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Abstract

In this thesis novel approaches are proposed for multi-level scene interpretation based

on various 2D and 3D imaging sources. We focus on measurements of up-top-date

optical cameras, radars and laser scanners both in terrestrial and airborne configu-

rations. Our central aim is to explore common problems appearing in different ap-

plication domains, and address them by joint methodological approaches. To ensure

the theoretical basis of the new models, the surveys and algorithmic developments

are performed in well established Bayesian frameworks, or use recent results of ma-

chine learning research. Low level scene understanding functions are formulated as

various image segmentation problems, where we take the advantages of the Markov

Random Field (MRF) probabilistic framework, which admits us to consider in parallel

data-dependent and prior constraints, to get smooth, noiseless, and observation consis-

tent classification outputs. At object level scene analysis, we rely on the literature of

Marked Point Process (MPP) approaches, which consider strong geometric and prior

interaction constraints in object population modeling. Particularly, we introduce key

developments in spatial hierarchical decomposition of the observed scenarios, and in

temporal extension of complex MRF and MPP models. Additional contributions are

also presented in efficient feature extraction, probabilistic modeling of natural pro-

cesses and feature integration via local innovations in the model structures. In the last

part, we propose new models and algorithms suited to processing the measurements of

novel Lidar laser scanners. The research work in this direction enables us to target new

application areas, but also implies various new challenges due to the particular mea-

surement characteristics of the sensors. Besides Bayesian techniques, we utilize here

the latest deep neural network solutions, fitted to various problems of environment per-

ception. We show by several experiments that the proposed contributions embedded

into a strict mathematical toolkit can significantly improve the results in real world

2D/3D test images and videos, for applications on video surveillance, environment

monitoring, autonomous driving, remote sensing and optical industrial inspection.

dc_942_14

Powered by TCPDF (www.tcpdf.org)



dc_942_14

Powered by TCPDF (www.tcpdf.org)



Contents

1 Introduction 1

2 Fundamentals 7

2.1 Markovian classification models . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Markov Random Fields, Gibbs Potentials and Observation Processes . . . 9

2.1.2 Bayesian labeling approach and the Potts model . . . . . . . . . . . . . . . 10

2.1.3 MRF based image segmentation . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.4 MRF Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.5 Mixed Markov Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Object population extraction with Marked Point Processes . . . . . . . . . . . . . 14

2.2.1 Definition of Marked Point Processes . . . . . . . . . . . . . . . . . . . . 14

2.2.2 MPP energy functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 MPP optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Advanced machine learning techniques . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Methodological contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . 19

3 Multi-layer label fusion models 21

3.1 Label fusion models in computer vision . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 A label fusion model for object motion detection . . . . . . . . . . . . . . . . . . 23

3.2.1 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Multi-layer segmentation model . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 L3MRF Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.4 Experiments on object motion detection . . . . . . . . . . . . . . . . . . . 27

3.3 Long term change detection in aerial photos . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Image model and feature extraction . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 A Conditional Mixed Markov image segmentation model . . . . . . . . . . 33

3.3.3 Experiments on long term change detection . . . . . . . . . . . . . . . . . 36

3.4 Parameter settings in multi-layer segmentation models . . . . . . . . . . . . . . . 39

i

dc_942_14

Powered by TCPDF (www.tcpdf.org)



ii CONTENTS

3.5 Conclusions of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Multitemporal data analysis with Marked Point Processes 41

4.1 Introducing the time dimension in MPP models . . . . . . . . . . . . . . . . . . . 42

4.2 Object level change detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Building development monitoring - problem definition . . . . . . . . . . . 42

4.2.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2.3 Multitemporal MPP configuration model and optimization . . . . . . . . . 48

4.2.4 Experimental study of the mMPP model . . . . . . . . . . . . . . . . . . . 49

4.3 A point process model for target sequence analysis . . . . . . . . . . . . . . . . . 52

4.3.1 Application on moving target analysis in ISAR image sequences . . . . . . 52

4.3.2 Problem definition and notations . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.3 Data preprocessing in a bottom-up approach . . . . . . . . . . . . . . . . . 54

4.3.4 Multiframe Marked Point Process Model . . . . . . . . . . . . . . . . . . 55

4.3.5 Multiframe MPP optimization . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.6 Experimental results on target sequence analysis . . . . . . . . . . . . . . 57

4.4 Parameter settings in dynamic MPP models . . . . . . . . . . . . . . . . . . . . . 59

4.5 Conclusions of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Multi-level object population analysis with an EMPP model 61

5.1 A hierarchical MPP approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Problem formulation and notations . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 EMPP energy model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Multi-level MPP optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Applications of the EMPP model . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.1 Built-in area analysis in aerial and satellite images . . . . . . . . . . . . . 68

5.5.2 Traffic monitoring based on Lidar data . . . . . . . . . . . . . . . . . . . . 71

5.5.3 Automatic optical inspection of printed circuit boards . . . . . . . . . . . . 73

5.6 Benchmark database and evaluation methodology . . . . . . . . . . . . . . . . . . 75

5.7 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.8 Conclusion of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 4D environment perception 81

6.1 Introduction to 4D environment perception . . . . . . . . . . . . . . . . . . . . . . 82

6.2 People localization in multi-camera systems . . . . . . . . . . . . . . . . . . . . . 84

6.2.1 A new approach on multi-view people localization . . . . . . . . . . . . . 85

6.2.2 Silhouette based feature extraction . . . . . . . . . . . . . . . . . . . . . . 87

dc_942_14

Powered by TCPDF (www.tcpdf.org)



CONTENTS iii

6.2.3 3D Marked Point Process model . . . . . . . . . . . . . . . . . . . . . . . 88

6.2.4 Evaluation of multi-camera people localization . . . . . . . . . . . . . . . 89

6.3 A Lidar based 4D people surveillance approach . . . . . . . . . . . . . . . . . . . 91

6.3.1 Foreground extraction in Lidar point cloud sequences . . . . . . . . . . . . 92

6.3.2 Pedestrian detection and tracking . . . . . . . . . . . . . . . . . . . . . . 96

6.3.3 Lidar based gait analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3.4 Action recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3.5 Dataset for evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.3.6 Experiments and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Urban scene analysis with real time Lidar sensors and dense MLS data background 109

6.4.1 Ground-obstacle classification . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4.2 Fast object separation and bounding box estimation . . . . . . . . . . . . . 111

6.4.3 Deep learning based object recognition in the RMB Lidar data . . . . . . . 112

6.4.4 Semantic MLS point cloud classification with a 3D CNN model . . . . . . 113

6.4.5 Multimodal point cloud registration . . . . . . . . . . . . . . . . . . . . . 114

6.4.6 Frame level cross-modal change detection . . . . . . . . . . . . . . . . . . 116

6.4.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5 Conclusions of the chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7 Conclusions of the thesis 121

7.1 Methods used in the research work . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2 New scientific results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3 Examples for application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4 Lecturing and domestic publications . . . . . . . . . . . . . . . . . . . . . . . . . 136

A Summary of abbreviations and notations 137

B Supplement regarding multi-layer label fusion models 141

C Supplement regarding Multitemporal Marked Point Processes 145

C.1 Object level change detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.2 A point process model for target sequence analysis . . . . . . . . . . . . . . . . . 148

C.2.1 Foreground-background separation of ISAR frames . . . . . . . . . . . . . 148

C.2.2 FmMPP energy optimization . . . . . . . . . . . . . . . . . . . . . . . . . 149

C.2.3 Quantitative evaluation of the FmMPP method . . . . . . . . . . . . . . . 149

D Supplement regarding Embedded Marked Point Processes 153

dc_942_14

Powered by TCPDF (www.tcpdf.org)



E Supplement regarding 4D environment perception 159

References 182

iv

dc_942_14

Powered by TCPDF (www.tcpdf.org)



List of Figures

1.1 Examples for different data modalities used in the thesis . . . . . . . . . . . . . . 2

2.1 Demonstration of a segmentation and an object population extraction task. . . . . . 8

2.2 Illustration of simple connections in MRFs . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Demonstration of MRF based supervised image segmentation with three classes . . 12

2.4 Possible interactions in mixed Markov models . . . . . . . . . . . . . . . . . . . . 13

2.5 Marked Point Process example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Calculation of the I(u, v) interaction potentials . . . . . . . . . . . . . . . . . . . 16

2.7 Selected examples of population extraction with MPP models . . . . . . . . . . . . 18

3.1 Demonstration of object motion detection and long term change detection . . . . . 23

3.2 Feature selection in the multi-layer MRF model . . . . . . . . . . . . . . . . . . . 24

3.3 Structure of the proposed three-layer MRF (L3MRF) model . . . . . . . . . . . . . 26

3.4 Four selected test image pairs for qualitative comparison . . . . . . . . . . . . . . 28

3.5 Numerical comparison of the proposed model (L3MRF) to five reference methods . 28

3.6 Evaluation of the proposed L3MRF model versus different fusion approaches . . . 29

3.7 Feature selection for long term change detection . . . . . . . . . . . . . . . . . . . 30

3.8 Feature histograms with statistical approximations . . . . . . . . . . . . . . . . . . 31

3.9 Illustration of the 2 dimensional hg and hc histograms . . . . . . . . . . . . . . . . 32

3.10 Structure of the proposed model and overview of the segmentation process. . . . . 33

3.11 Demonstration of intra- and inter-layer connections . . . . . . . . . . . . . . . . . 34

3.12 Qualitative comparison of the change detection results with different methods . . . 36

3.13 Quantitative comparison of the proposed CXM technique to four previous methods 37

3.14 Impacts of the multi-layer CXM structure for the quality of the change mask. . . . 39

4.1 Low level change detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Building candidate regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3 Plot of the nonlinear feature domain mapping function . . . . . . . . . . . . . . . 46

4.4 Utility of the color roof and shadow features . . . . . . . . . . . . . . . . . . . . . 46

v

dc_942_14

Powered by TCPDF (www.tcpdf.org)



vi LIST OF FIGURES

4.5 Illustration of the feature maps in the BUDAPEST 2008 image . . . . . . . . . . . . 47

4.6 Results on BUDAPEST and BEIJING image pairs . . . . . . . . . . . . . . . . . . . 51

4.7 Target representation in an ISAR image . . . . . . . . . . . . . . . . . . . . . . . 53

4.8 Dominant scatterer detection problem . . . . . . . . . . . . . . . . . . . . . . . . 54

4.9 Center alignment and target line extraction results . . . . . . . . . . . . . . . . . . 57

4.10 Sample frames from the SHIP2-SHIP7 data sets . . . . . . . . . . . . . . . . . . 58

4.11 Airplane detection example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.1 Structure elements of the EMPP model. . . . . . . . . . . . . . . . . . . . . . . . 64

5.2 Results of built-in area analysis, displayed at three different scales . . . . . . . . . 68

5.3 Built-in area analysis - model components . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Vehicle detection from airborne Lidar data . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Sample results on traffic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6 Grouping energies for traffic monitoring and PCB analysis applications . . . . . . 72

5.7 Processing workflow for Mobile Laser Scanning (MLS) data . . . . . . . . . . . . 73

5.8 PCB inspection: Feature demonstration for unary term calculation . . . . . . . . . 74

5.9 Results of PCB analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 Data comparison of two different Lidar sensors . . . . . . . . . . . . . . . . . . . 83

6.2 Multiview people detection and height estimation . . . . . . . . . . . . . . . . . . 84

6.3 Foreground model and texture feature validation . . . . . . . . . . . . . . . . . . . 85

6.4 Side view sketch of silhouette projection . . . . . . . . . . . . . . . . . . . . . . . 86

6.5 Feature definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.6 Cylinder objects modeling people in the 3D scene, and the intersection feature . . . 89

6.7 Detection examples by the proposed 3DMPP model in the City Center sequence . . 90

6.8 Lidar based surveillance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.9 Point cloud recording and range image formation with a RMB Lidar sensor . . . . 92

6.10 Foreground segmentation in a range image part with three different methods . . . . 94

6.11 Components of the dynamic MRF model . . . . . . . . . . . . . . . . . . . . . . . 95

6.12 Backprojection of the range image labels to the point cloud. . . . . . . . . . . . . . 96

6.13 Silhouette projection demonstration . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.14 Lidar based GEI generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.15 Activity recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.16 ADM (left) and AXOR (right) maps for the different actions. . . . . . . . . . . . . 101

6.17 Structure of the used convolutional neural networks . . . . . . . . . . . . . . . . . 102

6.18 Foreground detection with Basic MoG, uniMRF and DMRF models . . . . . . . . 103

6.19 Quantitative evaluation of LGEI based matching . . . . . . . . . . . . . . . . . . . 106

dc_942_14

Powered by TCPDF (www.tcpdf.org)



LIST OF FIGURES vii

6.20 Performance figures based on various factors . . . . . . . . . . . . . . . . . . . . 106

6.21 Result of activity recognition in an outdoor test sequence . . . . . . . . . . . . . . 108

6.22 Workflow of instant environment perception . . . . . . . . . . . . . . . . . . . . . 109

6.23 RMB Lidar data segmentation and object detection . . . . . . . . . . . . . . . . . 110

6.24 The step by step demonstration of the object detection algorithm . . . . . . . . . . 111

6.25 Object classification workflow for RMB Lidar frames . . . . . . . . . . . . . . . . 113

6.26 Point cloud segmentation result with a 3D CNN . . . . . . . . . . . . . . . . . . . 114

6.27 Velodyne HDL-64E to Riegl VMX-450 point cloud registration results . . . . . . . 115

6.28 Change detection between reference MLS data and instant RMB Lidar frames . . . 117

6.29 Demonstration of the proposed MRF based change detection process . . . . . . . . 118

7.1 Flowchart of the i4D system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2 Live demonstration of our Lidar-based person tracker . . . . . . . . . . . . . . . . 136

B.1 Comparative segmentations with different test methods and Ground Truth . . . . . 143

C.1 Evaluation of the single view building model. . . . . . . . . . . . . . . . . . . . . 147

C.2 Demonstration of the foreground-background segmentation . . . . . . . . . . . . . 149

D.1 Steps of the bottom-up entity proposal process . . . . . . . . . . . . . . . . . . . . 154

D.2 Building analysis - sample results for chimney detection . . . . . . . . . . . . . . 157

D.3 Qualitative comparison of the sMPP and EMPP configurations . . . . . . . . . . . 157

E.1 Multimodal Velodyne HDL-64E to Riegl VMX-450 registration results . . . . . . 161

dc_942_14

Powered by TCPDF (www.tcpdf.org)



dc_942_14

Powered by TCPDF (www.tcpdf.org)



List of Tables

4.1 Numerical comparison of the SIFT, Gabor, EV, SM and the proposed methods . . . 50

5.1 Object and group level evaluation of the the proposed EMPP model . . . . . . . . 76

5.2 Child level evaluation of the the proposed EMPP model . . . . . . . . . . . . . . . 77

5.3 Object level and pixel level F-scores in traffic analysis . . . . . . . . . . . . . . . . 78

5.4 PCB inspection task: Comparison of the child level performance . . . . . . . . . . 79

5.5 Average computational time and parent object number . . . . . . . . . . . . . . . 79

5.6 Experiment repeatability for the vehicle detection task . . . . . . . . . . . . . . . 80

5.7 Distribution of the number of falsely grouped objects . . . . . . . . . . . . . . . . 80

6.1 Comparison of the POM and the proposed 3DMPP models . . . . . . . . . . . . . 91

6.2 Point level evaluation of foreground detection . . . . . . . . . . . . . . . . . . . . 104

6.3 Evaluation results of the compared methods . . . . . . . . . . . . . . . . . . . . . 106

6.4 The confusion matrix of action recognition . . . . . . . . . . . . . . . . . . . . . . 107

6.5 Evaluation of the object classification and change detection . . . . . . . . . . . . . 119

C.1 Quantitative evaluation results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

C.2 Evaluation of the different steps in the FmMPP model . . . . . . . . . . . . . . . . 152

E.1 Comparison of Connected Component Analysis and the Hierarchal Grid Model . . 162

E.2 Results of multimodal RMB Lidar and MLS point cloud registration . . . . . . . . 162

ix

dc_942_14

Powered by TCPDF (www.tcpdf.org)



dc_942_14

Powered by TCPDF (www.tcpdf.org)



Chapter 1

Introduction

This thesis deals with selected problems of machine perception, targeting the automated interpre-

tation of the observed static or dynamic environment based on various image-like measurements.

Scene understanding is based nowadays far beyond on conventional image processing approaches

dealing with standard grayscale or RGB photos. Multi-camera systems, high-speed cameras, radar

systems, depth and thermal sensors or laser scanners may be used concurrently to support a given

application, therefore proposing a competitive solution for a problem should not only mean to

construct the best pattern recognition algorithm but also to chose the best a hardware-software

configuration. Some data modalities used in the thesis are demonstrated in Fig. 1.1.

Besides the wide choice of the technologies, we can witness today a quick development of the

available sensors in terms of spatial and temporal resolution, number of information channels, level

of noise etc. For this reason, by implementing efficient environment perception systems we should

answer various challenges of automatic feature extraction, object and event recognition, machine

learning, indexing and content-based retrieval. First, the developed methodologies should be able

to deal with various data sources and they should by highly scalable. This property enables flexible

sensor fusion and the replacement of outdated sensors with novel ones providing improved data

quality, without complete re-structuring of existing software systems. Second, the increased spatial

resolution and dimension of the observed data implies that in a single measurement segment one

may detect multiple effects on different scales, demanding recognizer algorithms which perform

hierarchical interpretation of the content. As an example, in a very high resolution aerial photo, we

can jointly analyze macro-level urban or forest regions, separate different districts and roads of the

cities, extract and cluster buildings, or focus on smaller objects such as vehicles or street furniture

[71, 72]. Third, we should also efficiently utilize the multiple available scales of the time dimen-

sion. While object motion information can be directly extracted through pixel-by-pixel comparison

of the consecutive frames in an image sequence with video frame rate; comparing measurements

with several months or years time differences captured from the same area needs a high level

1
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2 1. INTRODUCTION

(a) Aerial image (b) Radar (ISAR) image (c) Aerial Lidar scan

(d) Printed circuit image (e) Security camera image (f) Terrestrial Lidar scan

Figure 1.1: Examples for different data modalities used in the thesis

modeling approach. The accomplished research work should point therefore towards obtaining a

complex system, where the provided information of various data sources is organized into a uni-

fied hierarchical scene model, enabling multi-modal representation, recognition and comparison

of entities, through combining object level analysis with low level feature extraction.

From a functional point of view, the methods proposed in the thesis present either general pre-

processing steps of different early vision applications, or contribute to higher level object based

scene analysis modules. In the first case, the introduced models rely on low level local features ex-

tracted from the sensor measurements, such as the pixel color values in images, or texture descrip-

tors calculated over small rectangular image parts. The output is a classification (or segmentation)

of the observation, which can be interpreted as a semantic labeling of the raw data. For example,

in a video frame we can separate the foreground and background pixels, or in an aerial Lidar point

cloud roof and terrain regions can be distinguished. Although the classification is primarily based

on the extracted local features, which provide posterior (observation dependent) information for

the process, additional prior constraints are also exploited to decrease the artifacts due to noise

and ambiguities of the input data. One of the simplest, but often used prior condition is the con-

nectivity: we can assume in several problems that the classification should result in homogeneous

regions, e.g. in images neighboring pixels correspond usually to the same semantic class.

Markov Random Fields (MRFs) [73] are widely used classification tools since the early eight-

ies, since they are able to simultaneously embed a data model, reflecting the knowledge on the
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measurements; and prior constraints, such as spatial smoothness of the solution through a graph

based image representation. Since conventional MRFs show some limitations regarding context

dependent class modeling, different modified schemes have been recently proposed to increase

their flexibility. Triplet Markov fields [74] contain an auxiliary latent process which can be used to

describe various subclasses of each class in different manners. Mixed Markov models [75] extend

MRFs by admitting data-dependent links between the processing nodes, which fact enables intro-

ducing configurable structures in feature integration. Conditional Random Fields (CRFs) directly

model the data-driven posterior distributions of the segmentation classes [76]. On their positive

points, the above Markovian segmentation approaches are robust and well established for many

problems [77]. However, as it will be explained in Chapter 2 in details, the MRF concept offers

only a general framework, which has a high degree of freedom. In particularly, a couple of key

issues should be efficiently addressed for a given real-world problem. The first one is extracting

appropriate features and building a proper probabilistic model of each semantic class. The second

key point is developing an appropriate model structure, which consists of simple interactive ele-

ments. The arrangement and dialogue of these units is responsible for smoothing the segmentation

map or integrating the effects of different features. Choosing the right dimension of the field is also

a critical step. MRFs can be either defined on 2D lattices, or on 3D voxel models, but projecting

a high dimensional problem to a lower dimensional domain is also a frequently used option. For

example, for segmenting a point cloud, a straightforward approach is to construct the MRF in the

3D Euclidean space of the measurements. However, if the point cloud data was recorded by a 2.5D

sensor moving on a fixed trajectory, range image representation may provide more efficient results,

which is less affected by artifacts of sensor noise and occlusion.

We propose in this thesis novel solutions regarding many of the above mentioned aspects fol-

lowing demands of real applications. On one hand we combine various statistical features to solve

different change detection problems, and explore the connections between different 2D image and

3D point cloud based descriptors. On the other hand, we investigate the efficiency of various possi-

ble model structures both in terms of scalability and in practical problem solving performance. We

will propose new complex and flexible low level inference algorithms between various measured

features and prior knowledge. Dealing with higher dimensional data we pay particular attention to

reduce the complexity of the model structures, to save computational time and keep the modeling

process tractable.

A higher level of visual data interpretation can be based on object level analysis of the scene.

Object extraction is a crucial step in several perception applications, starting from remotely sensed

data analysis, through optical fabric inspection systems, until video surveillance.

Object detection techniques in the literature follow either a bottom-up, or an inverse (top-down)

approach. The straightforward bottom-up techniques [78] construct the objects from primitives,

dc_942_14

Powered by TCPDF (www.tcpdf.org)



4 1. INTRODUCTION

like blobs, edge parts or corners in images. Although these methods can be fast, they may fail if

the primitives cannot be reliably detected. We can mention here Hough transform or mathematical

morphology based methods [79] as examples, however these approaches show limitations in cases

of dense populations with several adjacent objects. To increase robustness, it is common to fol-

low the Hypothesis Generation-Acceptance (HGA) scheme [80, 81]. Here the accuracy of object

proposition is not crucial, as false candidates can be eliminated in the verification step. However,

objects missed by the generation process cannot be recovered later, which may result in several

false negatives. On the other hand, generating too many object hypotheses (e.g. applying exhaus-

tive search) slows down the detection process significantly. Finally, conventional HGA techniques

search for separate objects instead of global object configurations, disregarding population-level

features such as overlapping, relative alignment, color similarity or spatial distance of the neigh-

boring objects [82].

To overcome the above drawbacks, recent inverse methods [83] assign a fitness value to each

possible object configuration, and an optimization process attempts to find the configuration with

the highest confidence. This way, flexible object appearance models can be adopted, and it is

also straightforward to incorporate prior shape information and object interactions. However, this

inverse approach needs to perform a computationally expensive search in a high dimensional pop-

ulation space, where local maxima of the fitness function can mislead the optimization.

Using the above terminology, MRFs can also be considered as inverse techniques. However

staying at pixel level in the graph nodes, we find only very limited options to consider geometri-

cal information [84, 85]. Marked Point Processes (MPP) [83, 86] offer an efficient extension of

MRFs, as they work with objects as variables instead of with pixels, considering that the number of

variables (i.e. number of objects) is also unknown. MPPs embed prior constraints and data models

within the same density, therefore similarly to MRFs, efficient algorithms for model optimization

[87, 88, 89] and parameter estimation [90, 91] are available. Recent MPP applications range from

2D [92, 93] and 3D object extraction [9, 94] in various environments, to 1D signal modeling [95]

or target tracking [96].

Marked Point Processes have previously been used for various population counting problems,

dealing with a large number of objects which have low varieties in shape. MPP models can effi-

ciently handle these situations, through jointly describing individual objects by various data terms,

and using information from entity interactions by prescribing the (soft) fulfillment of prior geo-

metric constraints [86]. In this way, one can extract configurations which are composed of sim-

ilarly shaped and sized entities such as buildings [97], trees [98, 99], birds [87, 88, 94], or boats

[90] from remotely sensed data, cell nuclei from medical images [100], galaxies in space applica-

tions [93] or people in video surveillance scenarios [101]. While the computational complexity of

MPP optimization may mean bottleneck for some applications, various efficient techniques have
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been proposed to speed up the energy minimization process, such as the Multiple Birth and Death

(MBD) [87] algorithm or the parallel Reversible-Jump Markov Chain Monte Carlo (RJMCMC)

sampling process [89].

Although the above applications show clear practical advantages of conventional MPP based

solutions, neither the time dimension of the measurements nor the spatial hierarchical decomposi-

tion of the scene are addressed in the referred previous works of the literature. Therefore, this thesis

presents contributions focusing on temporal and spatial extensions of the original MPP framework,

by expansively analyzing the needs and alternative directions for the solutions, and demonstrating

the advantages of the improvements in real problem environments.

The temporal dimension appears in two different aspects. The first problem is object-level

change detection in image pairs, where low level approaches are combined with geometric object

extraction by a multi temporal MPP (mMPP) model. The result is an object population, where

each object is marked as unchanged, changed, new, or disappeared between the selected two

time instances, typically based on measurements with several months or years time differences.

A second task is tracking a moving target across several frames in time sequences of very low

quality measurements, such as radar images. For this purpose, a novel Multiframe MPP (FmMPP)

framework is proposed, which simultaneously considers the consistency of the observed data and

the fitted objects in the individual images, and also exploits interaction constraints between the

object parameters in the consecutive frames of the sequence. Following the Markovian approach,

here each target sample may only affect objects in its neighboring frames directly, limiting the

number of interactions for efficient sequence analysis.

Another major targeted issue is spatial hierarchical content modeling. Classical MPP-based

image analysis models [83, 87] focus purely on the object level of the scene. Simple prior in-

teraction constraints such as non-overlapping or parallel alignment are often utilized to refine the

accuracy of detection, but in this way only very limited amount of high level structural information

can be exploited from the global scenario. In various applications however, investigation of object

grouping patterns and the decomposition of objects to smaller parts (i.e. sub-objects) are relevant

issues. We propose therefore a hierarchical MPP extension, called the Embedded Marked Point

Process (EMPP) model, which encapsulates on one hand a hierarchical description between ob-

jects and object parts as a parent-child relationship, and on the other hand it allows corresponding

objects to form coherent object groups, by a Bayesian segmentation of the population.

Machine based perception and analysis of the dynamic 3D (i.e. 4D, where the 4th dimension

is time) environment is nowadays a hot topic in research and engineering, following the quick

progress of autonomous driving, security and smart city related applications. While conventional

electro-optical cameras are still important visual information sources, recently released Lidar range
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6 1. INTRODUCTION

sensors offer alternative approaches for scene analysis, by directly measuring 3D geometric infor-

mation from the environment. Using the Lidar technology, the most important limitation is cur-

rently a necessary trade-off between the spatial and the temporal resolution of the available sensors,

which makes difficult to observe and analyze small details of the scenes in real time. Important re-

search issues are therefore the exploration of new tasks which can be handled by these new sorts of

4D measurements, the adaption of conventional image processing algorithms, structures for voxel-

based scene representation and vision related machine learning methodologies to Lidar data, and

the fusion of measurements of various Lidar and optical sensors to obtain a more complete scene

model. We deal in this thesis with three selected problem families of 4D environment percep-

tion. First, we propose a new Bayesian approach for person localization and height estimation in

a multi-camera system. Second, we construct a novel people surveillance framework based on the

measurements of a single Rotating Multi-beam (RMB) Lidar sensor, implementing motion detec-

tion, moving object separation, tracking, and biometric person identification via Lidar-based gait

descriptors. Third, we introduce a new workflow with various novel algorithms, for large-scale

urban environment analysis based on a car-mounted RMB Lidar, also using a very detailed 3D

reference map obtained via laser scanning.

This thesis uses the basic concepts and results of probability theory (e.g. random variables,

probability density functions, Bayes rule etc.), and machine learning (neural networks, supervised

training strategies) which are supposed to be familiar for the Readers.

The outline of the dissertation is as follows. Chapter 2 presents a short introduction to stochas-

tic image segmentation, object population extraction and machine learning approaches, by intro-

ducing the data types, general notations and basic mathematical tools used in the following parts of

the thesis. The scientific contributions of the Author are presented in Chapters 3-6. Each of these

chapters corresponds to a Thesis Group listed in the Conclusion part in Section 7.2, by giving

the background of the selected problems and the main steps of the solution, particularly focusing

on the validation of the new scientific results which is performed in experimental ways in most

cases. In Chapter 3 novel multi-layer Markovian label fusion models are proposed for two differ-

ent change detection applications. Chapter 4 deals with multitemporal object level scene analysis

for tasks of building change detection in remotely sensed optical image pairs, and moving target

tracking in radar image sequences. In Chapter 5 we give a complex multi-level stochastic model

for spatial scene decomposition, and demonstrate its usability in three very different application

fields. Finally, in Chapter 6 we introduce our above detailed contributions connected to the 4D

environment perception topic. A short conclusion and a summary of the new scientific results is

given in Chapter 7. For helping the Reader, Appendix A provides a detailed overview on the used

abbreviations and notations, while Appendices B-E include some additional figures, tables and

pseudo codes connected to the main contributions of the thesis.
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Chapter 2

Fundamentals

In this thesis, the various sensor measurements at given time instances are represented either as

2D digital images or as 3D point clouds. Both cases can be completed with a temporal dimension

obtaining image or point cloud sequences.

A digital image is defined over a two dimensional pixel lattice S having a finite size SW × SH ,

where s ∈ S denotes a single pixel. The pixels’ observation values represent grayscale or RGB

color information, depth values etc. or any descriptors calculated from the raw sensor measure-

ments by spatio-temporal filtering or feature fusion.

A point cloud L is by definition an unordered set of l points: L = {p1, . . . , pl}, where each

point, p ∈ L, is described by its (x, y, z) position coordinates in a 3D Euclidean world coordinate

system. Additional parameters, such as intensity, color values or further sensor-specific parameters

may also be associated with the points.

Although several different techniques are discussed in the thesis with various goals and model

structures, they are strongly connected from the point of view theoretical foundations and method-

ologies: many of them can be formulated either as low level segmentation (or classification) prob-

lems or as object population extraction tasks (see examples in Fig. 2.1).

Segmentation (or classification) can be formally considered as a labeling task where each local

element (pixel of the image or point of the point cloud) gets a label from a J-element label set

corresponding to J different segmentation classes. In other words, a J-colored image or point

cloud is generated for a given input. Following statistical inverse approaches, we should be able

to assign a fitness (or probability) value to all the J#el possible segmentations1, based on the

current measurements (called observation), domain specific knowledge about the classes, and prior

constraints, in a way that higher fitness values correspond to semantically better solutions.

By object population extraction, we mean the detection of an unknown number of entities

from a preliminary defined object library. Here the fitness function needs to characterize any of

1#el marks here the number of pixels, or points
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8 2. FUNDAMENTALS

(a) Region classification (b) Building extraction

Figure 2.1: Demonstration of a segmentation and an object population extraction task for aerial images.

the possible entity configurations. The objects are described by geometric shapes such as ellipses

or rectangles, while the fitness function evaluates how the independent objects fit the image data

and it may also consider pre-defined interaction constraints.

To overcome the course of dimensionality, the fitness functions are usually modularly defined:

they can be decomposed into individual subterms, and the domain of each subterm consists only

of a few nearby pixels or objects. In this way, if we change locally the segmentation map or the

population, we should not re-calculate the whole fitness function, only those subterms, which are

affected by the selected entities. This property significantly decreases the computational complex-

ity of iterative optimization techniques [102, 103].

An efficient Bayesian approach can be based on a graph representation, where each node of

the graph corresponds to a structural model element, such as a pixel of the image, or an object of

the population. We define edges between two nodes, if the corresponding entities influence each

other directly, i.e. there is a subterm of the fitness function which depends on both elements. For

example, to ensure the spatial smoothness of the segmented images, one can prescribe that the

neighboring pixels should have the same labels in the vast majority of cases [104].

Since the seminal work of Geman and Geman [102], Markov Random Fields (MRFs) and their

variants such as Mixed Markov models offer powerful tools to ensure contextual classification in

image or point set segmentation tasks. Marked Point Process (MPP) models have been introduced

in computer vision more recently, as a natural object-level extension of MRFs. In the following

part of the chapter we give the formal definitions and algorithmic steps regarding MRF based data

segmentation and MPP based object population extraction. The concepts and notations introduced

here will be used in the following parts of the thesis.
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2.1 Markovian classification models 9

2.1 Markovian classification models

2.1.1 Markov Random Fields, Gibbs Potentials and Observation Processes

A Markov Random Field (MRF) can be defined over an undirected graph G = (V, ε), where

V = {υi|i = 1, . . . N} marks the set of nodes, and ε is the set of edges. Two nodes υi and υk are

neighbors, if there is an edge eik ∈ ε connecting them. The set of points which are neighbors of a

node υ (i.e. the neighborhood of υ) is denoted by Nυ, while we mark with N = {Nυ|υ ∈ V} the

neighborhood system of the graph.

A classification problem can be interpreted as a labeling task over the nodes. Using a finite

label set Λ = {l1, l2, . . . , lJ}, we assign a unique label ς(υ) ∈ Λ to each node υ ∈ V. We mean by

a global labeling ̟ the enumeration of the nodes with their corresponding labels:

̟ = { [υ, ς(υ)] | ∀υ ∈ V }. (2.1)

Let us denote by Υ the (finite) set of all the possible global labellings (̟ ∈ Υ).

In some cases, instead of a global labeling, we need to deal with the labeling of a given sub-

graph. The subconfiguration of̟ with respect a subsetX ⊆ V is denoted by̟X = { [υ, ς(υ)] | ∀υ ∈
X }.

In the next step, we define Markov Random Fields. As usual, Markov property means here that

the label of a given node depends only on its neighbors directly.

Definition 1 (Markov Random Field) X is a Markov Random Field (MRF), with respect to a

graph G, if the following two conditions hold:

• for all ̟ ∈ Υ; P (X = ̟) > 0

• for every υ ∈ V and ̟ ∈ Υ: P (ς(υ) | ̟V\{υ}) = P (ς(υ) | ̟Nυ
).

Discussion about MRFs is most convenient by defining the neighborhood system via the cliques of

the graph. A subset C ⊆ V is a clique if every pair of distinct nodes in C are neighbors. C denotes

a set of cliques.

To characterize the fitness of the different global labellings, a Gibbs measure is defined on Υ.

Let V be a potential function which assigns a real number VX(̟) to the subconfiguration ̟X . V

defines an energy U(̟) on Υ by

U(̟) =
∑

X∈2V

VX(̟). (2.2)

where 2V denotes the set of the subsets of V.
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10 2. FUNDAMENTALS

Definition 2 (Gibbs distribution) A Gibbs distribution is a probability measure π on Υ with the

following representation:

π(̟) =
1

Z
exp

(
− U(̟)

)
(2.3)

where Z is a normalizing constant or partition function:

Z =
∑

̟∈Υ

exp
(
− U(̟)

)
. (2.4)

If VX(̟) = 0 whenever X /∈ C, then V is called a nearest neighbor potential.

The following theorem is the principle of most MRF applications in computer vision [102]:

Theorem 1 (Hammersley-Clifford) X is an MRF with respect to the neighborhood system N if

and only if π(̟) = P (X = ̟) is a Gibbs distribution with nearest neighbor Gibbs potential V ,

that is

π(̟) =
1

Z
exp

(
−
∑

C∈C

VC(̟)

)
(2.5)

We mean by observation arbitrary measurements from real world processes (such as image

sources) assigned to the nodes of the graph. In image processing, usually the pixels’ color values

or simple textural responses are used, but any other local features can also be calculated. In general,

we only prescribe that the observation process assigns a D dimensional real vector, f(υ) ∈ RD, to

selected graph nodes. The global observation over the graph is marked by

F = { [υ, f(υ)] | ∀υ ∈ O } where O ⊆ V. (2.6)

MRF based classification models use two assumptions. First, each class label li ∈ Λ cor-

responds to a random process, which generates the observation value f(υ) at υ according to a

locally specified probability density function (pdf), pυ,i (λ) = P (f(υ) = λ|ς(υ) = li). Second,

local observations are conditionally independent, given the global labeling:

P (F|̟) =
∏

υ∈O

P (f(υ)|ς(υ)). (2.7)

2.1.2 Bayesian labeling approach and the Potts model

Let X be an MRF on graph G = (V, ε), with (a priori) clique potentials {VC(̟) | C ∈ C}.
Consider an observation process F on G. The goal is to find the labeling ̟̂ , which is the maximum

a posteriori (MAP) estimate, i.e. the labeling with the highest probability given F:

̟̂ = argmax
̟∈Υ

P (̟|F). (2.8)
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Following Bayes’ rule and eq. (2.7),

P (̟|F) = P (F|̟)P (̟)

P (F)
=

1

P (F)

[
∏

υ∈O

P (f(υ)|ς(υ))
]
P (̟) (2.9)

Based on the Hammersley-Clifford theorem, P (̟) follows a Gibbs distribution:

P (̟) = π(̟) =
1

Z
exp

(
−
∑

C∈C

VC(̟)

)
(2.10)

while P (F) and Z (in the Gibbs distribution) are independent of the current value of̟. Using also

the monotonicity of the logarithm function and equations (2.8), (2.9), (2.10), the optimal global

labeling can be written into the following form:

̟̂ = argmin
̟∈Υ

{
∑

υ∈O

− logP (f(υ)|ς(υ)) +
∑

C∈C

VC(̟)

}
. (2.11)

Note that due to the conditional independence of the observations at the different nodes, the fact

that the prior field π(̟) is an MRF implies that the π(̟|F) posterior field is also an MRF. In this

case the − logP (f(υ)|ς(υ)) quantity can be considered as the potential of a singleton clique {υ}.

2.1.3 MRF based image segmentation

A widely used implementation of the above Bayesian labeling framework for image segmentation

is based on the Potts model [104]. Assume that the problem is defined over the 2D lattice S and we

have a measurement vector f(s) ∈ RD at each pixel s. The goal is to segment the input lattice with

J pixel clusters corresponding to J random processes (l1, . . . , lJ ), where the clusters of the pixels

are consistent with the local measurements, and the segmentation is smooth, i.e. pixels having the

same cluster form connected regions. Here by the definition of G, we assign to each pixel of the

input lattice a unique node of the graph. One can simply use a first ordered neighborhood, were

each pixel has four neighbors. In this case, the cliques of the graph are singletons or doubletons as

shown in Fig. 2.2. As a consequence, the prior term π(̟) = P (̟) of the MRF energy function

is defined by the doubleton clique potentials. According to the Potts model, the prior probability

term is responsible for getting smooth connected components in the segmented image, so that we

give penalty terms to each neighboring pair of nodes whose labels are different. For any r, υ ∈ V

node pairs, which fulfill υ ∈ Nr, {r, υ} ∈ C is a clique of the graph, with the potential:

V{r,υ}(̟) =

{
−δ if ς(r) = ς(υ)
+δ if ς(r) 6= ς(υ)

(2.12)

where δ ≥ 0 is a constant.

A sample MRF based segmentation result, with the demonstration of the role of the Potts

smoothing term, is shown in Fig. 2.3.
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12 2. FUNDAMENTALS

Figure 2.2: Illustration of simple connections in MRFs: (a) first ordered neighborhood of a selected node on
the lattice, (b) ‘singleton’ clique, (c) doubleton clique

(a) (b) (c)

Figure 2.3: Demonstration of MRF based supervised image segmentation with three classes: (a) input image
with the training regions, (b) pixel-by-pixel segmentation without using node interactions, (c) result of the
Potts model with MMD optimization [53]

2.1.4 MRF Optimization

In applications using the MRF models, the quality of the classification depends both on the ap-

propriate probabilistic model of the classes, and on the optimization technique which finds a good

global labeling with respect to eq. (2.11). The latter factor is a key issue, since finding the global

optimum is NP hard [105]. On the other hand, stochastic optimizers using simulated annealing

(SA) [102, 103] and graph cut techniques [105] have proved to be practically efficient offering a

ground to validate different energy models.

The results shown in the following chapters have been generated by either the determinis-

tic Modified Metropolis (MMD) [106, 107] relaxation algorithm or by the fast graph-cut based

optimization technique [105]. Detailed overviews on the various optimization approaches, and

tutorials on MRF based image segmentation can be found in the Ph.D. dissertation of the Author

[53], and in several books and monographs dealing with the topic [73, 77].
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Figure 2.4: Possible interactions in mixed Markov models. Four different configurations, where A and B
regular nodes may directly interact. Empty circles mark address nodes, continuous lines are edges, dotted
arrows denote address pointers.

2.1.5 Mixed Markov Models

Mixed Markov models have been originally proposed for gene regulatory network analysis [75],

and extend the modeling capabilities of Markov random fields: besides prior static connections,

they enable using observation-dependent dynamic links between the processing nodes. This prop-

erty allows encoding interactions that occur only in a certain context and are absent in all others.

A mixed Markov model – similarly to a conventional MRF – is defined over a graph G = (V, ε),

where V and ε denote again the sets of nodes and edges, respectively. A label, i.e. a random vari-

able ς(υ), is assigned to each node υ ∈ V as well, and the node labels over the graph determine a

global labeling ̟ as defined by Formula (2.1).

However in mixed Markov models two types of nodes are discriminated: VR contains regular

nodes and VA is the set of address nodes (V = VR ∪ VA, VR ∩ VA = ∅). Regular nodes r ∈ VR

have the same roles as nodes in MRFs: the corresponding variable ς(r) will encode a segmentation

label getting values from a finite, application dependent label set. On the other hand address nodes

provide configurable links in the graph by creating pointers to other (regular) nodes. Thus for a

given address node a ∈ VA, the domain of its ‘label’ ς(a) is the set VR ∪ {nil}. In the case of

ς(a) 6= nil, let us denote by ς⋆(a) the label of the regular node addressed by a:

ς⋆(a) := ς(ς(a)). (2.13)

There is no restriction on the graph topology: edges can link any two nodes. The edges define

the set of cliques of G, which is denoted again by C.

In a given configuration, two regular nodes may interact directly if they are connected by a

static edge or by a chain of a static edge and dynamic address pointers: four typical configurations

of connection are demonstrated in Fig. 2.4. More specifically, with notation for each clique C ∈ C:

ςC = {ς(υ)|υ ∈ C} and ςAC = {ς⋆(a)
∣∣a ∈ VA ∩ C, ς(a) 6= nil} the prior probability of a given

global labeling ̟ is given by:

P (̟) =
1

Z

∏

C∈C

exp
(
− VC

(
ςC , ς

A
C

) )
(2.14)
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14 2. FUNDAMENTALS

(a) (b) (c)

Figure 2.5: Marked Point Process example: (a) building population as a realization of a point process (b)
rectangle model of a selected building, (c) parameters of the marked object [10]

where VC is a C→ R clique potential function, which has a ‘low’ value if the labels within the set

ςC ∪ ςAC are semantically consistent, while VC is ‘high’ otherwise. Scalar Z =
∑

̟ P (̟) is again a

normalizing constant, which could be calculated over all the possible global labelings. Note that a

detailed analysis of analytical and computational properties of mixed Markov models can be found

in [75], which confirms the efficiency of the approach in probabilistic inference.

2.2 Object population extraction with Marked Point Processes

Similarly to Markov Random Fields, the Marked Point Process (MPP) methods use a graph-based

representation for semantic content modeling. However, in MPPs the graph nodes are associated

with geometric objects instead of low level pixels or point cloud elements. In this way an MPP

model enables to characterize whole populations instead of individual objects, through exploiting

information from entity interactions. Following the classical Markovian approach, each object may

only affect its neighbors directly. This property limits the number of interactions in the population

and results in a compact description of the global scene, which can be analyzed efficiently.

For easier discussion, in this chapter we introduce MPP models purely over 2D pixel lattices,

dealing with 2D objects. While most of the object detection tasks discussed in this thesis are

handled indeed as 2D pattern recognition problems, we will show in later chapters, that the model

extension to 2.5D or 3D (spatial) scenes is quite straightforward.

2.2.1 Definition of Marked Point Processes

In statistics, a random process is called point process, if it can generate a set of isolated points

either in space or time, or in even more general spaces. In this thesis we will mainly use a discrete

2D point process, whose realization is a set of an arbitrary number of points over a pixel lattice S:

o = {o1, o2, . . . , on}, n ∈ {0, 1, 2, . . .}, ∀i : oi ∈ S. (2.15)
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2.2 Object population extraction with Marked Point Processes 15

A sample task for using point processes in image processing is detecting buildings in aerial images,

as shown in Fig. 2.5(a), where each point corresponds to a building center. However, modeling our

objects with point-wise entities is often an insufficient abstraction. For example, in high resolution

aerial photos building shapes can often be efficiently approximated by rectangles (Fig. 2.5(b)). To

include object geometry in the model, we assign markers to the points. As shown in Fig. 2.5(c),

a rectangle can be defined by the center point o ∈ S, the orientation θ ∈ [−90◦,+90◦] and the

perpendicular side lengths eL and el. In this case the marker is a 3D parameter vector (θ, eL, el).

Taking a general case, let us denote by u an object candidate of the scene whose imaged shape

over lattice S is represented by a plane figure from a preliminary fixed shape library. In this

thesis, ellipses, rectangles and isosceles triangles are used. We will model each marked object

by its reference point o, the global orientation θ and further shape dependent parameters such as

major and minor axes for ellipses, the perpendicular side lengths for rectangles, and a side-altitude

pair for triangles. With denoting by P the domain of the markers, the H parameter space of the

individual objects (i.e. u ∈ H) is obtained as H = S × P.

A configuration of an MPP model, denoted by ω, is a population of marked objects:

ω = {u1, . . . , un}, ∀i : ui ∈ H, (2.16)

where the number of objects, n, is an arbitrary integer, which is initially unknown in population

extraction tasks. Consequently, the object configuration space, Ω, has the following form:

Ω =
∞⋃

n=0

Ωn, Ωn =
{
{u1, . . . , un} ⊂ Hn

}
. (2.17)

Next, we define a ∼ neighborhood relation between the objects of a given ω configuration. For

example, we can prescribe for objects u, v ∈ ω, that u ∼ v iff the distance between the object

centers is lower than a predefined threshold. The neighborhood of object u in ω is:

Nu(ω) = {v ∈ ω|u ∼ v}. (2.18)

2.2.2 MPP energy functions

Object populations in MPP models are evaluated by simultaneously considering the input measure-

ments (e.g. images), and prior application specific constraints about object geometry and interac-

tions. Let us denote by F the union of all image features derived from the input data. For char-

acterizing a given ω configuration based on F, we introduce a non-homogenous data-dependent

Gibbs distribution (see eq.(2.3)) on the population space:

PF(ω) = P (ω|F) = 1

Z
· exp

(
−ΦF(ω)

)
(2.19)
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16 2. FUNDAMENTALS

Figure 2.6: Calculation of the I(u, v) interaction potentials: intersections of rectangles are denoted by
striped areas

with a Z normalizing constant:

Z =
∑

ω∈Ω

exp
(
−ΦF(ω)

)
, (2.20)

ΦF(ω) is called the configuration energy. Following the energy decomposition approach discussed

earlier by MRFs (eq. (2.5)), we obtain ΦF(ω) as the sum of simple components, which can be

calculated by considering small subconfigurations only. More specifically, we distinguish unary

(or singleton) terms (A) defined on individual objects, and Interaction terms (I(u, v)), concerning

neighboring objects:

ΦF(ω) =
∑

u∈ω

A(u) + γ ·
∑

u,v∈ω
u∼v

I(u, v) (2.21)

γ > 0 is a weighting factor between the unary and interaction terms, and it should be calibrated in

each application in a case-by-case basis. In general, both the A(u) and I(u, v) terms may depend

on the F observation. However, it is a frequent strategy that only the unary terms depend on F, so

that they evaluate the object candidates as a function of the local image data. On the other hand,

the I(u, v) components may implement prior geometric constraints, such as neighboring objects

should not overlap, or they should have similar orientation. Denoting by Ru ⊂ S the set of image

pixels covered by the geometric figure of object u, a simple interaction term penalizing object

intersection can be calculated as:

I(u, v) =
#(Ru ∩Rv)

#(Ru ∪Rv)
(2.22)

where # denotes the set cardinality. (See also Fig. 2.6.)

In the following, we will only use the subscript F, when we want to particularly emphasize that

a given MPP energy term depends on the measurement data (eg. AF(u), ΦF(ω)). In several clear

situations the subscript notation will be omitted to preserve the simplicity of formalism.
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2.2 Object population extraction with Marked Point Processes 17

2.2.3 MPP optimization

The optimal object population ω̂ in an MPP model can be taken as the MAP configuration estimate:

ω̂ = argmax
ω∈Ω

PF(ω) = argmin
ω∈Ω

ΦF(ω). (2.23)

However, finding ω̂ needs to perform an efficient search in the high dimension population space

with a non-convex energy function. Ensuring high quality object configurations by algorithms

with feasible computation complexity is crucial in several applications, therefore we can find an

extensive bibliography of MPP energy minimization techniques. Most previous approaches use

the iterative Reversible Jump Markov Chain Monte Carlo (RJMCMC) scheme [108, 109], where

each iteration consists in perturbing one or a couple of objects using various kernels such as birth,

death, translation, rotation or dilation. Here experiments show that the rejection rate, especially

for the birth move, may induce a heavy computation time. Besides, one should be very careful

when decreasing the temperature, because at low temperature, it is difficult to add objects to the

population.

A recent alternative approach, called the Multiple Birth and Death Dynamics technique (MBD)

[87] attempts to overcome several ones from the above mentioned limitations. Unlike following

a discrete jump-diffusion scheme like in RJMCMC, the MBD optimization method defines a con-

tinuous time stochastic evolution of the object population, which aims to converge to the optimal

configuration. The evolution under consideration is a birth-and-death equilibrium dynamics on the

configuration space, embedded into a Simulated Annealing (SA) process, where the temperature of

the system tends to zero in time. The final step is the discretization of this non-stationary dynam-

ics: the resulting discrete process is a non-homogeneous Markov chain with transition probabilities

depending on the temperature, energy function and discretization step. In practice, the MBD algo-

rithm evolves the population of objects by alternating purely stochastic object generation (birth)

and removal (death) steps in a SA framework. In contrast to the above RJMCMC implementations,

each birth step of MBD consists of adding several random objects to the current configuration,

which is allowed due to the discretization trick. Using MBD, there is no rejection during the birth

step, therefore high energetic objects can still be added independently of the temperature param-

eter. Thus the final result is much less sensitive to the tuning of the SA temperature decreasing

process, which can be achieved faster. Due to these properties, in selected remote sensing tasks

(bird and tree detection) [87] the optimization with MBD proved to be around ten times faster than

RJMCMC with similar quality results. On the other hand, we note that parallel sampling in MBD

implementations is less straightforward than regarding the RJMCMC relaxation [89].

In the thesis, we will propose different structural modifications of the Multiple Birth and Death

Dynamic (MBD) adopted to our addressed problems. For a deeper understanding of this approach,

we introduce here the steps of the basic MBD algorithm [87]:
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18 2. FUNDAMENTALS

(a) Flamingos c© INRIA (b) Building detection (c) Vehicle detection

Figure 2.7: Selected examples of population extraction with MPP models: (a) flamingo detection in aerial
images [87], (b) building extraction in satellite photos [10], (c) vehicle detection from Lidar data [34]

1. Initialization: calculate a Pb() : S → R birth map using the F input data, which assigns to

each pixel s a pseudo probability value Pb(s) estimating how likely s is an object center.

2. Main program: initialize the inverse temperature parameter β = β0 and the discretization

step δ = δ0 and alternate birth and death steps.

(a) Birth step: for each pixel s ∈ S, if there is no object with center s in the current

configuration ω, choose birth with probability δPb(s).

If birth is chosen in s:

• generate a new object u with center s

• set the object parameters (marks of u) randomly based on prior knowledge

• add u to the current configuration ω.

(b) Death step: Consider the configuration of objects ω = {u1, . . . , un} and sort it from

the highest to the lowes value of the unary (data) term ϕY (u). For each object u taken

in this order compute the death rate as follows:

dω(u) =
δaω(u)

1 + δaω(u)
, where aω(u) = exp

[
−β
(
ΦF(ω/{u})− ΦF(ω)

)]

and kill u with probability dω(u)

3. Convergence test: if the process has not converged, increase the inverse temperature β and

decrease the discretization step δ by a geometric scheme and go back to the birth step. The

convergence is obtained when all the objects added during the birth step, and only these

ones, have been killed during the death step.

Selected state-of-the-art results for MPP based object population extraction in different appli-

cations using different input sources are shown in Fig. 2.7. Examples (b) and (c) are directly

related to the thesis.
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2.3 Advanced machine learning techniques 19

2.3 Advanced machine learning techniques

The previously discussed Bayesian image classification techniques can be efficiently applied, if

either a color/texture based statistical description can specify the semantically corresponding re-

gions (see MRFs), or strong geometric constraints can be adapted for object shape description and

object population modeling (MPPs).

In various situations, for example in semantic urban scene segmentation, detection of objects

with diverse elastic shapes (e.g. pedestrians, various types of vehicles), or biometric identifica-

tion based on visual features, such assumptions cannot be set, and neural network (NN) based

solutions are often taken as first options. While in MRF/MPP models we directly involve our

prior knowledge (such as geometric features) in the modeling process, in NN based methods, the

information used for classification should be entirely extracted from the training data, thus the

qualitative and quantitative parameters of the training dataset are critical factors. Another crucial

issue of NN recognizers is the efficient feature selection. Conventional NNs used handcrafted fea-

tures specified for each problem separately, thus the feature engineering step was a significant part

of algorithm development. This tendency changed by introducing the feature learning strategies

of deep neural networks (DNNs), which has grabbed a very intensive focus of computer vision

research on machine learning approaches in the recent years [111]. Apart from feature learning,

the main contribution of DNNs is that they can also learn strong contextual dependencies from

training samples, leading us close to a human-like holistic scene interpretation. On the other hand,

while some DNN-based attempts on population counting [112] or object tracking [113] have al-

ready been proposed, their superiority versus probabilistic or geometric approaches have not yet

been thoroughly demonstrated in these domains.

This thesis does not provide research results on generally improving deep learning methodolo-

gies, but as we detail in Chapter 6, we utilize the combination of existing DNN architectures and

learning strategies in multiple occasions for solving novel environment perception tasks, including

Lidar-based person identification, 3D object recognition and 3D point cloud scene segmentation.

2.4 Methodological contributions of the thesis

Although Markov Random Field (MRF) and Marked Point Process (MPP) models provide estab-

lished tools for classification and population modeling tasks, they face a couple of limitations,

which are disadvantageous in various real work tasks.

In MRF based segmentation models, the integration of multiple information sources is a key

issue. Earlier proposed feature fusion approaches, such as observation modeling by multinomial

feature distributions, or using simple pixel-by-pixel operations on various label maps, often yield
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insufficient performance. In Chapter 3, we propose novel Markovian label fusion models, which

enable flexible integration of various observation based and prior knowledge based descriptors

in a modular framework. We also introduce a multi-layer Mixed Markov model, which exploits

the probabilistic connection modeling capabilities of Mixed Markov models in the multi-layer

segmentation process.

The conventional MPP models are extended in this thesis both regarding the temporal and

the spatial dimensions. In Chapter 4 we introduce multitemporal MPP frameworks dealing with

object level change detection and moving target tracking tasks. From a technical point of view,

this extension needs the definition of various data-based or prior interaction terms between object

examples from different time layers, apart from the usual intra-layer constraints of eq. (2.22).

Regarding spatial scene content decomposition, in Chapter 5 we propose an Embedded MPP model

consisting of three hierarchical levels, namely object groups, super objects and object parts. The

super (or parent) objects play a similar role as regular objects in MPP models, while the object parts

(or child objects) are also marked objects with a predefined set of possible geometric attributes,

and they are connected to the parents through additional markers. On the other hand, the object

groups are interpreted as sub-populations, which may contain any number of (parent) objects, and

various local geometric constraints can be prescribed for the included members.

Another key point in MPP models is the probabilistic approach for object proposal. In several

previous MPP applications [108], the generation of object candidates followed prior (e.g. Poisson)

distributions. On the contrary, we apply a data driven birth process to accelerate the convergence

of MBD, proposing relevant objects with higher probability based on various image features. In

addition, we calculate not only a probability map for the object centers, but also estimate the

expected object appearances through low-level descriptors. This approach uses a similar idea

to the Data Driven MCMC scheme of image segmentation [110]. However, while in [110] the

importance proposal probabilities of the moves are used by a jump-diffusion process, we should

embed the data driven exploration steps into the MBD framework.

Chapter 6 presents various results from the field of 4D environment perception. For new imag-

ing sensors or sensor configurations, such as the rotating multi-beam Lidar, or the up-to-date high

resolution multi-camera systems, even the possible application areas are not completely explored

yet. Therefore, several recently published techniques rely on ad-hoc and heuristic methodological

approaches. In this thesis, we take the advantage of the established MRF, MPP model concepts

fused with various up-to-date machine learning techniques to improve the automatic detection per-

formance under realistic outdoor circumstances.
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Chapter 3

Multi-layer label fusion models

In this chapter, new multi-layer Bayesian label fusion models are proposed for two different change

detection problems in remotely sensed images.

First a probabilistic model is proposed for automatic change detection on airborne images cap-

tured by moving cameras. To ensure robustness, an unsupervised coarse matching is used instead

of a precise image registration. The challenge of the proposed model is to eliminate the registra-

tion errors, noise and the parallax artifacts caused by the static objects having considerable height

(buildings, trees, walls etc.) from the difference image. The background membership of a given

image point is described through two different features, and a novel three-layer Markov Random

Field (MRF) model is introduced to ensure connected homogeneous regions in the segmented im-

age.

Second, we introduce a Bayesian model, called the Conditional Mixed Markov model (CXM),

for detecting relevant changes in registered aerial image pairs taken with the time differences of

several years and in different seasonal conditions. The CXM model is a combination of a mixed

Markov model and a conditionally independent random field of signals. The new approach inte-

grates global intensity statistics with local correlation and contrast features. A global energy opti-

mization process ensures simultaneously optimal local feature selection and smooth, observation-

consistent segmentation. Validation is given on real aerial image sets provided by the Hungarian

Institute of Geodesy, Cartography and Remote Sensing and Google Earth.

21
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3.1 Label fusion models in computer vision

As emphasized in Chapter 1, selecting an appropriate model structure is a critical issue for Bayesian

image segmentation. Although since Geman and Geman’s paper from 1984 [102] extensive re-

search has been conducted on image processing applications of Markov Random Fields (MRF),

new focus areas emerged in the 2000’s and 2010’s due to the evolution of imaging sensor tech-

nologies, providing new measurement modalities and enhanced image qualities. The technological

progression demanded the development of various new feature fusion approaches within the MRF

framework. As notable proposed solutions, we can mention here MRFs using multinomial fea-

ture distributions [114, 115], multi-layer MRF models with feature driven inter layer interactions

[116], or the fusion MRF [117]. Meanwhile, issues of incorporating novel types of prior informa-

tion and inference rules in MRFs have been less widely explored in the literature. For this reason,

we accomplished research in this direction, focusing on two different pixel level change detection

problems:

• Task 1: Moving object detection in image pairs captured by moving aerial vehicles with a

few seconds of time differences. The task needs an efficient combination of image registra-

tion for camera motion compensation and frame differencing (see Fig. 3.1(a)). Registration

errors and parallax effects caused by 3D scene structures are modeled as noise components,

and a statistical approach is developed to eliminate the undesired distortions form the change

mask.

• Task 2: Detecting relevant changes in registered aerial images captured with time differ-

ences of several months or years. Even staying at a low level (region based) model, this

task needs a more sophisticated approach than simple pixel value differencing, since due to

seasonal changes or altered illumination, the appearance of the corresponding unchanged

areas may also be significantly different. A new region based change detection model is

presented, which locally estimates the efficient discriminating features between ‘changed’

and ‘unchanged’ image regions (Fig. 3.1(b)).

From a methodological point of view, we present in this chapter four main contributions: First, we

construct new multi-layer label fusion model structures, which implement flexible integration of

various (sub-)segmentation results, with keeping the advantages of the established MRF modeling

approach. Second, using the Mixed Markovian concept, we introduce dynamic graph structures

into the multi-layer framework to extend its modeling capabilities. Third, we work out efficient

optimization methods for new the multi-layer models. Fourth, we give an extensive review and

quantitative comparison results of multi-layer models.
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3.2 A label fusion model for object motion detection 23

(a) Object motion detection with camera motion compensation

(b) Long term change detection

Figure 3.1: Demonstration of the addressed object motion detection and long term change detection prob-
lems

In this thesis we mainly focus on introducing the novel methodological issues, while the pre-

sentation of the application specific model components serve to demonstrate the main motiva-

tion of the developments, and help the Reader in better understanding the models. Note that the

corresponding background publications of the Author [12, 13] present detailed introduction and

state-of-the-art review regarding the application environments of task 1 and task 2, respectively,

with various additional qualitative and quantitative experiments comparing the proposed models

to concurrent change detection approaches.

3.2 A label fusion model for object motion detection

As a first example, we focus on the object motion detection problem having two partially over-

lapped images which were taken by moving airborne vehicles above urban roads with a few sec-

onds time difference [46]. Denote by G1 and G2 the two input images above the same pixel lattice

S. The gray value of a given pixel s ∈ S is g1(s) in the first image and g2(s) in the second one.

Formally, we consider frame differencing as a pixel labeling task with two segmentation classes:

foreground (fg) and background (bg). Pixel s belongs to the foreground, if the 3D scene point,

which is projected to pixel s in the first frame (G1), changes its position in the scene’s (3D) world

coordinate system or is covered by a moving object by the time taking the second image (G2).

Otherwise, pixel s belongs to the background.

Assuming that the observed scene consists of an approximately planar ground region with var-

ious static and dynamic 3D urban objects (such as vehicles, walls, trees, short building segments),
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(a) First image: G1

0-0.6 0.6

d(.) histogram in
the background
fitted Gaussian
density function

(c) fd(.) feature statistics
0 0.5 1

c(.) histogram in
the background
fitted Beta
density function

(e) fc(.) feature statistics (g) Ground Truth

(b) Registered second
image: G̃2

(d) Segmented imageD
based on fd(.)

(f) Segmented image C
based on fc(.)

(h) AND operation on
D and C images

Figure 3.2: Feature selection in the multi-layer MRF model. Notations are given in the text of Section 3.2.1.

a 2D similarity transform provided by the Fourier shift-theorem based method [118] can be used

for a coarse estimation of the global transform between the images due to camera motion [54]. In

the following, the registered second frame is denoted by G̃2, and its pixel values by {g̃2(s)}.

3.2.1 Feature selection

Our next task is to define local features at each pixel s ∈ S which give us information for classify-

ing s as foreground or background point. Thereafter, taking a probabilistic approach, we consider

the classes as random processes generating the selected features according to different distribu-

tions. The feature selection is shown in Fig. 3.2. The first feature is the gray level difference of

the corresponding pixels in G̃2 and G1 respectively: fd(s) = g̃2(s) − g1(s). As shown in Fig.

3.2(c), the occurring fd(.) feature values in the background can be statistically characterized by a

Gaussian distribution with a given mean value µ (i.e. global intensity offset between the images)

and deviation σ (uncertainty due to camera noise and registration errors), while any fd(s) value

may occur in the foreground, hence the foreground class is modeled by a uniform density. Next,

we demonstrate the limitations of this feature. After supervised estimation of the distribution pa-

rameters, we derive the D image in Fig. 3.2(d) as the maximum likelihood estimate: the label

of s is argmaxψ∈{fg,bg} P (fd(s)|ψ). We can observe here several false positive foreground points,

mainly near to the boundaries of static 3D field objects.

For the above reasons, we introduce a second feature fc(s), that is obtained by calculat-

ing normalized cross correlation between the rectangular pixel neighborhoods W1(s) in G1 and

W2(s + os) in G̃2 for different os offset values within an l sided search window and take fc(s) =
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maxos Corr{W1(s),W2(s + os)}. As shown in Fig. 3.2(e), fc(s) values in the background, can

be approximated by a Beta density function [119]: P (fc(s)|bg) = B(fc(s), α, β). The foreground

class will be described again by a uniform probability P (fc(s)|fg) with ac and bc parameters.

We see in Fig. 3.2(f) [C image] that the fc(.) descriptor alone causes also poor result. However,

unlike by the d descriptor the false alarms appear mainly in homogenous areas, where the variance

of the pixel values in the blocks to be compared may be very low, thus the normalized correlation

coefficient is highly sensitive to noise. On the other hand, if we consider D and C as a Boolean

lattice, where ‘true’ corresponds to the foreground label, the logical AND operation on D and C

improves the results significantly [see Fig. 3.2(h)]. We note that this classification is still quite

noisy, although in the segmented image, we expect connected regions representing the motion sil-

houettes. Applying Markov Random Fields (MRFs) could be a straightforward idea here, however

the above introduced label-based ‘AND’ fusion rule requires a novel three-layer MRF (L3MRF)

model structure that will be introduced in the next section.

3.2.2 Multi-layer segmentation model

In the proposed approach, we construct an MRF model on a graph G whose structure is shown in

Fig. 3.3. In the previous section, we segmented the images in two independent ways, and derived

the final result through pixel by pixel label operations using the two segmentations. Therefore, we

arrange the sites of G into three layers Sd, Sc and S∗, each layer has the same size as the image

lattice S. We assign to each pixel s ∈ S a unique site in each layer: e.g. sd is the site corresponding

to pixel s on the layer Sd. We denote sc ∈ Sc and s∗ ∈ S∗ similarly.

We introduce a labeling process, which assigns a label ς(.) to all sites of G from the label-set:

L = {fg, bg}. The labeling of Sd (resp. Sc) corresponds to the segmentation based on the fd(.)

(resp. fc(.)) feature alone, while the labels at the S∗ layer represent the final change mask. A

global labeling of G is ̟ = {ς(si)|s ∈ S, i ∈ {d, c, ∗}} .
Following the MRF concept, the labeling of an arbitrary site depends directly on the labels of

its neighbors, defined by the neighborhood relations within G. To ensure the smoothness of the seg-

mentations, we put connections within each layer between site pairs corresponding to neighboring

pixels of the image lattice S (using 4 neighborhoods). On the other hand, the sites at different lay-

ers corresponding to the same pixel must interact in order to produce the fusion of the two different

segmentation labels in the S∗ layer. Hence, we introduce ‘inter-layer’ connections between sites

si and sj: ∀s ∈ S; i, j ∈ {d, c, ∗}, i 6= j. Therefore, the graph has doubleton ‘intra-layer’ cliques

(their set is C2) which contain pairs of sites, and ‘inter-layer’ cliques (C3) consisting of site-triples.

We also use singleton cliques (C1), which are one-element sets containing the individual sites: they

will link the model to the local observations. Hence, the set of cliques is C = C1 ∪ C2 ∪ C3.
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Figure 3.3: Structure of the proposed three-layer MRF (L3MRF) model

The observation process is defined by F = {f(s)|s ∈ S}, where f(s) = [fd(s), fc(s)].

Our goal is to find the optimal labeling ̟̂ , which maximizes the posterior probability: ̟̂ =

argmax̟∈Υ P (̟|F), where following the notations from Chapter 2, Υ denotes the set of all pos-

sible global labelings. Based on the Hammersley-Clifford Theorem (eq. (2.5)), the a posteriori

probability of a given labeling follows a Gibbs distribution.

Our remaining task is to define the VC clique potentials, which have ‘low’ values if ̟C (the

label-subconfiguration corresponding to C) is semantically correct, and ‘high’ otherwise. The

observations affect the model through the singleton potentials. As we stated previously, the labels

in Sd and Sc layers are directly influenced by the fd(.) and fc(.) values, respectively, hence ∀s ∈ S:

V{sd}
(
ς(sd)

)
= − logP (fd(s)|ς(sd)), V{sc} (ς(s

c)) = − logP (fc(s)|ς(sc)) (3.1)

where the probabilities that the given foreground or background classes generate the fd(s) or fc(s)

observation have already been defined in Section 3.2.1. Since the labels at S∗ have no direct links

with the above measurements, uniformly zero potentials can be used there: V{s∗} (ς(s∗)) = 0.

In order to get a smooth segmentation at each layer, the potential of an intra-layer clique C2 =

{si, ri} ∈ C2, i ∈ {d, c, ∗} favors homogenous labels:

VC2
= Θ

(
ς(si), ς(ri)

)
=

{
−δi if ς(si) = ς(ri)
+δi if ς(si) 6= ς(ri)

(3.2)

with a constant δi > 0.
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3.2 A label fusion model for object motion detection 27

As we concluded from the experiments in Section 3.2.1, a pixel is likely to be generated by the

background process, if at least one corresponding site has the label ‘bg’ in the Sd and Sc layers. Its

indicator function is noted here by 1bg : S
d ∪ Sc ∪ S∗ → {0, 1}, where

1bg(υ) =

{
1 if ς(υ) = bg
0 if ς(υ) 6= bg.

(3.3)

With this notation and ρ > 0 the potential of an inter-layer clique C3 = {sd, sc, s∗} is:

VC3
(̟C3

) = VC3

(
ς(sd), ς(sc), ς(s∗)

)
=

{
−ρ if 1bg(s

∗) = max
(
1bg(s

d),1bg(s
c)
)

+ρ otherwise,
(3.4)

Therefore, the optimal MAP labeling ̟̂ , which maximizes P ( ̟̂ |F) (hence minimizes− logP ( ̟̂ |F))
can be calculated using (3.1)−(3.4), and i ∈ {d, c, ∗} as:

̟̂ = argmin
̟∈Υ

{
−
∑

s∈S

logP (fd(s)|ς(sd))−
∑

s∈S

logP (fc(s)|ς(sc))+

+
∑

i;{s,r}∈C2

Θ
(
ς(si), ς(ri)

)
+
∑

s∈S

VC3

(
ς(sd), ς(sc), ς(s∗)

)}
(3.5)

3.2.3 L3MRF Optimization

The energy term of (3.5) can be optimized by conventional iterative techniques, like ICM [120]

or simulated annealing [102]. Accordingly, the three layers of the model are simultaneously op-

timized, and their interactions develop the final segmentation, which is taken at the end as the

labeling of the S∗ layer. To obtain a good suboptimal solution, we have developed a three layer

modification of the deterministic Modified Metropolis (MMD) algorithm, which provides an effi-

cient trade off between segmentation speed and quality in many applications [107]. The detailed

pseudo code of our extended MMD algorithm adapted to the L3MPP segmentation model is given

in Appendix B.

3.2.4 Experiments on object motion detection

For quantitative evaluation, we published a new dataset, called the SZTAKI AirMotion Benchmark1,

which contains manually generated Ground Truth masks regarding different aerial images. We use

three test sets provided by the Hungarian Ministry of Defence Mapping Company c©, which contain

83 (=52+22+9) image pairs. Some demonstrating results of the proposed approach are shown in

Fig. 3.4. We compared our method to five previous solutions detailed in [12]: Reddy [118], which

applies a FFT-based similarity alignment; Farin’s MRF technique [121], which uses a risk map

1Url: http://mplab.sztaki.hu/remotesensing/airmotion_benchmark.html
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Figure 3.4: Four selected test image pairs for qualitative comparison (see also Fig. B.1)
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Figure 3.5: Numerical comparison of the proposed model (L3MRF) to five reference methods, using three
test sets: ‘balloon1’ (52 image pairs), ‘balloon2’ (22) and ‘Budapest’ (9).

to decrease the registration errors; a keypoint based Affine transform estimator [122, 123]; the

Epipolar approach [124], where each pixel is checked against the homography and epipolar [125]

constraints, labeling outliers of both comparisons as foreground; and the K-Nearest-Neighbor-

Based Fusion Procedure (KNNBF) motion segmentation method [126] which is one of the main

applications of the label fusion framework [138]. In the quantitative experiments, we investigated

on how many pixels have the same label in the Ground Truth masks and in the segmented images

obtained by the different methods. For evaluation criterion, we use the F-score which combines

Recall and Precision of foreground detection in a single efficiency measure. Results in Fig. 3.5

show the superiority of the proposed L3MRF model versus previous approaches.

Another relevant issue of validation is to compare the proposed L3MRF model structure - in

the context of the addressed application - to different information fusion approaches. As demon-
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(a) Image 1 (G1)
*

(b) Image 2 (G2)
*

(c) GT motion regions
*

(d) Observation fusion

(e) Decision fusion
*

(f) L3MRF-δ∗0

*
(g) L3MRF-δd,c0

*
(h) Proposed L3MRF

Figure 3.6: Evaluation of the proposed L3MRF model versus different fusion approaches.

strated in Fig. 3.6, our experiments confirmed the benefits of the introduced L3MRF structure for

the addressed problem versus four different information fusion models. It has been shown that the

2D joint density representation of the two examined features (called Observation fusion) cannot

appropriately express here the desired relationship between the feature and label maps, while the

multi-layer approach provides an efficient solution. On the other hand, considering the task as

a global Bayesian optimization problem (3.5) is preferred versus applying a sequential Decision

fusion process, where two independent label maps are created first based on the fd(.) and fc(.)

features respectively, thereafter, the segmentation of S∗ is derived by a pixel by pixel AND oper-

ation from the two change maps. Finally, using intra-layer smoothing interactions in each layer

contributes to the improved segmentation result, unlike in the two following variants: L3MRF-δ∗0 ,

which uses δ∗ = 0 settings, and L3MRF-δd,c0 using δd = 0 and δc = 0.

3.3 Long term change detection in aerial photos

This section focuses on change detection in optical aerial images which were taken with several

years time differences partially in different seasons and lighting conditions (Fig. 3.7). In this case,

straightforward techniques like thresholding the difference image [12, 127] cannot be efficiently

adopted since the observed pixel levels even in the ‘unchanged’ image regions may be significantly

different, due to different illumination conditions, or seasonal changes in vegetation.

In our approach, similarly to Sec. 3.2, changes are identified through two complementary de-

scriptors, however the label fusion part will be more complex than in L3MRF. Instead of combining

the two feature-based label maps via logical operators, we utilize a third feature, which is respon-
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Figure 3.7: Feature selection for long term change detection: a) image 1 (G1), b) image 2 (G2), c) inten-
sity based change detection (φg(.), changes are marked with white), d) correlation based change detection
(φc(.)), e) local variance based segmentation, white if φν(s) = c, f) Ground Truth, g) change detection
results obtained by per pixel integration of φg(.), φc(.) and φν(.) maps

sible for locally choosing the more reliable change descriptor in the different image regions. This

modification requires involving dynamic connections between the nodes of the multi-layer graph

structure, that will be implemented using the Mixed Markov model concept [45, 75].

For simplicity, we use here various notations from Sec. 3.2. Let G1 and G2 be again the two

input (grayscale) images, but we assume now that G1 and G2 have an identical pixel lattice S and

they are already registered by the image providers. The later assumption is reasonable since in

contrast to object motion detection, long term change detection is an offline task. The gray values

are henceforward denoted by g1(s) and g2(s) for a pixel s ∈ S of G1 and G2, respectively.

3.3.1 Image model and feature extraction

We start our investigations in the joint intensity domain of the two images. Let us consider the

2D histogram of the fg(s) = [g1(s), g2(s)]
T vectors extracted over the background regions of the

training images [see Fig 3.8(a) regarding the image pair of Fig. 3.7]. Thereafter we approximate

this histogram by a mixture of K Gaussian distributions, where K is a parameter of the model.

In this way, we measure which intensity values occur often together in the corresponding images.

Thus the probability of the fg(s) observation in the background is calculated as:

P
(
fg(s)

∣∣bg
)
=

K∑

i=1

κi · η
(
fg(s), µi,Σi

)
,

where η(.) denotes a two dimensional Gaussian density function with µi mean vector and Σi co-

variance matrix, while the κi terms are positive weighting factors (
∑K

i=1 κi = 1). Fig 3.8(a)

shows the Expectation Maximization (EM) estimate [128] of the density using K = 5 mixture
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(a) fg feature histograms (b) fc feature histograms

Figure 3.8: Feature histograms with statistical approximations

components. While the background’s intensity model exploits the presence of a few frequently

co-occuring gray level pairs in the two images (e.g. the mean color of plough lands or forests),

the fg(s) histogram of the changed regions has usually several smaller peaks covering a significant

part of the 2D intensity domain. Expressing that any fg(s) value may occur in the changed areas

with similar probabilities, the ‘ch’ class is modeled by a uniform density P
(
fg(s)

∣∣ch
)

[129].

Obviously, the fg(s) feature cannot separate alone changed and unchanged regions. As Fig.

3.7(c) shows, the obtained fg(s)-based maximum likelihood label map φg : S → {ch, bg} con-

tains several false changes in unaltered territories, mainly in highly textured regions (e.g. areas

of buildings and roads), where the occurring fg(s) gray value pairs are less frequent in the global

image statistics.

Similarly to the object motion detection application in Sec. 3.2, the second feature c(s) is

calculated as the normalized cross correlation between the z × z neighborhoods of pixel s in

G1 and G2 images, respectively. In Fig 3.8(b), we plot the histogram of the obtained fc(s) val-

ues over the changed respectively background regions of the training images. Considering the

asymmetry of the empirical distributions, we have found that Beta density approximations [119]

are appropriate for the classes: P (fc(s)|ch) = B
(
[fc(s) + 1]/2, αch, βch

)
and P

(
fc(s)

∣∣bg
)
=

B
(
[fc(s) + 1]/2, αbg, βbg

)
.

As the c(s)-based φc : S → {ch, bg} maximum likelihood segmentation result in Fig. 3.7(d)

shows, this feature is also weak in itself. However we should observe that fg(s) and fc(s) are

efficient complementary features. In low contrasted, homogeneous image regions, where the noisy

fc(s) may be irrelevant, the decision based on fg(s) seems to be fairly reliable. On the other hand
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Figure 3.9: Illustration of the 2 dimensional hg and hc histograms as function of the corresponding ν1(s)
and ν2(s) values

in textured areas one should choose fc(s) instead of fg(s).

In the following, we formulate the contrast based feature selection in a probabilistic manner.

We measure the local contrast over image Gi by νi(s) (i ∈ {1, 2}), as the variance of the gray

levels in a rectangular neighborhood of s. Let be ν(s) = [ν1(s), ν2(s)]
T . We denote by T the

Ground Truth mask with t(s) ∈ {ch, bg} labels ∀s ∈ S, and δ is the Kronecker-delta.

Next, we quantitatively examine the correspondence between the observed ν(s) value and the

ML classification performance using the fg(s) and fc(s) features, respectively. We particionate the

domain of the occurring ν1(s) [similarly ν2(s)] values with L equal bins: b1, . . . , bL (each bn is a

line segment in R.) We say that ν(s) ∈ bm,n if ν1(s) ∈ bm and ν2(s) ∈ bn (bm,n is a rectangle in

R2). Next we build the following ratio histogram hg, which measures for each bm,n bin the ratio of

the number of correctly and erroneously classified pixels through φg(.), where the corresponding

ν(s) values lie in bm,n. With Sm,n = {s|s ∈ S, ν(s) ∈ bm,n}:

hg[m,n] =

∑
s∈Sm,n

δ
(
t(s), φg(s)

)

∑
s∈Sm,n

(
1− δ

(
t(s), φg(s)

)) (3.6)

hc can be defined similarly for the fc(.) feature.

We illustrate the hg and hc 2D ratio histograms in Fig. 3.9(a) and 3.9(c). High peaks of

hg (resp. hc) indicate domains of ν(s) where the decision based on the fg(.) [resp. fc(.)] fea-

ture is reliable. After normalization, the histograms can be considered as probability distribu-

tions which we approximate again with parametric density functions. In this case, the two classes

being modeled are g and c, indicating the ν(s) domains where the fg(s) respectively fc(s) fea-

tures are more reliable regarding the ch/bg classification of pixel s. In the experiments the two

domains proved to be fairly separable with 2D Gaussian density approximations of the hg and

hc histograms as it is shown in Fig. 3.9(b) and 3.9(d) (the histograms are unimodal and only

slightly overlapping). Thus we use the following distributions: P
(
ν(s)

∣∣hg
)
= η

(
ν(s), µg,Σg

)

and P
(
ν(s)

∣∣hc
)
= η

(
ν(s), µc,Σc

)
. Thereafter we can obtain the ML contrast map [Fig. 3.7(e)]
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(a) (b) (c) (d)

Figure 3.10: Structure of the proposed model and overview of the segmentation process.

as: φν(s) = argmaxχ∈{g,c}P
(
ν(s)

∣∣hχ
)
. For estimating the final change mask, φ∗, the following

pixel-by-pixel segmentation process can be taken:

φ∗(s) =

{
φg(s) if φν(s) = g
φc(s) if φν(s) = c

(3.7)

As Fig. 3.7(g) shows, pixel-by-pixel segmentation based on eq. (3.7) is quite noisy, calling for

Markovian filtering of the change mask. However incorporating the above feature-selection-based

segmentation schema needs a different approach from the earlier introduced L3MRF model, as the

ν(s) feature plays a particular role: it can locally switch ON and OFF the fg(s) respectively fc(s)

features into the integration process. Since in MRFs the interactions between the processing nodes

must be static, we will implement an extended structure using the mixed Markov model concept

[75], which will be investigated in the next section.

3.3.2 A Conditional Mixed Markov image segmentation model

The proposed approach, called the Conditional MiXed Markov Model (CXM), is a combination of

a mixed Markov model [75] and a conditionally independent random field of signals. We map the

problem onto a graph G whose structure is shown in Fig. 3.10(c). Previously, we segmented the

images in three different ways, and derived the final result through pixel-by-pixel label operations
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Figure 3.11: Demonstration of (I) intra- and (II.a,II.b) inter-layer connections regarding nodes associated to
pixel s. Continuous line is an edge of G, dotted arrows denote the two possible a destinations of the address
node sν . (in I: i ∈ {g, c, ν, ∗})

using the three segmentations. Therefore we arrange the nodes of G into four layers: Sg, Sc, Sν

and S∗, where each layer has the same size as the S image lattice. Sg, Sc and Sν are called the

feature layers, and S∗ is the combined segmentation layer. We assign to each pixel s ∈ S a unique

node in each layer: e.g. sg is the node corresponding to pixel s on the layer Sg. We denote sc ∈ Sc,
sν ∈ Sν and s∗ ∈ S∗ similarly.

First step is the definition of the labeling random process, which assigns a label ς(q) to each

q node of G. As usual in mixed models [75], graph edges and address pointers express direct

dependencies between the corresponding node labels. The Sg, Sc, and S∗ layers of the model

contain regular nodes, where the label denotes a possible ch/bg segmentation class:

∀s ∈ S, i ∈ {g, c, ∗} : ς(si) ∈ {ch, bg} (3.8)

For each s, ς(sg) resp. ς(sc) corresponds to the segmentation directly influenced by the fg(s) resp.

fc(s) feature; while the labels at the S∗ layer present the final change mask.

On the other hand the Sν layer is responsible for matching the regions of the final change map

S∗ to appropriately segmented regions either in the Sg or in the Sc layers. Hence Sν will be an

address layer, with node-pointer labels {ς(sν)|∀s ∈ S}.
Next we describe how the model encapsulates the information extracted from the input images.

We use a f(.) operator which assigns to the nodes of the feature layers Sg, Sc and Sν the corre-

sponding local observations, so that f(sg) = fg(s), f(sc) = fc(s) and f(sν) = ν(s), ∀s ∈ S.

Denote the global observation process by F = {f(q)|q ∈ O}, where O = Sg ∪ Sc ∪ Sν .

Similarly to MRFs, our proposed CXM segmentation model follows the Maximum a Posteri-

ori (MAP) approach [12, 102], looking for the global labeling ̟̂ which maximizes the following

conditional probability: P (̟|F) = P (F|̟)·P (̟). Assuming conditionally independent observa-

tions, P (F|̟) can be obtained as a product of P
(
f(q)|ς(q)

)
singleton probability terms assigned

to the nodes of the feature layers. In the Sg and Sc layers, we calculate the node-by-node sin-

gletons using the same probability density functions which have already been defined in Section

3.3.1. Thus ∀s ∈ S and ψ ∈ {ch, bg}:

P
(
f(sg)|ς(sg) = ψ

)
= P

(
fg(s)|ψ

)
P
(
f(sc)|ς(sc) = ψ

)
= P

(
fc(s)|ψ

)
(3.9)
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Singletons of Sν will be defined later.

On the other hand using CXM the P (̟) prior probability derives from a mixed Markov model,

thus it follows eq. (2.14). To calculate P (̟), we have to define appropriately the edges (or cliques)

of G and the corresponding VC clique potential functions. To fulfill the desired constraints, we use

in the model two types of cliques representing intra- and inter-layer interactions (see Fig. 3.11).

For the sake of obtaining smooth segmentations, we put connections within each layer among

node pairs corresponding to (4-)neighboring pixels on the S image lattice. Denote the set of the

resulting intra-layer cliques by C2. The prescribed potential function of a clique in C2 penalizes

neighboring nodes having different labels. Assuming r and s to be neighboring pixels on S, the

potential of the doubleton clique C2 = {ri, si} ∈ C2 for each i ∈ {g, c, ν, ∗} is calculated as:

VC2

(
ς(si), ς(ri)

)
=

{
−δi if ς(si) = ς(ri)
+δi if ς(si) 6= ς(ri)

(3.10)

with a constant ϕi > 0.

Now let us continue with the description of the inter-layer interactions. Based on previous

investigations [see (3.7)], ς(s∗) should mostly be equal either to ς(sg) or to ς(sc), depending on

the ‘vote’ of the ν(s) feature. Hence we put an edge among s∗ and sν as well as we prescribe that

address node sν should point either to sg or to sc:

∀s ∈ S : ς(sν) ∈ {sg, sc} (3.11)

The directions of the address pointers are influenced by the singletons of Sν where we use the

distributions defined in Sec. 3.3.1:

P
(
f(sν)|ς(sν) = sχ

)
= P

(
ν(s)|hχ

)
, χ ∈ {g, c} (3.12)

Finally we get the potential function of the inter-layer clique C3 = {s∗, sν} as

VC3

(
ς(s∗), ς̃(sν)

)
=

{
−ρ if ς(s∗) = ς̃(sν)
+ρ otherwise

(3.13)

where ρ > 0, and using (2.13): ς̃(sν) = ς
(
ς(sν)

)
.

Using the above introduced energy terms the optimal ̟̂ can be calculated as:

̟̂ = argmin
̟∈Ω

{∑

s∈S

− logP
(
fg(s)|ς(sg)

)
+
∑

s∈S

− logP
(
fc(s)|ς(sc)

)
+
∑

s∈S

− logP
(
ν(s)|ς(sν)

)

+
∑

i;{s,r}∈C2

VC2

(
ς(si), ς(ri)

)
+
∑

s∈S

VC3

(
ς(s∗), ς̃(sν)

)}
(3.14)

where i ∈ {g, c, ν, ∗} and Ω denotes the set of all the possible global labelings.

dc_942_14

Powered by TCPDF (www.tcpdf.org)



36 3. MULTI-LAYER LABEL FUSION MODELS

Figure 3.12: Qualitative comparison of the change detection results with the different test methods and the
proposed CXM model, for data sets: SZADA (S), TISZADOB (T) and ARCHIVE (A). White regions mark
the detected/Ground Truth changes.

We minimize the energy term of eq. (3.14) again with the deterministic Modified Metropolis

relaxation process, in a similar manner to the L3MRF’s optimization algorithm presented in Ap-

pendix B. Note that due to its fully modular structure, the introduced model could be completed

in a straightforward way with additional sensor information (e.g. color or infrared sensors) or

task-specific features depending on availability.

3.3.3 Experiments on long term change detection

For evaluation of CXM we used three sets of optical aerial image pairs provided by the Hungarian

Institute of Geodesy Cartography & Remote Sensing (FÖMI) and Google Earth (see Fig. 3.12).

We published the labeled test data as the SZTAKI AirChange Benchmark Set1.

Data set SZADA contains images taken by FÖMI in 2000 and in 2005, respectively. This test

set consists of seven - also manually evaluated - photo pairs, covering in aggregate 9.5km2 area

at 1.5m/pixel resolution (the size of each image in the test set is 952 × 640 pixels). One image

1Url: http://mplab.sztaki.hu/remotesensing/airchange_benchmark.html
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Figure 3.13: Quantitative comparison of the proposed CXM technique to four previous methods on the three
sets of the SZTAKI AirChange Benchmark: SZADA, TISZADOB and ARCHIVE. False alarm, missed alarm
and overall error rates are given in percent of the checked pixels.

pair has been used here for training and the remaining six ones for validation. The second test set

called TISZADOB includes five photo pairs from 2000 resp. 2007 (6.8km2) with similar size and

quality parameters to SZADA. Finally, in the test ARCHIVE, we compared an aerial image taken

by FÖMI in 1984 to a corresponding Google Earth photo from around 2007. The latter case is

highly challenging, since the photo from 1984 has a poor quality, and several major differences

appear due to the 23 years time difference between the two shots. Ground Truth masks have been

generated manually for each image pair of the training and test sets. The following changes have

been considered: new built-up regions, building operations, planting forests or individual trees

(trees only at high resolution), fresh plough-lands and groundworks before building over.

In our paper introducing CXM [13], we quantitatively compared our method to four previous

solutions: the first technique, called PCA [130], projects the joint gray level vectors into the space

of the principal components estimated over the background training regions, and applies MRF

classifications. The remaining three references, Hopfield [131], Parzen [132] and MLP [133, 134]

segment the difference image with different supervised techniques. During the numerical tests, we

used the same metric as [131, 132]: we compared the segmentation results provided by the different

techniques to the Ground Truth (GT), and measured the numbers of false alarms (unchanged pixels

which were detected as changes), missed alarms (erroneously ignored changed pixels) and overall

error (sum of the previous two quantities). Comparative results on the three test sets are given in

Fig. 3.13 in percent of the number of processed image pixels. As this figure shows, the overall error

of the proposed CXM model was below the error of the reference methods by about 2− 5 percent.

Note that the generally weaker results in the ARCHIVE tests were primarily caused by the lower

image quality. For the sake of visual demonstration, we show the comparative change detection

results of some relevant image parts in Fig. 3.12. We can observe that the CXM model produced

smooth and more accurate change regions in the selected areas, compared to the reference methods.
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In Fig. 3.14, similarly to the evaluation of L3MRF, we also demonstrate that the introduced label-

based feature integration approach outperformed decision fusion techniques.

Since the publication date of the CXM model in 2009 [13], various novel multi-layer MRF

models have been published. For this reason, in 2015 we prepared an up-to-date survey article

on the existing techniques [4], comparing CXM in details to two newer approaches [117, 135]

from 2014, in cooperation with their authors. Here the first reference is a Multicue MRF model

[135], which integrates the modified Histogram of Oriented Gradients and graylevel difference

features into the original Multi-MRF structure framework proposed by [116], where two layers

correspond to the two feature maps and the third one is the final segmentation layer. The class

models and the inter-layer interaction terms are both affected by observation dependent and prior

constraints, differently from CXM where the feature maps only affect the singleton terms, while

the interaction terms implement purely prior label fusion (soft-)constraints. The second reference,

called Fusion-MRF [117], simultaneously realizes adaptive segmentation and change detection for

optical remote sensing images, where each layer represents a given input image; thus “multi-layer”

refers here to multi-temporal images. In our study [4], the quantitative comparison was based

again on the SZTAKI AirChange Benchmark Set, however depending on the different approaches

on change modeling, further considerations should have been taken. Multicue MRF is a direct

change detection technique similarly to our CXM [13] and all reference methods of Fig. 3.13,

which obtain changes through segmenting similarity maps between the input images. On the other

hand the Fusion MRF follows a Post Classification Comparison (PCC) approach, which segment

first the input images into various land-cover classes, and changes are obtained indirectly as regions

with different class labels in the different time layers. Therefore, by testing the Fusion MRF, we

could not rely on the available Ground Truth (GT) change masks (referred as AirChange GT).

Instead, we generated new GT (called Region PCC GT), where various land-cover classes have

been considered for different image pairs of the test set, such as urban and non-urban; or meadow,

planted meadow and forest. Note that as concluded in [4] the two GT generating approaches

correspond to two different use-cases, and both ones may be relevant. Comparative experiments

between CXM and the Fusion MRF with the two different GT types gave obviously different

results, showing the superiority of CXM with 4-58% in F-score using the original AirChange GT

masks, and the advantages of the Fusion MRF (with 14-31%) with the Region PCC GT. Calculating

the Overall error for five selected image pairs (Fig. 3.13) showed the minor superiority of the

newer Multicue MRF (with a margin of 0.5-2%), while calculating the traditional Precision, Recall

and F-score values indicated notable advantages of CXM due to a significantly higher Recall rate.

In summary, the experiments of our survey demonstrated that the proposed CXM technique proved

to be also competitive versus more recent multi-layer change detection models.
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(a) Ground Truth (b) Decision fusion (c) Ensemble of MRFs (d) Proposed CXM

Figure 3.14: Impacts of the multi-layer CXM structure for the quality of the change mask. We compare the
results of (b) the pixel-by-pixel classification without spatial smoothing, (c) the ensemble of three indepen-
dent, single-layer MRFs and (d) the proposed multi-layer model

3.4 Parameter settings in multi-layer segmentation models

The parameters of the introduced multi-layer segmentation models can be divided into three groups:

(i) preliminary parameters of feature calculation, (ii) parameters of the probability density func-

tions in the data terms and (iii) parameters of the prior intra- and inter-layer potential functions.

First, the size of block matching windows (z) used for correlation calculation and in L3MRF

the size of search window (l) are related to a priori knowledge about the image resolution and

textureness, object size and magnitude of the parallax distortion. The correlation window should

not be significantly larger than the expected objects to ensure low correlation between an image

part which contains an object and one from the same ‘empty’ area.

Second, the feature distribution (pdf) parameters can be obtained by conventional Maximum

Likelihood estimation algorithms from background and foreground training areas. If manually

labeled training data is not available, the foreground training regions must be extracted through

outlier detection [136] in the feature spaces.

Third, while data-based pdf parameters strongly depend on the input image data, interaction

potential factors are largely independent of it. Experimental evidence suggests that the model is not

sensitive to a particular setting of ρ or δi within a wide range, which can be estimated a priori. The

parameters of the intra-layer potential functions, δi, influence the size of the connected blobs in

the segmented images. Although automatic estimation methods exist for similar smoothing terms

[137], δi is rather a hyper-parameter, which can be fixed by trial and error. Higher δi values result

in more compact foreground regions, however, fine details of the silhouettes may be distorted that

way. We have used ρ = δ∗: this choice gives the same importance to the intra-layer smoothness

and the inter-layer label fusion constraints.
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3.5 Conclusions of the chapter

In this chapter, we have introduced novel Markovian label fusion models for two different change

detection problems from the remote sensing domain. First, we proposed a three-layer MRF model

(L3MRF) for extracting the regions of object motions from image pairs taken by an airborne mov-

ing platform. The output of the proposed method is a change map, which can be used e.g. for

estimating the dominant motion tracks (i.e. roads) in traffic monitoring tasks, or for outlier region

detection in mosaicking and in stereo reconstruction. Moreover, it can also provide an efficient

preliminary mask for higher level object detectors and trackers in aerial surveillance applications.

We have shown that even if the preliminary image registration was relatively coarse, the false

motion alarms could be fairly eliminated with the integration of frame-differencing with local

cross-correlation, which presented complementary features for detecting static scene regions. The

efficiency of the method has been validated through three different sets of real-world aerial images,

and its behavior versus five reference methods and four different information fusion models has

been quantitatively and qualitatively evaluated. The experiments have shown that the proposed

model outperformed the reference methods dealing with image pairs with large camera and object

motions and significant but bounded parallax.

In the second part of the chapter, we addressed the detection of statistically unusual changes

in optical aerial image pairs taken with significant time differences. A novel Conditional Mixed

Markov (CXM) model has been proposed, which could integrate the robustness of MRF-based

segmentation techniques [102], the modularity of multi-layer approaches [138] and semantic flex-

ibility of mixed Markov models [75]. The introduced method utilized information from three

different observations: global intensity statistics, local correlation and contrast. The performance

of the method has been validated using real-world aerial images. The superiority of CXM ver-

sus four earlier reference methods, and its relevance against two newer methods has been shown

quantitatively and qualitatively.

Both models of this chapter may be used as efficient and scalable change detection filters for

several remote sensing applications. The methods are purely based on low-level features, working

without object extraction or identification of land cover classes. Therefore they can be adopted

for a large variety of scenes and purposes, even in situations where the concept of ‘interesting

changes’ is not well defined. The methods can support manual evaluation of large data sets by

focusing the operator’s attention to targets or changed areas, and also in automated systems with

restricting the field of interest and presenting shape or region based descriptors for higher level

image interpretation modules.

dc_942_14

Powered by TCPDF (www.tcpdf.org)



Chapter 4

Multitemporal data analysis with Marked

Point Processes

In this chapter we introduce new approaches for object level dynamic scene modeling based on

multitemporal measurements, by extending the conventional Marked Point Process framework

with modules focusing on the time dimension. First, a new probabilistic method is proposed

which integrates building extraction with change detection in pairs of remotely sensed images cap-

tured with several years time differences. The output of the method is a population of 2D building

footprint segments, where status information is provided for each segment highlighting changes

between the two time layers.

In the second part, we propose a Multiframe Marked Point Process model of line segments and

point groups for automatic target structure extraction and tracking in Inverse Synthetic Aperture

Radar (ISAR) image sequences. For the purpose of dealing with scatterer scintillations and high

speckle noise in the ISAR frames, we obtain the resulting target sequence by an iterative optimiza-

tion process, which simultaneously considers the observed image data and various prior geometric

interaction constraints between the target appearances in the consecutive frames.

For both models, detailed quantitative evaluation is performed on real remotely sensed mea-

surements.

41
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4.1 Introducing the time dimension in MPP models

Conventional Marked Point Process (MPP) techniques are applicable for the analysis of static

scenarios, however several applications require object level investigations on multitemporal mea-

surements. Our key contribution in this chapter is to propose methodologies for incorporating the

time dimension into the MPP framework. We will address two different challenges: object level

change detection and moving target analysis. Although both issues are quite general, for easier dis-

cussion and validation, we introduce the new model structures for selected applications: building

development monitoring and moving object analysis in radar (ISAR) image sequences.

4.2 Object level change detection

In this section we introduce a novel Multitemporal Marked Point Process (mMPP) model, which

is able to detect objects and mark the object level changes in remotely sensed image pairs taken at

different time instances. We present methodological contributions in three key issues:

• We implement a novel object-change modeling approach, which simultaneously exploits low

level change information between the time layers and object level description to recognize

and separate changed and unaltered objects.

• Answering the challenges of data heterogeneity in aerial and satellite image repositories,

we construct a flexible hierarchical framework which can create various object appearance

models from different elementary feature based modules.

• To simultaneously ensure the convergence, optimality and computation complexity con-

straints raised by the increased data quantity in remote sensing applications, we adopt the

quick Multiple Birth and Death optimization technique for change detection purposes, and

propose a novel non-uniform stochastic object birth process, which generates relevant ob-

jects with higher probability based on low-level image features.

4.2.1 Building development monitoring - problem definition

Following the evolution of built-up regions is a key issue of aerial and satellite image analysis.

Although the topic has been extensively studied since the 80’s, it has had to continuously face the

challenges of the quickly evolving quality and quantity of remotely sensed data, the richness of

different building appearances, the data-heterogeneity in the available image repositories and the

various requirements of new application areas [40]. As discussed in Chapter 3 (Sec. 3.3), pixel

level change detection approaches, such as our conditional mixed Markov model (CXM) [13] can
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(a) Input image 1 (b) Input image 2 (c) Changed regions of image 2

Figure 4.1: Low level change detection: (a) and (b) input images, (c) change mask ̺ch

be efficiently used for region based comparison of two remotely sensed images. However, as

demonstrated in Fig. 4.1, in cases of high-resolution images with large connected change-regions,

a low level change mask cannot efficiently highlight the interesting image content. Stepping up

to object level, we develop here a Marked Point Process approach, which models the building

population as an optimal configuration of simple geometric objects [42], that is obtained through

an iterative process of stochastic birth and death steps (see definitions in Sec. 2.2).

Formally, the input of the proposed method consists of two co-registered aerial or satellite

images which were taken from the same area with several months or years of time difference. We

consider each building to be constructed from one or many rectangular building segments, and as

output we provide the size, position and orientation parameters of the detected building segments,

giving information which objects are new, demolished, modified/rebuilt or unchanged [43, 44].

Let us denote by S the common pixel lattice of the input images and by s ∈ S a single pixel. Let

u be a building segment candidate assigned to the input image pair, which is jointly characterized

by geometric and temporal attributes. For purposes of dealing with multiple time layers, we assign

to each u an index flag, ξ(u) ∈ {1, 2, ∗}, where ‘∗’ indicates an unchanged object (i.e. present in

both images), while ‘1’ and ‘2’ correspond to building segments which appear only in the first or

second image respectively. We will denote the set of all the possible object records u=(cx, cy, eL,

el, θ, ξ) by H. The output of the proposed model is a configuration of building segments, ω ∈ Hn,

where n, the number of objects is also unknown.

4.2.2 Feature selection

Since the proposed model obtains the optimal object configuration through stochastic birth-death

iterations, two essential questions should be answered based on the image data. First, how can we

efficiently generate relevant objects during the birth process? Second, how can it be ensured that

the adequate objects survive the death step? To keep focus on both challenges, we utilize low level

and object level features in parallel [52].
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(a) Input image (b) Thresh. P gr
b (s) map (c) Color mask (d) Thresh. P sh

b (s) map

Figure 4.2: Building candidate regions obtained by the low level (b) gradient (c) color and (d) shadow
descriptors

4.2.2.1 Low level features for building detection

We begin the discussion with low level features extracted from individual images. For the purposes

of built-in area estimation, at each pixel s we calculate a pair of birth probabilities, P (1)
b (s) and

P
(2)
b (s), which give the likelihood of s being an object center in image 1, and 2, respectively. The

nomination refers to the fact that in the birth step the frequency of proposing an object at s will be

proportional to the local birth probabilities.

The first feature exploits the fact that regions of buildings should contain edges in perpendicular

directions, which can be robustly characterized by Local Gradient Orientation Density Histograms

(GODH) [139] calculated around each pixel s in a Wl(s) rectangular region. If this region covers

a building, the orientation histogram has two peaks, located at 90◦ degree distance, which can be

measured by correlating the histogram with an appropriately matched bi-modal density function.

Therafter based on the maximal correlation values we can assign to each pixel s a likelihood P gr
b (s)

that s is center of a building. For the sample image in Fig. 4.2(a), a thresholded P gr
b map is shown

in Fig. 4.2(b), marking an estimation for building regions. Furthermore, the location of the peak

value of GODH around s estimates the dominant gradient directions in the local neigborhood.

Thus, for a building with center s, we expect its θ parameter around a mean orientation value µθ(s)

which is equal to the peak location of the local GODH.

We continue with roof color filtering. Several types of roofs can be identified by their typical

colors [80]. Let us assume that based on a roof color hypothesis, we extract an indicator mask

̺co(s) ∈ {0, 1} (e.g. by thresholding a chrominance channel), where ̺co(s) = 1 marks that s has

roof color. Many roof pixels are expected around building centers, thus for each s we calculate the

accumulated ̺co−filling factor in its neighborhood: Γs =
∑

r∈Wl(s)
̺co(r). The color birth map

value is obtained as P co
b (s) = Γs/

∑
r∈S Γr. Note that due to color overlapping between the roofs

and the background [80], the ̺co(s) mask often only contains a part of the building segments, e.g.

only red roofs are detected in Fig. 4.2(c).

A supplementary evidence for the presence of buildings can be obtained through their cast

shadows [80, 140]. In several types of remote sensing scenes, a binary shadow mask ̺sh(s) can be
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derived by filtering pixels from the dark-blue color domain [141]. The relative alignment of shad-

ows to the buildings is determined by the global Sun direction, which can be set with minor user

interaction or calculated automatically [80]. Consequently, we can identify the building candidate

areas as image regions lying next to the shadow blobs opposing the Sun direction (see Fig. 4.2(d)

and later Fig. 4.4(b)). As for the shadow based birth map, we use a constant birth rate P sh
b (s) = psh0

within the obtained candidate regions and a smaller constant on the outside.

Up to this point, we have used various descriptors to estimate the location and appearance of

the buildings in the individual images. However, a low level change mask ̺ch demonstrated in Fig.

4.1 can be directly involved in the model, since it separates efficiently the image regions which

contain the changed and unchanged buildings, respectively. The probability of change around

pixel s is derived as: Pch(s) =
∑

r∈Wl(s)
̺ch(r)/area {Wl(s)}. Considering the change feature,

we can exploit an additional information source, which is independent of the object recognizer.

During the birth step, we will propose an unchanged object at s with a probability proportional to

(1−Pch(s)) ·maxi∈{1,2} P
(i)
b (s), while at the same location, the likelihood of generating a changed

building segment is Pch(s) · P (i)
b (s) for image i ∈ {1, 2}.

4.2.2.2 Object-Level Features

Besides efficient object generation, the second key point of the applied birth-death dynamics based

approach is to validate the proposed building segment candidates. In this section, we construct a

ϕ(i)(u) : H → [−1, 1] energy function, which calculates a negative building log-likelihood value

of object u in the ith image (hereafter we ignore the i superscript). By definition, a rectangle with

ϕ(u) < 0 is called attractive object, and we aim to construct the ϕ(u) function so that attractive

objects correspond exclusively to the true buildings.

The process consists of three parts: feature extraction, energy calculation and feature integra-

tion. First, we define different f(u) : H → R features which evaluate a building hypothesis for u

in the image, so that ‘high’ f(u) values correspond to efficient building candidates. In the second

step, we construct energy subterms for each feature f , by attempting to satisfy ϕf (u) < 0 for real

objects and ϕf (u) > 0 for false candidates. For this purpose, we project the feature domain to

[−1, 1] with a monotonously decreasing function shown in Fig. 4.3:

ϕf (u) = M(f(u), d0, D) =





(
1− f(u)

d0

)
, if f(u) < d0

exp
(
−f(u)−d0

D

)
− 1, if f(u) ≥ d0

(4.1)

Observe that the M function has two parameters: d0 andD. WhileDf performs data-normalization,

df0 is the object acceptance threshold concerning feature f : u is attractive according to the ϕf (u)

term iff f(u) > df0 .
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−1

0

1

xd
0

Q(.)

Figure 4.3: Plot of the nonlinear feature domain mapping function M(x, d0, D)

(a) Color roof feature (b) Shadow feature

Figure 4.4: Utility of the color roof and shadow features

Finally, we must consider, that the decision based on a single feature f can lead to a weak

classification, since the buildings and the background may overlap in the f -domain. Therefore,

in the third step, the joint energy term ϕ(u) must be appropriately constructed from the different

ϕf (u) feature modules.

We begin the introduction of the different feature models with gradient analysis. Below the

edges of a relevant rectangle candidate Ru, we expect the magnitudes of the local gradient vectors

(∇gs) to be high and the orientations to be close to the normal vector (ns) of the closest rectangle

side (Fig. 4.5(c)(d)). The f gr(u) feature is calculated as: f gr(u) = 1
#∂̃Ru

∑
s∈∂̃Ru

∇gs · ns, where

‘·’ denotes scalar product, ∂̃Ru is the dilated edge mask of rectangle Ru, and #∂̃Ru is the number

of pixels in ∂̃Ru. The data-energy term is calculated as: ϕgr(u) = M(f gr(u), dgr, Dgr).

The calculation of the roof color feature is shown in Fig. 4.4(a). We expect the im-

age points to have dominant roof colors inside the building footprint Ru, while the Tu object-

neighborhood (see Fig. 4.4(a)) should contain a majority of background pixels. Hence we calculate

the f co
in (u) =

1
#Ru

∑
s∈Ru

̺co(s) internal and f co
ex (u) = f co

ex (u) =
1

#Tu

∑
s∈Tu

[
1− ̺co(s)

]
external

filling factors, where #X denotes the area of X in pixels and ̺co(s) is the color mask value by s.

We prescribe that u should be attractive according to the color term if it is attractive both regarding

the internal and external subterms, thus ϕco(u) = max [M(f co
in (u), d

co
in , D

co
in ),M(f co

ex (u), d
co
ex, D

co
ex)].

We continue with the description of the shadow term. This step is based on the binary

shadow mask ̺sh(s), extracted in Sec. 4.2.2.1. Using the shadow direction vector ~vsh (opposite of

the Sun direction vector) we identify a shadow candidate area T sh
u next to the Ru object region, as

demonstrated in Fig. 4.4(b). Thereafter, similarly to the color feature, we expect low shadow pres-
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(a) Input (color image) (c) Gradient map (e) Shadow map (g) a* color channel

(b) Ground Truth (GT) (d) Gradient feature (f) Shadow feature (h) Color mask

Figure 4.5: Illustration of the feature maps in the BUDAPEST 2008 image. Gradient and shadow features
are relevant in the left-bottom regions, while the color descriptor is efficient in the top-right image parts. In
image (d), the gradient feature is shown under the GT object borders.

ence in the Ru internal and a high one in the T sh
u external region, which constraints are represented

by f sh
in (u) =

1
#Ru

∑
s∈Ru

[
1−̺sh(s)

]
and f sh

ex (u) =
1

#T sh
u

∑
s∈T sh

u
̺sh(s) features. The energy term

is obtained as: ϕsh(u) = max
[
M(f sh

in (u), d
sh
in , D

sh
in ),M(f sh

ex (u), d
sh
ex, D

sh
ex)
]
. Note that this approach

does not require accurate building height information, since we do not penalize it, if shadow blobs

of long buildings exceed the T sh
u regions.

The next step is feature integration. Since as shown in Fig. 4.5, individual features may be in

themselves inappropriate for modeling complex scenes, the proposed framework enables flexible

feature integration. From the feature primitive terms introduced in Sec. 4.2.2.2, first we construct

building prototypes. For each prototype we can prescribe the fulfillment of one or many feature

constraints whose ϕf -subterms are connected with the max operator in the joint energy term of the

prototype (logical AND in the negative log-likehood domain).

Additionally, several building prototypes can be detected simultaneously in a given image pair,

if the prototype-energies are joined with the min (logical OR) operator. Thus the final object energy

term is derived by a logical function, which expresses some prior knowledge about the image and

the scene, and it is chosen on a case-by-case basis. For example, in the BUDAPEST pair we use two

prototypes: the first one prescribes the edge and shadow constraints, the second one the roof color,

thus the joint energy is calculated as: ϕ(u) = min
{
max {ϕgr(u), ϕsh(u)}, ϕco(u)

}
. Similarly, for

the BEIJING images (see Fig. 4.6, bottom) we use gradient (ϕgr) & shadow (ϕsh) and homogeneity

based (detailed in [10]) prototypes.
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4.2.3 Multitemporal MPP configuration model and optimization

In this section we represent the building change detection task as an energy minimization problem.

Following the definitions from Sec. 2.2.1, u denotes a given building segment, and the goal of

the proposed approach is to extract an ω = {u1, . . . , un} ∈ Ω object configuration, where n, the

number of building segments in initially unknown. The object neighborhood is defined here in a

straightforward way: we say that u ∼ v if their rectangles Ru and Rv intersect. By denoting with

F the union of all image features derived from the input data, the goal is to minimize a classical

MPP energy function of (2.21):

ΦF(ω) =
∑

u∈ω

AF(u) + γ ·
∑

u,v∈ω
u∼v

I(u, v) (4.2)

Here AF(u) ∈ [−1, 1] and I (u, v) ∈ [0, 1] are the data dependent unary and the prior interaction

potentials, respectively, and γ > 0 is a weighting factor between the two energy terms. Thus the

Maximum Likelihood (ML) configuration estimate can be calculated as ωML = argminω∈Ω
[
ΦF(ω)

]
.

Unary potentials characterize a given building segment candidate u = {cx, cy, eL, el, θ, ξ} as a

function of the local image data in both images, but independently of other objects of the popula-

tion. This term encapsulates the building energies ϕ(1)(u) and ϕ(2)(u) extracted from the 1st, resp.

2nd, image (Sec. 4.2.2.2) and the low level similarity information between the two time layers

which is described by the ̺ch(.) change mask (Sec. 4.2.2.1).

We remind the Reader that our approach marks each building segment u with an image index

flag from the set {1, 2, ∗}, depending on that u appears in one [ξ(u) ∈ {1, 2}] or both [ξ(u) = ∗]
of the input images. In this way, the classification of the building segment u is straightforward:

u is unchanged iff ξ(u) = ∗; new iff ξ(u) = 2 and ∄v ∈ ω : {ξ(v) = 1, u and v overlap}; and

demolished iff ξ(u) = 1 and ∄v ∈ ω : {ξ(v) = 2, u and v overlap}. Modified buildings are

considered as two objects u1 and u2, so that ξ(u1) = 1, ξ(u2) = 2.

Three soft constraints are considered by the potential terms in the various cases. First, for

an unchanged building u, we expect low object energies in both images, and penalize textural

differences (pixels with ̺ch(s) = 1) under its footprint Ru. Second, for a demolished or modified

building in the first image, we expect low ϕ(1)(u), ϕ(2)(u) is indifferent, but we penalize high

similarity under the footprint. Third, for a new or modified building in the second image, we

expect low ϕ(2)(u), ϕ(1)(u) is indifferent, while high local similarity is penalized again.

Consequently, using the 1{E} ∈ {0, 1} indicator function for an event E, the AF(u) potential

is calculated as:

AF(u) = 1 {ξ(u) ∈ {1, ∗}} · ϕ(1)(u) + 1 {ξ(u) ∈ {2, ∗}} · ϕ(2)(u)+

+ 1 {ξ(u) = ∗} · 1

#Ru

∑

s∈Ru

̺ch(s) + 1 {ξ(u) ∈ {1, 2}} · 1

#Ru

∑

s∈Ru

(
1− ̺ch(s)

)
(4.3)
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4.2 Object level change detection 49

On the other hand, interaction potentials realize prior geometrical constraints: they penalize

intersection between different object rectangles sharing the time layer (see earlier Fig. 2.6):

I(u, v) = 1 {ξ(u) ≃ ξ(v)} · #(Ru ∩Rv)

#(Ru ∪Rv)
(4.4)

where ξ(u) ≃ ξ(v) relation holds iff ξ(u) = ξ(v), or ξ(u) = ∗, or ξ(v) = ∗. Since ∀u, v :

I(u, v) ≥ 0, the optimal population should exclusively consist of objects with negative data terms

(i.e. attractive objects): if AF(u) > 0, removing u from the configuration results in a lower ΦF(ω)

global energy (4.2). Note also that according to eq. (4.2), the interaction term plays a crucial role

by penalizing multiple attractive objects in the same or strongly overlapping positions.

By fixing the AF(u) and I(u, v) potential terms, the ΦF(ω) configuration energy is completely

defined, and the optimal ωML building population can be obtained by minimizing eq. (4.2). For

this purpose, we have developed the bi-layer Multiple Birth and Death (bMBD) algorithm, which

is presented in Appendix C. The bMBD method extends the conventional MBD technique by

handling two time layers, thus it encapsulates change and object information simultaneously. Pairs

of consecutive birth and death processes are iterated until convergence is obtained in the global

configuration. In the birth step, multiple object candidates are generated randomly according to

the birth maps P (i)
b (s) in time layers i ∈ {1, 2}, and as a further novelty, also considering the

change probabilities Pch(s) and the expected parameter maps such as µ(i)
θ (s) i ∈ {1, 2}. The death

process attempts to eliminate weak objects based on the global configuration energy.

4.2.4 Experimental study of the mMPP model

During the evaluation, we validated the three key developments of the proposed model, with a

comparison to the state-of-the-art: (i) the proposed multiple feature based building appearance

model, (ii) the joint object-change modeling framework and (iii) the non-homogeneous object

birth process based on low level features. We have evaluated our method using eight significantly

different sets of aerial and satellite image pairs, published as the SZTAKI-INRIA Building Detection

Benchmark Set1. For parameter settings, we have chosen in each data set 2-8 buildings (≈ 5%)

as training data, while the remaining Ground Truth labels have only been used to validate the

detection results. Qualitative results are shown in Fig. 4.6, and in Appendix C (Fig. C.1).

We perform quantitative evaluation both at object and pixel levels. At the object level, we

first need to establish a non-ambiguous assignment between the detected objects and the GT ob-

ject samples. As a similarity feature, we use the normalized intersection area between the object

figures, and we find the optimal match between the configuration elements with the Hungarian

Algorithm (HA) [9, 142]. A detected object is labeled as True Positive (TP), if the HA matches

1Url: http://mplab.sztaki.hu/remotesensing/building_benchmark.html
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Table 4.1: Numerical object level and pixel level comparison of the SIFT, Gabor, EV, SM and the proposed
methods (MPP) on each test data set (best results in each row are typeset by bold.)

Dataset
Object level performance Pixel level performance

SIFT Gabor EV SM MPP EV SM MPP

#o. FN FP FN FP FN FP PN FP FN FP Pr Rc Pr Rc Pr Rc

Bp 41 20 10 8 17 11 5 9 1 2 4 73 46 84 61 82 71

An 21 8 5 0 1 2 0 2 1 1 0 91 73 84 79 83 74
Bg 17 7 2 9 8 2 3 4 2 1 0 59 26 71 72 93 71
Sz 57 17 26 17 23 10 18 11 5 4 1 61 62 79 71 93 75

Cd 123 55 9 12 24 14 20 20 25 5 4 73 51 75 61 83 69

Bs 80 34 9 32 8 11 13 18 15 7 6 56 30 59 41 73 51

Nm 152 69 14 24 14 18 32 30 58 18 1 60 32 62 55 78 60

Mc 171 NA NA 53 85 46 17 53 42 19 6 64 38 60 56 86 63

F-s% 66.3 79.9 84.2 79.8 94.4 53.7 66.8 74.3

Datasets: Budapest (Bp), Abidjan (An), Beijing (Bg), Szada (Sz), Cot d’Azur (Cd), Bodensee (Bs),
Normandy (Nm) and Manchester (Mc), #o is the number of objects

it to a GT object with an overlapping rate of more than rh (used rh = 10%). Unpaired detection

samples are marked as False Positive (FP), unpaired GT objects as False Negative (FN) hits. For

change detection evaluation, we also count missing and false change alarms (MC, FC).

At pixel level we investigate how accurate the extracted object outlines are: we compare the

resulting building footprint masks to the Ground Truth mask, and calculate the Precision (Pr) and

Recall (Rc) values of the pixel level detection. Finally, the F-score (F-s), taken as the harmonic

mean of Pr and Rc, can be calculated both at object and at pixel levels.

By evaluation of the building detection component, we presented numerical and qualitative

comparison results versus four single-view building detection techniques, called SIFT [143], Ga-

bor [144], Edge Verification (EV) [80], and the Segment-Merge (SM) model [78]. Quantitative

evaluation results are shown in Table 4.1. Since SIFT and Gabor extract the building centers in-

stead of estimating the outline, they are only involved in the object level comparison. Numerical

results confirm that the proposed model surpasses all references with 10-26% at object level and

with 5-18% at pixel level. According to our analysis, the improvements are particularly related to

two key properties: the stochastic object generation process and the parallel utilization of multi-

ple features in the building description module. In terms of computational complexity, processing

1MPixel images with the MPP model takes in average less than 1 minute. The proposed approach

is competitive with most reference techniques regarding the running time parameter, as detailed

experiments in [10] confirm.

After testing the introduced building detector module in single images, we continue with the

dc_942_14

Powered by TCPDF (www.tcpdf.org)



4.2 Object level change detection 51

Figure 4.6: Results on BUDAPEST (top, image part - provider: András Görög) and BEIJING (bottom,
provider: Liama Laboratory CAS, China) image pairs, marking the unchanged (solid rectangles) and
changed (dashed) objects

validation of the proposed joint object-change classification framework. We compared the mMPP

method to a conventional Post Detection Comparison (PDC) [145] technique, where the buildings

are separately extracted from the two image layers, and the change information is a posteriori

estimated through comparing the location, geometry and spectral characteristics of the detected

objects. Experiments on the Budapest, Abidjan, Beijing, Szada datasets have shown that 90% of

false change alarms of PDC were eliminated by mMPP (see details in Table C.1 of Appendix C).

To demonstrate the advantages of the Feature Based Birth Process (FBB), we compared the

convergence speed of the bMBD optimization using the proposed FBB and the conventional Uni-

form Birth (UB) processes. In the UB case, the P (i)
b (s) and Pch(s) maps follow uniform distribu-

tions and the orientation parameters are also set as uniform random values. We experienced that the

FBB approach reaches the final error rate with three times less birth calls than the UB. Moreover,

using the UB process the pixel level accuracy rates converge much slower than the object errors;

to reach the 75% pixel level F-score, we need to generate 400, 000 objects with the UB map, and

only 24, 000 building candidates with the proposed FBB map.
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4.3 A point process model for target sequence analysis

While the mMPP model introduced in the previous section provides a solution for object level

change detection between two remotely sensed images, a significantly different problem family

corresponds to scenarios, where a moving target must be followed across several frames of a mea-

surement sequence. In this section, we propose a novel framework for object level time sequence

analyis, which we call henceforward Multiframe MPP (FmMPP).

The FmMPP framework simultaneously considers the consistency of the observed data and the

fitted objects in the individual time instances of the measurement, and also exploits interaction

constraints between the object parameters in the consecutive frames of the sequence. We should

point out, that the optimization step is a particularly critical issue in the multiframe scenario: the

dimension of the target sequence’s parameter space may be very large, as it is proportional to the

number of frames. For this reason, in the proposed model we merge the advantages of both the

bottom-up and inverse approaches (see the definitions from Chapter 1). First, we apply a bottom-

up detector for initial target extraction, which processes the sequence frame-by-frame. This step

is quick, but we must expect that the results are notably poor in low quality frames. The output

of the bottom-up detector provides the initial state of the FmMPP optimization process, which

yields the final output ensuring permanent target structure and smooth motion over the sequence

via inter-frame constraints.

4.3.1 Application on moving target analysis in ISAR image sequences

We introduce the FmMPP approach in the application context of moving target analysis in airborne

Inverse Synthetic Aperture Radar (ISAR) image sequences. Remotely sensed ISAR images can

provide valuable information for target classification and recognition in several difficult situations,

where optical [13] or SAR imaging techniques fail [146, 147]. However, robust feature extraction

and feature tracking in the ISAR images are usually difficult tasks due to strong image noise

and lack of available details about the structure of the imaged targets, which artifacts can lead

to significant detection errors in several low quality frames [38]. Some previous studies have

proposed frame selection strategies to exclude low quality frames from the analysis. However,

as pointed out in [148] extracting reliable features for frame selection may often fail. On the

other hand, assuming that the target has a fixed size and structure; and small displacement is

expected between consecutive time appearances, inter-frame information can be exploited to refine

the detection procedure. For this reason, our proposed system does not drop any frames of the input

sequence, but it implements an approach where the detection result on the actual frame jointly

depends on the current image data and the neighboring frame’s target parameters.
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Figure 4.7: Target representation in an ISAR image: (a) input image with a single ship object (b) binarized
image (c) duplicated image and target fitting parameters. Original image border is shown by the green
rectangle

Besides the length and axis line extraction of the target scatterer, another issue is to detect char-

acteristic features of the objects which provide relevant information for the identification process.

For this purpose, we identify permanent bright points in the imaged targets, which are produced

by stronger scatterer responses from the illuminated objects (see Fig. 4.8(a)). However, due to

the presence of speckle, image defocus and scatterer scintillation, a significant number of missing

and false scatterer-like artifacts appear in the individual frames, thus we focus on their elimination

with spatio-temporal filtering constraints.

The contributions of the section are twofold. On one hand, we introduce the general Multiframe

(FmMPP) MPP framework, which provides a novel Bayesian tool for time sequence analysis in re-

motely sensed scenarios. On the other hand, we propose a concrete implementation of the FmMPP

method on the analysis of large carrier ships and airplanes from ISAR data, and perform a detailed

quantitative validation on a real data set, which contains eight ISAR image sequences with 545

manually evaluated frames.

4.3.2 Problem definition and notations

The input of the proposed algorithm is an n-frame long sequence of 2D ISAR data, imaged in the

Range-Doppler domain, which contains a single ship (or airplane) target. Let us denote by S the

joint pixel lattice of the images, and by s ∈ S a single pixel. The normalized log-amplitude of

pixel s in frame t ∈ {1, 2, . . . , n} is marked with gt(s). The logarithmic image representation suits

well the widely adopted log-normal statistical models of ISAR target segmentation [149].

In the following, we denote by ut a target candidate in frame t. Each target’s axis line segment

is described by the c(u) = [x(u), y(u)] center pixel l(u) length and θ(u) orientation parameters

(see Fig. 4.7(c)). In addition, an initially unknown K(u)(≤ Kmax) number of scatterers can be

assigned to the targets, where each scatterer qi is described in the target line segment’s coordinate

system by the relative line directional position, τu(qi), and the signed distance, du(qi) from the
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Figure 4.8: Dominant scatterer detection problem: (a) highlighted true scatterers, i.e. Ground Truth (GT),
(b) LocMax filter result, (c) parameterization

center line of the parent object u (see Fig. 4.8(c)). The goal is to obtain a ω = {u1, u2, . . . , un}
target sequence, which we call configuration in the following.

4.3.3 Data preprocessing in a bottom-up approach

Data preprocessing consist of four consecutive steps: foreground-background segmentation, ini-

tial center alignment and line segment estimation, scatterer candidate set extraction, and scatterer

filtering.

In the first step, we segment the ISAR images into foreground and background classes by a

binary Markov Random Field (MRF) model [7] to decrease the spurious effects of speckle noise.

(See Appendix C, Sec. C.2.1 for details.)

Thereafter, to get an initial estimation of the target axis segment, we detect first the axis line

using the Hough transform of the foreground mask. At this point, we also have to deal with a

problem which originates from the ISAR image synthesis module. The image formation process

considers the images to be spatially periodic both in the horizontal and vertical directions, then, the

imaging step estimates the target center, and attempts to crop the appropriate Rectangle of Interest

(ROI) from this periodic image (a correctly cropped frame is in Fig. 4.8(a)). However, if the center

of the ROI is erroneously identified, the target line segment may ‘break’ into two (or four) pieces,

which case appears in Fig. 4.7(a). Therefore, in the proposed image processing approach, we

search for the longest foreground segment of the axis line in a duplicated mosaic image, which

step also re-estimates the center of the input frame (see Fig. 4.7(c)).

Scatterer candidate extraction exploits the fact that permanent scatterers cause dominantly high

amplitudes in the ISAR images; however the amplitudes may significantly vary over the consecu-

tive frames, and we must expect notable differences between different scatterers of the same frame.
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In our implementation, the Local Maxima (LocMax) filter is applied to extract the Preliminary

Scatterer Candidates (output results are shown in Fig. 4.9(a)). Thereafter, we propose an iterative

Random sample consensus (RANSAC) based solution to discriminate the real scatterers from the

false candidates, with utilizing the temporal persistence of the scatterer positions and the line-

structure of the imaged targets [33] (see outputs in Fig. 4.9(b)).

4.3.4 Multiframe Marked Point Process Model

In this section, we introduce the Multiframe Marked Point Process model, which enables to char-

acterize whole target sequences instead of individual objects, through exploiting information from

entity interactions. Following the classical Markovian approach, each target sample may only af-

fect objects in its neighboring frames directly, using a ζ-radius frame neighborhood. Using again

the F notation for the union of all image features derived from the input data, we characterize a

given ω target sequence with a ΦF(ω) data-driven Gibbs energy function:

ΦF(ω) =
n∑

t=1

AF(ut) + γ ·
n∑

t=1

I(ut, ωt) (4.5)

As it appears in the above formula, ΦF(ω) consists of a data dependent term, AF (ut) ∈ [−1, 1]
called the unary potential, and a prior term I(ut, ωt) ∈ [0, 1], called the interaction potential,

where ωt = {ut−ζ , . . . , ut, . . . , ut+ζ} is a sub-sequence of ut’s 2ζ-nearest neighbors. Parameter γ

is a positive weighting factor between the two potential terms.

The AF (ut) unary potential is composed of two parts:

AF (ut) =
1

2

(
AB

F (ut) + ASc
F (ut)

)

where AB
F (ut) is the body-term and is the ASc

F (ut) scatterer-term.

The body-term, is based on a body fitting feature fb(u), which favors object candidates, where

under the line segments Ru we find in majority foreground classified pixels in the actual frame,

while the neighboring outside area Tu covers background regions (see Fig. 4.7). Thereafter,

ABF (u) = Q (fb(u), d0, 10), where the monotonously decreasing M function defined by eq. (4.1)

is utilized again. Parameter d0 is used as acceptance threshold for valid objects.

On the other hand, the scatterer-term penalizes scatterers that are not located at local Maxima

of the ISAR image: ASc
F (u) = M

(
1

K(u)
·∑K(u)

i=1 Ψ(i, u), dΨ

)
, where Ψ(i, u) = 0 if qi is in a

local maximum in the input ISAR frame, Ψ(i, u) = 1 otherwise. Parameters d0 and dΨ are set by

training samples.

Interaction potentials are responsible for involving temporal information and prior geometric

knowledge in the model. Since the observed object’s structure can be considered rigid, we usually
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experience strong correlation between the target parameters in the consecutive frames. Since due

to the imaging technique, the c(u) center is not relevant regarding the real target position, we only

penalize high differences between the θ(u) angle and l(u) length parameters, and significant differ-

ences in the normalized scatterer positions and scatterer numbers between close-in-time images of

the sequence. The prior interaction term I(ut, ωt) is constructed as the weighted sum of four sub-

terms: the median length difference Il(ut, ωt), the median angle difference Iθ(ut, ωt), the median

scatterer number difference I#s(ut, ωt) and the median scatterer alignment difference Isd(ut, ωt).

Here the first three sub-terms are calculated as the median values of the parameter differences be-

tween the actual and the nearby frames, while the scatterer alignment difference feature evaluates

the similarity of the relative scatterer positions on the objects of close frames [7].

4.3.5 Multiframe MPP optimization

As mentioned in the beginning of this section, our proposed optimizer solution is initialized with

the output of the preliminary detector of Sec. 4.3.3, which provides an initial configuration which

is in most of the frames consistent with the input data. Thereafter, we proceed to an iterative refine-

ment algorithm, which scans in each step the whole sequence, and attempts to replace the actual

objects with more efficient ones considering the data and prior constraints in parallel. The two key

points of this procedure are (i) the generation of new object candidates and (ii) the evaluation of

the proposed objects w.r.t. the current configuration and the input data.

For object generation, we use two types of moves: a Perturbation Kernel and a RANSAC

based birth kernel, which are chosen randomly at each step of each iteration. The Perturbation

kernel clones the actual object either from the current, or the previous or the next frame; and it

adds zero mean Gaussian random values to the center position, length and orientation parameters.

Finally, the scatterer positions are cloned from the object of the current frame and optionally new

scatterers are added or some scatterers are removed. The RANSAC based birth kernel re-estimates

the optimal line according to the preliminary scatterer candidates with the RANSAC algorithm.

The pseudo codes of these functions are provided in Appendix C (Algorithm C.2).

The proposed optimization algorithm iterates object proposal and evaluation steps, which are

followed by the possible replacements of the original objects versus newly generated ones. Let us

assume that we are currently in the kth iteration of the process. To decide if we accept or decline

the replacement of the object on the tth frame for the newly proposed object, u, we calculate first

the energy difference ∆Φω(u, t) between ω[k], the original configuration before the kth iteration,

and the configuration ω∗ we would get from ω[k] by replacing u[k]t by u. It is important to note

that to derive the energy difference we should only examine the objects in the ζ-neighborhood of

frame t and calculate the concerning unary and interaction potential terms. ∆Φω(u, t) < 0 means

that the move results in decreasing global energy level. However, to prevent us from finishing the
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(a) Initial detection results (Preprocessing, first step)

(b) RANSAC-based refinement (Preproc., second step)

(c) Final FmMPP output after the iterative optimization

Figure 4.9: Center alignment and target line extraction results on Frames #19-22 of the SHIP1 ISAR image
sequence. Top: initial detection Middle: RANSAC re-estimation Bottom: proposed FmMPP model.

algorithm too early in a low quality local energy minimum, we embed the iterative process into

a simulated annealing framework. In this way, as a function of the ∆Φω(u, t) energy difference,

we calculate a probability value of accepting the replacement move, and the decision is done by

a random choice based on this probability. Regarding the cooling scheme, we have followed the

implementation of [87]. Details of optimization are provided in Algorithm C.3 of Appendix C.

Final detection results on the previously discussed sample frames are shown in Fig. 4.9(c)).

4.3.6 Experimental results on target sequence analysis

We have tested our method on seven airborne ISAR image sequences about different ship targets

(Fig. 4.10). The ship data set contains 520 evaluated ISAR frames (40 to 90 frames have been

evaluated in each sequence) and 4250 true scatterer appearances (8 or 9 scatterers in each frame).

For quantitative validation, we have manually created Ground Truth (GT) data for both the axis

segments and the scatterer positions (for longer sequences we have evaluated the first 90 frames).

To consider different evaluation aspects, we have defined three error measures. The Normal-

ized Axis Parameter Error (EAX) is calculated as the sum of the x-y center position and axis

length errors normalized with the length of the GT target, and the angle error normalized by 90◦.

The Scatterer Detection Rates characterize the correctness of permanent scatterer identification.

First, the corresponding detected and GT scatterers are automatically matched to each other by the

Hungarian algorithm [142], based on the τ(q) parameter. A match is only considered valid if the
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Figure 4.10: Sample frames from the SHIP2-SHIP7 data sets, and the corresponding detection results of
the FmMPP approach obtained by the optimization of the proposed ISAR sequence based model.

distance of the assigned feature points is lower than a threshold. Thereafter, we count the number

of true positive (TP), false negative (FN) and false positive (FP) scatterers. The third feature is the

Average Scatterer Position Error (ESP), which is measured in pixels. Note that TP should be large

for an efficient solution, while all other parameters should be low.

Similarly to our qualitative experiences (Fig. 4.9), we have observed during the quantitative

evaluation that the detection qualities have significantly improved over the three consecutive steps

of the proposed algorithm. While after the Initial detection step, we measured in average over the

seven test sequences EAX = 10.8, TP= 563, FP= 63, FN= 44, and ESP = 2.9 values, following

RANSAC-based refinement we obtained EAX = 7.6, TP= 581, FP= 49, FN= 25, and ESP = 1.5,

while the final FmMPP energy optimization yielded EAX = 3.8, TP= 587, FP= 20, FN= 19, and

ESP = 0.87. Detailed results with respect to all error parameters for each test set are shown in

Appendix C.

The proposed model can be generalized to analyze various targets in ISAR image sequences.

For example, airplanes appear as cross-like structures in the ISAR image sequences, where at least

one of the wings can be clearly observed. Apart from the length and orientation of the body axis

segment, the length of the wings and their connecting positions to the airplane body are also rel-

evant shape parameters. For this reason, we use a cross shaped airplane model, as shown in Fig.

4.11. Similarly to the ship detection procedure, the airplane extraction process consists of a coarse

preliminary detection step, and the FmMPP based iterative refinement step. The preliminary detec-

tion starts with the extraction of the body line, using the same Hough transform based technique as

introduced for the ship detection process. Secondly, the initial wing root position is obtained with

exhaustive search by histograming the silhouette pixels, which can be perpendicularly projected to

the same points of the body line. In the FmMPP based refinement stage the AF(ut) data term is

calculated in an analogous manner to the ship model, the difference is that the filling factors for the

left and right wings are separately calculated, and their minimum (i.e. the better one) counts into
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Figure 4.11: Airplane detection example: (a) Airplane silhouette and the cross shaped fitted model (b)-(d)
Comparing the results of the initial and the optimized FmMPP detection in four sample frames

the data term of the model. This later feature is necessary, since usually only one of the wings is

fully visible in the ISAR data. Results of the airplane detection for four sample frames are demon-

strated in Fig. 4.11 showing the output at the preliminary stage and after the FmMPP optimization.

Similar improvement can be observed to the ship detection scenarios. Note that it is also often

possible to observe permanent scatterers in images of airplane targets. However, since airplane

scatterers can appear both in the wings and in the body, their geometric alignment patterns may be

more complex than in cases of the linear vessels.

The processing speed of the proposed algorithm varies over the different test sets between 2

frames per second (fps) and 5fps, since the computational complexity depends on various factors,

such as length of the sequence, image size, target length, quality of the initial detection step and

number of scatterers. In most cases, the computational overload of the iterative optimization is not

significantly higher than the cost of the initialization and the RANSAC steps.

4.4 Parameter settings in dynamic MPP models

We can divide the parameters of the proposed dynamic MPP methods into three groups corre-

sponding to the prior model, data model and the optimization.

The prior model parameters of the mMPP model, such as the l window size for GODF calcu-

lation by (see Sec. 4.2.2.1) and maximal/minimal rectangle side lengths at the difference scales,
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depend on image resolution and expected object dimensions, thus they are set based on sample ob-

jects. As for the FmMPP approach the rfg, Tτ , dlmax, dθmax d
K
max and dsdmax factors are also calibrated

in a supervised way. Here further relevant prior parameters are the weighting factors within the

I(ut, ωt) interaction term, we used here uniform weights δl = δθ = δ#s = δsd = 0.25. We used a

constant γ = 2 weight between the data term and the overlapping coefficient in eq. (4.2) and (4.5).

The parameters of the data model in mMPP are estimated based on training image regions

containing Ground Truth objects {ugt1 , ugt2 , . . . , ugtn }. Consider an arbitrary f(u) feature from the

feature library (e.g. f gr(u) gradient descriptor for building detection). We remind the Reader

that each f(u) of our model is a noisy quality measure and the corresponding energy term is

obtained as ϕf (u) = M(f(u), df0 , D
f ) (see Sec. 4.2.2.2). Here we set the normalizing constant

as Df = maxj f(u
gt
j ) − minj f(u

gt
j ). Exploiting that the M transfer function is monotonously

decreasing with a sole root f(u) = df0 , object u is attractive in image i (i.e. ϕ
(i)
f (u) < 0) iff

f(u) > df0 . Consequently, increasing df0 may decrease the false alarm rate and increase the missing

alarms corresponding to the selected feature. Since in the proposed model we can simultaneously

utilize several objects prototypes, our strategy for setting df0 is to minimize the false alarms for each

prototype, and eliminate the missing objects using further feature tuples. By setting the FmMPP

data model parameters (d0 and dψ), we utilized that using similar ISAR imaging conditions, the

contrast parameters of the images are very similar. Finally, to set the optimization parameters, we

followed the guidelines provided in [87] and used δ0 between 10000 and 20000, β0 between 20

and 50, and geometric cooling factors 1/0.96.

4.5 Conclusions of the chapter

In this chapter, we proposed two different solutions for dynamic Marked Point Processes.

In the first part, we have proposed a multitemporal Marked Point Process (mMPP) framework

for building extraction and change monitoring in remotely sensed image pairs in a joint proba-

bilistic approach. A global optimization process attempted to find the optimal configuration of

buildings, considering the observed data, prior knowledge, and interactions between the neigh-

boring building parts. The computational cost has been significantly decreased by a non-uniform

stochastic object birth process, which proposed relevant objects with higher probability based on

low-level image features.

The second part has addressed the detection and characterization of large ship and airplane

targets in ISAR image sequences using an energy minimization approach. We have proposed a

robust joint model for axis extraction, feature point detection and tracking. We have shown that in

case of noisy sequences, the introduced Multiframe Marked Point Process schema can significantly

improve the results of frame-by-frame detection.
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Chapter 5

Multi-level object population analysis with

an Embedded MPP model

In this chapter we introduce a probabilistic approach for extracting complex hierarchical object

structures from digital images used by various vision applications. The proposed framework ex-

tends conventional Marked Point Process (MPP) models by (i) admitting object-subobject ensem-

bles in parent-child relationships and (ii) allowing corresponding objects to form coherent object

groups, by a Bayesian segmentation of the population. Differently from earlier, highly domain spe-

cific attempts on MPP generalization, the proposed model is defined at an abstract level, providing

clear interfaces for the possible applications. We also introduce a global optimization process for

the multi-layer framework, which attempts to find the optimal configuration of entities, considering

the observed data, prior knowledge, and interactions between the neighboring and the hierarchi-

cally related objects. The proposed method is demonstrated in three different application areas:

built in area analysis in remotely sensed images, traffic monitoring on airborne Lidar data and op-

tical circuit inspection.

61
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62 5. MULTI-LEVEL OBJECT POPULATION ANALYSIS WITH AN EMPP MODEL

5.1 A hierarchical MPP approach

In the recent years, one of the main evolving characteristic features of commercial perception

sensors has been the spatial resolution. In the remote sensing domain, several very high resolution

satellites have been launched including the Pleiades system (in 2011) which provides submetric

resolution data incorporating stereo facilities. On the other hand, Full High Definition (HD) video

cameras are available at affordable prices for many surveillance applications, which systems can be

supported by arrays of multiple thermal or Time-of-Flight (ToF) sensors. The spatial resolution of

airborne or terrestrial laser scanning is also increasing due to a focused development of aerial Lidar

devices and mobile mapping systems. In industrial optical inspection systems research works on

designing proper sources of illumination, decreasing lens aberrations and improving the limited

depth of field result in sharp images up to a few µm resolution.

From the processing side, the above hardware developments imply a notable shift in computer

vision methodologies. While several earlier technologies focused an compensating low image

resolution e.g. by mosaicking or superresolution techniques, nowadays fine details are observable

in high-resolution images, demanding hierarchical content parsing algorithms [72], which can

interpret the observed information at multiple levels. While the conventional MPP-based image

analysis models (see Sec. 2.2 and also our earlier introduced multitemporal models in Chapter 4)

are purely focusing on object extraction with direct (bilateral) object interaction modeling within

populations, dealing with higher level object grouping and object decomposition issues are also

critical parts of complex scene understanding processes.

There have already been a few attempts conducted for multi-entity-level modeling with point

processes in the literature. The Multi-MPP framework proposed by [109] offers extensions of

MPP models regarding two issues. First, to simultaneously detect variously shaped entities, it

jointly samples different types of geometric objects. Second, by a statistical type and alignment

analysis of the extracted nearby entities local texture representation of the different image regions is

obtained. Although this approach fits well to bottom-up exploration tasks of the unknown imaged

scene content, it is not straightforward in many vision applications, how to efficiently segment

in this framework the object population based on domain specific top-down knowledge. On the

other hand, several hierarchical phenomena can be better described by object-subobject ensembles

in parent-child relationships rather than by object grouping constraints. As examples, we can

mention here Circuit Elements (CE) of Printed Circuit Boards (PCB) and recognizable patterns of

included artifacts within the CEs [8, 11] in µm resolution images, building roofs and chimneys in

aerial or satellite photos, ships and containers in radar images [7] etc.

For the above reasons, we introduce in this chapter a new three level Embedded Marked Point

Process (EMPP) framework [2, 25], which has the following two key properties:
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• We describe the hierarchy between objects and object parts as a parent-child relationship

embedded into the MPP framework. The appearance of a child object is affected by its

parent entity, considering geometrical and spectral constraints, such as the geometric figure

of a parent object encapsulates figure of its a child object, or the color/texture of the parent

object may influences the appearance characteristic of the child entity.

• For avoiding the limitations of using pairwise object interactions only, we propose here a

multi-level MPP model, which partitions the complete (parent) entity population into object

groups, called configuration segments, and extracts the objects and the optimal segments

simultaneously by a joint energy minimization process. Object interactions are differently

defined within the same segment and between two different segments, implementing adap-

tive object neighborhoods. In this way, we can use in parallel strong alignment or spectral

similarity constraints within a group, but the coherent segments may even have irregular, or

thin, elongated shapes.

As it will be shown in the following sections, the EMPP model has a complex structure, with

several general and task specific components mixed together in a unified framework. Practical

experiences show that for such composite, application dependent models, the adaption to another

application domain is rarely straightforward, and usually a significant amount of modeling work

and code (re-)implementation is needed to transform or modify the framework for a different field.

As an important novelty of our present method, after collecting similar connecting tasks appearing

in different areas, we address them by a joint methodological approach. We provide here a formal

problem statement and introduce a novel general three-level MPP framework which enables us to

handle a wide family of applications. The structure elements and the energy optimization algorithm

of the complex model are defined and implemented at the abstract level, while we keep focus on

ensuring very simple interfaces to the different applications, providing flexible options for domain

adaption for end-users.

The development of the EMPP model contained three phases. First, we proposed an Automatic

Optical Inspection (AOI) method for PCB validation, with introducing the parent-child relation-

ship into the conventional MPP framework. Second we designed a two-level MPP model focusing

on the joint extraction of vehicles and groups of corresponding vehicles within a traffic scenario

from aerial Lidar data. Both models have been thoroughly validated on real measurements, and

the methodological improvements have been demonstrated versus earlier approaches from the lit-

erature. In the third phase, we have connected the two models, and defined the general three layer

EMPP framework containing the object group - object - object part levels. Thereafter we gave

proof-of-concept examples how the new three layer model can be adopted to the targeted AOI,

traffic monitoring and built-in area estimation applications. The Author’s scientific contributions
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64 5. MULTI-LEVEL OBJECT POPULATION ANALYSIS WITH AN EMPP MODEL

Figure 5.1: Structure elements of the EMPP model. Left: a sample population with three object groups, and
various object shapes both at parent and child layers. Right: The multi-layer structure of the model featuring
the encapsulation relation.

regarding the first step are formulated separately from the later two ones in the sub-theses of Thesis

3 (see Chapter 7). However, for a more compact and less redundant presentation, we take a reverse

order in this Chapter, starting with the introduction of the general EMPP model, an we detail the

application specific contributions regarding the AOI and traffic monitoring tasks thereafter.

5.2 Problem formulation and notations

To model the hierarchical scene content, the proposed Embedded Marked Point Process (EMPP)

framework has a multi-layer structure, as shown in Fig. 5.1. At the top, we have a super node,

called the population or the configuration, which is a high-level model of the imaged scene. The

population consists of an arbitrary number of object groups, where each group is a composition of

one or many super (or parent) objects. Finally, the super objects may encapsulate any number of

subobjects (or child objects).

Following the notations introduced in Chapters 2 and 4, the input of the EMPP method is an

image over a pixel lattice S, and s ∈ S denotes a single pixel. As the first extension of conventional

MPP models, each parent object u ∈ H may contain a set of child objects Qu = {q1u . . . qm(u)
u }

where m(u) ≤ mmax and qiu ∈ H. Qu = ∅ marks that u has no child. Let us denote by HQ the

parameter space of all possible Qu vectors. Both the parent and child objects are represented by

plane figures from preliminary defined shape libraries.

As for the second level of the proposed object hierarchy, we introduce the object grouping

process. A given population, denoted by ω, is a set of k object groups or (also referred later as
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5.3 EMPP energy model 65

configuration segments), ω = {ψ1, . . . , ψk}, where each group ψi (i = 1 . . . k) is a configuration

of ni objects:

ψi = {ui1, . . . , uini
} ∈ (H ×HQ)

ni . (5.1)

Here we prescribe that ψi∩ψj = ∅ for i 6= j, while the k set number and n1, . . . , nk set cardinality

values may be arbitrary (and initially unknown) integers. We mark with u ≺ ω if u belongs to

any ψ in ω, i.e. ∃ψi ∈ ω : u ∈ ψi. Let us denote by Nu(ω) the proximity based neighborhood of

u ≺ ω, which is independent of the group level: Nu(ω) = {v ≺ ω : u ∼ v}.
Finally, we denote by Ω the space of all the possible global configurations, which is constructed

as:

Ω = ∪∞
k=0

{
{ψ1, . . . , ψk} ∈ [∪∞

n=1Ψn]
k
}

(5.2)

where Ψn = {{u1, . . . , un} ∈ (H ×HQ)
n} .

In this way, we consider that each population ω ∈ Ω may include any number of groups composed

of any number of objects and child objects.

5.3 EMPP energy model

The EMPP energy function is derived with minor modifications of the basic formula (2.21):

Φ(ω) = Φd(ω) + γ · Φp(ω) (5.3)

where Φd(ω) =
∑

u∈ω A(u) is the unary term and Φp(ω) is the prior interaction term.

The unary term construction process follows the same approach as introduced in Sec. 4.2.2.2,

with the only difference that in the EMPP model, the A(u) data energy function is decomposed

into a parent term ϕpd(u) and child terms ϕcd(u, qu). As indicated by the notation, a child term

may depend both the local image data and the geometry of the parent object (e.g. an intensity

histogram within the parent region). Both the parent and the child level energy components are

derived according to the earlier introduced schema: First fitness features are derived to characterize

the efficiency of the generated super/sup-object candidates respectively. Second, the features are

mapped with the nonlinear M(f, d0, D) function to obtain the energy subterms corresponding to

the f feature. Third the joint data energy of object u is derived by combining averaging, max and

min operators, using the multiple prototype definition strategies presented in Sec. 4.2.2.2

The complete unary term of u is the sum of the parent level terms and the child level terms:

A(u) = ϕpd(u) +
∑

qu∈Qu

ϕcd(u, qu) (5.4)
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The interaction terms implement geometric or feature based interaction constraints between

different objects, child objects and object groups of ω.

Φp(ω) =
∑

u∼v

Ip(u, v)

︸ ︷︷ ︸
parent-parent interaction

+
∑

u≺ω

Ic(u,Qu)

︸ ︷︷ ︸
parent-child interaction

+
∑

u,ψ

Ig(u, ψ)

︸ ︷︷ ︸
parent-group interaction

(5.5)

First, the Ip(u, v) terms provide classical pairwise interaction constraints, for example, we can use

the common intersection term from eq. (2.22), which penalizes overlapping objects: Ip(u, v) =
#{Ru∩Rv}
#{Ru∪Rv}

.

Second, the Ic(u,Qu) terms model interactions between the corresponding parent and child

objects, and interactions between different child objects corresponding to the same parent. For

example, we can prescribe that the children of a given parent (i.e. siblings) should not overlap with

each other, and not overhang the parent, or the siblings should have same shape, similar color, size,

orientation etc.

Third, with the Ig(u, ψ) energies, can define various constraints between the object group level

and the (parent) object level of the scene [28]. To measure if an object u appropriately matches

to a population segment ψ, we define a distance measure dψ(u) ∈ [0, 1], where dψ(u) = 0 corre-

sponds to a high quality match. In general, we prescribe that the segments are spatially connected,

therefore, we use a constant high difference factor, if u has no neighbors within ψ w.r.t. relation

∼. Thus we derive a modified distance:

d̂ψ(u) =

{
1 if ∄v ∈ ψ\{u} : u ∼ v
dψ(u) otherwise

(5.6)

By definition of Ig(u, ψ), we slightly penalize population segments which only contain a single

object:

Ig(u, ψ) = c iff ψ = {u}, (5.7)

with a small 0 < c constant.

For segments with multiple objects, we penalize large d̂ψ(u) distances within a group, and also

small d̂ψ(u) distances if u is not a member of ψ:

Ig(u, ψ) =

{
d̂ψ(u) if u ∈ ψ
1− d̂ψ(u) if u /∈ ψ. (5.8)

5.4 Multi-level MPP optimization

For optimizing the energy function of eq. (5.3), we have have extended again the Multiple Birth and

Death (MBD) [87] algorithm. To accommodate to the requirements of the EMPP energy function,

the main task was to include the group assignment, object re-grouping, and child maintenance
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issues within the original MBD framework. On one hand, after each birth step, the generated object

should be assigned to a new, or an existing group. Then, following the death procedure, we execute

a new step, called Group re-arrangement, which may re-direct some objects to neighboring object

groups based on data based and prior soft-constraints. On the other hand, in the last step of an

iteration, called Child Maintenance, we may add, remove or replace child objects for each parent.

As already discussed in Chapter 4, efficient object proposal strategies can significantly speed up the

MPP energy optimization algorithms. While the Feature Based Birth Process (FBB) introduced in

Sec. 4.2.4 proved to be efficient for the building detection application, we have also introduced an

extended schema, called the Bottom-Up Stochastic Entity Proposal (BUSEP) process, which has

been successfully adopted first to Printed Circuit Board (PCB) inspection [8], then to Lidar-based

vehicle detection applications. The BUSEP algorithm is executed as a preprocessing step of the

iterative optimization, where we assign to the different image pixels (1) pseudo probability values

that the pixel is an object reference point (e.g. center of an ellipse) (2) narrow distributions for

all object parameters (including orientation and side/axis length parameters) expected in the given

pixels, based on a deterministic object candidate extraction procedure. During the generation of a

new object in the birth step, we follow the distributions of the expected parameters, which yields

that efficient candidates will be proposed significantly faster. On the other hand, similarly to the

birth maps [87] and FBB strategies, the entity proposal maintains the reversibility of the iterative

evolution process of the object population [110], instead of implementing a greedy algorithm.

We use as input of BUSEP a binary foreground mask obtained by a task specific deterministic

segmentation algorithm from the input image, which realizes a coarse separation of the parent or

child objects from the background. Technical details of the proposed EMPP optimization process

are provided in Appendix D: an example for efficient candidate generation for BUSEP in the

optical PCB inspection application is presented in Algorithms D.1-D.4, while the pseudo code of

the proposed new Multi-level Multiple Birth-Death-Maintenance (MMBDM) algorithm is shown

in Algorithm D.4.

5.5 Applications of the EMPP model

Implementing the interfaces of the EMPP framework consists of specifying the following issues

for each application:

Model elements: semantic definition of parent/child objects and object groups. Fixing the

shape libraries for parent/child objects, and additional domain specific constraints such as the

maximum number of siblings having the same parent.

Unary terms: defining the domain specific f features and feature integration rules to obtain the

parent level ϕpY (u) and child level ϕcY (u, qu) unary terms.
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Figure 5.2: Results of built-in area analysis, displayed at three different scales. Building groups are dis-
tinguished with different colors (purple: red roofs’ district, others: orientation based groups); red markers
denote the detected chimneys

Parent-parent interactions: defining the Ip(u, v) interaction terms between (spatially) neigh-

boring parent objects.

Parent-child interactions: defining the Ic(u,Qu) interaction constraints between the corre-

sponding parent a children objects.

Parent-group interactions: defining the grouping constraints through the definition of the dψ(u)

object-segment distance.

We emphasize hereby that all further model elements and algorithmic steps introduced in Sec-

tions 5.2-5.4 are independent on the concrete application, which property was ensured during

model implementation by a clear separation of the general and tasks specific program components.

5.5.1 Built-in area analysis in aerial and satellite images

As we introduced in Chapter 4, analyzing built-in areas in aerial and satellite images is a key

issue in several remote sensing applications, e.g. in cartography, GIS data management and up-

dating, or disaster management. Most existing techniques focus on the extraction of individual

buildings or building segments from the images [10], however, as pointed out in [150] finding

groups of corresponding buildings (e.g. a residential housing district) has also a great interest in

urban environment planning, as well as detecting illegally built objects which do not fit the reg-

ular environment. On the other hand authorities or telecommunication companies may also need

to monitor specific objects on the roofs such as chimneys or parabolic antenna dishes for either

statistical purposes (market research), or for the estimation of air pollution. Detecting illegal or

irregular chimneys can also be a relevant task for city monitoring.

For demonstrating the adaptation of the EMPP model for the topic of urban area analysis,

we have chosen very high resolution aerial images (around 12cm/pixel) captured from regions of

Budapest, Hungary, a representative sample is displayed in Fig. 5.2. The task specific issues are

detailed in the following.
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(a) Features for chimney extraction (b) Types of used building groups

Figure 5.3: Built-in area analysis - model components

Model elements in built-in area monitoring: Parent objects are rectangular segments of the

building footprints, assuming that each building can be approximated from the top-view either by

a rectangle or by a couple of slightly overlapping rectangles. Child objects are tall structure ele-

ments on the roofs, such as chimneys or satellite dishes, also modeled by rectangles. For easier

discussion, we refer to all child objects simply as chimneys in the following. Configuration seg-

ments are groups of corresponding buildings, like members of a residential housing district in Fig.

5.2(a).

Unary terms of buildings and chimneys: Parent level unary terms are derived in the same way

as introduced in Chapter 4: the energy function integrates feature-information about roof color,

roof edge and shadow. As for the child unary terms, the feature extraction workflow for indicating

chimneys (or further tall structure elements) on the roofs is demonstrated in Fig. 5.3(a). We used

two observations. First, chimney pixel colors have usually lower saturation components compared

to the surrounding roof parts, which can be filtered in the HSV color space considering the sat-

uration channel (Fig. 5.3(a)-(iii)). Second, chimneys cast shadows on the roofs, an issue which

can be approached in a manner similar to localizing buildings using the shadows on the parent

object level. However, for non-flat roofs (such as gable or mansard roofs [82]) we must separately

handle the cases of illuminated and self-shadowed roof segments. Taking a photometric approach

[14], for a given surface point the ratio of the observed intensities (luminance or gray level) in

shadow and under illumination may be efficiently modeled by a Gaussian density function in out-

door scenes. However, the mean value of the Gaussian varies according to external illumination

[14], i.e. it needs different settings for the illuminated and shadowed roof parts. Thus, we first seg-

ment the parent object region using a floodfill-based classification step (Fig. 5.3(a)-(ii)(iv)), then
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(a) Vehicle by Lidar (b) Unary term features

Figure 5.4: Vehicle detection from airborne Lidar data: (a) vehicles appearances in raw triangulated Lidar
data (intensity based coloring was used), (b) calculation of the data model features

a local color model is adopted in each segment, derived from the regions’ histograms. The esti-

mated chimney object and shadow regions are shown in Fig. 5.3(a)-(v) with blue and red overlays,

respectively. Finally the child object’s data term prescribes chimney candidate pixels within the

object mask and shadowed areas in the neighboring roof regions w.r.t. the global shadow direction.

Examples for extracted chimney objects are shown in Fig. 5.3(a) and Fig. D.2.

Parent-child terms J(u,Qu): Non-overlapping siblings are expected to have similar orienta-

tion. Children figures should be encapsulated by the parent rectangles (Fig. 5.2(c)).

Object-segment distance d̂ψ(u): In our test areas, we have observed various different grouping

constraints, which should be considered on a case-by-case basis. First, in many regions, we can

find several distinct building groups which are formed by regularly aligned, parallel buildings.

Second, we can also see large building groups (e.g. purple group in the center of Fig. 5.2(a)),

where the orientations of the houses are irregular, but the roof colors are uniform. Third, family

houses and condominiums can be mixed in the same area, which can also be a basis for grouping.

Thus, we distinguished three types of building groups: if ψ is an alignment based group (Fig.

5.3(b)-(i)), dψ(u) is proportional to the angle difference between u and the mean angle within ψ.

Otherwise, if ψ is a color group (Fig. 5.3(b)-(ii)), dψ(u) measures how the color histogram of

u matches the ψ group’s expected color distribution, which is set by training samples during the

system configuration. Finally, for separating individual houses from larger condominiums, the roof

size and the side length ratios are the discriminative features (Fig. 5.3(b)-(iii)).
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Figure 5.5: Sample results on traffic analysis. Super rectangles mark the detected vehicles, different colors
correspond to the different groups. In the background, gray levels refer to the input label map: white -
vehicle candidates, light gray - road, dark gray - roof. a) cars and traffic segments b) selected region with
the detected windshields c) intensity map of a selected car, d) detection result for c).

5.5.2 Traffic monitoring based on Lidar data

In city surveillance applications, automatic traffic monitoring and analysis needs a hierarchical

modeling approach: first individual vehicles should be detected, then we need to extract coherent

traffic segments, by identifying groups of corresponding vehicles, such as cars in a parking lot,

or a vehicle queue waiting in front of a traffic light. In addition, extracting characteristic parts

of the vehicles may provide useful information for classification or behavior analysis. In this

section, we rely on the measurements of an airborne Lidar laser scanner and a car-mounted mobile

mapping system (MLS), providing 3D point clouds completed with intensity/RGB color values.

From the aerial data, due to the low resolution of the considered point cloud measurements (max.

8 points/m2), only coarse vehicle shapes can be extracted. However, as shown in Fig. 5.4(a), the

windshields are observable, so they could be separated based on a joint consideration of the vehicle

geometry and the observed intensity map. From a practical point of view, extracted windshields can

be used for classifying vehicle types, estimating vehicle direction etc. As for the MLS data (Fig.

5.7), the point cloud has a very high resolution, preserving several details, but significant challenges

are caused by ghost objects, occlusion and invisible object parts, which are the consequences of

the street level scanning process.

In [5] we introduced a two-step method for Lidar based vehicle detection, which is adapted

and extended here for the EMPP framework. Firstly, each point of the 3D point set is classified

into vehicle or background clusters, however, this classification can only be considered as a coarse

input for the object detector. Then the points with the corresponding class labels and intensity

values are projected to the ground plane, where the optimal vehicle and traffic segment population

is modeled by a rectangle configuration in the projected 2D image. A sample class label map

extracted from aerial data is demonstrated in Fig. 5.5(a), while the projected intensity map of an

MLS data segment is shown in Fig. 5.7(c).
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(a) Vehicle groups (b) PCB groups

Figure 5.6: Grouping energies for (a) traffic monitoring and (b) printed circuit analysis applications. Favored
(
√

) and penalized (×) sub-configurations within an object group

Model elements: parent objects are vehicles, child objects are windshields (both are rectan-

gles). Configuration segments are formed by corresponding vehicles according to various traffic

situations (Fig. 5.5(a)).

Parent unary terms (ϕpY ): as we introduced in [5], three different features are exploited for

vehicle extraction (see Fig. 5.4(b)). The vehicle evidence (fve) respectively intensity (fit) features

are calculated as the covering ratios of vehicle classified pixels in the label and intensity maps

within the proposed rectangle of u. The external background (feb) feature is the rate of background

classified pixels in neighboring regions around the proposed u object. The φve, φit and φeb primitive

terms are derived according to eq. (4.1), similarly to the built-in area analysis application. Finally

the joint data energy of object u is calculated as:

ϕpY (u) = max(min(φit(u), φve(u)), φeb(u)), (5.9)

where we admit that not necessarily all vehicles appear as bright blobs in the intensity map.

Child unary terms (ϕcY ): due to their glassy material, the windshield rectangles cover regions

without points or low-intensity areas in the projected point cloud maps (Fig. 5.4(a) and 5.5(c)),

features which are characterized by coverage ratios similarly to the parent level descriptors.

Parent-child terms J(u,Qu): the windshield is encapsulated by the car’s figure, and the orien-

tation is perpendicular to the car’s main axis (Fig. 5.5(c)).

Object-segment distance dψ(u): we expect that the vehicles of the same segment have similar

orientations, and they form regular rows. The dψ(u) distance is the average of two terms: the first

term is the normalized angle difference between u and the mean angle within ψ (see Fig. 5.6(a)-

left). Regarding the second term, we fit one or a couple of parallel lines to the object centers within

ψ using RANSAC, and calculate the normalized distance of the center of u from the closest line

(Fig. 5.6(a)-right). A generalization of this feature for curved road segments can be found in [5].
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Figure 5.7: Processing workflow for Mobile Laser Scanning (MLS) data. (a) Input scene (b) estimated ve-
hicle regions by point cloud classification - two selected segments are highlighted from different viewpoints
(c) EMPP detection results

5.5.3 Automatic optical inspection of printed circuit boards

Automatic optical inspection (AOI) is a widely used approach for quality assessment of Printed

Circuit Boards (PCBs). Automated layout-template-free approaches are especially useful for ver-

ifying uniquely designed circuits. In the PCBs usually connected groups of similarly shaped and

oriented Circuit Elements (CEs) implement a given function, therefore the interpretation of the

board content needs to segment the CE population. Another critical issue is filtering the flawed

PCBs by AOI. Nowadays the most widespread assembling technology of electronic circuit modules

uses reflow soldering [151]. Here a common problem, called scooping may occur during manu-

facturing, which influences the strength of solder joints in stencil prints [8]: a board should be

withdrawn if the number the summed volume of such artifacts surpass a given threshold. A scoop

can be visually observed in an AOI image as a bright patch surrounded by a darker ring within the

solder paste, as shown in Fig. 5.8(a). Automatic detection is challenging due to the locally varying

contrast of AOI images. In [11], I proposed an initial Bayesian approach for joint extraction of the

circuit elements and the included scoop. Afterward, in [8] we presented a deep study about the

technological background of this artifact, and proposed an advanced solution, called the Hierarchi-

cal Multi Marked Point Process (HMMPP) method, to cope with the complex PCB analysis task. In

this thesis we briefly demonstrate only, how our scooping detection approach can be adapted to the

EMPP framework, but we recommend the Reader to also study our related publications [8, 11, 37].

Model elements: parent objects are CEs of various shapes, child objects are scoops, modeled by

pairs of concentric ellipses. Groups are formed by CEs which likely have similar functionalities.

Parent unary terms (ϕpY ): In the considered PCB image data set [11] the CEs can be modeled as

bright rectangles, ellipses or triangles surrounded by darker background. To evaluate the contrast

between the CEs and the board, we calculate the Bhattacharya [87] distance dB(u) between the
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(a) Parent level features (b) Child level features

Figure 5.8: PCB inspection: Feature demonstration for unary term calculation

pixel intensity distributions of the internal CE regions and their boundaries (see Fig. 5.8(a)). Then

the ϕpY (u) unary term is derived by M mapping of dB(u).

Child unary terms (ϕcY ): Following the approach of [8] we distinguish three regions of each

scoop: the central bright ellipse, the darker median ring and the bright external ring, as shown in

Fig. 5.8(b). Experimental evidences prove here, that for a real scoop q, the gray level histogram

of the central region, λcq(x) follows a skewed distribution, while the medium and external region

histograms (λmq (x) resp. λeq(x)) can be approximated by Gaussian densities. Let us denote by µc
q,

µm
q resp. µe

q the peak locations of the smoothed λcq(x), λ
m
q (x) resp. λeq(x) functions. We prescribe

three constraints for an efficient scoop candidate: (i) it exhibits high µc
q value; while intensity

ratios (ii) µc
qu
/µm

qu
resp. (iii) µe

qu
/µm

qu
pass given contrast thresholds dcm and dem. To enforce

the simultaneous fulfillment of the (i)-(iii) properties, the child’s data-energy value is calculated

applying the maximum operator (logical AND) from the subterms of the three constraints. We use

here again the M function, defined by eq. (4.1):

ϕcY (u, qu) = max
(
M(µc

qu
, dc),M(µc

qu
/µm

qu
, dcm),M(µe

qu
/µm

qu
, dem)

)
(5.10)

Parent-child terms J(u,Qu): due to the manufacturing technology at most one scoop may

appear in a solder paste, therefore each parent CE may have a maximum of one child, whose figure

cannot overhang its parent.

Object-segment distance dψ(u): within a CE group, we prescribe that the elements must have

similar shape and must follow a strongly regular alignment (Fig. 5.6(b)). Therefore dψ(u) = 1 if

the type of u, tp(u) is not equal to the type of the ψ group, otherwise dψ(u) is the maximum of

the angle difference and symmetry distance terms defined in Sec. 5.5.2 by the traffic monitoring

application.
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Figure 5.9: Results of PCB analysis. CEs are grouped by shape and orientation, scoops are extracted within
the CEs

5.6 Benchmark database and evaluation methodology

Since to our best knowledge no usable dataset has been published yet enabling the three-level anal-

ysis of the discussed complex scenarios, we have created the new EMPP Benchmark database1,

which is designed for the evaluation of multilevel object population analysis techniques on high

resolution images. For each image Ground Truth (GT) data has been generated, which encodes the

dependencies of objects, object groups and child objects within a population. For GT annotation

we have developed a program with graphical user interface, which enables the user to manually

create and edit a GT configuration of various geometric objects composed of both parent and child

elements. We can also create new object groups, and assign each parent object to an existing group.

The EMPP Benchmark database includes the following input images with annotation:

Building detection: Budapest aerial image with 12cm resolution (69 buildings, 79 chimneys),

Manchester satellite image (50cm res., 155 buildings) from the SZTAKI-INRIA Benchmark (see

Sec. 4.2.4, [10]), and two Quickbird images (#2 and #11, 60cm-80cm res., 218 buildings) from

the dataset by A.O. Ok [152].

Traffic analysis: the dataset contains aerial Lidar point clouds, and some mobile laser scanning

(MLS) data samples from dense urban regions of Budapest, Hungary. The aerial data part consists

of 6 point cloud segments including 792 vehicles [5], while the MLS data includes 2 point cloud

segments with 42 vehicles (scanner: Riegl VMX-450 mobile mapping system).

Optical circuit board analysis: a large dataset of 44 printed circuit board images with 6µm

resolution, containing 4439 CEs and 664 scooping errors [8].

The quantitative evaluation of an EMPP based scene analysis algorithm should be accom-

plished at multiple levels. In the parent object layer, we use both object based and pixel based

accuracy rates in the same way as defined in Section 4.2.4. The evaluation step regarding the the

child layer uses object level metrics similarly to the parent layer. However, by calculating the Child

1Url: http://mplab.sztaki.hu/EMPPBenchmark
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Table 5.1: Object and group level evaluation of the the proposed EMPP model, and comparison to a con-
ventional sMPP approach

App. Method
Parent level analysis Group level study

Number of objects Pixel level % Obj mis-grouping
TP FP FN PRc PPr PPF FG# GR%

Building sMPP 406 24 36 80 75 78 58 14
analysis EMPP 417 14 25 84 88 86 28 7

Aerial traffic sMPP 792 30 25 79 77 78 202 25
monitoring EMPP 793 30 24 82 85 83 43 5

Ground-based sMPP 42 0 0 92 86 89 2 5
traffic analysis EMPP 42 0 0 96 89 92 0 0

PCB sMPP 4408 39 31 87 86 87 448 10
inspection EMPP 4415 9 24 92 97 94 137 3

Object level Precision (CPr), Recall (CRc) and F-score (COF), we only accept matches between

the detected and GT child objects, if their parents are also correctly matched at the upper layer.

Finally, we also measure the correct Group Classification Rate (GR, %) among the true positive

samples, considering the GT group classification information. The GR value is determined by

counting the number correctly grouped objects (TG), the number of falsely grouped objects (FG),

and calculating GR=TG/(TG+FG).

5.7 Experimental results

We evaluated our method on the new EMPP Benchmark database. Qualitative sample results of

the three level population detection are shown in Fig. 5.2, 5.5, 5.7 and 5.9. During the quantitative

analysis, the results were compared to the GT configuration of the benchmark, and the above

performance rates were calculated in each case, as shown in Table 5.1 and 5.2.

During the first part of the comparative tests, we focused on the evaluation of the newly intro-

duced EMPP framework versus earlier straightforward MPP solutions. As a baseline for compari-

son, we implemented a sequential technique, which extracts first the object population by a single

layer MPP model (sMPP), using exactly the same unary terms and child detection process as the

proposed EMPP approach, but the Φp(ω) prior term is only composed of the I(u, v) intersection

component and the J(u,Qu) parent-child interaction feature, while the parent-group term is con-

sidered to be zero (A(u, ψ) = 0). Thereafter, the parent object grouping step is performed in post

processing by a recursive floodfill-like segmentation of the population. Starting from a randomly

chosen object, we assign all its spatial neighbors to the same cluster iff the difference between the
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Table 5.2: Child level evaluation of the the proposed EMPP model
Application CRc% CPr% COF%
Building analysis 80 71 75
Aerial traffic monitoring 92 92 92
Ground-based traffic analysis 93 93 93
PCB inspection 91 95 93

orientations is lower than a τ threshold and recursively repeat the process until all objects receive

a group label. As observed during the following qualitative and quantitative tests, the bottleneck

is the usage of this single τ threshold, which cannot be set uniformly for a complete population in

case of noisy initial object estimations.

In Table 5.1 we can observe that the introduced EMPP model can surpass sMPP in two ma-

jor quality factors. First, EMMP results in a notable gain in the pixel based error rates (PRc,

PPr and PPF), which means that the extracted object shapes become more accurate. Second, the

EMPP model significantly decreases the number of objects with False Groups (FG,GR). Using the

single layer model the main source of errors is that in many cases the object orientations cannot

be accurately estimated based on the input feature maps only: in the building analysis task the

edge map is often weak and noisy, in aerial vehicle detection the projected point cloud has a low

resolution, and in PCB analysis the irregular deformations of the rectangular solder pastes may

make the estimation inaccurate. On the other hand, in our EMPP model, the object orientations

are efficiently adjusted by considering the higher (group) level alignment constraints. As shown in

Table 5.1, the differences between the sMPP and EMPP performance are less significant regard-

ing the Mobile Laser Scanning (MLS) data, which has a high resolution and accuracy, enabling

more reliable feature extraction from the input measurements. We note that in particular cases, the

sMPP output could also be enhanced by using pairwise orientation smoothing terms [109]. How-

ever, the proposed EMPP model offers a higher degree of freedom for simultaneously considering

various group level features and exploiting interaction between corresponding, but not necessar-

ily closely located objects. In our case, we only prescribe regular alignment within the estimated

object groups, locally outlying labels can indicate unusual object behavior.

Another relevant point of evaluation is the justification of using an MPP approach versus var-

ious alternative non-MPP based techniques for the selected application domains. Regarding the

building detection problem, a detailed state-of-the comparison has already been provided in Chap-

ter 4, which demonstrated the advantages of the point process based solution.

Vehicle detection from airborne Lidar has also a broad literature. In our task specific paper [5],

we compared our solution to the digital elevation map based PCA [153], h-maxima suppression

(h-max) [154] and Floodfill (FF) [32] approaches. Although the reference methods were chosen so
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Table 5.3: Traffic analyis evalutation vs. state-of-the-art. Parent level F-scores (in %) by the PCA [153],
h-max [154], Floodfill (Floodf) and the proposed EMPP methods.

Set NV*
Object level F-score % Pixel level F-score%

PCA h-max Flof EMPP PCA h-max Flof EMPP

#1 191 78 78 88 97 63 63 66 82

#2 94 89 81 80 97 80 38 60 73

#3 170 85 87 91 96 77 76 85 74

#4 160 68 77 88 97 61 68 75 89

#5 110 48 79 92 98 37 61 82 84

#6 131 89 81 73 98 80 70 48 88

#7 153 80 90 88 93 60 76 65 88

All 1009 77 82 86 97 66 65 71 83

*NumV = Number of real Vehicles in the test set

that they provide complex and valid solutions for the vehicle detection task in general urban envi-

ronments, we have also observed a number of limitations for each case. Most of the problems with

DEM-PCA originate from the inaccuracies and discretization artifacts of the estimated elevation

maps. In addition, short vegetation or various street objects can corrupt the process since their el-

evation range is often overlapping with the vehicles’ height values. By testing the h-max method,

we have noticed similar limitations as mentioned by the authors in [154]: in parking areas and

cluttered regions, the technique yields inaccurate contours and merges some of the nearby objects,

while vegetation causes a number of additional false alarms. Regarding the Floodfill algorithm, we

observed that 3D connected component propagation is sensitive to noise due to partial occlusion,

and nearby vehicles are often merged together. On the other hand, in the proposed technique the

2D projection implements already a noise filtering step, and the inverse object description approach

of MPP does not request strictly connected components for detecting a vehicle. The quantitative

comparison results shown in Table 5.3 confirm again the superiority of using MPP at the parent

object level.

The scooping detection problem investigated in the third application example is a strongly tech-

nology specific issue, which understandably does not have a wide bibliography. However, the gain

obtained by the stochastic parent-child relationship model of the EMPP can be well demonstrated

in the context of this PCB inspection application. As a baseline technique for scooping detection,

we have implemented a morphology-based solution called Morph (introduced in [11]), which ap-

plies two thresholding operations on the input image: The first one uses a lower threshold value

yielding a binary solder paste candidate mask. Using the second threshold we extract the brightest

image parts which are supposed to contain the scoop center areas. Finally a verification process

removes the false scoop candidates. Table 5.4 shows the scooping detection performance of the
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Table 5.4: PCB inspection task: Comparison of the child level performance on scooping detection between
the Morph technique and the proposed EMPP model

PCB insp. method TP FP FN F-score
Morph technique [11] 514 228 150 73%
Proposed EMPP 629 65 35 93%

Table 5.5: Average computational time and parent object number for sample images of the different appli-
cation fields

Built-in Aerial Traffic PCB insp.
Avg. EMPP time 17.8 sec 11.1 sec 21.7 sec
Avg. sMPP time 13.9 sec 9.1 sec 20.1 sec
Avg. obj.num. 110 136 100

deterministic Morph and the stochastic EMPP approach: 20% gain can be reported for EMPP at

the child level.

For keeping the computational time of the iterative Multi-level Multiple Birth-Death-Main-

tenance (MMBDM) optimization algorithm low, we applied an exponential temperature cooling

strategy, and took the advantage of the Bottom-Up Stochastic Entity Proposal (BUSEP) process

similarly as an extension of the feature-based birth process from Chapter 4, by using various

application-dependent image desciptors [5, 8, 10]. This way, the algorithm converged quickly to a

sub-optimal solution, which proved to be efficient in the selected application domains. For quanti-

tative analysis of the processing speed, we ran our algorithms on a standard desktop computer, and

for each application we calculated the average computational time on one test image, both for the

EMPP and sMPP models. Results listed in Table. 5.5 confirm that the EMPP’s average running

time varies between 11 and 22 seconds, which means a 20-30% computational overload versus

sMPP for the built-in area analysis and aerial traffic surveillance tasks, while the running time of

the two methods have been nearly identical for PCB analysis. The experiments also showed that

the computational time is nearly independent of the number of objects, but it is related to the pixel

based area of the parent objects, which was larger for the building detection and PCB inspection

tasks.

Note that the iterative MMBDM algorithm contains a number of stochastic operations: in

each main step random moves mutate the population, such as probabilistic birth, death, param-

eter change or movement between groups etc. Nevertheless, we experienced that the outputs of

the proposed framework are stable, i.e. the output configurations are largely similar for each run.

In addition we have also performed a detailed analysis on the repeatability of the algorithm using

an aerial Lidar segment containing 169 vehicles classified into 10 object groups. 200 independent
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Table 5.6: Experiment repeatability for the vehicle detection task: Mean values and standard deviations of
the measured error rates for 200 independent run in the same aerial Lidar segment

TP FP FN PFR TG FG
Mean 161.4 4.27 7.56 0.78 158.5 2.89
Dev 0.81 0.45 0.81 0.0077 2.37 2.24

Table 5.7: Distribution of the number of falsely grouped objects (out of 169 vehicles) in the 200-run exper-
iment of Table 5.6

FG val. 0 1 2 3 4 5 6 7-20 21+
Freq. 26 36 20 41 41 25 8 3 0

experiments have been preformed on the same data and with the same parameter settings, and the

output configurations of the stochastic method have been compared to the GT each time. Mean

values and standard deviations of the measured error rates are shown in Table 5.6. We can observe

that at the level of parent object recognition the deviations of TP/FN/FP are less than 1 object,

while regarding the pixel-based rates it is less than 0.01 over the 200 test runs. As for object

grouping, this scenario was one of the most challenging of all, since due to the low resolution of

the aerial Lidar, the true object dimensions and orientations were often difficult to extract from the

local point cloud data, thus the introduced object level grouping features strongly effected the out-

put result. Table 5.7 shows the distribution of the numbers of falsely grouped objects (FG) during

the 200 trials: typically 0-5 errors were measured among the 169 objects, and we experienced an

FG larger than 6 only in three cases, while the error factor was never larger than 20.

5.8 Conclusion of the chapter

This chapter proposed a novel Embedded Marked Point Process (EMPP) model for joint extraction

of objects, object groups, and specific object parts from high resolution digital images. The effi-

ciency of the approach has been tested in three different application domains, and Ground Truth

data has been prepared and published to enable quantitative evaluation. Based on the obtained

results, we can confirm that the proposed EMPP model is able to handle real world tasks from

significantly different application areas, providing a Bayesian framework for multi-level image

content interpretation.

dc_942_14

Powered by TCPDF (www.tcpdf.org)



Chapter 6

4D environment perception

In this chapter various new solutions are proposed for the analysis of 4D (i.e. dynamic 3D) envi-

ronment using up-do-date sensor configurations. The chapter begins with an overview on current

challenges of environment perception and the opportunities provided by the latest sensor develop-

ments. Thereafter we define three different problems, which will be discussed in the remaining

parts of the chapter. First, a new Marked Point Process approach is presented for 3D people local-

ization and height estimation in multi-camera systems. Second, we introduce a new people surveil-

lance framework based on point cloud sequences of a Rotating Multi-beam (RMB) Lidar sensor,

with novel contributions in foreground-background separation of the RMB Lidar data streams, and

person re-identification via Lidar based gait features. Third, we propose a workflow and several

new algorithms for real time environment perception relying on a moving car-mounted RMB Lidar

sensor, where as reference background map we use very dense 3D point clouds of the environment

obtained by mobile laser scanning.

81
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6.1 Introduction to 4D environment perception

Automated perception and interpretation of the surrounding environment are key issues in intelli-

gent city management, traffic monitoring and control, security surveillance, or autonomous driv-

ing. Critical tasks involve detection, recognition, localization and tracking of various moving and

static objects, environmental change detection and change classification. Nowadays a standard ex-

pectation is that the localization and tracking must be performed in the real 3D world coordinate

system of the observed environment, which requirement – considering the temporal dimension of

the measurements – implies 4D perception problems [27].

A significant part of the existing environment monitoring systems use electro-optical cameras

as perception sensors, due to their established technologies, wide choices of the available prop-

erties and scalable prices. Nevertheless, despite the well explored literature of the topic, event

analysis in optical image sequences may be still challenging in cases of crowded outdoor scenes

due to uncontrolled illumination conditions, irrelevant background motion, and occlusions caused

by various moving and static scene objects [155, 156]. In such situations multi-camera configura-

tions can provide better solutions, since they monitor a dynamic scene from multiple viewpoints by

taking the advantages of stereo-vision to exploit depth information for 3D localization and track-

ing [157, 158]. However, both mono and multi-camera systems suffer from a number of basic

problems, such as artifacts due to moving shadows and low contrast between different objects in

the color domain [159, 160], which issues raise still open research challenges in the topic.

As alternative solutions of conventional optical video cameras, range sensors offer signifi-

cant advantages for scene analysis, since direct geometrical information is provided by them [50].

Using infra light based Time-of-Flight (ToF) cameras [161] or laser based Light Detection and

Ranging (Lidar) sensors [162] enable recording directly measured range images, where we can

avoid artifacts of the stereo vision based depth map calculation. From the point of view of data

analysis, ToF cameras record depth image sequences over a regular 2D pixel lattice, where estab-

lished image processing approaches, such as Markov Random Fields (MRFs) can be adopted for

smooth and observation consistent segmentation and recognition [14]. However, such cameras can

only be reliably used indoors, due to limitations of current infra-based sensing technologies, and

usually they have a limited Field of View (FoV), which fact can be a drawback for surveillance and

monitoring applications.

Rotating Multi-beam (RMB) Lidar systems provide a 360◦ FoV of the scene, with a vertical

resolution equal to the number of the sensors, while the horizontal angle resolution depends on the

speed of rotation (see Fig. 6.1(a)). Each laser point of the output point cloud is associated with 3D

spatial coordinates, and possibly with auxiliary channels such as reflection number or an intensity

value of laser reflection. RMB Lidars can produce high frame-rate point cloud videos enabling
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(a) Velodyne HDL-64E RMB Lidar (b) Riegl VMX-450 MLS

Figure 6.1: Data comparison of two different Lidar sensors: (a) a time frame from a dynamic RBM Lidar
sequence and (b) static point cloud scene obtained by Mobile Laser Scanning (MLS)

dynamic event analysis in the 3D space. On the other hand, the measurements have a low spatial

density, which quickly decreases as a function of the distance from the sensor, and the point clouds

may exhibit particular patterns typical to sensor characteristic (such as ring patterns in Fig. 6.1(a)).

Although the 3D measurements are quite accurate (up to few cms) in the sensor’s local coordinate

system, the global positioning error of the vehicles may reach several meters due to limitations of

the availability of external navigation signals.

Mobile laser scanning (MLS) platforms equipped with time synchronized Lidar sensors and

navigation units can rapidly provide very dense and accurate point clouds from large environments

(see Fig. 6.1(b)), where the 3D spatial measurements are accurately registered to a geo-referenced

global coordinate system [163, 164, 165]. In the near future, these point clouds may act as a basis

for detailed and up-to-date 3D High Definition (HD) maps of the cities, which can be be utilized

by self driving vehicles for navigation, or by city authorities for road network management and

surveillance, architecture or urban planning. While the high speed of point cloud acquisition is a

clear advantage of MLS, due to the huge data size yielded by each daily mission, applying efficient

automated data filtering and analyzing algorithms in the processing side is crucially needed.

In this chapter, we introduce various contributions in the 4D environment perception topic.

Sec. 6.2 presents a new method on Marked Point Process (MPP) based pedestrian localization

and height estimation in multi-camera systems, and gives a detailed comparative evaluation of

the proposed method versus a state-of-the art technique. In Sec. 6.3 we introduce a new 4D

people surveillance framework, with original methodological contributions in motion detection,

gait-based pedestrian re-identification and activity recognition using a single RMB Lidar sensor

which monitors the scene from a fixed position. Finally, in Sec. 6.4 we propose a new workflow
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Figure 6.2: Multiview people detection and height estimation

and various specific algorithms for dynamic urban scene analysis with a car-mounted moving RMB

Lidar sensor, exploiting MLS data as a HD background map.

6.2 People localization in multi-camera systems

Person localization is a crucial step in people surveillance applications, since it is an important

precursor of tracking and activity analysis. At each time frame, the 3D ground positions of the

observed pedestrians should be automatically extracted in the world coordinate system. A possible

approach for the problem is using multi-camera systems, which are able to monitor the scene

from multiple viewpoints simultaneously, providing the advantage that people partially occluded

from certain viewpoints might be clearly observable from another ones. Here people detection

and localization require 3D information retrieval from stereo or multi-view inputs, with efficient

approximation strategies of the missing information resulted by camera noise, artifacts of image

matching (especially in featureless regions) and occlusion [36].

In this section we introduce a Bayesian approach on multiple people localization in multi-

camera systems [39]. First, pixel-level features are extracted, which are based on physical proper-

ties of the 2D image formation process, and provide information about the head and leg positions

of the pedestrians, distinguishing standing and walking people, respectively [41]. Then features

from the multiple camera views are fused to create evidence for the location and height of people

in the ground plane. This evidence accurately estimates the leg position even if either the area

of interest is only a part of the scene, or the overlap ratio of the silhouettes with irrelevant back-

ground motion within the monitored area is significant. Using this sort of information we create a

3D object configuration model. We also utilize prior geometrical constraints, which describe the

possible interactions between two pedestrians. To approximate the position of the people, we use a
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Figure 6.3: Foreground detection results with our approach [14] and two reference techniques on a real
surveillance video sequence. White, gray and black pixel mark foreground, shadow and background classes.
Row 1: MRF with the reference ‘uniform foreground’ calculus [166]. Row 2: Our initially proposed model
[47] without using microstructural features. Row 3: Segmentation results with our final model [14].

population of 3D cylinder objects, which is realized by a Marked Point Process. The final configu-

ration results are obtained by an iterative stochastic energy optimization algorithm. The proposed

approach is evaluated on two publicly available datasets, and compared to a recent state-of-the-art

technique. To obtain relevant quantitative test results, a 3D Ground Truth annotation of the real

pedestrian locations is prepared, while two different error metrics and various parameter settings

are proposed and evaluated, showing the advantages of our proposed model.

6.2.1 A new approach on multi-view people localization

The first step of the workflow is foreground detection in the video frames of each camera. For this

purpose, we use our earlier proposed Markov Random Field (MRF) based approach [14], which

considers the task as a three-class segmentation problem with foreground, background and moving

shadow classes1. The applied technique has four key features [14]: (i) It uses a new paramet-

ric shadow model [51], where local feature vectors are derived at the individual pixels, and the

shadow’s domain is represented by a global probability density function in that feature space. The

parameter adaption algorithm is based on following the changes in the shadow’s feature domain.

1The proposed foreground detection approach has already been presented in the Ph.D. dissertation of
the Author [53], therefore, we only give here a short overview. The Reader may find the details in the
corresponding publications [14, 15, 51, 53].
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86 6. 4D ENVIRONMENT PERCEPTION

Figure 6.4: Side view sketch of a person’s silhouette projected to the ground plane (blue) and to the hori-
zontal plane intersecting the top of the head (red).

(ii) Our model encapsulates a novel multi-modal color model for the foreground class, which ex-

ploits spatial color statistics instead of high frame rate temporal information to describe the regions

of moving objects. Using the assumption that any object consists of spatially connected parts which

have typical color/texture patterns, the distribution of the likely foreground colors have been lo-

cally estimated in each pixel neighborhood. (iii) We have developed a probabilistic description of

microstructural responses observed in the background and in shadows, where the features can be

defined by arbitrary 3× 3 kernels. At different pixel positions different kernels could be used, and

an adaptive kernel selection strategy has been proposed considering the local textural properties of

the background regions. (iv) We have also prepared a detailed experimental comparison of various

widely used color spaces in connection with our proposed framework [15]. We have shown that

color space selection is a key issue in shadow detection, if for practical purposes, shadow mod-

els with less free parameters are preferred, and the experiments confirmed the clear superiority

of the CIE L*u*v* color space. Some example results with the proposed model, and competing

approaches are shown in Fig. 6.3.

The input of the remaining steps in the proposed multi-view person localization method con-

sists of the foreground masks extracted from multiple calibrated camera views [167], monitoring

the same scene. The main idea of our method is to project the extracted foreground pixels both on

the ground plane, and on the horizontal plane shifted to the height of the person (see Fig. 6.4). This

projection will create a distinct visual feature, observable from a virtual birds-eye viewpoint above

the ground plane. However, the person’s height is unknown a priori, and the height of different

people in the scene may also be different. Therefore, we project the silhouette masks on multiple

parallel planes at heights in the range of typical human height. In crowded scenes the overlap rate

between person silhouettes in the individual foreground masks is usually high, which could corrupt

our hypothesis. We solve this problem by fusing the projected results of multiple camera views on

the same planes. Finally, we search for the optimal configuration through stochastic optimization

using the extracted features and geometrical constraints.
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(a) Real height (b) Underestimated height

(c) Overestimated height (d) Features

Figure 6.5: Feature definition

6.2.2 Silhouette based feature extraction

Let us denote by P0 the groundplane, and by Pz the parallel plane above P0 with an elevation z.

In the first step of the proposed method we project the detected silhouettes to P0 and to different

Pz planes (with different z > 0 offsets) by using the projection model of the calibrated cameras.

Consider the person with height h presented in Fig 6.4, where we projected the silhouette on the

P0 ground plane (marked with blue) and the Pz plane with the height of the person (ie. z = h,

marked with red). Also consider the v vertical axis of the person which is perpendicular to the

P0 plane. We can observe that from this axis, the silhouette points projected to the Pz|z=h plane

lie in the direction to the camera, while the silhouette print on P0 is on the opposite side of v.

For more precise investigations, in Fig. 6.5 the scene is visualized from a viewpoint above Pz,

watching down in a perpendicular direction to the ground. Here, the silhouette prints from Pz and

P0 are projected to a common x − y plane and jointly shown by red and blue colors, respectively

(overlapping areas are purple). We can observe in Fig. 6.5(a), that if the height estimation is

correct (z = h), the two prints just touch each other in the p = (x, y) point which corresponds to

the ground position of the person. However, if the height of Pz is underestimated (i.e. z < h), the

two silhouette prints will overlap as shown in Fig. 6.5(b). When the height is overestimated (ie.

z > h), the silhouettes will move away, see Fig. 6.5(c).

Next, we derive a fitness function which evaluates the hypothesis of a proposed scene object

with ground position p = (x, y) and height h, using the multiple camera information. As shown

in Fig. 6.5(d), for a given camera projection we can define for each p position candidate a head
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88 6. 4D ENVIRONMENT PERCEPTION

search region (HSR(p)) and a leg search region (LSR(p)), denoted by green circle sectors. If both

the p ground position and the h height estimations are accurate, we expect several Ph-based (red)

silhouette points (Sil(h)) in HSR but not in LSR. Regarding the P0 (blue) silhouette points (Sil(0))

our expectation is the opposite: low coverage in HSR and high coverage in LSR. This observation

leads to the following fitness features at the ith camera view:

f ihd(p, h) =
Area

(
Sili(h) ∩ HSRi(p)

)
−Area

(
Sili(h) ∩ LSRi(p)

)
)
)

Area
(
HSRi(p)

) . (6.1)

f ilg(p) =
Area

(
Sili(0) ∩ LSRi(p)

)
−Area

(
Sili(0) ∩ HSRi(p)

)
)
)

Area
(
LSRi(p)

) . (6.2)

If the object defined by the [p, h] parameters is completely visible for the ith camera, both the

f ihd(p, h) and f il (p) features should have high values. However, in the available views, some of

the legs or heads may be partially or completely occluded by other pedestrians or static scene

objects, which can strongly corrupt the feature values. Although the descriptors may be weak in

the individual cameras, we can construct a stronger feature if we average the responses of the N

available cameras, i.e.

f̄hd(p, h) =
1

N
·
N∑

i=1

f ihd(p, h) , f̄lg(p) =
1

N
·
N∑

i=1

f ilg(p) . (6.3)

Finally, the joint data feature f(p, h) is derived as

f(p, h) =
√
f̄hd(p, h) · f̄lg(p) , (6.4)

6.2.3 3D Marked Point Process model

The f(p, h) feature introduced in the previous section evaluates the hypothesis that a person with

a height h stands in the ground position p, based on the multiple camera measurements. Our

goal is to recognize a configuration of an unknown number of people in the scene, where each

person is characterized by the (x, y, h) parameter triplet with p = (x, y). Since this problem can

be formulated as a population extraction task, we have embedded the features into a Marked Point

Process (MPP) model. While in MPP solutions in Chapters 4 and 5 of this Thesis the objects were

represented by various 2D geometric figures, in this case, a 3D cylinder model describes a given

person (see Fig. 6.6(a)).

We monitor a rectangular Region of Interest (RoI) on P0 discretized into SW × SH locations

corresponding to a regular grid, and also round the person heights to integers measured in cm.

Therefore, the object space H can be obtained as H = [1, . . . , SW ]×[1, . . . , SH ]×[hmin, . . . , hmax].
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(a) Cylinder model (b) Intersection feature

Figure 6.6: Cylinder objects modeling people in the 3D scene coordinate system. Their ground plane
position and height will be estimated. Intersection of cylinders in the 3D space is used as geometrical
constraint in the object model

The remaining part of the MPP model construction follows the description in Sec. 2.2.1. An

object u is described by the (x, y, h) parameters, since we used cylinders with a fixed R radii

corresponding to the minimal expected half-distance between two ground positions. TheA(u) data

terms are derived from the f(p, h)|p=(x,y) feature values using the nonlinear M(f, d0, D) feature

mapping function of formula (4.1). The I(u, v) interaction terms prescribe a non-overlapping

constraint between neighboring cylinders, as demonstrated in Fig. 6.6(b):

I(u, v) =
Volume

(
u ∩ v

)

Volume
(
u ∪ v

) . (6.5)

Finally, the Multiple Birth and Death optimization technique (introduced in Sec. 2.2.3) is utilized

to obtain the targeted population.

6.2.4 Evaluation of multi-camera people localization

We have compared our approach to the Probabilistic Occupancy Map (POM) technique [157],

which has been a state-of-the-art method with similar purposes1.

For the evaluation of the two methods we used two public sequences. First, from the PETS

2009 dataset [168] we selected the City center images containing approximately 1 minute of

recordings (400 frames total) in an outdoor environment. From the available views we selected

cameras with large fields of view (View_001, View_002, and View_003) and we used a RoI of size

12.2m × 14.9m, which is visible from all three cameras. The maximum number of pedestrians at

the same time inside the RoI is 8.

1Executable application of the POM reference technique is freely available (on 26.04.2019) at
http://cvlab.epfl.ch/software/pom/

dc_942_14

Powered by TCPDF (www.tcpdf.org)

Chapter5/Chapter5Figs/cylinder.EPS
Chapter5/Chapter5Figs/cylinderIntersect.EPS
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Figure 6.7: Detection examples by the proposed 3DMPP model in the City Center sequence with multiple
pedestrians and occlusions, projected to one of the camera images (note: as discussed, the detection is based
on multiple camera views)

The second dataset we used in our experiments is the EPFL Terrace dataset, which is 3 minutes

and 20 seconds long (5000 frames total). The scene is semi-outdoor, since it was recorded in a con-

trolled outdoor environment and it also lacks some important properties of a typical outdoor scene

(e.g. no background motion caused by the moving vegetation is present, and no static background

objects occlude the scene). We selected three cameras having small fields of view, and defined the

RoI as a 5.3m× 5.0m rectangle. The scene is severely cluttered in some periods.

For numerical evaluation we created complete ground position annotation for both the City

center and Terrace multi-camera sequences, using a newly developed 3D Ground Truth annota-

tions tool introduced in [35]. For the City center sequence we annotated all 400 frames, while the

Terrace sequence has been annotated with 1Hz frequency resulting in 200 annotated frames

We considered various error rates: Missed Detections (MD) counts the number of examples,

where no detection could have been assigned to a Ground Truth target. False Detections (FD)

value corresponds to examples, where no Ground Truth position could have been assigned to a

detected sample. Multiple Instances (MI) measures the number of cases where multiple detections

were assigned to a single Ground Truth position. Finally, the Total Error (TE) is taken as TE =

MD+ FD +MI.

After counting all the false localization results (MD, FD, MI) on all annotated frames we

express them in percent of the number of all objects, and we denote these ratios by MDR, FDR,

MIR, and TER. Note that while MDR ≤ 1 and MIR ≤ 1 always hold, in case of many false

alarms FDR (thus also TER) may exceed 1. For accuracy evaluation of position estimation, we

also measured distance between the ground positions in the Ground Truth annotation and in the

detection results yielding the Ground Position Error (GPE) metric.

Detection examples by the proposed model in the two sample frames of the City center se-

quence are displayed in Fig. 6.7. We can numerically compare POM to the proposed 3DMPP

method in Table 6.1, considering both test sequences and the GPE error metrics. Here in all cases
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Table 6.1: Comparison of the POM and the proposed 3DMPP models with optimized parameter sets (so that
the total error rate TER is minimized), all three cameras are used

Sequence Method
Ground Position Errors (GPE)
TER FDR MDR MIR

City center
POM 0.252 0.179 0.073 0.000
Prop. 3DMPP 0.122 0.020 0.096 0.006

Terrace
POM 0.686 0.354 0.331 0.001
Prop. 3DMPP 0.131 0.043 0.083 0.005

(a) Lidar sensor (b) Foreground detection (c) Person separation (d) Top view trajectories

Figure 6.8: Lidar based surveillance: flowchart of the motion detection and person tracking process

the parameters have been set to minimize TER, while the corresponding FDR, MDR and MIR

values are also listed. Results confirm the superiority of the proposed 3DMPP model over POM.

A detailed study on parameter sensitivity of the proposed model has also been provided in [9].

6.3 A Lidar based 4D people surveillance approach

This section presents new approaches for people surveillance based on data streams of a Rotating

Multi-beam (RMB) Lidar sensor standing in a static position. First we deal with efficient motion

detection and tracking (see Fig. 6.8), thereafter we focus on gait based person re-identification dur-

ing the surveillance period, as well as recognition of specific activity patterns. Main contributions

of this sections are twofold. On one hand we introduce a new dynamic MRF model for foreground-

background segmentation of RMB Lidar streams, and show its superiority versus straightforward

approaches. On the other hand we propose machine learning based techniques for gait and activity

analysis on the Lidar data, assuming that the descriptors for training and recognition are observed

and extracted from realistic outdoor surveillance scenarios, where multiple pedestrians are walk-

ing in the field of interest following possibly intersecting trajectories, thus the observations might

often be affected by occlusions or background noise.
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Figure 6.9: Point cloud recording and range image formation with a Velodyne HDL-64E RMB Lidar sensor

6.3.1 Foreground extraction in Lidar point cloud sequences

A Rotating Multi-beam (RMB) Lidar sensor provides a time sequence of 3D point clouds capturing

a 360◦ FoV of the scene. For efficient data processing, the 3D RMB Lidar points are often projected

onto a cylinder shaped range image [162, 169] as shown in Fig. 6.9. However, this mapping

is usually ambiguous: On one hand, several laser beams with slight orientation differences are

assigned to the same pixel, although they may return from different surfaces. As a consequence, a

given pixel of the range image may represent different background objects at the consecutive time

steps.

In this section we introduce a hybrid 2D–3D approach [6, 31] for dense foreground-background

segmentation of RMB Lidar point cloud sequences obtained from a fixed sensor position (Fig.

6.9 and 6.10). Our technique solves the computationally critical spatial filtering steps in the 2D

range image domain by an MRF model, however, ambiguities of discretization are handled by

joint consideration of true 3D positions and back projection of 2D labels. By developing a spatial

foreground model, we significantly decrease the spurious effects of irrelevant background motion,

which principally caused by moving tree crowns and bushes.

6.3.1.1 Problem formulation and data mapping

Assume that the RMB Lidar system contains R vertically aligned sensors, and rotates around a

fixed axis with a possibly varying speed1. The output of the Lidar within a time frame t is a point

cloud of lt = R · ct points: Lt = {pt1, . . . , ptlt}. Here ct is the number of point columns obtained

at t, where a given column contains R concurrent measurements of the R sensors, thus ct depends

on the rotation speed. Each point, p ∈ Lt, is associated to sensor distance d(p) ∈ [0, Dmax],

1The speed of rotation can often be controlled by software, but even in case of constant control signal,
we must expect minor fluctuations in the measured angle-velocity, which may result in different number of
points for different 360◦ scans in time.
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pitch index ϑ̂(p) ∈ {1, . . . , R} and yaw angle ϕ(p) ∈ [0, 360◦] parameters. d(p) and ϑ̂(p) are

directly obtained from the Lidar’s data flow, by taking the measured distance and sensor index

values corresponding to p. Yaw angle ϕ(p) is calculated from the Euclidean coordinates of p

projected to the ground plane, since the R sensors have different horizontal view angles, and the

angle correction of calibration may also be significant [170].

For efficient data manipulation, we also introduce a range image mapping of the obtained 3D

data. We project the point cloud to a cylinder, whose central basis point is the ground position of

the RMB Lidar and the axis is prependicular to the ground plane. Note that slightly differently

from [169], this mapping is also efficiently suited to configurations, where the Lidar axis is tilted

to increase the vertical Field of View. Then we stretch a SH × SW sized 2D pixel lattice S on the

cylinder surface, whose height SH is equal to the R sensor number, and the width SW determines

the fineness of discretization of the yaw angle. Let us denote by s a given pixel of S, with [ys, xs]

coordinates. Finally, we define the P : Lt → S point mapping operator, so that ys is equal to the

pitch index of the point and xs is set by dividing the [0, 360◦] domain of the yaw angle into SW

bins:

s
def
= P(p) iff ys = ϑ̂(p), xs = round

(
ϕ(p) · SW

360◦

)
(6.6)

The goal of the foreground detector module is at a given time frame t to assign each point p ∈ Lt

to a label ς(p) ∈ {fg, bg} corresponding to the moving object (i.e. foreground, fg) or background

classes (bg), respectively.

6.3.1.2 Background model

The background modeling step assigns a fitness term fbg(p) to each p ∈ Lt point of the cloud,

which evaluates the hypothesis that p belongs to the background. The process starts with a cylinder

mapping of the points based on eq. (6.6), where we use a R×Sbg
W pixel lattice Sbg (R is the sensor

number). For each s cell of Sbg, we maintain a Mixture of Gaussians (MoG) approximation of the

d(p) distance histogram of p points being projected to s. Following the approach of [171], we use

a fixed K number of components (here K = 5) with weight κis, mean µis and standard deviation σis
parameters, i = 1 . . . K. Then we sort the weights in decreasing order, and determine the minimal

ks integer which satisfies
∑ks

i=1 κ
i
s > Tbg (we used here Tbg = 0.89). We consider the components

with the ks largest weights as the background components. Thereafter, denoting by η() a Gaussian

density function, and by Pbg the projection transform onto Sbg, the fbg(p) background evidence

term is obtained as:

fbg(p) =
ks∑

i=1

κis · η
(
d(p), µis, σ

i
s

)
, where s = Pbg(p). (6.7)
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(a) Range image part (b) Basic MoG [162] (c) uniMRF [160] (d) Proposed DMRF

Figure 6.10: Foreground segmentation in a range image part with three different methods

The Gaussian mixture parameters are set and updated based on [171], while we used Sbg
W = 2000

angle resolution, which provided the most efficient detection rates in our experiments. By thresh-

olding fbg(p), we can get a dense foreground/background labeling of the point cloud [162, 171]

(referred later as Basic MoG method), but as shown in Fig. 6.10(b), this classification is notably

noisy in scenarios recorded in large outdoor scenes.

6.3.1.3 DMRF approach on foreground segmentation

In this section, we propose a Dynamic Markov Random Field (DMRF) model to obtain smooth

and observation consistent segmentation of the point cloud sequence (Fig. 6.11). Since MRF

optimization in 3D is computationally expensive, we define the DMRF model in the range image

space, and 2D image segmentation is followed by a point classification step to handle ambiguities

of the mapping. As defined by eq. (6.6), we use a P cylinder projection transform to obtain the

range image, with a SW = ĉ < Sbg
W grid width, where ĉ denotes the expected number of point

columns of the point sequence in a time frame. By assuming that the rotation speed is slightly

fluctuating, this selected resolution provides a dense range image, where the average number of

points projected to a given pixel is around 1. Let us denote by Ps ⊂ Lt the set of points projected

to pixel s. For a given direction, foreground points are expected being closer to the sensor than

the estimated mean background range value. Thus, for each pixel s we select the closest projected

point pts = argminp∈Ps
d(p), and assign to pixel s of the range image the dts = d(pts) distance value.

For ‘undefined’ pixels (Ps = ∅), we interpolate the distance from the neighborhood. For spatial

filtering, we use an eight-neighborhood system in S, and denote by Ns ⊂ S the neighbors of s.

Next, we assign to each s ∈ S foreground and background energy (i.e. negative fitness) terms,

which describe the class memberships based on the observed d(s) values. The background energies

are directly derived from the parametric MoG probabilities using (6.7): ǫtbg(s) = − log (fbg(p
t
s)).

For description of the foreground, using a constant ǫfg could be a straightforward choice [160]

(we call this approach uniMRF), but this uniform model results in several false alarms due to back-

ground motion and quantization artifacts. Instead of temporal statistics, we use spatial distance
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Figure 6.11: Components of the dynamic MRF model. a) structure of the multi-layer MRF model b) demon-
strating the different local range value distributions in the neighborhood of a given foreground and back-
ground pixel, respectively c) plot of the used sigmoid function.

similarity information to overcome this problem by using the following assumption: whenever s is

a foreground pixel, we should find foreground pixels with similar range values in the neighborhood

(Fig. 6.11(b)). For this reason, we use a non-parametric kernel density model for foreground:

ǫtfg(s) =
∑

r∈Ns

ζ(ǫtbg(r), τfg,m⋆) · k
(
dts − dtr
h

)
,

where h is the kernel bandwidth and ζ : R→ [0, 1] is a sigmoid function (see Fig. 6.11(c)):

ζ(x, τ,m) =
1

1 + exp(−m · (x− τ)) . (6.8)

We use here a uniform kernel: k(x) = 1{|x| ≤ 1}, where 1{.} ∈ {0, 1} is the binary indicator

function of a given event.

To formally define the range image segmentation task, to each pixel s ∈ S, we assign a ς ts ∈
{fg, bg} class label so that we aim to minimize the following energy function:

E =
∑

s∈S

VD(d
t
s|ς ts) +

∑

s∈S

∑

r∈Ns

α · 1{ς ts 6= ς t−1
r }

︸ ︷︷ ︸
ξts

+
∑

s∈S

∑

r∈Ns

β · 1{ς ts 6= ς tr}
︸ ︷︷ ︸

χt
s

, (6.9)

where VD(dts|ς ts) denotes the data term, while ξts and χts are the temporal and spatial smoothness

terms, respectively, with α > 0 and β > 0 constants. Let us observe, that although the model is

dynamic due to dependencies between different time frames (see the ξts term), to enable real time

operation, we develop a causal system, i.e. labels from the past are not updated based on labels

from the future. The data terms are derived from the data energies by sigmoid mapping:

VD(d
t
s|ς ts = bg) = ζ(ǫtbg(s), τbg,mbg)

VD(d
t
s|ς ts = fg) =

{
1, if dts > max{i=1...ks} µ

i,t
s + d0

ζ(ǫtfg(s), τfg,mfg), otherwise.
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(a) Naive backprojection (b) Proposed backprojection

Figure 6.12: Backprojection of the range image labels to the point cloud. (a) simple backprojection with
assigning the same label to s and p, whenever s = P(p). (b) result of the proposed backprojection scheme

The sigmoid parameters τfg, τbg, mfg, mbg and m⋆ can be estimated by Maximum Likelihood

strategies based on a few manually annotated training images. As for the smoothing factors, we use

α = 0.2 and β = 1.0 (i.e. the spatial constraint is much stronger), while the kernel bandwidth is

set to h = 30cm. The MRF energy eq. (6.9) is minimized via the fast graph-cut based optimization

algorithm [105].

The result of the DMRF optimization is a binary foreground mask on the discrete S lattice. As

shown in Fig. 6.12, the final step of the method is the classification of the points of the original L

cloud, considering that the projection may be ambiguous, i.e. multiple points with different true

class labels can be projected to the same pixel of the segmented range image. With denoting by

s = P(p) for time frame t, we use the following strategy:

• ς(p) = fg, iff one of the following two conditions holds:

(†) ς ts = fg and d(p) < dts + 2 · h
(‡) ς ts = bg and ∃r ∈ Nr : {ς tr = fg, |dtr − d(p)| < h}

• ς(p) = bg: otherwise.

The above constraints eliminate several (†) false positive and (‡) false negative foreground points,

projected to pixels of the range image near the object edges, which improvement can be seen by

comparing the left and right examples of Fig. 6.12.

6.3.2 Pedestrian detection and tracking

The next step is pedestrian detection and tracking. The input of this component is the RMB Lidar

point cloud sequence, where each point is marked with a segmentation label of foreground or back-

ground, while the output consists of clusters of foreground regions so that the points corresponding

to the same object receive the same label over the sequence.

First, the point cloud regions classified as foreground are clustered to obtain separate blobs

for each moving person candidate. A regular lattice is fit to the ground plane and the foreground

regions are projected onto this lattice. Morphological filters are applied in the image plane to
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obtain spatially connected blobs for different persons. Then the system extracts appropriately sized

connected components that satisfy area constraints determined by lower and higher thresholds. The

centre of each extracted blob is considered as a candidate for foot position on the ground.

The pedestrian tracking module combines Short-Term Assignment (STA) and Long-Term As-

signment (LTA) steps. The STA part attempts to match each actually detected object candidate

with the current object trajectories maintained by the tracker, by purely considering the projected

2D centroid positions of the target. The STA process should also be able to continue a given trajec-

tory if the detector misses the concerning object for a few frames due to occlusion. In these cases

the temporal discontinuities of the tracks must be filled with estimated position values, as detailed

in [6]. On the other hand, the LTA module is responsible for extracting discriminative features for

the re-identification of objects lost by STA due to occlusion in many consecutive frames or leaving

the FoV. For this reason, lost objects are registered to an archived object list, which is periodically

checked by the LTA process [6]. LTA must also recognize when a new, previously not registered

person appears in the scene. Finally, we generate a 2D trajectory of each pedestrian. Since the

extracted 2D raw object tracks proved to be quite noisy, we applied a 80% compression of the

curves in the Fourier descriptor space [172], yielding smoothed tracks (see Fig. 6.13, 6.14).

6.3.3 Lidar based gait analysis

In our approach, the main goal of gait investigation is to support the long-term assignment (LTA)

process of the tracking module. To fulfill the requirements of real surveillance systems, we need

to extract unique biometric features online during the multi-target tracking process from the mea-

surement sequence.

For gait analysis, we focus on 2D silhouette based approaches [22], which are considered quite

robust against low resolution and partial occlusion artifacts, due to capturing information from the

whole body. The first step is projecting the 3D points of a person in the RMB Lidar point cloud to

an appropriately selected image plane (Fig. 6.13(a)). Since the FoV of the RMB Lidar sensor is

circular, a straightforward projection plane could be taken at a given ground position as the local

tangent of the circle around the sensor location (see Fig. 6.13(b)). However this choice would

not ensure viewpoint invariant features as the silhouette’s orientation may be arbitrary. Instead, we

interpolate the side view projections of the 3D human silhouettes, by exploiting the assumption that

people mostly walk forwards in the scene, turning towards the tangent direction of the trajectory. At

each time frame, we project the point cloud segment of each person to the plane, which intersects

the actual ground position, is perpendicular to the local ground plane, and it is parallel to the local

tangent vector of the Fourier-smoothed trajectory from the top view (Fig. 6.13(a) and (c)).

The projected point cloud consists of a number of separated points in the image plane, which

can be transformed into connected 2D foreground regions by morphological operations. A main
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(a) Bird’s view (b) Circular tangent (c) Trajectory tangent

Figure 6.13: Silhouette projection: (a) a tracked person and its projection plane in the point cloud from
bird’s view. Variants: (b) the projection plane’s normal points towards the sensor (undefined silhouette
orientation) (c) the projection plane is the tangent of the trajectory (sideview silhouettes)

advantage of the Lidar technology is that the laser measurement is directly available in the 3D

Euclidean coordinate space, without perspective distortion and scaling effects, thus the projected

silhouettes may be also compared without re-scaling. However, the density of the point cloud

representing a given person is significantly lower at a larger distance from the sensor, yielding

silhouettes which have discontinuities. Challenging samples can be observed in Fig. 6.14(a),(b),

which show a snapshot from a 5-person-sequence with the extracted silhouette masks. First, the

silhouettes of Persons 2 and 4 are disconnected, since they are far away from the sensor. Second,

for people walking towards the sensor, the 2.5D measurement provides a frontal or back view,

where the legs may be partially occluded (see Person 5). Third, some silhouette parts may be

occluded by other people or field objects in a realistic surveillance scene (see Person 2).

In our proposed model, we adopt the idea of Gait Energy Image (GEI) based person recognition

to the Lidar surveillance environment [19, 22]. The original GEI approach was introduced by Han

and Bhanu in 2006 [173] for conventional optical video sequences. GEIs are derived by averaging

the binary person silhouettes over the gait cycles:

G(x, y) =
1

T

T∑

t=1

Bt(x, y) (6.10)

where Bt(x, y) ∈ {0, 1} is the (binary) silhouette value of pixel (x, y) on time frame t, and

G(x, y) ∈ [0, 1] is the (rational) GEI value. In [173] a person was represented by a set of dif-

ferent GEI images corresponding to the different observed gait cycles, which were compressed

by Principal Componant Analysis (PCA) and Multiple Discriminant Analysis (MDA). Thereafter

person recognition was achieved by comparing the gallery (training) and probe (test) features.

In our environment, a number of key differences had to be implemented compared to the refer-

ence model [173], leading to a new descriptor that we call Lidar-based Gait Energy Image (LGEI,

see Fig. 6.14(c)). The first key contribution is, that since the RMB Lidar measurement sequences
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(a) Pedestrians on the Lidar frame (b) Projected silhouettes

(c) Lidar based Gait Energy Images

Figure 6.14: LGEI generation process: (a) Output of the multi-pedestrian tracker for a sample Lidar frame
(person point clouds+trajectories)(b) projected pedestrian silhouettes on the selected Lidar frame (c) Lidar
based Gait Energy Images extracted for the people of (b)

have a significantly lower temporal resolution (15 fps), than the standard video flows (≥25 fps),

samples from a single gait cycle provide too sparse information. For this reason, we do not separate

the individual gait cycles before gait print generation, but we select k (used k = 100) random seed

frames from each person’s recorded observation sequence instead, and for each seed we average

the l consecutive frames (used l = 60) to obtain a given LGEI sample. This way, k LGEIs are gen-

erated for each individual, and to enable later data compression, global PCA and MDA transforms

are calculated for the whole dataset.

The second key difference is, that instead of following the direct GEI-set based person rep-

resentation and vector comparison of [173], we propose here a neural network based approach.

Similarly to [174] we have chosen to use a committee of a Multi-Layer Perceptron (MLP) and a

convolutional neural network (CNN), both having N outputs, where N is equal to the number of

people in the training scenario. The dominant 35 PCA and 5 MDA components of the LGEIs are

used to train an MLP for each person, while the CNN inputs are the raw 2D LGEIs. We used tanh

activation functions whose output is in the [−1, 1] domain. Thus for a training sample of the ith

person, the ith network’s prescribed output value is 1, while the remaining outputs are −1.

In the person recognition phase, we generate probe LGEIs for each detected and tracked sub-

ject: we start from a random seed frame of the sequence and average the upcoming l consecutive

silhouettes. The trained networks produce outputs within the range oMLP, oCNN ∈ [−1, 1], and the
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(a) Video ref. frame (b) Lidar frame (c) Projection (d) Depth map

Figure 6.15: (a)-(b): A sample frame from an outdoor test sequence used for activity recognition (c)-(d):
Demonstration of the the frontal projection and depth map calculation for activity recognition. Projection
plane is perpendicular to the trajectory.

ith output (corresponding to the ith trained person) of the MLP-CNN committee is taken as the

maximum of the outputs of the two networks: oi = max(oiMLP, o
i
CNN), i = 1, . . . , N . As a valid

identification of a given G probe LGEI, only positive oi(G) values are accepted. Therefore, with

the notation of imax = argmaxi o
i(G), sampleG is recognized as person imax, if oimax > 0, otherwise

we mark G as unrecognized.

For reducing further artifacts caused by frequent occlusions, we also developed a frame selec-

tion algorithm. A binary mask is created by summing and thresholding the consecutive silhouettes

for every person. For every silhouette we calculate its internal and external area w.r.t. the mask.

If the internal area is less then 40% of the mask’s area or the external area is more then 30% of

the mask’s area the frame is discarded from the LGEI calculation. Note that the above sample

collection scheme is is not effected by prior gait cycle estimation in contrast with [173].

6.3.4 Action recognition

The recognition of various actions can provide valuable information in surveillance systems. The

main goal of this section is to propose features for recognizing selected - usually rarely occurring

- activities in the Lidar surveillance framework, which can be used for generating automatic warn-

ings in case of specific events, and removing various ‘non-walk’ segments from the training/test

data of the gait recognition module.

Apart from normal walk, we have selected five events for recognition: bend, check watch,

phone call, wave and wave two-handed (wave2) actions. A sample outdoor frame with four people

is shown in Fig. 6.15. Our approach for action recognition is motivated by the LGEI based gait

analysis technique, however, various key differences have been implemented here.

First, while gait could be efficiently analyzed from side-view point cloud projections, the ac-

tions listed above are better observable from a frontal point of view. For this reason, we have
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(a) walk (b) bend (c) check watch (d) phone call (e) wave (f) wave2

Figure 6.16: ADM (left) and AXOR (right) maps for the different actions.

chosen a projection plane for action recognition, which is perpendicular to the local trajectory

tangent, as demonstrated in Fig. 6.15(c).

Second, various actions, such as waving or making phone calls produce characteristic local

depth texture-patterns (e.g. the hand goes forward for waving). Therefore, instead of deriving

binarized silhouettes, we create depth maps by calculating the point distances from the projection

plane according to Fig. 6.15(c), a step which yields a depth image shown in Fig. 6.15(d). Then,

we introduce the averaged depth map (ADM) feature as a straightforward adoption of the LGEI

concept, so that we average the depth maps for the last τ frames, where τ is the a preliminary fixed

time window related to the expected duration of the activities (we used τ = 40 frames uniformly).

ADM sample images for each activity are shown in Fig. 6.16 (left samples).

Third, while gait is considered a low-frequency periodic motion of the whole body, where we

do not lose a significant amount of information by averaging the consecutive images, the above

actions are aperiodic and only locally specific for given body parts. For example, waving con-

tains sudden movements, which yield large differences in the upper body regions of the consecu-

tive frames. Thus, apart from ADM we introduce a second feature, called averaged XOR image

(AXOR), which aims to encode information about the motion dynamics. An exclusive-OR (XOR)

operation is applied on two consecutive binarized frontal silhouettes, and the AXOR map is cal-

culated by averaging these binary XOR images and taking the squares of the average values. The

AXOR map displays high values for the regions of sudden movements, as shown in Fig. 6.16

(right image of each pair), especially regarding the waving actions in images (e) and (f).

We continue with the description of the training and recognition steps. For each action from the

set bend, watch, phone, wave and wave2, two separate convolutional neural networks (CNN) were

trained, one for the ADM and one for the AXOR features, respectively. As explained in [175],

a small (4-layer) CNN could be constructed, using the spatially downscaled (to 20 × 16 pixels)

and normalized ADM and AXOR feature maps. During the training of the CNNs, we prescribed

the output values 1.0 for positive and −1.0 for negative samples by each activity. The negative

training data also included various samples from normal walking. The outputs of the CNNs range

dc_942_14

Powered by TCPDF (www.tcpdf.org)

Chapter5/Chapter5Figs/figures/fig12a.eps
Chapter5/Chapter5Figs/figures/fig12g.eps
Chapter5/Chapter5Figs/figures/fig12b.eps
Chapter5/Chapter5Figs/figures/fig12h.eps
Chapter5/Chapter5Figs/figures/fig12c.eps
Chapter5/Chapter5Figs/figures/fig12i.eps
Chapter5/Chapter5Figs/figures/fig12d.eps
Chapter5/Chapter5Figs/figures/fig12j.eps
Chapter5/Chapter5Figs/figures/fig12e.eps
Chapter5/Chapter5Figs/figures/fig12k.eps
Chapter5/Chapter5Figs/figures/fig12f.eps
Chapter5/Chapter5Figs/figures/fig12l.eps


102 6. 4D ENVIRONMENT PERCEPTION

Figure 6.17: Structure of the used convolutional neural networks (CNN). By gait recognition, N is equal to
the number of people in the training set.

from −1.0 to 1.0 , and a probe sample is recognized as a given action if the corresponding ADM-

based and AXOR-based CNN outputs both surpass a ν decision threshold (used ν = 0.6). If no

activity is detected, we assume that the observed person is in the walking state. If multiple CNN

outputs surpass the decision threshold, we select the action with the highest confidence.

6.3.5 Dataset for evaluation

Since to our best knowledge no Lidar based gait or activity recognition dataset has been published

yet for surveillance environments, we have created the SZTAKI Lidar Gait-and-Activity (SZTAKI-

LGA) database1, which was designed for the evaluation of gait based person identification and

activity recognition in a multi-pedestrian environment.

For gait analysis, our proposed SZTAKI-LGA database contains ten outdoor sequences cap-

tured in a courtyard by a Velodyne HDL-64E RMB Lidar sensor. All the sequences have 15 fps

frame rate, their length varies between 79 and 210 seconds (in average 150 sec.), and each one

contains 3-8 people walking simultaneously in the scene. In each case, the test subjects were

asked to walk naturally in the scene, then all leave the Field of View, re-appear in a different order,

and walk till the end of the sequence. This screen-play enables to test gait descriptors in realistic

surveillance situations, with the goal of matching the corresponding gait patterns collected in the

first (training) and second (probe) parts of each test scenario. Since the sequences were recorded

in different seasons, we can also investigate how different clothing styles (such as winter coats or

t-shirts) influence the discriminating performance of the observed gait features.

For action recognition purposes we recorded 1 indoor and 9 outdoor sequences with a total

time of 633 seconds. The test data contains various examples for the five addressed activities:

bend (88 samples), watch (53), phone (50), wave (58) and wave2 (46) which are extracted from

1Url: http://mplab.sztaki.hu/geocomp/SZTAKI-LGA-DB.
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Figure 6.18: Foreground detection results on sample time frames with the Basic MoG, uniMRF and the
proposed DMRF models: foreground points are displayed in blue (dark in gray print).

the sequence. Each sequence contains multiple pedestrians, and the typical length range of a given

annotated activity sample varies between 40-100 frames.

6.3.6 Experiments and discussion

We have evaluated the proposed algorithms using our recorded real Lidar sequences. The structures

of the convolutional neural networks used for gait and activity recognition were similar, only the

second layer’s type, the number of feature maps and the kernel size parameters were different, as

detailed in Fig. 6.17. The MLP component in gait analysis used 6 hidden neurons and N outputs,

equal to the number of people in the training scenario.

6.3.6.1 Evaluation of foreground-background separation

We have tested the foreground detection algorithm in various sequences of the SZTAKI-LGA

database and also on a traffic monitoring scenario (see Fig. 6.18). The Traffic sequence was

recorded with 5Hz from the top of a car waiting at a traffic light in a crowded crossroad.

We have compared our proposed DMRF model for foreground-background separation to three

reference solutions. First, we implemented the Basic MoG approach (already introduced in Sec.

6.3.1.2), which is based on [162] with using on-line K-means parameter update [171]. Second,

we tested uniMRF (detailed in Sec. 6.3.1.3), which partially adopts the uniform foreground model

of [160] for range image segmentation in the DMRF framework. Third, we also tested an MRF

model in 3D, called 3D-MRF, based on [176]. We define in 3D-MRF point neighborhoods in the

original Lt clouds based on Euclidean distance, and use the background fitness values of (6.7) in

the data model. The graph-cut algorithm [105] is adopted again for MRF energy optimization.
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Table 6.2: Point level evaluation of foreground detection accuracy (F-score in %) and processing speed
Sequence Point cloud F-score based on 100 frames (in %)
name size Bas. MoG uniMRF 3D-MRF DMRF

Summer1 65K pts/fr. 55.7 81.0 88.1 95.1
Summer2 86K pts/fr. 59.2 86.9 89.7 93.2
Summer3 86K pts/fr. 38.4 83.3 78.7 89.0
Winter1 86K pts/fr. 55.0 86.6 84.1 91.9
Winter2 86K pts/fr. 54.9 86.6 84.1 91.9
Spring1 86K pts/fr. 49.9 84.8 82.7 88.9
Spring2 86K pts/fr. 56.8 89.1 86.9 94.4
Traffic 260K pts/fr. 70.4 68.3 76.2 74.0

Processing Speed (fps) 120fps 17-18fps 2-7fps 15-16fps

Qualitative segmentation results on sample frames from three sequences are shown in Fig.

6.18, concerning Basic MoG, uniMRF and the proposed DMRF model. For quantitative (nu-

merical) evaluation, we manually generated Ground Truth (GT), through annotation around 100

relevant frames of each test sequence. For quantitative evaluation metric, we have chosen the point

level F-score of foreground detection. We have also measured the processing speed in frames per

seconds (fps). The numerical performance analysis is given in Table 6.2. The results confirm that

the proposed model surpasses the reference techniques in F-score in all surveillance sequences,

meanwhile the processing speed is 15-16fps, which enables real-time operation. In the Traffic

sequence with large and dense point clouds, the 3D-MRF approach is able to slightly outperform

our approach in detection rate, but the proposed DMRF method is significantly quicker: we mea-

sured there 2fps processing speed with 3D-MRF and 16fps with the proposed DMRF model. We

can also observe that differently from 3D-MRF, our range image based technique is less influenced

by the size of the point cloud.

6.3.6.2 Evaluation of gait recognition

The gait recognition module has been validated on all the 10 test gait-sequences of the database.

For comparison, we implemented three different model-free silhouette or range image based ap-

proaches in our Lidar-based surveillance framework, which are Lidar-focused modifications of

state-of-the-art methods, proposed earlier for standard optical and Kinect data: Silhouette Print

+ Dynamic Time Warping (SP+DTW) [177] Depth Gradient Histogram Energy Image (DGHEI)

[178] and the Color Gait Curvature Image (CGCI) [179]. Our proposed approach is referred as the

Lidar Based Gait Energy Image with MLP+CNN committee (LGEI). All the methods (except the

silhouette print) were trained using 100 gallery feature maps for each person, extracted from the

training parts of the sequences. In the evaluation phase, we generated 200 probe maps of each test
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subject from the test segments of the videos. Each probe sample was independently matched to the

trained person models, thus we used 200 ·N test samples in a scenario with N people. For evalu-

ating the performance of the different methods, we calculated the rate of the correct identifications

among all test samples, and listed the obtained results in Table 6.3.

Although according to their introducing publications, both the CGCI [179] and DGHEI [178]

methods proved to be notably efficient for processing Kinect measurements, their advantages could

not be exploited by dealing with the much sparser Velodyne RMB Lidar point clouds. In particu-

lar, as we can observe in Table 6.3, the CGCI method proved to be the less successful among all

the tested techniques for the low density Lidar data. By testing the width-vector based SP+DTW

approach [177], we experienced that it only favored the first test scene (Winter0), which in-

cluded nearly complete silhouettes with noiseless contours. However as the quality of silhouettes

decreased due to frequent occlusions, the SP+DTW approach provided quite low recognition rates.

The DGHEI [178] proved to be the second best gait descriptor, outperformed only by our LGEI

based method by 5% overall. Note that DGHEI has originally been proposed by extending the Gait

Energy image (GEI) with depth gradient extraction and direction histogram aggregation, which im-

provement increased the performance when high-quality depth images were available. However,

in our scenarios with lower resolution depth maps these features could not be efficiently utilized.

Our proposed LGEI solution has been tested first by separately using the MLP and CNN net-

works, and thereafter with the MLP+CNN committee. As the last three columns of Table 6.3

confirm, the MLP and CNN outperformed each others on a case-by-case basis, and the committee

has generally resulted in improved results over the two network components. As already shown in

[21], in LGEI classification the MLP-CNN committee could also outperform the standard Vector

Comparison approach proposed in [173].

Table 6.3 also demonstrates that compared to the SP+DTW, DGHEI and CGCI techniques

the LGEI method provided superior results in most of the test scenarios. The performance drop

observed by some of the more crowded (6-8 person) scenes has been principally caused by the

increased number of occlusions which obviously yielded lower quality input data for the classifi-

cation framework. As examples, the score matrices between the trained neural networks and the

measured gait patterns from the different test subject are displayed in Fig. 6.19 for five test scenes.

This figure highlights the background of the varying performance in the different test cases: from

the point of view of (LGEI-based) gait recognition Spring0 and Summer0 proved to be simple

scenarios with nearly diagonal score matrices, while Spring1 and Summer1 are quite difficult

sequences, where the measurable benefits of the LGEI technique are the most apparent compared

to the weaker performing reference approaches.

By further examination of the LGEI method, we investigated the improvements caused by two

auxiliary innovations of our proposed approach: First, applying trajectory tangent (TT) oriented
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Table 6.3: Evaluation of gait based person re-identification with different methods.

Scene
Num. of SP+ DG-

CGCI
LGEI

people DTW HEI CNN MLP Mix
Winter0 4 0.96 0.97 0.36 0.94 0.98 0.99

Winter1 6 0.33 0.89 0.27 0.85 0.90 0.95

Spring0 6 0.64 0.81 0.32 0.91 0.95 0.98

Spring1 8 0.33 0.59 0.20 0.63 0.66 0.70

Summer0 5 0.39 0.97 0.40 0.99 0.95 1.00

Summer1 6 0.33 0.83 0.29 0.77 0.95 0.95

Summer2 3 0.33 0.98 0.53 0.96 0.99 0.99

Summer3 4 0.50 0.94 0.32 0.94 0.93 0.94

Summer4 4 0.25 0.95 0.27 0.91 0.90 0.91
Summer5 4 0.50 0.80 0.32 0.77 0.74 0.80

Average 5 0.46 0.87 0.33 0.87 0.90 0.92

Figure 6.19: Quantitative evaluation of LGEI based matching between the gallery (columns) and probe
(rows) samples. Rectangles demonstrate the CNN+MLP outputs, the Ground Truth match is displayed in
the main diagonal.
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(b) Results on the whole dataset

Figure 6.20: (a) Performance improvements caused by trajectory based projection plane estimation (TT)
over circular tangent (CT), and frame selection (SF) over all frames (AF) strategy using the LGEI method.
(b) Performance as a function of number of people
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Table 6.4: The confusion matrix, and precision/recall rates of action recognition for each event.
Detect→

Bend Watch Phone Wave Wave2 All FN FP Pr Rc
GT↓
Bend 85 88 3 1.00 0.97
Watch 37 1 4 53 11 3 0.82 0.77
Phone 5 36 2 2 50 5 6 0.69 0.88
Wave 4 44 5 58 5 3 0.76 0.90
Wave2 5 9 31 46 1 2 0.70 0.97

planes of silhouette projection instead of the straightforward circular tangent (CT) direction (refer

to Fig. 6.13). Second, automatic selection of frames (SF) instead of using all frames (AF) in LGEI

generation, by dropping the presumptively low quality silhouettes (Sec. 6.3.3). As shown in Fig.

6.20(a) for four selected sequences, both new algorithmic steps yielded notable improvements in

the recognition rates.

Our next evaluation stage addresses the performance variation of LGEI based gait recognition,

by increasing the number of people in the database. Exploiting that in our 10 test sequences 28

different people have appeared, we collected the silhouette sequences of the different test subjects

from all test scenarios into a global database. Then, we selected step by step 2,3,. . .,28 people

from the database, and each time we trained and evaluated an LGEI-CNN+MLP committee for the

actual subset of the people (using separated training and test samples). The diagram of the observed

recognition rates as a function of the number of persons is displayed in Fig. 6.20(b), which shows

a graceful degradation in performance, staying steadily around 75% for 17-28 people.

We also compared the computational time requirements of the different approaches [1] and

we have experienced the the proposed LGEI technique is also competitive at this point. Although

it needs relatively significant time for training set generation and training of the CNN and MLP

networks, but the recognition step is still very efficient: less then 0.01sec/probe sample.

6.3.6.3 Evaluation of activity recognition

For evaluating the proposed activity recognition module, we used the ten activity sequences of

the database, applying a cross validation approach. For testing the recognition performance on

each sequence, we trained the actual CNNs with the manually annotated activity patterns of the

other nine sequences. For both training and recognition we also used various negative samples cut

from normal walking parts of the scenarios. The number of selected walk frames was equal to the

average number of frames corresponding to the other activities.

For presenting the result, the aggregated confusion matrix of action recognition in the test

scenes is shown in Table 6.4. The matrix value of the ith row and jth column indicates the num-
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Figure 6.21: Result of activity recognition in an outdoor test sequence (4 people).

ber of samples from the ith activity, which were recognized as action j. The last two columns

correspond to false negative (FN) and false positive (FP) detections: for row i, FN is equal to the

number of ignored occurrences of the ith action, which were neither identified by any of the other

activities, while FP is the number of erroneous alerts of the ith activity in the case when none of

the addressed events occurred.

As we can see, the bend, phone, wave and two-handed waving (wave2) activities were almost

always denoted as an event (FN≤ 5), while check watch indicated 11 false negative samples, since

the small hand movements were occasionally imperceptible due to occlusions. Bend was never

confused with other actions, while wave and wave2 were mixed up in a number of cases. It is also

worth noting that the overall number of false positives is quite low (ΣiFP< 5% of the real events),

i.e. the system rarely indicates unexpected warnings in case of normal walks. This advantageous

property can be well examined in the timeline diagram displayed in Fig. 6.21, which corresponds

to one of the outdoor test sequences. The horizontal axis corresponds to the frame index, and the

different activities are denoted by different markers (as explained in the top row). For each person,

the Output row marks the frames where our approach detected various activities, while the GT

(Ground Truth) row indicate the manually annotated reference frames. In agreement with Table

6.4, in nearly all cases the real activities are detected by the system with a time delay necessary for

ADM and AXOR map generation.
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Figure 6.22: Workflow of instant environment perception, composed of the proposed algoritms. Publications
serving as basis of this section are noted above the algorithm boxes.

6.4 Urban scene analysis with real time Lidar sensors and dense

MLS data background

This section introduces various new algorithms related to real time perception of dynamic urban

environments with a car-mounted RMB Lidar scanner. As high resolution 3D background map,

we utilize dense point clouds obtained by mobile laser scanning (MLS).

The workflow of the conducted research work is briefly summarized in Fig. 6.22. The first four

steps work solely on the RMB Lidar streams. The process starts with ground-obstacle separation,

which must be performed in real time and robustly, dealing also with lower quality (non-planar)

road surfaces often appearing in minor roads of cities [29, 30]. Within the obstacle class, we dis-

tinguish low foreground and high foreground regions, which will help the subsequent steps. Then,

we perform fast object separation in the foreground areas of the sparse and inhomogeneous RMB

Lidar point clouds [24], while a quick bounding box estimation algorithm will also be presented

to support the analysis of field objects [23]. Thereafter, the separated object blobs in the low fore-

ground are classified via a deep neural network into vehicle, pedestrian, street furniture, and wall

component classes, with the help of anchor objects from the high foreground [3, 26].

The remaining steps in Fig. 6.22 aim at the efficient joint utilization of the dynamic RMB Lidar

based and static MLS measurements. First we perform a 3D CNN-based semantic classification of

the dense MLS point clouds [18], which enables filtering out all moving and movable objects from
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Figure 6.23: RMB Lidar data segmentation and object detection

the high resolution background map. Then, using a coarse Global Positioning System (GPS) based

initial positioning of the vehicle, we propose a fast and accurate registration algorithm between

sparse RMB Lidar frames and the dense MLS point clouds [20], which facilitates centimeter-

accuracy localization of the vehicle in the HD map [16]. Finally, we construct a multimodal change

detection approach [17] to identify regions of the actual RMB Lidar point cloud frames, which are

not present in the MLS background model.

6.4.1 Ground-obstacle classification

In this step, the input point cloud is segmented into four regions: ground, low foreground, high

foreground and sparse areas. By our definition, low foreground is the estimated region of short

street objects, such as cars, pedestrians, benches, mail boxes, billboards etc, while high foreground

covers tall objects, among others building walls, trees, traffic signs and lamp posts.

Point cloud segmentation is achieved by a grid based approach [30]. We fit a regular 2D grid S

with fixed rectangle side length onto the Pz=0 plane (using the RMB Lidar sensor’s vertical axis as

the z direction), where s ∈ S denotes a single cell. We assign each p ∈ P point of the point cloud

to the corresponding cell sp, which contains the projection of p to Pz=0.

We use point height information for assigning each grid cell to the corresponding cell class.

Before that, we detect and remove sparse grid cells which contains less points than a predefined

threshold (used 8 points). After clutter removal all the points in a cell are classified as ground, if

the difference of the minimal and maximal point elevations in the cell is smaller than a threshold

(used 25cm), and the average elevation in the neighboring cells does not exceed an allowed height

range. A cell belongs to the class high foreground, if either the maximal point height within the

cell is larger than a predefined value (used 140cm above the car top), or the observed point height

difference is larger than a threshold (used 310cm). The rest of the points in the cloud are assigned

to class low foreground. A segmented frame is shown in Fig. 6.23(a).
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Figure 6.24: The step by step demonstration of the object detection algorithm

Due to the limited vertical view angle of the RMB Lidars (for Velodyne HDL-64E: +2◦ up to

-24.8◦ down), the defined elevation criteria may fail near to the sensor position. In narrow streets

where road sides located closely to the measurement position, several nearby grid cells can be

misclassified regularly e.g. some parts of the walls and the building facades are classified to low

foreground cell class instead of high foreground cell class (see in Fig. 6.23(a)). By definition, we

will refer to these misclassified wall segments henceforward as short facades, which should be

detected and filtered out at a later step by the object detector.

6.4.2 Fast object separation and bounding box estimation

After the point cloud segmentation step, our aim is to find distinct groups of points which belong

to different urban objects within the low and high foreground regions, respectively. For this task

we introduced a hierarchical grid model [24] (see Fig. 6.23(b)): On one hand, the coarse grid

resolution is appropriate for a rough estimation of the 3D blobs in the scene, thus we can roughly

estimate the size and location of the possible object candidates. On the other hand, using a dense

grid resolution, it is efficient to calculate point cloud features from smaller subvolumes of the

scene, therefore we can refine the detection result derived from the coarse grid resolution.

The following two-level grid based connected component algorithm is separately applied for

the sets of grid cells labeled as short and tall objects, respectively. First, we visit every cell of the

coarse grid and for each cell swe consider the cells in its 3×3 neighborhood (see Fig. 6.24(a),(b)).

We visit the neighbor cells one after the other in order to calculate two different point cloud fea-

tures: (i) the maximal elevation value Zmax(s) within a coarse grid cell and (ii) the point cardinality

in a dense grid cell. Second, our intention is to find connected 3D blobs within the foreground re-

gions, by merging the coarse level grid cells together. We use an elevation-based cell merging

criterion to perform this step. ψ(s, sr) = |Zmax(s) − Zmax(sr)| is a merging indicator, which

measures the difference between the maximal point elevation within cell s and its neighboring cell

sr. If the ψ indicator is smaller than a predefined value, we assume that s and sr belong to the
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same 3D object (see Fig. 6.24(c)). Third, we perform a detection refinement step on the dense

grid level (Fig. 6.24(c),(d)). The elevation based cell merging criterion on the coarse grid level

often yields that nearby and self-occluded objects are merged into a same blob. We handle this

issue by measuring the point density in each sub-cell s′d at the dense grid level. A super-cell is

divided into different parts, if we find a separator line composed of low density sub-cells at the

fine resolution. Experiments [24] confirm that using this approach, nearby objects, which were

erroneously merged at the coarse level, could be often appropriately separated at the fine level.

We also proposed a fast 2D bounding box fitting algorithm for cluttered and partially incom-

plete objects [23]. It is highly challenging to fit precise bounding boxes around the objects in RMB

Lidar range data streams, since we should expect various artifacts of self-occlusion, occlusion by

other objects, measurement noise, inhomogeneous point density and mirroring effects. These fac-

tors drastically change the appearances of the objects, and the conventional principal component

analysis (PCA) based techniques [180, 181] may not give sufficient results (see Fig. 6.23(c)).

Therefore we calculate the 2D convex hull of the top-view projection of the objects, and we derive

the 2D bounding boxes directly from the convex hull (the algorithm is detailed in Appendix E).

As shown in Fig. 6.23(c) and (d), this strategy is less sensitive to the inhomogeneous point density

and the presence of missing/occluded object segments, since instead of calculating spatial point

distributions for the entire object’s point set, we capture here the local shape characteristics of the

visible object parts, and fit appropriate 2D bounding boxes with partial matching.

6.4.3 Deep learning based object recognition in the RMB Lidar data

Our next main goal is to identify the vehicle and pedestrian objects among the set of connected

point cloud segments extracted in Sec. 6.4.2. Our general assumption is that the focused two

object classes are part of the low foreground regions, therefore we start with an appearance based

classification of the previously obtained short object candidates.

Our labeling considers four object classes. Apart from the vehicle and pedestrian classes, we

create a separate label for the short facades, which appear in the low foreground due to the lim-

itations of the height measurement. The remaining short street objects (benches, short columns,

bushes etc) are categorized as street clutter. Object recognition is performed in a supervised ap-

proach: 2D range images are derived from the object candidates, which are classified by a deep

neural network. The classification output for each input point cloud sample consists of four confi-

dence values estimating the class membership probabilities for vehicles, pedestrians, short facades

and street clutter, respectively.

To obtain the feature maps, we convert the object point clouds into regularly sampled depth

images, using a similar principle to [182], but with implementing a number of differences. First,

we attempt to ensure side-view projections of the objects, by estimating the longitudinal cross

dc_942_14

Powered by TCPDF (www.tcpdf.org)



6.4 Urban scene analysis with real time Lidar sensors and dense MLS data background 113

(a) Range image formation (b) Object classification

Figure 6.25: Object classification workflow for RMB Lidar frames

section of the object shapes, using the bounding box estimation algorithm from Sec. 6.4.2. Second,

we calculate the distance between the estimated plane and the points of the object candidate, which

can be interpreted here as a depth value. In order the avoid occlusions between overlapping regions

i.e. multiple 3D point projections into a same pixel of an image plane with different depth values,

we sort the depth values in an ascending order, and we project them to the image plane starting

from the closest to the farthest. As demonstrated in Fig. 6.25(a) this projection strategy ensures

that object points in the front side do not become occluded by the object points in the back.

For object recognition, we trained a Convolutional Neural Network (CNN) based feature learn-

ing framework called Theano firstly introduced by [183]. The CNN framework receives the previ-

ously extracted depth images as an input layer scaled for the size of 96 × 96, and the outputs are

four confidence values from the [0,1] range, describing the fitness of match to the four considered

classes: vehicle, pedestrian, short facade and street clutter. In this way, we can later utilize not

only the index of the winner class, but also describe how sure the CNN module was about its de-

cision for a given test sample. After testing various different layer configurations, we experienced

that four pairs of convolution-pooling layers followed by a fully connected dense layer give us the

most efficient results. Finally, in post processing, we extended our approach with a contextual re-

finement step, exploiting topological constraints between various scene objects using specific high

foreground objects, called anchor facades, as landmarks (details are provided in [3]).

6.4.4 Semantic MLS point cloud classification with a 3D CNN model

We have proposed a new 3D CNN based semantic point cloud segmentation approach, which is

adopted to dense point clouds of large scale urban environments, assuming the presence of high

variety of objects, with strong and diverse phantom effects caused by scene objects moving concur-

rently with the MLS platform [18]. Our technique is based on a sparse voxel based representation
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Figure 6.26: Point cloud segmentation result with a 3D CNN

of the scene (with fine 0.1m voxel resolution), and classifies each voxel into one of the following

nine semantic classes: phantom, tram/bus, pedestrian, car, vegetation, column, street furniture,

ground and facade.

During the data mapping, we assign two feature channels to the voxels based on the input

cloud: point density, taken as the number of included points, and mean elevation, calculated as the

average of the point height values in the voxel. The unit of training and recognition in our network

is a K ×K ×K voxel neigborhood (used K = 23), called hereafter training volume. To classify

each voxel v, we consider the point density and elevation features in all voxels in the v-centered

training volume, thus a given voxel is labeled based on a 2-channel 3D array derived fromK3 local

voxels. Our 3D CNN network contains a feature extractor part using a combination of several 3D

convolution, max-pooling and dropout layers, and a second part with fully connected dense layers,

which learn the different class models. To segment a scene, we move a sliding volume across

the voxelized input point cloud, and capture the K × K × K neighborhood around each voxel.

Each neighborhood volume is separately taken as input by the two channel CNN classifier, which

predicts a label for the central voxel only. We have validated the efficiency of the approach in

diverse and real test data from various urban environments, sample results are shown in Fig. 6.26.

6.4.5 Multimodal point cloud registration

We have proposed a solution [20] to robustly register the sparse point clouds of the RMB Lidar sen-

sor mounted on a moving platform to the dense MLS point cloud data, starting from a GPS based

initial position estimation of the vehicle (see Fig. 6.27). Although we can find in the bibliography

widely used general point cloud registration techniques, such as variants of the Iterative Closest

Point (ICP) [184], and the Normal Distribution Transform (NDT) [185], they all need as initial

condition a sufficiently accurate preliminary alignment between the input point clouds. Expecting

dc_942_14

Powered by TCPDF (www.tcpdf.org)

Chapter5/Chapter5Figs/carmountedfigs/3DCNNresult.eps


6.4 Urban scene analysis with real time Lidar sensors and dense MLS data background 115

Figure 6.27: Velodyne HDL-64E to Riegl VMX-450 point cloud registration results

that in our application field significant translation (up to 10m) and large orientation difference must

be compensated by the registration method, we have constructed a two-step approach: first, we es-

timate a coarse transform between the point cloud frames at object level, which step is followed

by accurate registration refinement using the standard NDT algorithm.

Our process begins with abstract object extraction both in the RMB Lidar frame and in the

MLS point cloud segment, using the fast object separation algorithm introduced in Sec. 6.4.1,

which provides two sets of object centers C1 and C2. Similarly to the fingerprint minutia matching

approach by [186], we estimate the optiomal transformation parameters between C1 and C2 using

the generalized Hough transform: we discretize the set of all allowed transformations, then for

each transformation we calculate a matching fitness score. Finally the transformation with the

highest score is taken as result.

Since the Lidar point clouds reflect the true object distances from the 3D world, we can consider

the transformation as a composition of translation and rotation only. Note as well that since the

vehicles carrying the sensors are moving on urban roads, which rarely contain sudden steep slopes,

orientation difference is mainly expected around the vertical z axis of the captured point cloud’s

local coordinate system, while translation in the x and y direction, along the Pz=0 horizontal plane.

Exploiting that this object level step only aims to find an approximate solution for the matching,

we project the point clouds to their Pz=0 plane, and estimate the 2D translation and scalar rotation

in this image plane, as demonstrated in Fig. 6.27(b). In this way, the searched transformation takes

the following form:

Tdx,dy,α

(
x
y

)
=

[
cosα sinα
− sinα cosα

] [
x
y

]
+

[
dx
dy

]

The space of transformation consists of triplets (dx, dy, α), where each parameter is discretized

into a finite set of values.
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Fitness scores for the transformation candidates are collected in the accumulator arrayA, where

the A[dx, dy, α] element counts the evidence for the concerning Tdx,dy,α transformation. The A

array can be filled in an iterative way. For each object pair (o1, o2) where o1 = (x1, y1) is a point

in the set C1 and o2 is a point in the set C2 we determine all possible Tdx,dy,α transformations

that map o1 to o2 and we increment the evidence for these transformations in the array. Here we

exploit that for every possible rotation value α there is a unique translation vector [dx, dy]⊤ such

that Tdx,dy,α(o1) = o2, and it can be calculated as:

[
dx
dy

]
= o2−

[
cosα sinα
− sinα cosα

]
o1

The obtained dx and dy values need to be quantized to the nearest bins for appointing the actually

increaseable element of the A array. The complete pseudo code of the scan alignment method is

shown in Appendix E (Algorithm E.2).

Although the above object based scan matching process proved to be largely robust for the

considered urban point cloud scenes, its accuracy is limited by the considered planar translation

and rotation transformation constraints, and the inaccuracies of object center estimation from the

different point clouds. As we detailed in [30], due to the special data acquisition technology used

in mobile laser scanning, the ground-less obstacle cloud can be efficiently used for automated

scene matching with the Normal Distribution Transform (NDT) [185] in case of a high quality

initial transformation estimation, which is available in our case by taking the output of the object-

level step. Therefore in the proposed registration approach, we transform first the obstacles cloud

according to the obtained optimal Tdx,dy,α, thereafter we apply NDT for the resulting clouds (see

line 16 of Algorithm E.2).

6.4.6 Frame level cross-modal change detection

The change detection module receives a co-registered pair of RMB Lidar and and MLS point

clouds. Since the MLS data acts here as a detailed 3D background model, as shown in Fig. 6.28,

we eliminate all moving our movable elements (such as pedestrians, vehicles, phantoms) from the

MLS point cloud using the semantic labeling module of Sec. 6.4.4.

Our proposed solution extracts changes in the range image domain. The range image IRMB :

{ds|s ∈ S} over a 64 × 1024 pixel lattice S is generated from the RMB Lidar’s point stream

in the same way as in Sec. 6.3.1.1, where missing pixel values are interpolated from their 8-

neighborhood. The reference background range image IMLS : {as|s ∈ S} is generated from the

3D MLS point cloud with ray tracing, exploiting that the current position and orientation of the

RMB Lidar platform are available in the reference coordinate system as a result of the point cloud
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Figure 6.28: Change detection between reference MLS data (a,b) and instant RMB Lidar frames (c)

registration step. Thereafter simulated rays are emitted into the MLS cloud from the moving plat-

form’s center position with the same vertical and horizontal resolution as the RMB Lidar scanner.

To handle minor registration issues and sensor noise, each range image pixel value is interpolated

from MLS points lying inside a pyramid around the simulated RMB Lidar ray [17]. A sample

range image pair generated by the above process is shown in Fig. 6.29(a) and (b).

In the next step, the calculated RMB Lidar-based IRMB, and MLS-based IMLS range images

are compared using a Markov Random Field (MRF) model, which classifies each pixel of the

range image lattice s as foreground (fg) or background (fg). Foreground pixels represent either

moving/mobile objects in the RMB Lidar scan, or various environmental changes appeared since

the capturing date of the MLS point cloud. Following the notations from eq. (6.9), to formally

define the range image segmentation task, we assign to each s pixel of the pixel lattice S a ςs ∈
{fg, bg} class label so that we aim to minimize the following energy function:

E =
∑

s∈S

VD(ds, as|ςs) +
∑

s∈S

∑

r∈Ns

β · 1{ςs 6= ςr}, (6.11)

where we used a β = 0.5 smoothness parameter. The data terms are derived as :

VD(ds, as|bg) = − log

(
1− 1

1 + eds−as

)
, VD(ds, as|fg) = − log

(
1− 1

1 + e−(ds−as)

)

The MRF energy (6.11) is minimized via the fast graph-cut based optimization algorithm [105],

which process results in a binary change mask in the range image domain, as shown in Fig. 6.29(c).

The final step is label backprojection from the range image to the 3D point cloud (see Fig. 6.29(d)),

which can be performed in a straightforward manner, since in our IRMB range image formation

process, each pixel represents only one RMB Lidar point.
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Figure 6.29: Demonstration of the proposed MRF based change detection process in the range image do-
main, and result of label backprojection to the 3D point cloud

6.4.7 Evaluation

The new algorithms and methods proposed in this section have been evaluated versus state-of-the

art solutions one by one.

For testing the improvements in object separation and classification (Sec. 6.4.1-6.4.3), we cre-

ated a new hand labeled dataset, called SZTAKI Velo64Road, based mainly on point cloud

sequences recorded by our car-mounted Velodyne HDL-64E Lidar scanner in the streets of Bu-

dapest1. First we run the segmentation (Sec. 6.4.1) and object extraction (Sec. 6.4.2) steps of

our model on the raw data, thereafter we annotated all the automatically extracted short objects

(2063 objects alltogether) without any further modification with the labels vehicle, pedestrian,

short facade and street clutter. To demonstrate that the training results are suitable for various

urban scenes, we have also validated the performance of our trained model in the Washington

dataset [187].

First, the object separation module (Sec. 6.4.2) was evaluated, by comparing the automatically

extracted object blobs to a manually labeled Ground Truth configuration. As described in [24], we

counted the true positives, missing objects and false objects, thereafter we calculated the F-score

of the detection at object level. As reference of the proposed 2-level grid based model we used a

3D connected component analysis (3D-CCA) approach implemented in [188]. While in F-score

the proposed approach presented a 13% performance gain versus CCA (84% vs. 71%), meantime

it decreased the running speed by two orders of magnitude due to eliminating the kd-tree building

step at each frame (27 fps vs. 0.30 fps in average, measured over 1800 sample frames), details can

be found in Appendix E, in Table E.1.

1Url: http://mplab.sztaki.hu/geocomp/SZTAKI-Velo64Road-DB.html
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(a) Object classification

Object cat.
Correspond. Proposed

grouping [188] method [3]
Pr Rc Fs Pr Rc Fs

Vehicle 71 84 77 98 99 99
Short facade 79 52 62 93 77 84

Street clutter 87 93 90 92 97 94
Pedestrian 66 57 61 78 78 78

Overall 76 72 74 90 87 89

(b) Change detection in sidewalk areas

Scene
Voxel based Proposed

method [191] method [17]
Pr Rc Fs Pr Rc Fs

Deák 81 71 76 87 89 88
Astoria 88 81 84 84 100 91

Kálvin 89 96 92 98 87 99
Fővám 84 64 73 81 97 88

Overall 86 78 81 90 93 92

Table 6.5: Evaluation of the object classification and change detection steps. Notations: Precision (Pr),
Recall (Rc), F-score (Fs), in %

Next, we examined the object classification step (Sec. 6.4.3), by evaluating the appearance

based labeling, and also the context based refinement. For training the CNN classifier we sepa-

rated 904 objects from our dataset, which was completed with 434 selected samples Sydney Urban

Object Dataset [182]. The test data was composed of the remaining 1159 objects of the SZTAKI

Velo64 dataset. During the evaluation object level precision, recall and F-score values of the de-

tection for each class separately and cumulatively as well. As an independent reference technique,

we considered a similar object matching algorithm to [189] based on a corresponding grouping

(CG) technique [188]. Comparative results (Table 6.5(a)) showed a 89% overall performance of

the proposed approach, and a 15% gain versus the CG reference, while the contextual refinement

caused around 5% improvement. Among the different classes, pedestrian detection proved to be

the most challenging one with a 78% F-score.

We evaluated our 3D CNN-based semantic point cloud classification technique (Sec. 6.4.4) on

real MLS data captured with a Riegl VMX-450 system in Budapest. The available measurement

set contained in total around 300 Million points from various urban scenes, including main roads

with both heavy and solid traffic, public squares, parks, and sidewalk regions, containing various

types of cars, trams and buses, several pedestrians and diverse vegetation. As reference technique,

we trained a single channel 3D CNN model [190], referred as OG-CNN, which used a 3D voxel

occupancy grid as input feature. As metrics we calculated the voxel level precision, recall and

F-score for each class separately as well as the overall performance. By analyzing the results, we

could conclude that the proposed two-channel 3D CNN can classify all classes of interest with an

F-score larger than 83%. The overall results of the reference OG-CNN technique fall behind our

proposed method with 13%.

We validated the proposed multimodal point cloud registration process (Sec. 6.4.5) with match-

ing the measurements of RMB Lidar sensors to the MLS point clouds. Since Ground Truth
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transformation was not available, we calculated first an asymmetric Modified Hausdorff Distance

(MHD) between the RMB Lidar and MLS clouds. We have observed that both the object based

Hough matching, and NDT-based registration refinement steps [20] could significantly decrease

the distances between the scans in almost all data sets. By estimating the accuracy of the tech-

nique, we had to eliminate the effects of several moving objects (especially large trams or tracks)

which mislead the calculated MHD distances. Therefore, we also used a modified error metrics

called Median Point Distance (MPD) [20], which estimated a median of point-level errors instead

of averaging them. In seven out of the eight scenes the resulting MPD errors were below 3cm,

which fact was also confirmed by visual verification (see details in Appendix E).

Since we have not found any similar RMB Lidar-MLS multimodal change detection approaches

in the literature to our one presented in Sec. 6.4.6, we adopted a voxel based technique [191] as ref-

erence, which was originally constructed for already registered MLS/TLS point clouds. We used a

voxel size of 0.3m for [191], which choice yielded approximately the same computational cost as

our proposed MRF-range image based model (around 80msec/frame on a desktop computer, with

CPU implementation). Comparative tests showed that the proposed method had an efficient over-

all performance, and it outperformed the voxel based method in general with 1-6% F-score in the

different scenes. We have experienced that the main advantage of the proposed technique was the

high accuracy of change detection in cluttered street regions, such as sidewalks with several nearby

moving and static objects, where our method surpassed the voxel based approach with 7-15% gaps

in the test scenes (see Table 6.5(b)).

6.5 Conclusions of the chapter

This chapter presented new methods for three different problems in 4D environment perception.

First, we formulated 3D object detection in multi-camera systems as an inverse problem, and

proposed a Marked Point Process based solution, which surpassed the state-of-the-art. Second,

we have shown that the recently appeared Rotating Multi-beam (RMB) Lidar technology can also

be utilized in advanced surveillance systems for people tracking, biometric re-identification and

activity recognition. Finally, we have proposed a novel set of methodologies for real time Lidar-

based urban scene analysis from a moving platform, relying on a reference 3D background map

generated from mobile laser scanning data.
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Chapter 7

Conclusions of the thesis

This thesis has focused on various region level and object based pattern recognition problems,

which raise nowadays important challenges to experts in computer vision and machine perception.

By most of the selected issues, stochastic Bayesian energy minimization techniques or supervised

data classification approaches have been chosen as bases for the introduced new methods, and

improvements versus state-of-the-art approaches have been proposed in various aspects, including

observation processing, combination of different model structures, and new spatial and tempo-

ral interpretation of up to-date sensor measurements. While in several real time applications, the

high computation cost of energy minimization methods may mean bottleneck of applying com-

plex models, I have shown that with using appropriate dimension reducing techniques, combining

stochastic and deterministic relaxation approaches, and the utilization of prior knowledge based

rules we can often obtain high quality and computationally efficient solutions. Although the ap-

plication examples from the thesis cover a broad field, I have mainly focused on general problems

appearing concurrently in various domains, with exploring the possible applicability of the pre-

sented models under varying circumstances. The thesis put particular attention on the connections

between the theoretical results of established mathematical models and the applicability of the im-

plemented methods using real world data collected from realistic scenarios. For this reason, the

validation of the proposed models has mostly been experimental, and significant efforts have been

conducted for test data collection, Ground Truth generation and relevant quantitative comparison

to state-of-the-art approaches targeting the same or similar problems.
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7.1 Methods used in the research work

In the course of the my work, theorems and assertions from the fields of mathematical statistics,

probability theory, optimization and reported results of image and video processing, point cloud

analysis, data fusion and 3D/4D machine vision were explored.

The primary goal of the conducted research has been to extend the available libraries of com-

puter vision and pattern recognition techniques with new complex but still general approaches,

which can be widely applicable to solve real-life automatic perception problems. A special atten-

tion has focused on temporal and spatial multi-level decomposition of scenarios and events.

From a methodological point of view, several proposed methods are different implementations

of various well established probabilistic models, such as Markov Random Fields (MRF, [102]),

Mixed Markov Models [75], and Marked Point Processes (MPP, [83]). In this way I could fully take

the advantages of a solid theoretical background of the models, which fact provided guarantees for

stability, and facilitated estimating the domains of validity and limitations of the new approaches.

Since the main contributions of this dissertation consist of various modeling and algorithmic

planning steps, thoughtful experimental evaluation was a critical issue to measure the significance

of the improvements in the different application domains. I paid therefore particular attention

to rely on relevant datasets and Ground Truth (GT) information either from publicly available

databases, or from our own measured/obtained data samples. In the Machine Perception Research

Laboratory of MTA SZTAKI various leading-edge sensors were available, including high reso-

lution optical cameras, depth and thermal cameras and a Velodyne HDL 64-E terrestrial Lidar

scanner, which can be mounted onto the top of a car. On the other hand, for remote sensing prob-

lems the test data was provided by our research partners: aerial & satellite images and Lidar scans

from Budapest were obtained from Astrium Defense and Space Hungary Ltd, we received the

radar (ISAR) image sequences from the University of Pisa, and mobile laser scanning (MLS) data

from Budapest Közút Zrt. Some of the aerial photos were purchased from the Hungarian Institute

of Geodesy, Cartography and Remote Sensing (FÖMI).

Most of our proposed new benchmarks were published in the website of our research team,

thus the international scientific community might use them for comparative evaluation.

For the design and testing of algorithms I have mainly used C/C++software development envi-

ronments, while some initial prototyping steps have been coded in Matlab. Implementing image

processing and point cloud management/visualization routines in C++have been highly facilitated

by the publicly available OpenCV [192] and PCL [188] software toolboxes.

dc_942_14

Powered by TCPDF (www.tcpdf.org)



7.2 New scientific results 123

7.2 New scientific results

The scientific contributions of the dissertation are presented in four thesis groups. In the first thesis

group, we introduce new techniques for pixel wise change detection in remotely sensed images

from two different application environments, using new multi-layer Markov Random Field mod-

els. The second thesis group focuses on object level change analysis with novel spatio-temporal

marked point process models. In the third thesis group we extract (spatially) hierarchical object

structures from digital images by a new embedded marked point process model. Finally in the

fourth thesis group we provide solutions for different environment analysis tasks using novel sen-

sor technologies, including person localization and biometric identification in videos surveillance

systems, and dynamic environment perception from moving platforms with geographic informa-

tion database background.

In the research works connected to Thesis groups 1-3, I worked as principal researcher being

responsible for the definition of the exact research goals, model construction, literature review, and

most of the implementation and testing issues. My co-authors mainly contributed to the model

formulation and presentation parts with their expertize in probabilistic modeling, information fu-

sion and image based change detection, and/or to problem definition with their application specific

knowledge in remote sensing, radar imaging and industrial production technology. Results of The-

sis group 4 were obtained in cooperation with postdoctoral colleagues and my supervised Ph.D.

and undergraduate students, the share of contributions are detailed by the corresponding thesis

points.

Thesis group 1: I have proposed new multi-layer Bayesian label fusion models for various

change detection problems in remotely sensed images. I have introduced efficient optimizer

algorithms for the developed models based on the Modified Metropolis Dynamics. I have

experimentally validated the algorithms on real remote sensing applications, and showed

their advantages versus earlier solutions from the literature.

1.1. I have introduced a new three-layer Markov Random Field (L3MRF) model for detect-
ing the regions of independent object motions in high resolution image pairs captured from
moving aerial platforms. I have experimentally shown that the proposed method outperforms
previous models which use purely linear image registration techniques or local parallax re-
moval, and also demonstrated the advantages of the new technique versus alternative feature
fusion approaches.

Moving object detection in image streams of aerial vehicles needs to solve a frame differenc-

ing task with accurate camera motion compensation. Relying on a robust but coarse 2D frame

matching algorithm, the main challenge of the L3MRF model has been to eliminate the registration

errors and parallax distortions from the extracted motion mask. Assuming local distortions with

a bounded magnitude, I have shown that frame differencing and local block correlation provide
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efficient complementary features to remove registration artifacts. Thereafter, a new three-layer

Markov Random Field model has been introduced for the problem, where the segmentation of the

outer layers are based on the two different features, while the central layer represents the final

change mask without direct links to the observations. Intra-layer connections ensure smoothness

of the segmentation within each layer, while inter-layer links provide semantically correct labeling

in the central layer via pure label fusion constraints.

Evaluation has been conducted on three different data sets containing in aggregate 83 real aerial

image pairs with manually generated pixel level Ground Truth information. A detailed quantitative

comparison has shown the advantages of the new approach versus five state-of-the art solutions

for the same practical problem. In addition, the significance of the proposed label fusion model

has been demonstrated by a methodological study, where under the same image feature selection,

the L3MRF technique has been compared to alternative ‘observation fusion’ and ‘decision fusion’

schemas.

The L3MRF method was published in IEEE TRANS. IMAGE PROCESSING in 2009 [12], partial

results were presented earlier in [46, 54]. Although the model was partially included in my Ph.D.

dissertation [53], additional contributions have been inserted in [12] regarding the quality and

stability analysis of the proposed technique, and a detailed comparative evaluation has been given

here firstly versus other approaches from the state-of-the-art.

1.2. I have proposed a new four-layer Conditional Mixed Markov model (CXM), as a com-
bination of a mixed Markov model and a conditionally independent random field of signals,
for detecting relevant changes in registered aerial image pairs taken with the time differences
of several years and in different seasonal conditions.

Automatic comparison of optical aerial images with large time gaps is a highly challenging

pattern recognition task, since due to varying illumination condition, seasonal vegetation changes,

and different camera sensors, the extracted low level image features (such as color value or tex-

ture) may be significantly different even in ‘unchanged’ geographic regions. Label fusion through

context based feature selection is a natural idea to approach the problem. Although context depen-

dent class models can be hardly encoded in conventional Markov Random Fields (MRFs) defined

on static graphs, the recently introduced Mixed Markov models [75], which admit data-dependent

links between the processing nodes, enable configurable structures in feature integration.

I have proposed a novel multi-layer model structure, called the Conditional Mixed Markov

model (CXM), which extends the multi-layer label fusion framework of Thesis 1.1 with dynamic

feature based connections following the Mixed Markovian approach. Here the different layer-

regions are considered or ignored by the label fusion rules upon local statistical estimation of the

reliability of their corresponding features.
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I have demonstrated the efficiency of the CXM framework on the (above defined) long-term

change detection problem for aerial images. The proposed model implementation integrates global

intensity statistics with local correlation and contrast features. A global energy optimization pro-

cess ensures simultaneously optimal local feature selection and smooth, observation-consistent

segmentation.

For evaluation three sets of real optical aerial images were used, which have been provided by

the Hungarian Institute of Geodesy, Cartography and Remote Sensing (FÖMI) and Google Earth.

The test sets contain 13 - also manually evaluated - photo pairs, covering in aggregate around 17

km2 areas, with time differences of 5 to 23 years between the corresponding shots. Comparative

results versus four state-of-the art methods (published in top journals of the field) confirmed the

superiority of the proposed model, while performance variation with respect to perturbation of

selected parameters has also been investigated.

The CXM method was published in IEEE TRANS. GEOSCIENCE AND REMOTE SENSING in

2009 [13], while partial results were presented at the ICPR 2008 conference [45]. In a survey paper

published in ISPRS Journal of Photogrammetry and Remote Sensing [4] (2015) we compared the

results to various newer state-of-the art solutions, and the advantages of the approach have been

demonstrated again. This survey paper [4] served as the basis of a successful project proposal

submitted for the call for Research Groups with Significant International Impact (KH-17 call) of

the National Research, Development and Innovation Fund (NKFIA) in 2017.

Thesis group 2: I have introduced spatio-temporal Marked Point Process (MPP) models for

object level time sequence analysis, by completing conventional MPPs with a new tempo-

ral dimension. Selected remote sensing applications on object-based change detection and

moving target analysis in image sequences have been developed and thoroughly evaluated to

demonstrate the advantages of proposed approach.

Marked Point Processes have already been proved to be efficient tools in various object popu-

lation counting problems dealing with a large number of objects which have low varieties in shape,

such as buildings or trees from remotely sensed data, cell nuclei from medical images, or people

in video surveillance scenarios. While previous attempts deal with static scenarios, many applica-

tions may require handling object level change detection or dynamic target surveillance problems

in the advantageous geometric approach.

2.1. I have introduced a new probabilistic approach, called the Multitemporal Marked Point
Process (mMPP) model, which integrates geometric object extraction with low level change
detection in a joint framework. I have implemented and evaluated the model for the appli-
cation of building change monitoring in aerial or satellite images. The advantages of the
approach have been demonstrated over existing state-of-the-art techniques.

Following the evolution of built-up regions is a key issue of aerial and satellite image analysis.

Focusing on this crucial applicational need, I have developed a new probabilistic method, which
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presented methodological contributions in three key issues:

(i) I implemented a novel object-change modeling approach based on Multitemporal Marked

Point Processes (mMPP), which simultaneously exploits low level change information be-

tween the time layers and object level building description to recognize and separate changed

and unaltered buildings.

(ii) Answering the challenges of data heterogeneity in aerial and satellite image repositories, I

constructed a flexible hierarchical framework which can create various building appearance

models from different elementary feature based modules.

(iii) To simultaneously ensure the convergence, optimality and computation complexity con-

straints raised by the increased data quantity, I adopted the quick Multiple Birth and Death

optimization technique for the change detection task, and proposed a novel non-uniform

stochastic object birth process, which generates relevant objects with higher probability

based on low-level image features.

The proposed model has been validated using eight significantly different aerial and satellite image

data sets containing 662 manually labeled buildings. Object and pixel level quantitative evaluation

results have been provided, and it has been shown that the building localization performance of the

new approach outperforms four state-of-the-art techniques from the literature, with competitive

figures regarding the computational time. From a methodological point of view, the efficiency

of the proposed joint object-change classification framework has been demonstrated versus the

conventional post detection comparison schema, while the advantages of the introduced feature-

based birth process and the effects of various parameter settings have been deeply analyzed.

The publication introducing the mMPP model appeared as the featured article of the January

2012 issue of IEEE TRANS. PATTERN ANALYSIS AND MACHINE INTELLIGENCE [10], while

corresponding results were presented in various conferences [40, 42, 43, 44].

2.2. I have introduced a dynamic Multiframe Marked Point Process (FmMPP) framework for
moving target analysis, which can be used for the simultaneous extraction and tracking of
objects and characteristic feature points in noisy image sequences. I have demonstrated the
efficiency of the approach for automatic target structure extraction and tracking in the series
of Inverse Synthetic Aperture Radar (ISAR) images, where due to focusing artifacts of image
formation and strong speckle noise effects object fitting on independent frames is largely
unreliable. I have shown that using the FmMPP approach we can obtain a robust result for
the whole sequence by exploiting prior geometric constrains between the neighboring frames
regarding target position estimation and shape consistency.

Identification and motion analysis of ship targets in airborne Inverse Synthetic Aperture Radar

(ISAR) image sequences are key problems of Automatic Target Recognition (ATR) systems which

dc_942_14

Powered by TCPDF (www.tcpdf.org)



7.2 New scientific results 127

utilize ISAR data. Remotely sensed ISAR images are able to provide valuable information for

target classification and recognition in several difficult situations, where more traditional SAR

imaging techniques fail. However, robust feature extraction and feature tracking in ISAR image

sequences are usually difficult tasks due to noise and the low level of available details about the

structure of the imaged targets.

I have proposed a new Multiframe Marked Point Process (FmMPP) model of line segments and

point groups for automatic ship and airplane structure extraction and target tracking in ISAR image

sequences. A robust joint model has been developed for axis extraction, feature point detection

and tracking. For the purpose of dealing with scatterer scintillations and high speckle noise in the

ISAR frames, the resulting target sequence has been obtained by an iterative optimization process,

which simultaneously considered the observed image data and various prior geometric interaction

constraints between the target appearances in the consecutive frames.

Quantitative evaluation has been performed on 8 real ISAR image sequences of different car-

rier ship and airplane targets, using a test database containing 545 manually annotated frames. I

have experimentally shown that in case of noisy sequences, the introduced FmMPP schema can

significantly improve the results of the frame-by-frame detection steps.

The proposed approach was published in IEEE TRANS. GEOSCIENCE AND REMOTE SENS-

ING in 2014 [7], and partially presented in a radar-focused [33] and in a general remote sensing

conference [38].

Thesis group 3: I have introduced the three-layer Embedded Marked Point Process (EMPP)

framework for extracting complex hierarchical object structures from various digital im-

ages used by machine vision applications. The proposed method has been demonstrated in

three different application areas: optical circuit inspection, built in area analysis in remotely

sensed images, and traffic monitoring on airborne Lidar data.

Classical MPP-based image analysis models focus purely on the object level of the scene, and

they cannot be suited to hierarchical pattern recognition problems in a straightforward way.

For overcoming the above limitations, I have proposed the EMPP framework, which extends

conventional Marked Point Process models by admitting object-subobject ensembles and allowing

corresponding objects to form coherent object groups. These two contributions were initially mo-

tivated by definite practical requirements from optical circuit inspection (Thesis 3.1), and remote

sensing traffic monitoring [5] applications. After solving tasks specific problems, I have defined

and implemented a general three layer model framework (Thesis 3.2), which has been simultane-

ously tested and validated in three significantly different domains.

3.1. I have introduced an automated Bayesian visual inspection method for Printed Circuit
Board (PCB) assemblies, which is able to simultaneously deal with variously shaped Circuit
Elements (CE) on multiple scales, by including object-subobject ensembles in the Marked
Point Process schema. I have demonstrated the efficiency of the approach on the task of
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solder paste scooping detection and scoop area estimation, which are important factors in
PCB quality inspection.

Automatic optical inspection (AOI) technologies provide very high resolution (10µm) images

of printed circuit boards (PCB), thus a comprehensive quality analysis needs a hierarchical model-

ing approach of the PCB structure, focusing jointly on circuit regions, individual Circuit Elements

(CEs), CE interactions and searching for characteristic patterns within the CEs, like the geometric

scooping artifacts.

I have proposed a new visual inspection method, which describes the hierarchy between objects

and object parts as a parent-child relationships embedded into the MPP framework. To simultane-

ously deal with variously shaped circuit elements, different types of geometric objects are jointly

sampled, by adopting the multi-marked point process schema to the hierarchical entity extraction

problem. Since due to these methodological modifications, the dimension and size of the solution

space has been significantly increased compared to conventional MPP models, it became crucial

to efficiently sample the population space during model optimization. Therefore, by extending the

non-uniform object birth process from Thesis 2.1, I have developed a Bottom-Up (BU) stochastic

object proposal strategy, by combining low level statistical image descriptors with prior informa-

tion based structure estimation, which step has kept the computational complexity tractable.

The proposed method has been evaluated on real PCB data sets containing 125 images with

more than 10.000 circuit elements. Performance efficiency has been demonstrated versus a con-

ventional morphology based fault detection technique.

The core of the proposed pattern recognition approach was published in a sole author paper in

Pattern Recognition Letters [11] and presented at the IEEE ICIP 2011 conference [37], while the

complete model was introduced in IEEE TRANS. INDUSTRIAL ELECTRONICS in 2013 [8], where

the technological background of the selected AOI problem was provided by expert co-authors of

electronic technology from the Budapest University of Technology and Economics.

3.2. I have defined a general three-layer Embedded Marked Point Process (EMPP) model
with a corresponding multi-layer layer energy optimization algorithm, which can simultane-
ously extract object groups, objects and object parts from high resolution digital images. With
ensuring flexible designing options of the data based and prior constraints in the model, I have
shown that the EMPP approach can be fit to various real world hierarchical pattern recogni-
tion problems. The performance of the new technique has been validated in three different
application domains.

A number of techniques have been previously proposed for multi-level content analysis of high

resolution images, following either region based [71], (the above introduced) object based [5, 8],

or hybrid [72] approaches. However, the these models were suited to specific application areas

with specific inputs: remotely sensed optical images [71, 72], Lidar point clouds [5], and - as

shown in Thesis 3.1 - PCB AOI tasks using µm resolution images [8]. Experiences show that for
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such complex, application dependent models, the adaption to another application domain is rarely

straightforward, needing a significant modeling and implementation work.

For this reason, taking a reverse approach, I collected similar problems from my previously

analyzed application fields, and proposed a novel general three-level Embedded Marked Point Pro-

cess (EMPP) framework which can handle a wide family of applications. The structure elements

and the energy optimization algorithm of the complex model were defined and implemented at the

abstract level, while I kept focus on ensuring very simple interfaces to the different applications,

enabling efficient domain adaption.

The key contributions of the proposed EMPP methodology over the conventional single layer

MPP models are as follows:

(i) We describe the hierarchy between objects and object parts as a parent-child relationship

embedded into the MPP framework. The model of a child is affected by its parent entity,

considering geometrical and spectral constraints.

(ii) We partition the (parent) entity population population into object groups, called configura-

tion segments, and extract the objects and the optimal segments simultaneously by a joint

energy minimization process. We create adaptive object neighborhoods by segment driven

object interactions.

The proposed method has been demonstrated in three different application areas: built in area

analysis in remotely sensed images, traffic monitoring on airborne Lidar data and optical circuit

inspection. In addition, a detailed methodological validation process has been conducted: I have

quantitatively demonstrated the advantages of the EMPP approach versus a sequential technique,

which extracts first the object population by a single layer MPP model (sMPP), thereafter, the par-

ent object grouping step is performed in post processing by a recursive floodfill-like segmentation

of the population. I have also performed a detailed analysis on the repeatability of obtained re-

sults using the iterative optimization process, and on the computational time requirements of the

algorithm.

The general EMPP model has been published in a sole author paper in IEEE TRANS. IMAGE

PROCESSING in 2017 [2], and presented at ICASSP 2014 [25] and ICIAR 2013 [28] conferences.

Previously, a two-level, applications specific version (called L2MPP) focusing on the extrac-

tion of vehicles and coherent vehicle groups from aerial Lidar data has been published in IEEE

TRANS. GEOSCIENCE AND REMOTE SENSING in 2015 [5], and some preliminary model ele-

ments have been presented at the ICPR 2012 [32] and ISPRS 2012 [34] conferences. The proposal

of the L2MPP model also contained major contributions of my Ph.D. student Attila Börcs [193],

especially in the point cloud segmentation and in the feature-based energy model construction
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parts, while I have significantly contributed here to the construction and evaluation of the prior

data model and the optimization algorithm.

Thesis group 4: I have proposed new models and algorithms contributing to various video

surveillance and environment perception tasks based on 4D spatio-temporal measurements

of heterogeneous sensors. The algorithms have been quantitatively evaluated on representa-

tive real world data sets, and the performance improvement versus existing state-of-the-art

solutions has been demonstrated.

Object localization, classification, motion tracking and change detection are important issues

in intelligent surveillance and environment perception applications, such as security surveillance,

autonomous driving, or city management. However, these tasks are still challenging in crowded

outdoor scenes due to uncontrolled illumination conditions, irrelevant background motion, and

high occlusion rates caused by several moving and static scene objects. Involving novel 3D/4D

sensory information may significantly contribute to the workflow, however it also implies new

challenges for machine vision technologies. I investigated selected issues in this problem domain,

relying on various hardware configurations.

4.1. I have proposed a Marked Point Process Model of cylinders for modeling groups of
multiple (possibly overlapping) pedestrians in 3D environments. Using features extracted
from different calibrated camera views of a multi-camera system, it has been shown that
the introduced approach can be efficiently applied for accurate 3D localization and height
estimation of people, surpassing a state-of-the-art solution for the same problem.

In this work a Bayesian approach has been proposed on multiple people localization in multi-

camera systems. First, pixel-level features have been extracted by my co-author, which were based

on physical properties of the 2D image formation process, and provided information about the

head and leg positions of the pedestrians, distinguishing standing and walking people, respectively.

Then features from the multiple camera views have been fused to create evidence for the location

and height of people in the ground plane. This evidence accurately estimated the leg position even

if either the area of interest were only a part of the scene, or the overlap ratio of the silhouettes

from irrelevant outside motions with the monitored area were significant.

Using the above feature information, I have defined a 3D object configuration model in the

Euclidean coordinate system of the scene. I also utilized prior geometrical constraints, which de-

scribe possible interactions between pairs of neighboring pedestrians. To approximate the position

of the people, I used a population of 3D cylinder objects, which was realized by a Marked Point

Process. The final configuration results were obtained by a conventional iterative stochastic energy

optimization algorithm.

The proposed approach has been evaluated on two publicly available datasets, and compared

to a recent state-of-the-art technique. To obtain relevant quantitative test results, 3D Ground Truth
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annotation of the real pedestrian locations has been prepared, while two different error metrics and

various parameter settings were evaluated, showing the advantages of our proposed model.

The proposed 3D MPP model has been published in IEEE TRANS. CIRCUITS AND SYSTEMS

FOR VIDEO TECHNOLOGY in 2013 [9], presented at the CVPR 2011 [39] premier computer vision

conference (acceptance rate was 26%), and in specific workshops of the topic [35, 36, 41].

4.2. I have proposed novel algorithms for people surveillance -including motion detection,
tracking and event analysis - using a single rotating multi-beam Lidar sensor, which monitors
a dynamic scene from a fixed position. The proposed methods have been quantitatively eval-
uated in realistic surveillance and traffic monitoring environments, showing that the proposed
approaches outperform concurrent state-of-the-art methods.

While conventional optical or range sensors have a limited Field of View (FoV), Rotating

Multi-beam (RMB) Lidars – used as surveillance cameras – provide a full 360◦ FoV of the scene,

with a vertical resolution equal to the number of the sensors, while the horizontal angle resolution

depends on the speed of rotation. However, inhomogeneous point cloud density, noise of sensor

calibration and consequences of the high speed sequential scanning process introduce various ar-

tifacts for the data processing modules, demanding novel solutions in data filtering and pattern

recognition. My key developments in this environment were as follows:

(i) I introduced a hybrid 2D–3D approach for dense foreground-background segmentation of

RMB Lidar point cloud sequences obtained from a fixed sensor position. The proposed

technique solved the computationally critical spatial filtering steps in the 2D range image

domain by a Markov Random Field (MRF) model, however, ambiguities of discretization

were handled by joint consideration of true 3D positions and backprojection of 2D labels.

By adopting a spatial foreground model (originally introduced in my Ph.D. dissertation [53])

to the range image domain, I could significantly decrease the spurious effects of irrelevant

background motion, which was principally caused by moving tree crowns and bushes. For

quantitative point level evaluation of the Lidar scenario, a 3D point cloud Ground Truth

(GT) annotation tool has been developed. The proposed foreground extraction module has

been compared to various alternative state-of-the-art techniques and its superiority has been

demonstrated both in people surveillance and in terrestrial traffic monitoring scenarios.

(ii) I proposed a real-time method for moving pedestrian detection and tracking in RMB Lidar

sequences for dense surveillance scenarios, with short- and long-term object assignment.

During the Short-Term Assignment (STA) the different people were separated in the fore-

ground regions of the point cloud frames, and the corresponding centroid positions were

assigned to each other over the consecutive time frames. The Long-Term Assignment (LTA)

was responsible for connecting the broken trajectories caused by STA errors and identifying

the re-appearing people.
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(iii) I introduced the utilization of gait based biometrics for the RMB Lidar sequences to support

the LTA step of the above tracker. Various alternative features have been extracted, tested and

quantitatively compared in cooperation with my co-authors, yielding the superiority of a new

Lidar based Gait Energy Image (LGEI) descriptor. We have also proposed the extension of

the LGEI approach to recognize various typical activities (such as bending or waving), which

has been successfully implemented and evaluated during the research work.

The complete workflow of Lidar-based surveillance framework with a main focus on person re-

identification and activity recognition was published in IEEE TRANS. CIRCUITS AND SYSTEMS

FOR VIDEO TECHNOLOGY in 2018 [1]. The 3D people surveillance approach was first introduced

in my sole author paper in Pattern Recognition Letters in 2014 [6], The foreground-background

segmentation algorithm has been initially presented at the WDIA 2012 ICPR Workshop [31], while

preliminary results in gait recognition were demonstrated at the EUSIPCO 2015 [22], IWCIM 2015

[21] and VISAPP 2017 [19] conferences.

4.3. I have proposed a novel workflow for the analysis of dynamic urban environment using
RMB Lidar point cloud sequences captured from a moving vehicle, and very dense refer-
ence background point clouds obtained with mobile laser scanning (MLS) technology. I have
contributed to the development and validation of novel algorithms for object detection, clas-
sification, background scene segmentation, multimodal point cloud registration and change
detection in the proposed framework.

Laser scanning technologies can provide high precision 3D measurements form the environ-

ments. Using up-to-date sensors, however, we still find a trade-of between the spatial and temporal

resolution of the recorded point cloud data. Rotating Multi-beam (RMB) Lidar sensors mounted

on vehicle tops can collect point cloud sequences with 15-30 frames per second, allowing dynamic

event analysis, however as mentioned by Thesis 4.2, the spatial density of the measurements is

low and strongly inhomogeneous. On the other hand, mobile laser scanning (MLS) systems can

produce very high resolution static 3D point clouds of large scale city regions, which contain apart

form the really stationary scene parts (e.g. road, facades, lamp posts) various movable (e.g. park-

ing cars) and changing (vegetation) objects, and phantom regions caused by objects concurrently

moving with the scanning platforms.

I have proposed a workflow of algorithms for facilitating the joint exploitation of the mea-

surements from RMB Lidars in the cars’ instant sensing platforms and offline spatial databases

containing geo-referred MLS point cloud data. With a team of my undergraduate and Ph.D. stu-

dents, we have been working towards and a new algorithmic toolkit which allows self driving cars

to obtain in real time relevant Geographic Information System (GIS) information for decision sup-

port, and provides opportunities for extending and updating the GIS databases based on the sensor
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measurements of the vehicles in the everyday traffic. We have proposed a set of new algorithms

detailed as follows.

We have introduced a real time method for ground-obstacle segmentation of RMB Lidar point

clouds with the separation of low foreground (regions of short street objects) and high foreground

(building facades and tall objects) areas, considering the inhomogeneous spatial density of the

RMB Lidar frames, uneven road surfaces and the presence of dense traffic in urban environments

[30]. Based on the above segmentation, we have proposed a two-level grid based quick object

extraction algorithm working in the low and high foreground regions, which enables the real time

separation of several nearby objects [24], and efficient 2D top-view bounding box fitting [23] using

structural constraints. Next, the low foreground objects have been classified into four semantic

classes: vehicle, pedestrian, street clutter and short facade, in a range image based representation,

using a (2D image based) Convolutional Neural Network (CNN) classifier [3].

We have also proposed a 3D voxel based CNN approach for semantic segmentation of the

MLS data [18], which can be used to remove phantom regions and movable objects from the

point clouds, and mark the static landmark objects, which can be used by self driving vehicles for

orientation in the 3D high definition map. Next we introduced a multimodal pont cloud registration

algorithm, which enables the accurate positioning of actual RMB Lidar point cloud frames in the

MLS map’s global coordinate system [16, 20]. Finally, we worked out a Markov Random Field

based change detection technique between the registered multimodal point clouds [17].

The RMB Lidar based object detection and classification approach has been published in IEEE

GEOSCIENCE AND REMOTE SENSING LETTERS [3] and in a Springer book chapter [50], while

the preliminary and later results of this topic have been presented in various conferences: ISPRS

VMC 2013 [30], Workshops of ECCV 2014 [24], ACCV 2014 [23] and ECCV 2018 [16], at ICPR

2016 [20], IJCNN 2017 [18] and ICIAR 2017 [17].

In the work presented in this sub-thesis, I participated as principal investigator and coordinator,

specifying the workflow and the major steps of the research work, and supervising the research

and development steps. Most of the specific technical contributions are shared with Ph.D. and

undergraduate students working under my supervision, in particularly with Attila Börcs (Ph.D.,

2018, [193]), Balázs Nagy (Ph.D. studies in progress), Bence Gálai (M.Sc., 2017) and Oszkár

Józsa (B.Sc., 2013).

7.3 Examples for application

The developed algorithms can be used by various up-to-date or future computer vision systems, es-

pecially in the application fields of video surveillance, remote sensing, industrial quality analysis,

film pre-production, robotics and autonomous driving etc. Many of the proposed methods directly
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Figure 7.1: Flowchart of the i4D system, patented in [48]

corresponded to research projects conducted with the participation of MTA SZTAKI in the pre-

vious years. My scientific contributions were in particularly involved in the following projects,

where I also acted as a coordinator, principal investigator or (national) project leader.

(i) The Array Passive ISAR Adaptive Processing (APIS) project of the European Defense Agency

(EDA) focused on the development and demonstration of the functionalities of a passive

high-resolution primary radar system. The result of APIS was to our best knowledge the first

passive system in the world that was capable of offering images with the application of In-

verse Synthetic Aperture Radar (ISAR) techniques. I was working in the project as the local

technical coordinator from the side of MTA SZTAKI and a participating senior researcher,

responsible for image analysis and pattern recognition tasks of the project. My contributions

regarding moving target analysis in ISAR image sequences [7] (introduced in Thesis 2.2),

were involved in significant parts in the final project report and in the demonstrator.

(ii) I have coordinated the Integrated 4D (i4D) research project at MTA SZTAKI, which de-

veloped an unconventional hardware-software environment, combining two very different

sources of spatiotemporal information: a RMB Lidar and a 4D reconstruction studio (see

Fig. 7.1). The main scientific purpose of the integration of the two types of data has been the

desire to measure and represent the visual world at different levels of detail. In the proposed

approach, the Lidar sensor provided a global description of a dynamic outdoor scene in the

form of a time-varying 3D point cloud. The latter was used to separate moving objects from

static environment and obtain a 3D model of the environment. The 4D studio built a detailed

dynamic model of an actor (typically, a person) moving in the studio. By integrating the two
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sources of data, which was to our best knowledge a unique attempt up to now, one could

modify the model of the scene and populate it with the avatars created in the studio. We

have addressed various application areas such as 4D virtual city reconstruction, protecting

collective properties in urban environments, 4D video surveillance, augmented reality, and

telecommunication. We described the main scientific and technical novelties of the i4D sys-

tem in a patent [48], and published at referred conferences IEEE Coginfocom 2013 [26],

IEEE CBMI 2013 [29] and ICVS (LNCS) 2013 [27]. Based on the i4D technology, we de-

veloped a prototype system supporting 4D film preproduction, which was demonstrated at

the FMX 2017 Visual Effect Conference and Exhibition, and was selected to appear in the

book 100 most interesting Hungarian inventions in 2018.

(iii) I was the coordinator and a research scientist in the DUSIREF (Dynamic Urban Scene In-

terpretation and REconstruction through remotely sensed data Fusion) Project funded by the

European Space Agency (ESA) under the PECS-HU framework. The main objective of the

project was high level urban scene recognition and change interpretation based on heteroge-

neous Remote Sensing (RS) data sources (mainly optical and TerraSAR satellite images and

LIDAR data). We aimed to develop novel recognition and visualization methodologies re-

lying on four dimensional data representation, focusing on highly multi-modal, multi-scaled

and multi-temporal data collections: here my contributions introduced in Thesis 1.2, 2.1 and

3.3 were widely exploited.

(iv) I am currently the principal investigator of two exploratory research projects funded by the

National Research, Development and Innovation Fund (NKFIA), with titles Instant environ-

ment perception from a mobile platform with a new generation geospatial database back-

ground (K-16 call for Researcher Initiated Projects: 2016-2020), and Change detection and

event recognition with fusion of images and Lidar measurements (KH-17 call for Research

Groups with Significant International Impact, 2017-2019), whose scopes largely overlap

with the research work presented in Theses 4.2 and 4.3.

My further scientific results were also utilized by major or minor components of various project

contributions delivered by MTA SZTAKI, Péter Pázmány Catholic University (PPCU) or Budapest

University of Technology and Economics (BME). The video surveillance methods from Thesis

4.1 were used by EDA Project MEDUSA and EU Project THIS. The proposed circuit inspection

technology (Thesis 3.1) was connected to the scientific program of the “Development of quality-

oriented and harmonized R+D+I strategy and functional model at BME” project. The object mo-

tion detection technique for aerial image sequences (Thesis 1.1) was utilized by the Hungarian

R&D Project ALFA (NKFP 2/046 /04 project funded by NKTH). Our geospatial data processing
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Figure 7.2: Live demonstration of our Lidar-based person tracker at the Frankfurt Motorshow 2017, in the
exhibition area of Velodyne

algorithms are applied for archeological data analysis in the EFOP–3.6.2–16–2017–00013 project

at PPCU. Various contributions in RMB Lidar based scene analysis have been adopted in automo-

tive industrial projects.

We also integrated the person surveillance module of Thesis 4.2 into a real time demonstra-

tor, which has been introduced at the Frankfurt Motorshow 2017 (see Fig. 7.2) in the exhibition

area of sensor producer Velodyne, at the Automotive Hungary 2017 exhibition, and in multiple

Researchers’ Night occasions (in Hungarian: Kutatók éjszakája), which are open yearly events for

the public to visit research centers in Hungary.

7.4 Lecturing and domestic publications

Besides my research activities conducted in MTA SZTAKI, I was appointed as associate professor

at PPCU in 2015, where I am responsible for the courses Computer Graphics and Basic Image

Processing. I defended my habilitation thesis [49] in 2017. My supervised undergraduate and

doctoral students from PPCU and BME won several awards, including four first prizes at national

scientific student conferences (OTDK), Attila Kuba Prize, Dénes Gábor scholarship, national B.Sc.

thesis competition and various SZTAKI awards.

I am a steering committee member of the Hungarian Association for Image Analysis and Pat-

tern Recognititon (KÉPAF) since 2013, and the president of the society since January 2019. Sev-

eral publications connected to the dissertation appeared also in Hungarian language in the Proceed-

ings of the KÉPAF Conferences, including our contributions on multi-layer Markov models [70],

building change detection [69], radar image sequence analysis [65], Embedded MPPs [60, 66],

multi-camera person localization [68], Lidar-based surveillance [57, 62, 67], and 4D environment

analysis [55, 56, 58, 59, 61]. I also presented papers in the Hungarian Computer Graphics and

Geometry Conference (GRAFGEO) [63, 64].
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Appendix A

Summary of abbreviations and notations

List of abbreviations and concepts

Abbreviation Concept

MRF Markov Random Field
CXM Conditional Mixed Markov Model
DMRF Dynamic Markov Random Field
MPP Marked Point Process
mMPP Multitemporal Marked Point Process (used for change detection)
FmMPP Multiframe Marked Point Process (object sequence analysis)
EMPP Embedded Marked Point Process (multi-level MPP)
MAP Maximum a posteriori
SA Simulated Annealing (optimization method)
pdf probability density function
MMD Modified Metropolis Dynamic (MRF SA relaxation technique)
MBD Multiple Birth and Death (MPP SA optimization technique)
RJMCMC Reversible Jump Markov Chain Monte Carlo (MPP optimization)
PCA Principal Component Analysis
PCC/PDC Post Classification/Detection Comparison
RANSAC Random sample consensus
FBB Feature Based Birth Process
BUSEP Bottom-Up Stochastic Entity Proposal
MMBDM Multi-level Multiple Birth-Death-Maintenance (MBD extension)
GODH Gradient Orientation Density Histogram
ISAR Inverse Synthetic Aperture Radar
PCB Printed Circuit Board
AOI Automated Optical Inspection
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138 A. SUMMARY OF ABBREVIATIONS AND NOTATIONS

List of abbreviations and concepts

Abbreviation Concept

POM Probabilistic Occupancy Map (multiview technique)
MLS/TLS mobile/terrestrial laser scanning
Lidar Light detection and ranging
RMB Lidar Rotating Multi-beam Lidar (sensor)
ToF Time-of-Flight
HD map High Definition map
MLP Multi-Layer Perceptron
CNN Convolutional Neural Network
MoG Mixture of Gaussians
MDA Multiple Discriminant Analysis
(L)GEI (Lidar-based) Gait Energy Image
STA/LTA Short/Long Term Assignment
FoV Field of View
ICP Iterative Closest Point algorithm
NDT Normal Distribution Transform algorithm
MHD Modified Hausdorff Distance
e.g. for example (in latin: ‘exempli gratia’)
i.e. That is; in other words

General notations used in the thesis

Variable Definition

i, j, k, m arbitrary index (number or enumeration)
n dimension parameter, index
S pixel lattice
s, r pixel of the image lattice (s, r ∈ S)
L = {p1, . . . , pn} point cloud of n points (pi is the ith point)
x, y, z Cartesian point coordinates
G(← S) , Gi image (over S lattice), the ith image
g(s), gi(s) gray value/image sensor value at pixel s (in the ith image)
N(µ, σ) normal distribution with mean value µ and standard deviation σ
η(x, µ, σ) Gaussian (normal) pdf with parameters µ, σ.
B(x, α, β) beta pdf with parameters α, β.
ζ(x, τ,m) sigmoid function with parameters τ and m.
κs, κis weight (of the ith term) in a mixture pdf corresponding to pixel s
t, .t, t time (upper or lower) index (for any quantities)
T temperature (for simulated annealing)
T transform

Specific notations used in MRF/CXM models

Variable Definition

G(V, E) MRF graph with set of nodes V and edges E.
υ abstract node of a graph G, υ ∈ V (without emphasizing which is

the corresponding pixel in the input image)
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Specific notations used in MRF/CXM models

Variable Definition

ε edge of a graph ε ∈ E
s, r node of G in case of a single layer MRF model
si node at the i layer, which corresponds to pixel s ∈ S (in case of

multi-layer MRF models)
Λ label set (#Λ = J)
l, li abstract label or class identifier
N neighborhood system of G
Nυ neighborhood of node υ in G (Nυ ∈ N)
ς(υ), ςυ label of node υ in G (ς(υ) ∈ Λ).
̟ global labeling: {[υ, ς(υ)]|υ ∈ V}
̟̂ MAP estimation of the optimal global labeling
ς⋆(a) the label of the regular node addressed by a in CXM
Υ set of all the possible global labelings (̟ ∈ Υ)
̟X label subconfiguration corresponding to set X ⊆ V (̟X ⊆ ̟)
VX(̟) potential of the subconfiguration ̟X

f(s), f(s) observation vector (∈ Rn) at pixel s ∈ S
f(υ), f(υ) observation vector (∈ Rn) assigned to node υ ∈ V

fi(υ)
(
fi(s)

)
ith component of vector f(υ) (f(s))

F global observation on G: {f(υ) | υ ∈ V}
C clique of G
C set of cliques in G

VC potential of clique C
V{υ1,...,υn} potential of a clique containing nodes υ1, . . . , υn
Θ(ς1, ς2) Potts smoothing term
δ, δi parameter of the smoothing term (in the ith layer)
ρ parameter of the inter-layer potential term
1{E}, 1ς indicator function of an event E, or class ς
pς(s) pdf value corresponding to pixel s and class ς
ǫς(s) − log pς(s)

Specific notations used in MPP models

Variable Definition

u, v MPP objects represented by geometric figures
H parameter space of the objects
ω = {u1, . . . , un} configuration (or population) of n objects
Ω configuration space
Φ(ω) : Ω→ R MPP configuration energy function
f(u) (f i(u)) data-feature associated to object u (i-named data-feature)
F global observation data over the input image(es)/point cloud(s)
M(f, d0, D) feature-mapping function (d0: acceptance threshold, D: normal-

ization)

dc_942_14

Powered by TCPDF (www.tcpdf.org)



140 A. SUMMARY OF ABBREVIATIONS AND NOTATIONS

Specific notations used in MPP models

Variable Definition

Ru ⊂ S set of image pixels covered by the geometric figure of object u
ϕf (u) data-term of object u considering feature f
A(u) unary potential of object u in Φ(ω)
I(u, v) interaction potential between (parent) objects u and v
ψ object group (in the EMPP model)
q (qu) child object (of parent u) in the EMPP model
Qu set of child objects of parent u (in the EMPP model)
u ∼ v neighborhood relation
Nu(ω) neighborhood of object u within population ω: {v ∈ ω|u ∼ v}
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Appendix B

Supplement regarding multi-layer label

fusion models

This appendix offers supplementary materials regarding two issues of the multi-layer L3MRF

model, introduced in Sec. 3.2 for object motion detection in aerial image pairs.

First, the pseudo code of the proposed three-layer Modified Metropolis optimization technique

is provided by Algorithm B.1.

Second, for qualitative comparison of the proposed L3MRF model and the discussed reference

techniques, Fig. B.1 shows four selected image pairs from the test database, segmented images

with the different methods and Ground Truth change masks. Based on this figure and the quanti-

tative test results (see Fig. 3.5 in Sec. 3.2.4), we can conclude that both the unsupervised Reddy

[118] and the supervised Affine [123] methods cause many false positive foreground pixels due to

the lack of parallax removal. The Farin model [121] can eliminate most of the misregistration er-

rors got by [118], however, it may leave false foreground regions in areas with densely distributed

edges and makes some small and low contrasted objects disappear. Since the Epipolar filter is

based on local pixel correspondences, its artifacts may appear due to the failures of the feature

tracker as well as in the case of objects moving in the epipolar direction [124]. During the tests of

the Epipolar method, we have observed therefore both false alarms and missing objects (Fig. B.1).

The bottleneck of using KNNBF [126] proved to be the poor quality of the region and application

maps which could be extracted from the test images.
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142 B. SUPPLEMENT REGARDING MULTI-LAYER LABEL FUSION MODELS

Algorithm B.1: Modified Metropolis algorithm used for the L3MRF model

1. Pick up randomly an initial configuration ̟, with k := 0 and T := T0.
2. Denote by |V| the number of nodes in the three-layer model. Assign to each node a unique

ordinal number between 1 and |V|, applying the ‘checkerboard’ scanning strategy [107]
for the consecutive layers. Let j := 1.

3. Let υ the jth node, i ∈ {d, c, ∗} is the layer which contains υ, while s ∈ S is the corre-
sponding pixel in the image lattice: υ = si.

4. Denote the label of υ in ̟ by ς(υ). Flip the label of υ and denote it by ς̆(υ).
5. Compute ∆U as follows:

∆U := ∆U1 +∆U2 +∆U3, where

a. Calculate ∆U1 as:

∆U1 :=





logP (fd(s)|ς(υ))− logP (fd(s)|ς̆(υ)) if i = d,
logP (fc(s)|ς(υ))− logP (fc(s)|ς̆(υ)) if i = c,
0 if i = ∗

b. Using eq. (3.2), calculate ∆U2 as:

∆U2 :=
∑

r∈Ns

Θ
(
ς̆(si), ς(ri)

)
−Θ

(
ς(si), ς(ri)

)
.

c. Denote by V 0
C3

= VC3

(
ς(sd), ς(sc), ς(s∗)

)
(eq. (3.4)). Calculate ∆U3 as:

∆U3 :=





VC3
(ς̆(υ), ς(sc), ς(s∗))− V 0

C3
if i = d,

VC3

(
ς(sd), ς̆(υ), ς(s∗)

)
− V 0

C3
if i = c,

VC3

(
ς(sd), ς(sc), ς̆(υ)

)
− V 0

C3
if i = ∗

9. Update the label of υ:

ς(υ) :=

{
ς̆(υ) if log τ ≤ −∆U

T
,

ς(υ) otherwise.

where τ is a constant threshold (τ ∈ (0, 1)).
10. If j < |V|: {j := j + 1 and goto step 3.}
11. Set T := Tk+1, k := k + 1, j := 1 and goto step 3, until convergence (i.e. the number of

the changed labels between the kth and (k + 1)th iteration is lower than a threshold.)
Note: in the tests, we used τ = 0.3, T0 = 4, and an exponential heating strategy: Tk+1 =
0.96 · Tk
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Figure B.1: Comparative segmentations with different test methods and Ground Truth using the image pairs
of Fig. 3.4. In the right column, the ellipses demonstrate a limitation: a high standing lamp is detected as a
false moving object by all methods.
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Appendix C

Supplement regarding Multitemporal

Marked Point Processes

This appendix provides supplementary materials regarding the proposed object level change de-

tection and target sequence analysis methodologies.

C.1 Object level change detection

This section supports the presentation of the object level change detection approach described in

Sec. 4.2.

Table C.1 contains quantitative evaluation results of building change detection, with comparing

the proposed mMPP method to the Post Detection Classification (PDC) approach [145] .

Algorithm C.1 provides a detailed pseudo code of the iterative Bi-layer Multiple Birth and

Death (bMBD) technique developed for optimizing the energy function of the multitemporal Marked

Process (mMPP) model.

Fig. C.1 shows detection results with the proposed mMPP approach and various reference

techniques (described in Sec. 4.2.4) for qualitative comparison.

Table C.1: Quantitative evaluation results of building change detection.
FN FP MC FC Pix. F-sc.

Data Set #CH #UC PDC mMP PDC mMP PDC mMP PDC mMP PDC mMP

BUDAPEST 20 21 3 0 7 2 1 0 9 2 0.72 0.78
BEIJING 13 4 1 0 2 1 0 0 3 0 0.77 0.85
SZADA 50 7 4 2 0 1 3 4 3 0 0.76 0.82
ABIDJAN 0 21 2 0 2 0 0 0 4 0 0.78 0.91

#CH and #UC denote the total number of changed resp. unchanged buildings in the set. PDC denotes the
Post Detection Classification reference method and mMP refers to the proposed multitemporal Marked

Point Process model. Evaluation rates FN, FP, MC, FC and DA are introduced in Sec. 4.2.4.
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146 C. SUPPLEMENT REGARDING MULTITEMPORAL MARKED POINT PROCESSES

Algorithm C.1: Bi-layer Multiple Birth and Death (bMBD) optimization

1. Initialization: calculate the P (i)
b (s) (i ∈ {1, 2}) and Pch(s) birth maps, and start with an empty

population ω = ∅. Since the main goal of the combined birth map in each image is to keep
focus on all building candidate areas, we derive it with the maximum operator from the birth
maps of the features. For example, when gradient, color and shadow are simultaneously used,
we obtain the final field as Pb(s) = max

{
P gr
b (s), P co

b (s), P sh
b (s)

}
∀s ∈ S.

2. Main program: initialize the inverse temperature parameter β = β0 and the discretization step
δ = δ0 and alternate birth and death steps:

• Birth step: for each pixel s ∈ S, if there is no object with center s in the current config-
uration ω, pick up ξ ∈ {1, 2, ∗} randomly, let be

P̂b =

{
Pch(s) · P (ξ)

b (s) if ξ ∈ {1, 2}(
1− Pch(s)

)
·max {P (1)

b (s), P
(2)
b (s)} if ξ = ∗

and execute the following birth process with probability δP̂b:

– generate a new object u with center s and image index ξ

– set the orientation θ(u) following the η(., µ
(ξ)
θ (s), σθ) Gaussian distribution as

shown in Sec. 4.2.2.1

– add u to the current configuration ω

• Death step: Consider the configuration of objects ω = {u1, . . . , un} and sort it from
the highest to the lowest value of AF(u). For each object u taken in this order, compute
∆Φω(u) = ΦF(ω/{u})− ΦF(ω), derive the death rate as follows:

dω(u) =
δaω(u)

1 + δaω(u)
, with aω(u) = e−β·∆Φω(u)

and remove u from ω with probability dω(u). Note that according to eq. (4.2), ∆Φω(u)
depends only on u and its neighbours in ω, thus dω(u) can be calculated locally without
computing the global configuration energies ΦF(ω/{u}) and ΦF(ω).

• Convergence test: if the process has not converged, increase the inverse temperature β
and decrease the discretization step δ by a geometric scheme and go back to the birth
step. Convergence is obtained when all the objects added during the birth step, and only
these ones, have been killed during the death step.

dc_942_14

Powered by TCPDF (www.tcpdf.org)



C.1 Object level change detection 147

(a) Input image (b) SIFT [143] (c) Gabor [144]

(d) MRF [140] (e) Edge Verification [80] (f) Segment-Merge [78]

(g) Proposed MPP (h) Ground Truth

Figure C.1: Evaluation of the single view building model. Comparing the proposed MPP model to the SIFT
[143], Gabor [144], MRF [140], Edge Verification (EV) [80], Segment-Merge (SM) [78] methods, and to
the Ground Truth. Circles denote completely missing or false objects. SIFT and Gabor only extract building
centers.
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C.2 A point process model for target sequence analysis

This section details specific algorithms developed for Inverse Synthetic Aperture Radar (ISAR)

image based target sequence analysis, with additional tables and figures supporting the evaluation

process.

First, a Markov Random Field based robust foreground-background segmentation algorithm

is described for the noisy ISAR frames. Second, we introduce the object generation kernels and

the pseudo code of the optimization algorithm. Third, we provide additional tables to support

quantitative evaluation presented in Sec. 4.3.6.

C.2.1 Foreground-background separation of ISAR frames

This section describes a Markov Random Field (MRF) approach, which we proposed in [7] for

segmenting the ISAR images into foreground and background classes, with decreasing the spurious

effects of speckle noise.

The goal is to obtain a binary label map ̟ = {υ(s)|s ∈ S}, where υs ∈ {fg, bg} labels

correspond to the foreground and background classes, respectively. Assuming that the ISAR

amplitude values in both classes follow log-normal distributions [149], we model the pbg(s) =

P (gt(s)|υ(s) = bg) and pfg(s) = P (gt(s)|υ(s) = fg) log-amplitude posterior probabilities by

Gaussian densities.

To estimate the Gaussian distribution parameters we used a semi-supervised approach. We

could assume having a prior estimation about the ratio of foreground areas compared to the image

size, since our vessel targets have shown a typical line segment structure, and the imaging step has

intended to provide us spatially normalized images where the target is centered and the image is

cropped so that it estimates a narrow bounding box of the target. Using this ratio, the upper part of

the image histogram has formed the training regions for foreground, the lower one for background.

Let us denote by 1fg
s ∈ {0, 1} the indicator function of the foreground class in a given seg-

mentation, where 1fg
s = 1 iff υ(s) = fg. We denote by s ∼ r, if pixel s is in the 4-neighborhood

of pixel r in the S lattice. The optimal foreground mask is derived through minimizing the the

following MRF energy [194] function:

̟opt = argmin
̟∈2S

∑

s∈S

log
pfg(s)

pbg(s)
· 1fg

s +
∑

r∼s

β
(
1fg
s · 1fg

r + (1− 1fg
s ) · (1− 1fg

r )
)

(C.1)

Since (C.1) belongs to the F2 class of energy functions [194], efficient graph cut based optimization

[105] can provide the optimal B mask, as demonstrated in Fig. C.2.
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C.2 A point process model for target sequence analysis 149

Figure C.2: Demonstration of the foreground-background segmentation. Top left: background and fore-
ground probability maps (high probabilities indicated with greater intensities), bottom left: foreground
mask through pixel-by-pixel maximum likelihood classification (only for reference), top right: sketch of
graph-cut based MRF optimization [105], bottom right: foreground mask (B) by the proposed MRF model

C.2.2 FmMPP energy optimization

For supporting the discussion of FmMPP energy optimization algorithm in Sec. 4.3.5, we provide

here the pseudo-code of object candidate generation (Algorithm C.2) and the steps of iterative

energy minimization (Algorithm C.3).

C.2.3 Quantitative evaluation of the FmMPP method

Table C.2 summarizes the axis level detection rates (smaller error values are favored) for the three

steps of the workflow: (a) Initial detection, (b) RANSAC-based refinement and (c) the final FmMPP

output after iterative optimization. We can observe that the errors decrease over the consecutive

steps, and at the end of the process the summarized EAX rate is between 3% and 7% in all se-

quences.

By examining the evaluation rates of Table C.2, we can observe that the proposed method

can accurately deal with all the seven test cases (SHIP1-SHIP7). The improvement between the

outputs of the Initial and Optimized FmMPP phases of the process is particularly significant in the

SHIP1 (shown in Fig. 4.9), SHIP2 and SHIP5 sequences, which contain difficult test cases. The

developments are also remarkable in the SHIP3, SHIP4 and SHIP6 cases (see sample frames in

Fig. 4.10), while the SHIP7 sequence contains noisier images with several blurred frames, where

the final error rates remain larger (see also the last row of Fig. 4.10).
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Algorithm C.2: Object generator function pool

Variables

n: number of frames of the sequence
t: frame index

Notation

N(µ, σ): Gaussian distribution with µ mean value and σ standard deviation.

Functions

Object u = function Propose_Obj_by_PERTURBATION (t)

• Pick up ∆ randomly following the upcoming normal distributions:

switch(t)

case 1: P (∆ = 0) = 2/3, P (∆ = +1) = 1/3

case n: P (∆ = 0) = 2/3, P (∆ = −1) = 1/3

otherwise: P (∆ = −1) = 1/4, P (∆ = 0) = 1/2,

P (∆ = +1) = 1/4

end-switch

• Generate a new object u and set its parameters randomly following the upcoming
distributions:

x (u) ∼ N(x (ut+∆) , σx), y (u) ∼ N(y (ut+i) , σy), θ (u) ∼ N(θ (ut+∆) , σθ),
l (u) ∼ N(l (ut+∆) , σl)

where σx, σy, σθ and σl are model parameters.

• Fill the scatterer vector of u by cloning the scatterer vector from ut, and randomly
add new scatterers from the pre. scatterer candidate set of frame t + ∆, or delete
some of the actual scatterers

return object u

Object u = function Propose_Obj_by_RANSAC (t)

• Generate a new object u
• Determine the axis line of u by applying RANSAC to the scatterer candidates of

the tth frame.
• Estimate the endpoints of the axis line segment by morphology.
• Determine the scatterers for u by the preliminary Scatterer Filtering (SF) Kernel.

return object u
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C.2 A point process model for target sequence analysis 151

Algorithm C.3: Pseudo code of the multiframe energy optimization

Variables

n: number of frames of the sequence

k: iteration counter

Steps of the algorithm

1) Initialize the configuration with the output of the deterministic detector: ω[0] =

{u[0]1 , u
[0]
2 , . . . , u

[0]
n }, and set iteration counter k = 0, inverse temperature β = β0, refinement

parameter δ = δ0 and boolean STOP:=false.

2) Iterate the following steps while STOP=false.

for each t = 1, . . . , n:

• Pick up ΨBirth ∈ {PERT,RANSAC} randomly

• Generate a new object u so that:

if ΨBirth = PERT:

u := Propose_Obj_by_PERTURBATION(t)

if ΨBirth = RANSAC:

u := Propose_Obj_by_RANSAC(t)

• Consider the ω∗ configuration which could be obtained if in ω[k] we exchanged u[k]t by u.

• Calculate the energy difference between and ω[k] and ω∗:

∆Φω(u, t) = ΦF (ω
∗)− ΦF

(
ω[k]
)

• Calculate the dω (u) exchange rate as follows:

dω (u) =
δaω (u)

1 + δaω (u)
with aω (u) = e−β·∆Φω(u)

and set

u
[k+1]
t =

{
u with probability dω (u)

u
[k]
t otherwise

3) k := k + 1, increase β and decrease δ with a geometric scheme.

4) If the process converged: STOP:=true.
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Table C.2: Evaluation of the different steps in the FmMPP model for the test sequences.

Sequence Step
Axis extraction errors Scatterer level errors

Ex
AX Ey

AX El
AX Eθ

AX EAX TP FP FN ESP

SHIP1

Initial 6.31 9.89 10.6 5.64 23.6 249 117 111 7.4
RANSAC 5.11 5.69 9.11 2.18 15.3 339 49 21 2.2
FmMPP 0.44 0.27 3.73 0.8 3.8 349 10 11 0.5

SHIP2

Initial 5.85 1.72 13.11 1.51 12.3 680 49 40 4.8
RANSAC 2.99 1.02 6.56 0.71 6.2 703 23 17 1.6
FmMPP 0.47 0.17 4.29 0.58 3.2 718 2 2 0.4

SHIP3

Initial 2.80 2.15 5.70 2.15 10.3 301 33 19 1.5
RANSAC 1.65 1.33 4.92 1.52 7.5 306 30 14 1.6
FmMPP 0.33 0.30 2.65 0.90 3.4 311 22 9 1.0

SHIP4

Initial 2.37 0.83 5.96 0.58 5.7 696 66 24 1.1
RANSAC 2.70 0.82 5.69 0.79 6.0 699 64 21 1.0
FmMPP 0.64 0.06 4.37 0.38 3.2 705 22 15 0.7

SHIP5

Initial 2.07 0.96 5.86 1.10 6.4 691 69 29 0.9
RANSAC 1.43 0.47 3.50 0.86 4.1 695 71 25 0.6
FmMPP 0.19 0.09 4.01 0.80 3.3 707 29 13 0.3

SHIP6

Initial 2.33 1.54 3.71 1.96 7.8 763 48 47 0.9
RANSAC 1.46 0.70 4.09 1.11 5.9 763 49 47 0.8
FmMPP 0.01 0.07 3.20 0.50 3.0 764 18 46 0.7

SHIP7

Initial 4.53 0.87 9.27 1.12 9.9 562 61 38 3.5
RANSAC 3.32 0.72 9.21 0.75 8.6 567 58 33 2.9
FmMPP 2.13 0.13 8.13 0.56 6.7 559 37 41 2.5

AIRPL
Initial 1.68 6.16 16.32 2.56 34.9 n.a. n.a. n.a. n.a.

FmMPP 0.24 0.80 3.28 0.76 6.6 n.a. n.a. n.a. n.a.

Axis detection error rates are the following: ExAX, EyAX, ElAX andEθAX mean parameter errors are measured
in pixels, the normalized EAX error rate is expressed in percent (%). Regarding the Scatterer Detection, the
number of False Positive (FP) and False Negative (FN) scatterers determine the precision and recall factors
of the process, while the ESP rate shows the scatterer positioning accuracy (low values are preferred)
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Appendix D

Supplement regarding Embedded Marked

Point Processes

This appendix offers supplementary materials regarding Embedded Marked Point Processes.

First, details are provided regarding the Bottom-Up Stochastic Entity Proposal (BUSEP) pro-

cess in PCB analysis. As introduced in Sec. 5.4 instead of applying fully random sampling, we

construct a data driven stochastic entity generation scheme, which proposes relevant parent objects

with higher probability based on various image features. Here we give a concrete implementation

of the BUSEP algorithm, developed for the printed circuit board (PCB) analysis application. In

this case we have to deal with variously shaped and scaled circuit elements (CEs): rectangles, el-

lipses and triangles, while the size of CEs can be notably different (see Fig. D.1(a)), which factors

significantly increase the size of the parameter space. We use in the preprocessing step a binary

foreground mask B obtained by Otsu’s thresholding method from the input image, which realizes

a coarse separation of the circuit entities (i.e. foreground) from the board (i.e. background). How-

ever, due to notable noise, this B mask can be unreliable for purposes of CE separation and shape

estimation. In addition, some neighboring CEs may also be merged into one blob in the mask.

The process starts with CE candidate generation based on the foreground mask, as described in

Algorithm D.1. Thereafter, using these CE candidates probabilistic parameter maps (i.e. extended

birth maps) are calculated for the BUSEP process, which is detailed in Algorithm D.2. Finally, the

parent object generation step - which uses the parameter maps - is realized by Algorithm D.3.

Second, we give the pseudo code of the Multi-level Multiple Birth and Death algorithm in

Algorithm D.4. This description refers to the proposed generic algorithm, however, the parent

object generation step is naturally application depended, for example, the PCB analysis task can

use Algorithm D.3.

Third, regarding the built in area analysis application we give here two additional figures:

Fig. D.2 which demonstrates the efficiency of (child level) chimney detection, and Fig. D.3 for

qualitative comparison of the sMPP and EMPP approaches discussed in Sec. 5.7.
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154 D. SUPPLEMENT REGARDING EMBEDDED MARKED POINT PROCESSES

(a) PCB image (c) D: distance transform map
of E

(e) Tangent and bounding box
estimation

(b) E: Canny edge map (d) C = {Cj}: circles for max-
ima of D

(f) CE generation probability
map

Figure D.1: Steps of the bottom-up entity proposal process

Algorithm D.1: CE Candidate Generation

Step 1. Generate the Canny edge map E of the PCB image (Fig. D.1(b))
Step 2. Generate the distance transform map of E, and denote it by D (Fig. D.1(c))
Step 3. Find local maxima pixels in D: {silx|i = 1, 2, . . . , nlx}, and for each i draw a C circle with
center silx and radius D(silx). Keep only circles which correspond in majority to foreground regions of

the coarse B foreground mask: C = {Cj |j = 1, . . . , nc}. We denote henceforward by Cj
int∼ Ci if Cj and

Ci circles intersect (Fig. D.1(d)).

Step 4. We define an indirect intersection relation
iC′

∼ for a subset C ′ ⊂ C where for each Cj ,Ci ∈ C ′:

Cj
iC′

∼ Ci iff Cj
int∼ Ci or ∃Ck ∈ C ′: Cj

int∼ Ck AND Ck
iC′

∼ Ci

Step 5. We prepare an n-partition of C = C1 ∪ C2 ∪ . . . ∪ Cn so that for each l each Cj ∈ Cl is in
iCl∼

relation with all elements in Cl, but not with any other circles from C\Cl (see in Fig. D.1(d) the grouped
circles).
Step 6. To all partitions obtained above we assign a CE candidate. For each Cl we calculate the radius-
variation of the included circles. If the variation if high enough we mark the object as a triangle candidate,
otherwise as a R&E (rectangle or ellipse) candidate.
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Algorithm D.2: BUSEP parameter map calculation

Step 1. Generate a binary foreground mask B obtained by Otsu’s thresholding method from the input
PCB image, which realizes a coarse separation of the circuit entities (i.e. foreground) from the board
(i.e. background).
Step 2. Call Algorithm D.1 for CE Candidate Generation.
Step 3. Deal separately with the R&E (rectangle or ellipse) and the Triangle candidates in the following
ways:

R&E candidates: for each object, estimate the bounding rectangle R of the union of the cor-
responding circles (Fig. D.1(e), right). Denote the R&E object candidates as: {R1, ...Rnr}
and let o(Ri) be the center of Ri. Then, for each pixel s, we determine the closest rectangle
Rmin
s = argmini ||s− o(Ri)|| and calculate the birth value:

PR
b (s) = kR

( ||s− o(Rmin
s )||

hR

)
(D.1)

with a kR(.) kernel function, and hR bandwidth parameter [10]. Besides marking the candidate
regions of the rectangular or elliptical CE centers, the {Ri|i = 1 . . . nr} set provides local estimations
for the side/axis length and orientation parameters: µRM (s) = aM (Rmin

s ), µRm(s) = am(R
min
s ) and

µRθ (s) = θ(Rmin
s ).

Triangle candidates: determine the circles with the minimal and maximal radius of the group, and
the circle which has the highest distance from the minimal circle (Fig. D.1(e), left part). Calculate
joint tangents of the maximal and minimal circles. Estimate the triangle sides accordingly. Let us
assume that we have detected nt triangle candidates: {T1, ...Tnt}, and similarly to the R&E case,
we derive here a triangle birth map P T

b (.) with estimated side length and orientation values µTM (.),
µTm(.) and µTθ (.).

Step 4. Let be the summarized birth value P̂b(s) = PR
b (s) + P T

b (s) + P0 for each pixel s.

Algorithm D.3: Parent_object_generation(input: pixel s)

Step 1. Execute one from the following three options:
(a) with a probability PR

b (s)/P̂b(s) generate a rectangle or ellipse patent object, u with center
o(u) := s. Set the side lengths/axes and orientation parameters as aM (u) = µRM (s) + ηM ,
am(u) = µRm(s) + ηm and θ(u) = µRθ (s) + ηθ, where ηM , ηm and ηθ are independent zero mean
Gaussian random variables.

(b) with a probability P T
b (s)/P̂b(s) generate a triangle u with reference point o(u) := s. Set the

geometric parameters based on the µTM,m,θ maps, similarly to the previous case.

(c) otherwise, generate arbitrary typed CE object u with reference point s, and set its geometric
parameters fully randomly following prior size distributions.

Step 2. Initialize u without any children: Qu = nil
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Algorithm D.4: Multi-level Multiple Birth and Death algorithm

1) Initialization: start with empty population ω = ∅, set the birth rate b0, initialize the inverse temper-
ature parameter β = β0 and the discretization step δ = δ0. Calculate the BUSEP parameter maps
according to Algorithm D.2.

2) Main program: alternate the following three steps:

• Birth step: Visit all pixels on the image lattice S one after another. At each pixel s, call
Parent_object_generation(s) of Algorithm D.3 with probability δ · P̂b(s). For each new object
u, with a probability p0u = 1ω=∅+1ω 6=∅ ·minψj∈ω d̂ψj

(u), generate a new ψ empty segment (i.e.
object group), add u to ψ and ψ to ω. Otherwise, add u to an existing segment ψi ∈ ω with a
probability piu = (1− d̂ψi

(u))/
∑

ψj∈ω
(1− d̂ψj

(u)).

• Death step: Consider the actual configuration of all objects within ω and sort it by decreas-
ing values depending on A(u) + Ig(u, ψ)

∣∣
u∈ψ

. For each object u taken in this order, compute

∆Φω(u) = ΦF(ω/{u})− ΦF(ω), derive the death rate pdω(u) as

pdω(u) = Γ(∆Φω(u)) =
δ exp(−β ·∆Φω(u))

1 + δ exp(−β ·∆Φω(u))
, (D.2)

and delete object u with probability pdω(u). Remove empty population segments from ω, if they
appear.

• Group re-arrangement: Consider the objects of the current ω population, one after another. For
each object u of segment ψ we propose an alternative object u′, so that the shape type of u′,
may be different from u, and the geometric parameters of u′ are derived from the parameters of
u by adding zero mean Gaussian random values. The next step is selecting a group candidate
for u′. For this reason, we randomly choose a v object from the proximity neighborhood of u
(v ∈ Nu(ω)), and assign u′ to the group of v, denoted by ψ′. Then, we estimate the energy cost
of exchanging u ∈ ψ to u′ ∈ ψ′:

∆ϕ(ω, u, u′) = ϕY (u
′)− ϕY (u) +

∑

v≺ω\{u}

[
Ip(u

′, v)− Ip(u, v)
]
+ Ig(u

′, ψ′)− Ig(u, ψ)

The object exchange rate is calculated using the Γ(.) function defined by (D.2):

peω(u, u
′) = Γ

(
∆ϕ(ω, u, u′)

)

Finally with a probability peω(u, u
′), we replace u with u′.

• Child Maintenance For each u ≺ ω object:

– add new child objects to Qu randomly

– sort Qu by decreasing values depending on the ϕcd(u, qu) values

– for each child object qu ∈ Qu taken in this order, compute the child removal rate dcu(qu)
similarly to the parent level, but considering only the child level unary and interaction terms.

– remove qu from Qu with a probability dcu(qu)

3) Convergence test: if the process has not converged yet, increase β and decrease δ with a geometric
scheme, and go back to the birth step.
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Figure D.2: Building analysis - sample results for chimney detection. True hits are marked by yellow circles,
a false negative is highlighted in the third image of the upper row by a yellow rectangle. In the corners of
the samples, the raw images of the chimney regions are displayed separately for visual verification

(a) sMPP result (b) EMPP result (c) GT configuration

(d) sMPP result (e) EMPP result (f) GT configuration

(g) sMPP result (h) EMPP result (i) GT configuration

Figure D.3: Qualitative validation of the sMPP and the EMPP configurations versus the Ground Truth (only
parent a group levels are displayed). Yellow ellipses mark grouping errors and purple ones false objects. By
building analysis (row 1) groups of houses and condos are separated
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Appendix E

Supplement regarding 4D environment

perception

This appendix provides supplementary materials regarding our contributions in 4D environment

perception from Chapter 6.

Algorithm E.1 presents the details of our fast bounding box estimation method for partially

extracted object blobs from Lidar data, introduced in Sec. 6.4.2.

Algorithm E.2 provides the pseudo code of the Hough transform based point cloud frame

alignment algorithm discussed in Sec. 6.4.5, while Fig. E.1 shows an example for multimodal

point cloud registration with our proposed approach.

Table E.1 shows quantitative evaluation results regarding the object separation algorithm (Sec.

6.4.2).

We evaluated the proposed multimodal registration process with matching the measurements

of Velodyne sensors to the MLS point clouds. Quantitative analysis result of the matching process

is given in Table E.2. Since Ground Truth transformation was not available, we calculated first

the asymmetric Modified Hausdorff Distance (MHD) between the PRMB Velodyne and PMLS MLS

clouds:

MHD(PRMB,PMLS) =
1

#PRMB

∑

p∈PRMB

min
q∈PMLS

dist(p, q)

where #P denotes set cardinality. Columns 5-7 of Table E.2 contain the obtained MHD values

initially, after the object based Hough matching step, and in the final stage following NDT-based

registration refinement. We can observe that both steps significantly decrease the distances be-

tween the scans in almost all data sets. However, the absolute MHD values do not reflect properly

the accuracy of the algorithm, since the presence of several moving objects, especially large trams

or tracks, mislead (increase) the calculated average distances. For this reason, we also used a mod-

ified error metrics called Median Point Distance (MPD), where we sort the points in PRMB from

the lowest to the highest value of minq dist(p, q), and take the median of the distances among all
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p ∈ PRMB. As shown in the 8-10th columns of Table E.2 the MPD values are also significantly

decreased during the registration process, and in seven out of the eight scenes the resulting MPD

errors are below 3cm, which fact was also confirmed by visual verification. Only the test scene

Bajcsy yielded erroneous registration result both by visual and quantitative (MHD, MPD) analysis.

In this sample both RMB point clouds contained several moving vehicles, including large buses

which occluded various relevant scene structure elements. The 11th (last) column of Table E.2

lists for each scene the computational time of the complete matching process (varying between 0.3

and 2.2 seconds), which confirms that the approach is close to online usability.

Algorithm E.1: Fast bounding box estimation for partially detected objects

Input: 2D ground projection of the objects extracted at the coarse level of the two-level grid based
algorithm
Step 1. Estimate the boundary cells of the objects, and construct the convex hull from the boundary
using the monotone chain algorithm [195]. Let be i = 1.
Step 2. Visit the consecutive point pairs of the hull pi and pi+1, one after another (i = 1, 2, . . . , imax):
• Consider the line li between point pi and pi+1, as a side candidate of the bounding box rectangle.

• Find the p⋆ point of the hull, whose distance is maximal from li, and draw a l⋆ parallel line with li
which intersects p⋆. We consider l⋆ as the second side candidate of the bounding box.

• Project all the points of the convex hull to the line li, and find the two extreme ones p′ and p′′. The
remaining two sides of the bounding box candidate will be constructed by taking perpendicular lines
to li, which intersect p′ and p′′ respectively.

Step 3. Chose the optimal bounding box from the above generated rectangle set by minimizing the
average distance between the points of the convex hull and the fitted rectangle.

Figure D.1 Demonstration of the fast 2D bounding box fitting algorithm for the convex hull of the
top-view object projection (the bounding box is shown marked by gray color)
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Figure E.1: Multimodal Velodyne HDL-64E to Riegl VMX-450 registration results using our proposed
method (Fővám tér, Budapest).

Algorithm E.2: The cloud alignment algorithm. Takes two clouds as inputs and calculates the
transformation between them. Rot(α) represents the rotational matrix along z axis.

1: procedure SCANALIGNMENT(F1, F2, T )
2: C1← ObjectDetect(F1)
3: C2← ObjectDetect(F2)
4: Initialize 3D accumulator A
5: for all o1 ∈ C1 do

6: for all o2 ∈ C2 do

7: for α ∈ [0, 359] do

8: o1′ ← Rot(α) ∗ o1
9: (dx, dy)← o2− o1′

10: A[dx, dy, α]← A[dx, dy, α] + 1
11: end for

12: end for

13: end for

14: α, dx, dy ← FindMaximum(A)
15: F1, T1← TransformCloud(F1, α, dx, dy)
16: F1, T2← NDT (F1, F2)
17: T ← T2 ∗ T1
18: end procedure
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Table E.1: Numerical comparison of the detection results obtained by the Connected Component Analysis
[188] and the proposed Hierarchal Grid Model. The number of objects (NO) are listed for each data set,
and also in aggregate.

Point Cloud Dataset NO
Conn. Comp. Analysis [188] Prop. Hierarchical Grid

F-rate(%) Avg. Processing
Speed (fps)

F-rate(%) Avg. Processing
Speed (fps)

Budapest Dataset #1 669 77 0.38 89 29
Budapest Dataset #2 429 64 0.22 79 25
KITTI Dataset [196] 496 75 0.46 82 29

Overall 1594 72 0.35 83 28

Table E.2: Results of multimodal RMB Lidar and MLS point cloud registration (Velodyne HDL-64E/VLP-
16 to Riegl-VMX scan matching)

Scene Sensor
initial offset, MHD (m) MPD (m) Comput
rotation Init Hough Final† Init Hough Final time

Astoria HDL 2.2m, 62◦ 3.641 0.773 0.415 1.587 0.511 0.022 1.923
hub VLP 2.2m, 99◦ 5.045 0.582 0.221 3.623 0.231 0.008 0.665
Bajcsy HDL 2.0m, 92◦ 5.657 11.441 10.105 1.177 2.702 4.539 0.992
road VLP 10.3m, 72◦ 6.971 20.115 17.796 4.179 17.319 14.341 0.329
Deák HDL 1.4m, 32◦ 3.638 0.717 0.338 1.516 0.345 0.004 1.960
square VLP 3.6m, 127◦ 7.348 0.870 0.911 5.502 0.143 0.101 0.769
Fővám HDL 2.0m, 134◦ 8.404 3.494 2.870 6.143 1.339 0.008 3.796
square VLP 0.1m, 20◦ 5.143 1.849 1.431 3.393 0.216 0.010 1.182
Kálvin HDL 1.4m, 118◦ 9.891 0.774 0.205 5.808 0.469 0.005 1.159
square1 VLP 2.0m, 42◦ 11.427 7.016 8.178 5.007 0.752 0.014 0.573
Kálvin HDL 5.8m, 104◦ 19.445 2.252 2.002 4.968 0.437 0.023 0.288
square2 VLP 6.1m, 56◦ 19.663 2.901 5.909 16.826 0.817 0.065 0.221
Múzeum HDL 2.2m, 70◦ 14.911 3.358 1.373 12.354 1.315 0.009 2.574
boulevard VLP 5.0m, 91◦ 6.970 2.489 3.412 1.477 0.312 0.018 1.403
Gellért HDL 1.0m, 125◦ 3.180 0.949 1.046 1.238 0.224 0.014 1.045
square VLP 0.0m, 34◦ 5.241 2.438 1.574 4.037 1.173 0.029 0.852

Average HDL 2.3m, 92◦ 9.016 1.760 1.178 4.802 0.663 0.012 1.821
values‡ VLP 3.7m, 68◦ 8.691 2.592 3.091 5.695 0.521 0.035 0.809

Error measures: MHD: Modified Hausdorff distance, MPD: median point distance.
†Final result refers to the Hough+NDT cascade, ‡Bajcsy was excluded from averaging, due to unsuccessful
registration
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