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K. Atteson: The performance of neighbor-joining methods of phyloge-
netic reconstruction, Algorithmica 25 (1999), 251–278. Hivatkozza:[20]

P. 256.: The later result also holds for the UNJ and BIONJ methods of Gas-
cuel [G2], [G3] which are modifications of NJ. Note that methods described
in [ESSW] and the Buneman tree method [Bu] are also known to have this
property but known algorithms implementing these methods have higher com-
putational complexity than some of the neighbor-joining methods. A method
which finds the closest additive distance matrix to the input distance matrix un-
der the l∞ norm would have l∞ at least 1

4 (see [ESSW]). However, this problem
is NP-hard to approximate within a factor of 9

8 [ABF+]. A 3-approximation
to this problem is known [ABF+] which has l∞ radius between 1

8 and 1
6 (see

[ESSW]). Motivated by Lemma 3, we now give a name to a distance matrix
which is near enough to a weighted binary tree so that it can be guaranteed to
be correctly reconstructed by a method with optimal l∞ radius:
The concept of nearly additive distance matrices was introduced in [ESSW]
(without the name).

D. Bryant: Extending tree models to split networks, Chapter 17, in Alge-
braic Statistics for Computational Biology (Ed. L. Pachter and B. Sturmfels)
Cambridge Univ. Press (2005), 331–346. Hivatkozza:[9, 8]

P. 332.: 17.6 A Fourier calculus for splits networks
[Székely et al. 1993] describe a Fourier calculus on evolutionary trees that ge-
neralizes the Hadamard transform [Hendy and Penny, 1989, Steelet al., 1992].
Using their approach, we can take the observed character frequencies, apply
a transformation, and obtain a vector of values from which we can read off
the support for different splits. They show that if the observed character fre-
quencies correspond exactly to the character probabilities determined by some
phylogenetic tree then the split supports will correspond exactly to the splits
and branch length in the phylogenetic tree. Conversely, the inverse transfor-
mation gives a single formula for the character probabilities in any tree.
This theory generalizes seamlessly from trees to splits networks - in fact so se-
amlessly that the proofs of [Székely et al., 1993] requires almost no modification
to establish the general case.

M. Csűrös - K-Y. Ming: Recovering evolutionary trees through Har-
monic Greedy Triplets. SODA ’99 - Tenth Annual ACM-SIAM Symposium on
Discrete Algorithms, (1999), 1–12. Hivatkozza:[17]

P. 261.: At present, the Short Quartet Method (SQM) by Erdős et al. is
the only other known algorithm with comparable theoretical and experimental
performance. . . . The SQM algorithm was originally analyzed for the Cavander-
Farris model [3], which is the special binary-character case of the Jukes-Cantor
model. The analysis techniques presented in this paper can be used to extend
the theoretical analysis of SQM algorithm to the Jukes-Cantor model. The
theoretical and experimental performance of both HGT and SQM algorithms
have demonstrated to be superior to such other distance based algorithms as
that of Farrach and Kannan [7] and the widely used Neighbor Joining [17]
algorithm.
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E. Dahlhaus - D.S. Johnson - C.H. Papadimitriou - P.D. Seymour - M.
Yannakakis: The complexity of multiterminal cuts, SIAM J. Computing 23
(1994), 864–894. Hivatkozza:[5, 6] (extended abstract: 24th ACM STOC,
(1992), 241–251. Hivatkozza:[5, 12]).

P. 892.: More recently, Erdős and Székely in [5], [6] proposed the following
generalization of multiterminal cut. Suppose you are given a graph G = (V,E)
with weighted edges, and a partial k-coloring of the vertices, that is, a subset
and a function f : V ′ → {1, 2, . . . , k}. Can f be extended to a total function
such that the total weight of the edges that have different colored endpoints
is minimized? The k-terminal cut problem is the special case where |V ′| = k
and F is 1− 1, that is, each color is initially assigned to preciously one vertex.
It is easy to see that for general graphs, this problem is in fact equivalent to
multiterminal cut. . . .
Nevertheless, in the case of trees, the dynamic programming algorithm for
multiterminal cut mentioned in the Introduction extends in a natural way to
the colored multiterminal cut problem, yielding an O(nk) algorithm, as Erdős
and Székely observe. This, is turn, implies that if G is such that deleting all
the terminals renders it acyclic, then multiterminal cut can itself still be solved
in O(nk) time. (Simply split each terminal si into degree(si) separate vertices,
one for each edge incident on si, assign color to all the derived vertices, and
apply the above mentioned algorithm for colored multiterminal cut on trees to
the resulting graph [6]).

Duffus - B. Sands: Minimum sized fibres in distributive lattices, Austr.
J. Math 70 (2001), 337–350. Hivatkozza:[13, 15]

P. 339.: At this point, we can prove somewhat less than this. Our result,
Theorem 2, depends on what Ahlswede, Erdős and Graham [1] call the ’splitting
property’ for maximal antichains. Call an ordered set X dense if every proper
nonempty open interval (a, b) = {x ∈ X|a < x < b} of X contains at least two
elements. Say that a maximal antichain A of X has the splitting property if A
can be partitioned into two subsets B and C so that X = B ↑ ∪C ↓ . X has
the splitting property if all of its maximal antichains do. The splitting property
for infinite antichains is studied in ([7], [8]).

The important results for us from [1] are that Boolean lattices are dense and
every dense ordered set has the splitting property. . . . We will show that the
splitting property is nicely tied to the monotonicity of f , in all three meaning
contained in Conjecture 2.

K. Engel: Sperner Theory, Encyclopedy of Mathematics and Its Applica-
tions, Vol. 65 Cambridge University Press, 1997. Hivatkozza:[1, 2, 3, 7, 14]
A könyv 3. Fejezete (84-115 oldalak) részletesen tárgyalja a halmazrendszerek kon-
vex burkának elméletetét.

P. 162.: For a subset (family) F of P and an automorphism φ, let
φ(F ) := {φ(p) : p ∈ F}. Given an automorphism group G of P , we say that
a class A of families in P is G-invariant if φ(F ) ∈ A for all F ∈ A. . . . The
following theorem is (in a different formulation) due to Erdős, Faigle, and
Kern [173].
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Theorem 4.5.7. Suppose that there exists a rank-transitive automorphism
group of P. Let C = (p0 l p1 l · · ·l pn) be a fixed maximal chain in P, let Q
be the filter generated by p0 and let R be a system of representatives of the left
cosets of G relative to Gp0 . Let w : P → R+ be defined by

w(p) :=
Wi(P )
W0(P )

1
Wi(Q)

if p ∈ Ni(P ),

and let A be a G-invariant class of families. If for all F ∈ A∑
ρ∈R

w(ρ(C) ∩ F ) ≤ 1,

then for all F ∈ A
n∑

i=0

fi

Wi(Q)
≤ 1.

J. Felsenstein: Inferring phylogenies, Sinauer Associates Inc. Sunderland
CT, (2003), 580pp p.173,182 Hivatkozza:[8, 11, 16, 18, 19]

P. 172.: A puzzling formula
Erdős et al. (1997a) give two versions of these bounds. ....

k >
c log n

f2(1− 2g)2diam(T )
(11.21)

The result is surprising because it seems to imply that we need only have a
number of characters proportional to the logarithm of the number of species,.....

P. 182-3.: Short quartet methods
The noise can easily arise if some of the species are rather distant from each
other. This is also a serious problem with distance matrix methods such as
neighbor-joining and those using the Fitch-Margolis criterion. ......
To correct this, Erdős et al. (1997a,1997b,1999) have put forward the short
quartet method. This reconstruct a tree from quartets that do not involve
any of the large distances. This method uses a threshold value of distance
and accept only those quartets that do not have any of the distances between
their members greater than this threshold.... Inferring trees from these ,,short”
quartets, they then combine them to make an estimate of the overall tree. The
method of combination used is complete compatibility of the quartets......

P. 286.: Extensions of Hadamard methods
Steel et al. (1993) have shown that if the distribution of rates r among sites is
f(r), then we must replace the logarithm in equations 17.10 and 17.12 by the
inverse of the moment-generating function of f(r). This is

M−1(r) =
∫ ∞

0

ln(λr)f(λ)dλ (17.16)

If this function can be evaluated (which it can for distributions like as gamma
distributions) then it used instead of the logarithm allows us to have a Hada-
mard conjugation that works for the model with varying rates among sites.

E. Mossel - S. Roch: Learning nonsingular phylogenies and hidden Mar-
kov models, Ann. Appl. Probability 16 (2) (2006), 583–614. Hivatkozza:[19,
20]
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P. 588.: Reconstructing the topology has been a major task in phylogeny. It
follows from [10, 11] that the topology can be recovered with high probability
using a polynomial number of samples. Here is one formulation from [26].
THEOREM 3. Let β > 0, κβ > 0 and suppose that Mn consists of all
matrices P satisfying β < |detP | < 1 − n−κβ . For all κT > 2, the topo-
logy of T ∈ (T3(n) ⊗ Mn, n−κπ ) can be recovered in polynomial time using
nO(1/β+κβ+κT +κπ) samples with probability at least 1− n2−κT .
We will also need a stronger result that applies only to hidden Markov models.
The proof, which is sketched in the Appendix, is quite similar to the proofs in
[10, 11].

P. 610.: A crucial observation in [10, 11] is that, to obtain good estimates of
distances with a polynomial number of samples, one has to consider only pairs
of leaves at a ,,short” distance. We note Ψ̂ab the estimate of Ψab. For ∆ > 0,
define

S∆ = {(a, b) ∈ L × L : Ψ̂ab > 2∆}.
Let ∆ = − ln[6n−ζ ]. Then it follows from [11], Proof of Theorem 14, that, for
any e, p > 0, there exists an s > 0 large enough so that, using ns samples, with
probability at least 1− n−p, one has, for all (a, b) in S2∆,∣∣∣Ψ̂ab −Ψab

∣∣∣ < − ln[1− n−e] ≤ n−e,

and S2∆ contains all pairs of leaves with Ψab ≤ 2∆, but no pair with Ψab ≥ 6. ...

By [10], Lemma 5, this is guaranteed to return the right topology if, for all
a′, b′ ∈ q,

|Ψ̂a′b′ −Ψa′b′ | < x

2
,

where x is the length (in the log-det distance) of the internal edge in the subtree
induced by q.

M. Pouly: Minimizing Communication Costs of Distributed Local Com-
putation., in ECAI’2006, Workshop 26 (ed. A. Darwiche et al.), (2006),
19–24. Hivatkozza:[12]

P. 23.: 4.1 Analysis of PDP
[1] originally initiated the study of the multiway cut problem whose close rela-
tion to PDP is the topic of this section. For our purposes, we stress the more
general and illustrative definition of multiway cut given in [2]: ....
This definition includes the so-called color-independent version of a weight func-
tion, which has also been used in [1]. A more general form is proposed by [2]
and defined as w : E × C × C → N. In this case, the weight function is called
color-dependent and the number w(i, j, p, q) specifies the weight of the edge
(i, j) ∈ E, if ν̄(i) = p and ν̄(j) = q. Clearly, color-independence is reached, if
for any (i, j) ∈ E, p1 6= q1 and p2 6= q2, we have w(i, j, p1, q1) = w(i, j, p2, q2).
Finally, if w(i, j) = c for all (i, j) ∈ E, the weight function is said to be constant.
Note, that without loss of generality, we can assume c = 1.
[1] pointed out that the multiway cut problem is NP-complete even for |N | =
3, |Ni| = 1 and constant weight functions. But for the special case of a tree,
[2] showed that multiway cut can be solved in polynomial time even for color-
dependent weight functions. The corresponding algorithm has time complexity
O(|V |r2). This finally determines the complexity of the partial distribution
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problem, associated with the minimization of communication costs in local
computation with weight predictable valuation algebras.

C. Semple - M.A. Steel: Phylogenetics, Oxford University Press, Oxford
UK (2003) 254 pp. Hivatkozza:[4, 5, 12, 10]

P. 88.: Although Corollary 5.1.8 only applies to two-state characters, Erdős
and Székely (1992) developed an extension to arbitrary characters that differs
by permitting path to intersect provided certain condition are met.

Suppose we have a phylogenetic X-tree T = (T ;φ) and a character χ on X.
A collection D of directed paths is an Erdős-Székely path system for χ on T if
it satisfies the following two conditions:

(i) If P ∈ D then P connects two leaves φ(x) and φ(y) of T for which
χ(x) 6= χ(y).

(ii) Let P and P ′ be paths in D that share some edge. Then,P and P ′ traverse
this edge in the same direction and, if φ(x) and φ(y0 denote the terminal
vertices of P and P ′, χ(x) 6= χ(y).
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