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Introduction

In their famous paper, Gale and Shapley proposed the following problem [35]. Imagine
that each of n men and n women ranks the members of the opposite gender as a possible
spouse. If these people form n married couples then the hence determined matching is
unstable if there is a man and a woman who mutually prefer one another to their eventual
partners. A natural goal is to match these people such that this kind of instability does
not occur. This idea includes many possible generalizations. The players may seek
more than one partners. A practice-motivated example for this is the college admission
problem where two the sets of players that rank each other are colleges and applicants
instead of men and women, and each college has an individual quota that bounds the
number of acceptable applicants from above. In an admission scheme, each applicant
is admitted by at most one college and no college exceeds is quota. Such a scheme is
unstable if there is an applicant who is not admitted to a certain college but both the
college would be happy to accept the applicant (and possibly to fire another less preferred
applicant to comply with the quota) and the applicant would improve by being admitted
to this college. It is worth mentioning that the admission scheme determined by the
education office of the Hungarian government avoids exactly this kind of instability.

It is also possible that not every man-woman (or college-applicant) pair can be real-
ized, that is, the bipartite graph representing possible marriages is not a complete one. In
fact this graph does not even have to be bipartite. The roommates problem leads to this
generalization. In this problem, the goal is to allocate a set of students into two persons
dormitory rooms, where each student ranks his or her possible roommates. Instability of
a room assignment here means that no two students would be happier to share a room
rather that living with their roommates given by the scheme.

A further direction of possible generalizations with a clear practical motivation is
dropping the requirement on strict preference orders of the players, and hence allowing
ties. For example, in the college admission problem, each applicant is expected to for-
mulate a strict preference order on the colleges, while for colleges it is allowed to rank
two different applicant equally. As we know, the ranging of each college is based solely
on the entrance exam score that might well be equal for two different applicants.

On the original problem the following results are well-known. With the help of the de-
ferred acceptance algorithm, Gale and Shapely proved that there exists a stable solution
for both the marriage and the college admission problems. Knuth attributes the observa-
tion to Conway that stable matchings form a lattice [52]. Later, this observation turned
out to be crucial for several further structural results about stable matchings. Actually,
the study of stable matchings employs tools of several disciplines: Knuth intended his
above mentioned book as an introduction to the theory of algorithms through demon-
strating methods and tools in the design and analysis of algorithms [52]. In connection
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with further algorithmic complexity aspects, we should mention the book of Gusfield and
Irving [37]. Optimization over stable matchings is another natural task, where polyhe-
dral methods play an important role here [68, 61, 8, 58, 1, 66, 21]. The book of Roth
and Sotomayor leans on notions and methods from Game Theory [60].

Based on our present knowledge, it is fair to say that by the introduction of the notion
of stable matchings, Gale and Shapley achieved much more than their direct goal articu-
lated in their paper, namely the popularization of the mathematical and game theoretic
approach. It becomes clear from the research built upon their work that their notion is
exceptionally successful both for practical applications and for theoretical results. For
the former fact, we do not need a better argument than the 2012 Nobel Memorial Prize
in Economic Sciences having been awarded to Roth and Shapley for their work on mech-
anism design and on the theory of stable matchings. A possible example of the latter
successes is Galvin’s proof for the Dinitz’ conjecture that essentially leans on stable
matchings [36] or the unexpected breakthrough by Király’s approximation algorithm
[49].

It is worth mentioning some results connected to generalizations. The generalized
notion of stability may manifest in a common antichain of posets or in a common inde-
pendent set of matroids [25], but it is also possible to define stability of network flows
that can serve as some model of supply chains known in Economics [23]. Our stable flow
model is closely related to the supply chain model by Ostrovsky which is more general
in some sense and more restricted in some other sense than flows [55]. As a matter of
fact, in the Economics literature, Ostrovsky’s result is considered a clear breakthrough
that became the origin of further important results.

These days, stable matchings have a wide literature. Regarding only the algorithmic
aspects, the state of the art around 2013 is collected in Manlove’s imposing book [54].
The present work aims for a much more modest goal: it intends to introduce the reader
to an unorthodox method and to point out certain interesting aspects. Incidentally,
it tries to change our understanding of the history of stable matchings. As we know,
Gale and Shapley published their seminal paper in 1962. Later Roth pointed out that
a variant of the deferred acceptance algorithm is used in the USA from 1952 [57], hence
this should be the origin of the known history of stable matchings. We attempt to date
the beginning of the story to as early as 1928 when Knaster and Tarski published (back
then without a proof) a fixed point theorem on monotone set functions [51]. Later, in
1955, Tarski proved a lattice theoretical generalization and illustrated its applicability
by deducing various mean value theorems known from Analysis [65]. It turned out that
this fixed point theorem has nontrivial consequences already in the finite case. It clearly
explains the correctness of the deferred acceptance algorithm of Gale and Shapley and
the lattice property of stable matchings. As we shall explain, the link between stable
matchings and monotone mappings are so-called choice functions introduced by Kelso
and Crawford [46].

Without going into the details, we mention some further significant results on general-
izations of stable matchings. For some time, it was unclear whether there is a polynomial
time algorithm that decides the existence of a stable matching in a nonbipartite graph.
The positive answer is due to Irving whose algorithm has a first phase based on the steps
of the deferred acceptance algorithm and in the second phase it eliminates so-called ro-
tations until it either finds a stable matching or concludes that no stable matching exists
in the input graph [45]. Later, Tan extended Irving’s algorithm and hence he proved the
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existence of stable half-matchings (that may contain edges of weight 1
2

as well) [64]. It
also turned out that a graph contains a stable matching if and only if no stable half-
matching contains an odd cycle of 1

2
-weight edges. Aharoni and Fleiner have pointed

out that the existence of stable half-matchings is a consequence of Scarf’s lemma, and
Scarf’s lemma can be regarded as a close relative of Brouwer’s fixed point theorem [6].
Hence, stable matchings can be viewed as fixed points: in case of a bipartite graph,
stable matchings are fixed points of a monotone mapping, while in case of nonbipartite
graphs, stable matchings are fixed points of a more complicated function. Cechlárová
and Fleiner proposed a generalization of Irving’s algorithm to find a stable b-matching
[13], while Biró, Cechlárová and Fleiner studied the change of stable matchings when
a new player emerges on the market. A consequence of their result is that also in case
of a nonbipartite graph, it is possible to define a certain friend and an enemy relation
between the players by observing how the situation of one player changes when the other
player leaves the market [10].

Our present work is structured as follows.

• In Chapter 1, we introduce stable matchings in graphs, build our framework on
(lattice-based) choice functions, define choice-function related kernels, and point
out that stable matchings are examples of such kernels. Then we introduce Tarski’s
fixed point theorem and indicate the connection between fixed points of a mono-
tone mapping and the previously defined kernels. In particular, we show that the
deferred acceptance algorithm of Gale and Shapley can be regarded as an iteration
of a monotone mapping. Our approach described here is an improved version of
the one in [20].

• In Chapter 2, we deduce two independent results on kernels (i.e. on generalized sta-
ble matchings): one about fractional kernels in posets and another one on matroid-
kernels.

• Chapter 3 is devoted to consequences of the lattice structure of kernels.

• Chapter 4 illustrates three applications: we connect Pym’s linking theorem to
kernels, then we prove two extensions of Galvin’s result on list-colorings of graphs
and we exhibit an interesting application of the matroid-kernel result on a specific
college admission problem with lower quotas.

• Chapter 5 discusses the characterization of kernel-related polyhedra. It turns out
that in the general case, a blocking-antiblocking type characterization follows from
earlier results of Hoffman and Schwartz on lattice polyhedra and of Fulkerson on
blocking polyhedra. In the special case of stable b-matchings, a structural result
from Chapter 3 (namely the splitting property) allows us to prove a less implicit
characterization based on a polynomial number of constraints.

• Next, Chapter 6 is devoted to the recent concept of stability in network flows. We
prove that stable flows always exists and exhibit some observations on the structur
of stable flows. Our results are closely related to a recent topic in Economics on
stability of supply chains that started with the celebrated paper by Ostrovsky [55].

• At last, in Chapter 7, we study stable matchings and generalizations in graphs
that are not necessarily bipartite. We point out another fixed-point connection
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and show the existence of fractional stable matchings. Then we reduce the problem
of stable b-matchings to stable matchings and describe several generalizations of
Irving’s algorithm. Our last topic is an extension of Tan’s characterization on
stable matchings to the nonbipartite case with choice functions.

• Finally, we conclude with a subjective review on our contribution.

As the goal of the present dissertation is to explain the author’s scientific contribution,
we apply the following convention. Results of the author are highlighted by underlining

or boxing . Such an expression indicates that the result belongs (at least partly) to the
author, in the latter case the result has not been used to obtain a scientific degree so far.
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Chapter 1

Foundations

In this chapter we introduce our terminology that turns out to be useful in generalizing
and extending stable matching related results. First we give a nonstandard proof on the
existence of ordinary stable matchings and then we build up our choice function based
framework and present the connection to Tarski’s fixed point theorem.

1.1 Stable matchings

Let G = (V,E) be a graph and let �v be a linear (preference) order on the set E(v)
of edges incident with v for each vertex v of G. We say that edge e is better for v
than edge f if e �v f holds. Subset M ⊆ E of edges is a matching, if no two edges
of M have a common vertex, i.e. if dM(v) ≤ 1 holds or each vertex v ∈ V . For given
bounds b : V → N set M ⊆ E of edges is a b-matching if dM(v) ≤ b(v) holds for each
vertex v of G. Clearly a matching is a special case of a b-matching for b ≡ 1. Matching
M dominates edge e = uv at u if M contains some edge m with m �u f . Similarly,
b-matching M b-dominates edge e = uv at u if there are edges m1, . . . ,mb(u) of M such
that mi �u f holds for each 1 ≤ i ≤ b(u). Matching M (b-)dominates edge e = uv if M
(b-)dominates e at u or at v. Edge e blocks (b-)matching M if M does not (b-)dominate
e. At last, (b-)matching M is a stable (b-)matching if there is no blocking edge, that is,
if M dominates each edge of G in E \M . If, for example G is an odd cycle such that
each vertex prefers the former vertex to the latter vertex in some orientation of the cycle
then it can be seen easily that no stable matching exists in G. This is not the case for
bipartite graphs as the following theorem shows.

Theorem 1.1 (Gale and Shapley [35]). If graph G is bipartite then for any prefer-
ences there exists a stable matching.

Note that Gale and Shapley proved Theorem 1.1 only for complete bipartite graph
Kn,n and they extended this result by showing that there must exist a stable b-matching if
b ≡ 1 on one side of G. Gale and Shapley actually showed that their deferred acceptance
algorithm finds a stable matching for any input instance. This algorithm can be described
in man-woman terminology as follows. In the beginning, each man proposes to his first
choice. If men propose to different women then proposals become marriages and this is
a stable scheme. Otherwise, there is a woman that received more than one proposal. All
these women refuse all but their best proposer. If a refusal took place then each man

6

dc_1564_18

Powered by TCPDF (www.tcpdf.org)



CHAPTER 1. FOUNDATIONS 7

proposes again to his first choice that did not refuse the particular man. Sooner or later
no refusal takes place. The last proposals become marriages and this is output by the
algorithm.

In their paper, Gale and Shapley remark that their result is an excellent counterex-
ample for the stereotypical beliefs that any reasonable mathematical deduction must
contain difficult calculations or obscure formulas. For example, though the description
and the proof of correctness of the deferred acceptance algorithm is free of all these, it
clearly is a decent mathematical proof. Without disputing this statement, we point out
an unusual proof for the correctness of the deferred acceptance algorithm. This is based
on the following easy observation that is valid also for nonbipartite graphs.

Lemma 1.2 (Fleiner). Assume that for each vertex v of not necessarily bipartite
graph G, linear preference order �v is given on the set of edges E(v) incident to v.
Assume that e ≺v f holds for edge e = uv that is best according to preference order �u.
Then the set of stable matchings in G coincides with the set of stable matchings in G−f .

Proof. Let M be a stable matching of G. If e ∈M then f 6∈M as M is a matching and
if e 6∈M then M dominates e at v and hence f 6∈M holds again. Consequently, M is a
stable matching of G− f .

Assume now that M is a stable matching of G − f . If e ∈ M then M dominates f ,
and hence M is stable in G, as well. If e 6∈M then M must dominate e at v. Therefore
M also dominates f at v, and M is a stable matching of M again.

According to Lemma 1.2, we may remove certain edges from G “for free” without
creating or destroying a single stable matching. If we keep on applying this operation on
a bipartite graph, sooner or later we reach a state where no more edges can be removed,
and hence both men and women have different people on the top of their preference
lists. It is easy to see that both the first choices of the men and the first choices of the
women represent a stable matching in the graph resulted after all the edge-deletions.
Hence, due to Lemma 1.2, these will be stable matchings also in the original graph G.
Moreover, it also follows immediately that the stable matching output by the deferred
acceptance algorithm is man-optimal, meaning that each man receives a wife that is best
for him among those women that are achievable for him in some stable matching of G.
Furthermore, this also implies that this procedure provides the worst husband for each
woman out of those men that can be the partner of the particular woman in some stable
matching of G.

The above proof with obvious changes justifies the correctness of the appropriate
extension of the deferred acceptance algorithm for b-matchings and also shows that the
output stable b-matching is optimal in the above sense for the proposing side.

Using standard graph-theoretical tools, it is not difficult to prove the following lattice
property of stable matchings. If M1 and M2 are stable (b-)matchings and each man picks
his favorite (b-)matching edges out of M1∪M2 then the hence chosen edges from a stable
(b-)matching. Later on, we shall see far reaching generalizations of this fact.

1.2 Choice functions

A most useful tool to study stable matchings and generalizations is the notion of choice
functions that helps us to describe the preferences of the players. Our unusual way to
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CHAPTER 1. FOUNDATIONS 8

introduce choice functions is based on so-called determinants. For ground set E, mapping
F : 2E → 2E

• is a choice function if there exists a mapping D : 2E → 2E such that F(X) =
X ∩D(X) holds for each subset X of E. (Such mapping D is called a determinant
of F);

• is monotone if F(X) ⊆ F(Y ) holds for X ⊆ Y ⊆ E and

• is antitone, if F(X) ⊆ F(Y ) holds whenever Y ⊆ X ⊆ E and at last

• is substitutable if F is a choice function that has an antitone determinant1.

Obviously, F is a choice function iff F(X) ⊆ X holds for any subset X of E, moreover
the same choice function may have several different determinants. The textbook example
of a substitutable choice function is the one of men in the Gale-Shapley model.

Example 1.3. Let G = (V,E) be a finite bipartite graph where sets A of men and B of
women are the parts and let �v be a linear order on the set E(v) of edges incident to v
for each vertex v of G. For each subset X of E, define set FA(X) as those edges e = mw
in X that are �m-best for man m in X.

It is easy to see that an antitone determinant of the above mapping FA is DA(X) :=⋃
v∈A
⋂
e∈X∩E(v)DA(v, e) where DA(v, e) := {e′ ∈ E(v) : e′ �v e} is the set of those edges

that are not �v-worse for v than e. Hence DA(X) consists of all edges of E that are not
dominated by another edge of X at some vertex of A. Similarly, as in Example 1.3 above,
we may define choice function FB of women and the corresponding antitone determinant
DB.

Observation 1.4 (Fleiner). Subset M of E is a stable matching in bipartite graph
G = (V,E) iff there exist subsets X and Y of E with M = X ∩ Y and DA(X) = Y and
DB(Y ) = X hold.

Proof. Assume that M is a stable matching and define X := DB(M) and Y := DA(M).
As matching M is stable and no edge e ∈ X \ M is dominated by M at a vertex
of B, each of these edges are dominated by M at some vertex of A. Consequently,
DA(X) = DA(M) = Y . A similar proof shows that DB(Y ) = X.

Assume now that M = X ∩ Y , DA(X) = Y and DB(Y ) = X holds for subsets X
and Y of E. If e ≺v f holds for edge e and f of M for some v ∈ A then f 6∈ DA(M) ⊇
DA(X) = Y , hence f 6∈ X ∩ Y = M , a contradiction would follow. The same holds in
case of v ∈ B, so M is a matching.

If f 6∈ M = X ∩ Y then f 6∈ X = DB(Y ) or f 6∈ Y = DA(X). In the first case, f
is dominated by some other edge of Y at some vertex v of B. If e denotes the �v-best
such edge of Y then e ∈ X = DB(Y ) and hence e ∈ Y ∩ X ∈ M holds, showing that
M dominates f at vertex v of B. A similarly proof shows that, in the second case when
f 6∈ Y = DA(X) then f is dominated by M at some vertex v of A. Consequently, M is
a stable matching.

1The standard definition of substitutability requires that X ∩F (X +e) ⊆ F (X) holds for any X ⊆ E
and e ∈ E. This means that if we are not interested in a certain choice then this choice does not become
more interesting if the choices set grows. Our definition is somewhat stronger, but only for an infinite
ground set E.
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CHAPTER 1. FOUNDATIONS 9

The following useful lemma shows an important property of substitutable choice
functions.

Lemma 1.5. If choice function F : 2E → 2E is substitutable and F(X) ⊆ Y ⊆ X then
F(X) ⊆ F(Y ) holds.

Proof. For antitone determinant D of F we get F(Y ) = Y ∩ D(Y ) ⊇ Y ∩ D(X) ⊇
F(X) ∩ D(X) = (X ∩ D(X)) ∩ D(X) = X ∩ D(X) = F(X).

We define the following crucial properties. Assume that mapping w : 2E → R+ is
strictly monotone (that is, w(∅) = 0 and w(a) < w(b) holds whenever a ≺ b). (For
a finite set E, w(X) := |X| is an example of such a function, but any positive weight
function on E induces such a function.) Choice function F : 2E → 2E

• has the IRC property if F(X) = F(Y ) holds for F(X) ⊆ Y ⊆ X,

• F is path-independent if X, Y ⊆ E ⇒ F(X ∪ Y ) = F(X ∪ F(Y )),

• and F is increasing, if |F(X)| ≤ |F(Y )| holds whenever X ⊆ Y .

• and F is w-increasing, if w(F(X)) ≤ w(F(Y )) holds whenever X ⊆ Y .

Clearly, the increasing property is a special case of the w-increasing one for function
w defined by w(X) = |X|.

Observation 1.6 (Fleiner). Let E be a finite set and assume that F : 2E → 2E is a
substitutable choice function. Then F has the IRC property if and only if F is path-
independent. Moreover, if F is w-increasing for some strictly monotone mapping w on
2E then F has the IRC property (and hence F is path-independent) as well.

Proof. Let D be an antitone determinant of F . Assume F has the IRC property and let
X, Y ⊆ E. Clearly,

F(X ∪ Y ) = (X ∪ Y ) ∩ D(X ∪ Y ) = (X ∩ D(X ∪ Y )) ∪ (Y ∩ D(X ∪ Y ) ⊆
⊆ X ∪ (Y ∩D(X ∪ Y )) ⊆ X ∪ (Y ∩ D(Y )) = X ∪ F(Y ) ⊆ X ∪ Y

yielding F(X ∪ Y ) ⊆ X ∪ F(Y ) ⊆ X ∪ Y , hence by the IRC property F(X ∪ Y ) =
F(X ∪ F(Y )) follows. This means that F is path-independent.

Assume now that F is path-independent and F(X) ⊆ Y ⊆ X. Path-independence of
F implies F(X) = F(X ∪ Y ) = F(F(X) ∪ Y ) = F(Y ), hence F has the IRC property.

Assume at last that F is w-increasing and F(X) ⊆ Y ⊆ X. As F(X) ⊆ F(Y ) by
Lemma 1.5, the w-increasing property of F implies w(F(X)) ≥ w(F(Y )) and F(X) =
F(Y ) follows. Hence F has the IRC property, indeed.

Lemma 1.7 (Fleiner, Jankó [30]). Let E be a finite set and assume that F : 2E →
2E is a substitutable choice function. Then F is path-independent if and only if there
exists an antitone determinant DF of F such that

DF(X) = DF(F(X)) holds for any subset X of E . (1.1)
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CHAPTER 1. FOUNDATIONS 10

Proof. Assume thatDF is an antitone determinant with property (1.1). Let F(X) ⊆ Y ⊆
X. By the antitone property of DF we get DF(X) ⊆ DF(Y ) ⊆ DF(F(X)) = DF(X)
hence DF(X) = DF(Y ) holds. Consequently, F(Y ) = Y ∩ DF(Y ) = Y ∩ DF(X) ⊆
X ∩DF(X) = F(X) and Lemma 1.5 implies F(X) = F(Y ). This means that F has the
IRC property, hence F is path-independent by Observation 1.6.

Assume now that F is path-independent with antitone determinant D. Define

DF(X) :=
⋂
{D(X ′) : F(X ′) = F(X)} (1.2)

for each subset X of E. As F(X) ⊆ DF(X) ⊆ D(X), mapping DF is also a de-
terminant of F . By (1.2), DF(X) = DF(Y ) holds whenever F(X) = F(Y ). So
DF(X) = DF(F(X)) follows from path-independence by F(X) = F(∅ ∪ X) = F(∅ ∪
F(X)) = F(F(X)). To finish the proof, we have to show that DF is antitone, so as-
sume that X ⊆ Y ⊆ E. If F(X ′) = F(X) then path-independence of F implies that
F(X ′ ∪ Y ) = F(F(X ′) ∪ Y ) = F(F(X) ∪ Y ) = F(X ∪ Y ) = F(Y ), hence

DF(X) :=
⋂
{D(X ′) : F(X ′) = F(X)} ⊇

⋂
{D(X ′ ∪ Y ) : F(X ′) = F(X)} ⊇⋂

{D(X ′ ∪ Y ) : F(X ′ ∪ Y ) = F(Y )} ⊇
⋂
{D(Y ′) : F(Y ′) = F(Y )} = DF(Y )

holds, i.e. DF is indeed an antitone determinant of F with property (1.1).

1.3 Tarski’s fixed point theorem and the deferred

acceptance algorithm

Poset (L,�) is a lattice if there is a greatest lower bound (denoted by x∧ y) and a least
upper bound (denoted by x∨ y) for any elements x, y ∈ L. Ha a partial order � is clear
from the context then we may talk about lattice L. Lattice L is complete, if for any
subset X of L there exists a greatest lower bound (denoted by

∧
X) and a least upper

bound (denoted by
∨
X). In case of a complete lattice, 0 and 1 denotes its least and

greatest elements, that is, 0 =
∧
L and 1 =

∨
L. Clearly, any finite lattice is complete,

but not vice verse: finite subsets of N form a lattice on ordinary set inclusion but this
lattice has no greatest element, hence it is not complete.

Remark 1.8. Notions defined in section 1.2 can also be defined in the more general
setting of lattices by replacing order relation ⊆ by � and lattice operations ∩ and ∪
by ∧ and ∨. In section 1.2, we worked out the framework carefully, and we used only
operations ∩ and ∪ and avoided set-difference. For this reason, our results and proofs in
section 1.2 are valid also for choice functions defined on complete lattices.

Our main tool in this work is Tarski’s fixed point theorem about complete lattices.
Note that although we claim corollaries of Tarski’s theorem on ordinary choice functions,
these results (with the exception of the second part of Corollary 1.17) are valid in the
more general lattice choice function setting, as well.

Theorem 1.9 (Tarski [65]). If F : L→ L is a monotone mapping on complete lattice
(L,�), then fixed points of F form a nonempty complete lattice for order �. �
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CHAPTER 1. FOUNDATIONS 11

Note that in the special case of (L,�) = (2E,⊆) Theorem 1.9 was proved by Knaster
and Tarksi [51]. It is worth observing that in case of a finite lattice, the least fixed
point can be constructed as the greatest element of chain 0 � F(0) � F(F(0)) � . . . .
(Similarly, the greatest fixed point is the least element of chain 1 � F(1) � F(F (1)) �
. . ..) Tarski illustrated the application of Theorem 1.9 by deducing various mean value
theorems. Another well-known application, the proof of the Cantor-Schröder-Bernstein
theorem also involves infinite lattices. However, Theorem 1.9 has interesting implications
already on finite lattices.

Theorem 1.9 shows that fixed points of a monotone mapping on a complete lattice
L form a nonempty lattice subset of L. Our next goal is to prove a strengthening of
this result by showing that if a further condition holds then fixed points of a monotone
mapping form a sublattice, that is, the lattice operations restricted to fixed points will
be the lattice operations on the set of fixed points.

Recall that w : L → R is a strictly monotone function on lattice (L,�), that is,
w(0) = 0 and w(a) < w(b) holds whenever a ≺ b. Mapping F : L→ L is a w-contraction
if

|w(a)− w(b)| ≥ |w(F(a))− w(F(b))| holds for any comparable elements a, b ∈ L .

Theorem 1.10 (Fleiner [20]). If (L,�) is a complete lattice, w : L → R+ is strictly
monotone function on L and F : L → L is a monotone w-contraction then fixed points
of F form a nonempty sublattice of L.

Proof. As the set of fixed points is nonempty by Theorem 1.9, it suffices to prove that
fixed points are closed on lattice operations ∧ and ∨ of L. So assume F(a) = a and
F(b) = b are fixed points. From a ∧ b � a � a ∨ b we get that F(a ∧ b) � F(a) = a �
F(a∨b) by monotonicity of F . So F(a∧b) � a∧b and a∨b � F(a∨b) and consequently

0 ≤ |w(a ∨ b)− w(a)| − |w(F(a ∨ b))− w(F(a))|
= w(a ∨ b)− w(a)− (w(F(a ∨ b))− w(F(a))) = w(a ∨ b)− w(F(a ∨ b)) ≤ 0

follows as F is a w-contraction and w is strict monotone. So we have equality throughout,
in particular w(F(a ∨ b)) = w(a ∨ b). Hence F(a ∨ b) = a ∨ b follows from strict
monotonicity of w and a ∨ b � F(a ∨ b).

By a similar argument, F(a ∧ b) = a ∧ b follows from

0 ≤ |w(a)− w(a ∧ b)| − |w(F(a))− w(F(a ∧ b))|
= w(a)− w(a ∧ b)− (w(F(a))− w(F(a ∧ b))) = w(a ∧ b)− w(F(a ∧ b)) ≤ 0 .

We return to the original lattice version of Tarski’s theorem.

Corollary 1.11 (Fleiner [20]). If F ,G : 2E → 2E are substitutable choice functions
then there exist subsets X, Y of E such that Y = DF(X) és X = DG(Y ) holds where
DF and DG are antitone determinants of F and G, respectively. Moreover, pairs (X, Y )
with this property form a lattice with partial order � where (X1, Y1) � (X2, Y2) holds
whenever X1 ⊆ X2 és Y2 ⊆ Y1.

Proof. Observe that L = (2E × 2E,�) is a complete lattice, mapping H(X, Y ) :=
(DG(Y ),DF(X)) is monotone on L and element (X, Y ) ∈ L is a fixed point of H iff
Y = DF(X) és X = DG(Y ) holds. Fixed points of H form a lattice by Theorem 1.9.
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Corollary 1.11 motivates the following definition.

Definition 1.12. Let F ,G : 2E → 2E be substitutable choice functions. Subset K of
ground set E is called an FG-kernel if there exist subsets X and Y of E and antitone
determinants DF and DG of F and G such that

K = X ∩ Y, Y = DF(X) and X = DG(Y ) (1.3)

holds.

Definition 1.12 seems to be the right way to generalize the notion of bipartite stable
matchings as the example below shows.

Example 1.13. If FA and FB denotes the preferences of men and women as in Example
1.3 then subset M of E(G) is a stable matching if and only if M is an FAFB-kernel.
It is easy to check that if DA and DB are determinants of FA and FB, respectively then
iteration of DB ◦ DA on E(G) is equivalent with the deferred acceptance algorithm of
Gale and Shapley.

According to Example 1.13, stable matchings are FAFB-kernels for particular choice
functions FA and FB. As our framework for FG-kernels requires only fairly general prop-
erties of choice functions F and G (like substituability, path-independence or eventually
increasingness), we will be able to generalize many results on stable matchings in our
framework. We continue the study of general FG-kernels.

Observation 1.14 (Fleiner). If (1.3) holds for substitutable choice functions F and G
then F(X) = G(Y ) = K holds. If F and G are path-independent as well then F(K) =
G(K) = K is also true.

Proof. By definition, we have F(X) = X ∩ DF(X) = X ∩ Y = K and G(Y ) = Y ∩
DG(Y ) = Y ∩X = K. If F is path-independent then K = F(X) = F(F(X)) = F(K)
and similar holds for G.

Antitone determinants in Definition 1.12 are not unique in general. However, for path-
independent choice functions, this does not matter according to the following lemma.

Lemma 1.15 (Fleiner [20]). Let F ,G : 2E → 2E be path-independent and substitutable
choice functions, let K be an FG-kernel and let DF and DG be antitone determinants of
F and G respectively with property (1.1). Then there exist subsets X, Y of E that satisfy
(1.3).

Proof. We show that (1.3) holds for X := DG(K) and Y := DF(K). As K is an FG-
kernel, we may assume that K = X ′∩Y ′ and Y ′ = D′F(X ′), X ′ = D′G(Y ′) where D′F and
D′G are antitone determinants of F and G, respectively. By Observation 1.14, as DF is
an antitone determinants of F with property (1.1), we get

K = F(X ′) = X ′ ∩ DF(X ′) = X ′ ∩ DF(F(X ′)) = X ′ ∩ DF(K) = X ′ ∩ Y .

Consequently,

G(Y ′ ∪ Y ) = (Y ′ ∪ Y ) ∩ D′G(Y ′ ∪ Y ) ⊆ (Y ′ ∪ Y ) ∩ D′G(Y ′) =

= (Y ′ ∪ Y ) ∩X ′ = (Y ′ ∩X ′) ∪ (Y ∩X ′) = K ∪K = K ,
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hence G(Y ′ ∪ Y ) ⊆ K ⊆ Y ⊆ Y ′ ∪ Y and G(Y ′ ∪ Y ) ⊆ K ⊆ Y ′ ⊆ Y ′ ∪ Y . So by the IRC
property of G we have G(Y ) = G(Y ′ ∪ Y ) = G(Y ′) = K. Property (1.1) of DG implies
DG(Y ) = DG(G(Y )) = DG(K) = X and a similar proof shows that DF(X) = Y . To
finish the proof, we observe that K = G(Y ) = Y ∩ DG(Y ) = Y ∩X.

The proof of Lemma 1.15 shows that in case of path-independent substitutable choice
functions, FG-kernels are essentially fixed points of a monotone mapping. This is for-
mulated in the following lemma.

Lemma 1.16 (Fleiner). If F ,G : 2E → 2E are path-independent and substitutable
choice functions and DF and DG are their antitone determinants with property (1.1)
then DG defines a bijection between FG-kernels and fixed points of mapping DG ◦ DF .

Proof. We have seen in the proof of Theorem 1.15 that if K is an FG-kernel then X =
DG(K) and Y = DF(K) satisfy (1.3). As F(X) = X∩DF(X) = X∩Y = K, determinant
DG is injective on FG-kernels. If (1.3) holds for X, Y and K thenDG(DF(X)) = DG(Y ) =
X, hence FG-kernels are mapped into different fixed points of DG ◦ DF . At last, if X is
a fixed point of DG ◦ DF then (1.3) holds for for Y = DF(X) and K = X ∩ Y , meaning
that DG is indeed a bijection between FG-kernels and fixed points of DG ◦ DF .

Due to Lemmata 1.7 and 1.15, Corollary 1.11 can be formulated for path-independent
choice functions as follows. Function w : 2E → R+ is modular if w(A) + w(B) =
w(A∩B) +w(A∪B) holds for any subsets A,B of E. It is easy to see that w(A) := |A|
defines a strictly monotone and modular function on 2E.

Corollary 1.17 (Fleiner [20]). If F ,G : 2E → 2E are path-independent and substi-
tutable choice functions then FG-kernels form a nonempty lattice for partial order �F
defined by K1 �F K2 whenever F(K1 ∪ K2) = K1. Moreover, partial order �G is the
opposite of �F on FG-kernels.

Furthermore, if the above choice functions F and G are also w-increasing for some
strictly monotone modular mapping w : 2E → R+ then for any FG-kernels K1, K2 sets
K1 ∧F K2 := F(K1 ∪K2) and K1 ∨F K2 := G(K1 ∪K2) are also FG-kernels such that

χ(K1) + χ(K2) = χ(K1 ∨F K2) + χ(K1 ∧F K2) (1.4)

holds for the characteristic functions of these kernels. Moreover, w(K1) = w(K2) holds
for any FG-kernels K1 and K2.

Proof. Determinant DG defines a bijection between FG-kernels and fixed points of DG ◦
DF by Lemma 1.16. As both DG and DF are antitone, their composition is monotone,
hence by Theorem 1.9 of Tarski, fixed points of DG ◦ DF form a lattice for set-inclusion.
So for the first part of Corollary 1.17, we only have to show that by this bijection,
set inclusion corresponds to the partial order given in Corollary 1.17. For this reason,
assume that FG-kernels K1 and K2 correspond to X1 = DG(K1), Y1 = DF(K1) and
X2 = DG(K2), Y2 = DF(K2), respectively. As we have seen before, F(X1) = X1 ∩
DF(X1) = X1 ∩ Y1 = K1 and F(X2) = K2.

Assume first that F(K1 ∪K2) = K1. By antitonicity and property (1.1) of DF ,

Y2 = DF(K2) ⊇ DF(K1 ∪K2) = DF(F(K1 ∪K2)) = DF(K1) = Y1
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and hence X2 = DF(Y2) ⊆ DF(Y1) = X1 follows by the antitone property of DF . A
similar proof shows that G(K1 ∪K2) = K1 implies Y2 ⊆ Y1.

Suppose now that X2 ⊆ X1 holds. Property (1.1) of DG implies

Y1 = DF (K1) = DF(F(X1)) = DF (X1) ⊆ DF (X2) = DF(F(X2) = DF(K2) = Y2 .

Now

F(K1 ∪K2) = F(F(X1) ∪ F(X2)) = F(X1 ∪ F(X2)) = F(X1 ∪X2) = F(X1) = K1

and

G(K1 ∪K2) = G(G(Y1) ∪ G(Y2)) = G(Y1 ∪ G(Y2)) = G(Y1 ∪ Y2) = G(Y2) = K2

hold by path-independence of F and G. This justifies the first part of the corollary.
For the second part of the theorem, assume that F and G are also w-increasing and

define D′F and D′G by

D′F(X) = DF(X) ∪ (E \X) and D′G(Y ) = DG(Y ) ∪ (E \ Y ) .

Clearly D′F and D′G are determinants of F and of G, respectively, and being the union of
two antitone mappings, both of them are antitone. We show that both these mappings
are w-contractions. Assume that X ⊆ Y holds and observe that

w(X) +D′F(X) = w(X ∩ D′F(X)) + w(X ∪ D′F(X)) = w(F(X)) + w(E)

≤ w(F(Y )) + w(E) = w(Y ∩ D′F(Y )) + w(Y ∪ D′F(Y )) = w(Y ) +D′F(Y )

holds by the modular and strict monotone properties of w. This shows that w(Y ) −
w(X) ≥ D′F(X)−D′F(Y ), that is, D′F is a w-contraction. A similar proof shows that D′G
is also a w-contraction, hence their composition D′G ◦ D′F is a monotone w-contraction.

Assume now that FG-kernels K1 and K2 are determined by sets K1 = X1 ∩ Y1 (with
Y1 = D′F(X1) andX1 = D′G(Y1)) andK2 = X2∩Y2 (with Y2 = D′F(X2) andX2 = D′G(Y2)).
As X1 and X2 are fixed points of monotone w-contraction D′G ◦ D′F , both X1 ∩X2 and
X1 ∪ X2 are fixed points by Theorem 1.10. Similarly, as Y1 and Y2 are fixed points of
monotone w-contraction D′F ◦D′G, both Y1 ∩Y2 and Y1 ∪Y2 are fixed points of this latter
mapping. Consequently, F(X1∪X2) = G(Y1∩Y2) and F(X1∪X2) = G(Y1∪Y2) coincide
with FG-kernels K1∧FK2 and K1∨FK2, moreover F(X1∪X2) = F(F(X1)∪F(X2)) =
F(K1∪K2) and G(Y1∪Y2) = G(G(Y1)∪G(Y2)) = G(K1∪K2) holds by path-independence
of F and G. To finish the proof of the second part, it is left to show (1.4).

The above proof shows that if FG-kernels K1 and K2 are determined by pairs (X1, Y1)
and (X2, Y2) then K1 ∧F K2 and K1 ∨F K2 are determined by pairs (X1 ∪ X2, Y1 ∩ Y2)
and (X1 ∩ X2, Y1 ∪ Y2). Consequently, K1 = X1 ∩ Y1, K2 = X2 ∩ Y2, K1 ∨F K2 =
(X1 ∪X2) ∩ Y1 ∩ Y2 and K1 ∧F K2 = X1 ∩X2 ∩ (Y1 ∪ Y2). From this latter observation,
it is straightforward to check that each element of E contributes the same to both sides
of (1.4).

For the last statement, let K1 and K2 be FG-kernels and assume indirectly that
w(K1) > w(K2). From modularity of w, (1.4) and the w-increasing property of F and
G we get

2 · w(K1) > w(K1) + w(K2) = w(K1 ∧F K2) + w(K1 ∨F K2) = w(F(K1 ∪K2))

+w(G(K1 ∪K2)) ≥ w(F(K1)) + w(G(K1)) = w(K1) + w(K1) = 2 · w(K1),
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a contradiction, proving w(K1) = w(K2) must hold. This finishes the proof of the
theorem.

By Corollary 1.17, for path-independent substitutable choice functions F and G on E,
there is an F-optimal and a G-optimal FG-kernel KF and KG such that F(K∪KF) = KF
and G(K ∪KG) = KG holds for any FG-kernel K. These FG-kernels KF and KG are the
�F -maximal and �F -minimal elements of the lattice of FG-kernels.

Let us illustrate Corollary 1.17 with the following application.

Example 1.18 (2007 Kürschák Competition, problem 3).
Prove that any finite subset H of gridpoints on the plane has a subset K with the property
that

1. any line parallel with one of the axes (i.e. vertical or horizontal) intersects K in
at most 2 points,

2. any point of H \K is on a segment with end points in K and parallel with one of
the axes.

Proof. Define choice functions F ,G : 2H → 2H such that for any subset L of H, F(L)
denotes as the set of extreme elements of L on the horizontal gridlines and G(L) denotes
the set of extreme elements of L on the vertical gridlines. It is fairly straightforward to
check that F and G are substitutable and path-independent, moreover K satisfies the
required properties if K is an FG-kernel. Hence the claim follows from Corollary 1.17.

Theorem 1.1 follows immediately from Observation 1.4 and Corollary 1.11. More is
true, however. Due to Observation 1.4 stable matchings coincide with FAFB-kernels that
form fixed points of a monotone mapping. These fixed points form a complete lattice by
Theorem 1.9 hence there is a least and a greatest fixed point. This immediately implies
the existence of a man-optimal stable matching (in which each man is assigned to his best
partner he can receive in a stable matching and at the same time each women is matched
to her worst stable partner) and the existence of a woman-optimal stable matching (that
can be defined by exchanging the role of men and women). It also turns out that the
deferred acceptance algorithm of Gale and Shapley can be regarded as the iteration of
the monotone mapping DG ◦ DF in the proof of Corollary 1.17. (We have seen that this
iteration finds the least and the greatest fixed point.) It is also not difficult to prove
Blair’s theorem on the lattice property from Corollary 1.17.

Theorem 1.19 (Blair [12]). Let G = (V,E) be a bipartite graph with parts A and B
and for each vertex v ∈ V let Fv : 2E(v) → 2E(v) a substitutable choice function having the
IRC property. Let FA(X) :=

⋃
{Fv(X ∩ E(v) : v ∈ A} and FB(X) :=

⋃
{Fv(X ∩ E(v) :

v ∈ B}. Then FAFB-kernels form a nonempty (complete) lattice for partial order �B
where X �B Y holds whenever FB(X ∪ Y ) = X.

Proof . As FA and FB are substitutable choice functions with the IRC property on 2E,
these choice functions are path-independent as well by Observation 1.6. Theorem 1.19
directly follows from Corollary 1.17.

It is worth mentioning that the celebrated ground breaking work of Hatfield and
Milgrom [42] is based on the rediscovery of the connection between Corollary 1.17 and
Theorem 1.9 of Tarski.
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Chapter 2

Kernel type results

We illustrate the choice-function approach by proving a result of Bäıou and Balinski
[9] that generalize the theorem on stable b-matchings. Just like several earlier stable
matching related results, the proof of Bäıou and Balinski introduces an appropriate gen-
eralization of the Gale-Shapley algorithm. Our approach is that we reduce the problem
to Corollary 1.17. The choice function in this case works on a complete lattice that is
not a subsetlattice. To claim the theorem, we need to fix some terminology.

The stable allocation problem is defined by finite disjoint sets W and F of workers
and firms, a map q : W ∪ F → R, a set E of edges between W and F along with a
map p : E → R and for each worker or firm v ∈ W ∪ F a linear order <v on those pairs
of E that contain v. We shall refer to pairs of E as “edges” and hopefully it will not
cause ambiguity. Quota q(v) denotes the maximum of total assignment that worker or
firm v can accept and capacity p(wf) of edge e = wf means the maximum allocation
that worker w can be assigned to firm f along e. An allocation is a nonnegative map
g : E → R such that g(e) ≤ p(e) holds for each e ∈ E and for any v ∈ W ∪ F we have

g(v) :=
∑

x:vx∈E

g(vx) ≤ q(v) , (2.1)

that is, the total assignment g(v) of player v cannot exceed quota q(v) of v. If (2.1) holds
with equality then we say that player v is g-saturated. An allocation is stable if for any
edge wf of E at least one of the following properties hold:

either g(wf) = p(wf)

(the particular employment is realized with full capacity)
(2.2)

or
∑

wf ′≤wwf
g(wf ′) = q(w), that is worker w is g-saturated and w does not

prefer f to any of his employers (we say that wf is g-dominated at w)
(2.3)

or
∑

w′f≤fwf
g(w′f) = q(f), that is firm f is g-saturated and f does not

prefer w to any of its employees (we say that wf is g-dominated at f).
(2.4)

Note that (2.4) and (2.3) imply that if g is a stable allocation, then for each firm f and
each worker w

there is at most one edge e dominated at f with g(e) > 0 and (2.5)

there is at most one edge e dominated at w with g(e) > 0 . (2.6)

16
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If g1 and g2 are allocations and w ∈ W is a worker then we say that allocation
g1 dominates allocation g2 for worker w (in notation g1 ≤w g2) if one of the following
properties is true:

either g1(wf) = g2(wf) for each f ∈ F or (2.7)∑
f ′∈F g1(wf ′) =

∑
f ′∈F g2(wf ′) = q(w), and

g1(wf) < g2(wf) and g1(wf ′) > 0 implies that wf ′ <w wf .
(2.8)

That is, if w can freely choose his allocation from max(g1, g2) then w would choose g1

either because g1 and g2 are identical for w or because w is saturated in both allocations
and g1 represents w’s choice out of max(g1, g2). By exchanging the roles of workers and
firms, one can define domination relation ≤f for any firm f , as well.

The stable allocation problem was introduced by Bäıou and Balinski as a certain
“continuous” version of the stable marriage problem in [9]. Below we state and prove a
nondiscrete generalization of the Bäıou-Balinski result.

Theorem 2.1 (See Bäıou and Balinski [9]). 1. In any stable allocation problem in-
stance described by W,F,E, p and q, there exists a stable allocation g. Moreover, if p
and q are integral, then there exists an integral stable allocation g.

2. If g1 and g2 are stable allocations and v ∈ W ∪ F then g1 ≤v g2 or g2 ≤v g1 holds.
3. Stable allocations have a natural lattice structure. Namely, if g1 and g2 are stable

allocations then g1 ∨ g2 and g1 ∧ g2 are stable allocations, where

(g1 ∨ g2)(wf) =

{
g1(wf) if g1 ≤w g2

g2(wf) if g2 ≤w g1
(2.9)

and

(g1 ∧ g2)(wf) =

{
g1(wf) if g1 ≤f g2

g2(wf) if g2 ≤f g1
(2.10)

In other words, if workers choose from two stable allocations then we get another stable
allocation, and this is also true for the firms’ choices. Moreover, it is true that

(g1 ∨ g2)(wf) =

{
g1(wf) if g1 ≥f g2

g2(wf) if g2 ≥f g1
(2.11)

and

(g1 ∧ g2)(wf) =

{
g1(wf) if g1 ≥w g2

g2(wf) if g2 ≥w g1
(2.12)

That is, in stable allocation g1 ∨ g2 where each worker picks his better assignment, each
firm receives the worse out of the two. Similarly, in g1∧ g2 the choice of the firms means
the less preferred situation to the workers.

Sketch of the proof of Theorem 2.1 . Define lattice Lp = ({l : E → R+, l ≤ p},≤) and

observe that Lp is complete. For l ∈ Lp let F(l) denote the choice of workers: if e1 <v

e2 < . . . is the preference order of the edges of E(w) then

F(l)(ei) = min

(
l(ei), q(w)−

i−1∑
j=1

F(l)(ej)

)
.
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That is, workers choose their best possible assignment that does not exceed l. In this
choices, workers do not care about the firm quotas. By definition, F(l) ≤ l, hence F is
a choice function on Lp. It is easy to check that F(l) = min(l,DF(l)) where

DF(l)(ei) = max

(
0, q(w)−

i−1∑
j=1

l(ej)

)

for the above edge ei. Clearly, DF is antitone, hence F is substitutable, and it is also
straightforward to see that F is path-independent as well. We can define choice function
G and its determinant DG similarly where the role of workers is played by the firms.

To finish the proof, we observe that stable allocations are exactly FG-kernels and
Theorem 2.1 follows from Corollary 1.17. The proof of the integrality property in the
first part of the theorem is exactly the same, we only have to replace Lp by complete
lattice L′p = ({l : E → N, l ≤ p},≤).

2.1 Poset-kernels

The fixed-point based approach in Chapter 1 allows us to generalize or extend several
earlier results. A common antichain K of finite posets P1 = (E,≤1) and P2 = (E,≤2)
is called a P1P2-kernel if for any e ∈ E there is some k ∈ K such that e ≤1 k or e ≤2 k
holds. The first part of the following generalization of Theorem 1.1 of Gale and Shapley
can be easily deduced from the result by Sands, Sauer, and Woodrow [62]. (Moreover,
it is also true that the Sands-Sauer-Woodrow theorem is a consequence of the first part
of Theorem 2.2.)

Theorem 2.2 (Fleiner [20]). For any finite posets P1 = (E,≤1) and P2 = (E,≤2)
there exists a P1P2-kernel. Moreover, P1P2-kernels form a lattice for partial order ≺1

where A ≺1 A
′ holds for two antichains of P1 if each element of A has an ≤1-upper bound

in A′.

Theorem 2.2 follows from Corollary 1.4 and the observation that mapping each subset
X of the poset to the set of maxima of X defines a path-independent choice function. We
omit the formal proof as we show a generalization of Theorem 2.2 later in this chapter.
The following application illustrates the first part of Theorem 2.2.

Example 2.3 (2016 Kürschák Competition, problem 2).
Prove that any finite subset A of the positive integers has a subset B with the properties
below.

• If b1 and b2 are different elements of B then neither b1 and b2, nor b1 +1 and b2 +1
are multiples of one another, and

• for any element a of set A there exists some element b of B such that a divides b
or (b+ 1) divides (a+ 1).

Proof. Define two partial orders P1 = (A,≤1) and P2 = (A,≤2) by a ≤1 b holds if b | a
and a ≤2 b holds if a + 1 | b + 1. Then subset B of A satisfies the requirements in
Example 2.3 if and only if B is a P1P2-kernel that does exist by Theorem 2.2.
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Aharoni, Berger, and Gorelik proved a weighted version of Theorem 2.2. We need a
couple of definitions to state it. Let P = (V,≤) be a finite poset, let w : V → N be a
demand function and let f : V → N be a weight function. For any v ∈ V let

f ↑≤(v) = max{f(c1) + f(c2) + . . . : v = c1 < c2 < . . .}

denote the maximum weight of chains starting from v. This weight function f is (≤, w)-
independent if

• for any chain c1 < c2 < . . . < ck we have
∑k

i=1 f(ci) ≤ max{w(ci) : 1 ≤ i ≤ k} and

• f(v) · f ↑≤(v) ≤ f(v) · w(v) for any v ∈ V .

(The first condition means that the total weight of no chain exceeds the maximal demand
of its elements while due to the second condition the total weight of a chain starting at
element v of positive weight does not exceed the demand of v.) It is immediate that
(≤, 1)-independent weight functions coincide with the characteristic vectors of antichains.

The above weight function f w-dominates element c1 of poset P if there is some
chain c1 < c2 < . . . < ck such that w(c1) ≤

∑k
i=1 f(ci) holds, that is, if there is a chain

starting at c1 with a total weight not less than the demand of c1. Now let P1 = (V,≤1)
and P2 = (V,≤2) be finite posets on common ground set V and let w1, w2 : V → N be
two demand functions. By a (w1, w2)-kernel of these posets, we mean a weight function
f : V → N that is both (≤1, w1)-independent and (≤2, w2)-independent and moreover
f dominates each element of ground set V , more precisely each element of V is w1-
dominated by f in P1 or w2-dominated in P2. It is worth observing that a (1, 1)-kernel
coincides with the previously defined kernel. Now we can claim the theorem on weighted
kernels.

Theorem 2.4 (Aharoni, Berger, Gorelik [5]). Let P1 = (V,≤1) and P2 = (V,≤2)
be finite posets and let w : V → N be a demand function. Then these posets have a
(w,w)-kernel.

An extension of Corollary 1.11 of Theorem 1.9 to lattices (according to Remark 1.8)
allows us to generalize Theorem 2.4 as follows.

Theorem 2.5 (Fleiner, Jankó [30]). Let P1 = (V,≤1) and P2 = (V,≤2) be finite
posets, and let w1 : V → N and w2 : V → N two demand functions. Then there
exists a (w1, w2)-kernel of these posets. The set of (w1, w2)-kernels form a lattice for the
partial order �1 of weight functions where f �1 g holds for weight functions f and g if
f ↑≤1
≤ g↑≤1

.

Note that Theorem 2.2 is a special case of Theorem 2.5 for w1 = w2 = 1. Here, we
give a sketch of the proof, the interested reader finds the details in [30].

Proof. Let w = max(w1, w2) and define complete lattice Lw := ({f : V → N, f ≤ w},≤)
and refer to the elements of Lw as weight functions. We shall define two choice functions
on Lw.

Let V = {v1, v2, . . . , vn} be a linear extension of ≤1, that is, if vi ≤1 vj then j ≤ i
holds. (So v1 is ≤1-maximal element of V and vi+1 is a ≤1-maximal element of V \
{v1, v2, . . . , vi} for i = 1, 2, . . ..) For weight function f ∈ Lw, define F(f) for values of
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v1, v2, . . . , vn in this order in the following certain greedy manner. After we calculated
the values of [F(f)] (v1), . . . , [F(f)] (vi−1), we determine value [F(f)] (vi) = α such that
α ≤ f(vi) and α is maximal with the property that F(f) is (≤1, w1)-independent on any
chain vi ≤1 l1 ≤1 l2 ≤1 . . . starting at vi. More precisely,

[F(f)] (vi) = min {f(vi),max {0, w1(vi)− [F(f)]∗ (vi)}} (2.13)

where [F(f)]∗ (v) = 0 if v is a ≤1-maximal element of V , otherwise

[F(f)]∗ (v) = max {[F(f)] (c1) + [F(f)] (c2) + . . . : v <1 c1 <1 c2 <1 . . .} (2.14)

By definition, F(f)(vi) ≤ f(vi) holds for each element vi of V , hence mapping F is
a choice function on Lw. Moreover, F(f) is (≤1, w1)-independent for any weight f ∈ Lw
as we have chosen each value F(f)(v) such that every chain v � c1 � c2 � . . . satisfies
the property that independence requires.

We define choice function G similarly as F , using ≤2 and w2 instead of ≤1 and w1

with linear extension V = {u1, u2, . . . , un} of ≤2.
We prove that F and G are substitutable by the following lemma the proof of which

is omitted.

Lemma 2.6 (Fleiner, Jankó [30]). For any f ∈ Lw and v ∈ V define [MF(f)] (v) =
0 if v is ≤1-maximal otherwise let

[MF(f)] (v) := max{f ′(c1) + f ′(c2) + . . .+ f ′(ck) :

f ′ ≤ f and f ′ is (≤1, w1)-independent and v <1 c1 <1 c2 <1 . . . <1 ck} (2.15)

as the maximum total f ′-weight of a chain above v where f ′ is a (≤1, w1)-independent
lower bound of f . Then DF := max{0, w −MF} is a determinant of F , that is

[F(f)] (v) = min {f(v),max{0, w(v)− [MF(f)] (v)}} . (2.16)

Moreover, DF has property (1.1). �

MappingM is monotone by (2.15), hence determinant DF is antitone. Consequently
choice function F is substitutable and path-independent by Lemma 1.7. A similar proof
shows that G is also substitutable and path-independent. We finish the proof by showing
that (w1, w2)-kernels are exactly the FG-kernels. Once we do so, Theorem 2.5 directly
follows from the first part of Corollary 1.17.

Assume first that f is a (w1, w2)-kernel. To show that f is an FG-kernel, it is enough
to prove that

f = min {DF(f),DG(f)} . (2.17)

As f is (≤1, w1)-independent and (≤2, w2)-independent, f = F(f) = G(f), so f ≤
min {DF(f),DG(f)} by the definition of the determinant. Now pick any v ∈ V . As f is
a (w1, w2)-kernel, v is either w1-dominated or w2-dominated by f (or both). In the first
case, [DF(f)] (v) = f(v) and in the second one [DG(f)] (v) = f(v) holds, that is

f ≥ min {DF(f),DG(f)} = min
{
DF(f),DwG (f)

}
,
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by Lemma 2.6. This proves (2.17) hence f is an FG-kernel.
Now suppose that f is an FG-kernel. As f = F(f) = G(f), f is both (≤1, w1)-

independent and (≤2, w2)-independent. Moreover, (2.17) holds by (1.3). Pick any v ∈ V .
Now Lemma 2.6 implies

f(v) = min {[DF(f)] (v), [DG(f)] (v)}

So either f(v) = [DF(f)] (v) or f(v) = [DG(f)] (v) holds (or both). In the first case v
is (≤1, w1)-dominated by f and in the second case v is (≤2, w2)-dominated by f . This
proves that f is indeed a (w1, w2)-kernel.

There are other poset-related kernel type results follow from our framework. Below,
we describe a formal generalization of the Hatfield-Milgrom result [42] after introducing
some Economics motivated terminology. The generalization of the stable marriage theo-
rem (i.e. Theorem 1.1) by Hatfield and Milgrom can be formulated as follows. We have
a two-sided market: agents on one side are hospitals and agents on the other side are
doctors. (In our terminology, hospitals and doctors are the vertices of the underlying
graph.) Set X represents a set of bilateral contracts, each involving a hospital and a
doctor. There may be several different contracts possible involving the same two agents.
(That is, X stands for the edges of bipartite graph G and parallel edges are possible.)
Each agent v has some preference on her contracts and this is described by a choice
function Cv that from any set of possible contracts selects those that v would choose
if she is allowed to pick freely regardless of any other agents. These individual choice
functions can be combined to define two choice functions on 2X : one for the hospitals
(Ch) and one for the doctors (CD). Hatfield and Milgrom proved that if both CH and
CD are substitutable and path-independent then there always exist a stable allocation of
doctors to hospitals, that is, a subset X ′ of X such that CD(X ′) = CH(X ′) = X ′ and no
contract x exists such that x ∈ CD(X ′ ∪ {x}) ∩ CH(X ′ ∪ {x}) holds.

Note that in certain practical applications hospitals (or doctors) have preferences that
do not correspond to a substitutable choice function. This happens in particular, if there
is a partial order � on the set X of contracts such that if x′ � x and x is available in
a choice set then x′ must also be available. This condition might mean that it is aways
possible for both parties to “downgrade” an offered contract. The following example
shows such a situation.

Example 2.7. Assume we have two hospitals h and h̄ and two doctors d and d′. Con-
tract x′i represents an i-days job of d′ at h, and x̄j stands for a j-days occupation for d at
h̄, etc. That is, X := {zi : 1 ≤ i ≤ 5, z ∈ {x, x′, x̄, x̄′}} is the set of possible contracts.
Partial order � is defined by relations of type zi � zj for i ≤ j and z ∈ {x, x′, x̄, x̄′}.

Assume that d is a famous doctor with a high salary expectation, so each hospital
wants to employ her but for a minimum amount of time. Doctor d′ can do the same job
equally well but she is young and hence costs less to the employer. Assume that each
hospital needs 5 days of work and from a given set of options it selects 1 day of work of
doctor d, the maximum amount of work for doctor d′ up to 5 days altogether and for the
missing days it selects d if she is still available. For example, Ch(x1, x2, x3, x

′
1, x
′
2, x
′
3) =

{x2, x
′
3}, Ch(x1, x2, x3, x

′
1, x
′
2, x
′
3, x
′
4) = {x1, x

′
4} and Ch̄(x̄1, x̄2, x̄

′
1, x̄
′
2) = {x̄2, x̄

′
2}. Assume

moreover that both doctors d and d′ look for 5 days of work, and both of them prefer
hospital h to h′: Cd(x1, x2, x3, x̄1, x̄2, x̄3) = {x3, x̄2}.

It is easy to see that none of choice functions CH and CD on 2X are substitutable.
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It turns out that our framework can be applied for Example 2.7 as well, and the key
is that we restrict the domain of the choice functions so as to achieve substitutability.
If P = (X,�) is a poset then Y ⊂ X is a lower ideal if it is downward closed, that is,
a � b ∈ Y implies a ∈ Y . It is easy to see that lower ideals are closed on arbitrary
intersection and union, hence lower ideals form a complete lattice that we shall denote
by LP . As we argued above, the domain of our choice functions CH and CD will be LP .
The range of these choice functions however is the set of antichains of P , as neither
a doctor nor a hospital can pick two comparable contracts. It is easy to see that (at
least for finite posets P ) there is a bijection between lower ideals and antichains as each
antichain A determines a lower ideal Li(A) = {x ∈ X : x � a ∈ A} and each lower
ideal I determines an antichain max I. Consequently, (according to Remark 1.8) we may
think about choice functions CH and CD as a choice function on LP . Notice that if CH
and CD come from Example 2.7 then both these choice functions are substitutable and
path-independent. (Moreover, these choice functions are even w-monotone if w(xi) =
w(x′i) = w(x̄i) = w(x̄′i) = i holds for each i = 1, 2, . . . , 5.)

As we saw before, choice function C : LP → LP is substitutable if there is an antitone
function D : LP → LP such that C(l) = l∩D(l) holds for any element l of LP . According
Definition 1.12, subset Y of X is a CHCD-kernel if there exist lower ideals l1, l2 ∈ LP
such that Y = max(l1 ∩ l2) and DD(l1) = l2 and DH(l2) = l1. Hence the application of
Corollary 1.17 gives the following result

Theorem 2.8 (Farooq, Fleiner and Tamura [18]). Let X be a set of possible con-
tracts between set D of doctors and H of hospitals and = (P ) be the lattice of lower
ideals of some partial order P = (X,�). If both joint choice functions CH and CD are
substitutable and path independent then there exist a CHCD-kernel and �CD

and �CH
are

opposite partial orders on CDCH-kernels and both of them define a lattice.

2.2 Matroid-kernels

Kernel type results can be proved on other structures than posets. LetM1 = (E, I1) and
M2 = (E, I2) be matroids and let ≤1 and ≤2 be a linear order on their common ground
set E. Common independent set K of these matroids are called an M1M2-kernel if for
any element e ∈ E \K there exist a cycle C of matroidMi for some i ∈ {1, 2} such that
C ⊆ K ∪ {e} and c ≤i e holds for each c ∈ C − e.

Theorem 2.9 (Fleiner [20]). For any matroids M1 = (E, I1) and M2 = (E, I2) and
for any linear orders ≤1 and ≤2 on E, there exists an M1M2-kernel. If K1, K2 ⊆ E
are M1M2-kernels then the greedy algorithm on Mi for processing order ≤i selects
an M1M2-kernel from K1 ∪ K2 for any i = 1, 2. These two operations determine a
lattice on M1M2-kernels with property 1.4. Moreover, spanM1K1 = spanM1K2 and
spanM2K1 = spanM2K2 holds for any M1M2-kernels K1 and K2.

The keys to Theorem 2.9 are Corollary 1.17 and the fact that the choice function
defined by the greedy algorithm is substitutable and increasing.

Proof. Define choice functions F and G on E as follows. For subset X of E let x1 <1

x2 <1 x3 <1 . . . be the ≤1 order of the elements of X and let F0(X) = ∅ and for
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i = 1, 2, . . . define

Fi(X) =

{
Fi−1(X) ∪ {xi} if Fi−1(X) ∪ {xi} ∈ I1

Fi−1(X) if Fi−1(X) ∪ {xi} 6∈ I1 ,

and let F(X) := F|X|(X). That is, Fi(X) is the basis of X that the greedy algorithm
selects from X in matroid M1 for order ≤1. Define choice function G similarly for
matroid M2 and order ≤2. Clearly, F and G are choice functions and |F(X)| = rk1(X)
and |G(X)| = rk2(X), so by the monotone property of the rank function, both F and
G are increasing. A standard property of matroids is that choice function F defined by
F(X) = X \ F(X) as the nonselected elements of F is monotone. Hence DF(X) :=
E \ F(X) = F(X) ∪ (E \X) is an antitone determinant of F , showing that F (and G
for a similar reason) is an increasing substitutable choice function.

To show that M1M2-kernels are exactly FG-kernels, assume first that K is an FG-
kernel, i.e. K = X ∩ Y where X = DG(Y ) and Y = DF(X). Now K is a common
independent set ofM1 andM2 as F(X) = X ∩DF(X) = X ∩ Y = DG(Y )∩ Y = G(Y ).
Let e ∈ E \K and assume no cycle C ⊆ K ∪ {e} of M1 exist such that c ≤1 e holds for
each element c of C − e. This means e 6∈ X as otherwise e ∈ F(X) = K would hold.
However, then e ∈ DF(X) = Y and e 6∈ K = G(Y ), hence the greedy algorithm does not
pick e from Y , i.e. there must exist some cycle C ′ if M2 in Y such that C ′ ⊂ K ∪ {e}
and c ≤2 e holds for each element c of C ′ − e. Consequently, K is an M1M2-kernel.

Assume now that K is an M1M2-kernel and define

X := K ∪ {e ∈ E : e 6∈ F(K ∪ {e}} and Y := DF(X) .

Set K is independent in M1 hence K = F(X) = X ∩ Y holds. So Y = DF(X) =
K ∪ (E \ X) = {e ∈ E : e ∈ F(K ∪ {e}}. As K is an M1M2-kernel, for any element
e of Y \ K there exists a cycle C ⊂ K ∪ {e} of M2 such that c ≤2 e holds for any
c ∈ C. Consequently, G(Y ) = K and hence DG(Y ) = E \ (X)∪K = X, that is, K is an
FG-kernel.

Hence the existence ofM1M2-kernels and the structural properties ofM1M2-kernels
directly follow from Corollary 1.17 and the definition of choice functions F and G.

It is interesting to see that Theorem 2.9 generalizes the following well-known result.

Theorem 2.10. If graph G is bipartite then dM ≡ dM ′ holds for any two stable b-
matching M and M ′. Moreover, M(v) = M ′(v) whenever |M(v)| < b(v) holds.

Note that the famous Rural Hospitals Theorem of Roth [57] is the special case of the
above Theorem 2.10 where G has bipartiton (A,B) and b(a) = 1 holds for each vertex
a ∈ A.

Proof. Stable b-matchings of G are exactlyM1M2-kernels whereM1 andM2 are parti-
tion matroids on E (the partitions are given by the stars of the two color classes), linear
orders ≤1 and ≤2 are compatible with the preferences of the vertices, and b determines
the rank of the parts in the partiton. If M and M ′ are stable b-matchings of G then
spanM1(M) = spanM1(M

′) and spanM2(M) = spanM2(M
′) holds by Theorem 2.9 and

this directly implies Theorem 2.10.
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Chapter 3

The structure of kernels

In this chapter, we study the structure of various FG-kernels. We shall see that the
lattice structure of kernels (due to Corollary 1.17) allows us to prove various interesting
structural results.

3.1 Uncrossing of kernels and median kernels

First, we deduce as a corollary of Corollary 1.17 that FG-kernels can be efficiently un-
crossed.

Theorem 3.1 (Fleiner [20]). Let F ,G : 2E → 2E be w-increasing substitutable choice
functions for some modular and strictly monotone function w : E → R+ and let K1, K2, . . . , Km

be arbitrary FG-kernels. Then there exist a chain K1 �F K2 �F . . . �F Km of FG-

kernels such that
∑m

i=1 χ(Ki) =
∑m

i=1 χ(Ki) and Kj = F
(

supp
(∑m

i=1 χ(Ki)−
∑j−1

i=1 χ(Ki)
))

hold for 1 ≤ j ≤ m.

Proof. If FG-kernels Ki and Kj are not comparable then Ki ∧F Kj and Ki ∨F Kj are
both FG-kernels with the property that χ(Ki) + χ(Kj) = χ(Ki ∧F Kj) + χ(Ki ∨F Kj)
by the second part of Corollary 1.17. This means that if we replace Ki and Kj by FG-
kernels Ki∧F Kj and Ki∨F Kj, then this does not change

∑m
i=1 χ(Ki), while it increases∑m

i=1 |Ki|2. So at some point no such replacement is possible any more and hence we
have a chain of FG-kernels as required by the theorem. It follows from

∑m
i=1 χ(Ki) =∑m

i=1 χ(Ki) that

Kj = Kj ∧F Kj+1 ∧F . . . ∧F Km = F(Kj ∪Kj+1 ∪ . . . ∪Km) = F

(
supp

(
m∑
i=j

χ(Ki)

))

= F

(
supp

(
m∑
i=1

χ(Ki)−
m∑
i=1

χ(Ki) +
m∑
i=j

χ(Ki)

))
= F

(
supp

(
m∑
i=1

χ(Ki)−
j−1∑
i=1

χ(Ki)

))

holds, and this finishes the proof.

In case of stable b-matchings, Theorem 3.1 has an especially simple form that relies
on the following generalization by Bäıou and Balinski of the Comparability Theorem [59]
by Roth and Sotomayor.

24
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Theorem 3.2 (Bäıou and Balinski [7]). Let G = (V,E) be a bipartite graph and let
�v be a linear order on the set E(v) of edges incident to vertex v and let b : V → N.
If S1 and S2 are stable matchings and v ∈ V then one of the two properties below must
hold.

• S1(v) = S2(v) or

• |S1(v)| = |S2(v)| = b(v) and the b(v) �v-best element of set S1(v) ∪ S2(v) is either
S1(v) or S2(v).

It is not difficult to prove Theorem 3.2 with elementary tools, i.e. by studying the
domination in the symmetric difference of two stable b-matchings. A corollary of Theo-
rem 3.2 is that for any vertex v of G there is a linear order on those subsets of edges of
E(v) that a stable b-matching can contain. As it (hopefully) does not cause ambiguity’s,
this linear order is denoted also by �v. The theorem below in particular implies that
if each agent in one part of the bipartite graph select the ith best assignment out of k
given stable b-matchings then these choices result in another stable b-matching.

Theorem 3.3 (Fleiner [19]). Let G = (V,E) be a bipartite graph with parts A and B
and let �v be a linear order on the set E(v) of edges incident with v for each vertex v and
let b : V → N. Then for any stable b-matchings S1, S2, . . . , Sk, and for any 1 ≤ i, j ≤ k,
sets SiA :=

⋃
{Si(v) : v ∈ A} and SjB :=

⋃
{Si(v) : v ∈ B} are stable b-matchings with

the property that SiA = Sk+1−i
B holds for 1 ≤ i ≤ k where S1(v), S2(v), . . . , Sk(v) denotes

edge sets S1(v), S2(v), . . . , Sk(v) in �v-order.

Proof. For vertex v of G and stable matchings S and S ′ let S �v S ′ denote that v prefers
S to S ′. According to Theorem 3.2, we can list S1, S2, . . . , Sn as S1

v �v S2
v �v . . . �v Snv

for each vertex v. Observe that SiA =
∨
a∈A

∧i
`=1 S

`
a and SjB =

∧
b∈B
∨j
`=1 S

`
b where we

use the choice function of A for operation ∧ and operation ∨ is calculated with the
choice function of B. Chains S1

A, S
2
A, . . . , S

k
A and S1

B, S
2
B, . . . , S

k
B are opposite, hence

SiA = Sk+1−i
B .

Theorem 3.3 above has been proved for stable matchings by Teo and Sethuraman
with the help of linear programming tools [66]. Later, not being aware of Theorem 3.3,
Klaus and Klijn gave a very similar short proof for a special case [50].

3.2 The splitting property of kernels

The following less known splitting property of stable b-matchings turns out to be espe-
cially useful when proving a linear description of stable b-matching polyhedra.

Theorem 3.4 (Fleiner [21]). Let �v be a linear order on the set E(v) of edges in-
cident to v for each vertex v of bipartite graph G = (V,E) and let b : V → N. Then
there exists a partition E(v) = E1(v) ∪ . . . ∪ Eb(v)(v) for each vertex v ∈ V such that
|Ei(v) ∩ S| ≤ 1 holds for any stable b-matching S, vertex v and index 1 ≤ i ≤ b(v).

Proof. Let E ′(v) be the set of those edges of E(v) that can appear in some stable b-
matching of G. Note that it is enough to partition E ′(z) into b(z) parts with the required

dc_1564_18

Powered by TCPDF (www.tcpdf.org)



CHAPTER 3. THE STRUCTURE OF KERNELS 26

property, as we can assign edges of E(z) \ E ′(z) into any of the parts without violating
the condition required by Theorem 3.4.

If M and M ′ are stable b-matchings and the �v minimal edge of M(v) is the same as
the �v-minimal edge of M ′(v) then Theorem 3.2 yields that M(v) = M ′(v). Hence there
is a linear order M1(v) ≺v M2(v) ≺v . . . ≺v M `(v) on possible sets M(v) so that for i < j
the�v-worst |M i(v)\M j(v)| edges of M i(z)∪M j(z) are the edges of M j(v). By induction
on k, we show how to partition

⋃k
i=1M

i(v) into b(v) parts Ek
1 (v), Ek

2 (v), . . . , Ek
b(v)(v) so

that any M j(v) contains at most one edge of each part Ek
i (v) for j ≥ k.

As M1(v) comes from some b-matching, we can partition M1(v) into b(v) (possibly
empty) parts E1

1(v), E1
2(v), . . . , El

b(v)(v), of size at most one. Thus M1(v) intersects each

E1
i (v) in at most one edge. Assume that we have a partition Ek

1 (v), Ek
2 (v), . . . , Ek

b(v)(v) of⋃k
i=1M

i(z) with the above property. To construct partitionEk+1
1 (v), Ek+1

2 (v), . . . , Ek+1
b(v) (v)

of
⋃k+1
i=1 M

i(v), we extend the old parts Ek
i (v) by assigning the new edges of Mk+1(v) \⋃k

i=1M
i(v) to certain parts so that the required property is preserved.

By Theorem 3.2, |Mk+1(v) \ Mk(v)| = |Mk(v) \ Mk+1(v)|, moreover no edge of
Mk+1(v)\Mk(v) is present in M i(z) for i ≤ k (those are the worst edges that we did not
see so far). So we can distribute the unassigned edges of Mk+1(v) \Mk(v) into the parts
of the edges of Mk(v)\Mk+1(v) in such a way that we put exactly one edge to each of the
parts. By this, we partition

⋃k+1
i=1 M

i(v) into b(v) parts Ek+1
1 (v), Ek+1

2 (v), . . . , Ek+1
b(v) (v) so

that any M i(v) intersects any part Ek+1
j (v) in at most one edge for i ≤ k + 1 and 1 ≤

j ≤ b(z). Partition E1(v), E2(v), . . . , Eb(v)(v) required by Theorem 3.4 can be constructed
from E`

1(v), E`
2(v), . . . , E`

b(v)(v) by putting unassigned edges to arbitrary parts.

It follows from Theorem 3.4 that for any graph G with arbitrary preference orders
on its vertices and for arbitrary vertex capacities there exists a graph G′ such that G
can be obtained from G′ by merging certain vertex subsets of G′, moreover any stable
b-matching of G corresponds to a stable matching of G′. Although graph G′ can be
constructed efficiently from graph G, preferences �v and quotas q, this observation does
not allow us to reduce the search of a stable b-matching to a search of stable matchings.
The reason is that it is not true that any stable matching of G′ is coming from a stable
b-matching of G as the following Example shows.

Example 3.5. Let G have two vertices u and v and 4 parallel uv edges and assume
b(u) = b(v) = 2 and e1 <u e2 <u e3 <u e4 and e4 <v e3 <v e2 <v e1. Then stable b-
matchings are {e1, e2}, {e2, e3} and {e3, e4}, so the only possible star-partitions provided
by Theorem 3.4 (up to permutation of parts) is E1(u) = E1(v) = {e1, e3} and E2(u) =
E2(v) = {e2, e4}. Now {e1, e4} is a stable matching of graph G′ while it is not a stable
b-matching in G.

Observe that if in Theorem 3.4, we pick some vertex v and a set Ei(v) such that
E1
i (v) in the proof is nonempty then then |Ei(v)∩S| = 1 holds for any stable b-matching

S. Our last result in this section is a certain extension of Theorem 3.4 to a more general
setting. First, we need a handy lemma stating that FG-kernels form a clutter (to be
defined in Chapter 5).

Lemma 3.6 (Fleiner [20]). If K1 �F K2 �F K3 is a chain of of FG-kernels for path-
independent substitutable choice functions F ,G : 2E → 2E then K1 ∩ K3 ⊆ K2 must
hold.
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Proof. Let DF be a determinant of F with property (1.1). From K1 �F K2 �F K3 we
get F(K1∪K2∪K3) = K1 by Corollary 1.17, hence DF(K1∪K2∪K3) = DF(K1) holds.
Using Observation 1.14, the antitone property of DF and Corollary 1.17,

K2 = F(K2) = F(K2 ∪K3) = (K2 ∪K3) ∩ DF(K2 ∪K3) ⊇ K3 ∩ DF(K1 ∪K2 ∪K3)

= K3 ∩ DF(K1) ⊇ K3 ∩ (DF(K1) ∩K1) = K3 ∩ F(K1) = K3 ∩K1

follows.

3.3 Transversals of kernels

In this section, our main result is we prove that there exists a transversal of FG-kernels
that will will be crucial in Chapter 5. For convenience, let KFG denote the set of FG-
kernels for choice functions F ,G : 2E → 2E.

Theorem 3.7 (Fleiner [20]). For any modular and strictly monotone function w :
E → R+ and for any w-increasing substitutable choice functions F ,G : 2E → 2E, there
is a subset X of E such that

|X ∩K| = 1 holds for any FG-kernel K. (3.1)

Proof. For element x of E and subset Y of E define

Kx :=
∧
F
{K ∈ KFG : x ∈ K},

Kx :=
∨
F
{K ∈ KFG : x ∈ K}, and

KY :=
∧
F
{K ∈ KFG : K ∩ Y = ∅}

and observe from Lemma 3.6 and (1.4) that

{K ∈ KFG : x ∈ K} = {K ∈ KFG : Kx �F K �F Kx} = [Kx, K
x], (3.2)

that is, the set of FG-kernels that contain element x of E are exactly the ones in the
interval between Kx and Kx. Consequently, our task is to partition the lattice of FG-
kernels into disjoint intervals Ix = [Kx, K

x].
Pick an arbitrary element x1 of F -optimal FG-kernel K1 = KF and let Ix1 be the

first interval in our partition. We create the intervals one by one, so assume that for
some n we have elements x1, x2, . . . , xn of E such that for any i ≤ n we have the following
properties:

Intervals Ix1 , Ix2 , . . . , Ixn are pairwise disjoint and (3.3)

Kx1 ≺F Kx2 ≺F . . . ≺F Kxn and (3.4)⋃i
j=1 Ixj

= [KF , K
xi ], that is, intervals Ixj

cover

the part of the lattice of FG-kernels below Kxi .
(3.5)

Case 1. If xn ∈ KG, i.e., if Kxn = KG then X = {x1, x2, . . . , xn} has the property
that Theorem 3.7 requires, and the proof is done.

dc_1564_18

Powered by TCPDF (www.tcpdf.org)



CHAPTER 3. THE STRUCTURE OF KERNELS 28

Case 2. Otherwise, if xn 6∈ KG then defineK := K{x1,x2,...,xn}. AsK∩{x1, x2, . . . , xn} =

∅ by (3.2) and the definition of K, (3.5) for i = n implies K 6�F Kxn . Clearly,

K =
∨
F

{Kx : x ∈ K}, (3.6)

hence there must exist some xn+1 ∈ K such that

Kxn+1 6�F Kxn . (3.7)

Thus Kxn+1 ∩ {x1, x2, . . . , xn} = ∅ holds by (3.5) and K �F Kxn+1 �F K follows from
(3.6) and the definition of K. This proves that

K = K{x1,x2,...,xn} = Kxn+1 (3.8)

Our next goal is to prove that (3.3) and (3.4) hold for n + 1 and (3.5) holds for
i = n+ 1. To show (3.3), assume indirectly K ∈ Ixn+1 ∩ Ixj

, for some j ≤ n. This means
that Kxn+1 �F K �F Kxj �F Kxn , contradicting (3.7). This contradiction proves (3.3)
for n+ 1.

For (3.4), it is enough to justify Kxn �F Kxn+1 . As

χ(Kxn+1) + χ(Kxn) = χ(Kxn+1 ∧F Kxn) + χ(Kxn+1 ∧F Kxn)

holds by (1.4), and xn+1 6∈ Kxn+1 ∧F Kxn by the definition of Kxn and by (3.7). Conse-
quently, xn+1 ∈ Kxn+1 ∨F Kxn and hence

Kxn �F Kxn+1 ∨F Kxn �F Kxn+1 ,

proving (3.4) for n+ 1.
To show (3.5) for i = n + 1, assume that K ′ � Kxn+1 holds for some FG-kernel K.

If xn+1 6∈ K ′ then K ′ 6�F Kxn+1 , hence K ′ 6�F K = K{x1,x2,...,xn} due to (3.8). Hence

K ′ ∩ {x1, x2, . . . , xn} 6= ∅ and (3.5) for i = n+ 1 follows.
To finish the proof, we construct elements x1, x2, . . . one after another as described in

Case 2. above. As KFG is finite, at some point we end up in Case 1, and this completes
the proof of Theorem 3.7.
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Chapter 4

Applications of kernels

This chapter illustrates some applications of well-known theorems on stable matchings
and less known results on kernels.

Below, we briefly sketch such an application. It is relatively easy to see that the
Cantor-Bernstein theorem on cardinalities (stating that |A| ≤ |B| and |B| ≤ |A| implies
|A| = |B|) can be deduced from an infinite version of the stable matching theorem that
we did not state in this work. Note that the Cantor-Bernstein theorem is a standard
application of Theorem 1.9 of Tarski. Note also that the infinite stable matching theorem
can be proved from Tarski’s fixed point theorem similarly as we proved the finite version
due to Gale and Shapley. It is well-known (and easy to see) that the Cantor-Bernstein
theorem can be regarded as an infinite version of the Mendelsohn-Dulmage theorem
stating that if some matching covers subset A′ of part A of bipartite graph G and some
other matching of G covers B′ of part B then some matching of G covers A∪B. From this
perspective, it is not surprising that the Mendelsohn-Dulmage result can also be proved
with stable matchings. Furthermore, the matroid generalization of the Mendelsohn-
Dulmage theorem, namely the Kundu-Lawler theorem follows easily from Theorem 2.9,
the matroid-generalization of Theorem 1.1 of Gale and Shapley.

In what follows, we survey kernel-related results about graph paths, graph colorings
and college admissions.

4.1 Applications on paths

As we mentioned earlier, the graph-kernel result below can be proved from Tarski’s fixed
point theorem (and also from Theorem 2.2).

Theorem 4.1 (Sands, Saurer, Woodrow [62]). If E1 and E2 are two loopless arc
sets on vertex set V then there is a subset U of V with the two properties below.

• There is no directed path in E1 or in E2 connecting two different vertices of U and

• from any vertex v ∈ V \U there exists a directed path of E1 or of E2 that terminates
in U .

A perhaps less self-explanatory neat application of the theorem of Gale and Shapley
is the proof of Pym’s theorem below.

29
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Theorem 4.2 (Pym [56]). Let each of P and Q be a set of vertex-disjoint directed
paths in digraph D = (V,E). Then there exists a set R of vertex-disjoint directed paths
of D such that

• there is a path of R starting at each starting vertex of a path of P and each path
of R starts in a starting point of a path of P or of Q and

• any terminal of any path of Q is a terminal of some path of R and each terminal
of each path of R is a terminal of a path of P or of Q, furthermore

• each path of R is a concatenation of a (possibly empty) starting segment of a path
of P and a (possibly empty) end segment of a path of Q.

Proof. Define bipartite graph G on vertex set P ∪ Q such that edges correspond to
common vertices of a path P ∈ P and Q ∈ Q. For vertex P ∈ P define linear order ≤P
on E(P ) according to the order on P of the intersection vertices of P . Similarly, linear
order ≤Q for path Q ∈ Q comes from the opposite order of the intersection vertices of
Q. Let S be the intersection vertices of a stable matching of G. Define R as those paths
of P ∪Q that do not contain any vertex of S and for each vertex v of S construct path
Rv of R by concatenating the starting segment of a P path terminating at v with the
terminal segment of a Q-path starting at v. Clearly, all three requirements for R hold,
the only thing we have to check is that paths of R are vertex-disjoint.

Let v be an arbitrary vertex of D. As edge ev of G that corresponds to v does not
block stable matching S, ev must be dominated by some edge eu of S such that u and
v are on the same path Z ∈ P ∪ Q. If Z belongs to P then the starting part of Z
that belongs to R does not contain v and if Z ∈ Q then the terminal segment of Z
that belongs to R does not contain v. Hence no vertex v can belong to two paths of R,
that is, R consists of vertex-disjoint paths, as we claimed. This observation finishes the
proof.

4.2 List-edge-colorings

In this subsection, we study edge-colorings of graphs. Let G = (V,E) be a finite loopless
graph. For each edge e ∈ E, let L(e) ⊂ N be a set of available colors for e. We say that G
is L-edge-choosable if G has an L-edge-coloring, that is, a proper edge-coloring c : E → N
such that c(e) ∈ L(e) holds for each edge e of E. Graph G is called k-edge-choosable if
G is L-edge-choosable for any L : E →

(N
k

)
. The famous list coloring conjecture states

that any finite loopless graph G is χ′(G)-edge-choosable, where chromatic index χ′(G)
denotes the minimum number of colors needed to properly color the edges of G. By
generalizing the Dinitz conjecture in [36], Galvin justified the list coloring conjecture for
bipartite multigraphs.

Theorem 4.3 (Galvin [36]). Every bipartite multigraph G is ∆(G)-edge-choosable.

Galvin’s method can be extended to nonbipartite graphs as follows.

Theorem 4.4 (Fleiner [24]). Let G = (V,E) be a graph and c : E → {1, 2, . . . , k}
be a proper edge-coloring of G. Let L(e) be a list of k colors for each edge e ∈ E. If
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the color lists of the edges of no odd cycle of G contain a common element then G has a
proper edge coloring l that colors each edge from its list, i.e. l(e) ∈ L(e) holds for each
edge e of G.

Proof. For i = 1, 2, . . . define Ei := {e ∈ E : 2i − 1 ≤ c(e) ≤ 2i}. Clearly, E =
E1 ∪E2 ∪ . . . ∪Edk/2e. As the maximum degree in Gi = (V,Ei) is not more than 2, each
component of Gi is a path or a cycle. Orient the edges of G such that each component
of each Gi becomes a directed path or a directed cycle. For edge e = uv ∈ Ei define

rv(e) =

{
i if v is the head of the arc that corresponds to e

k + 1− i if v is the tail of the arc that corresponds to e.

Assume that rv(e) = rv(f) = j. If j < k+1
2

then e, f ∈ Ej and v is the head of both e
and f . If j > k+1

2
then e, f ∈ Ek+1−j and v is the tail of both e and f . At last, if j = k+1

2

then c(e) = c(f) = k. In all three cases, e = f must hold. Consequently, rank function
rv determines linear order �v on E(v) where e �v f means that rv(e) ≤ rv(f). Let uv
be the oriented version of edge e ∈ Ei. From ru(e) = i and rv(e) = k+ 1− i we see that

|{f ∈ E(u) : f ≺u e}|+ |{f ∈ E(v) : f ≺v e}| ≤ i− 1 + (k + 1− i)− 1 = k − 1 . (4.1)

Observation (4.1) enables us to employ Galvin’s method to finish the proof. Define
Ei := {e ∈ E : i ∈ L(e)} as the set of i-colorable edges and let Gi := (V,Ei). As none of
the Gis contain an odd cycle by the assumption, each Gi is bipartite. For i = 0, 1, 2, . . .
define M i as a stable matching of graph Gi \ (M0 ∪ . . . ∪M i−1) with restricted linear
orders �v. Such matchings exist by Theorem 1.1.

To show that G is L-edge-choosable, give color i to edges of M i. Clearly, no two
edges of the same color share a vertex and each colored edge receives its color from its
list. The only thing left is to show that each edge of G receives some color.

Observe that if edge e = uv of Gi does not receive color i, (i.e. if e 6∈M i) then either
e ∈ M j for some j < i (hence e received color j before M i was defined) or M i contains
an edge f such that f ≺u e or f ≺v e. So if e does not receive any color, that is, if
e 6∈

⋃
{M j : j ∈ L(e)} then there is an f j ∈ M j for each j ∈ L(e) with f j ≺u e or

f j ≺v e. As |L(e)| ≥ k, this is impossible by (4.1) and this contradiction proves that the
above algorithm finds a proper L-edge-coloring of G.

There also exists a common generalization of Galvin’s theorem and the theorem on
balanced coloring of bipartite graphs. To formulate this extension, we introduce a partial
order on (not necessarily proper) edge-colorings of graphs.

To define this partial order, we start from a little afar. For a nonnegative integer n,
a (number theoretic) partition of n is a way to decompose n as a sum of positive integers
where the order of the terms does not matter. That is, if two such sums only differ in
the order of the terms then those determine the same partition. For a number theoretic
partition π let π(i) denote the ith greatest term in π, where we count each addend with
its multiplicity. That is, if π is partition 2 + 3 + 2 + 5 + 1 + 1 of 14 then π(3) = 2,
π(5) = 1 and (slightly abusing notation) π(8) = 0. We say that partition π of n is
better than partition π′ of n′ (denoted by π � π′) if

∑k
i=1 π(i) ≤

∑k
i=1 π

′(i) holds for all
positive integers k. It follows immediately from the definition that among partitions of
n, n = 1 + 1 + . . .+ 1 is the best one and the one-term partition n = n is the worst one.
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Let us turn to edge-colorings now. Each k-edge-coloring c : E(G) → {1, 2, . . . , k}
and each vertex v of G induce a partition π(c, v) of degree d(v) of v into (at most k)
terms that describe how many edges of each color of c are incident with v. In particular,
edge-coloring c is a proper one if and only if π(c, v) is the best partition of d(v) for each
vertex v of G.

If c and c′ are two edge-colorings of G then edge-coloring c is better than c′ if π(c, v) �
π(c′, v) holds for each vertex v of G, that is, if c induces a better partition on each degree
than c′ does. This definition yields in particular that the best edge-colorings are the
proper ones. Now we can claim our theorem.

Theorem 4.5 (Fleiner, Frank [26]). Let G = (V,E) be a finite bipartite graph and
πv be a partition of d(v) into at most k terms. If L(e) is a list of at least k possible colors
for each edge e of G then we can pick a color c(e) of L(e) for each edge e of G such that
the partition c induces at v is better than πv at each vertex v of G.

Note that Theorem 4.5 implies both the edge-coloring theorem of Kőnig and Theo-
rem 4.3 of Galvin if we apply it to the finest partitions of each degree d(v). Another
immediate corollary of Theorem 4.5 is the following.

Corollary 4.6 (Fleiner, Frank [26]). If c is a (not necessarily proper) k-coloring of

the edges of bipartite graph G and |L(e)| ≥ k for each edge e of G then there exists a list
edge coloring l of G such that l � c.

Proof. Apply Theorem 4.5 to partitions π(v) = π(c, v).

Here is yet another consequence of Theorem 4.5 that has to do with balanced k-edge-
colorings.

Corollary 4.7 (Fleiner, Frank [26]). Assume that G is a bipartite graph and for

each edge e of G, list L(e) contains at least k colors. Then it is possible to pick a color

c(e) ∈ L(e) for each edge e of G such that no vertex v is incident with more than
⌈
d(v)
k

⌉
edges of the same color.

Proof. Applying Theorem 4.5 to G where πv denotes the partition of d(v) into k terms

each of which is either
⌈
d(v)
k

⌉
or
⌊
d(v)
k

⌋
gives a list edge-coloring c such that π(c, v)(1) ≤

πv(1) =
⌈
d(v)
k

⌉
for all vertices v of G. This is exactly what Corollary 4.7 requires.

Before justifying Theorem 4.5, we recall some definitions. If G is a graph and S is
a set of vertices of G then by merging the vertices of S we mean the operation that we
delete S from G, introduce a new vertex (say vS) and in each edge e of G incident with
some vertex of S we replace vertices of S by vS. Note that we may create parallel edges
and loops by merging. Clearly, if G′ is obtained from G by merging the vertices of S
then G and G′ has the same number of edges and the degree of vS in G′ is the sum of the
degrees of the vertices of S in G. If S contains k vertices then we say that we can get
graph G from G′ by detaching vS into k parts. Note that merging vertices is a unique
operation unlike detaching a vertex into k parts that can be done several ways.

We need some basics also on partitions. We say that partition π of n is the conjugate
of partition σ of n if π(i) = max{j : σ(j) ≥ i}. It is well-known that turning the Ferrers
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diagram of a partition by 90 degrees (and taking mirror image) we get the Ferrers diagram
of the conjugate partition hence if σ is the conjugate of π then π is the conjugate of σ,
as well.

Proof of Theorem 4.5. Construct graph G′ by detaching each vertex v of G into vertices
v1, v2, . . . , vπv(1) in such a way that dG′(v1) + dG′(v2) + . . . + dG′(vk) is the conjugate
partition of πv. Clearly k ≥ dG′(v1) ≥ dG′(v2) ≥ dG′(v3) ≥ . . . holds by our choice, so
∆(G′) ≤ k. For each edge e′ of G′ define L(e′) := L(e) where e′ corresponds to edge e′ of
G. By Theorem 4.3 of Galvin, there exists a list edge-coloring of G′, that is, we can pick
a color c′(e) ∈ L′(e) for each edge e′ of G such that c′ is a proper edge-coloring of G′.
For each edge e of G define c(e) := c′(e′) where e′ corresponds to e in G′. By definition,
c(e) ∈ L(e) holds.

The only thing left is to show that π(c, v) � πv for each vertex v of G. To this end, it
is enough to prove that for any positive integer i and any set C of i colors, no more than
πv(1) + πv(2) + . . . + πv(i) edges incident with v have been colored to a color of C. So
fix set C of i colors and let E(C, v) := {e ∈ E(v) : c(e) ∈ C} be the set of edges incident
with v with a color of C. (Here E(v) stands for the set of edges incident with v.) Let
E ′(C, v) be the set of edges of G′ that correspond to edges E(C, v). Clearly, each vertex
vj of G′ is incident with at most min(dG′(vj), i) edges of E ′(C, v). This means that

|E(C, v)| = |E ′(C, v)| ≤
πv(1)∑
j=1

min(dG′(vj), i) = πv(1) + πv(2) + . . .+ πv(i) ,

where the last equality follows from the fact that partitions πv(1)+πv(2)+ . . .+πv(i) and
min(dG′(v1), i) + min(dG′(v2), i) + . . .+ min(dG′(vπv(1)), i) are conjugates of one another.

We got that for each vertex v of G there cannot be more edges incident with v colored
with at most i colors than the sum of the i greatest term of prescribed vertex-partition
πv. This means that list edge-coloring c induces a better partition on d(v) than πv, and
this is exactly what we wanted to prove.

4.3 Applications on college admissions

In this section, we study practice motivated applications, namely different variants of
the college admission problem. In this problem, we have given a set of colleges, a set
of applicants and a set of applications where each application is defined by an applicant
and a college. Each applicants has a linear preference order on her applications and
we assume that each college c also has a linear order on its applications. (Note that
in practice, colleges’ preference orders are usually determined by entrance exam scores
hence ties may be present on colleges’ preferences.) In addition, each college c has an
upper quota q(c) of admissible applicants. An admission scheme is an assignment of
applicants to colleges such that each applicant is assigned to at most one college c and
each college c admits at most q(c) applicants. An admission scheme is stable if for each
application (a, c) either a is admitted to a college that is not worse for a than c or c has
admitted q(c) applicants such that each of the admitted applicants are better for c than
a. A standard extension of Theorem 1.1 shows that a stable admission scheme always
exists.
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In practice however there are further requirements that the admission scheme must
satisfy. One such requirement can be a set of common quotas, that is, various sets of
colleges may have a common upper bound on the number of their admitted applicants,
meaning that a feasible admission scheme must satisfy these further upper bounds given
by the common quotas. In this model, we require that if two colleges are in the same
set with a common quota then the preference orders of these colleges on their common
applicants coincide. A feasible admission scheme is common-quota stable if for each
application (a, c), either a is admitted to a college that is not worse for a than c or there
exists a common quota set containing college c that admitted quota-many applicants,
each of them is better than a. In this college admission model, we have two results: a
positive and a negative one. By a laminar family of sets we mean a family with the
property that any two members are either disjoint or one contains the other.

Theorem 4.8 (Biró, Fleiner, Irving, Manlove [11]). The decision problem on the
existence of common-quota stable admission scheme is NP-complete.

However, if common quota sets form a laminar family on colleges, then there always
exists a common-quota stable admission scheme.

We refer the reader to [11] for the details of the proof of the first part of Theorem 4.8.
The second part can be deduced from Theorem 2.9, but we omit the proof as we shall
prove a generalization, namely Theorem 4.10.

Another practice-motivated restriction on college admission schemes is that colleges
(or sets of colleges) may have lower quotas as well. The task is then to find a stable
admission scheme that obeys the lower quotas as well (or to conclude that no such
scheme exists). Note that in presence of lower quotas, there are at least two different
reasonable notions of stability that we may want to expect. One has to do with blocking
coalitions: an admission scheme is group-stable if for each application (a, c), either a is
admitted to a college that is not worse for a than c or c admitted quota-many applicants,
each of them is better than a or college c did not admit any applicants. We require
moreover, that if c did not admit any applicant then there are less than k applications
(a, c) such that a is not admitted to a better college than c where k is the lower quota
for c. In this model again, it turns out that group-stability is intractable.

Theorem 4.9 (Biró, Fleiner, Irving, Manlove [11]). In presence of lower quotas,
deciding the existence of a group-stable admission scheme is NP-complete.

The proof of Theorem 4.9 can be found in [11]. Note however, that if we look for an
admission scheme that is stable in the ordinary sense then the problem is tractable. The
main result in this section is to show a generalization for models where both common
quota sets and lower quotas are present.

We define the 2LCSM problem (that stands for “2-sided laminar classified stable
matching”) as follows. Let G = (V,E) be a bipartite graph with a linear order �v on
E(v) for each vertex v and let Cv be a laminar system of sets of E(v) with lower and upper
quotas l(C) ≤ u(C) on each member C of Cv. Subset M of E(G) is an lu-matching, if
l(C) ≤ |M ∩C| ≤ u(C) holds for each vertex v and each set C ∈ Cv. lu-matching M lu-
dominates edge e ∈ E\M if e has some vertex v and set C ∈ Cv such that |M∩C| = u(C)
and m ≤v e holds for each m ∈ M ∩ C. An lu-matching M is called lu-stable if it lu-
dominates each edge in E\M . The 2LCSM problem is the decision of the existence of an
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lu-stable l-matching. This problem is a generalization of the so-called LCSM problem but
Huang [44]. Huang’s LCSM problem is motivated by a practical variant of the college
admission problem as unlike in case of the stable b-matching problem, the present model
can handle conditions that require that certain colleges have to admit a certain number
of students to be able to operate or certain colleges must obey a common quota on the
total number of admitted students. A possible solution for the 2LCSM problem can be
obtained from the following result.

Theorem 4.10 (Fleiner, Kamiyama [31]). For any 2LCSM problem on graph G =
(V,E), it is possible to construct matroids MP and MQ in polynomial time such that if
there exists an lu-stable matching then the set of lu-stable matchings coincide with the
set of MPMQ-kernels. Furthermore, an MPMQ-kernel M is an lu-stable matching if
and only if M is an lu-matching.

According to Theorem 4.10, it is enough to find a single MPMQ-kernel M: if M is
an lu-matching then we are done as M is lu-stable as well, otherwise, if M is not an
lu-matching then no lu-stable matching exists whatsoever.

Before proving Theorem 4.10, we introduce some further terminology. In the 2LCSM
problem, we are given a finite bipartite graph G = (V,E) with color classes P and Q.
For each vertex v of V , there is a laminar family Cv of subsets of E(v). Define

CP :=
⋃
v∈P

Cv, CQ :=
⋃
v∈Q

Cv and C := CP ∪ CQ.

We are given lower and upper quota functions l : C → Z+ and u : C → Z+. In the sequel,
we call a member C of C a class.

Let M be a subset of E. We say that M obeys l (resp., u) for a class C of C if

l(C) ≤ |M ∩ C| (resp., |M ∩ C| ≤ u(C)).

We call M feasible for a vertex v of V if M obeys l and u for any class of Cv, i.e.,

l(C) ≤ |M ∩ C| ≤ u(C)

for any class C of Cv. If M is feasible for any vertex of V , then M is an lu-matching.
Let M be an lu-matching. In our model, each vertex v has a strict linear order <v

on E(v). We regard this linear order as the preference order of v on its edges, the most
preferred one is the <v-smallest edge. An edge e of E \M is called free for an endpoint
v of e if

M + e is feasible for v, or

there is an edge f of M(v) such that e <v f and M + e− f is feasible for v.

An edge e of E \M blocks M if e is free for both endpoints of e. An lu-matching M
of E is stable if no edge of E \M blocks M . Then, the 2LCSM problem is to find an
lu-stable matching if exists.

A class C of C is a child of a class C ′ of C if C is a proper subset of C ′ and there is
no class C◦ of C such that C ( C◦ ( C ′. Without loss of generality, we can make the
following assumptions.
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Assumption 4.11. For any vertex v of V and any edge e of E(v), {e} ∈ Cv.

(We can define l({e}) = 0 and u({e}) = 1.) By Assumption 4.11, for any class C of C,
either C has no child or children C1, . . . , Ck of C form a partition of C, i.e. C1∪· · ·∪Ck =
C.

Assumption 4.12. For any vertex v of V , E(v) ∈ Cv.

(If E(v) 6∈ Cv then we can add E(v) to C with l(E(v)) = l(C1) + l(C2) + . . .+ l(Ck) and
u(E(v)) = |E(v)|, where C1, . . . , Ck are the inclusionwise maximal members of Cv.)

Assumption 4.13. If a class C of C has children C1, . . . , Ck then

l(C1) + · · ·+ l(Ck) ≤ l(C) ≤ u(C). (4.2)

(We can do so because if the second relation does not hold then clearly there exists no
lu-matching. If the first relations fails then we do not change the problem if we change
l(C) to l(C1) + · · ·+ l(Ck).)

For a class C of C, we denote by CC the set of classes C ′ of C such that C ′ ⊆ C. The
level of a class C of C is the maximum integer k for which there are classes C1, . . . , Ck
of C such that C1 = C, Ci+1 is a child of Ci for any i ∈ [k− 1], and Ck has no child. For
a class C of C, we define a function dC : 2C → Z+ as follows. If C has no child, then

dC(F ) := max(|F |, l(C))

for a subset F of C. If C has children C1, . . . , Ck, then

dC(F ) := max(dC1(F ∩ C1) + · · ·+ dCk
(F ∩ Ck), l(C))

for a subset F of C. A subset F of a class C of C is deficient on C if the following
conditions hold. If C has no child, then F does not obey l for C. If C has children
C1, . . . , Ck, then dC1(F ∩ C1) + · · ·+ dCk

(F ∩ Ck) < l(C).

Lemma 4.14. Let C be a class of C.

(a) dC(F + e) ≤ dC(F ) + 1 for any subset F of C and any edge e of C.

(b) dC(F1) ≤ dC(F2) for any subsets F1, F2 of C such that F1 ⊆ F2.

(c) If a subset F of C obeys l for any class of CC, then dC(F ) = |F |.
(d) If a subset F of C is deficient on C, then dC(F + e) = dC(F ) for any edge e of C.

Proof. Statements (a) to (c) can be easily proved by induction on the level of C. State-
ment (d) follows from Statement (a).

For a class C of C, we define a family IC of subsets I of C by

IC := {I ⊆ C | dC′(I ∩ C ′) ≤ u(C ′) for any C ′ ∈ CC}.

Our next goal is to prove that MC = (C, IC) is a matroid for any class C of C.

Lemma 4.15. If C is a class of C, I, J ∈ IC and |I ∩C ′| ≥ |J ∩C ′| for any class C ′ of
CC on which I ∩ C ′ is deficient, then dC(J)− dC(I) ≥ |J | − |I|.
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Proof. We prove the lemma by induction on the level of C. If the level of C is one, that
is, if C is a singleton then the lemma is straightforward. Assume that the lemma holds
for any class with level at most r for some r ≥ 1 and take a class C of level r+ 1. If I is
deficient on C, then |I| ≥ |J | by the condition in the lemma. So,

dC(J)− dC(I) = dC(J)− l(C) ≥ l(C)− l(C) = 0 ≥ |J | − |I|,

where the first equality is due to that I is deficient on C.
Suppose that I is not deficient on C. Let C1, . . . , Ck be the children of C, Ii = I ∩Ci

and Ji = J ∩ Ci. For any class C ′ of CCi
, I ∩ C ′ = Ii ∩ C ′ and J ∩ C ′ = Ji ∩ C ′.

So, Ii, Ji ∈ ICi
by I, J ∈ IC . Moreover, by assumption, |Ii ∩ C ′| ≥ |Ji ∩ C ′| holds

for any class C ′ of CCi
on which Ii ∩ C ′ is deficient. So, by the induction hypothesis,

dCi
(Ji)− dCi

(Ii) ≥ |Ji| − |Ii|. Thus,

dC(J)− dC(I) = dC(J)−
∑
i∈[k]

dCi
(Ii) ≥

∑
i∈[k]

dCi
(Ji)−

∑
i∈[k]

dCi
(Ii)

≥
∑
i∈[k]

|Ji| −
∑
i∈[k]

|Ii| = |J | − |I|,

where the first equality follows from the fact that I is not deficient on C.

Lemma 4.16. If C is a class of C, I, J ∈ IC and |I| < |J |, then I + e ∈ IC for some
edge e of J \ I.

Proof. We prove the lemma by induction on the level of C. If the level of C is one, then
the lemma is straightforward as C is a singleton. Assume that the lemma holds if the
level of C is at most r for some r ≥ 1, and take a class C of level r + 1.

Case 1. |I ∩ C∗| < |J ∩ C∗| for some class C∗ of CC on which I ∩ C∗ is deficient.
Let I∗ = I ∩ C∗ and J∗ = J ∩ C∗. By I, J ∈ IC , we have I∗, J∗ ∈ IC∗ . So, by the
induction hypothesis, I∗ + e∗ ∈ IC∗ for some edge e∗ of J∗ \ I∗. Since I∗ is deficient on
C∗, dC∗(I

∗+e∗) = dC∗(I
∗) by Lemma 4.14(d). From this, we shall prove that I+e∗ ∈ IC .

Let L = I + e∗ and L′ = L ∩ C ′ for a class C ′ of CC . It suffices to prove that
dC′(L

′) ≤ u(C ′) for any class C ′ of CC . If C ′ ∩ C∗ = ∅, then this holds by e∗ /∈ C ′ and
I ∈ IC . If C ′ ∈ CC∗ , then this holds by I∗ + e∗ ∈ IC∗ . If C∗ ⊆ C ′, then this follows from
dC∗(I

∗ + e∗) = dC∗(I
∗) and the fact that dC′(L

′) does not change if dC◦(L
′ ∩ C◦) does

not change for any child C◦ of C ′.
Case 2. Assume that |I ∩ C ′| ≥ |J ∩ C ′| for any class C ′ of CC on which I ∩ C ′ is

deficient. By Lemma 4.15, dC(J)− dC(I) ≥ |J | − |I| > 0. This implies that

dC(I + e) ≤ dC(I) + 1 ≤ dC(J) ≤ u(C) (4.3)

for any edge e of J \ I, where the first inequality follows from Lemma 4.14(a) and the
third from J ∈ IC . Let C1, . . . , Ck be the children of C, Ii = I ∩Ci and Ji = J ∩Ci. By
I, J ∈ IC , we have Ii, Ji ∈ ICi

. Let N be the set of i ∈ [k] such that |Ii| < |Ji|. Notice
that N 6= ∅ by |I| < |J |. By the induction hypothesis, for any i ∈ N there is an edge ei
of Ji \ Ii such that Ii + ei ∈ ICi

. So, by (4.3), I + ei ∈ IC for any i ∈ N . This completes
the proof.

We are now ready to prove a key observation for Theorem 4.10
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Lemma 4.17. For any class C of C, MC = (C, IC) is a matroid.

Proof. By the first inequality of (4.2), dC′(∅) = l(C ′) for any class C ′ of CC . So, by the
second inequality of (4.2), ∅ ∈ IC , i.e., IC 6= ∅. Furthermore, the independence axioms
follow from Lemmata 4.14(b) and 4.16.

In what follows, we describe our algorithm for the 2LCSM problem. By Lemma 4.17,
ME(v) is a matroid for any vertex v of V . LetMP = (E, IP , <P ) be an ordered matroid
such that (E, IP ) is the direct sum of matroidsME(v) for all vertices v of P and <P is a
strict linear order defined in such a way that e <P f whenever e <v f for some vertex v
of P . For the vertex class Q, we similarly define an ordered matroidMQ = (E, IQ, <Q).
Then, our algorithm, called Algorithm 2LCSM, can be described as follows. Note that
Step 1 of the algorithm is a natural generalization of the proposal algorithm of Gale
and Shapley (with the choice function represented by the greedy algorithm), described
in [20].

Algorithm 2LCSM

Step 1: Find an MPMQ-kernel K.

Step 2: If K obeys l for any class of C, then we output K, i.e., K is a stable assignment.
Otherwise, there is no stable assignment.

It is easy to see that Algorithm 2LCSM runs in polynomial time.
Our next goal is to prove the correctness of Algorithm 2LCSM. By Lemma 4.14(c),

a subset M of E is feasible for a vertex v of V if and only if

M(v) ∈ IE(v) and M obeys l for any class of Cv. (4.4)

The following lemma gives connects lu-stable matchings and MPMQ-kernels.

Lemma 4.18. A subset M of E is a lu-stable matching if and only if M is anMPMQ-
kernel and M obeys l for any class of C.

Proof. We first prove sufficiency. Let M be an MPMQ-kernel obeying l for any class
of C. By (4.4), M is an lu-matching. Let e be an edge of E \ M . Since M is an
MPMQ-kernel, without loss of generality, we can assume that e ∈ DMP

(M). Let v be
the endpoint of e in P . By the definition of MP , M(v) + e /∈ IE(v). So, by (4.4), M + e
is not feasible for v. Let F be the set of arcs f of M(v) such that M + e− f is feasible
for v. Now we prove that f <v e for any edge f of F . By (4.4), M(v) + e − f ∈ IE(v),
i.e., f is an edge of the basic circuit of e with respect to M(v) in ME(v) (also, M in
MP ). Since M is an MPMQ-kernel, we have f <P e. So, by the definition of <P , we
have f <v e.

For the necessity, let M be a lu-stable matching. By (4.4), M ∈ IP ∩ IQ and M
obeys l for any class of C. Let e be an edge of E \M . Since M is a lu-stable matching,
e is not free for at least one endpoint v of e. Without loss of generality, we can assume
that v ∈ P . Now we prove that e ∈ DMP

(M). Since M + e is not feasible for v,
M(v) + e /∈ IE(v). Let D be the basic circuit of e with respect to M(v) in ME(v) (also,
M in MP ). Now we prove that f <P e for any edge f of D − e. For this, we need the
following claim.
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Claim 4.19. M + e− f obeys l for any class of Cv.

Proof. Let M1 = M + e and M2 = M + e − f . Since M(v) ∈ IE(v) and M1(v) /∈ IE(v),
there is a class C of Cv such that e ∈ C and dC(M1 ∩ C) > u(C). By M2 ∈ IE(v), we
have f ∈ C. So, |M2 ∩ C ′| = |M ∩ C ′| ≥ l(C ′) for any class C ′ of Cv such that C ⊆ C ′.
Thus, it suffices to prove that M2 obeys l for any class of CC −C. Assume that M2 does
not obey l for some class C∗ of CC − C. Let M∗

1 = M1 ∩ C∗ and M∗
2 = M2 ∩ C∗. Since

M1 obeys l for C∗, we have f ∈ C∗. So, if we can prove that dC∗(M
∗
2 ) = dC∗(M

∗
1 ), then

dC(M2 ∩C) = dC(M1 ∩C) > u(C), which contradicts the fact that M2(v) ∈ IE(v). Since
M2 does not obey l for C∗ but M obeys l for C∗, we have |M∗

1 | = l(C∗). Moreover, since
M1 obeys l for any class of CC∗ , we have dC∗(M

∗
1 ) = |M∗

1 | by Lemma 4.14(c). So,

l(C∗) ≤ dC∗(M
∗
2 ) ≤ dC∗(M

∗
1 ) = |M∗

1 | = l(C∗),

where the second inequality follows from Lemma 4.14(b) and the fact that M2 ⊆ M1.
This implies that dC∗(M

∗
2 ) = dC∗(M

∗
1 ), which completes the proof.

By Claim 4.19 and (4.4), M + e − f is feasible for v. Since M is a lu-stable matching,
we have f <v e. So, by the definition of <P , we have f <P e.

Lemma 4.20. If an MPMQ-kernel K does not obey l for a class C of CP but K obeys
l for any class of CC − C, then spanMP

(K) ∩ C = spanM(C)(K ∩ C).

Proof. Obviously,
spanM(C)(K ∩ C) ⊆ spanMP

(K) ∩ C.

To prove the opposite direction, let e be an edge of (spanMP
(K)∩C)\K and L = K+e.

By the definition of e, dC∗(L∩C∗) > u(C∗) for some class C∗ of CP . Recall that K obeys
l for any class of CC − C. So, if C has children C1, . . . , Ck, then

dC1(K ∩ C1) + · · ·+ dCk
(K ∩ Ck) = |K ∩ C|

by Lemma 4.14(c). Thus, since K does not obey l for C, K ∩ C is deficient on C. So,
dC(L∩C) = dC(K ∩C) by Lemma 4.14(d). This implies that dC′(L∩C ′) = dC′(K ∩C ′)
for any class of C ′ of CP such that C ⊆ C ′. So, by K ∈ IP , we have C∗ ∈ CC , i.e.,
e ∈ spanM(C)(K ∩ C).

Lemma 4.21. If an MPMQ-kernel K does not obey l for some class C of C but K
obeys l for each class of CC − C, then no MPMQ-kernel obeys l for C.

Proof. Without loss of generality, we can assume that C ∈ CP . For any MPMQ-kernel
L,

L ∩ C ⊆ spanMP
(L) ∩ C = spanMP

(K) ∩ C = spanM(C)(K ∩ C),

where the first equality follows from Theorem 2.9 and the second from Lemma 4.20.
Since K ∩ C and L ∩ C are independent sets of IC , |L ∩ C| ≤ |K ∩ C| < l(C) holds.

The above proof of Lemma 4.21 implies the correctness of Algorithm 2LCSM and
concludes the proof of Theorem 4.10.

Note that Theorem 4.10 can be extended to generalized (poly)matroids, see Yokoi
[69].
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Chapter 5

Stable matching polyhedra

For a given weight function on the edges, it is a natural question how to find a maximum
weight stable matching, that is, a stable matching with maximum sum of weights of
its edges. A standard approach is to optimize over the polyhedron spanned by the
characteristic vectors of stable matchings. This can be done if a linear characterization
of this polyhedron is available. The first step towards this direction was made by Vande
Vate who described such a linear description in case of complete bipartite graphs [68].
This was followed by Rothblum who gave a linear characterization for arbitrary bipartite
graphs [61], and then Bäıou and Balinski came up with a linear description of the stable
b-matching polytope (with an exponential number of constraints) for the special case
when bound b is constant 1 on one part of the graph. In this section, we give a linear
charcterization of the stable b-matching polyhedron for general b. Furthermore, as an
extension, we describe various FG-kernel polyhedra for increasing substitutable choice
functions. In particular, we provide a linear description of matroid-kernel polyhedra.

5.1 Stable b-matching polyhedra

Our first focus is the stable b-matching problem related polyhedron. Recall that the stable
b-matching problem is the generalization of the stable admissions problem in which agents
on both sides of the market may have a quota greater than one. In what follows, we fix
some terminology. A bipartite preference system is a pair (G,O) where G = (U ∪V,E) is
a finite bipartite graph with bipartition (U, V ), and O = {≤z: z ∈ U ∪ V } is a family of
linear orders, ≤z being an order on the set E(z) of edges incident with the vertex z. We
denote by P b(G,O) the convex hull in RE of characteristic vectors of stable b-matchings
of bipartite preference system (G,O). As usual in linear programming, we denote by
x̃(S) the sum

∑
{x(e) : e ∈ S} for a vector x ∈ RE and subset S of E.

Theorem 5.1 (Vande Vate ’89 [68]). Let (G,O) be a bipartite preference system with
|U | = |V | and E = U × V . Then

P 1(G,O) = {x ∈ RE : x ≥ 0, x̃(E(z)) = 1 ∀ z ∈ U ∪ V, x̃(ψ(e)) ≤ 1 ∀ e ∈ E}

where ψ(uv) := {f ∈ E : f ≥u uv or f ≥v uv} . �

Clearly, the right hand side of the description is a convex polytope that contains the left
hand side, that is any characteristic vector χM of a stable matching M : a characteristic

40
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vector is obviously nonnegative; for each vertex v of G, there is exactly one edge of M
that is incident with v; and at last, if for an edge e of E there are at least 2 different
edges of M that are less preferred than e in some of the preferences, then e is a blocking
edge, hence M is not stable. The more difficult part of Vande Vate’s result is to prove
that any vector of the right hand side is a convex combination of characteristic vectors
of stable matchings.

Rothblum gave a shorter proof of a modified description for a more general problem
in [61], and his proof was further simplified by Roth et al. in [58].

Theorem 5.2 (Rothblum ’92 [61]). Let (G,O) be a bipartite preference system. Then

P 1(G,O) = {x ∈ RE : x ≥ 0, x̃(E(z)) ≤ 1 ∀ z ∈ U ∪ V, x̃(φ(e)) ≥ 1 ∀ e ∈ E}

where φ(uv) := {f ∈ E : f ≤u uv or f ≤v uv} . �

The third type condition in Rothblum’s characterization is the linear relaxation of the
condition that for any edge e of G, either e belongs to stable matching M or there is an
edge of M that dominates e.

Based on the above results, standard tools of linear programming allow us to find a
maximum weight stable matching in polynomial time. Eventually, a linear programming
approach has been developed to the theory of stable matchings by Abeledo, Blum, Roth,
Rothblum, Sethuraman, Teo and others (see [3, 4, 1, 2, 58, 66]). However, these results
handle only the stable matching problem and do not say much about stable b-matchings.
The following theorem of Bäıou and Balinski [8] is an exception as it gives a linear
description of the stable admissions polytope and generalizes Theorem 5.2.

Theorem 5.3 (Bäıou and Balinski 2000 [8]). Let (G,O) be a bipartite preference
system and b : U ∪ V → N be a quota function so that b(u) = 1 for all vertices u of U .
Then

P b(G,O) = {x ∈ RE :x ≥ 0,

x̃(E(u)) ≤ 1 ∀ u ∈ U, x̃(E(v)) ≤ b(v) ∀ v ∈ V,
x̃(C(v, u1, u2, . . . , ub(v))) ≥ b(v)

for all combs C(v, u1, u2, . . . , ub(v))} ,

where a comb is defined for v ∈ V and vu1 >v vu2 >v . . . >v vub(v) as

C(v, u1, u2, . . . , ub(v)) ={uv ∈ E : uv ≤v u1v}∪
∪ {uiv′ ∈ E : uiv

′ ≤ui
uiv for some i = 1, 2, . . . , b(v)} .�

By Theorem 5.3, if a nonnegative vector x on the edges of G satisfies certain conditions,
then it is in the stable admissions polytope, hence it can be decomposed as a convex
combination of characteristic vectors of stable b-matchings. These conditions are that
the total sum of its coordinates on edges incident with agent u of U is at most 1, the
coordinate sum along agent v of V is at most b(v). At last, no matter how we pick an
agent v of V and possible partners u1, u2, . . . ub(v) of v such that u1 is the worst of these
partners, if we sum up the coordinates of x on those edges of v that are not <v-worse
than vu1 and we add the coordinate sum of those edges of ui that are <ui

-better than vui
(for i = 1, 2, . . . , b(v)) then the sum is at least b(v). This latter condition corresponds
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to the fact that for any stable b-matching M , edge u1v is either dominated at vertex v,
and hence M contains b(v) edges adjacent to v that are preferred by v to u1v or u1v is
dominated at v and hence all uiv’s are dominated at v by M , so we find one edge mi of
M for each ui such that agent ui prefers partnership along mi than with v.

The following theorem gives a linear description for the stable b-matching polyhedron.

Theorem 5.4 (Fleiner [21]). Let (G,O) be a bipartite preference system and b : U ∪
V → N be a quota function. Then

P b(G,O) = {x ∈ RE : x ≥ 0, (5.1)

x̃(Ei(v)) ≤ 1 ∀v ∈ V, ∀1 ≤ i ≤ b(v),

x̃(Φi,j(uv)) ≥ 1 ∀uv ∈ E ∀1 ≤ i ≤ b(u), ∀1 ≤ j ≤ b(v)} ,

where E1(v), E2(v), . . . , Eb(v)(v) denotes subsets of E(v) according to Theorem 3.4 and

φi,j(uv) := {uv} ∪ {uv′ : uv′ >u uv, uv
′ ∈ Ei(u)} ∪ {u′v : u′v >v uv, u

′v ∈ Ej(v)} .

That is, if a nonnegative vector x on the edges of G satisfies certain conditions then it is
in the convex hull of characteristic vectors of stable b-matchings. These conditions are
that the coordinate sum of x on the edges of any part of a star-partition is at most one,
moreover, for any edge uv and any i, j, the coordinate sum on edge uv, together with
the coordinate sum on the edges that are preferred to uv in i-th part of the star of u plus
the coordinate sum on the edges that are preferred to uv in the jth part of v is at least
one. This latter condition is the linear relaxation of the property that for any stable
b-matching M and for any partnership uv either uv is realized in M or either u or v has
the property that in each part of its partition contains an edge of M that is preferred to
uv. Note that Theorem 5.4 is a genuine generalization of Theorem 5.2, as if b ≡ 1 then
φ(u, v) = φ1,1(u, v) for any edge uv.

Proof of Theorem 5.4. For partitions in Theorem 3.4, the characteristic vector χM of any
stable b-matching M will satisfy the right hand side of (5.1): χM ≥ 0 ; M contains at
most one edge of Ei(z); and for any edge e, either e belongs to M or it has an end vertex
z so that for 1 ≤ k ≤ b(z) each Ek(z) will contain an edge m of M with e >z m. Hence
the polyhedron described on the right hand side of (5.1) contains P b(G,O).

To justify the opposite containment, we shall decompose a vector x satisfying the right
hand side of (5.1) as a convex combination of characteristic vectors of stable b-matchings.
To do this, we need the following lemma.

Lemma 5.5. Let x be a vector satisfying the right hand side of (5.1) and uv ∈ Ei(u) ∩
Ej(v). Then edge uv is the most preferred edge in Ei(u) ∩ supp(x) if and only if uv is
the least preferred edge of Ej(v) ∩ supp(x).

Proof. From x(φi.j(uv)) ≥ 1 and x(Ej(v)) ≤ 1 it follows that if uv is the most preferred
edge of Ei(u) ∩ supp(x) then uv is the least preferred edge of Ej(v) ∩ supp(x). This
means that supp(x) intersects at least as many Ej(v)’s for v ∈ V as many Ei(u)’s for
u ∈ U . The same argument holds if we exchange the role of U and V , thus supp(x)
intersects exactly as many Ej(v)’s as many Ei(u)’s. So the set of most preferred edges
of Ei(u) ∩ supp(x) for u ∈ U and 1 ≤ i ≤ b(u) is the same as the set of least preferred
edges of Ej(v) ∩ supp(x) for v ∈ V and 1 ≤ j ≤ b(v) .
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Let x be a vector satisfying the right hand side of (5.1) and let M consist of the most
preferred edges of sets Ei(u)∩ supp(x) for u ∈ U and 1 ≤ i ≤ b(u). Let δ denote amount
min{x(m) : m ∈ M}. As x − δχM has a strictly smaller support than x has, to finish
the proof by induction on |supp(x)|, it is enough to show that M is a stable b-matching
and that x′ := 1

1−δ (x− δχ
M) satisfies the constraints in the right hand side of (5.1).

First we prove that M is a stable b-matching. By Lemma 5.5, M contains at most one
edge from each Ek(z) for z ∈ U ∪ V and 1 ≤ k ≤ b(z), hence M is indeed a b-matching.
For domination, fix edge uv. If property uv is not dominated then there must be an
integer i so that 1 ≤ i ≤ b(u) and there is no edge m of M ∩ Ei(u) with m ≤u uv.

If x(uv) > 0 then choose j so that uv ∈ Ej(v). From x(φi,j(uv)) ≥ 1 and x(Ej(v)) ≤
1, it follows that uv is the least preferred edge by v from Ej(v) ∩ supp(x). Then by
Lemma 5.5, uv is selected into M , so uv is not undominated by M .

Otherwise x(uv) = 0. For any 1 ≤ j ≤ b(v), we have x(φi,j(uv)) ≥ 1 and x(Ej(v)) ≤
1. This implies that x({e ∈ Ej(v) : e <v uv}) = 1 so set Ej(v) ∩ supp(x) is not empty.
Let mj be the least preferred edge by v of Ej(v) ∩ supp(x). As mj <v uv for all j, edge
uv is dominated by M .

It remains to check that x′ satisfies the constraints of (5.1). By our choice of δ, vector
x is nonnegative. As we have chosen one edge from each nonempty Ek(z) ∩ supp(x) for
all vertices z of G, condition x′(Ei(z)) ≤ 1 holds for all vertices z. For the third type
constraint, pick an edge uv of G and indices i, j with 1 ≤ i ≤ b(u) and 1 ≤ j ≤ b(v). If
u′v >v uv for the <v-worst edge u′v of supp(x) ∩ Ej(v) then

x′(φi,j(uv)) ≥ 1

1− δ
(x(φi,j(uv))− δ) ≥ 1− δ

1− δ
= 1

holds. Otherwise let u′v ∈ Ek(u′). By Lemma 5.5, u′v is the <u′-best edge of supp(x) ∩
Ek(u

′), so

x′(φi,j(uv)) ≥ 1

1− δ
(x(Ej(v) ∩ {e ∈ E : e ≤v uv})− δ) =

=
1

1− δ
(x(φi,k(m))− δ) ≥ 1− δ

1− δ
= 1 .

Note that Theorem 5.2 is a special case of Theorem 5.4 and that Király and Pap
proved that the linear description in Theorem 5.2 has total dual integrality property
[47].

5.2 General kernel-polyhedra

It turns out that FG-kernel polyhedra other than the stable b-matching polyhedron have
a linear description that allows one to optimize in polynomial time. To formulate the
results, we need some notation. Recall that for substitutable choice functions F ,G :
2E → 2E, KFG denotes the set of FG-kernels, and let

AFG := {A ⊆ E : |A ∩K| ≤ 1 ∀K ∈ KFG} and

BFG := {B ⊆ E : |B ∩K| ≥ 1 ∀K ∈ KFG}
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stand for the blocker and antiblocker of FG-kernels. If Z ⊆ 2E is a family of sets then
PZ := conv {χ(Z) : Z ∈ Z} is the convex hull of the characteristic vectors of members
of Z. If P ⊆ RE

+ is a polyhedron then

P↑ := P + RE
+

P↓ := (P + RE
−) ∩ RE

+

are the dominant and submissive polyhedra of P . Polyhedron P ⊆ Rd
+ is a blocking type

polyhedron if P = P ↑, and it is an antiblocking type polyhedron if P = P ↓. We have the
following result.

Theorem 5.6 (Fleiner [20]). If F ,G : 2E → 2E are w-increasing substitutable choice
functions for strictly monotone and modular mapping w : 2E → R+ then

PFG↑ = {x ∈ RE : x ≥ 0, x̃(B) ≥ 1 for B ∈ BFG} , (5.2)

PFG↓ = {x ∈ RE : x ≥ 0, x̃(ZFG) = 0 and x̃(A) ≤ 1 for any A ∈ AFG} , (5.3)

PFG = {x ∈ RE : x ≥ 0, x̃(B) ≥ 1 ∀B ∈ BFG, x̃(A) ≤ 1 ∀A ∈ AFG},(5.4)

where ZFG = E \
⋃
KFG denotes the set of those elements of E that are not contained in

any FG-kernel.

It is interesting to observe that in the linear programming problems describing the
polyhedra in Theorem 5.6 all the coefficients and constants are 0 or 1. It is also worth
pointing out that each linear constraint in (5.1) is a special case of a constraint in (5.4).
Our main tool to prove Theorem 5.6 is the well-known result of Hoffman and Schwartz.

To state the Hoffman-Schwartz theorem, a basic result on lattice polyhedra, we need
to introduce the notion of a clutter. Fix a ground set X and a family L of subsets of
X. A partial order < on L is called consistent if A ∩ C ⊆ B holds for any members
A,B,C of L with A < B < C. Family L is a clutter if there is a consistent lattice order
< on L with lattice operations ∧ and ∨ such that χA +χB = χA∧B +χA∨B holds for any
members A,B of L.

Theorem 5.7 (Hoffman-Schwartz [43]). Let L ⊆ 2X be a clutter for consistent lat-
tice order < and lattice operations ∧,∨ and let d : X → N ∪ {∞} be and arbitrary
function. If r : L → N is submodular then system (5.5) below is TDI.

{x ∈ RX : 0 ≤ x ≤ d, x(A) ≤ r(A) for any A ∈ L} (5.5)

If r : L → N is supermodular then system (5.6) below is TDI.

{x ∈ RX : 0 ≤ x ≤ d, x(A) ≥ r(A) for any A ∈ L}� (5.6)

In Theorem 5.7, r : L → N is submodular if r(A) + r(B) ≥ r(A ∧ B) + r(A ∨ B)
holds for any A,B ∈ L; r is supermodular if the reverse inequality is valid. We say
that system Ax ≤ b of linear inequalities is totally dual integral (or TDI ) if the dual
of linear programming problem max{cx : Ax ≤ b} has an integral optimum whenever c
is an integral vector and a fractional optimum for the dual problem exists. From this
property, it follows that system Ax ≤ b describes an integral polyhedron. By Lemma 3.6,
KFG is a clutter for �F . Then application of Theorem 5.7 yields the following.
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Theorem 5.8 (Fleiner [20]). If F and G are w-increasing substitutable functions for
a strictly monotone and modular mapping w : 2E → R+ then

P↑BFG = {x ∈ RE : x ≥ 0 and x(K) ≥ 1 for any K ∈ KFG} and (5.7)

P↓AFG + CZFG = {x ∈ RE : x ≥ 0 and x(K) ≤ 1 for any K ∈ KFG}, (5.8)

holds where CZFG = {x ∈ RE : x ≥ 0, x(e) = 0 ∀e 6∈ ZFG} denotes the cone of ZFG.

Proof. Obviously, the polyhedra on the left hand side of (5.7-5.8) are the integer hulls of
the polyhedra described by right hand sides.

By our Lemma 3.6, KFG is a clutter. Let d(v) :=∞ and r(K) := 1 for all v ∈ X and
K ∈ KFG. Clearly, r is both sub- and supermodular. By Theorem 5.7, linear systems in
(5.7,5.8) are TDI, hence the polyhedra on the right hand sides are integer. As the right
hand side of (5.7) is a blocking type polyhedron, it is the dominant of the convex hull of
its lowest integer points. Clearly, the support of any gridpoint x on the right hand side
of (5.7) is a member of BFG, hence the right hand side of (5.7) is contained P↑BFG , and
(5.7) follows.

Similarly, the right hand side of (5.8) is an antiblocking type polyhedron that contains
CZFG and supp(x) \ ZFG ∈ AFG holds for each gridpoint of the right hand side of (5.8).
This observation implies (5.8).

In order to prove Theorem 5.6, we introduce some basic notions from the theory of
blocking and antiblocking polyhedra. For a polyhedron P ⊆ Rd

+

B(P ) := {x ∈ Rd
+ : xTy ≥ 1 for all y ∈ P} and

A(P ) := {x ∈ Rd
+ : xTy ≤ 1 for all y ∈ P}

are the blocking and antiblocking polyhedron of P , respectively. As suggested by the
name, if P is a polyhedron then both A(P ) and B(P ) are polyhedra. An important tool
in handling blocking and antiblocking polyhedra is the following result of Fulkerson.

Theorem 5.9 (Fulkerson [32, 33, 34]). If P is a blocking type polyhedron then B(P )
is a blocking type polyhedron and P = B(B(P )). If P is an antiblocking type polyhedron
then A(P ) is an antiblocking type polyhedron and P = A(A(P )). Furthermore,

B(conv {x1, x2, . . . , xn}↑) = {y ∈ Rd
+ : yTxi ≥ 1 for i ∈ [n]} (5.9)

A(conv {x1, x2, . . . , xn}↓ + CZ) = {y ∈ Rd
+ : yTxi ≤ 1 for i ∈ [n] and

x̃(Z) = 0} (5.10)

for any n ∈ N, elements xi (i ∈ [n]) of RE
+ and subset Z of E, where Z = {e ∈ E :

xi(e) = 0∀1 ≤ i ≤ n} and CZ = {x ∈ RE : x ≥ 0, x(e) = 0 ∀e 6∈ Z} denotes the cone of
Z. �

Proof of Theorem 5.6. By (5.7) and (5.9), P↑BFG = B(PFG↑). From Theorem 5.9, we get

that PFG↑ = B(P↑BFG), and (5.2) follows from (5.9). Similarly, P↓AFG = A(PFG↓) from

(5.8) and (5.10). Theorem 5.9 implies that PFG↓ = A(P↓AFG), so (5.3) follows from (5.10).
By Corollary 1.17, w is constant on FG-kernels, say w(K) = α holds for each FG-

kernel K. Hence PFG = {x ∈ PFG↑ : w(x) = α} = {x ∈ PFG↓ : w(x) = α} follows from
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strict monotonicity of w. Consequently, w(y) > α holds for each y ∈ PFG↑ \ PFG. As
w(x) ≤ α holds for each x ∈ PFG↓, this follows that

PFG = PFG↑ ∩ PFG↓

= {x ∈ RX : x ≥ 0, x̃(B) ≥ 1 ∀B ∈ BFG, x̃(ZFG) = 0 and x̃(A) ≤ 1 ∀A ∈ AFG} .

Let
P = {x ∈ RX : x ≥ 0, x̃(B) ≥ 1 ∀B ∈ BFG and x̃(A) ≤ 1 ∀A ∈ AFG}

and let X ∈ AFG∩BFG be a transversal of FG-kernels. Such an X exists by Theorem 3.7.
Let x ∈ P be arbitrary. As both Y := X \ ZFG and Y ′ := X ∪ ZFG are transversals
of FG-kernels (i.e. Y, Y ′ ∈ AFG ∩ BFG), we get x̃(Y ) = x̃(Y ′) = 1, hence x̃(ZFG) =
x̃(Y ′)− x̃(Y ) = 1−1 = 0 follows. Consequently, P = PFG and this proves the correctness
of (5.4).

An interesting question is, whether linear descriptions (5.2-5.4) are good character-
izations, that is, whether the separation problem over these polyhedra can be solved
efficiently. The answer is yes, and a possible way for PFG↑ is explained in [25].

Finally, to contrast Theorem 5.6, we prove that it is NP-complete to decide whether
in case of certain posets P and P ′, a particular element of their ground set can belong to
some PP ′-kernel or not. It means that unless P=NP, it is necessary to have some extra
assumption (like the increasing property) beyond substitutability and path-independence
to hope for a good characterization of the corresponding FG-kernel polytope, PFG.

Theorem 5.10 (Fleiner [25]). If undirected graph G = (V,E) and k ∈ N are given
then it is possible to construct posets P and P ′ and an element s of their common
ground-set X in time polynomial in |V |, such that s belongs to a PP ′-kernel if and only
if G contains an independent set of size k.

Proof. We may assume k ≤ |V |, otherwise the theorem is trivial. Let

X := {s} ∪ {aj, a′j : 1 ≤ j ≤ k} ∪ {vj, v′j : v ∈ V, 1 ≤ j ≤ k}.

Partial orders < and <′ are determined by

aj < s, uj < v′j, uj < u′l, wl < v′j, vj < a′j

a′j <
′ s, u′j <

′ vj, u′j <
′ ul, w′l <

′ vj, v′j <
′ aj

for 1 ≤ j ≤ k, 1 ≤ l ≤ k, j 6= l, u, v, w ∈ V , u 6= v and vw ∈ E or v = w.

If G has an independent set I = {i1, i2, . . . , ik} ⊆ V of size k, then S := {s}∪{ijj, i
j
j

′
:

1 ≤ j ≤ k} is a PP ′-kernel. On the other hand, if s belongs to a PP ′-kernel S then
neither aj, nor a′j can belong to S. Thus for every j there must exist elements ij and ej

of V such that ijj, e
j
j

′ ∈ S. By the kernel property, ij = ej 6= il and ijil 6∈ E for j 6= l, in

other words I := {i1, i2, . . . , ik} is an independent set of G of size k.

It is worth mentioning that the above results motivated further work on stable match-
ing related polyhedra [48, 17, 38].
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Chapter 6

Stability of network flows

As well-known, the problem of finding a maximum size matching in a bipartite graph G
can be formulated as a network flow problem: introduce terminals s and t, draw an arc
from s to each vertex of one part (say A) of G while sending an arc from each vertex of
the other part (say B) to t and orient each edge of G from A to B. If we assign capacity
1 to each arc of the digraph then matchings of G bijectively correspond to integral flows
of the just constructed network in such a way that the size of a matching coincides with
the value of the corresponding flow. Hence the search for a maximum size matching
reduces to the well-known problem of finding an integral flow of maximum value.

It is a natural question whether the network flow model has an extension that con-
tains the stable matching problem exactly as the maximum flow problem contains the
maximum size matching problem. The answer to this question is positive and we work
out the details below.

Let (D, s, t, c) be a network, i.e. D is a digraph, s and t are different vertices (termi-
nals) in D and c : A(D)→ R+ is a nonnegative capacity function on the arcs of D. As
usual, a feasible flow is a function f : A(D) → R+ that satisfies the capacity condition
(i.e. f ≤ c) and obeys the Kirchhoff rule, that is, for any nonterminal vertex v the net
inflow into v is the same as the net outflow from v. Assume further that �v is a linear
order on set A(v) of arcs incident with v, such that v prefers e to f if e �v f holds.
(In fact, we only need a linear order on the arcs entering v and another one on the arcs
leaving v as we never have to compare an arc entering v to another one leaving v.) We
say that walk v1, e1, v2, e2, . . . , vk, ek, vk+1 blocks flow f if

ei = vivi+1 holds for each 1 ≤ i ≤ k and (6.1)

arcs e1, e2, . . . , ek are pairwise different and (6.2)

f(ei) < c(ei) holds for 1 ≤ i ≤ k (i.e. ei unsaturated) and (6.3)

v1 ∈ {s, t} or there is an arc e = v1x such that f(e) > 0 and e1 ≺v1 e, and at last
(6.4)

vk+1 ∈ {s, t} or there is some arc e = xvk+1 such that f(e) > 0 and ek ≺vk+1
e. (6.5)

Feasible flow f is stable if no walk blocks f . The above model can be motivated as
follows. Nonterminal vertices of D represents tradesmen who buy and sell a certain kind
of product. Arcs represent possible trades and capacities give an upper bound on the
amount of the product traded in between the two players. A feasible trading scheme on
the above market can be described by a feasible flow as each tradesman sells the same

47

dc_1564_18

Powered by TCPDF (www.tcpdf.org)



CHAPTER 6. STABILITY OF NETWORK FLOWS 48

amount of product as he buys. If tradesman u picks arc uv rather than arc uw (that
is, if uv ≺u uw) then this means that u prefers to sell to v rather than to w, hence he
is eager to decrease the amount he sells to w in order to increase the amount sold to v
if this is possible. Of course, this is possible only if v can sell the extra amount further
to some other player, and so on. In this story, a walk blocking a feasible flow f means
that the two terminals of the walk would be eager to reroute some of their trades onto
the path while intermediate vertices are better off by trading more. This way, a blocking
walk causes some kind of instability on the trading scheme described by f as the players
involved in the walk have a joint interest to divert from the trading scheme along the
walk. Hence a stable flow describes a situation where there is no coalition of players have
a common will to divert.

If digraph D consists of a source s, a set A of sellers, a set B of buyers and a sink t
and there is an arc from s to each vertex of A and from each vertex of B to t and certain
further arcs from A to B and all capacities are 1 then stable flows correspond bijectively
to stable matchings in the graph we get from the unoriented version of D by removing s
and t (and keeping the preferences, of course).

Theorem 6.1 (Fleiner [23]). For any network (D, s, t, c) and for any linear prefer-
ences �v on A(v) for each vertex v of D there exists a stable flow. If capacity c takes
integral values on the arcs then there exists an integral stable flow.

With the help of the given instance of the stable flow problem, we shall define a
particular instance of the stable allocation problem. For each vertex v of D calculate

M(v) := max

 ∑
x:xv∈A(D)

c(xv),
∑

x:vx∈A(D)

c(vx)

 ,

that is, M(v) is the maximum of total capacity of
those arcs of D that enter and leave v. So M(v)
is an upper bound on the amount of flow that can
flow through vertex v. Choose q(v) := M(v) + 1.
Construct graph GD as follows. Split each vertex
v of D into two distinct vertices vin and vout, and
for each arc uv of D add edge uoutvin to GD.

v
c2

c5c1

c3

c4

c2

c5c1

c3

c4firstlast

lastfirst
voutvin

vinvout q(v)

q(v) voutvin

For each nonterminal vertex v of D, add two parallel edges between vin and vout: to
distinguish between them, we will refer them as vinvout and voutvin. Let p(vinvout) =
p(voutvin) := q(v), p(uoutvin) := c(uv) and q(vin) = q(vout) := q(v). To finish the
construction of the stable allocation problem, we need to fix a linear preference order
for each vertex of GD. For vertex vin, let vinvout be the most preferred and voutvin be
the least preferred edge (if these edges are present, that is, if v is nonterminal), and the
order of the other edges incident to vin are coming from the preference order of v on
the corresponding arcs. For vertex vout, the most preferred edge is voutvin and the least
preferred one is vinvout (if these edges are present), and the other preferences are coming
from <v.

The proof of Theorem 6.1 is a consequence of Theorem 2.1 of Bäıou and Balinski
and the following Lemma 6.2 that describes a close relationship between stable flows and
stable allocations.
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Lemma 6.2 (Fleiner [23]). If network (D, s, t, c) and preference orders <v describe
a stable flow problem then f : A(D) → R is a stable flow if and only if there is a stable
allocation g of GD such that f(uv) = g(uoutvin) holds for each arc uv of D.

Proof. Assume first that g is a stable allocation in GD. This means that none of the
vinvout edges are blocking, so either g(vinvout) = p(vinvout) = q(v) or vinvout must be g-
dominated at vout, hence vout is assigned to q(vout) = q(v) amount of allocation. As q(v)
is more than the total capacity of arcs leaving v, g(vinvout) > 0 or g(voutvin) > 0 must
hold. So vout must have exactly q(v) amount of allocation whenever vinvout is present.
An exchange of “in” and “out” shows that the presence of voutvin implies that vin has
exactly q(vin) = q(v) allocation. These observations directly imply that the Kirchhoff
law holds for f at each vertex different from s and t. The capacity condition is also
trivial for f , hence f is indeed a flow of D. Observe that by the choice of q, neither s
nor t is g-saturated hence no edge is g-dominated at s or at t.

Assume that walk P = (v1, v2, . . . , vk) blocks flow f . As P is f -unsaturated, each
edge vouti vini+1 of GD must be g-dominated at vouti or at vini+1. Walk P is blocking, hence
either v1 is terminal, and hence vout1 vin2 cannot be dominated at v1 or there is a v1u arc
with positive flow value such that v1u >v1 v1v2. In both cases, edge vout1 vin2 has to be
g-dominated at vin2 . It means that g(vin2 v

out
2 ) > 0. As arc v2v3 is f -unsaturated, it follows

that edge vout2 vin3 must be g-dominated at vin3 . This yields that g(vin3 v
out
3 ) > 0. Again,

arc v3v4 is f -unsaturated, hence edge vout3 vin4 has to be g-dominated at vin4 , and so on.
At the end we get that voutk−1v

in
k is g-dominated at vink . As terminal vertices s and t are

g-unsaturated, vk cannot be a terminal vertex. So by the blocking property of P , there
is an arc wvk with positive flow and vk−1vk <vk

wvk, hence again, voutk−1v
in
k cannot be

g-dominated at vink . The contradiction shows that no walk P can block f .
Assume now that f is a stable flow of D. We have to exhibit a stable allocation g of

GD such that f is the “restriction” of g. Define g(uoutvin) := f(uv), so we only need to
determine the g(vinvout) and g(voutvin) values for all nonterminal vertices v. Actually,
the stable allocation we look for might not be unique. In what follows, we shall construct
a particular one, the so-called canonical representation gf of f .

Let S be the set of those vertices u of D such that there exists an f -unsaturated
directed walk P = (v1, v2, . . . , vk = u) that is not f -dominated at v1. As no walk can
block f , S is disjoint from terminal vertices s, t. To determine gf , for each nonterminal
vertex v allocate the remaining quota of v to vinvout or to voutvin depending on whether
v ∈ S or v 6∈ S holds. More precisely, define

gf (v
invout) =

{
q(v)−

∑
x∈V (D) f(vx) if v ∈ S

0 if v 6∈ S and (6.6)

gf (v
outvin) =

{
q(v)−

∑
x∈V (D) f(xv) if v 6∈ S

0 if v ∈ S .
(6.7)

By the definition of q, both gf (v
invout) and gf (v

outvin) are nonnegative. If v ∈ S then
the amount of total allocation of vout is q(v) = q(vout) by (6.6), and for v 6∈ S the amount
of total allocation of vin is q(v) = q(vin) by (6.7). So if v 6= s, t then the total allocation
of vin and vout is q(v) by the Kirchhoff law. The total allocations of sin, sout and tin, tout

is less than q(s) and q(t) respectively, by the choice of q. That is, gf is an allocation on
GD.
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To justify the stability of gf , we have to show that no blocking edge exists. To see
that neither vinvout nor voutvin is blocking, observe that both vin and vout are saturated
in gf . So vinvout is dominated at vout and voutvin is dominated at vin. Assume now that
gf (v

outuin) < p(voutuin) = c(vu) holds. Our goal is to prove that voutuin is not blocking.
If there is an f -unsaturated walk P ending with arc vu that is not f -dominated at

its starting vertex then u ∈ S by the definition of S, hence gf (u
outuin) = 0. Moreover, if

some edge woutuin with voutuin <uin woutuin would have positive allocation then walk P
would block f , a contradiction. As uin has q(uin) amount of total allocation, edge voutuin

is gf -dominated at uin.
The last case is when any f -unsaturated walk that ends with arc vu is f -dominated

at its starting vertex. In particular, v 6∈ S, so gf (v
invout) = 0. Moreover, f -unsaturated

walk (v, u) must be f -dominated at v, hence v 6∈ {s, t} and voutuin is gf -dominated at
vout as vout has q(v) = q(vout) amount of allocation. The conclusion is that g := gf is a
stable allocation, just as we claimed.

At this point, we are ready to prove our result on stable flows.

Proof of Theorem 6.1. There is a stable allocation for GD by Theorem 2.1, hence there
is a stable flow for D due to the first part of Lemma 6.2. If c is integral then q(v) is
an integer for each vertex v of D hence p is integral for GD. The integrality property of
stable allocations in the first part of Theorem 5.3 shows that there is an integral stable
allocation g of GD that describes an integral stable flow f of D.

A stable flow can also be constructed by an appropriate generalization of the Gale-
Shapley algorithm and there can be several different stable flows on the same network
with preferences. However, unlike stable matchings, these stable flows do not form a
lattice. As we will see, a certain lattice property can be defined as soon as each vertex
is declared either to be a seller or a buyer. If f is a stable flow then some vertices
can be clearly classified into one class, but for some others we are free to declare either
possibility. However, the “Rural Hospitals Theorem” does extend as it has the following
generalization for this model.

Theorem 6.3 (Fleiner [23]). If f1 and f2 are stable flows in network (D, s, t, c) with
linear vertex preferences �v then f1(a) = f2(a) holds for each arc a incident to terminal
s or t. Consequently, mf1 = mf2 holds, that is, any two stable flow has the same value.

Proof. As the value of a flow is the net amount that leaves s, one can calculate it in
GD as the difference of total allocation of sout and sin. This means that the first part
of the theorem directly implies the second one. So below we prove only the first part of
Theorem 6.3.

Let g1 and g2 be the canonical representations of flows f1 and f2 defined in Lemma 6.2.
As there is no edge between sout and sin, the definition of q(s) implies that both sout

and sin are g1-unsaturated. Hence property (2.8) can hold neither for sin nor for sout.
Moreover, Theorem 2.1 implies that g1 and g2 are≤sout and≤sin-comparable. So property
(2.7) must be true for flows g1 and g2 for both vertices v = sout and v = sin. In particular,
g1(a) = g2(a) holds for each arc a incident to s. This shows the second part of the theorem
for s. The argument for t is analogous to the above one.
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Let us point out a weakness of our stability concept. The motivation behind the
notion is that we look for a flow that corresponds to an equilibrium situation where the
players represented by the vertices of the network act in a selfish way. This equilibrium
situation occurs if no coalition of the players can block the underlying flow f , and this
blocking is defined by an f -unsaturated walk with a certain property. Along such a
walk the players are capable and prefer to increase the flow. However, any closed f -
unsaturated walk C per se causes some kind of instability because the players along C
mutually agree to send some extra flow along C, even if properties (6.4) and (6.5) does
not hold for vertex v1 = vk of C. This motivates us to define flow f of network (D, s, t, c)
with preferences to be completely stable if f is stable and there exists no f -unsaturated
cycle in D whatsoever. If f is a stable flow then we can “augment” along f -unsaturated
cycles, and hence we can construct a flow f ′ ≥ f such that there no longer exists an
f ′-unsaturated cycle. Unfortunately flow f ′ might not be stable any more because we
might have created a blocking walk by the cycle-augmentations.

In fact, there exist networks with preferences that do not have a completely stable
flow. One example is on the figure: each arc has unit capacity, preferences are indicated
around the vertices: lower rank is preferred to the higher.
As no arc leaves subset U := {a, b, c} of the vertices, no flow
can leave U , hence no flow enters U . In particular, arc sa has
zero flow. If we assume indirectly that f is a completely stable
flow then cycle abc cannot block, hence there must be a unit
flow along it. Consequently, walk sa is blocking, a contradic-
tion. Let us mention the following related result.

s

t

b

c

Stable flows have a blocking cycle

a

2

2

1

1 1
12

3

2

1

Theorem 6.4 (Fleiner, Jankó, Schlotter, Teytelboym [28]). The problem of de-
ciding the existence of a completely stable flow is NP-complete.

Next, we turn back to the lattice structure of stable flows. Assume that f is a stable
flow in network (D, s, t, c, ) with preferences, and let stable allocation gf of GD be the
canonical representation of f , as in the proof of Lemma 6.2.

Observe that any nonterminal vertex, v, ofD, exactly one of gf (v
invout) and gf (v

outvin)
is positive by the choice of q and gf . For stable flow f , we can classify the vertices of
D different from s and t as follows: v is an f -vendor if gf (v

invout) > 0, and v is an f -
customer if gf (v

outvin) > 0. If v is an f -vendor, then no edge voutuin can be gf -dominated
at vout (as gf (v

invout) > 0); hence, player v sends as much flow to other vertices as they
accept. Similarly, if v is an f -customer, then no edge uoutvin can be gf -dominated at
vout; that is, player v receives as much flow as the others can supply her.

To explore the promised lattice structure of stable flows, let f1 and f2 be two stable
flows with canonical representations gf1 and gf2 , respectively. From Theorem 2.1, we
know that stable allocations form a lattice; so, gf1 ∨ gf2 and gf1 ∧ gf2 are also stable
allocations of GD, and by Theorem 6.1, these stable allocations define stable flows f1∨f2

and f1 ∧ f2, respectively. How can we determine these latter flows directly, without the
canonical representations? To answer this, we translate the lattice property of stable
allocations on GD to stable flows of D.

Theorem 6.3 shows that stable flows cannot differ on arcs incident to terminal vertex
s or t, so on these arcs, f1 ∨ f2 and f1 ∧ f2 are determined. However, vertices different
from s and t may have completely different situations in stable flows f1 and f2. The
two color classes of graph GD are formed by the vin- and vout-type vertices, respectively.
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Therefore, by Theorem 2.1, gf1 ∨ gf2 can be determined, such that (say) each vertex,
vout, selects the better allocation and each vertex, vin, receives the worst allocation out
of the ones that gf1 and gf2 provide them. Similarly, for stable allocation gf1 ∧ gf2 , the
“in”-type vertices choose according to their preferences, and the “out”-type ones are left
with the less preferred allocations. This means the following in the language of flows.
If we want to construct f1 ∨ f2 and v is a vertex different from s and t, then either all
arcs entering v will have the same flow in f1 ∨ f2 as in f1 or for all arcs a entering v,
equation (f1 ∨ f2)(a) = f2(a) holds. A similar statement is true for the arcs leaving v.
To determine which of the two alternatives is the right one, the following rules apply:

• If v is an f1-vendor and an f2-customer, then v chooses f2. If v is an f2-vendor and
an f1-customer, then v chooses f1. That is, each vertex strives to be a customer.

• If v is an f1-vendor and an f2-vendor and v transmits more flow in f1 than in f2

(i.e., 0 < gf1(v
invout) < gf2(v

invout)) then v chooses f1. That is, vendors prefer to
sell more.

• If v is an f1-customer and an f2-customer and v transmits more flow in f1 than
in f2 (i.e., 0 < gf1(v

outvin) < gf2(v
outvin)), then v chooses f2. That is, customers

prefer to buy less.

• Otherwise, v is a customer in both f1 and f2 or v is a vendor in both flows, and
v transmits the same amount in both flows (i.e., gf1(v

outvin) = gf2(v
outvin) and

gf1(v
invout) = gf2(v

invout)). In this situation, v chooses the better “selling position”
and gets the worse “buying position” out of stable flows f1 and f2.

Clearly, for the construction of f1 ∧ f2, one always has to choose the “other” options
rather than the one that the above rules describe.

We finish the discussion of stable flows by mentioning that the notion of a stable flow
has motivated further work [16, 15, 53].

The stable flow model is closely related to the stability of supply chain networks
defined by Ostrovsky [55]. In Ostrovsky’s model, vertices of an acyclic digraph represent
individual players and arcs indicate possible trade between the players. Each vertex v
is equipped with a choice function Cv that maps any subset X of arcs incident with v
to subset Cv(X) of X that v would like to pick for trade if she can decide freely. All
these choice functions Cv must obey properties SSS és CSC (that stand for “same side
substitutability” and “cross side complementarity”) meaning that if e enters and f leaves
v then

C+
v (X ∪ {e}) ⊆ C+

v (X) ∪ {e} és C−v (X) ⊆ C−v (X ∪ {e})

and
C−v (X ∪ {f}) ⊆ C−v (X) ∪ {f} és C+

v (X) ⊆ C+
v (X ∪ {f})

must hold where upperscipts + and − stand for incoming and outgoing arcs, respectively.
So the above properties imply that if a new purchase opportunity pops up then the
underlying player will sell along all arcs where she sold before and does not buy along
all arcs where she did not buy before (but had the possibility to buy). A new selling
opportunity means that all buying trades are realized along which v were buying before
and no nonrealized selling opportunity gets realized. In a supply chain network, in case

dc_1564_18

Powered by TCPDF (www.tcpdf.org)



CHAPTER 6. STABILITY OF NETWORK FLOWS 53

of preferences described by such choice functions an equilibrium is a subset S of arcs
such that Cv(S(v)) = S(v) holds for each player v and does not exists a blocking chain,
that is a a directed path P that is arc-disjoint from S such that P (v) ⊆ Cv(S(v)∪P (v))
holds for each vertex v of P . In his celebrated paper, Ostrovsky proved the following
theorem.

Theorem 6.5 (Ostrovsky [55]). For any acyclic digraph D with arbitrary choice func-
tions Cv of the vertices with the SSS and CSC properties, there always exists an equilib-
rium.

Ostrovsky’s work motivated several new results (e.g. [39, 41, 40]). Note that Ostro-
vsky’s model allows far more general choice functions than those that used in the stable
flow model and obey the Kirchhoff law. However, in case of stable flows we do not require
the acyclicity of the underlying graph and choice functions do not have to be discrete.
A common generalization of the two results is a yet unpublished joint work of Fleiner,
Jankó, Teytelboym and Tamura that also compares various stability notions on networks
[29].
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Chapter 7

Stable matchings and kernels in
nonbipartite graphs

We have seen that in case of a bipartite graph, there exists a stable (b-)matching for any
linear preferences. It is easy to see however that if in a 3-cycle each vertex prefers its right
neighbour to the left one then no stable matching exists. It is natural to ask whether there
is an efficient algorithm that finds a stable matching for a given input graph and linear
vertex preferences or concludes that no stable matching exists. As Lemma 1.2 is valid
also for nonbipartite graphs, it is a natural idea that our algorithm applies it as long as it
is possible to remove an edges from the graph according to the lemma. As we saw in case
of bipartite graphs, if we cannot remove any further edge then both the boys first choices
and the girls first choices form a stable matching. This is not the case for nonbipartite
graphs, however. From an instance where we cannot remove any further edge due to
Lemma 1.2 it may be pretty unclear whether a stable matching exists or not. The first
efficient algorithm that achieved this goal is due to Irving [45]. Irving’s algorithm starts
indeed with removing edges according to Lemma 1.2, but it needs a further operation,
namely the so-called rotation elimination. In this transformation we also remove edges
from the graph in such a way that no new stable matching is created (just like in case
of Lemma 1.2). However, a rotation elimination may kill a stable matching. The key
property of rotation elimination is that it cannot kill all stable matchings in the graph,
hence even if we loose one (or more) there certainly remains at least one stable matching.
Irving observed that if none of the above operations can be executed on a graph then
the graph itself is either a matching (which is obviously a stable matching of the original
input graph) or the graph has an odd cycle component that can be oriented such that
each vertex of the cycle prefers the outgoing arc to the incoming one. As no such odd
cycle has a stable matching, the original input graph has no stable matching either.

7.1 Fractional stable matchings

Using Irving’s algorithm, Tan pointed out that in case of nonbipartite graphs, there
always exists a so-called stable partition that we shall call a stable half-matching and
define below [64]. This stable partition of Tan is either a matching (and hence a stable
matching) or it is a succinct proof for the nonexistence of a stable matching. To be able
to generalize this result, we need the following terminology.

54
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Let H = (V, E) be a hypergraph on vertex set V , that is, E ⊆ V holds for each
hyperedge E ∈ E . Let �v be a linear order in the set E(v) of hyperedges incident
to vertex v. Set E ′ of hyperedges is a matching if hyperedges of E ′ are disjoint, i.e.
|E ′(v)| ≤ 1 holds for each vertex v of V . Nonnegative vector x ∈ RE+ is said to be
a fractional matching if x̃(E(v)) ≤ 1 hols for each vertex v ∈ V . If x is a fractional
matching and x(E) ∈ {0, 1

2
, 1} holds for each hyperedge E ∈ E then x is called a

half-matching and if we have x(E) ∈ {0, 1} for the hyperedges then x is an integral
matching. (It is clear that integral matchings are exactly the characteristic vectors of
matchings.) Fractional matching x is stable if each hyperedge E ∈ E has a vertex v such
that

∑
{x(F ) : F �v E} ≥ 1 holds, that is, if hyperedges on v that are not worse than

E fully cover v. It is easy to see that if x is a stable half-matching of G then x−1(1) is a
matching in G and the components of x−1(1

2
) are cycles with cyclic preferences. In the

above terminology, Theorem 1.1 can be stated such that each bipartite graph for any
vertex preferences has a stable integral matching. Tan proved the following theorem.

Theorem 7.1 (Tan, [64]). If G = (V,E) is a finite graph and �v is a linear preference
order on E(v) for each vertex v of V then G has a stable half-matching. Moreover, if
x and y are stable half-matchings then x−1(1

2
) and y−1(1

2
) contain the same odd cycles.

Consequently, G has a stable matching if and only if G has a stable half-matching such
that x−1(1

2
) contains no odd cycle.

Scarf’s lemma known from Game Theory [63] allows us to prove the following gener-
alization of Tan’s theorem.

Theorem 7.2 (Aharoni, Fleiner [6]). If H = (V, E) is a hypergraph and �v is a
linear order on E(v) for each vertex v ∈ V then there exists a stable fractional matching
of H.

If H is a graph then there exists a stable half-matching.

Before the proof of Theorem 7.2, we state our main tool.

Lemma 7.3 (Scarf [63]). Let n < m be positive integers, b a vector in Rn
+. Also let

B = (bi,j), C = (ci,j) be matrices of dimensions n × m, satisfying the following three
properties: the first n columns of B form an n × n identity matrix (i.e. bi,j = δi,j for
i, j ∈ [n]), the set {x ∈ Rn

+ : Bx = b} is bounded, and ci,i < ci,k < ci,j for any i ∈ [n],
i 6= j ∈ [n] and k ∈ [m] \ [n].

Then there is a nonnegative vector x of Rm
+ such that Bx = b and the columns of C

that correspond to supp(x) form a dominating set, that is, for any column i ∈ [m] there
is a row k ∈ [n] of C such that ck,i ≤ ck,j for any j ∈ supp(x).

Proof of Theorem 7.2. Let B be the incidence matrix of H, with the identity matrix
adjoined to it at its left. Let C ′ be a V ×E matrix satisfying the following two conditions:

(1) c′v,e < c′v,f whenever v ∈ e ∩ f and e <v f
(2) c′v,f < c′v,e whenever v ∈ f \ e.
Let C be obtained from C ′ by adjoining to it on its left a matrix so that C satisfies

the conditions of Lemma 7.3. Let x be a vector as in Lemma 7.3 for B and C, for b = 1.
Define x′ = x|E, namely the restriction of x to E. Clearly, x′ is a fractional matching.
To see that it is dominating, let e be an edge of H. By the conditions on x, there exists
a vertex v such that cv,e ≤ cv,j for all j ∈ supp(x). Since cv,v < cv,e it follows that
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v 6∈ supp(x). Since Bx = 1 it follows that supp(x) contains an edge f containing v
(otherwise (Bx)v = 0). Since cv,f ≥ cv,e it follows by condition (2) above that v ∈ e.
The condition (Bx)v = 1 now implies that e is dominated by x at v.

If H = G = (V,E) is a graph then x is in the fractional matching matching polytope
P of G, hence x is a convex combination of vertices of P . It is well-known that vertices
of P are half-integral and it is straightforward to check that the vertices in the convex
combination must also be stable fractional matchings. Consequently, if H is a graph then
there exists a stable half-matching.

7.2 Reduction of stable matching problems

It is worth mentioning that the reduction to Lemma 7.3 does not provide us with a
polynomial time algorithm as the related problem is PPAD-complete. Hence the next
natural question is whether there is an efficient algorithm to find a stable solution for
various generalizations of the stable roommates problem, e.g. finding a stable b-matching
if exists. Due to Cechlárová and Fleiner, there is an elementary transformation that can
be used to reduce the problem of finding a stable b-matching to the problem of finding a
stable matching [13]. Moreover, this work also extends Irving’s algorithm to the stable
b-matching problem and proves a generalization of Theorem 3.4 to nonbipartite graphs.

Theorem 7.4 (Ceclárová, Fleiner [13]). For any finite graph G = (V,E), for ar-
bitrary linear orders �v on E(v) for each vertex v ∈ V and for arbitrary quota function
b : V → N+ on the vertices, it is possible to construct finite graph Gb and preference
orders on the stars in polynomial time such that any stable matching of Gb corresponds
to a stable b-matching of G and for any stable b-matching M of G there is at least one
stable matching M b of Gb that M b corresponds to M .

Moreover, if G is bipartite then Gb is also bipartite.

Theorem 7.4 shows that as soon as we have an efficient algorithm that finds a stable
matching (like Irving’s) then we can apply it to find a stable b-matching, as well.

Proof. The construction of Gb is done in two steps. First, we achieve the so-called many-
to-one property, that is, b(u) = 1 or b(v) = 1 for every edge uv. If G happens to have
this property then we do nothing in the first step. Otherwise as long as there is an edge
e = uv ∈ E such that b(u) > 1 < b(v) then we replace edge uv by a little graph shown
in figure 7.1. That is, we introduce new vertices ue0, u

e
1, u

e
2 and ve0, v

e
1, v

e
2 all with quotas

b = 1 and we introduce a cycle on them with cyclic preferences such that edges uue0 and
vve0 are in between the cycle edges according to ue0 and ve0 and edges uue0 and vve0 take
place of edge uv in the preference orders of u and v.

Observe that graph G′ after the construction has one less edge than G with the
property that both endvertices have quota more than one. Observe moreover that this
construction preserves bipartiteness, that is G′ is bipartite whenever G is bipartite. Ob-
serve at last that if M is a stable b-matching of G′ and (say) uue0 ∈M then by stability
ue1v

e
2 ∈ M and hence (again by stability) ve0v ∈ M . That is, either both of uue0 and vve0

belong to M or none of them.
This follows that if M ′ is a stable b-matching of G′ then M ′ corresponds to a b-

matching M of G: edge e will belong to M if uue0, vv
e
0 ∈ M . Moreover, it is straightfor-
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Figure 7.1: Achieving the many-to-one property

ward to check that if there is an edge blocking M then M ′ is not a stable b-matching of
G′.

To finish the proof of correctness of the above transformation, we show that if M is
a stable b-matching of G then there is another stable b-matching M ′ of G′ such that M ′

corresponds to M in the above sense. To construct M ′, the only thing we should care of
is what to do on the graph inserted instead of edge e. Three cases are possible.

• If e ∈M then M ′ := M \ {e} ∪ {uue0, ue1ve2, vve0, ve1ue2} .

• If e 6∈M and e is dominated at u then M ′ := M ∪ {ue0ue2, ve0ve1, ue1ve2} .

• If e 6∈M and e is dominated at v then M ′ := M ∪ {ve0ve2, ue0ue1, ve1ue2} .

It is straightforward to check that M ′ is a stable b-matching of G′. After transforming
G at most |E| times, we may assume that our graph (that we still call G) has the
many-to-one property. From now on, we assume this property and describe the second
transformation.

We may assume that b ≤ |V |, as if b(v) > |V | would hold then we may reduce b(v) to
|V | without changing the set of stable b-matchings. We construct graph Gb the following
way. For each vertex u, we create b(u) clones of u: we remove u from G and add new
vertices u1, u2, . . . , ub(u) and add edges {uiv : 1 ≤ i ≤ b(u), uv ∈ E}. Define b(ui) = 1 for
1 ≤ i ≤ b(u) and each ui inherits the preference order of u. If vu ∈ E then the preference
order of v changes such that we keep the preference order on all edges different from uv,
new edges uiv compare to old edges just like uv did and u1v ≺v u2v ≺v . . . ≺v ub(u)v.
Clearly, this cloning operation preserves bipartiteness, that is, Gb is bipartite whenever
G is bipartite.

It is straightforward (and a bit laborious) to check that if M b is a stable matching of
Gb then

M := {uv ∈ E : uivj ∈M for some i, j}
is a stable b-matching of G. Moreover it is also not difficult to see that if M is a stable
b-matching of G then

M b := {uivj : uv ∈M and uv is the ith edge in M according to u

and the jth edge in M according to v.}

is a stable matching of Gb.

The key to Theorem 7.4 were two graph-transformations. Below we show a third one
that proves the splitting property for nonbipartite graphs.
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Theorem 7.5 (Ceclárová, Fleiner [13]). Let �v be a linear order on the set E(v)
of edges incident to v for each vertex v of finite graph G = (V,E) and let b : V → N.
Then there exists a partition E(v) = E1(v) ∪ . . . ∪ Eb(v)(v) for each vertex v ∈ V such
that |Ei(v) ∩ S| ≤ 1 holds for any stable b-matching S, vertex v and index 1 ≤ i ≤ b(v).

Proof. Define bipartite graph G′ = (V1 ∪ V2, E
′) where V1 = {v1 : v ∈ V }, V2 = {v2 : v ∈

V } and E ′ = {u1v2 : uv ∈ E} by duplicating the vertex set of G and introducing two
edges for each edge e of G. Define b′ : V1∪V2 → N by b′(v1) = b′(v2) = b(v) for each vertex
v ∈ V . Observe that if M is a stable b-matching of G then M ′ = {u1v2 : uv ∈ M} is a
stable b′-matching of G′. Hence Theorem 7.5 follows directly by applying Theorem 3.4
on G′ and b′.

Note that the transformation in the above proof can also be used to generalize the
Rural Hospitals Theorem to nonbipartite graphs.

7.3 Extensions of Irving’s algorithm

We have seen that if we are looking for a stable matching in graph G then a stable
half-matching contains all the information we need: either it contains an odd cycle of
half-weight edges (and then no stable matching exists in G) or, if its half-weight edges
form only even cycles then removing every second edges of these even cycles we get
a stable matching of G. One may wonder whether there is a similar characterizing
structure for stable b-matchings. The answer is yes and it can be proved by a fairly
natural extension of the proof of Theorem 7.2. However, as this proof leans on Scarf’s
lemma, we do not get an efficient algorithm that finds a stable half-b-matching. Moreover,
the transformations in Theorem 7.4 does not provide us with a completely satisfactory
result either: although it is true that one can reduce finding a stable b-matching of G
to finding a stable matching in some other graph Gb, it is quite laborious to prove the
existence of a stable half-b-matching of G from the existence of a stable half-matching
of Gb. Instead of this, we use a different approach. It turns out that Irving’s algorithm
can be generalized and this generalization is an efficient algorithm that either finds a
stable b-matching or concludes that no such matching exists. (In the latter case, it is not
difficult to prove that Irving’s algorithm finds a stable half-b-matching, but we do not
pursue this line here.)

7.3.1 Stable b-matchings

The input of the extension of Irving’s algorithm (the EI algorithm, for short) is an
instance (G,O, b)=(G0,O0, b) (where O = {�v: v ∈ V (G)} stand for the system of
preferences), and its output is either a stable b-matching M of (G,O, b)or a conclusion
that no stable b-matching of (G,O, b) exists. The EI algorithm has two phases. In both
phases, it transforms an instance (Gi,Oi, b) to another instance (Gi+1,Oi+1, b) in such a
way that

Gi+1 is a proper subgraph of Gi, (7.1)

if (Gi,Oi, b) has a stable b-matching then (Gi+1,Oi+1, b) has one, (7.2)

any stable b-matching of (Gi+1,Oi+1, b) is a stable b-matching of (Gi,Oi, b). (7.3)
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Define B(u,Gi) as the set of the b(u) best edges of Gi in ≺u and let D(u,Gi) denote
those edges f of Gi that can only be b-dominated at u:

B(u,Gi) := {f = ux ∈ E(u,Gi) : |{g ∈ E(u,Gi) : g ≺u f}| < b(u)}
D(u,Gi) := {f = ux ∈ E(u,Gi) : f ∈ B(x,Gi)} .

That is, B(u,Gi) contains the first choices of u and D(u,Gi) are those edges of u that
are first choices of the other vertex. We say that instance (Gi,Oi, b) has the first-last
property if for each vertex u of Gi and for each edge e ∈ E(Gi) incident with u

|{f ∈ D(u,Gi) : f ≺u e}| < b(u) (7.4)

holds. That is, no edge e is incident with u that is preceded in �u by b(u) edges along
which a proposal comes to u.

The name of the first-last property comes from the stable roommates terminology
where it means that each agent is the last choice of his/her first choice. Consequently,
each agent is the first choice of his/her last choice. This is generalized in the following
lemma.

Lemma 7.6. If instance (Gi,Oi, b) has the first-last property then |B(u,Gi)| = |D(u,Gi)|
for each vertex u of Gi.

Proof. Observe that |D(u,Gi)| ≤ |B(u,Gi)| for each vertex u of Gi. This is because
if |B(u,Gi)| < b(u) then D(u,Gi) ⊆ E(u,Gi) = B(u,Gi). Otherwise |B(u,Gi)| =
b(u), and |D(u,Gi)| ≤ b(u) by the first-last property. By double counting those edges
that cannot be dominated at one endvertex we get that

∑
{|B(u,Gi)| : u ∈ V (Gi)} =∑

{|D(u,Gi)| : u ∈ V (Gi)}, so Lemma 7.6 follows.

If instance (Gi,Oi, b) does not have the first-last property then the algorithm makes a
first phase step. That is, it finds an edge e = uv that violates (7.4) and deletes e from Gi

to get Gi+1. To construct Oi+1, we restrict each order of Oi to the remaining edges. The
motivation is that each agent selects his/her best possible partners according to his/her
quota and proposes to them. If agent v receives at least b(v) proposals than he/she will
never be a partner of another agent who is worse than the b(v)th proposer of v. The
next lemma is the b-matching counterpart of Lemma 1.2.

Lemma 7.7. If (Gi+1,Oi+1, b) is constructed from (Gi,Oi, b) by deleting e in a first
phase step then properties (7.1–7.3) hold.

Proof. Property (7.1) holds trivially for (Gi+1,Oi+1, b). Assume that M is a stable b-
matching of (Gi,Oi, b). By the definition of the first phase step, there are different edges
f1, f2, . . . , fb(u) ∈ D(u,Gi) such that fj ≺u e for j = 1, 2, . . . , b(u). The definition of
D(u,Gi) implies that either all fj’s belong to M or M must b-dominate some fj at u.
In both cases, e is b-dominated by M at u, hence e 6∈M , so M is a stable b-matching of
(Gi+1,Oi+1, b). This proves (7.2).

Observe that after the deletion of e, we still have fj ∈ D(u,Gi+1) for j = 1, 2, . . . , b(u).
So the above argument applies to any stable b-matching M ′ of (Gi+1,Oi+1, b), and shows
that M ′ b-dominates e. Hence M ′ is a stable b-matching of (Gi,Oi, b), justifying (7.3).

The above proof justifies the following observation as well.
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Observation 7.8. If edge e is deleted in the first phase of the EI algorithm then e does
not belong to any stable b-matching of (G0,O0, b).

If the first phase step cannot be executed, i.e. (Gi,Oi, b) has the first-last property then
either the edges of graph Gi form a b-matching M which (by property (7.3)) is a stable
b-matching of (G0,O0, b), or the algorithm makes a second phase step, that is, it finds
and eliminates a so called rotation to get (Gi+1,Oi+1, b). A rotation of (Gi,Oi, b) is a
pair of edge sets R = ({e1, e2, . . . , ek}, {f1, f2, . . . , fk}) such that ej = ujvj, fj = ujvj+1

(here and further on, addition in the indices is modulo k), ej is maximal (i.e. worst) in
≺vj

and fj is the (b(uj) + 1)st least (i.e. (b(uj) + 1)st best) element of ≺uj
. The above

rotation R covers vertices u1, v1, u2, v2 . . . uk, vk. We denote the degree function of graph
Gi by dGi

.

Lemma 7.9. If (Gi,Oi, b) has the first-last property and E(Gi) is not a b-matching then
there exists a rotation R of (Gi,Oi, b) such that dGi

(v) > b(v) for each vertex v covered
by R.

Proof. Define arc set A on V (Gi) by introducing an arc ~a = ~uv if e = uw is the ≺u-
maximal edge and f = wv is the (b(w) + 1)st least edge of ≺w. Observe that if dGi

(u) >
b(u) then for the ≺u-maximal edge e = uw we have e 6∈ B(u,Gi), hence e 6∈ D(w,Gi).
This yields that E(w) 6= D(w,Gi), so E(w) 6= B(w,Gi), that is, dGi

(w) > b(w) by
Lemma 7.6. This means that whenever dGi

(u) > b(u) then there is an arc ~a of A going
from u to some vertex v with dGi

(v) > b(v). As E(Gi) is not a b-matching, A is nonempty
and contains a cycle. This A-cycle defines a rotation in a natural way.

If the EI algorithm finds a rotation R = ({e1, e2, . . . , ek}, {f1, f2, . . . , fk}) as in
Lemma 7.9 such that {e1, e2, . . . , ek} = {f1, f2, . . . , fk} then it concludes that no sta-
ble matching of instance (G,O) exists. Otherwise the algorithm eliminates rotation R,
i.e. it constructs Gi+1 and Oi+1 by deleting edges {e1, e2, . . . , ek} from Gi and by restrict-
ing orders of Oi to the remaining edges. The following lemma justifies the correctness of
the second phase step.

Lemma 7.10. Let instance (Gi,Oi, b) have the first-last property and let R = ({e1, e2, . . . ,
ek}, {f1, f2, . . . , fk}) be a rotation of (Gi,Oi, b) as in Lemma 7.9.

A Sets {e1, e2, . . . , ek} and {f1, f2, . . . , fk} are disjoint or identical. In the latter case,
(Gi,Oi, b) has no stable b-matching.

B If (Gi+1,Oi+1, b) is the SMA instance after the elimination of rotation R then
properties (7.1–7.3) hold.

Note that if {e1, e2, . . . , ek} = {f1, f2, . . . , fk}) for rotation R in Lemma 7.10 then
{e1, e2, . . . , ek} ⊆ x−1(1

2
) holds for any stable half-b-matching x.

Proof of part A. Assume that ej = fl, for some j, l. As dGi
(vj) > b(vj) and ej is the

≺vj
-maximal edge, ej ∈ B(uj, Gi) by the first-last property of (Gi,Oi, b). Clearly, fl 6∈

B(ul, Gi), so uj 6= ul hence uj = vl+1 and ul = vj must hold. So dGi
(ul) = b(ul) + 1

as ej is maximal and fl is the (b(ul) + 1)st least element of ≺ul
. In particular, b(ul) =

|B(ul, Gi)| = |D(ul, Gi)| by Lemma 7.6. In other words, |B(ul, Gi)∩D(ul, Gi)| = b(ul)−1,
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D(ul, Gi) \ B(ul, Gi) = {ej} and B(ul, Gi) \ D(ul, Gi) = {e} for a unique edge e in
E(ul, Gi).

By the definition of R, both edges el and fj−1 are incident with ul and by the degree
condition of Lemma 7.9, el, fj−1 6∈ D(ul, Gi). This yields that el = e = fj−1. That is,
ej = fl implies el = fj−1 that in turn implies ej−1 = fl−1. By induction, {e1, e2, . . . , ek} =
{f1, f2, . . . , fk} follows.

By the definition of a rotation, e1, f1, e2, f2, . . . , ek, fk is a closed walk. As all edges
ei are different and {e1, e2, . . . , ek} = {f1, f2, . . . , fk}, it follows that each edge is used
exactly twice in the walk. So edges ei (in an appropriate order) form a cycle C of length
k. We have seen that ej = fl and el = fj−1, so j − l ≡ l − (j − 1)(mod k), that is,
2(j − l) ≡ 1(mod k). This means that k is odd, and C is an odd cycle.

Now let M be a stable b-matching of (Gi,Oi, b). Pick some vertex (say ul = vj) of
C. If f ∈ E(ul, Gi) and ej 6= f 6= el then f ∈ B(ul, Gi) ∩D(ul, Gi), so f ∈ M . At most
one of ej and el can belong to M because dGi

(ul) > b(ul) and M is a b-matching. As
el ∈ D(ul, Gi), if el 6∈ M then M must b-dominate el at ul, so ej ∈ M follows. We got
that from two neighbouring edges of C exactly one belongs to M . As C is an odd cycle,
this is impossible. That is, no stable b-matching of (Gi,Oi, b) exists.

Proof of part B. Property (7.1) holds trivially. LetN be a stable b-matching of (Gi,Oi, b).
Clearly, if N contains none of the ej’s then N is a stable b-matching of (Gi+1,Oi+1, b).
Assume that ej ∈ N . Then by Lemma 7.9, dGi

(vj) > b(vj), hence |D(vj, Gi)| = b(vj).
Moreover, D(vj, Gi) ⊆ N because ej being maximal in ≺vj

, no edge of Gi is b-dominated
by N at vj. By definition, fj−1 6∈ D(vj, Gi), so fj−1 6∈ N , implying that fj−1 is b-
dominated by N at uj−1. As fj−1 is preceded by exactly b(uj−1) edges in ≺uj−1

, all
of those edges (in particular ej−1) must belong to N . We got that ej ∈ N implies
ej−1 ∈ N 63 fj−1, hence {e1, e2, . . . ek} ⊆ N and {f1, f2, . . . fk} is disjoint from N .

Define M := N ∪ {f1, f2, . . . fk} \ {e1, e2, . . . ek} . As the ej’s and the fj’s cover the
same set of vertices, M is a b-matching. The above argument also shows that M contains
the best b(uj) edges of ≺uj

in Gi+1. So if some edge e of Gi+1 is b-dominated by N at uj
then e is still b-dominated by M at uj. As N b-dominates no edge of Gi at vj (because
ej ∈ N is ≺vj

-maximal), M is a stable matching of (Gi+1,Oi+1, b). This proves property
(7.2).

Let M be a stable b-matching of (Gi+1,Oi+1, b) and ej = ujvj be an edge that has
been deleted in the elimination of R. Assume that ej is not b-dominated by M at vj.
By Lemma 7.9, dGi

(vj) > b(vj), so |D(vj, Gi)| = b(vj) and ej ∈ D(vj, Gi) by property
(7.4) and Lemma 7.6. If e 6∈ M for some edge e ∈ D(vj, Gi) other than ej then e has
to be b-dominated by M at vj, and this means that ej is also b-dominated by M at vj,
a contradiction. So D(vj, Gi) \ {ej} ⊆ M . This yields that fj−1 6∈ M because otherwise
ej would be b-dominated by M at vj, as fj−1 6∈ D(vj, Gi) and fj−1 <vj

ej. Hence fj−1

has to be b-dominated by M at its other vertex uj−1. This is impossible as after the
deletion of ej−1 in the elimination of R, there are only b(uj) − 1 edges left in Gi+1 that
preceded fj−1 in ≺uj

. The contradiction shows that no ej can block M , so M is a stable
b-matching of (Gi,Oi, b). This justifies property (7.3).

After each rotation elimination, the algorithm returns to the first phase. Table 7.1
contains a pseudocode summarizing the algorithm.

Lemmata 7.7, 7.9 and 7.10 imply the following theorem.
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The EI algorithm
Input: SMA instance (G0,O0, b)
Output: stable b-matching of (G0,O0, b), if one exists

begin
i:=0
while E(Gi) is not a b-matching do

begin
if (Gi,Oi, b) does not have the first-last property

then find e ∈ E(Gi) that violates (7.4)
delete e to get (Gi+1,Oi+1, b)

else find rotation ({e1, e2, . . . , ek}, {f1, f2, . . . , fk})
if {e1, e2, . . . , ek} = {f1, f2, . . . , fk}

then STOP: No stable b-matching of (G0,O0, b) exists
else delete {e1, e2, . . . , ek} to get (Gi+1,Oi+1, b)

end if
end if
increase i by 1

end
STOP: Output stable b-matching E(Gi) of (G0,O0, b)

end

Table 7.1: Pseudocode of the extension of Irving’s algorithm

Theorem 7.11 (Cechlárová, Fleiner [13]). Let G0 = (V,E) be a finite graph, O0 =
{�v: v ∈ V } where �v is a linear order on E(v) and let b : V → N. Then the EI algorithm
finds a stable b-matching of (G0,O0, b) or concludes that no stable matching of (G0,O0, b)
exists in O((n+m)2) time where n = |V | and m = |E|.

Proof. In step i, the algorithm deletes at least one edge of Gi. So there are at most n+m
steps, each taking constant time. Finding all sets B(u,Gi) takes O(m) time. Each edge
deletion costs constant time if edges are stored in doubly linked lists along orders ≺v.
We can update sets B(u,Gi) after the deletion of k edges in O(k) time. We can recognize
the edge to be deleted in the first phase in O(m) time. Finding a rotation according to
Lemma 7.9 takes O(min(m,n)) time, so altogether we get O(m2) for the complexity of
the EI algorithm.

Note that the complexity of the EI algorithm is worse than that of Irving’s which has
complexity O(m). In case of the SR problem, the two algorithms are slightly different:
in Irving’s algorithm there is a so called “first phase” in which only first phase steps of
the EI algorithm are executed. This is followed by a “second phase”, where rotations are
eliminated, and Irving’s algorithm never returns to the first phase. For Irving, a rotation
elimination consists of an EI second phase step, but the algorithm also executes some
strictly specified first phase steps as well, so that the first-last property is preserved. The
EI algorithm returns to the first phase, but still, it does the same, although it does not
tell exactly which first phase steps to take. This is one reason that the complexity grows.
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An advantage of the EI algorithm is that its correctness is somewhat easier to prove.
Our main motivation here was to give a generalization of Irving’s algorithm and we did
not care much about complexity. Note, that by a better organization of the EI algorithm
it is possible to reduce the complexity to O(n+m), and this is done in Cechlárová and
Val’ová [14] (see also [67]).

7.3.2 Weak preferences and forbidden edges

Irving’s algorithm can be generalized in a further direction. Assume that we have given
graph G = (V,E) and a poset (Pv,≤v) together with a mapping fv : Ev → Pv for
each vertex v ∈ V . We say that e �v e′ if fv(e) ≤v fv(e′) and we call relation �v a weak
preference order. If e, e′ ∈ E(v) then there are exactly four possibilities: either e is better
than e′ or e′ is better than e or e and e′ are equally good or e and e′ are incomparable.
Assume further that we have given a set F of forbidden edges of G. Edges of E \ F are
called free. Matching M of G is super-stable if M ⊆ E \F and for every edge e ∈ E there
exists a vertex v and an edge m ∈M such that m �v e holds. Note that using the tools
described in part 7.3.1, our treatment below can also handle super-stable b-matchings,
as well.

Theorem 7.12 (Fleiner, Irving, Manlove [27]). There is a polynomial-time algo-
rithm that finds a super-stable matching or concludes that no such matching exists for
any finite graph G = (V,E), set of forbidden edges F ⊆ E and weak preferences �v.

To prove Theorem 7.12, we introduce some notation. Let us fix a preference model
(G0, F0,O0), as the input of our algorithm. Our goal is to design an algorithm that finds a
super-stable matching, if it exists. The algorithm shall handle so-called 1-arcs and 2-arcs
that are oriented versions of certain edges of the underlying model. The sets of these arcs
after the ith step of the algorithm are denoted by A1

i and A2
i , respectively. In the begin-

ning, A1
0 = A2

0 = ∅. The algorithm works step by step. In the (i+1)st step, it changes the
current instance (Gi, Fi, A

1
i , A

2
i ,Oi) into a “simpler” model (Gi+1, Fi+1, A

1
i+1, A

2
i+1,Oi+1)

in such a way that the answer to the latter problem is also a valid answer to the former
one. That is,

any super-stable matching in (Gi+1, Fi+1,Oi+1)

is a super-stable matching in (Gi, Fi,Oi) and
(7.5)

and

if there is a super-stable matching in (Gi, Fi,Oi) then

there has to be a super-stable matching in (Gi+1, Fi+1,Oi+1) as well.
(7.6)

We employ four different kinds of transformations to achieve this goal: we find 1-arcs
and 2-arcs, we forbid edges and we delete forbidden edges.

To describe these transformations, we need a couple of definitions. We say that
edge e ∈ Ei(v) of Gi (forbidden or not) is a first choice edge of v, if there is no edge
f ∈ Ei(v) \ Fi with f <v e (i.e., if no free edge dominates e at vertex v). Note that
there can exist more than one first choice of v. Moreover, an edge e can be a first choice
of both of its vertices. Further, if v is not an isolated vertex then there is at least one
first choice of v. If e = vu is a first choice of v then we may change our current instance
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(Gi, Fi, A
1
i , A

2
i ,Oi) into (Gi+1, Fi+1, A

1
i+1, A

2
i+1,Oi+1) where Gi+1 = Gi, Ei+1 = Ei, A

1
i+1 =

A1
i ∪ {(vu)}, A2

i+1 = A2
i ,Oi+1 = Oi and we say that (vu) is a 1-arc. This 1-arc finding

transformation clearly satisfies conditions (7.5) and (7.6).
An edge e ∈ Ei(v) is a second choice of v if e is not a first choice of v and e >v f 6∈ Fi

implies that f is a first choice of v. In other words, e is a second choice if any free edge
that dominates e at v is a first choice of v and there is at least one such free edge. Note
that there can be several second choices of v present in an instance. Moreover, the set
of second choices of v is nonempty if and only if there exist two free edges incident to v
such that one dominates the other at v. If e = vu is a second choice of v then we may
change our current instance (Gi, Fi, A

1
i , A

2
i ,Oi) into (Gi+1, Fi+1, A

1
i+1, A

2
i+1,Oi+1) where

Gi+1 = Gi, Ei+1 = Ei, A
1
i+1 = A1

i , A
2
i+1 = A2

i ∪ {(uv)},Oi+1 = Oi and we say that (uv)
is a 2-arc. This 2-arc finding transformation clearly satisfies conditions (7.5) and (7.6).
Note that the definition of a 2-arc is somewhat counterintuitive: unlike in case of a 1-arc,
a 2-arc points to that vertex whose second choice it represents. Later we shall see the
reason for this. For each j, we require the following property after the jth step of our
algorithm.

Each arc of A1
j is a 1-arc of (Gj, Fj,Oj) and (7.7)

each arc of A2
j is a 2-arc of (Gj, Fj,Oj). (7.8)

Clearly, 1-arc finding and 2-arc finding steps do not violate conditions (7.7) and (7.8).
If e is a free edge of Gi, then forbidding e means that Gi+1 := Gi, Fi+1 := Fi ∪ {e},

and Oi+1 := Oi. After forbidding, A1
i+1 = A1

i and A2
i+1 = A2

i , unless we explicitly state
otherwise. The algorithm may forbid e if either no super-stable matching contains e or
if e is not contained in all super-stable matchings of (Gi, Fi,Oi). (Note that neither of
these conditions implies the other.) Such a forbidding transformation clearly satisfies
(7.5) and (7.6). Forbidding a subset C of E means that we simultaneously forbid all
edges of C. We shall do so if properties (7.5) and (7.6) hold for j = i+ 1.

If e is a forbidden edge of Gi then deleting e means that we delete e from Gi and
Fi to get Gi+1: Ei+1 := Ei \ {e}, Fi+1 := Fi \ {e}, A1

i+1 := A1
i \ {a ∈ A1

i : a = ~e},
A2
i+1 := A2

i \ {a ∈ A2
i : a = ~e} (where a = ~e means that 1-arc or 2-arc a is coming

from first or second choice e) and the partial orders in Oi+1 are the restrictions of the
corresponding partial orders of Oi, to the corresponding stars of Gi+1. The algorithm
may delete forbidden edge e if there exists no matching in (Gi, Fi,Oi) that is blocked
exclusively by e. This implies that the set of super-stable matchings in (Gi, Fi,Oi) and
in (Gi+1, Fi+1,Oi+1) is the same, so (7.5) and (7.6) clearly hold for j = i + 1. As first
and second choices do not change after deleting a forbidden edge, properties (7.7) and
(7.8) are true for j = i+ 1.

As we mentioned already, our algorithm works in steps and in each step it changes the
instance according to some of the above transformations. There is a certain hierarchy
between these steps: the current move of the algorithm is always chosen to have the
highest priority among the executable steps. Our description of the step types is in the
order of this hierarchy.

0th priority (proposal) step If edge e = vw is a first choice of v and does not
belong to A1

i then find 1-arc vw, that is A1
i+1 = A1

i ∪ {(vw)}.
We have seen that conditions (7.5) and (7.6) are satisfied after a proposal step and

by definition, (7.7) and (7.8) also hold for j = i+ 1. As soon as the algorithm has found
all 1-arcs, it looks for a
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1st priority (mild rejection) step If ~e = uv is a 1-arc of A1
i , A

2
i = ∅ and Ei(v) 3

f 6<v e (that is, f is not strictly better than e according to v in Gi) then forbid f .
Obviously, if f belongs to some matching M then e 6∈ M , and hence e (being a

first choice at u) blocks M . So f does not belong to any super-stable matching, hence
we can safely forbid it. Clearly, any first choice remains a first choice after forbidding
edge e, hence (7.7) remains true for i+ 1. Moreover, after forbidding e, a second choice
either remains a second choice or it becomes a first choice. Consequently, for j = i + 1,
properties (7.7) and (7.8) remain true with the default choice A1

i+1 = A1
i and A2

i+1 = ∅.
Eventually, the algorithm deletes certain forbidden edges in the following way.
2nd priority (firm rejection) step If e = uv is a free 1-arc of A1

i and e <v f ∈ Ei(v)
(e is strictly better than f according to v in Gi) then we delete f .

Note that the above f is already forbidden by a 1st priority mild rejection step.
Assume that f blocks some matching M , hence, in particular, e 6∈M . However, e, being
a first choice of u, also blocks M . So deleting f does not change the set of super-stable
matchings of the preference model.

Note that the so called 1st phase steps in Irving’s algorithm [45] for the super-stable
roommates problem are special cases of our proposal and firm rejection steps. It is true
for the super-stable roommates problem that as soon as no more 1st phase steps can
be executed, the preference model has the so called first-last property: if some edge
e = uv is a first choice of u, then e is the last choice of v. The next lemma shows
that generalization of this property holds also in our setting. Assume that the algorithm
cannot execute a 0th, 1st or 2nd priority step for (Gi, Fi, A

1
i , A

2
i ,Oi). Let V 0

i denote the
set of those vertices of Gi that are not incident with any free edges, V 1

i stand for the set
of those vertices of Gi that are incident with a bioriented free 1-arc and V 2

i refer to the
set of the remaining vertices of Gi. The following properties are true.

Lemma 7.13. Assume that no proposal or rejection step is possible in instance (Gi, Fi,
A1
i , A

2
i ,Oi) and let V 0

i , V
1
i and V 2

i be defined as above.
If v ∈ V 1

i ∪ V 2
i then there is a unique 1-arc entering v and there is a unique 1-

arc leaving v and both of these 1-arcs are free. There is no edge of Gi that leaves V 0
i .

Bioriented free 1-arcs form a matching M1 that covers V 1
i and no more edges are incident

with V 1
i in Gi.

M is a super-stable matching of (Gi, Fi,Oi) if and only if the following properties
hold:
(1) each vertex of V 0

i is isolated and (2) M1 ⊆M and
(3) M \M1 is a super-stable matching of the model restricted to V 2

i .

Proof. Let v ∈ V 1
i ∪ V 2

i . By definition, there is at least one free edge incident with
v, hence there is at least one free 1-arc leaving v. On the other hand, no proposal or
rejection step (mild or firm) can be made in Gi, hence at most one free 1-arc enters v.
By definition, no free 1-arc enters any vertex of V 0

i , and this means that 1-arcs leaving
vertices of V 1

i ∪ V 2
i enter this very same vertex set. Consequently, there is a unique

free 1-arc leaving and entering each vertex of V 1
i ∪ V 2

i . Can there be a forbidden 1-arc e
incident with a vertex v of V 1

i ∪V 2
i ? The answer is no and we prove it indirectly. Assume

that ~e is such a 1-arc. If ~e enters v then v would be able to reject, a contradiction. So
~e = (vw) is a 1-arc of A1

i from V 1
i ∪ V 2

i to V 0
i . However, w is not incident with any

free arcs by definition, thus (vu) is also a 1-arc of A1
i that enters vertex u of V 1

i ∪ V 2
i ,

contradiction again. Hence each 1-arc of A1
i incident with V 1

i ∪ V 2
i is free.
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Let u ∈ V 0
i and e = uv be an edge of Gi. Clearly ~e = (uv) is a 1-arc and ~e ∈ Fi by

the definition of V 0
i , so v ∈ V 0

i holds. This means that each edge of Gi incident with a
vertex of V 0

i is completely inside V 0
i .

If v is in V 1
i then there is a unique 1-arc a that leaves v, so a must be bioriented by

the definition of V 1
i . If e = uv is an edge of Gi then either e is the unoriented version of

a or e is not a first choice of v, hence a <v e holds. In this latter case, v should delete e
in a firm rejection step as a is a 1-arc entering v. This argument shows that edges of Gi

that are incident with V 1
i are all bioriented and form a matching M1 covering V 1

i .
Assume now that M is a super-stable matching of Gi. No edge of Gi incident with

a vertex of V 0
i can block M , hence V 0

i must consist of isolated vertices. As M is not
blocked by an edge of M1, edges of M1 all belong to M . As there is no edge of Gi that
leaves V 2

i , edges of M in V 2
i form a super-stable matching of the restricted model to V 2

i .
Let now M2 be a super-stable matching of the model restricted to V 2

i and assume
that V 0

i consists of isolated vertices. Let M := M2 ∪M1. Clearly, M is a matching. If
some edge e blocks M then e cannot be incident with V 0

i , as these vertices are isolated,
and e cannot have a vertex in V 1

i either, as vertices of V 1
i are only incident with edges

of M1. Hence e is an edge within V 2
i , contradicting to the fact that M2 is a super-stable

matching of the model restricted to V 2
i .

Lemma 7.13 shows that as soon as we have a (forbidden) edge incident with some
vertex of V 0

i for an instance where no proposal or rejection step is possible then there
exists no super-stable matching in our instance, so the algorithm can terminate with the
conclusion that in the original instance there is no super-stable matching whatsoever.
Another possible conclusion of the algorithm is that eventually no proposal or rejection
step can be made and V 2

i = ∅ holds. In this case, if V 0
i consists of isolated vertices then

graph Gi is just matching M1 and this is a super-stable matching for the instance after
the ith step, hence it is also a super-stable matching for the original instance. So our
goal from now on is to get rid off the V 2 part and to achieve this, the algorithm will
work only on V 2

i .
Assume that in instance (Gi, Fi, A

1
i , A

2
i ,Oi), the algorithm can execute no 0th, 1st or

2nd priority step. By Lemma 7.13, every vertex v of V 2
i is incident with at least one free

second choice edge: in the “worst case” it is the unique 1-arc pointing to v.
3rd priority (2-arc finding) step If e = vw 6∈ A2

i is a second choice of v then find
2-arc wv.

What is the meaning of a 2-arc? Let vv′ and uu′ be 1-arcs and u′v be a 2-arc. As vv′

is the only free edge dominating u′v at v, we get that if uu′ is present in a super-stable
matching M then uu′ does not dominate uv′, hence vv′ ∈ M follows. In other words,
2-arcs represent implications on 1-arcs. This allows us to build an implication structure
on the set of 1-arcs.

In this structure, two 1-arcs e and f are called sm-equivalent, if there is a directed
cycle D formed by 1-arcs and 2-arcs in an alternating manner such that D contains both
e and f . (Note that D may use the same vertex more than once.) Sm-equivalence is
clearly an equivalence relation and if C is an sm-class and M is a super-stable matching
then either C is disjoint from M or C is contained in M .

Beyond determining sm-equivalence classes, 2-arcs yield further implications between
sm-classes: if uu′ is a 1-arc of sm-class C and vv′ is a 1-arc of sm-class C ′ and u′v is a
2-arc, then sm-class C “implies” sm-class C ′ in such a way that if C is not disjoint from

dc_1564_18

Powered by TCPDF (www.tcpdf.org)



CHAPTER 7. NONBIPARTITE STABLE MATCHINGS AND KERNELS 67

super-stable matching M then M contains both classes C and C ′. Assume that sm-class
C is on the top of this implication structure, i.e. C is not implied by any other sm-class
(but C may imply certain other classes). Formally, we have that

if vv′ is a 1-arc of C and w′v is a 2-arc

then (the unique) 1-arc ww′ is sm-equivalent to vv′.
(7.9)

To find a top sm-class C, introduce an auxiliary digraph on the vertices of Gi, such
that if uu′ is a 1-arc and u′v is a 2-arc, then we introduce an arc uv of the auxiliary graph.
It is well known that by depth first search, we can find a source strong component of
the auxiliary graph in linear time. If it contains vertices u1, u2, . . . , uk then it determines
a top sm-class C = {u1u

′
1, u2u

′
2, . . . , uku

′
k} formed by 1-arcs. Note that it is possible

here that ul = u′t for different l and t. After we have found all 2-arcs (and there are no
proposal or rejection steps) in instance (Gi, Fi, A

1
i , A

2
i ,Oi) then the algorithm looks for a

4th priority (2-arc elimination) step If for 1-arcs ulu
′
l, utu

′
t ∈ C there are 2-arcs

vul and vut with vul 6<v vut then forbid vul and keep 1-arcs and 2-arcs: A1
i+1 = A1

i and
A2
i+1 = A2

i .
To justify this step, assume that vul ∈ M for some super-stable matching M of Gi.

As vul does not dominate vut, vut has to be dominated at ut by utu
′
t ∈M . As ulu

′
l and

utu
′
t are sm-equivalent, this means that utu

′
t also belongs to M , a contradiction. So vul

does not belong to any super-stable matching and after forbidding it, the set of super-
stable matchings does not change. This proves (7.5) and (7.6). As the forbidden edge
vul is a second choice of ul and not ≤v-better than vut, vul is a first choice of neither
v nor ul. Consequently, after forbidding vul, first and second choices remain first and
second choices, respectively. It follows that a 4th priority step preserves conditions (7.7)
and (7.8). Note that though a 4th priority step does not change first choices, it may
create new second choices hence the algorithm might continue with a 3rd priority step
after executing a 4th priority one. Note also that if preferences are linear (rather than
partial) orders then no 4th priority step is possible.

If none of the above steps is possible any more then the top sm-equivalence class C
can be forbidden. This is the step that corresponds to the ’rotation elimination’ step
in Irving’s algorithm. Note that by the impossibility of a 4th priority step, any top
sm-equivalence class C = {(ulu′l) : 1 ≤ l ≤ k} has the property that there is exactly one
2-arc entering each ul, that is, there is a unique second choice of each vertex ul.

5th priority (top class elimination) step Forbid all edges of C in (Gi, Fi,Oi) and
set A2

i+1 = ∅.
As we forbid 1-arcs, first and second choices along the vertices of C change after a

5th priority step. In particular, the unique second choices of the ul vertices of C become
first choices. For this reason we change A1

i+1 = A1
i ∪ S−1, where S denotes the set of

those 2-arcs that enter some vertex ul of C and S−1 is the set of oppositely oriented arcs
of S. After these changes, all arcs in A1

i+1 are clearly first choices of their initial vertices,
hence (7.7) and (7.8) hold for j = i+ 1. To justify properties (7.5) and (7.6) for the 5th
priority step, we distinguish two cases.

Case 1: C is not a matching. This means that ul = u′t for some l 6= t. As a subset of
a matching is a matching, no matching (hence no super-stable matching) can contain C.
So by sm-equivalence, C is disjoint from any super-stable matching of Gi, and forbidding
C does not change the set of super-stable matchings.
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Case 2: C is a matching. Each ul is adjacent to at least two free edges: the incoming
and the outgoing 1-arcs. So each ul receives at least one free 2-arc. This free 2-arc must
come from some u′t by property (7.9). Let C ′ denote the set of free 2-arcs of the form
u′tul. As we have seen, each ul receives at least one arc of C ′, hence |C ′| ≥ k. As we
cannot execute any more 4th priority steps in (Gi, Fi,Oi), from each u′t there is at most
one arc of C ′ leaving, implying |C ′| ≤ k. This means that |C ′| = k and each ul receives
exactly one arc of C ′ and each u′l sends exactly one arc of C ′. As sets {u1, u2, . . . , uk} and
{u′1, u′2, . . . , u′k} are disjoint, this means that set C ′ forms a perfect matching on vertices
u1, u

′
1, u2, u

′
2, . . . , uk, u

′
k.

Let M be a super-stable matching of (Gi, Fi,Oi). If M is disjoint from C then M is
super-stable in (Gi+1, Fi+1,Oi+1) as well. Otherwise, by sm-equivalence, M contains all
edges of C and disjoint from C ′. We claim that M ′ := M \C ∪C ′ is another super-stable
matching of (Gi, Fi,Oi) and hence it is a super-stable matching of (Gi+1, Fi+1,Oi+1), as
well.

Indeed: M ′ is a matching, as C and C ′ cover the same set of vertices. Each edge ulu
′
l

is dominated at u′l by M ′ by Lemma 7.13. Each forbidden 2-arc of type u′tul is dominated
at u′t by the 4th priority step. For the remaining edges, if some edge e does not have a
vertex ul then e is dominated the same way in M ′ as in M . Otherwise, if ul is a vertex
of e then e is neither a first nor a second choice of ul as we have already checked these
edges. This means that the free 2-arc pointing to ul is dominating e, so C ′ and thus M ′

also dominates e at ul.
The pseudocode on Table 7.2 summarizes how our algorithm works. The organi-

zation of the steps is justified by the fact that a firm rejection step always deletes a
forbidden edge, hence no new first choice is created. Similarly, 2-arc finding and 2-arc
elimination steps do not change the set of first choices and preserve properties described
in Lemma 7.13.

The following theorem justifies the correctness of our algorithm.

Lemma 7.14. Assume that the algorithm cannot execute any more step at some instance
(Gi, Fi, A

1
i , A

2
i ,Oi). Then V 2

i = ∅.

Proof. Assume indirectly that v is a vertex of V 2
i , so by Lemma 7.13, v sends a free 1-arc,

and also receives a free 1-arc different from the opposite of the previous one. It follows
that there is a 2-arc pointing to v. This implies that a 4th or a 5th priority step can be
executed, a contradiction.

To finish the description of the algorithm, we should recall our earlier remark. By
Theorem 7.14, when the algorithm terminates then we have V 2

i = ∅, so by Lemma 7.13,
if V 0

i spans some edge then the conclusion is that there is no super-stable matching,
otherwise, if each vertex of V 0

i is isolated then there is a super-stable matching of the
original instance, and the edge set Ei of Gi forms such a matching. The following lemma
estimates the complexity of our algorithm and finishes the proof of Theorem 7.12.

Lemma 7.15. Assume that preference model (G,F,O) is such that G has n vertices and
m edges we can decide for each edge e = uv of G whether e is a first or second choice
of u in constant time for any preference model created from (G,F,O) after forbidding
and deleting edges. The algorithm we described above finds a super-stable matching or
concludes that no super-stable matching exists in O (m · (n+m)) time.
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Input: (G0, F0,O0) Output: Super-stable matching, if exists
A1

0 :=A2
0 := ∅, i := 0

1 IF there is a first choice uv of u that is not a 1-arc
THEN (Gi+1, Fi+1,Oi+1, A

1
i+1, A

2
i+1) := (Gi, Fi,Oi, A1

i ∪ {uv}, A2
i ),

i := i+ 1, GO TO 1
ELSE

2 IF mild rejection is possible for some edge uv of Gi

THEN (Gi+1, Fi+1,Oi+1, A
1
i+1, A

2
i+1) := (Gi, Fi ∪ {uv},Oi, A1

i , A
2
i ),

i := i+ 1, GO TO 1
ELSE

3 IF firm rejection is possible for some edge uv of Gi

THEN (Gi+1, Fi+1,Oi+1, A
1
i+1, A

2
i+1) :=

:=(Gi − {uv}, Fi \ {uv},Oi|Gi+1
, A1

i \ {uv}, A2
i ) \ {uv},

i := i+ 1, GO TO 3
ELSE

4 IF there is a second choice uv of u that is not a 2-arc
THEN (Gi+1, Fi+1,Oi+1, A

1
i+1, A

2
i+1) := (Gi, Fi,Oi, A1

i , A
2
i ∪ {vu}),

i := i+ 1, GO TO 4
ELSE

5 IF some 2-arc uv ∈ A2
i can be eliminated

THEN (Gi+1, Fi+1,Oi+1, A
1
i+1, A

2
i+1) := (Gi, Fi ∪ {uv},Oi, A1

i , A
2
i ),

i := i+ 1, GO TO 4
ELSE

6 IF some sm-equivalence class C can be eliminated
THEN (Gi+1, Fi+1,Oi+1, A

1
i+1, A

2
i+1) :=

(Gi − C,Fi \ C,Oi, A1
i ∪ S−1, ∅), i := i+ 1, GO TO 1

ELSE
7 IF each vertex of V 0

i is isolated
THEN OUTPUT super-stable matching Ei
ELSE OUTPUT “No super-stable matching exists”

END IF
END IF

END IF
END IF

END IF
END IF

STOP

Table 7.2: Pseudocode of the super-stable matching algorithm
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Proof. We have seen that if the algorithm terminates then it has the right answer, so we
only need to prove that the running time is O (m · (n+m)). As we have seen, in each
step, the algorithm changes the current instance by changing the set of 1-arcs or 2-arcs
or by forbidding or deleting certain edges. Let us call the latter two transformations
major events. Clearly, during the course of the algorithm there can be at most 2m major
events as there are m edges that can be forbidden or eventually deleted. We show that
between two consecutive major events the algorithm needs O(n+m) time.

If a major event is a 1st priority (mild rejection) step, then previously we had to find
all 1-arcs (in O(n + m) time) and finding the forbidden edge after this can be done in
O(n+m) time again. If the major event is a 2nd priority (firm rejection) step then it is
preceded by 0th priority proposal steps (taking O(n+m) time again) and checks for 1st
priority (mild rejection) steps taking O(n + m) time. We need again O(n + m) time to
find the edge to be deleted in the 2nd priority (firm rejection) step.

The next major event type is a 4th priority (2-arc eliminating) step. It is preceded
by executing all 0th priority (proposal) steps and checking for 1st and 2nd priority steps
that take altogether O(n+m) time. Then we find all 2-arcs in O(n+m) time, find top
sm-class C by depth first search in O(n + m) time and find the deleted edge O(n + m)
time again.

The remaining major event happens in a 5th priority step. So after the previous
major event we had at most O(n) 0th priority proposal steps that take O(n+m) time,
checks for 1st and 2nd priority rejection steps taking O(n+m) time, we had to find all
2-arcs in O(n + m) time, we find top sm-class C in O(n + m) time and check for 2-arc
elimination in O(n+m) time again.

The above estimates prove that there is O(n + m) time between consecutive major
events. We have seen that there are O(m) major events, so our algorithm terminates in
O (m · (n+m)) time, just as we claimed in the theorem.

The time complexity in Theorem 7.15 is pretty rough. This is partly due to the fact
that in 5th priority (top class elimination) steps we throw away all 2-arcs in spite of
the fact that most of them can be reused. Probably by paying more attention to the
changes of second choices and by using more appropriate data structures one can stream-
line the algorithm to approach the complexity of Irving’s original algorithm described
in [45]. As we mentioned, our goal was not a competitive algorithm but a description of
a polynomial-time method with a compact proof of correctness that gives hope to find
further structural results on super-stable matchings. This goal is definitely achieved.

7.4 Roommates with generalized choice functions

It turns out that Irving’s algorithm is more powerful than what we have seen in the
previous sections. In this section, we point out that its appropriate extension can also
be used in a far reaching generalization of the stable roommates problem. We have seen
that in case of bipartite graphs, the stable marriage theorem of Gale and Shapley can
be extended to choice function based general model. For this reason, it is a natural
problem to find a generalized stable matching (a kernel, in our terminology) in case of
nonbipartite graphs and preferences determined by choice functions.

Assume finite graph G = (V,E) is given and for each vertex v ∈ V we have a
substitutable choice function Cv : 2E(v) → 2E(v). Subset S of the edges is a C-kernel if
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• Cv(S(v)) = S(v) holds for all v ∈ V and

• each e ∈ E \ S has a vertex v such that e 6∈ Cv(S(v) ∪ {e}) holds.

The first condition is often called as individual rationality, while the second requires that
no blocking edge exists.

For choice function Cv, we say that subset X of E v-dominates element x of E(v)
if x ∈ Cv(X(v) ∪ {x}). Less formally, x is dominated, if v is not interested in x even
if beside the set X of possible options we make option x available for v. If it causes no
ambiguity, then instead of v-domination we may speak about domination. For a choice
function Cv, let Dv(X) denote the set of elements (v-)dominated by X. It is easy to see
that DCv(X) = E(v)\Dv(X) is a determinant of Cv, in fact it is the one defined in (1.2).
Hence X \Cv(X) ⊆ Dv(X) and Cv(X) = X(v) \Dv(X) holds for any subset X of E(v).

Lemma 7.16. If choice function Cv is substitutable then dominance function Dv is
monotone.

If choice function Cv is substitutable and increasing and Y ⊆ Dv(X) then Cv(X∪Y ) =
Cv(X), thus Dv(X ∪ Y ) = Dv(X).

Proof. The first part directly follows from the fact that DCv(X) = E(v) \ Dv(X) is a
determinant of Cv.

For the second part, let y ∈ Y ∪Cv(X) be an arbitrary element dominated by X. So
y ∈ Cv(X ∪{y}) ⊆ Cv(X ∪Y ), where the second relation follows from the monotonicity
of Cv. Hence Y ∪ Cv(X) ⊆ Cv(X ∪ Y ), that is, Cv(X ∪ Y ) = (X ∪ Y ) \ Cv(X ∪ Y ) ⊆
(X ∪ Y ) \ (Cv(X) ∪ Y ) ⊆ X \Cv(X) = Cv(X). As X ⊆ X ∪ Y , the increasing property
of Cv implies that |Cv(X)| ≤ |Cv(X ∪ Y )|, so Cv(X) = Cv(X ∪ Y ) follows.

The notion of dominance allows us to reformulate the notion of a C-kernel.

Theorem 7.17. If G = (V,E) is a finite graph and for each vertex v, Cv is a choice
function on E(v) then S is a C-kernel if and only if E \ S =

⋃
v∈V Dv(S(v)), that is, if

S dominates exactly E \ S.

Proof. If S is a C-kernel then by individual rationality, no edge of S is dominated by S.
As no blocking edge exists, each edge outside S is dominated by S. On the other hand,
if E \S =

⋃
v∈V Dv(S∩E(v)) then no edge of S is dominated by S, thus S is individually

rational. As each edge outside S is dominated, no blocking edge exists.

Let Cv be a choice function and let X ⊆ E(v). For an edge x in Cv(X) the X-
replacement of x according to Cv is the set R = Cv(X \{x})\Cv(X). Roughly speaking,
if option x is not available for v any more, then v selects from X options of R instead of
x.

Lemma 7.18. If Cv is an increasing and substitutable choice function on E(v), X ⊆
E(v) and x ∈ Cv(X), then the X-replacement R of x contains at most one element.

Proof. We have Cv(X) \ {x} ⊆ Cv(X \ {x}) by substitutability, so Cv(X \ {x}) =
Cv(X)∪R \ {x}. From the increasing property of Cv, we get |Cv(X)| ≥ |Cv(X \ {x})| =
|Cv(X) ∪R \ {x}| = |Cv(X)|+ |R| − 1, and the lemma follows.
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To define the notion of a half-integral C-kernel, we introduce the nonstandard notion
of an oriented edge of an undirected graph G = (V,E) as an edge e = uv that is labelled
with at least one of the two possible orientations uv and vu. So an unoriented edge
is an ordinary edge, there can be bidireced edges that are labelled with both possible
orientations and there may exists simple oriented edges that are similar to arcs. The
reason that we do so is that these objects are edges for the choice function, but behave
like arcs in other situations we deal with.

Let G = (V,E) be a graph and for each vertex v, let Cv be a choice function on E(v).
Let S be a subset of E and fix disjoint subsets S1, S2, . . . , Sl of S such that each Si is an
odd cycle (i.e. a closed walk in G) and fix an orientation for each Si. (Note that cycle Si is
not necessarily a circuit, as Si can traverse the same vertex several times.) Let S+

i (v) and
S−i (v) denote the set of oriented edges of Si that leave and enter vertex v, respectively.
Define edge set S+(v) := S(v)\

⋃l
i=1 S

−
i (v) as the unoriented edges of S(v) together with

the oriented edges of the Si’s that leave v. Similarly let S−(v) := S(v) \
⋃l
i=1 S

+
i (v),

denote the set unoriented edges of S(v) and all oriented edges of the Si’s that enter v.
We say that (S, S1, . . . , Sl) is a half-integral C-kernel if

1. for each v ∈ V , Cv(S(v)) = S+(v). Moreover,

2. If oriented edges e ∈ S−i (v) and f ∈ S+
i (v) are consecutive on Si then {e} is the

S(v)-replacement of f according to Cv.

3. E \ S =
⋃
v∈V Dv(S

−(v)).

A consequence of the definition is that if (S, S1, . . . , Sl) is a half-integral C-kernel and
e = uv is an edge then exactly one of the following three possibilities holds. Either e
is an unoriented edge of S (that does not belong to any of the Si’s), or e is an edge of
some Si, and hence if e = S−i (v) then e is dominated by S+

i (v), or e 6∈ S and hence e is
dominated by S−(u) at some vertex u of e. If (S, S1, . . . , Sl) has properties 1. and 2. and
edge e = uv 6∈ S is not dominated (i.e. e = uv and e 6∈ Du(S

−(u))∪Dv(S
−(v))) then we

say that e is blocking (S, S1, . . . , Sl). Observe that (S) is a half-integral C-kernel (that
is, no oriented odd cycles are present) if and only if S is a C-kernel. Now we can state
our main result.

Theorem 7.19 (Fleiner [22]). If G = (V,E) is a finite graph and for each vertex v,
choice function Cv on E(v) is increasing and substitutable then there exists a half-integral
C-kernel. Moreover, if (S, S1, . . . , Sl) and (S ′, S ′1, . . . , S

′
m) are half-integral C-kernels,

then l = m and sets of oriented cycles {S1, . . . , Sl} and {S ′1, . . . , S ′m} are identical.

Corollary 7.20. If (S, S1, . . . , Sl) is a half-integral C-kernel then either l = 0 and S is
a C-kernel, or no C-kernel exists whatsoever.

Corollary 7.20 shows that to solve the C-kernel problem in case of increasing substi-
tutable choice functions, it is enough to find a half-integral C-kernel. Note that Theo-
rem 7.19 is a generalization of Tan’s result [64] on stable half-matchings (or on “stable
partitions” in Tan’s terminology).

To prove Theorem 7.19, we follow Tan’s method. Tan extended Irving’s algorithm in
such a way that it finds a stable half-matching, and, with the help of the algorithm, he
proved the unicity of the oriented odd cycles. Here, instead of linear orders, we work with
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increasing substitutable choice functions. To handle this situation, we shall generalize
Irving’s algorithm to our setting. Irving’s algorithm works in such a way that it keeps
on deleting edges so that no new stable matching is created after a deletion, and, if there
was a stable matching before a deletion, there should be one after it, as well. Irving’s
algorithm terminates if the current graph is a matching, which, by the deletion rules is
a stable matching for the original instance. Similarly, our algorithm will delete edges in
such a way that after a deletion no new half-integral C-kernel can be created. Moreover,
if there was a half-integral C-kernel (S, S1, . . . , Sl) before some deletion, then we cannot
delete an edge of any of the Si’s and at least one half-integral C-kernel has to survive
the deletion. If our algorithm terminates then we are left with a graph G′ such that edge
set E(G′) of G′ is a half-integral C-kernel of G′, hence it is a half-integral C-kernel of
G, as well. Our algorithm has different deletion rules, and there is a priority of them.
The algorithm always takes a highest priority step that can be made. In this section we
describe and justify our algorithm. Note that our definitions and theorems always refer
to the “current” graph, so if we check how the algorithm works on a given instance then
this instance is changing after each step. In particular, the set E of edges is changing,
as it is the edge set of the current graph.

To start the algorithm we need some definitions. We say that the first choices of
v are the edges of Cv(E(v)). These are the best possible options for agent v. If edge
e = vw is a first choice of v then we call oriented edge e = vw a 1-arc. Note that if vw
is a 1-arc then it is possible that wv is also a 1-arc. Let A denote the set of 1-arcs. For
a vertex v let A+(v) and A−(v) stand for the set of 1-arcs that are directed away from v
and towards v, respectively.

The 1st priority (proposal) step is that we find and orient all 1-arcs.
As the instance did not change (we did not delete anything), the set of half-integral

C-kernels is the same as it was before the orientation. After we found all 1-arcs, we
execute the

2nd priority (rejection) step: If Dv(A
−(v)) 6= ∅ for some vertex v then we delete

Dv(A
−(v)).

Lemma 7.21. The set of half-integral C-kernels does not change by a 2nd priority step.

Proof. Assume that (S, S1, . . . , Sl) is a half-integral C-kernel after the deletion. This
means that for each 1-arc f = uv of A−(v) either f belongs to S−(v), or, as f cannot
be dominated by S−(u) at u, f is dominated by S−(v) at v. Lemma 7.16 implies that
Dv(A

−(v)) = Dv(Cv(A
−(v))) ⊆ Dv(S

−(v) ∪ Cv(A−(v))) = Dv(S
−(v)), hence no deleted

edge can block (S, S1, . . . , Sl). This means that no new half-integral C-kernel can emerge
after a 2nd priority deletion.

Assume now that (S, S1, . . . , Sl) is a half-integral C-kernel before the deletion and
some edge e ∈ Dv(A

−(v)) belongs to S. Similarly to the previous argument, this means
that for each 1-arc f = uv of Cv(A

−(v)) either f belongs to S−(v), or (as f cannot
be dominated by S−(u) at u) f is dominated by S−(v) at v. Lemma 7.16 implies that
e ∈ Dv(A

−(v)) = Dv(Cv(A
−(v))) ⊆ Dv((S

−(v)) ∪ Cv(A−(v)) = Dv(S
−(v)), so e cannot

belong to S(v), a contradiction.

Later we need the following lemma.

Lemma 7.22. If no 1st and 2nd priority steps can be made then |A+(v)| = |A−(v)| for
each vertex v.
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Proof. By the increasing property of Cv, we have |A−(v)| = |Cv(A−(v))| ≤ |Cv(E(v))| =
|A+(v)|. So each vertex v has at least as many outgoing 1-arcs as the number of 1-arcs
entering v. As both the total number of outgoing 1-arcs and the total number of ingoing
1-arcs is exactly |A|, the previous inequality must be an equality for each vertex v.

If no more 1st and 2nd priority steps can be made then the following two cases are
possible.

Case 1. All 1-arcs are bidirected, that is, if e = uv is a 1-arc, then its reverse vu
is also a 1-arc. In other words, A+(v) = A−(v) = A(v) = E(v) for each vertex v. This
means that the edge set of our graph is a C-kernel, so the algorithm terminates and
outputs (S).

Case 2. There exists at least one 1-arc e = uv that is not bidirected. In this
situation, the algorithm looks for replacements. For a non bidirected 1-arc e = uv, let
er = uw denote the E(u)-replacement of e according to Cu. (It might happen that er

does not exist.)
3rd priority (replacement) step: For any non bidirected 1-arc e = uv, find E(u)-

replacement er of e.
As we do not delete anything in a 3rd priority step, the set of half-integral C-kernels

does not change by this step. Next we study replacements of 1-arcs.

Lemma 7.23. Assume that no 1st and 2nd priority steps can be made and that 1-arc
e = uv is not bidirected, that is, vu is not a 1-arc. Then there exists an E(u)-replacement
er of e.

Proof. By Lemma 7.22 and the increasing property of Cu, we have

|A+(u)| = |A−(u)| = |Cu(A−(u))| ≤ |Cu(E(u) \ {e})| ≤ |Cu(E(u))| = |A+(u)| , (7.10)

where the first equality is from Lemma 7.22, the second is follows from the impossibility
of a rejection step, the inequalities are due to the increasing property of Cv and the last
equality comes from the definition of a 1-arc. Hence there is equality throughout (7.10).
In particular, we see that |Cu(E(u) \ {e})| = |A+(u)|. By substitutability of Cu, we have
A+(u) \ {e} = Cu(E(u)) \ {e} ⊆ Cu(E(u) \ {e}). This means that the E(u)-replacement
of e (that is, Cu(E(u) \ {e}) \ A+(u)) is a unique edge of E(u).

Lemma 7.24. Assume that no 1st and 2nd priority step can be executed and e = uv
is a 1-arc such that vu is not a 1-arc. If er = uw is the E(u)-replacement of e, then
Dw({er}∪A−(w)) contains exactly one edge, say err = xw. Moreover, err = xw is a 1-arc
and its reverse wx is not a 1-arc.

Proof. By the 2nd priority step er 6∈ Dw(A−(w)), hence er ∈ Cw({er} ∪ A−(w)). The
increasing property of Cw gives that |A−(w)| = |Cw(A−(w))| ≤ |Cw({er} ∪ A−(w))| ≤
|Cw(E(w))| = |A+(w)| = |A−(w)|, where the last equality is due to Lemma 7.22. So
we have equality throughout, i.e. |A−(w)| = |Cw({er} ∪ A−(w))|, so er has a unique
({er} ∪ A−(w))-replacement err = xw. Clearly, if wx was a 1-arc then err ∈ Cw({er} ∪
A−(w)) holds, a contradiction.
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Assume now that no 1st and 2nd priority steps are possible and the 3rd priority
steps are also finished. As there exists a 1-arc e = uv that is not bidirected, it has
an E(u)-replacement er. Edge err in Lemma 7.24 is another 1-arc that is not bidi-
rected. Following the alternating sequence of nonbidirected 1-arcs and their replace-
ments (and possibly by changing the starting 1-arc to the first repetition in the sequence
e, err, (e

r
r)
r
r . . .), we shall find a sequence (e1, (e1)r, e2, (e2)r, . . . , em, (em)r, em+1 = e1) in

such a way that (ei)
r
r = ei+1 for i = 1, 2, . . . ,m and edges e1, e2, . . . , em are different

1-arcs, none of them is bidirected. After Irving, we call such an alternating sequence
(e1, (e1)r, e2, (e2)r, . . . , em, (em)r) of 1-arcs and edges a rotation.

Lemma 7.25. Assume that (S, S1, . . . , Sl) is a half-integral C-kernel in graph G and
no 1st, 2nd and 3rd priority step is possible. If (e1, (e1)r, e2, (e2)r, . . . , em, (em)r) is a
rotation and ei = xv ∈ S(v) then ei−1 = uw ∈ S+(u) follows, where addition is meant
modulo m.

In particular, if ei ∈ S then {e1, e2, . . . , em} ⊆ S.

Proof. First we show that eri−1 = uv 6∈ S−(v) ∪ Dv(S
−(v)). Indirectly, assume eri−1 =

uv ∈ S−(v) ∪ Dv(S
−(v)). If f = zv ∈ A−(v) is a 1-arc then f (being a first choice)

cannot be dominated at z, so f ∈ S−(v) ∪Dv(S
−(v)) follows, that is,

A−(v) ⊆ S−(v) ∪Dv(S
−(v)) . (7.11)

By Lemma 7.16,

ei = (ei−1)rr ∈ Dv(A
−(v)∪ {(ei−1)r}) ⊆ Dv(S

−(v)∪Dv(S
−(v))∪ {(ei−1)r}) = Dv(S

−(v))

so ei 6∈ S(v), a contradiction. Thus eri−1 = uv 6∈ S−(v), hence eri−1 = uv 6∈ S+(u) and
eri−1 6∈ Dv(S

−(v)), hence eri−1 ∈ Du(S
+(u)). As eri−1 is the E(u)-replacement of first

choice ei−1, it follows that ei−1 ∈ S+(u), as Lemma 7.25 claims.

Lemma 7.26. Assume that no 1st, 2nd and 3rd priority step is possible for the current
graph and that (S, S1, . . . , Sl) is a half-integral C-kernel. If (e1, (e1)r, e2, (e2)r, . . . , em,
(em)r) is a rotation then sets {e1, e2, . . . , em} and {er1, er2, . . . , erm} are either disjoint or
identical.

If {e1, e2, . . . , em} = {er1, er2, . . . , erm} then m is odd and {e1, e2, . . . , em} is one of the
Sj’s.

If sets {e1, e2, . . . , em} and {er1, er2, . . . , erm} are disjoint and ei ∈ S then {e1, . . . , em} ⊆
S \ (S1 ∪ . . . ∪ Sl). Moreover, (S ′, S1, . . . , Sl) is a half-integral C-kernel for S ′ = S \
{e1, e2, . . . , em} ∪ {er1, er2, . . . , erm}.

Proof. Assume first that sets {e1, e2, . . . , em} and {er1, er2, . . . , erm} are not disjoint, so
ei = uv = (ei+k)

r for some i ∈ {1, 2, . . . ,m} and 1 ≤ k < m, where addition is meant
modulo m. If 1-arc ei+k is a first choice of x then (ei+k)

r cannot be the first choice of x
by the definition of a replacement. This means that 1-arc ei+k = vw is a first choice of
v (and not of u). As (ei+k)

r is an E(v)-replacement of first choice ei+k of v, it follows
that (ei+k)

r ∈ Dv(F ) implies ei+k ∈ F . Choose F = A−(v) ∪ {(ei−1)r}. We know that
(ei+k)

r = ei = (ei−1)rr ∈ Dv(F ) by the definition of (ei−1)rr, hence ei+k ∈ A−(v)∪{(ei−1)r}.
As ei+k = vw is a 1-arc in the rotation, ei+k 6∈ A−(v), so ei+k = (ei−1)r.
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We proved that ei = (ei+k)
r implies ei+k = (ei−1)r. The above argument for the

latter equality means that ei−1 = (ei+k−1)r. That is, ei = (ei+k)
r yields ei−1 = (ei+k−1)r,

ei−2 = (ei+k−2)r, ei−3 = (ei+k−3)r, and so on. So for any j, we have ej = (ej+k)
r. In

particular, we see that {e1, e2, . . . , em} = {er1, er2, . . . , erm}.
Another consequence is that ei+k = (ei−1)r = ei−1−k, so i + k ≡ i − 1 − k(mod m),

that is, 2k + 1 ≡ 0(mod m). As 1 ≤ k < m, we get that m = 2k + 1, and edges
e1, e2, . . . , em form a cycle in order e1, ek+1, em, ek, em−1, ek−1, . . . , e2, ek+2. We shall prove
that {e1, e2, . . . , em} ⊆ S. If ei ∈ S then this follows by Lemma 7.25. Otherwise,
(ei+k)

r = ei 6∈ S. This means that (ei+k)
r ∈ Dv(S

−(v)), so ei+k ∈ S−(v) ⊆ S(v), and
{e1, e2, . . . , em} ⊆ S by Lemma 7.25 again.

By property (7.11), A−(v) ⊆ S−(v) ∪Dv(S
−(v)). Hence, by Lemma 7.16, we have

ei = (ei−1)rr ∈ Dv(A
−(v) ∪ {(ei−1)r})

= Dv(A
−(v) ∪ {ei+k}) ⊆ Dv(S

−(v) ∪Dv(S
−(v)) ∪ {ei+k})

⊆ Dv(S
−(v) ∪Dv(S

−(v)) ∪ S+(v)) = Dv(S
+(v)) ,

thus, ei ∈ S(v) \ S+(v). This means that ei belongs to one of the cycles Sj of half-
integral C-kernel (S, S1, S2, . . . , Sl), and ei is the replacement of ei+k for all i. Thus
{e1, e2, . . . , em} is indeed one of the Sj’s.

To finish the proof, we settle the remaining case when set {e1, e2, . . . , em} is dis-
joint from {(e1)r, (e2)r, . . . , (em)r}. If ei ∈ S then {e1, e2, . . . , em} ⊆ S and 1-arc
ei = uv is in S+(u) by Lemma 7.25. If, indirectly ei ∈ Sj, so ei 6∈ S−(u) then
(ei)

r = uz 6∈ Du(S
−(u)) as (ei)

r is the E(u)-replacement of ei. So either (ei)
r ∈

Dz(S
−(z)) or (ei)

r ∈ S−(u). In the former case, ei+1 = (ei)
r
r ∈ Dz(A

−(z) ∪ {(ei)r}).
By property (7.11), A−(z) ⊆ S−(z) ∪ Dz(S

−(z)), so by Lemma 7.16 we have ei+1 ∈
Dz(S

−(z) ∪ Dz(S
−(z)) ∪ {(ei)r}) = Dz(S

−(z)), that contradicts to ei+1 ∈ S. So
(ei)

r ∈ S−(u) holds. As ei+1 ∈ S is the E(v)-replacement of (ei)
r, this can only happen

if ei, (ei)
r and ei+1 all belong to the same odd cycle Sj. The argument shows that Sj

is exactly the cycle (e1, (e1)r, e2, (e2)r, . . . , em, (em)r), which is a contradiction, as |Sj| is
not odd. So {e1, . . . , em} ⊆ S \ (S1 ∪ . . . ∪ Sl), as we claimed.

Consider (S ′, S1, . . . , Sl). (Recall that S ′ = S \ {e1, e2, . . . , em}∪{er1, er2, . . . , erm}.) To
see that it is a half-integral C-kernel we check the three properties of the definition. Fix a
vertex v and letR+ andR− be the set of 1-arcs of rotation (e1, (e1)r, e2, (e2)r, . . . , em, (em)r)
that leave and enter v, respectively. Let moreover T+ := {(ei)r : ei ∈ R+} and
T− := {(ei−1)r : (ei−1)rr = ei ∈ R−}. Let S∗ be one of the sets S(v), S−(v) or
S(v) \ {e} for some edge e of some S+

j (v). To prove properties 1. and 2., we show
that Cv(S

∗ \ (R+ ∪R−) ∪ T+ ∪ T−) = Cv(S
∗) \ (R+ ∪R−) ∪ T+ ∪ T−.

The definition of replacement, property (7.11) and the monotonicity ofDv (Lemma 7.16)
implies that R− ⊆ Dv(A

−(v) ∪ T−) ⊆ Dv(S
−(v) ∪ Dv(S

−(v)) ∪ T−) ⊆ Dv(S
−(v) ∪

T−) ⊆ Dv(S
∗ ∪ T−), hence R− is disjoint from Cv(S

∗ ∪ T−) and hence Cv(S
∗ ∪ T−) =

Cv(S
∗ ∪ T− \ R−). Substitutability of Cv gives Cv(S

∗ ∪ T−) ∩ S∗ ⊆ Cv(S
∗), thus

Cv(S
∗ ∪ T− \ R−) = Cv(S

∗ ∪ T−) ⊆ Cv(S
∗) \ R− ∪ T−. The increasing property of

Cv implies that |(Cv(S∗)| ≤ |Cv(S∗∪T−)| ≤ |Cv(S∗)\R−∪T−| = |Cv(S∗)|−|R−|+ |T−|,
so from |R−| = |T−| we get that Cv(S

∗ ∪ T−) = Cv(S
∗ ∪ T− \R−) = Cv(S

∗) ∪ T− \R−.
Assume that edge (ei)

r = uv ∈ T+ is in S. Property (7.11) shows that A−(u) ⊆
S−(u) ∪Du(S

−(u)), so ei+1 = (ei)
r
r ∈ Du(A

−(u) ∪ {(ei)r}) ⊆ Du(S
−(u) ∪ Du(S

−(u)) ∪
{(ei)r}) = Du(S

−(u)∪{(ei)r}). This contradicts ei+1 ∈ S \(S1∪ . . .∪Sl). This argument
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proves that (ei)
r 6∈ S and that (ei)

r 6∈ Du(S(u)). So (ei)
r has to be dominated at v:

(ei)
r ∈ Dv(S

−(v)). As (ei)
r was an arbitrary edge of T+, we proved that T+ is disjoint

from S, moreover T+ ⊆ Dv(S
−(v)) ⊆ Dv(S

∗ ∪ S−) = Dv(S
∗) ⊆ Dv(S

∗ ∪ T−) = Dv(S
∗ ∪

T−\R−) (we used the monotonicity of Dv), thus Cv(S
∗∪T−\R−) = Cv(S

∗∪T−\R−∪T+).
We use the substitutability of Cv for S∗ ∪ T− ∪ T+ \ (R− ∪R+) ⊆ S∗ ∪ T− ∪ T+ \R−:

Cv(S
∗) ∪ T− \ (R− ∪R+) =

(
Cv(S

∗) ∪ T− \R−
)
∩
(
S∗ ∪ T− ∪ T+ \ (R− ∪R+)

)
(7.12)

= Cv(S
∗ ∪ T− \R−) ∩

(
S∗ ∪ T− ∪ T+ \ (R− ∪R+)

)
= Cv(S

∗ ∪ T− ∪ T+ \R−) ∩
(
S∗ ∪ T− ∪ T+ \ (R− ∪R+)

)
⊆ Cv(S

∗ ∪ T− ∪ T+ \ (R− ∪R+)) .

As edges of T+ are E(v)-replacements, it follows that T+ ⊆ Cv(S
∗∪T−∪T+\(R−∪R+)),

so with (7.12) we have Cv(S
∗)∪ T− ∪ T+ \ (R− ∪R+) ⊆ Cv(S

∗ ∪ T− ∪ T+ \ (R− ∪R+)).
The increasing property of Cv gives that

|Cv(S∗)|+ |T−|+ |T+| − (|R−|+ |R+|) = |Cv(S∗) ∪ T− ∪ T+ \ (R− ∪R+)|
≤ |Cv(S∗ ∪ T− ∪ T+ \ (R− ∪R+))| ≤ |Cv(S∗ ∪ T− ∪ T+ \R−)|

= |Cv(S∗) ∪ T− \R−| = |Cv(S∗)|+ |T−| − |R−| ,

hence Cv(S
∗) ∪ T− ∪ T+ \ (R− ∪ R+) = Cv(S

∗ ∪ T− ∪ T+ \ (R− ∪ R+)), as we claimed.
So we justified properties 1. and 2. for (S ′, S1, . . . , Sl).

For property 3., we have already seen that Cv(S
′(v)) is disjoint from S ′, so it remains

to check that any edge e ∈ E \ S ′ is dominated at some vertex. There are two cases for
e: either e = ei ∈ R− is a 1-arc of our rotation. The above argument for S∗ = S−(v)
shows that R− ⊆ Dv((S

′)−(v)), so we may assume that e 6∈ S, hence e ∈ Dv(S
−(v)) for

some vertex v. Again the above proof shows that everything that S−(v) is dominating
according to Cv is also dominated by (S ′)−(v), except for R+. This proves property 3.

4th priority (rotation elimination) step: Find a rotation (e1, (e1)r, e2, (e2)r, . . . ,
em, (em)r) with disjoint sets {e1, e2, . . . , em} and {er1, er2, . . . , erm} and delete {e1, e2, . . . , em}.

To justify the rotation elimination step, we only have to check that it does not create
a new half-integral C-kernel.

Lemma 7.27. Any half-integral C-kernel after a 4th priority step is also a half-integral
C-kernel before this step.

Proof. Observe that after the elimination, each edge (ei)
r becomes a 1-arc. Assume that

(S, S1, . . . , Sl) is a half-integral C-kernel after the step. As in the proof of Lemma 7.26,
let R− denote the set of deleted 1-arcs of our rotation that enter a fixed vertex v, let
T− := {(ei−1)r : (ei−1)rr = ei ∈ R−} be the new 1-arcs entering v and let A− be the set
of those 1-arcs that enter v and have not been deleted during the step.

By the definition of the rotation, from property (7.11) and the monotonicity of Dv we
get R− ⊆ Dv(A

− ∪ R− ∪ T−) = Dv(A
− ∪ T−) ⊆ Dv(S

−(v) ∪Dv(S
−(v))) = Dv(S

−(v)),
and this is exactly what we wanted to prove.

The following theorem finishes the proof of Theorem 7.19.
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Theorem 7.28. If no 1st, 2nd, 3rd and 4th priority step can be made on graph G
then (E(G), S1, S2, . . . , Sl) is a half-integral C-kernel, where cycles Si are given by the
rotations.

Proof. We have already seen that if all 1-arcs are bidirected then we have a C-kernel,
which is a special case of a half-integral C-kernel. So assume that no further step can
be executed but we still have a 1-arc e that is not bidirected. We have also seen
that if we follow the alternating sequence of non bidirected 1-arcs and their replace-
ments e, er, err, (e

r
r)
r, (err)

r
r, . . . then we find a rotation (e1, (e1)r, e2, (e2)r, . . . , em, (em)r),

that must be an odd cycle Si that cannot be eliminated. This means that m = 2k + 1,
and ei = (ei+k)

r = (ei−1)rr for 1 ≤ i ≤ m, where addition is modulo m. We shall prove
that our starting point, 1-arc e is an edge of this rotation. Hence, if our algorithm cannot
make a step then each 1-arc is either bidirected or belongs to exactly one odd rotation.

To this end, we may assume that err is an edge of the rotation, namely err = uv =
ei = (ei+k)

r. That is, ei is the E(v)-replacement of first choice ei+k, that is Cv(E(v) \
{ei+k}) ∪ Dv(E(v) \ {ei+k}) = E(v) \ {ei+k}, in other words, if ei ∈ Dv(X) for some
subset X of E(v) then ei+k ∈ X must hold. From the definition of err it follows that
ei ∈ Dv(A

−(v) ∪ {er}), so ei+k ∈ A−(v) ∪ {er}. 1-arc ei+k ∈ A+(v) is not bidirected,
hence ei+k 6∈ A−(v), thus ei+k = er is an edge of the rotation, as well.

Similarly as above, ei+k = vw is the E(w)-replacement of first choice ei−1 of w, hence
Cw(E(w) \ {ei−1}) ∪Dw(E(w) \ {ei−1}) = E(w) \ {ei−1}. This means that if ei+k is the
E(w)-replacement of edge e then e = ei−1 must hold. So e is an edge of our rotation,
and all non bidirected 1-arcs of G belong to odd rotations.

Next we prove that all edges of G are 1-arcs. If, indirectly, e = uv is not a 1-arc, then
e ∈ Du(A

+(u)) by the 1st priority step and e 6∈ Du(A
−(u)) by the 2nd priority step. So

u is incident with certain nonbidirected 1-arcs such that these 1-arcs all belong to odd
rotations, and each 1-arc of A−(u) is the E(u)-replacement of pairwise different 1-arcs
of A+(u). As e 6∈ Du(A

−(u)), we have e ∈ Cu(A−(u) ∪ {e}), and |Cu(A−(u) ∪ {e})| ≤
|Cu(E(u))| = |Cu(A+(u))| = |Cu(A−(u))| implies that there is a unique 1-arc f ∈ A−(u)
that is dominated: f ∈ Du(A

−(u) ∪ {e}). However, f is the E(u)-replacement of some
other 1-arc g ∈ A+(u), and we have already seen twice in this proof that this means that
g is a member of each edge set that Cv-dominates f : g ∈ A−(u) ∪ {e}. Clearly, this is a
contradiction as 1-arc g is not bidirected and leaves u and e is not a 1-arc.

So if the algorithm cannot make any further step then our graph consists of bidi-
rected 1-arcs and odd rotations S1, S2, . . . , Sk. It is trivial from the definition that
(E(G), S1, . . . , Sk) is a half-integral C-kernel.

7.4.1 Complexity issues and structural results

Irving’s original algorithm [45] is very efficient: it runs in linear time. However, this
algorithm is different from the one that we get if we apply our algorithm to an ordinary
stable roommates problem. The difference is that Irving’s algorithm has two phases: in
the first phase it makes only 1st and 2nd priority steps, and after the 1st phase is over,
it keeps on eliminating rotations, and never gets back to the 1st phase. The explanation
is that Irving’s rotation elimination deletes not just first choices but removes some other
edges as well.

Actually, it is rather straightforward to modify our algorithm to work similarly, and
this improves even its time-complexity. The reason that we did not do this in the
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previous section is that the proof is more transparent this way. So how can we speed up
the algorithm?

Observe that after a rotation elimination (4th priority) step, if 1-arc ei = uv is
deleted, then ei ceases to be a first choice of u. The new first choice instead of ei will
be its replacement (ei)

r. So we can (with no extra cost) orient each replacement edge.
Of course, refusal (2nd priority) steps may still be possible, but only at those vertices
that the newly created 1-arcs enter. The definition of a rotation implies that if we apply
a refusal step at such a vertex then no 1-arc gets deleted, but we might delete some
undirected edges. So if we modify the rotation elimination step in such a way that we
also include these extra 1st and 2nd priority steps within the rotation elimination step,
then once we start to eliminate rotations, we never go back to the first phase. That is,
we shall never have to make a proposal or a rejection step again.

To analyze the above (modified) algorithm, we have to say something about the
calculation of the choice function and the dominance function. Assume that functions
Cv and Dv are given by an oracle for all vertices v of G, such that for an arbitrary
subset X of E(v) these oracles output Cv(X) and Dv(X) in unit time. Note that if we
have only the oracle for Dv then we can easily construct one for Cv from the identity
Cv(X) = X \Dv(X). Similarly, if we have an oracle for Cv then Dv(X) can be calculated
by O(n) calls of the Cv-oracle, according to the definition of Dv. (As usual, n and m
denotes the number of vertices and edges of G, respectively.)

The algorithm starts with n C-calls, and continues with n D-calls. After this, each
deletion in a 2nd priority step involves one C-call at vertex u where we deleted, and,
if this C-call generates a new 1-arc e = uv, then we also have to make one D-call at
the other end v of e. So the first phase (the 1st and 2nd priority steps) uses at most
O(n+m) C-calls and O(n+m) D-calls.

In the second phase, the algorithm makes 3rd priority steps and modified rotation
elimination steps. We do it in such a way that we start from a nonbidirected 1-arc e
and follow the sequence e, er, err, (e

r
r)
r, . . ., until we find a rotation. The rotation will be

a suffix of this sequence, and after eliminating this rotation, we reuse the prefix of this
sequence, and continue the rotation search from there. This means that for the 3rd type
steps we need altogether O(m) C-calls. The modified rotation elimination steps consist
of deleting each 1-arc ei = uv of the rotation, orienting edges (ei)

r = uw and applying
refusal steps at vertices w. As we delete at most m edges in all rotation eliminations, this
will add at most O(m) D-calls. All additional work of the algorithm can be allocated to
the oracle calls, so we got the following.

Theorem 7.29 (Fleiner [22]). If we modify the rotation elimination step as described
above, then our algorithm uses O(n + m) C-calls and D-calls to find a half-integral C-
kernel and runs in linear time.

We have seen, in case of bipartite graphs a C-kernel always exists for path independent
substitutable choice functions (see [20]). That is, we do not have to require the increasing
property of functions Cv if we want to solve the C-kernel problem on a bipartite graph. A
natural question is if it is possible to generalize our result on C-kernels to substitutable,
but not necessarily increasing choice functions on nonbipartite graphs. In our proof,
we heavily used the fact that if no proposal and rejection steps can be made then each
1-arc has a replacement and these replacements improve some other 1-arc at their other
vertices. This property is not valid in the more general setting. Below we show that
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the C-kernel problem for substitutable choice functions is NP-complete by reducing the
3-SAT problem to it.

Theorem 7.30 (Fleiner [22]). For any 3-CNF boolean expression φ, we can con-
struct a graph Gφ and path independent substitutable choice functions Cv on the stars
of Gφ in polynomial time in such a way that φ is satisfiable if and only if there exists a
C-kernel in Gφ for the choice functions Cv.

Proof. Define directed graph ~Gφ such that ~Gφ has three vertices aC , bC and vC for each

clause C of φ and two vertices tx and fx for each variable x of φ. The arc set of ~Gφ

consists of arcs txfx and fxtx for each variable x of φ, arcs of type vCtx (and vCfx) if
literal x (literal x̄) is present in clause C of φ. Moreover, we have arcs aCbC , bCvC and

vCaC for each clause C of φ. If A is a set of arcs incident with some vertex v of ~Gφ then
C ′v(A) = A if no arc of A leaves v, otherwise C ′v(A) is the set of arc of A that leave v. It
is easy to check that choice function C ′v is path independent and substitutable. Let Gφ

be the undirected graph that corresponds to ~Gφ and let Cv denote the choice function
induced by C ′(v) on the undirected edges of Gφ. We shall show that φ is satisfiable if
and only if there is a C-kernel of Gφ for choice functions Cv, that is, if and only if there

is a subset S of arcs of ~Gφ such that S does not contain two consecutive arcs and for any
arc uv outside S there is an arc vw of S.

Assume now that φ is satisfiable, and consider an assignment of logical values to the
variables of φ that determine a truth evaluation of φ. If the value of variable x is true
then add arc fxtx, if it is false, then add arc txfx to S. Do this for all variables of φ.
Furthermore, add all arcs aCbC to S. If variable x is true then add all arcs vctx to S for
all clauses that contain variable x. If variable y is false then add all arcs vcfx to S for
all clauses that contain negated variable ȳ. Clearly, the just defined S does not contain
two consecutive arcs. If some arc of type txfx or fxtx is not in S then it is dominated by
the other, which is in S. Each arc of type vCaC is dominated by arc aCbC of S and each
arc of type bCvC is dominated by some arc of type xtx or yfy as C has a variable that
makes C true.

To finish the proof, assume that S is a C-kernel of ~Gφ. Observe that for each variable
x either txfx or fxtx belongs to S, as no other arc dominates these arcs. If txfx ∈ S then
set variable x to be false, else assign logical value true to x. We have to show that for
this assignment the evaluation of each clause C is true, that is, there is an arc of S from
vC to some tx or fx. Indirectly, if there is no such arc then the corresponding edges of S
should form a C-kernel on directed circuit vCaCbC , which is impossible.

So the decision problem of the existence of a C-kernel is NP-complete.

Note that though Theorem 7.30 shows that the C-kernel problem is difficult for non-
increasing choice functions, it does not imply that Theorem 7.19 fails for substitutable
choice functions. Actually, the increasing property is encoded into the definition of a
half-integral C-kernel, as replacements of a single element cannot contain more than
one element. So, in this sense Theorem 7.19 is not true for a directed cycle of length
three if we add a parallel copy to each edge and use choice functions from the proof of
Theorem 7.30. However, there is a natural way to extend the definition of a half-integral
C-kernel so that a generalization of Theorem 7.19 makes more sense. As we cannot state
here any nontrivial fact, we do not go into the details.
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The following theorem is an extension of the well-known Rural Hospital Theorem that
states that if a hospital cannot fill up its quota with residents in some stable outcome,
then no matter which stable outcome is selected, it always receives the same applicants.

Theorem 7.31 (Fleiner [22]). Assume that S and S ′ are C-kernels on (not necessar-
ily bipartite) graph G = (V,E). Then |S(u)| = |S ′(u)| for each vertex u of G. Moreover,
if Cv is a linear choice function with quota q then |S(v)| < q implies S(v) = S ′(v).

Proof. No edge xy of S \S ′ is blocking S ′, so S ′ must dominate xy at x or at y. Similarly,
each edge of S ′\S is dominated by S at one end vertex. So we can orient each edge of the
symmetric difference S∆S ′ to that end vertex where the particular edge is dominated.

We prove that for any vertex u of G the number of oriented edges pointing to u is
not more than the number of oriented edges leaving u. Let S+, S−, S ′+ and S ′− denote
those oriented edges of S and S ′ that leave and enter vertex u and let T := S(u)∩S ′(u).
By the definition of the orientation we have that S(u) = Cu(S(u) ∪ S ′(u)) and S ′(u) =
Cu(S

′(u) ∪ S−). Let X := S− ∪ S ′− ∪ T . As X ⊆ S(u), we get by substitutability of Cu
that S− ∪T ⊆ C(X). From X ⊆ S ′(u) it follows that S ′− ∪T ⊆ C(X), hence C(X) = X
follows. The increasing property of Cu implies that

|S−|+ |S ′−|+ |T | = |Cu(X)| ≤ |Cu(S(u))| = |S(u)| = |S−|+ |T |+ |S+| ,

hence |S ′−| ≤ |S+|. A similar proof shows (with exchanging the role of S and S ′ that
|S−| ≤ |S ′+|. So indeed: |S−∪S ′−| ≤ |S+∪S ′+|, that is, for each vertex u at least as many
oriented edges leave u as enter it. As each oriented edge is leaving and entering exactly
one vertex, the latter inequality can hold only if there is equality, that is our oriented
edges form an Eulerian graph, and hence |S(u)| = |S ′(u)|. This proves the first part of
the theorem.

Consider now our vertex v that could not fill up its quota with C-kernel S. If
S(v) 6= S ′(v) then S(v)∆S ′(v) is nonempty, and half of its edges have to be oriented only
towards v. So there is at least one edge of the symmetric difference that is dominated at u
by S(v) or S ′(v). This means that v could fill up its quota in S or in S ′, a contradiction.

The first part of Theorem 7.31 is an implication of the following result that generalizes
a result by Cechlárová and Fleiner [13] on the splitting property of stable b-matchings.

Theorem 7.32 (Fleiner [22]). Let S be a C-kernel for graph G = (V,E) and in-
creasing substitutable choice functions Cv. For each vertex v it is possible to partition
E(v) into (possibly empty) parts E0(v), E1(v), E2(v), . . . , E|S(v)|(v) in such a way that for
any C-kernel S ′ we have S ′∩E0(v) = ∅ and |S ′∩Ei(v)| = 1 holds for i = 1, 2, . . . , |S(v)|.

Proof. Let us find some C-kernel S by the algorithm in the previous section. Fix a vertex
v and determine the partition of E(v) in the following manner. Each element of S(v) will
belong to a different part. Follow the algorithm backwards, that is, we start from S and
we build up the original G by adding edges according to the deletions of the algorithm.
If we add an edge that is not incident with v, then we do not do anything. If we add an
edge e of E(v) that was deleted by a 2nd priority step, then we put e into part E0(v).
This is a good choice, since e is contained in no C-kernel. If e was deleted in a 4th
priority step along a rotation then this rotation contains another (replacement) edge f
incident with v. Lemma 7.26 shows that if we assign e to that part Ei(v) that contains
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f , then still no C-kernel can contain two edges of the same part Ei(v). Let us build up
the graph by backtracking the algorithm. This way, we find a part for each edge of E(v),
and this partition clearly has the property we need.

There is an aesthetic problem with Theorem 7.32, namely, that part E0(v) of the
star of v is redundant in the following sense. If we remove all edges from E0(v) and
independently from one another we assign each of them to an arbitrary part Ei(v) (for
1 ≤ i ≤ |S(v)|) then the resulted partition also satisfies the requirements of Theorem 7.32
and E0(v) = ∅ for all vertices v. In what follows, by proving a strengthening of The-
orem 7.32, we exhibit an interesting connection between the C-kernel problem and the
stable roommates problem.

If G = (V,E) is a graph and v is a vertex of it then detaching v into k parts is
the inverse operation of merging k vertices into one vertex. That is, we delete vertex v,
introduce new vertices v1, v2, . . . , vk and each edge that was originally incident with v
will be incident with one of v1, v2, . . . , vk. If k : V → {1, 2, 3, . . .} is a function then a
k-detachment of G is a graph Gk that we get by detaching each vertex v of G into k(v)
parts. Clearly, there is a natural correspondence between the edges of G and those of Gk.
With this notation, there is an equivalent formulation of Theorem 7.32: if G is a graph,
and increasing substitutable choice function Cv is given for each vertex v of G and S is
a C-kernel then there exists a k-detachment Gk of G in such a way that any C-kernel of
G corresponds to a matching of Gk, where k(v) := |S(v)| for each vertex v of G.

Theorem 7.33 (Fleiner [22]). Let S be a C-kernel for graph G = (V,E) and in-
creasing substitutable choice functions Cv. Let k(v) := max{|S(v)|, 1}. There is a k-
detachment Gk of G and there are linear orders <vi

on the stars of Gk such that any
C-kernel of G corresponds to a stable matching of Gk.

Proof. Just like in the proof of Theorem 7.32, we start from a C-kernel S ′, produced by
our algorithm and we build up Gk and construct orders <vi

by following the algorithm
backwards.

Let Gi = (V,Ei) denote the underlying graph after the ith step of our algorithm, that
is, G0 = G and Gt = (V, S ′) for some t. Assume that we have a k-detachment Gk

i of Gi

and suitable linear orders such that any C-kernel of Gi (for the restricted choice functions
Cv|Ei

) corresponds to a stable matching of Gk
i . We show how to find a k-detachment Gk

i−1

of Gi−1 and extensions of the linear orders such that any C-kernel of Gi−1 corresponds
to a matching of Gk

i−1. If we do this, then Gk
0 with the constructed linear orders is a

k-detachment we look for.
First we construct Gk

t by detaching Gt into a matching. This means that each vertex
v incident with S ′ is detached into |S ′(v)| = |S(v)| = k(v) parts (and we do not detach
isolated vertices of Gt). As each degree of Gk

t is 0 or 1, the linear orders are trivial.
Clearly the only C-kernel S ′ of G corresponds to the unique stable matching of Gk

t . So
assume we have have already constructed Gk

i and the linear orders. If the ith step of the
algorithm was 1st or 3rd type then Gi−1 = Gi, hence we can choose Gk

i−1 = Gk
i and the

same linear orders on the stars.
Assume that the ith step is a 1st type rejection step, that is, we delete some edges

incident with some vertex v, say vu1, vu2, . . . , vup. Define k-detachment Gk
i−1 by adding

p edges to the Gk
i in such a way that the edge corresponding to vui will be edge (say)

v1u1
j . The extended linear orders on the stars of Gk

i−1 will be the same as those of Gk
i ,
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except for we append the new edges v1u1
j to the end of these orders, that is, these new

edges will be the least preferred ones of the vertices. Lemma 7.21 implies that the set of
C-kernels of Gi and of Gi−1 is the same, so it is enough to check that no stale matching
Sk of Gk

i that corresponds to a C-kernel S of Gi is blocked by some edge v1u1
j .

Edge vuj is not blocking S, hence at least one of v and uj is covered by S. Corol-
lary 7.31 implies that |S(v)| = |S ′(v)| and S(uj)| = |S ′(uj)|, so this means that Sk has
an edge e that covers v1 or u1

j . The definition of the linear orders on the stars of Gi−1

implies v1u1
j is dominated by e, so v1u1

j cannot block stable matching Sk.
The remaining case is that the ith step of the algorithm is a 4th type rotation elimi-

nation. Assume the eliminated rotation is (e1, (e1)r, e2, (e2)r, . . . , em, (em)r), so we delete
edges e1, e2, . . . , em where 1-arc ej = ujvj is a first choice of uj. After the elimination,
each edge (ej)

r = ujvj+1 becomes a first choice of uj for j = 1, 2, . . . ,m.
To construct Gk

i−1, we add an edge ekj to Gk
i that correspond to ej for j = 1, 2, . . . ,m.

Assume that edges (ej−1)r = uj−1vj and (ej)
r = ujvj+1 of Gi correspond to edges utj−1v

t′
j

and usjv
s′
j+1, of Gk

i , respectively. Then the edge of Gk
i−1 that corresponds to ej will be

ekj := usjv
t
j. In other words, we choose k-detachment Gk

i−1 in such a way that edges of the
rotation correspond to a cycle. We insert ekj into the linear order of usj in such a way that
ekj and ((ej)

r)r are consecutive and ekj is preceding ((ej)
r)r. We insert ekj into the linear

order of vtj in such a way that and ekj and ((ej−1)r)k will also be consecutive according
to the order of vtj, but ekj succeeds ((ej−1)r)k. We do this for all j = 1, 2, . . . ,m, hence
determining k-detachment Gk

i−1 and linear orders on its stars.
First we prove that for any eliminated edge ej of the rotation, edge ((ej)

r)k is the first
edge in the linear order of usj in Gk

i . By the definition of the replacement and rotation
elimination, (ej)

r is a first choice of uj in Gi. So after the (i− 1)st step of the algorithm,
(ej)

r never could be an uj-replacement of another edge. This means, that from the ith
step on, we never inserted an edge right before (ej)

r in the linear order of usj . So if (ej)
r

is an edge of C-kernel S ′ produced by our algorithm then (ej)
r is still the most preferred

edge of usj . If (ej)
r is deleted after the (i − 1)st step then we had to delete it in the

lth step, in a rotation elimination, as a first choice of uj. This means on one hand that
((ej)

r)k is first in the linear order of usj , in Gk
l . As we did not insert any edge before

((ej)
r)k during the construction of Gk

l−1, G
k
l−2, . . . , G

k
i , we see that ((ej)

r)k is first in the
linear order of usj in Gk

i .
We prove that any C-kernel of Gi−1 corresponds to a stable matching of Gk

i−1. If S is
a C-kernel of Gi−1 then either e1, e2, . . . , em ∈ S or S is a C-kernel of Gi by Lemma 7.25.
In the first case, Lemma 7.26 implies that

S \ {e1, e2, . . . , em} ∪ {(e1)r, (e2)r, . . . , (em)r}

is a C-kernel, hence it corresponds to a stable matching ofGk
i by the induction hypothesis.

As we have chosen edges ekj and ((ej)
r)k and ekj and ((ej−1)r)k consecutive in the linear

orders of usj and of vtj, we see that no edge can block the matching that corresponds to
S in Gk

i−1.
In the second case, when S is a C-kernel of Gi, we have to show that the stable

matching of Gk
i that corresponds to S (by the induction hypothesis) is not blocked by

edge ekj . If ((ej)
r)k is in the stable matching then it dominates ekj at vtj. If ((ej)

r)k does
not belong to the stable matching then it cannot block it, hence, as ((ej)

r)k is the best
edge of ut

′
j+1, the stable matching dominates it at vtj. So this matching that corresponds

to S in Gk
i−1 also dominates ekj . This completes the proof.
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Note that Theorem 7.33 is not an equivalence: it is not true that for any C-kernel
problem there exists a detachment with appropriate linear orders in such a way that
C-kernels correspond bijectively to stable matchings. A counterexample is a graph on
two vertices, four parallel edges with opposite linear orders on the vertices. The choice
function of both vertices is the best two edges of the offered set, that is the C-kernel
problem is a stable 2-matching problem. It is easy to see that there are exactly 3 different
C-kernels, but any 2-detachment has 1, 2 or 4 stable matching.
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Conclusion

The aim of the present dissertation is to illustrate a fairly recent approach and some of
its consequences to the interdisciplinary topic of stable matchings and its generalizations.
The story below aims to explain this sentence in more details.

Some twenty years ago, this topic was interesting for roughly three more or less
disjoint communities: Economists (including Game Theorists), Computer Scientists (in
particular Algorithm Design people) and Mathematicians (especially Graph Theorists),
with the latter group publishing significantly less on the topic than the first two. It seems
that communication between these groups were limited in those days and perhaps due
to this fact, these groups were not really aware of each other’s achievements. Examples
are choice functions (“invented” by Economists) that describe nonlinear preferences for
practical applications or the graph terminology and graph theoretic methods that were
not standard tools for the first two groups. With a bit of exaggeration one may say that
a standard result back then was the description of an appropriate generalization of the
deferred acceptance algorithm with a proof of correctness from scratch.

The present work is the account of the miracle that at a certain point powerful tools of
the different groups started to work together giving new insights and producing interest-
ing results. These tools were the choice function based approach of Kelso and Crawford,
the translation of the problems to combinatorial (especially graph theoretical) language,
the application of combinatorial methods (like reduction of problems to one another)
and most importantly, finding the connection of various problems to fixed points of cer-
tain mappings. This new framework provides us with a novel approach that sometimes
outperforms the “traditional” one. Namely, it allows us to prove earlier results simply by
describing the problem with choice functions and checking that these choice functions
have certain properties.

Though the new results were appealing, the communication barrier between the
groups did not vanish. Independently of our work, Economists explored the fixed point
machinery again and turned it into a horn of plenty for new results. Then, something
unexpected occurred again. In 2012, Roth and Shapley received the Nobel Memorial
prize in Economic Sciences for the theory of stable allocations and the practice of market
design. This extraordinary success of the field attracted many young and mathemat-
ically capable colleagues to the topic. Hence perhaps it becomes possible at last that
the different groups can join their forces and start to explore together. This is the main
motivation behind our ongoing work.

The author of this dissertation hopes that if we look back after many years from now
then the content of the present dissertation will be the introduction of a success story.
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