Amorf ötvözetek atomi szintű szerkezetvizsgálata

MTA doktori értekezés Tézisek

Jóvári Pál

Magyar Tudományos Akadémia Wigner Fizikai Kutatóközpont Szilárdtestfizikai és Optikai Intézet

I. Tudományos előzmények, célkitűzések

A szilárdtestek atomi szintű szerkezetvizsgálatának kiindulópontját kétségkívül W. L. Bragg és W. H. Bragg 1913-ban megjelent munkái képezték, amelyek a kristályok röntgendiffrakciós szórási képe és a rácssíkok távolsága között teremtettek kapcsolatot (Bragg, 1913/1, Bragg, 1913/2). Az általuk leírt összefüggés (a híres Bragg-egyenlet) már egy évszázada lehetővé tette sok kristályos rendszer szerkezetének felderítését, nagy lökést adva így a fizika, a kémia, a geológia és az anyagtudomány fejlődésének.

Egyes folyadékok elegendően gyors hűtéssel nemkristályos szilárd állapotba hozhatók, azaz üveget lehet belőlük előállítani. Az üvegek családja rendkívül sokszínű: a névadó szilikátok mellett létezik üveg állapota bizonyos félvezetőknek és ötvözeteiknek (Se, Ge, Si-Se, Ge-Te...), sóknak (ZnCl₂), fémötvözeteknek (például Cu-Zr, Ni-Ti, Al-U...), fém-félfém ötvözeteknek (Fe-B, Pd-P, Au-Si...), oxidoknak (As₂O₃, P₂O₅, V₂O₅), sőt magának a víznek is.

Az üvegekre jellemző, hogy melegítés hatására túlhűtött folyadék állapotba kerülnek. Az átmenet hőmérsékletét az angol nyelvű irodalomban T_g -vel jelölik (glass transition temperature). Tapasztalat szerint T_g függhet a fűtési sebességtől és az üveg "előéletétől" (hűtési sebesség, hőkezelés) is. További fűtés hatására a metastabil túlhűtött folyadék elkezd kristályosodni. Egyes rendszerek széles túlhűtött folyadék tartománnyal rendelkeznek (akár 150 K vagy több), és napokig vagy hetekig is tarthatók ebben az állapotban¹.

Nemkristályos szilárd anyagokat azonban nem csak hűtéssel állíthatunk elő, hanem számtalan más eljárással is, például porlasztással, párologtatással, őrléssel vagy besugárzással. A hosszútávú renddel nem rendelkező rendszereket *amorf* anyagoknak nevezzük.

A nemperiodikus szerkezet miatt az amorf anyagok esetében nem létezik a Braggegyenlethez hasonló egyszerű összefüggés, amely összekapcsolná a szórási képet a vizsgált rendszerek szerkezetével. Ez volt a fő oka annak, hogy az üvegek és folyadékok kísérleti

¹ ha "elég messze" vagyunk a kristályosodás hőmérsékletétől

alapú szerkezetvizsgálata több évtizedes lemaradással követte a kristályos anyagokét. Elég csak arra gondolni, hogy Franklin és munkatársai akkor közölték cikküket a dohány mozaik vírus szerkezetéről (Klug, 1957), amikor az egyszerűbb kovalens üvegek - pl. szelén - intenzívebb tanulmányozása kezdődött (Richter, 1958).

Munkám során többkomponensű üvegek szerkezetének kísérleti vizsgálatával foglalkoztam. A "szerkezet" itt a rövidtávú rendet jelenti, vagyis elsősorban arra szeretnénk választ kapni, hogy a vizsgált rendszer atomjainak átlagosan hány szomszédja van, és ezek a szomszédok milyen messze találhatók. Mivel ötvözetekről van szó, fontos emellett a kémiai rend, azaz a szomszédok típusa is.

Ezt a megközelítést az indokolja, hogy a kétrészecske korrelációkról nyerhető a legközvetlenebb kvantitatív kísérleti információ, mivel a diffrakciós technikák és az EXAFS² esetében ismert a kapcsolat a vizsgált üvegek szerkezete (pontosabban párkorrelációs függvényei) és a mért jel között.

II. A vizsgálatok módszerei

A tapasztalat azt mutatja, hogy egyetlen mérés alapján szinte soha nem lehet felderíteni egy többkomponensű üveg rövidtávú rendjét³. Több kísérleti technikára kell tehát támaszkodnunk, hogy megbízható kijelentéseket tehessünk a szerkezettel kapcsolatban. A különböző (pl. neutrondiffrakciós és röntgenabszorpciós) adatokban rejlő szerkezeti információ kombinálása (együttes figyelembevétele) olyan térbeli *modellek* segítségével érhető el, amelyek összhangban vannak az összes méréssel.

A többkomponensű üvegek kísérleti szerkezetvizsgálatához tehát szükség van diffrakciós és röntgenabszorpciós mérőhelyekre, illetve egy keretre, amellyel létre lehet hozni az előbb említett modelleket. Röntgendiffrakciós mérések egyaránt végezhetők hagyományos laboratóriumi diffraktométerekkel és a szinkrotronok mellé telepített állomásokon. Röntgenabszorpciós kísérletekre elsősorban a szinkrotronok nyújtanak lehetőséget, míg a neutrondiffrakció kutatóreaktorok vagy spallációs neutronforrások mellett található diffraktométerekhez van kötve.

Természetesen mindhárom technika esetén lényegesek a kísérleti feltételek: korlátozott mérési tartomány, rossz statisztika vagy a szisztematikus hiba magas szintje nehézkessé

² Extended X-ray Absorption Fine Structure – a röntgenabszorpciós hatáskeresztmetszet finomszerkezete az abszorpciós éltől viszonylag távol (~50 eV)

³ Az igen erős kémiai rendnek köszönhetően kivételt képeznek az egyszerűbb oxidüvegek (pl. SiO₂)

vagy egyenesen lehetetlenné tehetik a többkomponensű üvegek szerkezetének modellezését. Ebből a szempontból a neutrondiffrakciós technika lépett először felnőttkorba, amikor az 1980-as években a helyzetérzékeny detektorok megjelenésével az addig általában napokban mérhető mérési idő a töredékére csökkent. Röntgendiffrakció esetében az áttörés 15-20 éve következett be a szinkrotronok mellé telepített nagyenergiás állomások kiépítésével, amelyek lehetővé tették a mérési tartomány jelentős kiterjesztését. Nagyjából ekkorra tehető a röntgenabszorpciós módszer beérése is. A diffrakciós technikákkal ellentétben utóbbinál nem elsősorban kísérleti nehézségek leküzdésére volt szükség, hanem az abszorpciós spektrumok értelmezésére szolgáló elméleti apparátus megbízhatóságának kellett elérnie a kívánt szintet.

Nem esett még szó az eljárásról, amellyel kombinálhatjuk a különböző kísérleti eredmények által hordozott információt. A szerkezet bonyolultsága miatt többkomponensű üvegeknél mindenképpen olyan megközelítésre van szükség, amely a mérések mellett képes figyelembe venni a vizsgált rendszerről rendelkezésre álló ismereteket is⁴. Nyilvánvaló ugyanis, hogy így csökkenthetjük a szerkezeti paraméterek bizonytalanságát. Az erre a célra kifejlesztett eljárás a fordított Monte Carlo szimuláció (McGreevy, 1988), amelynek különböző implementációit használják kovalens üvegek, molekuláris folyadékok és kristályok szerkezetének kísérleti alapú vizsgálatára. A módszert először neutrondiffrakciós szerkezeti függvények illesztésére alkalmazták, de nagyon hamar kiterjesztették röntgendiffrakcióra (Keen, 1990) és EXAFS-ra is (Gurman, 1990). (Utóbbi esetében azonban az elméleti háttér már említett elégtelensége még körülbelül 10 évig komoly akadályt jelentett.)

III. Új tudományos eredmények

Az amorf anyagok szerkezetének vizsgálatával kapcsolatos első (és gyakran utolsó) kérdés sokáig az volt, hogy melyik összetevőnek van elérhető árú izotópja. Az ezredforduló tájékán az amorf Se, S és SiO₂ mellett csak néhány többkomponensű üveg szerkezetét ismerték kielégítő pontossággal. Azóta viszont ugrásszerű fejlődésen ment keresztül a rendezetlen rendszerek szerkezetvizsgálata. Ma már akár három- vagy négykomponensű üvegek rövidtávú rendjét is vizsgálhatjuk a siker reményével. Abban a szerencsés helyzetben voltam, hogy részese és alakítója lehettem ennek a folyamatnak. Jelen munka célja az, hogy

⁴ Tisztán kovalens rendszerek esetében például általában ismertnek tekinthetjük a koordinációs számot.

megmutassa az olvasónak, mit tudhatunk meg ma a többkomponensű üvegek rövidtávú rendjéről az elérhető kísérleti technikák felhasználásával.

Ebből a célból két anyagcsalád szerkezetét tárgyalom a dolgozatban. Az első az infravörös optikától az információtároló eszközökig (DVD, PC-RAM) széles körben alkalmazott tellúr alapú amorf ötvözeteké. Ezen belül is a 8-N szabálynak⁵ (Mott, 1967) engedelmeskedő tisztán kovalens üvegekkel kezdem, majd utóbbiak szerkezetének ismeretében rátérek bonyolultabb rendszerekre is, amelyekben a kovalensen kötő atomok váza megmarad, de a jelenlévő fématomoknak köszönhetően a teljes koordinációs számok eltérnek a 8-N szabálytól. Végül olyan tellúr alapú amorf ötvözetek szerkezetével foglalkozom, amelyekben már a kovalensen kötő váz sem marad érintetlen.

A második anyagcsalád a réz-cirkónium fémüvegeké, illetve az amorf $Cu_{47,5}Zr_{47,5}Al_5$ és $Cu_{47,5}Zr_{47,5}Ag_5$ ötvözeteké. A réz-cirkónium rendszer régóta a legintenzívebben vizsgált fémüvegek közé tartozik, de a parciális párkorrelációs függvényeit kizárólag diffrakciós mérések alapján csak nagy hibával lehet szétválasztani. A Cu-Zr fémüvegek szerkezetének ismerete nem csak önmagában érdekes, hanem megkönnyíti a réz-cirkónium alapú tömbi fémüvegek vizsgálatát is. Utóbbiak közül kettőt tárgyalok részletesen a dolgozatban.

A fenti amorf ötvözetek szerkezetével kapcsolatos észrevételeket az alábbi pontokban lehet összefoglalni.

1. Az amorf Ge_xTe_{100-x} ötvözetek és As_xTe_{100-x} üvegek rövidtávú rendje

1.1. Röntgendiffrakciós és röntgenabszorpciós mérések segítségével vizsgáltam a párologtatással előállított amorf $\text{Ge}_x\text{Te}_{100-x}$ ($12 \le x \le 44,6$) ötvözetek rövidtávú rendjét. Megállapítottam, hogy a germánium koordinációs száma a fenti tartományon nem tér el szignifikánsan 4-től, míg a tellúré hibahatáron belül 2. Megmutattam, hogy a $33,1 \le x \le 44,6$ tartományon az amorf ötvözetek kémiailag teljesen rendezetlenek, míg $x \le 24,1$ esetén legalább részleges kémiai rendezettség tapasztalható [1].

 Hasonló módszerrel vizsgáltam a gyorshűtéssel előállított Ge₁₅Te₈₅ üveg szerkezetét is. Megállapítottam, hogy az üveg kémiailag rendezett és mindkét összetevő kielégíti a 8-N szabályt [2].

⁵ A 8-N szabály értelmében a periódusos rendszer N. (N=4, 5, 6, 7) főcsoportjában található elemek 8-N kémiai kötést létesítenek (pl. SiCl₄, PCl₃, SCl₂, Cl₂). A szabály alól sok kivétel létezik (pl. PCl₅, SeF₄), a Ge-(As,Sb)-(S,Se,Te) összetételű kovalens hálózatok azonban eddigi tapasztalataink alapján engedelmeskednek neki.

1.3. Neutrondiffrakciós, röntgendiffrakciós és röntgenabszorpciós mérések felhasználásával vizsgálva az As_xTe_{100-x} ($20 \le x \le 60$) üvegek szerkezetét megállapítottam, hogy az arzén koordinációs száma minden vizsgált ötvözetben hibahatáron belül 3, míg a tellúré 2. Megmutattam, hogy az As-Te üvegek kémiailag rendezetlenek a teljes vizsgált tartományon [3].

2. Az amorf Ge-As-Te, Ge-Sb-Te és Ge₂₀I₇Te₇₃ ötvözetek szerkezete

Röntgen- és neutrondiffrakciós valamint röntgenabszorpciós mérésekkel és fordított Monte Carlo szimulációval vizsgáltam a tellúrban gazdag (75-80 atom% Te), illetve a tellúrban szegény (40 atom% Te) Ge-As-Te üvegek rövidtávú rendjét.

2.1. Megmutattam, hogy az arzén és a germánium körül eltérő a kémiai rendezettség: As-As kötések már a tellúrban gazdag üvegekben is léteznek, Ge-Ge kötésekre pedig még a tellúrban erősen szegény összetételekben sincs szükség a mérési eredmények értelmezéséhez.

2.2. Az As-Te rendszerhez hasonlóan a tellúrban szegény Ge-As-Te üvegekben is vannak Te-Te kötések. A preferált Ge-Te kötések miatt azonban a Te-Te koordinációs szám kisebb a háromkomponensű rendszerben mint pl. az As₆₀Te₄₀ üvegben.

2.3. Megmutattam, hogy hasonlóan az amorf Ge-Te és As-Te ötvözetekhez, az összetevők teljes koordinációs száma kielégíti a 8-N szabályt [4].

2.4. Tanulmányoztam a Ge₂₀I₇Te₇₃ üveg rövidtávú rendjét. A két diffrakciós és három röntgenabszorpciós mérés együttes illesztésével és a germánium atomokra kirótt négyes koordinációs kényszerrel nyert modell alapján megmutattam, hogy a tellúr és jód atomok is követik a 8-N szabályt. A germánium atomok csak jódhoz vagy tellúrhoz kötnek, a jód körül pedig főleg germánium található, azaz a Ge₂₀I₇Te₇₃ üveg nagyfokú kémiai rendezettséget mutat [2].

2.5. Vizsgáltam a GeSb₂Te₄ és Ge₂Sb₂Te₅ "fázisváltó" ötvözetek amorf fázisainak atomi szintű szerkezetét. Megállapítottam, hogy a rövidtávú rendet a 8-N szabály és az erőteljes kémiai rendezettség együtt alakítja ki. Előbbi szerint a germániumnak 4, az antimonnak 3, a tellúrnak pedig 2 szomszédja van. A kémiai rendezettség abban nyilvánul meg, hogy a

germánium és az antimon elsősorban tellúrhoz köt. A kristályos fázisban nem található "rossz" Ge-Ge és Ge-Sb kötések csak azért alakulnak ki, mert nincs elég tellúr ahhoz, hogy a 8-N szabály kizárólag Ge-Te és Sb-Te kötésekkel teljesülhessen [5, 6].

3. A GeGaTe₇ üveg szerkezete

Megállapítottam, hogy a kísérleti adatok alapján a GeGaTe₇ üveg kémiailag rendezett, mivel a germánium és a gallium elsősorban tellúrral létesít kötést. A germánium és gallium atomok közötti kötések kiküszöbölése nem volt hatással az illesztések minőségére. A germánium és gallium atomok átlagos koordinációs száma egyaránt közel van 4-hez, a gallium tehát nem követi a 8-N szabályt. A tellúr atomok átlagos koordinációs száma $2,32 \pm 0,2$, azaz a 8-N szabály itt sem teljesül [7].

4. Az As_{40-x}Cu_xTe₆₀ üvegek szerkezete

4.1. Diffrakciós és EXAFS mérések, illetve fordított Monte Carlo szimuláció segítségével vizsgáltam az As-Cu-Te üvegek rövidtávú rendjét. A mérések egyidejű illesztésével nyert modellek alapján megállapítottam, hogy az As-Te kovalens alrács önmagában, a Cu atomok nélkül kielégíti a 8-N szabályt (abban az értelemben, hogy az As atomok körül található As és Te atomok száma közel van 3-hoz, míg a Te atomok körül található As és Te atomok száma nem tér el szignifikánsan 2-től), azaz a Cu a meglevő As/Te szomszédok *mellett*, nem pedig *helyettük* létesít kötést az As/Te atomokkal). Az As és Te atomok teljes koordinációs száma azonban a Cu jelenléte miatt nagyobb 3-nál, illetve 2-nél.

4.2. Megállapítottam, hogy a Cu atomoknak az As és a Te mellett Cu szomszédai is vannak. Míg a Cu atomok körül található Te atomok átlagos száma nem változik szignifikánsan az összetétellel, addig a Cu szomszédok száma egyértelműen nő a Cu növekvő koncentrációjával [8].

5. Az amorf GeCu₂Te₃ és a GeTe₄-AgI üvegek szerkezete

5.1. Megállapítottam, hogy az amorf $GeCu_2Te_3$ ötvözetben a kristályos fázishoz hasonlóan az összes komponens koordinációs száma 4 körül van, a kémiai rendezettség

azonban eltér a kristályos és az amorf fázisban, mert utóbbiban léteznek Ge-Ge, Cu-Cu és Te-Te kötések is. A tellúr körül található germánium és tellúr atomok átlagos száma közel 3, azaz az As-Cu-Te üvegekkel ellentétben itt nem kizárólag a réz atomok közelsége okozza a 8-N szabálytól történő eltérést, hanem már a Ge-Te alrács sem elégíti ki azt [9].

5.2. Megállapítottam, hogy a GeTe₄-AgI üvegekben megváltozik a GeTe₄ alaphálózat szerkezete. A germánium teljes koordinációs száma marad 4, de a tellúr alapú üvegekben általános $2,60 \pm 0,02$ Å-ös Ge-Te kötéshossz mellett megjelenik egy Ge-Te távolság 2,95 Å körül is.

5.3. A tellúr teljes koordinációs száma a 0.75GeTe₄-0.25AgI összetételben 2,97 \pm 0,3, a tellúr atomok körül található germánium és tellúr atomok átlagos száma pedig 2,76 \pm 0,3, azaz a bevitt AgI hatására a tellúr atomok egy része 2 helyett 3 Ge/Te atommal létesít kötést. 5.4. Az ezüst elsősorban tellúr atomokhoz köt, átlagos koordinációs száma a 0.75GeTe₄ - 0.25AgI üvegben 3,19 \pm 0,5. A jód koordinációs kényszer nélkül kapott átlagos koordinációs száma ugyanebben az összetételben 0,9 \pm 0,4 [10].

6. A Cu-Zr és a CuZr-X (X=Al, Ag) üvegek rövidtávú rendje

6.1. Fordított Monte Carlo szimulációval vizsgáltam a $Cu_x Zr_{100-x}$ (x=35, 50, 65) fémüvegek szerkezetét. Diffrakciós és röngenabszorpciós mérések egyidejű illesztésével sikerült szétválasztani az üvegek parciális párkorrelációs függvényeit és meghatározni a koordinációs számokat. Eredményeim alapján a Cu-Zr üvegek kémiailag teljesen rendezetlenek [11].

6.2. Megállapítottam, hogy a $Cu_{47,5}Zr_{47,5}Al_5$ fémüvegben az alumínium átlagos koordinációs száma 10,2 ± 1,0, míg az ezüstnek 13,9 ± 0,6 szomszédja van a $Cu_{47,5}Zr_{47,5}Ag_5$ fémüvegben. Az Al-Zr és az Ag-Zr kötések preferáltak, azaz Al és az Ag is a cirkóniumhoz köt inkább. A réz körül mindkét ötvöző hatására *csökken* a réz atomok száma, azaz a Cu-Zr mátrix *rendezettebbé* válik az ötvözés hatására [12, 13].

6.3. A fordított Monte Carlo szimulációval nyert parciális párkorrelációs függvények segítségével megállapítható, hogy az amorf $Cu_{47.5}Zr_{47.5}Al_5$ ötvözetben a Cu és Zr atomok körüli rövidtávú rend a kristályos fázisok közül a $Cu_{10}Zr_7$ -hez van legközelebb, ami megmagyarázza, hogy miért ez a fázis jelenik meg legelőször kristályosodás során, miért nem az összetétel alapján várható CuZr B2 fázis [12].

Hivatkozások

[Bragg, 1913/1]	W. H. Bragg, W.L. Bragg, Proc. K. Soc. London A. 88, 428 (1913) DOI:
	10.1098/rspa.1913.0040
[Bragg, 1913/2]	W. L. Bragg, Proc. Cambridge. Philos. Soc. 17, 43 (1913)
	www.biodiversitylibrary.org/item/96059#page/61/mode/1up
[Klug, 1957]	A. Klug, J. T. Finch, R. Franklin, Biochim. Biophys. Acta 25, 242 (1957)
	DOI: 10.1016/0006-3002(57)90465-1
[Richter, 1958]	H. Richter, Z. Naturforsch. 13 a, 32 (1958)
	http://zfn.mpdl.mpg.de/data/Reihe_A/13/ZNA-1958-13a-0032.pdf
[Mott, 1967]	N. F. Mott, Adv. Phys. 16, 49 (1967) DOI: 10.1080/00018736700101265

[Dross 1012/1] W. H. Dross W. L. Dross Dross D. Condand A 99 429 (1012) DOL

A tézispontokhoz kapcsolódó tudományos közlemények

- [1] P. Jóvári, A. Piarristeguy, R. Escalier, I. Kaban, J. Bednarčik, A. Pradel, Short range order and stability of amorphous Ge_xTe_{100-x} alloys ($12 \le x \le 44.6$), *J. Phys.: Condens. Matter* **25**, 195401 (2013) DOI: 10.1088/0953-8984/25/19/195401
- P. Jóvári, I. Kaban, B. Bureau, A. Wilhelm, P. Lucas, B. Beuneu, D. A. Zajac, Structure of Te-rich Te-Ge-X (X=I, Se, Ga) glasses, J. Phys.: Condens. Matter 22, 404207 (2010) DOI: 10.1088/0953-8984/22/40/404207
- [3] P. Jóvári, S.N. Yannopoulos, I. Kaban, A. Kalampounias, I. Lischynskyy, B,. Beuneu, O. Kostadinova, E. Welter, A. Schöps, Structure of As_xTe_{100-x} ($20 \le x \le 60$) glasses investigated with x-ray absorption fine structure, x-ray and neutron diffraction, and reverse Monte Carlo simulation, *J. Chem. Phys.* **129**, 214502 (2008) DOI: 10.1063/1.3026591
- [4] P. Jóvári, P. Lucas, Z Yang, B Bureau, I Kaban, B Beuneu, J Bednarčik, Short range order in Ge-As-Te glasses, J. Am. Ceram. Soc. 97, 1625 (2014) DOI: 10.1111/jace.12823
- P. Jóvári, I. Kaban, J. Steiner, B. Beuneu, A. Schöps, A. Webb, 'Wrong bonds' in sputtered amorphous Ge₂Sb₂Te₅, *J. Phys.: Condens. Matter* 19, 335212 (2007) DOI: 10.1088/0953-8984/19/33/335212
- P Jóvári, I. Kaban, J Steiner, B Beuneu, A Schöps and A Webb, Local order in amorphous Ge₂Sb₂Te₅ and GeSb₂Te₄, *Phys. Rev.* B 77, 035202 (2008) DOI: 10.1103/PhysRevB.77.035202
- I. Voleska, J. Akola, P. Jóvári, J. Gutwirth, T. Wagner, T. Vasileiadis, S. Yannopoulos, R.O. Jones, Structure, electronic, and vibrational properties of glassy Ga₁₁Ge₁₁Te₇₈: Experimentally constrained density functional study, Phys. Rev. B 86, 094108 (2012) DOI: 10.1103/PhysRevB.86.094108
- [8] P. Jóvári, A. Piarristeguy, J. B. Vaney, I. Kaban, A. Zitolo, B. Beuneu, J. Bednarčik,G. Delaizir, J. Monnier, A. P. Gonçalves, C. Candolfi, Short range order of

As_{40-x}Cu_xTe₆₀ glasses, *J. Non-Cryst. Solids* **48**, 202 (2018) DOI: 10.1016/j.jnoncrysol.2017.10.046

- P. Jóvári, Y. Sutou, I. Kaban, Y. Saito, J. Koike, Fourfold coordinated Te atoms in amorphous GeCu₂Te₃ phase change material, *Scr. Mater.* 68, 122 (2013) DOI: 10.1016/j.scriptamat.2012.09.028
- [10] P. Jóvári, S. Cui, V. Nazabal, I. Kaban, B. Beuneu, M. Dussauze, C. Boussard-Plédel, B Bureau, Network rearrangement in AgI-doped GeTe₄ glasses, *J. Am. Ceram. Soc.* **98**, 1034 (2015) DOI: 10.1111/jace.13369
- [11] N. Mattern, P. Jóvári, I. Kaban, S. Gruner, A. Elsner, V. Kokotin, H. Franz, B. Beuneu, J. Eckert, Short range order of Cu-Zr metallic glasses, *J. Alloys Compd.* 485, 163 (2009) DOI: 10.1016/j.jallcom.2009.05.111
- [12] I. Kaban, P. Jóvári, B. Escher, D.T. Tran, G. Svensson, M.A. Webb, T.Z. Regier, V. Kokotin, B. Beuneu, T. Gemming, J. Eckert, Atomic structure and formation of CuZr-Al bulk metallic glasses and composites, *Acta Mater.* 100, 369 (2015) DOI: 10.1016/j.actamat.2015.08.060
- [13] P. Jóvári, I. Kaban, B. Escher, K. K. Song, J. Eckert, B. Beuneu, M. A.Webb, N. Chen, Structure of glassy Cu_{47.5}Zr_{47.5}Ag₅ investigated with neutron diffraction with isotopic substitution, X-ray diffraction, EXAFS and reverse Monte Carlo simulation, *J. Non-Cryst. Solids* **459**, 99 (2017) DOI: 10.1016/j.jnoncrysol.2016.12.037