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Prefae

In this volume I olleted my main researh results ahieved in the past

several years in the philosophial foundations of quantum theory. All these

results are related to the question as to how the notion of ausality, loal-

ity and probability an be implemented into quantum theory. The volume

ontains 10 of my reently published researh papers on these subjet issues.

Although philosophy of physis is generally pursued as a team work, and

indeed many of my papers are also produed by ollaborating with various

olleagues, in the present book I piked only papers written without ollab-

oration. My intention was not to make up a self-ontained monograph sine

all the results of this volume have already appeared or will appear in one or

other of the books reently published with o-authors.

The main topis and priniples analyzed in this volume are Bell's notion

of loal ausality, the Common Cause Priniple, the Causal Markov Condi-

tion, d-separation, Bell's inequalities and the EPR senario. Eah hapter

of the volume is a di�erent paper, with a separate abstrat, introdution,

bibliography and sometimes appendix. To make the volume oherent and

to provide an overview of the general landsape I inserted an extra hapter,

the Introdution, at the beginning of the book where I summarize the main

themes and results of the subsequent hapters and their interdependene.

The hapters of the volume are the following papers:

Chapter 1. Gábor Hofer-Szabó, "Quantum mehanis as a representation

of lassial onditional probabilities," Journal of Mathematial Physis

(submitted).

Chapter 2. Gábor Hofer-Szabó, "Three priniples leading to the Bell in-

equalities," Belgrade Philosophial Annual, 29, 57-66 (2016).

Chapter 3. Gábor Hofer-Szabó, "How man and nature shake hands: the

role of no-onspiray in physial theories," Studies in the History and

Philosophy of Modern Physis, 57, 89-97 (2017).
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Chapter 4. Gábor Hofer-Szabó, "Relating Bell's loal ausality to the Causal

Markov Condition," Foundations of Physis 45 (9) 1110-1136 (2015).

Chapter 5. Gábor Hofer-Szabó, "Bell's loal ausality is a d-separation

riterion," Springer Proeedings in Mathematis and Statistis (forth-

oming).

Chapter 6. Gábor Hofer-Szabó, "Loal ausality and omplete spei�a-

tion: a reply to Seevink and U�nk," in U. Mäki et al. (eds), Re-

ent Developments in the Philosophy of Siene: EPSA13 Helsinki,

Springer Verlag, 209-226 (2015).

Chapter 7. Gábor Hofer-Szabó, "Nonommutative ausality in algebrai

quantum �eld theory," in M. C. Galavotti, D. Dieks, W. J. Gonzalez,

S. Hartmann, Th. Uebel, M. Weber (eds.), The Philosophy of Siene

in a European Perspetive, Vol. 5., 543-554 (2014).

Chapter 8. Gábor Hofer-Szabó, "On the relation between the probabilis-

ti haraterization of the ommon ause and Bell's notion of loal

ausality," Studies in the History and Philosophy of Modern Physis,

49, 32-41. (2015).

Chapter 9. Gábor Hofer-Szabó, "Separate ommon ausal explanation and

the Bell inequalities," International Journal of Theoretial Physis, 51

110-123 (2012).

Chapter 10. Gábor Hofer-Szabó, "EPR orrelations, Bell inequalities and

ommon ause systems," in D. Aerts, S. Aerts and C. de Ronde (eds.),

Probing the Meaning of Quantum Mehanis: Physial, Philosophial

and Logial Perspetives, 263-277 (2014).

The results in the above papers have been presented at more than 60 inter-

national workshops and department seminars. I thank the audiene of these

workshop and seminars for their valuable omments. The papers bene�ted

a lot from these disussions.

Gábor Hofer-Szabó

Deember, 2017
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Introdution and overview

The philosophial understanding of the foundations of quantum theory is

one of the most thrilling questions in today's philosophy of siene. What is

the orret oneptual basis of quantum mehanis? How an our most fun-

damental philosophial onepts suh as 'ausality', 'probability' or 'loality'

be aommodated in this theory?

There is a very in�uential approah to the foundational problems of quan-

tum theory whih intends to aommodate quantum phenomena in a so-

alled lassial, loally ausal world piture. This world piture is lassial

sine it adopts a lassial ontology of events represented by a Boolean math-

ematial struture in a lassial spaetime; it is loal, sine the events in

question are loalized in a well-de�ned region of the spaetime; and �nally

it is ausal in the sense that the relation between these events meets the

relativisti requirement of 'no superluminal propagation'. The �rst advoate

of suh a theory was John Bell. In a number of seminal papers Bell arefully

studied the philosophial intuitions lying behind our onept of loality and

ausality. His major ontribution, however, onsisted in translating these

intriate notions into a simple probabilisti framework whih made these no-

tions tratable both for mathematial treatment and later for experimental

testability. Sine the entral question was as to whether quantum theory

an be aommodated in a lassial framework, therefore both Bell and the

subsequent authors used a lassial probabilisti language in their analysis.

Events were understood as lassial events represented by a ommutative

mathematial struture and all the assumptions representing loality and

ausality were formulated in the lassial probability theory.

This lassial, loal and ausal framework, however, turned out soon to

be inappropriate to aount for quantum theory. Bell showed that these las-

sial probabilisti assumptions lead to some mathematial onstraints�the

so-alled Bell inequalities�whih were shown to be violated in some quan-

tum senarios, thereby inhibiting a lassial, loally ausal interpretation of

quantum mehanis. Bell's work has been followed by an extensive researh
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to loate the assumptions responsible for the violation of the Bell inequali-

ties, and many authors analyzed the philosophial onsequenes of giving up

either the one or the other of these assumptions. Sine these assumptions

represented our natural intuitions onerning loality and ausality, aban-

doning any of them resulted in aknowledging the limits of a loally ausal

interpretation of quantum mehanis.

Many of the papers ontained in this anthology an be onsidered as an

attempt to make a ompletely new start in the loally ausal approah to

quantum theory. The ore idea in brief is this: let us give up the lassial

ontology in order to save loality and ausality. In other words, ontrary to

the standard strategy, we should not stik to a lassial ontology at the prie

of making our explanation either nonloal, non-ausal or introduing other

undesirable features, but we should straightly abandon the lassial�that is,

ommutative�harater of ausality, and investigate what we may gain and

what philosophial prie we must pay for suh a hange in our oneptual

framework. Nonommutativity has a well-established plae in the formalism

of quantum theory, but its role in ausal explanation is ompletely unex-

plored. Exploring the ausal explanatory role of nonommutativity in loal

ausality, introduing nonommutative ausal onepts into our explanatory

framework an both broaden our formal strategies to ausally aount for

quantum phenomena, and also deepen our understanding of the nonlassial

nature of ausality in quantum theory.

There is, however, another more onservative researh line pursued in this

volume. This follows the down-to-Earth Humean tradition and asks how far

we get by adhering to the standard ontology of physis whih is both loal

and lassial. How an quantum theory be reonstruted from this ontology

and how quantum probabilities an be aounted for in terms of lassial

relative frequenies. What kind of ausal and probabilisti independenies

one should assume between the elements of reality of this lassial ontology

on the one hand and measurement hoies of the experimenter on the other

hand?

These are the main questions and topis of this volume.

The �rst three hapters of anthology lie on the onservative side. The topi

of Chapter 1 is to analyze the reonstrutability of quantum mehanis from

lassial onditional probabilities representing measurement outomes on-

ditioned on measurement hoies. It will be investigated how the quantum

mehanial representation of lassial onditional probabilities is situated

within the broader frame of nonommutative representations. To this goal,

I adopted some parts of the quantum formalism and asked whether empiri-
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al data an onstrain the rest of the representation to onform to quantum

mehanis. I will show that as the set of empirial data grows onventional

elements in the representation gradually shrink and the nonommutative rep-

resentations narrow down to the unique quantum mehanial representation.

Chapter 2 sheds light on the broader landsape of the relation among

the most notorious priniples in the foundations of quantum mehanis. I

ompare here three priniples aounting for orrelations, namely Reihen-

bah's Common Cause Priniple, Bell's Loal Causality Priniple, and Ein-

stein's Reality Criterion and relate them to the Bell inequalities. I show

that there are two routes onneting the priniples to the Bell inequali-

ties. In ase of Reihenbah's Common Cause Priniple and Bell's Loal

Causality Priniple one assumes a non-onspiratorial joint ommon ause

for a set of orrelations. In ase of Einstein's Reality Criterion one assumes

strongly non-onspiratorial separate ommon auses for a set of perfet or-

relations. Strongly non-onspiratorial separate ommon auses for perfet

orrelations, however, form a non-onspiratorial joint ommon ause. Hene

the two routes leading the Bell inequalities meet.

Chapter 3 addresses the problem of the so-alled no-onspiray. No-

onspiray is the requirement that measurement settings should be proba-

bilistially independent of the elements of reality responsible for the mea-

surement outomes. In this hapter I investigate what role no-onspiray

generally plays in a physial theory; how it in�uenes the semantial role of

the event types of the theory; and how it relates to suh other onepts as

separability, ompatibility, ausality, loality and ontextuality.

In Chapters 4-6 I turn towards the de�nition of Bell's notion of loal

ausality in loal physial theories. The questions asked here are how loal

ausality is related to Causal Markov Condition, d-separation and whether

omplete spei�ation is in ontradition with no-onspiray.

The aim of Chapter 4 is to relate Bell's notion of loal ausality to the

Causal Markov Condition. To this end, �rst a framework, alled loal phys-

ial theory, will be introdued integrating spatiotemporal and probabilisti

entities and the notions of loal ausality and Markovity will be de�ned.

Then, illustrated in a simple stohasti model, it will be shown how a dis-

rete loal physial theory transforms into a Bayesian network and how the

Causal Markov Condition arises as a speial ase of Bell's loal ausality and

Markovity.

Chapter 5 aims to motivate Bell's notion of loal ausality by means of

Bayesian networks. In a loally ausal theory any superluminal orrelation

should be sreened o� by atomi events loalized in any so-alled shielder-o�

region in the past of one of the orrelating events. In a Bayesian network
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any orrelation between non-desendant random variables are sreened o� by

any so-alled d-separating set of variables. I will argue that the shielder-o�

regions in the de�nition of loal ausality onform in a well de�ned sense to

the d-separating sets in Bayesian networks.

A physial theory is alled loally ausal if any orrelation between spae-

like separated events is sreened-o� by loal beables ompletely speifying an

appropriately hosen region in the past of the events. In Chapter 6 I will

de�ne loal ausality in a lear-ut framework, alled loal physial the-

ory whih integrates both probabilisti and spatiotemporal entities. Then I

will argue that, ontrary to the laim of Seevink and U�nk (2011), om-

plete spei�ation does not stand in ontradition to the free variable (no-

onspiray) assumption.

In Chapter 7 it will be argued that embraing nonommuting ommon

auses in the ausal explanation of quantum orrelations in algebrai quan-

tum �eld theory has the following two bene�ial onsequenes: it helps (i) to

maintain the validity of Reihenbah's Common Causal Priniple and (ii) to

provide a loal ommon ausal explanation for a set of orrelations violating

the Bell inequality.

In Chapter 8 the relation between the standard probabilisti harateri-

zation of the ommon ause (used for the derivation of the Bell inequalities)

and Bell's notion of loal ausality will be investigated in the isotone net

framework borrowed from algebrai quantum �eld theory. The logial role

of two omponents in Bell's de�nition will be srutinized; namely that the

ommon ause is loalized in the intersetion of the past of the orrelated

events; and that it provides a omplete spei�ation of the `beables' of this

intersetion.

In Chapter 9 I ask how the following two fats are related: (i) a set of

orrelations has a loal, non-onspiratorial separate ommon ausal expla-

nation; (ii) the set satis�es the Bell inequalities. My answer will be partial:

we show that no set of orrelations violating the Clauser�Horne inequalities

an be given a loal, non-onspiratorial separate ommon ausal model if

the model is deterministi.

Chapter 10 is again devoted to separate ommon ause systems. Namely,

standard ommon ausal explanations of the EPR situation assume a so-

alled joint ommon ause system that is a ommon ause for all orrela-

tions. However, the assumption of a joint ommon ause system together

with some other physially motivated assumptions onerning loality and

no-onspiray results in various Bell inequalities. Sine Bell inequalities are

violated for appropriate measurement settings, a loal, non-onspiratorial

joint ommon ausal explanation of the EPR situation is ruled out. But
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why do we assume that a ommon ausal explanation of a set of orrelation

onsists in �nding a joint ommon ause system for all orrelations and not

just in �nding separate ommon ause systems for the di�erent orrelations?

What are the perspetives of a loal, non-onspiratorial separate ommon

ausal explanation for the EPR senario? And �nally, how do Bell inequali-

ties relate to the weaker assumption of separate ommon ause systems?
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Chapter 1

Quantum mehanis as a

nonommutative representation

of lassial onditional

probabilities

The aim of this paper is to analyze the reonstrutability of quantum me-

hanis from lassial onditional probabilities representing measurement

outomes onditioned on measurement hoies. We will investigate how the

quantum mehanial representation of lassial onditional probabilities is

situated within the broader frame of nonommutative representations. To

this goal, we adopt some parts of the quantum formalism and ask whether

empirial data an onstrain the rest of the representation to onform to

quantum mehanis. We will show that as the set of empirial data grows

onventional elements in the representation gradually shrink and the non-

ommutative representations narrow down to the unique quantum mehan-

ial representation.

1.1 Introdution

In the quantum information theoretial paradigm one is usually looking for

the reonstrution of quantum mehanis from information-theoreti �rst

priniples (Hardy, 2008; Chiribella, D'Ariano and Perinotti, 2015). This

approah has produed many fasinating mathematial results and greatly

ontributed to a better understanding of the omplex formal struture of
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quantum mehanis. As a top-down approah, however, its prime aim was

to larify the relation of the theory to higher-order (rationality, information-

theoreti, et.) priniples and payed less attention to the �legs� of the theory

onneting it to experiene.

In this paper we take an opposite, bottom-up route and ask�in the

spirit of the good old empiriist tradition�as to how the theory an be

reonstruted not from �rst priniples but from experiene. More preisely,

we will ask whether we an reonstrut the formalism of quantum mehanis

from using simply lassial onditional probabilities.

Why lassial onditional probabilities?

Quantum mehanis as a probabilisti theory provides us quantum prob-

abilities for ertain observables. The question is how to onnet these quan-

tum probabilities to experiene. The orret answer is that the probabilities

provided by the Born rule should be interpreted as lassial onditional prob-

abilities. They are lassial sine they are nothing but the long-run relative

frequeny of ertain measurement outomes expliitly testable in the lab;

and they are onditional on the fat that a ertain measurement had been

hosen and performed (E. Szabó, 2008). For example, the quantum prob-

ability of the outome �spin-up� in diretion z is the relative frequeny of

the outomes �up��but not in the statistial ensemble of all measurement

outomes (whih may also omprise spin measurements in other diretions)

but only in the subensemble when spin was measured in diretion z.
What does it mean to reonstrut quantum mehanis from lassial

onditional probabilities?

First note that all we are empirially given are lassial onditional prob-

abilities. The question is how to represent these empirial data. As it was

shown in (Bana and Durt 1997), (E. Szabó 2001) and (Rédei 2010) lassi-

al onditional probabilities onforming to the probabilisti preditions of

quantum mehanis need not neessarily be represented in the formalism of

quantum mehanis. The so-alled �Kolmogorovian Censorship Hypothesis�

(or better, Proposition) states that there is always a Kolmogorovian repre-

sentation of the quantum probabilities if the measurement onditions also

make part of the representation. Thus, a stubborn lassiist will always �nd

a way to represent the empirial ontent of quantum mehanis in a purely

lassial framework.

On the other hand, quantum mehanis has proved to be an extremely

elegant and eonomi representation of these empirial data. It provides a

prinipled representation of an enormous olletion of onditional probabili-

ties together with their dynamial evolution.

Our paper is a kind of interpolation between the two sides. Our strategy
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will be to aept some parts of the quantum mehanial representation of

lassial onditional probabilities and ask whether the rest follows. More

preisely, we aept the nonommutative probability theory whih in our

ase will boil down to representing observables and states by linear opera-

tors. We also adopt the Born rule onneting the quantum probabilities to

real-world lassial onditional probabilities; and the quantum mehanial

representation of measurement settings and measurement outomes. The

only �free variable� will be the representation of the state of the system. Our

main question will then be as to what empirial data ensure that the state

of a system is represented by a density operator.

By this strategy we are going to analyze how quantum mehanis is situ-

ated within a nonommutative probability theory and to study whether the

spei� quantum mehanial representation of lassial onditional probabil-

ities within this broader frame an be traed bak to purely empirial fats

or is partly of onventional nature.

In the paper we will proeed as follows. In Setion 2 we introdue the

general sheme of a nonommutative representation of lassial onditional

probabilities. In the subsequent three setions we gradually enhane the

set of empirial data that is the set of lassial onditional probability of

measurement outomes. We ask whether by inreasing the set of empirial

data the nonommutative representation of these data neessarily narrows

down to the quantum mehanial representation or some extra onventional

elements are also needed. The empirial situation we are going to represent

will be three yes-no measurements in Setion 3, k measurements eah with

n outomes in Setion 4, and �nally a ontinuum set of measurements with

n outomes in Setion 5. We will see how the onventional part gradually

shrinks as experiene grows until the representation �nally zooms in on the

quantum mehanial representation. We disuss our results in Setion 6.

1.2 Quantum mehanial and nonommutative rep-

resentation

Suppose there is a physial system in state s and we perform a set {ai} (i ∈ I)
of measurements on the system. Denote the outomes of measurement ai by
{Aj

i} (j ∈ J). Suppose that by repeating the measurements many times we

obtain a probability ps(A
j
i |ai) that is a stable long-run relative frequeny

for eah outome Aj
i given measurement ai is performed. Now, quantum

mehanis represents these onditional probabilities as it is summarized in

the following table:
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Quantum mehanial representation:

Operator assignment: Born rule:

System −→ H: Hilbert spae
Measurements: ai −→ Oi: self-adjoint operators

Outomes: Aj
i −→ P j

i : spetral projetions of Oi

States: s −→ Ws: density operators

ps(A
j
i |ai) = Tr(WsP

j
i )

In the table the di�erent onepts are presented. On the left hand side of the

arrow/equation sign stand the empirial onepts to be represented; on the

right hand side stand the mathematial representation of the empirial on-

epts. The two are not to be mixed. Although we do not use �hat� to denote

operators, throughout the paper we arefully distinguish empirial onepts

(measurements, outomes, states) from their representation (self-adjoint op-

erators, projetions, density operators). Thus, the physial system under

investigation is assoiated to a Hilbert spae H; eah measurement ai is rep-
resented by a self-adjoint operator Oi; the outomes Aj

i of ai are represented
by the orthogonal spetral projetions of Oi; and the state s of the system
is represented by a density operator Ws, a self-adjoint, positive semide�nite

operator with trae equal to 1. In the seond olumn the mathematial rep-

resentation is onneted to experiene by the Born rule: the representation

is orret only if the quantum mehanial trae formula Tr(WsP
j
i ) orretly

yields the empirial onditional probability ps(A
j
i |ai) for any outome Aj

i of

measurement ai and any state s.

Note the following two fats. First, the trae formula is assoiated to a

onditional probability, not to a probability simpliiter. This means, among

others, that in joint measurements one always needs to ombine di�erent

measurement onditions. Seond, the trae formula is �holisti� in the sense

that the empirially testable onditional probabilities are assoiated to the

trae of the produt of two operators, one representing the state and the

other representing the measurement. This leaves a lot of freedom to aount

for the same empirial ontent in terms of operators.

The main question of our paper is whether the above quantum mehanial

representation of lassial onditional probabilities is onstrained upon us if

the set of empirial data is large enough or whether we need some extra

theoretial, aestheti et. onsiderations to arrive at it. In order to deide

on this question, we onsider �rst a wider lass of representations whih

we will all nonommutative representations. We will then ask whether a

nonommutative representation of a set of large enough data is neessarily
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a quantum mehanial representation.

What is a nonommutative representation?

Generally, a nonommutative representation is simply an assoiation of

measurements and states to linear operators ating on a Hilbert spae suh

that some funtional of the representants provides the orret empirial on-

ditional probabilities. Obviously this assoiation an be done in many dif-

ferent ways. In our paper we pik a speial nonommutative representation

whih is very lose to the quantum mehanial representation: We retain

all the assignments (denoted by −→) of the above table exept the last one.

That is we will represent the system by a Hilbert spae, the measurements by

self-adjoint operators, and the outomes by the orthogonal spetral proje-

tions. We also retain the Born rule onneting the formalism to experiene.

The only part of the representation whih we let vary will be the assoiation

of the state of the system to linear operators. That is we do not demand that

states should neessarily be represented by density operators. We summarize

this sheme in the following table:

Nonommutative representation:

Operator assignment: Born rule:

System −→ H: Hilbert spae
Measurements: ai −→ Oi: self-adjoint operators

Outomes: Aj
i −→ P j

i : spetral projetions of Oi

States: s −→ Ws: linear operators

ps(A
j
i |ai) = Tr(WsP

j
i )

Obviously, our nonommutative representation is only one speial hoie

among many. One ould well take di�erent routes. For example one ould

demand that the state should be represented by density operators but aban-

don that the projetions representing the outomes should be orthogonal.

Or one ould replae the Born rule by another expression onneting the

formalism to the world. As said above, the onnetion of the formalism of

quantum mehanis and experiene is of holisti nature; one an �x one part

of the formalism and see how the rest may vary suh that the resulting prob-

abilities are in tune with experiene. With respet to our aim whih is to

see how we are ompelled to adopt the quantum mehanial representation

by inreasing the number of onditional probabilities to be represented, our

above hoie is just as good as any other.

What we will test in the subsequent setions is whether our nonommu-

tative representation is neessarily a quantum mehanial representation. In
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other words, we will test whether for any hoie of operators representing a

ertain set of measurements and the outomes suh that the Born rule yields

the orret onditional probabilities, the state will neessarily be represented

by a density operator. In Setion 3 we start o� as a warm-up with three mea-

surements; in Setion 4 we ontinue with k measurements; and in Setion 5

we end up by unountably many measurements. It will turn out that the gap

between nonommutative and quantum mehanial representation gradually

shrinks as the set of empirial data grows.

1.3 Case 1: Three yes-no measurements

Consider a box �lled with balls. Denote the preparation of the box by s.
Suppose you an perform three di�erent measurements on the system; you

an measure the olor, the size or the shape of the balls. Denote the three

measurements as follows:

a: Color measurement

b: Size measurement

c: Shape measurement

Suppose that eah measurement an have only two outomes:

A+
: Blak A−

: White

B+
: Large B−

: Small

C+
: Round C−

: Oval

Suppose you pik a measurement, perform it many times (putting the balls

always bak into the box), and ount the probability, that is the long-run

relative frequeny, of the outomes. What you obtain is the onditional

probability of the outomes given the measurement you piked is performed

on the system prepared in state s:

p±a := ps(A
±|a) (1.1)

p±b := ps(B
±|b) (1.2)

p±c := ps(C
±|c) (1.3)

Now, suppose you are going to represent the above empirial fats not in

the standard lassial probability theory but in a quantum fashion. Sine

our model ontains only two-valued (yes-no) measurements, it su�es to use

only a minor fragment of quantum mehanis. Again, we summarize it in a

table:
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Quantum mehanial representation:

Operator assignment: Born rule:

System: −→ C2

Color: a −→ Oa = aσ

Size: b −→ Ob = bσ

Shape: c −→ Oc = cσ

Blak/White: A± −→ P±
a = 1

2
(1± aσ)

Large/Small: B± −→ P±

b = 1

2
(1± bσ)

Round/Oval: C± −→ P±
c = 1

2
(1± cσ)

State: s −→ Ws =
1

2
(1+ sσ)

p±a = Tr(WsP
±
a ) = 1

2
(1± sa)

p±b = Tr(WsP
±

b ) = 1

2
(1± sb)

p±c = Tr(WsP
±
c ) = 1

2
(1± sc)

Here, the Hilbert spae assoiated to the system is the two-dimensional om-

plex spae C2; and the operators assoiated to the measurements, outomes

and the state are all self-adjoint operators ating on C2. Aording to this

representation, alled the Bloh sphere representation, a self-adjoint opera-

tor Oa assoiated to measurement a an be represented by the inner produt

of a unit vetor a = (ax, ay, az) in R
3
and the Pauli vetor σ = (σx, σy, σz).

The two outomes A±
of measurement a are assoiated to the spetral pro-

jetions P±
a = 1

2
(1 ± aσ) of Oa, where 1 is the two-dimensional identity

operator. Finally, the density operator Ws assoiated to the state s of the

system is of the formW = 1

2
(1+sσ), where s = (sx, sy, sz) is in the unit ball

B = {r ∈ R
3 : |r| 6 1} of R3

. If |s| = 1, then s is said to be a pure state,

otherwise a mixed state. Again, the empirial ontent of the representation

is ensured by the Born rule whih in this two-dimensional ase boils down

to the inner produt: p±a = 1

2
(1± sa). (Similarly for b and c.)

Now, to give a quantum mehanial representation for the above situation

we need to assoiate the three measurements to three Bloh vetors and

the state of the system to a fourth Bloh vetors (either unit or smaller)

suh that the Born rule (the trae formula) yields the pre-given onditional

probabilities (1.1)-(1.3). Thus, assign to eah measurement a unit vetor in

R
3
:

{a, b, c} 7→ {a,b, c} (1.4)

Suppose that the vetors a, b and c are linearly independent. First, we show

that given three pairs of empirial onditional probabilities p±a , p
±

b and p±c
and also the assignment (1.4), the operator Ws assoiated to the state s gets
uniquely �xed. Shematially,

p±a , p
±

b , p
±

c & a, b, c =⇒ Ws
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To see this, observe that any linear operator ating on C2 an be written as

Ws = s01+ sσ + i(s′01+ s
′
σ)

where s0, s
′
0 ∈ R and s, s′ ∈ R

3
. Now, applying the Born rule to the three

measurements we get:

p±a = Tr(WsP
±

a ) = s0 ± sa+ i(s′0 ± s
′
a)

p±b = Tr(WsP
±

b ) = s0 ± sb+ i(s′0 ± s
′
b)

p±c = Tr(WsP
±

c ) = s0 ± sc+ i(s′0 ± s
′
c)

whih, assuming that p±a , p
±

b and p±c are real and a, b and c are linearly

independent, yield

s0 =
1

2
s′0 = 0 s

′ = 0

and hene

p±a =
1

2
± sa

p±b =
1

2
± sb

p±c =
1

2
± sc

the solution of whih is Ws =
1

2
(1+ sσ) with

s =
(p+a − 1

2
)(b× c) + (p+b − 1

2
)(c× a) + (p+c − 1

2
)(a× b)

a · (b× c)

where × is the ross produt. (The linear independene of a, b and c is

needed for the triple produt in the denominator not to be zero.)

This is a well-known result. Sine the late 60s and early 70s there has

begun an intensive researh for the empirial determination of the state of

a quantum system. In a series of papers Band and Park (1970, 1971) have

extensively investigated how the expetation value of ertain observables

determine the state of a system. They investigated the minimal number of

observables, alled the quorum, needed for suh state determinations; the

struture and geometry of this set; and many other important features. The

study of the quorum has beome an eminent researh projet also in the new

quantum informational paradigm. Quantum tomography, quantum state

22

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



reonstrution, quantum state estimation et. all follow the same path: they

start from a set of observables and aim to end up with a more-or-less �xed

state using empirial input (see for example (D'Ariano, Maone and Paris,

2001)).

However, all these endeavors have a ommon pre-assumption, namely

that the assoiation of measurements to operators is already settled. They

all start from a set of operators and (by means of a set of empirial proba-

bilities) aim to reonstrut the quantum state of a system. But an operator

is not a measurement but only a representation of a measurement. Calling

operators observables overshadows the fat that the operators are already

on the mathematial side of the projet and without providing an assoia-

tion of measurements to operators the state determination annot rightly be

alled �empirial�. This measurement-operator assignment is that whih we

are going to make expliit in what omes.

Consider the following measurement-operator assignment in the ontext of

our above model: we assoiate the following three Bloh vetors to the mea-

surements a, b and c:

a = x = (1, 0, 0) (1.5)

b = (0, cosϕ,− sinϕ) (1.6)

c = z = (0, 0, 1) (1.7)

and for the sake of simpliity we set the onditional probabilities as follow:

p+a = p+b = p+c =: p (1.8)

The Bloh vetor s for these speial diretions and empirial probabilities

will then be the following:

s = (p − 1

2
)

(

1,
1 + cosϕ+ sinϕ

1 + cosϕ− sinϕ
, 1

)

(1.9)

But the operator Ws assoiated to the Bloh vetor s will not neessarily be

a density operator. For example for any

p ∈ [0.76, 1] and ϕ ∈ [π/3, π/2) (1.10)

the vetor s will be longer than 1 and hene Ws will not be positive semidef-

inite, that is, a density operator.

Thus, we have provided a nonommutative but not quantum mehanial

representation of the above senario. All the assignments of the table at the
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beginning of this setion hold exept the last one: the state of the system is

represented by a linear operator but not a density operator.

This toy-example is, however, speial in two senses: (i) the number of

measurements is �nite and (ii) the number of outomes is two, that is, the

senario is represented in the two-dimensional Hilbert spae whih is always

a speial ase. We takle point (ii) in the next setion and point (i) in the

one after the next.

1.4 Case 2: k measurements with n outomes

Let us then see whether a larger set of probabilities an also be given a

nonommutative but not quantum mehanial representation. Suppose we

perform k measurements on a system suh that eah measurement an have

n outomes. Suppose we obtain the following empirial onditional proba-

bilities:

pji := p(Aj
i |ai) > 0 with

∑

i

pji = 1 for all i = 1 . . . k; j = 1 . . . n

Just as above we represent eah measurement ai by a self-adjoint operator

Oi in the Hilbert spae Hn and the measurement outomes {Aj
i} of ai by

the orthogonal spetral projetions {P j
i }. The representation is onneted

to experiene by the Born rule:

pji := p(Aj
i |ai) = Tr(WsP

j
i )

where Ws is a linear operator representing the state s of the system. Again,

we do not assume that Ws is a density operator; our task is just to see

whether it follows that Ws is always a density operator.

Now, the empirially given probability distributions together with the

onventionally hosen sets of minimal orthogonal projetions provide on-

straints on Ws via the Born rule. For a ertain number of measurements Ws

gets ompletely �xed. Shematially,

{pj
1
}, {pj

2
} . . . {pjk} & {P j

1
}, {P j

2
} . . . {P j

k} =⇒ Ws

How many measurements are needed to uniquely �x Ws?

Ws gets uniquely �xed if Tr(WsA) is given for n2 linearly independent

operators A. Our operators are minimal projetions. The �rst set of mini-

mal orthogonal projetions provides n linearly independent equations. Any

further linearly independent set of orthogonal projetion provides n−1 extra
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equations sine in eah set the projetions sum up to the unity. That is k lin-
early independent sets of minimal orthogonal projetions provide k(n−1)+1
linearly independent equations whih is equal to n2 if k = n+1. Thus, per-
forming k = n + 1 measurements on our system (resulting in k = n + 1
probability distributions) and representing all the outomes by orthogonal

projetions in Hn, the linear operator Ws gets uniquely �xed.

But it will not neessarily be a density operator!

Our question is then: Do k = n+ 1 measurements onstrain Ws to be a

density operator for all linearly independent sets of orthogonal projetions

representing the outomes and all probability distributions generated from

the projetions by the Born rule? Again, what we test here is whether a

nonommutative representation is neessarily a quantum mehanial repre-

sentation.

Now, we show that the answer is: no.

As said above, a density operator is a self-adjoint, positive semide�nite

operator with trae equal to 1. Self-adjoint operators in Hn form a vetor

spae V over the �eld of real numbers. This vetor spae an also be endowed

with an inner produt indued by the trae: (A,B) := Tr(AB). The oper-

ators with trae equal to 1 form an a�n subspae E in V and the positive

semide�nite operators form a onvex one C+. (A subset C of a real vetor

spae V that linearly spans V is a onvex one if for any A1, A2 ∈ C and

r1, r2 ∈ R+, r1A1+r2A2 ∈ C and A,−A ∈ C ⇒ A = 0). The intersetion of

the two, C+∩E, is a onvex set in the a�n subspae. The extremal elements

of this set are the minimal projetions in Hn. Denote this set of minimal

projetions in Hn by Pn.
Now, for any one C in V , the dual one C∗

is de�ned as

C∗ := {A ∈ V |Tr(AB) > 0 for all B ∈ C}
Aording to Fejér's Trae Theorem the one of the positive semide�nite

operators is self-dual that is C∗
+ = C+.

Now, let us return to our example. Consider the k = n + 1 linearly

independent sets of orthogonal projetions representing the measurement

outomes in Hn. Let D be the onvex one expanded by these projetions

in Pn as extremal elements. Obviously, D ⊂ C+ and onsequently D∗ ⊃
C∗
+ = C+. Pik an element from (D∗ \C+)∩E and all it Ws. Lying outside

C+, Ws will not be positive semide�nite but, lying in E, Ws will be of trae

1. Hene for any set of orthogonal projetions it generates a probability

distribution by the Born rule.

Thus, we have found a ounter-example (atually, ontinuously many

ounter-examples): k = n + 1 linearly independent sets of orthogonal pro-
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jetions representing measurement outomes and k = n+ 1 probability dis-

tributions suh that the latter is generated from the former by the Born rule

with an operator Ws whih is not a density operator (sine is not positive

semide�nite). Hene, we have provided a nonommutative but not quantum

mehanial representation for a situation in whih k = n+ 1 measurements

with n outomes are performed on a system. This shows that our previous

result is not a onsequene of the fat that the Hilbert spae is the speial

H2. Conditional probabilities of �nitely many measurements with �nitely

many outomes an always be given a nonommutative but not quantum

mehanial representation.

But what is the situation if we are going to the ontinuum limit? Does

our ounter-example survive if the ardinality of the set of onditional proba-

bilities to be represented is unountable? To this we turn in the next setion.

1.5 Case 3: A ontinuum set of measurements with

n outomes

There is a theorem whih immediately omes to one's mind when going to

the ontinuum limit, namely Gleason's theorem.

Suppose we are given a ontinuum set of probability distributions of

measurements with, say, n outomes. We are to represent this set in an

n-dimensional Hilbert spae Hn. Now, suppose that we assign self-adjoint

operators to the measurements suh that the spetral projetions of the var-

ious operators together over the full set Pn of minimal projetions in Hn.

In other words, there is no minimal projetion in Pn whih does not repre-

sent a measurement outome. In this ase we an invoke Gleason's theorem

to deide on the question as to whether there exist nonommutative repre-

sentations whih are not the quantum mehanial representation. Gleason's

theorem answers this question in the negative.

Gleason's theorem namely laims that for every state φ in a Hilbert

spae with dimension greater than 2 there is a density operator W (and via

versa) suh that the Born rule φ(P ) = Tr(PW ) holds for all projetions. In
other words, if all projetions are onsidered, then the state will uniquely be

represented by a density operator. Translating it into our ase, the theorem

laims that if one represents the ontinuum set of measurement outomes

by the full set Pn of projetions of a given Hilbert spae, then one has no

other hoie to aount for the whole set of onditional probabilities, than

to represent the state by a density operator.

Note, however, that the previous sentene is a onditional: if we rep-
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resent the measurement outomes by the full set Pn then Gleason's theo-

rem tells us that the only representation is the quantum mehanial. This

raises the following question: Are we ompelled to represent a ontinuum

set of measurement outomes neessarily by the full set of minimal proje-

tions? Can we not �ompress� somehow the set of projetions representing

the measurement outomes suh that (i) the outome-projetion assignment

is injetive (no two outomes of di�erent measurements are represented by

the same projetion), still (ii) the set of projetions is only a proper subset of

Pn? As we saw in the previous setion, in this ase we an always represent

the state of the system by a linear operator whih is not a density operator.

Or to put it brie�y, an we avoid Gleason's theorem by not making use of

all minimal projetions of Pn?
As stressed in Setion 2, it is of ruial importane to disern physial

measurements from operators mathematially representing them. When we

use Gleason's theorem we intuitively assume that all projetions in a Hilbert

spae represent a measurement outome for a real-world physial measure-

ment. The ase of spin enfores this intuition sine the Bloh sphere rep-

resentation of spin-half partiles niely pairs the spatial orientations of the

Stern-Gerlah apparatus with the projetions of P2. In general, however, we

have no a priori knowledge of the measurement-operator assignment. Par-

tiularly, we annot assume that a set of measurements just beause it is an

unountable set has be represented by the full set of projetions of a given

Hilbert spae. A priori it is perfetly oneivable that a set of real-world

measurements, even if its ardinality is unountable, an be represented by

a proper subset of Pn.
The question of how the ardinality of the empirial data in�uenes the

possible representations should be diserned from another question, namely

the ontent of the empirial data. What is the empirial data that we are

going to represent? It is the empirial ontent of quantum mehanis itself

� one may respond. But what is that?

Suppose that for a given Hilbert spae Hn all the self-adjoint operators

on Hn represent a real-world empirial measurement with n outomes and

all states on Hn represent a real-world preparation of the system to be mea-

sured. In other words, take it at fae value that the full formalism of an

n-dimensional quantum mehanis has empirial meaning. Again, this as-

sumption is legitimate for n = 2 where one an see how self-adjoint operators

in H2 niely align with real-world spin measurements of eletrons in di�er-

ent spatial diretions. This mathing for, say, n = 13, however, is not so

obvious. Be as it may, suppose we oin the term �empirial ontent of the

n-dimensional quantum mehanis� for the (ontinuum) set of onditional
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probabilities provided by the Born rule that is gained by taking the trae

of the all the di�erent spetral projetions multiplied by the all the di�er-

ent density operators on Hn. Then our question is this: an the empirial

ontent of the n-dimensional quantum mehanis be represented in Hn in a

nonommutative but not quantum mehanial way?

Thus, we have two di�erent questions. 1. Is a nonommutative represen-

tation of a set of empirial probabilities neessarily a quantum mehanial

representation if the ardinality of the set is ontinuum? 2. Is a nonom-

mutative re-representation of the empirial ontent of quantum mehanis

is neessarily a quantum mehanial representation? In what omes we will

show that the answer to the �rst question is no and the answer to the seond

question is yes.

We start with the �rst question. Our task is to represent a ontinuum set

of empirial probabilities in a nonommutative but not quantum mehanial

way. The set we pik will be the set of probabilities of spin measurements in

all the di�erent spatial diretions performed on an eletron prepared in one

given state. This set is obviously a ontinuum set but not yet the full em-

pirial ontent of the two-dimensional quantum mehanis sine we onsider

only one state. The ontinuum set of empirial onditional probabilities is

the following:

{

p±a := ps(A
±|a); s is �xed

}

(1.11)

Here a denotes the spin measurement in diretion a and A±
are the two spin

outomes. Now, in the Bloh sphere representation one assoiates two unit

vetors

a = (1, ϑ, ϕ)

s = (1, 0, 0)

to the spin measurement a and state s of the system, respetively, suh that

the Born rule yields the onditional probabilities (1.11):

Operator assignment: Born rule:

Outomes: A± −→ P±
a = 1

2
(1± aσ) a ∈ R

3, |a| = 1
Pure state: s −→ Ws =

1

2
(1+ sσ) s ∈ R

3, |s| = 1
p±a = Tr(WsP

±
a )

As is well-known, the measurement outomes in the Bloh sphere represen-

tation are assoiated to the full set of minimal projetions P2, and hene

Ws must be represented by a density operator due to Gleason's theorem.
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However, the Bloh sphere representation is not the only possible nonom-

mutative representation of (1.11). Here is an alternative.

Consider the following two funtions:

f : S2 → S2; a 7→ f(a)

g : S2 → R
3; s 7→ g(s)

and suppose that instead of a and s we assoiate

f(a) = (1, ϑ′, ϕ′)

g(s) = (r, 0, 0)

to a and s, respetively, where

ϑ′ = arccos

(

cos(ϑ)

r

)

for ϕ ∈ [0, 2π] (1.12)

ϕ′ =







0 for ϑ = 0
ϕ for ϑ ∈ (0, π)
π for ϑ = π

(1.13)

and r > 1. Observe that f is injetive but not surjetive: a spherial ap

around the �North Pole� and �South Pole� is not in the image of f . It

is easy to hek that by these assoiations we obtain a nonommutative

representation for the onditional probabilities (1.11):

Operator assignment: Born rule:

Outomes: A± −→ P±
a = 1

2
(1± f(a)σ) f(a) ∈ R

3, |f(a)| = 1
Pure state: s −→ Ws =

1

2
(1+ g(s)σ) g(s) ∈ R

3, |g(s)| > 1
p±a = Tr(WsP

±
a )

The representation is a nonommutative but not a quantum mehanial rep-

resentation sine Ws is not positive semide�nite and hene not a density

operator. Note again that we have avoided Gleason's theorem beause we

did not use the full Bloh sphere to represent measurement outomes but

only a �belt� de�ned by the angles (1.12)-(1.13). To sum up, even though the

set of measurements is unountable, the nonommutative representation is

not neessarily quantum mehanial sine the set of projetions representing

the outomes is not the full set of projetions P2 of the Hilbert spae H2.

However, (1.11) ontains only the onditional probabilities of the spin mea-

surement for one state. Can we apply the above tehnique of �peking a hole�

in the surfae of the Bloh sphere and �pushing out� s suh that Ws will not
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be a density operator in the ase when we take into onsideration all states?

In other words, an we provide a nonommutative but not quantum me-

hanial representation for the full empirial ontent of the two-dimensional

quantum mehanis? This was our seond question above.

This is point where the representation of the set of onditional prob-

abilities gets rigid. It will turn out that if one is to represent the ondi-

tional probability of all measurement outomes of all spin measurement in

all states, then there is no other nonommutative representation but the

quantum mehanial. We prove it by the following lemma.

Lemma 1. Consider the Bloh sphere representation of spin. That is let

a and s two unit vetors assoiated to the spin measurement a and state s
of the system, respetively, suh that the Born rule yields the onditional

probabilities:

Tr(WsP
±

a ) = Tr

(

1

2
(1+ sσ)

1

2
(1± aσ)

)

=
1

2
(1± sa) (1.14)

Then, if there are two funtions

f : S2 → S2; a 7→ f(a)

g : S2 → R
3; s 7→ g(s)

suh that all the onditional probabilities (1.14) are preserved that is

as = f(a)g(s) (1.15)

for all a, s ∈ S2
, then

(i) f and g are the restritions of the bijetive linear maps

f̂ : R3 → R
3

ĝ : R3 → R
3

to S2
, respetively;

(ii) f̂ is the orthogonal transformation;

(iii) ĝ = f̂ .

For the proof of Lemma 1 see the Appendix.

Lemma 1 shows that there is no other transformation of the Bloh vetors

whih preserve all the empirial onditional probabilities enoded in the inner
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produt but the orthogonal transformation. Consequently, one annot avoid

Gleason's theorem and provide a ounter-example of the above type in whih

the state is represented by a linear but not density operator.

In the rest of the setion we prove that this result holds not only in H2

but in any n-dimensional Hilbert spae. We show that one annot preserve

all the empirial onditional probabilities enoded in the inner produt of

the Hilbert spae by other transformation than the unitary transformation.

Thus, �ompressing� the empirial ontent in a proper subset of Pn of a

given Hilbert spae is not a viable route to follow. If all the inner produts

of minimal projetions have an empirial meaning then the only way to

represent them is via quantum mehanis.

Lemma 2. Let H be an n-dimensional Hilbert spae and let Pn be the set

of minimal projetions in B(H) ≃Mn(C). If there are two funtions

f : Pn → Pn
g : Pn →Mn(C)

suh that

Tr(PQ) = Tr(f(P )g(Q)) (1.16)

for all P,Q ∈ Pn then

(i) f and g are the restritions of the bijetive linear maps

f̂ : Mn(C)→Mn(C)

ĝ : Mn(C)→Mn(C)

to Pn, respetively;

(ii) f̂ is unitary with respet to the inner produt on Mn(C) provided by

the trae;

(iii) ĝ = f̂ .

For the proof of Lemma 2 see again the Appendix.

1

1

I thank Péter Vesernyés for his help in proving both Lemma 1 and 2.
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1.6 Disussion

Is quantum mehanis the only possible way to represent an empirially given

set of lassial onditional probabilities in a nonommutative way; or is this

representation piked out from a broader set of representations by onven-

tion? Ultimately, this was the question we posed in this paper. To make

this question preise, we spei�ed a set of representations, alled nonom-

mutative representations, in whih measurement hoies and measurement

outomes were represented in the quantum fashion and the Born rule on-

neting the quantum probabilities to lassial onditional probabilities was

respeted. We asked whether experiene an ensure that this representation

beomes not just partly but fully quantum mehanial, that is, the state will

be represented by a density operator. Our answer was the following:

1. In ase of �nitely many measurements with �nitely many outomes the

probability distribution of outomes an always be given a nonommu-

tative but not quantum mehanial representation.

2. In ase of in�nitely many measurements the probability distributions

an be given a nonommutative but not quantum mehanial repre-

sentation only if one an avoid Gleason's theorem by not using all the

projetions of the Hilbert spae in representing measurement outomes.

3. If the physial situation is so omplex that the inner produt of any

pair of minimal projetions is of empirial meaning, then there exists

no nonommutative representation whih is not quantum mehanial.

The relation between point 2 and 3 is very subtle. It shows that simply

the ardinality of the set of measurements does not deide on whether the

situation an be given a nonommutative but not quantum mehanial rep-

resentation. By �ompressing� the projetions representing measurement

outomes into a real subset of the full set of minimal projetions of the given

Hilbert spae one an go beyond the quantum mehanial representation.

The representation beomes rigid only if the inner produt of any pair of

minimal projetions in a Hilbert spae an be given an empirial ontent.

This is ase for spin-half partiles where projetions an diretly be assoi-

ated to preparation and measurement diretions. Whether one an provide

a similar empirial aount for the inner produt of any pair of minimal pro-

jetions in a Hilbert spae of higher dimension, is a question whih annot

be deided a priori.
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Appendix

Proof of Lemma 1. (i) Let {e1, e2, e3} ⊂ S2
be an orthonormal basis in R

3
.

Then due to (1.15) the sets {f(e1), f(e2), f(e3)} and {g(e1), g(e2), g(e3)}
are biorthogonal:

(f(ei), g(ej)) = δi,j i, j = 1, 2, 3

Biorthogonal sets with ardinality d in R
d
form (in general two di�erent)

linear bases of R
d
. Hene, if a =

∑

i αiei ∈ S2
and f(a) =

∑

i α
f
i f(ei) ∈ R

3

with αi, α
f
i ∈ R, then

αi = (a, ei) = (f(a), g(ei)) =
∑

j

αf
j (f(ej), g(ei)) = αf

i , i = 1, 2, 3 (1.17)

Hene, f(
∑

i αiei) =
∑

i αif(ei), that is f is the restrition of the bijetive

linear map f̂ haraterized by the image linear basis {f(e1), f(e2, f(e3)} of
the orthonormal basis {e1, e2, e3}. A similar argument shows that g is the

restrition of the bijetive linear map ĝ to S2
.

(ii) Using polarization identity

(a,b) =
1

4

[

(a+ b,a+ b)− (a+ b,a+ b)
]

, a,b ∈ R
3

it is enough to show that

(a,a) = (f̂(a), f̂(a)), a ∈ R
3

whih, however, holds sine

1 = (a,a) = (f(a), f(a)) = (f̂(a), f̂(a)), a ∈ S2

and f̂ is linear.

(iii) Using (1.15) and the orthogonality of f̂ one has

(a,b) = (f̂(a), ĝ(b)) = (a, f̂−1(ĝ(b))), a,b ∈ R
3.

Hene, ĝ = f̂ due to the uniqueness of the inverse map.

Proof of Lemma 2. (i) Sine the trae is a faithful positive linear funtional

on Mn(C),
(A,B) := Tr(A∗B), A,B ∈Mn(C)
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de�nes an inner produt on the n2-dimensional omplex linear spaeMn(C).
The real linear ombinations of the projetions in Pn span the real vetor

spae of self-adjoint elements in Mn(C), and the omplex linear ombina-

tions span the omplex vetor spae Mn(C). Let {Pi, i = 1, . . . , n2} ⊂ Pn
be a linear basis in Mn(C). Then the inner produt matrix g ∈ Mn2(C)
given by matrix elements gij := (Pi, Pj) ≥ 0 is an invertible matrix. Sine

Tr(f(Pi)g(Pj)) = gij due to (1.16) {f(Pi), i = 1, . . . , n2} ⊂ Pn and {g(Pi), i =
1, . . . , n2} ⊂ Mn(C) are linear bases in Mn(C) due to invertibility of g.
De�ning the bijetive linear maps f̂ , ĝ : Mn(C) → Mn(C) by the linear ex-

tension of these image bases for P =
∑

i αiPi ∈ Pn one has

(f(P ), g(Pj)) = (P,Pj) = (
∑

i

αiPi, Pj) =
∑

i

αi(Pi, Pj) =
∑

i

αi(f(Pi), g(Pj))

= (
∑

i

αif(Pi), g(Pj)) =: (f̂(
∑

i

αiPi), g(Pj)) = (f̂(P ), g(Pj)), j = 1, . . . , n2.

Hene, f is the restrition of the bijetive linear map f̂ to Pn, indeed. A

similar argument shows that g is the restrition of the bijetive linear map

ĝ to Pn.
(ii) Using polarization identity

(A,B) =
1

4

[

(A+B,A+B)− (A−B,A−B)
]

, A,B ∈Mn(C)

it is enough to show unitarity on `diagonal' inner produts:

(A,A) = (f̂(A), f̂ (A)), A ∈Mn(C)

Sine f(Pn) ⊂ Pn by assumption, using the normalization Tr(P ) = 1, P ∈
Pn of the trae it follows that

(P,P ) = 1 = (f(P ), f(P )) = (f̂(P ), f̂(P )), P ∈ Pn

i.e. f̂ is unitary on diagonals from Pn. Using a spetral deomposition of

self-adjoint elements by orthogonal minimal projetions one onludes that

f̂ maps the real vetor spae of self-adjoint elements in Mn(C) into itself,

moreover, it is unitary on diagonals from the spae of self-adjoint elements.

Sine A ∈Mn(C) an be written uniquely as a sum of self-adjoint elements:

A = R+ iI with R := (A+A∗)/2 and I := (A−A∗)/2i it follows that

(A,A) = (R + iI,R+ iI) = (R,R) + (I, I) = (f̂(R), f̂(R)) + (f̂(I), f̂(I))

= (f̂(R) + if̂(I), f̂ (R) + if̂(I)) = (f̂(A), f̂(A)),
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that is f̂ is unitary on diagonals from Mn(C), whih provides unitarity of f̂ .

(iii) Using (1.16) and unitarity of f̂ one has

(A,B) = (f̂(A), ĝ(B)) = (A, f̂−1(ĝ(B))), A,B ∈Mn(C).

Hene, ĝ = f̂ due to the uniqueness of the inverse map.

Aknowledgements. I thank Zalán Gyenis, Sam Flether and espeially

Péter Vesernyés for valuable disussions. This work has been supported by

the Hungarian Sienti� Researh Fund, OTKA K-115593.

Referenes

G. Bana and T. Durt, �Proof of Kolmogorovian Censorship,� Found. Phys., 27,

1355�1373. (1997).

G. Chiribella, G. M. D'Ariano and P. Perinotti, �Quantum from priniples,� arxiv.org/abs/1506.00398,

2015.

L. E. Szabó, �Critial re�etions on quantum probability theory,� in M. Rédei

and M. Stöltzner (eds.) John von Neumann and the Foundations of Quan-

tum Physis. (Institute Vienna Cirle Yearbook. Dordreht: Kluwer Aademi

Publishers, 201�219, 2001)

L. E. Szabó, �The Einstein-Podolsky-Rosen argument and the Bell inequalities,� In-

ternet Enylopedia of Philosophy, URL= http://www.iep.utm.edu/epr/ (2008).

G. M. D'Ariano, L. Maone and M.G. A. Paris, �Quorum of observables for uni-

versal quantum estimation,� J. Phys. A, 34, 93-103, 2001.

L. Hardy, �Quantum Theory From Five Reasonable Axioms,� arxiv.org/abs/quant-

ph/0101012, 2008.

J. L. Park and W. Band, �The empirial determination of quantum states,� Found.

Phys., 1, 133-144 (1970).

J. L. Park and W. Band, �A general theory of empirial state determination in

quantum mehanis, Part I and Part II,� Found. Phys., 1, 211-226 and 339-357

(1971).

J. L. Park and W. Band, �Preparation and Measurement in Quantum Physis,�

Found. Phys., 22, 657-668 (1992).

M. Rédei, �Kolmogorovian Censorship Hypothesis for general quantum probability

theories,� Manusrito - Revista Internaional de Filoso�a, 33, 365�380 (2010).

35

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



36

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



Chapter 2

Three priniples leading to the

Bell inequalities

In the paper we ompare three priniples aounting for orrelations, namely Re-

ihenbah's Common Cause Priniple, Bell's Loal Causality Priniple, and Ein-

stein's Reality Criterion and relate them to the Bell inequalities. We show that

there are two routes onneting the priniples to the Bell inequalities. In ase of

Reihenbah's Common Cause Priniple and Bell's Loal Causality Priniple one

assumes a non-onspiratorial joint ommon ause for a set of orrelations. In ase of

Einstein's Reality Criterion one assumes strongly non-onspiratorial separate om-

mon auses for a set of perfet orrelations. Strongly non-onspiratorial separate

ommon auses for perfet orrelations, however, form a non-onspiratorial joint

ommon ause. Hene the two routes leading the Bell inequalities meet.

2.1 Introdution

Many were pondering on the historial reasons of why it took thirty years to get

from the EPR argument to the Bell inequalities. (See for example (Bell 1964/2004);

(Howard 1985); (Redhead 1987); (Hájek and Bub 1992); (Fine 1996); (Norton

2004); (Szabó 2008); (Goldstein et al. 2011); (Maudlin 2014) and (Lewis 2015).)

This paper has nothing to say about these historial and oneptual reasons. It

rather intends to show that the route leading from Einstein's Reality Criterion to

the Bell inequalities is no longer than the route starting o� from two other prin-

iples standardly used to ausally aount for orrelations, namely Reihenbah's

Common Cause Priniple and Bell's Loal Causality Priniple.

In the paper we will handle the three priniples side by side and show how they

relate to one another and to the Bell inequalities. In Setion 2 we show how the

priniples are used to ausally aount for orrelations; in Setion 3 we use them

to explain onditional orrelations; and in Setion 4 we trae the routes leading

from the priniples to the Bell inequalities. In the paper we deliberately keep the
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philosophial analysis short so that the formal parallelism will not be lost sight of.

2.2 Explaining orrelations

Let A and B be two orrelated but ausally separated events represented in a

lassial probability spae (Σ, p):

p(A ∧B) 6= p(A) p(B) (2.1)

One an invoke three priniples to ausally aount for this orrelation. If one is

onerned only with the probabilisti aspets, one an apply

Reihenbah's Common Cause Priniple: If there is a orrelation between two

events and there is no diret ausal (or logial) onnetion between the orrelated

events, then there always exists a ommon ause of the orrelation.

Formally, a ommon ause of the orrelation (10.1) is a partition {Ck} (k ∈ K) in

(Σ, p)�or in an extension of (Σ, p); see (Hofer-Szabó, Rédei and Szabó 2013)�suh

that for any k ∈ K:

p(A ∧B|Ck) = p(A|Ck) p(B|Ck) (2.2)

If one furthermore assumes that the events A and B also have spatiotemporal

loalization, for example they are loated in spatially separated regions, VA and VB ,
respetively, then to ausally aount for them, one an invoke a further priniple:

Bell's Loal Causality Priniple: �A theory will be said to be loally ausal if

the probabilities attahed to values of loal beables in a spae-time region VA are

unaltered by spei�ation of values of loal beables in a spatially separated region

VB , when what happens in the bakward light one of VA is already su�iently

spei�ed, for example by a full spei�ation of loal beables in a spae-time region

VC .� (Bell 1990/2004, 239-240)

The �gure Bell is attahing to this formulation is reprodued in Fig. 6.1 with the

original aption. In a loally ausal theory for any orrelation between events A
and B loalized in spatially separated regions VA and VB , respetively, the atomi
partition {Ck} (k ∈ K) in the probability spae (Σ, p) assoiated to any region VC
ausally shielding-o� VA from the ommon past of VA and VB as depited Fig. 6.1

should satisfy (2.2).

Finally, suppose we interpret the orrelation (10.1) epistemologially as a pre-

dition. That is we interpret A as a prediting event and B as a predited event and

the predition as a orrelation between the two. After all, a predition is ontologi-

ally nothing but an (ideally strong) orrelation between two event types. Weather

foreast is simply a orrelation between the today announement and the tomorrow

weather. Moreover, in a predition the predited event annot ausally in�uene

the prediting events. One an predit the tomorrow weather but not the yesterday

weather.
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V

V V

C

A B

Figure 2.1: Full spei�ation of what happens in VC makes events in VB
irrelevant for preditions about VA in a loally ausal theory.

Suppose furthermore that the following two requirements also hold: (i) The

prediting event is also ausally irrelevant for the predited event. This an hap-

pen for example when the two events are spatially separated. (ii) The orrelation

between A and B is perfet :

p(A ∧B) = p(A) = p(B) (2.3)

If all these hold, then we have a third priniple to aount for the orrelation (2.3):

Einstein's Reality Criterion: �If, without in any way disturbing a system, we

an predit with ertainty (i.e. with probability equal to unity) the value of a

physial quantity, then there exists an element of physial reality orresponding to

this physial quantity.� (EPR 1935, 777-778)

Observe, that the term �without in any way disturbing a system� is just ondition (i)

above, and the term �predit with ertainty� is just ondition (ii). What Einstein's

Reality Criterion requires is that in ase of a perfet predition, that is perfet

orrelation between ausally separated events, an element of reality should aount

for the orrelation.

What is an element of reality?

The distintive feature of an element of reality (see (Gömöri and Hofer-Szabó

2017) for the details) is that it determines the predited event with ertainty. For-

mally, an element of reality is a partition {C+, C−} in (Σ, p) suh that the following
holds:

p(A ∧B|C+) = 1 (2.4)

p(A ∧B|C−) = 0 (2.5)

Now, let us go bak to the Reihenbah's Common Cause Priniple. It is well known

that for perfet orrelations a ommon ause that is a partition {Ck} (k ∈ K)
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satisfying (2.2) is deterministi: for any k ∈ K

p(A ∧B|Ck) ∈ {0, 1} (2.6)

Hene, the indies k ∈ K an be grouped into two groups K+
and K−

with K+ ∨
K− = K suh that

C+ = ∨k∈K+Ck (2.7)

C− = ∨k∈K−Ck (2.8)

and {C+, C−} satis�es (2.4)-(2.5). Common auses for perfet orrelations under-

stood as preditions are just elements of reality.

To sum up, a orrelation between two events depending on whether we under-

stand it purely probabilistially or spatiotemporally or in the ontext of preditions

an be explained by three di�erent priniples: by Reihenbah's Common Cause

Priniple, by Bell's Loal Causality Priniple or by Einstein's Reality Criterion.

2.3 Explaining onditional orrelations

Now, let us apply the above reasoning to measurements. Let ai and bj (i ∈ I, j ∈ J)
be measurement hoies and let {Ai, A

′
i} and {Bj, B

′
j} be binary measurement

outomes on two spatially separated systems. We will represent the measurement

hoies as two partitions {ai} (i ∈ I) and {bj} (j ∈ J) in a lassial probability

spae (Σ, p), and the measurement outomes by further partitioning the appropriate

measurement hoies ai and bj, respetively:

Ai ∧ A′
i = 0 Ai ∨ A′

i = ai (2.9)

Bj ∧B′
j = 0 Bj ∨B′

j = bj (2.10)

Suppose that for a given i ∈ I and j ∈ J the measurement outomes Ai and

Bj are onditionally orrelated in the following sense:

p(Ai ∧Bj |ai ∧ bj) 6= p(Ai|ai) p(Bj |bj) (2.11)

What is the ausal explanation of this onditional orrelation?

Before we turn to the above priniples, we make the following stipulation:

Whatever explains the above orrelations, it has to be ausally and hene prob-

abilistially independent of the measurement hoies. In other words, in applying

the above priniples we will always require:

No-onspiray: If a partition {Ck} (k ∈ K) represents a set of events explaining

the orrelation (10.13), then for any k ∈ K the following relation is required:

p(ai ∧ bj ∧ Ck) = p(ai ∧ bj) p(Ck) (2.12)

Next, we formulate the three priniples ausally aounting for the onditional

orrelation between the measurement outomes given ertain measurement hoies:
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Reihenbah's Common Cause Priniple: The ommon ause of the ondi-

tional orrelation (10.13) is a partition {Ck} in (Σ, p) suh that for any k ∈ K:

p(Ai ∧Bj |ai ∧ bj ∧ Ck) = p(Ai|ai ∧ Ck) p(Bj |bj ∧ Ck) (2.13)

p(ai ∧ bj ∧ Ck) = p(ai ∧ bj) p(Ck) (2.14)

Bell's Loal Causality Priniple: Suppose there is a onditional orrelation

(10.13) between measurement outomes Ai and Bj given measurement hoies ai
and bj . Suppose further that Ai and ai are loalized in regions VA and Bj and bj are
loalized in regions VB spatially separated from VA. Then, if the theory aounting
for this orrelation is loally ausal, then the atomi partition {Ck} (k ∈ K) in

(Σ, p) assoiated to the region VC (see Fig. 6.1) should satisfy (2.13)-(3.3).

Einstein's Reality Criterion: Suppose that the onditional orrelation (10.13)

represents now a predition. That is let Ai denote the outome of a prediting event

ai and let Bj denote the outome of the predited event bj . Suppose furthermore

that Ai, ai and Bj , bj are ausally separated. Also suppose that we an predit the

outome Bj of the measurement bj by obtaining outome Ai for the predition ai
for sure. In other words, suppose that the onditional orrelation is perfet:

p(Ai ∧Bj |ai ∧ bj) = p(Ai|ai) = p(Bj |bj) (2.15)

Then Einstein's Reality Criterion laims that there are elements of reality that is

a partition {C+, C−} in (Σ, p) explaining orrelation (2.15) in the following sense:

p(Ai ∧Bj |ai ∧ bj ∧ C+) = 1 (2.16)

p(Ai ∧Bj |ai ∧ bj ∧ C−) = 0 (2.17)

p(ai ∧ bj ∧ C+) = p(ai ∧ bj) p(C+) (2.18)

p(ai ∧ bj ∧ C−) = p(ai ∧ bj) p(C−) (2.19)

Just as above, in ase of a perfet orrelation a ommon ause {Ck} (k ∈ K)

satisfying (2.13)-(3.3) is deterministi, hene a suitable grouping of the Ck-s via

(2.7)-(2.8) will yield the elements of reality C+
and C−

. In short, Einstein's Reality

Criterion is a speial ase of Reihenbah's Common Cause Priniple when the

orrelation is perfet. (For the details see Gömöri and Hofer-Szabó 2017.)

To sum up, the ore of all three priniples is to aount for orrelations in

terms of a non-onspiratorial ommon ause. In ase of Reihenbah's Common

Cause Priniple only the probabilisti aspets (2.13)-(3.3) of the ommon ause

are taken into onsideration. In ase of Bell's Loal Causality Priniple both the

orrelated events and also the ommon ause have a spatiotemporal loalization.

In ase of Einstein's Reality Criterion the whole orrelation senario is interpreted

in the framework of a predition and the orrelation is taken to be perfet.

Before we move on to the relation of the priniples to the Bell inequalities, let us see

how the onditional and unonditional orrelations and their explanations relate to

one another.
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First, observe that if the measurement hoies are ausally and therefore prob-

abilistially independent, that is if for any i ∈ I and j ∈ J :
p(ai ∧ bj) = p(ai) p(bj) (2.20)

and the algebrai inlusions (2.9)-(2.10) hold, then the outomes Ai and Bj are

orrelated in the onditional sense

p(Ai ∧Bj |ai ∧ bj) 6= p(Ai|ai) p(Bj |bj) (2.21)

if and only if they are orrelated in the unonditional sense

p(Ai ∧Bj) 6= p(Ai) p(Bj) (2.22)

Seond, given (2.9)-(2.10) and (2.20), {Ck} is a non-onspiratorial ommon ause

of the onditional orrelation (2.21):

p(Ai ∧Bj |ai ∧ bj ∧ Ck) = p(Ai|ai ∧ Ck) p(Bj |bj ∧Ck) (2.23)

p(ai ∧ bj ∧ Ck) = p(ai ∧ bj) p(Ck) (2.24)

if and only if {Ck} is a non-onspiratorial ommon ause of the unonditional

orrelation (2.22):

p(Ai ∧Bj |Ck) = p(Ai|Ck) p(Bj |Ck) (2.25)

p(ai ∧ bj ∧ Ck) = p(ai ∧ bj) p(Ck) (2.26)

(For the proof see (Hofer-Szabó, Rédei and Szabó 2013, Lemma 9.8).) Therefore,

on the assumptions (2.9)-(2.10) and (2.20), the ommon ausal explanations (2.23)-

(3.5) and (2.25)-(3.19) are interhangeable.

2.4 From the priniples to the Bell inequalities

How the above three priniples serving for a ausal explanation of orrelations re-

late to the Bell inequalities? The ruial point is to see how the di�erent priniples

relate to the ommon ausal explanation of more orrelations. Prinipally, there are

two possible ways: either the di�erent orrelations are explained by a joint ommon

ause or eah orrelation is explained by a separate ommon ause. The standard

derivation of the Bell inequalities from Reihenbah's Common Cause Priniple and

Bell's Loal Causality Priniple assumes a joint ommon ause; whereas the deriva-

tion of the Bell inequalities from Einstein's Reality Criterion assumes only separate

ommon auses. Sine the assumption of separate ommon auses is weaker than

that of a joint ommon ause, the derivation of the Bell inequalities from Einstein's

Reality Criterion needs a stronger version of no-onspiray.

Let us see the derivations in turn:

Reihenbah's Common Cause Priniple. Suppose that I = J = {1, 2} and
the events Ai and Bj are all onditionally orrelated that is for any i, j ∈ I:

p(Ai ∧Bj |ai ∧ bj) 6= p(Ai|ai)p(Bj |bj) (2.27)
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The four orrelations are said to have a non-onspiratorial joint ommon ause if

there is a single partition {Ck} (k ∈ K) in (Σ, p) (or in an extension of (Σ, p)) suh
that for all i, j ∈ I and k ∈ K the following hold:

p(Ai ∧Bj |ai ∧ bj ∧ Ck) = p(Ai|ai ∧ Ck) p(Bj |bj ∧ Ck) (2.28)

p(ai ∧ bj ∧ Ck) = p(ai ∧ bj) p(Ck) (2.29)

We laim that the events Ai, Bj , ai and bj with a non-onspiratorial joint ommon

ausal explanation satisfy the Clauser�Horne inequalities that is for any i, i′, j, j′ ∈
I and i 6= i′, j 6= j′:

−1 6 p(Ai ∧Bj |ai ∧ bj) + p(Ai ∧Bj′ |ai ∧ bj′)
+p(Ai′ ∧Bj |ai′ ∧ bj)− p(Ai′ ∧Bj′ |ai′ ∧ bj′)
−p(Ai|ai)− p(Bj |bj) 6 0 (2.30)

For the proof see the Appendix.

Bell's Loal Causality Priniple. Again, let I = J = {1, 2}. Suppose that the
events Ai and Bj loalized in spatially separated regions VA and VB respetively,

are all onditionally orrelated in the sense of (2.27). In a loally ausal theory

the atomi partition of the loal algebra assoiated to VC (see again Fig. 6.1)

is a non-onspiratorial joint ommon ause in the sense of (2.28)-(2.29). Hene

the Clauser�Horne inequalities (9.24) follow, just as in the ase of Reihenbah's

Common Cause Priniple.

Einstein's Reality Criterion. Suppose now that I = J = {1, 2, 3, 4} and there

is a perfet onditional orrelation between (the prediting events) Ai and (the

predited events) Bj for any i = j ∈ I:

p(Ai ∧Bi|ai ∧ bi) = p(Ai|ai) = p(Bi|bi) (2.31)

First, observe that the four orrelations in (2.31) are not the same as the orrelations

(2.27) above. In (2.27) I = J = {1, 2} and the four orrelations were not neessarily
perfet; in (2.31) I = J = {1, 2, 3, 4} and the four orrelations are the i = j perfet
orrelations.

Now, Einstein's Reality Criterion does not assume that all four orrelations in

(2.31) have a joint ommon ause. All it assumes is that there are separate elements

of reality to eah orrelation, that is for any i ∈ I there is a partition {C+
i , C

−
i }

satisfying

p(Ai ∧Bi|ai ∧ bi ∧ C+
i ) = 1 (2.32)

p(Ai ∧Bi|ai ∧ bi ∧ C−
i ) = 0 (2.33)

However, instead of simply requiring no-onspiray:

p(ai ∧ bj ∧ C+
k ) = p(ai ∧ bj) p(C+

k ) (2.34)

p(ai ∧ bj ∧ C−
k ) = p(ai ∧ bj) p(C−

k ) (2.35)
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(i, j, k ∈ I) one requires strong no-onspiray, namely that any element C in the

Boolean algebra generated by the four pairs of elements of reality {C±
k } should be

independent of any ombination of the measurement hoies:

p(ai ∧ bj ∧ C) = p(ai ∧ bj) p(C) (2.36)

In short, in ase of more orrelations Einstein's Reality Criterion requires less than

the other two priniples sine it requires only separate elements of reality for the dif-

ferent orrelations, but also requiresmore sine it requires all Boolean ombinations

of the elements of reality to be independent of the measurement hoies.

The derivation of the Clauser�Horne inequalities (9.24) from a strongly non-

onspiratorial separate ommon ausal explanation is straightforward. From (2.31),

(2.32)-(2.33) and (2.36) it follows that for any i, j ∈ I:

p(Ai|ai) = p(Bi|bi) = p(C+
i ) (2.37)

p(Ai ∧Bj |ai ∧ bj) = p(C+
i ∧ C+

j ) (2.38)

Now, it is an elementary fat of lassial probability theory that for any four events

C+
i , C

+
i′ , C

+
j and C+

j′ in (Σ, p) we have:

−1 6 p(C+
i ∧ C+

j ) + p(C+
i ∧ C+

j′ ) + p(C+
i′ ∧ C+

j )

−p(C+
i′ ∧ C+

j′ )− p(C+
i )− p(C+

j ) 6 0 (2.39)

Substituting (2.37)-(2.38) into (2.39) one arrives at (9.24).

What one proves here is that the atomi partition omposed of the intersetions

of strongly non-onspiratorial separate ommon auses for perfet orrelations form

a non-onspiratorial joint ommon ause for all orrelations. Note that in the

general ase that is for non-perfet orrelations the relation between separate and

joint ommon auses is not so straightforward and the relation of strongly non-

onspiratorial separate ommon auses to the Bell inequalities is not known. (See

(Hofer-Szabó, Rédei and Szabó 2013, Conjeture 9.11.))

To sum up, one an arrive at the Bell inequalities from the three priniples on

two di�erent routes. In the standard derivation based on Reihenbah's Common

Cause Priniple or Bell's Loal Causality Priniple one takes four orrelations and

assumes that they have a non-onspiratorial joint ommon ause. In ase of Ein-

stein's Reality Criterion one takes four perfet orrelations and assumes that eah

has a separate ommon ause whih together are strongly non-onspiratorial. Both

routes lead diretly to the Clauser-Horne inequalities.

2.5 Conlusions

In this paper we ompared three priniples aounting for orrelations and related

them to the Bell inequalities. Reihenbah's Common Cause Priniple, in the orig-

inal sense at least, refers only to one orrelation: it demands a ommon ause for

a given orrelation if the diret ausal link between the orrelata an be exluded.
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In the derivation of the Bell inequalities, however, the priniple had to be used in

a stronger sense, namely demanding one and the same ause for a set of orrela-

tions. Bell's Loal Causality Priniple has already been formulated originally in

this strong sense: all orrelations loalized in spatially separated regions were to

be sreened-o� by the �full spei�ation� of an appropriately loalized third spae-

time region. In this sense Bell's Loal Causality Priniple is a stronger priniple

than Reihenbah's Common Cause Priniple. Finally, Einstein's Reality Criterion

again assumes elements of reality to eah orrelation separately, similarly to Re-

ihenbah's Common Cause Priniple. Moreover, it does so only in ase of perfet

orrelations. In this sense Einstein's Reality Criterion seems to be even weaker

than Reihenbah's Common Cause Priniple.

Note, however, that not even the strongest of the three priniples, namely

Bell's Loal Causality Priniple implies the Bell inequalities on its own. Even this

priniple needs to assume that the ommon auses or elements of reality ausally

responsible for the orrelations are ausally and hene probabilistially independent

from the measurement hoies. To be sure, no-onspiray seems to be a natural

requirement for an element of reality to deserve its name. No-onspiray, however,

an be de�ned in di�erent strength. And this is the point where the priniples far-

ing worse at the beginning an ath up. Even though Einstein's Reality Criterion

provides only separate elements of reality for the orrelations, if these elements of

reality are strongly non-onspiratorial, then they su�e to derive the Bell inequal-

ities. In short, no-onspiray together with joint elements of reality and strong

no-onspiray together with separate elements of reality fare equally well in the

derivation of the Bell inequalities.

Appendix

Proof. It is an elementary fat of arithmeti that for any α, α′, β, β′ ∈ [0, 1] we have

−1 6 αβ + αβ′ + α′β − α′β′ − α− β 6 0 (2.40)

Now, let α, α′, β, β′
be

α = p(Ai|ai ∧ Ck) (2.41)

α′ = p(Ai′ |ai′ ∧ Ck) (2.42)

β = p(Bj |bj ∧ Ck) (2.43)

β′ = p(Bj′ |bj′ ∧ Ck) (2.44)

Substituting (9.26)�(9.29) into (9.25) we get

−1 6 p(Ai|ai ∧Ck)p(Bj |bj ∧ Ck) + p(Ai|ai ∧ Ck)p(Bj′ |bj′ ∧ Ck)

+p(Ai′ |ai′ ∧ Ck)p(Bj |bj ∧ Ck)− p(Ai′ |ai′ ∧ Ck)p(Bj′ |bj′ ∧ Ck)

−p(Ai|ai ∧ Ck)− p(Bj |bj ∧ Ck) 6 0 (2.45)
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Using the sreener-o� ondition (2.28) we obtain

−1 6 p(Ai ∧Bj |ai ∧ bj ∧ Ck) + p(Ai ∧Bj′ |ai ∧ bj′ ∧ Ck)

+p(Ai′ ∧Bj |ai′ ∧ bj ∧Ck)− p(Ai′ ∧Bj′ |ai′ ∧ bj′ ∧ Ck)

−p(Ai|ai ∧ Ck)− p(Bj |bj ∧ Ck) 6 0 (2.46)

Multiplying by p(Ck), using no-onspiray (2.29) and summing up for k one arrives
at (9.24).

Aknowledgements. I wish to thank Márton Gömöri and Balázs Gyenis for

valuable disussions. This work has been supported by the Hungarian Sienti�

Researh Fund, OTKA K-115593.

Referenes

Bell, John Stewart. 1964. �On the Einstein�Podolsky�Rosen paradox.� Physis 1:

195-200; reprinted in (Bell 2004, 14-21).

Bell, John Stewart. 1990. �La nouvelle uisine.� In Between Siene and Tehnol-

ogy, edited by Andries Sarlemijn and Peter Kroes, Elsevier; reprinted in (Bell

2004, 232-248).

Bell, John Stewart. 2004. Speakable and Unspeakable in Quantum Mehanis.

Cambridge: Cambridge University Press.

Einstein, Albert, Boris Podolsky, and Nathan Rosen. 1935. �Can Quantum Me-

hanial Desription of Physial Reality be onsidered omplete?� Physial Re-

view 47: 777-780.

E. Szabó, László. 2008. �The Einstein-Podolsky-Rosen Argument and the Bell In-

equalities.� Internet Enylopedia of Philosophy. http://www.iep.utm.edu/epr.

Fine, Arthur. 1996. The Shaky Game, Einstein, Realism and the Quantum Theory.

Chiago: University of Chiago Press.

Gömöri Márton, and Gábor Hofer-Szabó. 2017. �On the meaning of EPR's Crite-

rion of Reality.� (in preparation).

Goldstein, Sheldon, Travis Norsen, Daniel Vitor Tausk, and Nino Zanghi. 2011.

�Bell's theorem.� Sholarpedia, 6(10): 8378.

Hájek, Alan, and Je�rey Bub. 1992. �EPR.� Foundations of Physis 22: 313-331.

Hofer-Szabó, Gábor, Miklós Rédei, and László E Szabó. 2013. The Priniple of the

Common Cause. Cambridge: Cambridge University Press.

Hofer-Szabó, Gábor, and Péter Vesernyés. 2016. �A generalized de�nition of Bell's

loal ausality.� Synthese 193(10): 3195-3207.

46

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



Howard, Don. 1985. �Einstein on Loality and Separability.� Studies in History

and Philosophy of Modern Physis 16: 171-201.

Lewis, Peter J. 2015. �Bell's theorem, realism, and loality.� http://philsi-arhive.pitt.edu/11372/.

Maudlin, Tim. 2014. �What Bell did.� Journal of Physis A: Mathematial and

Theoretial 47: 424010.

Norton, John D. Einstein for Everyone. http://www.pitt.edu/ jdnorton/teahing/HPS_0410/index.html.

Redhead, Mihael. 1987. Inompleteness, Nonloality, and Realism. Oxford:

Clarendon Press.

47

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



48

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



Chapter 3

How human and nature shake

hands: the role of

no-onspiray in physial

theories

No-onspiray is the requirement that measurement settings should be probabilis-

tially independent of the elements of reality responsible for the measurement out-

omes. In this paper we investigate what role no-onspiray generally plays in a

physial theory; how it in�uenes the semantial role of the event types of the

theory; and how it relates to suh other onepts as separability, ompatibility,

ausality, loality and ontextuality.

3.1 Introdution

As the old bon mot has it, in experiment human and nature shake hands. This

portrayal of the experiment as the elebration of a good business pat between

two parties highlights two features of experimentation, namely that both human

and nature are equally ontributing to its suess and that both parties are being

independent. This independene is the topi of the present paper.

In the foundations of quantum mehanis probably the most signi�ant researh

projet has been for deades to preisely identify and oneptually analyze those

assumptions that go into the derivation of the Bell inequalities and an be made

responsible for their violation in the EPR senario. Loality, fatorization, Com-

mon Cause Priniple, determinism�these were the main onepts and priniples

on the table. There was, however, one additional premise whih, though being in-

dispensable in the derivation of the Bell inequalities, remained muh more obsure

onerning its status, meaning and relation to the other premises.
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The palpable evidene for this embarrassment around this assumption is that

there has not even been oined a name for it. It has been referred to by many

names suh as (no) �onspiratorial entanglement� (Bell, 1981), �hidden autonomy�

(Van Fraassen, 1982), �independene assumption� (Prie 1996), �free will assump-

tion� (Tumulka, 2007), �measurement independene� (Sanpedro, 2013), (no) �su-

perdeterminism� (Prie and Wharton, 2015), and�probably in its most well-known

form��no-onspiray� (Hofer-Szabó, Rédei and Szabó, 1999; Plaek and Wro«ski,

2009). This latter is the phrase we are going to use in this paper.

The fat that no-onspiray has been used by so many names attests that there

is a wide range of topis whih it an be related to. It has been expliitly addressed

by Bell in his 1981 paper and its rejetion has been quali�ed as �even more mind

boggling than one in whih ausal hains go faster than light� (Bell, 1981, p. 57).

No-onspiray made its way into the philosophy of physis via Van Fraassen's 1982

areful analysis of the assumptions leading to the Bell inequalities. Ever sine

these two in�uential papers no-onspiray has been given some attention in the

philosophy of siene. A topi gaining probably the greatest philosophial interest

was that how no-onspiray is related to free will. The �rst to identify onspiray

as a lak of free will was Bell (1977, 1981) himself and has been followed by many

others (Prie 1996; Conway and Kohen, 2006; Tumulka, 2007, Prie and Wharton,

2015).

The present paper does not onern any of the topis mentioned above: neither

free will, nor EPR, nor Bell inequalities. It does not investigate no-onspiray at

the level of the spei� sienti� theories suh as quantum mehanis, quantum

�eld theory, et. (For this see (Bell, 1977, 1981), (Butter�eld, 1995), (Sanpedro,

2013, 2014), (Hofer-Szabó, Rédei and Szabó, 2013), (Prie and Wharton, 2015)).

Our aim is more general: to investigate what role no-onspiray plays in a physial

theory. To this aim in Setion 2 we will �rst unfold a general sheme of the ontology

of a physial theory. We will disern two event types making the ontology: mea-

surement event types and elements of reality. Measurement event types an be of

two types: measurement settings and measurement outomes. We will larify how

measurement settings and measurement outomes provide semantis for a physial

theory. To illustrate the general sheme we introdue a toy model in Setion 3

whih will then be used throughout the paper. No-onspiray enters in Setion 4.

Here we show how the presene of no-onspiray an deprive measurement settings

and measurement outomes of their semantial role and direts them into pragmat-

is. In Setion 5 some examples will be given for situations when no-onspiray

is violated. In Setions 6 to 10 we will investigate in turn the relationship of no-

onspiray to suh onepts as separability, ompatibility, ausality, loality and

ontextuality. We onlude with a disussion in Setion 11.

This paper is written in the down-to-earth physialist philosophy of László E.

Szabó to whom I dediate it.
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3.2 The ontology of experiment

In this Setion we expose the main philosophial ideas lying behind our approah

in a onise manner. In the following Setion all these general onsiderations will

be made onrete on a simple toy model. The approah we are following here is a

strit atualist approah where the key onepts suh as ausality, probability, et.

all supervene on partiulars instantiating ertain event types in a Humean manner.

This framework is ertainly not neessary to address the question of no-onspiray;

I presume that most laims of the paper also hold in other metaphysial frameworks.

I follow this approah simply beause the present paper is part of a larger researh

projet aiming to explore how far one an get in understanding physial theories

and espeially quantum mehanis within a Humean framework.

A physial theory an be reonstruted as a formal system plus a semantis

onneting the formal system to the world. The formal system onsists of a formal

language with some logial axioms and derivation rules, some mathematial and

physial axioms. The semantis provides an interpretation for the formalism; it

onnets the formal system to reality. Note that here 'semantis' does not mean a

onnetion between the formal system and some models of the system as in model

theory; here semantis means a down-to-earth physial interpretation of the formal

system. We stress again that the semantis is an indispensable part of a physial

theory. A formal system in itself is not yet a physial theory (Szabó, 2011).

The semantis settles the ontology of the theory. This an be done in many

ways but typially the semantis �xes the ontologial types or ategories out there

in the world and provides some means to deide when a ertain token falls in

the ategory of a given type making a ertain sentene of the theory true. The

types and tokens whih we will be interested in here are event types and token

events. The ontology of a physial theory is an event algebra onstruted from

these event types. Note that onerning the ontology of the types our approah is

not ommitted metaphysially either to the realist nor to the nominalist amp.

Physial theories are veri�ed by experiments. The rough piture of an ex-

periment is the following. An experimenter performs a proedure by setting a

measurement apparatus in a ertain way, obtaining a measurement outome and

repeating this proedure many times. The two essential ontologial ategories of an

experiment are the measurement settings and the measurement outomes. These

ategories are event types just as the other ontologial types of the theory. The

token events are the instanes of these event types in the di�erent runs of the ex-

periment. Sometimes I will simply refer to these token events as the runs of the

experiment.

Measurement settings and measurement outomes do not appear diretly in the

textbook form of a theory but they are indispensable part of the semantis (not of

pragmatis!): without them the theory annot be linked to reality. More than that,

these two types are the only types an experimenter has diret empirial aess to.

Everything else posited by the theory has to ultimately boil down to some relations

between these observable ategories. To be more spei�, any dedutive or indutive

relation between the ontologial types of the theory has to be aounted for in terms
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of orrelations between the token events falling in the ategory of measurement

settings and measurement outomes. As the empiriist thesis teahes, one has no

other aess to physial reality than via observation.

Correlations between measurement settings and measurement outomes an be

aounted for in terms of probabilities. In our atualist framework the probability of

an outome type is understood as the long-run relative frequeny of those runs of the

experiment whih fall in that type if the experiment is repeated appropriately many

times. Spei�ally, the probability of an outome given a ertain measurement

setting is simply the number of those runs whih fall in both the type of the outome

and the setting divided by the number of those runs whih fall in the type of the

setting. More importantly, any probability assignment to any ontologial type to

whih we have no diret empirial aess must be based on type assignments to the

individual runs of the experiment in the long-run frequeny sense: the probability

of a given type is p only if the relative frequeny of the individual runs (instanes)

falling in the type in question is p. Probability supervenes on the Humean mosai

of token events.

In order to aount for the observable measurement outomes physial theories

typially introdue a further, not diretly aessible event type, whih we will all

elements of reality. In this sense our approah is sienti�ally realist. Elements of

reality ome in two sorts: they an either determine the measurement outomes

for a given measurement setting for sure, or they an �x only the probability of

the measurement outomes. We will all the �rst event type property and the

seond event type propensity. Whereas measurement outomes are learly ausally

in�uened by and therefore probabilistially dependent on the elements of reality,

it is not a priori lear what the relation between the measurement settings and the

elements of reality should be. This is what we are going to analyze in what omes.

3.3 A toy model

Let us make these abstrat onsiderations more onrete on a simple model. (For a

general sheme of a physial theory see the Appendix.) Consider a box ontaining

olored die (Szabó, 2008). Let us try to develop a physial theory of this system.

Whatever theory we develop, the semantis of the theory has to minimally speify

the measurement settings and measurement outomes. These are the ategories

whih are diretly aessible for an experimenter. Suppose that the measurement

settings are the following:

a1: drawing a die from the box and heking its olor

a2: drawing a die from the box, throwing it and heking the number on its

upper fae

Suppose furthermore that the measurement outomes are

Ai
1: the olor of the die is blak (A1

1) or white (A2
1)

Aj
2: the number on the upper fae of the die is j (j = 1 . . . 6)
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So the semantis of the theory posits the following event types: the measurement

settings a with two subategories a1 and a2, and the measurement outomes A with

two plus six sub-subategories Ai
1 and Aj

2.

As the experimenter is repeating the experiment, the token events, that is the

runs falling in the di�erent event types, are aumulating giving rise to a proba-

bilisti desription of the experiment. She an alulate for example the onditional

probability of obtaining a blak die on the ondition that she had performed the

olor measurement:

p(A1
1|a1) =

#(A1
1 ∧ a1)

#(a1)

This probability is empirially aessible: one just reads o� from the relative fre-

queny of the measurement outomes and measurement settings. (Here we set aside

problems onerning the onvergene of the relative frequenies.)

The experimenter an of ourse try to enrih her theory and introdue a new

ontologial ategory into her theory. The motivation behind this move is to obtain

an answer to the question: �Why was the outome of the olor measurement blak

in a ertain run of the experiment?� A natural answer to this question is to say:

�Beause the die itself was blak.� This answer amounts to introduing a third

event type into our ontology, whih we will all property. What is a property?

The de�ning feature of the property blak is the following: whenever a die with

the property blak is subjeted to a olor measurement, the outome will always

be blak. Denote the property blak by α1
1 and the property white by α2

1. (So

our notation is the following: we use lower ase Latin letter for the measurement

settings (a); apital Latin letters for the measurement outomes (A); and Greek

letters for the elements of reality (α).) The property blak is an event type and

eah token event that is eah run of the experiment an be haraterized by either

falling into this event type or not. Therefore, one an also meaningfully speak about

the probability of the property blak, p(α1
1), as the long-run relative frequeny of

those runs of the experiment whih fall into the event type α1
1. Consequently, one

an also express the de�ning feature of the property blak and white in terms of

probabilities as follows:

p(Ai
1|a1 ∧ αk

1) = δik i, k = 1, 2 (3.1)

That is in eah run of the experiment when the die was blak and the olor has

been measured, the outome was blak and never white; and in eah run of the

experiment when the die was white and the olor has been measured, the outome

was white and never blak. A property is nothing but an event type whih, if

instantiated and measured in a ertain run of experiment, brings with it a de�nite

outome.

Let us now go over to the ase of throwing the die and ask a similar question to

that of the olor measurement: �Why does the outome six ome up with a ertain

probability in the experiment?� Here the natural answer is this: �Beause the die

has a ertain mass distribution.� This leads us to introduing another event type

whih we will all propensity.
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Suppose that the box is ontaining die with two di�erent mass distributions.

Denote them by α1
2 and α

2
2. Here the lower index 2 indiates that the measurement

setting is of the seond type, namely heking the upper fae of the die (and not

the olor), and the upper index diserns the two mass distributions. The mass

distribution α1
2 is again an event type just as α1

1, the property blak was. In every

single run of the experiment it is either instantiated or not that is eah die has

either the mass distribution α1
2 or not. Hene one an speak about the probability

p(α1
2) as the relative frequeny of those runs whih fall into the event type α1

2. If

a die with mass distribution α1
2 is drawn from the box and thrown, then let the

probability of its oming up j be denoted by qj1. Similarly, if a die with mass

distribution α2
2 is drawn from the box and thrown, then the probability of oming

up j is qj2. This means that the mass distribution of a given die �xes the probability

of the die oming up with a ertain fae upon throwing. In terms of probabilities

this an be expressed as follows:

p(Aj
2|a2 ∧ αl

2) = qjl j = 1 . . . 6, l = 1, 2 (3.2)

where

∑

j q
jl = 1 for l = 1, 2.

Metaphysially, the new event type α2 is the propensity of the die to ome

up with a ertain fae in the seond type of measurement setting. Note that the

propensity here is not something whih the notion of probability should be redued

to as in the literature on the interpretations of probability. Here propensity is an

event type and probability is simply long-run relative frequeny. Moreover, one an

meaningfully speak about the �probability of a given propensity� as the long-run

frequeny of those token events whih instantiate the event type of the propensity

in question.

Also observe that a property mathematially di�ers from a propensity only

in that the qjl-s �xing the onditional probabilities are all either 0 or 1 for the

properties, whereas they an be any number between 0 and 1 for the propensities.

Being blak �xes the measurement outomes for the olor measurement, whereas

having mass distribution α1
2 �xes only the probability of obtaining a six. The

de�ning equation (3.1) of properties is a speial ase of the de�ning equation (3.2)

of propensities. Still, it is worth diserning these two event types. If in a given

theory the probabilities, orrelations, et. of the measurement outomes an all

be aounted for by postulating purely properties then the theory an rightly be

alled deterministi, whereas if propensities are also needed then the theory is

indeterministi.

To sum up, in our �theory of die� we have two measurement event types, the

event type of measurement settings and the event type of measurement outomes.

Beyond these we an introdue into our ontology two elements of reality for ex-

planatory purposes, the event type of properties, α1, with two subategories α1
1

(blak) and α2
1 (white); and the event type of propensities, α2, with two subat-

egories α1
2 (�rst mass distribution) and α2

2 (seond mass distribution). From now

on we will oin the term measurement event type for measurement settings and

measurement outomes and element of reality for properties and propensities. The

event algebra of the theory will be omposed as the Boolean ombination of the
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measurement event types and elements of reality. This algebra will be built up

from 2 · (2 ·6) · (2 ·2) atomi events assoiated to the di�erent ombinations of mea-

surement settings, measurement outomes, properties and propensities. Eah run

of the experiment will instantiate an element of this algebra. Probabilities enter

the theory by simply ounting how many runs are instantiating ertain elements of

the algebra.

3.4 No-onspiray

So far, so good. But physis is a proedure to move from the observable to the

unobservable. Do we have any means to infer from the �rst two event types to

the seond two? Can we say something about properties and propensities based on

measurement settings and measurement outomes?

Here is a su�ient ondition whih entitles us to suh an inferene. Suppose

that the elements of reality are probabilistially independent of the measurement

settings. In ase of the properties this means that

p(a1 ∧ αk
1) = p(a1) p(α

k
1) k = 1, 2 (3.3)

in ase of the propensities:

p(a2 ∧ αl
2) = p(a2) p(α

l
2) l = 1, 2 (3.4)

Taking the onjuntions we obtain:

p(a1 ∧ a2 ∧ αk
1 ∧ αl

2) = p(a1 ∧ a2) p(αk
1 ∧ αl

2) k, l = 1, 2 (3.5)

Now, onsider all those other equations whih arise from (3.5) by substituting one

or more event types by their omplements; for example:

p(∼a1 ∧ a2 ∧ αk
1∧ ∼αl

2) = p(∼a1 ∧ a2) p(αk
1∧ ∼αl

2) k, l = 1, 2 (3.6)

Inluding (3.5) one obtains thus altogether 2 ·2 ·4 ·4 = 64 equations. Let us refer to
this set of 64 equations as no-onspiray. No-onspiray expresses a probabilisti

independene between the various Boolean ombinations of measurement settings

and the various Boolean ombinations of elements of reality. To make referene

easier we will sometimes refer solely to (3.5) as no-onspiray requirement without

mentioning the other 63 equations arising from omplementation.

No-onspiray does us a great servie: we an reprodue the observable prob-

abilities of the theory in terms of the probabilities of the elements of reality. For

example the onditional probability p(A1
1|a1) of obtaining a blak die upon olor

measurement turns out to be just the probability p(α1
1) of the property blak:

p(A1
1|a1) =

p(A1
1 ∧ a1)
p(a1)

=

∑

k p(A
1
1 ∧ a1 ∧ αk

1)

p(a1)
=

∑

k p(A
1
1|a1 ∧ αk

1)p(a1 ∧ αk
1)

p(a1)

=

∑

k p(A
1
1|a1 ∧ αk

1)p(a1)p(α
k
1)

p(a1)
=

∑

k

p(A1
1|a1 ∧ αk

1)p(α
k
1)

=
∑

k

δ1kp(α
k
1) = p(α1

1) (3.7)
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where we used only the theorem of total probability, the de�ning feature (3.1) of a

property and no-onspiray (3.3).

By similar reasoning we an reprodue the onditional probability p(A6
2|a2) of

obtaining the outome six upon �upper fae� measurement in terms of weighted

averages of the probability of propensities p(αl
2):

p(A6
2|a2) = q61 p(α1

2) + q62 p(α2
2) (3.8)

Equations (3.7) and (3.8) are of entral importane. They explain why in the

text book form of a physial theory one need not speak about measurement settings

and measurement outomes. If no-onspiray holds, then the onditional probabil-

ities of the measurement outomes on measurement settings simply mirror the (un-

onditional) probabilities of the elements of reality (properties and propensities).

Consequently, the dedutive and indutive relations between the measurement event

types simply reveal dedutive and indutive relations between the elements of re-

ality. For example, observing the relation that the probability of a die oming up

six is higher than that of being blak

p(A6
2|a2) > p(A1

1|a1) (3.9)

reveals the unobservable fat that

q61 p(α1
2) + q62 p(α2

2) > p(α1
1) (3.10)

More than that, the relations between measurement settings and measurement out-

omes do not just reveal the hidden relations between the unobservable ategories

but by the same move they also seem to make measurement event types super�u-

ous. If the role of these �surfae� relations is simply to re�et the deep strutural

relationships of the unobservable ategories with whih real physis is onerned�

then why one would are about them? Why one would are about measurement

settings and measurement outomes if one an also speak about the �real stu�� di-

retly? In short, no-onspiray an ontribute to delegating measurement settings

and measurement outomes from semantis to mere pragmatis.

May this rationale be as fruitful in displaying textbook theories as it is, in a

philosophial re�etion, I think, one should not onede that no-onspiray blurs

the general semantial role of measurement settings and measurement outomes.

Just reall the general frame: a physial theory is a formal system plus a semantis

onneting the formal system to the world. The very two ategories whih lend

empirial meaning to a physial theory are the measurement settings and the mea-

surement outomes. They are the only event types whih an observer have diret

aess to. Consequently, they annot be eliminated from a physial theory�neither

by appealing to no-onspiray, nor by appealing to anything else. Otherwise the

whole theory would lose its empirial ontent. It would turn into an uninterpreted

formalism. No onsideration an deprive a physial theory of those onstituents

whih make up its semantis.

But let us return now to no-onspiray. What if no-onspiray does not hold?

In this ase the inferene from the measurement event types to the elements of
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reality via (3.7) and (3.8) is not possible. But does it make the knowledge of the

unobservable ategories impossible? Is no-onspiray a kind of Kantian �ondition

of the possibility of experiene�?

Some seem to think so. In his famous 'at' paper Shrödinger (1935) likens

the free measurement hoie of the EPR experiment to a situation when a lass of

students are asked a set of question suh that eah student may be asked any of

questions. If the answer to the questions are all orret, then one an onlude that

all students know all answers. Analyzing Shrödinger's example Maudlin (2014)

writes the following:

�Reall Shrödinger's lass of identially prepared students. We are

told they an all answer any of a set of questions orretly, but eah

an only answer one, and then forgets the answers to the rest. It's an

odd idea, but we an still test it: we ask the questions at random, and

�nd that we always get the right answer. Of ourse it is possible that

eah student only knows the answer to one question, whih always

happens to be the very one we ask! But that would require a mas-

sive oinidene, on a sale that would underut the whole sienti�

method.� (Maudlin, 2014 p. 23)

In short, the independene of the measurement hoies and the elements of reality

is a preondition of pursuing siene per se. But is it really so?

3.5 When no-onspiray does not hold

Consider the following examples:

Example 1. Suppose that the blak painting on the die is not durable enough: if

you just touh the die, the blak olor is wearing o� it and it turns white.

Example 2. Suppose that eah die is �lled with a high visosity �uid whih an

stream and swirl inside the die. By every throw the �uid is put in motion whih

hanges the mass distribution of the die and hene the propensity of the outome

at that very throw.

Example 3 is speial ase of Example 2. Suppose again that the die are �lled with

a �uid whih an stream inside them before tossing. But by tossing the die (due

to the heavy shaking, say) the �uid �freezes out� in suh a biased way that the die

an ome up with only one de�nite fae.

The above three examples are all illustrating a situation when no-onspiray is

violated. In the �rst example the property α1
1 (blak) has turned into another

property α2
1 (white) as a result of the measurement setting a1 (drawing a die from

the box). In the seond example the propensity α1
2 (�rst mass distribution) has

turned into another propensity α2
2 (seond mass distribution) as a result of the

measurement setting a2 (tossing a die). Finally, in the third example we �nd a

hange of ategory. Reall that properties and propensities di�ered only in whether
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they determined the outome for sure or only up to a ertain probability. In the

third example there was some non-trivial probability for the di�erent faes of the

die to ome up before the throw. After the tossing, however, the die ould ome

up only with a given fae. That means that here a propensity (one sort of mass

distribution) has been turned into a property (a speial mass distribution exatly

�xing the outome) as a result of the measurement setting a2 (tossing a die). In

eah ase no-onspiray is violated. (For the relevane of these examples to the

interpretations of quantum mehanis see (Gömöri and Hofer-Szabó, 2016).)

In the above three examples no-onspiray was violated due to the ausal in�u-

ene of the measurement settings on the elements of reality. But it an also fail due

to an opposite ausal onnetion when the elements of reality have ausal in�uene

on the measurement settings:

Example 4. Suppose that touhing the die of the seond mass distribution is

unpleasant for your hand; so you toss them hastily rather then keep them in hand

and hek the olor.

Yet another example for the violation of no-onspiray is a ommon ausal on-

netion between the elements of reality and the measurement settings. It is a

ombination of example 1 and 4.

Example 5. Suppose that the die of the seond mass distribution are too heavy

to be tossed; so you rather perform a olor measurement on them. Suppose fur-

thermore that being heavy and having a seond mass distribution have a ommon

ause�say, these die are being made in the same fatory.

In all the above examples no-onspiray was violated due to a ausal onnetion

between the measurement settings and the elements of reality. But is ausal on-

netion the only way to violate no-onspiray? We ome bak to this question in

Setion 8.

Now, we go over to our entral question: Under what irumstanes an we

adopt no-onspiray in our physial theory, and when are we fored to abandon

it? In the upoming �ve Setions we investigate �ve onepts in turn whih an

qualify the deision. They are separability, ompatibility, ausality, loality and

ontextuality.

3.6 Separability

Niels Bohr's notorious insistene on the use of lassial onepts in the desription

of quantum phenomena is one of the hallmarks of his philosophy. In his ontribution

to the 1949 Einstein Festshrift Bohr writes:

It is deisive to reognize that, however far the phenomena transend

the sope of lassial physial explanation, the aount of all evidene

must be expressed in lassial terms. The argument is simply that by

the word �experiment� we refer to a situation where we an tell others
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what we have done and what we have learned and that, therefore,

the aount of the experimental arrangement and of the results of the

observations must be expressed in unambiguous language with suitable

appliation of the terminology of lassial physis. (Bohr 1949, p. 209).

Many Bohr sholars have made signi�ant e�orts to understand the meaning and

role of Bohr's dotrine on the primay of lassial onepts. Camilleri and Shlosshauer

(2015) argue that Bohr's dotrine is primarily a general epistemologial thesis ar-

tiulating the epistemology of experiment rather than a speial interpretation of

quantum mehanis (for this see also (Zinkernagel, 2015)). The epistemologial

problem aording to Bohr is that whereas the very notion of experiment presup-

poses that the measured objets possess a de�nite state whih is independent from

the state of the measurement apparatus, quantum mehanis makes this distintion

between objet and apparatus ambiguous by treating the two as a single, omposite,

entangled system:

. . . the impossibility of subdividing the individual quantum e�ets and

of separating the behaviour of the objets from their interation with

the measuring instruments serving to de�ne the onditions under whih

the phenomena appear implies an ambiguity in assigning onventional

attributes to atomi objets whih alls for a reonsideration of our

attitude towards the problem of physial explanation. (Bohr 1948, p.

317).

If entanglement between objet and apparatus is the obstale to an unambiguous

desription of quantum phenomena, then suh a desription in lassial terms an

be realized when the subsystems are not entangled, that is when they are separable.

This is exatly Don Howard's (1994) suggestion for the reonstrution of Bohr's

dotrine on lassial onepts:

. . . for Bohr, lassial onepts are neessary beause they embody the

assumption of instrument-objet separability, and that suh separa-

bility must be assumed, in spite of its denial by quantum mehanis,

in order to seure an unambiguous and thus objetive desription of

quantum phenomena. (Howard 1994, p. 209).

Howard's suggestion to analyze lassial desription in terms of separability boils

down to the requirement to reprodue the statistial preditions of a given quantum

phenomenon in terms of an �appropriate mixture.� The state of a omposite system

is alled separable, if it is a mixture that is a onvex sum of produt states of the

omponents. Sine produt states represent probabilistially independent ompo-

nents, a mixture is simply a onvex ombination of these states whih expresses a

lassial probabilisti orrelation between the omponents. Mixtures give rise to a

lassial, ignorane interpretation of the statistis of the phenomenon under inves-

tigation. This analysis via the notion of an �appropriate mixture� has been piked

up for example by Halvorson and Clifton (2002) who provide an elegant analysis of

the EPR experiment from Bohr's perspetive along the lines suggested by Howard.
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But how separability as a reonstrution of Bohr's demand on lassiality relates

to no-onspiray as a kind of independene priniple between measurement settings

and the elements of reality attributed to the system? Clearly, separability is a

broader onept than no-onspiray: separability simply requires that the relation

between the measurement settings and elements of reality should be expressed as a

mixture of probabilisti independenes; whereas no-onspiray requires that the two

should be probabilistially independent. In our toy model for example separability

requires the probability of the olor measuring and the system's possessing the

property blak to be the following:

p(a1 ∧ α1
1) = λ1 p(a1) p(α

1
1) + λ2 p(a1) p(∼α1

1) + λ3 p(∼a1) p(α1
1) + λ4 p(∼a1) p(∼α1

1)(3.11)

with any λi ∈ [0, 1] and
∑4

i=1 λi = 1; whereas no-onspiray requires that

p(a1 ∧ α1
1) = p(a1) p(α

1
1) (3.12)

Observe that separability (3.11) does not give any restrition in our ase; it sim-

ply means that p is a lassial probability whih we already knew sine we took

probabilities to be relative frequenies.

All the �ve examples in the previous Setion, though violating no-onspiray,

are ompletely lassial; they provide an unambiguous desription of how the un-

observable properties or propensities hange upon throwing the die. They even

provide a mehanism for the ausal dependene. In Example 1 for instane when

upon drawing the blak olor is wearing o� the die, obviously

p(a2 ∧ α1
1) 6= p(a2) p(α

1
1) (3.13)

Throwing the die and being blak will not be probabilistially independent due to

the ausal relation between the two event types.

Thus, the �unambiguous language� requires only to attribute some properties to

the system whih stand in some lassial probabilisti relation to the measurement

settings but it does not require them to be probabilistially independent of one an-

other. Hene, separability as a weaker requirement than no-onspiray annot be

used to bak the latter. (In addition, aording to Howard even the demand on las-

siality as separability is too restritive from perspetive of a general epistemology

of experiment.)

3.7 Compatibility

Now, let us go over to our seond onept whih is ompatibility of the measurement

settings. Up to now we have onsidered measurement settings only separately. Let

us see now what happens when we perform a joint measurement.

Again, onsider our toy model and suppose that we perform the measurement

a1 ∧ a2 that is we are drawing a die from the box, throwing it and heking its

olor and also the number on its upper fae. Suppose that after performing both

measurements we disregard the upper fae and onsider only the olor. Suppose
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that we observe that the probability of the outome blak in this joint measurement

is not the same as in the measurement a1. That is we �nd that

p(A1
1|a1 ∧ a2) 6= p(A1

1|a1) (3.14)

Let us all (3.14) inompatibility of the two measurements. Note that inompati-

bility does not mean here that a1 ∧ a2 annot be performed; it means that a1 and

a2 are disturbing one another.

What is inompatibility a sign of?

First, observe that the ondition a1 on the right hand side of (3.14) does not

mean that we performed only a1�this would be a1∧∼a2. The ondition a1 means

that we onsider all the runs in whih a1 has been performed, irrespetively whether

a2 has been performed or not�that is a1 = (a1 ∧ a2) ∨ (a1∧∼a2). So what (3.14)

expresses is that whether we perform a2 or not does ount in measuring a1 and

produing outome A1
1.

Generally, one an take two positions towards inompatibility. I will all the

�rst the purist or Bridgmanian strategy and the seond the stubborn strategy.

Aording to the purist strategy if the probability of the outome of a given

measurement an vary depending whether another measurement is performed or

not, then this measurement is not yet well de�ned. Consider the following example.

In a regiment two tests are performed: it is tested how good shots are the soldiers

(a1) and how muh alohol they an drink (a2). Obviously, whether the seond

test is performed or not, ruially in�uenes the outome of the �rst. So the two

tests are inompatible in the above sense (and not in the sense that they annot

be performed at the same time: they an�although it is not reommended). So

the orret de�nition of the �rst test is this: let the soldiers shoot but do not give

them alohol (a1∧∼a2).
So the purist attitude towards (3.14) is that a1 in itself is not yet a well de�ned

measurement proedure sine the probability of the outomes depends on whether

a2 is performed or not. So instead of taking two measurement settings, a1 and a2,
we should rather take four, a1 ∧a2, a1∧∼a2,∼a1∧a2 and∼a1∧∼a2 (in this latter

ase we do nothing). By this move we an eliminate inompatibility sine the four

new measurements are logially mutually exlusive. They annot be o-performed

and hene annot disturb one another. Generally, the purist strategy is to take the

onjuntions of inompatible measurements until they beome either ompatible or

logially exlusive.

We all this strategy Bridgmanian sine it is in tune with Bridgman's ideas on

the orret de�nition of measurement unfolded for example in The Logi of Modern

Physis :

Implied in this reognition of the possibility of new experiene beyond

our present range, is the reognition that no element of a physial situ-

ation, no matter how apparently irrelevant or trivial, may be dismissed

as without e�et on the �nal result until proved to be without e�et

by atual experiment. (Bridgman 1958, p. 3)
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Returning to no-onspiray, the Bridgmanian strategy renders all o-measurable

measurements ompatible with one another. Therefore, the problem of inompat-

ibility disappears and we are bak to our single ase measurement senario. The

purist strategy teahes nothing new about no-onspiray.

Let us go over to the stubborn strategy. I all it stubborn sine it takes a1 and a2
to be orret measurement settings in spite of their inompatibility (3.14)? What

does then (3.14) say about no-onspiray?

This is a point where we need to go one step further onerning the relation

between measurement event types and elements of reality. We need to speify how

the elements of reality behave when jointly measured. Therefore suppose that the

following relation also holds (in addition to (3.1) and (3.2)):

p(Ai
1 ∧ Aj

2|a1 ∧ a2 ∧ αk
1 ∧ αl

2) = δik q
jl i, k, l = 1, 2; j = 1 . . . 6 (3.15)

Requirement (3.15) expresses a kind of non-disturbane relation between the mea-

surements whih an be better seen if we sum up �rst for i then for j:

p(Ai
1|a1 ∧ a2 ∧ αk

1 ∧ αl
2) = δik = p(Ai

1|a1 ∧ αk
1) (3.16)

p(Aj
2|a1 ∧ a2 ∧ αk

1 ∧ αl
2) = qjl = p(Aj

2|a2 ∧ αl
2) (3.17)

(Here the seond equation in both rows are due to the de�ning equation (3.1) of

the property and (3.2) of the propensity, respetively.) (3.16) and (3.17) express

that the probability of an outome onditioned on an element of reality and a

measurement setting does not hange by further onditioning it on other elements

of reality or measurement settings. From (3.16) (where the element of reality is a

property) it also follows that

p(Ai
1|a1 ∧ a2 ∧ αk

1) = p(Ai
1|a1 ∧ αk

1 ∧ αl
2) = p(Ai

1|a1 ∧ αk
1) (3.18)

Now, suppose that no-onspiray also holds that is

p(a1 ∧ a2 ∧ αk
1 ∧ αl

2) = p(a1 ∧ a2) p(αk
1 ∧ αl

2) k, l = 1, 2 (3.19)

From (3.15) and (3.19) it is easy to show (via a derivation similar to (3.7)) that

p(A1
1|a1 ∧ a2) = p(A1

1|a1) (3.20)

in ontradition to inompatibility (3.14). This means that inompatibility between

the measurements implies that we have to abandon either the non-disturbane of

the measurement proedures (3.15) or no-onspiray (3.19).

Thus, in ase of the stubborn strategy ompatibility of the measurement settings

is a good sign of that both non-disturbane and no-onspiray hold; and inompat-

ibility is a good sign of that either the one or the other is violated. Whether to

blame the one or the other is a question for further investigation.
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3.8 Causality

Our third onept in the row is ausality. In Setion 5 we saw several examples for

ausal onnetions between the measurement settings and the elements of reality.

In Example 1 for instane we supposed that the blak painting on the die is not

durable enough and if one touhes the die, the olor blak is wearing o�. Causal

onnetion between elements of reality and measurement settings is a prime soure

of no-onspiray.

Causal onnetion omes in two sorts. It an be either a diret ausal onne-

tion as in Examples 1 to 4; or it an be a ommon ausal onnetion as in Example

5. Reihenbah's Common Cause Priniple states that all orrelations should be

aounted for by one of the two ausal onnetions. On the other hand, proba-

bilisti independene between the measurement settings and the elements of reality

is a sign of ausal independene (assuming that ausal e�ets do not anel one

another). Hene, no-onspiray an be ensured if any ausal onnetion between

the measurement settings and the elements of reality an be exluded.

Before turning to this point, �rst we need to larify what we mean by a ausal

onnetion between two event types, say, the olor measurement, a1, and the prop-

erty blak, α1
1. By that we mean that the olor measurement and the property blak

are ausally related in a tokenwise manner. In other words, there is a pairing of

token events instantiating these two types suh that for eah pair the token events

of the pair stand in either a diret or a ommon ausal onnetion to one another.

But how to reate pairs?

Consider a ertain run of the experiment whih instantiates a1∧α1
1. Up to now

we treated this run of the experiment as one single run in whih one performed a

olor measurement and the property of the die whih has been drawn was blak.

How an the olor measurement ause the property blak in this single run? If

this run of the experiment is taken as one single token event, then there an be

no tokenwise ausal onnetion; simply beause we have only one token. In order

to have a ausal onnetion, one needs to deompose this one single run of the

experiment instantiating a1∧α1
1 into a pair of token events suh that the one token

event instantiates a1 and the other token event instantiates α1
1. In order to speak

about a tokenwise ausal relation, one token event is not enough. One possibility

to perform this deomposition is to say that the �rst token event ourred here

and the other token event ourred over there. Loalization is a typial method for

individuation. We ome bak to the question of loalization in the next Setion.

Now, suppose that we an separately individuate the token events of the olor

measurement and the token events of the property blak. Then a ausal onnetion

between a1 and α1
1 means that for eah pair either the token instantiating a1 is

the ause of the token instantiating α1
1; or vie versa; or there is a third token

instantiating a third event type whih is the ommon ause of both. Is there a way

to exlude both a diret and also a ommon ausal onnetion between the token

events and by this to ensure no-onspiray? What might ome to mind �rst is to

rely on some loality onsideration. This is the topi of the next Setion.
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3.9 Loality

Is there a spatiotemporal arrangement of the event types a1 and α1
1 suh that one

an safely say that all possible ausal onnetions between the measurement settings

and the elements of reality are shielded o�? Suppose that we take a snapshot of

the world and it turns out that the pairs of token events instantiating the olor

measurement and the property blak are loalized in spaelike separated regions.

Thus, in the �rst run of the experiment the token event instantiating a1 is spaelike
separated from the token event instantiating α1

1; and similarly for the seond, third,

et. run. This is the best senario a spaetime loalization an provide for ausal

independene. Does it guarantee that there is no ausal and hene probabilisti

dependene between a1 and α
1
1? As one expets, the answer to this question is no.

Even if the token events of eah pair are spaelike separated, they an still be

ausally related to one another both in a diret and also in a ommon ausal way.

As for diret ausal onnetion, just note that in order to produe a measurement

outome these two token events need to interat somewhere in spaetime. Hene

even if they are spaelike separated at a ertain moment, they will not be so at the

moment of bringing about the outome blak. Therefore their diret ausal e�et

on one another at the time of their interation annot be exluded based on the

fat that at a previous time they were loalized in a spaelike separated way. The

situation is similar or even worse in ase of a ommon ause. Even if the two token

events are spaelike separated, there well an be a ommon ause in their ommon

past ausally in�uening both.

To sum up, loality onsiderations do not help us in exluding ausal onne-

tions and hene to ensure no-onspiray. Thus, we have fallen bak to the situation

in the previous Setion: to guarantee no-onspiray we need to exlude ausal on-

netion in some way without making use of spatiotemporal onsiderations.

3.10 Contextuality

Up to now it may have appeared that the only soure for the violation of no-

onspiray is a ausal onnetion between the elements of reality and the measure-

ment settings. However, there is a further way to violate no-onspiray whih is not

related to ausality. Two events an be orrelated even if they are not ausally re-

lated; namely if they logially depend on one another. This leads us to the problem

of ontextuality.

A little re�etion on the de�nition of property and propensity an onvine

us that (3.1) and (3.2) say nothing about whether the elements of reality and the

measurement settings are logially independent or not. It an well be the ase that

by speifying the measurement setting we partly speify also the elements of reality.

Consider the following example:

Example 6. Let α1
2(x) denote the following property of the die: the mass dis-

tribution of the die is of the �rst type and the initial onditions (position plus

momentum) of its toss is x. α1
2(x) is obviously a property sine together with the
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toss a2 it determines the upper fae for sure; that is

p(Aj
2|a2 ∧ α1

2(x))

is either 0 or 1 for any j and x.

However, a2 and α1
2(x) are not logially independent. If you tossed the die, then

the initial veloity is surely not zero and the die must have been loated somewhere

around the table. That is the measurement setting partly spei�es the initial ondi-

tions. This logial dependene between the element of reality and the measurement

setting is alled ontextuality.

How ontextuality leads to the failure of no-onspiray? First, onsider an

initial ondition x whih an reasonably be regarded as �tossing the die� (that is

for the tossing of the die with x, it will land on the table and after a ouple of rolls

it will stop on the table, et.). For suh an x, α1
2(x) is algebraially ontained in

a2, therefore

p(a2 ∧ α1
2(x)) = p(α1

2(x)) 6= p(a2) p(α
1
2(x)) (3.21)

if p(a2) 6= 1 and hene no-onspiray is violated. Seond, suppose that x does not

ount as �tossing the die� (the die �ies over the table, say). Then a2 and α1
2(x)

are algebraially disjoint and hene

p(a2 ∧ α1
2(x)) = 0 6= p(a2) p(α

1
2(x)) (3.22)

if p(a2) 6= 0 and no-onspiray is again violated. In short, the logial dependene

between the measurement settings and the elements of reality diretly implies (for

non-extremal probabilities, that is typially) a probabilisti dependene between

them; that is a violation of no-onspiray.

To sum up, even if the elements of reality and the measurement settings are ausally

detahed, they an still violate no-onspiray if the measurement settings wholly

or partially ontribute to the de�nition of the elements of reality. Suh a situation

annot be exluded a priori; at least the de�nitions of the property and the propen-

sity do not exlude it. The logial dependene between elements of reality and

measurement settings su�es to establish onspiray. Contextuality is the other

main soure for the violation of no-onspiray.

3.11 Disussion

In this paper we have adopted the following empiriist philosophial position. A

physial theory was reonstruted as a formal system plus a semantis onneting

the formal system to the world. The semantis has to minimally speify what

event types inhabit the world. Event types an be of two sorts: measurement event

types and elements of reality. Typially we have diret aess to the former but

not to the latter. There are two measurement event types: measurement settings

and measurement outomes and there are also two types of elements of reality:
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properties and propensities. The probability of an event type is understood as

simply the long-run relative frequeny of the token events instantiating the event

type in question. In an experiment the token events are the runs of the experiment.

Adopting the above philosophial position we have argued for the following.

No-onspiray is the requirement that elements of reality should be probabilisti-

ally independent of the measurement settings. There is no a priori guarantee that

no-onspiray does hold. If it does, probabilisti relations between the measure-

ment event types will mirror probabilisti relations between the elements of reality.

This lienses physis to forget about measurement settings and measurement out-

omes and to talk diretly about elements of reality. The temptation to delete

measurement event types from the semantis of the theory, however, should be

resisted.

No-onspiray is a onept situated within a web of related onepts suh as

separability, ompatibility, ausality, loality and ontextuality. In the paper I

onentrated only on those threads of the web whih onneted these notions to

no-onspiray. But ertainly there are many other interonnetions. Causality and

ontextuality are omplementary terms: the more the measurement settings and

elements of reality are logially depend on one another, the less room there is for

ausal onnetion between them. Separability and spaetime loalization do not

orient us about ausal onnetions between measurement settings and elements of

reality; whereas inompatibility is often due to a diret ausal link between them;

as in ase of the soldiers' shooting and drinking.

Going bak to no-onspiray, the following an be said. Three of the �ve on-

epts, namely separability, ompatibility and loality do not bring us loser to

no-onspiray. Separability is a weaker onept than no-onspiray, so one annot

bak the latter by the former. Compatibility of measurement settings is empty

in ase of a purist strategy and only a partial motivation in ase of the stubborn

strategy. Finally, loality annot be used to support no-onspiray at all. How-

ever, the remaining two onepts, namely ausality and ontextuality, are losely

linked to no-onspiray. No-onspiray an be guaranteed if both ausal and logial

dependene between the measurement settings and the elements of reality an be

exluded. In the �rst ase one needs to ensure that there is no diret or ommon

ausal onnetion between the individual runs of the experiment. In the seond

ase that measurement settings should not ontribute to the very de�nition of the

elements of reality.

Whether this an be done and hene a non-onspiratorial physial theory an

be provided for a given phenomena is a question that an be answered only by

a thorough srutiny of the phenomena in question. Whether any onspiratorial

desription of a physial senario an be replaed by a �better� non-onspiratorial

one; whether adopting no-onspiray an be in on�it, as in the EPR-Bell senario,

with other priniples suh as loal ausality, Common Cause Priniple, et.�well,

these questions annot be deided at a general metaphysial level. No-onspiray

is neither an analyti nor a transendental truth; it is an extra onstraint on theory

onstrution the suess of whih an be deided only on a ase-by-ase basis.
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Appendix

Throughout the paper we used a simple toy model for a physial theory. Here we

provide a general mathematial piture of a physial theory.

Let ai (i = 1 . . . I) be the measurement settings in a given theory and let

Aji
i (ji = 1 . . . Ji) denote the jth outome of the ith measurement. Suppose fur-

thermore that there is an element of reality αki

i (ki = 1 . . .Ki) (either a property

or a propensity) assoiated to eah measurement setting ai suh that

p(Aji
i |ai ∧ αki

i ) = qjiki

i (3.23)

where

∑Ji

ji=1 q
jiki

i = 1 for any i = 1 . . . I and ki = 1 . . .Ki. For a given i ∈ I the

element of reality αki

i is a property i� Ji = Ki and q
jiki

i = δjiki
. Otherwise αki

i is

a propensity.

Suppose that the elements of reality are related niely to the measurement

event types not only in ase of a single measurement but also in ase of a joint

measurement. (Note the word �single� does not mean that the other measurements

are not performed; it means rather that it is not taken into onsideration whether

they are performed or not.) Therefore, selet I ′ measurement settings out of the

possible I and let now the index i run from 1 to I ′. What we require is that for

any suh seletion (among them the no-seletion) the following should hold:

p(Aj1
1 ∧ . . . ∧ A

jI′
I′ |a1 ∧ . . . ∧ aI′ ∧ αk1

1 ∧ . . . ∧ α
kI′

I′ ) = qj1k1

1 × · · · × qjI′kI′

I′ (3.24)

Now, the elements of reality {αki

i } are said to satisfy no-onspiray i�

p(a1 ∧ . . . ∧ aI ∧ αk1

1 ∧ . . . ∧ αkI

I ) = p(a1 ∧ . . . ∧ aI) p(αk1

1 ∧ . . . ∧ αkI

I ) (3.25)

holds together with those �omplemented� variants of (3.25) where one or more

event types are substituted by their omplements. From no-onspiray it follows

that they also satisfy no-onspiray for all seletions, among them

p(ai ∧ αki

i ) = p(ai) p(α
ki

i ) (3.26)

By means of (3.24) and no-onspiray (3.25) one an transform for any seletion

the probabilisti relations among the measurement event types into probabilisti

relations among elements of reality as follows:

p(Aj1
1 ∧ . . . ∧A

jI′
I′ |a1 ∧ . . . ∧ aI′) =

∑

k1...kI′

qj1k1

1 × · · · × qjI′kI′

I′ p(αk1

1 ∧ . . . ∧ α
kI′

I′ )(3.27)

Spei�ally, if all the event types {αki

i } are properties, then (3.27) reads as

p(Aj1
1 ∧ . . . ∧ A

jI′
I′ |a1 ∧ . . . ∧ aI′) = p(αj1

1 ∧ . . . ∧ α
jI′
I′ ) (3.28)

and in the speial ase of a single measurement as

p(Aji
i |ai) = p(αji

i ) (3.29)
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for all i = 1 . . . I. Equation (3.27) shows that the probability of the outomes ondi-

tioned on the measurement settings is mirrored in the probability of the properties.
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Chapter 4

Relating Bell's loal ausality

to the Causal Markov

Condition

The aim of the paper is to relate Bell's notion of loal ausality to the Causal

Markov Condition. To this end, �rst a framework, alled loal physial theory, will

be introdued integrating spatiotemporal and probabilisti entities and the notions

of loal ausality and Markovity will be de�ned. Then, illustrated in a simple

stohasti model, it will be shown how a disrete loal physial theory transforms

into a Bayesian network and how the Causal Markov Condition arises as a speial

ase of Bell's loal ausality and Markovity.

4.1 Introdution

Loal ausality is a onept introdued into the foundations of quantum theory

by John Stewart Bell. A physial theory is said to be loally ausal if, �xing its

past, any event happening in a given spaetime region will be probabilistially

independent of any other event loalized in a spatially separated region.

Causal Markov Condition is the entral notion of the theory of Bayesian net-

works. Here events are represented both as random variables in a probability spae

and also as verties in a ausal graph. A set of events is said to satisfy the Causal

Markov Condition relative to the graph, if, onditioned on its ausal parents, any

event will be probabilistially independent of any of its ausal non-desendants.

The similarity between the logial shema of both priniples is onspiuous even

at �rst blush: if events are loalized in the spaetime/ausal graph in a ertain way,

then they are to satisfy ertain probabilisti independenies. In this paper I will

argue that this intuition is orret: Bell's loal ausality, read in an appropriate

way, is a Causal Markov Condition. Causal Markov Condition relates random
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variables to ausal strutures, loal ausality relates them to a net of spaetime

regions. We will show that the ausal graph generated by the net struture of a

loal physial theory transforms the theory into a Bayesian network and yields the

Causal Markov Condition as a kind of omposition of Bell's loal ausality plus a

similar sreening-o� ondition, alled Markovity.

To treat physial events both as probabilisti and also as spatiotemporal/ausal

entities in a uni�ed framework and to be able to infer from spatiotemporal/ausal

relations to probabilisti independenies one needs to have a ommon oneptual

shema integrating both spatiotemporal/ausal and probabilisti onepts. This

formalism is thoroughly worked out in the theory of Bayesian networks. Here

Causal Markov Condition is funtioning as a 'bridge law' onneting the ausal and

the probabilisti side of the theory. In the foundations of quantum physis, however,

loal ausality is used in a muh more intuitive way. Here one simply �reads o��

probabilisti independenies from the spatiotemporal loalization of the events in

question. Hene our �rst task is to introdue a mathematially well-de�ned and

physially well-motivated framework whih treats probabilisti and spatiotemporal

entities in a ommon mathematial formalism. We will all suh a theory a loal

physial theory. We will borrow a lot from the most elaborate physial theory

o�ering suh a general framework, namely algebrai quantum �eld theory (AQFT).

Having suh a framework integrating spatiotemporal and probabilisti aspets, we

will be able to provide a lear-ut formulation of Bell's notion of loal ausality.

To relate Bell's loal ausality to the Causal Markov Condition, we will in-

trodue a simple stohasti loal lassial theory on a disretized two dimensional

spaetime. This toy theory will display all the features previously de�ned in an

abstrat way, and provide us a useful tool to study the properties of loal ausal-

ity in a more manageable way, and to trae its onnetions to the Causal Markov

Condition.

In the paper we will proeed as follows. In Setion 2 we make a historial detour

and take a loser look at Bell's di�erent de�nitions of loal ausality. In Setion 3

we introdue the onept of a loal physial theory and give a preise mathematial

de�nition of Bell's notion of loal ausality together with Markovity within this

framework. In Setion 4 our stohasti loal lassial theory will be introdued. In

Setion 5 we de�ne the Causal Markov Condition and show how a loal physial

theory gives rise to a Bayesian network and how loal ausality plus Markovity go

over to the Causal Markov Condition. We will onlude in Setion 6.

There is a huge literature available relating the Causal Markov Condition to

the EPR senario and to the Bell inequalities. The standard way to derive the Bell

inequalities is to start with Reihenbah's Common Cause Priniple together with

some loality onditions. Sine Reihenbah's Common Cause Priniple is a speial

ase of the Causal Markov Condition, many authors start the derivation diretly

from this latter. Glymour (2006) shows that the EPR ase has no ausal expla-

nation ompatible with the Causal Markov Condition. Suárez and Iniaki (2011)

systematially apply the Causal Markov Condition to the EPR senario and make

a onnetion to the robustness ondition, a probabilisti ausality ondition thor-

oughly disussed in the early 1990's. On the other hand, Hausman and Woodward
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(1999) argue that the Causal Markov Condition is inappliable to the EPR senario

sine the non-separability of the quantum state renders interventions, a neessary

riterion for appliability, unavailable. As a reply to their laim see Suárez (2013).

Hofer-Szabó, Rédei and Szabó (2013) onnet the Causal Markov Condition both

to the so-alled ommon-ommon-ausal and also to the separate-ommon-ausal

explanation of the EPR ase. They show that hidden loality, an assumption of the

standard derivation of the Bell inequalities, an be justi�ed by the Causal Markov

Condition only in ase of ommon ommon auses but not in ase of separate om-

mon auses.

Despite the rih literature on the topi I am unaware of any work relating the

Causal Markov Condition diretly to Bell's notion of loal ausality. This paper

intends to �ll this gap.

4.2 Bell's three de�nitions of loal ausality

Loal ausality is the idea that ausal proesses propagate though spae ontinu-

ously and with veloity less than the speed of light. John Stewart Bell formulates

this intuition in a 1988 interview as follows:

�[Loal ausality℄ is the idea that what you do has onsequenes only

nearby, and that any onsequenes at a distant plae will be weaker

and will arrive there only after the time permitted by the veloity of

light. Loality is the idea that onsequenes propagate ontinuously,

that they don't leap over distanes.� (Mann and Crease, 1988)

Bell has returned to this intuitive idea of loal ausality from time to time and

provided a more and more elaborate formulation of it. First he addressed the notion

of loal ausality in his �The theory of loal beables� delivered at the Sixth GIFT

Seminar in 1975; later in a footnote added to his 1986 paper �EPR orrelations and

EPW distributions� intending to lean up the �rst version; and �nally in the most

elaborate form in his �La nouvelle uisine� posthumously published in 1990. Below

I will overview the di�erent versions brie�y ommenting on eah of them.

Version 1. Bell's �rst de�nition of loal ausality reads as follows:

�Consider a theory in whih the assignment of values to some beables

Λ implies, not neessarily a partiular value, but a probability distri-

bution, for another beable A. Let p(A|Λ) denote1 the probability of a

partiular value A given partiular values Λ. Let A be loalized in a

spae-time region A. Let B be a seond beable loalized in a seond

region B separated from A in a spaelike way. (Fig. 4.1.) Now my

intuitive notion of loal ausality is that events in B should not be

`auses' of events in A, and vie versa. But this does not mean that

1

For the sake of uniformity throughout the paper I slightly hanged Bell's denotation

and �gures.
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A B

Λ

Figure 4.1: Bell's �rst �gure illustrating loal ausality (1975).

the two sets of events should be unorrelated, for they ould have om-

mon auses in the overlap of their bakward light ones. It is perfetly

intelligible then that if Λ in (8.6) does not ontain a omplete reord of

events in that overlap, it an be usefully supplemented by information

from region B. So in general it is expeted that

p(A|Λ, B) 6= p(A|Λ) (4.1)

However, in the partiular ase that Λ ontains already a omplete

spei�ation of beables in the overlap of the light ones, supplemen-

tary information from region B ould reasonably be expeted to be

redundant.

Let C2 denote a spei�ation of all beables, of some theory, belonging

to the overlap of the bakward light ones of spaelike regions A and

B. Let C1 be a spei�ation of some beables from the remainder of the

A B

CC1 2

Figure 4.2: Bell's seond �gure illustrating loal ausality (1975).

bakward light one of A, and B of some beables in the region B. (See
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Fig. 4.2.) Then in a loally ausal theory

p(A|C1, C2, B) = p(A|C1, C2) (4.2)

whenever both probabilities are given by the theory.� (Bell, 1975/2004,

p. 54)

First, let us omment brie�y on the terminology Bell is using in his �rst version of

loal ausality.

The term �beable� has been introdued into the literature by Bell himself. It

is intended to be opposed to the term �observable� used in quantum theory and to

refer to something that �really� exists. �The word 'beable' will also be used to arry

another distintion already in lassial theory between 'physial' and 'non-physial'

quantities. In Maxwell's eletromagneti theory, for example, the �elds E and H

are physial (beables, we will say) but potentials A and φ are non-physial.� (Bell,

1975/2004, p. 52) Without the lari�ation of what the �beables� of a given theory

really are, one annot even formulate loal theory.

�Beables� are to be loal. �We will be partiularly onerned with loal beables,

those whih (unlike for example the total energy) an be assigned to some bounded

spae-time region. For example, in Maxwell's theory the beables loal to a given

region are just the �elds E andH, in that region, and all funtionals thereof.� (Bell,

1975/2004, p. 53)

Finally, the beables loalized in the region C1 are to provide a �ompletely

spei�ation� of the region in question. We will ome bak to this point later on.

Although the beables are to be loal, in his sreening-o� ondition (8.7) Bell

takes into aount the whole ausal past of the events in question. He does not

assume some kind of Markovity rendering super�uous the remote past regions below

a ertain Cauhy surfae. The seond version of his formulation of loal ausality

an be regarded as a step towards this Markovian diretion.

Version 2.

�The notion of loal ausality presented in this referene [namely in

(Bell, 1975/2004)℄ involves omplete spei�ation of the beables in an

in�nite spae-time region. The following oneption is more attrative

in this respet: In a loally-ausal theory, probabilities attahed to

values of loal beables in one spae-time region, when values are spei-

�ed for all loal beables in a seond spae-time region fully obstruting

the bakward light one of the �rst, are unaltered by spei�ation of

values of loal beables in a third region with spaelike separation from

the �rst two.� (Bell, 1986/2004, p. 200)

Bell's seond version is in a footnote; it is very suint and ontains no �gure.

The new element is the phrasing �spae-time region fully obstruting the bakward

light one of the �rst�. This idea gets a more preise exposition in Bell's third, �nal

version of loal ausality.

Version 3.
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�A theory will be said to be loally ausal if the probabilities attahed

to values of loal beables in a spae-time region A are unaltered by

spei�ation of values of loal beables in a spae-like separated region

B, when what happens in the bakward light one of A is already

su�iently spei�ed, for example by a full spei�ation of loal beables

in a spae-time region C (Fig. 4.3).� (Bell, 1990/2004, p. 239-240)

A B

C

Figure 4.3: Bell's �gure illustrating loal ausality (1990).

The loalization of region C is of ruial importane. It is not enough that C
ompletely uts aross the ausal past of region A; it also has to �obstrut the

bakward lightone of the �rst�. Bell expliitly stresses this point: �It is important

that region C ompletely shields o� from A the overlap of the bakward light ones

of A and B.� (Bell, 1990/2004, p. 240) This requirement will play a entral role in

our investigation on the relation of loal ausality to the Causal Markov Condition.

We will ome bak to that having de�ned loal ausality in the next Setion.

4.3 Loal ausality in loal physial theories

The framework integrating probabilisti and spatiotemporal entities an be de�ned

as follows. (For the details and motivations of the de�nition see (Hofer-Szabó and

Vesernyés, 2015a,b).)

De�nition 1. A PK-ovariant loal physial theory is a net {A(V ), V ∈ K} assoi-
ating algebras of events to spaetime regions whih satis�es isotony, miroausality

and ovariane de�ned as follows (Haag, 1992):

Isotony. Let M be a globally hyperboli spaetime and let K be a overing

olletion of bounded, globally hyperboli subspaetime regions of M suh

that (K,⊆) is a direted poset under inlusion ⊆. The net of loal observables
is given by the isotone map K ∋ V 7→ A(V ) to unital C∗

-algebras, that

is V1 ⊆ V2 implies that A(V1) is a unital C∗
-subalgebra of A(V2). The

quasiloal algebra A is de�ned to be the indutive limit C∗
-algebra of the net

{A(V ), V ∈ K} of loal C∗
-algebras.
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Miroausality (also alled as Einstein ausality) is the requirement that A(V ′)′∩
A ⊇ A(V ), V ∈ K, where primes denote spaelike omplement and algebra

ommutant, respetively.

Spaetime ovariane. Let PK be the subgroup of the group P of geometri sym-

metries of M leaving the olletion K invariant. A group homomorphism

α : PK → AutA is given suh that the automorphisms αg, g ∈ PK of A at

ovariantly on the observable net: αg(A(V )) = A(g · V ), V ∈ K.
If the quasiloal algebra A of the loal physial theory is ommutative, we speak

about a loal lassial theory ; if it is nonommutative, we speak about a loal

quantum theory. For loal lassial theories miroausality ful�lls trivially.

A state φ in a loal physial theory is de�ned as a normalized positive lin-

ear funtional on the quasiloal observable algebra A. The orresponding GNS

representation πφ : A → B(Hφ) onverts the net of C∗
-algebras into a net of C∗

-

subalgebras of B(Hφ). Closing these subalgebras in the weak topology one arrives

at a net of loal von Neumann observable algebras: N (V ) := πφ(A(V ))′′, V ∈ K.
Von Neumann algebras are generated by their projetions representing quantum

events. The net {N (V ), V ∈ K} of loal von Neumann algebras also obeys isotony,

miroausality, and PK-ovariane, hene one an also refer to a net {N (V ), V ∈ K}
of loal von Neumann algebras as a loal physial theory.

Why von Neumann algebras?

Classial �eld theories are haraterized by their sets of �eld on�gurations.

Taking the equivalene lasses of those �eld on�gurations whih have the same �eld

values on a given spaetime region one an generate loal (ylindrial) σ-algebras.
One an translate σ-algebras into the language of abelian von Neumann algebras

and then generalize this framework also for non-abelian von Neumann algebras. We

ome bak to the details of this proedure in the next setion when we introdue our

stohasti loal lassial theory. Thus, we translate Bell's term �loal beables� into

the language of loal physial theories simply as �elements of a loal von Neumann

algebra�. Now, how to translate the term �a omplete spei�ation of beables�? We

are of the opinion that the natural translation of this term is simply �an atomi

event of a loal von Neumann algebra� (Henson, 2013). Here it is assumed that the

loal algebras of the net are atomi, whih is not the ase, for example, in Poinaré

ovariant algebrai quantum �eld theory. (For a more general de�nition of loal

ausality see (Hofer-Szabó and Vesernyés, 2015a).) With these notions in hand

now one an formulate Bell's notion of loal ausality in a loal physial theory as

follows:

De�nition 2. A loal physial theory represented by a net {N (V ), V ∈ K} of von
Neumann algebras is alled loally ausal, if for any pairA ∈ N (VA) andB ∈ N (VB)
of projetions supported in spaelike separated regions VA, VB ∈ K and for every

loally normal and faithful state φ establishing a orrelation φ(AB) 6= φ(A)φ(B)
between A and B, and for any spaetime region VC suh that

(i) VC ⊂ J−(VA),
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(ii) VA ⊂ V ′′
C ,

(iii) J−(VA) ∩ J−(VB) ∩
(

J+(VC) \ VC
)

= ∅,
(see Fig. 6.2) and for any atomi event Ck of A(VC) (k ∈ K), the following holds:

VA B

C

V

V

Figure 4.4: A region VC satisfying Requirements (i)-(iii).

φ(CkABCk)

φ(Ck)
=
φ(CkACk)

φ(Ck)

φ(CkBCk)

φ(Ck)
(4.3)

In ase of loal lassial theories a loally faithful state φ determines uniquely

a loally nonzero probability measure p by p(A) := φ(A), A ∈ P(N (V )). By means

of this (6.1) an be written both in the symmetri form

p(AB|Ck) = p(A|Ck)p(B|Ck) (4.4)

and also in the equivalent asymmetri form

p(A|BCk) = p(A|Ck) (4.5)

featuring in Bell's �rst version of loal ausality.

Now, the loalization of region VC by Requirements (i)-(iii) is a bit more liberal

than that required in Bell's seond version. Although VC �ompletely shields o��

region VA from the ommon past of VA and VB, it is not spaelike separated from

VB (as is, for example, region VC in Fig. 4.3). But why not to be more liberal? Why

Requirement (iii) is needed at all? Why does a region VC suh as the one depited

in Fig. 4.5 not su�e? The brief answer to this question is that the region above VC
(lighter shaded in Fig. 4.5) an ontain stohasti events whih, though ompletely

spei�ed by the region VC , still, being stohasti, ould establish a orrelation

between A and B in a lassial stohasti theory (Norsen, 2011; Seevink and

U�nk 2011; Hofer-Szabó 2015). Indeed, exatly this will be the ase in our model

introdued in the next setion.

In order to relate Bell's loal ausality to the Causal Markov Condition we need to

introdue a sreening-o� ondition similar to loal ausality, namely Markovity:

78

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



VA B

C

V

V

Figure 4.5: A region VC for whih Requirement (iii) does not hold.

De�nition 3. A loal physial theory represented by a net {N (V ), V ∈ K} of von
Neumann algebras is alled Markov, if for any pair A ∈ N (VA) and B ∈ N (VB) of
projetions supported in regions VA, VB ∈ K with VB ⊂ I−(VA) and for every loally
normal and loally faithful state φ establishing a orrelation φ(AB) 6= φ(A)φ(B)
between A and B, and for any spaetime region VC suh that

(i) VC ⊂ J−(VA),
(ii) VA ⊂ V ′′

C ,

(iii') VB ⊂ J−(VC),
(see Fig. 4.6) and for any atomi event Ck of A(VC) (k ∈ K) (6.1) holds.

A

C

VB

V

V

Figure 4.6: A region VC satisfying Requirements (i)-(iii') of Markovity.

The relation between loal ausality and Markovity is straightforward. In both

ases events loalized in region VA and VB , respetively are sreened-o� by the

atomi events in region VC . If VA and VB are spaelike separated and VC is loalized

aording to Requirements (i)-(iii), then (6.1) expresses loal ausality. If VA and
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VB are timelike separated and VC is loalized aording to Requirements (i)-(iii'),

then (6.1) expresses Markovity. As we will see later Causal Markov Condition will

be a speial ase of the omposition of loal ausality and Markovity.

4.4 A simple stohasti loal lassial theory

In this setion we will develop a simple stohasti loal lassial theory. Before

introduing it in a full-�edged form, let us sketh it in brief. The spaetime of

the theory will be a 1+1 dimensional disretized Minkowski spaetime overed by

minimal double ones. (See Fig. 4.7.) The �eld on�gurations of the theory are

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

+
+

−
−

++
+

+
+

−
+

−
−

−
−

−

Figure 4.7: A simple stohasti loal lassial theory.

given by mappings assigning a + or a − to eah minimal double one. The dynamis

of the theory is generated by the following transition probabilities : The value + or

− in a given minimal double one is probabilistially �xed by the produt of the

values in the three minimal double ones adjaent to it from below, irrespetively of

the value in other minimal double ones, like earlier or spatially separated ones. The

probabilisti dependene is this: If the produt of the values in the three adjaent

minimal double ones is +, then the value in the upper minimal double one will

be + with probability p and − with probability 1 − p; if the produt is −, the
value will be − with probability p and + with probability 1 − p. The proess is

deterministi, if p ∈ {0, 1} and stohasti, if p ∈ (0, 1). Now, let us see the theory
in a more detailed way.

Consider a disretized version of the two dimensional Minkowski spaetimeM2

whih is omposed of minimal double ones V m(t, i) of unit diameter with their

enter in (t, i) for t, i ∈ Z or t, i ∈ Z + 1/2. The set {V m(t, i), i ∈ 1
2Z} of suh

minimal double ones with t = 0,−1/2 de�nes a `thikened' Cauhy surfae in this
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spaetime, denoted by S0. For double ones sitting on S0 we will drop the time

oordinate and simply write V m
i . (See Fig. 8.14.)

V
V

V
V

m m

m mm 0

1/2

1V m

3/2

−1
V−1/2

Figure 4.8: Two dimensional disrete Minkowski spaetime with a `thikened'

Cauhy surfae.

A double one V (t, i; s, j) is de�ned to be the smallest double one ontaining

both V m(t, i) and V m(s, j), that is generated by them: V (t, i; s, j) := V m(t, i) ∨
V m(s, j). The direted poset of suh double ones is denoted by Km

and the

direted poset of double ones generated by minimal double ones stiked to the

Cauhy surfae S0 is denoted by Km
0 . Obviously, Km

0 will be left invariant by

integer spae translations and Km
will be left invariant by integer spae and time

translations. By shifting the time oordinates of the minimal double ones by t one
an similarly de�ne the Cauhy surfae St and the net Km

t .

Let Sm
denote the set of minimal double ones ofM2

and let Z2 be the mul-

tipliative group of the integers {1,−1}. De�ne the set C of on�gurations of the

theory as: C := {c : Sm → Z2}. The maximal σ-algebra of lassial events (C,P(C))
is given by the power set P(C) of the set of on�gurations. But one an also obtain

a narrower σ-algebra in tune with the net struture Km
. This is done by taking

the equivalene lasses of those on�gurations whih have the same �eld values on

a given region in Km
. The sets CV of loal equivalene lasses (the `ylindrial sub-

sets' of C onentrated on V ) are obtained by the equivalene relation: c ∼V c′ if
c|V = c′|V . Clearly, CV ontains 2|V |

elements, where |V | is the number of minimal

double ones in V . One an get the power set P(CV ) of CV by de�ning the following

map ZV for V ∈ Km
:

ZV : P(C)→ P(C), C 7→ {c′ ∈ C |∃c ∈ C : c|V = c′|V } (4.6)

For a given V ∈ Km
the image sets of ZV de�ne a unital σ-subalgebra Σ(V ) of

P(C), whih is isomorphi to the power set P(CV ) of CV . By ranging over V ∈ Km
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one obtains an isotone net struture {(C,Σ(V )), V ∈ Km}. The 2|V |
dimensional

abelian loal von Neumann algebraN (V ) orresponding to the loal σ-algebra Σ(V )
is spanned by the orthogonal set of minimal projetions P c

V , c ∈ CV orresponding to

harateristi funtions χc
V : C → C whih are 1 on the ylindrial subset c ∈ CV of

C and 0 otherwise. Clearly, {N (V ), V ∈ Km} is an isotone net of �nite dimensional

abelian von Neumann algebras, hene it de�nes a loal lassial theory.

The quasiloal C∗
-algebra A is given by the indutive limit of the loal von

Neumann algebras N (V ), V ∈ Km
, and similarly the unital C∗

-subalgebras A0 of

A is given by the indutive limit of the loal von Neumann algebrasN (V ), V ∈ Km
0 .

Now, a stohasti theory an be regarded as a state extension proedure from the

subalgebra A0 (or from any At) to the quasiloal algebra A by means of so-alled

transition probabilities. This is done in the following way.

Let V (t+ 1
2 ) be a �nite set of minimal double ones on the time slie t+ 1

2 . De�ne

the nearest past of V (t + 1
2 ) as follows: Pt(V (t + 1

2 )) ≡ St ∩ (St \ J−(V (t + 1
2 )))

′
.

Spei�ally, the nearest past Pt(V
m(t+ 1

2 , i)) of the minimal double one V m(t+ 1
2 , i)

ontains the three minimal double ones adjaent to V m(t+ 1
2 , i) from below, namely

V m(t, i− 1
2 ), V

m(t− 1
2 , i) and V

m(t, i+ 1
2 ). For a given on�guration c ∈ C de�ne

the generating transition probabilities from the equivalene lass cPt(V m(t+ 1
2
,i)) to

the equivalene lass cV m(t+ 1
2
,i) as follows:

p(cV m(t+ 1
2
,i)|cPt(V m(t+ 1

2
,i))) :=

{

p, if c(t+ 1
2 , i) = c(t, i− 1

2 )c(t− 1
2 , i)c(t, i+

1
2 )

1− p, if c(t+ 1
2 , i) = −c(t, i− 1

2 )c(t− 1
2 , i)c(t, i+

1
2 )

(4.7)

where c(t, i) is short for c(V m(t, i)), the value of the on�guration c at the minimal

double one V m(t, i). Assuming that the generating transition probabilities are

independent with respet to spaelike separation, one an de�ne the transition

probabilities from the Cauhy surfae St to the time slie t+ 1
2 as:

p(cV (t+ 1
2
)|cPt(V (t+ 1

2
))) :=

∏

V m(t+ 1
2
,i)∈V (t+ 1

2
)

p(cV m(t+ 1
2
,i)|cPt(V m(t+ 1

2
,i))) (4.8)

Intuitively, these transition probabilities do the following: The value + or − in a

given minimal double one is probabilistially �xed purely by the produt of the

values in the three minimal double ones adjaent to it from below. (See again

Fig. 4.7.) Negatively speaking, they do not depend on the value of other minimal

double ones, like earlier or spatially separated ones. As we will see, these two

independenies are losely onneted to Markovity and loal ausality, respetively.

If the produt is +, then the value is + with probability p and − with probability

1− p; if the produt is −, the value is − with probability p and + with probability

1− p.
Finally, let U(t) be a �nite set of minimal double ones on the Cauhy surfae

St. We de�ne the state on the equivalene lass cV (t+ 1
2
) ∩ cU(t) as follows:

φ(cV (t+ 1
2
) ∩ cU(t)) := p(cV (t+ 1

2
)|cPt(V (t+ 1

2
)))φ(cPt(V (t+ 1

2
)) ∩ cU(t)) (4.9)

Thus, starting from φ0 on A0 one an reursively de�ne the state φ on the whole

A. (For the Cauhy surfaes below S0 we use Bayes theorem for the extension.)
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To simplify things, introdue the following denotation. Let i+ and i− denote three

di�erent things at the same time: the two ylindrial subsets of CV m
i

onentrated

on the minimal double one V m
i on the Cauhy surfae S0; the two orrespond-

ing harateristi funtions; and also the two orresponding orthogonal projetions

in N (V m
i ). If we are not speifying whih of the two sets/harateristi fun-

tions/projetions we are speaking about, we simply write i. The nth forward and

bakward spae translates of i will be denoted by (i + n) and (i − n), respetively
(n ∈ 1

2N); the tth forward and bakward time translates will be denoted by it and
i−t, respetively (t ∈ N).

Let, furthermore,

i · (i + 1

2
) . . . (j − 1

2
) · j

denote the produt of a sequene of projetions loalized on the Cauhy surfae S0
between minimal double ones V m

i and V m
j , and let pi...j denote the probability

thereof in state φ. Sine we will deal only with projetions of abelian von Neumann

algebras, from now on instead of φ we simply write p. Finally, we will express the
ondition

c(t+
1

2
, i) = c(t, i− 1

2
)c(t− 1

2
, i)c(t, i+

1

2
)

in (4.7) by the Dira delta symbol

δc(t+ 1
2
,i),c(t,i− 1

2
)c(t− 1

2
,i)c(t,i+ 1

2
)

or in the short form

δi1,(i− 1
2
)i(i+ 1

2
)

Now, let A = it and B = js be two projetions loalized in the minimal double

ones V m(t, i) and V m(s, j), respetively, with i < j. Suppose that V m(t, i) and
V m(s, j) are spatially separated, that is |j−i| > |s−t|. To alulate the probability
of A, B and AB, we need a little geometry. (See Fig. 4.9.) Consider the minimal

double one V m(u, k) (striped horizontally) at the 'top of the ommon past' of

regions V m(t, i) and V m(s, j). The oordinates of V m(u, k) are the following:

u =
1

2
(t+ s+ i− j) k =

1

2
(i+ j + t− s) (4.10)

Consider now the Cauhy surfae S⌈u⌉ �tting V m(u, k), where the eiling funtion

⌈·⌉ in the subsript is just to round up the u oordinates if half integers. Let the

number of minimal double ones in the ausal past of V m(t, i) above S0 (inluding
V m(t, i) but not inluding double ones on S0) be denoted by n, and the number

of minimal double ones in the ausal past of V m(t, i) above S⌈u⌉ (again inluding

V m(t, i) but not inluding double ones on S⌈u⌉) by n′
. Similarly, the number of

minimal double ones in the ausal past of Vm(s, j) above S0 and S⌈u⌉ be denoted
by m and m′

, respetively. Finally, denote the number of minimal double ones in

the ausal past of V m(u, k) above S0 by l. The numbers n, n′
, m′

, m and l are the
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Figure 4.9: A little geometry.

following funtions of i, j, t and s:

n =

{

−t+ 4
∑t

x=1 x, if i ∈ N
t+ 4

∑t
x=1(x− 1), if i ∈ 1

2N
(4.11)

n′ =

{

−t+ 4
∑t

x=⌈u⌉ x, if i ∈ N

t+ 4
∑t

x=⌈u⌉(x− 1), if i ∈ 1
2N

(4.12)

m =

{

−s+ 4
∑s

x=1 x, if j ∈ N
s+ 4

∑s

x=1(x− 1), if j ∈ 1
2N

(4.13)

m′ =

{ −s+ 4
∑s

x=⌈u⌉ x, if j ∈ N
s+ 4

∑s

x=⌈u⌉(x− 1), if j ∈ 1
2N

(4.14)

l =

{

−⌈u⌉+ 4
∑⌈u⌉

x=1 x, if k ∈ N

⌈u⌉+ 4
∑⌈u⌉

x=1(x− 1), if k ∈ 1
2N

(4.15)

In Fig. ??, for example, n = m = 3, n′ = m′ = 21 and l = 6. With these numbers

one an also alulate the number r of minimal double ones between S⌈u⌉ and S0
(inluding double ones on S⌈u⌉ but not on S0):

r = n− n′ +m−m′ − l (4.16)

whih is 30 in Fig. 4.9. Now, using the above numbers (4.11)-(4.16) the probability
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of A, B and AB will be the following:

p(A) =
∑

(i−t−{i+ 1
2
}),...,(i+t+{i+ 1

2
})

[

qnδit,(i−t+{i})...(i+t−{i})

+(1− qn)δ−it,(i−t+{i})...(i+t−{i})

]

p(i−t−{i+ 1
2
})...(i+t+{i+ 1

2
}) (4.17)

p(B) =
∑

(j−s−{j+ 1
2
}),...,(j+s+{j+ 1

2
})

[

qmδjs,(j−s+{j})...(j+s−{j})

+(1− qm)δ−js,(j−s+{j})...(j+s−{j})

]

p(j−s−{j+ 1
2
})...(j+s+{j+ 1

2
}) (4.18)

p(AB) =
∑

(i−t+{i}),...,(j+s−{j})

[

qn′qm′qr δit,(i−t+{i})...(i+t−{i})δjs,(j−s+{j})...(j+s−{j})

+qn′(1 − qm′)qr δit,(i−t+{i})...(i+t−{i})δ−js,(j−s+{j})...(j+s−{j})

+(1− qn′)qm′qr δ−it,(i−t+{i})...(i+t−{i})δjs,(j−s+{j})...(j+s−{j})

+(1− qn′)(1− qm′)qr δ−it,(i−t+{i})...(i+t−{i})δ−js,(j−s+{j})...(j+s−{j})

]

×p(i−t−{i+ 1
2
})...(j+s+{j+ 1

2
}) (4.19)

where the frational part funtion {·} in the subsript is again to treat integer and

half integer oordinates together, and qx (x = n, n′,m,m′, r) is the even part of the

binomial expression:

qx := px +

(

x

2

)

px−2(1 − p)2 +
(

x

4

)

px−4(1− p)4 + . . . (4.20)

Obviously, in the general ase:

p(AB) 6= p(A)p(B) (4.21)

so there is a superluminal orrelation between A and B.

Example 1. As an example, let A = i+1 and B = j+1 , where j = i+ 2 ∈ N+ 1
2 . (See

Fig. 8.16.) Let the 'prior' probabilities p(i−1)...(j+1) on S0 be �xed as follows:

p+++++++++ =
1

2
(4.22)

p+++++++−+ =
1

4
(4.23)

p+−+++++++ =
1

4
(4.24)

and all the other ombinations be 0. Then the probability of A, B and AB is the
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Figure 4.10: Superluminally orrelating events i+
1
and j+

1
.

following:

p(A) =
∑

(i−1),...,(i+1)

[

p δi+
1
,(i− 1

2
)i(i+ 1

2
) + (1− p)δ−i

+

1
,(i− 1

2
)i(i+ 1

2
)

]

p(i−1)...(i+1) =
1

2

(

1

2
+ p

)

(4.25)

p(B) =
∑

(j−1),...,(j+1)

[

p δj+
1
,(j− 1

2
)j(j+ 1

2
) + (1− p)δ−j

+

1
,(j− 1

2
)j(j+ 1

2
)

]

p(j−1)...(j+1) =
1

2

(

1

2
+ p

)

(4.26)

p(AB) =
∑

(i−1),...,(j+1)

[

p2 δi+
1
,(i− 1

2
)i(i+ 1

2
)δj+

1
,(j− 1

2
)j(j+ 1

2
) + p(1− p)δi+

1
,(i− 1

2
)i(i+ 1

2
)δ−j

+

1
,(j− 1

2
)j(j+ 1

2
)

+(1− p)p δ−i
+

1
,(i− 1

2
)i(i+ 1

2
)δj+

1
,(j− 1

2
)j(j+ 1

2
) + (1− p)2δ−i

+

1
,(i− 1

2
)i(i+ 1

2
)δ−j

+

1
,(j− 1

2
)j(j+ 1

2
)

]

p(i−1)

=
1

2
p (4.27)

thus A and B are orrelating whenever p 6= 1
2 .

Example 2. In the seond example, let A = i+2 and B = j+2 , where again j = i+2 ∈
N+ 1

2 . (See Fig. 8.17.) With the 'prior' probabilities p(i−2)...(j+2):

p+++++++++++++ =
1

2
(4.28)

p+++++++++++−+ =
1

4
(4.29)

p+−+++++++++++ =
1

4
(4.30)
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Figure 4.11: Superluminally orrelating events i+
2
and j+

2
.

(and the rest is 0) one obtains the probability of A, B and AB as:

p(A) =
∑

(i−2),...,(i+2)

[

q6 δi+
2
,(i− 3

2
)...(i+ 3

2
) + (1− q6)δ−i

+

2
,(i− 3

2
)...(i+ 3

2
)

]

p(i−2)...(i+2)

=
1

2

(

1

2
+ q6

)

(4.31)

p(B) =
∑

(j−2),...,(j+2)

[

q6 δj+
2
,(j− 3

2
)...(j+ 3

2
) + (1− q6)δ−j

+

2
,(j− 3

2
)...(j+ 3

2
)

]

p(j−2)...(j+2)

=
1

2

(

1

2
+ q6

)

(4.32)

p(AB) =
∑

(i−2),...,(j+2)

[

p2q9 δi+
2
,(i− 3

2
)...(i+ 3

2
)δj+

2
,(j− 3

2
)...(j+ 3

2
)

+p (1− p) q9 δi+
2
,(i− 3

2
)...(i+ 3

2
)δ−j

+

2
,(j− 3

2
)...(j+ 3

2
)

+(1− p) p q9 δ−i
+

2
,(i− 3

2
)...(i+ 3

2
)δj+

2
,(j− 3

2
)...(j+ 3

2
)

+(1− p)2q9 δ−i
+

2
,(i− 3

2
)...(i+ 3

2
)δ−j

+

2
,(j− 3

2
)...(j+ 3

2
)

]

p(i−2)...(j+2) =
1

2
pq9(4.33)

thus A and B are orrelating whenever

1
4 (

1
2 + q6)

2 6= 1
2pq9 whih is the typial ase.

The di�erene between Example 1 and 2 is that in Example 1 there is no minimal

double one above S0 in the ommon past of A and B, whereas in Example 2 there
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is suh a minimal double one, namely V m(1, i + 1).2 This di�erene will have

ruial onsequenes onerning loal ausality to whih we turn now.

First, we prove that the above loal lassial theory is loally ausal. Atually,

we prove a little less: loal ausality for a spei� hoie of VA, VB and VC . (For
a general proof see (Hofer-Szabó and Vesernyés 2015a).) Let VA = Vm(t, i) and
VB = V m(s, j) be two spatially separated minimal double ones with i < j, and let

VC be generated by the intersetion of the ausal past of VA and a Cauhy surfae

�shielding o�� VA from the ommon past of VA and VB. Any Cauhy surfae Sv
with ⌈u⌉ 6 v 6 t will be suh a �shielder-o�� Cauhy surfae, where u is de�ned in

(4.10). (For a �shielder-o�� Cauhy surfae see Fig. 4.9.) The region VC generated

by this intersetion will obviously satisfy Requirements (i)-(iii) in De�nition 6 of

loal ausality.

Now, we prove loal ausality with respet to these regions.

Proposition 1. The stohasti loal lassial theory {N (V ), V ∈ Km} is loally
ausal for any three regions VA, VB and VC spei�ed above.

Proof. Let A = it and B = js be two projetions loalized in VA and VB, respe-
tively, and orrelating in the probability measure p. We are to show that for any

atomi event

C =

(

i− t+ v − {i+ 1

2
}
)

v

. . .

(

i+ t− v + {i+ 1

2
}
)

v

of VC the following holds:

p(AB|C) = p(A|C)p(B|C) (4.34)

First, for the sake of onveniene, shift the Cauhy surfae S0 up to Sv and denote

the new time oordinates by a prime: t′ := t − v and s′ := s − v. Similarly let

q′n and q′m denote the appropriate number of minimal double ones with respet to

the shifted Cauhy surfae. With this notation the onditional probabilities are the

2

See also our remark in the last paragraph of Setion 3.
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following:

p(A|C) =

[

q′nδit′ ,(i−t′+{i})...(i+t′−{i}) + (1− q′n)δ−it′ ,(i−t′+{i})...(i+t′−{i})

]

(4.35)

p(B|C) =
∑

(j−s′−{j+ 1
2
}),...,(j+s′+{j+ 1

2
})

[

q′mδjs′ ,(j−s′+{j})...(j+s′−{j})

+(1− q′m)δ−js′ ,(j−s′+{j})...(j+s′−{j})

]

pC(j−s′−{j+ 1
2
})...(j+s′+{j+ 1

2
}) (4.36)

p(AB|C) =
∑

(j−s′−{j+ 1
2
}),...,(j+s′+{j+ 1

2
})

[

q′nq
′
m δit′ ,(i−t′+{i})...(i+t′−{i})δjs′ ,(j−s′+{j})...(j+s′−{j})

+q′n(1 − q′m) δit′ ,(i−t′+{i})...(i+t′−{i})δ−js′ ,(j−s′+{j})...(j+s′−{j})

+(1− q′n)q′m δ−it′ ,(i−t′+{i})...(i+t′−{i})δjs′ ,(j−s′+{j})...(j+s′−{j})

+(1− q′n)(1− q′m) δ−it′ ,(i−t′+{i})...(i+t′−{i})δ−js′ ,(j−s′+{j})...(j+s′−{j})

]

×pC(j−s′−{j+ 1
2
})...(j+s′+{j+ 1

2
}) (4.37)

where pC(j−s′−{j+ 1
2
})...(j+s′+{j+ 1

2
}) is a short for

p(i−t′−{i+ 1
2
}...(i+t′+{i+ 1

2
})(j−s′−{j+ 1

2
})...(j+s′+{j+ 1

2
})

From (4.35)-(4.37) the sreening-o� (6.2) follows immediately.

One an see from the proof that if VC is a segment of Cauhy surfae satisfying

Requirements (i)-(iii) in De�nition 6, that is a segment of Cauhy surfae loated

at or above the top of the ommon ausal past of the orrelating events A and

B, then from (4.19) the qr terms will drop out leaving no orrelation between the

onditional probabilities. Note that VC need not neessarily be above the ommon

past of A and B, it an also interset with the top of it (see again Fig. 4.5). All

is needed is that there is no region above VC in the ommon past. Suh a region,

namely, an ontain stohasti events whih ould establish a orrelation between

A and B. Mathematially this means that from (4.19) the qr terms would not drop

out and hene the orrelation would not be sreened o� by the atomi events of

VC . Requirement (iii) in the de�nition of loal ausality is just to exlude this ase.

The next proposition shows that Requirement (iii) also is a neessary ondition in

the loalization of VC .

Proposition 2. The loal lassial theory {N (V ), V ∈ Km} would not be loally

ausal if Requirement (iii) was dropped from De�nition 6.

Proof. Consider Example 2 of the previous Setion that is let A = i+2 and B =
(i+2)+2 and the prior probabilities those �xed in (4.28)-(4.30). Let C be the minimal

projetion

(i − 2)+(i− 3

2
)+(i− 1)+(i− 1

2
)+i+(i+

1

2
)+(i + 1)+(i +

3

2
)+(i+ 2)+
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Figure 4.12: A region VC for whih Requirement (iii) does not hold.

loalized in region VC . (See Fig. 4.12.) For the region VC Requirement (iii) does

not hold sine there is a minimal double one, V m(1, i+1) (the one with horizontal

stripes) above region VC in the ommon past of VA and VB .

Using the identity

∑

(i+ 5
2
),(i+3),(i+ 7

2
),(i+4)

(i+
5

2
)(i + 3)(i+

7

2
)(i+ 4) = 1 (4.38)

it is easy to see that C does not sreen o� the orrelation between A and B sine

p(A|C) = q6 (4.39)

p(B|C) =

∑

(i+ 5
2
),(i+3),(i+ 7

2
),(i+4) p

(

B
∣

∣C(i + 5
2 ), (i+ 3), (i+ 7

2 ), (i + 4)
)

pC(i+ 5
2
),(i+3),(i+ 7

2
),(i+4)

p(C)

=
1

3
(1 + q6) (4.40)

p(AB|C) =

∑

(i+ 5
2
),(i+3),(i+ 7

2
),(i+4) p

(

AB
∣

∣C(i + 5
2 ), (i + 3), (i+ 7

2 ), (i+ 4)
)

pC(i+ 5
2
),(i+3),(i+ 7

2
),(i+4)

p(C)

=
1

3
(1 + p)pq9 (4.41)

for any C of non-zero measure. But typially

1

3
q6(1 + q6) 6= 1

3
(1 + p)pq9 (4.42)

sine the left and right hand side are of di�erent ordo in p.
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Next we prove that the above loal lassial theory is also Markov. Again, we

prove a little less: loal ausality for a minimal double one VA = Vm(t, i), another
minimal double one VB = V m(s, j) lying in the ausal past of VA, and a third

region VC generated by the intersetion of the ausal past of VA and a Cauhy

surfae �shielding o�� VA from VB. (See Fig. 4.13.) VC will obviously satisfy

����
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C
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V

V

Figure 4.13: The regions VA, VB and VC for whih Markovity holds.

Requirements (i)-(iii') in De�nition 3 of Markovity.

Proposition 3. The stohasti loal lassial theory {N (V ), V ∈ Km} is Markov

for any three regions VA, VB and VC spei�ed above.

Proof. Let A = it and B = js be two projetions loalized in VA and VB , respe-
tively, and orrelating in the probability measure p. We are to show that for any

atomi event

C =

(

i− t+ v − {i+ 1

2
}
)

v

. . .

(

i+ t− v + {i+ 1

2
}
)

v

of VC with s < v < t the following holds:

p(A|C) = p(A|CB) (4.43)

But it does, sine both sides of (6.3) are simply

q′nδit′ ,(i−t′+{i})...(i+t′−{i}) + (1− q′n)δ−it′ ,(i−t′+{i})...(i+t′−{i})

where again t′ := t− v and q′n denotes the appropriate number of minimal double

ones with respet to the shifted Cauhy surfae.
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4.5 Loal Causality, Causal Markov Condition and

d-separation

Now, I onnet loal ausality and Markovity to the Causal Markov Condition used

in the theory of Bayesian networks (see (Pearl, 2000) and (Spirtes, Glymour and

Sheines, 2000)). Consider a direted ayli graph G and a set of random variables

V on a lassial probability spae (Σ, p) suh that the elements X,Y . . . of V are

represented by the verties of G and the arrows X → Y on the graph represent

that X is ausally relevant for Y . For any X ∈ V let Par(X), the parents of X ,

be the set of verties that have direted edges in X ; let Anc(X), the anestors of

X , be the set of verties from whih a direted paths is leading to X ; and �nally

let Des(X), the desendants of X , be the set of verties that are endpoints of a

direted paths from X . The set V is said to satisfy the Causal Markov Condition

relative to the graph G if for any X ∈ V and any Y /∈ Des(X) the following is true:

p(X |Par(X) ∧ Y ) = p(X |Par(X)) (4.44)

In other words, onditioning on its parents the random variableX will be probabilis-

tially independent from any of its non-desendant. Non-desendants ofX an be of

two types: either anestors or non-relatives (non-desendants and non-anestors).

As we will see, being independent of anestors is related to the Markovity, whereas

being independent of non-relatives is related to loal ausality.

We say that the set V is faithful relative to the graph G if all probabilisti inde-

pendenies between the random variables of V are implied by the Causal Markov

Condition. This impliation an neatly be depited graphially by the so-alled

d-separation riterion. Let P be a path in G. A variable C on P is a ollider if

there are arrows to C from both its neighbors on P . Now, let X , Y and Z be three

disjoint sets of verties in G. X and Y are said to be d-onneted by Z in G i� there

exists a path P between some vertex in X and some vertex in Y suh that for every

ollider C on P , either C or a desendant of C is in Z, and no non-ollider on P is

in Z. X and Y are said to be d-separated by Z in G i� they are not d-onneted

by Z in G. Spei�ally, the Causal Markov Condition entails that the variables X
and Y are probabilistially independent onditional upon the subset Z just in ase

Z d-separates X and Y in G.
Now, onsider the stohasti loal lassial theory {N (V ), V ∈ Km} introdued

in the previous Setion. A loal von Neumann algebra N (V ) of the theory gives

rise to a graph G(V ) and a set of random variables V(V ) on a lassial probability

spae (Σ, p) in the following way. Consider a region V in Km
with the set {V m} of

minimal double ones ontained in V . Let the minimal double ones be the verties

of a ausal graph and draw an arrow to every minimal double one V m(t, i) from the

three minimal double ones adjaent to it from below, that is from V m(t− 1
2 , i− 1

2 ),
V m(t− 1, i) and V m(t− 1

2 , i+
1
2 ), if all ontained in V . (See Fig. 4.14.) The set of

verties and arrows will uniquely determine a ausal graph G(V ) assoiated to V .
As for the set of random variables V(V ), to eah minimal double one V m(t, i)

in V assign simply the two ylindrial subsets of CV (t,i), denoted by c+
V m(t,i) and
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Figure 4.14: The ausal graph G(V ) assoiated to V .

c−
V m(t,i), or equivalently the projetions i+t and i+t , respetively. Thus, the parents

of a given random variable will be the projetions in the three past timelike related

adjaent minimal double ones, the desendants of a random variable will be the

projetions in the future timelike related minimal double ones, et. The pair

(

G(V ),V(V )
)

will form a Bayesian network.

The translation manual between the voabulary of the theory of Bayesian net-

works and that of the stohasti loal lassial theory {N (V ), V ∈ Km} is shown
in the following table:

93

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



Theory of Bayesian networks Stohasti loal lassial theory

Bayesian network

(

G(V ),V(V )
)

Assoiated to every V ∈ Km

Causal graph G(V ) Loal von Neumann algebra N (V )
with V ∈ Km

Verties Minimal double ones in V
Arrows Pointing to future timelike related

adjaent minimal double ones

Random variables V(V ) Projetions loalized in the

minimal double ones ontained in V
Parents Projetions in past timelike related

adjaent minimal double ones

Anestors Projetions in past timelike related

minimal double ones

Desendants Projetions in future timelike related

minimal double ones

Causal Markov Condition Bell's loal ausality plus Markovity

The last line of the table ontains the entral point of our disussion, namely:

1. The Causal Markov Condition is a onsequene of Bell's loal ausality and

Markovity when applied to the parents of a random variable.

2. Bell's loal ausality/Markovity are onsequenes of the Causal Markov Con-

dition, sine the set of random variables loalized in a region satisfying Re-

quirements (i)-(iii)/(iii') is d-separating.

We prove the �rst laim in the following proposition and illustrate the seond in

the subsequent examples.

Proposition 4. Let {N (V ), V ∈ Km} be the stohasti loal lassial theory

introdued above satisfying loal ausality and Markovity. Then for any pair

(

G(V ),V(V )
)

assoiated to any V ∈ Km
the Causal Markov Condition holds.

Proof. First we prove Causal Markov Condition for non-relatives whih follows

from the theory being loally ausal. Let V ∈ Km
and let Vm(t, i) and V m(s, j)

be two minimal double ones in V suh that i < j. Suppose that V m(t, i) and

V m(s, j) are spatially separated (non-relatives), that is |j − i| > |s − t|. Without

loss of generality we also an assume that t = 1
2 and s > t, as depited in Fig.

4.15. We are to show that the Causal Markov Condition (5.1) holds for X = i1 and
Y = js in the Bayesian network

(

G(V ),V(V )
)

assoiated to V .
First, observe the parents of the variable i1 are (i − 1

2 ), i and (i + 1
2 ). Thus,

the Causal Markov Condition (5.1) reads as follows:

p

(

i1

∣

∣

∣

∣

(i− 1

2
)i(i +

1

2
) js

)

= p

(

i1

∣

∣

∣

∣

(i− 1

2
)i(i+

1

2
)

)

(4.45)

or equivalently

p

(

i1js

∣

∣

∣

∣

(i − 1

2
)i(i+

1

2
)

)

= p

(

i1

∣

∣

∣

∣

(i− 1

2
)i(i+

1

2
)

)

p

(

js

∣

∣

∣

∣

(i− 1

2
)i(i+

1

2
)

)

(4.46)
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Figure 4.15: Causal Markov Condition follows from Bell's loal ausality

relative to the parents.

Or in other words, the atomi events (i− 1
2 )i(i+

1
2 ) sreen o� the orrelation between

i1 and js. But (4.46) does hold, sine from (4.35)-(4.37) it follows that

p

(

i1

∣

∣

∣

∣

(i− 1

2
)i(i +

1

2
)

)

=

[

pδi1,(i− 1
2
)i(i+ 1

2
) + (1 − p)δ−i1,(i−

1
2
)i(i+ 1

2
)

]

(4.47)

p

(

js

∣

∣

∣

∣

(i− 1

2
)i(i +

1

2
)

)

=
∑

(i− 1
2
),...,(j+s+{j+ 1

2
})

[

qmδjs,(j−s+{j})...(j+s−{j})

+(1− qm)δ−js,(j−s+{j})...(j+s−{j})

]

p(i− 1
2
)i(i+ 1

2
)(j−s+{j})...(j+s−{j})(4.48)

p

(

i1js

∣

∣

∣

∣

(i− 1

2
)i(i +

1

2
)

)

=

[

pδi1,(i− 1
2
)i(i+ 1

2
) + (1 − p)δ−i1,(i−

1
2
)i(i+ 1

2
)

]

×
∑

(i− 1
2
),...,(j+s+{j+ 1

2
})

[

qmδjs,(j−s+{j})...(j+s−{j})

+(1− qm)δ−js,(j−s+{j})...(j+s−{j})

]

p(i− 1
2
)i(i+ 1

2
)(j−s+{j})...(j+s−{j})(4.49)

Next we prove Causal Markov Condition for anestors whih follows from the

theory being Markov. Let again V ∈ Km
and let V m(t, i) and V m(s, j) be two

minimal double ones in V suh that V m(s, j) is in the ausal past (is an anestor)

of V m(t, i), that is |j − i| 6 |s− t|. Again, we an assume that t = 1
2 and s > t, as

depited in Fig. 4.16. To prove (4.45) just observe that both sides equal to

pδi1,(i− 1
2
)i(i+ 1

2
) + (1− p)δ−i1,(i−

1
2
)i(i+ 1

2
)

This ompletes the proof.
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Figure 4.16: Causal Markov Condition follows from Markovity relative to

the parents.

Thus, the Causal Markov Condition is a speial ase of Bell's loal ausality and

Markovity in the stohasti loal lassial theory {N (V ), V ∈ Km}, namely when

VC is a speial spaetime region: the union of the three parental minimal double

ones, that is minimal double ones adjaent to a given minimal double one from

below. We stress again that Causal Markov Condition is a omposition of two

sreening-o� onditions: one for the anestors and the other for the non-relatives.

The �rst is the onsequene of Markovity, the seond is the onsequene of loal

ausality.

Now, we go over to our inverse laim, namely that Bell's loal ausality/Markovity

are onsequenes of the Causal Markov Condition, sine the set of random variables

loalized in a region VC satisfying Requirements (i)-(iii)/(iii') is d-separating. Here

we do not prove this laim generally, but only illustrate the onnetion of Require-

ments (i)-(iii) in the de�nition of loal ausality to d-separation on our previous

two examples.

Example 1. Consider the smallest region V ∈ Km
in our Example 1 (in Setion 4)

ontaining the superluminally orrelating events i+1 and j+1 with j = i+ 2 ∈ N+ 1
2

and a region VC satisfying Requirements (i)-(iii) in the de�nition of loal ausality.

(See Fig. 4.17.)

Now, onsider the Bayesian network

(

G(V ),V(V )
)

assoiated to this V . The

ausal graph of the network is illustrated in Fig. 4.18. Let the variables be X = i1,
Y = j1 and the subset Z be de�ned as:

Z :=

{

(i − 1), (i− 1

2
), i, (i+

1

2
), (i+ 1)

}

In other words, Z ontains the random variables assoiated to the minimal double

ones of VC .
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i+1/2

i−1 j+1
i−1/2 j−1/2 j+1/2

+ +
11

ji

Figure 4.17: The smallest region ontaining the senario of Example 1.

i−1 i i+1

i j

j j+1

i−1/2 i+1/2 j−1/2 j+1/2

11

Figure 4.18: A d-separating senario.

Now, Z d-separates i1 and j1 in G(V ), sine for every path P onneting i1 and
j1 in G(V ) there is a non-ollider in Z, namely, (i + 1). Therefore, i1 and j1 are

probabilistially independent onditional upon any atomi event

(i− 1)±(i− 1

2
)±i±(i +

1

2
)±(i+ 1)±

This fat is the Bayesian network analogon of the situation illustrated in Fig. 8.16

where VC is suh that there is no minimal double one above VC in the intersetion

of the ausal past of the orrelating events. As said before, this is due to the fat that

VC satis�es Requirement (iii) in the de�nition of loal ausality. If Requirement (iii)

does not ful�l, region VC turns into d-onneting, as is shown in the next example.

Example 2. Consider the smallest region V ∈ Km
in our Example 2 ontaining the

superluminally orrelating events i+2 and j+2 with j = i+2 ∈ N+ 1
2 and a region VC

still in the ausal past of i+2 but not satisfying Requirement (iii). (See Fig. 4.19.)

The ausal graph G of the network is illustrated in Fig. 4.20. Let the variables

be X = i2, Y = j2 and let

Z :=

{

(i− 3

2
), (i − 1), (i− 1

2
), i, (i+

1

2
), (i+ 1), (i+

3

2
) = (j − 1

2
)

}

again a subset ontaining the random variables assoiated to the minimal double

ones within VC .
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Figure 4.19: The smallest region ontaining the senario of Example 2.

i j
2 2

ii−1 i+1 j j+1 j+2

i−3/2

i−2

i+1/2i−1/2 j−1/2 j+1/2 j+3/2

Figure 4.20: A d-onneting senario.

Now, Z does not d-separate i2 and j2 in G, sine the path

P :=

{

i2, (i+
1

2
)1, (i+ 1)1, (j −

1

2
)1, j2

}

(denoted by a broken line in Fig. 4.20) onneting i2 and j2 in G(V ) ontains only
non-olliders whih are outside Z. Therefore, the probabilisti independene of i1
and j1 onditional upon the atomi events

(i− 3

2
)±(i− 1)±(i− 1

2
)±i±(i+

1

2
)±(i+ 1)±(i +

3

2
)±

is not ensured by the Causal Markov Condition (and if the graph is faithful, it is even

exluded). This fat is the Bayesian network analogon of the situation illustrated

in Fig. 8.17 where VC does not satisfy Requirement (iii) in the de�nition of loal

ausality.

These examples point in the same diretion: the Causal Markov Condition and

the d-separation together ensure that Bell's loal ausality will hold for the atomi
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projetions loalized in a region satisfying Requirements (i)-(iii). Moreover, they

also show that Requirements (iii) is a neessary ondition.

4.6 Conlusions

In the paper I was arguing, based on a simple stohasti loal lassial model, that

Bell's loal ausality, read in an appropriate way, is a Causal Markov Condition. I

have not though provided a general proof. This would amount to solve the following

Open problem. Let {N (V ), V ∈ K} be a disrete loal physial theory, disrete

in the sense that every V ∈ K ontains only a �nite number of elements of K
and the loal von Neumann algebrasN (V ) are �nite. Construt the Bayesian
network

(

G(V ),V(V )
)

assoiated to a region V in K. Prove (or falsify) that
{N (V ), V ∈ K} is Markov and loally ausal in Bell's sense i�

(

G(V ),V(V )
)

ful�ls the Causal Markov Condition for every V ∈ K.
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Chapter 5

Bell's loal ausality is a

d-separation riterion

This paper aims to motivate Bell's notion of loal ausality by means of Bayesian

networks. In a loally ausal theory any superluminal orrelation should be sreened

o� by atomi events loalized in any so-alled shielder-o� region in the past of one

of the orrelating events. In a Bayesian network any orrelation between non-

desendant random variables are sreened o� by any so-alled d-separating set of

variables. We will argue that the shielder-o� regions in the de�nition of loal ausal-

ity onform in a well de�ned sense to the d-separating sets in Bayesian networks.

5.1 Introdution

John Bell's notion of loal ausality is one of the entral notions in the foundations

of relativisti quantum physis. Bell himself has returned to the notion of loal

ausality from time to time providing a more and more re�ned formulation for it.

The �nal formulation stems from Bell's posthumously published paper �La nouvelle

uisine.� It reads as follows:

1

A theory will be said to be loally ausal if the probabilities attahed

to values of loal beables in a spae-time region VA are unaltered by

spei�ation of values of loal beables in a spae-like separated region

VB , when what happens in the bakward light one of VA is already

su�iently spei�ed, for example by a full spei�ation of loal beables

in a spae-time region VC . (Bell, 1990/2004, p. 239-240)

The �gure Bell is attahing to his formulation of loal ausality is reprodued in

Fig. 5.1 with Bell's original aption. In a rough translation, a theory is loally

ausal if any superluminal orrelation an be sreened-o� by a �full spei�ation of

loal beables in a spae-time region� in the past of one of the orrelating events.

1

For the sake of uniformity we slightly hanged Bell's notation and �gure.
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CV

VA VB

Figure 5.1: Full spei�ation of what happens in VC makes events in VB
irrelevant for preditions about VA in a loally ausal theory.

The terms in quotation marks, however, need lari�ation. What are �loal

beables�? What is �full spei�ation� and why is it important? Whih are those re-

gions in spaetime whih, if fully spei�ed, render superluminally orrelating events

probabilistially independent? The �rst two questions have attrated muh inter-

est among philosophers of siene. As Bell puts it, �beables of the theory are those

entities in it whih are, at least tentatively, to be taken seriously, as orresponding

to something real� (Bell, 1990/2004, p. 234). Furthermore, �it is important that

events in VC be spei�ed ompletely. Otherwise the traes in region VB of auses

of events in VA ould well supplement whatever else was being used for alulating

probabilities about VA� (Bell, 1990/2004, p. 240).

The third question, however, onerning the loalization of the sreener-o�

regions has gained muh less attention in the literature. How to haraterize the

regions whih region VC in Fig. 5.1 is an example of? Bell's answer is instrutive

but brief: �It is important that region VC ompletely shields o� from VA the overlap

of the bakward light ones of VA and VB .� (Bell, 1990/2004, p. 240) But why to

shield o� the ommon past of the orrelating events? Why the region VC annot

be in the remote past of VA as for example in Figure 5.2? Well, intuition ditates

V

VA VB

C

Figure 5.2: A not ompletely shielding-o� region VC .
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that in this latter ase some event might our above the shielder-o� region but

still within the ommon past establishing a orrelation between events in VA and

VB. This intuition is orret. The aim of this paper, however, is to provide a more

preise explanation for the loalization of the shielder-o� regions in spaetime. This

explanation will onsists in drawing a parallel between loal physial theories and

Bayesian networks. It will turn out that the shielder-o� regions in the de�nition of

loal ausality play an analogous role to the so-alled d-separating sets of random

variables in Bayesian networks.

There is a renewed interest in Bell's notion of loal ausality (Norsen, 2009, 2011;

Maudlin 2014), its relation to separability (Henson, 2013b); the role of full spei-

�ation in loal ausality (Seevink and U�nk, 2011; Hofer-Szabó 2015a); its role

in relativisti ausality (Butter�eld 2007; Earman and Valente, 2014; Rédei 2014);

its status as a loal ausality priniple (Henson, 2005; Rédei and San Pedro, 2012;

Henson 2013a). A similar losely related topi, the Common Cause Priniple is

also given muh attention (Rédei 1997; Rédei and Summers 2002; Hofer-Szabó and

Vesernyés 2012a, 2013a). On the other hand, there is also an intensive disussion

on the appliability of the Causal Markov Condition in the EPR senario (Gly-

mour, 2006; Suárez and Iniaki, 2011; Hausman and Woodward, 1999; Suárez, 2013;

Hofer-Szabó, Rédei and Szabó, 2013). Despite the rih and growing literature on

the topi I am unaware of any work relating Bayesian networks and espeially d-

separation diretly to loal ausality. This paper intends to �ll this gap. For a

preursor of this paper investigating Causal Markov Condition in a spei� loal

physial theory see (Hofer-Szabó, 2015b). For a omprehensive formally rigorous

investigation of the relation of Bell's loal ausality to the Common Cause Priniple

and other relativisti loality onepts see (Hofer-Szabó and Vesernyés, 2015); for

a more philosopher-friendly version see (Hofer-Szabó and Vesernyés, 2016).

In the paper we will proeed as follows. In Setion 2 we introdue the basis of

the theory of Bayesian networks and the notion of d-separation and m-separation.

In Setion 3 we de�ne the notion of a loal physial theory and formulate Bell's

notion of loal ausality within this framework. We prove our main laim in Setion

4 and onlude in Setion 5.

5.2 Bayesian networks and d-separation

A Bayesian network (Pearl, 2000; Glymour, Sheines and Spirtes, 2000) is a pair

(G,V) where G is a direted ayli graph and V is a set of random variables on

a lassial probability spae (X,Σ, p) suh that the elements A,B . . . of V are

represented by the verties of G and the arrows (direted edges) A → B on the

graph represent that A is ausally relevant for B. Two verties are alled adjaent

if they are onneted by an arrow. For a given A ∈ V , the set of verties that

have direted edges in A is alled the parents of A, denoted by Par(A); the set of
verties from whih a direted paths is leading to A is alled the anestors of A,
denoted by Anc(A); and �nally the set of verties that are endpoints of a direted

paths from A is alled the desendants of A, denoted by Des(A). For a set C of
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verties Par(C), Anc(C) and Des(C) are de�ned similarly.

The set V is said to satisfy the Causal Markov Condition relative to the graph

G if for any A ∈ V and any B /∈ Des(A) the following is true:

p(A |Par(A) ∧B) = p(A |Par(A)) (5.1)

or equivalently

p(A ∧B |Par(A)) = p(A |Par(A)) p(B |Par(A)) (5.2)

That is onditioning on its parents any random variable will be probabilistially

independent from any of its non-desendant. Non-desendants an be of two types:

either anestors or ollaterals (non-desendants and non-anestors). As we will see,

being independent of ollaterals is what relates the Causal Markov Condition to

Bell's loal ausality.

Causal Markov Condition establishes a speial onditional independene rela-

tion between some random variables of V . But there are many other onditional

independenes. In a faithful Bayesian network these other onditional indepen-

denes are all implied by the Causal Markov Condition by means of the so-alled

d-separation riterion. Let P be a path in G, that is a sequene of adjaent verties.
A variable E on P is a ollider if there are arrows to E from both its neighbors on

P (D → E ← F ). Now, let C be a set of verties and let A and B two di�erent

verties not in C. The verties A and B are said to be d-onneted by C in G i�

there exists a path P between A and B suh that every non-ollider on P is not in

C and every ollider is in Anc(C). A and B are said to be d-separated by C in G, i�
they are not d-onneted by C in G.

The intuition behind d-separation is the following. A vertex E on a path (not at

the endpoints) an be either a ollider (D → E ← F ), an intermediary ause (D →
E → F ) or a ommon ause (D ← E → F ). The idea here is that only intermediary

and ommon auses (together alled non-olliders) an transmit ausal dependene

and hene establish probabilisti dependene. This dependene an be bloked by

onditioning on the non-ollider. Colliders behave just the opposite way. They

represent two events ausing a ommon e�et. These two auses are ausally and

probabilistially independent, but beome dependent upon onditioning on their

ommon e�et. Moreover, they also beome dependent upon onditioning on any

of the desendants of the e�et. Putting these together, the ausal dependene on

a path P onneting two verties is bloked by a set C if either there is at least one
non-ollider on P whih is in C or there is at least one ollider E on P suh that

either E or a desendant of E is not in C. The two verties are d-separated by C if
ausal dependene is bloked on every path onneting them.

As an example for d-onnetion and d-separation onsider the ausal graph in

Fig. 5.3. (The arrows are direted to up, left up and right up.) Let A be the left

�peak� and B the right �peak� in the graph and let C, C′ and C′′ be the sets shown
in the �gure ontaining 3, 5 and 7 verties, respetively. Then A and B are d-

separated by C sine the parents are always d-separating due to the Causal Markov

Condition. A and B are d-separated also by C′ sine for every path onneting the
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A B

C’’

C’

C

Figure 5.3: A and B are d-separated by C and C′ but d-onneted by C′′.

peaks there is a non-ollider in C′. However, A and B are d-onneted by C′′ sine
there is a path (denoted by a broken line in Fig. 5.3) onneting the peaks whih

ontains only non-olliders outside C′′. Consequently, the following probabilisti

relations hold:

p(A ∧B | C) = p(A | C) p(B | C) (5.3)

p(A ∧B | C′) = p(A | C′) p(B | C′) (5.4)

p(A ∧B | C′′) 6= p(A | C′′) p(B | C′′) (5.5)

Looking at in Fig. 5.3, what stands out immediately is that a set whih is too

far in the ausal past of A annot d-separate A from a ollateral event sine there

might be paths onneting them �above� the set. As we will see, a similar moral

will be valid in ase of loal ausality: regions with are too far in the ausal past

of an event annot sreen it o� from a spaelike separated event sine there might

be events �above� the region whih an establish orrelation between them.

In analyzing loal ausality sometimes we need to go beyond direted ayli graphs.

A graph whih may ontain both direted (A→ B) and bi-direted (A↔ B) edges
is alled mixed. The d-separation riterion extended to mixed ayli graphs is

alled m-separation. (Rihardson and Spirtes, 2002; Sadeghi and Lauritzen, 2014)

Two verties A and B are said to be m-onneted by C in a mixed ayli graph G
i� there exists a path P between A and B suh that every non-ollider on P is not

in C and every ollider is in Anc(C). A and B are said to be m-separated by C in

G, i� they are not m-onneted by C in G. In a direted ayli graph m-separation

redues to d-separation.

An example for a mixed ayli graph is depited in Fig. 5.4. Here the bi-

direted edges are represented by dotted lines. Again, let A be the left �peak� and

B the right �peak� in the graph and let C, C′ and C′′ be the sets shown in the �gure

ontaining 3, 5 and 7 verties, respetively. Then A and B are m-separated by

C but m-onneted by both C′ and C′′. The onneting path is the shortest path
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C’

C

C’’

A B

Figure 5.4: A and B are m-separated by C but m-onneted by both C′ and
C′′.

onneting A and B.

Now, let us onnet the terminology of Bayesian networks to that of standard

physis. Before doing that note that probability is ommonly interpreted in Bayesian-

ism subjetively as partial belief and in physis objetively as long-run relative fre-

queny. This interpretative di�erene, however, does not undermine the analogy

between loal ausality and d-separation, sine Bayesian networks are well open to

statistial interpretation and, onversely, there is a growing tendeny to understand

quantum physis in a subjetivist way.

Let us start with random variables. A random variable is a real-valued Borel-

measurable funtion on X . Eah random variable A ∈ V generates a sub-σ-algebra
of Σ by the inverse image of the Borel sets:

σ(A) :=
{

A−1(b) | b ∈ B(R)
}

(5.6)

Similarly, eah set C of n random variables generates a sub-σ-algebra of Σ by the

inverse image of the n-dimensional Borel sets:

σ(C) :=
{

(C1, C2 . . . Cn)
−1(b) |Ci ∈ C, b ∈ B(Rn)

}

(5.7)

From this perspetive d-separation tells us whih sub-σ-algebras are probabilisti-

ally independent onditioned on whih other sub-σ-algebras of Σ.
Now, instead of using σ-algebras it is more instrutive to use a riher struture in

physis, namely von Neumann algebras. Consider the harateristi funtions on X
projeting on the elements of Σ, alled events. The set {χS |S ∈ Σ} of harateristi
funtions generates an abelian von Neumann algebra, namely L∞(X,Σ, p), the
spae of essentially bounded omplex-valued funtions on X . Starting from the

harateristi funtions of the sub-σ-algebra σ(A), one arrives at a subalgebra of

L∞(X,Σ, p). Denote this abelian von Neumann algebra determined by the random

variable A by NA. Similarly, denote by NC the von Neumann algebra determined

by a set C of random variables.
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Instead of using a probability measure on Σ or on a sub-σ-algebra σ(A), one
an also use a state on the orresponding von Neumann algebra NA. A state φ is a

positive linear funtional of norm 1 on a von Neumann algebra. States on NA and

probability measures on σ(A) mutually determine one another: a state restrited to

the harateristi funtions in NA is a probability measure on σ(A); and vie versa,

integrating elements of NA aording to a probability measure on σ(A) yields a

state on NA.

Therefore, a onditional independene between random variables A and B given

the set C

p(A ∧B | C) = p(A | C) p(B | C) (5.8)

an be rewritten as follows: for any projetion A ∈ NA, B ∈ NB and C ∈ NC :

φ(A ∧B ∧ C)
φ(C)

=
φ(A ∧ C)
φ(C)

φ(B ∧ C)
φ(C)

(5.9)

Although in this paper we stay at the lassial level, the theory of von Neumann

algebras is wide enough to inorporate also quantum physis. In this ase the von

Neumann algebras are nonabelian. The events, just like in the lassial ase, are

represented by projetions of the von Neumann algebras. In the quantum ase

onditional independene between the projetion A ∈ NA and B ∈ NB given

C ∈ NC reads as follows:

φ(CABC)

φ(C)
=
φ(CAC)

φ(C)

φ(CBC)

φ(C)
(5.10)

whih in the lassial ase redues to (5.9).

The last point in onverting the formalism of Bayesian networks into physis,

is to swap the ausal graph for spaetime. We an then replae the ausal relations

embodied in the ausal graph by spatiotemporal relations of a given spaetime.

Instead of saying that a random variable is the anestor of another variable we

will then say that an event is in the past of the other. But to do so �rst we need

to loalize events in spaetime that is we need to have an assoiation of algebras

of events to spaetime regions. Suh a prinipled assoiation is o�ered by the

formalism of algebrai quantum �eld theory. Hene, in the next setion we will

introdue some elements of algebrai quantum �eld theory whih is indispensable

for our purpose whih is to ome up with a mathematially preise de�nition of

Bell's notion of loal ausality.

5.3 Bell's loal ausality in a loal physial theory

Let M be a globally hyperboli spaetime and let K be a overing olletion of

bounded, globally hyperboli subspaetime regions of M suh that (K,⊆) is a

direted poset under inlusion ⊆. A loal physial theory is a net {A(V ), V ∈
K} assoiating algebras of events to spaetime regions whih satis�es isotony and
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miroausality de�ned as follows (Haag, 1992; Halvorson 2007; Hofer-Szabó and

Vesernyés 2015, 2016):

Isotony. The net of loal observables is given by the isotone map K ∋ V 7→ A(V )
to unital C∗

-algebras, that is V1 ⊆ V2 implies that A(V1) is a unital C∗
-subalgebra

of A(V2). The quasiloal algebra A is de�ned to be the indutive limit C∗
-algebra

of the net {A(V ), V ∈ K} of loal C∗
-algebras.

Miroausality : A(V ′)′ ∩ A ⊇ A(V ), V ∈ K, where primes denote spaelike om-

plement and algebra ommutant, respetively.

If the quasiloal algebra A of the loal physial theory is ommutative, we speak

about a loal lassial theory ; if A is nonommutative, we speak about a loal

quantum theory. For loal lassial theories miroausality ful�lls trivially.

Given a state φ on the quasiloal algebra A, the orresponding GNS represen-

tation πφ : A → B(Hφ) onverts the net of C
∗
-algebras into a net of C∗

-subalgebras

of B(Hφ). Closing these subalgebras in the weak topology one arrives at a net of

loal von Neumann observable algebras: N (V ) := πφ(A(V ))′′, V ∈ K. The net

{N (V ), V ∈ K} of loal von Neumann algebras also obeys isotony and miroausal-

ity, hene we an also refer to it as a loal physial theory.

Given a loal physial theory, we an turn now to the de�nition of Bell's notion

of loal ausality. Reall that aording to Bell a theory is loally ausal if any

superluminal orrelation is sreened-o� by a �full spei�ation of loal beables in a

spae-time region VC � as shown in Fig. 5.1. As indiated in the Introdution we need
to address three questions. What are �loal beables�? What is �full spei�ation�?

Whih are the shielder-o� regions? The brief answer to the �rst two questions is

the following. In a loal physial theory a �loal beable� in a region V is an element

of the loal von Neumann algebra N (V ). A �full spei�ation� of loal beables

in region V is an atomi element of the loal von Neumann algebra N (V ). In

this paper we do not omment on these two answers. For a more thoroughgoing

disussion on why we think this to be the orret translation of Bell's intuition into

our framework see (Hofer-Szabó and Vesernyés, 2015, 2016).

To the third question, whih is the topi of our paper, the answer is this: a

shielder-o� region VC is a region in the ausal past of VA whih an blok any

ausal in�uene on VA arriving from the ommon past of VA and VB . But there

is an ambiguity in this answer. Bell's Fig. 5.1 suggests that a shielder-o� region

should not interset with the ommon past. Whereas the requirement of simply

bloking ausal in�uenes from the past allows for also regions depited in Fig. 5.5

interseting with the ommon past. This means that one an de�ne a shielder-o�

region of VA relative to VB either as a region VC satisfying:

L1 : VC ⊂ J−(VA) (VC is in the ausal past of VA),

L2 : VA ⊂ V ′′
C (VC is wide enough suh that its ausal shadow ontains

VA),

L

Q
3 : VC ⊂ V ′

B (VC is spaelike separated from VB)
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V

VA VB

C

Figure 5.5: A ompletely shielding-o� region VC interseting with the om-

mon past of VA and VB .

in tune with Bell's Fig. 5.1; or one an replae LQ
3 by the weaker requirement

L

C
3 : J−(VC) ⊃ J−(VA) ∩ J−(VB) (The ausal past of VC ontains the

ommon past of VA and VB)

allowing for regions suh as in Fig. 5.2. It turns out that (with respet to the Bell

inequalities, see (Hofer-Szabó and Vesernyés, 2012b, 2013b)) it is more appropriate

to demand LQ
3 in ase of a loal quantum theory and LC

3 in ase of a loal lassial

theory (hene the supersripts). But note that as the overing regions beome

in�nitely thin shrinking down to a Cauhy surfae, requirement LC
3 oinides with

requirement LQ
3 .

With all these onsiderations in mind Bell's notion of loal ausality in the

framework of a loal physial theory will be the following:

De�nition 4. A loal physial theory represented by a net {N (V ), V ∈ K} of von
Neumann algebras is alled loally ausal (in Bell's sense), if

1. for any pair A ∈ N (VA) and B ∈ N (VB) of events represented by projetions
in spaelike separated regions VA, VB ∈ K;

2. for every loally normal and faithful state φ establishing a orrelation φ(AB) 6=
φ(A)φ(B) between A and B;

3. for any spaetime shielder-o� region VC de�ned by requirements L1, L2 and

LQ
3 /L

C
3 ;

4. for any event C in the set C of atomi events in A(VC)
the following sreening-o� ondition holds:

φ(CABC)

φ(C)
=
φ(CAC)

φ(C)

φ(CBC)

φ(C)
(5.11)

whih for a loal lassial theory is equivalent to

p(A ∧B | C) = p(A | C) p(B | C) (5.12)
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In short, a loal physial theory is loally ausal in Bell's sense if every superluminal

orrelation is sreened o� by all atomi events in all shielder-o� region. (For many

deliate questions suh as what if the algebras are non-atomi, how this de�nition

of loal ausality relates to the Common Cause Priniple and the Bell inequalities

see again (Hofer-Szabó and Vesernyés, 2015, 2016).)

The question left is, however: why shielder-o� regions are haraterized by

requirements L1, L2 and L
Q
3 /L

C
3 ? To this we turn in the next Setion.

5.4 Shielder-o� regions are d-separating

The point we are going to make in this Setion is that shielder-o� regions in the

de�nition of loal ausality onform to d-separating sets in direted ayli graphs

and to m-separating sets in mixed ayli graphs.

First we show how a loal physial theory gives rise to a ausal graph. Consider

a loal lassial theory {N (V ), V ∈ K} where the overing olletion is indued by

a partition T of a spaetimeM. By partition we mean a ountable set of disjoint,

bounded spaetime regions suh that their union isM. Whether we demand global

hyperboliity from the elements of the partition will turn out to play an important

role in the type of the graph we an onstrut. For some spei� globally hyperboli

overings we will get direted ayli graphs, otherwise only a mixed graph.

Let the verties of the G be the regions in the partition, {V ∈ T }. Denote the
vertex orresponding to the region V ∈ T by AV and the region orresponding to

a vertex A by VA. Similarly, denote the set of verties orresponding to the region

V ∈ K by CV and the region orresponding to a set of verties C by VC . De�ne the
anestors of a vertex B as:

Anc(B) := {A ∈ V |A 6= B, VA ∩ J−(VB) 6= ∅}

and the parents of B, Par(B), as those elements in Anc(B) for whih there is a

ausal urve onneting VA and VB diretly (that is without entering a third region

between them). Now, let there be an arrow A→ B between vertex A and B in T
if and only if A ∈ Par(B). It will turn out that the type of the graph we obtain

is ruially depending on the partition T of the spaetime. Let us see the di�erent

ases.

If M is the 1+1 dimensional Minkowski spaetime, then it an be overed by

double ones of equal size. (See Fig. 5.6.) Double ones are globally hyperboli.

(For the details of this example see (Hofer-Szabó, 2015b).) The ausal graph or-

responding to this overing emerges simply by onneting the midpoints of those

adjaent double ones whih lie in the ausal past of one another. What we get is

just the direted ayli graph depited in Fig. 5.3 in Setion 2.

Fig. 5.6 is a kind of �superposition� of a spaetime diagram and a Bayesian

network. Consider for example region VC′
. Reading Fig. 5.6 as a spaetime diagram,

one sees that VC′
is a shielder-o� region (similar to the one depited in Fig. 5.5).

Reading Fig. 5.6 as a ausal graph, one observes that the set C′ orresponding to

VC′
(depited in Fig. 5.3) is a d-separating set. Similarly, one an hek that the
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V V

V

A B

C’

Figure 5.6: The direted ayli graph generated by double ones of equal

size overing the 1+1 dimensional Minkowski spaetime.

region assoiated to the d-separating set C in Fig. 5.3 is a shielder-o� region and

the region assoiated to the d-onneting set C′′ is not a shielder-o� region.

A general spaetime M annot be partitioned to globally hyperboli regions,

let alone to double ones. Still one an onstrut the ausal graph orresponding to

a partition T . In Fig. 5.7 we illustrate suh a onstrution where a 1+1 dimensional

V

V V
BA

C’

Figure 5.7: The mixed ayli graph generated by boxes of equals size ov-

ering of the 1+1 dimensional Minkowski spaetime.

Minkowski spaetime is overed by boxes of equals size. (This example, in ontrast

to the previous one, an be generalized for a 3+1-dimensional Minkowski spaetime

overed by 3+1-dimensional boxes of equals size.) The ausal graph emerging from

this onstrution is not a direted ayli graph sine it ontains bi-direted edges:

spaelike neighboring boxes will be spouses. What we get is a mixed ayli graph

depited in Fig. 5.4. Again, onfronting Fig. 5.4 and Fig. 5.7 one an see that the

set C′ is not an m-separating set and at the same time the orresponding region
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VC′
is not a shielder-o� region of VA relative to VB .

The exat haraterization of the graphs emerging from a di�erent overings of a

given spaetime is a subtle question whih we do not go into here. Instead we turn

now to the onstrution of random variables. Let N (V ) be the loal von Neumann

algebra assoiated to the spaetime region V ∈ T . Denote by σ(V ) the sigma-

algebra of the projetions of N (V ). Let the random variable (also denoted by) AV

assoiated to V be any Borel-measurable funtion from σ(V ) to B(R). Any state φ
will then de�ne a probability measure p on σ(V ) for any V ∈ T and, due to isotony

of the net, also for any V whih is a �nite union of regions in T . (Note that σ(M)
may not be a sigma-algebra sine the quasiloal algebra A is not neessarily a von

Neumann algebra, so it may not ontain projetions.)

In sum, any �nite set of regions of a loal lassial theory {N (V ), V ∈ K}
generated by a globally hyperboli partition ofM de�nes a Bayesian network (G,V).
If global hyperboliity is not required, then G is not a direted ayli but only a

mixed graph.

Now, we state and prove the main laim of the paper.

Proposition 5. Let G be a direted/mixed ayli graph onstruted from a loal

lassial theory {N (V ), V ∈ K} where K is generated by a partition T of M.

Suppose that {N (V ), V ∈ K} is loally ausal in the sense of De�nition 4. Then

for any shielder-o� region V de�ned by L1, L2 and LC
3 , the orresponding set CV

is d-separating/m-separating.

Proof. Let A and B two ollateral verties in G orresponding to two spaelike

separated regions VA and VB, respetively (VA, VB ∈ T ). Call a set C of random

variables a shielder-o� set (for A relative to B), if VC is a shielder-o� region (for VA
relative to VB). Shielder-o� sets blok every direted path from Anc(A)∧Anc(B),
the set of ommon anestors of A and B, to A (that is every direted path has to

pass through C).
We show that shielder-o� sets are d-separating/m-separating. Let C be a

shielder-o� set for A relative to B. We have to show that C bloks every path on-

neting A and B. First onsider those paths that ontain no olliders. These paths

need to pass through the set of ommon anestors of A and B, Anc(A) ∧ Anc(B).
Hene, the shielder-o� set C bloks them. So there remain only those paths to be

bloked whih ontain at least one ollider. It is easy to see that these latter paths

need to ontain at least one ollider E suh that E /∈ Anc(A). But then neither E
nor any desendant of E is in C, hene C bloks also these paths.

The onverse of Proposition 13 is not true: d-separating sets are not neessarily

shielder-o� sets. Tian, Paz, and Pearl (1998) list algorithms to �nd the so-alled

minimal d-separating sets for two random variables A and B, that is sets that

are d-separating but taking away any vertex from the set they will ease to be

d-separating. It turns out that any minimal d-separating set is sitting in the union

of the anestors of A and B (inluding also A and B), Anc(A) ∨ Anc(B) ∨ A ∨B.
However, a minimal d-separating set need not satisfy relations L1, L2 and L

C
3 . For
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example the sets D, D′
and D′′

in Fig. 5.8 are all minimal d-separating sets but not

shielder-o� regions for A relative to B.

A B

D D’ D’’

Figure 5.8: Minimal d-separating but not shielder-o� regions.

At any event, shielder-o� regions are d-separating, and this was to be shown in

this paper.

5.5 Conlusions

The aim of the paper was to motivate Bell's de�nition of loal ausality by means

of Bayesian networks. To this aim, �rst we onstruted a ausal graph from the

overing olletion of a spaetime. In ertain ases the graph was a direted ayli

graph, in other ases only a mixed ayli graph. Similarly, we have assoiated

random variables to the loal algebras of a loal physial theory. By this move

shielder-o� regions turned out be spei� d-separation (m-separating) sets on the

ausal graph. Hene, Bell's de�nition of loal ausality requiring that spaelike

separated events should be sreened-o� by events in a shielder-o� region turned

out to be a d-separation riterion.
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Chapter 6

Loal ausality and omplete

spei�ation: a reply to

Seevink and U�nk

A physial theory is alled loally ausal if any orrelation between spaelike sepa-

rated events is sreened-o� by loal beables ompletely speifying an appropriately

hosen region in the past of the events. In this paper I will de�ne loal ausality

in a lear-ut framework, alled loal physial theory whih integrates both proba-

bilisti and spatiotemporal entities. Then I will argue that, ontrary to the laim of

Seevink and U�nk (2011), omplete spei�ation does not stand in ontradition

to the free variable (no-onspiray) assumption.

6.1 Introdution

Loal ausality is the idea that ausal proesses propagate though spae ontinu-

ously and with veloity less than the speed of light. John Stewart Bell formulates

this intuition in a 1988 interview as follows:

�[Loal ausality℄ is the idea that what you do has onsequenes only

nearby, and that any onsequenes at a distant plae will be weaker and

will arrive there only after the time permitted by the veloity of light.

Loality [= loal ausality℄ is the idea that onsequenes propagate

ontinuously, that they don't leap over distanes.� (Mann and Crease,

1988)

Bell has returned to this intuitive idea of loal ausality from time to time and

provided a more and more elaborate formulation of it. First he addressed the notion

of loal ausality in his �The theory of loal beables� delivered at the Sixth GIFT

Seminar in 1975; later in a footnote added to his 1986 paper �EPR orrelations and

EPW distributions� intending to lean up the �rst version; and �nally in the most
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elaborate form in his �La nouvelle uisine� posthumously published in 1990. In this

latter paper loal ausality obtains the following formulation:

1

�A theory will be said to be loally ausal if the probabilities attahed

to values of loal beables in a spae-time region VA are unaltered by

spei�ation of values of loal beables in a spae-like separated region

VB , when what happens in the bakward light one of VA is already

su�iently spei�ed, for example by a full spei�ation of loal beables

in a spae-time region VC .� (Bell, 1990/2004, p. 239-240)

We reprodue the �gure Bell is attahing to his formulation in Fig. 6.1. (The

aptation is Bell's original.)

V

V V

C

A B

Figure 6.1: Full spei�ation of what happens in VC makes events in VB
irrelevant for preditions about VA in a loally ausal theory.

Some brief remarks onerning Bell's terminology are in plae here (for a de-

tailed analysis see (Norsen 2009, 2011)):

(i) The term �beable� in the quote is Bell's own neologism and is ontrasted to

the term �observable� used in quantum theory. �The beables of the theory

are those entities in it whih are, at least tentatively, to be taken seriously,

as orresponding to something real� (Bell, 1990/2004, p. 234).

(ii) Beables are to be loal: �Loal beables are those whih are de�nitely asso-

iated with partiular spae-time regions. The eletri and magneti �elds

of lassial eletromagnetism, E(t, x) and B(t, x) are again examples.� (p.

234).

(iii) Loal beables in region VC are to be �fully spei�ed� in order to blok ausal

in�uenes arriving at VA from the ommon past of VA and VB .

This latter point is of entral importane and is also stressed by Bell:

2

1

For the sake of onformity with the rest of the paper I slightly hanged Bell's notation

and �gure.

2

But, to be fair, see (Bell 1980/2004, p. 106), (Bell 1980/2004, p. 152) and the above

(Bell 1990/2004, p. 234) for Bell's hesitation on the issue.
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�It is important that region VC ompletely shields o� from VA the

overlap of the bakward light ones of VA and VB. And it is important

that events in VC be spei�ed ompletely. Otherwise the traes in

region VB of auses of events in VA ould well supplement whatever else

was being used for alulating probabilities about VA. The hypothesis
is that any suh information about VB beomes redundant when VC is

spei�ed ompletely.� (Bell, 1990/2004, p. 240)

In a reent paper Mihael Seevink and Jos U�nk (2011) have questioned the

neessary role of omplete spei�ation in the de�nition of loal ausality and re-

ommended su�ient spei�ation instead. They argue that omplete spei�ation

is too strong: it ontradits to the so-alled no-onspiray (free variable) ondi-

tion whih requires that the ommon ause of the orrelation be probabilistially

independent of the hoie of the measurement settings.

I do not see this ontradition and my aim in this paper is to artiulate my point.

I will proeed as follows. The logial shema of Bell's de�nition of loal ausality is

the following: if events are loalized in the spaetime in suh-and-suh a way, then

these events are to satisfy suh-and-suh probabilisti independenies. This shema

is highly intuitive and easily appliable in the physial praxis, however, in order

to aount for these inferenes from spatiotemporal to probabilisti relations in a

mathematially transparent way, one needs to have a framework integrating both

spatiotemporal and also probabilisti entities. Only after having suh a ommon

framework an one de�ne Bell's notion of loal ausality in a lear-ut way. Thus,

in Setion 2 �rst this framework, alled loal physial theory, will be introdued and

then Bell's notion of loal ausality will be formulated within this framework. In

Setion 3 the relation of loal ausality to the Bell inequalities will be expliated.

The main setion is Setion 4; here it will be argued that there is no tension between

omplete spei�ation and no-onspiray. I onlude in Setion 5.

6.2 Bell's loal ausality in a loal physial theory

In developing the notion of a loal physial theory one is lead by the following

intuitions. A loal physial theory is to desribe �beables,� let them be lassial or

nonlassial; it is to aount for the logial ombination of these events; these events

should be apable of bearing a probabilisti interpretation; the theory is to provide

some way to loalize these event in the spaetime, and is also to provide some

physially well-motivated priniples guiding the assoiation of spaetime regions to

physial events; the theory is to guarantee that the symmetries of the spaetime

are in tune with the symmetries of the events. (For the details see (Hofer-Szabó

and Vesernyés, 2015 a,b).) All these preliminary intuitions are aptured in the

following de�nition (Haag, 1992):

De�nition 5. A PK-ovariant loal physial theory is a net {A(V ), V ∈ K} assoi-
ating algebras of events to spaetime regions whih satis�es isotony, miroausality

and ovariane de�ned as follows:
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1. Isotony. LetM be a globally hyperboli spaetime and let K be a overing

olletion of bounded, globally hyperboli subspaetime regions of M suh

that (K,⊆) is a direted poset under inlusion ⊆. The net of loal observables
is given by the isotone map K ∋ V 7→ A(V ) to unital C∗

-algebras, that

is V1 ⊆ V2 implies that A(V1) is a unital C∗
-subalgebra of A(V2). The

quasiloal algebra A is de�ned to be the indutive limit C∗
-algebra of the net

{A(V ), V ∈ K} of loal C∗
-algebras.

2. Miroausality (also alled as Einstein ausality) is the requirement that

A(V ′)′ ∩ A ⊇ A(V ), V ∈ K, where primes denote spaelike omplement and

algebra ommutant, respetively.

3. Spaetime ovariane. Let PK be the subgroup of the group P of geometri

symmetries ofM leaving the olletion K invariant. A group homomorphism

α : PK → AutA is given suh that the automorphisms αg, g ∈ PK of A at

ovariantly on the observable net: αg(A(V )) = A(g · V ), V ∈ K.
If the quasiloal algebra A of the loal physial theory is ommutative, we speak

about a loal lassial theory, if it is nonommutative, we speak about a loal quan-

tum theory. For loal lassial theories miroausality ful�lls trivially.

A state φ in a loal physial theory is de�ned as a normalized positive lin-

ear funtional on the quasiloal observable algebra A. The orresponding GNS

representation πφ : A → B(Hφ) onverts the net of C∗
-algebras into a net of C∗

-

subalgebras of B(Hφ). Closing these subalgebras in the weak topology one arrives

at a net of loal von Neumann observable algebras: N (V ) := πφ(A(V ))′′, V ∈ K.
Von Neumann algebras are generated by their projetions, whih are alled quan-

tum events sine they an be interpreted as 0-1�valued observables. The net

{N (V ), V ∈ K} of loal von Neumann algebras given above also obeys isotony,

miroausality, and PK-ovariane, hene we an also refer to a net {N (V ), V ∈ K}
of loal von Neumann algebras as a loal physial theory.

Now, a loal physial theory is loally ausal in Bell's sense if any orrelation be-

tween spatially separated events is sreened o� by �loal beables� whih are loalized

in a �shielding-o�� region and whih �ompletely speify� that region. How to trans-

late Bell's terms of �loal beable� and �omplete spei�ation� into the language of

a loal physial theory?

In a lassial �eld theory beables are haraterized by sets of �eld on�gurations.

Taking the equivalene lasses of those �eld on�gurations whih have the same �eld

values on a given spaetime region one an generate loal (ylindrial) σ-algebras.
Translating σ-algebras into the language of abelian von Neumann algebras one

an represent Bell's notion of �loal beables� in the framework of loal physial

theories. In a more general way, one an also use the term �loal beables� both for

abelian and non-abelian loal von Neumann algebras, hene treating loal lassial

and quantum theories on an equal footing. Translating �loal beables� simply as

�elements of a loal algebra� naturally brings with it the translation of the term �a

omplete spei�ation of beables� as �an atomi event of a loal algebra� (Henson,
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2013). To be sure, here it is assumed that the loal algebras of the net are atomi,

whih is typially not the ase, for example, in Poinaré ovariant algebrai quantum

�eld theory. (For the relation between σ-algebras and von Neumann algebras and

for a more general de�nition of loal ausality see (Hofer-Szabó and Vesernyés,

2015 a,b).) With these notions in hand now one an formulate Bell's notion of loal

ausality in a loal physial theory as follows:

De�nition 6. A loal physial theory represented by a net {N (V ), V ∈ K} of von
Neumann algebras is alled loally ausal (in Bell's sense), if for any pair A ∈ N (VA)
and B ∈ N (VB) of projetions supported in spaelike separated regions VA, VB ∈ K
and for every loally normal and faithful state φ establishing a orrelation φ(AB) 6=
φ(A)φ(B) between A and B, and for any spaetime region VC suh that

(i) VC ⊂ J−(VA),
(ii) VA ⊂ V ′′

C ,

(iii) J−(VA) ∩ J−(VB) ∩
(

J+(VC) \ VC
)

= ∅,
(see Fig. 6.2) and for any atomi event Ck of A(VC) (k ∈ K), the following holds:

VA B

C

V

V

Figure 6.2: A region VC satisfying Requirements (i)-(iii).

φ(CkABCk)

φ(Ck)
=
φ(CkACk)

φ(Ck)

φ(CkBCk)

φ(Ck)
(6.1)

Remarks:

1. A loally normal state is a normal state on the loal von Neumann algebras.

A loally faithful state φ means that any projetion A ∈ P(N (V )) in the

loal von Neumann algebra N (V ) has nonzero expetation value. In ase of

loal lassial theories a loally faithful state φ determines uniquely a loally

nonzero probability measure p by p(A) := φ(A), A ∈ P(N (V )). By means of

this (6.1) an be written in the following 'symmetri' form:

p(AB|Ck) = p(A|Ck)p(B|Ck) (6.2)
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whih further is equivalent to the 'asymmetri' sreening-o� ondition:

p(A|BCk) = p(A|Ck) (6.3)

sometimes used in the literature (for example in (Bell, 1975/2004 , p. 54)).

2. The role of Requirement (iii) in the de�nition is to ensure that �VC shields o�

from VA the overlap of the bakward light ones of VA and VB�. A spaetime

region above VC in the ommon past of the orrelating events (see Fig. 6.3)

namely may ontain stohasti events whih ould establish a orrelation

VA B

C

V

V

Figure 6.3: A region VC for whih Requirement (iii) does not hold.

between A and B in a lassial stohasti theory (Norsen, 2011; Seevink

and U�nk 2011). Requirement (iii) is somewhat weaker than Bell's original

loalization (see Fig. 6.1) whih an be formulated as:

(iv) J−(VA) ∩ J−(VB) ∩ VC = ∅
The di�erene is that Requirement (iii) does, but Requirement (iv) does not

allow for region VC to penetrate into the 'top part' of the ommon past. How-

ever, both requirements oinide, if VC 'shrinks down' to a Cauhy surfae.

In loal lassial theories it su�es to use Requirement (iii).

Finally, note that the question whether a given loal lassial or quantum theory is

loally ausal is a highly nontrivial question depending on suh fators as the atom-

iity of the loal algebras, the ful�lment of the so-alled loal primitive ausality,

3

or whether there exists a ausal dynamis in the theory, et. (For the details see

again (Hofer-Szabó and Vesernyés, 2015 a,b).)

Next I turn to the relation of Bell's loal ausality to the Bell inequalities.

6.3 Loal ausality and the Bell inequalities

From this setion on we restrit ourselves to loal lassial theories sine beables

are standardly taken to be lassial entities. Consider a loal lassial theory rep-

3

For any globally hyperboli bounded subspaetime regions V ∈ K, A(V ′′) = A(V ).
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resented by a net {N (V ), V ∈ K} of loal abelian von Neumann algebras. Suppose

that Bell's loal ausality holds in this theory. Let VA and VB be two spatially

separated regions inM, and VC a third region (see Fig. 6.4) suh that

V VA B

VC

Figure 6.4: Loalization of regions VA, VB and VC .

VC ⊂ J−(VA ∪ VB) (6.4)

(VA ∪ VB) ⊂ V ′′
C (6.5)

J−(VA) ∩ J−(VB) ∩
(

J+(VC) \ VC
)

= ∅ (6.6)

Divide VC into six regions V L
C , V L

C′ , VM
C , VM

C′ , V R
C and V R

C′ , for example as de-

pited in Fig. 6.5. Here the supersripts L,M and R stand for 'left', 'middle'

and 'right', representing those parts of VC whih fall into region J−(VA) \ J−(VB),
J−(VA)∩J−(VB) and J−(VB)\J−(VA), respetively. Now, let the various events be

V VA B

V VVV VC’ C’ C’CVC C ML RL M R

Figure 6.5: Dividing up region VC .

loalized in these regions as follows. Let Ai and Bj be measurement outomes and

ai, bj measurement hoies loalized in the appropriate regions: Ai, ai ∈ A(VA),
Bj , bj ∈ A(VB). (See Fig. 6.6.) Let, furthermore, CL

k , C
′L
l , CM

m , C′M
n , CR

p , C
′R
q be

atomi events (minimal projetions) in A(V L
C ), A(V L

C′ ), A(V M
C ), A(V M

C′ ), A(V R
C )
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A B
a b

C C’ C C’C’
L MM RR

C
L

i

i

j

j

k l m n p q

Figure 6.6: Loalization of the various events.

and A(V R
C′), respetively, where the indies i, j, k . . . are taken from appropriate

index sets. Now, the di�erene between the primed and the unprimed events in VC
is that the primed events probabilistially depend on the the measurement hoies

ai and bj , whereas the unprimed events are probabilistially ompletely independent

of them:

p(aibjC
L
l C

M
m CR

p ) = p(ai)p(bj)p(C
L
l )p(C

M
m )p(CR

p ) (6.7)

p(aibjC
L
l C

M
m ) = p(ai)p(bj)p(C

L
l )p(C

M
m ) (6.8)

. . . (6.9)

p(aibjC
R
p ) = p(ai)p(bj)p(C

R
p ) (6.10)

Let us all these onditions no-onspiray onditions.

To sum up, here we assume that any of the left, middle and right region of

VC , respetively an be deomposed into two subregions suh that eah of these

subregions ontains exlusively either events 'in�uening' the measurement hoies

or events being independent of them. Obviously, only this latter lass of events

an be regarded as the ommon ause of the orrelation between the measurement

outomes; the former events are playing a role in �xing the measurement settings.

As we will see later, this assumption of the deomposability of VC into six regions

is too tolerant if our aim is to derive the Bell inequalities. It will turn out that

there are only �ve regions, the middle region an ontain only unprimed events.

Now, loal ausality of loal physial theory represented by a net {N (V ), V ∈
K} implies (among others) the following onditional independenies:

p(Aiai|BjbjC
L
k C

′L
l CM

m C′M
n CR

p C
′R
q ) = p(Aiai|CL

k C
′L
l CM

m C′M
n ) (6.11)

p(Bjbj|CL
k C

′L
l CM

m C′M
n CR

p C
′R
q ) = p(Bjbj |CM

m C′M
n CR

p C
′R
q ) (6.12)

p(ai|bjCL
k C

′L
l CM

m C′M
n CR

p C
′R
q ) = p(ai|CL

k C
′L
l CM

m C′M
n ) (6.13)

p(bj|CL
k C

′L
l CM

m C′M
n CR

p C
′R
q ) = p(bj |CM

m C′M
n CR

p C
′R
q ) (6.14)

whih together with the omplete independene of the events CL
k , C

′L
l , CM

m , C′M
n ,
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CR
p and C′R

q :

p(CL
k C

′L
l CM

m C′M
n CR

p C
′R
q ) = p(CL

k )p(C
′L
l )p(CM

m )p(C′M
n )p(CR

p )p(C′R
q )(6.15)

p(CL
k C

′L
l CM

m C′M
n CR

p ) = p(CL
k )p(C

′L
l )p(CM

m )p(C′M
n )p(CR

p ) (6.16)

. . . (6.17)

p(CR
p C

′R
q ) = p(CR

p )p(C′R
q ) (6.18)

yield the following sreening-o� or fatorization onditions :

p(AiBj |aibjCL
k C

′L
l CM

m C′M
n CR

p C
′R
q ) = p(Ai|aiCL

k C
′L
l CM

m C′M
n )p(Bj |bjCM

m C′M
n CR

p C
′R
q )(6.19)

p(AiBj |aibjCL
k C

M
m C′M

n CR
p ) = p(Ai|aiCL

k C
M
m C′M

n )p(Bj |bjCM
m C′M

n CR
p ) (6.20)

p(AiBj |aibjC′L
l CM

m C′M
n C′R

q ) = p(Ai|aiC′L
l CM

m C′M
n )p(Bj |bjCM

m C′M
n C′R

q ) (6.21)

p(AiBj |aibjCM
m C′M

n ) = p(Ai|aiCM
m C′M

n )p(Bj |bjCM
m C′M

n ) (6.22)

(For the proof see Appendix A.) These equations show that not only the atomi

events CL
k C

′L
l CM

m C′M
n CR

p C
′R
q loalized in the entire VC sreen o� the onditional

orrelation

p(AiBj |aibj) 6= p(Ai|ai)p(Bj |bj) (6.23)

but one an freely sum up for any of the primed and unprimed events both in the

left and the right region without vitiating the sreening-o�. In other words, the

non-atomi (oarse-grained) events CL
k C

M
m C′M

n CR
p , C

′L
l CM

m C′M
n C′R

q and CM
m C′M

n ,

respetively loalized in appropriate subregions of VC will all be sreener-o�s for

the orrelation (10.1).

4

That one an freely sum up for both the primed and the

unprimed events is a onsequene of the fat that in the derivation of (6.19)-(6.22)

no-onspiray (6.7)-(6.10) does not play a role.

However, for events loalized in the middle region one annot sum up! As a

onsequene, one annot get rid of the primed terms C′M
n in equations (6.19)-(6.22).

So for example it will not be generally true that

p(AiBj |aibjCM
m ) = p(Ai|aiCM

m )p(Bj |bjCM
m ) (6.24)

(See Appendix B.) However, if we annot get rid of the primed terms C′M
n , we will

not be able to derive the Bell inequalities sine in the derivation we need to use

no-onspiray (6.7)-(6.10) whih holds only for the unprimed terms. (See Appendix

C.)

This shows that our deomposition of region VC into six regions was too liberal.

We have to make one step bak and restrit our previous shema to the one depited

in Fig. 6.7. Outside the ommon past of the orrelating events one an have both

primed and unprimed events that is events in�uening the measurement hoies and

events being independent of them. However, within the ommon past there an be

4

Note again that the term 'ommon ause' is used only for those sreener-o�s whih

are omposed of unprimed events.
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V VA B

V VVVC’ C’CCL RL RMCV

Figure 6.7: The most general senario from whih the Bell inequalities an

be derived.

only events whih are probabilistially independent of the measurement hoies.

Within this shema the Bell inequalities an be derived.

To sum up, given a loally ausal loal lassial theory represented by a net

{N (V ), V ∈ K} with regions loalized as in Fig. 6.7 and elements in the appro-

priate regions, omplete independene (6.15)-(6.18) and no-onspiray (6.7)-(6.10)

together imply the Bell inequalities.

6.4 Complete versus su�ient spei�ation

Now I turn to the question of 'omplete versus su�ient spei�ation' raised by

Norsen (2009) and unfolded by Seevink and U�nk (2011). In his illuminating

paper, omparing the notion of 'ompleteness' used in Bell's vs. Jarrett's writings,

Norsen (2009) raised the following onern:

5

Sine �the past light ones of [the

measurement hoies℄ a and b overlap with the region ontaining C � and C by

de�nition is supposed to ontain a omplete spei�ation of beables in this region

. . . one wonders how a and b ould possibly not be ausally in�uened by C (in a

loally ausal theory)� (Norsen 2009, p. 283.) Seevink and U�nk take Norsen's

point and argue that omplete spei�ation is too strong �when formalising the

notion of loal ausality. It is only needed that the spei�ation is su�iently

spei�ed, in the relevant sense� (p. 5); and then they go on to develop this relevant

sense in terms of Fisher's statistial onept of su�ieny.

The argument of Seevink and U�nk against omplete spei�ation is put in

the form of a dilemma:

�C annot be expeted to be a omplete spei�ation of region VC
beause one must allow for the possibility of traes in region VC of the

ausal past of both the settings [measurement hoies℄, and given the

5

Again for the sake of onsisteny I hanged the notation of both Norsen (2009) and

Seevink and U�nk (2011).
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independene of C and the settings, these traes annot be inluded in

C.

An alternative understanding of this point is that one is here faed

with a dilemma. That is, the following two assumptions annot both

hold: (i) the free variables [no-onspiray℄ assumption, and (ii) the

assumption that C is ompletely spei�ed, i.e., ontains the desription

of all and every beable in region VC .� (Seevink and U�nk, 2011, p.

5)

In brief, the omplete spei�ation of region VC ontradits to the no-onspiray

ondition sine if C ompletely spei�es region VC , then it also spei�es the measure-

ment hoies a and b, and hene C and a, b annot be probabilistially independent.
I see, however, no ontradition between omplete spei�ation and no-onspiray.

I have a weaker and a stronger laim supporting my point. I start with the weaker

one. The upshot of this weaker laim is that the events whih satisfy omplete

spei�ation need not be the same as the events whih satisfy no-onspiray.

Complete spei�ation of a spaetime region, as said before, is simply an atomi

event in that region. If our �andidate theory� represented by a net of loal algebras

is given, then to every bounded region VC there is an algebra A(VC) assoiated; and
if the algebra is atomi, the omplete spei�ations that is the atomi events of the

region are also given. Consider region VC in Fig. 6.7. The event CL
k C

′L
l CM

m CR
p C

′R
q

is a omplete spei�ation in VC , but the unprimed event CkCmCp and the primed

event C′
lC

′R
q separately are not. These latter two play di�erent theoretial roles:

No-onspiray holds for CkCmCp, therefore it is interpreted as a (possible) ommon

ause of the onditional orrelation (10.1). For C′
lC

′R
q no-onspiray does not hold

(and a fortiori neither does for the omplete spei�ation CL
k C

′L
l CM

m CR
p C

′R
q ). Thus

C′
lC

′R
q has another interpretation: it allows �for the possibility of traes in region

VC of the ausal past of both the settings.� This 'division of labor' between the

unprimed CkCmCp and the primed C′
lC

′R
q , however, is no worry: together they

provide a omplete spei�ation of region VC and enable the derivation of the Bell

inequalities as long as the middle region, VC ∩ VA ∩ VB ontains no primed term

violating no-onspiray. In short, in order to derive the Bell inequalities from loal

ausality, those events whih ompletely speify region VC need not be the same

events as those satisfying no-onspiray.

But here is my stronger laim: they an. Namely, there is no ontradition

between omplete spei�ation and no-onspiray even if we require them to hold

for the same events. To see this, simply onsider the ase when the subregions V L
C′

and V R
C′ are empty, that is when VC ontains exlusively unprimed elements (see

Fig. 6.8). In this ase the event CL
k C

M
m CR

p will both ompletely speify region VC
and satisfy no-onspiray. Consequently, the Bell inequalities will follow. More

importantly, this independene between the ommon auses and the measurement

hoies does not trivialize the theory, for example by dissolving the onditional

orrelation (10.1) between the measurement outomes.

The next proposition illustrates this latter point.
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Figure 6.8: No ontradition between omplete spei�ation and no-

onspiray.

Proposition 6. There exists a loally ausal loal lassial theory with events

Ai, ai ∈ A(VA), Bj , bj ∈ A(VB) in spatially separated regions VA and VB on-

ditionally orrelating in the sense of (10.1), and atomi events CL
k ∈ A(V L

C ),
CM

m ∈ A(VM
C ) and CR

p ∈ A(V R
C ), where VC = V L

C ∪VM
C ∪V R

C satis�es requirements

(6.4)-(6.6), suh that no-onspiray (6.7)-(6.10), moreover omplete independene

(6.15)-(6.18) hold.

Proof. Let Ai, ai, Bj , bj , C
L
k , C

M
m and CR

p be events loalized as in Fig. 6.8.

Suppose that for the atomi events CL
k , C

M
m and CR

p ompletely speifying region

VC both omplete independene

p(CL
k C

M
m CR

p ) = p(CL
k C

M
m )p(CR

p ) = p(CL
k )p(C

M
m CR

p ) = p(CM
m )p(CL

k C
R
p ) = p(CL

k )p(C
M
m )p(CR

p )(6.25)

and also no-onspiray

p(aibjC
L
k C

M
m CR

p ) = p(aibj)p(C
L
k C

M
m CR

p ) = · · · = p(ai)p(bj)p(C
L
k )p(C

M
m )p(CR

p )(6.26)

hold for any ombination of the indies. Let the net ontaining the events be loally

ausal; for example let

p(AiBj |aibjCL
k C

M
m CR

p ) = p(Ai|aiCL
k C

M
m )p(Bj |bjCM

m CR
p ) = (pLi δ1kδ1m)(pRj δ1mδ1p)(6.27)
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where

∑

i p
L
i =

∑

j p
R
j = 1. Now, the onditional probabilities are given as follows:

p(Ai|ai) =
∑

k,m

p(Ai|aiCL
k C

M
m )p(CL

k C
M
m ) = pLi p(C

L
1 )p(C

M
1 ) (6.28)

p(Bj |bj) =
∑

m,p

p(Bj |bjCM
m CR

p )p(CM
m CR

p ) = pRj p(C
M
1 )p(CR

1 ) (6.29)

p(AiBj |aibj) =
∑

k,m,p

p(AiBj |aibjCL
k C

M
m CR

p )p(CL
k C

M
m CR

p )

=
∑

k,m,p

p(Ai|aiCL
k C

M
m )p(Bj |bjCM

m CR
p )p(CL

k )p(C
M
m )p(CR

p )

= pLi p
R
j p(C

L
1 )p(C

M
1 )p(CR

1 ) (6.30)

Thus, there is a onditional orrelation (10.1) between Ai andBj whenever p(C
M
1 ) 6=

0 or 1.

Consequently, there is no ontradition between omplete spei�ation and no-

onspiray even if both are applied to the same events, namely the atomi events

of the entire VC . The measurement hoies an be free of the ommon auses

even if the ausal past of the region ontaining them is ompletely spei�ed. This

independene does not abolish the onditional orrelation between the measurement

outomes: atomi events an be probabilistially irrelevant to the measurement

hoies and at the same time relevant to the measurement outomes. Moreover,

the independene of the measurement hoies of the atomi events does not mean

that the former are not 'determined' (probabilistially) by the latter. They are: the

onditional probabilities p(aibj|CL
k C

M
m CR

p ) are set in a loal physial theory, even

if they are equal to p(aibj).
Thus, based on these two laims, I think, there is no need to replae 'omplete

spei�ation' in Bell's de�nition of loal ausality by 'su�ient spei�ation'.

6.5 Conlusions

The main laims of this paper were the following:

(i) The de�nition of Bell's notion of loal ausality presupposes a lear-ut frame-

work in whih probabilisti and spatiotemporal entities an be related. This

goal an be met by introduing the notion of a loal physial theory repre-

sented by an isotone net of algebras.

(ii) In a loal lassial theory the measurement outomes, measurement hoies

and ommon ause an be loalized in the spaetime suh that one an derive

the Bell inequalities from loal ausality, no-onspiray and independene.

(iii) Contrary to the laim of Seevink and U�nk, there is no need to weaken the

requirement of omplete spei�ation in the de�nition of loal ausality on

the ground that it ontradits to no-onspiray.
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Appendix A

First we prove equation (6.22) from loal ausality (6.11)-(6.14) and the omplete

independene ondition (6.15)-(6.18):

p(AiBj |aibjCM
m C′M

n ) =
p(AiBjaibjC

M
m C′M

n )

p(aibjCM
m C′M

n )

=

∑

klpq p(AiBjaibjC
L
k C

′L
l CM

m C′M
n CR

p C
′R
q )

∑

klpq p(aibjC
L
k C

′L
l CM

m C′M
n CR

p C
′R
q )

=

∑

klpq p(AiBjaibj |CL
k C

′L
l CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

∑

klpq p(aibj |CL
k C

′L
l CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

=

∑

klpq p(Aiai|BjbjC
L
k C

′L
l CM

m C′M
n CR

p C
′R
q )p(Bjbj |CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

∑

klpq p(ai|bjCL
k C

′L
l CM

m C′M
n CR

p C
′R
q )p(bj |CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

(6.11)−(6.14)
=

∑

klpq p(Aiai|CL
k C

′L
l CM

m C′M
n )p(Bjbj|CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

∑

klpq p(ai|CL
k C

′L
l CM

m C′M
n )p(bj |CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

(6.15)−(6.18)
=

∑

klpq p(Aiai|CL
k C

′L
l CM

m C′M
n )p(Bjbj|CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n )p(CR

p C
′R
q )

∑

klpq p(ai|CL
k C

′L
l CM

m C′M
n )p(bj |CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n )p(CR

p C
′R
q )

=

(∑

kl p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kl p(ai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

pq p(Bjbj |CM
m C′M

n CR
p C

′R
q )p(CR

p C
′R
q )

∑

pq p(bj |CM
m C′M

n CR
p C

′R
q CR

p )p(CR
p C

′R
q )

)

=

(∑

kl p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kl p(ai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

pq p(Bjbj |CM
m C′M

n CR
p C

′R
q )p(CR

p C
′R
q )

∑

pq p(bj |CM
m C′M

n CR
p C

′R
q )p(CR

p C
′R
q )

)(

p(CM
m

p(CM
m

(6.15)−(6.18)
=

(∑

kl p(Aiai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

∑

kl p(ai|CL
k C

′L
l CM

m C′M
n )p(CL

k C
′L
l CM

m C′M
n )

)(

∑

pq p(Bjbj |CM
m C′M

n CR
p C

′R
q )p(CM

m C′M
n CR

p C
′R
q )

∑

pq p(bj |CM
m C′M

n CR
p C

′R
q )p(CM

m C′M
n CR

p C
′R
q )

=

(∑

kl p(AiaiC
L
k C

′L
l CM

m C′M
n )

∑

kl p(aiC
L
k C

′L
l CM

m C′M
n )

)(

∑

pq p(BjbjC
M
m C′M

n CR
p C

′R
q )

∑

pq p(bjC
M
m C′M

n CR
p C

′R
q )

)

=

(

p(AiaiC
M
m C′M

n )

p(aiCM
m C′M

n )

)(

p(BjbjC
M
m C′M

n )

p(bjCM
m C′M

n )

)

= p(Ai|aiCM
m C′M

n )p(Bj |bjCM
m C′M

n ) (6.31)

where the numbers over the equation signs refer to the equation used at that step.

The proof of (6.21), (6.20) and (6.19), respetively an be obtained from the

above proof by simply omitting ertain summations. For (6.21) just omit summa-

tion for l and r; for (6.20) omit summation for k and q; and for (6.19) omit all

four.

Appendix B

Here we prove that (6.24) does not generally hold. The proof follows that in Ap-

pendix A, exept that here there is an extra summation also for n, whih auses
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the trouble in the row below starting with a 6= sign:

p(AiBj |aibjCM
m ) =

p(AiBjaibjC
M
m )

p(aibjCM
m )

=

∑

klnpq p(AiBjaibjC
L
k C

′L
l CM

m C′M
n CR

p C
′R
q )

∑

klnpq p(aibjC
L
k C

′L
l CM

m C′M
n CR

p C
′R
q )

=

∑

klnpq p(AiBjaibj|CL
k C

′L
l CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

∑

klnpq p(aibj|CL
k C

′L
l CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

=

∑

klnpq p(Aiai|BjbjC
L
k C

′L
l CM

m C′M
n CR

p C
′R
q )p(Bjbj |CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C
∑

klnpq p(ai|bjCL
k C

′L
l CM

m C′M
n CR

p C
′R
q )p(bj |CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n C

(6.11)−(6.14)
=

∑

klnpq p(Aiai|CL
k C

′L
l CM

m C′M
n )p(Bjbj |CM

m C′M
n CR

p C
′R
q )p(CL

k C
′L
l CM

m C′M
n CR

p C
′R
q )

∑

klnpq p(ai|CL
k C
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l CM

m C′M
n )p(bj |CM

m C′M
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p C
′R
q )p(CL
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m C′M
n CR

p C
′R
q )

(6.15)−(6.18)
=

∑
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m C′M
n )p(Bjbj |CM

m C′M
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p C
′R
q )p(CL
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m C′M
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p C
′R
q )

∑
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l CM

m C′M
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m C′M
n CR

p C
′R
q )p(CL
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m C′M
n )p(CR

p C
′R
q )

=

∑

n

(

∑

kl p(Aiai|CL
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m C′M
n )p(CL

k C
′L
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m C′M
n )

∑
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m C′M
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∑

n

(
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n )p(CL

k C
′L
l CM

m C′M
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∑
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∑

pq p(bj |CM
m C′M
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q

6=
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l CM

m C′M
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n CR
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=

(

p(AiaiC
M
m )
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m )

)(

p(BjbjC
M
m )

p(bjCM
m )

)

= p(Ai|aiCM
m )p(Bj |bjCM

m ) (6.32)

where again the numbers over the equation signs refer to the equation used at that

step.

Appendix C

Here we prove why in the derivation of the Clauser-Horne inequality

−1 6 p(AiBj |aibj) + p(AiBj′ |aibj′) + p(Ai′Bj |ai′bj)− p(Ai′Bj′ |ai′bj′)− p(Ai|aibj)− p(Bj |aibj) 6 0(6.33)

one should use (6.24) instead of (6.22). The standard derivation goes as follows:
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It is a simple arithmeti fat that for any α, α′, β, β′ ∈ [0, 1]:

−1 6 αβ + αβ′ + α′β − α′β′ − α− β 6 0 (6.34)

Now let α, α′, β, β′
�rst be the onditional probabilities taken from (6.22):

α ≡ p(Ai|aiCM
m C′M

n ) (6.35)

α′ ≡ p(Ai′ |ai′CM
m C′M

n ) (6.36)

β ≡ p(Bj |bjCM
m C′M

n ) (6.37)

β′ ≡ p(Bj′ |bj′CM
m C′M

n ) (6.38)

Plugging (9.26)-(9.29) into (9.25) one obtains

−1 6 p(Ai|aiCM
m C′M

n )p(Bj |bjCM
m C′M

n ) + p(Ai|aiCM
m C′M

n )p(Bj′ |bj′CM
m C′M

n )

+p(Ai′ |ai′CM
m C′M

n )p(Bj |bjCM
m C′M

n )− p(Ai′ |ai′CM
m C′M

n )p(Bj′ |bj′CM
m C′M

n )

−p(Ai|aiCM
m C′M

n )− p(Bj |bjCM
m C′M

n ) 6 0(6.39)

whih using (6.22) transforms into

−1 6 p(AiBj |aibjCM
m C′M

n ) + p(AiBj′ |aibj′CM
m C′M

n )

+p(Ai′Bj |ai′bjCM
m C′M

n )− p(Ai′Bj′ |ai′bj′CM
m C′M

n )

−p(Ai|aiCM
m C′M

n )− p(Bj |bjCM
m C′M

n ) 6 0 (6.40)

Finally, multiplying the above inequality by p(CM
m C′M

n ) and summing up for the

indies m,n one obtains

−1 6
∑

mn

[

p(AiBj |aibjCM
m C′M

n ) + p(AiBj′ |aibj′CM
m C′M

n )

+p(Ai′Bj |ai′bjCM
m C′M

n )− p(Ai′Bj′ |ai′bj′CM
m C′M

n )

−p(Ai|aiCM
m C′M

n )− p(Bj |bjCM
m C′M

n )

]

p(CM
m C′M

n ) 6 0 (6.41)

whih is equivalent to (9.24) only if

p(aibjC
M
m C′M

n ) = p(aibj)p(C
M
m C′M

n ) (6.42)

were the ase, whih is not, sine C′M
n is not independent of ai and bj .

Now, starting the whole reasoning again with onditional probabilities taken

from (6.24):

α ≡ p(Ai|aiCM
m ) (6.43)

α′ ≡ p(Ai′ |ai′CM
m ) (6.44)

β ≡ p(Bj |bjCM
m ) (6.45)

β′ ≡ p(Bj′ |bj′CM
m ) (6.46)
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the derivation goes through sine instead of (6.42) one is to use

p(aibjC
M
m ) = p(aibj)p(C

M
m ) (6.47)

whih is one of the no-onspiray onditions (6.7)-(6.10). Thus one an use (6.24)

in the derivation of the Clauser-Horne inequality but not (6.22).
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Chapter 7

Nonommutative ausality in

algebrai quantum �eld theory

In the paper it will be argued that embraing nonommuting ommon auses in the

ausal explanation of quantum orrelations in algebrai quantum �eld theory has

the following two bene�ial onsequenes: it helps (i) to maintain the validity of

Reihenbah's Common Causal Priniple and (ii) to provide a loal ommon ausal

explanation for a set of orrelations violating the Bell inequality.

7.1 Introdution

Algebrai quantum �eld theory (AQFT) is a mathematially transparent quan-

tum theory with lear oneptions of loality and ausality (see (Haag, 1992) and

(Halvorson, 2007)). In this theory observables are represened by a net of loal C∗
-

algebras assoiated to bounded regions of a given spaetime. This orrespondene

is established due to the axioms of the theory suh as isotony, miroausality and

ovariane. A state φ in this theory is de�ned as a normalized positive linear fun-

tional on the quasiloal observable algebra A whih is the indutive limit of loal

observable algebras. The representation πφ : A → B(H) orresponding to the state

φ transforms the net of C∗
-algebras into a net of von Neumann observable algebras

by losures in the weak topology.

In AQFT events are typially represented by projetions of a von Neumann

algebra. Although due to the axiom of miroausality two projetions A and B
ommute if they are ontained in loal algebras supported in spaelike separated

regions, they an still be orrelating in a state φ, that is

φ(AB) 6= φ(A)φ(B) (7.1)

in general. In this ase the orrelation between these events is said to be super-

luminal. A remarkable harateristis of Poinaré ovariant theories is that there

exist �many� normal states establishing superluminal orrelations (for the preise
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meaning of �many� see (Summers, Werner 1988) and (Halvorson, Clifton 2000)).

Sine spaelike separation exludes diret ausal in�uene, one may look for a ausal

explanation of these superluminal orrelations in terms of ommon auses.

The �rst probabilisti de�nition of the ommon ause is due to Hans Reihen-

bah (1956). Reihenbah haraterizes the notion of the ommon ause in the

following probabilisti way. Let (Σ, p) be a lassial probability measure spae and

let A and B be two positively orrelating events in Σ that is let

p(A ∧B) > p(A) p(B). (7.2)

De�nition 7. An event C ∈ Σ is said to be the ommon ause of the orrelation

(A,B) if the following onditions hold:

p(A ∧B|C) = p(A|C)p(B|C) (7.3)

p(A ∧B|C⊥) = p(A|C⊥)p(B|C⊥) (7.4)

p(A|C) > p(A|C⊥) (7.5)

p(B|C) > p(B|C⊥) (7.6)

where C⊥
denotes the orthoomplement of C and p( · | · ) is the onditional proba-

bility.

The above de�nition, however, is too spei� to be applied in AQFT sine (i)

it allows only for auses with a positive impat on their e�ets, (ii) it exludes

the possibility of a set of ooperating ommon auses, (iii) it is silent about the

spatiotemporal loalization of the events and (iv) most importantly, it is lassial.

Therefore we need to generalize Reihenbah's original de�nition of the ommon

ause. For the sake of brevity, we do not repeat here all the intermediate steps of

the entire de�nitional proess (for this see (Hofer-Szabó and Vesernyés, 2012a)),

but jump diretly to the most general de�nition of the ommon ause in AQFT.

Let P(N ) be the non-distributive lattie of projetions (events) in a von Neu-

mann algebra N and let φ : N → C be a state on it. A set of mutually orthogonal

projetions {Ck}k∈K ⊂ P(N ) is alled a partition of the unit 1 ∈ N if

∑

k Ck = 1.

Suh a partition de�nes a onditional expetation

E : N → C, A 7→ E(A) :=
∑

k∈K

CkACk, (7.7)

that is a unit preserving positive surjetion onto the unital C∗
-subalgebra C ⊆ N

obeying the bimodule property E(B1AB2) = B1E(A)B2;A ∈ N , B1, B2 ∈ C. We

note that C ontains exatly those elements of N that ommute with Ck, k ∈ K.

Reall that φ ◦ E is also a state on N .

Now, let A,B ∈ P(N ) be two ommuting events orrelating in state φ in the

sense of (7.1). (We note that in ase of projetion latties we will use only algebra

operations (produts, linear ombinations) instead of lattie operations (∨,∧). In

ase of ommuting projetions A,B ∈ P(N ) we have A ∧ B = AB and A ∨ B =
A+B −AB.)
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De�nition 8. A partition of the unit {Ck}k∈K ⊂ P(N ) is said to be a ommon

ause system of the orrelation (7.1) if

(φ ◦ E)(ABCk)

φ(Ck)
=

(φ ◦ E)(ACk)

φ(Ck)

(φ ◦E)(BCk)

φ(Ck)
(7.8)

for k ∈ K with φ(Ck) 6= 0. If Ck ommutes with both A and B for all k ∈ K we

all {Ck}k∈K a ommuting ommon ause system, otherwise a nonommuting one.

A ommon ause system of size |K| = 2 is alled a ommon ause. Reihenbah's

de�nition (without the inequalities (7.5)-(7.6)) is a ommuting ommon ause in

the sense of (7.8).

Some remarks are in plae here. First, in ase of a ommuting ommon ause

system φ◦E an be replaed by φ in (7.8) sine (φ◦E)(ABCk) = φ(ABCk), k ∈ K.

Seond, using the deompositions of the unit, 1 = A+A⊥ = B +B⊥
, (7.8) an be

rewritten in an equivalent form:

(φ◦E)(ABCk))(φ◦E)(A⊥B⊥Ck) = (φ◦E)(AB⊥Ck)(φ◦E)(A⊥BCk), k ∈ K. (7.9)
One an even allow here the ase φ(Ck) = 0 sine then both sides of (7.9) are zero.

Third, it is obvious from (7.9) that if Ck ≤ X with X = A,A⊥, B or B⊥
for all

k ∈ K, then {Ck}k∈K serves as a (ommuting) ommon ause system of the given

orrelation independently of the hosen state φ. Hene, these solutions are alled

trivial ommon ause systems. If |K| = 2, triviality means that {Ck} = {A,A⊥} or
{Ck} = {B,B⊥}. Obviously, for superluminal orrelation one looks for nontrival

ommon ausal explanations.

In AQFT one also has to speify the spaetime loalization of the ommon

auses. They have to be in the past of the orrelating events. But in whih past?

One an de�ne di�erent pasts of the bounded regions VA and VB in a given spae-

time as:

weak past: wpast(VA, VB) := I−(VA) ∪ I−(VB)
ommon past: cpast(VA, VB) := I−(VA) ∩ I−(VB)
strong past: spast(VA, VB) := ∩x∈VA∪VB

I−(x)

where I−(V ) denotes the union of the bakward light ones I−(x) of every point x
in V (Rédei, Summers 2007). Clearly, wpast ⊃ cpast ⊃ spast.

With all these de�nitions in hand we an now de�ne six di�erent ommon

ause systems in loal quantum theories aording to (i) whether ommutativity is

required and (ii) whether the ommon ause system is loalized in the weak, ommon

or strong past. Thus we an speak about ommuting/nonommuting (weak/strong)

ommon ause systems.

To address the EPR-Bell problem we will need one more onept. In the EPR

senario the real hallenge is to provide a ommon ausal explanation not for one

single orrelating pair but for a set of orrelations (typially three or four orre-

lations). Therefore, we also need to introdue the notion of the so-alled joint

1

ommon ause system:

1

In (Hofer-Szabó and Vesernyés, 2012a, 2013a) alled ommon ommon ause system.
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De�nition 9. Let {Am;m = 1, . . .M} and {Bn;n = 1, . . .N} be �nite sets of

projetions in the algebras A(VA) and A(VB), respetively, supported in spaelike

separated regions VA and VB. Suppose that all pair of spaelike separated pro-

jetions (Am, Bn) orrelate in a state φ of A in the sense of (7.1). Then the set

{(Am, Bn);m = 1, . . .M ;n = 1, . . .N} of orrelations is said to possess a om-

muting/nonommuting (weak/strong) joint ommon ause system if there exists

a single ommuting/nonommuting (weak/strong) ommon ause system for all

orrelations (Am, Bn).

Sine providing a joint ommon ause system for a set of orrelations is muh more

demanding than simply providing a ommon ause system for a single orrelation,

therefore we keep the question of the ommon ausal explanation separated from

that of the joint ommon ausal explanation. In Setion 2 we will investigate

the possibility of a ommon ausal explanation for a single orrelation�or in the

philosophers' jargon, the status of Reihenbah's famous Common Cause Priniple

in AQFT. In Setion 3 we will address the more intriate question as to whether

EPR orrelations an be given a joint ommon ausal explanation. The ruial

ommon element in both setions will be nonommutativity. We will argue that

embraing nonommuting ommon auses in our ausal explanation helps us in

both ases: (i) in the ase of ommon ausal explanation it helps to maintain the

validity of Reihenbah's Common Causal Priniple in AQFT; (ii) in the ase of

joint ommon ausal explanation it helps to provide a loal, joint ommon ausal

explanation for a set of orrelations violating the Bell inequalities. We onlude

the paper in Setion 4.

7.2 Nonommutative Common Cause Priniples in

AQFT

Reihenbah's Common Cause Priniple (CCP) is the following metaphysial laim:

If there is a orrelation between two events and there is no diret ausal (or logial)

onnetion between the orrelating events, then there exists a ommon ause of the

orrelation. The preise de�nition of this informal statement that �ts to AQFT is

the following:

De�nition 10. A loal quantum theory is said to satisfy the Commutative/Nonommutative

(Weak/Strong) CCP if for any pair A ∈ A(VA) and B ∈ A(VB) of projetions sup-
ported in spaelike separated regions VA, VB and for every loally faithful state

φ : A → C establishing a orrelation between A and B in the sense of (7.1), there

exists a nontrivial ommuting/nonommuting ommon ause system {Ck}k∈K ⊂
A(V ) suh that the loalization region V is in the (weak/strong) ommon past of

VA and VB.

What is the status of these six di�erent CCPs in AQFT?

The question as to whether the Commutative CCPs are valid in a Poinaré o-

variant loal quantum theory in the von Neumann algebrai setting was �rst raised
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by Rédei (1997, 1998). As a positive answer to this question, Rédei and Summers

(2002, 2007) have shown that the Commutative Weak CCP holds in algebrai quan-

tum �eld theory with loally in�nite degrees of freedom in the following sense: for

every loally normal and faithful state and for every superluminally orrelating pair

of projetions there exists a weak ommon ause, that is a ommon ause system of

size 2 in the weak past of the orrelating projetions. They have also shown that the

loalization of a ommon ause annot be restrited to wpast(VA, VB) \ I−(VA) or
wpast(VA, VB)\I−(VB) due to logial independene of spaelike separated algebras.

Conerning the Commutative (Strong) CCP less is known. If one also admits

projetions loalized only in unbounded regions, then the Strong CCP is known

to be false: von Neumann algebras pertaining to omplementary wedges ontain

orrelated projetions but the strong past of suh wedges is empty (see (Summers

and Werner, 1988) and (Summers, 1990)). In spaetimes having horizons, e.g.

those with Robertson�Walker metri, there exist states whih provide orrelations

among loal algebras orresponding to spaelike separated bounded regions suh

that the ommon past of these regions is again empty (Wald 1992). Hene, CCP

is not valid there. Restriting ourselves to loal algebras in Minkowski spaes the

situation is not lear. We are of the opinion that one annot deide on the validity

of the (Strong) CCP without an expliit referene to the dynamis.

Coming bak to the proof of Rédei and Summers, the proof had a ruial

premise, namely that the algebras in question are von Neumann algebras of type

III. Although these algebras are the typial building bloks of Poinaré ovariant

theories, other loal quantum theories apply von Neumann algebras of other type.

For example, theories with loally �nite degrees of freedom are based on von Neu-

mann algebras of type I. This raised the question as to whether the Commutative

Weak CCP is generally valid in AQFT. To address the problem Hofer-Szabó and

Vesernyés (2012a) have hosen a spei� loal quantum �eld theory, the loal quan-

tum Ising model having loally �nite degrees of freedom. It turned out that the

Commutative Weak CCP does not hold in the loal quantum Ising model and it

annot hold either in theories with loally �nite degrees of freedom in general.

But why should we require ommutativity between the ommon ause and its

e�ets at all?

Commutativity has a well-de�ned role in any quantum theories. In standard

quantum mehanis observables should ommute to be simultaneously measurable.

In AQFT the axiom of miroausality ensures that observables with spaelike sepa-

rated supports�roughly, events happening `simultaneously'�ommute. But ause

and e�et are typially not suh simultaneous events! If one onsiders ordinary QM,

one well sees that observables do not ommute even with their own time translates

in general. For example, the time translate x(t) := U(t)−1xU(t) of the position

operator x of the harmoni osillator in QM does not ommute with x ≡ x(0) for
generi t, sine in the ground state vetor ψ0 we have

[

x, x(t)
]

ψ0 =
−i~ sin (~ωt)

mω
ψ0 6≡ 0. (7.10)

Thus, if an observableA is not a onserved quantity, then the ommutator [A,A(t)] 6=
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0 in general. So why should the ommutators [A,C] and [B,C] vanish for the events
A,B and for their ommon ause C supported in their (weak/ommon/strong)

past? We think that ommuting ommon auses are only unneessary reminisense

of their lassial formulation. Due to their relative spaetime loalization, that is

due to the time delay between the orrelating events and the ommon ause, it is

also an unreasonable assumption.

Abandoning ommutativity in the de�nition of the ommon ause is therefore a

desirable move. The �rst bene�t of allowing nonommuting ommon auses is that

the nonommutative version of the result of Rédei and Summers an be regained.

This result has been formulated in (Hofer-Szabó and Vesernyés 2013a) in the

following:

Proposition 7. The Nonommutative Weak CCP holds in loal UHF-type quan-

tum theories. Namely, if A ∈ A(VA) and B ∈ A(VB) are projetions with spaelike

separated supports VA and VB orrelating in a loally faithful state φ on A, then
there exists a ommon ause {C,C⊥} loalized in the weak past of VA and VB.

Now, let us turn to the more ompliated question as to whether a set of or-

relations violating the Bell inequality an have a joint ommon ausal explanation

in AQFT. Sine our answer requires some knowledge of the main onepts of the

Bell senario in AQFT and some aquaintane with the model in whih our results

were formulated, we start the next setion with a short tutorial on these issues (for

more details see (Hofer-Szabó, Vesernyés, 2012b, 2013b).

7.3 Nonommutative joint ommon ausal explana-

tion for orrelations violating the Bell inequal-

ity

The Bell problem is treated in AQFT in a subtle mathematial way (Summers and

Werner, 1987a,b, Summers 1990); here we introdue, however, only those onepts

whih are related to the problem of ommon ausal explanation (for more on that

see (Hofer-Szabó, Vesernyés, 2013b)).

Let A1, A2 ∈ A(VA) and B1, B2 ∈ A(VB) be projetions with spaelike sep-

arated supports VA and VB , respetively. We say that in a loally faithful state

φ the Clauser�Horne-type Bell inequality is satis�ed for A1, A2, B1 and B2 if the

following inequality holds:

−1 6 φ(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1) 6 0 (7.11)

otherwise we say that the Bell inequality is violated. (Sometimes in the EPR-Bell

literature another inequality, the so-alled Clauser�Horne�Shimony�Holte-type Bell

inequality is used as a onstraint on the expetation of (not projetions but) self-

adjoint ontrations. Sine these two inequalities are equivalent, in what follows we

will simply use (9.24) as the de�nition of the Bell inequality.)
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In the literature it is a reeived view that if a set of orrelations violates the Bell

inequality, then the set annot be given a joint ommon ausal explanation. The

following proposition proven in (Hofer-Szabó and Vesernyés 2013b) shows that this

view is orret only if joint ommon ausal explanation is meant as a ommutative

joint ommon ausal explanation:

Proposition 8. Let A1, A2 ∈ A(VA) and B1, B2 ∈ A(VB) be four projetions

loalized in spaelike separated spaetime regions VA and VB , respetively, whih
orrelate in the loally faithful state φ. Suppose that {(Am, Bn);m,n = 1, 2} has
a joint ommon ausal explanation in the sense of De�nition 9. Then the following

Bell inequality

−1 6 (φ ◦ Ec)(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1) 6 0. (7.12)

holds for the state φ ◦Ec. If the joint ommon ause is a ommuting one, then the

original Bell inequality (9.24) holds for the original state φ.

Proposition 8 states that in order to yield a ommuting joint ommon ausal

explanation for the set {(Am, Bn);m,n = 1, 2} the Bell inequality (9.24) has to be

satis�ed. This result is in omplete agreement with the usual approahes to Bell

inequalities (see e.g. (Butter�eld 1989, 1995, 2007)). But what is the situation with

nonommuting ommon ause systems? Sine�apart from (7.12)�Proposition 8 is

silent about the relation between a nonommuting joint ommon ausal explanation

and the Bell inequality (9.24), the question arises: Can a set of orrelations violating

the Bell inequality (9.24) have a nonommuting joint ommon ausal explanation?

In (Hofer-Szabó, Vesernyés, 2012b, 2013b) it has been shown that the an-

swer to the above question is positive: the violation of the Bell inequality does

not exlude a joint ommon ausal explanation if ommon auses an be nonom-

muting. Moreover, these ommon auses turned out to be loalizable just in the

'right' spaetime region (see below). For this result, we applied a simple AQFT

with loally �nite degrees of freedom, the so-alled loal quantum Ising model (for

more details see (Hofer-Szabó, Vesernyés, 2012b, 2013b); for a Hopf algebrai in-

trodution of the model see (Szlahányi, Vesernyés, 1993), (Nill, Szlahányi, 1997),

(Müller, Vesernyés)).

Consider a `disretized' version of the two dimensional Minkowski spaetime

M2
overed by minimal double ones V m

t,i of unit diameter with their enter in

(t, i) for t, i ∈ Z or t, i ∈ Z + 1/2 (see Fig. 7.1). A non-minimal double one

Vt,i;s,j in this overing an be generated by two minimal double ones in the sense

that Vt,i;s,j is the smallest double one ontaining both V m
t,i and V m

s,j . The set of

double ones forms a direted poset whih is left invariant by integer spae and

time translations.

The `one-point' observable algebras assoiated to the minimal double ones Vm
t,i

are de�ned to be A(V m
t,i ) ≃M1(C)⊕M1(C). By introduing appropriate ommu-

tation and antiommutation relations between the unitary selfadjoint generators of

the `one-point' observable algebras (whih relations respet miroausality) one an

generate the net of loal algebras. Sine there is an inreasing sequene of double
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Figure 7.1: The two dimensional disrete Minkowski spaetime overed by

minimal double ones.

ones overingM2
suh that the orresponding loal algebras are isomorphi to full

matrix algebrasM2n(C), the quasiloal observable algebra A is a uniformly hyper-

�nite (UHF) C∗
-algebra and onsequently there exists a unique (non-degenerate)

normalized trae Tr : A → C on it.

Now, onsider the double ones VA := V m
0,−1 ∪ V m

1
2
,− 1

2

and VB := V m
1
2
, 1
2

∪ V m
0,1

and the `two-point' algebras A(VA) and A(VB) pertaining to them (see Fig. 7.2).

It turns out that all the minimal projetions in A(a) ∈ A(VA) and B(b) ∈ A(VB)
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Figure 7.2: Correlations between events in VA and VB.

an be parametrized by unit vetors a and b, respetively in R
3
. Now, onsider

two projetions Am := A(am);m = 1, 2 loalized in VA, and two other projetions

Bn := B(bn);n = 1, 2 loalized in the spaelike separated double one VB .

Let the state of the system be the singlet state φs de�ned in an appropriate way

(by a density operator omposed of spei� ombinations of generators taken from

various 'one-point' algebras). It turns out that in state φs the orrelation between
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Am and Bn will the one familiar from the EPR situation:

corr(Am, Bn) := φs(AmBn)− φs(Am)φs(Bn) = −
1

4
〈am,bn〉 (7.13)

where 〈 , 〉 is the salar produt in R
3
. In other words Am and Bn will orrelate

whenever a
m

and b
n
are not orthogonal. To violate the Bell inequalitity (9.24) set

a
m

and b
n
as follows:

a
1 = (0, 1, 0) (7.14)

a
2 = (1, 0, 0) (7.15)

b
1 =

1√
2
(1, 1, 0) (7.16)

b
2 =

1√
2
(−1, 1, 0) (7.17)

With this setting (9.24) will be violated at the lower bound sine

φs(A1B1 +A1B2 +A2B1 −A2B2 −A1 −B1

)

=

−1

2
− 1

4

(〈

a
1,b1

〉

+
〈

a
1,b2

〉

+
〈

a
2,b1

〉

−
〈

a
2,b2

〉)

= −1 +
√
2

2
(7.18)

Now, the question as to whether the four orrelations {(Am, Bn);m,n = 1, 2}
violating the Bell inequality (9.24) have a joint ommon ausal explanation was

answered in (Hofer-Szabó, Vesernyés, 2012b) by the following

Proposition 9. Let Am := A(am) ∈ A(VA), Bn := B(bn) ∈ A(VB);m,n = 1, 2
be four projetions parametrized by the unit vetors via (7.14)-(7.17) violating

the Bell inequality in the sense of (7.18). Then there exist a nonommuting join

ommon ause {C,C⊥} of the orrelations {(Am, Bn);m,n = 1, 2} loalizable in

the ommon past VC := V0,− 1
2
;0, 1

2
of VA and VB (see Fig. 7.3).
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Figure 7.3: Loalization of a ommon ause for the orrelations {(Am, Bn)}.
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Observe that C is loalized in the ommon past of the four orrelating events

that is in the region whih seems to be the 'physially most intuitive' loalization

of the ommon ause.

Proposition 8 and 9 together show that the relation between the ommon ausal

explanation and the Bell inequality in the nonommutative ase is di�erent from

that in the ommutative ase. In the latter ase the satisfation of the Bell in-

quality is a neessary ondition for a set of orrelations to have a joint ommon

ausal explanation. In the nonommutative ase, however, the violation of the Bell

inequality for a given set of orrelations does not exlude the possibility of a joint

ommon ausal explanation for the set. And indeed, as Proposition 9 shows, one

an �nd a ommon ause even for a set of orrelations violating the Bell inequality.

To sum it up, taking seriously the nonommutative harater of AQFT where events

are represented by not neessarily ommuting projetions, one an provide a om-

mon ausal explanation in a muh wider range than simply stiking to ommutative

ommon auses.

7.4 Conlusions

In the paper we were arguing that embraing nonommuting ommon auses in our

explanatory framework is in line with the spirit of quantum theory and it gives us

extra freedom in the searh of ommon auses for orrelations. Spei�ally, it helps

to maintain the validity of Reihenbah's Common Causal Priniple in the ontext

of AQFT and it also helps to provide a loal, joint ommon ausal explanation for

a set of orrelations even if they violate the Bell inequalities.

Using nonommuting ommon auses naively to address the basi problems of

the ausal explanation in quantum theory in a formal way is no use whatsoever, if

it is not underpinned by a viable ontology on whih the ausal theory an be based.

This is a grandious researh projet. I onlude here simply by posing the entral

question of suh a projet:

Question. What ontology exatly is fored upon us by using nonommuting om-

mon auses in our ausal explanation?
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Researh Fund OTKA K-100715.
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Chapter 8

On the relation between the

probabilisti haraterization

of the ommon ause and Bell's

notion of loal ausality

In this paper the relation between the standard probabilisti haraterization of

the ommon ause (used for the derivation of the Bell inequalities) and Bell's no-

tion of loal ausality will be investigated in the isotone net framework borrowed

from algebrai quantum �eld theory. The logial role of two omponents in Bell's

de�nition will be srutinized; namely that the ommon ause is loalized in the

intersetion of the past of the orrelated events; and that it provides a omplete

spei�ation of the `beables' of this intersetion.

8.1 Introdution

Standard derivations of the Bell inequalities start from a set of equations repre-

senting a probabilisti ommon ausal explanation of orrelations. This ommon

ausal explanation has three omponents: a sreening-o� ondition, going bak

to Reihenbah's (1956) original haraterization of the ommon ause, a loality

ondition, expressing probabilisti independenes between spaelike separated mea-

surement outomes and measurement settings, and a no-onspiray ondition rep-

resenting another independeny between the ommon ause and the measurement

settings. If one is asked what justi�es these probabilisti onstraints in representing

a proper ommon ausal explanation, the ommon answer is this: one obtains these

equations immediately if one endorses speial relativity and looks at the spaetime

loalization of the events in question. The aim of this paper is to understand more

thoroughly this quik answer.
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In order to see more learly how the spatiotemporal and probabilisti hara-

terization of the ommon ause relate to one another, one has to be lear �rst of

all on three points:

1. To address the problem at all, we need to have a mathematially well-de�ned

and physially well-motivated framework onneting events understood as

elements of a probability spae and regions understood as subsets of a spae-

time.

2. Having suh a �rm framework onneting spatiotemporal and probabilisti

entities, we need to loalize events, among them ommon auses, in the spae-

time.

3. Finally, we have to be lear on what we mean under �justi�ation of the

probabilisti ommon ausal explanation on spatiotemporal grounds�.

Here we brie�y omment on the above three points in turn.

Ad 1. Conerning the framework, interestingly enough, there is not a wide hoie

of mathematial strutures representing this highly important onnetion between

probabilisti and spatiotemporal entities. Disounting one approah (Henson, 2005;

ommented on in the Conlusion and disussion), we are aware of only one suh

struture, the isotone net struture used in algebrai quantum �eld theory (AQFT).

In AQFT observables are represented by (C∗
-)algebras assoiated to bounded re-

gions of a spaetime. This assoiation is alled a net. A state φ is de�ned as a

normalized positive linear funtional on the quasiloal algebra A whih is the in-

dutive limit of the net. From our perspetive, the two important axioms of the

net are isotony and loal primitive ausality. Isotony requires that if a region V1 is
ontained in another region V2, then the loal algebra A(V1) assoiated to V1 is a

(unital C∗
-)subalgebra of A(V2). Loal primitive ausality is the requirement that

for any region V , A(V ) = A(V ′′), where V ′′
is the ausal ompletion (shadow) of

V . The framework of isotone nets seems to be �exible enough to be used also for

our purposes. The nets whih we will use in this paper will be lassial nets gen-

erated by loal σ-subalgebras of a Boolean σ-algebra Σ. Thus we borrow a useful

mathematial tehnique from AQFT without endorsing the operational ontology

thereof.

Ad 2. Having a neat framework in hand, next we have to loalize events. The

loalization of measurement outomes and measurement settings is fairly straight-

forward, but where should we loalize ommon auses? Obviously, the ommon

ause is an event C happening somewhere in the past of two orrelated events,

say A and B. But in whih past? Relativistially two spaelike separated events

an have (at least) two di�erent pasts. Let VA and VB denote the regions where

A and B, respetively are loalized. One an then de�ne the weak past of A
and B as PW (VA, VB) := I−(VA) ∪ I−(VB) and the strong past of A and B as

PS(VA, VB) := I−(VA)∩I−(VB) where I−(V ) denotes the union of the ausal pasts

I−(x) of every point x in V . Let us all the appropriate ommon auses weak and

strong ommon auses, respetively (see Fig. 8.1).

148

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������
�������������������������������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

A A BB

Figure 8.1: Weak and the strong past of the orrelated events A and B.

Now, one might onsider the strong past as a more natural andidate for the

loalization of the ommon ause, and indeed plenty of lassial examples attest

that the strong past is a reasonable hoie. The orrelation between two fans'

shouting at the same time at a football math is explained by the goals sored, that

is by events loalized in the strong past of the shouts. Curiously enough, however,

in AQFT ommon auses are typially understood as weak ommon auses. It is

not di�ult to see why.

Consider an isotone net representing a system in AQFT. Suppose that there

is a (superluminal) orrelation, φ(AB) 6= φ(A)φ(B), between events A ∈ A(VA)
and B ∈ A(VB) suh that VA and VB are spaelike separated. Consider the loal

algebra A((VA ∪VB)′′) assoiated to the ausal ompletion of VA ∪VB and suppose

that we �nd a ommon ause C of the orrelation in A((VA ∪VB)′′). In whih past

of VA and VB an C be loated? Consider a region V in the weak past PW (VA, VB)
whih is `wide' enough to ensure that (VA ∪VB) ⊂ V ′′

. Due to isotony, A(VA ∪VB)
will be a subalgebra of A(V ′′) whih, due to loal primitive ausality, is idential

to A(V ). Thus, C will be loated in V and hene in the weak past of VA and

VB. To sum up, isotony and loal primitive ausality together ensures that if a

superluminal orrelation has a ommon ause, then it an be loalized in the weak

past.

Can the ommon ause be loalized also in the strong past? It might, but if

so, this will not be simply due to the axioms of AQFT. If V is in PS(VA, VB), then
isotony and loal primitive ausality does not help to relate A(V ) to A((VA∪VB)′′).
One also needs to know about the dynamis of the system. The axioms of AQFT

are ompletely silent about whether one an loate the ommon ause in the strong

past. As a onsequene, weak ommon auses annot be exluded a priori from

our explanatory arsenal. Thus, we had better open leave the question regarding

the apt spaetime loalization of the ommon ause.

Ad 3. Finally, we have to pin down the meaning of the term �justi�ation of

the probabilisti ommon ausal explanation on spatiotemporal grounds�. What

we mean here is this: we need to have a priniple regulating the probabilisti

independenes of events on the basis of their possible ausal onnetedness in tune

with speial relativity. An analogy for suh a regulating priniple might help. The

theory of Bayesian nets involves two parts: a ausal graph representing the ausal

relations among ertain events and a probability spae with random variables. How
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are these two parts of the theory related to one another? The bridge relating the

two omponents is alled the Causal Markov Condition. It says that if the nodes

on the graph are related to one another in suh-and-suh a way, then the variables

pertaining to the nodes should satisfy suh-and-suh probabilisti independenes.

So the role of the Causal Markov Condition in the theory of Bayesian nets is to

oordinate the probabilisti and the graphial desription of ausal relations.

A priniple playing a similar oordinating role in the ausal explanation of

orrelations has been introdued into the literature by John S. Bell (1975/2004)

and alled loal ausality. Loal ausality is a relativisti priniple tailor-made to

study probabilisti relations between events loalized in di�erent spaetime regions,

among them the relation between the ommon ause and the orrelated events.

Thus, we will understand the term �justi�ation of the probabilisti ommon ausal

explanation on spatiotemporal grounds� similarly to the Bayesian net theorist: lo-

al ausality implies just those probabilisti independenes whih haraterize the

standard ommon ausal explanation.

Putting Points 1-3 together we are faed with the following

Projet. Given the isotone net framework onneting events and spaetime regions

(Point 1), and given the spatiotemporal loalization of the various measurement

outomes, measurement settings and ommon auses (Point 2), one is to de�ne

loal ausality in the isotone net framework suh that the probabilisti indepen-

denes implied by loal ausality (Point 3) are just the ones used in the standard

probabilisti haraterization of the ommon ausal explanation.

In brief, the aommodation of a set of orrelations within a loally ausal net

implies that for any orrelations there exist ommon auses satisfying ertain prob-

abilisti onstraints.

This, however, is only the oarse-grained story of the paper. Reading Bell's

areful formulation of loal ausality, two requirements will stand out in the def-

inition: one is atomiity representing the �omplete spei�ation� of the ausal

past of the orrelated events, the other is the loalization of the ommon ause

in the strong past. Our �ne-grained story will be to analyze the signi�ane of

these ingredients in the de�nition of loal ausality. It will turn out that the link

between the spatiotemporal and the probabilisti haraterization of the ommon

ause is very sensitive to these omponents of the de�nition of loal ausality, as

was rightly emphasized by Bell himself. In detail, we would like to address the

following questions:

(i) What is the exat role of atomiity in the justi�ation of the probabilisti

haraterization of the ommon ause by loal ausality?

(ii) Do the probabilisti onstraints imposed on the notion of ommon ause

restrit the possible spaetime loalization of the ommon ause? Do we

need to hoose, for example, between weak and strong ommon auses?

(iii) How do atomiity and loalization relate to one another; whih of the ommon

auses loalized in di�erent pasts need to be atomi?
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Our paper follows a researh line whih has been followed by many. To our knowl-

edge, the �rst to �survey the ways in whih one ould assoiate regions� with events

suh that it makes �plausible not only ompleteness and loality, but other assump-

tions of the Bell inequality� was Butter�eld (1989, p. 135). Also, the neessity to

introdue spatiotemporal onepts so as to understand the Common Cause Prini-

ple was pointed out by U�nk (1999). Common Cause Priniple and its role in the

EPR-Bell senario has been thoroughly investigated by The Bern group (Grassho�,

Portmann and Wüthrih, 2005), The Craow group (Plaek and Wronski, 2009),

and The Budapest group (Hofer-Szabó, Rédei and Szabó, 2013, espeially in Chap-

ter 8 and 9). The status of the Common Cause Priniple in AQFT was �rst investi-

gated by Rédei (1997), and further analyzed in Poinaré ovariant AQFT by Rédei

and Summers (2002) and in lattie AQFT by Hofer-Szabó and Vesernyés (2012a,

2013a). Butter�eld analysed the assumptions leading to the Bell inequalities in

AQFT in (Butter�eld, 1995), and the relation of the Common Cause Prinipe to

the Bell inequalities and to various forms of Stohasti Einstein Loality in (But-

ter�eld, 2007). For an earlier disussion on the relation of Stohasti Einstein Lo-

ality to the axioms of AQFT, see (Rédei 1991) and (Muller and Butter�eld 1994).

Hofer-Szabó and Vesernyés (2012b, 2013b) reassessed the assumptions of the Bell

inequalities in AQFT with respet to non-ommuting ommon auses. In a for-

malism very lose or maybe idential to our isotone net formalism, Henson (2013b)

treated an important topi, namely that giving up separability does not blok the

derivation of the Bell inequalities. An interesting debate between Henson, Rédei

and San Pedro (Henson, 2005; Rédei and San Pedro, 2012; Henson, 2013a) has

been taking plae reently in this Journal. We will omment on this debate in the

Conlusion and disussions. For a parallel approah to ours, where the assumptions

of the Bell inequalities are baked not by spatiotemporal onsiderations but by the

Causal Markov Condition, see (Glymour 2006). For the relation of Causal Markov

Condition to EPR orrelations see (Suárez, 2013). For a general treatment of Bell's

loal ausality in loal physial theories see the more tehnial (Hofer-Szabó and

Vesernyés 2014a) or its philosopher-friendly version (Hofer-Szabó and Vesernyés

2014b).

Our paper is strutured as follows. In Setion 2 the standard requirements of

the probabilisti ommon ausal explanation will be realled. In Setion 3 Bell's

original idea of loal ausality will be delineated and rede�ned in the isotone net

formalism. Setion 4 will be devoted to the �rst ingredient of Bell's de�nition,

namely atomiity; Setion 5 to the seond one, namely loalization. In order to

proeed in a more pituresque way, both in Setion 4 and 5 lassial toy models

will be introdued helping us to expliate the more abstrat results. We onlude

the paper in Setion 6. Some tehnialities are put in the Appendies.

8.2 Common ausal explanation

As mentioned above, the �rst probabilisti haraterization of the ommon ause is

due to Reihenbah. There is a long route leading from Reihenbah's original idea
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of the ommon ause to the sophistiated probabilisti requirements used today in

the philosophy of quantum physis. Here we will not detail the steps of how the

notion of ommon ause evolved and beame more and more suitable for ausal

explanation of the EPR-Bell senario (for this see (Hofer-Szabó, Rédei and Szabó,

2013), or for a short version (Hofer-Szabó and Vesernyés, 2012a)). Instead we will

jump diretly to the full-�edged probabilisti haraterization of the ommon ause

and give a brief motivation of the requirements thereafter.

Let {am} and {bn} (m ∈ M,n ∈ N) be two sets of measurement proedures

(thought of as happening in two spaelike separated spaetime regions). Suppose

that eah measurement an have two outomes and denote the `positive' outomes

by Am and Bn and the `negative' outomes by Am and Bn, respetively. Let all

these events be aommodated in a lassial probability spae (Σ, p). Suppose that
there is a onditional orrelation between the measurement outomes in the sense

that for any m ∈M and n ∈ N

p(Am ∧Bn|am ∧ bn) 6= p(Am|am) p(Bn|bn) (8.1)

representing that if we measure the pair am and bn, the appropriate outomes will

be orrelated.

The standard probabilisti haraterization of a ommon ausal explanation

of the orrelations (10.1) is the following. A partition {Ck} in Σ (that is a set

of mutually exlusive events adding up to the unit) is said to be a loal, non-

onspiratorial joint ommon ausal explanation of the orrelations (10.1) if for any

m,m′ ∈M and n, n′ ∈ N the following requirements hold:

p(Am ∧Bn|am ∧ bn ∧Ck) = p(Am|am ∧ bn ∧ Ck) p(Bn|am ∧ bn ∧ Ck) (sreening-o�)(8.2)

p(Am|am ∧ bn ∧ Ck) = p(Am|am ∧ bn′ ∧ Ck) (loality) (8.3)

p(Bn|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧ Ck) (loality) (8.4)

p(am ∧ bn ∧ Ck) = p(am ∧ bn) p(Ck) (no-onspiray)(8.5)

The motivation behind requirements (10.6)-(8.5) is the following. Sreening-o�

(10.6) (also alled as outome independene (Shimony, 1986), ompleteness (Jar-

rett, 1984) and ausality (Van Fraassen, 1982)) is simply the appliation of Reihen-

bah's original haraterization of the ommon ause as a sreener-o� to onditional

orrelations: although Am and Bn are orrelated when onditioned on am and bn,
they will ease to be so, if we further ondition on Ck. Loality (8.3)-(8.4) (also

alled as parameter independene (Shimony, 1986), loality (Jarrett, 1984) and hid-

den loality (Van Fraassen, 1982)) is the onstraints that the measurement outome

on the one side an depend only on the measurement hoie on the same side and

the value of the ommon ause, but not on the measurement hoie on the opposite

side (for more on this, see below). Finally, no-onspiray (8.5) is the requirement

that the ommon ause system and the measurement settings should not in�uene

eah other: they should be probabilistially independent.

Now, it is a well known fat that if a set of orrelations has a loal, non-

onspiratorial joint ommon ausal explanation in the above sense, then the set of
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orrelations has to satisfy various Bell inequalities.

1

If quantum orrelations are

interpreted as lassial onditional orrelations á la (10.1), these Bell inequalities

are violated, exluding a loal, non-onspiratorial joint ommon ausal explanation

of the EPR senario. Our aim, however, is not to follow the route leading from

the ommon ausal explanation (10.6)-(8.5) to the Bell inequalities, but rather the

route leading to the ommon ausal explanation itself. At any rate, in the EPR-

Bell literature (10.6)-(8.5) is regarded as the orret probabilisti haraterization

of the ommon ause. But observe that the above motivations for the probabilisti

independene relations (10.6)-(8.5) are ompletely meaningless unless we �rst deide

on Points 1 and 2 of the Introdution: that is unless we have a prinipled way to

assoiate events understood as elements of the probability spae (Σ, p) to regions of
a given spaetime (Point 1), and unless we loalize the events in question somewhere

in the spaetime (Point 2).

So suppose that we do have suh an assoiation in form of an isotone net N

assoiating bounded regions of the Minkowski spaetime to σ-subalgebras of Σ.
Suppose furthermore that we loalize ommon auses in one of the two above men-

tioned ways, that is ommon auses are either weak or strong ommon auses. To

address Point 3 of the Introdution, namely the `bridge law' between the spaetime

and probabilisti onsiderations, we have to introdue one more notion, namely

loal ausality. We do this in Setion 3.

8.3 Loal ausality

As mentioned in the Introdution, there is an in�uential tradition aording to

whih equations (10.6)-(8.5) are onsequenes of the requirement that a ertain set

of orrelations are to be aommodated in a loally ausal theory. The learest

formulation of suh a theory is due to Bell himself:

�Consider a theory in whih the assignment of values to some beables

Λ implies, not neessarily a partiular value, but a probability distri-

bution, for another beable A. Let p(A|Λ) denote2 the probability of a

partiular value A given partiular values Λ. Let A be loalized in a

spae-time region A. Let B be a seond beable loalized in a seond

region B separated from A in a spaelike way. (Fig. 8.2.) Now my

intuitive notion of loal ausality is that events in B should not be

`auses' of events in A, and vie versa. But this does not mean that

the two sets of events should be unorrelated, for they ould have om-

mon auses in the overlap of their bakward light ones. It is perfetly

intelligible then that if Λ in (8.6) does not ontain a omplete reord of

events in that overlap, it an be usefully supplemented by information

1

For the derivation of one of the simplest Bell inequality, the Clauser�Horne inequality,

see Appendix A.

2

For the sake of uniformity throughout the paper, I slightly hanged Bell's notation

and �gures.
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A B

Λ

Figure 8.2: Loal ausality I.

from region B. So in general it is expeted that

p(A|Λ, B) 6= p(A|Λ) (8.6)

However, in the partiular ase that Λ ontains already a omplete

spei�ation of beables in the overlap of the light ones, supplemen-

tary information from region B ould reasonably be expeted to be

redundant.�

And here omes the de�nition of a loally ausal theory.

�Let C denote a spei�ation of all beables, of some theory, belonging

to the overlap of the bakward light ones of spaelike regions A and

B. Let a be a spei�ation of some beables from the remainder of the

A B

Ca b

Figure 8.3: Loal ausality II.

bakward light one of A, and B of some beables in the region B. (See

Fig. 8.3.) Then in a loally ausal theory

p(A|a, C,B) = p(A|a, C) (8.7)
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whenever both probabilities are given by the theory.� (Bell, 1975/2004,

p. 54)

Now, let us spell out Bell's haraterization of loal ausality in our isotone net

framework. To this end we need to `translate' a number of terms Bell uses in his

formulation into our language.

First, we need to translate Bell's language using random variables in (8.7) into

a language using events. This is straightforward sine events are speial random

variables, namely harateristi funtions.

Seond, we are to interpret the term `beable'. `Beable' is Bell's neologism and

is ontrasted to the term `observable' used in quantum theory. �The beables of

the theory are those entities in it whih are, at least tentatively, to be taken se-

riously, as orresponding to something real� (Bell, 1990/2004, p. 234). Without

the lari�ation of what the �beables� of a given theory really are, one annot even

formulate loal theory sine �there are things whih do go faster than light. British

sovereignty is the lassial example. When the Queen dies in London (long may

it be delayed) the Prine of Wales, leturing on modern arhiteture in Australia,

beomes instantaneously King� (Bell, 1990/2004, p. 236). In order to vitiate suh

`violation' of loal ausality, the lari�ation of the �beables� of a theory is indis-

pensable. (Cf. Norsen 2011.) What are the beables in the isotone net struture?

Sine these nets are lassial and hene they represent objetive physial events,

any element of any loal algebra will be regarded here as a beable.

Third, translating `beable' simply as `elements of an algebra' naturally brings

with it the translation of the term `omplete spei�ation of beables' as an `atom

of the algebra in question'. Here of ourse it is assumed that the loal algebras of

the net are atomi (whih is typially not the ase in AQFT). (For the translation

of `omplete spei�ation' into atomiity see (Henson, 2013a, p. 1015).)

Finally, an important point. Both in his wording and also in his �gures Bell

seems to take into aount the whole ausal past of the events in question. In the

formulation of loal ausality he does not assume some kind of Markovian ondition

rendering super�uous the in�nite tail of the past regions below a ertain Cauhy

surfae. Other parts of Bell's text, however, speak for a more loal interpretation

of beable.

3

Moreover, Bell's La nouvelle uisine (Bell, 1990/2004), a posthumous

paper on the same subjet provides another de�nition of loal ausality where the

sreener-o� regions are de�nitely �nite. This de�nition is loser in spirit to the

formalism of isotone nets sine here only bounded regions are assoiated to loal

algebras. Therefore, we will here endorse this ��nite� reading of loal ausality.

(We will ome bak to this point in the Conlusion and disussion.)

With this `translation manual' in hand, Bell's notion of loal ausality an be

paraphrased as follows.

3

Cf. �We will be partiularly onerned with loal beables, those whih (unlike for

example the total energy) an be assigned to some bounded [my italis℄ spae-time region.�

(Bell, 1975/2004, p. 53)
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De�nition 11. An isotone net N assoiating bounded regions of the Minkowski

spaetime to σ-subalgebras of Σ is alled loally ausal, if for any lassial prob-

ability measure p on Σ4

, and for any two events Am ∈ A(VA) and Bn ∈ A(VB)
loalized in the spaelike separated regions VA and VB and orrelating in the prob-

ability measure p, the following holds.

Let Va, Vb and VC be three spaetime regions (see Fig. 8.4) suh that

V VA B

V VV Ca b

Figure 8.4: Loal ausality in isotone nets

Va ⊂ (I−(VA) \ I−(VB)) (8.8)

Vb ⊂ (I−(VB) \ I−(VA)) (8.9)

VC ⊂ PS(VA, VB) (8.10)

VC ⊂ PS(Va, Vb) (8.11)

VA ⊂ (Va ∪ VC)′′ (8.12)

VB ⊂ (VC ∪ Vb)′′ (8.13)

Let am, bn and Ck be any three atoms of the algebras A(Va), A(Vb) and A(VC),
respetively, assoiated to the appropriate regions. Then the following onditional

probabilisti independenes hold:

p(Am|am ∧ Ck ∧Bn) = p(Am|am ∧ Ck) (8.14)

p(Bn|Am ∧ Ck ∧ bn) = p(Bn|bn ∧Ck) (8.15)

p(Am|am ∧ Ck ∧ bn) = p(Am|am ∧ Ck) (8.16)

p(Bn|am ∧ Ck ∧ bn) = p(Bn|bn ∧Ck) (8.17)

Why four equations instead of Bell's single (8.7)? Observe that (8.15) is just

the symmetri version of (8.14) where Am and am are interhanged with Bn and

bn. Equations (8.16)-(8.17), however, are slight extensions of Bell's formulation.

4

Or, in the more general AQFT ase (whih we do not need now): for any state φ on

the quasiloal algebra A. (Cf. Setion 1 above.)
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Observe that VA is spaelike separated not only from VB but also from Vb; moreover,

VC is in the strong past of A and B, PS(VA, Vb). Therefore, onditioned on the

omplete spei�ation of Va ∪ VC , the same independene should hold between Am

and bn as between Am and Bn. Thus (8.16) is the appliation of Bell's idea to

algebras A(VA) and A(Vb), and (8.17) to algebras A(Vb) and A(VA). There are

no more spaelike separated regions in Fig. 8.4 to whih loal ausality ould be

applied.

How do the above onsiderations relate to the probabilisti haraterization (10.6)-

(8.5) of the ommon ause delineated in the previous Setion?

First observe that (8.16)-(8.17) are equivalent to loality (8.3)-(8.4) and from

(8.14)-(8.17) sreening-o� (10.6) follows diretly. This proves that the probabilisti

haraterization of the ommon ause by the requirements of sreening-o� and

loality an be `derived' from Bell's notion of loal ausality imposed on an isotone

net assoiating spaetime regions and loal algebras.

There is, however, an important proviso. The third requirement in the de�nition

of a ommon ausal explanation, namely no-onspiray (8.5) annot be `derived'

from Bell's notion of loal ausality in a similar way. No-onspiray is an inde-

pendent assumption stating that the events am ∧ bn and Ck are probabilistially

independent.

Let us ome bak for a moment to the de�nition of a loally ausal net. In De�nition

11 we required (8.14)-(8.17) and hene (10.6)-(8.4) to hold only for the atoms am
and Ck of the algebras A(Va) and A(VC), respetively. Bell's original de�nition,

however, seems to be more stringent; here (8.7) is required not only for the atoms

of A(Va) but for any element. This might suggest that our de�nition is weaker

than that of Bell. This, however, is not the ase. In Proposition 12 at the end of

the paper we will show that in a loally ausal net (10.6)-(8.4) hold not only for

the atomi events am, bn and Ck, but (given some independene ondition) also for

any Boolean ombination a := ∨m∈M ′am, b := ∨n∈N ′am (M ′ ⊆M,N ′ ⊆ N) of the

measurement onditions. Note, however, that the ommon ause system Ck annot

be `aggregated' in this way: (10.6)-(8.4) will not neessarily hold for the Boolean

ombination C := ∨k∈K′Ck (K ′ ⊆ K). This is why it is neessary to demand

atomiity (�omplete spei�ation�) in the strong past of the orrelated events and

su�ient to demand it outside it. We will ome bak to this point later.

An interesting question with respet to AQFT is the following. What is the relation

between loal primitive ausality as standardly used in AQFT and our de�nition of

loal ausality? The answer is given in the following proposition:

Proposition 10. A lassial, atomi isotone net whih satis�es loal primitive

ausality (A(V ) = A(V ′′) for any region V ), automatially satis�es also loal

ausality (8.14)-(8.17) for events in regions as shown in Fig. 8.4.

Proof. Consider �rst (8.14). Due to isotony and loal primitive ausality A(VA) ⊂
A((Va ∪VC)′′) = A(Va ∪VC) and hene for any atom am∧Ck of A(Va ∪VC): either
(i) Am ∧ am ∧ Ck = 0 or (ii) Am ∧ am ∧ Ck = am ∧ Ck. In ase (i) both sides of
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(8.14) is zero, in ase (ii) both sides of (8.14) is one. One obtains (8.15)-(8.17) in a

similar fashion.

Intuitively, isotony and loal primitive ausality together ensure that the atoms of

A(Va ∪ VC) will also be atoms of A(VA), hene sreening o� every orrelation. For

a more general proposition stating that in any atomi lassial or quantum isotone

net satisfying loal primitive ausality loal ausality also holds, see (Hofer-Szabó

and Vesernyés 2014a, Prop. 1) and (Hofer-Szabó and Vesernyés 2014b, Se. 3).

For relating loal ausality (Stohasti Einstein Loality) to the axioms of AQFT

(treated in the tradition of the so-alled syntatial view of sienti� theories), see

(Rédei 1991) and (Muller and Butter�eld 1994).

Reading Bell's formulation of loal ausality arefully, two ingredients of the

de�nition stand out learly. The one is that (i) the ommon ause system provides

�a omplete spei�ation of beables�, and (ii) it is loated in the �overlap of the

light ones�. In our terminology, (i) Ck is an atom of the appropriate algebra, (ii)

it is loated in the strong past of the orrelated events. Bell expliitly stresses both

points, and in all the subsequent papers of Van Fraassen (1982), Jarrett (1984),

Shimony (1986) et. trying to turn spaetime onsiderations into probabilisti

independenes these two requirements have been (expliitly or impliitly) made.

However, neither requirements are a priori onerning the idea of a ommon

ause. One an easily make up ommon auses whih are either non-atomi or

not loated in the strong past of the orrelated events. How do these ommon

auses relate to Bell's notion of loal ausality? In the following two Setions the

relation between loal ausality and probabilisti haraterization of the ommon

ause will be studied �rst in the ase of non-atomi ommon auses, then in ase

of weak ommon auses. In eah Setion toy models will be introdued �rst, then

the formal results will be gathered.

8.4 Non-atomi ommon auses

Example 1. Consider the following toy model. There are �ve lighthouses on the

oean in a line at equal distanes from one another. (See Fig. 8.5.) Let us ount

A BC

1 2 3 4 5

Figure 8.5: Lighthouses I.

them from left to right. In the middle one, that is in lighthouse 3 the lighthouse

keeper C has three lamps, C′
, C′′

and C′′′
. He has the following strategy for turning

the lamps on: either he turns on only the lamp C′
, or only lamp C′′′

, or all three
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lamps, or none. He never turns on the lamps in any other ombination. He hooses

between these four options with equal probability (say, by tossing two oins). Let

us denote that a given lamp is turned on and o� by C and C, respetively. Using
this notation the four possible state of the lamps are the following:

C1 ≡ C′ ∧ C′′ ∧ C′′′
(8.18)

C2 ≡ C
′ ∧ C′′ ∧ C′′′

(8.19)

C3 ≡ C′ ∧ C′′ ∧ C′′′
(8.20)

C4 ≡ C
′ ∧ C′′ ∧ C′′′

(8.21)

eah with probability

p(Ck) =
1

4
(8.22)

Now, in the left neighboring lighthouse, that is in lighthouse 2, there is another

lighthouse keeper, A; and his role is simply to wath the light signals arriving from

either the left or from the right, that is from either lighthouse 1 or lighthouse 3. He

does not know that lighthouse 1 is empty, therefore he spends equal time wathing

both neighboring lighthouses. Suppose furthermore that if he is wathing to the

left, he will miss the light signals oming from the right. This means that with

probability

1
2 he observes the signals oming from lighthouse 3 and with probability

1
2 he will miss them. Denoting the event that the lighthouse keeper A is wathing

to the left and to the right by aL and aR, respetively and denoting by A the event

that he observes a light signal (disregarding from whih lamp it omes), one obtains

the following onditional probabilities:

p(A|am ∧Ck) =

{

1 if m = R, k = 1, 2, 3
0 otherwise.

(8.23)

In other words, the lighthouse keeper A observes the light signal only if he is

wathing right and there is a signal sent from C.

Suppose that the same thing happens also in lighthouse 4. The lighthouse

keeper B is wathing in both diretions with equal probability, but sine lighthouse

5 is empty, he misses the light signal oming from lighthouse 3 with probability

1
2 .

Denoting again the events that the lighthouse keeper B is wathing to the left and

to the right by bL and bR, respetively and denoting by B the event that he observes

a signal, one obtains the following onditional probabilities for B's observing a light

signal:

p(B|bn ∧ Ck) =

{

1 if n = L, k = 1, 2, 3
0 otherwise.

(8.24)

This situation ompletely haraterizes a probability spae. The event algebra

is generated by the following events:

A, A, B, B, am, bn, Ck
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with m,n = L,R and k = 1, 2, 3, 4. The event algebra has 64 atoms, 16 of whih

have non-zero probability:

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m = R, n = L, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m,n = R, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m,n = L, k = 1, 2, 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if

{

m = L, n = R, k = 1, 2, 3,
or k = 4

and the remaining 48 are of probability zero. By means of the probability of the

atoms one an easily alulate the probability of any events of the algebra.

Now, it is easy to see that there is a orrelation between events A and B that is

between the lighthouse keepers' observing a light signal, both in the non-onditional

and onditional sense:

3

16
= p(A ∧B) 6= p(A) p(B) =

3

8
· 3
8

(8.25)

3

4
= p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) =

3

4
· 3
4

if m = R, n = L(8.26)

As one expets, the orrelation is due to C's signaling: Ck is a loal, (non-onspiratorial)

joint ommon ausal explanation of the orrelation (8.26) in the sense of (10.6)-(8.5):

p(A ∧B|am ∧ bn ∧ Ck) = p(A|am ∧ bn ∧ Ck) p(B|am ∧ bn ∧ Ck) =

{

1 if m = R, n = L, k = 1, 2, 3
0 otherwise

p(A|am ∧ bn ∧ Ck) = p(A|am ∧ bn′ ∧ Ck) =

{

1 if m = R, k = 1, 2, 3
0 otherwise

p(B|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧ Ck) =

{

1 if n = L, k = 1, 2, 3
0 otherwise

p(am ∧ bn ∧Ck) = p(am ∧ bn) p(Ck) =
1

4
· 1
4

Example 2. Suppose we take a oarser lustering of the swithing of the lamps, say

D1 ≡ C1 ∨ C2 ∨ C3 and D2 ≡ C4. Physially, D1 is the event that any light is on

in lighthouse 3, and D2 is the event that no light is on. As one expets, for this

oarser partition the ommon ause equations (10.6)-(8.5) will hold just as well as
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for the partition {Ck}:

p(A ∧B|am ∧ bn ∧Dk) = p(A|am ∧ bn ∧Dk) p(B|am ∧ bn ∧Dk) =

{

1 if m = R, n = L, k = 1
0 otherwise

p(A|am ∧ bn ∧Dk) = p(A|am ∧ bn′ ∧Dk) =

{

1 if m = R, k = 1
0 otherwise

p(B|am ∧ bn ∧Dk) = p(Bn|am′ ∧ bn ∧Dk) =

{

1 if n = L, k = 1
0 otherwise

p(am ∧ bn ∧Dk) = p(am ∧ bn) p(Dk) =

{

1
4 · 34 if n = L, k = 1
1
4 · 14 otherwise

Thus, {Dk} is also a loal, (non-onspiratorial) joint ommon ausal explanation

of the orrelation (8.26).

Example 3. Now, onsider a oarser lustering of the swithings `in the wrong way':

D′
1 ≡ C1 ∨C2 ∨C4 and D′

2 ≡ C3 mixing together lights being on with lights being

o�. Contrary to the previous ase, for this oarser partition the requirement of

sreening-o� is violated. For example:

2

3
= p(A ∧B|aR ∧ bL ∧D′

1) 6= p(A|aR ∧ bL ∧D′
1) p(B|aR ∧ bL ∧D′

1) =
2

3
· 2
3

(Loality and no-onspiray will hold even in this ase.) Hene {D′
k} is not a loal,

(non-onspiratorial) joint ommon ausal explanation of the orrelation (8.26).

Now, let us onsider the spaetime diagram of the above examples depited in

Fig. 8.6. Let N be a loally ausal net assoiating bounded spaetime regions

V VA B

V VbVa C

Figure 8.6: Spaetime diagram of Examples 1, 2 and 3.

to loal algebras suh that A ∈ A(VA), B ∈ A(VB), am ∈ A(Va), bn ∈ A(Vb) and
Ck, Dk, D

′
k ∈ A(VC) for allm, n and k. As shown in Setion 2, loal ausality of the

net implies that the set {Ck}�being an atomi partition loalized in the strong past

PS(VA, VB)�satis�es (10.6)-(8.4), hene providing a loal, joint ommon ausal

explanation of the orrelation (8.26). (No-onspiray (8.5), as already stressed
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in Setion 2, is not a onsequene of loal ausality but is assumed in the toy

model.) Thus, {Ck} is an atomi, strong, loal, non-onspiratorial joint ommon

ause system.

What about non-atomi partitions loalized in the strong past? Again, both

{Dk} and {D′
k} are loalized in PS(VA, VB), but whereas {Dk} is a ommon ause

system of the orrelation (8.26), {D′
k} is not. Thus, loal ausality is ompletely

silent about whether a oarse-grained partition of a loal algebra in the strong past

is a ommon ause system of the orrelated events or not. This `non-aggregable'

harater of the atomi ommon ause relies heavily on the fat that it is loalized

in the strong past�as will be seen in Proposition 12 in the next Setion when

ontrasted with the opposite harater of weak ommon auses. Moreover, the sat-

isfation of equations (10.6)-(8.5) for a given partition also does not ensure that

�ner-grained partitions will also do so (this is Simpson's paradox; see e.g. (U�nk

1999)). In this sense the existene of a ommon ause system haraterized by

the probabilisti onstraints (10.6)-(8.5) for a given orrelation is a weaker require-

ment than the aommodation of the same orrelation in a loally ausal theory.

There are many more loal, non-onspiratorial joint ommon ause systems than

the atomi ones required by loally ausal theories.

Obviously, from the perspetive of the EPR-Bell senario this di�erene is not of

entral importane, sine the violation of the Bell inequalities derived from (10.6)-

(8.5) also exludes atomi ommon ause systems and hene the possibility of a

loally ausal theory. But fousing simply on the logial relation between Bell's

loal ausality and the probabilisti equations (10.6)-(8.5), it is fair to say that loal

ausality `justi�es' only one of the multiple ommon ausal explanations, namely the

atomi one. The oarse-grained ommon ause system {Dk}, however, is an entirely
salient physial explanation of the the orrelation (�Observers see light signals only

if some lamps are swithed on�), even if the existene of suh a ommon ausal

explanation is not a onsequene of the aommodation of the physial senario

into a loally ausal theory.

Now we turn to the role of the other ingredient in Bell's formulation, namely

the loalization of the ommon ause in the strong past.

8.5 Weak ommon auses

Example 4. Now, let us modify the population of the lighthouses. Let A and B

remain in their plaes, that is in lighthouse 2 and 4, respetively: but suppose

that lighthouses 1, 3 and 5 are inhabited by three lighthouse keepers C′
, C′′

and

C′′′
, respetively, eah having the orresponding one of the three lamps introdued

in the previous Setion. (See Fig. 8.7.) That is suppose that now lighthouse

keeper C′
in lighthouse 1 operates lamp C′

, lighthouse keeper C′′
in lighthouse 3

operates lamp C′′
and lighthouse keeper C′′′

in lighthouse 5 operates lamp C′′′
.

Suppose furthermore that the ons and o�s of the di�erent lamps follow just the

same statistis as de�ned in (8.18)-(8.22), that is p(Ck) =
1
4 for every k = 1, 2, 3, 4

(only lamp C′
is on, only lamp C′′′

, all three lamps are on, none is on).
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A BC

1 2 3 4 5

C C

Figure 8.7: Lighthouses II.

Now, the role of lighthouse keepers A and B is just as in Setion 4: to wath

the light signals arriving at lighthouse 2 and 4, respetively. But now both an

obtain a signal from both diretions. Suppose that both A and B an only see the

light signal sent from a neighboring lighthouse. That is, A annot see the signal

sent from C′′′
(say, beause it is too far or the lighthouses hide eah other); and

B annot see the signal sent from C′
. Now, again the event algebra has 16 atoms

with non-zero probability:

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if k = 3

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if m = L, k = 1

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if n = R, k = 2

p(A ∧B ∧ am ∧ bn ∧ Ck) =
1

16
if







m = R, k = 1,
or n = L, k = 2,
or k = 4

and there is a onditional and non-onditional orrelation between event A and

B, the detetions of light signals in lighthouse 2 and 4, respetively, both in the

non-onditional and onditional sense:

1

4
= p(A ∧B) 6= p(A) p(B) =

3

8
· 3
8

(8.27)

1

4
= p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) =







1
4 · 14 if m = R, n = L,
1
4 · 12 if m,n = R,
1
2 · 14 if m,n = L.

(8.28)

As one expets, {Ck} is a loal, (non-onspiratorial) joint ommon ausal explana-
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tion of the orrelation:

p(A ∧B|am ∧ bn ∧ Ck) = p(A|am ∧ bn ∧ Ck) p(B|am ∧ bn ∧ Ck) =

{

1 if m = R, n = L, k = 3
0 otherwise

p(A|am ∧ bn ∧ Ck) = p(A|am ∧ bn′ ∧ Ck) =







1 if m = L, k = 1
1 if k = 3
0 otherwise

p(B|am ∧ bn ∧ Ck) = p(Bn|am′ ∧ bn ∧ Ck) =







1 if m = R, k = 2
1 if k = 3
0 otherwise

p(am ∧ bn ∧Ck) = p(am ∧ bn) p(Ck) =
1

4
· 1
4

Now, onsider again the spaetime diagram of Example 4 depited in Fig. 8.8.

Here {Ck} is loalized not in the strong past but in the weak past of the orrelated

V VA B

VV VC’’C’ C’’’VbVa

Figure 8.8: Spaetime diagram of Example 4.

events. How do these weak ommon auses relate to Bell's loal ausality? This

question is answered in the following

Proposition 11. Let N be again a loally ausal net assoiating bounded spae-

time regions to loal algebras and let A ∈ A(VA), B ∈ A(VB), am ∈ A(Va),
bn ∈ A(Vb), C′

i ∈ A(VC′), C′′
j ∈ A(VC′′ ) and C′′′

l ∈ A(VC′′′ ) for all m,n, i, j, l
be atoms of the appropriate algebras with the regions as shown in Fig. 8.8. (In

Example 4 C′
1 ≡ C′

, C′
2 ≡ C

′
and similarly for C′′

j and C′′′
l .) Then

{Cijl} ≡ {C′
i ∧ C′′

j ∧ C′′′
l }

is a weak, loal, joint ommon ause of the onditional orrelations

p(A ∧B|am ∧ bn) 6= p(A|am) p(B|bn) (8.29)
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in the sense that the following equations hold:

p(A ∧Bn|am ∧ bn ∧ Cijl) = p(A|am ∧ bn ∧Cijl) p(B|am ∧ bn ∧ Cijl)(8.30)

p(A|am ∧ bn ∧ Cijl) = p(A|am ∧ bn′ ∧ Cijl) (8.31)

p(B|am ∧ bn ∧ Cijl) = p(B|am′ ∧ bn ∧ Cijl) (8.32)

Proof. The proof is straightforward. Loal ausality of the net implies that for the

atoms a′im ≡ C′
i∧am ∈ A(VC′∪Va), b′nl ≡ bn∧C′′′

l ∈ A(Vb∪VC′′′) and C′′
j ∈ A(VC′′)

the following equations hold (being analogous to loal ausality (8.14)-(8.17)):

p(A ∧Bn|a′im ∧ b′nl ∧C′′
j ) = p(A|a′im ∧ b′nl ∧ C′′

j ) p(B|a′im ∧ b′nl ∧ C′′
j )(8.33)

p(A|a′im ∧ b′nl ∧C′′
j ) = p(A|a′im ∧ b′n′l′ ∧C′′

j ) (8.34)

p(B|a′im ∧ b′nl ∧C′′
j ) = p(B|a′i′m′ ∧ b′nl ∧C′′

j ) (8.35)

In other words, {C′′
j } is a strong, loal, joint ommon ause of the onditional

orrelations

p(A ∧B|a′im ∧ b′nl) 6= p(A|a′im) p(B|b′nl) (8.36)

with the new onditions a′im and b′nl. (Again, no-onspiray

p(a′im ∧ b′nl ∧ C′′
j ) = p(a′im ∧ b′nl) p(C′′

j ) (8.37)

does not follow from loal ausality of the net.) But (8.33)-(8.35) are just equivalent

to (8.30)-(8.32) proving that {Cijl} is a weak, loal, joint ommon ause of the

onditional orrelations (10.13).

As we saw before, the orrelated events A ∈ A(VA), B ∈ A(VB) in a loally ausal

net always have an atomi, strong ommon ause system C′′
j ∈ A(VC′′ ). Now,

Proposition 13 states that this strong ommon ause system an always be spatially

extended into a weak ommon ause system by simply adding some elements C′
i and

C′′′
l from the spaelike separated regions VC′

and VC′′′
, respetively. These extra

terms will not spoil the sreening-o�: they an be freely added to the strong ommon

ause. Moreover, as will turn out from Proposition 12, these extra terms need not

be atomi either: any Boolean ombination C′ = ∨iC′
i and C

′′′ = ∨lC′′′
l an also

be added without violating the probabilisti onstraints (10.6)-(8.4). Thus, loal

ausality does not determine the loalization of the ommon ause, it is ompatible

both with strong and weak ommon auses.

But what is the exat relation between the weak and the strong ommon ause

systems arising from the loal ausality of a given net?

In Example 4 one might �nd it peuliar that even though the ommon ause

{Cijl} was non-onspiratorial (it was probabilistially independent of am and bn),
still there was a `onspiray' within the ommon ause: C′

i, C
′′
j and C′′′

l were not

probabilistially independent. For example it never happened that only lamp C′′

was swithed on. This fat does not raise any problem until one asks whether the

ommon ause is loalized at one plae: for example, as in Example 1, where all the
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three lamps were loalized in lighthouse 3. But in Example 4 the ommon ause

was sattered around in three di�erent loations. It was loated in three di�erent

lighthouses. The problem with suh a ommon ause that it may well question

our whole projet to provide a ommon ausal explanation for a orrelation. If

the explanans itself has a built-in orrelation, then what is the point in using it

for explaining orrelations? Can we not ome up with a ommon ausal model in

whih C′
i, C

′′
j and C′′′

l are spaelike separated but still independent, say, regulated

by three independent oin tossings in lighthouse 1, 3 and 5, respetively. Can one

obtain a weak ommon ause for a given orrelation without a built-in orrelation?

In the next proposition we will answer this question in the negative.

Let {Cijl} ≡ {C′
i ∧ C′′

j ∧ C′′′
l } be a weak ommon ause of a given orrelation.

(Here {C′
i}, {C′′

j } and {C′′′
l } are general partitions of A(VC′ ), A(VC′′) and A(VC′′′ ),

respetively, and not those speial ones spei�ed in the above Examples.) Let us

all {Cijl} a genuine weak ommon ause, i� {C′′
j }�the `middle part' of {Cijl}�is

not a strong ommon ause. In what follows we will show that the above mentioned

`built-in orrelation' is a neessary ondition to explain a orrelation by a genuine

weak ommon ause. In other words, we will show that if {Cijl} ≡ {C′
i∧C′′

j ∧C′′′
l } is

a ommon ause of the orrelation (10.13) and C′
i, C

′′
j and C′′′

l are probabilistially

independent, then also {C′′
j } will be a ommon ause of the orrelation.

Proposition 12. Suppose that {C′
i∧C′′

j ∧C′′′
l } is a ommon ause of the orrelation

between Am and Bn in the sense that the following equations hold:

p(Am ∧Bn|am ∧ bn ∧C′
i ∧ C′′

j ∧ C′′′
l ) = p(Am|am ∧ bn ∧ C′

i ∧C′′
j ∧C′′′

l ) p(Bn|am ∧ bn ∧ C′
i ∧ C′′

j ∧ C(8.38)
p(Am|am ∧ bn ∧C′

i ∧ C′′
j ∧ C′′′

l ) = p(Am|am ∧ bn′ ∧ C′
i ∧ C′′

j ∧ C′′′
l ) (8.39)

p(Bn|am ∧ bn ∧C′
i ∧ C′′

j ∧ C′′′
l ) = p(Bn|am′ ∧ bn ∧ C′

i ∧ C′′
j ∧ C′′′

l ) (8.40)

p(am ∧ bn ∧C′
i ∧ C′′

j ∧ C′′′
l ) = p(am ∧ bn) p(C′

i ∧ C′′
j ∧ C′′′

l ) (8.41)

and suppose that C′
i, C

′′
j and C′′′

l are independent, that is

p(C′
i ∧ C′′

j ∧ C′′′
l ) = p(C′

i) p(C
′′
j ) p(C

′′′
l ) (8.42)

then {C′′
j } is also a ommon ause of the orrelation:

p(Am ∧Bn|am ∧ C′′
j ) = p(Am|am ∧ bn ∧ C′′

j ) p(Bn|am ∧ bn ∧ C′′
j ) (8.43)

p(Am|am ∧ bn ∧ C′′
j ) = p(Am|am ∧ bn′ ∧ C′′

j ) (8.44)

p(Bn|am ∧ bn ∧ C′′
j ) = p(Bn|am′ ∧ bn ∧ C′′

j ) (8.45)

p(am ∧ bn ∧ C′′
j ) = p(am ∧ bn) p(C′′

j ) (8.46)

For the proof see Appendix B. Sine in Example 4 {Cijl} ≡ {C′
i ∧ C′′

j ∧ C′′′
l }

was loalized in the weak past and {C′′
j } was loalized in the strong past, we

an interpret Proposition 12 as follows: a weak ommon ause without a `built-in

orrelation' is always `parasiti' on a strong ommon ause in the sense that there

is no other way to provide a genuine weak ommon ause for a given orrelation

than to make the spaelike separated parts of the ommon ause probabilistially
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dependent. In brief, there is no genuine weak ommon ause without `built-in

orrelation'.

Proposition 12 niely explains why we are ompelled to use strong ommon

auses in lassial ommon ausal explanations. If we want to avoid explaining

orrelations in terms of other orrelations, we annot apply genuine weak ommon

auses. So instead of appealing to non-genuine ('parasiti') weak ommon auses,

it is more informative to use simply strong ommon auses.

The type of the ommon ause, however, is not always a matter of what we

might want. As was mentioned in the Introdution, the ommon auses that nat-

urally arise in AQFT are weak and not strong ommon auses. Why is that? The

mathematial answer, namely that only (the possibility of) weak ommon auses

follows from the axioms of the theory (see (Rédei 1997) and also (Hofer-Szabó and

Vesernyés 2012a, b)), is not very intuitive. In searh of a more intuitive explana-

tion, we onlude this paper with a highly speulative question:

Question: Is the fat that ommon auses in AQFT are weak ommon auses

somehow related to or a onsequene of the following two fats? (If these latter are

fats at all.)

1. In AQFT quantum states establishing a superluminal orrelation between two

spaelike separated events also establish (or `typially' establish) a `built-in

orrelation' between the spaelike separated parts of the weak ommon auses

of this orrelation.

2. An analogue of Proposition 12 holds in AQFT: stating that, roughly speaking,

a `built-in orrelation' is a neessary ondition to explain a orrelation by a

genuine weak ommon ause.

Were these two fats to hold, one ould understand why weak ommon auses

in AQFT are genuine ommon auses, that is why they do not redue to strong

ommon auses. (For more on this see (Hofer-Szabó and Vesernyés 2014a, b).)

8.6 Conlusion and disussion

In this paper, we gave a framework onneting stohasti events and spaetime re-

gions, the isotone net framework of AQFT (Point 1) suh that, on a ertain spei�-

ation and loalization of the events in question (Point 2), loal ausality, de�ned in

this framework in an appropriate way, implies (up to no-onspiray) the standard

probabilisti haraterization of the ommon ausal explanation (Point 3). The

subtle roles of the hoie of spei�ation (atomi vs. non-atomi) and loalization

(strong vs. weak) were analyzed with respet to the relations of the spatiotemporal

and probabilisti haraterizations of the ommon ause. Spei�ally, it was shown

that (i) the existene of non-atomi probabilisti ommon auses does not follow

from the aommodation of the orrelations in question into a loally ausal net;

(ii) the probabilisti haraterization of the ommon ause is also ompatible with

weak ommon auses; and (iii) genuine weak ommon auses an be provided for a
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given orrelation only at the ost of introduing a `built-in orrelation' between the

spaelike separated parts of the ommon ause. We also asked whether this latter

fat an help us understand how weak ommon auses arise naturally in AQFT.

Finally, we would like to brie�y omment on an ongoing debate between Hen-

son, Rédei and San Pedro on �omparing-distinguishing-onfounding ausality prin-

iples� (Henson, 2005; Rédei and San Pedro, 2012; Henson, 2013a). The debate is

about the status of a proposition proved in Henson (2005) laiming that the Strong

and Weak Common Cause Priniples are equivalent. Here Strong/Weak Common

Cause Priniples say that any atom of the algebra pertaining to the strong/weak

past of a pair of orrelated events is a sreener-o�. The use of atoms (there alled

"full spei�ations") in the Common Cause Priniples is inspired�just as in this

paper�by Bell's work (see also Norsen, 2011), and further motivated as a means

to evade Simpson paradoxes (see also U�nk, 1999). The �rst point to make is that

sine Henson's framework onneting spaetime regions and probability spaes is

not the isotone net formalism used in this paper, and his Common Cause Priniples

are not the non-onspiratorial, loal, joint ommon ausal explanation (10.6)-(8.5)

(used to explain onditional orrelations!), it is not easy to see how Henson's result

exatly relates to ours. In the isotone net formalism only bounded regions are asso-

iated to loal algebras, whereas Henson's "least domains of deidability" formalism

is not restrited to suh regions. Rédei and San Pedro (2012) hallenge Henson's

result on the basis of its inompatibility with some propositions in AQFT (Rédei

and Summers, 2002, Proposition 3). They laim that Henson's proof ruially de-

pends on the regions being allowed to be in�nite; and they question the validity

of a similar proof for �nite regions.

5

For �nite regions, suh as the regions in our

approah, Henson aknowledges that his proof "annot be modi�ed so that" the

two Common Cause Priniples are equivalent; "at least not assuming that there

are no orrelations between events on spaelike setions of initial hypersurfae"

(Henson, 2005, 532). In the light of our results and disussion above, we would

like to interpret: (i) the �rst part of this quote as laiming that (provided the two

formalisms are equivalent) there is no ontradition between Henson's proof and

our sharp distintion between weak and strong ommon auses; and (ii) the seond

half of the quote as stating something parallel to Proposition 12. Nonetheless, it

would be highly desirable to investigate the relation between the two approahes

more thoroughly.
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Their haraterization of "�nite", however, is defetive, sine the region they want to

have as in�nite turns out to be �nite; whih fat is revealed in Henson's (2013a) reply.

Here is a better haraterization: V is �nite i�

(

I−(V
′′) \ (V ′′)

)

′′

⊇ V ′′
.
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Appendix A

Here we will show that if a set of orrelations {(Am, Bn)|m,n = 1, 2} has a loal,

non-onspiratorial joint ommon ausal explanation in the sense of (10.6)-(8.5), then

the following Clauser�Horne inequalities have to hold for any m,m′, n, n′ = 1, 2;
m 6= m′, n 6= n′

:

−1 6 p(Am ∧Bn|am ∧ bn) + p(Am ∧Bn′ |am ∧ bn′) + p(Am′ ∧Bn|am′ ∧ bn)
−p(Am′ ∧Bn′ |am′ ∧ bn′)− p(Am|am ∧ bn)− p(Bn|am ∧ bn) 6 0(8.47)

The derivation of (9.24) from (10.6)-(8.5) is simple. It is an elementary fat of

arithmeti that for any α, α‘, β, β‘ ∈ [0, 1] the number

αβ + αβ‘ + α‘β − α‘β‘ − α− β (8.48)

lies in the interval [−1, 0]. Now let α, α‘, β, β‘ be the following onditional proba-

bilities:

α ≡ p(Am|am ∧ bn ∧ Ck) (8.49)

α‘ ≡ p(Am′ |am′ ∧ bn′ ∧ Ck) (8.50)

β ≡ p(Bn|am ∧ bn ∧ Ck) (8.51)

β‘ ≡ p(Bn′ |am′ ∧ bn′ ∧Ck) (8.52)

Plugging (9.26)-(9.29) into (9.25) and using loality (8.3)-(8.4) one obtains

−1 6 p(Am|am ∧ bn ∧ Ck)p(Bn|am ∧ bn ∧ Ck) + p(Am|am′ ∧ bn ∧Ck)p(Bn′ |am′ ∧ bn ∧Ck)

+p(Am′ |am′ ∧ bn ∧Ck)p(Bn|am′ ∧ bn ∧ Ck)− p(Am′ |am′ ∧ bn′ ∧ Ck)p(Bn′ |am′ ∧ bn′ ∧Ck)

−p(Am|am ∧ bn ∧ Ck)− p(Bn|am ∧ bn ∧ Ck) 6 0(8.53)

Using sreening-o� (10.6) one obtains

−1 6 p(Am ∧Bn|am ∧ bn ∧ Ck) + p(Am ∧Bn′ |am′ ∧ bn ∧ Ck)

+p(Am′ ∧Bn|am′ ∧ bn ∧ Ck)− p(Am′ ∧Bn′ |am′ ∧ bn′ ∧ Ck)

−p(Am|am ∧ bn ∧ Ck)− p(Bn|am ∧ bn ∧ Ck) 6 0 (8.54)

Finally, multiplying the above inequality by p(Ck), then summing up for the indies

k and using no-onspiray (8.5) one arrives at (9.24).

Appendix B

Here we prove Proposition 13. Suppose that {C′
i ∧C′′

j ∧C′′′
l } is a ommon ause of

the orrelation between Am and Bn in the sense of (8.38)-(8.41) and suppose that
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C′
i, C

′′
j and C′′′

l are independent in the sense of (8.42). First, observe that (8.41)

and (8.42) together entail that:

p(am ∧ bn ∧ C′
i ∧ C′′

j ∧ C′′′
l ) = p(am ∧ bn) p(C′

i)p(C
′′
j )p(C

′′′
l ) (8.55)
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Then C′′
j is a strong ommon ause. That is (8.43)-(8.46) hold:

p(Am ∧Bn|am ∧ bn ∧ C′′
j ) =

p(Am ∧Bn ∧ am ∧ bn ∧ C′′
j )

p(am ∧ bn ∧ C′′
j )

(8.55)
=

∑

il p(Am ∧Bn|am ∧ bn ∧ C′
i ∧ C′′

j ∧ C′′′
l )p(am ∧ bn)p(C′

i)p(C
′′
j )p(C

′′′
l )

p(am ∧ bn)p(C′′
j )

(8.38)
=

∑

il

p(Am|am ∧ bn ∧ C′
i ∧ C′′

j ∧ C′′′
l )p(Bn|am ∧ bn ∧ C′

i ∧C′′
j ∧C′′′

l )p(C′
i)p(C

(8.39)(8.40)
=

∑

il

p(Am|am ∧ bn ∧ C′
i ∧ C′′

j )p(Bn|am ∧ bn ∧ C′′
j ∧C′′′

l )p(C′
i)p(C

′′′
l )

(8.55)
= p(Am|am ∧ bn ∧C′′

j ) p(Bn|am ∧ bn ∧ C′′
j )

p(Am|am ∧ bn ∧ C′′
j ) =

p(Am ∧ am ∧ bn ∧ C′′
j )

p(am ∧ bn ∧ C′′
j )

(8.55)
=

∑

il p(Am|am ∧ bn ∧ C′
i ∧ C′′

j ∧ C′′′
l )p(am ∧ bn)p(C′

i)p(C
′′
j )p(C

′′′
l )

p(am ∧ bn)p(C′′
j )

(8.39)
=

∑

il

p(Am|am ∧ bn′ ∧ C′
i ∧C′′

j ∧C′′′
l )p(C′

i)p(C
′′′
l )

=

∑

il p(Am|am ∧ bn′ ∧ C′
i ∧ C′′

j ∧ C′′′
l )p(am ∧ bn′)p(C′

i)p(C
′′
j )p(C

′′′
l )

p(am ∧ bn′)p(C′′
j )

(8.55)
=

p(Am ∧ am ∧ bn′ ∧ C′′
j )

p(am ∧ bn′ ∧ C′′
j )

= p(Am|am ∧ bn′ ∧ C′′
j )

p(Bn|am ∧ bn ∧ C′′
j ) =

p(Bn ∧ am ∧ bn ∧C′′
j )

p(am ∧ bn ∧ C′′
j )

(8.55)
=

∑

il p(Bn|am ∧ bn ∧ C′
i ∧C′′

j ∧C′′′
l )p(am ∧ bn)p(C′

i)p(C
′′
j )p(C

′′′
l )

p(am ∧ bn)p(C′′
j )

(8.40)
=

∑

il

p(Bn|am′ ∧ bn ∧C′
i ∧ C′′

j ∧ C′′′
l )p(C′

i)p(C
′′′
l )

=

∑

il p(Bn|am′ ∧ bn ∧ C′
i ∧ C′′

j ∧ C′′′
l )p(am′ ∧ bn)p(C′

i)p(C
′′
j )p(C

′′′
l )

p(am′ ∧ bn)p(C′′
j )

(8.55)
=

p(Bn ∧ am′ ∧ bn ∧ C′′
j )

p(am′ ∧ bn ∧ C′′
j )

= p(Bn|am′ ∧ bn ∧ C′′
j )

p(am ∧ bn ∧ C′′
j ) =

∑

il

p(am ∧ bn ∧ C′
i ∧ C′′

j ∧ C′′′
l )

(8.55)
=

∑

il

p(am ∧ bn ∧ C′
i ∧ C′′′

l )p(C′′
j ) = p(am ∧ bn) p(C′′

j )

where the numbers over the equation signs refer to the equation used at that step.
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Chapter 9

Separate ommon ausal

explanation and the Bell

inequalities

In the paper we ask how the following two fats are related: (i) a set of orrelations

has a loal, non-onspiratorial separate ommon ausal explanation; (ii) the set

satis�es the Bell inequalities. Our answer will be partial: we show that no set

of orrelations violating the Clauser�Horne inequalities an be given a loal, non-

onspiratorial separate ommon ausal model if the model is deterministi.

9.1 Introdution

Aording to the standard interpretation a ommon ausal explanation of a set of

EPR orrelations onsists in providing a so-alled ommon ommon ause system

that is a ommon sreener-o� for all orrelations of the set suh that this ommon

sreener-o� is loal and non-onspiratorial. (For the preise de�nitions see below.)

However, it is well known that the assumption that a set of orrelations has a

loal, non-onspiratorial ommon ommon ause system results in various Bell in-

equalities. Sine these Bell inequalities are violated for appropriate measurement

settings a ommon ausal explanation of the EPR orrelations is exluded�at least

aording to this interpretation of the ommon ausal explanation.

However, in 1996 Belnap and Szabó ame up with a weaker interpretation of

the ommon ausal explanation (Belnap, Szabó, 1996). The idea was that a set

of orrelations may not have a ommon ommon ause system but only a set of

separate ommon ause systems explaining the orrelations separately. In 2000 Sz-

abó raised the question whether this idea provides a satisfatory ommon ausal

explanation for the EPR senario (Szabó, 2000). To test his idea Szabó took a set

of EPR orrelations violating the appropriate Bell inequalities and then developed
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a omputer program to generate loal, non-onspiratorial separate ommon ause

systems for the given set. The result of the omputer simulations was that the

hosen set of EPR orrelations ould be given a loal separate ommon ausal ex-

planation, however the ommon ause systems were onspiratorial in a very triky

way. (See below.) Being unable to remove the unwanted onspiraies Szabó on-

luded the paper with the onjeture that EPR orrelation an not be given a loal,

non-onspiratorial separate ommon ausal explanation.

Szabó's idea inspired a whole series of papers devoted to the lari�ation of

the possibility of a separate ommon ausal explanation of EPR orrelations. In

2005 Grassho�, Portmann and Wüthrih derived the Wigner-type Bell inequalities

from Szabó's premises plus the assumption that the set of orrelations onsisted

of only perfet antiorrelations. (Grassho� et al, 2005). The assumption of per-

fet antiorrelations, however, had two unpleasant onsequenes. First, the fate

of the separate ommon ausal explanation of the EPR senario hinged on a pre-

ise experimental test of perfet antiorrelations. Seond, the assumption of perfet

antiorrelations redued the separate ommon ausal derivation of the Bell inequal-

ities to a standard ommon ommon ausal derivation. This redution has been

shown by Hofer-Szabó in (Hofer-Szabó, 2008). In the same paper Hofer-Szabó has

presented a derivation of Bell inequalities from loal, non-onspiratorial separate

ommon auses without assuming perfet antiorrelations. Sine a ommon ause is

a speial ommon ause system (a ommon ause system of size 2) the result was not
general enough. In 2007 Portmann and Wüthrih have eliminated the restrition to

ommon auses from the derivation and derived the Clauser-Horne inequality from

loal, non-onspiratorial separate ommon ause systems in the ontext of almost

perfet antiorrelations (Portmann and Wüthrih, 2007). Hofer-Szabó generalized

this derivation for any Bell(δ) inequality that is an inequality di�ering from some

Bell inequality in a term of order of δ (Hofer-Szabó, 2011). In the light of this

derivation a δ > 0 threshold ould be given for any set of orrelations violating

the standard Bell inequalities suh that if an approriate subset of the original set

of orrelations di�er from perfet antiorrelations less then δ then the set an not

be given a loal, non-onspiratorial separate ommon ausal explanation. These

results have settled the problem onerning the relation between the separate om-

mon ausal explanations and the EPR senario. However, they have not settled the

relation between the separate ommon ausal explanations and the Bell inequalities.

On loser examination the strategies used in the papers of the above authors

(inluding the author of the present paper) had a very ba�ing struture. The

reation of the authors to Szabó's inability to provide a loal, non-onspiratorial

separate ommon ausal explanation for a set of EPR orrelations was the following.

The hosen set of orrelations annot have a separate ommon ausal explanation

sine it violates a Bell inequality whih an be derived from the assumption that

the given set has a loal, non-onspiratorial separate ommon ausal explanation.

Of ourse, the failure of a separate ommon ausal explanation may result from

other reasons as well sine separate ommon ause explanations may bring in other

onstraints between the probability of the orrelating events di�erent from the Bell

inequalities; still the idea motivating the explanation of this fat was to derive
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some Bell inequalities from Szabó's premisses. However, it was not that happened.

Instead of deriving the appropriate Bell inequality from the assumption that the

original set of the orrelations hosen by Szabó has a loal, non-onspiratorial

separate ommon ausal explanation, all the mentioned authors have hosen another

set ontaining only perfet antiorrelations. Then from the assumption that this set

of perfet antiorrelations has a loal, non-onspiratorial separate ommon ausal

explanation they have derived a Bell inequality for the orrelations of the original

set. So the Bell inequality they reahed did not pertain to the original set but to

the newly hosen set of perfet antiorrelations.

The e�ort of all the subsequent papers (Portmann and Wüthrih, 2007), (Hofer-

Szabó, 2008) and (Hofer-Szabó, 2011) was to release the strong requirement of

perfet antiorrelations in the derivation and to substitute perfet antiorrelations

by almost perfet antiorrelations.

Of ourse, this strategy is impeable as long as the aim of the proof is to

exlude a loal, non-onspiratorial separate ommon ausal explanation of the EPR

senario in general. However, it does not explain why Szabó ould not provide a

loal, non-onspiratorial separate ommon ausal explanation for his own set of

orrelations. Sine Szabó's onern was not to give a separate ommon ausal

explanation for the perfet antiorrelation set, the violation of Bell inequalities

derived from the assumption that the perfet antiorrelation set has a separate

ommon ausal explanation did not explain Szabó's failure of providing a separate

ommon ausal explanation for his own set. In order to explain this fat one should

derive some Bell inequalities from the assumption that Szabó's original set has a

loal, non-onspiratorial separate ommon ausal explanation.

Here we will provide a partial answer to this problem. We will show that no set

of orrelations violating the Clauser�Horne inequalities an be given a deterministi,

loal, non-onspiratorial separate ommon ausal explanation. Sine the elimina-

tion of the requirement of determinism from the proof is not straightforward, the

general question whether orrelations violating the Clauser�Horne inequalities an

be given a (not neessary deterministi) loal, non-onspiratorial separate ommon

ausal explanation remains open.

In Setion 2 we summarize the assumptions of a loal, non-onspiratorial om-

mon ommon ausal and separate ommon ausal explanation of a set of EPR

orrelations respetively. In Setion 3 we show in sketh the steps how these as-

sumptions result in the Clauser�Horne inequalities if the set for whih we are

looking for a loal, non-onspiratorial separate ommon ausal explanation is a set

of perfet or almost perfet antiorrelations. Finally, in Setion 4 we drop these ex-

tra orrelations and derive the Clauser�Horne inequalities from Szabó's original set

of orrelations for deterministi, loal, non-onspiratorial separate ommon ause

systems.
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9.2 Common ausal explanations of EPR orrela-

tions

Consider the Bohm version of the EPR experiment with a pair of spin-

1
2 partiles

prepared in the singlet state |Ψs〉. Let ai denote the event that the measurement

apparatus is set to measure the spin in diretion ~ai in the left wing where i is an
element of an index set I of spatial diretions; and let p(ai) stand for the probability

of ai. Let bj and p(bj) respetively denote the same for diretion

~bj in the right

wing where j is again in the index set I. (Note that i = j does not mean that

~ai and ~bj are parallel diretions.) Furthermore, let p(Ai) stand for the probability

that the spin measurement in diretion ~ai in the left wing yields the result �up� and

let p(Bj) be de�ned in a similar way in the right wing for diretion

~bj. Aording
to quantum mehanis the quantum probability of getting �up� in diretion ~ai in
the left wing; getting �up� in diretion

~bj in the right wing; and getting �up� in

both diretions ~ai and ~bj are given by the following relations

Tr(W|Ψs〉 (PAi
⊗ I)) =

1

2
(9.1)

Tr(W|Ψs〉 (I ⊗ PBj
)) =

1

2
(9.2)

Tr(W|Ψs〉 (PAi
⊗ PBj

)) =
1

2
sin2

(

θaibj

2

)

(9.3)

where Tr is the trae funtion; W|Ψs〉 is the density operator pertaining to the pure

state |Ψs〉; PAi
and PBj

denote projetions on the eigensubspaes with eigenvalue

+1 of the spin operators assoiated with diretions ~ai and ~bj respetively; and θaibj

denotes the angle between diretions ~ai and ~bj .

Figure 9.1: EPR�Bohm setup for spin-

1

2
partiles

The standard way to interpret quantum probabilities is to identify them with
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onditional probabilities as follows:

p(Ai|aibj) = Tr(W|Ψs〉 (PAi
⊗ I)) (9.4)

p(Bj |aibj) = Tr(W|Ψs〉 (I ⊗ PBj
)) (9.5)

p(AiBj |aibj) = Tr(W|Ψs〉 (PAi
⊗ PBj

)) (9.6)

where the events Ai, Bj , ai and bj (i, j ∈ I) respetively are elements of a lassial

probability measure spae (X,S, p) and the onditional probabilities are de�ned

in the usual way. With this identi�ation quantum mehanis predits orrelation

between lassial onditional probabilities for non-perpendiular diretions ~ai and
~bj:

p(AiBj |aibj) 6= p(Ai|aibj)p(Bj |aibj) (9.7)

Speially, if the measurement diretions ~ai and ~bj are parallel then there is a perfet
antiorrelation between the outomes Ai and Bi:

p(AiBj |aibj) = 0 (9.8)

A further onsequene of (9.4)-(9.5) is the so-alled surfae loality that is for any

i, i′, j, j′ ∈ I the following relations hold

p(Ai|aibj) = p(Ai|aibj′) (9.9)

p(Bj |aibj) = p(Bj |ai′bj) (9.10)

Now, let (Ai, Bj) (i, j ∈ I) denote a pair orrelating onditionally aording to

(10.1) and let {(Ai, Bj)}i,j∈I stand for a set of orrelating pairs pertaining to the

index set I. What does a ommon ausal explanation of the set {(Ai, Bj)}i,j∈I

of orrelations onsist in? In the following we expose the omponents of suh an

explanation.

Let us begin with the de�nition of the ommon ause. Let (X,S, p) be a lassial

probability measure spae and let A and B be two (positively) orrelating events.

Then the ommon ause of the orrelation is the following:

De�nition 12. An event C in S is said to be the ommon ause of the orrelation

between events A and B only if the eventsA, B and C satisfy the following relations:

p(AB|C) = p(A|C)p(B|C) (9.11)

p(AB|C⊥) = p(A|C⊥)p(B|C⊥) (9.12)

p(A|C) > p(A|C⊥) (9.13)

p(B|C) > p(B|C⊥) (9.14)

where C⊥
denotes the orthoomplement of C. Equations (10.2)-(10.3) are alled

sreening-o� properties sine onditioning on C and C⊥
respetively sreens o� the

orrelation between A and B. Inequalities (10.4)-(10.5) express positive statistial
relevane of the ause C on the two e�ets A and B respetively.
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The above de�nition of the ommon ause goes bak to Reihenbah (Reihenbah,

1956); (although Reihenbah himself did not regard (10.2)-(10.5) as a su�ient

ondition for an event to be a ommon ause). From the time of Reihenbah's

�rst haraterization on the ommon ause onept has been generalized in two

important ways. First, it has been generalized for situations where there are more

than one auses present that is for a system of ooperating ommon auses (Hofer-

Szabó, Rédei, 2004, 2006). Seond, the inequalities expressing positive statistial

relevane have gradually been redarded as being too restritive and hene have

been dropped. As a result the ommon ause has been haraterized simply as a

sreener-o� partition of the algebra de�ned as follows:

De�nition 13. Let again (X,S, p) be a lassial probability measure spae and let

A and B be two orrelating events in S. Then a partition {Ck}k∈K in S is said to

be the ommon ause system of the orrelation between events A and B if and only

if the following fatorization holds for all k ∈ K:

p(AB|Ck) = p(A|Ck)p(B|Ck) (9.15)

where |K|, the ardinality of K is said to be the size of the ommon ause system.

A ommon ause system of size 2 is alled a ommon ause.

De�nition 13 of the ommon ause system referred to a single orrelation. How-

ever, generally we are looking for the ausal explanation for a set of orrelations.

This explanation an be understood in two di�erent ways. Either we provide a

separate ommon ause system for eah separate orrelation of the given set; or

we are looking for a so-alled ommon ommon ause system that is a partition

sreening o� all orrelations of the set. This latter option puts extra requirements

on the explanation sine it demands that the ommon ause system pertaining to

the di�erent orrelations be the same.

Now, let us apply the onept of ommon ause systems to EPR orrelations. First

note that EPR orrelations are onditional orrelations in the sense of (10.1) where

the onditions represent the hoie of the measurement diretions. Looking at the

spatiotemporal arrengement of the events representing the measurement hoies

and the measurement outomes respetively in the opposite wings and the set of

events representing the ommon ause system at the soure we an read o� the

following two spatial separations. The outome events Ai in the left wing are

spatially separated from the measurement hoie events bj in the right wing; and

similarly events Bj are spatially separated from events ai. The measurement hoie

events ai and bj are spatially separeted from the events of the ommon ause system

{Ck}. Turning these two spatiotemporal onsiderations in statistial relationships

we get the so-alled loality and no-onspiray requirements. Applying the above

de�nition of the ommon ause systems that is the sreening-o� requirement for

onditional probabilities we obtain altogether three demands that a ommon ausal

explanation should satisfy. If we demand on the top that the ommon ause sytem

be the same for all orrelations of the given set then we arrive at a loal, non-

onspiratorial ommon ommon ausal explanation.
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De�nition 14. Let {(Ai, Bj)}i,j∈I be a set of orrelating pairs pertaining to the

index set I suh that Ai, Bj , ai and bj are elements of a lassial probability

measure spae (X,S, p). Then a loal, non-onspiratorial ommon ommon ausal

explanation of the set {(Ai, Bj)}i,j∈I onsists in providing a partition {Ck}k∈K of

S suh that {Ck}k∈K is loal, non-onspiratorial and sreens o� all the orrelations

of {(Ai, Bj)}i,j∈I in the sense that for every i, i′, j, j′ ∈ I and k ∈ K the following

relations hold:

p(Ai|aibjCk) = p(Ai|aibj′Ck) (loality) (9.16)

p(Bj |aibjCk) = p(Bj |aj′bjCk) (loality) (9.17)

p(aibjCk) = p(aibj)p(Ck) (no-onspiray) (9.18)

p(AiBj |aibjCk) = p(Ai|aibjCk)p(Bj |aibjCk) (sreening-o�) (9.19)

On the other hand, if we let the ommon ause sytem be di�erent for the

di�erent orrelations of the set then our explanation will be alled a loal, non-

onspiratorial separate ommon ausal explanation.

De�nition 15. Let {(Ai, Bj)}i,j∈I be a set of orrelating pairs pertaining to

the index set I suh that Ai, Bj , ai and bj are elements of a lassial proba-

bility measure spae (X,S, p). Then a loal, non-onspiratorial separate ommon

ausal explanation of the set {(Ai, Bj)}i,j∈I onsists in �nding a separate parti-

tion {Cij
k }k(ij)∈K(i,j) of S for eah orrelation in {(Ai, Bj)}i,j∈I suh that eah

{Cij
k }k(ij)∈K(i,j) is loal, non-onspiratorial and sreens o� the appropriate orre-

lation in {(Ai, Bj)}i,j∈I in the sense that for every i, i′, j, j′ ∈ I and k(ij) ∈ K(i, j)
the following relations hold:

p(Ai|aibjCij
k ) = p(Ai|aibj′Cij

k ) (loality) (9.20)

p(Bj |aibjCij
k ) = p(Bj |aj′bjCij

k ) (loality) (9.21)

p(aibjF ) = p(aibj)p(F ) (no-onspiray) (9.22)

p(AiBj |aibjCij
k ) = p(Ai|aibjCij

k )p(Bj |aibjCij
k ) (sreening-o�) (9.23)

where F in equation (10.20) is an element of the algebra S′ ⊂ S generated by all

the elements of every separate ommon ause system.

To motivate why it is important to demand no-onspiray (10.20) in this strong

sense namely for any element of the generated algebra and not just for the Cij
k ele-

ments, reall the triky onspiraies in Szabó's separate ommon ausal model. As

mentioned in the Introdution Szabó was able to onstrut a loal separate ommon

ausal model for a speial set of EPR orrelations that was non-onspiratorial in the

sense the every ai and bj were independent of every C
ij
k . However, this model was

onspiratorial at a deep level�the measurement hoies ai and bj orrelated with

some disjuntions of elements of separate ommon ause systems suh as Cij
k ∪Ci′j′

k′ .

To exlude all these type of onspiraies we demand no-onspiray in the strong

form (10.20).
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Now, we turn to the relation between the loal, non-onspiratorial ommon or

separate ommon ausal explanations of the EPR orrelations on the one hand and

the Bell inequalities on the other.

9.3 Bell inequalities

Now, let us be more spei� onerning our set {(Ai, Bj)}i,j∈I . Let the orrelation

set onsist of four orrelating pairs (A1, B3), (A1, B4), (A2, B3) and (A2, B4). The
standard question is usually whether this set an be given a loal, non-onspiratorial

ommon ommon ausal explanation in the sense of De�nition 14. The answer is

well known. {(Ai, Bj)}i=1,2;j=3,4 an be given a loal, non-onspiratorial ommon

ommon ausal explanation only if the orrelations of the set for any i, i′ = 1, 2;
j, j′ = 3, 4 and i 6= i′, j 6= j′ satisfy the Clauser�Horne inequalities

−1 6 p(AiBj |aibj) + p(AiBj′ |aibj′) + p(Ai′Bj |ai′bj)− p(Ai′Bj′ |ai′bj′)− p(Ai|aibj)− p(Bj |aibj) 6 0(9.24)

The proof is simple. It is a trivial fat of arithmeti that for any α, α′, β, β′ ∈ [0, 1]
the expression

αβ + αβ′ + α′β − α′β′ − α− β (9.25)

lies in the bound [−1, 0]. Now let α, α′, β, β′
be the following onditional probabil-

ities:

α ≡ p(Ai|aibjCk) (9.26)

α′ ≡ p(Ai′ |ai′bj′Ck) (9.27)

β ≡ p(Bj |aibjCk) (9.28)

β′ ≡ p(Bj′ |ai′bj′Ck) (9.29)

Plugging (9.26)-(9.29) into (9.25) and using loality (9.16)-(9.17) one gets that

−1 6 p(Ai|aibjCk)p(Bj |aibjCk) + p(Ai|ai′bjCk)p(Bj′ |ai′bjCk) + p(Ai′ |ai′bjCk)p(Bj |ai′bjCk)

−p(Ai′ |ai′bj′Ck)p(Bj′ |ai′bj′Ck)− p(Ai|aibjCk)− p(Bj |aibjCk) 6 0

Using sreening-o� (10.17) one gets that

−1 6 p(AiBj |aibjCk) + p(AiBj′ |ai′bjCk) + p(Ai′Bj |ai′bjCk)

−p(Ai′Bj′ |ai′bj′Ck)− p(Ai|aibjCk)− p(Bj |aibjCk) 6 0

Finally, multiplying by p(Ck), summing up for the indies k and using no-onspiray
(10.16) one obtains (9.24).

An example for a orrelation set whih violates (9.24) and hene an not be given

a loal, non-onspiratorial ommon ommon ausal explanation is the one Szabó

used in his paper (2000). Here the angles θaibj between the diretions ~ai and ~bj are
set as follows:

θa1b3 = θa1b4 = θa2b3 =
2π

3
and θa2b4 = 0 (9.30)
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For this hoie of the measurement diretions there is a onditional orrelation for

every (Ai, Bj) pair (i = 1, 2; j = 3, 4):

3

8
= p(A1B3|a1b3) 6= p(A1|a1b3) p(B3|a1b3) =

1

2
· 1
2

(9.31)

3

8
= p(A1B4|a1b4) 6= p(A1|a1b4) p(B4|a1b4) =

1

2
· 1
2

(9.32)

3

8
= p(A2B3|a2b3) 6= p(A2|a2b3) p(B3|a2b3) =

1

2
· 1
2

(9.33)

0 = p(A2B4|a2b4) 6= p(A2|a2b4) p(B4|a2b4) =
1

2
· 1
2

(9.34)

Denote this set of orrelations by {(Ai, Bj)}CH . This set violates the Clauser�Horne

inequality

−1 6 p(A1B3|a1b3) + p(A1B4|a1b4) + p(A2B4|a2b4)− p(A2B4|a2b4)− p(A1|a1b3)− p(B3|a1b3) 6 0(9.35)

at the upper bound as follows:

3

8
+

3

8
+

3

8
− 0− 1

2
− 1

2

 0 (9.36)

Consequently, {(Ai, Bj)}CH an not be given a loal, non-onspiratorial ommon

ommon ausal explanation.

Now, let us go over to the question whether {(Ai, Bj)}CH (or any other orrelation

set violating the Clauser�Horne inequalities) an have a loal, non-onspiratorial

separate ommon ausal explanation. As mentioned in the Introdution Szabó

was unable to present a loal, non-onspiratorial separate ommon ause model for

{(Ai, Bj)}CH beause of the unwanted onspiraies. The natural intuition towards

this fat was that a loal, non-onspiratorial separate ommon ausal explanation

of the set {(Ai, Bj)}CH results in some Bell inequalities�for example in the above

Clauser�Horne inequalities�and the violation of these inequalities for the above

setting is responsible for the lak of a separate ommon ausal explanation. Thus,

the program has been to show up a derivation of some Bell inequalities from the

assumption that {(Ai, Bj)}CH has four loal, non-onspiratorial separate ommon

ause systems satisfying (9.20)-(10.21).

Curiously enough, none of the authors has taken this route. Instead of taking

the above set and then searhing for a derivation of some Bell inequality from the

assumption that this set has a loal, non-onspiratorial separate ommon ausal

explanation they have hosen another set. This set again onsisted of the four

orrelations of {(Ai, Bi)} (i = 1, 2, 3, 4) for any of whih the angle θaibi was set to

0. In other words, this set was omposed of perfet antiorrelations. Denote this set

by {(Ai, Bi)}PA. For the relation between the sets {(Ai, Bj)}CH and {(Ai, Bj)}PA

see Figure 9.2 where the ontinuous lines represent the Clauser�Horne orrelations

and the dotted lines represent the perfet antiorrelations.

Now, the reasoning has run as follows (for the details see (Grassho� et al.

2005) and (Hofer-Szabó, 2008)). Suppose that {(Ai, Bi)}PA has a loal, non-

onspiratorial separate ommon ausal explanation that is four loal, non-onspiratorial
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B
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44

22
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Figure 9.2: The Clauser�Horne orrelation set and the perfet antiorrelation

set

separate ommon ause systems {Cii
k }k∈K(i) (i = 1, 2, 3, 4) satisfying (9.20)-(10.21).

Sine {(Ai, Bi)}PA onsists of only perfet antiorrelations it is easy to show that

from assumptions (9.20)-(10.21) it follows that for any i = 1, 2, 3, 4 there exist a

vetor εii ∈ {0, 1}K(i)
suh that de�ning Cii

and Cii⊥
as

Cii ≡
⋃

k∈K(i)

εiik C
ii
k ; Cii⊥ ≡

⋃

k∈K(i)

(1− εiik )Cii
k (9.37)

the partitions {Cii, Cii⊥} (i = 1, 2, 3, 4) will be loal, non-onspiratorial separate

ommon auses that is a separate ommon ause systems of size 2 for the set

{(Ai, Bi)}PA. Moreover, every {Cii, Cii⊥} will satisfy (9.20)-(10.21) deterministi-

ally that is eah term in (9.20)-(10.21) will be either 0 or 1. Finally, the probability
of the separate ommon auses will equal to the probability of the onditional prob-

abilities p(Ai|aibi) and p(Bi|aibi):

p(Cii) = p(Ai|aibi) (9.38)

p(Cii⊥) = p(Bi|aibi) (9.39)

Notie that in this reasoning there has been no mention of the original set {(Ai, Bj)}CH .

How do the orrelations of {(Ai, Bj)}CH ome into the piture?

The joint and marginal onditional probabilities of the Clauser�Horne orrela-

tions appear simply using loality (9.20)-(9.21) and no-onspiray (10.20) for the

perfet antiorrelation set. That is for any i, j = 1, 2, 3, 4; i 6= j

p(Cii) = p(Ai|aibj) (9.40)

p(Cjj⊥) = p(Bj |aibj) (9.41)

p(CiiCjj⊥) = p(AiBj |aibj) (9.42)

Now, onsider the four events C11
, C22

, C33⊥
and C44⊥

in S. For these events
the following simple probabilisti onstraint applies:

−1 6 p(C11C33⊥) + p(C11C44⊥) + p(C22C33⊥)− p(C22C44⊥)− p(C11)− p(C33⊥) 6 0(9.43)

Subtituting the probabilities of (9.43) by the onditional probabilities of (9.40)-

(9.42) we get the Clauser�Horne inequality (9.35) for the orrelation set {(Ai, Bj)}CH .
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Sine for the measuring setup (9.30) this inequality is violated there an be given

no loal, non-onspiratorial separate ommon ausal explanation of the perfet an-

tiorrelation set {(Ai, Bj)}PA!

To put is brie�y, the neessary ondition for {(Ai, Bj)}PA to have a loal, non-

onspiratorial separate ommon ausal explanation is that {(Ai, Bj)}CH satis�es

the Clauser�Horne inequality (9.35).

The papers (Portmann and Wüthrih, 2007) and (Hofer-Szabó, 2008, 2011) have re-

peated the same argumentation for almost perfet antiorrelations. Here we sketh

the argument of (Hofer-Szabó, 2011). Consider again a set onsisting of four orre-

lating pairs {(Ai, Bi)}i=1,2,3,4 and suppose that for any i = 1, 2, 3, 4 the angle θaibi

between the measurement hoies is suh that

|π − θaibi | < 2 arcsin
√
1− 2δ (9.44)

or more simply, let the orrelations be suh that for any i = 1, 2, 3, 4

p(AiBi|aibi) 6 δ (9.45)

Denote suh a set of orrelations by {(Ai, Bi)}PA(δ). Again suppose that {(Ai, Bi)}PA(δ)

has a loal, non-onspiratorial separate ommon ausal explanation. As above,

from this assumption it follows that there exist a vetor εii ∈ {0, 1}Ki
for any

i = 1, 2, 3, 4 suh that de�ning Cii
and Cii⊥

as in (9.37) one get four partitions

{Cii, Cii⊥}i=1,2,3,4 for whih�instead of (9.38)-(9.39)�the following inequalities

will hold:

|p(Cii)− p(Ai|aibi)| 6 4δ (9.46)

|p(Cii⊥)− p(Bi|aibi)| 6 4δ (9.47)

Call these partitions quasi ommon auses sine although they are onstruted out

of the elements of the ommon ause systems {Cii
k } they do not satisfy sreening-o�

(10.21) (however they satisfy loality (9.20)-(9.21) and no-onspiray (10.20)).

Now as above, using loality (9.20)-(9.21) and no-onspiray (10.20) for the set

{(Ai, Bi)}PA(δ) we get that for any i, j = 1, 2, 3, 4

|p(Cii)− p(Ai|aibj)| 6 4δ (9.48)

|p(Cjj⊥)− p(Bj |aibj)| 6 4δ (9.49)

|p(CiiCjj⊥)− p(AiBj |aibj)| 6 8δ (9.50)

Consider again inequality (9.43) omposed of the quasi ommon auses C11
, C22

,

C33⊥
and C44⊥

and substitute the probabilities of (9.43) by the onditional prob-

abilities of (9.48)-(9.50). Eah substitution will ause an error of order of either 4δ
or 8δ. Adding up the errors we obtain the following inequality.

−1 6 p(A1B3|a1b3) + p(A1B4|a1b4) + p(A2B3|a2b4)− p(A2B4|a2b3)− p(A1|a1b3)− p(B3|a1b3)− 40δ 6 0(9.51)

We refer to this inequlity as a Clauser�Horne(δ) inequality sine (9.51) di�ers from
the original Clauser�Horne inequality (9.43) in a term of order of δ. Again for

185

dc_1495_17

Powered by TCPDF (www.tcpdf.org)



the measuring setup (9.30) the Clauser�Horne(δ) inequality (9.51) is violated as

long as δ < 1
320 . This exludes a loal, non-onspiratorial separate ommon ausal

explanation of the almost perfet antiorrelation set {(Ai, Bj)}PA(δ).

This strategy an be generalized for arbitrary Bell(δ) inequality. In (Hofer-Szabó,

2011) a reipe has been given for deriving any Bell(δ) inequality omposed of

marginal probabilities p(Ai|aibj), p(Bj |aibj) and joint probabilities p(AiBj |aibj).
The reipe is roughly this. Consider a Bell inequality resulting from the loal, non-

onsipratorial ommon ommon ausal explanation of a set {(Ai, Bj)} of orrela-
tions. Consider the set {(Ai, Bi)}PA(δ) of almost perfet antiorrelations pertaining

to the events Ai or Bj whih appear in either a marginal or a joint probability in

the Bell inequality. Suppose that {(Ai, Bj)}PA(δ) has a loal, non-onspiratorial

separate ommon ausal explanation. This assumption results in a Bell(δ) inequal-
ity di�ering from the original Bell inequality in a term of order of δ where the exat
magnitude of this term is the funtion of the approximation. Choose the setting

whih violates the Bell inequality maximally. If the δ term is smaller than the

violation of the original Bell inequality than the new Bell(δ) inequality will also be

violated�exluding a loal, non-onspiratorial separate ommon ausal explanation

almost perfet antiorrelation set {(Ai, Bj)}PA(δ).

9.4 No deterministi, loal, non-onspiratorial sep-

arate ommon ausal explanation of the Clauser�

Horne set

In the last Setion we have posed a question and answered another one. The

question was whether the set {(Ai, Bj)}CH has a loal, non-onspiratorial sepa-

rate ommon ausal explanation. However, the answer was this. The neessary

ondition for {(Ai, Bj)}PA (or {(Ai, Bj)}PA(δ)) to have a loal, non-onspiratorial

separate ommon ausal explanation is that {(Ai, Bj)}CH satis�es the Clauser�

Horne inequality (9.24). This answer is perfetly adequate if our intention is to

exlude the loal, non-onspiratorial separate ommon ausal explanation of the

EPR senario as suh�as it was the aim of the paper (Grassho� et al. 2005).

But it does not at all explain the fat why Szabó was not able to give a loal, non-

onspiratorial separate ommon ausal explanation of his original set {(Ai, Bj)}CH .

This latter question an be answered only if we derive some Bell inequalities from

the assumption that the original set {(Ai, Bj)}CH has a loal, non-onspiratorial

separate ommon ausal explanation; or we show up other reasons for the failure.

In this Setion we give an answer to the original question�a partial answer

on�ned to the deterministi ase. The answer is this. {(Ai, Bj)}CH an not

have a deterministi, loal, non-onspiratorial separate ommon ausal explanation

sine this separate ommon ausal explanation implies the same Clauser�Horne

inequalities as the loal, non-onspiratorial ommon ommon ausal explanation.
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Proposition 13. Let {(Ai, Bj)}i=1,2;j=3,4 be a set of orrelating pairs suh that Ai,

Bj , ai and bj are elements of a lassial probability measure spae (X,S, p). Suppose
furthermore that {(Ai, Bj)}i=1,2;j=3,4 has a deterministi, loal, non-onspiratorial

separate ommon ausal explanation in the sense that there exist a separate par-

tition {Cij
k }k(ij)∈K(i,j) of S for eah orrelation of {(Ai, Bj)}i=1,2;j=3,4 suh that

{Cij
k }k(ij)∈K(i,j) satisties (9.20)-(10.21) and p(Ai|aibjCij

k ), p(Bj |aibjCij
k ) ∈ {0, 1}

for any i = 1, 2; j = 3, 4 and k(ij) ∈ K(i, j). Then for any i, i′ = 1, 2; j, j′ = 3, 4;
i 6= i′, j 6= j′ the Clauser�Horne inequality (9.24) follows.

Proof. Consider the separate ommon ause system {Cij′

k } (i = 1, 2; j′ = 3, 4)
pertaining to the orrelation (Ai, Bj′) and let K ′

denote the set of those indies

k ∈ K for whih

p(AiBj′ |aibj′Cij′

k ) = 1 (9.52)

Similarly onsider the separate ommon ause system {Ci′j
l } (i′ = 1, 2; j = 3, 4;

i 6= i′, j 6= j′) pertaining to the orrelation (Ai′ , Bj) and let L′
denote the set of

those indies l ∈ L for whih

p(Ai′Bj |ai′bjCi′j
l ) = 1 (9.53)

With the index sets K ′
and L′

in hand de�ne the following two elements of the

algebra generated by the separate ommon ause systems {Cij′

k } and {C
i′j
l }

Cij′ ≡
⋃

k∈K′

Cij′

k (9.54)

Ci′j ≡
⋃

l∈L′

Ci′j
l (9.55)

Now, sine due to loality (9.20)-(9.21) for any k ∈ K ′
and l ∈ L′

p(Ai|aibjCij′

k ) = 1

p(Bj |aibjCi′j
l ) = 1

and hene for Cij′
and Ci′j

p(Ai|aibjCij′ ) = 1

p(Bj |aibjCi′j) = 1

it follows that

aibjC
ij′ ⊆ Ai (9.56)

aibjC
i′j ⊆ Bj (9.57)

exept for a set of zero measure. From (9.56)-(9.57) we obtain that

aibj (C
ij′ ∪ Ci′j) ⊆ Ai ∪Bj
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again exept for a set of zero measure and hene

p(aibj(C
ij′ ∪ Ci′j)) 6 p(Ai ∪Bj)

whih using no-onspiray (10.20) results in

p(Cij′ ∪Ci′j) 6 p(Ai ∪Bj |aibj) = p(Ai|aibj) + p(Bj |aibj)− p(AiBj |aibj)(9.58)

Again, due to loality (9.20)-(9.21) from (9.52)-(9.53) for any k ∈ K ′
and l ∈ L′

one gets

p(Bj′ |ai′bj′Cij′

k ) = 1

p(Ai′ |ai′bj′Ci′j
l ) = 1

and hene

p(Bj′ |ai′bj′Cij′ ) = 1 (9.59)

p(Ai′ |ai′bj′Ci′j) = 1 (9.60)

From (9.59)-(9.60) we obtain that

ai′bj′C
ij′ ⊆ Bj′

ai′bj′C
i′j ⊆ Ai′

exept for a set of zero measure and hene

ai′bj′ (C
ij′Ci′j) ⊆ Ai′Bj′ (9.61)

again exept for a set of zero measure. From (9.61) it follows that

p(ai′bj′(C
ij′Ci′j)) 6 p(Ai′Bj′)

or using no-onspiray (10.20)

p(Cij′Ci′j) 6 p(Ai′Bj′ |ai′bj′) (9.62)

Now, from (9.52)-(9.53) using the theorem of total probability and no-onspriray

(10.20) one obtains that

p(Cij′ ) = p(AiBj′ |aibj′)
p(Ci′j) = p(Ai′Bj |ai′bj)

whih using the fat that

p(Cij′ ∪ Ci′j) = p(Cij′ ) + p(Ci′j)− p(Cij′Ci′j)

transforms (9.62) into

p(Cij′ ∪ Ci′j) > p(AiBj′ |aibj′) + p(Ai′Bj |ai′bj)− p(Ai′Bj′ |ai′bj′) (9.63)

Constrasting (9.58) to (9.63) we get the Clauser�Horne inequality (9.24) at the

upper bound. To get the inequality at the lower bound just replae Ai by A
⊥
i and

follow the steps of the above reasoning. �
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9.5 Conlusions

In the paper we addressed the problem as to why Szabó (2000) was unable to yield a

loal, non-onspiratorial separate ommon ausal model for the EPR senario. We

have shown that the usual answer laiming that the orrelation set used by Szabó

violates the Clauser�Horne inequalities if we assume that there is a loal, non-

onspiratorial separate ommon ausal model of another set, is not satisfatory.

To explain Szabó's situation one should derive some Bell inequalities from the

assumption that there is a loal, non-onspiratorial separate ommon ausal model

of the original set.

Here we provided a partial answer to this problem. We have shown that no set

of orrelations violating the Clauser�Horne inequalities an be given a determinis-

ti, loal, non-onspiratorial separate ommon ausal explanation. This result was

partial sine we ould not eliminate the requirement of determinism from the proof.

So we onlude the paper with the following

Open question: Is it true that no set of orrelations violating the Clauser�Horne

inequalities an be given a (not neessarily deterministi) loal, non-onspiratorial

separate ommon ausal explanation? Or in other words, does Proposition 13 hold

generally that is without the assumption that p(Ai|aibjCij
k ), p(Bj |aibjCij

k ) ∈ {0, 1}
for any i = 1, 2; j = 3, 4 and k(ij) ∈ K(i, j)?
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Chapter 10

EPR orrelations, Bell

inequalities and ommon ause

systems

Standard ommon ausal explanations of the EPR situation assume a so-alled

joint ommon ause system that is a ommon ause for all orrelations. How-

ever, the assumption of a joint ommon ause system together with some other

physially motivated assumptions onerning loality and no-onspiray results in

various Bell inequalities. Sine Bell inequalities are violated for appropriate mea-

surement settings, a loal, non-onspiratorial joint ommon ausal explanation of

the EPR situation is ruled out. But why do we assume that a ommon ausal

explanation of a set of orrelation onsists in �nding a joint ommon ause system

for all orrelations and not just in �nding separate ommon ause systems for the

di�erent orrelations? What are the perspetives of a loal, non-onspiratorial sep-

arate ommon ausal explanation for the EPR senario? And �nally, how do Bell

inequalities relate to the weaker assumption of separate ommon ause systems?

10.1 Introdution

In the history of probabilisti ausation Reihenbah's de�nition (Reihenbah,

1956) was the �rst formal grasp of the notion of ommon ause. The onep-

tual novelty of the Reihenbahian de�nition has attrated immense interest among

philosophers of siene from the very beginning (Salmon, 1975; van Fraassen, 1982).

From the physial side, the need for a ommon ausal explanation of the EPR situa-

tion alled attention to the de�nition of the ommon ause, even though in standard

hidden variable strategies a slightly di�erent ommon ausal onept than the Re-

ihenbahian has been applied (Bell, 1971; Jarrett, 1984; van Fraassen 1989). An

important step in the oneptual lari�ation of the ommon ause in the EPR-Bell
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situation was the paper of Belnap and Szabó (1996) in whih the di�erene between

the so-alled joint and separate ommon ause had been �rst reognized. Belnap

and Szabó pointed out that in standard ommon ausal explanations of the EPR

orrelations ommon ause is atually meant as a joint ommon ause aounting

for all orrelations.

Conerning the algebrai-probabilisti features of the Reihenbahian ommon

ause Hofer-Szabó, Rédei and Szabó (1999) proved the following proposition. Clas-

sial (and also non-lassial) orrelations an be given a probabilisti ommon ausal

explanation in the sense that any lassial probability measure spae with orre-

lating pairs of events an be extended suh that the extension ontains a Reihen-

bahian separate ommon ause for eah orrelation. (For the preise de�nitions see

below.) Then in (Hofer-Szabó, Rédei, Szabó, 2002) it was proven that this propo-

sition does not apply if Reihenbahian separate ommon auses are replaed with

Reihenbahian joint ommon auses. In other words, lassial probability measure

spaes ontaining orrelating pairs of events generally annot be extended suh that

the extension ontains a Reihenbahian joint ommon ause for all orrelations.

Thus, being a joint ommon ause of a set of orrelations turned out to be a muh

stronger demand than being a ommon ause of a single orrelation.

The �rst to apply the onept of separate ommon ause to the EPR situa-

tion was Szabó (2000). Sine fatorizability, loality and no-onspiray together

entail various types of Bell inequalities, EPR orrelations annot be given a loal,

non-onspiratorial, joint ommon ausal model. Now, Szabó's idea was to replae

the joint ommon auses with separate ommon auses and thus to give a separate

ommon ausal model for the EPR orrelations. He onstruted a number of sep-

arate ommon ausal models whih were loal and non-onspiratorial in the usual

sense that the measurement settings were statistially independent of the di�er-

ent ommon auses. However, the models were onspiratorial on a deeper level.

The measurement settings statistially orrelated with various algebrai ombina-

tions of the separate ommon auses. This fat alled attention to the subtle but

important di�erene between the so-alled weak no-onspiray where statistially

independene is required only from the measure settings and the ommon auses

themselves, and strong no-onspiray where statistially independene is required

from any Boolean ombination of the measure settings and any Boolean ombina-

tion of the ommon auses. After numerous omputer simulations aiming to remove

the unwanted onspiraies Szabó onluded with the onjeture that EPR annot

be given a loal, strongly non-onspiratorial, separate ommon ausal model.

The onjeture of Szabó has been �rst proven by Grassho�, Portmann and

Wüthrih (2005). The proof onsisted in deriving some Bell inequality from the

same assumptions that Szabó intended to apply in his separate ommon ausal

models for the EPR orrelations. A ruial premise of this derivation was that the

(anti)orrelation between some events be perfet. Assuming perfet antiorrelations,

however, turned the separate ommon ausal explanations into a joint ommon

ausal explanation. This fat has been shown in (Hofer-Szabó, 2008). In the

same paper Hofer-Szabó eliminated the assumption of perfet antiorrelations and

presented a separate ommon ausal derivation of some Bell-like inequalities (Bell(δ)
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inequalities). At the same time Portmann and Wüthrih (2007) presented a very

similar result for the Clauser-Horne inequality replaing separate ommon auses

with the more general notion of the so-alled separate ommon ause systems (see

below). Finally, in Hofer-Szabó (2011, 2012) a general reipe has been given how

to derive any type of Bell(δ) inequality provided that the original Bell inequality

an be derived from a set of perfet antiorrelations.

Although due to the above proofs the separate ommon ausal explanation of

the EPR senario has been exluded, there is a sense in whih Szabó's onjeture

is still not deided. Szabó's original onjeture referred to the so-alled Clauser�

Horne set that is a set of four orrelations violating the Clauser�Horne inequality.

His question was as to whether the Clauser�Horne set an be given a loal, strongly

non-onspiratorial, separate ommon ausal model. Interestingly enough�in the

fae of the above results�this question is still open.

In Setion 2 we make expliit the onepts and propositions introdued infor-

mally in the Introdution. In Setion 3 the standard joint ommon ausal expla-

nation of EPR orrelations will be realled. In Setion 4 and 5 we expliate what

has been and what has not been proven in the loal, non-onspiratorial, separate

ommon ausal explanation of the EPR senario. We onlude the paper in Setion

6.

10.2 Joint and separate ommon ause systems

Let us start the ommon ausal explanation with Reihenbah's (1956) de�nition

of the ommon ause. Let (Σ, p) be a lassial probability measure spae and let

A,B ∈ Σ be two positively orrelating events, i.e.

p(A ∩B) > p(A)p(B) (10.1)

Reihenbah then de�nes the ommon ause of the orrelation as follows:

De�nition 16. An event C ∈ Σ is said to be the Reihenbahian ommon ause

of the orrelation between A and B, if the events A, B and C satisfy the following

relations:

p(A ∩B|C) = p(A|C)p(B|C) (10.2)

p(A ∩B|C) = p(A|C)p(B|C) (10.3)

p(A|C) > p(A|C) (10.4)

p(B|C) > p(B|C) (10.5)

where C denotes the omplement of C and the onditional probability is de�ned in

the usual way. Equations (10.2)-(10.3) are referred to as �sreening-o�� properties

and inequalities (10.4)-(10.5) as �positive statistial relevane� onditions. (Here

we do not disuss the problem as to whether onditions (10.2)-(10.5) are neessary

or su�ient onditions for an event C to be a ommon ause and simply take them

to be the de�nition of the ommon ause.)
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Physiists use the notion of 'ommon ause' in a di�erent meaning. We obtain

this meaning if (i) we drop the positive statistial relevane onditions (10.4)-(10.5)

from the de�nition, and (ii) we do not restrit the sreening-o� properties (10.2)-

(10.3) to the partition {C,C} of Σ:

De�nition 17. Let (Σ, p) be a lassial probability measure spae and let (A,B)
be a orrelating pair of events in Σ. A partition {Ck} (k ∈ K) of Σ is said to be the

ommon ause system of the pair (A,B) if for all k ∈ K the following onditions

are satis�ed:

p(A ∩B|Ck) = p(A|Ck)p(B|Ck) (10.6)

The ardinality |K| (the number of events in the partition) is alled the size of the

ommon ause system. We will refer to a ommon ause system of size 2 (that is

of the form {C,C}) as a ommon ause. (Sometimes we will also refer to C as a

ommon ause.)

Now, let (Σ, p) be a lassial probability measure spae as before and let

(A1, B1) and (A2, B2), respetively be two positively orrelating pairs of events

in Σ, i.e. for i = 1, 2

p(Ai ∩Bi) 6= p(Ai)p(Bi) (10.7)

In order to give a ommon ausal explanation for both orrelating pairs we have

two options. Either we assume that the two orrelations arise from the same ausal

soure or we attribute di�erent ausal soures to the orrelations. In the �rst ase

we explain the orrelation by a so-alled joint ommon ause system, in the seond

ase we employ two separate ommon ause systems. The de�nition of joint and

separate ommon ause systems, respetively are the following:

De�nition 18. A partition {Ck} (k ∈ K) of Σ is said to be the joint ommon ause

system of orrelations (Ai, Bi) (i = 1, 2), respetively if for i = 1, 2 and k ∈ K the

following relations are satis�ed:

p(Ai ∩Bi|Ck) = p(Ai|Ck)p(Bi|Ck) (10.8)

De�nition 19. Two di�erent partitions {Ci
k} (i = 1, 2; k(i) ∈ K(i)) of Σ are

said to be separate ommon ause systems of the orrelations (Ai, Bi) (i = 1, 2),
respetively if for i = 1, 2 and k(i) ∈ K(i) the following relations hold:

p(Ai ∩Bi|Ci
k) = p(Ai|Ci

k)p(Bi|Ci
k) (10.9)

Having de�ned di�erent ommon ausal strutures let us turn to the proedure

of ausal explanation. A ommon ausal explanation of a given orrelation is re-

alized mathematially by the extension of the probabilisti measure spae in suh

a way that for the original orrelation there exists a ommon ause system in the

extended probabilisti measure spae. In the ase of two (or more) orrelations we

an extend the algebra in two di�erent ways aording to our ausal intuition. In
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order to model a joint ommon ausal soure of the orrelations we extend the al-

gebra suh that in the extended algebra all orrelations have a joint ommon ause

system. On the other hand to aount for separate ausal mehanisms we extend

the algebra suh that in the extended algebra di�erent orrelations have separate

ommon ause systems.

The extendability of the probabilisti measure spaes by joint respetively sep-

arate ommon ausal strutures ruially depends on the size of the ommon ause

system. In the ase of a ommon ause system of size 2 that is in the ase of a

ommon ause there is a great di�erene between joint and separate ommon ause

extensions as it is shown in the following two propositions:

Proposition 14. (Hofer-Szabó, Rédei, Szabó, 1999) Let (Σ, p) be a lassial prob-
ability measure spae and let (A1, B1) and (A2, B2), respetively be two orrelating
pairs of events in Σ. Then there always exists a (Σ′, p′) extension of (Σ, p) suh that
for the orrelation (A1, B1) there exists a ommon ause C1

and for the orrelation

(A2, B2) there exists a ommon ause C2
in (Σ′, p′).

Proposition 15. (Hofer-Szabó, Rédei, Szabó, 2002) There exists a (Σ, p) lassial
probability measure spae and two orrelating pairs (A1, B1) and (A2, B2), respe-
tively in Σ suh that there is no (Σ′, p′) extension of (Σ, p) whih ontains a joint

ommon ause C in (Σ′, p′) for both orrelations.

Proposition 14 laims that for two orrelating pairs a separate ommon ausal

explanation is always possible by extending the probability measure spae in an

appropriate way. (Moreover, if Σ ontains n ∈ N orrelating pairs, eah orrela-

tion an be given a separate ommon ausal explanation.) However, aording to

Proposition 15 this strategy does not work generally if we are going to obtain the

same ommon ause for the two (or more) orrelating pairs. Thus, being a joint

ommon ause imposes muh stronger demand on C than simply being a separate

ommon ause.

However, strangely enough this di�erene between the ommon and separate

ommon ausal extendability of a probability measure spae disappears if the size of

the ommon ause system is not spei�ed. In other words, to �nd a joint ommon

ause system of arbitrary size for a set of orrelations is not a stronger demand than

to �nd separate ommon ause systems for the same set. To see this, let (A1, B1)
and (A2, B2) be two arbitrary orrelating pairs in Σ. Then the partition

{A1 ∩B1, A1 ∩B2, A2 ∩B1, A2 ∩B2, }

is always a joint ommon ause system in Σ for both orrelations. Obviously, this

partition an be regarded only as a trivial joint ommon ause system of the or-

relations. This makes it lear that without further spei�ation a joint ommon

ausal explanation is not more ompelling than a separate ommon ausal expla-

nation. In the following setions we will see how these two types of explanations

diverge due to extra requirements.
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10.3 No loal, non-onspiratorial joint ommon ause

system for the EPR

Consider the standard EPR-Bohm experimental setup with a soure emitting pairs

of spin-

1
2 partiles prepared in the singlet state |Ψs〉. Let p(ai) denote the probability

that the spin measurement apparatus is set to measure the spin in diretion ~ai
(i ∈ I) in the left wing and let p(bj) denote the same for diretion

~bj (j ∈ J)
in the right wing. Furthermore, let p(Ai) stand for the probability that the spin

measurement in diretion ~ai in the left wing yields the result +1 ('up') and let p(Ai)
denote the probability of the result −1 ('down'). Let p(Bj) and p(Bj) be de�ned in

a similar way in the right wing for diretion

~bj . (See Fig. 1) Quantum mehanis

then yields the following onditional probabilities for the events in question:

p(Ai ∩Bj |ai ∩ bj) = Tr(W|Ψs〉 (PAi
⊗ PBj

)) =
1

2
sin2(

θaibj

2
) (10.10)

p(Ai|ai ∩ bj) = Tr(W|Ψs〉 (PAi
⊗ I)) =

1

2
(10.11)

p(Bj |ai ∩ bj) = Tr(W|Ψs〉 (I ⊗ PBj
)) =

1

2
(10.12)

where W|Ψs〉 is the density operator pertaining to the pure state |Ψs〉; PAi
and PBj

denote projetions on the eigensubspaes with eigenvalue +1 of the spin opera-

tors assoiated with diretions ~ai and ~bj , respetively; and θaibj denotes the angle

between diretions ~ai and ~bj .

Thus, for non-perpendiular diretions ~ai and ~bj there is a onditional orrela-

tion

p(Ai ∩Bj |ai ∩ bj) 6= p(Ai|ai ∩ bj)p(Bj |ai ∩ bj) (10.13)

and for parallel diretions there is a perfet antiorrelation between the outomes:

p(Ai ∩Bj |ai ∩ bj) = 0 (10.14)

Now, onsider a set {(Ai, Bj)}(i,j)∈I×J of EPR orrelations in the sense of

(10.13). A full-�edged ommon ausal explanation of the set {(Ai, Bj)}(i,j)∈I×J

must omply with three demands on the statistial level. Firstly, all the orrelations

must be sreened-o� by a joint ommon ause system. Seondly, statistial relations

among the measurement outomes and the measurement settings must re�et the

spaetime loation of these events in the sense that spatially separated events have

to be statistially independent. Thirdly, the measurement settings and the ommon

ause should not in�uene eah other, they have to be statistially independent. We

refer to these requirements in turn as 'joint ommon ause system', 'loality' and

'no-onspiray'. In the ase of 'no-onspiray' we will distinguish two types: the

'weak' and the 'strong no-onspiray'. The preise probabilisti formulation of these

demands is the following:
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1. Joint ommon ause system: There exists a partition {Ck} of Σ suh that for

every Ai, Bj , ai and bj in Σ (i ∈ I, j ∈ J) and for any k ∈ K the following

fatorization holds:

p(Ai ∩Bj |ai ∩ bj ∩ Ck) = p(Ai|ai ∩ bj ∩ Ck)p(Bj |ai ∩ bj ∩ Ck) (10.15)

2. Loality: For every Ai, Bj , ai, bj and Ck in Σ (i ∈ I, j ∈ J, k ∈ K) the

following sreening-o� relations hold:

p(Ai|ai ∩ bj ∩ Ck) = p(Ai|ai ∩ Ck) p(Bj |ai ∩ bj ∩Ck) = p(Bj |bj ∩Ck)(10.16)

3. a. Weak no-onspiray: For every ai, bj and Ck in Σ (i ∈ I, j ∈ J, k ∈ K)
the following independene holds:

p(ai ∩ bj ∩ Ck) = p(ai ∩ bj)p(Ck) (10.17)

b. Strong no-onspiray: Consider two Boolean subalgebras A and C of

Σ suh that A is generated by the partition of the di�erent measurement

hoies {aibj} (i ∈ I, j ∈ J) on the opposite wings, and C is generated by the

partition of the ommon ause system {Ck} (k ∈ K). Then for any element

E ∈ A and F ∈ C the following independene holds:

p(E ∩ F ) = p(E)p(F ) (10.18)

It is straightforward to see that in the ase of joint ommon ause systems (10.17)

and (10.18) are equivalent, the probabilisti independene of the Boolean ombi-

nations of ommon auses and the measurement settings does not demand more

than simply the probabilisti independene of the ommon auses and the measure-

ment settings themselves. Thus, in the ase of the joint ommon ause system type

explanations equation (10.17) will su�e as a no-onspiray requirement.

However, as it is well-known (10.15)-(10.17) result in various Bell inequalities

whih are violated for speial measurement settings in the EPR experiment. For the

simplest set of orrelations, namely for the Clauser�Horne set {(Ai, Bj)}(i,j)∈CH

where CH = I×J with I = {1, 2} and J = {3, 4} the Bell theorem is the following:

Proposition 16. (Clauser, Horne, 1974) For some measurement diretions ~a1,~a2
and

~b3,~b4 there annot exist extension of the probability spae (Σ, p) suh that

the extension ontains loal, (weakly or strongly) non-onspiratorial joint ommon

ause systems for all EPR orrelations of {(Ai, Bj)}(i,j)∈CH .

Consequently, EPR orrelations fall short of a loal, non-onspiratorial, joint

ommon ause system type explanation. One premise has to be given up.
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10.4 Loal, weakly non-onspiratorial separate om-

mon ause systems do exist for the EPR

Strategies aiming to avoid Bell inequalities and to give a ommon ausal explana-

tion for the EPR orrelations an be grouped aording the abandoned premise.

The �rst group onsists of approahes abandoning loality and preserving the joint

ommon ausal bakground and no-onspiray. Bohmian mehanis is an eminent

representative of this group. The seond group onsists of less attrative models

in whih no-onspiray is given up. Examples of this approah are Brans' and

Szabó's models (Brans, 1988; Szabó, 1995). In these models the authors relin-

quished no-onspiray and provided a loal, deterministi but onspiratorial joint

ommon ause system type explanation for the EPR. (For the problem of free will

and no-onspiray see (SanPedro, 2013.) In this paper, however, we will follow

a third strategy whih gives up the hypothesis of a joint ommon ause system.

The key idea here is to replae the onept of joint ommon ause system with

that of separate ommon ause systems and to provide a loal, non-onspiratorial,

separate ommon ause system type explanation for the EPR. A separate ommon

ause system type explanation for a set {(Ai, Bj)}(i,j)∈I×J onsists in �nding for

every (i, j) ∈ I × J index pair a separate partition {Cij
k } (k(ij) ∈ K(ij)) suh that

sreening-o�, loality, and (weak or strong) no-onspiraies holds in the following

sense:

1. Separate ommon ause systems: For every Ai, Bj , ai and bj in Σ (i ∈
I, j ∈ J) there exists a separate partition

{

Cij
k

}

of Σ suh that for any

k(ij) ∈ K(ij) the following fatorization holds:

p(Ai ∩Bj |ai ∩ bj ∩ Cij
k ) = p(Ai|ai ∩ bj ∩Cij

k )p(Bj |ai ∩ bj ∩ Cij
k ) (10.19)

2. Loality: For every i ∈ I, j ∈ J and k(ij) ∈ K(ij) the following sreening-o�

relations hold:

p(Ai|ai ∩ bj ∩ Cij
k ) = p(Ai|ai ∩ Cij

k ), p(Bj |ai ∩ bj ∩ Cij
k ) = p(Bj |bj ∩ Cij

k )(10.20)

3. a. Weak no-onspiray: For every ai, bj and Ci′j′

k in Σ (i, i′ ∈ I; j, j′ ∈
J ; k(i′j′) ∈ K(i′j′)) the following independene holds:

p(ai ∩ bj ∩ Ci′j′

k ) = p(ai ∩ bj)p(Ci′j′

k ) (10.21)

b. Strong no-onspiray: Consider again two Boolean subalgebras A and C

of Σ suh that A is generated by the partition of the di�erent measurement

hoies {aibj} (i ∈ I, j ∈ J) and C is generated by the partition of all the

di�erent ommon ause systems

{

∩ijCij
k

}

(k ∈ K). Then for any element

E ∈ A and F ∈ C the following independene holds:

p(E ∩ F ) = p(E)p(F ) (10.22)
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Here, requirement (10.21) does not entail (10.22), that is the independene of the

separate ommon ause systems of the hoie of the measurement settings does not

assure that any Boolean ombination of the ommon auses will also be independent

of any Boolean ombination of the measurement settings. Thus, in the ase of

separate ommon ause system type explanations one has to take into onsideration

two di�erent versions of no-onspiray.

The idea to replae the onept of a joint ommon ause system with that of

separate ommon ause systems and to provide a loal, non-onspiratorial separate

ommon ause system type explanation for the EPR was �rst raised by Szabó

(2000). Atually, Szabó replaed the joint ommon ause system with separate

ommon ause systems of size 2 that is with separate ommon auses. Szabó

provided a number of separate ommon ausal models for the Clauser�Horne set

{(Ai, Bj)}(i,j)∈CH suh that the models were loal and non-onspiratorial in the

weak sense of (10.22). In a preise form, Szabó's proposition was the following:

Proposition 17. (Szabó, 2000) Let {(Ai, Bj)}(i,j)∈CH be the Clauser�Horne set of

orrelations in (Σ, p). Then for any measurement diretions ~a1,~a2 and

~b3,~b4 there

exists an extension of the probability spae (Σ, p) suh that the extension ontains

loal, weakly non-onspiratorial separate ommon auses for the orrelations of

{(Ai, Bj)}(i,j)∈CH .

The ommon ausal models provided by Szabó, however, were all onspiratorial

in the strong sense of (10.22). After numerous omputer simulations aiming to

remove the unwanted onspiraies Szabó �nally onluded with the onjeture that

EPR annot be given any loal, separate ommon ausal model free from all type

of onspiraies.

10.5 Loal, strongly non-onspiratorial separate om-

mon ause systems for the EPR?

Szabó's onjeture is then the following:

Conjeture 1. For some measurement diretions ~a1,~a2 and

~b3,~b4 there annot

exist extension of the probability spae (Σ, p) suh that the extension ontains loal,
strongly non-onspiratorial separate ommon ause systems for the orrelations of

{(Ai, Bj)}(i,j)∈CH .

Although a lot has happened sine 2000 in understanding the status of the

separate ommon ausal explanation of the EPR senario, Szabó's onjeture in

its original form is still an open question. What has atually been exluded, is

not a loal, strongly non-onspiratorial separate ommon ausal explanation of the

the Clauser�Horne set {(Ai, Bj)}(i,j)∈CH , but that of another set. Let I = J =
{1, 2, 3, 4} and let PA be the following subset of I × J :

PA = {(1, 1), (2, 2), (3, 3), (4, 4)}
Then one an prove the following proposition:
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Proposition 18. For somemeasurement diretions {~a1,~a2,~a3,~a4
}

and

{

~b1,~b2,~b3,~b4
}

there annot exist extension of the probability spae (Σ, p) suh that the extension

ontains loal, strongly non-onspiratorial separate ommon ause systems for all

EPR orrelations of {(Ai, Bj)}(i,j)∈PA.

The above proposition was �rst proved by Grassho�, Portmann and Wüthrih

(2005). They have shown that no loal, strongly non-onspiratorial separate om-

mon ause systems are possible for all orrelations of {(Ai, Bj)}(i,j)∈PA, if for any

index pair (i, j) ∈ PA there is a perfet antiorrelation (hene the denotation 'PA')
in the sense of (10.14).

The assumption of perfet antiorrelations, however, was unsatisfatory in two

respets. The �rst problem onerns experimental testability. Sine perfet anti-

orrelations annot be tested experimentally with absolute preision, the proof of

Grassho�, Portmann and Wüthrih did not provide an experimentally veri�able

refutation of a separate ommon ausal explanation of the EPR.

The seond problem was more oneptual. Standard derivations of the Bell

inequalities assume a joint ommon ause system. The hief virtue of the proof

of Grassho�, Portmann and Wüthrih was that it avoided this strong onept of a

joint ommon ause system and used the weaker onept of separate ommon ause

systems instead. However, in the perfet antiorrelation ase the assumptions of

separate ommon ause systems turned out to be reduible to the assumptions of the

standard joint ommon ause system as it was shown in the following proposition:

Proposition 19. (Hofer-Szabó, 2008) Let

{

Cij
k

}

(i,j)∈PA
be loal, strongly non-

onspiratorial separate ommon ause systems for the orrelations of {(Ai, Bj)}(i,j)∈PA.

Then the partition {Dl} :=
{

∩ijCij
k

}

generated by the intersetions of the di�erent

separate ommon ause systems is a loal, non-onspiratorial joint ommon ause

system of the same orrelations of {(Ai, Bj)}(i,j)∈PA.

The assumption of perfet antiorrelations, however, turned out not to be in-

dispensable in the proof of Proposition 18. Portmann and Wüthrih (2007) and

Hofer-Szabó (2008) have shown that Proposition 18 also holds if one only assumes

that the orrelations to be explained form an almost perfet antiorrelation set,

{(Ai, Bj)}(i,j)∈PA(δ), in the sense that there exists a δ of some small but not zero

value suh that

p(Ai ∩Bj|ai ∩ bj) 6 δ (10.23)

for any index pair (i, j) ∈ PA(δ).
Finally, Hofer-Szabó (2011, 2012) generalized this proof by deriving arbitrary

Bell(δ) inequality� that is to say, an inequality di�ering from the orresponding

Bell inequality in a term of order δ. The reipe of this derivation is roughly the

following. Consider a Bell inequality resulting from the loal, non-onspiratorial

joint ommon ausal explanation of a given set of orrelations {(Ai, Bj)}(i,j)∈I×J

(not neessarily {(Ai, Bj)}CH). Now, de�ne the set PA for {(Ai, Bj)}(i,j)∈I×J as
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follows: let PA ontain all the index pairs (k, k) in (I ∪ J) × (I ∪ J) that is all
indies appearing either on the left or the right hand side of the orrelations in

{(Ai, Bj)}(i,j)∈I×J .

Now onsider the set {(Ai, Bj)}PA(δ) of almost perfet antiorrelations and

suppose that it has a loal, strongly non-onspiratorial separate ommon ausal

explanation. This assumption results in a Bell(δ) inequality di�ering from the

original Bell inequality in a term of order of δ where the exat magnitude of this

term is the funtion of the approximation. Choose the setting whih violates the

Bell inequality maximally. If the δ term is smaller than the violation of the orig-

inal Bell inequality, then the Bell(δ) inequality will also be violated, exluding a

loal, strongly non-onspiratorial separate ommon ausal explanation of the set

{(Ai, Bj)}PA(δ).

10.6 Conlusions

In the paper, �rst, di�erent ommon ausal onepts ranging from Reihenbah's

de�nition to the most general onept of the ommon ause system have been listed.

Then the role of the di�erent ausal notions in the ommon ausal explanation of

the EPR senario has been exposed. It was said that a ompletely satisfatory

ommon ausal explanations of the EPR would onsist in �nding a joint ommon

ausal soure for all orrelations whih is loal and non-onspiratorial. Sine these

assumptions together entail various Bell inequalities one assumption has to be aban-

doned. The ambition of the separate ommon ause system type approah of the

EPR was to preserve the latter two physially motivated assumptions of loality and

no-onspiray at the expense of replaing the strong onept of the joint ommon

ause system with the weaker onept of separate ommon ause systems. It has

been shown, however, that the weakening of the ommon ausal onept does not

provide a solution to this problem sine the weakened assumptions still entail some

Bell and Bell(δ) inequalities. Consequently, there exists neither a loal, (weakly or

strongly) non-onspiratorial separate ommon ausal explanation of the EPR.

A weakness of all the above no-go theorems, however, is that they are all based

on either perfet or almost perfet EPR orrelations. As it was made lear in Propo-

sition 19 the separate ommon ausal explanation of suh orrelations is always

parasiti on some joint ommon ausal explanation. Therefore it would be highly

desirable to derive some Bell inequality form a loal, strongly non-onspiratorial

separate ommon ausal explanation of a set of genuine (not almost perfet) EPR

orrelations. For example it would be widely wanted to prove or falsify Szabó's

original onjeture (Conjeture 1)�that is for the set {(Ai, Bj)}(i,j)∈CH violating

the Clauser�Horne inequality

(i) either to derive the Clauser�Horne inequality (or some other onstraint) from

the assumption that {(Ai, Bj)}(i,j)∈CH has a loal, strongly non-onspiratorial

separate ommon ausal explanation;

(ii) or to show up loal, strongly non-onspiratorial separate ommon ause sys-

tems for the set {(Ai, Bj)}(i,j)∈CH .
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Neither option seems to be a trivial task.
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