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Foreword

This dissertation covers twenty years of my pursuits in stochastic programming.
They started with a collaboration with András Prékopa. He invited me to im-
plement a method of his, and in the course of this collaboration I got acquainted
with a discipline I found new and fascinating. (The results of this project were
published in the joint paper [61].) During this visit I also got acquainted with
an optical fiber manufacturing problem that András was then studying. My
PhD dissertation [50] was written about this work, and András was my su-
pervisor. On his advice, I started studying bundle methods from a stochastic
programming point of view. (Direct results of this line of research are recounted
in Chapter 2.) It was due to András’s influence that I gave up a career in IT
management for one in the academic sphere, a decision I’ve never regretted.
As I had an informatics background, I went into computational stochastic pro-
gramming. My results extensively rely on the achievements of András and of
members of his school: István Deák, János Mayer and Tamás Szántai.

In the years 2007-2010 I collaborated with Gautam Mitra and his team at
Brunel University. As a visiting researcher, I spent a month in each of these
years at Brunel. Also went to conferences and workshops with that team. I
owe many academic acquaintances to Gautam. It was due to him that I got
involved in coordination activities of the Stochastic Programming Society. Since
Gautam’s retirement, I have been collaborating with Achim Koberstein and his
colleagues from Paderborn University and the European University Viadrina.

I owe much to the academic leadership of the John von Neumann Univer-
sity, former Kecskemét College, and to my senior colleagues there. They have
always strived to provide the conditions of research. Helping young colleagues
at Kecskemét is a pleasant obligation for me. One of our projects involves
probabilistic problems. Providentially, we can collaborate with Tamás Szántai.

I’m grateful to colleagues and friends in the Hungarian operations research
community for encouragement and advice. Especially, I’m obliged to Aurél
Galántai who has from time to time read the current versions of my materials
and recommended improvements.
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Chapter 1

Introduction

The importance of making sound decisions in the presence of uncertainty is
clear in everyday life. Wodehouse in [182], Chapter 6, advocates ‘a wholesome
pessimism, which, though it takes the fine edge off whatever triumphs may come
to us, has the admirable effect of preventing Fate from working off on us any of
those gold bricks, coins with strings attached, and unhatched chickens, at which
Ardent Youth snatches with such enthusiasm, to its subsequent disappointment.’
Advancing age, Wodehouse points out, brings forth prudence. The discipline of
stochastic programming promises a faster track.

According to a widely accepted definition, stochastic programming handles
mathematical programming problems where some of the parameters are random
variables. The Stochastic Programming Society (which exists as a Technical
Section of the Mathematical Optimization Society) defines itself as ’a world-
wide group of researchers who are developing models, methods, and theory for
decisions under uncertainty’. Our approach involves the characterization and
modeling of the distribution of the random parameters, and the measuring of
risks. The ensuing options may make model building a challenge.

We get a more complete picture of the field by a survey of the achievements
that are generally accepted as landmarks. The Stochastic Programming Soci-
ety honors twelve outstanding researchers with the title ’Pioneer of Stochastic
Programming’. I excerpt from the laudations with a focus on theoretic results
and applications.

George Dantzig introduced linear programming under uncertainty, present-
ing the simple recourse model, the two-stage stochastic program and the
multi-stage stochastic program. He developed, with A. Madansky, the
first decomposition method to solve two-stage stochastic linear programs.
He very early foresaw the importance of sampling methods, and later
(with P.W. Glynn and G. Infanger) contributed to the development of
them. Dantzig’s discoveries were continually motivated by applications.
His seminal work has laid the foundation for much of the field of systems
engineering and is widely used in network design and component design in
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2 CHAPTER 1. INTRODUCTION

computer, mechanical, electrical engineering. He also developed applica-
tions for the oil industry (with P. Wolfe), and in aircraft allocation (with
A.R. Ferguson).

Michael Dempster studied the solvability of two-stage stochastic programs and
provided a bridge between stochastic programming and related statistical
decision problems. He also introduced the use of interval arithmetic to
SP. In collaboration with J. Birge, G. Gassman, E. Gunn, A. King, and S.
Wallace, he participated in the creation of the SMPS standard, the most
widely-used data format for SP instances. For decades, he has worked on
SP applications in scheduling, finance, and other areas.

Jitka Dupačová proposed a new decision model for the handling of incomplete
distributional information. Her minimax approach was one of the fore-
bears of the recent branch of distributionally robust optimization. She
also developed the contamination technique that facilitates stability anal-
ysis. She made important contributions to asymptotics (including work
with R. Wets), and scenario selection/reduction (including work with W.
Römisch, G. Consigli, and S. Wallace). She extensively contributed to ap-
plications; in economics and finance (including work with M. Bertocchi),
water management (including work with Z. Kos, A. Gaivoronski and T.
Szántai), and industrial processes (including work with P. Popela).

Yuri Ermoliev with his students has been the major proponent of the stochastic
quasigradient method. This approach enables the approximate solution of
difficult SP problems. He suggested (with N. Shor) a stochastic analogue
of the subgradient process for solving two-stage stochastic programing
problems. He worked (with V. Norkin) on measuring, profiling and man-
aging catastrophic risks. He has also worked on other fields of application:
pollution control problems, energy and agriculture modeling.

Peter Kall was one of the principal guiding forces in the development of suc-
cessive approximation methods. He developed bounding approaches with
K. Frauendorfer. He developed and promoted, with J. Mayer, the stochas-
tic programming solver system SLP-IOR that has been provided free for
educational purposes.

Willem K. Klein Haneveld’s early contributions consist of results on marginal
problems, moment problems, and dynamic programming. He introduced
integrated chance constraints. He was among the first to study stochastic
programs with integer variables, both in theory and applications. He
worked on SP applications for pension funds and the gas industry.

Kurt Marti has been one of the major proponents of SP approaches to engi-
neering problems, including those arising in structural design and robotics.
He also dealt with approximation and stability issues. He developed new
algorithms in semi-stochastic approximation and stochastic quasigradient
methods.
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3

András Prékopa introduced probabilistic constraints involving dependent ran-
dom variables. He developed the theory of logconcave measures, a mo-
mentous step in the treatment of probabilistic constraints. Together with
I. Deák, J. Mayer and T. Szántai, he developed efficient numerical meth-
ods for the solution of probabilistic programming problems. He and his
co-workers applied his methodology to water systems and power networks
in Hungary, and developed a new inventory model, now known as the
Hungarian inventory control model. He also worked on the bounding
and approximation of expectations and probabilities in higher dimensional
spaces. Applications of this theory include communication and transporta-
tion network reliability, the characterization of the distribution function
of the length of a critical path in PERT, approximate solution of proba-
bilistic constrained stochastic programming problems, and the calculation
of multivariate integrals.

Stephen M. Robinson contributed to the study of error bounds and the continu-
ity of solution sets under data perturbations. These results led to his joint
work with R. Wets on the stability of two-stage stochastic programs. He
has also worked on sample path optimization, and applied these methods
to decision models arising in manufacturing and military applications.

R. Tyrell Rockafellar’s fundamental results in convex analysis have been ex-
tensively applied in SP. With R. Wets, he studied Lagrange multipliers
for nonanticipativity constraints. This prepared the way for their de-
velopment of the progressive hedging algorithm, in which a Lagrangian
relaxation of the nonanticipativity constraints allows the use of determin-
istic solvers. With S. Uryasev and W.T. Ziemba, he has contributed to
the foundation of risk management in finance.

Roger J.B. Wets presented work on model classes and properties of these classes
(particularly with D. Walkup), and basic algorithmic approaches for solv-
ing these models – particularly the L-shaped method (with R. Van Slyke).
His early work on underlying structures (with C. Witzgall) later led to
many algorithmic developments and preprocessing procedures. He recog-
nized that nonanticipativity can be expressed as constraints, later leading
to the progressive hedging algorithm (with R.T. Rockafellar). He has
also examined statistical properties of stochastic optimization problems,
generalizing the law of large numbers, justifying the use of sampling in
solving stochastic programs. He was instrumental in the development of
epi/hypo-convergence, approximations and also sampling. Throughout his
career, he has been involved in applications of stochastic programming.
His first large, and well-known, application is that of lake eutrophication
management in Hungary (with L. Somlyódy).

William T. Ziemba is interested in the applications of SP, in particular to
portfolio selection in finance. Since 1983 he has been a futures and equity
trader and hedge fund and investment manager. He was also instrumental
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4 CHAPTER 1. INTRODUCTION

in the most successful commercial application of SP to a Japanese insur-
ance company, Yasuda Kasai. He is also noted for his applications of SP
to race track betting, energy modelling, sports and lottery investments.

The achievements of András Prékopa and his co-workers have a special impor-
tance to us. With Tamás Szántai, they developed a stochastic programming
model for the optimal regulation of storage levels, and applied it to the water
level regulation of lake Balaton. (In connection with this project, they de-
veloped a new multidimensional gamma distribution.) With Tamás Szántai,
Tamás Rapcsák and István Zsuffa, they developed models for the optimal de-
sign and operation of water storage and flood control reservoir systems. He led a
project for MVM (Hungarian Electrical Works) for the optimal daily scheduling
of power generation. His co-workers were János Mayer, Beáta Strazicky, István
Deák, János Hoffer, Ágoston Németh and Béla Potecz. In another project with
Sándor Ganczer, István Deák and Károly Patyi, they applied his STABIL model
to the electrical energy sector of the Hungarian economy. They were able to dra-
matically increase the reliability level of the Hungarian power network without
cost increase. With Margit Ziermann, he developed the Hungarian inventory
control model whose re-ordering rules allowed a substantial decrease in inventory
levels.

The stochastic programming school established by András Prékopa is recog-
nized and appreciated by the SP community world-wide. Each of their projects
included the development of novel theoretical results, new models and algo-
rithms as well as the implementation of the appropriate solvers. — In Section
7.2, I’ll give an overview of the methods and solvers they developed for the
solution of probabilistic constrained problems. These solution methods need
an oracle that computes or estimates distribution function values and gradi-
ents. An abundant stream of research in this direction has been initiated by the
work of Prékopa and his school. In Section 7.3, I’ll give an overview of these
estimation methods.

I mention a further project, the development of a pavement management
system for the allocation of financial resources to maintenance and reconstruc-
tion works on Hungary’s road network. The pavement management system was
based on stochastic models, and was developed by András Bakó, Emil Klafszky,
Tamás Szántai and László Gáspár. Though I had not yet been acquainted with
stochastic programming at the time, I was involved indirectly. They applied
my linear programming solver for the solution of the LP equivalents of their
stochastic programming problems.

*

I perceive the following recent developments and trends in the stochastic pro-
gramming field.

Multi-stage models and solution methods have become a heavy-duty tool,
especially in energy planning. Effective solution methods have been known for
decades, but theoretical justification of multi-stage models was missing. Just a
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decade ago, many of us had doubts whether accuracy in the modelling of the
random process is compatible with solvability. Recent results in scenario-tree
approximation show they are. Paradoxical features of risk measurement in mul-
tistage models have been clarified, and safe frameworks have been established.

A new branch has been developing under the name of distributionally robust
optimization. The motivation is that the distribution of the random parameters
is rarely known in the explicit form required by classic models. We may not even
have enough data for a sampling approach, but may know that the distribution
belongs to a certain class. The idea is to focus on the worst distribution be-
longing to that class. (This is analogous to plain robust optimization but avoids
over-simplification resulting in over-conservative decisions.) This new modelling
approach is inherently related to risk constraints, through duality.

Equilibrium models have appeared in stochastic programming. This is prob-
ably due to the de-regulation of the energy markets in Western economies. Given
an environment of regulations, resources and random demands, energy produc-
ers are expected to compete, and production decisions are modelled on the
principles of game theory. Most interesting is the problem of the regulator, who
exercises its (limited) influence to steer investment decisions towards a desirable
course.

*

This dissertation focusses on computational aspects. Functions involving ex-
pectations, probabilities and risk measures typically occur in stochastic pro-
gramming problems. This means large amounts of data to be organized, and
inaccuracy in function evaluations. Interestingly, similar solution approaches
proved effective for very diverse problems; enhanced cutting-plane methods in
primal and dual forms. I discuss cutting-plane methods in Chapter 2, and their
application to the handling of risk measures in Chapter 3.

Decomposition has originally been proposed to overcome the bottleneck of
restricted memory. Memory is no longer a scarce resource (entire databases are
handled in-memory on today’s computers), but decomposition is still relevant,
as I’m going to demonstrate in Chapters 4, 5 and 6.

Probabilities are one of the oldest and most intuitive means of controlling risk
(you need not explain the concept of ’chance’ to a decision maker.) Probabilistic
programming is still in the focus of research. I present an overview of current
developments in Chapter 7.

The importance of sampling-based methods have significantly increased in
recent years, and further hard problems are being attacked by such methods. In
Chapter 8, I recount a randomized method bearing a resemblance to stochastic
gradient methods. In Chapter 9, I apply this method in an approximation
scheme for handling a difficult constraint. In Chapter 10, I adapt the randomized
method of Chapter 8 to probability maximization.
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Chapter 2

Cutting-plane methods and
enhancements

In this chapter we deal with special solution methods for the unconstrained
problem

minϕ(x) such that x ∈ X, (2.1)

and the constrained problem

minϕ(x) such that x ∈ X, ψ(x) ≤ 0, (2.2)

where X ⊂ IRn is a convex bounded polyhedron with diameter D, and ϕ,ψ
are IRn → IR convex functions, both satisfying the Lipschitz condition with the
constant Λ. We assume that ψ takes positive values as well as 0.

In our context X is explicitly known. The functions, on the other hand, are
not known explicitly, but we have an oracle that returns function values and a
subgradients at any given point.

A cutting-plane method is an iterative procedure based on polyhedral mod-
els. Suppose we have visited iterates x1, . . . ,xi. Having called the oracle at
these iterates, we obtained linear supporting functions lj(x) (1 ≤ j ≤ i), i.e.,

lj(x) ≤ ϕ(x) (x ∈ IRn) and lj(xj) = ϕ(xj). (2.3)

The current polyhedral model function is the upper cover of these supporting
functions,

ϕi(x) = max
1≤j≤i

lj(x) (x ∈ IRn). (2.4)

A cutting-plane model of ψ is also built in a similar manner:

ψi(x) = max
1≤j≤i

l′j(xj) (x ∈ IRn), (2.5)

where l′j is a supporting linear function to ψ(x) at xj (j = 1, . . . , i).
Using these objects, a model problem is constructed:

minϕi(x) such that x ∈ X, ψi(x) ≤ 0, (2.6)

and the next iterate will be a minimizer of the model problem.

7
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8 CHAPTER 2. CUTTING-PLANE METHODS AND ENHANCEMENTS

2.1 Historical perspectives

Cutting-plane methods for convex problems were proposed by Kelley [87], and
Cheney and Goldstein [22] in 1959-1960. These methods are considered fairly
efficient for quite general problem classes. However, according to my knowledge,
efficiency estimates only exist for the continuously differentiable, strictly convex
case. An overview can be found in Dempster and Merkovsky [36], where a
geometrically convergent version is also presented.

Though fairly efficient in general, cutting-plane methods are notorious for
zigzagging, a consequence of linear approximation. Moreover, starting up is of-
ten cumbersome, and cuts tend to become degenerate by the end of the process.

To dampen zigzagging, a natural idea is centralization. It means maintaining
a localization set, i.e., a bounded polyhedron that contains the minimizers of
the convex problem. A ’central’ point in the polyhedron is then selected as the
next iterate.

I sketch the procedure as applied to the unconstrained problem (2.1), and
in a form that best suits to forthcoming discussions. After the ith iteration, let
the localization polyhedron be

Pi =
{

(x, φ)
∣∣ x ∈ X, ϕi(x) ≤ φ ≤ φi

}
,

where φi denotes the best function value known at this stage of the procedure.
The next iterate will then be the x-component of a center of Pi. Different
centers have been proposed and tried. The earliest one was the center of gravity
by Levin [100]. Applications of this variant have been hindered by the difficulty
of computing the center of gravity.

The center of the largest inscribed ball, due to Elzinga and Moore [47],
resulted in a successful variant. A more general version, based on the center of
the largest-volume inscribed ellipsoid was proposed by Vaidya [171].

The center most used nowadays is probably the analytic center that was
introduced by Sonnevend in [158], and has roots in control theory. A cutting-
plane method based on the analytic center was proposed by Sonnevend [159].
The method was further developed by Goffin, Haurie, and Vial [71].

2.2 Regularized cutting-plane methods

The following discussion is focused on the unconstrained problem, and I’ll treat
the constrained problem as an extension.

Regularized cutting-plane approaches have been developed in the nineteen
seventies. I sketch the bundle method of Lemaréchal [98], noting that the
method is closely related to the proximal point method of Rockafellar [141].
The idea is to maintain a stability center, that is, to distinguish one of the
iterates generated that far. The stability center is updated every time a sig-
nificantly better iterate was found. Roaming away from the current stability
center is penalized. Formally, let x◦i denote the stability center after the ith
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2.2. REGULARIZED CUTTING-PLANE METHODS 9

iteration. The next iterate xi+1 will be an optimal solution of the penalized
model problem

min
x∈X

{
ϕi(x) +

ρi
2
‖x− x◦i ‖2

}
, (2.7)

where ρi > 0 is a penalty parameter. xi+1 is often called test point in this
context, and the solution is approximated by the sequence of stability centers.
As for the new stability center, let

x◦i+1 =

 xi+1 if the new iterate is significantly better than x◦i ,

x◦i otherwise.
(2.8)

In the former case, x◦i → x◦i+1 is called a null step; in the latter, a descent step.
Two issues need further specification: adjustment of the penalty parame-

ter, and interpretation of the term ’significantly better’ in the decision about
the stability center. Schramm and Zowe [153] discuss these issues and present
convergence statements applying former results of Kiwiel [90].

The level method of Lemaréchal, Nemirovskii and Nesterov [99] uses level
sets of the model function to regularize the cutting-plane method. Having per-
formed the ith iteration, let

φi = min
1≤j≤i

ϕ(xj) and φ
i

= min
x∈X

ϕi(x). (2.9)

These are respective upper and lower bounds for the minimum of the convex
problem (2.1). Let ∆i = φi − φi denote the gap between these bounds. (The
sequence of the upper bounds being monotone decreasing, and that of the lower
bounds monotone increasing, the gap is tightening at each step.) Let us consider
the level set

Xi =
{
x ∈ X | ϕi(x) ≤ φ

i
+ λ∆i

}
(2.10)

where 0 < λ < 1 is a level parameter. The next iterate is computed by projecting
xi onto the level set Xi. That is,

xi+1 = arg min
x∈Xi

‖x− xi‖2, (2.11)

where ‖.‖ means Euclidean norm. Setting λ = 0 gives the pure cutting-plane
method. With non-extremal setting, the level sets stabilize the procedure. (The
level parameter needs no adjusting in the course of the procedure. That is in
contrast with general bundle methods.)

Definition 1 Critical iterations. Let us consider a maximal sequence of iter-
ations x1 → · · · → xs such that ∆1 ≥ · · · ≥ ∆s ≥ (1− λ)∆1 holds. Maximality
of this sequence means that (1 − λ)∆1 > ∆s+1. Then the iteration xs → xs+1

is labelled critical. This construction is repeated starting from the index s + 1.
Thus the iterations are grouped into sequences, and the sequences are separated
with critical iterations.
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10 CHAPTER 2. CUTTING-PLANE METHODS AND ENHANCEMENTS

Remark 2 Let ∆(i) denote the gap after the ith critical iteration. We have
(1 − λ)∆(i) > ∆(i+1) by definition, and hence (1 − λ)i∆(1) > ∆(i+1). The
number of critical iterations needed to decrease the gap below ε is thus on the
order of log(1/ε).

Given a sequence xt → · · · → xs of non-critical iterations, it turns out that the
iterates are attracted towards a point that we can call stability center. (Namely,
any point from the non-empty intersection Xt ∩ · · · ∩Xs is a suitable stability
center. Hence we can look on the level method as a bundle-type method.)
Using these ideas, Lemaréchal, Nemirovskii and Nesterov proved the following
efficiency estimate. Let ε > 0 be a given stopping tolerance. To obtain a gap
smaller than ε, it suffices to perform

c(λ)

(
ΛD

ε

)2

(2.12)

iterations, where c(λ) is a constant that depends only on λ. Even more impor-
tant is the following experimental fact, observed by Nemirovski in [112], Section
8.2.2. When solving a problem of dimension n with accuracy ε, the level method
performs no more than

n ln

(
V

ε

)
(2.13)

iterations, where V = maxX ϕ − minX ϕ is the variation of the objective over
X, that is obviously over-estimated by ΛD. Nemirovski stresses that this is
an experimental fact, not a theorem; but he testifies that it is supported by
hundreds of tests.

I illustrate practical efficiency of the level method with two figures taken
from our computational study [190] where we adapted the level method to the
solution of master problems in a decomposition scheme. Figures 2.1 and 2.2
show the progress of the plain cutting-plane method vs the level method in
terms of the gap. The gap is measured on a logarithmic scale.

These figures well represent our findings. Cuts in the plain method tend
to become shallow, as in Figure 2.1, while the level method shows a steady
progress. Moreover, initial iterations of the plain method are often ineffective,
as shown in Figure 2.2. Starting up causes no problem for the level method.

Remark 3 All the above discussion about the level method and the correspond-
ing results remain valid if the lower bounds φ

i
(i = 1, 2, . . .) in (2.9) are not set

to be respective minima of the related model functions, but set more generally,
observing the following rules:

the sequence φ
i

is monotone increasing, and

min
x∈X

ϕi(x) ≤ φ
i
≤ φi holds for every i.
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2.2. REGULARIZED CUTTING-PLANE METHODS 11
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12 CHAPTER 2. CUTTING-PLANE METHODS AND ENHANCEMENTS

Lemaréchal, Nemirovskii and Nesterov extended the level method to the
solution of the constrained problem (2.2). Their constrained level method is a
primal-dual method, where the dual variable α ∈ IR is kept unchanged as long
as possible. The procedure consists of runs of an unconstrained method applied
to the composite objective αϕ(x) + (1 − α)ψ(x). – To be precise, we speak of
runs of a special unconstrained method that satisfies the criteria of Remark 3.

Let Φ denote the optimal objective value of problem (2.2). If Φ is known in
advance, then the quality of an approximate solution x ∈ X can be measured
by max {ϕ(x)− Φ, ψ(x) }.

Let moreover Φi denote the optimal objective value of the model problem
(2.6). This is a lower approximation for Φ.

The best point after iteration i is constructed in the form of a convex com-
bination of the former iterates:

x?i =

i∑
j=1

%jxj , (2.14)

where the weights are determined through the solution of the following problem

min max

{
i∑

j=1

%jϕ(xj)− Φi,
i∑

j=1

%jψ(xj)

}
such that %j ≥ 0 (j = 1, . . . , i),

i∑
j=1

%j = 1.

(2.15)

The linear programming dual of (2.15) is written as maxα∈[0,1] hi(α) with

hi(α) = min
1≤j≤i

{
α(ϕ(xj)− Φi) + (1− α)ψ(xj)

}
. (2.16)

The next dual iterate αi is set according to the following construction. Let
Ii ⊆ [0, 1] denote the interval over which hi(α) takes non-negative values. Let
moreover the subinterval Îi ⊂ Ii be obtained by shrinking Ii: the center of Îi is
the same as the center of Ii, and for the lengths, |Îi| = (1 − µ)|Ii| holds with
some preset parameter 0 < µ < 1. The rule is then to set

αi =

 αi−1 if i > 1 and αi−1 ∈ Îi,

center of Ii otherwise.
(2.17)

The next primal iterate xi+1 is selected by applying a level method iteration to
the composite objective function αiϕ(x) + (1−αi)ψ(x), with the cutting-plane
model αiϕi(x)+(1−αi)ψi(x). The best function value taken among the known
iterates is φi = αiΦi + hi(αi). A lower function level is selected specially as

φ
i

= αiΦi. (2.18)

Using these objects and ideas, Lemaréchal, Nemirovskii and Nesterov proved
the following efficiency estimate. Let ε > 0 be a given stopping tolerance. To
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2.3. WORKING WITH INEXACT DATA 13

obtain an ε-optimal ε-feasible solution, it suffices to perform

c(µ, λ)

(
2ΛD

ε

)2

ln

(
2ΛD

ε

)
(2.19)

iterations, where c(µ, λ) is a constant that depends only on the parameters. The
idea of the proof is to divide the iterations into subsequences in whose course the
dual iterate does not change. The proof is based on the following propositions.

Proposition 4 Assume that ε > maxα∈[0,1] hi(α) holds.
Then x?i is an ε-feasible ε-optimal solution for the constrained problem (2.2),

i.e., x?i ∈ X, ψ(x?i ) ≤ ε and ϕ(x?i ) ≤ Φ + ε.

Proposition 5 hi(αi) ≥ µ
2 maxα∈[0,1] hi(α) always holds with the dual iterate

selected according to (2.17).

Proposition 6 Consider a sequence of iterations in the course of which the
dual iterate does not change; namely, let t < s be such that αt = · · · = αs.

If s − t > c(λ)
(

ΛD
ε

)2
holds with some ε > 0, then hs(αs) ≤ ε follows. –

Here c(λ) is the constant of the efficiency estimate (2.12).

Proposition 7 Let 1 < t < s be such that αt−1 6= αt = · · · = αs−1 6= αs.
Then |It| ≥ (2− µ)|Is| holds due to the selection rule of the dual iterate.

The key is Proposition 6 that is a consequence of the efficiency estimate
(2.12) of the level method. The specially selected lower levels (2.18) satisfy the
rules of Remark 3.

2.3 Working with inexact data

Exact supporting functions of the form (2.3) are often impossible to construct,
or may require an excessive computational effort. A natural idea is to construct
approximate supporting functions. Given the current iterate x̂ and the accuracy
tolerance δ̂ > 0, let the oracle return a linear function satisfying

`(x) ≤ ϕ(x) (x ∈ IRn) and `(x̂) ≥ ϕ(x̂)− δ̂. (2.20)

The simplest idea is to construct a sequence δi ↘ 0 before optimization starts.
In the course of the ith oracle call, the accuracy tolerance δ̂ = δi will then be
prescribed. Zakeri, Philpott and Ryan [187] applied this approach to the pure
cutting-plane method, others to bundle methods.

Kiwiel [89] developed an inexact bundle method, where ’the accuracy toler-
ance is automatically reduced as the method proceeds. The reduction is, on the
one hand, slow enough to save work by allowing inexact evaluations far from
a solution, and, on the other hand, sufficiently fast to ensure that the method
generates a minimizing sequence of points.’ At each iteration, Kiwiel estimates
the quantity by which the new test point can improve on the current stability
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14 CHAPTER 2. CUTTING-PLANE METHODS AND ENHANCEMENTS

center. He regulates accuracy by halving the oracle tolerance every time it is
found too large as compared to this estimate of potential improvement.

In [51], I developed an approximate version of the level method. The idea
was to always set the accuracy tolerance in proportion to the current gap. —
The method was called ’inexact’ in the paper. In view of future developments,
though, I’m going to call it ’approximate’ in this dissertation. — I extended
the convergence proof of Lemaréchal, Nemirovskii and Nesterov [99] to the ap-
proximate level method. Subsequent computational studies ([62], [184]) indicate
that my approximate level method inherits the experimental efficiency (2.13).
I also worked out an approximate version of the constrained level method, and
extended the efficiency estimate (2.19) to the approximate version.

Kiwiel [91] developed a partially inexact version of the bundle method. To-
gether with a new test point xi+1, a descent target φi+1 ∈ IR is always computed,
based on the predicted objective decrease that occurs when moving from x◦i to
xi+1. A descent step is taken if ϕ(xi+1) ≤ φi+1, a null step otherwise. The

oracle works as follows. Passed the current test point x̂ and descent target φ̂,
it returns a linear function `(x) ≤ ϕ(x) (x ∈ IRn) such that

either `(x̂) > φ̂, certifying that the descent target cannot be attained,

or `(x̂) ≤ φ̂, in which case `(x̂) = ϕ(x̂) should hold.
(2.21)

No effort is devoted to approximating the function at the new test point, if no
significant improvement can be expected.

De Oliveira and Sagastizábal [27] developed a general approach for the han-
dling of inaccuracy in bundle and level methods. Their analysis ’considers novel
cases and covers two particular on-demand accuracy oracles that are already
known: the asymptotically exact oracles from [51, 62, 187]; and the partially
inexact oracle in [91].’ — In the taxonomy of de Oliveira and Sagastizábal,
methods that drive the accuracy tolerance to 0 are called ’asymptotically ex-
act’. I’m going to call them ’approximate’ in this dissertation, in accord with
the terminology introduced above.

[27] also contains a thorough computational study. The authors solved two-
stage stochastic programming problems from the collection of Deák, described
in [33]. A decomposition framework was implemented and the master problems
were solved with cutting-plane, bundle and level methods, applying different
approaches for the handling of inexact data. Regularized methods performed
better than pure cutting-plane methods. Among regularized methods, level
methods performed best. Inexact function evaluations proved generally effec-
tive. The best means of handling inexact data proved to be a combination of
my approximate level method and of Kiwiel’s partially inexact approach. ([27]
won Charles Broyden Prize, awarded annually to the best paper published in
the Optimization Methods and Software journal.)
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2.4. RECENT CONTRIBUTION 15

2.4 Recent contribution

In [64] and [184] I worked out a special version of the on-demand accuracy
approach of de Oliveira and Sagastizábal [27]. — According to the taxonomy of
[27], my method falls into the ’partly asymptotically exact’ category, and this
term was used also in our papers [64] and [184]. In this dissertation, I’m going to
call the method ’partially inexact’ to keep the terminology simple. (The latter
term is in accord with Kiwiel’s terminology of [91].)

My specific version is interesting for two reasons. First, it enables the ex-
tension of the on-demand accuracy approach to constrained problems. Second,
the method admits a special formulation of the descent target (specified in
Proposition 11, below). This formulation indicates that the method combines
the advantages of the disaggregate and the aggregate models when applied to
two-stage stochastic programming problems. (This will be discussed in Chapter
4.)

In the following description of the partially inexact level method, the it-
erations where the descent target has been attained are called substantial.
Ji ⊂ {1, . . . , i} denotes the set of the indices belonging to substantial iter-
ates up to the ith iteration. If the jth iteration is substantial then the accuracy
tolerance δj is observed in the corresponding approximate supporting function.
Formally, lj(xj) + δj ≥ ϕ(xj) holds for j ∈ Ji. The best upper estimate for
function values up to iteration i is

φi = min
j∈Ji

{ lj(xj) + δj }. (2.22)

The accuracy tolerance is always set to be proportional to the current gap, i.e.,
we have δi+1 = γ∆i with an accuracy regulating parameter γ (0 < γ � 1).

Algorithm 8 A partially inexact level method.

8.0 Parameter setting.
Set the stopping tolerance ε > 0.

Set the level parameter λ (0 < λ < 1).
Set the accuracy regulating parameter γ such that 0 < γ < (1− λ)2.

8.1 Bundle initialization.
Let i = 1 (iteration counter).

Find a starting point x1 ∈ X.

Let l1(x) be a linear support function to ϕ(x) at x1.

Let δ1 = 0 (meaning that l1 is an exact support function).

Let J1 = {1} (set of substantial indices).

8.2 Model construction and near-optimality check.
Let ϕi(x) = max

1≤j≤i
lj(x) be the current model function.

Compute φ
i

= min
x∈X

ϕi(x), and let φi = min
j∈Ji

{lj(xj) + δj}.
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16 CHAPTER 2. CUTTING-PLANE METHODS AND ENHANCEMENTS

Let ∆i = φi − φi. If ∆i < ε then near-optimal solution found, stop.

8.3 Finding a new iterate.

Let Xi =
{
x ∈ X |ϕi(x) ≤ φ

i
+ λ∆i

}
.

Let xi+1 = arg min
x∈Xi

‖x− xi‖2.

8.4 Bundle update.
Let δi+1 = γ∆i.

Call the oracle with the following inputs:
- the current iterate xi+1,
- the accuracy tolerance δi+1, and
- the descent target φi − δi+1.

Let li+1(x) be the linear function returned by the oracle.

If the descent target was reached then let Ji+1 = Ji ∪ {i+ 1},
otherwise let Ji+1 = Ji.
Increment i, and repeat from step 8.2.

Specification 9 Oracle for Algorithm 8.

The input parameters are
x̂ : the current iterate,
δ̂ : the accuracy tolerance, and
φ̂ : the descent target.

The oracle returns a linear function `(x) such that

`(x) ≤ ϕ(x) (x ∈ IRn), ‖∇`‖ ≤ Λ, and

either `(x̂) > φ̂, certifying that the descent target cannot be attained,

or `(x̂) ≤ φ̂, in which case `(x̂) ≥ ϕ(x̂)− δ̂ should also hold.

Theorem 10 To obtain ∆i < ε, it suffices to perform c(λ, γ)
(

ΛD
ε

)2
iterations,

where c(λ, γ) is a constant that depends only on λ and γ.

Proof. This theorem is a special case of Theorem 3.9 in de Oliveira and Sagas-
tizábal [27]. – The key idea of the proof is that given a sequence xt → · · · → xs
of non-critical iterations according to Definition 1, an upper bound can be given
on the length of this sequence, as a function of the last gap ∆s. �

A simpler proof can be composed by extending the convergence proof of the
approximate level method in Fábián [51]. Theorem 7 in [51] actually applies
word for word, only (2.22) needs to be substituted for the upper bound. I
abstain from including this proof.

The computational study of [184] indicates that the partially inexact level
method inherits the experimental efficiency (2.13).
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The partially inexact level method admits a special formulation of the de-
scent target. Let

κ =
γ

1− λ
(2.23)

with the parameters λ, γ set in step 8.0 of Algorithm 8. Of course we have
0 < κ < 1.

Proposition 11 The efficiency estimate of Theorem 10 remains valid with the
descent target κϕi(xi+1) + (1− κ)φi set in step 8.4 of the partially inexact level
method.

Proof. Let us first consider the case i > 1 and the iteration xi−1 → xi was
non-critical according to Definition 1. We are going to show that the descent
target remains unchanged in this case, i.e.,

κϕi(xi+1) + (1− κ)φi = φi − δi+1. (2.24)

Due to the non-criticality assumption we have (1− λ)∆i−1 ≤ ∆i. Hence by the
definition of δi and the parameter setting γ < (1− λ)2 we get

δi = γ∆i−1 ≤
γ

1− λ
∆i < (1− λ)∆i. (2.25)

Let us observe that
ϕi(xi) + δi ≥ φi (2.26)

holds, irrespective of xi being substantial or not. (In case i ∈ Ji, this follows
from the definition of φi; otherwise, a consequence of φi = φi−1.)

From (2.26) and (2.25) follows

ϕi(xi) ≥ φi − δi > φi − (1− λ)∆i = φ
i
+ λ∆i. (2.27)

(The equality is a consequence of ∆i = φi − φi.)
The new iterate xi+1 found in step 8.3 belongs to the level set Xi, hence we

have
ϕi(xi+1) ≤ φ

i
+ λ∆i. (2.28)

The function ϕi(x) is continuous, hence due to (2.27) and (2.28) there exists x̂ ∈
[xi,xi+1] such that ϕi(x̂) = φ

i
+λ∆i. We are going to show that equality holds

in (2.28). The assumption ϕi(xi+1) < φ
i
+λ∆i leads to a contradiction, because

in this case x̂ ∈ [xi,xi+1) should hold, implying ‖xi − x̂‖2 < ‖xi − xi+1‖2.
Obviously x̂ ∈ Xi, which contradicts the definition of xi+1.

Hence we have equality in (2.28). From this and the selection of κ we obtain

κϕi(xi+1) + (1− κ)φi = κ
(
φ
i
+ λ∆i

)
+ (1− κ)φi = φi − κ(1− λ)∆i,

which proves (2.24) due to the setting κ = γ
1−λ .

Let us now consider the case when the iteration xi−1 → xi was critical. The
upper bound mentioned in the proof of Theorem 10 applies to the sequence of
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18 CHAPTER 2. CUTTING-PLANE METHODS AND ENHANCEMENTS

non-critical iterations just preceding xi−1 → xi. Hence the same estimate ap-
plies to the total number of non-critical iterations. (The linear function li+1(x)
generated by the modified descent target may prove useless, resulting in an ex-
traneous iteration. However, the number of critical iterations is small – on the
order of log(1/ε) as noted in Remark 2.) �

An analogue of Remark 3 holds for the partially inexact level method:

Remark 12 All the above discussion about the partially inexact level method
and the corresponding results remain valid if the lower bounds φ

i
(i = 1, 2, . . .)

are not set to be respective minima of the related model functions, but set more
generally, observing the following rules: the sequence φ

i
is monotone increasing

; φ
i
≤ φi holds ; and φ

i
is not below the minimum of the corresponding model

function over X.

In [64], I extended the on-demand accuracy approach to constrained prob-
lems. Let lj(x) and l′j(x) denote the approximate support functions constructed
to ϕ(x) and ψ(x), respectively, in iteration j. Like in the unconstrained case, we
distinguish between substantial and non-substantial iterates. Let Ji ⊂ {1, . . . , i}
denote the set of the indices belonging to substantial iterates up to the ith iter-
ation. If j ∈ Ji then we have lj(xj) + δj ≥ ϕ(xj) and l′j(xj) + δj ≥ ψ(xj), with
a tolerance δj determined in the course of the procedure.

The best point x?i after iteration i is constructed as a convex combination
of the iterates xj (j ∈ Ji). The weights %j (j ∈ Ji) are determined through the
solution of the following problem:

min max

{ ∑
j∈Ji

%j (lj(xj) + δj)− Φi,
∑
j∈Ji

%j
(
l′j(xj) + δj

)}

such that %j ≥ 0 (j ∈ Ji),
∑
j∈Ji

%j = 1.

(2.29)

The linear programming dual of (2.29) is maxα∈[0,1] hi(α) with

hi(α) = min
j∈Ji

{
α(lj(xj)− Φi) + (1− α)l′j(xj) + δj

}
. (2.30)

Algorithm 13 A partially inexact version of the constrained level method.

13.0 Parameter setting.
Set the stopping tolerance ε > 0.

Set the parameters λ and µ (0 < λ, µ < 1).

Set the accuracy regulating parameter γ such that 0 < γ < (1− λ)2.

13.1 Bundle initialization.
Let i = 1 (iteration counter).

Find a starting point x1 ∈ X.
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2.4. RECENT CONTRIBUTION 19

Let l1(x) and l′1(x) be linear support functions to ϕ(x) and ψ(x), respec-
tively, at x1.

Let δ1 = 0 (meaning that l1 and l′1 are exact support functions).

Let J1 = {1} (set of substantial indices).

13.2 Model construction and near-optimality check.
Let ϕi(x) and ψi(x) be the current model functions.

Compute the minimum Φi of the current model problem (2.6).

Let hi(α) be the current dual function defined in (2.30).
If max

α∈[0,1]
hi(α) < ε, then near-optimal solution found, stop.

13.3 Tuning the dual variable.
Determine the interval Ii ⊆ [0, 1] on which hi takes non-negative values.
Let Îi be obtained by shrinking Ii into its center with the factor (1− µ).

Set αi according to (2.17).

13.4 Finding a new primal iterate.
Let φ

i
= αiΦi and φi = αiΦi + hi(αi).

Define the level set
Xi =

{
x ∈ X

∣∣∣αiϕi(x) + (1− αi)ψi(x) ≤ φ
i
+ λhi(αi)

}
.

Let xi+1 = arg min
x∈Xi

‖x− xi‖2.

13.5 Bundle update.
Let δi+1 = γhi(αi).

Call the oracle with the following inputs:
- the current iterate xi+1,
- the current dual iterate αi,
- the accuracy tolerance δi+1, and
- the descent target φi − δi+1.

Let li+1(x) and l′i+1(x) be the linear functions returned by the oracle.

If the descent target was reached then let Ji+1 = Ji ∪ {i+ 1},
otherwise let Ji+1 = Ji.
Increment i, and repeat from step 13.2.

Specification 14 Oracle for Algorithm 13.

The input parameters are
x̂ : the current iterate,
α̂ : the current dual iterate,
δ̂ : the tolerance, and
φ̂ : the descent target.

The oracle returns linear functions `(x) and `′(x) such that
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20 CHAPTER 2. CUTTING-PLANE METHODS AND ENHANCEMENTS

`(x) ≤ ϕ(x), `′(x) ≤ ψ(x) (x ∈ X), ‖∇`‖, ‖∇`′‖ ≤ Λ, and

either α̂`(x̂) + (1− α̂)`′(x̂) > φ̂,
certifying that the descent target cannot be attained,

or α̂`(x̂) + (1− α̂)`′(x̂) ≤ φ̂, in which case

`(x̂) ≥ ϕ(x̂)− δ̂ and `′(x̂) ≥ ψ(x̂)− δ̂ should also hold.

The efficiency estimate (2.19) of the constrained level method can be adapted
to the partially inexact version:

Theorem 15 Let ε > 0 be a given stopping tolerance. To obtain an ε-optimal
ε-feasible solution of the constrained convex problem (2.2), it suffices to perform

c(µ, λ, γ)
(

2ΛD
ε

)2
ln
(

2ΛD
ε

)
iterations, where c(µ, λ, γ) is a constant that depends

only on the parameters.

Lemaréchal, Nemirovskii and Nesterov’s proof of (2.19) adapts to the partially
inexact case. I’m going to show that Propositions 4, 5, 6 apply to the inexact
objects defined in this section.

Proof of Proposition 4 adapted to the inexact objects. Let %j (j ∈ Ji)
denote an optimal solution of (2.29). Due to linear programming duality, the
assumption implies

ε > max
α∈[0,1]

hi(α) = max

∑
j∈Ji

%j (lj(xj) + δj)− Φi,
∑
j∈Ji

%j
(
l′j(xj) + δj

) .

Specifically, we have

ε >
∑
j∈Ji

%j
(
l′j(xj) + δj

)
≥
∑
j∈Ji

%j ψ(xj) ≥ ψ(x?i ).

The second inequality is a consequence of l′j(xj) + δj ≥ ψ(xj) (j ∈ Ji). (The
third inequality is due to the convexity of the function ψ(x), and the construc-
tion of x?i .)

Near-optimality, i.e., ε > ϕ(x?i ) − Φ can be proven similarly (taking into
account Φi ≤ Φ). �

Propositions 5 and 7 are not affected by changing to the inexact objects.
(These propositions are based on the concavity of the dual function h(α).)

Instead of Proposition 6, we can use the following analogous form (applying
the partially inexact level method instead of the original exact method).

Proposition 16 Consider a sequence of iterations in the course of which the
dual iterate does not change; namely, let t < s be such that αt = · · · = αs.

If s − t > c(λ, γ)
(

ΛD
ε

)2
holds with some ε > 0, then hs(αs) ≤ ε follows. –

Here c(λ, γ) is the constant in the efficiency estimate of Theorem 10.
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2.5. APPLICATION OF THE RESULTS 21

Proof of Proposition 16. Let ϑ(x) = αsϕ(x) + (1−αs)ψ(x). Then tj(x) =
αslj(x) + (1− αs)l′j(x) (j = 1, 2, . . .) satisfy tj(xj) ≤ ϑ(x). Moreover we have
tj(xj) + δj ≥ ϑ(x) for j ∈ Js.

Restricting the examination to the iterations t ≤ j ≤ s, we look on Algorithm
13 as the unconstrained Algorithm 8 applied to the composite objective ϑ(x). It
is easy to check that the assignment φ

j
= αsΦj and φj = αsΦj +hj(αs) in step

13.4 satisfies the rules of Remark 12. Indeed, φj ≥ φj due to h(αs) ≥ 0, which,

in turn, is a consequence of the selection of the dual iterate. Moreover, let uj
denote an optimal solution of the model problem (2.6). Obviously ϑ(uj) =
αsϕ(uj) + (1 − αs)ψ(uj) ≤ αsΦj = φ

j
. Hence the proposition follows from

Theorem 10. �

The partially inexact version of the constrained level method consists of runs of
an unconstrained method (namely, a special form of the partially inexact level
method.) As we have seen, the convergence proof of the constrained method
goes back to Theorem 10.

For the unconstrained methods, I have formulated a special descent target,
as a convex combination of the model function value at the new iterate on the
one hand, and the best upper estimate known, on the other hand. The weight
κ was set in (2.23). This descent target is also inherited to the constrained
methods. Applying Proposition 11 to the runs of the unconstrained method, we
obtain

Corollary 17 Let κ = γ
1−λ . The efficiency estimate of Theorem 15 remains

valid with the descent target κ
(
αiϕi(xi+1) + (1 − αi)ψi(xi+1)

)
+ (1 − κ)φi set

in step 13.5 of the partially inexact version of the constrained level method.

The computational study of [64] indicates that the practical efficiency of
Algorithm 13 is substantially better than the theoretical estimate of Theorem
15.

2.5 Application of the results

In Chapters 4 and 6, I discuss application of these approximate methods to
two-stage stochastic programming problems and to risk-averse variants.

Van Ackooij and de Oliveira in [174] extended the partially inexact version
of the constrained level method (of Algorithm 13) to handle upper oracles, i.e.,
oracles that provide inexact information which might overestimate the exact
values of the functions. They cite the research report [53], a former version of
[64].

2.6 Summary

In [51], I developed an approximate version of the level method of Lemaréchal,
Nemirovskii and Nesterov [99]. The idea was to always set the accuracy tol-
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22 CHAPTER 2. CUTTING-PLANE METHODS AND ENHANCEMENTS

erance in proportion to the current gap. I extended the convergence proof of
[99] to the approximate level method. Subsequent computational studies ([62],
[184]) indicate that my approximate level method inherits the superior experi-
mental efficiency of the level method. I also worked out an approximate version
of the constrained level method of [99], and extended the convergence proof to
the approximate version.

My approximate level method was one of the precursors of the ’on-demand
accuracy oracle’ approach of the Charles Broyden Prize-winning paper of Oliveira
and Sagastizábal [27]. The authors of the latter paper implemented a decom-
position framework for the solution of two-stage stochastic programming test
problems. The master problems were solved with cutting-plane, bundle and level
methods, applying different approaches for the handling of inexact data. Reg-
ularized methods performed better than pure cutting-plane methods. Among
regularized methods, level methods performed best. Inexact function evalu-
ations proved generally effective. The best means of handling inexact data
proved to be a combination of my approximate level method and of Kiwiel’s
partially inexact approach.

In [64] and [184] I worked out a special version of the on-demand accuracy
approach of de Oliveira and Sagastizábal [27]. — According to the taxonomy of
[27], my method falls into the ’partly asymptotically exact’ category, and this
term was used also in our papers [64] and [184]. In this dissertation, I call the
method ’partially inexact’ to keep the terminology simple. (The latter term is
in accord with Kiwiel’s terminology of [91].)

My method admits a special descent target; a convex combination of the
model function value at the new iterate on the one hand, and the best upper
estimate known, on the other hand. This setup proved especially effective and
interesting in the solution of two-stage stochastic programming problems. The
computational study of [184] indicates that the partially inexact level method
inherits the superior experimental efficiency of the level method.

In [64], I extended the on-demand accuracy approach to constrained prob-
lems. The partially inexact version of the constrained level method consists
of runs of an unconstrained method (namely, a special form of the partially
inexact level method.) The computational study of [64] indicates that the prac-
tical efficiency of the partially inexact version of the constrained level method
is substantially better than the theoretical estimate of Theorem 15. We applied
this method to the solution of risk-averse two-stage stochastic programming
problems.

Van Ackooij and de Oliveira in [174] extended my partially inexact version
of the constrained level method to handle upper oracles.

dc_1634_19

Powered by TCPDF (www.tcpdf.org)



Chapter 3

Cutting-plane methods for
risk-averse problems

In this chapter I discuss efficiency issues concerning some well-known means of
risk aversion in single-stage models.

3.1 The broader context:
comparing and measuring random outcomes

In economics, stochastic dominance was introduced in the 1960’s, describing
the preferences of rational investors concerning random yields. The concept
was inspired by the theory of majorization in Hardy, Littlewood and Pólya [76]
who, in turn, refer to Muirhead [110]. Different definitions of what is consid-
ered rational result in different dominance relations. Quirk and Saposnik [137]
considered first-order stochastic dominance and demonstrated its connection to
utility functions. In this dissertation I deal with second-order stochastic dom-
inance that was brought to economics by Hadar and Russel [74]. – Recent
applications of second-order stochastic dominance-based models are discussed
in [46], [179].

Let R denote the space of legitimate random losses. A risk measure is a
mapping ρ : R → [−∞,+∞]. The acceptance set of a risk measure ρ is defined
as {R ∈ R | ρ(R) ≤ 0} . Artzner et al. [6] argued that reasonable risk measures
have convex cones as acceptance sets. They characterized these risk measures
and introduced the term coherent for them. A classic example of a coherent
risk measure is the conditional value-at-risk that I’m going to discuss in more
detail.

23
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24 CHAPTER 3. RISK-AVERSE PROBLEMS

3.2 Conditional value-at-risk and
second-order stochastic dominance

Let R denote a random variable representing uncertain yield or loss. We assume
that the expectation of R exists. In a decision model, the random yield or loss is
a function of a decision vector x ∈ IRn. We use the notation R(x). The feasible
domain will be denoted by X ⊂ IRn that we assume to be a convex polyhedron.

We focus on discrete finite distributions, where realizations of R(x) will
be denoted by rs(x) (s = 1, . . . , S), and the corresponding probabilities by
ps (s = 1, . . . , S). We assume that the functions rs(x) (s = 1, . . . , S) are linear.

Expected shortfall. R represents uncertain yield in this case. Given t ∈ IR
let us consider E ([t−R]+), where [.]+ denotes the positive part of a real number.
This expression can be interpreted as expected shortfall with respect to the
target t, and will be denoted by ESt(R). (Though the term ’expected shortfall’
is also used in a different meaning, especially in finance.)

In a decision model, we can add a constraint in the form ESt(R(x)) ≤ ρ
with a constant ρ ∈ IR+. Constraints of this type were introduced by Klein
Haneveld [92], under the name of integrated chance constraints.

In case of discrete finite distributions, an obvious way of constructing a
linear representation of the integrated chance constraint is by introducing a
new variable to represent [t− rs(x)]+ for each s = 1, . . . , S. We will call this
lifting representation.

Klein Haneveld and Van der Vlerk [93] proposed the following polyhedral
representation

S∑
s=1

ps[t− rs(x)]+ = max
J⊂{1,...,S}

∑
s∈J

ps (t− rs(x)) (x ∈ IRn). (3.1)

Based on the above representation, Klein Haneveld and Van der Vlerk im-
plemented a cutting-plane method for the solution of integrated chance con-
strained problems. They compared this approach with the lifting representation,
where the resulting problems were solved with a benchmark interior-point solver.
On smaller problem instances, the cutting-plane algorithm could not beat the
interior-point solver. However, the cutting-plane approach proved much faster
on larger instances.

Tail expectation and Conditional Value-at-Risk (CVaR). Given a ran-
dom yield R and a probability β (0 < β ≤ 1), let Tailβ(R) denote the uncon-
ditional expectation of the lower β-tail of R. – This is the same as the second
quantile function introduced by Ogryczak and Ruszczyński in [118].

Now let R represent uncertain loss or cost. Given a confidence level (1− β)
such that 0 < β ≤ 1, the risk measure CVaRβ(R) is the conditional expectation
of the upper β-tail of R. Obviously we have

β CVaRβ(R) = −Tailβ(−R), (3.2)
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3.2. CVAR AND SSD 25

where −R now represents random yield.
The CVaR risk measure was characterized by Rockafellar and Uryasev [143,

144], and Pflug [123]. The former authors in [143] established the minimization
rule

CVaRβ(R) = min
t∈IR

{
t+

1

β
E ([R− t]+)

}
(3.3)

that is widely used in CVaR-minimization models.
Considering R a random yield, Ogryczak and Ruszczyński [118] established

the convex conjugacy relation

Tailβ(R) = max
t∈IR

{
βt− ESt(R)

}
(3.4)

which, in view of (3.2), is obviously equivalent to (3.3). The latter authors also
present CVaR minimization as a two-stage stochastic programming problem.

The CVaR risk measure originally comes from finance (where it is now widely
used), and is getting applied in other areas, see, e.g., [116].

In a decision model of discrete finite distribution, the lifting representation
is an obvious way of formulating CVaR computation as a linear programming
problem. It means introducing in (3.3) a new variable to represent [rs(x)− t]+
for each s = 1, . . . , S.

An alternative, polyhedral, representation was proposed by Künzi-Bay and
Mayer [97] who showed that

CVaRβ

(
R(x)

)
= min t+ 1

βϑ

such that t, ϑ ∈ IR, and∑
s∈J

ps (rs(x)− t) ≤ ϑ for each J ⊂ {1, . . . , S}

(3.5)

holds for any x. Of course this is an analogue of (3.1), but Künzi-Bay and
Mayer obtained it independently, through formulating CVaR minimization as a
two-stage stochastic programming problem.

Based on the above representation, Künzi-Bay and Mayer implemented a
cutting-plane method for the solution of CVaR-minimization problems. They
compared this approach with the lifting representation, where the resulting
problems were solved with general-purpose LP solvers. Problems were solved
with increasing numbers of scenarios, and the results show that the cutting-
plane approach has superior scale-up properties. For the larger test problems,
it was by 1-2 orders of magnitude faster than the lifting approach.

Remark 18 Given random loss R, the measure CVaRβ(R) is often defined
as the conditional expectation of the upper (1 − β)-tail instead of the β-tail,
especially if the intention is to compare CVaR and VaR. Moreover, CVaR is
often defined for a random yield, instead of random loss.

Differing definitions were used also in our works [52], [57], [58], [59].
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26 CHAPTER 3. RISK-AVERSE PROBLEMS

Second-order stochastic dominance and a dominance measure. Let
R and R′ represent uncertain yields. We assume that the expectation of R′

also exists. We say that R dominates R′ with respect to second-order stochastic
dominance, and use the notation R �

SSD
R′, if either of the following equivalent

conditions hold:

(a) E (u(R)) ≥ E (u(R′)) holds for any nondecreasing and concave utility func-
tion u for which these expected values exist and are finite.

(b) ESt(R) ≤ ESt(R
′) holds for each t ∈ IR.

(c) Tailβ(R) ≥ Tailβ(R′) holds for each 0 < β ≤ 1.

Concavity of the utility function in (a) characterizes risk-averse behavior. The
equivalence of (a) and (b) has been known long ago; see e.g. [181]. The equiv-
alence of (b) and (c) has been shown by Ogryczak and Ruszczyński [118] as a
consequence of (3.4). In general, SSD relations can be described with a contin-
uum of constraints.

Let us assume that a reference return R̂ is available (an integrable random
variable of known distribution). Dentcheva and Ruszczyński in [41] and [42]

introduced SSD constraints R(x) �
SSD

R̂ in stochastic models and explored
mathematical properties of the resulting optimization problems for general dis-
tributions. These authors also develop a duality theory in which dual objects
are nondecreasing concave utility functions. They prove that, in case R̂ has
discrete finite distribution, the SSD relation can be characterized by a finite
system of inequalities of type (b).

Roman, Darby-Dowman, and Mitra in [147] use criterion (c). They assume
finite discrete distributions with equally probable outcomes, and prove that, in
this case, the SSD relation can be characterized by a finite system of inequalities.
Namely, prescribing the tail inequalities for β = s

S (s = 1, . . . , S) is sufficient.
Based on this observation, they propose choosing x ∈ X such that the return
R(x) comes close to, or emulates, the reference return R̂ in a uniform sense.
Uniformity is meant in terms of differences among tails; i.e., the ’worst’ tail
difference

min
1≤s≤S

{
Tail s

S

(
R(x)

)
− Tail s

S

(
R̂
)}

(3.6)

is maximized over X. This can be considered a multi-objective model whose
origin can be traced back to [117].

3.3 Contribution

The convex conjugacy relationship (3.4) reduces to linear programming duality
in case of discrete finite distributions, as I worked out in [52]. Given x ∈ IRn,
the tail expectation of the corresponding yield can be computed as the optimum
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of the linear programming problem

Tailβ (R(x)) = min
S∑
s=1

πs rs(x)

such that 0 ≤ πs ≤ ps (s = 1, . . . , S), and

S∑
s=1

πs = β,

(3.7)

where the decision variable πs means the weight of the sth scenario in the lower
β-tail. The linear programming dual of (3.7) can be transformed into

max
t∈IR

{
βt−

S∑
s=1

ps [t− rs(x)]+

}
(3.8)

which is just the convex conjugate of the expected shortfall (the latter considered
as a function of the target t).

Using (3.2), problem (3.7) can be formulated with CVaR instead of Tail:

CVaRβ (R(x)) = max
S∑
s=1

$s rs(x)

such that 0 ≤ $s ≤ ps
β (s = 1, . . . , S), and

S∑
s=1

$s = 1.

(3.9)

(3.9) turned out to be a discrete version of the risk envelope of [145]. The above
discrete formulation proved effective for handling CVaR constraints in two-stage
problems, as I’m going to report in Chapter 6. (A dual solution approach, also
based on the above formulation, was proposed in [63].)

In the special case of ps = 1
S (s = 1, . . . , S) and β ∈

{
1
S ,

2
S , . . . , 1

}
, basic

solutions of (3.9) have components πs = 0 or 1
S (s = 1, . . . , S). Hence (3.9)

reduces to

CVaRβ(R(x)) = max
J

1
βS

∑
s∈J

rs(x)

such that J ⊂ {1, . . . , S}, |J | = βS.

(3.10)

This formula can be considered an adaptation of the polyhedral representation
of Künzi-Bay and Mayer. The variable t of (3.5) becomes superfluous in the
equiprobable case, and cuts belonging to sets of cardinality βS are sufficient.

I worked out cutting-plane approaches for the handling of SSD in stochastic
programming problems. These were implemented and investigated in collab-
oration with Gautam Mitra and Diana Roman of CARISMA (Centre for the

dc_1634_19

Powered by TCPDF (www.tcpdf.org)



28 CHAPTER 3. RISK-AVERSE PROBLEMS

Analysis of Risk and Optimisation Modelling Applications) from Brunel Uni-
versity, London. We implemented a solution method for the uniform-dominance
model (3.6) of Roman, Darby-Dowman, and Mitra. The method was based on
the polyhedral representation (3.10). Algorithmic descriptions and test results
were presented in [57]. The cutting-plane approach resulted in dramatic im-
provement in efficiency; portfolio-optimization problems were solved in seconds
instead of hours. My co-authors formerly used a solver based on lifting repre-
sentations which took several hours to solve problems with n = 76 and S = 500.
Solution time sharply increased with further increase in the number of the sce-
narios. The cutting-plane based solver solved these problems in a few seconds,
and showed good scale-up behaviour: even with S = 10.000 scenarios, it solved
the problems within ten seconds.

Rudolf and Ruszczyński in [149] also developed cutting-plane approaches for
the handling of SSD constraints. The stochastic programing community accepts
that our results are independent. (An early version of [57] was published in the
same year as [149].)

I proposed a scaled version of the uniform-dominance model (3.6). A new
decision variable ϑ ∈ IR was introduced, representing a ’certain’ (i.e., riskless)
yield. (In a portfolio optimization example, this means holding an amount of
cash.) Consider the dominance measure

max
{
ϑ ∈ IR

∣∣∣ R(x) �
SSD

R̂+ ϑ
}
. (3.11)

In a portfolio-optimization example, the above SSD-relation means that we
prefer the return R(x) to the combined return of the stock index and ϑ amount
of cash. – The construction is analogous to that of certain risk measures, and
the negative of this dominance measure turns out to be a convex risk measure
in the sense of Rockafellar [142].

In a portfolio-optimization problem, the measure (3.11), as a function of x,
is maximized such that x ∈ X.

In view of definition (c) of the second-order stochastic dominance, the rela-

tion R(x) �
SSD

R̂+ ϑ is equivalent to

Tailβ(R(x)) ≥ Tailβ(R̂) + βϑ (3.12)

holding for 0 < β ≤ 1. Using (3.2), the above inequality naturally transforms
to CVaR. In the equiprobable case the cutting-plane representation (3.10) can
be applied.

We compared modeling aspects of the dominance measures (3.6) and (3.11)
in collaboration with Gautam Mitra, Diana Roman and Victor Zverovich from
Brunel University. Algorithmic descriptions and test results were presented in
[58]. This study confirmed a shape-preserving quality of the dominance measure
(3.11). The resulting optimal portfolio x? has a yield R(x?), the shape of whose
distribution is similar to that of the reference return.

A more thorough computational study was presented in the book chapter
[59]. My co-workers were Gautam Mitra, Diana Roman and Victor Zverovich
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3.4. APPLICATION OF THE RESULTS 29

from Brunel University; and Tibor Vajnai, Edit Csizmás and Olga Papp from
Kecskemét College. Our input data set consisted of weekly returns of 68 stocks
from the FTSE 100 basket, together with the FTSE 100 index returns. We
partitioned the observed weeks into subsetsH and T . The subsetH was used for
portfolio construction. Returns corresponding to H were considered as equally
probable scenarios. We maximised the unscaled dominance measure (3.6) and
the scaled dominance measure (3.11), respectively, over the simplex X = {x ∈
IRn|x ≥ 0,

∑
xi = 1}. The index played the role of reference return R̂. We then

used the subset T for out-of-sample tests. Considering the returns corresponding
to T as equally probable scenarios, we constructed return histograms of the
respective optimal portfolios of the unscaled end the scaled model.

We repeated the above experiment 12 times, always partitioning our dataset
into subsets H and T in a random manner. The following observations hold in
each individual experiment we performed: The index histogram has a longish
left tail. The unscaled histogram is curtailed on the left. The tail of the scaled
histogram is similar to that of the index. The unscaled histogram has signif-
icantly larger expectation than the index histogram. The scaled histogram,
in turn, has significantly larger expectation than the unscaled one, though its
standard deviation is somewhat larger also. These observations point to the
applicability of the scaled model.

3.4 Application of the results

The models and solvers developed in the course of the above mentioned projects
have been included in the optimization and risk analytics tools developed at Op-
tiRisk Systems, http://www.optirisk-systems.com. OptiRisk is an informatics
and consulting company specializing in risk management, and utilizing the re-
sults of research done at Brunel University.

My former co-workers Roman, Mitra and Zverovich in [148] performed a
systematic comparison of the unscaled model (3.6) and the scaled model (3.11).
The following paragraphs are cited from this paper.

We have tested the effectiveness of these two models as enhanced in-
dexation strategies, using three datasets: FTSE 100 (97 stocks), Nikkei
225 (222 stocks) and SP 500 (491 stocks). We have used the last half of
2011 (01/06/11–22/12/11) as a backtesting period, in a daily rebalancing
frame: for each model and each market we have computed 147 ex-post
compounded returns. These are ”realised” returns: portfolio strategies
are implemented and then evaluated on the next time period using real
data. We have made a comparison with the indices’ performance and also
with the performance of the index tracker portfolios obtained with Roll’s
(1992) model [146].

Three conclusions are drawn.

First, the SSD-based models consistently outperform the correspond-
ing indices, in the sense that higher returns are obtained over most of
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30 CHAPTER 3. RISK-AVERSE PROBLEMS

the backtesting period. This aspect is emphasised by computing their
compounded returns. All the three indices are generally at loss over the
backtesting period, with the index trackers mimicking nearly perfectly
their movements. In contrast, the portfolios obtained with the SSD mod-
els lead to overall profits. In particular, portfolios obtained via the SSD
scaled model have a very good backtesting performance, consistently out-
performing the corresponding indices (also the SSD unscaled portfolios)
by a substantial amount. For all three markets, the SSD scaled strategy
results in a compounded gain of 40% or above, while the indices have a
compounded loss around 10%. ...

Secondly, the imposition of cardinality constraints seems to be unnec-
essary in the two SSD-based models. Due to their CVaR-minimisation
nature, these models naturally select a much lower number of stocks than
the established index tracking models. ...

Finally, the amount of necessary rebalancing in the SSD-based models
is low, since the models are stable with the introduction of new scenarios,
representing new information on the market. ...

Novel approaches for portfolio construction were proposed by Valle, Mitra and
Roman in [172]. This is a sequel to [148] and the enhancements are based on
the scaled model.

Enhanced versions of the cutting-plane method described in [57] were devel-
oped by Sun et al. [160] and Khemchandani et al. [88].

3.5 Summary

The convex conjugacy relationship between expected shortfall and tail expecta-
tion reduces to linear programming duality in case of discrete finite distributions,
as I worked out in [52]. This approach yields a CVaR formulation that proved
effective for handling CVaR constraints in two-stage problems (reported in [64]).

I worked out cutting-plane approaches for the handling of SSD in stochastic
programming problems. These were implemented and investigated in collabora-
tion with Gautam Mitra and Diana Roman from Brunel University. Algorithmic
descriptions and test results were presented in [57]. The cutting-plane approach
resulted in dramatic improvement in efficiency; portfolio-optimization problems
were solved in seconds instead of hours.

I proposed a scaled version of the uniform-dominance model of Roman,
Darby-Dowman, and Mitra. In a portfolio optimization example, the scaled
dominance relation means that we prefer the return of our portfolio to the com-
bined return of a benchmark portfolio and a certain amount of cash.

We compared modeling aspects of the scaled and the unscaled dominance
measures in collaboration with Gautam Mitra, Diana Roman and Victor Zverovich
from Brunel University. Algorithmic descriptions and test results were presented
in [58]. This study confirmed a shape-preserving quality of the scaled dominance
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3.5. SUMMARY 31

measure: the resulting optimal portfolio has a yield the shape of whose distri-
bution is similar to that of the reference return.

The models and solvers developed in the course of the above mentioned
projects have been included in the optimization and risk analytics tools devel-
oped at OptiRisk Systems, an informatics and consulting company specializing
in risk management, and utilizing the results of research done at Brunel Uni-
versity.

My former co-workers Roman, Mitra and Zverovich in [148] performed a
systematic comparison of the unscaled model and the scaled one. They observe
that ’portfolios obtained via the SSD scaled model have a very good backtest-
ing performance, consistently outperforming the corresponding indices (also the
SSD unscaled portfolios) by a substantial amount’.

Novel approaches for portfolio construction were proposed by Valle, Mitra
and Roman in [172]. This is a sequel to [148] and the enhancements are based
on the scaled model.

Enhanced versions of the cutting-plane method described in [57] were devel-
oped by Sun et al. [160] and Khemchandani et al. [88].
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Chapter 4

Decomposition methods for
two-stage stochastic
programming problems

Two-stage stochastic programming problems derive from such models where
decisions are made in two stages and the observation of some random event takes
place in between. Hence the first decision must be made when the outcome of
the random event is not yet known. For example, the first stage may represent
the decision on the design of a system; and the second stage, a decision on
the operation of the system under certain circumstances. The aim is to find a
balance between investment cost and long-term operation costs.

In this chapter I confine discussion to the case when no feasibility issues occur
(as formulated in Assumption 19, below.) Feasibility issues will be considered
in Chapter 5.

4.1 The classic two-stage SP problem

The model originates from Dantzig [24] and Beale [7], and mathematical char-
acterization was given by Wets [180].

The first-stage decision is represented by the vector x ∈ X, the feasible do-
main being defined by a set of linear inequalities. We assume that the feasible
domain is a nonempty convex bounded polyhedron, and that there are S possi-
ble outcomes (scenarios) of the random event, the sth outcome occurring with
probability ps.

Suppose the first-stage decision has been made with the result x, and the
sth scenario has realized. The second-stage decision y is computed by solving
the second-stage problem or recourse problem that we denote by Rs(x). This

33
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34 CHAPTER 4. TWO-STAGE PROBLEMS

is a linear programming problem whose dual is Ds(x):

Rs(x)

min qTs y
such that
Tsx +Wsy = hs,
y ≥ 0,

Ds(x)

max zT (hs − Tsx)
such that
WT
s z ≤ qs,

z is a real-valued vector.

(4.1)

In the above formulae, qs, hs are given vectors and Ts, Ws are given matrices,
with compatible dimensions. In this chapter we work under

Assumption 19 (relatively complete recourse) The recorse problem Rs(x)
is feasible for any x ∈ X and s = 1, . . . , S.

Moreover we assume that Ds(x) is feasible for any s = 1, . . . , S. Let qs(x)
denote the common optimum. This is a polyhedral convex function called the
recourse function.

The customary formulation of the first-stage problem is

min cTx +

S∑
s=1

ps qs(x) such that x ∈ X. (4.2)

The expectation part of the objective, q(x) =
∑S
s=1 ps qs(x), is called the ex-

pected recourse function.
Let us assume that the feasible domain X is defined by a finite set of linear

equations, in the form of Ax = b. The two-stage stochastic programming
problem (4.2)-(4.1) can be formulated as a single linear programming problem
called the equivalent LP problem:

min cTx + p1q
T
1 y1 + . . . + pSq

T
SyS

subject to Ax = b,

T1x + W1y1 = h1,
...

. . .
...

TSx + WSyS = hS ,

x ≥ 0, ys ≥ 0 (s = 1, . . . , S).

(4.3)

This linear programming problem has a specific structure: for each scenario,
a subproblem is included that describes the second-stage decision associated
with the corresponding scenario realization. The subproblems are linked by the
first-stage decision variables.

Polyhedral models. Given a finite subset Ũs of the feasible domain of Ds(x),
the function

q̃s(x) = max
us∈Ũs

uT
s (hs − Tsx) (x ∈ X) (4.4)
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4.2. SOLUTION APPROACHES 35

is a lower approximation of qs(x) over X. Having appropriate subsets Ũs for s =
1, . . . , S, the disaggregate model of the first-stage problem (4.2) is constructed
as

min cTx +
S∑
s=1

psνs

such that x ∈ X, νs ∈ IR (s = 1, . . . , S),

uT
s (hs − Tsx) ≤ νs holds for any us ∈ Ũs (s = 1, . . . , S).

(4.5)

The expectation in the objective, q̃(x) =
∑S
s=1 ps q̃s(x), is called the disaggre-

gate model function.
An aggregate model of the first-stage problem is

min cTx + ν
such that x ∈ X, ν ∈ IR,

S∑
s=1

psu
T
s (hs − Tsx) ≤ ν holds for any (u1, . . . ,uS) ∈ Ũ ,

(4.6)

where Ũ ⊂ Ũ1 × · · · × ŨS is a certain subset of the Cartesian product. Namely,
each element of Ũ belongs to a (potential) facet in the graph of the function

q̃(x). There may be facets not represented in Ũ . The upper cover

f̃(x) = max
(u1,...,uS)∈Ũ

S∑
s=1

psu
T
s (hs − Tsx) (4.7)

is called the aggregate model function.
Of course we have q(x) ≥ q̃(x) ≥ f̃(x), since the disaggregate model function

is based on the sets Ũs (s = 1, . . . , S), and the aggregate model function is based

on the set Ũ ⊂ Ũ1 × · · · × ŨS .

4.2 Solution approaches

A straightforward approach is the application of a general-purpose LP solver to
the equivalent LP problem (4.3).

Dantzig and Madansky [25] observed that the dual of the equivalent LP
problem fits the prototype for the Dantzig-Wolfe decomposition [26]. The re-
sulting decomposition approach is equivalent to a cutting-plane method based
on the disaggregate model (4.5).

The L-shaped method of Van Slyke and Wets [176] is a cutting-plane method
based on the aggregate model (4.6). This approach turned out to be identical to
a Benders decomposition [8], specially adapted to the equivalent LP problem.
(Aggregation being the speciality of the adaptation.)

The Dantzig-Wolfe decomposition was proposed in 1960 to overcome the bot-
tleneck of restricted computer memory. Memory is no longer a scarce resource,
but decomposition is still an effective approach, as I’m going to demonstrate.
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The distinction between the Dantzig-Wolfe decomposition and the Benders
decomposition or the cutting-plane approach is just a question of viewpoint. The
advantage of the cutting-plane viewpoint is that it gives a clear visual impression
of the procedure and, more importantly, that it enables the application of the
enhancements discussed in Chapter 2.

An overview of decomposition methods. The regularized decomposition
method of Ruszczyński [150] is a bundle-type method for the minimization of
the sum of polyhedral convex functions over a convex polyhedron. Hence it is
naturally applied to the disaggregate model. (Ruszczyński developed a bundle
reduction mechanism, and keeps only two active cuts per scenario in the master
problem.)

The box-constrained trust-region method of Linderoth and Wright [102] also
solves the disaggregate problem, using a special trust-region approach.

Zakeri et al [187] applied their simple inexact cut method (mentioned in
Chapter 2) in a plain cutting-plane approach to the aggregate problem.

In [62], we applied the approximate level method of [51] (recounted in Chap-
ter 2) to the aggregate problem. I’m going to describe this approach in more
detail in Section 4.3.

Oliveira, Sagastizábal and Scheimberg [119] proposed a special inexact bun-
dle method for the solution of the aggregate problem. Comparing their method
to our [62], they point out two differences: first, instead of scenario approxima-
tion, they apply sampling; second, their method does not explicitly control the
oracle inaccuracy.

The difference between disaggregate and aggregate formulations is but technical;
yet it results in a substantial difference in efficiency. By using a disaggregate
formulation, more detailed information is stored in the master problem. This
is done at the expense of larger master problems. Based on the numerical
results of [9] and [69], Birge and Louveaux [10] conclude that the disaggregate
formulation is in general more effective when the number of the scenarios is not
significantly larger than the number of the constraints in the first-stage problem.
We refined this observation in the computational study [190] that I’m going to
discuss below. – In this computational study we also showed that the equivalent
LP formulations of many industrial problems would resist the direct application
of even the most powerful general-purpose LP solvers.

In order to find a balance between the size of the master problem and the
amount of information stored in it, intermediate approaches between disaggre-
gate and aggregate models have been proposed. Trukhanov et al. [170] proposed
an adaptive aggregation method. The idea was to start with a low level of cut
aggregation and increasing it over the course of the solution process. Wolf and
Koberstein [185] provided further insights into the effects of cut aggregation.
Moreover they introduced a technique called cut consolidation that means dis-
carding inactive cuts and adding their aggregation to the master problem.

De Oliveira and Sagastizábal [27] proposed working with an aggregate master
problem, while storing in the oracle all the (disaggregate) information obtained
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from the solution of the recourse problems. For the solution of the master
problem they applied their on-demand accuracy approach recounted in Chapter
2. At an oracle call, no recourse problems are solved if the information stored
in the oracle is sufficient to construct a cut of prescribed accuracy.

More recently Song and Luedtke in [157] developed an approximation scheme
that is between the disaggregate and the aggregate approaches. Like our [62],
it is based on an adaptive partition of the scenarios. Song and Luedtke found
their approach to be often competitive with, and occasionally superior to, our
method.

On randomized methods. Though I focus on deterministic solution meth-
ods in this chapter, allow me a glance at the broader context.

Ermoliev and Shor [48] applied a stochastic quasigradient method to the
solution of two-stage stochastic programming problems.

A randomized decomposition scheme was developed by Higle and Sen [80],
a detailed overview can be found in their book [81].

Shapiro and Homem-de-Mello in [156] applied a general simulation frame-
work to two-stage stochastic programming problems, and the empirical behavior
of the approach was discussed by Linderoth, Shapiro and Wright in [101]. A de-
tailed overview of the approach can be found in [155]. – The sampled problems
in this simulation framework can be solved by deterministic methods.

Deák in [32], [33] applied his successive regression approximation to two-
stage stochastic programming problems, and discussed the empirical behavior
of the approach. An improvement on the approach is proposed by Deák, Pólik,
Prékopa and Terlaky in [35].

4.3 Contribution

We completed three projects with different co-workers. In the first project, I
adapted the approximate level method to the solution of the aggregate master
problem in a decomposition framework. The resulting procedure was named
level decomposition. We implemented it with Zoltán Szőke who, at that time,
was my doctoral student at the Doctoral School of Mathematics, Eötvös Loránd
University.

The aim of the second project was extensive experimentation and solver
development at the Brunel University, London. My co-workers were Gautam
Mitra, Francis Ellison and Victor Zverovich of the CARISMA team (Centre for
the Analysis of Risk and Optimisation Modelling Applications).

In the third project I developed a decomposition framework that combines
the advantages of the aggregate and the disaggregate model. We implemented
the method and performed an extensive computational study in collaboration
with Leena Suhl, Achim Koberstein and Christian Wolf from the DS&OR (De-
cision Support & Operations Research) Lab of Paderborn University. The aim
of our collaboration with the Paderborn team had been the development of
effective solvers for a real-life gas purchase problem.
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Level decomposition

I adapted the approximate level method [51] (recounted in Chapter 2), to the
aggregate master problem. The (inexact) oracle was based on a successive ap-
proximation of the distribution.

We implemented the method with my doctoral student Zoltán Szőke at the
Eötvös Loránd University. The method was described and a computational
study was presented in [62]. Numerical results show that this approximation
framework is effective: although the number of the master iterations is larger
than in the case of the exact method, there is a substantial reduction in the
solution time of the second-stage problems.

To approximate the recourse function, we used the classic distribution ap-
proximation framework (described, e.g., in [11]). Fixed recourse was assumed,
i.e., Ws = W (s = 1, . . . , S). The space of the right-hand sides of the recourse
problems was partitioned into multidimensional intervals. Given a first-stage
solution x, the right-hand sides hs − Tsx (s = 1, . . . , S) that fell into the same
interval where accumulated into their barycenter.

The structure of our level decomposition implementation is shown in Fig-
ure 4.1. The novelty of the approach is that the accuracy of the distribution
approximation is regulated by the optimization method applied to the master
problem. This setup helps in finding a balance between different efforts; and
is in contrast to the classic distribution approximation framework where the
main module is the distribution approximation scheme, and the submodule is a
two-stage stochastic problem solver. To what extent the approximation should
be refined between solver calls, is a difficult question in the classic setup. –
Mayer [108] proposed a heuristic method for the regulation of the accuracy of
the approximation in that context.

A technical issue had to be solved to make the approximate level method
applicable in the decomposition framework: the oracle must return linear func-
tions whose slope remains under a common bound, i.e., ‖∇`‖ ≤ Λ must hold
with fixed Λ for every linear function `(x) returned. I ensured this by always
selecting basic solutions of the appropriate dual recourse problems into the sets
Ũs (s = 1, . . . , S). Existence of a common bound follows from the fact that
the number of the basic solutions is finite. – Note that the distribution approx-
imation scheme does not interfere with this technique; the right-hand side of
a recourse problem is the objective vector in the corresponding dual recourse
problem. Hence the set of the basic solutions of the dual recourse problem is
not affected by the distribution approximation.

Of course the bound Λ cannot be computed in general. But this bound is
only needed in the convergence proof, and the level method can be implemented
without knowing it. In the computational study [62] we found the method
effective, and also observed that the approximate level method inherits the
practical efficiency estimate (2.13). Whenever we solved a problem with higher
and higher accuracy, a constant number of additional iterations always yielded
a further accurate digit in the optimum.
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Figure 4.1: The structure of our level decomposition implementation.

Experimentation and solver development
at Brunel University

The motivation of the computational study [190] was to re-assess different solu-
tion approaches to two-stage problems, in view of recent advances in computer
architecture and LP solver algorithms. (There was a certain amount of com-
placency in the stochastic programming community that realistic instances of
two-stage problems can solved directly in equivalent LP forms.)

My co-workers were Gautam Mitra, Francis Ellison and Victor Zverovich of
the CARISMA team (Centre for the Analysis of Risk and Optimisation Mod-
elling Applications) from Brunel University, London. This was one of the leading
teams in computational stochastic programming world-wide. In our experiments
we used the software systems developed at CARISMA and OptiRisk, and also
extended and enhanced these systems in the course of the project.

The following methods were compared:

Simplex: direct solution of the equivalent LP problem with the CPLEX dual
simplex solver.

IPM: direct solution of the equivalent LP problem with an interior-point
method. We generally used the CPLEX barrier solver, but also exper-
imented with the HOPDM solver [72], [23]. The latter is an infeasible
primal-dual interior-point solver, developed by J. Gondzio and team at
the University of Edinburgh.

Benders: plain decomposition based on the aggregate model.
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RD: the regularized decomposition method of Ruszczyński [150], implemented
with the enhancements of [152].

TR: the box-constrained trust-region method of Linderoth and Wright [102].

Level: decomposition based on the aggregate model, having the master prob-
lem solved with an adaptation of the level method of Lemaréchal, Ne-
mirovskii and Nesterov [99]. We have set λ = 0.5.

In the decomposition frameworks, the CPLEX dual simplex and quadratic
solvers were used.

Test problems were drawn from the following sources: the POSTS collection
of Holmes [82]; the Slptestset collection of Ariyawansa and Felt [4]; problems
randomly generated by the SLP-IOR system of Kall and Mayer [85]; and real-life
gas-purchase planning problems by Koberstein et al. [94].

To see the capacities and scale-up properties of the different methods, we
solved each problem many times, with extending scenario sets. Our paper [190]
contains detailed computational results, i.e., solution times for every method
and every problem instance. (In accord with Mathematical Programming Com-
putation editorial policy, all results were checked by the Editors.) Here I only
recount statistics and observations that I consider relevant.

Our computational study demonstrates that decomposition methods gener-
ally scale better than direct solution of the equivalent LP problem. In particu-
lar, the simplex method is very sensitive to increasing scenario numbers. The
interior-point method scales much better than the simplex, though the barrier
method applied to the equivalent LP problem requires large memory. Con-
cerning solution capacity, the largest two instances of the real-life gas-purchase
planning problems resisted direct solution by both the simplex and the barrier
solver. (Either numerical difficulties occurred or the time limit of 1800 seconds
was exceeded.) In contrast, level decomposition solved all instances with a single
exception (time limit was exceeded in case of a medium-sized instance).

Concerning scale-up properties, Figure 4.2 well represents our findings. It
shows solution times of the 4node problem with extending scenario sets, cardi-
nalities being 2-powers up to 32768. (All instances were solved to 5 accurate
digits in the optimum.)

We found that decomposition based on the aggregate model scales better
than that based on the disaggregate model. (The TR and RD methods apply
disaggregate models.) This is in agreement with the observation of Birge and
Louveaux [10] who conclude that the disaggregate formulation is in general more
effective when the number of the scenarios is small. However, we found that
the break-even threshold may be high, depending on the solver applied to the
master problem.

In our experiments plain decomposition performed well. Using level reg-
ularisation we were able to solve very large instances of difficult application
problems.
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Figure 4.2: Dependece of the solution time on the size of the scenario set.
Cardinality (in tens of thousands) is measured on the horizontal axis.

Combining the advantages of
the aggregate and the disaggregate model

I specialized the on-demand accuracy approach of de Oliveira and Sagastizábal
[27], and applied the resulting partially exact level method to two-stage stochas-
tic programming problems. I showed that this special approach combines the
advantages of the traditional aggregate and disaggregate models.

The following algorithm is a specialization of Algorithm 8. The main feature
is that the descent target (in step 20.4, below) is set to κϕi(xi+1) + (1− κ)φi,
in accordance with Proposition 11. Here the target regulating parameter κ is
fixed according to (2.23). Another minor modification is that exact supporting
functions are constructed at substantial iterates (i.e., the accuracy tolerance of
the oracle is set to 0). — In our papers [64] and [184], the term ’partly inexact’
was used for the resulting algorithm. In this dissertation, I call the method
’partially exact’ to keep the terminology consistent.

Algorithm 20 A partially exact level method.

20.0 Parameter setting.
Set the stopping tolerance ε > 0.

Set the level parameter λ (0 < λ < 1).
Set the target regulating parameter κ such that 0 < κ < 1− λ.

20.1-3
are the same as the corresponding steps of Algorithm 8.
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20.4 Bundle update.
Let δi+1 = 0.

Call an oracle of Specification 9 with the following inputs:
- the current iterate xi+1,
- the accuracy tolerance 0, and
- the descent target κϕi(xi+1) + (1− κ)φi.

Let li+1(x) be the linear function returned by the oracle.

If the descent target was reached then let Ji+1 = Ji ∪ {i+ 1},
otherwise let Ji+1 = Ji.
Increment i, and repeat from step 20.2.

We apply the above algorithm to an aggregate master problem, hence we have
ϕi(x) = cTx+ f̃(x). The oracle, on the other hand, will retain all the informa-
tion that permits the construction of the disaggregate model function cTx+q̃(x)

– namely, the sets Ũs (s = 1, . . . , S). – This is just the way proposed in de
Oliveira and Sagastizábal [27]. But due to our special target level formulation,
the decision in the oracle now takes a very instructive form. If

cTxi+1 + q̃(xi+1) > κ
{
cTxi+1 + f̃(xi+1)

}
+ (1− κ)φi (4.8)

or, equivalently,

q̃(xi+1)− f̃(xi+1) >
1− κ
κ

[
φi −

(
cTxi+1 + q̃(xi+1)

)]
(4.9)

holds, then an approximate support function will be created using the infor-
mation already stored in the oracle. Otherwise, the second-stage problems will
be solved. – Of course, here xi+1 is the new iterate, and φi denotes the best
objective value known at the present stage of the solution process.

Justification of the decision rule (4.8). We need an approximate support
function `(x) that satisfies the requirements of the oracle in Algorithm 9, with
the input parameters set in 20.4.

Let ˜̀(x) denote a linear support function of the disaggregate model function

cTx + q̃(x) at the new iterate. ˜̀(x) is easily constructed from the information
stored in the oracle.

If (4.8) holds, then `(x) = ˜̀(x) certifies that the descent target cannot
be attained. Otherwise `(x) will be constructed by solving the second-stage
problems, and hence `(xi+1) = cTxi+1 + q(xi+1) will hold.

Assumed that all the dual feasible solutions in the sets Ũs (s = 1, . . . , S) are
basic solutions, a common upper bound exists on the gradients ‖∇`‖ constructed
in the course of the process. �

For an interpretation of the decision rule in terms of the two-stage problem,
let us observe that the left-hand side of (4.9) is the difference between the
disaggregate and the aggregate model function values. The expression in the
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square bracket on the right-hand side estimates the improvement of the new
iterate over the best function value previously known. If the disaggregate model
is significantly better than the aggregate one, then the latter will be improved
by including information extracted from the former.

We implemented the method and performed an extensive computational
study in collaboration with Leena Suhl, Achim Koberstein and Christian Wolf
from the DS&OR (Decision Support & Operations Research) Lab of Paderborn
University. This is one of the leading industrial optimization teams in Germany.
Our joint implementation project was based on the parallel nested Benders
solver [185] previously developed by my co-workers at Paderborn University.

Our joint project is discussed in [184]. We evaluated the performance of the
following methods:

Level-ODA: level decomposition with on-demand accuracy. Namely, Algo-
rithm 20 with the parameter setting λ = 0.5, κ = 0.5.

Level: level decomposition. Similar to Algorithm 20 but the second-stage
problems are solved in each iteration. We have set λ = 0.5.

Benders-SC: plain decomposition based on the aggregate model (also called
single-cut method).

Benders-MC: plain decomposition based on the disaggregate model (also called
multi-cut method).

Benders-ODA: unregularized decomposition based on the aggregate model,
but applying the on-demand accuracy approach. Namely, Algorithm 20
but the regularization is switched off by the extremal setting of λ = 0. We
have set κ = 0.5.

DEQ: direct solution of the equivalent linear programming problem.

The optimal solution of the expected value problem was chosen as the initial
first-stage solution. All experiments were carried out on a processor supporting
parallel processing. It had with four physical cores, but eight logical cores
due to hyper-threading. The master problem and the recourse problems in the
decomposition schemes were solved with the CPLEX dual simplex solver, using
one thread each. The equivalent linear programming problems were solved with
the CPLEX barrier solver, using eight threads.

Test problems were drawn from the following sources: the test set composed
by Deák and used in his computational study [33]; the Slptestset collection of
Ariyawansa and Felt [4]; problems randomly generated by the SLP-IOR system
of Kall and Mayer [85]; LP relaxations of the sslp problems contributed by
Ntaimo and Sen, available in the SIPLIB stochastic integer test set library [3];
the POSTS collection of Holmes [82]; real-life gas-purchase planning problems
by Koberstein et al. [94]; and sampled versions of the instances contained in
the testset used by Linderoth et al. [101].
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Each problem was solved many times, with extending scenario sets. We
tested the methods on a total of 105 different problem instances. The solution
times are wall-clock times of the solution process, given in seconds. (A time
limit of 3,600 seconds was enforced for each run.) Our paper [184] contains
detailed computational results, i.e., solution times for every method and every
problem instance. Here I only recount statistics and observations that I consider
relevant.
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Figure 4.3: Performance profiles of the algorithms.

Performance profiles of the different algorithms are presented in Figure 4.3.
Performance profiles are a widely used tool for visual comparison of different
solution methods with regard to a given set of test problems. A separate func-
tion represents the relative performance of each method. Given a method, the
corresponding function value at τ ≥ 1 is the percentage of the problems that
the given method can solve within a factor τ of the respective fastest methods
for these problems. Formal definition of the performance profiles is given in
Appendix A.1.

Figure 4.3 shows that level decomposition with on-demand accuracy solved
more than a third of the problems faster than the other algorithms. Moreover, it
solved about 88% of all problems within a factor of two of the fastest algorithm.

Performance profiles make no distinction between easy and hard problems.
In our computational study, regularization and the on-demand accuracy ap-
proach had little effect (even adverse effect) on easy problems. But they proved
definitely advantageous for hard problems.

Mean computing times are given in Table 4.1. Considering total computing
times, level decomposition with on-demand accuracy ranks first. It solved the
problems in 21% of the time needed by single-cut Benders. The on-demand
accuracy approach without regularization is notably slower than the regularized
methods, but still faster than single-cut Benders, taking 45% of the computing
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total stage 1 stage 2

Level-ODA 11.20 1.40 9.49
Level 14.92 1.28 13.33

Benders-SC 53.27 2.69 50.27
Benders-MC 263.60 258.58 4.79

Benders-ODA 24.08 4.27 19.50
DEQ 72.51

Table 4.1: Mean computing times. (There is an unsignificant difference between
the total time and the sum of stagewise times. This is setup time, typically 0.3.)

time of single-cut Benders.
Multi-cut Benders ranks last in terms of total computing time, taking 495%

of the computing time of single-cut Benders. This is because the scale-up prop-
erties of multi-cut methods are worse than those of the single-cut methods. It
must be noted, however, that much depends on the solver used for the solution
of the master problem. (And on the difficulty of the second-stage problems,
as compared to the number of the first-stage variables.) Computational efforts
spent in solving the first-stage and second-stage problems, respectively, are also
presented in Table 4.1. The multi-cut solver spent almost all efforts in the first
stage.

Mean iteration counts are shown in Table 4.2. Although multi-cut Benders
needs only about 7% of the iterations of single-cut Benders, the computing time
is much higher.

The reason why on-demand accuracy speeds up the solution process can
be seen by comparing the overall iteration and substantial iteration counts in
Table 4.2. (Second-stage problems are only solved in the course of substantial
iterations.) Compared with the level method, the on-demand accuracy approach
performs five percent more iterations, but 42% less substantial iterations. (The
same holds for Benders decomposition with on-demand accuracy, compared with
single-cut Benders decomposition: 20% more iterations, but 81% less substantial
iterations.)

total substantial

Level-ODA 78.83 43.05
Level 74.82 74.82

Benders-SC 274.38 274.38
Benders-MC 20.19 20.19

Benders-ODA 328.89 53.25

Table 4.2: Mean iteration counts in decomposition methods.

Our results are in accordance with the practical efficiency estimate (2.13).
This holds for both the level method and the partially exact level method. We
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found that there were generally less than n iterations between any two consec-
utive critical iterations. (n denotes the number of the first-stage variables.) For
each problem instance, we considered the maximal number of iterations occur-
ring between any two consecutive critical iterations. This was then divided with
the number of the first-stage variables. The ratios fell below 2 in 99 problems
from the 105 tested. In the remaining 6 cases, the ratios were below 8. (The
corresponding problem instances belonged to the same problem scheme.)

4.4 Application of the results

The decomposition-based solvers developed in collaboration with the Brunel
team ([190]) have been included in the FortSP stochastic programming solver
system of OptiRisk, an informatics and consulting company specializing in risk
management, and utilizing the results of research done at Brunel University.
FortSP has been applied in diverse real-life application projects. My contri-
bution is stated in the manual [191]. – One of my co-workers from Brunel
University was Victor Zverovich. His PhD dissertation [189] is based to a large
extent on our joint project.

At Paderborn University, our results have been applied by Achim Koberstein
and Christian Wolf in developing effective solution methods for the strategic gas-
purchase planning problems. In their first approach [94], they directly solved
the equivalent LP formulations. Influenced by the computational study [190],
they developed decomposition methods, as reported in [185]. The aim of our
collaboration with the Paderborn team had been the development of even more
effective solvers for the gas problem. All the decomposition-based solvers devel-
oped in the course of our collaboration ([184]) proved to be superior to direct
solution.

500 scenarios 1000 scenarios

Level-ODA 134.5 239.3
Level 166.1 272.7

Benders-SC 257.1 393.6
Benders-MC 60.8 192.7

Benders-ODA 141.2 249.5
DEQ 799.3 -

Table 4.3: Computing times for gas-purchase planning problem instances. (The
general-purpose interior-point solver returned an incorrect solution for the LP-
equivalent of the 1000-scenario problem.)

Computing times of the gas problem are shown in Table 4.3. Data confirm
the observation that the aggregate approach scales better than the disaggregate
one. While moving from 500 to 1000 scenarios, the computing time of the dis-
aggregate solver increased by 220%, but computing times of aggregate solvers
increased by only 50-80%. (The multi-cut method is based on the disaggregate
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model, while the single-cut and level-type methods are based on the aggregate
model). However, the break-even threshold has not been reached by the in-
stances solved in our project. High break-even threshold is the consequence of
a special feature of the gas model: the second-stage problems are very hard.

One of my co-workers at Paderborn University was Christian Wolf. He
developed a version of the partially exact level method (of Algorithm 20) which
surpassed the multi-cut approach already on the 1000-scenario instance of the
gas problem. His idea was to use infinity norm in the projection subproblem
(2.11), instead of Euclidean norm. The algorithm was described and the results
were reported in his PhD thesis [183], written partly with me as advisor.

Our findings published in [190] served as guidelines to J. Gondzio and his
team at the University of Edinburgh. They developed a decomposition frame-
work that relies on their primal-dual interior-point solver. They call the ap-
proach primal-dual column generation method (PDCGM). Algorithmic descrip-
tions and computational study were published in Gondzio, González-Brevis and
Munari [73]. Comparing their findings with ours reported in [190], they observe
that their PDCGM implementation is competitive with the solvers we devel-
oped in collaboration with the Brunel team. — Enhanced solvers developed in
collaboration with the Paderborn team surpassed the PDCGM in efficiency.

Our computational study [190] was considered a reference point by Takano
et al. [167] and Sen and Liu [154].

4.5 Summary

I adapted the approximate level method [51] to the aggregate master problem.
The (inexact) oracle was based on a successive approximation of the distribution.
We implemented the method with my doctoral student Zoltán Szőke at the
Eötvös Loránd University. The method was described and a computational
study was presented in [62].

To my knowledge, it was the first attempt to regularize the aggregate mas-
ter problem in a decomposition framework for the two-stage stochastic pro-
gramming problem. The novelty of the approach is that the accuracy of the
distribution approximation is regulated by the optimization method applied to
the master problem. This setup helps in finding a balance between different
efforts. Our numerical results show that this approximation framework is work-
able, and that the approximate level method inherits the practical efficiency of
the level method [99].

Our work influenced the projects of Oliveira, Sagastizábal and Scheimberg
[119] and Song and Luedtke [157].

The motivation of the computational study [190] was to re-assess different
solution approaches to two-stage problems, in view of recent advances in com-
puter architecture and LP solver algorithms. My co-workers were Gautam Mi-
tra, Francis Ellison and Victor Zverovich of the CARISMA team (Centre for the
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Analysis of Risk and Optimisation Modelling Applications) from Brunel Uni-
versity, London. This was one of the leading teams in computational stochastic
programming world-wide.

To see the capacities and scale-up properties of the different solution ap-
proaches, we solved each of our test problems many times, with extending sce-
nario sets. Our computational study demonstrates that decomposition methods
generally scale better than direct solution of the equivalent LP problem. More-
over, we found that decomposition based on the aggregate model scales better
than that based on the disaggregate model. This is in agreement with the
observation of Birge and Louveaux [10] who conclude that the disaggregate for-
mulation is in general more effective when the number of the scenarios is small.
However, we found that the break-even threshold may be high, depending on
the solver applied to the master problem. – Using level regularisation in the
aggregate master problem, we were able to solve very large instances of difficult
application problems.

The decomposition-based solvers developed in collaboration with the Brunel
team have been included in the FortSP stochastic programming solver system of
OptiRisk, an informatics and consulting company specializing in risk manage-
ment, and utilizing the results of research done at Brunel University. FortSP
has been applied in diverse real-life application projects. My contribution is
stated in the manual [191].

One of my co-workers from Brunel University was Victor Zverovich. His
PhD dissertation [189] is based to a large extent on our joint project.

Our computational study influenced the team of A. Koberstein at Pader-
born University to develop decomposition methods to solve their application
problems, as reported in [185].

Our findings served as guidelines to J. Gondzio and his team at the University
of Edinburgh in their project [73], and were considered as reference by Takano
et al. [167] and Sen and Liu [154].

I specialized the on-demand accuracy approach of [27], and applied the re-
sulting partially exact level method to two-stage stochastic programming prob-
lems. I showed that the partially exact level method admits a special formulation
of the descent target. Using that, the decision in the oracle takes an instructive
form: no recourse problem is solved if the disaggregate model function value
is significantly higher than the aggregate one, as evaluated at the new iterate.
Hence the partially exact level method with this special descent target combines
the advantages of the traditional aggregate and disaggregate models.

We implemented the method and performed an extensive computational
study in collaboration with Leena Suhl, Achim Koberstein and Christian Wolf
from the DS&OR (Decision Support & Operations Research) Lab of Paderborn
University. This is one of the leading industrial optimization teams in Germany.

We tested the methods on a total of 105 different problem instances. Each
problem was solved many times, with extending scenario sets. The new method
solved more than a third of the problems faster than the other algorithms.
Moreover, it solved about 88% of all problems within a factor of two of the
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fastest algorithm. Considering total computing times, the new method also
ranked first. It solved the problems in 21% of the time needed by single-cut
Benders that we considered the benchmark algorithm. Test results demonstrate
that the partially exact level method inherits the practical efficiency of the level
method [99].

The methods and solvers developed in the course of our collaboration with
the Paderborn team have been applied in the effective solution of the strategic
gas-purchase planning problem, a real-life project of theirs.

One of my co-workers at Paderborn University was Christian Wolf. He
developed a version of the partially exact level method which proved the best
method on the 1000-scenario instance of the gas problem. The algorithm was
described and the results were reported in his PhD thesis [183], written partly
with me as advisor.
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Chapter 5

Feasibility issues in
two-stage stochastic
programming problems

In this chapter I discuss ways of dealing with second-stage infeasibility. We
work with the two-stage stochastic programming problem of Chapter 4, but
drop Assumption 19 on relatively complete recourse.

Accordingly, let Ks (s = 1, . . . , S) denote the set of those x vectors for
which Rs(x) is feasible. The domain of the recourse function qs(x) is Ks, and
the domain of the expected recourse function q(x) is K = K1 ∩ · · · ∩KS . We
assume that X ∩K is not empty. In the first-stage problem formulation (4.2),
the constraint x ∈ K must be added to ensure second-stage feasibility. This
type of constraint is called induced constraint.

According to linear programming duality, the recourse problem Rs(x) is
feasible if and only if the dual recourse problem Ds(x) has a finite optimum.
This allows a characterization of Ks using feasible rays of the dual recorse
problem; namely, x ∈ Ks if and only if

vTs (hs − Tsx) ≤ 0 holds with any ray vs of the feasible domain of Ds(x).

Given a finite subset Ṽs of the rays of the feasible domain of Ds(x), the corre-
sponding cuts define

K̃s = { x | vTs (hs − Tsx) ≤ 0 (vs ∈ Ṽs) }. (5.1)

This is an outer approximation of Ks.

The cuts defining K̃s are then included in the model problems (4.5) and
(4.6).

51
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5.1 Historical perspectives

A decomposition framework is easily extended to handle induced constraints,
and the cutting-plane viewpoint admits a clear visual image of the corresponding
cuts. The first decomposition method capable of handling induced constraints
was the L-shaped method of Van Slyke and Wets [176].

Given an iterate x̂, if all the recourse problems Rs(x̂) (s = 1, . . . , S) are
feasible, then new cuts are added to the respective model functions (4.4), or a
single cut is added to the aggregate model function (4.7). These are called op-
timality cuts in this context. If, on the other hand, the recourse problem Rs(x̂)
is not feasible for some s, then, solving Ds(x̂) by a simplex-type method, we
obtain a ray such that the corresponding cut is violated by x̂. The appropriate
cut is then added to the model (5.1). These are called feasibility cuts in this
context.

Ruszczyński [150] admits feasibility cuts in his regularized decomposition
method. The drawback is that regularization does not extend to feasibility
cuts. The scope of optimization may alternate between minimizing the objective
function and satisfying feasibility cuts.

An accelerated version of the regularized decomposition method was devel-
oped by Ruszczyński and Świȩtanowski [152]. One of the enhancements is a
penalized formulation of the recourse problems. The penalty parameter is ad-
justed as the solution procedure progresses. The aim is to facilitate crash and
warm starts, and to allow freedom in model formulation. Second-stage feasibil-
ity is still ensured by adding feasibility cuts in the first-stage problem.

Prékopa in [132], Chapter 12.10 introduced non-negative slack variables in
the recourse problems, and observed that we get an extension of the recourse
function if the penalties are large enough, but he did not examine the necessary
magnitude.

5.2 Contribution

In [62], I proposed handling second-stage infeasibility through a constraint func-
tion in the master problem, and adapted the approximate constrained level
method of [51], recounted in Chapter 2, to solve the resulting special master
problem. This approach avoids feasibility cuts, and the regularization extends
to feasibility issues.

But this approach requires extending the recourse function to the whole
space. I worked with penalized formulations of the recourse problem, and ex-
amined the necessary magnitude of the penalty.

We implemented the method with Zoltán Szőke who was my doctoral student
at the Eötvös Loránd University.
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Problem formulation

Let us first extend the recourse problems of (4.1). We add a slack vector d in
the primal problem, and penalize its norm with a positive weight w ∈ IR. The
resulting problem is Rs(x, w), below.

Rs(x, w)

min qTs y + w‖d‖�
such that
Tsx +Wsy + d = hs,
y ≥ 0,

Ds(x, w)

max zT (hs − Tsx)
such that
WT
s z ≤ qs,
‖z‖

�
≤ w.

(5.2)

In order to retain linearity, we may use either ‖d‖� = ‖d‖1 or ‖d‖� = ‖d‖max .
Keeping to linear programming formulations, the dual of problemRs(x, w) takes
the form of Ds(x, w). The norm ‖ ‖

�
in Ds(x, w) depends on the selection of

the norm ‖ ‖� in Rs(x, w). For ‖ ‖� = ‖ ‖
1

we have ‖ ‖
�

= ‖ ‖
max

and vice
versa. – I keep to ‖d‖� = ‖d‖

1
for the sake of simplicity.

Problem Rs(x, w) is feasible for any (x, w). Let qs(x, w) denote the optimal
objective value (possibly −∞). This is increasing in w. I show that the objective
function is bounded if w is large enough: Let zs denote a feasible solution of
Ds(x) that we have assumed to exist. Let ws := ‖zs‖� . If we have w ≥ ws then
zs is a feasible solution of Ds(x, w), establishing a lower bound for the objective
value of Rs(x, w). This is easily computable. In what follows we assume that
w ≥ ws (1 ≤ s ≤ S) holds.

qs(x, w) is a polyhedral convex function, and qs(x, w) ≤ qs(x) holds for any

x ∈ Ks. Hence the expectation q(x, w) =
∑S
s=1 psqs(x, w) is a convex function,

and q(x, w) ≤ q(x) holds for any x ∈ K.
Let us measure the infeasibility of the recourse problem Rs(x) by the func-

tion
gs(x) = min ‖d‖�

such that
Tsx +Wsy + d = hs,
y ≥ 0.

(5.3)

This problem has an optimal solution for any x, and we have gs(x) = 0 if

and only if x ∈ Ks. Let g(x) =
∑S
s=1 psgs(x) denote the expectation of the

inconsistency measure. This is a convex function and g(x) ≤ 0 holds if and only
if x ∈ K.

Assumption 21 The weight w has been set in such a way that q(x, w) = q(x)
holds for x ∈ K.

Under Assumption 21, the first-stage problem can be written in the constrained
convex programming form

min cTx + q(x) such that x ∈ X and g(x) ≤ 0. (5.4)

This formulation admits more effective solution methods than the application
of feasibility cuts. The approximate constrained level method that I adapted to
this problem is a primal-dual method, and the rule of tuning the dual iterate
keeps a fine balance between feasibility and optimality issues.
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Determining the penalty

Let us now examine the necessary magnitude of the weight which ensures that
Assumption 21 holds. Let

ws = max ‖z‖
�

(5.5)

while z sweeps through the set of the feasible basic solutions of the system
WT
s z ≤ qs, i.e., of the constraint set of problem Ds(x). (Basic solutions are

defined by first converting the system into an equality system by adding slack
variables. – We assumed that the dual recourse problems are feasible.) Let
moreover w = max1≤s≤S ws.

Observation 22 Assumption 21 holds if we have w ≥ w.

Proof. Given scenario s and x ∈ Ks, the problem Ds(x) has an optimal
solution. Hence an optimal basic solution also exists, let z?s denote one of those.

Since we have ‖z?s‖� ≤ w by the definition of w, it follows that z?s is a
feasible solution of Ds(x, w) provided w ≥ w. �

If w is not known, then the penalty parameter can be adjusted in the course
of the solution process, ensuring that q(xi, w) = q(xi) holds for the known
iterates; in accordance with the idea of Ruszczyński and Świȩtanowski [152].
I have worked out the necessary adjustments in the approximate constrained
level method. We implemented this adjustment scheme with Zoltán Szőke, and
reasonably low weights proved sufficient in our experiments.

There are special problem classes where the bound w is computable, the
most notable is that of network recourse problems.

Observation 23 If the recourse problems Rs(x) (s = 1, . . . , S) are network
flow problems, then w ≤ max1≤s≤S ‖qs‖1 .

Proof easily follows from the construction of the dual vector in the network
simplex method, based on the observation of Fulkerson and Dantzig [67] that
any basis matrix in a network problem corresponds to a rooted spanning tree.

�
With the growing size of network design problems that need to be solved

in logistics and transportation, my approach is worthwhile to examine in a
practical framework, as observed by Rahmaniani, Crainic, Gendreau and Rei
[138].

A technical comment

The price we pay for applying the constrained formulation (21) is that two
recourse problems need to be solved for every scenario in each master iteration:
Rs(x, w) to evaluate the recourse function, and (5.3) to measure infeasibility.
Though it turns out that the solution of a single second-stage problem is often
sufficient.

Observation 24 Let w > w. Then, for each scenario s and x ∈ X, an optimal
basic solution of problem Rs(x, w) is also an optimal solution of problem (5.3).
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The proof is based on the well-know relationship between primal and dual LP
problems that I recount in Appendix A.2.
Proof. Let x̂ ∈ X. Let us consider a scenario s and let ŵ > ws. The definition
(5.5) of ws ensures that any feasible basis of the problem Ds(x̂, ŵ) must contain
all the slack vectors corresponding to the constraints ‖z‖

�
≤ w. The rest of the

basis vectors form a basis of problem Ds(x̂). Such a basis of Ds(x̂, ŵ) remains
feasible for any w > ws. It follows that each of the dual recourse problems
{Ds(x̂, w) |w > ws } has the same set of feasible bases.

According to Observation 57 in Appendix A.2, each of the recourse problems
{Rs(x̂, w) |w > ws } has the same set of dual feasible bases. Let B̂ be an optimal

basis (that we assumed to exist), and let (ŷ, d̂) denote the corresponding optimal
basic solution. Given a feasible solution (y,d),

qTs y − qTs ŷ ≥ w
(
‖d̂‖� − ‖d‖�

)
holds for any w > ws,

due to the optimality of (ŷ, d̂). The left-hand side does not depend on w, hence

the right-hand side must be non-positive. It follows that (ŷ, d̂) is an optimal
solution of the problem (5.3: x = x̂). �

5.3 Summary

In [62], I proposed handling second-stage infeasibility through a constraint func-
tion in the master problem, and adapted the approximate constrained level
method [51] to solve the resulting special master problem.

This formulation admits more effective solution methods than the appli-
cation of feasibility cuts. The approximate constrained level method that I
adapted to this problem is a primal-dual method, and the rule of tuning the
dual iterate keeps a fine balance between feasibility and optimality issues. More-
over, the regularization extends to feasibility issues.

But this approach requires extending the recourse function to the whole
space. I worked with penalized formulations of the recourse problem, and ex-
amined the necessary magnitude of the penalty. There are special problem
classes where the necessary magnitude is computable, the most notable is that
of network recourse problems. For general recourse problems, I worked out a
means of adjusting the penalty parameter in the course of the solution process.

We implemented the methods with Zoltán Szőke who was my doctoral stu-
dent at the Eötvös Loránd University. Computational experiments confirmed
the workability of the approach.

With the growing size of network design problems that need to be solved
in logistics and transportation, this approach is worthwhile to examine in a
practical framework, as observed by Rahmaniani, Crainic, Gendreau and Rei
[138].
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Chapter 6

Risk constraints in
two-stage stochastic
programming problems

In this chapter I discuss solution schemes for two-stage stochastic program-
ming problems with CVaR and stochastic ordering constraints applied on the
recourse function. We work with the two-stage stochastic programming problem
of Chapter 4, keeping Assumption 19 on relatively complete recourse.

6.1 Background

Given x ∈ X let us consider the recourse function values qs(x) (s = 1, . . . , S)
as realizations of a random recourse function value Q(x).

A risk constraint on the recourse. Ahmed [1] adds a risk constraint in
the form G (Q(x) ) ≤ ρ to the first-stage problem (4.2). The function G maps
a certain family of random variables to the set of the real numbers, and ρ is a
constant.

A coherent risk measure G results in a convex x 7→ G (Q(x) ) function.
Among other risk mappings, Ahmed considers applying CVaR in the role of
G. For the solution of the resulting problems, he develops special cutting plane
methods. One type uses disaggregate cuts. The other type uses aggregate cuts,
and employs parametric programming to explore the efficient frontier.

The first-stage problem takes the form

min cTx + E (Q(x))
such that x ∈ X,

β CVaRβ (Q(x)) ≤ ρ,
(6.1)

where the parameters β and ρ are set by the decision maker.

57
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A stochastic ordering constraint on the recourse. Two-stage problems
with stochastic ordering constraints were first considered by Schultz and co-
workers, an overview can be found in [46].

Dentcheva and Martinez [38] impose an increasing convex ordering constraint
on the recourse. Based on Theorem 1.5.7 in [111], they adopt the following
characterization as a definition of the increasing convex order: given integrable
random variables Q, Q̂ representing costs, Q �

IC
Q̂ if and only if

E( [Q− t]+) ≤ E
( [
Q̂− t

]
+

)
holds for each t ∈ IR.

This is analogous to the characterization (b) in Chapter 3 of the second-order

stochastic dominance relation. We have Q �
IC
Q̂ if and only if −Q �

SSD
−Q̂

holds.
Introducing an IC-constraint, the first-stage problem takes the form

min cTx + E (Q(x))
such that x ∈ X,

Q(x) �
IC
Q̂.

(6.2)

Here Q̂ is a given integrable random variable, representing a benchmark cost or
loss. Applying results of Ogryczak and Ruszczyński [118], and Dentcheva and
Ruszczyński [43], Dentcheva and Martinez develop new characterizations of the
increasing convex order. They also construct further finite linear models, based
on the results of Dentcheva and Ruszczyński cited in Chapter 3. Dentcheva
and Martinez develop two special decomposition methods for the solution of
the resulting problems: one uses quantile functions, and the other uses excess
functions. These decomposition methods are based on disaggregate models,
though the latter also employs aggregate cuts. The authors implemented these
methods and present encouraging test results.

6.2 Contribution and application of the results

In [64], I generalized the on-demand accuracy approach to the CVaR-constrained
problem (6.1) and the stochastic ordering-constrained problem (6.2).

The proposed method applies the following algorithm that is a specialization
of Algorithm 13. The main feature is that the descent target is set according
to Corollary 17. Here the target regulating parameter κ is fixed according to
(2.23). A minor modification is that exact supporting functions are constructed
at substantial iterates (i.e., the accuracy tolerance of the oracle is set to 0).

Algorithm 25 A partially exact version of the constrained level method.

25.0 Parameter setting.
Set the stopping tolerance ε > 0.

Set the parameters λ and µ (0 < λ, µ < 1).

Set the accuracy regulating parameter κ such that 0 < κ < 1− λ.
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25.1-4
are the same as the corresponding steps in Algorithm 13.

25.5 Bundle update.
Let δi+1 = 0.

Call an oracle of Specification 14 with the following inputs:
- the current iterate xi+1,
- the current dual iterate αi,
- the accuracy tolerance 0, and
- the descent target κ

(
αiϕi(xi+1) + (1− αi)ψi(xi+1)

)
+ (1− κ)φi.

Let li+1(x) and l′i+1(x) be the linear functions returned by the oracle.

If the descent target was reached then let Ji+1 = Ji ∪ {i+ 1},
otherwise let Ji+1 = Ji.
Increment i, and repeat from step 25.2.

(In [64], the term ’partly inexact’ was used for the above algorithm. In this
dissertation, I call the method ’partially exact’ to keep the terminology consis-
tent.)

Handling a CVaR constraint on the recourse

In order to apply the partially exact constrained level method to problem (6.1),
we need an appropriate oracle, i.e., one that satisfies Specification 14. The
objective function is cTx+E (Q(x)), and its handling was described in Chapter
4. The constraint function is β CVaRβ (Q(x)) − ρ. Direct substitution of the
computational formula (3.3) into the CVaR constraint function would lead to
an unbounded domain, causing technical problems in the application of a level-
type solution method. In the present case, though, we only need supporting
linear functions to the constraint function. Applying (3.9), we get that

β CVaRβ

(
Q(x)

)
= max

(π1,...,πS)∈Π

S∑
s=1

πs qs(x) holds for any x, (6.3)

where Π =
{

(π1, . . . , πS) ∈ IRS
∣∣ 0 ≤ πs ≤ ps (s = 1, . . . , S),

∑S
s=1 πs = β

}
.

(6.3) shows moreover that the constraint function inherits Lipschitz continuity
from the recourse functions.

Having fixed x = x̂, an optimal solution vector (π̂1, . . . , π̂S) of (6.3) can be

found by just sorting the values qs(x̂) (s = 1, . . . , S). Let ˆ̀
s(x) (s = 1, . . . , S)

denote supporting linear functions to the respective recourse functions qs(x), at

x̂. Then
∑S
s=1 π̂s

ˆ̀
s(x) is a supporting linear function to β CVaRβ

(
Q(x)

)
at x̂,

because β CVaRβ

(
Q(x)

)
≥
∑S
s=1 π̂s qs(x) holds for any x, due to (6.3).

As in Chapter 4, let Ũs denote the set of the known dual feasible solutions
of the sth recourse problem (s = 1, . . . , S). These sets are maintained in the
oracle. A disaggregate model of the function CVaRβ

(
Q(x)

)
can be computed as
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CVaRβ

(
Q̃(x)

)
, where Q̃(x) denotes a random function value with realizations

q̃s(x) (s = 1, . . . , S). Of course we have CVaRβ

(
Q̃(x)

)
≤ CVaRβ

(
Q(x)

)
due to

the monotonicity of CVaR.

Algorithm 26 A partially exact oracle for the solution of problem (6.1).

The input parameters are:
x̂ : the current iterate,
α̂ : the current dual iterate, and
θ̂ : the descent target.
(Concerning accurcy tolerance, δ̂ = 0 is assumed.)

Evaluating the disaggregate model of the objective function.

Let ûs (s = 1, . . . , S) be respective optimal solutions of

max uTs (hs − Tsx̂) such that us ∈ Ũs.

Let `(x) = cTx +
∑S
s=1 ps û

T
s (hs − Tsx)

(a support function to cTx + q̃(x) at x̂).

Evaluating the disaggregate model of the constraint function.

Let (π̂1, . . . , π̂S) denote an optimal solution of

max
∑S
s=1 πs q̃s(x̂) such that (π1, . . . , πS) ∈ Π.

Let `′(x) =
∑S
s=1 π̂s û

T
s (hs − Tsx)− ρ

(a support function to βCVaRβ

(
Q̃(x)

)
− ρ at x̂).

If α̂`(x̂) + (1− α̂)`′(x̂) ≥ θ̂ then the descent target has not been reached;

the oracle returns the linear functions `(x) and `′(x).

Otherwise exact supporting functions are constructed:

Let ûs be respective optimal solution of Ds(x̂) (s = 1, . . . , S), and

let `(x) = cTx +
∑S
s=1 ps û

T
s (hs − Tsx).

Let (π̂1, . . . , π̂S) denote the maximizer of (6.3), and

let `′(x) =
∑S
s=1 π̂s û

T
s (hs − Tsx)− ρ.

The dual vectors ûs (s = 1, . . . , S) are added to the respective sets Ũs, and
the oracle returns the linear functions `(x) and `′(x).

(This oracle requires initialization, i.e., the setting of the starting sets Ũs for
s = 1, . . . , S.)
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Handling a stochastic ordering constraint

I proposed the application of an IC-measure, analogous to the dominance mea-
sure (3.11). Let

H (Q(x)) = min
{
ξ ∈ IR

∣∣∣ Q(x) �
IC
Q̂+ ξ

}
, (6.4)

a function of x. Here ξ is a ’certain’ (i.e., non-random) loss. Clearly Q(x) �
IC
Q̂

holds if and only if H (Q(x)) ≤ 0. Hence the IC-constrained problem (6.2) can
be formulated as

min cTx + E (Q(x))
such that x ∈ X,

H (Q(x)) ≤ 0.
(6.5)

It is easily seen that H (Q(x)) is a convex function of x. Moreover, considering

Q(x) �
IC
Q̂+ ξ represented as a finite system of linear inequalities, a support-

ing linear function to H (Q(x)) can be constructed for a given x̂. This allows
constructing a convex polyhedral model of the function H (Q(x)), to be used in
the optimization process. For the sake of simplicity, I sketch the construction
in the equiprobable case. Converting the relation Q(x) �

IC
Q̂ + ξ in (6.4) to

−Q(x) �
SSD
−Q̂ − ξ, and expressing the latter using tail expectations in the

manner of (3.12), we compute H (Q(x)) as

min ξ

such that

Tailβ(−Q(x)) ≥ Tailβ(−Q̂) − βξ holds for β ∈
{

1
S ,

2
S , . . . , 1

}
.

(6.6)

Taking into account (3.2), the tail-inequalities can be transformed into CVaR-
inequalities. Further simple transformations show that H (Q(x)) is the upper
cover of the functions

CVaRβ(Q(x))− CVaRβ(Q̂)

(
β ∈

{
1

S
,

2

S
, . . . , 1

})
. (6.7)

Polyhedral models of these individual functions can be constructed using (6.3).
In the master problem, we include an aggregate model of H (Q(x)). In the

oracle, on the other hand, we store the results of all the second-stage problems
solved. This allows the application of the on-demand accuracy approach.

A computational study

In collaboration with Leena Suhl, Achim Koberstein and Christian Wolf from
the DS&OR (Decision Support & Operations Research) Lab of Paderborn Uni-
versity, we implemented and compared different methods for the solution of the
CVaR-constrained problem (6.1), and performed an extensive computational
study. The following methods were compared:
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DEQ: solution of the equivalent linear programming problem, composed using
the linear programming formulation of the CVaR constraint, obtained
from (3.3).

Benders-Risk: a pure cutting-plane method applied to the aggregate master
problem. A special stopping criterion is used: the current gap is computed
as the maximum of the dual function h defined as in (2.30), setting δ = 0
always.

Benders-Risk-ODA: an unregularized method with an oracle of on-demand
accuracy. The master problem is in aggregate form, but the oracle stores
disaggregate information. A dual variable is used to construct a compos-
ite function which, in turn, is used to decide whether the second-stage
problems need to be solved in the current iteration. (This is the sole role
of the dual variable, otherwise the method is not a primal-dual method.)
The dual variable is computed as the maximizer of the dual function h
defined as in (2.30), setting δ = 0 always. The current gap is computed
as the maximum of the dual function.

Level-Risk: the constrained level method of [99]. The aggregate model is used.

Level-Risk-ODA: the partially exact constrained level method of Algorithm
25, with the oracle of Algorithm 26.

Our implementation is based on the solver code described in Wolf and Kober-
stein [185], Wolf [183] and Wolf, Fábián, Koberstein and Suhl [184]. The imple-
mentation can also handle feasibility cuts, in an unregularized manner.

Test problems were drawn from the following sources: the Slptestset collec-
tion of Ariyawansa and Felt [4]; problems randomly generated by the SLP-IOR
system of Kall and Mayer [85]; the POSTS collection of Holmes [82]; sampled
versions of the instances contained in the testset used by Linderoth et al. [101];
and real-life gas-purchase planning problems by Koberstein et al. [94]. We
tested the methods on a total of 44 problems.

The expected value problem solution was chosen as the first stage initial
solution. We set λ = 0.5 and κ = 0.5 for all experiments. The probability β was
set to 0.1 in our CVaR formulas, meaning a confidence level 0.9. To set the value
for ρ in the CVaR constraint, each test instance was solved both optimizing
the expected value and the CVaR of the objective function. Let HN CV aR
be the CVaR of the optimal expected value solution and let MIN CV aR be
the minimized CVaR value. We set ρ to 1

2HN CV aR + 1
2MIN CV aR, thus

guaranteeing that the resulting problem instance is solvable.
All the computing times reported are wall-clock times of the solution pro-

cess, given in seconds, without the times for reading in the SMPS files. All
experiments were carried out on a processor with four physical cores, but eight
logical cores due to hyper-threading. The underlying LP solver was the Cplex
12.4 dual simplex solver, with one thread. The Cplex barrier solver was used
to solve the equivalent linear programming problems, with eight threads. The
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appendix of our paper [64] contains detailed computational results, i.e., solu-
tion times for every method and every problem instance. Here I only recount
statistics and observations that I consider relevant.

% of Benders-Risk

DEQ 290 108 %
Benders-Risk 267 100 %

Benders-Risk-ODA 168 63 %
Level-Risk 50 19 %

Level-Risk-ODA 49 18 %

Table 6.1: Average computing times of the different methods.

Table 6.1 shows average computing times of the different methods. The
columns contain solution times in mean values and as percentages of those of
the Benders-Risk method.

all iterations substantial insubstantial

Benders-Risk 523.1 523.1
Benders-Risk-ODA 937.9 114.4 823.5

Level-Risk 156.6 156.6
Level-Risk-ODA 231.2 72.1 159.1

Table 6.2: Averages of master iteration counts of the decomposition methods.

Table 6.2 shows average master iteration counts of the decomposition meth-
ods. The columns contain average numbers of all iterations, of substantial
iterations, and of unsubstantial iterations.

Each of the decomposition methods outperformed the direct solution ap-
proach of DEC in our experiments. The effect of regularization seems re-
markable. The regularized methods Level-Risk and Level-Risk-ODA proved
much faster than the unregularized counterparts Benders-Risk and Benders-
Risk-ODA, respectively.

In terms of cumulated running times, the on-demand accuracy approach of
Level-Risk-ODA resulted in a slight improvement over the level regularization
of Level-Risk. In terms of substantial iteration counts, however, the difference is
significant: Level-Risk-ODA performed less than half as many substantial iter-
ations as Level-Risk did. (Second-stage problems are solved only in substantial
iterations.) This implies that depending on the size of the second-stage prob-
lems, and the solver used for the master problem, the effect of the on-demand
approach may become significant.

Concerning unregularized decomposition methods, the on-demand accuracy
approach of Benders-Risk-ODA resulted in a 37% reduction in running time
over the plain cutting-plane method of Benders-Risk.
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Figure 6.1: Performance profiles of the different methods.

According to the performance profiles shown in Figure 6.1, roughly 35%
of the test instances are solved fastest by the regularized on-demand accuracy
approach of Level-Risk-ODA, and this method solves about 80% of the instances
within twice the time of the fastest method. (The DEQ approach is in more
than 50% of the cases at least four times slower than the fastest method.)

Application of the results

We formulated and solved large instances of the CVaR-constrained version of the
strategic gas purchase planning problem of [94]. The aim was to hedge against
the risk caused by potential low demand. The gas utility company decided not
to implement the optimal solution obtained from the risk-averse problems; they
preferred an insurance cover. The experiments were still useful, because decision
makers could compare the cost of an insurance cover to the decrease in average
profit due to a risk constraint.

6.3 Summary

In [64], I generalized the on-demand accuracy approach to risk-averse two-stage
problems. I considered two problem types, applying a CVaR constraint or a
stochastic ordering constraint, respectively, on the recourse. I reformulated the
latter problem using the dominance measure described in Chapter 3.

I adapted the partially inexact version of the constrained level method, re-
counted in Chapter 2, to the resulting risk-averse problems. The main feature
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is that the descent target is a convex combination of the model function value
at the new iterate on the one hand, and the best upper estimate known, on the
other hand.

In collaboration with Leena Suhl, Achim Koberstein and Christian Wolf
from the DS&OR (Decision Support & Operations Research) Lab of Paderborn
University, we implemented and compared different methods for the solution of
the CVaR-constrained problem (6.1), and performed an extensive computational
study.

Each of the decomposition methods outperformed the direct solution ap-
proach in our experiments. The effect of regularization proved remarkable. In
terms of cumulated running times, the on-demand accuracy approach resulted
in a slight improvement over the level regularization. – In terms of substantial
iteration counts, however, the difference was significant. (Second-stage problems
are solved only in substantial iterations.) This implies that depending on the
size of the second-stage problems, and the solver used for the master problem,
the effect of the on-demand approach may become significant. – Roughly 35%
of the test instances were solved fastest by the regularized on-demand accuracy
approach, and this method solved about 80% of the instances within twice the
time of the fastest method.

We formulated and solved large instances of the CVaR-constrained version
of the real-life strategic gas purchase planning problem of my co-workers. The
aim was to hedge against the risk caused by potential low demand (in a mild
winter). The gas utility company decided not to implement the optimal solution
obtained from the risk-averse problems; they preferred an insurance cover. The
experiments were still useful, because decision makers could compare the cost
of an insurance cover to the decrease in average profit due to a risk constraint.
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Chapter 7

Probabilistic problems

In this chapter I consider probability maximization and probabilistic constrained
problems in the respective forms of

max P
(
g(x) ≥ Z

)
such that x ∈ X (7.1)

and
min h(x) such that x ∈ X, P

(
g(x) ≥ Z

)
≥ p, (7.2)

where Z denotes an n-dimensional random vector of known distribution, the
decision vector is x ∈ IRm, the feasible domain being X ⊂ IRm. The functions
are g : IRm → IRn and h : IRn → IR, and p� 0 is a given probability. In many
applications, g(x) = Tx is a linear function with an appropriate matrix T .

7.1 Historical overview

The probabilistic constrained decision model was introduced by Charnes, Cooper
and Symonds [21]. These authors use the term chance constraint. Variants and
extensions were presented in [20]. Though these early models were based on in-
dividual chance constraints. A joint probabilistic constraint based on a random
vector having stochastically independent components was considered by Miller
and Wagner [109]. The more general problem that allowed stochastically depen-
dent components was introduced by Prékopa [126, 128] and further investigated
by him and his followers.

The primary line of research has been to investigate conditions under which
the level sets

Lp = { z | P (z ≥ Z) ≥ p } (7.3)

or
Mp =

{
x
∣∣ P
(
g(x) ≥ Z

)
≥ p

}
(7.4)

are convex. Prékopa made a momentous step by developing the theory of log-
concave measures [127, 129]. This was later generalized in [12, 14, 168]. A recent
advance in this line is the concept eventual convexity [78, 79], where convexity
of the level set Mp is proven under weaker assumptions.

67
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7.2 Solution methods

In [133], Prékopa, Ganczer, Deák and Patyi developed a model (STABIL) for
a planning problem in the Hungarian electrical energy sector. The resulting
stochastic programming problem was solved by a feasible direction method of
Zoutendijk [188]. A non-standard dual formulation for probabilistic constrained
problems was proposed by Komáromi [95, 96]. This is a max-min formulation,
the inner problem being minimization of a linear function over the level set
Lp. For the solution of the dual problem, a special feasible direction method is
developed in [95].

Cutting-plane methods were also developed for probabilistic constrained
problems, approximating the level set Lp. The method of Prékopa and Szántai
[134] applies a Slater point to determine where to construct the next cut.
(Namely, the intersection of the boundary of Lp on the one hand, and the
interval connecting the Slater point with the current iterate on the other hand.)
The method is related to that of Veinott [178]. In his solver built for the STA-
BIL problem, Szántai [163] developed an interval bisection algorithm for safely
computing the intersection point on the boundary of Lp when probability values
cannot be calculated with high precision. He also applied Veinott’s technique
of moving the Slater point in the course of the solution process, which results
in faster convergence and makes the supporting hyperplane method equivalent
to a method of Zoutendijk [188]. Mayer [108] proposed a central cutting plane
method, an adaptation of Elzinga and Moore [47]. Cutting-plane methods con-
verge in less iterations than feasible direction methods do, since former gradient
information is retained.

Prékopa [130] initiated a novel solution approach by introducing the concept
of p-efficient points. z is called p-efficient if F (z) ≥ p and there exists no z′ such
that z′ ≤ z, z′ 6= z, F (z′) ≥ p. Prékopa, Vizvári, and Badics [135] considered
problems with random parameters having a discrete finite distribution. They
began with enumerating p-efficient points and based on them, built a convex
relaxation of the problem.

Dentcheva, Prékopa, and Ruszczyński [40] formulated the probabilistic con-
straint in a split form: Tx = z with z ∈ Lp; and constructed a Lagrangian
dual by relaxing the constraint Tx = z. The resulting dual functional is the
sum of the respective optimal objective values of two simpler problems. The
first auxiliary problem is a linear programming problem, and the second one
is the minimization of a linear function over the level set Lp. Based on this
decomposition, the authors developed a method, called cone generation, that
finds new p-efficient points in the course of the optimization process.

As minimization over the level set Lp entails a substantial computational
effort, the master part of the decomposition framework should succeed with as
few p-efficient points as possible. Efficient solution methods were developed by
Dentcheva, Lai, and Ruszczyński [37] and Dentcheva and Martinez [39]; the
latter applies regularization to the master problem. Approximate minimization
over the level set Lp is another enhancement. Dentcheva et al. [37] constructed
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approximate p-efficient points through approximating the original distribution
by a discrete one. More recently, Van Ackooij et al. [173] employed a spe-
cial bundle-type method for the solution of the master problem, based on the
on-demand accuracy approach of de Oliveira and Sagastizábal [27]. This means
working with inexact data and regulating accuracy in the course of the optimiza-
tion. Approximate p-efficient points with on-demand accuracy were generated
employing the integer programming approach of [105].

The approaches mentioned so far exploit convexity of the level sets Lp orMp.
Though the level sets are often non-convex, convex approximation is sometimes
possible, e.g., Pintér [124]. Recent approaches include Nemirovski and Shapiro
[113], Ahmed [2].

Deák applied his successive regression approximation method to the solution
of probabilistic constrained problems in [31].

Different types of sampling methods also proved useful recently: the ap-
proach of uncertain convex programs by Calafiore, Campi, Garatti and Caré
[17, 19, 18]; sample average approximation and integer programming by Ahmed,
Luedtke, Nemhauser and associates [104, 105, 103].

7.3 Estimating distribution function values
and gradients

Most solution methods need an oracle that computes or estimates distribution
function values and gradients. Variance reduction Monte Carlo simulation algo-
rithms have originally been developed to be used in feasible direction and outer
cutting plane methods for probabilistic constrained problems. An abundant
stream of research in this direction has been initiated by the models, meth-
ods and applications pioneered by Prékopa and his school. Normal distribution
played a focal role.

Deák’s method. This method was published in [29], [30]. Its main thrust
is to decompose the normal random vector into two parts, a direction and a
distance from the origin. This decomposition can be used both in the generation
of sample points and in the calculation of the probability content of a rectangle.
It is known that the direction is uniformly distributed on the n-dimensional unit
sphere, and the distance from the origin has a chi-distribution with n degrees of
freedom. The two parts are independent of each other. The advantage of this
method is that it computes the probability content of the rectangle in a ’line
section to line section’ way, instead of a ’point to point’ way.

Szántai’s method. The method was published in [161], [162], [163]. It is
quoted in Sections 6.5 and 6.6 of Prékopa’s book [132]. This procedure can be
applied to any multivariate probability distribution function. The only condition
is that we have to be able to calculate the one- and the two-dimensional marginal
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probability distribution function values. Accuracy can easily be controlled by
changing the sample size.

As we have

F (z1, . . . , zn) = P (Z1 ≤ z1, . . . , Zn ≤ zn) = 1− P
(
A1 ∪ · · · ∪An

)
,

where Ai = {Zi < zi} (i = 1, . . . , n), we can apply bounding and simulation
results for the probability of the union of the events. If µ denotes the number
of those events which occur out of the events A1, A2, . . . , An, then the random
variable

ν0 =

{
0, if µ = 0
1, if µ ≥ 1

obviously has expected value P = P(A1 ∪A2 ∪ · · · ∪An).
Further two random variables having expected value P can be defined by

taking the differences between the true probability value and its second order
lower and upper Boole–Bonferroni bounds. The definitions of these bounds can
be found in Chapter 6 of [132].

We can estimate the expected value of these three random variables in the
same Monte Carlo simulation procedure and so we get three different estimates
for the probability value P . If we estimate the pairwise covariances of these
estimates it will be easy to get a final, minimal variance estimate, too. The
technique of this is well known in the simulation literature, it is called regression
technique.

Gassmann [68] combined Szántai’s general algorithm and Deák’s algorithm
into a hybrid algorithm. The efficiency of this algorithm was explored in [34].

One can use higher order Boole-Bonferroni bounds, too. It will further
reduce the variance of the final estimation. However, the necessary CPU time
increases, which may reduce the overall efficiency of the resulting estimation.
Many new bounds for the probability of the union of events has been developed
in the last two decades. These bounds use not only the aggregated information
of the first few binomial moments but they also use the individual product event
probabilities which sum up the binomial moments. The most important results
of this type can be found in the papers by [83], [186], [169], [136], [15], [16], [13]
and [107]. Szántai in [165] showed that the efficiency of his variance reduction
technique can be improved significantly if one uses some of the above listed
bounds.

Genz’s method. Genz in [70] deals with the estimation of the multivariate
normal probability content of a rectangle, a problem more general than the
calculation of multivariate probability distribution function values. The main
idea is to transform the integration region to the unit cube [0, 1]n by a se-
quence of elementary transformations. Genz describes three different methods
for solving this transformed integral. The first method is based on a polyno-
mial approximation of the integrand. For better performance, the unit cube is
split into subregions which are subsequently partitioned further whenever the
approximation is not accurate enough. The second method uses quasi-random
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integration points. Finally, the third method uses pseudo-random integration
points which results in error estimates being statistical in nature.

Gradient computation. If a multivariate probability distribution function
is differentiable everywhere then its partial derivatives have the general formula

∂F (z1, . . . , zn)

∂zi
= F (z1, . . . , zi−1, zi+1, . . . , zn| zi)fi(zi), (7.5)

where F (z1, . . . , zn) is the probability distribution function of the random vari-
ables ξ1, . . . , ξn, and fi(z) is the probability density function of the random
variable ξi. F (z1, . . . , zi−1, zi+1, . . . , zn| zi) is the conditional probability dis-
tribution function of the random variables ξ1, . . . , ξi−1, ξi+1, . . . , ξn, given that
ξi = zi. This is a well-known formula, see, e.g., section 6.6.4 in Prékopa’s book
[132].

It is known that any conditional probability distribution of the multivariate
normal probability distribution is also normal. Hence we can compute gradient
components using (7.5).

7.4 Contribution

In [55], I proposed a polyhedral approximation of the epigraph of the proba-
bilistic function. This approach is analogous to the use of p-efficient points (has
actually been motivated by that concept). The dual function is constructed and
decomposed in the manner of Dentcheva, Prékopa and Ruszczyński [40], but the
nonlinear subproblem is easier. In [40], finding a new p-efficient point amounts
to minimization over the level set Lp. In contrast, a new approximation point
in [55] is found by unconstrained minimization. Moreover, a practical approx-
imation scheme was developed in the latter paper: instead of exactly solving
an unconstrained subproblem occurring during the process, just a single line
search proved sufficient. The approach is easy to implement and endures noise
in gradient computation.

My coauthors were Edit Csizmás, Rajmund Drenyovszki, Wim van Ackooij,
Tibor Vajnai, Lóránt Kovács and Tamás Szántai. Wim van Ackooij works for
EDF Research and Development, France. Tamás Szántai is professor emeritus
at the Budapest University of Technology and Economics. The rest of the
coauthors are my colleagues at the John von Neumann University. The model
problems and optimization methods were developed by me. Wim van Ackooij
collaborated in compiling a historical overview, and in test problem selection.
Tamás Szántai contributed with his expertise in estimating distribution function
values and gradients. Implementation and testing was done by my colleagues at
the John von Neumann University, and they also contributed in methodological
issues concerning the oracle and finding a starting solution.

The paper [55] deals with an n-dimensional nondegenerate normal probabil-
ity distribution. Let F (z) denote the distribution function. Due to logconcavity

dc_1634_19

Powered by TCPDF (www.tcpdf.org)



72 CHAPTER 7. PROBABILISTIC PROBLEMS

of the normal distribution, the probabilistic function φ(z) = − logF (z) is con-
vex. We discuss a probability maximization problem in the form

min φ(Tx) subject to Ax ≤ b, (7.6)

where vectors are x ∈ IRm, b ∈ IRr, and the matrices T and A are of sizes n×m
and r ×m, respectively. We assume that the feasible domain is not empty and
is bounded.

Exploiting the monotonicity of the objective function, problem (7.6) can be
written as

min φ(z) subject to Ax− b ≤ 0, z − Tx ≤ 0. (7.7)

This problem has an optimal solution because the feasible domain of (7.6) is
nonempty and bounded. Introducing the multiplier vector −y ∈ IRr,−y ≥ 0 to
the constraint Ax−b ≤ 0, and −u ∈ IRn,−u ≥ 0 to the constraint z−Tx ≤ 0,
the Lagrangian dual of (7.7) can be written as

max {yT b− φ?(u)} subject to (y,u) ∈ D, (7.8)

where
D :=

{
(y,u) ∈ IRr+n | y,u ≤ 0, TTu = ATy

}
. (7.9)

According to the theory of convex duality, this problem has an optimal solution.

Polyhedral models

Suppose we have evaluated the function φ(z) at points zi (i = 0, 1, . . . , k); we
introduce the notation φi = φ(zi) for respective objective values. An inner
approximation of φ(.) is

φk(z) = min
k∑
i=0

λiφi

such that

λi ≥ 0 (i = 0, . . . , k),
k∑
i=0

λi = 1,
k∑
i=0

λizi = z.

(7.10)

If z 6∈ Conv(z0, . . . ,zk), then let φk(z) := +∞. A polyhedral model of problem
(7.7) is

min φk(z) subject to Ax− b ≤ 0, z − Tx ≤ 0. (7.11)

We assume that (7.11) is feasible, i.e., its optimum is finite. This can be ensured
by proper selection of the initial z0, . . . ,zk points. The convex conjugate of
φk(z) is

φ?k(u) = max
0≤i≤k

{uTzi − φi}. (7.12)

As φ?k(.) is a cutting-plane model of φ?(.), the following problem is a polyhedral
model of problem (7.8):

max {yT b− φ?k(u)} subject to (y,u) ∈ D. (7.13)
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Linear programming formulations

The primal model problem (7.10)-(7.11) will be formulated as

min
k∑
i=0

φiλi

such that λi ≥ 0 (i = 0, . . . , k),

k∑
i=0

λi = 1,

k∑
i=0

λizi −Tx ≤ 0,

Ax ≤ b.

(7.14)

The dual model problem (7.12)-(7.13), formulated as a linear programming
problem, is just the LP dual of (7.14):

max ϑ + bTy

such that u, y ≤ 0,

ϑ + zTi u ≤ φi (i = 0, . . . , k),

− TTu + ATy = 0.

(7.15)

Let (λ0, . . . , λk, x ) and (ϑ, u, y ) denote respective optimal solutions of the
problems (7.14) and (7.15) – both existing due to our assumption concerning
the feasibility of (7.11) and hence (7.14). Let moreover

z =

k∑
i=0

λizi. (7.16)

Observation 27 We have

(a) φk(z) =
k∑
i=0

φiλi = ϑ+ uTz,

(b) ϑ = −φ?k (u),

(c) φk(z) + φ?k (u) = uTz and hence u ∈ ∂φk(z).

Proof.

(a) The first equality follows from the equivalence of problems (7.14) and (7.11).
The second equality is a straight consequence of complementarity. Indeed,

dc_1634_19

Powered by TCPDF (www.tcpdf.org)



74 CHAPTER 7. PROBABILISTIC PROBLEMS

λi > 0 implies that the corresponding reduced cost component is 0 in
(7.14), i.e., ϑ+ uTzi = φi. It follows that

k∑
i=0

φiλi =

k∑
i=0

(
ϑ+ uTzi

)
λi = ϑ

k∑
i=0

λi + uT
k∑
i=0

λizi.

(b) follows from the equivalence of problems (7.15) and (7.13).

(c) The equality is a consequence of (a) and (b). This is Fenchel’s equality
between u and z, with respect to the model function φk(.). The statement
on u being a subgradient is part of Theorem 23.5 in Rockafellar’s book
[140].

A column generation procedure

An optimal dual solution (i.e., shadow price vector) of the current model prob-
lem is (ϑ, u, y ). Given a vector z ∈ IRn, we can add a new column in (7.14),
corresponding to zk+1 = z. This is an improving column if its reduced cost

ρ(z) := ϑ + uTz − φ(z) (7.17)

is positive. – It is easily seen that the reduced cost of z is non-negative. Indeed,

ρ(z) ≥ ϑ + uTz − φk(z) = 0 (7.18)

follows from φk(.) ≥ φ(.) and Observation 27 (a).
In the context of the simplex method, the Markowitz column-selection rule

is widely used. The Markowitz rule selects the vector with the largest reduced
cost. Coming back to the present problem (7.14), let

R := max
z

ρ(z). (7.19)

The column with the largest reduced cost can, in principle, be found by a
steepest descent method applied to the function −ρ(z).

Remark 28 Looking at the column generation approach from a dual viewpoint,
we can see a cutting-plane method applied to the convex dual problem (7.8).
The convex conjugate function φ?(u) is approximated with the polyhedral model
function φ?k(u). From this dual viewpoint, the maximization problem (7.19) is
interpreted as finding the cut that, at the current iterate u, cuts deepest into the
epigraph of φ?k(u). – This relationship between the primal and dual approaches
is well known, see, e.g., [65, 66].

Numerical considerations

If z is such that F (z) is near zero, then the computation of the objective value
φ(z) = − logF (z) is problematic because the logarithm amplifies any errors in
F (z). Moreover, as we have ∇φ(z) = − 1

F (x) ∇F (x), gradient computation is

also error-prone for such z. To avoid these difficulties, we work under

dc_1634_19

Powered by TCPDF (www.tcpdf.org)



7.4. CONTRIBUTION 75

Assumption 29 A significantly high probability can be achieved in the proba-
bility maximization problem. Specifically, a feasible point ž is known such that
F (ž) ≥ 0.5.

By including ž of Assumption 29 among the initial columns of the master
problem, we always have F (z) ≥ 0.5 with the current solution z defined in
(7.16). Hence φ(z) can be computed with a high accuracy.

We perform a single line search in each column generation subproblem, start-
ing always from the current z. It means that a high-quality estimate can be
generated for the gradient, which designates the direction of the line search.
Once the direction of the search is determined, we only work with function val-
ues (there is no need for any further gradient information in the current column
generation subproblem). The line search is performed with a high accuracy over
the region L(F, 0.5) = { z |F (z) ≥ 0.5 } which includes the optimal solution of
the probability maximization problem (7.7).

We can carry on with the line search even if we have left the safe region
L(F, 0.5). Given a point ẑ along the search ray, let p̂ > 0 be such that p̂ ≤
F (ẑ) holds almost surely. (Simulation procedures generally provide a confidence
interval together with an estimate.) If the vector ẑ is to be included in the
master problem (7.14) as a new column, then we set the corresponding cost
coefficient as φ = − log p̂. Under such an arrangement, our model remains
consistent, i.e., the model function φk(z) is almost surely an inner approximation
of the probabilistic function φ(z).

Computational experiments and a heuristic improvement

We implemented the column generation procedure in MATLAB. The master
problem was solved with the IBM ILOG CPLEX (version 12.6.3) optimization
toolbox. The column generation subproblems (7.19) were solved by a steepest
descent method applied to the probabilistic function φ(z)−uTz, starting from
z of (7.16). Multivariate normal distribution function values were computed by
the QSIMVNV MATLAB function implemented by Genz [70]. Gradients were
computed componentwise, according to the formula (7.5).

We tested the method on ten problems, each having normally distributed
random parameters. We derived 9 test problems from the coffee blending model
of Szántai [164]. In these problems, the random parameters had up to 5 compo-
nents. Moreover we tested the method on a cash matching problem with fifteen
dimensional normal probability distribution. (In this problem we are interested
in investing a certain amount of cash on behalf of a pension fund that needs
to make certain payments over the coming 15 years of time.) Details of the
cash matching problem can be found in [37] and [77]. – All these problems
had originally been formulated as probabilistic constrained cost minimization
problems, but we transformed them into probability maximization problems by
introducing cost constraints.

Probabilistic function values were computed with high accuracy in our com-
putational experiments. (We had F (zi) ≥ 0.9 with each column zi generated
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in the column generation scheme.) Our simple implementation reliably solved
the test problems. Iteration counts were comparable to problem dimensions.
But we found that most of the computational effort was spent in the Genz
subroutine. In order to balance different efforts, we decided to apply rough
approximate solutions for the column generation subproblems, instead of the
high-precision solutions of the first test round. We performed just a single line
search in each column generation subproblem, hence a single gradient compu-
tation was performed for each new column. (Even the single line search was
approximate.) This way the solution effort of an individual column generation
decreased substantially. The application of this heuristic procedure never re-
sulted in any substantial increase in the number of new columns needed to solve
a test problem. I found this interesting and investigated possible causes.

Justification of the heuristic improvement

Let us consider an idealized setting, with a well-conditioned function f : IRn →
IR. By well-conditioned, I mean that the following assumption holds.

Assumption 30 The function f(z) is twice continuously differentiable, and
real numbers α, ω (0 < α ≤ ω) are known such that

αI � ∇2f(z) � ωI (z ∈ IRn).

Here ∇2f(z) is the Hessian matrix, I is the identity matrix, and the relation
U � V between matrices means that V − U is positive semidefinite.

We wish to minimize f over IRn. The efficiency of the steepest descent
method can be estimated on the basis of the following well-known theorem that
can be found e.g., in Chapter 8.6 of [106]. ([151] in Chapter 5.3.5, Theorem 5.7
presents a slightly different form.)

Theorem 31 Let Assumption 30 hold. We minimize f(z) over IRn using a
steepest descent method, starting from a point z0. Let z1, . . . ,zj , . . . denote the
iterates obtained by applying exact line search at each step. Then we have

f
(
zj
)
−F ≤

(
1− α

ω

)j [
f
(
z0
)
−F

]
, (7.20)

where F = minz f(z).

In our column generation subproblem, we wish to minimize f(z) = −ρ(z) =
φ(z)−uTz−ϑ. If Assumption 30 should hold for the probabilistic function φ(z),
then the objective function of the column generating problem would inherit it.
Efficiency of a steepest descent method starting from z could then be estimated
by Theorem 31. Indeed, substituting f(z) = −ρ(z), F = −R and z0 = z in
(7.20), and introducing the notation % = 1− α/ω, we get

R− ρ
(
zj
)
≤ %j

[
R− ρ (z)

]
.
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Due to (7.18), ρ (z) can be discarded in the right-hand side, and we get

ρ
(
zj
)
≥
(
1− %j

)
R for j = 1, 2, . . . ,

certifying a fast convergence. In view of the Markowitz rule mentioned above,
we find a fairly good improving vector in the column generation scheme in a
very few iterations, provided the condition number α/ω is not extremely bad.
Setting j = 1 always resulted in a good improving vector in our computational
experiments.

Assumption 30 of course does not hold throughout IRn for the function
φ(z) = − logF (z) when F (z) is a distribution function. However, the proof
of Theorem 31, as related in Chapter 8.6 of [106], actually requires bounded
Hessians only in a certain neighbourhood. I conjecture that the present objec-
tive function is well-conditioned in an area where potential optimal solutions
typically belong. The following example makes a case for this conjecture. (Be-
low, in Remark 56 of Section 10.1, I describe a means of regularizing a poorly
conditioned objective.) The column generation procedure gains traction as an
optimal solution is gradually approached.

Example 32 I illustrate the well-conditioned nature of φ(z) = − logF (z) in
case F (z) is a two-dimensional standard normal distribution function, where
the covariance between the marginals is 0.5.

The two Figures 7.1 depict the smaller and the larger eigenvalue, respectively,
of the Hessian matrix ∇2φ(z) as a function of z. In the left-hand figure (smaller
eigenvalue), contour lines from top right are 1e− 5, 1e− 4, 1e− 3, 1e− 2. In the
area not shaded gray, the smaller eigenvalue is above 1e− 5.

In the right-hand figure (larger eigenvalue), contour lines from top right are
1, 1.2, 1.4, 1.6. In the area not shaded gray, the larger eigenvalue is below 1.6.

Figure 7.2 shows contour lines of the two-dimensional normal distribution
function F (z). From top right, these contour lines belong to the probabilities
0.99, 0.95, and 0.90, respectively. The critical area for the corresponding p-
efficient points is the neighbourhood of z = (2, 2), where φ(z) is well-conditioned.

7.5 Summary

In [55], I proposed a polyhedral approximation of the epigraph of the probabilis-
tic function. I worked out a successive approximation scheme for probability
maximization; new approximation points are added as the process progresses.
In case of linear constraints, it is a column generation scheme for a linear pro-
gramming master problem. (From a dual point of view, the column generation
approach is a cutting-plane method applied to a conjugate function.)

This project was motivated by the concept of p-efficient points proposed by
Prékopa [130], and the approximation scheme is analogous to the cone gener-
ation scheme of Dentcheva, Prékopa and Ruszczyński [40]. But in my scheme,

dc_1634_19

Powered by TCPDF (www.tcpdf.org)



78 CHAPTER 7. PROBABILISTIC PROBLEMS

Figure 7.1: Contour lines of the smaller and the larger eigenvalue, respectively,
of ∇2[− logF (z)] as a function of z, for a two-dimensional normal distribution
function F (z) (−6 ≤ z1, z2 ≤ +6).

Figure 7.2: Contour lines of the two-dimensional normal distribution function
F (z).

the subproblem of finding a new approximation point is easier; it is an uncon-
strained convex optimization problem, solvable by a simple gradient descent
method. The approach is easy to implement and endures noise in gradient
computation. Hence the classic probability estimation methods are applicable.

My coauthors were Edit Csizmás, Rajmund Drenyovszki, Wim van Ackooij,
Tibor Vajnai, Lóránt Kovács and Tamás Szántai. Wim van Ackooij works for
EDF Research and Development, France. Tamás Szántai is professor emeritus
at the Budapest University of Technology and Economics. The rest of the
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coauthors are my colleagues at the John von Neumann University. The model
problems and optimization methods were developed by me. Wim van Ackooij
collaborated in compiling a historical overview, and in test problem selection.
Tamás Szántai contributed with his expertise in estimating distribution function
values and gradients. Implementation and testing was done by my colleagues at
the John von Neumann University, and they also contributed in methodological
issues concerning the oracle and finding a starting solution.

Most of the computational effort in our tests was spent in gradient compu-
tation. In order to balance different efforts, we decided to apply rough approxi-
mate solutions for the column generation subproblems, performing just a single
line search in each gradient descent method. This heuristic procedure never
resulted in any substantial increase in the number of new columns needed to
solve a test problem. I found this interesting and investigated possible causes.

The gradient descent method is remarkably effective in case the objective
function is well-conditioned in a certain neighbourhood of the optimal solution.
I make a case for conjecturing that the probabilistic function is well-conditioned
in an area where potential optimal solutions typically belong. (The bounded
formulation of Chapter 10 allows the regularization of a poorly conditioned ob-
jective.) The column generation procedure gains traction as an optimal solution
is gradually approached.
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Chapter 8

A randomized method for
handling a difficult
objective function

This project was motivated by our experiments with the inner approximation
approach to probability maximization, related in Chapter 7. I consider a min-
imization problem in the abstract form (7.6), with a convex objective function
φ(z) whose gradient computation is taxing.

In this chapter I propose a randomized version of the column generation
scheme of Chapter 7 in an idealized setting, assuming that the objective function
has bounded Hessians. I assume moreover that appropriate gradient estimates
can be constructed by simulation, with a reasonable effort. – For the sake of
simplicity, I assume that objective values are computed with a high precision.

As the proposed method bears an analogy to stochastic gradient methods,
I present a brief overview of the latter family. Then I describe the random-
ized column generation scheme. I also include an error analysis and reliability
considerations.

As mentioned above, I assume in this chapter that the objective function
φ(z) has bounded Hessians. On the other hand, I do not exploit monotonicity
of φ(z). Hence minor modifications are needed on the problems and models (7.7
- 7.15) of Chapter 7. Namely, variable splitting will be formulated as z−Tx = 0,
and, consequently, there will be no sign restriction on the dual variable u. For
convenience, I include the modified problems. Problem (7.7) is written as

min φ(z) subject to Ax− b ≤ 0, z − Tx = 0. (8.1)

The Lagrangian dual of (8.1) is

max {yT b− φ?(u)} subject to (y,u) ∈ D′, (8.2)

81
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where
D′ :=

{
(y,u) ∈ IRr+n | y ≤ 0, TTu = ATy

}
. (8.3)

A polyhedral model of problem (8.1) is

min φk(z) subject to Ax− b ≤ 0, z − Tx = 0. (8.4)

Like in Chapter 7, we assume that (8.4) is feasible. The dual model problem is

max {yT b− φ?k(u)} subject to (y,u) ∈ D′. (8.5)

The primal model problem (8.4), formulated in linear programming form, is

min
k∑
i=0

φiλi

such that λi ≥ 0 (i = 0, . . . , k),

k∑
i=0

λi = 1,

k∑
i=0

λizi −Tx = 0,

Ax ≤ b.

(8.6)

The dual model problem (8.5), formulated as a linear programming problem, is
just the LP dual of (8.6):

max ϑ + bTy

such that y ≤ 0,

ϑ + zTi u ≤ φi (i = 0, . . . , k),

− TTu + ATy = 0.

(8.7)

Let (λ0, . . . , λk, x ) and (ϑ, u, y ) denote respective optimal solutions of the
problems (8.6) and (8.7). Let moreover z be derived according to (7.16).

With these objects, Observation 27 remains valid, and the column generation
procedure of Chapter 7 remains workable.

8.1 The broader context:
stochastic gradient methods

The idea of stochastic approximation goes back to Robbins and Monro [139].
Ermoliev has been the major proponent of the method, together with his co-
workers. Many relevant articles can be found in the volume [49] edited by
Ermoliev and Wets.
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The area is under active development ever since. The approach is attrac-
tive from a theoretical point of view, but early forms might perform poorly in
practice. Recent forms combine theoretical depth with practical effectiveness.

As a recent example of the stochastic gradient approach, I sketch the robust
stochastic approximation method of Nemirovski and Yudin [114]. The problem
is formulated as

min f(x) subject to x ∈ X, (8.8)

where X ⊂ IRn is a convex compact set, and f : IRn → IR is a convex differen-
tiable function. It is assumed that, given x ∈ X, realizations of a random vector
G can be constructed such that E(G) = ∇f(x), and E(‖G‖2) ≤M2 holds with
a constant M independent of x.

The method is iterative, and a starting point x1 ∈ X is needed. Let xk ∈
X denote the kth iterate, and Gk a random estimate of the corresponding
gradient gk = ∇f(zk). Gradient estimates for different iterates are based on
independent, identically distributed samples. The next iterate is computed as

xk+1 = ΠX (xk − hkGk) , (8.9)

where hk > 0 is an appropriate step length, and ΠX denotes projection onto X,
i.e., ΠX(x) = arg minx′∈X ‖x− x′‖.

Nemirovski and Yudin prove different convergence results; from our present
point of view, the most relevant one is the following. Suppose that we wish to
perform N steps with the above procedure, and set step length to be constant:

hk =
diag(X)

M
√
N

, (8.10)

where diag(X) is the longest (Euclidean) distance occurring in X. Then we
have

E
(
f(xN )

)
−F ≤ M · diag(X)√

N
, (8.11)

where F denotes the minimum of (8.8), and

xN =

N∑
j=1

λNj xj with λNj =
hj∑N
j=1 hj

. (8.12)

8.2 Contribution:
a randomized column generation scheme

This chapter is based on Fábián, Csizmás, Drenyovszki, Vajnai, Kovács and
Szántai [54]. The results recounted in this section are my contribution.

I extend the column generation scheme of Chapter 7 to handle gradient
estimates. We solve problem (7.6) in an idealized setting. We assume that
the objective function φ(z) has bounded Hessians, and that we can construct
unbiased gradient estimates having bounded variance.
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Specifically, we need to approximately solve the column generation sub-
problem (7.19), i.e., to find a reliable near maximizer of the function ρ(z) =
ϑ + uTz − φ(z). We apply a stochastic descent method to f(z) = −ρ(z).

f(z) inherits bounded Hessians from φ(z), hence Assumption 30 holds. Gra-
dients of f(z) have the form ∇φ(z) − u. The further the column generation
procedure progresses, the smaller the gradient norm gets. To satisfy the require-
ment of bounded variance, better and better estimates are needed. Hence the
assumption on the construction of unbiased gradient estimates having bounded
variance is formulated as

Assumption 33 Given z,u ∈ IRn, the function value φ(z) can be computed
with a high precision (exactly for practical purposes), and the norm ‖∇φ(z)−u‖
can be computed with a pre-defined relative accuracy. Moreover, realizations of
an unbiased stochastic estimate G of the gradient vector ∇φ(z) can be con-
structed such that E

(
‖G−∇φ(z)‖2

)
remains below a pre-defined tolerance.

(Higher accuracy in case of norm estimation, and tighter tolerance on variance
entail larger computational effort.)

The above assumption specializes to f(z) = φ(z)− uTz − ϑ as

Assumption 34 Let z◦ ∈ IRn denote an iterate, and g◦ = ∇f(z◦) the cor-
responding gradient. Given σ > 0, we can construct realizations of a random
vector G◦, satisfying

E (G◦) = g◦ and E
(
‖G◦ − g◦‖2

)
≤ σ2 ‖g◦‖2 . (8.13)

From (8.13) follows

E
(
‖G◦‖2

)
= E

(
‖G◦ − g◦‖2

)
+ ‖g◦‖2 ≤ (σ2 + 1) ‖g◦‖2 . (8.14)

Theorem 35 Let Assumptions 30 and 34 hold. We minimize f(z) over IRn.
We apply a steepest descent method with gradient estimates: at the current
iterate z◦, a gradient estimate G◦ is generated and a line search is performed
in the opposite direction. We assume that gradient estimates at the respective
iterates are generated independently.

Having started from the point z0, and having performed j line searches, let
z1, . . . ,zj denote the respective iterates. Then we have

E
[
f
(
zj
)]
−F ≤

(
1− α

ω(σ2 + 1)

)j (
f
(
z0
)
−F

)
, (8.15)

where F = minz f(z).

Proof. Let G0, . . . ,Gj−1 denote the respective gradient estimates for the iter-
ates z0, . . . ,zj−1.

To begin with, we focus on the first line search whose starting point is
z◦ = z0. Here z◦ is a given (not random) vector. I adapt the proof of Theorem
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31, presented in Chapter 8.6 of [106], to employ the gradient estimate G◦ instead
of the gradient g◦. From ∇2f(z) � ωI, it follows that

f (z◦ − tG◦) ≤ f (z◦) − t g◦ TG◦ +
ω

2
t2 G◦ TG◦

holds for any t ∈ IR (a consequence of Taylor’s theorem). Considering expecta-
tions on both sides, we get

E [f (z◦ − tG◦)] ≤ f (z◦) − t ‖g◦‖2 + ω
2 t

2 E
(
‖G◦‖2

)
≤ f (z◦) − t ‖g◦‖2 + ω

2 t
2 (σ2 + 1) ‖g◦‖2

according to (8.14). We consider the respective minima in t separately of the
two sides. The right-hand side is a quadratic expression, yielding minimum at
t = 1

ω(σ2+1) . Inequality is inherited to minima, hence

min
t

E [f (z◦ − tG◦)] ≤ f (z◦) − 1

2ω(σ2 + 1)
‖g◦‖2 . (8.16)

For the left-hand side, we obviously have

E
[

min
t

f (z◦ − tG◦)
]
≤ min

t
E [f (z◦ − tG◦)] . (8.17)

(This is analogous to the basic inequality comparing the wait-and-see and the
here-and-now approaches for classic two-stage stochastic programing problems,
see, e.g., Chapter 4.3 of [10].)

Let z′ denote the minimizer of the line search on the left-hand side of (8.17),
i.e., f (z′) = mint f (z◦ − tG◦). (Of course z′ is a random vector since it
depends on G◦.) Substituting this in (8.17) and comparing with (8.16), we get

E [f (z′)] ≤ f (z◦) − 1

2ω(σ2 + 1)
‖g◦‖2 .

Subtracting F from both sides results in

E [f (z′)]−F ≤ f (z◦)−F − 1

2ω(σ2 + 1)
‖g◦‖2 . (8.18)

Coming to the lower bound, a well-known consequence of αI � ∇2f(z) is

‖g◦‖2 ≥ 2α (f (z◦) −F) (8.19)

(see Chapter 8.6 of [106]). Combining this with (8.18), we get

E [f (z′)]−F ≤ f (z◦)−F − α
ω(σ2+1) (f (z◦) −F)

=
(

1− α
ω(σ2+1)

)
(f (z◦) −F) .

(8.20)
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As we have assumed that z◦ is a given (not random) vector, the right-hand side
of (8.20) is deterministic, and the expectation on the left-hand side is considered
according to the distribution of G◦.

Now, let us examine the (l + 1)th line search (for 1 ≤ l ≤ j − 1) where the
starting point is z◦ = zl and the minimizer is z′ = zl+1. Of course (8.20) holds
with these objects also, but now both sides are random variables, depending
on the vectors G0, . . . ,Gl−1. (The expectation on the left-hand side is a con-
ditional expectation.) We consider the respective expectations of the two sides,
according to the joint distribution of G0, . . . ,Gl−1. As the random gradient
vectors were generated independently, we get

E
[
f
(
zl+1

)]
−F ≤

(
1− α

ω(σ2 + 1)

)(
E
[
f
(
zl
)]
−F

)
, (8.21)

where the left-hand expectation is now taken according to the joint distribu-
tion of G0, . . . ,Gl. – This technique of proof is well known in the context of
stochastic gradient schemes, see, e.g., [115].

Finally, (8.15) follows from the iterative application of (8.21). �

Remark 36 In the present idealistic setting of known ω, we could set the next
iterate simply as

z′ = z◦ − 1

ω(σ2 + 1)
G◦, (8.22)

instead of performing a line search along the ray z◦ − tG◦, in the proof of
Theorem 35. Besides efficiency considerations, an advantage of the line search

f (z′) = min
t

f (z◦ − tG◦) (8.23)

is that the result remains applicable if the actual bound ω is not known.

Application in the column generation scheme

I examine the utility of applying a stochastic descent method to the column
generation subproblem (7.19). Gradient estimates at the respective iterates are
generated independently. We apply Theorem 35 to f(z) = −ρ(z).

Corollary 37 Let a tolerance β (0 < β � 1) and a probability p (0 < p � 1)
be given. In O (− log(β p)) steps with the stochastic descent method, we find a
vector ẑ such that

P
(
ρ (ẑ ) ≥ (1− β)R

)
≥ 1− p.

Proof. Let % = 1 − α
ω(σ2+1) with some σ > 0. Substituting z0 = z in (8.15)

and taking into account (7.18), we get

E
[
ρ(zj)

]
≥
(
1− %j

)
R.
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The gap R is obviously non-negative. In case R = 0, the starting iterate z0 = z
of the steepest descent method was already optimal, due to (7.18). In what
follows we assume R > 0. A trivial transformation yields

E

[
1− ρ(zj)

R

]
≤ %j .

By Markov’s inequality, we get

P

(
1− ρ(zj)

R
≥ β

)
≤ %j

β
,

and a trivial transformation yields

P
(
ρ(zj ) ≤ (1− β)R

)
≤ 1

β
%j .

Hence

P
(
ρ(zj ) > (1− β)R

)
≥ 1− 1

β
%j .

Performing j steps with j such that %j ≤ βp yields an appropriate ẑ = zj . �

Bounding the optimality gap and reliability considerations

When solving a linear programming problem with the simplex method, one
usually applies an optimality tolerance on the reduced cost components. For
the master problem of the column generation scheme of Chapter 7, this is not
just a heuristic rule:

Observation 38 R of (7.19) is an upper bound on the gap between the respec-
tive optima of the model problem (8.6) and the original convex problem (8.1).

Proof. We have
R = max

z
ρ(z) = φ?(u)− φ?k(u). (8.24)

(The second equality follows from the definition of the conjugate function.)
Since (u,y) is a feasible solution of the dual problem (8.2), it follows that

(8.24) is an upper bound on the gap between the respective optima of the dual
model problem (8.5) and the dual problem (8.2). The observation follows from
convex duality. �

Let

B :=
1

1− β
ρ (ẑ) , (8.25)

with the β and ẑ of Corollary 37. Concerning the gap between the respective
optima of the model problem (8.6) and the original convex problem (8.1), the
reliability

P
(
B ≥ ’gap’

)
(8.26)

is at least 1− p with the p of Corollary 37.
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Assume that our initial model included the columns z0, . . . ,zι. In the course
of the column generation scheme, we select further columns according to Corol-
lary 37, with gradient estimates generated independently. Let the parameters
σ and β be fixed for the whole scheme, e.g., set β = 0.5. On the other hand, we
keep increasing the reliability of the individual steps during the process, i.e., let
p = pκ (κ = ι+ 1, ι+ 2, . . .) decrease with κ.

Example 39 Let pκ = (κ − ι + 9)−2, then we have
∏∞
κ=ι+1 (1 − pκ) = 0.9.

(This is easily proven. I learned it from Szász [166], Vol. II., Chap. X., § 642.)

To achieve reliability 1 − pκ set in Example 39, we need to make O(log κ)
steps with the stochastic descent method when selecting the column zκ.

We terminate the column generation process when B of (8.25) gets below
the prescribed accuracy. With the setting of Example 39, the terminal bound is
correct with a probability at least 0.9, regardless of the number of new columns
generated over the course of the procedure.

Comparison with stochastic gradient methods

Our present Assumption 30 is much stronger than mere differentiability, hence
the convergence estimate of Theorem 35 is naturally stronger than (8.11).

We proved Theorem 35 for unconstrained minimization (over IRn). In our
approach, the constraint Ax ≤ b in the convex problem (7.6) was taken into ac-
count through a column generation scheme. Comparing the column generation
scheme with the above stochastic gradient approach, a solution of the linear
programming model problem (8.6) is analogous to the iterate averaging (8.12)
and the projection in (8.9). The analogy is even more marked in case the next
iterate is found by the simple translation (8.22), according to Remark 36.

The effort of maintaining the model function φk(x) pays off when objective
value and gradient estimation is taxing as compared to the re-solution of the
model problem. If, moreover, the effort of gradient estimation is substantially
larger than that of objective value estimation, then the line search (8.23) may
prove more effective than the simple translation (8.22).

8.3 Summary

This chapter is based on Fábián, Csizmás, Drenyovszki, Vajnai, Kovács and
Szántai [54]. The results recounted in Section 8.2 are my contribution.

I consider minimizing a convex objective function whose gradient computa-
tion is taxing, over a polyhedron. I propose a randomized version of the column
generation scheme of Chapter 7, in an idealized setting, assuming that the ob-
jective function has bounded Hessians, and that unbiased gradient estimates of
bounded variance can be constructed, with a reasonable effort.

I worked out a stochastic version of the unconstrained gradient descent
method, and showed that it inherits the efficiency of the deterministic gradient
descent, in case the objective function is uniformly well-conditioned throughout.
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I developed a randomized column generation scheme, where new columns are
found by the stochastic gradient descent method. I also include error analysis
and reliability considerations.

The proposed method bears an analogy to stochastic gradient methods. The
main difference is that the present method builds a model function. The effort
of maintaining the model function pays off when objective value and gradient
estimation is taxing as compared to the re-solution of the model problem.
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Chapter 9

Handling a difficult
constraint

This chapter is based on Fábián, Csizmás, Drenyovszki, Vajnai, Kovács and
Szántai [54]. The new results presented in this chapter are my contribution.

I work out an approximation scheme for the solution of the convex con-
strained problem

min cTx subject to Ăx ≤ b̆, φ(Tx) ≤ π, (9.1)

where the vectors c, b̆ and the matrix Ă have compatible dimensions, and π is
a given number.

The approximation scheme will apply the approach of Chapter 8. Like in
that chapter, I work in an idealized setting, assuming that the function φ(z) has
bounded Hessians. On the other hand, I do not exploit monotonicity of φ(z),
hence the problems and models will be formulated according to (8.1 - 8.7).

The proposed scheme consists of the solution of a sequence of problems of
the form (7.6), with an ever tightening stopping tolerance. We consider the
linear constraint set Ax ≤ b of problem (7.6). The last constraint of this set is
arx ≤ br, where ar denotes the rth row of A, and br denotes the rth component
of b. Assume that this last constraint is a cost constraint, and let cT = ar denote
the cost vector. We consider a parametric form of the cost constraint, namely,
cTx ≤ d, where d ∈ IR is a parameter.

Let Ă denote the matrix obtained by omitting the rth row in A, and let b̆
denote the vector obtained by omitting the rth component in b. Using these
objects, we consider the problem

min φ(Tx) subject to Ăx ≤ b̆, cTx ≤ d, (9.2)

with the parameter d ∈ IR. This parametric form of the unconstrained problem
will be denoted by (7.6: br = d).

Let χ(d) denote the optimal objective value of problem (9.2), as a function
of the parameter d. This is obviously a monotone decreasing convex function.
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Let I ⊂ IR denote the domain over which the function is finite. We have
either I = IR or I = [ d,+∞) with some d ∈ IR. Using the notation of the
unconstrained problem, we say that χ(d) is the optimum of (7.6: br = d) for
d ∈ I.

Coming to the constrained problem (9.1), we may assume π ∈ χ(I). Let
d? ∈ I be a solution of the equation χ(d) = π, and let l?(d) denote a linear
support function to χ(d) at d?. In this section we work under

Assumption 40 The support function l?(d) has a significant negative slope,
i.e., l?′ � 0.

It follows that the optimal objective value of (9.1) is d?.

Remark 41 Assumption 40 is reasonable if the right-hand value π has been set
by an expert, on the basis of preliminary experimental information. (A near-
zero slope l?′ means that a slight relaxation of the probabilistic constraint allows
a significant cost reduction.)

We find a near-optimal d̂ ∈ I using an approximate version of Newton’s
method. – The idea of regulating tolerances in such a procedure goes back to
the Constrained Newton Method of Lemaréchal, Nemirovski and Nesterov [99].
Based on the convergence proof of the Constrained Newton Method, a simple
convergence proof of Newton’s method was reconstructed in [56]. I adapt the
latter to the present case.

First, I describe a deterministic approximation scheme. Then, a randomized
version is worked out.

9.1 A deterministic approximation scheme

Let the function φ(z) have bounded Hessians, as formulated in Assumption 30.
In this section we work with exact function data, as formulated in

Assumption 42 Given z ∈ IRn, the function value φ(z) and the gradient vec-
tor ∇φ(z) can be computed exactly.

A sequence of unconstrained problems (7.6: br = d`) (` = 1, 2, . . .) is solved
with increasing accuracy. In the course of this procedure, we build a single
model φk(z) of the nonlinear objective φ(z), i.e., k is ever increasing. Columns
added in the course of the solution of (7.6: br = d`) are retained in the model
and reused in the course of the solution of (7.6: br = d`+1).

Given the `th iterate d` ∈ I, we need to estimate χ(d`) with a prescribed
accuracy. This is done by performing a column generation scheme with the
master problem (8.6: br = d`). Let B` denote an upper bound on the gap
between the respective optima of the model problem (8.6: br = d`) and the
convex problem (7.6: br = d`). Such a bound is constructed according to the
expression (8.25). (In the present setup, it is a deterministic bound.)
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Let moreover χ` denote the optimum of the model problem. With these
objects we have

χ` ≥ χ(d`) ≥ χ` − B`. (9.3)

The column generation process with the master problem (8.6: br = d`) is ter-
minated if χ` and B` satisfy a stopping condition, to be discussed below.

Let d0, d1 ∈ I, d0 < d1 < d? be the starting iterates. – The sequence of the
iterates will be strictly monotone increasing, and converging to d? from below.

Near-optimality condition for the constrained problem

Given a tolerance ε (π � ε > 0), let d̂ ∈ I be such that

d̂ ≤ d? and χ(d̂ ) ≤ π + ε. (9.4)

Let x̂ be an optimal solution of (9.2: d = d̂ ). Then x̂ is an ε-feasible solution

of (9.1) with objective value d̂. Exact feasible solutions of (9.1) have objective

values not less than d? ≥ d̂.

Stopping condition for the unconstrained subproblem

Let δ (0 < δ � 1
2 ) denote a fixed tolerance. (We can set e.g. δ = 0.25 for the

whole process.)
Given iterate d` ∈ I, d` ≤ d?, we perform a column generation scheme with

the master problem (8.6: br = d`). The process is terminated if either

(i) χ` − π ≤ ε, or

(ii) B` ≤ δ (χ` − π)
(9.5)

holds. Taking into account (9.3), we conclude:

If (i) occurs then d̂ := d` satisfies the near-optimality condition (9.4), and
the Newton-like procedure stops.

If (ii) occurs then χ` satisfies

χ` ≥ χ(d`) ≥ χ` − δ (χ` − π). (9.6)

A new iterate will be constructed in the latter case.

Finding successive iterates

Given ` ≥ 1, assume that we have bounded χ(d`−1) and χ(d`), as in (9.6). The
graph of the function χ(d) is shown in Figure 9.1. Thick segments of the vertical
lines d = d`−1 and d = d` indicate confidence intervals – of the form (9.6) –
for the function values χ(d`−1) and χ(d`), respectively. Let l` : IR→ IR be the
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linear function determined by the upper endpoint of the former interval, and
the lower endpoint of the latter one. Formally,

l`(d`−1) := χ`−1 ≥ χ(d`−1) and l`(d`) := χ` − δ (χ` − π) ≤ χ(d`), (9.7)

where the inequalities follow from (9.6).
Due to the convexity of χ(d) and to Assumption 40, the linear function l`(d)

obviously has a negative slope l′` ≤ l?′ � 0. Moreover l`(d) ≤ χ(d) holds for
d` ≤ d.

The next iterate d`+1 will be the point satisfying l`(d`+1) = π. Of course
d` < d`+1 ≤ d? follows from the observations above.

Figure 9.1: The graph of the function χ(d), and the construction of the next
iterate.

Convergence

Let the iterates d0, d1, . . . , ds and the linear functions l1(d), . . . , ls(d) be as de-
fined above. We assume that s > 1, and the procedure did not stop before step
(s+ 1). Then we have

χ` − π > ε (j = 0, 1, . . . , s). (9.8)

To simplify the notation, we introduce the linear functions L`(d) := l`(d) −
π (j = 1, . . . , s). With these, (9.7) transforms into

L`(d`−1) = χ`−1−π and L`(d`) = (1− δ)(χ`−π) (j = 1, . . . , s). (9.9)
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Positivity of the above function values follows from (9.8). Moreover, the deriva-
tives satisfy

L′` = l′` ≤ l?′ � 0 (j = 1, . . . , s) (9.10)

due to the observations in the previous section.

Theorem 43 We have

γs−1 · |L
′
1|
|l?′|
· L1(d1) ≥ Ls(ds) with γ :=

(
1

2(1− δ)

)2

. (9.11)

Proof. The following statements hold for j = 1, . . . , s− 1. From (9.9), we get

L`+1(d`)

L`(d`)
=

χ` − π
(1− δ)(χ` − π)

=
1

1− δ
. (9.12)

By definition, we have

L`(d`) + (d`+1 − d`)L′` = L`(d`+1) = 0.

It follows that d`+1 − d` = L`(d`)
|L′

`|
. Using this, we get

L`+1(d`) = L`+1(d`+1) + (d` − d`+1)L′`+1 = L`+1(d`+1) +
L`(d`)

|L′`|
|L′`+1|.

Hence
L`+1(d`)

L`(d`)
=

L`+1(d`+1)

L`(d`)
+
|L′`+1|
|L′`|

. (9.13)

From (9.12), we have

1

1− δ
=

L`+1(d`+1)

L`(d`)
+
|L′`+1|
|L′`|

≥ 2

√
L`+1(d`+1) |L′`+1|

L`(d`) |L′`|
.

(This is the well-known inequality between means.) It follows that(
1

2(1− δ)

)2

L`(d`) |L′`| ≥ L`+1(d`+1) |L′`+1|. (9.14)

By induction, we get(
1

2(1− δ)

)2(s−1)

L1(d1) |L′1| ≥ Ls(ds) |L′s|. (9.15)

Applying |L′s| ≥ |l?
′| we obtain (9.11). �

Example 44 Let δ = 0.25, then γ =
(

1
2(1−δ)

)2

< 0.5.
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Corollary 45 With the setting of Example 44, the number of Newton-like steps
needed to reach the stopping tolerance ε does not exceed

N(ε) = log

(
|L′1|
|l?′|
· L1(d1)

ε

)
. (9.16)

Note that |l?′| � 0 due to Assumption 40.
Given a problem, let us consider the efforts of its approximate solution as a

function of the prescribed accuracy. That is on the order of log 1
ε .

9.2 A randomized version of the approximation
scheme

Let the function φ(z) have bounded Hessians, as formulated in Assumption 30.
Let moreover Assumption 33 on the construction of unbiased gradient estimates
having bounded variance hold.

Concerning the function χ(d), let Assumption 40 hold. Our aim, in principle,

is the same as it has been in the deterministic case: find d̂ ∈ I such that π+ ε ≥
χ(d̂) ≥ π holds with a pre-set tolerance ε. In the present uncertain environment,

however, we may have to content ourselves with d̂ such that π+ε ≥ χ(d̂) > π−ε
holds. This problem statement is justifiable if the function χ(d) is not constant
for d > d?. Let Assumption 46, below, hold.

Assumption 46 There exists (an unknown) d?ε ∈ I such that χ (d?ε ) = π − ε.
Let q (0.5 � q < 1) denote a pre-set reliability. Using the randomized

column generation scheme, a sequence of unconstrained problems (7.6: br =
d`) (` = 1, 2, . . .) is solved, each with reliability q, and with an accuracy deter-
mined by the Newton-like approximation scheme. As in the deterministic case,
we build a single model φk(z) of the nonlinear objective φ(z), i.e., k is ever
increasing. Let k`−1 denote the number of columns at the outset of the solution
of problem (7.6: br = d`).

Given the `th iterate d` ∈ I, we estimate χ(d`) by performing a column gen-
eration scheme with the master problem (8.6: br = d`). Applying the procedure
of Chapter 8, we obtain an estimate B` for the gap between the respective op-
tima of the model problem (8.6: br = d`) and the convex problem (7.6: br = d`).
Keeping to the setting of Example 39, we set the reliability parameter to q = 0.9,
obtaining P

(
B` ≥ ’gap’

)
≥ 0.9. (Note that the columns with indices up to

k`−1 belong to the initial model, hence in terms of Chapter 8, we have ι = k`−1.)
Let moreover χ` denote the optimum of the model problem. With these

objects we have

χ` ≥ χ(d`) and P
(
χ(d`) ≥ χ` − B`

)
≥ 0.9. (9.17)

We proceed in accordance with the deterministic scheme. The present stochastic
scheme actually coincides with the deterministic one, provided the gap is esti-
mated correctly in the unconstrained problem. In the stochastic scheme, how-
ever, we may underestimate the gap, meaning that B` is not an upper bound.
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Consequently the inequality χ(d`) ≥ χ`−B` may not hold in (9.17). In such a
case, d`+1 > d? and hence χ`+1 < π may occur. If the latter is observed, then
we step back to the previous iterate, i.e., set d`+2 = d`. We then carry on with
the Newton-like procedure; first resolving the model problem (8.6: br = d`+2)
with reliability q = 0.9.

Stopping condition for the unconstrained subproblem

In accordance with the above discussion, we now formulate the stopping condi-
tion of the column generation process at the Newton-like step `. Solution with
the master problem (8.6: br = d`) is terminated if χ` and B` satisfy one of the
following conditions:

(α) χ` < π,

(β) π ≤ χ` < π + ε and B` ≤ ε,

(γ) π + ε ≤ χ` and B` ≤ δ (χ` − π).

(9.18)

If condition (α) occurs, then we step back to the previous iterate d`−1.
If condition (β) occurs, then we stop the Newton-like process.
If condition (γ) occurs, then we carry on to a new iterate d`+1 > d`, like we

did in the deterministic scheme.

Remark 47 The stopping tolerance prescribed for the unconstrained subprob-
lems is ever tightening in accordance with the progress of the Newton-like ap-
proximation scheme. However, the prescribed tolerance is never tighter than
δ · ε = 0.25ε.

Convergence and reliability

Let the unconstrained subproblems each be solved with a reliability of q = 0.9,
and let δ, γ be set according to Example 44. Moreover, let us assume that
the randomized Newton-like scheme did not stop in L steps. The aim of this
section is to show that, provided L is large enough, an ε-optimal solution of the
constrained problem has been reached with a high probability.

According to our assumption, case (β) did not occur in the stopping con-
dition of the previous section. Let us define ’correct’ and ’incorrect’ steps,
depending on the starting point d`:

– In case d` ≤ d?:
We call step ` correct if d`+1 ≤ d? and 0.5·L`(d`) |L′`| ≥ L`+1(d`+1) |L′`+1|
also holds, otherwise we call step ` incorrect.

– In case d` > d?:
We call step ` correct if a backstep occurs (i.e., if d`+1 = d`−1), otherwise
we call it incorrect.
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98 CHAPTER 9. HANDLING A DIFFICULT CONSTRAINT

A step is correct with a probability at least q = 0.9; this follows from the proof
of Theorem 43, namely the expression (9.14).

If the difference between the number of the correct steps and the number of
the incorrect steps exceeds N(ε), then an ε-optimal solution of the constrained
problem has been reached, according to Corollary 45.

Let Z` be the random variable

Z` =

 0 if step ` is correct,

1 if step ` is incorrect
(` = 1, . . . , L).

As a step is correct with a probability at least q = 0.9, we have E(Z`) ≤ 0.1,

and hence E
(∑L

`=1 Z`

)
≤ 0.1L.

The difference between the number of the correct steps and the number of
the incorrect steps is L − 2

∑L
`=1 Z`. In order to show that the difference

likely exceeds N(ε), we need an upper bound on the probability that
∑L
`=1 Z`

is significantly larger than E
(∑L

`=1 Z`

)
.

Though all the gradient estimates were generated independently, there may
be some interdependence among the random variables Z1, . . . , ZL, because of
the time structure of the process. But this interdependence is weak in the
following sense. Suppose that we are at the beginning of the process. Given
0 < k ≤ L, we know that step k will be correct with a probability at least 0.9,
no matter what happens in steps 1, . . . , k − 1. In particular,

P [Zk = 1 | Z` = 1 (` ∈ Ik) ] ≤ 0.1 holds for all Ik ⊆ {1, . . . , k − 1}. (9.19)

The condition in the above probability represents the event that Z` = 1 occurs
for every ` ∈ Ik. In case k = 1, the condition is empty, and (9.19) reduces to
P(Z1 = 1) ≤ 0.1.

Generalized Chernoff-Hoeffding bounds were proposed by Panconesi and
Srinivasan in [121]. Intuitive proofs of such bounds, based on a simple com-
binatorial argument, were given by Impagliazzo and Kabanets in [84]. Recently,
Pelekis and Ramon in [122] established a more general bound. I’m going to use
a generalized Chernoff-type bound proposed by Panconesi and Srinivasan, in
the form in which it was stated and proved by Impagliazzo and Kabanets:

Theorem 48 (Theorem 1.1 in [84]) Let Z1, . . . , Zn be Boolean random vari-
ables such that, for some p ∈ [0, 1],

P [Z` = 1 (` ∈ A) ] ≤ p|A| holds for all A ⊆ {1, . . . , n}, (9.20)

where |A| denotes the cardinality of A.
Then, for any κ ∈ [p, 1], we have

P

[
n∑
`=1

Z` ≥ κn

]
≤ e−nD(κ||p), (9.21)

where D(.||.) is the relative entropy function, satisfying D(κ||p) ≥ 2(κ− p)2.
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It is easy to see that our objects satisfy the precondition (9.20) with p = 0.1.
Indeed, it follows from the repeated application of (9.19). – A formal proof may
apply induction on n. For n = 1, we have P(Z1 = 1) ≤ 0.1. Now let us assume
that (9.20) holds for 1 ≤ n < k. The statement for n = k follows from (9.19),
by setting Ik = A ∩ {1, . . . , k − 1}.

As the precondition of Theorem 48 holds, we have (9.21) with n = L, p = 0.1
and κ = 1/3. Simple computation shows that, for L ≥ 22,

P

[
L∑
`=1

Z` <
1

3
L

]
≥ 0.9. (9.22)

As we have seen, the difference between the number of the correct steps
and the number of the incorrect steps is L − 2

∑L
`=1 Z` which exceeds L/3 if∑L

`=1 Z` < L/3 in (9.22) holds. I sum up the discussion in

Theorem 49 Let the unconstrained problems each be solved with a reliability
of q = 0.9; let δ, γ be set according to Example 44; and let

L = max{ 22, 3N(ε) }

with N(ε) defined in Corollary 45.
Assume that the randomized Newton-like scheme did not stop in L steps.

Then an ε-optimal solution of the constrained problem has been reached with a
probability at least 0.9.

Remark 50 If case (β) occurred in the stopping condition of the previous sec-
tion, then further checks are needed to ensure reliability.

9.3 Summary

This chapter is based on Fábián, Csizmás, Drenyovszki, Vajnai, Kovács and
Szántai [54]. The new results presented in this chapter are my contribution.

To handle a difficult constraint, I proposed a scheme that consists of the so-
lution of a sequence of unconstrained problems with an ever tightening stopping
tolerance. I adapt an approximate version of Newton’s method to solving the
problem sequence. – The idea of regulating tolerances in such a procedure goes
back to the Constrained Newton Method of Lemaréchal, Nemirovski and Nes-
terov [99]. Based on the convergence proof of the Constrained Newton Method,
a simple convergence proof of Newton’s method was reconstructed in [56].

I worked out an approximation scheme that uses confidence intervals instead
of function values. Based on this, I developed a randomized version. I include
convergence analysis and reliability considerations.
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Chapter 10

Adapting the randomized
method to probability
maximization

In this chapter I adapt the randomized approach of Chapter 8 to probability
maximization. In this context, I look on Corollary 37 merely as a means of
justification of the efficiency of the procedure. In order to measure the gap be-
tween the respective optima of the model problem and the original probabilistic
problem, I’m going to propose a bounding approach.

The objective function will be φ(z) = − logF (z) (or a regularized form),
where F (z) is an n-dimensional nondegenerate standard normal distribution
function. Gradient estimates can be constructed with a reasonable effort, ap-
plying the simulation methods overviewed in Chapter 7. For the sake of sim-
plicity, I assume that objective values are computed with a high precision. (In
the present case of normally distributed random parameters, gradient compu-
tation is the bigger challenge. High-precision computation of a single non-zero
component of the gradient requires an effort comparable to that of the objective
value.)

This chapter is based on Fábián, Csizmás, Drenyovszki, Vajnai, Kovács and
Szántai [54]. Tamás Szántai is professor emeritus at the Budapest University
of Technology and Economics. The rest of the coauthors are my colleagues
at the John von Neumann University. The methodological results proved in
Section 10.1 are my contribution. Tamás Szántai contributed with his expertise
in estimating distribution function values and gradients. Implementation and
testing was done by my colleagues at the John von Neumann University, and
they also contributed in methodological issues, developing and testing practical
means of regulating accuracy and practical stopping conditions.
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10.1 Reliability considerations

We solve the probability maximization problem (7.6). We work under Assump-
tion 29: a feasible point ž is known such that F (ž) ≥ 0.5.

A bounded formulation

Exploiting monotonicity of the function φ(z) = − logF (z), the probability max-
imization problem with variable splitting can be formulated applying inequality
between z and Tx, like it was done in Chapter 7. For convenience, I copy (7.7):

min φ(z) subject to Ax− b ≤ 0, z − Tx ≤ 0. (10.1)

A further speciality of the normal distribution function is the existence of a
bounded box Z outside which the probability weight can be ignored. Including
the constraint z ∈ Z in (10.1) results in a closely approximating problem:

min φ(z) subject to Ax− b ≤ 0, z − Tx ≤ 0, z ∈ Z. (10.2)

Observation 51 The difference between the respective optima of problems (10.1)
and (10.2) is insignificant.

Proof. Let z be a part of a feasible solution of (10.1), and let us consider the
box (z +N ) ∩ Z, where N denotes the negative orthant.

In case this box is empty, we have F (z) ≈ 0 due to the specification of Z.
Taking into account Assumption 29, such z cannot be a part of an optimal
solution of (10.1).

In case the box (z +N ) ∩ Z is not empty, let Πz denote its ’most positive’
vertex. We have Πz ∈ Z, Πz ≤ z, and F (Πz) ≈ F (z). If F (z) < 0.5, then,
due to Assumption 29 again, z cannot be a partial optimal solution of (10.1).

In the remaining case of F (Πz) ≈ F (z) ≥ 0.5, we have φ(Πz) ≈ φ(z).
Moreover Πz is a partial feasible solution of (10.2), due to Πz ∈ Z, Πz ≤ z.
�
I assume that the known feasible point ž with F (ž) ≥ 0.5 falls into Z. (Oth-
erwise we can consider its projection to Z.) Hence ž is a feasible solution of
(10.2).

Remark 52 We could base the construction of Chapter 7 on (10.2), instead of
(7.7). Formally, this would mean working with the restricted functions

φZ(z) =

 φ(z) if z ∈ Z,

+∞ otherwise
and φ?Z(u) = max

z∈Z
{uTz − φ(z)}

(10.3)
instead of φ(z) and φ?(u), respectively.

In a pure form of this bounded scheme, new columns are always selected
from Z. An obvious drawback is that Theorem 31 does not apply to the resulting
bounded optimization problem.

I presently develop a hybrid scheme, including a restriction to Z in the master
problem, but selecting new columns by unconstrained maximization.
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A hybrid form of the column generation scheme

Introducing new variables z′ ∈ IRn, we transform (10.2) to

min φ(z) subject to Ax− b ≤ 0, z′ − Tx ≤ 0, z′ ∈ Z, z ≤ z′. (10.4)

The above problem has the general pattern of (7.7), hence the dual problem can
be formulated in the manner of Chapter 7. Model problems are then formulated
accordingly.

Let the feasible point ž with F (ž) ≥ 0.5 be included among the initial
zi (i = 0, . . . , k) testpoints. Then the common optimum of the model problems
will never exceed − log 0.5. It follows that the current z, obtained in the form
(7.16) with an optimal solution of the model problem, will always satisfy F (z) ≥
0.5 and z ∈ Z.

Let g = ∇φ(z) be the corresponding gradient. Let moreover (ϑ, u ) be part
of an optimal dual solution of the current model problem. Finally, let R denote
the gap between the respective optima of the model problem and the original
probabilistic problem.

Observation 53 With the above objects, we have:

R ≤
(
φk(z)− φ(z)

)
+ max

z∈Z
(u− g)T (z − z). (10.5)

Proof. An adaptation of Observation 38 to the present bounded setting is

R = max
z∈Z

{
ϑ+ uTz − φ(z)

}
.

Taking into account that ϑ = φk(z) − uTz according to Observation 27 (a),
and that φ(z) ≥ φ(z) − gT (z − z) holds due to the convexity of φ(z), we
obtain (10.5). �

The exact gradient g is of course not known, but we can construct a gradient
estimate together with a confidence interval. Given an error tolerance ∆ > 0
and a probability p (0 < p� 1), let G and I denote our gradient estimate and
confidence interval, respectively. The interval has the vector as a center, and
they satisfy the following rules:

E(G) = g, P
(
g ∈ I

)
≥ 1− p and diag

(
I
)
≤ ∆, (10.6)

where diag denotes the largest distance in the interval.
The following observation shows that we can use G to estimate the maximum

on the right-hand side of (10.5).

Observation 54 The objects of (10.6) admit the following estimate:

max
z∈Z

(u− g)T (z − z) ≤ max
z∈Z

(u−G)T (z − z) + ∆ · diag(Z) (10.7)

holds with a probability at least 1− p.
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Proof. Based on the confidence interval, a pessimist estimate of the left-hand
side of (10.7) could be obtained by solving the (nonconvex) quadratic program-
ming problem

max (u− g)T (z − z) such that z ∈ Z, g ∈ I. (10.8)

Instead of the quadratic programming problem, we just solve the linear pro-
gramming problem

max (u−G)T (z − z) such that z ∈ Z. (10.9)

Denoting an optimal solution of (10.8) by (z̀, g̀), and an optimal solution of
(10.9) by ẑ, the difference between the respective optima is

(u− g̀)T (z̀ − z)− (u−G)T (ẑ − z) ≤ (u− g̀)T (z̀ − z)− (u−G)T (z̀ − z)

= (G− g̀)T (z̀ − z),

where the inequality is a consequence of the selection of ẑ.
The Cauchy–Bunyakovsky–Schwarz inequality yields (10.7). �

I sum up the above discussion in

Corollary 55 With the above-defined objects, the random quantity

B :=
(
φk(z)− φ(z)

)
+ max

z∈Z
(u−G)T (z − z) + ∆ · diag(Z) (10.10)

is a probabilistic bound on the gap between the respective optima of the model
problem and the original probabilistic problem, i.e., P

(
B ≥ ’gap’

)
≥ 1 − p

holds.

Regulating accuracy and reliability

From the efficiency point of view, Assumption 33 on the limited variance of the
gradient estimates must be satisfied. From the reliability point of view, we need
confidence intervals for the gradient vectors in the bounding approach.

Given iterate z, we wish to construct an estimate G for the corresponding
gradient. We have two objectives. On the one hand, we need Corollary 37 to
ensure efficiency of a descent step in the course of the column selection. Hence
(8.13) should hold with an appropriate σ between the vectors g◦ = g − u and
G◦ = G− u. Specifically,

E
(∥∥G− g

∥∥2
)
≤ σ2 ‖g − u‖2 should hold. (10.11)

On the other hand, we need (10.6) to hold with appropriate parameters ∆ and
p to ensure that the bound B is tight and reliable. I slightly re-formulate the
definition of B in (10.10) as follows:(
φk(z)− φ(z)

)
+ max

z∈Z

(
(u− g)− (G− g)

)T
(z − z) + ∆ · diag(Z). (10.12)
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Concerning p, we increase reliability with each master iteration, as we did
in the general case of Chapter 8. Having added κ columns, we prescribe the
reliability 1− pκ, with pκ set according to Example 39.

In setting the parameters σ and ∆, we aim to find a balance between the error
of the polyhedral model function on the one hand, and the error of the gradient
estimation on the other hand. According to Observation 27 (c), u ∈ ∂φk(z)
holds. Taking into account g = ∇φ(z), the vector u− g in (10.11) and (10.12)
represents the gradient error of the polyhedral model function φk(z). Similarly,
φk(z) − φ(z) in (10.12) represents the error in function value. On the other
hand, the vector G−g in (10.11) and (10.12) represents the error of the gradient
estimate G.

A balance between those two types of error is found by a two-stage procedure.
We begin with estimating the order of the magnitude of ‖u− g‖, and based on
this, we decide the size of the sample to be used in gradient estimation. The
simulation methods of Section 7.3 can be applied.

Remark 56 The bound z ∈ Z in (10.2) allows regularization of the objective
function, in the form of φ(z) = − logF (z) + ρ

2‖z‖
2 with ρ > 0. Substituting

this regularized objective in (10.2) makes no significant variation in the objective
value of z ∈ Z, provided ρ is small enough. The regularizing term improves the
condition of the objective: eigenvalues of the Hessians are increased by ρ, hence
∇2φ(z) � ρI (z ∈ IRn) holds.

On the other hand, the regularized objective will no longer be monotone,
hence in (10.4), the constraint z ≤ z′ must be changed to z = z′. The resulting
problem has the general pattern of (8.1), hence the dual problem and the model
problems can be formulated in the manner of Chapter 8.

10.2 A computational experiment

We implemented the procedure with the coauthors of [54]. The aim of this ex-
periment is to demonstrate the workability of the randomized column generation
scheme, in case of probabilistic problems. Namely, we have φ(z) = − logF (z)
with an n-dimensional nondegenerate normal distribution function F (z).

Setup

Like in Chapter 7, we tested our implementation on a cash matching problem,
with a fifteen dimensional normal distribution.

Our solver is based on the implementation described in Chapter 7. In this
version we used the randomized procedure of Chapter 8 and implemented the
hybrid form of the column generation scheme, as described in the present chap-
ter. (The bounded box Z was set so that P(Z) = 0.99 holds.)

In the course of the randomized column generation scheme, we perform just
a single line search in each column generation subproblem. This line search
starts from the current z vector.
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106 CHAPTER 10. RANDOMIZED MAXIMIZATION OF PROBABILITY

Probabilistic function values are computed and gradients are estimated by
the Genz subroutines, controlling accuracy through the sample size. In the
present simple implementation of the iterative scheme, the distribution function
values F (zi) are always computed with a high accuracy, setting the sample size
to 10, 000. On the other hand, gradients are estimated in such a way that the
norm of the error of the current gradient ∇φ(z) − u be less than one tenth of
the norm of the previous gradient ‖∇φ(z−)− u−‖.

Results and observations

We performed 10 runs of the randomized procedure, each with 50 iterations.
The sequences of the probability levels obtained, i.e., of the values F (z), are
shown in Figure 10.1. At each iteration, the gradient ∇φ(z)−u is estimated by
G−u. The norm of this estimate decreases as the procedure progresses. For a
single typical run, this decrease is shown in Figure 10.2.

Figure 10.1: Probability levels obtained, as a function of iteration counts. Dif-
ferent runs are represented by different threads.

We applied no stopping condition besides iteration count. After 50 itera-
tions, optimal probability levels obtained in the different runs were already very
near to each other (the difference between highest and lowest being less than
0.0003.) On the other hand, the value of the bound B of (10.10) was between
0.025 and 0.03 at the end of our runs. We conclude that, though the bounding
procedure is workable, it needs further technical improvements to keep pace
with the stochastic approximation scheme.

In accordance with the hybrid bounding form of Section 10.1, we did not
restrict new columns zi to the box Z. Still, the probability level was high
in all iterates, F (zi) ≥ 0.9 holding with the columns added in the course of
the column generation process. This allowed high-accuracy computation of all
probabilistic function values. The restriction z′ ∈ Z of (10.4) was never active
in any optimal solution of the master problem.
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10.3. SUMMARY 107

Figure 10.2: Decrease of the gradient norm as a function of iteration counts, in
a single run.

10.3 Summary

This chapter is based on Fábián, Csizmás, Drenyovszki, Vajnai, Kovács and
Szántai [54]. Tamás Szántai is professor emeritus at the Budapest University
of Technology and Economics. The rest of the coauthors are my colleagues
at the John von Neumann University. The methodological results proved in
Section 10.1 are my contribution. Tamás Szántai contributed with his expertise
in estimating distribution function values and gradients. Implementation and
testing was done by my colleagues at the John von Neumann University, and
they also contributed in methodological issues, developing and testing practical
means of regulating accuracy and practical stopping conditions.

The objective function is φ(z) = − logF (z), where F (z) is an n-dimensional
nondegenerate standard normal distribution function. Gradient estimates can
be constructed with a reasonable effort, applying the simulation methods over-
viewed in Chapter 7. For the sake of simplicity, I assume that objective val-
ues are computed with a high precision. – In the present case of normally
distributed random parameters, gradient computation is the bigger challenge.
High-precision computation of a single non-zero component of the gradient re-
quires an effort comparable to that of the objective value. (A means of alle-
viating the difficulty of gradient computation in case of multivariate normal
distribution has recently been proposed in [75].)

The proposed method is an adaptation of the randomized approach of Chap-
ter 8. In the probabilistic context, reliability considerations are based on a spe-
cial bounding approach. We demonstrate the workability of the approach with
a computational experiment.

In comparison with the outer approximation approach widely used in prob-
abilistic programming, I mention that the latter is difficult to implement due
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to noise in gradient computation. The outer approximation approach applies
a direct cutting-plane method. Even a fairly accurate gradient may result in a
cut cutting into the epigraph of the probabilistic function (especially in regions
farther away from the current iterate). One either needs sophisticated toler-
ance handling to avoid cutting into the epigraph — e.g., Szántai [163], Mayer
[108], Arnold et al. [5], — or else one needs a sophisticated convex optimization
method that can handle cuts cutting into the epigraph — e.g., Oliveira et al.
[28], Van Ackooij and Sagastizábal [175]. — Yet another alternative is perpetual
adjustment of existing cuts to information revealed in the course of the process;
e.g., Higle and Sen [81].

Inner approximation of the level set Lp, the approach initiated by Prékopa
[130], results in a model that is easy to validate. The level set is approximated
by means of p-efficient points. In the cone generation approach initiated by
Dentcheva, Prékopa and Ruszczyński [40], new approximation points are found
by minimization over Lp. As this entails a substantial computational effort,
the master part of the decomposition framework should succeed with as few
p-efficient points as possible. This calls for specialized solution methods like
those of [37], [39], [173]. An increasing level of complexity is noticeable.

I proposed inner approximation of the epigraph of the probabilistic function.
This approach admits easier generation of new test points, and endures noise in
gradient computation without any special effort. Noisy gradient estimates may
yield iterates that do not improve much on our current model. But we retain
a reliable inner approximation of the function. This inherent stability of the
model enables the application of randomized methods of simple structure.

The proposed stochastic approximation procedure can be implemented us-
ing standard components. The master problem is conveniently solved by an
off-the-shelf solver. New approximation points are found through simple line
search whose direction can be determined by standard implementations of clas-
sic Monte Carlo simulation procedures.
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Chapter 11

A summary
of the summaries

I deal with computational aspects of stochastic programming. I have collabo-
rated with leading teams in computational stochastic programming and indus-
trial optimization, helping them develop specialized solvers for different real-life
problems. I have also coordinated research and development projects at the
John von Neumann University, former Kecskemét College.

In the course of these projects I developed new versions of classic algorithms
and combined classic algorithmic components in new ways. I examined theoreti-
cal efficiency of these algorithms. Most of these methods have been implemented
and thoroughly tested. Several of them have been intensively applied.

Large amounts of data to be organized, and inaccuracy in function eval-
uations are characteristic features of stochastic programming problems. Sim-
ilar solution approaches proved effective for very diverse problems; enhanced
cutting-plane methods in primal and dual forms. Cutting-plane methods and
enhancements have been discussed in Chapter 2. Chapters 3 - 6 deal with
the adaptation of such methods to risk-averse and two-stage stochastic pro-
gramming problems. Dual-form cutting plane methods, in the shape of column
generation schemes, have been discussed in Chapters 7 - 10, with application to
probabilistic programming problems.

Cutting-plane methods and enhancements (Chapter 2).
In [51], I developed approximate versions of the level method and the constrained
level method of Lemaréchal, Nemirovskii and Nesterov [99]. I extended the
original convergence proofs to the approximate methods. My approximate level
method was one of the precursors of the ’on-demand accuracy’ approach of the
Charles Broyden Prize-winning paper of Oliveira and Sagastizábal [27].

In [64] and [184], I worked out a special version of the on-demand accuracy
approach. In this dissertation, I call the resulting methods ’partially inexact’. I
extended the on-demand accuracy approach to constrained problems.

109
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My approximate and partially inexact methods have been successfully ap-
plied in the solution of diverse stochastic programming problems. The compu-
tational studies [62] and [184] indicate that my unconstrained versions inherit
the superior experimental efficiency of the level method.

Van Ackooij and de Oliveira in [174] extended my partially inexact version
of the constrained level method to handle upper oracles.

Cutting-plane methods for risk-averse problems (Chapter 3).
The convex conjugacy relationship known to exist between expected shortfall
and tail expectation, reduces to linear programming duality in case of discrete
finite distributions, as I worked out in [52]. This approach yields a conditional
value-at-risk formulation that proved effective for handling CVaR constraints in
two-stage problems.

I worked out cutting-plane approaches for the handling of second-order
stochastic dominance in stochastic programming problems. These were im-
plemented and investigated in collaboration with Gautam Mitra and Diana
Roman. Algorithmic descriptions and test results were presented in [57]. The
cutting-plane approach resulted in dramatic improvement in efficiency.

I proposed a scaled version of the uniform-dominance model of Roman,
Darby-Dowman, and Mitra [147]. We compared modeling aspects of the scaled
and the unscaled dominance measures in collaboration with Gautam Mitra, Di-
ana Roman and Victor Zverovich. Algorithmic descriptions and test results
were presented in [58]. This study confirmed a shape-preserving quality of the
scaled dominance measure. In a subsequent computational study [148], my for-
mer co-workers Roman, Mitra and Zverovich observe that the scaled model has
a very good backtesting performance.

The models and solvers developed in the course of the projects [57] and [58]
have been included in the optimization and risk analytics tools developed at
OptiRisk Systems.

Enhanced versions of the cutting-plane method described in [57] were devel-
oped by Sun et al. [160] and Khemchandani et al. [88].

Decomposition methods for two-stage SP problems (Chapter 4).
I adapted the approximate level method [51] (recounted in Chapter 2) to solve
the aggregate master problem in a decomposition scheme. The inexact oracle
was based on a successive approximation of the distribution. The novelty of the
approach is that the accuracy of the distribution approximation is regulated by
the optimization method applied to the master problem. This setup helps in
finding a balance between different efforts. We implemented the method with
Zoltán Szőke. The method was described and a computational study was pre-
sented in [62]. Our numerical results show that this approximation framework
is workable. Our work influenced the projects of Oliveira, Sagastizábal and
Scheimberg [119] and Song and Luedtke [157].

In the computational study [190] we re-assessed different solution approaches
to two-stage problems, in view of recent advances in computer architecture and
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LP solver algorithms. My co-workers were Gautam Mitra, Francis Ellison and
Victor Zverovich. We demonstrated that decomposition methods generally scale
better than direct solution of the equivalent LP problem. Moreover, we found
that decomposition based on the aggregate model scales better than that based
on the disaggregate model.

The decomposition-based solvers developed in the course of the project [190]
have been included in the FortSP stochastic programming solver system of Opti-
Risk. FortSP has been applied in diverse real-life application projects.

One of my co-workers was Victor Zverovich whose PhD dissertation [189] is
based to a large extent on our joint project.

Our computational study influenced the team of A. Koberstein to develop
decomposition methods to solve their application problems, as reported in [185].
Our findings served as guidelines to Gondzio et al. in their project [73], and
were considered as reference by Takano et al. [167] and Sen and Liu [154].

I adapted my partially inexact version of the level method (recounted in
Chapter 2), to two-stage stochastic programming problems. This method ad-
mits an intuitive oracle rule: no recourse problem is solved if the disaggregate
model function value is significantly higher than the aggregate one, as evaluated
at the new iterate. With this rule, the method combines the advantages of the
traditional aggregate and disaggregate models. We implemented the method
and performed an extensive computational study in collaboration with Leena
Suhl, Achim Koberstein and Christian Wolf. Our test results demonstrate the
efficiency of the approach. On average, it solved the test problems five times
faster than traditional single-cut Benders that we considered benchmark.

The methods and solvers developed in the course of the projects [64] and
[184] have been applied in the solution of a real-life problem of a gas utility
company. One of my co-workers was Christian Wolf who wrote his PhD thesis
[183] partly with me as advisor.

Feasibility issues in two-stage SP problems (Chapter 5).
In [62], I proposed handling second-stage infeasibility through a constraint func-
tion in the master problem, and adapted the approximate constrained level
method [51] (recounted in Chapter 2) to solve the resulting special master prob-
lem. This approach is more effective then the application of feasibility cuts. The
method is of the primal-dual type, and the rule of tuning the dual iterate keeps
a fine balance between feasibility and optimality issues. Moreover, the regular-
ization extends to feasibility issues.

But this approach requires extending the recourse function to the whole
space. I worked with infeasibility-penalized formulations of the recourse prob-
lem. The necessary penalty is easily computable in the case of network recourse
problems. (For general recourse problems, I worked out a means of adjusting
the penalty parameter in the course of the solution process.)

We implemented the methods with Zoltán Szőke. Computational experi-
ments confirmed the workability of the approach.
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Risk constraints in two-stage SP problems (Chapter 6).
In [64], I generalized the on-demand accuracy approach to risk-averse two-stage
problems. I considered two problem types, applying a CVaR constraint or a
stochastic ordering constraint, respectively, on the recourse. I reformulated
the latter problem using the dominance measure recounted in Chapter 3. I
adapted the partially inexact version of the constrained level method (recounted
in Chapter 2) to the resulting risk-averse problems.

In collaboration with Leena Suhl, Achim Koberstein and Christian Wolf,
we implemented and compared different methods for the solution of the CVaR-
constrained problem, and performed an extensive computational study. Each
of the decomposition methods outperformed the direct solution approach in our
experiments. The effect of regularization proved remarkable. For large problems
the regularized on-demand accuracy approach proved most effective.

We formulated and solved large instances of the CVaR-constrained version
of the real-life strategic gas purchase planning problem of my co-workers. The
aim was to hedge against the risk caused by potential low demand. The gas
utility company decided not to implement the optimal solution obtained from
the risk-averse problems; they preferred an insurance cover. The experiments
were still useful, because decision makers could compare the cost of an insurance
cover to the decrease in average profit due to a risk constraint.

Probabilistic problems (Chapter 7).
In [55], I proposed a polyhedral approximation of the epigraph of the probabilis-
tic function. I worked out a successive approximation scheme for probability
maximization; new approximation points are added as the process progresses.
This results in a column generation scheme with a linear programming mas-
ter problem. (From a dual point of view, the column generation approach is a
cutting-plane method applied to a conjugate function.) This project was mo-
tivated by the concept of p-efficient points proposed by Prékopa [130], and the
approximation scheme is analogous to the cone generation scheme of Dentcheva,
Prékopa and Ruszczyński [40]. But in my scheme, the subproblem of finding a
new approximation point is easier; it is an unconstrained convex optimization
problem, solvable by a simple gradient descent method. The approach is easy
to implement and endures noise in gradient computation. Hence the classic
probability estimation methods are applicable.

My coauthors were Edit Csizmás, Rajmund Drenyovszki, Wim van Ackooij,
Tibor Vajnai, Lóránt Kovács and Tamás Szántai. The model problems and
optimization methods were developed by me. Wim van Ackooij collaborated in
compiling a historical overview, and in test problem selection. Tamás Szántai
contributed with his expertise in estimating distribution function values and
gradients. Implementation and testing was done by my colleagues at the John
von Neumann University, and they also contributed in methodological issues
concerning the oracle and finding a starting solution.

Most of the computational effort in our tests was spent in gradient compu-
tation. In order to balance different efforts, we decided to apply rough approxi-
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mate solutions for the column generation subproblems, performing just a single
line search in each gradient descent method. This heuristic procedure never
resulted in any substantial increase in the number of new columns needed to
solve a test problem. I found this interesting and investigated possible causes.

The gradient descent method is remarkably effective in case the objective
function is well-conditioned in a certain neighbourhood of the optimal solution.
I make a case for conjecturing that the probabilistic function is well-conditioned
in an area where potential optimal solutions typically belong. (The bounded
formulation of Chapter 10 allows the regularization of a poorly conditioned ob-
jective.) The column generation procedure gains traction as an optimal solution
is gradually approached.

A randomized method for a difficult objective (Chapter 8).
This chapter is based on Fábián, Csizmás, Drenyovszki, Vajnai, Kovács and
Szántai [54]. The new results presented in this chapter are my contribution.

I consider minimizing a convex objective function whose gradient computa-
tion is taxing, over a polyhedron. I propose a randomized version of the column
generation scheme of Chapter 7, in an idealized setting, assuming that the ob-
jective function has bounded Hessians, and that unbiased gradient estimates
of bounded variance can be constructed. I worked out a stochastic version of
the unconstrained gradient descent method, and showed that it inherits the ef-
ficiency of the deterministic gradient descent, in case the objective function is
uniformly well-conditioned throughout. I developed a randomized column gen-
eration scheme, where new columns are found by the stochastic gradient descent
method. I also include error analysis and reliability considerations.

The proposed method bears an analogy to stochastic gradient methods. The
main difference is that the present method builds a model function. The effort
of maintaining the model function pays off when objective value and gradient
estimation is taxing as compared to the re-solution of the model problem.

Handling a difficult constraint (Chapter 9).
This chapter is based on Fábián, Csizmás, Drenyovszki, Vajnai, Kovács and
Szántai [54]. The new results presented in this chapter are my contribution.

To handle a difficult constraint, I proposed a scheme that consists of the
solution of a sequence of unconstrained problems with an ever tightening stop-
ping tolerance. I adapt an approximate version of Newton’s method to solving
the problem sequence. – The idea of regulating tolerances in such a procedure
goes back to the Constrained Newton Method of Lemaréchal, Nemirovski and
Nesterov [99]. – I worked out an approximation scheme that uses confidence
intervals instead of function values. Based on this, I developed a randomized
version. I include convergence analysis and reliability considerations.

Randomized maximization of probability (Chapter 10).
In this chapter, I proposed a randomized inner approximation scheme for prob-
ability maximization. The chapter is based on Fábián, Csizmás, Drenyovszki,
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Vajnai, Kovács and Szántai [54]. The methodological results proved in Section
10.1 are my contribution. Tamás Szántai contributed with his expertise in esti-
mating distribution function values and gradients. Implementation and testing
was done by my colleagues at the John von Neumann University, and they also
contributed in methodological issues, developing and testing practical means of
regulating accuracy and practical stopping conditions.

The objective function is the negative logarithm of an n-dimensional nonde-
generate standard normal distribution function. Gradient estimates can be con-
structed with a reasonable effort, applying the simulation methods overviewed
in Chapter 7. For the sake of simplicity, I assume that objective values are com-
puted with a high precision. – In the present case of normally distributed ran-
dom parameters, gradient computation is the bigger challenge. High-precision
computation of a single non-zero component of the gradient requires an effort
comparable to that of the objective value.

The proposed method is an adaptation of the randomized approach of Chap-
ter 8. In the probabilistic context, reliability considerations are based on a spe-
cial bounding approach. We demonstrate the workability of the approach with
a computational experiment.

Outer approximation is the traditional solution approach in probabilistic
programming. Though it is difficult to implement due to noise in gradient com-
putation. It applies a direct cutting-plane method, and even a fairly accurate
gradient may result in a cut cutting into the epigraph of the probabilistic func-
tion. One either needs sophisticated tolerance handling to avoid cutting into
the epigraph, or else one needs a sophisticated convex optimization method that
can handle cuts cutting into the epigraph. Yet another alternative is perpetual
adjustment of existing cuts to information revealed in the course of the process.

Inner approximation of a level set results in a model that is easy to validate.
The level set is approximated by means of p-efficient points. New approximation
points are found by minimization over the level set. As this entails a substantial
computational effort, the master part of the decomposition framework should
succeed with as few p-efficient points as possible. This calls for specialized
solution methods. An increasing level of complexity is noticeable in recently
proposed methods.

I proposed inner approximation of the epigraph of the probabilistic function.
This approach admits easier generation of new test points, and endures noise in
gradient computation without any special effort. Noisy gradient estimates may
yield iterates that do not improve much on our current model. But we retain
a reliable inner approximation of the function. This inherent stability of the
model enables the application of randomized methods of simple structure.

The proposed stochastic approximation procedure can be implemented us-
ing standard components. The master problem is conveniently solved by an
off-the-shelf solver. New approximation points are found through simple line
search whose direction can be determined by standard implementations of clas-
sic Monte Carlo simulation procedures.
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Appendix A

Additional material

A.1 On performance profiles

Moré and associates developed means of systematic benchmarking of optimiza-
tion software, see e.g., [44], [45] and the references there. Here I give a brief
sketch of the concept of performance profiles, introduced by Dolan and Moré in
[44]. The aim is to enable easy visual comparison of different solution methods
with regard to a given set of test problems. The relative performance of each
method is represented by its respective performance function ρ : [1,+∞)→ [0, 1]
whose construction is sketched below.

LetM and P denote the sets of the methods and the problems, respectively.
Let P = |P| denote the number of the problems. Let us measure the computing
time tp,m for every method m ∈M and problem p ∈ P.

The minimal solution time

tp = min{ tp,m |m ∈M}

is used as a scaling factor in the definition of the relative performance ratio

rp,m =
tp,m
tp

.

The performance function for method m is then defined as

ρm(τ) =
|{ p ∈ P | rp,m ≤ τ }|

P
(τ ≥ 1).
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A.2 On linear programming
primal-dual relationship

According my research into the history of the area, the equivalence of the simplex
method and the dual simplex method has been known since the nineteen sixties.
Prékopa in [125], Chapter 4.6 treated the simplex method and the dual simplex
method in a unified form, as row and column transformations, respectively,
on an appropriate square matrix. Equivalence of simplex and dual simplex
steps is stated in Prékopa [131] in the following form: primal transformation
formulae yield the same tableau that we obtain when we first carry out the dual
transformation formulae and then take the negative transpose of the tableau.

Padberg in [120], Chapter 6.4 observes the equivalence of the primal and the
dual simplex methods with the remark that the numerical behavior of the two
methods may be very different.

Vanderbei in [177], Chapter 5.4 states the equivalence in the following form:
there is a negative transpose relationship between the primal and the dual prob-
lem, provided that the same set of pivots that were applied to the primal problem
are also applied to the dual.

Concerning the relationship between the respective bases of the primal and
the dual problems, an asymmetric form is presented in Kall and Mayer [86],
Chapter 1, Proposition 2.14. A symmetric form is described in [60] that can be
put into words as

Observation 57 Given a primal-dual pair of linear programming problems,
there is a one-to-one mapping between the respective bases of the primal and
the dual problem, which has the following characteristic. Let B and C be corre-
sponding primal and dual bases. Then C is a feasible basis of the dual problem
if and only if B is a dual feasible basis of the primal problem.
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