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Chapter 1

Summary

This dissertation is part of my application for the Doctor of the Hungarian Academy of
Sciences (D.Sc., in Hungarian: MTA doktora) title. The topic of this work belongs to
the theory of convex bodies, and to the theory of approximations (best and random) of
convex bodies by polytopes and similar objects. The dissertation is based on six of my
papers, each written with co-authors, that appeared in high-quality refereed international
mathematical journals. These papers are the following (in alphabetical order): Boroczky
and Fodor |BF19|, Boroczky, Fodor and Hug [BFH10], Boroczky, Fodor and Hug [BFH13|,
Fodor, Kevei and Vigh [FKV14], Fodor and Vigh [FV12], and Fodor and Vigh [FV18] (ci-
tations refer to the Bibliography at the end of this dissertation). The paper [BF19| investi-
gates a generalization of the classical Minkowski problem which is one of the fundamental
questions in the theory of convex bodies. The papers [BFH10, BFH13| are about ap-
proximations of convex bodies by random polytopes and polyhedral sets in three different
settings. In particular, [BFH10| studies weighted random approximations of convex bodies
by random polytopes contained in the body, and by applying certain polarity arguments,
also approximations by random polyhedral sets containing the body. The article [BFH13]
is about approximations of convex bodies by random polytopes whose vertices are chosen
from the boundary of the body. The three papers [FKV14,[FV12,[FV18] concern the ap-
proximation properties convex of bodies that are intersections of congruent closed balls (so-
called spindle convex or hyperconvex bodies) both in the random setting [FKV14,[FV18|
and for best approximations [FV12]. The three papers [BFH10,BFH13,FKV14] are about
asymptotic results on expectations of various geometric quantities of random polytopes,
polyhedra and disc-polygons, while [FV18] contains asymptotic bounds on the variance of
some of these quantities. Some of my other papers (|[BFRV09, BFV10,FHZ16]) on ran-
dom approximations about asymptotic bounds on variance and laws of large numbers are
not used in this dissertation, but they are briefly mentioned in the historical overview.
The problems discussed in this work belong to the rapidly developing fields of Convex-
ity and Stochastic Geometry that are intricately interlaced. In our arguments we use a
combination of methods from Geometry, Analysis and Probability.

The dissertation is organized as follows. Chapter [2] is an introduction: Section
contains a summary of our results along with a brief overview of the history of the relevant
parts of the theory. In Section we introduce some of the most important terms and
notations used throughout this work.
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Chapter |3 is based on the paper [BF19]. We solve the existence part of the L, dual
Minkowski problem for p > 1 and ¢ > 0, which, in the absolutely continuous case, con-
stitutes solving the associated Monge-Ampere equation. We also examine the regularity
properties of the solutions for certain measures.

Chapter 4| is based on parts of the paper [BFH10| in which we investigate weighted
volume approximations of general convex bodies by inscribed random polytopes.

Chapter [5| is based on parts of the paper [BFH10] where we deal with mean width
approximations of convex bodies by circumscribed random polytopes.

Chapter |§| is based on the paper [BFH13]. In this chapter we study the properties of
the intrinsic volumes of random polytopes whose vertices are selected from the boundary
of a convex body.

In Chapters [7] and [§] we investigate approximations of sufficiently round convex bodies
in the plane by convex disc-polygons, which are objects that arise as intersections of
congruent circular discs. In particular, Chapter 7| is based on the papers [FKV14]| and
[F'V18], where we consider random approximations by inscribed random disc-polygons in
the plane. Chapter |§|is based on the paper [FV12] in which we investigate the properties
of best approximations of planar convex bodies by disc-polygons.

Below we state the main results of this dissertation in the form of six Theses. Since the
following Theses are intended for a wider readership, they are phrased with the minimal
use of mathematical symbols. The mathematically precise statements of our results are
formulated in the individual chapters of this work.

Thesis 1. We have solved the existence part of the L, dual Minkowski problem for p > 1
and q > 0, which, in essence, constitutes solving the associated Monge-Ampeére equation if
the considered measure is absolutely continuous with respect to the Hausdorff measure on
the sphere. We also examine the smoothness of the solutions using the reqularity properties
of the Monge-Ampére equation.

Thesis|1|is supported by Theorems and Theorems[3.1.3] [3.1.4]and [3.1.5] In
particular, Theorem[3.T.T|establishes the existence of the solution of the L, dual Minkowski

problem for p > 1 and ¢ > 0 for discrete measures, and Theorem deals with the case
of general measures. Theorems [3.1.3} |3.1.4] and [3.1.5| establish smoothness properties of
the solution in the case when the measure is absolutely continuous with respect to the
(n — 1)-dimensional Hausdorff measure on the unit sphere. (The detailed proofs of the
smoothness results are not included in this dissertation, for the arguments see [BF19].)

Thesis 2. We have established an asymptotic formula in d-dimensional Fuclidean space
for the expectation of the difference of weighted volume of a general conver body and a
random polytope which is the convex hull of n identically distributed independent random
points chosen from the convex body according to a given probability density function, as n
tends to infinity. It is assumed that both the weight function and the probability density
function are continuous and the probability density function is positive in a neighbourhood
of the boundary of the convex body.

Thesis [2] is supported by Theorem in Chapter [l We note that Theorem
implies Corollary [£.1.2] which provides an asymptotic formula for the expectation of the
number of vertices of the random polytope. Theorem and Corollary are later
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used to prove Theorem [5.1.T] and Theorem in Chapter [5] but they are important in
themselves being the most general version of a sequence of earlier results. Their significance
is partly due to the fact that there is no regularity or smoothness condition on the boundary
of the convex body and both the weight function and the probability density function are
very general.

Thesis 3. We have established an asymptotic formula in d-dimensional Euclidean space
for the expectation of the mean width difference of a general convex body and a random
polyhedral set containing the convex body where the random polyhedral set is the intersec-
tion of n identically distributed independent random closed half-spaces, each containing
the convexr body and selected according to a prescribed probability density, as n tends to
nfinity.

Thesis[3]is supported by Theorem[5.1.1] As a corollary of Theorem[5.1.1], we also obtain
an asymptotic formula for the expected number of facets of the random polyhedral set as
n tends to infinity, c¢f. Theorem We note that, in fact, we have proved the much
more general statements in Theorem and Theorem [5.2.3] The significance of the
result of Thesis [3]is due to the fact that previously there has been very little information
about circumscribed random polytopes compared to the vast literature of the inscribed
case, and that there are no requirements for the regularity or smoothness of the boundary
of the convex body.

Thesis 4. We have established an asymptotic formula in d-dimensional Fuclidean space
for the expectation of the difference of the intrinsic volumes of a convex body that has
a rolling ball and a random polytope which is the convex hull of n identically distributed
independent random points chosen from the boundary of the convex body according to a
given continuous and positive probability density.

Thesis[]is supported by Theorem[6.1.2 We note that examples show that the condition
that the convex body has a rolling ball cannot be dropped without losing the validity of
the asymptotic formula. The result of Thesis [4 is an extension of earlier theorems of
Reitzner |[Rei02], Schiitt and Werner [SW03], however, the methods used in the proof are
quite different.

Thesis 5. We have proved asymptotic formulae in the Fuclidean plane for sufficiently
round and smooth convex discs for the expectation of the number of vertices, area difference
and perimeter difference of the convex disc and a random disc-polygon gemerated by n
independent uniform random points selected from the convex disc, as n tends to infinity.
We have also proved asymptotic estimates on the variance of the missed area and the
number of vertices. Furthermore, we give analogous results for a circumscribed model.

Thesis [5] is supported by Theorems [7.1.1} [7.1.2] [7.1.3], and Theorems and
Theorem Corollary [7.2.7 The term sufficiently round means that there is a positive
radius R such that the convex disc can be represented as the intersection of a family of
radius R closed circular discs. The random disc-polygons arise as the intersections of all
radius R closed circular discs containing n independent uniform random points chosen
from the convex disc. Theorems[7.1.1] [7.1.2] and [7.1.3] are the disc-polygonal analogues of
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the celebrated results of Rényi and Sulanke [RS63,RS64] for the random approximations of
smooth convex discs by uniform random polygons. Moreover, they are also generalizations
of the results of Rényi and Sulanke in the sense that for a sufficiently smooth convex
disc they converge to them as the radius R tends to infinity. Theorems [7.2.1] and [7.2.2]
provide asymptotic bounds on the variance of the number of vertices and missed area for
smooth convex discs and circles, respectively. Theorem and Corollary present
a circumscribed model and certain analogues of the inscribed results.

Thesis 6. We have established asymptotic formulae for the approximation orders of suf-
ficiently round and smooth convex discs in the Euclidean plane by inscribed and circum-
scribed disc-polygons with n vertices in the sense of area, perimeter and Hausdorff distance,
as n tends to infinity.

Thesis [6] is supported by Theorem This result is a disc-polygonal analogue and
generalization of the classical theorem proved by McClure and Vitale [MV75], originally
stated by L. Fejes T6th [F'T53], for the approximation orders of convex discs by inscribed
and circumscribed polygons with n vertices in the sense of area, perimeter and Hausdorff
distance, as n tends to infinity.
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Chapter 2

Introduction

2.1 History and overview of results

The classical Minkowski problem in the Brunn-Minkowski theory of convex bodies is con-
cerned with the characterization of the so-called surface area measure. The surface area
measure of a convex body K is a Borel measure on the unit sphere S™~! such that for
any Borel set 1, the measure of 7 is defined as the n — 1 dimensional Hausdorff measure
of its inverse image under the spherical image map. The (classical) Minkowski problem
asks for necessary and sufficient conditions for a Borel measure on S™"~! to be the surface
area measure of a convex body. A particularly important case of the Minkowski problem
is for discrete measures. Let P C R"™ be an n-dimensional polytope, which is defined as
the convex hull of a finite number of points in R™ provided intP # (). Those faces whose
dimension is n — 1 are called facets. A polytope P has a finite number of facets and the
union of facets covers the boundary of P. The surface area measure of P is a discrete
measure on the sphere that is concentrated on the outer unit normals of the facets. The
measure of a Borel set 7 on S"~! is equal to the sum of the surface areas of the facets of
P whose outer unit normals are contained in 7.

The (discrete) Minkowski problem asks the following: let u be a discrete positive
Borel measure on S”~!. Under what conditions does there exist a polytope P such that
its surface area measure is u? Furthermore, if such a P exists, is it unique? This polytopal
version, along with the case when the surface area measure of K is absolutely continuous
with respect to the spherical Lebesgue measure, was solved by Minkowski [Min97,[Min03].
He also proved the uniqueness of the solution. For general measures the problem was solved
by Alexandrov [Ale38,|Ale39] and independently by Fenchel and Jensen. The argument
for existence uses the Alexandrov variational formula of the surface area measure, and
the uniqueness employs the Minkowski inequality for mixed volumes. In summary, the
necessary and sufficient conditions for the existence of the solution of the Minkowski
problem for j are that for any linear subspace L < R™ with dimL < n—1, u(LNS" 1) <
p(S™1), and that the centre of mass of y is at the origin.

Similar questions have been posed, and at least partially solved, for other measures
associated with convex bodies in the Brunn-Minkowski theory, for example, the integral
curvature measure of Alexandrov, or the L, surface area measure introduced by Lutwak
[Lut93b|, where the case p = 1 is the classical surface area measure, and the p = 0 case
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is the cone volume measure (logarithmic Minkowski problem). For a detailed description
of these measures and their associated Minkowski problems, and further references, see,
for example, the book [Sch14] by Schneider, and the paper [HLYZ16| by Huang, Lutwak,
Yang and Zhang.

Lutwak built the dual Brunn-Minkowski theory in the 1970s as a "dual” counterpart
of the classical theory. Although there is no formal duality between the classical and dual
theories, one can say roughly that in the dual theory the radial function plays a similar
role as the support function in the classical theory. The dual Brunn-Minkowski theory
concerns the class of compact star shaped sets of R”. Convex bodies are naturally star
shaped with respect to any of their points.

The ¢th dual intrinsic volumes for convex bodies containing the origin in their interior
were defined by Lutwak [Lut75|, whose definition works for all real ¢q. His definition is
via an integral formula involving the gth power of the radial function (for the precise
definition see ) We note that dual intrinsic volumes for integers ¢ = 0,...,n are
the coefficients of the dual Steiner polynomial for star shaped compact sets, where the
radial sum replaces the Minkowski sum. The ¢th dual intrinsic volumes, which arise
as coefficients naturally satisfy , and this provides the possibility to extend their
definition for arbitrary real ¢ in the case when the origin is in the interior of the body.

Huang, Lutwak, Yang, Zhang |[HLYZ16| and Lutwak, Yang, Zhang [LYZ18| defined,
with the help of the reverse radial Gauss map, the gth dual curvature measures by means
of an integral formula involving the gth power of the radial function; for the precise defini-
tion we refer to [3.1.3] We note that the so-called cone volume measure and Alexandrov’s
integral curvature measure can both be represented as dual curvature measures. Further-
more, the gth dual curvature measure is a natural extension of the cone volume measure
also in the variational sense, see Corollary 4.8 of Huang, Lutwak, Yang, Zhang [HLYZ16).

For integers ¢ = 0,...,n, dual curvature measures arise in a similar way as in the
Brunn-Minkowski theory by means of localized dual Steiner polynomials. These measures
satisfy , and hence their definition can be extended for ¢ € R. Huang, Lutwak,
Yang and Zhang [HLYZ16] proved that the gth dual curvature measure of a convex body
containing the origin in its interior can also be obtained from the gth dual intrinsic volume
by means of an Alexandrov-type variational formula.

Lutwak, Yang, Zhang [LYZ18| introduced a more general version of dual curvature
measures where a star shaped set @ (called the parameter body) containing the origin in
its interior is also involved; for a precise definition see . The parameter body @ acts
as a gauge, and its advantage is, for example, in the equiaffine invariant formula .

The L, dual curvature measures emerged recently |[LYZ18] as a family of geometric
measures which unify several important families of measures in the Brunn-Minkowski
theory and its dual theory of convex bodies. They were also introduced by Lutwak,
Yang and Zhang [LYZ18| using the —pth power of the support function and gth dual
curvature measure (see (3.1.11)). They provide a common framework for several other
geometric measures of the (L,) Brunn-Minkowski theory and the dual theory: L, surface
area measures, L, integral curvature measures, and dual curvature measures, cf. [LYZ18].
L, dual curvature measures also arise from Alexandrov-type variational formulas for the
dual intrinsic volumes as proved by Lutwak, Yang and Zhang, see Theorem 6.5 in [LYZ18].

In [LYZ18] Lutwak, Yang and Zhang introduced the L, dual Minkowski existence

10
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problem: Find necessary and sufficient conditions that for fixed p,q € R and star body @
containing the origin in its interior and a given Borel measure p on S"~! there exists a
convex body K such that p is the L, dual gth curvature measure of K. As they note in
[LYZ18], this version of the Minkowski problem includes earlier considered other variants
(L, Minkowski problem, dual Minkowski problem, L, Aleksandrov problem) for special
choices of the parameters p and q. When @ is the unit ball and p is absolutely continuous
with density function f, then the L, dual Minkowski problem constitutes solving the
associated Monge-Ampere equation , and in the case of general (), the somewhat
more complicated Monge-Ampere equation .

The case of the L, dual Minkowski problem for even measures (that are symmetric with
respect to the origin) has received much attention, but since this topic diverges from our
direction we do not discuss it here in detail. Instead, we refer to Boroczky, Lutwak, Yang,
Zhang [BLYZ13| concerning the L, surface area measure, Béréczky, Lutwak, Yang, Zhang,
Zhao |[BLY "], Jiang Wu [JW17] and Henk, Pollehn [HP18|, Zhao [Zhal8] concerning the
gth dual curvature measure, and Huang, Zhao [HZ18| for the L, dual curvature measure
for detailed discussion of history and recent results.

We briefly discuss the known results about the L, dual Minkowski problem in Sec-
tion but for that we need some more formal definitions and notations.

Our main results about the existence part of the L, dual Minkowski problem are
contained in Theorems [3.1.1] and 3.1.2] In particular, Theorem [3.1.2] states that if the
measure 4 is not concentrated on any closed hemisphere of S"~!, then there exists a
convex body K containing the origin such that its L, dual curvature measure is p.

We prove Theorem [3.1.2] in several stages. In this dissertation, we only present the
proof in the simpler case when the parameter body @ is the unit ball. The general case for
an arbitrary parameter body containing the origin in its interior and having a sufficiently
smooth boundary is treated in Section 6 of [BF19] on pages 8008-8015.

One of the important ingredients of the proof is the extension for ¢ > 0 of the gth dual
intrinsic volumes, gth dual curvature measures and L, dual gth dual curvature measures
for convex bodies that may contain the origin on their boundary. We spend Section
with investigating the properties of these extended notions.

In Section [3:3] we prove Theorem [3.1.1] for the simpler case when the parameter body
Q is the unit ball. Theorem is the discrete version of the main Theorem The
proof of Theorem follows a variational argument. Before embarking on the actual
proof of Theorem (for Q@ = B™), we investigate the properties of L, dual curvature
measures in Section [3.4l The proof of Theorem [3.1.2]is contained in Section [3.5] and it by
means of weak approximation by discrete measures.

Theorems [3.1.3], [3.1.4] and [3.1.5] establish smoothness properties of the solution of the
L, dual Minkowski problem for measures that are absolutely continuous with respect to
the surface area measure. In this case, the solution of the problem constitutes solving a
Monge-Ampere type partial differential equation. In this dissertation we do not give the
proofs of the statements on the smoothness of the solution but the detailed arguments can
be found in Section 7 of [BF19]. The proof uses Caffarelli’s results |Caf90al Cafo0b| on the
regularity of the solutions of the Monge-Ampere equation.

We continue this section with a brief overview of the relevant parts of the history of
random and best approximations of convex bodies by polytopes in various models, and

11
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we describe the main results of this type contained in this dissertation without the use of
complicated notations. The precise (and formal) statements of results can be found in the
first sections of the subsequent chapters.

Approximation of complicated mathematical objects by simpler ones is an age-old
method that has been used extensively in many mathematical disciplines. In this disser-
tation, we investigate approximations of convex bodies in Euclidean d-space R%. We note
that the use of d for dimension instead of n is natural in the context of approximations
when n is reserved for the number of points or hyperplanes. We use different classes of
geometric objects (convex bodies themselves) for the approximations such as polytopes,
polyhedral sets, and intersections of congruent closed balls. In the larger part of this work
we consider random approximations, that is, the approximating objects are produced by
some random process. However, in the last chapter we describe best approximations of
certain convex discs in the plane by convex disc-polygons.

There is a vast literature about both random and best approximations of convex bodies.
In this short overview we concentrate only on those specific topics that are directly related
to our own work presented in this dissertation. For a more comprehensive treatment of
the subject we refer the reader to the works listed at the end of this section.

Approximations of convex bodies by random polytopes, polyhedral sets, etc. is at
the intersection of Convexity and Stochastic Geometry. The beginnings of Stochastic
Geometry are frequently attributed to two classical problems: the Buffon needle problem,
and Sylvester’s four point problem; a historical overview can be found, for example, in
the book by Schneider and Weil [SWO08|, Section 8.1], and in the survey paper by Weil and
Wieacker [WW93].

One of the most common models of random polytopes is the following. Let K be a
convex body in R¢. The convex hull K (n) of n independent, identically distributed random
points in K chosen according to the uniform distribution is a (uniform) random polytope
contained in K. This is usually called the uniform model. Sometimes it is said that the
random polytope is inscribed in K although its vertices are not assumed to be on the
boundary of K in general.

The famous four-point problem of Sylvester [Syl64] is considered a starting point of
an extensive investigation of random polytopes of this type. Beside specific probabili-
ties as in Sylvester’s problem, important objects of study are expectations, variances and
distributions of various geometric functionals associated with the random polytope. Typ-
ical examples of such functionals are volume, other intrinsic volumes, and the number of
i-dimensional faces.

In their ground-breaking papers [RS63] and [RS64], Rényi and Sulanke investigated
random polytopes in the Euclidean plane and proved asymptotic results for the expecta-
tions of basic functionals of random polytopes in a convex domain K in the cases where
K is either sufficiently smooth or a convex polygon; for some specific statements of Rényi
and Sulanke see Section Since then a significant part of results have been in the form
of asymptotic formulae as the number n of random points tends to infinity. We also follow
this path in this dissertation.

In the last few decades, much effort has been devoted to exploring the properties of
the uniform model of a random polytope contained in a d-dimensional convex body K.
From the extensive literature of this subject we select two specific topics that are directly

12
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related to our results presented in this dissertation.

To give a concrete example of such an asymptotic formula, we quote here the result
concerning the expectation of the volume difference V(K) — V(K(,)) of K and K. The
following formula holds for all convex bodies K C R? of unit volume

1mummEwKwpmﬁumm/)Mm$%*%m% (2.1.1)
where ¢, is an absolute constant depending only on d (defined in (4.1.1))), and (z) is the
generalized Gaussian curvature (see Section for precise definition) at the boundary
point z € 0K, and H%! denotes the (d — 1)-dimensional Hausdorff measure. We note
that the integral on the right-hand side of is called the affine surface area of K.
The affine surface area turns out to be a fundamental quantity which plays an important
role in the theory of convex bodies, for more information see [Sch14l Section 10.5].

Rényi and Sulanke [RS63] proved in the planar case when the boundary of the
convex body is three times continuously differentiable and has strictly positive curvature
everywhere, for the specific formula in the plane see also . Wieacker [Wie78|] ex-
tended this result for the case when K is the d-dimensional unit ball, and Affentranger
investigated even non-uniform distributions in the ball. Barany [Bar92| established
for d-dimensional convex bodies with three times continuously differentiable boundary and
strictly positive Gaussian curvature. Finally, Schiitt [Sch94] removed the smoothness con-
dition on the boundary of K. In Chapter 4| we further extend in the following
way. We consider a generalized version of the uniform model of a random polytope in
a d-dimensional convex body K, where the random points are chosen from K not nec-
essarily uniformly but according to a given probability density function. Furthermore,
instead of the volume difference of the convex body and the random polytope we consider
the weighted volume difference where we use a quite general weight function. The main
result of Chapter 4} which is from the paper by Boéroczky, Fodor and Hug [BFH10|, is the
asymptotic formula for the expectation of the weighted volume difference of K and the
(non-uniform) random polytope, stated in Theorem . Moreover, this result implies,
through a well-known argument of Efron, an asymptotic formula for the expected number
of vertices of the random polytope, formulated in Corollary We also note that our
proof of Theorem makes Schiitt’s proof complete, see the more detailed explanation
in Section [411

An asymptotic formula for the expectation of the mean width difference of K and a
uniform random polytope was proved by Schneider and Wieacker [SW80] when the bound-
ary of K is three times continuously differentiable and has positive Gaussian curvature
everywhere. The assumption of smoothness was relaxed by Boroczky, Fodor, Reitzner and
Vigh [BFRV09]. Although it is not included in this dissertation, we note that in our recent
paper [FHZ16] by Fodor, Hug and Ziebarth, we generalized this asymptotic formula for
the case of non-uniform probability distributions and weighted mean width difference for
convex bodies that have a rolling ball using the methods of the papers by Boéréezky, Fodor,
Reitzner and Vigh |[BFRV09] and Boéréczky, Fodor and Hug [BFH10].

Although in this dissertation we only consider first order type results, we note that
recently even variance estimates, laws of large numbers, and central limit theorems have
been proved in different models in a number of papers, for instance by Barany, Boroczky,

13
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Fodor, Hug, Reitzner, Schreiber, Vigh, Vu, Yukich and Ziebarth; see [BR10b], [BV07],
[Rei03], |[Rei05], [SYO08] [Vu05|, [Vu06], [BEV10], [BFRV09|, [FHZ16].

We do not intend to give a thorough overview of second order type results here, but we
mention three papers, of which I am a co-author of, in which we have recently established
asymptotic results on the variance of various quantities of random polytopes and also laws
of large numbers. In particular, in the paper Béréczky, Fodor, Reitzner and Vigh [BFRV09]
we proved matching lower and upper bounds for the order of magnitude of the variance,
and also the law of large numbers, of the mean width of uniform random polytopes in a
convex body that has a rolling ball. This is analogous to the results of Reitzner [Rei03]
and Barany and Reitzner [BR10a]: Reitzner [Rei03] proved the law of large numbers for
the volume of random polytopes in convex bodies with twice continuously differentiable
boundary and everywhere positive Gaussian curvature with the help of an optimal upper
bound on the variance of the volume, also shown in [Rei03]. Bardny and Reitzner proved
a matching lower bound for the variance of volume for arbitrary convex bodies. Further,
we mention that in the paper Barany, Fodor and Vigh [BFV10] we established matching
asymptotic lower and upper bounds on the order of magnitude of the variance of all
intrinsic volumes of uniform random polytopes contained in a convex body whose boundary
is twice continuously differentiable and has positive Gaussian curvature everywhere. The
proof of the lower bound in [BFV10] is based on an idea, originally from Reitzner [Rei05]
and also used in Boroczy, Fodor, Reitzner and Vigh [BFRV09], that we can define small
independent caps and show that the variance is already quite large in these caps. The
proof of the upper bound is based on the Economic Cap Covering Theorem of Barany
and Larman [BL88| and Barany [Bar89], and the Efron-Stein jackknife inequality [ES81].
Both arguments are very different from the ones presented in this dissertation. Finally, we
add that in our recent paper |[FHZ16| by Fodor, Hug and Ziebarth, we proved an upper
bound of optimal order for the variance of the weighted mean width of a non-uniform
random polytope in a convex body that has a rolling ball using a similar argument as in
Boéroczky, Fodor, Reitzner and Vigh [BFRV09].

In Chapter 5| we consider random polyhedral sets containing a general d-dimensional
convex body K. It is well-known that a polytope can be represented as the intersection
of closed half-spaces. The intersection of a finite number of closed half-spaces is called
a polyhedral set, or polyhedron for short. Thus, it is a natural way to generate random
polytopes (more precisely, random polyhedral sets) as the intersection of a finite number
of random closed half-spaces selected according to some given probability distribution. If
we select closed half-spaces which all contain a convex body K, then their intersection will
also contain K, and thus we obtain a random polyhedral set circumscribed about K.

One such model of random polyhedral sets (in the plane) was suggested and investi-
gated in the paper of Rényi and Sulanke |[RS68]. Subsequently, this circumscribed model
has not received as much attention as the inscribed case so there is considerably less
information about it in the literature.

Since polar duality turns the convex hull of a finite number of points contained in a
convex body K into the intersection of a finite number of closed half-spaces containing K,
one can regard a circumscribed random polyhedral set, in an intuitive sense, as a “dual”
of an inscribed random polytope. This duality relation can be made precise, but we will
see in Chapter that the exact connection between the two models is more complicated
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than it seems at first sight.

In Chapter [5| we consider the following probability model (and also some more general
versions of it). Let u be the unique rigid motion invariant Borel measure on the space of
hyperplanes of R? which is normalized in a way that the measure of the set of hyperplanes
meeting a convex body M is always equal to the mean width of M. For a convex body K,
let Hx be the set of hyperplanes whose distance from K is at most 1 but they are disjoint
from the interior of K. Then the restriction of % u to Hy is a probability measure. Take n
independent random hyperplanes chosen according to this probability measure from H g
and consider the closed half-spaces bounded by them that contain K. The intersection
K™ of these half-spaces provides a model of a random polyhedral set containing K. As
K™ can be unbounded with positive probability, we investigate its intersection with a
suitable convex body which contains K in its interior. This only affects some constants in
our results but not the asymptotic behaviour.

The main results of Chapter [5, which are from the paper by Béroczky, Fodor and Hug
[BFH10], are the asymptotic formula of Theorem for the expectation of the mean
width difference of K and KW NK 1, where K is the set whose points are at most distance
1 from K (radius 1 parallel domain of K, see Section , and the asymptotic formula
of Theorem for the expectation of the number of facets of K™ N P, where P is a
polytope containing K in its interior. These (and some more general, see Theorems
and results will be achieved with the help of Theorem and Corollary from
Chapter [4 on weighted volume approximation of a given convex body by inscribed random
polytopes using polarity. In all these results, no regularity or curvature assumptions on K
are required. We remark that the use of polarity to connect certain quantities of inscribed
polytopes to those of circumscribed ones goes back to Ziezold [Zie70]. Glasauer and Gruber
[GGI7| used polarity to connect the mean width and volume, and they used this relation
for proving asymptotic formulae for best approximations of convex bodies.

Earlier results on this model include the paper [Zie70] by Ziezold who investigated
circumscribed polygons in the plane, and the doctoral dissertation [Kal90] of Kaltenbach
who proved asymptotic formulae for the expectation of the volume difference and for
the expectation of the number of vertices of circumscribed random polytopes around a
convex body K, under the assumption that the boundary of K is three times continuously
differentiable and has positive Gaussian curvature everywhere. Boroczky and Schneider
[BS10] established upper and lower bounds for the expectation of the mean width difference
for a general convex body K. Furthermore, they also proved asymptotic formulae for the
expected number of vertices and facets of the circumscribed random polytope, and an
asymptotic formula for the expectation of the mean width difference, under the assumption
that the reference body K is a simplicial polytope with a given number of facets.

We remark that in the paper |[FHZ16] by Fodor, Hug and Ziebarth, we have proved
an asymptotic formula for the expectation of the volume difference of a circumscribed
random polytope and the parent convex body K under a very weak smoothness condition
that requires that K slides freely in a ball. This result, which is an extension of the
corresponding theorem of Kaltenbach [Kal90], was achieved using a similar argument as
in [BFH10| (presented in Chapter |5)). Furthermore, we have also proved an asymptotic
upper bound for the variance of the volume of the circumscribed random polytope, and
the strong law of large numbers in [FHZ16].
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In Chapter [6] we investigate yet another model of random polytopes. Instead of choos-
ing the random points from all of K, we sample random points only from the boundary
of K according to a given probability density. The convex hull of these points provides a
probability model of a random polytope that we consider in Chapter @ This (inscribed)
model has not been explored to the same extent as the previously discussed uniform model.
Our main focus is on the convergence of the expectation of the intrinsic volumes of such
a random polytope. The main result of Chapter |§|7 which is from the paper [BFH13]
by Boroczky, Fodor and Hug, stated in Theorem [6.1.2] extends previous works of Re-
itzner [Rei02] and Schiitt and Werner [SWO03] by relaxing the regularity assumptions on
K. In fact, for j = 1,...,d, Reitzner |[Rei02] established an asymptotic formula for the
expectation of the difference of the jth intrinsic volumes of the random polytope and the
parent convex body for the case when the parent body has twice continuously differen-
tiable boundary and everywhere positive Gaussian curvature, cf Theorem In the
case of volume, Schiitt and Werner [SWO03| extended the asymptotic formula of
Reitzner to convex bodies that have a rolling ball and, at the same time, slide freely in
a ball, for precise definitions see Section [2.2] In Chapter [6] we extend this asymptotic
formula for convex bodies that have a rolling ball in the case of all intrinsic volumes.
This is not an easy task as the speed of convergence depends in an essential way on the
boundary structure of K. Our approach, which is different from those of Reitzner [Rei02]
and Schiitt and Werner [SWO03], refines arguments that have been developed in [BFH10]
by Boroczky, Fodor and Hug (and presented in Chapter 4] of this dissertation) to establish
first order results for the aforementioned model of a random polytope in a convex body K,
and it combines geometric and probabilistic ideas. Examples show that the existence of
a rolling ball cannot be deleted from Theorem [6.1.2] while maintaining the validity of the
asymptotic formula. We further note, that we also prove general lower and upper bounds
in the case of mean width in Theorem [6.1.3

In Chapters [7] and [§] we consider approximations of sufficiently round convex bodies in
the Euclidean plane by intersections of congruent closed circular discs, in direct analogy
to how polytopes are produced as intersections of closed half-spaces. Of course, not all
convex discs can be approximated by intersections of equal size balls; such bodies must
satisfy special conditions. The natural objects that can be approximated by radius R > 0
closed balls in R? are the so-called R-spindle convex or R-hyperconvex bodies, which are
convex bodies that can be represented as the intersection of a family of radius R closed
balls, for more precise definition, basic properties and references see Sections and
A convex body that is the intersection of a finite number of radius R closed balls is called a
ball-polyhedron, and in the planar case, a disc-polygon. We remark that the property that
a convex body K in R? is R-spindle convex is equivalent to the fact that it is a Minkowski
(vector) summand of the d-dimensional ball of radius R, and that it slides freely in a ball
of radius R (see Section for the definition). Requiring that a convex body slides freely
in a ball is a common enough regularity condition on its boundary so R-spindle convex
bodies are fairly common in approximation problems. For the literature on properties of
Minkowski summands of balls, we refer to Schneider [Sch14, Sections 3.1 and 3.2].

In Chapter [7| we consider the following probability model. We take n independent
random points from an R-spindle convex disc S according to the uniform probability
distribution. Then the intersection .S, of all closed radius R circular discs containing
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these random points yields a model of a random disc-polygon in S. The main results
on expectations are are Theorems [7.1.1], [7.1.2] and [7.1.3] In particular, Theorem [7.1.1]
provides an asymptotic formula for the expectation of the area difference of S and S,
and another formula for the expected number of vertices of S,, under the condition that
the boundary of S is twice continuously differentiable and its curvature is strictly larger
than 1/R everywhere. Theorem is an asymptotic formula for the expectation of
the perimeter difference of S and S, under stronger differentiability conditions of the
boundary of S. Finally, Theorem gives similar asymptotic formulae to the ones in
Theorems|7.1.1|and in the special case when R = 1 and S is the unit circle. The ideas
of the proofs of Theorems|7.1.1} [7.1.2|and |7.1.3|go back to Rényi and Sulanke [RS63,RS64],
however, the details are much more difficult as we have to use integral geometric ideas for
circles instead of lines. We also show that our results for R-spindle convex discs reproduce,
in the limit as R — oo, the corresponding results of Rényi and Sulanke in the case when
the boundary of K is sufficiently smooth, cf. Section Thus, our results can be
rightfully considered as generalizations of those.

In Section [7.2] we study the variance of the number of vertices and the missed area
in the cases when either the spindle convex disc has a twice continuously differentiable
boundary and the radius of the approximating circles is strictly larger than the maximum
of the curvature radius, see Theorem [7.2.] or the spindle convex disc is a circle of fixed
radius that is equal to the radius of the approximating circles, see Theorem The
proofs depend on the Efron-Stein inequality and the general idea of the argument is based
on works of Reitzner.

Finally, in Chapter [8 we investigate best approximations of spindle convex discs in the
plane by disc-polygons in various settings. We consider both inscribed and circumscribed
disc-polygons. Here, inscribed means that we select the vertices of the disc-polygon from
the boundary of S, while circumscribed means that the sides of the disc-polygon are tan-
gent to the boundary of S. We measure the efficiency of the approximation by three
measures of distance: area deviation, perimeter deviation and Hausdorfl distance. We
seek to find the minimum of the distance between S and the inscribed or circumscribed
disc-polygons with n vertices according to the selected measure. Since finding the actual
minimum for general S and n is prohibitively difficult, as it is common in these approxi-
mations problems, we establish asymptotic formulae for the order of approximation as n
tends to infinity. The main result of Chapter [§]is a set of such asymptotic formulae stated
in Theorem which are from the paper [FV12]. In the cases where one approximates
a (linearly) convex disc in the plane by inscribed and circumscribed convex polygons of a
given number of vertices with respect to area deviation, perimeter deviation and Hausdorff
distance, asymptotic formulae for the order of approximation were given by L. Fejes T'6th
in [FT53|. These asymptotic formulae were later proved by McClure and Vitale in [MV75].
Our results in Theorem [8.1.1]are the spindle convex analogues of the corresponding results
of L. Fejes T6th and McClure and Vitale. Furthermore, in the case when the boundary of
S is twice continuously differentiable and has strictly positive curvature everywhere, then
the asymptotic formulae in Theorem reproduce those of L. Fejes Téth and McClure
and Vitale as the radius R of the disc-polygons tends to infinity, so they can be considered
as the generalizations of the classical results from [FT53] and [MV75]. The proof of The-
orem [8.1.1] uses an analytic framework developed by McClure and Vitale combined with

17



dc_1638 19

geometric arguments.

Finally, we list some of the literature where one can find more details of the topics
discussed above. Due to the large number of contributions, any such list can only be
incomplete, so our suggestions should be considered only as starting points if one wishes
to learn more about a particular problem.

We must begin with the classical book by Santalé [San46] which is a standard reference
in geometric problems of probabilistic nature. The recent monograph of Schneider and
Weil [SWO08| provides an excellent introduction to Stochastic Geometry and the integral
geometric methods used in problems of geometric probability along with a large number
of references for further study. As surveys on random polytopes, we suggest the following
papers by Barany [Bar08|, Hug [Hugl3|, Reitzner [Reil0], Schneider [Sch88,[Sch18|, Weil
and Wieacker [WW93)].

For an early reference on asymptotic aspects of best approximation of convex bodies
by polytopes, see the book of L. Fejes Téth [FT53]. For a more recent introduction into
this topic and for references, we suggest the book by Gruber [Gru07, Chapter 11]. The
following survey papers contain a detailed list of contributions: Bronshtein [Bro07], Gruber
[Gru83| and [Gru93]. The paper by Gruber |[Gru97| provides a comparison of best and
random approximations of convex bodies.

2.2 Notations and basic definitions

In this section we set some general notations and conventions used throughout the dis-
sertation. Due to the slightly different settings in the individual chapters, there are some
variations in certain notations in order to avoid collisions; these variations are kept to the
necessary minimum, and they are introduced only at the beginning of the chapter they
pertain to. In each topic we use the notation prevalent in the particular subject.

For a comprehensive treatment of the theory of convex bodies, we refer the reader to
the books by Schneider [Sch14] and Gruber [Gru07].

2.2.1 General notations

In this dissertation we work in d-dimensional Euclidean space which we denote by R
or when n denotes the dimension, then by R™. As common in the literature, we do not
distinguish between points of the Euclidean space and vectors of the underlying vector
space if this does not lead to confusion. Generally, we use small-case (Latin) letters to
denote points (or vectors) and capitals to denote sets of points. Greek letters are usually
constants unless otherwise noted. For a point set X C R?, we write cl X for the closure of
X, int z for the interior of X, X for the complement set of X, and X for the boundary
of X.

We use (-, -) for the Euclidean scalar product, and the induced norm is written as || - ||.
The d-dimensional unit ball centred at the origin o is denoted by B? and its boundary is
Sa-1,

A convex body K C R? is a compact, convex set with interior points. In the special
case that d = 2, a convex body is also called a convex disc.
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Let V denote volume and H’ denote the j-dimensional Hausdorff measure. We write
ag = V(B and wg := H1(S1) = day. In particular, if d = 2, then for the area
we also use the notation A(-), and for the perimeter (the ! measure of the boundary or
arclength) Per(+).

For two sets X, Y C R%, the Minkowski sum X +Y of X and Y is defined as

X+Y ={r+y:zecXandyeY}

It is known that if both X and Y are convex sets then X + Y is also a convex set. For
a convex body K and a real number A\ > 0, the Minkowski sum K + AB? is called the
radius A parallel domain of K, and it is denoted by K. One can think of K as the set of
points in R? whose Euclidean distance from K does not exceed . We note that parallel
domains of convex bodies play a very important role in the theory of convex bodies.

There are various ways to define a measure of distance between convex bodies. We fre-
quently use the so-called Hausdorff distance of compact sets which is defined the following
way. For two compact sets 4, B C R?, the Hausdorff distance is

dp(A,B) :=min{A\ >0: AC By and B C A,}.

It is known that the set of compact sets of R? with the Hausdorff distance form a locally
compact and complete metric space of which the set of compact convex sets is a closed
subspace in the induced topology by dz. For more information on the Hausdorff metric,
see, for example, [Sch14, Section 1.8].

For a convex body K C R and a unit vector u € S9!, the width wg(u) of K in
the direction of u is the defined as the distance of the two unique supporting hyperplanes
of K orthogonal to u. The mean width of K is the average of wg (u) over S~1, that is,
W(K) =w)" a1 wi(W)H(du).

We frequently compare the order of magnitude of functions and use the following
common notations. For two functions f(n) and g(n) defined on the set of positive integers,
we write f(n) ~ g(n) if lim,, o f(n)/g(n) = 1. For two real functions h; and hy defined
on the same space, we write h; < ho or hy = O(hsg) if there exists a positive constant 7
with the property that |hi| <~y -he. We also use the common Landau symbol o(-) in the
dissertation.

2.2.2 Differentiability and regularity conditions

A hyperplane H supports the convex body K at the boundary point z € 0K if x € HNK
and K is contained in one of the closed half-spaces determined by H. It is well-known that
a convex body K has a supporting hyperplane at each boundary point. The supporting
hyperplane may not be unique though. We say that a boundary point € 0K is smooth
if there is a unique supporting hyperplane of K at z. (Non-smooth boundary points are
called singular.)

Let H be a supporting hyperplane of K at € 9K. A unit vector u € S% ! is an
outer unit normal of K if it is normal to H and points to the open half-space of H that
does not contain K. The outer unit normal may not be unique. If z € JK is a smooth
boundary point, then there exists a unique outer unit normal vector of K at x, which we
denote by u(x) or v(x), in some cases when it fits other notations better, by u,.
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A significant percentage of results on polytopal approximation of convex bodies involve
some kind of regularity or differentiability conditions on the boundary of the convex body.
In some cases, differentiability assumptions are not only technical conditions which are
required by the techniques used in the proof but they are essential to the behaviour of the
random polytope. It is always an important question to determine whether a particular
smoothness condition is essential or not, and if not, then try to weaken it as much as
possible.

The most common differentiability condition used in results about approximation by
polytopes is that we require K to be C* smooth for some k > 1. More precisely, we
say that 0K is C* smooth for some k > 1 if K is a C* submanifold of R? (k times
continuously differentiable everywhere). Moreover, 0K is C’_’f_ if it is C* and, in addition,
its Gauss-Kronecker curvature is strictly positive everywhere. We remark that if 0K is
C? smooth, then that makes it possible to use tools from differential geometry. We will
use such differentiability conditions, for example, in Chapters [7] and

The following are also common smoothness conditions on the boundary of a convex
body, and we use them, for example, in Chapter @ Let K, L C R? be convex bodies. We
say that L slides freely in K, if for any = € 9K, there exists a p € R? such that z € L+ p
and L 4+ p C K, see [Sch14, Section 3.2]. In the special case when L is a ball B, then B
rolls (or slides) freely in K, and if K is a ball B, then L slides freely in B. Note that if K
has a rolling ball, then each one of its boundary points is smooth. Moreover, it is known
that the existence of a rolling ball in K is equivalent to the Lipschitz continuity of the
outer unit normal function u(z) : 0K — S9! (see D. Hug [Hug00]). On the other hand,
it was proved by Blaschke that if the boundary of K is twice continuously differentiable
everywhere, then K has a rolling ball (see D. Hug [Hug00] or K. Leichtweiss [Lei98]).

In some cases strict differentiability conditions are not essential in the sense that a
particular asymptotic formula remains valid under slightly weaker conditions. In Chap-
ters and [6] we use the following notions of generalized second order differentiability of
oK.

Let z € 0K be a smooth boundary point. Assume that K is oriented in R? (using a
suitable rigid motion) such that = o and x4 = 0 is a supporting hyperplane of K at x.

Under these conditions, v = (0,...,0,—1) is an outer unit normal of K at z. Then for a
suitably small € > 0 and a neighbourhood U of z, the boundary of K can be represented
as follows

OK NU = {—u(z)f(2) : z € (zg = 0) N B},

where f is a non-negative real valued function which is convex on the set (z4 = 0) N eB?
and f(o) = 0.

We introduce a notion of generalized second order differentiability of 0K at x where
we will call 0K differentiable twice in the generalized sense if f has a second order Taylor
expansion at x. More precisely, if there exists a positive semi-definite quadratic form Q(z)
with the property that

£(2) = 5Q0) +ofll2IP), (22.1)

as z — o, then we say that 0K is twice differentiable in the generalized sense at x. In this
case x is called a normal boundary point of K.
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The eigenvalues of () are called the generalized principal curvatures of 0K at x, and
they are denoted by ki(z),...,kq—1(x). Furthermore, we will need the normalized jth
elementary symmetric functions of the generalized curvatures which are defined as follows:

i) = (7 1)1 S k@) k(@)

J 1<iy <--<ij<d—1

for j € {1,...,d — 1}, and let Ho(z) := 1. In particular, Hy_1(x) is the generalized
Gauss-Kronecker curvature and Hp(z) is the (generalized) mean curvature of 0K at x.
For brevity of notation we sometimes write x(z) for the Gauss-Kronecker curvature, that
is, k() = Hg_1(x). When we use any of the H;(z), then tacitly assume that z is a normal
boundary point.

One reason why this notion of generalized second order differentiability is important
is that most boundary points of a convex body do possess this property as it was shown
by Alexandrov. More precisely, the boundary of a convex body is differentiable in this
generalized sense in almost all points with respect to #?~!. For more information on this
topic we refer to Note 3 of Section 1.5, and Section 2.6 of [Sch14], and also to Section 2.2
of |Gru07].

2.2.3 Intrinsic volumes

It is well-known that the volume of the radius A > 0 parallel domain of a convex body K
is a polynomial of degree d of A; this polynomial is frequently referred to as the Steiner’s
polynomial of K. The intrinsic volumes arise as suitably normalized coefficients of this
polynomial in the following way:

d
V(K +AB%) = A\ ay_;Vi(K).
j=0

The intrinsic volumes carry important geometric information about K, and some of them
are actually equal to (constant times) some familiar quantities. In particular, Vy(K) is the
volume of K, V;_1(K) is one half times the surface area of K, Vi(K) is a constant times
the mean width of K, and Vj(K) = 1. This particular normalization of the coefficients of
the Steiner formula was introduced by McMullen in [McMT75]. It has the advantage that
the intrinsic volumes are independent of the dimension of the ambient space. Another
version of the Steiner formula is also frequently used

V(K +AB%) = zd: Y (d) W;(K),
j=0

where the W;(K), j =0,...,d are called the Quermassintegrals of K.
Due to the works of Cauchy and Kubota, it is known that the intrinsic volumes can
also be written as mean projection volumes as follows. Let E? denote the Grassmanian of

all j-dimensional linear subspaces of R?. Let vj be the unique Haar probability measure
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on £§4. For L € E?, denote by K|L the orthogonal projection of K into L. Since L is j-
dimensional, the j-th intrinsic volume V;(K|L) of K|L is simply the j-dimensional volume
(Lebesgue measure) of K|L. Kubota’s formulae state the following:

()

Vi(K) =
) = s e

Vi(K|L)v;(dL)

for je{l,...,d—1}.

Finally, we note that general curvature and surface area measures arise by the so-called
localizations of the Quermassintegrals. Since these measures will only be used in Chapter
in the context of the Minkokwski problem, we give a short historical introduction to them
only there. The same applies to the dual Brunn-Minkowski theory and the related dual
intrinsic volumes and associated dual curvature measures.
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Chapter 3

The L, dual Minkowski problem

The contents of this chapter is based on parts of the paper [BF19] by K.J. Boroczky and
F. Fodor, The L, dual Minkowski problem for p > 1 and q > 0, J. Differential Equations
266 (2019), no. 12, 7980-8033. (DOI 10.1016/j.jde.2018.12.020)

3.1 Introduction

In this chapter our setting is the Euclidean n-space R™ with n > 2. We use the notation
kn = V(B™) for the volume of the unit ball. Recall that for a convex compact set K C R,
the support function hg(u) : S*~ 1 — R is defined as hx(u) = max{(z,u) : * € K}. For
u € S"1, the face of K with exterior unit normal v is F(K,u) = {z € K : (z,u) = hx(u)}.
For x € 0K, let the spherical image of x be defined as vi({z}) = {u € S" ! : hg(u) =
(z,u)}. For a Borel set  C S"~1, the reverse spherical image is

vil(n) = {z € 0K : vi(z) N # 0} = Uye, F(K, u).

If K has a unique supporting hyperplane at z, then we say that K is smooth at z, and in
this case v ({z}) contains exactly one element that we denote by vk (z) and call it the
exterior unit normal of K at x.

The classical Minkowski problem seeks to characterize surface area measures. The
surface area measure of a convex body can be defined in a direct way as follows. Let &' K
denote the subset of the boundary of K where there is a unique outer unit normal vector. It
is well-known that K\ K is the countable union of compact sets of finite %"~ 2-measure
(see Schneider [Sch14, Theorem 2.2.5]), and hence &' K is Borel and H" 1 (0K \ &’K) = 0.
Then vi : 'K — S™ ! is a function that is usually called the spherical Gauss map,
and vk is continuous on &'K. The surface area measure of K, denoted by S(K,-), is
a Borel measure on S"~! such that for any Borel set n C S™7!, we have S(K,n) =
7—["*1(1/1_(1 (n)). It is an important property of the surface area measure that it satisfies
Minkowski’s variational formula

lim YD) ZVIE) / hy dS(K,") (3.1.1)
gn—1

e—0t+ £

for any convex body L C R"™.
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The classical Minkowski problem asks for necessary and sufficient conditions for a Borel
measure on S” ! to be the surface area measure of a convex body. A particularly important
case of the Minkowski problem is for discrete measures. Let P C R™ be a polytope, which
is defined as the convex hull of a finite number of points in R™ provided intP # ). Those
faces whose dimension is n — 1 are called facets. A polytope P has a finite number of
facets and the union of facets covers the boundary of P. Let ug,...,u; € S®! be the
exterior unit normal vectors of the facets of P. Then S(P,-) is a discrete measure on S"~*
concentrated on the set {uy,...,us}, and S(P, {u;}) = H" Y(F(P,u;)),i=1,..., k. The
Minkowski problem asks the following: let i be a discrete positive Borel measure on S”~1.
Under what conditions does there exist a polytope P such that y = S(P,-)? Furthermore,
if such a P exists, is it unique? This polytopal version, along with the case when the
surface area measure of K is absolutely continuous with respect to the spherical Lebesgue
measure, was solved by Minkowski [Min97, Min03|. He also proved the uniqueness of the
solution. For general measures the problem was solved by Alexandrov [Ale38|/Ale39] and
independently by Fenchel and Jensen. The argument for existence uses the Alexandrov
variational formula of the surface area measure, and the uniqueness employs the Minkowski
inequality for mixed volumes. In summary, the necessary and sufficient conditions for the
existence of the solution of the Minkowski problem for p are that for any linear subspace
L <R" with dimL <n — 1, u(LNS" 1) < u(S™ 1), and that the centre of mass of y is
at the origin, that is, [g,_1 up(du) = 0.

Similar questions have been posed for K € K7, and at least partially solved, for other
measures associated with convex bodies in the Brunn-Minkowski theory, for example, the
integral curvature measure J(K,-) of Alexandrov (see below), or the L, surface
area measure dS,(K,-) = h};pdS(K, -) for p € R introduced by Lutwak |[Lut93b|, where
S1(K,-) = S(K,-) (p=1) is the classical surface area measure, and Sy(K,-) (p = 0) is the
cone volume measure (logarithmic Minkowski problem). Here some care is needed if p > 1,
when we only consider the case o € 9K if the resulting L, surface area measure S, (K, -) is
finite. For a detailed overview of these measures and their associated Minkowski problems
and further references see, for example, Schneider [Sch14|, and Huang, Lutwak, Yang and
Zhang [HLYZ16.

Lutwak built the dual Brunn-Minkowski theory in the 1970s as a ”dual” counterpart
of the classical theory. Although there is no formal duality between the classical and dual
theories, one can say roughly that in the dual theory the radial function plays a similar
role as the support function in the classical theory. The dual Brunn-Minkowski theory
concerns the class of compact star shaped sets of R®. A compact set S C R™ is star
shaped with respect to a point p € S if for all s € S, the segment [p, s] is contained in S.
We denote the class of compact sets in R™ that are star shaped with respect to o by S,
and the set of those elements of S/ that contain o in their interiors are denoted by S ,.
Clearly, K C S} and IC?O) C S&). For a star shaped set S € S, we define the radial
function of S as gg(u) = max{t > 0: tu € S} for u € S"~1.

Dual intrinsic volumes for convex bodies K € Kf!, were defined by Lutwak |[Lut75]
whose definition works for all ¢ € R. For ¢ > 0, we extend Lutwak’s definition of the ¢th

dual intrinsic volume XN/q() to a compact convex set K € K as
~ 1
V) == [ k) au), (3.12)
Sn—1

n
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which is normalized in such a way that V,,(K) = V(K). We note that gx is continuous
at all u € S"~1 but a compact set of Hzfl—measure zero (see Lemma . We observe
that V(K) =0if dim K <n —1, and V,(K) > 0 if K is full dimensional. We note that
dual intrinsic volumes for ¢ = 0, ..., d are the coefficients of the dual Steiner polynomial
for star shaped compact sets, where the radial sum replaces the Minkowski sum. The
qth dual intrinsic volumes, which arise as coefficients naturally satisfy , and this
provides the possibility to extend their definition for arbitrary ¢ € R in the case when
o € intK and for ¢ > 0 when o € K.

Extending the definition of Huang, Lutwak, Yang, Zhang [HLYZ16| and Lutwak, Yang,
Zhang |[LYZ18] for K € K7,, if K € K? and n C S"! is a Borel set, then the reverse

(0)?
radial Gauss image of 7 is

aie(n) ={ue S ok (u)u € F(K,v) for some v € n} = {u € S": ox(w)u € v ()},

which is Lebesgue measurable according to Lemma For the measurability of aj,(n)
in the case K € ICZ‘O), see [Sch1l4, Lemma 2.2.4]. For a convex body K € K and g € R,

the gth dual curvature measure C,(K,-) is a Borel measure on $"~! defined in [HLYZ16]

as

~ 1 B

Cottm = [ dlelayn (), (3.1.3)

" Jag(n)
Similar to the case of ¢gth dual intrinsic volumes, the notion of gth dual curvature measures
can be extended to compact convex sets K € Ky when ¢ > 0 using (3.1.3). Here if
dimK < n —1, then Cy(K,-) is the trivial measure. We note that the so-called cone
volume measure V(K,-) = 1 Sy(K,-) = L hxS(K, ), and Alexandrov’s integral curvature
measure J(K,-) can both be represented as dual curvature measures as
V(K, ) =15(K,") = Cu(K,") (3.1.4)

J(K*,-) = Co(K,-) provided o € intK. (3.1.5)

Based on Alexandrov’s integral curvature measure, the L, Alexandrov integral curvature
measure

dJp(K,-) = o4 dJ(K,")

was introduced by Huang, Lutwak, Yang, Zhang [HLYZ18| for p € R and K € /C?O).

We note that the qth dual curvature measure is a natural extension of the cone volume
measure V(K,-) = L hgS(K,-) also in the variational sense, Corollary 4.8 of Huang,

Lutwak, Yang, Zhang [HLYZ16| states the following generalization of Minkowski’s formula

(3.1.1). For arbitrary convex bodies K, L € K{,)» we have

V(K +eL) — V(K hr ~
lim Vol +eD) = Vil >:/ﬁ L 4G, (K, ). (3.1.6)
e—07t £ Sn—1 hK

In this paper, we actually do not use , but use Lemmam which is a variational
formula in the sense of Alexandrov for dual curvature measures of polytopes.

For integers ¢ = 0,...,n, dual curvature measures arise in a similar way as in the
Brunn-Minkowski theory by means of localized dual Steiner polynomials. These measures
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satisfy , and hence their definition can be extended for ¢ € R. Huang, Lutwak, Yang
and Zhang [HLYZ16| proved that the gth dual curvature measure of a convex body K €
IC?O) can also be obtained from the gth dual intrinsic volume by means of an Alexandrov-
type variational formula.
Lutwak, Yang, Zhang |[LYZ1§| introduced a more general version of the dual curvature
n

measure where a star shaped set () € 5(0) is also involved; namely, for a Borel set n € S,
g€ Rand K € IC?O), we have

=~ 1 n— n—
CMKQWZ/ g%m%%wﬂlwm (3.1.7)
" Jae(n)
and the associated gth dual intrinsic volume with parameter body @ is
~ ~ a 1 . .
Vy(K, Q) = Cy(K,Q,5") = n/s gy ). (318)

According to Lemma 5.1 in |[LYZ18], if ¢ # 0 and the Borel function g : S"™! — R is
bounded, then

~ 1 B B

9w dBy(K, Q) = = [ glurc(@)wcla), o) 2|5 aHm " (z)  (3.19)
Sn—1 n Jok

where ||z|lg = min{A > 0: Az € Q} is a continuous, even and 1-homogeneous function

satisfying ||z||g > O for  # o. The advantage of introducing the star body () is apparent in

the equiaffine invariant formula (see Theorem 6.8 in [LYZ18|) stating that if ¢ € SL(n,R),

then

g< o >dédk;Qﬂo, (3.1.10)

gn-1 [~ ull
where ¢! denotes the transpose of the inverse of .

For ¢ > 0, we extend these notions and fundamental observations to any convex body
containing the origin on its boundary. In particular, for ¢ > 0, K € K and Q € S(’;), we
can define the associated curvature measure by and the associated dual intrinsic
volume by (3.1.8), where Cy(K, @, ) is a finite Borel measure on S"~!, and V, (K, Q, ") is
finite. In addition, for ¢ > 0, we extend in Lemma 6.1 on page 8008 in [BF19] and
in Lemma 6.5 on page 8009 in [BF19] to any K € K.

L, dual curvature measures were also introduced by Lutwak, Yang and Zhang [LYZ18].
They provide a common framework that unifies several other geometric measures of the
(Lp) Brunn-Minkowski theory and the dual theory: L, surface area measures, L, integral
curvature measures, and dual curvature measures, cf. [LYZ18|. For ¢ € R, Q € S(’Z), peR

and K € IC?O), we define the L, ¢th dual curvature measure CNZ’p,q(K ,Q, ) of K with respect
to @ by the formula

9@0d5A¢K3¢Qﬂ0:i/

Sn—l

dCy (K, Q. ) = Il dCy(K, Q. ). (3.1.11)
While we also discuss the measures ép,q (K,Q,-) involving a @ € S(”O )» We concentrate

on @W(K ,+) in this paper, which represents many fundamental measures associated to a
K e IC?O). Basic examples are



dc_1638 19

Coq(K,") = Cy(K,)
Cpo(K,") = Jp(K*,").

Alexandrov-type variational formulas for the dual intrinsic volumes were proved by
Lutwak, Yang and Zhang, cf. Theorem 6.5 in [LYZ18|, which produce the L, dual cur-
vature measures épvq(K ,@,-). In this paper we will use a simpler variational formula,
cf. Lemma for the gth dual intrinsic volumes that we specialize for our particular
setting.

In Problem 8.1 in [LYZ18| the authors introduced the L, dual Minkowski existence
problem: Find necessary and sufficient conditions that for fixed p,q € R and Q € S(”O)

and a given Borel measure p on S™! there exists a convex body K € IC?O) such that

W= CN’p,q(K , @, ). As they note in [LYZ18|, this version of the Minkowski problem includes
earlier considered other variants (L, Minkowski problem, dual Minkowski problem, L,
Aleksandrov problem) for special choices of the parameters. For Q = B™ and an absolutely
continuous measure y with density function f, the L, dual Minkowski problem constitutes
solving the Monge-Ampere equation

det(V2h + h1d) = L pr= L (|Vh|2 + n2) 2" - f (3.1.12)

for the non-negative Ly Borel function f with [, fdH™ 1 > 0 (see (93) on page 8016
in Section 7 of [BF19]). Actually, if Q € S(”O), then the related Monge-Ampere equation is
(see (94) on page 8016 in Section 7 of [BF'19])

det(V?h(u) + h(u) Id) = L h(u)P~ 1| Vh(u) + h(u) u||gfq - f(u). (3.1.13)

The case of the L, dual Minkowski problem for even measures has received much
attention but is not discussed here, see Boroczky, Lutwak, Yang, Zhang [BLYZ13] con-
cerning the L, surface area S,(K, ), Boroczky, Lutwak, Yang, Zhang, Zhao [BLY |, Jiang
Wu [JW17] and Henk, Pollehn [HP18|, Zhao |Zhal§| concerning the gth dual curvature
measure Cy(K,-), and Huang, Zhao [HZ18| concerning the L, dual curvature measure for
detailed discussion of history and recent results.

Let us indicate the known solutions of the L, dual Minkowski problem when only mild
conditions are imposed on the given measure p or on the function f in (3.1.12). We do not
state the exact conditions, rather aim at a general overview. For any finite Borel measure
pon S"! such that the measure of any open hemi-sphere is positive, we have that

e if p>0and p# 1,n, then p = S,(K,-) = népm(K, -) for some K € K, where the
case p > 1 and p # n is due to Chou, Wang |[CW06| and Hug, Lutwak, Yang, Zhang
[HLYZ05], while the case 0 < p < 1 is due to Chen, Li, Zhu [CLZ17|;

e if p>0andq <0, then p = Cp((K,-) for some K € K where the case p = 0
(= Cy(K,-)) is due to Zhao [Zhal7| (see also Li, Sheng, Wang [LSW]), and the case
p > 0 is due to Huang, Zhao [HZ18| and Gardner, Hug, Xing, Ye, Weil [GHW™19].

In addition, if p > g and f is C® for a € (0, 1], then (3.1.12) has a unique positive C*
solution according to Huang, Zhao [HZ1§].
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Naturally, the L, dual Monge-Ampere equation has a solution in the above
cases for any non-negative L, function f whose integral on any open hemi-sphere is posi-
tive. In addition, if —m < p < 0 and f is any non-negative Lﬁp function on S™ ! such that
fs"71 fdu >0, then has a solution, where the case p = 0 is due to Chen, Li, Zhu
[CLZ19|, and the case p € (—n,0) is due to Bianchi, Béréczky, Colesanti, Yang[BBCY19].

We also note that if p < 0 and p is discrete such that any n elements of suppu
are independent vectors, then p = Sp(K,-) = n - C~’p,n(P, -) for some polytope P € IC?O)
according to Zhu [Zhul5,|[Zhul7).

In this chapter, we first solve the discrete L, dual Minkowski problem if p > 1 and

q > 0.
Theorem 3.1.1 (Boroczky, Fodor [BF19], Theorem 1.1 on page 7986). Let Q) € SE"‘O), p>1

and q > 0 with p # q, and let p be a discrete measure on S*~' that is not concentrated on
any closed hemisphere. Then there exists a polytope P € IC?O) such that Cp4(P,Q,-) = 1.

Remark If p > ¢, then the solution is unique according to Theorem 8.3 in Lutwak, Yang
and Zhang |[LYZ1§].

n

We note that, in fact, we prove the existence of a polytope Py € IC( 0) satisfying

Va(Po, Q)1 Cpg(Po, Q. ) = p,

which Py exists even if p = g (see Theorem (3.3.1)).

Let us turn to a general, possibly non-discrete Borel measure p on S"'. As the
example at the end of the paper by Hug, Lutwak, Yang, Zhang[HLYZ05] shows, even if
1 has a positive continuous density function with respect to the Hausdorff measure on
S"=1 for ¢ = n and 1 < p < n, it may happen that the only solution K has the origin
on its boundary. In this case, hx has some zero on S"~! even if it occurs with negative
exponent in Cw’p,q(K, -). Therefore if Q € S(’Z), p > 1 and g > 0, the natural form the
L, dual Minkowski problem is the following (see Chou, Wang [CW06] and Hug, Lutwak,
Yang, Zhang [HLYZ05| if ¢ = n). For a given non-trivial finite Borel measure p, find a
convex body K € K7 such that

dC,(K,Q,-) = hb.dp. (3.1.14)
It is natural to assume that H" }(Ex) = 0 in (3.1.14) for
Ex = {x € OK : there exists exterior normal u € S"~! at x with hx(u) = 0}, (3.1.15)

which property ensures that the surface area measure S (K, ) is absolutely continuous with
respect to Cy (K, @, -) (see Corollary 6.2 on page 8009 in [BF19]). Actually, if ¢ = n and
Q = B", then dC,,(K,-) = L hx dS(K,-), and [CW06] and [HLYZ05| consider the problem

dS(K,-) = nhb~'dpu, (3.1.16)

where the results of [HLYZ05] about (3.1.16)) yield the uniqueness of the solution in (3.1.16]
for g =n, p > 1 and Q = B" only under the condition H" !(Zx) = 0 (see Section for
more detailed discussion).
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Theorem 3.1.2 (Bordczky, Fodor [BF19|, Theorem 1.2 on page 7987). Let Q € S&),
p > 1 and ¢ > 0 with p # q, and let o be a finite Borel measure on S™~ ' that is not
concentrated on any closed hemisphere. Then there exists a K € Ky with H LY EK) =0

and intK # 0 such that dCy(K,Q, ) = hl.dp, where K € ICE‘O) provided p > q.

The solution in Theorem is known to be unique in some cases:

e if p > ¢q and p is discrete (K is a polytope) according to Lutwak, Yang and Zhang
ILYZ18|,

e if p > ¢, Q is a ball and p has a C“ density function f for a € (0, 1] according to
Huang, Zhao [HZ1§],

e if p> 1, Q is a ball and ¢ = n according to Hug, Lutwak, Yang, Zhang|[HLYZ05|.

For Theorem in fact, we prove the existence of a convex body Ky € K such

that B B
Vq(KOv Q)_l dCQ(KO’ Q, ) = hl?( dp,
which K exists even if p = ¢ (see Theorem .

The other main results of the paper [BF19| concern the smoothness properties of the
solutions of the L, dual Minkowski problem in the case when C~'q(K ,Q,-) is absolutely
continuous with respect to the Hausdorff measure on S"~!. We only state these theorems
here and we refer to Section 7 of [BF19] for the detailed arguments.

Concerning regularity, we prove the following statements based on Caffarelli |[Caf90a,
Caf90b) (see Section 7 of [BF19]). We note that if 9Q is C2 for Q € S(p)» then @ is convex.

Theorem 3.1.3 (Boroczky, Fodor [BF19], Theorem 1.3 on page 7987). Let p > 1, ¢ > 0,
Q € S(”O), 0<cp <cgandlet K € K with H" 1 (2k) = 0 and intK # () be such that

dC,(K,Q,-) = hb. f dH"
for some Borel function f on S™ ! satisfying c1 < f < ca.

(i) OK\Zx = {z € 0K : hg(u) >0 for allu € N(K,z2)} and 0K\Ef is C* and contains
no segment, moreover hy is C' on R*™\N(K, o).

(ii) If f is continuous, then each u € S""1\N(K,o0) has a neighbourhood U on S™~* such
that the restriction of hx to U is CY® for any a € (0,1).

(iii) If f is in C*(S™71) for some a € (0,1), and Q is C%, then K\E is C%, and
each u € S""'\N(K,0) has a neighbourhood where the restriction of hx is C*.

We note that in Theorem (ii), the same neighbourhood U of u works for every a €
(0,1). In addition, Theorem [3.1.3] (i) yields that for any convex W C R"\N(K, o), hx (u+
v) < hi(u) + hi(v) for independent w,v € W. For the case o € int K in Theorem
see the more appealing statements in Theorem |3.1.5

We recall that according to Theorem ifp>qg>0andp>1,then K € K?O) holds
for the solution K of the L, dual Minkowski problem. On the other hand, Example 7.1 on
page 8015 in [BF19] shows that if 1 < p < ¢, then the solution K of the L, dual Minkowski
problem provided by Theorem [3.1.2] may satisfy that o € 9K and o is not a smooth point.
Next we show that K is still strictly convex in this case, at least if ¢ < n.
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Theorem 3.1.4 (Boroczky, Fodor [BF19|, Theorem 1.4 on page 7987). If1 < p < q < n,
Qe S("O), 0<ecp <coand K € K? with H* Y (Ex) = 0 and intK # () be such that

dC,(K,Q,-) = hb.f dH™

for some Borel function f on S™ ! satisfying c1 < f < ca, then K is strictly convex; or
equivalently, hx is C1 on R™\o.

If ¢ = n, then Theorems [3.1.3| and [3.1.4] are due to Chou, Wang [CWO06]. We do not
know whether Theorem holds if ¢ > n (see the comments at the end of Section 7 of
[BF19)).

We note that if o € int K, then the ideas leading to Theorem [3.1.3| work for any p, g € R.

Theorem 3.1.5 (Boéroczky, Fodor [BF19]|, Theorem 1.5 on page 7988). Let p,q € R,
Qe 8(’;), 0<c<cyandlet K € IC?O) be such that
dCpo(K,Q, ) = fdH" !
for some Borel function f on S*' satisfying c1 < f < co. We have that
(i) K is smooth and strictly convez, and hx is C' on R™\{o};

(ii) if f is continuous, then the restriction of hx to S"~1 is in CY* for any a € (0,1);

+> +
STL*l.

The rest of this chapter is organized as follows. We discuss properties of dual curvature
measures in Section extending some statements for the case when o € 9 K and ¢ > 0.
We prove Theorem [3.1.1]in Section [3.3| only for ) = B"™ in order to simplify and shorten
the presentation. Fundamental properties of L, dual curvature measures are considered in
Section and we use all these results to prove Theorem [3.1.2] for @ = B™ in Section [3.5
Finally, we note that in the case of general @), Theorem [3.1.1]and Theorem [3.1.2) are proved
in Section 6 of [BF19).

3.2 On the dual curvature measure

The goal of this section is for ¢ > 0, to extend the results of Huang, Lutwak, Yang and
Zhang [HLYZ16] about the dual curvature measure 5q(K ,-) when K € K{,) to the case
when K € K. For any measure, we take the measure of the empty set to be zero.

For any compact convex set K in R™ and z € 0K, we write N (K, z) to denote the
normal cone at z; namely,

N(K,z)={yeR": (y,z—2) <0 forz e K}.

If z € intK, then simply N(K, z) = {o}. For compact, convex sets K, L C R", we define
their Hausdorff distance as

opg(K,L):= sup |hg(u)— hr(u)l|.

ueSn—1
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It is a metric on the space of compact convex sets, and the induced metric space is locally
compact according to the Blaschke selection theorem. For basic properties of Hausdorff
distance we refer to Schneider [Sch14], and also to Gruber |Gru07].

First we extend Lemma 3.3 in [HLYZ16|. Let K € K with intK # (). We recall that
the so-called singular points z € 0K where dimN (K, z) > 2 form a Borel set of zero H" !
measure, and hence its complement &' K of smooth points is also a Borel set. For z € 'K,
we write v (z) to denote the unique exterior normal at z. In addition, for any z € 9K,
we define v (2) = N(K,z) N S"!, and hence v (1) = Uy, F(K, u) is the total inverse
Gauss image of a Borel set 7 C S"~!; namely, the set of all z € K with N(K,z)Nn # 0.
In particular, if o € 9K, then we have

Ex =vg (N(K,0)nS" ). (3.2.1)
If o € intK, then Zx = (). We also observe that the dual of N(K, o) is
N(K,0)" ={yeR": (y,z) <0forx € N(K,0)} =cl{\x: A >0and z € K},

and hence
Ex = KNON(K,o)". (3.2.2)
If o € intK, then simply N(K,0)* = R"™. The following properties of g readily follow

from the definition.

Lemma 3.2.1. If K € K], then ok 1is upper semicontinuous. In addition, if dim K <
n — 1, then ox(u) = 0 for u € S*N\lin K, and if int K # (), then o is continuous on
S"INION(K,0)* and o (u) =0 for u € S""Y\N(K,o0)*.

For ¢ > 0, we extend Lutwak’s definition of the gth dual intrinsic volume ‘7(1() to a
compact convex set K € K7 as

~ 1

Vy(K) = - /Sn_1 0% (u) H" 1 (du), (3.2.3)

and hence V,,(K) = V(K). It follows from Lemma that %(K ) is well-defined and
Vo(K) =0if dimK <n —1.
For a K € K with intK # () and a Borel set n C S"~ !, let

ai(n) ={ue gn—L. ok (u)u € F(K,v) for some v € n} = {u € gn—L. ok (u)u € u}l(n)}.

Following Huang, Lutwak, Yang, Zhang [HLYZ16] and Lutwak, Yang, Zhang |[LYZ18|, the
set a(n) is called the reverse radial Gauss image of 7.

Lemma 3.2.2. If K € K with intK # (0, then

S™L A (It N (K, 0)*) € ajy (S""N\N(K,0)) < S" "N N(K,o0)", .
aj ("' N N(K,0)) = ST\ (intN(K,0)*).  (3.2.5)
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Proof. 1If o € int K, then N(K,o0) = {o}, and hence the statements are trivial. Therefore
we assume that o € 0K.

It follows from (3.2.2)) that
(int N(K,0)*)NOK = {x € 0K : hg(v) >0 for all v € v (z)}. (3.2.6)
Now (3.2.6)) yields directly the first containment relation of (3.2.4)), and K C N(K,o0)*

implies the second containment relation.

To prove , let u,v € S"~! be such that o (u)u € F(K,v). Ifv € N(K,0)NS" 1,
then F(K,v) C ZEg, thus yields that v ¢ int N(K,0)*. On the other hand, if
u ¢ int N(K,0)*, then either u ¢ N(K,0)*, and hence ox(u) = 0, or u € ON(K,o0)*,
therefore ok (u)u € Ex in both cases. We conclude v € N(K,0), and in turn (3.2.5). O

We note that the radial map 7 : R™"\{o} — S"~ !, 7(x) = z/||x|| is locally Lipschitz.
We write 7k to denote the restriction of 7 onto the (n —1)-dimensional Lipschitz manifold
(OK)\Ex = (OK) NintN (K, 0)*. For any z € (0’ K)\Zk, the Jacobian of 7k at z is

(v (2), TR (A" = (ke (2), 212" (3.2.7)

Lemma 3.2.3. If K € K? with intK # 0 andn C S"! is a Borel set, then () C S™~1
1s Lebesgue measurable.

Proof. Since (NN N(K,0)) Neas (n\N(K,0)) C ON(K,0)*NS"1 by Lemma and
H" L (ON(K,0)* N S 1) = 0, it is equivalent to prove that both aj-(n N N(K,o0)) and
o (n\N(K,0)) are Lebesgue measurable.

If nN N(K,o0) # 0, then we claim that

S"IN\N(K,0)* C al(n N N(K,0)) C S Nint N(K,0)*. (3.2.8)

The second containment relation follows from Lemma [3.2.2] For the first containment
relation in (3.2.8), let v € n N N(K,0). Since o € F(K,v) and ox(u) = 0 for u €
S"I\N(K,0)*, it follows that S""'\N(K,0)* C aj¢({v}). Thus we have (3.2.8), and in
turn n N N (K, 0) is Lebesgue measurable.

Next we consider n\N (K, 0). Since &' K is Borel, we have that o = &' KNint N (K, 0)*
is Borel, as well. We write 7k : ox — S" '\N(K, o) to denote the restriction of vk to
ok. As g is continuous on o, we deduce that ' (n\N (K, 0)) is Borel. In addition, 7x
is also continuous on K Nint N (K, 0)*, thus 75 o 7 (n\N (K, 0)) is also Borel. Since

K o i (N\N (K, 0)) C aj(n\N (K, 0))
C 7 0 i (\N (K, 0)) U er((aK M int N(K, o)*)\a’K).

Here H"! ((8K N int N (K, o)*)\@’K) = 0 and 7g is locally Lipschitz, therefore
o’ (N\N (K, o)) is Lebesgue measurable, as well. O

Extending the definition in Huang, Lutwak, Yang, Zhang [HLYZIG], for a convex
compact set K € K7 and ¢ > 0, the gth dual curvature measure Cy(kK,-) is a Borel
measure on S" ! defined in a way such that if € S"! is Borel, then

Cy(K,n) = 0 ifdimK <n—1, and (3.2.9)
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Co(K,n) = % / ol (u) dH"\(u) if int K # 0. (3.2.10)

Here, if int K # (), then gk is continuous on S" 1\ON (K, 0)*, therefore @(K, 1) is well-
defined by Lemma [3.2.3]

Since ox (u) = 0 for u € S I\N(K,0)*, and H* 1 (S" ' NON(K,0)*) = 0, we deduce
from that if ¢ > 0, then

Cy (K, N(K,0) N S"1) = Cy (K,{ue S" ' hg(u) =0}) = 0. (3.2.11)

For u € S, we write 7k (u) = ok (u)u € K. Since 7k is locally Lipschitz, H" !
almost all points of S”~1 N (intN (K, 0)*) are in the image of (0’ K) N (intN (K, 0)*) by 7x.
Therefore for H"~! almost all points v € S"1 N (intN (K, 0)*), there is a unique exterior
unit normal ax(u) at rg(u) € K. Here a is the so-called reverse radial Gauss map.
For the other points u € S™~1 N (intN(K,0)*), we just choose an exterior unit normal
ax(u) at rg(u) € 0K. The extensions of Lemma 3.3 and Lemma 3.4 in [HLYZ16] to the
case when the origin may lie on the boundary of convex bodies are the following.

Lemma 3.2.4. If ¢ > 0, K € K? with intK # 0, and g : S" ' — [0,00) is Borel
measurable, then

1

| sk =
S?’L*l

/ glag (u)ox (w)?dH"  (u) (3.2.12)
T JSn=1N(int N (K,0)*)

1

= /  glvk (@) vk (), 2) ||| dH" (), (3.2.13)
nJoK\Ek

= 1/ 9(vi(x)) (v (@), 2)||z]| T dH™ () (3.2.14)
'K

n

Proof. To prove (3.2.12)), the integral of g can be approximated by integrals of finite linear
combinations of characteristic functions of Borel sets of S"~!, and hence we may assume
that g = 1,, for a Borel set  C S"~. In this case,

/ 1,dCy(K,) =0
Sn=1NN(K,0)

by (3.2.11]), and

/ 1,dCy(K,-) = Cy(K,n\N(K,0)) = / Ly (ax (u))ox (u)? dH" " (u)
Sn=I\N(K,0) Sn=1n(int N (K,0)*)

by (3.2.4) and the definition of C, (K, -), verifying (3.2.12).
In turn, (3.2.12)) yields (3.2.13)) by (3.2.7)). For (3.2.14)), we observe that if x € Z2xNI' K,
then (vi(x),z) =0. O

Now we prove that the gth dual curvature measure is continuous on K7 for g > 0.

Lemma 3.2.5. For q > 0, ‘ZI(K) is a continuous function of K € K7 with respect to the
Hausdorff distance.
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Proof. Let R > 0 be such that K C intRB". Let K,, € K be a sequence of compact
convex sets tending to K with respect to Hausdorff distance. In particular, we may assume
that K,, C RB" for all K,,.

If dim K < n — 1, then there exists v € S"~! such that K C v, where v denotes the
orthogonal (linear) complement of v. For ¢ € [0,1), we write

U(v,t) ={x e R": |[(v,z)| <t}

to denote the closed region of width 2t between two hyperplanes orthogonal to v and
symmetric to 0.
There exists a tg € (0,1) such that for any ¢ € (0,%9) and v € S™! it holds that
H LS N U (v,t)) < 3t(n — 1)kp_1.
Let € € (0,t9). We claim that there exists an m. such that for all m > m. and for any
u € ST\ ¥(v,e), we have
0K, (u) <e. (3.2.15)

Since K, — K in the Hausdorff metric, there exists an index m. such that for all m > m,
it holds that K, C K +&2B" C ¥(v,e?). Then if u € S"1\¥(v,¢), then

e > (v, 0k, (Wu) = ok, (W) (v,u) > ok, (u) - €,
yielding (3.2.15). We deduce from (3.2.15) and K,, C RB" that for any £ € (0,tg), if

m > me, then

V(K < / e dH™ 1 (u) + / RIdH"™ Y (u)
Sn=I\W(v,e) Sn=1INT(v,e)

< nkpe? 4 3e(n — 1)kp—1 RY,

therefore limy, o0 YN/q(Km) =0=V,(K).

Next, let int K # ) such that o € OK. Since the functions gg, (u), m = 1,... are
uniformly bounded, by Lebesgue’s dominated convergence theorem it is sufficient to prove
that

lim ok, (u) = ox (u) for u € S""1\ON(K,o)*, (3.2.16)

m— 00
as H" 1S ' NON(K,o0)*) = 0. Now, let € € [0,1).
Case 1. Let u € S" ! Nint N(K,o0)*.

Then gx(u) > 0, and (1 —¢)ox(u)u € int K and (1+¢)ox (u)u ¢ K. Thus, there exists
an index m(u,e) > 0 such that for all m > m(u,¢) it holds that (1 —¢)ox (u)u € K, and
(1+¢)or(u)u & Ky, or in other words,

(1 —e)or(u) < ok, (u) < (1 +¢€)ox (u),

which in turn yields in this case.

Case 2. Let u € S '\N(K,o)*.

Then g (u) = 0, and there exists v € S"~! N int N(K,0) such that (u,v) > 0. As
K,, — K, there exists an index m(u,v,) > 0 such that for all m > m(u,v,¢) it holds
that K, C K + e(u,v)B", and thus hg,, (v) < e(u, v). Therefore, for all m > m(u,v,¢),

e(u,v) > hi,, (v) = (0K, (W)u, v) = oK, (u){u, v).
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This yields that gk, (u) < ¢ for all m > m(u,v,¢), and thus (3.2.16)) holds by gx(u) = 0.
Finally, let int K # () and o € int K. The argument for this case is analogous to the
one used above in Case 1. 0

The following Proposition |3.2.6|extends Lemma 3.6 from Huang, Lutwak, Yang, Zhang

[HLYZ16| about K € K{, to the case when K € K.

Proposition 3.2.6. If ¢ > 0, and {Kn,}, m € N, tends to K for K, K € Ky, then
Cy(Km,-) tends weakly to Cy(K,-).

Proof. Since any element of K7’ can be approximated by elements of IC?O), we may assume

that each K,, € IC?O). We fix R > 0 such that K C intR B", and hence we may also

assume that K,, C RB" for all K,,. We need to prove that if g : S”~! — R is continuous,
then

Jim g() dC, (Ko, ) = / o(w) dCy (K, u) (3.2.17)

m—o0 Sn—1 Sn—1

First we assume that o € 0 K. If dim K < n—1, then (ZI(K ,+) is the constant zero mea-
sure by 1' Since Cy(Ky, S" 1) = V,(K,,) tends to zero according to Lemma
we conclude (3.2.17)) in this case.

Therefore we may assume that int K # () and o € 9 K. To simplify notation, we set
o= N(K,o)".
According to Lemma (3.2.17) is equivalent to

Jim [ gla e, rar e = [ gla()ortntd ),
sn Sn=1N(int o)
(3.2.18)

Since 7k is Lipschitz and H" (8" 1N (d0)) = 0, to verify (3.2.18), and in turn (3.2.17)),

it is sufficient to prove

lim glax,, (w)ex,, () dH" " (u) = / glox () ok (u)? dH" ™ (u)
mM=00 J 7 ((int 0)Nd' K) 7x ((int 0)NO'K)
(3.2.19)
lim glak,, (u)ox,, (W) dH" 1 (u) = 0. (3.2.20)

m—00 Sn_l\d

To prove (3.2.19) and (3.2.20)), it follows from K,, C RB™, the continuity of g and
Lemma that there exists M > 0 such that

lok,, (u)] < R  forue S" !,
N lg(u)] < M forue S™ 1 (3.2.21)
Co(Kpm,S™™ Y < M forméeN

We deduce from (3.2.21]) that Lebesgue’s Dominated Convergence Theorem applies both in

(3.2.19) and (3.2.20). For (3.2.19)), let u € Tx ((int o) NI'K). Readily, lim,,—,o0 0k, ()7 =
ok (). Since ak (u) is the unique normal at ok (u)u € &' K, we have limg,, o ak,, (u) =
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ag(u), and hence limy, o g(ak,, () = glax(u)) by the continuity of g. In turn, we
conclude @ by Lebesgue’s Dominated Convergence Theorem.

Turning to @, it follows from Lebesgue’s Dominated Convergence Theorem, ¢ > 0
and that it is sufficient to prove that if € > 0 and u € S"~1\o, then

oK, (u) < e (3.2.22)

for m > mgo where mg depends on u,{K,,},e. Since u &€ 0 = N(K,o0)*, there exists
v € N(K,o0) such that (v,u) =3 > 0. As hx(v) =0 and K,, tends to K, there exists mg
such that hg,, (v) < de if m > myp. In particular, if m > myg, then

ed > hg,, (v) > (v, o (u)u) = o (u)d,

yielding (3.2.22), and in turn (3.2.20)).
Finally, the argument leading to (3.2.19) implies (3.2.17)) also in the case when o €

int K, completing the proof of Proposition [3.2.6 O

3.3 Proof of Theorem for Q = B"
To verify Theorem we prove the following statement, which also holds if p = q.

Theorem 3.3.1. Let p > 1 and ¢ > 0, and let p be a discrete measure on S™~1 that is

not concentrated on any closed hemisphere. Then there exists a polytope P € IC?O) such

that Vy(P)1Cp4(P,-) = p.

We recall that 7 : R™\{o} — S™~! is the radial projection, and for a convex body K
in R™ and u € S" 1, the face of K with exterior unit normal u is the set

F(K,u)={x € K: (z,u) = hg(u)}.

We observe that if P € K7 is a polytope with int P # ), and vy,...,v € S*! are the
exterior normals of the facets of P not containing the origin, then

suppCN’q(P,~) = {vi,...,v}, and
~ 3.3.1
Cy(P{vi}) = 1/ ob(u)dH" Hu) fori=1,...,1 ( )
v J5(F(Pw;))

Let p > 1, ¢ > 0 and p be a discrete measure on S™~! that is not concentrated on any
closed hemi-sphere. Let supp pn = {uy,...,ux}, and let p({u;}) =a; >0,i=1,... k. For
any z = (t1,...,t;) € (R>q)¥, we define

k
D(z) = Zaitf,
i=1

P(z) = {zeR": (z,u) <t;Vi=1,...,k}, (3.3.2)
U(z) = Vy(P(2)):
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Since a; > 0 fori = 1,...,k, the set Z = {z € (R>0)* : ®(z) = 1} is compact, and hence
Lemma yields the existence of zy € Z such that

U(z9) = max{¥(z): z € Z}.

We prove that o € int P(zp) and there exists A\g > 0 such that

V(AP (20)) ' Cpg(MoP(20), ) = .
Lemma 3.3.2. If p>1 and ¢ > 0, then o € int P(z).

Proof. Tt is clear from the construction that o € P(zp). We assume that o € 9P(z), and
seek a contradiction. Without loss of generality, we may assume that zo = (¢1,...,t) €
(Rzo)k, where there exists 1 < m < k such that t; = ... = ¢, = 0 and t,,11,...,tx > 0.
For sufficiently small ¢ > 0, we define

m
N —N— 1 1
Zo= [0,...,0,(8F , —atP)e, ... (t) —atP)P fora:%, and
m
— 1 1
2 = (t,...,t,(tfn_H—atp)P,...,(ti—atp)P>.

Simple substitution shows that ®(z;) =1, so z; € Z.
We prove that there exist %, ¢, > 0 depending on p, ¢, p and zy such that if
t € (0,%], then

U(z) > U(z) — cit?, (3.3.3)
\IJ(Zt) 2 \If(gt) + 52t,
therefore
\I/(Zt) > \I/(Z()) — C1tP + ¢ot. (335)

We choose R > 0 such that P(zp) C intRB™ and R > max{tm+1,...,tk}-
We start with proving (3.3.3), and set g9 = min{t,;,41,...,tx}. We frequently use the
following form of Bernoulli’s inequality that says that if 7 € (0,1) and n > 0, then

(1-7)">1—max{l,n}-T. (3.3.6)

It follows from (3.3.6) and g9 < t; < R, i = m + 1,...,k, that there exist sg,co > 0,
depending on zg, 1 and p such that if ¢t € (0, sp), then

1
(7 — atP)p > t; — cot? > 09/2 fori=m+1,... k. (3.3.7)

We consider the cone N(P(zp),0)" = {z € R" : (z,u;) <0Vi=1,...,m} that satisfies
that op(.,)(u) > 0 for u € "1 if and only if u € N(P(z0), 0)*. It follows from that
0p(z)(w) > 0 for u € 5" 1 also if and only if u € N(P(z0),0)*, and even gp(z,)(u) > 00/2
in this case.
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Let u € N(P(z),0)* N S""!, and hence op(z,)(u) - u lies in a facet F(P(Z),u;) for an
ie{m-+1,...,k}, thus

1
(Qp(gt)(u)u, u;) = (t‘f —atP)r > t; — cot? > po/2.

Combining the last estimate with op(z,)(u) < R, we deduce that (u,u;) > J%. Let s >0
be defined by (su,u;) = t;. Then s > 0p(.)(u), and hence

(su,u;) — (opz,y(Wu,u;)  t; — (t; — cotP? 2Rc
s = 0p(z)(u) = DG < izl — ) o 2o,
<u7 ul) 0o

P,
<u7 ul>

thus op(z,)(u) > 0p() (u) — 2};% -tP. We choose ty > 0 with ty < sg depending on 2y and
p such that 2}:—080 -t < 00/2. Since o < p(zy)(u) < R, we deduce from (3.3.6) that there
exists ¢; > 0 depending on i, 2o, ¢ and p that if ¢ € (0,%9) and v € C N S" !, then

2 RC()
Qo

q
op(z)(w)? > <QP(z0)(U) - tp) > 0p(z) ()T —c1 - 1P,

which yields by and by taking into account that N(P(Z;),0)* =
N(P(z),0)*.

The main idea of the proof of is that we construct a set Gy C S~ for sufficiently
small ¢ > 0 whose "~ measure is of order ¢, and if u € Gy, then 0p(z)(u) > r for a
suitable constant r > 0 while p p(gt)(u) = 0. In order to show that the constants involved
really depend only on p, ¢ p and P(zp), we start to set them with respect to P(zp).

We may assume, possibly after reindexing i, ..., Uy, that dimF(P(zy),u;) = n — 1.
In particular, there exist » > 0 and yo € F(P(20),u1)\{o} such that

(Yo, wi) < hpy)(u;) —8r fori=2,... k.
For v = yo/||yol| € S ' Nui, we consider y = yo + 4rv, and hence 4r < ||y|| < R, and
(Y, ui) < hpragy(ui) —4r fori=2,... k.

Note that P(%;) — P(29) as t — 07 and also P(Z;) C P(zg) for t > 0. Therefore there
exists a positive t; < min{r,to}, depending only on p, ¢, u and zy such that if ¢ € (0, 1],
then

(y,ui) < hpez)(ui) —2r fori=2,...,k and P(z) C RB". (3.3.8)

For two vectors a,b € R", we denote by [a,b] ((a,b)) the closed (open) segment with
endpoints a and b. Let the (n — 2)-dimensional unit ball G be defined as
G =ui Nvt N B™

Then we have that y + rG C F(P(z0),u1) and (y + rG) + r[o,u1] C y + 2rB™. Let
Gt = (y + rG) + t(o,u;1] be the (n — 1)-dimensional right spherical cylinder of height
t < min{t;, 7}, whose base y + rG does not belong to G;. We deduce from and
hp(Zt)(ul) =t that Gt C P(Zt)\N(P(Zo), 0)* C P(Zt)\P(Et).
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Let Gy be the the radial projection of Gy to S"~!. For x € Gy, we have (z,v) = ||y| > 4r
and ||z|| < R, therefore

n—1/7 € —(n— n—
# 1<Gt>=/G<M,v>||x|r< D g ()

S 4rHY(Gy) _Ar- " 2K e drnlg, o y
- R N R» N R» '

Since op(z,) (1) < op(z)(u) for all u € S*~1, and if u € G, then op(z)(u) = |lyll = 4r and
op(z)(u) = 0, we deduce that

V) = [ b i

n

1

—— q d n—1
S b @+

1 e 1 e
o @t b ar
Snfl "

n nJjg

1
+ L eyt w)

n t

Y

(4r)7 - 4"k, o
nR"

> (%) + -t

which proves (3.3.4). Combining (3.3.3)) and (3.3.4), we obtain (3.3.5).
Finally, we deduce from p > 1 and (3.3.5) that if ¢ > 0 is sufficiently small, then

W(P(2¢)) > ¥(P(20)), which contradicts the optimality of zp, and yields Lemma[3.3.2l O

As we already know that o € int P(zp) by Lemma we can freely decrease
hp(z)(ui) for i = 1,...,k, and increase it if dim F'(P(z0),u;) = n — 1. To control what
happens to ¥(z) when we perturb P(zp), we use Lemma which is a consequence of
Theorem 4.4 in [HLYZ16|. Let R, denote set of the positive real numbers.

Lemma 3.3.3 (Huang, Lutwak, Yang, Zhang, [HLYZ16|). If ¢ # 0, n € (0,1) and
2= (z1(t),...,2,(t)) € RE fort € (—n,m) are such that lim; o+ M =z[(0) e R
fori=1,... k exists, then the P(z) defined in (3.3.2)) satisfies that

~ ~ k

_ Vo(P(z) — Vg(P(20)) %(0)
lim —Z 4 =q ——-— - Oy (P(z0), {ui}).
150+ t Z—Zl hP(zo)(ui) Q( ( 0) { })

For the sake of completeness, in Section 6 we prove a general version of Lemma [3.3.3
about the variation of V,(P(z(t)),@) in the case when @) is an arbitrary star body, cf.
Lemma 6.7 on page 8011 in [BF19]. B

We note that supp Cy(P(20),-) C {u1,...,ui}, where Cq(P(20),{u;}) > 0 if and only
if
dim F(P(z0),u;) =n — 1.

Lemma 3.3.4. If p > 1 and q > 0, then dim F(P(z),u;)) =n—1 fori=1,... k.
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Proof. We suppose that dim F'(P(z9),u1) < n — 1, and seek a contradiction. We may
assume that dim F(P(zg),ux) = n — 1. For small ¢t > 0, we consider

Z(t) = (t1 — t, ta, ..., tr),
and (t) = ®(P((t)). In particular, 8(0) = 1 and #'(0) = —pa;t*~", and hence
() = 0(8) " VP5(t) = (21(0), ..., (1)) € Z

satisfies L0()"1/P,_gr = aqt) " and 24(0) = a1t} 't; > 0 for i = 2,..., k. We deduce
from Lemma and Cy(P(20),{u1}) = 0 that

V,(P(z(1) = Va(P(20)) <~ 2}(0)

- t =02 eGP0 )
950 & pra) fu
- hp(zo) (uk) Co(P(20), {us}) > 0,

therefore %(P(z(t))) > %(P(zo)) for small ¢ > 0. This contradicts the optimality of 2y,
and proves Lemma O

Proof of Theorem According to Lemmas [3.3.2] and [3.3.4]

we have dim F'(P(20),u;) =n—1fori=1,...,k, o € int P(20) and hp(,,)(u;) = t; for
i=1,...,k Let (g1,...,9r) € R¥ satisfying Zle giaitf_l = 0 such that not all g; are
zero. If t € (—¢,¢) for small € > 0, then consider

2(t) = (tl +glt7 stk +gkt)7

and 6(t) = ®(P(z(t)). In particular, (0) = 1 and

k
6'(0) = ngiaitf_l = 0.
i=1

Therefore
z(t) = Q(t)*l/pé(t) = (21(t),...,z(t) € Z

satisfies £0(t)"1/P|;—o = 0 and 2/(0) = g; for i = 1,..., k. We deduce from Lemma m
and hp(.,(u;) = t; for i = 1,... k that

k
i=1 "

t—0 t

Since %(P(z(t))) attains its maximum at ¢ = 0 by the optimality of zp, we have

k
- C(P(a0), fui}) = 0. (3.3.9)
i=1 "
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In particular, 1) holds whenever (g1, ...,gr) € RF\{o} satisfies Zle giaitffl =0, or
in other words, there exists a A € R such that

v CulPleo), {uid)

)

aitf_l fori=1,...,k.

Since A > 0 and p > 1, there exists a A9 > 0 such that A = \;?V,(P(20)), and hence
i = Va(MP(20)) " Pagpiag) (i) PCq(MoP(20), {wi}) fori=1,... k.
In other words, N B
1 =Va(MoP(20)) ™ Pagp(ao) (1) PCo(MoP(20), ).
This finishes the proof of Theorem [3.3.1 (I

Proof of Theorem [3.1.1] in the case of () = B" We have p # ¢. According to

Theorem 3.3.1} there exists a polytope Py € Kf) such that Voy(Po)*Cp 4(Po,-) = p. For
A= %(Po)ﬁ and P = APy, we have

Cpa(P,) = ATPCy (Po, ) = Vo(Po) 1 Cpy(Ro, ") = pu.

3.4 On the L, dual curvature measures

According to Lemma 5.1 in Lutwak, Yang, Zhang [LYZ18], if K € ICE‘O), peRand ¢ >0,

then for any Borel function g : S"~! — R, we have that

[ s = [ g )0 Tl an ). (34)
gn—1 K

n

As a simple consequence of Lemma we can partially extend (3.4.1]) to allow o € K.

Corollary 3.4.1. If p > 1, ¢ > 0, K € K with intK # (), CN'p,q(K, S < oo and
H"Y(Zk) =0, and the Borel function g : S"~! — R is bounded, then

~ 1 — —n n—

/ 9(u) dCyp (K, u) = / (v ()i (x), ) 7P |la| 17" dH" " (2).
Sn—1 n Jok

Proof. Knowing that C,, ,(K,S"!) < oo, it follows from Lemma and H" 1(Zg) =0

that

/ 9(u) dCyg(Ku) = / g(u)hic ()7 dCy (K, u)
S’n—l Sn—l

1

= | s a) (o). a) ol @ @)
n O"K\Ek

= 1/ 9(vi (@) (v (@), @) 7P|l 47" dH " ().
'K

n
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Next, we prove a basic estimate on the inradius of K in terms of its total L, dual
curvature measure. For a convex body K ¢ K?O), we write 7(K) to denote the maximal
radius of balls contained in K. Since o € K, Steinhagen’s theorem yields the existence of
w € 8" such that

[{x,w)| <2nr(K) for x € K. (3.4.2)

Lemma 3.4.2. Forn > 2, p>1 and q > 0, there exists a constant ¢ > 0 depending only
on p,q,n such that if K € IC?O), then

Cpg(K,8"Y) > c-r(K) P - Vy(K).

Proof. We may assume that 7(K) = 1, and hence ([3.4.2) yields the existence of w € "1
such that
|{(z,w)| <2n forz e K. (3.4.3)

Let K = K lwt be the orthogonal projection of K to the hyperplane w', and hence

the radial function gz is positive and continuous on wr N S" 1. We consider the concave
function f and the convex function g on K = K|w" such that

K={y+wﬂyeﬁ?mdﬂwﬁt§f@ﬁ-

We divide w ﬁS”Z1 into pairwise disjoint Borel sets ﬁl, ey Qm of positive H" 2 measure
such that for each €2;, there exists a g; > 0 satisfying

0i/2 < oz (u) < o; forue Q.. (3.4.4)
For any ¢ = 1,...,m, we consider
: O T T n—1
Q, = {ucosa—i—wsma:ueﬂi anda€<—§,§>}CS ,
U, = {ox(u)u:ueQ} CIK.

It follows that S™"~!\{w, —w} is divided into the pairwise disjoint Borel sets Q1,..., 2,
and 0K \{f(o)w, g(o)w} is divided into the pairwise disjoint Borel sets ¥y,..., Up,.

According to (3.4.1) and Lemma to verify Lemma it is sufficient to prove

that there exists a constant ¢ > 0 depending only on n, p, q such that if i = 1,...,m, then
[ @)l an @ ze [ ) el dH @), (349
KN, KN,

We define
R = 4(2n)*. (3.4.6)

Case 1. 0; <R
If o, < Rand z € ' K NY;, then (3.4.3)) yields that

(v (z),z) <|z|| < R+ 2n for z € V;,

and hence (vk (z), )P > (v (x),x)(R+2n)"P. Therefore we may choose ¢ = (R+2n)~P

in (.15).
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Case 2. 0; > R
If 0; > R, then consider the set

o, = {tu cueQ; and 0<t< 91/4} C \I/i\wL,
and subdivide ¥; into
o= {y+fly)w:ye@tu{y+gly)w: ye &} C ¥;n(%+2n)B", and
Up o= TN\W U\ (£B").

We claim that
(vg(z),x) <6n for x € K N WY, (3.4.7)

We observe that z = y + tw for some y € ®; and t € [—2n,2n], and s = f(2y) satisfies
s € [-2n,2n] and 2y + sw € ¥;. It follows that

(vk (@), 2y + sw) < (vk(2),2) = (Vg (2), Y + tw),
and hence
(@), ) < i), tw) — (vic(w), sw) < 4n.

We conclude that (vk(z),y + tw) = (vk(x),y) + (vk(z),tw) < 6n, in accordance with
BA7).

In turn, (3.4.7) yields that (vi(z),2)1™P > (vk(z),2)(6n)7P for z € K N ¥Y, and
hence

/ (vic (@), ) P ]| dHP () > (6n) P / (e (@), @) ][0 dHP ().
O KNY?

O KNY?
(3.4.8)
Next, we prove the existence of v; > 0 depending on n,p, ¢ such that
H ()l i g > 1
[ o g ey > TR e C (3.49)
& KNwo MH"2(8%) if qe€(0,1]

Let us consider z = y+ f(y)w € VINJ' K for some y € ®;\(2nB"). Since ||y|| < ||z < 2|ly||

by (3.4.3)), it follows from (3.4.7)) that
(e (), 2) 7P|z > (6n)' P min{1, 297"} ly||T7".

Therefore there exists v9 > 0 depending on n, p, g such that
L gy @ Tl ) 2 [ gl dH" ()

- 0i/4
= H" () / 2 gt
2n
0i/4
= VQH”‘Q(Qi)/ 972 dt,
2

n
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and in turn we conclude (3.4.9)).

The final part of the argument is the estimate

/ (i (), @) 2T dH () < 2916m - HP2 () - o8 L. (3.4.10)
O KN¥}

Let Q = mx(U}). If 2 =y + sw € U} for y € (¥;|wt)\ ®;, then y € (¥;|wh)\ (% B")

and |s| < 2n. It follows that | tan «| < 9274 = % for the angle « of z and y. In particular,
~ —8n 8
Q%C?TK<QZ‘+|: n,n]‘w)
Qi 0Oi

which, in turn, yields that
1 -
HL () < S” H2().
We deduce from (3.2.7) and from the fact that ||z|| < g; + 2n < 2¢; for z € U} that

16
/ (i (), 2)||z(|™ dH"H(z) = / ok (w)TdH"H(u) < 772 H () - (200)7,
& KN o 0i

yielding (3.4.10]).
We deduce from (3.4.9) and (3.4.10]) the existence of 3 > 0 depending on n, p, g such
that

L/‘ <VK%x)wtf‘prHq‘”d?F“*(w)>>73][ (i (x), )||2]|*" dH" " ().
O'KNwY?

O KN¥}
(3.4.11)
Combining (3.4.8]) and (3.4.11]) implies if o; > R, as well, completing the proof of
Lemma ]

Next we investigate the limit of convex bodies with bounded L, dual curvature measure

in Lemmas [3.4.3 and B.4.41

Lemma 3.4.3. If p > 1,0 < q < p and K, € IC?O) for m € N tend to K € K with

intK # () such that C~'p,q(Km, S"=1) stays bounded, then K € Koy

Proof. Let us suppose that o € 0K, and seek a contradiction. We claim that there exists
a vector w € intN(K,o0)* such that —w € N(K,0) N S" 1. If this property fails, then
(—N(K,0))NintN(K,0)* = 0, and hence the Hahn-Banach theorem yields the existence
of a vector v € S~ ! such that (v,u) < 0if u € N(K,o0)*, and (v,u) > 0if u € —N(K, o),
and hence v € N(K,0)*. Since (v,v) =1 > 0 contradicts (v,u) < 0 if v € N(K,0)*, we
conclude the existence of the required w.

To simplify notation, we set B(r) = w® N (rB") for r > 0. The conditions in
Lemma [3.4.3| and (3.4.1)) yield the existence of some M > 0 such that for each K,,,
we have that

~ 1
M > @AKWS"U:/“ V(K x), ) 7P||2]| " dH" () (3.4.12)
' Km,

n
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1

1
> [ etrerae i@z [ e ),
n Jo'KmnB" " Jo'KmnB"

We note that since K,, — K and o € 90K, for sufficiently large m, &' K,, N B™ # () and
the right-hand side of is greater than zero. As w € intN(K,0)* and w € N(K, o),
there exist a o € (0,1) and a non-negative convex function f on B(2p) with f(0) = 0 such
that

U={z+f(z)w: z € B(20)} C OK.

In particular, there exist an 1 > 0 such that
|zjwh|| > 2n||z|| for z € U. (3.4.13)

We may assume that ¢ € (0, 1) is small enough to ensure that U C intB".
Since fB(g) |z} ="dH"1(2) = oo, there exists some § € (0, o) such that

1-n
lt/ <Wﬂ> dH" 1 (2) > M. (3.4.14)
" JB(e\B(©) \

There exist and an mg such that if m > my, then for some convex function f,, on B(p),
we have

Un ={z2+ fm(z)w: z € B(p)\B(J)} C (0K,,) N (intB"), (3.4.15)
and (compare (3.4.13]))

12l = nllz + fm(2)wl| for z € B(e)\B(9). (3.4.16)

We deduce from ((3.4.12)), (3.4.15) and (3.4.16)), and finally from (3.4.14]) that

1 1
M o> [l ae @z [ e (el )
" JUm " JB()\B(9)
1 1-n
z/ Oﬁ) dH" Y(z) > M.
" JB(e\B(6) \ "
This is a contradiction, and in turn we conclude Lemma [3.4.3] O

Lemma 3.4.4. Ifp>1,q>0 and K,;, € IC’("”O) for m € N tend to K € K with intK # ()
such that épvq(Km, Sn=1Y stays bounded, then H" 1(Ek) = 0.

Proof. We fix a point z € intK, and for any bounded X C R™\{z}, we define the set
o(X)={2+ Az —2): z€ X and X > 0}.

We observe that o(X) is open if X C 0K is relatively open, and o(X) U {o} is closed if X
is compact.

We will use the weak continuity of the (n — 1)th curvature measure. In particular,
according to Theorem 4.2.1 and Theorem 4.2.3 in Schneider [Schl14], if 8 C R" is open,
then

liminf " Y(BNIK,,) > H" HBNIK). (3.4.17)

m— 00
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Let us suppose, on the contrary, that H"~!(Zx) > 0, and hence o € 0K, and seek a
contradiction. Choose some large M, R > 0, and a compact set = C Ex\{o} such that

K,, ¢ RB",
Cpg(Kpm, SP™1) < M formeN,
H"HE) = w>0.
Now there exists some 1 > 0 such that
(i) (nB™)No(Z+nB") =0.
Since p > 1, we may choose € > 0 such that

w . min{ann, qun} . (w/2) > M. (3.4.18)

We have H* Y(ZN I K) = w. For any z € 2N J'K, there exists 7, € (0,7) such that
hi(u) <e if u € S"71 is exterior normal at y € 0K N (z + r, B"), (3.4.19)

and we define B, = int(z + r,B™). Let
U= J (B.n3K),
T€ENI'K
which is a relatively open subset of 0K satisfying
(a) (nB")NoMU) =10,
(b) H*'(U) > w,
(c) hi(u) <eifu e S 1 is exterior normal at x € cll.

It follows that (applying (3.4.17) in the case (b)) that there exists mg such that if m > my,
then

(@) Jlall > 7 if & € o@U) N 0K,
(b*) H Y o(U) NOKy) > w/2,
(¢’) hg(u) < 2eif u€ S 1 is exterior normal at x € o(U) N OK,,.
For any x € o(U) N 0K, (a’) and K,,, C RB" yield that
&}~ > mingysn, R1).

It follows first by (3.4.1)), then by (b’), (¢’) and (3.4.18]), that

~ 1
M 2 Gyl " 2 | (e (@), )1 P | dH () > M.
n o(U)NO' K,

This contradiction proves Lemma O
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3.5 Theorem [3.1.2] for general convex bodies if () = B"
For w € S"! and a € (—1,1), we write

Qw,a) = {ue S" ' (u,w) > a}.
The following is a simple but useful observation.

Lemma 3.5.1. For a finite Borel measure p on S™~' not concentrated on a closed hemi-
sphere, there exists t € (0,1) such that for any w € S", we have u(Q(w,t)) > t.

First we prove the following variant of Theorem [3.1.2] involving the dual intrinsic
volume.

Theorem 3.5.2. Forp > 1 and q > 0, and finite Borel measure ;1 on S~ not concen-
trated on a closed hemi-sphere, there exists a conver body K € KI' with intK # 0 and
H" Y (Ek) = 0 such that N N

V(KR dys = dCy (K. ),

and in addition, K € /C?O) ifp>q.
Proof. We choose a sequence of discrete measures i, tending to p that are not concen-

trated on any closed hemispheres. It follows from Theorem that there exists polytope

P, € IC’("”O) such that

1~ hph o~
dppm = =——— dcp,q(va ) == qu(Pma ) (3'5'1)
V() Va(Prn)

for each m, and hence we may assume that

ép,q(Pm’Sn_l) n—1
444@26%5;447<:2u99 ). (3.5.2)

We claim that there exists R > 0 such that
P,, c RB". (3.5.3)

We prove by contradiction, thus we suppose that R, = max,cp, ||z| tends to
infinity. We choose v,, € S®~! such that R,,v,, € P, and we may assume by possibly
taking a subsequence that v, tends to v € S"~!. We deduce from Lemma that
there exist s,t > 0 such that u(2(v,2t)) > 2s. As vy, tends to v € S" ! and pu,, tends
weakly to p, we may also assume that Q(v,2t) C Q(vp,,t) and p, (Q2(v,2t)) > s, therefore
tm (Q(vm, t)) > s for each m. Since hp, (u) > (Rpvm,u) > Ryt for u € Q(vpy,t), we
deduce from that

h-P _ ~ n—1
§ < fim(Q(vpm, 1)) = / fp () dCy (P, u) < R;j’t‘?% < R;Pt7P.

Qvmt) Vo(Pm) Vy(Prm)

In particular, Rh, < s~!t7P, contradicting the fact that R,, tends to infinity, and in turn

proving (3.5.3)).
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It follows from (3.5.3) that P, tends to a compact convex set K € K with K C RB".
We deduce from (3.5.2)) and Lemma that (K) > 0.

We observe that hf, tends uniformly to hf, and hence also ‘N/q(Pm)h%m tends uniformly
to ‘N/q(K )% by Lemma Therefore given any continuous function f, we have

fim [ F@V (Pl () dien = [ F@)VB M () .

m—oo [on—1 Sn—1

It follows from Proposition that the dual curvature measure C~’q (P, ) tends weakly
to Cy(K,-), thus (3.5.1) yields

/Snl Fu)Vy(K)hb () dp = /S F(u) dCy(K, u).
Since the last property holds for all continuous function f, we conclude that
Vo (K dp = dCy (K., ),

as it is required.

Having (3.5.2) at hand, Lemma yields that H" '(Ex) = 0, and Lemma m

implies that if p > ¢, then K € IC?O). O

Proof of Theorem [3.1.2]in the case of Q = B™ Let p > 1, ¢ > 0 and p # ¢. According
to Theorem there exists a Ky € IC?O) with int Ky # () and H”_I(EKO) = 0 such that

1

Vy(Ko) 1Cpq(Ko,-) = . For A = Vy(Ko)7r and K = AKj, we have
Cpg(K. ) = A PCp (Ko, -) = Vy(Ko) ' (Ko, ) = p.

It follows from Theorem that o € intK if p > q. U
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Chapter 4

Weighted volume approximation
by inscribed polytopes

This chapter of the dissertation is based on parts of the paper [BFH10| by K.J. Boréczky,
F. Fodor, and D. Hug, The mean width of random polytopes circumscribed around a conver
body, J. Lond. Math. Soc. (2) 81 (2010), no. 2, 499-523. (DOI 10.1112/jlms/jdp077)

4.1 Introduction and results

For a given convex body, we introduce a class of inscribed random polytopes. Let C be a
convex body in R¢, let p be a bounded, nonnegative, measurable function on C, and let
HeLC denote the restriction of H? to C. Assuming that Joo(x) He(dx) > 0, we choose
random points from C according to the probability measure

-1
Poc = </ o(x) dm) oM C.
c

Expectation with respect to P, ¢ is denoted by E, c. The convex hull of n independent
and identically distributed random points with distribution P, ¢ is denoted by K, if ¢ is
clear from the context. This yields a general model of an inscribed random polytope.

In order to state our results, we define the constant

(@ +d+2)(d?+1) (d®+1Y (d+1)\>
2(d+3) - (d+1)! <d+1)( >

cq = (4.1.1)

Ad—1

(cf. J.A. Wieacker) [Wie78]. In the following, we simply write dz instead of H¢(dx).
Generalizing a result by C. Schiitt [Sch94|, we prove the following theorem.

Theorem 4.1.1 (Boréczky, Fodor, Hug [BFH10, Theorem 3.1 on page 502]). For a convex
body K in R?, a probability density function o on K, and an integrable function X : K — R
such that, on a neighbourhood of 0K relative to K, A and ¢ are continuous and ¢ is positive,
we have

lim natt EQ,K/ Az)dx = cd/ g(w)ﬁ/\(ac)/@(x)d%l HI Y (dx), (4.1.2)
o K\K () 0K
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where cq is defined in .

The limit on the right-hand side of depends only on the values of p and A on
the boundary of K. In particular, we may prescribe any continuous, positive function g
on K. Then any continuous extension of ¢ to a probability density on K (there always
exists such an extension) will satisfy Theorem with the prescribed values of g on the
right-hand side.

Our proof of Theorem is inspired by the approach in [Sch94], where the special
case p = A = 1 is considered. We note that for [Sch94, Lemma 2], which is crucial for the
proof in [Sch94], no explicit proof is provided, but reference is given to an analogous result
in an unpublished note by M. Schmuckenschlager. Beside missing a factor %, Lemma 2
does not hold in the generality stated in [Sch94]. For instance, it is not true for simplices.
Most probably, this gap can be overcome, but still our approach to prove Theorem
where [Sch94, Lemma 2] is replaced by the present more elementary Lemma might
be of some interest.

The present partially new approach to Theorem [4.1.1] involves also some other inter-
esting new features. In particular, we do not need the concept of a Macbeath region. An
outline of the proof is given below. It should also be emphasized that the generality of
Theorem is needed for our study of circumscribed random polyhedral sets via duality
in Chapter

Let fi(P),i € {0,...,d— 1}, denote the number of i-dimensional faces of a polyhedral
set P. A classical argument going back to Efron [Efr65] shows that

E&K (fo(K(n))) =n- EQ,K/ Q(l‘) da:,
K\K(nfl)

which yields the following consequence of Theorem [4.1.1

Corollary 4.1.2 (Boroczky, Fodor, Hug [BFH10, Corollary 3.2 on page 503]). For a
convez body K in R%, and for a probability density function o on K which is continuous
and positive on a neighbourhood of OK relative to K, we have

. _d-1 d—1 S ]
lim n~ 1 By g (fo(Kny)) = cq o(z) 1 k(x) =T HY (dz),
0K

n—00

where cq is defined in .

The proof of Theorem is obtained through the following intermediate steps. De-
tails are provided in Section Since the convex body K is fixed, we write E, and PP,
instead of E, g and P, g, respectively. The basic observation to prove Theorem is
that

E, /K\K(n) AMz)dx = /K]P’Q (z & K(ny) A2) dz, (4.1.3)

which is an immediate consequence of Fubini’s theorem. Throughout the proof, we may
assume that o € int(K). The asymptotic behaviour, as n — oo, of the right-hand side of
is determined by points x € K which are sufficiently close to the boundary of K.
In order to give this statement a precise meaning, scaled copies of K are introduced as
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follows. For ¢t € (0,1), we define K; := (1 —¢)K and y; := (1 —t)y for y € K. In Lemma
we show that

lim natt / P, (z & K)) M) dz = 0.
n—oo Kn—l/(d+1)
This limit relation is based on a geometric estimate of P, (m ¢ K (n)), provided in Lemma
4.2.1] and on a disintegration result stated as Lemma [4.2.2

For y € 0K, we write u(y) for some exterior unit normal of K at y. This exterior unit
normal is uniquely determined for H% '-almost all boundary points of K. Applying the
disintegration result again and using Lebesgue’s dominated convergence result, we finally
get

n—oo

lim nE, / M) do = / A) () O (dy),
K\K(n) oK

where
n—1/(d+1)

2
Joly) = lim. ; n a1 (y, u(y))Py (yr & K(ny) di
for H4 1-almost all y € OK. For the subsequent analysis, it is sufficient to consider a
small cap of K at a normal boundary point y € 0K. The case k(y) = 0 is treated in
Lemma m The main case is k(y) > 0. Here we reparametrize y; as ys, in terms of
the probability content of a small cap of K whose bounding hyperplane passes through
y¢. This implies that

9 n—1/2

To(y) = (d+ 1) T, Ho(y) 1 k(y) 7T lim nTTP, (s & Kny) s~ 51 ds,

cf. . It is then a crucial step in the proof to show that the remaining integral
asymptotically is independent of the particular convex body K, and thus the limit of the
integral is the same as for a Euclidean ball (see Lemma. To achieve this, the integral
is first approximated, up to a prescribed error of order ¢ > 0, by replacing P, (gjs Z K (n))
by the probability of an event that depends only on a small cap of K at y and on a small
number of random points. This important step is accomplished in Lemma For the
proofs of Lemmas and it is essential that the boundary of K near the normal
boundary point 4 can be suitably approximated by the osculating paraboloid of K at y.

4.2 Proof of Theorem [4.1.1

To start with the actual proof, we fix some further notation which will be used in this
chapter. For y € 0K and t € (0,1), we define the cap C(y,t) := {x € K : (u(y),z) >
(u(y),y:)} whose bounding hyperplane passes through y; and has normal u(y). For u €
R?\ {0} and ¢t € R, we define the hyperplane H(u,t) := {z € R? : (z,u) = t}, and the
closed half-spaces H* (u,t) := {x € R?: (z,u) >t} and H™ (u,t) := {x € R?: (x,u) <t}
bounded by H (u,t). We further put R* := [0, c0).

For y € 0K, we denote by r(y) the maximal number » > 0 such that y —ru(y) +rB? C
K. This number is called the interior reach of the boundary point y. It is well known that
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r(y) > 0 for H4 l-almost all y € K. If r(y) > 0, then there is a unique tangent plane of
K at y. In particular, r(y) < r(K) where r(K) is the inradius of K.

Finally, we observe that there exists a constant vy € (0,1) such that for y € 0K, we
have

[{y, u(y))| = 7ollyll, and hence [jylu(y)"|| < /1 =3 - |lyll, (4.2.1)

where y|ut denotes the orthogonal projection of y onto the orthogonal complement of the
vector u € R%\ {o}. Subsequently, we always assume that n € N.

Lemma 4.2.1. There exists a constant § > 0, depending on K and o, such that, if y € 0K
and t € (0,6), then

d—1 ﬁ)n

P, (e & Kny) < (1 —mr(y) 2t >

Remarks. 1. In addition, we may assume that on K \ int(Ks), both functions o, X are
continuous, ¢ is positive and yir(K) 2z § 2 < 1. Further, we always choose § < 1.

2. In the following, we will use the notion of a “coordinate corner”. Given an orthonor-
mal basis in a linear i-dimensional subspace L, the corresponding (i— 1)-dimensional
coordinate planes cut L into 2° convex cones, which we call coordinate corners (with
respect to L and the given basis).

Proof of Lemma[{.2.1 If r(y) = 0, then there is nothing to prove. So let r(y) > 0, thence

u(y) is uniquely determined. Choose an orthonormal basis in u(y)*, and let 67, ..., S/
be the corresponding coordinate corners in u(y)*. For i = 1,...,297 " and t € [0,1], we
define

O :=C(y,t) N (ye + [07,RTy]) .

If § > 0 is small enough to ensure that ¢ > 0 is positive and continuous in a neighbourhood
(relative to K) of 0K, then

| ewdsznvies)
Ot
If y+ & K¢y and o € Ky), then there exists a hyperplane H through y;, bounding the

half-spaces H~ and H™, for which K,y C H~. Moreover, there is some i € {1,..., 2d-11
such that ©;; C H*. Therefore

2d7 1
Py (gt & Kinyr0 € Kiny) < Y (1= 72V(050))" . (4.2.2)
=1
Finally, we prove
V(Oi) > r(y) Tt (4.2.3)

for i =1,...,2% 1. According to (4.2.1)), there exist positive constants ~y3,v4 with 3 < 1
such that if ¢ < y3r(y), then (y; + ©;) N K contains a (d — 1)-ball of radius at least

VT2 — (r(y) — 02 > /)L,
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and we are done. On the other hand, if ¢ > ~37(y), then

d—1 d+1

V(Oi) >ti>r(y) 2t 2.

To deal with the case o & K(;,), we observe that there exists a positive constant 75 € (0, 1)
such that the probability measure of each of the 2¢ coordinate corners of R? is at least 5.

If o & K, then {z1,...,2,} is disjoint from one of these coordinate corners, and hence
Po(o & K(ny) < 29(1 — 75)". (4.2.4)
Now the assertion follows from (4.2.2)), (4.2.3) and (4.2.4)). O

Subsequently, the estimate of Lemma will be used, for instance, to restrict the
domain of integration on the right-hand side of (cf. Lemma and to justify
an application of Lebesgue’s dominated convergence theorem (see ) For these
applications, we also need that if ¢ > 0 is such that w := ¢8(@+1)/2 < 1, then

J dt1\ " 2 2 (Y 2 =2 =2
/ (1 —ct 2 ) dt = caHT / s@+1T (1 —8)"ds < ¢ - ndFT, (4.2.5)
0 d+1 0

where we use that (1 —s)” <e ™ for s € [0,1] and n € N.
The next lemma will allow us to decompose integrals in a suitable way.

Lemma 4.2.2. If 0<ty<t1 <6 and h: K — [0,00] is a measurable function, then

= ! — )41y d—1
j;&&ﬁwwdv—AKA;a 7y, uly)hlye) deH™(dy).

Proof. The map T : 0K X [to,t1] = Ky, \ K¢y, (y,t) — (1 — t)y, provides a bilipschitz
parametrization of Ky, \ Ky, with (1—t)y = y; € OK;. The Jacobian of T', for H?~!-almost
all y € OK and t € [to,t1], is given by JT(y,t) = (1 — )y, u(y)), where u(y) is the
(H?'-almost everywhere) unique exterior unit normal of K at y. The assertion now
follows from Federer’s area/coarea theorem (see [Fed69)]). O

In the following, we will use the important fact that, for a > —1,

/ r(y)* HI (dy) < oo, (4.2.6)
oK
which is a result due to C. Schiitt and E. Werner [SW90].

By decomposing A into its positive and its negative parts, we can henceforth assume
that )\ is a nonnegative, integrable function.

Lemma 4.2.3. As n tends to infinity, it holds that
/ P, (z & Ky) M) dxzo(nﬁ) .
K, —1/(a+1)
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Proof. Let § > 0 be chosen as in Lemma and the subsequent remark. First, we
consider a point = in Ks. Let w be the minimal distance between the points of 0K and
Ks, and let 21, ..., 2; be a maximal family of points in K \ int(Ks) such that ||z; —z;|| > %
for i # j. We define pg > 0 by

" ;:min{IP’@ (zi—i—%Bd) :izl,...,k}.

Let z € Ks. If z € K, then there is some u € S9! such that z € HT(u,t) and
Ky C int(H™ (u,t)). Since » € Ks, we obtain that K,y C int(H ™ (u,h(Ks,u))). If
z € H(u, h(Ks,u)) NOKs, then

W

z—l—2

u+ %Bd C K N H* (u, h(K5, ).
By the maximality of the set {z1,..., 2}, we have

w w
{21, 2} 0 (z+§u+13d) £ 0.
Let z; lie in the intersection. Then z; + $B? C H*(u, h(Kjs, u)), and hence z; ¢ z; + £ B?
for ¢ = 1,...,n. This implies that, for z € Ky,

P, (z & Ky) < k(1 —po)"™. (4.2.7)
Put ¢ := (2(d?> — 1))~! and let n > §~ @1, For y € K we show that

—2

)
/ Py (s & Kny) dt < r(y) @0 =, (4.2.8)

—1/(d+1)

In fact, if r(y) < n= ¢tV then Lemma and (4.2.5)) yield

1) 5 )
/ Po (e # Kew) dt < / (1 - 'YlT(y)%t%) gt
" 0

—1/(d+1)
d—1 2

< () e

< T-(y) diln dil

where the assumption on r(y) is used for the last estimate.
If r(y) > n~ (@D and n > ng, where ng depends on K, ¢ and A, then Lemma m
implies for all ¢ € (n="/(@+1) §) that

2 n
Py (y: & Kiny) < (1 - ’Vm_d?la_é)
— (1 - ,yln73/4)n

< 6771"1/4

< r(K) T nd e,
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which again yields (4.2.8]). In particular, writing I to denote the integral in Lemma
we obtain from Lemma [4.2.2 (4.2.7), (4.2.8)) and (4.2.6) that

1)
I < / %QWHQMA@Mw+/ / Py (ye & K(ny) dt H* " (dy)
K 0K Jn—1/(d+1)
d —2 —2
<ikﬂ—mW+/‘Nw”ﬂwﬂﬁHdW@%<MH*,
0K

where we also used the fact that A is integrable on K and bounded on K \ Kj. This is the
required estimate. ]

It follows from (4.1.3]), Lemma and Lemma that

lim nait IEQ/ Az) dx

= lim n@ /K]P’Q (z & K(ny) Mz) da

n—oo
p@
—Jim [ ] R (1= 1)y, u(y))Py (e & Ky) Maw) dt H (dy).

Lemma [4.2.1] and (4.2.5)) imply that, if y € K and r(y) > 0, then

n—1/(d+1)

/0 TP, (e & K ) (1 u())A(ye) dt < r(y)~ 5.

Therefore, by (4.2.6)) and since A is bounded and continuous in a neighbourhood of 0K,
we may apply Lebesgue’s dominated convergence theorem, and thus

1@n$m/ MmmZ/A@%@H“MW (4.2.9)
nmree K\K(») oK
where vy

Toy) = lim | n 1 (y, u(y)Po (v & K()) dt,

for H4 1-almost all y € OK.
Lemma 4.2.4. Ify € 0K is a normal boundary point of K with k(y) = 0, then J,(y) = 0.

Proof. In view of the estimate (4.2.4]), it is sufficient to prove that for any given € > 0,

n—1/(d+1)

/ nﬁﬂl’g (yt ¢ K(n),O S K(n)) dt < e, (4.2.10)
0

if n is sufficiently large. We choose the coordinate axes in u(y)* parallel to the principal
curvature directions of K at y, and denote by 01, ..., 9’2d_1 the corresponding coordinate

corners. Fori=1,...,2¢ 1 and t e (O,nfl/(d“)), let

O :=C(y,t) N (ye + [0, RTy]) ,
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and hence, if n is large enough, then
/ o(z) dz > V(Oy,),
Ot

since g is continuous and positive near OK. If y; ¢ K, and o € K, then there exists
a half-space H~ which contains K,y and for which y € O0H~. Moreover, for some
i € {1,...,2971} the interior of H~ is disjoint from ©; ;. Hence, as in the proof of Lemma
it holds that

2d71

Py (gt & Kinyr0 € Kiny) < Y (1= %6V (0i1))" . (4.2.11)
=1

Since 0K is twice differentiable in the generalized sense at y, we have r(y) > 0. By
assumption, x(y) = 0, therefore one principal curvature at y is zero, and hence less than
et 1pr(y)4=2. In particular, there exists &' € (0,6), which by depends only on y and
e, such that, if i € {1,...,2971} and ¢ € (0,¢'), then

HE (1 + ) N K) >\t Dn(y) =2 /i),

and thus V(0;) > e~ (@+1)/2¢(d+1)/2 Therefore (4.2.10) follows from (4.2.5) and (4.2.11)).
L]

Next we consider the case of a normal boundary point y € 9K with x(y) > 0. First, we
prove that J,(y) depends only on the random points near y (see Lemma. In a second
step, we compare the simplified expression obtained for J,(y) with the corresponding
expression which is obtained if K is a ball.

We start by reparametrizing y; in terms of the probability measure of the corresponding
cap. For t € (O,n_l/(d+1)), where n > ng is sufficiently large so that o is positive and
continuous on C(y,t), for all y € 9K, we put

gs =Yt

where, for given s > 0 (sufficiently small), the corresponding ¢ = ¢(s) is determined by the

relation
s = / o(z) dx. (4.2.12)
Cly,t)

It is easy to see that the right-hand side of (4.2.12)) is a continuous and strictly increasing
function s = s(t) of t, if ¢ > 0 is sufficiently small. This implies that, for a given s > 0
(sufficiently small), there is a unique ¢(s) such that (4.2.12) is satisfied.

Moreover, observe that

ds do1
— = (u(y),y) o(x) H*(dx) (4.2.13)
dt H(y.)NK

for t € (0,n~1/(+1D)). We further define

Cly,s):=Cy,t) and  H(y,s):={z € R?: (u(y),z) = (u(y),7s)},

26



dc_1638 19

where t = t(s).
Let @ denote the second fundamental form of OK at y (cf. (2.2.1))), considered as a
function on u(y)*. We define

E:={zeuy) :Q(z) <1}

and put v := u(y). Choosing a suitable orthonormal basis vy, ...,vq_1 of u(y)*, we have
d—1
Q(z) =Y ki(y)2},
i=1
where k;(y), i = 1,...,d — 1, are the generalized principal curvatures of K at y and where

z=z1v1+...+24-1v4—1. Since y is a normal boundary point of K, there is a nondecreasing
function p : (0,00) — R with lim,_,o+ u(r) = 1 such that

p(r)”! p(r)
Ku,r)+ru—y) C EC K(u,r)+ru—1y), 4.2.14
(K ru—y) C ECER K@) by, 421)
where K(u,r) := K N H(u,h(K,u) —r). In the following, u; : (0,00) - R, 1 =1,2,...,
always denote nondecreasing functions with lim, o+ u(r) = 1. Applying (4.2.14) and
Fubini’s theorem, we get

V(K N HY (u, h(EK, 1) — 7)) = (r) (fﬁi ag1(y)"3,
which yields »
s(8) = o) P sty boty), (1.2.15)

since ¢ is continuous at y. Moreover, defining

1

ni= (d+ DT, 5 oy) T k(y) 55,

we obtain

lim s#1[(H(y,s) NK) —§s] =0 E (4.2.16)

s—0t

in the sense of the Hausdorff metric on compact convex sets (see Schneider [Schl4] or
Gruber [Gru07]). Here we also use the fact that

lim s~ (s — (gs, uhu) = o. (4.2.17)

s—0t

Now it follows from (4.2.13) and (4.2.16)) that (4.2.9)) turns into

d—1 —_2 —2
d+1

Jo(y) = (d + 1)_Tad_dlﬁg(y)ﬁn(y)ﬁ lim

n—oo 0

g(n’y) 2 d—1
ntiP, (Js & K(ny) s~ a1 ds,

where
lim n%g(n,y) = (d+1) " aa10(y)(2(u(y),y))

n—o0
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The rest of the proof is devoted to identifying the asymptotic behaviour of the integral.
First, we adjust the domain of integration and the integrand in a suitable way. In a
second step, the resulting expression is compared to the case where K is the unit ball. We
recall that x1,...,z, are random points in K, and we put =, := {z1,...,2,}, and hence
K(n) = [En]). Let #X denote the cardinality of a finite set X C R<.

Lemma 4.2.5. For e € (0,1), there ezist a, f > 1 and an integer k > 1, depending only
on € and d, with the following property. If y € 0K is a normal boundary point of K with
k(y) > 0 and if n > ng, where ng depends on €,y, K, o, then

g(n,y) d—1
/ Py (7s & Kpy) s~ a1 ds = /
0 €

where

a/n

_d-1 €
o(K,y,0,€,8)s dtt ds+0< 5 ),

(d+1)/2 /y naT

oK,y 0.2,5) = B, (3 # [C(y. 85) NZa] ) amd (#(Cly. B5)NE,) < k).

Proof. Let @ be the second fundamental form of K at the normal boundary point y, and
let vy,...,v4—1 be an orthonormal basis of u(y)* with respect to @, as described above.
Let ©),..., @’Qd_l be the corresponding coordinate corners, and, for i = 1,...,2% ! and
for s € (0,n~1/?), put

©;s:=C(y,s)N (gjs + [@;,Rer]) .

Let Ag, s > 0, be the affine map of R? with A,(y) = y for which the associated linear map
A, is determined by A,(v) = sﬁv, for v € ut, and A,(u) = s#Ty. Then det(A,) = s
and A,1(C(y,s)) converges in the Hausdorff metric, as s — 0%, to the cap C(y) of the
osculating paraboloid of K at y having volume o(y)~!'. Here we use the assumptions
that g is continuous at y, o(y) > 0 and relation ([£.2.12)). Let A > 0 be such that g :=
y — M € C(y). Then AS_1(éi75) converges in the Hausdorff metric, as s — 07, to
C(y) N (7 + [0}, R u]), since is satisfied. Since p is continuous and positive at y,
we thus get

s—0t

lim 51/ o(z)dr = lim 871V(éi,s)g(y)
s—0+ éi,s

= lim V(4,1 (éz,s))g(y)

s—0T
= V(C(y)N (5 + (67, RTul))e(y)
= 2 IVCW)e)
= 276D Jim V(A,1(C(y,s))o(y)

s—07F

= 27D im sT'WV(C(y, 9))o(y)

s—0t

= 27D iy 3_1/ o(z)dx
s—07t Cl(y,s)

_ o9-(d-1)

i

o8
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that is,
lim sl/ o(x) dzx =271, (4.2.18)
s—0t éis

Let o > 1 be chosen such that

oo

2 _

2d1+2d/(d+1)/ iy < e
2—dgy

Then we first choose 3 > (16(d — 1))4*! such that

1

2d,1€,d7127(d+3)5m6# < 52 :

Qd+1

and then we fix an integer k£ > 1 such that
(@B)* _ e

< .

k! - 2

ad+1

Lemma follows from the following three statements, which we will prove assuming
that n is sufficiently large.

a/n . _d—1 €
= / PQ (ys ¢ K(n)) § d+l1 dS =+ O <2> .
€

(@+1)/2 N

(i) If e(@+1/2 /n < s < a/n, then

Pg(# (é(y,ﬁs)mzn) zk) :0< £ >

v d+1

(i) If e(@1)/2 /n < s < a/n, then
P (3 # Kiop) = o (3 # [Cln o) =] ) + 0 (=55 ).

To prove (i), we first observe that

J

If a/n < s <g(n,y), o € Ky, Js € K@) and if n is sufficiently large, then there is some

i €{1,...,2%71} such that ©; 4N K@) =0, and hence (4.2.4) and (4.2.18) yield

P, (s & K(ny) <271 (1—27%)" < 9d—1g=2""ns, (4.2.19)

5(d+1)/2/n 5(d+1)/2/n g1

~ _d—1 _d—1 3

0 n d+1
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Therefore, by the definition of a, we get

9(n,y) _ S
/ PQ (gs §Z K(n)) S_ZT‘} ds < 2d1/ 672 dnssdi—o—l_l ds
a/n a/n
2 oo 2
— 2d7122d/(d+1)n—d7+1 / efxxﬁ—l dx
2—dy
2
<en 4+

which verifies (i).

Next (ii) simply follows from (4.2.12)) as, if s < a/n, then

Mﬂ%wm@w%@ﬁ&%@@ﬁJﬁ?gy

o d+1

_ Now we prove (iii). To this end, for s in the given range, our plan is to construct sets
M5y ..., Q9a-1 ¢ C K such that

ﬁ'Q@ﬁM>d*T“”Wﬁm, for i=1,...,2¢71, (4.2.20)
Qi,s

andifgselﬂn)butgsg[GQLBSMWEn}thm1Enﬂ§Z§::®ﬁmsmnei€{1w.w2*4}

Fori=1,...,2%1 let w; € ©! be the vector whose coordinates (up to sign) in the
basis v1,...,v4_1 are

= (VBs) T S —
wim (V) st (s )

Further, for i = 1,...,2% 1 we define

Qis = [§5, +wi, KN (s + 0])].

Then, if s > 0 is small enough, we have g VBs Twi € K, and hence @,s C K. Here we use
the fact that

w; € (\/BS)%“%UE
and therefore, by ,
Y ps + Wi € H(y, VBs)NK C K.
Recall that gs = (1 — t)y, where s and t are related by . Hence, if s,t > 0 are

sufficiently small,

w1 i
W) o — 1) > D )y~ 5 > D)y ), (4220
since > 24+ moreover,
(u(y),y — ) - (K0 (s + 6))) > V(6s). (4.2.22)
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Combining (4.2.21)), (4.2.22), and (4.2.18]) together with the continuity of o at y with
o(y) > 0, we get

fo, e = e )5~ 50 H (K0 G +6))

Y

BT 1
L vy
4 \/2d (

1
ﬂd+1 1/
— o(x)dx
4 2d Js,, (z)

> Lﬁs,
—  8d2d

v

éi,s)

v

which proves (4.2.20)).

It is still left to prove that, if §is € K, but fis & |C(y, Bs) N En} then Z, N Qs = 0
for some i € {1,...,2971}. So we assume that g, € K, but gs ¢ [é(y,ﬁs) N En} Then
there exist a € {é(y, Bs)N En} and b € K, \ C(y, Bs) such that 7, € [a,b], and hence

there exists a hyperplane H containing s and bounding the half-spaces H T and H~ such
that C'(y,8s) NZ, Cint(H") and b € int(H ).
Next we show that there exists g € [7s, b] such that

_ N n .
ge H N (yfs + 2\/ﬁ(\/ﬁs) E) . (4.2.23)

In fact, define ¢ := [js,b] N H(y,/Bs) and ¢ := [js,b] N H(y,Bs). Since a € HT and
Us € H, it follows that ¢ € H~. From (4.2.16]) we get

H(y, Bs) N K C jjg + 2371 sTnE, (4.2.24)
By ({.2.15),
d+1 d+1 —
(u(y), ¥s — y[)’s> < 2 T o 1 (u(y), Y/Bs y,Bs>
BarT —1 [BarT — G
g -
< ———(u¥): U35 — Uss)- (4.2.25)
6d+1 —1

Furthermore, by elementary geometry

Hq_g\/BSH . <u7g8 _g\/Bs>

Hq/ - gﬁs” B (u, gs - gﬁs) ‘
Then, by (4.2.24) and (4.2.25)),
<u7g8 - g\/ﬁs> _1
qg €y + - 2(Bs)HInkE
VBs <u, Ys — y,Bs) ( )
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(u, Zj\/Bs — Ugs) S
C v 1l ————~ | .28d¥igd+ink
y\/BS + < <U/, gs _ gﬁs> > B S 77
1
C §yps+2sHInE

- 1 1
C Yypst ﬁ(\/gs)d“nﬂ

where 8 > (16(d — 1))%*! is used for the last inclusion. Now there exists some i €
{1,...,2971} such that §s + ©, C H~, and hence ¢ + ©; C H~. By (4.2.23) this finally
yields

. /Bs T Wi Cq+©,cH .

Therefore, we obtain that ﬁm Nz, =0.
Finally, (iii) follows as, if e(*1)/2/n < s < a/n, then

0 <P, (3 # [Cly. 83) N ) ~ By (3 # Kin)

2d71
<) 1= [ ox)dz)"
i=1 Qs
2d71
< o ey, o) d
i=1
< 2d_16_d7127(d+3)5#1 giéﬂ
2
<eca 41,
by the choice of 3. O

Remark. As a consequence of the proof of Lemmal[].2.5, it follows that

—1/2
1 2 n

Y

—a—2 =7 =2 1 2 _d—1
To(y) = (d+1)" 1 a, M o(y) ® T k(y) =1 lim nTiP, (s & Kiy) s @t ds.

n—o0 0
(4.2.26)
In fact, since g(n,y) < n~12, it is sufficient to show that

—1/2

2 can d—1
lim nat / P, (9s & K(ny) s~ &1 ds =0
(&

n—oo 1n71/2

for any two constants 0 < ¢1 < cg < 00. Since the estimate (4.2.19) can be applied, we get

czn’1/2 CQn—l/Q
2 _ _d-1 2 o—dps -2 _q
nd+1 P, (ys ¢ K(n)) s dtlds <« mnd+t e sd+1 " ds
—1/2 —1/2
cin cin
27dc2n1/2 )
< e Trari L,
27dcln1/2

from which the conclusion follows.
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Subsequently, we write 1 to denote the constant one function on R%. For the unit ball
B?, we recall that Bgln) denotes the convex hull of n random points distributed uniformly

and independently in BY. We fix a point w € dB?, and for s € (0, %), define wg :=t - w,
where ¢ € (0,1) is chosen such that

s=a;t - V({zx e B: (v,w) > (W, w)}).

By a classical result due to J.A. Wieacker [Wie78|,

d d
nh_)m nd+1E1 BaV(BY\ B(;)) = cawq ozc‘l”l,

where the constant ¢4 is given in (4.1.1]). Hence, it follows from (4.2.9), (4.2.26)) and the

preceding remark that
n—1/2 2

. 2 . d ) %t = T
lim ndIPy pa (Ws & B,y ) s a1 ds = ca(d+ 1) ag"y. (4.2.27)

n—oo 0

We are now going to show that the same limit is obtained if B is replaced by the convex
body K and if a normal boundary point y of K with positive Gauss curvature is considered
instead of w € OBY.

Lemma 4.2.6. If y € 0K is a normal boundary point of K satisfying k(y) > 0, then
n—1/2 1 2

: = ~ -4 a1
lim 1P, (s & Kipy) s~ 471 ds = cq(d + 1) ¥ aft].

n—o0 0

Proof. Let ¢ € (0,1) be arbitrarily chosen. According to Lemma and its notation
and by the preceding remark, if n is sufficiently large, we have

ol —d=d a/n % n—i
/0 Py (ys ¢ K(n)) s ds = <nd+1) + Z ( ) /(d+1)/2/n(58) (1= 5s)

~ _d-1
X Pg,é(y,ﬂs) (ys ¢ C(ya 58)(¢)) s i ds.  (4.2.28)

We fix a unit vector p, and consider the reference paraboloid ¥ which is the graph of
2+ ||z]|? on pt. For 7 > 0, define

C(r) = {Z—i—tp 1z Epl and HzH2 <t< T%})
that is, a cap of ¥ of height Fa Tt is easy to check that V(C(7)) = 7V(C(1)). We define

V(Cly. bs))

09 = 0

Then (4.2.12) implies that
s s

02 = B o) BVE) (B )l VIC)
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where p(8,s) — 1 as s — 01, Let Ay, s > 0, denote the affinity of R? with A,(y) = y for
which the associated linear map A, satisfies A,(v) = sTy for v € ut and Ay(u) = sTy,
Then the image under A,—1 of a cap of K at y converges in the Hausdorff metric, as
s — 0T, to a cap of the osculating paraboloid of K at y. For a more explicit statement,
let A be a volume preserving affinity of R? such that A(y) = o and A(y — u) = p, which
maps the osculating paraboloid of K at y to W. Then @55 := Ao Az )-1 is an affinity

satisfying
= _ V(C(B
Qszﬁ(y) =0, det(és,ﬁ) = 8(67 S) 1 — Mj
V(Cl(y, Bs))
and, consequently, q’s,ﬁ(a(yvﬂs)) — C(p) in the Hausdorff metric as s — 0. Moreover,
we have

lim ‘I’S’/j(gs) = lim q)s,l(gs) =D

s—0t s—0t

since u(B3,s) — 1 and u(1,s) — 1 as s — 0%, g, € dC(y, s) and ;5 1(ys) € 0C(1), and by
(4.2.17)). Since p is continuous at y, the properties of ®, 3 imply that, for ¢ =0, ...k,

Jim Pz 55) (ﬂs ¢ 6(?47/33)(1’)) =Py o) (0 € CB) ) - (4.2.29)

From (4.2.28) and (4.2.29) we get

n—1/2 d-1 e k n a/n . .
/0 PQ (gs ¢ K(n)) s d+1 ds - O < 5 > + Z <Z> / (53)1(1 — 53)”«—1

= P (@+1)/2 /p

a1
X P10 (p € C(B)w)) s 41 ds.

The same formula is obtained for

—1/2

n B d d-1
/ Pl,Bd <w5 g B(n)) § d+l ds,
0
since C'(f) is independent of K. Since € € (0,1) was arbitrary,

n—1/2

. 2 . _d-1
tm [, (1 K)o
' n—1/2 o i . L
= nh_)ngo ; ndt 1Py pa (ws 4 B(n)) s+t ds.
Now (4.2.27) yields Lemma O

Proof of Theorem[[.1.1] Let y € 0K be a normal boundary point of K. Combining
Lemma Lemma [4.2.6| and (4.2.26]), we obtain

1

Jo(y) = ca Q(?J)d%/@(y) oI,

Therefore Theorem is implied by (4.2.9)). O
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Chapter 5

Circumscribed random polytopes

This chapter of the dissertation is based on parts of the paper [BFH10| by K.J. Béroczky,
F. Fodor, and D. Hug, The mean width of random polytopes circumscribed around a convex
body, J. Lond. Math. Soc. (2) 81 (2010), no. 2, 499-523. (DOI 10.1112/jlms/jdp077)

5.1 The probability space and the main goal

In order to state our results on random circumscribed polyhedral sets we start with de-
scribing the simplest version of probability model we use. In fact, we prove our statements
in a much more general setting but that requires a lengthier introduction which is left to
Section (5.2

Let H denote the space of hyperplanes in R? endowed with their usual topology, see
[SWO08, Chapter 13.2]. Let Hx C H be the subspace of H such that for each H € H, it
holds that H N K; # () and H Nint K = (), where K; is the radius 1 parallel domain of
K. Let u denote the unique rigid motion invariant Borel measure on H with the property
that u({H € H: HNM # 0}) = W(M) for every convex body M in R Here W (M) is
the mean width of M, see Section [2.2|for a definition. Let ux := (1/2)uH g, that is, the
restriction of (1/2)u to Hi. Then px is a probability measure on Hg because

1 1 d 1 d
i (Hi) = (Hic) = 5 (W (K + BY) = W(K)) = JW(BY) = 1,

Let Hi,..., H, be independent random hyperplanes in R? selected according to the prob-
ability distribution pg. If for each 1 <7 < n, H; is the closed half-space bounded by H;
that contains K, then the intersection

}(0”:::ﬁﬁ]¥;
=1

is a random polyhedral set containing K. Note that K (™ can be unbounded with positive
probability.

It is our aim to investigate the geometric properties of K™, In particular, in Section
we determine an asymptotic formula for the expectation EW (K™ N K;). We consider
the intersection of K (™ with K because K™ is unbounded with positive probability. We
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note that the use of K; is only a convenience, its role is not essential in the sense that
we could use any other convex body containing K in its interior and it would only affect
some of the constants without changing the essence of the asymptotic behaviour.

Instead of EW (K ) N K 1), we could also consider the conditional expectation
E,W (K ™) of W(K ) under the condition that K™ is contained in K. However, it was
proved by Boroczky and Schneider [BS10] that EW (K™ NK;) = E,W (K™)+0(y") with
v € (0,1), so there is no difference in the asymptotic behaviours of these two quantities,
as n — oo.

The main asymptotic result concerning the expected difference of the mean widths of
K™ and K is the following theorem.

Theorem 5.1.1 (Boroczky, Fodor, Hug [BFH10, Theorem 2.1 on page 501]). If K is a
convez body in R?, then
d—1

lim n@d B(W(K™ A Ky) — W(K)) = 2 cquwa™ 51 / k()T 1Y (d),
oK

n—o0

where cq is defined in )

Let fi(P),i €{0,...,d—1}, denote the number of i-dimensional faces of a polyhedral
set P. In the statement of the following theorem, K™ could be replaced by the intersection
of K™ with a fixed polytope containing K in its interior without changing the right-hand
side. Alternatively, instead of E(fs_; (K (™)) we could consider the conditional expectation
of f4_1(K™) under the assumption that K is contained in K.

Theorem 5.1.2 (Boroczky, Fodor, Hug [BFH10, Theorem 2.2 on page 502]). If K is a
convezx body in R?, then

IS8

—1

1mnﬁHMh4KWDZW%W/”M@$HdWQ
oK

n—oo

where cq is defined in .

Generalizations of Theorem [5.1.1] and also of Theorem below, which hold un-
der more general distributional assumptions, are provided in Section [5.2} There we also
indicate the connection to the p-affine surface area of a convex body.

Both theorems will be deduced from a “dual” result on weighted volume approximation
of convex bodies by inscribed random polytopes, namely from Theorems and
The usefulness of duality in random or best approximation has previously been observed,
e.g., in |Zie70], [Kal90], [GGI7], [DW9I6.

5.2 Polarity and the proof of Theorem |5.1.1

In this section, we deduce Theorem and Theorem from Theorem and
Corollary respectively. In order to obtain more general results, for not necessarily
homogeneous or isotropic hyperplane distributions, we start with a description of the basic
setting.

66



dc_1638 19

Let K C R? be a convex body with o € int(K), let K* := {z € R? : (z,2) <
1 for all € K} denote the polar body of K, and put K; := K + B?. Let Hx denote the
set of all hyperplanes H in R? for which H Nint(K) = () and H N K; # (). The motion
invariant locally finite measure p on the space A(d,d — 1) of hyperplanes, which satisfies
u(Hr) = 2, is explicitly given by

= 2/5“ /Ooo V{H (u, 1) € -} dt o(du),

where o is the rotation invariant probability measure on the unit sphere S'. The model
of a random polytope (random polyhedral set) described in the introduction is based on
random hyperplanes with distribution pr := 27! (uLHx ). More generally, we now consider
random hyperplanes with distribution

o ;:/ /Ool{H(u,t)e-}q(t,u)dtcr(du), (5.2.1)
sa-1 Jo

where ¢ : [0,00) x S71 — [0,00) is a measurable function which is
(ql) concentrated on Dy := {(t,u) € [0,00) x S : h(K,u) <t < h(K1,u)},

(q2) positive and continuous in a neighbourhood of {(¢,u) € [0,00) x S4 ' : t = h(K, u)}
relative to D,

(g3) and satisfies pq(Hg) = 1.

The intersection of n half-spaces H, containing the origin o and bounded by n independent
random hyperplanes H; with dlstrlbutlon [iq is denoted by K@ =(ie; H; . Probabilities
and expectations with respect to p, are denoted by P, and Euq, respectlvely The special
example ¢ = 1p, (q is the characteristic function of D) covers the situation discussed
in the introduction.

In the following, beside the support function, we will also need the radial function
p(L,-) of a convex body L with o € int(L). Let F' be a nonnegative measurable functional
on convex polyhedral sets in RY. Using and Fubini’s theorem, we get

/ / K1,U1 / h(K1,un) ﬁ ( ) ﬁ ( )
F H,; (ug, t; q(ti, u;
Sd—1)n Jh(K,u1) h(K,un) i—1 i1
X dty ...dty c®"(d(u,. .. uy)).

For t,...,t, > 0, we have

n

ﬂ H; (’LLi7 ti) = [tl_lul, e ,tn_lun]* .
i=1

67



dc_1638 19

Using the substitution s; = 1/t;, p(L*,u;) = h(L,u;)~! for L € K" with o € int(L), and
polar coordinates, we obtain

n

() :i T1y. .., Ty TeDET Sane T1y. 0y
By, (FK™) = /(K*\KT),LFQ ! (@)l =) d(as,.. w0)
with K7 := (K1)* and
i) =g -1, T *\ o
1) "q(n:cn’ uxn)’ SR

The case n =1 and F' =1 yields

— q(@)|z)| " de = 1,

hence
sy o {e T, e KoK,
0, x € K7,

is a probability density with respect to H K* which is positive and continuous in a
neighbourhood of K™ relative to K*. Thus,

E,,, (F(E™)) = /(K) F(lay,. ., xa]) [ [ ola) d(an, . .. 2n)
=1

= Epic (FIKS)),

where K

Proposition 5.2.1. Let K C R? be a convex body with o € int(K), and let q and o be
defined as above. Then the random polyhedral sets K™ and (K;n))* are equal in distribu-
tion.

For a first application, let
F(P):=1{P C K1} (W(P) - W(K)),

for a polyhedral set P C RY, with the convention 0 - oo := 0. For z1,...,7, € K*\ K},
we have K C [z1,...,2,]" and, arguing as before,

F(lzn, ... an]*) = W[z1, ... xn]* € K1} (W([z1, ..., 20]?) — W(K))

=2-1{[z1,...,zp]" C K1} Az) dz,
K*\[z1,...,xn]

where

s@) o [ D, e VK,
0, x € Kj.
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Note that if [z1,...,z,]* C K, then the set [z1,...,z,]* is bounded, hence
o € int([x1,...,xy,]), and therefore Ki C [x1,...,x,]" = [21,...,2p].

As in [BS10], it can be shown that P, (K™ ¢ K;) < a”, for some a € (0,1) depending
on K and ¢q. By Proposition [5.2.1] we also get

Py ((K(*n))* Z Kl) =P, (K(") ¢ K1> < a".
Hence
EMQWKWmKﬂ—WM»

~E,, (1{K(") c K1) (W(K(”)) . W(K))) +O(a™)

=2 E,x- (1{<Kz"n>>* C K1) A() da:) +0(a™)

K*\K(*n)

=2-Ep g~ (/ A(z) da:) + O(a"),
K™ \K{,)

where we used that A is integrable. Therefore, by Theorem 4.1.1

lim na1 B, (W(K™ 0 Kp) — W(K))

n—oo

— 2. lim na1 E&K*/ Az) dx
n—oo K*\K?n)

—2¢y / o) T A(@)w* () 7T 1O (d)
OK*
d—1 2 1
9 cqug / 4(x) T[]~ () 7 A (d),
OK*

where k* denotes the generalized Gauss curvature of K*. In the following, for x € 0K, let
ok (z) denote an exterior unit normal vector of K at z. It is unique for H%!-almost all
x € 0K.

Theorem 5.2.2 (Bérdczky, Fodor, Hug [BFH10, Theorem 5.2 on page 517]). Let K C R?
be a convex body with o € int(K), and let q : [0,00) x St — [0,00) be a measurable
function satisfying (q1)—(q3). Then

lim n T B, (W(K®™ 0 Ky) — W(K))

n—oo
2

PP /M (K, 01 (2)), o (@) T k(2) 7 MY (dn),  (5.2.2)

where cq is defined in .

The proof is completed in Section by providing Lemma [5.3.2

Example. Observe that if q : {(h(K,u),u) € (0,00) x S¥1 :u € S} — [0,00) is
positive and continuous, then q can be extended to [0,00) x S9=1 such that (q1)-(q3) are
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satisfied. For any such extension, the right-hand szde of - remains unchanged. As
an example, we may choose ¢, such that ¢ (t,u) = t@=1/2 for t = h(K,u) and u € S41
Then the integral in - ) turns into

’f(x) 7 d=1(02) — O

where ,
k(x)d+r _
oK) = | e (o)
K (2,0 (x)) *»
is the p-affine surface area of K (see |[Lut96], [Hug96a|, [Hug96b|, [Lei98|, [Wer07],
[WYO08|, [LR99|, [LR10]). It has been shown that Qg2 (K) = Q1 (K*); see [Hug96b|. More-
over, for a convex body L C R?, the equiaffine isoperimetric inequality states that

s

_2 _
Oy (L) < daTT V(L)

with equality if and only if L is an ellipsoid (cf. [Pet85], |[Lut93a], [Lut96], [Hug96a],
[Borl0] ). Thus we get

d—

lim n#1 B, (Wudmng—m«Kngzwng’ “Vuwyf

n—oo

with equality if and only if K* is an ellipsoid, that is, if and only if K is an ellipsoid.
This can be interpreted as saying that among all convex bodies for which the volume of
the polar body is fized, ellipsoids are worst approximated asymptotically by circumscribed
random polytopes (with respect to the density q1) in the sense of the mean width.

For another application, we define
F(P) = fa-1(P),

for a convex polyhedral set P C R?. It is well known that fo(P) = f4_1(P*) for a convex
polytope P C R? with o € int(P). Thus, from Proposition we get

By, (faor(K™)) = Borer (far((K7))
= E, k- (1{<K<n> C Ki}faa((K)")
+ Boc (1K) ¢ Ki}aa(Kf)"))
= By (H{(K],)" Kl}fo( () +0(n-a")

=Ep (folKy)) + O - a™,

where « € (0, 1) is a suitable constant.
The following Theorem [5.2.3] generalizes Theorem in the same way as Theorem
(.2.2] extends Theorem [5.1.21
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Theorem 5.2.3 (Béréezky, Fodor, Hug [BFH10, Theorem 5.3 on page 518]). Let K C R?
be a convexr body with o € int(K), and let q : [0,00) x St — [0,00) be a measurable
function satisfying (q1)—(q3). Then

lim n~ 5 By, (41 (K™))

n—o0

:%wfﬁi/ G(W(K, o (x)), o () 771 k() T HE L (da),
0K

where cq is defined in .
The proof follows by applying Corollary and Lemma

5.3 Polarity and an integral transformation

In this section, we establish the required integral transformation involving the generalized
Gauss curvatures of a convex body and its polar body. The main difficulty of the proof is
due to the fact that we do not make any smoothness assumptions on the convex bodies
that are considered.

Let L C R? be a convex body. If the support function hy, of L is differentiable at u # o,
then the gradient VA (u) of hr at u is equal to the unique boundary point of L having
u as an exterior normal vector. In particular, the gradient of h; is a function which is
homogeneous of degree zero. Note that hy, is differentiable at H¢ '-almost all unit vectors.
We write Dg_1hr(u) for the product of the principal radii of curvature of L in direction
u € S9!, whenever the support function hy, is twice differentiable in the generalized sense
at u € S?1. Note that this is the case for H% !-almost all u € S4!'. The Gauss map
or, is defined H% '-almost everywhere on OL. If o is differentiable in the generalized
sense at x € JL, which is the case for H% '-almost all z € JL, then the product of the
eigenvalues of the differential is the Gauss curvature kp(z). The connection to curvatures
defined on the generalized normal bundle N (L) of L will be used in the following proof
(cf. [Hug98|).

Lemma 5.3.1. Let L C R? be a convex body containing the origin in its interior. If
g : OL — [0,00] is measurable, then

/ g(x)mL(x)%H H (dx) = / g(VhL(u))Dd,th(u)Wdl H L (du).
oL Sd—1

Proof. In the following proof, we use results and methods from [Hug98|, to which we refer
for additional references and detailed definitions. Let A(L) denote the generalized normal
bundle of L, and let k;(z,u) € [0,00], i =1,...,d — 1, be the generalized curvatures of L,
which are defined for H?!-almost all (z,u) € N'(L). Expressions such as

1

ki(z, u) &1 ki(z, u)
or
1+ ki(z,u)? 1+ ki(z,u)?
with k;(x,u) = oo are understood as limits as k;(z,u) — oo, and yield 0 or 1, respectively

in the two given examples. As is common in measure theory, the product 0 - co is defined
as 0.
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Our starting point is the expression

1

- = ki(x, w)a+t de1
I._ [;an(x)J1Vﬁl+}wﬁm102?{ (d(z, u)), (5.3.1)

which will be evaluated in two different ways. A comparison of the resulting expressions
yields the assertion of the lemma.
First, we rewrite I in the form

I= //\/(L (Hk T, u ) Jg_1mo (2, u) HE (d(x, u)), (5.3.2)

where
d—1

ki(z,u)

delﬁg(l',u) E \/m,
for H4~!-almost all (x,u) € N(L), is the (approximate) Jacobian of the map 75 : N'(L) —
S4=1 (z,u) + u. To check , we distinguish the following cases. If k;(x,u) = 0 for
some %, then the integrands on the right-hand sides of and of are zero, since
0-00=0and Jg_1m(z,u) = 0. If kj(x,u) # 0 for all ¢ and k;(z,u) = oo for some j, then
again both integrands are zero. In all other cases the assertion is clear.

For H% !-almost all u € S, Vhy(u) € OL is the unique boundary point of L which
has u as an exterior unit normal vector. Then the coarea formula yields

_d_
d+1

I::Ldl (Vhr(u (Ilk (Vhr(u ) HI Y (du).

Using Lemma 3.4 in [Hug98|, we get
I :/ g(VhL(U))Dd—th(U)% HI (du). (5.3.3)
gd—1

Now we consider also the projection 7 : N'(L) — 0L, (x,u) — x, which has the (approx-
imate) Jacobian

Ja—1mi(z,u

d—1 1
R | (e —
E 1+ ki(z,u)?
for H41-almost all (x,u) € N(L). A similar argument as before yields

1

d—1 d+
— T (. u (e, w) HE N d(z,u
I—//\[(L) g( )(H kz( s )) Ja-1 1( ) )H (d( ) ))

i=1
_1

d—1 d+1
= /8 (@) <H k@(m,aL(:c))) H (da).

=1

<
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By Lemma 3.1 in [Hug98], we also get

Iz/)M@m@VL%dWm) (5.3.4)
oL
A comparison of equations (5.3.3)) and (5.3.4) gives the required equality. O

Lemma 5.3.2. Let K C R? be a convez body with o € int(K). If f : [0, 00) xSt — [0, 00)
is a measurable function and f(z) := f (||z|| 7, |z|| " 'z), € OK*, then

/ F@) ]|~ () 7 MO da) = [ F(RK, oxc(), o (2) () 355 1O (d).
OK* oK

Proof. We apply Lemma with L = K* and g(z) = f(z)||z||~*", € dK*, and thus
we get

/ Fl) ]|~ e () 7T MO (dr)
OK*

~ Jsan F (VR () Vhice ()]~ Dy b (u) 751 HE (du).

Next we apply Theorem 2.2 in [Hug96b] (or the second part of Corollary 5.1 in [Hug02]).

Thus, using the fact that, for H '-almost all u € S¢ 1, hg~ is differentiable in the
generalized sense at u and p(K,u)u is a normal boundary point of K,

_a_ _d_ d

Dg—1hge(u) 51 = k(x) 57 (u, o ()",

where 2 = p(K,u)u € 0K and u = ||z|| 'z € S¢~!. Hence,

/ Fa) ]|~ () BT 1 (der)
OK*

N |/ O e
= [ SO T W)

k(p(K, w)u) 7T HE L (de).

The bijective and bilipschitz transformation T : S ! — 0K, u ~ p(K,u)u, has the
Jacobian

(0 = 17

for H4!-almost all u € S%~1 (see the proof of Lemma 2.4 in [Hug96b]). Therefore,

Fl) ]|k () a1 HO (der)
b ()
) o\ Ve () 1174 P
= [, (v (57)) ﬁ,ﬂ”((x»d e () 7 -

~ « (X —d d
= [ P o) T b w0 ()7 2 )
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= /()K FIVhi @) 7Y, Vhiee () /| Vhige ()] 5(2) 751 HE(dz),

— [ flhk(ox(@)), o (2))r(z) 7T HE (d),
oK

since hy«(x) = 1 for x € OK and z* := Vhg(x) satisfies ||z*||7! = (z,0x(x)) as well as
z*/||z*|| = ok (x), for H4L-almost all 2 € OK. O
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Chapter 6

Random points on the boundary

This chapter of the dissertation is based on the paper [BFH13| by K.J. Boéréczky, F. Fodor,
and D. Hug, Intrinsic volumes of random polytopes with vertices on the boundary of a
convex body, Trans. Amer. Math. Soc., 365 (2013), no. 2, 785-809. (DOI 10.1090/S0002-
9947-2012-05648-0)

6.1 Introduction and results

In this chapter, we shall consider the following probability model. Let K be a convex body
with a rolling ball of radius r. Let g be a continuous, positive probability density function
defined on OK; throughout this chapter this density is always considered with respect to
the boundary measure on JK. Select the points x1,...,z, randomly and independently
from 0K according to the probability distribution determined by . The convex hull
K, = [zr1,...,zy] then is a random polytope inscribed in K. We are going to study
the expectation of intrinsic volumes of K,. In order to indicate the dependence on the
probability density o, we write PP, to denote the probability of an event in this probability
space and E, to denote the expected value. For a convex body K, the expected value
E,(V;(Ky)) of the j-th intrinsic volume of K, tends to V;(K) as n tends to infinity. It is
clear that the asymptotic behaviour of V;(K) —E,(V;(K},)) is determined by the shape of
the boundary of K. In the case when the boundary of K is a Ci submanifold of R%, this
asymptotic behaviour was described by M. Reitzner |[Rei02].

Theorem 6.1.1 (Reitzner [Rei02]). Let K be a conver body in R with C2 bound-
ary, and let o be a continuous, positive probability density function on OK. Denote by
Eo(Vj(Ky)),j = 1,...,d, the expected j-th intrinsic volume of the convex hull of n ran-
dom points on OK chosen independently and according to the density function o. Then

Vi(K) = Eo(V;(Kpn)) ~ i) /8 o) Hy ()7 Ha () MO (d) 0T (611)

as n — 0o, where the constant ¢U99 only depends on j and the dimension d.

For j = d, that is in the case of the volume functional, C. Schiitt and E. Werner [SW03|
extended (6.1.1]) to any convex body K such that a ball of radius r rolls freely in K and, in

75



dc_1638 19

addition, K rolls freely in a ball of radius R, for some R > r > 0. The latter assumption
of K rolling freely inside a ball implies a uniform positive lower bound for the principle
curvatures of K whenever they exist. They also calculated the constant ¢(%® explicitly,
that is

dtl 2
) _ (d=1)a1T(d+ 1+ z75)
2(d + 1)![(d — Dog_1] 7T

Moreover, C. Schiitt and E. Werner [SW03| showed that for fixed K, the minimum of the
integral expression in (6.1.1]) is attained for the probability density function

00(z) = 15[(1—1(3;)m _
faK Hy 1(z)a1 Hi=1(dx)

Our main goal is to extend Theorem to the case where K is only assumed to have
a rolling ball, for all j =1,...,d. In particular, the Gauss curvature is allowed to be zero
on a set of positive boundary measure. More explicitly, we shall prove

Theorem 6.1.2 (Boréczky, Fodor, Hug [BFH13| Theorem 1.2 on page 788]). The asymp-
totic formula (6.1.1]) holds if K is a convex body in R? in which a ball rolls freely.

The present method of proof for Theorem is different from the one used by
Reitzner [Rei02] or Schiitt and Werner [SWO03]. It is inspired by the arguments from
the paper [BFH10] by Boroczky, Fodor and Hug (as presented in Section concerning
random points chosen from a convex body, however, the case of random points chosen
from the boundary is more delicate.

Examples show that in general the condition that a ball rolls freely inside K cannot
be dropped in Theorem [6.1.2] General bounds are provided in the following theorem.

Theorem 6.1.3 (Boroczky, Fodor, Hug [BFH13, Theorem 1.3 on page 788]). Let K be
a convex body in R, and let o be a continuous, positive probability density function on
OK. Then there exist positive constants c1,ce, depending on K and o, such that for any
n>d+1,

e T < Ey(Vi(K) — Vi(K)) < con” @1,
The lower bound is of optimal order if K has a rolling ball, and the upper bound is of
optimal order, if K is a polytope.

Let us review the main known results about the convex hull K, of n points chosen
randomly, independently and uniformly from K. In the case where a ball rolls freely inside
K, the analogue of Theorem [6.1.2]is established in K. Béroczky Jr., L. M. Hoffmann and
D. Hug [BHHO8|. For the case of the volume functional and an arbitrary convex body
K, C. Schiitt [Sch94] proved (see K.J. Boroczky, F. Fodor, D. Hug [BFH10| for some
corrections and an extension) that

lim nT (Vy(K) — E(Va(K(ny)) = caVa(K) T | Hyy(2) 71 H (da),
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where the constant c¢; > 0 only depends on the dimension d and is explicitly known.
Concerning the order of approximation, we have

yn D) < V(K) — BV (K ) < v2n~ Y4, 6.1.2
(n)

’ygn_l % 1n < Va(K) — EVd(K(n)) < ’y4n_2/(d+1), (6.1.3)

where v1,...,7v4 > 0 are constants that may depend on K. The inequality was
proved by R. Schneider [Sch87], and the inequality was proved by I. Barany and
D. Larman [BL88|. The left inequality of and the right inequality of are
optimal for sufficiently smooth convex bodies. The right inequality of and the left
inequality of are optimal for polytopes.

The proof of Theorem [6.1.2]is given in the following three sections. In Section [6.2] we
rewrite the difference V;(K)—E,(V;(K})) in an integral geometric way. The inner integral
involved in this integral geometric description is extended over the projection K|L of K to
L, where L is a j-dimensional linear subspace. Then we show that up to an error term of
lower order the main contribution comes from a neighbourhood of the (relative) boundary
O(K|L) of K|L with respect to L, where this neighbourhood is shrinking at a well-defined
speed t(n) as n — oo. Further application of an integral geometric decomposition then
shows that the proof boils down to determining the limit

tn)

n—oo 0

where y € O(K|L) and x is a normal boundary point of K with y = z|L. The case where
the Gauss curvature of K at x is zero is treated directly. In Section [6.3] we deal with
the case of positive Gauss curvature. In a first step, we choose a reparametrization of
the integral which relates the parameter ¢ to the probability content s of that part of
the boundary of K near x that is cut off by a cap determined by the parameter ¢. This
reparametrization has the effect of extracting the relevant geometric information from K.
What remains to be shown is that the transformed integrals are essentially independent
of K and yield the same value for the unit ball with the uniform probability density
on its boundary. This latter step is divided into two lemmas in Section Whereas
both lemmas have analogues in our previous work [BFH10| (see Section , the present
arguments are more delicate and the second lemma has to be established by a reasoning
different from the one in [BFH10|. The proof is then completed in Section where, in
addition to the previous steps, a very special case of Theorem is employed (K being
the unit ball) as well as an integral geometric lemma from [BHHO§|. The final section of
this chapter is devoted to the proof of Theorem [6.1.3

6.2 General estimates

In order to prove Theorem we start by rewriting V;(K) — E,(V;(Ky)) in an integral
geometric form. For this, we use Kubota’s formula and Fubini’s theorem to obtain

Vi(K) = E,(Vi(Kn))
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:/aK... (Vi(K) - V(K ))ﬂ o(z:)) HE V(day) . .. HY (day)

i=1

oK
= KL (K| L
e I /BK/,; L) - Vy(Ka|L))

X H o(x;) v;(dL) HE Y (dxy) .. HE Y (day)

= /// / 1{y e K|L and y ¢ K,|L}
a]ad] Ld 0K 0K

X HQ z;) HE N (dwy) . .. HO N (e, )HY (dy) v (dL)
i=1

- ozjozd j /Ed /K|L (y & KnlL) 1 (dy) v(dL). (6.2.1)

Now we introduce some geometric tools. If K has a rolling ball of radius r, then so
does K|L for any L € E?. Furthermore, 0K has a unique outer unit normal vector u(z)
at each boundary point z € K. If L € E;l, y € O(K|L) and z € K such that y = z|L,
then x € 0K and the outer unit normal of 9(K|L) at y is equal to u(z).

Since the statement of the theorem is translation invariant, we may assume that

rBYc K ¢ RB4 (6.2.2)
, let Ky := (1 —t)K, and for z € 0K, let z; := (1 — t)z.

1)
K|L) and y;, := (1 — t)y for y € (K |L).
), let

for some R > 0. For t € (0,
Similarly, (K|L); := (1 —t)(
For x € 0K and t € (0,1
xp =z — (txr,u(x))u(x).
If t € (0, ), then (6.2.2) implies that
tr <(r—x;,u(z)) = (r — z,u(z)) <. (6.2.3)

The existence of a rolling ball at = yields that if ¢ € (0, 1), then

zf 4+ rvt(u(z)t NBY) c K. (6.2.4)

On the other hand, we have
|z} — 2] < Rt. (6.2.5)
In the following, we write 71,72, ... for positive constants which merely depend on K

and .

Let us estimate the probability that o € K. There exists a constant y; > 0 such that
the probability content of each of the parts of K contained in one of the 2% coordinate
corners of R? is at least v;. Now if o & K,,, then o can be strictly separated from K, by a
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hyperplane. It follows that {z,...,z,} is disjoint from one of these coordinate corners,

and hence
Plo ¢ Kyn) <241 — )" (6.2.6)
This fact will be used, for instance, in the proof of the subsequent lemma. In the following,

for € R? we use the shorthand notation Ry 2 := {\z : A > 0}.

Lemma 6.2.1. There exist constants 6,72 € (0,1), depending on K and o, such that if
Le E?, y € O(K|L) and t € (0,0), then

d—1\"M
Pﬂmg&wp<0—wﬁﬂ.

Proof. Let y € O(K|L) and € 0K be such that y = z|L. Let ©1,...,0),_, be the
coordinate corners with respect to some basis vectors in u(z)*. In addition, for i =
1,...,2% Vand t € (0,1), let

@i,t = aK N (.%’t + [@;,F&_:c]) .

Since o is positive and continuous, we have
| o) 1 o) = aH O,
[SF

If y» ¢ Ky|L and o € K, then there exists a (j — 1)-dimensional affine plane Hy, in L
through y;, bounding the half-spaces H; and Hz' in L, for which K,|L C H; . Now, if L+
is the orthogonal complement of L in R%, then H := Hy, + L’ is a hyperplane in R? with
the property that x; € H and K,, C H™ := L_—i—Ll. Furthermore, ©;; C HT = Hzr—i—LJ-
for some i € {1,...,2%71}, because o € K,, C H~. Therefore

2d—1

n
Py (y ¢ KnlLoo€ Kn) < (1= 21 (040))

i=1
Combining (6.2.4]) and (6.2.5)), we deduce the existence of a constant 74 > 0 such that if ¢ <
74, then the orthogonal projection of ©; ; into u(z)~+ contains a translate of /N (r/2)v/tBY,
and therefore

HEN(Oiy) > st T

for i =1,...,29 1. In turn, we obtain
— n
M@%meeKw<O—%ﬁﬂ. (6.2.7)

On the other hand, if o ¢ K, |L, then (6.2.6) holds. Combining this with (6.2.7)), we
conclude the proof of the lemma. O

Subsequently, the estimate of Lemma will be used, for instance, to restrict the
domain of integration (cf. Lemma [6.2.3)) and to justify an application of Lebesgue’s dom-
inated convergence theorem (see (6.2.12)). For these applications, we also need that if

z € 0K and ¢ > 0 satisfies @ 1= 6 7 < 1, then

J d—1\" 2 2 R T -2 =2
/ (1 —ct 2 ) dt = ca-T / sa-1 (1 —s)"ds < c@T - nd=1, (6.2.8)
0 d—1Jo
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where we use that (1 —s)” <e " for s € [0,1] and n € N.
The next lemma will allow us to decompose integrals in a suitable way. We write u(y)
to denote the unique exterior unit normal to O(K|L) at y € 9(K|L). It will always be

clear from the context whether we mean the exterior unit normal at a point z € 0K or at
a point y € O(K|L). In the next lemma, § is chosen as in Lemma

Lemma 6.2.2. If 0<ty<t1 <6 and h: K|L — [0,00] is a measurable function, then
/ By (& ¢ Kall) () 1 (d)
(K|L) 2o \(K L)ty

/ |07 B (0 ¢ Kl (g ulw)eCon) e 1 (),
a(K|L) Jto

Proof. The set 9(K|L) is a (j — 1)-dimensional submanifold of L of class C*, and the map
T : 0(K|L) x (to, t1) = it (K|L)ey \ (K[L)sy, (6, 8) = s,

is a C! diffeomorphism with Jacobian JT (y,t) = (1—t)?~1{y,u(y)) > 0. Thus the assertion
follows from Federer’s area/coarea theorem (see [Fed69]). O

1

In the following, we use the abbreviation t(n) := nd-1.

Lemma 6.2.3. Let 1 < j <d-—1. Then we have

/Ld /K|L Ye(m) y & KnlL) H(dy) v;(dL) = o (nd 1) .

Proof. Let 6,72 € (0,1) be chosen as in Lemma “ We may assume that n is large
enough to satisfy t(n) < § and n > (72)%. First, we treat that part of the integral which
extends over the subset (K|L)5 of (K|L)(n)-

Let w := ér. Then 3)) yields
(x — z5,u(x)) >w for x € IK. (6.2.9)

There exists a constant 77 > 0 such that the probability measure of (z + % B?) N 0K
is at least v; for all x € OK. We choose a maximal set {z1,...,2,} C OK such that
|2 — 21| > § for i # 1.

For L € E?, let y € (K|L)s. If y € K,|L, then there exist a hyperplane H in R% and a
half space H~ bounded by H such that y € H, H is orthogonal to L, and K,, C int(H ™).
Choose x € 0K such that u(z) is an exterior unit normal to H~. Since H intersects K5, we
have (z —y,u(x)) > w by . Now there exists some i € {1,...,n} with ||z — 2] < %,
and hence {z1,...,z,} C int(H ™) yields that {z1,...,z,} is disjoint from z + ¥ B¢. In
particular, we have

Py (y & KalL) < m(1 —72)". (6.2.10)
Next let y € O(K|L). If t € (t(n),d), then Lemma [6.2.1] yields

-3

n 1
H%(yt¢lﬂﬂL)<i<l—fwn*%) <e ! L i, (6.2.11)
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In particular, writing I to denote the integral in Lemmal[6.2.3] we obtain from Lemmal6.2.2]
(6.2.10) and (6.2.11) that

I < /ﬁd/m o (y & KnlL) HI(dy) v;(dL) +

+f / [ Pal g KalZ) W) dioy(ar)
L4 Jt(n) JO(K|L)
n =3 i—1 =2
< m(l— )"+ naT (dy)yﬂdL)::o(nﬂ—l),
£4 Jo(K|L)
which is the required estimate. ]

It follows by applying (6.2.1]), Lemma and Lemma in this order, that

Tim. nT 1 (Vi(K) = Eo(Vj(Ky)))
()

= T iy paT /[Ld/K|L (y ¢ Kn|L) M (dy) v;(dL)

O[j()(d_] n—o0

()

o | / Poly ¢ KalL) ) (dy) v;(dL)
L4 J(K|L) \(KlL)t(n)

O[]'O[d_] n—o0

d
(j)ad . 2
= ——— lim nd—ng(yt ¢ K,|L)x
QjQd—j "= Jrd Jo(K|L) Jo

x (1= 1)y, u(y)) dt H = (dy) v;(dL).

We deduce from Lemma |6.2.1| and (]6.2.8[) that if n > ng, L € E? and y € (K |L), then

t(n) )
/ TR, (g & KalL) {y, u(y)) (1 — 1)~ dt < C,
0

where ng and C' depend on K and p. Therefore, we may apply Lebesgue’s dominated
convergence theorem, and thus we conclude

2

d
MHRKWWUQ—EAWUQD%=( /i/‘ Jo(y, L) H' ™! (dy) v;(dL), (6.2.12)
Qjcd—j Jcd Jo(k|L)

n—oo

where, for L € L’? and y € O(K|L), we have

tn)
Jo(y, L) := lim naT1 (y,u(y))P, (y: ¢ Kn|L) dt. (6.2.13)
n—oo 0
Subsequently, we shall inspect this limit more closely. In a first step, we shall consider
those points y € (K |L) for which there is a normal boundary point € 0K with y = x|L
and Hy_1(z) = 0.
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Lemma 6.2.4. Let L € ﬁ?, and let y € O(K|L). If x € OK is a normal boundary point
of K with y = z|L and Hq_1(z) =0, then Jy(y, L) = 0.

Proof. Let x € 0K be a normal boundary point with y = z|L and Hy_1(x) = 0. First, we
show the existence of a decreasing function ¢ on (0, %) with lim,_,o+ () = oo satisfying

Py (y & KalL) <2771 (1- ()t )" (6.2.14)

In the following, we always assume that ¢ > 0 is sufficiently small, that is n is sufficiently
large, so that all expressions that arise are well defined. Let v1,...,v4_1 be an orthonormal
basis in u(z)* such that these vectors are principal directions of curvature of K at x and
such that the curvature is zero in the direction of v;. In addition, let ©7,.. .,@’2d_1
be the coordinate corners in u(z)*, and, for i = 1,...,2%71 and t € (0,1), let O =
0K N (x + [©, Ry z]) as before. The continuity of ¢ yields that

/ o(x) HA (dx) > HEH(O44).
O

Since the curvature is zero in the direction of v, there exists a function 1 on (0, )

with lim;_,o+ ¥ (t) = oo satisfying

z; —Y(t)Vtvy € K and x} + 1 (t)Viv € K.

T

Combining ((6.2.4)) and (6.2.5)), we deduce the existence of a decreasing function ¢ on (0, )
with lim;_,q+ @(t) = oo satisfying

1

/@ o) HI~(dz) > p(t)tT,

fori=1,...,2¢71,

First, we assume that y; ¢ K,,|L and o € K,,. In particular, then we also have z; & K,
and hence there exists a hyperplane H through x; such that K, lies on one side of H.
Since o € K, it follows that H separates K, from some ©;;, and therefore

d—1

Py (o ¢ KnlL0 € Ky) <2071 (1 gb(t)tT)n. (6.2.15)

On the other hand, if o ¢ K, |L, then (6.2.6) holds. Combining this with (6.2.15)), we
conclude (6.2.14). In turn, we deduce from (6.2.8) that

) )
Joly.L) < lim nd/ (1= @(t(m)t'T)" di < lim (t(n)) T = 0.
n 0 0 n (o)
0

In the next section, we study the more difficult case of boundary points with positive
Gauss curvature.
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6.3 Normal boundary points and caps

Let L € E?, and let y € O(K|L) be such that y = x|L for some (uniquely determined)
normal boundary point x € 0K with Hy_q(x) > 0. We keep x and y fixed throughout
this section. First, we reparametrize x; and 1; in terms of the probability measure of the
corresponding cap of 0K. Using this reparametrization, we show that J,(y, L) essentially
depends only on the random points near = (see Lemma , and then in a second step
we pass from the case of a general convex body K to the case of a Euclidean ball.

For t € (0,1), we consider the hyperplane H(z,t) := {z € R? : (u(x), 2) = (u(x),z:)},
the half-space H*(z,t) := {z € R? : (u(x),2) > (u(x),z4)}, and the cap C(x,t) =
K N H*(x,t) whose bounding hyperplane is H(z,t). Next we reparametrize z; in terms
of the induced probability measure of the cap C(z,t); namely,

Tg:=wx¢ and Y5 :i=yp,

where, for a given sufficiently small s > 0, the parameter ¢t > 0 is uniquely determined by
the equation

s = / o(w) H¥ 1 (dw). (6.3.1)
C(z,t)NOK

Note that s is a strictly increasing and continuous function of ¢t. We further define

C(z,s)=C(z,t) and  H(zx,s) = H(z,1), (6.3.2)

where again, for given s, the parameter ¢ is determined by (6.3.1)). Observe that 0K N
H*(z,t) = 0K N C(x,t). Subsequently, we explore the relation between s and ¢. Let
f:u(xz)t — [0,00] be a convex function such that the restriction of the map

F:u(z)t — RY, z= x4z — f(2)u(z),

to a neighbourhood of 0 parametrizes 0K in a neighbourhood of . Moreover, we consider
the transformations

IT: RY — w(x)t, y—y—z—(y—x,ulx)u(x),

and
T: u(x)J‘ X R — u(l’)J' X R, (21, R ,del,a) — (\/ kizi,...,+/ kdflzdfl,@),
where u(z)* is considered to be a subset of u(z)* x {0} and k; = k;(z), i =1,...,d — 1,

are the principle curvatures of 9K at z. Then we obtain

/ o(w) H (dw)
OKNH (x,t)

o(F()VI+[VF(2)PH (d2)

/n(azmH+(x,t))

N / o(Fo T )1+ VAT 1(2)|? Hia(z)" /> H (d2).
TALOKNH* (1))
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Let K := T(K — z) + z, and hence T(II(OK N H* (x,t))) = H(OK N H*(z,t)). If f is
defined for K as f is defined for K, and

E(w) — Q(F OT—I o H(w)) g(w) = \/1 + va(T_l(H(w)))H2
1+ IVF(w))|?

)

for w € OK N H'(z,t), then we obtain

/ o(w) HO Y (dw) = Hy_y(2) 12 / B 2(w)g(w) H (duw).
OKNH*(x,t) GKNH*(x,t)

Next we put H(r) := x — ru(z) + u(z) and denote by nz(w) the exterior unit normal of
K at w € K. Since (cf. the notes for Section 1.5 (2) in [Sch14])

Vf(w) + u(x)
L+ [[Vf(w)|?

7(2)=%||Z||2+0(HZH2)7 IVFEI = Nzl +o(llzl),  ng(w) =

with @ := [I(w) and z € u(x)*, we get

— /I (@l oD
Y1 (). u(a)? Tl +o(al)

Thus a simple application of the coarea formula yields that, for ¢ > 0 sufficiently small
and d > 2,

/ o(w) H4 (dw)
OKNH* (z,t)

(z,u(x)) —1
= Hy ()2 / /a _— )g(w)\/1—<nf(w),u(x)>2 H2(dw) dr-.

Since also K has a rolling ball, the map w nz(w) is continuous, and therefore also

-1
re [ B(w)gw)y /1 (ngp(w) u(@)? HEE (duw)
OKNH (r)

is continuous. This implies that

9 S (d
8t/BKﬁH+(x,t) ow) HT (dw)
e ) T
 Haa(0)Y2 JoRam (b ) Q(w)g(w)\/l (nge(w), u(z))?  H""(dw)
Ha a7 Jomomtienion” 2u$ u()>+¢xvf)

Clearly, we have g(w) — o(z) = o(z) and g(w) — 1, as t — 0T, uniformly with respect to
w € OK N H(t(x,u(x))). Moreover, since

Fim fab e Jlalfute) = e u(e)*
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is the osculating paraboloid of K and T has rotational symmetry, we obtain for s = s(t)
that

s 0s, @) (e 2o, u(w)”
Jim G0 = zﬁ]ﬁwmzi$+G D e ata) )
— (d—Dag1Hg1(2) 2 0(x) 2z, (@) F (z,u(z))
= (d— Dag_10(«)27 (z,u(x)) 7 Ha1(z)"2.

Thus we have shown that

. _d=3 a da—3 d—1 _1
lim ¢ d23-a—j(t):(d—1)-g(x)2d23<a:,u(a:)>d21Hd_1(:c) 20 1. (6.3.3)

In the same way, we also obtain
lim ¢~% - s(t) = o(2)2°% (2, u(z)) T Hy_1(x) 2ag_. (6.3.4)
t—0+
Observe that (6.3.3]) and (6.3.4) are valid also for d = 2. In particular, (6.3.3)) and (6.3.4)
imply that J,(y, L) can be rewritten as (cf. (6.2.13))

¢(ym) -
T(0.D) = (@-)7G@? im [ n R, (G ¢ Kl s F ds, (635)
n o 0
where B B 1
G(x) := (0g—1)TTo(x) T Hy_1(x)20@-D
and

N

. 1 d—1 _
lim n2¢(y,n) = ag-10(z)(2(u(z),z)) = Hy_1(x)"2.
n—oo
Now we show that in the domain of integration ¢(y,n) can be replaced by n~/2, that
is e

Jo(y, L) = (d—1)"'G(2)? lim nTTP, (§y & Kn|L) s~ a1 ds. (6.3.6)

n—oo 0

It follows from Lemma [6.2.1{ and (6.3.4]) that there exist constants ¢p > 0 and ¢3 > ¢; > 0
depending on y, K, L, p such that if s > 0 is small enough, then

P, (9s & Kp|L) < (1 —cos)",

and if n is large and s is between ((n,y) and n~Y2 then e;n Y% < s < con~ /2. In
particular,
et d—3
lim nd-1P, (ys € Ky|L)s a1 ds
n—oo cln_1/2
—1/2
) o fean™ —eoms —4=3
< lim nd-1 e Mg d-1ds
n—oo c1n*1/2
. 2 1 1 423 a3
< lim cgnd-172¢ A" ¢, TTin2E-1) = (),
n—oo
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and hence ([6.3.5) yields (6.3.6)).
Let 7 : R? — ()’ denote the orthogonal projection to u(z)*. Using (6.2.5), (6.2.3)
and (6.3.4), we obtain

lim sa1||n(z — &)| = O, (6.3.7)
s—07t
lim s@-1 (u(z),x —zs5) = 1G(:E)Q.
s—0t 2
Let @ denote the second fundamental form of 0K at x (cf. (2.2.1])), considered as a function
on u(x)J- Then there are an orthonormal basis v1, ..., vg_1 of u(m)J- and positive numbers

ki,...,kq_1 > 0 such that
d—1 d—1
i=1 i=1
Further, let 7 be the orthogonal projection to u(z)*, and define

E:={zculx)?!: Q) <1},

which is the Dupin indicatrix of K at x, whose half axes are k;(z)~'/2,i=1,...,d — 1.
In addition, let I" be the convex hull of the osculating paraboloid of K at x € 0K, that is

D= {z+z—tu(z): z €ulz)"t>1Q(2)}.

Hence, we have
I'NH(z,t) =y + v/ 2t(x,u(z)) E,

and there exists an increasing function fi(s) with limg_,o+ f1(s) = 1 such that

B4 (s) G () - sTTE C KN H(x,s) C &+ ji(s)G(x) - sﬁE, (6.3.8)
where ¥ := af € (z — Ryu(z)) N H(z,s), and s and ¢ are related by equation (6.3.1)).
From it follows that also

is+ i(s)'G(z) - sTTE C KN H(z,s) C &s+ i(s)G(x) - sﬁE, (6.3.9)

The rest of the proof is devoted to identifying the asymptotic behaviour of the integral
. First, we adjust the domain of integration and the integrand in a suitable way. In
a second step, the resulting expression is compared to the case where K is the unit ball.
We recall that z1,...,x, are random points in 0K, and we put =, := {z1,...,x,}, hence
K, = [E,]. For a finite set X C R?, let #X denote the cardinality of X.

Lemma 6.3.1. Fore € (0,1), there exist a, 8 > 1 and an integer k > d, depending only
on € and d, with the following property. If L € £?, y € O(K|L), x € 0K is a normal
boundary point of K such thaty = x|L and Hy_1(x) > 0, and if n > ng, where ng depends
one,x,K,o,L, then

J

where

oK, L.y, 0,2.5) = By ((3s 2 (Cla, B) N E,|L) ) and (#(C(a Bs) NE,) < k).

n—1/2 «

; —-4=3 " _d=3 £
Py (9s & Kn|L)s a1 ds = /E(dl)/2 o(K,L,y,0,¢,5)s <-1ds+ O < 3 > )

nd-1
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Proof. Let € € (0,1) be given. Then a > 1 is chosen such that
o0
9d=1+ 3 / e rrei N dr < e, (6.3.10)
2-dq

Further, we choose 8 > (162(d — 1))?~! such that,

—2

: a-1
2d=1g=272VBe ™ o gt (6.3.11)
and then we fix an integer k > d such that

(@f)* ¢
o<

o d—1

(6.3.12)

Lemma follows from the following three statements, which we will prove assuming
that n is sufficiently large.

(i)
n=t/? d—3
/ P, (s € Kp|L)s d-1ds
0

o

n B i .
:ﬁwwﬂﬂ%¢ﬁﬂnd4@+o< 2)

nd-1

n

(ii) If (4=V/2/n < s < a/n, then

(i) If e(@1/2/n < s < a/n, then

v d—1

Pﬂ%gKﬂM—PJ@g“5@ﬁ$m3m4)+0< i).

Before proving (i), (ii) and (iii), we note that they imply

J

n—1/2 o

_d=3 n _d-3
P ¢ KalL)s s = [0 e Loy s9s Fas

€ n _d=3 €
+0 — ﬂ(dl)ﬂ s d1ds+ 0O — |
o d—1 E— nd-1
which in turn yields Lemma [6.3.1

First, we introduce some notation. As before, let ) be the second fundamental form at
x € 0K, and let v1,...,v4—1 be an orthonormal basis of u(gu)l representing the principal
directions. In addition, let ©7,..., @’2d,1 be the corresponding coordinate corners, and for

i=1,...,2¢  and s € (0,n"1/2), let

0is = C(z,8) N (Zs + [0], Ryx]) .

)
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Subsequently, we show that

lim 3—1[ o(2) H4 M (dz) = 274D, (6.3.13)
s—07F ©;,.NOK

In fact, since a ball rolls freely inside K, o is continuous and positive at x, and by
(6.3.7) we deduce that

lim 5_1/~ o(z) HE Y (d2)
s—0% @LSﬂaK

= o(x) lim s tH4! <éi,5 N 3K>

s—0+t
= o(z) lim s~ tHI? (6K NC(x,s)N (z5 + [@;,RJru(:L‘)])) .

s—0t

Let ¥ : 9l NC(x,r/R) — 0K NC(x,r/R) be the diffeomorphism which assigns to a point
z € OI'N H(z, s) the unique point ¥(z) € K N (Z% + Ry (z — z%)). It follows from (6.3.7)
that there exists an increasing function p: Ry — Ry with lim,_ o+ u(s) = 1 such that

u(s)™" < Lip(¥|(90 N Cla,s))) < p(s).

Thus we get
Sl_i)r& st (8K NC(x,s) N (Z5+ [@g,RJru(x)]))
:SE%+54?ﬂ_l(W(@Frﬁécus)ﬁ(i:+[@;R+u@0D))
= lim s~ (ar N Co(x,s)N (& + [0, R+u(x)]))
_o—(d-1) 1 —1gsd—1 ~
=2 sl_1>r(1)1+8 H (8FHC(3:,3)> :

Now we can repeat the preceding argument in reverse order and finally use (6.3.1]) to arrive

at the assertion ((6.3.13)).

To prove (i), we observe that

e(d—1)/2 S(d—1)/2
g

n d—3 n d—3
P, (9s € Kp|L)s a1 ds < § d-1ds K —5—.
0 0 nd—1

Let a/n < s < n~ /2, and let n be sufficiently large. First, (6.2.6) yields that

2

PQ (0 ¢ K’m st ¢ Kn’L) <en -1,

On the other hand, if o € K, then g5 ¢ K,|L implies that éi,s N K, = () for some

i€ {1,...,2971} and hence (6.3.13) yields

P, (0 € Kp, §s & KoL) < 20711 — 27 %) < 2912 "ns, (6.3.14)
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Therefore, by (6.3.10)) we get

n—1/2

U -4 d—1 > —9—dpg 21 3
IPQ (ys ¢ Kn|L) s dlds <« 2 e sda-1 " ds+ .
O‘/n a/n nj
d—1+-24 00
2 d—1
= 2 / e "ra1 Ly + —
nd-1 2-dg na-—1
2¢e
S _2
nd-1

which verifies (i).

Next (ii) simply follows from (6.3.1)) and (6.3.12)). In fact, if 0 < s < a/n, then

by (# (G snnz) 2 8) < (Pt < (7) (2) << =

Finally, we prove (iii). To this end, if e(~1/2/n < s < a/n and i € {1,...,2% 1}, then
we define w; € ©) by

1 d—1

w; 1= (ﬂs) -1

NmG ()

2 S D)

where 1, = ni, € {—1,1} form = 1,...,2971. Now let

Qis = 0K N [Ts + O}, T 5, +w; + O]].

We claim that for large n, if g5 € K,|L but g5 & [(CN’(J:,BS) N En)|L], then there exists
i€ {1,...,2971} such that

E,NQs=0. (6.3.16)
Moreover, for all i = 1,...,297 1 we have
/ﬁ 0(2) H N (dz) > 273442, /5. (6.3.17)

To justify (6.3.17), let i € {1,...,2971} be fixed. Tt follows from the definition of w; that

w; € (\/BS)dil Gix) -0E.

Recall that 7 : R — u(z)® denotes the orthogonal projection to u(z)*:. If n is large

enough, and hence 0 < s < a/n is sufficiently small, then (6.3.7)), (6.3.9) and (6.3.15))

yield that w; € w(ﬁm), since by assumption \/Bl/(d_l)/él > 2, and therefore

(wi +©;) N (wi + (\/Bs)d11 GE;E) E) C ().
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In particular, (6.3.17)) now follows from

/~ ()M dz) > 2B g,
Qi s

>
BowW

> 2 @)

M ‘

1 G d—1
2 (Qx)'2d—1\/35 i:z)_l ag-1Hg-1(x) "2

= 279414, /gs.
Next we verify (6.3.16)). We assume that g5 € K,|L but gs ¢ [(é(sc,ﬁs) NEyp)|L|. Then

there exist a € [(6’(x, Bs) N En)|L] and b € (Kn \ C(x, Bs)) |L such that ys € (a,b). Thus

there exists a hyperplane H in R? containing §s + L+ and bounding the half-spaces HT
and H~ such that C(x,8s) NE, C int(H") and b € int(H~). In addition, there exists
i€ {1,...,2971} such that

)

Is+0O;C H . (6.3.18)
Now we define points ¢ and ¢’ by
{a} =[G, 0) N H(w,\/Bs), {4’} =[5 8] N H(z, Bs).
Relation implies that
H(z,Bs) N K C &5, + 2G(2)(Bs)TTE
if s > 0 is sufficiently small. Arguing as in [BFH10|, we obtain that

L BgY/(d=1) ~ ~
(u(x),¥s — Jps) < WW(UC), Y/Bs — Ups)

and ~ ~ ~
la = Gzl _ ()5 — Bym.)
I —gpsll  (u(z),9s — Gps)

which yields (cf. [BFH10])
1
q €Y s +2871G(2)E.
Since 3 > [8%(d — 1)]9!, we thus arrive at

1

q € Jygs + W;j(\/ﬁs)la(x)ﬂ (6.3.19)

Now implies that ¢ + ©} C H~. Hence it follows from that g, 5, +w; C
q+©; C H-, and therefore also Yyps T wi + ©, C H~. Thus Q; s C H™, which yields
E,NQs=0.

Assertion (iii) follows from (6.3.16) and (6.3.17). In fact, if e(*~1/2/n < s < a/n, then

P, (3 # [(C(y.85) NEWIL] ) =Py (G # (KlL))
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VAN
[N}
&
A

2) HE 1(dz)>

7,5

-1 —2 3d+2,/B.sn

l\D @

‘m

o dtl

IA N

™
1Y

by the choice of 3. O

To actually compare the situation near the normal boundary point z of K with
Hy 1(z) > 0 to the case of the unit ball, let ¢ = (dag)~! be the constant density of
the corresponding probability distribution on S¢ 1. Let w € S ! be the d-th coordinate
vector in R%, and hence R%~! = w'. We write B,, to denote the convex hull of n random
points distributed uniformly and independently on S?! according to o. For s € (0, %),
we fix a linear subspace Lg € E;l with w € Ly, and let w; be of the form Aw for A € (0, 1)
such that

(dag) ™t - HIT ({2 € 89711 (2 w) > (g, w)}) = s.

In particular, ws| Ly = Ws.

Lemma 6.3.2. If L € E;l, y € O(K|L) and x € K is a normal boundary point such that
y =z|L and Hy_1(x) > 0, then

n—1/2

lim NP, (§s & Kn|L) s~ o1 ds

n—oo 0
n-1/2
) 2 - _d=3
= lim na-1P, (ws & Bp|Lo) s~ a1 ds.
n—oo 0
Proof. First, we assume d > 3. It is sufficient to prove that for any € (0, 1) there exists
ng > 0, depending on ¢, x, K, o, L, such that if n > ng, then

n
J
6.3.20)

Let «, 8 and k be the quantities assomated with €, x, K, o, L in Lemma let C (x s)
denote the cap of K defined in , and let C(w s) denote the correspondlng cap of
B® at w. We define the den81t1es 0s On aC(a: Bs) and os on 8C(w Bs) of probability
distributions by

—1/2 —1/2

P, (js & Kn|L) s~ i1 ds:/ P, (@5 ¢ By|Lo) s~ 1 ds+0<
0

ole) = { 0(2)/(Bs),  if 2 € 9K N C(x, Bs),
’ 0, ifze€dC(x,Bs)\IK,

oa(z) = { o(z)/(Bs), ifze S‘i_l N C(w, Bs),
° 0, ifzedC(w,Bs)\S .

Fori=0,...,k we write C(z, 8s); and C(w, 3s); to denote the convex hulls of i random
points distrlbuted uniformly and independently on aC (z,Bs) and aoC (w, Bs) according to
0s and o, respectively.
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If n is large, then Lemma yields that the left-hand and the right-hand side of
(16.3.20) are

o( c
na-1

( > * Z ( ) /(d e (B8)' (1 Bs)"™" % Po, (@s ¢ 5’(wa53)i|Lo) st ds.

For each i < k, the representation of the beta function by the gamma function and the
Stirling formula (see E. Artin [Art64]) imply

2 1/5 . . d—3 Bﬂ]‘—‘ +%
lim nd1<?>(/ﬁ (Bs)' (1= Bs)"™"'s™ a1 ds = (Z d 1) <1 (6.3.21)
0

[e3

) + Zk: (7;) /(d bya (B8)' (L= Bs)" " x By, (Qs ¢ é(waBS)i|L> s ds,

=0

n—oo

Therefore to prove (|6.3.20)), it is sufficient to verify that for each i = 0,...,k, if s > 0 is
small, then

)pgs (y ¢ Oz, 55)1-@) _Pp, (ws ¢ C(w, ,6’5)1-|L0)‘ < % (6.3.22)

If i < j, then readily holds as its left-hand side is zero.

To prove ifi € {j+1,...,k}, we transform both K and B¢ in such a way
that their osculating paraboloid is Q@ = {z — ||z||?w : z € R% 1}, and the images of
the caps C (x,Bs) and C (w, Bs) are very close. Using these caps, we construct equivalent
representations of P, (375 ¢ Oz, ﬁs)i|L) and P, <’(ZJS ¢ C(w, ﬁs)i]Lo), based on the same
space = and on comparable probability measures and random variables.

We may assume that u(z) = w. Let vy,...,v4_1 be an orthonormal basis of w' in

the principal directions of the fundamental form @ of K at x € K. We define the linear
transform A, of R? by

Ay(w) = (ﬁs)d%G( )*2
Ag(v;) = (Bs)T1 1\/ 2)G(z) tu, i=1,...,d—1,

and choose an orthonormal linear transform P, such that Psw = w, and Pyo A (L+) = L(J)-.
Based on these linear transforms, let @4 be the affine transformation

O (z) = Pso As(z — o).

In addition, we define the linear transform Ry of R¢ by

2

&W)=2w¢ﬁ<%4ylw

dayg

1

— d—1
RS(Ui) = (Bs)df_ll <ad_1> Vi, izl?"‘ad_17

doyg

and let W, be the affine transformation
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Subsequently, we also write @5z for ®4(z) or ®sz|Ly for ®4(z)|Lg, and similarly for U,.
We observe that € is the osculating paraboloid of both ®,K and ¥ B¢ at o, and

2

lim .3, = lim Vb, = —B7Tw=:w"

s—0+ s—0+
lim ®,C(z,Bs) = lim ¥,C(w,fs) = {z—7w:ze B and ||z]|> <7 <1}.
s—0+t s—0T

For p € g(x,ﬂs) NOK and z = o ®4(p), let D(p) be the Jacobian of o @ at p as a map
mo®,: Oz, Bs) NOK — RY™! and let

In addition, for p € 5(% Bs)N S and z = 7o Wy(p), let ﬁ(p) be the Jacobian of o U,
at pas amap mo U, : C(w, Bs) NS4 — R and let

We define
=, = [71 ° CIDSCNZ’(x,Bs)} U [w o \Psé(w,ﬁs)} ,

and extend gs and 65 to Z5 by
0s(z) = 0, if z€ |:7TO \Ilsé(w,ﬂs)} \ [770 @SG(Q:,BS)} ,
Go(2) = 0, if [77 o &0z, 53)} \ [w o U, C(w, 55)} .

Therefore g5 and &, are densities of probability distributions on Z;. For z € Z;, let
0s(2) € ®0K and vs(2) € W59 be the points near z whose orthogonal projection
into R%"! is z. For random variables z1,..., 2 € =, either with respect to g5 or &, the
quantities above were defined so as to satisfy

Py, (4o & Cla, BNIL) = Po (.7l & [po(1), - 0u(zi)lI o), (6.3.23)

Py, (@ & Clw, Bs)ilL) = Po, (Wuby & [s(21), o s(zi)llLo) . (6:3.24)
Now there exists an increasing function s +— p*(s) with lim,_,q+ p*(s) = 1 such that
p(s)"tB ¢ [7r o @55'(33,55)} N [7[' 0 U,C(w,Bs)| C By C p*(s)BIY,

we have p1*(s) "Los(2) < s(2) < pu*(s)ps(2) for all 2z € =, and

“(s)ayt,, ifzemo ®,C(z, Bs),

Pzl <os(x) < m
pi(s) tagl, <6s(2) < pt(s)ayl,, ifzemo U,C(w, Bs).
Therefore
lim / 0s(2) — G5(2)| HTH(dz) = 0. (6.3.25)
s—0t J=,
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From (6.3.25)) we deduce that if s > 0 is small, then

|P§s (@sTs|Lo & [ps(21), - - -, ps(2i)]| Lo and Wsibs & [1s(21), - -, ¥s(2i)]|Lo) (6.3.26)
- ]P)&S (@3533|L0 € [@s(zl)a ) Sps(zi)”LO and W, ¢ [¢s(zl)v oo 7ws(zi)]|L0)| < E

k
Next, if s > 0 is small, then

~ 9 - g
Hw* _ (I)SxSH < W and Hw* _ qJSTUSH < W7

and in addition

5 —
[s(2) — ¥s(2)]| < NEE] for all z € Z;.

Assume that ®,74|Lo & [@s(21), .., @s(zi)]| Lo but Usws € [¢s(21), - .., ¥s(2i)]| Lo for some
Z1,...,2; € 2. In this case, the point a of [ps(21),...,vs(zi)]|Lo closest to ®sTs|Lo is
contained in some (j — 1)-simplex [@s(2m, ), - - -, Ps(2m;)]| Lo, i.e. there are A1,...,\; >0,
A+ ...+ A =1, such that a = 5;:1 Arp(2m,.)|Lo. Moreover, there are py, ..., u; > 0,
w1+ ...+ p; =1, so that U, = Zizl pr)s(2r)|Lo. Then we have

i
[®sZs|Lo —al| < ||PsZs|Lo — Zﬂr@s(ZrNLO
r=1
i
< || @5 Lo — w|| + [lw* — Wy | + ZNT(T/JS(ZT) — ¢s(2r))| Lo
r=1

< € € e 3

- kitl - i+l + i+l T i1
and hence

. 4e
o' —all < rer.
Choose a maximal set vy, ..., € S¥ 1N Ly such that the distance between any two points
is at least ek~UTY | in particular
| « e~ G=DpG-D0G+1)
Since a, ©s(2m; )| Lo, - - -, Ps(2m; )| Lo lie in a (j — 1)-dimensional affine subspace of Lo, there
is a unit vector v € 41 N Ly such that [{ps(zm,) — w*,v)| < 4ek~UFD) for r =1,... 7,
and thus
N 6e
[(ps(2m,) — w*,vm)| < pREsy

for r = 1,...,j and a suitably chosen m € {1,...,l}. In fact, for the given vector
v € SN Ly, there is some m € {1,...,1} such that ||v — v,|| < ek~U+D. Since

@sé(x, Bs) C w* + 2B% we deduce that

(s (zm.) = w™ om)| - < [ps(zm,) — 0™ o) + llps(zm,) = w*|| - [[om = v]|

4e 9. € _ Ge
kit1 T2 i+l fa+le

IN
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Therefore, if we define, for m =1,...,1,

II,, == {p € 00,C(z, Bs) : |(p— w*,vm)| < 65]{:*(”1)} ,
we get the following: if ®.35|Lo &  |ps(z1),.--,0s(z)]| Lo but Yo, €
[Vs(21), ..., ¥s(2)]| Lo for some z1,...,2z € Es, then there exists m € {1,...,l} such

that II,, contains some j of the points pg(21),...,¢s(z). Since HE N (I,,) < ek=U+D),
we have

Py, (@l Lo & [ps(21)s - s 95(2)]| Lo and Wyt € [ihs(21)s - -+ 165 (20)]| o)
. l

< (J) 3B (o). () < T

<:<;>.z-@k0+ﬂ)f<:2. (6.3.27)

Similarly, we have

Ps, (Uys & [s(21), . ., 1s(2)]| Lo and 34| Lo € [ps(21), - -, ps(2:)]|Lo) < % (6.3.28)

Combining (6.3. 23|) (6.3.24)) as well as (6.3.26), (6.3.27) and (6.3.28)) yields (6.3.22]), and
in turn Lemma [6.3.2]if d > 3.
Ifd =2, then a snmlar argument works, only some of the constrains should be modified

as follows. In (6.3.21]), we only have Bd%l“ (z + %)/i! < k+ 1, and hence in (6.3.22]),

we should verify an upper bound of order %, not of order .. Therefore the upper bound
n (6.3.26) should be 5. O

6.4 Completing the proof of Theorem [6.1.2

In order to transfer an integral over an average of projections of a convex body to a
boundary integral, we are going to use the following lemma from K. Boroczky Jr., L. M.
Hoffmann, D. Hug [BHHOS].

For L € E? and y € O(K|L), we choose a point z(y) € 0K such that y = z(y)|L. In
general, z(y) is not uniquely determined, but we can fix a measurable choice (cf. [BHHOS, p.
152]). Recall, however, that z(y) is uniquely determined for v; a.e. L € /J? and H/ ! ae.
y € O(K|L).

Lemma 6.4.1. Let K C R? be a convex body in which a ball rolls freely, let f : 0K —

[0,00) be nonnegative and measurable, and let j € {1,...,d —1}. Then
2 )t o = [ ) H ! (dy) (AL,
dag Jok e a(K|L

By the very special case K = B of (6.1.1)), due to M. Reitzner [Rei02], we have

lim ni%'pg(Bd)-Egvchnﬂ — ) (o) T

n—0o0
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Therefore the rotational symmetry of B¢, (6.2.12)) and (6.3.6) yield

d . _2
G:d) (g gl _ (j)o‘d ) Jaj(dad) d—1 s
¢ (daa) Qg d—1 (@-1)
nml2 d—3
X ILm nd-1P, (Ws & Bp|Lo)s a1ds. (6.4.1)
n—oo 0

We can now transform the asymptotic formulae to K. Let L € E;l and let y € (K |L
be such that y = z|L for some normal boundary point x = z(y) € K. If Hy 1(z) =
0, then J,(y,L) = 0 by Lemma If Hy 1(z) > 0, then it follows from ([6.3.6)),
Lemma [6.3.2] and (6.4.1]) that

Ty, L) = (d— 1) (ag-1) TTo(a)T1 Hy_y (2) T

n—1/2

« lim NTIP, (G5 & Bn|Lo) s 41 ds

n—oo 0

S o Daa o\
— C(j’d)Q(ﬁ)ﬁHd—l(«r)ﬁ <‘7 . ‘7]) ,

ag—ja;  dag
where x = z(y). Finally, we apply first (6.2.12)), and afterwards Lemma to deduce

lim naT T Vi(K) —Eo(Vi(Ky))]

n—00
. (j d dOéd
]aj

— C(J:d)/a g(ac)ﬁlrfdfl(ﬂﬁ)ﬁ Hy () 1™ (da),
K

/ / o(a(y)) T Hyy (x(y)) ™7 1~ (dy) v;(dL)
cd K\L)

which concludes the proof of Theorem [6.1.2

6.5 Proof of Theorem [6.1.3

Using the Stirling formula T'(n + 1) ~ (2)"v/27n, as n — oo (see E. Artin |Art64]), for
any a > 0 and 7 € (0, 1], we deduce

g 1
lim no‘/ s M1 —s)"ds = lim no‘/ s77H1 — s)"ds
aL(@T(n +1)

= i ——— =T[(a). 6.5.1
e T (a) (6.5.1)
In the following argument, 71,79,... again denote positive constants that may depend

on K and p. We can assume that o € int(K). Further, let (0K)? denote the set of all
T1,...,T, € OK such that o € [x1,...,2,]. Foru € S and ¢t >0, let

C(u,t) :={x € K: (z,u) > hg(u) — t},
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where hx denotes the support function of K. To deduce the upper bound, we start with
the estimates

B, 0A(K) = (K)
- / / — e, () ML (du) o) - o(n)
Qd—1 J(OK)n JSd-1
H Y (dxy) . HE l(dxn)
S o o o () = i, (0) WO o) o)
H 1 (dzy) ... HE Y (dxy,)
+20(1 )"

1 hK(u)
< / / / H{zy,...,2p € 0K\ C(u, s)}o(x1) - o(zp)
ad—1 Jsd-1 Jo (OK)™
HI N (day) ... HT N (dy) ds HET Y (du) + 29(1 — )"

1 hic(u) "
/ l/ 1_/‘ o(x) MM dz) | di 1O (du)
ag-1 Jga-1 Jo OKNC (ujt)

+2¢4(1 — )" (6.5.2)

IN

For suitable positive constants vz, v3,v4 we get, for u € S9! and t € (0, Y2),

> gtdTl it € (0,72),
/ﬂ o) 14 (dx) 8 ifz e 0m) (6.5.3)
OKNC (u,t) > V4, if t > 9.

In particular, y4,73(72)¢"t € (0,1). We deduce from (6.5.2), (6.5.3) and (6.5.1)) that, for
suitable 73, . .., v9 with 77,79 € (0,1),

Y2
E,(Vi(K) — Vi(Ky)) < / (1 — 7t 1) gt 4 g
0

1 1

Y9
= 78/ sT1 1 (1 — 8)"ds + 7677 < yion®
0

To prove the lower bound for E, (V1 (K) — Vi(K,)), we need the following observation.

Lemma 6.5.1. Let K C R be a convex body, and let hy be twice differentiable at ug €
Sa=1. Then there is some R > 0 such that K C zo — Rug + RBd, where xg = Vhg (ug) €
OK. In particular, there exist a measurable set ¥ C St with HH(X) > 0 and some
R > 0, all depending on K, such that for any v € 3 there is some x € 0K such that
K Cc x — Ru+ RB“.

Proof. For the proof of the first assertion, we may assume that xzyg = o, hence also
hi(up) = 0. We put h := hg. By assumption, there is a function R : Ry — [0,00)
with lim; g+ R(t) = 0 and

h(u) — = - dzh(u —ug,u —up)| < R(||Ju — uol|)||Ju — u0|]2.

2

97



dc_1638 19

Thus there is a constant Ry > 0 and § > 0 such that h(u) < Ry |lu — ug||? for all u € $9~1
with (u,ug) > 1 — 4. But then for Ry := max{2R;, max{h(u) : u € S41}/(20)} and all
u € S9!, we obtain

h(u) < Ro (1 — (ug, u)) = h(—Roug + RyB%, u),

that is K C —Ryug + RgBd.
The second assertion follows immediately from the first assertion. O

Let to be the inradius of K. Now Lemma yields, for v € ¥ and ¢ € (0,tp), that

/ o(x) H¥ M (dx) < v 5
OKNC (u,t)

Choosing a constant 12 € (0, ty) satisfying 711(712)% < 1, it follows as in the derivation
of (6.5.2) that, with a suitable constant y13 € (0, 1), we have

E,(i(K) ~Vi(Kyn) > — /E /Om (1= 77" @t ni(a)

ad—1
2

s 5 =y
= / s17 " (1 —8)"ds > 14 -nd-1.
0

Theorem shows that the lower bound of Theorem [6.1.3]is of optimal order if K
has a rolling ball. In fact, the assumption of a rolling ball ensures that the integral on the
right side of is positive. This follows, for instance, from the absolute continuity of
the Gauss curvature measure of a convex body which has a rolling ball (cf. [Hug99]).

On the other hand, the upper bound for E,(V1(K) — Vi(K,)) is of optimal order if K
is a polytope. To explain this, let ¥y C S™~! be contained in the interior of the exterior
normal cone of one of the vertices of K and such that H4*(Xg) > 0. In this case

/ o(z) Hdil(da:) < 15 - 1471
OKNC (u,t)

—1

for u € g and t € (0,716), and hence E,(V1(K) — Vi(K,)) > yi7 - nd-T.
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Chapter 7

Approximation by random
disc-polygons

This chapter of the dissertation is based on the papers:

e [FKV14] by F. Fodor, P. Kevei and V. Vigh, On random disc polygons in smooth
convex discs, Adv. in Appl. Probab., 46 (2014), no. 4, 899-918. (DOI
10.1239/aap/1418396236)

e [FV18] by F. Fodor and V. Vigh, Variance estimates for random disc-polygons
in smooth convex discs, J. Appl. Probab., 55, (2018), no. 4, 1143-1157. (DOI
10.1017/jpr.2018.76)

7.1 Expectations

In their ground-braking papers, Rényi and Sulanke |[RS63,RS64, RS68| investigated the
geometric properties of approximations of convex discs by random convex polygons. In
particular, they considered the following probability model.

Let K be a convex disc (a compact convex set with nonempty interior) in the Euclidean
plane R? and let y1, 92, . . . be independent random points chosen from K according to the
uniform probability distribution. Let K, denote the convex hull of Y;, = {y1,...,yn}. The
set K, is called a uniform random convex polygon in K.

Rényi and Sulanke [RS63,|RS64] proved asymptotic formulae for the expectation of
the number of vertices of K,, and the expectation of the missed area of K, under the
assumption that the boundary 0K of K is three times continuously differentiable and
the curvature is strictly positive everywhere. They also proved an asymptotic formula for
the expectation of the perimeter difference of K and K, under stronger differentiability
assumptions on 9K and assuming that the curvature x(x) > 0 for all z € K. For later
comparison, we state their results below in a slightly modified form.

Let fo(Ky) denote the number of vertices of K,,, A(K) the area of K and I'(-) Euler’s
Gamma function. Then (cf. Satz 3 on page 83 in [RS63])

Tim E(fo(K,)) -0/ = 33AEK)F<2>MLKfﬁxﬂde, (7.1.1)
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where integration is with respect to the one-dimensional Hausdorff measure on 0K. We
note that with the help of Efron’s identity [Efr65], (7.1.1) implies directly the following
statement

im .n2/3 _ 3 2A(K)2 ? e 1/3 T
lim E(A(K \ K,)) - r( >/a;< (z)'/3dz. (7.1.2)

n—00 3 3

Rényi and Sulanke derived by direct computation, cf. formula (48) in Satz 1 on
page 144 in [RS64].

Assuming that the boundary of K is sufficiently smooth and x(x) > 0 for all x € 0K,
Rényi and Sulanke proved the asymptotic formula

lim E(Per(K) — Per(Ky)) 0?3 = T12r (g) (124(K))*/3 /a ; k(z)3de (7.1.3)

for the perimeter difference of K and K, cf. formula (47) in Satz 1 on page 144 in [RS64).

For more information about approximations of convex bodies by random polytopes we
refer the reader to the recent book by Schneider and Weil [SWO08], and the survey articles
by Bérany |[Bar08|, Schneider [Sch08}Sch18|, Weil and Wieacker [WW93].

In this chapter, we investigate the R-spindle convex analogue of the above probability
model. Let R > 0. R-spindle convex discs are those convex discs that are intersections of
(not necessarily finitely many) closed circular discs of radius R. For a precise definition of
spindle convexity, see Section The intersection of finitely many closed circular discs
of radius R is a closed convex R-disc-polygon. Let X be a compact set which is contained in
a closed circular disc of radius R. The intersection of all R-spindle convex discs containing
X is called the R-spindle convex hull of X, and it is denoted by conv, g (X).

Now we are ready to define our probability model. Let S be an R-spindle convex disc
in R?. Let 1,22, ... be independent random points in S chosen according to the uniform
probability distribution (the Lebesgue measure in S normalized by the area of S). The
R-spindle convex hull S = conv, g (X,,), where X,, = {z1,...,2,}, is called a uniform
random R-disc-polygon in S. We prove the R-spindle convex analogues of ,
and in this probability model.

The concept of spindle convexity was (probably) first introduced by Mayer [May35| as
a generalization of linear convexity in the wider context of Minkowski geometry. In the
Euclidean plane R?, a closed convex set can be represented as the intersection of closed
half-planes. In the definition of an R-spindle convex set, the radius R closed circular discs
play the role of closed half-planes. Thus, formally, the R = oo case corresponds to linear
convexity.

Early investigations of spindle convex sets were carried out in the first half of the 20th
century. For a short survey of the early history of the subject and references see the
paper by Danzer, Griinbaum and Klee [DGK63|. Fejes T6th proved packing and covering
theorems for R-spindle convex discs in [FT82b| and [FT82a]. More recently, Bezdek et
al. |BLNPO7] and Kupitz et al. [KMPO05|, [KMP10] investigated spindle convex sets and
proved numerous results about them, many of which are analogous to those of linearly
convex sets. They also considered higher dimensional R-spindle convex sets. Intersections
of a finite number of radius R closed balls in R? are called ball-polyhedra (cf. [BLNPOT)]).
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This notion of hyperconvexity arises naturally in many questions where a convex set can
be represented as the intersection of equal radius closed balls. As recent examples of such
problems, we mention the Kneser-Poulsen conjecture, see, for example, Bezdek, Connelly
[BCO2], Bezdek [Bezl§|, Bezdek, Naszédi [BN1§|, and inequalities for intrinsic volumes
by Pauris, Pivovarov [PP17]. A more complete list can be found in [BLNPO7|, for short
overviews see also Fejes Téth, Fodor [FTF15]|, Fodor, Kevei, Vigh [FKV14], and Fodor,
Vigh [FV12].

Fodor and Vigh [FV12] proved asymptotic formulae for best approximations of R-
spindle convex discs by R-disc-polygons generalizing some of the corresponding results of
Fejes Téth [FT53] and McClure and Vitale [MV75] about best approximations of linearly
convex discs by convex polygons (see Chapter . For a systematic treatment of geometric
properties of hyperconvex sets and further references, see, for example, the recent papers
by Bezdek, Léngi, Naszdédi, Papez [BLNPO07|, Fodor, Kurusa, Vigh [FKV16|, and in a
more general setting the paper by Jahn, Martini, Richter [JMR17].

There is a wealth of new information about properties of spindle convex bodies and
ball-polyhedra in the recent monographs [Bez10] and [Bez13] by Bezdek.

The notion of spindle convexity is related to diametrical completeness of convex bodies
through the so-called spherical intersection property. A convex body K is diametrically
complete if for any point ¢ K, the diameter of conv (KU{x}) is strictly larger than that of
K. Tt was proved by Eggleston [Egg65] that in a Banach space the diametrically complete
convex bodies are exactly those which have the so-called spherical intersection property,
that is, they are equal to the intersection of all closed balls whose centre is contained in
K and whose radius is equal to the diameter of K. In Euclidean spaces diametrically
complete convex bodies are exactly those of constant width, however, in Minkowski spaces
this is not the case. Recently, much effort has been devoted to investigating the properties
of diametrically complete sets in Minkowski spaces where sets that are intersections of
congruent closed balls play a fundamental role (see, for example, Moreno and Schneider
[MSO07] and the references therein), and to investigating various properties of the ball hull,
see, for example, Moreno and Schneider [MS12] for more information.

Random approximations of R-spindle convex sets by R-disc-polygons naturally appear,
for example, in the so-called Diminishing Process of T6th, see Ambrus et al. [AKV12).
Let Dy = Bpr be the radius R closed circular disc in R? centred at the origin. Define
the random process (D, py) for n > 1 as follows. Let p,4+1 be a uniform random point
in D, and let Dyy1 = Dy N (Bgr + pnt1). Then each D, is a (non-uniform random)
R-disc-polygon, and the process converges (in the Hausdorff metric of compact sets) to a
set of constant width R with probability 1. This process can be readily generalized for a
general convex body K C R¢, in place of Bg, that contains the origin. If the body K is
symmetric with respect to the origin, then it determines a Minkowski metric and the sets
K,, are all (random) spindle convex bodies with respect to K in this Minkowski space.

Finally, we remark that there are various terms used for R-spindle convex sets in the
literature. Mayer introduced the word “Uberkonvexitit” in [May35]. Authors of early
articles used the translation of Mayer’s term. Fejes Téth [FT82bl|[F'T82a] named such
sets “R-convex”. Bezdek et al. [BLNP07] and Kupitz et al. [KMPO05, KMP10] used the
expression “spindle convex”. The notion of spindle convexity arose naturally and was
investigated from different points of view, which explains the various names used for these
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sets and it also indicates their importance.
The main results of this chapter are described in the following theorems.

Theorem 7.1.1 (Fodor, Kevei, Vigh [FKV14, Theorem 1.1 on page 901]). Let R > 0,
and let S be an R-spindle convex disc with C? smooth boundary and with the property that
k(z) > 1/R for all x € S. Then

Tim E(fo(S5)) -3 = ¢ 3A2(S) T (g) /85 (K(m) - ;)1/3 dz, (7.1.4)
and
Tlim E(A(S\ 55)) 0?3 = QA;SVF <§) /as <K(x) _ ;)1/3 dz. (7.1.5)

We note that the two statements are connected with an Efron-type relation [Efr65],

see ([7.1.31)) in Section

Theorem 7.1.2 (Fodor, Kevei, Vigh [FKV14, Theorem 1.2 on page 902]). Let R > 0,
and let S be an R-spindle convex disc with C° smooth boundary and with the property that
k(z) > 1/R for all x € S. Then

lim E(Per(S) — Per(SF)) - n?/?

) ) e )

Theorem 7.1.3 (Fodor, Kevei, Vigh [FKV14, Theorem 1.3 on page 902]). Let R > 0,
and let S = Br be a circular disc of radius R. Then

7T2

Jim E(fo(S,) = 5 (7.1.7)
2,3
lim E(A(Br \ Sf)-n = R 2” , (7.1.8)
and
. R R- 7T3
lim E(Per(Br) — Per(S,))) -n = . (7.1.9)
n—»00 2

It is somewhat surprising that the expectation of the number of the vertices of uniform
random spindle convex polygons in circular discs tends to a (very small) constant. Roughly
speaking this means that after choosing many random points from a circle, the spindle
convex hull will have about 5 vertices. This is a surprising fact that has no clear analogue
in the classical convex case. A similar phenomenon was recently established by Barany,
Hug, Reitzner, Schneider [BHRS17] about the expectation of the number of facets of
certain spherical random polytopes in halfspheres, see [BHRS17, Theorem 3.1].

Furthermore, for a (linearly) convex disc K with C? smooth boundary and strictly pos-
itive curvature, the asymptotic formulae ([7.1.1) and (7.1.2) of Rényi and Sulanke follow
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from (7.1.4) and (7.1.5)), respectively. Similarly, for a convex disc with C® smooth bound-
ary and strictly positive curvature, the asymptotic formula of Rényi and Sulanke
follows from . Thus, the results of Theorems [7.1.1] and [7.1.2] are generalizations of
the corresponding results of Rényi and Sulanke.

The rest of this chapter is organized as follows. In Section [7.1.1] we introduce the
necessary notations. In Section we prove how the asymptotic formulae of Rényi
and Sulanke follow from our results. In Section [7.1.3] we investigate some properties of
disc-caps of spindle convex discs that are used in the subsequent arguments. We give the

proofs of Theorem and Theorem [7.1.2] in Section Finally, in Section we
provide an outline of the proof of Theorem [7.1.3

7.1.1 Spindle convex sets: definition and notations

In this chapter, the symbol Br denotes the closed circular disc of radius R centred at the
origin. We use S}% to denote Br. We tacitly assume that the plane is embedded in R3
and write x X y for the cross product of the vectors x and y.

We use the notation x(z) for the curvature of K at z. If the boundary of K is C?
smooth, then at every z € 0K there exists a unique outer unit normal vector u, € S* to
oK.

For a convex disc K, integration on the boundary of K with respect to the one-
dimensional Hausdorff measure (the arc-length of 9K) is denoted by [, ---dz. In the
case that the boundary of K is C? smooth and f(u) is a measurable function on S?,
Jo1 fw)du = [y, f(us)r(x)dz, (cf. formula 2.5.62 in [Sch14]).

Let z,y € R? be such that their distance does not exceed 2R. We define the closed
R-spindle [z, y]s,r of z and y as the intersection of all closed circular discs of radius R that
contain both z and y. The closed R-spindle of two points whose distance is greater than
2R is defined to be the whole plane R?. The closed spindle of two points whose distance
is less than 2R looks like a spindle, which explains the origin of its name. A set S C R?
is called R-spindle convex if from x,y € S it follows that [x,y]s g € S. Spindle convex
sets are also convex in the usual linear sense. In this chapter we restrict our attention to
compact spindle convex sets. We call a compact set S C R? with nonempty interior an
R-spindle convex disc if it has the R-spindle convex property.

Below, we list those properties of spindle convex discs that will be used in our ar-
guments. For more detailed information about spindle convexity we refer the reader to
Bezdek et al. [BLNPO7].

A compact convex set S is R-spindle convex if and only if it is the intersection of (not
necessarily finitely many) congruent closed circular discs of radius R (cf. Corollary 3.4 on
page 205 in [BLNPO7]). If the closed circular disc Br + p contains an R-spindle convex
disc S and there is a point € 95 such that also x € 9BR + p, then we say that Bg + p
supports S at x. Let P be a convex R-disc-polygon, and let Br + p a circle supporting P
at H =0P N (0Br + p). Then H either consists of only one point, called a vertex, or it
consists of the points of a closed circular arc, called a side (or edge) of P. The number
of edges of P equals the number of vertices of P (except in the case that P is a circle of
radius R); we denote this number by fo(P).

If S is an R-spindle convex disc with C? smooth boundary, then x(z) > 1/R for all
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x € 05, and for every unit vector u € S', there exists a unique point x € 95 such that
u = uy; we denote this point by x,. We also note that if x € 05, then B +x — R - u,
supports S at x.

7.1.2 The limit case

In this section we show how Theorems [7.1.1] and [7.1.2] imply the asymptotic formulae
, , and of Rényi and Sulanke.

Let K be a (linearly) convex disc with C? smooth boundary and x(z) > 0 for all
€ OK. Let kmin = mingg k(z) > 0. It follows from Mayer’s results (cf. (U4) and
(U5) on page 521 in [May35], or for a more recent and more general reference see also
Theorem 2.5.4. in [Schl4]) that K is R-spindle convex for all R > Ry = 1/Kmin. For
R > Ry and n sufficiently large, we introduce the following notation

n

)

08 (n) = E(A(K \ SF)) - ni
5(n) = E(A(K \ K,)) - n3,

(), o2
v[gg-I‘<§)]QKm§@ﬂd%
with 4 = A(K).

We claim that ((7.1.5) implies the asymptotic formula ([7.1.2)) of Rényi and Sulanke.
Let € > 0 be fixed. Then limg_soo I g = I yields that there exists Rj(¢) > Ry such that

~

[\)

I

IR
1—a<f?<1+a (7.1.10)

for all R > Ry(e).
Elementary calculations show that there exists Ro(¢) > Ry, depending only on K and
e such that for all R > Ry(e),

A([p, qls,r)
A([p, dls,ry) — AP qls,r)

<e, (7.1.11)

for any points p,q € K.

Let D,ﬁ denote an R-disc-polygon in K with vertices p1,...,p, indexed in the cyclic
order, and let P,, denote the (linear) convex hull of py, ..., py,. Note that this is a polygon
with vertices pi,...,pm. If R > Ra(e), then yields

5(n) . E(A(SE) - A(K.))
1<5gm_4ﬁ'MAm3—Awﬁ)
A(DJ) = A(Py)
ST AR Al —amr) S TE )
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Now assume that R > max{R;(c), Ra(c)}. It is clear that for any such R, the conver-
gence limy, o 65(n)/IF = 1 yields that there exists n(R) such that

3§ (n)
l—e< R <l+4¢ (7.1.13)

S

for all n > n(R).
Thus, from (7.1.10)), (7.1.12)), (7.1.13]), and from

) _ o) oEn) I
I 6Bm) IR I

we obtain that

o(n)

1—35<T<1+75

for all R > max{R;(¢), Ra(¢)} and n > n(R), which proves that

n—oo

A similar argument shows that ([7.1.6)) implies the asymptotic formula ((7.1.3]) of Rényi
and Sulanke. Finally, formula (7.1.1)) for the number of vertices follows by Efron’s equality

(7-1.31).

7.1.3 Caps of spindle convex discs

From now on we restrict our attention to the case when R = 1 and we omit R from the
notation. We use the simpler terms spindle conver and disc-polygon in place of 1-spindle
convex and 1-disc polygon, respectively. In particular, B = B; denotes the unit disc. The
R-spindle convex analogues of the following lemmas can be obtained by simple scaling.

Let S be a spindle convex disc with C? smooth boundary and assume that x(x) > 1
for all x € 9S. A subset D of S is a disc-cap of S if D = cl (SN (B + p)©) for some point
p € R2. Note that in this case 9B + p intersects 0. in at most two points. (This follows,
for example, from Theorem 2.5.4. in [Sch14].) Thus, the boundary of a nonempty disc-cap
D consists of at most two connected arcs: one arc is a subset of 95, and the other arc is
a subset of OB + p. In order to define the vertex and the outer normal of a disc-cap we
need the following claim.

Lemma 7.1.4. Let S be a spindle convex disc with C? smooth boundary and assume that
k(z) > 1 for all x € 0S. Let D = cl(SN (B + p)Y) be a non-empty disc-cap of S (as
above). Then there exists a unique point xo € 0S NAD such that there exists a t > 0 with
B+p=B+xy— (1+t)uy,. We refer to xy as the vertex of D and to t as the height of
D.

Proof. Pick any = € 85 N dD, and consider the vectors p# and the outer unit normal
uz. We claim that there is a unique z for which ﬁ is a positive multiple of u,. The
existence follows from a simple continuity argument since the angles formed by the two
vectors have different orientations at the endpoints of 95 N 0D. Uniqueness is proved as
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follows. Suppose that both 1 # o fulfil the requirements. Let ¢ be the (positive) angle
between u,, and u,, and denote by I the arc of 9S between x; and zs (according to the
positive orientation), and by As the length of I. By the spindle convexity of S, we obtain
that 1 and x9 can be joined by a unit circular arc in S. The length of this circular arc is
clearly smaller then As, on the other hand it is larger than ¢, and thus As > . Using
the assumption that the curvature of 05 is strictly larger than 1, we obtain that

@:/n(s)ds>/ds:As><p,
1 1

a contradiction. O

Let D(u,t) denote the disc-cap with vertex x, € 95 and height t. Note that for each
u € S, there exists a maximal positive constant ¢*(u) such that (B+z, — (1+t)u)NS # 0
for all t € [0,t"(u)]. Let V(u,t) = A(D(u,t)) and let ¢(u,t) denote the arc-length of
0D (u,t) N (OB + zy — (1 + t)u).

Lemma 7.1.5. Let S be a spindle conver disc with C? boundary such that k(z) > 1 for
all x € 3S. Then for a fized x € 3S, the following hold

2
lim f(ug,t) -t Y2 =2,/——— 1.14
Jim, £, £) \Vr@) =1 (7.1.14)
lim V(ug,t) -t /% = 1 (7.1.15)
t—0+ 3 r(z) =1

Proof. Assume that = (0,0) and u, = (0,—1). Then, in a sufficiently small open
neighbourhood of the origin, 95 is the graph of a C? smooth function f(o). Taylor’s
theorem yields that

k(x)

flo) ="

In the same open neighbourhood of the origin, the boundary of B + = — (1 + t)u, is the
graph of the function g;(c) =t +1— +/1 — o2, Simple calculation yields that the positive
solution of the equation g¢(c) = f(o) is

and

0?4+ 0(0?), as o — 0. (7.1.16)

oy = 1 Y2 4 o(tY?), as t— 07,

k(z) —
Clearly, £(ug,t) ~ 204 as t — 07 by the fact that the ratio of the lengths of an arc and

the corresponding chord tends to 1 as the length of the arc tends to 0.
Let o_ denote the negative solution of the equation g;(0) = f(o). Then

Vi) = [ (o)~ f(o))do

g4 2
= 2/ [t +Z - m(ux)02 +0(0?)| do
o 2 2
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_4 2 3/2 3/2 +
—3,/1%(11)_1 t2% 4+ o(t”*), as t—0".

This finishes the proof of Lemma [7.1.5] O

Let z1,z9 € S be two distinct points. Then there are exactly two disc-caps of S, say
D_(z1,12) = cl (SN (B +p_)°) and Dy (21,22) = cl (SN (B + py)Y) with the property
that x1,29 € OB + p— and z1,29 € OB + py. Let V_(z1,22) = A(D_(z1,22)) and
Vi(z1,22) = A(D4(x1,22)), respectively, and assume that V_(x1,22) < Vi (z1,22).

Lemma 7.1.6. Let S be a spindle convex disc with C? boundary and r(z) > 1 for all
x € 0S. Then there exists a constant § > 0, depending only on S, such that Vi (x1,22) > §
for any two distinct points x1,x9 € S.

Proof. We note that [z1,z2]s cannot cover S because of the C? smoothness of S and
the assumption that x(z) > 1 for all x € 9S. Thus, by compactness, there exists a
constant d > 0, depending only on S, such that A(S \ [x1,z2]s) > 26 for any two distinct
points x1,z9 € S. Now, the statement of the lemma readily follows from the fact that
S:D7($1,x2)UD+($1,l’2)U[ZL‘l,l‘Q]S. O

Let K be a convex disc with C? boundary and with the property that x(z) > 0 for all
x € 0K. Let kg > 0 denote the minimum of the curvature of K. Then there exists an
go > 0, depending only on K, with the property that for any x € K the (unique) circle
of radius 1/kg that is tangent to K at = supports K in a neighbourhood of radius ¢y of
. Moreover, Mayer proved (see statement (U5) on page 521 in [May35], or for a more
recent and more general reference see also Theorem 2.5.4. in [Sch14]) that in this case the
tangent circles of radius 1/kg of 0K not only locally support K but also contain K and
thus they globally support K.

Let S be a spindle convex disc with C? smooth boundary and with the property that
k(z) > 1 for all x € OK. Then, by the above, there exists 0 < ¢ < 1, depending only on S,
such that S has a supporting circular disc of radius ¢ at each x € 9S. Thus, Lemma[7.1.5]
yields that there exists a 0 < to < 9 with the property that for any u € S*

20
1-2¢

O(u,t) < 4 tz fort € [0,to). (7.1.17)

A convex disc K has a rolling ball if there exists a real number ¢ > 0 with the property
that any z € 0K lies in some closed circular disc of radius ¢ contained in K. Hug proved
in [Hug00| that the existence of a rolling ball is equivalent to the exterior unit normal
being a Lipschitz function on K. This implies that if the boundary of K is C? smooth,
then K has a rolling ball. We remark that this last fact was already observed by Blaschke
[Bla56].

It follows from the assumption that the boundary of S is C? smooth that there exists
a rolling ball for S with radius 0 < ¢ < 1. The existence of the rolling ball and
yield that there exists 0 < # < o such that for any u € S!

1/4 20 3
>, — . N
V(u,t)_2<31/1_9>t2 for t € [0, 7] (7.1.18)
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Note that although the statements in Lemma are not uniform in u, both (7.1.17)
and (7.1.18)) are uniform in w.

7.1.4 Proofs of Theorem [7.1.1]l and Theorem [7.1.2]

Proof of Theorem[7.1.1 We essentially use the method invented by Rényi and Sulanke
[RS63]. Note that it is enough to prove the theorem for R = 1, from that the statement
follows by a scaling argument. Thus, from now on we assume that R = 1, and omit R
from the notation.

Let A = A(S). First, observe that the pair of random points z1,zs determine an
edge of S, if and only if at least one of the disc-caps D_(z1,z2) and D4 (z1,z2) does not
contain any other points from X,,. Thus

Bfo(S:) = (5 ) W

where

wom [ () T (1 ) Mg

Note that if all points of X,, fall into the closed spindle spanned by x1 and zs, then x; and
xo contribute two edges to S, (since in this case convg X,, = [r1,x2]s), and accordingly
this event is counted in both terms in the integrand of ({7.1.19)).

Lemma yields that

. _1/n\ 1 Vi (21, x2) n—2

R T W e e
< lim n_§< > //e‘g(”_2)dx1dx2
sJs

n) 1
2/ A2
= lim n3 <;L> e_%("_Z) =0.

wl—=

Thus, the contribution of the second term of is negligible, hence, in what
follows, we will consider only the first term. Note that a similar argument yields that in
the first term of it is enough to integrate over pairs of random points z1, z9 such
that V_(x1,22) < d. Let 1(-) denote the indicator function of an event. Then

Now, we re-parametrize the pair (z1,x2) as follows. Let

(x1,22) = P(u, t,uy,usz), (7.1.21)
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where u,u1,us € S* and 0 <t < to(u) are chosen such that
D(“a t) = D—(xla 1’2),

and
(x1,22) = (o — (L + O)u + w1, xy — (L + t)u + ua).

Note that u; and ug are the unique outer unit normal vectors of 9B + x, — (1 + t)u
at 1 and xo, respectively. This yields that, for fixed u and ¢, both u; and us are in the
same arc of length ¢(u,t) in S*. We denote this unit circular arc by L(u,t).

Note that since V_(x1,22) < d, D_(x1,z2) is uniquely determined by Lemma [7.1.6
Now, the uniqueness of the vertex and height of a disc-cap guarantees that ® is well-
defined, bijective, and differentiable (see Section[7.1.6]) on a suitable domain of (u, ¢, u1, u2).
To continue the estimate of W,, we need the Jacobian of the transformation ®. This
calculation can be found in Santald’s paper [San46|, but for the sake of completeness, we
give a sketch in Section [7.1.6

We obtain that the Jacobian of ® satisfies

1

We note that |u; x ug| equals the sine of the length of the unit circular arc between x;
and xo on the boundary of D(u,t). Also note that there exists ¢; > 0 with the property
that V(u,t) < § for all 0 < ¢t < ¢; and for all u € S*.

Now, (7.1.20) and (7.1.22)) yield that

Wl

lim E(fo(Sn))n~

n—o00
. n—2
s L o (-5
N—00 2) A st Jo L(u,t) J L(u,t) A

1
X <1 +t— > lup X ug|duidugdtdu. (7.1.23)
K(zy)

Integration by u; and wug yields

. _1(n\ 2 t Viu,t)\" >
7.1.23 _HIL)II;OH 3<2>A2/Sl/0 (1— 1 >

X <1 +t— ﬁ(; )) (U(u,t) — sinl(u,t))dtdu.

Now, we will split the domain of integration with respect to ¢ into two parts. Let
h(n) = (clnn/n)%3, where ¢ is a positive (absolute) constant to be specified later. From
(7.1.18) it follows that there exists ng € N and v; > 0, depending only on S, such that if
n > ng, then h(n) < t1, and V(u,t) > ~; - h(n)3/? for all h(n) <t < t; and for all u € S*.

Lemma 7.1.7. Let h(n) be defined as above. Then
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ol

lim n~

1 n 2/ /tl 1_V(’U,,t) "2
n—o0 2 A2 S1 h(n) A

X (1 +t— n(i )) (6(u,t) — sinl(u,t))dtdu = 0.

Proof. Note that ¢t; < 2w, and there exists a universal constant vy > 0 such that ¢(u,t) —
sinf(u,t) <y for all 0 < ¢ < t; and u € S*. Hence, for any fixed u € S' and any n > nq,

it holds that
1 V(u t) n—2 1
- 1+t- t) — si £))dt
(T80 e Yot

n—2
t1 3/2
g?m/ (1“?) dt
h(n)

t1 n—2
o [ (- )
0

A

Now, let ¢ > 5A/(37v;). Then

N i A f V(ut)\"" L
nh—glon 3(2)142/51/“”) (1 A ) (1+t“(xU))X

X (L(u,t) — sinf(u,t))dtdu

Now, for n > ng we define

si0) [ (5 o)

X (U(u,t) —sinf(u,t))dt (7.1.24)

and so

lim E(fo(S,))-n"3 = lim 2/51 0, (1) du. (7.1.25)

n—oo n—oo A2

We recall formula (11) from [BFRV09] that states the following. For any 8 > 0, w > 0
and o > 0 we have that

g(n) 1 1
/ (1 —wt*)'dt ~ —5 - T <ﬁ+ ) n, (7.1.26)
0 oaw a a

as n — 00, assuming

<(5+a+1)lnn)a <g(n)<w‘§,

awn
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for sufficiently large n.

Formula implies that there exists v3 > 0 such that £(u,t) — sin f(u,t) < ~3t3/?
for all 0 < t < to and u € S*. We recall that 1 +¢ — 1/k(z,) < 3 for all u € S and
0<t<t. Now and with @ = 8 = 3/2 and w = (2/(34))\/2p/(1 — p)
yield that there exists 4 > 0, depending only on S, such that 6, (u) < 4 for all u € S!
and sufficiently large n. Thus, Lebesgue’s dominated convergence theorem implies that

w\H
||

nh_)rroloE(fo( /1 nh_}noloﬂ (7.1.27)

Let u € S' and € € (0,1). It follows from Lemma that there exists 0 < t. < t;
such that

(1- 5)% (K(xf)_J 1 < 0(u,t) — sin C(u, 1) < (1 +s)§ <%(mf)_1> £ (1.1.28)
and
(1f@§ H@5_1£5ﬂ4m0§(1+@§ %@5_15, (7.1.29)

for any t € (0,t.).

Now (|7.1.28)) and ([7.1.29) yield that

iy 0,0 = 157 (1 11>§

n—00 3 Zy)

n—2
. 5 R 4 2 3 5

Note that (7.1.26) with o = 3/2, 5 = 5/2 implies that the second term of (7.1.30) is
0. Now, ([7.1.26)) yields that

n—2
. 5 () 4 2 3 3
lim n3 1— — | ——t2 t2dt
n—o0 0 3AN\ k(zy) —1

Thus,
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Therefore,
2

. _1 .
nh_)rgoEfO(Sn) TS =5 . nh_)nolo O (u)du

::QCiﬂ?(?)/QlKém)dewUédu
:@QZF(?)A%U&@—lﬁd%

To compute the expectation of the missed area by S,,, we use the following identity
nE(A(S \ Sn—
B(fo(5,)) = AL 1)

(7.1.31)) is the spindle convex analogue of Efron’s identity [Efr65]. The proof of (7.1.31)) is
as follows.

. (7.1.31)

E(fo(Sn)) = Z]P’(a:Z is a vertex of S,) = nP(z; is a vertex of S),)
1
nE(A(S \ Sn-1))

= nP(z1 ¢ convg (za,...,T,)) = i
Now, combining (7.1.4) and (7.1.31) yields (7.1.5), thus completing the proof of Theo-
rem [.1.1] O

Now we turn to the proof of Theorem [7.1.2] The argument is based on ideas devel-
oped by Rényi and Sulanke in [RS64], and it is similar to the argument of the proof of
Theorem [7.1.1]

We start with a refinement of Lemma under the hypothesis that the boundary
of S is C° smooth and that x(x) > 1 for all x € 9S.

Lemma 7.1.8. Let S be a spindle convex disc with C° smooth boundary and with the
property that k(z) > 1 for all z € dS. Then uniformly in u € S*

O(u,t) = 1t 2 + 1,372 + O(t%?)  ast — 0T, and (7.1.32)
Viu,t) = vit3? + upt®? + O(t™?) ast — 07T, (7.1.33)
with
2
= = 2 —_—
h=h(u) K(xy) — 1
25/2 (15b(24)? — (#(z) — 1)(1 + 6(c(zy) — 1/8) — K(24)))
l2 = lz(u =
3(k(xy) — 1)7/2
— o) = 5y [z
VL= =g K(xy) — 1

) _ 2 (3)? = 2elw) = 1/8)(s(w) = 1)
5(k(xy) — 1)7/2 ’

where b(x) and c(x) are functions depending only on S and x.

V2 = V2(U

112



dc_1638 19

Proof. With the same notation and choice of coordinate system as in the proof of Lemma
Taylor’s theorem and the C® smoothness of the boundary yield that in a sufficiently
small neighbourhood of the origin

flo) = 202 + b0 4 co® + O(0®) aso — 0,

uniformly in v € S*. We suppress the notation of dependence of the coefficients on u for
brevity. Let gi(0) =t + 1 — v/1 — 02. From the equation f(c) = g:(0) we obtain

k—1

t =

1
0% 4+ bod + <C—8>04+O(U5) as o — 0,

and routine calculations yield that the positive and negative solutions of the equation
f(o) = gi(o) are

op = oy (t) = ditt? + dot + dst®? + O(t?) ast — 07,

o =o_(t) = —(dit*? — dat + d3t*?) + O(t?) ast— 0T,

[ 2
d =
1 Ii—l’

2b
do= ———
2 (5_1)27

V2 (562 — 2(c — 1/8)(k — 1))
(k—1)7/2 )

(7.1.34)

where

ds =

Now, using that ¢(u,t) = arcsino + arcsin|o_| and that V(u,t) = [Tt [g(0) — f(o)]do,

(o
a short calculation finishes the proof. O

Proof of Theorem[7.1.3. Let L = Per(S) for brevity. Let z1,z2 € S, and let i(x1,z2)
denote the length of the shorter unit circular arc joining z; and xo. We define U,, with

E(Per(S) — Per(S,))

= ()i, o501 1. ()

Using the same notation as in the proof of Theorem [7.1.1] similar arguments show that

1 Vo (zy,22)\" Vi(z1,22)\" 7%
Un = AA2/§;/§ [(1 — A) + 11— T ’L((IJl,]TQ) d$1d$27

i o9 (2) [ [ (1 Vel " i ) dirdis = 0
e 2) Az Jg /s A 1, T2)dxr1dx2 )

and also that

and
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e () L)

X i(x1, x2)dz1dry = 0.

Now, the integral transformation ® in (|7.1.21) yields that

A2//< xl’@))n_Ql(V—(fEl,m) < 0)i(x1, v2)dr1dwy

AQ/SI/“/M/M (=)

<1 4+t — ) - Jug X ug| arccos(uy, ug)duidug dt du,
()

where arccos(uy,us) is the length of the arc of S! spanned by u; and uy. Routine calcu-
lations show that

/ / |ur X ug| arccos(uy, ug)duidug = 2 (2 — 2 cos l(u,t) — £(u,t)sinl(u,t)).
u,t u,t)

Let € > 0 be arbitrary. According to Lemma we may choose to > 0 such that for
all t € (0,t3) and for all u € S!

’e(u,t) (V2 l2t3/2)’ < S432
2 (7.1.35)
‘V(u, t) — (vit®? + v2t5/2)’ < et"/?,

For any ¢’ > 0 for sufficiently small x it holds that

at af /.6
2(2-2 asing) — ([ -2 )| <
' ( cosx — xsinx) (6 90)‘_8.% ,
which, together with ([7.1.35)), implies that there exists t3 > 0 with the property that for
any t € (0,t3) and for all u € S*

< %t?’. (7.1.36)

1 6
‘2(2 ~ 208 {u, 1) — (1) sin £(u, ) — [z;&? + ( 4031, f5> ta}

The second order Taylor expansion of the function log(1 —y) at y = 0 yields that there
exists t4 > 0 such that for 0 < y < nmin,cq1 v1 (u)ti/3/A and for any ¢ € [—ay,a1], with

a1 = A% max,c g vg(u)/v?/g(u) , and for all u € S*

_ 5/31™ 5/3.
e Ve (et in T o [1 S (g) / } < e Ve (7.1.37)
n n
and 5/37m
e~ (+ely < [1 S (Q) } < e~ (=e)y, (7.1.38)
n n
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Let 0 = d(¢) be small enough such that for all |y| <9
eV<1—(1-¢e)y, (7.1.39)
and let ng be large enough such that

2/3
ngg§|02§igt4) < nl3s. (7.1.40)
u vy (u

Finally, let ¢’ := min{ts, t3,t4}. A similar argument as in the proof of Lemma yields
that

t1 n—2
. 2/3( M 1/ / - V()
i n <2>A2 oy U772

X 2[2 —2cosl(u,t) — l(u,t)sinl(u,t)] <t +1-—

1
m(wu)> dtdu = 0.

Thus we need to determine the limit

e () [ (1)
S 0

x2[2—2cm%@hﬂ——auj)$n€@4ﬂ]<t+]n—:l)(hdul

lim n2/3
n—oo

k()

By Lemma for sufficiently small ¢ it holds uniformly in v € S* that

V(ut)\ ™ 3max,eg1 v1(u) 39
1< (11— <1 (A
< (1-00) <y B

Therefore changing the exponent from n — 2 to n in the inner integral above does not
affect either the main or the first order term.

By ([7.1.35)) and (|7.1.36]), we have that
. 1Y Viu,t)\"
1
X 2[2 —2cosl(u,t) — l(u,t)sinl(u,t)] <t +1-— > dt
K
1 t U1 ,3 Vg — & "
<t V1,372 V27E 5/9
~ 6A2 /0 (1 At A t >
(1= es (v (-1 wb—£—+et3w
L K ! K ! 15 '

To shorten the notation, let

Di=1{(1-r"), DiDj=1i+(1—-r") (4l —15/15) +¢e, and Dy = DJ. (7.1.41)
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Letting ¢ = (t/)3/2v1 /A, the substitution t3/2v; /A = y/n yields
R nt" B 5/3 4/3
9n(u)ng/ oY _mee(dy Ay

6A2 J, n A nuy nuy
Ay\¥?] 2 » A4\ 2/3
1+ Dj Sy B =] d
e (nv1 ) 3 Y (nm > Y

_ Dl nt'’ y (1)2—5)142/3 y 5/3 " 6 Ay 2/3
~ 5z ), [1 P el € B L] G R R

=:In + Jn,

n

X

where I,, stands for the integral over the interval [0, nt/ %], and J,, stands for the integral
over the interval [n'/5 ¢"n]. Using (7.1.38)), for .J,, we obtain that

nt//
I, < 17212/ e~ (=W 9y < %e_(1—e)n1/5
In=vi Jpu/s toh

)

which tends to 0 faster than any polynomial of n. For I, using (7.1.37), (7.1.39) and
(7.1.40) for n > ng we have that

Dy ™ (vy — ) A3 ¢?/3 Ay \*?
< — Yy _ I3
I, < on70? /0 e Yexp T 373 14 Ds o~ ydy
1
D, nl/5 - (vg — 5)A2/3 yo/3 Ay 2/3
< Y _ _ el 2F
< 9n2U%/0 e 1-(1—¢) T 373 1+ Ds o ydy
1
D, n/? - —2/3 42/3 D3 2/3 V2 =€ 5/3
§9n2U%/0 eV |1+n""A Wy —(1—¢) U5/3y +e||ydy
1 1

D
- 9n20%

)

—2/3 42/3 Dj V2 — €
Ul/ Ul/

where in the last inequality we extended the domain of the integration, and used the
definition of the I'(-) function.

We may obtain a lower estimate for én(u) in a similar way, and as € > 0 was arbitrary,
we have that én(u) asymptotically equals to the last upper bound with ¢ = 0. Since
D1/(18v}) = k' and [q1 k™ (#y)du = L, we have that

1mumL—Rﬂ&m-Mﬂ_1m1MB(L—<;) égwmo
Sl

n—00 n—00
D1 A2/3 D2 ()
= [ 2 ZEAD(8/3) — —2T(11/3) | du.
s 18vf vf/?’ vi’/3

Substituting to the formula above the values of Dy, Dy from (7.1.41)) and [y, l2, vy, v2 from
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Lemma [7.1.8 we obtain that

2/3
Df;q (2/3 (8/3)_5/3F(11/3)>

Uy
_A2BU(8/3) (3/2)2 [60b2 + (k — 1) (5(k — 1) + 9(k — 1) + 3 — 24c)]
B K 10(k — 1)3/3 ’

and thus
lim E(L — Per(S,,)) - n?/3

~(124)21(2/3) [ (k—1)(24c —5(k — 1)% = 9(k — 1) — 3) — 60
- 36 ‘AS (k—1)8/3

To finish the proof of Theorem we must show that the constant in ([7.1.42)) is the
same as in - Let r(s) be the arc-length parametrization of 95. It is not difficult to

verify that
br(s) = ¢ <r"’<s>, T,

dz.  (7.1.42)

k(r(s))
o(r(s)) = 5 ((r (). LY () (5). /()
24 " k(r(s)) ’ '
After substituting these formulae into ([7.1.42)), some tedious but straightforward calcula-
tions yield ([7.1.6]). O

7.1.5 The case of the unit circular disc

In this section we discuss the case, when S = Bgr. Note that in the hypotheses of Theo-
rems [7.1.1f and [7.1.2) it is assumed that x(x) > 1/R for all z € 9S. This assumption no
longer holds in the case that S = Bpg, and therefore we may not use Lemma How-
ever, the arguments of the proofs of Theorems and can be modified slightly to
yield a proof of Theorem Below we provide the outline of the proof of Theorem[7.1.3
and leave the technical details to the interested reader.

Proof of Theorem [7.1.3 As in the previous section, we may and do assume that R=1.

First note that by Efron’s identity (7.1.31] m, it is enough to prove and (| -
Also note that for any v € S 'and 0 < t < 2 simple calculations yleld

2
l(u,t) =((t) = 2arcsiny/1 — tz, (7.1.43)
12 .t
V(u,t) =V(t)=1t\/1— i 2 arcsin 7 (7.1.44)

Let W,, and U,, be defined as in the proofs of Theorems 1) and [7.1.2] respectively, and
let ® and L(t) = L(u,t) be defined as in the proof of Theorem [7.1.1] Then

n—2
W 2/ // / < > tluy X ug|duydugdidu,
™ S1
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1 2 £\ 2
U, = 2/ / / / <1 — V()> tarccos(uy, ug)|uy X uz|duidusdtdu.
T JstJo JL(t) JL(t) T

Integration by uq, us and w yields

W, =2 /0 ; (1 - V(t)>n_2 £(0(t) — sin £(¢))dt,

AP VN L L
Un—7T/0 (1 7T> t(2 —2cosl(t) — ¢(t) sin £(t))dt.

Formulas (7.1.43)), (7.1.44) and the substitution ¢ = 2sin(o/2) yield

4 [T . . sing +0\" 2
Wy =— sino (1 —o —sino) (1 — —— do,
m™Jo ™

s _ - (7.1.45)
Un:/ sino (2+2coso —sino(m — o)) (1_81110'—|-0') do.
0

™ ™

Now, by similar arguments as in the proofs of Theorems and we obtain that

2

™
Wn ~ ﬁv
Ar 1 (n?
Uy~ —— |1 ———=(—+3 O(n3
g [ (7 ) roe
which yield the statements of Theorem [7.1.3 O

7.1.6 The Jacobian of ®

In this section we sketch the calculation of the Jacobian of the transformation ® defined
in (7.1.21)). We remark that J® was calculated by Santal6 in [San46].

Let r: [0,27) — OS be a parametrization of S such that the outer normal u,,) =
(cos a, sin ). We introduce a, ¢1 and ¢o such that u = (cos a, sin @), uy = (cos ¢1, sin ¢1)
and ug = (cos ¢o, sin ¢3). Clearly, duduiduy = dadpides.

To make the calculation more apparent, we add an extra step: let (v, w) be the centre
of the unit circle that defines D_(x1, x2) (here v,w € R). Then x1 = (v+cos ¢1, w+sin ¢1)
and xa = (v + cos ¢2, w + sin ¢2), and by differentiation we obtain that

dzidze = |(sin ¢ cos ¢ — sin ¢g cos ¢1)|dp1dpadvdw.
Next, observe that (v, w) = (r1(a) — (1 +t) cosa, ra(a) — (1 4 t) sin ), thus
dvdw = |(=r](a)sina + rh(a) cosa — (1 +t))|dadt,
and hence

dridrs = |(—r](a)sina + rh(a) cosa — (1 +t)) sin(¢1 — ¢2)|dp1dpadadt.
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Using the special choice of r(«) one can see that —r)(a)sina + r5(a) cosa = 1/k(r(a)),
and by assumption xk > 1, thus

|(=r1(e) sina +75(a) cos o — (1 +¢)) sin(¢1 — ¢a)| = (1 +1 — 1/k(r(a))) sin(|é1 — ¢2]).

We note that |u; X ug| equals the sine of the length of the unit circular arc between
x1 and xo on the boundary of D(u,t), that is, sin(|¢1 — ¢2|) = |u1 X uz|, which proves

(7.1.22).

7.2 Variances

This section of the dissertation is based on the paper [FV18]. We continue to use most
of the notations of the previous section, however, it is more convenient to use different
symbols at certain place which we indicate...

Let K be a convex disc (compact convex set with non-empty interior) in the Euclidean
plane R? with C% smooth boundary. Let y, (ka7) be the minimum (maximum) of the
curvature over OK. It is known, see [Sch14] Section 3.2], that in this case a closed circular
disc of radius r,, = 1/kys rolls freely in K, that is, for each x € 0K, there exists a p € R?
with 2 € r,, B2 +p C K. Moreover, K slides freely in a circle of radius ry; = 1/kp,
which means that for each « € 0K there is a vector p € R? such that = € r3;0B% + p and
K C ryrB? + p. The latter yields that for any two points x,y € K, the intersection of all
closed circular discs of radius r > rj; containing = and y, denoted by [z, y], and called the
r-spindle of x and y, is also contained in K. Furthermore, for any X C K, the intersection
of all radius r > rj; circles containing X, called the closed r-hyperconvex hull (or r-hull
for short) and denoted by conv,(X), is contained in K.

Here we examine the following random model. Let r > 737, and let K] = conv ,(X,,)
be the r-hull of X,,, which is a (uniform) random disc-polygon in K. Let fo(K]) denote
the number of vertices (and also the number of edges) of K, and let A(K) denote the
area of K.

Obtaining information on the second order properties of random variables associated
with random polytopes is much harder than on first order properties. It is only recently
that variance estimates, laws of large numbers, and central limit theorems have been
proved in various models, see, for example, Barany, Fodor, Vigh [BFV10], Bérany, Reitzner
[BR10a], Béardny, Vu [BV07|, Fodor, Hug, Ziebarth [FHZ16|, Boéroczky, Fodor, Reitzner,
Vigh [BFRV09|, Reitzner [Rei03|,Rei05], Schreiber, Yukich [SY08], Vu [Vu05,Vu06], and
the very recent papers by Théle, Turchi, Wespi [TTW18|, Turchi, Wespi [TW18§|. For an
overview, we refer to Barany [Bar0O8| and Schneider [Sch1§].

In this section, we prove the following asymptotic estimates for the variance of fo(K)
and A(K])) in the spirit of Reitzner [Rei03].

Theorem 7.2.1 (Fodor, Vigh [FV18], Theorem 3 on page 1145). Let K be a convex disc
whose boundary is of class Ci. For any r > s it holds that

Var(fo(K")) < n3, (7.2.1)

and

Var(A(K")) < n”s, (7.2.2)
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where the implied constants depend only on K and r.
In the special case when K is the closed circular disc of radius r, we prove the following.

Theorem 7.2.2 (Fodor, Vigh [F'V18|, Theorem 4 on page 1145). It holds that
Var(fo(K})) =~ const., (7.2.3)

and
Var(A(K"))) < n™2, (7.2.4)

where the implied constants depend only on r.

From Theorem [7.2.1] we can conclude the following strong laws of large numbers. Since
the proof follows a standard argument based on Chebysev’s inequality and the Borel-
Cantelli lemma, see, for example, Boroczky, Fodor, Reitzner, Vigh [BFRV09, p. 2294] or
Reitzner |Rei03, Section 5], and [BS13, p. 174], we omit the details.

Theorem 7.2.3 (Fodor, Vigh [FV18], Theorem 5 on page 1145). Let K be a convex disc
whose boundary is of class C_Qi_. For any r > ryr it holds with probability 1 that

- woos_ o] 2 (5 A
i 1) 0V = il (5) [ (ko —7)

n—00 r

and

In the theory of random polytopes there is more information on models in which the
polytopes are generated as the convex hull of random points from a convex body K than
on polyhedral sets produced by random closed half-spaces containing K. For some recent
results and references in this direction see, for example, Boéréczky, Fodor, Hug [BFH10],
Béroczky, Schneider [BS10], Fodor, Hug, Ziebarth [FHZ16| and the survey by Schneider
[Sch1g].

Finally, in Section we consider a model of circumscribed random disc-polygons
that contain a given convex disc with C’i boundary. In this circumscribed probability
model, we give asymptotic formulas for the expectation of the number of vertices of the
random disc-polygon, the area difference and the perimeter difference of the random disc-
polygon and K, see Theorem Furthermore, Theorem provides an asymptotic
upper bound on the variance of the number of vertices of the random disc-polygons.

7.2.1 Preparations

We note that it is enough to prove Theorem for the case when rpy < 1 and r =1,
and Theorem for r = 1. The general statements then follow by a simple scaling
argument. Therefore, from now on we assume that r = 1 and to simplify notation we
write K, for K.

Let B denote the open unit ball of radius 1 centred at the origin o. Let D(u,t)
denote the disc-cap with vertex z, € 0K and height t. Note that for each u € S', there
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exists a maximal positive constant ¢*(u) such that (B + z, — (1 + t)u) N K # () for all
t € [0,t*(u)]. For simplicity we let A(u,t) = A(D(u,t)) and let £(u,t) denote the arc-length
of 0D(u,t) N (0B + z,, — (1 + t)u), similarly as before.
It is clear that Lemma implies that A(u,t) and ¢(u,t) satisfy the following rela-
tions uniformly in u:
Ulug, t) =~ 2, Alug,t) ~ t3/2, (7.2.5)

where the implied constants depend only on K.

Let D be a disc-cap of K with vertex x. For a line e C R? with e L u,, let e, denote
the closed half plane containing x. Then there exist a maximal cap C_ (D) = KNe; C D,
and a minimal cap C1 (D) =€/, N K D D.

Claim 7.2.4. There exists a constant ¢ depending only K such that if the height of the
disc-cap D 1is sufficiently small, then

{C_(D) —z) D (CL(D) — x).

Proof. Let us denote by h— (h4) the height of C_(D) (C4(D) resp.), which is the distance
of  and e (¢ resp.). By convexity, it is enough to find a constant ¢ > 0 such that for all
disc-caps of K with sufficiently small height hy/h_ < ¢ holds.

Choose an arbitrary R € (1/km, 1), and consider B = RB?+1— Ru,, the disc of radius
R that supports K in z. Clearly, B D K implies D = K N (EQ +p) C (BN (EQ +p) =D.
Also, for the respective heights h_ and h, of C_(D) and C4 (D), we have h_ = h_ and
fLJr > hy. Thus, it is enough to find ¢ such that iL+ / h_ < ¢é. The existence of such ¢ is
clear from elementary geometry. O

Let x;, z; (i # j) be two points from X,,, and let B(z;, ;) be one of the unit discs that
contain x; and x; on its boundary. The shorter arc of 0B(x;,z;) forms an edge of K, if
the entire set X, is contained in B(x;,x;). Note that it may happen that the pair z;, x;
determines two edges of K, if the above condition holds for both unit discs that contain
x; and x; on its boundary.

We recall that the Hausdorff distance dy (A, B) of two non-empty compact sets A, B C
R? is defined as

dg(A,B) := max{r;leaj( Jlr)réig d(a,b), Il])rleaé(géig d(a,b)},
where d(a,b) is the Euclidean distance of a and b.

First, we note that for the proof of Theorem similar to Reitzner |[Rei03], we
may assume that the Hausdorff distance dy (K, K,,) of K and K, is at most e, where
ex > 0 is a suitably chosen constant. This can be seen the following way. Assume
that dy (K, K,) > c€x. Then there exists a point x on the boundary of K, such that
exB? + 2 C K. There exists a supporting circle of K,, through = that determines a disc-
cap of height at least ex. By the above remark, the probability content of this disc-cap is
at least cx > 0, where ck is a suitable constant depending on K and €x. Then

P(dy (K, Kp) > ex) < (1— cg)™. (7.2.6)
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Our main tool in the variance estimates is the Efron-Stein inequality [ES81|, which
has previously been used to provide upper estimates on the variance of various geometric
quantities associated with random polytopes in convex bodies, see Reitzner [Rei03], and
for further references in this topic we recommend the recent survey articles by Barany
[Bar0§|] and Schneider [Sch1§].

7.2.2 Proof of Theorem [7.2.1]

We present the proof of the asymptotic upper bound on the variance of the vertex number
in detail. Our argument is similar to the one in Reitzner [Rei03, Sections 4 and 6]. Since
the proof for the variance of the missed area is very similar we omit it in this dissertation. A
short outline of the argument with the key steps can be found in the last two paragraphs of
Section 4 on page 1151 in [FV18|. The basic idea of the argument rests on the Efron-Stein
inequality, which bounds the variance of a random variable (in our case the vertex number
or the missed area) in terms of expectations. To calculate the involved expectations we use
some basic geometric properties of disc caps and the integral transformation [FKV14} pp.
907-909], see also [San46]. Finally, the asymptotic estimate (11) in [BFRV09, pp. 2290]
for the order of magnitude of beta integrals yields the desired asymptotic upper bound.
For the number of vertices of K,,, the Efron-Stein inequality [ES81] states the following

Var fo(Kn) < (n+ DE(fo(Knt1) — fo(Kn))>.

Let x be an arbitrary point of K and let x;x; be an edge of K,,. Following Reitzner
[Rei03], we say that the edge x;x; is visible from « if x is not contained in K, and it
is not contained in the unit disc of the edge z;z;. For a point z € K \ K,, let F,(x)
denote the set of edges of K,, that can be seen from z, and for = € K,, set F,,(x) = (). Let
Fu(@) = | Fal@)].

Let 2,41 be a uniform random point in K chosen independently from X,,. If x,41 € K,,
then fo(Knt1) = fo(Ky). If, on the other hand, z,4+1 ¢ K, then

fo(Knt+1) = fo(In) +1 — (Fy(zpg1) — 1)
= fo(Kyn) — Fu(zpe1) + 2.

Therefore,
|f0(Kn+1) - fO(Kn)| < 2Fn($n+1)a

and by the Efron—Stein jackknife inequality

Var(fo(Kn)) < (n+ DE(fo(Kns1) — oK)’ (7.2.7)
< 4(n+ DE(F2 (1)),

Similar to Reitzner, we introduce the following notation (see [ReiO3] p. 2147). Let
I = (iy,i2),01 # i2, 11,72 € {1,2,...} be an ordered pair of indices. Denote by F; the
shorter arc of the unique unit circle incident with x;, and x;, on which x;, follows z;, in
the positive cyclic ordering of the circle. Let I(A) denote the indicator function of the
event A. For the sake of brevity, we use the notation x1, x2, . .. for the integration variables
as well.
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We wish to estimate the expectation E(F2(z,41)) under the condition that
dp (K, K,) < ex. To compensate for the cases in which dy (K, K,,) > €, using (7.2.6),
we add an error term O((1 — cx)™).

2
E(Fy(ans1)?) = M%//n( EGIQMQO(MM%H

e [, (52

X ZH(FJ € fn(xn+1))) dX,dz,i1
J

1
= W ;;/K/ . H(FI € ]:n(wnJrl))]I(FJ S ]:n(an))
x I(dy(K, Ky) < eg)dXpdz, 1+ O((1 — cx)"™) (7.2.8)

Choose ek so small that A(K \ K,,) < . Note that with this choice of ek only one of the
two shorter arcs determined by x;, and z;, can determine an edge of K.

Now we fix the number k of common elements of I and J, that is, [N J| = k. Let F}
denote one of the shorter arcs spanned by x1 and x2, and let F5 be one of the shorter arcs
determined by x3_; and x4_. Since the random points are independent, we have that

23 < AK;H1§:<)()(Z:Z)Z;/nmﬂeJamﬁn)

< I(Fy € Fulwn)(dn (K, Ky) < ex0)dXdanit +O((1 - ex)")

2
1
n+lzn4 k/ /JIFle]-' xn+1))

K
xﬂaﬁeth@m+Q)MdH(K}K})geKyL&ﬁhm+1+CX(l—cKy3. (7.2.9)

Since the roles of F} and F» are symmetric, we may assume that diamC; (D) >
diam C'y (D), where D1 = D_(x1,22) and Dy = D_(x3_k,x4_) are the corresponding
disc-caps, and diam(-) denotes the diameter of a set. Thus,

2
1 _
(17.2.9) <« W E ?7,4 k?/ / H(Fl S fn(xn+1))
k=0 KR

x I(Fy € Fp(xpy1))I(diam Cy(Dy) > diam Cy(D3))
X ]I(dH(K, Kn) < EK)and$n+1 + O((l — CK)n). (7210)

Clearly, x,+1 is a common point of the disc caps D1 and D, so we may write that

(7.2.10) < A(K) T Zn4 k/ / I(F1 € Fn(2ni1))
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X ]I(Dl N D2 7’5 @)]I(dlam C+(D1) > diam C+(D2))
x I(dy (K, K,) < ex)dXpdzn 1 4+ O((1 — cx)™). (7.2.11)

In order for F} to be an edge of K, it is necessary that z5_g,...z, € K \ Dj, and for
Fy € F(Tp41) Tne1 must be in Dy. Therefore

T2 < Zn4 F[ e [ ) = A aDy)

X I[(D1 N Dg # 0)I(diam C4 (Dq) > diam C.(D2))
X H(dH(K, Kn) S EK)dxl c -d.%'47k + O((l — CK)n)

2 AD)\" A(Dy)

n4 k e —_ T

<z Lo (-5%) @
x I(Dy N Dy # 0)I(diam C4 (Dy) > diam Cy (Ds))

x I(dy (K, Kp) < ex)day -~ dzg_g + O((1 — cx)™). (7.2.12)

Reitzner proved (see |[Rei03, pp. 2149-2150]) that if D1 N Dy # 0, dy(K, K,) < ek
and diam Cy(D;) > diam Cy(D2) then there exists a constant ¢ (depending only on K)
such that C4(D3) C ¢(C4(D1) — xp,) + xp,, where zp, is the vertex of D;. Combining
this with Claim [7.2.4] we obtain that there is a constant ¢; depending only on K, such
that Dy C ¢1(D1 — xp,) + 2p,. Hence A(D3) < c2A(D1), and therefore

/ s / ]I(Dl N DQ 75 @)H(diam C+(D1) > diam C+(D2))
K K
xI(dy (K, Ky,) < eg)das - - - dzg_p, < A(Dy)>*

We continue by estimating (7.2.12) term by term (omitting the O((1 — cx)™) term).

sk [ B A(Dl) "R A(Dy)
n / / <1 ) A(K) (D1 N Dy # ()
x I( d1amC’+(D1) > diam C4 (D2)(dy (K, Ky) < eg)dxy - - dzg_p

o [ (A () oo s

Now, we use the following parametrization of (z1,z2) the same way as in [FKV14] to
transform the integral. Let

(1:17 132) - @(th,uhuz)a

where u, u1,us € S and 0 <t < to(u) are chosen such that
D(u,t) = Dy = D_(z1,x2),

and
(r1,22) = (v — (L +t)u +ug, xy — (1 + t)u + ug).
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More information on this transformation can be found in [FKV14, pp. 907-909]. Here
we just recall that the Jacobian of & is

1
|J®| = (1 +t— ) lur X ual,
K(Tu)

where u1 X us denotes the cross product of u; and us.
Let L(u,t) = 0D; NintK, then we obtain that

" (u) A(u, )\ [ A(u, )\ "
-7.2.13<<n4k// / / (1— ’ ) ( ’ )
st Jo Lut) JL(u,t) A(K) A(K)
1

X (1 +t— > |U1 X uzlduld’uzdtdu
K (Tu)

L0 G

X (1 +t— K(wu)) ((u,t) — sinl(u, t))dtdu. (7.2.14)

From now on the evaluation follows a standard way. First, we split the domain of
integration with respect to t into two parts. Let h(n) = (clnn/n)*?, where ¢ > 0 is a
sufficiently large absolute constant. Using 1) we have that A(u,t) > ~t3/2 uniformly

in u € S*, hence
n4—k/ /t*(u) (1 B A(u,t))”_4+k (A(u,t)>3_k
st Jh(n) A(K) A(K)

x(l—i—t— ! )(E(u,t)—sinf(u,t))dtdu

k()
t*(u) A(u t) n—4+k
4—k )
<n / / 1-— > dtdu
St Jh(n) A(K)

if ve/A(K) is sufficiently large.
Therefore, it is enough to estimate the following part of ((7.2.14)

LA G
Y <1 rio o (iu)> (0(u, t) — sin £(u, £))dtdu. (7.2.15)
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Using and the Taylor series of the sine function, we obtain that ¢(u,t) —
sin£(u,t) < t3/2. Since x(z) > 1 for all x € K, it follows that 0 < 1+t — k() 1 < 1.
We also use to estimate A(u,t), similarly as before. Assuming that n is large
enough, we obtain that

7t3/2 n—4+k .
[219) < n*~ f/‘/ ) (ﬁﬂ> 1. £32dtdu
Sl

hn) a2\,

Ak vt 12-3k —2/3

<Ln 1-— t72 dit<n ,
Jﬁ ( ACK)>

where the last inequality follows directly from formula (11) in [BFRV09, p. 2290]. Together
with ([7.2.7)), this yields the desired upper estimate for Var fo(K,,).

7.2.3 The case of the circle

In this section we prove Theorem [7.2.2] In particular, we give a detailed proof of the
estimate for the variance of the number of vertices of the random disc-polygon.
The case of the missed area is very similar.

Without loss of generality, we may assume that K = B2, and that r = 1.

We begin by recalling from [FKV14] that for any u € S' and 0 < ¢ < 2, it holds that

12 12 t
l(u,t) = 2arcsiny/1 — X and A(u,t) = A(t) =t\/1 — 5+ 2 arcsin 7

Proof of Theorem (7.2.3). From (7.1.7) and Chebyshev’s inequality, it follows that

_p<

2

fO(KTIL) o Var(fO(K}L))

0.052 ’

> 0.05> <

thus
Var(fo(K})) > 0.052.

This proves that Var(fo(K})) > const..

In order to prove the asymptotic upper bound in , we use a modified version
of the argument of the previous section. With the same notation as in Section 3, the
Efron-Stein inequality for the vertex number yields that

Var(fo(K})) < nE(F,(2,11))2.

Following a similar line of argument as above, we obtain that

T (2}: I(F; € fn<a:n+1>>>

X (jE:H(Pye.Fh(xn+4))> dzy - - - dapde,

J
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n
< i Z Z/( I(F; € Fp(zn41))(Fy € Fp(zps1))der - - depda,1 (7.2.16)
g (B

2)n+1
Now, let |[I N J| =k, where k = 0,1,2, and let F} = x129 and Fy = x3_x4_k. By the
independence of the random points (and by also taking into account their order), we get

that

2

2
n Z n\ [(2\ /n—
r21y < L k=0 <2> (k> (2 - k) /(BQ)”+1 HFL & Fal@ni))

X ]I(FQ S fn(xn+1))dx1 s d$nd$n+1.

2

1

< i Z n5_k/( - I(Fy € Fp(wn+1))l(Fy € Frp(xpg1))dz - - - depde, 4.
k=0 B2

(7.2.17)

By symmetry, we may also assume that A(D;) > A(D3), therefore

2
< n [ A € R € Flenr)
k=0 BA)n
X ]I(A(Dl) > A(DQ))dCCl s dxndxn+1. (7.2.18)

By integrating with respect to x5_g,...,z, and z,41 we obtain that

A(D1)>n—4+k A(Dl)

s m

2
1mm<2ﬁf/m/<h
=0 B2 B2

If A(D1) > A(D3), then Dy is fully contained in the circular annulus whose width is equal
to the height of the disc-cap D;. The area of this annulus is not more than 4A(D).
Therefore,

(7.2.19) <« Z:n‘r’_k/2 /2 (1 — 77) A(Dy)?> *dada,.
pard B2 JB

As common in these arguments, we may assume that A(Dp)/7m < clogn/n for some
suitable constant ¢ > 0 that will be determined later. To see this, let A(D;)/m > clogn/n.
Then

<1 B M) n—a+k ADY
<

T
<7rclogn>3_k ( c(n—4+k)logn>
. eXp —_—
n n
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«Ln C.

If ¢ > 0 is sufficiently large, then the contribution of the case when A(Dy)/m > clogn/n
is O(n=1). Thus,

2 B A(Dl) n—4+k -
5k _ 3—k
NE(Fp (1)) < k§:0:n /B 2 /B 2 <1 = > A(Dy)
x I(A(Dy) < clogn/n)dzidzs + O(n™1). (7.2.20)

Now, we use the same type of reparametrization as in the previous section. Let (x1,z2) =
(—tu, —tug), u € St and 0 < t < clogn/n. Then

2 N c*logn/n A(’LL t) n—4+k -
(T220) < > n~ /Sl/o /51 /Sl <1— : ) Au, t)>~
k=0

™

x t|uy x ug|duydugdudt + O(n™')

2 c*logn/n A ¢ n—4+k
< an’—k/ (1 - (z)) Alu, t)3F
k=0 0

x t(I(t) — sinl(t))dt + O(n™ ). (7.2.21)

Using that I(t) — 7 as t — 07, and the Taylor series of V(u,t) at ¢ = 0, we obtain that
there exists a constant w > 0 such that

2 c*logn/n
[7.2.21) < Zn5_k/ (1 —wt)"Fd=kqt - O(n™) (7.2.22)
k=0 0

Now, using a formula for the asymptotic order of beta integrals (see [BFRV09, p. 2290,
formula (11)]), we obtain that

2
([222) < n*Fn= G Lot
k=0
< const,
which finishes the proof of the upper bound in ([7.2.3)). O

In order to prove the asymptotic upper bound (|7.2.4)), only slight modifications are
needed in the above argument.

7.2.4 A circumscribed model

In the section we consider circumscribed random disc-polygons. Let K C R? be a convex
disc with C’_Q‘_ smooth boundary, and 7 > ... Consider the following set

K*’T:{xERQ\KCrBQ—I-:B},
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which is also called the r-hyperconvex dual, or r-dual for short, of K. It is known that
K*" is a convex disc with C_% boundary, and it also has the property that the curvature
is at least 1/r at every boundary point. For further information see [FKV16] and the
references therein.

For u € S1, let z(K,u) € 0K (z(K*",u) € JK*" resp.) be the unique point on 9K
(OK™" resp.), where the outer unit normal to K (K™" resp.) is u. For a convex disc
K C R? with o € int K, let hx (u) = max,e (z,u) denote the support function of K. Let
Per(-) denote the perimeter.

The following Lemma collects some results from [FKV16, Section 2].

Lemma 7.2.5. [FKV16| With the notation above
1. hx(u) + hger(—u) =7 for any u € S,
2. ki (x(u, K)) + ki ((—u, K*7)) =7 for any u € S,
3. Per(K) + Per(K*") = 2rm,
4. A(K*") = A(K) —r - Per(K) + r2r.

Now, we turn to the probability model. Let K be a convex disc with C’_% boundary,
and let r > k! as before. Let X,, = {z1,...,2,} be a sample of n independent random
points chosen from K™*" according to the uniform probability distribution, and define

K" = ﬂ rB? + z.

(n)
Q?GXn

) =
(conv ,(Xy))*", and consequently fO(K&S) = fo(conv,(X,)). We note that this is a

very natural approach to define a random disc-polygon that is circumscribed about K
that has no clear analogy in classical convexity. (If one takes the limit as r — oo, the
underlying probability measures do not converge.) The model is of special interest in the
case K = K™" which happens exactly when K is of constant width r.

K Ekng is a random disc-polygon that contains K. Observe that, by definition K

Theorem 7.2.6. Assume that K has C% boundary, and let r > r,,}. With the notation
above

im “Y)op B =8
nlﬁooE(fo(K("))) n P \/B(A(K) —r-Per(K) + r?m) )

() 1)

Furthermore if K has C’i boundary, then

(7.2.23)

. 2. \\2/3
lim n2/3 . <PerK*’T B PerK) :(12(A(K) r - Per(K) + r°m)) T 2

XT_W3L;Tde)—i)_US<4K@ﬂ—-i>dﬁ
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(12(A(K) — 7 - Per(K) + r2m))%/3 y
12

r(2) e [ (s -1) e

Proof. By Lemma [7.2.5[ it follows that K*" has also C% boundary. As fo(K(*nT)) =
fo(conv ,(X,,)), we immediately get from [FKV14, Theorem 1.1] that

lim n?/? - A(K\K) =

n—oo

li E *,7 -1/3 _ 3 2 ) 1 1/3d
A BB ) = = gy T\3) fe. W@ 5) e

Using Lemma we proceed as follows

[ (s 2) e [ D

k(z(K,—u 1/3
(z( ))1_%)

_ AR, 7Y)) 2/3
/ (TH(:E(K,—U))— du — / 7‘1/3 (K,(l‘(K, u)) — %) / du
M

1\ 2/3
= r1/3/ <K,(l‘) - ) dz.
0K r

Together with Lemma this proves (7.2.23)).

The rest of the theorem can be proved similarly, by using [FKV14, Theorem 1.1 and
Theorem 1.2], and Lemma [7.2.5

O]

. . *,7
As an obvious consequence of Theorem Lemma and the definition of K (n)’
we obtain the following corollary.

Corollary 7.2.7. Assume that K has Ci boundary, and let r > r.t. With the notation
above

Var(fo(KE;’S)) < n'/3,

Remark. We note that if K is a convex disc of constant width r, then K*" = K (see
e.g. [FKV16]), and similar calculations to those in the proof of Theorem provide
some interesting integral formulas. For example, for a real p we obtain that

/M (n(w) - i)pdm i /aK (W) - i)l_p dz.

130



dc_1638 19

Chapter 8

Best approximations by
disc-polygons

This chapter of the dissertation is based on the paper [FV12] by F. Fodor and V. Vigh,
Disc-polygonal approximations of planar spindle convex sets, Acta Sci. Math. (Szeged)
78 (2012), no. 1-2, 331-350.

8.1 Introduction and results

In this chapter, we consider best approximations of a planar 1-spindle convex set by
circumscribed and inscribed convex disc-polygons of unit radius with n sides. We examine
best approximations with respect to the Hausdorff metric of compact convex sets, and the
measures of deviation defined by perimeter and area differences. For basic definitions and
facts about R-spindle convex sets, we refer to Section

Let K1, K» C R? be (linearly) convex compact sets with nonempty interior containing
the origin o. Let A(-) and £(-) denote the area and perimeter of compact convex sets in
R2. We use the notation 64(K1, Ko) = A(K1 U K3) — A(K1 N K>) for the area deviation
of K1 and K3, and the notation d,(K7, K2) = £(K1 U K3) — (K1 N K3) for the perimeter
deviation of K1 and Ks. Finally, in this chapter dz stands for the Hausdorff metric for
compact sets in R2.

We consider R-spindle convex sets only for R = 1, so for the sake of simplicity, we
omit R from all notations. We call a 1-spindle convex set simply spindle convex.

Let S C R? be a compact spindle convex set with twice continuously differentiable
boundary. As we will consider approximations of S by inscribed and circumscribed disc-
polygons with at most n sides with respect to the Hausdorff metric, area deviation, and
perimeter deviation, we have to deal with six separate problems for each fixed n. Let
SH. 5’,‘?, and Sf; (S(I;IL), Sé) and an)) denote a disc-polygon with at most n sides inscribed
in S (circumscribed about S) that are closest to S with respect to the Hausdorff metric,
area deviation, and perimeter deviation, respectively. Such a (not necessarily unique)
minimizer clearly exists for each of the three measures of distance. It is also clear that
in each of the six cases the distance of the minimizer and S approaches zero as n tends
to infinity. The main results of this chapter are the following asymptotic formulae for the
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distance of the minimizers to S as n tends to infinity.

Theorem 8.1.1 (Fodor, Vigh [FV12, Theorem 1 on pages 333-334]). Let S be a compact,
spindle convex set in R? with a twice continuously differentiable boundary. Then the
following statements hold:

o550 ~ g7 ([ 020 - 1>3ds)3 = ()
(s ~ 1 ([ S(m(s)l)sdsf . (i)
(MWﬂﬁNQ(éédﬁ—Dwﬁzsy (i)

as n — o0.

In this dissertation, we only give the detailed proofs of the inscribed cases of Theo-
rem namely, i), ii), and iii). For the proofs of the circumscribed cases, see Section 5
of [FV12] on pages 344-349.

The analogues of the formulae in Theorem for linearly convex discs were first
stated by L. Fejes T6th in [FT53], and they were proved by McClure and Vitale in [MV75].
They established the order of approximation of linearly convex compact planar sets by
inscribed and circumscribed convex polygons with respect to the Hausdorff metric as well
as the perimeter and area deviation measures.

Approximations of (linearly) convex sets by polytopes have an extensive literature. For
a detailed survey on the current state-of-the-art of this subject see the papers by Gruber
[Gru93, Gru97].

To prove Theorem [8.1.1] we use, at least in part, the framework developed by McClure
and Vitale in [MV75]. In the next section, we cite those results from [MV75] which will
be used in our proof of Theorem [8.1.1

8.2 Tools

In this section we summarize the relevant parts of Section 4 of the paper by McClure and
Vitale [MV75], for further information see also [McC75].

Let f : [a,b] — R be a function, and let T,, = (to,t1,...,t,) be a partition of the
interval [a, b] such that

a=tg<ti1<ta<...<tp, =0
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Let E(f,T,) be a functional that is additive with respect to 7T}, in the following sense

I
—

n

E(f,T,) = ‘ e(fitistivr).

I
o

Define E,(f) = infp, E(f,T),).
The results will follow from the following three assumptions from [MV75].

Assumption 1. For any (o, ) satisfying a < a < < b, e(f,a,8) >0,and if a < a <
B <y <b, then

e(f,a,B) +e(f,B,7) <e(f o).

Assumption 2. There exists a function J : [a,b] = R, and a constant m > 1 with the
following properties:

(i) Jy is nonnegative and piecewise continuous on [a, b] having at most a finite number
of jump discontinuities, and

(i)
elfiavath)
i, = = Jrlad).

Moreover, |J¢(a+) —e(f,a,a+h)/h™| can be made uniformly small when (o, a+h)
is contained in an interval where J; is continuous.

Assumption 3. e(f, a, ) depends continuously on («, j3).
Corollary 2.1 in |[MV75| states the following.
Theorem 8.2.1 (McClure, Vitale [MV75]). If Assumptions[1{3 hold for e(f,a, ), then

b m
lim n™ B, (f) = </ (Jf(s))l/mds>
n—oo a

We use Theorem to prove parts (i), (ii), (iv), and (v) of Theorem In order
to prove (iii) and (vi) of Theorem we need a modified form of Theorem also
quoted from [MV75].

Let G(f,T,) be a function that has a decomposition with respect to the partition 7;,
of the following form

G(f, Tn)

Define G,,(f) = ming, G(f,T,).
The result will again follow from three assumptions from [MV75].

._ma’X 1g(f7 tiati-i-l)'

1=0,...,n—

Assumption 4. g(f,a,5) > 0 for any («, ) satisfying a < a < < b, and if a < a <
B <~ <b, then
max(g(f, o, B), 9(f, 8,7)) < g(f, 7).

Assumption 5. There exists a function Jy : [a,b] — R, and a constant m > 0 with the
following properties:
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(i) J¢ is nonnegative and piecewise continuous on [a, b], having at most a finite number
of jump discontinuities, and
(i)
1' .g(f’ a? a + h)
im ————
h—0+ h™m

Moreover, |J¢(a+)—g(f, o, a+h)/h™| can be made uniformly small when (o, a+h)
is contained in an interval where J; is continuous.

= Jf(OH—).

Assumption 6. g(f,a, ) depends continuously on (a, 3).
Lemma 5 in [MV75| states the following.
Theorem 8.2.2 (McClure, Vitale [MV75]). If Assumptions[{H{6 hold for g(f,c, ), then

s G = [ rntmas)”

In order to prove Theorem [8.1.1] in the next sections we define the functions f and
e in each case and verify Assumptions for the cases of area deviation and perimeter
deviation, and we verify Assumptions for the Hausdorff metric case.

In the proof of Theorem we frequently use the following fact from the elementary
differential geometry of curves. Let p and ¢ be distinct points of the continuously differ-
entiable curve C. Then the ratio of the length of the arc of C between p and ¢ and the
length of the segment [p, q] tends to 1 as ¢ — p.

In our argument, we use the small o(-) notation and, in particular, the following facts.
Let n > 0 and h(t) = o(t") > 0 (as t — 0) be an n times continuously differentiable
function on an open interval (—a, a). Then the first derivative h'(t) = o(t""!) as t — 0,
and H(z) = [ h(t)dt is o(z"t1) as . — 0.

Let S c R? be a compact, spindle convex set, and let L denote its perimeter. Let
7 : [0, L] — R? be the arc-length parametrization of the boundary 95 with a fixed r(0) =
xo € 0S starting point such that r(s) defines the positive orientation on 95S.

Let f : [0,L] — R be defined as f(s) = s, that is, f is the arc-length of 9S. The
function f is fixed throughout the chapter, and it is omitted from the notation.

8.3 Proofs of the inscribed cases

We associate with a partition 7,, = (to,t1,...,t,) of the interval [0, L] the disc-polygon
P(T,,) with vertex set {zo,x1,...,2n_1} such that x; =r(t;) fori=0,...,n—1. We use
a(s1, $2) to denote the length of the shorter unit circular arc connectlng the points r(s1)
and r(sg) for s1,s9 € [0, L], and, in particular, a; = a(t;, t;+1) for i =0,...,n — 1.

8.3.1 Perimeter deviation

Let E(T,,) = 6¢(P(T}),S). Then

n—1

Z € tu 75z+1

=0
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where e(t;,t;+1) = tiy1 — t; — a;. Furthermore,
@@%F?mmg
Assumptions [T] and [3] are obviously satisfied. In order to verify that Assumption [2] is
satisfied with m = 3 and J(s) = (k%(s) — 1)/24, we need the following lemma.

Lemma 8.3.1. Let K be a compact, (linearly) convex set in R? with nonempty interior
and twice continuously differentiable boundary. Let r(s) : [0, L] — R? be the arc-length
parametrization of the boundary 0K of K that defines the positive orientation on OK. Let
r(so) € OK be an arbitrary fized point. Then

As—d(r(so+ As),r(s0))  k(s0)?

li = . 8.3.1
A0+ (As)? 24 (8:3.1)
Proof. Without loss of generality, we may assume that r(sg) = 0, the z-axis of the

coordinate-system is tangent to K at the point r(sg), and that K lies in the upper half
plane. There exists an open neighbourhood of 0 in which the boundary of K can be
represented as the graph of a twice continuously differentiable convex function h with
h(0) = h'(0) = 0.

Applying Taylor’s theorem for h around 0, we obtain
B hl/(o)

5 2 +o(2®) asz— 0T

h(z)
Let r(so + As) = (z, h(z)). Using the formula for arc-length, we obtain that

. As—d(r(so+ As),r(s0)) . oI R (8)2dt — \/a? + h?(x)
lim 3 = lim p .
As—0+ (As) z—0+ (/1 I (t)2dt)3
From our preliminary remarks it follows that h'(x) = h”(0)x + o(z) as z — 0T, and so

B (x)? = h"(0)%22 + o(z?) as * — 0. Using the Taylor expansion of \/( - ) around 1, we
obtain

h//(0>2t2
¢L+M@2:vﬁ+w«mﬂ+OW):1+——5—~Hw% ast— 07,
and
h 2 h 2 .
22+ h?(x) =2(1+ ;O) 2?4 o(z?) =2 + 530) 3 +o(x®) asx— 0T

The above estimates yield

/xd1+M@Vﬁ = /%1+h%m%2+dﬂMt (8.3.2)
0 0

2
()2
= 3:+h(60)x3+0(x3) asx — 0.
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Note that from it readily follows that

lim = 8.3.3
z—0+ fo"” 1+ h’(t)th ( )
Finally, we obtain
T+ Wt dt 22 + h2(z) . h”éo)2 3 h”go)2 23 + o(z?)
gHo+ z—0+ x3

- h//(0)2

24
O]

The verification of Assumption [2| goes as follows. The function J(s) = (x(s)? — 1)/24
is nonnegative and continuous on the interval [0, L] and thus it satisfies condition (i) of

Assumption
In order to check condition (ii), note that d(r(so + As),r(so)) < a(so + As,sp) < As
implies
) a(sp + As, so)
1 —— = 1. 8.3.4
Asg%‘*' As ( )

Now, Lemma [8.3.1| and ({8.3.4) yield

e(so, 50 +As) As — a(so, so + As)

A T A A, (As)? (8:35)

— lim [As —d(r(so + As),7(s0))] — [a(so + As, s0) — d(r(so + As,7(s0))]
As—0+ (A3)3

_ K%(sg) 1

=21 ~ 3100

It is also clear that the limit (8.3.1) is uniform in [0, L] in the sense of (ii) of Assumption 2]
Proof of part (i) of Theorem[8.1.1, Theorem [8.2.1] and (8.3.5)) imply that

Tim n*E, </)J 1“@) —;4<é;ngﬁ—1ﬂﬁw>é (8.3.6)

O]

8.3.2 Area deviation
Let E(T,) = 64(P(T}),S). In this case,

n—1

B(T,) = Y elti,tin),

=1

where e(t;,t;+1) is the area of the region of S enclosed by 95 between z; and x;41 and the
shorter arc of the unit circle through the points z; and x;41. Furthermore,

Maﬁh?wmg
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Assumptions [I] and [3] are clearly satisfied. We need to verify that Assumption [2] holds
with J(s) = (k(s) —1)/12 and m = 3. Our argument is similar to the one we pursue in
the case of perimeter deviation.

Lemma 8.3.2. Let K be a (linearly) convexr, compact set with nonempty interior and
with twice continuously differentiable boundary. Let r(s) : [0,L] — R? be the arc-length
parametrization of OK that defines the positive orientation of S, and let r(sg) € OK be

a fixed point. Then
) A(so,s0 + As)  k(so)
lim = ,
As—0+ (As)3 12
where A(sg, so + As) denotes the area of the smaller cap cut off from K by the straight
line through the points r(sg) and r(so + As).

Proof. Without loss of generality, we may assume that r(sg) = 0, the z-axis of the
coordinate-system is tangent to K at the point r(sg), and that K lies in the upper half
plane. There exists an open neighbourhood of 0 in which the boundary of K can be
represented as the graph of a twice continuously differentiable convex function h with
h(0) = h'(0) = 0 and

h//
h(z) = 2(0) 2? +o(z?) asx — 0.

Let r(so + As) = (z, h(x)). The formulae for area and arc-length and the limit (8.3.3))
yield

zh(x) T () dt
li A(SQ, S0 + AS) li 2 - fO ( )
As—0F (AS)?’ z—0+ x3
. h(l’) h”(x) z 2 h”(O) h”(O) h//(O)
1 — — =
a:—>1%1+ 22 223 /0 £+ olt)dt 6 12

The function J(s) = (k(s) —1)/12 is nonnegative and continuous on the entire interval
[0, L], and thus it satisfies condition (i) of Assumption [2, The argument to verify that
condition (ii) holds for J(s) is similar to (8.3.5). We leave the details to the interested
reader.

In view of the above, part (ii) of Theorem follows directly from Theorem

8.3.3 Hausdorff distance
Let G(T,,) = 6u(P(T},),S). In this case

G(T,) = max 19(tutz‘+1),

1=0,...,n—

where g(t;,t;11) is the Hausdorff distance of the part of the curve 95 between x; and x;1
and the shorter arc of the unit circle connecting z; and x;4;. Furthermore,

61 (S, SHY = min G(T,).

Tn
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In order to verify that Assumptions 4] [f] and [] are satisfied, we approximate 9.5 locally
by its osculating circle. The osculating circle of 95 at r(s) is the circle of radius 1/k(s)
through r(s) which shares a common support line with S in 7(s), and which lies on the
same side of this common support line as S.

Lemma 8.3.3. Let hy,hy : R — R be twice continuously differentiable conver functions
with hi(0) = he(0) = R (0) = R5(0) = 0 and A (0) > R5(0) > 0. Then
() i i
Lo Jo IR — Ji TR RGPt 1(0)” — 10

z—0+ a3 6 ’

(1)
i 5 B0 = ha(t)dt _ Bi(0) — B4(0)
z—0+4+ x3 6

, and

(iii)

3 (h1]0, 2], h2]0, ]) maXco,q] |11 (t) — ha(t)]

_ h1(0) — h5(0)

2 Y
where h;[0,x] denotes the graph of h; over the closed interval [0,x] fori=1,2.
Proof. Using that
_

hz(ac) 9

part (i) of the lemma readily follows from (8.3.2]).
Part (ii) can be verified as follows:

2?2 +o(x?) asx— 0" fori=1,2,

I (t) = ho(t)dt Jr MO-R 02 4 o(¢2)dt

lim = lim “° =
z—0+ x3 z—0+ 3
hlll(o)_hg(o) 3 T 0 t2 dt h// o h//
— lLm 6 Y 1 im Jo 0% _ hi(0) 2(0).
z—0+ 373 z—0+ (1}3 6

It remains to prove part (iii) of the lemma. We start by showing the first equality in
(iii). Let
m(x) = max |hq(t) — ha(t)|.
te[0,z]

It is clear from the definition of Hausdorff distance that
0 (h1]0, x], hal0, x]) < m(x).
Next, we prove that for any sufficiently small € > 0, there exists a § > 0 such that
H(h1[0,z], hol0,2]) > m(x)(1 —¢) forall 0 < x <.
Fix an arbitrary 0 < € < 1/4. Then there exists a 0 < ¢ < ¢ that satisfies the following

conditions:
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(a) m(d)e <4,
(b) Ri(x),hs(x) < e for all z € (0,25), and
(¢) (hi(z+m(d)e) — hi(x))/m(d)e < 2e,i=1,2 for all x € [0, ].

The existence of a 0 < § < ¢ that satisfies condition (a) follows from the fact that if §
is sufficiently small, then |hi(x) — ho(z)| < z for x € [0, 4], and so m(J) < d. Since h;(x),
1 = 1,2, are twice continuously differentiable in a closed interval containing 0, therefore
their difference quotients are uniformly convergent in the same interval. Thus, if § is
sufficiently small, then both (b) and (c) are satisfied.

Let zo € [0, 0] where the maximum m(0) is attained. Without loss of generality, we
may assume that hq(zg) > ha(zg).

The normal line of the graph of hy at the point (zg, hi(xg)) intersects the graph of ho
in (&, he(2)) with & < zg +m(d)e < 24.

Now, it follows from conditions (a)—(c) that

0< hQ(i’) — hg(.’L‘o) < hQ((I}o + m(5)5) — hg(.’L‘o) < m(é)a,
hence
d((zo, h1(w0)), (2, h2(2))) = hi(zo) — ha(wo) + ha(xo) — ha(Z) = m(d) — m(d)e.

This proves the first equality of part (iii) of the lemma. The second equality is an imme-
diate consequence of Taylor’s theorem. ]

Figure 8.1:

Lemma 8.3.4. Let Cy be a circle of radius r = 1/k < 1 centred at o1, and let Cy be
a unit circle centred at oy which intersects C1 in c¢; and ca (see Figure such that
Zciocyg = 2a. The bisector of Zcijocy intersects C1 and Cy at di and do, respectively. Let
x = d(dy,d2). Then

x k—1

li =
a0t (2ar)? 8
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Proof. Applying the Law of Cosines to the triangle Aojozc; yields
l=r*+(1—7r+2)*+2r(1—7r+x)cosa.
Using that cosa = 1 — a?/2 + o(a?) as a — 0", we obtain
0 =2+ 22 —ra® +r’a® — rza® + o(a?).

This implies that

x? 4 2z . ra? —r?a® +rza? 1 1

m ———-— = lm = — — —

a=0+ (2ar)? a0+ (2ar)? r 4
and the statement of the lemma follows immediately. O
Lemma 8.3.5. Let hy,hy : [—a,a] — R be twice continuously differentiable convex func-

tions for some a > 0 such that h1(0) = h2(0) = h}(0) = h5(0) = 0 and hY(0) = R5(0) > 0.
Let C(z, h;) denote the concave up shorter unit circular arcs joining (0,0) with (z, hi(z)),
1 =1,2. Then
lim dH(C($7h1)2>C(xah2))
z—0+ x

Proof. Note that if a is sufficiently small, then

=0.

0r (C(z,h1), C(x, ha)) < |hi(z) = ha(z)| < m(z),
for all z € [0, a], and m(z) = o(z?) for hy and hy under the conditions of the lemma. [

Finally, we are going to verify Assumption [5| for J(s) = (k(s) —1)/8 and m = 2. Let
sp € [0, L]. Without loss of generality, we may assume that (sp) = 0 and the z-axis of the
coordinate-system is tangent to S at 7(sg) so that S is in the upper half plane. Let the real
function hj represent the boundary of S in a suitable neighbourhood of 0, say in the interval
[—a, a], and let hy be the function that represents the osculating circle of 95 at r(s¢) in the
same interval. Both hy and hg are twice continuously differentiable and convex in [—a, a],
and, due to the choice of the coordinate-system, h1(0) = h2(0) = h}(0) = h5(0) = 0 and
R{(0) = h5(0) > 0. Let r(so + As) = (z,h1(z)). The triangle inequality of the Hausdorff
metric implies that

9(s0, s0 + As) < dg(h1[0, z], hal0, x]) + 5 (h2[0, x], C(z, he)) + 0 (C(z, h1), C(x, ha)),

and
9(s0, so+As) > —0r(h1]0, x], ha[0, z])+ 5 (he[0, z], C(x, he)) =0 (C(z, hy), C(x, ha)).

Now, applying Lemmas and we obtain that

. g(s0,80 +As)  K(so) -1
A TR - g ok

Part (iii) of Theorem follows directly from Theorem
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