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Chapter 1

Summary

This dissertation is part of my application for the Doctor of the Hungarian Academy of
Sciences (D.Sc., in Hungarian: MTA doktora) title. The topic of this work belongs to
the theory of convex bodies, and to the theory of approximations (best and random) of
convex bodies by polytopes and similar objects. The dissertation is based on six of my
papers, each written with co-authors, that appeared in high-quality refereed international
mathematical journals. These papers are the following (in alphabetical order): Böröczky
and Fodor [BF19], Böröczky, Fodor and Hug [BFH10], Böröczky, Fodor and Hug [BFH13],
Fodor, Kevei and Vı́gh [FKV14], Fodor and Vı́gh [FV12], and Fodor and Vı́gh [FV18] (ci-
tations refer to the Bibliography at the end of this dissertation). The paper [BF19] investi-
gates a generalization of the classical Minkowski problem which is one of the fundamental
questions in the theory of convex bodies. The papers [BFH10, BFH13] are about ap-
proximations of convex bodies by random polytopes and polyhedral sets in three different
settings. In particular, [BFH10] studies weighted random approximations of convex bodies
by random polytopes contained in the body, and by applying certain polarity arguments,
also approximations by random polyhedral sets containing the body. The article [BFH13]
is about approximations of convex bodies by random polytopes whose vertices are chosen
from the boundary of the body. The three papers [FKV14, FV12, FV18] concern the ap-
proximation properties convex of bodies that are intersections of congruent closed balls (so-
called spindle convex or hyperconvex bodies) both in the random setting [FKV14, FV18]
and for best approximations [FV12]. The three papers [BFH10,BFH13,FKV14] are about
asymptotic results on expectations of various geometric quantities of random polytopes,
polyhedra and disc-polygons, while [FV18] contains asymptotic bounds on the variance of
some of these quantities. Some of my other papers ([BFRV09, BFV10, FHZ16]) on ran-
dom approximations about asymptotic bounds on variance and laws of large numbers are
not used in this dissertation, but they are briefly mentioned in the historical overview.
The problems discussed in this work belong to the rapidly developing fields of Convex-
ity and Stochastic Geometry that are intricately interlaced. In our arguments we use a
combination of methods from Geometry, Analysis and Probability.

The dissertation is organized as follows. Chapter 2 is an introduction: Section 2.1
contains a summary of our results along with a brief overview of the history of the relevant
parts of the theory. In Section 2.2 we introduce some of the most important terms and
notations used throughout this work.
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Chapter 3 is based on the paper [BF19]. We solve the existence part of the Lp dual
Minkowski problem for p > 1 and q > 0, which, in the absolutely continuous case, con-
stitutes solving the associated Monge-Ampère equation. We also examine the regularity
properties of the solutions for certain measures.

Chapter 4 is based on parts of the paper [BFH10] in which we investigate weighted
volume approximations of general convex bodies by inscribed random polytopes.

Chapter 5 is based on parts of the paper [BFH10] where we deal with mean width
approximations of convex bodies by circumscribed random polytopes.

Chapter 6 is based on the paper [BFH13]. In this chapter we study the properties of
the intrinsic volumes of random polytopes whose vertices are selected from the boundary
of a convex body.

In Chapters 7 and 8 we investigate approximations of sufficiently round convex bodies
in the plane by convex disc-polygons, which are objects that arise as intersections of
congruent circular discs. In particular, Chapter 7 is based on the papers [FKV14] and
[FV18], where we consider random approximations by inscribed random disc-polygons in
the plane. Chapter 8 is based on the paper [FV12] in which we investigate the properties
of best approximations of planar convex bodies by disc-polygons.

Below we state the main results of this dissertation in the form of six Theses. Since the
following Theses are intended for a wider readership, they are phrased with the minimal
use of mathematical symbols. The mathematically precise statements of our results are
formulated in the individual chapters of this work.

Thesis 1. We have solved the existence part of the Lp dual Minkowski problem for p > 1
and q > 0, which, in essence, constitutes solving the associated Monge-Ampère equation if
the considered measure is absolutely continuous with respect to the Hausdorff measure on
the sphere. We also examine the smoothness of the solutions using the regularity properties
of the Monge-Ampère equation.

Thesis 1 is supported by Theorems 3.1.1, 3.1.2, and Theorems 3.1.3, 3.1.4 and 3.1.5. In
particular, Theorem 3.1.1 establishes the existence of the solution of the Lp dual Minkowski
problem for p > 1 and q > 0 for discrete measures, and Theorem 3.1.2 deals with the case
of general measures. Theorems 3.1.3, 3.1.4 and 3.1.5 establish smoothness properties of
the solution in the case when the measure is absolutely continuous with respect to the
(n − 1)-dimensional Hausdorff measure on the unit sphere. (The detailed proofs of the
smoothness results are not included in this dissertation, for the arguments see [BF19].)

Thesis 2. We have established an asymptotic formula in d-dimensional Euclidean space
for the expectation of the difference of weighted volume of a general convex body and a
random polytope which is the convex hull of n identically distributed independent random
points chosen from the convex body according to a given probability density function, as n
tends to infinity. It is assumed that both the weight function and the probability density
function are continuous and the probability density function is positive in a neighbourhood
of the boundary of the convex body.

Thesis 2 is supported by Theorem 4.1.1 in Chapter 4. We note that Theorem 4.1.1
implies Corollary 4.1.2, which provides an asymptotic formula for the expectation of the
number of vertices of the random polytope. Theorem 4.1.1 and Corollary 4.1.2 are later
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used to prove Theorem 5.1.1 and Theorem 5.1.2 in Chapter 5 but they are important in
themselves being the most general version of a sequence of earlier results. Their significance
is partly due to the fact that there is no regularity or smoothness condition on the boundary
of the convex body and both the weight function and the probability density function are
very general.

Thesis 3. We have established an asymptotic formula in d-dimensional Euclidean space
for the expectation of the mean width difference of a general convex body and a random
polyhedral set containing the convex body where the random polyhedral set is the intersec-
tion of n identically distributed independent random closed half-spaces, each containing
the convex body and selected according to a prescribed probability density, as n tends to
infinity.

Thesis 3 is supported by Theorem 5.1.1. As a corollary of Theorem 5.1.1, we also obtain
an asymptotic formula for the expected number of facets of the random polyhedral set as
n tends to infinity, cf. Theorem 5.1.2. We note that, in fact, we have proved the much
more general statements in Theorem 5.2.2 and Theorem 5.2.3. The significance of the
result of Thesis 3 is due to the fact that previously there has been very little information
about circumscribed random polytopes compared to the vast literature of the inscribed
case, and that there are no requirements for the regularity or smoothness of the boundary
of the convex body.

Thesis 4. We have established an asymptotic formula in d-dimensional Euclidean space
for the expectation of the difference of the intrinsic volumes of a convex body that has
a rolling ball and a random polytope which is the convex hull of n identically distributed
independent random points chosen from the boundary of the convex body according to a
given continuous and positive probability density.

Thesis 4 is supported by Theorem 6.1.2. We note that examples show that the condition
that the convex body has a rolling ball cannot be dropped without losing the validity of
the asymptotic formula. The result of Thesis 4 is an extension of earlier theorems of
Reitzner [Rei02], Schütt and Werner [SW03], however, the methods used in the proof are
quite different.

Thesis 5. We have proved asymptotic formulae in the Euclidean plane for sufficiently
round and smooth convex discs for the expectation of the number of vertices, area difference
and perimeter difference of the convex disc and a random disc-polygon generated by n
independent uniform random points selected from the convex disc, as n tends to infinity.
We have also proved asymptotic estimates on the variance of the missed area and the
number of vertices. Furthermore, we give analogous results for a circumscribed model.

Thesis 5 is supported by Theorems 7.1.1, 7.1.2, 7.1.3, and Theorems 7.2.1, 7.2.2, and
Theorem 7.2.6, Corollary 7.2.7. The term sufficiently round means that there is a positive
radius R such that the convex disc can be represented as the intersection of a family of
radius R closed circular discs. The random disc-polygons arise as the intersections of all
radius R closed circular discs containing n independent uniform random points chosen
from the convex disc. Theorems 7.1.1, 7.1.2, and 7.1.3 are the disc-polygonal analogues of
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the celebrated results of Rényi and Sulanke [RS63,RS64] for the random approximations of
smooth convex discs by uniform random polygons. Moreover, they are also generalizations
of the results of Rényi and Sulanke in the sense that for a sufficiently smooth convex
disc they converge to them as the radius R tends to infinity. Theorems 7.2.1 and 7.2.2
provide asymptotic bounds on the variance of the number of vertices and missed area for
smooth convex discs and circles, respectively. Theorem 7.2.6 and Corollary 7.2.7 present
a circumscribed model and certain analogues of the inscribed results.

Thesis 6. We have established asymptotic formulae for the approximation orders of suf-
ficiently round and smooth convex discs in the Euclidean plane by inscribed and circum-
scribed disc-polygons with n vertices in the sense of area, perimeter and Hausdorff distance,
as n tends to infinity.

Thesis 6 is supported by Theorem 8.1.1. This result is a disc-polygonal analogue and
generalization of the classical theorem proved by McClure and Vitale [MV75], originally
stated by L. Fejes Tóth [FT53], for the approximation orders of convex discs by inscribed
and circumscribed polygons with n vertices in the sense of area, perimeter and Hausdorff
distance, as n tends to infinity.
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Chapter 2

Introduction

2.1 History and overview of results

The classical Minkowski problem in the Brunn-Minkowski theory of convex bodies is con-
cerned with the characterization of the so-called surface area measure. The surface area
measure of a convex body K is a Borel measure on the unit sphere Sn−1 such that for
any Borel set η, the measure of η is defined as the n − 1 dimensional Hausdorff measure
of its inverse image under the spherical image map. The (classical) Minkowski problem
asks for necessary and sufficient conditions for a Borel measure on Sn−1 to be the surface
area measure of a convex body. A particularly important case of the Minkowski problem
is for discrete measures. Let P ⊂ Rn be an n-dimensional polytope, which is defined as
the convex hull of a finite number of points in Rn provided intP 6= ∅. Those faces whose
dimension is n − 1 are called facets. A polytope P has a finite number of facets and the
union of facets covers the boundary of P . The surface area measure of P is a discrete
measure on the sphere that is concentrated on the outer unit normals of the facets. The
measure of a Borel set η on Sn−1 is equal to the sum of the surface areas of the facets of
P whose outer unit normals are contained in η.

The (discrete) Minkowski problem asks the following: let µ be a discrete positive
Borel measure on Sn−1. Under what conditions does there exist a polytope P such that
its surface area measure is µ? Furthermore, if such a P exists, is it unique? This polytopal
version, along with the case when the surface area measure of K is absolutely continuous
with respect to the spherical Lebesgue measure, was solved by Minkowski [Min97,Min03].
He also proved the uniqueness of the solution. For general measures the problem was solved
by Alexandrov [Ale38, Ale39] and independently by Fenchel and Jensen. The argument
for existence uses the Alexandrov variational formula of the surface area measure, and
the uniqueness employs the Minkowski inequality for mixed volumes. In summary, the
necessary and sufficient conditions for the existence of the solution of the Minkowski
problem for µ are that for any linear subspace L ≤ Rn with dimL ≤ n− 1, µ(L∩Sn−1) <
µ(Sn−1), and that the centre of mass of µ is at the origin.

Similar questions have been posed, and at least partially solved, for other measures
associated with convex bodies in the Brunn-Minkowski theory, for example, the integral
curvature measure of Alexandrov, or the Lp surface area measure introduced by Lutwak
[Lut93b], where the case p = 1 is the classical surface area measure, and the p = 0 case
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is the cone volume measure (logarithmic Minkowski problem). For a detailed description
of these measures and their associated Minkowski problems, and further references, see,
for example, the book [Sch14] by Schneider, and the paper [HLYZ16] by Huang, Lutwak,
Yang and Zhang.

Lutwak built the dual Brunn-Minkowski theory in the 1970s as a ”dual” counterpart
of the classical theory. Although there is no formal duality between the classical and dual
theories, one can say roughly that in the dual theory the radial function plays a similar
role as the support function in the classical theory. The dual Brunn-Minkowski theory
concerns the class of compact star shaped sets of Rn. Convex bodies are naturally star
shaped with respect to any of their points.

The qth dual intrinsic volumes for convex bodies containing the origin in their interior
were defined by Lutwak [Lut75], whose definition works for all real q. His definition is
via an integral formula involving the qth power of the radial function (for the precise
definition see (3.1.2)). We note that dual intrinsic volumes for integers q = 0, . . . , n are
the coefficients of the dual Steiner polynomial for star shaped compact sets, where the
radial sum replaces the Minkowski sum. The qth dual intrinsic volumes, which arise
as coefficients naturally satisfy (3.1.2), and this provides the possibility to extend their
definition for arbitrary real q in the case when the origin is in the interior of the body.

Huang, Lutwak, Yang, Zhang [HLYZ16] and Lutwak, Yang, Zhang [LYZ18] defined,
with the help of the reverse radial Gauss map, the qth dual curvature measures by means
of an integral formula involving the qth power of the radial function; for the precise defini-
tion we refer to 3.1.3. We note that the so-called cone volume measure and Alexandrov’s
integral curvature measure can both be represented as dual curvature measures. Further-
more, the qth dual curvature measure is a natural extension of the cone volume measure
also in the variational sense, see Corollary 4.8 of Huang, Lutwak, Yang, Zhang [HLYZ16].

For integers q = 0, . . . , n, dual curvature measures arise in a similar way as in the
Brunn-Minkowski theory by means of localized dual Steiner polynomials. These measures
satisfy (3.1.3), and hence their definition can be extended for q ∈ R. Huang, Lutwak,
Yang and Zhang [HLYZ16] proved that the qth dual curvature measure of a convex body
containing the origin in its interior can also be obtained from the qth dual intrinsic volume
by means of an Alexandrov-type variational formula.

Lutwak, Yang, Zhang [LYZ18] introduced a more general version of dual curvature
measures where a star shaped set Q (called the parameter body) containing the origin in
its interior is also involved; for a precise definition see (3.2.9). The parameter body Q acts
as a gauge, and its advantage is, for example, in the equiaffine invariant formula (3.1.10).

The Lp dual curvature measures emerged recently [LYZ18] as a family of geometric
measures which unify several important families of measures in the Brunn-Minkowski
theory and its dual theory of convex bodies. They were also introduced by Lutwak,
Yang and Zhang [LYZ18] using the −pth power of the support function and qth dual
curvature measure (see (3.1.11)). They provide a common framework for several other
geometric measures of the (Lp) Brunn-Minkowski theory and the dual theory: Lp surface
area measures, Lp integral curvature measures, and dual curvature measures, cf. [LYZ18].
Lp dual curvature measures also arise from Alexandrov-type variational formulas for the
dual intrinsic volumes as proved by Lutwak, Yang and Zhang, see Theorem 6.5 in [LYZ18].

In [LYZ18] Lutwak, Yang and Zhang introduced the Lp dual Minkowski existence
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problem: Find necessary and sufficient conditions that for fixed p, q ∈ R and star body Q
containing the origin in its interior and a given Borel measure µ on Sn−1 there exists a
convex body K such that µ is the Lp dual qth curvature measure of K. As they note in
[LYZ18], this version of the Minkowski problem includes earlier considered other variants
(Lp Minkowski problem, dual Minkowski problem, Lp Aleksandrov problem) for special
choices of the parameters p and q. When Q is the unit ball and µ is absolutely continuous
with density function f , then the Lp dual Minkowski problem constitutes solving the
associated Monge-Ampère equation (3.1.12), and in the case of general Q, the somewhat
more complicated Monge-Ampère equation (3.1.13).

The case of the Lp dual Minkowski problem for even measures (that are symmetric with
respect to the origin) has received much attention, but since this topic diverges from our
direction we do not discuss it here in detail. Instead, we refer to Böröczky, Lutwak, Yang,
Zhang [BLYZ13] concerning the Lp surface area measure, Böröczky, Lutwak, Yang, Zhang,
Zhao [BLY+], Jiang Wu [JW17] and Henk, Pollehn [HP18], Zhao [Zha18] concerning the
qth dual curvature measure, and Huang, Zhao [HZ18] for the Lp dual curvature measure
for detailed discussion of history and recent results.

We briefly discuss the known results about the Lp dual Minkowski problem in Sec-
tion 3.1, but for that we need some more formal definitions and notations.

Our main results about the existence part of the Lp dual Minkowski problem are
contained in Theorems 3.1.1 and 3.1.2. In particular, Theorem 3.1.2 states that if the
measure µ is not concentrated on any closed hemisphere of Sn−1, then there exists a
convex body K containing the origin such that its Lp dual curvature measure is µ.

We prove Theorem 3.1.2 in several stages. In this dissertation, we only present the
proof in the simpler case when the parameter body Q is the unit ball. The general case for
an arbitrary parameter body containing the origin in its interior and having a sufficiently
smooth boundary is treated in Section 6 of [BF19] on pages 8008–8015.

One of the important ingredients of the proof is the extension for q > 0 of the qth dual
intrinsic volumes, qth dual curvature measures and Lp dual qth dual curvature measures
for convex bodies that may contain the origin on their boundary. We spend Section 3.2
with investigating the properties of these extended notions.

In Section 3.3 we prove Theorem 3.1.1 for the simpler case when the parameter body
Q is the unit ball. Theorem 3.1.1 is the discrete version of the main Theorem 3.1.2. The
proof of Theorem 3.1.1 follows a variational argument. Before embarking on the actual
proof of Theorem 3.1.2 (for Q = Bn), we investigate the properties of Lp dual curvature
measures in Section 3.4. The proof of Theorem 3.1.2 is contained in Section 3.5 and it by
means of weak approximation by discrete measures.

Theorems 3.1.3, 3.1.4 and 3.1.5 establish smoothness properties of the solution of the
Lp dual Minkowski problem for measures that are absolutely continuous with respect to
the surface area measure. In this case, the solution of the problem constitutes solving a
Monge-Ampère type partial differential equation. In this dissertation we do not give the
proofs of the statements on the smoothness of the solution but the detailed arguments can
be found in Section 7 of [BF19]. The proof uses Caffarelli’s results [Caf90a,Caf90b] on the
regularity of the solutions of the Monge-Ampère equation.

We continue this section with a brief overview of the relevant parts of the history of
random and best approximations of convex bodies by polytopes in various models, and
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we describe the main results of this type contained in this dissertation without the use of
complicated notations. The precise (and formal) statements of results can be found in the
first sections of the subsequent chapters.

Approximation of complicated mathematical objects by simpler ones is an age-old
method that has been used extensively in many mathematical disciplines. In this disser-
tation, we investigate approximations of convex bodies in Euclidean d-space Rd. We note
that the use of d for dimension instead of n is natural in the context of approximations
when n is reserved for the number of points or hyperplanes. We use different classes of
geometric objects (convex bodies themselves) for the approximations such as polytopes,
polyhedral sets, and intersections of congruent closed balls. In the larger part of this work
we consider random approximations, that is, the approximating objects are produced by
some random process. However, in the last chapter we describe best approximations of
certain convex discs in the plane by convex disc-polygons.

There is a vast literature about both random and best approximations of convex bodies.
In this short overview we concentrate only on those specific topics that are directly related
to our own work presented in this dissertation. For a more comprehensive treatment of
the subject we refer the reader to the works listed at the end of this section.

Approximations of convex bodies by random polytopes, polyhedral sets, etc. is at
the intersection of Convexity and Stochastic Geometry. The beginnings of Stochastic
Geometry are frequently attributed to two classical problems: the Buffon needle problem,
and Sylvester’s four point problem; a historical overview can be found, for example, in
the book by Schneider and Weil [SW08, Section 8.1], and in the survey paper by Weil and
Wieacker [WW93].

One of the most common models of random polytopes is the following. Let K be a
convex body in Rd. The convex hull K(n) of n independent, identically distributed random
points in K chosen according to the uniform distribution is a (uniform) random polytope
contained in K. This is usually called the uniform model. Sometimes it is said that the
random polytope is inscribed in K although its vertices are not assumed to be on the
boundary of K in general.

The famous four-point problem of Sylvester [Syl64] is considered a starting point of
an extensive investigation of random polytopes of this type. Beside specific probabili-
ties as in Sylvester’s problem, important objects of study are expectations, variances and
distributions of various geometric functionals associated with the random polytope. Typ-
ical examples of such functionals are volume, other intrinsic volumes, and the number of
i-dimensional faces.

In their ground-breaking papers [RS63] and [RS64], Rényi and Sulanke investigated
random polytopes in the Euclidean plane and proved asymptotic results for the expecta-
tions of basic functionals of random polytopes in a convex domain K in the cases where
K is either sufficiently smooth or a convex polygon; for some specific statements of Rényi
and Sulanke see Section 7.1. Since then a significant part of results have been in the form
of asymptotic formulae as the number n of random points tends to infinity. We also follow
this path in this dissertation.

In the last few decades, much effort has been devoted to exploring the properties of
the uniform model of a random polytope contained in a d-dimensional convex body K.
From the extensive literature of this subject we select two specific topics that are directly
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related to our results presented in this dissertation.

To give a concrete example of such an asymptotic formula, we quote here the result
concerning the expectation of the volume difference V (K)− V (K(n)) of K and K(n). The

following formula holds for all convex bodies K ⊂ Rd of unit volume

lim
n→∞

(V (K)− EV (K(n))) · n
2
d+1 = cd ·

∫
∂K

κ(x)
1
d+1Hd−1(dx), (2.1.1)

where cd is an absolute constant depending only on d (defined in (4.1.1)), and κ(x) is the
generalized Gaussian curvature (see Section 2.2.2 for precise definition) at the boundary
point x ∈ ∂K, and Hd−1 denotes the (d − 1)-dimensional Hausdorff measure. We note
that the integral on the right-hand side of (2.1.1) is called the affine surface area of K.
The affine surface area turns out to be a fundamental quantity which plays an important
role in the theory of convex bodies, for more information see [Sch14, Section 10.5].

Rényi and Sulanke [RS63] proved (2.1.1) in the planar case when the boundary of the
convex body is three times continuously differentiable and has strictly positive curvature
everywhere, for the specific formula in the plane see also (7.1.2). Wieacker [Wie78] ex-
tended this result for the case when K is the d-dimensional unit ball, and Affentranger
investigated even non-uniform distributions in the ball. Bárány [Bár92] established (2.1.1)
for d-dimensional convex bodies with three times continuously differentiable boundary and
strictly positive Gaussian curvature. Finally, Schütt [Sch94] removed the smoothness con-
dition on the boundary of K. In Chapter 4 we further extend (2.1.1) in the following
way. We consider a generalized version of the uniform model of a random polytope in
a d-dimensional convex body K, where the random points are chosen from K not nec-
essarily uniformly but according to a given probability density function. Furthermore,
instead of the volume difference of the convex body and the random polytope we consider
the weighted volume difference where we use a quite general weight function. The main
result of Chapter 4, which is from the paper by Böröczky, Fodor and Hug [BFH10], is the
asymptotic formula for the expectation of the weighted volume difference of K and the
(non-uniform) random polytope, stated in Theorem 4.1.1. Moreover, this result implies,
through a well-known argument of Efron, an asymptotic formula for the expected number
of vertices of the random polytope, formulated in Corollary 4.1.2. We also note that our
proof of Theorem 4.1.1 makes Schütt’s proof complete, see the more detailed explanation
in Section 4.1.

An asymptotic formula for the expectation of the mean width difference of K and a
uniform random polytope was proved by Schneider and Wieacker [SW80] when the bound-
ary of K is three times continuously differentiable and has positive Gaussian curvature
everywhere. The assumption of smoothness was relaxed by Böröczky, Fodor, Reitzner and
Vı́gh [BFRV09]. Although it is not included in this dissertation, we note that in our recent
paper [FHZ16] by Fodor, Hug and Ziebarth, we generalized this asymptotic formula for
the case of non-uniform probability distributions and weighted mean width difference for
convex bodies that have a rolling ball using the methods of the papers by Böröczky, Fodor,
Reitzner and Vı́gh [BFRV09] and Böröczky, Fodor and Hug [BFH10].

Although in this dissertation we only consider first order type results, we note that
recently even variance estimates, laws of large numbers, and central limit theorems have
been proved in different models in a number of papers, for instance by Bárány, Böröczky,
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Fodor, Hug, Reitzner, Schreiber, Vı́gh, Vu, Yukich and Ziebarth; see [BR10b], [BV07],
[Rei03], [Rei05], [SY08] [Vu05], [Vu06], [BFV10], [BFRV09], [FHZ16].

We do not intend to give a thorough overview of second order type results here, but we
mention three papers, of which I am a co-author of, in which we have recently established
asymptotic results on the variance of various quantities of random polytopes and also laws
of large numbers. In particular, in the paper Böröczky, Fodor, Reitzner and Vı́gh [BFRV09]
we proved matching lower and upper bounds for the order of magnitude of the variance,
and also the law of large numbers, of the mean width of uniform random polytopes in a
convex body that has a rolling ball. This is analogous to the results of Reitzner [Rei03]
and Bárány and Reitzner [BR10a]: Reitzner [Rei03] proved the law of large numbers for
the volume of random polytopes in convex bodies with twice continuously differentiable
boundary and everywhere positive Gaussian curvature with the help of an optimal upper
bound on the variance of the volume, also shown in [Rei03]. Bárány and Reitzner proved
a matching lower bound for the variance of volume for arbitrary convex bodies. Further,
we mention that in the paper Bárány, Fodor and Vı́gh [BFV10] we established matching
asymptotic lower and upper bounds on the order of magnitude of the variance of all
intrinsic volumes of uniform random polytopes contained in a convex body whose boundary
is twice continuously differentiable and has positive Gaussian curvature everywhere. The
proof of the lower bound in [BFV10] is based on an idea, originally from Reitzner [Rei05]
and also used in Böröczy, Fodor, Reitzner and Vı́gh [BFRV09], that we can define small
independent caps and show that the variance is already quite large in these caps. The
proof of the upper bound is based on the Economic Cap Covering Theorem of Bárány
and Larman [BL88] and Bárány [Bár89], and the Efron–Stein jackknife inequality [ES81].
Both arguments are very different from the ones presented in this dissertation. Finally, we
add that in our recent paper [FHZ16] by Fodor, Hug and Ziebarth, we proved an upper
bound of optimal order for the variance of the weighted mean width of a non-uniform
random polytope in a convex body that has a rolling ball using a similar argument as in
Böröczky, Fodor, Reitzner and Vı́gh [BFRV09].

In Chapter 5 we consider random polyhedral sets containing a general d-dimensional
convex body K. It is well-known that a polytope can be represented as the intersection
of closed half-spaces. The intersection of a finite number of closed half-spaces is called
a polyhedral set, or polyhedron for short. Thus, it is a natural way to generate random
polytopes (more precisely, random polyhedral sets) as the intersection of a finite number
of random closed half-spaces selected according to some given probability distribution. If
we select closed half-spaces which all contain a convex body K, then their intersection will
also contain K, and thus we obtain a random polyhedral set circumscribed about K.

One such model of random polyhedral sets (in the plane) was suggested and investi-
gated in the paper of Rényi and Sulanke [RS68]. Subsequently, this circumscribed model
has not received as much attention as the inscribed case so there is considerably less
information about it in the literature.

Since polar duality turns the convex hull of a finite number of points contained in a
convex body K into the intersection of a finite number of closed half-spaces containing K,
one can regard a circumscribed random polyhedral set, in an intuitive sense, as a “dual”
of an inscribed random polytope. This duality relation can be made precise, but we will
see in Chapter 5.2 that the exact connection between the two models is more complicated
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than it seems at first sight.

In Chapter 5 we consider the following probability model (and also some more general
versions of it). Let µ be the unique rigid motion invariant Borel measure on the space of
hyperplanes of Rd which is normalized in a way that the measure of the set of hyperplanes
meeting a convex body M is always equal to the mean width of M . For a convex body K,
let HK be the set of hyperplanes whose distance from K is at most 1 but they are disjoint
from the interior of K. Then the restriction of 1

2µ to HK is a probability measure. Take n
independent random hyperplanes chosen according to this probability measure from HK
and consider the closed half-spaces bounded by them that contain K. The intersection
K(n) of these half-spaces provides a model of a random polyhedral set containing K. As
K(n) can be unbounded with positive probability, we investigate its intersection with a
suitable convex body which contains K in its interior. This only affects some constants in
our results but not the asymptotic behaviour.

The main results of Chapter 5, which are from the paper by Böröczky, Fodor and Hug
[BFH10], are the asymptotic formula of Theorem 5.1.1 for the expectation of the mean
width difference of K and K(n)∩K1, where K1 is the set whose points are at most distance
1 from K (radius 1 parallel domain of K, see Section 2.2), and the asymptotic formula
of Theorem 5.1.2 for the expectation of the number of facets of K(n) ∩ P , where P is a
polytope containing K in its interior. These (and some more general, see Theorems 5.2.2
and 5.2.3) results will be achieved with the help of Theorem 4.1.1 and Corollary 4.1.2 from
Chapter 4 on weighted volume approximation of a given convex body by inscribed random
polytopes using polarity. In all these results, no regularity or curvature assumptions on K
are required. We remark that the use of polarity to connect certain quantities of inscribed
polytopes to those of circumscribed ones goes back to Ziezold [Zie70]. Glasauer and Gruber
[GG97] used polarity to connect the mean width and volume, and they used this relation
for proving asymptotic formulae for best approximations of convex bodies.

Earlier results on this model include the paper [Zie70] by Ziezold who investigated
circumscribed polygons in the plane, and the doctoral dissertation [Kal90] of Kaltenbach
who proved asymptotic formulae for the expectation of the volume difference and for
the expectation of the number of vertices of circumscribed random polytopes around a
convex body K, under the assumption that the boundary of K is three times continuously
differentiable and has positive Gaussian curvature everywhere. Böröczky and Schneider
[BS10] established upper and lower bounds for the expectation of the mean width difference
for a general convex body K. Furthermore, they also proved asymptotic formulae for the
expected number of vertices and facets of the circumscribed random polytope, and an
asymptotic formula for the expectation of the mean width difference, under the assumption
that the reference body K is a simplicial polytope with a given number of facets.

We remark that in the paper [FHZ16] by Fodor, Hug and Ziebarth, we have proved
an asymptotic formula for the expectation of the volume difference of a circumscribed
random polytope and the parent convex body K under a very weak smoothness condition
that requires that K slides freely in a ball. This result, which is an extension of the
corresponding theorem of Kaltenbach [Kal90], was achieved using a similar argument as
in [BFH10] (presented in Chapter 5). Furthermore, we have also proved an asymptotic
upper bound for the variance of the volume of the circumscribed random polytope, and
the strong law of large numbers in [FHZ16].
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In Chapter 6 we investigate yet another model of random polytopes. Instead of choos-
ing the random points from all of K, we sample random points only from the boundary
of K according to a given probability density. The convex hull of these points provides a
probability model of a random polytope that we consider in Chapter 6. This (inscribed)
model has not been explored to the same extent as the previously discussed uniform model.
Our main focus is on the convergence of the expectation of the intrinsic volumes of such
a random polytope. The main result of Chapter 6, which is from the paper [BFH13]
by Böröczky, Fodor and Hug, stated in Theorem 6.1.2, extends previous works of Re-
itzner [Rei02] and Schütt and Werner [SW03] by relaxing the regularity assumptions on
K. In fact, for j = 1, . . . , d, Reitzner [Rei02] established an asymptotic formula for the
expectation of the difference of the jth intrinsic volumes of the random polytope and the
parent convex body for the case when the parent body has twice continuously differen-
tiable boundary and everywhere positive Gaussian curvature, cf Theorem 6.1.1. In the
case of volume, Schütt and Werner [SW03] extended the asymptotic formula (6.1.1) of
Reitzner to convex bodies that have a rolling ball and, at the same time, slide freely in
a ball, for precise definitions see Section 2.2. In Chapter 6 we extend this asymptotic
formula for convex bodies that have a rolling ball in the case of all intrinsic volumes.
This is not an easy task as the speed of convergence depends in an essential way on the
boundary structure of K. Our approach, which is different from those of Reitzner [Rei02]
and Schütt and Werner [SW03], refines arguments that have been developed in [BFH10]
by Böröczky, Fodor and Hug (and presented in Chapter 4 of this dissertation) to establish
first order results for the aforementioned model of a random polytope in a convex body K,
and it combines geometric and probabilistic ideas. Examples show that the existence of
a rolling ball cannot be deleted from Theorem 6.1.2 while maintaining the validity of the
asymptotic formula. We further note, that we also prove general lower and upper bounds
in the case of mean width in Theorem 6.1.3.

In Chapters 7 and 8 we consider approximations of sufficiently round convex bodies in
the Euclidean plane by intersections of congruent closed circular discs, in direct analogy
to how polytopes are produced as intersections of closed half-spaces. Of course, not all
convex discs can be approximated by intersections of equal size balls; such bodies must
satisfy special conditions. The natural objects that can be approximated by radius R > 0
closed balls in Rd are the so-called R-spindle convex or R-hyperconvex bodies, which are
convex bodies that can be represented as the intersection of a family of radius R closed
balls, for more precise definition, basic properties and references see Sections 7.1 and 7.1.1.
A convex body that is the intersection of a finite number of radius R closed balls is called a
ball-polyhedron, and in the planar case, a disc-polygon. We remark that the property that
a convex body K in Rd is R-spindle convex is equivalent to the fact that it is a Minkowski
(vector) summand of the d-dimensional ball of radius R, and that it slides freely in a ball
of radius R (see Section 2.2 for the definition). Requiring that a convex body slides freely
in a ball is a common enough regularity condition on its boundary so R-spindle convex
bodies are fairly common in approximation problems. For the literature on properties of
Minkowski summands of balls, we refer to Schneider [Sch14, Sections 3.1 and 3.2].

In Chapter 7 we consider the following probability model. We take n independent
random points from an R-spindle convex disc S according to the uniform probability
distribution. Then the intersection Sn of all closed radius R circular discs containing
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these random points yields a model of a random disc-polygon in S. The main results
on expectations are are Theorems 7.1.1, 7.1.2 and 7.1.3. In particular, Theorem 7.1.1
provides an asymptotic formula for the expectation of the area difference of S and Sn
and another formula for the expected number of vertices of Sn under the condition that
the boundary of S is twice continuously differentiable and its curvature is strictly larger
than 1/R everywhere. Theorem 7.1.2 is an asymptotic formula for the expectation of
the perimeter difference of S and Sn under stronger differentiability conditions of the
boundary of S. Finally, Theorem 7.1.3 gives similar asymptotic formulae to the ones in
Theorems 7.1.1 and 7.1.2 in the special case when R = 1 and S is the unit circle. The ideas
of the proofs of Theorems 7.1.1, 7.1.2 and 7.1.3 go back to Rényi and Sulanke [RS63,RS64],
however, the details are much more difficult as we have to use integral geometric ideas for
circles instead of lines. We also show that our results for R-spindle convex discs reproduce,
in the limit as R → ∞, the corresponding results of Rényi and Sulanke in the case when
the boundary of K is sufficiently smooth, cf. Section 7.1.2. Thus, our results can be
rightfully considered as generalizations of those.

In Section 7.2 we study the variance of the number of vertices and the missed area
in the cases when either the spindle convex disc has a twice continuously differentiable
boundary and the radius of the approximating circles is strictly larger than the maximum
of the curvature radius, see Theorem 7.2.1, or the spindle convex disc is a circle of fixed
radius that is equal to the radius of the approximating circles, see Theorem 7.2.2. The
proofs depend on the Efron-Stein inequality and the general idea of the argument is based
on works of Reitzner.

Finally, in Chapter 8 we investigate best approximations of spindle convex discs in the
plane by disc-polygons in various settings. We consider both inscribed and circumscribed
disc-polygons. Here, inscribed means that we select the vertices of the disc-polygon from
the boundary of S, while circumscribed means that the sides of the disc-polygon are tan-
gent to the boundary of S. We measure the efficiency of the approximation by three
measures of distance: area deviation, perimeter deviation and Hausdorff distance. We
seek to find the minimum of the distance between S and the inscribed or circumscribed
disc-polygons with n vertices according to the selected measure. Since finding the actual
minimum for general S and n is prohibitively difficult, as it is common in these approxi-
mations problems, we establish asymptotic formulae for the order of approximation as n
tends to infinity. The main result of Chapter 8 is a set of such asymptotic formulae stated
in Theorem 8.1.1, which are from the paper [FV12]. In the cases where one approximates
a (linearly) convex disc in the plane by inscribed and circumscribed convex polygons of a
given number of vertices with respect to area deviation, perimeter deviation and Hausdorff
distance, asymptotic formulae for the order of approximation were given by L. Fejes Tóth
in [FT53]. These asymptotic formulae were later proved by McClure and Vitale in [MV75].
Our results in Theorem 8.1.1 are the spindle convex analogues of the corresponding results
of L. Fejes Tóth and McClure and Vitale. Furthermore, in the case when the boundary of
S is twice continuously differentiable and has strictly positive curvature everywhere, then
the asymptotic formulae in Theorem 8.1.1 reproduce those of L. Fejes Tóth and McClure
and Vitale as the radius R of the disc-polygons tends to infinity, so they can be considered
as the generalizations of the classical results from [FT53] and [MV75]. The proof of The-
orem 8.1.1 uses an analytic framework developed by McClure and Vitale combined with
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geometric arguments.

Finally, we list some of the literature where one can find more details of the topics
discussed above. Due to the large number of contributions, any such list can only be
incomplete, so our suggestions should be considered only as starting points if one wishes
to learn more about a particular problem.

We must begin with the classical book by Santaló [San46] which is a standard reference
in geometric problems of probabilistic nature. The recent monograph of Schneider and
Weil [SW08] provides an excellent introduction to Stochastic Geometry and the integral
geometric methods used in problems of geometric probability along with a large number
of references for further study. As surveys on random polytopes, we suggest the following
papers by Bárány [Bár08], Hug [Hug13], Reitzner [Rei10], Schneider [Sch88, Sch18], Weil
and Wieacker [WW93].

For an early reference on asymptotic aspects of best approximation of convex bodies
by polytopes, see the book of L. Fejes Tóth [FT53]. For a more recent introduction into
this topic and for references, we suggest the book by Gruber [Gru07, Chapter 11]. The
following survey papers contain a detailed list of contributions: Bronshtĕın [Bro07], Gruber
[Gru83] and [Gru93]. The paper by Gruber [Gru97] provides a comparison of best and
random approximations of convex bodies.

2.2 Notations and basic definitions

In this section we set some general notations and conventions used throughout the dis-
sertation. Due to the slightly different settings in the individual chapters, there are some
variations in certain notations in order to avoid collisions; these variations are kept to the
necessary minimum, and they are introduced only at the beginning of the chapter they
pertain to. In each topic we use the notation prevalent in the particular subject.

For a comprehensive treatment of the theory of convex bodies, we refer the reader to
the books by Schneider [Sch14] and Gruber [Gru07].

2.2.1 General notations

In this dissertation we work in d-dimensional Euclidean space which we denote by Rd,
or when n denotes the dimension, then by Rn. As common in the literature, we do not
distinguish between points of the Euclidean space and vectors of the underlying vector
space if this does not lead to confusion. Generally, we use small-case (Latin) letters to
denote points (or vectors) and capitals to denote sets of points. Greek letters are usually
constants unless otherwise noted. For a point set X ⊆ Rd, we write clX for the closure of
X, intx for the interior of X, XC for the complement set of X, and ∂X for the boundary
of X.

We use 〈·, ·〉 for the Euclidean scalar product, and the induced norm is written as ‖ · ‖.
The d-dimensional unit ball centred at the origin o is denoted by Bd and its boundary is
Sd−1.

A convex body K ⊂ Rd is a compact, convex set with interior points. In the special
case that d = 2, a convex body is also called a convex disc.
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Let V denote volume and Hj denote the j-dimensional Hausdorff measure. We write
αd := V (Bd) and ωd := Hd−1(Sd−1) = dαd. In particular, if d = 2, then for the area
we also use the notation A(·), and for the perimeter (the H1 measure of the boundary or
arclength) Per(·).

For two sets X,Y ⊆ Rd, the Minkowski sum X + Y of X and Y is defined as

X + Y := {x+ y : x ∈ X and y ∈ Y }.

It is known that if both X and Y are convex sets then X + Y is also a convex set. For
a convex body K and a real number λ ≥ 0, the Minkowski sum K + λBd is called the
radius λ parallel domain of K, and it is denoted by Kλ. One can think of Kλ as the set of
points in Rd whose Euclidean distance from K does not exceed λ. We note that parallel
domains of convex bodies play a very important role in the theory of convex bodies.

There are various ways to define a measure of distance between convex bodies. We fre-
quently use the so-called Hausdorff distance of compact sets which is defined the following
way. For two compact sets A,B ⊂ Rd, the Hausdorff distance is

dH(A,B) := min{λ ≥ 0 : A ⊆ Bλ and B ⊆ Aλ}.

It is known that the set of compact sets of Rd with the Hausdorff distance form a locally
compact and complete metric space of which the set of compact convex sets is a closed
subspace in the induced topology by dH . For more information on the Hausdorff metric,
see, for example, [Sch14, Section 1.8].

For a convex body K ⊂ Rd and a unit vector u ∈ Sd−1, the width wK(u) of K in
the direction of u is the defined as the distance of the two unique supporting hyperplanes
of K orthogonal to u. The mean width of K is the average of wK(u) over Sd−1, that is,
W (K) = ω−1

d

∫
Sd−1 wK(u)Hd−1(du).

We frequently compare the order of magnitude of functions and use the following
common notations. For two functions f(n) and g(n) defined on the set of positive integers,
we write f(n) ∼ g(n) if limn→∞ f(n)/g(n) = 1. For two real functions h1 and h2 defined
on the same space, we write h1 � h2 or h1 = O(h2) if there exists a positive constant γ
with the property that |h1| ≤ γ · h2. We also use the common Landau symbol o(·) in the
dissertation.

2.2.2 Differentiability and regularity conditions

A hyperplane H supports the convex body K at the boundary point x ∈ ∂K if x ∈ H ∩K
and K is contained in one of the closed half-spaces determined by H. It is well-known that
a convex body K has a supporting hyperplane at each boundary point. The supporting
hyperplane may not be unique though. We say that a boundary point x ∈ ∂K is smooth
if there is a unique supporting hyperplane of K at x. (Non-smooth boundary points are
called singular.)

Let H be a supporting hyperplane of K at x ∈ ∂K. A unit vector u ∈ Sd−1 is an
outer unit normal of K if it is normal to H and points to the open half-space of H that
does not contain K. The outer unit normal may not be unique. If x ∈ ∂K is a smooth
boundary point, then there exists a unique outer unit normal vector of K at x, which we
denote by u(x) or ν(x), in some cases when it fits other notations better, by ux.
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A significant percentage of results on polytopal approximation of convex bodies involve
some kind of regularity or differentiability conditions on the boundary of the convex body.
In some cases, differentiability assumptions are not only technical conditions which are
required by the techniques used in the proof but they are essential to the behaviour of the
random polytope. It is always an important question to determine whether a particular
smoothness condition is essential or not, and if not, then try to weaken it as much as
possible.

The most common differentiability condition used in results about approximation by
polytopes is that we require ∂K to be Ck smooth for some k ≥ 1. More precisely, we
say that ∂K is Ck smooth for some k ≥ 1 if ∂K is a Ck submanifold of Rd (k times
continuously differentiable everywhere). Moreover, ∂K is Ck+ if it is Ck and, in addition,
its Gauss-Kronecker curvature is strictly positive everywhere. We remark that if ∂K is
C2 smooth, then that makes it possible to use tools from differential geometry. We will
use such differentiability conditions, for example, in Chapters 7 and 8.

The following are also common smoothness conditions on the boundary of a convex
body, and we use them, for example, in Chapter 6. Let K,L ⊂ Rd be convex bodies. We
say that L slides freely in K, if for any x ∈ ∂K, there exists a p ∈ Rd such that x ∈ L+ p
and L + p ⊆ K, see [Sch14, Section 3.2]. In the special case when L is a ball B, then B
rolls (or slides) freely in K, and if K is a ball B, then L slides freely in B. Note that if K
has a rolling ball, then each one of its boundary points is smooth. Moreover, it is known
that the existence of a rolling ball in K is equivalent to the Lipschitz continuity of the
outer unit normal function u(x) : ∂K → Sd−1 (see D. Hug [Hug00]). On the other hand,
it was proved by Blaschke that if the boundary of K is twice continuously differentiable
everywhere, then K has a rolling ball (see D. Hug [Hug00] or K. Leichtweiss [Lei98]).

In some cases strict differentiability conditions are not essential in the sense that a
particular asymptotic formula remains valid under slightly weaker conditions. In Chap-
ters 4, 5 and 6 we use the following notions of generalized second order differentiability of
∂K.

Let x ∈ ∂K be a smooth boundary point. Assume that K is oriented in Rd (using a
suitable rigid motion) such that x = o and xd = 0 is a supporting hyperplane of K at x.
Under these conditions, u = (0, . . . , 0,−1) is an outer unit normal of K at x. Then for a
suitably small ε > 0 and a neighbourhood U of x, the boundary of K can be represented
as follows

∂K ∩ U = {−u(x)f(z) : z ∈ (xd = 0) ∩ εBd},

where f is a non-negative real valued function which is convex on the set (xd = 0) ∩ εBd

and f(o) = 0.

We introduce a notion of generalized second order differentiability of ∂K at x where
we will call ∂K differentiable twice in the generalized sense if f has a second order Taylor
expansion at x. More precisely, if there exists a positive semi-definite quadratic form Q(z)
with the property that

f(z) =
1

2
Q(z) + o(‖z‖2), (2.2.1)

as z → o, then we say that ∂K is twice differentiable in the generalized sense at x. In this
case x is called a normal boundary point of K.
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The eigenvalues of Q are called the generalized principal curvatures of ∂K at x, and
they are denoted by k1(x), . . . , kd−1(x). Furthermore, we will need the normalized jth
elementary symmetric functions of the generalized curvatures which are defined as follows:

Hj(x) =

(
d− 1

j

)−1 ∑
1≤i1<···<ij≤d−1

ki1(x) · · · kij (x)

for j ∈ {1, . . . , d − 1}, and let H0(x) := 1. In particular, Hd−1(x) is the generalized
Gauss-Kronecker curvature and H1(x) is the (generalized) mean curvature of ∂K at x.
For brevity of notation we sometimes write κ(x) for the Gauss-Kronecker curvature, that
is, κ(x) = Hd−1(x). When we use any of the Hi(x), then tacitly assume that x is a normal
boundary point.

One reason why this notion of generalized second order differentiability is important
is that most boundary points of a convex body do possess this property as it was shown
by Alexandrov. More precisely, the boundary of a convex body is differentiable in this
generalized sense in almost all points with respect to Hd−1. For more information on this
topic we refer to Note 3 of Section 1.5, and Section 2.6 of [Sch14], and also to Section 2.2
of [Gru07].

2.2.3 Intrinsic volumes

It is well-known that the volume of the radius λ ≥ 0 parallel domain of a convex body K
is a polynomial of degree d of λ; this polynomial is frequently referred to as the Steiner’s
polynomial of K. The intrinsic volumes arise as suitably normalized coefficients of this
polynomial in the following way:

V (K + λBd) =
d∑
j=0

λd−jαd−jVj(K).

The intrinsic volumes carry important geometric information about K, and some of them
are actually equal to (constant times) some familiar quantities. In particular, Vd(K) is the
volume of K, Vd−1(K) is one half times the surface area of K, V1(K) is a constant times
the mean width of K, and V0(K) = 1. This particular normalization of the coefficients of
the Steiner formula was introduced by McMullen in [McM75]. It has the advantage that
the intrinsic volumes are independent of the dimension of the ambient space. Another
version of the Steiner formula is also frequently used

V (K + λBd) =

d∑
j=0

λj
(
d

j

)
Wj(K),

where the Wj(K), j = 0, . . . , d are called the Quermassintegrals of K.

Due to the works of Cauchy and Kubota, it is known that the intrinsic volumes can
also be written as mean projection volumes as follows. Let Ldj denote the Grassmanian of

all j-dimensional linear subspaces of Rd. Let νj be the unique Haar probability measure
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on Ldj . For L ∈ Ldj , denote by K|L the orthogonal projection of K into L. Since L is j-
dimensional, the j-th intrinsic volume Vj(K|L) of K|L is simply the j-dimensional volume
(Lebesgue measure) of K|L. Kubota’s formulae state the following:

Vj(K) =

(
d
j

)
αd

αjαd−j

∫
Ldj
Vj(K|L)νj(dL)

for j ∈ {1, . . . , d− 1}.
Finally, we note that general curvature and surface area measures arise by the so-called

localizations of the Quermassintegrals. Since these measures will only be used in Chapter 3
in the context of the Minkokwski problem, we give a short historical introduction to them
only there. The same applies to the dual Brunn-Minkowski theory and the related dual
intrinsic volumes and associated dual curvature measures.
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Chapter 3

The Lp dual Minkowski problem

The contents of this chapter is based on parts of the paper [BF19] by K.J. Böröczky and
F. Fodor, The Lp dual Minkowski problem for p > 1 and q > 0, J. Differential Equations
266 (2019), no. 12, 7980–8033. (DOI 10.1016/j.jde.2018.12.020)

3.1 Introduction

In this chapter our setting is the Euclidean n-space Rn with n ≥ 2. We use the notation
κn = V (Bn) for the volume of the unit ball. Recall that for a convex compact set K ⊂ Rn,
the support function hK(u) : Sn−1 → R is defined as hK(u) = max{〈x, u〉 : x ∈ K}. For
u ∈ Sn−1, the face ofK with exterior unit normal u is F (K,u) = {x ∈ K : 〈x, u〉 = hK(u)}.
For x ∈ ∂K, let the spherical image of x be defined as νννK({x}) = {u ∈ Sn−1 : hK(u) =
〈x, u〉}. For a Borel set η ⊂ Sn−1, the reverse spherical image is

ννν−1
K (η) = {x ∈ ∂K : νννK(x) ∩ η 6= ∅} = ∪u∈ηF (K,u).

If K has a unique supporting hyperplane at x, then we say that K is smooth at x, and in
this case νννK({x}) contains exactly one element that we denote by νK(x) and call it the
exterior unit normal of K at x.

The classical Minkowski problem seeks to characterize surface area measures. The
surface area measure of a convex body can be defined in a direct way as follows. Let ∂′K
denote the subset of the boundary of K where there is a unique outer unit normal vector. It
is well-known that ∂K\∂′K is the countable union of compact sets of finite Hn−2-measure
(see Schneider [Sch14, Theorem 2.2.5]), and hence ∂′K is Borel and Hn−1(∂K \ ∂′K) = 0.
Then νK : ∂′K → Sn−1 is a function that is usually called the spherical Gauss map,
and νK is continuous on ∂′K. The surface area measure of K, denoted by S(K, ·), is
a Borel measure on Sn−1 such that for any Borel set η ⊂ Sn−1, we have S(K, η) =
Hn−1(ννν−1

K (η)). It is an important property of the surface area measure that it satisfies
Minkowski’s variational formula

lim
ε→0+

V (K + εL)− V (K)

ε
=

∫
Sn−1

hL dS(K, ·) (3.1.1)

for any convex body L ⊂ Rn.
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The classical Minkowski problem asks for necessary and sufficient conditions for a Borel
measure on Sn−1 to be the surface area measure of a convex body. A particularly important
case of the Minkowski problem is for discrete measures. Let P ⊂ Rn be a polytope, which
is defined as the convex hull of a finite number of points in Rn provided intP 6= ∅. Those
faces whose dimension is n − 1 are called facets. A polytope P has a finite number of
facets and the union of facets covers the boundary of P . Let u1, . . . , uk ∈ Sn−1 be the
exterior unit normal vectors of the facets of P . Then S(P, ·) is a discrete measure on Sn−1

concentrated on the set {u1, . . . , uk}, and S(P, {ui}) = Hn−1(F (P, ui)), i = 1, . . . , k. The
Minkowski problem asks the following: let µ be a discrete positive Borel measure on Sn−1.
Under what conditions does there exist a polytope P such that µ = S(P, ·)? Furthermore,
if such a P exists, is it unique? This polytopal version, along with the case when the
surface area measure of K is absolutely continuous with respect to the spherical Lebesgue
measure, was solved by Minkowski [Min97, Min03]. He also proved the uniqueness of the
solution. For general measures the problem was solved by Alexandrov [Ale38,Ale39] and
independently by Fenchel and Jensen. The argument for existence uses the Alexandrov
variational formula of the surface area measure, and the uniqueness employs the Minkowski
inequality for mixed volumes. In summary, the necessary and sufficient conditions for the
existence of the solution of the Minkowski problem for µ are that for any linear subspace
L ≤ Rn with dimL ≤ n− 1, µ(L ∩ Sn−1) < µ(Sn−1), and that the centre of mass of µ is
at the origin, that is,

∫
Sn−1 uµ(du) = 0.

Similar questions have been posed for K ∈ Kno , and at least partially solved, for other
measures associated with convex bodies in the Brunn-Minkowski theory, for example, the
integral curvature measure J(K, ·) of Alexandrov (see (3.1.5) below), or the Lp surface

area measure dSp(K, ·) = h1−p
K dS(K, ·) for p ∈ R introduced by Lutwak [Lut93b], where

S1(K, ·) = S(K, ·) (p = 1) is the classical surface area measure, and S0(K, ·) (p = 0) is the
cone volume measure (logarithmic Minkowski problem). Here some care is needed if p > 1,
when we only consider the case o ∈ ∂K if the resulting Lp surface area measure Sp(K, ·) is
finite. For a detailed overview of these measures and their associated Minkowski problems
and further references see, for example, Schneider [Sch14], and Huang, Lutwak, Yang and
Zhang [HLYZ16].

Lutwak built the dual Brunn-Minkowski theory in the 1970s as a ”dual” counterpart
of the classical theory. Although there is no formal duality between the classical and dual
theories, one can say roughly that in the dual theory the radial function plays a similar
role as the support function in the classical theory. The dual Brunn-Minkowski theory
concerns the class of compact star shaped sets of Rn. A compact set S ⊂ Rn is star
shaped with respect to a point p ∈ S if for all s ∈ S, the segment [p, s] is contained in S.
We denote the class of compact sets in Rn that are star shaped with respect to o by Sno ,
and the set of those elements of Sno that contain o in their interiors are denoted by Sn(o).
Clearly, Kno ⊂ Sno and Kn(o) ⊂ S

n
(o). For a star shaped set S ∈ Sno , we define the radial

function of S as %S(u) = max{t ≥ 0 : tu ∈ S} for u ∈ Sn−1.
Dual intrinsic volumes for convex bodies K ∈ Kn(o) were defined by Lutwak [Lut75]

whose definition works for all q ∈ R. For q > 0, we extend Lutwak’s definition of the qth
dual intrinsic volume Ṽq(·) to a compact convex set K ∈ Kno as

Ṽq(K) =
1

n

∫
Sn−1

%qK(u)Hn−1(du), (3.1.2)
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which is normalized in such a way that Ṽn(K) = V (K). We note that %K is continuous
at all u ∈ Sn−1 but a compact set of Hn−1-measure zero (see Lemma 3.2.1). We observe
that Ṽq(K) = 0 if dimK ≤ n − 1, and Ṽq(K) > 0 if K is full dimensional. We note that
dual intrinsic volumes for q = 0, . . . , d are the coefficients of the dual Steiner polynomial
for star shaped compact sets, where the radial sum replaces the Minkowski sum. The
qth dual intrinsic volumes, which arise as coefficients naturally satisfy (3.1.2), and this
provides the possibility to extend their definition for arbitrary q ∈ R in the case when
o ∈ intK and for q > 0 when o ∈ K.

Extending the definition of Huang, Lutwak, Yang, Zhang [HLYZ16] and Lutwak, Yang,
Zhang [LYZ18] for K ∈ Kn(o), if K ∈ Kno and η ⊂ Sn−1 is a Borel set, then the reverse
radial Gauss image of η is

ααα∗K(η) = {u ∈ Sn−1 : %K(u)u ∈ F (K, v) for some v ∈ η} = {u ∈ Sn−1 : %K(u)u ∈ ννν−1
K (η)},

which is Lebesgue measurable according to Lemma 3.2.3. For the measurability of ααα∗K(η)
in the case K ∈ Kn(0), see [Sch14, Lemma 2.2.4]. For a convex body K ∈ Kno and q ∈ R,

the qth dual curvature measure C̃q(K, ·) is a Borel measure on Sn−1 defined in [HLYZ16]
as

C̃q(K, η) =
1

n

∫
ααα∗K(η)

%qK(u)Hn−1(du). (3.1.3)

Similar to the case of qth dual intrinsic volumes, the notion of qth dual curvature measures
can be extended to compact convex sets K ∈ Kno when q > 0 using (3.1.3). Here if
dimK ≤ n − 1, then C̃q(K, ·) is the trivial measure. We note that the so-called cone
volume measure V (K, ·) = 1

n S0(K, ·) = 1
n hKS(K, ·), and Alexandrov’s integral curvature

measure J(K, ·) can both be represented as dual curvature measures as

V (K, ·) = 1
n S0(K, ·) = C̃n(K, ·) (3.1.4)

J(K∗, ·) = C̃0(K, ·) provided o ∈ intK. (3.1.5)

Based on Alexandrov’s integral curvature measure, the Lp Alexandrov integral curvature
measure

dJp(K, ·) = %pK dJ(K, ·)

was introduced by Huang, Lutwak, Yang, Zhang [HLYZ18] for p ∈ R and K ∈ Kn(o).
We note that the qth dual curvature measure is a natural extension of the cone volume

measure V (K, ·) = 1
n hKS(K, ·) also in the variational sense, Corollary 4.8 of Huang,

Lutwak, Yang, Zhang [HLYZ16] states the following generalization of Minkowski’s formula
(3.1.1). For arbitrary convex bodies K,L ∈ Kn(o), we have

lim
ε→0+

Ṽq(K + εL)− Ṽq(K)

ε
=

∫
Sn−1

hL
hK

dC̃q(K, ·). (3.1.6)

In this paper, we actually do not use (3.1.6), but use Lemma 3.3.3, which is a variational
formula in the sense of Alexandrov for dual curvature measures of polytopes.

For integers q = 0, . . . , n, dual curvature measures arise in a similar way as in the
Brunn-Minkowski theory by means of localized dual Steiner polynomials. These measures
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satisfy (3.1.3), and hence their definition can be extended for q ∈ R. Huang, Lutwak, Yang
and Zhang [HLYZ16] proved that the qth dual curvature measure of a convex body K ∈
Kn(o) can also be obtained from the qth dual intrinsic volume by means of an Alexandrov-
type variational formula.

Lutwak, Yang, Zhang [LYZ18] introduced a more general version of the dual curvature
measure where a star shaped set Q ∈ Sn(o) is also involved; namely, for a Borel set η ⊂ Sn−1,
q ∈ R and K ∈ Kn(o), we have

C̃q(K,Q, η) =
1

n

∫
ααα∗K(η)

%qK(u)%n−qQ (u)Hn−1(du) (3.1.7)

and the associated qth dual intrinsic volume with parameter body Q is

Ṽq(K,Q) = C̃q(K,Q, S
n−1) =

1

n

∫
Sn−1

%qK(u)%n−qQ (u)Hn−1(du). (3.1.8)

According to Lemma 5.1 in [LYZ18], if q 6= 0 and the Borel function g : Sn−1 → R is
bounded, then∫

Sn−1

g(u) dC̃q(K,Q, u) =
1

n

∫
∂′K

g(νK(x))〈νK(x), x〉‖x‖q−nQ dHn−1(x) (3.1.9)

where ‖x‖Q = min{λ ≥ 0 : λx ∈ Q} is a continuous, even and 1-homogeneous function
satisfying ‖x‖Q > 0 for x 6= o. The advantage of introducing the star body Q is apparent in
the equiaffine invariant formula (see Theorem 6.8 in [LYZ18]) stating that if ϕ ∈ SL(n,R),
then ∫

Sn−1

g(u) dC̃q(ϕK,ϕQ, u) =

∫
Sn−1

g

(
ϕ−tu

‖ϕ−tu‖

)
dC̃q(K,Q, u), (3.1.10)

where ϕ−t denotes the transpose of the inverse of ϕ.
For q > 0, we extend these notions and fundamental observations to any convex body

containing the origin on its boundary. In particular, for q > 0, K ∈ Kno and Q ∈ Sn(o), we

can define the associated curvature measure by (3.1.7) and the associated dual intrinsic
volume by (3.1.8), where C̃q(K,Q, ·) is a finite Borel measure on Sn−1, and Ṽq(K,Q, ·) is
finite. In addition, for q > 0, we extend (3.1.9) in Lemma 6.1 on page 8008 in [BF19] and
(3.1.10) in Lemma 6.5 on page 8009 in [BF19] to any K ∈ Kno .

Lp dual curvature measures were also introduced by Lutwak, Yang and Zhang [LYZ18].
They provide a common framework that unifies several other geometric measures of the
(Lp) Brunn-Minkowski theory and the dual theory: Lp surface area measures, Lp integral
curvature measures, and dual curvature measures, cf. [LYZ18]. For q ∈ R, Q ∈ Sn(o), p ∈ R
and K ∈ Kn(o), we define the Lp qth dual curvature measure C̃p,q(K,Q, ·) of K with respect
to Q by the formula

dC̃p,q(K,Q, ·) = h−pK dC̃q(K,Q, ·). (3.1.11)

While we also discuss the measures C̃p,q(K,Q, ·) involving a Q ∈ Sn(o), we concentrate

on C̃p,q(K, ·) in this paper, which represents many fundamental measures associated to a
K ∈ Kn(o). Basic examples are

C̃p,n(K, ·) = Sp(K, ·)
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C̃0,q(K, ·) = C̃q(K, ·)
C̃p,0(K, ·) = Jp(K

∗, ·).

Alexandrov-type variational formulas for the dual intrinsic volumes were proved by
Lutwak, Yang and Zhang, cf. Theorem 6.5 in [LYZ18], which produce the Lp dual cur-

vature measures C̃p,q(K,Q, ·). In this paper we will use a simpler variational formula,
cf. Lemma 3.3.3 for the qth dual intrinsic volumes that we specialize for our particular
setting.

In Problem 8.1 in [LYZ18] the authors introduced the Lp dual Minkowski existence
problem: Find necessary and sufficient conditions that for fixed p, q ∈ R and Q ∈ Sn(o)
and a given Borel measure µ on Sn−1 there exists a convex body K ∈ Kn(o) such that

µ = C̃p,q(K,Q, ·). As they note in [LYZ18], this version of the Minkowski problem includes
earlier considered other variants (Lp Minkowski problem, dual Minkowski problem, Lp
Aleksandrov problem) for special choices of the parameters. For Q = Bn and an absolutely
continuous measure µ with density function f , the Lp dual Minkowski problem constitutes
solving the Monge-Ampère equation

det(∇2h+ h Id) = 1
n h

p−1·(‖∇h‖2 + h2)
n−q

2 · f (3.1.12)

for the non-negative L1 Borel function f with
∫
Sn−1 fdHn−1 > 0 (see (93) on page 8016

in Section 7 of [BF19]). Actually, if Q ∈ Sn(o), then the related Monge-Ampère equation is

(see (94) on page 8016 in Section 7 of [BF19])

det(∇2h(u) + h(u) Id) = 1
n h(u)p−1‖∇h(u) + h(u)u‖n−qQ · f(u). (3.1.13)

The case of the Lp dual Minkowski problem for even measures has received much
attention but is not discussed here, see Böröczky, Lutwak, Yang, Zhang [BLYZ13] con-
cerning the Lp surface area Sp(K, ·), Böröczky, Lutwak, Yang, Zhang, Zhao [BLY+], Jiang
Wu [JW17] and Henk, Pollehn [HP18], Zhao [Zha18] concerning the qth dual curvature
measure C̃q(K, ·), and Huang, Zhao [HZ18] concerning the Lp dual curvature measure for
detailed discussion of history and recent results.

Let us indicate the known solutions of the Lp dual Minkowski problem when only mild
conditions are imposed on the given measure µ or on the function f in (3.1.12). We do not
state the exact conditions, rather aim at a general overview. For any finite Borel measure
µ on Sn−1 such that the measure of any open hemi-sphere is positive, we have that

• if p > 0 and p 6= 1, n, then µ = Sp(K, ·) = nC̃p,n(K, ·) for some K ∈ Kno , where the
case p > 1 and p 6= n is due to Chou, Wang [CW06] and Hug, Lutwak, Yang, Zhang
[HLYZ05], while the case 0 < p < 1 is due to Chen, Li, Zhu [CLZ17];

• if p ≥ 0 and q < 0, then µ = C̃p,q(K, ·) for some K ∈ Kno where the case p = 0

(µ = C̃q(K, ·)) is due to Zhao [Zha17] (see also Li, Sheng, Wang [LSW]), and the case
p > 0 is due to Huang, Zhao [HZ18] and Gardner, Hug, Xing, Ye, Weil [GHW+19].

In addition, if p > q and f is Cα for α ∈ (0, 1], then (3.1.12) has a unique positive C2,α

solution according to Huang, Zhao [HZ18].

27

dc_1638_19

Powered by TCPDF (www.tcpdf.org)



Naturally, the Lp dual Monge-Ampère equation (3.1.12) has a solution in the above
cases for any non-negative L1 function f whose integral on any open hemi-sphere is posi-
tive. In addition, if −n < p ≤ 0 and f is any non-negative L n

n+p
function on Sn−1 such that∫

Sn−1 f dµ > 0, then (3.1.12) has a solution, where the case p = 0 is due to Chen, Li, Zhu
[CLZ19], and the case p ∈ (−n, 0) is due to Bianchi, Böröczky, Colesanti, Yang[BBCY19].

We also note that if p ≤ 0 and µ is discrete such that any n elements of suppµ
are independent vectors, then µ = Sp(K, ·) = n · C̃p,n(P, ·) for some polytope P ∈ Kn(o)
according to Zhu [Zhu15,Zhu17].

In this chapter, we first solve the discrete Lp dual Minkowski problem if p > 1 and
q > 0.

Theorem 3.1.1 (Böröczky, Fodor [BF19], Theorem 1.1 on page 7986). Let Q ∈ Sn(o), p > 1

and q > 0 with p 6= q, and let µ be a discrete measure on Sn−1 that is not concentrated on
any closed hemisphere. Then there exists a polytope P ∈ Kn(o) such that C̃p,q(P,Q, ·) = µ.

Remark If p > q, then the solution is unique according to Theorem 8.3 in Lutwak, Yang
and Zhang [LYZ18].

We note that, in fact, we prove the existence of a polytope P0 ∈ Kn(o) satisfying

Ṽq(P0, Q)−1C̃p,q(P0, Q, ·) = µ,

which P0 exists even if p = q (see Theorem 3.3.1).
Let us turn to a general, possibly non-discrete Borel measure µ on Sn−1. As the

example at the end of the paper by Hug, Lutwak, Yang, Zhang[HLYZ05] shows, even if
µ has a positive continuous density function with respect to the Hausdorff measure on
Sn−1, for q = n and 1 < p < n, it may happen that the only solution K has the origin
on its boundary. In this case, hK has some zero on Sn−1 even if it occurs with negative
exponent in C̃p,q(K, ·). Therefore if Q ∈ Sn(o), p > 1 and q > 0, the natural form the

Lp dual Minkowski problem is the following (see Chou, Wang [CW06] and Hug, Lutwak,
Yang, Zhang [HLYZ05] if q = n). For a given non-trivial finite Borel measure µ, find a
convex body K ∈ Kno such that

dC̃q(K,Q, ·) = hpKdµ. (3.1.14)

It is natural to assume that Hn−1(ΞK) = 0 in (3.1.14) for

ΞK = {x ∈ ∂K : there exists exterior normal u ∈ Sn−1 at x with hK(u) = 0}, (3.1.15)

which property ensures that the surface area measure S(K, ·) is absolutely continuous with
respect to C̃q(K,Q, ·) (see Corollary 6.2 on page 8009 in [BF19]). Actually, if q = n and

Q = Bn, then dC̃n(K, ·) = 1
n hK dS(K, ·), and [CW06] and [HLYZ05] consider the problem

dS(K, ·) = nhp−1
K dµ, (3.1.16)

where the results of [HLYZ05] about (3.1.16) yield the uniqueness of the solution in (3.1.16)
for q = n, p > 1 and Q = Bn only under the condition Hn−1(ΞK) = 0 (see Section 3.4 for
more detailed discussion).
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Theorem 3.1.2 (Böröczky, Fodor [BF19], Theorem 1.2 on page 7987). Let Q ∈ Sn(o),
p > 1 and q > 0 with p 6= q, and let µ be a finite Borel measure on Sn−1 that is not
concentrated on any closed hemisphere. Then there exists a K ∈ Kno with Hn−1(ΞK) = 0
and intK 6= ∅ such that dC̃q(K,Q, ·) = hpKdµ, where K ∈ Kn(o) provided p > q.

The solution in Theorem 3.1.2 is known to be unique in some cases:

• if p > q and µ is discrete (K is a polytope) according to Lutwak, Yang and Zhang
[LYZ18],

• if p > q, Q is a ball and µ has a Cα density function f for α ∈ (0, 1] according to
Huang, Zhao [HZ18],

• if p > 1, Q is a ball and q = n according to Hug, Lutwak, Yang, Zhang[HLYZ05].

For Theorem 3.1.2, in fact, we prove the existence of a convex body K0 ∈ Kno such
that

Ṽq(K0, Q)−1 dC̃q(K0, Q, ·) = hpK dµ,

which K0 exists even if p = q (see Theorem 3.5.2).
The other main results of the paper [BF19] concern the smoothness properties of the

solutions of the Lp dual Minkowski problem in the case when C̃q(K,Q, ·) is absolutely
continuous with respect to the Hausdorff measure on Sn−1. We only state these theorems
here and we refer to Section 7 of [BF19] for the detailed arguments.

Concerning regularity, we prove the following statements based on Caffarelli [Caf90a,
Caf90b] (see Section 7 of [BF19]). We note that if ∂Q is C2

+ for Q ∈ Sn(o), then Q is convex.

Theorem 3.1.3 (Böröczky, Fodor [BF19], Theorem 1.3 on page 7987). Let p > 1, q > 0,
Q ∈ Sn(o), 0 < c1 < c2 and let K ∈ Kno with Hn−1(ΞK) = 0 and intK 6= ∅ be such that

dC̃q(K,Q, ·) = hpKf dH
n−1

for some Borel function f on Sn−1 satisfying c1 ≤ f ≤ c2.

(i) ∂K\ΞK = {z ∈ ∂K : hK(u) > 0 for all u ∈ N(K, z)} and ∂K\ΞK is C1 and contains
no segment, moreover hK is C1 on Rn\N(K, o).

(ii) If f is continuous, then each u ∈ Sn−1\N(K, o) has a neighbourhood U on Sn−1 such
that the restriction of hK to U is C1,α for any α ∈ (0, 1).

(iii) If f is in Cα(Sn−1) for some α ∈ (0, 1), and ∂Q is C2
+, then ∂K\ΞK is C2

+, and
each u ∈ Sn−1\N(K, o) has a neighbourhood where the restriction of hK is C2,α.

We note that in Theorem 3.1.3 (ii), the same neighbourhood U of u works for every α ∈
(0, 1). In addition, Theorem 3.1.3 (i) yields that for any convex W ⊂ Rn\N(K, o), hK(u+
v) < hK(u) + hK(v) for independent u, v ∈ W . For the case o ∈ intK in Theorem 3.1.3,
see the more appealing statements in Theorem 3.1.5.

We recall that according to Theorem 3.1.2, if p > q > 0 and p > 1, then K ∈ Kn(o) holds
for the solution K of the Lp dual Minkowski problem. On the other hand, Example 7.1 on
page 8015 in [BF19] shows that if 1 < p < q, then the solution K of the Lp dual Minkowski
problem provided by Theorem 3.1.2 may satisfy that o ∈ ∂K and o is not a smooth point.
Next we show that K is still strictly convex in this case, at least if q ≤ n.
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Theorem 3.1.4 (Böröczky, Fodor [BF19], Theorem 1.4 on page 7987). If 1 < p < q ≤ n,
Q ∈ Sn(o), 0 < c1 < c2 and K ∈ Kno with Hn−1(ΞK) = 0 and intK 6= ∅ be such that

dC̃q(K,Q, ·) = hpKf dH
n−1

for some Borel function f on Sn−1 satisfying c1 ≤ f ≤ c2, then K is strictly convex; or
equivalently, hK is C1 on Rn\o.

If q = n, then Theorems 3.1.3 and 3.1.4 are due to Chou, Wang [CW06]. We do not
know whether Theorem 3.1.4 holds if q > n (see the comments at the end of Section 7 of
[BF19]).

We note that if o ∈ intK, then the ideas leading to Theorem 3.1.3 work for any p, q ∈ R.

Theorem 3.1.5 (Böröczky, Fodor [BF19], Theorem 1.5 on page 7988). Let p, q ∈ R,
Q ∈ Sn(o), 0 < c1 < c2 and let K ∈ Kn(o) be such that

dC̃p,q(K,Q, ·) = f dHn−1

for some Borel function f on Sn−1 satisfying c1 ≤ f ≤ c2. We have that

(i) K is smooth and strictly convex, and hK is C1 on Rn\{o};

(ii) if f is continuous, then the restriction of hK to Sn−1 is in C1,α for any α ∈ (0, 1);

(iii) if f ∈ Cα(Sn−1) for α ∈ (0, 1), and ∂Q is C2
+, then ∂K is C2

+, and hK is C2,α on
Sn−1.

The rest of this chapter is organized as follows. We discuss properties of dual curvature
measures in Section 3.2 extending some statements for the case when o ∈ ∂ K and q > 0.
We prove Theorem 3.1.1 in Section 3.3 only for Q = Bn in order to simplify and shorten
the presentation. Fundamental properties of Lp dual curvature measures are considered in
Section 3.4, and we use all these results to prove Theorem 3.1.2 for Q = Bn in Section 3.5.
Finally, we note that in the case of general Q, Theorem 3.1.1 and Theorem 3.1.2 are proved
in Section 6 of [BF19].

3.2 On the dual curvature measure

The goal of this section is for q > 0, to extend the results of Huang, Lutwak, Yang and
Zhang [HLYZ16] about the dual curvature measure C̃q(K, ·) when K ∈ Kn(o) to the case
when K ∈ Kno . For any measure, we take the measure of the empty set to be zero.

For any compact convex set K in Rn and z ∈ ∂K, we write N(K, z) to denote the
normal cone at z; namely,

N(K, z) = {y ∈ Rn : 〈y, x− z〉 ≤ 0 for x ∈ K}.

If z ∈ intK, then simply N(K, z) = {o}. For compact, convex sets K,L ⊂ Rn, we define
their Hausdorff distance as

δH(K,L) := sup
u∈Sn−1

|hK(u)− hL(u)|.
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It is a metric on the space of compact convex sets, and the induced metric space is locally
compact according to the Blaschke selection theorem. For basic properties of Hausdorff
distance we refer to Schneider [Sch14], and also to Gruber [Gru07].

First we extend Lemma 3.3 in [HLYZ16]. Let K ∈ Kno with intK 6= ∅. We recall that
the so-called singular points z ∈ ∂K where dimN(K, z) ≥ 2 form a Borel set of zero Hn−1

measure, and hence its complement ∂′K of smooth points is also a Borel set. For z ∈ ∂′K,
we write νK(z) to denote the unique exterior normal at z. In addition, for any z ∈ ∂K,
we define νννK(z) = N(K, z) ∩ Sn−1, and hence ννν−1

K (η) = ∪u∈ηF (K,u) is the total inverse
Gauss image of a Borel set η ⊂ Sn−1; namely, the set of all z ∈ ∂K with N(K, z)∩ η 6= ∅.
In particular, if o ∈ ∂K, then we have

ΞK = ννν−1
K

(
N(K, o) ∩ Sn−1

)
. (3.2.1)

If o ∈ intK, then ΞK = ∅. We also observe that the dual of N(K, o) is

N(K, o)∗ = {y ∈ Rn : 〈y, x〉 ≤ 0 for x ∈ N(K, o)} = cl{λx : λ ≥ 0 and x ∈ K},

and hence

ΞK = K ∩ ∂N(K, o)∗. (3.2.2)

If o ∈ intK, then simply N(K, o)∗ = Rn. The following properties of %K readily follow
from the definition.

Lemma 3.2.1. If K ∈ Kno , then %K is upper semicontinuous. In addition, if dimK ≤
n − 1, then %K(u) = 0 for u ∈ Sn−1\linK, and if intK 6= ∅, then %K is continuous on
Sn−1\∂N(K, o)∗ and %K(u) = 0 for u ∈ Sn−1\N(K, o)∗.

For q > 0, we extend Lutwak’s definition of the qth dual intrinsic volume Ṽq(·) to a
compact convex set K ∈ Kno as

Ṽq(K) =
1

n

∫
Sn−1

%qK(u)Hn−1(du), (3.2.3)

and hence Ṽn(K) = V (K). It follows from Lemma 3.2.1 that Ṽq(K) is well-defined and

Ṽq(K) = 0 if dimK ≤ n− 1.

For a K ∈ Kno with intK 6= ∅ and a Borel set η ⊂ Sn−1, let

ααα∗K(η) = {u ∈ Sn−1 : %K(u)u ∈ F (K, v) for some v ∈ η} = {u ∈ Sn−1 : %K(u)u ∈ ννν−1
K (η)}.

Following Huang, Lutwak, Yang, Zhang [HLYZ16] and Lutwak, Yang, Zhang [LYZ18], the
set ααα∗K(η) is called the reverse radial Gauss image of η.

Lemma 3.2.2. If K ∈ Kno with intK 6= ∅, then

Sn−1 ∩ (intN(K, o)∗) ⊂ ααα∗K
(
Sn−1\N(K, o)

)
⊂ Sn−1 ∩N(K, o)∗, (3.2.4)

ααα∗K
(
Sn−1 ∩N(K, o)

)
= Sn−1\ (intN(K, o)∗) . (3.2.5)
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Proof. If o ∈ intK, then N(K, o) = {o}, and hence the statements are trivial. Therefore
we assume that o ∈ ∂K.

It follows from (3.2.2) that

(intN(K, o)∗) ∩ ∂K = {x ∈ ∂K : hK(v) > 0 for all v ∈ νννK(x)}. (3.2.6)

Now (3.2.6) yields directly the first containment relation of (3.2.4), and K ⊂ N(K, o)∗

implies the second containment relation.
To prove (3.2.5), let u, v ∈ Sn−1 be such that %K(u)u ∈ F (K, v). If v ∈ N(K, o)∩Sn−1,

then F (K, v) ⊂ ΞK , thus (3.2.6) yields that u 6∈ intN(K, o)∗. On the other hand, if
u 6∈ intN(K, o)∗, then either u 6∈ N(K, o)∗, and hence %K(u) = 0, or u ∈ ∂N(K, o)∗,
therefore %K(u)u ∈ ΞK in both cases. We conclude v ∈ N(K, o), and in turn (3.2.5).

We note that the radial map π̃ : Rn\{o} → Sn−1, π̃(x) = x/‖x‖ is locally Lipschitz.
We write π̃K to denote the restriction of π̃ onto the (n−1)-dimensional Lipschitz manifold
(∂K)\ΞK = (∂K) ∩ intN(K, o)∗. For any z ∈ (∂′K)\ΞK , the Jacobian of π̃K at z is

〈νK(z), π̃K(z)〉‖z‖−(n−1) = 〈νK(z), z〉‖z‖−n. (3.2.7)

Lemma 3.2.3. If K ∈ Kno with intK 6= ∅ and η ⊂ Sn−1 is a Borel set, then ααα∗K(η) ⊂ Sn−1

is Lebesgue measurable.

Proof. Since ααα∗K(η∩N(K, o))∩ααα∗K(η\N(K, o)) ⊂ ∂N(K, o)∗ ∩Sn−1 by Lemma 3.2.2, and
Hn−1(∂N(K, o)∗ ∩ Sn−1) = 0, it is equivalent to prove that both ααα∗K(η ∩ N(K, o)) and
ααα∗K(η\N(K, o)) are Lebesgue measurable.

If η ∩N(K, o) 6= ∅, then we claim that

Sn−1\N(K, o)∗ ⊂ ααα∗K(η ∩N(K, o)) ⊂ Sn−1\intN(K, o)∗. (3.2.8)

The second containment relation follows from Lemma 3.2.2. For the first containment
relation in (3.2.8), let v ∈ η ∩ N(K, o). Since o ∈ F (K, v) and %K(u) = 0 for u ∈
Sn−1\N(K, o)∗, it follows that Sn−1\N(K, o)∗ ⊂ ααα∗K({v}). Thus we have (3.2.8), and in
turn η ∩N(K, o) is Lebesgue measurable.

Next we consider η\N(K, o). Since ∂′K is Borel, we have that σK = ∂′K∩intN(K, o)∗

is Borel, as well. We write ν̃K : σK → Sn−1\N(K, o) to denote the restriction of νK to
σK . As ν̃K is continuous on σK , we deduce that ν̃−1

K (η\N(K, o)) is Borel. In addition, π̃K
is also continuous on ∂K ∩ intN(K, o)∗, thus π̃K ◦ ν̃−1

K (η\N(K, o)) is also Borel. Since

π̃K ◦ ν̃−1
K (η\N(K, o)) ⊂ ααα∗K(η\N(K, o))

⊂ π̃K ◦ ν̃−1
K (η\N(K, o)) ∪ π̃K

(
(∂K ∩ intN(K, o)∗)\∂′K

)
.

Here Hn−1
(

(∂K ∩ intN(K, o)∗)\∂′K
)

= 0 and π̃K is locally Lipschitz, therefore

ααα∗K(η\N(K, o)) is Lebesgue measurable, as well.

Extending the definition in Huang, Lutwak, Yang, Zhang [HLYZ16], for a convex
compact set K ∈ Kno and q > 0, the qth dual curvature measure C̃q(K, ·) is a Borel
measure on Sn−1 defined in a way such that if η ⊂ Sn−1 is Borel, then

C̃q(K, η) = 0 if dimK ≤ n− 1, and (3.2.9)
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C̃q(K, η) =
1

n

∫
ααα∗K(η)

%qK(u) dHn−1(u) if intK 6= ∅. (3.2.10)

Here, if intK 6= ∅, then %K is continuous on Sn−1\∂N(K, o)∗, therefore C̃q(K, ·) is well-
defined by Lemma 3.2.3.

Since %K(u) = 0 for u ∈ Sn−1\N(K, o)∗, and Hn−1(Sn−1 ∩ ∂N(K, o)∗) = 0, we deduce
from (3.2.5) that if q > 0, then

C̃q
(
K,N(K, o) ∩ Sn−1

)
= C̃q

(
K, {u ∈ Sn−1 : hK(u) = 0}

)
= 0. (3.2.11)

For u ∈ Sn−1, we write rK(u) = %K(u)u ∈ ∂K. Since π̃K is locally Lipschitz, Hn−1

almost all points of Sn−1∩ (intN(K, o)∗) are in the image of (∂′K)∩ (intN(K, o)∗) by π̃K .
Therefore for Hn−1 almost all points u ∈ Sn−1 ∩ (intN(K, o)∗), there is a unique exterior
unit normal αK(u) at rK(u) ∈ ∂K. Here αK is the so-called reverse radial Gauss map.
For the other points u ∈ Sn−1 ∩ (intN(K, o)∗), we just choose an exterior unit normal
αK(u) at rK(u) ∈ ∂K. The extensions of Lemma 3.3 and Lemma 3.4 in [HLYZ16] to the
case when the origin may lie on the boundary of convex bodies are the following.

Lemma 3.2.4. If q > 0, K ∈ Kno with intK 6= ∅, and g : Sn−1 → [0,∞) is Borel
measurable, then∫

Sn−1

g(u) dC̃q(K,u) =
1

n

∫
Sn−1∩(intN(K,o)∗)

g(αK(u))%K(u)q dHn−1(u) (3.2.12)

=
1

n

∫
∂′K\ΞK

g(νK(x))〈νK(x), x〉‖x‖q−n dHn−1(x),(3.2.13)

=
1

n

∫
∂′K

g(νK(x))〈νK(x), x〉‖x‖q−n dHn−1(x) (3.2.14)

Proof. To prove (3.2.12), the integral of g can be approximated by integrals of finite linear
combinations of characteristic functions of Borel sets of Sn−1, and hence we may assume
that g = 1η for a Borel set η ⊂ Sn−1. In this case,∫

Sn−1∩N(K,o)
1η dC̃q(K, ·) = 0

by (3.2.11), and∫
Sn−1\N(K,o)

1η dC̃q(K, ·) = C̃q(K, η\N(K, o)) =

∫
Sn−1∩(intN(K,o)∗)

1η(αK(u))%K(u)q dHn−1(u)

by (3.2.4) and the definition of C̃q(K, ·), verifying (3.2.12).
In turn, (3.2.12) yields (3.2.13) by (3.2.7). For (3.2.14), we observe that if x ∈ ΞK∩∂′K,

then 〈νK(x), x〉 = 0.

Now we prove that the qth dual curvature measure is continuous on Kno for q > 0.

Lemma 3.2.5. For q > 0, Ṽq(K) is a continuous function of K ∈ Kno with respect to the
Hausdorff distance.

33

dc_1638_19

Powered by TCPDF (www.tcpdf.org)



Proof. Let R > 0 be such that K ⊂ intRBn. Let Km ∈ Kno be a sequence of compact
convex sets tending to K with respect to Hausdorff distance. In particular, we may assume
that Km ⊂ RBn for all Km.

If dimK ≤ n− 1, then there exists v ∈ Sn−1 such that K ⊂ v⊥, where v⊥ denotes the
orthogonal (linear) complement of v. For t ∈ [0, 1), we write

Ψ(v, t) = {x ∈ Rn : |〈v, x〉| ≤ t}

to denote the closed region of width 2t between two hyperplanes orthogonal to v and
symmetric to 0.

There exists a t0 ∈ (0, 1) such that for any t ∈ (0, t0) and v ∈ Sn−1 it holds that
Hn−1(Sn−1 ∩Ψ(v, t)) < 3t(n− 1)κn−1.

Let ε ∈ (0, t0). We claim that there exists an mε such that for all m > mε and for any
u ∈ Sn−1\Ψ(v, ε), we have

%Km(u) ≤ ε. (3.2.15)

Since Km → K in the Hausdorff metric, there exists an index mε such that for all m > mε

it holds that Km ⊂ K + ε2Bn ⊂ Ψ(v, ε2). Then if u ∈ Sn−1\Ψ(v, ε), then

ε2 ≥ 〈v, %Km(u)u〉 = %Km(u)〈v, u〉 ≥ %Km(u) · ε,

yielding (3.2.15). We deduce from (3.2.15) and Km ⊂ RBn that for any ε ∈ (0, t0), if
m > mε, then

Ṽq(Km) ≤
∫
Sn−1\Ψ(v,ε)

εq dHn−1(u) +

∫
Sn−1∩Ψ(v,ε)

Rq dHn−1(u)

≤ nκnεq + 3ε(n− 1)κn−1R
q,

therefore limm→∞ Ṽq(Km) = 0 = Ṽq(K).
Next, let intK 6= ∅ such that o ∈ ∂K. Since the functions %Km(u), m = 1, . . . are

uniformly bounded, by Lebesgue’s dominated convergence theorem it is sufficient to prove
that

lim
m→∞

%Km(u) = %K(u) for u ∈ Sn−1\∂N(K, o)∗, (3.2.16)

as Hn−1(Sn−1 ∩ ∂N(K, o)∗) = 0. Now, let ε ∈ [0, 1).

Case 1. Let u ∈ Sn−1 ∩ intN(K, o)∗.

Then %K(u) > 0, and (1−ε)%K(u)u ∈ intK and (1+ε)%K(u)u 6∈ K. Thus, there exists
an index m(u, ε) > 0 such that for all m > m(u, ε) it holds that (1− ε)%K(u)u ∈ Km and
(1 + ε)%K(u)u 6∈ Km, or in other words,

(1− ε)%K(u) ≤ %Km(u) ≤ (1 + ε)%K(u),

which in turn yields (3.2.16) in this case.

Case 2. Let u ∈ Sn−1\N(K, o)∗.

Then %K(u) = 0, and there exists v ∈ Sn−1 ∩ intN(K, o) such that 〈u, v〉 > 0. As
Km → K, there exists an index m(u, v, ε) > 0 such that for all m > m(u, v, ε) it holds
that Km ⊂ K + ε〈u, v〉Bn, and thus hKm(v) < ε〈u, v〉. Therefore, for all m > m(u, v, ε),

ε〈u, v〉 > hKm(v) ≥ 〈%Km(u)u, v〉 = %Km(u)〈u, v〉.
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This yields that %Km(u) < ε for all m > m(u, v, ε), and thus (3.2.16) holds by %K(u) = 0.
Finally, let intK 6= ∅ and o ∈ intK. The argument for this case is analogous to the

one used above in Case 1.

The following Proposition 3.2.6 extends Lemma 3.6 from Huang, Lutwak, Yang, Zhang
[HLYZ16] about K ∈ Kn(o) to the case when K ∈ Kno .

Proposition 3.2.6. If q > 0, and {Km}, m ∈ N, tends to K for Km,K ∈ Kno , then
C̃q(Km, ·) tends weakly to C̃q(K, ·).

Proof. Since any element of Kno can be approximated by elements of Kn(o), we may assume
that each Km ∈ Kn(o). We fix R > 0 such that K ⊂ intRBn, and hence we may also

assume that Km ⊂ RBn for all Km. We need to prove that if g : Sn−1 → R is continuous,
then

lim
m→∞

∫
Sn−1

g(u) dC̃q(Km, u) =

∫
Sn−1

g(u) dC̃q(K,u) (3.2.17)

First we assume that o ∈ ∂ K. If dimK ≤ n−1, then C̃q(K, ·) is the constant zero mea-

sure by (3.2.9). Since C̃q(Km, S
n−1) = Ṽq(Km) tends to zero according to Lemma 3.2.5,

we conclude (3.2.17) in this case.
Therefore we may assume that intK 6= ∅ and o ∈ ∂ K. To simplify notation, we set

σ = N(K, o)∗.

According to Lemma 3.2.4, (3.2.17) is equivalent to

lim
m→∞

∫
Sn−1

g(αKm(u))%Km(u)q dHn−1(u) =

∫
Sn−1∩(intσ)

g(αK(u))%K(u)q dHn−1(u).

(3.2.18)
Since π̃K is Lipschitz and Hn−1(Sn−1 ∩ (∂σ)) = 0, to verify (3.2.18), and in turn (3.2.17),
it is sufficient to prove

lim
m→∞

∫
π̃K((intσ)∩∂′K)

g(αKm(u))%Km(u)q dHn−1(u) =

∫
π̃K((intσ)∩∂′K)

g(αK(u))%K(u)q dHn−1(u)

(3.2.19)

lim
m→∞

∫
Sn−1\σ

g(αKm(u))%Km(u)q dHn−1(u) = 0. (3.2.20)

To prove (3.2.19) and (3.2.20), it follows from Km ⊂ RBn, the continuity of g and
Lemma 3.2.5 that there exists M > 0 such that

|%Km(u)| ≤ R for u ∈ Sn−1,
|g(u)| ≤ M for u ∈ Sn−1,

C̃q(Km, S
n−1) ≤ M for m ∈ N

(3.2.21)

We deduce from (3.2.21) that Lebesgue’s Dominated Convergence Theorem applies both in
(3.2.19) and (3.2.20). For (3.2.19), let u ∈ π̃K((intσ)∩∂′K). Readily, limm→∞ %Km(u)q =
%K(u)q. Since αK(u) is the unique normal at %K(u)u ∈ ∂′K, we have limm→∞ αKm(u) =
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αK(u), and hence limm→∞ g(αKm(u)) = g(αK(u)) by the continuity of g. In turn, we
conclude (3.2.19) by Lebesgue’s Dominated Convergence Theorem.

Turning to (3.2.20), it follows from Lebesgue’s Dominated Convergence Theorem, q > 0
and (3.2.21) that it is sufficient to prove that if ε > 0 and u ∈ Sn−1\σ, then

%Km(u) ≤ ε (3.2.22)

for m ≥ m0 where m0 depends on u, {Km}, ε. Since u 6∈ σ = N(K, o)∗, there exists
v ∈ N(K, o) such that 〈v, u〉 = δ > 0. As hK(v) = 0 and Km tends to K, there exists m0

such that hKm(v) ≤ δε if m ≥ m0. In particular, if m ≥ m0, then

εδ ≥ hKm(v) ≥ 〈v, %K(u)u〉 = %K(u)δ,

yielding (3.2.22), and in turn (3.2.20).

Finally, the argument leading to (3.2.19) implies (3.2.17) also in the case when o ∈
intK, completing the proof of Proposition 3.2.6.

3.3 Proof of Theorem 3.1.1 for Q = Bn

To verify Theorem 3.1.1, we prove the following statement, which also holds if p = q.

Theorem 3.3.1. Let p > 1 and q > 0, and let µ be a discrete measure on Sn−1 that is
not concentrated on any closed hemisphere. Then there exists a polytope P ∈ Kn(o) such

that Ṽq(P )−1C̃p,q(P, ·) = µ.

We recall that π̃ : Rn\{o} → Sn−1 is the radial projection, and for a convex body K
in Rn and u ∈ Sn−1, the face of K with exterior unit normal u is the set

F (K,u) = {x ∈ K : 〈x, u〉 = hK(u)}.

We observe that if P ∈ Kno is a polytope with intP 6= ∅, and v1, . . . , vl ∈ Sn−1 are the
exterior normals of the facets of P not containing the origin, then

supp C̃q(P, ·) = {v1, . . . , vl}, and

C̃q(P, {vi}) =
1

n

∫
π̃(F (P,vi))

%qP (u) dHn−1(u) for i = 1, . . . , l.
(3.3.1)

Let p > 1, q > 0 and µ be a discrete measure on Sn−1 that is not concentrated on any
closed hemi-sphere. Let suppµ = {u1, . . . , uk}, and let µ({ui}) = αi > 0, i = 1, . . . , k. For
any z = (t1, . . . , tk) ∈ (R≥0)k, we define

Φ(z) =
k∑
i=1

αit
p
i ,

P (z) = {x ∈ Rn : 〈x, ui〉 ≤ ti ∀i = 1, . . . , k}, (3.3.2)

Ψ(z) = Ṽq(P (z)).
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Since αi > 0 for i = 1, . . . , k, the set Z = {z ∈ (R≥0)k : Φ(z) = 1} is compact, and hence
Lemma 3.2.5 yields the existence of z0 ∈ Z such that

Ψ(z0) = max{Ψ(z) : z ∈ Z}.

We prove that o ∈ intP (z0) and there exists λ0 > 0 such that

Ṽq(λ0P (z0))−1C̃p,q(λ0P (z0), ·) = µ.

Lemma 3.3.2. If p > 1 and q > 0, then o ∈ intP (z0).

Proof. It is clear from the construction that o ∈ P (z0). We assume that o ∈ ∂P (z0), and
seek a contradiction. Without loss of generality, we may assume that z0 = (t1, . . . , tk) ∈
(R≥0)k, where there exists 1 ≤ m < k such that t1 = . . . = tm = 0 and tm+1, . . . , tk > 0.
For sufficiently small t > 0, we define

z̃t =

 m︷ ︸︸ ︷
0, . . . , 0, (tpm+1 − αt

p)
1
p , . . . , (tpk − αt

p)
1
p

 for α = α1+...+αm
αm+1+...+αk

, and

zt =

( m︷ ︸︸ ︷
t, . . . , t, (tpm+1 − αt

p)
1
p , . . . , (tpk − αt

p)
1
p

)
.

Simple substitution shows that Φ(zt) = 1, so zt ∈ Z.

We prove that there exist t̃0, c̃1, c̃2 > 0 depending on p, q, µ and z0 such that if
t ∈ (0, t̃0], then

Ψ(z̃t) ≥ Ψ(z0)− c̃1t
p, (3.3.3)

Ψ(zt) ≥ Ψ(z̃t) + c̃2t, (3.3.4)

therefore

Ψ(zt) ≥ Ψ(z0)− c̃1t
p + c̃2t. (3.3.5)

We choose R > 0 such that P (z0) ⊂ intRBn and R ≥ max{tm+1, . . . , tk}.
We start with proving (3.3.3), and set %0 = min{tm+1, . . . , tk}. We frequently use the

following form of Bernoulli’s inequality that says that if τ ∈ (0, 1) and η > 0, then

(1− τ)η ≥ 1−max{1, η} · τ. (3.3.6)

It follows from (3.3.6) and %0 ≤ ti ≤ R, i = m + 1, . . . , k, that there exist s0, c0 > 0,
depending on z0, µ and p such that if t ∈ (0, s0), then

(tpi − αt
p)

1
p > ti − c0t

p > %0/2 for i = m+ 1, . . . , k. (3.3.7)

We consider the cone N(P (z0), o)∗ = {x ∈ Rn : 〈x, ui〉 ≤ 0 ∀i = 1, . . . ,m} that satisfies
that %P (z0)(u) > 0 for u ∈ Sn−1 if and only if u ∈ N(P (z0), o)∗. It follows from (3.3.7) that
%P (z̃t)(u) > 0 for u ∈ Sn−1 also if and only if u ∈ N(P (z0), o)∗, and even %P (z̃t)(u) > %0/2
in this case.
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Let u ∈ N(P (z0), o)∗ ∩ Sn−1, and hence %P (z̃t)(u) · u lies in a facet F (P (z̃t), ui) for an
i ∈ {m+ 1, . . . , k}, thus

〈%P (z̃t)(u)u, ui〉 = (tpi − αt
p)

1
p > ti − c0t

p > %0/2.

Combining the last estimate with %P (z̃t)(u) ≤ R, we deduce that 〈u, ui〉 ≥ %0

2R . Let s > 0
be defined by 〈su, ui〉 = ti. Then s ≥ %P (z0)(u), and hence

s− %P (z̃t)(u) =
〈su, ui〉 − 〈%P (z̃t)(u)u, ui〉

〈u, ui〉
≤ ti − (ti − c0t

p)

〈u, ui〉
≤ 2Rc0

%0
· tp,

thus %P (z̃t)(u) ≥ %P (z0)(u)− 2Rc0
%0
· tp. We choose t0 > 0 with t0 ≤ s0 depending on z0 and

p such that 2Rc0
%0
· tp0 < %0/2. Since %0 ≤ %P (z0)(u) ≤ R, we deduce from (3.3.6) that there

exists c1 > 0 depending on µ, z0, q and p that if t ∈ (0, t0) and u ∈ C ∩ Sn−1, then

%P (z̃t)(u)q ≥
(
%P (z0)(u)− 2Rc0

%0
· tp
)q
≥ %P (z0)(u)q − c1 · tp,

which yields (3.3.3) by (3.2.3) and by taking into account that N(P (z̃t), o)
∗ =

N(P (z0), o)∗.

The main idea of the proof of (3.3.4) is that we construct a set G̃t ⊂ Sn−1 for sufficiently
small t > 0 whose Hn−1 measure is of order t, and if u ∈ G̃t, then %P (zt)(u) ≥ r for a
suitable constant r > 0 while %P (z̃t)(u) = 0. In order to show that the constants involved
really depend only on p, q µ and P (z0), we start to set them with respect to P (z0).

We may assume, possibly after reindexing u1, . . . , um, that dimF (P (z0), u1) = n − 1.
In particular, there exist r > 0 and y0 ∈ F (P (z0), u1)\{o} such that

〈y0, ui〉 ≤ hP (z0)(ui)− 8r for i = 2, . . . , k.

For v = y0/‖y0‖ ∈ Sn−1 ∩ u⊥1 , we consider y = y0 + 4rv, and hence 4r ≤ ‖y‖ ≤ R, and

〈y, ui〉 ≤ hP (z0)(ui)− 4r for i = 2, . . . , k.

Note that P (z̃t) → P (z0) as t → 0+ and also P (z̃t) ⊂ P (z0) for t > 0. Therefore there
exists a positive t1 ≤ min{r, t0}, depending only on p, q, µ and z0 such that if t ∈ (0, t1],
then

〈y, ui〉 ≤ hP (z̃t)(ui)− 2r for i = 2, . . . , k and P (zt) ⊂ RBn. (3.3.8)

For two vectors a, b ∈ Rn, we denote by [a, b] ((a, b)) the closed (open) segment with
endpoints a and b. Let the (n− 2)-dimensional unit ball G be defined as

G = u⊥1 ∩ v⊥ ∩Bn.

Then we have that y + rG ⊂ F (P (z0), u1) and (y + rG) + r[o, u1] ⊂ y + 2rBn. Let
Gt = (y + rG) + t(o, u1] be the (n − 1)-dimensional right spherical cylinder of height
t < min{t1, r}, whose base y + rG does not belong to Gt. We deduce from (3.3.8) and
hP (zt)(u1) = t that Gt ⊂ P (zt)\N(P (z0), o)∗ ⊂ P (zt)\P (z̃t).
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Let G̃t be the the radial projection ofGt to Sn−1. For x ∈ Gt, we have 〈x, v〉 = ‖y‖ ≥ 4r
and ‖x‖ ≤ R, therefore

Hn−1(G̃t) =

∫
Gt

〈
x

‖x‖
, v

〉
‖x‖−(n−1) dHn−1(x)

≥ 4rHn−1(Gt)

Rn
=

4r · rn−2κn−2

Rn
· t =

4rn−1κn−2

Rn
· t.

Since %P (z̃t)(u) ≤ %P (zt)(u) for all u ∈ Sn−1, and if u ∈ G̃t, then %P (zt)(u) ≥ ‖y‖ ≥ 4r and
%P (z̃t)(u) = 0, we deduce that

Ψ(zt) =
1

n

∫
Sn−1

%qP (zt)
(u)dHn−1(u)

=
1

n

∫
Sn−1\G̃t

%qP (zt)
(u)dHn−1(u) +

1

n

∫
G̃t

%qP (zt)
(u)dHn−1(u)

≥ 1

n

∫
Sn−1

%qP (z̃t)
(u)dHn−1(u) +

1

n

∫
G̃t

%qP (zt)
(u)dHn−1(u)

≥ Ψ(z̃t) +
(4r)q · 4rn−1κn−2

nRn
· t,

which proves (3.3.4). Combining (3.3.3) and (3.3.4), we obtain (3.3.5).

Finally, we deduce from p > 1 and (3.3.5) that if t > 0 is sufficiently small, then
Ψ(P (zt)) > Ψ(P (z0)), which contradicts the optimality of z0, and yields Lemma 3.3.2.

As we already know that o ∈ intP (z0) by Lemma 3.3.2, we can freely decrease
hP (z0)(ui) for i = 1, . . . , k, and increase it if dimF (P (z0), ui) = n − 1. To control what
happens to Ψ(z) when we perturb P (z0), we use Lemma 3.3.3, which is a consequence of
Theorem 4.4 in [HLYZ16]. Let R+ denote set of the positive real numbers.

Lemma 3.3.3 (Huang, Lutwak, Yang, Zhang, [HLYZ16]). If q 6= 0, η ∈ (0, 1) and

zt = (z1(t), . . . , zk(t)) ∈ Rk+ for t ∈ (−η, η) are such that limt→0+
zi(t)−zi(0)

t = z′i(0) ∈ R
for i = 1, . . . , k exists, then the P (zt) defined in (3.3.2) satisfies that

lim
t→0+

Ṽq(P (zt))− Ṽq(P (z0))

t
= q

k∑
i=1

z′i(0)

hP (z0)(ui)
· C̃q(P (z0), {ui}).

For the sake of completeness, in Section 6 we prove a general version of Lemma 3.3.3
about the variation of Ṽq(P (z(t)), Q) in the case when Q is an arbitrary star body, cf.
Lemma 6.7 on page 8011 in [BF19].

We note that suppCq(P (z0), ·) ⊂ {u1, . . . , uk}, where C̃q(P (z0), {ui}) > 0 if and only
if
dimF (P (z0), ui) = n− 1.

Lemma 3.3.4. If p > 1 and q > 0, then dimF (P (z0), ui) = n− 1 for i = 1, . . . , k.
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Proof. We suppose that dimF (P (z0), u1) < n − 1, and seek a contradiction. We may
assume that dimF (P (z0), uk) = n− 1. For small t ≥ 0, we consider

z̃(t) = (t1 − t, t2, . . . , tk),

and θ(t) = Φ(P (z̃(t)). In particular, θ(0) = 1 and θ′(0) = −pα1t
p−1
1 , and hence

z(t) = θ(t)−1/pz̃(t) = (z1(t), . . . , zk(t)) ∈ Z

satisfies d
dtθ(t)

−1/p|t=0+ = α1t
p−1
1 and z′i(0) = α1t

p−1
1 ti > 0 for i = 2, . . . , k. We deduce

from Lemma 3.3.3 and C̃q(P (z0), {u1}) = 0 that

lim
t→0+

Ṽq(P (z(t)))− Ṽq(P (z0))

t
= q

k∑
i=2

z′i(0)

hP (z0)(ui)
· C̃q(P (z0), {ui})

≥
q z′k(0)

hP (z0)(uk)
· C̃q(P (z0), {uk}) > 0,

therefore Ṽq(P (z(t))) > Ṽq(P (z0)) for small t > 0. This contradicts the optimality of z0,
and proves Lemma 3.3.4.

Proof of Theorem 3.3.1 According to Lemmas 3.3.2 and 3.3.4,

we have dimF (P (z0), ui) = n− 1 for i = 1, . . . , k, o ∈ intP (z0) and hP (z0)(ui) = ti for

i = 1, . . . , k. Let (g1, . . . , gk) ∈ Rk satisfying
∑k

i=1 giαit
p−1
i = 0 such that not all gi are

zero. If t ∈ (−ε, ε) for small ε > 0, then consider

z̃(t) = (t1 + g1t, . . . , tk + gkt),

and θ(t) = Φ(P (z̃(t)). In particular, θ(0) = 1 and

θ′(0) = p

k∑
i=1

giαit
p−1
i = 0.

Therefore

z(t) = θ(t)−1/pz̃(t) = (z1(t), . . . , zk(t)) ∈ Z

satisfies d
dtθ(t)

−1/p|t=0 = 0 and z′i(0) = gi for i = 1, . . . , k. We deduce from Lemma 3.3.3
and hP (z0)(ui) = ti for i = 1, . . . , k that

lim
t→0

Ṽq(P (z(t)))− Ṽq(P (z0))

t
= q

k∑
i=1

gi
ti
· C̃q(P (z0), {ui}).

Since Ṽq(P (z(t))) attains its maximum at t = 0 by the optimality of z0, we have

k∑
i=1

gi
ti
· C̃q(P (z0), {ui}) = 0. (3.3.9)
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In particular, (3.3.9) holds whenever (g1, . . . , gk) ∈ Rk\{o} satisfies
∑k

i=1 giαit
p−1
i = 0, or

in other words, there exists a λ ∈ R such that

λ · C̃q(P (z0), {ui})
ti

= αit
p−1
i for i = 1, . . . , k.

Since λ > 0 and p > 1, there exists a λ0 > 0 such that λ = λ−p0 Ṽq(P (z0)), and hence

αi = Ṽq(λ0P (z0))−1hλ0P (z0)(ui)
−pC̃q(λ0P (z0), {ui}) for i = 1, . . . , k.

In other words,
µ = Ṽq(λ0P (z0))−1hλ0P (z0)(ui)

−pC̃q(λ0P (z0), ·).

This finishes the proof of Theorem 3.3.1. �

Proof of Theorem 3.1.1 in the case of Q = Bn We have p 6= q. According to
Theorem 3.3.1, there exists a polytope P0 ∈ Kn(o) such that Ṽq(P0)−1C̃p,q(P0, ·) = µ. For

λ = Ṽq(P0)
−1
q−p and P = λP0, we have

C̃p,q(P, ·) = λq−pC̃p,q(P0, ·) = Ṽq(P0)−1C̃p,q(P0, ·) = µ.

�

3.4 On the Lp dual curvature measures

According to Lemma 5.1 in Lutwak, Yang, Zhang [LYZ18], if K ∈ Kn(o), p ∈ R and q > 0,

then for any Borel function g : Sn−1 → R, we have that∫
Sn−1

g(u) dC̃p,q(K,u) =
1

n

∫
∂′K

g(νK(x))〈νK(x), x〉1−p‖x‖q−n dHn−1(x). (3.4.1)

As a simple consequence of Lemma 3.2.4, we can partially extend (3.4.1) to allow o ∈ ∂K.

Corollary 3.4.1. If p > 1, q > 0, K ∈ Kno with intK 6= ∅, C̃p,q(K,Sn−1) < ∞ and
Hn−1(ΞK) = 0, and the Borel function g : Sn−1 → R is bounded, then∫

Sn−1

g(u) dC̃p,q(K,u) =
1

n

∫
∂′K

g(νK(x))〈νK(x), x〉1−p‖x‖q−n dHn−1(x).

Proof. Knowing that C̃p,q(K,S
n−1) <∞, it follows from Lemma 3.2.4 and Hn−1(ΞK) = 0

that∫
Sn−1

g(u) dC̃p,q(K,u) =

∫
Sn−1

g(u)hK(u)−p dC̃q(K,u)

=
1

n

∫
∂′K\ΞK

g(νK(x))hK(νK(x))−p〈νK(x), x〉‖x‖q−n dHn−1(x)

=
1

n

∫
∂′K

g(νK(x))〈νK(x), x〉1−p‖x‖q−n dHn−1(x).
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Next, we prove a basic estimate on the inradius of K in terms of its total Lp dual
curvature measure. For a convex body K ∈ Kn(o), we write r(K) to denote the maximal
radius of balls contained in K. Since o ∈ K, Steinhagen’s theorem yields the existence of
w ∈ Sn−1 such that

|〈x,w〉| ≤ 2nr(K) for x ∈ K. (3.4.2)

Lemma 3.4.2. For n ≥ 2, p > 1 and q > 0, there exists a constant c > 0 depending only
on p, q, n such that if K ∈ Kn(o), then

C̃p,q(K,S
n−1) ≥ c · r(K)−p · Ṽq(K).

Proof. We may assume that r(K) = 1, and hence (3.4.2) yields the existence of w ∈ Sn−1

such that
|〈x,w〉| ≤ 2n for x ∈ K. (3.4.3)

Let K̃ = K|w⊥ be the orthogonal projection of K to the hyperplane w⊥, and hence
the radial function %

K̃
is positive and continuous on w⊥ ∩ Sn−1. We consider the concave

function f and the convex function g on K̃ = K|w⊥ such that

K =
{
y + tw : y ∈ K̃ and g(y) ≤ t ≤ f(y)

}
.

We divide w⊥∩Sn−1 into pairwise disjoint Borel sets Ω̃1, . . . , Ω̃m of positive Hn−2 measure
such that for each Ω̃i, there exists a %i > 0 satisfying

%i/2 ≤ %K̃(u) ≤ %i for u ∈ Ω̃i. (3.4.4)

For any i = 1, . . . ,m, we consider

Ωi =
{
u cosα+ w sinα : u ∈ Ω̃i and α ∈

(
−π

2
,
π

2

)}
⊂ Sn−1,

Ψi = {%K(u)u : u ∈ Ωi} ⊂ ∂K.

It follows that Sn−1\{w,−w} is divided into the pairwise disjoint Borel sets Ω1, . . . ,Ωm,
and ∂K\{f(o)w, g(o)w} is divided into the pairwise disjoint Borel sets Ψ1, . . . ,Ψm.

According to (3.4.1) and Lemma 3.2.4, to verify Lemma 3.4.2, it is sufficient to prove
that there exists a constant c > 0 depending only on n, p, q such that if i = 1, . . . ,m, then∫

∂′K∩Ψi

〈νK(x), x〉1−p‖x‖q−n dHn−1(x) ≥ c
∫
∂′K∩Ψi

〈νK(x), x〉‖x‖q−n dHn−1(x). (3.4.5)

We define
R = 4(2n)2. (3.4.6)

Case 1. %i ≤ R
If %i ≤ R and x ∈ ∂′K ∩Ψi, then (3.4.3) yields that

〈νK(x), x〉 ≤ ‖x‖ ≤ R+ 2n for x ∈ Ψi,

and hence 〈νK(x), x〉1−p ≥ 〈νK(x), x〉(R+2n)−p. Therefore we may choose c = (R+2n)−p

in (3.4.5).
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Case 2. %i > R

If %i > R, then consider the set

Φi =
{
tu : u ∈ Ω̃i and 0 < t ≤ %i/4

}
⊂ Ψi|w⊥,

and subdivide Ψi into

Ψ0
i = {y + f(y)w : y ∈ Φi} ∪ {y + g(y)w : y ∈ Φi} ⊂ Ψi ∩

(%i
4 + 2n

)
Bn, and

Ψ1
i = Ψi\Ψ0

i ⊂ Ψi\
(%i

4 B
n
)
.

We claim that

〈νK(x), x〉 ≤ 6n for x ∈ ∂′K ∩Ψ0
i . (3.4.7)

We observe that x = y + tw for some y ∈ Φi and t ∈ [−2n, 2n], and s = f(2y) satisfies
s ∈ [−2n, 2n] and 2y + sw ∈ Ψi. It follows that

〈νK(x), 2y + sw〉 ≤ 〈νK(x), x〉 = 〈νK(x), y + tw〉,

and hence

〈νK(x), y〉 ≤ 〈νK(x), tw〉 − 〈νK(x), sw〉 ≤ 4n.

We conclude that 〈νK(x), y + tw〉 = 〈νK(x), y〉 + 〈νK(x), tw〉 ≤ 6n, in accordance with
(3.4.7).

In turn, (3.4.7) yields that 〈νK(x), x〉1−p ≥ 〈νK(x), x〉(6n)−p for x ∈ ∂′K ∩ Ψ0
i , and

hence∫
∂′K∩Ψ0

i

〈νK(x), x〉1−p‖x‖q−n dHn−1(x) ≥ (6n)−p
∫
∂′K∩Ψ0

i

〈νK(x), x〉‖x‖q−n dHn−1(x).

(3.4.8)

Next, we prove the existence of γ1 > 0 depending on n, p, q such that∫
∂′K∩Ψ0

i

〈νK(x), x〉1−p‖x‖q−n dHn−1(x) ≥

{
γ1Hn−2(Ω̃i)%

q−1
i if q > 1

γ1Hn−2(Ω̃i) if q ∈ (0, 1]
. (3.4.9)

Let us consider x = y+f(y)w ∈ Ψ0
i∩∂′K for some y ∈ Φi\(2nBn). Since ‖y‖ ≤ ‖x‖ ≤ 2‖y‖

by (3.4.3), it follows from (3.4.7) that

〈νK(x), x〉1−p‖x‖q−n ≥ (6n)1−p min{1, 2q−n} ‖y‖q−n.

Therefore there exists γ2 > 0 depending on n, p, q such that∫
∂′K∩Ψ0

i

〈νK(x), x〉1−p‖x‖q−n dHn−1(x) ≥ γ2

∫
Φi\(2nBn)

‖y‖q−n dHn−1(x)

= γ2Hn−2(Ω̃i)

∫ %i/4

2n
tq−ntn−2 dt

= γ2Hn−2(Ω̃i)

∫ %i/4

2n
tq−2 dt,
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and in turn we conclude (3.4.9).
The final part of the argument is the estimate∫

∂′K∩Ψ1
i

〈νK(x), x〉‖x‖q−n dHn−1(x) ≤ 2q16n · Hn−2(Ω̃i) · %q−1
i . (3.4.10)

Let Ω1
i = πK(Ψ1

i ). If x = y + sw ∈ Ψ1
i for y ∈ (Ψi|w⊥) \ Φi, then y ∈ (Ψi|w⊥)\(%i4 B

n)
and |s| ≤ 2n. It follows that | tanα| ≤ 2n

%i/4
= 8n

%i
for the angle α of x and y. In particular,

Ω1
i ⊂ πK

(
Ω̃i +

[
−8n

%i
,
8n

%i

]
· w
)

which, in turn, yields that

Hn−1(Ω1
i ) ≤

16n

%i
Hn−2(Ω̃i).

We deduce from (3.2.7) and from the fact that ‖x‖ ≤ %i + 2n ≤ 2%i for x ∈ Ψ1
i that∫

∂′K∩Ψ1
i

〈νK(x), x〉‖x‖q−n dHn−1(x) =

∫
Ω1
i

%K(u)q dHn−1(u) ≤ 16n

%i
Hn−2(Ω̃i) · (2%i)q,

yielding (3.4.10).
We deduce from (3.4.9) and (3.4.10) the existence of γ3 > 0 depending on n, p, q such

that ∫
∂′K∩Ψ0

i

〈νK(x), x〉1−p‖x‖q−n dHn−1(x) ≥ γ3

∫
∂′K∩Ψ1

i

〈νK(x), x〉‖x‖q−n dHn−1(x).

(3.4.11)
Combining (3.4.8) and (3.4.11) implies (3.4.5) if %i > R, as well, completing the proof of
Lemma 3.4.2.

Next we investigate the limit of convex bodies with bounded Lp dual curvature measure
in Lemmas 3.4.3 and 3.4.4.

Lemma 3.4.3. If p > 1, 0 < q ≤ p and Km ∈ Kn(o) for m ∈ N tend to K ∈ Kno with

intK 6= ∅ such that C̃p,q(Km, S
n−1) stays bounded, then K ∈ Kn(o).

Proof. Let us suppose that o ∈ ∂K, and seek a contradiction. We claim that there exists
a vector w ∈ intN(K, o)∗ such that −w ∈ N(K, o) ∩ Sn−1. If this property fails, then
(−N(K, o)) ∩ intN(K, o)∗ = ∅, and hence the Hahn-Banach theorem yields the existence
of a vector v ∈ Sn−1 such that 〈v, u〉 ≤ 0 if u ∈ N(K, o)∗, and 〈v, u〉 ≥ 0 if u ∈ −N(K, o),
and hence v ∈ N(K, o)∗. Since 〈v, v〉 = 1 > 0 contradicts 〈v, u〉 ≤ 0 if u ∈ N(K, o)∗, we
conclude the existence of the required w.

To simplify notation, we set B(r) = w⊥ ∩ (rBn) for r > 0. The conditions in
Lemma 3.4.3 and (3.4.1) yield the existence of some M > 0 such that for each Km,
we have that

M > C̃p,q(Km, S
n−1) =

1

n

∫
∂′Km

〈ν(Km, x), x〉1−p‖x‖q−n dHn−1(x) (3.4.12)
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≥ 1

n

∫
∂′Km∩Bn

‖x‖1−n+q−p dHn−1(x) ≥ 1

n

∫
∂′Km∩Bn

‖x‖1−n dHn−1(x).

We note that since Km → K and o ∈ ∂K, for sufficiently large m, ∂′Km ∩ Bn 6= ∅ and
the right-hand side of (3.4.12) is greater than zero. As w ∈ intN(K, o)∗ and w ∈ N(K, o),
there exist a % ∈ (0, 1) and a non-negative convex function f on B(2%) with f(o) = 0 such
that

U = {z + f(z)w : z ∈ B(2%)} ⊂ ∂K.

In particular, there exist an η > 0 such that

‖x|w⊥‖ ≥ 2η‖x‖ for x ∈ U . (3.4.13)

We may assume that % ∈ (0, 1) is small enough to ensure that U ⊂ intBn.
Since

∫
B(%) ‖z‖

1−ndHn−1(z) =∞, there exists some δ ∈ (0, %) such that

1

n

∫
B(%)\B(δ)

(
‖z‖
η

)1−n
dHn−1(z) > M. (3.4.14)

There exist and an m0 such that if m > m0, then for some convex function fm on B(%),
we have

Um = {z + fm(z)w : z ∈ B(%)\B(δ)} ⊂ (∂Km) ∩ (intBn), (3.4.15)

and (compare (3.4.13))

‖z‖ ≥ η‖z + fm(z)w‖ for z ∈ B(%)\B(δ). (3.4.16)

We deduce from (3.4.12), (3.4.15) and (3.4.16), and finally from (3.4.14) that

M >
1

n

∫
Um

‖x‖1−n dHn−1(x) ≥ 1

n

∫
B(%)\B(δ)

‖z + fm(z)w‖1−ndHn−1(z)

≥ 1

n

∫
B(%)\B(δ)

(
‖z‖
η

)1−n
dHn−1(z) > M.

This is a contradiction, and in turn we conclude Lemma 3.4.3.

Lemma 3.4.4. If p > 1, q > 0 and Km ∈ Kn(o) for m ∈ N tend to K ∈ Kno with intK 6= ∅
such that C̃p,q(Km, S

n−1) stays bounded, then Hn−1(ΞK) = 0.

Proof. We fix a point z ∈ intK, and for any bounded X ⊂ Rn\{z}, we define the set

σ(X) = {z + λ(x− z) : x ∈ X and λ > 0}.

We observe that σ(X) is open if X ⊂ ∂K is relatively open, and σ(X)∪{o} is closed if X
is compact.

We will use the weak continuity of the (n − 1)th curvature measure. In particular,
according to Theorem 4.2.1 and Theorem 4.2.3 in Schneider [Sch14], if β ⊂ Rn is open,
then

lim inf
m→∞

Hn−1(β ∩ ∂ Km) ≥ Hn−1(β ∩ ∂ K). (3.4.17)
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Let us suppose, on the contrary, that Hn−1(ΞK) > 0, and hence o ∈ ∂K, and seek a
contradiction. Choose some large M,R > 0, and a compact set Ξ̃ ⊂ ΞK\{o} such that

Km ⊂ RBn,

C̃p,q(Km, S
n−1) ≤ M for m ∈ N,

Hn−1(Ξ̃) = ω > 0.

Now there exists some η > 0 such that

(i) (ηBn) ∩ σ(Ξ̃ + ηBn) = ∅.

Since p > 1, we may choose ε > 0 such that

(2ε)1−p

n
·min{ηq−n, Rq−n} · (ω/2) > M. (3.4.18)

We have Hn−1(Ξ̃ ∩ ∂′K) = ω. For any x ∈ Ξ̃ ∩ ∂′K, there exists rx ∈ (0, η) such that

hK(u) ≤ ε if u ∈ Sn−1 is exterior normal at y ∈ ∂K ∩ (x+ rxB
n), (3.4.19)

and we define Bx = int(x+ rxB
n). Let

U =
⋃

x∈Ξ̃∩∂′K

(Bx ∩ ∂K),

which is a relatively open subset of ∂K satisfying

(a) (ηBn) ∩ σ(U) = ∅,

(b) Hn−1(U) ≥ ω,

(c) hK(u) ≤ ε if u ∈ Sn−1 is exterior normal at x ∈ clU .

It follows that (applying (3.4.17) in the case (b’)) that there exists m0 such that if m ≥ m0,
then

(a’) ‖x‖ ≥ η if x ∈ σ(U) ∩ ∂Km,

(b’) Hn−1(σ(U) ∩ ∂Km) ≥ ω/2,

(c’) hK(u) ≤ 2ε if u ∈ Sn−1 is exterior normal at x ∈ σ(U) ∩ ∂Km.

For any x ∈ σ(U) ∩ ∂Km, (a’) and Km ⊂ RBn yield that

‖x‖q−n ≥ min{ηq−n, Rq−n}.

It follows first by (3.4.1), then by (b’), (c’) and (3.4.18), that

M ≥ C̃p,q(Km, S
n−1) ≥ 1

n

∫
σ(U)∩∂′Km

〈νK(x), x〉1−p‖x‖q−n dHn−1(x) > M.

This contradiction proves Lemma 3.4.4.
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3.5 Theorem 3.1.2 for general convex bodies if Q = Bn

For w ∈ Sn−1 and α ∈ (−1, 1), we write

Ω(w,α) = {u ∈ Sn−1 : 〈u,w〉 > α}.

The following is a simple but useful observation.

Lemma 3.5.1. For a finite Borel measure µ on Sn−1 not concentrated on a closed hemi-
sphere, there exists t ∈ (0, 1) such that for any w ∈ Sn−1, we have µ(Ω(w, t)) > t.

First we prove the following variant of Theorem 3.1.2 involving the dual intrinsic
volume.

Theorem 3.5.2. For p > 1 and q > 0, and finite Borel measure µ on Sn−1 not concen-
trated on a closed hemi-sphere, there exists a convex body K ∈ Kno with intK 6= ∅ and
Hn−1(ΞK) = 0 such that

Ṽq(K)hpKdµ = dC̃q(K, ·),

and in addition, K ∈ Kn(o) if p ≥ q.

Proof. We choose a sequence of discrete measures µm tending to µ that are not concen-
trated on any closed hemispheres. It follows from Theorem 3.3.1, that there exists polytope
Pm ∈ Kn(o) such that

dµm =
1

Ṽq(Pm)
dC̃p,q(Pm, ·) =

h−pPm

Ṽq(Pm)
dC̃q(Pm, ·) (3.5.1)

for each m, and hence we may assume that

C̃p,q(Pm, S
n−1)

Ṽq(Pm)
< 2µ(Sn−1). (3.5.2)

We claim that there exists R > 0 such that

Pm ⊂ RBn. (3.5.3)

We prove (3.5.3) by contradiction, thus we suppose that Rm = maxx∈Pm ‖x‖ tends to
infinity. We choose vm ∈ Sn−1 such that Rmvm ∈ Pm, and we may assume by possibly
taking a subsequence that vm tends to v ∈ Sn−1. We deduce from Lemma 3.5.1 that
there exist s, t > 0 such that µ(Ω(v, 2t)) > 2s. As vm tends to v ∈ Sn−1 and µm tends
weakly to µ, we may also assume that Ω(v, 2t) ⊂ Ω(vm, t) and µm(Ω(v, 2t)) > s, therefore
µm(Ω(vm, t)) > s for each m. Since hPm(u) ≥ 〈Rmvm, u〉 ≥ Rmt for u ∈ Ω(vm, t), we
deduce from (3.5.1) that

s < µm(Ω(vm, t)) =

∫
Ω(vm,t)

h−pPm(u)

Ṽq(Pm)
dC̃q(Pm, u) ≤ R−pm t−p

C̃q(Pm, S
n−1)

Ṽq(Pm)
≤ R−pm t−p.

In particular, Rpm ≤ s−1t−p, contradicting the fact that Rm tends to infinity, and in turn
proving (3.5.3).

47

dc_1638_19

Powered by TCPDF (www.tcpdf.org)



It follows from (3.5.3) that Pm tends to a compact convex set K ∈ Kno with K ⊂ RBn.
We deduce from (3.5.2) and Lemma 3.4.2 that r(K) > 0.

We observe that hpPm tends uniformly to hpK , and hence also Ṽq(Pm)hpPm tends uniformly

to Ṽq(K)hpK by Lemma 3.2.5. Therefore given any continuous function f , we have

lim
m→∞

∫
Sn−1

f(u)Ṽq(Pm)hpPm(u) dµm =

∫
Sn−1

f(u)Ṽq(K)hpK(u) dµ.

It follows from Proposition 3.2.6 that the dual curvature measure C̃q(Pm, ·) tends weakly

to C̃q(K, ·), thus (3.5.1) yields∫
Sn−1

f(u)Ṽq(K)hpK(u) dµ =

∫
Sn−1

f(u) dC̃q(K,u).

Since the last property holds for all continuous function f , we conclude that

Ṽq(K)hpK dµ = dC̃q(K, ·),

as it is required.
Having (3.5.2) at hand, Lemma 3.4.4 yields that Hn−1(ΞK) = 0, and Lemma 3.4.3

implies that if p ≥ q, then K ∈ Kn(o).

Proof of Theorem 3.1.2 in the case of Q = Bn Let p > 1, q > 0 and p 6= q. According
to Theorem 3.5.2, there exists a K0 ∈ Kn(o) with intK0 6= ∅ and Hn−1(ΞK0) = 0 such that

Ṽq(K0)−1C̃p,q(K0, ·) = µ. For λ = Ṽq(K0)
−1
q−p and K = λK0, we have

C̃p,q(K, ·) = λq−pC̃p,q(K0, ·) = Ṽq(K0)−1C̃p,q(K0, ·) = µ.

It follows from Theorem 3.5.2 that o ∈ intK if p > q. �

48

dc_1638_19

Powered by TCPDF (www.tcpdf.org)



Chapter 4

Weighted volume approximation
by inscribed polytopes

This chapter of the dissertation is based on parts of the paper [BFH10] by K.J. Böröczky,
F. Fodor, and D. Hug, The mean width of random polytopes circumscribed around a convex
body, J. Lond. Math. Soc. (2) 81 (2010), no. 2, 499–523. (DOI 10.1112/jlms/jdp077)

4.1 Introduction and results

For a given convex body, we introduce a class of inscribed random polytopes. Let C be a
convex body in Rd, let % be a bounded, nonnegative, measurable function on C, and let
HdxC denote the restriction of Hd to C. Assuming that

∫
C %(x)Hd(dx) > 0, we choose

random points from C according to the probability measure

P%,C :=

(∫
C
%(x) dx

)−1

%HdxC.

Expectation with respect to P%,C is denoted by E%,C . The convex hull of n independent
and identically distributed random points with distribution P%,C is denoted by K(n) if % is
clear from the context. This yields a general model of an inscribed random polytope.

In order to state our results, we define the constant

cd =
(d2 + d+ 2)(d2 + 1)

2(d+ 3) · (d+ 1)!
Γ

(
d2 + 1

d+ 1

)(
d+ 1

αd−1

)2/(d+1)

(4.1.1)

(cf. J.A. Wieacker) [Wie78]. In the following, we simply write dx instead of Hd(dx).
Generalizing a result by C. Schütt [Sch94], we prove the following theorem.

Theorem 4.1.1 (Böröczky, Fodor, Hug [BFH10, Theorem 3.1 on page 502]). For a convex
body K in Rd, a probability density function % on K, and an integrable function λ : K → R
such that, on a neighbourhood of ∂K relative to K, λ and % are continuous and % is positive,
we have

lim
n→∞

n
2
d+1 E%,K

∫
K\K(n)

λ(x) dx = cd

∫
∂K

%(x)
−2
d+1λ(x)κ(x)

1
d+1 Hd−1(dx), (4.1.2)
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where cd is defined in (4.1.1).

The limit on the right-hand side of (4.1.2) depends only on the values of % and λ on
the boundary of K. In particular, we may prescribe any continuous, positive function %
on ∂K. Then any continuous extension of % to a probability density on K (there always
exists such an extension) will satisfy Theorem 4.1.1 with the prescribed values of % on the
right-hand side.

Our proof of Theorem 4.1.1 is inspired by the approach in [Sch94], where the special
case % ≡ λ ≡ 1 is considered. We note that for [Sch94, Lemma 2], which is crucial for the
proof in [Sch94], no explicit proof is provided, but reference is given to an analogous result
in an unpublished note by M. Schmuckenschläger. Beside missing a factor 1

2 , Lemma 2
does not hold in the generality stated in [Sch94]. For instance, it is not true for simplices.
Most probably, this gap can be overcome, but still our approach to prove Theorem 4.1.1,
where [Sch94, Lemma 2] is replaced by the present more elementary Lemma 4.2.2, might
be of some interest.

The present partially new approach to Theorem 4.1.1 involves also some other inter-
esting new features. In particular, we do not need the concept of a Macbeath region. An
outline of the proof is given below. It should also be emphasized that the generality of
Theorem 4.1.1 is needed for our study of circumscribed random polyhedral sets via duality
in Chapter 5.

Let fi(P ), i ∈ {0, . . . , d− 1}, denote the number of i-dimensional faces of a polyhedral
set P . A classical argument going back to Efron [Efr65] shows that

E%,K
(
f0(K(n))

)
= n · E%,K

∫
K\K(n−1)

%(x) dx,

which yields the following consequence of Theorem 4.1.1.

Corollary 4.1.2 (Böröczky, Fodor, Hug [BFH10, Corollary 3.2 on page 503]). For a
convex body K in Rd, and for a probability density function % on K which is continuous
and positive on a neighbourhood of ∂K relative to K, we have

lim
n→∞

n−
d−1
d+1 E%,K(f0(K(n))) = cd

∫
∂K

%(x)
d−1
d+1κ(x)

1
d+1 Hd−1(dx),

where cd is defined in (4.1.1).

The proof of Theorem 4.1.1 is obtained through the following intermediate steps. De-
tails are provided in Section 4.2. Since the convex body K is fixed, we write E% and P%
instead of E%,K and P%,K , respectively. The basic observation to prove Theorem 4.1.1 is
that

E%
∫
K\K(n)

λ(x) dx =

∫
K
P%
(
x 6∈ K(n)

)
λ(x) dx, (4.1.3)

which is an immediate consequence of Fubini’s theorem. Throughout the proof, we may
assume that o ∈ int(K). The asymptotic behaviour, as n → ∞, of the right-hand side of
(4.1.3) is determined by points x ∈ K which are sufficiently close to the boundary of K.
In order to give this statement a precise meaning, scaled copies of K are introduced as

50

dc_1638_19

Powered by TCPDF (www.tcpdf.org)



follows. For t ∈ (0, 1), we define Kt := (1− t)K and yt := (1− t)y for y ∈ ∂K. In Lemma
4.2.3, we show that

lim
n→∞

n
2
d+1

∫
K
n−1/(d+1)

P%
(
x 6∈ K(n)

)
λ(x) dx = 0.

This limit relation is based on a geometric estimate of P%
(
x 6∈ K(n)

)
, provided in Lemma

4.2.1, and on a disintegration result stated as Lemma 4.2.2.
For y ∈ ∂K, we write u(y) for some exterior unit normal of K at y. This exterior unit

normal is uniquely determined for Hd−1-almost all boundary points of K. Applying the
disintegration result again and using Lebesgue’s dominated convergence result, we finally
get

lim
n→∞

n
2
d+1E%

∫
K\K(n)

λ(x) dx =

∫
∂K

λ(y)J%(y)Hd−1(dy),

where

J%(y) = lim
n→∞

∫ n−1/(d+1)

0
n

2
d+1 〈y, u(y)〉P%

(
yt 6∈ K(n)

)
dt

for Hd−1-almost all y ∈ ∂K. For the subsequent analysis, it is sufficient to consider a
small cap of K at a normal boundary point y ∈ ∂K. The case κ(y) = 0 is treated in
Lemma 4.2.4. The main case is κ(y) > 0. Here we reparametrize yt as ỹs, in terms of
the probability content of a small cap of K whose bounding hyperplane passes through
yt. This implies that

J%(y) = (d+ 1)−
d−1
d+1α

− 2
d+1

d−1 %(y)
−2
d+1κ(y)

1
d+1 lim

n→∞

∫ n−1/2

0
n

2
d+1P%

(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds,

cf. (4.2.26). It is then a crucial step in the proof to show that the remaining integral
asymptotically is independent of the particular convex body K, and thus the limit of the
integral is the same as for a Euclidean ball (see Lemma 4.2.6). To achieve this, the integral
is first approximated, up to a prescribed error of order ε > 0, by replacing P%

(
ỹs 6∈ K(n)

)
by the probability of an event that depends only on a small cap of K at y and on a small
number of random points. This important step is accomplished in Lemma 4.2.5. For the
proofs of Lemmas 4.2.5 and 4.2.6 it is essential that the boundary of K near the normal
boundary point y can be suitably approximated by the osculating paraboloid of K at y.

4.2 Proof of Theorem 4.1.1

To start with the actual proof, we fix some further notation which will be used in this
chapter. For y ∈ ∂K and t ∈ (0, 1), we define the cap C(y, t) := {x ∈ K : 〈u(y), x〉 ≥
〈u(y), yt〉} whose bounding hyperplane passes through yt and has normal u(y). For u ∈
Rd \ {o} and t ∈ R, we define the hyperplane H(u, t) := {x ∈ Rd : 〈x, u〉 = t}, and the
closed half-spaces H+(u, t) := {x ∈ Rd : 〈x, u〉 ≥ t} and H−(u, t) := {x ∈ Rd : 〈x, u〉 ≤ t}
bounded by H(u, t). We further put R+ := [0,∞).

For y ∈ ∂K, we denote by r(y) the maximal number r ≥ 0 such that y−ru(y)+rBd ⊂
K. This number is called the interior reach of the boundary point y. It is well known that
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r(y) > 0 for Hd−1-almost all y ∈ ∂K. If r(y) > 0, then there is a unique tangent plane of
K at y. In particular, r(y) ≤ r(K) where r(K) is the inradius of K.

Finally, we observe that there exists a constant γ0 ∈ (0, 1) such that for y ∈ ∂K, we
have

|〈y, u(y)〉| ≥ γ0‖y‖, and hence ‖y|u(y)⊥‖ ≤
√

1− γ2
0 · ‖y‖, (4.2.1)

where y|u⊥ denotes the orthogonal projection of y onto the orthogonal complement of the
vector u ∈ Rd \ {o}. Subsequently, we always assume that n ∈ N.

Lemma 4.2.1. There exists a constant δ > 0, depending on K and %, such that, if y ∈ ∂K
and t ∈ (0, δ), then

P%
(
yt 6∈ K(n)

)
�
(

1− γ1r(y)
d−1

2 t
d+1

2

)n
.

Remarks. 1. In addition, we may assume that on K \ int(Kδ), both functions %, λ are

continuous, % is positive and γ1r(K)
d−1

2 δ
d+1

2 < 1. Further, we always choose δ < 1.

2. In the following, we will use the notion of a “coordinate corner”. Given an orthonor-
mal basis in a linear i-dimensional subspace L, the corresponding (i−1)-dimensional
coordinate planes cut L into 2i convex cones, which we call coordinate corners (with
respect to L and the given basis).

Proof of Lemma 4.2.1. If r(y) = 0, then there is nothing to prove. So let r(y) > 0, thence
u(y) is uniquely determined. Choose an orthonormal basis in u(y)⊥, and let Θ′1, . . . ,Θ

′
2d−1

be the corresponding coordinate corners in u(y)⊥. For i = 1, . . . , 2d−1 and t ∈ [0, 1], we
define

Θi,t := C(y, t) ∩
(
yt +

[
Θ′i,R+y

])
.

If δ > 0 is small enough to ensure that % > 0 is positive and continuous in a neighbourhood
(relative to K) of ∂K, then ∫

Θi,t

%(x) dx ≥ γ2 V (Θi,t).

If yt 6∈ K(n) and o ∈ K(n), then there exists a hyperplane H through yt, bounding the

half-spaces H− and H+, for which K(n) ⊂ H−. Moreover, there is some i ∈ {1, . . . , 2d−1}
such that Θi,t ⊂ H+. Therefore

P%
(
yt 6∈ K(n), o ∈ K(n)

)
�

2d−1∑
i=1

(1− γ2V (Θi,t))
n . (4.2.2)

Finally, we prove

V (Θi,t)� r(y)
d−1

2 t
d+1

2 , (4.2.3)

for i = 1, . . . , 2d−1. According to (4.2.1), there exist positive constants γ3, γ4 with γ3 ≤ 1
such that if t ≤ γ3r(y), then (yt + Θ′i) ∩K contains a (d− 1)-ball of radius at least

γ4

√
r(y)2 − (r(y)− t)2 ≥ γ4

√
r(y)t,
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and we are done. On the other hand, if t ≥ γ3r(y), then

V (Θi,t)� td � r(y)
d−1

2 t
d+1

2 .

To deal with the case o 6∈ K(n), we observe that there exists a positive constant γ5 ∈ (0, 1)

such that the probability measure of each of the 2d coordinate corners of Rd is at least γ5.
If o 6∈ K(n), then {x1, . . . , xn} is disjoint from one of these coordinate corners, and hence

P%(o 6∈ K(n)) ≤ 2d(1− γ5)n. (4.2.4)

Now the assertion follows from (4.2.2), (4.2.3) and (4.2.4).

Subsequently, the estimate of Lemma 4.2.1 will be used, for instance, to restrict the
domain of integration on the right-hand side of (4.1.3) (cf. Lemma 4.2.3) and to justify
an application of Lebesgue’s dominated convergence theorem (see (4.2.9)). For these
applications, we also need that if c > 0 is such that ω := c δ(d+1)/2 < 1, then∫ δ

0

(
1− c t

d+1
2

)n
dt =

2

d+ 1
c
−2
d+1

∫ ω

0
s

2
d+1
−1(1− s)n ds� c

−2
d+1 · n

−2
d+1 , (4.2.5)

where we use that (1− s)n ≤ e−ns for s ∈ [0, 1] and n ∈ N.

The next lemma will allow us to decompose integrals in a suitable way.

Lemma 4.2.2. If 0 ≤ t0 ≤ t1 < δ and h : K → [0,∞] is a measurable function, then∫
Kt0\Kt1

h(x) dx =

∫
∂K

∫ t1

t0

(1− t)d−1〈y, u(y)〉h(yt) dtHd−1(dy).

Proof. The map T : ∂K × [t0, t1] → Kt0 \ Kt1 , (y, t) 7→ (1 − t)y, provides a bilipschitz
parametrization of Kt0 \Kt1 with (1−t)y = yt ∈ ∂Kt. The Jacobian of T , for Hd−1-almost
all y ∈ ∂K and t ∈ [t0, t1], is given by JT (y, t) = (1 − t)d−1〈y, u(y)〉, where u(y) is the
(Hd−1-almost everywhere) unique exterior unit normal of ∂K at y. The assertion now
follows from Federer’s area/coarea theorem (see [Fed69]).

In the following, we will use the important fact that, for α > −1,∫
∂K

r(y)αHd−1(dy) <∞, (4.2.6)

which is a result due to C. Schütt and E. Werner [SW90].

By decomposing λ into its positive and its negative parts, we can henceforth assume
that λ is a nonnegative, integrable function.

Lemma 4.2.3. As n tends to infinity, it holds that∫
K
n−1/(d+1)

P%
(
x 6∈ K(n)

)
λ(x) dx = o

(
n
−2
d+1

)
.
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Proof. Let δ > 0 be chosen as in Lemma 4.2.1 and the subsequent remark. First, we
consider a point x in Kδ. Let ω be the minimal distance between the points of ∂K and
Kδ, and let z1, . . . , zk be a maximal family of points in K \ int(Kδ) such that ‖zi−zj‖ ≥ ω

4
for i 6= j. We define p0 > 0 by

p0 := min
{
P%
(
zi + ω

4 B
d
)

: i = 1, . . . , k
}
.

Let x ∈ Kδ. If x 6∈ K(n), then there is some u ∈ Sd−1 such that x ∈ H+(u, t) and
K(n) ⊂ int(H−(u, t)). Since x ∈ Kδ, we obtain that K(n) ⊂ int(H−(u, h(Kδ, u))). If
z ∈ H(u, h(Kδ, u)) ∩ ∂Kδ, then

z +
ω

2
u+

ω

2
Bd ⊂ K ∩H+(u, h(Kδ, u)).

By the maximality of the set {z1, . . . , zk}, we have

{z1, . . . , zk} ∩
(
z +

ω

2
u+

ω

4
Bd
)
6= ∅.

Let zj lie in the intersection. Then zj + ω
4B

d ⊂ H+(u, h(Kδ, u)), and hence xi /∈ zj + ω
4B

d

for i = 1, . . . , n. This implies that, for x ∈ Kδ,

P%
(
x 6∈ K(n)

)
≤ k(1− p0)n. (4.2.7)

Put ε := (2(d2 − 1))−1 and let n ≥ δ−(d+1). For y ∈ ∂K we show that∫ δ

n−1/(d+1)

P%
(
yt 6∈ K(n)

)
dt� r(y)−

d
d+1n

−2
d+1
−ε. (4.2.8)

In fact, if r(y) ≤ n−(d+1)ε, then Lemma 4.2.1 and (4.2.5) yield∫ δ

n−1/(d+1)

P%
(
yt 6∈ K(n)

)
dt ≤

∫ δ

0

(
1− γ1r(y)

d−1
2 t

d+1
2

)n
dt

� r(y)−
d−1
d+1n−

2
d+1

≤ r(y)−
d
d+1n−

2
d+1
−ε,

where the assumption on r(y) is used for the last estimate.

If r(y) ≥ n−(d+1)ε and n ≥ n0, where n0 depends on K, % and λ, then Lemma 4.2.1
implies for all t ∈ (n−1/(d+1), δ) that

P%
(
yt 6∈ K(n)

)
�
(

1− γ1n
− d

2−1
2

ε− 1
2

)n
= (1− γ1n

−3/4)n

≤ e−γ1n1/4

≤ r(K)−
d
d+1n

−2
d+1
−ε,
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which again yields (4.2.8). In particular, writing I to denote the integral in Lemma 4.2.3,
we obtain from Lemma 4.2.2, (4.2.7), (4.2.8) and (4.2.6) that

I �
∫
Kδ

P%
(
x 6∈ K(n)

)
λ(x) dx+

∫
∂K

∫ δ

n−1/(d+1)

P%
(
yt 6∈ K(n)

)
dtHd−1(dy)

� k(1− p0)n +

∫
∂K

r(y)−
d
d+1n

−2
d+1
−εHd−1(dy)� n

−2
d+1
−ε,

where we also used the fact that λ is integrable on K and bounded on K \Kδ. This is the
required estimate.

It follows from (4.1.3), Lemma 4.2.3 and Lemma 4.2.2 that

lim
n→∞

n
2
d+1 E%

∫
K\K(n)

λ(x) dx

= lim
n→∞

n
2
d+1

∫
K
P%
(
x 6∈ K(n)

)
λ(x) dx

= lim
n→∞

∫
∂K

∫ n−1/(d+1)

0
n

2
d+1 (1− t)d−1〈y, u(y)〉P%

(
yt 6∈ K(n)

)
λ(yt) dtHd−1(dy).

Lemma 4.2.1 and (4.2.5) imply that, if y ∈ ∂K and r(y) > 0, then∫ n−1/(d+1)

0
n

2
d+1P%

(
yt 6∈ K(n)

)
〈y, u(y)〉λ(yt) dt� r(y)−

d−1
d+1 .

Therefore, by (4.2.6) and since λ is bounded and continuous in a neighbourhood of ∂K,
we may apply Lebesgue’s dominated convergence theorem, and thus

lim
n→∞

n
2
d+1E%

∫
K\K(n)

λ(x) dx =

∫
∂K

λ(y)J%(y)Hd−1(dy), (4.2.9)

where

J%(y) := lim
n→∞

∫ n−1/(d+1)

0
n

2
d+1 〈y, u(y)〉P%

(
yt 6∈ K(n)

)
dt,

for Hd−1-almost all y ∈ ∂K.

Lemma 4.2.4. If y ∈ ∂K is a normal boundary point of K with κ(y) = 0, then J%(y) = 0.

Proof. In view of the estimate (4.2.4), it is sufficient to prove that for any given ε > 0,∫ n−1/(d+1)

0
n

2
d+1P%

(
yt 6∈ K(n), o ∈ K(n)

)
dt� ε, (4.2.10)

if n is sufficiently large. We choose the coordinate axes in u(y)⊥ parallel to the principal
curvature directions of K at y, and denote by Θ′1, . . . ,Θ

′
2d−1 the corresponding coordinate

corners. For i = 1, . . . , 2d−1 and t ∈ (0, n−1/(d+1)), let

Θi,t := C(y, t) ∩
(
yt +

[
Θ′i,R+y

])
,

55

dc_1638_19

Powered by TCPDF (www.tcpdf.org)



and hence, if n is large enough, then∫
Θi,t

%(x) dx� V (Θi,t),

since % is continuous and positive near ∂K. If yt 6∈ Kn and o ∈ K(n), then there exists
a half-space H− which contains K(n) and for which yt ∈ ∂H−. Moreover, for some

i ∈ {1, . . . , 2d−1} the interior of H− is disjoint from Θi,t. Hence, as in the proof of Lemma
4.2.1, it holds that

P%
(
yt 6∈ K(n), o ∈ K(n)

)
�

2d−1∑
i=1

(1− γ6V (Θi,t))
n . (4.2.11)

Since ∂K is twice differentiable in the generalized sense at y, we have r(y) > 0. By
assumption, κ(y) = 0, therefore one principal curvature at y is zero, and hence less than
εd+1r(y)d−2. In particular, there exists δ′ ∈ (0, δ), which by (4.2.1) depends only on y and
ε, such that, if i ∈ {1, . . . , 2d−1} and t ∈ (0, δ′), then

Hd−1
(
(yt + Θ′i) ∩K

)
�
√
tε−(d+1)r(y)−(d−2) ·

√
tr(y)

d−2
,

and thus V (Θi,t)� ε−(d+1)/2t(d+1)/2. Therefore (4.2.10) follows from (4.2.5) and (4.2.11).

Next we consider the case of a normal boundary point y ∈ ∂K with κ(y) > 0. First, we
prove that J%(y) depends only on the random points near y (see Lemma 4.2.5). In a second
step, we compare the simplified expression obtained for J%(y) with the corresponding
expression which is obtained if K is a ball.

We start by reparametrizing yt in terms of the probability measure of the corresponding
cap. For t ∈ (0, n−1/(d+1)), where n ≥ n0 is sufficiently large so that % is positive and
continuous on C(y, t), for all y ∈ ∂K, we put

ỹs := yt,

where, for given s > 0 (sufficiently small), the corresponding t = t(s) is determined by the
relation

s =

∫
C(y,t)

%(x) dx. (4.2.12)

It is easy to see that the right-hand side of (4.2.12) is a continuous and strictly increasing
function s = s(t) of t, if t > 0 is sufficiently small. This implies that, for a given s > 0
(sufficiently small), there is a unique t(s) such that (4.2.12) is satisfied.

Moreover, observe that

ds

dt
= 〈u(y), y〉

∫
H(y,t)∩K

%(x)Hd−1(dx) (4.2.13)

for t ∈ (0, n−1/(d+1)). We further define

C̃(y, s) := C(y, t) and H̃(y, s) := {x ∈ Rd : 〈u(y), x〉 = 〈u(y), ỹs〉},

56

dc_1638_19

Powered by TCPDF (www.tcpdf.org)



where t = t(s).
Let Q denote the second fundamental form of ∂K at y (cf. (2.2.1)), considered as a

function on u(y)⊥. We define

E := {z ∈ u(y)⊥ : Q(z) ≤ 1}

and put u := u(y). Choosing a suitable orthonormal basis v1, . . . , vd−1 of u(y)⊥, we have

Q(z) =
d−1∑
i=1

ki(y)z2
i ,

where ki(y), i = 1, . . . , d− 1, are the generalized principal curvatures of K at y and where
z = z1v1+. . .+zd−1vd−1. Since y is a normal boundary point of K, there is a nondecreasing
function µ : (0,∞)→ R with limr→0+ µ(r) = 1 such that

µ(r)−1

√
2r

(K(u, r) + ru− y) ⊂ E ⊂ µ(r)√
2r

(K(u, r) + ru− y), (4.2.14)

where K(u, r) := K ∩ H(u, h(K,u) − r). In the following, µi : (0,∞) → R, i = 1, 2, . . .,
always denote nondecreasing functions with limr→0+ µ(r) = 1. Applying (4.2.14) and
Fubini’s theorem, we get

V (K ∩H+(u, h(K,u)− r)) = µ1(r)
(2r)

d+1
2

d+ 1
αd−1κ(y)−

1
2 ,

which yields

s(t) = µ2(t)
(2t〈y, u〉)

d+1
2

d+ 1
αd−1κ(y)−

1
2 %(y), (4.2.15)

since % is continuous at y. Moreover, defining

η := (d+ 1)
1
d+1α

− 1
d+1

d−1 %(y)
−1
d+1κ(y)

1
2(d+1) ,

we obtain
lim
s→0+

s
−1
d+1 [(H̃(y, s) ∩K)− ỹs] = η · E (4.2.16)

in the sense of the Hausdorff metric on compact convex sets (see Schneider [Sch14] or
Gruber [Gru07]). Here we also use the fact that

lim
s→0+

s−
1
d+1 (ỹs − 〈ỹs, u〉u) = o. (4.2.17)

Now it follows from (4.2.13) and (4.2.16) that (4.2.9) turns into

J%(y) = (d+ 1)−
d−1
d+1α

− 2
d+1

d−1 %(y)
−2
d+1κ(y)

1
d+1 lim

n→∞

∫ g(n,y)

0
n

2
d+1P%

(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds,

where
lim
n→∞

n
1
2 g(n, y) = (d+ 1)−1αd−1%(y)(2〈u(y), y〉)

d+1
2 κ(y)−

1
2 .
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The rest of the proof is devoted to identifying the asymptotic behaviour of the integral.
First, we adjust the domain of integration and the integrand in a suitable way. In a
second step, the resulting expression is compared to the case where K is the unit ball. We
recall that x1, . . . , xn are random points in K, and we put Ξn := {x1, . . . , xn}, and hence
K(n) = [Ξn]. Let #X denote the cardinality of a finite set X ⊂ Rd.

Lemma 4.2.5. For ε ∈ (0, 1), there exist α, β > 1 and an integer k > 1, depending only
on ε and d, with the following property. If y ∈ ∂K is a normal boundary point of K with
κ(y) > 0 and if n > n0, where n0 depends on ε, y,K, %, then∫ g(n,y)

0
P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds =

∫ α/n

ε(d+1)/2/n
ϕ(K, y, %, ε, s)s−

d−1
d+1 ds+O

(
ε

n
2
d+1

)
,

where

ϕ(K, y, %, ε, s) = P%
((
ỹs 6∈ [C̃(y, βs) ∩ Ξn]

)
and

(
#(C̃(y, βs) ∩ Ξn) ≤ k

))
.

Proof. Let Q be the second fundamental form of ∂K at the normal boundary point y, and
let v1, . . . , vd−1 be an orthonormal basis of u(y)⊥ with respect to Q, as described above.
Let Θ′1, . . . ,Θ

′
2d−1 be the corresponding coordinate corners, and, for i = 1, . . . , 2d−1 and

for s ∈ (0, n−1/2), put

Θ̃i,s := C̃(y, s) ∩
(
ỹs +

[
Θ′i,R+y

])
.

Let As, s > 0, be the affine map of Rd with As(y) = y for which the associated linear map

Ãs is determined by Ãs(v) = s
1
d+1 v, for v ∈ u⊥, and Ãs(u) = s

2
d+1u. Then det(Ãs) = s

and As−1(C̃(y, s)) converges in the Hausdorff metric, as s → 0+, to the cap C̃(y) of the
osculating paraboloid of K at y having volume %(y)−1. Here we use the assumptions
that % is continuous at y, %(y) > 0 and relation (4.2.12). Let λ > 0 be such that ỹ :=
y − λu ∈ ∂C̃(y). Then As−1(Θ̃i,s) converges in the Hausdorff metric, as s → 0+, to

C̃(y) ∩ (ỹ + [Θ′i,R+u]), since (4.2.17) is satisfied. Since % is continuous and positive at y,
we thus get

lim
s→0+

s−1

∫
Θ̃i,s

%(x) dx = lim
s→0+

s−1V (Θ̃i,s)%(y)

= lim
s→0+

V (As−1(Θ̃i,s))%(y)

= V (C̃(y) ∩ (ỹ + [Θ′i,R+u]))%(y)

= 2−(d−1)V (C̃(y))%(y)

= 2−(d−1) lim
s→0+

V (As−1(C̃(y, s))%(y)

= 2−(d−1) lim
s→0+

s−1V (C̃(y, s))%(y)

= 2−(d−1) lim
s→0+

s−1

∫
C̃(y,s)

%(x) dx

= 2−(d−1),
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that is,

lim
s→0+

s−1

∫
Θ̃i,s

%(x) dx = 2−(d−1). (4.2.18)

Let α > 1 be chosen such that

2d−1+2d/(d+1)

∫ ∞
2−dα

e−xx
2
d+1
−1 dx ≤ ε.

Then we first choose β ≥ (16(d− 1))d+1 such that

2d−1e−d
−12−(d+3)β

1
d+1 ε

d+1
2 ≤ ε

α
2
d+1

,

and then we fix an integer k > 1 such that

(αβ)k

k!
≤ ε

α
2
d+1

.

Lemma 4.2.5 follows from the following three statements, which we will prove assuming
that n is sufficiently large.

(i) ∫ g(n,y)

0
P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds

=

∫ α/n

ε(d+1)/2/n
P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds+O

(
ε

n
2
d+1

)
.

(ii) If ε(d+1)/2/n < s < α/n, then

P%
(

#
(
C̃(y, βs) ∩ Ξn

)
≥ k

)
= O

(
ε

α
2
d+1

)
.

(iii) If ε(d+1)/2/n < s < α/n, then

P%
(
ỹs 6∈ K(n)

)
= P%

(
ỹs 6∈

[
C̃(y, βs) ∩ Ξn

])
+O

(
ε

α
2
d+1

)
.

To prove (i), we first observe that∫ ε(d+1)/2/n

0
P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds ≤

∫ ε(d+1)/2/n

0
s−

d−1
d+1 ds� ε

n
2
d+1

.

If α/n < s < g(n, y), o ∈ K(n), ỹs 6∈ K(n) and if n is sufficiently large, then there is some

i ∈ {1, . . . , 2d−1} such that Θ̃i,s ∩K(n) = ∅, and hence (4.2.4) and (4.2.18) yield

P%
(
ỹs 6∈ K(n)

)
� 2d−1(1− 2−ds)n ≤ 2d−1e−2−dns. (4.2.19)
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Therefore, by the definition of α, we get∫ g(n,y)

α/n
P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds� 2d−1

∫ ∞
α/n

e−2−dnss
2
d+1
−1 ds

= 2d−122d/(d+1)n−
2
d+1

∫ ∞
2−dα

e−xx
2
d+1
−1 dx

≤ ε n−
2
d+1 ,

which verifies (i).
Next (ii) simply follows from (4.2.12) as, if s < α/n, then

P%
(

#
(
C̃(y, βs) ∩ Ξn

)
≥ k

)
=

(
n

k

)
(βs)k ≤

(
n

k

)(
αβ

n

)k
<

(αβ)k

k!
≤ ε

α
2
d+1

.

Now we prove (iii). To this end, for s in the given range, our plan is to construct sets
Ω̃1,s, . . . , Ω̃2d−1,s ⊂ K such that∫

Ω̃i,s

%(x) dx ≥ d−12−(d+3)β
1
d+1 s, for i = 1, . . . , 2d−1, (4.2.20)

and, if ỹs ∈ K(n) but ỹs 6∈
[
C̃(y, βs) ∩ Ξn

]
, then Ξn ∩ Ω̃i,s = ∅ for some i ∈ {1, . . . , 2d−1}.

For i = 1, . . . , 2d−1, let wi ∈ Θ′i be the vector whose coordinates (up to sign) in the
basis v1, . . . , vd−1 are

wi :=
(√

βs
) 1
d+1 η

2
√
d− 1

(
± 1√

k1(y)
, . . . ,± 1√

kd−1(y)

)
.

Further, for i = 1, . . . , 2d−1 we define

Ω̃i,s = [ỹ√β s + wi,K ∩ (ỹs + Θ′i)].

Then, if s > 0 is small enough, we have ỹ√β s +wi ∈ K, and hence Ω̃i,s ⊂ K. Here we use
the fact that

wi ∈ (
√
βs)

1
d+1

1

2
ηE

and therefore, by (4.2.16),

ỹ√βs + wi ∈ H̃(y,
√
βs) ∩K ⊂ K.

Recall that ỹs = (1 − t)y, where s and t are related by (4.2.15). Hence, if s, t > 0 are
sufficiently small,

〈u(y), ỹs − ỹ√β s〉 >
β

1
d+1 − 1

2
〈u(y), y − ỹs〉 >

β
1
d+1

4
〈u(y), y − ỹs〉, (4.2.21)

since β ≥ 2d+1; moreover,

〈u(y), y − ỹs〉 · Hd−1
(
K ∩ (ỹs + Θ′i)

)
≥ V (Θ̃i,s). (4.2.22)
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Combining (4.2.21), (4.2.22), and (4.2.18) together with the continuity of % at y with
%(y) > 0, we get∫

Ω̃i,s

%(x) dx ≥ 1√
2

1

d
%(y)〈u(y), ỹs − ỹ√β s〉H

d−1
(
K ∩ (ỹs + Θ′i)

)
≥ β

1
d+1

4

1√
2d
V (Θ̃i,s)

≥ β
1
d+1

4

1

2d

∫
Θ̃i,s

%(x) dx

≥ β
1
d+1 s

8d 2d
,

which proves (4.2.20).

It is still left to prove that, if ỹs ∈ K(n) but ỹs 6∈
[
C̃(y, βs) ∩ Ξn

]
, then Ξn ∩ Ω̃i,s = ∅

for some i ∈ {1, . . . , 2d−1}. So we assume that ỹs ∈ K(n) but ỹs 6∈
[
C̃(y, βs) ∩ Ξn

]
. Then

there exist a ∈
[
C̃(y, βs) ∩ Ξn

]
and b ∈ K(n) \ C̃(y, βs) such that ỹs ∈ [a, b], and hence

there exists a hyperplane H containing ỹs and bounding the half-spaces H+ and H− such
that C̃(y, βs) ∩ Ξn ⊂ int(H+) and b ∈ int(H−).

Next we show that there exists q ∈ [ỹs, b] such that

q ∈ H− ∩
(
ỹ√β s +

η

2
√
d− 1

(
√
βs)

1
d+1E

)
. (4.2.23)

In fact, define q := [ỹs, b] ∩ H̃(y,
√
βs) and q′ := [ỹs, b] ∩ H̃(y, βs). Since a ∈ H+ and

ỹs ∈ H, it follows that q ∈ H−. From (4.2.16) we get

H̃(y, βs) ∩K ⊂ ỹβs + 2β
1
d+1 s

1
d+1 ηE. (4.2.24)

By (4.2.15),

〈u(y), ỹs − ỹβ s〉 <
β

2
d+1

β
2
d+1 − 1

· β
2
d+1 − 1

β
2
d+1 − β

1
d+1

〈u(y), ỹ√β s − ỹβs〉

<
β

1
d+1

β
1
d+1 − 1

〈u(y), ỹ√β s − ỹβs〉. (4.2.25)

Furthermore, by elementary geometry

‖q − ỹ√βs‖
‖q′ − ỹβs‖

=
〈u, ỹs − ỹ√βs〉
〈u, ỹs − ỹβs〉

.

Then, by (4.2.24) and (4.2.25),

q ∈ ỹ√βs +
〈u, ỹs − ỹ√βs〉
〈u, ỹs − ỹβs〉

· 2(βs)
1
d+1 ηE
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⊂ ỹ√βs +

(
1−
〈u, ỹ√βs − ỹβs〉
〈u, ỹs − ỹβs〉

)
· 2β

1
d+1 s

1
d+1 ηE

⊂ ỹ√βs + 2s
1
d+1 ηE

⊂ ỹ√βs +
1

2
√
d− 1

(
√
βs)

1
d+1 ηE,

where β ≥ (16(d − 1))d+1 is used for the last inclusion. Now there exists some i ∈
{1, . . . , 2d−1} such that ỹs + Θ′i ⊂ H−, and hence q + Θ′i ⊂ H−. By (4.2.23) this finally
yields

ỹ√βs + wi ⊂ q + Θ′i ⊂ H−.

Therefore, we obtain that Ω̃i,s ∩ Ξn = ∅.
Finally, (iii) follows as, if ε(d+1)/2/n < s < α/n, then

0 ≤ P%
(
ỹs 6∈

[
C̃(y, βs) ∩ Ξn

])
− P%

(
ỹs 6∈ K(n)

)
≤

2d−1∑
i=1

(1−
∫

Ω̃i,s

%(x) dx)n

≤
2d−1∑
i=1

e
−n

∫
Ω̃i,s

%(x) dx

≤ 2d−1e−d
−12−(d+3)β

1
d+1 ε

d+1
2

≤ ε α−
2
d+1 ,

by the choice of β.

Remark. As a consequence of the proof of Lemma 4.2.5, it follows that

J%(y) = (d+ 1)−
d−1
d+1α

− 2
d+1

d−1 %(y)
−2
d+1κ(y)

1
d+1 lim

n→∞

∫ n−1/2

0
n

2
d+1P%

(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds.

(4.2.26)
In fact, since g(n, y)� n−1/2, it is sufficient to show that

lim
n→∞

n
2
d+1

∫ c2n−1/2

c1n−1/2

P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds = 0

for any two constants 0 < c1 ≤ c2 <∞. Since the estimate (4.2.19) can be applied, we get

n
2
d+1

∫ c2n−1/2

c1n−1/2

P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds � n

2
d+1

∫ c2n−1/2

c1n−1/2

e−2−dnss
2
d+1
−1 ds

�
∫ 2−dc2n1/2

2−dc1n1/2

e−rr
2
d+1
−1 dr,

from which the conclusion follows.
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Subsequently, we write 1 to denote the constant one function on Rd. For the unit ball
Bd, we recall that Bd

(n) denotes the convex hull of n random points distributed uniformly

and independently in Bd. We fix a point w ∈ ∂Bd, and for s ∈ (0, 1
2), define w̃s := t · w,

where t ∈ (0, 1) is chosen such that

s = α−1
d · V ({x ∈ Bd : 〈x,w〉 ≥ 〈w̃s, w〉}).

By a classical result due to J.A. Wieacker [Wie78],

lim
n→∞

n
2
d+1E1,BdV (Bd \Bd

(n)) = cd ωd α
2
d+1

d ,

where the constant cd is given in (4.1.1). Hence, it follows from (4.2.9), (4.2.26) and the
preceding remark that

lim
n→∞

∫ n−1/2

0
n

2
d+1P1,Bd

(
w̃s 6∈ Bd

(n)

)
s−

d−1
d+1 ds = cd (d+ 1)

d−1
d+1α

2
d+1

d−1. (4.2.27)

We are now going to show that the same limit is obtained if Bd is replaced by the convex
body K and if a normal boundary point y of K with positive Gauss curvature is considered
instead of w ∈ ∂Bd.

Lemma 4.2.6. If y ∈ ∂K is a normal boundary point of K satisfying κ(y) > 0, then

lim
n→∞

∫ n−1/2

0
n

2
d+1P%

(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds = cd(d+ 1)

d−1
d+1α

2
d+1

d−1.

Proof. Let ε ∈ (0, 1) be arbitrarily chosen. According to Lemma 4.2.5 and its notation
and by the preceding remark, if n is sufficiently large, we have∫ n−1/2

0
P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds = O

(
ε

n
2
d+1

)
+

k∑
i=0

(
n

i

)∫ α/n

ε(d+1)/2/n
(βs)i(1− βs)n−i

×P
%,C̃(y,βs)

(
ỹs 6∈ C̃(y, βs)(i)

)
s−

d−1
d+1 ds. (4.2.28)

We fix a unit vector p, and consider the reference paraboloid Ψ which is the graph of
z 7→ ‖z‖2 on p⊥. For τ > 0, define

C(τ) :=
{
z + tp : z ∈ p⊥ and ‖z‖2 ≤ t ≤ τ

2
d+1

}
,

that is, a cap of Ψ of height τ
2
d+1 . It is easy to check that V (C(τ)) = τV (C(1)). We define

s̃(β, s) :=
V (C̃(y, βs))

V (C(β))
.

Then (4.2.12) implies that

s̃(β, s) =
βs

µ(β, s)%(y)βV (C(1))
=

s

µ(β, s)%(y)V (C(1))
,
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where µ(β, s)→ 1 as s→ 0+. Let As, s > 0, denote the affinity of Rd with As(y) = y for

which the associated linear map Ãs satisfies Ãs(v) = s
1
d+1 v for v ∈ u⊥ and Ãs(u) = s

2
d+1u.

Then the image under As−1 of a cap of K at y converges in the Hausdorff metric, as
s → 0+, to a cap of the osculating paraboloid of K at y. For a more explicit statement,
let A be a volume preserving affinity of Rd such that A(y) = o and A(y − u) = p, which
maps the osculating paraboloid of K at y to Ψ. Then Φs,β := A ◦ As̃(β,s)−1 is an affinity
satisfying

Φs,β(y) = o, det(Φs,β) = s̃(β, s)−1 =
V (C(β))

V (C̃(y, βs))
,

and, consequently, Φs,β(C̃(y, βs)) → C(β) in the Hausdorff metric as s → 0+. Moreover,
we have

lim
s→0+

Φs,β(ỹs) = lim
s→0+

Φs,1(ỹs) = p,

since µ(β, s)→ 1 and µ(1, s)→ 1 as s→ 0+, ỹs ∈ ∂C̃(y, s) and Φs,1(ỹs) ∈ ∂C(1), and by
(4.2.17). Since % is continuous at y, the properties of Φs,β imply that, for i = 0, . . . , k,

lim
s→0+

P
%,C̃(y,βs)

(
ỹs 6∈ C̃(y, βs)(i)

)
= P1,C(β)

(
p 6∈ C(β)(i)

)
. (4.2.29)

From (4.2.28) and (4.2.29) we get∫ n−1/2

0
P%
(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds = O

(
ε

n
2
d+1

)
+

k∑
i=0

(
n

i

)∫ α/n

ε(d+1)/2/n
(βs)i(1− βs)n−i

×P1,C(β)

(
p 6∈ C(β)(i)

)
s−

d−1
d+1 ds.

The same formula is obtained for∫ n−1/2

0
P1,Bd

(
w̃s 6∈ Bd

(n)

)
s−

d−1
d+1 ds,

since C(β) is independent of K. Since ε ∈ (0, 1) was arbitrary,

lim
n→∞

∫ n−1/2

0
n

2
d+1P%

(
ỹs 6∈ K(n)

)
s−

d−1
d+1 ds

= lim
n→∞

∫ n−1/2

0
n

2
d+1P1,Bd

(
w̃s 6∈ Bd

(n)

)
s−

d−1
d+1 ds.

Now (4.2.27) yields Lemma 4.2.6.

Proof of Theorem 4.1.1. Let y ∈ ∂K be a normal boundary point of K. Combining
Lemma 4.2.4, Lemma 4.2.6 and (4.2.26), we obtain

J%(y) = cd %(y)
−2
d+1κ(y)

1
d+1 .

Therefore Theorem 4.1.1 is implied by (4.2.9).
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Chapter 5

Circumscribed random polytopes

This chapter of the dissertation is based on parts of the paper [BFH10] by K.J. Böröczky,
F. Fodor, and D. Hug, The mean width of random polytopes circumscribed around a convex
body, J. Lond. Math. Soc. (2) 81 (2010), no. 2, 499–523. (DOI 10.1112/jlms/jdp077)

5.1 The probability space and the main goal

In order to state our results on random circumscribed polyhedral sets we start with de-
scribing the simplest version of probability model we use. In fact, we prove our statements
in a much more general setting but that requires a lengthier introduction which is left to
Section 5.2.

Let H denote the space of hyperplanes in Rd endowed with their usual topology, see
[SW08, Chapter 13.2]. Let HK ⊂ H be the subspace of H such that for each H ∈ HK , it
holds that H ∩K1 6= ∅ and H ∩ intK = ∅, where K1 is the radius 1 parallel domain of
K. Let µ denote the unique rigid motion invariant Borel measure on H with the property
that µ({H ∈ H : H ∩M 6= ∅}) = W (M) for every convex body M in Rd. Here W (M) is
the mean width of M , see Section 2.2 for a definition. Let µK := (1/2)µxHK , that is, the
restriction of (1/2)µ to HK . Then µK is a probability measure on HK because

µK(HK) =
1

2
µ(HK) =

1

2
(W (K +Bd)−W (K)) =

1

2
W (Bd) = 1,

Let H1, . . . ,Hn be independent random hyperplanes in Rd selected according to the prob-
ability distribution µK . If for each 1 ≤ i ≤ n, H−i is the closed half-space bounded by Hi

that contains K, then the intersection

K(n) :=

n⋂
i=1

H−i

is a random polyhedral set containing K. Note that K(n) can be unbounded with positive
probability.

It is our aim to investigate the geometric properties ofK(n). In particular, in Section 5.2
we determine an asymptotic formula for the expectation EW (K(n) ∩ K1). We consider
the intersection of K(n) with K1 because K(n) is unbounded with positive probability. We
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note that the use of K1 is only a convenience, its role is not essential in the sense that
we could use any other convex body containing K in its interior and it would only affect
some of the constants without changing the essence of the asymptotic behaviour.

Instead of EW (K(n) ∩ K1), we could also consider the conditional expectation
E1W (K(n)) of W (K(n)) under the condition that K(n) is contained in K1. However, it was
proved by Böröczky and Schneider [BS10] that EW (K(n)∩K1) = E1W (K(n))+O(γn) with
γ ∈ (0, 1), so there is no difference in the asymptotic behaviours of these two quantities,
as n→∞.

The main asymptotic result concerning the expected difference of the mean widths of
K(n) and K is the following theorem.

Theorem 5.1.1 (Böröczky, Fodor, Hug [BFH10, Theorem 2.1 on page 501]). If K is a
convex body in Rd, then

lim
n→∞

n
2
d+1 E(W (K(n) ∩K1)−W (K)) = 2 cd ωd

− d−1
d+1

∫
∂K

κ(x)
d
d+1 Hd−1(dx),

where cd is defined in (4.1.1).

Let fi(P ), i ∈ {0, . . . , d− 1}, denote the number of i-dimensional faces of a polyhedral
set P . In the statement of the following theorem, K(n) could be replaced by the intersection
of K(n) with a fixed polytope containing K in its interior without changing the right-hand
side. Alternatively, instead of E(fd−1(K(n))) we could consider the conditional expectation
of fd−1(K(n)) under the assumption that K(n) is contained in K1.

Theorem 5.1.2 (Böröczky, Fodor, Hug [BFH10, Theorem 2.2 on page 502]). If K is a
convex body in Rd, then

lim
n→∞

n−
d−1
d+1 E(fd−1(K(n))) = cd ω

− d−1
d+1

d

∫
∂K

κ(x)
d
d+1 Hd−1(dx),

where cd is defined in (4.1.1).

Generalizations of Theorem 5.1.1, and also of Theorem 5.1.2 below, which hold un-
der more general distributional assumptions, are provided in Section 5.2. There we also
indicate the connection to the p-affine surface area of a convex body.

Both theorems will be deduced from a “dual” result on weighted volume approximation
of convex bodies by inscribed random polytopes, namely from Theorems 4.1.1 and 4.1.2.
The usefulness of duality in random or best approximation has previously been observed,
e.g., in [Zie70], [Kal90], [GG97], [DW96].

5.2 Polarity and the proof of Theorem 5.1.1

In this section, we deduce Theorem 5.1.1 and Theorem 5.1.2 from Theorem 4.1.1 and
Corollary 4.1.2, respectively. In order to obtain more general results, for not necessarily
homogeneous or isotropic hyperplane distributions, we start with a description of the basic
setting.
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Let K ⊂ Rd be a convex body with o ∈ int(K), let K∗ := {z ∈ Rd : 〈x, z〉 ≤
1 for all x ∈ K} denote the polar body of K, and put K1 := K +Bd. Let HK denote the
set of all hyperplanes H in Rd for which H ∩ int(K) = ∅ and H ∩K1 6= ∅. The motion
invariant locally finite measure µ on the space A(d, d− 1) of hyperplanes, which satisfies
µ(HK) = 2, is explicitly given by

µ = 2

∫
Sd−1

∫ ∞
0

1{H(u, t) ∈ ·} dt σ(du),

where σ is the rotation invariant probability measure on the unit sphere Sd−1. The model
of a random polytope (random polyhedral set) described in the introduction is based on
random hyperplanes with distribution µK := 2−1(µxHK). More generally, we now consider
random hyperplanes with distribution

µq :=

∫
Sd−1

∫ ∞
0

1{H(u, t) ∈ ·}q(t, u) dt σ(du), (5.2.1)

where q : [0,∞)× Sd−1 → [0,∞) is a measurable function which is

(q1) concentrated on DK := {(t, u) ∈ [0,∞)× Sd−1 : h(K,u) ≤ t ≤ h(K1, u)},

(q2) positive and continuous in a neighbourhood of {(t, u) ∈ [0,∞)×Sd−1 : t = h(K,u)}
relative to DK ,

(q3) and satisfies µq(HK) = 1.

The intersection of n half-spaces H−i containing the origin o and bounded by n independent
random hyperplanes Hi with distribution µq is denoted by K(n) :=

⋂n
i=1H

−
i . Probabilities

and expectations with respect to µq are denoted by Pµq and Eµq , respectively. The special
example q ≡ 1DK (q is the characteristic function of DK) covers the situation discussed
in the introduction.

In the following, beside the support function, we will also need the radial function
ρ(L, ·) of a convex body L with o ∈ int(L). Let F be a nonnegative measurable functional
on convex polyhedral sets in Rd. Using (5.2.1) and Fubini’s theorem, we get

Eµq(F (K(n))) =

∫
A(d,d−1)n

F

(
n⋂
i=1

H−i

)
µ⊗nq (d(H1, . . . ,Hn))

=

∫
(Sd−1)n

∫ h(K1,u1)

h(K,u1)
. . .

∫ h(K1,un)

h(K,un)
F

(
n⋂
i=1

H−i (ui, ti)

)
n∏
i=1

q(ti, ui)

× dtn . . . dt1 σ⊗n(d(u1, . . . , un)).

For t1, . . . , tn > 0, we have

n⋂
i=1

H−i (ui, ti) =
[
t1
−1u1, . . . , tn

−1un
]∗
.
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Using the substitution si = 1/ti, ρ(L∗, ui) = h(L, ui)
−1 for L ∈ Kn with o ∈ int(L), and

polar coordinates, we obtain

Eµq(F (K(n))) =
1

ωnd

∫
(K∗\K∗1)

n
F ([x1, . . . , xn]∗)

n∏
i=1

(
q̃(xi)‖xi‖−(d+1)

)
d(x1, . . . , xn)

with K∗1 := (K1)∗ and

q̃(x) := q

(
1

‖x‖
,
x

‖x‖

)
, x ∈ K∗ \ {o}.

The case n = 1 and F ≡ 1 yields

1

ωd

∫
K∗\K∗1

q̃(x)‖x‖−(d+1) dx = 1,

hence

%(x) :=

{
ωd
−1q̃(x)‖x‖−(d+1), x ∈ K∗ \K∗1 ,

0, x ∈ K∗1 ,

is a probability density with respect to HdxK∗ which is positive and continuous in a
neighbourhood of ∂K∗ relative to K∗. Thus,

Eµq(F (K(n))) =

∫
(K∗)n

F ([x1, . . . , xn]∗)
n∏
i=1

%(xi) d(x1, . . . , xn)

= E%,K∗
(
F ((K∗(n))

∗)
)
,

where K∗(n) := (K∗)(n).

Proposition 5.2.1. Let K ⊂ Rd be a convex body with o ∈ int(K), and let q and % be
defined as above. Then the random polyhedral sets K(n) and (K∗(n))

∗ are equal in distribu-
tion.

For a first application, let

F (P ) := 1{P ⊂ K1} (W (P )−W (K)) ,

for a polyhedral set P ⊂ Rd, with the convention 0 · ∞ := 0. For x1, . . . , xn ∈ K∗ \K∗1 ,
we have K ⊂ [x1, . . . , xn]∗ and, arguing as before,

F ([x1, . . . , xn]∗) = 1{[x1, . . . , xn]∗ ⊂ K1} (W ([x1, . . . , xn]∗)−W (K))

= 2 · 1{[x1, . . . , xn]∗ ⊂ K1}
∫
K∗\[x1,...,xn]

λ(x) dx,

where

λ(x) :=

{
ωd
−1‖x‖−(d+1), x ∈ K∗ \K∗1 ,

0, x ∈ K∗1 .
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Note that if [x1, . . . , xn]∗ ⊂ K1, then the set [x1, . . . , xn]∗ is bounded, hence
o ∈ int([x1, . . . , xn]), and therefore K∗1 ⊂ [x1, . . . , xn]∗∗ = [x1, . . . , xn].

As in [BS10], it can be shown that Pµq(K(n) 6⊂ K1)� αn, for some α ∈ (0, 1) depending
on K and q. By Proposition 5.2.1, we also get

P%,K∗
(

(K∗(n))
∗ 6⊂ K1

)
= Pµq

(
K(n) 6⊂ K1

)
� αn.

Hence

Eµq
(
W (K(n) ∩K1)−W (K)

)
= Eµq

(
1{K(n) ⊂ K1}

(
W (K(n))−W (K)

))
+O(αn)

= 2 · E%,K∗
(
1{(K∗(n))

∗ ⊂ K1}
∫
K∗\K∗

(n)

λ(x) dx

)
+O(αn)

= 2 · E%,K∗
(∫

K∗\K∗
(n)

λ(x) dx

)
+O(αn),

where we used that λ is integrable. Therefore, by Theorem 4.1.1,

lim
n→∞

n
2
d+1 Eµq(W (K(n) ∩K1)−W (K))

= 2 · lim
n→∞

n
2
d+1 E%,K∗

∫
K∗\K∗

(n)

λ(x) dx

= 2 cd

∫
∂K∗

%(x)−
2
d+1λ(x)κ∗(x)

1
d+1 Hd−1(dx)

= 2 cd ωd
− d−1
d+1

∫
∂K∗

q̃(x)−
2
d+1 ‖x‖−d+1κ∗(x)

1
d+1 Hd−1(dx),

where κ∗ denotes the generalized Gauss curvature of K∗. In the following, for x ∈ ∂K, let
σK(x) denote an exterior unit normal vector of K at x. It is unique for Hd−1-almost all
x ∈ ∂K.

Theorem 5.2.2 (Böröczky, Fodor, Hug [BFH10, Theorem 5.2 on page 517]). Let K ⊂ Rd
be a convex body with o ∈ int(K), and let q : [0,∞) × Sd−1 → [0,∞) be a measurable
function satisfying (q1)–(q3). Then

lim
n→∞

n
2
d+1 Eµq(W (K(n) ∩K1)−W (K))

= 2 cd ωd
− d−1
d+1

∫
∂K

q(h(K,σK(x)), σK(x))−
2
d+1κ(x)

d
d+1 Hd−1(dx), (5.2.2)

where cd is defined in (4.1.1).

The proof is completed in Section 5.3 by providing Lemma 5.3.2.

Example. Observe that if q : {(h(K,u), u) ∈ (0,∞) × Sd−1 : u ∈ Sd−1} → [0,∞) is
positive and continuous, then q can be extended to [0,∞) × Sd−1 such that (q1)–(q3) are
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satisfied. For any such extension, the right-hand side of (5.2.2) remains unchanged. As
an example, we may choose q1 such that q1(t, u) = t(d

2−1)/2 for t = h(K,u) and u ∈ Sd−1.
Then the integral in (5.2.2) turns into∫

∂K

κ(x)
d
d+1

〈x, σK(x)〉d−1
Hd−1(dx) = Ωd2(K),

where

Ωp(K) :=

∫
∂K

κ(x)
p
d+p

〈x, σK(x)〉
(p−1)d
d+p

Hd−1(dx)

is the p-affine surface area of K (see [Lut96], [Hug96a], [Hug96b], [Lei98], [Wer07],
[WY08], [LR99], [LR10]). It has been shown that Ωd2(K) = Ω1(K∗); see [Hug96b]. More-
over, for a convex body L ⊂ Rd, the equiaffine isoperimetric inequality states that

Ω1(L) ≤ dα
2
d+1

d V (L)
d−1
d+1

with equality if and only if L is an ellipsoid (cf. [Pet85], [Lut93a], [Lut96], [Hug96a],
[Bör10]). Thus we get

lim
n→∞

n
2
d+1 Eµq1 (W (K(n) ∩K1)−W (K)) ≤ 2dcdω

− d−1
d+1

d α
2
d+1

d V (K∗)
d−1
d+1

with equality if and only if K∗ is an ellipsoid, that is, if and only if K is an ellipsoid.
This can be interpreted as saying that among all convex bodies for which the volume of
the polar body is fixed, ellipsoids are worst approximated asymptotically by circumscribed
random polytopes (with respect to the density q1) in the sense of the mean width.

For another application, we define

F (P ) := fd−1(P ),

for a convex polyhedral set P ⊂ Rd. It is well known that f0(P ) = fd−1(P ∗) for a convex
polytope P ⊂ Rd with o ∈ int(P ). Thus, from Proposition 5.2.1 we get

Eµq
(
fd−1(K(n))

)
= E%,K∗

(
fd−1((K∗(n))

∗)
)

= E%,K∗
(
1{(K∗(n))

∗ ⊂ K1}fd−1((K∗(n))
∗)
)

+ E%,K∗
(
1{(K∗(n))

∗ 6⊂ K1}fd−1((K∗(n))
∗)
)

= E%,K∗
(
1{(K∗(n))

∗ ⊂ K1}f0(K∗(n))
)

+O(n · αn)

= E%,K∗
(
f0(K∗(n))

)
+O(n · αn),

where α ∈ (0, 1) is a suitable constant.

The following Theorem 5.2.3 generalizes Theorem 5.1.1 in the same way as Theorem
5.2.2 extends Theorem 5.1.2.
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Theorem 5.2.3 (Böröczky, Fodor, Hug [BFH10, Theorem 5.3 on page 518]). Let K ⊂ Rd
be a convex body with o ∈ int(K), and let q : [0,∞) × Sd−1 → [0,∞) be a measurable
function satisfying (q1)–(q3). Then

lim
n→∞

n−
d−1
d+1 Eµq(fd−1(K(n)))

= cd ωd
− d−1
d+1

∫
∂K

q(h(K,σK(x)), σK(x))
d−1
d+1κ(x)

d
d+1 Hd−1(dx),

where cd is defined in (4.1.1).

The proof follows by applying Corollary 4.1.2 and Lemma 5.3.2.

5.3 Polarity and an integral transformation

In this section, we establish the required integral transformation involving the generalized
Gauss curvatures of a convex body and its polar body. The main difficulty of the proof is
due to the fact that we do not make any smoothness assumptions on the convex bodies
that are considered.

Let L ⊂ Rd be a convex body. If the support function hL of L is differentiable at u 6= o,
then the gradient ∇hL(u) of hL at u is equal to the unique boundary point of L having
u as an exterior normal vector. In particular, the gradient of hL is a function which is
homogeneous of degree zero. Note that hL is differentiable at Hd−1-almost all unit vectors.
We write Dd−1hL(u) for the product of the principal radii of curvature of L in direction
u ∈ Sd−1, whenever the support function hL is twice differentiable in the generalized sense
at u ∈ Sd−1. Note that this is the case for Hd−1-almost all u ∈ Sd−1. The Gauss map
σL is defined Hd−1-almost everywhere on ∂L. If σL is differentiable in the generalized
sense at x ∈ ∂L, which is the case for Hd−1-almost all x ∈ ∂L, then the product of the
eigenvalues of the differential is the Gauss curvature κL(x). The connection to curvatures
defined on the generalized normal bundle N (L) of L will be used in the following proof
(cf. [Hug98]).

Lemma 5.3.1. Let L ⊂ Rd be a convex body containing the origin in its interior. If
g : ∂L→ [0,∞] is measurable, then∫

∂L
g(x)κL(x)

1
d+1 Hd−1(dx) =

∫
Sd−1

g(∇hL(u))Dd−1hL(u)
d
d+1 Hd−1(du).

Proof. In the following proof, we use results and methods from [Hug98], to which we refer
for additional references and detailed definitions. Let N (L) denote the generalized normal
bundle of L, and let ki(x, u) ∈ [0,∞], i = 1, . . . , d− 1, be the generalized curvatures of L,
which are defined for Hd−1-almost all (x, u) ∈ N (L). Expressions such as

ki(x, u)
1
d+1√

1 + ki(x, u)2
or

ki(x, u)√
1 + ki(x, u)2

with ki(x, u) =∞ are understood as limits as ki(x, u)→∞, and yield 0 or 1, respectively
in the two given examples. As is common in measure theory, the product 0 · ∞ is defined
as 0.
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Our starting point is the expression

I :=

∫
N (L)

g(x)
d−1∏
i=1

ki(x, u)
1
d+1√

1 + ki(x, u)2
Hd−1(d(x, u)), (5.3.1)

which will be evaluated in two different ways. A comparison of the resulting expressions
yields the assertion of the lemma.

First, we rewrite I in the form

I =

∫
N (L)

g(x)

(
d−1∏
i=1

ki(x, u)

)− d
d+1

Jd−1π2(x, u)Hd−1(d(x, u)), (5.3.2)

where

Jd−1π2(x, u) =

d−1∏
i=1

ki(x, u)√
1 + ki(x, u)2

,

for Hd−1-almost all (x, u) ∈ N (L), is the (approximate) Jacobian of the map π2 : N (L)→
Sd−1, (x, u) 7→ u. To check (5.3.2), we distinguish the following cases. If ki(x, u) = 0 for
some i, then the integrands on the right-hand sides of (5.3.1) and of (5.3.2) are zero, since
0 · ∞ = 0 and Jd−1π2(x, u) = 0. If ki(x, u) 6= 0 for all i and kj(x, u) =∞ for some j, then
again both integrands are zero. In all other cases the assertion is clear.

For Hd−1-almost all u ∈ Sd−1, ∇hL(u) ∈ ∂L is the unique boundary point of L which
has u as an exterior unit normal vector. Then the coarea formula yields

I =

∫
Sd−1

g(∇hL(u))

(
d−1∏
i=1

ki(∇hL(u), u)

)− d
d+1

Hd−1(du).

Using Lemma 3.4 in [Hug98], we get

I =

∫
Sd−1

g(∇hL(u))Dd−1hL(u)
d
d+1 Hd−1(du). (5.3.3)

Now we consider also the projection π1 : N (L)→ ∂L, (x, u) 7→ x, which has the (approx-
imate) Jacobian

Jd−1π1(x, u) =

d−1∏
i=1

1√
1 + ki(x, u)2

,

for Hd−1-almost all (x, u) ∈ N (L). A similar argument as before yields

I =

∫
N (L)

g(x)

(
d−1∏
i=1

ki(x, u)

) 1
d+1

Jd−1π1(x, u)Hd−1(d(x, u))

=

∫
∂L
g(x)

(
d−1∏
i=1

ki(x, σL(x))

) 1
d+1

Hd−1(dx).
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By Lemma 3.1 in [Hug98], we also get

I =

∫
∂L
g(x)κL(x)

1
d+1 Hd−1(dx). (5.3.4)

A comparison of equations (5.3.3) and (5.3.4) gives the required equality.

Lemma 5.3.2. Let K ⊂ Rd be a convex body with o ∈ int(K). If f : [0,∞)×Sd−1 → [0,∞)
is a measurable function and f̃(x) := f

(
‖x‖−1, ‖x‖−1x

)
, x ∈ ∂K∗, then∫

∂K∗
f̃(x)‖x‖−d+1κ∗(x)

1
d+1 Hd−1(dx) =

∫
∂K

f(h(K,σK(x)), σK(x))κ(x)
d
d+1 Hd−1(dx).

Proof. We apply Lemma 5.3.1 with L = K∗ and g(x) = f̃(x)‖x‖−d+1, x ∈ ∂K∗, and thus
we get ∫

∂K∗
f̃(x)‖x‖−d+1κ∗(x)

1
d+1 Hd−1(dx)

=

∫
Sd−1

f̃(∇hK∗(u))‖∇hK∗(u)‖−d+1Dd−1hK∗(u)
d
d+1 Hd−1(du).

Next we apply Theorem 2.2 in [Hug96b] (or the second part of Corollary 5.1 in [Hug02]).
Thus, using the fact that, for Hd−1-almost all u ∈ Sd−1, hK∗ is differentiable in the
generalized sense at u and ρ(K,u)u is a normal boundary point of K,

Dd−1hK∗(u)
d
d+1 = κ(x)

d
d+1 〈u, σK(x)〉−d,

where x = ρ(K,u)u ∈ ∂K and u = ‖x‖−1x ∈ Sd−1. Hence,∫
∂K∗

f̃(x)‖x‖−d+1κ∗(x)
1
d+1 Hd−1(dx)

=

∫
Sd−1

f̃(∇hK∗(u))
‖∇hK∗(u)‖−d+1

〈u, σK(ρ(K,u)u)〉d
κ(ρ(K,u)u)

d
d+1 Hd−1(dx).

The bijective and bilipschitz transformation T : Sd−1 → ∂K, u 7→ ρ(K,u)u, has the
Jacobian

JT (u) =
‖∇hK∗(u)‖
hK∗(u)d

for Hd−1-almost all u ∈ Sd−1 (see the proof of Lemma 2.4 in [Hug96b]). Therefore,∫
∂K∗

f̃(x)‖x‖−d+1κ∗(x)
1
d+1 Hd−1(dx)

=

∫
∂K

f̃

(
∇hK∗

(
x

‖x‖

)) ‖∇hK∗ ( x
‖x‖

)
‖−d

〈 x
‖x‖ , σK(x)〉d

hK∗

(
x

‖x‖

)d
κ(x)

d
d+1 Hd−1(dx)

=

∫
∂K

f̃ (∇hK∗ (x))
‖∇hK∗ (x) ‖−d

〈x, σK(x)〉d
hK∗ (x)d κ(x)

d
d+1 Hd−1(dx)
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=

∫
∂K

f(‖∇hK∗(x)‖−1,∇hK∗(x)/‖∇hK∗(x)‖)κ(x)
d
d+1 Hd−1(dx),

=

∫
∂K

f(hK(σK(x)), σK(x))κ(x)
d
d+1 Hd−1(dx),

since hK∗(x) = 1 for x ∈ ∂K and x∗ := ∇hK∗(x) satisfies ‖x∗‖−1 = 〈x, σK(x)〉 as well as
x∗/‖x∗‖ = σK(x), for Hd−1-almost all x ∈ ∂K.
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Chapter 6

Random points on the boundary

This chapter of the dissertation is based on the paper [BFH13] by K.J. Böröczky, F. Fodor,
and D. Hug, Intrinsic volumes of random polytopes with vertices on the boundary of a
convex body, Trans. Amer. Math. Soc., 365 (2013), no. 2, 785–809. (DOI 10.1090/S0002-
9947-2012-05648-0)

6.1 Introduction and results

In this chapter, we shall consider the following probability model. Let K be a convex body
with a rolling ball of radius r. Let % be a continuous, positive probability density function
defined on ∂K; throughout this chapter this density is always considered with respect to
the boundary measure on ∂K. Select the points x1, . . . , xn randomly and independently
from ∂K according to the probability distribution determined by %. The convex hull
Kn := [x1, . . . , xn] then is a random polytope inscribed in K. We are going to study
the expectation of intrinsic volumes of Kn. In order to indicate the dependence on the
probability density %, we write P% to denote the probability of an event in this probability
space and E% to denote the expected value. For a convex body K, the expected value
E%(Vj(Kn)) of the j-th intrinsic volume of Kn tends to Vj(K) as n tends to infinity. It is
clear that the asymptotic behaviour of Vj(K)−E%(Vj(Kn)) is determined by the shape of
the boundary of K. In the case when the boundary of K is a C2

+ submanifold of Rd, this
asymptotic behaviour was described by M. Reitzner [Rei02].

Theorem 6.1.1 (Reitzner [Rei02]). Let K be a convex body in Rd with C2
+ bound-

ary, and let % be a continuous, positive probability density function on ∂K. Denote by
E%(Vj(Kn)), j = 1, . . . , d, the expected j-th intrinsic volume of the convex hull of n ran-
dom points on ∂K chosen independently and according to the density function %. Then

Vj(K)− E%(Vj(Kn)) ∼ c(j,d)

∫
∂K

%(x)−
2
d−1Hd−1(x)

1
d−1Hd−j(x)Hd−1(dx) · n−

2
d−1 (6.1.1)

as n→∞, where the constant c(j,d) only depends on j and the dimension d.

For j = d, that is in the case of the volume functional, C. Schütt and E. Werner [SW03]
extended (6.1.1) to any convex body K such that a ball of radius r rolls freely in K and, in
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addition, K rolls freely in a ball of radius R, for some R > r > 0. The latter assumption
of K rolling freely inside a ball implies a uniform positive lower bound for the principle
curvatures of ∂K whenever they exist. They also calculated the constant c(d,d) explicitly,
that is

c(d,d) =
(d− 1)

d+1
d−1 Γ(d+ 1 + 2

d−1)

2(d+ 1)![(d− 1)αd−1]
2
d−1

.

Moreover, C. Schütt and E. Werner [SW03] showed that for fixed K, the minimum of the
integral expression in (6.1.1) is attained for the probability density function

%0(x) =
Hd−1(x)

1
d+1∫

∂K Hd−1(x)
1
d+1 Hd−1(dx)

.

Our main goal is to extend Theorem 6.1.1 to the case where K is only assumed to have
a rolling ball, for all j = 1, . . . , d. In particular, the Gauss curvature is allowed to be zero
on a set of positive boundary measure. More explicitly, we shall prove

Theorem 6.1.2 (Böröczky, Fodor, Hug [BFH13, Theorem 1.2 on page 788]). The asymp-
totic formula (6.1.1) holds if K is a convex body in Rd in which a ball rolls freely.

The present method of proof for Theorem 6.1.2 is different from the one used by
Reitzner [Rei02] or Schütt and Werner [SW03]. It is inspired by the arguments from
the paper [BFH10] by Böröczky, Fodor and Hug (as presented in Section 4.2) concerning
random points chosen from a convex body, however, the case of random points chosen
from the boundary is more delicate.

Examples show that in general the condition that a ball rolls freely inside K cannot
be dropped in Theorem 6.1.2. General bounds are provided in the following theorem.

Theorem 6.1.3 (Böröczky, Fodor, Hug [BFH13, Theorem 1.3 on page 788]). Let K be
a convex body in Rd, and let % be a continuous, positive probability density function on
∂K. Then there exist positive constants c1, c2, depending on K and %, such that for any
n ≥ d+ 1,

c1n
− 2
d−1 ≤ E%(V1(K)− V1(Kn)) ≤ c2n

− 1
d−1 .

The lower bound is of optimal order if K has a rolling ball, and the upper bound is of
optimal order, if K is a polytope.

Let us review the main known results about the convex hull K(n) of n points chosen
randomly, independently and uniformly from K. In the case where a ball rolls freely inside
K, the analogue of Theorem 6.1.2 is established in K. Böröczky Jr., L. M. Hoffmann and
D. Hug [BHH08]. For the case of the volume functional and an arbitrary convex body
K, C. Schütt [Sch94] proved (see K.J. Böröczky, F. Fodor, D. Hug [BFH10] for some
corrections and an extension) that

lim
n→∞

n
2
d+1 (Vd(K)− E(Vd(K(n))) = cdVd(K)

2
d+1

∫
∂K

Hd−1(x)
1
d+1 Hd−1(dx),
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where the constant cd > 0 only depends on the dimension d and is explicitly known.
Concerning the order of approximation, we have

γ1n
−2/(d+1) < V1(K)− EV1(K(n)) < γ2n

−1/d, (6.1.2)

γ3n
−1 lnd−1 n < Vd(K)− EVd(K(n)) < γ4n

−2/(d+1), (6.1.3)

where γ1, . . . , γ4 > 0 are constants that may depend on K. The inequality (6.1.2) was
proved by R. Schneider [Sch87], and the inequality (6.1.3) was proved by I. Bárány and
D. Larman [BL88]. The left inequality of (6.1.2) and the right inequality of (6.1.3) are
optimal for sufficiently smooth convex bodies. The right inequality of (6.1.2) and the left
inequality of (6.1.3) are optimal for polytopes.

The proof of Theorem 6.1.2 is given in the following three sections. In Section 6.2, we
rewrite the difference Vj(K)−E%(Vj(Kn)) in an integral geometric way. The inner integral
involved in this integral geometric description is extended over the projection K|L of K to
L, where L is a j-dimensional linear subspace. Then we show that up to an error term of
lower order the main contribution comes from a neighbourhood of the (relative) boundary
∂(K|L) of K|L with respect to L, where this neighbourhood is shrinking at a well-defined
speed t(n) as n → ∞. Further application of an integral geometric decomposition then
shows that the proof boils down to determining the limit

lim
n→∞

∫ t(n)

0
n

2
d−1 〈y, u(y)〉P% (yt /∈ Kn|L) dt,

where y ∈ ∂(K|L) and x is a normal boundary point of K with y = x|L. The case where
the Gauss curvature of K at x is zero is treated directly. In Section 6.3, we deal with
the case of positive Gauss curvature. In a first step, we choose a reparametrization of
the integral which relates the parameter t to the probability content s of that part of
the boundary of K near x that is cut off by a cap determined by the parameter t. This
reparametrization has the effect of extracting the relevant geometric information from K.
What remains to be shown is that the transformed integrals are essentially independent
of K and yield the same value for the unit ball with the uniform probability density
on its boundary. This latter step is divided into two lemmas in Section 6.3. Whereas
both lemmas have analogues in our previous work [BFH10] (see Section 4.2), the present
arguments are more delicate and the second lemma has to be established by a reasoning
different from the one in [BFH10]. The proof is then completed in Section 6.4, where, in
addition to the previous steps, a very special case of Theorem 6.1.1 is employed (K being
the unit ball) as well as an integral geometric lemma from [BHH08]. The final section of
this chapter is devoted to the proof of Theorem 6.1.3.

6.2 General estimates

In order to prove Theorem 6.1.2, we start by rewriting Vj(K)−E%(Vj(Kn)) in an integral
geometric form. For this, we use Kubota’s formula and Fubini’s theorem to obtain

Vj(K)− E%(Vj(Kn))
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=

∫
∂K

. . .

∫
∂K

(Vj(K)− Vj(Kn))
n∏
i=1

%(xi)Hd−1(dx1) . . .Hd−1(dxn)

=

(
d
j

)
αd

αjαd−j

∫
∂K

. . .

∫
∂K

∫
Ldj

(Vj(K|L)− Vj(Kn|L))

×
n∏
i=1

%(xi) νj(dL)Hd−1(dx1) . . .Hd−1(dxn)

=

(
d
j

)
αd

αjαd−j

∫
Ldj

∫
L

∫
∂K

. . .

∫
∂K

1 {y ∈ K|L and y 6∈ Kn|L}

×
n∏
i=1

%(xi)Hd−1(dx1) . . .Hd−1(dxn)Hj(dy) νj(dL)

=

(
d
j

)
αd

αjαd−j

∫
Ldj

∫
K|L

P%(y 6∈ Kn|L)Hj(dy) νj(dL). (6.2.1)

Now we introduce some geometric tools. If K has a rolling ball of radius r, then so
does K|L for any L ∈ Ldj . Furthermore, ∂K has a unique outer unit normal vector u(x)

at each boundary point x ∈ ∂K. If L ∈ Ldj , y ∈ ∂(K|L) and x ∈ K such that y = x|L,
then x ∈ ∂K and the outer unit normal of ∂(K|L) at y is equal to u(x).

Since the statement of the theorem is translation invariant, we may assume that

rBd ⊂ K ⊂ RBd (6.2.2)

for some R > 0. For t ∈ (0, 1), let Kt := (1 − t)K, and for x ∈ ∂K, let xt := (1 − t)x.
Similarly, (K|L)t := (1− t)(K|L) and yt := (1− t)y for y ∈ ∂(K|L).

For x ∈ ∂K and t ∈ (0, 1), let

x∗t := x− 〈tx, u(x)〉u(x).

If t ∈ (0, rR), then (6.2.2) implies that

tr ≤ 〈x− x∗t , u(x)〉 = 〈x− xt, u(x)〉 < r. (6.2.3)

The existence of a rolling ball at x yields that if t ∈ (0, rR), then

x∗t + r
√
t(u(x)⊥ ∩Bd) ⊂ K. (6.2.4)

On the other hand, we have

‖x∗t − xt‖ < Rt. (6.2.5)

In the following, we write γ1, γ2, . . . for positive constants which merely depend on K
and %.

Let us estimate the probability that o 6∈ Kn. There exists a constant γ1 > 0 such that
the probability content of each of the parts of ∂K contained in one of the 2d coordinate
corners of Rd is at least γ1. Now if o 6∈ Kn, then o can be strictly separated from Kn by a
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hyperplane. It follows that {x1, . . . , xn} is disjoint from one of these coordinate corners,
and hence

P(o /∈ Kn) ≤ 2d(1− γ1)n. (6.2.6)

This fact will be used, for instance, in the proof of the subsequent lemma. In the following,
for x ∈ Rd we use the shorthand notation R+x := {λx : λ ≥ 0}.

Lemma 6.2.1. There exist constants δ, γ2 ∈ (0, 1), depending on K and %, such that if
L ∈ Ldj , y ∈ ∂(K|L) and t ∈ (0, δ), then

P% (yt 6∈ Kn|L)�
(

1− γ2t
d−1

2

)n
.

Proof. Let y ∈ ∂(K|L) and x ∈ ∂K be such that y = x|L. Let Θ′1, . . . ,Θ
′
2d−1 be the

coordinate corners with respect to some basis vectors in u(x)⊥. In addition, for i =
1, . . . , 2d−1 and t ∈ (0, 1), let

Θi,t = ∂K ∩
(
xt +

[
Θ′i,R+x

])
.

Since % is positive and continuous, we have∫
Θi,t

%(x)Hd−1(dx) ≥ γ3Hd−1(Θi,t).

If yt 6∈ Kn|L and o ∈ Kn, then there exists a (j − 1)-dimensional affine plane HL in L
through yt, bounding the half-spaces H−L and H+

L in L, for which Kn|L ⊂ H−L . Now, if L⊥

is the orthogonal complement of L in Rd, then H := HL + L⊥ is a hyperplane in Rd with
the property that xt ∈ H and Kn ⊂ H− := H−L +L⊥. Furthermore, Θi,t ⊂ H+ := H+

L +L⊥

for some i ∈ {1, . . . , 2d−1}, because o ∈ Kn ⊂ H−. Therefore

P% (yt 6∈ Kn|L, o ∈ Kn) ≤
2d−1∑
i=1

(
1− γ3Hd−1(Θi,t)

)n
.

Combining (6.2.4) and (6.2.5), we deduce the existence of a constant γ4 > 0 such that if t ≤
γ4, then the orthogonal projection of Θi,t into u(x)⊥ contains a translate of Θ′i∩(r/2)

√
tBd,

and therefore
Hd−1(Θi,t) ≥ γ5t

d−1
2

for i = 1, . . . , 2d−1. In turn, we obtain

P% (yt 6∈ Kn|L, o ∈ Kn)�
(

1− γ6t
d−1

2

)n
. (6.2.7)

On the other hand, if o 6∈ Kn|L, then (6.2.6) holds. Combining this with (6.2.7), we
conclude the proof of the lemma.

Subsequently, the estimate of Lemma 6.2.1 will be used, for instance, to restrict the
domain of integration (cf. Lemma 6.2.3) and to justify an application of Lebesgue’s dom-
inated convergence theorem (see (6.2.12)). For these applications, we also need that if

x ∈ ∂K and c > 0 satisfies ω̄ := cδ
d−1

2 < 1, then∫ δ

0

(
1− ct

d−1
2

)n
dt = c

−2
d−1

2

d− 1

∫ ω̄

0
s

2
d−1
−1(1− s)n ds� c

−2
d−1 · n

−2
d−1 , (6.2.8)
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where we use that (1− s)n ≤ e−ns for s ∈ [0, 1] and n ∈ N.
The next lemma will allow us to decompose integrals in a suitable way. We write u(y)

to denote the unique exterior unit normal to ∂(K|L) at y ∈ ∂(K|L). It will always be
clear from the context whether we mean the exterior unit normal at a point x ∈ ∂K or at
a point y ∈ ∂(K|L). In the next lemma, δ is chosen as in Lemma 6.2.1.

Lemma 6.2.2. If 0 ≤ t0 < t1 < δ and h : K|L→ [0,∞] is a measurable function, then∫
(K|L)t0\(K|L)t1

P% (x /∈ Kn|L)h(x)Hj(dx)

=

∫
∂(K|L)

∫ t1

t0

(1− t)j−1P% (yt /∈ Kn|L) 〈y, u(y)〉h(yt) dtHj−1(dy).

Proof. The set ∂(K|L) is a (j−1)-dimensional submanifold of L of class C1, and the map

T : ∂(K|L)× (t0, t1)→ int(K|L)t0 \ (K|L)t1 , (y, t) 7→ yt,

is a C1 diffeomorphism with Jacobian JT (y, t) = (1−t)j−1〈y, u(y)〉 ≥ 0. Thus the assertion
follows from Federer’s area/coarea theorem (see [Fed69]).

In the following, we use the abbreviation t(n) := n
−1
d−1 .

Lemma 6.2.3. Let 1 ≤ j ≤ d− 1. Then we have∫
Ldj

∫
(K|L)t(n)

P% (y 6∈ Kn|L) Hj(dy) νj(dL) = o
(
n
−2
d−1

)
.

Proof. Let δ, γ2 ∈ (0, 1) be chosen as in Lemma 6.2.1. We may assume that n is large
enough to satisfy t(n) < δ and n ≥ (γ2)2. First, we treat that part of the integral which
extends over the subset (K|L)δ of (K|L)t(n).

Let ω := δr. Then (6.2.3) yields

〈x− xδ, u(x)〉 ≥ ω for x ∈ ∂K. (6.2.9)

There exists a constant γ7 > 0 such that the probability measure of (x + ω
2 Bd) ∩ ∂K

is at least γ7 for all x ∈ ∂K. We choose a maximal set {z1, . . . , zm} ⊂ ∂K such that
‖zi − zl‖ ≥ ω

2 for i 6= l.
For L ∈ Ldj , let y ∈ (K|L)δ. If y 6∈ Kn|L, then there exist a hyperplane H in Rd and a

half space H− bounded by H such that y ∈ H, H is orthogonal to L, and Kn ⊂ int(H−).
Choose x ∈ ∂K such that u(x) is an exterior unit normal to H−. Since H intersects Kδ, we
have 〈x− y, u(x)〉 ≥ ω by (6.2.9). Now there exists some i ∈ {1, . . . , n} with ‖x− zi‖ ≤ ω

2 ,
and hence {x1, . . . , xn} ⊂ int(H−) yields that {x1, . . . , xn} is disjoint from zi + ω

2 B
d. In

particular, we have
P% (y 6∈ Kn|L) ≤ m(1− γ7)n. (6.2.10)

Next let y ∈ ∂(K|L). If t ∈ (t(n), δ), then Lemma 6.2.1 yields

P% (yt 6∈ Kn|L)�
(

1− γ2n
− 1

2

)n
< e−γ2n

1
2 � n

−3
d+1 . (6.2.11)
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In particular, writing I to denote the integral in Lemma 6.2.3, we obtain from Lemma 6.2.2,
(6.2.10) and (6.2.11) that

I �
∫
Ldj

∫
(K|L)δ

P% (y 6∈ Kn|L) Hj(dy) νj(dL) +

+

∫
Ldj

∫ δ

t(n)

∫
∂(K|L)

P% (yt 6∈ Kn|L) Hj−1(dy) dt νj(dL)

� m(1− γ7)n +

∫
Ldj

∫
∂(K|L)

n
−3
d−1 Hj−1(dy) νj(dL) = o

(
n
−2
d−1

)
,

which is the required estimate.

It follows by applying (6.2.1), Lemma 6.2.3 and Lemma 6.2.2, in this order, that

lim
n→∞

n
2
d−1 (Vj(K)− E%(Vj(Kn)))

=

(
d
j

)
αd

αjαd−j
lim
n→∞

n
2
d−1

∫
Ldj

∫
K|L

P%(y /∈ Kn|L)Hj(dy) νj(dL)

=

(
d
j

)
αd

αjαd−j
lim
n→∞

n
2
d−1

∫
Ldj

∫
(K|L)\(K|L)t(n)

P%(y /∈ Kn|L)Hj(dy) νj(dL)

=

(
d
j

)
αd

αjαd−j
lim
n→∞

∫
Ldj

∫
∂(K|L)

∫ t(n)

0
n

2
d−1P%(yt /∈ Kn|L)×

× (1− t)j−1〈y, u(y)〉 dtHj−1(dy) νj(dL).

We deduce from Lemma 6.2.1 and (6.2.8) that if n > n0, L ∈ Ldj and y ∈ ∂(K|L), then∫ t(n)

0
n

2
d−1P% (yt 6∈ Kn|L) 〈y, u(y)〉(1− t)j−1 dt� C,

where n0 and C depend on K and %. Therefore, we may apply Lebesgue’s dominated
convergence theorem, and thus we conclude

lim
n→∞

n
2
d−1 (Vj(K)−E%(Vj(Kn))) =

(
d
j

)
αd

αjαd−j

∫
Ldj

∫
∂(K|L)

J%(y, L)Hj−1(dy) νj(dL), (6.2.12)

where, for L ∈ Ldj and y ∈ ∂(K|L), we have

J%(y, L) := lim
n→∞

∫ t(n)

0
n

2
d−1 〈y, u(y)〉P% (yt /∈ Kn|L) dt. (6.2.13)

Subsequently, we shall inspect this limit more closely. In a first step, we shall consider
those points y ∈ ∂(K|L) for which there is a normal boundary point x ∈ ∂K with y = x|L
and Hd−1(x) = 0.
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Lemma 6.2.4. Let L ∈ Ldj , and let y ∈ ∂(K|L). If x ∈ ∂K is a normal boundary point
of K with y = x|L and Hd−1(x) = 0, then J%(y, L) = 0.

Proof. Let x ∈ ∂K be a normal boundary point with y = x|L and Hd−1(x) = 0. First, we
show the existence of a decreasing function ϕ on (0, rR) with limt→0+ ϕ(t) =∞ satisfying

P% (yt 6∈ Kn|L) ≤ 2d−1
(

1− ϕ(t)t
d−1

2

)n
. (6.2.14)

In the following, we always assume that t > 0 is sufficiently small, that is n is sufficiently
large, so that all expressions that arise are well defined. Let v1, . . . , vd−1 be an orthonormal
basis in u(x)⊥ such that these vectors are principal directions of curvature of K at x and
such that the curvature is zero in the direction of v1. In addition, let Θ′1, . . . ,Θ

′
2d−1

be the coordinate corners in u(x)⊥, and, for i = 1, . . . , 2d−1 and t ∈ (0, 1), let Θi,t =
∂K ∩ (xt + [Θ′i,R+x]) as before. The continuity of % yields that∫

Θi,t

%(x)Hd−1(dx)� Hd−1(Θi,t).

Since the curvature is zero in the direction of v1, there exists a function ψ on (0, rR)
with limt→0+ ψ(t) =∞ satisfying

x∗t − ψ(t)
√
tv1 ∈ K and x∗t + ψ(t)

√
tv1 ∈ K.

Combining (6.2.4) and (6.2.5), we deduce the existence of a decreasing function ϕ̃ on (0, rR)
with limt→0+ ϕ̃(t) =∞ satisfying∫

Θi,t

%(x)Hd−1(dx) ≥ ϕ̃(t)t
d−1

2 ,

for i = 1, . . . , 2d−1.

First, we assume that yt 6∈ Kn|L and o ∈ Kn. In particular, then we also have xt 6∈ Kn,
and hence there exists a hyperplane H through xt such that Kn lies on one side of H.
Since o ∈ Kn, it follows that H separates Kn from some Θi,t, and therefore

P% (yt 6∈ Kn|L, o ∈ Kn) ≤ 2d−1
(

1− ϕ̃(t)t
d−1

2

)n
. (6.2.15)

On the other hand, if o 6∈ Kn|L, then (6.2.6) holds. Combining this with (6.2.15), we
conclude (6.2.14). In turn, we deduce from (6.2.8) that

J%(y, L)� lim
n→∞

n
2
d−1

∫ t(n)

0
(1− ϕ(t(n))t

d−1
2 )n dt� lim

n→∞
ϕ(t(n))

−2
d−1 = 0.

In the next section, we study the more difficult case of boundary points with positive
Gauss curvature.
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6.3 Normal boundary points and caps

Let L ∈ Ldj , and let y ∈ ∂(K|L) be such that y = x|L for some (uniquely determined)
normal boundary point x ∈ ∂K with Hd−1(x) > 0. We keep x and y fixed throughout
this section. First, we reparametrize xt and yt in terms of the probability measure of the
corresponding cap of ∂K. Using this reparametrization, we show that J%(y, L) essentially
depends only on the random points near x (see Lemma 6.3.1), and then in a second step
we pass from the case of a general convex body K to the case of a Euclidean ball.

For t ∈ (0, 1), we consider the hyperplane H(x, t) := {z ∈ Rd : 〈u(x), z〉 = 〈u(x), xt〉},
the half-space H+(x, t) := {z ∈ Rd : 〈u(x), z〉 ≥ 〈u(x), xt〉}, and the cap C(x, t) :=
K ∩H+(x, t) whose bounding hyperplane is H(x, t). Next we reparametrize xt in terms
of the induced probability measure of the cap C(x, t); namely,

x̃s := xt and ỹs := yt,

where, for a given sufficiently small s ≥ 0, the parameter t ≥ 0 is uniquely determined by
the equation

s =

∫
C(x,t)∩∂K

%(w)Hd−1(dw). (6.3.1)

Note that s is a strictly increasing and continuous function of t. We further define

C̃(x, s) = C(x, t) and H̃(x, s) = H(x, t), (6.3.2)

where again, for given s, the parameter t is determined by (6.3.1). Observe that ∂K ∩
H+(x, t) = ∂K ∩ C(x, t). Subsequently, we explore the relation between s and t. Let
f : u(x)⊥ → [0,∞] be a convex function such that the restriction of the map

F : u(x)⊥ → Rd, z 7→ x+ z − f(z)u(x),

to a neighbourhood of o parametrizes ∂K in a neighbourhood of x. Moreover, we consider
the transformations

Π : Rd → u(x)⊥, y 7→ y − x− 〈y − x, u(x)〉u(x),

and

T : u(x)⊥ × R→ u(x)⊥ × R, (z1, . . . , zd−1, α) 7→ (
√
k1z1, . . . ,

√
kd−1zd−1, α),

where u(x)⊥ is considered to be a subset of u(x)⊥ × {0} and ki = ki(x), i = 1, . . . , d− 1,
are the principle curvatures of ∂K at x. Then we obtain∫

∂K∩H+(x,t)
%(w)Hd−1(dw)

=

∫
Π(∂K∩H+(x,t))

%(F (z))
√

1 + ‖∇f(z)‖2Hd−1(dz)

=

∫
T (Π(∂K∩H+(x,t)))

%(F ◦ T−1(z))
√

1 + ‖∇f(T−1(z))‖2Hd−1(x)−1/2Hd−1(dz).
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Let K := T (K − x) + x, and hence T (Π(∂K ∩ H+(x, t))) = Π(∂K ∩ H+(x, t)). If f is
defined for K as f is defined for K, and

%(w) := %(F ◦ T−1 ◦Π(w)), g(w) :=

√
1 + ‖∇f(T−1(Π(w)))‖2√

1 + ‖∇f(Π(w))‖2
,

for w ∈ ∂K ∩H+(x, t), then we obtain∫
∂K∩H+(x,t)

%(w)Hd−1(dw) = Hd−1(x)−1/2

∫
∂K∩H+(x,t)

%(w)g(w)Hd−1(dw).

Next we put H(r) := x− ru(x) + u(x)⊥ and denote by nK(w) the exterior unit normal of
K at w ∈ ∂K. Since (cf. the notes for Section 1.5 (2) in [Sch14])

f(z) =
1

2
‖z‖2 + o(‖z‖2), ‖∇f(z)‖ = ‖z‖+ o(‖z‖), nK(w) =

∇f(w̄) + u(x)√
1 + ‖∇f(w̄)‖2

with w̄ := Π(w) and z ∈ u(x)⊥, we get√
1− 〈nK(w), u(x)〉2

−1

=

√
1 + (‖w̄‖+ o(‖w̄‖))2

‖w̄‖+ o(‖w̄‖)
.

Thus a simple application of the coarea formula yields that, for t > 0 sufficiently small
and d ≥ 2,∫

∂K∩H+(x,t)
%(w)Hd−1(dw)

= Hd−1(x)−1/2

∫ t〈x,u(x)〉

0

∫
∂K∩H(r)

%(w)g(w)
√

1− 〈nK(w), u(x)〉2
−1

Hd−2(dw) dr.

Since also K has a rolling ball, the map w 7→ nK(w) is continuous, and therefore also

r 7→
∫
∂K∩H(r)

%(w)g(w)
√

1− 〈nK(w), u(x)〉2
−1

Hd−2(dw)

is continuous. This implies that

∂

∂ t

∫
∂K∩H+(x,t)

%(w)Hd−1(dw)

=
〈x, u(x)〉
Hd−1(x)1/2

∫
∂K∩H(t〈x,u(x)〉)

%(w)g(w)
√

1− 〈nK(w), u(x)〉2
−1

Hd−2(dw)

=
〈x, u(x)〉
Hd−1(x)1/2

∫
∂K∩H(t〈x,u(x)〉)

%(w)g(w)

√
1 + (

√
2t〈x, u(x)〉+ o(

√
t))2√

2t〈x, u(x)〉+ o(
√
t)

Hd−2(dw).

Clearly, we have %(w)→ %(x) = %(x) and g(w)→ 1, as t→ 0+, uniformly with respect to
w ∈ ∂K ∩H(t〈x, u(x)〉). Moreover, since

Γ :=

{
x+ z − 1

2
‖z‖2u(x) : z ∈ u(x)⊥

}
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is the osculating paraboloid of K and Γ has rotational symmetry, we obtain for s = s(t)
that

lim
t→0+

t−
d−3

2 · ∂ s
∂ t

(t) =
%(x)〈x, u(x)〉
Hd−1(x)1/2

lim
t→0+

(
t−

d−3
2 (d− 1)αd−1

√
2t〈x, u(x)〉d−2√

2t〈x, u(x)〉

)
= (d− 1)αd−1Hd−1(x)−

1
2 %(x) (2〈x, u(x)〉)

d−3
2 〈x, u(x)〉

= (d− 1)αd−1%(x)2
d−3

2 〈x, u(x)〉
d−1

2 Hd−1(x)−
1
2 .

Thus we have shown that

lim
t→0+

t−
d−3

2 · ∂ s
∂ t

(t) = (d− 1) · %(x)2
d−3

2 〈x, u(x)〉
d−1

2 Hd−1(x)−
1
2αd−1. (6.3.3)

In the same way, we also obtain

lim
t→0+

t−
d−1

2 · s(t) = %(x)2
d−1

2 〈x, u(x)〉
d−1

2 Hd−1(x)−
1
2αd−1. (6.3.4)

Observe that (6.3.3) and (6.3.4) are valid also for d = 2. In particular, (6.3.3) and (6.3.4)
imply that J%(y, L) can be rewritten as (cf. (6.2.13))

J%(y, L) = (d− 1)−1G(x)2 lim
n→∞

∫ ζ(y,n)

0
n

2
d−1P% (ỹs 6∈ Kn|L) s−

d−3
d−1 ds, (6.3.5)

where
G(x) := (αd−1)

−1
d−1 %(x)

−1
d−1Hd−1(x)

1
2(d−1)

and
lim
n→∞

n
1
2 ζ(y, n) = αd−1%(x)(2〈u(x), x〉)

d−1
2 Hd−1(x)−

1
2 .

Now we show that in the domain of integration ζ(y, n) can be replaced by n−1/2, that
is

J%(y, L) = (d− 1)−1G(x)2 lim
n→∞

∫ n−1/2

0
n

2
d−1P% (ỹs 6∈ Kn|L) s−

d−3
d−1 ds. (6.3.6)

It follows from Lemma 6.2.1 and (6.3.4) that there exist constants c0 > 0 and c2 > c1 > 0
depending on y, K, L, % such that if s > 0 is small enough, then

P% (ỹs 6∈ Kn|L)� (1− c0s)
n,

and if n is large and s is between ζ(n, y) and n−1/2, then c1n
−1/2 < s < c2n

−1/2. In
particular,

lim
n→∞

∫ c2n−1/2

c1n−1/2

n
2
d−1P% (ỹs 6∈ Kn|L) s−

d−3
d−1 ds

� lim
n→∞

n
2
d−1

∫ c2n−1/2

c1n−1/2

e−c0nss−
d−3
d−1 ds

≤ lim
n→∞

c2n
2
d−1
− 1

2 e−c1c0n
1
2 c
− d−3
d−1

1 n
d−3

2(d−1) = 0,
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and hence (6.3.5) yields (6.3.6).
Let π : Rd → u(x)⊥ denote the orthogonal projection to u(x)⊥. Using (6.2.5), (6.2.3)

and (6.3.4), we obtain

lim
s→0+

s
−1
d−1 ‖π(x− x̃s)‖ = 0, (6.3.7)

lim
s→0+

s
−2
d−1 〈u(x), x− x̃s〉 =

1

2
G(x)2.

Let Q denote the second fundamental form of ∂K at x (cf. (2.2.1)), considered as a function
on u(x)⊥. Then there are an orthonormal basis v1, . . . , vd−1 of u(x)⊥ and positive numbers
k1, . . . , kd−1 > 0 such that

Q

(
d−1∑
i=1

zivi

)
=

d−1∑
i=1

kiz
2
i .

Further, let π be the orthogonal projection to u(x)⊥, and define

E := {z ∈ u(x)⊥ : Q(z) ≤ 1},

which is the Dupin indicatrix of K at x, whose half axes are ki(x)−1/2, i = 1, . . . , d − 1.
In addition, let Γ be the convex hull of the osculating paraboloid of K at x ∈ ∂K, that is

Γ = {x+ z − tu(x) : z ∈ u(x)⊥, t ≥ 1
2 Q(z)}.

Hence, we have
Γ ∩H(x, t) = x∗t +

√
2t〈x, u(x)〉E,

and there exists an increasing function µ̃(s) with lims→0+ µ̃(s) = 1 such that

x̃∗s + µ̃(s)−1G(x) · s
1
d−1E ⊂ K ∩ H̃(x, s) ⊂ x̃∗s + µ̃(s)G(x) · s

1
d−1E, (6.3.8)

where x̃∗s := x∗t ∈ (x − R+u(x)) ∩ H̃(x, s), and s and t are related by equation (6.3.1).
From (6.3.7) it follows that also

x̃s + µ̃(s)−1G(x) · s
1
d−1E ⊂ K ∩ H̃(x, s) ⊂ x̃s + µ̃(s)G(x) · s

1
d−1E, (6.3.9)

The rest of the proof is devoted to identifying the asymptotic behaviour of the integral
(6.3.6). First, we adjust the domain of integration and the integrand in a suitable way. In
a second step, the resulting expression is compared to the case where K is the unit ball.
We recall that x1, . . . , xn are random points in ∂K, and we put Ξn := {x1, . . . , xn}, hence
Kn = [Ξn]. For a finite set X ⊂ Rd, let #X denote the cardinality of X.

Lemma 6.3.1. For ε ∈ (0, 1), there exist α, β > 1 and an integer k > d, depending only
on ε and d, with the following property. If L ∈ Ldj , y ∈ ∂(K|L), x ∈ ∂K is a normal
boundary point of K such that y = x|L and Hd−1(x) > 0, and if n > n0, where n0 depends
on ε, x,K, %, L, then∫ n−1/2

0
P% (ỹs 6∈ Kn|L) s−

d−3
d−1 ds =

∫ α
n

ε(d−1)/2

n

ϕ(K,L, y, %, ε, s)s−
d−3
d−1 ds+O

(
ε

n
2
d−1

)
,

where

ϕ(K,L, y, %, ε, s) = P%
((
ỹs 6∈ ([C̃(x, βs) ∩ Ξn]|L)

)
and

(
#(C̃(x, βs) ∩ Ξn) ≤ k

))
.
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Proof. Let ε ∈ (0, 1) be given. Then α > 1 is chosen such that

2d−1+ 2d
d−1

∫ ∞
2−dα

e−rr
2
d−1
−1 dr < ε. (6.3.10)

Further, we choose β ≥ (162(d− 1))d−1 such that

2d−1e−2−3d+2
√
β·ε

d−1
2 < ε · α

−2
d−1 , (6.3.11)

and then we fix an integer k > d such that

(αβ)k

k!
<

ε

α
2
d−1

. (6.3.12)

Lemma 6.3.1 follows from the following three statements, which we will prove assuming
that n is sufficiently large.

(i) ∫ n−1/2

0
P% (ỹs 6∈ Kn|L) s−

d−3
d−1 ds

=

∫ α
n

ε(d−1)/2

n

P% (ỹs 6∈ Kn|L) s−
d−3
d−1 ds+O

(
ε

n
2
d−1

)
.

(ii) If ε(d−1)/2/n < s < α/n, then

P%
(

#
(
C̃(x, βs) ∩ Ξn

)
≥ k

)
≤ ε

α
2
d−1

.

(iii) If ε(d−1)/2/n < s < α/n, then

P% (ỹs 6∈ Kn|L) = P%
(
ỹs 6∈

[
(C̃(x, βs) ∩ Ξn)|L

])
+O

(
ε

α
2
d−1

)
.

Before proving (i), (ii) and (iii), we note that they imply∫ n−1/2

0
P% (ỹs 6∈ Kn|L) s−

d−3
d−1 ds =

∫ α
n

ε(d−1)/2

n

ϕ(K,L, y, %, ε, s)s−
d−3
d−1 ds+

+O

(
ε

α
2
d−1

)∫ α
n

ε(d−1)/2

n

s−
d−3
d−1 ds+O

(
ε

n
2
d−1

)
,

which in turn yields Lemma 6.3.1.
First, we introduce some notation. As before, let Q be the second fundamental form at

x ∈ ∂K, and let v1, . . . , vd−1 be an orthonormal basis of u(x)⊥ representing the principal
directions. In addition, let Θ′1, . . . ,Θ

′
2d−1 be the corresponding coordinate corners, and for

i = 1, . . . , 2d−1 and s ∈ (0, n−1/2), let

Θ̃i,s = C̃(x, s) ∩
(
x̃s +

[
Θ′i,R+x

])
.
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Subsequently, we show that

lim
s→0+

s−1

∫
Θ̃i,s∩∂K

%(z)Hd−1(dz) = 2−(d−1). (6.3.13)

In fact, since a ball rolls freely inside K, % is continuous and positive at x, and by
(6.3.7) we deduce that

lim
s→0+

s−1

∫
Θ̃i,s∩∂K

%(z)Hd−1(dz)

= %(x) lim
s→0+

s−1Hd−1
(

Θ̃i,s ∩ ∂K
)

= %(x) lim
s→0+

s−1Hd−1
(
∂K ∩ C̃(x, s) ∩

(
x̃∗s + [Θ′i,R+u(x)]

))
.

Let Ψ : ∂Γ∩C(x, r/R)→ ∂K ∩C(x, r/R) be the diffeomorphism which assigns to a point
z ∈ ∂Γ∩ H̃(x, s) the unique point Ψ(z) ∈ ∂K ∩ (x̃∗s + R+(z − x̃∗s)). It follows from (6.3.7)
that there exists an increasing function µ : R+ → R+ with lims→0+ µ(s) = 1 such that

µ(s)−1 ≤ Lip(ψ|(∂Γ ∩ C̃(x, s))) ≤ µ(s).

Thus we get

lim
s→0+

s−1Hd−1
(
∂K ∩ C̃(x, s) ∩

(
x̃∗s + [Θ′i,R+u(x)]

))
= lim

s→0+
s−1Hd−1

(
Ψ
(
∂Γ ∩ C̃(x, s) ∩

(
x̃∗s + [Θ′i,R+u(x)]

)))
= lim

s→0+
s−1Hd−1

(
∂Γ ∩ C̃(x, s) ∩

(
x̃∗s + [Θ′i,R+u(x)]

))
= 2−(d−1) lim

s→0+
s−1Hd−1

(
∂Γ ∩ C̃(x, s)

)
.

Now we can repeat the preceding argument in reverse order and finally use (6.3.1) to arrive
at the assertion (6.3.13).

To prove (i), we observe that

∫ ε(d−1)/2

n

0
P% (ỹs 6∈ Kn|L) s−

d−3
d−1 ds ≤

∫ ε(d−1)/2

n

0
s−

d−3
d−1 ds� ε

n
2
d−1

.

Let α/n < s < n−1/2, and let n be sufficiently large. First, (6.2.6) yields that

P% (o 6∈ Kn, ỹs 6∈ Kn|L) ≤ εn−
2
d−1 .

On the other hand, if o ∈ Kn, then ỹs 6∈ Kn|L implies that Θ̃i,s ∩ Kn = ∅ for some
i ∈ {1, . . . , 2d−1}, and hence (6.3.13) yields

P% (o ∈ Kn, ỹs 6∈ Kn|L) ≤ 2d−1(1− 2−ds)n < 2d−1e−2−dns. (6.3.14)
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Therefore, by (6.3.10) we get∫ n−1/2

α/n
P% (ỹs 6∈ Kn|L) s−

d−3
d−1 ds � 2d−1

∫ ∞
α/n

e−2−dnss
2
d−1
−1 ds+

ε

n
2
d−1

=
2d−1+ 2d

d−1

n
2
d−1

∫ ∞
2−dα

e−rr
2
d−1
−1 dr +

ε

n
2
d−1

≤ 2ε

n
2
d−1

,

which verifies (i).

Next (ii) simply follows from (6.3.1) and (6.3.12). In fact, if 0 < s < α/n, then

P%
(

#
(
C̃(x, βs) ∩ Ξn

)
≥ k

)
≤
(
n

k

)
(βs)k ≤

(
n

k

)(
αβ

n

)k
<

(αβ)k

k!
≤ ε

α
2
d−1

.

Finally, we prove (iii). To this end, if ε(d−1)/2/n < s < α/n and i ∈ {1, . . . , 2d−1}, then
we define wi ∈ Θ′i by

wi :=
(√

βs
) 1
d−1

d−1∑
m=1

ηmG(x)

4
√

(d− 1)km(x)
vm, (6.3.15)

where ηm = ηim ∈ {−1, 1} for m = 1, . . . , 2d−1. Now let

Ω̃i,s := ∂K ∩ [x̃s + Θ′i, x̃
√
β s + wi + Θ′i].

We claim that for large n, if ỹs ∈ Kn|L but ỹs 6∈
[
(C̃(x, βs) ∩ Ξn)|L

]
, then there exists

i ∈ {1, . . . , 2d−1} such that

Ξn ∩ Ω̃i,s = ∅. (6.3.16)

Moreover, for all i = 1, . . . , 2d−1, we have∫
Ω̃i,s

%(z)Hd−1(dz) ≥ 2−3d+2
√
βs. (6.3.17)

To justify (6.3.17), let i ∈ {1, . . . , 2d−1} be fixed. It follows from the definition of wi that

wi ∈
(√

βs
) 1
d−1 G(x)

4
· ∂E.

Recall that π : Rd → u(x)⊥ denotes the orthogonal projection to u(x)⊥. If n is large
enough, and hence 0 < s < α/n is sufficiently small, then (6.3.7), (6.3.9) and (6.3.15)

yield that wi ∈ π(Ω̃i,s), since by assumption
√
β

1/(d−1)
/4 > 2, and therefore

(wi + Θ′i) ∩
(
wi +

(√
βs
) 1
d−1 G(x)

4
· E
)
⊂ π(Ω̃i,s).
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In particular, (6.3.17) now follows from∫
Ω̃i,s

%(z)Hd−1(dz) ≥ %(x)

2
· Hd−1(Ω̃i,s)

≥ %(x)

2
· Hd−1(π(Ω̃i,s))

≥ %(x)

2
· 1

2d−1

√
βs
G(x)d−1

4d−1
αd−1Hd−1(x)−1/2

= 2−d41−d√βs.
Next we verify (6.3.16). We assume that ỹs ∈ Kn|L but ỹs 6∈

[
(C̃(x, βs) ∩ Ξn)|L

]
. Then

there exist a ∈
[
(C̃(x, βs) ∩ Ξn)|L

]
and b ∈

(
Kn \ C̃(x, βs)

)
|L such that ỹs ∈ (a, b). Thus

there exists a hyperplane H in Rd containing ỹs + L⊥ and bounding the half-spaces H+

and H− such that C̃(x, βs) ∩ Ξn ⊂ int(H+) and b ∈ int(H−). In addition, there exists
i ∈ {1, . . . , 2d−1} such that

x̃s + Θ′i ⊂ H−. (6.3.18)

Now we define points q and q′ by

{q} = [ỹs, b] ∩ H̃(x,
√
βs), {q′} = [ỹs, b] ∩ H̃(x, βs).

Relation (6.3.7) implies that

H̃(x, βs) ∩K ⊂ x̃∗βs + 2G(x)(βs)
1
d−1E

if s > 0 is sufficiently small. Arguing as in [BFH10], we obtain that

〈u(x), ỹs − ỹβs〉 <
β1/(d−1)

β1/(d−1) − 1
〈u(x), ỹ√βs − ỹβs〉

and
‖q − ỹ√βs‖
‖q′ − ỹβs‖

=
〈u(x), ỹs − ỹ√βs〉
〈u(x), ỹs − ỹβs〉

,

which yields (cf. [BFH10])

q ∈ ỹ√βs + 2s
1
d−1G(x)E.

Since β ≥ [82(d− 1)]d−1, we thus arrive at

q ∈ ỹ√βs +
1

4
√
d− 1

(
√
βs)

1
d−1G(x)E. (6.3.19)

Now (6.3.18) implies that q + Θ′i ⊂ H−. Hence it follows from (6.3.19) that ỹ√βs + wi ⊂
q + Θ′i ⊂ H−, and therefore also ỹ√βs + wi + Θ′i ⊂ H−. Thus Ω̃i,s ⊂ H−, which yields

Ξn ∩ Ω̃i,s = ∅.
Assertion (iii) follows from (6.3.16) and (6.3.17). In fact, if ε(d−1)/2/n < s < α/n, then

P%
(
ỹs 6∈

[
(C̃(y, βs) ∩ Ξn)|L

])
− P% (ỹs 6∈ (Kn|L))
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≤
2d−1∑
i=1

(
1−

∫
Ω̃i,s

%(z)Hd−1(dz)

)n
≤ 2d−1e−2−3d+2

√
β·sn

≤ ε α−
2
d+1 ,

by the choice of β.

To actually compare the situation near the normal boundary point x of K with
Hd−1(x) > 0 to the case of the unit ball, let σ = (dαd)

−1 be the constant density of
the corresponding probability distribution on Sd−1. Let w ∈ Sd−1 be the d-th coordinate
vector in Rd, and hence Rd−1 = w⊥. We write Bn to denote the convex hull of n random
points distributed uniformly and independently on Sd−1 according to σ. For s ∈ (0, 1

2),
we fix a linear subspace L0 ∈ Ldj with w ∈ L0, and let w̃s be of the form λw for λ ∈ (0, 1)
such that

(dαd)
−1 · Hd−1({z ∈ Sd−1 : 〈z, w〉 ≥ 〈w̃s, w〉}) = s.

In particular, w̃s|L0 = w̃s.

Lemma 6.3.2. If L ∈ Ldj , y ∈ ∂(K|L) and x ∈ ∂K is a normal boundary point such that
y = x|L and Hd−1(x) > 0, then

lim
n→∞

∫ n−1/2

0
n

2
d−1P% (ỹs 6∈ Kn|L) s−

d−3
d−1 ds

= lim
n→∞

∫ n−1/2

0
n

2
d−1Pσ (w̃s 6∈ Bn|L0) s−

d−3
d−1 ds.

Proof. First, we assume d ≥ 3. It is sufficient to prove that for any ε ∈ (0, 1) there exists
n0 > 0, depending on ε, x,K, %, L, such that if n > n0, then∫ n−1/2

0
P% (ỹs 6∈ Kn|L) s−

d−3
d−1 ds =

∫ n−1/2

0
Pσ (w̃s 6∈ Bn|L0) s−

d−3
d−1 ds+O

(
ε

n
2
d−1

)
.

(6.3.20)
Let α, β and k be the quantities associated with ε, x,K, %, L in Lemma 6.3.1, let C̃(x, s)
denote the cap of K defined in (6.3.2), and let C̃(w, s) denote the corresponding cap of
Bd at w. We define the densities %s on ∂C̃(x, βs) and σs on ∂C̃(w, βs) of probability
distributions by

%s(z) =

{
%(z)/(βs), if z ∈ ∂K ∩ C̃(x, βs),

0, if z ∈ ∂C̃(x, βs)\∂K,

σs(z) =

{
σ(z)/(βs), if z ∈ Sd−1 ∩ C̃(w, βs),

0, if z ∈ ∂C̃(w, βs)\Sd−1.

For i = 0, . . . , k, we write C̃(x, βs)i and C̃(w, βs)i to denote the convex hulls of i random
points distributed uniformly and independently on ∂C̃(x, βs) and ∂C̃(w, βs) according to
%s and σs, respectively.
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If n is large, then Lemma 6.3.1 yields that the left-hand and the right-hand side of
(6.3.20) are

O

(
ε

n
2
d−1

)
+

k∑
i=0

(
n

i

)∫ α
n

ε(d−1)/2

n

(βs)i(1− βs)n−i × P%s
(
ỹs 6∈ C̃(x, βs)i|L

)
s−

d−3
d−1 ds,

O

(
ε

n
2
d−1

)
+

k∑
i=0

(
n

i

)∫ α
n

ε(d−1)/2

n

(βs)i(1− βs)n−i × Pσs
(
w̃s 6∈ C̃(w, βs)i|L0

)
s−

d−3
d−1 ds.

For each i ≤ k, the representation of the beta function by the gamma function and the
Stirling formula (see E. Artin [Art64]) imply

lim
n→∞

n
2
d−1

(
n

i

)∫ 1/β

0
(βs)i(1− βs)n−is−

d−3
d−1 ds =

β
−2
d−1 Γ

(
i+ 2

d−1

)
i!

< 1. (6.3.21)

Therefore to prove (6.3.20), it is sufficient to verify that for each i = 0, . . . , k, if s > 0 is
small, then ∣∣∣P%s (ỹs 6∈ C̃(x, βs)i|L

)
− Pσs

(
w̃s 6∈ C̃(w, βs)i|L0

)∣∣∣� ε

k
. (6.3.22)

If i ≤ j, then (6.3.22) readily holds as its left-hand side is zero.
To prove (6.3.22) if i ∈ {j + 1, . . . , k}, we transform both K and Bd in such a way

that their osculating paraboloid is Ω = {z − ‖z‖2w : z ∈ Rd−1}, and the images of
the caps C̃(x, βs) and C̃(w, βs) are very close. Using these caps, we construct equivalent

representations of P%s
(
ỹs 6∈ C̃(x, βs)i|L

)
and Pσs

(
w̃s 6∈ C̃(w, βs)i|L0

)
, based on the same

space Ξs and on comparable probability measures and random variables.
We may assume that u(x) = w. Let v1, . . . , vd−1 be an orthonormal basis of w⊥ in

the principal directions of the fundamental form Q of K at x ∈ ∂K. We define the linear
transform As of Rd by

As(w) = 2(βs)
−2
d−1G(x)−2w,

As(vi) = (βs)
−1
d−1

√
ki(x)G(x)−1vi, i = 1, . . . , d− 1,

and choose an orthonormal linear transform Ps such that Psw = w, and Ps◦As(L⊥) = L⊥0 .
Based on these linear transforms, let Φs be the affine transformation

Φs(z) = Ps ◦As(z − x).

In addition, we define the linear transform Rs of Rd by

Rs(w) = 2(βs)
−2
d−1

(
αd−1

dαd

) 2
d−1

w,

Rs(vi) = (βs)
−1
d−1

(
αd−1

dαd

) 1
d−1

vi, i = 1, . . . , d− 1,

and let Ψs be the affine transformation

Ψs(z) = Rs(z − x).
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Subsequently, we also write Φsz for Φs(z) or Φsz|L0 for Φs(z)|L0, and similarly for Ψs.
We observe that Ω is the osculating paraboloid of both ΦsK and ΨsB

d at o, and

lim
s→0+

Φsx̃s = lim
s→0+

Ψsw̃s = −β
−2
d−1w =: w∗,

lim
s→0+

ΦsC̃(x, βs) = lim
s→0+

ΨsC̃(w, βs) = {z − τ w : z ∈ Bd−1 and ‖z‖2 ≤ τ ≤ 1}.

For p ∈ C̃(x, βs)∩∂K and z = π ◦Φs(p), let D(p) be the Jacobian of π ◦Φs at p as a map
π ◦ Φs : C̃(x, βs) ∩ ∂K → Rd−1, and let

%̃s(z) = %s(p) ·D(p)−1.

In addition, for p ∈ C̃(w, βs)∩Sd−1 and z = π ◦Ψs(p), let D̃(p) be the Jacobian of π ◦Ψs

at p as a map π ◦Ψs : C̃(w, βs) ∩ Sd−1 → Rd−1, and let

σ̃s(z) = σs(p) · D̃(p)−1.

We define

Ξs =
[
π ◦ ΦsC̃(x, βs)

]
∪
[
π ◦ΨsC̃(w, βs)

]
,

and extend %̃s and σ̃s to Ξs by

%̃s(z) = 0, if z ∈
[
π ◦ΨsC̃(w, βs)

]
\
[
π ◦ ΦsC̃(x, βs)

]
,

σ̃s(z) = 0, if
[
π ◦ ΦsC̃(x, βs)

]
\
[
π ◦ΨsC̃(w, βs)

]
.

Therefore %̃s and σ̃s are densities of probability distributions on Ξs. For z ∈ Ξs, let
ϕs(z) ∈ Φs∂K and ψs(z) ∈ ΨsS

d−1 be the points near z whose orthogonal projection
into Rd−1 is z. For random variables z1, . . . , zi ∈ Ξs either with respect to %̃s or σ̃s, the
quantities above were defined so as to satisfy

P%s
(
ỹs 6∈ C̃(x, βs)i|L

)
= P%̃s (Φsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0) , (6.3.23)

Pσs
(
w̃s 6∈ C̃(w, βs)i|L

)
= Pσ̃s (Ψsw̃s 6∈ [ψs(z1), . . . , ψs(zi)]|L0) . (6.3.24)

Now there exists an increasing function s 7→ µ∗(s) with lims→0+ µ∗(s) = 1 such that

µ∗(s)−1Bd−1 ⊂
[
π ◦ ΦsC̃(x, βs)

]
∩
[
π ◦ΨsC̃(w, βs)

]
⊂ Ξs ⊂ µ∗(s)Bd−1,

we have µ∗(s)−1ϕs(z) ≤ ψs(z) ≤ µ∗(s)ϕs(z) for all z ∈ Ξs, and

µ∗(s)−1α−1
d−1 ≤ %̃s(z) ≤ µ∗(s)α−1

d−1, if z ∈ π ◦ ΦsC̃(x, βs),

µ∗(s)−1α−1
d−1 ≤ σ̃s(z) ≤ µ∗(s)α−1

d−1, if z ∈ π ◦ΨsC̃(w, βs).

Therefore

lim
s→0+

∫
Ξs

|%̃s(z)− σ̃s(z)|Hd−1(dz) = 0. (6.3.25)
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From (6.3.25) we deduce that if s > 0 is small, then

|P%̃s (Φsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0 and Ψsw̃s 6∈ [ψs(z1), . . . , ψs(zi)]|L0) (6.3.26)

− Pσ̃s (Φsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0 and Ψsw̃s 6∈ [ψs(z1), . . . , ψs(zi)]|L0)| ≤ ε

k
.

Next, if s > 0 is small, then

‖w∗ − Φsx̃s‖ ≤
ε

kj+1
and ‖w∗ −Ψsw̃s‖ ≤

ε

kj+1
,

and in addition

‖ϕs(z)− ψs(z)‖ ≤
ε

kj+1
for all z ∈ Ξs.

Assume that Φsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0 but Ψsw̃s ∈ [ψs(z1), . . . , ψs(zi)]|L0 for some
z1, . . . , zi ∈ Ξs. In this case, the point a of [ϕs(z1), . . . , ϕs(zi)]|L0 closest to Φsx̃s|L0 is
contained in some (j − 1)-simplex [ϕs(zm1), . . . , ϕs(zmj )]|L0, i.e. there are λ1, . . . , λj ≥ 0,

λ1 + . . . + λj = 1, such that a =
∑j

r=1 λrϕ(zmr)|L0. Moreover, there are µ1, . . . , µi ≥ 0,
µ1 + . . .+ µi = 1, so that Ψsw̃s =

∑i
r=1 µrψs(zr)|L0. Then we have

‖Φsx̃s|L0 − a‖ ≤

∥∥∥∥∥Φsx̃s|L0 −
i∑

r=1

µrϕs(zr)|L0

∥∥∥∥∥
≤ ‖Φsx̃s|L0 − w∗‖+ ‖w∗ −Ψsw̃s‖+

∥∥∥∥∥
i∑

r=1

µr(ψs(zr)− ϕs(zr))|L0

∥∥∥∥∥
≤ ε

kj+1
+

ε

kj+1
+

ε

kj+1
=

3ε

kj+1
,

and hence

‖w∗ − a‖ ≤ 4ε

kj+1
.

Choose a maximal set v1, . . . , vl ∈ Sd−1∩L0 such that the distance between any two points
is at least εk−(j+1), in particular

l� ε−(j−1)k(j−1)(j+1).

Since a, ϕs(zm1)|L0, . . . , ϕs(zmj )|L0 lie in a (j−1)-dimensional affine subspace of L0, there

is a unit vector v ∈ Sd−1 ∩ L0 such that |〈ϕs(zmr) − w∗, v〉| ≤ 4εk−(j+1) for r = 1, . . . , j,
and thus

|〈ϕs(zmr)− w∗, vm〉| ≤
6ε

kj+1

for r = 1, . . . , j and a suitably chosen m ∈ {1, . . . , l}. In fact, for the given vector
v ∈ Sd−1 ∩ L0, there is some m ∈ {1, . . . , l} such that ‖v − vm‖ ≤ εk−(j+1). Since
ΦsC̃(x, βs) ⊂ w∗ + 2Bd, we deduce that

|〈ϕs(zmr)− w∗, vm〉| ≤ |〈ϕs(zmr)− w∗, v〉|+ ‖ϕs(zmr)− w∗‖ · ‖vm − v‖

≤ 4ε

kj+1
+ 2 · ε

kj+1
=

6ε

kj+1
.
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Therefore, if we define, for m = 1, . . . , l,

Πm :=
{
p ∈ ∂ΦsC̃(x, βs) : |〈p− w∗, vm〉| ≤ 6εk−(j+1)

}
,

we get the following: if Φsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0 but Ψsw̃s ∈
[ψs(z1), . . . , ψs(zi)]|L0 for some z1, . . . , zi ∈ Ξs, then there exists m ∈ {1, . . . , l} such
that Πm contains some j of the points ϕs(z1), . . . , ϕs(zi). Since Hd−1(Πm) � εk−(j+1),
we have

P%̃s (Φsx̃s|L0 6∈ [ϕs(z1), . . . , ϕs(zi)]|L0 and Ψsw̃s ∈ [ψs(z1), . . . , ψs(zi)]|L0)

≤
(
i

j

) l∑
m=1

P%̃s (ϕs(z1), . . . , ϕs(zj) ∈ Πm)

�
(
i

j

)
· l · (εk−(j+1))j � ε

k
. (6.3.27)

Similarly, we have

Pσ̃s (Ψsw̃s 6∈ [ψs(z1), . . . , ψs(zi)]|L0 and Φsx̃s|L0 ∈ [ϕs(z1), . . . , ϕs(zi)]|L0)� ε

k
. (6.3.28)

Combining (6.3.23), (6.3.24) as well as (6.3.26), (6.3.27) and (6.3.28) yields (6.3.22), and
in turn Lemma 6.3.2 if d ≥ 3.

If d = 2, then a similar argument works, only some of the constrains should be modified

as follows. In (6.3.21), we only have β
−2
d−1 Γ

(
i+ 2

d−1

)
/i! < k + 1, and hence in (6.3.22),

we should verify an upper bound of order ε
k2 , not of order ε

k . Therefore the upper bound
in (6.3.26) should be ε

k2 .

6.4 Completing the proof of Theorem 6.1.2

In order to transfer an integral over an average of projections of a convex body to a
boundary integral, we are going to use the following lemma from K. Böröczky Jr., L. M.
Hoffmann, D. Hug [BHH08].

For L ∈ Ldj and y ∈ ∂(K|L), we choose a point x(y) ∈ ∂K such that y = x(y)|L. In
general, x(y) is not uniquely determined, but we can fix a measurable choice (cf. [BHH08, p.
152]). Recall, however, that x(y) is uniquely determined for νj a.e. L ∈ Ldj and Hj−1 a.e.
y ∈ ∂(K|L).

Lemma 6.4.1. Let K ⊂ Rd be a convex body in which a ball rolls freely, let f : ∂K →
[0,∞) be nonnegative and measurable, and let j ∈ {1, . . . , d− 1}. Then

jαj
dαd

∫
∂K

f(x)Hd−j(x)Hd−1(dx) =

∫
Ldj

∫
∂(K|L)

f(x(y))Hj−1(dy) νj(dL).

By the very special case K = Bd of (6.1.1), due to M. Reitzner [Rei02], we have

lim
n→∞

n
2
d−1

[
Vj(B

d)− EσVj(Bn)
]

= c(j,d)(dαd)
d+1
d−1 .
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Therefore the rotational symmetry of Bd, (6.2.12) and (6.3.6) yield

c(j,d)(dαd)
d+1
d−1 =

(
d
j

)
αd

αd−jαj
· jαj(dαd)

2
d−1

d− 1
(αd−1)−

2
d−1

× lim
n→∞

∫ n−1/2

0
n

2
d−1Pσ (w̃s 6∈ Bn|L0) s−

d−3
d−1 ds. (6.4.1)

We can now transform the asymptotic formulae to K. Let L ∈ Ldj and let y ∈ ∂(K|L)
be such that y = x|L for some normal boundary point x = x(y) ∈ ∂K. If Hd−1(x) =
0, then J%(y, L) = 0 by Lemma 6.2.4. If Hd−1(x) > 0, then it follows from (6.3.6),
Lemma 6.3.2 and (6.4.1) that

J%(y, L) = (d− 1)−1(αd−1)−
2
d−1 %(x)

−2
d−1Hd−1(x)

1
d−1

× lim
n→∞

∫ n−1/2

0
n

2
d−1Pσ (w̃s 6∈ Bn|L0) s−

d−3
d−1 ds

= c(j,d)%(x)
−2
d−1Hd−1(x)

1
d−1

( (
d
j

)
αd

αd−jαj
· jαj
dαd

)−1

,

where x = x(y). Finally, we apply first (6.2.12), and afterwards Lemma 6.4.1, to deduce

lim
n→∞

n
2
d−1 [Vj(K)− E%(Vj(Kn))]

= c(j,d) dαd
jαj

∫
Ldj

∫
∂(K|L)

%(x(y))
−2
d−1Hd−1(x(y))

1
d−1 Hj−1(dy) νj(dL)

= c(j,d)

∫
∂K

%(x)
−2
d−1Hd−1(x)

1
d−1 Hd−j(x)Hd−1(dx),

which concludes the proof of Theorem 6.1.2.

6.5 Proof of Theorem 6.1.3

Using the Stirling formula Γ(n + 1) ∼ (ne )n
√

2πn, as n → ∞ (see E. Artin [Art64]), for
any α > 0 and γ ∈ (0, 1], we deduce

lim
n→∞

nα
∫ γ

0
sα−1(1− s)n ds = lim

n→∞
nα
∫ 1

0
sα−1(1− s)n ds

= lim
n→∞

nα
Γ(α)Γ(n+ 1)

Γ(n+ 1 + α)
= Γ(α). (6.5.1)

In the following argument, γ1, γ2, . . . again denote positive constants that may depend
on K and %. We can assume that o ∈ int(K). Further, let (∂K)n∗ denote the set of all
x1, . . . , xn ∈ ∂K such that o ∈ [x1, . . . , xn]. For u ∈ Sd−1 and t ≥ 0, let

C(u, t) := {x ∈ K : 〈x, u〉 ≥ hK(u)− t},
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where hK denotes the support function of K. To deduce the upper bound, we start with
the estimates

E%(V1(K)− V1(Kn))

=
1

αd−1

∫
(∂K)n

∫
Sd−1

(hK(u)− hKn(u))Hd−1(du)%(x1) · · · %(xn)

Hd−1(dx1) . . .Hd−1(dxn)

≤ 1

αd−1

∫
(∂K)n∗

∫
Sd−1

(hK(u)− hKn(u))Hd−1(du)%(x1) · · · %(xn)

Hd−1(dx1) . . .Hd−1(dxn)

+ 2d(1− γ1)n

≤ 1

αd−1

∫
Sd−1

∫ hK(u)

0

∫
(∂K)n

1{x1, . . . , xn ∈ ∂K \ C(u, s)}%(x1) · · · %(xn)

Hd−1(dx1) . . .Hd−1(dxn) dsHd−1(du) + 2d(1− γ1)n

≤ 1

αd−1

∫
Sd−1

∫ hK(u)

0

(
1−

∫
∂K∩C(u,t)

%(x)Hd−1(dx)

)n
dtHd−1(du)

+2d(1− γ1)n. (6.5.2)

For suitable positive constants γ2, γ3, γ4 we get, for u ∈ Sd−1 and t ∈ (0, γ2),∫
∂K∩C(u,t)

%(x)Hd−1(dx)

{
> γ3t

d−1, if t ∈ (0, γ2),

> γ4, if t ≥ γ2.
(6.5.3)

In particular, γ4, γ3(γ2)d−1 ∈ (0, 1). We deduce from (6.5.2), (6.5.3) and (6.5.1) that, for
suitable γ5, . . . , γ9 with γ7, γ9 ∈ (0, 1),

E%(V1(K)− V1(Kn)) ≤ γ5

∫ γ2

0
(1− γ3t

d−1)n dt+ γ6γ
n
7

= γ8

∫ γ9

0
s

1
d−1
−1 · (1− s)n ds+ γ6γ

n
7 ≤ γ10n

−1
d−1 .

To prove the lower bound for E%(V1(K)− V1(Kn)), we need the following observation.

Lemma 6.5.1. Let K ⊂ Rd be a convex body, and let hK be twice differentiable at u0 ∈
Sd−1. Then there is some R > 0 such that K ⊂ x0 −Ru0 +RBd, where x0 = ∇hK(u0) ∈
∂K. In particular, there exist a measurable set Σ ⊂ Sd−1 with Hd−1(Σ) > 0 and some
R > 0, all depending on K, such that for any u ∈ Σ there is some x ∈ ∂Ksuch that
K ⊂ x−Ru+RBd.

Proof. For the proof of the first assertion, we may assume that x0 = o, hence also
hK(u0) = 0. We put h := hK . By assumption, there is a function R : R+ → [0,∞)
with limt→0+ R(t) = 0 and∣∣∣∣h(u)− 1

2
· d2h(u− u0, u− u0)

∣∣∣∣ ≤ R(‖u− u0‖)‖u− u0‖2.
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Thus there is a constant R1 > 0 and δ > 0 such that h(u) ≤ R1‖u− u0‖2 for all u ∈ Sd−1

with 〈u, u0〉 ≥ 1 − δ. But then for R2 := max{2R1,max{h(u) : u ∈ Sd−1}/(2δ)} and all
u ∈ Sd−1, we obtain

h(u) ≤ R2 (1− 〈u0, u〉) = h(−R2u0 +R2B
d, u),

that is K ⊂ −R2u0 +R2B
d.

The second assertion follows immediately from the first assertion.

Let t0 be the inradius of K. Now Lemma 6.5.1 yields, for u ∈ Σ and t ∈ (0, t0), that∫
∂K∩C(u,t)

%(x)Hd−1(dx) < γ11 · t
d−1

2 .

Choosing a constant γ12 ∈ (0, t0) satisfying γ11(γ12)
d−1

2 < 1, it follows as in the derivation
of (6.5.2) that, with a suitable constant γ13 ∈ (0, 1), we have

E%(V1(K)− V1(Kn)) ≥ 1

αd−1

∫
Σ

∫ γ12

0

(
1− γ11t

d−1
2

)n
dtHd−1(dx)

=

∫ γ13

0
s

2
d−1
−1 · (1− s)n ds > γ14 · n

−2
d−1 .

Theorem 6.1.2 shows that the lower bound of Theorem 6.1.3 is of optimal order if K
has a rolling ball. In fact, the assumption of a rolling ball ensures that the integral on the
right side of (6.1.1) is positive. This follows, for instance, from the absolute continuity of
the Gauss curvature measure of a convex body which has a rolling ball (cf. [Hug99]).

On the other hand, the upper bound for E%(V1(K)− V1(Kn)) is of optimal order if K
is a polytope. To explain this, let Σ0 ⊂ Sn−1 be contained in the interior of the exterior
normal cone of one of the vertices of K and such that Hd−1(Σ0) > 0. In this case∫

∂K∩C(u,t)
%(x)Hd−1(dx) < γ15 · td−1,

for u ∈ Σ0 and t ∈ (0, γ16), and hence E%(V1(K)− V1(Kn)) ≥ γ17 · n
−1
d−1 .
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Chapter 7

Approximation by random
disc-polygons

This chapter of the dissertation is based on the papers:

• [FKV14] by F. Fodor, P. Kevei and V. Vı́gh, On random disc polygons in smooth
convex discs, Adv. in Appl. Probab., 46 (2014), no. 4, 899–918. (DOI
10.1239/aap/1418396236)

• [FV18] by F. Fodor and V. Vı́gh, Variance estimates for random disc-polygons
in smooth convex discs, J. Appl. Probab., 55, (2018), no. 4, 1143–1157. (DOI
10.1017/jpr.2018.76)

7.1 Expectations

In their ground-braking papers, Rényi and Sulanke [RS63, RS64, RS68] investigated the
geometric properties of approximations of convex discs by random convex polygons. In
particular, they considered the following probability model.

Let K be a convex disc (a compact convex set with nonempty interior) in the Euclidean
plane R2 and let y1, y2, . . . be independent random points chosen from K according to the
uniform probability distribution. Let Kn denote the convex hull of Yn = {y1, . . . , yn}. The
set Kn is called a uniform random convex polygon in K.

Rényi and Sulanke [RS63, RS64] proved asymptotic formulae for the expectation of
the number of vertices of Kn and the expectation of the missed area of Kn under the
assumption that the boundary ∂K of K is three times continuously differentiable and
the curvature is strictly positive everywhere. They also proved an asymptotic formula for
the expectation of the perimeter difference of K and Kn under stronger differentiability
assumptions on ∂K and assuming that the curvature κ(x) > 0 for all x ∈ ∂K. For later
comparison, we state their results below in a slightly modified form.

Let f0(Kn) denote the number of vertices of Kn, A(K) the area of K and Γ(·) Euler’s
Gamma function. Then (cf. Satz 3 on page 83 in [RS63])

lim
n→∞

E(f0(Kn)) · n−1/3 = 3

√
2

3A(K)
Γ

(
5

3

)∫
∂K

κ(x)1/3dx, (7.1.1)
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where integration is with respect to the one-dimensional Hausdorff measure on ∂K. We
note that with the help of Efron’s identity [Efr65], (7.1.1) implies directly the following
statement

lim
n→∞

E(A(K \Kn)) · n2/3 =
3

√
2A(K)2

3
Γ

(
5

3

)∫
∂K

κ(x)1/3dx. (7.1.2)

Rényi and Sulanke derived (7.1.2) by direct computation, cf. formula (48) in Satz 1 on
page 144 in [RS64].

Assuming that the boundary of K is sufficiently smooth and κ(x) > 0 for all x ∈ ∂K,
Rényi and Sulanke proved the asymptotic formula

lim
n→∞

E(Per(K)− Per(Kn)) · n2/3 =
1

12
Γ

(
2

3

)
(12A(K))2/3

∫
∂K

κ(x)4/3dx (7.1.3)

for the perimeter difference of K and Kn, cf. formula (47) in Satz 1 on page 144 in [RS64].

For more information about approximations of convex bodies by random polytopes we
refer the reader to the recent book by Schneider and Weil [SW08], and the survey articles
by Bárány [Bár08], Schneider [Sch08,Sch18], Weil and Wieacker [WW93].

In this chapter, we investigate the R-spindle convex analogue of the above probability
model. Let R > 0. R-spindle convex discs are those convex discs that are intersections of
(not necessarily finitely many) closed circular discs of radius R. For a precise definition of
spindle convexity, see Section 7.1.1. The intersection of finitely many closed circular discs
of radius R is a closed convex R-disc-polygon. Let X be a compact set which is contained in
a closed circular disc of radius R. The intersection of all R-spindle convex discs containing
X is called the R-spindle convex hull of X, and it is denoted by convs,R (X).

Now we are ready to define our probability model. Let S be an R-spindle convex disc
in R2. Let x1, x2, . . . be independent random points in S chosen according to the uniform
probability distribution (the Lebesgue measure in S normalized by the area of S). The
R-spindle convex hull SRn = convs,R (Xn), where Xn = {x1, . . . , xn}, is called a uniform
random R-disc-polygon in S. We prove the R-spindle convex analogues of (7.1.1), (7.1.2)
and (7.1.3) in this probability model.

The concept of spindle convexity was (probably) first introduced by Mayer [May35] as
a generalization of linear convexity in the wider context of Minkowski geometry. In the
Euclidean plane R2, a closed convex set can be represented as the intersection of closed
half-planes. In the definition of an R-spindle convex set, the radius R closed circular discs
play the role of closed half-planes. Thus, formally, the R =∞ case corresponds to linear
convexity.

Early investigations of spindle convex sets were carried out in the first half of the 20th
century. For a short survey of the early history of the subject and references see the
paper by Danzer, Grünbaum and Klee [DGK63]. Fejes Tóth proved packing and covering
theorems for R-spindle convex discs in [FT82b] and [FT82a]. More recently, Bezdek et
al. [BLNP07] and Kupitz et al. [KMP05], [KMP10] investigated spindle convex sets and
proved numerous results about them, many of which are analogous to those of linearly
convex sets. They also considered higher dimensional R-spindle convex sets. Intersections
of a finite number of radius R closed balls in Rd are called ball-polyhedra (cf. [BLNP07]).
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This notion of hyperconvexity arises naturally in many questions where a convex set can
be represented as the intersection of equal radius closed balls. As recent examples of such
problems, we mention the Kneser-Poulsen conjecture, see, for example, Bezdek, Connelly
[BC02], Bezdek [Bez18], Bezdek, Naszódi [BN18], and inequalities for intrinsic volumes
by Pauris, Pivovarov [PP17]. A more complete list can be found in [BLNP07], for short
overviews see also Fejes Tóth, Fodor [FTF15], Fodor, Kevei, Vı́gh [FKV14], and Fodor,
Vı́gh [FV12].

Fodor and Vı́gh [FV12] proved asymptotic formulae for best approximations of R-
spindle convex discs by R-disc-polygons generalizing some of the corresponding results of
Fejes Tóth [FT53] and McClure and Vitale [MV75] about best approximations of linearly
convex discs by convex polygons (see Chapter 8). For a systematic treatment of geometric
properties of hyperconvex sets and further references, see, for example, the recent papers
by Bezdek, Lángi, Naszódi, Papez [BLNP07], Fodor, Kurusa, Vı́gh [FKV16], and in a
more general setting the paper by Jahn, Martini, Richter [JMR17].

There is a wealth of new information about properties of spindle convex bodies and
ball-polyhedra in the recent monographs [Bez10] and [Bez13] by Bezdek.

The notion of spindle convexity is related to diametrical completeness of convex bodies
through the so-called spherical intersection property. A convex body K is diametrically
complete if for any point x 6∈ K, the diameter of conv (K∪{x}) is strictly larger than that of
K. It was proved by Eggleston [Egg65] that in a Banach space the diametrically complete
convex bodies are exactly those which have the so-called spherical intersection property,
that is, they are equal to the intersection of all closed balls whose centre is contained in
K and whose radius is equal to the diameter of K. In Euclidean spaces diametrically
complete convex bodies are exactly those of constant width, however, in Minkowski spaces
this is not the case. Recently, much effort has been devoted to investigating the properties
of diametrically complete sets in Minkowski spaces where sets that are intersections of
congruent closed balls play a fundamental role (see, for example, Moreno and Schneider
[MS07] and the references therein), and to investigating various properties of the ball hull,
see, for example, Moreno and Schneider [MS12] for more information.

Random approximations of R-spindle convex sets by R-disc-polygons naturally appear,
for example, in the so-called Diminishing Process of Tóth, see Ambrus et al. [AKV12].
Let D0 = BR be the radius R closed circular disc in R2 centred at the origin. Define
the random process (Dn, pn) for n ≥ 1 as follows. Let pn+1 be a uniform random point
in Dn and let Dn+1 = Dn ∩ (BR + pn+1). Then each Dn is a (non-uniform random)
R-disc-polygon, and the process converges (in the Hausdorff metric of compact sets) to a
set of constant width R with probability 1. This process can be readily generalized for a
general convex body K ⊂ Rd, in place of BR, that contains the origin. If the body K is
symmetric with respect to the origin, then it determines a Minkowski metric and the sets
Kn are all (random) spindle convex bodies with respect to K in this Minkowski space.

Finally, we remark that there are various terms used for R-spindle convex sets in the
literature. Mayer introduced the word “Überkonvexität” in [May35]. Authors of early
articles used the translation of Mayer’s term. Fejes Tóth [FT82b, FT82a] named such
sets “R-convex”. Bezdek et al. [BLNP07] and Kupitz et al. [KMP05, KMP10] used the
expression “spindle convex”. The notion of spindle convexity arose naturally and was
investigated from different points of view, which explains the various names used for these
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sets and it also indicates their importance.
The main results of this chapter are described in the following theorems.

Theorem 7.1.1 (Fodor, Kevei, Vı́gh [FKV14, Theorem 1.1 on page 901]). Let R > 0,
and let S be an R-spindle convex disc with C2 smooth boundary and with the property that
κ(x) > 1/R for all x ∈ ∂S. Then

lim
n→∞

E(f0(SRn )) · n−1/3 = 3

√
2

3A(S)
· Γ
(

5

3

)∫
∂S

(
κ(x)− 1

R

)1/3

dx, (7.1.4)

and

lim
n→∞

E(A(S \ SRn )) · n2/3 =
3

√
2A(S)2

3
Γ

(
5

3

)∫
∂S

(
κ(x)− 1

R

)1/3

dx. (7.1.5)

We note that the two statements are connected with an Efron-type relation [Efr65],
see (7.1.31) in Section 7.1.4.

Theorem 7.1.2 (Fodor, Kevei, Vı́gh [FKV14, Theorem 1.2 on page 902]). Let R > 0,
and let S be an R-spindle convex disc with C5 smooth boundary and with the property that
κ(x) > 1/R for all x ∈ ∂S. Then

lim
n→∞

E(Per(S)− Per(SRn )) · n2/3

=
(12A(S))2/3

36
Γ

(
2

3

)∫
∂S

(
κ(x)− 1

R

)1/3(
3κ(x) +

1

R

)
dx. (7.1.6)

Theorem 7.1.3 (Fodor, Kevei, Vı́gh [FKV14, Theorem 1.3 on page 902]). Let R > 0,
and let S = BR be a circular disc of radius R. Then

lim
n→∞

E(f0(SRn )) =
π2

2
, (7.1.7)

lim
n→∞

E(A(BR \ SRn )) · n =
R2 · π3

2
, (7.1.8)

and

lim
n→∞

E(Per(BR)− Per(SRn )) · n =
R · π3

2
. (7.1.9)

It is somewhat surprising that the expectation of the number of the vertices of uniform
random spindle convex polygons in circular discs tends to a (very small) constant. Roughly
speaking this means that after choosing many random points from a circle, the spindle
convex hull will have about 5 vertices. This is a surprising fact that has no clear analogue
in the classical convex case. A similar phenomenon was recently established by Bárány,
Hug, Reitzner, Schneider [BHRS17] about the expectation of the number of facets of
certain spherical random polytopes in halfspheres, see [BHRS17, Theorem 3.1].

Furthermore, for a (linearly) convex disc K with C2 smooth boundary and strictly pos-
itive curvature, the asymptotic formulae (7.1.1) and (7.1.2) of Rényi and Sulanke follow
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from (7.1.4) and (7.1.5), respectively. Similarly, for a convex disc with C5 smooth bound-
ary and strictly positive curvature, the asymptotic formula (7.1.3) of Rényi and Sulanke
follows from (7.1.6). Thus, the results of Theorems 7.1.1 and 7.1.2 are generalizations of
the corresponding results of Rényi and Sulanke.

The rest of this chapter is organized as follows. In Section 7.1.1, we introduce the
necessary notations. In Section 7.1.2, we prove how the asymptotic formulae of Rényi
and Sulanke follow from our results. In Section 7.1.3, we investigate some properties of
disc-caps of spindle convex discs that are used in the subsequent arguments. We give the
proofs of Theorem 7.1.1 and Theorem 7.1.2 in Section 7.1.4. Finally, in Section 7.1.5, we
provide an outline of the proof of Theorem 7.1.3.

7.1.1 Spindle convex sets: definition and notations

In this chapter, the symbol BR denotes the closed circular disc of radius R centred at the
origin. We use S1

R to denote ∂BR. We tacitly assume that the plane is embedded in R3

and write x× y for the cross product of the vectors x and y.

We use the notation κ(x) for the curvature of ∂K at x. If the boundary of K is C2

smooth, then at every x ∈ ∂K there exists a unique outer unit normal vector ux ∈ S1 to
∂K.

For a convex disc K, integration on the boundary of K with respect to the one-
dimensional Hausdorff measure (the arc-length of ∂K) is denoted by

∫
∂K · · · dx. In the

case that the boundary of K is C2 smooth and f(u) is a measurable function on S1,∫
S1 f(u)du =

∫
∂K f(ux)κ(x)dx, (cf. formula 2.5.62 in [Sch14]).

Let x, y ∈ R2 be such that their distance does not exceed 2R. We define the closed
R-spindle [x, y]s,R of x and y as the intersection of all closed circular discs of radius R that
contain both x and y. The closed R-spindle of two points whose distance is greater than
2R is defined to be the whole plane R2. The closed spindle of two points whose distance
is less than 2R looks like a spindle, which explains the origin of its name. A set S ⊆ R2

is called R-spindle convex if from x, y ∈ S it follows that [x, y]s,R ⊆ S. Spindle convex
sets are also convex in the usual linear sense. In this chapter we restrict our attention to
compact spindle convex sets. We call a compact set S ⊂ R2 with nonempty interior an
R-spindle convex disc if it has the R-spindle convex property.

Below, we list those properties of spindle convex discs that will be used in our ar-
guments. For more detailed information about spindle convexity we refer the reader to
Bezdek et al. [BLNP07].

A compact convex set S is R-spindle convex if and only if it is the intersection of (not
necessarily finitely many) congruent closed circular discs of radius R (cf. Corollary 3.4 on
page 205 in [BLNP07]). If the closed circular disc BR + p contains an R-spindle convex
disc S and there is a point x ∈ ∂S such that also x ∈ ∂BR + p, then we say that BR + p
supports S at x. Let P be a convex R-disc-polygon, and let BR + p a circle supporting P
at H = ∂P ∩ (∂BR + p). Then H either consists of only one point, called a vertex, or it
consists of the points of a closed circular arc, called a side (or edge) of P . The number
of edges of P equals the number of vertices of P (except in the case that P is a circle of
radius R); we denote this number by f0(P ).

If S is an R-spindle convex disc with C2 smooth boundary, then κ(x) ≥ 1/R for all
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x ∈ ∂S, and for every unit vector u ∈ S1, there exists a unique point x ∈ ∂S such that
u = ux; we denote this point by xu. We also note that if x ∈ ∂S, then BR + x − R · ux
supports S at x.

7.1.2 The limit case

In this section we show how Theorems 7.1.1 and 7.1.2 imply the asymptotic formulae
(7.1.1), (7.1.2), and (7.1.3) of Rényi and Sulanke.

Let K be a (linearly) convex disc with C2 smooth boundary and κ(x) > 0 for all
x ∈ ∂K. Let κmin = min∂K κ(x) > 0. It follows from Mayer’s results (cf. (Ü4) and
(Ü5) on page 521 in [May35], or for a more recent and more general reference see also
Theorem 2.5.4. in [Sch14]) that K is R-spindle convex for all R ≥ R0 = 1/κmin. For
R ≥ R0 and n sufficiently large, we introduce the following notation

δRS (n) = E(A(K \ SRn )) · n
2
3 ,

δ(n) = E(A(K \Kn)) · n
2
3 ,

IRS =
3

√
2A2

3
· Γ
(

5

3

)∫
∂K

(
κ(x)− 1

R

) 1
3

dx,

I =
3

√
2A2

3
· Γ
(

5

3

)∫
∂K

κ
1
3 (x)dx,

with A = A(K).

We claim that (7.1.5) implies the asymptotic formula (7.1.2) of Rényi and Sulanke.

Let ε > 0 be fixed. Then limR→∞ I
R
S = I yields that there exists R1(ε) > R0 such that

1− ε <
IRS
I
< 1 + ε (7.1.10)

for all R > R1(ε).

Elementary calculations show that there exists R2(ε) ≥ R0, depending only on K and
ε such that for all R > R2(ε),

A([p, q]s,R)

A([p, q]s,R0)−A([p, q]s,R)
< ε, (7.1.11)

for any points p, q ∈ K.

Let DR
m denote an R-disc-polygon in K with vertices p1, . . . , pm indexed in the cyclic

order, and let Pm denote the (linear) convex hull of p1, . . . , pm. Note that this is a polygon
with vertices p1, . . . , pm. If R > R2(ε), then (7.1.11) yields

1 <
δ(n)

δRS (n)
= 1 +

E(A(SRn )−A(Kn))

E(A(K)−A(SRn ))

< 1 + sup
DRm⊂K,
2≤m≤n

A(DR
m)−A(Pm)

A(DR0
m )−A(DR

m)
< 1 + ε. (7.1.12)
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Now assume that R > max{R1(ε), R2(ε)}. It is clear that for any such R, the conver-
gence limn→∞ δ

R
S (n)/IRS = 1 yields that there exists n(R) such that

1− ε <
δRS (n)

IRS
< 1 + ε (7.1.13)

for all n ≥ n(R).
Thus, from (7.1.10), (7.1.12), (7.1.13), and from

δ(n)

I
=

δ(n)

δRS (n)
·
δRS (n)

IRS
·
IRS
I
,

we obtain that

1− 3ε <
δ(n)

I
< 1 + 7ε

for all R > max{R1(ε), R2(ε)} and n > n(R), which proves that

lim
n→∞

δ(n)

I
= 1.

A similar argument shows that (7.1.6) implies the asymptotic formula (7.1.3) of Rényi
and Sulanke. Finally, formula (7.1.1) for the number of vertices follows by Efron’s equality
(7.1.31).

7.1.3 Caps of spindle convex discs

From now on we restrict our attention to the case when R = 1 and we omit R from the
notation. We use the simpler terms spindle convex and disc-polygon in place of 1-spindle
convex and 1-disc polygon, respectively. In particular, B = B1 denotes the unit disc. The
R-spindle convex analogues of the following lemmas can be obtained by simple scaling.

Let S be a spindle convex disc with C2 smooth boundary and assume that κ(x) > 1
for all x ∈ ∂S. A subset D of S is a disc-cap of S if D = cl (S ∩ (B + p)C) for some point
p ∈ R2. Note that in this case ∂B + p intersects ∂S in at most two points. (This follows,
for example, from Theorem 2.5.4. in [Sch14].) Thus, the boundary of a nonempty disc-cap
D consists of at most two connected arcs: one arc is a subset of ∂S, and the other arc is
a subset of ∂B + p. In order to define the vertex and the outer normal of a disc-cap we
need the following claim.

Lemma 7.1.4. Let S be a spindle convex disc with C2 smooth boundary and assume that
κ(x) > 1 for all x ∈ ∂S. Let D = cl(S ∩ (B + p)C) be a non-empty disc-cap of S (as
above). Then there exists a unique point x0 ∈ ∂S ∩ ∂D such that there exists a t ≥ 0 with
B + p = B + x0 − (1 + t)ux0 . We refer to x0 as the vertex of D and to t as the height of
D.

Proof. Pick any x ∈ ∂S ∩ ∂D, and consider the vectors −→px and the outer unit normal
ux. We claim that there is a unique x for which −→px is a positive multiple of ux. The
existence follows from a simple continuity argument since the angles formed by the two
vectors have different orientations at the endpoints of ∂S ∩ ∂D. Uniqueness is proved as
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follows. Suppose that both x1 6= x2 fulfil the requirements. Let ϕ be the (positive) angle
between ux1 and ux2 and denote by I the arc of ∂S between x1 and x2 (according to the
positive orientation), and by ∆s the length of I. By the spindle convexity of S, we obtain
that x1 and x2 can be joined by a unit circular arc in S. The length of this circular arc is
clearly smaller then ∆s, on the other hand it is larger than ϕ, and thus ∆s > ϕ. Using
the assumption that the curvature of ∂S is strictly larger than 1, we obtain that

ϕ =

∫
I
κ(s)ds >

∫
I

ds = ∆s > ϕ,

a contradiction.

Let D(u, t) denote the disc-cap with vertex xu ∈ ∂S and height t. Note that for each
u ∈ S1, there exists a maximal positive constant t∗(u) such that (B+xu−(1+t)u)∩S 6= ∅
for all t ∈ [0, t∗(u)]. Let V (u, t) = A(D(u, t)) and let `(u, t) denote the arc-length of
∂D(u, t) ∩ (∂B + xu − (1 + t)u).

Lemma 7.1.5. Let S be a spindle convex disc with C2 boundary such that κ(x) > 1 for
all x ∈ ∂S. Then for a fixed x ∈ ∂S, the following hold

lim
t→0+

`(ux, t) · t−1/2 = 2

√
2

κ(x)− 1
, (7.1.14)

and

lim
t→0+

V (ux, t) · t−3/2 =
4

3

√
2

κ(x)− 1
. (7.1.15)

Proof. Assume that x = (0, 0) and ux = (0,−1). Then, in a sufficiently small open
neighbourhood of the origin, ∂S is the graph of a C2 smooth function f(σ). Taylor’s
theorem yields that

f(σ) =
κ(x)

2
σ2 + o(σ2), as σ → 0. (7.1.16)

In the same open neighbourhood of the origin, the boundary of B + x − (1 + t)ux is the
graph of the function gt(σ) = t+ 1−

√
1− σ2. Simple calculation yields that the positive

solution of the equation gt(σ) = f(σ) is

σ+ =

√
2

κ(x)− 1
· t1/2 + o(t1/2), as t→ 0+.

Clearly, `(ux, t) ∼ 2σ+ as t → 0+ by the fact that the ratio of the lengths of an arc and
the corresponding chord tends to 1 as the length of the arc tends to 0.

Let σ− denote the negative solution of the equation gt(σ) = f(σ). Then

V (ux, t) =

∫ σ+

σ−

(gt(σ)− f(σ))dσ

= 2

∫ σ+

0

[
t+

σ2

2
− κ(ux)

2
σ2 + o(σ2)

]
dσ
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=
4

3

√
2

κ(x)− 1
· t3/2 + o(t3/2), as t→ 0+.

This finishes the proof of Lemma 7.1.5.

Let x1, x2 ∈ S be two distinct points. Then there are exactly two disc-caps of S, say
D−(x1, x2) = cl (S ∩ (B + p−)C) and D+(x1, x2) = cl (S ∩ (B + p+)C) with the property
that x1, x2 ∈ ∂B + p− and x1, x2 ∈ ∂B + p+. Let V−(x1, x2) = A(D−(x1, x2)) and
V+(x1, x2) = A(D+(x1, x2)), respectively, and assume that V−(x1, x2) ≤ V+(x1, x2).

Lemma 7.1.6. Let S be a spindle convex disc with C2 boundary and κ(x) > 1 for all
x ∈ ∂S. Then there exists a constant δ > 0, depending only on S, such that V+(x1, x2) > δ
for any two distinct points x1, x2 ∈ S.

Proof. We note that [x1, x2]s cannot cover S because of the C2 smoothness of ∂S and
the assumption that κ(x) > 1 for all x ∈ ∂S. Thus, by compactness, there exists a
constant δ > 0, depending only on S, such that A(S \ [x1, x2]s) > 2δ for any two distinct
points x1, x2 ∈ S. Now, the statement of the lemma readily follows from the fact that
S = D−(x1, x2) ∪D+(x1, x2) ∪ [x1, x2]s.

Let K be a convex disc with C2 boundary and with the property that κ(x) > 0 for all
x ∈ ∂K. Let κ0 > 0 denote the minimum of the curvature of ∂K. Then there exists an
ε0 > 0, depending only on K, with the property that for any x ∈ ∂K the (unique) circle
of radius 1/κ0 that is tangent to ∂K at x supports K in a neighbourhood of radius ε0 of
x. Moreover, Mayer proved (see statement (Ü5) on page 521 in [May35], or for a more
recent and more general reference see also Theorem 2.5.4. in [Sch14]) that in this case the
tangent circles of radius 1/κ0 of ∂K not only locally support K but also contain K and
thus they globally support K.

Let S be a spindle convex disc with C2 smooth boundary and with the property that
κ(x) > 1 for all x ∈ ∂K. Then, by the above, there exists 0 < %̂ < 1, depending only on S,
such that S has a supporting circular disc of radius %̂ at each x ∈ ∂S. Thus, Lemma 7.1.5
yields that there exists a 0 < t0 ≤ %̂ with the property that for any u ∈ S1

`(u, t) ≤ 4

√
2%̂

1− %̂
t

1
2 for t ∈ [0, t0]. (7.1.17)

A convex disc K has a rolling ball if there exists a real number % > 0 with the property
that any x ∈ ∂K lies in some closed circular disc of radius % contained in K. Hug proved
in [Hug00] that the existence of a rolling ball is equivalent to the exterior unit normal
being a Lipschitz function on ∂K. This implies that if the boundary of K is C2 smooth,
then K has a rolling ball. We remark that this last fact was already observed by Blaschke
[Bla56].

It follows from the assumption that the boundary of S is C2 smooth that there exists
a rolling ball for S with radius 0 < % < 1. The existence of the rolling ball and (7.1.15)
yield that there exists 0 < t̂ < % such that for any u ∈ S1

V (u, t) ≥ 1

2

(
4

3

√
2%

1− %

)
t

3
2 for t ∈ [0, t̂]. (7.1.18)
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Note that although the statements in Lemma 7.1.5 are not uniform in u, both (7.1.17)
and (7.1.18) are uniform in u.

7.1.4 Proofs of Theorem 7.1.1 and Theorem 7.1.2

Proof of Theorem 7.1.1. We essentially use the method invented by Rényi and Sulanke
[RS63]. Note that it is enough to prove the theorem for R = 1, from that the statement
follows by a scaling argument. Thus, from now on we assume that R = 1, and omit R
from the notation.

Let A = A(S). First, observe that the pair of random points x1, x2 determine an
edge of Sn if and only if at least one of the disc-caps D−(x1, x2) and D+(x1, x2) does not
contain any other points from Xn. Thus

E(f0(Sn)) =

(
n

2

)
Wn,

where

Wn =
1

A2

∫
S

∫
S

[(
1− V−(x1, x2)

A

)n−2

+

(
1− V+(x1, x2)

A

)n−2
]

dx1dx2. (7.1.19)

Note that if all points of Xn fall into the closed spindle spanned by x1 and x2, then x1 and
x2 contribute two edges to Sn (since in this case convSXn = [x1, x2]S), and accordingly
this event is counted in both terms in the integrand of (7.1.19).

Lemma 7.1.6 yields that

lim
n→∞

n−
1
3

(
n

2

)
1

A2

∫
S

∫
S

(
1− V+(x1, x2)

A

)n−2

dx1dx2

≤ lim
n→∞

n−
1
3

(
n

2

)
1

A2

∫
S

∫
S
e−

δ
A

(n−2)dx1dx2

= lim
n→∞

n−
1
3

(
n

2

)
e−

δ
A

(n−2) = 0.

Thus, the contribution of the second term of (7.1.19) is negligible, hence, in what
follows, we will consider only the first term. Note that a similar argument yields that in
the first term of (7.1.19) it is enough to integrate over pairs of random points x1, x2 such
that V−(x1, x2) < δ. Let 1(·) denote the indicator function of an event. Then

lim
n→∞

E(f0(Sn))n−
1
3

= lim
n→∞

n−
1
3

(
n

2

)
1

A2

∫
S

∫
S

(
1− V−(x1, x2)

A

)n−2

1(V−(x1, x2) < δ)dx1dx2. (7.1.20)

Now, we re-parametrize the pair (x1, x2) as follows. Let

(x1, x2) = Φ(u, t, u1, u2), (7.1.21)
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where u, u1, u2 ∈ S1 and 0 ≤ t ≤ t0(u) are chosen such that

D(u, t) = D−(x1, x2),

and

(x1, x2) = (xu − (1 + t)u+ u1, xu − (1 + t)u+ u2).

Note that u1 and u2 are the unique outer unit normal vectors of ∂B + xu − (1 + t)u
at x1 and x2, respectively. This yields that, for fixed u and t, both u1 and u2 are in the
same arc of length `(u, t) in S1. We denote this unit circular arc by L(u, t).

Note that since V−(x1, x2) < δ, D−(x1, x2) is uniquely determined by Lemma 7.1.6.
Now, the uniqueness of the vertex and height of a disc-cap guarantees that Φ is well-
defined, bijective, and differentiable (see Section 7.1.6) on a suitable domain of (u, t, u1, u2).
To continue the estimate of Wn we need the Jacobian of the transformation Φ. This
calculation can be found in Santaló’s paper [San46], but for the sake of completeness, we
give a sketch in Section 7.1.6.

We obtain that the Jacobian of Φ satisfies

|JΦ| =
(

1 + t− 1

κ(xu)

)
|u1 × u2|. (7.1.22)

We note that |u1×u2| equals the sine of the length of the unit circular arc between x1

and x2 on the boundary of D(u, t). Also note that there exists t1 > 0 with the property
that V (u, t) < δ for all 0 ≤ t ≤ t1 and for all u ∈ S1.

Now, (7.1.20) and (7.1.22) yield that

lim
n→∞

E(f0(Sn))n−
1
3

= lim
n→∞

n−
1
3

(
n

2

)
1

A2

∫
S1

∫ t1

0

∫
L(u,t)

∫
L(u,t)

(
1− V (u, t)

A

)n−2

×
(

1 + t− 1

κ(xu)

)
|u1 × u2|du1du2dtdu. (7.1.23)

Integration by u1 and u2 yields

(7.1.23) = lim
n→∞

n−
1
3

(
n

2

)
2

A2

∫
S1

∫ t1

0

(
1− V (u, t)

A

)n−2

×
(

1 + t− 1

κ(xu)

)
(`(u, t)− sin `(u, t))dtdu.

Now, we will split the domain of integration with respect to t into two parts. Let
h(n) = (c lnn/n)2/3, where c is a positive (absolute) constant to be specified later. From
(7.1.18) it follows that there exists n0 ∈ N and γ1 > 0, depending only on S, such that if
n > n0, then h(n) < t1, and V (u, t) > γ1 · h(n)3/2 for all h(n) ≤ t ≤ t1 and for all u ∈ S1.

Lemma 7.1.7. Let h(n) be defined as above. Then
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lim
n→∞

n−
1
3

(
n

2

)
2

A2

∫
S1

∫ t1

h(n)

(
1− V (u, t)

A

)n−2

×
(

1 + t− 1

κ(xu)

)
(`(u, t)− sin `(u, t))dtdu = 0.

Proof. Note that t1 ≤ 2π, and there exists a universal constant γ2 > 0 such that `(u, t)−
sin `(u, t) ≤ γ2 for all 0 ≤ t ≤ t1 and u ∈ S1. Hence, for any fixed u ∈ S1 and any n > n0,
it holds that ∫ t1

h(n)

(
1− V (u, t)

A

)n−2(
1 + t− 1

κ(xu)

)
(`(u, t)− sin `(u, t))dt

≤ 3γ2

∫ t1

h(n)

(
1− γ1h(n)3/2

A

)n−2

dt

≤ 3γ2

∫ t1

0

(
1− γ1c(lnn/n)

A

)n−2

dt

≤ 6γ2n
− cγ1

A .

Now, let c > 5A/(3γ1). Then

lim
n→∞

n−
1
3

(
n

2

)
2

A2

∫
S1

∫ t1

h(n)

(
1− V (u, t)

A

)n−2(
1 + t− 1

κ(xu)

)
×

× (`(u, t)− sin `(u, t))dtdu

≤ γ2
24π

A2
lim
n→∞

n−
1
3

(
n

2

)
n−

cγ1
A = 0.

Now, for n > n0 we define

θn(u) = n−
1
3

(
n

2

)∫ h(n)

0

(
1− V (u, t)

A

)n−2(
1 + t− 1

κ(xu)

)
×

× (`(u, t)− sin `(u, t))dt (7.1.24)

and so

lim
n→∞

E(f0(Sn)) · n−
1
3 = lim

n→∞

2

A2

∫
S1

θn(u) du. (7.1.25)

We recall formula (11) from [BFRV09] that states the following. For any β ≥ 0, ω > 0
and α > 0 we have that∫ g(n)

0
tβ (1− ωtα)n dt ∼ 1

αω
β+1
α

· Γ
(
β + 1

α

)
· n−

β+1
α , (7.1.26)

as n→∞, assuming (
(β + α+ 1) lnn

αωn

) 1
α

< g(n) < ω−
1
α ,
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for sufficiently large n.

Formula (7.1.17) implies that there exists γ3 > 0 such that `(u, t)− sin `(u, t) < γ3t
3/2

for all 0 < t < t0 and u ∈ S1. We recall that 1 + t − 1/κ(xu) < 3 for all u ∈ S1 and
0 ≤ t ≤ t1. Now (7.1.18) and (7.1.26) with α = β = 3/2 and ω = (2/(3A))

√
2ρ/(1− ρ)

yield that there exists γ4 > 0, depending only on S, such that θn(u) < γ4 for all u ∈ S1

and sufficiently large n. Thus, Lebesgue’s dominated convergence theorem implies that

lim
n→∞

E(f0(Sn)) · n−
1
3 =

2

A2

∫
S1

lim
n→∞

θn(u) du. (7.1.27)

Let u ∈ S1 and ε ∈ (0, 1). It follows from Lemma 7.1.5 that there exists 0 < tε < t1
such that

(1− ε)4

3

(
2

κ(xu)− 1

) 3
2

t
3
2 ≤ `(u, t)− sin `(u, t) ≤ (1 + ε)

4

3

(
2

κ(xu)− 1

) 3
2

t
3
2 (7.1.28)

and

(1− ε)4

3

√
2

κ(xu)− 1
t

3
2 ≤ V (u, t) ≤ (1 + ε)

4

3

√
2

κ(xu)− 1
t

3
2 , (7.1.29)

for any t ∈ (0, tε).

Now (7.1.28) and (7.1.29) yield that

lim
n→∞

θn(u) =
4
√

2

3

(
1

κ(xu)− 1

) 3
2

×

κ(xu)− 1

κ(xu)
lim
n→∞

n
5
3

∫ h(n)

0

(
1− 4

3A

√
2

κ(xu)− 1
t

3
2

)n−2

t
3
2 dt

+ lim
n→∞

n
5
3

∫ h(n)

0

(
1− 4

3A

√
2

κ(xu)− 1
t

3
2

)n−2

t
5
2 dt

 . (7.1.30)

Note that (7.1.26) with α = 3/2, β = 5/2 implies that the second term of (7.1.30) is
0. Now, (7.1.26) yields that

lim
n→∞

n
5
3

∫ h(n)

0

(
1− 4

3A

√
2

κ(xu)− 1
t

3
2

)n−2

t
3
2 dt

=
2

3

(
4

3A

√
2

κ(xu)− 1

)− 5
3

Γ

(
5

3

)
.

Thus,

lim
n→∞

θn(u) =
8
√

2

9

(
1

κ(xu)− 1

) 3
2 κ(xu)− 1

κ(xu)

(
4

3A

√
2

κ(xu)− 1

)− 5
3

Γ

(
5

3

)
.
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Therefore,

lim
n→∞

Ef0(Sn) · n−
1
3 =

2

A2

∫
S1

lim
n→∞

θn(u)du

=
3

√
2

3A
Γ

(
5

3

)∫
S1

1

κ(xu)
(κ(xu)− 1)

1
3 du

=
3

√
2

3A
Γ

(
5

3

)∫
∂S

(κ(x)− 1)
1
3 dx.

To compute the expectation of the missed area by Sn, we use the following identity

E(f0(Sn)) =
nE(A(S \ Sn−1))

A
. (7.1.31)

(7.1.31) is the spindle convex analogue of Efron’s identity [Efr65]. The proof of (7.1.31) is
as follows.

E(f0(Sn)) =
n∑
1

P(xi is a vertex of Sn) = nP(x1 is a vertex of Sn)

= nP(x1 /∈ convS (x2, . . . , xn)) =
nE(A(S \ Sn−1))

A

Now, combining (7.1.4) and (7.1.31) yields (7.1.5), thus completing the proof of Theo-
rem 7.1.1.

Now we turn to the proof of Theorem 7.1.2. The argument is based on ideas devel-
oped by Rényi and Sulanke in [RS64], and it is similar to the argument of the proof of
Theorem 7.1.1.

We start with a refinement of Lemma 7.1.5 under the hypothesis that the boundary
of S is C5 smooth and that κ(x) > 1 for all x ∈ ∂S.

Lemma 7.1.8. Let S be a spindle convex disc with C5 smooth boundary and with the
property that κ(x) > 1 for all x ∈ ∂S. Then uniformly in u ∈ S1

`(u, t) = l1t
1/2 + l2t

3/2 +O(t5/2) as t→ 0+, and (7.1.32)

V (u, t) = v1t
3/2 + v2t

5/2 +O(t7/2) as t→ 0+, (7.1.33)

with

l1 = l1(u) = 2

√
2

κ(xu)− 1

l2 = l2(u) =
23/2

(
15b(xu)2 − (κ(xu)− 1)(1 + 6(c(xu)− 1/8)− κ(xu))

)
3(κ(xu)− 1)7/2

v1 = v1(u) =
4

3

√
2

κ(xu)− 1

v2 = v2(u) =
25/2

(
5b(xu)2 − 2(c(xu)− 1/8)(κ(xu)− 1)

)
5(κ(xu)− 1)7/2

,

where b(x) and c(x) are functions depending only on S and x.
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Proof. With the same notation and choice of coordinate system as in the proof of Lemma
7.1.5, Taylor’s theorem and the C5 smoothness of the boundary yield that in a sufficiently
small neighbourhood of the origin

f(σ) =
κ

2
σ2 + bσ3 + cσ4 +O(σ5) as σ → 0,

uniformly in u ∈ S1. We suppress the notation of dependence of the coefficients on u for
brevity. Let gt(σ) = t+ 1−

√
1− σ2. From the equation f(σ) = gt(σ) we obtain

t =
κ− 1

2
σ2 + bσ3 +

(
c− 1

8

)
σ4 +O(σ5) as σ → 0,

and routine calculations yield that the positive and negative solutions of the equation
f(σ) = gt(σ) are

σ+ = σ+(t) = d1t
1/2 + d2t+ d3t

3/2 +O(t2) as t→ 0+,

σ− = σ−(t) = −(d1t
1/2 − d2t+ d3t

3/2) +O(t2) as t→ 0+,
(7.1.34)

where

d1 =

√
2

κ− 1
,

d2 = − 2b

(κ− 1)2
,

d3 =

√
2
(
5b2 − 2(c− 1/8)(κ− 1)

)
(κ− 1)7/2

.

Now, using that `(u, t) = arcsinσ+ + arcsin |σ−| and that V (u, t) =
∫ σ+

σ−
[gt(σ)− f(σ)]dσ,

a short calculation finishes the proof.

Proof of Theorem 7.1.2. Let L = Per(S) for brevity. Let x1, x2 ∈ S, and let i(x1, x2)
denote the length of the shorter unit circular arc joining x1 and x2. We define Un with

E(Per(S)− Per(Sn))

= L−
(
n

2

)
E [1(x1, x2 is an edge of Sn) · i(x1, x2)] =: L−

(
n

2

)
Un.

Using the same notation as in the proof of Theorem 7.1.1, similar arguments show that

Un =
1

A2

∫
S

∫
S

[(
1− V−(x1, x2)

A

)n−2

+

(
1− V+(x1, x2)

A

)n−2
]
i(x1, x2) dx1dx2,

and

lim
n→∞

n2/3

(
n

2

)
1

A2

∫
S

∫
S

(
1− V+(x1, x2)

A

)n−2

i(x1, x2)dx1dx2 = 0,

and also that
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lim
n→∞

n2/3

(
n

2

)
1

A2

∫
S

∫
S

(
1− V−(x1, x2)

A

)n−2

1(V−(x1, x2) > δ)×

× i(x1, x2)dx1dx2 = 0.

Now, the integral transformation Φ in (7.1.21) yields that

1

A2

∫
S

∫
S

(
1− V−(x1, x2)

A

)n−2

1(V−(x1, x2) ≤ δ)i(x1, x2)dx1dx2

=
1

A2

∫
S1

∫ t1

0

∫
L(u,t)

∫
L(u,t)

(
1− V (u, t)

A

)n−2

×
(

1 + t− 1

κ(xu)

)
· |u1 × u2| arccos〈u1, u2〉du1du2 dtdu,

where arccos〈u1, u2〉 is the length of the arc of S1 spanned by u1 and u2. Routine calcu-
lations show that∫

L(u,t)

∫
L(u,t)

|u1 × u2| arccos〈u1, u2〉du1du2 = 2 (2− 2 cos `(u, t)− `(u, t) sin `(u, t)) .

Let ε > 0 be arbitrary. According to Lemma 7.1.8 we may choose t2 > 0 such that for
all t ∈ (0, t2) and for all u ∈ S1∣∣∣`(u, t)− (l1t

1/2 + l2t
3/2)

∣∣∣ ≤ ε

2
t3/2,∣∣∣V (u, t)− (v1t

3/2 + v2t
5/2)

∣∣∣ ≤ εt5/2. (7.1.35)

For any ε′ > 0 for sufficiently small x it holds that∣∣∣∣2 (2− 2 cosx− x sinx)−
(
x4

6
− x6

90

)∣∣∣∣ ≤ ε′x6,

which, together with (7.1.35), implies that there exists t3 > 0 with the property that for
any t ∈ (0, t3) and for all u ∈ S1∣∣∣∣2 (2− 2 cos `(u, t)− `(u, t) sin `(u, t))− 1

6

[
l41t

2 +

(
4l31l2 −

l61
15

)
t3
]∣∣∣∣ ≤ ε

6
t3. (7.1.36)

The second order Taylor expansion of the function log(1−y) at y = 0 yields that there

exists t4 > 0 such that for 0 < y ≤ nminu∈S1 v1(u)t
2/3
4 /A and for any c ∈ [−a1, a1], with

a1 = A2/3 maxu∈S1

∣∣∣v2(u)/v
5/3
1 (u)

∣∣∣, and for all u ∈ S1

e−ye−(c+ε)y5/3n−2/3 ≤
[
1− y

n
− c

(y
n

)5/3
]n
≤ e−ye−cy5/3n−2/3

(7.1.37)

and

e−(1+ε)y ≤
[
1− y

n
− c

(y
n

)5/3
]n
≤ e−(1−ε)y. (7.1.38)
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Let δ = δ(ε) be small enough such that for all |y| ≤ δ

e−y ≤ 1− (1− ε)y, (7.1.39)

and let n0 be large enough such that

max
u∈S1

|v2(u)|A2/3

v
5/3
1 (u)

≤ n1/3
0 δ. (7.1.40)

Finally, let t′ := min{t2, t3, t4}. A similar argument as in the proof of Lemma 7.1.7 yields
that

lim
n→∞

n2/3

(
n

2

)
1

A2

∫
S1

∫ t1

t′

(
1− V (u, t)

A

)n−2

× 2 [2− 2 cos `(u, t)− `(u, t) sin `(u, t)]

(
t+ 1− 1

κ(xu)

)
dt du = 0.

Thus we need to determine the limit

lim
n→∞

n2/3

[
L−

(
n

2

)
1

A2

∫
S1

∫ t′

0

(
1− V (u, t)

A

)n
× 2 [2− 2 cos `(u, t)− `(u, t) sin `(u, t)]

(
t+ 1− 1

κ(xu)

)
dtdu

]
.

By Lemma 7.1.8, for sufficiently small t it holds uniformly in u ∈ S1 that

1 ≤
(

1− V (u, t)

A

)−2

≤ 1 +
3 maxu∈S1 v1(u)

A
t3/2.

Therefore changing the exponent from n − 2 to n in the inner integral above does not
affect either the main or the first order term.

By (7.1.35) and (7.1.36), we have that

θ̂n(u) :=
1

A2

∫ t′

0

(
1− V (u, t)

A

)n
×

× 2 [2− 2 cos `(u, t)− `(u, t) sin `(u, t)]

(
t+ 1− 1

κ

)
dt

≤ 1

6A2

∫ t′

0

(
1− v1

A
t3/2 − v2 − ε

A
t5/2
)n

×
[
l41

(
1− 1

κ

)
t2 +

(
l41 +

(
1− 1

κ

)(
4l31l2 −

l61
15

)
+ ε

)
t3
]

dt.

To shorten the notation, let

D1 = l41
(
1− κ−1

)
, D1D

ε
2 = l41 +

(
1− κ−1

) (
4l31l2 − l61/15

)
+ ε, and D2 = D0

2. (7.1.41)
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Letting t′′ = (t′)3/2v1/A, the substitution t3/2v1/A = y/n yields

θ̂n(u) ≤ D1

6A2

∫ nt′′

0

[
1− y

n
− v2 − ε

A

(
Ay

nv1

)5/3
]n(

Ay

nv1

)4/3

×

[
1 +Dε

2

(
Ay

nv1

)2/3
]

2

3
y−1/3

(
A

nv1

)2/3

dy

=
D1

9n2v2
1

∫ nt′′

0

[
1− y

n
− (v2 − ε)A2/3

v
5/3
1

(y
n

)5/3
]n [

1 +Dε
2

(
Ay

nv1

)2/3
]
ydy

=: In + Jn,

where In stands for the integral over the interval [0, n1/5], and Jn stands for the integral
over the interval [n1/5, t′′n]. Using (7.1.38), for Jn we obtain that

Jn ≤
D1

9n2v2
1

∫ nt′′

n1/5

e−(1−ε)y 2nt′′dy ≤ D1

9v2
1

e−(1−ε)n1/5
,

which tends to 0 faster than any polynomial of n. For In, using (7.1.37), (7.1.39) and
(7.1.40) for n ≥ n0 we have that

In ≤
D1

9n2v2
1

∫ n1/5

0
e−y exp

{
−(v2 − ε)A2/3

v
5/3
1

y5/3

n2/3

}[
1 +Dε

2

(
Ay

nv1

)2/3
]
ydy

≤ D1

9n2v2
1

∫ n1/5

0
e−y

(
1− (1− ε)(v2 − ε)A2/3

v
5/3
1

y5/3

n2/3

)[
1 +Dε

2

(
Ay

nv1

)2/3
]
ydy

≤ D1

9n2v2
1

∫ n1/5

0
e−y

[
1 + n−2/3A2/3

(
Dε

2

v
2/3
1

y2/3 − (1− ε)v2 − ε
v

5/3
1

y5/3 + ε

)]
ydy

≤ D1

9n2v2
1

[
1 + n−2/3A2/3

(
Dε

2

v
2/3
1

Γ(8/3)− (1− ε)v2 − ε
v

5/3
1

Γ(11/3) + 2ε

)]
,

where in the last inequality we extended the domain of the integration, and used the
definition of the Γ( · ) function.

We may obtain a lower estimate for θ̂n(u) in a similar way, and as ε > 0 was arbitrary,
we have that θ̂n(u) asymptotically equals to the last upper bound with ε = 0. Since
D1/(18v2

1) = κ−1 and
∫
S1 κ

−1(xu)du = L, we have that

lim
n→∞

E(L− Per(Sn)) · n2/3 = lim
n→∞

n2/3

(
L−

(
n

2

)∫
S1

θ̂n(u)du

)
=

∫
S1

D1A
2/3

18v2
1

(
D2

v
2/3
1

Γ(8/3)− v2

v
5/3
1

Γ(11/3)

)
du.

Substituting to the formula above the values of D1, D2 from (7.1.41) and l1, l2, v1, v2 from
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Lemma 7.1.8 we obtain that

D1A
2/3

18v2
1

(
D2

v
2/3
1

Γ(8/3)− v2

v
5/3
1

Γ(11/3)

)

=
A2/3Γ(8/3)

κ

(3/2)2/3
[
60b2 + (κ− 1)

(
5(κ− 1)2 + 9(κ− 1) + 3− 24c

)]
10(κ− 1)8/3

,

and thus

lim
n→∞

E(L− Per(Sn)) · n2/3

=
(12A)2/3Γ(2/3)

36

∫
∂S

(κ− 1)
(
24c− 5(κ− 1)2 − 9(κ− 1)− 3

)
− 60b2

(κ− 1)8/3
dx. (7.1.42)

To finish the proof of Theorem 7.1.2, we must show that the constant in (7.1.42) is the
same as in (7.1.6). Let r(s) be the arc-length parametrization of ∂S. It is not difficult to
verify that

b(r(s)) =
1

6

〈
r′′′(s),

r′′(s)

κ(r(s))

〉
,

c(r(s)) =
1

24

(〈
r(4)(s),

r′′(s)

κ(r(s))

〉
− 4κ(r(s))〈r′′′(s), r′(s)〉

)
.

After substituting these formulae into (7.1.42), some tedious but straightforward calcula-
tions yield (7.1.6).

7.1.5 The case of the unit circular disc

In this section we discuss the case, when S = BR. Note that in the hypotheses of Theo-
rems 7.1.1 and 7.1.2 it is assumed that κ(x) > 1/R for all x ∈ ∂S. This assumption no
longer holds in the case that S = BR, and therefore we may not use Lemma 7.1.6. How-
ever, the arguments of the proofs of Theorems 7.1.1 and 7.1.2 can be modified slightly to
yield a proof of Theorem 7.1.3. Below we provide the outline of the proof of Theorem 7.1.3
and leave the technical details to the interested reader.

Proof of Theorem 7.1.3. As in the previous section, we may and do assume that R = 1.
First note that by Efron’s identity (7.1.31), it is enough to prove (7.1.7) and (7.1.9).

Also note that for any u ∈ S1 and 0 ≤ t ≤ 2 simple calculations yield

`(u, t) = `(t) = 2 arcsin

√
1− t2

4
, (7.1.43)

and

V (u, t) = V (t) = t

√
1− t2

4
+ 2 arcsin

t

2
. (7.1.44)

Let Wn and Un be defined as in the proofs of Theorems 7.1.1 and 7.1.2, respectively, and
let Φ and L(t) = L(u, t) be defined as in the proof of Theorem 7.1.1. Then

Wn =
1

π2

∫
S1

∫ 2

0

∫
L(t)

∫
L(t)

(
1− V (t)

π

)n−2

t|u1 × u2|du1du2dtdu,
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Un =
1

π2

∫
S1

∫ 2

0

∫
L(t)

∫
L(t)

(
1− V (t)

π

)n−2

t arccos〈u1, u2〉|u1 × u2|du1du2dtdu.

Integration by u1, u2 and u yields

Wn =
4

π

∫ 2

0

(
1− V (t)

π

)n−2

t(`(t)− sin `(t))dt,

Un =
4

π

∫ 2

0

(
1− V (t)

π

)n−2

t(2− 2 cos `(t)− `(t) sin `(t))dt.

Formulas (7.1.43), (7.1.44) and the substitution t = 2 sin(σ/2) yield

Wn =
4

π

∫ π

0
sinσ (π − σ − sinσ)

(
1− sinσ + σ

π

)n−2

dσ ,

Un =
4

π

∫ π

0
sinσ (2 + 2 cosσ − sinσ(π − σ))

(
1− sinσ + σ

π

)n−2

dσ.

(7.1.45)

Now, by similar arguments as in the proofs of Theorems 7.1.1 and 7.1.2, we obtain that

Wn ∼
π2

n2
,

Un ∼
4π

(n− 2)2

[
1− 1

n− 2

(
π2

4
+ 3

)]
+O(n−3),

which yield the statements of Theorem 7.1.3.

7.1.6 The Jacobian of Φ

In this section we sketch the calculation of the Jacobian of the transformation Φ defined
in (7.1.21). We remark that JΦ was calculated by Santaló in [San46].

Let r : [0, 2π) → ∂S be a parametrization of ∂S such that the outer normal ur(α) =
(cosα, sinα). We introduce α, φ1 and φ2 such that u = (cosα, sinα), u1 = (cosφ1, sinφ1)
and u2 = (cosφ2, sinφ2). Clearly, dudu1du2 = dαdφ1dφ2.

To make the calculation more apparent, we add an extra step: let (v, w) be the centre
of the unit circle that defines D−(x1, x2) (here v, w ∈ R). Then x1 = (v+cosφ1, w+sinφ1)
and x2 = (v + cosφ2, w + sinφ2), and by differentiation we obtain that

dx1dx2 = |(sinφ1 cosφ2 − sinφ2 cosφ1)|dφ1dφ2dvdw.

Next, observe that (v, w) = (r1(α)− (1 + t) cosα, r2(α)− (1 + t) sinα), thus

dvdw = |(−r′1(α) sinα+ r′2(α) cosα− (1 + t))|dαdt,

and hence

dx1dx2 = |(−r′1(α) sinα+ r′2(α) cosα− (1 + t)) sin(φ1 − φ2)|dφ1dφ2dαdt.
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Using the special choice of r(α) one can see that −r′1(α) sinα + r′2(α) cosα = 1/κ(r(α)),
and by assumption κ > 1, thus

|(−r′1(α) sinα+ r′2(α) cosα− (1 + t)) sin(φ1 − φ2)| = (1 + t− 1/κ(r(α))) sin(|φ1 − φ2|).

We note that |u1 × u2| equals the sine of the length of the unit circular arc between
x1 and x2 on the boundary of D(u, t), that is, sin(|φ1 − φ2|) = |u1 × u2|, which proves
(7.1.22).

7.2 Variances

This section of the dissertation is based on the paper [FV18]. We continue to use most
of the notations of the previous section, however, it is more convenient to use different
symbols at certain place which we indicate...

Let K be a convex disc (compact convex set with non-empty interior) in the Euclidean
plane R2 with C2

+ smooth boundary. Let κm (κM ) be the minimum (maximum) of the
curvature over ∂K. It is known, see [Sch14, Section 3.2], that in this case a closed circular
disc of radius rm = 1/κM rolls freely in K, that is, for each x ∈ ∂K, there exists a p ∈ R2

with x ∈ rmB
2 + p ⊂ K. Moreover, K slides freely in a circle of radius rM = 1/κm,

which means that for each x ∈ ∂K there is a vector p ∈ R2 such that x ∈ rM∂B2 + p and
K ⊂ rMB2 + p. The latter yields that for any two points x, y ∈ K, the intersection of all
closed circular discs of radius r ≥ rM containing x and y, denoted by [x, y]r and called the
r-spindle of x and y, is also contained in K. Furthermore, for any X ⊂ K, the intersection
of all radius r ≥ rM circles containing X, called the closed r-hyperconvex hull (or r-hull
for short) and denoted by conv r(X), is contained in K.

Here we examine the following random model. Let r ≥ rM , and let Kr
n = conv r(Xn)

be the r-hull of Xn, which is a (uniform) random disc-polygon in K. Let f0(Kr
n) denote

the number of vertices (and also the number of edges) of Kr
n, and let A(Kr

n) denote the
area of Kr

n.
Obtaining information on the second order properties of random variables associated

with random polytopes is much harder than on first order properties. It is only recently
that variance estimates, laws of large numbers, and central limit theorems have been
proved in various models, see, for example, Bárány, Fodor, Vı́gh [BFV10], Bárány, Reitzner
[BR10a], Bárány, Vu [BV07], Fodor, Hug, Ziebarth [FHZ16], Böröczky, Fodor, Reitzner,
Vı́gh [BFRV09], Reitzner [Rei03, Rei05], Schreiber, Yukich [SY08], Vu [Vu05, Vu06], and
the very recent papers by Thäle, Turchi, Wespi [TTW18], Turchi, Wespi [TW18]. For an
overview, we refer to Bárány [Bár08] and Schneider [Sch18].

In this section, we prove the following asymptotic estimates for the variance of f0(Kr
n)

and A(Kr
n) in the spirit of Reitzner [Rei03].

Theorem 7.2.1 (Fodor, Vı́gh [FV18], Theorem 3 on page 1145). Let K be a convex disc
whose boundary is of class C2

+. For any r > rM it holds that

Var(f0(Kr
n))� n

1
3 , (7.2.1)

and
Var(A(Kr

n))� n−
5
3 , (7.2.2)
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where the implied constants depend only on K and r.

In the special case when K is the closed circular disc of radius r, we prove the following.

Theorem 7.2.2 (Fodor, Vı́gh [FV18], Theorem 4 on page 1145). It holds that

Var(f0(Kr
n)) ≈ const., (7.2.3)

and
Var(A(Kr

n)))� n−2, (7.2.4)

where the implied constants depend only on r.

From Theorem 7.2.1 we can conclude the following strong laws of large numbers. Since
the proof follows a standard argument based on Chebysev’s inequality and the Borel-
Cantelli lemma, see, for example, Böröczky, Fodor, Reitzner, Vı́gh [BFRV09, p. 2294] or
Reitzner [Rei03, Section 5], and [BS13, p. 174], we omit the details.

Theorem 7.2.3 (Fodor, Vı́gh [FV18], Theorem 5 on page 1145). Let K be a convex disc
whose boundary is of class C2

+. For any r > rM it holds with probability 1 that

lim
n→∞

f0(Kr
n) · n−1/3 = 3

√
2

3A(K)
Γ

(
5

3

)∫
∂K

(
κ(x)− 1

r

)1/3

dx,

and

lim
n→∞

A(K \Kr
n) · n2/3 =

3

√
2A(K)2

3
Γ

(
5

3

)∫
∂K

(
κ(x)− 1

r

)1/3

dx.

In the theory of random polytopes there is more information on models in which the
polytopes are generated as the convex hull of random points from a convex body K than
on polyhedral sets produced by random closed half-spaces containing K. For some recent
results and references in this direction see, for example, Böröczky, Fodor, Hug [BFH10],
Böröczky, Schneider [BS10], Fodor, Hug, Ziebarth [FHZ16] and the survey by Schneider
[Sch18].

Finally, in Section 7.2.4, we consider a model of circumscribed random disc-polygons
that contain a given convex disc with C2

+ boundary. In this circumscribed probability
model, we give asymptotic formulas for the expectation of the number of vertices of the
random disc-polygon, the area difference and the perimeter difference of the random disc-
polygon and K, see Theorem 7.2.6. Furthermore, Theorem 7.2.7 provides an asymptotic
upper bound on the variance of the number of vertices of the random disc-polygons.

7.2.1 Preparations

We note that it is enough to prove Theorem 7.2.1 for the case when rM < 1 and r = 1,
and Theorem 7.2.2 for r = 1. The general statements then follow by a simple scaling
argument. Therefore, from now on we assume that r = 1 and to simplify notation we
write Kn for K1

n.

Let B
2

denote the open unit ball of radius 1 centred at the origin o. Let D(u, t)
denote the disc-cap with vertex xu ∈ ∂K and height t. Note that for each u ∈ S1, there
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exists a maximal positive constant t∗(u) such that (B + xu − (1 + t)u) ∩ K 6= ∅ for all
t ∈ [0, t∗(u)]. For simplicity we let A(u, t) = A(D(u, t)) and let `(u, t) denote the arc-length
of ∂D(u, t) ∩ (∂B + xu − (1 + t)u), similarly as before.

It is clear that Lemma 7.1.5 implies that A(u, t) and `(u, t) satisfy the following rela-
tions uniformly in u:

`(ux, t) ≈ t1/2, A(ux, t) ≈ t3/2, (7.2.5)

where the implied constants depend only on K.

Let D be a disc-cap of K with vertex x. For a line e ⊂ R2 with e ⊥ ux, let e+ denote
the closed half plane containing x. Then there exist a maximal cap C−(D) = K∩e+ ⊂ D,
and a minimal cap C+(D) = e′+ ∩K ⊃ D.

Claim 7.2.4. There exists a constant ĉ depending only K such that if the height of the
disc-cap D is sufficiently small, then

ĉ(C−(D)− x) ⊃ (C+(D)− x).

Proof. Let us denote by h− (h+) the height of C−(D) (C+(D) resp.), which is the distance
of x and e (e′ resp.). By convexity, it is enough to find a constant ĉ > 0 such that for all
disc-caps of K with sufficiently small height h+/h− < ĉ holds.

Choose an arbitrary R ∈ (1/κm, 1), and consider B̂ = RB2+x−Rux, the disc of radius

R that supports K in x. Clearly, B̂ ⊃ K implies D = K ∩ (B
2

+ p) ⊂ (B̂ ∩ (B
2

+ p) = D̂.
Also, for the respective heights ĥ− and ĥ+ of C−(D̂) and C+(D̂), we have ĥ− = h− and
ĥ+ > h+. Thus, it is enough to find ĉ such that ĥ+/ĥ− < ĉ. The existence of such ĉ is
clear from elementary geometry.

Let xi, xj (i 6= j) be two points from Xn, and let B(xi, xj) be one of the unit discs that
contain xi and xj on its boundary. The shorter arc of ∂B(xi, xj) forms an edge of Kn if
the entire set Xn is contained in B(xi, xj). Note that it may happen that the pair xi, xj
determines two edges of Kn if the above condition holds for both unit discs that contain
xi and xj on its boundary.

We recall that the Hausdorff distance dH(A,B) of two non-empty compact sets A,B ⊂
R2 is defined as

dH(A,B) := max{max
a∈A

min
b∈B

d(a, b),max
b∈B

min
a∈A

d(a, b)},

where d(a, b) is the Euclidean distance of a and b.

First, we note that for the proof of Theorem 7.2.1, similar to Reitzner [Rei03], we
may assume that the Hausdorff distance dH(K,Kn) of K and Kn is at most εK , where
εK > 0 is a suitably chosen constant. This can be seen the following way. Assume
that dH(K,Kn) ≥ εK . Then there exists a point x on the boundary of Kn such that
εKB

2 + x ⊂ K. There exists a supporting circle of Kn through x that determines a disc-
cap of height at least εK . By the above remark, the probability content of this disc-cap is
at least cK > 0, where cK is a suitable constant depending on K and εK . Then

P(dH(K,Kn) ≥ εK) ≤ (1− cK)n . (7.2.6)
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Our main tool in the variance estimates is the Efron-Stein inequality [ES81], which
has previously been used to provide upper estimates on the variance of various geometric
quantities associated with random polytopes in convex bodies, see Reitzner [Rei03], and
for further references in this topic we recommend the recent survey articles by Bárány
[Bár08] and Schneider [Sch18].

7.2.2 Proof of Theorem 7.2.1

We present the proof of the asymptotic upper bound on the variance of the vertex number
in detail. Our argument is similar to the one in Reitzner [Rei03, Sections 4 and 6]. Since
the proof for the variance of the missed area is very similar we omit it in this dissertation. A
short outline of the argument with the key steps can be found in the last two paragraphs of
Section 4 on page 1151 in [FV18]. The basic idea of the argument rests on the Efron-Stein
inequality, which bounds the variance of a random variable (in our case the vertex number
or the missed area) in terms of expectations. To calculate the involved expectations we use
some basic geometric properties of disc caps and the integral transformation [FKV14, pp.
907-909], see also [San46]. Finally, the asymptotic estimate (11) in [BFRV09, pp. 2290]
for the order of magnitude of beta integrals yields the desired asymptotic upper bound.

For the number of vertices of Kn, the Efron-Stein inequality [ES81] states the following

Var f0(Kn) ≤ (n+ 1)E(f0(Kn+1)− f0(Kn))2.

Let x be an arbitrary point of K and let xixj be an edge of Kn. Following Reitzner
[Rei03], we say that the edge xixj is visible from x if x is not contained in Kn and it
is not contained in the unit disc of the edge xixj . For a point x ∈ K \ Kn, let Fn(x)
denote the set of edges of Kn that can be seen from x, and for x ∈ Kn set Fn(x) = ∅. Let
Fn(x) = |Fn(x)|.

Let xn+1 be a uniform random point inK chosen independently fromXn. If xn+1 ∈ Kn,
then f0(Kn+1) = f0(Kn). If, on the other hand, xn+1 6∈ Kn, then

f0(Kn+1) = f0(Kn) + 1− (Fn(xn+1)− 1)

= f0(Kn)− Fn(xn+1) + 2.

Therefore,
|f0(Kn+1)− f0(Kn)| ≤ 2Fn(xn+1),

and by the Efron–Stein jackknife inequality

Var(f0(Kn)) ≤ (n+ 1)E(f0(Kn+1)− f0(Kn))2 (7.2.7)

≤ 4(n+ 1)E(F 2
n(xn+1)).

Similar to Reitzner, we introduce the following notation (see [Rei03] p. 2147). Let
I = (i1, i2), i1 6= i2, i1, i2 ∈ {1, 2, . . .} be an ordered pair of indices. Denote by FI the
shorter arc of the unique unit circle incident with xi1 and xi2 on which xi1 follows xi2 in
the positive cyclic ordering of the circle. Let I(A) denote the indicator function of the
event A. For the sake of brevity, we use the notation x1, x2, . . . for the integration variables
as well.
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We wish to estimate the expectation E(F 2
n(xn+1)) under the condition that

dH(K,Kn) < εK . To compensate for the cases in which dH(K,Kn) ≥ εk, using (7.2.6),
we add an error term O((1− cK)n).

E(Fn(xn+1)2) =
1

A(K)n+1

∫
K

∫
Kn

(∑
I

I(FI ∈ Fn(xn+1))

)2

dXndxn+1

=
1

A(K)n+1

∫
K

∫
Kn

(∑
I

I(FI ∈ Fn(xn+1))

)

×

(∑
J

I(FJ ∈ Fn(xn+1))

)
dXndxn+1

≤ 1

A(K)n+1

∑
I

∑
J

∫
K

∫
Kn

I(FI ∈ Fn(xn+1))I(FJ ∈ Fn(xn+1))

× I(dH(K,Kn) ≤ εK)dXndxn+1 +O((1− cK)n) (7.2.8)

Choose εK so small that A(K \Kn) < δ. Note that with this choice of εK only one of the
two shorter arcs determined by xi1 and xi2 can determine an edge of Kn.

Now we fix the number k of common elements of I and J , that is, |I ∩ J | = k. Let F1

denote one of the shorter arcs spanned by x1 and x2, and let F2 be one of the shorter arcs
determined by x3−k and x4−k. Since the random points are independent, we have that

(7.2.8)� 1

A(K)n+1

2∑
k=0

(
n

2

)(
2

k

)(
n− 2

2− k

)∫
K

∫
Kn

I(F1 ∈ Fn(xn+1))

× I(F2 ∈ Fn(xn+1))I(dH(K,Kn) ≤ εK)dXndxn+1 +O((1− cK)n)

� 1

A(K)n+1

2∑
k=0

n4−k
∫
K
· · ·
∫
K
I(F1 ∈ Fn(xn+1))

× I(F2 ∈ Fn(xn+1))I(dH(K,Kn) ≤ εK)dXndxn+1 +O((1− cK)n). (7.2.9)

Since the roles of F1 and F2 are symmetric, we may assume that diamC+(D1) ≥
diamC+(D2), where D1 = D−(x1, x2) and D2 = D−(x3−k, x4−k) are the corresponding
disc-caps, and diam(·) denotes the diameter of a set. Thus,

(7.2.9)� 1

A(K)n+1

2∑
k=0

n4−k
∫
K

∫
Kn

I(F1 ∈ Fn(xn+1))

× I(F2 ∈ Fn(xn+1))I(diamC+(D1) ≥ diamC+(D2))

× I(dH(K,Kn) ≤ εK)dXndxn+1 +O((1− cK)n). (7.2.10)

Clearly, xn+1 is a common point of the disc caps D1 and D2, so we may write that

(7.2.10) ≤ 1

A(K)n+1

2∑
k=0

n4−k
∫
K

∫
Kn

I(F1 ∈ Fn(xn+1))
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× I(D1 ∩D2 6= ∅)I(diamC+(D1) ≥ diamC+(D2))

× I(dH(K,Kn) ≤ εK)dXndxn+1 +O((1− cK)n). (7.2.11)

In order for F1 to be an edge of Kn, it is necessary that x5−k, . . . xn ∈ K \ D1, and for
F1 ∈ Fn(xn+1) xn+1 must be in D1. Therefore

(7.2.11)� 1

A(K)n+1

2∑
k=0

n4−k
∫
K
· · ·
∫
K

(A(K)−A(D1)))n−4+kA(D1)

× I(D1 ∩D2 6= ∅)I(diamC+(D1) ≥ diamC+(D2))

× I(dH(K,Kn) ≤ εK)dx1 · · · dx4−k +O((1− cK)n)

�
2∑

k=0

n4−k
∫
K
· · ·
∫
K

(
1− A(D1)

A(K)

)n−4+k A(D1)

A(K)

× I(D1 ∩D2 6= ∅)I(diamC+(D1) ≥ diamC+(D2))

× I(dH(K,Kn) ≤ εK)dx1 · · · dx4−k +O((1− cK)n). (7.2.12)

Reitzner proved (see [Rei03, pp. 2149–2150]) that if D1 ∩ D2 6= ∅, dH(K,Kn) ≤ εK
and diamC+(D1) ≥ diamC+(D2) then there exists a constant c̄ (depending only on K)
such that C+(D2) ⊂ c̄(C+(D1) − xD1) + xD1 , where xD1 is the vertex of D1. Combining
this with Claim 7.2.4 we obtain that there is a constant c1 depending only on K, such
that D2 ⊂ c1(D1 − xD1) + xD1 . Hence A(D2) ≤ c2

1A(D1), and therefore∫
K
· · ·
∫
K
I(D1 ∩D2 6= ∅)I(diamC+(D1) ≥ diamC+(D2))

×I(dH(K,Kn) ≤ εK)dx3 · · · dx4−k � A(D1)2−k.

We continue by estimating (7.2.12) term by term (omitting the O((1− cK)n) term).

n4−k
∫
K
· · ·
∫
K

(
1− A(D1)

A(K)

)n−4+k A(D1)

A(K)
I(D1 ∩D2 6= ∅)

× I(diamC+(D1) ≥ diamC+(D2))I(dH(K,Kn) ≤ εK)dx1 · · · dx4−k

�n4−k
∫
K

∫
K

(
1− A(D1)

A(K)

)n−4+k (A(D1)

A(K)

)3−k
I(dH(K,Kn) ≤ εK)dx1dx2. (7.2.13)

Now, we use the following parametrization of (x1, x2) the same way as in [FKV14] to
transform the integral. Let

(x1, x2) = Φ(u, t, u1, u2),

where u, u1, u2 ∈ S1 and 0 ≤ t ≤ t0(u) are chosen such that

D(u, t) = D1 = D−(x1, x2),

and

(x1, x2) = (xu − (1 + t)u+ u1, xu − (1 + t)u+ u2).
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More information on this transformation can be found in [FKV14, pp. 907-909]. Here
we just recall that the Jacobian of Φ is

|JΦ| =
(

1 + t− 1

κ(xu)

)
|u1 × u2|,

where u1 × u2 denotes the cross product of u1 and u2.
Let L(u, t) = ∂D1 ∩ intK, then we obtain that

(7.2.13)� n4−k
∫
S1

∫ t∗(u)

0

∫
L(u,t)

∫
L(u,t)

(
1− A(u, t)

A(K)

)n−4+k (A(u, t)

A(K)

)3−k

×
(

1 + t− 1

κ(xu)

)
|u1 × u2|du1du2dtdu

= n4−k
∫
S1

∫ t∗(u)

0

(
1− A(u, t)

A(K)

)n−4+k (A(u, t)

A(K)

)3−k

×
(

1 + t− 1

κ(xu)

)
(`(u, t)− sin `(u, t))dtdu. (7.2.14)

From now on the evaluation follows a standard way. First, we split the domain of
integration with respect to t into two parts. Let h(n) = (c lnn/n)2/3, where c > 0 is a
sufficiently large absolute constant. Using (7.2.5), we have that A(u, t) ≥ γt3/2 uniformly
in u ∈ S1, hence

n4−k
∫
S1

∫ t∗(u)

h(n)

(
1− A(u, t)

A(K)

)n−4+k (A(u, t)

A(K)

)3−k

×
(

1 + t− 1

κ(xu)

)
(`(u, t)− sin `(u, t))dtdu

� n4−k
∫
S1

∫ t∗(u)

h(n)

(
1− A(u, t)

A(K)

)n−4+k

dtdu

� n4−k
∫
S1

∫ t∗(u)

h(n)

(
1− γt3/2

A(K)

)n−4+k

dtdu

� n4−k

(
1− γh(n)3/2

A(K)

)n−4+k

= n4−k
(

1− γ(c lnn)

nA(K)

)n−4+k

� n−2/3,

if γc/A(K) is sufficiently large.
Therefore, it is enough to estimate the following part of (7.2.14)

n4−k
∫
S1

∫ h(n)

0

(
1− A(u, t)

A(K)

)n−4+k (A(u, t)

A(K)

)3−k

×
(

1 + t− 1

κ(xu)

)
(`(u, t)− sin `(u, t))dtdu. (7.2.15)
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Using (7.2.5) and the Taylor series of the sine function, we obtain that `(u, t) −
sin `(u, t)� t3/2. Since κ(x) > 1 for all x ∈ ∂K, it follows that 0 < 1 + t− κ(xu)−1 � 1.
We also use (7.2.5) to estimate A(u, t), similarly as before. Assuming that n is large
enough, we obtain that

(7.2.15)� n4−k
∫
S1

∫ h(n)

0

(
1− γt3/2

A(K)

)n−4+k (
t3/2
)3−k

· 1 · t3/2dtdu

� n4−k
∫ h(n)

0

(
1− γt3/2

A(K)

)n−4+k

t
12−3k

2 dt� n−2/3,

where the last inequality follows directly from formula (11) in [BFRV09, p. 2290]. Together
with (7.2.7), this yields the desired upper estimate for Var f0(Kn).

7.2.3 The case of the circle

In this section we prove Theorem 7.2.2. In particular, we give a detailed proof of the
estimate (7.2.3) for the variance of the number of vertices of the random disc-polygon.
The case of the missed area (7.2.4) is very similar.

Without loss of generality, we may assume that K = B2, and that r = 1.

We begin by recalling from [FKV14] that for any u ∈ S1 and 0 ≤ t ≤ 2, it holds that

`(u, t) = 2 arcsin

√
1− t2

2
, and A(u, t) = A(t) = t

√
1− t2

2
+ 2 arcsin

t

2
.

Proof of Theorem 7.2.2 (7.2.3). From (7.1.7) and Chebyshev’s inequality, it follows that

1 = P
(∣∣∣∣f0(K1

n)− π2

2

∣∣∣∣ > 0.05

)
≤ Var(f0(K1

n))

0.052
,

thus

Var(f0(K1
n)) ≥ 0.052.

This proves that Var(f0(K1
n))� const..

In order to prove the asymptotic upper bound in (7.2.3), we use a modified version
of the argument of the previous section. With the same notation as in Section 3, the
Efron-Stein inequality for the vertex number yields that

Var(f0(K1
n))� nE(Fn(xn+1))2.

Following a similar line of argument as above, we obtain that

nE(Fn(xn+1))2 =
n

πn+1

∫
(B2)n+1

(∑
I

I(FI ∈ Fn(xn+1))

)

×

(∑
J

I(FJ ∈ Fn(xn+1))

)
dx1 · · · dxndxn+1
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≤ n

πn+1

∑
I

∑
J

∫
(B2)n+1

I(FI ∈ Fn(xn+1))I(FJ ∈ Fn(xn+1))dx1 · · · dxndxn+1 (7.2.16)

Now, let |I ∩ J | = k, where k = 0, 1, 2, and let F1 = x1x2 and F2 = x3−kx4−k. By the
independence of the random points (and by also taking into account their order), we get
that

(7.2.16)� n

πn+1

2∑
k=0

(
n

2

)(
2

k

)(
n− 2

2− k

)∫
(B2)n+1

I(F1 ∈ Fn(xn+1))

× I(F2 ∈ Fn(xn+1))dx1 · · · dxndxn+1.

� 1

πn+1

2∑
k=0

n5−k
∫

(B2)n+1

I(F1 ∈ Fn(xn+1))I(F2 ∈ Fn(xn+1))dx1 · · · dxndxn+1.

(7.2.17)

By symmetry, we may also assume that A(D1) ≥ A(D2), therefore

(7.2.17)�
2∑

k=0

n5−k
∫

(B2)n+1

I(F1 ∈ Fn(xn+1))I(F2 ∈ Fn(xn+1))

× I(A(D1) ≥ A(D2))dx1 · · · dxndxn+1. (7.2.18)

By integrating with respect to x5−k, . . . , xn and xn+1 we obtain that

(7.2.18)�
2∑

k=0

n5−k
∫
B2

· · ·
∫
B2

(
1− A(D1)

π

)n−4+k A(D1)

π

× I(A(D1) ≥ A(D2))dx1 · · · dx4−k (7.2.19)

If A(D1) ≥ A(D2), then D2 is fully contained in the circular annulus whose width is equal
to the height of the disc-cap D1. The area of this annulus is not more than 4A(D1).
Therefore,

(7.2.19)�
2∑

k=0

n5−k
∫
B2

∫
B2

(
1− A(D1)

π

)n−4+k

A(D1)3−kdx1dx2.

As common in these arguments, we may assume that A(D1)/π < c log n/n for some
suitable constant c > 0 that will be determined later. To see this, let A(D1)/π ≥ c log n/n.
Then (

1− A(D1)

π

)n−4+k

A(D1)3−k

≤
(
πc log n

n

)3−k
· exp

(
−c(n− 4 + k) log n

n

)
�
(

log n

n

)3−k
· n−c
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� n−c.

If c > 0 is sufficiently large, then the contribution of the case when A(D1)/π ≥ c log n/n
is O(n−1). Thus,

nE(Fn(xn+1))�
2∑

k=0

n5−k
∫
B2

∫
B2

(
1− A(D1)

π

)n−4+k

A(D1)3−k

× I(A(D1) ≤ c log n/n)dx1dx2 +O(n−1). (7.2.20)

Now, we use the same type of reparametrization as in the previous section. Let (x1, x2) =
(−tu1,−tu2), u ∈ S1 and 0 ≤ t ≤ c log n/n. Then

(7.2.20)�
2∑

k=0

n5−k
∫
S1

∫ c∗ logn/n

0

∫
S1

∫
S1

(
1− A(u, t)

π

)n−4+k

A(u, t)3−k

× t|u1 × u2|du1du2dudt+O(n−1)

�
2∑

k=0

n5−k
∫ c∗ logn/n

0

(
1− A(u, t)

π

)n−4+k

A(u, t)3−k

× t(l(t)− sin l(t))dt+O(n−1). (7.2.21)

Using that l(t) → π as t → 0+, and the Taylor series of V (u, t) at t = 0, we obtain that
there exists a constant ω > 0 such that

(7.2.21)�
2∑

k=0

n5−k
∫ c∗ logn/n

0
(1− ωt)n−4+k t4−kdt+O(n−1) (7.2.22)

Now, using a formula for the asymptotic order of beta integrals (see [BFRV09, p. 2290,
formula (11)]), we obtain that

(7.2.22)�
2∑

k=0

n5−kn−(5−k) +O(n−1)

� const,

which finishes the proof of the upper bound in (7.2.3).

In order to prove the asymptotic upper bound (7.2.4), only slight modifications are
needed in the above argument.

7.2.4 A circumscribed model

In the section we consider circumscribed random disc-polygons. Let K ⊂ R2 be a convex
disc with C2

+ smooth boundary, and r ≥ κ−1
m . Consider the following set

K∗,r =
{
x ∈ R2 | K ⊂ rB2 + x

}
,
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which is also called the r-hyperconvex dual, or r-dual for short, of K. It is known that
K∗,r is a convex disc with C2

+ boundary, and it also has the property that the curvature
is at least 1/r at every boundary point. For further information see [FKV16] and the
references therein.

For u ∈ S1, let x(K,u) ∈ ∂K (x(K∗,r, u) ∈ ∂K∗,r resp.) be the unique point on ∂K
(∂K∗,r resp.), where the outer unit normal to K (K∗,r resp.) is u. For a convex disc
K ⊂ R2 with o ∈ intK, let hK(u) = maxx∈K〈x, u〉 denote the support function of K. Let
Per( · ) denote the perimeter.

The following Lemma collects some results from [FKV16, Section 2].

Lemma 7.2.5. [FKV16] With the notation above

1. hK(u) + hK∗,r(−u) = r for any u ∈ S1,

2. κ−1
K (x(u,K)) + κ−1

K∗,r(x(−u,K∗,r)) = r for any u ∈ S1,

3. Per(K) + Per(K∗,r) = 2rπ,

4. A(K∗,r) = A(K)− r · Per(K) + r2π.

Now, we turn to the probability model. Let K be a convex disc with C2
+ boundary,

and let r > κ−1
m as before. Let Xn = {x1, . . . , xn} be a sample of n independent random

points chosen from K∗,r according to the uniform probability distribution, and define

K∗,r(n) =
⋂
x∈Xn

rB2 + x.

K∗,r(n) is a random disc-polygon that contains K. Observe that, by definition K∗,r(n) =

(conv r(Xn))∗,r, and consequently f0(K∗,r(n)) = f0(conv r(Xn)). We note that this is a
very natural approach to define a random disc-polygon that is circumscribed about K
that has no clear analogy in classical convexity. (If one takes the limit as r → ∞, the
underlying probability measures do not converge.) The model is of special interest in the
case K = K∗,r, which happens exactly when K is of constant width r.

Theorem 7.2.6. Assume that K has C2
+ boundary, and let r > κ−1

m . With the notation
above

lim
n→∞

E(f0(K∗,r(n))) · n
−1/3 = 3

√
2r

3(A(K)− r · Per(K) + r2π)
× (7.2.23)

Γ

(
5

3

)∫
∂K

(
κ(x)− 1

r

)2/3

dx.

Furthermore if K has C5
+ boundary, then

lim
n→∞

n2/3 ·
(

PerK∗,r(n) − PerK
)

=
(12(A(K)− r · Per(K) + r2π))2/3

36
· Γ
(

2

3

)
× r−2/3

∫
∂K

(
κ(x)− 1

r

)−1/3(
4κ(x)− 1

r

)
dx;
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lim
n→∞

n2/3 ·A(K∗,r(n)\K) =
(12(A(K)− r · Per(K) + r2π))2/3

12
×

Γ

(
2

3

)
· r−2/3

∫
∂K

(
κ(x)− 1

r

)−1/3

dx.

Proof. By Lemma 7.2.5 it follows that K∗,r has also C2
+ boundary. As f0(K∗,r(n)) =

f0(conv r(Xn)), we immediately get from [FKV14, Theorem 1.1] that

lim
n→∞

E(f0(K∗,r(n))) · n
−1/3 = 3

√
2

3A(K∗,r)
· Γ
(

5

3

)∫
∂K∗,r

(
κ(x)− 1

r

)1/3

dx.

Using Lemma 7.2.5, we proceed as follows∫
∂K∗,r

(
κ(x)− 1

r

)1/3

dx =

∫
S1

(
κ(x(K∗,r, u))− 1

r

)1/3
κ(x(K∗,r, u))

du =

∫
S1

(
κ(x(K,−u))

rκ(x(K,−u))−1 −
1
r

)1/3

κ(x(K,−u))
rκ(x(K,−u))−1

du =

∫
S1

r1/3

(
κ(x(K,u))− 1

r

)2/3
κ(x(K,u))

du

= r1/3

∫
∂K

(
κ(x)− 1

r

)2/3

dx.

Together with Lemma 7.2.5, this proves (7.2.23).
The rest of the theorem can be proved similarly, by using [FKV14, Theorem 1.1 and

Theorem 1.2], and Lemma 7.2.5.

As an obvious consequence of Theorem 7.2.1, Lemma 7.2.5, and the definition of K∗,r(n),
we obtain the following corollary.

Corollary 7.2.7. Assume that K has C2
+ boundary, and let r > κ−1

m . With the notation
above

Var(f0(K∗,r(n)))� n1/3.

Remark. We note that if K is a convex disc of constant width r, then K∗,r = K (see
e.g. [FKV16]), and similar calculations to those in the proof of Theorem 7.2.6 provide
some interesting integral formulas. For example, for a real p we obtain that∫

∂K

(
κ(x)− 1

r

)p
dx = r1−2p

∫
∂K

(
κ(x)− 1

r

)1−p
dx.
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Chapter 8

Best approximations by
disc-polygons

This chapter of the dissertation is based on the paper [FV12] by F. Fodor and V. Vı́gh,
Disc-polygonal approximations of planar spindle convex sets, Acta Sci. Math. (Szeged)
78 (2012), no. 1–2, 331–350.

8.1 Introduction and results

In this chapter, we consider best approximations of a planar 1-spindle convex set by
circumscribed and inscribed convex disc-polygons of unit radius with n sides. We examine
best approximations with respect to the Hausdorff metric of compact convex sets, and the
measures of deviation defined by perimeter and area differences. For basic definitions and
facts about R-spindle convex sets, we refer to Section 7.1.1.

Let K1,K2 ⊂ R2 be (linearly) convex compact sets with nonempty interior containing
the origin o. Let A(·) and `(·) denote the area and perimeter of compact convex sets in
R2. We use the notation δA(K1,K2) = A(K1 ∪K2) − A(K1 ∩K2) for the area deviation
of K1 and K2, and the notation δ`(K1,K2) = `(K1 ∪K2)− `(K1 ∩K2) for the perimeter
deviation of K1 and K2. Finally, in this chapter δH stands for the Hausdorff metric for
compact sets in R2.

We consider R-spindle convex sets only for R = 1, so for the sake of simplicity, we
omit R from all notations. We call a 1-spindle convex set simply spindle convex.

Let S ⊂ R2 be a compact spindle convex set with twice continuously differentiable
boundary. As we will consider approximations of S by inscribed and circumscribed disc-
polygons with at most n sides with respect to the Hausdorff metric, area deviation, and
perimeter deviation, we have to deal with six separate problems for each fixed n. Let
SHn , S

A
n , and S`n (SH(n), S

A
(n) and S`(n)) denote a disc-polygon with at most n sides inscribed

in S (circumscribed about S) that are closest to S with respect to the Hausdorff metric,
area deviation, and perimeter deviation, respectively. Such a (not necessarily unique)
minimizer clearly exists for each of the three measures of distance. It is also clear that
in each of the six cases the distance of the minimizer and S approaches zero as n tends
to infinity. The main results of this chapter are the following asymptotic formulae for the
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distance of the minimizers to S as n tends to infinity.

Theorem 8.1.1 (Fodor, Vı́gh [FV12, Theorem 1 on pages 333–334]). Let S be a compact,
spindle convex set in R2 with a twice continuously differentiable boundary. Then the
following statements hold:

δ`(S, S
`
n) ∼ 1

24

(∫
∂S

(κ2(s)− 1)
1
3ds

)3

· 1

n2
, (i)

δA(S, SAn ) ∼ 1

12

(∫
∂S

(κ(s)− 1)
1
3ds

)3

· 1

n2
, (ii)

δH(S, SHn ) ∼ 1

8

(∫
∂S

(κ(s)− 1)
1
2ds

)2

· 1

n2
, (iii)

δ`(S, S
`
(n)) ∼

1

24

(∫
∂S

(2κ2(s)− 3κ(s) + 1)
1
3ds

)3

· 1

n2
, (iv)

δA(S, SA(n)) ∼
1

24

(∫
∂S

(κ(s)− 1)
1
3ds

)3

· 1

n2
, (v)

δH(S, SH(n)) ∼
1

8

(∫
∂S

(κ(s)− 1)
1
2ds

)2

· 1

n2
, (vi)

as n→∞.

In this dissertation, we only give the detailed proofs of the inscribed cases of Theo-
rem 8.1.1, namely, i), ii), and iii). For the proofs of the circumscribed cases, see Section 5
of [FV12] on pages 344–349.

The analogues of the formulae in Theorem 8.1.1 for linearly convex discs were first
stated by L. Fejes Tóth in [FT53], and they were proved by McClure and Vitale in [MV75].
They established the order of approximation of linearly convex compact planar sets by
inscribed and circumscribed convex polygons with respect to the Hausdorff metric as well
as the perimeter and area deviation measures.

Approximations of (linearly) convex sets by polytopes have an extensive literature. For
a detailed survey on the current state-of-the-art of this subject see the papers by Gruber
[Gru93,Gru97].

To prove Theorem 8.1.1, we use, at least in part, the framework developed by McClure
and Vitale in [MV75]. In the next section, we cite those results from [MV75] which will
be used in our proof of Theorem 8.1.1.

8.2 Tools

In this section we summarize the relevant parts of Section 4 of the paper by McClure and
Vitale [MV75], for further information see also [McC75].

Let f : [a, b] → R be a function, and let Tn = (t0, t1, . . . , tn) be a partition of the
interval [a, b] such that

a = t0 < t1 < t2 < . . . < tn = b.
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Let E(f, Tn) be a functional that is additive with respect to Tn in the following sense

E(f, Tn) =

n−1∑
i=0

e(f, ti, ti+1).

Define En(f) = infTn E(f, Tn).
The results will follow from the following three assumptions from [MV75].

Assumption 1. For any (α, β) satisfying a ≤ α < β ≤ b, e(f, α, β) ≥ 0, and if a ≤ α <
β < γ ≤ b, then

e(f, α, β) + e(f, β, γ) ≤ e(f, α, γ).

Assumption 2. There exists a function Jf : [a, b] → R, and a constant m > 1 with the
following properties:

(i) Jf is nonnegative and piecewise continuous on [a, b] having at most a finite number
of jump discontinuities, and

(ii)

lim
h→0+

e(f, α, α+ h)

hm
= Jf (α+).

Moreover, |Jf (α+)−e(f, α, α+h)/hm| can be made uniformly small when (α, α+h)
is contained in an interval where Jf is continuous.

Assumption 3. e(f, α, β) depends continuously on (α, β).

Corollary 2.1 in [MV75] states the following.

Theorem 8.2.1 (McClure, Vitale [MV75]). If Assumptions 1–3 hold for e(f, α, β), then

lim
n→∞

nm−1En(f) =

(∫ b

a
(Jf (s))1/mds

)m
.

We use Theorem 8.2.1 to prove parts (i), (ii), (iv), and (v) of Theorem 8.1.1. In order
to prove (iii) and (vi) of Theorem 8.1.1, we need a modified form of Theorem 8.2.1, also
quoted from [MV75].

Let G(f, Tn) be a function that has a decomposition with respect to the partition Tn
of the following form

G(f, Tn) = max
i=0,...,n−1

g(f, ti, ti+1).

Define Gn(f) = minTn G(f, Tn).
The result will again follow from three assumptions from [MV75].

Assumption 4. g(f, α, β) ≥ 0 for any (α, β) satisfying a ≤ α < β ≤ b, and if a ≤ α <
β < γ ≤ b, then

max(g(f, α, β), g(f, β, γ)) ≤ g(f, α, γ).

Assumption 5. There exists a function Jf : [a, b] → R, and a constant m > 0 with the
following properties:
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(i) Jf is nonnegative and piecewise continuous on [a, b], having at most a finite number
of jump discontinuities, and

(ii)

lim
h→0+

g(f, α, α+ h)

hm
= Jf (α+).

Moreover, |Jf (α+)−g(f, α, α+h)/hm| can be made uniformly small when (α, α+h)
is contained in an interval where Jf is continuous.

Assumption 6. g(f, α, β) depends continuously on (α, β).

Lemma 5 in [MV75] states the following.

Theorem 8.2.2 (McClure, Vitale [MV75]). If Assumptions 4–6 hold for g(f, α, β), then

lim
n→∞

nmGn(f) =

(∫ b

a
(Jf (s))1/mds

)m
.

In order to prove Theorem 8.1.1, in the next sections we define the functions f and
e in each case and verify Assumptions 1–3 for the cases of area deviation and perimeter
deviation, and we verify Assumptions 4–6 for the Hausdorff metric case.

In the proof of Theorem 8.1.1 we frequently use the following fact from the elementary
differential geometry of curves. Let p and q be distinct points of the continuously differ-
entiable curve C. Then the ratio of the length of the arc of C between p and q and the
length of the segment [p, q] tends to 1 as q → p.

In our argument, we use the small o(·) notation and, in particular, the following facts.
Let n ≥ 0 and h(t) = o(tn) ≥ 0 (as t → 0) be an n times continuously differentiable
function on an open interval (−a, a). Then the first derivative h′(t) = o(tn−1) as t → 0,
and H(x) =

∫ x
0 h(t)dt is o(xn+1) as x→ 0.

Let S ⊂ R2 be a compact, spindle convex set, and let L denote its perimeter. Let
r : [0, L]→ R2 be the arc-length parametrization of the boundary ∂S with a fixed r(0) =
x0 ∈ ∂S starting point such that r(s) defines the positive orientation on ∂S.

Let f : [0, L] → R be defined as f(s) = s, that is, f is the arc-length of ∂S. The
function f is fixed throughout the chapter, and it is omitted from the notation.

8.3 Proofs of the inscribed cases

We associate with a partition Tn = (t0, t1, . . . , tn) of the interval [0, L] the disc-polygon
P (Tn) with vertex set {x0, x1, . . . , xn−1} such that xi = r(ti) for i = 0, . . . , n− 1. We use
a(s1, s2) to denote the length of the shorter unit circular arc connecting the points r(s1)
and r(s2) for s1, s2 ∈ [0, L], and, in particular, ai = a(ti, ti+1) for i = 0, . . . , n− 1.

8.3.1 Perimeter deviation

Let E(Tn) = δ`(P (Tn), S). Then

E(Tn) =
n−1∑
i=0

e(ti, ti+1),
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where e(ti, ti+1) = ti+1 − ti − ai. Furthermore,

δ`(S, S
`
n) = inf

Tn
E(Tn).

Assumptions 1 and 3 are obviously satisfied. In order to verify that Assumption 2 is
satisfied with m = 3 and J(s) = (κ2(s)− 1)/24, we need the following lemma.

Lemma 8.3.1. Let K be a compact, (linearly) convex set in R2 with nonempty interior
and twice continuously differentiable boundary. Let r(s) : [0, L] → R2 be the arc-length
parametrization of the boundary ∂K of K that defines the positive orientation on ∂K. Let
r(s0) ∈ ∂K be an arbitrary fixed point. Then

lim
∆s→0+

∆s− d(r(s0 + ∆s), r(s0))

(∆s)3
=
κ(s0)2

24
. (8.3.1)

Proof. Without loss of generality, we may assume that r(s0) = 0, the x-axis of the
coordinate-system is tangent to K at the point r(s0), and that K lies in the upper half
plane. There exists an open neighbourhood of 0 in which the boundary of K can be
represented as the graph of a twice continuously differentiable convex function h with
h(0) = h′(0) = 0.

Applying Taylor’s theorem for h around 0, we obtain

h(x) =
h′′(0)

2
x2 + o(x2) as x→ 0+.

Let r(s0 + ∆s) = (x, h(x)). Using the formula for arc-length, we obtain that

lim
∆s→0+

∆s− d(r(s0 + ∆s), r(s0))

(∆s)3
= lim

x→0+

∫ x
0

√
1 + h′(t)2dt−

√
x2 + h2(x)

(
∫ x

0

√
1 + h′(t)2dt)3

.

From our preliminary remarks it follows that h′(x) = h′′(0)x + o(x) as x → 0+, and so
h′(x)2 = h′′(0)2x2 + o(x2) as x→ 0+. Using the Taylor expansion of

√
( · ) around 1, we

obtain √
1 + h′(t)2 =

√
1 + h′′(0)2t2 + o(t2) = 1 +

h′′(0)2t2

2
+ o(t2) as t→ 0+,

and √
x2 + h2(x) = x(1 +

h′′(0)2

8
x2 + o(x2)) = x+

h′′(0)2

8
x3 + o(x3) as x→ 0+.

The above estimates yield∫ x

0

√
1 + h′(t)2dt =

∫ x

0
1 +

h′′(0)2t2

2
+ o(t2)dt (8.3.2)

= x+
h′′(0)2

6
x3 + o(x3) as x→ 0+.
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Note that from (8.3.2) it readily follows that

lim
x→0+

x∫ x
0

√
1 + h′(t)2dt

= 1. (8.3.3)

Finally, we obtain

lim
x→0+

∫ x
0

√
1 + h′(t)2dt−

√
x2 + h2(x)

x3
= lim

x→0+

h′′(0)2

6 x3 − h′′(0)2

8 x3 + o(x3)

x3

=
h′′(0)2

24
.

The verification of Assumption 2 goes as follows. The function J(s) = (κ(s)2 − 1)/24
is nonnegative and continuous on the interval [0, L] and thus it satisfies condition (i) of
Assumption 2.

In order to check condition (ii), note that d(r(s0 + ∆s), r(s0)) < a(s0 + ∆s, s0) ≤ ∆s
implies

lim
∆s→0+

a(s0 + ∆s, s0)

∆s
= 1. (8.3.4)

Now, Lemma 8.3.1 and (8.3.4) yield

lim
∆s→0+

e(s0, s0 + ∆s)

(∆s)3
= lim

∆s→0+

∆s− a(s0, s0 + ∆s)

(∆s)3
(8.3.5)

= lim
∆s→0+

[∆s− d(r(s0 + ∆s), r(s0))]− [a(s0 + ∆s, s0)− d(r(s0 + ∆s, r(s0))]

(∆s)3

=
κ2(s0)

24
− 1

24
= J(s0).

It is also clear that the limit (8.3.1) is uniform in [0, L] in the sense of (ii) of Assumption 2.

Proof of part (i) of Theorem 8.1.1. Theorem 8.2.1 and (8.3.5) imply that

lim
n→∞

n2En(f) =

(∫ L

0
J(s)1/3ds

)3

=
1

24

(∫
∂S

(κ(s)2 − 1)1/3ds

)3

. (8.3.6)

8.3.2 Area deviation

Let E(Tn) = δA(P (Tn), S). In this case,

E(Tn) =

n−1∑
i=1

e(ti, ti+1),

where e(ti, ti+1) is the area of the region of S enclosed by ∂S between xi and xi+1 and the
shorter arc of the unit circle through the points xi and xi+1. Furthermore,

δA(S, SAn ) = inf
Tn
E(Tn).
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Assumptions 1 and 3 are clearly satisfied. We need to verify that Assumption 2 holds
with J(s) = (κ(s) − 1)/12 and m = 3. Our argument is similar to the one we pursue in
the case of perimeter deviation.

Lemma 8.3.2. Let K be a (linearly) convex, compact set with nonempty interior and
with twice continuously differentiable boundary. Let r(s) : [0, L] → R2 be the arc-length
parametrization of ∂K that defines the positive orientation of ∂S, and let r(s0) ∈ ∂K be
a fixed point. Then

lim
∆s→0+

A(s0, s0 + ∆s)

(∆s)3
=
κ(s0)

12
,

where A(s0, s0 + ∆s) denotes the area of the smaller cap cut off from K by the straight
line through the points r(s0) and r(s0 + ∆s).

Proof. Without loss of generality, we may assume that r(s0) = 0, the x-axis of the
coordinate-system is tangent to K at the point r(s0), and that K lies in the upper half
plane. There exists an open neighbourhood of 0 in which the boundary of K can be
represented as the graph of a twice continuously differentiable convex function h with
h(0) = h′(0) = 0 and

h(x) =
h′′(0)

2
x2 + o(x2) as x→ 0.

Let r(s0 + ∆s) = (x, h(x)). The formulae for area and arc-length and the limit (8.3.3)
yield

lim
∆s→0+

A(s0, s0 + ∆s)

(∆s)3
= lim

x→0+

xh(x)
2 −

∫ x
0 h(t)dt

x3

= lim
x→0+

h(x)

2x2
− h′′(x)

2x3

∫ x

0
t2 + o(t)dt =

h′′(0)

4
− h′′(0)

6
=
h′′(0)

12
.

The function J(s) = (κ(s)−1)/12 is nonnegative and continuous on the entire interval
[0, L], and thus it satisfies condition (i) of Assumption 2. The argument to verify that
condition (ii) holds for J(s) is similar to (8.3.5). We leave the details to the interested
reader.

In view of the above, part (ii) of Theorem 8.1.1 follows directly from Theorem 8.2.1.

8.3.3 Hausdorff distance

Let G(Tn) = δH(P (Tn), S). In this case

G(Tn) = max
i=0,...,n−1

g(ti, ti+1),

where g(ti, ti+1) is the Hausdorff distance of the part of the curve ∂S between xi and xi+1

and the shorter arc of the unit circle connecting xi and xi+1. Furthermore,

δH(S, SHn ) = min
Tn

G(Tn).
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In order to verify that Assumptions 4, 5 and 6 are satisfied, we approximate ∂S locally
by its osculating circle. The osculating circle of ∂S at r(s) is the circle of radius 1/κ(s)
through r(s) which shares a common support line with S in r(s), and which lies on the
same side of this common support line as S.

Lemma 8.3.3. Let h1, h2 : R → R be twice continuously differentiable convex functions
with h1(0) = h2(0) = h′1(0) = h′2(0) = 0 and h′′1(0) ≥ h′′2(0) ≥ 0. Then

(i)

lim
x→0+

∫ x
0

√
1 + h′1(t)2dt−

∫ x
0

√
1 + h′2(t)2dt

x3
=
h′′1(0)2 − h′′2(0)2

6
,

(ii)

lim
x→0+

∫ x
0 h1(t)− h2(t)dt

x3
=
h′′1(0)− h′′2(0)

6
, and

(iii)

lim
x→0+

δH(h1[0, x], h2[0, x])

x2
= lim

x→0+

maxt∈[0,x] |h1(t)− h2(t)|
x2

=

=
h′′1(0)− h′′2(0)

2
,

where hi[0, x] denotes the graph of hi over the closed interval [0, x] for i = 1, 2.

Proof. Using that

hi(x) =
h′′i (0)

2
x2 + o(x2) as x→ 0+ for i = 1, 2,

part (i) of the lemma readily follows from (8.3.2).
Part (ii) can be verified as follows:

lim
x→0+

∫ x
0 h1(t)− h2(t)dt

x3
= lim

x→0+

∫ x
0
h′′1 (0)−h′′2 (0)

2 t2 + o(t2)dt

x3
=

= lim
x→0+

h′′1 (0)−h′′2 (0)
6 x3

x3
+ lim
x→0+

∫ x
0 o(t

2)dt

x3
=
h′′1(0)− h′′2(0)

6
.

It remains to prove part (iii) of the lemma. We start by showing the first equality in
(iii). Let

m(x) = max
t∈[0,x]

|h1(t)− h2(t)|.

It is clear from the definition of Hausdorff distance that

δH(h1[0, x], h2[0, x]) ≤ m(x).

Next, we prove that for any sufficiently small ε > 0, there exists a δ > 0 such that

H(h1[0, x], h2[0, x]) ≥ m(x)(1− ε) for all 0 < x < δ.

Fix an arbitrary 0 < ε < 1/4. Then there exists a 0 < δ < ε that satisfies the following
conditions:
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(a) m(δ)ε < δ,

(b) h′1(x), h′2(x) < ε for all x ∈ (0, 2δ), and

(c) (hi(x+m(δ)ε)− hi(x))/m(δ)ε < 2ε, i = 1, 2 for all x ∈ [0, δ].

The existence of a 0 < δ < ε that satisfies condition (a) follows from the fact that if δ
is sufficiently small, then |h1(x)− h2(x)| < x for x ∈ [0, δ], and so m(δ) < δ. Since hi(x),
i = 1, 2, are twice continuously differentiable in a closed interval containing 0, therefore
their difference quotients are uniformly convergent in the same interval. Thus, if δ is
sufficiently small, then both (b) and (c) are satisfied.

Let x0 ∈ [0, δ] where the maximum m(δ) is attained. Without loss of generality, we
may assume that h1(x0) > h2(x0).

The normal line of the graph of h1 at the point (x0, h1(x0)) intersects the graph of h2

in (x̂, h2(x̂)) with x̂ ≤ x0 +m(δ)ε < 2δ.

Now, it follows from conditions (a)–(c) that

0 ≤ h2(x̂)− h2(x0) ≤ h2(x0 +m(δ)ε)− h2(x0) < m(δ)ε,

hence

d((x0, h1(x0)), (x̂, h2(x̂))) ≥ h1(x0)− h2(x0) + h2(x0)− h2(x̂) ≥ m(δ)−m(δ)ε.

This proves the first equality of part (iii) of the lemma. The second equality is an imme-
diate consequence of Taylor’s theorem.

Figure 8.1:

Lemma 8.3.4. Let C1 be a circle of radius r = 1/κ < 1 centred at o1, and let C2 be
a unit circle centred at o2 which intersects C1 in c1 and c2 (see Figure 8.1) such that
∠c1oc2 = 2α. The bisector of ∠c1oc2 intersects C1 and C2 at d1 and d2, respectively. Let
x = d(d1, d2). Then

lim
α→0+

x

(2αr)2
=
κ− 1

8
.
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Proof. Applying the Law of Cosines to the triangle 4o1o2c1 yields

1 = r2 + (1− r + x)2 + 2r(1− r + x) cosα.

Using that cosα = 1− α2/2 + o(α2) as α→ 0+, we obtain

0 = x2 + 2x− rα2 + r2α2 − rxα2 + o(α2).

This implies that

lim
α→0+

x2 + 2x

(2αr)2
= lim

α→0+

rα2 − r2α2 + rxα2

(2αr)2
=

1

4r
− 1

4
,

and the statement of the lemma follows immediately.

Lemma 8.3.5. Let h1, h2 : [−a, a] → R be twice continuously differentiable convex func-
tions for some a > 0 such that h1(0) = h2(0) = h′1(0) = h′2(0) = 0 and h′′1(0) = h′′2(0) ≥ 0.
Let C(x, hi) denote the concave up shorter unit circular arcs joining (0, 0) with (x, hi(x)),
i = 1, 2. Then

lim
x→0+

dH(C(x, h1), C(x, h2))

x2
= 0.

Proof. Note that if a is sufficiently small, then

δH(C(x, h1), C(x, h2)) ≤ |h1(x)− h2(x)| ≤ m(x),

for all x ∈ [0, a], and m(x) = o(x2) for h1 and h2 under the conditions of the lemma.

Finally, we are going to verify Assumption 5 for J(s) = (κ(s) − 1)/8 and m = 2. Let
s0 ∈ [0, L]. Without loss of generality, we may assume that r(s0) = 0 and the x-axis of the
coordinate-system is tangent to S at r(s0) so that S is in the upper half plane. Let the real
function h1 represent the boundary of S in a suitable neighbourhood of 0, say in the interval
[−a, a], and let h2 be the function that represents the osculating circle of ∂S at r(s0) in the
same interval. Both h1 and h2 are twice continuously differentiable and convex in [−a, a],
and, due to the choice of the coordinate-system, h1(0) = h2(0) = h′1(0) = h′2(0) = 0 and
h′′1(0) = h′′2(0) ≥ 0. Let r(s0 + ∆s) = (x, h1(x)). The triangle inequality of the Hausdorff
metric implies that

g(s0, s0 + ∆s) ≤ δH(h1[0, x], h2[0, x]) + δH(h2[0, x], C(x, h2)) + δH(C(x, h1), C(x, h2)),

and

g(s0, s0+∆s) ≥ −δH(h1[0, x], h2[0, x])+δH(h2[0, x], C(x, h2))−δH(C(x, h1), C(x, h2)).

Now, applying Lemmas 8.3.3, 8.3.4 and 8.3.5, we obtain that

lim
∆s→0+

g(s0, s0 + ∆s)

(∆s)2
=
κ(s0)− 1

8
= J(s0).

Part (iii) of Theorem 8.1.1 follows directly from Theorem 8.2.2.
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[BBCY19] G. Bianchi, K. J. Böröczky, A. Colesanti, and D. Yang, The Lp-Minkowski problem for −n <
p < 1, Adv. Math. 341 (2019), 493–535.

[Bla56] W. Blaschke, Kreis und Kugel, Walter de Gruyter & Co., Berlin, 1956.

[Bör10] K. J. Böröczky, Stability of the Blaschke-Santaló and the affine isoperimetric inequality, Adv.
Math. 225 (2010), no. 4, 1914–1928.
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[BFH10] K. J. Böröczky, F. Fodor, and D. Hug, The mean width of random polytopes circumscribed
around a convex body, J. Lond. Math. Soc. (2) 81 (2010), no. 2, 499–523.
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[Bro07] E. M. Bronshtĕın, Approximation of convex sets by polyhedra, Sovrem. Mat. Fundam. Napravl.
22 (2007), 5–37; English transl., J. Math. Sci. (N. Y.) 153 (2008), no. 6, 727–762.

[Caf90a] L. Caffarelli, A localization property of viscosity solutions to Monge-Ampère equation and their
strict convexity, Ann. Math. 131 (1990), 129-134.

[Caf90b] L. Caffarelli, Interior W 2,p-estimates for solutions of the Monge-Ampère equation, Ann. Math.
131 (1990), 135-150.

[CLZ17] S. Chen, Q.-r. Li, and G. Zhu, On the Lp Monge-Ampère equation, J. Differential Equations
263 (2017), no. 8, 4997–5011.

[CLZ19] S. Chen, Q.-r. Li, and G. Zhu, The logarithmic Minkowski problem for non-symmetric measures,
Trans. Amer. Math. Soc. 371 (2019), no. 4, 2623–2641.

[CW06] K.-S. Chou and X.-J. Wang, The Lp-Minkowski problem and the Minkowski problem in cen-
troaffine geometry, Adv. Math. 205 (2006), 33-83.
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[TTW18] C. Thäle, N. Turchi, and F. Wespi, Random polytopes: central limit theorems for intrinsic
volumes, Proc. Amer. Math. Soc. 146 (2018), no. 7, 3063–3071.

145

dc_1638_19

Powered by TCPDF (www.tcpdf.org)



[TW08] N. S. Trudinger and X.-J. Wang, The Monge-Ampère equation and its geometric applications,
in: Handbook of geometric analysis. No. 1, Adv. Lect. Math. (ALM), 7, Int. Press, Somerville,
MA, (2008), 467-524.

[TW18] N. Turchi and F. Wespi, Limit theorems for random polytopes with vertices on convex surfaces,
Adv. in Appl. Probab. 50 (2018), no. 4, 1227–1245.

[Vu05] V. H. Vu, Sharp concentration of random polytopes, Geom. Funct. Anal. 15 (2005), no. 6,
1284–1318.

[Vu06] V. Vu, Central limit theorems for random polytopes in a smooth convex set, Adv. Math. 207
(2006), no. 1, 221–243.

[WW93] W. Weil and J. A. Wieacker, Stochastic geometry, Handbook of convex geometry, Vol. A, B,
North-Holland, Amsterdam, 1993, pp. 1391–1438.

[Wer07] E. Werner, On Lp-affine surface areas, Indiana Univ. Math. J. 56 (2007), no. 5, 2305–2323.

[WY08] E. Werner and D. Ye, New Lp affine isoperimetric inequalities, Adv. Math. 218 (2008), no. 3,
762–780.

[Wie78] J. A. Wieacker, Einige Probleme der polyedrischen Approximation, 1978. Diplomarbeit —
Albert-Ludwigs-Universität, Freiburg i. Br.

[Zha17] Y. Zhao, The dual Minkowski problem for negative indices, Calc. Var. Partial Differential
Equations 56(2) (2017), Art. 18, 16.

[Zha18] Y. Zhao, Existence of solutions to the even dual Minkowski problem, J. Differential Geom. 110
(2018), no. 3, 543–572.

[Zhu15] G. Zhu, The centro-affine Minkowski problem for polytopes, J. Differ. Geom. 101 (2015),
159-174.

[Zhu17] G. Zhu, The Lp Minkowski problem for polytopes for p < 0, Indiana Univ. Math. J. 66 (2017),
1333-1350.
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