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CHAPTER 1

Introduction

A wide range of application areas require efficient algorithmic solutions for combinatorial problems.
The theory of NP-hardness tells us that we cannot expect optimal polynomial-time algorithms for
many of the optimization problems that arise in practice. While in these cases we cannot hope
for efficient algorithms tackling the problem in its full generality, it may still be possible that an
algorithm is provably efficient on certain special cases of practical or theoretical relevance. A large
part of the theoretical research on algorithms can be seen as trying to identify favorable properties
of the input instance that allow efficient algorithms.

Perhaps the most well-studied such property is the concept of decomposability: the problem
instance can be recursively split into smaller parts such that the solutions of the smaller parts can
be combined into a solution of the whole instance. The exact meaning of decomposability depends
on the problem domain, but typically it means the existence of small separators that break the
problem into fairly independent parts that only interact via the separator. For algorithmic problems
that are explicitly defined on graphs (or perhaps there is a natural definition of a graph that can be
associated with the problem instance), the notion of treewidth appears to be a very useful concept
in formalizing decomposability. Informally speaking, treewidth measures how close a graph is to
being a tree: graphs of small treewidth are similar to a tree with each node being replaced by a
small graph. While the formal definition of treewidth is technical, it models very faithfully the
requirements that make the algorithmic paradigm “split on small separators and recurse” work and
its mathematical naturality is further evidenced by the fact that it was independently discovered in
equivalent formulations at least three times [28,135,207].

The overarching theme of this dissertation is the quest for understanding how structural parame-
ters such as treewidth and its variants make algorithmic problems provably more tractable. The
results presented here include both algorithms (upper bounds on the running time) and complexity
result (lower bounds on the running time). The results answer three different types of fundamental
questions. First, given a certain algorithmic problem, we can ask if there is an efficient solution that
works on instances that have low treewidth. In other words, we would like to know if treewidth helps
resolving the problem in any way.
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6 CHAPTER 1. INTRODUCTION

Does low value of treewidth (or a related measure) make it possible to solve certain type of
problems efficiently?

After establishing that treewidth is a useful parameter, we would like to quantify this statement by
understanding how exactly the running time can depend on treewidth. That is, we would like to
have optimal algorithms that exploit treewidth as much as possible. Besides presenting the optimal
algorithm, one needs to argue that the dependence on treewidth cannot be improved. Thus we need
complexity results ruling out any possible improvement.

What is the best possible dependence on treewidth (or a related measure) that can be achieved
for a given problem?

Finally, if we know exactly how treewidth influences the complexity of a problem, it is natural to ask
if there is another graph property (perhaps some variant of treewidth) that decreases the complexity
of the problem in a similar way.

Is bounded treewidth (or a related measure) the only graph-theoretical property that decreases
the complexity of a given problem?

While questions of such form may sound very open ended, it is possible to define frameworks
formalizing these questions and to give completely exhaustive answers [68,69,77,123,127,154]. In
particular, in some cases it is possible to prove “dichotomy theorems” showing formally that only the
bounded-treewidth special cases are tractable, and every other special case is hard.

The goal of the rest of this introduction is twofold. It briefly goes over basic concepts that will
be needed in the later chapters (such as treewidth and constraint satisfaction problems), serving as
a shared prelimianaries section to avoid repeating the introduction of the same defininions all over
again in each chapter. Moreover, we use this introduction to put the main results of the dissertation
into context and briefly explain how they improve on what was known earlier. Here we highlight
only a selection of results and state them in an informal manner; for formal statements of all the
results, the reader is referred to the appropriate chapters.

Many of the results presented in the dissertation are complexity lower bounds. Of course, these
results are all conditional lower bounds: as we cannot rule out P = NP at the moment, in principle
it is possible that every problem considered here can be solved efficiently and these lower bounds
are irrelevant. As it is customarily done in theoretical computer science, we assume a complexity
hypothesis (such as P 6= NP) and we prove the lower bounds under this assumption. Section 1.1
introduces these assumptions. The framework of parameterized complexity and fixed-parameter
tractability is used explicitly or implicitly in most of the results; Section 1.2 gives a brief overview
of these topics. Section 1.3 defines treewidth and introduces related graph-theoretical notions.
Section 1.4 introduces one of the main application domains for our results: Constraint Satisfaction
Problems (CSPs). Section 1.5 gives a brief overview of some basic notions of database theory relevant
for our results. For reference, Section 1.6 summarizes the publication venues where the results
presented in the different chapters of the dissertation originally appeared.
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1.1. COMPLEXITY ASSUMPTIONS 7

1.1 Complexity assumptions

The widely-believed complexity assumption P 6= NP has immense explanatory power: via the
theory of NP-completeness, this assumption explains why important combinatorial problems are not
polynomial-time solvable. The use of the P 6= NP hypothesis goes beyond explaining the hardness
of finding optimal solutions. In recent decades, the field of inapproximability has seen enormous
progress and very strong lower bounds on polynomial-time approximabilty can be obtained based on
the P 6= NP hypothesis [18,86,137].

However, there are important complexity lower bounds that currently are not known to be
provable from P 6= NP, requiring a stronger complexity assumption. For example, in the field of
inapproximability, the Unique Games Conjectures introduced by Khot [162] allows proving tight
lower bounds on the approximation ratio that match the best known algorithms [53,131,162,163].
In the field of parameterized and exact computation, the P 6= NP assumption only tells us that
NP-hard problems do not admit polynomial-time algorithms, but does not say anything about the
existence of subexponential-time algorithms. That is, it is still possible that there are much faster
algorithms for NP-hard problems than what we know today: for example, as far as we know, the
P 6= NP assumption does not rule out algorithms with running time 2n/10000, or 2n

1/100 , or nlogn, or
even nlog logn for an NP-hard problem such as 3SAT with n variables.

The Exponential-Time Hypothesis (ETH), formulated by Impagliazzo, Paturi, and Zane [145,146],
makes the assumption P 6= NP more quantitative: informally, it not only tells us that NP-hard
problems do not have polynomial-time algorithms, but it posits that NP-hard problems really require
exponential time and cannot be solved in subexponential time. The formal statement of the ETH is
somewhat technical and for most applications it is more convenient to use the following assumption
instead, which is an easy consequence of the ETH:

Hypothesis 1.1 (Consequence of the ETH, Impagliazzo, Paturi, and Zane [145,146]). 3SAT with
n variables cannot be solved in time 2o(n).

3SAT is the fundamental satisfiability problem where, given a Boolean formula in conjunctive
normal form with at most 3 literals in each clase (e.g., (x1 ∨ x̄3 ∨x5)∧ (x̄1 ∨x2 ∨x3)∧ (x̄2 ∨x3 ∨x4)),
the task is to decide whether a satisfying assignment exists. For completeness, let us recall the
formal statement of the ETH, of which Hypothesis 1.1 is an easy consquence. Let sk be the infinum
of all real numbers δ for which there exists an O(2δn) time algorithm for k-SAT. Then the ETH
is the assumption that sk > 0 for every k ≥ 3. It is easy to show that this assumption implies
Hypothesis 1.1, hence if we can show that some statement would refute Hypothesis 1.1, then it
would refute the ETH as well.

Hypothesis 1.1 rules out the existence of algorithms that are subexponential in the number n of
variables. But the number m of clauses in a 3SAT instance can be up to cubic in the number of
variables, thus the length of the instance can be much larger than O(n). Therefore, Hypothesis 1.1
does not rule out the existence of algorithms that are subexponential in the length of the instance:
it could be potentially the case that all the really hard instances of 3SAT have, say, Ω(n2) clauses,
hence a 2o(

√
m) algorithm would be still compatible with Hypothesis 1.1. Impagliazzo, Paturi

and Zane [146] showed that this is not the case: the Sparsification Lemma implies that, for the
purposes of Hypothesis 1.1, 3SAT remains hard already when restricted to instances with a linear
number of clauses. With the Sparsification Lemma, the following stronger assumption follows from
Hypothesis 1.1:

Hypothesis 1.2 (Consequence of the ETH + Sparsification Lemma, Impagliazzo, Paturi, and
Zane [146]). 3SAT with n variables and m clauses cannot be solved in time 2o(n+m).
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8 CHAPTER 1. INTRODUCTION

This stronger assumption turns out to be very useful to prove lower bounds for other problems.
Reductions from 3SAT to other problems typically create instances whose size depend not only on
the number n of variables, but also on the number m of clauses, hence it is important to have lower
bounds on 3SAT in terms of both n and m.

Despite the usefulness of the ETH, there are complexity lower bounds that seem to be beyond the
reach of what can be proved as a consequence of this hypothesis. Impagliazzo, Paturi, and Zane [146]
proposed an even stronger assumption on the complexity of NP-hard problems: the so-called Strong
Exponential-Time Hypothesis (SETH). Using the notation introduced above, the SETH assumes
that limk→∞ sk = 1. The following consequence of the SETH is a convenient formulation that can
be used as a starting point for lower bounds on other problems:

Hypothesis 1.3 (Consequence of the SETH, Impagliazzo, Paturi, and Zane [146]). SAT with n
variables and m clauses cannot be solved in time (2− ε)n ·mO(1) for any ε > 0.

Intuitively, Hypothesis 1.3 states that there is no better algorithm for SAT than the brute force
search of trying each of the 2n possible assignments. Note that here SAT is the satisfiability problem
with unbounded clause length. For fixed clause length, algorithms better than 2n are known: for
example, the best known algorithms for 3SAT and 4SAT have running times 1.308n and 1.469n,
respectively [138]. The SETH states that the base of the exponent has to get closer and closer to 1
as the clause length increases, and it is not possible to have an algorithm with base 2− ε that works
for arbitrary large clause length.

It is important to note that there is no known analogue of the Sparsification Lemma for the
SETH. That is, we cannot assume that the hard instances stipulated by Hypothesis 1.3 have only a
linear number of clauses: for all we know, the number of clauses can be exponential in the number
n of variables. This severly limits the applicability of lower bounds based on the SETH as any
reduction from the SAT instance would create instances whose sizes are potentially exponentially
large in n. Nevertheless, the SETH has found applications in parameterized complexity, where
instead of giving a lower bound on how the running time has to depend on the instance or solution
size, we want to understand how it depends on some other parameter. Chapter 2 contains a selection
of such results, giving tight lower bounds on how the running time has to depend on treewidth.
The results presented in this chapter were the first such tight lower bounds on parameterization by
treewidth, inspiring many subsequent results of this form [38,70, 72, 76, 91, 151,152]. In recent years,
the SETH has been successfully used to give lower bounds for polynomial-time solvable problems, for
example, by showing that the textbook O(n2) dynamic programming algorithm for Edit Distance
cannot be significantly improved: it cannot be solved in time O(n2−ε) for any ε > 0, unless the
SETH fails [22,43]. Many other tight results of this form can be found in the recent literature under
the name “fine-grained complexity” [1–3,22,39,40,43,44,202,210,232].

The ETH and the SETH are stronger assumptions that the P 6= NP hypothesis and perhaps
not as widely accepted in the research community. Thus one may wonder about the meaning of
conditional lower bounds based on them. First, by now the ETH is fairly well accepted in the research
community and has been used as the starting point to prove lower bounds for numerous problems
(e.g., [16,73,80,104,106,175]). Indeed, despite decades of research on 3SAT, there is no sign whatsoever
that subexponential algorithms would be possible and in fact minor improvements of the base of the
exponential function in the running time required considerable efforts [138,139,148,170,173,193].
The SETH is a much more ambitious proposition and there is less evidence supporting its validity.
Still, the explanatory power of this hypothesis has been used in a large number of recent research
results and obtaining conditional lower bounds based on it has become a mainstream research
direction. Regardless of what the reader may think of the validity of the SETH, the following point
of view should clarify why results of this form are still valuable. A conditional lower bound showing
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1.2. PARAMETERIZED COMPLEXITY 9

that “a better algorithm for problem X would violate the SETH” shows that in order to improve the
algorithm for problem X, one needs to be able to deal with the SAT problem in its full generality. It
is not the particular difficulties of problem X that needs to be better understood to improve the
running time: improvements are prevented by the lack of better understanding of satisfiability itself.
Thus it can be argued that instead of focusing on problem X, one should better focus on the more
fundamental question of improving SAT algorithms directly, because this is what improvements on
problem X would eventually achieve. In other words, the conditional lower bound closes the question
“Are there better algorithms for problem X?” by saying one should not directly work on this question
until the validity of the SETH is resolved one way or the other.

1.2 Parameterized complexity

Classical complexity theory expresses the running time of an algorithm as a univariate function
of the size n of the input. The main conceptual idea of parameterized complexity is to introduce
additional parameters and to express the running time as a multivariate function of the input size
and these parameters. The goal is to find algorithms where the exponential growth of the running
time is restricted to these parameters, while the running time depends only polynomially on the size
of the input. If we have an application where the parameters can be assumed to be small, then such
an algorithm can be efficient even for large input sizes.

Formally, we associate an integer parameter k with each input instance of the problem and we
say that the problem is fixed-parameter tractable (FPT) if the problem can be solved in time f(k)nc,
where f is an arbitrary computable function depending only on k and c is a constant (independent
of k). If the function f(k) is a moderately growing exponential function and d is not too large, then
an FPT-time algorithm can be efficient for applications where k is small. For example, an algorithm
with running time, say, O(1.2852k + kn) for k-Vertex Cover [61] is feasible for k = 40, since in
this case the term 1.2852k is only about 22000.

The classical work of Downey and Fellows [87] summarized the results of the field up to 1999,
with more recent monographs [74,88,102,197] providing an introduction to the enormous progress
that happened since then. In the past 20 years, the parameterized complexity community identified
hundreds of NP-hard problems that are fixed-parameter tractable with natural parameterizations.
The most studied graph-theoretic examples include finding a cycle of length exactly k [13, 165,231],
finding a vertex cover of size k [5,61,62,82,129,220], finding k vertex disjoint triangles in a graph [169],
and various problems parameterized by the treewidth k of the input graph (cf. [17, 32]). Systematic
search efforts were undertaken to find fixed-parameter tractable problems in various problem
domains such as artificial intelligence [118], computational biology [50, 120, 182], and geometric
problems [111, 181, 191]. The first results were obtained by ad hoc techniques, but (especially in
the past decade) there have been intensive efforts to understand the methods used for obtaining
FPT-time algorithms, turning them into general techniques. Currently, we have an impressive
toolbox of algorithmic techniques at our disposal (cf. [74, 144,218,219]). However, many problems
resisted all algorithmic techniques and no FPT-time algorithm is known for them. The theory of
W[1]-hardness is the parameterized-complexity analog of NP-hardness, and can be used to give
strong theoretical evidence that a problem is not fixed-parameter tractable. Although technically
more difficult to prove than NP-hardness, the W[1]-hardness of numerous problems has been shown
in the literature. Intuitively, Clique is W[1]-complete and W[1]-hard means that it is at least as
hard as Clique from the viewpoint of fixed-parameter tractability. As the current dissertation does
not present any W[1]-hardness proofs (all the lower bounds are based on the ETH or the SETH),
the formal definition of W[1]-hardness will not be important.
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10 CHAPTER 1. INTRODUCTION

The parameter k of the instance can be any well-defined measure of the instance. For a given
algorithmic problem, one can define different natural parameters, leading to different parameteriza-
tions of the same problem. It may very well be the case that the same problem is fixed-parameter
tractable with one parameterization and W[1]-hard with some other. For optimization problems
(for example, finding a clique, dominating set, path etc. of maximum/minimum size), the most
natural parameterization is by the size of the solution we are looking for. That is, we assume that
the input instance contains a target number k, and the task is to find a solution of size at least/at
most k in time f(k)nO(1). But there are many other potential parameters one can define. The
input may already contain different values that one can choose as the parameter: for example,
Partial Vertex Cover asks for the selection of k vertices that cover at least ` edges — one can
parameterize by either k or ` in this problem. The parameter can be a measure of some aspect of the
input instance: the maximum degree or treewidth in a graph problem, the dimension of the point set
in a geometric problem, the alphabet size or the length of the strings in a pattern matching problem,
or the domain size of the variables in a constraint satisfaction problem. Even for a single problem,
one can discover a rich and nontrivial complexity landscape by considering different (combinations
of) parameters [41, 189].

1.3 Graphs and hypergraphs

A large part of the dissertation deals with graphs and graph-like structures. We provide a brief
overview of the main notions here, including the definition of treewidth, which will be used in many
of the chapters. For ease of readability, some of the definitions will be repeated later. For more
background on graph theory, the reader is referred to, e.g., the text book of Diestel [85].

Let G be a graph with vertex set V (G) and edge set E(G). A graph G′ is a subgraph of G
if V (G′) ⊆ V (G) and E(G′) ⊆ E(G). For a subset V ′ ⊆ V (G), the subgraph G′ = G[V ′] of G is
called a subgraph induced by V ′ if E(G′) = {uv ∈ E(G) | u, v ∈ V ′} and V (G′) = V ′. By N(u) we
denote the (open) neighborhood of u in graph G, that is, the set of all vertices adjacent to u and by
N [u] = N(u) ∪ {u}. Similarly, for a subset D ⊆ V (G), we define N [D] = ∪v∈DN [v].

Treewidth. A tree decomposition of a graph G is a pair (B, T ) where T is a tree and B = {Bt |
t ∈ V (T )} is a collection of subsets of V (G) such that:

•
⋃
t∈V (T )Bt = V (G),

• for each edge xy ∈ E(G), {x, y} ⊆ Bt for some t ∈ V (T );

• for each x ∈ V (G) the set {t | x ∈ Bt} induces a connected subtree of T .

The sets Bt are called the bags of the decomposition. Sometimes it will be convenient for us to view
the trees in a tree-decomposition as being rooted and directed from the root to the leaves. For a
node t in a (rooted) tree T = (V (T ), E(T )), we let Tt be the subtree rooted at t, that is, the induced
subtree of T whose vertex set is the set of all vertices reachable from t.

The width of the tree decomposition is maxt∈V (T ){|Bt| − 1}. The treewidth of a graph G is the
minimum width over all tree decompositions of G. We denote by tw(G) the treewidth of graph G. It
is known that tw(G) ≤ 1 if and only if G is a forest (has no cycles). If in the definition of treewidth
we restrict the tree T to be a path then we get the notion of pathwidth and denote it by pw(G). By
definition, we have that tw(G) ≤ pw(G), but it is known that pathwidth cannot be bounded by
any function of treewidth: if G is a complete binary tree width 2k + 1 levels, then tw(G) = 1 and
pw(G) = k.
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1.3. GRAPHS AND HYPERGRAPHS 11

We say that a class G of graphs is of bounded treewidth if there is a k such that tw(G) ≤ k for all
G ∈ G. We use a similar terminology for other graph invariants.

Computing the treewidth of a given graph is known to be NP-hard [17], but for every fixed k ≥ 1,
there is a linear-time algorithm for finding a decomposition of width k, if exists [31]. That is, finding
a decomposition of width k is fixed-parameter tractable. In polynomial time, one can compute a
tree decomposition of width O(tw(G) ·

√
tw(G)) [15].

There are well-known classes of graphs that have small treewidth, for example series-parallel and
outerplanar graphs have treewidth at most 2, and every planar graph on n vertices has treewidth
O(
√
n) [30,33]. One can argue that real-word graphs that exhibit some hierarchical structure should

have treewidth much smaller than the number of vertices [132,178,226]. For such graphs, algorithms
exploiting tree decompositions can explain the tractability of various problems.

Given a tree decomposition of width k, the standard technique of dynamic programming over
a tree decomposition can result in algorithms with running time f(k) · n for various fundamental
combinatorial problems such as Independent Set, Vertex Cover, Dominating Set, Hamilto-
nian Cycle, 3-Coloring, etc. Even though the process of designing such a dynamic programming
algorithm is fairly standard, one still needs to define partial subproblems in a problem-specific way,
sometimes resulting in long and cumbersome proofs. In many cases, Courcelle’s Theorem [67] autom-
atizes this process: as a powerful and far-reaching generalization of simple dynamic programming
algorithms, it shows that every decision problem that can be described as a logical formula φ in
Extended Monadic Second Order Logic can be solved in time f(φ, k) · n on graphs of treewidth at
most k.

While Courcelle’s Theorem immediatelly gives an f(k) · n time algorithm on graphs of treewidth
k for, say, 3-Coloring, it does not give good bounds on the growth rate of the function f(k).
Often, problem-specific techniques can deliver algorithms with better bounds on f(k). While for
Independent Set it is fairly straightforward to obtain an algorithm with running time 2k ·nO(1), the
3k ·nO(1) time algorithms for Dominating Set required the application of the nontrivial Fast Subset
Convolution technique [29,227] and the first ck · nO(1) time algorithms for Hamiltonian Cycle
was made possible only with the Cut & Count technique [76] and the rank-based approaches [34, 75].

Given that for some problems new techniques were necessary to improve the dependence on
treewidth and for others essentially no progress was made, it is natural to ask what the best possible
dependence f(k) on treewidth is. The results in Chapter 2 answer precisely this question: they show
that, assuming the SETH, for several basic problems (such as Indpendent Set and 3-Coloring)
the best known algorithm has essentially optimal dependence on treewidth, up to an ε term in the
base of the exponential function. These results closed the question of whether further improvements
can be expected for these problems. At the time of publication of the conference version of this
work [174] in SODA 2011, these results were the first results proving such tight lower bounds for
parameterization by treewidth; inspired by this work, similar results were published later by other
authors [38,70,72,76,91,151,152].

Hypergraphs. In a graph, each edge connects two vertices, representing a relation of arity two
such as “connected”, “adjacent”, or “conflicts with,” etc. In some cases, the natural representation of
a problem requires expressing relations of higher arity, for example, expressing that certain items
appear in groups. Hypergraphs are natural generalizations of graphs, allowing hyperedges containing
more than two vertices. Formally, a hypergraph is a pair H = (V (H), E(H)), consisting of a set
V (H) of vertices and a set E(H) of nonempty subsets of V (H), the hyperedges of H.

For a hypergraph H and a set X ⊆ V (H), the subhypergraph of H induced by X is the hypergraph
H[X] = (X, {e ∩X | e ∈ E(H) with e ∩X 6= ∅}). We let H \X = H[V (H) \X]. The primal graph
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12 CHAPTER 1. INTRODUCTION

of a hypergraph H is the graph

H = (V (H),{{v, w} | v 6= w, there exists an
e ∈ E(H) such that {v, w} ⊆ e}).

A hypergraph H is connected if H is connected. A set C ⊆ V (H) is connected (in H) if the induced
subhypergraph H[C] is connected, and a connected component of H is a maximal connected subset
of V (H). A sequence of vertices of H is a path of H if it is a path of H.

Let us generalize the notion of tree decomposition and treewidth to hypergraphs. A tree
decomposition of a hypergraph H is a pair (B, T ) where T is a tree and B = {Bt | t ∈ V (T )} is a
collection of subsets of V (H) such that:

•
⋃
t∈V (T )Bt = V (H),

• for each hyperedge e ∈ E(H), we have e ⊆ Bt for some t ∈ V (T );

• for each x ∈ V (H) the set {t | x ∈ Bt} induces a connected subtree of T .

The sets Bt are called the bags of the decomposition. The width of a tree-decomposition (T,B) is
max

{
|Bt|

∣∣ t ∈ V (T )} − 1. The treewidth tw(H) of a hypergraph H is the minimum of the widths
of all tree-decompositions of H. It is well-known and easy to see that tw(H) = tw(H) for all H.

1.4 Constraint Satisfaction Problems

Constraint satisfaction is a general framework that includes many standard algorithmic problems
such as satisfiability, graph coloring, database queries, etc. A constraint satisfaction problem (CSP)
consists of a set V of variables, a domain D, and a set C of constraints, where each constraint is a
relation on a subset of the variables. The task is to assign a value from D to each variable in such a
way that every constraint is satisfied (see Definition 1.4 below for the formal definition). For example,
3SAT can be interpreted as a CSP instance where the domain is {0, 1} and the constraints in C
correspond to the clauses (thus the arity of each constraint is 3). Another example is vertex coloring,
which can be interpreted as a CSP instance where the variables correspond to the vertices, the
domain corresponds to the set of colors, and there is a binary “not equal” constraint corresponding
to each edge. Notice that the domain size can be arbitrarily large in the CSP instances arising
from vertex coloring (as the coloring problem might involve any number of colors). In the this
dissertation, we think of the domain as a set whose size is not a fixed constant, but can be be
arbitrarily large. This viewpoint is natural in the context of various database query and artificial
intelligence applications, where in fact that domain size is usually much larger than the number of
variables [118,211].

Basic definitions. We briefly recall some terminology related to CSP. For more background,
see, for example, [96,122].

Definition 1.4. An instance I of a constraint satisfaction problem is a triple I = (V,D,C), where:

• V is a set of variables,

• D is a domain of values,

• C is a set of constraints, {c1, c2, . . . , cq}. Each constraint ci ∈ C is a pair 〈si, Ri〉, where:

– si is a tuple of variables of length mi, called the constraint scope, and
– Ri is an mi-ary relation over D, called the constraint relation.
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1.4. CONSTRAINT SATISFACTION PROBLEMS 13

For each constraint 〈si, Ri〉 the tuples of Ri indicate the allowed combinations of simultaneous
values for the variables in si. The length mi of the tuple si is called the arity of the constraint.
We allow repeated variables in the scope si, but this does not make the problem more general and
can be usually ignored. A solution to a constraint satisfaction problem instance is a function f
from the set of variables V to the domain D of values such that for each constraint 〈si, Ri〉 with
si = (vi1 , vi2 , . . . , vim), the tuple (f(vi1), f(vi2), . . . , f(vim)) is a member of Ri. In the decision
version of CSP, we have to decide if a solution for the given instance I exists. Observe that there is
a polynomial-time algorithm deciding whether a given assignment for an instance is a solution.

The primal graph (or Gaifmann graph) of a CSP instance I = (V,D,C) is a graph G with vertex
set V , where x, y ∈ V form an edge if and only if there is a constraint 〈si, Ri〉 ∈ C with x, y ∈ si.
For a class G of graphs, we denote by CSP(G) the problem restricted to instances where the primal
graph is in G. Note that this definition does not make any restriction on the constraint relations: it
is possible that every constraint has a different constraint relation.

The hypergraph of an instance I = (V,D,C) has V as its vertex set and for every constraint in C
a hyperedge that consists of all variables occurring in the constraint. For a class H of hypergraphs,
we let CSP(H) be the class of all instances whose hypergraph is contained in H.

We say that an instance is binary if each constraint relation is binary, that is, mi = 2 for every
constraint1. It can be assumed that the instance does not contain two constraints 〈si, Ri〉, 〈sj , Rj〉
with si = sj , since in this case the two constraints can be replaced by the constraint 〈si, Ri ∩Rj〉.

Representation of the constraints. In the input, the relation in a constraint is represented by
listing all the tuples of the constraint. We denote by ‖I‖ the size of the representation of the instance
I = (V,D,C). For binary constraint satisfaction problems, we may assume that ‖I‖ = O(V 2D2); by
the argument in the previous paragraph, we may assume that there are O(V 2) constraints and each
constraint has a representation of length O(D2). Furthermore, it can be assumed that |D| ≤ ‖I‖;
elements of D that do not appear in any relation can be removed.

If constraints of larger arity are also allowed in the input, we have to be more careful and precise
in describing how the constraints are represented and how this representation contributes to the
input size. Throughout this dissertation, we assume that the constraints are specified by explicitly
enumerating all possible combinations of values for the variables, that is, all tuples in the relation
R. Consequently, we define the size of a constraint c = 〈(v1, . . . , vk), R〉 ∈ C to be the number
‖c‖ = k + k · |R|. The size of an instance I = (V,D,C) is the number ‖I‖ = |V |+ |D|+

∑
c∈C ‖c‖.

Of course, there is no need to store a constraint relation repeatedly if it occurs in several constraints,
but this only changes the size by a polynomial factor.

Let us make a few remarks about this explicit representation of the constraints. There are
important special cases of constraint satisfaction problems where the constraints are stored implicitly,
which may make the representation exponentially more succinct. Examples include Boolean satisfia-
bility, where the constraint relations are given implicitly by the clauses of a formula in conjunctive
normal form, or systems of arithmetic (in)equalities, where the constraints are given implicitly by
the (in)equalities. However, our representation is the standard “generic” representation of constraint
satisfaction problems in artificial intelligence (see, for example, [81]). An important application
where the constraints are always given in explicit form is the conjunctive query containment problem,
which plays a crucial role in database query optimization. Kolaitis and Vardi [166] observed that
it can be represented as a constraint satisfaction problem, and the constraint relations are given
explicitly as part of one of the input queries. A related problem from database systems is the problem
of evaluating conjunctive queries (see Section 1.5 below). Here the constraint relations represent the

1It is unfortunate that while some communities use the term “binary CSP” in the sense that each constraint is
binary (as does this dissertation), others use it in the sense that the variables are 0-1, that is, the domain size is 2.
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14 CHAPTER 1. INTRODUCTION

tables of a relational database, and again they are given in explicit form. The problem of charac-
terizing the tractable structural restrictions of CSP has also been studied for other representations
of the instances: one can consider more succinct representations such as disjunctive formulas or
decision diagrams [58] or less succinct representations such as truth tables [187]. As the choice of
representation influences the size of the input and the running time is expressed as a function of
the input size, the choice of representation influences the complexity of the problem and the exact
tractability criterion.

Complexity classifications. Due to its generality, solving constraint satisfaction problems is
NP-hard if we do not impose any additional restrictions on the possible instances. Therefore, the
main goal of the research on CSP is to identify tractable classes and special cases of the general
problem. The theoretical literature on CSP investigates two main types of restrictions. The first
type is to restrict the constraint language, that is, the type of constraints that is allowed. This
direction was initiated by the classical work of Schaefer [212] and was subsequently pursued in,
e.g., [45,46,49,96,156]. Recently, as a major breakthrough, Bulatov [47] and Zhuk [234] independently
characterized the complexity of every CSP problem with a fixed constraint language, resolving a
long-standing open problem raised by Feder and Vardi [96]. Significant progress was made on the
complexity of the optimization versions of the problem as well [79,168,224].

The second type is to restrict the structure induced by the constraints on the variables. The
goal is to understand what structural properties of the CSP instance can make the problem easier.
The first question is to understand which graphs make CSP polynomial-time solvable. We have to
be careful with the formalization of this question: if G is a graph with k vertices, then any CSP
instance with primal graph G can be solved in time nO(k) by brute force. Therefore, restricting
CSP to any fixed graph G makes it polynomial-time solvable. The real question is which classes of
graphs make the problem polynomial-time solvable: using the definitions introduced above, which
classes G of graphs make CSP(G) polynomial-time solvable? Freuder [108] observed that if the
treewidth of the primal graph is k, then CSP can be solved in time nO(k). Thus if G has bounded
treewidth, then CSP(G) is polynomial-time solvable. Quite surprisingly, the converse is also known
to be true: it follows from the work of Grohe, Schwentick, and Segoufin [123, 127] that whenever
G is any recursively enumerable class of graphs with unbounded treewidth, then CSP(G) is not
polynomial-time solvable, unless FPT = W[1].

By this result of Grohe, Schwentick, and Segoufin, bounded treewidth is the only property of the
primal graph that can make the problem polynomial-time solvable. However it does not rule out the
possibility that there is some structural property that may enable us to solve instances significantly
faster than the treewidth-based algorithm of [108], that is, for some class G of graphs with unbounded
treewidth, CSP(G) could be solved in time nf(k) where k is the treewidth of the primal graph and f is
a slowly growing function such as

√
k or log k. The main result of Chapter 3 is that this is not possible;

the nO(k)-time algorithm is essentially optimal for every class of graphs, up to an O(log k) factor in the
exponent. It follows as consequence of this result is that, assuming the ETH, there is no f(k)no(k/ log k)

time algorithm for the graph-theoretic problem Partitioned Subgraph Isomorphism, where k is
the number of edges of the pattern to be found and f is an arbitrary computable function. This
lower bound turned out be a very useful starting point for proving almost tight lower bound of this
form for several other W[1]-hard parameterized problems in different domains. As there is no other
technique currently that would give bounds of such tightness, its use has become a standard techique
that was invoked several times (e.g., [35–37,42,68,71,92,94,128,155,158,177,190,203]).

Large arities. For binary CSP instances, the primal graph G completely describes the structure
induced by the constraints. But if there are constraints of higher arity, then the primal graph loses
information. For example, by looking at the primal graph only, we cannot tell whether the instance
contains

(
k
2

)
binary constraints on k variables or just a single k-ary constriant on all the variables:
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1.4. CONSTRAINT SATISFACTION PROBLEMS 15

the primal graph is a complete graph on k vertices in both cases. Thus the hypergraph H of the CSP
instance contains more information than the primal graph G, hence classifying the complexity of
CSP(H) for every class H of hypergraphs gives a more refined classification than classifying CSP(G)
for every class G of graphs.

If a class H of hypergraphs has bounded arity (i.e., there is an integer c such that every edge
of every hypergraph in H has size at most c), then the classification for binary CSPs essentially
goes through, and it follows that bounded treewidth of the hypergraph class H is the only property
that makes the problem polynomial-time solvable. However, the situation significantly changes if H
has unbounded arity. Consider for example the class H1 containing every hypergraph where there
is an edge that covers every vertex. Now the primal graph of each H ∈ H1 is a complete graph,
thus H1 does not have bounded treewidth. But CSP(H1) is polynomial-time solvable: as every
hypergraph in H1 contains an edge covering every vertex, every instance of CSP(H1) contains a
constraint c involving every variable. Thus all we need is going through the satisfying assignments
of constraint c and check whether one of them satisfies every other constraint (recall that we have
assumed above that constraints are represented in the input by explicitly listing every assignment
that satisfies it). Thus bounded treewidth of the hypergraph class H is not the right tractability
criterion for characterizing the polynomial-time solvable cases of CSP(H) and the situation seems
to be much more complicated. As a side note, one could say that the tractability of CSP(H1) is
only an artifact of the assumption that the constraints are represented by listing every satisfying
assignment. However, as we shall see in Section 1.5, this assumption is very natural in the context
of database queries, and the original motivation for this line of research was studying applications in
database theory.

Generalizing the simple example of H1 in the previous paragraph, it was shown that there is a
notion of acyclicity for hypergraphs that makes the problem polynomial-time solvable [27,95,233].
Generalizing acyclicity, Gottlob et al. [115–117] introduced the notion of hypertree width and showed
that CSP(H) is polynomial-time solvable if H has bounded hypertree width. Adler et al. [8]
introduced generalized hypertree width, but this notion does not deliver new polynomial-time solvable
cases of CSP(H): it is known that H has bounded hypertree width if and only if it has bounded
generalized hypertree width.

Chapter 4 introduces a the notion of bounded fractional edge cover number and shows that if
H has this property, then CSP(H) is polynomial-time solvable. As this property is incomparable
to bounded hypertree width, it gives new tractable classes that were not known before. Chapter 5
introduces fractional hypertree width as a common generalization of fractional edge covers and
hypertree width. It is shown that if H has bounded fractional hypertree width, then CSP(H) is
polynomial-time solvable, making this property the currently known most general structural property
that makes CSP(H) polynomial-time solvable. Figure 1.1 shows some of the known tractable
hypergraph properties (note that the elements of this Venn diagram are sets of hypergraphs; e.g.,
the set “bounded treewidth” contains every set H of hypergraphs with bounded treewidth). All the
inclusions in the figure are known to be proper.

Currently it is not known if there is any hypergraph class H with unbounded fractional hypertree
width that make CSP(H) polynomial-time solvable. However, if we consider a weaker form of
tractability, then we can obtain algorithms for some classes with unbound fractional hypertree width.
Instead of asking for a polynomial-time algorithm, we can ask if the problem is fixed-parameter
tractable parameterized by the number k of variables, that is, there is an algorithm with running
time f(k)nO(1) for some function f . This question is very natural in settings where the number of
variables is small, but the domain size is large, making the size of the relations and the total input
size much larger than the number of variables. Chapter 6 introduces the notion of submodular width
and shows that if H has is a class of hypergraphs with bounded submodular width, then CSP(H) is
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tree width

edge cover number
Bounded fractional

hypertree width

Bounded fractional hypertree width

Bounded (generalized)

Bounded

Bounded submodular width

Figure 1.1: Hypergraph properties that make CSP tractable. Bounded submodular width makes the
problem fixed-parameter tractable, while all the othe properties make the problem polynomial-time
solvable.

fixed-parameter tractable parameterized by the number k of variables, with a function f(k) in the
running time that is double-exponential in k. Conversely, Chapter 6 shows that if H has unbounded
submodular width, then CSP(H) is not fixed-parameter tractable parameterized by the number of
variables, unless the ETH fails. Thus we get a complete characterization of hypergraph classes that
make CSP fixed-pararameter tractable.

1.5 Database queries

Evaluation of conjunctive queries (or equivalently, Select-Project-Join queries) is one of the most
basic and most studied tasks in relational databases. A relational database consists of a fixed set of
relations. A conjunctive query defines a new relation that can be obtained as first taking the join of
some relations and then projecting it to a subset of the variables. As an example, consider a relational
database that contains three relations: enrolled(Person,Course,Date), teaches(Person,Course,Year),
parent(Person1,Person2). The following query Q defines a unary relation ans(P ) with the meaning
that “P is enrolled in a course taught by her parent.”

Q : ans(P )← enrolled(P,C,D) ∧ teaches(P2, C, Y ) ∧ parent(P2, P ).

In the Boolean Conjunctive Query problem, the task is only to decide if the answer relation is empty
or not, that is, if the join of the relations is empty or not. This is usually denoted as the relation “ans”
not having any variables. Boolean Conjunctive Query contains most of the combinatorial difficulty
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1.5. DATABASE QUERIES 17

of the general problem without complications such that the size of the output being exponentially
large. Therefore, the current dissertation focuses on this decision problem.

In a natural way, we can define the hypergraph of a query: its vertices are the variables appearing
in the query and for each relation there is a corresponding hyperedge containing the variables
appearing in the relation. Intuitively, if the hypergraph has “simple structure,” then the query is
easy to solve. For example, compare the following two queries:

Q1 : ans← R1(A,B,C) ∧R2(C,D) ∧R3(D,E, F ) ∧R4(E,F,G,H) ∧R5(H, I)

Q2 : ans← R1(A,B) ∧R2(A,C) ∧R3(A,D) ∧R4(B,C) ∧R5(B,D) ∧R6(C,D)

Even though more variables appear in Q1, evaluating it seems to be easier: its hypergraph is “path
like,” thus the query can be answered efficiently by, say, dynamic programming techniques. On the
other hand, the hypergraph of Q2 is a clique on 4 vertices and no significant shortcut is apparent
compared to trying all possible combinations of values for (A,B,C,D).

What are those hypergraph properties that make Boolean Conjunctive Query tractable? In the
early 80s, it has been noted that acyclicity is one such property [25, 26,95,233]. Later, more general
such properties were identified in the literature: for example, bounded query width [56], bounded
hypertree width [116], and bounded fractional hypertree width [126, 184]. Our goal is to find the
most general hypergraph property that guarantees an efficient solution for query evaluation.

It is easy to see that Boolean Conjunctive Query can be formulated as the problem of deciding if a
CSP instance has a solution: the variables of the CSP instance correspond to the variables appearing
in the query and the constraints correspond to the database relations. A distinctive feature of CSP
instances obtained this way is that the number of variables is small (as queries are typically small),
while the domain of the variables are large (as the database relations usually contain a large number
of entries). This has to be contrasted with typical CSP problems from AI, such as 3-colorability and
satisfiability, where the domain is small, but the number of variables is large.

As discussed in Section 1.4, we assume that the constraints in a CSP instance are represented by
explicitly listing all tuples that satisfy the constraint. This representation is perfectly compatible
with our database-theoretic motivation: the constraints are relations of the database, and a relation
is physically stored as a table containing all the tuples in the relation. For this representation, there
are classes H with unbounded treewidth such that CSP restricted to this class is polynomial-time
solvable. As mentioned in Section 1.4, with this representation CSP(H) is polynomial-time solvable
whenever H has bounded fractional hypertree width and CSP(H) is fixed-parameter tractable
parameterized by the number of variables whenever H has bounded submodular width.

Instead of just deciding if the answer to the query is empty or not (the Boolean Conjunctive
Query Problem), one may want to enumerate every solution. Efficient enumeration of every solution
is not always possible, simply because the number of solutions can be exponentially large even for
very simple queries. Therefore, typical goals for enumeration is to obtain a running time that is
constant or polynomial per the number of solutions, or more restrictively, there is only a contant-time
or polynomial-time delay between outputing two solutions [23, 48, 51, 89, 90, 159, 215]. We do not
consider enumeration problems in this dissertation, but study a related fundamental combinatorial
problem: given a query, can we estimate what the maximum number of solutions can be? It seems
that this very basic question was overlooked in the database theory literature, even though estimating
the size of the result is important in query optimization [54,119,133,147,179,204]. In Chapter 4,
we give tight bounds on the maximum number of solutions: the bound is intimately related to
the fractional edge cover number of the hypergraph of the query. Although this bound follows
relatively easily from known combinatorial results, it was apparently new to the database theory
community and inspired a substantial amount of follow up work in the premier venues of database
theory [114,143,157,160,161,195,196,229].

dc_1604_18

Powered by TCPDF (www.tcpdf.org)



18 CHAPTER 1. INTRODUCTION

1.6 Publications related to the dissertation

This dissertation is based on six journal publications; it contains almost all results from five of
them [126,176,184,185,188] and the first half of one of them [21]. Three out of these pulications are
single author [184,185,188].

The results presented in Chapter 2 appeared in ACM Transactions on Algorithms [176] (an
extended abstract appeared in the proceedings of the SODA 2011 conference [174]). It is joint work
with Daniel Lokshtanov and Saket Saurabh; all three authors contributed equally to the publications.

Chapter 3 is based on a single-author publication that appeared in Theory of Computing [185]
(an extended abstract appeared in the proceedings of the FOCS 2007 conference [180]).

Chapter 4 is based on two publications. Section 4.2 of this chapter is based on the first half of
an article that appeared in ACM Transactions on Algorithms [126] (an extended abstract appeared
in the proceedings of the SODA 2006 conference [124]). It is joint work with Martin Grohe; both
authors contributed equally to the publications. Sections 4.3–4.5 of this chapter are based on the
first half of an article that appeared in SIAM Journal on Computing [21] (an extended abstract
appeared in the proceedings of the FOCS 2008 conference [20]). It is joint work with Albert Atserias
and Martin Grohe, all three authors contributed equally to the publications.

Chapter 5 is again based on two publications. Section 5.1 is based on the second half of the
above-mentioned publications appearing in ACM Transactions on Algorithms [126] and SODA 2006
conference [124]) coauthored with Martin Grohe. Section 5.2 is based on a single-author publication
that appeared in ACM Transactions on Algorithms [184] (an extended abstract appeared in the
proceedings of the SODA 2009 conference [183]).

Chapter 6 is based on a single-author publication that appeared in Journal of the ACM [188] (an
extended abstract appeared in the proceedings of the STOC 2010 conference [186]).
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CHAPTER 2

Known algorithms on graphs of bounded treewidth are probably optimal

It is well-known that many NP-hard graph problems can be solved efficiently if the treewidth
(tw(G)) of the input graph G is bounded. For an example, an expository algorithm to solve
Vertex Cover and Independent Set running in time 4tw(G) ·nO(1) is described in the algorithms
textbook by Kleinberg and Tardos [164], while the book of Niedermeier [197] on fixed-parameter
algorithms presents an algorithm with running time 2tw(G) · nO(1). Similar algorithms, with running
times on the form ctw(G) · nO(1) for a constant c, are known for many other graph problems
such as Dominating Set, q-Coloring and Odd Cycle Transversal [11, 74, 99, 102, 227].
Algorithms for graph problems on bounded treewidth graphs have found many uses as subroutines
in approximation algorithms [24,84,93,171], parameterized algorithms [9, 76,83,153,192,225], and
exact algorithms [103,194,216].

In this chapter, we show that any improvement over the currently best known algorithms for a
number of well-studied problems on graphs of bounded treewidth would yield a faster algorithm for
SAT. In particular, we show the following:

Theorem 2.1. If there exists an ε > 0 such that

• Independent Set can be solved in time (2− ε)tw(G) · nO(1), or
• Dominating Set can be solved in time (3− ε)tw(G) · nO(1), or
• Max Cut can be solved in time (2− ε)tw(G) · nO(1), or
• Odd Cycle Transversal can be solved in time (3− ε)tw(G) · nO(1), or
• there is a fixed q ≥ 3 such that q-Coloring can be solved in time (q − ε)tw(G) · nO(1), or
• Partition Into Triangles can be solved in time (2− ε)tw(G) · nO(1),

then n-variable SAT can be solved in (2− δ)n time for some δ > 0.

Such an algorithm would violate the Strong Exponential Time Hypothesis (SETH) of Impagliazzo
and Paturi [145] (Hypothesis 1.3 in Chapter 1). Thus, assuming the SETH, the known algorithms
for the mentioned problems on graphs of bounded treewidth are essentially the best possible.

Publications. The results presented in this chapter appeared in ACM Transactions on Algo-
rithms [176] (an extended abstract appeared in the proceedings of the SODA 2011 conference [174]).
It is joint work with Daniel Lokshtanov and Saket Saurabh; all three authors contributed equally to
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the publications. The lower bound for Independent Set appearing in Section 2.2 was reproduced
in the text book of Cygan et. [74] on parameterized algorithms.

Techniques. To show our results we give polynomial time many-one reductions that transform
n-variable boolean formulas φ to instances of the problems in question. Such reductions are well-
known, but for our results we need to carefully control the treewidth of the graphs that our reductions
output. A typical reduction creates n gadgets corresponding to the n variables; each gadget has a
small constant number of vertices. In most cases, this implies that the treewidth can be bounded by
O(n). However, to prove a lower bound of the form (2− ε)tw(G) ·nO(1), we need that the treewidth of
the constructed graph is (1+o(1))n. Thus we can afford to increase the treewidth by at most one per
variable. For lower bounds above (2− ε)tw(G) · nO(1), we need even more economical constructions.
To understand the difficulty, consider the Dominating Set problem, here we want to say that if
Dominating Set admits an algorithm with running time (3− ε)tw(G) · nO(1) = 2log(3−ε) tw(G) · nO(1)

for some ε > 0, then we can solve SAT on input formulas with n-variables in time (2− δ)n ·nO(1) for
some δ > 0 (when not noted otherwise, logarithms are always base-2 in this disseration). Therefore
by naïvely equating the exponent in the previous sentence we get that we need to construct an
instance for Dominating Set whose treewidth is essentially n

log 3 . In other words, each variable
should increase treewidth by less than one. The main challenge in our reductions is to squeeze out
as many combinatorial possibilities per increase of treewidth as possible. In order to control the
treewidth of the graphs we construct, we upper bound the pathwidth (pw(G)) of the constructed
instances and use the fact that for any graph G, tw(G) ≤ pw(G). Thus all of our lower bounds also
hold for problems on graphs of bounded pathwidth.

Related work. In several cases designing the “right algorithm” on graphs of bounded treewidth or
pathwidth is not at all obvious. For example: Alber et al. [11] gave a 4tw(G) ·nO(1) time algorithm for
Dominating Set, improving over the natural 9tw(G) ·nO(1) algorithm of Telle and Proskurowski [223].
Later, van Rooij et al. [227] observed that one could use fast subset convolution [29] to improve the
running time of algorithms on graphs of bounded treewidth. Their results include a 3tw(G) · nO(1)

algorithm for Dominating Set and a 2tw(G) ·nO(1) time algorithm for Partition Into Triangles.
Interestingly, the effect of applying subset convolution was that the running time for several graph
problems on bounded treewidth graphs became the same as the running time for the problems
on graphs of bounded pathwidth. However, the idea of using subset convolution in designing
dynamic programming algorithm over graphs of bounded treewidth was not enough to design
“optimal algorithms” for several connectivity problems such as Hamiltonian Path and Connected
Vertex Cover. In a seminal paper, Cygan et al. [76] introduced the method of Cut & Count
and designed the first ctw(G) · nO(1) time algorithms, where c is a fixed constant, for plethora of
connectivity problems including Hamiltonian Path and Connected Vertex Cover. However,
the algorithm for Hamiltonian Path runs in time 4tw(G) · nO(1), which still is the best known
algorithm. Later, in a surprising result, Cygan, Kratsch, and Nederlof [75] showed that Hamiltonian
Path can be solved in time (2 +

√
2)pw(G) · nO(1) on graphs of bounded pathwidth. The algorithms

obtained using Cut & Count are randomized. Later, deterministic algorithms with running time
ctw(G) · nO(1), where c is a fixed constant, were designed for connectivity problems [34,107].

Follow-up work. The problems considered in this article, and the ideas used to resolve them, led
to several follow-up publications that showed lower bounds for concrete problems in the parameterized
settings [38, 70, 72, 76, 91, 151,152]. The work of Cygan et al. [76] that introduced the method of Cut
& Count to design ctw(G) · nO(1), where c is a fixed constant, for connectivity problems, also showed
that the base of exponent in their algorithm are optimal unless the SETH fails. Cygan, Kratsch,
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and Nederlof [75] showed that the running time of (2 +
√

2)pw(G) · nO(1) for Hamiltonian Path on
graphs of bounded pathwidth is in fact optimal under the SETH. Several other lower bounds for
concrete problems were also obtained in [72]. Ideas from the current paper were recently used to
design tight lower bounds for r-Dominating Set and Connected Dominating Set on graphs of
bounded treewidth [38]. Curticapean and Marx obtained tight lower bounds for counting perfect
matchings on graphs of bounded treewidth, cliquewidth, and genus under the SETH [70].

Recently, Jaffke and Jansen [152] strengthened our lower bounds for q-Coloring. In particular,
they showed that q-Coloring parameterized by the modulator to linear forests (a forest where
every connected component is a path), say lfvs(G), can not be solved in time (q− ε)lfvs(G)|V (G)|O(1).

2.1 Preliminaries

In this section we give various definitions which we make use of in the chapter. For basic definitions
related to graphs, treewidth, and pathwidth, see Section 1.3. For the purposes of this section, we
need an equivalent definition of pathwidth via mixed search games. In a mixed search game, a graph
G is considered as a system of tunnels. Initially, all edges are contaminated by a gas. An edge is
cleared by placing searchers at both its end-points simultaneously or by sliding a searcher along the
edge. A cleared edge is re-contaminated if there is a path from an uncleared edge to the cleared
edge without any searchers on its vertices or edges. A search is a sequence of operations that can
be of the following types: (a) placement of a new searcher on a vertex; (b) removal of a searcher
from a vertex; (c) sliding a searcher on a vertex along an incident edge and placing the searcher
on the other end. A search strategy is winning if after its termination all edges are cleared. The
mixed search number of a graph G, denoted by ms(G), is the minimum number of searchers required
for a winning strategy of mixed searching on G. Takahashi, Ueno, and Kajitani [221] obtained the
following relationship between pw(G) and ms(G), which we use for bounding the pathwidth of the
graphs obtained in reduction.

Proposition 2.2 (Takahashi, Ueno, and Kajitani [221]). For a graph G, pw(G) ≤ ms(G) ≤
pw(G) + 1.

An instance to SAT consists of a boolean formula φ = C1∧ · · ·∧Cm over n variables {v1, . . . , vn}
where each clause Ci is OR of one or more literals of variables. We also denote a clause Ci by the
set {`1, `2, . . . , `c} of its literals and denote by |Ci| the number of literals in Ci. An assignment τ to
the variables is an element of {0, 1}n, and it satisfies the formula φ if for every clause Ci there is
literal that is assigned 1 by τ . We say that a variable vi satisfies a clause Cj if there exists a literal
corresponding to vi in {`1, `2, . . . , `c} and it is set to 1 by τ . A group of variables satisfy a clause Cj
if there is a variable that satisfies the clause Cj . All the sections in this chapter follow the following
pattern: definition of the problem; statement of the lower bound; construction used in the reduction;
correctness of the reduction; and the upper bound on the pathwidth of the resultant graph.

2.2 Independent Set

An independent set of a graph G is a set S ⊆ V (G) such that G[S] contains no edges. In the Inde-
pendent Set problem we are given a graph G and the objective is to find an independent set of
maximum size.

We first sketch the main idea of the proof. We give the reduction from an arbitrary SAT instance
on n variables and m clauses. The idea is to create a family of n very long paths P1, P2, . . . , Pn
of even length, corresponding to variables x1, x2, . . . , xn. Assume for now that on each of these
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paths the solution is allowed to make one of two choices: the independent set either contains all
the odd-indexed vertices, or all the even-indexed vertices. Then for every clause we construct a
clause verification gadget and attach it to some place in the family. The gadget is adjacent to paths
corresponding to variables appearing in the clause, and the attachment points reflect whether the
variable’s appearance is positive or negative. The role of the clause gadget is to verify that the
clause is satisfied. Satisfaction of the clause corresponds to the condition that at least one of the
attachment points of the clause gadget needs to be not chosen into the constructed independent set;
hence the clause gadget needs to have the following property: the behavior inside the gadget can be
set optimally if and only if at least one of the attachment points is free. It is possible to construct a
gadget with exactly this property, and moreover the gadget has constant pathwidth, so it does not
increase much the width of the whole construction.

One technical problem that we still need to overcome is the first technical assumption about
the choices the solution makes on the paths Pi. It is namely not true that on a path of even length
there are only two maximum-size independent sets: the odd-indexed vertices and the even-indexed
vertices. The solution can first start with picking only odd-indexed vertices, then make a gap of
two vertices, and continue further with even-indexed vertices. Thus, on each path there can be one
“cheat” where the solution flips from odd indices to even indices. The solution to this problem is a
remarkably simple trick that is commonly used in similar reductions. We namely repeat the whole
sequence of clause gadgets n+ 1 times, which ensures that at most n copies are spoiled by possible
cheats, and hence at least one of the copies is attached to an area where no cheat happens, and
hence the behavior of the solution on the paths Pi correctly encodes some satisfying assignment of
the variable set. This concludes the sketch and we move towards giving the formal proof.

Theorem 2.3. If Independent Set can be solved in (2− ε)tw(G) · nO(1) for some ε > 0 then SAT
can be solved in (2− δ)n · nO(1) time for some δ > 0.

Construction. Given an instance φ of SAT, we construct a graph G as follows (see Figure 2.1).
We assume that every clause has an even number of variables: if not, we can add a single variable
to all odd size clauses and force this variable to false. First we describe the construction of clause
gadgets. For a clause C = {`1, `2, . . . , `c}, we introduce a gadget Ĉ as follows. We take two paths,
CP = cp1, cp2 . . . , cpc and CP ′ = cp′1, cp

′
2 . . . cp

′
c having c vertices each, and connect cpi with cp′i

for every i. For each literal `i, we introduce a vertex `i in Ĉ and make it adjacent to cpi and cp′i.
Finally we add two vertices cstart and cend, such that cstart is adjacent to cp1 and cend is adjacent to
cpc. Observe that the size of the maximum independent set of Ĉ is c+ 2. Also, since c is even, any
independent set of size c+ 2 in Ĉ must contain at least one vertex in C = {`1, `2, . . . , `c}. Finally,
notice that for any i, there is an independent set of size c+ 2 in Ĉ that contains `i and none of `j
for j 6= i.

We first construct a graph G1. We introduce n paths P1, . . . , Pn, each path has 2m vertices. Let
the vertices of the path Pi be p1

i . . . p
2m
i . The path Pi corresponds to the variable vi. For every

clause Ci of φ, we introduce a gadget Ĉi. Now, for every variable vi, if vi occurs positively in Cj , we
add an edge between p2j

i and the literal corresponding to vi in Ĉj . If vi occurs negatively in Cj , we
add an edge between p2j−1

i and the literal corresponding to vi in Ĉj . Now we construct the graph G
as follows. We take n+ 1 copies of G1, call them G1, . . ., Gn+1. For every i ≤ n, we connect Gi and
Gi+1 by connecting p2m

j in Gi with p1
j in Gi+1 for every j ≤ n. This way, the paths Pj in each of the

n copies Gi together form a long path of 2m(n+ 1) vertices. This concludes the construction of G.

Lemma 2.4. If φ is satisfiable, then G has an independent set of size (mn+
∑

i≤m(|Ci|+ 2))(n+ 1).

Proof. Consider a satisfying assignment to φ. We construct an independent set I in G. For every
variable vi, if vi is set to true, then pick all the vertices on odd positions from all copies of Pi, that
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Ĉj

cend

cstart

p2jnp2j−1n

p2j−11 p2j1

`c

`1

cp′1

cpc

cp1

Pn

P1

Figure 2.1: Reduction to Independent Set: clause gadget Ĉj attached to the n paths representing
the variables.

is p1
i , p

3
i , p

5
i and so on. If vi is false then pick all the vertices on even positions from all copies of

Pi, that is p2
i , p

4
i , p

6
i and so on. It is easy to see that this is an independent set of size mn(n + 1)

containing vertices from all the paths. We will now consider the gadget Ĉj corresponding to a clause
Cj . We will only consider the copy of Ĉj in G1 as the other copies can be dealt identically. Let us
choose a true literal `a in Cj and let vi be the corresponding variable. Consider the vertex `a in Ĉj .
If vi occurs positively in Cj , then vi is true. Then I does not contain p2j

i , the only neighbour of `a
outside of Ĉj . On the other hand if vi occurs negatively in Cj , then vi is false. In this case I does not
contain p2j−1

i , the only neighbour of `a outside of Ĉj . There is an independent set of size |Cj |+ 2 in
Ĉ that contains `a and none out of `b for any b 6= a. We add this independent set to I and proceed
in this manner for every clause gadget. By the end of the process (

∑
i≤m(|Ci|+ 2))(n+ 1) vertices

from clause gadgets are added to I, yielding that the size of I is (mn +
∑

i≤m(|Ci| + 2))(n + 1),
concluding the proof.

Lemma 2.5. If G has an independent set of size (mn+
∑

i≤m(|Ci|+ 2))(n+ 1), then φ is satisfiable.

Proof. Consider an independent set of G of size (mn+
∑

i≤m |Ci|+ 2)(n+ 1). Set I can contain at
most m vertices from each copy of Pi for every i ≤ n and at most |Cj |+ 2 vertices from each copy of
the gadget Cj . Since I must contain at least that many vertices from each path and clause gadget
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in order to contain at least (mn+
∑

i≤m |Ci|+ 2)(n+ 1) vertices, it follows that I has exactly m
vertices in each copy of each path Pi and exactly |Cj |+ 2 vertices in each copy of each clause gadget
Ĉj . For a fixed j, consider the n+ 1 copies of the path Pj . Since Pj in Gi is attached to Pj in Gi+1,
these n+ 1 copies of Pi together form a path P having 2m(n+ 1) vertices. Since |I ∩ P | = m(n+ 1)
it follows that I ∩ P must contain every second vertex of P , except possibly in one position where
I ∩ P skips two vertices of P . There are only n paths and n+ 1 copies of G1, hence the pigeon-hole
principle implies that in some copy Gy of G1, I contains every second vertex on every path Pi. From
now onwards we only consider such a copy Gy.

In Gy, for every i ≤ n, I contains every second vertex of Pi. We make an assignment to the
variables of φ as follows. If I contains all the odd numbered vertices of Pi then vi is set to true,
otherwise I contains all the even numbered vertices of Pi and vi is set to false. We argue that this
assignment satisfies φ. Indeed, consider any clause Cj , and look at the gadget Ĉj . We know that I
contains |Cj |+ 2 vertices from Ĉj and hence I must contain a vertex `a in Ĉj corresponding to a
literal of Cj . Suppose `a is a literal of vi. Since I contains `a, if `a occurs positively in Cj , then I can
not contain p2j

i and hence vi is true. Similarly, if `a occurs negatively in Cj then I can not contain
p2j−1
i and hence vi is false. In both cases vi satisfies Cj and hence all clauses of φ are satisfied by

the assignment.

Lemma 2.6. pw(G) ≤ n+ 4.

Proof. We give a mixed search strategy to clean G using n + 3 searchers. For every i we place a
searcher on the first vertex of Pi in G1. The n searchers slide along the paths P1, . . . Pn in m rounds.
In round j each searcher i starts on p2j−1

i . Then, for every variable vi that occurs positively in Cj ,
the searcher i slides forward to p2j

i . Observe that at this point there is a searcher on every neighbour
of the gadget Ĉj . This gadget can now be cleaned with 3 additional searchers. After Ĉj is clean, the
additional 3 searchers are removed, and each of the n searchers on the paths P1, . . . Pn slides forward
along these paths, such that searcher i stands on p2(j+1)

i . At that point, the next round commences.
When the searchers have cleaned G1 they slide onto the first vertex of P1 . . . Pn in G2. Then they
proceed to clean G2, . . . , Gn+1 in the same way that G1 was cleaned. Now applying Proposition 2.2
we get that pw(G) ≤ n+ 4.

The construction, together with Lemmata 2.4, 2.5 and 2.6 proves Theorem 2.3.

2.3 Dominating Set

A dominating set of a graph G is a set S ⊆ V (G) such that V (G) = N [S]. In the Dominating Set
problem we are given a graph G and the objective is to find a dominating set of minimum size.

The basic idea for this reduction is similar to the one for Independent Set. However, we need
one more new idea here, which will also be used in other reductions. We group variables into an
appropriate number of groups of size at most β = blog 3pc, where p is a constant depending only on
ε. Then, for every group we make a gadget such that an assignment on the group should correspond
to a selection on the gadget. These group gadgets are then connected to clause gadgets so that every
assignment on the group that satisfies the clause results in some desired outcome.

Theorem 2.7. If Dominating Set can be solved in (3− ε)pw(G) · nO(1) time for some ε > 0 then
SAT can be solved in (2− δ)n · nO(1) time for some δ > 0.

Construction. Given ε < 1 and an instance φ to SAT we construct a graph G as follows. We
first choose an integer p depending only on ε. Exactly how p is chosen will be discussed in the
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p1p p31 p3p

gp

g′1

g1

p31 p31p11

x

x′SxS

Pp

P1

g′p

Figure 2.2: Reduction to Dominating Set: group gadget B̂. The set S is shown by the circled
vertices.

proof of Theorem 2.7. We group the variables of φ into groups F1, F2, . . . , Ft, each of size at most
β = blog 3pc. Hence t = dn/βe. We now proceed to describe a “group gadget” B̂, which is central in
our construction.

To build the group gadget B̂, we introduce p paths P1, . . . , Pp, where the path Pi contains the
vertices p1

i , p
2
i and p3

i (see Figure 2.2). To each path Pi we attach two guards gi and g′i, both of
which are neighbours to p1

i , p
2
i and p3

i . When the gadgets are attached to each other, the guards
will not have any neighbours outside of their own gadget B̂, and will ensure that at least one vertex
out of p1

i , p
2
i and p3

i are chosen in any minimum size dominating set of G. Let P be the vertex set
containing all the vertices on the paths P1, . . . , Pp. For every subset S of P that picks exactly one
vertex from each path Pi, we introduce two vertices xS and x′S , where xS is adjacent to all vertices of
P \ S (all those vertices that are on paths and not in S) and x′S is only adjacent to xS . We conclude
the construction of B̂ by making all the vertices x′S (for every set S) adjacent to each other, that is
making them into a clique, and adding a guard x adjacent to x′S for every set S. In other words, the
x′S ’s together with x form a clique and all the neighbors of x reside in this clique.

We construct the graph G as follows (see Figure 2.3). For every group Fi of variables, we
introduce m(2pt+ 1) copies of the gadget B̂, call them B̂j

i for 1 ≤ j ≤ m(2pt+ 1). We can imagine
these t ·m(2pt + 1) gadgets arranged in t rows and m(2pt + 1) columns, with the columns being
divided into 2pt + 1 regions of m columns each. For every fixed i ≤ t, we connect the gadgets
B̂1
i , B̂

2
i . . . , B̂

m(2pt+1)
i in a path-like manner. In particular, for every j < m(2pt+ 1) and every ` ≤ p

we make an edge between p3
` in the gadget B̂j

i with p1
` in the gadget B̂j+1

i . Now we introduce two
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h′

h

B̂x
t

B̂x
1

ĉ`j

Figure 2.3: Reduction to Dominating Set: arranging the group gadgets. Note that x = m`+ j,
thus ĉ`j is attached to vertices in B̂x

1 , . . . , B̂x
t .

new vertices h and h′, with h adjacent to h′, p1
j in B̂1

i for every i ≤ t, j ≤ p and to p3
j in B̂m(2pt+1)

i

for every i ≤ t, j ≤ p. That is, for all 1 ≤ i ≤ t, h is adjacent to the first and last vertices of “long
paths” obtained after connecting the gadgets B̂1

i , B̂
2
i . . . , B̂

m(2pt+1)
i in a path-like manner.

For every 1 ≤ i ≤ t and to every assignment of the variables in the group Fi, we designate a
subset S of P in the gadget B̂ that picks exactly one vertex from each path Pj . Since there are at
most 2β different assignments to the variables in Fi, and there are 3p ≥ 2β such sets S, we can assign
a unique set to each assignment. Of course, the same set S can correspond to one assignment of the
group F1 and some other assignment of the group F2. Recall that the clauses of φ are C1, . . . , Cm.
For every clause Cj we introduce 2pt+ 1 vertices ĉ`j , one for each 0 ≤ ` < 2pt+ 1, corresponding
to the 2pt + 1 regions. The vertex ĉ`j will be connected to the gadgets B̂m`+j

i for every 1 ≤ i ≤ t
(which appear in the `-th region). In particular, for every assignment of the variables in the group
Fi that satisfy the clause Cj , we consider the subset S of P that corresponds to the assignment. For
every 0 ≤ ` < 2pt+ 1, we make x′S in B̂m`+j

i adjacent to ĉ`j . The best way to view this is that every
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clause Cj has 2pt+ 1 private gadgets in the i-row, B̂j
i , B̂

m+j
i , . . . , B̂m2pt+j

i , one in each region. Now
we have 2pt + 1 vertices corresponding to the clause Cj , each connected to one of these gadgets.
This concludes the construction of G.

Lemma 2.8. If φ has a satisfying assignment, then G has a dominating set of size (p+ 1)tm(2pt+
1) + 1.

Proof. Given a satisfying assignment to φ, we construct a dominating set D of G that contains the
vertex h and exactly p+ 1 vertices in each gadget B̂j

i . For each group Fi of variables we consider
the set S that corresponds to the restriction of the assignment to the variables in Fi. From each
gadget B̂j

i we add the set S to D and also the vertex x′S to D. It remains to argue that D is indeed
a dominating set. Clearly the size is bounded by (p+ 1)tm(2pt+ 1) + 1, as the number of gadgets is
tm(2pt+ 1).

For a fixed i ≤ t and j consider the vertices on the path Pj in the gadgets B̂`
i for every

` ≤ m(2pt+ 1). Together these vertices form a path of length 3m(2pt+ 1) and every third vertex of
this path is in S. Thus, all vertices on this path are dominated by other vertices on the path, except
perhaps for the first and last one. Both these vertices, however, are dominated by h.

Now, fix some i ≤ t and ` ≤ m(2pt + 1) and consider the gadget B̂`
i . Since D contains some

vertex on the path Pj , we have that for every j both gj and g′j are dominated. Furthermore, for
every set S∗ not equal to S that picks exactly one vertex from each Pj , vertex xS∗ is dominated by
some vertex on some Pj—namely by all vertices in S \ S∗ 6= ∅. The last assertion follows since xS∗
is connected to all the vertices on the paths except S∗. On the other hand, xS is dominated by x′S ,
and x′S also dominates all the other vertices x′S∗ for S

∗ 6= S, as well as the guard x.
The only vertices not yet accounted for are the vertices ĉ`j for every j ≤ m and ` < 2pt+ 1. Fix

a j and a ` and consider the clause Cj . This clause contains a literal set to true, and this literal
corresponds to a variable in the group Fi for some i ≤ t. Of course, the assignment to Fi satisfies Cj .
Let S be the set corresponding to this assignment of Fi. By the construction of D, the dominating
set contains x′S in B̂m`+j

i and x′S is adjacent to ĉ`j . This concludes the proof.

Lemma 2.9. If G has a dominating set of size (p + 1)tm(2pt + 1) + 1, then φ has a satisfying
assignment.

Proof. Let D be a dominating set of G of size at most (p+1)tm(2pt+1)+1. Since D must dominate
h′, without loss of generality we can assume that D contains h. Furthermore, inside every gadget B̂`

i ,
D must dominate all the guards, namely gj and g′j for every j ≤ p, and also x. Thus D contains at
least p+ 1 vertices from each gadget B̂`

i which in turn implies that D contains exactly p+ 1 vertices
from each gadget B̂`

i . The only way D can dominate gj and g′j for every j and in addition dominate
x with only p+ 1 vertices if D has one vertex from each Pj , j ≤ p and in addition contains some
vertex in N [x]. Let S be D ∩P in B̂`

i . Observe that xS is not dominated by D ∩ S. The only vertex
in N [x] that dominates xS is x′S and hence D contains x′S .

Now we want to show that for every 1 ≤ i ≤ t there exists one 0 ≤ ` ≤ 2tp such that for fixed i,
D ∩ P is same in all the gadgets B̂m`+r

i for every 1 ≤ r ≤ m, i.e., it is the same in every gadget of
the i-th row in the `-th region. Consider a gadget B̂`

i and its follower, B̂`+1
i . Let S be D ∩ P in B̂`

i

and S′ be D ∩ P in B̂`+1
i . Observe that if S contains paj in B̂`

i and p
b
j in B̂

`+1
i then we must have

b ≤ a. We call a consecutive pair bad if for some j ≤ p, D contains paj in B̂`
i and pbj in B̂

`+1
i and

b < a. Hence for a fixed i, we can at most have 2p consecutive bad pairs, spoiling at most 2p regions.
Now we mark all the bad pairs that occur among the gadgets corresponding to some Fi. This way
we can mark only 2tp bad pairs. Thus, by the pigeon hole principle, there exists an ` ∈ {0, . . . , 2tp}
such that there are no bad pairs in B̂m`+r

i for all 1 ≤ i ≤ t and 1 ≤ r ≤ m.
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We make an assignment φ by reading off D ∩ P in each gadget B̂m`+1
i . In particular, for every

group Fi, we consider S = D ∩ P in the gadget B̂m`+1
i . This set S corresponds to an assignment of

Fi, and this is the assignment of Fi that we use. It remains to argue that every clause Cr is satisfied
by this assignment.

Consider the vertex ĉr` . We know that it is dominated by some x′S in a gadget B̂m`+r
i . The set S

corresponds to an assignment of Fi that satisfies the clause Cr. Because D ∩ P remains unchanged
in all gadgets from B̂m`+1

i to B̂m`+r
i , this is exactly the assignment φ restricted to the group Fi.

This concludes the proof.

Lemma 2.10. pw(G) ≤ tp+O(3p)

Proof. We give a mixed search strategy to clean the graph with tp+O(3p) searchers. For a gadget
B̂ we call the vertices p1

j and p3
j , 1 ≤ j ≤ p, as entry vertices and exit vertices respectively. We

search the graph in m(2tp+ 1) rounds. In the beginning of round ` there are searchers on the entry
vertices of the gadgets B̂`

i for every i ≤ t. Let 1 ≤ a ≤ m and 0 ≤ b < 2tp + 1 be integers such
that ` = a+mb. We place a searcher on ĉba. Then, for each i between 1 and p in turn we first put
searchers on all vertices of B̂`

i and then remove all the searchers from B̂`
i except for the ones standing

on the exit vertices. After all gadgets B̂`
1 . . . B̂

`
t have been cleaned in this manner, we can remove

the searcher from ĉba. To commence the next round, the searchers slide from the exit positions of B̂`
i

to the entry positions of B̂`+1
i for every i. In total, at most tp+ |V (B̂)|+ 1 ≤ tp+O(3p) searchers

are used simultaneously. This together with Proposition 2.2 give the desired upperbound on the
pathwidth.

Proof (of Theorem 2.7). Suppose Dominating Set can be solved in (3− ε)pw(G) · nO(1)= 3λpw(G) ·
nO(1) time, where λ = log3(3− ε) < 1. We choose p large enough such that λ · p

bp log 3c = δ′

log 3 for some
δ′ < 1. Given an instance of SAT, we construct an instance of Dominating Set using the above
construction and the chosen value of p. Then we solve the Dominating Set instance using the
3λpw(G) · nO(1) time algorithm. Correctness is ensured by Lemmata 2.8 and 2.9. Lemma 2.10 yields
that the total time taken is upper bounded by 3λpw(G) ·nO(1) ≤ 3λ(tp+f(λ)) ·nO(1) ≤ 3

λ np
bp log 3c ) ·nO(1) ≤

3
δ′ n

log 3 · nO(1) ≤ 2δ
′′n · nO(1) =(2− δ)n · nO(1), for some δ′′, δ < 1. This concludes the proof.

2.4 Max Cut

A cut in a graph G is a partition of V (G) into V0 and V1. The cut-set of the cut is the set of edges
whose one end point is in V0 and the other in V1. We say that an edge is crossing this cut if it
has one endpoint in V0 and one in V1, that is, the edge is in the cut-set. The size of the cut is the
number of edges in G which are crossing this cut. If the edges of G have positive integer weights,
then the weight of the cut is the sum of the weights of edges that are crossing the cut. In the Max
Cut problem, we are given a graph G together with an integer t and asked whether there is a cut of
G of size at least t. In the Weighted Max Cut problem every edge has a positive integer weight
and the objective is to find a cut of weight at least t.

Theorem 2.11. If Max Cut can be solved in (2− ε)pw(G) · nO(1) for some ε > 0, then SAT can be
solved in (2− δ)n · nO(1) time for some δ > 0.

Construction. Given an instance φ of SAT, we first construct an instance Gw of Weighted
Max Cut as follows. We later explain how to obtain an instance of unweighted Max Cut from
here.

dc_1604_18

Powered by TCPDF (www.tcpdf.org)



2.4. MAX CUT 29

v̂1

Pm

P1

v̂2 v̂3 v̂4 v̂5

x0

Figure 2.4: Reduction to Max Cut. The dashed edges have weight 1 and all the other edges have
weight 3n. The odd and even positions of the paths Pj are shown by black and white, respectively.
As an example, we show potential connections corresponding to the clauses C1 = (v1 ∨ v̄2 ∨ v4) and
C2 = (v̄1 ∨ v3 ∨ v̄5).

We start with introducing a vertex x0. Without loss of generality, we will assume that x0 ∈ V0

in every solution. We introduce a vertex v̂i for each variable vi. For every clause Cj , we create a
gadget as follows. We introduce a path P̂j having 4|Cj | vertices. All the edges on P̂j have weight 3n.
Now, we make the first and last vertex of P̂j adjacent to x0 with an edge of weight 3n. Thus the
path P̂j plus the edges from the first and last vertex of P̂j to x0 form an odd cycle Ĉj . We will say
that the first, third, fifth, etc, vertices are on odd positions on P̂j while the remaining vertices are
on even positions. For every variable vi that appears positively in Cj , we select a vertex p at an
even position (but not the last vertex) on P̂j and make v̂i adjacent to p and p’s successor on P̂j with
edges of weight 1. For every variable vi that appears negatively in Cj we select a vertex p at an odd
position on P̂j and make v̂i adjacent to p and p’s successor on P̂j with edges of weight 1. We make
sure that each vertex on P̂j receives an edge at most once in this process. There are more than
enough vertices on P̂j to accommodate all the edges incident to vertices corresponding to variables
in the clause Cj . We create such a gadget for each clause and set t = m+ (12n+ 1)

∑m
j=1 |Cj |. This

concludes the construction.

Lemma 2.12. If φ is satisfiable, then Gw has a cut of weight at least t.

Proof. Suppose φ is satisfiable. We put x0 in V0 and for every variable vi we put v̂i in V1 if vi is
true and v̂i in V0 if vi is false. For every clause Cj we proceed as follows. Let us choose a true literal
of Cj and suppose that this literal corresponds to a vertex pj on P̂j . We put the first vertex on P̂j
in V1, the second in V0 and then we proceed along P̂j putting every second vertex into V1 and V0

until we reach pj . The successor p′j of pj on P̂j is put into the same set as pj . Then we continue
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along P̂j putting every second vertex in V1 and V0. Notice that even though Cj may contain more
than one literal that is set to true, we only select one vertex pj from the path P̂j and put pj and its
successor on the same side of the partition. It remains to argue that this cut has weight at least t.

For every clause Cj all edges on the path P̂j except for pjp′j are crossing, and the two edges to x0

from the first and last vertex of P̂j are crossing as well. These edges contribute 12n|Cj | to the weight
of the cut. We know that pj corresponds to a literal that is set to true, and this literal corresponds
to a variable vi. If vi occurs positively in Cj , then v̂i ∈ V1 and pj is on an even position of P̂j . Thus
both pj and its successor p′j are in V0 and hence both v̂ipj and v̂ip

′
j are crossing, contributing 2

to the weight of the cut. For each of the remaining variables vi′ appearing in Cj , one of the two
neighbours of v̂i′ on P̂j appear in V0 and one in V1, so exactly one edge from vi′ to P̂j is crossing.
Thus the total weight of the cut is t =

∑m
j=1(12n|Cj |+ |Cj |+ 1) = m+ (12n+ 1)

∑m
j=1 |Cj |. This

completes the proof.

Lemma 2.13. If Gw has a cut of weight at least t, then φ is satisfiable.

Proof. Let (V0, V1) be a cut of G of maximum weight, hence the weight of this cut is at least t.
Without loss of generality, let x0 ∈ V0. For every clause Cj , at least one edge of the odd cycle Ĉj is
not crossing. If more than one edge of this cycle is not crossing, then the total weight of the cut
edges incident to the path P̂j is at most 3n(4|Cj | − 1) + 2n < 12n|Cj |. In this case, we could change
the partition (V0, V1) such that all edges of P̂j are crossing and the first vertex of P̂j is in V1. Using
the new partition the weight of the crossing edges in the cycle Ĉj is at least 12n|Cj | and the edges
not incident to P̂j are unaffected by the changes. This contradicts that (V0, V1) was a maximum
weight cut. Thus it follows that exactly one edge of Ĉj is not crossing.

Given the cut (V0, V1), we set each variable vi to true if v̂i ∈ V1 and vi to false otherwise. Consider
a clause Cj and a variable vi that appears in Cj . Let uv be the edge of Ĉj that is not crossing. If
there is a vertex v̂i adjacent to both u and v, then it is possible that both v̂iu and v̂iv are crossing.
For every other variable vi′ in Cj , at most one of the edges from v̂i′ to P̂j is crossing. Thus, the
weight of the edges that are crossing in the gadget Ĉj is at most (12n+ 1)|Cj |+ 1. Hence, to find a
cut-set of weight at least t in G, we need to have crossing edges in Ĉj with sum of their weights
exactly equal to 12n|Cj | + |Cj | + 1. It follows that there is a vertex v̂i adjacent to both u and v
such that both v̂iu and v̂iv are crossing.

If vi occurs in Cj positively, then u is on an even position and hence, u ∈ V0. Since v̂iu is crossing
it follows that vi is true and Cj is satisfied. On the other hand, if vi occurs in Cj negated then u
is on an odd position and hence, u ∈ V1. Since v̂iu is crossing it follows that vi is false and Cj is
satisfied. As this holds for each clause individually, this concludes the proof.

For every edge e ∈ E(Gw), let we be the weight of e in Gw. We construct an unweighted graph
G from Gw by replacing every edge e = uv by we paths from u to v on three edges. Let W be the
sum of the edge weights of all edges in Gw.

Lemma 2.14. G has a cut of size 2W + t if and only if Gw has a cut of weight at least t.

Proof. Given a partition of V (Gw), we partition V (G) as follows. The vertices of G that also are
vertices of V (G) are partitioned in the same way as in V (Gw). On each path of length 3, if the
endpoints of the path are in different sets we can partition the middle vertices of the path such that
all edges are cut. If the endpoints are in the same set we can only partition the middle vertices such
that 2 out of the 3 edges are cut. The reverse direction is similar.

Lemma 2.15. pw(G) ≤ n+ 5.

dc_1604_18

Powered by TCPDF (www.tcpdf.org)



2.5. GRAPH COLORING 31

Proof. We give a search strategy to clean G with n+ 5 searchers. We place one searcher on each
vertex v̂i and one searcher on x0. Then one can search the gadgets Ĉj one by one. In Gw it is
sufficient to use 2 searchers for each Ĉj , whereas in G after the edges have been replaced by multiple
paths on three edges, we need 4 searchers. This combined with Proposition 2.2 gives the desired
upper bound on the pathwidth of the graph.

The construction, together with Lemmata 2.12, 2.13, 2.14 and 2.15 proves Theorem 2.11.

2.5 Graph Coloring

A q-coloring of G is a function µ : V (G) → [q]. A q-coloring µ of G is proper if for every edge
uv ∈ E(G) we have µ(u) 6= µ(v). In the q-Coloring problem we are given as input a graph G
and the objective is to decide whether G has a proper q-coloring. In the List Coloring problem,
every vertex v is given a list L(v) ⊆ [q] of admissible colors. A proper list coloring of G is a function
µ : V (G)→ [q] such that µ is a proper coloring of G that satisfies µ(v) ∈ L(v) for every v ∈ V (G).
In the q-List Coloring problem we are given a graph G together with a list L(v) ⊆ [q] for every
vertex v. The task is to determine whether there exists a proper list coloring of G.

A feedback vertex set of a graph G is a set S ⊆ V (G) such that G \ S is a forest; we denote
by fvs(G) the size of the smallest such set. It is well-known that tw(G) ≤ fvs(G) + 1. Unlike the
other sections, where we give lower bounds for algorithms parameterized by pw(G), the following
theorem gives also a lower bound for algorithms parameterized by fvs(G). Such a lower bound
follows very naturally from the construction we are doing here, but not from the constructions in
the other sections. It would be interesting to explore whether it is possible to prove tight bounds
parameterized by fvs(G) for the problems considered in the other sections.

Theorem 2.16. Let q be a fixed positive integer. If q-Coloring can be solved in (q− ε)fvs(G) ·nO(1)

or (q − ε)pw(G) · nO(1) time for some ε > 0, then SAT can be solved in (2− δ)n · nO(1) time for some
δ > 0.

Construction. We will show the result for List Coloring first, and then give a simple
reduction that demonstrates that q-Coloring can be solved in (q − ε)fvs(G) · nO(1) time if and only
if q-List Coloring can.

Depending on ε and q we choose a parameter p. Now, given an instance φ to SAT we will
construct a graph G with a list L(v) for every v, such that G has a proper list-coloring if and only if
φ is satisfiable. Throughout the construction we will call color 1-red, color 2-white and color 3-black.

We start by grouping the variables of φ into t groups F1, . . . , Ft of size at most blog qpc. Thus
t = d n

blog qpce. We will call an assignment of truth values to the variables in a group Fi a group
assignment. We will say that a group assignment satisfies a clause Cj of φ if Cj contains at least
one literal which is set to true by the group assignment. Notice that Cj can be satisfied by a group
assignment of a group Fi, even though Cj also contains variables that are not in Fi.

For each group Fi, we introduce a set Vi of p vertices v1
i , . . . , v

p
i . The vertices in Vi get full

lists, that is, they can be colored by any color in [q]. The coloring of the vertices in Vi will encode
the group assignment of Fi. There are qp ≥ 2|Fi| possible colorings of Vi. Thus, to each possible
group assignment of Fi we attach a unique coloring of Vi. Notice that some colorings of Vi may not
correspond to any group assignments of Fi.

For each clause Cj of φ, we introduce a gadget Ĉj . The main part of Ĉj is a long path P̂j that
has one vertex for each group assignment that satisfies Ĉj . Notice that there are at most tqp possible
group assignments, and that q and p are constants independent of the input φ. The list of every
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Figure 2.5: Reduction to q-Coloring: the way the connector connects a vertex v`i with v for a
particular “bad color” x ∈ [q] \ {µi(v`i )}. The left side shows the case x = red = 1, the right side
x = 2 (q = 4).

vertex on P̂j is {red,white, black}. We attach two vertices pstartj and pendj to the start and end of P̂j
respectively, and the two vertices are not counted as vertices of the path P̂j itself. The list of pstartj

is {white}. If |V (P̂j)| is even, then the list of pendj is {white}, whereas if |V (P̂j)| is odd then the list
of pendj is {black}. The intention is that to properly color P̂j , one needs to use the color red at least
once, and that once is sufficient. The position of the red-colored vertex on the path P̂j encodes how
the clause Cj is satisfied.

For every vertex v on P̂j , we proceed as follows. The vertex v corresponds to some group
assignment to Fi that satisfies the clause Cj . This assignment in turn corresponds to a coloring of
the vertices of Vi. Let this coloring be µi. We build a connector whose role is to enforce that v can
be red only if coloring µi appears on Vi. To build the connector, for each vertex v`i ∈ Vi and color
x ∈ [q] \ {µi(v`i )} we do the following to enforce that if v is red, then v`i cannot have color x (see
Figure 2.5).

• If x is red, then we introduce one vertex wy for every color y except for red. We make wy
adjacent to v`i and the list of wy is {red, y}. Then we introduce a vertex w that is adjacent to
v and to all vertices wy. The list of w is all of [q].

• If x is not red, we introduce two vertices wy and w′y for each color y except for red. We make
wy adjacent to v`i and w′y adjacent to wy. The list of wy is {x, red} while the list of w′y is
{y, red}. Finally, we introduce a vertex w adjacent to v and to w′y for all y. The list of w is all
of [q].

Notice that in the above construction we have reused the names w, wy and w′y for many different
vertices: in each connector, there is a separate vertex w for each vertex v`i ∈ Vi and color x ∈
[q] \ {µi(v`i )}. Building a connector for each vertex v on P̂j concludes the construction of the
clause gadget Ĉj , and creating one such gadget for each clause concludes the construction of G (see
Figure 2.6). The following lemma, summarizes the most important properties of the connector:

Lemma 2.17. Consider the connector corresponding to a vertex v on P̂j and a coloring µi of Vi.
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vp1v11

P̂j

pstartj pendj

V1 Vt

v1t vpt

Figure 2.6: Reduction to q-Coloring. The t groups of vertices V1, . . . , Vt represent the t groups of
variables F1, . . . , Ft (each of size dlog qpe). Each vertex of the clause path P̂j is connected to one
group Vi via a connector (multiple vertices on the path can be connected to the same group).

1. Any coloring on Vi and any color c ∈ {white, black} on v can be extended to the rest of the
connector.

2. Coloring µi on Vi and any color c ∈ {red,white, black} on v can be extended to the rest of the
connector.

3. In any coloring of the connector, if v is red, then µi appears on Vi.

Proof. 1. For each vertex v`i ∈ Vi and color x ∈ [q] \ {µi(v`i )} we do the following.

• If x is red, then in the construction of Ĉj we introduced a vertex wy with list {y, red} for every
color y 6= red adjacent to v`i , and a vertex w with list [q] adjacent to wy for every y 6= red.
If v`i is colored red, then we color each vertex wy with y and w with red. Notice that w is
adjacent to v, but v is colored either white or black, so it is safe to color w red. If, on the
other hand, v`i is not colored red, we can color wy red for every y. Then all the neighbours of
w have been colored with red, except for v which has been colored white or black. Thus it is
safe to color w with the color out of black and white which was not used to color v.

• If x is not red, then in the construction of Ĉj we introduced two vertices wy and w′y for each
color y except for red, and also introduced a vertex w. The vertices wy are adjacent to v`i and
for every y 6= red, the vertex w′y is adjacent to wy. Finally, w is adjacent to all the vertices w′y
and to v. For every y the list of wy is {x, red} while the list of w′y is {y, red}. The list of w is
[q]. If v`i is colored with x, then we let wy take color red and w′y take color y for every y 6= red.
We color w with red. In the case that v`i is colored with a color different from x, we let wy be
colored with x and w′y be colored red for every y 6= red. Finally, all the neighours of w except
for v have been colored red, while v is colored with either black or white. According to the
color of v, we can either color w black or white.

2. We can assume that v is red, otherwise we are done by the previous statement. For each
vertex v`i ∈ Vi and color x ∈ [q] \ {µi(v`i )}, we do the following.

• If x is red, then in the construction of Ĉj we introduced a vertex wy with list {y, red} for every
color y 6= red adjacent to v`i , and a vertex w with list [q] adjacent to wy for every y 6= red.
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Since v`i′ is not colored red by µi, we can color wy red for every y. Then all the neighbours of
w including v have been colored with red and it is safe to color w with white.

• If x is not red, then in the construction of Ĉj we introduced two vertices wy and w′y for each
color y except for red, and also introduced a vertex w. The vertices wy are adjacent to v`i and
for every y 6= red the vertex w′y is adjacent to wy. Finally, w is adjacent to all the vertices w′y
and to v. For every y, the list of wy is {x, red} while the list of w′y is {y, red}. The list of w is
[q]. Since µi colors v`i with a color different from x, we let wy be colored with x and w′y be
colored red for every y 6= red. Finally, all the neighours of w including v have been colored red
so it is safe to color w white.

3. Suppose for contradiction that v is red, but some vertex v`i ∈ Vi has been colored with a color
x 6= µi(v

`
i ). There are two cases. If x is red, then in the construction we introduced vertices wy

adjacent to v`i for every color y 6= red. Also we introduced a vertex w adjacent to v and to wy for
each y 6= red. The list of wy is {red, y} and hence wy must have been colored y for every y 6= red.
But then w is adjacent to v which is colored red, and to wy which is colored y for every y 6= red.
Thus vertex w has all colors in its neighborhood, a contradiction. In the case when x is not red, then
in the construction we introduced two vertices wy and w′y for each y 6= red. Each wy was adjacent
to v`i and had {x, red} as its list. Since v`i is colored x, all the wy vertices must be colored red.
For every y 6= red, we have that w′y is adjacent to wy and has {red, y} as its list. Hence for every
y 6= red, the vertex w′y is colored with y. But, in the construction we also introduced a vertex w
adjacent to v and to w′y for each y 6= red. Thus again, vertex w has all colors in its neighbourhood,
a contradiction.

Lemma 2.18. If φ is satisfiable, then G has a proper list-coloring.

Proof. Starting from a satisfying assignment of φ, we construct a coloring γ of G. The assignment
to φ corresponds to a group assignment to each group Fi. Each group assignment corresponds to a
coloring of Vi. For every i, we let γ color the vertices of Vi using the coloring corresponding to the
group assignment of Fi.

Now we show how to complete this coloring to a proper coloring of G. Since the gadgets Ĉj are
pairwise disjoint, and there are no edges going between them, it is sufficient to show that we can
complete the coloring for every gadget Ĉj . Consider the clause Cj . The clause contains a literal
that is set to true, and this literal belongs to a variable in some group Fi. The group assignment
of Fi satisfies the clause Cj . Thus, there is a vertex v on P̂j that corresponds to this assignment.
We set γ(v) as red (that is, γ colors v red), pstartj is colored white and pendj is colored with its only
admissible color, namely black if |V (P̂j)| is even and white if |V (P̂j)| is odd. The remaining vertices
of P̂j are colored alternatingly white or black. By Lemma 2.17(2), the coloring can be extended
to every vertex of the connector between Vi and v: the coloring appearing on Vi is the coloring µi
corresponding to the group assignment Fi. For every other vertex u on P̂j , the color of u is black or
white, thus Lemma 2.17(1) ensures that the coloring can be extended to any connector on u.

As this procedure can be repeated to color the gadget Ĉj for every clause Cj , we can complete γ
to a proper list-coloring of G.

Lemma 2.19. If G has a proper list-coloring γ, then φ is satisfiable.

Proof. Given γ, we construct an assignment to the variables of φ as follows. For every group Fi of
variables, if γ colors Vi with a coloring that corresponds to a group assignment of Fi, then we set
this assignment for the variables in Fi. Otherwise, we set all the variables in Fi to false. We need to
argue that this assignment satisfies all the clauses of φ.
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Consider a clause Cj and the corresponding gadget Ĉj . By a simple parity argument, P̂j cannot
be colored using only the colors black and white. Thus, some vertex v on P̂j is colored red. The vertex
v corresponds to a group assignment of some group Fi that satisfies Ĉj . As v is red, Lemma 2.17(3)
implies that Vi is colored with the coloring µi that corresponds to this assignment. The construction
then implies that our chosen assignment satisfies Cj . As this is true for every clause, this concludes
the proof.

Observation 2.20. The vertices
⋃
i≤t Vi form a feedback vertex set of G. Furthermore, pw(G) ≤

pt+ 4

Proof. Observe that after removing
⋃
i≤t Vi, all that is left are the gadgets Ĉj , which do not have

any edges between each other. Each such gadget is a tree and hence
⋃
i≤t Vi form a feedback vertex

set of G. If we place a searcher on each vertex of
⋃
i≤t Vi it is easy to see that each gadget Ĉj can be

searched with 4 searchers. The pathwidth bound on G follows using Proposition 2.2.

Lemma 2.21. If q-List Coloring can be solved in (q − ε)fvs(G) · nO(1) or (q − ε)pw(G) · nO(1) time
for some ε > 0, then SAT can be solved in (2− δ)n · nO(1) time for some δ > 0.

Proof. Let (q−ε)fvs(G) ·nO(1)= O∗(qλfvs(G)) time, where λ = logq(q−ε) < 1. We choose a sufficiently
large p such that δ′ = λ p

p−1 < 1. Given an instance φ of SAT, we construct a graph G using the
construction above, and run the assumed q-List Coloring. Correctness follows from Lemmata 2.18
and 2.19. By Observation 2.20, the graph G has a feedback vertex set of size pd n

bp log qce. The choice
of p implies that

λpd n

bp log qc
e ≤ λp n

(p− 1) log q
+ p ≤ δ′ n

log q
+ p ≤ δ′′n,

for some δ′′ < 1. Hence SAT can be solved in time 2δ
′′n · nO(1) =(2− δ)n · nO(1), for some δ > 0. By

Observation 2.20, we also know that pw(G) ≤ pt+ 4. Thus, the feedback vertex set size and the
pathwidth of the constructed graph just differs by 4. This implies that q-List Coloring cannot be
solved in (q − ε)pw(G) · nO(1) time.

Finally, observe that we can reduce q-List-Coloring to q-Coloring by adding a clique
Q = {q1, . . . , qc} on q vertices to G and making qi adjacent to v when i /∈ L(v). Any coloring of Q
must use q different colors, and without loss of generality qi is colored with color i. Then one can
complete the coloring if and only if one can properly color G using a color from L(v) for each v. We
can add the clique Q to the feedback vertex set—this increases the size of the minimum feedback
vertex set by q. Since q is a constant independent of the input, this yields Theorem 2.16.

2.6 Odd Cycle Transversal

An equivalent formulation of the Max Cut problem is to ask for a bipartite subgraph with the
maximum number of edges, which is the same as asking for a set of edges of minimum size whose
deletion makes the graph bipartite. We can also consider the vertex-deletion version of this problem.
An odd cycle transversal of a graph G is a subset S ⊆ V (G) such that G \ S is bipartite. In the
Odd Cycle Transversal problem, we are given a graph G together with an integer k and asked
whether G has an odd cycle transversal of size k.

Theorem 2.22. If Odd Cycle Transversal can be solved in (3− ε)pw(G) · nO(1) time for ε > 0,
then SAT can be solved in (2− δ)n · nO(1) time for some δ > 0.
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ÂăÂăÂău a1 a2 a3 v

b1 b2 b3 b4

u a1 a2 a3 v

b1 b2 b3 b4

A(u, v) A(u, v) \ {u}

Figure 2.7: Reduction to Odd Cycle Transversal. The arrow A(u, v) from u to v with the
passive odd cycle transversal shown in white (left) and the active odd cycle transversal of A(u, v)\{u}
(right).

Construction. Given ε > 0 and an instance φ of SAT, we construct a graph G as follows. We
choose an integer p based just on ε. Exactly how p is chosen will be discussed at the end of this
section. We start by grouping the variables of φ into t groups F1, . . . , Ft of size at most h = blog 3pc.
Thus t = d n

blog 3pce. We will call an assignment of truth values to the variables in a group Fi a group
assignment. We will say that a group assignment satisfies a clause Cj of φ if Cj contains at least
one literal that is set to true by the group assignment. Notice that Cj can be satisfied by a group
assignment of a group Fi even though Cj also contains variables that are not in Fi.

Now we describe an auxiliary gadget which will be very useful in our construction (see Figure 2.7).
For two vertices u and v by adding an arrow from u to v we will mean adding a path ua1a2a3v
on four edges starting in u and ending in v. Furthermore, we add four vertices b1, b2, b3 and b4
and edges ub1, b1a1, a1b2, b2a2, a2b3, b3a3, a3b4, b4v, and b4v. Denote the resulting graph A(u, v).
None of the vertices in A(u, v) except for u and v will receive any further neighbours throughout
the construction of G. The graph A(u, v) has the following properties, which are useful for our
construction.

• The unique smallest odd cycle transversal of A(u, v) is {a1, a3}. We call this the passive odd
cycle transversal of the arrow.
• In A(u, v) \ {a1, a3}, u and v are in different connected components.
• The set {a2, v} is a smallest odd cycle transversal of A(u, v) \ {u}. We call this the active odd

cycle transversal of the arrow.

The intuition behind an arrow from u to v is that if u is put into the odd cycle transversal, then v
can be put into the odd cycle transversal “for free.” When the active odd cycle transversal of the
arrow is picked, we say the arrow is active, otherwise we say the arrow is passive.

To construct G, we make t · p paths, {Pi,j} for 1 ≤ i ≤ t, 1 ≤ j ≤ p (see Figure 2.8). Each path
has 3m(tp+1) vertices, and the vertices of Pi,j are denoted by p`i,j for 1 ≤ ` ≤ 3m(tp+1). For a fixed
i, the paths {Pi,j : 1 ≤ j ≤ p} correspond to the set Fi of variables. For every 1 ≤ i ≤ t, 1 ≤ j ≤ p
and 1 ≤ ` < 3m(tp+ 1) we add three vertices a`i,j , b

`
i,j and q

`
i,j adjacent to each other. We also add

the edges a`i,jp
`
i,j and b

`
i,jp

`+1
i,j . One can think of the vertices of the paths {Pi,j} layed out as rows in

a matrix, where for every fixed 1 ≤ ` ≤ 3m(tp+ 1) there is a column {p`i,j : 1 ≤ i ≤ t, 1 ≤ j ≤ p}.
We group the colums three by three. In particular, For every i ≤ t and 0 ≤ ` < m(tp + 1) we
define the sets P `i = {p3`+1

i,j , p3`+2
i,j , p3`+3

i,j : 1 ≤ j ≤ p}, A`i = {a3`+1
i,j , a3`+2

i,j , a3`+3
i,j : 1 ≤ j ≤ p},

B`
i = {b3`+1

i,j , b3`+2
i,j , b3`+3

i,j : 1 ≤ j ≤ p} and Q`i = {q3`+1
i,j , q3`+2

i,j , q3`+3
i,j : 1 ≤ j ≤ p}.

For every i ≤ t and 0 ≤ ` < m(tp+ 1) we make two new sets L`i and R
`
i of new vertices. Both L`i

and R`i are independent sets of size 5p, and we add all the edges possible between L`i and R
`
i . From

L`i we pick a special vertex λ`i and from R`i we pick ρ`i . We make all the vertices in A`i adjacent to
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L R Z L R Z L R Z

R ZZ LR L R ZZ LR L Z LR L

LZ R LZ R Z R

q1i,j

a1i,j b1i,j

p1i,j p2i,j p3i,j p4i,j p5i,j p6i,j p7i,j p8i,j p9i,j

Âă

L R Z L R Z L RZ

R ZZ LR L R ZZ LR LR L R L

LZ R LZ R ZZ

q1i,j

a1i,j b1i,j

p1i,j p2i,j p3i,j p4i,j p5i,j p6i,j p7i,j p8i,j p9i,j

L R Z L R Z L

R ZZ LR L R ZZ LR L

LZ R LZ R

q1i,j

a1i,j b1i,j

p1i,j p2i,j p3i,j p4i,j p5i,j p6i,j p7i,j p8i,j p9i,j

R Z

R ZZ L

LR

Figure 2.8: Reduction to Odd Cycle Transversal. The path Pi,j with three different ways of
removing a set Z and partitioning the remaining bipartite graph into classes L and R.

all vertices of L`i , and we make all vertices in B`
i adjacent to all vertices of R`i . We make λ`i adjacent

to ρ`+1
i , except for ` = m(tp+ 1)− 1.
We will say that a subset S of P `i which picks exactly one vertex from Pi,j for every 1 ≤ j ≤ p

is good. The idea is that there are 3p ≥ 2h good subsets of P `i , so we can make group assignments
of Fi correspond to good subsets of P `i . For every good subset S of P `i we add a cycle X`

i,S . The
cycle X`

i,S has length 2p+ 1. We select a vertex on X`
i,S and call it x`i,S . For every vertex u ∈ P `i \ S

we add an arrow from u to a vertex of X`
i,S . We add arrows in such a way that every vertex of

X`
i,S \ {x`i,S} is the endpoint of exactly one arrow.
For every i ≤ t and 0 ≤ ` < m(tp+ 1), we make a cycle Y `

i of length 3p.Notice that the length of
the cycle is odd. Every vertex of Y `

i corresponds to a good subset S of P `i . For each good subset S
of P `i we add an arrow from x`i,S of the cycle X`

i,S to the vertex in Y `
i that corresponds to S.

We say that a good subset of P `i is equal with a good subset S′ of P `′i if for every 1 ≤ j ≤ t,
the distance along Pi,j between the vertex of S on Pi,j and the vertex of S′ on Pi,j is divisible by 3.
Informally, S and S′ are equal if they look identical when we superimpose P `i onto P `′i . To every
group assignment of variables Fi, we designate a good subset of P `i for every `. We designate good
subsets in such a way that good subsets corresponding to the same group assignment are equal.

Finally, for every clause Cj , 1 ≤ j ≤ m, we will introduce tp + 1 cycles. That is, for every
0 ≤ r ≤ tp, we inroduce a cycle Ĉrj . The cycle contains one vertex for every i ≤ t and group
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assignment to Fi, and potentially one dummy vertex to make it have odd length. Going around
the cycle counterclockwise we first encounter all the vertices corresponding to group assignments of
F1, then all the vertices corresponding to group assignments of F2, and so on. For i ≤ t and every
good subset S of P rm+j

i that corresponds to a group assignment of Fi that satisfies Cj we add an
arrow from xrm+j

i,S to the vertex on Ĉrj that corresponds to the same group assignment of Fi as S
does. This concludes the construction of G.

The intention behind the construction is that if φ is satisfiable, then a minimum odd cycle
transversal of G can pick:

• One vertex from each triangle {a`i,j , b`i,j , q`i,j} for each 1 ≤ i ≤ t, 1 ≤ j ≤ p, 1 ≤ ` < 3m(tp+ 1).
There are tp(3m(tp+ 1)− 1) such triangles in total.
• One vertex from {p3`+1

i,j , p3`+2
i,j , p3`+3

i,j } for each 1 ≤ i ≤ t, 1 ≤ j ≤ p, 0 ≤ ` < m(tp+ 1). There
are tpm(tp+ 1) such triples.
• Two vertices from every arrow added, without counting the starting point of the arrow. For
each i ≤ t and 0 ≤ ` < m(tp + 1), there are 2p3p arrows ending in some cycle X`

i,S . Hence
there are 2p3ptm(tp + 1) such arrows. For every i ≤ t and 0 ≤ ` < m(tp + 1) there are 3p

arrows ending in the cycle Y `
i . Hence there are 3ptm(tp + 1) such arrows. For every clause

Cj , there are tp+ 1 arrows added for every group assignment that satisfies that clause. Let µ
be the sum over all clauses of the number of group assignments that satisfy that clause. The
total number of arrows added is then µ(tp+ 1) + (2p+ 1)3ptm(tp+ 1). Thus the odd cycle
transversal can pick 2µ(tp+ 1) + 2(2p+ 1)3ptm(tp+ 1) vertices from arrows.
• One vertex x`i,S for every i ≤ t and 0 ≤ ` < m(tp+ 1). There are tm(tp+ 1) choices for i and `.

We let the α be the value of the total budget, that is the sum of the items above.

Lemma 2.23. If φ is satisfiable, then G has an odd cycle transversal of size α.

Proof. Given a satisfying assignment γ to φ, we construct an odd cycle transversal Z of G of size α
together with a partition of V (G) \ Z into L and R such that every edge of G \ Z goes between a
vertex in L and a vertex in R. The assignment to φ corresponds to a group assignment of each Fi
for 1 ≤ i ≤ t. For every 1 ≤ i ≤ t and 0 ≤ ` < m(tp+ 1), we add to Z the good subset S of P `i that
corresponds to the group assignment of Fi. Notice that for each fixed i, the sets picked from P `i and
P `
′
i are equal for any `, `′. At this point we have picked one vertex from {p3`+1

i,j , p3`+2
i,j , p3`+3

i,j } for
each 1 ≤ i ≤ t, 1 ≤ j ≤ p, 0 ≤ ` < m(tp+ 1).

For every fixed 1 ≤ i ≤ t, 1 ≤ j ≤ p, there are three cases. If p1
i,j ∈ Z, we put p2

i,j into L and p3
i,j

into R. If p2
i,j ∈ Z we put p1

i,j into R and p3
i,j into L. If p

3
i,j ∈ Z we put p1

i,j into L and p2
i,j into R.

Now, for every 4 ≤ ` ≤ 3m(tp+ 1) such that p`i,j /∈ Z we put p`i,j into the same set out of {L,R} as
p`
′
i,j where 1 ≤ `′ ≤ 3 and ` ≡ `′ mod 3.

For every 1 ≤ i ≤ t, 0 ≤ ` ≤ m(tp + 1), we put L`i into L and R`i into R. For every triple of
a, b, q of pairwise adjacent vertices such that a ∈ A`i , b ∈ B`

i , and q ∈ Q`i , we proceed as follows. The
vertex a has a neighbour a′ in P `i and b has a neighbour b′ in P `i . There is a j such that b′ is the
successor of a′ on Pi,j . Thus, there are three cases;

• a′ ∈ Z and b′ ∈ L, we put a in R, q in L and b in Z.
• a′ ∈ R and b′ ∈ Z, we put a in Z, q in R and b in L.
• a′ ∈ L and b′ ∈ R, we put a in R, q in Z and b in L.

For every 1 ≤ i ≤ t, 0 ≤ ` ≤ m(tp+ 1), there are many arrows from vertices in P `i to vertices on
cycles X`

i,S for good subsets S of P `i . For each arrow, if its endpoint in P `i is in Z we add the active
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2.6. ODD CYCLE TRANSVERSAL 39

odd cycle transversal of the arrow to Z, otherwise we add the passive odd cycle transversal of the
arrow to Z. In either case, the remaining vertices on the arrow form a forest, and therefore we can
insert the remaining vertices of the arrow into L and R according to which sets out of {L,R,Z} u
and v are in.

For every 1 ≤ i ≤ t, 0 ≤ ` ≤ m(tp+ 1), there is exactly one set S such that the cycle X`
i,S only

has passive arrows pointing into it. This is exactly the set S which corresponds to the restriction of
γ to Fi. Each cycle X`

i,S′ that has at least one arrow pointing into them already contains at least
one vertex in Z—the endpoint of the active arrow pointing into the cycle. Thus we can partition
the remaining vertices of X`

i,S′ into L and R such that no edge has both endpoints in L or both
endpoints in R. For the cycle X`

i,S , we put x`i,S into Z and partition the remaining vertices of X`
i,S

into L and R such that no edge has both endpoints in L or both endpoints in R. We add the active
odd cycle transversal in the arrow from x`i,S to the cycle Y `

i into Z. For all other good subsets S′,
we add the passive odd cycle transversal in the arrow from x`i,S to the cycle Y `

i into Z. Thus each
cycle Y `

i contains one vertex in Z and the remaining vertices of Y `
i can be distributed into L and R.

For every arrow that goes from a vertex x`i,S into a cycle Ĉrh, we add the active odd cycle
transversal of the arrow to Z if x`i,S ∈ Z and add the passive odd cycle transversal to Z otherwise.
Again the remaining vertices on each arrow can easily be partitioned into L and R such that no
edge has both endpoints in L or both endpoints in R. This concludes the construction of Z. Since
we have put the vertices into Z in accordance to the budget described in the construction it follows
that |Z| ≤ α. All that remains to show, is that for each 1 ≤ h ≤ m and 0 ≤ r ≤ tp, the cycle Ĉrh has
at least one active arrow pointing into it.

The cycle Ĉrh corresponds to the clause Ch. The clause Ch is satisfied by γ and hence it is
satisfied by the restriction of γ to some group Fi. This restriction is a group assignment of Fi and
hence it corresponds to a good subset S of P rm+h

i , which happens to be exactly Z ∩ P rm+h
i . Thus

xrm+h
i,S ∈ Z and since the restriction of γ to Fi satisfies Ch, there is an arrow pointing from xrm+h

i,S

and into Ĉrh. Since this arrow is active, this concludes the proof.

Lemma 2.24. If G has an odd cycle transversal of size α, then φ is satisfiable.

Proof. Let Z be an odd cycle transversal of G of size α. Since G \ Z is bipartite, the vertices of
G \ Z can be partitioned into L and R such that every edge of G \ Z has one endpoint in L and the
other in R. Given Z, L and R, we construct a satisfying assignment to φ. Every arrow in G must
contain at least two vertices in Z, not counting the startpoint of the arrow. Let ~Z be a subset of
Z containing two vertices from each arrow, but no arrow start point. Observe that no two arrows
have the same endpoint, and therefore |~Z| is exactly two times the number of arrows in G. Let
Z ′ = Z \ ~Z.

We argue that for any 1 ≤ i ≤ t and 0 ≤ ` < m(tp+1) we have |Z ′∩(L`i∪R`i∪A`i∪B`
i ∪Q`i∪P `i )| ≥

4p. Observe that no vertices in L`i , R
`
i , A

`
i , B

`
i , Q

`
i or P

`
i are endpoints of arrows, and hence they do

not contain any vertices of ~Z. Suppose for contradiction that |Z ′∩ (L`i ∪R`i ∪A`i ∪B`
i ∪Q`i ∪P `i )| < 4p.

Then there is a vertex in λ ∈ L`i \ Z ′, and a vertex ρ ∈ R`i \ Z ′. Without loss of generality, λ ∈ L
and ρ ∈ R. Furthermore, there is a 1 ≤ j ≤ p such that

|Z ′ ∩ {p3`+1
i,j , p3`+2

i,j , p3`+3
i,j , a3`+1

i,j , a3`+2
i,j , a3`+3

i,j , b3`+1
i,j , b3`+2

i,j , b3`+3
i,j , q3`+1

i,j , q3`+2
i,j , q3`+3

i,j }| < 4.

Since {a3`+1
i,j , b3`+1

i,j , q3`+1
i,j }, {a

3`+2
i,j , b3`+2

i,j , q3`+2
i,j } and {a

3`+3
i,j , b3`+3

i,j , q3`+3
i,j } form triangles and must

contain a vertex from Z ′ each, it follows that each of these triangles contain exactly one vertex from
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40 CHAPTER 2. OPTIMALITY OF BOUNDED-TREEWIDTH ALGORITHMS

Z ′, and that Z ′ ∩ {p3`+1
i,j , p3`+2

i,j , p3`+3
i,j } = ∅. Since λ ∈ L and ρ ∈ R, λ is adjacent to all vertices of

A`i,j and ρ is adjacent to all vertices of B`
i,j , it follows that A

`
i,j \ Z ′ ⊆ R and B`

i,j \ Z ′ ⊆ L.
Hence, there are two cases to consider either (1) {p3`+1

i,j , p3`+3
i,j } ⊆ L and p3`+2

i,j ∈ R or (2)
{p3`+1
i,j , p3`+3

i,j } ⊆ R and p3`+2
i,j ∈ L. In the first case, observe that either a3`+2

i,j ∈ R or b3`+2
i,j ∈ L

and hence either a3`+2
i,j p3`+2

i,j or b3`+2
i,j p3`+3

i,j have both endpoints in the same set out of {L,R}, a
contradiction. The second case is similar, either a3`+1

i,j ∈ R or b3`+1
i,j ∈ L and hence either a3`+1

i,j p3`+1
i,j

or b3`+1
i,j p3`+2

i,j have both endpoints in the same set out of {L,R}, a contradiction. We conclude that
|Z ′ ∩ (L`i ∪R`i ∪A`i ∪B`

i ∪Q`i ∪ P `i )| ≥ 4p.
For any 1 ≤ i ≤ t and 0 ≤ ` < m(tp+ 1), Y `

i is an odd cycle so Y `
i contains a vertex in Z. If Y `

i

contains no vertices of Z ′, then it contains a vertex from ~Z and there is an active arrow pointing into
Y `
i . The starting point of this arrow is a vertex x`i,S for some good subset S of P `i . Since the arrow

is active and x`i,S is not the endpoint of any arrow, we know that x`i,S ∈ Z ′. Hence for any 1 ≤ i ≤ t
and 0 ≤ ` < m(tp+ 1), we have that either there is a good subset S of P `i such that x`i,S ∈ Z ′ or at
least one vertex of Y `

i is in Z ′.
The above arguments, together with the budget constraints, imply that for every 1 ≤ i ≤ t and

0 ≤ ` < m(tp+1), we have |Z ′∩(L`i∪R`i∪A`i∪B`
i ∪Q`i∪P `i )| = 4p and that |Z ′∩

⋃
{x`i,S}∪V (Y `

i )| = 1,
where the union is taken over all good subsets S of P `i . It follows Z ′ ∩ P `i is a good subset of P `i .
Let S = Z ′ ∩P `i . The cycle X`

i,S has odd length, and hence it must contain some vertex from Z. On
the other hand, all the arrows pointing into X`

i,S are passive, so X`
i,S cannot contain any vertices

from ~Z. Thus X`
i,S contains a vertex from Z ′, and by the budget constraints this must be x`i,S .

Now, consider three consecutive vertices p`i,j , p
`+1
i,j , p`+2

i,j for some 1 ≤ i ≤ t, 1 ≤ j ≤ p,
1 ≤ ` ≤ 3m(tp + 1) − 2. We prove that at least one of them has to be in Z. Suppose not. We
know that neither λb`/3ci , ρb`/3ci , λb`/3c+1

i nor ρb`/3c+1
i are in Z. Thus, without loss of generality

{λb`/3ci , λ
b`/3c+1
i } ⊆ L and {ρb`/3ci , ρ

b`/3c+1
i } ⊆ R. There are two cases. Either p`i,j ∈ R and p`+1

i,j ∈ L
or p`+1

i,j ∈ L and p`+3
i,j ∈ R. In the first case, we obtain a contradiction since either a`i,j ∈ R or b`i,j ∈ L.

In the second case, we get a contradiction since either a`+1
i,j ∈ R or b`+1

i,j ∈ L. Hence for any three
consecutive vertices on Pi,j , at least one of them is in Z. Since the budget constraints ensure that
there are at most |V (Pi,j)|/3 vertices in Pi,j ∩ Z, it follows from the pigeon hole principle that there
is an 0 ≤ r ≤ tp such that for any 1 ≤ i ≤ t and 1 ≤ h ≤ m and 1 ≤ h′ ≤ m, the set P rm+h

i ∩ Z
equals P rm+h′

i ∩ Z. Here equality is in the sense of equality of good subsets of P `i .
For every 1 ≤ i ≤ t, P rm+1

i ∩Z is a good subset of P rm+1
i . If P rm+1

i ∩Z corresponds to a group
assignment of Fi, then we set the variables in Fi to this assignment. Otherwise we set all the variables
in Fi to false. We need to argue that every clause Ch is satisfied by this assignment. Consider the
cycle Ĉrh. Since it is an odd cycle, it must contain a vertex from Z, the budget constraints and the
discussion above implies that this vertex is from ~Z. Hence there must be an active arrow pointing
into Ĉrh. The starting point of this active arrow is a vertex xmr+hi,S for some i and good subset S of
Pmr+hi . The set S corresponds to a group assignment of Fi that satisfies Ch. Since the arrow is
active xmr+hi,S ∈ Z ′, and by the discussion above we have that Pmr+hi ∩Z ′ = S. Now, S = Pmr+hi ∩Z ′

and S is equal to Pmr+1
i ∩Z ′ and hence the assignment to the variables of Fi satisfies Ch. Since this

holds for all clauses, this concludes the proof.

Lemma 2.25. pw(G) ≤ t(p+ 1) + 10p3p.

Proof. We show how to search the graph using at most t(p + 1) + 10p3p searchers. The strategy
consists of m(tp + 1) rounds numbered from round 0 to round m(tp + 1) − 1. Each round has t
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2.7. PARTITION INTO TRIANGLES 41

stages, numbered from 1 to t. In the beginning of round k there is a searcher on p3k+1
i,j and ρki for

every 1 ≤ i ≤ t, 1 ≤ j ≤ p. Let r and 1 ≤ h ≤ m be integers such that k + 1 = rm+ h.Recall, that
as we go around Ĉrh counterclockwise we first encounter vertices corresponding to group assignments
of F1, then to assignments of F2 and so on. In the beginning of round k we place a searcher on the
first vertex on Ĉrh that corresponds to an assignment of F1. If Ĉrh contains a dummy vertex, we
place a searcher on this vertex as well. These two searchers will remain on their respective vertices
throughout the round. In the beginning of stage s of round k we will assume that the vertices on
the cycle Ĉrh corresponding to group assignments of Fs′ , s′ < s have already been cleaned, and in
the beginning of every stage s > 1, there is a searcher standing on the first vertex corresponding to
a group assignment of Fs.

In stage s of round k, we place searchers on all vertices of P ks , Aks , Bk
s , Qks , Lks , Rks , Y k

s and all
vertices of cycles Xk

s,S for every good subset S of P ks , on all vertices of arrows starting or ending
in such cycles, and on all vertices of Ĉrh corresponding to group assignments of Fs. In total this
amounts to less than 10p3p vertices.

In the last part of stage s of round k, we place searchers on p3(k+1)+1
s,j for every 1 ≤ j ≤ p and

on ρk+1
s . Then we remove all the searchers that were placed out in the first part of phase s except

for the searcher on the last vertex on Ĉrh corresponding to a group assignment of Fs. Unless s = 1

there is also a searcher on the last vertex on Ĉrh corresponding to a group assignment of Fs−1. We
remove this searcher, and the next stage can commence. In the end of the last stage of round k we
remove all the searchers from Ĉrh. Then the last stage can commence. At any point in time, at most
t(p+ 1) + 10p3p searchers are placed on G.

Proof (of Theorem 2.22). Suppose Odd Cycle Transversal can be solved in time (3− ε)pw(G) ·
nO(1) for some ε > 0. Then there is an ε′ < 1 such that (3− ε)pw(G) · nO(1) ≤ 3ε

′pw(G) · nO(1). We
choose p large enough such that ε′ · p+1

p−1 = δ′ < 1. Given an instance of SAT we construct an instance
of Odd Cycle Transversal using the above construction and the chosen value of p. Then we solve
the Odd Cycle Transversal instance using the (3− ε)pw(G) · nO(1) time algorithm. Correctness
is ensured by Lemmata 2.23 and 2.24. Lemma 2.25 yields that the total time taken is upper
bounded by (3− ε)pw(G) ·nO(1) ≤ 3ε

′pw(G) ·nO(1) ≤ 3ε
′(t(p+1)+f(ε′)) ·nO(1) ≤ 3

ε′d n
bp log 3c e(p+1) ·nO(1) ≤

3
ε′ n(p+1)
bp log 3c · nO(1) ≤ 3

ε′ n(p+1)
(p−1) log 3 · nO(1) ≤ 3

δ′ n
log 3 · nO(1) ≤ 2δ

′n · nO(1) = (2 − δ)n · nO(1) for some
δ > 01.

2.7 Partition Into Triangles

A triangle packing in a graph G is a collection of pairwise disjoint vertex sets S1, S2, . . . St in G such
that Si induces a triangle in G for every i. The size of the packing is t. If V (G) =

⋃
i≤t Si, then

the collection S1 . . . St is a partition of G into triangles. In the Triangle Packing problem, we
are given a graph G and an integer t and asked whether there is a triangle packing in G of size at
least t. In the Partition Into Triangles problem, we are given a graph G and asked whether G
can be partitioned into triangles. Notice that since Partition Into Triangles is the special case
of Triangle Packing when the number of triangles is the number of vertices divided by 3, the
bound of Theorem 2.26 holds for Triangle Packing as well.

Theorem 2.26. If Partition Into Triangles can be solved in time (2− ε)pw(G) ·nO(1) for ε > 0,
then SAT can be solved in (2− δ)n · nO(1) time for some δ > 0.

Construction. first show the lower bound for Triangle Packing and then modify our
construction to also work for the more restricted Partition Into Triangles problem. Given an
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Pn
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t31
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Figure 2.9: Reduction to Triangle Packing, showing how the vertices ĉrj and d̂rj representing
clause Cj = (x1 ∨ x̄2 ∨ x4) are connected to the paths P1, . . . , Pn.

instance φ of SAT we construct a graph G as follows (see Figure 2.9). For every variable vi, we make
a path Pi on 2m(n+ 1) + 1 vertices. We denote the `-th vertex of Pi by p`i . For every i, we add a set
Ti of 2m(n+ 1) vertices, and let the `-th vertex of Ti be denoted t`i . For every 1 ≤ ` ≤ 2m(n+ 1)
we add the edges t`ip

`
i and t

`
ip
`+1
i .

For every clause Cj , we add n+ 1 gadgets corresponding to the clause. In particular, for every
0 ≤ r ≤ n we do the following. First we add the vertices ĉrj and d̂rj and the edge ĉrj d̂

r
j . For every

variable vi that occurs in Cj positively, we add the edges ĉrjt
2(mr+j)
i and d̂rjt

2(mr+j)
i . For every

variable vi that occurs in Cj negated, we add the edges ĉrjt
2(mr+j)−1
i and d̂rjt

2(mr+j)−1
i . Doing this

for every r and every clause Cj concludes the construction of G.

Lemma 2.27. If φ satisfiable, then G has a triangle packing of size mn(n+ 1) +m(n+ 1).

Proof. Consider a satisfying assignment to φ. For every variable vi that is set to true and integer
1 ≤ ` ≤ m(n + 1), we add {t2l−1

i , p2l−1
i , p2l

i } to the triangle packing. For every variable vi that is
set to false and integer 1 ≤ ` ≤ m(n+ 1), we add {t2li , p2l

i , p
2l+1
i } to the triangle packing. For every

clause Cj , there is a literal set to true. Suppose this literal corresponds to the variable vi. Notice
that if vi occurs positively in Cj , then vi is set to true, and if it occurs negatively it is set to false.
For each 0 ≤ r ≤ n, if vi occurs positively in Cj , then t

2(mr+j)
i has not yet been used in any triangle,

so we can add {ĉrj , d̂rj , t
2(mr+j)
i } to the triangle packing. On the other hand, if vi occurs negated in

Cj , then t
2(mr+j)−1
i has not yet been used in any triangle, so we can add {ĉrj , d̂rj , t

2(mr+j)−1
i } to the

triangle packing. In total mn(n+ 1) +m(n+ 1) triangles are packed.

Lemma 2.28. If G has a triangle packing of size mn(n+ 1) +m(n+ 1), then φ satisfiable.
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Proof. Observe that for any j and r, every triangle that contains ĉrj also contains d̂rj and vice
versa. Furthermore, if we remove all the vertices ĉrj and d̂

r
j for every j and r from G we obtain a

disconnected graph with n connected components, G[Ti ∪ V (Pi)] for every i. Thus, the only way
to pack mn(n + 1) + m(n + 1) triangles in G is to pack mn(n + 1) triangles in each component
G[Ti ∪ V (Pi)] and in addition make sure that every pair (ĉrj , d̂

r
j) is used in some triangle in the

packing.
The only way to pack mn(n+ 1) triangles in a component G[Ti ∪ V (Pi)] is to use every second

triangle of the form {t`i , p`i , p
`+1
i }, except possibly at one point where two triangles on this form are

skipped. By the pigeon hole principle there is an 0 ≤ r ≤ n such that for every i, every second
triangle of the form {t2mr+`i , p2mr+`

i , p2mr+`+1
i } for 1 ≤ ` ≤ 2m is used. We make an assignment to

the variables of φ as follows. For every i such that {t2mr+1
i , p2mr+1

i , p2mr+2
i } is used, vi is set to true,

and otherwise {t2mr+2
i , p2mr+2

i , p2mr+3
i } is used in the packing and vi is set to false. We prove that

this assignment satisfies φ.
For every j, the pair (ĉrj , d̂

r
j) is used in some triangle in the packing. This triangle either contains

t
2(mr+j)
i or t2(mr+j)−1

i for some i. If it contains t2(mr+j)
i , then vi occurs positively in Cj . Furthermore,

since the triangle packing contains every second triangle of the form {t2mr+`i , p2mr+`
i , p2mr+`+1

i } for
1 ≤ ` ≤ 2m, it follows that the triangle packing contains {t2mr+1

i , p2mr+1
i , p2mr+2

i } and hence vi is
set to true. By an identical argument, if the triangle containing the pair (ĉrj , d̂

r
j) contains t2(mr+j)−1

i ,
then vi occurs negated in Cj and vi is set to false. This concludes the proof.

We now modify the construction to work for Partition Into Triangles instead of Triangle
Packing. Given the graph G as constructed from φ, we construct a graph G′ as follows. For every
1 ≤ i ≤ n and 1 ≤ l ≤ m(n+ 1), we make a clique Q`i on four vertices. The vertices of Q`i are all
adjacent to t2li and to t2l−1

i . For every i < n and and 1 ≤ l ≤ m(n + 1) we make all vertices of
Q`i adjacent to all vertices of Q`i+1. Suppose that 2n+ 2 is p modulo 3 for some p ∈ {0, 1, 2}. We
remove p vertices from Q`n for every l ≤ m(n+ 1).

Lemma 2.29. G has a triangle packing of size α if and only if G′ can be partitioned into triangles.
Here, α is a non-negative integer.

Proof. In the forward direction, consider a triangle packing of size α in G as constructed in
Lemma 2.27. We can assume that the triangle packing has this form, because by Lemma 2.28 we
have that φ is satisfiable.

For every fixed 1 ≤ l ≤ m(n+ 1), we proceed as follows. We know that there exists an i such
that both t2li and t2l−1

i are used in the packing. For every i′ 6= i, exactly one out of t2li′ and t
2l−1
i′ is

used in the packing. For each such i′, we make a triangle containing the unused vertex out of t2li′ and
t2l−1
i′ and two vertices of Q`i′ . Then we “clean up” Q`1, . . . , Q`n as follows.

In particular, we start with the yet unused vertices of Q`1. There are two of them. Make a
triangle containing these two vertices and one vertex of Q`2. Now Q`2 has one unused vertex left.
Make a triangle containing this vertex and the two unused vertices of Q`3. Continue in this fashion
until arrive at Q`i′ . At this point we have used 0, 1 or 2 vertices of Q`i′ a triangle containing some
vertices in Q`i′−1. The case when we have used 0 vertices of Q`i′ also covers the case that i′ = 1. If
we only used 0 or 1 vertices of Q`i′ , then we add a triangle that contains 3 vertices of Q`i′ . If there
are still unused vertices in Q`i′ , then their number is either 1 or 2. We make a triangle containing
these vertices and 1 or 2 of the unused vertices of Q`i′+1. Now we proceed to Q`i′+1 and continue in
this manner until we reach Q`n. Since the total number of vertices in

⋃
j≤nQ

`
j is 4n− p, we know

that 2n− 2 of these vertices are used for triangles with vertices of G, and 2n+ 2− p is divisible by 3
the process described above will partition all the unused vertices of

⋃
j≤nQ

`
j into triangles.
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In the reverse direction, we argue that in any partitioning of G′ into triangles, exactly α triangles
must lie entirely within G. In fact, we argue that for any l ≤ m(n+ 1) exactly n− 1 vertices out of⋃
i≤n{t2li , t

2l−1
i } are used in triangles containing vertices from

⋃
i≤nQ

`
i .

Pick 1 ≤ j ≤ m and r such that l = mr + j. Exactly one out of
⋃
i≤n{t2li , t

2l−1
i } is in a triangle

with ĉrj and d̂
r
j . Furthermore, for each i ≤ n the vertex p2l

i must be in a triangle either containing
t2li or t2li . Hence, at most n − 1 vertices out of

⋃
i≤n{t2li , t

2l−1
i } are used in triangles containing

vertices from
⋃
i≤nQ

`
i . Furthermore, any triangle containing t2li or t2l−1

i } must either contain p2l
i , ĉ

r
j

or some vertex in
⋃
i≤nQ

`
i . Hence exactly n− 1 vertices out of

⋃
i≤n{t2li , t

2l−1
i } are used in triangles

containing vertices from
⋃
i≤nQ

`
i . Thus in the packing, exactly 3α vertices in G′ are contained in

triangles completely inside G, and hence G has a triangle packing of size α.

To complete the proof for Partition Into Triangles we need to bound the pathwidth of G′.

Lemma 2.30. pw(G′) ≤ n+ 10.

Proof. We give a search strategy for G′ that uses n+ 10 searchers. The strategy consists of m(n+ 1)
rounds and each round has n stages. In the beginning of round l, 1 ≤ l ≤ m(n + 1), there are n
searchers placed, one on each vertex p2l−1

i for every i. Let r and 1 ≤ j ≤ m be integers such that
l = mr+ j. We place one searcher on ĉrj and one on d̂rj . These two searchers will stay put throughout
the duration of this round. In stage i of round l we place searchers on all vertices of Q`i and Q

`
i+1.

Then we place searchers on t2l−1
i , t2li , p

2l
i and p2l+1

i . At the end of stage i we remove the searchers
from Q`i , t

2l−1
i , t2li and p2l

i . We then proceed to the next stage. At the end of the round we remove
the searchers from ĉrj and d̂rj . Notice that now, there are searchers on p2l+1

i for every i, and the next
round can commence.

Lemmata 2.27,2.28,2.29 and 2.30 prove Theorem 2.26.
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CHAPTER 3

Treewidth and tight bounds on the complexity of Constraint Satisfaction Problems

Due to its generality, solving constraint satisfaction problems is NP-hard if we do not impose any
additional restrictions on the possible instances. The main question that we want to explore in
this chapter (and in many of the other chapters as well) is to understand what kind of structural
restrictions on the primal graph of the instance can lead to improved algorithms. In this section,
we consider only binary CSP instances, i.e., where every constraint involves at most two variables.
The results presented here essentially go through for CSP instances with any fixed finite arity. The
orginial publication where these results appeared [185] presented a generalization to the setting of
the homomorphism problem for relational structures of a fixed signature, from which the results
easily follow for any fixed finite arity. In order to avoid introducing another layer of formalisms
(relational structures, homomorphisms, etc.), the results on the homomorphism problem are omitted
from this dissertation.

Freuder [108] observed that if the treewidth of the primal graph is k, then CSP can be solved in
time nO(k). (Here n is the size of the input; in the cases we are interested in in this chapter, the
input size is polynomially bounded by the domain size and the number of variables.) The aim of
this chapter is to investigate whether there exists any other structural property of the primal graph
that can be exploited algorithmically to speed up the search for the solution.

Publications. The results presented in this chapter are based on a single-author publication
that appeared in Theory of Computing [185] (an extended abstract appeared in the proceedings of
the FOCS 2007 conference [180]).

Structural complexity of CSP instances. We would like to characterize the primal graphs
that allow efficient solution of the CSP instance. But we have to be careful with the formalization
of this question: if G is a graph with k vertices, then any CSP instance with primal graph G can
be solved in time nO(k) by brute force. Therefore, restricting CSP to any fixed graph G makes it
polynomial-time solvable. The real question is which classes of graphs make the problem polynomial-
time solvable. Formally, for a class G of graphs, let CSP(G) be the class of all CSP instances where
the primal graph of the instance is in G. Note that this definition does not make any restriction on
the constraint relations: it is possible that every constraint has a different constraint relation. If G
has bounded treewidth, then CSP(G) is polynomial-time solvable. The converse is also true (under
standard assumptions).

45
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Theorem 3.1 (Grohe, Schwentick, Segoufin [127]; Grohe [123]). If G is a recursively enumerable
class of graphs, then CSP(G) is polynomial-time solvable if and only if G has bounded treewidth
(assuming FPT 6= W[1]).

The results in [123, 127] are actually more general and are stated in terms of the conjunctive
query and homomorphism problems, but it is easy to see that those results imply Theorem 3.1. The
assumption FPT 6= W[1] is a standard hypothesis of parameterized complexity (cf. [74,87,102]). Let
us emphasize that the proof of Theorem 3.1 uses in an essential way the fact that the domain size
can be arbitrarily large.

By Theorem 3.1, bounded treewidth is the only property of the primal graph that can make
the problem polynomial-time solvable. However, Theorem 3.1 does not rule out the possibility that
there is some structural property that may enable us to solve instances significantly faster than
the treewidth-based algorithm of Freuder [108], that is, for some class G of graphs with unbounded
treewidth, CSP(G) could be solved in time nf(k) where k is the treewidth and f is a slowly growing
function such as

√
k or log k. The main result of this chapter is that this is not possible; the

nO(k)-time algorithm is essentially optimal for every class of graphs, up to an O(log k) factor in the
exponent. Thus, in our specific setting, there is no other structural information beside treewidth
that can be exploited algorithmically.

The formal statement of the main result of the chapter is the following (we denote by tw(G) the
treewidth of G):

Theorem 3.2. If there is a class G of graphs with unbounded treewidth, an algorithm A, and
a function f such that A correctly decides every binary CSP instance and the running time is
f(G)‖I‖o(tw(G)/ log tw(G)) for binary CSP(G) instances I with primal graph G ∈ G, then ETH fails.

Binary CSP(G) is the special case of CSP(G) where every constraint is binary, that is, involves
two variables. Note that adding this restriction makes the statement of Theorem 3.2 stronger.
Similarly, allowing the multiplicative factor f(G) in the running time also makes the result stronger.
We do not make any assumption on f , for example, we do not require that f be computable.

The main technical tool of the proof of Theorem 3.1 in [123,127] is the Excluded Grid Theorem
of Robertson and Seymour [208], which states that there is an unbounded function g(k) such that
every graph with treewidth at least k contains a g(k)× g(k) grid as minor. The basic idea of the
proof in [123] is to show that CSP(G) is not polynomial-time solvable if G contains every grid and
then this result is used to argue that CSP(G) is not polynomial for any G with unbounded treewidth,
since in this case G contains every grid as minor. However, this approach does not work if we want
a tighter lower bound, as in Theorem 3.2. The problem is that the function g(k) is very slowly
growing. For a long time, the function g(k) was o(log k) in the best known proofs of the Excluded
Grid Theorem [85,208]. In a breakthrough result of Chekuri and Chuzhoy [55] and its subsequent
improvements [64, 65], the dependence was improved to polynomial, i.e., g(k) = Ω(k1/c) for some
integer c ≥ 1 (around 19 in the latest proof). It is possible that this constant c is improved in the
future, but lower bounds show that the function g(k) cannot be better than Ω(k1/2) [209]. Therefore,
if the only property of graphs with treewidth at least k that we use is that they have g(k)× g(k)
grid minors, then we immediately lose a lot: as CSP on the g(k)× g(k) grid can be solved in time
‖I‖O(g(k)), no lower bound stronger than ‖I‖o(k1/2) can be proved with this approach. Thus we need
a characterization of treewidth that is tighter than the Excluded Grid Theorem.

The almost-tight bound of Theorem 3.2 is made possible by a new characterization of treewidth
that is tight up to a logarithmic factor (Theorem 3.5). This result may be of independent interest.
We generalize the notion of minors the following way. An embedding of H into G is a mapping ψ from
V (H) to connected subsets of G such that if u, v ∈ V (H) are adjacent, then either ψ(u) ∩ ψ(v) 6= ∅
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or there is an edge connecting a vertex of ψ(u) and a vertex of ψ(v). The depth of the embedding is
at most q if every vertex of G appears in the images of at most q vertices of H. Thus H has an
embedding of depth 1 into G if and only if H is a minor of G.

We characterize treewidth by the “embedding power” of the graph in the following sense. If q is
sufficiently large, then H has an embedding of depth q into G. For example, q = |V (H)| ≤ 2|E(H)|
(assuming H has no isolated vertices) is certainly sufficient. However, we show that if the treewidth
of G is at least k, then there is an embedding with depth q = O(|E(H)| log k/k), that is, the depth
is a factor O(k/ log k) better than in the trivial bound of 2|E(H)|. We prove this result using the
well-known characterization of treewidth by separators and an O(log k) integrality gap bound for
the sparsest cut. The main idea of the proof of Theorem 3.2 is to use the embedding power of a
graph with large treewidth to simulate a 3SAT instance efficiently.

Subgraph problems. Tight lower bounds on the exponent under ETH have previously been
obtained in the framework of parameterized complexity. A basic result in this direction is due to
Chen et al.:

Theorem 3.3 (Chen et al. [59, 60]). There is no f(k) · no(k)-time algorithm for k-Clique, unless
ETH fails.

Theorem 3.3 can be interpreted as a lower bound for the Subgraph Isomorphism problem
(given two graphs G and H, decide if G is a subgraph of H). Using the color coding technique of Alon,
Yuster, and Zwick [13], it is possible to solve Subgraph Isomorphism in time f(|V (G)|) ·nO(tw(G)).
Theorem 3.3 and the fact that the treewidth of the k-clique is k − 1 shows that it is not possible to
improve the dependence on tw(G) in the exponent to o(tw(G)), since in particular this would imply
an f(k) · no(k)-time algorithm for the k-Clique problem. However, this observation does not rule out
the possibility that there is a special class of graphs (say, bounded degree graphs or planar graphs)
where it is possible to improve the exponent to o(tw(G)). In Section 3.4, we discuss lower bounds for
Subgraph Isomorphism (more precisely, to its colored version) that follow from our CSP results.

Another important aspect of Theorem 3.3 is that it can be used to obtain lower bounds for
other parameterized problems. W[1]-hardness proofs are typically done by parameterized reductions
from k-Clique. It is easy to observe that a parameterized reduction implies a lower bound similar
to Theorem 3.3 for the target problem, with the exact form of the lower bound depending on the
way the reduction changes the parameter. Many of the more involved reductions use edge selection
gadgets (see e.g., [98]). As the k-clique has Θ(k2) edges, this means that the reduction increases
the parameter to Θ(k2) and we can conclude that there is no f(k) · no(

√
k)-time algorithm for the

target problem (unless ETH fails). If we want to obtain stronger bounds on the exponent, then we
have to avoid the quadratic blow-up of the parameter and do the reduction from a different problem.
One possibility is to reduce from Subgraph Isomorphism, parameterized by the number of edges.
Technically, it is usually more convenient to reduce from the Partitioned Subgraph Isomorphism
problem, where the vertex set of the host graph H is partitiond into |V (G)| classes, and we are
looking for a subgraph mapping where the i-th vertex of G is mapped to the i-th class of H. In a
reduction from Partitioned Subgraph Isomorphism, we need |E(G)| edge selection gadgets,
which usually implies that the new parameter is Θ(|E(G)|). Therefore, such a reduction and the
following corollary obtained in Section 3.4 allows us to conclude that there is no f(k) ·no(k/ log k)-time
algorithm for the target problem:

Corollary 3.4. If Partitioned Subgraph Isomorphism can be solved in time f(k)no(k/ log k),
where f is an arbitrary function and k = |E(G)| is the number of edges of the smaller graph G, then
ETH fails.
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The use of Corollary 3.4 has become a standard technique when proving amost-tight lower bounds
ruling out f(k)no(k/ log k) time algorithms [35–37, 42, 68, 71, 92, 94, 128, 155, 158, 177, 190, 203]). It
seems that edge representation of some sorts is required for many W[1]-hardness proofs, and for
such problems basing the reduction on Theorem 3.3 would be able to rule out only algorithms with
running time f(k) · no(

√
k). For these problems, Corllary 3.4 is the only know way of obtaining a

lower bound (almost) matching the nO(k) uppers bounds.

3.1 Preliminaries

We denote by V (G) and E(G) the set of vertices and the set of edges of the graph G, respectively.
Given a graph G, the line graph L(G) has one vertex for each edge of G, and two vertices of L(G) are
connected if and only if the corresponding edges in G share an endpoint. The line graph L(Kk) of
the complete graph Kk will appear repeatedly in the paper. Usually we denote the vertices of L(Kk)
by v{i,j} (1 ≤ i < j ≤ k), where v{i1,j1} and v{i2,j2} are adjacent if and only if {i1, j1} ∩ {i2, j2} 6= ∅.

A graph H is a minor of G if H can be obtained from G by a sequence of vertex deletions, edge
deletions, and edge contractions. The following alternative definition will be more relevant to our
purposes. An embedding of H into G is a mapping ψ from V (H) to connected subsets of G such that
if u, v ∈ V (H) are adjacent, then either ψ(u) ∩ ψ(v) 6= ∅ or there is an edge connecting a vertex of
ψ(u) and a vertex of ψ(v). The depth of a vertex v of G is the size of the set {u ∈ V (H) | v ∈ ψ(u)}
and the depth of the embedding is the maximum of the depths of the vertices. It is easy to see
that H is a minor of G if and only if H has an embedding of depth 1 into G, that is, the images
are disjoint. To emphasize this connection, we will say that an embedding of depth 1 is a minor
mapping.

In an equivalent way, we can use minors to define embeddings of a certain depth. Given a graph
G and an integer q, we denote by G(q) the graph obtained by replacing every vertex with a clique of
size q and replacing every edge with a complete bipartite graph on q + q vertices. It is easy to see
that H has an embedding of depth q into G if and only if H is a minor of G(q). The mapping φ that
maps each vertex of G to the corresponding clique of G(q) will be called the blow-up mapping from
G to G(q).

3.2 Embedding in a graph with large treewidth

If H is a graph with n vertices, then obviously H has an embedding of depth n into any (nonempty)
G. If G has a clique of size k, then there is an embedding with depth at most n/k. Furthermore,
even if G does not have a k-clique subgraph, but it does have a k-clique minor, then there is such
an embedding with depth at most n/k. Thus a k-clique minor increases the “embedding power” of
a graph by a factor of k. The main result of the section is that large treewidth implies a similar
increase in embedding power. The following lemma states this formally:

Theorem 3.5. There are computable functions f1(G), f2(G), and a universal constant c such that
for every k ≥ 1, if G is a graph with tw(G) ≥ k and H is a graph with |E(H)| = m ≥ f1(G) and no
isolated vertices, then H has an embedding into G with depth at most dcm log k/ke. Furthermore,
such an embedding can be found in time f2(G)mO(1).

Using the equivalent characterization by minors, the conclusion of Theorem 3.5 means that H is
a minor of G(q) for q = dcm log k/ke. In the rest of the paper, we mostly use this notation.

The value cm log k/k is optimal up to an O(log k) factor, that is, it cannot be improved to
o(m/k). To see this, observe first that tw(G(q)) = Θ(q · tw(G)) (cf. [125]). We use the fact that
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the treewidth of a graph H with m edges can be Ω(m) (for example, bounded-degree expanders).
Therefore, if tw(G) = k, then the treewidth of G(q) for q = o(m/k) is o(m), making it impossible
that H is a minor of G(q). Furthermore, Theorem 3.5 does not remain true if m is the number of
vertices of H (instead of the number of edges). Let H be a clique on m vertices, and let G be a
bounded-degree graph on O(k) vertices with treewidth k. It is easy to see that G(q) has O(q2k)
edges, hence H can be a minor of G(q) only if q2k = Ω(m2), that is, q = Ω(m/

√
k). Note that it

makes no sense to state in this form an analog of Theorem 3.5 where m is the number of vertices of
H: the worst case happens if H is an m-clique, and the theorem would become a statement about
embedding cliques. The requirement m ≥ f1(G) is a technical detail: some of the arguments in the
embedding technique requires H to be large.

The graph L(Kk), that is, the line graph of the complete graph plays a central role in the proof
of Theorem 3.5. The proof consists of two parts. In the first part (Section 3.2.1), we show that if
tw(G) ≥ k, then a blow-up of L(Kk) is a minor of an appropriate blow-up of G. This part of the
proof is based on the characterization of treewidth by balanced separators and uses a result of Feige
et al. [97] on the linear programming formulation of separation problems. Similar ideas were used
in [125]; some of the arguments are reproduced here for the convenience of the reader. In the second
part (Section 3.2.2), we show that every graph is a minor of an appropriate blow-up of L(Kk).

3.2.1 Embedding L(Kk) in G

Given a nonempty set W of vertices, we say that a set S of vertices is a balanced separator (with
respect to W ) if |W ∩ C| ≤ |W |/2 for every connected component C of G \ S. A k-separator is
a separator S with |S| ≤ k. The treewidth of a graph is closely connected with the existence of
balanced separators:

Lemma 3.6 ( [205], [102, Section 11.2]).

(a) If the graph G has treewidth greater than 3k, then there is a set W ⊆ V (G) of size 2k + 1
having no balanced k-separator.

(b) If the graph G has treewidth at most k, then every W ⊆ V (G) has a balanced (k+ 1)-separator.

A separation is a partition of the vertices into three classes (A,B, S) (S 6= ∅) such that there
is no edge between A and B. Note that it is possible that A = ∅ or B = ∅. The sparsity of the
separation (A,B, S) (with respect to W ) is defined in [97] as

αW (A,B, S) =
|S|

|(A ∪ S) ∩W | · |(B ∪ S) ∩W |
. (3.1)

We denote by αW (G) the minimum of αW (A,B, S) taken over every separation (A,B, S). It is easy
to see that for every G and nonempty W , 1/|W |2 ≤ αW (G) ≤ 1/|W | (the second inequality follows
from the fact that the separation (V (G) \W, ∅,W ) has sparsity exactly 1/|W |). For our applications,
we need a setW such that αW (G) is close to the maximum possible, that is, Ω(1/|W |). The following
lemma shows that the non-existence of a balanced separator can guarantee the existence of such a
set W . The connection between balanced separators and sparse separations is well known, see for
example [97, Section 6]. However, in our parameter setting a simpler argument is sufficient.

Lemma 3.7. If |W | = 2k + 1 and W has no balanced k-separator in a graph G, then αW (G) ≥
1/(4k + 1).
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Proof. Let (A,B, S) be a separation of sparsity αW (G); we may assume that |A∩W | ≥ |B∩W |, hence
|B ∩W | ≤ k. If |S| > k, then αW (A,B, S) ≥ (k+ 1)/(2k+ 1)2 ≥ 1/(4k+ 1). If |S| ≥ |(B ∪S)∩W |,
then αW (A,B, S) ≥ 1/|(A ∪ S) ∩W | ≥ 1/(2k + 1). Assume therefore that |(B ∪ S) ∩W | ≥ |S|+ 1.
Let S′ be a set of k − |S| ≥ 0 arbitrary vertices of W \ (B ∪ S). We claim that S ∪ S′ is a balanced
k-separator of W . Suppose that there is a component C of G \ (S ∪ S′) that contains more than
k vertices of W . Component C is either a subset of A or a subset of B. However, C cannot be a
subset of B, since |B ∩W | ≤ k. On the other hand, |(A \S′)∩W | ≤ 2k+ 1− |(B ∪S)∩W | − |S′| ≤
2k + 1− (|S|+ 1)− (k − |S|) ≤ k.

Remark 3.8. Lemma 3.7 does not remain true in this form for larger W . For example, let K be a
clique of size 3k + 1, let us attach k degree-one vertices to a distinguished vertex x of K, and let
us attach a degree-one vertex to every other vertex of K. Let W be the set of these 4k degree-one
vertices. It is not difficult to see that W has no balanced k-separator. On the other hand, S = {x}
is a separator with sparsity 1/(k · 3k), hence αW (G) = O(1/k2).

Let W = {w1, . . . , wr} be a set of vertices. A concurrent vertex flow of value ε is a collection of
|W |2 flows such that for every ordered pair (u, v) ∈W ×W , there is a flow of value ε between u and
v, and the total amount of flow going through each vertex is at most 1. A flow between u and v is a
weighted collection of u− v paths. A u− v path contributes to the load of vertex u, of vertex v, and
of every vertex between u and v on the path. In the degenerate case when u = v, vertex u = v is
the only vertex where the flow between u and v goes through, that is, the flow contributes to the
load of only this vertex.

The maximum concurrent vertex flow can be expressed as a linear program the following way.
For u, v ∈W , let Puv be the set of all u− v paths in G, and for each p ∈ Puv, let variable puv ≥ 0
denote the amount of flow that is sent from u to v along p. Consider the following linear program:

maximize ε
s. t.∑

p∈Puv

puv ≥ ε ∀u, v ∈W

∑
(u,v)∈W×W

∑
p∈Puv :w∈p

puv ≤ 1 ∀w ∈ V (LP1)

puv ≥ 0 ∀u, v ∈W,p ∈ Puv

The dual of this linear program can be written with variables {`uv}u,v∈W and {sv}v∈V the following
way:
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minimize
∑
v∈V

sv

s. t.∑
w∈p

sw ≥ `uv ∀u, v ∈W,p ∈ Puv (∗)∑
(u,v)∈W×W

`uv ≥ 1 (∗∗) (LP2)

`uv ≥ 0 ∀u, v ∈W
sw ≥ 0 ∀w ∈ V

We show that, in some sense, (LP2) is the linear programming relaxation of finding a separator
with minimum sparsity. If there is a separation (A,B, S) with sparsity αW (A,B, S), then (LP2) has
a solution with value at most αW (A,B, S). Set sv = αW (A,B, S)/|S| if v ∈ S and sv = 0 otherwise;
the value of such a solution is clearly αW (A,B, S). For every u, v ∈W , set `uv = minp∈Puv

∑
w∈p sw

to ensure that inequalities (*) hold. To see that (**) holds, notice first that `uv ≥ αW (A,B, S)/|S|
if u ∈ A∪S, v ∈ B ∪S, as every u− v path has to go through at least one vertex of S. Furthermore,
if u, v ∈ S and u 6= v, then `uv ≥ 2αW (A,B, S)/|S| since in this case a u− v paths meets S in at
least two vertices. The expression |(A ∪ S) ∩W | · |(B ∪ S) ∩W | counts the number of ordered pairs
(u, v) satisfying u ∈ (A ∪ S) ∩W and v ∈ (B ∪ S) ∩W , such that pairs with u, v ∈ S ∩W , u 6= v
are counted twice. Therefore,∑

(u,v)∈W×W

`uv ≥ (|(A ∪ S) ∩W | · |(B ∪ S) ∩W |) · α
W (A,B, S)

|S|
= 1,

which means that inequality (**) is satisfied.
The other direction is not true: a solution of (LP2) with value α does not imply that there is a

separation with sparsity at most α. However, Feige et al. [97] proved that it is possible to find a
separation whose sparsity is greater than that by at most a O(log |W |) factor (this result appears
implicitly already in [172]):

Theorem 3.9 (Feige et al. [97], Leighton and Rao [172]). If (LP2) has a solution with value α, then
there is a separation with sparsity O(α log |W |).

We use (the contrapositive of) Theorem 3.9 to obtain a concurrent vertex flow in a graph with
large treewidth. This concurrent vertex flow can be used to find an L(Kk) minor in the blow-up of
the graph in a natural way: the flow paths correspond to the edges of Kk.

Lemma 3.10. Let G be a graph with tw(G) > 3k. There are universal constants c1, c2 > 0 such
that L(Kk)

(dc1 logne) is a minor of G(dc2 logn·k log ke), where n is the number of vertices of G.

Proof. Since G has treewidth greater than 3k, by Lemma 3.6(a), there is a subset W0 of size 2k + 1
that has no balanced k-separator. By Lemma 3.7, αW0(G) ≥ 1/(4k + 1) ≥ 1/(5k). Therefore,
Theorem 3.9 implies that the dual linear program (LP2) has no solution with value less than
1/(c05k log(2k + 1)), where c0 is the constant hidden by the big O notation in Theorem 3.9. By
linear programming duality, there is a concurrent flow of value at least α := 1/(c05k log(2k + 1))
connecting the vertices of W0; let puv be a corresponding solution of (LP1).
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Let W ⊆W0 be a subset of k vertices. For each pair of vertices (u, v) ∈W ×W , let us randomly
and independently choose dlnne paths Pu,v,1, . . . , Pu,v,dlnne of Puv (here ln denotes the natural
logarithm of n), where path p is chosen with probability

puv∑
p′∈Puv(p

′)uv
≤ puv

α
. (3.2)

That is, we scale the values puv to obtain a probability distribution. Inequality (3.2) is true
because the values puv satisfy (LP1). The expected number of times a path p ∈ Puv is selected
is dlnne · (puv/

∑
p′∈Puv(p

′)uv) ≤ dlnne · puv/α. Thus the expected number of paths selected
from Puv that go through a vertex w is at most dlnne ·

∑
p∈Puv :w∈p p

uv/α. Considering that we
select dlnne paths for every pair (u, v) ∈ W × W , the expected number µw of selected paths
containing w is at most dlnne ·

∑
(u,v)∈W×W

∑
p∈Puv :w∈p p

uv/α, which is at most dlnne/α, since the
values puv satisfy (LP1). We use the following standard Chernoff bound: for every r > µw, the
probability that more than µw + r of the k2 lnn paths contain vertex w is at most (µwe/r)

r. Thus
the probability that more than µw + 10dlnne/α ≤ 11dlnne/α of the paths contain w is at most
(µwe/(10dlnne/α))10dlnne/α ≤ (1/e)10 lnn = 1/n10 (in the exponent, we used dlnne/α ≥ lnn, since
it can be assumed that c0 ≥ 1 and lnn ≥ 1). Therefore, with probability at least 1 − 1/n, each
vertex w is contained in at most q := 11dlnn/αe paths. Note that q ≤ dc2 log n · k log ke, for an
appropriate value of c2.

Let φ be the blow-up mapping from G to G(q). For each path Pu,v,i in G, we define a path P ′u,v,i
in G(q). Let Pu,v,i = p1p2 . . . pr. The path P ′u,v,i we define consists of one vertex of φ(p1), followed by
one vertex of φ(p2), . . . , followed by one vertex of φ(pr). The vertices are selected arbitrarily from
these sets, the only restriction is that we do not select a vertex of G(q) that was already assigned to
some other path P ′u′,v′,i′ . Since each vertex w of G is contained in at most q paths, the q vertices
of φ(w) are sufficient to satisfy all the paths going through w. Therefore, we can ensure that the
k2dlnne paths P ′u,v,i are pairwise disjoint in G(q).

The minor mapping from L(Kk)
(dlnne) to G(q) is defined as follows. Let ψ be the blow-up

mapping from L(Kk) to L(Kk)(dlnne), and let v{1,2}, v{1,3} . . . , v{k−1,k} be the
(
k
2

)
vertices of L(Kk),

where v{i1,i2} and v{j1,j2} are adjacent if and only if {i1, i2} ∩ {j1, j2} 6= ∅. Let W = {w1, . . . , wk}.
The dlnne vertices of ψ(vi,j) are mapped to the dlnne paths P ′wi,wj ,1, . . . , P

′
wi,wj ,dlnne. Clearly, the

images of the vertices are disjoint and connected. We have to show that this minor mapping maps
adjacent vertices to adjacent sets. If x ∈ ψ(vi1,i2) and x′ ∈ ψ(vj1,j2) are connected in L(Kk)

(dlnne),
then there is a t ∈ {i1, i2} ∩ {j1, j2}. This means that the paths corresponding to x and x′ both
contain a vertex of the clique φ(wt) in G(q), which implies that there is an edge connecting the two
paths.

With the help of the following proposition, we can make a small improvement on Lemma 3.10:
the assumption tw(G) > 3k can be replaced by the assumption tw(G) ≥ k. This will make the result
more convenient to use.

Proposition 3.11. For every k ≥ 3, q ≥ 1, L(Kqk) is a subgraph of L(Kk)
(2q2).

Proof. Let φ be a mapping from {1, . . . , qk} to {1, . . . , k} such that exactly q elements of {1, . . . , qk}
are mapped to each element of {1, . . . , k}. Let v{i1,i2} (1 ≤ i1 < i2 ≤ qk) be the vertices of L(Kqk)

and ut{i1,i2} (1 ≤ i1 < i2 ≤ k, 1 ≤ t ≤ 2q2) be the vertices of L(Kk)
(2q2), with the usual convention

that two vertices are adjacent if and only if the lower indices are not disjoint. Let U{i1,i2} be the clique
{ut{i1,i2} | 1 ≤ t ≤ 2q2}. Let us consider the vertices of L(Kqk) in some order. If φ(i1) 6= φ(i2), then
vertex v{i1,i2} is mapped to a vertex of U{φ(i1),φ(i2)} that was not already used for a previous vertex.
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If φ(i1) = φ(i2), then v{i1,i2} is mapped to a vertex U{φ(i1),φ(i1)+1} (where addition is modulo k). It
is clear that if two vertices of L(Kqk) are adjacent, then the corresponding vertices of L(Kk)

(2q2)

are adjacent as well. We have to verify that, for a given i1, i2, at most 2q2 vertices of L(Kqk) are
mapped to the clique U{i1,i2}. As |φ−1(i1)| and |φ−1(i2)| are both q, there are at most q2 vertices
v{j1,j2} with φ(j1) = i1, φ(j2) = i2. Furthermore, if i2 = i1 + 1, then there are

(
q
2

)
≤ q2 additional

vertices v{j1,j2} with φ(j1) = φ(j2) = i1 that are also mapped to U{i1,i2}. Thus at most 2q2 vertices
are mapped to each clique U{i1,i2}.

Set k′ := 3k+ 1 ≤ 4k. Using Prop. 3.11 with q = 4, we get that L(Kk′)
(dc1 logne/32) is a subgraph

of L(Kk)
(dc1 logne). Thus if tw(G) ≥ k′, then we can not only find a blowup of L(Kk), but even a

blowup of L(Kk′). By replacing k′ with k, Lemma 3.10 can be improved the following way:

Lemma 3.12. Let G be a graph with tw(G) ≥ k. There are universal constants c1, c2 > 0 such that
L(Kk)

(dc1 logne) is a minor of G(dc2 logn·k log ke), where n is the number of vertices of G.

3.2.2 Embedding H in L(Kk)

As the second step of the proof of Theorem 3.5, we show that every (sufficiently large) graph H is a
minor of L(Kk)

(q) for q = O(|E(H)|/k2).

Lemma 3.13. For every k > 1 there is a constant nk = O(k4) such that for every G with |E(G)| > nk
and no isolated vertices, the graph G is a minor of L(Kk)

(q) for q = d130|E(G)|/k2e. Furthermore,
a minor mapping can be found in time polynomial in q and the size of G.

Proof. We may assume that k ≥ 5: otherwise the result is trivial, as q ≥ 2|E(G)| ≥ |V (G)| and
L(Kk)

(q) contains a clique of size q. First we construct a graph G′ of maximum degree 3 that
contains G as a minor. This can be achieved by replacing every vertex v of G with a path on d(v)
vertices (where d(v) is the degree of v in G); now we can ensure that the edges incident to v use
distinct copies of v from the path. The new graph G′ has exactly 2|E(G)| vertices.

We show that G′, hence G, is a minor of L(Kk)(q). Take an arbitrary partition of V (G′) into
(
k
2

)
classes V{i,j} (1 ≤ i < j ≤ k) such that |V{i,j}| ≤ d|V |/

(
k
2

)
e for every i, j. Let v{i,j} (1 ≤ i < j ≤ k)

be the vertices of L(Kk), and let φ be the blow-up mapping from L(Kk) to L(Kk)
(q).

The minor mapping ψ from G′ to L(Kk)(q) is defined the following way. First, if u ∈ V{i,j}, then
let ψ(u) contain a vertex û from φ(v{i,j}). Observe that if edge e connects vertices u1 ∈ V{i1,j1},
u2 ∈ V{i2,j2} and {i1, j1} ∩ {i2, j2} 6= ∅ holds, then û1 and û2 are adjacent. In order to ψ be a minor
mapping, we extends the sets ψ(u) to ensure that the endpoints of e are mapped to adjacent sets
even if V{i1,j1} and V{i2,j2} have disjoint indices.

Fix an arbitrary orientation of each edge of G′. For every quadruple (i1, j1, i2, j2) of distinct values
with i1 < j1, i2 < j2, let Ei1,j1,i2,j2 be the set of edges going from a vertex of V{i1,j1} to a vertex of
V{i2,j2}. Let us partition the set Ei1,j1,i2,j2 into k− 4 classes E`i1,j1,i2,j2 (` ∈ {1, . . . k} \ {i1, j1, i2, j2})
in an arbitrary way such that |E`i1,j1,i2,j2 | ≤ d|Ei1,j1,i2,j2 |/(k− 4)e. For each edge −→uw ∈ E`i1,j1,i2,j2 , we
add a vertex of φ(v{i1,`}) to ψ(u) and a vertex of φ(v{i2,`}) to ψ(w); these two vertices are neighbors
with each other and they are adjacent to û and ŵ, respectively. This ensures that ψ(u) and ψ(v)
remain connected and there is an edge between ψ(u) and ψ(w). After repeating this step for every
edge, ψ is clearly a minor mapping.

What remains to be shown is that the sets φ(v{x,y}) are large enough so that we can ensure that
no vertex of L(Kk)(q) is assigned to more than one ψ(u). Let us count how many vertices of φ(v{x,y})
are used when the minor mapping is constructed as described above. First, the image of each vertex
u in V{x,y} uses one vertex û of φ(v{x,y}); together these vertices use at most |V{x,y}| ≤ d|V (G′)|/

(
k
2

)
e
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vertices from φ(v{x,y}). Furthermore, as described in the previous paragraph, for some quadruples
(i1, j1, i2, j2) and integer `, each edge of E`i1,j1,i2,j2 requires the use of an additional vertex from
φ(v{x,y}). More precisely, this can happen only if ` = x and y ∈ {i1, j1, i2, j2} or ` = y and
x ∈ {i1, j1, i2, j2}. Thus the total number of vertices used from φ(v{x,y}) is at most

d|V (G′)|/
(
k

2

)
e+

∑
x∈{i1,j1,i2,j2}

|Eyi1,j1,i2,j2 |+
∑

y∈{i1,j1,i2,j2}

|Exi1,j1,i2,j2 |

≤ |V (G′)|/
(
k

2

)
+ 1 +

∑
x∈{i1,j1,i2,j2}

d|Ei1,j1,i2,j2 |/(k − 4)e+
∑

y∈{i1,j1,i2,j2}

d|Ei1,j1,i2,j2 |/(k − 4)e

≤ |V (G′)|/
(
k

2

)
+

∑
x∈{i1,j1,i2,j2}

|Ei1,j1,i2,j2 |/(k − 4) +
∑

y∈{i1,j1,i2,j2}

|Ei1,j1,i2,j2 |/(k − 4) + 2k4.

(The term 2k4 generously bounds the rounding errors, since it is greater than the number of terms in
the sums.) The first sum counts only edges incident to some vertex of V{i,j} with x ∈ {i, j} and each
edge is counted at most once. Since each vertex has degree at most 3, the number of such edges
is at most 3

∑
x∈{i,j} |V{i,j}|. Thus we can bound the first sum by 3(k − 1)d|V (G′)|/

(
k
2

)
e/(k − 4) ≤

12d|V (G′)|
(
k
2

)
e (here we use k ≥ 5). A similar argument applies for the second sum above, hence the

number of vertices used from φ(v{x,y}) can be bounded as

|V (G′)|/
(
k

2

)
+ 24d|V (G′)|/

(
k

2

)
e+ 2k4 ≤ 25|V (G′)|/

(
k

2

)
+ 2k4 + 24 ≤ 26|V (G′)|/

(
k

2

)
= 52|V (G′)|/(k(k − 1)) ≤ 65|V (G′)|/k2 = 130|E(G)|/k2 ≤ q,

what we had to show (in the second inequality, we used that |V (G′)| = 2|E| ≥ nk is sufficiently large;
in the third inequality, we used that k ≥ 5 implies k/(k − 1) ≤ 5/4).

Putting together Lemma 3.12 and Lemma 3.13, we can prove the main result of the section:

Proof (of Theorem 3.5). Let k := tw(G), n := |V (G)|, and f1(G) := nk + k2dc1 log ne, where
nk is the constant from Lemma 3.13 and c1 is the constant from Lemma 3.12. Assume that
|E(H)| = m ≥ f1(G). By Lemma 3.13, H is a minor of L(Kk)

(q) for q := d130m/k2e and a minor
mapping ψ1 can be found in polynomial time. Let q′ := dq/dc1 log nee; clearly, H is a minor of
L(Kk)(q′dc1 logne). Observe that m is large enough such that 130m/k2 ≥ 1 and q/dc1 log ne ≥ 1 holds,
hence q′ ≤ c′ ·m/(k2 · log n) for an appropriate constant c′.

By Lemma 3.12, L(Kk)
(dc1 logne) is a minor of G(dc2 logn·k log ke) and a minor mapping ψ2 can

be found in time f2(G) by brute force, for some function f2(G). Therefore, L(Kk)
(q′dc1 logne) is a

minor of G(q′dc2 logn·k log ke) and it is straightforward to obtain the corresponding minor mapping ψ3

from ψ2. We may assume c2 log n · k log k ≥ 1, otherwise the theorem automatically holds if we set
c sufficiently large. Since q′dc2 log n · k log ke ≤ c′ ·m/(k2 · log n) · (2c2 log n · k log k) ≤ cm log k/k
for an appropriate constant c, we have that H is a minor of Gdcm log k/ke. The corresponding minor
mapping is the composition ψ3 ◦ ψ1. Observe that each step can be done in polynomial time, except
the application of Lemma 3.12, which takes f2(G) time. Thus the total running time can be bounded
by f2(G)mO(1).
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3.3 Complexity of binary CSP

In this section, we prove our main result for binary CSP (Theorem 3.2). The main strategy of the
proof is the following. First we show that a 3SAT formula φ with m clauses can be turned into an
equivalent binary CSP instance I of size O(m) (Lemma 3.14). Here “equivalent” means that φ is
satisfiable if and only if I has a solution. By the embedding result of Theorem 3.5, for every G ∈ G,
the primal graph of I is a minor of G(q) for an appropriate q. This implies that we can simulate I
with a CSP instance I ′ whose primal graph is G (Lemma 3.15 and Lemma 3.16). Now we can use
the assumed algorithm for CSP(G) to solve instance I ′, and thus decide the satisfiability of formula
φ. If the treewidth of G is sufficiently large, then the assumed algorithm is much better than the
treewidth-based algorithm. This translates into a 2o(m) algorithm for the 3SAT instance, violating
Hypothesis 1.2 and hence the ETH fails.

Lemma 3.14. Given an instance of 3SAT with n variables and m clauses, it is possible to construct
in polynomial time an equivalent CSP instance with n+m variables, 3m binary constraints, and
domain size 3.

Proof. Let φ be a 3SAT formula with n variables and m clauses. We construct an instance of CSP
as follows. The CSP instance contains a variable xi (1 ≤ i ≤ n) corresponding to the i-th variable
of φ and a variable yj (1 ≤ j ≤ m) corresponding to the j-th clause of φ. Let D = {1, 2, 3} be the
domain. We try to describe a satisfying assignment of φ with these n+m variables. The intended
meaning of the variables is the following. If the value of variable xi is 1 (or 2), then this represents
that the i-th variable of φ is true (or false, respectively). If the value of variable yj is `, then this
represents that the j-th clause of φ is satisfied by its `-th literal. To ensure consistency, we add 3m
constraints. Let 1 ≤ j ≤ m and 1 ≤ ` ≤ 3, and assume that the `-th literal of the j-th clause is a
positive occurrence of the i-th variable. In this case, we add the binary constraint (xi = 1 ∨ yj 6= `):
either xi is true or some other literal satisfies the clause. Similarly, if the `-th literal of the j-th clause
is a negated occurrence of the i-th variable, then we add the binary constraint (xi = 2 ∨ yj 6= `).
It is easy to verify that if φ is satisfiable, then we can assign values to the variables of the CSP
instance such that every constraint is satisfied, and conversely, if the CSP instance has a solution,
then φ is satisfiable.

If G1 is a minor of G2, then an instance with primal graph G1 can be easily simulated by an
instance with primal graph G2: each variable of G1 is simulated by a connected set of variables in
G2 that are forced to be equal.

Lemma 3.15. Assume that G1 is a minor of G2. Given a binary CSP instance I1 with primal
graph G1 and a minor mapping ψ from G1 to G2, it is possible to construct in polynomial time an
equivalent instance I2 with primal graph G2 and the same domain.

Proof. For simplicity, we assume that both G1 and G2 are connected; the proof can be easily
extended to the general case. If G2 is connected, then we may assume that ψ is onto. For each
pair (x, y) such that xy is and edge of G2, we add a constraint as follows. If ψ−1(x) = ψ−1(y),
then the new constraint is 〈(x, y), {(t, t) | t ∈ D}〉. If ψ−1(x) 6= ψ−1(y) and there is a constraint
〈(ψ−1(x), ψ−1(y)), R〉, then the new constraint is 〈(x, y), R}〉. Otherwise, the new constraint is
〈(x, y), D ×D}〉. Clearly, the primal graph of I2 is G2.

Assume that I1 has a solution f1 : V1 → D. Then f2(v) = f1(ψ−1(v)) is a solution of I2.
On the other hand, if I2 has a solution f2 : V2 → D, then we claim that f2(x) = f2(y) holds if
ψ−1(x) = ψ−1(y). This follows from the way we defined the constraints of I2 and from the fact
that ψ(x) is connected. Therefore, we can define f1 : V1 → D as f1(v) = f2(v′), where v′ is an
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arbitrary member of ψ(v). To see that a constraint ci = 〈(u, v), Ri〉 of I1 is satisfied, observe
that there is a constraint 〈(u′, v′), Ri〉 in I2 for some u′ ∈ ψ(u), v′ ∈ ψ(v). This means that
(f1(u), f1(v)) = (f2(u′), f2(v′)) ∈ Ri, hence the constraint is satisfied.

An instance with primal graph G(q) can be simulated by an instance with primal graph G if we
set the domain to be the q-tuples of the original domain.

Lemma 3.16. Given a binary CSP instance I1 = (V1, D1, C1) with primal graph G(q) (where G has
no isolated vertices), it is possible to construct (in time polynomial in the size of the output) an
equivalent instance I2 = (V2, D2, C2) with primal graph G and |D2| = |D1|q.

Proof. Let ψ be the blow-up mapping from G to G(q) and let D2 = Dq
1, that is, D2 is the set of

q-tuples of D1. For every v ∈ V2, there is a natural bijection between the elements of D2 and
the |D1|q possible assignments f : ψ(v) → D1. For each edge v1v2 of G, we add a constraint
cv1,v2 = 〈(v1, v2), Rv1,v2〉 to I2 as follows. Let (x1, x2) ∈ D2 × D2. For i = 1, 2, let gi be the
assignment of ψ(vi) corresponding to xi ∈ D2. The two assignments together define an assignment
g : ψ(v1) ∪ ψ(v2)→ D on the union of their domains. Let I[ψ(v1) ∪ ψ(v2)] be the induced instance
that has variables ψ(v1) ∪ ψ(v2) and contains only those constraint whose scope is contained in
ψ(v1) ∪ ψ(v2). We define the relation Rv1,v2 such that (x1, x2) is a member of Rv1,v2 if and only if
the assignment g corresponding to g1, g2 is a solution of I[ψ(v1) ∪ ψ(v2)].

Assume that I1 has a solution f1 : V1 → D1. For every v ∈ V2, let us define f2(v) to be the
member of D2 corresponding to the assignment f1 restricted to ψ(v). It is easy to see that f2 is a
solution of I2: this follows from the trivial fact that for every edge v1v2 in G, assignment f1 restricted
to ψ(v1) ∪ ψ(v2) is a solution of I1[ψ(v1) ∪ ψ(v2)].

Assume now that I2 has a solution f2 : V2 → D2. For every v ∈ V2, there is an assignment fv :
ψ(v)→ D1 corresponding to f2(v). These assignments together define an assignment f1 : V1 → D1.
We claim that f1 is a solution of I1. Let cu,v = 〈(u, v), R〉 be an arbitrary constraint of I1. Assume
that u ∈ ψ(u′) and v ∈ ψ(v′). If u′ 6= v′, then u′v′ is an edge of G, hence there is a corresponding
constraint cu′,v′ in I2. The way cu′,v′ is defined ensures that f1 restricted to ψ(u′)∪ψ(v′) is a solution
of I1[ψ(u′) ∪ ψ(v′)]. In particular, this means that cu,v is satisfied in f1. If u′ = v′, then there is an
edge u′w in G (since G has no isolated vertices), and the corresponding constraint cu′,w ensures that
f1 satisfies cu,v.

Now we are ready to prove the main result:

Proof (of Theorem 3.2). Assume that there is an algorithm A that correctly decides every CSP
instance and whose running time can be bounded by f(G)‖I‖tw(G)/(log tw(G)·ι(tw(G))) for instances
with G ∈ G, where ι is an unbounded function. We may assume that ι is nondecreasing and ι(1) ≥ 1.
We present a reduction from 3SAT to CSP(G) such that this reduction, together with the assumed
algorithm A for CSP(G), gives an algorithm B that is able to solve m-clause 3SAT in time 2o(m).
Lemma 3.14, Theorem 3.5, and Lemmas 3.15 and 3.16 show a way of solving a 3SAT instance by
reducing it to a CSP instance having a particular primal graph G. A crucial point of the reduction
is how to select an appropriate G from G. The higher the treewidth of G, the more we gain in the
running time. However, G has to be sufficiently small such that some additional factors (such as the
time spent on finding G) are not too large.

Given an m-clause 3SAT formula φ and a graph G ∈ G, algorithm A can be used to decide the
satisfiability of φ in the following way. By Lemma 3.14, φ can be turned into a binary CSP instance
I1 with O(m) constraints and domain size 3. Let H be the primal graph of I1. For simplicity,
we assume that G has no isolated vertices as they can be handled in a straightforward way. By
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Theorem 3.5, H is a minor of G(q) for q = O(m log k/k) and we can find a minor mapping ψ in time
f2(G)mO(1). Therefore, by Lemma 3.15, I1 can be turned into an instance I2 with primal graph
G(q), which, by Lemma 3.16, can be turned into an instance I3 with primal graph G and domain
size 3q. Now we can use algorithm A to solve instance I3.

We shall refer to this way of solving the 3SAT instance φ as “running algorithm A[φ,G].” Let us
determine the running time of A[φ,G]. The two dominating terms are the time required to find the
minor mapping from H to G(q) and the time required to run A on I3. Note that ‖I3‖ = O(|E(G)|32q):
there are |E(G)| constraints and each binary constraint contains at most 3q · 3q pairs. Let k be the
treewidth of G. The total running time of A[φ,G] can be bounded by

f2(G)mO(1) + f(G)‖I3‖k/(log k·ι(k)) = f2(G)mO(1) + f(G)|E(G)|k/(log k·ι(k)) · 32qk/(log k·ι(k))

= f̂(G)mO(1) · 2O(qk/(log k·ι(k))) = f̂(G)mO(1) · 2O(m/ι(k))

for an appropriate function f̂(G).
Let us fix an arbitrary easy-to-compute enumeration G1, G2, . . . of all graphs. Given an m-clause

3SAT formula φ, we first spend m steps to enumerate graphs from G; let G` (for some ` ≤ m) be
the last graph enumerated (we assume that m is sufficiently large such that ` ≥ 1). Next we start
simulating the algorithms A[φ,G1], A[φ,G2], . . . , A[φ,G`] in parallel. When one of the simulations
stops and returns an answer, then we stop all the simulations and return the answer. It is clear that
this algorithm will correctly decide the satisfiability of φ.

We claim that there is a universal constant C such that for every s, there is an ms such that for
every m > ms, the running time of B is (m · 2m/s)C on an m-clause formula. Clearly, this means
that the running time of B is 2o(m).

Let ks be the smallest positive integer such that ι(ks) ≥ s (as ι is unbounded, this is well
defined). Let is be the smallest positive integer such that Gis ∈ G and tw(Gis) ≥ ks (as G has
unbounded treewidth, this is also well defined). Set ms sufficiently large such that ms ≥ f̂(Gis) and
the enumeration of all graphs reaches Gis in less then ms steps. This means that if we run B on a
3SAT formula φ with m ≥ ms clauses, then A[φ,Gis ] will be one of the ` simulations started by B.
The simulation of A[φ,Gis ] terminates in

f̂(Gis)m
O(1) · 2O(m/ι(tw(Gis ))) = m ·mO(1) · 2O(m/s)

steps. Taking into account that we simulate ` ≤ m algorithms in parallel and all the simulations
are stopped not later than the termination of A[φ,Gis ], the running time of B can be bounded
polynomially by the running time of A[φ,Gis ]. Therefore, there is a constant C such that the running
time of B is (m · 2m/s)C , as required.

3.4 Complexity of subgraph problems

Subgraph Isomorphism is a basic graph-theoretic problem: given graphs G and H, we have to
decide if G is a subgraph of H. That is, we have to find an injective mapping φ : V (G) → V (H)
such that if u and v are adjacent in the smaller graph G, then φ(u) and φ(v) are adjacent in the
larger graph H. In the Colored Subgraph Isomorphism problem, the input contains a (not
necessarily proper) coloring of the vertices of H and G. The task is to find a subgraph mapping
φ that satisfies the additional constraint that for every v ∈ V (G), the color of φ(v) has to be the
same as the color v. Partitioned Subgraph Isomorphism is a special case of the colored version
where every vertex of the smaller graph G has a distinct color (that is, we can assume that V (G)
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is the set of colors). In other words, the vertices of H are partitioned into |V (G)| classes, and the
image of each v ∈ V (G) is restricted to a distinct class of the partition.

It is not hard to observe that Partitioned Subgraph Isomorphism is essentially the same as
binary CSP. We can reduce an instance I = (V,D,C) of binary CSP to Partitioned Subgraph
Isomorphism the following way. Let G be the primal graph of I. We construct a graph H, whose
vertex set is V (G)×D, and the color of (v, d) ∈ V (G)×D is v. For every constraint 〈(u, v), Ruv〉 ∈ C
and every pair (du, dv) ∈ Ruv, we add an edge connecting (u, du) and (v, dv) to H.

Suppose that f : V → D is a satisfying assignment of I and consider the mapping φ(v) = (v, f(v))
for every v ∈ V (G). It is clear that φ respects the colors and it is a subgraph mapping: if u and
v are adjacent in G, then there is a corresponding constraint 〈(u, v), Ruv〉 ∈ C, and the fact that
(f(u), f(v)) ∈ Ruv implies that φ(u) and φ(v) are adjacent. On the other hand, suppose that φ is a
subgraph mapping respecting the colors. This means the first coordinate of φ(v) is v; let f(v) be
the second coordinate of φ(v). It is straightforward to verify that f is a satisfying assignment: for
every constraint 〈(u, v), Ruv〉 ∈ C, vertices u and v are adjacent in G by the definition of the primal
graph, and hence the fact that (u, f(u)) and (v, f(v)) are adjacent implies that (f(u), f(v)) ∈ Ruv.

The reduction from binary CSP to Partitioned Subgraph Isomorphism implies that any
lower bound for the former problem can be transfered to the latter. Thus Theorem 3.2 implies the
following result:

Corollary 3.17. If there is a class G of graphs with unbounded treewidth, an algorithm A, and
an arbitrary function f such that A correctly decides every instance of Partitioned Subgraph
Isomorphism and the running time is f(G)no(tw(G)/ log tw(G)) for instances with the smaller graph
G in G, then ETH fails.

It is known that there are infinite recursively enumerable classes G of graphs such that for every
G ∈ G, both the treewidth and the number of edges are Θ(|V (G)|): for example, explicit constructions
of bounded-degree expanders give such classes (cf. [125]). Using this class G in Corollary 3.17, we get

Corollary 3.18. If Partitioned Subgraph Isomorphism can be solved in time f(G)no(k/ log k),
where f is an arbitrary function and k is the number of edges of the smaller graph G, then ETH
fails.
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CHAPTER 4

Fractional edge covers, Constraint Satisfaction Problems, and database queries

As we have seen in Chapter 3, the complexity of binary CSP is very tightly characterized by the
treewidth of the primal graph. This is no longer the case for CSP instances where constraints can
have arbitrary arity. For example, if we consider the class H1 of hypergraphs containing every
hypergraph H where there is an edge e ∈ E(H) covering the set V (H) of vertices, then CSP(H1)
is polynomial-time solvable (see Section 1.4). More generally, if we consider hypergraphs where
the set of vertices can be covered by a constant number c of hyperedges, then the problem is still
polynomial-time solvable. These simple observations crucially rely on the assumption that the
constraints are represented by explicitly listing every satifying tuple.

The main contribution of this chapter is realizing that polynomial-time solvability can be achieved
even if the vertices can be covered fractionally by c hyperedges. This follows from observing that the
fractional edge cover number gives an upper bound on the maximum possible number of solutions.
We complement this by showing that this bound is essentially tight. The tight bound on the number
of possible solutions has particular relevance for evaluating the number of possible answers for a
given database query. Despite answering a very fundamental question, it is surprising that such a
bound was not known before in the literature and our result was the starting point for work by other
researchers on this topic [114,143,157,160,161,195,196,229]

Publications. This chapter is based on two publications. Section 4.2 of this chapter is based
on the first half of an articled that appeared in ACM Transactions on Algorithms [126] (an extended
abstract appeared in the proceedings of the SODA 2006 conference [124]). It is joint work with
Martin Grohe; both authors contributed equally to the publications. Sections 4.3–4.5 of this chapter
are based on the first half of an article that appeared in SIAM Journal on Computing [21] (an
extended abstract appeared in the proceedings of the FOCS 2008 conference [20]). It is joint work
with Albert Atserias and Martin Grohe, all three authors contributed equally to the publications.

4.1 Introduction

The hypergraph of an instance (V,D,C) has V as its vertex set and for every constraint in C a
hyperedge that consists of all variables occurring in the constraint. For a class H of hypergraphs, we
let CSP(H) be the class of all instances whose hypergraph is contained in H. The central question
is for which classes H of hypergraphs the problem CSP(H) is tractable. Recall from Chapter 3

59
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(Theorem 3.1) that the corresponding question for the primal graphs (instead of hypergraphs) of
instances, in which two variables are incident if they appear together in a constraint, has been
completely answered in [123, 127] (under the complexity theoretic assumption FPT 6= W[1]): For
a class G of graphs, the corresponding problem CSP(G) is in polynomial time if and only if G has
bounded treewidth. This can be generalized to CSP(H) for classes H of hypergraphs of bounded
hyperedge size (that is, classes H for whx‘ich max{|e| | ∃H = (V,E) ∈ H : e ∈ E} exists). It follows
easily from the results of [123,127] that for all classes H of bounded hyperedge size,

CSP(H) ∈ PTIME ⇐⇒ H has bounded treewidth (4.1)

(under the assumption FPT 6= W[1]).
It is known that (1) does not generalize to arbitrary classes H of hypergraphs, see the following

example.

Example 4.1. Let H1 be that class of all hypergraphs H that have a hyperedge that contains all
vertices, that is, V (H) ∈ E(H). Clearly, H1 has unbounded treewidth, because the hypergraph
(V, {V }) has treewidth |V | − 1. We claim that CSP(H1) ∈ PTIME.

To see this, let I = (V,D,C) be an instance of CSP(H1). Let 〈(v1, . . . , vk), R〉 be a constraint in
C with {v1, . . . , vk} = V . Such a constraint exists because HI ∈ H1. Each tuple d̄ = (d1, . . . , dk) ∈ R
completely specifies an assignment αd̄ defined by αd̄(vi) = di for 1 ≤ i ≤ k. If for some i, j we have
vi = vj , but di 6= dj , we leave αd̄ undefined.

Observe that I is satisfiable if and only if there is a tuple d̄ ∈ R such that αd̄ is (well-defined
and) a solution for I. As |R| ≤ ‖I‖, this can be checked in polynomial time.

For some time, the largest known family of classes of hypergraphs for which CSP(H) is in PTIME
consisted of all classes of bounded hypertree width [115–117]. Hypertree width is a hypergraph
invariant that generalizes acyclicity [27,95,233]. It is a very robust invariant; up to a constant factor
it coincides with a number of other natural invariants that measure the global connectivity of a
hypergraph [8]. On classes of bounded hyperedge size, bounded hypertree width coincides with
bounded tree width, but in general it does not. It has been asked in [57,66, 113,123] whether there
are classes H of unbounded hypertree width such that CSP(H) ∈ PTIME. We give an affirmative
answer to this question in this section by showing that classes of hypergraphs with bounded fractional
edge cover number also lead to polynomial-time solvable CSP problems. In Chapter 5, we further
generalize this to classes of hypergraphs with bounded fractional hypertree width.

Our key result states that CSP(H) ∈ PTIME for all classes H of bounded fractional edge cover
number. A fractional edge cover of a hypergraph H = (V,E) is a mapping x : E → [0,∞) such that∑

e∈E,v∈e x(e) ≥ 1 for all v ∈ V . The number
∑

e∈E x(e) is the weight of x. The fractional edge
cover number ρ∗(H) of H is the minimum of the weights of all fractional edge covers of H. It follows
from standard linear programming results that this minimum exists and is rational. Furthermore, it
is easy to construct classes H of hypergraphs that have bounded fractional edge cover number and
unbounded hypertree width (see Example 5.2).

An optimal query evaluation algorithm matching this tight bound was given by Ngo et al. [195]
and by Veldhuizen [229]. The bound was generalized to the context of conjunctive queries with
functional dependencies by Gottlob et al. [114].

4.2 A Polynomial-time algorithm for CSPs with bounded fractional
cover number

In this section we prove that if the hypergraph HI of a CSP instance I has fractional edge cover
number ρ∗(HI), then it can be decided in ‖I‖ρ∗(HI)+O(1) time whether I has a solution. Thus if H

dc_1604_18

Powered by TCPDF (www.tcpdf.org)



4.2. CSP WITH BOUNDED FRACTIONAL COVER NUMBER 61

is a class of hypergraphs with bounded fractional edge cover number (that is, there is a constant
r such that ρ∗(H) ≤ r for every H ∈ H), then CSP(H) ∈ PTIME. Actually, we prove a stronger
result: A CSP instance I has at most ‖I‖ρ∗(HI) solutions and all the solutions can be enumerated
in time ‖I‖ρ∗(HI)+O(1). Optimizing the extra O(1) term in the exponent was not the focus of this
work. But inspired by our results, optimal algorithms with running time O(‖I‖ρ∗(HI)) were designed
later [195,229].

Our proof relies on a combinatorial lemma known as Shearer’s Lemma. We use Shearer’s Lemma
to bound the number of solutions of a CSP instance; our argument resembles an argument that
Friedgut and Kahn [109] used to bound the number of subhypergraphs of a certain isomorphism
type in a hypergraph. The author of this dissertation applied similar ideas in a completely different
algorithmic context [182].

The entropy of a random variable X with range U is

h[X] := −
∑
x∈U

Pr(X = x) log Pr(X = x)

Shearer’s lemma gives an upper bound of a distribution on a product space in terms of its marginal
distributions.

Lemma 4.2 (Shearer’s Lemma [63]). Let X = (Xi | i ∈ I) be a random variable, and let Aj, for
j ∈ [m], be (not necessarily distinct) subsets of the index set I such that each i ∈ I appears in at
least q of the sets Aj. For every B ⊆ I, let XB = (Xi | i ∈ B). Then

m∑
j=1

h[XAj ] ≥ q · h[X].

Lemma 4.2 is easy to see in the special case when q = 1 and {A1, . . . , Ap} is a partition of V .
The proof of the general case in [63] is based on the submodularity of entropy. See also [206] for a
simple proof.

Lemma 4.3. If I = (V,D,C) is a CSP instance where every constraint relation contains at most N
tuples, then I has at most Nρ∗(HI) ≤ ‖I‖ρ∗(HI) solutions.

Proof. Let x be a fractional edge cover of HI with
∑

e∈E(HI) x(e) = ρ∗(HI); it follows from the
standard results of linear programming that such an x exists with rational values. Let pe and q be
nonnegative integers such that x(e) = pe/q. Let m =

∑
e∈E(HI) pe, and let A1, . . . , Am be a sequence

of subsets of V that contains precisely pe copies of the set e, for all e ∈ E(HI). Then every variable
v ∈ V is contained in at least ∑

e∈E(HI):v∈e

pe = q ·
∑

e∈E(HI):v∈e

x(e) ≥ q

of the sets Ai (as x is a fractional edge cover). Let X = (Xv | v ∈ V ) be uniformly distributed on
the solutions of I, which we assume to be non-empty as otherwise the claim is obvious. That is, if
we denote by S the number of solutions of I, then we have Pr(X = α) = 1/S for every solution α of
I. Then h[X] = logS. We apply Shearer’s Lemma to the random variable X and the sequence A1,
. . . , Am of subsets of V . Assume that Ai corresponds to some constraint 〈(v′1, . . . , v′k), R〉. Then the
marginal distribution of X on (v′1, . . . , v

′
k) is 0 on all tuples not in R. Hence the entropy of XAi is

is bounded by the entropy of the uniform distribution on the tuples in R, that is, h[XAi ] ≤ logN .
Thus by Shearer’s Lemma, we have∑

e∈E(HI)

pe · logN ≥
∑

e∈E(HI)

pe · h[Xe] =
m∑
i=1

h[XAi ] ≥ q · h[X] = q · logS.
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It follows that
S ≤ 2

∑
e∈E(HI )

(pe/q)·logN
= 2ρ

∗(HI)·logN = Nρ∗(HI).

We would like to turn the upper bound of Lemma 4.3 into an algorithm enumerating all the
solutions, but the proof of Shearer’s Lemma is not algorithmic. However, a very simple algorithm can
enumerate the solutions, and Lemma 4.3 can be used to bound the running time of this algorithm.
Starting with a trivial subproblem consisting only of a single variable, the algorithm enumerates all
the solutions for larger and larger subproblems by adding one variable at a time. To define these
subproblems, we need the following definitions:

Definition 4.4. Let R be an r-ary relation over a set D. For 1 ≤ i1 < · · · < i` ≤ r, the projection of
R onto the components i1, . . . , i` is the relation R|i1,...,i` which contains an `-tuple (d′1, . . . , d

′
`) ∈ D`

if and only if there is a k-tuple (d1, . . . , dk) ∈ R such that d′j = dij for 1 ≤ j ≤ `.

Intuitively, a tuple is in R|i1,...,i` if it can be extended into a tuple in R.

Definition 4.5. Let I = (V,D,C) be a CSP instance and let V ′ ⊆ V be a nonempty subset of
variables. The CSP instance I[V ′] induced by V ′ is I ′ = (V ′, D,C ′), where C ′ is defined in the
following way: for each constraint c = 〈(v1, . . . , vk), R〉 having at least one variable in V ′, there is a
corresponding constraint c′ in C ′. Suppose that vi1 , . . . , vi` are the variables among v1, . . . , vk that
are in V ′. Then the constraint c′ is defined as 〈(vi1 , . . . , vi`), R|i1,...,i`〉, that is, the relation is the
projection of R onto the components i1, . . . , i`.

Thus an assignment α on V ′ satisfies I[V ′] if for each constraint c of I, there is an assignment
extending α that satisfies c (however, it is not necessarily true that there is an assignment extending
α that satisfies every constraint of I simultaneously). Note that that the hypergraph of the induced
instance I[V ′] is exactly the induced subhypergraph HI [V

′].

Theorem 4.6. The solutions of a CSP instance I can be enumerated in time ‖I‖ρ∗(HI)+O(1).

Proof. Let V = {v1, . . . , vn} be an arbitrary ordering of the variables of I and let Vi be the subset
{v1, . . . , vi}. For i = 1, 2, . . . , n, the algorithm creates a list Li containing the solutions of I[Vi].
Since I[Vn] = I, the list Ln is exactly what we want.

For i = 1, the instance I[Vi] has at most |D| solutions, hence the list Li is easy to construct. Notice
that a solution of I[Vi+1] induces a solution of I[Vi]. Therefore, the list Li+1 can be constructed
by considering the solutions in Li, extending them to the variable vi+1 in all the |D| possible
ways, and checking whether this assignment is a solution of I[Vi+1]. Clearly, this can be done in
|Li| · |D| · ‖I[Vi+1]‖O(1) = |Li| · ‖I‖O(1) time. By repeating this procedure for i = 1, 2, . . . , n− 1, the
list Ln can be constructed.

The total running time of the algorithm can be bounded by
∑n−1

i=1 |Li| · ‖I‖O(1). Observe that
ρ∗(HI[Vi]) ≤ ρ∗(HI): HI[Vi] is the subhypergraph of HI induced by Vi, thus any fractional cover of
the hypergraph of I gives a fractional cover of I[Vi] (for every edge e ∈ E(HI[Vi]), we set the weight
of e to be the sum of the weight of the edges e′ ∈ E(HI) with e′ ∩ Vi = e). Therefore, by Lemma 4.3,
|Li| ≤ ‖I‖ρ

∗(HI), and it follows that the total running time is ‖I‖ρ∗(HI)+O(1).

We note that the algorithm of Theorem 4.6 does not actually need a fractional edge cover: the
fact that the hypergraph has small fractional edge cover number is used only in proving the time
bound of the algorithm.
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Corollary 4.7. Let H be a class of hypergraphs of bounded fractional edge cover number. Then
CSP(H) is in polynomial time.

We conclude this section by pointing out that Lemma 4.3 is tight: there are arbitrarily large
instances I where every constraint relation contains at most N tuples and the number of solutions is
exactly Nρ∗(HI).

Theorem 4.8. Let H be a hypergraph. For every N0 ≥ 1, there is a CSP instance I = (V,D,C)
with hypergraph H where every constraint relation contains at most N ≥ N0 tuples and I has at least
Nρ∗(H) solutions.

Proof. A fractional independent set of hypergraph H is an assignment y : V (H)→ [0, 1] such that∑
v∈e y(v) ≤ 1 for every e ∈ E(H). The weight of y is

∑
v∈V (H) y(H). The fractional independent

set number α∗(H) is the maximum weight of a fractional independent set of H. It is a well-known
consequence of linear-programming duality that α∗(H) = ρ∗(H) for every hypergraph H, since the
two values can be expressed by a pair of primal and dual linear programs [214, Section 30.10].

Let y be a fractional independent set of weight α∗(H). By standard results of linear programming,
we can assume that y is rational, that is, there is an integer q ≥ 1 such that for every v ∈ V (H),
y(v) = pv/q for some nonnegative integer pv. We define a CSP instance I = (V,D,C) with
V = V (H) and D = [N q

0 ] such that for every e ∈ E(H) where e = {v1, . . . , vr}, there is a constraint
〈(v1, . . . , vr), Re〉 with

Re = {(a1, . . . , ar) | ai ∈ [Npv
0 ] for every 1 ≤ i ≤ r}.

Let N = N q
0 . We claim that Re contains at most N tuples. Indeed, the number of tuples in Re is

exactly ∏
v∈e

Npv
0 = N

∑
v∈e pv

0 = N
q·
∑
v∈e pv/q

0 = (N q
0 )

∑
v∈e y(v) ≤ N q

0 = N,

since y is a fractional independent set. Observe that α : V (H) → D is a solution if and only if
α(v) ∈ [Npv

0 ] for every v ∈ V (H). Hence the number of solutions is exactly∏
v∈V (H)

Npv
0 = N

∑
v∈V (H) pv

0 = N
q·
∑
v∈V (H) pv/q

0 = (N q
0 )α

∗(H) = Nα∗(H) = Nρ∗(H),

as required.

The significance of this result is that it shows that there is no “better” measure than fractional
edge cover number that guarantees a polynomial bound on the number of solutions, in the following
formal sense. Let w(H) be a width measure that guarantees a polynomial bound: that is, if I is a
CSP instance where every relation has at most N tuples, then I has at most Nw(H) solutions for
some function f . Then by Theorem 4.8, we have ρ∗(H) ≤ w(H). This means the upper bound on
the number of solutions given by w(H) already follows from the bound given by Lemma 4.3 and
hence ρ∗(H) can be considered a stronger measure.

4.3 Relational joins

The join operation is one of the core operations of relational algebra, which in turn is the core of the
standard database query language SQL. The two key components of a database system executing
SQL-queries are the query optimiser and the execution engine. The optimiser translates the query
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64 CHAPTER 4. FRACTIONAL EDGE COVERS, CSPS, AND DATABASE QUERIES

into several possible execution plans, which are basically terms of the relational algebra (also called
operator trees) arranging the operations that have to be carried out in a tree-like order. Using
statistical information about the data, the optimiser estimates the execution cost of the different
plans and passes the best one on to the execution engine, which then executes the plan and computes
the result of the query. See [54] for a survey of query optimisation techniques.

Among the relational algebra operations, joins are usually the most costly, simply because
a join of two relations, just like a Cartesian product of two sets, may be much larger than the
relations. Therefore, query optimisers pay particular attention to the execution of joins, especially
to the execution order of sequences of joins, and to estimating the size of joins. In this chapter,
we address the very fundamental questions of how to estimate the size of a sequence of joins and
how to execute the sequence best from a theoretical point of view. While these questions have been
intensely studied in practice, and numerous heuristics and efficiently solvable special cases are known
(see, e.g., [54,110,119]), the very basic theoretical results we present here and their consequences
apparently have not been noticed so far. Our key starting observation is that the size of a sequence
of joins is tightly linked to two combinatorial parameters of the underlying database schema, the
fractional edge cover number, and the maximum density.

To make this precise, we need to get a bit more technical: A join query Q is an expression of the
form

R1(a11, . . . , a1r1) ./ · · · ./ Rm(am1, . . . , amrm), (4.2)

where the Ri are relation names with attributes ai1, . . . , airi . Let A be the set of all attributes
occurring in Q and n = |A|. A database instance D for Q consists of relations Ri(D) of arity ri. It
is common to think of the relation Ri(D) as a table whose columns are labelled by the attributes
ai1, . . . , airi and whose rows are the tuples in the relation. The answer, or set of solutions, of the
query Q in D is the n-ary relation Q(D) with attributes A consisting of all tuples t whose projection
on the attributes of Ri belongs to the relation Ri(D), for all i. Hence we are considering natural
joins here (all of our results can easily be transferred to equi-joins, but not to general θ-joins). Now
the most basic question is how large Q(D) can get in terms of the size of the database |D|, or more
generally, in terms of the sizes of the relations Ri. We address this question both in the worst case
and the average case, and also subject to various constraints imposed on D.

Example 4.9. At this point a simple example would probably help to understand what we are
after. Let R(a, b), S(b, c) and T (c, a) be three relations on the attributes a, b and c. Consider the
join query

Q(a, b, c) := R(a, b) 1 S(b, c) 1 T (c, a).

The answer of Q is precisely the set of triples (u, v, w) such that (u, v) ∈ R, (v, w) ∈ S and (w, u) ∈ T .
How large can the answer size of Q get as a function of |R|, |S| and |T |? First note that a trivial
upper bound is |R| · |S| · |T |. However one quickly notices that an improved bound can be derived
from the fact that the relations in Q have overlapping sets of attributes. Indeed, since any solution
for any pair of relations in Q determines the solution for the third, the answer size of Q is bounded
by min{|R| · |S|, |S| · |T |, |T | · |R|}. Now, is this the best general upper bound we can get as a function
of |R|, |S| and |T |? As it turns out, it is not. Although not obvious, it will follow from the results in
this chapter that the optimal upper bound in this case is

√
|R| · |S| · |T |: the answer size of Q is

always bounded by this quantity, and for certain choices of the relations R, S, T , this upper bound
is achieved.

Besides estimating the answer size of join queries, we also study how to exploit this information
to actually compute the query. An execution plan for a join query describes how to carry out the
evaluation of the query by simple operations of the relational algebra such as joins of two relations
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4.3. RELATIONAL JOINS 65

or projections. The obvious execution plans for a join query break up the sequence of joins into
pairwise joins and arrange these in a tree-like fashion. We call such execution plans join plans. As
described in [54], most practical query engines simply arrange the joins in some linear (and not even
a tree-like) order and then evaluate them in this order. However, it is also possible to use other
operations, in particular projections, in an execution plan for a join query. We call execution plans
that use joins and projections join-project plans. It is one of our main results that, even though
projections are not necessary to evaluate join queries, their use may speed up the evaluation of a
query super-polynomially.

Fractional covers, worst-case size, and join-project plans. Recall that an edge cover of
a hypergraph H is a set C of edges of H such that each vertex is contained in at least one edge in C,
and the edge cover number ρ(H) of H is the minimum size among all edge covers of H. A fractional
edge cover of H is a feasible solution for the linear programming relaxation of the natural integer
linear program describing edge covers, and the fractional edge cover number ρ∗(H) of H is the cost
of an optimal solution. With a join query Q of the form (4.2) we can associate a hypergraph H(Q)
whose vertex set is the set of all attributes of Q and whose edges are the attribute sets of the relations
Ri. The (fractional) edge cover number of Q is defined by ρ(Q) = ρ(H(Q)) and ρ∗(Q) = ρ∗(H(Q)).
Note that in Example 4.9, the hypergraph H(Q) is a triangle. Therefore in that case ρ(Q) = 2 while
it can be seen that ρ∗(Q) = 3/2.

An often observed fact about edge covers is that, for every given database D, the size of Q(D)
is bounded by |D|ρ(Q), where |D| is the total number of tuples in D. Much less obvious is the
fact that the size of Q(D) can actually be bounded by |D|ρ∗(Q), as proved in Section 4.2 in the
context (and the language) of constraint satisfaction problems. This is a consequence to Shearer’s
Lemma [63], which is a combinatorial consequence of the submodularity of the entropy function,
and is closely related to a result due to Friedgut and Kahn [109] on the number of copies of a
hypergraph in another. We observe that the fractional edge cover number ρ∗(Q) also provides a
lower bound to the worst-case answer size: we show that for every Q, there exist arbitrarily large
databases D for which the size of Q(D) is at least (|D|/|Q|)ρ∗(Q). The proof is a simple application
of linear programming duality. Theorem 4.6 from Section 4.2 implies that for every join query there
is a join-project plan, which can easily be obtained from the query and certainly be computed in
polynomial time, that computes Q(D) in time |D|ρ∗(Q)+O(1). Our lower bound shows that this is
optimal up to a polynomial factor. In particular, we get the following equivalences giving an exact
combinatorial characterisation of all classes of join queries that have polynomial size answers and
can be evaluated in polynomial time.

Theorem 4.10. Let Q be a class of join queries. Then the following statements are equivalent:

1. Queries in Q have answers of polynomial size.

2. Queries in Q can be evaluated in polynomial time.

3. Queries in Q can be evaluated in polynomial time by an explicit join-project plan.

4. Q has bounded fractional edge cover number.

Note that a priori it is not even obvious that the first two statements are equivalent, that is,
that for every class of queries with polynomial size answers there is a polynomial time evaluation
algorithm (the converse, of course, is trivial).

Hence with regard to worst-case complexity, join-project plans are optimal (up to a polynomial
factor) for the evaluation of join queries. Our next result is that join plans are not: We prove that
there are arbitrarily large join queries Q and database instances D such that our generic join-project
plan computes Q(D) in at most cubic time, whereas any join plan requires time |D|Ω(log |Q|) to
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66 CHAPTER 4. FRACTIONAL EDGE COVERS, CSPS, AND DATABASE QUERIES

compute Q(D). We also observe that this bound is tight, i.e., the ratio of the exponents between
the best join plan and the best join-project plan is at most logarithmic in |Q|. Hence incorporating
projections into a query plan may lead to a superpolynomial speed-up even if the projections are
completely irrelevant for the query answer.

Size and integrity constraints. So far, we considered worst-case bounds which make no
assumptions on the database. However, practical query optimisers usually exploit additional
information about the databases when computing their size estimates. We consider the simplest
such setting where the sizes of the relations are known (called histograms in the database literature),
and we want to get a (worst case) estimate on the size of Q(D) subject to the constraint that the
relations in D have the given sizes.

By suitably modifying the objective function of the linear program for edge covers, we obtain
results analogous to those obtained for the unconstrained setting. A notable difference between the
two results is that here the gap between upper and lower bound becomes 2−n, where n is the number
of attributes, instead of |Q|−ρ∗ . We give an example showing that the gap between upper and lower
bound is essentially tight. However, this is not an inadequacy of our approach through fractional
edge covers, but due to the inherent complexity of the problem: by a reduction from the maximum
independent-set problem on graphs, we show that, unless NP = ZPP, there is no polynomial time
algorithm that approximates the worst case answer size |Q(D)| for given Q and relation sizes NR by
a better-than-exponential factor.

Preliminaries on database queries. For integers m ≤ n, by [m,n] we denote the set
{m,m+ 1, . . . , n} and by [n] we denote [1, n]. All our logarithms are base 2.

Our terminology is similar to that used in [4]: An attribute is a symbol a with an associated
domain dom(a). If not specified otherwise, we assume dom(a) to be an arbitrary countably infinite
set, say, N. Sometimes, we will impose restrictions on the size of the domains. A relation name is a
symbol R with an associated finite set of attributes A. For a set A = {a1, . . . , an} of attributes, we
write R(A) or R(a1, . . . , an) to denote that A is the set of attributes of R. The arity of R(A) is |A|.
A schema is a finite set of relation names. If σ = {R(A1), . . . , R(Am)}, we write Aσ for

⋃
iAi.

For a set A of attributes, an A-tuple is a mapping t that associates an element t(a) from dom(a)
with each a ∈ A. Occasionally, we denote A-tuples in the form t = (ta : a ∈ A), with the obvious
meaning that t is the A-tuple with t(a) = ta. The set of all A-tuples is denoted by tup(A). An
A-relation is a set of A-tuples. The active domain of an A-relation R is the set {t(a) : t ∈ R, a ∈ A}.
The projection of an A-tuple t to a subset B ⊆ A is the restriction πB(t) of t to B, and the projection
of an A-relation R is the set πB(R) = {πB(t) : t ∈ R}.

A database instance D of schema σ, or a σ-instance, consists of an A-relation R(D) for every
relation name R in σ with set of attributes A. The active domain of D is the union of active domains
of all its relations. The size of a σ-instance D is |D| :=

∑
R∈σ |R(D)|.

A join query is an expression

Q := R1(A1) ./ · · · ./ Rm(Am),

where Ri is a relation name with attributes Ai. The schema of Q is the set {R1, . . . , Rm}, and
the set of attributes of Q is

⋃
iAi. We often denote the set of attributes of a join query Q by

AQ, and we write tup(Q) instead of tup(AQ). The size of Q is |Q| :=
∑

i |Ai|. We write H(Q)
for the (multi-)hypergraph that has vertex-set AQ and edge-(multi-)set {A1, . . . , Am}. If D is an
{R1, . . . , Rm}-instance, the answer of Q on D is the AQ-relation

Q(D) =
{
t ∈ tup(AQ) : πAi(t) ∈ Ri(D) for every i ∈ [m]

}
.

A join plan is a term built from relation names and binary join operators. For example, (R1 ./
R2) ./ (R3 ./ R4) and ((R1 ./ R2) ./ R3) ./ (R1 ./ R4) are two join plans corresponding to the
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4.4. SIZE BOUNDS ON DATABASE QUERIES 67

same join query R1 ./ R2 ./ R3 ./ R4. A join-project plan is a term built from relation names,
binary join operators, and unary project operators. For example, (πA(R1) ./ R2) ./ πB(R1) is a
join-project plan. Join-project plans have a natural representation as labelled binary trees, where
the leaves are labelled by relation names, the unary nodes are labelled by projections πA, and the
binary nodes by joins. Evaluating a join plan or join-project plan ϕ in a database instance D means
substituting the relation names by the actual relations from D and carrying out the operations in
the expression. We denote the resulting relation by ϕ(D). A join(-project) plan ϕ is a plan for a
query Q if ϕ(D) = Q(D) for every database D. The subplans of a join(-project) plan are defined
in the obvious way. For example, the subplans of (R1 ./ R2) ./ πA(R3 ./ R4) are R1, R2, R3, R4,
R1 ./ R2, R3 ./ R4, πA(R3 ./ R4), (R1 ./ R2) ./ πA(R3 ./ R4). If ϕ is a join project plan, then we
often use Aϕ to denote the set of attributes of the query computed by ϕ (this only includes “free”
attributes and not those projected away by some projection in ϕ), and we write tup(ϕ) instead of
tup(Aϕ).

4.4 Size bounds on database queries

Let Q be a join query with schema σ. For every R ∈ σ, let AR be the set of attributes of R, so that
Aσ =

⋃
RAR. The fractional edge covers are precisely the feasible solutions (xR : R ∈ σ) for the

following linear program LQ, and the fractional edge cover number ρ∗(Q) is the cost of an optimal
solution.

LQ : minimise
∑

R xR
subject to

∑
R : a∈AR xR ≥ 1 for all a ∈ Aσ,

xR ≥ 0 for all R ∈ σ.
(4.3)

By standard arguments, there always is an optimal fractional edge cover whose values are rational
and of bit-length polynomial in |Q|. By restating Lemma 4.3 in the context of database queries, we
can observe that fractional edge covers can be used to give an upper bound on the size of a query.

Lemma 4.11. Let Q be a join query with schema σ and let D be a σ-instance. Then for every
fractional edge cover (xR : R ∈ σ) of Q we have

|Q(D)| ≤
∏
R∈σ
|R(D)|xR = 2

∑
R∈σ xR log |RD|.

Note that the fractional edge cover in the statement of the lemma is not necessarily one of
minimum cost. For the reader’s convenience, we give a proof of this lemma here as well, using the
language of database queries.

Proof of Lemma 4.11. Let AR be the set of attributes of R ∈ σ so that Aσ =
⋃
RAR. Without loss

of generality we may assume that the fractional edge cover xR only takes rational values, because
the rationals are dense in the reals. Let pR and q be nonnegative integers such that xR = pR/q. Let
m =

∑
R pR, and let A1, . . . , Am be a sequence of subsets of Aσ that contains precisely pR copies

of the set AR, for all R ∈ σ. Then every attribute a ∈ Aσ is contained in at least q of the sets Ai,
because

|{i ∈ [m] : a ∈ Ai}
∣∣ =

∑
R:a∈AR

pR = q ·
∑

R:a∈AR

xR ≥ q.

Let X = (Xa | a ∈ Aσ) be uniformly distributed on Q(D), which we assume to be non-empty as
otherwise the claim is obvious. That is, for every tuple t ∈ Q(D) we have Pr[X = t] = 1/|Q(D)|,
and for all other A-tuples we have Pr[X = t] = 0. Then h[X] = log |Q(D)|. We apply Shearer’s
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Lemma to the random variable X and the sets AR, for R ∈ σ. (Thus we have I = Aσ and J = σ.)
Note that for every R ∈ σ the marginal distribution of X on AR is 0 on all tuples not in R(D).
Hence the entropy of XAR is bounded by the entropy of the uniform distribution on R(D), that is,
h[XAR ] ≤ log |R(D)|. Thus by Shearer’s Lemma, we have∑

R∈σ
pR · log |R(D)| ≥

∑
R∈σ

pRh[XAR ] =

m∑
i=1

h[XAi ] ≥ q · h[X] = q · log |Q(D)|.

It follows that
|Q(D)| ≤ 2

∑
R∈σ(pR/q)·log |R(D)| =

∏
R∈σ
|R(D)|xR .

The next lemma shows that the upper bound of the previous lemma is tight. Again, it is a
restatement of Theorem 4.8 in the language of database queries.

Lemma 4.12. Let Q be a join query with schema σ, and let (xR : R ∈ σ) be an optimal fractional
edge cover of Q. Then for every N0 ∈ N there is a σ-instance D such that |D| ≥ N0 and

|Q(D)| ≥
∏
R∈σ
|R(D)|xR .

Furthermore, we can choose D in such a way that |R(D)| = |R′(D)| for all R,R′ ∈ σ with xR, xR′ > 0.

Proof. Let AR be the set of attributes of R ∈ σ so that Aσ =
⋃
RAR. Recall (xR : R ∈ σ) is an

optimal solution for the linear program (4.3). By LP-duality, there is a solution (ya : a ∈ Aσ) for the
dual linear program

maximise
∑

a ya
subject to

∑
a∈AR ya ≤ 1 for all R ∈ σ,

ya ≥ 0 for all a ∈ Aσ
(4.4)

such that
∑

a ya =
∑

R xR. There even exists such a solution with rational values.
We take an optimal solution (ya : a ∈ Aσ) with ya = pa/q, where q ≥ 1 and pa ≥ 0 are integers.

Let N0 ∈ N, and let N = N q
0 . We define a σ-instance D by letting

R(D) :=
{
t ∈ tup(AR) : t(a) ∈ [Npa/q] for all a ∈ AR

}
for all R ∈ σ. Here we assume that dom(a) = N for all attributes a. As there is at least one a with
ya > 0 and hence pa ≥ 1, we have |D| ≥ N1/q = N0. Observe that

|R(D)| =
∏
a∈AR

Npa/q = N
∑
a∈AR

ya ≤ N

for all R ∈ σ. Furthermore, Q(D) is the set of all tuples t ∈ tup(Aσ) with t(a) ∈ [Npa/q] for every
a ∈ Aσ. Hence

|Q(D)| =
∏
a∈A

Npa/q = N
∑
a∈Aσ ya = N

∑
R∈σ xR =

∏
R∈σ

NxR ≥
∏
R∈σ
|R(D)|xR ,

as required. To see that |R(D)| is the same for every relation R with xR > 0, we argue as follows.
By complementary slackness of linear programming we have∑

a∈AR

ya = 1 for all R ∈ σ with xR > 0.
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Thus |R(D)| = N for all R ∈ σ with xR > 0 and

|Q(D)| =
∏
R∈σ

NxR =
∏
R∈σ
|R(D)|xR .

Now we show how Lemmas 4.11 and 4.12 give the equivalence between statements (1) and
(4) of Theorem 4.10. Assume (1) and let c > 0 be a constant such that |Q(D)| ≤ |D|c for every
Q ∈ Q and every instance D. For a fixed join query Q ∈ Q, if (x∗R : R ∈ σ) denotes the optimal
fractional edge cover of Q, Lemma 4.12 states that there exist arbitrarily large instances D such
that |R(D)| = |D|/|σ| for every R ∈ σ and

|Q(D)| ≥
∏
R∈σ
|R(D)|x∗R ≥ (|D|/|Q|)

∑
R∈σ x

∗
R = (|D|/|Q|)ρ∗(Q).

In paricular, there exist arbitrarily large instances D for which (|D|/|Q|)ρ∗(Q) ≤ |D|c. It follows
that ρ∗(Q) ≤ c and hence (4) in Theorem 4.10. The converse is even more direct. Assume (4)
and let c > 0 be a constant such that ρ∗(Q) ≤ c for every Q ∈ Q. For a fixed join query Q ∈ Q,
if (x∗R : R ∈ σ) denotes the optimal fractional edge cover of Q, Lemma 4.11 states that for every
instance D we have

|Q(D)| ≤
∏
R∈σ
|R(D)|x∗R ≤ |D|

∑
R∈σ x

∗
R = |D|ρ∗(Q).

It follows that |Q(D)| ≤ |D|c for every D and hence (1) in Theorem 4.10.

4.4.1 Execution plans

Theorem 4.6 in Section 4.2 shows that there is an algorithm for evaluating a join query Q in a
database D that runs in time |D|ρ∗(Q)+O(1). An analysis of the proof shows that the algorithms can
actually be cast as the evaluation of an explicit (and simple) join-project plan. For the reader’s
convenience, we give a proof of this fact here. Combined with the bounds obtained in the previous
section, this yields Theorem 4.10.

We define the size of a k-ary relation R to be the number ||R|| := |R| · k. The bounds stated in
the following fact depend on the machine model; the statement we give is based on standard random
access machines with a uniform cost measure. Other models may require additional logarithmic
factors.

Fact 4.13. The following hold:

1. The join R ./ S of two relations R and S can be computed in time O(||R||+ ||S||+ ||R ./ S||).

2. The projection πB(R) of an A-relation R to a subset B ⊆ A can be computed in time O(||R||).

For details and a proof of the fact, we refer the reader to [101]. The following theorem gives the
promised join-project plan:

Theorem 4.14. For every join query Q, there is a join-project plan for Q that can be evaluated in
time O

(
|Q|2 · |D|ρ∗(Q)+1

)
on every given instance D. Moreover, there is a polynomial-time algorithm

that, given Q, computes the join-project plan.

dc_1604_18

Powered by TCPDF (www.tcpdf.org)



70 CHAPTER 4. FRACTIONAL EDGE COVERS, CSPS, AND DATABASE QUERIES

Proof. Let Q = R1(A1) ./ · · · ./ Rm(Am) be a join query and D an instance for Q. Suppose that
the attributes of Q are {a1, . . . , an}. For i ∈ [n], let Bi := {a1, . . . , ai}. Furthermore, let

ϕ1 :=
(
· · · (πB1(R1) ./ πB1(R2)) ./ · · · ./ πB1(Rm)

)
,

ϕi+1 :=
(
· · ·
(
(ϕi ./ πBi+1(R1)) ./ πBi+1(R2)

)
./ · · · ./ πBi+1(Rm)

)
for all i ≥ 1.

It is easy to see that for every i ∈ [n] it holds that ϕi(D) = πBi(Q(D)) and hence ϕn(D) = Q(D).
Hence to compute Q(D), we can evaluate the join-project plan ϕn.

To estimate the cost of the evaluating the plan, we need to establish the following claim:

For every i ∈ [n] we have |ϕi(D)| ≤ |D|ρ∗(Q).

To see this, we consider the join query

Qi := R1
i ./ · · · ./ Rmi,

where Rj i is a relation name with attributes Bi∩Aj . The crucial observation is that ρ∗(Qi) ≤ ρ∗(Q),
because if (xR : R ∈ σ) is fractional edge cover of Q, then letting xRi = xR for every R ∈ σ we
get a fractional edge cover of Qi of the same cost. If we let Di be the database instance with
Rj

i(Di) := πBi(Rj) for all j ∈ [m], then we get

ϕi(D) = Qi(Di) ≤ |Di|ρ
∗(Qi) ≤ |D|ρ∗(Q).

This proves the claim.
We further observe that all intermediate results in the computation of ϕi+1(D) from ϕi(D) are

contained in
ϕi(D)× U,

where U is the active domain of D. Hence their size is bounded by |ϕi(D)| · |D| ≤ |D|ρ∗(Q)+1, and
by Fact 4.13 they can be computed in time O(|D|ρ∗(Q)+1). Overall, we have to compute n · m
projections, each requiring time O(D), and n ·m joins, each requiring time O(|D|ρ∗(Q)+1). This
yields the desired running time.

We shall prove next that join plans perform significantly worse than join-project plans. Note
that to evaluate a join plan one has to evaluate all its subplans. Hence for every subplan ψ of ϕ and
every instance D, the size |ψ(D)| is a lower bound for the time required to evaluate ϕ in D.

Theorem 4.15. For every m,N ∈ N there are a join query Q and an instance D with |Q| ≥ m and
|D| ≥ N , and:

1. ρ∗(Q) ≤ 2 and hence |Q(D)| ≤ |D|2 (actually, |Q(D)| ≤ |D|).

2. Every join plan ϕ for Q has a subplan ψ such that |ψ(D)| ≥ |D|
1
5

log |Q|.

Proof. Let n =
(

2m
m

)
. For every s ⊆ [2m] with |s| = m, let as be an attribute with domain N. For

every i ∈ [2m], let Ri be a relation name having as attributes all as such that i ∈ s. Let Ai be the
set of attributes of Ri and A =

⋃
i∈[2m]Ai. The arity of Ri is

|Ai| =
(

2m− 1

m− 1

)
=

m

2m
·
(

2m

m

)
=
n

2
.

Let Q := R1 ./ · · · ./ R2m. Then |Q| = 2m · n/2 = m · n. Furthermore, ρ∗(Q) ≤ 2. To see this, let
xRi = 1/m for every i ∈ [2m]. This forms a fractional edge cover of Q, because for every s ⊆ [2m]
with |s| = m, the attribute as appears in the m atoms Ri with i ∈ s.
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Next, we define an instance D by letting Ri(D) be the set of all Ai-tuples that have an arbitrary
value from [N ] in one coordinate and 1 in all other coordinates. Formally,

Ri(D) :=
⋃
a∈Ai

⋂
b∈Ai\a

{t ∈ tup(Ai) : t(a) ∈ [N ], t(b) = 1}.

Observe that |Ri(D)| = (N − 1)n/2 + 1 for all i ∈ [2m] and thus

|D| = (N − 1)mn+ 2m ≥ N.

Furthermore, Q(D) is the set of all A-tuples that have an arbitrary value from [N ] in one attribute
and 1 in all other coordinates (it is not possible that two attributes have value different from 1, as
every two attributes appear together in some relation). Hence |Q(D)| = (N − 1)n+ 1 ≤ |D|. This
completes the proof of (1).

To prove (2), we shall use the following simple (and well-known) combinatorial lemma:

Lemma 4.16. Let T be a binary tree whose leaves are coloured with 2m colours, for some m ≥ 1.
Then there exists a node t of T such that at least (m+ 2)/2 and at most m+ 1 of the colours appear
at leaves that are descendants of t.

Proof. For every node t of T , let c(t) be the number of colours that appear at descendants of T .
The height of a node t is the length of the longest path from t to a leaf.

Let t be a node of minimum height such that c(t) ≥ m + 2, and let u1, u2 be the children of
t. (Note that t cannot be a leaf because c(t) ≥ 2.) Then c(ui) ≤ m+ 1 for i = 1, 2. Furthermore,
c(u1) + c(u2) ≥ c(t), hence c(ui) ≥ (m+ 2)/2 for at least one i. y

Continuing the proof of the theorem, we let ϕ be a join plan for Q. We view the term ϕ as
a binary tree T whose leaves are labelled by atoms Ri. We view the atoms as colours. Applying
the lemma, we find a node t of T such that at least (m + 2)/2 and at most m + 1 of the colours
appear at leaves that are descendants of t. Every inner node of the tree corresponds to a subplan of
ϕ. We let ψ be the subplan corresponding to t. Then at least (m+ 2)/2 and at most m+ 1 atoms
Ri appear in ψ. By symmetry, we may assume without loss of generality that the atoms of ψ are
R1, . . . , R` for some ` ∈

[
d(m+ 2)/2e ,m+ 1

]
. Hence ψ is a plan for the join query

R1 ./ · · · ./ R`.

Let B :=
⋃`
i=1Ai be the set of all attributes occurring in ψ. For i ∈ [m+1], let si = {i}∪ [m+2, 2m].

Then for all i, j ∈ [`] we have asi ∈ Aj if and only if i = j. Hence all tuples t ∈ tup(B) with
t(asi) ∈ [N ] for all i ∈ [`] and t(b) = 1 for all b ∈ B \ {as1 , . . . , as`} are contained in ψ(D). As there
are N ` such tuples, it follows that

|ψ(Q)| ≥ N ` ≥ N (m+2)/2.

Statement (2) of the lemma follows, because

log |Q| = logm+ log n ≤ logm+ log 22m = logm+ 2m ≤ 5 · (m+ 2)/2,

provided m is large enough, which we may assume without loss of generality.
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Statement (2) of the theorem implies that any evaluation algorithm for the query Q based on
evaluating join plans, which may even depend on the database instance, has a running time at least
|D|Ω(log |Q|). This is to be put in contrast with the running time O(|Q|2 · |D|3) from Theorem 4.14.
It is a natural question to ask if the difference can be even worse, i.e., more than logarithmic in the
exponent.

Using the well-known fact that the integrality gap of the linear program for edge covers is
logarithmic in the number of vertices of the hypergraph (that is, attributes of the join query),
we prove below that for every query Q there is a join plan ϕ that can be evaluated in time
O(|Q| · |D|2ρ∗(Q)·log |Q|)), hence the lower bound is tight up to a small constant factor.

Proposition 4.17. For every join query Q, there is a join plan for Q that can be evaluated in time
O(|Q| · |D|2ρ∗(Q)·log |Q|)) on every given instance D.

Proof. Let Q be a join query with schema σ. For every R ∈ σ let AR be the set of attributes of
R so that Aσ =

⋃
R∈σ AR. An edge cover of Q is a subset γ ⊆ σ such that Aσ ⊆

⋃
R∈γ AR. The

edge cover number ρ(Q) of Q is the minimum size of an edge cover for Q. Observe that edge covers
correspond to {0, 1}-valued fractional edge covers and that the edge cover number is precisely the
cost of the optimal integral fractional edge cover. It is well known that the integrality gap for the
linear program defining fractional edge covers is Hn, where n = |Aσ| and Hn is the nth harmonic
number (see, for example, [228], Chapter 13). It is known that Hn ≤ 2 log n. Now the join plan
consists in first joining the relations that form an edge cover of size 2ρ∗(Q) · log |Q| in arbitrary
order, and then joining the result with the rest of relations in arbitrary order.

Furthermore, the proof of Proposition 4.17 shows that, for every join query Q, there is a join
plan that can be evaluated in time O(|Q| · |D|ρ(Q)), where ρ(Q) denotes the edge cover number of Q.
However, note that not only |D|ρ(Q) is potentially superpolynomial over |D|ρ∗(Q), but also finding
this plan is in general NP-hard. Compare this with the fact that the join-project plan given by
Theorem 4.14 can be found efficiently.

4.5 Size constraints

To estimate the size of joins, practical query optimisers use statistical information about the database
instance such as the sizes of the relations, the sizes of some of their projections, or histograms. In
this section we consider the simplest such setting where the size of the relations is known, and we
prove a (worst-case) estimate on the size of Q(D) subject to the constraint that the relations in D
have the given sizes.

4.5.1 Size bounds under size constraints

Let Q be a join query with schema σ. For every R ∈ σ, let AR be the set of attributes of R so
that Aσ =

⋃
RAR. For every R ∈ σ, let NR be a natural number, and let LQ(NR : R ∈ σ) be the

following linear program:

minimise
∑

R xR · logNR

subject to
∑

R:a∈AR xR ≥ 1 for all a ∈ Aσ,
xR ≥ 0 for all R ∈ σ.

(4.5)

Note that the only difference with LQ as defined in (4.3) is the objective function. This implies that
every feasible solution of LQ(NR : R ∈ σ) is also a fractional edge cover of Q.
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Theorem 4.18. Let Q be a join query with schema σ and let NR ∈ N for all R ∈ σ. Let n be
the number of attributes of Q, and let (xR : R ∈ σ) be an optimal solution of the linear program
LQ(NR : R ∈ σ).

1. For every σ-instance D with |R(D)| = NR for all R it holds that |Q(D)| ≤
∏
RN

xR
R

2. There is a σ-instance D such that |R(D)| = NR for all R ∈ σ and |Q(D)| ≥ 2−n
∏
RN

xR
R .

Proof. Statement (1) is an immediate consequence of Lemma 4.11. To prove (2), we exploit LP
duality again. The LP-dual of LQ(NR : R ∈ σ) is the following linear program DQ(NR : R ∈ σ):

maximise
∑

a ya
subject to

∑
a∈AR ya ≤ logNR for all R ∈ σ,

ya ≥ 0 for all a ∈ Aσ.

Let (ya : a ∈ Aσ) be an optimal solution for the dual. Then
∑

a∈Aσ ya =
∑

R∈σ xR · logNR.
For all a ∈ Aσ, let y′a = log b2yac ≤ ya. We set

R′ :=
{
t ∈ tup(AR) : t(a) ∈

[
2y
′
a
]
for all a ∈ AR

}
.

Then
|R′| =

∏
a∈AR

2y
′
a =

∏
a∈AR

b2yac ≤ 2
∑
a∈AR

ya ≤ 2logNR = NR.

We arbitrarily add tuples to R′ to obtain a relation R(D) of size exactly NR. In the resulting
instance D, we have

|Q(D)| ≥
∏
a∈Aσ

2y
′
a ≥

∏
a∈Aσ

2ya

2
= 2−n · 2

∑
a∈Aσ ya = 2−n · 2

∑
R∈σ xR·logNR = 2−n ·

∏
R∈σ

NxR
R .

Even though usually the query is much smaller than the database instance and hence we may
argue that a constant factor that only depends on the size of the query is negligible, the exponential
factor in the lower bound of Theorem 4.18(2) is unpleasant. In the following, we shall prove that the
lower bound cannot be improved substantially. In the next example we show that we cannot replace
the lower bound of Theorem 4.18(2) by 2−(1−ε)n∏

RN
xR
R for any ε > 0. This seems to indicate

that maybe the approach to estimating the size of joins through fractional edge covers is no longer
appropriate in the setting where the size of the relations is fixed. However, we shall then see that, in
some sense, there is no better approach. In Theorem 4.20, we shall prove that there is no polynomial
time algorithm that, given a query Q and relation sizes NR, for R ∈ σ, approximates the worst case
size of the query answer to a factor better than 2n

1−ε .

Example 4.19. We give an example where
∏
R∈σN

xR
R is roughly 2n but |Q(D)| is at most 2εn,

where n is the number of attributes of Q. Thus the factor 2−n in Theorem 4.18(2) cannot be replaced
with anything greater than 2−(1−ε)n.

Let n ∈ N be an integer, 0 < ε < 1 a fixed constant, and A = {a1, . . . , an} a set of attributes
with domain N. Let r := bεn/ log nc. We assume that n is sufficiently large that 2r > n holds. For
every B ∈

(
[n]
r

)
, let RB be an r-ary relation with attributes B. Furthermore, for every a ∈ A, let Ra

be a unary relation with the only attribute a. Let Q be the join of all these relations and let σ be
the resulting schema.
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For every B ∈
(

[n]
r

)
, let NRB = 2r − 1 and for every a ∈ A, let NRa = 2. Consider the

linear program LQ(NR : R ∈ σ). We obtain an optimal solution for this linear program by
letting xRB := n/

(
r
(
n
r

))
and xRa := 0. To see that this is an optimum solution, observe that

ya := log(2r − 1)/r is a feasible solution of the dual LP with the same cost.
We prove next that

∏
RN

xR
R = 2n(1− o(1)):

∏
R∈σ

NxR
R =

(
(2r − 1)n/(r(

n
r))
)(nr) ≥ (2r−1)n/r ≥ (2r(1− 1/n))n/r = 2n (1− 1/n)n/r = 2n(1−o(1)).

The second inequality follows from 2r > n and the last equality follows from the fact if n tends to
infinity, then (1− 1/n)n goes to 1/e and r goes to infinity as well.

To complete the example, we prove that |Q(D)| ≤ 2εn for every instance D respecting the
constraints NR. Let D be a σ-instance with |R(D)| = NR for every R ∈ σ. From NRa = 2 it follows
that in Q(D) each attribute has at most two values, hence we can assume without loss of generality
that Q(D) ⊆ {0, 1}n. Thus each tuple in t ∈ Q(D) can be viewed as a subset At = {a ∈ A : t(a) = 1}
of A. For every B ∈

(
[n]
r

)
, it holds πB(Q(D)) ≤ NRB = 2r − 1, hence the Vapnik-Chervonenkis

dimension of Q(D) is less than r. Thus by Sauer’s Lemma, we have

|Q(D)| ≤ nr ≤ nεn/ logn = 2εn,

as claimed.

4.5.2 Hardness of better approximation

There is a gap of 2n between the upper and lower bounds of Theorem 4.18, which means that both
bounds approximate the maximum size of |Q(D)| within a factor of 2n. However, if |Q(D)| is 2O(n),
then such an approximation is useless. We show that it is not possible to find a better approximation
in polynomial time: the gap between an upper and a lower bound cannot be reduced to 2O(n1−ε)

(under standard complexity-theoretic assumptions).
For the following statement, recall that ZPP is the class of decision problems that can be solved

by a probabilistic polynomial-time algorithm with zero-error. What this means is that, on any input,
the algorithm outputs the correct answer or “don’t know”, but the probability over the random choices
of the algorithm that the answer is “don’t know” is bounded by 1/2. Obviously P ⊆ ZPP ⊆ NP, and
the assumption that ZPP 6= NP is almost as believable as P 6= NP (see [201]).

Theorem 4.20. For a given query Q with schema σ and a given set of size constraints (NR : R ∈ σ),
denote by M the maximum of |Q(D)| over databases satisfying |R(D)| = NR for every R ∈ σ. If for
some ε > 0, there is a polynomial-time algorithm that, given a query Q with n attributes and size
constraints NR, computes two values ML and MU with ML ≤M ≤MU and MU ≤ML2n

1−ε, then
ZPP = NP.

For the proof of Theorem 4.20, we establish a connection between the query size and the maximum
independent set problem (Lemma 4.22). Then we get our inapproximability result by reduction from
the following result by Håstad:

Theorem 4.21 (Håstad [136]). If for some ε0 > 0 there is a polynomial-time algorithm that, given an
n-vertex graph G, can distinguish between the cases α(G) ≤ nε0 and α(G) ≥ n1−ε0 , then ZPP = NP.

Following is the announced connection between worst-case query-size subject to relation-size
constraints and maximum independent sets:
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Lemma 4.22. Let Q be a join query with schema σ and let NR := 2 for all R ∈ σ. Let G be the
primal graph of Q and let α(G) be the size of the maximum independent set in G. The maximum of
|Q(D)|, taken over database instances satisfying |R(D)| = NR for every R ∈ σ, is exactly 2α(G).

Proof. Let AR be the attributes of R ∈ σ. For this proof we write A instead of Aσ. First we give
a database D with |Q(D)| ≥ 2α(G). Let I ⊆ A be an independent set of size α(G). Since I is
independent, |AR ∩ I| is either 0 or 1 for every R ∈ σ. If |AR ∩ I| = 0, then we define R(D) to
contain a tuple that is 0 on every attribute. If AR ∩ I = {a}, then we define R(D) to contain a tuple
that is 0 on every attribute and a tuple that is 1 on a and 0 on every attribute in AR \ {a}. We
claim that

Q(D) = {t ∈ tup(A) : t(a) ∈ {0, 1} for all a ∈ I, t(a) = 0 for all a ∈ A \ I}.

Clearly, the value of an attribute in I is either 0 or 1, and every attribute in A \ I is forced to 0.
Furthermore, any combination of 0 and 1 on the attributes of I is allowed as long as all the other
attributes are 0. Thus |Q(D)| = 2α(G). Note that a relation R with |AR ∩ I| = 0 contains only one
tuple in the definition above. To satisfy the requirement |R(D)| = NR = 2, we can add an arbitrary
tuple to each such relation R; this cannot decrease |Q(D)|.

Next we show that if |R(D)| = 2 for every relation R ∈ σ, then |Q(D)| ≤ 2α(G). Since |R(D)| = 2
for every relation, every attribute in A can have at most two values in Q(D); without loss of generality
it can be assumed that Q(D) ⊆ {0, 1}|A|. Furthermore, it can be assumed (by a mapping of the
domain of the attributes) that the all-0 tuple is in Q(D).

Let S be the set of those attributes that have two values in Q(D), i.e.,

S = {a ∈ A : |π{a}(Q(D))| = 2}.

For every a ∈ S, let Sa be the set of those attributes that are the same as a in every tuple of Q(D),
i.e.,

Sa = {b ∈ S : t(a) = t(b) for every t ∈ Q(D)}.

We define a sequence a1, a2, . . . of attributes by letting ai be an arbitrary attribute in S\
⋃
j<i Saj .

Let at be the last element in this sequence, which means that
⋃t
i=1 Sai = S. We claim that a1,

. . . , at are independent in G, implying t ≤ α(G). Assume that ai and aj (i < j) are adjacent in
G; this means that there is an R ∈ σ with ai, aj ∈ AR. By assumption, the all-0 tuple is in R(D).
As ai, aj ∈ S, there has to be a t1 ∈ R(D) with t1(ai) = 1 and a t2 ∈ R(D) with t2(aj) = 1. Since
|R(D)| = 2 and the all-0 tuple is in R(D), we have t1 = t2. But this means that ai and aj have
the same value in both tuples in R(D), implying aj ∈ Sai . However, this contradicts the way the
sequence was defined.

Now it is easy to see that |Q(D)| ≤ 2t ≤ 2α(G): by setting the value of a1, . . . , at, the value of
every attribute in S is uniquely determined and the attributes in A \ S are the same in every tuple
of Q(D).

Proof of Theorem 4.20. We show that if such ML and MU could be determined in polynomial time,
then we would be able to distinguish between the two cases of Theorem 4.21. Given an n-vertex
graph G = (V,E), we construct a query Q with attributes V and schema σ = E. For each edge
uv ∈ E, there is a relation Ruv with attributes {u, v}. We set NR = 2 for every relation R ∈ σ.
Observe that the primal graph of Q is G. Thus by Lemma 4.22, M = 2α(G).

Set ε0 := ε/2. In case (1) of Theorem 4.21, α(G) ≤ nε0 , hence ML ≤M ≤ 2n
ε0 and

MU ≤ML2n
1−ε ≤ 2n

ε0+n1−ε
< 2n

1−ε0

dc_1604_18

Powered by TCPDF (www.tcpdf.org)



76 CHAPTER 4. FRACTIONAL EDGE COVERS, CSPS, AND DATABASE QUERIES

(if n is sufficiently large). On the other hand, in case (2) we have α(G) ≥ n1−ε0 , which implies
MU ≥M = 2α(G) ≥ 2n

1−ε0 . Thus we can distinguish between the two cases by comparing MU with
2n

1−ε0 .
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CHAPTER 5

Fractional hypertree width

The notion of hypertree width, introduced by Gottlob et al. [116], gives wide classes of hypergraph
properties that have unbounded treewidth, but still guarantee polynomial-time solvability of CSP
instances. In Chapter 4, we have seen that bounded fractional edge cover number is another property
ensuring polynomial-time solvability, and it is orthogonal to bounded hypertree width (see Figure 1.1
on page 16). In this chapter, we start a more systematic investigation of the interaction between
fractional covers and hypertree width. We propose a new hypergraph invariant, the fractional
hypertree width, which generalizes both the hypertree width and fractional edge cover number in a
natural way.

Fractional hypertree width is an interesting hybrid of the “continuous” fractional edge cover
number and the “discrete” hypertree width. We show that it has properties that are similar to the
nice properties of hypertree width. In particular, we give an approximative game characterization
of fractional hypertree width similar to the characterization of treewidth by the “cops and robber”
game [217]. Furthermore, we prove that for classes H of bounded fractional hypertree width, the
problem CSP(H) can be solved in polynomial time provided that a fractional hypertree decomposition
of the underlying hypergraph is given together with the input instance. Unfortunately, we cannot
expect that, for every fixed k, there is a polynomial-time algorithm for finding a fractional hypertree
decomposition of width k: it is known that the problem is NP-hard even for k = 2 [100]. However, we
show that we can find an approximate decomposition whose width is bounded by a (cubic) function
of the fractional hypertree width. This is sufficient to show that CSP(H) is polynomial-time solvable
for classes H of bounded fractional hypertree width, even if no decomposition is given in the input.
Therefore, bounded fractional hypertree width is the so far most general hypergraph property that
makes CSP(H) polynomial-time solvable. Note that this property is strictly more general than
bounded hypertree width and bounded fractional edge cover number.

Publications. This chapter is based on two publications. Section 5.1 is based on the second
half of an articled that appeared in ACM Transactions on Algorithms [126] (an extended abstract
appeared in the proceedings of the SODA 2006 conference [124]). Section 5.2 is based on a single-
author publication that appeared in ACM Transactions on Algorithms [184] (an extended abstract
appeared in the proceedings of the SODA 2009 conference [183]).

77

dc_1604_18

Powered by TCPDF (www.tcpdf.org)



78 CHAPTER 5. FRACTIONAL HYPERTREE WIDTH

5.1 Fractional hypertree decompositions

Let H be a hypergraph. A generalized hypertree decomposition of H [116] is a triple (T, (Bt)t∈V (T ),
(Ct)t∈V (T )), where (T, (Bt)t∈V (T )) is a tree decomposition of H and (Ct)t∈V (T ) is a family of subsets
of E(H) such that for every t ∈ V (T ) we have Bt ⊆

⋃
Ct. Here

⋃
Ct denotes the union of the

sets (hyperedges) in Ct, that is, the set {v ∈ V (H) | ∃e ∈ Ct : v ∈ e}. We call the sets Bt the
bags of the decomposition and the sets Ct the guards. The width of (T, (Bt)t∈V (T ), (Ct)t∈V (T )) is
max{|Ct| | t ∈ V (T )}. The generalized hypertree width ghw(H) of H is the minimum of the widths
of the generalized hypertree decompositions of H. The edge cover number ρ(H) of a hypergraph
is the minimum number of edges needed to cover all vertices; it is easy to see that ρ(H) ≥ ρ∗(H).
Observe that the size of Ct has to be at least ρ(H[Bt]) and, conversely, for a given Bt there is
always a suitable guard Ct of size ρ(H[Bt]). Therefore, ghw(H) ≤ r if and only if there is a tree
decomposition where ρ(H[Bt]) ≤ r for every t ∈ V (T ).

For the sake of completeness, let us mention that a hypertree decomposition of H is a generalized
hypertree decomposition (T, (Bt)t∈V (T ), (Ct)t∈V (T )) that satisfies the following additional special
condition: (

⋃
Ct) ∩

⋃
u∈V (Tt)

Bu ⊆ Bt for all t ∈ V (T ). Recall that Tt denotes the subtree of the
T with root t. The hypertree width hw(H) of H is the minimum of the widths of all hypertree
decompositions of H. It has been proved in [8] that ghw(H) ≤ hw(H) ≤ 3 · ghw(H) + 1. This
means that for our purposes, hypertree width and generalized hypertree width are equivalent. For
simplicity, we will only work with generalized hypertree width.

Observe that for every hypergraph H without isolated vertices, we have ghw(H) ≤ tw(H) + 1.
Furthermore, if H is a hypergraph with V (H) ∈ E(H) we have ghw(H) = 1 and tw(H) = |V (H)|−1.

We now give an approximate characterization of (generalized) hypertree width by a game that
is a variant of the cops and robber game [217], which characterizes treewidth: In the robber and
marshals game on H [117], a robber plays against k marshals. The marshals move on the hyperedges
of H, trying to catch the robber. Intuitively, the marshals occupy all vertices of the hyperedges
where they are located. In each move, some of the marshals fly in helicopters to new hyperedges.
The robber moves on the vertices of H. She sees where the marshals will be landing and quickly
tries to escape, running arbitrarily fast along paths of H, not being allowed to run through a vertex
that is occupied by a marshal before and after the flight (possibly by two different marshals). The
marshals’ objective is to land a marshal via helicopter on a hyperedge containing the vertex occupied
by the robber. The robber tries to elude capture. The marshal width mw(H) of a hypergraph H
is the least number k of marshals that have a winning strategy in the robber and marshals game
played on H (see [6] or [117] for a formal definition).

It is easy to see that mw(H) ≤ ghw(H) for every hypergraphH. To win the game on a hypertree of
generalized hypertree width k, the marshals always occupy guards of a decomposition and eventually
capture the robber at a leaf of the tree. Conversely, it can be proved that ghw(H) ≤ 3 ·mw(H)+1 [8].

Observe that for every hypergraph H, the generalized hypertree width ghw(H) is less than or
equal to the edge cover number ρ(H): hypergraph H has a generalized hypertree decomposition
consisting of a single bag containing all vertices and having a guard of size ρ(H). On the other
hand, the following two examples show that hypertree width and fractional edge cover number are
incomparable.

Example 5.1. Consider the class of all graphs that only have disjoint edges. The treewidth and
hypertree width of this class is 1, whereas the fractional edge cover number is unbounded.

Example 5.2. For n ≥ 1, let Hn be the following hypergraph: Hn has a vertex vS for every subset
S of {1, . . . , 2n} of cardinality n. Furthermore, for every i ∈ {1, . . . , 2n} the hypergraph Hn has a
hyperedge ei = {vS | i ∈ S}.
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Observe that the fractional edge cover number ρ∗(Hn) is at most 2, because the mapping x that
assigns 1/n to every hyperedge ei is a fractional edge cover of weight 2. Actually, it is easy to see
that ρ∗(Hn) = 2.

We claim that the hypertree width of Hn is n. We show that Hn has a hypertree decomposition
of width n. Let S1 = {1, . . . , n} and S2 = {n + 1, . . . , 2n}. We construct a generalized hypertree
decomposition for Hn with a tree T having two nodes t1 and t2. For i = 1, 2, we let Bt1 contain a
vertex VS if and only if S ∩ Si 6= ∅. For each edge ej ∈ E(Hn), there is a bag of the decomposition
that contains ej : if j ∈ Si, then Bti contains every vertex of ej . We set the guard Cti to contain
every ej with j ∈ Si. It is clear that |Cti | = n and Cti covers Bti : vertex vS is in Bti only if there
is a j ∈ S ∩ Si, in which case ej ∈ Cti covers vS . Thus this is indeed a generalized hypertree
decomposition of width n for Hn and ghw(Hn) ≤ n follows.

To see that ghw(Hn) > n− 1, we argue that the robber has a winning strategy against (n− 1)
marshals in the robber and marshals game. Consider a position of the game where the marshals
occupy edges ej1 , . . . , ejn−1 and the robber occupies a vertex vS for a set S with S∩{j1, . . . , jn−1} = ∅.
Suppose that in the next round of the game the marshals move to the edges ek1 , . . . , ekn−1 . Let
i ∈ S \{k1, . . . , kn−1}. The robber moves along the edge ei to a vertex vR for a set R ⊆ {1, . . . , 2n}\
{k1, . . . , kn−1} of cardinality n that contains i. If she plays this way, she can never be captured.

For a hypergraph H and a mapping γ : E(H)→ [0,∞), we let

B(γ) = {v ∈ V (H) |
∑

e∈E(H),v∈e

γ(e) ≥ 1}.

We may think of B(γ) as the set of all vertices “blocked” by γ. Furthermore, we let weight(γ) =∑
e∈E γ(e).

Definition 5.3. Let H be a hypergraph. A fractional hypertree decomposition of H is a triple (T,
(Bt)t∈V (T ), (γt)t∈V (T )), where (T, (Bt)t∈V (T )) is a tree decomposition of H and (γt)t∈V (T ) is a family
of mappings from E(H) to [0,∞) such that for every t ∈ V (T ) we have Bt ⊆ B(γt).

We call the sets Bt the bags of the decomposition and the mappings γt the (fractional) guards.
The width of (T, (Bt)t∈V (T ), (γt)t∈V (T )) is max{weight(γt) | t ∈ V (T )}. The fractional hypertree

width fhw(H) of H is the minimum of the widths of the fractional hypertree decompositions of H.
Equivalently, fhw(H) ≤ r if H has a tree decomposition where ρ∗(Bt) ≤ r for every bag Bt.

It is easy to see that the minimum of the widths of all fractional hypertree decompositions of
a hypergraph H always exists and is rational. This follows from the fact that, up to an obvious
equivalence, there are only finitely many tree decompositions of a hypergraph.

Clearly, for every hypergraph H we have

fhw(H) ≤ ρ∗(H) and fhw(H) ≤ ghw(H).

Examples 5.1 and 5.2 above show that there are families of hypergraphs of bounded fractional
hypertree width, but unbounded fractional edge cover number and unbounded generalized hypertree
width.

It is also worth pointing out that for every hypergraph H,

fhw(H) = 1 ⇐⇒ ghw(H) = 1.

To see this, note that if γ : E(H)→ [0,∞) is a mapping with weight(γ) = 1 and B ⊆ B(γ), then
B ⊆ e for all e ∈ E(H) with γ(e) > 0. Thus instead of using γ as a guard in a fractional hypertree
decomposition, we may use the integral guard {e} for any e ∈ E(H) with γ(e) > 0. Let us remark
that ghw(H) = 1 if and only if H is acyclic [116].
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5.1.1 Finding decompositions

For the algorithmic applications, it is essential to have algorithms that find fractional hypertree
decompositions of small width. The question is whether for any fixed r > 1 there is a polynomial-
time algorithm that, given a hypergraph H with fhw(H) ≤ r, computes a fractional hypertree
decomposition of H of width at most r. Unfortunately, a very recent result of Fischl et al. [100] shows
that this problem is NP-hard even for r = 2 (earlier, it was known that the problem is NP-hard if r
is part of the input [105,184]).

Given the hardness of finding the best possible decomposition, one has to be satisfied with
approximate solutions. In Section 5.2, we present an algorithm that approximates fractional hypertree
width in the following sense:

Theorem 5.4. For every r ≥ 1, there is an nO(r3) time algorithm that, given a hypergraph with
fractional hypertree width at most r, finds a fractional hypertree decomposition of width O(r3).

The main technical challenge in the proof of Theorem 5.4 is finding a separator with bounded
fractional edge cover number that separates two sets X, Y of vertices. An approximation algorithm
is given in Section 5.2.1 for this problem, which finds a separator of weight O(r3) if a separator of
weight r exists. This algorithm is used to find balanced separators, which in turn is used to construct
a tree decomposition (Section 5.2.2).

5.1.2 Algorithmic applications

In this section, we discuss how problems can be solved by fractional hypertree decompositions of
bounded width. First we give a basic result, which formulates why tree decompositions and width
measures are useful in the algorithmic context: CSP can be efficiently solved if we can polynomially
bound the number of solutions in the bags. Recall that HI denotes the hypergraph of a CSP instance
I. If (T, (Bt)t∈V (T )) is a tree decomposition of HI , then I[Bt] denotes the instance induced by bag
Bt, see Definition 4.5.

Lemma 5.5. There is an algorithm that, given a CSP instance, a hypertree decomposition (T, (Bt)t∈V (T ))

of HI , and for every t ∈ V (t) a list Lt of all solutions of I[Bt], decides in time C · ‖I‖O(1) if I is
satisfiable (and computes a solution if it is), where C := maxt∈V (T ) |Lt|.

Proof. Define Vt :=
⋃
t∈V (Tt)

Bt. For each t ∈ V (T ), our algorithm constructs the list L′t ⊆ Lt of
those solutions of I[Bt] that can be extended to a solution of I[Vt]. Clearly, I has a solution if and
only if L′t0 is not empty for the root t0 of the tree decomposition.

The algorithm proceeds in a bottom-up manner: when constructing the list L′t, we assume that
for every child t′ of t, the lists L′t′ are already available. If t is a leaf node, then Vt = Bt, and L′t = Lt.
Assume now that t has children t1, . . . , tk. We claim that a solution α of I[Bt] can be extended
to I[Vt] if and only if for each 1 ≤ i ≤ k, there is a solution αi of I[Vti ] that is compatible with α
(that is, α and αi assign the same values to the variables in Bt ∩ Vti = Bt ∩ Bti). The necessity
of this condition is clear: the restriction of a solution of I[Vt] to Vti is clearly a solution of I[Vti ].
For sufficiency, suppose that the solutions αi exist for every child ti. They can be combined to an
assignment α′ on Vt extending α in a well-defined way: every variable v ∈ Vti ∩ Vtj is in Bt, thus
αi(v) = αj(v) = α(v) follows for such a variable. Now α′ is a solution of I[Vt]: for each constraint of
I[Vt], the variables of the constraint are contained either in Bt or in Vti for some 1 ≤ i ≤ k, thus α
or αi satisfies the constraint, implying that α′ satisfies it as well.

Therefore, L′t can be determined by first enumerating every solution α ∈ Lt, and then for each i,
checking whether L′ti contains an assignment αi compatible with α. This check can be efficiently
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performed the following way. Recall that solutions α and αi are compatible if their restriction to
Bt ∩ Bti is the same assignment. Therefore, after computing L′ti , we restrict every αi ∈ L′ti to
Bt ∩ Bti and store these restrictions in a trie data structure for easy membership tests. Then to
check if there is an αi ∈ L′ti compatible with α, all we need to do is to check if the restriction of
α to Bt ∩ Bti is in the trie corresponding to L′ti , which can be checked in ‖I‖O(1). Thus L′t (and
the corresponding trie structure) can be computed in time |Lt| · ‖I‖O(1). As every other part of the
algorithm can be done in time ‖I‖O(1), it follows that the total running time can be bounded by
C · ‖I‖O(1). Using standard bookkeeping techniques, it is not difficult to extend the algorithm such
that it actually returns a solution if one exists.

Lemma 5.5 tells us that if we have a tree decomposition where we can give a polynomial bound on
the number of solutions in the bags for some reason (and we can enumerate all these solutions), then
the problem can be solved in polynomial time. Observe that in a fractional hypertree decomposition
every bag has bounded fractional edge cover number and hence Theorem 4.6 can be used to enumerate
all the solutions. It follows that if a fractional hypertree decomposition of bounded width is given in
the input, then the problem can be solved in polynomial time.

Theorem 5.6. There is an algorithm that, given a CSP instance, a fractional hypertree decomposition
(T, (Bt)t∈V (T ), γ) of HI having width at most r, decides in time ‖I‖r+O(1) if I is satisfiable (and
computes a solution if it is).

Moreover, if we know that the hypergraph has fractional hypertree width at most r (but no
decomposition is given in the input), then we can use brute force to find a fractional hypertree
decomposition of width at most r by trying every possible decomposition and then solve the problem
in polynomial time. This way, the running time is polynomial in the input size times an (exponential)
function of the number of variables. This immediately shows that if we restrict CSP to a class
of hypergraphs whose fractional hypertree width is at most a constant r, then the problem is
fixed-parameter tractable parameterized by the number of variables. To get rid of the exponential
factor depending on the number of variables and obtain a polynomial-time algorithm, we can replace
the brute force search for the decomposition by the approximation algorithm of Theorem 5.4.

Theorem 5.7. Let r ≥ 1. Then there is a polynomial-time algorithm that, given a CSP instance I
of fractional hypertree width at most r, decides if I is satisfiable (and computes a solution if it is).

Proof. Let I be a CSP instance of fractional hypertree width at most r, and let (T, (Bt)t∈V (T ), (γt)t∈V (T ))
be the fractional hypertree decomposition of HI of width O(r3) computed by the algorithm of Theo-
rem 5.4. By the definition, the hypergraph of I[Bt] has fractional edge cover number O(r3) for every
bag Bt. Thus by Theorem 4.6, the list Lt of the solutions of I[Bt] has size at most ‖I‖O(r3) and
can be determined in time ‖I‖O(r3). Therefore, we can find a solution in time ‖I‖O(r3) using the
algorithm of Lemma 5.5.

As a corollary of Theorem 5.7, we obtain that whenever H has bounded fractional hypertree
width, then CSP(H) is polynomial-time solvable. This makes “bounded fractional hypertree width”
the strictly more general known hypergraph property that makes the CSP polynomial-time solvable.

Corollary 5.8. If H has bounded fractional hypertree width, then CSP(H) can be solved in polynomial
time.
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5.1.3 The robber and army game

As robbers are getting ever more clever, it takes more and more powerful security forces to capture
them. In the robber and army game on a hypergraph H, a robber plays against a general commanding
an army of r battalions of soldiers. The general may distribute his soldiers arbitrarily on the
hyperedges. However, a vertex of the hypergraph is only blocked if the number of soldiers on all
hyperedges that contain this vertex adds up to the strength of at least one battalion. The game is
then played like the robber and marshals game.

Definition 5.9. Let H be a hypergraph and r a nonnegative real. The robber and army game on
H with r battalions (denoted by RA(H, r)) is played by two players, the robber and the general. A
position of the game is a pair (γ, v), where v ∈ V (H) and γ : E(H)→ [0,∞) with weight(γ) ≤ r.
To start a game, the robber picks an arbitrary v0, and the initial position is (0, v0), where 0 denote
the constant zero mapping.

In each round, the players move from the current position (γ, v) to a new position (γ′, v′) as
follows: The general selects γ′, and then the robber selects v′ such that there is a path from v to v′

in the hypergraph H \ (B(γ) ∩B(γ′)
)
.

If a position (γ, v) with v ∈ B(γ) is reached, the play ends and the general wins. If the play
continues forever, the robber wins.

The army width aw(H) of H is the least r such that the general has winning strategy for the
game RA(H, r).

Again, it is easy to see that aw(H) is well-defined and rational (observe that two positions (γ1, v)
and (γ2, v) are equivalent if B(γ1) = B(γ2) holds).

Theorem 5.10. For every hypergraph H,

aw(H) ≤ fhw(H) ≤ 3 · aw(H) + 2.

The rest of this subsection is devoted to a proof of this theorem. The proof is similar to the
proof of the corresponding result for the robber and marshal game and generalized hypertree width
in [8], which in turn is based on ideas from [205,217].

Let H be a hypergraph and γ, σ : E(H)→ [0,∞). For a set W ⊆ V (H), we let

weight(γ|W ) =
∑

e∈E(H)
e∩W 6=∅

γ(e).

A mapping σ : E(H)→ [0,∞) is a balanced separator for γ if for every connected component R of
H \B(σ),

weight(γ|R) ≤ weight(γ)

2
.

Lemma 5.11. Let H be a hypergraph with aw(H) ≤ r for some nonnegative real r. Then every
γ : E(H)→ [0,∞) has a balanced separator of weight r.

Proof. Suppose for contradiction that γ : E(H)→ [0,∞) has no balanced separator of weight r. We
claim that the robber has a winning strategy for the game RA(H, r). The robber simply maintains
the invariant that in every position (σ, v) of the game, v is contained in the connected component R
of H \B(σ) with weight(γ|R) > weight(γ)/2.
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To see that this is possible, let (σ, v) be such a position. Suppose that the general moves from σ
to σ′, and let R′ be the connected component of H \B(σ′) with weight(γ|R′) > weight(γ)/2. Then
there must be some e ∈ E(H) such that e ∩R 6= ∅ and e ∩R′ 6= ∅, because otherwise we had

weight(γ) = weight(γ)/2 + weight(γ)/2 < weight(γ|R) + weight(γ|R′) ≤ weight(γ),

which is impossible. Thus the robber can move from R to R′ via the edge e.

Let H be a hypergraph and H ′ an induced subhypergraph of H. Then the restriction of a
mapping γ : E(H)→ [0,∞) to H ′ is the mapping γ′ : E(H ′)→ [0,∞) defined by

γ′(e′) =
∑

e∈E(H)
e∩V (H′)=e′

γ(e).

Note that weight(γ′) ≤ weight(γ) and B(γ′) = B(γ) ∩ V (H ′). The inequality may be strict because
edges with nonempty weight may have an empty intersection with V (H ′). Conversely, the canonical
extension of a mapping γ′ : E(H ′)→ [0,∞) to H is the mapping γ : E(H)→ [0,∞) defined by

γ(e) =
γ′(e ∩ V (H ′))

|{e1 ∈ E(H) | e1 ∩ V (H ′) = e ∩ V (H)}|

if e ∩ V (H ′) 6= ∅ and γ(e) = 0 otherwise. Intuitively, for every e′ ∈ E(H ′), we distribute the weight
of e′ equally among all the edges e ∈ E(H) whose intersection with V (H ′) is exactly e′. Note that
weight(γ) = weight(γ′) and B(γ′) = B(γ) ∩ V (H ′).

Proof (of Theorem 5.10). LetH be a hypergraph. To prove that aw(H) ≤ fhw(H), let (T, (Bt)t∈V (T ),
(γt)t∈V (T )) be a fractional hypertree decomposition of H having width fhw(H). We claim that the
general has a winning strategy for RA(H, r). Let (0, v0) be the initial position. The general plays in
such a way that all subsequent positions are of the form (γt, v) such that v ∈ Bu for some u ∈ V (Tt).
Intuitively, this means that the robber is trapped in the subtree below t. Furthermore, in each move
the general reduces the height of t. He starts by selecting γt0 for the root t0 of T . Suppose the game
is in a position (γt, v) such that v ∈ Bu for some u ∈ V (Tt). If u = t, then the robber has lost the
game. So let us assume that u 6= t. Then there is a child t′ of t such that u ∈ V (Tt′). The general
moves to γt′ . Suppose the robber escapes to a v′ that is not contained in Bu′ for any u′ ∈ Tt′ . Then
there is a path from v to v′ in H \ (B(γt) ∩B(γt′)) and hence in H \ (Bt ∩Bt′). However, it follows
easily from the fact that (T, (Bt)t∈T ) is a tree decomposition of H that every path from a bag in Tt′
to a bag in T \ Tt′ must intersect Bt ∩Bt′ . This proves that aw(H) ≤ fhw(H).

For the second inequality, we shall prove the following stronger claim:

Claim: Let H be a hypergraph with aw(H) ≤ r for some nonnegative real r. Furthermore, let
γ : E(H) → [0,∞) such that weight(γ) ≤ 2r + 2. Then there exists a fractional hypertree
decomposition of H of width at most 3r + 2 such that B(γ) is contained in the bag of the root of
this decomposition.

Note that for γ = 0, the claim yields the desired fractional hypertree decomposition of H.

Proof of the claim: The proof is by induction on the cardinality of V (H) \B(γ).
By Lemma 5.11, there is a balanced separator of weight at most r for γ in H. Let σ be such

a separator, and define χ : E(H) → [0,∞) by χ(e) = γ(e) + σ(e). Then weight(χ) ≤ 3r + 2, and
B(γ) ∪B(σ) ⊆ B(χ).
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If V (H) = B(χ) (this is the induction basis), then the 1-node decomposition with bag V (H) and
guard χ is a fractional hypertree decomposition of H of width at most 3r + 2.

Otherwise, let R1, . . . , Rm be the connected components of H \ B(χ). Note that we cannot
exclude the case m = 1 and R1 = V (H) \B(χ).

For 1 ≤ i ≤ m, let ei be an edge of H such that ei ∩Ri 6= ∅, and let Si be the unique connected
component of H \ B(σ) with Ri ⊆ Si. Note that weight(γ|Si) ≤ r + 1, because σ is a balanced
separator for γ. Let χi : E(H)→ [0,∞) be defined by

χi(e) =


1 if e = ei,

σ(e) + γ(e) if e 6= ei and Si ∩ e 6= ∅,
σ(e) otherwise.

Then
weight(χi) ≤ 1 + weight(σ) + weight(γ|Si) ≤ 2r + 2

and B(χi) \ Ri ⊆ B(χ) (as ei cannot intersect any Rj with i 6= j). Let Hi = H[Ri ∪ B(χi)] and
observe that

V (Hi) \B(χi) ⊆ Ri \ ei ⊂ Ri ⊆ V (H) \B(γ)

(the first inclusion holds because χi(ei) = 1). Thus the induction hypothesis is applicable to Hi and
the restriction of χi to Hi. It yields a fractional hypertree decomposition (T i, (Bi

t)t∈V (T i), (γ
i
t)t∈V (T i))

of Hi of weight at most 3r + 2 such that B(χi) is contained in the bag Bi
ti0

of the root ti0 of T i.
Let T be the disjoint union of T 1, . . . , Tm together with a new root t0 that has edges to the roots

ti0 of the T i. Let Bt0 = B(χ) and Bt = Bi
t for all t ∈ V (T i). Moreover, let γt0 = χ, and let γt be the

canonical extension of γit to H for all t ∈ V (T i).
It remains to prove that (T, (Bt)t∈V (T ), (γt)t∈V (T )) is a fractional hypertree decomposition of H

of width at most 3r + 2. Let us first verify that (T, (Bt)t∈V (T )) is a tree decomposition.

• Let v ∈ V (H). To see that {v ∈ V (T ) | v ∈ Bt} is connected in T , observe that {t ∈ V (T i) | v ∈
Bti} is connected (maybe empty) for all i. If v ∈ Ri for some i, then v 6∈ V (Hj) = Rj ∪B(χj)
for any i 6= j (as Ri and Rj are disjoint and we have seen that B(χj)\Rj ⊆ B(χ)) and this this
already shows that {t ∈ V (T ) | v ∈ Bt} is connected. Otherwise, v ∈ B(χi) \Ri ⊆ B(χ) = Bt0
for all i such that v ∈ V (Hi). Again this shows that {v ∈ V (T ) | v ∈ Bt} is connected.

• Let e ∈ E(H). Either e ⊆ B(χ) = Bt0 , or there is exactly one i such that e ⊆ Ri ∪B(χi). In
the latter case, e ⊆ Bt for some t ∈ V (T i).

It remains to prove that Bt ⊆ B(γt) for all t ∈ T . For the root, we have Bt0 = B(γt0). For t ∈ V (T i),
we have Bt ⊆ B(γit) = B(γt)∩V (Hi) ⊆ B(γt). Finally, note that weight(γt) ≤ 3r+2 for all t ∈ V (T ).
This completes the proof of the claim.
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5.2 Approximating fractional hypertree width

The main result of this section is an algorithm that computes approximately optimal fractional
hypertree decompositions. More precisely, we show that for every fixed w ≥ 1, there is a polynomial-
time algorithm that, given a hypergraph H with fractional hypertree width at most w, computes a
tree decomposition of H with fractional hypertree width O(w3) (Theorem 5.17).

Algorithms for finding tree decompositions and characterization theorems for (generalizations
of) treewidth often follow a certain pattern. For example, the same high-level idea is used for
treewidth [102, Section 11.2], rank width [198, 199], hypertree width [8], and branch width of
matroids and submodular functions [200]. Simplifying somewhat, this general pattern can be
summarized the following way: We decompose the problem into two parts by finding a small
balanced separation, then a tree decomposition for each part is constructed using the algorithm
recursively, and finally the tree decompositions for the parts are joined in an appropriate way to
obtain a tree decomposition for the original problem. A balanced separation of a subset W is a
partition (A,B) of W and a set S separating A and B, such that A and B are both “small” compared
to W (the exact definition of small depends on the actual type of tree decomposition we are looking
for). Depending on the approximation ratio and the running time we are trying to achieve, the
problem of finding a balanced separation is either reduced to a sparsest cut problem or (using brute
force) it is reduced to the problem of finding a small (A,B)-separator, i.e., a set whose deletion
disconnects A and B.

Can we use a similar approach for constructing fractional hypertree decompositions? With appro-
priate modifications, the recursive algorithm works for such decompositions as well (Section 5.2.2).
The crucial question is how to find a balanced separation where S has small fraction edge cover
number. Using brute force in a not completely trivial way, the search for a balanced separation can be
reduced to finding an (A,B)-separator with small fractional edge cover number (Lemma 5.16). The
main technical contribution of the paper is an approximation algorithm for finding such separators:
If there is an (A,B)-separator with fractional edge cover number at most w, then the algorithm
finds an (A,B)-separator with fractional edge cover number O(w3) (Section 5.2.1). The running
time is polynomial for every fixed w.

For other types of tree decompositions, the corresponding (A,B)-separation problem can be
solved using flow techniques, brute force, or submodularity. None of these techniques seem to be
relevant when the goal is to minimize the fractional edge cover number of the separator; we need
completely different techniques. The main idea is the following. Suppose we are looking for an
(A,B)-separator S with fractional edge cover number w < 2. As the fractional edge cover number
is an upper bound on maximum independent set size, any two vertices in S are adjacent, i.e., S
induces a clique. The structure of separating cliques is well understood: Every graph has a unique
decomposition by clique separators [222]. Our algorithm for finding a separator with small fractional
edge cover number can be thought of as a generalization of finding clique separators. A tempting
way of generalizing this idea for larger w would be to suppose that every separator with fractional
edge cover number at most w can be covered by f(w) cliques for some function f . However, this is
not true: it can be shown that we might need an unbounded number of cliques. Nevertheless, we
manage to transform the instance in such a way that it can be assumed that the separator we are
looking for can be covered by w cliques. Then we locate these cliques using a combination of brute
force, clique separator decompositions, and linear programming.
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5.2.1 Finding approximate separators

Let A,B ⊆ V (H) be two sets of vertices. An (A,B)-separator is a set S ⊆ V (H) such that there is
no path connecting a vertex of A \ S with a vertex of B \ S in the hypergraph H \ S. In particular,
such an S has to contain every vertex of A ∩B. The aim of this section is to give an approximation
algorithm for the problem of finding an (A,B)-separator with minimum fractional edge cover number.

We say that two nonadjacent vertices u, v of H are w-attached for some w ≥ 1 if ρ∗H(N(v) ∩
N(u)) > w (here N(v) is the set of neighbors of v, not including v itself). If u, v are w-attached
and S is an (A,B)-separator with ρ∗H(S) ≤ w covering neither u nor v, then u and v are in the
same connected component of H \ S. This means that S remains an (A,B)-separator even if we
add an edge between u and v. Thus adding edges between w-attached vertices does not change the
problem significantly. More precisely, the following lemma shows that we can reduce the problem to
a situation where nonadjacent vertices are not w-attached. This property of the hypergraph will
play an important role in the algorithm.

Lemma 5.12. Let H be a hypergraph, A,B ⊆ V (H) sets of vertices, and w ≥ 1 a rational number.
We can construct in time polynomial in ‖H‖ a hypergraph H+ on the same set of vertices such that

1. If vertices u and v are not adjacent in H+, then they are not w-attached.

2. If S is an (A,B)-separator in H with ρ∗H(S) ≤ w, then S is an (A,B)-separator in H+ with
ρ∗H+(S) ≤ w.

3. If S is an (A,B)-separator in H+, then S is an (A,B)-separator in H with ρ∗H(S) ≤ 2ρ∗H+(S).

Proof. We construct a sequence of hypergraphs. Let H0 = H. Let (u, v) be an arbitrary pair of
nonadjacent vertices that are w-attached in Hi−1. Hypergraph Hi is the same as Hi−1 with an
extra edge {u, v}. If there is no such pair (u, v) in Hi−1, then we stop the construction of the
sequence. It is clear that the sequence has polynomial length (as at most O(|V (H)|2) new edges can
be added) and constructing Hi from Hi−1 can be done in polynomial time. Let H+ = Hk be the last
hypergraph in the sequence. Statement 1 is immediate from the way the sequence is constructed.

To prove Statement 2, suppose that S is an (A,B)-separator in H = H0. Since the edges of H
are a subset of the edges of H+, we have ρ∗H+(S) ≤ ρ∗H(S) ≤ w. We prove by induction that S is an
(A,B)-separator in every Hi. Suppose that this is true for Hi−1, but there is a path P from a vertex
of A to a vertex of B in Hi \ S. Let ei = uivi be the edge that was added to Hi−1 to obtain Hi. If
P does not use ei, then P is also a path in Hi−1, contradicting the induction hypothesis that S is
an (A,B)-separator in Hi−1. Thus P = P1uiviP2 for some subpaths P1 and P2 (by swapping ui and
vi if necessary, we may assume that P reaches ui before vi). By the definition of ei,

ρ∗H(N(vi) ∩N(ui)) ≥ ρ∗Hi−1
(N(vi) ∩N(ui)) > w ≥ ρ∗H(S),

which means that there is a vertex q ∈ (N(vi) ∩N(ui)) \ S. The walk P1uiqviP2 connects a vertex
of A and a vertex of B in Hi−1 \ S, contradicting the induction hypothesis.

To prove Statement 3, observe first that the edges of H are a subset of the edges of H+, thus if
S is an (A,B)-separator in H+, then it is an (A,B)-separator in H as well. Consider a fractional
edge cover γ of S in H+ with weight(γ) = w′. Suppose that γ(e) = x for an edge e = {u, v} not
present in H. In this case, we set the weight of this edge to 0, and increase by x the weight of two
edges: an arbitrary edge eu ∈ E(H) that contains u and an arbitrary edge ev ∈ E(H) that contains
v (such edges exist, since we assumed that there are no isolated vertices in the hypergraph). It is
clear that the resulting weight assignment is also a fractional edge cover. We repeat this step until
the weight assignment is 0 on every edge not present in H. It is easy to see that the weight of the
assignment increases to at most 2w′, thus ρ∗H(S) ≤ 2ρ∗H+(S).
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The following result follows from the fact that a decomposition of a graph by separating cliques
can be found in polynomial time [222,230] (clique K is a separating clique of H if H \K has not
connected). For the convenience of the reader, we give here a self-contained proof of the main idea
in the form we use.

Lemma 5.13. Given a graph G, it is possible to construct in time polynomial in ‖G‖ a set C of at
most |V (G)| connected subsets such that

1. if K is a clique of G, then K ⊆ C for some C ∈ C, and

2. if K is a clique of G and C ∈ C, then C \K is contained in a connected component of G \K.

Proof. We construct a sequence of graphs as follows. Let G0 = G. Suppose that Gi−1 has an induced
cycle H of length at least 4; let vi, ui be two nonadjacent vertices of H. We define Gi to be the same
as Gi−1, with an extra edge ei = viui. If Gi−1 has no such cycle H (i.e., Gi−1 is a chordal graph),
then we stop the construction of the sequence. Let Gk be the last graph in the sequence. Let C be
the set of inclusionwise maximal cliques of Gk. It is well known that chordal graph Gk has at most
|V (Gk)| = |V (G)| maximal cliques (cf. [112]).

Every clique of G is a clique of Gk, thus Statement 1 is clear from the definition of C. To prove
Statement 2, for every C ∈ C and clique K of G, we show that C \K is contained in a connected
component of Gi \K for every 1 ≤ i ≤ k. This is clear for Gk, as C is a clique in Gk. Suppose that
C \K is in a connected component of Gi \K but a, b ∈ C \K are in different connected components
of Gi−1 \K. Let P be a path from a to b in Gi \K. Path P has to go through the edge ei = uivi
used in the definition of Gi, otherwise it would be a path in Gi−1 \K as well. Thus the path P
can be written as P = aP1uiviP2b (assuming without loss of generality that P reaches ui before
vi). There is an induced cycle H in Gi−1 that contains ui and vi. Since ui, vi 6∈ K and H \K is
connected (as K is a clique and H is an induced cycle), there is a path R in Gi−1 \K that connects
ui and vi. Now aP1uiRviP2b is a walk from a to b in Gi−1 \K, a contradiction.

For illustrative purposes, we show how Lemma 5.13 implies that all the minimal separating
cliques can be enumerated in polynomial time (although we do not use this result here).

Corollary 5.14. Given a graph G, it is possible to enumerate all the inclusionwise minimal separating
cliques of G in time polynomial in ‖G‖.

Proof. Construct the sets C of Lemma 5.13 and consider the chordal graph Gk. We claim that
every minimal separating clique of G is a minimal separating clique of Gk. Suppose that a clique K
separates a and b in G, but there is a path P between a and b in Gk \K. Each edge e of P is a
clique of size 2 in Gk, hence the endpoints of e are contained in some set Ci ∈ C. This means that
the two endpoints are in the same connected component of G \K and it follows that every vertex of
the path P (including a and b) are in the same component, a contradiction. Thus if K is a minimal
separating clique in G, then it is a separating clique in Gk. Furthermore, as Gk is a supergraph of
G, minimality of K in G implies its minimality in Gk as well. In a chordal graph, every minimal
separating clique is the intersection of two maximal cliques. Thus all the minimal separating cliques
can be enumerated by taking the intersection of every pair Ci, Cj ∈ C and checking whether it is
really a minimal separating clique.

Lemma 5.15. Let H be a hypergraph, A,B ⊆ V (H) two sets of vertices, and w ≥ 1 a rational
number. There is an algorithm that, in time ‖H‖O(w), either

• correctly concludes that there is no (A,B)-separator S with ρ∗H(S) ≤ w, or
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• produces an (A,B)-separator S′ with ρ∗H(S′) ≤ w3 + 4w.

Proof. The algorithm first constructs the hypergraph H+ of Lemma 5.12 and then tries to find an
(A,B)-separator in H+. By Lemma 5.12(2), if H has an (A,B)-separator S with ρ∗H(S) ≤ w, then
S is an (A,B)-separator in H+ as well and ρ∗H+(S) ≤ w. In this case, our algorithm detailed below
will be able to find an (A,B)-separator S′ in H+ with ρ∗H+(S′) ≤ w3/2 + 2w. By Lemma 5.12(3),
such an S′ is an (A,B)-separator in H with ρ∗H(S′) ≤ w3 + 4w.

Suppose that there is an (A,B)-separator S in H+ with ρ∗H+(S) ≤ w. In the rest of the proof,
we show how to find the required separator S′ if we know a maximum independent set IS of S. Since
the fractional edge cover number of S is at most w, the size of IS is also at most w. Thus trying all
possible sets IS adds a factor of ‖H+‖O(w) = ‖H‖O(w) to the running time.

Denote by N(v) the neighbors of vertex v inH+. Suppose that IS = {v1, . . . , vk} (for some k ≤ w)
is a maximum independent set of S. By the definition of H+, we have ρ∗H+(N(vi) ∩ N(vj)) ≤ w
for every 1 ≤ i < j ≤ k. Thus X =

⋃
1≤i<j≤k(N(vi) ∩N(vj)) has fractional edge cover number at

most
(
k
2

)
w ≤ w3/2. In the rest of the algorithm, we try to find a set Y with ρ∗H+(Y ) ≤ 2w such that

S′ := X ∪ Y is an (A,B)-separator in H+.
Let Ni = (N(vi)∪ {vi}) \X for i = 1, . . . , k. Let us note first that Ni ∩Nj = ∅ if i 6= j: Vertices

vi and vj are not adjacent and every vertex of N(vi)∩N(vj) is in X. Since v1, . . . , vk is a maximum
independent set of S, each vertex of S \X is in one of the Ni’s. Observe that Ni ∩ S is not empty,
since it contains vi (here we use that vi cannot be in X, since it is not adjacent to any other vj).
Furthermore, for every 1 ≤ i ≤ k, Ni ∩ S is a clique of Ni (this is a crucial point of the proof). To
see this, suppose that v′i, v

′′
i ∈ Ni ∩ S are nonadjacent vertices; clearly, it is not possible that v′i = vi

or v′′i = vi. Vertices v′i and v′′i cannot be adjacent to any vj with i 6= j: that would imply that
they are in N(vi) ∩N(vj) ⊆ X. Thus replacing vi in IS with v′i and v

′′
i would give a strictly larger

independent set, contradicting the maximality of IS .
Let H be the primal graph of H+. For every 1 ≤ i ≤ k, let Ci,1, . . . , Ci,ci be the connected sets

given by Lemma 5.13 for the graph H[Ni]. By the definition of these sets, for every 1 ≤ i ≤ k there is
a value 1 ≤ di ≤ ci such that the clique Ni∩S is fully contained in Ci,di . Furthermore, the connected
set Ci,di \ (Ni∩S) = Ci,di \S is contained in a connected component of H[Ni \ (Ni∩S)] = H[Ni \S],
which implies that Ci,di \ S is contained in a connected component of H \ S. Thus either every
vertex of Ci,di \S is reachable from A in H \S, or none of these vertices are reachable. Let us define
ai = 1 in the first case and ai = 0 in the second case (if Ci,di ⊆ S, then define arbitrarily).

We show that if the values di, ai (1 ≤ i ≤ k) corresponding to S are known, then the required
separator S′ can be found. Thus we have to try all possibilities for these values, which adds a factor
of |V (H)|O(w) · 2O(w) to the running time.

Suppose that the values of di, ai are given. Let Z := X ∪
⋃k
i=1Ci,di ; note that S ⊆ Z. We say

that a vertex u ∈ Ci,di is a bad vertex if

• ai = 0 and there is a path Pa from A to u with Pa ∩ Z = {u}, or

• ai = 1 and there is a path Pb from B to u with Pb ∩ Z = {u}.

(It is possible that Pa or Pb consists of only the vertex u; in particular, if u ∈ A∩B, then u is always
a bad vertex.) Observe that S contains every bad vertex u. Indeed, if u 6∈ S and there is a path Pa
as above, then S ∩ Pa = ∅ (since S ⊆ Z), thus u is reachable from A, contradicting ai = 0. On the
other hand, if u 6∈ S and there is a path Pb, then u is reachable from B, but ai = 1 implies that it is
also reachable from A, contradicting the fact that S is an (A,B)-separator.

A pair u ∈ Ci,di and v ∈ Cj,dj is a bad pair if

• there is a path P from u to v with P ∩ Z = {u, v} and ai 6= aj .
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In this case, S has to contain at least one of u and v: Otherwise P ∩ S = ∅ would mean that u and
v are in the same connected component of H+ \ S, implying ai = aj . Thus every fractional edge
cover of S is a solution of the following linear program:

min
∑

e∈E(H+)

xe

∑
e∈E(H+)
v∈e

xe ≥ 1 for every bad vertex v ∈ Z

∑
e∈E(H+)
u∈e

xe +
∑

e∈E(H+)
v∈e

xe ≥ 1 for every bad pair u, v ∈ Z

xe ≥ 0 for every e ∈ E(H+)

Therefore, the optimum of the linear program is at most w. Let (xe)e∈E(H+) be a solution of the
linear program with cost at most w. Let Y contain those vertices v for which

∑
e∈E(H+):v∈e xe ≥ 1/2;

clearly, ρ∗H+(Y ) ≤ 2w. Thus defining S′ := X ∪ Y gives a set with ρ∗H+(Y ) ≤ w3/2 + 2w. Observe
that the linear program ensures that Y (and hence S′) contains every bad vertex and at least one
vertex from each bad pair.

We claim that S′ is an (A,B)-separator in H+. Suppose that there is a path P from a ∈ A to
b ∈ B in H+ \S′. This path contains at least one vertex of S (since S is an (A,B)-separator), hence
it contains at least one vertex of Z. Let p1, . . . , pr be the vertices of P ∩ Z, ordered as the path is
traversed from a to b. Since these vertices cannot be in X ⊆ S′, they are in

⋃k
i=1Ci,di . Suppose first

that p1 is not reachable from A in H+ \ S. This means that if Ni is the set that contains p1, then
ai = 0. It follows that p1 is a bad vertex (because of the subpath of P that connects a with p1),
hence p1 ∈ S′, a contradiction. Let 1 ≤ ` ≤ r be the largest value such that p` is reachable from A
in H+ \ S and suppose that p` is in Ni. If ` = r, then p` is a bad vertex (because of ai = 1 and the
subpath of P connecting p` and b), again a contradiction. Finally, if ` < r, then let Nj be the set
that contains p`+1. The maximality of ` implies ai = 1 and aj = 0. Therefore, p`, p`+1 is a bad pair
(because of the subpath of P connecting these two vertices), and S′ contains at least one of these
vertices, a contradiction. Thus S′ is an (A,B)-separator in H+ with ρ∗H+(S′) ≤ w3/2 + 2w.

In summary, the algorithm consists of the following steps:

1. Construct the hypergraph H+ (Lemma 5.12).

2. Guess the independent set IS .

3. Construct the set X and define the sets Ni.

4. Construct the sets Ci,j (Lemma 5.13).

5. Guess the values di, ai.

6. Construct Y using an optimum solution of the linear program.

7. Check if S′ := X ∪ Y is an (A,B)-separator in H.

As discussed above, if there is an (A,B)-separator S in H with ρ∗H(S) ≤ w, then it is possible
to choose IS and the values di, ai such that the separator S′ computed by the algorithm is an
(A,B)-separator in H with ρ∗H(S′) ≤ w3 + 4w. Thus if we try all possible ‖H‖O(w) · ‖H‖O(w) · 2O(w)

guesses, then we will find such a separator S′ in this case. On the other hand, if none of the guesses
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results in the required separator S′, then we can correctly conclude that there is a no (A,B)-separator
S in H with ρ∗H(S) ≤ w. The running time of each step (except the guesses) is polynomial, thus the
total running time is ‖H‖O(w).

In the tree decomposition algorithm of Section 5.2.2, we have to find a balanced separation of a
set W : We need a partition (A,B) of W such that (1) ρ∗H(A), ρ∗H(B) are not too large and (2) there
is an (A,B)-separator S such that ρ∗H(S) is not too large. As we shall see, it follows Lemma 5.11
proved in Section 5.1.3 that such a balanced separation always exists if H has bounded fractional
hypertree width. If we want to find such a separation algorithmically, then the main problem is
how to find the partition (A,B) of W : If (A,B) is given, then Lemma 5.15 can be used to find
an (A,B)-separator whose fractional edge cover number is bounded. Trying all possible partitions
of W is not feasible. Fortunately, for the application in Lemma 5.16, we can assume that ρ∗H(W )
is bounded. Instead of trying all possible partitions of W (the number of such partitions can be
exponential in the number of vertices), it turns out that it is sufficient to try all possible partitions
of an edge cover F of W (the number of such partitions is exponential only in the size of F ).

Lemma 5.16. Let H be a hypergraph with fractional hypertree width at most w and let W ⊆ V (H)
be a subset of vertices with ρ∗H(W ) ≤ k. It is possible to find in time ‖H‖O(w+k) a partition (A,B)
of W and an (A,B)-separator S with ρ∗H(S) ≤ w3 + 4w such that ρ∗H(A), ρ∗H(B) ≤ 2

3k + w.

Proof. Since the fractional edge cover number of W is at most k, the greedy algorithm finds an
edge cover F ⊆ E(H) of W with |F | = O(k log |V (H)|) [228]. Our algorithm tries every partition
(FA, FB) of F , defines A := W ∩

⋃
FA and B := W \ A, and checks whether the algorithm of

Lemma 5.15 produces an (A,B)-separator S with ρ∗H(S) ≤ w3 + 4w. We show that if H has
fractional hypertree width at most w, then at least one partition (FA, FB) results in a partition
(A,B) and a separator S satisfying the conditions. Trying every possible partition (FA, FB) means
trying 2O(k log |V (H)|) = ‖H‖O(k) possibilities and the algorithm of Lemma 5.15 needs ‖H‖O(w) time.
Thus the total running time of the algorithm is ‖H‖O(k+w).

By Lemma 5.11, there is a set S0 with ρ∗H(S0) ≤ w such that ρ∗H(C ∩W ) ≤ k/2 for every
connected component C of H \S0; let C1, . . . , Cd be these connected components. (If d = 0, then we
are trivially done.) DefineWi := W ∩Ci and suppose that the connected components are ordered such
that ρ∗H(Wi) ≥ ρ∗H(Wj) if i < j. Since each edge can intersect at most one Wi, the fractional edge
cover number of the union of some Wi’s is exactly the sum of the corresponding fractional edge cover
numbers. Let ` be the largest integer (not greater than d) such that ρ∗H(

⋃`
i=1Wi) ≤ 2

3k. We show that
ρ∗H(

⋃d
i=`+1Wi) ≤ 2

3k. Suppose that ` < d, otherwise there is nothing to show. Since ρ∗H(W1) ≤ k/2,
we have ` ≥ 1. We show that ρ∗H(

⋃`
i=1Wi) ≥ k/3. This is trivially true if ρ∗(W1) ≥ k/3. If

ρ∗(W1) < k/3, then we argue as follows. The definition of ` implies that ρ∗H(
⋃`+1
i=1 Wi) >

2
3k.

Since ρ∗H(W`+1) ≤ ρ∗H(W1) ≤ k/3, it follows that ρ∗H(
⋃`
i=1Wi) ≥ k/3. Since there is no edge that

intersects more than one Wi, we have ρ∗H(
⋃d
i=1Wi) = ρ∗H(

⋃`
i=1Wi) + ρ∗H(

⋃d
`+1Wi). Therefore,

ρ∗H(
⋃d
i=1Wi) ≤ ρ∗H(W ) ≤ k implies ρ∗H(

⋃d
i=`+1Wi) ≤ 2

3k.
Let FA be the edges of F fully contained in S0 ∪

⋃`
i=1Ci and let FB := F \ FA; observe that

the edges of FB intersect
⋃d
i=`+1Ci. Let A := W ∩

⋃
FA and B := W \ A be defined as in the

algorithm. Since A ⊆ S0 ∪ (W ∩
⋃`
i=1Ci), we have ρ∗H(A) ≤ ρ∗H(S0) + ρ∗H(

⋃`
i=1Wi) ≤ w + 2

3k.
Similarly, ρ∗H(B) ≤ w + 2

3k. Observe that S0 is an (A,B)-separator with ρ∗H(S0) ≤ w, thus the
algorithm of Lemma 5.15 produces an (A,B)-separator S with ρ∗H(S) ≤ w3 + 4w. Therefore, when
the algorithm considers this particular partition (FA, FB), then it finds the required partition (A,B)
and separator S.
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5.2.2 Finding approximate tree decompositions

We prove Theorem 5.4 in this section: It is possible to approximate fractional hypertree width in a
sense that is suitable for the applications. That is, if a class H of hypergraphs has bounded fractional
hypertree width, then there is a polynomial time algorithm producing a tree decomposition with
bounded fractional hypertree width for any hypergraph in H. The algorithm uses the balanced
separation algorithm of Lemma 5.16. The following statement immediately implies Theorem 5.4.

Theorem 5.17. Given a hypergraph H and a rational number w ≥ 1, it is possible in time ‖H‖O(w3)

to either

• compute a fractional hypertree decomposition of H with width at most 7w3 + 31w + 7, or

• correctly conclude that fhw(H) > w.

Proof. We present an algorithm for a more general problem:

Given a hypergraph H with fhw(H) ≤ w and a set W with ρ∗H(W ) ≤ 6w3 + 27w + 6,
find a fractional hypertree decomposition T of width at most 7w3 + 31w + 7 such that
some bag B of T contains the set W .

Note that this algorithm implies the existence of the algorithm required by the theorem: If this
algorithm is applied to a hypergraph H and W = ∅, then either it produces a fractional hypertree
decomposition of H with the required width or if the output is something else, then we can correctly
conclude that fhw(H) > w. The values 6w3 + 27w + 6 and 7w3 + 31w + 7 might look somewhat
arbitrary, but these are the smallest values ensuring that inequalities (5.1) and (5.2) below are true.

If ρ∗(H) ≤ 7w3 + 31w + 7, then we are done, as a tree decomposition consisting of a single bag
B = V (H) is sufficient. Thus we can assume that ρ∗(H) ≥ 7w3 + 31w + 7. By adding arbitrary
vertices to W one by one, we can extend W such that 6w3 + 27w + 6 ≤ ρ∗H(W ) < 6w3 + 27w + 7.
Let us use the algorithm of Lemma 5.16 to find a partition (A,B) of (the nonempty set) W and
an (A,B)-separator S with ρ∗H(S) ≤ w3 + 4w. A connected component of H \ S cannot intersect
both A and B. Let V1 be the union of S and all the connected components intersecting A; let V2

be the union of S and the connected components not intersecting A. Let H1 (resp., H2) be the
subhypergraph of H induced by V1 (resp., V2).

First we verify that H1 and H2 are proper subhypergraphs of H; in fact, their fractional
edge cover number is strictly less than ρ∗(H). Since ρ∗H(W ) ≤ ρ∗H(W ∩ V1) + ρ∗H(W \ V1) and
ρ∗H(W ∩ V1) ≤ ρ∗H(A) + ρ∗H(S), we have

ρ∗H(W \ V1) ≥ ρ∗H(W )− (ρ∗H(A) + ρ∗H(S))

≥ ρ∗H(W )− 2

3
ρ∗H(W )− w − ρ∗H(S) ≥ w3 + 4w + 2. (5.1)

Consider a fractional edge cover γ of H with weight ρ∗(H). Let γS be a fractional edge cover of S
with weight ρ∗H(S). Let us define

γ′(e) =

{
γ(e) if e ∩ (W \ V1) = ∅,
0 otherwise.

Observe that weight(γ′) ≤ weight(γ) − (w3 + 4w + 2), since by (5.1), γ has to assign weight at
least w3 + 4w + 2 to the edges intersecting W \ V1. Now γ′ + γS is an edge cover of V1 (since
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edges intersecting W \ V1 cannot intersect V1 \ S), thus ρ∗(H1) ≤ weight(γ′) + weight(γS) ≤
ρ∗(H)− (w3 + 4w + 2) + ρ∗H(S) ≤ ρ∗(H)− 2. A similar argument shows ρ∗(H2) ≤ ρ∗(H)− 2.

Let W1 := A ∪ S and W2 := B ∪ S; we have ρ∗H(W1), ρ∗H(W2) ≤ 2
3ρ
∗
H(W ) + w + ρ∗H(S) <

6w3 + 27w+ 6. Since H1 and H2 are strictly smaller than H, we can use the algorithm recursively to
obtain a tree decomposition T1 of H1 whereW1 is contained in some bag B1, and a tree decomposition
T2 of H2 where W2 is contained in some bag B2. We connect these two tree decomposition by
introducing a new bag B0 := W ∪ S that is connected to B1 and B2; note that

ρ∗H(B0) ≤ ρ∗H(W ) + ρ∗H(S) ≤ 7w3 + 31w + 7. (5.2)

It is easy to see that the resulting tree decomposition T is a proper tree decomposition of H and the
bag B0 fully contains W .

Let us estimate the running time of the algorithm. If ρ∗(H) ≤ 7w3 + 31w+ 7, then the algorithm
constructs only a single bag and does not recurse. We prove by induction that if ρ∗(H) > 7w3+31w+7,
then the algorithm constructs a tree decomposition with at most ρ∗(H)− 2w3 − 8w − 1 bags. As
the time spent constructing a bag is ‖H‖O(w3), this proves that the running time is ‖H‖O(w3).

First we show that
ρ∗H(V1) + ρ∗H(V2) ≤ ρ∗(H) + 2w3 + 8w. (5.3)

To see this, consider a fractional edge cover γ of H with weight ρ∗(H) and let γS be a fractional
edge cover of S with weight at most w3 + 4w. Let us define

γ1(e) =

{
γ(e) if e 6⊆ V2

0 otherwise
and γ2(e) =

{
γ(e) if e 6⊆ V1

0 otherwise.

Since every edge is fully contained in either V1 or V2, we have weight(γ1) + weight(γ2) ≤ weight(γ).
Furthermore, γ1 + γS is a fractional edge cover of V1, and γ2 + γS is a fractional edge cover of V2.
Now (5.3) follows from weight(γS) ≤ w3 + 4w. Subtracting 4w3 + 16w + 2 from both sides of (5.3),
we get

(ρ∗(H1) − 2w3 − 8w − 1) + (ρ∗(H2) − 2w3 − 8w − 1) ≤ (ρ∗(H) − 2w3 − 8w − 1) − 1 (5.4)

Suppose that hypergraph H with ρ∗(H) > 7w3 + 31w + 7 is decomposed into H1 and H2. The
algorithm constructs a tree decomposition T that is obtained by joining the tree decompositions T1

and T2 with a new bag. Thus |T | = |T1|+|T2|+1. We have to consider different cases depending on how
ρ∗(H1), ρ∗(H2) compare with 7w3 + 31w+ 7. If ρ∗(H1), ρ∗(H2) > 7w3 + 31w+ 7, then the induction
hypothesis and (5.4) shows |T | ≤ ρ∗(H)− 2w3− 8w− 1. If ρ∗(H1), ρ∗(H2) ≤ 7w3 + 31w+ 7, then T
consists of only 3 bags. Since ρ∗(H)− 2w3 − 8w − 1 ≥ 5w3 + 23w + 6 > 3, the induction statement
holds in this case as well. Suppose now that ρ∗(H1) > 7w3 + 31w + 7 and ρ∗(H2) ≤ 7w3 + 31w + 7.
In this case, |T | = |T1|+ 2. Now |T | ≤ ρ∗(H)− 2w3 − 8w − 1 follows from the induction hypothesis
on H1 and ρ∗(H1) ≤ ρ∗(H) − 2 proved earlier. The case when ρ∗(H1) ≤ 7w3 + 31w + 7 and
ρ∗(H2) > 7w3 + 31w + 7 can be proved similarly.
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CHAPTER 6

Constraint Satisfaction Problems with unbounded arities

There is a long line of research devoted to identifying hypergraph properties that make the evaluation
of conjunctive queries tractable (see e.g. [116,122,123,211]). The main contribution of this chapter is
giving a complete theoretical answer to this question: in a very precise technical sense, we characterize
those hypergraph properties that imply tractability for the evaluation of a query. Efficient evaluation
of queries is originally a question of database theory; however, it has been noted that the problem can
be treated as a constraint satisfaction problem (CSP) and this connection led to a fruitful interaction
between the two communities [118,166,211]. Most of the literature relevant to the current chapter
use the language of constraint satisfaction. Therefore, we now switch to the language of CSPs (see
Sections 1.4–1.5 for the connection between CSPs and database queries).

What are those hypergraph properties that make Boolean Conjunctive Query tractable? In the
early 80s, it has been noted that acyclicity is one such property [25, 26,95,233]. Later, more general
properties of this type were identified in the literature: for example, bounded query width [56],
bounded hypertree width [116], and bounded fractional hypertree width [126,184]. Our goal is to
find the most general hypergraph property that guarantees an efficient solution for query evaluation.

Our goal is to characterize the “easy” and “hard” hypergraphs from the viewpoint of constraint
satisfaction. However, formally speaking, CSP is polynomial-time solvable for every fixed hypergraph
H: since H has a constant number k of vertices, every CSP instance with hypergraph H can be solved
by trying all ‖I‖k possible combinations on the k variables. It makes more sense to characterize
those classes of hypergraphs where CSP is easy. Formally, for a class H of hypergraphs, let CSP(H)
be the restriction of CSP where the hypergraph of the instance is assumed to be in H. For example,
we know that if H is a class of hypergraphs with bounded treewidth (i.e., there is a constant w such
that tw(H) ≤ w for every H ∈ H), then CSP(H) is polynomial-time solvable.

For the characterization of the complexity of CSP(H), we can investigate two notions of tractabil-
ity. CSP(H) is polynomial-time solvable if there is an algorithm solving every instance of CSP(H)
in time (‖I‖)O(1), where ‖I‖ is the length of the representation of I in the input. The following
notion interprets tractability in a less restrictive way: CSP(H) is fixed-parameter tractable (FPT)
if there is an algorithm solving every instance I of CSP(H) in time f(H)(‖I‖)O(1), where f is an
arbitrary computable function of the hypergraph H of the instance. Equivalently, the factor f(H)
in the definition can be replaced by a factor f(k) depending only on the number k of vertices of H:
as the number of hypergraphs on k vertices (without parallel edges) is bounded by a function of k,
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94 CHAPTER 6. CSPS WITH UNBOUNDED ARITIES

the two definitions result in the same notion. The motivation behind this definition is that if the
number of variables is assumed to be much smaller than the the domain size, then we can afford
even exponential dependence on the number of variables, as long as the dependence on the size of
the instance is polynomial. For a more background on fixed-parameter tractability, the reader is
referred to the parameterized complexity literature [74,87,102,197].

We introduce a new hypergraph width measure that we call submodular width. Small submodular
width means that for every monotone submodular function b on the vertices of the hypergraph
H, there is a tree decomposition where b(B) is small for every bag B of the decomposition. (This
definition makes sense only if we normalize the considered functions: for this reason, we require that
b(e) ≤ 1 for every edge e of H.) The main result of the chapter is showing that bounded submodular
width is the property that precisely characterizes the complexity of CSP(H):

Theorem 6.1. Let H be a recursively enumerable class of hypergraphs. Assuming the Exponential
Time Hypothesis, CSP(H) parameterized by H is fixed-parameter tractable if and only if H has
bounded submodular width.

Publications. This chapter is based on a single-author publication that appeared in Journal of
the ACM [188] (an extended abstract appeared in the proceedings of the STOC 2010 conference [186]).

6.1 Introduction

Theorem 6.1 has an algorithmic side (algorithm for bounded submodular width) and a complexity
side (hardness result for unbounded submodular width). Unlike previous width measures in the
literature, where small value of the measure suggests a way of solving CSP(H) it is not at all clear
how bounded submodular width is of any help. In particular, it is not obvious what submodular
functions have to do with CSP instances. The main idea of our algorithm is that a CSP instance can
be “split” into a small number of “uniform” CSP instances; for this purpose, we use a partitioning
procedure inspired by a result of Alon et al. [12]. More precisely, splitting means that we partition
the set of tuples appearing in the constraint relations in a certain way and each new instance
inherits only one class of the partition (thus each new instance has the same set of variables as the
original). Uniformity means that for any subset B ⊆ A of variables, every solution for the problem
restricted to B has roughly the same number of extensions to A. The property of uniformity allows
us to bound the logarithm of the number of solutions on the different subsets by a submodular
function. Therefore, bounded submodular width guarantees that each uniform instance has a tree
decomposition where only a polynomially bounded number of solutions has to be considered in each
bag.

Conceptually, our algorithm goes beyond previous decomposition techniques in two ways. First,
the tree decomposition that we use depends not only on the hypergraph, but on the actual constraint
relations in the instance (we remark that this idea first appeared in [187] in a different context that
does not directly apply to our problem). Second, we are not only decomposing the set of variables,
but we also split the constraint relations. This way, we can apply different decompositions to different
parts of the solution space.

The proof of the complexity side of Theorem 6.1 follows the same high-level strategy as the proof
of Theorem 3.2 in Chapter 3. In a nutshell, the argument is the following: if treewidth is large, then
there is subset of vertices which is highly connected in the sense that the set does not have a small
balanced separator; such a highly connected set implies that there is uniform concurrent flow (i.e., a
compatible set of flows connecting every pair of vertices in the set); the paths in the flows can be
used to embed the graph of a 3SAT formula; and finally this embedding can be used to reduce 3SAT
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to CSP. These arguments build heavily on well-known characterizations of treewidth and results
from combinatorial optimization (such as the O(log k) integrality gap of sparsest cut). The proof of
Theorem 6.1 follows this outline, but now no such well-known tools are available: we are dealing
with hypergraphs and submodular functions in a way that was not explored before in the literature.
Thus we have to build from scratch all the necessary tools. One of the main difficulties of obtaining
Theorem 6.1 is that we have to work in three different domains:

• CSP instances. As our goal is to investigate the existence of algorithms solving CSP, the
most obvious domain is CSP instances. In light of previous results, we are especially interested
in algorithms based on tree decompositions. For such algorithms, what matters is the existence
of subsets of vertices such that restricting the instance to any of these subsets gives an instance
with “small” number of solutions. In order to solve the instance, we would like to find a tree
decomposition where every bag is such a small set.

• Submodular functions. Submodular width is defined in terms of submodular functions,
thus submodular functions defined on hypergraphs is our second natural domain. We need to
understand what large submodular width means, that is, what property of the submodular
function and the hypergraph makes it impossible to obtain a tree decomposition where every
bag has small value.

• Flows and embeddings in hypergraphs. In the hardness proof, our goal is to embed the
graph of a 3SAT formula into a hypergraph. Thus we need to define an appropriate notion of
embedding and study what guarantees the existence of embeddings with suitable properties. As
in Chapter 3, we use the paths appearing in flows to construct embeddings. For our purposes,
the right notion of flow is a collection of weighted paths where the total weight of the paths
intersecting each hyperedge is at most 1. This notion of flows has not been studied in the
literature before, thus we need to obtain basic results on such flows, such as exploring the
duality between flows and separators.

A key question is how to find connections between these domains. As mentioned above and
detailed in Section 6.4, we have a procedure that reduces a CSP instance into a set of uniform
CSP instances, and the number of solutions on the different subsets of variables in a uniform CSP
instance can be described by a submodular function. This method allows us to move from the
domain of CSP instances to the domain of submodular functions. Section 6.5 is devoted to showing
that if submodular width of a hypergraph is large, then there is a certain “highly connected” set in
the hypergraph. Highly connected set is defined as a property of the hypergraph (it requires the
existence of certain flows) and has no longer anything to do with submodular functions. Thus this
connection allows us to move from the domain of submodular functions to the study of hypergraphs.
In Section 6.6, we show that a highly connected set in a hypergraph means that graphs can be
efficiently embedded into the hypergraph. In particular, the graph of a 3SAT formula can be
embedded into the hypergraph, which gives us (as shown in Section 6.7) a reduction from 3SAT to
CSP(H). This connection allows us to move from the domain of embeddings back to the domain of
CSP instances. We remark that Sections 6.4–6.7 are written in a self-contained way: only the first
theorem of each section is used outside the section.

Why fixed-parameter tractability? We argue that investigating the fixed-parameter tractabil-
ity of CSP(H) is at least as interesting as investigating polynomial-time solvability. In problems
coming from our database-theoretic motivation, the size of the hypergraph (that is, the size of the
query) is assumed to be much smaller than the input size (which is usually dominated by the size
of the database), hence a constant factor in the running time depending only on the number of
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CSP instances
Submodular functions

on hypergraphs

Highly connected sets
in hypergraphs

Embedding graphs
into hypergraphs

Section 6.4:
Algorithm for bounded submod-
ular width by partitioning into
uniform instances

Section 6.5:
Large submodular width im-
plies highly connected sets

Section 6.6:
Highly connected sets allow
efficient embedding

Section 6.7:
Using embedding results to
prove hardness results

Figure 6.1: Connections between different domains.

variables (or on the hypergraph) is acceptable1. Even the STOC 1977 landmark paper of Chandra
and Merlin [52], which started the complexity research on conjunctive queries, suggests spending
exponential time (in the size of the query) on finding the best possible evaluation order. Further-
more, the notion of fixed-parameter tractability formalizes the usual viewpoint of the literature on
conjunctive queries: in the complexity analysis, we should analyze separately the contribution of the
query size and the contribution of the database size.

By aiming for fixed-parameter tractability, we can focus more on the core algorithmic question: is
there some method for decomposing the space of all solutions in a way that allows efficient evaluation
of the query? Some of the progress in this area was made by introducing new decomposition
techniques, without showing how to actually find such decompositions. For example, this was the
case for the papers introducing query width [56] and fractional hypertree width [126]: it was shown
that if a certain type of decomposition is given, then the problem can be solved in polynomial time. In
our terminology, these results already show the fixed-parameter tractability of CSP(H) for the classes
H where such decompositions exist (since the time required to find an appropriate decomposition can
be bounded by a function of the hypergraph H only), but do not give polynomial-time algorithms.
It took some more time and effort to come up with polynomial-time (approximation) algorithms for
finding such decompositions [116,184]. While investigating algorithms for finding decompositions give
rise to interesting and important problems, they are purely combinatorial problems on graphs and
hypergraphs, and no longer has anything to do with query evaluation, constraints, or databases. Thus
fixed-parameter tractability gives us a formal way of ignoring these issues and focusing exclusively
on the evaluation problem.

On the complexity side, fixed-parameter tractability of CSP(H) seems to be a more robust
question than polynomial-time solvability. For example, any polynomial-time reduction to CSP(H)
should be able to pick a member of H, thus it seems that polynomial-time reduction to CSP(H) is

1This assumption is valid only for evaluation problems (where the problem instance includes a large database) and
not for problems that involves only queries, such as the Conjunctive Query Containment problem.
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only possible if certain artificial technical conditions are imposed on H (such as there is an algorithm
efficiently generating appropriate members of H). Furthermore, there are classes H for which CSP(H)
is polynomial-time equivalent to Log Clique [123], thus we cannot hope to classify CSP(H) into
polynomial-time solvable and NP-hard cases. Another difficulty in understanding polynomial-time
solvability is that it can depend on the “irrelevant” parts of the hypergraph. Suppose for example
that there is class H for which CSP(H) is not polynomial-time solvable, but it is fixed-parameter
tractable: it can be solved in time f(H) · (‖I‖)O(1). Let H′ be constructed the following way: for
every H ∈ H, class H′ contains a hypergraph H ′ that is obtained from H by adding a new component
that is a path of length f(H). This new path is trivial with respect to the CSP problem, thus
any algorithm for CSP(H) can be used for CSP(H′) as well. Consider an instance I of CSP(H′)
having hypergraph H ′, which was obtained from hypergraph H. After taking care of the path, the
assumed algorithm for CSP(H) can solve this instance in time f(H) · (‖I‖)O(1), which is polynomial
in ‖I‖: instance I contains a representation of H ′, which has at least f(H) vertices, thus ‖I‖ is at
least f(H). Therefore, CSP(H′) is polynomial-time solvable. This example shows that aiming for
polynomial-time solvability instead of fixed-parameter tractability might require understanding such
subtle, but mostly irrelevant phenomena.

In the hardness results obtained so far, evidence for the non-existence of polynomial-time
algorithms is given not in the form of NP-hardness, but by giving evidence that the problem is not
even fixed-parameter tractable. For example, in Theorem 3.1, it is a remarkable coincidence that
polynomial-time solvability and fixed-parameter tractability are equivalent. However, there is no
reason to expect this to remain true in more general cases. Therefore, as discussed above, it makes
sense to focus first on understanding the fixed-parameter tractability of the problem.

Organization. For convenience, Section 6.2 collects many of the definitions appearing in this
chapter. The reader might want to skim through this at first and refer to appropriate parts of it
later. Submodular width and other width measures are defined in Section 6.3. Section 6.4 contains
the algorithmic part of the chapter: the algorithm for classes with bounded submodular width.
Section 6.5 characterizes large submodular width with highly connected sets, while Section 6.6 uses
highly connected sets to find good embeddings in hypergraph. The main hardness result of the
chpater is proved in Section 6.7.

6.2 Preliminaries

Let I = (V,D,C) be a CSP instance and let V ′ ⊆ V be a nonempty subset of variables. If f is a
solution of I, then prV ′ f is the projection of f to V ′, which is simply the restriction of the function
f : V → D to V ′ ⊆ V . If R is a set of solutions for I, then we let prV ′ R = {prV ′ f | f ∈ R}.

The projection prV ′ I of I to V ′ is a CSP I ′ = (V ′, D,C ′), where C ′ is defined the following way:
For each constraint c = 〈(v1, . . . , vk), R〉 having at least one variable in V ′, there is a corresponding
constraint c′ in C ′. Suppose that vi1 , . . . , vi` are the variables among v1, . . . , vk that are in V ′. Then
the constraint c′ is defined as 〈(vi1 , . . . , vi`), R′〉, where the relation R′ is the projection of R to the
coordinates i1, . . . , i`, that is, R′ contains an `-tuple (d′1, . . . , d

′
`) ∈ D` if and only if there is a k-tuple

(d1, . . . , dk) ∈ R such that d′j = dij for 1 ≤ j ≤ `. Clearly, if f is a solution of I, then prV ′ f is a
solution of prV ′ I (but the converse is not true). For a subset V ′ ⊆ V , we denote by solI(V

′) the set
of all solutions of prV ′ I (which can contain a solution which is not the projection of any solution of
I). If the instance I is clear from the context, we drop the subscript.

The primal graph (or Gaifman graph) of a CSP instance I = (V,D,C) is a graph with vertex set
V such that u, v ∈ V are adjacent if and only if there is a constraint whose scope contains both u
and v. The hypergraph of a CSP instance I = (V,D,C) is a hypergraph H with vertex set V , where
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e ⊆ V is an edge of H if and only if there is a constraint whose scope is e (more precisely, where the
scope is an |e|-tuple s, whose coordinates form a permutation of the elements of e). For a class H of
graphs, we denote by CSP(H) the problem restricted to instances whose hypergraph is in H.

Graphs and hypergraphs. If G is a graph or hypergraph, then we denote by V (G) and E(G)
the set of vertices and the set of edges of G, respectively. Vertices u, v ∈ V (G) are adjacent if there is
an edge e ∈ E(G) with u, v ∈ e. A set K ⊆ V (G) is a clique if the vertices in K are pairwise adjacent.
If H is a hypergraph and V ′ ⊆ V (H), then the subhypergraph induced by V ′ is a hypergraph H ′

with vertex set S and ∅ ⊂ e′ ⊆ V ′ is an edge of H ′ if and only if there is an edge e ∈ E(H) with
e ∩ V ′ = e′. We denote by H \ S the subhypergraph of H induced by V (H) \ S.

Paths, separators, and flows in hypergraphs. A path P in hypergraph H is an ordered
sequence v0, v1, . . . , vr of distinct vertices such that vi and vi−1 are adjacent for every 1 ≤ i < r.
We distinguish the endpoints of a path: vertex v0 is the first endpoint of P and vr is the second
endpoint of P . For a path of length zero, the first and second endpoints coincide. A path is an
X − Y path if its first endpoint is in X and its second endpoint is in Y . A path P = v1v2 . . . vt is
minimal if there are no shortcuts, i.e., vi and vj are not adjacent if |i− j| > 1. Note that a minimal
path intersects each edge at most twice.

Let H be a hypergraph and X,Y ⊆ V (H) be two (not necessarily disjoint) sets of vertices. An
(X,Y )-separator is a set S ⊆ V (H) of vertices such that there is no (X \ S)− (Y \ S) path in H \ S,
or in other words, every X −Y path of H contains at least one vertex of S. In particular, this means
that X ∩ Y ⊆ S.

An assignment s : E(H)→ R+ is a fractional (X,Y )-separator if every X − Y path P is covered
by s, that is,

∑
e∈E(H),e∩P 6=∅ s(e) ≥ 1. The weight of the fractional separator s is

∑
e∈E(H) s(e).

Let H be a hypergraph and let P be the set of all paths in H. A flow of H is an assignment
f : P → R+ such that

∑
P∈P,P∩e6=∅ f(P ) ≤ 1 for every e ∈ E(H). The value of the flow f is∑

P∈P f(P ). We say that a path P appears in flow f , or simply P is a path of f if f(P ) > 0. For
some X,Y ⊆ V (H), an (X,Y )-flow is a flow f such that only X − Y paths appear in f . A standard
LP duality argument shows that the minimum weight of a fractional (X,Y )-separator is equal to
the maximum value of an (X,Y )-flow.

If f, f ′ are flows such that f ′(P ) ≤ f(P ) for every path P , then f ′ is a subflow of f . The sum of
the flows f1, . . . , fr is a mapping that assigns weight

∑r
i=1 fi(P ) to each path P . Note that the

sum of flows is not necessarily a flow itself as the total weight of the paths intersecting a certain
edge can be more than 1 in the sum. If the sum of f1, . . . , fr happens to be a flow, then we say that
f1, . . . , fr are compatible.

Highly connected sets. An important step in understanding various width measures is showing
that if the measure is large, then the (hyper)graph contains a highly connected set (in a certain
sense). We define here the notion of highly connectedness that will be used in the chapter. First,
recall that a fractional independent set of a hypergraph H is a mapping µ : V (H) → [0, 1] such
that

∑
v∈e µ(v) ≤ 1 for every e ∈ E(H). We extend functions on the vertices of H to subsets of

vertices of H the natural way by setting µ(X) :=
∑

v∈X µ(v), thus we can equivalently say that
µ : V (H)→ [0, 1] is a fractional independent set if and only if µ(e) ≤ 1 for every e ∈ E(H).

Let µ be a fractional independent set of hypergraph H and let λ > 0 be a constant. We say that
a set W ⊆ V (H) is (µ, λ)-connected if for any two disjoint sets A,B ⊆W , the minimum weight of a
fractional (A,B)-separator is at least λ ·min{µ(A), µ(B)}. Note that if W is (µ, λ)-connected, then
W is (µ, λ′)-connected for every λ′ < λ and every W ′ ⊆W is also (µ, λ)-connected. Informally, if
W is (µ, λ)-lambda connected for some fractional independent set µ such that µ(W ) is “large”, then
we call W a highly connected set. For λ > 0, we denote by conλ(H) the maximum of µ(W ), taken
over every fractional independent set µ and (µ, λ)-connected set W of H. Note that if λ′ ≤ λ, then
conλ′(H) ≥ conλ(H). Throughout this chapter, λ can be thought of as a sufficiently small universal
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constant, say, 0.001.
Embeddings. The hardness result presented in this chapter and earlier hardness results for

CSP(H) [123,185,187] are based on embedding some other problem (with a certain graph structure)
in a CSP instance whose hypergraph is a member of H. Thus we need appropriate notions of
embedding a graph in a (hyper)graph. Let us first recall the definition of minors in graphs. A graph
F is a minor of G if F can be obtained from G by a sequence of vertex deletions, edge deletions,
and edge contractions. The following alternative definition is more relevant from the viewpoint of
embeddings: a graph F is a minor of G if there is a mapping ψ that maps each vertex of F to a
connected subset of V (G) such that ψ(u) ∩ ψ(v) = ∅ for u 6= v, and if u, v ∈ V (F ) are adjacent in
F , then there is an edge in E(G) connecting ψ(u) and ψ(v).

A crucial difference between the proof of Theorem 3.1 in [123] and the proof of Theorem 3.2
in Chaper 3 is that the former result is a based on finding a minor embedding of a grid, while
the latter result uses a more general notion of embedding where the images of distinct vertices
are not necessarily disjoint, but can overlap in a controlled way. We define such embeddings the
following way. We say that two sets of vertices X,Y ⊆ V (H) touch if either X ∩ Y 6= ∅, or there
is an edge e ∈ E(H) intersecting both X and Y . An embedding of graph G into hypergraph H
is a mapping ψ that maps each vertex of G to a connected subset of V (H) such that if u and v
are adjacent in G, then ψ(u) and ψ(v) touch. The depth of a vertex v ∈ V (H) in embedding ψ is
dψ(v) := |{u ∈ V (G) | v ∈ ψ(u)}|, the number of vertices of G whose images contain v. The vertex
depth of the embedding is maxv∈V (H) dψ(v). Observe that ψ is a minor mapping if and only if it has
vertex depth 1. Because in our case we want to control the size of the constraint relations, we need
a notion of depth that is sensitive to “what the edges see.” We define the depth dψ(e) of an edge
e ∈ E(H) as dψ(e) =

∑
v∈e dψ(e) and the edge depth to be the maximum of e taken over all edges

e ∈ E(H). Equivalently, we can define the depth of an edge e ∈ H as dψ(e) =
∑

v∈V (G) |ψ(v) ∩ e|,
that is, each vertex v contributes |ψ(v) ∩ e| to the depth. (A different, perhaps more natural,
definition of edge depth would be to define it simply as a maximum number of sets ψ(v) that
intersect an edge. Somewhat unexpectedly, most results of this chapter remain true with both
notions; see Remarks 6.52–6.53.)

Trivially, for any graph G and hypergraph H, there is an embedding of G into H having vertex
depth and edge depth at most |V (G)|. If G has m edges and no isolated vertices, then |V (G)| is at
most 2m. We are interested in how much we can gain compared to this trivial solution of depth
O(m). We define the embedding power emb(H) to be the maximum (supremum) value of α for
which there is an integer mα such that every graph G with m ≥ mα edges has an embedding into
H with edge depth m/α. It might look unmotivated that we define embedding power in terms of
the number of edges of G: defining it in terms of the number of vertices might look more natural.
However, if we replace the number m of edges with the number n of vertices in the definition, then
the worst case occurs if G is a clique on n vertices. Such a definition would describe how well cliques
can be embedded, and would give us no information about how sparse graphs can be embedded.

6.3 Width parameters

Treewidth and its various generalizations are defined in this section. We follow the framework of width
functions introduced by Adler [7]. A tree decomposition of a hypergraph H is a tuple (T, (Bt)t∈V (T )),
where T is a tree and (Bt)t∈V (T ) is a family of subsets of V (H) satisfying the following two conditions:
(1) for each e ∈ E(H) there is a node t ∈ V (T ) such that e ⊆ Bt, and (2) for each v ∈ V (H) the
set {t ∈ V (T ) | v ∈ Bt} is connected in T . The sets Bt are called the bags of the decomposition.
Let f : 2V (H) → R+ be a function that assigns a nonnegative real number to each nonempty subset
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of vertices. The f-width of a tree-decomposition (T, (Bt)t∈V (T )) is max
{
f(Bt) | t ∈ V (T )}. The

f -width of a hypergraph H is the minimum of the f -widths of all its tree decompositions. In other
words, f -width(H) ≤ w if and only if there is a tree decomposition of H where f(B) ≤ w for every
bag B.

The main idea of tree decomposition based algorithms is that if we have a tree decomposition
for instance I such that at most C assignments on Bt have to be considered for each bag Bt, then
the problem can be solved by dynamic programming in time polynomial in C and ‖I‖. The various
width notions try to guarantee the existence of such decompositions. The simplest such notion,
treewidth, can be defined as follows:

Definition 6.2. Let s(B) = |B| − 1. The treewidth of H is tw(H) := s-width(H).

Further width notions defined in the literature can also be conveniently defined using this setup.
A subset E′ ⊆ E(H) is an edge cover if

⋃
e∈E′ e = V (H). The edge cover number ρ(H) is the size of

the smallest edge cover (here we assume that H has no isolated vertices). For X ⊆ V (H), let ρH(X)
be the size of the smallest set of edges covering X.

Definition 6.3. The generalized hypertree width of H is ghw(H) := ρH -width(H).

The original (nongeneralized) definition [116] of hypertree width includes an additional require-
ment on the decomposition (see Section 5.1), thus it cannot be less than generalized hypertree.
However, it is known that hypertree width and generalized hypertree width can differ by at most a
constant factor [8].

In Chapter 5, we have seen a further generalization of hypertree width by considering linear
relaxations of edge covers. A function γ : E(H) → [0, 1] is a fractional edge cover of H if∑

e∈E(H):v∈e γ(e) ≥ 1 for every v ∈ V (H). The fractional cover number ρ∗(H) ofH is the minimum of∑
e∈e(H) γ(e) taken over all fractional edge covers ofH (it is well known that this minimum is achieved

by some rational γ). We define ρ∗H(X) analogously to ρH(X): the requirement
∑

e:v∈e γ(e) ≥ 1 is
restricted to vertices v ∈ X.

Definition 6.4. The fractional hypertree width of H is fhw(H) := ρ∗H -width(H).

A crucial idea appearing in [187] is to make the choice of tree decomposition adaptive: instead of
assigning a single decomposition to each hypergraph, we choose the best decomposition based on
additional properties of the current instance. Motivated by this idea, we generalize the notion of
f -width from a single function f to a class of functions F . Let H be a hypergraph and let F be an
arbitrary (possibly infinite) class of functions that assign nonnegative real numbers to nonempty
subsets of vertices of H. The F-width of H is F-width(H) := sup

{
f -width(H) | f ∈ F

}
. Thus

if F-width(H) ≤ k, then for every f ∈ F , hypergraph H has a tree decomposition with f -width
at most k. Note that this tree decomposition can be different for the different functions f . For
normalization purposes, we consider only functions f on V (H) that satisfy f(∅) = 0 and that are
edge-dominated, that is, f(e) ≤ 1 holds for every e ∈ E(H).

Using these definitions, we can define adaptive width, introduced in [187], as follows. Recall that
in Section 6.2, we stated that if µ is a fractional independent set, then µ is extended to subsets of
vertices by defining µ(X) :=

∑
v∈X µ(v) for every X ⊆ V (H).

Definition 6.5. The adaptive width adw(H) of a hypergraph H is F-width(H), where F is the set
of all fractional independent sets of H.

A function f : 2V (H) → R is modular if f(X) =
∑

v∈X cv for some constants cv (v ∈ V (H)). The
function µ(X) arising from a fractional independent set is clearly a modular and edge dominated
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function, in fact, in Definition 6.5 we can equivalently define F as the set of all nonnegative modular
edge-dominated functions on V (H). The main new definition of this chapter is a new width measure,
which is obtained by imposing a requirement weaker than modularity on the functions in F (hence
the considered set F of functions is larger):

Definition 6.6. A function b : 2V (H) → R+ is submodular if b(X) + b(Y ) ≥ b(X ∩ Y ) + b(X ∪ Y )
holds for every X,Y ⊆ V (H). Given a hypergraph H, let F contain every edge-dominated
monotone submodular function b on V (H) with b(∅) = 0. The submodular width of hypergraph H is
subw(H) := F-width(H).

It is well known that submodular functions can be equivalently characterized by the property
that b(X ∪ v)− b(X), the marginal value of v with respect to X, is a nonincreasing function of X.
That is, for every v and X ⊆ Y ,

b(X ∪ v)− b(X) ≥ b(Y ∪ v)− b(Y ). (6.1)

It is clear that subw(H) ≥ adw(H): Definition 6.6 considers a larger set of functions than
Definition 6.5. Furthermore, we show that subw(H) is at most the fractional hypertree width
fhw(H). This is a straightforward consequence of the fact that an edge-dominated submodular
function is always bounded by the fractional cover number:

Lemma 6.7. Let H be a hypergraph and b be a monotone edge-dominated submodular function with
b(∅) = 0. Then b(S) ≤ ρ∗H(S) for every S ⊆ V (H).

Proof. The statement can be proved along the same lines as the proof of Shearer’s Lemma [63]
attributed to Radhakrishnan goes. It is sufficient to prove the statement for the case S = V (H):
otherwise, we can consider the subhypergraph of H induced by S and the function b restricted to
S. Let γ : E(H) → R+ be a minimum fractional edge cover of S. Let v1, . . . , vn be an arbitrary
ordering of V (H) and let Vi = {v1, . . . , vi}, V0 = ∅. For every e ∈ E(H), we have

b(e) =
∑
vi∈e

(b(e ∩ Vi)− b(e ∩ Vi−1)) ≥
∑
vi∈e

(b(Vi)− b(Vi−1))

(the equality is a simple telescopic sum; the inequality uses (6.1), i.e., the marginal value of vi with
respect to Vi−1 is not greater than with respect to e ∩ Vi−1).

ρ∗H(V (H)) =
∑

e∈E(H)

γ(e) ≥
∑

e∈E(H)

γ(e)b(e) ≥
∑

e∈E(H)

γ(e)
∑
vi∈e

(b(Vi)− b(Vi−1))

=

n∑
i=1

(b(Vi)− b(Vi−1))
∑

e∈E(H),vi∈e

γ(e)

 ≥ n∑
i=1

(b(Vi)− b(Vi−1)) = b(V (H))

(in the first inequality, we use that f is edge dominated; in the last inequality, we use that γ is a
fractional edge cover).

Proposition 6.8. For every hypergraph H, subw(H) ≤ fhw(H).

Proof. Let (T,Bt∈V (T )) be a tree decomposition of H whose ρ∗H -width is fhw(H). If b is an edge-
bounded monotone submodular function with b(∅) = 0, then by Lemma 6.7, b(Bt) ≤ ρ∗H(Bt) ≤
fhw(H) for every bag Bt of the decomposition, i.e., b-width(H) ≤ fhw(H). This is true for every
such function b, hence subw(H) ≤ fhw(H).
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Bounded (generalized)

hypertree width

Bounded submodular width

Bounded

treewidth

Bounded fractional hypertree width

Figure 6.2: Hypergraph properties that make CSP fixed-parameter tractable.

Figure 6.2 shows the relations of the hypergraph properties defined in this section (note that the
elements of this Venn diagram are sets of hypergraphs; e.g., the set “bounded treewidth” contains
every set H of hypergraphs with bounded treewidth). As discussed above, all the inclusions in the
figure are proper.

Finally, let us remark that there have been investigations of tree decompositions and branch
decompositions of submodular functions and matroids in the literature [14,140–142,200]. However,
in those results the submodular function is a connectivity function: b(S) describes the boundary of
S, that is, the cost of separating S from its complement. In our case, b(S) describes the cost of the
separator S itself. Therefore, we are in a completely different setting and the previous results cannot
be used.

6.4 From CSP instances to submodular functions

In this section, we prove the main algorithmic result of the chapter: CSP(H) is fixed-parameter
tractable if H has bounded submodular width.

Theorem 6.9. Let H be a class of hypergraphs such that subw(H) ≤ c0 for every H ∈ H. Then
CSP(H) can be solved in time 2c0·2

O(|V (H)|) · ‖I‖O(c0).

The proof of Theorem 6.9 is based on two main ideas:

1. A CSP instance I can be decomposed into a bounded number of “uniform” CSP instances I1,
. . . , It (Lemma 6.19). Here uniform means that if B ⊆ A are two sets of variables, then every
solution of prB Ij has roughly the same number of extensions to prA Ij .

2. If I is a uniform CSP instance, then (the logarithm of) the number of solutions on the different
projections of I can be described by an edge-dominated monotone submodular function b
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(Lemma 6.20). Therefore, if the hypergraph H of I has bounded submodular width, then it
follows that there is a tree decomposition where every bag has a polynomially bounded number
of solutions. This means that the existence of a solution can be tested by standard techniques.

While our algorithm is based on these two ideas, the technical implementation is slightly different.
First, we can achieve uniformity only on “small sets” of variables. For technical reasons, we have to
ensure a certain consistency condition (for example, in order to ensure that the submodular function
b is monotone). It follows from the consistency condition that when we find a tree decomposition for
a uniform instance such that every bag has a small number of solutions, then this automatically
implies that the instance has a solution; we do not even have to use the tree decomposition (see
Lemma 6.15).

In Section 6.4.1 we define the notion of consistency that we use and discuss how it can be achieved.
Section 6.4.2 describes how the instance can be partitioned into uniform instances. Section 6.4.3
shows how a submodular function can be defined based on a uniform instance, connecting our
algorithm to submodular width.

6.4.1 Consistency

Recall from Section 6.2 that prA I is instance I projected to a set A of variables and solI(A) is the
set of all solutions of prA I. Note that, in general, it is possible that | solI(S

′)| > | solI(S)| for some
S′ ⊂ S. In the implementation of the first idea (Lemma 6.19), we guarantee uniformity only to
subsets of variables that are “small” in the following hereditary sense

Definition 6.10. Let I be a CSP instance and M ≥ 1 an integer. We say that S ⊆ V is M -small if
| solI(S

′)| ≤M for every S′ ⊆ S.

It is not difficult to find all the M -small sets, and every solution of the instances projected onto
these sets:

Lemma 6.11. Let I = (V,D,C) be a CSP instance and M ≥ 1 an integer. There is an algorithm
with running time 2O(|V |) ·poly(‖I‖,M) that finds the set S of all M -small sets S ⊆ V and constructs
solI(S) for each such S ∈ S.

Proof. For i = 1, 2, . . . , |V |, we find every M -small set S of size i and construct solI(S). This is
trivial to do for i = 1. Suppose that we have already found the collection Si of all M -small sets of
size exactly i. By definition, every size i subset S of an M -small set S of size i+ 1 is an M -small
set. Thus we can find every M -small set of size i+ 1 by enumerating every S ∈ Si and checking for
every v ∈ V \ S whether S′ := S ∪ {v} is M -small. To check whether S′ is M -small, we first check
whether every subset of size i is M -small, which is easy to do using the set Si. Then we construct
solI(S

′): this can be done by enumerating every tuple s ∈ solI(S) and every extension of s by a
new value from D. Thus we need to consider at most | solI(S)| · |D| ≤ M · |D| tuples as possible
members in solI(S

′), which means that solI(S
′) can be constructed in time polynomial in M and

‖I‖. If | solI(S
′)| ≤M , then we put S′ into Si+1. As the collection Si contains at most 2|V | sets and

every operation is polynomial in M and ‖I‖, the total running time is 2O(|V |) · poly(‖I‖,M).

We want to avoid dealing with assignments b ∈ sol(B) that cannot be extended to any member
of sol(A) for some A ⊇ B. Of course, there is no easy way to avoid this in general (or even to detect
if there is such a b): for example, if A is the set of all variables, then we would need to check if b can
be extended to a solution. Therefore, we require only that there is no such unextendable b if A and
B are M -small:
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Definition 6.12. A CSP instance I is M -consistent if solI(B) = prB solI(A) for all M -small sets
B ⊆ A.

The notion of M -consistency is very similar to k-consistency, a standard notion in the constraint
satisfaction literature [19, 78, 167]. However, we restrict the considered subsets not by the number of
variables, but by the number of solutions (more precisely, by considering only M -small sets). Thus
the notion of M -consistency could be interpreted in the framework of Greco and Scarcello [121],
where consistency is defined with respect to an arbitrary set of views.

Similarly to usual k-consistency, we can achieveM -consistency by throwing away partial solutions
that violate the requirements: if we use the algorithm of Lemma 6.11 to find all possible assignments
of the M -small sets, then we can check if there is such an unextendable b for some M -small sets A
and B. If there is such a b, then we can exclude it from consideration (without losing any solution
of the instance) by introducing a new constraint on B. By repeatedly excluding the unextendable
assignments, we can avoid all such problems. We say that I ′ = (V,D,C ′) is a refinement of
I = (V,D,C) if for every constraint 〈s,R〉 ∈ C, there is a constraint 〈s,R′〉 ∈ C ′ such that R′ ⊆ R.

Lemma 6.13. Let I = (V,D,C) be a CSP instance and M ≥ 1 an integer. There is an algorithm
with running time 2O(|V |) · poly(‖I‖,M) that produces an M -consistent CSP instance I ′ that is a
refinement of I with sol(I) = sol(I ′).

Proof. Using the algorithm of Lemma 6.11, we can find all the M -small sets and then we can easily
check if there are two M -small sets S ⊆ S′ violating consistency, i.e., sol(S) 6⊆ prS sol(S′). In this
case, let s be an |S|-tuple whose coordinates contain S in an arbitrary order and let us add the
constraint 〈s, prS sol(S′)〉; it is clear that sol(V ) does not change but | sol(S)| strictly decreases. We
repeat this step until the instance becomes M -consistent. Note that adding the new constraint
can make a set M -small that was not M -small before, thus we need to rerun the algorithm of
Lemma 6.11. To bound the number of iterations before M -consistency is reached, observe that
adding a new constraint does not increase | sol(A)| for any A and strictly decreases | sol(S)| for some
M -small set S. As there are at most 2|V | sets S and | sol(S)| ≤M for every M -small set S, it follows
that this step can be repeated at most 2|V | ·M times. The size of the instance increases in each step
by adding a new constraint with at most M tuples, thus the size of the instance at the end of the
process can be still bounded by 2O(|V |) · poly(‖I‖,M). Thus the total time required to ensure that
instance I is M -consistent can be bounded by 2O(|V |) · poly(‖I‖,M).

We want to avoid degenerate cases where there is no solution even for some M -small sets.
Consistency implies that it is sufficient to require this for sets of size 1. We say that a CSP instance
is nontrivial if sol({v}) 6= ∅ for every v ∈ V . The following is immediate:

Proposition 6.14. If I is an M -consistent nontrivial CSP instance, then sol(S) 6= ∅ for every
M -small set S.

It is well known that by achieving k-consistency, we can solve CSP instances with treewidth k:
the key observation is that if an instance I with treewidth at most k has a k-consistent nontrivial
refinement I ′, then I has a solution. The following lemma adapts this statement to our setting.

Lemma 6.15. Let I = (V,D,C) be a CSP instance andM ≥ 1 an integer. Let I ′ be anM -consistent
nontrivial refinement of I. If the hypergraph H of I has a tree decomposition where every bag B is
M -small in I ′, then I has a solution.

Proof. Suppose that there is such a tree decomposition (T, (Bt)t∈V (T )). Assume that T is rooted
and for every node t ∈ V (T ), let Vt be the union of the bags that are descendants of t (including Bt).
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We claim that every assignment in solI′(Bt) can be extended to an assignment of Vt that satisfies
every constraint of I whose scope is fully contained in Vt. Applying this statement to the root of T
proves that there exists a solution for I. (Recall that every edge of the hypergraph H, and hence
the scope of every constraint, is fully contained in one of the bags.)

We prove the claim for every node of T in a bottom up order. The statement is trivial for the
leaves. Let t1, . . . , t` be the children of t and suppose the claim is true for these nodes. Consider
an assignment g ∈ solI′(Bt). Since I ′ is M -consistent and Bti is M -small, assignment g|Bt∩Bti
can be extended to an assignment gi ∈ solI′(Bti). As the claim is true for node ti, assignment gi
can be extended to an assignment g′i of Vti . The assignments g, g′1, . . . , g′` can be combined to
obtain an assignment g′ on Vt (note that this is well defined: the intersection of Vti and Vtj is in
Vt, which means that a variable appearing in both Vti and Vtj has the same value in g, g′i, and g

′
j).

Furthermore, every edge e of H that is fully contained in Vt is fully contained in at least one of
Bt, Vt1 , . . . , Vt` , and the corresponding assignment among g, g′1, . . . , g′` shows that g

′ satisfies the
constraint corresponding to e.

Note the subtle detail that Lemma 6.15 does not claim that I ′ has a solution. Furthermore,
when Lemma 6.13 creates an M -consistent instance, then it possibly adds many new constraints and
the hypergraph of I ′ can be very dense even if the hypergraph of I has nice structure. However, this
is not a problem, as Lemma 6.15 does not require any property on the hypergraph of I ′. Note also
that every M -small set in I is M -small in I ′ as well, thus I ′ has a potentially larger collection of
M -small sets, which makes finding the required tree decomposition of the hypergraph H of I easier.

6.4.2 Decomposition into uniform CSP instances

Our algorithm for decomposing a CSP instance into uniform CSP instances is inspired by a
combinatorial result of Alon et al. [12], which shows that, for every fixed n, an n-dimensional point
set S can be partitioned into polylog(|S|) classes such that each class is O(1)-uniform. We follow
the same proof idea: the instance is split into two instances if uniformity is violated somewhere, and
we analyze the change of an appropriately defined weight function to bound the number of splits
performed. However, the parameter setting is different in our proof: we want to partition into f(|V |)
classes, but we are satisfied with somewhat weaker uniformity. Another minor technical difference is
that we require uniformity only on the N c-small sets.

The following definitions gives the precise notion of uniformity that we use:

Definition 6.16. Let I = (V,D,C) be a CSP instance. For B ⊆ A ⊆ V and an assignment
b : B → D, let solI(A|B = b) := {a ∈ solI(A) | prB a = prB b}, the set of all extensions of
b to a solution of prA I. Let maxI(A|B) = maxb∈solI(B) | solI(A|B = b)| (if solI(B) = ∅, then
maxI(A|B) = 0). We define maxI(A|∅) = | solI(A)| and maxI(∅|∅) = 1. We will drop I from the
subscript of max if it is clear from the context.

Let us prove two straightforward properties of the function max(A|B):

Proposition 6.17. For every B ⊆ A ⊆ V with sol(A) 6= ∅ and C ⊆ V , we have

1. max(A|B) ≥ | sol(A)|/| sol(B)|,

2. max(A|B) ≥ max(A ∪ C|B ∪ C).

Proof. If every b ∈ sol(B) has at most max(A|B) extensions to A, then clearly | sol(A)| is at most
| sol(B)| ·max(A|B), proving the first statement. To show the second statement, consider an x ∈
sol(B∪C) with max(A∪C|B∪C) extensions to A∪C. For any two y1, y2 ∈ sol(A∪C|B∪C = x) with
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y1 6= y2, we have prC y1 = prC y2 = prC x, hence y1 and y2 can be different only if prA y1 6= prA y2.
This means that prA y1 and prA y2 are two different extensions of prB x to A. Therefore,

max(A|B) ≥ | sol(A|B = prB x)| ≥ | sol(A ∪ C|B ∪ C = x)| = max(A ∪ C|B ∪ C),

what we had to show.

Notice that (2) in Prop. 6.17 gives a hint that submodularity will be relevant: it is analogous to
inequality (6.1) (Section 6.3) expressing that marginal value is larger with respect to a smaller set.

Definition 6.18. We say that A ⊆ V is c-uniform (for some integer c) if sol(A) 6= ∅ and, for every
B ⊆ A,

maxI(A|B) ≤ c| solI(A)|/| solI(B)|.

A CSP instance is (N, c, ε)-uniform if every N c-small set is N ε-uniform.

That is, A is c-uniform if every solution of solI(B) has at most c times as many extensions as
the average number of extensions. The following lemma states the main combinatorial tool of our
algorithm: splitting an instance into a constant number of uniform instances. Note that instances
arising from this splitting are more constrained than the original instance, hence it is possible that
they contain N c-small sets that are not N c-small in the original instance. Therefore, it may happen
that the hypergraph of the original instance has no tree decomposition using the N c-small sets of the
original instance, but has a tree decomposition using the N c-small sets of one of the new instances
(and then we can invoke Lemma 6.15 to show that the original instance has a solution).

Lemma 6.19. Let I = (V,D,C) be a CSP instance, let N an be an integer, and let c ≥ 1, ε > 0 be
real numbers. There is an algorithm with running time 22O(|V |)·c/ε · poly(‖I‖, N c) that produces a set
of (N, c, ε)-uniform N c-consistent nontrivial instances I1, . . . , It with 0 ≤ t ≤ 22O(|V |)·c/ε, all on the
set V of variables, such that

1. every solution of I is a solution of exactly one instance Ii,

2. for every 1 ≤ i ≤ t, instance Ii is a refinement of I.

Proof. The main step of the algorithm takes a CSP instance I and either makes it (N, c, ε)-uniform and
N c-consistent without losing any solutions, or splits it into two instances Ismall, Ilarge. By applying
the main step recursively on Ismall and Ilarge, we eventually arrive to a set of (N, c, ε)-uniform
N c-consistent instances. We will argue that the number of constructed instances is 22O(|V |)·c/ε.

In the main step, we first check if the instance is trivial; in this case we can stop with t = 0.
Otherwise, we invoke the algorithm of Lemma 6.13 to obtain an N c-consistent refinement of the
instance, without losing any solution. Next we check if this N c-consistent instance I is (N, c, ε)-
uniform. This can be tested in time 2O(|V |) · poly(‖I‖, N c) if we use Lemma 6.11 to find all the
N c-small sets and the corresponding sets of solutions. Suppose that N c-small sets B ⊆ A violate
uniformity, that is,

max(A|B) > N ε| sol(A)|/| sol(B)|. (6.2)

Let solsmall(B) contain those tuples b for which | sol(A|B = b)| ≤
√
N ε| sol(A)|/| sol(B)| and let

sollarge(B) = sol(B) \ solsmall(B). Note that | sol(A)| ≥ | sollarge(B)| · (
√
N ε| sol(A)|/| sol(B)|) (as

every tuple b ∈ sollarge(B) has at least
√
N ε| sol(A)|/| sol(B)| extensions to A), hence

| sollarge(B)| ≤ | sol(B)|/
√
N ε. (6.3)
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Let instance Ismall (resp., Ilarge) be obtained from I by adding the constraint 〈B, solsmall(B)〉 (resp.,
〈B, sollarge(B)〉). Clearly, the set of solutions of I is the disjoint union of the sets of solutions of
Ismall and Ilarge. This completes the description of the main step.

It is clear that if the recursive procedure stops, then the instances at the leaves of the recursion
satisfy the two requirements: the application of Lemma 6.13 does not lose any solution and each
resulting instance is N c-consistent and (N, c, ε)-uniform. We show that the height of the recursion
tree can be bounded from above by a function h(|V |, c, ε) = 2O(|V |) · c/ε depending only on |V |, c,
and ε; in particular, this shows that the recursive algorithm eventually stops and produces at most
t = 2h(|V |,c,ε) = 22O(|V |)·c/ε instances.

Let us consider a path in the recursion tree starting at the root, and let I1, I2, . . . , Ip be the
corresponding N c-consistent instances. If a set S is N c-small in Ij , then it is N c-small in Ij′ for
every j′ > j: the main step cannot increase | sol(S)| for any S. Thus, with the exception of at most
2|V | values of j, instances Ij and Ij+1 have the same N c-small sets. Let us consider a subpath Ix,
. . . , Iy such that all these instances have the same N c-small sets. We show that the length of this
subpath is O(3|V | · c/ε), hence p = O(2|V | · 3|V | · c/ε). As this holds for any path starting at the root,
we obtain that the height of the recursion tree is 2O(|V |) · c/ε and hence t = 22O(|V |)·c/ε.

For the instance Ij , let us define the following weight:

W j =
∑

∅⊆B⊆A⊆V
A,B are Nc-small in Ij

log2 maxIj (A|B).

We bound the length of the subpath Ix, . . . , Iy by analyzing how this weight changes in each
step. Observe first that when invoking the algorithm of Lemma 6.13 to find an N c-consistent
refinement, then the weight does not increase: adding new constraints cannot increase max(A|B) for
any A,B ⊆ V and cannot create new N c-small sets by the assumption on the subpath Ix and Iy.
Thus it is sufficient to analyze how the weight decreases in Ilarge and Ismall compared to I. Note
that 0 ≤ W j ≤ 3|V | log2N

c = 3|V | · c log2N : the sum consists of at most 3|V | terms and (as A is
N c-small and the instance Ij is N c-consistent and nontrivial) maxIj (A|B) is between 1 and N c. We
show that W j+1 ≤ W j − (ε/2) log2N , which immediately implies that the length of the subpath
is O(3|V | · c/ε). Let us inspect how W j+1 changes compared to W j . Since Ij and Ij+1 have the
same N c-small sets by assumption, no new term can appear in W j+1. It is clear that maxIi+1(A|B)
cannot be greater than maxIi(A|B) for any A,B. Moreover, we show that there is at least one
term that strictly decreases. Suppose first that Ij+1 was obtained from Ij by adding the constraint
〈B, solsmall(B)〉. Then

log2 maxIj+1(A|B) ≤ log2

√
N ε
| solIj (A)|
| solIj (B)|

≤ log2

maxIj (A|B)√
N ε

= log2 maxIj (A|B)− (ε/2) log2N,

where we have used (6.2) in the second inequality. On the other hand, if Ij+1 was obtained by
adding the constraint 〈B, sollarge(B)〉, then

log2 maxIj+1(B|∅) = log2 | solIj+1(B)| ≤ log2(| solIj (B)|/
√
N ε) = log2 maxIj (B|∅)− (ε/2) log2N,

where the inequality follows from (6.3). In both cases, we get that at least one term decreases by at
least (ε/2) log2N .

6.4.3 Uniform CSP instances and submodularity

Assume for a moment that we have a 1-uniform instance I with hypergraph H. Note that by
Prop 6.17(1), this means that max(A|B) = | sol(A)|/| sol(B)|. Suppose that every constraint
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contains at most N tuples and let us define the function b(S) = logN | sol(S)|. For every edge
e ∈ E(H), there is a corresponding constraint, which has at most N tuples by the definition of N .
Thus | sol(e)| ≤ N and hence b(e) ≤ 1 for every e ∈ E(H), that is, b is edge dominated. The crucial
observation of this section is that this function b is submodular:

b(X) + b(Y ) = logN | sol(X)|+ logN

(
| sol(X ∩ Y )| | sol(Y )|

| sol(X ∩ Y )|

)
= logN | sol(X)|+ logN (| sol(X ∩ Y )| ·max(Y |X ∩ Y ))

≥ logN | sol(X)|+ logN (| sol(X ∩ Y )| ·max(X ∪ Y |X))

= logN | sol(X)|+ logN

(
| sol(X ∩ Y )| · | sol(X ∪ Y )|

| sol(X)|

)
= logN | sol(X ∩ Y )|+ logN | sol(X ∪ Y )|
= b(X ∩ Y ) + b(X ∪ Y )

(the equalities follow from 1-uniformity; the inequality uses Prop. 6.17(2) with A = Y , B = X ∩ Y ,
C = X). Therefore, if the submodular width of H is at most c, then H has a tree decomposition
where b(B) ≤ c and hence | sol(B)| ≤ N c for every bag B. Thus we can find a solution of the
instance by dynamic programming in time polynomial in N c.

Lemma 6.19 guarantees some uniformity for the created instances, but not perfect 1-uniformity
and only for the N c-small sets. Thus in Lemma 6.20, we need to define b in a slightly different and
more technical way: we add some small terms to correct errors arising from the weaker uniformity
and we truncate the function at large values (i.e., for sets that are not N c-small). Also, we state
Lemma 6.20 for an arbitrary hypergraph H, possibly different from the hypergraph of I; then to
guarantee that b is edge dominated, we need that | sol(e)| ≤ N for every edge e of H. The reason we
need the statement in this form is that in an instance Ii produced by Lemma 6.19 from instance I,
the maximum size of a constraint relation in I is an upper bound on | solIi(e)| only if e corresponds
to a constraint of I, but we have no such bound if e corresponds to a constraint of Ii not appearing
in I.

Lemma 6.20. Let I = (V,D,C) be a CSP instance and let H be a hypergraph on V (possibly
different from the hypergraph of I) such that | sol(e)| ≤ N holds for every e ∈ E(H). If I is N c-
consistent and (N, c, ε3)-uniform for some c ≥ 1 and ε := 1/|V |, then the following function b is an
edge-dominated, monotone, submodular function on H with b(∅) = 0:

b(S) :=

{
(1− ε)logN | sol(S)|+ 2ε2|S| − ε3|S|2 if S is N c-small,
(1− ε)c+ 2ε2|S| − ε3|S|2 otherwise.

Proof. Let h(S) := 2ε2|S| − ε3|S|2. The function h(S) is a quadratic function of |S|; it is 0 when
|S| = 0 or |S| = 2/ε, hence its maximum is at |S| = 1/ε = |V (H)| with maximum value ε. Therefore,
h(S) is monotone in the range 0 ≤ |S| ≤ |V (H)|. Furthermore, h is a submodular function:

h(X)+h(Y )− h(X ∩ Y )− h(X ∪ Y )

= 2ε2(|X|+ |Y | − |X ∩ Y | − |X ∪ Y |) + ε3(−|X|2 − |Y |2 + |X ∩ Y |2 + |X ∪ Y |2)

= ε3
(
−(|X ∩ Y |+ |X \ Y |)2 − (|X ∩ Y |+ |Y \X|)2

+ |X ∩ Y |2 + (|X ∩ Y |+ |X \ Y |+ |Y \X|)2
)

= 2ε3|X \ Y | · |Y \X| ≥ 0.
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This calculation shows that if |X \Y |, |Y \X| ≥ 1, then we actually have h(X) +h(Y ) ≥ h(X ∩Y ) +
h(X ∪ Y ) + 2ε3. We will use this extra 2ε3 term to dominate the error terms arising from assuming
only (N, c, ε3)-uniformity instead of perfect 1-uniformity.

Let us first verify the monotonicity of b. If Y is N c-small, then every X ⊆ Y is N c-small,
which implies | sol(X)| ≤ | sol(Y )| as I is N c-consistent. Therefore, b(X) ≤ b(Y ) follows from the
monotonicity of h. If Y is not N c small, then b(Y ) = (1− ε)c+ h(Y ) and b(X) ≤ b(Y ) is clear for
every X ⊆ Y , no matter whether X is N c-small or not.

To see that b is edge-dominated, consider an edge e ∈ E(H). By assumption, logN | sol(e)| ≤ 1
for every e ∈ E(H) and hence (using N c-consistency and c ≥ 1) e is N c-small. Thus b(e) ≤
(1− ε) + h(S) ≤ 1, as required.

Finally, let us verify the submodularity of b for some X,Y ⊆ V . If X ⊆ Y or Y ⊆ X, then
there is nothing to show. Thus we can assume that |X \ Y |, |Y \X| ≥ 1. We consider three cases
depending on which of X and Y are N c-small. Suppose first that X and Y are both N c-small. In
this case,

b(X) + b(Y ) = (1− ε)logN | sol(X)|+ (1− ε)logN | sol(Y )|+ h(X) + h(Y )

= (1− ε)logN | sol(X)|+ (1− ε) logN

(
| sol(X ∩ Y )| · | sol(Y )|

| sol(X ∩ Y )|

)
+ h(X) + h(Y )

≥ (1− ε)logN | sol(X)|+ (1− ε)logN | sol(X ∩ Y )|

+ (1− ε)logN (max(Y |X ∩ Y )/N ε3) + h(X) + h(Y )

≥ (1− ε)logN | sol(X ∩ Y )|+ (1− ε)logN (| sol(X)|max(X ∪ Y |X))

− (1− ε) · ε3 + h(X ∩ Y ) + h(X ∪ Y ) + 2ε3

≥ (1− ε)logN | sol(X ∩ Y )|+ (1− ε)logN | sol(X ∪ Y )|+ h(X ∩ Y ) + h(X ∪ Y )

≥ b(X ∩ Y ) + b(X ∪ Y )

(in the first inequality, we used the definition of (N, c, ε3)-uniformity on X ∩ Y and Y ; in the second
inequality, we used the submodularity of h and Prop. 6.17(2) for A = Y , B = X ∩ Y , and C = X;
in the third inequality, we used Prop. 6.17(1) for A = X ∪ Y , B = X; the last inequality is strict
only if X ∪ Y is not N c-small).

For the second case, suppose that, say, X is N c-small but Y is not. In this case, X ∩ Y is
N c-small but X ∪ Y is not. Thus

b(X) + b(Y ) = (1− ε)logN | sol(X)|+ (1− ε)c+ h(X) + h(Y )

≥ (1− ε)logN | sol(X ∩ Y )|+ (1− ε)c+ h(X ∩ Y ) + h(X ∪ Y )

= b(X ∩ Y ) + b(X ∪ Y )

(in the inequality, we used the N c-consistency on X ∩ Y and Y , and the submodularity of h).
Finally, suppose that neither X nor Y is N c-small. In this case, X ∪ Y is not N c-small either.

Now

b(X) + b(Y ) = 2(1− ε)c+h(X) +h(Y ) ≥ 2(1− ε)c+h(X ∩Y ) +h(X ∪Y ) ≥ b(X ∩Y ) + b(X ∪Y ).

Having constructed the submodular function b as in Lemma 6.20, we can use the argument
described at the beginning of the section: if H has submodular width at most (1− ε)c, then there is
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a tree decomposition where every bag is N c-small, and we can use this tree decomposition to find a
solution. In fact, by Lemma 6.15, in this case N c-consistency implies that every nontrivial instance
has a solution.

Proof (of Theorem 6.9). Let I be an instance of CSP(H) having hypergraph H ∈ H. We decide the
solvability of I the following way. Let N ≤ ‖I‖ be the size of the largest constraint relation in I, i.e.,
every constraint has at most N satisfying assignments. Trivially, we have | solI(e)| ≤ N for every
e ∈ E(H). Set ε := 1/|V (H)| (we may assume that |V (H)| ≥ 2), and let c := c0/(1−ε) ≤ 2c0. Let us
use the algorithm of Lemma 6.19 to produce the nontrivial N c-consistent (N, c, ε3)-uniform instances
I1, . . . , It. The running time of this step is 22O(|V |)·c/ε · poly(‖I‖, N c), which is 2c0·2

O(|V (H)|) · ‖I‖O(c0).
If t = 0, then we can conclude that I has no solution. Otherwise, we argue that I has a solution.

Consider any Ii; as Ii is a refinement of I, we have | solIi(e)| ≤ | solI(e)| ≤ N for any e ∈ E(H).
Let us use Lemma 6.20 with Ii and H (the hypergraph of I, not Ii!) to define the edge-dominated
monotone submodular function b. By definition of submodular width, H has a tree decomposition
(T, (Bt)t∈V (T )) such that b(Bt) ≤ subw(H) ≤ c0 = (1− ε)c for every t ∈ V (T ). Since b(S) ≤ (1− ε)c
implies | solIi(S)| ≤ N c and b is monotone, this means that Bt is N c-small in Ii for every t ∈ V (T ).
Therefore, the conditions of Lemma 6.15 hold, and I has a solution.

6.5 From submodular functions to highly connected sets

The aim of this section is to show that if a hypergraph H has large submodular width, then there
is a large highly connected set in H. Recall that we say that a set W is (µ, λ)-connected for
some fractional independent set µ and λ > 0, if for every disjoint A,B ⊆ W , every fractional
(A,B)-separator has weight at least λ ·min{µ(A), µ(B)} (see Section 6.2). Equivalently, we can say
that for every disjoint A,B ⊆W , there is an (A,B)-flow of value λ ·min{µ(A), µ(B)}. Recall also
that conλ(H) denotes the maximum value of µ(W ) taken over every fractional independent set µ
and (µ, λ)-connected set W .

The main result of this section allows us to identify a highly connected set if submodular width
is large:

Theorem 6.21. For every sufficiently small constant λ > 0, the following holds. Let b be an
edge-dominated monotone submodular function of H with b(∅) = 0. If the b-width of H is greater
than 3

2(w + 1), then conλ(H) ≥ w.

For the proof of Theorem 6.21, we need to show that if there is no tree decomposition where b(B)
is small for every bag B, then a highly connected set exists. There is a standard recursive procedure
that either builds a tree decomposition or finds a highly connected set (see e.g., [102, Section 11.2]).
Simplifying somewhat, the main idea is that if the graph can be decomposed into smaller graphs
by splitting a certain set of vertices into two parts, then a tree decomposition for each part is
constructed using the algorithm recursively, and the tree decompositions for the parts are joined in
an appropriate way to obtain a tree decomposition for the original graph. On the other hand, if the
set of vertices cannot be split, then we can conclude that it is highly connected. This high-level idea
has been applied for various notions of tree decompositions [8, 184,198–200], and it turns out to be
useful in our context as well. However, we need to overcome two major difficulties:

1. Highly connected set in our context is defined as not having certain fractional separators (i.e.,
weight assignments). However, if we want to build a tree decomposition in a recursive manner,
we need integer separators (i.e., subsets of vertices) that decompose the hypergraph into smaller
parts.
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6.5. FROM SUBMODULAR FUNCTIONS TO HIGHLY CONNECTED SETS 111

2. Measuring the sizes of sets with a submodular function b can lead to problems, since the size
of the union of two sets can be much smaller than the sum of the sizes of the two sets. We
need the property that, roughly speaking, removing a “large” part from a set makes it “much
smaller.” For example, if A and B are components of H \S, and both b(A) and b(B) are large,
then we need the property that both of them are much smaller than b(A∪B). Adler [7, Section
4.2] investigates the relation between some notion of highly connected sets and f -width, but
assumes that f is additive: if A and B do not touch, then f(A ∪B) = f(A) + f(B). However,
for a submodular function b, there is no reason to assume that additivity holds: for example,
it very well may be that b(A) = b(B) = b(A ∪B).

To overcome the first difficulty, we have to understand what fractional separation really means. The
first question is whether fractional separation is equivalent to some notion of integral separation,
perhaps up to constant factors. The first, naive, question is whether a fractional (X,Y )-separator
of weight w implies that there are O(w) edges whose union is an (X,Y )-separator, i.e., there is
an (X,Y )-separator S with ρH(S) = O(w). There is a simple counterexample showing that this
is not true. It is well-known that for every integer k > 0, there is a hypergraph Hk such that
ρ∗(Hk) = 2 and ρ(Hk) = k. Let V be the set of vertices of Hk and let H ′k be obtained from Hk by
extending it with two independent sets X,Y , each of size k, and connecting every vertex of X ∪ Y
with every vertex of V . It is clear that there is a fractional (X,Y )-separator of weight 2, but every
(X,Y )-separator S has to fully contain at least one of X, Y , or V , implying ρH′(S) ≥ k.

A less naive question is whether a fractional (X,Y )-separator with weight w in H implies that
there exists an (X,Y )-separator S with ρ∗H(S) = O(w) (or at most f(w) for some function f). It
can be shown that this is not true either: using the hypergraph family presented in [187, Section 5],
one can construct counterexamples where the minimum weight of a fractional (X,Y )-separator is a
constant, but ρ∗H(S) has to be arbitrarily large for every (X,Y )-separator S (we omit the details).

We will characterize fractional separation in a very different way. We show that if there is a
fractional (A,B)-separator of weight w, then there is an (A,B)-separator S with b(S) = O(w) for
every edge-dominated monotone submodular function b. Note that this separator S can be different
for different functions b, so we are not claiming that there is a single (A,B)-separator S that is small
in every b. The converse is also true, thus this gives a novel characterization of fractional separation,
tight up to a constant factor. This result is the key idea that allows us to move from the domain of
submodular functions to the domain of pure hypergraph properties: if there is no (A,B)-separator
such that b(S) is small, then we know that there is no small fractional (A,B)-separator, which is a
property of the hypergraph H only and has no longer anything to do with the submodular function
b.

To overcome the second difficulty, we introduce a transformation that turns a monotone submod-
ular function b on V (H) into a function b∗ that encodes somehow the neighborhood structure of H as
well. The new function b∗ is no longer monotone and submodular, but it has a number of remarkable
properties, for example, b∗ remains edge dominated and b∗(S) ≥ b(S) for every set S ⊆ V (H),
implying that b∗-width is not smaller than b-width. The main idea is to prove Theorem 6.21 for
b∗-width instead of b-width (note that this makes the statement stronger). Because of the way b∗

encodes the neighborhoods, the second difficulty will disappear: for example, it will be true that
b∗(A ∪B) = b∗(A) + b∗(B) if there are no edges between A and B, that is, b∗ is additive on disjoint
components. Lemma 6.26 formulates (in a somewhat technical way) the exact property of b∗ that
we will need. Furthermore, luckily it turns out that the result mentioned in the previous paragraph
remains true with b replaced by b∗: if there is a fractional (A,B)-separator of weight w, then there
is an (A,B)-separator S such that not only b(S), but even b∗(S) is O(w).
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6.5.1 The function b∗

We define the function b∗ the following way. Let H be a hypergraph and let b be a monotone
submodular function defined on V (H). Let SV (H) be the set of all permutations of V (H). For
a permutation π ∈ SV (H), let N−π (v) be the neighbors of v preceding v in the ordering π. For
π ∈ SV (H) and Z ⊆ V (H), we define

∂bπ,Z(v) := b(v ∪ (N−π (v) ∩ Z))− b(N−π (v) ∩ Z).

In other words, ∂bπ,Z(v) is the marginal value of v with respect to the set of its neighbors in Z
preceding it. We abbreviate ∂bπ,V (H) by ∂bπ. As usual, we extend the definition to subsets by letting
∂bπ,Z(S) :=

∑
v∈S ∂bπ,Z(v). Furthermore, we define

bπ(Z) := ∂bπ,Z(Z) =
∑
v∈Z

∂bπ,Z(v),

b∗(Z) := min
π∈SV (H)

bπ(Z).

Thus bπ(Z) is the sum of the marginal values with respect to a given ordering, while b∗(Z) is the
smallest possible sum taken over all possible orderings. Let us prove some simple properties of the
function b∗. Properties (1)–(3) and their proofs show why b∗ was defined this way: b∗(Z) is never
smaller than b(Z), but it is still edge dominated. Properties (4)–(5) are technical statements that
we will need later.

Proposition 6.22. Let H be a hypergraph and let b be a monotone submodular function defined on
V (H) with b(∅) = 0. For every π ∈ SV (H) and Z ⊆ V (H) we have

1. bπ(Z) ≥ b(Z),

2. b∗(Z) ≥ b(Z),

3. b∗(Z) = bπ(Z) = b(Z) if Z is a clique,

4. ∂bπ,Z1(v) ≤ ∂bπ,Z2(v) if Z2 ⊆ Z1,

5. ∂bπ(v) ≤ ∂bπ,Z(v),

6. b∗(X ∪ Y ) ≤ b∗(X) + b∗(Y ).

Proof. (1) We prove the statement by induction on |Z|; for Z = ∅, the claim is true (as b(∅) = 0).
Otherwise, let v be the last element of Z according to the ordering π. As v is not preceding any
element of Z, for every u ∈ Z we have N−π (u)∩Z = N−π (u)∩(Z\v), and hence ∂bπ,Z(u) = ∂bπ,Z\v(u).

bπ(Z) =
∑
u∈Z\v

∂bπ,Z(u) + ∂bπ,Z(v) =
∑
u∈Z\v

∂bπ,Z\v(u) + ∂bπ,Z(v)

= bπ(Z \ v) + ∂bπ,Z(v) ≥ b(Z \ v) + b(v ∪ (N−π (v) ∩ Z))− b(N−π (v) ∩ Z) ≥ b(Z).

In the first inequality, we used the induction hypothesis and the definition of ∂bπ,Z(v); in the second
inequality, we used the submodularity of b: the marginal value of v with respect to Z \ v is not
greater than with respect to N−π (v) ∩ Z ⊆ Z \ v.

(2) Follows immediately from (1) and from the definition of b∗.
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(3) As bπ(Z) ≥ b∗(Z) ≥ b(Z) (by property (1) and the definition of b∗(Z)), we need to prove
bπ(Z) = b(Z) only. We prove the statement by induction on |Z|. As in (1), let v be the last vertex
of Z in π. Note that since Z is a clique, N−π (v) ∩ Z is exactly Z \ v.

bπ(Z) =
∑
u∈Z\v

∂bπ,Z(u) + ∂bπ,Z(v) =
∑
u∈Z\v

∂bπ,Z\v(u) + b(v ∪ (N−π (v) ∩ Z))− b(N−π (v) ∩ Z)

= bπ(Z \ v) + b(v ∪ (Z \ v))− b(Z \ v) = b(Z \ v) + b(Z)− b(Z \ v) = b(Z).

(4) Follows from the submodularity of b: ∂bπ,Z1(v) is the marginal value of v with respect to
N−π (v) ∩ Z1, while ∂bπ,Z2(v) is the marginal value of v with respect to the subset N−π (v) ∩ Z2 of
N−π (v) ∩ Z1.

(5) Immediate from (4).
(6) Let πX and πY be the orderings such that bπX (X) = b∗(X) and bπY = b∗(Y ). Let us define

ordering π such that it starts with the elements of X, in the order of πX , followed by the elements
of Y \ X, in the order of πY , and completed by an arbitrary ordering of V (H) \ (X ∪ Y ). It is
clear that for every v ∈ X, we have ∂bπ,X∪Y (v) = ∂bπX ,X(v). Furthermore, for every v ∈ Y \X,
we have N−πY (v) ∩ Y ⊆ N−π (v) ∩ (X ∪ Y ): if u is a neighbor of v in Y that precedes it in πY , then
u is either in X or in Y \ X; in both cases u precedes v in π. Thus, similarly to (4), we have
∂bπ,X∪Y (v) ≤ ∂bπY ,Y (v) for every v ∈ Y \X: ∂bπ,X∪Y (v) is the marginal value of v with respect to
N−π (v) ∩ (X ∪ Y ), while ∂bπY ,Y (v) is the marginal value of v with respect to the subset N−πY (v) ∩ Y .
Now we have

b∗(X ∪ Y ) ≤ bπ(X ∪ Y ) =
∑

v∈X∪Y
∂bπ,X∪Y (v) ≤

∑
v∈X

∂bπX ,X(v) +
∑

v∈Y \X

∂bπY ,Y (v)

≤
∑
v∈X

∂bπX ,X(v) +
∑
v∈Y

∂bπY ,Y (v) = b∗(X) + b∗(Y ).

Prop. 6.22(3) implies that ∂bw,Z can be used to define a fractional independent set:

Lemma 6.23. Let H be a hypergraph and let b be an edge-dominated monotone submodular function
defined on V (H) with b(∅) = 0. Let W ⊆ V (H) and let π be an ordering of W . Let us define
µ(v) = ∂bπ,W (v) for v ∈ W and µ(v) = 0 otherwise. Then µ is a fractional independent set of H
with µ(W ) = bπ(W ).

Proof. Let e be an edge of H and let Z := e ∩W . We have

µ(e) = µ(Z) = ∂bπ,W (Z) ≤ ∂bπ,Z(Z) = bπ(Z) = b(Z) ≤ 1,

where the first inequality follows from Prop. 6.22(4), the last equality follows from Prop. 6.22(3),
and the second inequality follows from the fact that b is edge dominated. Furthermore, we have
µ(W ) = ∂bπ,W (W ) = bπ(W ).

We close this section by proving the main property of b∗ that allows us to avoid the second
difficulty described at the beginning of Section 6.5. First, although it is not used directly, let us
state that b∗ is additive on sets that are independent from each other:

Lemma 6.24. Let H be a hypergraph, let b be an edge-dominated monotone submodular function
defined on V (H) with b(∅) = 0, and let A,B ⊆ V (H) be disjoint sets such that there is no edge
intersecting both A and B. Then b∗(A ∪B) = b∗(A) + b∗(B).
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Proof. By Prop. 6.22(6), we have to show only b∗(A ∪B) ≥ b∗(A) + b∗(B). Let π be an ordering of
V (H) such that bπ(A ∪ B) = b∗(A ∪ B); we can assume that π starts with the vertices of A ∪ B.
Since there is no edge that intersects both A and B, and no vertex outside A ∪ B precedes a
vertex u ∈ A ∪ B, we have N−π (u) ⊆ A for every u ∈ A and N−π (u) ⊆ B for every u ∈ B. Thus
∂bπ,A∪B(u) = ∂bπ,A(u) for every u ∈ A and ∂bπ,A∪B(u) = ∂bπ,B(u) for every u ∈ B. Therefore,
b∗(A ∪B) = bπ(A ∪B) = bπ(A) + bπ(B) ≥ b∗(A) + b∗(B), what we had to show.

The actual statement that we use is more complicated than Lemma 6.24: there can be edges
between A and B, but we assume that there is a small (A,B)-separator. We want to generalize the
following simple statement to our setting:

Proposition 6.25. Let G be a graph, W ⊆ V (G) a set of vertices, A,B ⊆W two disjoint subsets,
and an (A,B)-separator S. If |S| < |A|, |B|, then |(C ∩W ) ∪ S| < |W | for every component C of
G \ S.

The proof of Prop. 6.25 is easy to see: every component C of G \S is disjoint from either A or B,
thus |C ∩W | is at most |W | −min{|A|, |B|} < |W | − |S|, implying that |(C ∩W ) ∪ S| is less than
|W |. Statements of this form are useful when constructing tree decompositions in a recursive way.
In our setting, we want to measure the size of the sets using the function b∗, not by the number of
vertices. More precisely, we measure the size of S and (C ∩W ) ∪ S using b∗, while the size of W , A,
and B are measured using the fractional independent set µ defined by Lemma 6.23. The reason for
this will be apparent in the proof of Lemma 6.34: we want to claim that if such a separator S does
not exist for any A,B ⊆W , then W is a (µ, λ)-connected set for this fractional independent set µ.

Lemma 6.26. Let H be a hypergraph, let b be an edge-dominated monotone submodular function
defined on V (H) with b(∅) = 0 and let W be a set of vertices. Let πW be an ordering of V (H),
and let µ(v) := ∂bπW ,W (v) for v ∈ W and µ(v) = 0 otherwise. Let A,B ⊆ W be two disjoint sets,
and let S be an (A,B)-separator. If b∗(S) < µ(A), µ(B), then b∗((C ∩W ) ∪ S) < µ(W ) for every
component C of H \ S.

Proof. Let C be a component of H \ S and let Z := (C ∩W ) ∪ S. Let πS be the ordering reaching
the minimum in the definition of b∗(S). Let us define the ordering π that starts with S in the order
of πS , followed by C ∩W in the order of πW , and finished by an arbitrary ordering of the remaining
vertices. It is clear that for every v ∈ S, we have ∂bπ,Z(v) = ∂bπS ,S(v). Let us consider a vertex
v ∈ C ∩W and let u ∈ W be a neighbor of v that precedes it in πW . Since v ∈ C and C is a
component of H \ S, either u ∈ S or u ∈ C ∩W . In both cases, u precedes v in π. This means that
N−πW (v) ∩W ⊆ N−π (v) ∩ Z, which implies that ∂bπ,Z(v) ≤ ∂bπW ,W (v) = µ(v) for every v ∈ C ∩W .
As S separates A and B, component C intersects at most one of A and B; suppose, without loss of
generality, that C is disjoint from A. Thus

b∗(Z) ≤ bπ(Z) =
∑
v∈S

∂bπ,Z(v) +
∑

v∈C∩W
∂bπ,Z(v) ≤ b∗(S) + µ(C ∩W )

< µ(A) + µ(W \A) = µ(W ).

6.5.2 Submodular separation

This section is devoted to understanding what fractional separation means: we show that having
a small fractional (A,B)-separator is essentially equivalent to the property that for every edge-
dominated submodular function b, there is an (A,B)-separator S such that b(S) is small. The
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proof is based on a standard trick that is often used for rounding fractional solutions for separation
problems: we define a distance function and show by an averaging argument that cutting at some
distance t gives a small separator. However, in our setting, we need significant new ideas to make
this trick work: the main difficulty is that the cost function b is defined on subsets of vertices and
is not a modular function defined by the cost of vertices. To overcome this problem, we use the
definitions in Section 6.5.1 (in particular, the function ∂bπ(v)) to assign a cost to every single vertex.

Theorem 6.27. Let H be a hypergraph, X,Y ⊆ V (H) two sets of vertices, and b : V (H) → R+

an edge-dominated monotone submodular function with b(∅) = 0. Suppose that s is a fractional
(X,Y )-separator of weight at most w. Then there is an (X,Y )-separator S ⊆ V (H) with b(S) ≤
b∗(S) = O(w).

Proof. The total weight of the edges covering a vertex v is
∑

e∈E(H),v∈e s(e); let us define x(v) :=
min{1,

∑
e∈E(H),v∈e s(e)}. It is clear that if P is a path from X to Y , then

∑
v∈P x(v) ≥ 1. We

define the distance d(v) to be the minimum of
∑

v′∈P x(v′), taken over all paths from X to v (this
means that d(v) = x(v) for every v ∈ X, that is, d(v) > 0 is possible for v ∈ X). It is clear that
d(v) ≥ 1 for every v ∈ Y . Let us associate the closed interval ι(v) = [d(v)−x(v), d(v)] to each vertex
v. If v is in X, then the left endpoint of ι(v) is 0, while if v is in Y , then the right endpoint of ι(v)
is at least 1.

Let u and v be two adjacent vertices in H such that d(u) ≤ d(v). It is easy to see that
d(v) ≤ d(u) + x(u): there is a path P from X to u such that

∑
u′∈P x(u′) = d(u), thus the path P ′

obtained by appending v to P has
∑

v′∈P ′ x(v′) =
∑

u′∈P x(u′) + x(v) = d(u) + x(v). Therefore, we
have:

Claim 6.28. If u and v are adjacent, then ι(u) ∩ ι(v) 6= ∅.

The class of a vertex v ∈ V (H) is the largest integer κ(v) such that x(v) ≤ 2−κ(v), and we define
κ(v) :=∞ if x(v) = 0. Recall that x(v) ≤ 1, thus κ(v) is nonnegative. The offset of a vertex v is
the unique value 0 ≤ α < 2 · 2−κ(v) such that d(v) = i(2 · 2−κ(v)) + α for some integer i. In other
words, if the class is 0, 1, 2, . . ., the offset is d(v) modulo 2, 1, 1/2, . . ., respectively. Let us define
an ordering π = (v1, . . . , vn) of V (H) such that

• κ(v) is nondecreasing,

• among vertices having the same class, the offset is nondecreasing.

Let directed graph D be the orientation of the primal graph of H such that if vi and vj are
adjacent and i < j, then there is a directed edge −−→vivj in D. Figure 6.3 shows a directed path in D.
If P is a directed path in D, then the width of P is the length of the interval

⋃
v∈P ι(v) (note that

by Claim 6.28, this union is indeed an interval). The following claim bounds the maximum possible
width of a directed path:

Claim 6.29. If P is a directed path D starting at v, then the width of P is at most 16x(v).

Proof. We first prove that if every vertex of P has the same class κ(v), then the width of P is at
most 4 · 2−κ(v). Since the class is nondecreasing along the path, we can partition the path into
subpaths such that every vertex in a subpath has the same class and the classes are distinct on the
different subpaths. The width of P is at most the sum of the widths of the subpaths, which is at
most

∑
i≥κ(v) 4 · 2−i = 8 · 2−κ(v) ≤ 16x(v).

Suppose now that every vertex of P has the same class κ(v) as the first vertex v and let h := 2−κ(v).
As the offset is nondecreasing, path P can be partitioned into two parts: a subpath P1 containing
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Figure 6.3: The intervals corresponding to a directed path v1, . . . , v8. The shaded lines show the
offsets of the vertices.

vertices with offset less than h, followed by a subpath P2 containing vertices with offset at least h
(one of P1 and P2 can be empty). See Figure 6.4 for examples. We show that each of P1 and P2 has
width at most 2h, which implies that the width of P is at most 4h. Observe that if u ∈ P1 and ι(u)
contains a point i · 2h−h for some integer i, then, considering x(u) ≤ h and the bounds on the offset
of u, this is only possible if ι(u) = [i · 2h− h, i · 2h], i.e., i · 2h− h is the left endpoint of ι(u). Thus
if I1 =

⋃
u∈P1

ι(u) contains i · 2h− h, then it is the left endpoint of I1. Therefore, I1 can contain
i · 2h− h for at most one value of i, which immediately implies that the length of I1 is at most 2h.

We argue similarly for P2. If u ∈ P2, then ι(u) can contain the point i · 2h only if ι(u) =
[i · 2h, i · 2h+ h]. Thus if I2 =

⋃
u∈P2

ι(u) contains i · 2h, then it is the left endpoint of I2. We get
that I2 can contain i · 2h for at most one value of i, which immediately implies that the width of I2

is at most 2h. This concludes the proof of Claim 6.29. y

Let c(v) := ∂bπ(v).

Claim 6.30.
∑

v∈V (H) x(v)c(v) ≤ w.

Proof. Let us examine the contribution of an edge e ∈ E(H) with value s(e) to the sum. For every
vertex v ∈ e, edge e increases the value x(v) by at most s(e) (the contribution may be less than s(e),
since we defined x(v) to be at most 1). Thus the total contribution of edge e is at most

s(e) ·
∑
v∈e

c(v) = s(e) ·
∑
v∈e

∂bπ(v) ≤ s(e) ·
∑
v∈e

∂bπ,e(v) = s(e)bπ(e) = s(e)b(e) ≤ s(e),

where the first inequality follows Prop. 6.22(5); the last equality follows form Prop. 6.22(3); the
last inequality follows from the fact that b is edge dominated. Therefore,

∑
v∈V (H) x(v)c(v) ≤∑

e∈E(H) s(e) ≤ w, proving Claim 6.30. y
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Figure 6.4: Proof of Claim 6.29: Two examples of directed paths where every vertex has the same
class κ (and h := 2−κ). The shaded lines show the offsets of the vertices.

Let S be a set of vertices. We define Ŝ to be the “inneighbor closure” of S, that is, the set of all
vertices from which a vertex of S is reachable on a directed path in D (in particular, this means
that S ⊆ Ŝ).

Claim 6.31. For every S ⊆ V (H),
∑

v∈Ŝ c(v) = bπ(Ŝ).

Proof. Observe that for any v ∈ Ŝ, every inneighbor of v is also in Ŝ, hence N−π (v) ⊆ Ŝ. Therefore,
∂b

π,Ŝ
(v) = ∂bπ(v) = c(v) and Claim 6.31 follows. y

Let S(t) be the set of all vertices v ∈ V (H) for which t ∈ ι(v). Observe that for every 0 ≤ t ≤ 1,
the set S(t) (and hence Ŝ(t)) separates X from Y . We use an averaging argument to show that
there is a 0 ≤ t ≤ 1 for which bπ(Ŝ(t)) is O(w). As b∗(Ŝ(t)) ≤ bπ(Ŝ(t)) by definition, the set Ŝ(t)
satisfies the requirement of the lemma.

If we are able to show that
∫ 1

0 bπ(Ŝ(t))dt = O(w), then the existence of the required t clearly
follows. Let Iv(t) = 1 if v ∈ Ŝ(t) and let Iv(t) = 0 otherwise. If Iv(t) = 1, then there is a path P
in D from v to a member of S(t). By Claim 6.29, the width of this path is at most 16x(v), thus
t ∈ [d(v)− 16x(v), d(v) + 15x(v)]. Therefore,

∫ 1
0 Iv(t)dt ≤ 31x(v). Now we have∫ 1

0
bπ(Ŝ(t))dt =

∫ 1

0

∑
v∈Ŝ(t)

c(v)dt =

∫ 1

0

∑
v∈V (H)

c(v)Iv(t)dt

=
∑

v∈V (H)

c(v)

∫ 1

0
Iv(t)dt ≤ 31

∑
v∈V (H)

x(v)c(v) ≤ 31w

(we used Claim 6.31 in the first equality and Claim 6.30 in the last inequality).

Although it is not used in this chapter, we can prove the converse of Theorem 6.27 in a very
simple way.
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Theorem 6.32. Let H be a hypergraph, and let X,Y ⊆ V (H) be two sets of vertices. Suppose
that for every edge-dominated monotone submodular function b on H with b(∅) = 0, there is an
(X,Y )-separator S with b(S) ≤ w. Then there is a fractional (X,Y )-separator of weight at most w.

Proof. If there is no fractional (X,Y )-separator of weight at most w, then by LP duality, there is
an (X,Y )-flow F of value greater than w. Let b(Z) be defined as the total weight of the paths
in F intersecting Z; it is easy to see that f is a monotone submodular function, and since F is
a flow, b(e) ≤ 1 for every e ∈ E(H). Thus by assumption, there is an (X,Y )-separator S with
b(S) ≤ w. However, every X − Y path of F intersects (X,Y )-separator S, which implies b(S) > w,
a contradiction.

The problem of finding a small separator in the sense of Theorem 6.27 might seem related
to submodular function minimization at a first look. We close this section by pointing out that
finding an (A,B)-separator S with b(S) small for a given submodular function b is not an instance
of submodular function minimization, and hence the well-known algorithms (see [149, 150, 213])
cannot be used for this problem. If a submodular function g(X) describes the weight of the boundary
of X, then finding a small (A,B)-separator is equivalent to minimizing g(X) subject to A ⊆ X,
X ∩B = ∅, which can be expressed as an instance of submodular function minimization (and hence
solvable in polynomial time). In our case, however, b(S) is the weight of S itself, which means
that we have to minimize g(S) subject to S being an (A,B)-separator and this latter constraint
cannot be expressed in the framework of submodular function minimization. A possible workaround
is to define δ(X) as the neighborhood of X (the set of vertices outside X adjacent to X) and
b′(X) := b(δ(S)); now minimizing b′(X) subject to A ⊆ X ∪ δ(X), X ∩B = ∅ is the same as finding
an (X,Y )-separator S minimizing b(S). However, the function b′ is not necessarily a submodular
function in general. Therefore, transforming b to b′ this way does not lead to a polynomial-time
algorithm using submodular function minimization. In fact, it is quite easy to show that finding an
(A,B)-separator S with b(S) minimum possible can be an NP-hard problem even if b is a submodular
function of very simple form.

Theorem 6.33. Given a graph G, subsets of vertices X, Y , and collection S of subsets of vertices,
it is NP-hard to find an (X,Y )-separator that intersects the minimum number of members of S.

Proof. The proof is by reduction from 3-coloring. Let H be a graph with n vertices and m edges;
we identify the vertices of H with the integers from 1 to n. We construct a graph G consisting of
3n+ 2 vertices, vertex sets X, Y , and a collection S of 6m sets such that there is an (X,Y )-separator
S in G intersecting at most 3m members of S if and only if H is 3-colorable.

The graph G consists of two vertices x, y, and for every 1 ≤ i ≤ n, a path xvi,1vi,2vi,3y of
length 4 connecting x and y. The collection S is constructed such that for every edge ij ∈ E(H)
and 1 ≤ a, b ≤ 3, a 6= b, there is a corresponding set {vi,a, vj,b, x, y}. Let X := {x} and Y := {y}.
Observe that the set {vi,a, vj,b} intersects exactly 3 sets of S if a 6= b and exactly 4 sets of S if a = b.

Let c : V (H) → {1, 2, 3} be a 3-coloring of H. The set S = {vi,c(i) | 1 ≤ i ≤ n} is clearly an
(X,Y )-separator. For every ij ∈ E(H), separator S intersects only 3 of the 6 sets {vi,a, vi,b, x, y}.
Therefore, S intersects exactly 3m members of S.

Consider now an (X,Y )-separator S intersecting at most 3m members of S. Since every member
of S contains both x and y, it follows that x, y 6∈ S. Thus S has to contain at least one internal
vertex of every path xvi,1vi,2vi,3y. For every 1 ≤ i ≤ n, let us fix a vertex vi,c(i) ∈ S. We claim that
c is a 3-coloring of H. For every ij ∈ E(H), S intersects at least 3 of the sets {vi,a, vi,b, x, y}, and
intersects 4 of them if c(i) = c(j). Thus the assumption that S intersects at most 3m members of S
immediately implies that c is a proper 3-coloring.
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6.5.3 Obtaining a highly connected set

The following lemma is the same as the main result of Section 6.5 (Theorem 6.21) we are trying to
prove, with the exception that b-width is replaced by b∗-width. By Prop 6.22(2), b∗(S) ≥ b(S) for
every set S ⊆ V (H), thus b∗-width is not less than b-width. Therefore, the following is actually a
stronger statement and immediately implies Theorem 6.21.

Lemma 6.34. For every sufficiently small constant λ > 0, the following holds. Let b be an edge-
dominated monotone submodular function of H with b(∅) = 0. If the b∗-width of H is greater than
3
2(w + 1), then conλ(H) ≥ w.

Proof. Suppose that λ < 1/c, where c is the universal constant of Lemma 6.27 hidden by the
big-O notation. Suppose that conλ(H) < w, that is, there is no fractional independent set µ and
(µ, λ)-connected set W with µ(W ) ≥ w. We show that H has a tree decomposition of b∗-width at
most 3

2(w + 1), or more precisely, we show the following stronger statement:

For every subhypergraph H ′ of H and every W0 ⊆ V (H ′) with b∗(W0) ≤ w + 1, there is
a tree decomposition of H ′ having b∗-width at most 3

2(w + 1) such that W0 is contained
in one of the bags.

We prove this statement by induction on |V (H ′)|. If b∗(V (H ′)) ≤ 3
2(w + 1), then a decomposition

consisting of a single bag proves the statement. Otherwise, let W be a superset of W0 such that
w ≤ b∗(W ) ≤ w + 1; let us choose a W that is inclusionwise maximal with respect to this property.
Observe that there has to be at least one such set: from the fact that b∗(v) ≤ 1 for every vertex
v and from Prop. 6.22(6), we know that adding a vertex increases b∗(W ) by at most 1. Since
b∗(V (H ′)) ≥ 3

2(w + 1), by adding vertices to W0 in an arbitrary order, we eventually find a set W
with b∗(W ) ≥ w, and the first such set satisfies b∗(W ) ≤ w + 1 as well.

Let π be an ordering of V (H ′) such that bπ(W ) = b∗(W ). As in Lemma 6.23, let us define the
fractional independent set µ by µ(v) := ∂bπ,W (v) if v ∈W and µ(v) = 0 otherwise. Clearly, we have
µ(W ) = bπ(W ) = b∗(W ) ≥ w.

By assumption,W is not (µ, λ)-connected, hence there are disjoint sets A,B ⊆W and a fractional
(A,B)-separator of weight less than λ ·min{µ(A), µ(B)}. Thus by Theorem 6.27, there is an (A,B)-
separator S ⊆ V (H ′) with b∗(S) < c·λ·min{µ(A), µ(B)} < min{µ(A), µ(B)} ≤ µ(W )/2 ≤ (w+1)/2
(the second inequality follows from the fact that A and B are disjoint subsets of W ). Let C1, . . . ,
Cr be the connected components of H ′ \ S; by Lemma 6.26, b∗((Ci ∩W ) ∪ S) < µ(W ) = bπ(W ) =
b∗(W ) ≤ w + 1 for every 1 ≤ i ≤ r. As b∗(V (H ′)) ≥ 3

2(w + 1) and b∗(S) ≤ (w + 1)/2, it is not
possible that S = V (H ′), hence r > 0. It is not possible that r = 1 either: (C1 ∩W ) ∪ S is a proper
superset of W with b∗-value strictly less than b∗(W ) ≤ w + 1, and (as b∗(V (H ′)) ≥ 3

2(w + 1)) we
could find a set between (C1 ∩W ) ∪ S and V (H ′) contradicting the maximality of the choice of W .
Thus r ≥ 2, which means that each hypergraph H ′i := H ′[Ci ∪ S] has strictly fewer vertices than H ′

for every 1 ≤ i ≤ r.
By the induction hypothesis, each H ′i has a tree decomposition Ti having b∗-width at most

3
2(w + 1) such that Wi := (Ci ∩W ) ∪ S is contained in one of the bags. Let Bi be the bag of Ti
containing Wi. We build a tree decomposition T of H by joining together the tree decompositions
T1, . . . , Tr: let B0 := W0 ∪ S be a new bag that is adjacent to bags B1, . . . , Br. It can be easily
verified that T is indeed a tree decomposition of H ′. Furthermore, by Prop. 6.22(6), b∗(B0) ≤
b∗(W0) + b∗(S) < w + 1 + (w + 1)/2 = 3

2(w + 1) and by the assumptions on T1, . . . , Tr, every other
bag has b∗ value at most 3

2(w + 1).
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6.6 From highly connected sets to embeddings

The main result of this section is showing that the existence of highly connected sets implies that
the hypergraph has large embedding power. Recall from Section 6.2 that W is a (µ, λ)-connected set
for some λ > 0 and fractional independent set µ if for every disjoint X,Y ⊆W , the minimum weight
of a fractional (X,Y )-separator is at least λ · {µ(X), µ(Y )}. We denote by conλ(H) the maximum
value of µ(W ) taken over every fractional independent set µ and (µ, λ)-connected set W . Recall also
that the edge depth of an embedding ϕ of G into H is the maximum of

∑
v∈V (G) |ϕ(v) ∩ e|, taken

over every e ∈ E(H).

Theorem 6.35. For every sufficiently small λ > 0 and hypergraph H, there is a constant mH,λ such

that every graph G withm ≥ mH,λ edges has an embedding into H with edge depth O(m/(λ
3
2 con

1
4
λ (H))).

Furthermore, there is an algorithm that, given G, H, and λ, produces such an embedding in time
f(H,λ)nO(1).

In other words, Theorem 6.35 gives a lower bound on the embedding power of H:

Corollary 6.36. For every sufficiently small λ > 0 and hypergraph H, emb(H) = Ω(λ
3
2 con

1
4
λ (H)).

Theorem 6.35 is stated in algorithmic form, since the reduction in the hardness result of Section 6.7
needs to find such embeddings. For the proof, our strategy is similar to the embedding result of
Chapter 3: we show that a highly connected set implies that a uniform concurrent flow exists,
the paths appearing in the uniform concurrent flow can be used to embed (a blowup of) the line
graph of a complete graph, and every graph has an appropriate embedding in the line graph
of a complete graph. To make this strategy work, we need generalizations of concurrent flows,
multicuts, and multicommodity flows in our hypergraph setting and we need to obtain results that
connect these concepts to highly connected sets. Some of these results are similar in spirit to the
O(
√
n)-approximation algorithms appearing in the combinatorial optimization literature [10,130,134].

However, those approximation algorithms are mostly based on clever rounding of fractional solutions,
while in our setting rounding is not an option: as discussed in Section 5, the existence of a fractional
(X,Y )-separator of small weight does not imply the existence of a small integer separator. Thus we
have to work directly with the fractional solution and use the properties of the highly connected set.

It turns out that the right notion of uniform concurrent flow for our purposes is a collection of
flows that connect cliques: that is, a collection Fi,j (1 ≤ i < j ≤ k) of compatible flows, each of
value ε, such that Fi,j is a (Ki,Kj)-flow, where K1, . . . , Kk are disjoint cliques. Thus our first goal
is to find a highly connected set that can be partitioned into k cliques in an appropriate way.

6.6.1 Highly connected sets with cliques

Let (X1, Y1), . . . , (Xk, Yk) be pairs of vertex sets such that the minimum weight of a fractional (Xi, Yi)-
separator is si. Analogously to multicut problems in combinatorial optimization, we investigate
weight assignments that simultaneously separate all these pairs. Clearly, the minimum weight of such
an assignment is at least the minimum of the si’s and at most the sum of the si’s. The following
lemma shows that in a highly connected set, such a simultaneous separator cannot be very efficient:
roughly speaking, its weight is at least the square root of the sum of the si’s.

Lemma 6.37. Let µ be a fractional independent set in hypergraph H and let W be a (µ, λ)-
connected set for some 0 < λ ≤ 1. Let (X1, . . . , Xk, Y1, . . . , Yk) be a partition of W , let wi :=
min{µ(Xi), µ(Yi)} ≥ 1/2, and let w :=

∑k
i=1wi. Let s : E(H)→ R+ be a weight assignment of total

weight p such that s is a fractional (Xi, Yi)-separator for every 1 ≤ i ≤ k. Then p ≥ (λ/7) ·
√
w.
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Proof. Let us define the function s′ by s′(e) = 6s(e) and let x(v) :=
∑

e∈E(H),v∈e s
′(e). We define

the distance d(u, v) to be the minimum of
∑

r∈P x(r), taken over all paths P from u to v. It is clear
that the triangle inequality holds, i.e., d(u, v) ≤ d(u, z) + d(z, v) for every u, v, z ∈ V (H). If s covers
every u − v path, then d(u, v) ≥ 6: every edge e intersecting a u − v path P contributes at least
s′(e) to the sum

∑
r∈P x(r) (as e can intersect P in more than one vertices, e can increase the sum

by more than s′(e)). On the other hand, we claim that if d(u, v) ≥ 2, then s′ covers every u − v
path. Clearly, it is sufficient to verify this for minimal paths. Such a path P can intersect an edge
e at most twice, hence e contributes at most 2s′(e) to the sum

∑
r∈P x(r) ≥ 2, implying that the

edges intersecting P have total weight at least 1 in s′.
Suppose for contradiction that p < (λ/7) ·

√
w, that is, w > 49p2/λ2. As s is an (Xi, Yi)-separator,

we have that p ≥ 1. Let A := ∅ and B :=
⋃k
i=1(Xi ∪ Yi). Note that µ(B) ≥ 2

∑k
i=1wi = 2w. We

will increase A and decrease B while maintaining the invariant condition that the distance of A and
B is at least 2 in d. Let T be the smallest integer such that

∑T
i=1wi > 6p/λ; if there is no such T ,

then w ≤ 6p/λ, a contradiction. As wi ≥ 1/2 for every i, it follows that T ≤ 12p/λ + 1 ≤ 13p/λ
(since p ≥ 1 and λ ≤ 1).

For i = 1, 2, . . . , T , we perform the following step. Let X ′i (resp., Y
′
i ) be the set of all vertices of

W that are at distance at most 2 from Xi (resp., Yi). As the distance of Xi and Yi is at least 6, by the
triangle inequality the distance of X ′i and Y

′
i is at least 2, hence s′ is a fractional (X ′i, Y

′
i )-separator.

SinceW is (µ, λ)-connected and s′ is an assignment of weight 6p, we have min{µ(X ′i), µ(Y ′i )} ≤ 6p/λ.
If µ(X ′i) ≤ 6p/λ, then let us put Xi (note: not X ′i) into A and let us remove X ′i from B. The set X ′i,
which we remove from B, contains all the vertices that are at distance at most 2 from any new vertex
in A, hence it remains true that the distance of A and B is at least 2. Similarly, if µ(X ′i) > 6p/λ
and µ(Y ′i ) ≤ 6p/λ, then let us put Yi into A and let us remove Y ′i from B. Note that we may put a
vertex into A even if it was removed from B in an earlier step.

In the i-th step of the procedure, we increase µ(A) by at least wi (as µ(Xi), µ(Yi) ≥ wi and these
sets are disjoint from the sets already contained in A) and µ(B) is decreased by at most 6p/λ. Thus
at the end of the procedure, we have µ(A) ≥

∑T
i=1wi > 6p/λ and

µ(B) ≥ 2w − T · 6p/λ > 98p2/(λ2)− (13p/λ)(6p/λ) > 6p/λ,

that is, min{µ(A), µ(B)} > 6p/λ. By the invariant condition, the distance of A and B is at least 2,
thus s′ is a fractional (A,B)-separator of weight exactly 6p, contradicting the assumption that W is
(µ, λ)-connected.

In the rest of the section, we need a more constrained notion of flow, where the endpoints “respect”
a particular fractional independent set. Let µ1, µ2 be fractional independent sets of hypergraph H
and let X,Y ⊆ V (H) be two (not necessarily disjoint) sets of vertices. A (µ1, µ2)-demand (X,Y )-flow
is an (X,Y )-flow F such that for each x ∈ X, the total weight of the paths in F having first endpoint
x is at most µ1(x), and similarly, the total weight of the paths in F having second endpoint y ∈ Y
is at most µ2(y). Note that there is no bound on the weight of the paths going through an x ∈ X,
we only bound the paths whose first/second endpoint is x. The definition is particularly delicate if
X and Y are not disjoint, in this case, a vertex z ∈ X ∩ Y can be the first endpoint of some paths
and the second endpoint of some other paths, or it can be even both the first and second endpoint
of a path of length 0. We use the abbreviation µ-demand for (µ, µ)-demand.

The following lemma shows that if a flow connects a set U with a highly connected set W , then
U is highly connected as well (“W can be moved to U ”). This observation will be used in the proof
of Lemma 6.39, where we locate cliques and show that their union is highly connected, since there is
a flow that connects the cliques to a highly connected set.
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Lemma 6.38. Let H be a hypergraph, µ1, µ2 fractional independent sets, and W ⊆ V (H) a (µ1, λ)-
connected set for some 0 < λ ≤ 1. Suppose that U ⊆ V (H) is a set of vertices and F is a
(µ1, µ2)-demand (W,U)-flow of value µ2(U). Then U is (µ2, λ/6)-connected.

Proof. Suppose that there are disjoint sets A,B ⊆ U and a fractional (A,B)-separator s of weight
w < (λ/6) ·min{µ2(A), µ2(B)}. (Note that this means µ2(A), µ2(B) > 6w/λ ≥ 6w.) For a path
P , let s(P ) =

∑
e∈E(H),e∩P 6=∅ s(e) be the total weight of the edges intersecting P . Let A′ ⊆ W

(resp., B′ ⊆W ) contain a vertex v ∈W if there is a path P in F with first endpoint v and second
endpoint in A (resp., B) and s(P ) ≤ 1/3. If A′ ∩ B′ 6= ∅, then it is clear that there is a path P
with s(P ) ≤ 2/3 connecting a vertex of A and a vertex of B via a vertex of A′ ∩B′, a contradiction.
Thus we can assume that A′ and B′ are disjoint.

Since F is a flow and s has weight w, the total weight of the paths in F with s(P ) ≥ 1/3 is at most
3w. As the value of F is exactly µ2(U), the total weight of the paths in F with second endpoint in A is
exactly µ2(A). If s(P ) ≤ 1/3 for such a path, then its first endpoint is in A′ by definition. Therefore,
the total weight of the paths in F with first endpoint in A′ is at least µ2(A)− 3w, which means that
µ1(A′) ≥ µ2(A)−3w ≥ µ2(A)/2. Similarly, we have µ1(B′) ≥ µ2(B)/2. SinceW is (µ1, λ)-connected
and s is an assignment with weight less than (λ/6)·min{µ2(A), µ2(B)} ≤ (λ/3)·min{µ1(A′), µ1(B′)},
there is an A′ −B′ path P with s(P ) < 1/3. Now the concatenation of an A′ −A path PA having
s(PA) ≤ 1/3, the path P , and a B′ −B path PB having s(PB) ≤ 1/3 forms an A−B path that is
not covered by s, a contradiction.

A µ-demand multicommodity flow between pairs (A1, B1), . . . , (Ar, Br) is a set F1, . . . , Fr of
compatible flows such that Fi is a µ-demand (Ai, Bi)-flow (recall that a set of flows is compatible if
their sum is also a flow, that is, does not violate the edge constraints). The value of a multicommodity
flow is the sum of the values of the r flows. Let A =

⋃r
i=1Ai, B =

⋃r
i=1Bi, and let us restrict

our attention to the case when (A1, . . . , Ar, B1, . . . , Br) is a partition of A ∪ B. In this case, the
maximum value of a µ-demand multicommodity flow between pairs (A1, B1), . . . , (Ar, Br) can be
expressed as the optimum values of the primal and dual linear programs in Figure 6.5.

The following lemma shows that if conλ(H) is sufficiently large, then there is a highly connected
set that has the additional property that it is the union of k cliques K1, . . . , Kk with µ(Ki) ≥ 1/2
for every clique. The high-level idea of the proof is the following. Take a (µ, λ)-connected set W with
µ(W ) = conλ(H) and find a large multicommodity flow between some pairs (A1, B1), . . . , (Ar, Br)
in W . Consider the dual solution y. By complementary slackness, every edge with nonzero value in
y covers exactly 1 unit of the multicommodity flow. If most of the weight of the dual solution is on
the edge variables, then we can choose k edges that cover at least Ω(k) units of flow. These edges
are connected to W by a flow, and therefore by Lemma 6.38 the union of these edges is also highly
connected and obviously can be partitioned into a small number cliques.

There are two things that can go wrong with this argument. First, it can happen that the dual
solution assigns most of the weight to the vertex variables y(u), y(v) (u ∈ A, v ∈ B). The cost of
covering the Ai −Bi paths using vertex variables only is min{µ(Ai), µ(Bi)}, thus this case is only
possible if the value of the dual (and hence the primal) solution is close to

∑r
i=1(min{µ(Ai), µ(Bi)}).

To avoid this situation, we want to select the pairs (Ai, Bi) such that they are only “moderately
connected”: there is a fractional (Ai, Bi)-separator of weight 2λmin{µ(Ai), µ(Bi)}, that is, at
most twice the minimum possible. This means that the weight of the dual solution is at most
2λ
∑r

i=1(min{µ(Ai), µ(Bi)}), which is much less than
∑r

i=1(min{µ(Ai), µ(Bi)} (if λ is small). If we
are not able to find sufficiently many such pairs, then we argue that a larger highly connected set
can be obtained by scaling µ by a factor of 2. More precisely, we show that there is a large subset
W ′ ⊆ W that is (2µ, λ)-connected and 2µ(W ′) > conλ(H), a contradiction (a technical difficulty
here that we have to make sure first that 2µ is also a fractional independent set).
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Primal LP Dual LP

maximize minimize
r∑

i=1

∑
u∈Ai,v∈Bi

P∈Puv

x(P )
∑

e∈e(H)

y(e) +
∑
u∈A

µ(u)y(u) +
∑
v∈B

µ(v)y(v)

s.t. s.t.
r∑

i=1

∑
u∈Ai,v∈Bi

P∈Puv,P∩e 6=∅

x(P ) ≤ 1 ∀e ∈ E(H)

∑
v∈Bi,P∈Puv

x(P ) ≤ µ(u) ∀1 ≤ i ≤ r, u ∈ Ai∑
u∈Ai,P∈Puv

x(P ) ≤ µ(v) ∀1 ≤ i ≤ r, v ∈ Bi

x(P ) ≥ 0
∀1 ≤ i ≤ r,
u ∈ Ai, v ∈ Bi,
P ∈ Puv

∑
e∈E(H),
e∩P 6=∅

y(e) + y(u) + y(v) ≥ 1
∀1 ≤ i ≤ r,
u ∈ Ai, v ∈ Bi,
P ∈ Puv

y(e) ≥ 0 ∀e ∈ E(H)

y(u) ≥ 0 ∀u ∈ A
y(v) ≥ 0 ∀v ∈ B

Figure 6.5: Primal and dual linear programs for µ-demand multicommodity flow between pairs
(A1, B1), . . . , (Ar, Br). We denote by Puv the set of all u− v paths.

The second problem we have to deal with is that the value of the dual solution can be so small
that we find a very small set of edges that already cover a large fraction of the multicommodity flow.
However, we can use Lemma 6.37 to argue that a weight assignment on the edges that covers a large
multicommodity flow in a (µ, λ)-connected set cannot have very small weight.

Lemma 6.39. Let H be a hypergraph and let 0 < λ < 1/16 be a constant. Then there is fractional
independent set µ, a (µ, λ/6)-connected set W , and a partition (K1, . . . ,Kk) of W such that k =
Ω(λ

√
conλ(H)), and for every 1 ≤ i ≤ k, Ki is a clique with µ(Ki) ≥ 1/2.

Proof. Let k be the largest integer such that conλ(H) ≥ 3T + 2k holds, where T := (56/λ)2 · k2; it is
clear that k = Ω(λ

√
conλ(H)). Let µ0 be a fractional independent set andW0 be a (µ0, λ)-connected

set with µ0(W0) = conλ(H). We can assume that µ0(v) > 0 if and only if v ∈W0. This also implies
that W0 is in one connected component of H.

Highly loaded edges. First, we want to modify µ0 such that there is no edge e with µ0(e) ≥ 1/2.
The following claim shows that we can achieve this by restricting µ0 to an appropriate subset W of
W0.

Claim 6.40. There is a subset W ⊆W0 such that µ0(W ) ≥ conλ(H)− k and µ0(e ∩W ) < 1/2 for
every edge e.

Proof. Let us choose edges g1, g2, . . . as long as possible with the requirement µ0(Ki) ≥ 1/2 for
Ki := (gi ∩W0) \

⋃i−1
j=1Kj . If we can select at least k such edges, then the cliques K1, . . . , Kk

satisfy the requirements of Lemma 6.39 and we are done. Indeed, W ′ :=
⋃k
i=1Ki ⊆ W0 is a

(µ0, λ)-connected set, µ0(Ki) ≥ 1/2, and (K1, . . . ,Kk) is a partition of W ′ into cliques.
Thus we can assume that the selection of the edges stops at edge gt for some t < k. Let

W := W0 \
⋃t
i=1Ki. Observe that there is no edge e ∈ E(H) with µ0(e ∩ W ) ≥ 1/2, as in

this case the selection of the edges could be continued with gt+1 := e. Furthermore, we have
µ0(W ) = µ0(W0 \

⋃t
i=1Ki) > µ0(W0)− k = conλ(H)− k, as required.
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Moderately connected pairs. Let us define µ such that µ(v) = 2µ0(v) if v ∈ W and
µ(v) = 0 otherwise. By Claim 6.40, µ is a fractional independent set. The set W is (µ0, λ)-
connected (recall that a subset of (µ0, λ)-connected is also (µ0, λ)-connected). However, W is
not necessarily (µ, λ)-connected. In the next step, we find a large collection of pairs (Ai, Bi)
that violate (µ, λ)-connectivity. Informally, we can say that these pairs (Ai, Bi) are “moderately
connected”: denoting wi = min{µ(Ai), µ(Bi)}, the minimum value of a fractional (Ai, Bi)-separator
for such a pair is less than λwi (because the pair (Ai, Bi) violates (µ, λ)-connectivity), but at least
λwi/2 = λmin{µ0(Ai), µ0(Bi)} (because W is (µ0, λ)-connected).

Claim 6.41. There are disjoint sets A1, B1, . . . , Ar, Br ⊆ W such that for every 1 ≤ i ≤ r
there is a fractional (Ai, Bi)-separator with weight less than λwi for wi := min{µ(Ai), µ(Bi)} and
w :=

∑r
i=1wi ≥ T .

Proof. Let us greedily select a maximal collection of pairs (A1, B1), . . . , (Ar, Br) with the property
that there is a fractional (Ai, Bi)-separator with weight less than λwi for wi := min{µ(Ai), µ(Bi)}.
Note that every fractional separator has value at least 1 (as W is in a single component of H),
thus λwi > 1 holds, implying wi > 1/λ > 1. We can assume that µ(Ai), µ(Bi) ≤ wi + 1: if, say,
µ(Ai) > µ(Bi) + 1, then removing an arbitrary vertex of Ai decreases µ(Ai) by at most one (as µ is
a fractional independent set) without changing min{µ(Ai), µ(Bi)}, hence there would be a smaller
pair of sets with the required properties. Therefore, we have 2wi ≤ µ(Ai ∪Bi) ≤ 2wi + 1 ≤ 3wi for
every 1 ≤ i ≤ r.

Suppose for contradiction that w :=
∑r

i=1wi < T . Let W ′ := W \
⋃r
i=1(Ai ∪ Bi). As

µ(
⋃r
i=1(Ai ∪ Bi)) ≤

∑r
i=1 3wi = 3w < 3T , we have µ(W ′) > µ(W ) − 3T = 2µ0(W ) − 3T ≥

2 conλ(H)− 2k − 3T ≥ conλ(H). Since the greedy selection stopped, there is no fractional (A′, B′)-
separator of value less than λ · min{µ(A′), µ(B′)} for any disjoint A′, B′ ⊆ W ′, that is, W ′ is
(µ, λ)-connected with µ(W ′) > conλ(H), contradicting the definition of conλ(H). y

Finding a multicommodity flow. Let (A1, B1), . . . , (Ar, Br) be as in Claim 6.41. Since
there is a fractional (Ai, Bi)-separator of value less than λwi, the maximum value of a µ-demand
multicommodity flow between pairs (A1, B1), . . . , (Ar, Br) is less than λw. Let y be an optimum
dual solution; we give a lower bound on the total weight of the edge variables.

Claim 6.42.
∑

e∈E(H) y(e) ≥ 2k.

Proof. Let A :=
⋃r
i=1Ai and B :=

⋃r
i=1Bi. Let A

∗ := {u ∈ A | y(u) ≤ 1/4}, B∗ := {v ∈ B | y(v) ≤
1/4}, A∗i = Ai ∩ A∗, B∗i = Bi ∩ B∗, and w∗i = min{µ(A∗i ), µ(B∗i )}. For each i, the value of w∗i is
either at least wi/2, or less than that. Assume without loss of generality that there is a 1 ≤ r∗ ≤ r
such that w∗i ≥ wi/2 if and only if i ≤ r∗. Let w∗ =

∑r∗

i=1w
∗
i .

We claim that w∗ ≥ w/4. Note that w∗i < wi/2 means that either µ(A∗i ) < wi/2 or µ(B∗i ) < wi/2;
as µ(Ai), µ(Bi) ≥ wi, this is only possible if µ(Ai \ A∗) + µ(Bi \ B∗) > wi/2. Suppose first that∑r

i=r∗+1wi > w/2. This would imply

µ((A \A∗) ∪ (B \B∗)) ≥
r∑

i=r∗+1

(µ(Ai \A∗) + µ(Bi \B∗)) >
r∑

i=r∗+1

wi/2 > w/4.

However, y(u) > 1/4 for every u ∈ (A \A∗) ∪ (B \B∗), thus
∑

v∈A∪B µ(v)y(v) ≥ µ((A \A∗) ∪ (B \
B∗))/4 ≥ w/16 > λw (since λ < 1/16), a contradiction with the assumption that the optimum is at
most λw. Thus we can assume that

∑r
i=r∗+1wi ≤ w/2 and hence

∑r∗

i=1wi ≥ w/2. Together with
w∗i ≥ wi/2 for every 1 ≤ i ≤ r∗, this implies w∗ ≥ w/4.
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As y(a), y(b) ≤ 1/4 for every a ∈ A∗i , b ∈ B∗i , it is clear that for every A∗i −B∗i path P , the total
weight of the edges intersecting P has to be at least 1/2 in assignment y. Therefore, if we define
y∗ : E(H) → R+ by y∗(e) = 2y(e) for every e ∈ E(H), then y∗ covers every A∗i − B∗i path. Let
W ∗ =

⋃r∗

i=1(A∗i ∪B∗i ). We use Lemma 6.37 for the (µ, λ)-connected set W ∗, the pairs (A∗1, B
∗
1), . . . ,

(A∗r∗ , B
∗
r∗), and for the weight assignment y∗. Note that w∗i ≥ wi/2 ≥ 1/2 for every i. It follows

that the total weight of y∗ on the edges is at least (λ/7) ·
√
w∗ ≥ (λ/14) ·

√
w, which means that∑

e∈E(H) y(e) ≥ (λ/28) ·
√
w ≥ (λ/28) ·

√
T ≥ 2k.

Locating the cliques. Let y be an optimum dual solution for the maximum multicommodity
flow problem with pairs (A1, B1), . . . , (Ar, Br) and let flow F be the sum of the flows obtained from
an optimum primal solution.

Claim 6.43. There are k pairwise-disjoint cliques K1, . . . , Kk and a set of k subflows f1, . . . , fk
of F , each of them having value at least 1/2, such that every path appearing in fi intersects Ki and
is disjoint from Kj for every j 6= i.

Proof. Let F (0) = F and for i = 1, 2, . . . , let F (i) be the flow obtained from F (0) by removing
f1, . . . , fi. Let c(e, F (i)) be the total weight of the paths in F (i) intersecting edge e and let
Ci =

∑
e∈E(H) y(e)c(e, F (i)). By complementary slackness, c(e, F (0)) = 1 for each e ∈ E(H) with

y(e) > 0 and hence C0 =
∑

e∈E(H) y(e) ≥ 2k.
Let us select ei to be an edge such that c(ei, F (i−1)) is maximum possible and letKi := ei\

⋃i−1
j=1 ej .

Let the flow fi contain all the paths of F (i−1) intersecting ei. Observe that the paths appearing in fi
do not intersect e1, . . . , ei−1 (otherwise they would be in one of f1, . . . , fi−1 and hence they would
no longer be in F (i−1)), thus clique Ki intersects every path in fi.

For every u− v path P appearing in F (0), we get
∑

e∈E(H),e∩P 6=∅ y(e) + y(u) + y(v) = 1 from
complementary slackness: if the primal variable corresponding to P is nonzero, then the corresponding
dual constraint is tight. In particular, this means that the total weight of the edges intersecting
such a path P is at most 1 in y. As F (i−1) is a subflow of F (0), this is also true for every path P in
F (i−1). This means that when we remove a path of weight γ from F (i−1) to obtain F (i), then the
total weight of the edges e for which c(e, F (i−1)) decreases by γ is at most 1, i.e., Ci−1 decreases
by at most γ. As only the paths intersecting ei are removed from F (i−1) and the total weight of
the paths intersecting ei is at most 1, we get that Ci ≥ Ci−1 − 1 and hence Ci ≥ C0 − k ≥ C0/2 for
i ≤ k. Since C0 =

∑
e∈E(H) y(e) and Ci =

∑
e∈E(H) y(e)c(e, F (i)) ≥ C0/2, it follows that there has

to be at least one edge e with c(e, F (i)) ≥ 1/2. Thus in each step, we can select an edge ei such that
that the total weight of the paths in F (i) intersecting ei is at least 1/2, and hence the value of fi is
at least 1/2 for every 1 ≤ i ≤ k. y

Moving the highly connected set. Let U =
⋃k
i=1Ki.

Claim 6.44. There is a fractional independent set µ′ such that U is a (µ′, λ/6)-connected set with
µ′(Ki) ≥ 1/2 for every 1 ≤ i ≤ r.

Proof. Each path P in fi is a path with endpoints in W and intersecting Ki. Let us truncate each
path P in fi such that its first endpoint is still in W and its second endpoint is in Ki; let f ′i be
the (W,Ki)-flow obtained by truncating every path in fi. Note that f ′i is still a flow and the sum
F ′ of f ′1, . . . , f ′k is a (W,U)-flow. Let µ1 = µ and let µ2(v) be the total weight of the paths in F ′

with second endpoint v. It is clear that µ2 is a fractional independent set, µ2(Ki) ≥ 1/2, and F is a
(µ1, µ2)-demand (W,U)-flow with value µ2(U). Thus by Lemma 6.38, U is a (µ2, λ/6)-connected set
with the required properties. y
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Primal LP Dual LP

maximize ε minimize
∑

e∈e(H)

y(e)

s.t. s.t.∑
1≤i<j≤k

∑
P∈Pi,j ,
P∩e 6=∅

x(P ) ≤ 1 ∀e ∈ E(H)

∑
P∈Pi,j

x(P ) ≥ ε ∀1 ≤ i < j ≤ k

x(P ) ≥ 0
∀1 ≤ i < j ≤ k,
P ∈ Pi,j

∑
e∈E(H),e∩P 6=∅

y(e) ≥ `i,j
∀1 ≤ i < j ≤ k,
P ∈ Pi,j∑

1≤i<j≤k

`i,j ≥ 1

y(e) ≥ 0 ∀e ∈ E(H)

`i,j ≥ 0 ∀1 ≤ i < j ≤ k

Figure 6.6: Primal and dual linear programs for uniform concurrent flow on W = (X1, . . . , Xk). We
denote by Pi,j the set of all Xi −Xj paths.

The set U , the partition (K1, . . . ,Kr), and the fractional independent set µ′ clearly satisfy the
requirements of the lemma.

6.6.2 Concurrent flows and embedding

Let W be a set of vertices and let (X1, . . . , Xk) be a partition of W . A uniform concurrent flow
of value ε on (X1, . . . , Xk) is a compatible set of

(
k
2

)
flows Fi,j (1 ≤ i < j ≤ k) where Fi,j is an

(Xi, Xj)-flow of value ε. The maximum value of a uniform concurrent flow on W can be expressed as
the optimum values of the primal and dual linear programs in Figure 6.6. Intuitively, the dual linear
program expresses that the “distance” of Xi and Xj is at least `i,j (where distance is measured as
the minimum total weight of the edges intersected by an Xi −Xj path) and the sum of these

(
k
2

)
distances is at least 1.

If H is connected, then the maximum value of a uniform concurrent flow on (X1, . . . , Xk) is at
least 1/

(
k
2

)
= Ω(k−2): if each of the

(
k
2

)
flows has value 1/

(
k
2

)
, then they are clearly compatible.

The following lemma shows that in a (µ, λ)-connected set, if the sets X1, . . . , Xk are cliques and
µ(Xi) ≥ 1/2 for every i, then we can guarantee a better bound of Ω(k−

3
2 ).

Lemma 6.45. Let H be a hypergraph, µ a fractional independent set of H, and W ⊆ V (H) a
(µ, λ)-connected set for some 0 < λ < 1. Let (K1, . . . ,Kk) (for some k ≥ 1) be a partition of W
such that Ki is a clique and µ(Ki) ≥ 1/2 for every 1 ≤ i ≤ k. Then there is a uniform concurrent
flow of value Ω(λ/k

3
2 ) on (K1, . . . ,Kk).

Proof. Suppose that there is no uniform concurrent flow of value β ·λ/k
3
2 , where β > 0 is a sufficiently

small universal constant specified later. This means that the dual linear program has a solution
having value less than that. Let us fix such a solution (y, `i,j) of the dual linear program. In the
following, for every path P , we denote by y(P ) :=

∑
e∈E(H),e∩P 6=∅ y(e) the total weight of the edges

intersecting P . It is clear from the dual linear program that y(P ) ≥ `i,j for every P ∈ Pi,j .
We construct two graphs G1 and G2: the vertex set of both graphs is {1, . . . , k} and for every

1 ≤ i < j ≤ k, vertices i and j are adjacent in G1 (resp., G2) if and only if `i,j > 1/(3k2) (resp.,
`i,j > 1/k2). Note that G2 is a subgraph of G1. First we prove the following claim:

Claim 6.46. If the distance of u and v is at most 3 in the complement of G1, then u and v are not
adjacent in G2.
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Proof. Suppose that uw1w2v is a path of length 3 in the complement of G1 (the same argument
works for paths of length less than 3). By definition of G1, there is a Ku−Kw1 path P1, a Kw1−Kw2

path P2, and a Kw2 −Kv path P3 such that y(P1), y(P2), y(P3) ≤ 1/(3k2). Since Kw1 and Kw2 are
cliques, paths P1 and P2 touch, and paths P2 and P3 touch. Thus by concatenating the three paths,
we can obtain a Ku −Kv path P with y(P ) ≤ y(P1) + y(P2) + y(P3) ≤ 1/k2, implying that u and v
are not adjacent in G2, proving the claim. Note that the proof of this claim is the only point where
we use that the Ki’s are cliques. y

Let y′ : E(H)→ R+ be defined by y′(e) := 3k2 · y(e), thus y′ has total weight less than 3β · λ
√
k.

Suppose first that G1 has a matching a1b1, . . . , ambm of size m = dk/4e. This means that y′ covers
every Kai −Kbi path for every 1 ≤ i ≤ dk/4e. Therefore, by Lemma 6.37, y′ has weight at least
(λ/7) ·

√
dk/4e · (1/2) > 3β · λ

√
k, if β is sufficiently small, yielding a contradiction.

Thus the size of the maximum matching in G1 is less than dk/4e, which means that there is a
vertex cover S1 of size at most k/2. Let S2 ⊆ S1 contain those vertices of S1 that are adjacent to
every vertex outside S1 in G1. We claim that S2 is a vertex cover of G2. Suppose that there is an
edge uv of G2 for some u, v 6∈ S2. By the definition of S2, either u 6∈ S1, or there is a vertex w1 6∈ S1

such that u and w1 are not adjacent in G1. Similarly, either v is not in S1, or it is not adjacent in
G1 to some w2 6∈ S1. Since vertices not in S1 are not adjacent in G1 (as S1 is a vertex cover of G1),
we get that the distance of u and v is at most 3 in the complement of G1. Thus by the claim, u and
v are not adjacent in G2.

Let us give an upper bound on
∑

1≤i<j≤k `i,j by bounding `i,j separately for pairs that are
adjacent in G2 and for pairs that are not adjacent in G2. The number of edges in G2 is at most
|S2|k (as S2 is vertex cover). The total weight of y, which is less than β · λ/k

3
2 , is an upper bound

on any `i,j . Furthermore, if i and j are not adjacent in G2, then we have `i,j ≤ 1/k2. Therefore,

1 ≤
∑

1≤i<j≤k
`i,j ≤ |S2|k · β · λ/k

3
2 +

(
k

2

)
(1/k2) ≤ β · λ|S2|/

√
k + 1/2,

which implies that |S2| ≥
√
k/(2βλ). Let A :=

⋃
i∈S2

Ki and B :=
⋃
i 6∈S1

Ki; we have µ(A) ≥
|S2| · (1/2) ≥

√
k/(4βλ) and µ(B) ≥ (1/2) · (k − |S1|)) ≥ k/4. As every vertex of S2 is adjacent in

G1 with every vertex outside S1, assignment y′ covers every A−B path. However, y′ has weight less
than 3β · λ

√
k < min{

√
k/(4βλ), k/4} (using that λ ≤ 1 and assuming that β is sufficiently small),

contradicting the assumption that W is (µ, λ)-connected.

Intuitively, the intersection structure of the paths appearing in a uniform concurrent flow on cliques
K1, . . . , Kk is reminiscent of the edges of the complete graph on k vertices: if {i1, j1} ∩ {i2, j2} 6= ∅,
then every path of Fi1,j1 touches every path of Fi2,j2 . We use the following result from [185], which
shows that the line graph of cliques have good embedding properties. If G is a graph and q ≥ 1 is
an integer, then the blow up G(q) is obtained from G by replacing every vertex v with a clique Kv of
size q and for every edge uv of G, connecting every vertex of the clique Ku with every vertex of the
clique Kv. Let Lk be the line graph of the complete graph on k vertices. We recall the following
lemma from Section 3.2.2.

Lemma 6.47 (Restated Lemma 3.13). For every k > 1 there is a constant nk > 0 such that for every
G with |E(G)| > nk and no isolated vertices, the graph G is a minor of L(q)

k for q = d130|E(G)|/k2e.
Furthermore, a minor mapping can be found in time polynomial in the size of G.

Using the terminology of embeddings, a minor mapping of G into L(q)
k can be considered as an

embedding from G to Lk where every vertex of Lk appears in the image of at most q vertices, i.e.,
the vertex depth of the embedding is at most q. Thus we can restate Lemma 6.47 the following way:
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Lemma 6.48. For every k > 1 there is a constant nk > 0 such that for every G with |E(G)| > nk
and no isolated vertices, the graph G has an embedding into Lk with vertex depth O(|E(G)|/k2).
Furthermore, such an embedding can be found in time polynomial in the size of G.

Now we are ready to prove Theorem 6.35, the main result of the section:

Proof (of Theorem 6.35). By Lemma 6.39 and Lemma 6.45, for some k = Ω(λ
√

conλ(H)), there
are cliques K1, . . . , Kk and a uniform concurrent flow Fi,j (1 ≤ i < j ≤ k) of value ε = Ω(λ/k

3
2 )

on (K1, . . . ,Kk). By trying all possibilities for the cliques and then solving the uniform concurrent
flow linear program, we can find these flows (the time required for this step is a constant f(H,λ)
depending only on H and λ) . Let w0 be the smallest positive weight appearing in the flows.

Let m = |E(G)| and suppose that m ≥ nk, for the constant nk in Lemma 6.48. Thus the
algorithm of Lemma 6.48 can be used to find a an embedding ψ from G to Lk with vertex depth
q = O(m/k2). Let us denote by v{i,j} (1 ≤ i < j ≤ k) the vertices of Lk with the meaning that
distinct vertices v{i1,j1} and v{i2,j2} are adjacent if and only if {i1, j1} ∩ {i2, j2} 6= ∅.

We construct an embedding ϕ from G to H the following way. The set ϕ(u) ⊆ V (H) is obtained
from the set ψ(u) ⊆ V (Lk) by replacing each vertex of v{i,j} ∈ ψ(u) ⊆ V (Lk) by a path from the
flow Fi,j (thus ϕ(u) is the union of |ψ(u)| paths of H). We select the paths in such a way that the
following requirement is satisfied: a path P of Fi,j having weight w is selected into the image of at
most d(q/ε) ·we vertices of G. We set mH,λ sufficiently large that (q/ε) ·w0 ≥ 1 (note that q depends
on m, but ε and w0 depends only on H and λ). Thus if m ≥ mH,λ, then d(q/ε) · we ≤ 2(q/ε) · w.
Since the total weight of the paths in Fi,j is ε, these paths can accommodate the image of at least
(q/ε) · ε = q vertices. As each vertex v{i,j} of Lk appears in the image of at most q vertices of G in
the mapping ψ, we can satisfy the requirement.

It is easy to see that if u1 and u2 are adjacent in G, then ϕ(u1) and ϕ(u2) touch: in this case,
there are vertices v{i1,j1} ∈ ψ(u1), v{i2,j2} ∈ ψ(u2) that are adjacent or the same in Lk (that is, there
is a t ∈ {i1, j1} ∩ {i2, j2}), and the corresponding paths of Fi1,j1 and Fi2,j2 selected into ϕ(u1) and
ϕ(u2) touch, as they both intersect the clique Kt. With a similar argument, we can show that ϕ(u)
is connected.

To bound the edge depth of the embedding ϕ, consider an edge e. The total weight of the paths
intersecting e is at most 1 and a path with weight w is used in the image of at most 2(q/ε) · w
vertices. Each path intersects e in at most 2 vertices (as we can assume that the paths appearing in
the flows are minimal), thus a path with weight w contributes at most 4(q/ε) · w to the depth of e.
Thus the edge depth of ϕ is at most 4(q/ε) = O(m/(λ

√
k)) = O(m/(λ

3
2 conλ(H)

1
4 )).

6.7 From embeddings to hardness of CSP

We prove the main hardness result of the chapter in this section:

Theorem 6.49. Let H be a recursively enumerable class of hypergraphs with unbounded submodular
width. If there is an algorithm A and a function f such that A solves every instance I of CSP(H)
with hypergraph H ∈ H in time f(H) · ‖I‖o(subw(H)1/4), then the Exponential Time Hypothesis fails.

In particular, Theorem 6.49 implies that CSP(H) for such a H is not fixed-parameter tractable:

Corollary 6.50. If H is a recursively enumerable class of hypergraphs with unbounded submodular
width, then CSP(H) is not fixed-parameter tractable, unless the Exponential Time Hypothesis fails.
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To prove Theorem 6.49, we show that a subexponential-time algorithm for 3SAT exists if CSP(H)
can be solved “too fast” for some H with unbounded submodular width. We use the characterization
of submodular width from Section 6.5 and the embedding results of Section 6.6 to reduce 3SAT to
CSP(H) by embedding the incidence graph of a 3SAT formula into a hypergraph H ∈ H. The basic
idea of the proof is that if the 3SAT formula has m clauses and the edge depth of the embedding
is m/r, then we can gain a factor r in the exponent of the running time. If submodular width is
unbounded in H, then we can make this gap r between the number of clauses and the edge depth
arbitrary large, and hence the exponent can be arbitrarily smaller than the number of clauses, i.e.,
the algorithm is subexponential in the number of clauses.

Next we show that an embedding from graph G to hypergraph H can be used to simulate a
binary CSP instance I1 having primal graph G by a CSP instance I2 whose hypergraph is H. The
domain size and the size of the constraint relations of I2 can grow very large in this transformation:
the edge depth of the embedding determines how large this increase is.

Lemma 6.51. Let I1 = (V1, D1, C1) be a binary CSP instance with primal graph G and let ϕ be
an embedding of G into a hypergraph H with edge depth q. Given I1, H, and the embedding ϕ, it
is possible to construct (in time polynomial in the size of the output) an equivalent CSP instance
I2 = (V2, D2, C2) with hypergraph H where the size of every constraint relation is at most |D1|q.

Proof. For every v ∈ V (H), let Uv := {u ∈ V (G) | v ∈ ϕ(u)} be the set of vertices in G whose
images contain v, and for every e ∈ E(H), let Ue :=

⋃
v∈e Uv. Observe that for every e ∈ E(H), we

have |Ue| ≤
∑

v∈e |Uv| ≤ q, since the edge depth of ϕ is q. Let D2 be the set of integers between 1

and |D1|q. For every v ∈ V (H), the number of assignments from Uv to D1 is clearly |D1||Uv | ≤ |D1|q.
Let us fix a bijection hv between these assignments on Uv and the set {1, . . . , |D1||Uv |} ⊆ D2.

The set C2 of constraints of I2 are constructed as follows. For each e ∈ E(H), there is a constraint
〈se, Re〉 in C2, where se is an |e|-tuple containing an arbitrary ordering of the elements of e. The
relation Re is defined the following way. Suppose that vi is the i-th coordinate of se and consider
a tuple t = (d1, . . . , d|e|) ∈ D

|e|
2 of integers where 1 ≤ di ≤ |D1||Uvi | for every 1 ≤ i ≤ |e|. This

means that di is in the image of hvi and hence fi := h−1
vi (di) is an assignment from Uvi to D1. We

define relation Re such that it contains tuple t if the following two conditions hold. First, we require
that the assignments f1, . . . , f|e| are consistent in the sense that fi(u) = fj(u) for any i, j and
u ∈ Uvi ∩ Uvj . In this case, f1, . . . , f|e| together define an assignment f on

⋃|e|
i=1 Uvi = Ue. The

second requirement is that this assignment f satisfies every constraint of I1 whose scope is contained
in Ue, that is, for every constraint 〈(u1, u2), R〉 ∈ C1 with {u1, u2} ⊆ Ue, we have (f(u1), f(u2)) ∈ R.
This completes the description of the instance I2.

Let us bound the maximum size of a relation of I2. Consider the relation Re constructed in
the previous paragraph. It contains tuples (d1, . . . , d|e|) ∈ D

|e|
2 where 1 ≤ di ≤ |D1||Uvi | for every

1 ≤ i ≤ |e|. This means that

|Re| ≤
|e|∏
i=1

|D1||Uvi | = |D1|
∑|e|
i=1 |Uvi | ≤ |D1|q, (6.4)

where the last inequality follows from the fact that ϕ has edge depth at most q.
To prove that I1 and I2 are equivalent, assume first that I1 has a solution f1 : V1 → D1. For every

v ∈ V2, let us define f2(v) := hv(prUv f2), that is, the integer between 1 and |D1||Uv | corresponding
to the projection of assignment f2 to Uv. It is easy to see that f2 is a solution of I2.

Assume now that I2 has a solution f2 : V2 → D2. For every v ∈ V (H), let fv := h−1
v (f2(v))

be the assignment from Uv to D1 that corresponds to f2(v) (note that by construction, f2(v) is at
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most |D1||Uv |, hence h−1
v (f2(v)) is well-defined). We claim that these assignments are compatible: if

u ∈ Uv′ ∩ Uv′′ for some u ∈ V (G) and v′, v′′ ∈ V (H), then fv′(u) = fv′′(u). Recall that ϕ(u) is a
connected set in H, hence there is a path between v′ and v′′ in ϕ(u). We prove the claim by induction
on the distance between v′ and v′′ in ϕ(u). If the distance is 0, that is, v′ = v′′, then the statement
is trivial. Suppose now that the distance of v′ and v′′ is d > 0. This means that v′ has a neighbor
z ∈ ϕ(u) such that the distance of z and v′′ is d − 1. Therefore, fz(u) = fv′′(u) by the induction
hypothesis. Since v′ and z are adjacent in H, there is an edge E ∈ E(H) containing both v′ and z.
From the way I2 is defined, this means that fv′ and fz are compatible and fv′(u) = fz(u) = fv′′(u)
follows, proving the claim. Thus the assignments {fv | v ∈ V (H)} are compatible and these
assignments together define an assignment f1 : V (G) → D. We claim that f1 is a solution of I1.
Let c = 〈(u1, u2), R〉 be an arbitrary constraint of I1. Since u1u2 ∈ E(G), sets ϕ(u1) and ϕ(u2)
touch, thus there is an edge e ∈ E(H) that contains a vertex v1 ∈ ϕ(u1) and a vertex v2 ∈ ϕ(u2)
(or, in other words, u1 ∈ Uv1 and u2 ∈ Uv2). The definition of ce in I2 ensures that f1 restricted
to Uv1 ∪ Uv2 satisfies every constraint of I1 whose scope is contained in Uv1 ∪ Uv2 ; in particular, f1

satisfies constraint c.

Now we are ready to prove Theorem 6.49, the main result of the section. We show that if
there is a class H of hypergraphs with unbounded submodular width such that CSP(H) is FPT,
then this algorithm can be used to solve 3SAT in subexponential time. The main ingredients are
the embedding result of Theorem 6.35, and Lemmas 3.14 and 6.51 above on reduction to CSP.
Furthermore, we need a way of choosing an appropriate hypergraph from the set H. As discussed
earlier, the larger the submodular width of the hypergraph is, the more we gain in the running time.
However, we should not spend too much time on constructing the hypergraph and on finding an
embedding. Therefore, we use the same technique as in Chapter 3: we enumerate a certain number
of hypergraphs and we try all of them simultaneously. The number of hypergraphs enumerated
depends on the size of the 3SAT instance. This will be done in such a way that guarantees that we
do not spend too much time on the enumeration, but eventually every hypergraph in H is considered
for sufficiently large input sizes.

Proof (of Theorem 6.49). Let us fix a λ > 0 that is sufficiently small for Theorems 6.21 and 6.35.
Suppose that there is an f1(H)no(subw(H)1/4) time algorithm A for CSP(H). We can express the
running time as f1(H)nsubw(H)1/4/ι(subw(H)) for some unbounded nondecreasing function ι with
ι(1) > 0. We construct an algorithm B that solves 3SAT in subexponential time by using algorithm
A as subroutine.

Given an instance I of 3SAT with n variables and m clauses and a hypergraph H ∈ H, we
can solve I the following way. First we use Lemma 3.14 to transform I into a CSP instance
I1 = (V1, D1, C1) with |V1| = n + m, |D1| = 3, and |C1| = 3m. Let G be the primal graph of
I1, which is a graph having 3m edges. It can be assumed that m is greater than some constant
mH,λ of Theorem 6.35, otherwise the instance can be solved in constant time. Therefore, the
algorithm of Theorem 6.35 can be used to find an embedding ϕ of G into H with edge depth
q = O(m/(λ

3
2 conλ(H)1/4)); by Theorem 6.21, we have that conλ(H) = Ω(subw(H)) and hence

q ≤ cλm/ subw(H)1/4 for some constant cλ depending only on λ. By Lemma 6.51, we can construct
an equivalent instance I2 = (V2, D2, C2) whose hypergraph is H. By solving I2 using the assumed
algorithm A for CSP(H), we can answer if I1 has a solution, or equivalently, if the 3SAT instance I
has a solution.

We will call “running algorithm A[I,H]” this way of solving the 3SAT instance I. Let us determine
the running time of A[I,H]. The two dominating terms are the time required to find embedding ϕ
using the f(H,λ)mO(1) time algorithm of Theorem 6.49 and the time required to run A on I2. The
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size of every constraint relation in I2 is at most |D1|q = 3q, hence ‖I2‖ = O((|E(H)|+ |V (H)|)3q).
Let k = subw(H). The total running time of A[I,H] can be bounded by

f(H,λ)mO(1) + f1(H)‖I2‖k
1/4/ι(k) = f(H,λ)mO(1) + f1(H)(|E(H)|+ |V (H|)k1/4/ι(k) · 3q·k1/4/ι(k)

= f2(H,λ) ·mO(1) · 3cλm/ι(k)

for an appropriate function f2(H,λ) depending only on H and λ.
Algorithm B for 3SAT proceeds as follows. Let us fix an arbitrary computable enumeration H1,

H2, . . . of the hypergraphs in H. Given an m-clause 3SAT formula I, algorithm B spends the first m
steps on enumerating these hypergraphs; let H` be the last hypergraph produced by this enumeration
(we assume that m is sufficiently large that ` ≥ 1). Next we start simulating the algorithms A[I,H1],
A[I,H2], . . . , A[I,H`] in parallel. When one of the simulations stops and returns an answer, then
we stop all the simulations and return the answer. It is clear that algorithm B will correctly decide
the satisfiability of I.

We claim that there is a universal constant d such that for every s, there is an ms such that for
every m > ms, the running time of B is at most (m · 2m/s)d on an m-clause formula. Clearly, this
means that the running time of B is 2o(m).

For any positive integer s, let ks be the smallest positive integer such that ι(ks) ≥ s (as ι is
unbounded, this is well defined). Let is be the smallest positive integer such that subw(His) ≥ ks
(as H has unbounded submodular width, this is also well defined). Set ms sufficiently large that
ms ≥ f2(His , λ) and the fixed enumeration of H reaches His in less then ms steps. This means that
if we run B on a 3SAT formula I with m ≥ ms clauses, then ` ≥ is and hence A[I,His ] will be one
of the ` simulations started by B. The simulation of A[I,His ] terminates in

f2(His , λ)mO(1) · 3cλm/ι(subw(His )) ≤ m ·mO(1) · 3cλm/s

steps. Taking into account that we simulate ` ≤ m algorithms in parallel and all the simulations
are stopped not later than the termination of A[I,His ], the running time of B can be bounded
polynomially by the running time of A[I,His ]. Therefore, there is a constant d such that the running
time of B is at most (m · 2m/s)d, as required.

Remark 6.52. Recall that if ϕ is an embedding of G into H, then the depth of an edge e ∈ E(H)
is dϕ(e) =

∑
v∈V (G) |ϕ(v) ∩ e|. A variant of this definition would be to define the depth of e as

d′ϕ(e) = |{v ∈ V (G) | ϕ(v) ∩ e 6= ∅}|, i.e., if ϕ(v) intersects e, then v contributes only 1 to the depth
of e, not |ϕ(v) ∩ e| as in the original definition. Let us call this variant weak edge depth, it is clear
that the weak edge depth of an embedding is at most the edge depth of the embedding.

Lemma 6.51 can be made stronger by requiring only that the weak edge depth is at most q.
Indeed, the only place where we use the bound on edge depth is in Inequality (6.4). However, the
size of the relation Re can be bounded by the number of possible assignments on Ue in instance I1.
If weak edge depth is at most q, then |Ue| ≤ q, and the |D1|q bound on the size of Re follows.

Remark 6.53. A different version of CSP was investigated in [187], where each variable has a
different domain, and each constraint relation is represented by a full truth table (see the exact
definition in [187]). Let us denote by CSPtt(H) this variant of the problem. It is easy to see that
CSPtt(H) can be reduced to CSP(H) in polynomial time, but a reduction in the other direction
can possibly increase the representation of a constraint by an exponential factor. Nevertheless, the
hardness results of this section apply to the “easier” problem CSPtt(H) as well. What we have to
verify is that the proof of Lemma 6.51 works even if I2 is an instance of CSPtt, i.e., the constraint
relations have to be represented by truth tables. Inspection of the proof shows that it indeed
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works: the product in Inequality (6.4) is exactly the size of the truth table describing the constraint
corresponding to edge e, thus the |D1|q upper bound remains valid even if constraints are represented
by truth tables. Therefore, the hardness results of [187] are subsumed by the following corollary:

Corollary 6.54. If H is a recursively enumerable class of hypergraphs with unbounded submodular
width, then CSPtt(H) is not fixed-parameter tractable, unless the Exponential Time Hypothesis fails.

6.8 Conclusions

The main result of this chapter is introducing submodular width and proving that bounded sub-
modular width is the property that determines the fixed-parameter tractability of CSP(H). The
hardness result is proved assuming the Exponential Time Hypothesis. This conjecture was formulated
relatively recently [146], but it turned out to be very useful in proving lower bounds in a variety of
settings [16,181,185,202].

Let us briefly review the main ideas that were necessary for proving the main result of the
chapter:

• Recognizing that submodular width is the right property characterizing the complexity of the
problem.

• A CSP instance can be partitioned into a bounded number of uniform instances (Section 6.4.2).

• The number of solutions in a uniform CSP instance can be described by a submodular function
(Section 6.4.3).

• There is a connection between fractional separation and finding a separator minimizing an
edge-dominated submodular cost function (Section 6.5.2).

• The transformation that turns b into b∗, and the properties of b∗ that are more suitable than b
for recursively constructing a tree decomposition (Section 6.5.1).

• Our results on fractional separation and the standard framework of finding tree decompositions
show that large submodular width implies that there is a highly connected set (Section 6.5.3).

• A highly connected set can be turned into a highly connected set that is partitioned into
cliques in an appropriate way (Section 6.6.1).

• A highly connected set with appropriate cliques implies that there is a uniform concurrent
flow of large value between the cliques (Section 6.6.2).

• Similarly to [185], we use the observation that a concurrent flow is analogous to a line graph of
a clique, hence it has good embedding properties (Section 6.6.2).

• Similarly to [185], an embedding in a hypergraph gives a way of simulating 3SAT with CSP(H)
(Section 6.7).

An obvious question for further research is whether it is possible to prove a similar dichotomy
result with respect to polynomial-time solvability. At this point, it is hard to see what the answer
could be if we investigate the same question using the more restricted notion of polynomial time
solvability. We know that bounded fractional hypertree width implies polynomial-time solvability
(Chapter 5) and Theorem 6.49 shows that unbounded submodular width implies that the problem is
not polynomial-time solvable (as it is not even fixed-parameter tractable). So only those classes of
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hypergraphs are in the “gray zone” that have bounded submodular width but unbounded fractional
hypertree width.

What could be the truth in this gray zone? A first possibility is that CSP(H) is polynomial-time
solvable for every such class, i.e., Theorem 6.9 can be improved from fixed-parameter tractability to
polynomial-time solvability. However, Theorem 6.9 uses the power of fixed-parameter tractability
in an essential way (splitting into a double-exponential number of uniform instances), so it is not
clear how such improvement is possible. A second possibility is that unbounded fractional hypertree
width implies that CSP(H) is not polynomial-time solvable. Substantially new techniques would be
required for such a hardness proof. The hardness proofs of this chapter and of [123,185] are based
on showing that a large problem space can be efficiently embedded into an instance with a particular
hypergraph. However, the fixed-parameter tractability results show that no such embedding is
possible in case of classes with bounded submodular width. Therefore, a possible hardness proof
should embed a problem space that is comparable (in some sense) with the size of the hypergraph
and should create instances where the domain size is bounded by a function of the size of the
hypergraph. A third possibility is that the boundary of polynomial-time solvability is somewhere
between bounded fractional hypertree width and bounded submodular width. Currently, there is no
natural candidate for a property that could correspond to this boundary and, again, the hardness part
of the characterization should be substantially different than what was done before. Finally, there is
a fourth possibility: the boundary of the polynomial-time cases cannot be elegantly characterized
by a simple combinatorial property. In general, if we consider the restriction of a problem to all
possible classes of (hyper)graphs, then there is no a priori reason why an elegant characterization
should exist that describes the easy and hard classes. For example, it is highly unlikely that there is
an elegant characterization of those classes of graphs where solving the Maximum Independent
Set problem is polynomial-time solvable. As discussed earlier, the fixed-parameter tractability of
CSP(H) is a more robust question than its polynomial-time solvability, hence it is very well possible
that only the former question has an elegant answer.
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