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Preface

In this volume I collected my main research results achieved in the past
several years in the philosophical foundations of quantum theory. All these
results are related to the question as to how the notion of causality, local-
ity and probability can be implemented into quantum theory. The volume
contains 10 of my recently published research papers on these subject issues.
Although philosophy of physics is generally pursued as a team work, and
indeed many of my papers are also produced by collaborating with various
colleagues, in the present book I picked only papers written without collab-
oration. My intention was not to make up a self-contained monograph since
all the results of this volume have already appeared or will appear in one or
other of the books recently published with co-authors.

The main topics and principles analyzed in this volume are Bell’s notion
of local causality, the Common Cause Principle, the Causal Markov Condi-
tion, d-separation, Bell’s inequalities and the EPR scenario. Each chapter
of the volume is a different paper, with a separate abstract, introduction,
bibliography and sometimes appendix. To make the volume coherent and
to provide an overview of the general landscape I inserted an extra chapter,
the Introduction, at the beginning of the book where I summarize the main
themes and results of the subsequent chapters and their interdependence.

The chapters of the volume are the following papers:

Chapter 1. Gabor Hofer-Szab6, "Quantum mechanics as a representation
of classical conditional probabilities," Journal of Mathematical Physics
(submitted).

Chapter 2. Gabor Hofer-Szab6, "Three principles leading to the Bell in-
equalities," Belgrade Philosophical Annual, 29, 57-66 (2016).

Chapter 3. Gabor Hofer-Szabé, "How man and nature shake hands: the
role of no-conspiracy in physical theories," Studies in the History and
Philosophy of Modern Physics, 57, 89-97 (2017).
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Chapter 4. Gabor Hofer-Szabo, "Relating Bell’s local causality to the Causal
Markov Condition," Foundations of Physics 45 (9) 1110-1136 (2015).

Chapter 5. Gabor Hofer-Szabo, "Bell’s local causality is a d-separation
criterion," Springer Proceedings in Mathematics and Statistics (forth-
coming).

Chapter 6. Gabor Hofer-Szab6, "Local causality and complete specifica-
tion: a reply to Seevinck and Uffink," in U. Miaki et al. (eds), Re-
cent Developments in the Philosophy of Science: EPSA13 Helsinki,
Springer Verlag, 209-226 (2015).

Chapter 7. Gabor Hofer-Szabd, "Noncommutative causality in algebraic
quantum field theory," in M. C. Galavotti, D. Dieks, W. J. Gonzalez,
S. Hartmann, Th. Uebel, M. Weber (eds.), The Philosophy of Science
in a European Perspective, Vol. 5., 543-554 (2014).

Chapter 8. Gabor Hofer-Szabo, "On the relation between the probabilis-
tic characterization of the common cause and Bell’s notion of local
causality," Studies in the History and Philosophy of Modern Physics,
49, 32-41. (2015).

Chapter 9. Gabor Hofer-Szabd, "Separate common causal explanation and
the Bell inequalities," International Journal of Theoretical Physics, 51
110-123 (2012).

Chapter 10. Géabor Hofer-Szabé, "EPR correlations, Bell inequalities and
common cause systems," in D. Aerts, S. Aerts and C. de Ronde (eds.),
Probing the Meaning of Quantum Mechanics: Physical, Philosophical
and Logical Perspectives, 263-277 (2014).

The results in the above papers have been presented at more than 60 inter-
national workshops and department seminars. I thank the audience of these
workshop and seminars for their valuable comments. The papers benefited
a lot from these discussions.

Gabor Hofer-Szabo
December, 2017
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Introduction and overview

The philosophical understanding of the foundations of quantum theory is
one of the most thrilling questions in today’s philosophy of science. What is
the correct conceptual basis of quantum mechanics? How can our most fun-
damental philosophical concepts such as ’causality’, 'probability’ or "locality’
be accommodated in this theory?

There is a very influential approach to the foundational problems of quan-
tum theory which intends to accommodate quantum phenomena in a so-
called classical, locally causal world picture. This world picture is classical
since it adopts a classical ontology of events represented by a Boolean math-
ematical structure in a classical spacetime; it is local, since the events in
question are localized in a well-defined region of the spacetime; and finally
it is causal in the sense that the relation between these events meets the
relativistic requirement of 'no superluminal propagation’. The first advocate
of such a theory was John Bell. In a number of seminal papers Bell carefully
studied the philosophical intuitions lying behind our concept of locality and
causality. His major contribution, however, consisted in translating these
intricate notions into a simple probabilistic framework which made these no-
tions tractable both for mathematical treatment and later for experimental
testability. Since the central question was as to whether quantum theory
can be accommodated in a classical framework, therefore both Bell and the
subsequent authors used a classical probabilistic language in their analysis.
Events were understood as classical events represented by a commutative
mathematical structure and all the assumptions representing locality and
causality were formulated in the classical probability theory.

This classical, local and causal framework, however, turned out soon to
be inappropriate to account for quantum theory. Bell showed that these clas-
sical probabilistic assumptions lead to some mathematical constraints—the
so-called Bell inequalities—which were shown to be violated in some quan-
tum scenarios, thereby inhibiting a classical, locally causal interpretation of
quantum mechanics. Bell’s work has been followed by an extensive research



dc_1495 17

to locate the assumptions responsible for the violation of the Bell inequali-
ties, and many authors analyzed the philosophical consequences of giving up
either the one or the other of these assumptions. Since these assumptions
represented our natural intuitions concerning locality and causality, aban-
doning any of them resulted in acknowledging the limits of a locally causal
interpretation of quantum mechanics.

Many of the papers contained in this anthology can be considered as an
attempt to make a completely new start in the locally causal approach to
quantum theory. The core idea in brief is this: let us give up the classical
ontology in order to save locality and causality. In other words, contrary to
the standard strategy, we should not stick to a classical ontology at the price
of making our explanation either nonlocal, non-causal or introducing other
undesirable features, but we should straightly abandon the classical—that is,
commutative—character of causality, and investigate what we may gain and
what philosophical price we must pay for such a change in our conceptual
framework. Noncommutativity has a well-established place in the formalism
of quantum theory, but its role in causal explanation is completely unex-
plored. Exploring the causal explanatory role of noncommutativity in local
causality, introducing noncommutative causal concepts into our explanatory
framework can both broaden our formal strategies to causally account for
quantum phenomena, and also deepen our understanding of the nonclassical
nature of causality in quantum theory.

There is, however, another more conservative research line pursued in this
volume. This follows the down-to-Earth Humean tradition and asks how far
we get by adhering to the standard ontology of physics which is both local
and classical. How can quantum theory be reconstructed from this ontology
and how quantum probabilities can be accounted for in terms of classical
relative frequencies. What kind of causal and probabilistic independencies
one should assume between the elements of reality of this classical ontology
on the one hand and measurement choices of the experimenter on the other
hand?

These are the main questions and topics of this volume.

The first three chapters of anthology lie on the conservative side. The topic
of Chapter 1 is to analyze the reconstructability of quantum mechanics from
classical conditional probabilities representing measurement outcomes con-
ditioned on measurement choices. It will be investigated how the quantum
mechanical representation of classical conditional probabilities is situated
within the broader frame of noncommutative representations. To this goal,
I adopted some parts of the quantum formalism and asked whether empiri-
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cal data can constrain the rest of the representation to conform to quantum
mechanics. T will show that as the set of empirical data grows conventional
elements in the representation gradually shrink and the noncommutative rep-
resentations narrow down to the unique quantum mechanical representation.

Chapter 2 sheds light on the broader landscape of the relation among
the most notorious principles in the foundations of quantum mechanics. I
compare here three principles accounting for correlations, namely Reichen-
bach’s Common Cause Principle, Bell’s Local Causality Principle, and Ein-
stein’s Reality Criterion and relate them to the Bell inequalities. T show
that there are two routes connecting the principles to the Bell inequali-
ties. In case of Reichenbach’s Common Cause Principle and Bell’s Local
Causality Principle one assumes a non-conspiratorial joint common cause
for a set of correlations. In case of Einstein’s Reality Criterion one assumes
strongly non-conspiratorial separate common causes for a set of perfect cor-
relations. Strongly non-conspiratorial separate common causes for perfect
correlations, however, form a non-conspiratorial joint common cause. Hence
the two routes leading the Bell inequalities meet.

Chapter 3 addresses the problem of the so-called no-conspiracy. No-
conspiracy is the requirement that measurement settings should be proba-
bilistically independent of the elements of reality responsible for the mea-
surement outcomes. In this chapter I investigate what role no-conspiracy
generally plays in a physical theory; how it influences the semantical role of
the event types of the theory; and how it relates to such other concepts as
separability, compatibility, causality, locality and contextuality.

In Chapters 4-6 I turn towards the definition of Bell’s notion of local
causality in local physical theories. The questions asked here are how local
causality is related to Causal Markov Condition, d-separation and whether
complete specification is in contradiction with no-conspiracy.

The aim of Chapter 4 is to relate Bell’s notion of local causality to the
Causal Markov Condition. To this end, first a framework, called local phys-
ical theory, will be introduced integrating spatiotemporal and probabilistic
entities and the notions of local causality and Markovity will be defined.
Then, illustrated in a simple stochastic model, it will be shown how a dis-
crete local physical theory transforms into a Bayesian network and how the
Causal Markov Condition arises as a special case of Bell’s local causality and
Markovity.

Chapter 5 aims to motivate Bell’s notion of local causality by means of
Bayesian networks. In a locally causal theory any superluminal correlation
should be screened off by atomic events localized in any so-called shielder-off
region in the past of one of the correlating events. In a Bayesian network

11
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any correlation between non-descendant random variables are screened off by
any so-called d-separating set of variables. I will argue that the shielder-off
regions in the definition of local causality conform in a well defined sense to
the d-separating sets in Bayesian networks.

A physical theory is called locally causal if any correlation between space-
like separated events is screened-off by local beables completely specifying an
appropriately chosen region in the past of the events. In Chapter 6 I will
define local causality in a clear-cut framework, called local physical the-
ory which integrates both probabilistic and spatiotemporal entities. Then I
will argue that, contrary to the claim of Seevinck and Uffink (2011), com-
plete specification does not stand in contradiction to the free variable (no-
conspiracy) assumption.

In Chapter 7 it will be argued that embracing noncommuting common
causes in the causal explanation of quantum correlations in algebraic quan-
tum field theory has the following two beneficial consequences: it helps (i) to
maintain the validity of Reichenbach’s Common Causal Principle and (ii) to
provide a local common causal explanation for a set of correlations violating
the Bell inequality.

In Chapter 8 the relation between the standard probabilistic characteri-
zation of the common cause (used for the derivation of the Bell inequalities)
and Bell’s notion of local causality will be investigated in the isotone net
framework borrowed from algebraic quantum field theory. The logical role
of two components in Bell’s definition will be scrutinized; namely that the
common cause is localized in the intersection of the past of the correlated
events; and that it provides a complete specification of the ‘beables’ of this
intersection.

In Chapter 9 I ask how the following two facts are related: (i) a set of
correlations has a local, non-conspiratorial separate common causal expla-
nation; (ii) the set satisfies the Bell inequalities. My answer will be partial:
we show that no set of correlations violating the Clauser-Horne inequalities
can be given a local, non-conspiratorial separate common causal model if
the model is deterministic.

Chapter 10 is again devoted to separate common cause systems. Namely,
standard common causal explanations of the EPR situation assume a so-
called joint common cause system that is a common cause for all correla-
tions. However, the assumption of a joint common cause system together
with some other physically motivated assumptions concerning locality and
no-conspiracy results in various Bell inequalities. Since Bell inequalities are
violated for appropriate measurement settings, a local, non-conspiratorial
joint common causal explanation of the EPR situation is ruled out. But

12
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why do we assume that a common causal explanation of a set of correlation
consists in finding a joint common cause system for all correlations and not
just in finding separate common cause systems for the different correlations?
What are the perspectives of a local, non-conspiratorial separate common
causal explanation for the EPR scenario? And finally, how do Bell inequali-
ties relate to the weaker assumption of separate common cause systems?

13
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Chapter 1

Quantum mechanics as a
noncommutative representation
of classical conditional
probabilities

The aim of this paper is to analyze the reconstructability of quantum me-
chanics from classical conditional probabilities representing measurement
outcomes conditioned on measurement choices. We will investigate how the
quantum mechanical representation of classical conditional probabilities is
situated within the broader frame of noncommutative representations. To
this goal, we adopt some parts of the quantum formalism and ask whether
empirical data can constrain the rest of the representation to conform to
quantum mechanics. We will show that as the set of empirical data grows
conventional elements in the representation gradually shrink and the non-
commutative representations narrow down to the unique quantum mechan-
ical representation.

1.1 Introduction

In the quantum information theoretical paradigm one is usually looking for
the reconstruction of quantum mechanics from information-theoretic first
principles (Hardy, 2008; Chiribella, D’Ariano and Perinotti, 2015). This
approach has produced many fascinating mathematical results and greatly
contributed to a better understanding of the complex formal structure of
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quantum mechanics. As a top-down approach, however, its prime aim was
to clarify the relation of the theory to higher-order (rationality, information-
theoretic, etc.) principles and payed less attention to the “legs” of the theory
connecting it to experience.

In this paper we take an opposite, bottom-up route and ask—in the
spirit of the good old empiricist tradition—as to how the theory can be
reconstructed not from first principles but from experience. More precisely,
we will ask whether we can reconstruct the formalism of quantum mechanics
from using simply classical conditional probabilities.

Why classical conditional probabilities?

Quantum mechanics as a probabilistic theory provides us quantum prob-
abilities for certain observables. The question is how to connect these quan-
tum probabilities to experience. The correct answer is that the probabilities
provided by the Born rule should be interpreted as classical conditional prob-
abilities. They are classical since they are nothing but the long-run relative
frequency of certain measurement outcomes explicitly testable in the lab;
and they are conditional on the fact that a certain measurement had been
chosen and performed (E. Szabé, 2008). For example, the quantum prob-
ability of the outcome “spin-up” in direction z is the relative frequency of
the outcomes “up”™—but not in the statistical ensemble of all measurement
outcomes (which may also comprise spin measurements in other directions)
but only in the subensemble when spin was measured in direction z.

What does it mean to reconstruct quantum mechanics from classical
conditional probabilities?

First note that all we are empirically given are classical conditional prob-
abilities. The question is how to represent these empirical data. As it was
shown in (Bana and Durt 1997), (E. Szab6 2001) and (Rédei 2010) classi-
cal conditional probabilities conforming to the probabilistic predictions of
quantum mechanics need not necessarily be represented in the formalism of
quantum mechanics. The so-called “Kolmogorovian Censorship Hypothesis”
(or better, Proposition) states that there is always a Kolmogorovian repre-
sentation of the quantum probabilities if the measurement conditions also
make part of the representation. Thus, a stubborn classicist will always find
a way to represent the empirical content of quantum mechanics in a purely
classical framework.

On the other hand, quantum mechanics has proved to be an extremely
elegant and economic representation of these empirical data. It provides a
principled representation of an enormous collection of conditional probabili-
ties together with their dynamical evolution.

Our paper is a kind of interpolation between the two sides. Our strategy

16
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will be to accept some parts of the quantum mechanical representation of
classical conditional probabilities and ask whether the rest follows. More
precisely, we accept the noncommutative probability theory which in our
case will boil down to representing observables and states by linear opera-
tors. We also adopt the Born rule connecting the quantum probabilities to
real-world classical conditional probabilities; and the quantum mechanical
representation of measurement settings and measurement outcomes. The
only “free variable” will be the representation of the state of the system. Our
main question will then be as to what empirical data ensure that the state
of a system is represented by a density operator.

By this strategy we are going to analyze how quantum mechanics is situ-
ated within a noncommutative probability theory and to study whether the
specific quantum mechanical representation of classical conditional probabil-
ities within this broader frame can be traced back to purely empirical facts
or is partly of conventional nature.

In the paper we will proceed as follows. In Section 2 we introduce the
general scheme of a noncommutative representation of classical conditional
probabilities. In the subsequent three sections we gradually enhance the
set of empirical data that is the set of classical conditional probability of
measurement outcomes. We ask whether by increasing the set of empirical
data the noncommutative representation of these data necessarily narrows
down to the quantum mechanical representation or some extra conventional
elements are also needed. The empirical situation we are going to represent
will be three yes-no measurements in Section 3, & measurements each with
n outcomes in Section 4, and finally a continuum set of measurements with
n outcomes in Section 5. We will see how the conventional part gradually
shrinks as experience grows until the representation finally zooms in on the
quantum mechanical representation. We discuss our results in Section 6.

1.2 Quantum mechanical and noncommutative rep-
resentation

Suppose there is a physical system in state s and we perform a set {a;} (i € I)
of measurements on the system. Denote the outcomes of measurement a; by
{Al} (j € J). Suppose that by repeating the measurements many times we
obtain a probability ps(Ag|ai) that is a stable long-run relative frequency
for each outcome Ag given measurement a; is performed. Now, quantum
mechanics represents these conditional probabilities as it is summarized in
the following table:

17
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Quantum mechanical representation:

Operator assignment: Born rule:
System — H: Hilbert space
Measurements: a; — O;: self-adjoint operators ; ;
. : S Alla;) = Tr(W P!
Outcomes: A7 —  P/: spectral projections of O; ps(Ailas) (WsF})
States: s — Wj: density operators

In the table the different concepts are presented. On the left hand side of the
arrow/equation sign stand the empirical concepts to be represented; on the
right hand side stand the mathematical representation of the empirical con-
cepts. The two are not to be mixed. Although we do not use “hat” to denote
operators, throughout the paper we carefully distinguish empirical concepts
(measurements, outcomes, states) from their representation (self-adjoint op-
erators, projections, density operators). Thus, the physical system under
investigation is associated to a Hilbert space H; each measurement a; is rep-
resented by a self-adjoint operator O;; the outcomes A} of a; are represented
by the orthogonal spectral projections of O;; and the state s of the system
is represented by a density operator Wy, a self-adjoint, positive semidefinite
operator with trace equal to 1. In the second column the mathematical rep-
resentation is connected to experience by the Born rule: the representation
is correct only if the quantum mechanical trace formula Tr(W,P/) correctly
yields the empirical conditional probability ps(Ag |a;) for any outcome Ag of
measurement a; and any state s.

Note the following two facts. First, the trace formula is associated to a
conditional probability, not to a probability simpliciter. This means, among
others, that in joint measurements one always needs to combine different
measurement conditions. Second, the trace formula is “holistic” in the sense
that the empirically testable conditional probabilities are associated to the
trace of the product of two operators, one representing the state and the
other representing the measurement. This leaves a lot of freedom to account
for the same empirical content in terms of operators.

The main question of our paper is whether the above quantum mechanical
representation of classical conditional probabilities is constrained upon us if
the set of empirical data is large enough or whether we need some extra
theoretical, aesthetic etc. considerations to arrive at it. In order to decide
on this question, we consider first a wider class of representations which
we will call noncommutative representations. We will then ask whether a
noncommutative representation of a set of large enough data is necessarily

18
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a quantum mechanical representation.
What is a noncommutative representation?

Generally, a noncommutative representation is simply an association of
measurements and states to linear operators acting on a Hilbert space such
that some functional of the representants provides the correct empirical con-
ditional probabilities. Obviously this association can be done in many dif-
ferent ways. In our paper we pick a special noncommutative representation
which is very close to the quantum mechanical representation: We retain
all the assignments (denoted by —) of the above table except the last one.
That is we will represent the system by a Hilbert space, the measurements by
self-adjoint operators, and the outcomes by the orthogonal spectral projec-
tions. We also retain the Born rule connecting the formalism to experience.
The only part of the representation which we let vary will be the association
of the state of the system to linear operators. That is we do not demand that
states should necessarily be represented by density operators. We summarize
this scheme in the following table:

Noncommutative representation:

Operator assignment: Born rule:

‘H: Hilbert space
O;: self-adjoint operators

System

Measurements: a; . A
~ . Alla;) = Te(Ws P!
P?: spectral projections of O; ps(A;la:) (W5 FY)

Ws: linear operators

Outcomes: Ag
States: s

LI

Obviously, our noncommutative representation is only one special choice
among many. One could well take different routes. For example one could
demand that the state should be represented by density operators but aban-
don that the projections representing the outcomes should be orthogonal.
Or one could replace the Born rule by another expression connecting the
formalism to the world. As said above, the connection of the formalism of
quantum mechanics and experience is of holistic nature; one can fix one part
of the formalism and see how the rest may vary such that the resulting prob-
abilities are in tune with experience. With respect to our aim which is to
see how we are compelled to adopt the quantum mechanical representation
by increasing the number of conditional probabilities to be represented, our
above choice is just as good as any other.

What we will test in the subsequent sections is whether our noncommu-
tative representation is necessarily a quantum mechanical representation. In
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other words, we will test whether for any choice of operators representing a
certain set of measurements and the outcomes such that the Born rule yields
the correct conditional probabilities, the state will necessarily be represented
by a density operator. In Section 3 we start off as a warm-up with three mea-
surements; in Section 4 we continue with k£ measurements; and in Section 5
we end up by uncountably many measurements. It will turn out that the gap
between noncommutative and quantum mechanical representation gradually
shrinks as the set of empirical data grows.

1.3 Case 1: Three yes-no measurements

Consider a box filled with balls. Denote the preparation of the box by s.
Suppose you can perform three different measurements on the system; you
can measure the color, the size or the shape of the balls. Denote the three
measurements as follows:

a: Color measurement
b: Size measurement
c:  Shape measurement

Suppose that each measurement can have only two outcomes:

At: Black A~ White
Bt: Large B7: Small
C*t: Round C—: Oval

Suppose you pick a measurement, perform it many times (putting the balls
always back into the box), and count the probability, that is the long-run
relative frequency, of the outcomes. What you obtain is the conditional
probability of the outcomes given the measurement you picked is performed
on the system prepared in state s:

pff = pS(Ai\a) (1.1)
pbi = pS(Bi‘b)
pr = ps(CFle)

Now, suppose you are going to represent the above empirical facts not in
the standard classical probability theory but in a quantum fashion. Since
our model contains only two-valued (yes-no) measurements, it suffices to use
only a minor fragment of quantum mechanics. Again, we summarize it in a
table:

20
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Quantum mechanical representation:

Operator assignment: Born rule:
System: — Cs
Color: a — O, =ac
Shsalffi lc) : gi = Eo-a pit = TI"(WsPCi) = %(1 + sa)
ite: + + _ 1 pb:T‘r(WSPb):—(leSb)
Black/White: A* — PrF =35(1+a0) b TP i(l + a0)
Large/Small: B¥ — Pbi %(1ibo-) Pe = ste) =3
Round/Oval: C* — PFf=1(1+co)
State: s — W, =3(1+s0)

Here, the Hilbert space associated to the system is the two-dimensional com-
plex space Co; and the operators associated to the measurements, outcomes
and the state are all self-adjoint operators acting on Cy. According to this
representation, called the Bloch sphere representation, a self-adjoint opera-
tor O, associated to measurement a can be represented by the inner product
of a unit vector a = (ay,ay,a;) in R? and the Pauli vector o = (0, 0y,0.).
The two outcomes AT of measurement a are associated to the spectral pro-
jections PE¥ = 1(1 + ag) of O,, where 1 is the two-dimensional identity
operator. Finally, the density operator Wy associated to the state s of the
system is of the form W = 1 (1+s0), where s = (s, Sy, 5;) is in the unit ball
B={reR?:|r| <1} of R3. If |s| = 1, then s is said to be a pure state,
otherwise a mixed state. Again, the empirical content of the representation
is ensured by the Born rule which in this two-dimensional case boils down
to the inner product: pF = 1(1 £ sa). (Similarly for b and c.)

Now, to give a quantum mechanical representation for the above situation
we need to associate the three measurements to three Bloch vectors and
the state of the system to a fourth Bloch vectors (either unit or smaller)
such that the Born rule (the trace formula) yields the pre-given conditional
probabilities (1.1)-(1.3). Thus, assign to each measurement a unit vector in
R3:

{a,b,c} — {a,b,c} (1.4)

Suppose that the vectors a, b and c are linearly independent. First, we show
that given three pairs of empirical conditional probabilities p}, pgt and pf
and also the assignment (1.4), the operator W associated to the state s gets
uniquely fixed. Schematically,

+
pf,Pb,Pci & a, b,C — W

21



dc_1495 17

To see this, observe that any linear operator acting on Cs can be written as
Wy = 5ol + so +i(s4l +s'o)

where sq, s, € R and s,s’ € R?. Now, applying the Born rule to the three
measurements we get:

WPE) = 59+ sa +i(s) + s'a)
W,P) = sg £ sb +i(s), £ s'b)
W,PE) = sg £ sc+i(sy = s'c)

Tr(

pE
py = Tr(
£ =Ti(

which, assuming that pai, pff and pzc are real and a, b and c are linearly
independent, yield

1 / /
S0=5 50=20 s=0
and hence
1
pff:§isa
1
+
= —*sb
Py 5 S
1
pfziisc

the solution of which is Wy = (1 + so) with

(P — 3)(b xc) + (py —5)(e xa)+ (pf — 3)(axb)

S =

where X is the cross product. (The linear independence of a, b and c is
needed for the triple product in the denominator not to be zero.)

This is a well-known result. Since the late 60s and early 70s there has
begun an intensive research for the empirical determination of the state of
a quantum system. In a series of papers Band and Park (1970, 1971) have
extensively investigated how the expectation value of certain observables
determine the state of a system. They investigated the minimal number of
observables, called the quorum, needed for such state determinations; the
structure and geometry of this set; and many other important features. The
study of the quorum has become an eminent research project also in the new
quantum informational paradigm. Quantum tomography, quantum state
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reconstruction, quantum state estimation etc. all follow the same path: they
start from a set of observables and aim to end up with a more-or-less fixed
state using empirical input (see for example (D’Ariano, Maccone and Paris,
2001)).

However, all these endeavors have a common pre-assumption, namely
that the association of measurements to operators is already settled. They
all start from a set of operators and (by means of a set of empirical proba-
bilities) aim to reconstruct the quantum state of a system. But an operator
is not a measurement but only a representation of a measurement. Calling
operators observables overshadows the fact that the operators are already
on the mathematical side of the project and without providing an associa-
tion of measurements to operators the state determination cannot rightly be
called “empirical”. This measurement-operator assignment is that which we
are going to make explicit in what comes.

Consider the following measurement-operator assignment in the context of
our above model: we associate the following three Bloch vectors to the mea-
surements a, b and c:

a = x=(1,0,0) (1.5)
b = (0,cosp,—sinyp)
c = z=(0,0,1)

and for the sake of simplicity we set the conditional probabilities as follow:
Py =Dy =pl =p (1.8)

The Bloch vector s for these special directions and empirical probabilities
will then be the following:

1 1 i
s=(p—2-)(1, —i—coscp—i—s?n(p’ 1 (1.9)
2 1+ cosep—sing

But the operator W associated to the Bloch vector s will not necessarily be
a density operator. For example for any

p €[0.76,1] and ¢ € [7/3,7/2) (1.10)

the vector s will be longer than 1 and hence W will not be positive semidef-
inite, that is, a density operator.

Thus, we have provided a noncommutative but not quantum mechanical
representation of the above scenario. All the assignments of the table at the
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beginning of this section hold except the last one: the state of the system is
represented by a linear operator but not a density operator.

This toy-example is, however, special in two senses: (i) the number of
measurements is finite and (ii) the number of outcomes is two, that is, the
scenario is represented in the two-dimensional Hilbert space which is always
a special case. We tackle point (ii) in the next section and point (i) in the
one after the next.

1.4 Case 2: k£ measurements with n outcomes

Let us then see whether a larger set of probabilities can also be given a
noncommutative but not quantum mechanical representation. Suppose we
perform k measurements on a system such that each measurement can have
n outcomes. Suppose we obtain the following empirical conditional proba-
bilities:

pg::p(Ag\ai)QO with Zpgzl forall i=1...k;j=1...n

)

Just as above we represent each measurement a; by a self-adjoint operator
O; in the Hilbert space H, and the measurement outcomes {Az} of a; by
the orthogonal spectral projections {PZ] }. The representation is connected
to experience by the Born rule:

pl = p(Alla;) = Te(W,P))

where Wy is a linear operator representing the state s of the system. Again,
we do not assume that W, is a density operator; our task is just to see
whether it follows that W is always a density operator.

Now, the empirically given probability distributions together with the
conventionally chosen sets of minimal orthogonal projections provide con-
straints on Wy via the Born rule. For a certain number of measurements W
gets completely fixed. Schematically,

iy ) - vy & (P BRY . {P]} = W,

How many measurements are needed to uniquely fix Wy?

W, gets uniquely fixed if Tr(WA) is given for n? linearly independent
operators A. Our operators are minimal projections. The first set of mini-
mal orthogonal projections provides n linearly independent equations. Any
further linearly independent set of orthogonal projection provides n—1 extra
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equations since in each set the projections sum up to the unity. That is & lin-
early independent sets of minimal orthogonal projections provide k(n—1)+1
linearly independent equations which is equal to n? if k = n + 1. Thus, per-
forming £k = n + 1 measurements on our system (resulting in k = n + 1
probability distributions) and representing all the outcomes by orthogonal
projections in H,,, the linear operator Wy gets uniquely fixed.

But it will not necessarily be a density operator!

Our question is then: Do k = n + 1 measurements constrain Wy to be a
density operator for all linearly independent sets of orthogonal projections
representing the outcomes and all probability distributions generated from
the projections by the Born rule? Again, what we test here is whether a
noncommutative representation is necessarily a quantum mechanical repre-
sentation.

Now, we show that the answer is: no.

As said above, a density operator is a self-adjoint, positive semidefinite
operator with trace equal to 1. Self-adjoint operators in H,, form a vector
space V over the field of real numbers. This vector space can also be endowed
with an inner product induced by the trace: (A, B) := Tr(AB). The oper-
ators with trace equal to 1 form an affin subspace F in V and the positive
semidefinite operators form a convex cone Cy. (A subset C of a real vector
space V that linearly spans V is a convez cone if for any A, Ay € C and
r1,m2 € Ry, mA1+1r345 € Cand A,—A € C = A =0). The intersection of
the two, C; N E, is a convex set in the affin subspace. The extremal elements
of this set are the minimal projections in H,. Denote this set of minimal
projections in H,, by P,.

Now, for any cone C in V| the dual cone C* is defined as

C*:={AeV|Tx(AB) >0 forall BeC}

According to Fejér’s Trace Theorem the cone of the positive semidefinite
operators is self-dual that is C7 = C.

Now, let us return to our example. Consider the k = n + 1 linearly
independent sets of orthogonal projections representing the measurement
outcomes in H,. Let D be the convex cone expanded by these projections
in P, as extremal elements. Obviously, D C C, and consequently D* D
C% = C4. Pick an element from (D*\ C;)NE and call it W,. Lying outside
C,, W will not be positive semidefinite but, lying in E, W will be of trace
1. Hence for any set of orthogonal projections it generates a probability
distribution by the Born rule.

Thus, we have found a counter-example (actually, continuously many
counter-examples): k = n + 1 linearly independent sets of orthogonal pro-
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jections representing measurement outcomes and k = n + 1 probability dis-
tributions such that the latter is generated from the former by the Born rule
with an operator W which is not a density operator (since is not positive
semidefinite). Hence, we have provided a noncommutative but not quantum
mechanical representation for a situation in which k = n + 1 measurements
with n outcomes are performed on a system. This shows that our previous
result is not a consequence of the fact that the Hilbert space is the special
Ho. Conditional probabilities of finitely many measurements with finitely
many outcomes can always be given a noncommutative but not quantum
mechanical representation.

But what is the situation if we are going to the continuum limit? Does
our counter-example survive if the cardinality of the set of conditional proba-
bilities to be represented is uncountable? To this we turn in the next section.

1.5 Case 3: A continuum set of measurements with
n outcomes

There is a theorem which immediately comes to one’s mind when going to
the continuum limit, namely Gleason’s theorem.

Suppose we are given a continuum set of probability distributions of
measurements with, say, n outcomes. We are to represent this set in an
n-dimensional Hilbert space H,. Now, suppose that we assign self-adjoint
operators to the measurements such that the spectral projections of the var-
ious operators together cover the full set P,, of minimal projections in H,.
In other words, there is no minimal projection in P,, which does not repre-
sent a measurement outcome. In this case we can invoke Gleason’s theorem
to decide on the question as to whether there exist noncommutative repre-
sentations which are not the quantum mechanical representation. Gleason’s
theorem answers this question in the negative.

Gleason’s theorem namely claims that for every state ¢ in a Hilbert
space with dimension greater than 2 there is a density operator W (and vica
versa) such that the Born rule ¢(P) = Tr(PW) holds for all projections. In
other words, if all projections are considered, then the state will uniquely be
represented by a density operator. Translating it into our case, the theorem
claims that if one represents the continuum set of measurement outcomes
by the full set P, of projections of a given Hilbert space, then one has no
other choice to account for the whole set of conditional probabilities, than
to represent the state by a density operator.

Note, however, that the previous sentence is a conditional: if we rep-
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resent the measurement outcomes by the full set P, then Gleason’s theo-
rem tells us that the only representation is the quantum mechanical. This
raises the following question: Are we compelled to represent a continuum
set of measurement outcomes necessarily by the full set of minimal projec-
tions? Can we not “compress” somehow the set of projections representing
the measurement outcomes such that (i) the outcome-projection assignment
is injective (no two outcomes of different measurements are represented by
the same projection), still (ii) the set of projections is only a proper subset of
Pn? As we saw in the previous section, in this case we can always represent
the state of the system by a linear operator which is not a density operator.
Or to put it briefly, can we avoid Gleason’s theorem by not making use of
all minimal projections of P, 7

As stressed in Section 2, it is of crucial importance to discern physical
measurements from operators mathematically representing them. When we
use Gleason’s theorem we intuitively assume that all projections in a Hilbert
space represent a measurement outcome for a real-world physical measure-
ment. The case of spin enforces this intuition since the Bloch sphere rep-
resentation of spin-half particles nicely pairs the spatial orientations of the
Stern-Gerlach apparatus with the projections of Ps. In general, however, we
have no a priori knowledge of the measurement-operator assignment. Par-
ticularly, we cannot assume that a set of measurements just because it is an
uncountable set has be represented by the full set of projections of a given
Hilbert space. A priori it is perfectly conceivable that a set of real-world
measurements, even if its cardinality is uncountable, can be represented by
a proper subset of P,.

The question of how the cardinality of the empirical data influences the
possible representations should be discerned from another question, namely
the content of the empirical data. What is the empirical data that we are
going to represent? It is the empirical content of quantum mechanics itself
— one may respond. But what is that?

Suppose that for a given Hilbert space H,, all the self-adjoint operators
on H, represent a real-world empirical measurement with n outcomes and
all states on H,, represent a real-world preparation of the system to be mea-
sured. In other words, take it at face value that the full formalism of an
n-dimensional quantum mechanics has empirical meaning. Again, this as-
sumption is legitimate for n = 2 where one can see how self-adjoint operators
in Hs nicely align with real-world spin measurements of electrons in differ-
ent spatial directions. This matching for, say, n = 13, however, is not so
obvious. Be as it may, suppose we coin the term “empirical content of the
n-dimensional quantum mechanics” for the (continuum) set of conditional
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probabilities provided by the Born rule that is gained by taking the trace
of the all the different spectral projections multiplied by the all the differ-
ent density operators on H,. Then our question is this: can the empirical
content of the n-dimensional quantum mechanics be represented in H,, in a
noncommutative but not quantum mechanical way?

Thus, we have two different questions. 1. Is a noncommutative represen-
tation of a set of empirical probabilities necessarily a quantum mechanical
representation if the cardinality of the set is continuum? 2. Is a noncom-
mutative re-representation of the empirical content of quantum mechanics
is necessarily a quantum mechanical representation? In what comes we will
show that the answer to the first question is no and the answer to the second
question is yes.

We start with the first question. Our task is to represent a continuum set
of empirical probabilities in a noncommutative but not quantum mechanical
way. The set we pick will be the set of probabilities of spin measurements in
all the different spatial directions performed on an electron prepared in one
given state. This set is obviously a continuum set but not yet the full em-
pirical content of the two-dimensional quantum mechanics since we consider
only one state. The continuum set of empirical conditional probabilities is
the following:

{pf = ps(AT|a); sis fixed } (1.11)

Here a denotes the spin measurement in direction a and A* are the two spin
outcomes. Now, in the Bloch sphere representation one associates two unit
vectors

a = (1,9,¢)
s = (1,0,0)

to the spin measurement a and state s of the system, respectively, such that
the Born rule yields the conditional probabilities (1.11):

Operator assignment: Born rule:

Outcomes: A — PrF=1l(1t+ac) acR? |a=1
. ) ARy TR
Pure state: s — W,=35(1+s0) scR’ [|s|=1

As is well-known, the measurement outcomes in the Bloch sphere represen-
tation are associated to the full set of minimal projections Ps, and hence
W, must be represented by a density operator due to Gleason’s theorem.
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However, the Bloch sphere representation is not the only possible noncom-
mutative representation of (1.11). Here is an alternative.
Consider the following two functions:

f:58% = 8% a— f(a)
g:5% = R3; s g(s)
and suppose that instead of a and s we associate

f(a) = (1’19/’Q01)
g(S) = (T’O’O)

to a and s, respectively, where

Y
¥ = arccos <&()> for p € [0, 27] (1.12)
r
0 ford=0
¢ = ¢ for ¥ € (0,7) (1.13)

7 ford=m

and r > 1. Observe that f is injective but not surjective: a spherical cap
around the “North Pole” and “South Pole” is not in the image of f. It
is easy to check that by these associations we obtain a noncommutative
representation for the conditional probabilities (1.11):

Operator assignment:

Born

rule:

Outcomes: A& — PEF=3(1+f(a)o) f(a)eR3 [f(a)=1
Pure state: s — W, =2(1+g(s)o) g(s) € R? [g(s)| > 1

b

:l::TI.

a

(WPE)

The representation is a noncommutative but not a quantum mechanical rep-
resentation since W is not positive semidefinite and hence not a density
operator. Note again that we have avoided Gleason’s theorem because we
did not use the full Bloch sphere to represent measurement outcomes but
only a “belt” defined by the angles (1.12)-(1.13). To sum up, even though the
set of measurements is uncountable, the noncommutative representation is
not necessarily quantum mechanical since the set of projections representing
the outcomes is not the full set of projections Ps of the Hilbert space Hs.

However, (1.11) contains only the conditional probabilities of the spin mea-
surement for one state. Can we apply the above technique of “pecking a hole”
in the surface of the Bloch sphere and “pushing out” s such that W will not
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be a density operator in the case when we take into consideration all states?
In other words, can we provide a noncommutative but not quantum me-
chanical representation for the full empirical content of the two-dimensional
quantum mechanics? This was our second question above.

This is point where the representation of the set of conditional prob-
abilities gets rigid. It will turn out that if one is to represent the condi-
tional probability of all measurement outcomes of all spin measurement in
all states, then there is no other noncommutative representation but the
quantum mechanical. We prove it by the following lemma.

Lemma 1. Consider the Bloch sphere representation of spin. That is let
a and s two unit vectors associated to the spin measurement a and state s
of the system, respectively, such that the Born rule yields the conditional
probabilities:

ﬂ@nRﬂ:Jﬁ<;J+&ﬂ%ﬂiaaO::%ﬂisw (1.14)

Then, if there are two functions
f:58% = 5% a— f(a)
g:5% 5 R3; s g(s)

such that all the conditional probabilities (1.14) are preserved that is

as = f(a)g(s) (1.15)
for all a,s € S2, then
(i) f and g are the restrictions of the bijective linear maps
f:R* > R?
9 R* > R?
to 52, respectively;

A

(ii) f is the orthogonal transformation;

~

(iii) g = f.
For the proof of Lemma 1 see the Appendix.

Lemma 1 shows that there is no other transformation of the Bloch vectors
which preserve all the empirical conditional probabilities encoded in the inner
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product but the orthogonal transformation. Consequently, one cannot avoid
Gleason’s theorem and provide a counter-example of the above type in which
the state is represented by a linear but not density operator.

In the rest of the section we prove that this result holds not only in Ho
but in any n-dimensional Hilbert space. We show that one cannot preserve
all the empirical conditional probabilities encoded in the inner product of
the Hilbert space by other transformation than the unitary transformation.
Thus, “compressing” the empirical content in a proper subset of P, of a
given Hilbert space is not a viable route to follow. If all the inner products
of minimal projections have an empirical meaning then the only way to
represent them is via quantum mechanics.

Lemma 2. Let H be an n-dimensional Hilbert space and let P,, be the set
of minimal projections in B(H) ~ M, (C). If there are two functions

f:lpn_>7)n
g:Pn— M,(C)

such that
Tr(PQ) = Tr(f(P)9(Q)) (1.16)
for all P, @ € P,, then

(i) f and g are the restrictions of the bijective linear maps

~

(C) = M,(C)

. M,
: M, (C) — M,(C)

>

to P, respectively;

A~

(ii) f is unitary with respect to the inner product on M, (C) provided by
the trace;

(ii}) g = f.

For the proof of Lemma 2 see again the Appendix.'

'T thank Péter Vecsernyés for his help in proving both Lemma 1 and 2.
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1.6 Discussion

Is quantum mechanics the only possible way to represent an empirically given
set of classical conditional probabilities in a noncommutative way; or is this
representation picked out from a broader set of representations by conven-
tion? Ultimately, this was the question we posed in this paper. To make
this question precise, we specified a set of representations, called noncom-
mutative representations, in which measurement choices and measurement
outcomes were represented in the quantum fashion and the Born rule con-
necting the quantum probabilities to classical conditional probabilities was
respected. We asked whether experience can ensure that this representation
becomes not just partly but fully quantum mechanical, that is, the state will
be represented by a density operator. Our answer was the following:

1. In case of finitely many measurements with finitely many outcomes the
probability distribution of outcomes can always be given a noncommu-
tative but not quantum mechanical representation.

2. In case of infinitely many measurements the probability distributions
can be given a noncommutative but not quantum mechanical repre-
sentation only if one can avoid Gleason’s theorem by not using all the
projections of the Hilbert space in representing measurement outcomes.

3. If the physical situation is so complex that the inner product of any
pair of minimal projections is of empirical meaning, then there exists
no noncommutative representation which is not quantum mechanical.

The relation between point 2 and 3 is very subtle. It shows that simply
the cardinality of the set of measurements does not decide on whether the
situation can be given a noncommutative but not quantum mechanical rep-
resentation. By “compressing” the projections representing measurement
outcomes into a real subset of the full set of minimal projections of the given
Hilbert space one can go beyond the quantum mechanical representation.
The representation becomes rigid only if the inner product of any pair of
minimal projections in a Hilbert space can be given an empirical content.
This is case for spin-half particles where projections can directly be associ-
ated to preparation and measurement directions. Whether one can provide
a similar empirical account for the inner product of any pair of minimal pro-
jections in a Hilbert space of higher dimension, is a question which cannot
be decided a priori.
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Appendix

Proof of Lemma 1. (i) Let {e1,e2,e3} C S? be an orthonormal basis in R3.

Then due to (1.15) the sets {f(e1), f(e2), f(es)} and {g(e1),g(e2),g(es)}
are biorthogonal:

(f(el)’g(e])) = 6@,] Za] = 1,253

Biorthogonal sets with cardinality d in R? form (in general two different)
linear bases of R%. Hence, ifa =", a;e; € S? and f(a) =Y, a{f(ei) € R3
with a;,0f € R, then

ai = (a.e) = (f(a),g(e)) = 3l (fle)gle) =af, i=1,2,3 (117

Hence, f(D_, aie;) = >, a;f(e;), that is f is the restriction of the bijective
linear map f characterized by the image linear basis {f(e1), f(es, f(e3)} of
the orthonormal basis {e1,es,e3}. A similar argument shows that g is the
restriction of the bijective linear map § to S2.

(i) Using polarization identity

1
(a,b):Z[(a—i-b,a—i-b)—(a—i-b,a—i-b)], a,bcR?

it is enough to show that

(a,a) = (f(a), f(a)), a€cR?
which, however, holds since

1= (a,a) = (f(a), f(2) = (f(a), f(a)), aecs’
and f is linear.
(iii) Using (1.15) and the orthogonality of f one has
(a,b) = (f(a),4(b)) = (a, f(4(b))), a,b € R”.

Hence, g = f due to the uniqueness of the inverse map. m
Proof of Lemma 2. (i) Since the trace is a faithful positive linear functional
on M, (C),

(A,B) :=Tr(A*B), A,B e M,(C)
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defines an inner product on the n?-dimensional complex linear space M, (C).
The real linear combinations of the projections in P, span the real vector
space of self-adjoint elements in M,,(C), and the complex linear combina-
tions span the complex vector space M, (C). Let {P;,i = 1,...,n%} C P,
be a linear basis in M, (C). Then the inner product matrix g € M,2(C)
given by matrix elements g;; := (P;, Pj) > 0 is an invertible matrix. Since

Te(f(P)g(P)) = gij dueto (1.16) {f(P3),i = 1,...,n*} C Py and {g(F;),i =
1,...,n?} C M,(C) are linear bases in Mn(C) due to invertibility of g.
Defining the bijective linear maps f,§: M,(C) — M,(C) by the linear ex-
tension of these image bases for P =), a; P; € P, one has

(f(P),9(Fy)) = (P, Pj) = ZO@P@',P Zaz P;, ) Z%‘(f(ﬂ%g(Pj))
:(Zalf(ljl)mg( Zaz i (f( ) ( )), j:1,...,n2.

Hence, f is the restriction of the bijective linear map f to Py, indeed. A
similar argument shows that g is the restriction of the bijective linear map
g to Py.

(i) Using polarization identity
m¢n25m+BA+By4A—aA—Bm A, B € My(C)

it is enough to show unitarity on ‘diagonal’ inner products:

(A7 A) = (f(A)7 f(A))v A€ Mn(c)

Since f(Py) C P, by assumption, using the normalization Tr(P) = 1, P €
P,, of the trace it follows that

(P,P)=1=(f(P), f(P)) = (f(P). /(P)), PePy

ie. f is unitary on diagonals from P,. Using a spectral decomposition of
self-adjoint elements by orthogonal minimal projections one concludes that
f maps the real vector space of self-adjoint elements in M, (C) into itself,
moreover, it is unitary on diagonals from the space of self-adjoint elements.
Since A € M,,(C) can be written uniquely as a sum of self-adjoint elements:
A =R+l with R:= (A+ A*)/2 and I := (A — A*)/2i it follows that

(A,4) = (R+ilR+il) = (R.R)+ (I,1) = (F(®), f(R)) + (F(D), £(D)
= (F(R) +if(D), f(R) + (1)) = (F(A), F(A),
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that is f is unitary on diagonals from M, (C), which provides unitarity of f.
(iii) Using (1.16) and unitarity of f one has

(4,B) = (f(A),3(B)) = (A, [ (4(B))), A, B € My(C).
Hence, g = f due to the uniqueness of the inverse map. m
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Chapter 2

Three principles leading to the
Bell inequalities

In the paper we compare three principles accounting for correlations, namely Re-
ichenbach’s Common Cause Principle, Bell’s Local Causality Principle, and Ein-
stein’s Reality Criterion and relate them to the Bell inequalities. We show that
there are two routes connecting the principles to the Bell inequalities. In case of
Reichenbach’s Common Cause Principle and Bell’s Local Causality Principle one
assumes a non-conspiratorial joint common cause for a set of correlations. In case of
Einstein’s Reality Criterion one assumes strongly non-conspiratorial separate com-
mon causes for a set of perfect correlations. Strongly non-conspiratorial separate
common causes for perfect correlations, however, form a non-conspiratorial joint
common cause. Hence the two routes leading the Bell inequalities meet.

2.1 Introduction

Many were pondering on the historical reasons of why it took thirty years to get
from the EPR argument to the Bell inequalities. (See for example (Bell 1964 /2004);
(Howard 1985); (Redhead 1987); (Hajek and Bub 1992); (Fine 1996); (Norton
2004); (Szabo 2008); (Goldstein et al. 2011); (Maudlin 2014) and (Lewis 2015).)
This paper has nothing to say about these historical and conceptual reasons. It
rather intends to show that the route leading from Einstein’s Reality Criterion to
the Bell inequalities is no longer than the route starting off from two other prin-
ciples standardly used to causally account for correlations, namely Reichenbach’s
Common Cause Principle and Bell’s Local Causality Principle.

In the paper we will handle the three principles side by side and show how they
relate to one another and to the Bell inequalities. In Section 2 we show how the
principles are used to causally account for correlations; in Section 3 we use them
to explain conditional correlations; and in Section 4 we trace the routes leading
from the principles to the Bell inequalities. In the paper we deliberately keep the
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philosophical analysis short so that the formal parallelism will not be lost sight of.

2.2 Explaining correlations

Let A and B be two correlated but causally separated events represented in a
classical probability space (3, p):

p(A N B) # p(A)p(B) (2.1)

One can invoke three principles to causally account for this correlation. If one is
concerned only with the probabilistic aspects, one can apply

Reichenbach’s Common Cause Principle: If there is a correlation between two
events and there is no direct causal (or logical) connection between the correlated
events, then there always exists a common cause of the correlation.

Formally, a common cause of the correlation (10.1) is a partition {Cy} (k € K) in
(2, p)—or in an extension of (X, p); see (Hofer-Szabo, Rédei and Szab6 2013)—such
that for any k € K:

p(A A B|Cy) = p(A|Ck) p(B|Ch) (2.2)

If one furthermore assumes that the events A and B also have spatiotemporal
localization, for example they are located in spatially separated regions, V4 and V3,
respectively, then to causally account for them, one can invoke a further principle:

Bell’s Local Causality Principle: “A theory will be said to be locally causal if
the probabilities attached to values of local beables in a space-time region V4 are
unaltered by specification of values of local beables in a spatially separated region
Vg, when what happens in the backward light cone of V4 is already sufficiently
specified, for example by a full specification of local beables in a space-time region
Ve (Bell 1990/2004, 239-240)

The figure Bell is attaching to this formulation is reproduced in Fig. 6.1 with the
original caption. In a locally causal theory for any correlation between events A
and B localized in spatially separated regions V4 and Vg, respectively, the atomic
partition {C} (k € K) in the probability space (X, p) associated to any region Vi
causally shielding-off V4 from the common past of V4 and Vg as depicted Fig. 6.1
should satisfy (2.2).

Finally, suppose we interpret the correlation (10.1) epistemologically as a pre-
diction. That is we interpret A as a predicting event and B as a predicted event and
the prediction as a correlation between the two. After all, a prediction is ontologi-
cally nothing but an (ideally strong) correlation between two event types. Weather
forecast is simply a correlation between the today announcement and the tomorrow
weather. Moreover, in a prediction the predicted event cannot causally influence
the predicting events. One can predict the tomorrow weather but not the yesterday
weather.
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2

Figure 2.1: Full specification of what happens in Vo makes events in Vp
irrelevant for predictions about V4 in a locally causal theory.

Suppose furthermore that the following two requirements also hold: (i) The
predicting event is also causally irrelevant for the predicted event. This can hap-
pen for example when the two events are spatially separated. (ii) The correlation
between A and B is perfect:

p(ANB) =p(A) =p(B) (2.3)
If all these hold, then we have a third principle to account for the correlation (2.3):

Einstein’s Reality Criterion: “If, without in any way disturbing a system, we
can predict with certainty (i.e. with probability equal to unity) the value of a
physical quantity, then there exists an element of physical reality corresponding to
this physical quantity.” (EPR 1935, 777-778)

Observe, that the term “without in any way disturbing a system” is just condition (i)
above, and the term “predict with certainty” is just condition (ii). What Einstein’s
Reality Criterion requires is that in case of a perfect prediction, that is perfect
correlation between causally separated events, an element of reality should account
for the correlation.

What is an element of reality?

The distinctive feature of an element of reality (see (Gomori and Hofer-Szabd
2017) for the details) is that it determines the predicted event with certainty. For-
mally, an element of reality is a partition {CT,C~} in (X, p) such that the following
holds:

p(ANBICH) = 1 (2.4)
p(AABICT) = 0 (2.5)

Now, let us go back to the Reichenbach’s Common Cause Principle. It is well known
that for perfect correlations a common cause that is a partition {Cy} (k € K)
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satisfying (2.2) is deterministic: for any k € K
p(A A B|Cy) € {0,1} (2.6)

Hence, the indices k € K can be grouped into two groups K™ and K~ with K+ V
K~ = K such that

ct = Viekx+Ck (2.7)
C™ = Viger-Ck (2.8)

and {C1,C~} satisfies (2.4)-(2.5). Common causes for perfect correlations under-
stood as predictions are just elements of reality.

To sum up, a correlation between two events depending on whether we under-
stand it purely probabilistically or spatiotemporally or in the context of predictions
can be explained by three different principles: by Reichenbach’s Common Cause
Principle, by Bell’s Local Causality Principle or by Einstein’s Reality Criterion.

2.3 Explaining conditional correlations

Now, let us apply the above reasoning to measurements. Let a; and b; (i € 1,5 € J)
be measurement choices and let {A;, A;} and {Bj, B} be binary measurement
outcomes on two spatially separated systems. We will represent the measurement
choices as two partitions {a;} (i € I) and {b;} (j € J) in a classical probability
space (X, p), and the measurement outcomes by further partitioning the appropriate
measurement choices a; and b;, respectively:

BjAB;=0  B;VBj=b, (2.10)

Suppose that for a given i € I and j € J the measurement outcomes A; and
Bj are conditionally correlated in the following sense:

p(A; A Bjlai Abj) # p(Aila;) p(Bjlbj) (2.11)

What is the causal explanation of this conditional correlation?

Before we turn to the above principles, we make the following stipulation:
Whatever explains the above correlations, it has to be causally and hence prob-
abilistically independent of the measurement choices. In other words, in applying
the above principles we will always require:

No-conspiracy: If a partition {Cj} (k € K) represents a set of events explaining
the correlation (10.13), then for any k € K the following relation is required:

pla; ANbj A Cy) = p(a; Abj) p(Cy) (2.12)

Next, we formulate the three principles causally accounting for the conditional
correlation between the measurement outcomes given certain measurement choices:
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Reichenbach’s Common Cause Principle: The common cause of the condi-
tional correlation (10.13) is a partition {C} in (¥, p) such that for any k € K:

p(AZ A\ Bj|ai AN bj A\ Ck)
p(ai A\ bj A\ Ck)

plai A b;) p(Cr) (2.14)

Bell’s Local Causality Principle: Suppose there is a conditional correlation
(10.13) between measurement outcomes A; and B; given measurement choices a;
and b;. Suppose further that A; and a; are localized in regions V4 and B; and b; are
localized in regions Vp spatially separated from V4. Then, if the theory accounting
for this correlation is locally causal, then the atomic partition {Cy} (k € K) in
(3, p) associated to the region Vi (see Fig. 6.1) should satisfy (2.13)-(3.3).

Einstein’s Reality Criterion: Suppose that the conditional correlation (10.13)
represents now a prediction. That is let A; denote the outcome of a predicting event
a; and let B; denote the outcome of the predicted event b;. Suppose furthermore
that A;, a; and Bj, b; are causally separated. Also suppose that we can predict the
outcome B; of the measurement b; by obtaining outcome A; for the prediction a;
for sure. In other words, suppose that the conditional correlation is perfect:

p(Ai A Bjla; Nb;) = p(Ailai) = p(Bj[b;) (2.15)

Then Einstein’s Reality Criterion claims that there are elements of reality that is
a partition {CT,C~} in (X, p) explaining correlation (2.15) in the following sense:
p(Al A\ Bj|ai A\ bj AN C+) =

p(Ai A leai Abj A C_)

plai Abj ACT)

plai Nb; ANCT)

1
0
plai Abj)p(C™)
pla; Abj) p(C™)

Just as above, in case of a perfect correlation a common cause {Cy} (k € K
satisfying (2.13)-(3.3) is deterministic, hence a suitable grouping of the Ck-s via
(2.7)-(2.8) will yield the elements of reality C* and C'~. In short, Einstein’s Reality
Criterion is a special case of Reichenbach’s Common Cause Principle when the
correlation is perfect. (For the details see Gomori and Hofer-Szabo 2017.)

To sum up, the core of all three principles is to account for correlations in
terms of a non-conspiratorial common cause. In case of Reichenbach’s Common
Cause Principle only the probabilistic aspects (2.13)-(3.3) of the common cause
are taken into consideration. In case of Bell’s Local Causality Principle both the
correlated events and also the common cause have a spatiotemporal localization.
In case of Einstein’s Reality Criterion the whole correlation scenario is interpreted
in the framework of a prediction and the correlation is taken to be perfect.

Before we move on to the relation of the principles to the Bell inequalities, let us see
how the conditional and unconditional correlations and their explanations relate to
one another.
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First, observe that if the measurement choices are causally and therefore prob-
abilistically independent, that is if for any 7 € I and j € J:

pla; Nbj) = pla;)p(by) (2-20)

and the algebraic inclusions (2.9)-(2.10) hold, then the outcomes A; and B; are
correlated in the conditional sense

p(Ai A Bjlai A by) # p(Ailai) p(B;bs) (2.21)
if and only if they are correlated in the unconditional sense
p(A;i A Bj) # p(A;) p(Bj) (2.22)

Second, given (2.9)-(2.10) and (2.20), {C%} is a non-conspiratorial common cause
of the conditional correlation (2.21):

plai Nbj ACy) = plai Ab;) p(Ck) (2.24)

if and only if {Cy} is a non-conspiratorial common cause of the unconditional
correlation (2.22):

p(Ai A Bj|Cx) = p(AilCk) p(B;|Ck) (2.25)
plai Nbj ACy) = plai Abj)p(Cr) (2.26)

(For the proof see (Hofer-Szabo, Rédei and Szabé 2013, Lemma 9.8).) Therefore,
on the assumptions (2.9)-(2.10) and (2.20), the common causal explanations (2.23)-
(3.5) and (2.25)-(3.19) are interchangeable.

2.4 From the principles to the Bell inequalities

How the above three principles serving for a causal explanation of correlations re-
late to the Bell inequalities? The crucial point is to see how the different principles
relate to the common causal explanation of more correlations. Principally, there are
two possible ways: either the different correlations are explained by a joint common
cause or each correlation is explained by a separate common cause. The standard
derivation of the Bell inequalities from Reichenbach’s Common Cause Principle and
Bell’s Local Causality Principle assumes a joint common cause; whereas the deriva-
tion of the Bell inequalities from Einstein’s Reality Criterion assumes only separate
common causes. Since the assumption of separate common causes is weaker than
that of a joint common cause, the derivation of the Bell inequalities from Einstein’s
Reality Criterion needs a stronger version of no-conspiracy.
Let us see the derivations in turn:

Reichenbach’s Common Cause Principle. Suppose that [ = J = {1,2} and
the events A; and B; are all conditionally correlated that is for any 7, j € I:

p(A; A Bjlai ANbs) # p(Aila;)p(B;lb;) (2.27)
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The four correlations are said to have a non-conspiratorial joint common cause if
there is a single partition {Cy} (k € K) in (3, p) (or in an extension of (¥, p)) such
that for all ¢,j € I and k € K the following hold:

p(ai AN bj A\ Ck) = p(ai AN bj)p(ck) (229)

We claim that the events A;, B;, a; and b; with a non-conspiratorial joint common
causal explanation satisfy the Clauser—Horne inequalities that is for any i,4', j,j' €

Tand i #14,j # j"

—-1< p(AZ N Bj|ai A bJ) +p(A1 A Bj/|ai A bj/)
—l—p(Ai/ A Bj|ai/ AN b]) — p(Ai/ A By |ai/ A bj/)
—p(Aila;) — p(B;|b;) <0 (2.30)

For the proof see the Appendix.

Bell’s Local Causality Principle. Again, let I = J = {1,2}. Suppose that the
events A; and B; localized in spatially separated regions V4 and Vg respectively,
are all conditionally correlated in the sense of (2.27). In a locally causal theory
the atomic partition of the local algebra associated to Vi (see again Fig. 6.1)
is a non-conspiratorial joint common cause in the sense of (2.28)-(2.29). Hence
the Clauser—Horne inequalities (9.24) follow, just as in the case of Reichenbach’s
Common Cause Principle.

Einstein’s Reality Criterion. Suppose now that I = J = {1,2,3,4} and there
is a perfect conditional correlation between (the predicting events) A; and (the
predicted events) B; for any i = j € I:

First, observe that the four correlations in (2.31) are not the same as the correlations
(2.27) above. In (2.27) I = J = {1, 2} and the four correlations were not necessarily
perfect; in (2.31) I = J = {1,2,3,4} and the four correlations are the i = j perfect
correlations.

Now, Einstein’s Reality Criterion does not assume that all four correlations in
(2.31) have a joint common cause. All it assumes is that there are separate elements
of reality to each correlation, that is for any ¢ € I there is a partition {C:r ,C}
satisfying

p(Ai A\ Bi|ai Ab; A Cz_) = 0 (233)

However, instead of simply requiring no-conspiracy:
plai Aby ACE) = plai Aby)p(CF) (2.34)
plai Nb; ACY) = plais Ab;) p(Cy) (2.35)
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(i,4,k € I) one requires strong no-conspiracy, namely that any element C in the
Boolean algebra generated by the four pairs of elements of reality {C’,:Ct} should be
independent of any combination of the measurement choices:

plai Abj A C) = p(ai Abs) p(C) (2.36)

In short, in case of more correlations Einstein’s Reality Criterion requires less than
the other two principles since it requires only separate elements of reality for the dif-
ferent correlations, but also requires more since it requires all Boolean combinations
of the elements of reality to be independent of the measurement choices.

The derivation of the Clauser—Horne inequalities (9.24) from a strongly non-
conspiratorial separate common causal explanation is straightforward. From (2.31),
(2.32)-(2.33) and (2.36) it follows that for any 4, j € I:

p(Aslai) = p(Bi|b;) = p(C;") (2.37)
p(A; A Bjla; Abj) = p(CF A CY) (2.38)

Now, it is an elementary fact of classical probability theory that for any four events
C,CF,Cf and O} in (%, p) we have:

i

—1<p(CF ACH) +p(CF A CH) +p(Ch A CY)
—p(CF ACF) = p(CF) = p(C;) <0 (2.39)

Substituting (2.37)-(2.38) into (2.39) one arrives at (9.24).

What one proves here is that the atomic partition composed of the intersections
of strongly non-conspiratorial separate common causes for perfect correlations form
a non-conspiratorial joint common cause for all correlations. Note that in the
general case that is for non-perfect correlations the relation between separate and
joint common causes is not so straightforward and the relation of strongly non-
conspiratorial separate common causes to the Bell inequalities is not known. (See
(Hofer-Szabo, Rédei and Szabo 2013, Conjecture 9.11.))

To sum up, one can arrive at the Bell inequalities from the three principles on
two different routes. In the standard derivation based on Reichenbach’s Common
Cause Principle or Bell’s Local Causality Principle one takes four correlations and
assumes that they have a non-conspiratorial joint common cause. In case of Ein-
stein’s Reality Criterion one takes four perfect correlations and assumes that each
has a separate common cause which together are strongly non-conspiratorial. Both
routes lead directly to the Clauser-Horne inequalities.

2.5 Conclusions

In this paper we compared three principles accounting for correlations and related
them to the Bell inequalities. Reichenbach’s Common Cause Principle, in the orig-
inal sense at least, refers only to one correlation: it demands a common cause for
a given correlation if the direct causal link between the correlata can be excluded.
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In the derivation of the Bell inequalities, however, the principle had to be used in
a stronger sense, namely demanding one and the same cause for a set of correla-
tions. Bell’s Local Causality Principle has already been formulated originally in
this strong sense: all correlations localized in spatially separated regions were to
be screened-off by the “full specification” of an appropriately localized third space-
time region. In this sense Bell’s Local Causality Principle is a stronger principle
than Reichenbach’s Common Cause Principle. Finally, Einstein’s Reality Criterion
again assumes elements of reality to each correlation separately, similarly to Re-
ichenbach’s Common Cause Principle. Moreover, it does so only in case of perfect
correlations. In this sense Einstein’s Reality Criterion seems to be even weaker
than Reichenbach’s Common Cause Principle.

Note, however, that not even the strongest of the three principles, namely
Bell’s Local Causality Principle implies the Bell inequalities on its own. Even this
principle needs to assume that the common causes or elements of reality causally
responsible for the correlations are causally and hence probabilistically independent
from the measurement choices. To be sure, no-conspiracy seems to be a natural
requirement for an element of reality to deserve its name. No-conspiracy, however,
can be defined in different strength. And this is the point where the principles far-
ing worse at the beginning can catch up. Even though Einstein’s Reality Criterion
provides only separate elements of reality for the correlations, if these elements of
reality are strongly non-conspiratorial, then they suffice to derive the Bell inequal-
ities. In short, no-conspiracy together with joint elements of reality and strong
no-conspiracy together with separate elements of reality fare equally well in the
derivation of the Bell inequalities.

Appendix
Proof. Tt is an elementary fact of arithmetic that for any «, o, 8, 8 € [0, 1] we have

—1<af+af +af—a'f —a—F<0 (2.40)

Now, let o, o, 8,3’ be

a = p(Aila; ACy) (2.41)
o' = p(Aylai A Cy) (2.42)

= p(Bjlbj A Cy) (2.43)
B = p(Bjby ACr) (2.44)

Substituting (9.26)—(9.29) into (9.25) we get

—1 < p(Aila; A Cr)p(Bj|b; A Cy) + p(Aila; A Cr)p(Bjr by A Ch)
+p(Airlair A Cr)p(Bj|bj A Cx) — p(Airlair A Cy)p(Bj:[bjr A Ci)
—p(Aila; A Cy) — p(Bjlb; A C) <0 (2.45)
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Using the screener-off condition (2.28) we obtain

1< p(Ai A Bj|az- A bj A Ck) +p(Ai A Bj/|ai A bj/ A Ck)
er(Ai/ AN Bj|az-/ AN bj A Ck) — p(Ai/ A By |ai/ A bj/ A Ck)
—p(Ai|ai A\ Ck) —p(Bj|bj A\ Ck) <0 (246)

Multiplying by p(C}), using no-conspiracy (2.29) and summing up for k one arrives
at (9.24). m
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Chapter 3

How human and nature shake
hands: the role of
no-conspiracy in physical
theories

No-conspiracy is the requirement that measurement settings should be probabilis-
tically independent of the elements of reality responsible for the measurement out-
comes. In this paper we investigate what role no-conspiracy generally plays in a
physical theory; how it influences the semantical role of the event types of the
theory; and how it relates to such other concepts as separability, compatibility,
causality, locality and contextuality.

3.1 Introduction

As the old bon mot has it, in experiment human and nature shake hands. This
portrayal of the experiment as the celebration of a good business pact between
two parties highlights two features of experimentation, namely that both human
and nature are equally contributing to its success and that both parties are being
independent. This independence is the topic of the present paper.

In the foundations of quantum mechanics probably the most significant research
project has been for decades to precisely identify and conceptually analyze those
assumptions that go into the derivation of the Bell inequalities and can be made
responsible for their violation in the EPR scenario. Locality, factorization, Com-
mon Cause Principle, determinism—these were the main concepts and principles
on the table. There was, however, one additional premise which, though being in-
dispensable in the derivation of the Bell inequalities, remained much more obscure
concerning its status, meaning and relation to the other premises.
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The palpable evidence for this embarrassment around this assumption is that
there has not even been coined a name for it. It has been referred to by many
names such as (no) “conspiratorial entanglement” (Bell, 1981), “hidden autonomy”
(Van Fraassen, 1982), “independence assumption” (Price 1996), “free will assump-
tion” (Tumulka, 2007), “measurement independence” (Sanpedro, 2013), (no) “su-
perdeterminism” (Price and Wharton, 2015), and—probably in its most well-known
form—no-conspiracy” (Hofer-Szabd, Rédei and Szabo, 1999; Placek and Wronski,
2009). This latter is the phrase we are going to use in this paper.

The fact that no-conspiracy has been used by so many names attests that there
is a wide range of topics which it can be related to. It has been explicitly addressed
by Bell in his 1981 paper and its rejection has been qualified as “even more mind
boggling than one in which causal chains go faster than light” (Bell, 1981, p. 57).
No-conspiracy made its way into the philosophy of physics via Van Fraassen’s 1982
careful analysis of the assumptions leading to the Bell inequalities. Ever since
these two influential papers no-conspiracy has been given some attention in the
philosophy of science. A topic gaining probably the greatest philosophical interest
was that how no-conspiracy is related to free will. The first to identify conspiracy
as a lack of free will was Bell (1977, 1981) himself and has been followed by many
others (Price 1996; Conway and Kochen, 2006; Tumulka, 2007, Price and Wharton,
2015).

The present paper does not concern any of the topics mentioned above: neither
free will, nor EPR, nor Bell inequalities. It does not investigate no-conspiracy at
the level of the specific scientific theories such as quantum mechanics, quantum
field theory, etc. (For this see (Bell, 1977, 1981), (Butterfield, 1995), (Sanpedro,
2013, 2014), (Hofer-Szabo, Rédei and Szabo, 2013), (Price and Wharton, 2015)).
Our aim is more general: to investigate what role no-conspiracy plays in a physical
theory. To this aim in Section 2 we will first unfold a general scheme of the ontology
of a physical theory. We will discern two event types making the ontology: mea-
surement event types and elements of reality. Measurement event types can be of
two types: measurement settings and measurement outcomes. We will clarify how
measurement settings and measurement outcomes provide semantics for a physical
theory. To illustrate the general scheme we introduce a toy model in Section 3
which will then be used throughout the paper. No-conspiracy enters in Section 4.
Here we show how the presence of no-conspiracy can deprive measurement settings
and measurement outcomes of their semantical role and directs them into pragmat-
ics. In Section 5 some examples will be given for situations when no-conspiracy
is violated. In Sections 6 to 10 we will investigate in turn the relationship of no-
conspiracy to such concepts as separability, compatibility, causality, locality and
contextuality. We conclude with a discussion in Section 11.

This paper is written in the down-to-earth physicalist philosophy of Laszlo E.
Szab6 to whom I dedicate it.

20



dc_1495 17

3.2 The ontology of experiment

In this Section we expose the main philosophical ideas lying behind our approach
in a concise manner. In the following Section all these general considerations will
be made concrete on a simple toy model. The approach we are following here is a
strict actualist approach where the key concepts such as causality, probability, etc.
all supervene on particulars instantiating certain event types in a Humean manner.
This framework is certainly not necessary to address the question of no-conspiracy;
I presume that most claims of the paper also hold in other metaphysical frameworks.
I follow this approach simply because the present paper is part of a larger research
project aiming to explore how far one can get in understanding physical theories
and especially quantum mechanics within a Humean framework.

A physical theory can be reconstructed as a formal system plus a semantics
connecting the formal system to the world. The formal system consists of a formal
language with some logical axioms and derivation rules, some mathematical and
physical axioms. The semantics provides an interpretation for the formalism; it
connects the formal system to reality. Note that here ’semantics’ does not mean a
connection between the formal system and some models of the system as in model
theory; here semantics means a down-to-earth physical interpretation of the formal
system. We stress again that the semantics is an indispensable part of a physical
theory. A formal system in itself is not yet a physical theory (Szabd, 2011).

The semantics settles the ontology of the theory. This can be done in many
ways but typically the semantics fixes the ontological types or categories out there
in the world and provides some means to decide when a certain token falls in
the category of a given type making a certain sentence of the theory true. The
types and tokens which we will be interested in here are event types and token
events. The ontology of a physical theory is an ewvent algebra constructed from
these event types. Note that concerning the ontology of the types our approach is
not committed metaphysically either to the realist nor to the nominalist camp.

Physical theories are verified by experiments. The rough picture of an ex-
periment is the following. An experimenter performs a procedure by setting a
measurement apparatus in a certain way, obtaining a measurement outcome and
repeating this procedure many times. The two essential ontological categories of an
experiment are the measurement settings and the measurement outcomes. These
categories are event types just as the other ontological types of the theory. The
token events are the instances of these event types in the different runs of the ex-
periment. Sometimes I will simply refer to these token events as the runs of the
experiment,.

Measurement settings and measurement outcomes do not appear directly in the
textbook form of a theory but they are indispensable part of the semantics (not of
pragmatics!): without them the theory cannot be linked to reality. More than that,
these two types are the only types an experimenter has direct empirical access to.
Everything else posited by the theory has to ultimately boil down to some relations
between these observable categories. To be more specific, any deductive or inductive
relation between the ontological types of the theory has to be accounted for in terms
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of correlations between the token events falling in the category of measurement
settings and measurement outcomes. As the empiricist thesis teaches, one has no
other access to physical reality than via observation.

Correlations between measurement settings and measurement outcomes can be
accounted for in terms of probabilities. In our actualist framework the probability of
an outcome type is understood as the long-run relative frequency of those runs of the
experiment which fall in that type if the experiment is repeated appropriately many
times. Specifically, the probability of an outcome given a certain measurement
setting is simply the number of those runs which fall in both the type of the outcome
and the setting divided by the number of those runs which fall in the type of the
setting. More importantly, any probability assignment to any ontological type to
which we have no direct empirical access must be based on type assignments to the
individual runs of the experiment in the long-run frequency sense: the probability
of a given type is p only if the relative frequency of the individual runs (instances)
falling in the type in question is p. Probability supervenes on the Humean mosaic
of token events.

In order to account for the observable measurement outcomes physical theories
typically introduce a further, not directly accessible event type, which we will call
elements of reality. In this sense our approach is scientifically realist. Elements of
reality come in two sorts: they can either determine the measurement outcomes
for a given measurement setting for sure, or they can fix only the probability of
the measurement outcomes. We will call the first event type property and the
second event type propensity. Whereas measurement outcomes are clearly causally
influenced by and therefore probabilistically dependent on the elements of reality,
it is not a priori clear what the relation between the measurement settings and the
elements of reality should be. This is what we are going to analyze in what comes.

3.3 A toy model

Let us make these abstract considerations more concrete on a simple model. (For a
general scheme of a physical theory see the Appendix.) Consider a box containing
colored dice (Szabo, 2008). Let us try to develop a physical theory of this system.
Whatever theory we develop, the semantics of the theory has to minimally specify
the measurement settings and measurement outcomes. These are the categories
which are directly accessible for an experimenter. Suppose that the measurement
settings are the following:

a1: drawing a die from the box and checking its color
az: drawing a die from the box, throwing it and checking the number on its
upper face

Suppose furthermore that the measurement outcomes are

Af: the color of the die is black (A7) or white (A7)
Al: the number on the upper face of the dieis j (j =1...6)
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So the semantics of the theory posits the following event types: the measurement
settings a with two subcategories a; and a2, and the measurement outcomes A with
two plus six sub-subcategories A} and AJ.

As the experimenter is repeating the experiment, the token events, that is the
runs falling in the different event types, are accumulating giving rise to a proba-
bilistic description of the experiment. She can calculate for example the conditional
probability of obtaining a black die on the condition that she had performed the
color measurement,:

#(A% A al)
#(al)

This probability is empirically accessible: one just reads off from the relative fre-
quency of the measurement outcomes and measurement settings. (Here we set aside
problems concerning the convergence of the relative frequencies.)

The experimenter can of course try to enrich her theory and introduce a new
ontological category into her theory. The motivation behind this move is to obtain
an answer to the question: “Why was the outcome of the color measurement black
in a certain run of the experiment?” A natural answer to this question is to say:
“Because the die itself was black.” This answer amounts to introducing a third
event type into our ontology, which we will call property. What is a property?

The defining feature of the property black is the following: whenever a die with
the property black is subjected to a color measurement, the outcome will always
be black. Denote the property black by al and the property white by a2. (So
our notation is the following: we use lower case Latin letter for the measurement
settings (a); capital Latin letters for the measurement outcomes (A); and Greek
letters for the elements of reality («).) The property black is an event type and
each token event that is each run of the experiment can be characterized by either
falling into this event type or not. Therefore, one can also meaningfully speak about
the probability of the property black, p(ai), as the long-run relative frequency of
those runs of the experiment which fall into the event type a}. Consequently, one
can also express the defining feature of the property black and white in terms of
probabilities as follows:

p(Ajlar) =

p(Aflar A o) = bi ik=1,2 (3.1)

That is in each run of the experiment when the die was black and the color has
been measured, the outcome was black and never white; and in each run of the
experiment when the die was white and the color has been measured, the outcome
was white and never black. A property is nothing but an event type which, if
instantiated and measured in a certain run of experiment, brings with it a definite
outcome.

Let us now go over to the case of throwing the dice and ask a similar question to
that of the color measurement: “Why does the outcome six come up with a certain
probability in the experiment?” Here the natural answer is this: “Because the die
has a certain mass distribution.” This leads us to introducing another event type
which we will call propensity.
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Suppose that the box is containing dice with two different mass distributions.
Denote them by a3 and a. Here the lower index 2 indicates that the measurement
setting is of the second type, namely checking the upper face of the die (and not
the color), and the upper index discerns the two mass distributions. The mass
distribution a3 is again an event type just as o}, the property black was. In every
single run of the experiment it is either instantiated or not that is each die has

either the mass distribution ad or not. Hence one can speak about the probability

p(al) as the relative frequency of those runs which fall into the event type ad. If

a die with mass distribution ai is drawn from the box and thrown, then let the
probability of its coming up j be denoted by ¢’'. Similarly, if a die with mass
distribution a3 is drawn from the box and thrown, then the probability of coming
up j is ¢/2. This means that the mass distribution of a given die fixes the probability
of the die coming up with a certain face upon throwing. In terms of probabilities

this can be expressed as follows:
p(Ad|ag A b)) = ¢ j=1...6,1=1,2 (3.2)

where ¢t=1forl=1,2.

Metaphysically, the new event type as is the propensity of the die to come
up with a certain face in the second type of measurement setting. Note that the
propensity here is not something which the notion of probability should be reduced
to as in the literature on the interpretations of probability. Here propensity is an
event type and probability is simply long-run relative frequency. Moreover, one can
meaningfully speak about the “probability of a given propensity” as the long-run
frequency of those token events which instantiate the event type of the propensity
in question.

Also observe that a property mathematically differs from a propensity only
in that the ¢/!-s fixing the conditional probabilities are all either 0 or 1 for the
properties, whereas they can be any number between 0 and 1 for the propensities.
Being black fixes the measurement outcomes for the color measurement, whereas
having mass distribution o} fixes only the probability of obtaining a six. The
defining equation (3.1) of properties is a special case of the defining equation (3.2)
of propensities. Still, it is worth discerning these two event types. If in a given
theory the probabilities, correlations, etc. of the measurement outcomes can all
be accounted for by postulating purely properties then the theory can rightly be
called deterministic, whereas if propensities are also needed then the theory is
indeterministic.

To sum up, in our “theory of dice” we have two measurement event types, the
event type of measurement settings and the event type of measurement outcomes.
Beyond these we can introduce into our ontology two elements of reality for ex-
planatory purposes, the event type of properties, aj, with two subcategories ai
(black) and a? (white); and the event type of propensities, as, with two subcat-
egories a3 (first mass distribution) and a3 (second mass distribution). From now
on we will coin the term measurement event type for measurement settings and
measurement outcomes and element of reality for properties and propensities. The
event algebra of the theory will be composed as the Boolean combination of the
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measurement, event, types and elements of reality. This algebra will be built up
from 2-(2-6)-(2-2) atomic events associated to the different combinations of mea-
surement, settings, measurement outcomes, properties and propensities. Fach run
of the experiment will instantiate an element of this algebra. Probabilities enter
the theory by simply counting how many runs are instantiating certain elements of
the algebra.

3.4 No-conspiracy

So far, so good. But physics is a procedure to move from the observable to the
unobservable. Do we have any means to infer from the first two event types to
the second two? Can we say something about properties and propensities based on
measurement, settings and measurement, outcomes?

Here is a sufficient condition which entitles us to such an inference. Suppose
that the elements of reality are probabilistically independent of the measurement
settings. In case of the properties this means that

plar A af) = plar) p(ay) k=1,2 (3.3)
in case of the propensities:
plaz A o) = plaz) p(as) =12 (3.4)

Taking the conjunctions we obtain:
plar Aag Aok Aab) =plar Aag) plal Aab) k,l=1,2 (3.5)

Now, consider all those other equations which arise from (3.5) by substituting one
or more event types by their complements; for example:

p(~ar Aag Ao A ~ab) = pl~ay Aaz) plaf A ~al) k,l=1,2 (3.6)

Including (3.5) one obtains thus altogether 2-2-4-4 = 64 equations. Let us refer to
this set of 64 equations as no-conspiracy. No-conspiracy expresses a probabilistic
independence between the various Boolean combinations of measurement settings
and the various Boolean combinations of elements of reality. To make reference
easier we will sometimes refer solely to (3.5) as no-conspiracy requirement without
mentioning the other 63 equations arising from complementation.

No-conspiracy does us a great service: we can reproduce the observable prob-
abilities of the theory in terms of the probabilities of the elements of reality. For
example the conditional probability p(Al|a;) of obtaining a black die upon color
measurement turns out to be just the probability p(ai) of the property black:

p(AiAar)  3pp(AlAainaf) 3o, p(Allar Aaf)p(ar Aof)

pldilar) = p(a1) p(a1) p(ar)
_ Ser(llaAabplepod) s~ o
= (@) —zk:P(Aﬂ 1 A aq)p(ay)
= Z(ﬁkp(alf) = p(ay) (3.7)
%
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where we used only the theorem of total probability, the defining feature (3.1) of a
property and no-conspiracy (3.3).

By similar reasoning we can reproduce the conditional probability p(AS|as) of
obtaining the outcome six upon “upper face” measurement in terms of weighted
averages of the probability of propensities p(ak):

p(ASlaz) = ¢°' p(a) + ¢% p(a3) (3.8)

Equations (3.7) and (3.8) are of central importance. They explain why in the
text book form of a physical theory one need not speak about measurement settings
and measurement, outcomes. If no-conspiracy holds, then the conditional probabil-
ities of the measurement outcomes on measurement settings simply mirror the (un-
conditional) probabilities of the elements of reality (properties and propensities).
Consequently, the deductive and inductive relations between the measurement event,
types simply reveal deductive and inductive relations between the elements of re-
ality. For example, observing the relation that the probability of a die coming up
six is higher than that of being black

p(ASlaz) > p(Ailar) (3.9)
reveals the unobservable fact that

¢*' p(ag) + ¢% p(a3) > p(al) (3.10)

More than that, the relations between measurement settings and measurement out-
comes do not just reveal the hidden relations between the unobservable categories
but by the same move they also seem to make measurement event types superflu-
ous. If the role of these “surface” relations is simply to reflect the deep structural
relationships of the unobservable categories with which real physics is concerned—
then why one would care about them? Why one would care about measurement
settings and measurement, outcomes if one can also speak about the “real stuff” di-
rectly? In short, no-conspiracy can contribute to delegating measurement settings
and measurement outcomes from semantics to mere pragmatics.

May this rationale be as fruitful in displaying textbook theories as it is, in a
philosophical reflection, I think, one should not concede that no-conspiracy blurs
the general semantical role of measurement settings and measurement outcomes.
Just recall the general frame: a physical theory is a formal system plus a semantics
connecting the formal system to the world. The very two categories which lend
empirical meaning to a physical theory are the measurement settings and the mea-
surement outcomes. They are the only event types which an observer have direct
access to. Consequently, they cannot be eliminated from a physical theory—neither
by appealing to no-conspiracy, nor by appealing to anything else. Otherwise the
whole theory would lose its empirical content. It would turn into an uninterpreted
formalism. No consideration can deprive a physical theory of those constituents
which make up its semantics.

But let us return now to no-conspiracy. What if no-conspiracy does not hold?
In this case the inference from the measurement event types to the elements of
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reality via (3.7) and (3.8) is not possible. But does it make the knowledge of the
unobservable categories impossible? Is no-conspiracy a kind of Kantian “condition
of the possibility of experience”?

Some seem to think so. In his famous ’cat’ paper Schrodinger (1935) likens
the free measurement choice of the EPR, experiment to a situation when a class of
students are asked a set of question such that each student may be asked any of
questions. If the answer to the questions are all correct, then one can conclude that
all students know all answers. Analyzing Schrodinger’s example Maudlin (2014)
writes the following;:

“Recall Schrédinger’s class of identically prepared students. We are
told they can all answer any of a set of questions correctly, but each
can only answer one, and then forgets the answers to the rest. It’s an
odd idea, but we can still test it: we ask the questions at random, and
find that we always get the right answer. Of course it is possible that
each student only knows the answer to one question, which always
happens to be the very one we ask! But that would require a mas-
sive coincidence, on a scale that would undercut the whole scientific
method.” (Maudlin, 2014 p. 23)

In short, the independence of the measurement choices and the elements of reality
is a precondition of pursuing science per se. But is it really so?

3.5 When no-conspiracy does not hold

Consider the following examples:

Example 1. Suppose that the black painting on the dice is not durable enough: if
you just touch the dice, the black color is wearing off it and it turns white.

Example 2. Suppose that each die is filled with a high viscosity fluid which can
stream and swirl inside the die. By every throw the fluid is put in motion which
changes the mass distribution of the die and hence the propensity of the outcome
at that very throw.

Example 3 is special case of Example 2. Suppose again that the dice are filled with
a fluid which can stream inside them before tossing. But by tossing the dice (due
to the heavy shaking, say) the fluid “freezes out” in such a biased way that the dice
can come up with only one definite face.

The above three examples are all illustrating a situation when no-conspiracy is
violated. In the first example the property ai (black) has turned into another
property a2 (white) as a result of the measurement setting a; (drawing a die from
the box). In the second example the propensity ad (first mass distribution) has
turned into another propensity a3 (second mass distribution) as a result of the
measurement setting as (tossing a die). Finally, in the third example we find a
change of category. Recall that properties and propensities differed only in whether
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they determined the outcome for sure or only up to a certain probability. In the
third example there was some non-trivial probability for the different faces of the
dice to come up before the throw. After the tossing, however, the die could come
up only with a given face. That means that here a propensity (one sort of mass
distribution) has been turned into a property (a special mass distribution exactly
fixing the outcome) as a result of the measurement setting as (tossing a die). In
each case no-conspiracy is violated. (For the relevance of these examples to the
interpretations of quantum mechanics see (Goémori and Hofer-Szabo, 2016).)

In the above three examples no-conspiracy was violated due to the causal influ-
ence of the measurement settings on the elements of reality. But it can also fail due
to an opposite causal connection when the elements of reality have causal influence
on the measurement settings:

Example 4. Suppose that touching the dice of the second mass distribution is
unpleasant for your hand; so you toss them hastily rather then keep them in hand
and check the color.

Yet another example for the violation of no-conspiracy is a common causal con-
nection between the elements of reality and the measurement settings. It is a
combination of example 1 and 4.

Example 5. Suppose that the dice of the second mass distribution are too heavy
to be tossed; so you rather perform a color measurement on them. Suppose fur-
thermore that being heavy and having a second mass distribution have a common
cause—say, these dice are being made in the same factory.

In all the above examples no-conspiracy was violated due to a causal connection
between the measurement settings and the elements of reality. But is causal con-
nection the only way to violate no-conspiracy? We come back to this question in
Section 8.

Now, we go over to our central question: Under what circumstances can we
adopt no-conspiracy in our physical theory, and when are we forced to abandon
it? In the upcoming five Sections we investigate five concepts in turn which can
qualify the decision. They are separability, compatibility, causality, locality and
contextuality.

3.6 Separability

Niels Bohr’s notorious insistence on the use of classical concepts in the description
of quantum phenomena, is one of the hallmarks of his philosophy. In his contribution
to the 1949 Einstein Festschrift Bohr writes:

It is decisive to recognize that, however far the phenomena transcend
the scope of classical physical explanation, the account of all evidence
must be expressed in classical terms. The argument is simply that by
the word “experiment” we refer to a situation where we can tell others
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what we have done and what we have learned and that, therefore,
the account of the experimental arrangement and of the results of the
observations must be expressed in unambiguous language with suitable
application of the terminology of classical physics. (Bohr 1949, p. 209).

Many Bohr scholars have made significant efforts to understand the meaning and
role of Bohr’s doctrine on the primacy of classical concepts. Camilleri and Schlosshauer
(2015) argue that Bohr’s doctrine is primarily a general epistemological thesis ar-
ticulating the epistemology of experiment rather than a special interpretation of
quantum mechanics (for this see also (Zinkernagel, 2015)). The epistemological
problem according to Bohr is that whereas the very notion of experiment presup-
poses that the measured objects possess a definite state which is independent from
the state of the measurement apparatus, quantum mechanics makes this distinction
between object and apparatus ambiguous by treating the two as a single, composite,
entangled system:

...the impossibility of subdividing the individual quantum effects and
of separating the behaviour of the objects from their interaction with
the measuring instruments serving to define the conditions under which
the phenomena appear implies an ambiguity in assigning conventional
attributes to atomic objects which calls for a reconsideration of our
attitude towards the problem of physical explanation. (Bohr 1948, p.
317).

If entanglement between object and apparatus is the obstacle to an unambiguous
description of quantum phenomena, then such a description in classical terms can
be realized when the subsystems are not entangled, that is when they are separable.
This is exactly Don Howard’s (1994) suggestion for the reconstruction of Bohr’s
doctrine on classical concepts:

... for Bohr, classical concepts are necessary because they embody the
assumption of instrument-object separability, and that such separa-
bility must be assumed, in spite of its denial by quantum mechanics,
in order to secure an unambiguous and thus objective description of
quantum phenomena. (Howard 1994, p. 209).

Howard’s suggestion to analyze classical description in terms of separability boils
down to the requirement to reproduce the statistical predictions of a given quantum
phenomenon in terms of an “appropriate mixture.” The state of a composite system
is called separable, if it is a mizture that is a convex sum of product states of the
components. Since product states represent probabilistically independent compo-
nents, a mixture is simply a convex combination of these states which expresses a
classical probabilistic correlation between the components. Mixtures give rise to a
classical, ignorance interpretation of the statistics of the phenomenon under inves-
tigation. This analysis via the notion of an “appropriate mixture” has been picked
up for example by Halvorson and Clifton (2002) who provide an elegant analysis of
the EPR experiment from Bohr’s perspective along the lines suggested by Howard.
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But how separability as a reconstruction of Bohr’s demand on classicality relates
to no-conspiracy as a kind of independence principle between measurement settings
and the elements of reality attributed to the system? Clearly, separability is a
broader concept than no-conspiracy: separability simply requires that the relation
between the measurement settings and elements of reality should be expressed as a
mixture of probabilistic independences; whereas no-conspiracy requires that the two
should be probabilistically independent. In our toy model for example separability
requires the probability of the color measuring and the system’s possessing the
property black to be the following:

par A ag) = A plar) play) + Aa plar) p(~aq) + Az p(~ar) pleg) + A p(~ar) p(~a;i(B.11)
with any A; € [0,1] and Z?Zl A; = 1; whereas no-conspiracy requires that

plai Aay) = plar)p(ay) (3.12)

Observe that separability (3.11) does not give any restriction in our case; it sim-
ply means that p is a classical probability which we already knew since we took
probabilities to be relative frequencies.

All the five examples in the previous Section, though violating no-conspiracy,
are completely classical; they provide an unambiguous description of how the un-
observable properties or propensities change upon throwing the dice. They even
provide a mechanism for the causal dependence. In Example 1 for instance when
upon drawing the black color is wearing off the dice, obviously

plaz Aai) #  plaz)pla) (3.13)

Throwing the dice and being black will not be probabilistically independent due to
the causal relation between the two event types.

Thus, the “unambiguous language” requires only to attribute some properties to
the system which stand in some classical probabilistic relation to the measurement
settings but it does not require them to be probabilistically independent of one an-
other. Hence, separability as a weaker requirement than no-conspiracy cannot be
used to back the latter. (In addition, according to Howard even the demand on clas-
sicality as separability is too restrictive from perspective of a general epistemology
of experiment.)

3.7 Compatibility

Now, let us go over to our second concept which is compatibility of the measurement
settings. Up to now we have considered measurement settings only separately. Let
us see now what happens when we perform a joint measurement.

Again, consider our toy model and suppose that we perform the measurement
a1 A ag that is we are drawing a die from the box, throwing it and checking its
color and also the number on its upper face. Suppose that after performing both
measurements we disregard the upper face and consider only the color. Suppose
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that we observe that the probability of the outcome black in this joint measurement
is not the same as in the measurement a;. That is we find that

p(Ailar A az) # p(Aflar) (3.14)

Let us call (3.14) incompatibility of the two measurements. Note that incompati-
bility does not mean here that a; A as cannot be performed; it means that a; and
as are disturbing one another.

What is incompatibility a sign of?

First, observe that the condition a; on the right hand side of (3.14) does not
mean that we performed only a;—this would be a3 A~as. The condition a; means
that we consider all the runs in which a; has been performed, irrespectively whether
az has been performed or not—that is a; = (a1 A az) V (a1 A~az). So what (3.14)
expresses is that whether we perform as or not does count in measuring a; and
producing outcome A}.

Generally, one can take two positions towards incompatibility. T will call the
first the purist or Bridgmanian strategy and the second the stubborn strategy.

According to the purist strategy if the probability of the outcome of a given
measurement, can vary depending whether another measurement is performed or
not, then this measurement is not yet well defined. Consider the following example.
In a regiment two tests are performed: it is tested how good shots are the soldiers
(a1) and how much alcohol they can drink (az). Obviously, whether the second
test is performed or not, crucially influences the outcome of the first. So the two
tests are incompatible in the above sense (and not in the sense that they cannot
be performed at the same time: they can—although it is not recommended). So
the correct definition of the first test is this: let the soldiers shoot but do not give
them alcohol (a1 A~asz).

So the purist attitude towards (3.14) is that a; in itself is not yet a well defined
measurement procedure since the probability of the outcomes depends on whether
as is performed or not. So instead of taking two measurement settings, a; and as,
we should rather take four, a1 Aaa, agA~as,~a; Aas and~aiA~ay (in this latter
case we do nothing). By this move we can eliminate incompatibility since the four
new measurements are logically mutually exclusive. They cannot be co-performed
and hence cannot disturb one another. Generally, the purist strategy is to take the
conjunctions of incompatible measurements until they become either compatible or
logically exclusive.

We call this strategy Bridgmanian since it is in tune with Bridgman’s ideas on
the correct definition of measurement unfolded for example in The Logic of Modern
Physics:

Implied in this recognition of the possibility of new experience beyond
our present range, is the recognition that no element of a physical situ-
ation, no matter how apparently irrelevant or trivial, may be dismissed
as without effect on the final result until proved to be without effect
by actual experiment. (Bridgman 1958, p. 3)
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Returning to no-conspiracy, the Bridgmanian strategy renders all co-measurable
measurements compatible with one another. Therefore, the problem of incompat-
ibility disappears and we are back to our single case measurement scenario. The
purist strategy teaches nothing new about no-conspiracy.

Let us go over to the stubborn strategy. I call it stubborn since it takes a; and as
to be correct measurement settings in spite of their incompatibility (3.14)? What
does then (3.14) say about no-conspiracy?

This is a point where we need to go one step further concerning the relation
between measurement event types and elements of reality. We need to specify how
the elements of reality behave when jointly measured. Therefore suppose that the
following relation also holds (in addition to (3.1) and (3.2)):

(AL A Adlar Aag A ab Aad) = 6y ¢ i,k,1=1,2; 7=1...6 (3.15)

Requirement (3.15) expresses a kind of non-disturbance relation between the mea-
surements which can be better seen if we sum up first for 7 then for j:

= p(A’i|a1 A a’f) (3.16)
p(Adlaz A 0/2) (3.17)

p(Aﬂal A ag A a’f A al2) =
p(Allar A ax A a’f A aé)

ik
jl
q]

(Here the second equation in both rows are due to the defining equation (3.1) of
the property and (3.2) of the propensity, respectively.) (3.16) and (3.17) express
that the probability of an outcome conditioned on an element of reality and a
measurement, setting does not change by further conditioning it on other elements
of reality or measurement settings. From (3.16) (where the element of reality is a
property) it also follows that

p(Aflar Aaz Aaf) = p(Af|ar A Aah) = p(Aflar Aaf) (3.18)
Now, suppose that no-conspiracy also holds that is
plar Aag Aok A k) =plar Aaz) plak Aab) k,l=1,2 (3.19)
From (3.15) and (3.19) it is easy to show (via a derivation similar to (3.7)) that
p(Ailar Aaz) = p(Ajlar) (3:20)
in contradiction to incompatibility (3.14). This means that incompatibility between
the measurements implies that we have to abandon either the non-disturbance of
the measurement procedures (3.15) or no-conspiracy (3.19).
Thus, in case of the stubborn strategy compatibility of the measurement settings
is a good sign of that both non-disturbance and no-conspiracy hold; and incompat-

ibility is a good sign of that either the one or the other is violated. Whether to
blame the one or the other is a question for further investigation.
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3.8 Causality

Our third concept in the row is causality. In Section 5 we saw several examples for
causal connections between the measurement settings and the elements of reality.
In Example 1 for instance we supposed that the black painting on the dice is not
durable enough and if one touches the dice, the color black is wearing off. Causal
connection between elements of reality and measurement settings is a prime source
of no-conspiracy.

Causal connection comes in two sorts. It can be either a direct causal connec-
tion as in Examples 1 to 4; or it can be a common causal connection as in Example
5. Reichenbach’s Common Cause Principle states that all correlations should be
accounted for by one of the two causal connections. On the other hand, proba-
bilistic independence between the measurement settings and the elements of reality
is a sign of causal independence (assuming that causal effects do not cancel one
another). Hence, no-conspiracy can be ensured if any causal connection between
the measurement settings and the elements of reality can be excluded.

Before turning to this point, first we need to clarify what we mean by a causal
connection between two event types, say, the color measurement, a1, and the prop-
erty black, ai. By that we mean that the color measurement and the property black
are causally related in a tokenwise manner. In other words, there is a pairing of
token events instantiating these two types such that for each pair the token events
of the pair stand in either a direct or a common causal connection to one another.
But how to create pairs?

Consider a certain run of the experiment which instantiates a; Aat. Up to now
we treated this run of the experiment as one single run in which one performed a
color measurement and the property of the dice which has been drawn was black.
How can the color measurement cause the property black in this single run? If
this run of the experiment is taken as one single token event, then there can be
no tokenwise causal connection; simply because we have only one token. In order
to have a causal connection, one needs to decompose this one single run of the
experiment instantiating a; A} into a pair of token events such that the one token
event instantiates a; and the other token event instantiates o&. In order to speak
about a tokenwise causal relation, one token event is not enough. One possibility
to perform this decomposition is to say that the first token event occurred here
and the other token event occurred over there. Localization is a typical method for
individuation. We come back to the question of localization in the next Section.

Now, suppose that we can separately individuate the token events of the color
measurement and the token events of the property black. Then a causal connection
between a; and o& means that for each pair either the token instantiating a; is
the cause of the token instantiating al; or wice versa; or there is a third token
instantiating a third event type which is the common cause of both. Is there a way
to exclude both a direct and also a common causal connection between the token
events and by this to ensure no-conspiracy? What might come to mind first is to
rely on some locality consideration. This is the topic of the next Section.
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3.9 Locality

Is there a spatiotemporal arrangement of the event types a; and ai such that one
can safely say that all possible causal connections between the measurement settings
and the elements of reality are shielded off? Suppose that we take a snapshot of
the world and it turns out that the pairs of token events instantiating the color
measurement and the property black are localized in spacelike separated regions.
Thus, in the first run of the experiment the token event instantiating a; is spacelike
separated from the token event instantiating a1; and similarly for the second, third,
etc. run. This is the best scenario a spacetime localization can provide for causal
independence. Does it guarantee that there is no causal and hence probabilistic
dependence between a; and a}? As one expects, the answer to this question is no.

Even if the token events of each pair are spacelike separated, they can still be
causally related to one another both in a direct and also in a common causal way.
As for direct causal connection, just note that in order to produce a measurement
outcome these two token events need to interact somewhere in spacetime. Hence
even if they are spacelike separated at a certain moment, they will not be so at the
moment of bringing about the outcome black. Therefore their direct causal effect
on one another at the time of their interaction cannot be excluded based on the
fact that at a previous time they were localized in a spacelike separated way. The
situation is similar or even worse in case of a common cause. Even if the two token
events are spacelike separated, there well can be a common cause in their common
past causally influencing both.

To sum up, locality considerations do not help us in excluding causal connec-
tions and hence to ensure no-conspiracy. Thus, we have fallen back to the situation
in the previous Section: to guarantee no-conspiracy we need to exclude causal con-
nection in some way without making use of spatiotemporal considerations.

3.10 Contextuality

Up to now it may have appeared that the only source for the violation of no-
conspiracy is a causal connection between the elements of reality and the measure-
ment settings. However, there is a further way to violate no-conspiracy which is not
related to causality. Two events can be correlated even if they are not causally re-
lated; namely if they logically depend on one another. This leads us to the problem
of contextuality.

A little reflection on the definition of property and propensity can convince
us that (3.1) and (3.2) say nothing about whether the elements of reality and the
measurement settings are logically independent or not. It can well be the case that
by specifying the measurement setting we partly specify also the elements of reality.
Consider the following example:

Example 6. Let ai(z) denote the following property of the dice: the mass dis-
tribution of the dice is of the first type and the initial conditions (position plus

momentum) of its toss is x. a3(z) is obviously a property since together with the
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toss as it determines the upper face for sure; that is
p(Ah|az A az(z))
is either 0 or 1 for any j and .

However, az and o3(x) are not logically independent. If you tossed the die, then
the initial velocity is surely not zero and the die must have been located somewhere
around the table. That is the measurement setting partly specifies the initial condi-
tions. This logical dependence between the element of reality and the measurement
setting is called contextuality.

How contextuality leads to the failure of no-conspiracy? First, consider an
initial condition z which can reasonably be regarded as “tossing the dice” (that is
for the tossing of the die with «, it will land on the table and after a couple of rolls
it will stop on the table, etc.). For such an z, a(z) is algebraically contained in
as, therefore

plaz A ay()) = play(x)) # plaz) plag(@)) (3.21)

if p(a2) # 1 and hence no-conspiracy is violated. Second, suppose that = does not
count as “tossing the dice” (the die flies over the table, say). Then ap and od(x)
are algebraically disjoint and hence

plaz A ay(@)) = 0 # plaz) pay(z)) (3.22)

if p(a2) # 0 and no-conspiracy is again violated. In short, the logical dependence
between the measurement settings and the elements of reality directly implies (for
non-extremal probabilities, that is typically) a probabilistic dependence between
them; that is a violation of no-conspiracy.

To sum up, even if the elements of reality and the measurement settings are causally
detached, they can still violate no-conspiracy if the measurement settings wholly
or partially contribute to the definition of the elements of reality. Such a situation
cannot be excluded a priori; at least the definitions of the property and the propen-
sity do not exclude it. The logical dependence between elements of reality and
measurement, settings suffices to establish conspiracy. Contextuality is the other
main source for the violation of no-conspiracy.

3.11 Discussion

In this paper we have adopted the following empiricist philosophical position. A
physical theory was reconstructed as a formal system plus a semantics connecting
the formal system to the world. The semantics has to minimally specify what
event types inhabit the world. Event types can be of two sorts: measurement event
types and elements of reality. Typically we have direct access to the former but
not to the latter. There are two measurement event types: measurement settings
and measurement outcomes and there are also two types of elements of reality:
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properties and propensities. The probability of an event type is understood as
simply the long-run relative frequency of the token events instantiating the event
type in question. In an experiment the token events are the runs of the experiment.

Adopting the above philosophical position we have argued for the following.
No-conspiracy is the requirement that elements of reality should be probabilisti-
cally independent of the measurement, settings. There is no a priori guarantee that
no-conspiracy does hold. If it does, probabilistic relations between the measure-
ment event types will mirror probabilistic relations between the elements of reality.
This licenses physics to forget about measurement settings and measurement out-
comes and to talk directly about elements of reality. The temptation to delete
measurement event types from the semantics of the theory, however, should be
resisted.

No-conspiracy is a concept situated within a web of related concepts such as
separability, compatibility, causality, locality and contextuality. In the paper I
concentrated only on those threads of the web which connected these notions to
no-conspiracy. But certainly there are many other interconnections. Causality and
contextuality are complementary terms: the more the measurement settings and
elements of reality are logically depend on one another, the less room there is for
causal connection between them. Separability and spacetime localization do not
orient us about causal connections between measurement settings and elements of
reality; whereas incompatibility is often due to a direct causal link between them;
as in case of the soldiers’ shooting and drinking.

Going back to no-conspiracy, the following can be said. Three of the five con-
cepts, namely separability, compatibility and locality do not bring us closer to
no-conspiracy. Separability is a weaker concept than no-conspiracy, so one cannot
back the latter by the former. Compatibility of measurement settings is empty
in case of a purist strategy and only a partial motivation in case of the stubborn
strategy. Finally, locality cannot be used to support no-conspiracy at all. How-
ever, the remaining two concepts, namely causality and contextuality, are closely
linked to no-conspiracy. No-conspiracy can be guaranteed if both causal and logical
dependence between the measurement settings and the elements of reality can be
excluded. In the first case one needs to ensure that there is no direct or common
causal connection between the individual runs of the experiment. In the second
case that measurement settings should not contribute to the very definition of the
elements of reality.

Whether this can be done and hence a non-conspiratorial physical theory can
be provided for a given phenomena is a question that can be answered only by
a thorough scrutiny of the phenomena in question. Whether any conspiratorial
description of a physical scenario can be replaced by a “better” non-conspiratorial
one; whether adopting no-conspiracy can be in conflict, as in the EPR-Bell scenario,
with other principles such as local causality, Common Cause Principle, etc.—well,
these questions cannot be decided at a general metaphysical level. No-conspiracy
is neither an analytic nor a transcendental truth; it is an extra constraint on theory
construction the success of which can be decided only on a case-by-case basis.
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Appendix

Throughout the paper we used a simple toy model for a physical theory. Here we
provide a general mathematical picture of a physical theory.

~Let a; (i = 1...I) be the measurement settings in a given theory and let
Al (4; = 1...J;) denote the jth outcome of the ith measurement. Suppose fur-
thermore that there is an element of reality ozfi (ki = 1...K;) (either a property
or a propensity) associated to each measurement setting a; such that

p(Agi a; \ afi) = qgiki (3.23)

where Z}IZ:1 qfiki =1foranyi=1...7 and k; = 1...K;. For a given i € I the
element of reality afi is a property iff J; = K; and qzjk = 0j,k,. Otherwise ozfi is
a propensity.

Suppose that the elements of reality are related nicely to the measurement
event types not only in case of a single measurement but also in case of a joint
measurement. (Note the word “single” does not mean that the other measurements
are not performed; it means rather that it is not taken into consideration whether
they are performed or not.) Therefore, select I’ measurement settings out of the
possible I and let now the index 7 run from 1 to I’. What we require is that for
any such selection (among them the no-selection) the following should hold:

p(A7 AL A AJ;' lar A Aap Aokt AL A o/;f') =g x . x q}f'kﬂ (3.24)
Now, the elements of reality {afi} are said to satisfy no-conspiracy iff
plar Ao Aag Ao AL Ay =plagr A Aan) p(aft AL AR (3.25)

holds together with those “complemented” variants of (3.25) where one or more
event types are substituted by their complements. From no-conspiracy it follows
that they also satisfy no-conspiracy for all selections, among them

pla; A Oéfi) = p(az‘)p(afi) (3.26)

By means of (3.24) and no-conspiracy (3.25) one can transform for any selection
the probabilistic relations among the measurement event types into probabilistic
relations among elements of reality as follows:

p(AT AL ANA ay AL Nap) = Z FHF o @l F T plad AL A ok (8.27)
ky..kp

Specifically, if all the event types {af} are properties, then (3.27) reads as
PATA L ANA ay AL Aap) =plad AL A Q) (3.28)
and in the special case of a single measurement as

p(A] |as) = p(a]’) (3.29)
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foralli =1...I. Equation (3.27) shows that the probability of the outcomes condi-
tioned on the measurement settings is mirrored in the probability of the properties.
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Chapter 4

Relating Bell’s local causality
to the Causal Markov
Condition

The aim of the paper is to relate Bell’s notion of local causality to the Causal
Markov Condition. To this end, first a framework, called local physical theory, will
be introduced integrating spatiotemporal and probabilistic entities and the notions
of local causality and Markovity will be defined. Then, illustrated in a simple
stochastic model, it will be shown how a discrete local physical theory transforms
into a Bayesian network and how the Causal Markov Condition arises as a special
case of Bell’s local causality and Markovity.

4.1 Introduction

Local causality is a concept introduced into the foundations of quantum theory
by John Stewart Bell. A physical theory is said to be locally causal if, fixing its
past, any event happening in a given spacetime region will be probabilistically
independent of any other event localized in a spatially separated region.

Causal Markov Condition is the central notion of the theory of Bayesian net-
works. Here events are represented both as random variables in a probability space
and also as vertices in a causal graph. A set of events is said to satisfy the Causal
Markov Condition relative to the graph, if, conditioned on its causal parents, any
event will be probabilistically independent of any of its causal non-descendants.

The similarity between the logical schema of both principles is conspicuous even
at first blush: if events are localized in the spacetime/causal graph in a certain way,
then they are to satisfy certain probabilistic independencies. In this paper I will
argue that this intuition is correct: Bell’s local causality, read in an appropriate
way, is a Causal Markov Condition. Causal Markov Condition relates random
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variables to causal structures, local causality relates them to a net of spacetime
regions. We will show that the causal graph generated by the net structure of a
local physical theory transforms the theory into a Bayesian network and yields the
Causal Markov Condition as a kind of composition of Bell’s local causality plus a
similar screening-off condition, called Markovity.

To treat physical events both as probabilistic and also as spatiotemporal /causal
entities in a unified framework and to be able to infer from spatiotemporal/causal
relations to probabilistic independencies one needs to have a common conceptual
schema integrating both spatiotemporal/causal and probabilistic concepts. This
formalism is thoroughly worked out in the theory of Bayesian networks. Here
Causal Markov Condition is functioning as a ’bridge law’ connecting the causal and
the probabilistic side of the theory. In the foundations of quantum physics, however,
local causality is used in a much more intuitive way. Here one simply “reads off”
probabilistic independencies from the spatiotemporal localization of the events in
question. Hence our first task is to introduce a mathematically well-defined and
physically well-motivated framework which treats probabilistic and spatiotemporal
entities in a common mathematical formalism. We will call such a theory a local
physical theory. We will borrow a lot from the most elaborate physical theory
offering such a general framework, namely algebraic quantum field theory (AQFT).
Having such a framework integrating spatiotemporal and probabilistic aspects, we
will be able to provide a clear-cut formulation of Bell’s notion of local causality.

To relate Bell’s local causality to the Causal Markov Condition, we will in-
troduce a simple stochastic local classical theory on a discretized two dimensional
spacetime. This toy theory will display all the features previously defined in an
abstract way, and provide us a useful tool to study the properties of local causal-
ity in a more manageable way, and to trace its connections to the Causal Markov
Condition.

In the paper we will proceed as follows. In Section 2 we make a historical detour
and take a closer look at Bell’s different definitions of local causality. In Section 3
we introduce the concept of a local physical theory and give a precise mathematical
definition of Bell’s notion of local causality together with Markovity within this
framework. In Section 4 our stochastic local classical theory will be introduced. In
Section 5 we define the Causal Markov Condition and show how a local physical
theory gives rise to a Bayesian network and how local causality plus Markovity go
over to the Causal Markov Condition. We will conclude in Section 6.

There is a huge literature available relating the Causal Markov Condition to
the EPR scenario and to the Bell inequalities. The standard way to derive the Bell
inequalities is to start with Reichenbach’s Common Cause Principle together with
some locality conditions. Since Reichenbach’s Common Cause Principle is a special
case of the Causal Markov Condition, many authors start the derivation directly
from this latter. Glymour (2006) shows that the EPR case has no causal expla-
nation compatible with the Causal Markov Condition. Suarez and Iniaki (2011)
systematically apply the Causal Markov Condition to the EPR scenario and make
a connection to the robustness condition, a probabilistic causality condition thor-
oughly discussed in the early 1990’s. On the other hand, Hausman and Woodward
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(1999) argue that the Causal Markov Condition is inapplicable to the EPR scenario
since the non-separability of the quantum state renders interventions, a necessary
criterion for applicability, unavailable. As a reply to their claim see Suarez (2013).
Hofer-Szabo, Rédei and Szab6 (2013) connect the Causal Markov Condition both
to the so-called common-common-causal and also to the separate-common-causal
explanation of the EPR case. They show that hidden locality, an assumption of the
standard derivation of the Bell inequalities, can be justified by the Causal Markov
Condition only in case of common common causes but not in case of separate com-
mon causes.

Despite the rich literature on the topic I am unaware of any work relating the
Causal Markov Condition directly to Bell’s notion of local causality. This paper
intends to fill this gap.

4.2 Bell’s three definitions of local causality

Local causality is the idea that causal processes propagate though space continu-
ously and with velocity less than the speed of light. John Stewart Bell formulates
this intuition in a 1988 interview as follows:

“[Local causality] is the idea that what you do has consequences only
nearby, and that any consequences at a distant place will be weaker
and will arrive there only after the time permitted by the velocity of
light. Locality is the idea that consequences propagate continuously,
that they don’t leap over distances.” (Mann and Crease, 1988)

Bell has returned to this intuitive idea of local causality from time to time and
provided a more and more elaborate formulation of it. First he addressed the notion
of local causality in his “The theory of local beables” delivered at the Sixth GIFT
Seminar in 1975; later in a footnote added to his 1986 paper “EPR. correlations and
EPW distributions” intending to clean up the first version; and finally in the most
elaborate form in his “La nouvelle cuisine” posthumously published in 1990. Below
I will overview the different versions briefly commenting on each of them.

Version 1. Bell’s first definition of local causality reads as follows:

“Consider a theory in which the assignment of values to some beables
A implies, not necessarily a particular value, but a probability distri-
bution, for another beable A. Let p(A|A) denote! the probability of a
particular value A given particular values A. Let A be localized in a
space-time region A. Let B be a second beable localized in a second
region B separated from A in a spacelike way. (Fig. 4.1.) Now my
intuitive notion of local causality is that events in B should not be
‘causes’ of events in A, and vice versa. But this does not mean that

'For the sake of uniformity throughout the paper I slightly changed Bell’s denotation
and figures.
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N

Figure 4.1: Bell’s first figure illustrating local causality (1975).

the two sets of events should be uncorrelated, for they could have com-
mon causes in the overlap of their backward light cones. It is perfectly
intelligible then that if A in (8.6) does not contain a complete record of
events in that overlap, it can be usefully supplemented by information
from region B. So in general it is expected that

p(AlA, B) # p(A|A) (4.1)

However, in the particular case that A contains already a complete
specification of beables in the overlap of the light cones, supplemen-
tary information from region B could reasonably be expected to be
redundant.

Let Cs denote a specification of all beables, of some theory, belonging
to the overlap of the backward light cones of spacelike regions A and
B. Let C; be a specification of some beables from the remainder of the

Cy C,

Figure 4.2: Bell’s second figure illustrating local causality (1975).

backward light cone of A, and B of some beables in the region B. (See
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Fig. 4.2.) Then in a locally causal theory
p(A[C1, Ca, B) = p(A|Ch, Cs) (4.2)

whenever both probabilities are given by the theory.” (Bell, 1975/2004,
p. 54)

First, let us comment briefly on the terminology Bell is using in his first version of
local causality.

The term "beable” has been introduced into the literature by Bell himself. It
is intended to be opposed to the term "observable” used in quantum theory and to
refer to something that "really” exists. “The word ’beable’ will also be used to carry
another distinction already in classical theory between ’physical’ and 'non-physical’
quantities. In Maxwell’s electromagnetic theory, for example, the fields E and H
are physical (beables, we will say) but potentials A and ¢ are non-physical.” (Bell,
1975/2004, p. 52) Without the clarification of what the “beables” of a given theory
really are, one cannot even formulate local theory.

“Beables” are to be local. “We will be particularly concerned with local beables,
those which (unlike for example the total energy) can be assigned to some bounded
space-time region. For example, in Maxwell’s theory the beables local to a given
region are just the fields E and H, in that region, and all functionals thereof.” (Bell,
1975/2004, p. 53)

Finally, the beables localized in the region ) are to provide a "completely
specification” of the region in question. We will come back to this point later on.

Although the beables are to be local, in his screening-off condition (8.7) Bell
takes into account the whole causal past of the events in question. He does not
assume some kind of Markovity rendering superfluous the remote past regions below
a certain Cauchy surface. The second version of his formulation of local causality
can be regarded as a step towards this Markovian direction.

Version 2.

“The notion of local causality presented in this reference [namely in
(Bell, 1975/2004)] involves complete specification of the beables in an
infinite space-time region. The following conception is more attractive
in this respect: In a locally-causal theory, probabilities attached to
values of local beables in one space-time region, when values are speci-
fied for all local beables in a second space-time region fully obstructing
the backward light cone of the first, are unaltered by specification of
values of local beables in a third region with spacelike separation from
the first two.” (Bell, 1986,/2004, p. 200)

Bell’s second version is in a footnote; it is very succinct and contains no figure.
The new element is the phrasing “space-time region fully obstructing the backward
light cone of the first”. This idea gets a more precise exposition in Bell’s third, final
version of local causality.

Version 3.
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“A theory will be said to be locally causal if the probabilities attached
to values of local beables in a space-time region A are unaltered by
specification of values of local beables in a space-like separated region
B, when what happens in the backward light cone of A is already
sufficiently specified, for example by a full specification of local beables
in a space-time region C (Fig. 4.3).” (Bell, 1990,/2004, p. 239-240)

X

Figure 4.3: Bell’s figure illustrating local causality (1990).

The localization of region C' is of crucial importance. It is not enough that C
completely cuts across the causal past of region A; it also has to “obstruct the
backward lightcone of the first”. Bell explicitly stresses this point: “It is important
that region C' completely shields off from A the overlap of the backward light cones
of A and B.” (Bell, 1990/2004, p. 240) This requirement will play a central role in
our investigation on the relation of local causality to the Causal Markov Condition.
We will come back to that having defined local causality in the next Section.

4.3 Local causality in local physical theories

The framework integrating probabilistic and spatiotemporal entities can be defined
as follows. (For the details and motivations of the definition see (Hofer-Szabo and
Vecsernyés, 2015a,b).)

Definition 1. A Pi-covariant local physical theory is a net {A(V),V € K} associ-
ating algebras of events to spacetime regions which satisfies isotony, microcausality
and covariance defined as follows (Haag, 1992):

Isotony. Let M be a globally hyperbolic spacetime and let K be a covering
collection of bounded, globally hyperbolic subspacetime regions of M such
that (I, C) is a directed poset under inclusion C. The net of local observables
is given by the isotone map K > V — A(V) to unital C*-algebras, that
is V1 C V4 implies that A(V;) is a unital C*-subalgebra of A(V32). The
quasilocal algebra A is defined to be the inductive limit C*-algebra of the net
{A(V),V € K} of local C*-algebras.
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Microcausality (also called as Einstein causality) is the requirement that A(V’)" N
A D A(V),V € K, where primes denote spacelike complement and algebra
commutant, respectively.

Spacetime covariance. Let Px be the subgroup of the group P of geometric sym-
metries of M leaving the collection K invariant. A group homomorphism
a: Px — Aut A is given such that the automorphisms oy, g € Px of A act
covariantly on the observable net: oy(A(V)) = A(g- V),V € K.

If the quasilocal algebra A of the local physical theory is commutative, we speak
about a local classical theory; if it is noncommutative, we speak about a local
quantum theory. For local classical theories microcausality fulfills trivially.

A state ¢ in a local physical theory is defined as a normalized positive lin-
ear functional on the quasilocal observable algebra A. The corresponding GNS
representation my: A — B(H,) converts the net of C*-algebras into a net of C*-
subalgebras of B(H,). Closing these subalgebras in the weak topology one arrives
at a net of local von Neumann observable algebras: N (V) := w4 (A(V))",V € K.
Von Neumann algebras are generated by their projections representing quantum
events. The net {N(V),V € K} of local von Neumann algebras also obeys isotony,
microcausality, and Pi-covariance, hence one can also refer to a net {NV(V),V € K}
of local von Neumann algebras as a local physical theory.

Why von Neumann algebras?

Classical field theories are characterized by their sets of field configurations.
Taking the equivalence classes of those field configurations which have the same field
values on a given spacetime region one can generate local (cylindrical) o-algebras.
One can translate o-algebras into the language of abelian von Neumann algebras
and then generalize this framework also for non-abelian von Neumann algebras. We
come back to the details of this procedure in the next section when we introduce our
stochastic local classical theory. Thus, we translate Bell’s term “local beables” into
the language of local physical theories simply as “elements of a local von Neumann
algebra”. Now, how to translate the term “a complete specification of beables”? We
are of the opinion that the natural translation of this term is simply “an atomic
event of a local von Neumann algebra” (Henson, 2013). Here it is assumed that the
local algebras of the net are atomic, which is not the case, for example, in Poincaré
covariant algebraic quantum field theory. (For a more general definition of local
causality see (Hofer-Szab6 and Vecsernyés, 2015a).) With these notions in hand
now one can formulate Bell’s notion of local causality in a local physical theory as
follows:

Definition 2. A local physical theory represented by a net {N(V),V € K} of von
Neumann algebras is called locally causal, if for any pair A € N (V4) and B € N (V)
of projections supported in spacelike separated regions V4, Ve € K and for every
locally normal and faithful state ¢ establishing a correlation ¢(AB) # ¢(A)d(B)
between A and B, and for any spacetime region Vi such that

(i) Ve C J,(VA),
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(ii) Va C VC/«/,
(iii) J-(Va)NJ_(Ve) N (J4(Ve) \ Ve) =0,
(see Fig. 6.2) and for any atomic event Cy of A(Ve) (k € K), the following holds:

/e /N

Figure 4.4: A region V¢ satisfying Requirements (i)-(iii).

$(CkABCy) _ ¢(CrACk) ¢(CrBCk) (4.3)
?(Cr) ?(Cr)  9(Ck)

In case of local classical theories a locally faithful state ¢ determines uniquely

a locally nonzero probability measure p by p(A) := ¢(A4), A € P(N(V)). By means
of this (6.1) can be written both in the symmetric form

P(AB|C) = p(A|Cr)p(B|Ck) (4.4)
and also in the equivalent asymmetric form
p(A|BCy) = p(A|Ck) (4.5)

featuring in Bell’s first version of local causality.

Now, the localization of region Vi by Requirements (i)-(iii) is a bit more liberal
than that required in Bell’s second version. Although Vi “completely shields off”
region V4 from the common past of V4 and Vp, it is not spacelike separated from
Vg (as is, for example, region V¢ in Fig. 4.3). But why not to be more liberal? Why
Requirement (iii) is needed at all? Why does a region V¢ such as the one depicted
in Fig. 4.5 not suffice? The brief answer to this question is that the region above Vi
(lighter shaded in Fig. 4.5) can contain stochastic events which, though completely
specified by the region V¢, still, being stochastic, could establish a correlation
between A and B in a classical stochastic theory (Norsen, 2011; Seevinck and
Uffink 2011; Hofer-Szabo 2015c¢). Indeed, exactly this will be the case in our model
introduced in the next section.

In order to relate Bell’s local causality to the Causal Markov Condition we need to
introduce a screening-off condition similar to local causality, namely Markovity:
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Ve

Figure 4.5: A region V¢ for which Requirement (iii) does not hold.

Definition 3. A local physical theory represented by a net {N(V),V € K} of von
Neumann algebras is called Markowv, if for any pair A € N (V4) and B € N(Vg) of
projections supported in regions V4, Vi € K with Vg C I_(V4) and for every locally
normal and locally faithful state ¢ establishing a correlation ¢(AB) # ¢(A)d(B)
between A and B, and for any spacetime region Vi such that

(i) Ve C J-(Va),
(ii) Va Cc V¥,
(ii") Ve C J-(Ve),
(see Fig. 4.6) and for any atomic event Cy, of A(Ve) (k € K) (6.1) holds.

[ Ve

Figure 4.6: A region Vi satisfying Requirements (i)-(iii’) of Markovity.

The relation between local causality and Markovity is straightforward. In both
cases events localized in region V4 and Vp, respectively are screened-off by the
atomic events in region V. If V4 and Vi are spacelike separated and Vi is localized
according to Requirements (i)-(iii), then (6.1) expresses local causality. If V4 and
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Vp are timelike separated and Vi is localized according to Requirements (i)-(iii’),
then (6.1) expresses Markovity. As we will see later Causal Markov Condition will
be a special case of the composition of local causality and Markovity.

4.4 A simple stochastic local classical theory

In this section we will develop a simple stochastic local classical theory. Before
introducing it in a full-fledged form, let us sketch it in brief. The spacetime of
the theory will be a 1+1 dimensional discretized Minkowski spacetime covered by
minimal double cones. (See Fig. 4.7.) The field configurations of the theory are

Figure 4.7: A simple stochastic local classical theory.

given by mappings assigning a 4 or a — to each minimal double cone. The dynamics
of the theory is generated by the following transition probabilities: The value + or
— in a given minimal double cone is probabilistically fixed by the product of the
values in the three minimal double cones adjacent to it from below, irrespectively of
the value in other minimal double cones, like earlier or spatially separated ones. The
probabilistic dependence is this: If the product of the values in the three adjacent
minimal double cones is +, then the value in the upper minimal double cone will
be + with probability p and — with probability 1 — p; if the product is —, the
value will be — with probability p and + with probability 1 — p. The process is
deterministic, if p € {0,1} and stochastic, if p € (0,1). Now, let us see the theory
in a more detailed way.

Consider a discretized version of the two dimensional Minkowski spacetime M?
which is composed of minimal double cones V™(¢,4) of unit diameter with their
center in (¢,4) for t,i € Z or t,i € Z + 1/2. The set {V™(t,i),i € 1Z} of such
minimal double cones with ¢ = 0, —1/2 defines a ‘thickened” Cauchy surface in this
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spacetime, denoted by Sp. For double cones sitting on Sy we will drop the time
coordinate and simply write V;. (See Fig. 8.14.)

Figure 4.8: Two dimensional discrete Minkowski spacetime with a ‘thickened’
Cauchy surface.

A double cone V(¢,14;s,7) is defined to be the smallest double cone containing
both V™(t,4) and V™(s, j), that is generated by them: V(t,i;s,5) := V™(¢,i) V
V™(s,7). The directed poset of such double cones is denoted by K™ and the
directed poset of double cones generated by minimal double cones sticked to the
Cauchy surface Sy is denoted by Kf*. Obviously, K" will be left invariant by
integer space translations and K™ will be left invariant by integer space and time
translations. By shifting the time coordinates of the minimal double cones by ¢ one
can similarly define the Cauchy surface S; and the net }".

Let S™ denote the set of minimal double cones of M? and let Zs be the mul-
tiplicative group of the integers {1, —1}. Define the set C of configurations of the
theory as: C := {c: S™ — Zz}. The maximal o-algebra of classical events (C, P(C))
is given by the power set P(C) of the set of configurations. But one can also obtain
a narrower o-algebra in tune with the net structure ™. This is done by taking
the equivalence classes of those configurations which have the same field values on
a given region in ™. The sets Cy of local equivalence classes (the ‘cylindrical sub-
sets’ of C concentrated on V') are obtained by the equivalence relation: ¢ ~y ¢ if
qv = CTV. Clearly, Cy contains 2!V| elements, where |V| is the number of minimal
double cones in V. One can get the power set P(Cy) of Cy by defining the following
map Zy for Ve K™:

Zy:P(C) = P(C), Cr{c €Cl3ce C: ey =y} (4.6)

For a given V' € K™ the image sets of Zy define a unital o-subalgebra (V') of
P(C), which is isomorphic to the power set P(Cy) of Cy. By ranging over V € K™
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one obtains an isotone net structure {(C,%(V)),V € K™}. The 2!Vl dimensional
abelian local von Neumann algebra N (V') corresponding to the local o-algebra (V)
is spanned by the orthogonal set of minimal projections P;, ¢ € Cy corresponding to
characteristic functions x§{,: C — C which are 1 on the cylindrical subset ¢ € Cy of
C and 0 otherwise. Clearly, {NV(V),V € K™} is an isotone net of finite dimensional
abelian von Neumann algebras, hence it defines a local classical theory.

The quasilocal C*-algebra A is given by the inductive limit of the local von
Neumann algebras N'(V),V € K™, and similarly the unital C*-subalgebras Ay of
A is given by the inductive limit of the local von Neumann algebras N'(V),V € K.
Now, a stochastic theory can be regarded as a state extension procedure from the
subalgebra Ay (or from any A;) to the quasilocal algebra .4 by means of so-called
transition probabilities. This is done in the following way.

Let V (t+3) be a finite set of minimal double cones on the time slice t+4. Define
the nearest past of V(¢ + 1) as follows: Py(V(t+ 1)) =S N (S \ J-(V(t+ 3))).
Specifically, the nearest past P (V™ (t+3, 1)) of the minimal double cone V™ (t+3,1)
contains the three minimal double cones adjacent to Vm(t—f—%, i) from below, namely
Vm(t,i— 1), Vm(t — 1,4) and V™ (¢,i + 3). For a given configuration ¢ € C define
the gemerating transition probabilities from the equivalence class Cp (v (t+1,i)) 1O
the equivalence class cym ;41 ;) as follows:

o 2 lf C(t+lvl):0(tﬂ7’7l)c(tilv
plevemurgilep,(vm it = { L—p, if c(t+ 5,1) = —c(t,i 2 De( 2

where c¢(t,14) is short for ¢(V™(t,4)), the value of the configuration ¢ at the minimal
double cone V™(t,7). Assuming that the generating transition probabilities are
independent with respect to spacelike separation, one can define the transition
probabilities from the Cauchy surface S; to the time slice ¢ + % as:

plev s bylep,(viriy) = H pleymuriplep,vmestiy)  (48)
Vm(t+3,0)eV(t+3)

Intuitively, these transition probabilities do the following: The value 4+ or — in a
given minimal double cone is probabilistically fixed purely by the product of the
values in the three minimal double cones adjacent to it from below. (See again
Fig. 4.7.) Negatively speaking, they do not depend on the value of other minimal
double cones, like earlier or spatially separated ones. As we will see, these two
independencies are closely connected to Markovity and local causality, respectively.
If the product is +, then the value is + with probability p and — with probability
1 — p; if the product is —, the value is — with probability p and + with probability
1—p.

Finally, let U(t) be a finite set of minimal double cones on the Cauchy surface
S;. We define the state on the equivalence class Cy(erd) Neug) as follows:

d(ey 1) Neuy) = Pley s 1)lep, v+ 1)))0(Cp, (v e+1)) N cur)) (4.9)

Thus, starting from ¢g on Ag one can recursively define the state ¢ on the whole
A. (For the Cauchy surfaces below Sy we use Bayes theorem for the extension.)
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To simplify things, introduce the following denotation. Let i+ and i~ denote three
different things at the same time: the two cylindrical subsets of Cy = concentrated
on the minimal double cone V;™ on the Cauchy surface Sp; the two correspond-
ing characteristic functions; and also the two corresponding orthogonal projections
in V(V;/™). If we are not specifying which of the two sets/characteristic func-
tions/projections we are speaking about, we simply write i. The nth forward and
backward space translates of ¢ will be denoted by (i + n) and (i — n), respectively
(ne %N); the ¢th forward and backward time translates will be denoted by 7; and
i_¢, respectively (¢ € N).
Let, furthermore,
1 1
i(it5) (= 5) ]

denote the product of a sequence of projections localized on the Cauchy surface Sy
between minimal double cones V" and V;™, and let p; ; denote the probability
thereof in state ¢. Since we will deal only with projections of abelian von Neumann
algebras, from now on instead of ¢ we simply write p. Finally, we will express the
condition

L. o1 11
e(t + 5,2) = c(t,i— E)c(t - 5,@)0(1?,@ + 5)

in (4.7) by the Dirac delta symbol

Oc(t4-3i),c(trim3)e(t— b i)e(t it d)

or in the short form

Oiy (= 1)ili+ d)

Now, let A =i; and B = j, be two projections localized in the minimal double
cones V™(t,i) and V™ (s, j), respectively, with ¢« < j. Suppose that V™(¢,7) and
V™ (s, j) are spatially separated, that is |j—i| > |s—¢|. To calculate the probability
of A, B and AB, we need a little geometry. (See Fig. 4.9.) Consider the minimal
double cone V™ (u, k) (striped horizontally) at the top of the common past’ of
regions V™ (t, i) and V™(s,j). The coordinates of V™ (u, k) are the following:

1 1
u=g(t+s+i—j) k=5+jit+t—s) (4.10)

Consider now the Cauchy surface S, fitting V™ (u, k), where the ceiling function
[] in the subscript is just to round up the u coordinates if half integers. Let the
number of minimal double cones in the causal past of V™ (t,7) above Sy (including
V™ (t,7) but not including double cones on Sp) be denoted by n, and the number
of minimal double cones in the causal past of V™ (t,i) above Sp,7 (again including
V™ (t,i) but not including double cones on Sp,7) by n’. Similarly, the number of
minimal double cones in the causal past of V™ (s, j) above Sy and S, be denoted
by m and m/, respectively. Finally, denote the number of minimal double cones in
the causal past of V™ (u, k) above Sy by I. The numbers n, n’, m’, m and [ are the
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Figure 4.9: A little geometry.

following functions of 4, j, ¢ and s:

_t+4zt719€, ifieN

B i 4.11

' {t+423—1($—1), ifi e IN (4.11)
—t+43; ) ifi e N

"= e el (4.12)
t+4d, (e —1), ifiegN

" { s+4Y" (x—1), ifjeiN (4.13)

" { s+AY (= 1), ifj €3N (4.14)
_ [u] .

' N N (4.15)

|_’U/—| +4ZI:1(1‘ — 1), ifke §N

In Fig. 7?7, for example, n = m =3, n’ =m’ =21 and | = 6. With these numbers
one can also calculate the number 7 of minimal double cones between Sy, and Sp
(including double cones on Sp, but not on Sp):

S (4.16)

which is 30 in Fig. 4.9. Now, using the above numbers (4.11)-(4.16) the probability
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of A, B and AB will be the following:

p(4) = Z |:qn6it,(it+{i})...(i+t{i})
(i=t={i+3}),,(i+t+{i+3})
+(1— Qn)a—it,(i—t+{i})...(i+t—{i}):|p(z‘t{i+§})...(i+t+{i+§}) (4.17)
p(B) = > {qm%,<j—s+{j}>...<j+s—{j}>
(G=s={i+5}),.G+s+{i+3})
+(1 - Qm)(sjm(jer{j})»»»(jﬂLS{j})]p(j—s—{j-‘r%})~-~(j+s+{j+%}) (4.18)
p(AB) = > [qn'qm'%%at+{z‘}>...<i+t{z‘}>5js,<js+{j}>m<j+s{j}>

(i—t+{i}),...,(G+s—{5})
a0 (1= G )dr iy (1= t4 (i) (it = {i1) O (= s +-{3])-- (45— {3}
(1= G )@ Gr O—iy (1=t (i)).. (144~ (i) O (s (G1) - G5 13

T = ) (L = @ )@r Oy (it {3})- (it —{i}) O (= s+ L} (G5— (3 ])

XPlimt—{i+ 3} (+s+{i+3)) (4.19)

where the fractional part function {-} in the subscript is again to treat integer and
half integer coordinates together, and ¢, (z = n,n’,m, m’,r) is the even part of the
binomial expression:

@ = p'+ <;C>p””‘2(1 -0+ (i)pw_“(l -+ (4.20)

Obviously, in the general case:

p(AB) # p(A)p(B) (4.21)

so there is a superluminal correlation between A and B.

Ezample 1. As an example, let A =i and B = j;", where j =i +2 € N+ % (See

Fig. 8.16.) Let the 'prior’ probabilities p;;_1)...j+1) on Sp be fixed as follows:
1
Prtttt+t++ = 5 (4.22)
Pttt —t = i (4.23)
Pttt = i (4.24)

and all the other combinations be 0. Then the probability of A, B and AB is the
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Figure 4.10: Superluminally correlating events i and j;".

following;:
1/1
pA) = 3 {p‘sﬁ,(i;)im;) +( p)‘sz‘r,(i;>i<i+;>]P<z‘—1>...u+1> = §<§ +p
(i—1),...,(i+1)
1/1
p(B) = Z {p‘;ﬁ,( —hig+h T A= p>5jf7<j%)j(ﬂ%)}p(a‘—l)...(ﬂl) =5 <§ +p
(j—1)7~~~,(j+1)

=
-
3
I

N

2
+(1=pp 5—1'1*,(1'—%)i(i+%>5jf,(j—%>j<j+%> +(1-p) 5—if,(i—é)i<i+;)5—ji,(a‘—é)j(j+é>}p<i1>

thus A and B are correlating whenever p # 1.

Ezample 2. In the second example, let A = iJ and B = j, , where again j =i +2 €
N+ % (See Fig. 8.17.) With the ’prior’ probabilities p;_2). . (j12):

1

Prottttttttitt = 5 (4.28)
1

Pttt = 7 (4.29)
1

Po—tbttttttit = 7 (4.30)
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Figure 4.11: Superluminally correlating events iJ and j; .

(and the rest is 0) one obtains the probability of A, B and AB as:

p(AB)

Z {‘JG 5i;,(i—g)...(i+g) +(1- q6)6—i2+,(i—%)...(i+%):|p(i2)---(i+2)
)

% <% N %) (4.31)

) [‘16 Ot =)+ T (- qﬁ)é—j;,<j—%>...<j+g>]19<j2>m<j+2>
(=20 (G42)

% <% N %) (4.32)

2
Z {P 9 9;F (i-2)...(i+2)05F (- 2)..(+2)
(i—2),..., (3+2)
(=200 o3 14905569 G+)

2

HA=P)PW O it (i-3)..(+3)%5F (- 2)..G+2)

2

1
(=209 0 it (- 9)..it 1) Ot G )G+ D) P20 G2) = 5Pd0(4:33)

thus A and B are correlating whenever i(% +q6)* # %qu which is the typical case.

The difference between Example 1 and 2 is that in Example 1 there is no minimal
double cone above Sy in the common past of A and B, whereas in Example 2 there
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is such a minimal double cone, namely V™(1,i + 1).2 This difference will have
crucial consequences concerning local causality to which we turn now.

First, we prove that the above local classical theory is locally causal. Actually,
we prove a little less: local causality for a specific choice of V4, Vi and V. (For
a general proof see (Hofer-Szabo and Vecsernyés 2015a).) Let V4 = V™ (¢,4) and
Ve = V™ (s, j) be two spatially separated minimal double cones with ¢ < j, and let
Ve be generated by the intersection of the causal past of V4 and a Cauchy surface
“shielding off” V4 from the common past of V4 and V. Any Cauchy surface S,
with [u] < v <t will be such a ”shielder-off” Cauchy surface, where u is defined in
(4.10). (For a “shielder-off” Cauchy surface see Fig. 4.9.) The region Vo generated
by this intersection will obviously satisfy Requirements (i)-(iii) in Definition 6 of
local causality.

Now, we prove local causality with respect to these regions.

Proposition 1. The stochastic local classical theory {N(V),V € K™} is locally
causal for any three regions V4, V and V¢ specified above.

Proof. Let A =i; and B = js be two projections localized in V4 and Vg, respec-
tively, and correlating in the probability measure p. We are to show that for any
atomic event

C = (i—t—l—v—{i—l—%})v...(i—i—t—v‘f'{i‘f'%})

v

of V¢ the following holds:
p(AB|C) = p(A|C)p(B|C) (4.34)

First, for the sake of convenience, shift the Cauchy surface Sy up to S, and denote
the new time coordinates by a prime: ¢ := t — v and ¢’ := s — v. Similarly let
q,, and ¢/, denote the appropriate number of minimal double cones with respect to
the shifted Cauchy surface. With this notation the conditional probabilities are the

2See also our remark in the last paragraph of Section 3.
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following;:
p(AlC) = |:q;z(sit/,(it/Jr{i})...(ith’{i}) +(1 - q:q)éfit/,(ift’+{i}),,,(i+t/7{i}) (4.35)
p(B|C) = > {fﬂn%,<j—s/+{j}>--.<j+s/—{j}>
(G=s'={3+ 3D G+s’+{i+1})
+(1- %)5—3*5,,(j—s'+{j}>...<j+s'—{j})]pc<j-s'—{j+;})..-(j+s'+{j+;}) (4.36)
p(AB[C) = > [%% O 1=t/ + {3}t — (i) O (' + L) (45— ()
(G=s'={7+ 3 G+ +{i+3 1)
a5 (1= ) Oiyy Gt () (i — () O s (G + 1) G5 — L)
F(1 = @) O—iys (o=t (i) (it~ {i)) s (= "+ 31) .. G+5'— ()
F(1 =) (= @0) iy (it {i}) .. (it = () O s =" +45 ) (G = {5 ])
XPO(j—s'—(j+ ). (s (2 )) (4.37)

where poi_o (i1 1})..(j+s+{j+ 1)) 18 a short for
Pli—t'—{i+3}.. i+t +{i+ 5 DG~ —{7+5 D) G+s'+{7+3}
From (4.35)-(4.37) the screening-off (6.2) follows immediately. m

One can see from the proof that if Vi is a segment of Cauchy surface satisfying
Requirements (i)-(iii) in Definition 6, that is a segment of Cauchy surface located
at or above the top of the common causal past of the correlating events A and
B, then from (4.19) the ¢, terms will drop out leaving no correlation between the
conditional probabilities. Note that Vo need not necessarily be above the common
past of A and B, it can also intersect with the top of it (see again Fig. 4.5). All
is needed is that there is no region above V¢ in the common past. Such a region,
namely, can contain stochastic events which could establish a correlation between
A and B. Mathematically this means that from (4.19) the ¢, terms would not drop
out and hence the correlation would not be screened off by the atomic events of
V. Requirement (iii) in the definition of local causality is just to exclude this case.
The next proposition shows that Requirement (iii) also is a necessary condition in
the localization of V.

Proposition 2. The local classical theory {N(V),V € K™} would not be locally
causal if Requirement (iii) was dropped from Definition 6.

Proof. Consider Example 2 of the previous Section that is let A = if and B =
(i+2)5 and the prior probabilities those fixed in (4.28)-(4.30). Let C be the minimal
projection

. .3 . o1, 01 . .3 .
(i—2)"( — §)+(z — 1)t - §)+Z+(Z + E)Jr(z + D)+ §)+(z +2)t
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Figure 4.12: A region V¢ for which Requirement (iii) does not hold.

localized in region V. (See Fig. 4.12.) For the region Vo Requirement (iii) does
not hold since there is a minimal double cone, V™ (1,74 1) (the one with horizontal
stripes) above region Vi in the common past of V4 and V.

Using the identity

> (i+g)(i+3)(i+;)(i+4):1 (4.38)

(i+32),(i+3),G+1),(i+4)

it is easy to see that C does not screen off the correlation between A and B since

p(A|C) = (s (439)
(BIC) — S (i4+3),(643), (14 2), (i) P(BIC(E + §), (14 3), (i + 5), (6 4+ 4)) (it 5),143),(14+3),(144)
p(C)
1
= g(l + 46) (4.40)
pABIC) = Z(i+%),(i+3),(i+%),(i+4) p(AB|C(i+3),(i+3), (i + ), (i + 4))pc(i+%),(i+3),(i+%),(z‘+4)
p(C)
1
= g(l + P)pgo (4.41)

for any C' of non-zero measure. But typically

Sas(la0) # 301+ )b (42)

since the left and right hand side are of different ordo in p. =
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Next we prove that the above local classical theory is also Markov. Again, we
prove a little less: local causality for a minimal double cone V4 = V"™ (¢, 1), another
minimal double cone Vg = V™(s,j) lying in the causal past of Vy, and a third
region Vo generated by the intersection of the causal past of V4 and a Cauchy
surface “shielding off” V4 from V. (See Fig. 4.13.) V¢ will obviously satisfy

Figure 4.13: The regions V4, Vp and V¢ for which Markovity holds.
Requirements (i)-(iii’) in Definition 3 of Markovity.

Proposition 3. The stochastic local classical theory {N(V),V € K™} is Markov
for any three regions V4, Vg and Vi specified above.

Proof. Let A =1i; and B = js be two projections localized in V4 and Vg, respec-
tively, and correlating in the probability measure p. We are to show that for any
atomic event

C = (i—t—l—v—{i—l—%})v...(i—i—t—v'i‘{i‘f'%})

of Vo with s < v < t the following holds:
p(A|C) = p(A|CB) (4.43)
But it does, since both sides of (6.3) are simply
Un0i,, (imtr ). i+t — i) T (1= @), (imtr g {i})... it/ —{i})

where again t’ :=t — v and ¢/, denotes the appropriate number of minimal double
cones with respect to the shifted Cauchy surface. m
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4.5 Local Causality, Causal Markov Condition and
d-separation

Now, I connect local causality and Markovity to the Causal Markov Condition used
in the theory of Bayesian networks (see (Pearl, 2000) and (Spirtes, Glymour and
Scheines, 2000)). Consider a directed acyclic graph G and a set of random variables
V on a classical probability space (X, p) such that the elements X,Y ... of V are
represented by the vertices of G and the arrows X — Y on the graph represent
that X is causally relevant for Y. For any X € V let Par(X), the parents of X,
be the set of vertices that have directed edges in X; let Anc(X), the ancestors of
X, be the set of vertices from which a directed paths is leading to X; and finally
let Des(X), the descendants of X, be the set of vertices that are endpoints of a
directed paths from X. The set V is said to satisfy the Causal Markov Condition
relative to the graph G if for any X € V and any Y ¢ Des(X) the following is true:

p(X|Par(X)AY) = p(X|Par(X)) (4.44)

In other words, conditioning on its parents the random variable X will be probabilis-
tically independent from any of its non-descendant. Non-descendants of X can be of
two types: either ancestors or non-relatives (non-descendants and non-ancestors).
As we will see, being independent of ancestors is related to the Markovity, whereas
being independent of non-relatives is related to local causality.

We say that the set V is faithful relative to the graph G if all probabilistic inde-
pendencies between the random variables of V are implied by the Causal Markov
Condition. This implication can neatly be depicted graphically by the so-called
d-separation criterion. Let P be a path in G. A variable C on P is a collider if
there are arrows to C' from both its neighbors on P. Now, let X', ) and Z be three
disjoint sets of vertices in G. X and ) are said to be d-connected by Z in G iff there
exists a path P between some vertex in X and some vertex in ) such that for every
collider C' on P, either C or a descendant of C' is in Z, and no non-collider on P is
in Z. X and Y are said to be d-separated by Z in G iff they are not d-connected
by Z in G. Specifically, the Causal Markov Condition entails that the variables X
and Y are probabilistically independent conditional upon the subset Z just in case
Z d-separates X and Y in G.

Now, consider the stochastic local classical theory {N(V),V € K™} introduced
in the previous Section. A local von Neumann algebra N (V') of the theory gives
rise to a graph G(V) and a set of random variables V(V') on a classical probability
space (3, p) in the following way. Consider a region V in K™ with the set {V"™} of
minimal double cones contained in V. Let the minimal double cones be the vertices
of a causal graph and draw an arrow to every minimal double cone V™ (¢, %) from the
three minimal double cones adjacent to it from below, that is from V™ (t—1,i— 1),
Vm(t—1,i) and V™ (¢t — 4,9+ 3), if all contained in V. (See Fig. 4.14.) The set of
vertices and arrows will uniquely determine a causal graph G(V') associated to V.

As for the set of random variables V(V'), to each minimal double cone V™ (¢, 1)
in V' assign simply the two cylindrical subsets of Cy( ;), denoted by C;’L(t,i) and
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Figure 4.14: The causal graph G(V') associated to V.

c;m(m), or equivalently the projections i} and i;", respectively. Thus, the parents
of a given random variable will be the projections in the three past timelike related
adjacent minimal double cones, the descendants of a random variable will be the
projections in the future timelike related minimal double cones, etc. The pair
(G(V),V(V)) will form a Bayesian network.

The translation manual between the vocabulary of the theory of Bayesian net-
works and that of the stochastic local classical theory {N(V),V € K™} is shown
in the following table:
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Theory of Bayesian networks |

Stochastic local classical theory

Bayesian network (G(V),V(V))

Associated to every V € K™

Causal graph G(V)

Local von Neumann algebra N (V)
with V e K™

Vertices

Minimal double cones in V'

Arrows

Pointing to future timelike related
adjacent minimal double cones

Random variables V(V)

Projections localized in the
minimal double cones contained in V'

Parents Projections in past timelike related
adjacent minimal double cones

Ancestors Projections in past timelike related
minimal double cones

Descendants Projections in future timelike related

minimal double cones

Causal Markov Condition

Bell’s local causality plus Markovity

The last line of the table contains the central point of our discussion, namely:

1. The Causal Markov Condition is a consequence of Bell’s local causality and
Markovity when applied to the parents of a random variable.

2. Bell’s local causality /Markovity are consequences of the Causal Markov Con-
dition, since the set of random variables localized in a region satisfying Re-
quirements (i)-(iii)/(iii’) is d-separating.

We prove the first claim in the following proposition and illustrate the second in
the subsequent examples.

Proposition 4. Let {N(V),V € K™} be the stochastic local classical theory
introduced above satisfying local causality and Markovity. Then for any pair
(G(V),V(V)) associated to any V € K™ the Causal Markov Condition holds.

Proof. First we prove Causal Markov Condition for non-relatives which follows
from the theory being locally causal. Let V' € K™ and let V™(¢,4) and V™ (s, j)
be two minimal double cones in V such that ¢ < j. Suppose that V™(¢,4) and
V™(s,7) are spatially separated (non-relatives), that is |j — | > |s — ¢t|. Without
loss of generality we also can assume that ¢t = % and s > t, as depicted in Fig.
4.15. We are to show that the Causal Markov Condition (5.1) holds for X = 4; and
Y = j, in the Bayesian network (G(V),V(V)) associated to V.

First, observe the parents of the variable i; are (i — 3), ¢ and (i + 1). Thus,

2
the Causal Markov Condition (5.1) reads as follows:
1 1 1 1
= Diie 55 = (il - D+ X 44
(- i+ i) =p (0] - i+ ) (4.45)

or equivalently

p (ms (i — 3)ili + %)) —p <i1

1

. o1
(1 — 5)2(1 + 5)) (4.46)

=i+ ) o (i
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Figure 4.15: Causal Markov Condition follows from Bell’s local causality
relative to the parents.

Or in other words, the atomic events (i—1)i(i+3) screen off the correlation between

i1 and js. But (4.46) does hold, since from (4.35)-(4.37) it follows that

D (il

o1, 1
(i — §>Z(Z + 5)) = {péil,(i—é)i(iﬁ-;) +(1- p>5—i1,(i—;)i(i+;)] (4.47)

A PR SN |
p <Js (i =5l + 5)) = > {qm%us+{j}>...<j+s{j}>
(i—3), . (G+s+{i+3})
+(1 - qm)(sjm(jSJr{j})»»»(jJrS{j})]p(i—%)i(i-ﬁ-%)(j—s+{j})...(j+£4'%§9
. 11
pliags|(i =i+ 5) ) = POy i hyiird) T (1= PYiy - by | X

DR S
(i=3 )y (G+s+{i+3})

+(1- qm)5—js,<j—s+{j}>...<j+s—{j}>]p(i—%>i<i+%)(j—s+{j})...<j+£4-f%?9

Next we prove Causal Markov Condition for ancestors which follows from the
theory being Markov. Let again V € K™ and let V™(¢,4) and V™ (s,j) be two
minimal double cones in V' such that V™ (s, 7) is in the causal past (is an ancestor)
of V™(t,i), that is [j — i| < |s — t|. Again, we can assume that ¢ = 1 and s > ¢, as
depicted in Fig. 4.16. To prove (4.45) just observe that both sides equal to

POiy (= i+ ) T (L= PO, -1yt 1)

This completes the proof. m
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Figure 4.16: Causal Markov Condition follows from Markovity relative to
the parents.

Thus, the Causal Markov Condition is a special case of Bell’s local causality and
Markovity in the stochastic local classical theory {N(V),V € K™}, namely when
Ve is a special spacetime region: the union of the three parental minimal double
cones, that is minimal double cones adjacent to a given minimal double cone from
below. We stress again that Causal Markov Condition is a composition of two
screening-off conditions: one for the ancestors and the other for the non-relatives.
The first is the consequence of Markovity, the second is the consequence of local
causality.

Now, we go over to our inverse claim, namely that Bell’s local causality /Markovity
are consequences of the Causal Markov Condition, since the set of random variables
localized in a region V¢ satisfying Requirements (i)-(iii)/(iii’) is d-separating. Here
we do not prove this claim generally, but only illustrate the connection of Require-
ments (i)-(iii) in the definition of local causality to d-separation on our previous
two examples.

FEzxample 1. Consider the smallest region V' € K™ in our Example 1 (in Section 4)
containing the superluminally correlating events i; and ji” with j =i+2€ N+ 1
and a region V¢ satisfying Requirements (i)-(iii) in the definition of local causality.
(See Fig. 4.17.)

Now, consider the Bayesian network (Q(V),V(V)) associated to this V. The
causal graph of the network is illustrated in Fig. 4.18. Let the variables be X = iy,
Y = j; and the subset Z be defined as:

z:{u—nﬂ—%yaa+éxw4@

In other words, Z contains the random variables associated to the minimal double
cones of V.
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Figure 4.18: A d-separating scenario.

Now, Z d-separates i1 and j; in G(V'), since for every path P connecting i; and
j1 in G(V) there is a non-collider in Z, namely, (i + 1). Therefore, 7; and j; are
probabilistically independent conditional upon any atomic event

(i —1)*( — %)iii(i + %)i(i +1)*
This fact is the Bayesian network analogon of the situation illustrated in Fig. 8.16
where V¢ is such that there is no minimal double cone above Vi in the intersection
of the causal past of the correlating events. As said before, this is due to the fact that
Ve satisfies Requirement (iii) in the definition of local causality. If Requirement (iii)
does not fulfil, region Vi turns into d-connecting, as is shown in the next example.

Ezample 2. Consider the smallest region V' € K™ in our Example 2 containing the
superluminally correlating events i and j;” with j =i+2 € NJr% and a region V¢
still in the causal past of i5 but not satisfying Requirement (iii). (See Fig. 4.19.)

The causal graph G of the network is illustrated in Fig. 4.20. Let the variables
be X =15, Y = js and let

2= {(i= D= D= i+ G+ 0.6+ ) =G - )

again a subset containing the random variables associated to the minimal double
cones within Vg.
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j j+1 j+2

Figure 4.20: A d-connecting scenario.

Now, Z does not d-separate is and jo in G, since the path

Pim {ina i+ (4 DG = oo

(denoted by a broken line in Fig. 4.20) connecting is and js in G(V') contains only
non-colliders which are outside Z. Therefore, the probabilistic independence of iy
and j; conditional upon the atomic events

N T S T +0 . Sk
-z -1 _Z Z 1 2
(= 505 = 15— 555G+ )5+ 1)+ )
is not ensured by the Causal Markov Condition (and if the graph is faithful, it is even
excluded). This fact is the Bayesian network analogon of the situation illustrated
in Fig. 8.17 where V¢ does not satisfy Requirement (iii) in the definition of local
causality.

These examples point in the same direction: the Causal Markov Condition and
the d-separation together ensure that Bell’s local causality will hold for the atomic

98



dc_1495 17

projections localized in a region satisfying Requirements (i)-(iii). Moreover, they
also show that Requirements (iii) is a necessary condition.

4.6 Conclusions

In the paper I was arguing, based on a simple stochastic local classical model, that
Bell’s local causality, read in an appropriate way, is a Causal Markov Condition. I
have not though provided a general proof. This would amount to solve the following

Open problem. Let {NV(V),V € K} be a discrete local physical theory, discrete
in the sense that every V € KC contains only a finite number of elements of I
and the local von Neumann algebras V' (V) are finite. Construct the Bayesian
network (G(V),V(V)) associated to a region V in K. Prove (or falsify) that
{N(V),V € K} is Markov and locally causal in Bell’s sense iff (G(V),V(V))
fulfils the Causal Markov Condition for every V € K.

Acknowledgements. This work has been supported by the Hungarian Scientific
Research Fund OTKA K-100715.
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Chapter 5

Bell’s local causality 1s a
d-separation criterion

This paper aims to motivate Bell’s notion of local causality by means of Bayesian
networks. In alocally causal theory any superluminal correlation should be screened
off by atomic events localized in any so-called shielder-off region in the past of one
of the correlating events. In a Bayesian network any correlation between non-
descendant random variables are screened off by any so-called d-separating set of
variables. We will argue that the shielder-off regions in the definition of local causal-
ity conform in a well defined sense to the d-separating sets in Bayesian networks.

5.1 Introduction

John Bell’s notion of local causality is one of the central notions in the foundations
of relativistic quantum physics. Bell himself has returned to the notion of local
causality from time to time providing a more and more refined formulation for it.
The final formulation stems from Bell’s posthumously published paper “La nouvelle
cuisine.” It reads as follows:!

A theory will be said to be locally causal if the probabilities attached
to values of local beables in a space-time region V4 are unaltered by
specification of values of local beables in a space-like separated region
Vs, when what happens in the backward light cone of V4 is already
sufficiently specified, for example by a full specification of local beables
in a space-time region V. (Bell, 1990/2004, p. 239-240)

The figure Bell is attaching to his formulation of local causality is reproduced in
Fig. 5.1 with Bell’s original caption. In a rough translation, a theory is locally
causal if any superluminal correlation can be screened-off by a “full specification of
local beables in a space-time region” in the past of one of the correlating events.

!For the sake of uniformity we slightly changed Bell’s notation and figure.
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Ve

Figure 5.1: Full specification of what happens in Vo makes events in Vg
irrelevant for predictions about V4 in a locally causal theory.

The terms in quotation marks, however, need clarification. What are “local
beables”” What is “full specification” and why is it important? Which are those re-
gions in spacetime which, if fully specified, render superluminally correlating events
probabilistically independent? The first two questions have attracted much inter-
est among philosophers of science. As Bell puts it, “beables of the theory are those
entities in it which are, at least tentatively, to be taken seriously, as corresponding
to something real” (Bell, 1990/2004, p. 234). Furthermore, “it is important that
events in Vi be specified completely. Otherwise the traces in region Vp of causes
of events in V4 could well supplement whatever else was being used for calculating
probabilities about V4" (Bell, 1990/2004, p. 240).

The third question, however, concerning the localization of the screener-off
regions has gained much less attention in the literature. How to characterize the
regions which region V¢ in Fig. 5.1 is an example of? Bell’s answer is instructive
but brief: “It is important that region Vo completely shields off from V4 the overlap
of the backward light cones of V4 and Vg.” (Bell, 1990/2004, p. 240) But why to
shield off the common past of the correlating events? Why the region Vi cannot
be in the remote past of V4 as for example in Figure 5.27 Well, intuition dictates

Va VB

Ve

Figure 5.2: A not completely shielding-off region V.
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that in this latter case some event might occur above the shielder-off region but
still within the common past establishing a correlation between events in V4 and
V. This intuition is correct. The aim of this paper, however, is to provide a more
precise explanation for the localization of the shielder-off regions in spacetime. This
explanation will consists in drawing a parallel between local physical theories and
Bayesian networks. It will turn out that the shielder-off regions in the definition of
local causality play an analogous role to the so-called d-separating sets of random
variables in Bayesian networks.

There is a renewed interest in Bell’s notion of local causality (Norsen, 2009, 2011;
Maudlin 2014), its relation to separability (Henson, 2013b); the role of full speci-
fication in local causality (Seevinck and Uffink, 2011; Hofer-Szabd 2015a); its role
in relativistic causality (Butterfield 2007; Earman and Valente, 2014; Rédei 2014);
its status as a local causality principle (Henson, 2005; Rédei and San Pedro, 2012;
Henson 2013a). A similar closely related topic, the Common Cause Principle is
also given much attention (Rédei 1997; Rédei and Summers 2002; Hofer-Szab6 and
Vecsernyés 2012a, 2013a). On the other hand, there is also an intensive discussion
on the applicability of the Causal Markov Condition in the EPR scenario (Gly-
mour, 2006; Suirez and Iniaki, 2011; Hausman and Woodward, 1999; Suarez, 2013;
Hofer-Szabo, Rédei and Szabd, 2013). Despite the rich and growing literature on
the topic I am unaware of any work relating Bayesian networks and especially d-
separation directly to local causality. This paper intends to fill this gap. For a
precursor of this paper investigating Causal Markov Condition in a specific local
physical theory see (Hofer-Szabo, 2015b). For a comprehensive formally rigorous
investigation of the relation of Bell’s local causality to the Common Cause Principle
and other relativistic locality concepts see (Hofer-Szab6 and Vecsernyés, 2015); for
a more philosopher-friendly version see (Hofer-Szab6 and Vecsernyés, 2016).

In the paper we will proceed as follows. In Section 2 we introduce the basics of
the theory of Bayesian networks and the notion of d-separation and m-separation.
In Section 3 we define the notion of a local physical theory and formulate Bell’s
notion of local causality within this framework. We prove our main claim in Section
4 and conclude in Section 5.

5.2 Bayesian networks and d-separation

A Bayesian network (Pearl, 2000; Glymour, Scheines and Spirtes, 2000) is a pair
(G,V) where G is a directed acyclic graph and V is a set of random variables on
a classical probability space (X,X,p) such that the elements A, B... of V are
represented by the vertices of G and the arrows (directed edges) A — B on the
graph represent that A is causally relevant for B. Two vertices are called adjacent
if they are connected by an arrow. For a given A € V, the set of vertices that
have directed edges in A is called the parents of A, denoted by Par(A); the set of
vertices from which a directed paths is leading to A is called the ancestors of A,
denoted by Anc(A); and finally the set of vertices that are endpoints of a directed
paths from A is called the descendants of A, denoted by Des(A). For a set C of
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vertices Par(C), Anc(C) and Des(C) are defined similarly.
The set V is said to satisfy the Causal Markov Condition relative to the graph
G if for any A € V and any B ¢ Des(A) the following is true:

p(A| Par(A) AB) = p(A|Par(A)) (5.1)
or equivalently
p(AAB|Par(A)) = p(A|Par(A))p(B|Par(A)) (5.2)

That is conditioning on its parents any random variable will be probabilistically
independent from any of its non-descendant. Non-descendants can be of two types:
either ancestors or collaterals (non-descendants and non-ancestors). As we will see,
being independent of collaterals is what relates the Causal Markov Condition to
Bell’s local causality.

Causal Markov Condition establishes a special conditional independence rela-
tion between some random variables of V. But there are many other conditional
independences. In a faithful Bayesian network these other conditional indepen-
dences are all implied by the Causal Markov Condition by means of the so-called
d-separation criterion. Let P be a path in G, that is a sequence of adjacent vertices.
A variable E on P is a collider if there are arrows to F from both its neighbors on
P (D — E + F). Now, let C be a set of vertices and let A and B two different
vertices not in C. The vertices A and B are said to be d-connected by C in G iff
there exists a path P between A and B such that every non-collider on P is not in
C and every collider is in Anc(C). A and B are said to be d-separated by C in G, iff
they are not d-connected by C in G.

The intuition behind d-separation is the following. A vertex E on a path (not at
the endpoints) can be either a collider (D — E <+ F'), an intermediary cause (D —
E — F) or a common cause (D <+ E — F). The idea here is that only intermediary
and common causes (together called non-colliders) can transmit causal dependence
and hence establish probabilistic dependence. This dependence can be blocked by
conditioning on the non-collider. Colliders behave just the opposite way. They
represent two events causing a common effect. These two causes are causally and
probabilistically independent, but become dependent upon conditioning on their
common effect. Moreover, they also become dependent upon conditioning on any
of the descendants of the effect. Putting these together, the causal dependence on
a path P connecting two vertices is blocked by a set C if either there is at least one
non-collider on P which is in C or there is at least one collider £ on P such that
either F or a descendant of E is not in C. The two vertices are d-separated by C if
causal dependence is blocked on every path connecting them.

As an example for d-connection and d-separation consider the causal graph in
Fig. 5.3. (The arrows are directed to up, left up and right up.) Let A be the left
“peak” and B the right “peak” in the graph and let C, C' and C” be the sets shown
in the figure containing 3, 5 and 7 vertices, respectively. Then A and B are d-
separated by C since the parents are always d-separating due to the Causal Markov
Condition. A and B are d-separated also by C’ since for every path connecting the
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Figure 5.3: A and B are d-separated by C and C’ but d-connected by C”.

peaks there is a non-collider in C'. However, A and B are d-connected by C” since
there is a path (denoted by a broken line in Fig. 5.3) connecting the peaks which
contains only non-colliders outside C”. Consequently, the following probabilistic
relations hold:

pP(AANBIC) = p(A[C)p(B|C) (5.3)
P(ANBIC) = p(A|C)p(BIC) :
p(ANBIC") # p(A|C")p(B[C") (5.5)

Looking at in Fig. 5.3, what stands out immediately is that a set which is too
far in the causal past of A cannot d-separate A from a collateral event since there
might be paths connecting them “above” the set. As we will see, a similar moral
will be valid in case of local causality: regions with are too far in the causal past
of an event cannot screen it off from a spacelike separated event since there might
be events “above” the region which can establish correlation between them.

In analyzing local causality sometimes we need to go beyond directed acyclic graphs.
A graph which may contain both directed (A — B) and bi-directed (A > B) edges
is called mized. The d-separation criterion extended to mixed acyclic graphs is
called m-separation. (Richardson and Spirtes, 2002; Sadeghi and Lauritzen, 2014)
Two vertices A and B are said to be m-connected by C in a mixed acyclic graph G
iff there exists a path P between A and B such that every non-collider on P is not
in C and every collider is in Anc(C). A and B are said to be m-separated by C in
G, iff they are not m-connected by C in G. In a directed acyclic graph m-separation
reduces to d-separation.

An example for a mixed acyclic graph is depicted in Fig. 5.4. Here the bi-
directed edges are represented by dotted lines. Again, let A be the left “peak” and
B the right “peak” in the graph and let C, C’ and C” be the sets shown in the figure
containing 3, 5 and 7 vertices, respectively. Then A and B are m-separated by
C but m-connected by both C’ and C”. The connecting path is the shortest path
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Figure 5.4: A and B are m-separated by C but m-connected by both C’ and
c".

connecting A and B.

Now, let us connect the terminology of Bayesian networks to that of standard
physics. Before doing that note that probability is commonly interpreted in Bayesian-
ism subjectively as partial belief and in physics objectively as long-run relative fre-
quency. This interpretative difference, however, does not undermine the analogy
between local causality and d-separation, since Bayesian networks are well open to
statistical interpretation and, conversely, there is a growing tendency to understand
quantum physics in a subjectivist way.

Let us start with random variables. A random variable is a real-valued Borel-
measurable function on X. Each random variable A € V generates a sub-o-algebra
of ¥ by the inverse image of the Borel sets:

o(A) :={A'(b)|be BR)} (5.6)

Similarly, each set C of n random variables generates a sub-g-algebra of ¥ by the
inverse image of the n-dimensional Borel sets:

o(C) == {(C1,Cy...C) L) | Cs € C, b e B(R™)} (5.7)

From this perspective d-separation tells us which sub-c-algebras are probabilisti-
cally independent conditioned on which other sub-c-algebras of X.

Now, instead of using o-algebras it is more instructive to use a richer structure in
physics, namely von Neumann algebras. Consider the characteristic functions on X
projecting on the elements of X, called events. The set {xs|S € X} of characteristic
functions generates an abelian von Neumann algebra, namely £(X,X,p), the
space of essentially bounded complex-valued functions on X. Starting from the
characteristic functions of the sub-o-algebra o(A), one arrives at a subalgebra of
L>*(X,3,p). Denote this abelian von Neumann algebra determined by the random
variable A by N4. Similarly, denote by A the von Neumann algebra determined
by a set C of random variables.
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Instead of using a probability measure on ¥ or on a sub-c-algebra o(A), one
can also use a state on the corresponding von Neumann algebra Na. A state ¢ is a
positive linear functional of norm 1 on a von Neumann algebra. States on N4 and
probability measures on o(A) mutually determine one another: a state restricted to
the characteristic functions in N4 is a probability measure on o(A); and vice versa,
integrating elements of N4 according to a probability measure on o(A) yields a
state on V4.

Therefore, a conditional independence between random variables A and B given
the set C

p(ANB[C) =p(A|C)p(B|C) (5.8)
can be rewritten as follows: for any projection A € N4, B € N and C € N:

HANBAC)  p(ANC)p(BANC) (5.9)
P(C) P(C)  9(C) '

Although in this paper we stay at the classical level, the theory of von Neumann

algebras is wide enough to incorporate also quantum physics. In this case the von

Neumann algebras are nonabelian. The events, just like in the classical case, are

represented by projections of the von Neumann algebras. In the quantum case

conditional independence between the projection A € Ny and B € Np given
C € Ng¢ reads as follows:

¢(CABC) _ $(CAC) ¢(CBC) (5.10)
HC) T A0 el0) |

which in the classical case reduces to (5.9).

The last point in converting the formalism of Bayesian networks into physics,
is to swap the causal graph for spacetime. We can then replace the causal relations
embodied in the causal graph by spatiotemporal relations of a given spacetime.
Instead of saying that a random variable is the ancestor of another variable we
will then say that an event is in the past of the other. But to do so first we need
to localize events in spacetime that is we need to have an association of algebras
of events to spacetime regions. Such a principled association is offered by the
formalism of algebraic quantum field theory. Hence, in the next section we will
introduce some elements of algebraic quantum field theory which is indispensable
for our purpose which is to come up with a mathematically precise definition of
Bell’s notion of local causality.

5.3 Bell’s local causality in a local physical theory

Let M be a globally hyperbolic spacetime and let L be a covering collection of
bounded, globally hyperbolic subspacetime regions of M such that (I,C) is a
directed poset under inclusion C. A local physical theory is a net {A(V),V €
K} associating algebras of events to spacetime regions which satisfies isotony and
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microcausality defined as follows (Haag, 1992; Halvorson 2007; Hofer-Szabé and
Vecsernyés 2015, 2016):

Isotony. The net of local observables is given by the isotone map K > V +— A(V)
to unital C*-algebras, that is V3 C V5 implies that A(V7) is a unital C*-subalgebra
of A(V3). The quasilocal algebra A is defined to be the inductive limit C*-algebra
of the net {A(V),V € K} of local C*-algebras.

Microcausality: A(V')Y N A 2 A(V),V € K, where primes denote spacelike com-
plement and algebra commutant, respectively.

If the quasilocal algebra A of the local physical theory is commutative, we speak
about a local classical theory; if A is noncommutative, we speak about a local
quantum theory. For local classical theories microcausality fulfills trivially.

Given a state ¢ on the quasilocal algebra A, the corresponding GNS represen-
tation my: A — B(H,) converts the net of C*-algebras into a net of C*-subalgebras
of B(Hg). Closing these subalgebras in the weak topology one arrives at a net of
local von Neumann observable algebras: N (V) = m4(A(V))",V € K. The net
{N(V),V € K} of local von Neumann algebras also obeys isotony and microcausal-
ity, hence we can also refer to it as a local physical theory.

Given a local physical theory, we can turn now to the definition of Bell’s notion
of local causality. Recall that according to Bell a theory is locally causal if any
superluminal correlation is screened-off by a “full specification of local beables in a
space-time region V" as shown in Fig. 5.1. Asindicated in the Introduction we need
to address three questions. What are “local beables”™ What is “full specification”?
Which are the shielder-off regions? The brief answer to the first two questions is
the following. In a local physical theory a “local beable” in a region V is an element
of the local von Neumann algebra N(V). A “full specification” of local beables
in region V is an atomic element of the local von Neumann algebra A (V). In
this paper we do not comment on these two answers. For a more thoroughgoing
discussion on why we think this to be the correct translation of Bell’s intuition into
our framework see (Hofer-Szab6 and Vecsernyés, 2015, 2016).

To the third question, which is the topic of our paper, the answer is this: a
shielder-off region Vi is a region in the causal past of V4 which can block any
causal influence on V4 arriving from the common past of V4 and Vz. But there
is an ambiguity in this answer. Bell’s Fig. 5.1 suggests that a shielder-off region
should not intersect with the common past. Whereas the requirement of simply
blocking causal influences from the past allows for also regions depicted in Fig. 5.5
intersecting with the common past. This means that one can define a shielder-off
region of V4 relative to Vg either as a region Vi satisfying:

Ly: Ve CJ_(Va) (Ve is in the causal past of Vy),

Ly:Vy C V4 (Ve is wide enough such that its causal shadow contains
Va),

L? Vo .V} (Ve is spacelike separated from Vp)
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Figure 5.5: A completely shielding-off region V¢ intersecting with the com-
mon past of V4 and Vp.

in tune with Bell’s Fig. 5.1; or one can replace L? by the weaker requirement

LS : J_(Ve) D J_(Va) N J_ (V) (The causal past of Vi contains the
common past of V4 and Vp)

allowing for regions such as in Fig. 5.2. It turns out that (with respect to the Bell
inequalities, see (Hofer-Szabo and Vecsernyés, 2012b, 2013b)) it is more appropriate
to demand L3Q in case of a local quantum theory and L§ in case of a local classical
theory (hence the superscripts). But note that as the covering regions become
infinitely thin shrinking down to a Cauchy surface, requirement L§ coincides with
requirement L3Q.

With all these considerations in mind Bell’s notion of local causality in the
framework of a local physical theory will be the following:

Definition 4. A local physical theory represented by a net {N'(V),V € K} of von
Neumann algebras is called locally causal (in Bell’s sense), if

1. for any pair A € N(V4) and B € N(Vg) of events represented by projections
in spacelike separated regions Va4, Vg € K;

2. for every locally normal and faithful state ¢ establishing a correlation ¢(AB) #
¢(A)p(B) between A and B;

3. for any spacetime shielder-off region Vi defined by requirements Li, Lo and
LQ/LC.
3 /435
4. for any event C' in the set C of atomic events in A(V¢)

the following screening-off condition holds:

$(CABC)  ¢(CAC) ¢(CBC)

= 5.11
A0 ) HO) >4y

which for a local classical theory is equivalent to
pP(ANB|C) =p(A[C)p(BIC) (5.12)
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In short, a local physical theory is locally causal in Bell’s sense if every superluminal
correlation is screened off by all atomic events in all shielder-off region. (For many
delicate questions such as what if the algebras are non-atomic, how this definition
of local causality relates to the Common Cause Principle and the Bell inequalities
see again (Hofer-Szab6 and Vecsernyés, 2015, 2016).)

The question left is, however: why shielder-off regions are characterized by
requirements L1, Lo and L?/Lg? To this we turn in the next Section.

5.4 Shielder-off regions are d-separating

The point we are going to make in this Section is that shielder-off regions in the
definition of local causality conform to d-separating sets in directed acyclic graphs
and to m-separating sets in mixed acyclic graphs.

First we show how a local physical theory gives rise to a causal graph. Consider
a local classical theory {N(V),V € K} where the covering collection is induced by
a partition T of a spacetime M. By partition we mean a countable set of disjoint,
bounded spacetime regions such that their union is M. Whether we demand global
hyperbolicity from the elements of the partition will turn out to play an important
role in the type of the graph we can construct. For some specific globally hyperbolic
coverings we will get directed acyclic graphs, otherwise only a mixed graph.

Let the vertices of the G be the regions in the partition, {V € T}. Denote the
vertex corresponding to the region V € 7 by Ay and the region corresponding to
a vertex A by V4. Similarly, denote the set of vertices corresponding to the region
V € K by Cy and the region corresponding to a set of vertices C by V¢. Define the
ancestors of a vertex B as:

Anc(B) :={A€V|A#B, VanJ_(Vg) # 0}

and the parents of B, Par(B), as those elements in Anc(B) for which there is a
causal curve connecting V4 and Vg directly (that is without entering a third region
between them). Now, let there be an arrow A — B between vertex A and B in T
if and only if A € Par(B). It will turn out that the type of the graph we obtain
is crucially depending on the partition 7 of the spacetime. Let us see the different
cases.

If M is the 141 dimensional Minkowski spacetime, then it can be covered by
double cones of equal size. (See Fig. 5.6.) Double cones are globally hyperbolic.
(For the details of this example see (Hofer-Szabd, 2015b).) The causal graph cor-
responding to this covering emerges simply by connecting the midpoints of those
adjacent double cones which lie in the causal past of one another. What we get is
just the directed acyclic graph depicted in Fig. 5.3 in Section 2.

Fig. 5.6 is a kind of “superposition” of a spacetime diagram and a Bayesian
network. Consider for example region V. Reading Fig. 5.6 as a spacetime diagram,
one sees that Ve is a shielder-off region (similar to the one depicted in Fig. 5.5).
Reading Fig. 5.6 as a causal graph, one observes that the set C’ corresponding to
Ve (depicted in Fig. 5.3) is a d-separating set. Similarly, one can check that the
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o

Figure 5.6: The directed acyclic graph generated by double cones of equal
size covering the 1+1 dimensional Minkowski spacetime.

region associated to the d-separating set C in Fig. 5.3 is a shielder-off region and
the region associated to the d-connecting set C” is not a shielder-off region.

A general spacetime M cannot be partitioned to globally hyperbolic regions,
let alone to double cones. Still one can construct the causal graph corresponding to
a partition 7. In Fig. 5.7 we illustrate such a construction where a 141 dimensional

Figure 5.7: The mixed acyclic graph generated by boxes of equals size cov-
ering of the 141 dimensional Minkowski spacetime.

Minkowski spacetime is covered by boxes of equals size. (This example, in contrast
to the previous one, can be generalized for a 34 1-dimensional Minkowski spacetime
covered by 3+ 1-dimensional boxes of equals size.) The causal graph emerging from
this construction is not a directed acyclic graph since it contains bi-directed edges:
spacelike neighboring boxes will be spouses. What we get is a mixed acyclic graph
depicted in Fig. 5.4. Again, confronting Fig. 5.4 and Fig. 5.7 one can see that the
set C’ is not an m-separating set and at the same time the corresponding region
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Ver is not a shielder-off region of V4 relative to Vg.

The exact characterization of the graphs emerging from a different coverings of a
given spacetime is a subtle question which we do not go into here. Instead we turn
now to the construction of random variables. Let N (V') be the local von Neumann
algebra associated to the spacetime region V' € 7. Denote by o(V) the sigma-
algebra of the projections of N'(V). Let the random variable (also denoted by) Ay
associated to V be any Borel-measurable function from (V') to B(R). Any state ¢
will then define a probability measure p on o(V') for any V' € T and, due to isotony
of the net, also for any V which is a finite union of regions in 7. (Note that o(M)
may not be a sigma-algebra since the quasilocal algebra A is not necessarily a von
Neumann algebra, so it may not contain projections.)

In sum, any finite set of regions of a local classical theory {N(V),V € K}
generated by a globally hyperbolic partition of M defines a Bayesian network (G, V).
If global hyperbolicity is not required, then G is not a directed acyclic but only a
mixed graph.

Now, we state and prove the main claim of the paper.

Proposition 5. Let G be a directed /mixed acyclic graph constructed from a local
classical theory {N(V),V € K} where K is generated by a partition 7 of M.
Suppose that {NV(V),V € K} is locally causal in the sense of Definition 4. Then
for any shielder-off region V defined by L;, Ly and LY, the corresponding set Cy
is d-separating/m-separating.

Proof. Let A and B two collateral vertices in G corresponding to two spacelike
separated regions V4 and Vg, respectively (Va,Vp € T). Call a set C of random
variables a shielder-off set (for A relative to B), if V¢ is a shielder-off region (for V4
relative to V). Shielder-off sets block every directed path from Anc(A) A Anc(B),
the set of common ancestors of A and B, to A (that is every directed path has to
pass through C).

We show that shielder-off sets are d-separating/m-separating. Let C be a
shielder-off set for A relative to B. We have to show that C blocks every path con-
necting A and B. First consider those paths that contain no colliders. These paths
need to pass through the set of common ancestors of A and B, Anc(A) A Anc(B).
Hence, the shielder-off set C blocks them. So there remain only those paths to be
blocked which contain at least one collider. It is easy to see that these latter paths
need to contain at least one collider E such that E ¢ Anc(A). But then neither £
nor any descendant of E is in C, hence C blocks also these paths. mm

The converse of Proposition 13 is not true: d-separating sets are not necessarily
shielder-off sets. Tian, Paz, and Pearl (1998) list algorithms to find the so-called
minimal d-separating sets for two random variables A and B, that is sets that
are d-separating but taking away any vertex from the set they will cease to be
d-separating. It turns out that any minimal d-separating set is sitting in the union
of the ancestors of A and B (including also A and B), Anc(A) V Anc(B) V AV B.
However, a minimal d-separating set need not satisfy relations Li, Lo and L3C. For

112



dc_1495 17

example the sets D, D’ and D” in Fig. 5.8 are all minimal d-separating sets but not
shielder-off regions for A relative to B.

/1N /i\,
NP\
NN

4\/
AN

Figure 5.8: Minimal d-separating but not shielder-off regions.

At any event, shielder-off regions are d-separating, and this was to be shown in
this paper.

5.5 Conclusions

The aim of the paper was to motivate Bell’s definition of local causality by means
of Bayesian networks. To this aim, first we constructed a causal graph from the
covering collection of a spacetime. In certain cases the graph was a directed acyclic
graph, in other cases only a mixed acyclic graph. Similarly, we have associated
random variables to the local algebras of a local physical theory. By this move
shielder-off regions turned out be specific d-separation (m-separating) sets on the
causal graph. Hence, Bell’s definition of local causality requiring that spacelike
separated events should be screened-off by events in a shielder-off region turned
out to be a d-separation criterion.
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Chapter 6

Local causality and complete
specification: a reply to
Seevinck and Uffink

A physical theory is called locally causal if any correlation between spacelike sepa-
rated events is screened-off by local beables completely specifying an appropriately
chosen region in the past of the events. In this paper I will define local causality
in a clear-cut framework, called local physical theory which integrates both proba-
bilistic and spatiotemporal entities. Then I will argue that, contrary to the claim of
Seevinck and Uffink (2011), complete specification does not stand in contradiction
to the free variable (no-conspiracy) assumption.

6.1 Introduction

Local causality is the idea that causal processes propagate though space continu-
ously and with velocity less than the speed of light. John Stewart Bell formulates
this intuition in a 1988 interview as follows:

“[Local causality] is the idea that what you do has consequences only
nearby, and that any consequences at a distant place will be weaker and
will arrive there only after the time permitted by the velocity of light.
Locality [= local causality| is the idea that consequences propagate
continuously, that they don’t leap over distances.” (Mann and Crease,
1988)

Bell has returned to this intuitive idea of local causality from time to time and
provided a more and more elaborate formulation of it. First he addressed the notion
of local causality in his “The theory of local beables” delivered at the Sixth GIFT
Seminar in 1975; later in a footnote added to his 1986 paper “EPR, correlations and
EPW distributions” intending to clean up the first version; and finally in the most
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elaborate form in his “La nouvelle cuisine” posthumously published in 1990. In this
latter paper local causality obtains the following formulation:!

“A theory will be said to be locally causal if the probabilities attached
to values of local beables in a space-time region V4 are unaltered by
specification of values of local beables in a space-like separated region
Vi, when what happens in the backward light cone of V4 is already
sufficiently specified, for example by a full specification of local beables
in a space-time region Vi.” (Bell, 1990/2004, p. 239-240)

We reproduce the figure Bell is attaching to his formulation in Fig. 6.1. (The
captation is Bell’s original.)

X

Figure 6.1: Full specification of what happens in V¢ makes events in Vg
irrelevant for predictions about V4 in a locally causal theory.

Some brief remarks concerning Bell’s terminology are in place here (for a de-
tailed analysis see (Norsen 2009, 2011)):

(i) The term “beable” in the quote is Bell’s own neologism and is contrasted to
the term “observable” used in quantum theory. “The beables of the theory
are those entities in it which are, at least tentatively, to be taken seriously,
as corresponding to something real” (Bell, 1990/2004, p. 234).

(ii) Beables are to be local: “Local beables are those which are definitely asso-
ciated with particular space-time regions. The electric and magnetic fields
of classical electromagnetism, E(t,2) and B(t, ) are again examples.” (p.
234).

(iii) Local beables in region Vi are to be “fully specified” in order to block causal
influences arriving at V4 from the common past of V4 and Vp.

This latter point is of central importance and is also stressed by Bell:2

!For the sake of conformity with the rest of the paper I slightly changed Bell’s notation
and figure.

2But, to be fair, see (Bell 1980/2004, p. 106), (Bell 1980/2004, p. 152) and the above
(Bell 1990/2004, p. 234) for Bell’s hesitation on the issue.
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“It is important that region Vo completely shields off from V4 the
overlap of the backward light cones of V4 and Vp. And it is important
that events in Vi be specified completely. Otherwise the traces in
region Vg of causes of events in V4 could well supplement whatever else
was being used for calculating probabilities about V4. The hypothesis
is that any such information about Vg becomes redundant when V¢ is
specified completely.” (Bell, 1990/2004, p. 240)

In a recent paper Michael Seevinck and Jos Uffink (2011) have questioned the
necessary role of complete specification in the definition of local causality and rec-
ommended sufficient specification instead. They argue that complete specification
is too strong: it contradicts to the so-called no-conspiracy (free variable) condi-
tion which requires that the common cause of the correlation be probabilistically
independent of the choice of the measurement settings.

I do not see this contradiction and my aim in this paper is to articulate my point.
I will proceed as follows. The logical schema of Bell’s definition of local causality is
the following: if events are localized in the spacetime in such-and-such a way, then
these events are to satisfy such-and-such probabilistic independencies. This schema,
is highly intuitive and easily applicable in the physical praxis, however, in order
to account for these inferences from spatiotemporal to probabilistic relations in a
mathematically transparent way, one needs to have a framework integrating both
spatiotemporal and also probabilistic entities. Only after having such a common
framework can one define Bell’s notion of local causality in a clear-cut way. Thus,
in Section 2 first this framework, called local physical theory, will be introduced and
then Bell’s notion of local causality will be formulated within this framework. In
Section 3 the relation of local causality to the Bell inequalities will be explicated.
The main section is Section 4; here it will be argued that there is no tension between
complete specification and no-conspiracy. I conclude in Section 5.

6.2 Bell’s local causality in a local physical theory

In developing the notion of a local physical theory one is lead by the following
intuitions. A local physical theory is to describe “beables,” let them be classical or
nonclassical; it is to account for the logical combination of these events; these events
should be capable of bearing a probabilistic interpretation; the theory is to provide
some way to localize these event in the spacetime, and is also to provide some
physically well-motivated principles guiding the association of spacetime regions to
physical events; the theory is to guarantee that the symmetries of the spacetime
are in tune with the symmetries of the events. (For the details see (Hofer-Szabo
and Vecsernyés, 2015 a,b).) All these preliminary intuitions are captured in the
following definition (Haag, 1992):

Definition 5. A Pi-covariant local physical theory is a net { A(V),V € K} associ-

ating algebras of events to spacetime regions which satisfies isotony, microcausality
and covariance defined as follows:
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1. Isotony. Let M be a globally hyperbolic spacetime and let K be a covering
collection of bounded, globally hyperbolic subspacetime regions of M such
that (K, C) is a directed poset under inclusion C. The net of local observables
is given by the isotone map K 3 V — A(V) to unital C*-algebras, that
is V1 C V, implies that A(V;) is a unital C*-subalgebra of A(V2). The
quasilocal algebra A is defined to be the inductive limit C*-algebra of the net
{A(V),V € K} of local C*-algebras.

2. Microcausality (also called as Finstein causality) is the requirement that
AV'Y N AD A(V),V € K, where primes denote spacelike complement and
algebra commutant, respectively.

3. Spacetime covariance. Let P be the subgroup of the group P of geometric
symmetries of M leaving the collection K invariant. A group homomorphism
a: Px — Aut A is given such that the automorphisms oy, g € Px of A act
covariantly on the observable net: ay(A(V)) = A(g-V),V € K.

If the quasilocal algebra A of the local physical theory is commutative, we speak
about a local classical theory, if it is noncommutative, we speak about a local quan-
tum theory. For local classical theories microcausality fulfills trivially.

A state ¢ in a local physical theory is defined as a normalized positive lin-
ear functional on the quasilocal observable algebra A. The corresponding GNS
representation m4: A — B(H4) converts the net of C*-algebras into a net of C*-
subalgebras of B(H,). Closing these subalgebras in the weak topology one arrives
at a net of local von Neumann observable algebras: N (V) := w4 (A(V))",V € K.
Von Neumann algebras are generated by their projections, which are called quan-
tum events since they can be interpreted as 0-1-valued observables. The net
{N(V),V € K} of local von Neumann algebras given above also obeys isotony,
microcausality, and Px-covariance, hence we can also refer to a net {N(V),V € K}
of local von Neumann algebras as a local physical theory.

Now, a local physical theory is locally causal in Bell’s sense if any correlation be-
tween spatially separated events is screened off by “local beables” which are localized
in a “shielding-off” region and which “completely specify” that region. How to trans-
late Bell’s terms of “local beable” and “complete specification” into the language of
a local physical theory?

In a classical field theory beables are characterized by sets of field configurations.
Taking the equivalence classes of those field configurations which have the same field
values on a given spacetime region one can generate local (cylindrical) o-algebras.
Translating o-algebras into the language of abelian von Neumann algebras one
can represent Bell’s notion of “local beables” in the framework of local physical
theories. In a more general way, one can also use the term “local beables” both for
abelian and non-abelian local von Neumann algebras, hence treating local classical
and quantum theories on an equal footing. Translating “local beables” simply as
“elements of a local algebra” naturally brings with it the translation of the term “a
complete specification of beables” as “an atomic event of a local algebra” (Henson,
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2013). To be sure, here it is assumed that the local algebras of the net are atomic,
which is typically not the case, for example, in Poincaré covariant algebraic quantum
field theory. (For the relation between o-algebras and von Neumann algebras and
for a more general definition of local causality see (Hofer-Szabd and Vecsernyés,
2015 a,b).) With these notions in hand now one can formulate Bell’s notion of local
causality in a local physical theory as follows:

Definition 6. A local physical theory represented by a net {N(V),V € K} of von
Neumann algebras is called locally causal (in Bell’s sense), if for any pair A € N'(V4)
and B € N (Vp) of projections supported in spacelike separated regions V4, Vg € K
and for every locally normal and faithful state ¢ establishing a correlation ¢p(AB) #
¢(A)p(B) between A and B, and for any spacetime region V¢ such that

(i) Vo € J-(Va),

(ii) Va C VY,

(i) J-(Va)NJ—(Ve) N (J+(Ve)\ Ve) =0,

(see Fig. 6.2) and for any atomic event Cy, of A(Ve) (k € K), the following holds:

[ Ve /N

Figure 6.2: A region V¢ satisfying Requirements (i)-(iii).

¢(CrABCy) _ ¢(CrACk) ¢(Cr BCk) 6.1)
#(Cr) ?(Ck) #(Ck) '

Remarks:

1. A locally normal state is a normal state on the local von Neumann algebras.
A locally faithful state ¢ means that any projection A € P(N(V)) in the
local von Neumann algebra A/(V) has nonzero expectation value. In case of
local classical theories a locally faithful state ¢ determines uniquely a locally
nonzero probability measure p by p(A) := ¢(A), A € P(M(V)). By means of
this (6.1) can be written in the following ’symmetric’ form:

p(ABI|Cy) = p(A|Ck)p(B|Cy) (6.2)
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which further is equivalent to the ’asymmetric’ screening-off condition:
p(A|BCy) = p(A|Ck) (6.3)
sometimes used in the literature (for example in (Bell, 1975/2004 , p. 54)).

. The role of Requirement (iii) in the definition is to ensure that “V¢ shields off

from V4 the overlap of the backward light cones of V4 and Vg”. A spacetime
region above Vi in the common past of the correlating events (see Fig. 6.3)
namely may contain stochastic events which could establish a correlation

Ve

Figure 6.3: A region V¢ for which Requirement (iii) does not hold.

between A and B in a classical stochastic theory (Norsen, 2011; Seevinck
and Uffink 2011). Requirement (iii) is somewhat weaker than Bell’s original
localization (see Fig. 6.1) which can be formulated as:

(iv) J_(Va)NJ_(VE) N Ve =0

The difference is that Requirement (iii) does, but Requirement (iv) does not
allow for region Vi to penetrate into the 'top part’ of the common past. How-
ever, both requirements coincide, if V¢ ’shrinks down’ to a Cauchy surface.
In local classical theories it suffices to use Requirement (iii).

Finally, note that the question whether a given local classical or quantum theory is
locally causal is a highly nontrivial question depending on such factors as the atom-
icity of the local algebras, the fulfilment of the so-called local primitive causality,?
or whether there exists a causal dynamics in the theory, etc. (For the details see
again (Hofer-Szabo and Vecsernyés, 2015 a,b).)

Next I turn to the relation of Bell’s local causality to the Bell inequalities.

6.3 Local causality and the Bell inequalities

From this section on we restrict ourselves to local classical theories since beables
are standardly taken to be classical entities. Consider a local classical theory rep-

For any globally hyperbolic bounded subspacetime regions V € K, A(V") = A(V).
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resented by a net {N(V),V € K} of local abelian von Neumann algebras. Suppose
that Bell’s local causality holds in this theory. Let V4 and Vg be two spatially
separated regions in M, and Vi a third region (see Fig. 6.4) such that

Figure 6.4: Localization of regions V4, Vp and V.

Ve C J_(VA @] VB) (6.4)
(VauVg) Cc V& (6.5)
T_(Va) M- (Via) 0 (T3 (Ve) \ Vo) = 0 (66)

Divide Ve into six regions V%, V&, VA, VA, VE and VZE, for example as de-
picted in Fig. 6.5. Here the superscripts L, M and R stand for ’left’, 'middle’
and ’right’, representing those parts of Vi which fall into region J_(V4) \ J_(VB),
J_(V4)NJ_(Vp) and J_(Vp)\ J_(V4), respectively. Now, let the various events be

Figure 6.5: Dividing up region V.

localized in these regions as follows. Let A; and B; be measurement outcomes and
a;, b; measurement choices localized in the appropriate regions: A;,a; € A(Va),
Bj,b; € A(Vp). (See Fig. 6.6.) Let, furthermore, CF, C/%, CM, C;M, CE, ClF be
atomic events (minimal projections) in A(VE), A(VE), AVA), A(VAT), AVE)
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Figure 6.6: Localization of the various events.

and A(VC@), respectively, where the indices i, j, k... are taken from appropriate
index sets. Now, the difference between the primed and the unprimed events in V¢
is that the primed events probabilistically depend on the the measurement choices
a; and b;, whereas the unprimed events are probabilistically completely independent
of them:

plaib;CLCHCEY = plas)p(b;)p(CLYP(CP(CE) (6.7)
p(aib;CECY) = pla;)p(b)p(CE)p(CA) (6.8)
(6.9)

p(aib;Cl) = plai)p(b;)p(Cl) (6.10)

Let us call these conditions no-conspiracy conditions.

To sum up, here we assume that any of the left, middle and right region of
Ve, respectively can be decomposed into two subregions such that each of these
subregions contains exclusively either events ’influencing’ the measurement, choices
or events being independent of them. Obviously, only this latter class of events
can be regarded as the common cause of the correlation between the measurement
outcomes; the former events are playing a role in fixing the measurement settings.
As we will see later, this assumption of the decomposability of Vi into siz regions
is too tolerant if our aim is to derive the Bell inequalities. It will turn out that
there are only five regions, the middle region can contain only unprimed events.

Now, local causality of local physical theory represented by a net {N(V),V €
K} implies (among others) the following conditional independencies:

6.11
6.12
6.13
6.14

p(Aia;| Bjb;CECIECMOIMCRCIRY = p(Aja,|CFCIECM OIM)

p(Bbj|CECIECM M CECR) = p(Bb; oM CiMolorr)
plailb;CrCir Ol oM ey = plai|lCy G Chl O
p(bj|CECIECM CMCRCIRY = p(bs|CM M CRCIR)

q

(6.11)
(6.12)
(6.13)
(6.14)

which together with the complete independence of the events CL, Ct, CM CIM,
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R R.
C,' and C; :

p(CECCCMeiCy = p(Chp(C)p(Clp(CRM)p(Cyhp(Cy6.15)
p(Cr el CM ey = p(Cy)p(CM)p(Chl )p(C)p(CyY) (6.16)

. (6.17)

p(CFCT) = p(CHp(C) (6.18)

yield the following screening-off or factorization conditions:

P(AiBjlaib;CLCFCICM RO = p(Aslai O CiFCRl O )p(B, b, Chl CrY C @D
P(AiBjlaib, CECH OV O = p(AilaiCl Ol ClM)p(Bj|b;Col Y G (6.20
p(AiBj|aibjCl/LCn]\z40;zMC¢;R) = p(Ai|aiCz/LCrAfC;zM)p(Bj|banAfC;zMC¢;R) (6.21
P(AiBjlaibjChlCIM) = p(Aila; Gl G )p(By1b,Cpl CIM) (6.22

(For the proof see Appendix A.) These equations show that not only the atomic
events CLC/ECN CIMCRCIR localized in the entire Ve screen off the conditional
correlation

p(AiBjlaib;)  # p(Ailai)p(B;|b;) (6.23)

but one can freely sum up for any of the primed and unprimed events both in the
left and the right region without vitiating the screening-off. In other words, the
non-atomic (coarse-grained) events CLCY C/MCE, CIECY CIMCIE and CY CIM,
respectively localized in appropriate subregions of Vo will all be screener-offs for
the correlation (10.1).* That one can freely sum up for both the primed and the
unprimed events is a consequence of the fact that in the derivation of (6.19)-(6.22)
no-conspiracy (6.7)-(6.10) does not play a role.

However, for events localized in the middle region one cannot sum up! As a
consequence, one cannot get rid of the primed terms C’M in equations (6.19)-(6.22).
So for example it will not be generally true that

p(A;Bjla:b;Ch) = p(Aila;Co)p(B;|b;C) (6.24)

(See Appendix B.) However, if we cannot get rid of the primed terms C'M | we will
not be able to derive the Bell inequalities since in the derivation we need to use
no-conspiracy (6.7)-(6.10) which holds only for the unprimed terms. (See Appendix
C)

This shows that our decomposition of region Vi into siz regions was too liberal.
We have to make one step back and restrict our previous schema to the one depicted
in Fig. 6.7. Outside the common past of the correlating events one can have both
primed and unprimed events that is events influencing the measurement choices and
events being independent of them. However, within the common past there can be

*Note again that the term ’common cause’ is used only for those screener-offs which
are composed of unprimed events.
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Voo / Veu\ o Ver | Ver

Figure 6.7: The most general scenario from which the Bell inequalities can
be derived.

only events which are probabilistically independent of the measurement choices.
Within this schema the Bell inequalities can be derived.

To sum up, given a locally causal local classical theory represented by a net
{N(V),V € K} with regions localized as in Fig. 6.7 and elements in the appro-
priate regions, complete independence (6.15)-(6.18) and no-conspiracy (6.7)-(6.10)
together imply the Bell inequalities.

6.4 Complete versus sufficient specification

Now I turn to the question of ’complete versus sufficient specification’ raised by
Norsen (2009) and unfolded by Seevinck and Uffink (2011). In his illuminating
paper, comparing the notion of ’completeness’ used in Bell’s vs. Jarrett’s writings,
Norsen (2009) raised the following concern:® Since “the past light cones of [the
measurement choices] a and b overlap with the region containing C' — and C by
definition is supposed to contain a complete specification of beables in this region
...one wonders how a and b could possibly not be causally influenced by C (in a
locally causal theory)” (Norsen 2009, p. 283.) Seevinck and Uffink take Norsen’s
point and argue that complete specification is too strong “when formalising the
notion of local causality. It is only needed that the specification is sufficiently
specified, in the relevant sense” (p. 5); and then they go on to develop this relevant
sense in terms of Fisher’s statistical concept of sufficiency.

The argument of Seevinck and Uffink against complete specification is put in
the form of a dilemma:

“C' cannot be expected to be a complete specification of region Vg
because one must allow for the possibility of traces in region Vi of the
causal past of both the settings [measurement choices], and given the

% Again for the sake of consistency I changed the notation of both Norsen (2009) and
Seevinck and Uffink (2011).
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independence of C' and the settings, these traces cannot be included in

C.

An alternative understanding of this point is that one is here faced
with a dilemma. That is, the following two assumptions cannot both
hold: (i) the free variables [no-conspiracy] assumption, and (ii) the
assumption that C is completely specified, i.e., contains the description
of all and every beable in region Vi.” (Seevinck and Uffink, 2011, p.
5)

In brief, the complete specification of region V¢ contradicts to the no-conspiracy
condition since if C' completely specifies region V¢, then it also specifies the measure-
ment choices a and b, and hence C and a, b cannot be probabilistically independent.

I see, however, no contradiction between complete specification and no-conspiracy.
I have a weaker and a stronger claim supporting my point. I start with the weaker
one. The upshot of this weaker claim is that the events which satisfy complete
specification need not be the same as the events which satisfy no-conspiracy.

Complete specification of a spacetime region, as said before, is simply an atomic
event in that region. If our “candidate theory” represented by a net of local algebras
is given, then to every bounded region Vi there is an algebra A(V) associated; and
if the algebra is atomic, the complete specifications that is the atomic events of the
region are also given. Consider region V¢ in Fig. 6.7. The event C{ C/*C ) CRCIE
is a complete specification in Vi, but the unprimed event C},C,,C, and the primed
event C] C;R separately are not. These latter two play different theoretical roles:
No-conspiracy holds for Cy,C,,,Cp, therefore it is interpreted as a (possible) common
cause of the conditional correlation (10.1). For C] C(’IR no-conspiracy does not hold
(and a fortiori neither does for the complete specification CC/*CM CEC!F). Thus
CJC/F has another interpretation: it allows “for the possibility of traces in region
Ve of the causal past of both the settings.” This ’division of labor’ between the
unprimed Cy.C,,Cp and the primed C/C/F, however, is no worry: together they
provide a complete specification of region V& and enable the derivation of the Bell
inequalities as long as the middle region, Vo N V4 N Vp contains no primed term
violating no-conspiracy. In short, in order to derive the Bell inequalities from local
causality, those events which completely specify region Vi need not be the same
events as those satisfying no-conspiracy.

But here is my stronger claim: they can. Namely, there is no contradiction
between complete specification and no-conspiracy even if we require them to hold
for the same events. To see this, simply consider the case when the subregions VC@,
and V(f?, are empty, that is when Vi contains exclusively unprimed elements (see
Fig. 6.8). In this case the event C’,fC,I‘Tff C’f will both completely specify region V¢
and satisfy no-conspiracy. Consequently, the Bell inequalities will follow. More
importantly, this independence between the common causes and the measurement
choices does not trivialize the theory, for example by dissolving the conditional
correlation (10.1) between the measurement outcomes.

The next proposition illustrates this latter point.
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Figure 6.8: No contradiction between complete specification and no-
conspiracy.

Proposition 6. There exists a locally causal local classical theory with events
A;,a; € A(Va), Bj,b; € A(Vp) in spatially separated regions V4 and Vg con-
ditionally correlating in the sense of (10.1), and atomic events CF € A(VE),
Ch e A(VE") and CFF € A(VE), where Vo = VEUVAT UVE satisfies requirements
(6.4)-(6.6), such that no-conspiracy (6.7)-(6.10), moreover complete independence
(6.15)-(6.18) hold.

Proof. Let A;, a;, By, b, C’,f, CM and C’f be events localized as in Fig. 6.8.
Suppose that for the atomic events Cf, CM and C’f completely specifying region
Ve both complete independence

p(CRCY Iy = p(CLCYNP(CY) = p(CE)p(ChLCY) = p(CDp(CR CIY) = p(CF)p(CHDp(CR6.25)

and also no-conspiracy
p(aib;CECN CY) = plasby)p(CELCpL CY) = -+ = plai)p(b;)p(C{)p(Cp)p(C1(6.26)

hold for any combination of the indices. Let the net containing the events be locally
causal; for example let

p(AiBj|aibjC£CrArfC§) = p(Ai|aiC£C%)p(Bj|berﬂfcf) = (pf51k51m)(pf'51m51p06-27)
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where ). pk =" ;=1 Now, the conditional probabilities are given as follows:

p(Ailai) = Y p(AilaCECYp(CECH) = pEp(Cl)p(CiT) (6.28)
k.m
p(Bjlb)) = > p(B;lb;C CRp(C Ol = plip(C)p(CT) (6.29)
p(AiBjlaib;) = zp: P(4;Bjlaib; CEChl Clp(Cr LY
k,m,p
= > p(Aila;CECIp(B;Ib;CY Clp(C)p(Chp(CF)
ko,
= pfp;p(cf)p(cf”)p(cf) (6.30)

Thus, there is a conditional correlation (10.1) between A; and B; whenever p(CM) #
OQorl m

Consequently, there is no contradiction between complete specification and no-
conspiracy even if both are applied to the same events, namely the atomic events
of the entire V. The measurement choices can be free of the common causes
even if the causal past of the region containing them is completely specified. This
independence does not abolish the conditional correlation between the measurement
outcomes: atomic events can be probabilistically irrelevant to the measurement
choices and at the same time relevant to the measurement outcomes. Moreover,
the independence of the measurement choices of the atomic events does not mean
that the former are not ’determined’ (probabilistically) by the latter. They are: the
conditional probabilities p(a;b;|CEFC Cf) are set in a local physical theory, even
if they are equal to p(a;b;).

Thus, based on these two claims, I think, there is no need to replace ’complete
specification’ in Bell’s definition of local causality by ’sufficient specification’.

6.5 Conclusions

The main claims of this paper were the following:

(i) The definition of Bell’s notion of local causality presupposes a clear-cut frame-
work in which probabilistic and spatiotemporal entities can be related. This
goal can be met by introducing the notion of a local physical theory repre-
sented by an isotone net of algebras.

(ii) In a local classical theory the measurement outcomes, measurement choices
and common cause can be localized in the spacetime such that one can derive
the Bell inequalities from local causality, no-conspiracy and independence.

(iii) Contrary to the claim of Seevinck and Uffink, there is no need to weaken the
requirement of complete specification in the definition of local causality on
the ground that it contradicts to no-conspiracy.
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Appendix A

First we prove equation (6.22) from local causality (6.11)-(6.14) and the complete
independence condition (6.15)-(6.18):

M ~1M p(AiB'aib'C%szM)
p(AZBJ|a1bJCm 07/1 ) = p(aijbjcjjy\/gc#\/j)

Doipg P(AiBjaib; Ci CiECRI CIM CFCE)
Zklpq pa;b; Clgcl/LCr% oM Cé%C!IJR)
Doipg PLAiBjaib; |Ci CE CRI CRM CR O )p(CR CIR Cf CTM CECE)
> kipq P(aib | CECIECHM CIMCRCIR)p(CECIECHM CM CECIR)
2 ipg P(Aiai| B, CECIECH M CRCIE)p(Byb; |CECIECH CM RO p(CECECALCM CROR)
2 kipg Pailb C CIECRICIM CRCHF)p(b;| Oy CiE O CIM CRCE)p(CR CiE CRE CIM CRECIR)
610=(6140)  Dpipg P(Aiai| CECIFCH CIMYp(B1bi|CY CIM CECIRp(CECIECY CIM CRCIR)
D kipq PLai|CLCIECHCIM )p(b; |CHL CIM CRCE)p(CL CIF CH CIM CRCIR)
(6.15)=(618)  Lpipg P(Aiai| O CIF ORI CM)p(Bbi | Ch! O CR O p(CL O Ol G p(C Oy
B > kipq P(ai| CECTECMCIM ) p(b,|CM CM CECIR)p(CL CECM CIM)p(CECIR)
_ S P(Aiai CECI-CM CM)p(CECFCM CIM) (X B Ol O CRCE (GO
a D P(ai| CECIFCHCIM)p(Cr CIECHCIM) - )\ 32, (b |CHI CIM CRCIECH)p(CRCIR)
_ > DA | CECIECM CRMp(CECT O O \ (g (B, IO CRM CFCIP(CHCE  (p(C,
a 2w P(ai| CECTFCH CIM)p(CECTFCM CIM) 2o POGICHCIMCRCI)p(CRCT) ) \p(C;
(6.15)~(6.18) Zkl p(AZaZ|C]£C[/Lcﬂ]\fc;lM)p(Clgcl/LCn]\gC’gM) qu p(ijj |C%C;LMC£C;R)p(C%C;LMC£C;R)
N > Pla|CECIECN CMp(CECECNCM) )\ 32, p(b; ICH CIM CROI)p(CH CIM CROE)
Zkl p(Aiai CkL Cl/L C’rI?VLI C;ll\/f) qu p(Bj bj CTJYVLI C:llw C}f’C{I]R)
S p(a;CECIECM M) 2 g PO, CHCIM CRCYER)

L (PAGCHC) ) (p(BbCH O
- placpiepn )\ plb,Caop

) = p(Aia:CM ™M (B, [b;CM CIM)

where the numbers over the equation signs refer to the equation used at that step.

The proof of (6.21), (6.20) and (6.19), respectively can be obtained from the
above proof by simply omitting certain summations. For (6.21) just omit summa-
tion for [ and r; for (6.20) omit summation for k and ¢; and for (6.19) omit all
four.

Appendix B

Here we prove that (6.24) does not generally hold. The proof follows that in Ap-
pendix A, except that here there is an extra summation also for n, which causes
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the trouble in the row below starting with a # sign:
p(AiBjaib;C)
p(aib;C3)
> kinpq P(AiBjaib; C,fC{LC,IfL[C{l”[CfCéR)
> kinpq P(aib; C’,CLCZ’LC,I,V{C’;MC;%C’[ZR)
Zklnpq p(A;Bja;b; |C,CLCZ’LC%C;IMC§C(’IR)])(C,€LCZ’LC%C;IMC}?C;R)
D kinpg P(aibs|CL I CRICIM CRCIR)p(Cy CIECRI CIM CRCYR)
> kinpq p(Aiai|ijjC]£C{LC%C;LMCé%C;R)p(ijj |C’,€LCI’LC,I,”1[C’,’1MC’5Q’ZR)p(C,fC’[LC’%(
2 kinpq P(ail b CE CIECH CIM CECE)p(b | CIECH CIM CRCF)p(C CIECRE M
(6.11)—(6.14) Zklnpq P(Aiaiw;fczmcnﬂfC;zM)P(ijj|Cr]¥C:zMC;?C(I;R)P(CJfCZLC%CQMC;?CQR)
D kinpg P(ai| CLCIECH CIM)p(b; | CR CIM CRCF)p(CRCIE CR CIM CRCIR)
(6.15)=(6.18)  Dpinpg P(Aiil Cx CIEC CIM)p(B;b; | C! CIM CRC)p(Cr G Cl CRM (G CE)
> kinpq p(a;|CECIECM CIM)p(b; -|CMC”MC’RC”R)p(CLC”LC’MC’M)p(CRC’R)
>on (Zklp(AiaACkLCl’LC%C;M p(CLCeioM qup(B ib; |CMC’MCRC’R) (Cf’(

P(AiBjlaib;Cpl) =

) (zkl P(Aiai| CECIECM CIM)p(CECIECM CIM) Y p(Bib; |CM CIM CRCIR)p(C e

o )
S (S Pl CECECH CMp(CECHF Y CM) S, plb|CH CIM CRCRp(CRCY
(
)

(Z@ﬂﬁMCLCmCMCWQ(CLCmCMCM4}: p(b;|CMCIMCRCIRYp(CRCIR

. S jim P(Asai | CECIECM CIMYD(CECIECM CIMYN (1 3,1pq P(Bibi IO CIM CRC T )p(C

D in Plai|CLCIECH CIM )p(Cr CFCRLCIM) D npg PO ICHI CIM CRCF)p(CRY

(6.15)—(6.18) (2hm AaMﬁCwCMOM)K%q%ﬂﬂwﬂ)(Zwﬂﬂ%MC%QNQﬁ%%MQ

D in P ai| CLCIFCHCIM)p(C CH O CTM) D npg PUOICHLCIM ORI )p(Cr
i P(AiaCECIECM OIM) (30,4 P(Bib O CM CFCE)
ka aZCL C/L CMCIM) anq p(b; Cﬂl\gc;lMCé%CéR)

- Clea ) Uity ) =rsincimaine)

where again the numbers over the equation signs refer to the equation used at that
step.
Appendix C

Here we prove why in the derivation of the Clauser-Horne inequality
p(AiBjlaib;) + p(AiBj/|asbj) + p(Ai Bjlaib;) — p(Ai Bj|aibjr) — p(Ailaib;) — p(Bjlasb;) < (6.

one should use (6.24) instead of (6.22). The standard derivation goes as follows:
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It is a simple arithmetic fact that for any a, o/, 3,8’ € [0,1]:
—1<aB+af +dB8-d'B —a—-B<0 (6.34)

Now let a, o/, 8, 8’ first be the conditional probabilities taken from (6.22):

a = p(Ai|aiC%C,’LM) (6.35)
o = p(AplayCMoM) (6.36)
B = p(Bylb;,Ch CM) (6.37)
B = p(BylbyCrlCM) (6.38)
Plugging (9.26)-(9.29) into (9.25) one obtains
—-1< p(Ai|aiCnAfC;1M)p(Bj|berAfC7le) +p(Ai|aian\fC;zM)p(Bj’ |bj’CnAfC;zM)
+p(Ai|ai CY CIMYp(B;|b;CM CIMY — p(Ai|aw Cal CIMp(Bji by Cal CIM )

—p(AilaiCr G = p(B; b, C G < 0(6.39)
which using (6.22) transforms into

—1 < p(AiBjlaib;CMC™M) + p(A; Bjr|a;iby, CMCIM)
+p(Ay Bjlaib;Co CIM) — p(Ay By |aiby Col CIM)
—p(Aila;Cpl CMY) — p(By|b;CH CIM) <0 (6.40)

Finally, multiplying the above inequality by p(CC/M) and summing up for the
indices m, n one obtains

—1<y] [p(Az'BﬂaibanAfCéM) +p(AiBjr|aiby Cpl C7M)

+p(Ai Bjlaib;Ch CM) — p(Ay By laiby Cal CIM)

—p(Aifa;CM CIM) — p(B; b, M) [ p(CM M) < 0 (6.41)

which is equivalent to (9.24) only if
p(aib;CRl M) = plaiby)p(Crl C7M) (6.42)

were the case, which is not, since C/M is not independent of a; and b;.
Now, starting the whole reasoning again with conditional probabilities taken
from (6.24):

a = p(Aia;CM) (6.43)
o = p(AilarCy) (6.44)
B = p(BjlbCy) (6.45)
B = p(BylbyChl) (6.46)
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the derivation goes through since instead of (6.42) one is to use
plaibiCpl) = plaib;)p(Cy)) (6.47)

which is one of the no-conspiracy conditions (6.7)-(6.10). Thus one can use (6.24)
in the derivation of the Clauser-Horne inequality but not (6.22).
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Chapter 7

Noncommutative causality in
algebraic quantum field theory

In the paper it will be argued that embracing noncommuting common causes in the
causal explanation of quantum correlations in algebraic quantum field theory has
the following two beneficial consequences: it helps (i) to maintain the validity of
Reichenbach’s Common Causal Principle and (ii) to provide a local common causal
explanation for a set of correlations violating the Bell inequality.

7.1 Introduction

Algebraic quantum field theory (AQFT) is a mathematically transparent quan-
tum theory with clear conceptions of locality and causality (see (Haag, 1992) and
(Halvorson, 2007)). In this theory observables are represened by a net of local C*-
algebras associated to bounded regions of a given spacetime. This correspondence
is established due to the axioms of the theory such as isotony, microcausality and
covariance. A state ¢ in this theory is defined as a normalized positive linear func-
tional on the quasilocal observable algebra A which is the inductive limit of local
observable algebras. The representation 7y: A — B(H) corresponding to the state
¢ transforms the net of C*-algebras into a net of von Neumann observable algebras
by closures in the weak topology.

In AQFT events are typically represented by projections of a von Neumann
algebra. Although due to the axiom of microcausality two projections A and B
commute if they are contained in local algebras supported in spacelike separated
regions, they can still be correlating in a state ¢, that is

P(AB) # (A)p(B) (7.1)

in general. In this case the correlation between these events is said to be super-
luminal. A remarkable characteristics of Poincaré covariant theories is that there
exist “many” normal states establishing superluminal correlations (for the precise
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meaning of "many” see (Summers, Werner 1988) and (Halvorson, Clifton 2000)).
Since spacelike separation excludes direct causal influence, one may look for a causal
explanation of these superluminal correlations in terms of common causes.

The first probabilistic definition of the common cause is due to Hans Reichen-
bach (1956). Reichenbach characterizes the notion of the common cause in the
following probabilistic way. Let (X, p) be a classical probability measure space and
let A and B be two positively correlating events in ¥ that is let

P(AAB) > p(A) p(B). (7.2)

Definition 7. An event C € ¥ is said to be the common cause of the correlation
(A, B) if the following conditions hold:

P(AAB|C) = p(AlC)p(B|C) (7.3)
p(ANB|CY) p(A|CH)p(B|CH) (7.4)
p(AIC) > p(AlCH) (7.5)
p(B|C) > p(BICY) (7.6)

where C+ denotes the orthocomplement of C' and p(-|-) is the conditional proba-
bility.

The above definition, however, is too specific to be applied in AQFT since (i)
it allows only for causes with a positive impact on their effects, (ii) it excludes
the possibility of a set of cooperating common causes, (iii) it is silent about the
spatiotemporal localization of the events and (iv) most importantly, it is classical.
Therefore we need to generalize Reichenbach’s original definition of the common
cause. For the sake of brevity, we do not repeat here all the intermediate steps of
the entire definitional process (for this see (Hofer-Szabé and Vecsernyés, 2012a)),
but jump directly to the most general definition of the common cause in AQFT.

Let P(N) be the non-distributive lattice of projections (events) in a von Neu-
mann algebra N and let ¢: A' — C be a state on it. A set of mutually orthogonal
projections {C},cx C P(N) is called a partition of the unit 1 € N'if 3, Cp = 1.
Such a partition defines a conditional expectation

E: N —=C, A E(A) =Y CrACy, (7.7)
keK

that is a unit preserving positive surjection onto the unital C*-subalgebra C C N
obeying the bimodule property E(B1AB3) = B1E(A)Bs; A € N,By,Bs € C. We
note that C contains exactly those elements of A/ that commute with Cy, k € K.
Recall that ¢ o E is also a state on N.

Now, let A, B € P(N) be two commuting events correlating in state ¢ in the
sense of (7.1). (We note that in case of projection lattices we will use only algebra
operations (products, linear combinations) instead of lattice operations (V,A). In
case of commuting projections A, B € P(N) we have AANB = AB and AV B =
A+ B - AB.))
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Definition 8. A partition of the unit {Cy}, ., C P(N) is said to be a common
cause system of the correlation (7.1) if

(0o E)(ABCk) _ (90 E)(ACy) (¢ 0 E)(BCk)

¢(Ck) a ?(Ck) ?(Ck)
for k € K with ¢(Cx) # 0. If Cf commutes with both A and B for all k € K we
call {C} e @ commuting common cause system, otherwise a noncommuting one.
A common cause system of size |K| = 2 is called a common cause. Reichenbach’s

definition (without the inequalities (7.5)-(7.6)) is a commuting common cause in
the sense of (7.8).

(7.8)

Some remarks are in place here. First, in case of a commuting common cause
system ¢o F can be replaced by ¢ in (7.8) since (¢po E)(ABCY) = ¢(ABCy), k € K.
Second, using the decompositions of the unit, 1 = A + A+ = B+ B+, (7.8) can be
rewritten in an equivalent form:

(poE)(ABCY))(¢poE) (AT BLCy) = (¢poE)(ABLCy)(¢poE)(ATBCY), k € K. (7.9)

One can even allow here the case ¢(Cj) = 0 since then both sides of (7.9) are zero.
Third, it is obvious from (7.9) that if Cx < X with X = A, A+, B or B* for all
k € K, then {Cy},f serves as a (commuting) common cause system of the given
correlation independently of the chosen state ¢. Hence, these solutions are called
trivial common cause systems. If | K| = 2, triviality means that {Cy} = {4, A} or
{Cy} = {B, Bt}. Obviously, for superluminal correlation one looks for nontrival
common causal explanations.

In AQFT one also has to specify the spacetime localization of the common
causes. They have to be in the past of the correlating events. But in which past?
One can define different pasts of the bounded regions V4 and Vz in a given space-
time as:

weak past: wpast(Va,Vp) :=1_(Vx)UI_(Vp)
common past: cpast(Va,Ve) :=I1_(Va)NI_(Vg)
strong past: spast(Va,Ve) := Nzevyuvy I- ()

where I_ (V') denotes the union of the backward light cones I_(z) of every point x
in V' (Rédei, Summers 2007). Clearly, wpast D cpast D spast.

With all these definitions in hand we can now define six different common
cause systems in local quantum theories according to (i) whether commutativity is
required and (ii) whether the common cause system is localized in the weak, common
or strong past. Thus we can speak about commuting/noncommuting (weak/strong)
common cause systems.

To address the EPR-Bell problem we will need one more concept. In the EPR
scenario the real challenge is to provide a common causal explanation not for one
single correlating pair but for a set of correlations (typically three or four corre-
lations). Therefore, we also need to introduce the notion of the so-called joint!
common cause system:

'Tn (Hofer-Szabo and Vecsernyés, 2012a, 2013a) called common common cause system.
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Definition 9. Let {A,;m = 1,...M} and {B,;n = 1,... N} be finite sets of
projections in the algebras A(V4) and A(Vg), respectively, supported in spacelike
separated regions V4 and Vp. Suppose that all pair of spacelike separated pro-
jections (A,,, B,) correlate in a state ¢ of A in the sense of (7.1). Then the set
{(Am,Br);m = 1,...M;n = 1,... N} of correlations is said to possess a com-
muting /noncommuting (weak/strong) joint common cause system if there exists
a single commuting/noncommuting (weak/strong) common cause system for all
correlations (A,,, By,).

Since providing a joint common cause system for a set of correlations is much more
demanding than simply providing a common cause system for a single correlation,
therefore we keep the question of the common causal explanation separated from
that of the joint common causal explanation. In Section 2 we will investigate
the possibility of a common causal explanation for a single correlation—or in the
philosophers’ jargon, the status of Reichenbach’s famous Common Cause Principle
in AQFT. In Section 3 we will address the more intricate question as to whether
EPR correlations can be given a joint common causal explanation. The crucial
common element in both sections will be noncommutativity. We will argue that
embracing noncommuting common causes in our causal explanation helps us in
both cases: (i) in the case of common causal explanation it helps to maintain the
validity of Reichenbach’s Common Causal Principle in AQFT; (ii) in the case of
joint common causal explanation it helps to provide a local, joint common causal
explanation for a set of correlations violating the Bell inequalities. We conclude
the paper in Section 4.

7.2 Noncommutative Common Cause Principles in

AQFT

Reichenbach’s Common Cause Principle (CCP) is the following metaphysical claim:
If there is a correlation between two events and there is no direct causal (or logical)
connection between the correlating events, then there exists a common cause of the
correlation. The precise definition of this informal statement that fits to AQFT is
the following;:

Definition 10. A local quantum theory is said to satisfy the Commutative /Noncommutative
(Weak/Strong) CCP if for any pair A € A(V4) and B € A(Vg) of projections sup-

ported in spacelike separated regions V4, Vp and for every locally faithful state

¢: A — C establishing a correlation between A and B in the sense of (7.1), there

exists a nontrivial commuting/noncommuting common cause system {Ci}rex C

A(V) such that the localization region V is in the (weak/strong) common past of

VA and VB.

What is the status of these six different CCPs in AQFT?
The question as to whether the Commutative CCPs are valid in a Poincaré co-
variant local quantum theory in the von Neumann algebraic setting was first raised
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by Rédei (1997, 1998). As a positive answer to this question, Rédei and Summers
(2002, 2007) have shown that the Commutative Weak CCP holds in algebraic quan-
tum field theory with locally infinite degrees of freedom in the following sense: for
every locally normal and faithful state and for every superluminally correlating pair
of projections there exists a weak common cause, that is a common cause system of
size 2 in the weak past of the correlating projections. They have also shown that the
localization of a common cause cannot be restricted to wpast(Va, V) \ I-(V4) or
wpast(Va, Ve)\ I_(Vg) due to logical independence of spacelike separated algebras.

Concerning the Commutative (Strong) CCP less is known. If one also admits
projections localized only in unbounded regions, then the Strong CCP is known
to be false: von Neumann algebras pertaining to complementary wedges contain
correlated projections but the strong past of such wedges is empty (see (Summers
and Werner, 1988) and (Summers, 1990)). In spacetimes having horizons, e.g.
those with Robertson—Walker metric, there exist states which provide correlations
among local algebras corresponding to spacelike separated bounded regions such
that the common past of these regions is again empty (Wald 1992). Hence, CCP
is not valid there. Restricting ourselves to local algebras in Minkowski spaces the
situation is not clear. We are of the opinion that one cannot decide on the validity
of the (Strong) CCP without an explicit reference to the dynamics.

Coming back to the proof of Rédei and Summers, the proof had a crucial
premise, namely that the algebras in question are von Neumann algebras of type
III. Although these algebras are the typical building blocks of Poincaré covariant
theories, other local quantum theories apply von Neumann algebras of other type.
For example, theories with locally finite degrees of freedom are based on von Neu-
mann algebras of type I. This raised the question as to whether the Commutative
Weak CCP is generally valid in AQFT. To address the problem Hofer-Szab6 and
Vecsernyés (2012a) have chosen a specific local quantum field theory, the local quan-
tum Ising model having locally finite degrees of freedom. It turned out that the
Commutative Weak CCP does not hold in the local quantum Ising model and it
cannot hold either in theories with locally finite degrees of freedom in general.

But why should we require commutativity between the common cause and its
effects at all?

Commutativity has a well-defined role in any quantum theories. In standard
quantum mechanics observables should commute to be simultaneously measurable.
In AQFT the axiom of microcausality ensures that observables with spacelike sepa-
rated supports—roughly, events happening ‘simultaneously’—commute. But cause
and effect are typically not such simultaneous events! If one considers ordinary QM,
one well sees that observables do not commute even with their own time translates
in general. For example, the time translate z(¢) := U(t)"'zU(t) of the position
operator z of the harmonic oscillator in QM does not commute with 2 = x(0) for
generic ¢, since in the ground state vector ¥y we have

—ihsin (hwt)
mw

[, 2(t)] ¢o = Yo # 0. (7.10)

Thus, if an observable A is not a conserved quantity, then the commutator [A, A(t)] #
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0 in general. So why should the commutators [A, C] and [B, C] vanish for the events
A, B and for their common cause C supported in their (weak/common/strong)
past? We think that commuting common causes are only unnecessary reminiscense
of their classical formulation. Due to their relative spacetime localization, that is
due to the time delay between the correlating events and the common cause, it is
also an unreasonable assumption.

Abandoning commutativity in the definition of the common cause is therefore a
desirable move. The first benefit of allowing noncommuting common causes is that
the noncommutative version of the result of Rédei and Summers can be regained.
This result has been formulated in (Hofer-Szabd and Vecsernyés 2013a) in the
following;:

Proposition 7. The Noncommutative Weak CCP holds in local UHF-type quan-
tum theories. Namely, if A € A(V4) and B € A(Vp) are projections with spacelike
separated supports V4 and Vg correlating in a locally faithful state ¢ on A, then
there exists a common cause {C,C*} localized in the weak past of V4 and Vp.

Now, let us turn to the more complicated question as to whether a set of cor-
relations violating the Bell inequality can have a joint common causal explanation
in AQFT. Since our answer requires some knowledge of the main concepts of the
Bell scenario in AQFT and some acquaintance with the model in which our results
were formulated, we start the next section with a short tutorial on these issues (for
more details see (Hofer-Szabo, Vecsernyés, 2012b, 2013b).

7.3 Noncommutative joint common causal explana-
tion for correlations violating the Bell inequal-
ity

The Bell problem is treated in AQFT in a subtle mathematical way (Summers and
Werner, 1987a,b, Summers 1990); here we introduce, however, only those concepts
which are related to the problem of common causal explanation (for more on that
see (Hofer-Szabo, Vecsernyés, 2013b)).

Let Ay, A2 € A(Va) and By, By € A(Vp) be projections with spacelike sep-
arated supports V4 and Vp, respectively. We say that in a locally faithful state
¢ the Clauser—Horne-type Bell inequality is satisfied for A;, Ay, By and Bs if the
following inequality holds:

1< ¢(A1B1 + A1By + AaB1 — A By — A1 — B1) <0 (7.11)

otherwise we say that the Bell inequality is violated. (Sometimes in the EPR-Bell
literature another inequality, the so-called Clauser—Horne—Shimony—Holte-type Bell
inequality is used as a constraint on the expectation of (not projections but) self-
adjoint contractions. Since these two inequalities are equivalent, in what follows we
will simply use (9.24) as the definition of the Bell inequality.)
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In the literature it is a received view that if a set of correlations violates the Bell
inequality, then the set cannot be given a joint common causal explanation. The
following proposition proven in (Hofer-Szab6 and Vecsernyés 2013b) shows that this
view is correct only if joint common causal explanation is meant as a commutative
joint common causal explanation:

Proposition 8. Let A;, Ay € A(V4) and By, Bs € A(Vg) be four projections
localized in spacelike separated spacetime regions V4 and Vg, respectively, which
correlate in the locally faithful state ¢. Suppose that {(A,,, B,);m,n = 1,2} has
a joint common causal explanation in the sense of Definition 9. Then the following
Bell inequality

~1< (¢po Ec)(A1Br + A1Bz + A3 By — A2 By — Ay — By) < 0. (7.12)

holds for the state ¢ o E.. If the joint common cause is a commuting one, then the
original Bell inequality (9.24) holds for the original state ¢.

Proposition 8 states that in order to yield a commuting joint common causal
explanation for the set {(A4,, Bn);m,n = 1,2} the Bell inequality (9.24) has to be
satisfied. This result is in complete agreement with the usual approaches to Bell
inequalities (see e.g. (Butterfield 1989, 1995, 2007)). But what is the situation with
noncommauting common cause systems? Since—apart from (7.12)—Proposition 8 is
silent about the relation between a noncommuting joint common causal explanation
and the Bell inequality (9.24), the question arises: Can a set of correlations violating
the Bell inequality (9.24) have a noncommuting joint common causal explanation?

In (Hofer-Szabo, Vecsernyés, 2012b, 2013b) it has been shown that the an-
swer to the above question is positive: the violation of the Bell inequality does
not exclude a joint common causal explanation if common causes can be noncom-
muting. Moreover, these common causes turned out to be localizable just in the
right’ spacetime region (see below). For this result, we applied a simple AQFT
with locally finite degrees of freedom, the so-called local quantum Ising model (for
more details see (Hofer-Szabd, Vecsernyés, 2012b, 2013b); for a Hopf algebraic in-
troduction of the model see (Szlachanyi, Vecsernyés, 1993), (Nill, Szlachanyi, 1997),
(Miiller, Vecsernyés)).

Consider a ‘discretized’ version of the two dimensional Minkowski spacetime
M? covered by minimal double cones V;7} of unit diameter with their center in
(t,i) for t,i € Z or t,i € Z + 1/2 (see Fig. 7.1). A non-minimal double cone
Vi,i55,5 in this covering can be generated by two minimal double cones in the sense
that Vi ;s is the smallest double cone containing both V;"} and V7;. The set of
double cones forms a directed poset which is left invariant by integer space and
time translations.

The ‘one-point’ observable algebras associated to the minimal double cones V;}
are defined to be A(V}}) ~ M;(C) @ M;(C). By introducing appropriate commu-
tation and anticommutation relations between the unitary selfadjoint generators of
the ‘one-point’ observable algebras (which relations respect microcausality) one can
generate the net of local algebras. Since there is an increasing sequence of double
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Figure 7.1: The two dimensional discrete Minkowski spacetime covered by
minimal double cones.

cones covering M? such that the corresponding local algebras are isomorphic to full
matrix algebras Mo (C), the quasilocal observable algebra A is a uniformly hyper-
finite (UHF) C*-algebra and consequently there exists a unique (non-degenerate)
normalized trace Tr: A — C on it.

Now, consider the double cones V4 := Vg™ ; U Vi" , and Vg := V", U Vi

and the ‘two-point’ algebras A(V4) and A(Vp) pertaizninzg to them (seezeig. 7.2).
It turns out that all the minimal projections in A(a) € A(V4) and B(b) € A(Vp)

Figure 7.2: Correlations between events in V4 and V3.

can be parametrized by unit vectors a and b, respectively in R*. Now, consider
two projections A,, := A(a™);m = 1,2 localized in V4, and two other projections
B, := B(b™);n = 1,2 localized in the spacelike separated double cone V.

Let the state of the system be the singlet state ¢° defined in an appropriate way
(by a density operator composed of specific combinations of generators taken from
various ’one-point’ algebras). It turns out that in state ¢° the correlation between
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A,, and B,, will the one familiar from the EPR situation:

corr(Am, By) = ¢°(AmBn) — ¢°(Am) ¢°(Bn) = 7% (a™, b"™) (7.13)

where (, ) is the scalar product in R3. In other words A,, and B, will correlate
whenever a™ and b™ are not orthogonal. To violate the Bell inequalitity (9.24) set
a™ and b" as follows:

al = (0,1,0) (7.14)
a® = (1,0,0) (7.15)
v L

bt = \/5(1,1,0) (7.16)
2 _ L.

b2 = \/5( 1,1,0) (7.17)

With this setting (9.24) will be violated at the lower bound since
¢°(A1B1 4+ A1 Ba+ AsBy — AsBy — Ay — B1) =

) )+ ) - () = L g

Now, the question as to whether the four correlations {(A,,, B,);m,n = 1,2}
violating the Bell inequality (9.24) have a joint common causal explanation was
answered in (Hofer-Szab6, Vecsernyés, 2012b) by the following

Proposition 9. Let A, := A(a™) € A(Va), B, := B(b") € A(Vg);m,n = 1,2
be four projections parametrized by the unit vectors wia (7.14)-(7.17) violating
the Bell inequality in the sense of (7.18). Then there exist a noncommuting join
common cause {C,C1} of the correlations {(A,, B,);m,n = 1,2} localizable in
the common past Ve :=Vy _1,0.1 of V4 and Vp (see Fig. 7.3).

Figure 7.3: Localization of a common cause for the correlations {(A4,,, By)}-
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Observe that C' is localized in the common past of the four correlating events
that is in the region which seems to be the 'physically most intuitive’ localization
of the common cause.

Proposition 8 and 9 together show that the relation between the common causal
explanation and the Bell inequality in the noncommutative case is different from
that in the commutative case. In the latter case the satisfaction of the Bell in-
quality is a necessary condition for a set of correlations to have a joint common
causal explanation. In the noncommutative case, however, the violation of the Bell
inequality for a given set of correlations does not exclude the possibility of a joint
common causal explanation for the set. And indeed, as Proposition 9 shows, one
can find a common cause even for a set of correlations violating the Bell inequality.
To sum it up, taking seriously the noncommutative character of AQFT where events
are represented by not necessarily commuting projections, one can provide a com-
mon causal explanation in a much wider range than simply sticking to commutative
common causes.

7.4 Conclusions

In the paper we were arguing that embracing noncommuting common causes in our
explanatory framework is in line with the spirit of quantum theory and it gives us
extra freedom in the search of common causes for correlations. Specifically, it helps
to maintain the validity of Reichenbach’s Common Causal Principle in the context
of AQFT and it also helps to provide a local, joint common causal explanation for
a set, of correlations even if they violate the Bell inequalities.

Using noncommuting common causes naively to address the basic problems of
the causal explanation in quantum theory in a formal way is no use whatsoever, if
it is not underpinned by a viable ontology on which the causal theory can be based.
This is a grandious research project. I conclude here simply by posing the central
question of such a project:

Question. What ontology exactly is forced upon us by using noncommuting com-

mon causes in our causal explanation?
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Chapter 8

On the relation between the
probabilistic characterization
of the common cause and Bell’s
notion of local causality

In this paper the relation between the standard probabilistic characterization of
the common cause (used for the derivation of the Bell inequalities) and Bell’s no-
tion of local causality will be investigated in the isotone net framework borrowed
from algebraic quantum field theory. The logical role of two components in Bell’s
definition will be scrutinized; namely that the common cause is localized in the
intersection of the past of the correlated events; and that it provides a complete
specification of the ‘beables’ of this intersection.

8.1 Introduction

Standard derivations of the Bell inequalities start from a set of equations repre-
senting a probabilistic common causal explanation of correlations. This common
causal explanation has three components: a screening-off condition, going back
to Reichenbach’s (1956) original characterization of the common cause, a locality
condition, expressing probabilistic independences between spacelike separated mea-
surement, outcomes and measurement settings, and a no-conspiracy condition rep-
resenting another independency between the common cause and the measurement
settings. If one is asked what justifies these probabilistic constraints in representing
a proper common causal explanation, the common answer is this: one obtains these
equations immediately if one endorses special relativity and looks at the spacetime
localization of the events in question. The aim of this paper is to understand more
thoroughly this quick answer.
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In order to see more clearly how the spatiotemporal and probabilistic charac-
terization of the common cause relate to one another, one has to be clear first of
all on three points:

1. To address the problem at all, we need to have a mathematically well-defined
and physically well-motivated framework connecting events understood as
elements of a probability space and regions understood as subsets of a space-
time.

2. Having such a firm framework connecting spatiotemporal and probabilistic
entities, we need to localize events, among them common causes, in the space-
time.

3. Finally, we have to be clear on what we mean under “justification of the
probabilistic common causal explanation on spatiotemporal grounds”.

Here we briefly comment on the above three points in turn.

Ad 1. Concerning the framework, interestingly enough, there is not a wide choice
of mathematical structures representing this highly important connection between
probabilistic and spatiotemporal entities. Discounting one approach (Henson, 2005;
commented on in the Conclusion and discussion), we are aware of only one such
structure, the isotone net structure used in algebraic quantum field theory (AQFT).
In AQFT observables are represented by (C*-)algebras associated to bounded re-
gions of a spacetime. This association is called a net. A state ¢ is defined as a
normalized positive linear functional on the quasilocal algebra A4 which is the in-
ductive limit of the net. From our perspective, the two important axioms of the
net are isotony and local primitive causality. Isotony requires that if a region V; is
contained in another region Vs, then the local algebra A(V;) associated to V; is a
(unital C*-)subalgebra of A(V2). Local primitive causality is the requirement that
for any region V, A(V) = A(V"), where V" is the causal completion (shadow) of
V. The framework of isotone nets seems to be flexible enough to be used also for
our purposes. The nets which we will use in this paper will be classical nets gen-
erated by local o-subalgebras of a Boolean g-algebra . Thus we borrow a useful
mathematical technique from AQFT without endorsing the operational ontology
thereof.

Ad 2. Having a neat framework in hand, next we have to localize events. The
localization of measurement outcomes and measurement settings is fairly straight-
forward, but where should we localize common causes? Obviously, the common
cause is an event C happening somewhere in the past of two correlated events,
say A and B. But in which past? Relativistically two spacelike separated events
can have (at least) two different pasts. Let V4 and Vp denote the regions where
A and B, respectively are localized. One can then define the weak past of A
and B as PV (V4,Vp) := I_(Va4) UI_(Vg) and the strong past of A and B as
P3(Va,Vg) :=I_(Va)NI_(Vg) where I_(V) denotes the union of the causal pasts
I_(z) of every point « in V. Let us call the appropriate common causes weak and
strong common causes, respectively (see Fig. 8.1).
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Figure 8.1: Weak and the strong past of the correlated events A and B.

Now, one might consider the strong past as a more natural candidate for the
localization of the common cause, and indeed plenty of classical examples attest
that the strong past is a reasonable choice. The correlation between two fans’
shouting at the same time at a football match is explained by the goals scored, that
is by events localized in the strong past of the shouts. Curiously enough, however,
in AQFT common causes are typically understood as weak common causes. It is
not difficult to see why.

Consider an isotone net representing a system in AQFT. Suppose that there
is a (superluminal) correlation, ¢(AB) # ¢(A)p(B), between events A € A(Vy)
and B € A(Vg) such that V4 and Vg are spacelike separated. Consider the local
algebra A((V4 UVp)") associated to the causal completion of V4 UV and suppose
that we find a common cause C of the correlation in A((V4 UVg)”). In which past
of V4 and Vg can C be located? Consider a region V in the weak past PV (Va, Vz)
which is ‘wide’ enough to ensure that (V4 UVp) C V. Due to isotony, A(V4UVp)
will be a subalgebra of A(V") which, due to local primitive causality, is identical
to A(V). Thus, C' will be located in V and hence in the weak past of V4 and
Vi. To sum up, isotony and local primitive causality together ensures that if a
superluminal correlation has a common cause, then it can be localized in the weak
past.

Can the common cause be localized also in the strong past? It might, but if
so, this will not be simply due to the axioms of AQFT. If V is in P¥(Vy4, V), then
isotony and local primitive causality does not help to relate A(V') to A(VaUVE)").
One also needs to know about the dynamics of the system. The axioms of AQFT
are completely silent about whether one can locate the common cause in the strong
past. As a consequence, weak common causes cannot be excluded a priori from
our explanatory arsenal. Thus, we had better open leave the question regarding
the apt spacetime localization of the common cause.

Ad 8. Finally, we have to pin down the meaning of the term “justification of
the probabilistic common causal explanation on spatiotemporal grounds”. What
we mean here is this: we need to have a principle regulating the probabilistic
independences of events on the basis of their possible causal connectedness in tune
with special relativity. An analogy for such a regulating principle might help. The
theory of Bayesian nets involves two parts: a causal graph representing the causal
relations among certain events and a probability space with random variables. How
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are these two parts of the theory related to one another? The bridge relating the
two components is called the Causal Markov Condition. It says that if the nodes
on the graph are related to one another in such-and-such a way, then the variables
pertaining to the nodes should satisfy such-and-such probabilistic independences.
So the role of the Causal Markov Condition in the theory of Bayesian nets is to
coordinate the probabilistic and the graphical description of causal relations.

A principle playing a similar coordinating role in the causal explanation of
correlations has been introduced into the literature by John S. Bell (1975/2004)
and called local causality. Local causality is a relativistic principle tailor-made to
study probabilistic relations between events localized in different spacetime regions,
among them the relation between the common cause and the correlated events.
Thus, we will understand the term “justification of the probabilistic common causal
explanation on spatiotemporal grounds” similarly to the Bayesian net theorist: lo-
cal causality implies just those probabilistic independences which characterize the
standard common causal explanation.

Putting Points 1-3 together we are faced with the following

Project. Given the isotone net framework connecting events and spacetime regions
(Point 1), and given the spatiotemporal localization of the various measurement
outcomes, measurement settings and common causes (Point 2), one is to define
local causality in the isotone net framework such that the probabilistic indepen-
dences implied by local causality (Point 3) are just the ones used in the standard
probabilistic characterization of the common causal explanation.

In brief, the accommodation of a set of correlations within a locally causal net
implies that for any correlations there exist common causes satisfying certain prob-
abilistic constraints.

This, however, is only the coarse-grained story of the paper. Reading Bell’s
careful formulation of local causality, two requirements will stand out in the def-
inition: one is atomicity representing the “complete specification” of the causal
past of the correlated events, the other is the localization of the common cause
in the strong past. Our fine-grained story will be to analyze the significance of
these ingredients in the definition of local causality. It will turn out that the link
between the spatiotemporal and the probabilistic characterization of the common
cause is very sensitive to these components of the definition of local causality, as
was rightly emphasized by Bell himself. In detail, we would like to address the
following questions:

(i) What is the exact role of atomicity in the justification of the probabilistic
characterization of the common cause by local causality?

(ii) Do the probabilistic constraints imposed on the notion of common cause
restrict the possible spacetime localization of the common cause? Do we
need to choose, for example, between weak and strong common causes?

(iii) How do atomicity and localization relate to one another; which of the common
causes localized in different pasts need to be atomic?
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Our paper follows a research line which has been followed by many. To our knowl-
edge, the first to “survey the ways in which one could associate regions” with events
such that it makes “plausible not only completeness and locality, but other assump-
tions of the Bell inequality” was Butterfield (1989, p. 135). Also, the necessity to
introduce spatiotemporal concepts so as to understand the Common Cause Princi-
ple was pointed out by Uffink (1999). Common Cause Principle and its role in the
EPR-Bell scenario has been thoroughly investigated by The Bern group (Grasshoff,
Portmann and Wiithrich, 2005), The Cracow group (Placek and Wronski, 2009),
and The Budapest group (Hofer-Szabd, Rédei and Szabo, 2013, especially in Chap-
ter 8 and 9). The status of the Common Cause Principle in AQFT was first investi-
gated by Rédei (1997), and further analyzed in Poincaré covariant AQFT by Reédei
and Summers (2002) and in lattice AQFT by Hofer-Szab6 and Vecsernyés (2012a,
2013a). Butterfield analysed the assumptions leading to the Bell inequalities in
AQFT in (Butterfield, 1995), and the relation of the Common Cause Principe to
the Bell inequalities and to various forms of Stochastic Einstein Locality in (But-
terfield, 2007). For an earlier discussion on the relation of Stochastic Einstein Lo-
cality to the axioms of AQFT, see (Rédei 1991) and (Muller and Butterfield 1994).
Hofer-Szabo and Vecsernyés (2012b, 2013b) reassessed the assumptions of the Bell
inequalities in AQFT with respect to non-commuting common causes. In a for-
malism very close or maybe identical to our isotone net formalism, Henson (2013b)
treated an important topic, namely that giving up separability does not block the
derivation of the Bell inequalities. An interesting debate between Henson, Rédei
and San Pedro (Henson, 2005; Rédei and San Pedro, 2012; Henson, 2013a) has
been taking place recently in this Journal. We will comment on this debate in the
Conclusion and discussions. For a parallel approach to ours, where the assumptions
of the Bell inequalities are backed not by spatiotemporal considerations but by the
Causal Markov Condition, see (Glymour 2006). For the relation of Causal Markov
Condition to EPR correlations see (Suarez, 2013). For a general treatment of Bell’s
local causality in local physical theories see the more technical (Hofer-Szab6 and
Vecsernyés 2014a) or its philosopher-friendly version (Hofer-Szab6 and Vecsernyés
2014b).

Our paper is structured as follows. In Section 2 the standard requirements of
the probabilistic common causal explanation will be recalled. In Section 3 Bell’s
original idea of local causality will be delineated and redefined in the isotone net
formalism. Section 4 will be devoted to the first ingredient of Bell’s definition,
namely atomicity; Section 5 to the second one, namely localization. In order to
proceed in a more picturesque way, both in Section 4 and 5 classical toy models
will be introduced helping us to explicate the more abstract results. We conclude
the paper in Section 6. Some technicalities are put in the Appendices.

8.2 Common causal explanation

As mentioned above, the first probabilistic characterization of the common cause is
due to Reichenbach. There is a long route leading from Reichenbach’s original idea
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of the common cause to the sophisticated probabilistic requirements used today in
the philosophy of quantum physics. Here we will not detail the steps of how the
notion of common cause evolved and became more and more suitable for causal
explanation of the EPR-Bell scenario (for this see (Hofer-Szabd, Rédei and Szabo,
2013), or for a short version (Hofer-Szabo and Vecsernyés, 2012a)). Instead we will
jump directly to the full-fledged probabilistic characterization of the common cause
and give a brief motivation of the requirements thereafter.

Let {am} and {b,} (m € M,n € N) be two sets of measurement procedures
(thought of as happening in two spacelike separated spacetime regions). Suppose
that each measurement can have two outcomes and denote the ‘positive’ outcomes
by A,, and B,, and the ‘negative’ outcomes by A,, and B, respectively. Let all
these events be accommodated in a classical probability space (3, p). Suppose that
there is a conditional correlation between the measurement outcomes in the sense
that for any m € M and n € N

p(Am A Bn|am A bn) # p(Am|am)p(Bn|bn) (8-1)

representing that if we measure the pair a,, and b, the appropriate outcomes will
be correlated.

The standard probabilistic characterization of a common causal explanation
of the correlations (10.1) is the following. A partition {C}} in ¥ (that is a set
of mutually exclusive events adding up to the unit) is said to be a local, non-
conspiratorial joint common causal explanation of the correlations (10.1) if for any
m,m’ € M and n,n’ € N the following requirements hold:

p(Am A Bplam A by A Ck) = p(Am|am A by A Cr) p(Brlam A by, A Cy)
p(Am|am A by A Cr) = p(Am|am A bp A Ck)

P(Bnlam A by A Cr) = p(Bplam: Ab, A Cy)

pam A bn A Cy) = plam A bn) p(Ck)

~ o~ o~~~

The motivation behind requirements (10.6)-(8.5) is the following. Screening-off
(10.6) (also called as outcome independence (Shimony, 1986), completeness (Jar-
rett, 1984) and causality (Van Fraassen, 1982)) is simply the application of Reichen-
bach’s original characterization of the common cause as a screener-off to conditional
correlations: although A,, and B,, are correlated when conditioned on a,, and b,,,
they will cease to be so, if we further condition on Cj. Locality (8.3)-(8.4) (also
called as parameter independence (Shimony, 1986), locality (Jarrett, 1984) and hid-
den locality (Van Fraassen, 1982)) is the constraints that the measurement outcome
on the one side can depend only on the measurement choice on the same side and
the value of the common cause, but not on the measurement choice on the opposite
side (for more on this, see below). Finally, no-conspiracy (8.5) is the requirement
that the common cause system and the measurement settings should not influence
each other: they should be probabilistically independent.

Now, it is a well known fact that if a set of correlations has a local, non-
conspiratorial joint common causal explanation in the above sense, then the set of
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correlations has to satisfy various Bell inequalities.! If quantum correlations are
interpreted as classical conditional correlations ¢ la (10.1), these Bell inequalities
are violated, excluding a local, non-conspiratorial joint common causal explanation
of the EPR scenario. Our aim, however, is not to follow the route leading from
the common causal explanation (10.6)-(8.5) to the Bell inequalities, but rather the
route leading to the common causal explanation itself. At any rate, in the EPR-
Bell literature (10.6)-(8.5) is regarded as the correct probabilistic characterization
of the common cause. But observe that the above motivations for the probabilistic
independence relations (10.6)-(8.5) are completely meaningless unless we first decide
on Points 1 and 2 of the Introduction: that is unless we have a principled way to
associate events understood as elements of the probability space (X, p) to regions of
a given spacetime (Point 1), and unless we localize the events in question somewhere
in the spacetime (Point 2).

So suppose that we do have such an association in form of an isotone net O
associating bounded regions of the Minkowski spacetime to o-subalgebras of 3.
Suppose furthermore that we localize common causes in one of the two above men-
tioned ways, that is common causes are either weak or strong common causes. To
address Point 3 of the Introduction, namely the ‘bridge law’ between the spacetime
and probabilistic considerations, we have to introduce one more notion, namely
local causality. We do this in Section 3.

8.3 Local causality

As mentioned in the Introduction, there is an influential tradition according to
which equations (10.6)-(8.5) are consequences of the requirement that a certain set
of correlations are to be accommodated in a locally causal theory. The clearest
formulation of such a theory is due to Bell himself:

“Consider a theory in which the assignment of values to some beables
A implies, not necessarily a particular value, but a probability distri-
bution, for another beable A. Let p(A|A) denote® the probability of a
particular value A given particular values A. Let A be localized in a
space-time region A. Let B be a second beable localized in a second
region B separated from A in a spacelike way. (Fig. 8.2.) Now my
intuitive notion of local causality is that events in B should not be
‘causes’ of events in A, and vice versa. But this does not mean that
the two sets of events should be uncorrelated, for they could have com-
mon causes in the overlap of their backward light cones. It is perfectly
intelligible then that if A in (8.6) does not contain a complete record of
events in that overlap, it can be usefully supplemented by information

!For the derivation of one of the simplest Bell inequality, the Clauser-Horne inequality,
see Appendix A.

2For the sake of uniformity throughout the paper, I slightly changed Bell’s notation
and figures.

153



dc_1495 17

N

Figure 8.2: Local causality I.

from region B. So in general it is expected that
p(A|A, B) # p(A|A) (8.6)

However, in the particular case that A contains already a complete
specification of beables in the overlap of the light cones, supplemen-
tary information from region B could reasonably be expected to be
redundant.”

And here comes the definition of a locally causal theory.

“Let C' denote a specification of all beables, of some theory, belonging
to the overlap of the backward light cones of spacelike regions A and
B. Let a be a specification of some beables from the remainder of the

Figure 8.3: Local causality II.

backward light cone of A, and B of some beables in the region B. (See
Fig. 8.3.) Then in a locally causal theory

p(4Ala, C, B) = p(Ala, C) (8.7)
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whenever both probabilities are given by the theory.” (Bell, 1975/2004,
p. 54)

Now, let us spell out Bell’s characterization of local causality in our isotone net
framework. To this end we need to ‘translate’ a number of terms Bell uses in his
formulation into our language.

First, we need to translate Bell’s language using random variables in (8.7) into
a language using events. This is straightforward since events are special random
variables, namely characteristic functions.

Second, we are to interpret the term ‘beable’. ‘Beable’ is Bell’s neologism and
is contrasted to the term ‘observable’ used in quantum theory. “The beables of
the theory are those entities in it which are, at least tentatively, to be taken se-
riously, as corresponding to something real” (Bell, 1990/2004, p. 234). Without
the clarification of what the “beables” of a given theory really are, one cannot even
formulate local theory since “there are things which do go faster than light. British
sovereignty is the classical example. When the Queen dies in London (long may
it be delayed) the Prince of Wales, lecturing on modern architecture in Australia,
becomes instantaneously King” (Bell, 1990/2004, p. 236). In order to vitiate such
‘violation’ of local causality, the clarification of the “beables” of a theory is indis-
pensable. (Cf. Norsen 2011.) What are the beables in the isotone net structure?
Since these nets are classical and hence they represent objective physical events,
any element of any local algebra will be regarded here as a beable.

Third, translating ‘beable’ simply as ‘elements of an algebra’ naturally brings
with it the translation of the term ‘complete specification of beables’ as an ‘atom
of the algebra in question’. Here of course it is assumed that the local algebras of
the net are atomic (which is typically not the case in AQFT). (For the translation
of ‘complete specification’ into atomicity see (Henson, 2013a, p. 1015).)

Finally, an important point. Both in his wording and also in his figures Bell
seems to take into account the whole causal past of the events in question. In the
formulation of local causality he does not assume some kind of Markovian condition
rendering superfluous the infinite tail of the past regions below a certain Cauchy
surface. Other parts of Bell’s text, however, speak for a more local interpretation
of beable.? Moreover, Bell’s La nouvelle cuisine (Bell, 1990/2004), a posthumous
paper on the same subject provides another definition of local causality where the
screener-off regions are definitely finite. This definition is closer in spirit to the
formalism of isotone nets since here only bounded regions are associated to local
algebras. Therefore, we will here endorse this “finite” reading of local causality.
(We will come back to this point in the Conclusion and discussion.)

With this ‘translation manual’ in hand, Bell’s notion of local causality can be
paraphrased as follows.

3Cf. “We will be particularly concerned with local beables, those which (unlike for
example the total energy) can be assigned to some bounded [my italics] space-time region.”
(Bell, 1975/2004, p. 53)
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Definition 11. An isotone net 91 associating bounded regions of the Minkowski
spacetime to o-subalgebras of X is called locally causal, if for any classical prob-
ability measure p on ¥*, and for any two events A,, € A(V4) and B, € A(Vz)
localized in the spacelike separated regions V4 and Vp and correlating in the prob-
ability measure p, the following holds.

Let V4, V4 and V¢ be three spacetime regions (see Fig. 8.4) such that

Figure 8.4: Local causality in isotone nets

Va C(I-(Va)\ 1-(VB)) (8.8)
Vo € (I-(VB) \ I-(Va)) (8.9)
Ve C pe (VA, Vi) (8.10)
Vo € PS(Va, V) (8.11)
Va C (V,UVe)” (8.12)
Ve C (Ve UV,)” (8.13)

Let am, b, and Cy be any three atoms of the algebras A(V,), A(V3) and A(Ve),
respectively, associated to the appropriate regions. Then the following conditional
probabilistic independences hold:

p(Am|am A Cr A By) p(Amlam A Cy) (8.14)
p(Bp|Am ACk ANby) = p(Bylby ACy) (8.15)
p(Amlam A Cr Aby) = p(Am|am A Ch) (8.16)
p(Bplam A Ck ANby) = p(Bplby ACy) (8.17)

Why four equations instead of Bell’s single (8.7)? Observe that (8.15) is just
the symmetric version of (8.14) where A,, and a,, are interchanged with B,, and
b,. Equations (8.16)-(8.17), however, are slight extensions of Bell’s formulation.

*Or, in the more general AQFT case (which we do not need now): for any state ¢ on
the quasilocal algebra A. (Cf. Section 1 above.)
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Observe that Vy is spacelike separated not only from Vg but also from V4; moreover,
Ve is in the strong past of A and B, P°(Va,V;). Therefore, conditioned on the
complete specification of V, U V¢, the same independence should hold between A,,
and b, as between A,, and B,. Thus (8.16) is the application of Bell’s idea to
algebras A(V4) and A(V}), and (8.17) to algebras A(V,) and A(V4). There are
no more spacelike separated regions in Fig. 8.4 to which local causality could be
applied.

How do the above considerations relate to the probabilistic characterization (10.6)-
(8.5) of the common cause delineated in the previous Section?

First observe that (8.16)-(8.17) are equivalent to locality (8.3)-(8.4) and from
(8.14)-(8.17) screening-off (10.6) follows directly. This proves that the probabilistic
characterization of the common cause by the requirements of screening-off and
locality can be ‘derived’ from Bell’s notion of local causality imposed on an isotone
net associating spacetime regions and local algebras.

There is, however, an important proviso. The third requirement in the definition
of a common causal explanation, namely no-conspiracy (8.5) cannot be ‘derived’
from Bell’s notion of local causality in a similar way. No-conspiracy is an inde-
pendent assumption stating that the events a,, A b, and C} are probabilistically
independent.

Let us come back for a moment to the definition of a locally causal net. In Definition
11 we required (8.14)-(8.17) and hence (10.6)-(8.4) to hold only for the atoms a,,
and Cj, of the algebras A(V,) and A(V¢), respectively. Bell’s original definition,
however, seems to be more stringent; here (8.7) is required not only for the atoms
of A(V,) but for any element. This might suggest that our definition is weaker
than that of Bell. This, however, is not the case. In Proposition 12 at the end of
the paper we will show that in a locally causal net (10.6)-(8.4) hold not only for
the atomic events a,,, b, and Cj, but (given some independence condition) also for
any Boolean combination a := Vyenram, b := Vapeniam (M C M, N’ C N) of the
measurement conditions. Note, however, that the common cause system C}, cannot
be ‘aggregated’ in this way: (10.6)-(8.4) will not necessarily hold for the Boolean
combination C = Vieg/Cy (K’ C K). This is why it is necessary to demand
atomicity (“complete specification”) in the strong past of the correlated events and
sufficient to demand it outside it. We will come back to this point later.

An interesting question with respect to AQFT is the following. What is the relation
between local primitive causality as standardly used in AQFT and our definition of
local causality? The answer is given in the following proposition:

Proposition 10. A classical, atomic isotone net which satisfies local primitive
causality (A(V) = A(V") for any region V), automatically satisfies also local
causality (8.14)-(8.17) for events in regions as shown in Fig. 8.4.

Proof. Consider first (8.14). Due to isotony and local primitive causality A(V4) C
A((V,UVe)") = A(V, UVe) and hence for any atom a,, A Cy of A(V, UV): either
(i) Am A am ACr =0 or (ii) A A am A Cx = am A Ck. In case (i) both sides of
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(8.14) is zero, in case (ii) both sides of (8.14) is one. One obtains (8.15)-(8.17) in a
similar fashion. m

Intuitively, isotony and local primitive causality together ensure that the atoms of
A(V, U V) will also be atoms of A(Vy4), hence screening off every correlation. For
a more general proposition stating that in any atomic classical or quantum isotone
net satisfying local primitive causality local causality also holds, see (Hofer-Szabo
and Vecsernyés 2014a, Prop. 1) and (Hofer-Szabé and Vecsernyés 2014b, Sec. 3).
For relating local causality (Stochastic Einstein Locality) to the axioms of AQFT
(treated in the tradition of the so-called syntactical view of scientific theories), see
(Rédei 1991) and (Muller and Butterfield 1994).

Reading Bell’s formulation of local causality carefully, two ingredients of the
definition stand out clearly. The one is that (i) the common cause system provides
“a complete specification of beables”, and (ii) it is located in the “overlap of the
light cones”. In our terminology, (i) Cy is an atom of the appropriate algebra, (ii)
it is located in the strong past of the correlated events. Bell explicitly stresses both
points, and in all the subsequent papers of Van Fraassen (1982), Jarrett (1984),
Shimony (1986) etc. trying to turn spacetime considerations into probabilistic
independences these two requirements have been (explicitly or implicitly) made.

However, neither requirements are a priori concerning the idea of a common
cause. One can easily make up common causes which are either non-atomic or
not located in the strong past of the correlated events. How do these common
causes relate to Bell’s notion of local causality? In the following two Sections the
relation between local causality and probabilistic characterization of the common
cause will be studied first in the case of non-atomic common causes, then in case
of weak common causes. In each Section toy models will be introduced first, then
the formal results will be gathered.

8.4 Non-atomic common causes

Ezample 1. Consider the following toy model. There are five lighthouses on the
ocean in a line at equal distances from one another. (See Fig. 8.5.) Let us count

Figure 8.5: Lighthouses I.
them from left to right. In the middle one, that is in lighthouse 3 the lighthouse

keeper C has three lamps, C’, C" and C"”. He has the following strategy for turning
the lamps on: either he turns on only the lamp C’, or only lamp C"”, or all three
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lamps, or none. He never turns on the lamps in any other combination. He chooses
between these four options with equal probability (say, by tossing two coins). Let
us denote that a given lamp is turned on and off by C and C, respectively. Using
this notation the four possible state of the lamps are the following:

c, = c'aAC'AT” (8.18)
C, = T AC AC” (8.19)
Cs = C'AC'AC" (8.20)
c, = caC' aC” (8.21)
each with probability
1
p(Ck) = § (822)

Now, in the left neighboring lighthouse, that is in lighthouse 2, there is another
lighthouse keeper, A; and his role is simply to watch the light signals arriving from
either the left or from the right, that is from either lighthouse 1 or lighthouse 3. He
does not know that lighthouse 1 is empty, therefore he spends equal time watching
both neighboring lighthouses. Suppose furthermore that if he is watching to the
left, he will miss the light signals coming from the right. This means that with
probability % he observes the signals coming from lighthouse 3 and with probability
% he will miss them. Denoting the event that the lighthouse keeper A is watching
to the left and to the right by ay and apg, respectively and denoting by A the event
that he observes a light signal (disregarding from which lamp it comes), one obtains
the following conditional probabilities:

1 ifm=Rk=1,23

0 otherwise. (8.23)

p(Alam A Cy) = {
In other words, the lighthouse keeper A observes the light signal only if he is
watching right and there is a signal sent from C.

Suppose that the same thing happens also in lighthouse 4. The lighthouse
keeper B is watching in both directions with equal probability, but since lighthouse
5 is empty, he misses the light signal coming from lighthouse 3 with probability %
Denoting again the events that the lighthouse keeper B is watching to the left and
to the right by by, and bg, respectively and denoting by B the event that he observes
a signal, one obtains the following conditional probabilities for B’s observing a light
signal:

1 fn=Lk=1,23

0 otherwise. (8.24)

p(B|bn A Ok) = {

This situation completely characterizes a probability space. The event algebra
is generated by the following events:

Aﬂ Zv Bv B7 Ay b’n; Ck
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with m,n = L, R and k = 1,2,3,4. The event algebra has 64 atoms, 16 of which
have non-zero probability:

1
P(AANBA am ANbypy ANC) = — ifm=R,n=Lk=1,2,3

16
_ 1
p(A/\B/\am/\bn/\Ck):1—6 ifmn=R, k=1,2,3
_ 1
p(A/\B/\am/\bn/\Ck):1—6 ifmn="Lk=1,2,3
- = 1 . m=L n=R, k=1,2,3,
p(A/\B/\am/\bn/\Ck)fl—6 1f{0rkz:4

and the remaining 48 are of probability zero. By means of the probability of the
atoms one can easily calculate the probability of any events of the algebra.

Now, it is easy to see that there is a correlation between events A and B that is
between the lighthouse keepers’ observing a light signal, both in the non-conditional
and conditional sense:

3

S _pAnB) # pA)p(B) =2 (5.25)

3 3
Z = p(A A B|am A bn) 7£ p(A|am)p(B|bn) = Z : if m = R,n= L826)

As one expects, the correlation is due to C’s signaling: Cj, is a local, (non-conspiratorial)
joint common causal explanation of the correlation (8.26) in the sense of (10.6)-(8.5):

p(A A Blam Aby A Ck) = p(Alam A by A Cr) p(Blam ANbpy ACy) = { (1) i)fﬂfi;ifénzL,k: 1,2,:
p(Alam Abn A Cy) = p(Alam ANbp ACk) = { (1) i)ftﬂz;f:é k=1,2,3
P(Blam A by A C) = p(Bulam: Abo A Cr) = {é itn=Lk=123
D(am Abp ACk) = plam Abp) p(Cx) = i . i

Ezample 2. Suppose we take a coarser clustering of the switching of the lamps, say
Dy =C;VCyV Cs and Dy = (4. Physically, D; is the event that any light is on
in lighthouse 3, and D- is the event that no light is on. As one expects, for this
coarser partition the common cause equations (10.6)-(8.5) will hold just as well as
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for the partition {Cy}:

P(A A Blaym Aby A Di) = p(Alam Abn A Di) p(Blam Aby A Dy) = { (1) ioftgé;vi]:én “hEd
P(Alam A by A Dy) = p(Alam Abp A Dy) - = { (1) gtlﬁ;vl]:e !
p(Blan A6, A D) = p(Bulans Abo A D0 = { g B S E
p(am Abp A Di) = plam Abn) p(Dr) = { é i ioft}?ejwistek -

Thus, {Dy} is also a local, (non-conspiratorial) joint common causal explanation
of the correlation (8.26).

Ezxample 3. Now, consider a coarser clustering of the switchings ‘in the wrong way’:
D} =C1 Vv CyV Cy and Di = C5 mixing together lights being on with lights being
off. Contrary to the previous case, for this coarser partition the requirement of
screening-off is violated. For example:

2 , , , 2 2
3= p(AABlagp ANbr, ADY) # p(Alag Abp ADY)p(Blag Abp, AD}) == - =
(Locality and no-conspiracy will hold even in this case.) Hence {Dj} is not a local,
(non-conspiratorial) joint common causal explanation of the correlation (8.26).

Now, let us consider the spacetime diagram of the above examples depicted in
Fig. 8.6. Let 91 be a locally causal net associating bounded spacetime regions

Figure 8.6: Spacetime diagram of Examples 1, 2 and 3.

to local algebras such that A € A(Va), B € A(Vg), am € A(V,), b, € A(V}) and
Cy, Dy, D;, € A(Ve) for all m, n and k. As shown in Section 2, local causality of the
net implies that the set {C }—being an atomic partition localized in the strong past
P%(Va, Vg)—satisfies (10.6)-(8.4), hence providing a local, joint common causal
explanation of the correlation (8.26). (No-conspiracy (8.5), as already stressed
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in Section 2, is not a consequence of local causality but is assumed in the toy
model.) Thus, {Ck} is an atomic, strong, local, non-conspiratorial joint common
cause system.

What about non-atomic partitions localized in the strong past? Again, both
{Dy} and {D,} are localized in P°(V, V), but whereas { Dy} is a common cause
system of the correlation (8.26), {D}.} is not. Thus, local causality is completely
silent about whether a coarse-grained partition of a local algebra in the strong past
is a common cause system of the correlated events or not. This ‘non-aggregable’
character of the atomic common cause relies heavily on the fact that it is localized
in the strong past—as will be seen in Proposition 12 in the next Section when
contrasted with the opposite character of weak common causes. Moreover, the sat-
isfaction of equations (10.6)-(8.5) for a given partition also does not ensure that
finer-grained partitions will also do so (this is Simpson’s paradox; see e.g. (Uffink
1999)). In this sense the existence of a common cause system characterized by
the probabilistic constraints (10.6)-(8.5) for a given correlation is a weaker require-
ment than the accommodation of the same correlation in a locally causal theory.
There are many more local, non-conspiratorial joint common cause systems than
the atomic ones required by locally causal theories.

Obviously, from the perspective of the EPR-Bell scenario this difference is not of
central importance, since the violation of the Bell inequalities derived from (10.6)-
(8.5) also excludes atomic common cause systems and hence the possibility of a
locally causal theory. But focusing simply on the logical relation between Bell’s
local causality and the probabilistic equations (10.6)-(8.5), it is fair to say that local
causality ‘justifies’ only one of the multiple common causal explanations, namely the
atomic one. The coarse-grained common cause system { Dy}, however, is an entirely
salient physical explanation of the the correlation (“Observers see light signals only
if some lamps are switched on”), even if the existence of such a common causal
explanation is not a consequence of the accommodation of the physical scenario
into a locally causal theory.

Now we turn to the role of the other ingredient in Bell’s formulation, namely
the localization of the common cause in the strong past.

8.5 Weak common causes

Example 4. Now, let us modify the population of the lighthouses. Let A and B
remain in their places, that is in lighthouse 2 and 4, respectively: but suppose
that lighthouses 1, 3 and 5 are inhabited by three lighthouse keepers C’, C"" and
C"", respectively, each having the corresponding one of the three lamps introduced
in the previous Section. (See Fig. 8.7.) That is suppose that now lighthouse
keeper C’ in lighthouse 1 operates lamp C’, lighthouse keeper C” in lighthouse 3
operates lamp C” and lighthouse keeper C"” in lighthouse 5 operates lamp C"”.
Suppose furthermore that the ons and offs of the different lamps follow just the
same statistics as defined in (8.18)-(8.22), that is p(Cy,) = 1 for every k = 1,2,3,4
(only lamp C” is on, only lamp C"”, all three lamps are on, none is on).

162



dc_1495 17

NN

Figure 8.7: Lighthouses II.

Now, the role of lighthouse keepers A and B is just as in Section 4: to watch
the light signals arriving at lighthouse 2 and 4, respectively. But now both can
obtain a signal from both directions. Suppose that both A and B can only see the
light signal sent from a neighboring lighthouse. That is, A cannot see the signal
sent from C"” (say, because it is too far or the lighthouses hide each other); and
B cannot see the signal sent from C’. Now, again the event algebra has 16 atoms
with non-zero probability:

1
P(AANBAam ANby ACL) = — if k=3

16
_ 1
p(A/\B/\am/\bn/\Ck)zl—G ifm=L, k=1
_ 1
p(A/\B/\am/\bn/\Ck)zl—G ifn=R, k=2
o 1 m=R, k=1,
P(AANBAam ANby ACL) = — if orn=1L,k=2,
16 N
ork=4

and there is a conditional and non-conditional correlation between event A and
B, the detections of light signals in lighthouse 2 and 4, respectively, both in the
non-conditional and conditional sense:

1=PANB) # p(A)p(B) =22 (5.27)
Ll ifm=Rn=1L,
1 =p(AABlam ANb,) # p(Alam) p(Blb,) = % . i if mn=R, (8.28)
4 5 % if m,n=1L.

As one expects, {Ci} is a local, (non-conspiratorial) joint common causal explana-
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tion of the correlation:

1 ifm=Rn=Lk=3
P(A A Blam A by ACy) = p(Alam A by A C) p(Blam ANbpy ACl) = { 0 otherwise
1 ifm=Lk=1
p(Alam Abp ACk) = p(Alam Abp ACr) = 1 ifk=3
0 otherwise
1 ifm=R, k=2
P(Blam Aby A Ck) = p(Bplam: ANbpy ACl) = 1 ifk=3
0 otherwise
1 1
plam Abp ACk) = plam Nbn) p(Cr) = 11

Now, consider again the spacetime diagram of Example 4 depicted in Fig. 8.8.
Here {C%} is localized not in the strong past but in the weak past of the correlated

Vo | Va /Ve\o Vp | Ve

Figure 8.8: Spacetime diagram of Example 4.

events. How do these weak common causes relate to Bell’s local causality? This
question is answered in the following

Proposition 11. Let 91 be again a locally causal net associating bounded space-
time regions to local algebras and let A € A(V4), B € A(VB), am € A(VL),
bn € AVy), Cf € A(Ver), Cf € A(Vor) and Cf" € A(Verm) for all m,n, i, j,1
be atoms of the appropriate algebras with the regions as shown in Fig. 8.8. (In
Example 4 C} = ', C, = C and similarly for C7 and C}".) Then

{Cijii} ={Ci N CJ’/ ANC"}
is a weak, local, joint common cause of the conditional correlations

P(AN Blam Abn) # p(Alam) p(Blbn) (8.29)
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in the sense that the following equations hold:

p(A A\ Bn|am A b, A Cijl) = p(A|am Ab, A C’ijl)p(B|am A b, A O”l)(830)
p(A|am A by, A Cijl) = p(A|am ANbp A Cijl) (831)
p(B|am A b, A Cijl) = p(B|am/ A by, N Cijl) (832)

Proof. The proof is straightforward. Local causality of the net implies that for the
atoms a,, = CiAay € A(VorUV,), b, = bp ACY" € A(Vy,UVen) and CF € A(Ver)
the following equations hold (being analogous to local causality (8.14)-(8.17)):

P(AN Bulajy, Ny ACY) = p(Alajy, A by A CF) p(Blaj, Aby, A CFY8.33)
P(Blain ANy NCF) = p(Blaj, Abjy ACY) (8-35)

In other words, {C7} is a strong, local, joint common cause of the conditional
correlations

P(A N Blagy, Aby) # p(Alag,,) p(Blby,) (8.36)
with the new conditions a,, and b,;,. (Again, no-conspiracy
P(@ipy Ny ANCY) = p(af, Abyy) p(CF) (8.37)

does not follow from local causality of the net.) But (8.33)-(8.35) are just equivalent
to (8.30)-(8.32) proving that {Cj;;} is a weak, local, joint common cause of the
conditional correlations (10.13). m

As we saw before, the correlated events A € A(Va), B € A(Vg) in a locally causal
net always have an atomic, strong common cause system C7 € A(Vcer). Now,
Proposition 13 states that this strong common cause system can always be spatially
extended into a weak common cause system by simply adding some elements C] and
C}" from the spacelike separated regions Vv and Ve, respectively. These extra
terms will not spoil the screening-off: they can be freely added to the strong common
cause. Moreover, as will turn out from Proposition 12, these extra terms need not
be atomic either: any Boolean combination C’' = Vv;C} and C" = Vv;C]"” can also
be added without violating the probabilistic constraints (10.6)-(8.4). Thus, local
causality does not determine the localization of the common cause, it is compatible
both with strong and weak common causes.

But what is the exact relation between the weak and the strong common cause
systems arising from the local causality of a given net?

In Example 4 one might find it peculiar that even though the common cause
{Ci;i} was non-conspiratorial (it was probabilistically independent of a,, and b,,),
still there was a ‘conspiracy’ within the common cause: C;, C} and C}" were not
probabilistically independent. For example it never happened that only lamp C”
was switched on. This fact does not raise any problem until one asks whether the
common cause is localized at one place: for example, as in Example 1, where all the
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three lamps were localized in lighthouse 3. But in Example 4 the common cause
was scattered around in three different locations. It was located in three different
lighthouses. The problem with such a common cause that it may well question
our whole project to provide a common causal explanation for a correlation. If
the explanans itself has a built-in correlation, then what is the point in using it
for explaining correlations? Can we not come up with a common causal model in
which C}, C} and C]" are spacelike separated but still independent, say, regulated
by three 1ndependent coin tossings in lighthouse 1, 3 and 5, respectively. Can one
obtain a weak common cause for a given correlation without a built-in correlation?
In the next proposition we will answer this question in the negative.

Let {Ciji} = {C] A C/ AN C["} be a weak common cause of a given correlation.
(Here {C{},{C]} and {C}"} are general partitions of A(Vcr), A(Ver) and A(Vorr),
respectively, and not those special ones specified in the above Examples.) Let us
call {Ci;i} a genuine weak common cause, iff {C}}—the ‘middle part’ of {C;; }—is
not a strong common cause. In what follows we will show that the above mentioned
‘built-in correlation’ is a necessary condition to explain a correlation by a genuine
weak common cause. In other words, we will show that if {Cy; } = {C]ACYAC)"} is
a common cause of the correlation (10 13) and Cj, C} and C}" are probabilistically
independent, then also {C7} will be a common cause of the correlation.

Proposition 12. Suppose that {C;ACY AC;"} is a common cause of the correlation
between A,, and B, in the sense that the following equations hold:

p(Am A Bplam Aoy ACiANCYANC") = p(A
p(Am|am A by ACEA CJ’.’ NC") = p(Amlam Aby NCFACTANCY)
p(Bnlam Aoy NC;NCY NC") = p(B, |am/ Abp ACLA O” ACT
plam A by ACLA C” NCT") = plam Nby) p(C;ACY A O”’)

and suppose that Cj, C7 and C]” are independent, that is
PCLACIACE) = p(Chp(Cl)p(CY) (8.42)
then {C7'} is also a common cause of the correlation:

8.43

p(Am A Bylam A CY )
8.44)
)

P(Am|am AN b ACY
P(Bnlam Aby ACY
p(am A by A C';—'

ml@m A b A CY) p(Brlam A by A CY)
ml@m A bp ACY)
B, |am, Ab, ACY)
bn) p(CY)

For the proof see Appendix B. Since in Example 4 {Cy;} = {C; A CY A C)"'}
was localized in the weak past and {C7} was localized in the strong past, we
can interpret Proposition 12 as follows: a weak common cause without a ‘built-in
correlation’ is always ‘parasitic’ on a strong common cause in the sense that there
is no other way to provide a genuine weak common cause for a given correlation
than to make the spacelike separated parts of the common cause probabilistically
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dependent. In brief, there is no genuine weak common cause without ‘built-in
correlation’.

Proposition 12 nicely explains why we are compelled to use strong common
causes in classical common causal explanations. If we want to avoid explaining
correlations in terms of other correlations, we cannot apply genuine weak common
causes. So instead of appealing to non-genuine (’parasitic’) weak common causes,
it is more informative to use simply strong common causes.

The type of the common cause, however, is not always a matter of what we
might want. As was mentioned in the Introduction, the common causes that nat-
urally arise in AQFT are weak and not strong common causes. Why is that? The
mathematical answer, namely that only (the possibility of) weak common causes
follows from the axioms of the theory (see (Rédei 1997) and also (Hofer-Szabé and
Vecsernyés 2012a, b)), is not very intuitive. In search of a more intuitive explana-
tion, we conclude this paper with a highly speculative question:

Question: Is the fact that common causes in AQFT are weak common causes
somehow related to or a consequence of the following two facts? (If these latter are
facts at all.)

1. In AQFT quantum states establishing a superluminal correlation between two
spacelike separated events also establish (or ‘typically’ establish) a ‘built-in
correlation’ between the spacelike separated parts of the weak common causes
of this correlation.

2. An analogue of Proposition 12 holds in AQFT: stating that, roughly speaking,
a ‘built-in correlation’ is a necessary condition to explain a correlation by a
genuine weak common cause.

Were these two facts to hold, one could understand why weak common causes
in AQFT are genuine common causes, that is why they do not reduce to strong
common causes. (For more on this see (Hofer-Szabé and Vecsernyés 2014a, b).)

8.6 Conclusion and discussion

In this paper, we gave a framework connecting stochastic events and spacetime re-
gions, the isotone net framework of AQFT (Point 1) such that, on a certain specifi-
cation and localization of the events in question (Point 2), local causality, defined in
this framework in an appropriate way, implies (up to no-conspiracy) the standard
probabilistic characterization of the common causal explanation (Point 3). The
subtle roles of the choice of specification (atomic vs. non-atomic) and localization
(strong vs. weak) were analyzed with respect to the relations of the spatiotemporal
and probabilistic characterizations of the common cause. Specifically, it was shown
that (i) the existence of non-atomic probabilistic common causes does not follow
from the accommodation of the correlations in question into a locally causal net;
(ii) the probabilistic characterization of the common cause is also compatible with
weak common causes; and (iii) genuine weak common causes can be provided for a
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given correlation only at the cost of introducing a ‘built-in correlation’ between the
spacelike separated parts of the common cause. We also asked whether this latter
fact can help us understand how weak common causes arise naturally in AQFT.

Finally, we would like to briefly comment on an ongoing debate between Hen-
son, Rédei and San Pedro on “comparing-distinguishing-confounding causality prin-
ciples” (Henson, 2005; Rédei and San Pedro, 2012; Henson, 2013a). The debate is
about the status of a proposition proved in Henson (2005) claiming that the Strong
and Weak Common Cause Principles are equivalent. Here Strong/Weak Common
Cause Principles say that any atom of the algebra pertaining to the strong/weak
past of a pair of correlated events is a screener-off. The use of atoms (there called
"full specifications") in the Common Cause Principles is inspired—just as in this
paper—by Bell’s work (see also Norsen, 2011), and further motivated as a means
to evade Simpson paradoxes (see also Uffink, 1999). The first point to make is that
since Henson’s framework connecting spacetime regions and probability spaces is
not the isotone net formalism used in this paper, and his Common Cause Principles
are not the non-conspiratorial, local, joint common causal explanation (10.6)-(8.5)
(used to explain conditional correlations!), it is not easy to see how Henson’s result
exactly relates to ours. In the isotone net formalism only bounded regions are asso-
ciated to local algebras, whereas Henson’s "least domains of decidability" formalism
is not restricted to such regions. Rédei and San Pedro (2012) challenge Henson’s
result on the basis of its incompatibility with some propositions in AQFT (Rédei
and Summers, 2002, Proposition 3). They claim that Henson’s proof crucially de-
pends on the regions being allowed to be infinite; and they question the validity
of a similar proof for finite regions.® For finite regions, such as the regions in our
approach, Henson acknowledges that his proof "cannot be modified so that" the
two Common Cause Principles are equivalent; "at least not assuming that there
are no correlations between events on spacelike sections of initial hypersurface"
(Henson, 2005, 532). In the light of our results and discussion above, we would
like to interpret: (i) the first part of this quote as claiming that (provided the two
formalisms are equivalent) there is no contradiction between Henson’s proof and
our sharp distinction between weak and strong common causes; and (ii) the second
half of the quote as stating something parallel to Proposition 12. Nonetheless, it
would be highly desirable to investigate the relation between the two approaches
more thoroughly.
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STheir characterization of "finite", however, is defective, since the region they want to
have as infinite turns out to be finite; which fact is revealed in Henson’s (2013a) reply.
Here is a better characterization: V is finite iff (I_(V")\ (V"))" 2 V",
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Appendix A

Here we will show that if a set of correlations {(A,,, B,)|m,n = 1,2} has a local,
non-conspiratorial joint common causal explanation in the sense of (10.6)-(8.5), then
the following Clauser—Horne inequalities have to hold for any m,m’,n,n’ = 1,2;
m#m',n#n':

—1 < p(Am A Bplam Abp) + p(Am A Burlam Abn) + p(Ams A Bplam: A by)
—p(Apr A Bprlam: Abpr) — p(Amlam A byp) — p(Bplam Aby) < 0(8.47)

The derivation of (9.24) from (10.6)-(8.5) is simple. It is an elementary fact of
arithmetic that for any «, o', 8, 8 € [0, 1] the number

af+af' +a'f—a'f—a—p (8.48)
lies in the interval [—1,0]. Now let «, ', 3, 8¢ be the following conditional proba-
bilities:

a = p(Am|am Aby AC) (8.49)
of = p(Am/|am’ A bn’ N Ck) (850)
B = p(Bulam Abn A Cr) (8.51)
B = p(Bulam Aby ACk) (8.52)

Plugging (9.26)-(9.29) into (9.25) and using locality (8.3)-(8.4) one obtains

=1 < p(Amlam A by A Cr)p(Bnlam A by A Cr) + p(Am|am: Aby A Cr)p(Bp|am: A by A C)
+p(Amr|am/ A b, N\ Ck)p(Bn|am/ A b, A Ck) — p(Am/|am/ Aby N Ck)p(Bn/ |am/ Aby N Ck)
—p(Amlam A by A Cr) — p(Bylam A by ACk) < (B.53)

Using screening-off (10.6) one obtains

—-1< p(Am A Bn|am Aby, A Ck) er(Am A Bn/|am/ Ab, A Ck)
+p(Am/ A Bn|am/ Abp A Ck) — p(Am/ A Bn/|am/ Abpr A Ck)
—p(Am|am A by A Cy) — p(Bnlam ANby ACE) <0 (8.54)

Finally, multiplying the above inequality by p(C%), then summing up for the indices
k and using no-conspiracy (8.5) one arrives at (9.24).

Appendix B

Here we prove Proposition 13. Suppose that {C] A C7 A C]"} is a common cause of
the correlation between A,, and B, in the sense of (8.38)-(8.41) and suppose that
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Cj, C] and C}" are independent in the sense of (8.42). First, observe that (8.41)
and (8.42) together entail that:

plam Abn NCEACY NC") = plam A bn) p(CHp(CY)p(C")  (8.55)
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Then C} is a strong common cause. That is (8.43)-(8.46) hold:

P(Am A Bp A am Aby A C;’)
P(am A by A C]’-’)
855 2 P(Am A Bulam Aba A CiACY A G )p(am A bn)p(C7p(CY)p(CY)
p(am A by)p(CY)
Zp(Am|am A bn A C; A C;/ A Cllll)p(Bn|am A bn A C; A Cj” A Cl”/)p(cz()p((
il
Zp(Am|am ANby NCNCF)p(Brlam A b ACYANC)p(CHP(C))
il
p(Am|am Abp A C]’/)p(Bn|am Abp A C]’/)
P(Am A @ Aby A C]’/)
plam A b ACY)
55  2uP(Amlam Aby ACTACT N CI")p(am Aba)p(C)p(CY)p(Cl")
plam A bn)p(CY)
> p(Amlam Abu ACEACY A C)P(CHP(CL)
il
Y P(Am|am Abur ACNCY N CP )plam A bu)p(CHp(CF )p(Cl")
p(am A\ bn/)p(cgll)

p(Apm A Bplam A by A CJ’/) =

(8.38)
(8.39)(8.40)

(8.55)

(A lam A by ACY) =

(8.55) P(Am A am Abpr ACY)
plam A b ANCY)
p(By A am Aby ACY)
plam Abn ACY)
55 2aP(Balam Aby ACTACY A C")p(am A ba)p(CHP(CY)P(CT")
pam A bn)p(CY)

> p(Bulam: Aby ACiACY ACY)P(CP(CY)
il
Y P(Bulam: Aoy AC;ACY NG )plam: A bn)p(Ci)p(CY)p(C]")
pam: A ba)p(CY)

= p(Am|am Aby A CY)

P(Bnlam Aby ACY) =

(825) p(Bn A Qe A by N C]N)
p(am: Aby ACY)
Pam Aby ACY) = > p(am Abu AC;ACY ACT)
il

> plam Aby ACLACT")P(CY) = plam Abn) p(CY)

il

= p(Bn|am: Nbn ACY)

where the numbers over the equation signs refer to the equation used at that step.

171



dc_1495 17

References

Bell, J.S., “Beables for quantum field theory,” (TH-2053-CERN, presented at the
Sixth GIFT Seminar, Jaca, 2-7 June 1975); reprinted in J. S. Bell, Speakable
and Unspeakable in Quantum Mechanics, (Cambridge: Cambridge University
Press, 2004, 52-62.).

Bell, J.S., “La nouvelle cuisine,” in: J. Sarlemijn and P. Kroes (eds.), Between
Science and Technology, Elsevier, (1990); reprinted in J. S. Bell, Speakable and
Unspeakable in Quantum Mechanics, (Cambridge: Cambridge University Press,
2004, 232-248.).

J. Butterfield, “A Spacetime approach to the Bell inequality,” in: J. Cushing and E.
McMullin (eds.), Philosophical Consequences of Quantum Theory, Notre Dame,
114-144, (1989).

J. Butterfield, “Vacuum correlations and outcome independence in algebraic quan-
tum field theory” in D. Greenberger and A. Zeilinger (eds.), Fundamental Prob-
lems in Quantum Theory, Annals of the New York Academy of Sciences, Pro-
ceedings of a conference in honour of John Wheeler, 768-785 (1995).

J. Butterfield, “Stochastic Einstein Locality Revisited,” Brit. J. Phil. Sci., 58,
805-867, (2007).

C. Glymour, “Markov properties and quantum experiments,” in W. Demopoulos
and 1. Pitowsky (eds.) Physical Theory and its Interpretation, (Springer, 117-
126, 2006).

G. Grasshoff, S. Portmann and A. Wiithrich, "Minimal Assumption Derivation of
a Bell-type Inequality," Brit. J. Phil. Sci., 56, 663-680 (2005).

J. Henson, “Comparing causality principles,” Stud. Hist. Phil. Mod. Phys., 36,
519-543 (2005).

J. Henson, “Confounding causality principles: Comment on Rédei and San Pedro’s
“Distinguishing causality principles”,” Stud. Hist. Phil. Mod. Phys., 44, 17-19
(2013a).

J. Henson, “Non-separability does not relieve the problem of Bell’s theorem,” Found.
Phys., 43, 1008-1038 (2013b).

G. Hofer-Szab6, M. Rédei and L. E. Szab6, The Principle of the Common Cause,
(Cambridge: Cambridge University Press, 2013).

G. Hofer-Szab6 and P. Vecsernyés, “Reichenbach’s Common Cause Principle in
AQFT with locally finite degrees of freedom,” Found. Phys., 42, 241-255
(2012a).

G. Hofer-Szab6 and P. Vecsernyés, “Noncommuting local common causes for cor-
relations violating the Clauser—Horne inequality,” J. Math. Phys., 53, 12230
(2012D).

172



dc_1495 17

M.

. Hofer-Szabh6 and P. Vecsernyés, “Noncommutative Common Cause Principles in

AQFT,” J. Math. Phys., 54, 042301 (2013a).

. Hofer-Szab6 and P. Vecsernyés, “Bell inequality and common causal explanation

in algebraic quantum field theory,” Stud. Hist. Phil. Mod. Phys., 44 (4),
404-416 (2013b).

. Hofer-Szab6 and P. Vecsernyés, “On the concept of local causality in local clas-

sical and quantum theory,” Stud. Hist. Phil. Mod. Phys. (submitted) (2014a).

. Hofer-Szab6 and P. Vecsernyés, “Bell’s local causality for philosophers,” Phil.

Sci. (submitted) (2014b).

. Jarrett, “On the Physical Significance of the Locality Conditions in Bell Argu-

ments,” Nous, 18, 569-589, (1984).

. Muller and J. Butterfield, “Is Algebraic Lorentz-covariant Quantum Field Theory

Stochastic Einstein Local?,” Phil. Sci., 61, 457-74. (1994).

. Norsen, “J.S. Bell’s concept of local causality,” Am. J. Phys, 79, 12, (2011).
. Placek and L. Wronski, “On infinite EPR-like correlations,” Synthese., 167, 1-32

(2009).

. Reichenbach, The Direction of Time, (University of California Press, Los Ange-

les, 1956).

Rédei, “Bell’s inequalities, relativistic quantum field theory and the problem of
hidden variables,” Phil. Sci., 58, 628-638 (1991).

. Rédei, “Reichenbach’s Common Cause Principle and quantum field theory,”

Found. Phys., 27, 13091321 (1997).

. Rédei and J. S. Summers, “Local primitive causality and the Common Cause

Principle in quantum field theory,” Found. Phys., 32, 335-355 (2002).

Rédei and I. San Pedro, “Distinguishing causality principles,” Stud. Hist. Phil.
Mod. Phys., 43, 84-89 (2012).

Shimony, A., “Events and processes in the quantum world,” in: C. Isham and R.

M.

Penrose (eds.), Quantum Concepts in Space and Time, Oxford University Press,
London/New York, 1986.

Suérez, “Interventions and Causality in Quantum Mechanics,” Erkenntnis, 78 /3,
(2013).

Uffink, J., “The principle of the common cause faces the Bernstein paradox,” Phil.

Sci., 66 (3), 525 (1999).

Van Fraassen, B. C., “The Charybdis of Realism: Epistemological Implications of

Bell’s Inequality,” Synthese, 52, 25-38 (1982).

173



dc_1495 17

174



dc_1495 17

Chapter 9

Separate common causal
explanation and the Bell
inequalities

In the paper we ask how the following two facts are related: (i) a set of correlations
has a local, non-conspiratorial separate common causal explanation; (ii) the set
satisfies the Bell inequalities. Our answer will be partial: we show that no set
of correlations violating the Clauser-Horne inequalities can be given a local, non-
conspiratorial separate common causal model if the model is deterministic.

9.1 Introduction

According to the standard interpretation a common causal explanation of a set of
EPR correlations consists in providing a so-called common common cause system
that is a common screener-off for all correlations of the set such that this common
screener-off is local and non-conspiratorial. (For the precise definitions see below.)
However, it is well known that the assumption that a set of correlations has a
local, non-conspiratorial common common cause system results in various Bell in-
equalities. Since these Bell inequalities are violated for appropriate measurement
settings a common causal explanation of the EPR correlations is excluded—at least
according to this interpretation of the common causal explanation.

However, in 1996 Belnap and Szab6 came up with a weaker interpretation of
the common causal explanation (Belnap, Szabd, 1996). The idea was that a set
of correlations may not have a common common cause system but only a set of
separate common cause systems explaining the correlations separately. In 2000 Sz-
abo raised the question whether this idea provides a satisfactory common causal
explanation for the EPR scenario (Szabo, 2000). To test his idea Szabo took a set
of EPR correlations violating the appropriate Bell inequalities and then developed
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a computer program to generate local, non-conspiratorial separate common cause
systems for the given set. The result of the computer simulations was that the
chosen set of EPR correlations could be given a local separate common causal ex-
planation, however the common cause systems were conspiratorial in a very tricky
way. (See below.) Being unable to remove the unwanted conspiracies Szab6 con-
cluded the paper with the conjecture that EPR correlation can not be given a local,
non-conspiratorial separate common causal explanation.

Szab6’s idea inspired a whole series of papers devoted to the clarification of
the possibility of a separate common causal explanation of EPR correlations. In
2005 Grasshoff, Portmann and Wiithrich derived the Wigner-type Bell inequalities
from Szabo’s premises plus the assumption that the set of correlations consisted
of only perfect anticorrelations. (Grasshoff et al, 2005). The assumption of per-
fect anticorrelations, however, had two unpleasant consequences. First, the fate
of the separate common causal explanation of the EPR scenario hinged on a pre-
cise experimental test of perfect anticorrelations. Second, the assumption of perfect
anticorrelations reduced the separate common causal derivation of the Bell inequal-
ities to a standard common common causal derivation. This reduction has been
shown by Hofer-Szab¢ in (Hofer-Szabé, 2008). In the same paper Hofer-Szabé has
presented a derivation of Bell inequalities from local, non-conspiratorial separate
common causes without assuming perfect anticorrelations. Since a common cause is
a special common cause system (a common cause system of size 2) the result was not
general enough. In 2007 Portmann and Wiithrich have eliminated the restriction to
common causes from the derivation and derived the Clauser-Horne inequality from
local, non-conspiratorial separate common cause systems in the context of almost
perfect anticorrelations (Portmann and Wiithrich, 2007). Hofer-Szab6 generalized
this derivation for any Bell(d) inequality that is an inequality differing from some
Bell inequality in a term of order of § (Hofer-Szabd, 2011). In the light of this
derivation a § > 0 threshold could be given for any set of correlations violating
the standard Bell inequalities such that if an approriate subset of the original set
of correlations differ from perfect anticorrelations less then § then the set can not
be given a local, non-conspiratorial separate common causal explanation. These
results have settled the problem concerning the relation between the separate com-
mon causal explanations and the EPR scenario. However, they have not settled the
relation between the separate common causal explanations and the Bell inequalities.

On closer examination the strategies used in the papers of the above authors
(including the author of the present paper) had a very baffling structure. The
reaction of the authors to Szabd’s inability to provide a local, non-conspiratorial
separate common causal explanation for a set of EPR correlations was the following.
The chosen set of correlations cannot have a separate common causal explanation
since it violates a Bell inequality which can be derived from the assumption that
the given set has a local, non-conspiratorial separate common causal explanation.
Of course, the failure of a separate common causal explanation may result from
other reasons as well since separate common cause explanations may bring in other
constraints between the probability of the correlating events different from the Bell
inequalities; still the idea motivating the explanation of this fact was to derive
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some Bell inequalities from Szabd’s premisses. However, it was not that happened.
Instead of deriving the appropriate Bell inequality from the assumption that the
original set of the correlations chosen by Szabé has a local, non-conspiratorial
separate common causal explanation, all the mentioned authors have chosen another
set containing only perfect anticorrelations. Then from the assumption that this set
of perfect anticorrelations has a local, non-conspiratorial separate common causal
explanation they have derived a Bell inequality for the correlations of the original
set. So the Bell inequality they reached did not pertain to the original set but to
the newly chosen set of perfect anticorrelations.

The effort of all the subsequent papers (Portmann and Wiithrich, 2007), (Hofer-
Szabo, 2008) and (Hofer-Szabo, 2011) was to release the strong requirement of
perfect anticorrelations in the derivation and to substitute perfect anticorrelations
by almost perfect anticorrelations.

Of course, this strategy is impeccable as long as the aim of the proof is to
exclude a local, non-conspiratorial separate common causal explanation of the EPR,
scenario in general. However, it does not explain why Szabé could not provide a
local, non-conspiratorial separate common causal explanation for his own set of
correlations. Since Szabd’s concern was not to give a separate common causal
explanation for the perfect anticorrelation set, the violation of Bell inequalities
derived from the assumption that the perfect anticorrelation set has a separate
common causal explanation did not explain Szabd’s failure of providing a separate
common causal explanation for his own set. In order to explain this fact one should
derive some Bell inequalities from the assumption that Szabd’s original set has a
local, non-conspiratorial separate common causal explanation.

Here we will provide a partial answer to this problem. We will show that no set
of correlations violating the Clauser—Horne inequalities can be given a deterministic,
local, non-conspiratorial separate common causal explanation. Since the elimina-
tion of the requirement of determinism from the proof is not straightforward, the
general question whether correlations violating the Clauser-Horne inequalities can
be given a (not necessary deterministic) local, non-conspiratorial separate common
causal explanation remains open.

In Section 2 we summarize the assumptions of a local, non-conspiratorial com-
mon common causal and separate common causal explanation of a set of EPR
correlations respectively. In Section 3 we show in sketch the steps how these as-
sumptions result in the Clauser—-Horne inequalities if the set for which we are
looking for a local, non-conspiratorial separate common causal explanation is a set
of perfect or almost perfect anticorrelations. Finally, in Section 4 we drop these ex-
tra correlations and derive the Clauser-Horne inequalities from Szabé’s original set
of correlations for deterministic, local, non-conspiratorial separate common cause
systems.
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9.2 Common causal explanations of EPR correla-
tions

Consider the Bohm version of the EPR experiment with a pair of spin—% particles
prepared in the singlet state |U;). Let a; denote the event that the measurement
apparatus is set to measure the spin in direction a; in the left wing where i is an
element of an index set I of spatial directions; and let p(a;) stand for the probability
of a;. Let b; and p(b;) respectively denote the same for direction gj in the right
wing where j is again in the index set I. (Note that ¢ = j does not mean that
a; and l;j are parallel directions.) Furthermore, let p(A;) stand for the probability
that the spin measurement in direction a; in the left wing yields the result "up” and
let p(B;) be defined in a similar way in the right wing for direction Ej_ According
to quantum mechanics the quantum probability of getting “up” in direction a; in
the left wing; getting “up” in direction 5}- in the right wing; and getting "up” in
both directions a; and gj are given by the following relations

TT(VVN’s) (PAi ® I)) = (9.1)

TT(WWS) (I & PBJ')) = (92)

Oa.b.
in2 [ 249
sin ( 5 ) (9.3)

where T'r is the trace function; W)y, is the density operator pertaining to the pure
state |¥,); Pa, and Pp, denote projections on the eigensubspaces with eigenvalue

Tr(Wig,y (Pa;, ® Pp;)) =

N = N~ DN

+1 of the spin operators associated with directions a@; and 5j respectively; and 04,p,
denotes the angle between directions d@; and gj.

down down

Figure 9.1: EPR-Bohm setup for spin—% particles

The standard way to interpret quantum probabilities is to identify them with
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conditional probabilities as follows:

p(Ai|aibj) T’I“(WW (PA'L & I)) (9.4)
p(Bj|aibj) = T’I“(W (I X PBJ)) (95)
p(Asz|aij) = T(WN/S) (PAI (24 PB].)) (96)

where the events A;, B;, a;, and b; (i,j € I) respectively are elements of a classical
probability measure space (X, S,p) and the conditional probabilities are defined
in the usual way. With this identification quantum mechanics predicts correlation
between classical conditional probabilities for non-perpendicular directions @; and
bji

p(AiBjlabj)  #  p(Ailaib;)p(Bjlaib;) (9.7)

Specially, if the measurement directions a; and I;j are parallel then there is a perfect
anticorrelation between the outcomes A; and B;:

p(AiBj|aibj) =0 (98)

A further consequence of (9.4)-(9.5) is the so-called surface locality that is for any
i,1,7,7 € I the following relations hold

p(Ailaib;) = p(Ailaiby) (9.9)
p(Bjlaib;) = p(Bjlaib;) (9.10)

Now, let (A;,B;) (i,j € I) denote a pair correlating conditionally according to
(10.1) and let {(A;, B;)}i jer stand for a set of correlating pairs pertaining to the
index set I. What does a common causal explanation of the set {(A;, Bj)}i jer
of correlations consist in? In the following we expose the components of such an
explanation.

Let us begin with the definition of the common cause. Let (X, S,p) be a classical
probability measure space and let A and B be two (positively) correlating events.
Then the common cause of the correlation is the following:

Definition 12. An event C in S is said to be the common cause of the correlation
between events A and B only if the events A, B and C satisfy the following relations:

p(ABIC) = p(A|C)p(B|C) (9-11)
p(ABIC+) = p(A|CH)p(BIC) (9-12)
p(AIC) > p(AlCH) (9.13)
p(BIC) > p(B|CY) (9.14)

where C* denotes the orthocomplement of C. Equations (10.2)-(10.3) are called
screening-off properties since conditioning on C' and C* respectively screens off the
correlation between A and B. Inequalities (10.4)-(10.5) express positive statistical
relevance of the cause C' on the two effects A and B respectively.
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The above definition of the common cause goes back to Reichenbach (Reichenbach,
1956); (although Reichenbach himself did not regard (10.2)-(10.5) as a sufficient
condition for an event to be a common cause). From the time of Reichenbach’s
first characterization on the common cause concept has been generalized in two
important ways. First, it has been generalized for situations where there are more
than one causes present that is for a system of cooperating common causes (Hofer-
Szabo, Rédei, 2004, 2006). Second, the inequalities expressing positive statistical
relevance have gradually been redarded as being too restrictive and hence have
been dropped. As a result the common cause has been characterized simply as a
screener-off partition of the algebra defined as follows:

Definition 13. Let again (X, S, p) be a classical probability measure space and let
A and B be two correlating events in S. Then a partition {Cy}, ., in S is said to
be the common cause system of the correlation between events A and B if and only
if the following factorization holds for all k € K:

p(ABI|Cy) = p(A|Cy)p(B|Ck) (9.15)

where |K|, the cardinality of K is said to be the size of the common cause system.
A common cause system of size 2 is called a common cause.

Definition 13 of the common cause system referred to a single correlation. How-
ever, generally we are looking for the causal explanation for a set of correlations.
This explanation can be understood in two different ways. Either we provide a
separate common cause system for each separate correlation of the given set; or
we are looking for a so-called common common cause system that is a partition
screening off all correlations of the set. This latter option puts extra requirements
on the explanation since it demands that the common cause system pertaining to
the different correlations be the same.

Now, let us apply the concept of common cause systems to EPR correlations. First
note that EPR correlations are conditional correlations in the sense of (10.1) where
the conditions represent the choice of the measurement directions. Looking at the
spatiotemporal arrengement of the events representing the measurement choices
and the measurement outcomes respectively in the opposite wings and the set of
events representing the common cause system at the source we can read off the
following two spatial separations. The outcome events A; in the left wing are
spatially separated from the measurement choice events b; in the right wing; and
similarly events B; are spatially separated from events a;. The measurement choice
events a; and b; are spatially separeted from the events of the common cause system
{C%}. Turning these two spatiotemporal considerations in statistical relationships
we get, the so-called locality and no-conspiracy requirements. Applying the above
definition of the common cause systems that is the screening-off requirement for
conditional probabilities we obtain altogether three demands that a common causal
explanation should satisfy. If we demand on the top that the common cause sytem
be the same for all correlations of the given set then we arrive at a local, non-
conspiratorial common common causal explanation.
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Definition 14. Let {(A;, B;)}i jer be a set of correlating pairs pertaining to the
index set I such that A;, Bj, a; and b; are elements of a classical probability
measure space (X,S,p). Then a local, non-conspiratorial common common causal
explanation of the set {(A;, Bj)}i jer consists in providing a partition {Cy}rex of
S such that {Cj }rek is local, non-conspiratorial and screens off all the correlations
of {(A;, Bj)}i jer in the sense that for every ,4',7,j’ € I and k € K the following
relations hold:

p(Ailaib;jCr) = p(Ailaby Cr

p(BjlaibjCk) = p(Bjla;b;Cy,

p(aib;Cx) = p(aib;)p(Cr

P(A;Bjlaib;Cr) = p(A;|aib;Cr)p(B;|aib;Cr

locality)
locality)

no-conspiracy)

N — — —
~ N /N

screening-off)

On the other hand, if we let the common cause sytem be different for the
different correlations of the set then our explanation will be called a local, non-
conspiratorial separate common causal explanation.

Definition 15. Let {(A;, Bj)}ijer be a set of correlating pairs pertaining to
the index set I such that A;, Bj, a; and b; are elements of a classical proba-
bility measure space (X,S,p). Then a local, non-conspiratorial separate common
causal explanation of the set {(A;, B;)}: jer consists in finding a separate parti-
tion {C,ij}k(ij)eK(i7j) of S for each correlation in {(A;, Bj)}i jer such that each
{C’,ij Yr(ij)ek (i, is local, non-conspiratorial and screens off the appropriate corre-
lation in {(A;, Bj)}i jer in the sense that for every ¢,¢, j, 7' € I and k(ij) € K(3,j)
the following relations hold:

p(Ailaib; C’”) p(Ailaibj C
p(Bjlaib;C) = p(Bjla;b;Cy

)
)
plaibiF') = plaib;)p(F)
p(AiBjlaib;Cy/) = p(Ailaib;C )p(Bjlaib; C )

9.20

9.21
9.22

9.23

locality)

locality)
no-conspiracy)

( (9-20)
( (9-21)
( (9-22)
( (9.23)

screening-off)

where F' in equation (10.20) is an element of the algebra S’ C S generated by all
the elements of every separate common cause system.

To motivate why it is important to demand no-conspiracy (10.20) in this strong
sense namely for any element of the generated algebra and not just for the C} ele-
ments, recall the tricky conspiracies in Szabd’s separate common causal model. As
mentioned in the Introduction Szabo was able to construct a local separate common
causal model for a special set of EPR correlations that was non-conspiratorial in the
sense the every a; and b; were independent of every C/; K However, this model was
conspiratorial at a deep level—the measurement ch01ces a; and b; correlated with

some disjunctions of elements of separate common cause systems such as C’,ij UC,i,,j y
To exclude all these type of conspiracies we demand no-conspiracy in the strong
form (10.20).
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Now, we turn to the relation between the local, non-conspiratorial common or
separate common causal explanations of the EPR correlations on the one hand and
the Bell inequalities on the other.

9.3 Bell inequalities

Now, let us be more specific concerning our set {(A;, Bj)}i jer. Let the correlation
set consist of four correlating pairs (A;, Bs), (A1, By), (A2, Bs) and (As, Bs). The
standard question is usually whether this set can be given a local, non-conspiratorial
common common causal explanation in the sense of Definition 14. The answer is
well known. {(A;, Bj)}i=1,2;j=3,4 can be given a local, non-conspiratorial common
common causal explanation only if the correlations of the set for any 4,7 = 1,2;
4,7 =3,4and i £ 1,5 # 5 satisfy the Clauser—Horne inequalities

—1 < p(A;Bjlaib;) + p(A; Bjrlaibj) + p(Ai Bjlaib;) — p(Ai Bjlaibj) — p(Ai|aibj) — p(Bjlaib;) < (9.

The proof is simple. It is a trivial fact of arithmetic that for any o, o/, 8,8’ € [0,1]
the expression

aB+af +d/B-ad'B —a-8 (9.25)
lies in the bound [—1,0]. Now let o, o/, 3, 8’ be the following conditional probabil-
ities:

o = p(Ai]aibyCy) (9.27)
B = p(Bjlaib;C) (9.28)
B = p(BjlaibyCy) (9.29)

Plugging (9.26)-(9.29) into (9.25) and using locality (9.16)-(9.17) one gets that
=1 < p(Aiaib;Cy)p(Bjlaib;Cr) + p(Ailaib;Cy)p(Bj|aib;Cy) + p(Air|aib;Cr)p(Bjlaib;Cy)
—p(Ai|airbj Cr)p(Bjlaibjy Cr) — p(AilaibjCr) — p(Bjlaib;Cy) < 0
Using screening-off (10.17) one gets that
—-1< p(AiBj|aibjC’k) +p(AiBj/ |ai/bjC’k) +p(Ai/Bj|ai/bjCk)
—p(Ai Bj|airbj Cr) — p(Ailaib;Cr) — p(BjlaibjCr) <0

Finally, multiplying by p(C%), summing up for the indices k and using no-conspiracy
(10.16) one obtains (9.24).

An example for a correlation set which violates (9.24) and hence can not be given
a local, non-conspiratorial common common causal explanation is the one Szabo
used in his paper (2000). Here the angles 0,,, between the directions @; and gj are
set as follows:

2w
0a1b3 = 9a1b4 = 9,121,3 = ? and 9a2b4 = 0 (930)
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For this choice of the measurement directions there is a conditional correlation for
every (A;, B;) pair (i =1,2; j = 3,4):

g =p(A1Bslaibs) # p(Ailaibs) p(Bslaibs) = % . % (9.31)
g =p(Ai1Ba|arbs) # p(Ailaibs) p(Balarbs) = % : % (9-32)
g = p(A2Bslasbs) # p(Az|azbs)p(Bslasbs) = % : % (9-33)
0 = p(A2Bslazbs) # p(Az]azbs) p(Balazbs) = % : % (9.34)

Denote this set of correlations by {(A4;, B;)}cu- This set violates the Clauser—Horne
inequality

-1 < p(A1B3|a1b3) +p(AlB4|a1b4) +p(AgB4|a2b4) 7P(A2B4|0,2b4) - p(A1|a1b3) - p(Bg|a1b3) g @35)

at the upper bound as follows:

3 3 3 1 1

Cr24Z20-2-2 £ 0 9.36

8 + 8 + 8 2 2 % ( )
Consequently, {(A;, Bj)}cn can not be given a local, non-conspiratorial common

common causal explanation.

Now, let us go over to the question whether {(A4;, Bj)}cw (or any other correlation
set violating the Clauser—Horne inequalities) can have a local, non-conspiratorial
separate common causal explanation. As mentioned in the Introduction Szabd
was unable to present a local, non-conspiratorial separate common cause model for
{(Ai, Bj)}cnu because of the unwanted conspiracies. The natural intuition towards
this fact was that a local, non-conspiratorial separate common causal explanation
of the set {(A;, Bj)}cn results in some Bell inequalities—for example in the above
Clauser—Horne inequalities—and the violation of these inequalities for the above
setting is responsible for the lack of a separate common causal explanation. Thus,
the program has been to show up a derivation of some Bell inequalities from the
assumption that {(4;, Bj)}cn has four local, non-conspiratorial separate common
cause systems satisfying (9.20)-(10.21).

Curiously enough, none of the authors has taken this route. Instead of taking
the above set and then searching for a derivation of some Bell inequality from the
assumption that this set has a local, non-conspiratorial separate common causal
explanation they have chosen another set. This set again consisted of the four
correlations of {(A;, B;)} (i = 1,2,3,4) for any of which the angle ,,,, was set to
0. In other words, this set was composed of perfect anticorrelations. Denote this set
by {(A;, Bi)} pa. For the relation between the sets {(A4;, Bj)}cu and {(4i, Bj)} pa
see Figure 9.2 where the continuous lines represent the Clauser—Horne correlations
and the dotted lines represent the perfect anticorrelations.

Now, the reasoning has run as follows (for the details see (Grasshoff et al.
2005) and (Hofer-Szabo, 2008)). Suppose that {(A;, B;)}pa has a local, non-
conspiratorial separate common causal explanation that is four local, non-conspiratorial
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Figure 9.2: The Clauser—Horne correlation set and the perfect anticorrelation
set

separate common cause systems {Ci' }re sy (i = 1,2, 3,4) satisfying (9.20)-(10.21).
Since {(A;, B;)}pa consists of only perfect anticorrelations it is easy to show that
from assumptions (9.20)-(10.21) it follows that for any ¢ = 1,2, 3,4 there exist a
vector £ € {0,115 such that defining C* and C*'* as

ci= | sich otz | - (9.37)

keK (1) keK (1)

the partitions {C%, C¥+} (i = 1,2,3,4) will be local, non-conspiratorial separate
common causes that is a separate common cause systems of size 2 for the set
{(A;, B;)} pa. Moreover, every {C% C%L} will satisfy (9.20)-(10.21) deterministi-
cally that is each term in (9.20)-(10.21) will be either 0 or 1. Finally, the probability
of the separate common causes will equal to the probability of the conditional prob-
abilities p(Az|asz) and p(Bz|a1bz)

p(C") = p(Ailaib;) (9.38)
p(C"™) = p(Bilaibi) (9.39)

Notice that in this reasoning there has been no mention of the original set {(A;, Bj)}cu-
How do the correlations of {(A;, Bj)}cm come into the picture?

The joint and marginal conditional probabilities of the Clauser—-Horne correla-
tions appear simply using locality (9.20)-(9.21) and no-conspiracy (10.20) for the
perfect anticorrelation set. That is for any 4,7 =1,2,3,4;9 # j

p(C") = p(Aslaiby) (9.40)
p(CHL) = p(Bjlasby) (9.41)
p(C"CHH) = p(A;Bjlashy) (9.42)

Now, consider the four events C1t, C?2, 033+ and C**+ in S. For these events
the following simple probabilistic constraint applies:

-1< p(cllcSSJ_) +p(cllc44l_) +p(022033l_) _ p(022044J_) _p(cll) _ p(CSSJ_) < @43)
Subtituting the probabilities of (9.43) by the conditional probabilities of (9.40)-
(9.42) we get the Clauser-Horne inequality (9.35) for the correlation set {(A;, Bj)}cH.
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Since for the measuring setup (9.30) this inequality is violated there can be given
no local, non-conspiratorial separate common causal explanation of the perfect an-
ticorrelation set {(Ai, Bj)}pa!

To put is briefly, the necessary condition for {(A;, Bj)}pa to have a local, non-
conspiratorial separate common causal explanation is that {(A;, Bj)}cm satisfies
the Clauser-Horne inequality (9.35).

The papers (Portmann and Wiithrich, 2007) and (Hofer-Szabo, 2008, 2011) have re-
peated the same argumentation for almost perfect anticorrelations. Here we sketch
the argument of (Hofer-Szabé, 2011). Consider again a set consisting of four corre-
lating pairs {(A;, B;)}i=12,3,4 and suppose that for any i = 1,2, 3,4 the angle 6,,s,
between the measurement choices is such that

|7 — 0u,p;] < 2arcsinyv1—26 (9.44)
or more simply, let the correlations be such that for any i = 1,2, 3,4

Denote such a set, of correlations by {(A;, B;)} pa(s)- Again suppose that {(A;, Bi)}pa(s)
has a local, non-conspiratorial separate common causal explanation. As above,
from this assumption it follows that there exist a vector €% € {0,1}% for any

i = 1,2,3,4 such that defining C* and C*' as in (9.37) one get four partitions
{C% C¥LY,_1 534 for which—instead of (9.38)-(9.39)—the following inequalities
will hold:

|p(C”) — p(Ai|aib;)]|
Ip(C*F) = p(Bilasbs)|

Call these partitions quasi common causes since although they are constructed out
of the elements of the common cause systems {C}'} they do not satisfy screening-off
(10.21) (however they satisfy locality (9.20)-(9.21) and no-conspiracy (10.20)).

Now as above, using locality (9.20)-(9.21) and no-conspiracy (10.20) for the set
{(As, Bi)} pa(sy we get that for any i,j = 1,2,3,4

46 (9.46)

<
< 46 (9.47)

Ip(C™) = p(Ailaib;)| < 46 (9.48)
[p(C¥+) — p(Bjlaib;)| < 46 (9.49)
[p(CTCHL) — p(A;Bjlaiby)| < 85 (9.50)

Consider again inequality (9.43) composed of the quasi common causes C*!, 0?2
C33L and C*** and substitute the probabilities of (9.43) by the conditional prob-
abilities of (9.48)-(9.50). Each substitution will cause an error of order of either 446
or 8). Adding up the errors we obtain the following inequality.

—1< p(AlBg|a1b3) +p(AlB4|a1b4) +p(AgB3|a2b4) —p(AgB4|a2b3) — p(A1|a1b3) — p(Bg|a1b3) — 400 < (951)

We refer to this inequlity as a Clauser—Horne(d) inequality since (9.51) differs from
the original Clauser-Horne inequality (9.43) in a term of order of 4. Again for
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the measuring setup (9.30) the Clauser-Horne(d) inequality (9.51) is violated as

long as § < ﬁ. This excludes a local, non-conspiratorial separate common causal

explanation of the almost perfect anticorrelation set {(A;, Bj)}pas)-

This strategy can be generalized for arbitrary Bell(d) inequality. In (Hofer-Szabo,
2011) a recipe has been given for deriving any Bell(d) inequality composed of
marginal probabilities p(A;|a;b;), p(Bjla;b;) and joint probabilities p(A4;Bj|a;b;).
The recipe is roughly this. Consider a Bell inequality resulting from the local, non-
consipratorial common common causal explanation of a set {(A;, B;)} of correla-
tions. Consider the set {(A;, B;)}pa(s) of almost perfect anticorrelations pertaining
to the events A; or B; which appear in either a marginal or a joint probability in
the Bell inequality. Suppose that {(A;, Bj)}pa(s) has a local, non-conspiratorial
separate common causal explanation. This assumption results in a Bell(d) inequal-
ity differing from the original Bell inequality in a term of order of § where the exact
magnitude of this term is the function of the approximation. Choose the setting
which violates the Bell inequality maximally. If the § term is smaller than the
violation of the original Bell inequality than the new Bell(§) inequality will also be
violated—excluding a local, non-conspiratorial separate common causal explanation
almost perfect anticorrelation set {(A;, Bj)}pa(s)-

9.4 No deterministic, local, non-conspiratorial sep-
arate common causal explanation of the Clauser—
Horne set

In the last Section we have posed a question and answered another one. The
question was whether the set {(A4;, B;)}cn has a local, non-conspiratorial sepa-
rate common causal explanation. However, the answer was this. The necessary
condition for {(A;, Bj)}pa (or {(Ai, Bj)}pacs)) to have a local, non-conspiratorial
separate common causal explanation is that {(A4;, Bj)}cu satisfies the Clauser—
Horne inequality (9.24). This answer is perfectly adequate if our intention is to
exclude the local, non-conspiratorial separate common causal explanation of the
EPR scenario as such—as it was the aim of the paper (Grasshoff et al. 2005).
But it does not at all explain the fact why Szabo6 was not able to give a local, non-
conspiratorial separate common causal explanation of his original set {(A;, Bj) }cH.
This latter question can be answered only if we derive some Bell inequalities from
the assumption that the original set {(A;, Bj)}cwy has a local, non-conspiratorial
separate common causal explanation; or we show up other reasons for the failure.
In this Section we give an answer to the original question—a partial answer
confined to the deterministic case. The answer is this. {(4;, Bj)}cm can not
have a deterministic, local, non-conspiratorial separate common causal explanation
since this separate common causal explanation implies the same Clauser—Horne
inequalities as the local, non-conspiratorial common common causal explanation.
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Proposition 13. Let {(A;, Bj)}i=1,2;j=3,4 be a set of correlating pairs such that A;,
Bj, a; and b; are elements of a classical probability measure space (X, S, p). Suppose
furthermore that {(A;, Bj)}i=1,2;j=3,4 has a deterministic, local, non-conspiratorial
separate common causal explanation in the sense that there exist a separate par-
tition {C}’ }r(ij)ex i, of S for each correlation of {(A;, Bj)}i=1,2;j=34 such that
{C;]}k(ij)el((i,j) satisties (9.20)—(10.21) and p(Ai|aibjC,?),p(Bj|aibjC,?) S {0,1}
for any ¢ = 1,2;5 = 3,4 and k(ij) € K(i,7). Then for any i,i' = 1,2;5,7 = 3,4;
i #1i',j # j' the Clauser—Horne inequality (9.24) follows.

Proof. Consider the separate common cause system {C,ij,} (1 =1,2;5 = 3,4)
pertaining to the correlation (A;, Bj/) and let K’ denote the set of those indices
k € K for which

p(AiBj/|aibj/C,ij/) = 1 (9.52)

Similarly consider the separate common cause system {Cli/j Y@ =1,25 = 3,4
i # 1,7 # j') pertaining to the correlation (A;, B;) and let L’ denote the set of
those indices [ € L for which

p(AvBjlapb;Cj7) = 1 (9.53)

With the index sets K’ and L’ in hand define the following two elements of the
algebra generated by the separate common cause systems {C}’ } and {C]”’}

ci = |Jof (9.54)
keK’

¢ o= Yo (9.55)
leL’

Now, since due to locality (9.20)-(9.21) for any k € K’ and [ € L'

p(Ailaib ) = 1
p(Bjlaib; i) = 1
and hence for C%" and C?'
p(Ai|aibjCij/) = 1
p(Bjlaib;C77) = 1
it follows that
aib;C7 C A, (9.56)
aib;C"7 C B (9.57)

except for a set of zero measure. From (9.56)-(9.57) we obtain that

ab; (CY" U C?7)y C A;UB,

187



dc_1495 17

again except for a set of zero measure and hence
plaibj(C7 UCTT)) < p(A;UB)
which using no-conspiracy (10.20) results in
p(C7 UCTT) < p(A;i U Bjlaiby) = p(Ailaib;) + p(Bjlaib;) — p(A; B;|a:l9)58)

Again, due to locality (9.20)-(9.21) from (9.52)-(9.53) for any k € K’ and [ € L'
one gets

p(Bylaby CF) = 1

p(AvlabyCj7) = 1
and hence

p(BjlaibyC) = 1 (9.59)

p(Avlagby C77) = 1 (9.60)
From (9.59)-(9.60) we obtain that

ai/bjrCij/ C By

ai/bj/Ci/j C Ay

except for a set of zero measure and hence
agby (CY'CY9) C AyBj (9.61)
again except for a set of zero measure. From (9.61) it follows that
plawby (CV'C*7)) < p(AvBy)
or using no-conspiracy (10.20)
p(CY'C"Y < p(AyBjlagbj) (9.62)

Now, from (9.52)-(9.53) using the theorem of total probability and no-conspriracy
(10.20) one obtains that

p(Cij/) p(AiBj|a;bjr)
p(C"7) = p(AwBjlaib;)

which using the fact that
p(CTUCT) = p(CT) +p(C) = p(CT CT)
transforms (9.62) into
p(CT UC™) = p(AiBylaiby) + p(Av Bjlagb;) — p(Ay Bylagby) (9.63)

Constrasting (9.58) to (9.63) we get the Clauser—Horne inequality (9.24) at the
upper bound. To get the inequality at the lower bound just replace A; by Ai- and
follow the steps of the above reasoning. [
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9.5 Conclusions

In the paper we addressed the problem as to why Szab6 (2000) was unable to yield a
local, non-conspiratorial separate common causal model for the EPR scenario. We
have shown that the usual answer claiming that the correlation set used by Szab6
violates the Clauser—Horne inequalities if we assume that there is a local, non-
conspiratorial separate common causal model of another set, is not satisfactory.
To explain Szabd’s situation one should derive some Bell inequalities from the
assumption that there is a local, non-conspiratorial separate common causal model
of the original set.

Here we provided a partial answer to this problem. We have shown that no set
of correlations violating the Clauser—Horne inequalities can be given a determinis-
tic, local, non-conspiratorial separate common causal explanation. This result was
partial since we could not eliminate the requirement of determinism from the proof.
So we conclude the paper with the following

Open question: Is it true that no set of correlations violating the Clauser—Horne
inequalities can be given a (not necessarily deterministic) local, non-conspiratorial
separate common causal explanation? Or in other words, does Proposition 13 hold
generally that is without the assumption that p(A;|a;b;C,’), p(Bjla;b;C}) € {0,1}
for any i = 1,2;j = 3,4 and k(ij) € K(i,5)?
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Chapter 10

EPR correlations, Bell
inequalities and common cause
systems

Standard common causal explanations of the EPR situation assume a so-called
joint common cause system that is a common cause for all correlations. How-
ever, the assumption of a joint common cause system together with some other
physically motivated assumptions concerning locality and no-conspiracy results in
various Bell inequalities. Since Bell inequalities are violated for appropriate mea-
surement, settings, a local, non-conspiratorial joint common causal explanation of
the EPR situation is ruled out. But why do we assume that a common causal
explanation of a set of correlation consists in finding a joint common cause system
for all correlations and not just in finding separate common cause systems for the
different correlations? What are the perspectives of a local, non-conspiratorial sep-
arate common causal explanation for the EPR scenario? And finally, how do Bell
inequalities relate to the weaker assumption of separate common cause systems?

10.1 Introduction

In the history of probabilistic causation Reichenbach’s definition (Reichenbach,
1956) was the first formal grasp of the notion of common cause. The concep-
tual novelty of the Reichenbachian definition has attracted immense interest among
philosophers of science from the very beginning (Salmon, 1975; van Fraassen, 1982).
From the physical side, the need for a common causal explanation of the EPR, situa-
tion called attention to the definition of the common cause, even though in standard
hidden variable strategies a slightly different common causal concept than the Re-
ichenbachian has been applied (Bell, 1971; Jarrett, 1984; van Fraassen 1989). An
important step in the conceptual clarification of the common cause in the EPR-Bell
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situation was the paper of Belnap and Szab6 (1996) in which the difference between
the so-called joint and separate common cause had been first recognized. Belnap
and Szabo pointed out that in standard common causal explanations of the EPR
correlations common cause is actually meant as a joint common cause accounting
for all correlations.

Concerning the algebraic-probabilistic features of the Reichenbachian common
cause Hofer-Szabo, Rédei and Szabé (1999) proved the following proposition. Clas-
sical (and also non-classical) correlations can be given a probabilistic common causal
explanation in the sense that any classical probability measure space with corre-
lating pairs of events can be extended such that the extension contains a Reichen-
bachian separate common cause for each correlation. (For the precise definitions see
below.) Then in (Hofer-Szabé, Rédei, Szabd, 2002) it was proven that this propo-
sition does not apply if Reichenbachian separate common causes are replaced with
Reichenbachian joint common causes. In other words, classical probability measure
spaces containing correlating pairs of events generally cannot be extended such that
the extension contains a Reichenbachian joint common cause for all correlations.
Thus, being a joint common cause of a set of correlations turned out to be a much
stronger demand than being a common cause of a single correlation.

The first to apply the concept of separate common cause to the EPR situa-
tion was Szabd (2000). Since factorizability, locality and no-conspiracy together
entail various types of Bell inequalities, EPR correlations cannot be given a local,
non-conspiratorial, joint common causal model. Now, Szabd’s idea was to replace
the joint common causes with separate common causes and thus to give a separate
common causal model for the EPR correlations. He constructed a number of sep-
arate common causal models which were local and non-conspiratorial in the usual
sense that the measurement settings were statistically independent of the differ-
ent, common causes. However, the models were conspiratorial on a deeper level.
The measurement settings statistically correlated with various algebraic combina-
tions of the separate common causes. This fact called attention to the subtle but
important difference between the so-called weak no-conspiracy where statistically
independence is required only from the measure settings and the common causes
themselves, and strong no-conspiracy where statistically independence is required
from any Boolean combination of the measure settings and any Boolean combina-
tion of the common causes. After numerous computer simulations aiming to remove
the unwanted conspiracies Szab6 concluded with the conjecture that EPR cannot
be given a local, strongly non-conspiratorial, separate common causal model.

The conjecture of Szabd has been first proven by Grasshoff, Portmann and
Wiithrich (2005). The proof consisted in deriving some Bell inequality from the
same assumptions that Szabé intended to apply in his separate common causal
models for the EPR correlations. A crucial premise of this derivation was that the
(anti)correlation between some events be perfect. Assuming perfect anticorrelations,
however, turned the separate common causal explanations into a joint common
causal explanation. This fact has been shown in (Hofer-Szabo, 2008). In the
same paper Hofer-Szabo eliminated the assumption of perfect anticorrelations and
presented a separate common causal derivation of some Bell-like inequalities (Bell(6)
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inequalities). At the same time Portmann and Wiithrich (2007) presented a very
similar result for the Clauser-Horne inequality replacing separate common causes
with the more general notion of the so-called separate common cause systems (see
below). Finally, in Hofer-Szabo6 (2011, 2012) a general recipe has been given how
to derive any type of Bell(d) inequality provided that the original Bell inequality
can be derived from a set of perfect anticorrelations.

Although due to the above proofs the separate common causal explanation of
the EPR scenario has been excluded, there is a sense in which Szabd’s conjecture
is still not decided. Szabd’s original conjecture referred to the so-called Clauser—
Horne set that is a set of four correlations violating the Clauser—Horne inequality.
His question was as to whether the Clauser—Horne set can be given a local, strongly
non-conspiratorial, separate common causal model. Interestingly enough—in the
face of the above results—this question is still open.

In Section 2 we make explicit the concepts and propositions introduced infor-
mally in the Introduction. In Section 3 the standard joint common causal expla-
nation of EPR, correlations will be recalled. In Section 4 and 5 we explicate what
has been and what has not been proven in the local, non-conspiratorial, separate
common causal explanation of the EPR scenario. We conclude the paper in Section
6.

10.2 Joint and separate common cause systems

Let us start the common causal explanation with Reichenbach’s (1956) definition
of the common cause. Let (X,p) be a classical probability measure space and let
A, B € X be two positively correlating events, i.e.

p(AN B) > p(A)p(B) (10.1)
Reichenbach then defines the common cause of the correlation as follows:

Definition 16. An event C' € ¥ is said to be the Reichenbachian common cause
of the correlation between A and B, if the events A, B and C satisfy the following
relations:

p(ANB|C) = p(A|C)p(B|C) (10.2)
p(ANBIC) = p(A|C)p(BIC) (10.3)
p(AIC) > p(A[C) (10.4)
p(BIC) > p(BIC) (10.5)

where C' denotes the complement of C' and the conditional probability is defined in
the usual way. Equations (10.2)-(10.3) are referred to as “screening-off” properties
and inequalities (10.4)-(10.5) as “positive statistical relevance” conditions. (Here
we do not discuss the problem as to whether conditions (10.2)-(10.5) are necessary
or sufficient conditions for an event C' to be a common cause and simply take them
to be the definition of the common cause.)
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Physicists use the notion of ’common cause’ in a different meaning. We obtain
this meaning if (i) we drop the positive statistical relevance conditions (10.4)-(10.5)
from the definition, and (ii) we do not restrict the screening-off properties (10.2)-
(10.3) to the partition {C,C} of X:

Definition 17. Let (3,p) be a classical probability measure space and let (A4, B)
be a correlating pair of events in ¥. A partition {Cy} (k € K) of ¥ is said to be the
common cause system of the pair (A, B) if for all k¥ € K the following conditions
are satisfied:

p(AN B|Cy) = p(A|Cr)p(B|Ck) (10.6)

The cardinality |K| (the number of events in the partition) is called the size of the
common cause system. We will refer to a common cause system of size 2 (that is
of the form {C,C}) as a common cause. (Sometimes we will also refer to C' as a
common cause.)

Now, let (X,p) be a classical probability measure space as before and let
(A1, B;1) and (As, Bs), respectively be two positively correlating pairs of events
in ¥, i.e. fori=1,2

p(Ai N B;) # p(Ai)p(Bi) (10.7)

In order to give a common causal explanation for both correlating pairs we have
two options. Either we assume that the two correlations arise from the same causal
source or we attribute different, causal sources to the correlations. In the first case
we explain the correlation by a so-called joint common cause system, in the second
case we employ two separate common cause systems. The definition of joint and
separate common cause systems, respectively are the following:

Definition 18. A partition {Cy} (k € K) of X is said to be the joint common cause
system of correlations (A;, B;) (¢ = 1,2), respectively if for i = 1,2 and k € K the
following relations are satisfied:

p(A; N Bi|Cy) = p(Ai|Cy)p(Bi|C) (10.8)

Definition 19. Two different partitions {CL} (i = 1,2; k(i) € K(i)) of ¥ are
said to be separate common cause systems of the correlations (A4;, B;) (i = 1,2),
respectively if for ¢ = 1,2 and k(i) € K (i) the following relations hold:

p(A; N B;|C}) = p(Ai|CL)p(B;i|C) (10.9)

Having defined different common causal structures let us turn to the procedure
of causal explanation. A common causal explanation of a given correlation is re-
alized mathematically by the extension of the probabilistic measure space in such
a way that for the original correlation there exists a common cause system in the
extended probabilistic measure space. In the case of two (or more) correlations we
can extend the algebra in two different ways according to our causal intuition. In
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order to model a joint common causal source of the correlations we extend the al-
gebra such that in the extended algebra all correlations have a joint common cause
system. On the other hand to account for separate causal mechanisms we extend
the algebra such that in the extended algebra different correlations have separate
common cause systems.

The extendability of the probabilistic measure spaces by joint respectively sep-
arate common causal structures crucially depends on the size of the common cause
system. In the case of a common cause system of size 2 that is in the case of a
common cause there is a great difference between joint and separate common cause
extensions as it is shown in the following two propositions:

Proposition 14. (Hofer-Szabo, Rédei, Szabo, 1999) Let (3, p) be a classical prob-
ability measure space and let (A;, B1) and (As, Bs), respectively be two correlating
pairs of events in .. Then there always exists a (X', p) extension of (X, p) such that
for the correlation (A;, By) there exists a common cause C' and for the correlation
(Az, Bs) there exists a common cause C? in (X', p’).

Proposition 15. (Hofer-Szabo, Rédei, Szabd, 2002) There exists a (3, p) classical
probability measure space and two correlating pairs (A1, B1) and (As, Bs), respec-
tively in ¥ such that there is no (X', p’) extension of (X, p) which contains a joint
common cause C in (X', p’) for both correlations.

Proposition 14 claims that for two correlating pairs a separate common causal
explanation is always possible by extending the probability measure space in an
appropriate way. (Moreover, if ¥ contains n € N correlating pairs, each correla-
tion can be given a separate common causal explanation.) However, according to
Proposition 15 this strategy does not work generally if we are going to obtain the
same common cause for the two (or more) correlating pairs. Thus, being a joint
common cause imposes much stronger demand on C' than simply being a separate
common cause.

However, strangely enough this difference between the common and separate
common causal extendability of a probability measure space disappears if the size of
the common cause system is not specified. In other words, to find a joint common
cause system of arbitrary size for a set of correlations is not a stronger demand than
to find separate common cause systems for the same set. To see this, let (A1, By)
and (Ag, Ba) be two arbitrary correlating pairs in 3. Then the partition

{Al N BlaAl N BQ)AQ N BlaAQ N BQ;}

is always a joint common cause system in ¥ for both correlations. Obviously, this
partition can be regarded only as a trivial joint common cause system of the cor-
relations. This makes it clear that without further specification a joint common
causal explanation is not more compelling than a separate common causal expla-
nation. In the following sections we will see how these two types of explanations
diverge due to extra requirements.
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10.3 No local, non-conspiratorial joint common cause
system for the EPR

Consider the standard EPR-Bohm experimental setup with a source emitting pairs
of spin-3 particles prepared in the singlet state [¥,). Let p(a;) denote the probability
that the spin measurement apparatus is set to measure the spin in direction d;
(¢ € I) in the left wing and let p(b;) denote the same for direction Ej (j€J)
in the right wing. Furthermore, let p(A;) stand for the probability that the spin

measurement in direction @; in the left wing yields the result +1 ("up’) and let p(A;)
denote the probability of the result —1 ("down’). Let p(B;) and p(B;) be defined in
a similar way in the right wing for direction l_;j. (See Fig. 1) Quantum mechanics

then yields the following conditional probabilities for the events in question:

1 . eaib]‘
p(Ai N Bjla; Nbj) = Tr(Wie,) (Pa, ® Pp;)) = 5 SIHQ(—Q ) (10.10)
1
p(Ala; Nby) = Tr(Wa,) (P, @ 1)) = 5 (10.11)
1
p(Bjlai Nb;) = Tr(Wiw,) (1 ® P,)) = 5 (10.12)

where W)y, is the density operator pertaining to the pure state |¥); Pa, and Pp,
denote projections on the eigensubspaces with eigenvalue +1 of the spin opera-
tors associated with directions d@; and bj, respectively; and 6,,,, denotes the angle

between directions @; and b;.

Thus, for non-perpendicular directions @; and b; there is a conditional correla-
tion

and for parallel directions there is a perfect anticorrelation between the outcomes:

Now, consider a set {(A;, Bj)} jyerxs of EPR correlations in the sense of
(10.13). A full-fledged common causal explanation of the set {(A;, Bj)} jyerx.s
must comply with three demands on the statistical level. Firstly, all the correlations
must be screened-off by a joint common cause system. Secondly, statistical relations
among the measurement outcomes and the measurement settings must reflect the
spacetime location of these events in the sense that spatially separated events have
to be statistically independent. Thirdly, the measurement settings and the common
cause should not influence each other, they have to be statistically independent. We
refer to these requirements in turn as ’joint common cause system’, ’locality’ and
‘'no-conspiracy’. In the case of 'no-conspiracy’ we will distinguish two types: the
"'weak’ and the ’strong no-conspiracy’. The precise probabilistic formulation of these
demands is the following:
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1. Joint common cause system: There exists a partition {Cj} of ¥ such that for
every A;, Bj, a; and b; in ¥ (i € I,j € J) and for any k € K the following
factorization holds:

2. Locality: For every A;, Bj, a;, bj and Cy in ¥ (i € I,j € J k € K) the
following screening-off relations hold:

p(Aila; Nb; N Cr) = p(Aila; N Cx)  p(Bjla; Nb; N Cx) = p(B;|b; N Ck)0.16)

3. a. Weak no-conspiracy: For every a;, b and Cpx in X (i € I,j € J, k € K)
the following independence holds:

p(ai n bj N Ck) = p(ai n bj)p(C’k) (1017)

b. Strong mo-conspiracy: Consider two Boolean subalgebras 20 and € of
3 such that 2 is generated by the partition of the different measurement
choices {a;b;} (i € I,j € J) on the opposite wings, and € is generated by the
partition of the common cause system {Cy} (k € K). Then for any element
E €2 and F € € the following independence holds:

pP(ENF) = p(E)p(F) (10.18)

It is straightforward to see that in the case of joint common cause systems (10.17)
and (10.18) are equivalent, the probabilistic independence of the Boolean combi-
nations of common causes and the measurement settings does not demand more
than simply the probabilistic independence of the common causes and the measure-
ment settings themselves. Thus, in the case of the joint common cause system type
explanations equation (10.17) will suffice as a no-conspiracy requirement.
However, as it is well-known (10.15)-(10.17) result in various Bell inequalities
which are violated for special measurement settings in the EPR, experiment. For the
simplest set of correlations, namely for the Clauser-Horne set {(A;, Bj)} jyecH
where CH = I x J with I = {1,2} and J = {3, 4} the Bell theorem is the following:

Proposition 16. (Clauser, Horne, 1974) For some measurement directions a1, do
and b, b, there cannot exist extension of the probability space (¥, p) such that
the extension contains local, (weakly or strongly) non-conspiratorial joint common
cause systems for all EPR correlations of {(A;i, Bj)} . jyecH-

Consequently, EPR correlations fall short of a local, non-conspiratorial, joint
common cause system type explanation. One premise has to be given up.
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10.4 Local, weakly non-conspiratorial separate com-
mon cause systems do exist for the EPR

Strategies aiming to avoid Bell inequalities and to give a common causal explana-
tion for the EPR correlations can be grouped according the abandoned premise.
The first group consists of approaches abandoning locality and preserving the joint
common causal background and no-conspiracy. Bohmian mechanics is an eminent
representative of this group. The second group consists of less attractive models
in which no-conspiracy is given up. Examples of this approach are Brans’ and
Szabo’s models (Brans, 1988; Szabd, 1995). In these models the authors relin-
quished no-conspiracy and provided a local, deterministic but conspiratorial joint
common cause system type explanation for the EPR. (For the problem of free will
and no-conspiracy see (SanPedro, 2013.) In this paper, however, we will follow
a third strategy which gives up the hypothesis of a joint common cause system.
The key idea here is to replace the concept of joint common cause system with
that of separate common cause systems and to provide a local, non-conspiratorial,
separate common cause system type explanation for the EPR. A separate common
cause system type explanation for a set {(A;, Bj)} @ j)erx.s consists in finding for
every (i,7) € I x J index pair a separate partition {C,ij} (k(ij) € K(ij)) such that
screening-off, locality, and (weak or strong) no-conspiracies holds in the following
sense:

1. Separate common cause systems: For every A;, Bj, a; and b; in ¥ (i €
1,5 € J) there exists a separate partition {C,ij} of ¥ such that for any
k(ij) € K(ij) the following factorization holds:

p(Ai N leai N bj n C;CJ) = p(Ai|ai n bj n Clij)p(Bj|ai n bj n C;CJ) (10.19)

2. Locality: For every i € I,j € J and k(ij) € K(ij) the following screening-off
relations hold:

p(Aila; Nb; N CF) = p(Aila; N CY),  p(Bjla; Nb; N CY) = p(Bj|b; N CAN.20)
3. a. Weak no-conspiracy: For every a;, b; and C’,i/j/ in ¥ (i,¢ € I 4,7 €
J; k(i'j") € K(i'j')) the following independence holds:
pla; Nb; N C,i/j/) = p(a; N bj)p(Cli/j/) (10.21)

b. Strong no-conspiracy: Consider again two Boolean subalgebras 20 and €
of ¥ such that 2 is generated by the partition of the different measurement
choices {a;b;} (i € I,j € J) and € is generated by the partition of all the

different common cause systems {mij cy } (k € K). Then for any element
E €2 and F € € the following independence holds:

p(ENF) =p(E)p(F) (10.22)
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Here, requirement (10.21) does not entail (10.22), that is the independence of the
separate common cause systems of the choice of the measurement settings does not
assure that any Boolean combination of the common causes will also be independent
of any Boolean combination of the measurement settings. Thus, in the case of
separate common cause system type explanations one has to take into consideration
two different versions of no-conspiracy.

The idea to replace the concept of a joint common cause system with that of
separate common cause systems and to provide a local, non-conspiratorial separate
common cause system type explanation for the EPR was first raised by Szabo
(2000). Actually, Szabo replaced the joint common cause system with separate
common cause systems of size 2 that is with separate common causes. Szabo
provided a number of separate common causal models for the Clauser—-Horne set
{(Ai, Bj)}¢i,j)ecH such that the models were local and non-conspiratorial in the
weak sense of (10.22). In a precise form, Szab6’s proposition was the following:

Proposition 17. (Szab6, 2000) Let {(A;, B;)}(,jyecu be the Clauser—Horne set of

correlations in (X, p). Then for any measurement directions @y, ds and bs, by there
exists an extension of the probability space (X, p) such that the extension contains
local, weakly non-conspiratorial separate common causes for the correlations of

{(As, Bj) Y jyecn-

The common causal models provided by Szabo, however, were all conspiratorial
in the strong sense of (10.22). After numerous computer simulations aiming to
remove the unwanted conspiracies Szaboé finally concluded with the conjecture that
EPR cannot be given any local, separate common causal model free from all type
of conspiracies.

10.5 Local, strongly non-conspiratorial separate com-
mon cause systems for the EPR?

Szab6’s conjecture is then the following:

Conjecture 1. For some measurement directions di,ds and 53,54 there cannot
exist extension of the probability space (¥, p) such that the extension contains local,
strongly non-conspiratorial separate common cause systems for the correlations of
{(As, Bj)}i.yecn-

Although a lot has happened since 2000 in understanding the status of the
separate common causal explanation of the EPR scenario, Szabd’s conjecture in
its original form is still an open question. What has actually been excluded, is
not a local, strongly non-conspiratorial separate common causal explanation of the
the Clauser-Horne set {(A;, Bj)} jjecH, but that of another set. TLet I = J =
{1,2,3,4} and let PA be the following subset of T x J:

PA={(1,1),(2,2),(3,3),(4,4)}

Then one can prove the following proposition:
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Proposition 18. For some measurement directions {d1, da, ds, 64} and {51, gg, 53, 54}
there cannot exist extension of the probability space (X, p) such that the extension
contains local, strongly non-conspiratorial separate common cause systems for all
EPR correlations of {(A;, Bj)} (. j)epa-

The above proposition was first proved by Grasshoff, Portmann and Wiithrich
(2005). They have shown that no local, strongly non-conspiratorial separate com-
mon cause systems are possible for all correlations of {(A;, B;)} jyepa, if for any
index pair (i,7) € PA there is a perfect anticorrelation (hence the denotation ’PA’)
in the sense of (10.14).

The assumption of perfect anticorrelations, however, was unsatisfactory in two
respects. The first problem concerns experimental testability. Since perfect anti-
correlations cannot be tested experimentally with absolute precision, the proof of
Grasshoff, Portmann and Wiithrich did not provide an experimentally verifiable
refutation of a separate common causal explanation of the EPR.

The second problem was more conceptual. Standard derivations of the Bell
inequalities assume a joint common cause system. The chief virtue of the proof
of Grasshoff, Portmann and Wiithrich was that it avoided this strong concept of a
joint common cause system and used the weaker concept of separate common cause
systems instead. However, in the perfect anticorrelation case the assumptions of
separate common cause systems turned out to be reducible to the assumptions of the
standard joint common cause system as it was shown in the following proposition:

Proposition 19. (Hofer-Szabo, 2008) Let {C’,ij}( Jepa be local, strongly non-
ij)e

conspiratorial separate common cause systems for the correlations of {(A;, Bj)} i jjepa-

Then the partition {D;} := {ﬂij C’,ij } generated by the intersections of the different

separate common cause systems is a local, non-conspiratorial joint common cause
system of the same correlations of {(4;, Bj)} i, j)epa-

The assumption of perfect anticorrelations, however, turned out not to be in-
dispensable in the proof of Proposition 18. Portmann and Wiithrich (2007) and
Hofer-Szabé (2008) have shown that Proposition 18 also holds if one only assumes
that the correlations to be explained form an almost perfect anticorrelation set,
{(Ai, Bj)} i, jyepa(s), in the sense that there exists a ¢ of some small but not zero
value such that

for any index pair (4, j) € PA(9).

Finally, Hofer-Szabo6 (2011, 2012) generalized this proof by deriving arbitrary
Bell(¢) inequality— that is to say, an inequality differing from the corresponding
Bell inequality in a term of order §. The recipe of this derivation is roughly the
following. Consider a Bell inequality resulting from the local, non-conspiratorial
joint common causal explanation of a given set of correlations {(A;, B;j)} i jyerx.
(not, necessarily {(A;, Bj)}cn). Now, define the set PA for {(A;, Bj)} jjerxs as
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follows: let PA contain all the index pairs (k, k) in (I U J) x (I U J) that is all
indices appearing either on the left or the right hand side of the correlations in
{(Ai, Bj) }Ya.jperxs-

Now consider the set {(A;, Bj)}pa(s) of almost perfect anticorrelations and
suppose that it has a local, strongly non-conspiratorial separate common causal
explanation. This assumption results in a Bell(d) inequality differing from the
original Bell inequality in a term of order of § where the exact magnitude of this
term is the function of the approximation. Choose the setting which violates the
Bell inequality maximally. If the § term is smaller than the violation of the orig-
inal Bell inequality, then the Bell(d) inequality will also be violated, excluding a
local, strongly non-conspiratorial separate common causal explanation of the set

{(Ai, Bj)} pas)-

10.6 Conclusions

In the paper, first, different common causal concepts ranging from Reichenbach’s
definition to the most general concept of the common cause system have been listed.
Then the role of the different causal notions in the common causal explanation of
the EPR scenario has been exposed. It was said that a completely satisfactory
common causal explanations of the EPR would consist in finding a joint common
causal source for all correlations which is local and non-conspiratorial. Since these
assumptions together entail various Bell inequalities one assumption has to be aban-
doned. The ambition of the separate common cause system type approach of the
EPR was to preserve the latter two physically motivated assumptions of locality and
no-conspiracy at the expense of replacing the strong concept of the joint common
cause system with the weaker concept of separate common cause systems. It has
been shown, however, that the weakening of the common causal concept does not
provide a solution to this problem since the weakened assumptions still entail some
Bell and Bell(§) inequalities. Consequently, there exists neither a local, (weakly or
strongly) non-conspiratorial separate common causal explanation of the EPR.

A weakness of all the above no-go theorems, however, is that they are all based
on either perfect or almost perfect EPR correlations. As it was made clear in Propo-
sition 19 the separate common causal explanation of such correlations is always
parasitic on some joint common causal explanation. Therefore it would be highly
desirable to derive some Bell inequality form a local, strongly non-conspiratorial
separate common causal explanation of a set of genuine (not almost perfect) EPR
correlations. For example it would be widely wanted to prove or falsify Szabo’s
original conjecture (Conjecture 1)—that is for the set {(A;, B;)},jyecn violating
the Clauser—Horne inequality

(i) either to derive the Clauser—Horne inequality (or some other constraint) from
the assumption that {(A;, B;)}(;,jyecr has alocal, strongly non-conspiratorial
separate common causal explanation;

(ii) or to show up local, strongly non-conspiratorial separate common cause sys-
tems for the set {(A:, Bj)} i, jyecH-
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Neither option seems to be a trivial task.

Acknowledgement. This work has been supported by the Hungarian Scientific
Research Fund, OTKA K-100715.

References

Bell, J. S. (1971). "Introduction to the Hidden Variable Question," in: B. d’Espagnat
(ed.), Foundation of Quantum Mechanics, New York, 171-181.

Belnap, N., L. E. Szab6 (1996). "Branching Space-Time Analysis of the GHZ
Theorem," Foundations of Physics, 26, 982-1002.

Brans, C., H. (1988). "Bell’s Theorem does not Eliminate Fully Causal Hidden
Variables," International Journal of Theoretical Physics, 27, 219.

Clauser, J. F., M. A. Horne, (1974). "Experimental consequences of objective local
theories,” Phys. Rev. D, 10, 526-535.

Grasshoff, G., S. Portmann, A. Wiithrich (2005). "Minimal Assumption Derivation
of a Bell-type Inequality," The British Journal for the Philosophy of Science,
56, 663-680.

Hofer-Szabé G., M. Rédei, L. E. Szabé (1999). "On Reichenbach’s Common Cause
Principle and on Reichenbach’s Notion of Common Cause," The British Journal
for the Philosophy of Science, 50, 377-399.

Hofer-Szabo G., M. Rédei, L. E. Szab6 (2002). "Common Causes are not Common
Common Causes," Philosophy of Science, 69, 623-633.

Hofer-Szabé G. (2008). "Separate- versus common-common-cause-type derivations
of the Bell inequalities," Synthese, 163 /2 199-215.

Hofer-Szabo, G. (2011). "Bell(d) inequalities derived from separate common causal
explanation of almost perfect EPR anticorrelations," Foundations of Physics,
41, 1398-1413.

Hofer-Szabo, G. (2012). "Separate common causal explanation and the Bell in-
equalities," International Journal of Theoretical Physics, 51, 110-123.

Hofer-Szabo, G., M. Rédei, L. E. Szabo (2013). The Principle of the Common
Cause, Cambridge: Cambridge University Press (in press).

Jarrett, J. P. (1984). "On the Physical Significance of the Locality Conditions in
the Bell Inequality", Notus 18, 569-589.

Portmann S., A. Wiithrich (2007). "Minimal Assumption Derivation of a Weak
Clauser—Horne Inequality," Studies in History and Philosophy of Modern Physics,
38/4, 844-862.

202



dc_1495 17

Reichenbach, H. (1956). The Direction of Time, University of California Press,
Berkeley.

Salmon, W. C. (1975). "Theoretical Explanation," in: Stephan Korner (ed.), Ez-
planation, Oxford, 118-143.

SanPedro, I. (2013). "Free will and no-conspiracy,” in: A. Wiithrich and T. Sauer
(eds.) Current Interpretational Problems of Quantum Theory, (forthcoming).

Szab6 L. E. (2000). "On an Attempt to Resolve the EPR-Bell Paradox via Re-
ichenbachian Concept of Common Cause," International Journal of Theoretical
Physics, 39, 911.

Van Fraassen, B. C. (1982). "Rational Belief and Common Cause Principle," in:
R. McLaughlin (ed.), What? Where? When? Why?, Reidel, 193-2009.

Van Fraassen, B. C. (1989). "The Charybdis of Realism: Epistomological Implica-
tions of Bell’s Inequality," in: J. T. Cushing and E. McMullin (eds.), Philosoph-
ical Consequences of Quantum Theory, University of Notre Dame Press, Ind.,
97-113.

203



