 
orrelating in state φ in the

sense of (7.1). (We note that in 
ase of proje
tion latti
es we will use only algebra

operations (produ
ts, linear 
ombinations) instead of latti
e operations (∨,∧). In


ase of 
ommuting proje
tions A,B ∈ P(N ) we have A ∧ B = AB and A ∨ B =
A+B −AB.)
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De�nition 8. A partition of the unit {Ck}k∈K ⊂ P(N ) is said to be a 
ommon


ause system of the 
orrelation (7.1) if

(φ ◦ E)(ABCk)

φ(Ck)
=

(φ ◦ E)(ACk)

φ(Ck)

(φ ◦E)(BCk)

φ(Ck)
(7.8)

for k ∈ K with φ(Ck) 6= 0. If Ck 
ommutes with both A and B for all k ∈ K we


all {Ck}k∈K a 
ommuting 
ommon 
ause system, otherwise a non
ommuting one.

A 
ommon 
ause system of size |K| = 2 is 
alled a 
ommon 
ause. Rei
henba
h's

de�nition (without the inequalities (7.5)-(7.6)) is a 
ommuting 
ommon 
ause in

the sense of (7.8).

Some remarks are in pla
e here. First, in 
ase of a 
ommuting 
ommon 
ause

system φ◦E 
an be repla
ed by φ in (7.8) sin
e (φ◦E)(ABCk) = φ(ABCk), k ∈ K.

Se
ond, using the de
ompositions of the unit, 1 = A+A⊥ = B +B⊥
, (7.8) 
an be

rewritten in an equivalent form:

(φ◦E)(ABCk))(φ◦E)(A⊥B⊥Ck) = (φ◦E)(AB⊥Ck)(φ◦E)(A⊥BCk), k ∈ K. (7.9)
One 
an even allow here the 
ase φ(Ck) = 0 sin
e then both sides of (7.9) are zero.

Third, it is obvious from (7.9) that if Ck ≤ X with X = A,A⊥, B or B⊥
for all

k ∈ K, then {Ck}k∈K serves as a (
ommuting) 
ommon 
ause system of the given


orrelation independently of the 
hosen state φ. Hen
e, these solutions are 
alled

trivial 
ommon 
ause systems. If |K| = 2, triviality means that {Ck} = {A,A⊥} or
{Ck} = {B,B⊥}. Obviously, for superluminal 
orrelation one looks for nontrival


ommon 
ausal explanations.

In AQFT one also has to spe
ify the spa
etime lo
alization of the 
ommon


auses. They have to be in the past of the 
orrelating events. But in whi
h past?

One 
an de�ne di�erent pasts of the bounded regions VA and VB in a given spa
e-

time as:

weak past: wpast(VA, VB) := I−(VA) ∪ I−(VB)

ommon past: cpast(VA, VB) := I−(VA) ∩ I−(VB)
strong past: spast(VA, VB) := ∩x∈VA∪VB

I−(x)

where I−(V ) denotes the union of the ba
kward light 
ones I−(x) of every point x
in V (Rédei, Summers 2007). Clearly, wpast ⊃ cpast ⊃ spast.

With all these de�nitions in hand we 
an now de�ne six di�erent 
ommon


ause systems in lo
al quantum theories a

ording to (i) whether 
ommutativity is

required and (ii) whether the 
ommon 
ause system is lo
alized in the weak, 
ommon

or strong past. Thus we 
an speak about 
ommuting/non
ommuting (weak/strong)


ommon 
ause systems.

To address the EPR-Bell problem we will need one more 
on
ept. In the EPR

s
enario the real 
hallenge is to provide a 
ommon 
ausal explanation not for one

single 
orrelating pair but for a set of 
orrelations (typi
ally three or four 
orre-

lations). Therefore, we also need to introdu
e the notion of the so-
alled joint

1


ommon 
ause system:

1

In (Hofer-Szabó and Ve
sernyés, 2012a, 2013a) 
alled 
ommon 
ommon 
ause system.
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De�nition 9. Let {Am;m = 1, . . .M} and {Bn;n = 1, . . .N} be �nite sets of

proje
tions in the algebras A(VA) and A(VB), respe
tively, supported in spa
elike

separated regions VA and VB. Suppose that all pair of spa
elike separated pro-

je
tions (Am, Bn) 
orrelate in a state φ of A in the sense of (7.1). Then the set

{(Am, Bn);m = 1, . . .M ;n = 1, . . .N} of 
orrelations is said to possess a 
om-

muting/non
ommuting (weak/strong) joint 
ommon 
ause system if there exists

a single 
ommuting/non
ommuting (weak/strong) 
ommon 
ause system for all


orrelations (Am, Bn).

Sin
e providing a joint 
ommon 
ause system for a set of 
orrelations is mu
h more

demanding than simply providing a 
ommon 
ause system for a single 
orrelation,

therefore we keep the question of the 
ommon 
ausal explanation separated from

that of the joint 
ommon 
ausal explanation. In Se
tion 2 we will investigate

the possibility of a 
ommon 
ausal explanation for a single 
orrelation�or in the

philosophers' jargon, the status of Rei
henba
h's famous Common Cause Prin
iple

in AQFT. In Se
tion 3 we will address the more intri
ate question as to whether

EPR 
orrelations 
an be given a joint 
ommon 
ausal explanation. The 
ru
ial


ommon element in both se
tions will be non
ommutativity. We will argue that

embra
ing non
ommuting 
ommon 
auses in our 
ausal explanation helps us in

both 
ases: (i) in the 
ase of 
ommon 
ausal explanation it helps to maintain the

validity of Rei
henba
h's Common Causal Prin
iple in AQFT; (ii) in the 
ase of

joint 
ommon 
ausal explanation it helps to provide a lo
al, joint 
ommon 
ausal

explanation for a set of 
orrelations violating the Bell inequalities. We 
on
lude

the paper in Se
tion 4.

7.2 Non
ommutative Common Cause Prin
iples in

AQFT

Rei
henba
h's Common Cause Prin
iple (CCP) is the following metaphysi
al 
laim:

If there is a 
orrelation between two events and there is no dire
t 
ausal (or logi
al)


onne
tion between the 
orrelating events, then there exists a 
ommon 
ause of the


orrelation. The pre
ise de�nition of this informal statement that �ts to AQFT is

the following:

De�nition 10. A lo
al quantum theory is said to satisfy the Commutative/Non
ommutative

(Weak/Strong) CCP if for any pair A ∈ A(VA) and B ∈ A(VB) of proje
tions sup-
ported in spa
elike separated regions VA, VB and for every lo
ally faithful state

φ : A → C establishing a 
orrelation between A and B in the sense of (7.1), there

exists a nontrivial 
ommuting/non
ommuting 
ommon 
ause system {Ck}k∈K ⊂
A(V ) su
h that the lo
alization region V is in the (weak/strong) 
ommon past of

VA and VB.

What is the status of these six di�erent CCPs in AQFT?

The question as to whether the Commutative CCPs are valid in a Poin
aré 
o-

variant lo
al quantum theory in the von Neumann algebrai
 setting was �rst raised
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by Rédei (1997, 1998). As a positive answer to this question, Rédei and Summers

(2002, 2007) have shown that the Commutative Weak CCP holds in algebrai
 quan-

tum �eld theory with lo
ally in�nite degrees of freedom in the following sense: for

every lo
ally normal and faithful state and for every superluminally 
orrelating pair

of proje
tions there exists a weak 
ommon 
ause, that is a 
ommon 
ause system of

size 2 in the weak past of the 
orrelating proje
tions. They have also shown that the

lo
alization of a 
ommon 
ause 
annot be restri
ted to wpast(VA, VB) \ I−(VA) or
wpast(VA, VB)\I−(VB) due to logi
al independen
e of spa
elike separated algebras.

Con
erning the Commutative (Strong) CCP less is known. If one also admits

proje
tions lo
alized only in unbounded regions, then the Strong CCP is known

to be false: von Neumann algebras pertaining to 
omplementary wedges 
ontain


orrelated proje
tions but the strong past of su
h wedges is empty (see (Summers

and Werner, 1988) and (Summers, 1990)). In spa
etimes having horizons, e.g.

those with Robertson�Walker metri
, there exist states whi
h provide 
orrelations

among lo
al algebras 
orresponding to spa
elike separated bounded regions su
h

that the 
ommon past of these regions is again empty (Wald 1992). Hen
e, CCP

is not valid there. Restri
ting ourselves to lo
al algebras in Minkowski spa
es the

situation is not 
lear. We are of the opinion that one 
annot de
ide on the validity

of the (Strong) CCP without an expli
it referen
e to the dynami
s.

Coming ba
k to the proof of Rédei and Summers, the proof had a 
ru
ial

premise, namely that the algebras in question are von Neumann algebras of type

III. Although these algebras are the typi
al building blo
ks of Poin
aré 
ovariant

theories, other lo
al quantum theories apply von Neumann algebras of other type.

For example, theories with lo
ally �nite degrees of freedom are based on von Neu-

mann algebras of type I. This raised the question as to whether the Commutative

Weak CCP is generally valid in AQFT. To address the problem Hofer-Szabó and

Ve
sernyés (2012a) have 
hosen a spe
i�
 lo
al quantum �eld theory, the lo
al quan-

tum Ising model having lo
ally �nite degrees of freedom. It turned out that the

Commutative Weak CCP does not hold in the lo
al quantum Ising model and it


annot hold either in theories with lo
ally �nite degrees of freedom in general.

But why should we require 
ommutativity between the 
ommon 
ause and its

e�e
ts at all?

Commutativity has a well-de�ned role in any quantum theories. In standard

quantum me
hani
s observables should 
ommute to be simultaneously measurable.

In AQFT the axiom of mi
ro
ausality ensures that observables with spa
elike sepa-

rated supports�roughly, events happening `simultaneously'�
ommute. But 
ause

and e�e
t are typi
ally not su
h simultaneous events! If one 
onsiders ordinary QM,

one well sees that observables do not 
ommute even with their own time translates

in general. For example, the time translate x(t) := U(t)−1xU(t) of the position

operator x of the harmoni
 os
illator in QM does not 
ommute with x ≡ x(0) for
generi
 t, sin
e in the ground state ve
tor ψ0 we have

[

x, x(t)
]

ψ0 =
−i~ sin (~ωt)

mω
ψ0 6≡ 0. (7.10)

Thus, if an observableA is not a 
onserved quantity, then the 
ommutator [A,A(t)] 6=
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0 in general. So why should the 
ommutators [A,C] and [B,C] vanish for the events
A,B and for their 
ommon 
ause C supported in their (weak/
ommon/strong)

past? We think that 
ommuting 
ommon 
auses are only unne
essary reminis
ense

of their 
lassi
al formulation. Due to their relative spa
etime lo
alization, that is

due to the time delay between the 
orrelating events and the 
ommon 
ause, it is

also an unreasonable assumption.

Abandoning 
ommutativity in the de�nition of the 
ommon 
ause is therefore a

desirable move. The �rst bene�t of allowing non
ommuting 
ommon 
auses is that

the non
ommutative version of the result of Rédei and Summers 
an be regained.

This result has been formulated in (Hofer-Szabó and Ve
sernyés 2013a) in the

following:

Proposition 7. The Non
ommutative Weak CCP holds in lo
al UHF-type quan-

tum theories. Namely, if A ∈ A(VA) and B ∈ A(VB) are proje
tions with spa
elike

separated supports VA and VB 
orrelating in a lo
ally faithful state φ on A, then
there exists a 
ommon 
ause {C,C⊥} lo
alized in the weak past of VA and VB.

Now, let us turn to the more 
ompli
ated question as to whether a set of 
or-

relations violating the Bell inequality 
an have a joint 
ommon 
ausal explanation

in AQFT. Sin
e our answer requires some knowledge of the main 
on
epts of the

Bell s
enario in AQFT and some a
quaintan
e with the model in whi
h our results

were formulated, we start the next se
tion with a short tutorial on these issues (for

more details see (Hofer-Szabó, Ve
sernyés, 2012b, 2013b).

7.3 Non
ommutative joint 
ommon 
ausal explana-

tion for 
orrelations violating the Bell inequal-

ity

The Bell problem is treated in AQFT in a subtle mathemati
al way (Summers and

Werner, 1987a,b, Summers 1990); here we introdu
e, however, only those 
on
epts

whi
h are related to the problem of 
ommon 
ausal explanation (for more on that

see (Hofer-Szabó, Ve
sernyés, 2013b)).

Let A1, A2 ∈ A(VA) and B1, B2 ∈ A(VB) be proje
tions with spa
elike sep-

arated supports VA and VB , respe
tively. We say that in a lo
ally faithful state

φ the Clauser�Horne-type Bell inequality is satis�ed for A1, A2, B1 and B2 if the

following inequality holds:

−1 6 φ(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1) 6 0 (7.11)

otherwise we say that the Bell inequality is violated. (Sometimes in the EPR-Bell

literature another inequality, the so-
alled Clauser�Horne�Shimony�Holte-type Bell

inequality is used as a 
onstraint on the expe
tation of (not proje
tions but) self-

adjoint 
ontra
tions. Sin
e these two inequalities are equivalent, in what follows we

will simply use (9.24) as the de�nition of the Bell inequality.)
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In the literature it is a re
eived view that if a set of 
orrelations violates the Bell

inequality, then the set 
annot be given a joint 
ommon 
ausal explanation. The

following proposition proven in (Hofer-Szabó and Ve
sernyés 2013b) shows that this

view is 
orre
t only if joint 
ommon 
ausal explanation is meant as a 
ommutative

joint 
ommon 
ausal explanation:

Proposition 8. Let A1, A2 ∈ A(VA) and B1, B2 ∈ A(VB) be four proje
tions

lo
alized in spa
elike separated spa
etime regions VA and VB , respe
tively, whi
h

orrelate in the lo
ally faithful state φ. Suppose that {(Am, Bn);m,n = 1, 2} has
a joint 
ommon 
ausal explanation in the sense of De�nition 9. Then the following

Bell inequality

−1 6 (φ ◦ Ec)(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1) 6 0. (7.12)

holds for the state φ ◦Ec. If the joint 
ommon 
ause is a 
ommuting one, then the

original Bell inequality (9.24) holds for the original state φ.

Proposition 8 states that in order to yield a 
ommuting joint 
ommon 
ausal

explanation for the set {(Am, Bn);m,n = 1, 2} the Bell inequality (9.24) has to be

satis�ed. This result is in 
omplete agreement with the usual approa
hes to Bell

inequalities (see e.g. (Butter�eld 1989, 1995, 2007)). But what is the situation with

non
ommuting 
ommon 
ause systems? Sin
e�apart from (7.12)�Proposition 8 is

silent about the relation between a non
ommuting joint 
ommon 
ausal explanation

and the Bell inequality (9.24), the question arises: Can a set of 
orrelations violating

the Bell inequality (9.24) have a non
ommuting joint 
ommon 
ausal explanation?

In (Hofer-Szabó, Ve
sernyés, 2012b, 2013b) it has been shown that the an-

swer to the above question is positive: the violation of the Bell inequality does

not ex
lude a joint 
ommon 
ausal explanation if 
ommon 
auses 
an be non
om-

muting. Moreover, these 
ommon 
auses turned out to be lo
alizable just in the

'right' spa
etime region (see below). For this result, we applied a simple AQFT

with lo
ally �nite degrees of freedom, the so-
alled lo
al quantum Ising model (for

more details see (Hofer-Szabó, Ve
sernyés, 2012b, 2013b); for a Hopf algebrai
 in-

trodu
tion of the model see (Szla
hányi, Ve
sernyés, 1993), (Nill, Szla
hányi, 1997),

(Müller, Ve
sernyés)).

Consider a `dis
retized' version of the two dimensional Minkowski spa
etime

M2

overed by minimal double 
ones V m

t,i of unit diameter with their 
enter in

(t, i) for t, i ∈ Z or t, i ∈ Z + 1/2 (see Fig. 7.1). A non-minimal double 
one

Vt,i;s,j in this 
overing 
an be generated by two minimal double 
ones in the sense

that Vt,i;s,j is the smallest double 
one 
ontaining both V m
t,i and V m

s,j . The set of

double 
ones forms a dire
ted poset whi
h is left invariant by integer spa
e and

time translations.

The `one-point' observable algebras asso
iated to the minimal double 
ones Vm
t,i

are de�ned to be A(V m
t,i ) ≃M1(C)⊕M1(C). By introdu
ing appropriate 
ommu-

tation and anti
ommutation relations between the unitary selfadjoint generators of

the `one-point' observable algebras (whi
h relations respe
t mi
ro
ausality) one 
an

generate the net of lo
al algebras. Sin
e there is an in
reasing sequen
e of double
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Figure 7.1: The two dimensional dis
rete Minkowski spa
etime 
overed by

minimal double 
ones.


ones 
overingM2
su
h that the 
orresponding lo
al algebras are isomorphi
 to full

matrix algebrasM2n(C), the quasilo
al observable algebra A is a uniformly hyper-

�nite (UHF) C∗
-algebra and 
onsequently there exists a unique (non-degenerate)

normalized tra
e Tr : A → C on it.

Now, 
onsider the double 
ones VA := V m
0,−1 ∪ V m

1
2
,− 1

2

and VB := V m
1
2
, 1
2

∪ V m
0,1

and the `two-point' algebras A(VA) and A(VB) pertaining to them (see Fig. 7.2).

It turns out that all the minimal proje
tions in A(a) ∈ A(VA) and B(b) ∈ A(VB)
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Figure 7.2: Correlations between events in VA and VB.


an be parametrized by unit ve
tors a and b, respe
tively in R
3
. Now, 
onsider

two proje
tions Am := A(am);m = 1, 2 lo
alized in VA, and two other proje
tions

Bn := B(bn);n = 1, 2 lo
alized in the spa
elike separated double 
one VB .

Let the state of the system be the singlet state φs de�ned in an appropriate way

(by a density operator 
omposed of spe
i�
 
ombinations of generators taken from

various 'one-point' algebras). It turns out that in state φs the 
orrelation between
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Am and Bn will the one familiar from the EPR situation:

corr(Am, Bn) := φs(AmBn)− φs(Am)φs(Bn) = −
1

4
〈am,bn〉 (7.13)

where 〈 , 〉 is the s
alar produ
t in R
3
. In other words Am and Bn will 
orrelate

whenever a
m

and b
n
are not orthogonal. To violate the Bell inequalitity (9.24) set

a
m

and b
n
as follows:

a
1 = (0, 1, 0) (7.14)

a
2 = (1, 0, 0) (7.15)

b
1 =

1√
2
(1, 1, 0) (7.16)

b
2 =

1√
2
(−1, 1, 0) (7.17)

With this setting (9.24) will be violated at the lower bound sin
e

φs(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1

)

=

−1

2
− 1

4

(〈

a
1,b1

〉

+
〈

a
1,b2

〉

+
〈

a
2,b1

〉

−
〈

a
2,b2

〉)

= −1 +
√
2

2
(7.18)

Now, the question as to whether the four 
orrelations {(Am, Bn);m,n = 1, 2}
violating the Bell inequality (9.24) have a joint 
ommon 
ausal explanation was

answered in (Hofer-Szabó, Ve
sernyés, 2012b) by the following

Proposition 9. Let Am := A(am) ∈ A(VA), Bn := B(bn) ∈ A(VB);m,n = 1, 2
be four proje
tions parametrized by the unit ve
tors via (7.14)-(7.17) violating

the Bell inequality in the sense of (7.18). Then there exist a non
ommuting join


ommon 
ause {C,C⊥} of the 
orrelations {(Am, Bn);m,n = 1, 2} lo
alizable in

the 
ommon past VC := V0,− 1
2
;0, 1

2
of VA and VB (see Fig. 7.3).
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Figure 7.3: Lo
alization of a 
ommon 
ause for the 
orrelations {(Am, Bn)}.
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Observe that C is lo
alized in the 
ommon past of the four 
orrelating events

that is in the region whi
h seems to be the 'physi
ally most intuitive' lo
alization

of the 
ommon 
ause.

Proposition 8 and 9 together show that the relation between the 
ommon 
ausal

explanation and the Bell inequality in the non
ommutative 
ase is di�erent from

that in the 
ommutative 
ase. In the latter 
ase the satisfa
tion of the Bell in-

quality is a ne
essary 
ondition for a set of 
orrelations to have a joint 
ommon


ausal explanation. In the non
ommutative 
ase, however, the violation of the Bell

inequality for a given set of 
orrelations does not ex
lude the possibility of a joint


ommon 
ausal explanation for the set. And indeed, as Proposition 9 shows, one


an �nd a 
ommon 
ause even for a set of 
orrelations violating the Bell inequality.

To sum it up, taking seriously the non
ommutative 
hara
ter of AQFT where events

are represented by not ne
essarily 
ommuting proje
tions, one 
an provide a 
om-

mon 
ausal explanation in a mu
h wider range than simply sti
king to 
ommutative


ommon 
auses.

7.4 Con
lusions

In the paper we were arguing that embra
ing non
ommuting 
ommon 
auses in our

explanatory framework is in line with the spirit of quantum theory and it gives us

extra freedom in the sear
h of 
ommon 
auses for 
orrelations. Spe
i�
ally, it helps

to maintain the validity of Rei
henba
h's Common Causal Prin
iple in the 
ontext

of AQFT and it also helps to provide a lo
al, joint 
ommon 
ausal explanation for

a set of 
orrelations even if they violate the Bell inequalities.

Using non
ommuting 
ommon 
auses naively to address the basi
 problems of

the 
ausal explanation in quantum theory in a formal way is no use whatsoever, if

it is not underpinned by a viable ontology on whi
h the 
ausal theory 
an be based.

This is a grandious resear
h proje
t. I 
on
lude here simply by posing the 
entral

question of su
h a proje
t:

Question. What ontology exa
tly is for
ed upon us by using non
ommuting 
om-

mon 
auses in our 
ausal explanation?
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Chapter 8

On the relation between the

probabilisti
 
hara
terization

of the 
ommon 
ause and Bell's

notion of lo
al 
ausality

In this paper the relation between the standard probabilisti
 
hara
terization of

the 
ommon 
ause (used for the derivation of the Bell inequalities) and Bell's no-

tion of lo
al 
ausality will be investigated in the isotone net framework borrowed

from algebrai
 quantum �eld theory. The logi
al role of two 
omponents in Bell's

de�nition will be s
rutinized; namely that the 
ommon 
ause is lo
alized in the

interse
tion of the past of the 
orrelated events; and that it provides a 
omplete

spe
i�
ation of the `beables' of this interse
tion.

8.1 Introdu
tion

Standard derivations of the Bell inequalities start from a set of equations repre-

senting a probabilisti
 
ommon 
ausal explanation of 
orrelations. This 
ommon


ausal explanation has three 
omponents: a s
reening-o� 
ondition, going ba
k

to Rei
henba
h's (1956) original 
hara
terization of the 
ommon 
ause, a lo
ality


ondition, expressing probabilisti
 independen
es between spa
elike separated mea-

surement out
omes and measurement settings, and a no-
onspira
y 
ondition rep-

resenting another independen
y between the 
ommon 
ause and the measurement

settings. If one is asked what justi�es these probabilisti
 
onstraints in representing

a proper 
ommon 
ausal explanation, the 
ommon answer is this: one obtains these

equations immediately if one endorses spe
ial relativity and looks at the spa
etime

lo
alization of the events in question. The aim of this paper is to understand more

thoroughly this qui
k answer.
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In order to see more 
learly how the spatiotemporal and probabilisti
 
hara
-

terization of the 
ommon 
ause relate to one another, one has to be 
lear �rst of

all on three points:

1. To address the problem at all, we need to have a mathemati
ally well-de�ned

and physi
ally well-motivated framework 
onne
ting events understood as

elements of a probability spa
e and regions understood as subsets of a spa
e-

time.

2. Having su
h a �rm framework 
onne
ting spatiotemporal and probabilisti


entities, we need to lo
alize events, among them 
ommon 
auses, in the spa
e-

time.

3. Finally, we have to be 
lear on what we mean under �justi�
ation of the

probabilisti
 
ommon 
ausal explanation on spatiotemporal grounds�.

Here we brie�y 
omment on the above three points in turn.

Ad 1. Con
erning the framework, interestingly enough, there is not a wide 
hoi
e

of mathemati
al stru
tures representing this highly important 
onne
tion between

probabilisti
 and spatiotemporal entities. Dis
ounting one approa
h (Henson, 2005;


ommented on in the Con
lusion and dis
ussion), we are aware of only one su
h

stru
ture, the isotone net stru
ture used in algebrai
 quantum �eld theory (AQFT).

In AQFT observables are represented by (C∗
-)algebras asso
iated to bounded re-

gions of a spa
etime. This asso
iation is 
alled a net. A state φ is de�ned as a

normalized positive linear fun
tional on the quasilo
al algebra A whi
h is the in-

du
tive limit of the net. From our perspe
tive, the two important axioms of the

net are isotony and lo
al primitive 
ausality. Isotony requires that if a region V1 is

ontained in another region V2, then the lo
al algebra A(V1) asso
iated to V1 is a

(unital C∗
-)subalgebra of A(V2). Lo
al primitive 
ausality is the requirement that

for any region V , A(V ) = A(V ′′), where V ′′
is the 
ausal 
ompletion (shadow) of

V . The framework of isotone nets seems to be �exible enough to be used also for

our purposes. The nets whi
h we will use in this paper will be 
lassi
al nets gen-

erated by lo
al σ-subalgebras of a Boolean σ-algebra Σ. Thus we borrow a useful

mathemati
al te
hnique from AQFT without endorsing the operational ontology

thereof.

Ad 2. Having a neat framework in hand, next we have to lo
alize events. The

lo
alization of measurement out
omes and measurement settings is fairly straight-

forward, but where should we lo
alize 
ommon 
auses? Obviously, the 
ommon


ause is an event C happening somewhere in the past of two 
orrelated events,

say A and B. But in whi
h past? Relativisti
ally two spa
elike separated events


an have (at least) two di�erent pasts. Let VA and VB denote the regions where

A and B, respe
tively are lo
alized. One 
an then de�ne the weak past of A
and B as PW (VA, VB) := I−(VA) ∪ I−(VB) and the strong past of A and B as

PS(VA, VB) := I−(VA)∩I−(VB) where I−(V ) denotes the union of the 
ausal pasts

I−(x) of every point x in V . Let us 
all the appropriate 
ommon 
auses weak and

strong 
ommon 
auses, respe
tively (see Fig. 8.1).
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Figure 8.1: Weak and the strong past of the 
orrelated events A and B.

Now, one might 
onsider the strong past as a more natural 
andidate for the

lo
alization of the 
ommon 
ause, and indeed plenty of 
lassi
al examples attest

that the strong past is a reasonable 
hoi
e. The 
orrelation between two fans'

shouting at the same time at a football mat
h is explained by the goals s
ored, that

is by events lo
alized in the strong past of the shouts. Curiously enough, however,

in AQFT 
ommon 
auses are typi
ally understood as weak 
ommon 
auses. It is

not di�
ult to see why.

Consider an isotone net representing a system in AQFT. Suppose that there

is a (superluminal) 
orrelation, φ(AB) 6= φ(A)φ(B), between events A ∈ A(VA)
and B ∈ A(VB) su
h that VA and VB are spa
elike separated. Consider the lo
al

algebra A((VA ∪VB)′′) asso
iated to the 
ausal 
ompletion of VA ∪VB and suppose

that we �nd a 
ommon 
ause C of the 
orrelation in A((VA ∪VB)′′). In whi
h past

of VA and VB 
an C be lo
ated? Consider a region V in the weak past PW (VA, VB)
whi
h is `wide' enough to ensure that (VA ∪VB) ⊂ V ′′

. Due to isotony, A(VA ∪VB)
will be a subalgebra of A(V ′′) whi
h, due to lo
al primitive 
ausality, is identi
al

to A(V ). Thus, C will be lo
ated in V and hen
e in the weak past of VA and

VB. To sum up, isotony and lo
al primitive 
ausality together ensures that if a

superluminal 
orrelation has a 
ommon 
ause, then it 
an be lo
alized in the weak

past.

Can the 
ommon 
ause be lo
alized also in the strong past? It might, but if

so, this will not be simply due to the axioms of AQFT. If V is in PS(VA, VB), then
isotony and lo
al primitive 
ausality does not help to relate A(V ) to A((VA∪VB)′′).
One also needs to know about the dynami
s of the system. The axioms of AQFT

are 
ompletely silent about whether one 
an lo
ate the 
ommon 
ause in the strong

past. As a 
onsequen
e, weak 
ommon 
auses 
annot be ex
luded a priori from

our explanatory arsenal. Thus, we had better open leave the question regarding

the apt spa
etime lo
alization of the 
ommon 
ause.

Ad 3. Finally, we have to pin down the meaning of the term �justi�
ation of

the probabilisti
 
ommon 
ausal explanation on spatiotemporal grounds�. What

we mean here is this: we need to have a prin
iple regulating the probabilisti


independen
es of events on the basis of their possible 
ausal 
onne
tedness in tune

with spe
ial relativity. An analogy for su
h a regulating prin
iple might help. The

theory of Bayesian nets involves two parts: a 
ausal graph representing the 
ausal

relations among 
ertain events and a probability spa
e with random variables. How
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are these two parts of the theory related to one another? The bridge relating the

two 
omponents is 
alled the Causal Markov Condition. It says that if the nodes

on the graph are related to one another in su
h-and-su
h a way, then the variables

pertaining to the nodes should satisfy su
h-and-su
h probabilisti
 independen
es.

So the role of the Causal Markov Condition in the theory of Bayesian nets is to


oordinate the probabilisti
 and the graphi
al des
ription of 
ausal relations.

A prin
iple playing a similar 
oordinating role in the 
ausal explanation of


orrelations has been introdu
ed into the literature by John S. Bell (1975/2004)

and 
alled lo
al 
ausality. Lo
al 
ausality is a relativisti
 prin
iple tailor-made to

study probabilisti
 relations between events lo
alized in di�erent spa
etime regions,

among them the relation between the 
ommon 
ause and the 
orrelated events.

Thus, we will understand the term �justi�
ation of the probabilisti
 
ommon 
ausal

explanation on spatiotemporal grounds� similarly to the Bayesian net theorist: lo-


al 
ausality implies just those probabilisti
 independen
es whi
h 
hara
terize the

standard 
ommon 
ausal explanation.

Putting Points 1-3 together we are fa
ed with the following

Proje
t. Given the isotone net framework 
onne
ting events and spa
etime regions

(Point 1), and given the spatiotemporal lo
alization of the various measurement

out
omes, measurement settings and 
ommon 
auses (Point 2), one is to de�ne

lo
al 
ausality in the isotone net framework su
h that the probabilisti
 indepen-

den
es implied by lo
al 
ausality (Point 3) are just the ones used in the standard

probabilisti
 
hara
terization of the 
ommon 
ausal explanation.

In brief, the a

ommodation of a set of 
orrelations within a lo
ally 
ausal net

implies that for any 
orrelations there exist 
ommon 
auses satisfying 
ertain prob-

abilisti
 
onstraints.

This, however, is only the 
oarse-grained story of the paper. Reading Bell's


areful formulation of lo
al 
ausality, two requirements will stand out in the def-

inition: one is atomi
ity representing the �
omplete spe
i�
ation� of the 
ausal

past of the 
orrelated events, the other is the lo
alization of the 
ommon 
ause

in the strong past. Our �ne-grained story will be to analyze the signi�
an
e of

these ingredients in the de�nition of lo
al 
ausality. It will turn out that the link

between the spatiotemporal and the probabilisti
 
hara
terization of the 
ommon


ause is very sensitive to these 
omponents of the de�nition of lo
al 
ausality, as

was rightly emphasized by Bell himself. In detail, we would like to address the

following questions:

(i) What is the exa
t role of atomi
ity in the justi�
ation of the probabilisti



hara
terization of the 
ommon 
ause by lo
al 
ausality?

(ii) Do the probabilisti
 
onstraints imposed on the notion of 
ommon 
ause

restri
t the possible spa
etime lo
alization of the 
ommon 
ause? Do we

need to 
hoose, for example, between weak and strong 
ommon 
auses?

(iii) How do atomi
ity and lo
alization relate to one another; whi
h of the 
ommon


auses lo
alized in di�erent pasts need to be atomi
?
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Our paper follows a resear
h line whi
h has been followed by many. To our knowl-

edge, the �rst to �survey the ways in whi
h one 
ould asso
iate regions� with events

su
h that it makes �plausible not only 
ompleteness and lo
ality, but other assump-

tions of the Bell inequality� was Butter�eld (1989, p. 135). Also, the ne
essity to

introdu
e spatiotemporal 
on
epts so as to understand the Common Cause Prin
i-

ple was pointed out by U�nk (1999). Common Cause Prin
iple and its role in the

EPR-Bell s
enario has been thoroughly investigated by The Bern group (Grassho�,

Portmann and Wüthri
h, 2005), The Cra
ow group (Pla
ek and Wronski, 2009),

and The Budapest group (Hofer-Szabó, Rédei and Szabó, 2013, espe
ially in Chap-

ter 8 and 9). The status of the Common Cause Prin
iple in AQFT was �rst investi-

gated by Rédei (1997), and further analyzed in Poin
aré 
ovariant AQFT by Rédei

and Summers (2002) and in latti
e AQFT by Hofer-Szabó and Ve
sernyés (2012a,

2013a). Butter�eld analysed the assumptions leading to the Bell inequalities in

AQFT in (Butter�eld, 1995), and the relation of the Common Cause Prin
ipe to

the Bell inequalities and to various forms of Sto
hasti
 Einstein Lo
ality in (But-

ter�eld, 2007). For an earlier dis
ussion on the relation of Sto
hasti
 Einstein Lo-


ality to the axioms of AQFT, see (Rédei 1991) and (Muller and Butter�eld 1994).

Hofer-Szabó and Ve
sernyés (2012b, 2013b) reassessed the assumptions of the Bell

inequalities in AQFT with respe
t to non-
ommuting 
ommon 
auses. In a for-

malism very 
lose or maybe identi
al to our isotone net formalism, Henson (2013b)

treated an important topi
, namely that giving up separability does not blo
k the

derivation of the Bell inequalities. An interesting debate between Henson, Rédei

and San Pedro (Henson, 2005; Rédei and San Pedro, 2012; Henson, 2013a) has

been taking pla
e re
ently in this Journal. We will 
omment on this debate in the

Con
lusion and dis
ussions. For a parallel approa
h to ours, where the assumptions

of the Bell inequalities are ba
ked not by spatiotemporal 
onsiderations but by the

Causal Markov Condition, see (Glymour 2006). For the relation of Causal Markov

Condition to EPR 
orrelations see (Suárez, 2013). For a general treatment of Bell's

lo
al 
ausality in lo
al physi
al theories see the more te
hni
al (Hofer-Szabó and

Ve
sernyés 2014a) or its philosopher-friendly version (Hofer-Szabó and Ve
sernyés

2014b).

Our paper is stru
tured as follows. In Se
tion 2 the standard requirements of

the probabilisti
 
ommon 
ausal explanation will be re
alled. In Se
tion 3 Bell's

original idea of lo
al 
ausality will be delineated and rede�ned in the isotone net

formalism. Se
tion 4 will be devoted to the �rst ingredient of Bell's de�nition,

namely atomi
ity; Se
tion 5 to the se
ond one, namely lo
alization. In order to

pro
eed in a more pi
turesque way, both in Se
tion 4 and 5 
lassi
al toy models

will be introdu
ed helping us to expli
ate the more abstra
t results. We 
on
lude

the paper in Se
tion 6. Some te
hni
alities are put in the Appendi
es.

8.2 Common 
ausal explanation

As mentioned above, the �rst probabilisti
 
hara
terization of the 
ommon 
ause is

due to Rei
henba
h. There is a long route leading from Rei
henba
h's original idea
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of the 
ommon 
ause to the sophisti
ated probabilisti
 requirements used today in

the philosophy of quantum physi
s. Here we will not detail the steps of how the

notion of 
ommon 
ause evolved and be
ame more and more suitable for 
ausal

explanation of the EPR-Bell s
enario (for this see (Hofer-Szabó, Rédei and Szabó,

2013), or for a short version (Hofer-Szabó and Ve
sernyés, 2012a)). Instead we will

jump dire
tly to the full-�edged probabilisti
 
hara
terization of the 
ommon 
ause

and give a brief motivation of the requirements thereafter.

Let {am} and {bn} (m ∈ M,n ∈ N) be two sets of measurement pro
edures

(thought of as happening in two spa
elike separated spa
etime regions). Suppose

that ea
h measurement 
an have two out
omes and denote the `positive' out
omes

by Am and Bn and the `negative' out
omes by Am and Bn, respe
tively. Let all

these events be a

ommodated in a 
lassi
al probability spa
e (Σ, p). Suppose that
there is a 
onditional 
orrelation between the measurement out
omes in the sense

that for any m ∈M and n ∈ N

p(Am ∧Bn|am ∧ bn) 6= p(Am|am) p(Bn|bn) (8.1)

representing that if we measure the pair am and bn, the appropriate out
omes will

be 
orrelated.

The standard probabilisti
 
hara
terization of a 
ommon 
ausal explanation

of the 
orrelations (10.1) is the following. A partition {Ck} in Σ (that is a set

of mutually ex
lusive events adding up to the unit) is said to be a lo
al, non-


onspiratorial joint 
ommon 
ausal explanation of the 
orrelations (10.1) if for any

m,m′ ∈M and n, n′ ∈ N the following requirements hold:

p(Am ∧Bn|am ∧ bn ∧Ck) = p(Am|am ∧ bn ∧ Ck) p(Bn|am ∧ bn ∧ Ck) (s
reening-o�)(8.2)

p(Am|am ∧ bn ∧ Ck) = p(Am|am ∧ bn′ ∧ Ck) (lo
ality) (8.3)

p(Bn|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧ Ck) (lo
ality) (8.4)

p(am ∧ bn ∧ Ck) = p(am ∧ bn) p(Ck) (no-
onspira
y)(8.5)

The motivation behind requirements (10.6)-(8.5) is the following. S
reening-o�

(10.6) (also 
alled as out
ome independen
e (Shimony, 1986), 
ompleteness (Jar-

rett, 1984) and 
ausality (Van Fraassen, 1982)) is simply the appli
ation of Rei
hen-

ba
h's original 
hara
terization of the 
ommon 
ause as a s
reener-o� to 
onditional


orrelations: although Am and Bn are 
orrelated when 
onditioned on am and bn,
they will 
ease to be so, if we further 
ondition on Ck. Lo
ality (8.3)-(8.4) (also


alled as parameter independen
e (Shimony, 1986), lo
ality (Jarrett, 1984) and hid-

den lo
ality (Van Fraassen, 1982)) is the 
onstraints that the measurement out
ome

on the one side 
an depend only on the measurement 
hoi
e on the same side and

the value of the 
ommon 
ause, but not on the measurement 
hoi
e on the opposite

side (for more on this, see below). Finally, no-
onspira
y (8.5) is the requirement

that the 
ommon 
ause system and the measurement settings should not in�uen
e

ea
h other: they should be probabilisti
ally independent.

Now, it is a well known fa
t that if a set of 
orrelations has a lo
al, non-


onspiratorial joint 
ommon 
ausal explanation in the above sense, then the set of
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orrelations has to satisfy various Bell inequalities.

1

If quantum 
orrelations are

interpreted as 
lassi
al 
onditional 
orrelations á la (10.1), these Bell inequalities

are violated, ex
luding a lo
al, non-
onspiratorial joint 
ommon 
ausal explanation

of the EPR s
enario. Our aim, however, is not to follow the route leading from

the 
ommon 
ausal explanation (10.6)-(8.5) to the Bell inequalities, but rather the

route leading to the 
ommon 
ausal explanation itself. At any rate, in the EPR-

Bell literature (10.6)-(8.5) is regarded as the 
orre
t probabilisti
 
hara
terization

of the 
ommon 
ause. But observe that the above motivations for the probabilisti


independen
e relations (10.6)-(8.5) are 
ompletely meaningless unless we �rst de
ide

on Points 1 and 2 of the Introdu
tion: that is unless we have a prin
ipled way to

asso
iate events understood as elements of the probability spa
e (Σ, p) to regions of
a given spa
etime (Point 1), and unless we lo
alize the events in question somewhere

in the spa
etime (Point 2).

So suppose that we do have su
h an asso
iation in form of an isotone net N

asso
iating bounded regions of the Minkowski spa
etime to σ-subalgebras of Σ.
Suppose furthermore that we lo
alize 
ommon 
auses in one of the two above men-

tioned ways, that is 
ommon 
auses are either weak or strong 
ommon 
auses. To

address Point 3 of the Introdu
tion, namely the `bridge law' between the spa
etime

and probabilisti
 
onsiderations, we have to introdu
e one more notion, namely

lo
al 
ausality. We do this in Se
tion 3.

8.3 Lo
al 
ausality

As mentioned in the Introdu
tion, there is an in�uential tradition a

ording to

whi
h equations (10.6)-(8.5) are 
onsequen
es of the requirement that a 
ertain set

of 
orrelations are to be a

ommodated in a lo
ally 
ausal theory. The 
learest

formulation of su
h a theory is due to Bell himself:

�Consider a theory in whi
h the assignment of values to some beables

Λ implies, not ne
essarily a parti
ular value, but a probability distri-

bution, for another beable A. Let p(A|Λ) denote2 the probability of a

parti
ular value A given parti
ular values Λ. Let A be lo
alized in a

spa
e-time region A. Let B be a se
ond beable lo
alized in a se
ond

region B separated from A in a spa
elike way. (Fig. 8.2.) Now my

intuitive notion of lo
al 
ausality is that events in B should not be

`
auses' of events in A, and vi
e versa. But this does not mean that

the two sets of events should be un
orrelated, for they 
ould have 
om-

mon 
auses in the overlap of their ba
kward light 
ones. It is perfe
tly

intelligible then that if Λ in (8.6) does not 
ontain a 
omplete re
ord of

events in that overlap, it 
an be usefully supplemented by information

1

For the derivation of one of the simplest Bell inequality, the Clauser�Horne inequality,

see Appendix A.

2

For the sake of uniformity throughout the paper, I slightly 
hanged Bell's notation

and �gures.
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A B

Λ

Figure 8.2: Lo
al 
ausality I.

from region B. So in general it is expe
ted that

p(A|Λ, B) 6= p(A|Λ) (8.6)

However, in the parti
ular 
ase that Λ 
ontains already a 
omplete

spe
i�
ation of beables in the overlap of the light 
ones, supplemen-

tary information from region B 
ould reasonably be expe
ted to be

redundant.�

And here 
omes the de�nition of a lo
ally 
ausal theory.

�Let C denote a spe
i�
ation of all beables, of some theory, belonging

to the overlap of the ba
kward light 
ones of spa
elike regions A and

B. Let a be a spe
i�
ation of some beables from the remainder of the

A B

Ca b

Figure 8.3: Lo
al 
ausality II.

ba
kward light 
one of A, and B of some beables in the region B. (See

Fig. 8.3.) Then in a lo
ally 
ausal theory

p(A|a, C,B) = p(A|a, C) (8.7)
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whenever both probabilities are given by the theory.� (Bell, 1975/2004,

p. 54)

Now, let us spell out Bell's 
hara
terization of lo
al 
ausality in our isotone net

framework. To this end we need to `translate' a number of terms Bell uses in his

formulation into our language.

First, we need to translate Bell's language using random variables in (8.7) into

a language using events. This is straightforward sin
e events are spe
ial random

variables, namely 
hara
teristi
 fun
tions.

Se
ond, we are to interpret the term `beable'. `Beable' is Bell's neologism and

is 
ontrasted to the term `observable' used in quantum theory. �The beables of

the theory are those entities in it whi
h are, at least tentatively, to be taken se-

riously, as 
orresponding to something real� (Bell, 1990/2004, p. 234). Without

the 
lari�
ation of what the �beables� of a given theory really are, one 
annot even

formulate lo
al theory sin
e �there are things whi
h do go faster than light. British

sovereignty is the 
lassi
al example. When the Queen dies in London (long may

it be delayed) the Prin
e of Wales, le
turing on modern ar
hite
ture in Australia,

be
omes instantaneously King� (Bell, 1990/2004, p. 236). In order to vitiate su
h

`violation' of lo
al 
ausality, the 
lari�
ation of the �beables� of a theory is indis-

pensable. (Cf. Norsen 2011.) What are the beables in the isotone net stru
ture?

Sin
e these nets are 
lassi
al and hen
e they represent obje
tive physi
al events,

any element of any lo
al algebra will be regarded here as a beable.

Third, translating `beable' simply as `elements of an algebra' naturally brings

with it the translation of the term `
omplete spe
i�
ation of beables' as an `atom

of the algebra in question'. Here of 
ourse it is assumed that the lo
al algebras of

the net are atomi
 (whi
h is typi
ally not the 
ase in AQFT). (For the translation

of `
omplete spe
i�
ation' into atomi
ity see (Henson, 2013a, p. 1015).)

Finally, an important point. Both in his wording and also in his �gures Bell

seems to take into a

ount the whole 
ausal past of the events in question. In the

formulation of lo
al 
ausality he does not assume some kind of Markovian 
ondition

rendering super�uous the in�nite tail of the past regions below a 
ertain Cau
hy

surfa
e. Other parts of Bell's text, however, speak for a more lo
al interpretation

of beable.

3

Moreover, Bell's La nouvelle 
uisine (Bell, 1990/2004), a posthumous

paper on the same subje
t provides another de�nition of lo
al 
ausality where the

s
reener-o� regions are de�nitely �nite. This de�nition is 
loser in spirit to the

formalism of isotone nets sin
e here only bounded regions are asso
iated to lo
al

algebras. Therefore, we will here endorse this ��nite� reading of lo
al 
ausality.

(We will 
ome ba
k to this point in the Con
lusion and dis
ussion.)

With this `translation manual' in hand, Bell's notion of lo
al 
ausality 
an be

paraphrased as follows.

3

Cf. �We will be parti
ularly 
on
erned with lo
al beables, those whi
h (unlike for

example the total energy) 
an be assigned to some bounded [my itali
s℄ spa
e-time region.�

(Bell, 1975/2004, p. 53)
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De�nition 11. An isotone net N asso
iating bounded regions of the Minkowski

spa
etime to σ-subalgebras of Σ is 
alled lo
ally 
ausal, if for any 
lassi
al prob-

ability measure p on Σ4

, and for any two events Am ∈ A(VA) and Bn ∈ A(VB)
lo
alized in the spa
elike separated regions VA and VB and 
orrelating in the prob-

ability measure p, the following holds.

Let Va, Vb and VC be three spa
etime regions (see Fig. 8.4) su
h that

V VA B

V VV Ca b

Figure 8.4: Lo
al 
ausality in isotone nets

Va ⊂ (I−(VA) \ I−(VB)) (8.8)

Vb ⊂ (I−(VB) \ I−(VA)) (8.9)

VC ⊂ PS(VA, VB) (8.10)

VC ⊂ PS(Va, Vb) (8.11)

VA ⊂ (Va ∪ VC)′′ (8.12)

VB ⊂ (VC ∪ Vb)′′ (8.13)

Let am, bn and Ck be any three atoms of the algebras A(Va), A(Vb) and A(VC),
respe
tively, asso
iated to the appropriate regions. Then the following 
onditional

probabilisti
 independen
es hold:

p(Am|am ∧ Ck ∧Bn) = p(Am|am ∧ Ck) (8.14)

p(Bn|Am ∧ Ck ∧ bn) = p(Bn|bn ∧Ck) (8.15)

p(Am|am ∧ Ck ∧ bn) = p(Am|am ∧ Ck) (8.16)

p(Bn|am ∧ Ck ∧ bn) = p(Bn|bn ∧Ck) (8.17)

Why four equations instead of Bell's single (8.7)? Observe that (8.15) is just

the symmetri
 version of (8.14) where Am and am are inter
hanged with Bn and

bn. Equations (8.16)-(8.17), however, are slight extensions of Bell's formulation.

4

Or, in the more general AQFT 
ase (whi
h we do not need now): for any state φ on

the quasilo
al algebra A. (Cf. Se
tion 1 above.)
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Observe that VA is spa
elike separated not only from VB but also from Vb; moreover,

VC is in the strong past of A and B, PS(VA, Vb). Therefore, 
onditioned on the


omplete spe
i�
ation of Va ∪ VC , the same independen
e should hold between Am

and bn as between Am and Bn. Thus (8.16) is the appli
ation of Bell's idea to

algebras A(VA) and A(Vb), and (8.17) to algebras A(Vb) and A(VA). There are

no more spa
elike separated regions in Fig. 8.4 to whi
h lo
al 
ausality 
ould be

applied.

How do the above 
onsiderations relate to the probabilisti
 
hara
terization (10.6)-

(8.5) of the 
ommon 
ause delineated in the previous Se
tion?

First observe that (8.16)-(8.17) are equivalent to lo
ality (8.3)-(8.4) and from

(8.14)-(8.17) s
reening-o� (10.6) follows dire
tly. This proves that the probabilisti



hara
terization of the 
ommon 
ause by the requirements of s
reening-o� and

lo
ality 
an be `derived' from Bell's notion of lo
al 
ausality imposed on an isotone

net asso
iating spa
etime regions and lo
al algebras.

There is, however, an important proviso. The third requirement in the de�nition

of a 
ommon 
ausal explanation, namely no-
onspira
y (8.5) 
annot be `derived'

from Bell's notion of lo
al 
ausality in a similar way. No-
onspira
y is an inde-

pendent assumption stating that the events am ∧ bn and Ck are probabilisti
ally

independent.

Let us 
ome ba
k for a moment to the de�nition of a lo
ally 
ausal net. In De�nition

11 we required (8.14)-(8.17) and hen
e (10.6)-(8.4) to hold only for the atoms am
and Ck of the algebras A(Va) and A(VC), respe
tively. Bell's original de�nition,

however, seems to be more stringent; here (8.7) is required not only for the atoms

of A(Va) but for any element. This might suggest that our de�nition is weaker

than that of Bell. This, however, is not the 
ase. In Proposition 12 at the end of

the paper we will show that in a lo
ally 
ausal net (10.6)-(8.4) hold not only for

the atomi
 events am, bn and Ck, but (given some independen
e 
ondition) also for

any Boolean 
ombination a := ∨m∈M ′am, b := ∨n∈N ′am (M ′ ⊆M,N ′ ⊆ N) of the

measurement 
onditions. Note, however, that the 
ommon 
ause system Ck 
annot

be `aggregated' in this way: (10.6)-(8.4) will not ne
essarily hold for the Boolean


ombination C := ∨k∈K′Ck (K ′ ⊆ K). This is why it is ne
essary to demand

atomi
ity (�
omplete spe
i�
ation�) in the strong past of the 
orrelated events and

su�
ient to demand it outside it. We will 
ome ba
k to this point later.

An interesting question with respe
t to AQFT is the following. What is the relation

between lo
al primitive 
ausality as standardly used in AQFT and our de�nition of

lo
al 
ausality? The answer is given in the following proposition:

Proposition 10. A 
lassi
al, atomi
 isotone net whi
h satis�es lo
al primitive


ausality (A(V ) = A(V ′′) for any region V ), automati
ally satis�es also lo
al


ausality (8.14)-(8.17) for events in regions as shown in Fig. 8.4.

Proof. Consider �rst (8.14). Due to isotony and lo
al primitive 
ausality A(VA) ⊂
A((Va ∪VC)′′) = A(Va ∪VC) and hen
e for any atom am∧Ck of A(Va ∪VC): either
(i) Am ∧ am ∧ Ck = 0 or (ii) Am ∧ am ∧ Ck = am ∧ Ck. In 
ase (i) both sides of
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(8.14) is zero, in 
ase (ii) both sides of (8.14) is one. One obtains (8.15)-(8.17) in a

similar fashion.

Intuitively, isotony and lo
al primitive 
ausality together ensure that the atoms of

A(Va ∪ VC) will also be atoms of A(VA), hen
e s
reening o� every 
orrelation. For

a more general proposition stating that in any atomi
 
lassi
al or quantum isotone

net satisfying lo
al primitive 
ausality lo
al 
ausality also holds, see (Hofer-Szabó

and Ve
sernyés 2014a, Prop. 1) and (Hofer-Szabó and Ve
sernyés 2014b, Se
. 3).

For relating lo
al 
ausality (Sto
hasti
 Einstein Lo
ality) to the axioms of AQFT

(treated in the tradition of the so-
alled synta
ti
al view of s
ienti�
 theories), see

(Rédei 1991) and (Muller and Butter�eld 1994).

Reading Bell's formulation of lo
al 
ausality 
arefully, two ingredients of the

de�nition stand out 
learly. The one is that (i) the 
ommon 
ause system provides

�a 
omplete spe
i�
ation of beables�, and (ii) it is lo
ated in the �overlap of the

light 
ones�. In our terminology, (i) Ck is an atom of the appropriate algebra, (ii)

it is lo
ated in the strong past of the 
orrelated events. Bell expli
itly stresses both

points, and in all the subsequent papers of Van Fraassen (1982), Jarrett (1984),

Shimony (1986) et
. trying to turn spa
etime 
onsiderations into probabilisti


independen
es these two requirements have been (expli
itly or impli
itly) made.

However, neither requirements are a priori 
on
erning the idea of a 
ommon


ause. One 
an easily make up 
ommon 
auses whi
h are either non-atomi
 or

not lo
ated in the strong past of the 
orrelated events. How do these 
ommon


auses relate to Bell's notion of lo
al 
ausality? In the following two Se
tions the

relation between lo
al 
ausality and probabilisti
 
hara
terization of the 
ommon


ause will be studied �rst in the 
ase of non-atomi
 
ommon 
auses, then in 
ase

of weak 
ommon 
auses. In ea
h Se
tion toy models will be introdu
ed �rst, then

the formal results will be gathered.

8.4 Non-atomi
 
ommon 
auses

Example 1. Consider the following toy model. There are �ve lighthouses on the

o
ean in a line at equal distan
es from one another. (See Fig. 8.5.) Let us 
ount

A BC

1 2 3 4 5

Figure 8.5: Lighthouses I.

them from left to right. In the middle one, that is in lighthouse 3 the lighthouse

keeper C has three lamps, C′
, C′′

and C′′′
. He has the following strategy for turning

the lamps on: either he turns on only the lamp C′
, or only lamp C′′′

, or all three
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lamps, or none. He never turns on the lamps in any other 
ombination. He 
hooses

between these four options with equal probability (say, by tossing two 
oins). Let

us denote that a given lamp is turned on and o� by C and C, respe
tively. Using
this notation the four possible state of the lamps are the following:

C1 ≡ C′ ∧ C′′ ∧ C′′′
(8.18)

C2 ≡ C
′ ∧ C′′ ∧ C′′′

(8.19)

C3 ≡ C′ ∧ C′′ ∧ C′′′
(8.20)

C4 ≡ C
′ ∧ C′′ ∧ C′′′

(8.21)

ea
h with probability

p(Ck) =
1

4
(8.22)

Now, in the left neighboring lighthouse, that is in lighthouse 2, there is another

lighthouse keeper, A; and his role is simply to wat
h the light signals arriving from

either the left or from the right, that is from either lighthouse 1 or lighthouse 3. He

does not know that lighthouse 1 is empty, therefore he spends equal time wat
hing

both neighboring lighthouses. Suppose furthermore that if he is wat
hing to the

left, he will miss the light signals 
oming from the right. This means that with

probability

1
2 he observes the signals 
oming from lighthouse 3 and with probability

1
2 he will miss them. Denoting the event that the lighthouse keeper A is wat
hing

to the left and to the right by aL and aR, respe
tively and denoting by A the event

that he observes a light signal (disregarding from whi
h lamp it 
omes), one obtains

the following 
onditional probabilities:

p(A|am ∧Ck) =

{

1 if m = R, k = 1, 2, 3
0 otherwise.

(8.23)

In other words, the lighthouse keeper A observes the light signal only if he is

wat
hing right and there is a signal sent from C.

Suppose that the same thing happens also in lighthouse 4. The lighthouse

keeper B is wat
hing in both dire
tions with equal probability, but sin
e lighthouse

5 is empty, he misses the light signal 
oming from lighthouse 3 with probability

1
2 .

Denoting again the events that the lighthouse keeper B is wat
hing to the left and

to the right by bL and bR, respe
tively and denoting by B the event that he observes

a signal, one obtains the following 
onditional probabilities for B's observing a light

signal:

p(B|bn ∧ Ck) =

{

1 if n = L, k = 1, 2, 3
0 otherwise.

(8.24)

This situation 
ompletely 
hara
terizes a probability spa
e. The event algebra

is generated by the following events:

A, A, B, B, am, bn, Ck

159

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



with m,n = L,R and k = 1, 2, 3, 4. The event algebra has 64 atoms, 16 of whi
h

have non-zero probability:

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m = R, n = L, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m,n = R, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m,n = L, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if

{

m = L, n = R, k = 1, 2, 3,
or k = 4

and the remaining 48 are of probability zero. By means of the probability of the

atoms one 
an easily 
al
ulate the probability of any events of the algebra.

Now, it is easy to see that there is a 
orrelation between events A and B that is

between the lighthouse keepers' observing a light signal, both in the non-
onditional

and 
onditional sense:

3

16
= p(A ∧B) 6= p(A) p(B) =

3

8
· 3
8

(8.25)

3

4
= p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) =

3

4
· 3
4

if m = R, n = L(8.26)

As one expe
ts, the 
orrelation is due to C's signaling: Ck is a lo
al, (non-
onspiratorial)

joint 
ommon 
ausal explanation of the 
orrelation (8.26) in the sense of (10.6)-(8.5):

p(A ∧B|am ∧ bn ∧ Ck) = p(A|am ∧ bn ∧ Ck) p(B|am ∧ bn ∧ Ck) =

{

1 if m = R, n = L, k = 1, 2, 3
0 otherwise

p(A|am ∧ bn ∧ Ck) = p(A|am ∧ bn′ ∧ Ck) =

{

1 if m = R, k = 1, 2, 3
0 otherwise

p(B|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧ Ck) =

{

1 if n = L, k = 1, 2, 3
0 otherwise

p(am ∧ bn ∧Ck) = p(am ∧ bn) p(Ck) =
1

4
· 1
4

Example 2. Suppose we take a 
oarser 
lustering of the swit
hing of the lamps, say

D1 ≡ C1 ∨ C2 ∨ C3 and D2 ≡ C4. Physi
ally, D1 is the event that any light is on

in lighthouse 3, and D2 is the event that no light is on. As one expe
ts, for this


oarser partition the 
ommon 
ause equations (10.6)-(8.5) will hold just as well as
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for the partition {Ck}:

p(A ∧B|am ∧ bn ∧Dk) = p(A|am ∧ bn ∧Dk) p(B|am ∧ bn ∧Dk) =

{

1 if m = R, n = L, k = 1
0 otherwise

p(A|am ∧ bn ∧Dk) = p(A|am ∧ bn′ ∧Dk) =

{

1 if m = R, k = 1
0 otherwise

p(B|am ∧ bn ∧Dk) = p(Bn|am′ ∧ bn ∧Dk) =

{

1 if n = L, k = 1
0 otherwise

p(am ∧ bn ∧Dk) = p(am ∧ bn) p(Dk) =

{

1
4 · 34 if n = L, k = 1
1
4 · 14 otherwise

Thus, {Dk} is also a lo
al, (non-
onspiratorial) joint 
ommon 
ausal explanation

of the 
orrelation (8.26).

Example 3. Now, 
onsider a 
oarser 
lustering of the swit
hings `in the wrong way':

D′
1 ≡ C1 ∨C2 ∨C4 and D′

2 ≡ C3 mixing together lights being on with lights being

o�. Contrary to the previous 
ase, for this 
oarser partition the requirement of

s
reening-o� is violated. For example:

2

3
= p(A ∧B|aR ∧ bL ∧D′

1) 6= p(A|aR ∧ bL ∧D′
1) p(B|aR ∧ bL ∧D′

1) =
2

3
· 2
3

(Lo
ality and no-
onspira
y will hold even in this 
ase.) Hen
e {D′
k} is not a lo
al,

(non-
onspiratorial) joint 
ommon 
ausal explanation of the 
orrelation (8.26).

Now, let us 
onsider the spa
etime diagram of the above examples depi
ted in

Fig. 8.6. Let N be a lo
ally 
ausal net asso
iating bounded spa
etime regions

V VA B

V VbVa C

Figure 8.6: Spa
etime diagram of Examples 1, 2 and 3.

to lo
al algebras su
h that A ∈ A(VA), B ∈ A(VB), am ∈ A(Va), bn ∈ A(Vb) and
Ck, Dk, D

′
k ∈ A(VC) for allm, n and k. As shown in Se
tion 2, lo
al 
ausality of the

net implies that the set {Ck}�being an atomi
 partition lo
alized in the strong past

PS(VA, VB)�satis�es (10.6)-(8.4), hen
e providing a lo
al, joint 
ommon 
ausal

explanation of the 
orrelation (8.26). (No-
onspira
y (8.5), as already stressed
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in Se
tion 2, is not a 
onsequen
e of lo
al 
ausality but is assumed in the toy

model.) Thus, {Ck} is an atomi
, strong, lo
al, non-
onspiratorial joint 
ommon


ause system.

What about non-atomi
 partitions lo
alized in the strong past? Again, both

{Dk} and {D′
k} are lo
alized in PS(VA, VB), but whereas {Dk} is a 
ommon 
ause

system of the 
orrelation (8.26), {D′
k} is not. Thus, lo
al 
ausality is 
ompletely

silent about whether a 
oarse-grained partition of a lo
al algebra in the strong past

is a 
ommon 
ause system of the 
orrelated events or not. This `non-aggregable'


hara
ter of the atomi
 
ommon 
ause relies heavily on the fa
t that it is lo
alized

in the strong past�as will be seen in Proposition 12 in the next Se
tion when


ontrasted with the opposite 
hara
ter of weak 
ommon 
auses. Moreover, the sat-

isfa
tion of equations (10.6)-(8.5) for a given partition also does not ensure that

�ner-grained partitions will also do so (this is Simpson's paradox; see e.g. (U�nk

1999)). In this sense the existen
e of a 
ommon 
ause system 
hara
terized by

the probabilisti
 
onstraints (10.6)-(8.5) for a given 
orrelation is a weaker require-

ment than the a

ommodation of the same 
orrelation in a lo
ally 
ausal theory.

There are many more lo
al, non-
onspiratorial joint 
ommon 
ause systems than

the atomi
 ones required by lo
ally 
ausal theories.

Obviously, from the perspe
tive of the EPR-Bell s
enario this di�eren
e is not of


entral importan
e, sin
e the violation of the Bell inequalities derived from (10.6)-

(8.5) also ex
ludes atomi
 
ommon 
ause systems and hen
e the possibility of a

lo
ally 
ausal theory. But fo
using simply on the logi
al relation between Bell's

lo
al 
ausality and the probabilisti
 equations (10.6)-(8.5), it is fair to say that lo
al


ausality `justi�es' only one of the multiple 
ommon 
ausal explanations, namely the

atomi
 one. The 
oarse-grained 
ommon 
ause system {Dk}, however, is an entirely
salient physi
al explanation of the the 
orrelation (�Observers see light signals only

if some lamps are swit
hed on�), even if the existen
e of su
h a 
ommon 
ausal

explanation is not a 
onsequen
e of the a

ommodation of the physi
al s
enario

into a lo
ally 
ausal theory.

Now we turn to the role of the other ingredient in Bell's formulation, namely

the lo
alization of the 
ommon 
ause in the strong past.

8.5 Weak 
ommon 
auses

Example 4. Now, let us modify the population of the lighthouses. Let A and B

remain in their pla
es, that is in lighthouse 2 and 4, respe
tively: but suppose

that lighthouses 1, 3 and 5 are inhabited by three lighthouse keepers C′
, C′′

and

C′′′
, respe
tively, ea
h having the 
orresponding one of the three lamps introdu
ed

in the previous Se
tion. (See Fig. 8.7.) That is suppose that now lighthouse

keeper C′
in lighthouse 1 operates lamp C′

, lighthouse keeper C′′
in lighthouse 3

operates lamp C′′
and lighthouse keeper C′′′

in lighthouse 5 operates lamp C′′′
.

Suppose furthermore that the ons and o�s of the di�erent lamps follow just the

same statisti
s as de�ned in (8.18)-(8.22), that is p(Ck) =
1
4 for every k = 1, 2, 3, 4

(only lamp C′
is on, only lamp C′′′

, all three lamps are on, none is on).
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A BC

1 2 3 4 5

C C

Figure 8.7: Lighthouses II.

Now, the role of lighthouse keepers A and B is just as in Se
tion 4: to wat
h

the light signals arriving at lighthouse 2 and 4, respe
tively. But now both 
an

obtain a signal from both dire
tions. Suppose that both A and B 
an only see the

light signal sent from a neighboring lighthouse. That is, A 
annot see the signal

sent from C′′′
(say, be
ause it is too far or the lighthouses hide ea
h other); and

B 
annot see the signal sent from C′
. Now, again the event algebra has 16 atoms

with non-zero probability:

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if k = 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m = L, k = 1

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if n = R, k = 2

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if







m = R, k = 1,
or n = L, k = 2,
or k = 4

and there is a 
onditional and non-
onditional 
orrelation between event A and

B, the dete
tions of light signals in lighthouse 2 and 4, respe
tively, both in the

non-
onditional and 
onditional sense:

1

4
= p(A ∧B) 6= p(A) p(B) =

3

8
· 3
8

(8.27)

1

4
= p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) =







1
4 · 14 if m = R, n = L,
1
4 · 12 if m,n = R,
1
2 · 14 if m,n = L.

(8.28)

As one expe
ts, {Ck} is a lo
al, (non-
onspiratorial) joint 
ommon 
ausal explana-
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tion of the 
orrelation:

p(A ∧B|am ∧ bn ∧ Ck) = p(A|am ∧ bn ∧ Ck) p(B|am ∧ bn ∧ Ck) =

{

1 if m = R, n = L, k = 3
0 otherwise

p(A|am ∧ bn ∧ Ck) = p(A|am ∧ bn′ ∧ Ck) =







1 if m = L, k = 1
1 if k = 3
0 otherwise

p(B|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧ Ck) =







1 if m = R, k = 2
1 if k = 3
0 otherwise

p(am ∧ bn ∧Ck) = p(am ∧ bn) p(Ck) =
1

4
· 1
4

Now, 
onsider again the spa
etime diagram of Example 4 depi
ted in Fig. 8.8.

Here {Ck} is lo
alized not in the strong past but in the weak past of the 
orrelated

V VA B

VV VC’’C’ C’’’VbVa

Figure 8.8: Spa
etime diagram of Example 4.

events. How do these weak 
ommon 
auses relate to Bell's lo
al 
ausality? This

question is answered in the following

Proposition 11. Let N be again a lo
ally 
ausal net asso
iating bounded spa
e-

time regions to lo
al algebras and let A ∈ A(VA), B ∈ A(VB), am ∈ A(Va),
bn ∈ A(Vb), C′

i ∈ A(VC′), C′′
j ∈ A(VC′′ ) and C′′′

l ∈ A(VC′′′ ) for all m,n, i, j, l
be atoms of the appropriate algebras with the regions as shown in Fig. 8.8. (In

Example 4 C′
1 ≡ C′

, C′
2 ≡ C

′
and similarly for C′′

j and C′′′
l .) Then

{Cijl} ≡ {C′
i ∧ C′′

j ∧ C′′′
l }

is a weak, lo
al, joint 
ommon 
ause of the 
onditional 
orrelations

p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) (8.29)
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in the sense that the following equations hold:

p(A ∧Bn|am ∧ bn ∧ Cijl) = p(A|am ∧ bn ∧Cijl) p(B|am ∧ bn ∧ Cijl)(8.30)

p(A|am ∧ bn ∧ Cijl) = p(A|am ∧ bn′ ∧ Cijl) (8.31)

p(B|am ∧ bn ∧ Cijl) = p(B|am′ ∧ bn ∧ Cijl) (8.32)

Proof. The proof is straightforward. Lo
al 
ausality of the net implies that for the

atoms a′im ≡ C′
i∧am ∈ A(VC′∪Va), b′nl ≡ bn∧C′′′

l ∈ A(Vb∪VC′′′) and C′′
j ∈ A(VC′′)

the following equations hold (being analogous to lo
al 
ausality (8.14)-(8.17)):

p(A ∧Bn|a′im ∧ b′nl ∧C′′
j ) = p(A|a′im ∧ b′nl ∧ C′′

j ) p(B|a′im ∧ b′nl ∧ C′′
j )(8.33)

p(A|a′im ∧ b′nl ∧C′′
j ) = p(A|a′im ∧ b′n′l′ ∧C′′

j ) (8.34)

p(B|a′im ∧ b′nl ∧C′′
j ) = p(B|a′i′m′ ∧ b′nl ∧C′′

j ) (8.35)

In other words, {C′′
j } is a strong, lo
al, joint 
ommon 
ause of the 
onditional


orrelations

p(A ∧B|a′im ∧ b′nl) 6= p(A|a′im) p(B|b′nl) (8.36)

with the new 
onditions a′im and b′nl. (Again, no-
onspira
y

p(a′im ∧ b′nl ∧ C′′
j ) = p(a′im ∧ b′nl) p(C′′

j ) (8.37)

does not follow from lo
al 
ausality of the net.) But (8.33)-(8.35) are just equivalent

to (8.30)-(8.32) proving that {Cijl} is a weak, lo
al, joint 
ommon 
ause of the


onditional 
orrelations (10.13).

As we saw before, the 
orrelated events A ∈ A(VA), B ∈ A(VB) in a lo
ally 
ausal

net always have an atomi
, strong 
ommon 
ause system C′′
j ∈ A(VC′′ ). Now,

Proposition 13 states that this strong 
ommon 
ause system 
an always be spatially

extended into a weak 
ommon 
ause system by simply adding some elements C′
i and

C′′′
l from the spa
elike separated regions VC′

and VC′′′
, respe
tively. These extra

terms will not spoil the s
reening-o�: they 
an be freely added to the strong 
ommon


ause. Moreover, as will turn out from Proposition 12, these extra terms need not

be atomi
 either: any Boolean 
ombination C′ = ∨iC′
i and C

′′′ = ∨lC′′′
l 
an also

be added without violating the probabilisti
 
onstraints (10.6)-(8.4). Thus, lo
al


ausality does not determine the lo
alization of the 
ommon 
ause, it is 
ompatible

both with strong and weak 
ommon 
auses.

But what is the exa
t relation between the weak and the strong 
ommon 
ause

systems arising from the lo
al 
ausality of a given net?

In Example 4 one might �nd it pe
uliar that even though the 
ommon 
ause

{Cijl} was non-
onspiratorial (it was probabilisti
ally independent of am and bn),
still there was a `
onspira
y' within the 
ommon 
ause: C′

i, C
′′
j and C′′′

l were not

probabilisti
ally independent. For example it never happened that only lamp C′′

was swit
hed on. This fa
t does not raise any problem until one asks whether the


ommon 
ause is lo
alized at one pla
e: for example, as in Example 1, where all the
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three lamps were lo
alized in lighthouse 3. But in Example 4 the 
ommon 
ause

was s
attered around in three di�erent lo
ations. It was lo
ated in three di�erent

lighthouses. The problem with su
h a 
ommon 
ause that it may well question

our whole proje
t to provide a 
ommon 
ausal explanation for a 
orrelation. If

the explanans itself has a built-in 
orrelation, then what is the point in using it

for explaining 
orrelations? Can we not 
ome up with a 
ommon 
ausal model in

whi
h C′
i, C

′′
j and C′′′

l are spa
elike separated but still independent, say, regulated

by three independent 
oin tossings in lighthouse 1, 3 and 5, respe
tively. Can one

obtain a weak 
ommon 
ause for a given 
orrelation without a built-in 
orrelation?

In the next proposition we will answer this question in the negative.

Let {Cijl} ≡ {C′
i ∧ C′′

j ∧ C′′′
l } be a weak 
ommon 
ause of a given 
orrelation.

(Here {C′
i}, {C′′

j } and {C′′′
l } are general partitions of A(VC′ ), A(VC′′) and A(VC′′′ ),

respe
tively, and not those spe
ial ones spe
i�ed in the above Examples.) Let us


all {Cijl} a genuine weak 
ommon 
ause, i� {C′′
j }�the `middle part' of {Cijl}�is

not a strong 
ommon 
ause. In what follows we will show that the above mentioned

`built-in 
orrelation' is a ne
essary 
ondition to explain a 
orrelation by a genuine

weak 
ommon 
ause. In other words, we will show that if {Cijl} ≡ {C′
i∧C′′

j ∧C′′′
l } is

a 
ommon 
ause of the 
orrelation (10.13) and C′
i, C

′′
j and C′′′

l are probabilisti
ally

independent, then also {C′′
j } will be a 
ommon 
ause of the 
orrelation.

Proposition 12. Suppose that {C′
i∧C′′

j ∧C′′′
l } is a 
ommon 
ause of the 
orrelation

between Am and Bn in the sense that the following equations hold:

p(Am ∧Bn|am ∧ bn ∧C′
i ∧ C′′

j ∧ C′′′
l ) = p(Am|am ∧ bn ∧ C′

i ∧C′′
j ∧C′′′

l ) p(Bn|am ∧ bn ∧ C′
i ∧ C′′

j ∧ C(8.38)
p(Am|am ∧ bn ∧C′

i ∧ C′′
j ∧ C′′′

l ) = p(Am|am ∧ bn′ ∧ C′
i ∧ C′′

j ∧ C′′′
l ) (8.39)

p(Bn|am ∧ bn ∧C′
i ∧ C′′

j ∧ C′′′
l ) = p(Bn|am′ ∧ bn ∧ C′

i ∧ C′′
j ∧ C′′′

l ) (8.40)

p(am ∧ bn ∧C′
i ∧ C′′

j ∧ C′′′
l ) = p(am ∧ bn) p(C′

i ∧ C′′
j ∧ C′′′

l ) (8.41)

and suppose that C′
i, C

′′
j and C′′′

l are independent, that is

p(C′
i ∧ C′′

j ∧ C′′′
l ) = p(C′

i) p(C
′′
j ) p(C

′′′
l ) (8.42)

then {C′′
j } is also a 
ommon 
ause of the 
orrelation:

p(Am ∧Bn|am ∧ C′′
j ) = p(Am|am ∧ bn ∧ C′′

j ) p(Bn|am ∧ bn ∧ C′′
j ) (8.43)

p(Am|am ∧ bn ∧ C′′
j ) = p(Am|am ∧ bn′ ∧ C′′

j ) (8.44)

p(Bn|am ∧ bn ∧ C′′
j ) = p(Bn|am′ ∧ bn ∧ C′′

j ) (8.45)

p(am ∧ bn ∧ C′′
j ) = p(am ∧ bn) p(C′′

j ) (8.46)

For the proof see Appendix B. Sin
e in Example 4 {Cijl} ≡ {C′
i ∧ C′′

j ∧ C′′′
l }

was lo
alized in the weak past and {C′′
j } was lo
alized in the strong past, we


an interpret Proposition 12 as follows: a weak 
ommon 
ause without a `built-in


orrelation' is always `parasiti
' on a strong 
ommon 
ause in the sense that there

is no other way to provide a genuine weak 
ommon 
ause for a given 
orrelation

than to make the spa
elike separated parts of the 
ommon 
ause probabilisti
ally
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dependent. In brief, there is no genuine weak 
ommon 
ause without `built-in


orrelation'.

Proposition 12 ni
ely explains why we are 
ompelled to use strong 
ommon


auses in 
lassi
al 
ommon 
ausal explanations. If we want to avoid explaining


orrelations in terms of other 
orrelations, we 
annot apply genuine weak 
ommon


auses. So instead of appealing to non-genuine ('parasiti
') weak 
ommon 
auses,

it is more informative to use simply strong 
ommon 
auses.

The type of the 
ommon 
ause, however, is not always a matter of what we

might want. As was mentioned in the Introdu
tion, the 
ommon 
auses that nat-

urally arise in AQFT are weak and not strong 
ommon 
auses. Why is that? The

mathemati
al answer, namely that only (the possibility of) weak 
ommon 
auses

follows from the axioms of the theory (see (Rédei 1997) and also (Hofer-Szabó and

Ve
sernyés 2012a, b)), is not very intuitive. In sear
h of a more intuitive explana-

tion, we 
on
lude this paper with a highly spe
ulative question:

Question: Is the fa
t that 
ommon 
auses in AQFT are weak 
ommon 
auses

somehow related to or a 
onsequen
e of the following two fa
ts? (If these latter are

fa
ts at all.)

1. In AQFT quantum states establishing a superluminal 
orrelation between two

spa
elike separated events also establish (or `typi
ally' establish) a `built-in


orrelation' between the spa
elike separated parts of the weak 
ommon 
auses

of this 
orrelation.

2. An analogue of Proposition 12 holds in AQFT: stating that, roughly speaking,

a `built-in 
orrelation' is a ne
essary 
ondition to explain a 
orrelation by a

genuine weak 
ommon 
ause.

Were these two fa
ts to hold, one 
ould understand why weak 
ommon 
auses

in AQFT are genuine 
ommon 
auses, that is why they do not redu
e to strong


ommon 
auses. (For more on this see (Hofer-Szabó and Ve
sernyés 2014a, b).)

8.6 Con
lusion and dis
ussion

In this paper, we gave a framework 
onne
ting sto
hasti
 events and spa
etime re-

gions, the isotone net framework of AQFT (Point 1) su
h that, on a 
ertain spe
i�-


ation and lo
alization of the events in question (Point 2), lo
al 
ausality, de�ned in

this framework in an appropriate way, implies (up to no-
onspira
y) the standard

probabilisti
 
hara
terization of the 
ommon 
ausal explanation (Point 3). The

subtle roles of the 
hoi
e of spe
i�
ation (atomi
 vs. non-atomi
) and lo
alization

(strong vs. weak) were analyzed with respe
t to the relations of the spatiotemporal

and probabilisti
 
hara
terizations of the 
ommon 
ause. Spe
i�
ally, it was shown

that (i) the existen
e of non-atomi
 probabilisti
 
ommon 
auses does not follow

from the a

ommodation of the 
orrelations in question into a lo
ally 
ausal net;

(ii) the probabilisti
 
hara
terization of the 
ommon 
ause is also 
ompatible with

weak 
ommon 
auses; and (iii) genuine weak 
ommon 
auses 
an be provided for a
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given 
orrelation only at the 
ost of introdu
ing a `built-in 
orrelation' between the

spa
elike separated parts of the 
ommon 
ause. We also asked whether this latter

fa
t 
an help us understand how weak 
ommon 
auses arise naturally in AQFT.

Finally, we would like to brie�y 
omment on an ongoing debate between Hen-

son, Rédei and San Pedro on �
omparing-distinguishing-
onfounding 
ausality prin-


iples� (Henson, 2005; Rédei and San Pedro, 2012; Henson, 2013a). The debate is

about the status of a proposition proved in Henson (2005) 
laiming that the Strong

and Weak Common Cause Prin
iples are equivalent. Here Strong/Weak Common

Cause Prin
iples say that any atom of the algebra pertaining to the strong/weak

past of a pair of 
orrelated events is a s
reener-o�. The use of atoms (there 
alled

"full spe
i�
ations") in the Common Cause Prin
iples is inspired�just as in this

paper�by Bell's work (see also Norsen, 2011), and further motivated as a means

to evade Simpson paradoxes (see also U�nk, 1999). The �rst point to make is that

sin
e Henson's framework 
onne
ting spa
etime regions and probability spa
es is

not the isotone net formalism used in this paper, and his Common Cause Prin
iples

are not the non-
onspiratorial, lo
al, joint 
ommon 
ausal explanation (10.6)-(8.5)

(used to explain 
onditional 
orrelations!), it is not easy to see how Henson's result

exa
tly relates to ours. In the isotone net formalism only bounded regions are asso-


iated to lo
al algebras, whereas Henson's "least domains of de
idability" formalism

is not restri
ted to su
h regions. Rédei and San Pedro (2012) 
hallenge Henson's

result on the basis of its in
ompatibility with some propositions in AQFT (Rédei

and Summers, 2002, Proposition 3). They 
laim that Henson's proof 
ru
ially de-

pends on the regions being allowed to be in�nite; and they question the validity

of a similar proof for �nite regions.

5

For �nite regions, su
h as the regions in our

approa
h, Henson a
knowledges that his proof "
annot be modi�ed so that" the

two Common Cause Prin
iples are equivalent; "at least not assuming that there

are no 
orrelations between events on spa
elike se
tions of initial hypersurfa
e"

(Henson, 2005, 532). In the light of our results and dis
ussion above, we would

like to interpret: (i) the �rst part of this quote as 
laiming that (provided the two

formalisms are equivalent) there is no 
ontradi
tion between Henson's proof and

our sharp distin
tion between weak and strong 
ommon 
auses; and (ii) the se
ond

half of the quote as stating something parallel to Proposition 12. Nonetheless, it

would be highly desirable to investigate the relation between the two approa
hes

more thoroughly.
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Their 
hara
terization of "�nite", however, is defe
tive, sin
e the region they want to

have as in�nite turns out to be �nite; whi
h fa
t is revealed in Henson's (2013a) reply.

Here is a better 
hara
terization: V is �nite i�

(

I−(V
′′) \ (V ′′)

)

′′

⊇ V ′′
.
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in the Center for Philosophy of S
ien
e at the University of Pittsburgh.

Appendix A

Here we will show that if a set of 
orrelations {(Am, Bn)|m,n = 1, 2} has a lo
al,

non-
onspiratorial joint 
ommon 
ausal explanation in the sense of (10.6)-(8.5), then

the following Clauser�Horne inequalities have to hold for any m,m′, n, n′ = 1, 2;
m 6= m′, n 6= n′

:

−1 6 p(Am ∧Bn|am ∧ bn) + p(Am ∧Bn′ |am ∧ bn′) + p(Am′ ∧Bn|am′ ∧ bn)
−p(Am′ ∧Bn′ |am′ ∧ bn′)− p(Am|am ∧ bn)− p(Bn|am ∧ bn) 6 0(8.47)

The derivation of (9.24) from (10.6)-(8.5) is simple. It is an elementary fa
t of

arithmeti
 that for any α, α‘, β, β‘ ∈ [0, 1] the number

αβ + αβ‘ + α‘β − α‘β‘ − α− β (8.48)

lies in the interval [−1, 0]. Now let α, α‘, β, β‘ be the following 
onditional proba-

bilities:

α ≡ p(Am|am ∧ bn ∧ Ck) (8.49)

α‘ ≡ p(Am′ |am′ ∧ bn′ ∧ Ck) (8.50)

β ≡ p(Bn|am ∧ bn ∧ Ck) (8.51)

β‘ ≡ p(Bn′ |am′ ∧ bn′ ∧Ck) (8.52)

Plugging (9.26)-(9.29) into (9.25) and using lo
ality (8.3)-(8.4) one obtains

−1 6 p(Am|am ∧ bn ∧ Ck)p(Bn|am ∧ bn ∧ Ck) + p(Am|am′ ∧ bn ∧Ck)p(Bn′ |am′ ∧ bn ∧Ck)

+p(Am′ |am′ ∧ bn ∧Ck)p(Bn|am′ ∧ bn ∧ Ck)− p(Am′ |am′ ∧ bn′ ∧ Ck)p(Bn′ |am′ ∧ bn′ ∧Ck)

−p(Am|am ∧ bn ∧ Ck)− p(Bn|am ∧ bn ∧ Ck) 6 0(8.53)

Using s
reening-o� (10.6) one obtains

−1 6 p(Am ∧Bn|am ∧ bn ∧ Ck) + p(Am ∧Bn′ |am′ ∧ bn ∧ Ck)

+p(Am′ ∧Bn|am′ ∧ bn ∧ Ck)− p(Am′ ∧Bn′ |am′ ∧ bn′ ∧ Ck)

−p(Am|am ∧ bn ∧ Ck)− p(Bn|am ∧ bn ∧ Ck) 6 0 (8.54)

Finally, multiplying the above inequality by p(Ck), then summing up for the indi
es

k and using no-
onspira
y (8.5) one arrives at (9.24).

Appendix B

Here we prove Proposition 13. Suppose that {C′
i ∧C′′

j ∧C′′′
l } is a 
ommon 
ause of

the 
orrelation between Am and Bn in the sense of (8.38)-(8.41) and suppose that
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C′
i, C

′′
j and C′′′

l are independent in the sense of (8.42). First, observe that (8.41)

and (8.42) together entail that:

p(am ∧ bn ∧ C′
i ∧ C′′

j ∧ C′′′
l ) = p(am ∧ bn) p(C′

i)p(C
′′
j )p(C

′′′
l ) (8.55)
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Then C′′
j is a strong 
ommon 
ause. That is (8.43)-(8.46) hold:

p(Am ∧Bn|am ∧ bn ∧ C′′
j ) =

p(Am ∧Bn ∧ am ∧ bn ∧ C′′
j )

p(am ∧ bn ∧ C′′
j )

(8.55)
=

∑

il p(Am ∧Bn|am ∧ bn ∧ C′
i ∧ C′′

j ∧ C′′′
l )p(am ∧ bn)p(C′

i)p(C
′′
j )p(C

′′′
l )

p(am ∧ bn)p(C′′
j )

(8.38)
=

∑

il

p(Am|am ∧ bn ∧ C′
i ∧ C′′

j ∧ C′′′
l )p(Bn|am ∧ bn ∧ C′

i ∧C′′
j ∧C′′′

l )p(C′
i)p(C

(8.39)(8.40)
=

∑

il

p(Am|am ∧ bn ∧ C′
i ∧ C′′

j )p(Bn|am ∧ bn ∧ C′′
j ∧C′′′

l )p(C′
i)p(C

′′′
l )

(8.55)
= p(Am|am ∧ bn ∧C′′

j ) p(Bn|am ∧ bn ∧ C′′
j )

p(Am|am ∧ bn ∧ C′′
j ) =

p(Am ∧ am ∧ bn ∧ C′′
j )

p(am ∧ bn ∧ C′′
j )

(8.55)
=

∑

il p(Am|am ∧ bn ∧ C′
i ∧ C′′

j ∧ C′′′
l )p(am ∧ bn)p(C′

i)p(C
′′
j )p(C

′′′
l )

p(am ∧ bn)p(C′′
j )

(8.39)
=

∑

il

p(Am|am ∧ bn′ ∧ C′
i ∧C′′

j ∧C′′′
l )p(C′

i)p(C
′′′
l )

=

∑

il p(Am|am ∧ bn′ ∧ C′
i ∧ C′′

j ∧ C′′′
l )p(am ∧ bn′)p(C′

i)p(C
′′
j )p(C

′′′
l )

p(am ∧ bn′)p(C′′
j )

(8.55)
=

p(Am ∧ am ∧ bn′ ∧ C′′
j )

p(am ∧ bn′ ∧ C′′
j )

= p(Am|am ∧ bn′ ∧ C′′
j )

p(Bn|am ∧ bn ∧ C′′
j ) =

p(Bn ∧ am ∧ bn ∧C′′
j )

p(am ∧ bn ∧ C′′
j )

(8.55)
=

∑

il p(Bn|am ∧ bn ∧ C′
i ∧C′′

j ∧C′′′
l )p(am ∧ bn)p(C′

i)p(C
′′
j )p(C

′′′
l )

p(am ∧ bn)p(C′′
j )

(8.40)
=

∑

il

p(Bn|am′ ∧ bn ∧C′
i ∧ C′′

j ∧ C′′′
l )p(C′

i)p(C
′′′
l )

=

∑

il p(Bn|am′ ∧ bn ∧ C′
i ∧ C′′

j ∧ C′′′
l )p(am′ ∧ bn)p(C′

i)p(C
′′
j )p(C

′′′
l )

p(am′ ∧ bn)p(C′′
j )

(8.55)
=

p(Bn ∧ am′ ∧ bn ∧ C′′
j )

p(am′ ∧ bn ∧ C′′
j )

= p(Bn|am′ ∧ bn ∧ C′′
j )

p(am ∧ bn ∧ C′′
j ) =

∑

il

p(am ∧ bn ∧ C′
i ∧ C′′

j ∧ C′′′
l )

(8.55)
=

∑

il

p(am ∧ bn ∧ C′
i ∧ C′′′

l )p(C′′
j ) = p(am ∧ bn) p(C′′

j )

where the numbers over the equation signs refer to the equation used at that step.
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Chapter 9

Separate 
ommon 
ausal

explanation and the Bell

inequalities

In the paper we ask how the following two fa
ts are related: (i) a set of 
orrelations

has a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation; (ii) the set

satis�es the Bell inequalities. Our answer will be partial: we show that no set

of 
orrelations violating the Clauser�Horne inequalities 
an be given a lo
al, non-


onspiratorial separate 
ommon 
ausal model if the model is deterministi
.

9.1 Introdu
tion

A

ording to the standard interpretation a 
ommon 
ausal explanation of a set of

EPR 
orrelations 
onsists in providing a so-
alled 
ommon 
ommon 
ause system

that is a 
ommon s
reener-o� for all 
orrelations of the set su
h that this 
ommon

s
reener-o� is lo
al and non-
onspiratorial. (For the pre
ise de�nitions see below.)

However, it is well known that the assumption that a set of 
orrelations has a

lo
al, non-
onspiratorial 
ommon 
ommon 
ause system results in various Bell in-

equalities. Sin
e these Bell inequalities are violated for appropriate measurement

settings a 
ommon 
ausal explanation of the EPR 
orrelations is ex
luded�at least

a

ording to this interpretation of the 
ommon 
ausal explanation.

However, in 1996 Belnap and Szabó 
ame up with a weaker interpretation of

the 
ommon 
ausal explanation (Belnap, Szabó, 1996). The idea was that a set

of 
orrelations may not have a 
ommon 
ommon 
ause system but only a set of

separate 
ommon 
ause systems explaining the 
orrelations separately. In 2000 Sz-

abó raised the question whether this idea provides a satisfa
tory 
ommon 
ausal

explanation for the EPR s
enario (Szabó, 2000). To test his idea Szabó took a set

of EPR 
orrelations violating the appropriate Bell inequalities and then developed
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a 
omputer program to generate lo
al, non-
onspiratorial separate 
ommon 
ause

systems for the given set. The result of the 
omputer simulations was that the


hosen set of EPR 
orrelations 
ould be given a lo
al separate 
ommon 
ausal ex-

planation, however the 
ommon 
ause systems were 
onspiratorial in a very tri
ky

way. (See below.) Being unable to remove the unwanted 
onspira
ies Szabó 
on-


luded the paper with the 
onje
ture that EPR 
orrelation 
an not be given a lo
al,

non-
onspiratorial separate 
ommon 
ausal explanation.

Szabó's idea inspired a whole series of papers devoted to the 
lari�
ation of

the possibility of a separate 
ommon 
ausal explanation of EPR 
orrelations. In

2005 Grassho�, Portmann and Wüthri
h derived the Wigner-type Bell inequalities

from Szabó's premises plus the assumption that the set of 
orrelations 
onsisted

of only perfe
t anti
orrelations. (Grassho� et al, 2005). The assumption of per-

fe
t anti
orrelations, however, had two unpleasant 
onsequen
es. First, the fate

of the separate 
ommon 
ausal explanation of the EPR s
enario hinged on a pre-


ise experimental test of perfe
t anti
orrelations. Se
ond, the assumption of perfe
t

anti
orrelations redu
ed the separate 
ommon 
ausal derivation of the Bell inequal-

ities to a standard 
ommon 
ommon 
ausal derivation. This redu
tion has been

shown by Hofer-Szabó in (Hofer-Szabó, 2008). In the same paper Hofer-Szabó has

presented a derivation of Bell inequalities from lo
al, non-
onspiratorial separate


ommon 
auses without assuming perfe
t anti
orrelations. Sin
e a 
ommon 
ause is

a spe
ial 
ommon 
ause system (a 
ommon 
ause system of size 2) the result was not
general enough. In 2007 Portmann and Wüthri
h have eliminated the restri
tion to


ommon 
auses from the derivation and derived the Clauser-Horne inequality from

lo
al, non-
onspiratorial separate 
ommon 
ause systems in the 
ontext of almost

perfe
t anti
orrelations (Portmann and Wüthri
h, 2007). Hofer-Szabó generalized

this derivation for any Bell(δ) inequality that is an inequality di�ering from some

Bell inequality in a term of order of δ (Hofer-Szabó, 2011). In the light of this

derivation a δ > 0 threshold 
ould be given for any set of 
orrelations violating

the standard Bell inequalities su
h that if an approriate subset of the original set

of 
orrelations di�er from perfe
t anti
orrelations less then δ then the set 
an not

be given a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation. These

results have settled the problem 
on
erning the relation between the separate 
om-

mon 
ausal explanations and the EPR s
enario. However, they have not settled the

relation between the separate 
ommon 
ausal explanations and the Bell inequalities.

On 
loser examination the strategies used in the papers of the above authors

(in
luding the author of the present paper) had a very ba�ing stru
ture. The

rea
tion of the authors to Szabó's inability to provide a lo
al, non-
onspiratorial

separate 
ommon 
ausal explanation for a set of EPR 
orrelations was the following.

The 
hosen set of 
orrelations 
annot have a separate 
ommon 
ausal explanation

sin
e it violates a Bell inequality whi
h 
an be derived from the assumption that

the given set has a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation.

Of 
ourse, the failure of a separate 
ommon 
ausal explanation may result from

other reasons as well sin
e separate 
ommon 
ause explanations may bring in other


onstraints between the probability of the 
orrelating events di�erent from the Bell

inequalities; still the idea motivating the explanation of this fa
t was to derive
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some Bell inequalities from Szabó's premisses. However, it was not that happened.

Instead of deriving the appropriate Bell inequality from the assumption that the

original set of the 
orrelations 
hosen by Szabó has a lo
al, non-
onspiratorial

separate 
ommon 
ausal explanation, all the mentioned authors have 
hosen another

set 
ontaining only perfe
t anti
orrelations. Then from the assumption that this set

of perfe
t anti
orrelations has a lo
al, non-
onspiratorial separate 
ommon 
ausal

explanation they have derived a Bell inequality for the 
orrelations of the original

set. So the Bell inequality they rea
hed did not pertain to the original set but to

the newly 
hosen set of perfe
t anti
orrelations.

The e�ort of all the subsequent papers (Portmann and Wüthri
h, 2007), (Hofer-

Szabó, 2008) and (Hofer-Szabó, 2011) was to release the strong requirement of

perfe
t anti
orrelations in the derivation and to substitute perfe
t anti
orrelations

by almost perfe
t anti
orrelations.

Of 
ourse, this strategy is impe

able as long as the aim of the proof is to

ex
lude a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation of the EPR

s
enario in general. However, it does not explain why Szabó 
ould not provide a

lo
al, non-
onspiratorial separate 
ommon 
ausal explanation for his own set of


orrelations. Sin
e Szabó's 
on
ern was not to give a separate 
ommon 
ausal

explanation for the perfe
t anti
orrelation set, the violation of Bell inequalities

derived from the assumption that the perfe
t anti
orrelation set has a separate


ommon 
ausal explanation did not explain Szabó's failure of providing a separate


ommon 
ausal explanation for his own set. In order to explain this fa
t one should

derive some Bell inequalities from the assumption that Szabó's original set has a

lo
al, non-
onspiratorial separate 
ommon 
ausal explanation.

Here we will provide a partial answer to this problem. We will show that no set

of 
orrelations violating the Clauser�Horne inequalities 
an be given a deterministi
,

lo
al, non-
onspiratorial separate 
ommon 
ausal explanation. Sin
e the elimina-

tion of the requirement of determinism from the proof is not straightforward, the

general question whether 
orrelations violating the Clauser�Horne inequalities 
an

be given a (not ne
essary deterministi
) lo
al, non-
onspiratorial separate 
ommon


ausal explanation remains open.

In Se
tion 2 we summarize the assumptions of a lo
al, non-
onspiratorial 
om-

mon 
ommon 
ausal and separate 
ommon 
ausal explanation of a set of EPR


orrelations respe
tively. In Se
tion 3 we show in sket
h the steps how these as-

sumptions result in the Clauser�Horne inequalities if the set for whi
h we are

looking for a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation is a set

of perfe
t or almost perfe
t anti
orrelations. Finally, in Se
tion 4 we drop these ex-

tra 
orrelations and derive the Clauser�Horne inequalities from Szabó's original set

of 
orrelations for deterministi
, lo
al, non-
onspiratorial separate 
ommon 
ause

systems.
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9.2 Common 
ausal explanations of EPR 
orrela-

tions

Consider the Bohm version of the EPR experiment with a pair of spin-

1
2 parti
les

prepared in the singlet state |Ψs〉. Let ai denote the event that the measurement

apparatus is set to measure the spin in dire
tion ~ai in the left wing where i is an
element of an index set I of spatial dire
tions; and let p(ai) stand for the probability

of ai. Let bj and p(bj) respe
tively denote the same for dire
tion

~bj in the right

wing where j is again in the index set I. (Note that i = j does not mean that

~ai and ~bj are parallel dire
tions.) Furthermore, let p(Ai) stand for the probability

that the spin measurement in dire
tion ~ai in the left wing yields the result �up� and

let p(Bj) be de�ned in a similar way in the right wing for dire
tion

~bj. A

ording
to quantum me
hani
s the quantum probability of getting �up� in dire
tion ~ai in
the left wing; getting �up� in dire
tion

~bj in the right wing; and getting �up� in

both dire
tions ~ai and ~bj are given by the following relations

Tr(W|Ψs〉 (PAi
⊗ I)) =

1

2
(9.1)

Tr(W|Ψs〉 (I ⊗ PBj
)) =

1

2
(9.2)

Tr(W|Ψs〉 (PAi
⊗ PBj

)) =
1

2
sin2

(

θaibj

2

)

(9.3)

where Tr is the tra
e fun
tion; W|Ψs〉 is the density operator pertaining to the pure

state |Ψs〉; PAi
and PBj

denote proje
tions on the eigensubspa
es with eigenvalue

+1 of the spin operators asso
iated with dire
tions ~ai and ~bj respe
tively; and θaibj

denotes the angle between dire
tions ~ai and ~bj .

Figure 9.1: EPR�Bohm setup for spin-

1

2
parti
les

The standard way to interpret quantum probabilities is to identify them with
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onditional probabilities as follows:

p(Ai|aibj) = Tr(W|Ψs〉 (PAi
⊗ I)) (9.4)

p(Bj |aibj) = Tr(W|Ψs〉 (I ⊗ PBj
)) (9.5)

p(AiBj |aibj) = Tr(W|Ψs〉 (PAi
⊗ PBj

)) (9.6)

where the events Ai, Bj , ai and bj (i, j ∈ I) respe
tively are elements of a 
lassi
al

probability measure spa
e (X,S, p) and the 
onditional probabilities are de�ned

in the usual way. With this identi�
ation quantum me
hani
s predi
ts 
orrelation

between 
lassi
al 
onditional probabilities for non-perpendi
ular dire
tions ~ai and
~bj:

p(AiBj |aibj) 6= p(Ai|aibj)p(Bj |aibj) (9.7)

Spe
ially, if the measurement dire
tions ~ai and ~bj are parallel then there is a perfe
t
anti
orrelation between the out
omes Ai and Bi:

p(AiBj |aibj) = 0 (9.8)

A further 
onsequen
e of (9.4)-(9.5) is the so-
alled surfa
e lo
ality that is for any

i, i′, j, j′ ∈ I the following relations hold

p(Ai|aibj) = p(Ai|aibj′) (9.9)

p(Bj |aibj) = p(Bj |ai′bj) (9.10)

Now, let (Ai, Bj) (i, j ∈ I) denote a pair 
orrelating 
onditionally a

ording to

(10.1) and let {(Ai, Bj)}i,j∈I stand for a set of 
orrelating pairs pertaining to the

index set I. What does a 
ommon 
ausal explanation of the set {(Ai, Bj)}i,j∈I

of 
orrelations 
onsist in? In the following we expose the 
omponents of su
h an

explanation.

Let us begin with the de�nition of the 
ommon 
ause. Let (X,S, p) be a 
lassi
al

probability measure spa
e and let A and B be two (positively) 
orrelating events.

Then the 
ommon 
ause of the 
orrelation is the following:

De�nition 12. An event C in S is said to be the 
ommon 
ause of the 
orrelation

between events A and B only if the eventsA, B and C satisfy the following relations:

p(AB|C) = p(A|C)p(B|C) (9.11)

p(AB|C⊥) = p(A|C⊥)p(B|C⊥) (9.12)

p(A|C) > p(A|C⊥) (9.13)

p(B|C) > p(B|C⊥) (9.14)

where C⊥
denotes the ortho
omplement of C. Equations (10.2)-(10.3) are 
alled

s
reening-o� properties sin
e 
onditioning on C and C⊥
respe
tively s
reens o� the


orrelation between A and B. Inequalities (10.4)-(10.5) express positive statisti
al
relevan
e of the 
ause C on the two e�e
ts A and B respe
tively.
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The above de�nition of the 
ommon 
ause goes ba
k to Rei
henba
h (Rei
henba
h,

1956); (although Rei
henba
h himself did not regard (10.2)-(10.5) as a su�
ient


ondition for an event to be a 
ommon 
ause). From the time of Rei
henba
h's

�rst 
hara
terization on the 
ommon 
ause 
on
ept has been generalized in two

important ways. First, it has been generalized for situations where there are more

than one 
auses present that is for a system of 
ooperating 
ommon 
auses (Hofer-

Szabó, Rédei, 2004, 2006). Se
ond, the inequalities expressing positive statisti
al

relevan
e have gradually been redarded as being too restri
tive and hen
e have

been dropped. As a result the 
ommon 
ause has been 
hara
terized simply as a

s
reener-o� partition of the algebra de�ned as follows:

De�nition 13. Let again (X,S, p) be a 
lassi
al probability measure spa
e and let

A and B be two 
orrelating events in S. Then a partition {Ck}k∈K in S is said to

be the 
ommon 
ause system of the 
orrelation between events A and B if and only

if the following fa
torization holds for all k ∈ K:

p(AB|Ck) = p(A|Ck)p(B|Ck) (9.15)

where |K|, the 
ardinality of K is said to be the size of the 
ommon 
ause system.

A 
ommon 
ause system of size 2 is 
alled a 
ommon 
ause.

De�nition 13 of the 
ommon 
ause system referred to a single 
orrelation. How-

ever, generally we are looking for the 
ausal explanation for a set of 
orrelations.

This explanation 
an be understood in two di�erent ways. Either we provide a

separate 
ommon 
ause system for ea
h separate 
orrelation of the given set; or

we are looking for a so-
alled 
ommon 
ommon 
ause system that is a partition

s
reening o� all 
orrelations of the set. This latter option puts extra requirements

on the explanation sin
e it demands that the 
ommon 
ause system pertaining to

the di�erent 
orrelations be the same.

Now, let us apply the 
on
ept of 
ommon 
ause systems to EPR 
orrelations. First

note that EPR 
orrelations are 
onditional 
orrelations in the sense of (10.1) where

the 
onditions represent the 
hoi
e of the measurement dire
tions. Looking at the

spatiotemporal arrengement of the events representing the measurement 
hoi
es

and the measurement out
omes respe
tively in the opposite wings and the set of

events representing the 
ommon 
ause system at the sour
e we 
an read o� the

following two spatial separations. The out
ome events Ai in the left wing are

spatially separated from the measurement 
hoi
e events bj in the right wing; and

similarly events Bj are spatially separated from events ai. The measurement 
hoi
e

events ai and bj are spatially separeted from the events of the 
ommon 
ause system

{Ck}. Turning these two spatiotemporal 
onsiderations in statisti
al relationships

we get the so-
alled lo
ality and no-
onspira
y requirements. Applying the above

de�nition of the 
ommon 
ause systems that is the s
reening-o� requirement for


onditional probabilities we obtain altogether three demands that a 
ommon 
ausal

explanation should satisfy. If we demand on the top that the 
ommon 
ause sytem

be the same for all 
orrelations of the given set then we arrive at a lo
al, non-


onspiratorial 
ommon 
ommon 
ausal explanation.
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De�nition 14. Let {(Ai, Bj)}i,j∈I be a set of 
orrelating pairs pertaining to the

index set I su
h that Ai, Bj , ai and bj are elements of a 
lassi
al probability

measure spa
e (X,S, p). Then a lo
al, non-
onspiratorial 
ommon 
ommon 
ausal

explanation of the set {(Ai, Bj)}i,j∈I 
onsists in providing a partition {Ck}k∈K of

S su
h that {Ck}k∈K is lo
al, non-
onspiratorial and s
reens o� all the 
orrelations

of {(Ai, Bj)}i,j∈I in the sense that for every i, i′, j, j′ ∈ I and k ∈ K the following

relations hold:

p(Ai|aibjCk) = p(Ai|aibj′Ck) (lo
ality) (9.16)

p(Bj |aibjCk) = p(Bj |aj′bjCk) (lo
ality) (9.17)

p(aibjCk) = p(aibj)p(Ck) (no-
onspira
y) (9.18)

p(AiBj |aibjCk) = p(Ai|aibjCk)p(Bj |aibjCk) (s
reening-o�) (9.19)

On the other hand, if we let the 
ommon 
ause sytem be di�erent for the

di�erent 
orrelations of the set then our explanation will be 
alled a lo
al, non-


onspiratorial separate 
ommon 
ausal explanation.

De�nition 15. Let {(Ai, Bj)}i,j∈I be a set of 
orrelating pairs pertaining to

the index set I su
h that Ai, Bj , ai and bj are elements of a 
lassi
al proba-

bility measure spa
e (X,S, p). Then a lo
al, non-
onspiratorial separate 
ommon


ausal explanation of the set {(Ai, Bj)}i,j∈I 
onsists in �nding a separate parti-

tion {Cij
k }k(ij)∈K(i,j) of S for ea
h 
orrelation in {(Ai, Bj)}i,j∈I su
h that ea
h

{Cij
k }k(ij)∈K(i,j) is lo
al, non-
onspiratorial and s
reens o� the appropriate 
orre-

lation in {(Ai, Bj)}i,j∈I in the sense that for every i, i′, j, j′ ∈ I and k(ij) ∈ K(i, j)
the following relations hold:

p(Ai|aibjCij
k ) = p(Ai|aibj′Cij

k ) (lo
ality) (9.20)

p(Bj |aibjCij
k ) = p(Bj |aj′bjCij

k ) (lo
ality) (9.21)

p(aibjF ) = p(aibj)p(F ) (no-
onspira
y) (9.22)

p(AiBj |aibjCij
k ) = p(Ai|aibjCij

k )p(Bj |aibjCij
k ) (s
reening-o�) (9.23)

where F in equation (10.20) is an element of the algebra S′ ⊂ S generated by all

the elements of every separate 
ommon 
ause system.

To motivate why it is important to demand no-
onspira
y (10.20) in this strong

sense namely for any element of the generated algebra and not just for the Cij
k ele-

ments, re
all the tri
ky 
onspira
ies in Szabó's separate 
ommon 
ausal model. As

mentioned in the Introdu
tion Szabó was able to 
onstru
t a lo
al separate 
ommon


ausal model for a spe
ial set of EPR 
orrelations that was non-
onspiratorial in the

sense the every ai and bj were independent of every C
ij
k . However, this model was


onspiratorial at a deep level�the measurement 
hoi
es ai and bj 
orrelated with

some disjun
tions of elements of separate 
ommon 
ause systems su
h as Cij
k ∪Ci′j′

k′ .

To ex
lude all these type of 
onspira
ies we demand no-
onspira
y in the strong

form (10.20).
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Now, we turn to the relation between the lo
al, non-
onspiratorial 
ommon or

separate 
ommon 
ausal explanations of the EPR 
orrelations on the one hand and

the Bell inequalities on the other.

9.3 Bell inequalities

Now, let us be more spe
i�
 
on
erning our set {(Ai, Bj)}i,j∈I . Let the 
orrelation

set 
onsist of four 
orrelating pairs (A1, B3), (A1, B4), (A2, B3) and (A2, B4). The
standard question is usually whether this set 
an be given a lo
al, non-
onspiratorial


ommon 
ommon 
ausal explanation in the sense of De�nition 14. The answer is

well known. {(Ai, Bj)}i=1,2;j=3,4 
an be given a lo
al, non-
onspiratorial 
ommon


ommon 
ausal explanation only if the 
orrelations of the set for any i, i′ = 1, 2;
j, j′ = 3, 4 and i 6= i′, j 6= j′ satisfy the Clauser�Horne inequalities

−1 6 p(AiBj |aibj) + p(AiBj′ |aibj′) + p(Ai′Bj |ai′bj)− p(Ai′Bj′ |ai′bj′)− p(Ai|aibj)− p(Bj |aibj) 6 0(9.24)

The proof is simple. It is a trivial fa
t of arithmeti
 that for any α, α′, β, β′ ∈ [0, 1]
the expression

αβ + αβ′ + α′β − α′β′ − α− β (9.25)

lies in the bound [−1, 0]. Now let α, α′, β, β′
be the following 
onditional probabil-

ities:

α ≡ p(Ai|aibjCk) (9.26)

α′ ≡ p(Ai′ |ai′bj′Ck) (9.27)

β ≡ p(Bj |aibjCk) (9.28)

β′ ≡ p(Bj′ |ai′bj′Ck) (9.29)

Plugging (9.26)-(9.29) into (9.25) and using lo
ality (9.16)-(9.17) one gets that

−1 6 p(Ai|aibjCk)p(Bj |aibjCk) + p(Ai|ai′bjCk)p(Bj′ |ai′bjCk) + p(Ai′ |ai′bjCk)p(Bj |ai′bjCk)

−p(Ai′ |ai′bj′Ck)p(Bj′ |ai′bj′Ck)− p(Ai|aibjCk)− p(Bj |aibjCk) 6 0

Using s
reening-o� (10.17) one gets that

−1 6 p(AiBj |aibjCk) + p(AiBj′ |ai′bjCk) + p(Ai′Bj |ai′bjCk)

−p(Ai′Bj′ |ai′bj′Ck)− p(Ai|aibjCk)− p(Bj |aibjCk) 6 0

Finally, multiplying by p(Ck), summing up for the indi
es k and using no-
onspira
y
(10.16) one obtains (9.24).

An example for a 
orrelation set whi
h violates (9.24) and hen
e 
an not be given

a lo
al, non-
onspiratorial 
ommon 
ommon 
ausal explanation is the one Szabó

used in his paper (2000). Here the angles θaibj between the dire
tions ~ai and ~bj are
set as follows:

θa1b3 = θa1b4 = θa2b3 =
2π

3
and θa2b4 = 0 (9.30)
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For this 
hoi
e of the measurement dire
tions there is a 
onditional 
orrelation for

every (Ai, Bj) pair (i = 1, 2; j = 3, 4):

3

8
= p(A1B3|a1b3) 6= p(A1|a1b3) p(B3|a1b3) =

1

2
· 1
2

(9.31)

3

8
= p(A1B4|a1b4) 6= p(A1|a1b4) p(B4|a1b4) =

1

2
· 1
2

(9.32)

3

8
= p(A2B3|a2b3) 6= p(A2|a2b3) p(B3|a2b3) =

1

2
· 1
2

(9.33)

0 = p(A2B4|a2b4) 6= p(A2|a2b4) p(B4|a2b4) =
1

2
· 1
2

(9.34)

Denote this set of 
orrelations by {(Ai, Bj)}CH . This set violates the Clauser�Horne

inequality

−1 6 p(A1B3|a1b3) + p(A1B4|a1b4) + p(A2B4|a2b4)− p(A2B4|a2b4)− p(A1|a1b3)− p(B3|a1b3) 6 0(9.35)

at the upper bound as follows:

3

8
+

3

8
+

3

8
− 0− 1

2
− 1

2

 0 (9.36)

Consequently, {(Ai, Bj)}CH 
an not be given a lo
al, non-
onspiratorial 
ommon


ommon 
ausal explanation.

Now, let us go over to the question whether {(Ai, Bj)}CH (or any other 
orrelation

set violating the Clauser�Horne inequalities) 
an have a lo
al, non-
onspiratorial

separate 
ommon 
ausal explanation. As mentioned in the Introdu
tion Szabó

was unable to present a lo
al, non-
onspiratorial separate 
ommon 
ause model for

{(Ai, Bj)}CH be
ause of the unwanted 
onspira
ies. The natural intuition towards

this fa
t was that a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation

of the set {(Ai, Bj)}CH results in some Bell inequalities�for example in the above

Clauser�Horne inequalities�and the violation of these inequalities for the above

setting is responsible for the la
k of a separate 
ommon 
ausal explanation. Thus,

the program has been to show up a derivation of some Bell inequalities from the

assumption that {(Ai, Bj)}CH has four lo
al, non-
onspiratorial separate 
ommon


ause systems satisfying (9.20)-(10.21).

Curiously enough, none of the authors has taken this route. Instead of taking

the above set and then sear
hing for a derivation of some Bell inequality from the

assumption that this set has a lo
al, non-
onspiratorial separate 
ommon 
ausal

explanation they have 
hosen another set. This set again 
onsisted of the four


orrelations of {(Ai, Bi)} (i = 1, 2, 3, 4) for any of whi
h the angle θaibi was set to

0. In other words, this set was 
omposed of perfe
t anti
orrelations. Denote this set

by {(Ai, Bi)}PA. For the relation between the sets {(Ai, Bj)}CH and {(Ai, Bj)}PA

see Figure 9.2 where the 
ontinuous lines represent the Clauser�Horne 
orrelations

and the dotted lines represent the perfe
t anti
orrelations.

Now, the reasoning has run as follows (for the details see (Grassho� et al.

2005) and (Hofer-Szabó, 2008)). Suppose that {(Ai, Bi)}PA has a lo
al, non-


onspiratorial separate 
ommon 
ausal explanation that is four lo
al, non-
onspiratorial
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Figure 9.2: The Clauser�Horne 
orrelation set and the perfe
t anti
orrelation

set

separate 
ommon 
ause systems {Cii
k }k∈K(i) (i = 1, 2, 3, 4) satisfying (9.20)-(10.21).

Sin
e {(Ai, Bi)}PA 
onsists of only perfe
t anti
orrelations it is easy to show that

from assumptions (9.20)-(10.21) it follows that for any i = 1, 2, 3, 4 there exist a

ve
tor εii ∈ {0, 1}K(i)
su
h that de�ning Cii

and Cii⊥
as

Cii ≡
⋃

k∈K(i)

εiik C
ii
k ; Cii⊥ ≡

⋃

k∈K(i)

(1− εiik )Cii
k (9.37)

the partitions {Cii, Cii⊥} (i = 1, 2, 3, 4) will be lo
al, non-
onspiratorial separate


ommon 
auses that is a separate 
ommon 
ause systems of size 2 for the set

{(Ai, Bi)}PA. Moreover, every {Cii, Cii⊥} will satisfy (9.20)-(10.21) deterministi-


ally that is ea
h term in (9.20)-(10.21) will be either 0 or 1. Finally, the probability
of the separate 
ommon 
auses will equal to the probability of the 
onditional prob-

abilities p(Ai|aibi) and p(Bi|aibi):

p(Cii) = p(Ai|aibi) (9.38)

p(Cii⊥) = p(Bi|aibi) (9.39)

Noti
e that in this reasoning there has been no mention of the original set {(Ai, Bj)}CH .

How do the 
orrelations of {(Ai, Bj)}CH 
ome into the pi
ture?

The joint and marginal 
onditional probabilities of the Clauser�Horne 
orrela-

tions appear simply using lo
ality (9.20)-(9.21) and no-
onspira
y (10.20) for the

perfe
t anti
orrelation set. That is for any i, j = 1, 2, 3, 4; i 6= j

p(Cii) = p(Ai|aibj) (9.40)

p(Cjj⊥) = p(Bj |aibj) (9.41)

p(CiiCjj⊥) = p(AiBj |aibj) (9.42)

Now, 
onsider the four events C11
, C22

, C33⊥
and C44⊥

in S. For these events
the following simple probabilisti
 
onstraint applies:

−1 6 p(C11C33⊥) + p(C11C44⊥) + p(C22C33⊥)− p(C22C44⊥)− p(C11)− p(C33⊥) 6 0(9.43)

Subtituting the probabilities of (9.43) by the 
onditional probabilities of (9.40)-

(9.42) we get the Clauser�Horne inequality (9.35) for the 
orrelation set {(Ai, Bj)}CH .
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Sin
e for the measuring setup (9.30) this inequality is violated there 
an be given

no lo
al, non-
onspiratorial separate 
ommon 
ausal explanation of the perfe
t an-

ti
orrelation set {(Ai, Bj)}PA!

To put is brie�y, the ne
essary 
ondition for {(Ai, Bj)}PA to have a lo
al, non-


onspiratorial separate 
ommon 
ausal explanation is that {(Ai, Bj)}CH satis�es

the Clauser�Horne inequality (9.35).

The papers (Portmann and Wüthri
h, 2007) and (Hofer-Szabó, 2008, 2011) have re-

peated the same argumentation for almost perfe
t anti
orrelations. Here we sket
h

the argument of (Hofer-Szabó, 2011). Consider again a set 
onsisting of four 
orre-

lating pairs {(Ai, Bi)}i=1,2,3,4 and suppose that for any i = 1, 2, 3, 4 the angle θaibi

between the measurement 
hoi
es is su
h that

|π − θaibi | < 2 arcsin
√
1− 2δ (9.44)

or more simply, let the 
orrelations be su
h that for any i = 1, 2, 3, 4

p(AiBi|aibi) 6 δ (9.45)

Denote su
h a set of 
orrelations by {(Ai, Bi)}PA(δ). Again suppose that {(Ai, Bi)}PA(δ)

has a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation. As above,

from this assumption it follows that there exist a ve
tor εii ∈ {0, 1}Ki
for any

i = 1, 2, 3, 4 su
h that de�ning Cii
and Cii⊥

as in (9.37) one get four partitions

{Cii, Cii⊥}i=1,2,3,4 for whi
h�instead of (9.38)-(9.39)�the following inequalities

will hold:

|p(Cii)− p(Ai|aibi)| 6 4δ (9.46)

|p(Cii⊥)− p(Bi|aibi)| 6 4δ (9.47)

Call these partitions quasi 
ommon 
auses sin
e although they are 
onstru
ted out

of the elements of the 
ommon 
ause systems {Cii
k } they do not satisfy s
reening-o�

(10.21) (however they satisfy lo
ality (9.20)-(9.21) and no-
onspira
y (10.20)).

Now as above, using lo
ality (9.20)-(9.21) and no-
onspira
y (10.20) for the set

{(Ai, Bi)}PA(δ) we get that for any i, j = 1, 2, 3, 4

|p(Cii)− p(Ai|aibj)| 6 4δ (9.48)

|p(Cjj⊥)− p(Bj |aibj)| 6 4δ (9.49)

|p(CiiCjj⊥)− p(AiBj |aibj)| 6 8δ (9.50)

Consider again inequality (9.43) 
omposed of the quasi 
ommon 
auses C11
, C22

,

C33⊥
and C44⊥

and substitute the probabilities of (9.43) by the 
onditional prob-

abilities of (9.48)-(9.50). Ea
h substitution will 
ause an error of order of either 4δ
or 8δ. Adding up the errors we obtain the following inequality.

−1 6 p(A1B3|a1b3) + p(A1B4|a1b4) + p(A2B3|a2b4)− p(A2B4|a2b3)− p(A1|a1b3)− p(B3|a1b3)− 40δ 6 0(9.51)

We refer to this inequlity as a Clauser�Horne(δ) inequality sin
e (9.51) di�ers from
the original Clauser�Horne inequality (9.43) in a term of order of δ. Again for
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the measuring setup (9.30) the Clauser�Horne(δ) inequality (9.51) is violated as

long as δ < 1
320 . This ex
ludes a lo
al, non-
onspiratorial separate 
ommon 
ausal

explanation of the almost perfe
t anti
orrelation set {(Ai, Bj)}PA(δ).

This strategy 
an be generalized for arbitrary Bell(δ) inequality. In (Hofer-Szabó,

2011) a re
ipe has been given for deriving any Bell(δ) inequality 
omposed of

marginal probabilities p(Ai|aibj), p(Bj |aibj) and joint probabilities p(AiBj |aibj).
The re
ipe is roughly this. Consider a Bell inequality resulting from the lo
al, non-


onsipratorial 
ommon 
ommon 
ausal explanation of a set {(Ai, Bj)} of 
orrela-
tions. Consider the set {(Ai, Bi)}PA(δ) of almost perfe
t anti
orrelations pertaining

to the events Ai or Bj whi
h appear in either a marginal or a joint probability in

the Bell inequality. Suppose that {(Ai, Bj)}PA(δ) has a lo
al, non-
onspiratorial

separate 
ommon 
ausal explanation. This assumption results in a Bell(δ) inequal-
ity di�ering from the original Bell inequality in a term of order of δ where the exa
t
magnitude of this term is the fun
tion of the approximation. Choose the setting

whi
h violates the Bell inequality maximally. If the δ term is smaller than the

violation of the original Bell inequality than the new Bell(δ) inequality will also be

violated�ex
luding a lo
al, non-
onspiratorial separate 
ommon 
ausal explanation

almost perfe
t anti
orrelation set {(Ai, Bj)}PA(δ).

9.4 No deterministi
, lo
al, non-
onspiratorial sep-

arate 
ommon 
ausal explanation of the Clauser�

Horne set

In the last Se
tion we have posed a question and answered another one. The

question was whether the set {(Ai, Bj)}CH has a lo
al, non-
onspiratorial sepa-

rate 
ommon 
ausal explanation. However, the answer was this. The ne
essary


ondition for {(Ai, Bj)}PA (or {(Ai, Bj)}PA(δ)) to have a lo
al, non-
onspiratorial

separate 
ommon 
ausal explanation is that {(Ai, Bj)}CH satis�es the Clauser�

Horne inequality (9.24). This answer is perfe
tly adequate if our intention is to

ex
lude the lo
al, non-
onspiratorial separate 
ommon 
ausal explanation of the

EPR s
enario as su
h�as it was the aim of the paper (Grassho� et al. 2005).

But it does not at all explain the fa
t why Szabó was not able to give a lo
al, non-


onspiratorial separate 
ommon 
ausal explanation of his original set {(Ai, Bj)}CH .

This latter question 
an be answered only if we derive some Bell inequalities from

the assumption that the original set {(Ai, Bj)}CH has a lo
al, non-
onspiratorial

separate 
ommon 
ausal explanation; or we show up other reasons for the failure.

In this Se
tion we give an answer to the original question�a partial answer


on�ned to the deterministi
 
ase. The answer is this. {(Ai, Bj)}CH 
an not

have a deterministi
, lo
al, non-
onspiratorial separate 
ommon 
ausal explanation

sin
e this separate 
ommon 
ausal explanation implies the same Clauser�Horne

inequalities as the lo
al, non-
onspiratorial 
ommon 
ommon 
ausal explanation.
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Proposition 13. Let {(Ai, Bj)}i=1,2;j=3,4 be a set of 
orrelating pairs su
h that Ai,

Bj , ai and bj are elements of a 
lassi
al probability measure spa
e (X,S, p). Suppose
furthermore that {(Ai, Bj)}i=1,2;j=3,4 has a deterministi
, lo
al, non-
onspiratorial

separate 
ommon 
ausal explanation in the sense that there exist a separate par-

tition {Cij
k }k(ij)∈K(i,j) of S for ea
h 
orrelation of {(Ai, Bj)}i=1,2;j=3,4 su
h that

{Cij
k }k(ij)∈K(i,j) satisties (9.20)-(10.21) and p(Ai|aibjCij

k ), p(Bj |aibjCij
k ) ∈ {0, 1}

for any i = 1, 2; j = 3, 4 and k(ij) ∈ K(i, j). Then for any i, i′ = 1, 2; j, j′ = 3, 4;
i 6= i′, j 6= j′ the Clauser�Horne inequality (9.24) follows.

Proof. Consider the separate 
ommon 
ause system {Cij′

k } (i = 1, 2; j′ = 3, 4)
pertaining to the 
orrelation (Ai, Bj′) and let K ′

denote the set of those indi
es

k ∈ K for whi
h

p(AiBj′ |aibj′Cij′

k ) = 1 (9.52)

Similarly 
onsider the separate 
ommon 
ause system {Ci′j
l } (i′ = 1, 2; j = 3, 4;

i 6= i′, j 6= j′) pertaining to the 
orrelation (Ai′ , Bj) and let L′
denote the set of

those indi
es l ∈ L for whi
h

p(Ai′Bj |ai′bjCi′j
l ) = 1 (9.53)

With the index sets K ′
and L′

in hand de�ne the following two elements of the

algebra generated by the separate 
ommon 
ause systems {Cij′

k } and {C
i′j
l }

Cij′ ≡
⋃

k∈K′

Cij′

k (9.54)

Ci′j ≡
⋃

l∈L′

Ci′j
l (9.55)

Now, sin
e due to lo
ality (9.20)-(9.21) for any k ∈ K ′
and l ∈ L′

p(Ai|aibjCij′

k ) = 1

p(Bj |aibjCi′j
l ) = 1

and hen
e for Cij′
and Ci′j

p(Ai|aibjCij′ ) = 1

p(Bj |aibjCi′j) = 1

it follows that

aibjC
ij′ ⊆ Ai (9.56)

aibjC
i′j ⊆ Bj (9.57)

ex
ept for a set of zero measure. From (9.56)-(9.57) we obtain that

aibj (C
ij′ ∪ Ci′j) ⊆ Ai ∪Bj
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again ex
ept for a set of zero measure and hen
e

p(aibj(C
ij′ ∪ Ci′j)) 6 p(Ai ∪Bj)

whi
h using no-
onspira
y (10.20) results in

p(Cij′ ∪Ci′j) 6 p(Ai ∪Bj |aibj) = p(Ai|aibj) + p(Bj |aibj)− p(AiBj |aibj)(9.58)

Again, due to lo
ality (9.20)-(9.21) from (9.52)-(9.53) for any k ∈ K ′
and l ∈ L′

one gets

p(Bj′ |ai′bj′Cij′

k ) = 1

p(Ai′ |ai′bj′Ci′j
l ) = 1

and hen
e

p(Bj′ |ai′bj′Cij′ ) = 1 (9.59)

p(Ai′ |ai′bj′Ci′j) = 1 (9.60)

From (9.59)-(9.60) we obtain that

ai′bj′C
ij′ ⊆ Bj′

ai′bj′C
i′j ⊆ Ai′

ex
ept for a set of zero measure and hen
e

ai′bj′ (C
ij′Ci′j) ⊆ Ai′Bj′ (9.61)

again ex
ept for a set of zero measure. From (9.61) it follows that

p(ai′bj′(C
ij′Ci′j)) 6 p(Ai′Bj′)

or using no-
onspira
y (10.20)

p(Cij′Ci′j) 6 p(Ai′Bj′ |ai′bj′) (9.62)

Now, from (9.52)-(9.53) using the theorem of total probability and no-
onsprira
y

(10.20) one obtains that

p(Cij′ ) = p(AiBj′ |aibj′)
p(Ci′j) = p(Ai′Bj |ai′bj)

whi
h using the fa
t that

p(Cij′ ∪ Ci′j) = p(Cij′ ) + p(Ci′j)− p(Cij′Ci′j)

transforms (9.62) into

p(Cij′ ∪ Ci′j) > p(AiBj′ |aibj′) + p(Ai′Bj |ai′bj)− p(Ai′Bj′ |ai′bj′) (9.63)

Constrasting (9.58) to (9.63) we get the Clauser�Horne inequality (9.24) at the

upper bound. To get the inequality at the lower bound just repla
e Ai by A
⊥
i and

follow the steps of the above reasoning. �
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9.5 Con
lusions

In the paper we addressed the problem as to why Szabó (2000) was unable to yield a

lo
al, non-
onspiratorial separate 
ommon 
ausal model for the EPR s
enario. We

have shown that the usual answer 
laiming that the 
orrelation set used by Szabó

violates the Clauser�Horne inequalities if we assume that there is a lo
al, non-


onspiratorial separate 
ommon 
ausal model of another set, is not satisfa
tory.

To explain Szabó's situation one should derive some Bell inequalities from the

assumption that there is a lo
al, non-
onspiratorial separate 
ommon 
ausal model

of the original set.

Here we provided a partial answer to this problem. We have shown that no set

of 
orrelations violating the Clauser�Horne inequalities 
an be given a determinis-

ti
, lo
al, non-
onspiratorial separate 
ommon 
ausal explanation. This result was

partial sin
e we 
ould not eliminate the requirement of determinism from the proof.

So we 
on
lude the paper with the following

Open question: Is it true that no set of 
orrelations violating the Clauser�Horne

inequalities 
an be given a (not ne
essarily deterministi
) lo
al, non-
onspiratorial

separate 
ommon 
ausal explanation? Or in other words, does Proposition 13 hold

generally that is without the assumption that p(Ai|aibjCij
k ), p(Bj |aibjCij

k ) ∈ {0, 1}
for any i = 1, 2; j = 3, 4 and k(ij) ∈ K(i, j)?
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Chapter 10

EPR 
orrelations, Bell

inequalities and 
ommon 
ause

systems

Standard 
ommon 
ausal explanations of the EPR situation assume a so-
alled

joint 
ommon 
ause system that is a 
ommon 
ause for all 
orrelations. How-

ever, the assumption of a joint 
ommon 
ause system together with some other

physi
ally motivated assumptions 
on
erning lo
ality and no-
onspira
y results in

various Bell inequalities. Sin
e Bell inequalities are violated for appropriate mea-

surement settings, a lo
al, non-
onspiratorial joint 
ommon 
ausal explanation of

the EPR situation is ruled out. But why do we assume that a 
ommon 
ausal

explanation of a set of 
orrelation 
onsists in �nding a joint 
ommon 
ause system

for all 
orrelations and not just in �nding separate 
ommon 
ause systems for the

di�erent 
orrelations? What are the perspe
tives of a lo
al, non-
onspiratorial sep-

arate 
ommon 
ausal explanation for the EPR s
enario? And �nally, how do Bell

inequalities relate to the weaker assumption of separate 
ommon 
ause systems?

10.1 Introdu
tion

In the history of probabilisti
 
ausation Rei
henba
h's de�nition (Rei
henba
h,

1956) was the �rst formal grasp of the notion of 
ommon 
ause. The 
on
ep-

tual novelty of the Rei
henba
hian de�nition has attra
ted immense interest among

philosophers of s
ien
e from the very beginning (Salmon, 1975; van Fraassen, 1982).

From the physi
al side, the need for a 
ommon 
ausal explanation of the EPR situa-

tion 
alled attention to the de�nition of the 
ommon 
ause, even though in standard

hidden variable strategies a slightly di�erent 
ommon 
ausal 
on
ept than the Re-

i
henba
hian has been applied (Bell, 1971; Jarrett, 1984; van Fraassen 1989). An

important step in the 
on
eptual 
lari�
ation of the 
ommon 
ause in the EPR-Bell
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situation was the paper of Belnap and Szabó (1996) in whi
h the di�eren
e between

the so-
alled joint and separate 
ommon 
ause had been �rst re
ognized. Belnap

and Szabó pointed out that in standard 
ommon 
ausal explanations of the EPR


orrelations 
ommon 
ause is a
tually meant as a joint 
ommon 
ause a

ounting

for all 
orrelations.

Con
erning the algebrai
-probabilisti
 features of the Rei
henba
hian 
ommon


ause Hofer-Szabó, Rédei and Szabó (1999) proved the following proposition. Clas-

si
al (and also non-
lassi
al) 
orrelations 
an be given a probabilisti
 
ommon 
ausal

explanation in the sense that any 
lassi
al probability measure spa
e with 
orre-

lating pairs of events 
an be extended su
h that the extension 
ontains a Rei
hen-

ba
hian separate 
ommon 
ause for ea
h 
orrelation. (For the pre
ise de�nitions see

below.) Then in (Hofer-Szabó, Rédei, Szabó, 2002) it was proven that this propo-

sition does not apply if Rei
henba
hian separate 
ommon 
auses are repla
ed with

Rei
henba
hian joint 
ommon 
auses. In other words, 
lassi
al probability measure

spa
es 
ontaining 
orrelating pairs of events generally 
annot be extended su
h that

the extension 
ontains a Rei
henba
hian joint 
ommon 
ause for all 
orrelations.

Thus, being a joint 
ommon 
ause of a set of 
orrelations turned out to be a mu
h

stronger demand than being a 
ommon 
ause of a single 
orrelation.

The �rst to apply the 
on
ept of separate 
ommon 
ause to the EPR situa-

tion was Szabó (2000). Sin
e fa
torizability, lo
ality and no-
onspira
y together

entail various types of Bell inequalities, EPR 
orrelations 
annot be given a lo
al,

non-
onspiratorial, joint 
ommon 
ausal model. Now, Szabó's idea was to repla
e

the joint 
ommon 
auses with separate 
ommon 
auses and thus to give a separate


ommon 
ausal model for the EPR 
orrelations. He 
onstru
ted a number of sep-

arate 
ommon 
ausal models whi
h were lo
al and non-
onspiratorial in the usual

sense that the measurement settings were statisti
ally independent of the di�er-

ent 
ommon 
auses. However, the models were 
onspiratorial on a deeper level.

The measurement settings statisti
ally 
orrelated with various algebrai
 
ombina-

tions of the separate 
ommon 
auses. This fa
t 
alled attention to the subtle but

important di�eren
e between the so-
alled weak no-
onspira
y where statisti
ally

independen
e is required only from the measure settings and the 
ommon 
auses

themselves, and strong no-
onspira
y where statisti
ally independen
e is required

from any Boolean 
ombination of the measure settings and any Boolean 
ombina-

tion of the 
ommon 
auses. After numerous 
omputer simulations aiming to remove

the unwanted 
onspira
ies Szabó 
on
luded with the 
onje
ture that EPR 
annot

be given a lo
al, strongly non-
onspiratorial, separate 
ommon 
ausal model.

The 
onje
ture of Szabó has been �rst proven by Grassho�, Portmann and

Wüthri
h (2005). The proof 
onsisted in deriving some Bell inequality from the

same assumptions that Szabó intended to apply in his separate 
ommon 
ausal

models for the EPR 
orrelations. A 
ru
ial premise of this derivation was that the

(anti)
orrelation between some events be perfe
t. Assuming perfe
t anti
orrelations,

however, turned the separate 
ommon 
ausal explanations into a joint 
ommon


ausal explanation. This fa
t has been shown in (Hofer-Szabó, 2008). In the

same paper Hofer-Szabó eliminated the assumption of perfe
t anti
orrelations and

presented a separate 
ommon 
ausal derivation of some Bell-like inequalities (Bell(δ)
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inequalities). At the same time Portmann and Wüthri
h (2007) presented a very

similar result for the Clauser-Horne inequality repla
ing separate 
ommon 
auses

with the more general notion of the so-
alled separate 
ommon 
ause systems (see

below). Finally, in Hofer-Szabó (2011, 2012) a general re
ipe has been given how

to derive any type of Bell(δ) inequality provided that the original Bell inequality


an be derived from a set of perfe
t anti
orrelations.

Although due to the above proofs the separate 
ommon 
ausal explanation of

the EPR s
enario has been ex
luded, there is a sense in whi
h Szabó's 
onje
ture

is still not de
ided. Szabó's original 
onje
ture referred to the so-
alled Clauser�

Horne set that is a set of four 
orrelations violating the Clauser�Horne inequality.

His question was as to whether the Clauser�Horne set 
an be given a lo
al, strongly

non-
onspiratorial, separate 
ommon 
ausal model. Interestingly enough�in the

fa
e of the above results�this question is still open.

In Se
tion 2 we make expli
it the 
on
epts and propositions introdu
ed infor-

mally in the Introdu
tion. In Se
tion 3 the standard joint 
ommon 
ausal expla-

nation of EPR 
orrelations will be re
alled. In Se
tion 4 and 5 we expli
ate what

has been and what has not been proven in the lo
al, non-
onspiratorial, separate


ommon 
ausal explanation of the EPR s
enario. We 
on
lude the paper in Se
tion

6.

10.2 Joint and separate 
ommon 
ause systems

Let us start the 
ommon 
ausal explanation with Rei
henba
h's (1956) de�nition

of the 
ommon 
ause. Let (Σ, p) be a 
lassi
al probability measure spa
e and let

A,B ∈ Σ be two positively 
orrelating events, i.e.

p(A ∩B) > p(A)p(B) (10.1)

Rei
henba
h then de�nes the 
ommon 
ause of the 
orrelation as follows:

De�nition 16. An event C ∈ Σ is said to be the Rei
henba
hian 
ommon 
ause

of the 
orrelation between A and B, if the events A, B and C satisfy the following

relations:

p(A ∩B|C) = p(A|C)p(B|C) (10.2)

p(A ∩B|C) = p(A|C)p(B|C) (10.3)

p(A|C) > p(A|C) (10.4)

p(B|C) > p(B|C) (10.5)

where C denotes the 
omplement of C and the 
onditional probability is de�ned in

the usual way. Equations (10.2)-(10.3) are referred to as �s
reening-o�� properties

and inequalities (10.4)-(10.5) as �positive statisti
al relevan
e� 
onditions. (Here

we do not dis
uss the problem as to whether 
onditions (10.2)-(10.5) are ne
essary

or su�
ient 
onditions for an event C to be a 
ommon 
ause and simply take them

to be the de�nition of the 
ommon 
ause.)
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Physi
ists use the notion of '
ommon 
ause' in a di�erent meaning. We obtain

this meaning if (i) we drop the positive statisti
al relevan
e 
onditions (10.4)-(10.5)

from the de�nition, and (ii) we do not restri
t the s
reening-o� properties (10.2)-

(10.3) to the partition {C,C} of Σ:

De�nition 17. Let (Σ, p) be a 
lassi
al probability measure spa
e and let (A,B)
be a 
orrelating pair of events in Σ. A partition {Ck} (k ∈ K) of Σ is said to be the


ommon 
ause system of the pair (A,B) if for all k ∈ K the following 
onditions

are satis�ed:

p(A ∩B|Ck) = p(A|Ck)p(B|Ck) (10.6)

The 
ardinality |K| (the number of events in the partition) is 
alled the size of the


ommon 
ause system. We will refer to a 
ommon 
ause system of size 2 (that is

of the form {C,C}) as a 
ommon 
ause. (Sometimes we will also refer to C as a


ommon 
ause.)

Now, let (Σ, p) be a 
lassi
al probability measure spa
e as before and let

(A1, B1) and (A2, B2), respe
tively be two positively 
orrelating pairs of events

in Σ, i.e. for i = 1, 2

p(Ai ∩Bi) 6= p(Ai)p(Bi) (10.7)

In order to give a 
ommon 
ausal explanation for both 
orrelating pairs we have

two options. Either we assume that the two 
orrelations arise from the same 
ausal

sour
e or we attribute di�erent 
ausal sour
es to the 
orrelations. In the �rst 
ase

we explain the 
orrelation by a so-
alled joint 
ommon 
ause system, in the se
ond


ase we employ two separate 
ommon 
ause systems. The de�nition of joint and

separate 
ommon 
ause systems, respe
tively are the following:

De�nition 18. A partition {Ck} (k ∈ K) of Σ is said to be the joint 
ommon 
ause

system of 
orrelations (Ai, Bi) (i = 1, 2), respe
tively if for i = 1, 2 and k ∈ K the

following relations are satis�ed:

p(Ai ∩Bi|Ck) = p(Ai|Ck)p(Bi|Ck) (10.8)

De�nition 19. Two di�erent partitions {Ci
k} (i = 1, 2; k(i) ∈ K(i)) of Σ are

said to be separate 
ommon 
ause systems of the 
orrelations (Ai, Bi) (i = 1, 2),
respe
tively if for i = 1, 2 and k(i) ∈ K(i) the following relations hold:

p(Ai ∩Bi|Ci
k) = p(Ai|Ci

k)p(Bi|Ci
k) (10.9)

Having de�ned di�erent 
ommon 
ausal stru
tures let us turn to the pro
edure

of 
ausal explanation. A 
ommon 
ausal explanation of a given 
orrelation is re-

alized mathemati
ally by the extension of the probabilisti
 measure spa
e in su
h

a way that for the original 
orrelation there exists a 
ommon 
ause system in the

extended probabilisti
 measure spa
e. In the 
ase of two (or more) 
orrelations we


an extend the algebra in two di�erent ways a

ording to our 
ausal intuition. In
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order to model a joint 
ommon 
ausal sour
e of the 
orrelations we extend the al-

gebra su
h that in the extended algebra all 
orrelations have a joint 
ommon 
ause

system. On the other hand to a

ount for separate 
ausal me
hanisms we extend

the algebra su
h that in the extended algebra di�erent 
orrelations have separate


ommon 
ause systems.

The extendability of the probabilisti
 measure spa
es by joint respe
tively sep-

arate 
ommon 
ausal stru
tures 
ru
ially depends on the size of the 
ommon 
ause

system. In the 
ase of a 
ommon 
ause system of size 2 that is in the 
ase of a


ommon 
ause there is a great di�eren
e between joint and separate 
ommon 
ause

extensions as it is shown in the following two propositions:

Proposition 14. (Hofer-Szabó, Rédei, Szabó, 1999) Let (Σ, p) be a 
lassi
al prob-
ability measure spa
e and let (A1, B1) and (A2, B2), respe
tively be two 
orrelating
pairs of events in Σ. Then there always exists a (Σ′, p′) extension of (Σ, p) su
h that
for the 
orrelation (A1, B1) there exists a 
ommon 
ause C1

and for the 
orrelation

(A2, B2) there exists a 
ommon 
ause C2
in (Σ′, p′).

Proposition 15. (Hofer-Szabó, Rédei, Szabó, 2002) There exists a (Σ, p) 
lassi
al
probability measure spa
e and two 
orrelating pairs (A1, B1) and (A2, B2), respe
-
tively in Σ su
h that there is no (Σ′, p′) extension of (Σ, p) whi
h 
ontains a joint


ommon 
ause C in (Σ′, p′) for both 
orrelations.

Proposition 14 
laims that for two 
orrelating pairs a separate 
ommon 
ausal

explanation is always possible by extending the probability measure spa
e in an

appropriate way. (Moreover, if Σ 
ontains n ∈ N 
orrelating pairs, ea
h 
orrela-

tion 
an be given a separate 
ommon 
ausal explanation.) However, a

ording to

Proposition 15 this strategy does not work generally if we are going to obtain the

same 
ommon 
ause for the two (or more) 
orrelating pairs. Thus, being a joint


ommon 
ause imposes mu
h stronger demand on C than simply being a separate


ommon 
ause.

However, strangely enough this di�eren
e between the 
ommon and separate


ommon 
ausal extendability of a probability measure spa
e disappears if the size of

the 
ommon 
ause system is not spe
i�ed. In other words, to �nd a joint 
ommon


ause system of arbitrary size for a set of 
orrelations is not a stronger demand than

to �nd separate 
ommon 
ause systems for the same set. To see this, let (A1, B1)
and (A2, B2) be two arbitrary 
orrelating pairs in Σ. Then the partition

{A1 ∩B1, A1 ∩B2, A2 ∩B1, A2 ∩B2, }

is always a joint 
ommon 
ause system in Σ for both 
orrelations. Obviously, this

partition 
an be regarded only as a trivial joint 
ommon 
ause system of the 
or-

relations. This makes it 
lear that without further spe
i�
ation a joint 
ommon


ausal explanation is not more 
ompelling than a separate 
ommon 
ausal expla-

nation. In the following se
tions we will see how these two types of explanations

diverge due to extra requirements.
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10.3 No lo
al, non-
onspiratorial joint 
ommon 
ause

system for the EPR

Consider the standard EPR-Bohm experimental setup with a sour
e emitting pairs

of spin-

1
2 parti
les prepared in the singlet state |Ψs〉. Let p(ai) denote the probability

that the spin measurement apparatus is set to measure the spin in dire
tion ~ai
(i ∈ I) in the left wing and let p(bj) denote the same for dire
tion

~bj (j ∈ J)
in the right wing. Furthermore, let p(Ai) stand for the probability that the spin

measurement in dire
tion ~ai in the left wing yields the result +1 ('up') and let p(Ai)
denote the probability of the result −1 ('down'). Let p(Bj) and p(Bj) be de�ned in

a similar way in the right wing for dire
tion

~bj . (See Fig. 1) Quantum me
hani
s

then yields the following 
onditional probabilities for the events in question:

p(Ai ∩Bj |ai ∩ bj) = Tr(W|Ψs〉 (PAi
⊗ PBj

)) =
1

2
sin2(

θaibj

2
) (10.10)

p(Ai|ai ∩ bj) = Tr(W|Ψs〉 (PAi
⊗ I)) =

1

2
(10.11)

p(Bj |ai ∩ bj) = Tr(W|Ψs〉 (I ⊗ PBj
)) =

1

2
(10.12)

where W|Ψs〉 is the density operator pertaining to the pure state |Ψs〉; PAi
and PBj

denote proje
tions on the eigensubspa
es with eigenvalue +1 of the spin opera-

tors asso
iated with dire
tions ~ai and ~bj , respe
tively; and θaibj denotes the angle

between dire
tions ~ai and ~bj .

Thus, for non-perpendi
ular dire
tions ~ai and ~bj there is a 
onditional 
orrela-

tion

p(Ai ∩Bj |ai ∩ bj) 6= p(Ai|ai ∩ bj)p(Bj |ai ∩ bj) (10.13)

and for parallel dire
tions there is a perfe
t anti
orrelation between the out
omes:

p(Ai ∩Bj |ai ∩ bj) = 0 (10.14)

Now, 
onsider a set {(Ai, Bj)}(i,j)∈I×J of EPR 
orrelations in the sense of

(10.13). A full-�edged 
ommon 
ausal explanation of the set {(Ai, Bj)}(i,j)∈I×J

must 
omply with three demands on the statisti
al level. Firstly, all the 
orrelations

must be s
reened-o� by a joint 
ommon 
ause system. Se
ondly, statisti
al relations

among the measurement out
omes and the measurement settings must re�e
t the

spa
etime lo
ation of these events in the sense that spatially separated events have

to be statisti
ally independent. Thirdly, the measurement settings and the 
ommon


ause should not in�uen
e ea
h other, they have to be statisti
ally independent. We

refer to these requirements in turn as 'joint 
ommon 
ause system', 'lo
ality' and

'no-
onspira
y'. In the 
ase of 'no-
onspira
y' we will distinguish two types: the

'weak' and the 'strong no-
onspira
y'. The pre
ise probabilisti
 formulation of these

demands is the following:
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1. Joint 
ommon 
ause system: There exists a partition {Ck} of Σ su
h that for

every Ai, Bj , ai and bj in Σ (i ∈ I, j ∈ J) and for any k ∈ K the following

fa
torization holds:

p(Ai ∩Bj |ai ∩ bj ∩ Ck) = p(Ai|ai ∩ bj ∩ Ck)p(Bj |ai ∩ bj ∩ Ck) (10.15)

2. Lo
ality: For every Ai, Bj , ai, bj and Ck in Σ (i ∈ I, j ∈ J, k ∈ K) the

following s
reening-o� relations hold:

p(Ai|ai ∩ bj ∩ Ck) = p(Ai|ai ∩ Ck) p(Bj |ai ∩ bj ∩Ck) = p(Bj |bj ∩Ck)(10.16)

3. a. Weak no-
onspira
y: For every ai, bj and Ck in Σ (i ∈ I, j ∈ J, k ∈ K)
the following independen
e holds:

p(ai ∩ bj ∩ Ck) = p(ai ∩ bj)p(Ck) (10.17)

b. Strong no-
onspira
y: Consider two Boolean subalgebras A and C of

Σ su
h that A is generated by the partition of the di�erent measurement


hoi
es {aibj} (i ∈ I, j ∈ J) on the opposite wings, and C is generated by the

partition of the 
ommon 
ause system {Ck} (k ∈ K). Then for any element

E ∈ A and F ∈ C the following independen
e holds:

p(E ∩ F ) = p(E)p(F ) (10.18)

It is straightforward to see that in the 
ase of joint 
ommon 
ause systems (10.17)

and (10.18) are equivalent, the probabilisti
 independen
e of the Boolean 
ombi-

nations of 
ommon 
auses and the measurement settings does not demand more

than simply the probabilisti
 independen
e of the 
ommon 
auses and the measure-

ment settings themselves. Thus, in the 
ase of the joint 
ommon 
ause system type

explanations equation (10.17) will su�
e as a no-
onspira
y requirement.

However, as it is well-known (10.15)-(10.17) result in various Bell inequalities

whi
h are violated for spe
ial measurement settings in the EPR experiment. For the

simplest set of 
orrelations, namely for the Clauser�Horne set {(Ai, Bj)}(i,j)∈CH

where CH = I×J with I = {1, 2} and J = {3, 4} the Bell theorem is the following:

Proposition 16. (Clauser, Horne, 1974) For some measurement dire
tions ~a1,~a2
and

~b3,~b4 there 
annot exist extension of the probability spa
e (Σ, p) su
h that

the extension 
ontains lo
al, (weakly or strongly) non-
onspiratorial joint 
ommon


ause systems for all EPR 
orrelations of {(Ai, Bj)}(i,j)∈CH .

Consequently, EPR 
orrelations fall short of a lo
al, non-
onspiratorial, joint


ommon 
ause system type explanation. One premise has to be given up.
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10.4 Lo
al, weakly non-
onspiratorial separate 
om-

mon 
ause systems do exist for the EPR

Strategies aiming to avoid Bell inequalities and to give a 
ommon 
ausal explana-

tion for the EPR 
orrelations 
an be grouped a

ording the abandoned premise.

The �rst group 
onsists of approa
hes abandoning lo
ality and preserving the joint


ommon 
ausal ba
kground and no-
onspira
y. Bohmian me
hani
s is an eminent

representative of this group. The se
ond group 
onsists of less attra
tive models

in whi
h no-
onspira
y is given up. Examples of this approa
h are Brans' and

Szabó's models (Brans, 1988; Szabó, 1995). In these models the authors relin-

quished no-
onspira
y and provided a lo
al, deterministi
 but 
onspiratorial joint


ommon 
ause system type explanation for the EPR. (For the problem of free will

and no-
onspira
y see (SanPedro, 2013.) In this paper, however, we will follow

a third strategy whi
h gives up the hypothesis of a joint 
ommon 
ause system.

The key idea here is to repla
e the 
on
ept of joint 
ommon 
ause system with

that of separate 
ommon 
ause systems and to provide a lo
al, non-
onspiratorial,

separate 
ommon 
ause system type explanation for the EPR. A separate 
ommon


ause system type explanation for a set {(Ai, Bj)}(i,j)∈I×J 
onsists in �nding for

every (i, j) ∈ I × J index pair a separate partition {Cij
k } (k(ij) ∈ K(ij)) su
h that

s
reening-o�, lo
ality, and (weak or strong) no-
onspira
ies holds in the following

sense:

1. Separate 
ommon 
ause systems: For every Ai, Bj , ai and bj in Σ (i ∈
I, j ∈ J) there exists a separate partition

{

Cij
k

}

of Σ su
h that for any

k(ij) ∈ K(ij) the following fa
torization holds:

p(Ai ∩Bj |ai ∩ bj ∩ Cij
k ) = p(Ai|ai ∩ bj ∩Cij

k )p(Bj |ai ∩ bj ∩ Cij
k ) (10.19)

2. Lo
ality: For every i ∈ I, j ∈ J and k(ij) ∈ K(ij) the following s
reening-o�

relations hold:

p(Ai|ai ∩ bj ∩ Cij
k ) = p(Ai|ai ∩ Cij

k ), p(Bj |ai ∩ bj ∩ Cij
k ) = p(Bj |bj ∩ Cij

k )(10.20)

3. a. Weak no-
onspira
y: For every ai, bj and Ci′j′

k in Σ (i, i′ ∈ I; j, j′ ∈
J ; k(i′j′) ∈ K(i′j′)) the following independen
e holds:

p(ai ∩ bj ∩ Ci′j′

k ) = p(ai ∩ bj)p(Ci′j′

k ) (10.21)

b. Strong no-
onspira
y: Consider again two Boolean subalgebras A and C

of Σ su
h that A is generated by the partition of the di�erent measurement


hoi
es {aibj} (i ∈ I, j ∈ J) and C is generated by the partition of all the

di�erent 
ommon 
ause systems

{

∩ijCij
k

}

(k ∈ K). Then for any element

E ∈ A and F ∈ C the following independen
e holds:

p(E ∩ F ) = p(E)p(F ) (10.22)
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Here, requirement (10.21) does not entail (10.22), that is the independen
e of the

separate 
ommon 
ause systems of the 
hoi
e of the measurement settings does not

assure that any Boolean 
ombination of the 
ommon 
auses will also be independent

of any Boolean 
ombination of the measurement settings. Thus, in the 
ase of

separate 
ommon 
ause system type explanations one has to take into 
onsideration

two di�erent versions of no-
onspira
y.

The idea to repla
e the 
on
ept of a joint 
ommon 
ause system with that of

separate 
ommon 
ause systems and to provide a lo
al, non-
onspiratorial separate


ommon 
ause system type explanation for the EPR was �rst raised by Szabó

(2000). A
tually, Szabó repla
ed the joint 
ommon 
ause system with separate


ommon 
ause systems of size 2 that is with separate 
ommon 
auses. Szabó

provided a number of separate 
ommon 
ausal models for the Clauser�Horne set

{(Ai, Bj)}(i,j)∈CH su
h that the models were lo
al and non-
onspiratorial in the

weak sense of (10.22). In a pre
ise form, Szabó's proposition was the following:

Proposition 17. (Szabó, 2000) Let {(Ai, Bj)}(i,j)∈CH be the Clauser�Horne set of


orrelations in (Σ, p). Then for any measurement dire
tions ~a1,~a2 and

~b3,~b4 there

exists an extension of the probability spa
e (Σ, p) su
h that the extension 
ontains

lo
al, weakly non-
onspiratorial separate 
ommon 
auses for the 
orrelations of

{(Ai, Bj)}(i,j)∈CH .

The 
ommon 
ausal models provided by Szabó, however, were all 
onspiratorial

in the strong sense of (10.22). After numerous 
omputer simulations aiming to

remove the unwanted 
onspira
ies Szabó �nally 
on
luded with the 
onje
ture that

EPR 
annot be given any lo
al, separate 
ommon 
ausal model free from all type

of 
onspira
ies.

10.5 Lo
al, strongly non-
onspiratorial separate 
om-

mon 
ause systems for the EPR?

Szabó's 
onje
ture is then the following:

Conje
ture 1. For some measurement dire
tions ~a1,~a2 and

~b3,~b4 there 
annot

exist extension of the probability spa
e (Σ, p) su
h that the extension 
ontains lo
al,
strongly non-
onspiratorial separate 
ommon 
ause systems for the 
orrelations of

{(Ai, Bj)}(i,j)∈CH .

Although a lot has happened sin
e 2000 in understanding the status of the

separate 
ommon 
ausal explanation of the EPR s
enario, Szabó's 
onje
ture in

its original form is still an open question. What has a
tually been ex
luded, is

not a lo
al, strongly non-
onspiratorial separate 
ommon 
ausal explanation of the

the Clauser�Horne set {(Ai, Bj)}(i,j)∈CH , but that of another set. Let I = J =
{1, 2, 3, 4} and let PA be the following subset of I × J :

PA = {(1, 1), (2, 2), (3, 3), (4, 4)}
Then one 
an prove the following proposition:
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Proposition 18. For somemeasurement dire
tions {~a1,~a2,~a3,~a4
}

and

{

~b1,~b2,~b3,~b4
}

there 
annot exist extension of the probability spa
e (Σ, p) su
h that the extension


ontains lo
al, strongly non-
onspiratorial separate 
ommon 
ause systems for all

EPR 
orrelations of {(Ai, Bj)}(i,j)∈PA.

The above proposition was �rst proved by Grassho�, Portmann and Wüthri
h

(2005). They have shown that no lo
al, strongly non-
onspiratorial separate 
om-

mon 
ause systems are possible for all 
orrelations of {(Ai, Bj)}(i,j)∈PA, if for any

index pair (i, j) ∈ PA there is a perfe
t anti
orrelation (hen
e the denotation 'PA')
in the sense of (10.14).

The assumption of perfe
t anti
orrelations, however, was unsatisfa
tory in two

respe
ts. The �rst problem 
on
erns experimental testability. Sin
e perfe
t anti-


orrelations 
annot be tested experimentally with absolute pre
ision, the proof of

Grassho�, Portmann and Wüthri
h did not provide an experimentally veri�able

refutation of a separate 
ommon 
ausal explanation of the EPR.

The se
ond problem was more 
on
eptual. Standard derivations of the Bell

inequalities assume a joint 
ommon 
ause system. The 
hief virtue of the proof

of Grassho�, Portmann and Wüthri
h was that it avoided this strong 
on
ept of a

joint 
ommon 
ause system and used the weaker 
on
ept of separate 
ommon 
ause

systems instead. However, in the perfe
t anti
orrelation 
ase the assumptions of

separate 
ommon 
ause systems turned out to be redu
ible to the assumptions of the

standard joint 
ommon 
ause system as it was shown in the following proposition:

Proposition 19. (Hofer-Szabó, 2008) Let

{

Cij
k

}

(i,j)∈PA
be lo
al, strongly non-


onspiratorial separate 
ommon 
ause systems for the 
orrelations of {(Ai, Bj)}(i,j)∈PA.

Then the partition {Dl} :=
{

∩ijCij
k

}

generated by the interse
tions of the di�erent

separate 
ommon 
ause systems is a lo
al, non-
onspiratorial joint 
ommon 
ause

system of the same 
orrelations of {(Ai, Bj)}(i,j)∈PA.

The assumption of perfe
t anti
orrelations, however, turned out not to be in-

dispensable in the proof of Proposition 18. Portmann and Wüthri
h (2007) and

Hofer-Szabó (2008) have shown that Proposition 18 also holds if one only assumes

that the 
orrelations to be explained form an almost perfe
t anti
orrelation set,

{(Ai, Bj)}(i,j)∈PA(δ), in the sense that there exists a δ of some small but not zero

value su
h that

p(Ai ∩Bj|ai ∩ bj) 6 δ (10.23)

for any index pair (i, j) ∈ PA(δ).
Finally, Hofer-Szabó (2011, 2012) generalized this proof by deriving arbitrary

Bell(δ) inequality� that is to say, an inequality di�ering from the 
orresponding

Bell inequality in a term of order δ. The re
ipe of this derivation is roughly the

following. Consider a Bell inequality resulting from the lo
al, non-
onspiratorial

joint 
ommon 
ausal explanation of a given set of 
orrelations {(Ai, Bj)}(i,j)∈I×J

(not ne
essarily {(Ai, Bj)}CH). Now, de�ne the set PA for {(Ai, Bj)}(i,j)∈I×J as
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follows: let PA 
ontain all the index pairs (k, k) in (I ∪ J) × (I ∪ J) that is all
indi
es appearing either on the left or the right hand side of the 
orrelations in

{(Ai, Bj)}(i,j)∈I×J .

Now 
onsider the set {(Ai, Bj)}PA(δ) of almost perfe
t anti
orrelations and

suppose that it has a lo
al, strongly non-
onspiratorial separate 
ommon 
ausal

explanation. This assumption results in a Bell(δ) inequality di�ering from the

original Bell inequality in a term of order of δ where the exa
t magnitude of this

term is the fun
tion of the approximation. Choose the setting whi
h violates the

Bell inequality maximally. If the δ term is smaller than the violation of the orig-

inal Bell inequality, then the Bell(δ) inequality will also be violated, ex
luding a

lo
al, strongly non-
onspiratorial separate 
ommon 
ausal explanation of the set

{(Ai, Bj)}PA(δ).

10.6 Con
lusions

In the paper, �rst, di�erent 
ommon 
ausal 
on
epts ranging from Rei
henba
h's

de�nition to the most general 
on
ept of the 
ommon 
ause system have been listed.

Then the role of the di�erent 
ausal notions in the 
ommon 
ausal explanation of

the EPR s
enario has been exposed. It was said that a 
ompletely satisfa
tory


ommon 
ausal explanations of the EPR would 
onsist in �nding a joint 
ommon


ausal sour
e for all 
orrelations whi
h is lo
al and non-
onspiratorial. Sin
e these

assumptions together entail various Bell inequalities one assumption has to be aban-

doned. The ambition of the separate 
ommon 
ause system type approa
h of the

EPR was to preserve the latter two physi
ally motivated assumptions of lo
ality and

no-
onspira
y at the expense of repla
ing the strong 
on
ept of the joint 
ommon


ause system with the weaker 
on
ept of separate 
ommon 
ause systems. It has

been shown, however, that the weakening of the 
ommon 
ausal 
on
ept does not

provide a solution to this problem sin
e the weakened assumptions still entail some

Bell and Bell(δ) inequalities. Consequently, there exists neither a lo
al, (weakly or

strongly) non-
onspiratorial separate 
ommon 
ausal explanation of the EPR.

A weakness of all the above no-go theorems, however, is that they are all based

on either perfe
t or almost perfe
t EPR 
orrelations. As it was made 
lear in Propo-

sition 19 the separate 
ommon 
ausal explanation of su
h 
orrelations is always

parasiti
 on some joint 
ommon 
ausal explanation. Therefore it would be highly

desirable to derive some Bell inequality form a lo
al, strongly non-
onspiratorial

separate 
ommon 
ausal explanation of a set of genuine (not almost perfe
t) EPR


orrelations. For example it would be widely wanted to prove or falsify Szabó's

original 
onje
ture (Conje
ture 1)�that is for the set {(Ai, Bj)}(i,j)∈CH violating

the Clauser�Horne inequality

(i) either to derive the Clauser�Horne inequality (or some other 
onstraint) from

the assumption that {(Ai, Bj)}(i,j)∈CH has a lo
al, strongly non-
onspiratorial

separate 
ommon 
ausal explanation;

(ii) or to show up lo
al, strongly non-
onspiratorial separate 
ommon 
ause sys-

tems for the set {(Ai, Bj)}(i,j)∈CH .

201

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



Neither option seems to be a trivial task.
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