
New Security Mechanisms for Wireless Ad Hoc

and Sensor Networks

Levente Buttyán, Ph.D.

Dissertation submitted to the Hungarian Academy of Sciences
for the title of Doctor of Sciences

Budapest
2020

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

To my father and my late father-in-law

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Abstract

This dissertation contains research results in the field of security and privacy in wireless
ad hoc and sensor networks. While these types of networks have potentially useful ap-
plications, they also represent an interesting challenge in terms of security and privacy.
First of all, in many applications, such networks are envisioned to be deployed in an en-
vironment where the devices cannot enjoy any physical protection. This means that we
must assume that they can be compromised, and we must design our security and privacy
mechanisms in such a way that they do not fail (or fail gradually) in the presence of some
compromised devices. In addition, due to economic viability, devices in wireless ad hoc
and sensor networks are usually constrained in terms of CPU power, memory, communica-
tion range and speed, and available energy. Hence, our security and privacy mechanisms
should be designed with these resource limitations in mind. In this dissertation, we pro-
pose new security and privacy mechanisms that satisfy both of the above requirements:
they can tolerate compromised devices and they also respect the resource constraints of
the network.

We propose a diverse set of mechanisms addressing different problems related to secu-
rity or privacy: we propose a secure on-demand source routing protocol for ad hoc networks
that ensures that nodes discover only existing routes even in the presence of adversarial
nodes; we propose centralized and decentralized algorithms for detecting wormhole at-
tacks in sensor networks; and we propose algorithms to detect and recover from pollution
attacks in coding based distributed storage schemes that may be used by sensor networks
to store and retrieve sensor readings efficiently and reliably. In addition, we propose a
practical design methodology of key-trees for tree-based private authentication schemes
that allow for privacy preserving authentication of resource constrained devices.

Besides the specific mechanisms supporting security or privacy, a major contribution of
our work consists in new models and methods which we propose to analyse the properties
of those mechanisms. In particular, we propose a novel model and a proof technique for
proving routing protocols secure in a rigorous manner, and we use them to show that the
ad hoc network routing protocol that we proposed is indeed secure; we propose a novel
model for studying equilibrium conditions in packet forwarding in ad hoc networks, and
we use that model to derive the necessary conditions for the spontaneous emergence of
cooperation in static ad hoc networks; and we propose a metric to measure the level of
privacy provided by tree-based private authentication schemes, and we give exact and ap-
proximative formulas to compute that metric when one or more devices are compromised.

A more detailed summary of our results and the list of our related publications can be
found at the end of this dissertation in the Summary of results section.

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Contents

Introduction 1

1 Securing on-demand source routing in wireless ad hoc networks 3
1.1 Attacks on existing routing protocols . 4
1.2 Modelling framework for analysing routing protocols 10
1.3 endairA: a provably secure on-demand source routing protocol 19
1.4 Related work . 22
1.5 Summary . 23

2 Cooperative packet forwarding in wireless ad hoc networks 25
2.1 Related work . 25
2.2 Game theoretic model of packet forwarding 27
2.3 Conditions for cooperative and non-cooperative equilibria 32
2.4 On the spontaneous emergence of cooperation 39
2.5 Discussion . 41
2.6 Summary . 43

3 Wormhole detection in wireless sensor networks 45
3.1 Centralized wormhole detection algorithms 46
3.2 Decentralized wormhole detection algorithm 53
3.3 Related work . 55
3.4 Summary . 57

4 Securing coding based distributed storage in wireless sensor networks 59
4.1 System and adversary models . 60
4.2 Attack detection algorithm . 62
4.3 Algorithms for recovering from an attack . 65
4.4 Related work . 74
4.5 Summary . 76

5 Efficient private authentication in resource constrained environments 79
5.1 Resistance to single member compromise . 81
5.2 Optimal trees in case of single member compromise 83
5.3 Analysis of the general case . 85
5.4 Related work . 88
5.5 Summary . 89

Summary of results 91

Final notes and acknowledgements 95

References 97

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Introduction

This dissertation contains research results in the field of security and privacy in wireless ad
hoc and sensor networks. Wireless ad hoc networks are self-organizing wireless networks
of end-user devices, where all networking services are provided by the devices themselves
without the help of any pre-installed infrastructure. Such networks have never been con-
sidered as a replacement of the existing infrastructure based Internet, but at some point
in the past, they were believed to provide an interesting alternative for traditional wire-
less access solutions with some notable advantages. Wireless sensor networks represent
a special application area of ad hoc networking, where the devices are tiny sensors that
also have computing and wireless communication capabilities. The sensors collect mea-
surement data from the environment, and send their data over multiple wireless hops to a
set of few sink nodes, or base stations, for further processing. From the networking point
of view, sensor networks are often considered to be self-organizing ad hoc networks.

While these types of wireless networks have potentially useful applications, they also
represent an interesting challenge in terms of security. The most important challenges
include the lack of physical protection and the scarcity of resources. In many applications,
such networks are envisioned to be deployed in an environment where the devices simply
cannot be protected by physical means. In addition, providing tamper resistance for
devices is expensive, and therefore, it is not a viable option in applications where devices
must be deployed in large quantities (e.g., sensors), and hence, unit cost must be kept
very low. For this reason, we must assume that devices can be compromised, and we must
design our security and privacy mechanisms in such a way that they do not fail in the
presence of such compromised devices. For the same reason of economic viability, devices
in wireless ad hoc and sensor networks are usually constrained in terms of CPU power,
memory, communication range and speed, and available energy. Hence, our security and
privacy mechanisms should be designed with these resource limitations in mind. The new
mechanisms that we propose in this dissertation satisfy the above requirements: they can
tolerate compromised nodes and they also respect the resource constraints of the network.

We grouped our results into 5 sections (thesis groups) as follows:
In Section 1, we study the problem of securing routing protocols in wireless ad hoc

networks. First, we present new attacks on existing routing protocols. Then, we propose
an analysis framework in which security of routing can be accurately defined, and routing
protocols for wireless ad hoc networks can be proved to be secure in a rigorous, mathe-
matical manner. Our framework is tailored for on-demand source routing protocols, but
the general principles are applicable to other types of protocols too. We also propose a
new on-demand source routing protocol, called endairA, and we demonstrate the usage of
our framework by proving that it is secure in our model.

In Section 2, we study another aspect of routing in wireless ad hoc networks, namely,
the function of packet forwarding. As mentioned before, wireless ad hoc networks are often
assumed to be fully self-organizing, where the nodes have to forward packets for each other
in order to enable multi-hop communication. This requires the nodes to cooperate, but
nodes may behave selfishly and jeopardize the operation of the network. Here, we study
if cooperation can emerge spontaneously in static wireless ad hoc networks, without any
explicit incentive mechanism. We propose a model based on game theory to investigate
equilibrium conditions of packet forwarding strategies. We give the conditions under
which cooperation can exist spontaneously, and we perform simulations to estimate the
probability that the conditions for a cooperative equilibrium hold. We conclude that in

1

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

static ad hoc networks – where the relationships between the nodes are likely to be stable
– cooperation is unlikely to emerge spontaneously and it needs to be encouraged.

In Section 3, we address the problem of wormhole attacks in wireless networks. A
wormhole is a fast out-of-band connection between two distant physical locations, which is
established by the attacker for the purpose of tunneling traffic between those two locations.
Wormholes can mislead neighbor discovery protocols, and they can have serious negative
effects on routing in ad hoc networks. To address this problem, we propose three new
wormhole detection mechanisms. Two of our mechanisms use a centralized approach
applicable in wireless sensor networks, and they are both based on statistical hypothesis
testing. Both mechanisms assume that the sensors send their neighbor list to the base
station, and it is the base station that runs the wormhole detection algorithm on the
network graph that is reconstructed from the received neighborhood information. Our
third wormhole detection mechanism follows a decentralized approach applicable in any ad
hoc network, where pairs of nodes can detect locally if they are connected via a wormhole
by using our proposed authenticated distance bounding protocol.

In Section 4, we address the problem of pollution attacks in coding based distributed
storage systems proposed for wireless sensor networks. In a pollution attack, the adversary
maliciously alters some of the stored encoded packets, which results in the incorrect de-
coding of a large part of the original data upon retrieval. We propose algorithms to detect
and recover from such attacks and we study the performance of the proposed algorithms
in terms of communication and computing overhead, and in terms of success rate. In
contrast to existing approaches to solve this problem, our approach is not based on adding
cryptographic checksums or signatures to the encoded packets; rather, we take advantage
of the inherent redundancy in such distributed storage systems.

Finally, in Section 5, we study the problem of efficient privacy preserving authentication
in resource constrained environments, such as sensor networks or RFID systems. More
specifically, we improve an approach that was proposed earlier by others. This approach
uses key-trees, and its basic problem is that the level of privacy provided by the system
to its members decreases considerably if some members are compromised. We analyze
this problem, and show that careful design of the key-tree can help to minimize this loss
of privacy. First, we introduce a benchmark metric for measuring the resistance of the
system to a single compromised member. This metric is based on the well-known concept
of anonymity sets. Then, we show how the parameters of the key-tree should be chosen
in order to maximize the system’s resistance to single member compromise under some
constraints on the authentication delay. In the general case, when any member can be
compromised, we give a lower bound on the level of privacy provided by the system. We
also present some simulation results that show that this lower bound is sharp.

2

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

1 Securing on-demand source routing in wireless ad hoc net-
works

Routing is one of the most basic networking functions in wireless ad hoc networks. Hence,
an adversary can easily paralyze the operation of the network by attacking the routing pro-
tocol. This has been realized by many researchers, and several “secure” routing protocols
have been proposed for ad hoc networks (see [42] for a survey). However, the security of
those protocols have been analyzed either by informal means only, or with formal methods
that have never been intended for the analysis of this kind of protocols (e.g., BAN logic
[16]).

In this section, we present new attacks on exisiting “secure” routing protocols, which
clearly demonstrate that flaws can be very subtle, and therefore, hard to discover by
informal reasoning. Hence, we advocate a more systematic approach to analyzing ad hoc
routing protocols, which is based on a rigorous mathematical model, in which precise
definitions of security can be given, and sound proof techniques can be developed.

Routing has two main functions: route discovery and packet forwarding. The former
is concerned with discovering routes between nodes, whereas the latter is about sending
data packets through the previously discovered routes. There are different types of ad
hoc routing protocols. One can distinguish proactive (e.g., OLSR [25]) and reactive (e.g.,
AODV [65] and DSR [50]) protocols. Protocols of the latter category are also called
on-demand protocols. Another type of classification distinguishes routing table based
protocols (e.g., AODV) and source routing protocols (e.g., DSR). In this work, we focus
on the route discovery part of on-demand source routing protocols. However, in [2], we
show that the general principles of our approach are applicable to the route discovery part
of other types of protocols too.

At a very informal level, security of a routing protocol means that it can perform its
functions even in the presence of an adversary whose objective is to prevent the correct
functioning of the protocol. Since we are focusing on the route discovery part of on-demand
source routing protocols, in our case, attacks are aiming at achieving that honest nodes
receive “incorrect” routes as a result of the route discovery procedure. We will make it
more precise later what we mean by an “incorrect” route.

Regarding the capabilities of the adversary, we assume that it can mount active attacks
(i.e., it can eavesdrop, modify, delete, insert, and replay messages). However, we make
the realistic assumption that the adversary is not all powerful, by which we mean that
it cannot eavesdrop, modify, or control all communications of the honest participants.
Instead, the adversary launches its attacks from a few adversarial nodes that have similar
communication capabilities to the nodes of the honest participants in the network. This
means that the adversary can receive only those messages that were transmitted by one
of its neighbors, and its transmissions can be heard only by its neighbors. The adversarial
nodes may be connected through proprietary, out-of-band channels and share information.
We further assume that the adversary has compromised some identifiers, by which we
mean that it has compromised the cryptographic keys that are used to authenticate those
identifiers. Thus, the adversary can appear as an honest participant under any of these
compromised identities.

The modelling framework that we introduce is based on the so called simulation
paradigm [10, 67], which has already been used extensively for the analysis of key es-
tablishment protocols, but we are the first who apply it in the context of ad hoc routing.

3

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

We also propose a new on-demand source routing protocol, called endairA, and we demon-
strate the usage of our framework by proving that it is secure in our model.

1.1 Attacks on existing routing protocols

THESIS 1.1. I analysed two previously proposed secure ad hoc network routing protocols
SRP [64] and Ariadne [43]. As a result of this analysis, I discovered new, previously
unknown attacks against both protocols. More specifically, I discovered an attack on SRP,
an attack on Ariadne, and an attack on an optimized version of Ariadne. In all of these
attacks, the attacker is able to force the acceptance of a non-existent route with the initiator
of the route discovery procedure of the routing protocol. [C4, J1]

Operation of the SRP protocol

SRP has been proposed in [64] as an extension header for on-demand source routing
protocols such as DSR [50] and the Interzone Routing Protocol of ZRP [38]. In what
follows, we assume that SRP is a stand-alone protocol with basic features similar to that
of DSR. This makes the presentation simpler, and it does not weakens our results.

S→ ∗ : (rreq, S, D, id , sn, macS, ())
B→ ∗ : (rreq, S, D, id , sn, macS, (B))
C→ ∗ : (rreq, S, D, id , sn, macS, (B, C))
D→ C : (rrep, S, D, id , sn, (B, C), macD)
C→ B : (rrep, S, D, id , sn, (B, C), macD)
B→ S : (rrep, S, D, id , sn, (B, C), macD)

Figure 1: Operation example of SRP and format of SRP messages. The identifier of the
initiator of the route discovery is S, the identifier of the target is D, and the identifiers of
the intermediate nodes are B and C. id is a randomly generated query identifier, sn is a
query sequence number maintained by S and D, macS is the MAC generated by S that
covers the fields rreq, S, D, id , and sn, and macD is the MAC generated by D that covers
the fields rrep, S, D, id , sn, and (B, C).

The operation of SRP and the format of SRP messages are illustrated in Figure 1. The
initiator of the route discovery generates a route request message and broadcasts it to its
neighbors. The integrity of this route request is protected by a MAC that is computed
with a key shared by the initiator and the target of the discovery. Each intermediate node
that receives the route request for the first time appends its identifier to the request and
re-broadcasts it. The MAC in the request is not checked by the intermediate nodes (as
they do not know the key with which it was computed), and they do not append their
own MACs either. When the route request reaches the target of the route discovery, it
contains the list of identifiers of the intermediate nodes that passed the request on. This
list is considered as a route found between the initiator and the target.

The target verifies the MAC of the initiator in the request. If the verification is
successful, then it generates a route reply and sends it back to the initiator via the reverse
of the route obtained from the route request. The route reply contains the route obtained
from the route request, and its integrity is protected by another MAC generated by the
target with a key shared by the target and the initiator. Each intermediate node passes
the route reply to the next node on the route (towards the initiator) without modifying

4

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

it. When the initiator receives the reply it verifies the MAC of the target, and if this
verification is successful, then it accepts the route returned in the reply.

The target may receive several route requests that belong to the same route discovery
process1, and it sends a reply to each of these requests. It is assumed that the initiator
waits for some time (possibly defined by a timeout parameter), and then it outputs the
set of routes collected from all the replies it received.

Although SRP does not specify it (as it should be part of the base protocol to which
SRP is added as an extension), we will nonetheless assume that each node also performs
the following verification when processing SRP messages:

• If a node v receives a route request for the first time, then it verifies if the last
identifier of the accumulated route in the request corresponds to a neighbor of v. If
the accumulated route does not contain any identifiers, then v verifies if the identifier
of the initiator corresponds to a neighboring node. If verification fails, then the
request is dropped.

• If an intermediate node v receives a route reply, then it verifies if its identifier is
included in the route carried by the reply. In addition, it also verifies if the identifier
that precedes and the identifier that follows v’s identifier in the route correspond to
neighboring nodes. If there is no preceding identifier, then v verifies if the identifier
of the initiator corresponds to a neighbor. If there is no following identifier, then v
verifies if the identifier of the target corresponds to a neighbor. If verification fails,
then the reply is dropped.

• When the initiator receives a route reply, it verifies if the first identifier in the route
carried by the reply corresponds to a neighboring node. If verification fails, then the
reply is dropped.

These verification steps are quite simple, yet make the protocol more resistant against
attacks by identifying non-existent routes in the protocol messages as early as possible.

An attack on SRP

Let us consider Figure 2, which illustrates part of a configuration where an attack
against SRP is possible.

W

X

Y

V

S D
... ...

A

Figure 2: Part of a configuration where an attack against SRP is possible

The attack scenario is the following: The attacker is denoted by A. Let us assume that
S sends a route request towards D. The request reaches V that re-broadcasts it. Thus, A

1Since the neighbors of the target re-broadcast the request at most once, the target can receive at most
as many requests as the number of its neighbors.

5

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

receives the following route request message:

msg1 = (rreq, S, D, id , sn, macS, (. . . ,V))

where id is a randomly generated request identifier, sn is a sequence number maintained
by S and D, and macS is the initiator’s MAC. Node A then broadcasts the following
message in the name of X:

msg2 = (rreq, S, D, id , sn, macS, (. . . ,V,W, λ,X))

where λ is an arbitrary sequence of identifiers. Since Y is a neighbor of A, it will hear
the transmission. In addition, since the list of nodes in the message ends with X, which
is also a neighbor of Y, it will process the request and re-broadcast it. Later, D sends the
following route reply back to S:

msg3 = (rrep, S, D, id , sn, (. . . ,V,W, λ,X,Y, . . .), macD)

where macD is the MAC of the target. When Y sends this message to X, A overhears the
transmission, and forwards the message to V in the name of W. V will accept the message
and passes it on towards S. Finally, S will output the route (S, . . . ,W, λ,X, . . . ,D), which
is clearly a non-existent route, as λ can be anything.

Note that when A generates msg2, it cannot be sure that V and W are neighbors.
Similarly, it does not know if X and Y are neighbors. Hence the attack may fail. However,
the success probability of the attack is non-negligible, given that V, W, X, and Y are all
neighbors of A, and it is known that in this case, the probability that V and W, as well as
X and Y are also neighbors is significantly higher than if we just put these nodes on the
plane randomly.

Operation of the Ariadne protocol

Ariadne has been proposed in [43] as a secure on-demand source routing protocol for
ad hoc networks. Ariadne comes in three different flavors corresponding to three different
techniques for data authentication. More specifically, authentication of routing messages
in Ariadne can be based on TESLA [66], on digital signatures, or on MACs. Here, we
discuss Ariadne with digital signatures.

There are two main differences between Ariadne and SRP. First, in Ariadne not only
the initiator and the target authenticate the protocol messages, but intermediate nodes
too insert their own digital signatures in route requests. Second, Ariadne uses per-hop
hashing to prevent removal of identifiers from the accumulated route in the route request.
The operation of Ariadne and the format of Ariadne messages are illustrated in Figure 3.

The initiator of the route discovery generates a route request message and broadcasts
it to its neighbors. The route discovery message contains the identifiers of the initiator
and the target, a randomly generated request identifier, and a MAC computed over these
elements with a key shared by the initiator and the target. This MAC is hashed iteratively
by each intermediate node together with its own identifier using a publicly known one-
way hash function. The hash values computed in this way are called per-hop hash values.
Each intermediate node that receives the request for the first time re-computes the per-hop
hash value, appends its identifier to the list of identifiers accumulated in the request, and
generates a digital signature on the updated request. Finally, the signature is appended
to a signature list in the request, and the request is re-broadcast.

6

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

S→ ∗ : (rreq, S, D, id , hS, (), ())
B→ ∗ : (rreq, S, D, id , hB, (B), (sigB))
C→ ∗ : (rreq, S, D, id , hC, (B, C), (sigB, sigC))
D→ C : (rrep, D, S, id , (B, C), (sigB, sigC), sigD)
C→ B : (rrep, D, S, id , (B, C), (sigB, sigC), sigD)
B→ S : (rrep, D, S, id , (B, C), (sigB, sigC), sigD)

Figure 3: Operation example of Ariadne with signatures. The identifier of the initiator
of the route discovery is S, the identifier of the target is D, and the identifiers of the
intermediate nodes are B and C. id is a randomly generated query identifier, hX is the
per-hop hash computed by node X (hS is a MAC computed with a key shared by S and
D, hB = hash(B, hS), and hC = hash(C, hB)), and sigX is the digital signature of node X
that covers all the preceding fields in the message.

When the target receives the request, it verifies the per-hop hash by re-computing the
initiator’s MAC and the per-hop hash value of each intermediate node. Then it verifies all
the digital signatures in the request. If all these verification steps are successful, then the
target generates a route reply and sends it back to the initiator via the reverse of the route
obtained from the route request. The route reply contains the identifiers of the target and
the initiator, the route and the list of digital signatures obtained from the request, and
the digital signature of the target on all these elements. Each intermediate node passes
the reply to the next node on the route (towards the initiator) without any modifications.
When the initiator receives the reply, it verifies the digital signature of the target and the
digital signatures of the intermediate nodes (for this it needs to reconstruct the requests
that the intermediate nodes signed). If the verification is successful, then it accepts the
route returned in the reply.

Figure 4: Part of a configuration where an attack against Ariadne is possible

An attack on Ariadne

Let us consider Figure 4, which illustrates part of a configuration where an attack
against Ariadne is possible. The attacker is denoted by A. Let us assume that S sends a
route request towards D. The request reaches V that re-broadcasts it. Thus, A receives
the following route request message:

msg1 = (rreq, S, D, id , hV, (. . . ,V), (. . . , sigV))

where id is the random request identifier, hV is the per-hop hash value generated by V,
and sigV is the signature of V. Attacker A does not re-broadcast msg1. Later, A receives

7

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

another copy of the same route request from X:

msg2 = (rreq, S, D, id , hX, (. . . ,V,W,X), (. . . , sigV, sigW, sigX))

From msg2, A knows that W is a neighbor of V. A computes hA = hash(A, hash(W, hV)),
where hV is obtained from msg1, and hash is the publicly known hash function used in
the protocol. A obtains the signatures . . . , sigV, sigW from msg2. Then, A generates and
broadcasts the following request:

msg3 = (rreq, S, D, id , hA, (. . . ,V,W, A), (. . . , sigV, sigW, sigA))

Later, D generates the following route reply and sends it back towards S:

msg4 = (rrep, D, S, id , (. . . ,V,W, A, . . .), (. . . , sigV , sigW , sigA, . . .), sigD)

When A receives this route reply, it forwards it to V in the name of W. Finally, S will
output the route (S, . . . ,V,W, A, . . . ,D), which is a non-existent route (as there is no edge
between W and A).

Operation of an optimized version of Ariadne

In [46], an optimized version of Ariadne is proposed, which does not use a per-hop
hash value and a signature list in the route request, but instead, a single MAC is updated
by the intermediate nodes iteratively. It is assumed that each intermediate node shares
a symmetric key with the target node. In this optimized version of Ariadne, the route
request re-broadcast by the i-th intermediate node Fi has the following form:

(rreq, S, D, id , (F1, . . . , Fi−1, Fi), macFi)

where macFi is a MAC computed by Fi with the key that it shares with D on the route
request that it received from Fi−1:

(rreq, S, D, id , (F1, . . . , Fi−1), macFi−1)

with the convention that macF0 = macS.
The authors of [46] proposed this optimized version, because it is more efficient than

the basic protocol in terms of computational and communication overhead. First, there
is no need anymore for the per-hop hash mechanism, since the MACs computed by the
intermediate nodes can play the same role as the per-hop hash values in the original
protocol. Second, route requests are shorter, because they do not contain a per-hop hash
value and they contain only a single MAC instead of a signature list. And finally, the
protocol uses only efficient symmetric key cryptography.

Incidentally, and independently of the authors’ intent, this optimized version also pre-
vents the attack described above, because the adversary cannot access the MACs of the
intermediate nodes in the same way as it can access the signatures of the intermediate
nodes in the original protocol, and therefore, MACs cannot be removed from the route
request at the adversary’s will. For this reason, one may be tempted to believe that the
optimized version of Ariadne is more robust than the original one, but unfortunately, it is
also vulnerable to attacks.

An attack on the optimized version of Ariadne

8

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

S
...

X Y TA

B

C

D
...

Figure 5: Part of a configuration where an attack against the optimized version of Ariadne
is possible

Let us consider the network configuration illustrated in Figure 5. Now we assume an
adversary that controls two adversarial nodes (the black nodes in the figure), and uses two
compromised identifiers X and Y .

S initiates a route discovery toward target T. The first adversarial node receives the
following route request:

msg1 = (rreq, S, T, id , (. . . ,A),macS...A)

The adversary follows the protocol and re-broadcasts the following message:

msg2 = (rreq, S, T, id , (. . . ,A, X),macS...AX)

Both B and C receive msg2 and re-broadcast the appropriate route request messages, but
those are not re-broadcast by the second adversarial node Y .

Some time after the first adversarial node broadcast the route request, it creates a fake
route reply:

msg3 = (rrep, T, S, id , (. . . ,A, X,B, Y, . . .),macS...A)

and sends it to B in the name of Y . Since B has processed the route request, it is in a state
where it is ready to receive a corresponding route reply. In addition, Y is a neighbor of B,
and B is on the node list in msg3. Therefore, B accepts the reply. Note that msg3 contains
the MAC macS...A, which was computed by A on the route request, but B does not notice
this, because intermediate nodes are not supposed to verify MACs in route reply messages
(as those are normally computed with a key shared by the initiator and the target of the
route discovery).

Next, B forwards msg3 to X. The second adversarial node Y overhears this trans-
mission, since it is a neighbor of B. In this way, node Y learns macS...A, and now it can
generate a route request message:

msg4 = (rreq, S, T, id , (. . . ,A, X, Y),macS...AXY)

by first computing the MAC macS...AX on (rreq, S, T, id , (. . . ,A, X),macS...A) with the
compromised key of X, and then computing the MAC macS...AXY on (rreq, S, T, id ,
(. . . ,A, X, Y),macS...AX) with the compromised key of Y . This request is broadcast by
the second adversarial node, and it is processed by D and all subsequent nodes.

Since the iterated MAC verifies correctly at the target T, it creates a route reply:

msg5 = (rrep, T, S, id , (. . . ,A, X, Y,D, . . .),macT)

where macT is a MAC computed on the reply with the key shared by S and T. When this
reply reaches the second adversarial node Y , it modifies it as follows:

msg6 = (rrep, T, S, id , (. . . ,A, X,C, Y,D, . . .),macT)

9

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

and sends it to C. Since C cannot verify the MAC in the reply, it does not notice the
modification made by the second adversarial node. In addition, C has not received any
reply yet, and therefore, it accepts msg6 and forwards it to X. Then, the first adversarial
node removes C from the node list, and sends the original msg5 to A. At the end, S
receives the same reply sent by T, therefore the MAC verifies correctly, and S accepts the
route (S, . . . ,A, X, Y,D, . . . ,T), which is non-existent (as there is no edge between X and
Y).

1.2 Modelling framework for analysing routing protocols

THESIS 1.2. I propose a novel modelling framework that allows for a precise definition of
routing security and rigorous proofs about the security of routing protocols. My definition
of routing security and the proposed method to prove protocols secure are based on the
simulation paradigm known from the cryptographic literature, but I am the first to apply it
in the context of ad hoc network routing protocols. In this thesis, I introduce the elements
of the model, then I formally define what security of the route discovery part of on-demand
source routing protocols mean, and I propose a proof technique that can be used in practice
to prove the security of routing protocols. [J1]

The attacks we discovered clearly show that security flaws in ad hoc routing protocols
can be very subtle. Consequently, making claims about the security of a routing proto-
col based on informal arguments only is dangerous. Hence, we propose a mathematical
framework, which allows us to define the notion of routing security precisely and to prove
that a protocol satisfies our definition of security. It is important to emphasize that the
proposed framework is best suited for proving that a protocol is secure (if it really is), but
it is not directly usable to discover attacks against routing protocols that are flawed. We
note, however, that such attacks may be discovered indirectly by attempting to prove that
the protocol is secure, and examining where the proof fails.

Our framework is based on the simulation paradigm [10, 67]. In this approach, two
models are constructed for the protocol under investigation: a real-world model, which
describes the operation of the protocol with all its details in a particular computational
model, and an ideal-world model, which describes the protocol in an abstract way mainly
focusing on the services that the protocol should provide. One can think of the ideal-
world model as a description of a specification, and the real-world model as a description
of an implementation. Both models contain adversaries. The real-world adversary is an
arbitrary process, while the abilities of the ideal-world adversary are usually constrained.
The ideal-world adversary models the tolerable imperfections of the system; these are
attacks that are unavoidable or very costly to defend against, and hence, they should
be tolerated instead of being completely eliminated. The protocol is said to be secure if
the real-world and the ideal-world models are equivalent, where the equivalence is defined
as some form of indistinguishability (e.g., statistical or computational) from the point of
view of the honest protocol participants. Technically, security of the protocol is proven by
showing that the effects of any real-world adversary on the execution of the real protocol
can be simulated by an appropriately chosen ideal-world adversary in the ideal-world
model.

In the rest of this section, we describe the construction of the real-world model and the
ideal-world model, we give a precise definition of security, and briefly discuss a proof tech-
nique, which can be used to prove that a given routing protocol satisfies our definition. We
begin the description of the models by introducing two important notions: configurations
and plausible routes.

10

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Configurations and plausible routes

The adversary launches its attacks from adversarial nodes that have similar commu-
nication capabilities to the non-adversarial nodes. In addition, we allow the adversarial
nodes to communicate with each other via out-of-band channels. We make the observation
that if some adversarial nodes are allowed to share information in real-time via out-of-
band channels, then essentially they can appear as a single “super node” to the rest of
the network. In particular, they can establish out-of-band “tunnels” between themselves
that would be transparent to the route discovery mechanism, and hence, impossible to
discover by any means (at least at the level of routing). Our model takes this fact into
consideration as described below.

We model the ad hoc network (in a given instance of time) as an undirected graph
G(V,E), where V is the set of vertices, and E is the set of edges. Each vertex represents
either a single non-adversarial node, or a set of adversarial nodes that can share information
among themselves by communicating via direct wireless links or via out-of-band channels.
The former is called a non-adversarial vertex, while the latter is called an adversarial
vertex. The set of adversarial vertices is denoted by V ∗, and V ∗ ⊂ V .

There is an edge between two non-adversarial vertices if the corresponding non-adversarial
nodes established a wireless link between themselves by successfully running the neighbor
discovery protocol. Furthermore, there is an edge between a non-adversarial vertex u and
an adversarial vertex v∗ if the non-adversarial node that corresponds to u established a
wireless link with at least one of the adversarial nodes that correspond to v∗. Finally, there
is no edge between two adversarial vertices in G. The rationale is that edges represent
direct wireless links, and if two adversarial vertices u∗ and v∗ were connected, then there
would be at least two adversarial nodes, one corresponding to u∗ and the other corre-
sponding to v∗, that could communicate with each other directly. That would mean that
the adversarial nodes in u∗ and v∗ could share information via those two connected nodes,
and thus, they should belong to a single vertex in G.

This model can capture the situation when all the adversarial nodes are connected
via out-of-band channels. In that case, there is a single adversarial vertex in G, which is
connected to all the non-adversarial vertices such that the corresponding non-adversarial
nodes can communicate with the adversarial nodes via direct wireless links. In addition,
our model can also capture the more general situation when there are multiple disjoint sets
of adversarial nodes that can communicate via out-of-band channels only within their sets;
in that case, each of those sets are represented by an adversarial vertex in G. The attacks
presented in the previous section belong to this latter case, because they are carried out
without any out-of-band communication between the adversarial nodes.

We assume that nodes are identified by identifiers in the neighbor discovery protocol
and in the routing protocol. The identifiers are authenticated during neighbor discovery,
and therefore, the possibility of a Sybil attack [31] is excluded. We also assume that
wormholes [44] are detected at the neighbor discovery level, which means that nodes that
are not within each other’s radio range are not able to run the neighbor discovery protocol
successfully. Hence, the edges in E represent pure radio links.

We assume that the adversary has compromised some identifiers, by which we mean
that the adversary has compromised the cryptographic keys that are necessary to authen-
ticate those identifiers. We assume that all the compromised identifiers are distributed to
all the adversarial nodes, and they are used in the neighbor discovery protocol and in the
routing protocol. On the other hand, we assume that each non-adversarial node uses a

11

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

single and unique identifier, which is not compromised. We denote the set of all identifiers
by L, and the set of the compromised identifiers by L∗.

Let L : V → 2L be a labelling function, which assigns to each vertex in G a set
of identifiers in such a way that for every vertex v ∈ V \ V ∗, L(v) is a singleton, and it
contains the non-compromised identifier ` ∈ L\L∗ that is used by the non-adversarial node
represented by vertex v; and for every vertex v ∈ V ∗, L(v) contains all the compromised
identifiers in L∗.

A configuration is a triplet (G(V,E), V ∗,L). Figure 6 illustrates a configuration, where
the solid black vertices are the vertices in V ∗, and each vertex is labelled with the set of
identifiers that L assigns to it. Note that the vertices in V ∗ are not neighboring.

Figure 6: Illustration of a configuration. Adversarial vertices u∗ and v∗ are represented by
solid black dots. Labels on the vertices are identifiers used by the corresponding nodes.
Note that adversarial vertices are not neighboring.

We make the assumption that the configuration is static (at least during the time
interval that is considered in the analysis). Thus, we view the route discovery part of the
routing protocol as a distributed algorithm that operates on this static configuration.

Intuitively, the minimum that one may require from the route discovery part of the
routing protocol is that it returns only existing routes. Our definition of routing security
is built on this intuition. We understand that security of routing may be viewed more
broadly, including other issues such as detecting and avoiding nodes that drop data packets.
However, we deliberately restrict ourselves to the minimum requirement, because it is
already challenging to properly formalize that.

Now, we make it more precise what we mean by an existing route. If there was no
adversary, then a sequence `1, `2, . . . , `n (n ≥ 2) of identifiers would be an existing route
given that each of the identifiers `1, `2, . . . , `n are different, and there exists a sequence
v1, v2, . . . , vn of vertices in V such that (vi, vi+1) ∈ E for all 1 ≤ i < n and L(vi) = {`i}
for all 1 ≤ i ≤ n. However, the situation is more complex due to the adversary that can
use all the compromised identifiers in L∗. Essentially, we must take into account that the
adversary can always extend any route that passes through an adversarial vertex with any
sequence of compromised identifiers. This is a fact that our definition of security must
tolerate, since otherwise we cannot hope that any routing protocol will satisfy it. This
observation leads to the following definition:

Definition 1.1 (Plausible route). Let (G(V,E), V ∗,L) be a configuration. A sequence
`1, `2, . . . , `n of identifiers is a plausible route with respect to (G(E, V), V ∗,L) if each of the
identifiers `1, `2, . . . , `n is different, and there exists a sequence v1, v2, . . . , vk (2 ≤ k ≤ n)
of vertices in V and a sequence j1, j2, . . . , jk of positive integers such that

12

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

1. j1 + j2 + . . .+ jk = n,

2. {`Ji+1, `Ji+2, . . . , `Ji+ji} ⊆ L(vi) (1 ≤ i ≤ k), where Ji = j1 + j2 + . . .+ ji−1 if i > 1
and Ji = 0 if i = 1,

3. (vi, vi+1) ∈ E (1 ≤ i < k).

Intuitively, the definition above requires that the sequence `1, `2, . . . , `n of identifiers
can be partitioned into k sub-sequences of length ji (condition 1) in such a way that each of
the resulting partitions is a subset of the identifiers assigned to a vertex in V (condition 2),
and in addition, these vertices form a path in G (condition 3).

As an example let us consider again the configuration in Figure 6. It is easy to verify
that (`1, `2, `3, `4, `5) = (A,X, Y,G,C) is a plausible route, because it can be partitioned
into four partitions {A}, {X,Y }, {G}, and {C}, such that {A} ⊆ L(a), {X,Y } ⊂ L(u∗),
{G} ⊆ L(g), and {C} ⊆ L(c), and vertices a, u∗, g, and c form a path in the graph. In
this example, k = 4, j1 = 1, j2 = 2, j3 = 1, and j4 = 1, furthermore, J1 = 0, J2 = j1 = 1,
J3 = j1 + j2 = 3, and J4 = j1 + j2 + j3 = 4.

Real-world model

Next, we need to define a computational model that can be used to represent the
possible executions of the route discovery part of the routing protocol. The real-world
model that corresponds to a configuration conf = (G(V,E), V ∗,L) and adversary A is
denoted by Sys realconf ,A, and it is illustrated on the left side of Figure 7. Sys realconf ,A consists of a
set {M1, . . . ,Mn, A1, . . . , Am, H,C} of interacting Turing machines, where the interaction
is realized via common tapes. Each Mi represents a non-adversarial vertex in V \V ∗ (more
precisely the corresponding non-adversarial node), and each Aj represents an adversarial
vertex in V ∗ (more precisely the corresponding adversarial nodes). H is an abstraction of
higher-layer protocols run by the honest parties, and C models the radio links represented
by the edges in E. All machines apart from H are probabilistic.

Each machine is initialized with some input data, which determines its initial state.
In addition, the probabilistic machines also receive some random input (the coin flips to
be used during the operation). Once the machines have been initialized, the computation
begins. The machines operate in a reactive manner, which means that they need to be
activated in order to perform some computation. When a machine is activated, it reads
the content of its input tapes, processes the received data, updates its internal state, writes
some output on its output tapes, and goes back to sleep (i.e., starts to wait for the next
activation). Reading a message from an input tape removes the message from the tape,
while writing a message on an output tape means that the message is appended to the
current content of the tape. Note that each tape is considered as an output tape for one
machine and an input tape for another machine. The machines are activated in rounds by
a hypothetic scheduler (not illustrated in Figure 7). In each round, the scheduler activates
the machines in the following order: A1, . . . , Am, H,M1, . . . ,Mn, C. In fact, the order of
activation is not important, apart from the requirement that C must be activated at the
end of the round. Thus, the round ends when C goes back to sleep.

Now, we describe the operation of the machines in more detail:

• Machine C: This machine is intended to model the broadcast nature of radio com-
munications. Its task is to read the content of the output tape of each machine Mi

and Aj and copy it on the input tapes of all the neighboring machines, where the
neighbor relationship is determined by the configuration conf . Clearly, in order for

13

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Figure 7: Interconnection of the machines in Sys realconf ,A (on the left side) and in Sys idealconf ,A
(on the right side)

C to be able to work, it needs to be initialized with some random input, denoted by
rC , and configuration conf .

• Machine H: This machine models higher-layer protocols (i.e., protocols above the
routing protocol) and ultimately the end-users of the non-adversarial devices. H can
initiate a route discovery process at any machine Mi by placing a request (ci, `tar)
on tape req i, where ci is a sequence number used to distinguish between different
requests sent to Mi, and `tar ∈ L is the identifier of the target of the discovery. A
response to this request is eventually returned via tape res i. The response has the
form (ci, routes), where ci is the sequence number of the corresponding request, and
routes is the set of routes found. In some protocols, routes is always a singleton, in
others it may contain several routes. If no route is found, then routes = ∅.
In addition to req i and res i, H can access the tapes ext j . These tapes model an
out-of-band channel through which the adversary can instruct the honest parties
to initiate route discovery processes. The messages read from ext j have the form
(`ini , `tar), where `ini , `tar ∈ L are the identifiers of the initiator and the target,
respectively, of the route discovery requested by the adversary. When H reads
(`ini , `tar) from ext j , it places a request (ci, `tar) in req i where i is the index of the
machine Mi that has identifier `ini assigned to it (see also the description of how
the machines Mi are initialized). In order for this to work, H needs to know which
identifier is assigned to which machine Mi; it receives this information as an input
in the initialization phase.

• Machine Mi (1 ≤ i ≤ n): These machines represent the non-adversarial vertices in

14

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

V \ V ∗. The operation of Mi is essentially defined by the routing algorithm. Mi

communicates with H via its input tape req i and its output tape res i. Through
these tapes, it receives requests from H for initiating route discoveries and sends the
results of the discoveries to H, as described above.

Mi communicates with the other protocol machines via its output tape out i and
its input tape ini. Both tapes can contain messages of the form (sndr , rcvr ,msg),
where sndr ∈ L is the identifier of the sender, rcvr ∈ L ∪ {∗} is the identifier of
the intended receiver (∗ meaning a broadcast message), and msg ∈M is the actual
protocol message. Here, M denotes the set of all possible protocol messages, which
is determined by the routing protocol under investigation.

When Mi is activated, it first reads the content of req i. For each request (ci, `tar)
received from H, it generates a route request msg , updates its internal state accord-
ing to the routing protocol, and then, it places the message (L(Mi), ∗,msg) on out i,
where L(Mi) denotes the identifier assigned to machine Mi.

When all the requests found on req i have been processed, Mi reads the content of ini.
For each message (sndr , rcvr ,msg) found on ini, Mi checks if sndr is its neighbor
and rcvr ∈ {L(Mi), ∗}. If these verifications fail, then Mi ignores msg . Otherwise,
Mi processes msg and updates its internal state. The way this is done depends on
the particular routing protocol in question.

We describe the initialization of Mi after describing the operation of machines Aj .

• Machine Aj (1 ≤ j ≤ m): These machines represent the adversarial vertices in V ∗.
Regarding its communication capabilities, Aj is identical to any machine Mi, which
means that it can read from in∗j and write on out∗j much in the same way as Mi can
read from and write on ini and out i, respectively. In particular, this means that
Aj cannot receive messages that were sent by machines that are not neighbors of
Aj . It also means that “rushing” is not allowed in our model (i.e., Aj must send its
messages in a given round before it receives the messages of the same round from
other machines). We intend to extend our model and study the effect of “rushing”
in our future work.

While its communication capabilities are similar to that of the non-adversarial ma-
chines, Aj may not follow the routing protocol faithfully. In fact, we place no
restrictions on the operation of Aj apart from being polynomial-time in the security
parameter (e.g., the key size of the cryptographic primitives used in the protocol)
and in the size of the network (i.e., the number of vertices). This allows us to con-
sider arbitrary attacks during the analysis. In particular, Aj may delay or delete
messages that it would send if it followed the protocol faithfully. In addition, it can
modify messages and generate fake ones.

In addition, Aj may send out-of-band requests to H by writing on ext j as described
above. This gives the power to the adversary to specify who starts a route discovery
process and towards which target. Here, we make the restriction that the adversary
initiates a route discovery only between non-adversarial machines, or in other words,
for each request (`ini, `tar) that Aj places on ext j , `ini, `tar ∈ L \ L∗ holds.

Note that each Aj can write several requests on ext j , which means that we allow
several parallel runs of the routing protocol. On the other hand, we restrict each
Aj to write on ext j only once, at the very beginning of the computation (i.e., before
receiving any messages from other machines). This essentially means that we assume

15

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

that the adversary is non-adaptive; it cannot initiate new route discoveries as a
function of previously observed messages. We intend to extend our model with
adaptive adversaries in our future work.

As it can be seen from the description above, each Mi should know its own assigned
identifier, and those of its neighbors in G. Mi receives these identifiers in the initializa-
tion phase. Similarly, each Aj receives the identifiers of its neighbors and the set L∗ of
compromised identifiers.

In addition, the machines may need some cryptographic material (e.g., public and
private keys) depending on the routing protocol under investigation. We model the dis-
tribution of this material as follows. We assume a function I, which takes only random
input rI , and it produces a vector I(rI) = (κpub , κ1, . . . , κn, κ

∗). The component κpub is
some public information that becomes known to all Aj and all Mi. κi becomes known
only to Mi (1 ≤ i ≤ n), and κ∗ becomes known to all Aj (1 ≤ j ≤ m). Note that the
initialization function can model the out-of-band exchange of initial cryptographic mate-
rial of both asymmetric and symmetric cryptosystems. In the former case, κpub contains
the public keys of all machines, while κi contains the private key that corresponds to the
non-compromised identifier L(Mi), and κ∗ contains the private keys corresponding to the
compromised identifiers in L∗. In the latter case, κpub is empty, κi contains the symmetric
keys known to Mi, and κ∗ contains the symmetric keys known to the adversary (i.e., all
Aj).

Finally, all Mi and all Aj receive some random input in the initialization phase. The
random input of Mi is denoted by ri, and that of Aj is denoted by r∗j .

The computation ends when H reaches one of its final states. This happens when H
receives a response to each of the requests that it placed on the tapes req i (1 ≤ i ≤ n).
The output of Sys realconf ,A is the sets of routes found in these responses. We will denote the

output by Out realconf ,A(r), where r = (rI , r1, . . . , rn, r
∗
1, . . . , r

∗
m, rC). In addition, Out realconf ,A

will denote the random variable describing Out realconf ,A(r) when r is chosen uniformly at
random.

Ideal-world model

The ideal-world model that corresponds to a configuration conf = (G(V,E), V ∗,L)
and adversary A is denoted by Sys idealconf ,A, and it is illustrated on the right side of Figure 7.
One can see that the ideal-world model is very similar to the real-world one. Just like
in the real-world model, here as well, the machines are interactive Turing machines that
operate in a reactive manner, and they are activated by a hypothetic scheduler in rounds.
The tapes work in the same way as they do in the real-world model. There is only a small
(but important) difference between the operation of M ′i and Mi, and that of C ′ and C.
Below, we will focus on this difference.

Our notion of security is related to the requirement that the routing protocol should
return only plausible routes. The differences between the operation of M ′i and Mi, and C ′

and C, will ensure that this requirement is always satisfied in the ideal-world model. In
fact, the ideal-world model is meant to be ideal exactly in this sense.

The main idea is the following: Since C ′ is initialized with conf , it can easily identify
and mark those route reply messages that contain non-plausible routes. A marked route
reply is processed by each machine M ′i in the same way as a non-marked one (i.e., the
machines ignore the marker) except for the machine that initiated the route discovery
process to which the marked route reply belongs. The initiator first performs all the

16

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

verifications on the route reply that the routing protocol requires, and if the message
passes all these verifications, then it also checks if the message is marked as non-plausible.
If so, then it drops the message, otherwise it continues processing (e.g., returns the received
route to H). This ensures that in the ideal-world model, every route reply that contains
a non-plausible route is caught and filtered out by the initiator of the route discovery2.

Now, we describe the operation of M ′i and C ′ in more detail:

• Machine M ′i (1 ≤ i ≤ n): The main difference between M ′i and Mi is that M ′i is
prepared to process messages that contain a plausibility flag. The messages that are
placed on tape in ′i have the form (sndr , rcvr , (msg , pf)), where sndr , rcvr , and msg
are defined in the same way as in the real-world model, and pf ∈ {true, false, undef}
is the plausibility flag, which indicates whether msg is a route request (pf = undef),
or it is a route reply and it contains only plausible routes (pf = true) or it contains
a non-plausible route (pf = false). When machine M ′i reads (sndr , rcvr , (msg , pf))
from in ′i, it verifies if sndr is its neighbor and rcvr ∈ {L(M ′i), ∗}. If these verifications
are successful, then it performs the verifications required by the routing protocol on
msg (e.g., it checks digital signatures, MACs, the route or route segment in msg ,
etc.). In addition, if msg is a route reply that belongs to a route discovery that
was initiated by M ′i , then M ′i also checks if pf = false. If so, then M ′i drops msg ,
otherwise it continues processing it. If msg is not a route reply or M ′i is not the
initiator, then pf is ignored. The messages generated by M ′i have no plausibility flag
attached to them, and they are placed in out i.

• Machine C ′: Just like C, C ′ copies the content of the output tape of each M ′i and
Aj onto the input tapes of the neighboring machines. However, before copying a
message (sndr , rcvr ,msg) on any tape in ′i, C

′ attaches a plausibility flag pf to msg .
This is done in the following way:

– if msg is a route request, then C ′ sets pf to undef;

– if msg is a route reply and all routes carried by msg are plausible with respect
to the configuration conf , then C ′ sets pf to true;

– otherwise C ′ sets pf to false.

Note that C ′ does not attach plausibility flags to messages that are placed on the
tapes in∗j . Hence, the input and the output tapes of all Aj contain messages of the
same format as in the real-world model, which makes it easy to “plug” a real-world
adversary into the ideal-world model.

Before the computation begins, each machine is initialized with some input data. This
is done in the same way as in the real-world model. The computation ends when H
reaches one of its final states. This happens when H receives a response to each of the
requests that it placed on the tapes req i 1 ≤ i ≤ n. The output of Sys idealconf ,A is the sets

of routes returned in these responses. We will denote the output by Out idealconf ,A(r), where

r = (rI , r1, . . . , rn, r
∗
1, . . . , r

∗
m, rC). Out idealconf ,A will denote the random variable describing

Out idealconf ,A(r) when r is chosen uniformly at random.

2Of course, marked route reply messages can also be dropped earlier during the execution of the protocol
for other reasons. What we mean is that if they are not caught earlier, then they are surely removed at
latest by the initiator of the route discovery to which they belong.

17

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Definition of routing security

Now, we are ready to introduce our definition of secure routing:

Definition 1.2 (Routing security). A routing protocol is said to be secure if, for any
configuration conf and any real-world adversary A, there exists an ideal-world adversary
A′, such that Out realconf ,A

s
= Out idealconf ,A′ , where

s
= means “statistically indistinguishable” 3.

Intuitively, security of a routing protocol means that the effect of any real-world ad-
versary in the real-world model can be simulated “almost perfectly” by an ideal-world
adversary in the ideal-world model. Since, by definition, no ideal-world adversary can
achieve that a non-plausible route is accepted in the ideal-world model, it follows that
no real-world adversary can exist that can achieve that a non-plausible route is accepted
with non-negligible probability in the real-world model, because if such a real-world ad-
versary existed, then no ideal-world adversary could simulate it “almost perfectly”. In
other words, if a routing protocol is secure, then it can return non-plausible routes only
with negligible probability in the real-world model. This negligible probability is related
to the fact that the adversary can always forge the cryptographic primitives (e.g., generate
a valid digital signature) with a very small probability.

Proposed proof technique

In order to prove the security of a given routing protocol, one has to find the appropriate
ideal-world adversaryA′ for any real-world adversaryA such that Definition 1.2 is satisfied.
Due to the constructions of our models, a natural candidate is A′ = A. This is because for
any configuration conf , the operation of Sys realconf ,A can easily be simulated by the operation

of Sys idealconf ,A assuming that the two systems were initialized with the same random input
r. In order to see this, let us assume for a moment that no message is dropped due
to its plausibility flag being false in Sys idealconf ,A. In this case, Sys realconf ,A and Sys idealconf ,A are
essentially identical, meaning that in each step, the state of the corresponding machines
and the content of the corresponding tapes are the same (apart from the plausibility flags
attached to the messages in Sys idealconf ,A). Since the two systems are identical, Out realconf ,A(r) =

Out idealconf ,A(r) holds for every r, and thus, we have Out realconf ,A
s
= Out idealconf ,A.

However, if some route reply messages are dropped in Sys idealconf ,A due to their plausibility

flags being set to false, then Sys realconf ,A and Sys idealconf ,A may end up in different states and
their further steps may not match each other, since those messages are not dropped in
Sys realconf ,A (by definition, they have already successfully passed all verifications required by
the routing protocol). We call this situation a simulation failure. In case of a simulation
failure, it might be that Out realconf ,A(r) 6= Out idealconf ,A(r). Nevertheless, the definition of
security can still be satisfied, if simulation failures occur only with negligible probability.
Hence, when trying to prove security, one tries to prove that for any configuration conf
and adversary A, the event of dropping a route reply in Sys idealconf ,A due to its plausibility
flag being set to false can occur only with negligible probability.

3Two random variables are statistically indistinguishable if the L1 distance of their distributions is
negligibly small. In fact, it is possible to give a weaker definition of security, where instead of statistical
indistinguishability, we require computational indistinguishability. Two random variables are computa-
tionally indistinguishable if no feasible algorithm can distinguish their samples (although their distribution
may be completely different). Clearly, statistical indistinguishability implies computational indistinguisha-
bility, but not vice versa, therefore, computational security is a weaker notion. Here, we will only use the
concept of statistical indistinguishability.

18

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Note that if the above statement cannot be proven, then the protocol can still be secure,
because it might be possible to prove the statement for another ideal-world adversary
A′ 6= A. In practice, however, failure of a proof in the case of A′ = A usually indicates
a problem with the protocol, and often, one can construct an attack by looking at where
the proof failed.

1.3 endairA: a provably secure on-demand source routing protocol

THESIS 1.3. I propose a new on-demand source routing protocol for ad hoc networks,
called endairA, and I prove, using the above defined mathematical framework, that it is
secure. [J1]

Inspired by Ariadne with digital signatures, we designed a routing protocol that can
be proven to be secure according to the definition above. We call the protocol endairA
(which is the reverse of Ariadne), because instead of signing the route request, we propose
that intermediate nodes should sign the route reply. Here, we describe the operation of
the basic endairA protocol, and we prove it to be secure.

The operation and the messages of endairA are illustrated in Figure 8. In endairA,
the initiator of the route discovery process generates a route request, which contains the
identifiers of the initiator and the target, and a randomly generated request identifier.
Each intermediate node that receives the request for the first time appends its identifier
to the route accumulated so far in the request, and re-broadcasts the request. When
the request arrives to the target, it generates a route reply. The route reply contains
the identifiers of the initiator and the target, the accumulated route obtained from the
request, and a digital signature of the target on these elements. The reply is sent back to
the initiator on the reverse of the route found in the request. Each intermediate node that
receives the reply verifies that its identifier is in the node list carried by the reply, and that
the preceding identifier (or that of the initiator if there is no preceding identifier in the
node list) and the following identifier (or that of the target if there is no following identifier
in the node list) belong to neighboring nodes. Each intermediate node also verifies that
the digital signatures in the reply are valid and that they correspond to the following
identifiers in the node list and to the target. If these verifications fail, then the reply is
dropped. Otherwise, it is signed by the intermediate node, and passed to the next node
on the route (towards the initiator). When the initiator receives the route reply, it verifies
if the first identifier in the route carried by the reply belongs to a neighbor. If so, then
it verifies all the signatures in the reply. If all these verifications are successful, then the
initiator accepts the route.

The proof of the following theorem illustrates how the framework introduced in Sec-
tion 1.2 can be used in practice.

Theorem 1.1. endairA is secure if the signature scheme is secure against chosen message
attacks.

Proof. We provide only a sketch of the proof. We want to show that for any configura-
tion conf = (G(V,E), V ∗,L) and any adversary A, a route reply message in Sys idealconf ,A is
dropped due to its plausibility flag set to false with negligible probability.

In what follows, we will refer to non-adversarial machines with their identifiers. Let
us suppose that the following route reply is received by a non-adversarial machine `ini in
Sys idealconf ,A:

msg = (rrep, `ini , `tar , (`1, . . . , `p), (sig`tar , sig`p , . . . , sig`1))

19

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

S → ∗ : (rreq, S, T, id , ())
A→ ∗ : (rreq, S, T, id , (A))
B → ∗ : (rreq, S, T, id , (A,B))
T → B : (rrep, T, S, id , (A,B), (sigT))
B → A : (rrep, T, S, id , (A,B), (sigT , sigB))
A→ S : (rrep, T, S, id , (A,B), (sigT , sigB, sigA))

Figure 8: An example for the operation and messages of endairA. The initiator of the
route discovery is S, the target is T , and the intermediate nodes are A and B. id is a
randomly generated request identifier. sigA, sigB, and sigT are digital signatures of A,
B, and T , respectively. Each signature is computed over the message fields (including the
signatures) that precede the signature.

Let us suppose that msg passes all the verifications required by endairA at `ini , which
means that all signatures in msg are correct, and `ini has a neighbor that uses the identifier
`1. Let us further suppose that msg has been received with a plausibility flag set to false,
which means that (`ini , `1, . . . , `p, `tar) is a non-plausible route in conf . Hence, msg is
dropped due to its plausibility flag being false.

Recall that, by definition, adversarial vertices cannot be neighbors. In addition, each
non-adversarial vertex has a single and unique non-compromised identifier assigned to
it. It follows that every route, including (`ini , `1, . . . , `p, `tar), has a unique meaningful
partitioning, which is the following: each non-compromised identifier, as well as each
sequence of consecutive compromised identifiers should form a partition.

Let P1, P2, . . . , Pk be the unique meaningful partitioning of the route (`ini , `1, . . . , `p, `tar).
The fact that this route is non-plausible implies that at least one of the following two state-
ments holds:

• Case 1: There exist two partitions Pi = {`j} and Pi+1 = {`j+1} such that both
`j and `j+1 are non-compromised identifiers, and the corresponding non-adversarial
vertices are not neighbors.

• Case 2: There exist three partitions Pi = {`j}, Pi+1 = {`j+1, . . . , `j+q}, and
Pi+2 = {`j+q+1} such that `j and `j+q+1 are non-compromised and `j+1, . . . , `j+q
are compromised identifiers, and the non-adversarial vertices that correspond to `j
and `j+q+1, respectively, have no common adversarial neighbor.

We show that in both cases, the adversary must have forged the digital signature of a
non-adversarial machine.

In Case 1, machine `j+1 does not sign the route reply, since it is non-adversarial and
it detects that the identifier that precedes its own identifer in the route does not belong
to a neighboring machine. Hence, the adversary must have forged sig`j+1

in msg .
In Case 2, the situation is more complicated. Let us assume that the adversary has

not forged the signature of any of the non-adversarial machines. Machine `j must have
received

msg ′ = (rrep, `ini , `tar , (`1, . . . , `p), (sig`tar , sig`p , . . . , sig`j+1
))

from an adversarial neighbor, say A, since `j+1 is compromised, and thus, a non-adversarial
machine would not send out a route reply message with sig`j+1

. In order to generate msg ′,
machine A must have received

msg ′′ = (rrep, `ini , `tar , (`1, . . . , `p), (sig`tar , sig`p , . . . , sig`j+q+1
))

20

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

because by assumption, the adversary has not forged the signature of `j+q+1, which is
non-compromised. Since A has no adversarial neighbor, it could have received msg ′′ only
from a non-adversarial machine. However, the only non-adversarial machine that would
send out msg ′′ is `j+q+1. This would mean that A is a common adversarial neighbor of
`j and `j+q+1, which contradicts the assumption of Case 2. This means that our original
assumption cannot be true, and hence, the adversary must have forged the signature of a
non-adversarial machine.

It should be intuitively clear that if the signature scheme is secure, then the adversary
can forge a signature only with negligible probability, and thus, a route reply message in
Sys idealconf ,A is dropped due to its plausibility flag set to false only with negligible probability.
Nevertheless, we sketch how this could be proven formally. The proof is indirect. We
assume that there exist a configuration conf and an adversary A such that a route reply
message in Sys idealconf ,A is dropped due to its plausibility flag set to false with probability
ε, and then, based on that, we construct a forger F that can break the signature scheme
with probability ε/n. If ε is non-negligible, then so is ε/n, and thus, the existence of F
contradicts with the assumption about the security of the signature scheme.

The construction of F is the following. Let puk be an arbitrary public key of the
signature scheme. Let us assume that the corresponding private key prk is not known to
F , but F has access to a signing oracle that produces signatures on submitted messages
using prk . F runs a simulation of Sys idealconf ,A where all machines are initialized as described
in the model, except that the public key of a randomly selected non-adversarial machine
`i is replaced with puk . During the simulation, whenever `i signs a message m, F submits
m to the oracle, and replaces the signature of `i on m with the one produced by the oracle.
This signature verifies correctly on other machines later, since the public verification key
of `i is replaced with puk . By assumption, with probability ε, the simulation of Sys idealconf ,A
will result in a route reply message msg such that all signatures in msg are correct and
msg contains a non-plausible route. As we saw above, this means that there exists a non-
adversarial machine `j such that msg contains the signature sig`j of `j , but `j has never
signed (the corresponding part of) msg . Let us assume that i = j. In this case, sig`j
is a signature that verifies correctly with the public key puk . Since `j did not sign (the
corresponding part of) msg , F did not call the oracle to generate sig`j . This means that
F managed to produce a signature on a message that verifies correctly with puk . Since F
selected `i randomly, the probability of i = j is 1

n , and hence, the success probability of
F is ε/n.

Besides being provably secure, endairA has another significant advantage over Ariadne
(and similar protocols): it is more efficient, because it requires less cryptographic compu-
tation overall from the nodes. This is because in endairA, only the processing of the route
reply messages involves cryptographic operations, and a route reply message is processed
only by those nodes that are in the node list carried in the route reply. In contrast to
this, in Ariadne, the route request messages need to be digitally signed by all intermediate
nodes; however, due to the way a route request is propagated, this means that each node
in the network must sign each and every route request.

Practical extensions to the basic endairA protocol

A problem with the basic endairA protocol is that it is vulnerable to malicious route
request flooding attacks. This is because the route request messages are not authenticated
in any way, and hence, an adversary (even without compromising any identity) can initiate

21

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

route discovery processes in the name of honest nodes. These forged route discovery
processes will be carried out completely, including the flooding of the route requests in the
whole network, because only the impersonated initiators can detect that they are forged.
In order to prevent this, the route request can be digitally signed by the initiator, and rate
limiting techniques similar to the one used for Ariadne [43] can be applied with endairA
too. Naturally, such extensions put more burden on the nodes, since now they also need to
verify the initiator’s signature in each route request message and to maintain information
that is required by the rate limiting mechanism.

We also note that endairA can be optimized with respect to communication overhead
by replacing the signature list in the route reply with a single aggregate signature (e.g.,
[11]) computed by the intermediate nodes iteratively in a similar way as in the case of the
iterated MAC technique in the optimized version of Ariadne.

1.4 Related work

There are several proposals for secure ad hoc routing protocols (see [42] for an overview).
However, most of these proposals come with an informal security analysis with all the
pitfalls of informal security arguments. In this section, we report on a few exceptions,
where some attempts are made to use formal methods for the verification of ad hoc routing
protocols.

In [83], the authors try to reach a goal similar to ours but with a different approach.
They propose a formal model for ad hoc routing protocols with the aim of representing
insider attacks (which correspond to our notion of adversarial nodes). Their model is sim-
ilar to the strand spaces model [37], which has been developed for the formal verification
of key exchange protocols. Routing security is defined in terms of a safety and a live-
ness property. The liveness property requires that it is possible to discover routes, while
the safety property requires that discovered routes do not contain adversarial nodes. In
contrast to this, our definition of security allows the protocol to return routes that pass
through adversarial nodes, because it seems to be impossible to guarantee that discovered
routes do not contain any adversarial node given that adversarial nodes can behave cor-
rectly and follow the routing protocol faithfully. Our definition of security corresponds to
the informal definitions given in [64] and [43].

Another approach, presented in [60], is based on a formal method, called CPAL-ES,
which uses a weakest precondition logic to reason about security protocols. Unfortunately,
the work presented in [60] is very much centered around the analysis of SRP [64], and it
is not general enough. For instance, the author defines a security goal that is specific
to SRP, but no general definition of routing security is given. In addition, the attack
discovered by the author on SRP is not a real attack, because it essentially consists in
setting up a wormhole between two non-adversarial nodes, and SRP is not supposed to
defend against this. In our opinion, wormhole attacks are attacks against the neighbor
discovery mechanism and not against routing (although they affect routing). On the other
hand, the advantage of the approaches of [60] and [83] is that they can be automated.

We must also mention that in [64], SRP has been analyzed by its authors using BAN
logic [16]. However, BAN logic has never been intended for the analysis of routing proto-
cols. It has been developed for verifying authentication properties, and there is no easy
way to represent the requirements of routing security in it. In addition, BAN logic assumes
that the protocol participants are trustworthy [17]. This assumption does not hold in the
typical case that we are interested in, namely, when there are adversarial nodes in the
network controlled by the adversary that may not follow the routing protocol faithfully.

22

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Another set of papers deal with provable security for cryptographic algorithms and
protocols (see Parts V and VI of [59] for a survey of the field). However, these papers are
not concerned with ad hoc routing protocols. The papers that are the most closely related
to the approach we used in this paper are [10], [74], and [67]. These papers apply the
simulation paradigm for different security problems: [10] and [74] deal with key exchange
protocols, and [67] is concerned with security of reactive systems in general, and secure
message transmission in particular. To the best of our knowledge, we are the first who
applied the notions of provable security and used the simulation-based approach in the
context of routing protocols for wireless ad hoc networks. The main novelties of our model
with respect to the models proposed so far for the analysis of cryptographic protocols are
the following:

• Our communication model does not abstract away the multi-hop operation of the
network. In addition, we model the broadcast nature of radio communications, which
allows a node to overhear the transmission of a message that was not intended to
him. We also take into account that a radio transmission can usually be received
only in a limited range around the sender.

• In contrast to previous models, where the adversary has full control over the com-
munications of the honest nodes, in our model, the adversary can hear only those
messages that were transmitted by neighboring nodes, and similarly, the transmis-
sions of the adversary are heard only by its neighbors.

• In our model, it is a hypothetic scheduler, and not the adversary, that schedules
the activities of the honest nodes. In addition, this activation is done in rounds.
This leads to a sort of synchronous model, where each participant is aware of a
global time represented by the current round number. However, this knowledge
has never been exploited in our analysis. The advantage is that we can retain the
simplicity of a synchronous model, without arriving to conclusions that are valid
only in synchronous systems.

• The simulation-based approach requires the definition of an ideal-world model, which
focuses on what the system should do, and it is less concerned about how it is
done. As a consequence, the ideal-world model usually contains a trusted entity
that provides the intended services of the system in a “magical” way. In our model,
the role of this trusted entity is played by C ′, which marks route reply messages
that contain non-plausible routes. In addition, we do not limit the capabilities of
the ideal-world adversary, but those are the same as the capabilities of a real-world
adversary. Consequently, and in contrast to other models, the tolerable imperfections
(unavoidable vulnerabilities) of the system are not captured in the capabilities of the
ideal-world adversary, but they are embedded in the definition of the plausible route.

1.5 Summary

Attacks against ad hoc routing protocols can be subtle and difficult to discover by informal
reasoning about the properties of the protocol. We demonstrated this by presenting novel
attacks on exisiting rotuing protocols. We also show that it is possible to adopt rigorous
techniques developed for the security analysis of cryptographic algorithms and protocols,
and apply them in the context of ad hoc routing protocols in order to gain more assurances
about their security. We demonstrated this by proposing a simulation based framework for

23

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

on-demand source routing protocols that allows us to give a precise definition of routing
security, to model the operation of a given routing protocol in the presence of an adversary,
and to prove (or fail to prove) that the protocol is secure. We also proposed a new on-
demand source routing protocol, endairA, and we demonstrated the usage of the proposed
framework by proving that it is secure in our model. Originally, we developed endairA for
purely illustrative purposes, however, it has some noteworthy features that may inspire
designers of future protocols. We focused on on-demand source routing protocols, but
similar principles can be applied to other types of protocols too.

24

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

2 Cooperative packet forwarding in wireless ad hoc net-
works

In multi-hop wireless ad hoc networks, networking services are provided by the nodes
themselves. As a fundamental example, the nodes must make a mutual contribution to
packet forwarding in order to ensure an operable network. If the network is under the
control of a single authority, as is the case for military networks and rescue operations, the
nodes cooperate for the critical purpose of the network. However, if each node is its own
authority, cooperation between the nodes cannot be taken for granted; on the contrary,
it is reasonable to assume that each node has the goal of maximizing its own benefits by
enjoying network services and at the same time minimizing its contribution. This selfish
behavior can significantly damage network performance [19, 61].

Researchers have identified the problem of stimulating cooperation in ad hoc networks
and proposed several solutions to give nodes incentive to contribute to common network
services. These solutions are based on a reputation system [15, 62] or on a virtual currency
[20, 86]. All of these solutions are heuristics to provide a reliable cooperation enforcement
scheme, assuming that there is indeed a need for such mechnisms to stimulate cooperation.
Other researchers, on the other hand, have claimed that under specific conditions, coop-
eration may emerge without incentive techniques [75, 77]. However, they have assumed a
random connection setup, thus, abstracting away the topology of the network.

In this section, we aim at determining under which conditions cooperation without
incentives can exist, while taking the network topology into account. Indeed, in reality,
the interactions between nodes are not random, as they are determined by the network
topology and the communication pattern in the network. We focus on the most basic
networking mechanism, namely packet forwarding. We define a model in a game theoretic
framework and identify the conditions under which an equilibrium based on cooperation
exists. As the problem is involved, we deliberately restrict ourselves to a static configura-
tion.

2.1 Related work

Incentive mechanisms in ad hoc networks

The operation of ad hoc networks relies on the contribution of nodes. Several re-
searchers have realized that this cooperation is not obvious and have proposed solutions
to give nodes incentive to contribute. There are basically two approaches to motivate
nodes: (i) by denying service to misbehaving nodes by means of a reputation mechanism
or (ii) by remunerating honest nodes using, for example, a micro-payment scheme. We
provide an overview of these approaches below.

Marti et al. [61] consider an ad hoc network where some misbehaving nodes agree
to forward packets but then fail to do so. They propose a mechanism, called watchdog,
in charge of identifying the misbehaving nodes, and another mechanism, called pathrater,
that deflects the traffic around them. The drawback of their solution is that misbehaving
nodes are not punished, and thus there is no incentive for the nodes to cooperate. To
overcome this problem, Buchegger and Le Boudec [15] as well as Michiardi and Molva
[62] define protocols that are based on a reputation system. In both approaches, the
nodes observe the behavior of each other and store this knowledge locally. Additionally,
they distribute this information in reputation reports. According to their observations,

25

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

the nodes are able to behave selectively (e.g., nodes may deny forwarding packets for
misbehaving nodes). However, such a scheme requires a reliable authentication scheme,
otherwise it is vulnerable to the Sybil attack [31]. Note that the Sybil attack is proven to
be always possible if a central authority is not present in the network.

Other researchers proposed schemes that employ a virtual currency system to motivate
cooperation. Zhong, Yang and Chen [86] present a solution, where an off-line central
authority collects receipts from the nodes that relay packets and remunerates them based
on these receipts. They rely on public key cryptography to process each packet. Thus,
their solution might be too complex in an ad hoc network. Another solution, presented
by Buttyan and Hubaux [19, 20], is based on a virtual currency, called a nuglet : If a node
wants to send its own packets, it has to pay for it, whereas if the node forwards a packet
for the benefit of another node, it is rewarded.

Cooperation without incentive mechanisms

The proposals that we have just described were based on heuristics. There was a need
for a formal description of the cooperation problem in ad hoc networks.

In [75], Srinivasan et al. provide a mathematical framework for cooperation in ad hoc
networks, which focuses on the energy-efficient aspects of cooperation. In their solution,
the nodes are classified in different energy classes and the behavior of each node depends
on the energy classes of the participants of each connection. As this paper is the closest
to our work, we discuss it in detail in Subsection 2.5. Urpi, Bonucelli and Giordano [77]
propose a general framework for cooperation without any incentive mechanisms.

In our work, we analyze the same problem: Is cooperation possible based on the ratio-
nal behavior of the nodes, or are incentive mechanisms needed for cooperation? However,
in contrast to previous approaches, we believe that the network topology and the commu-
nication patterns in the network have a significant impact on the existence of spontaneous
cooperation.

Application of game theory to networking

Game theory has been used to solve various problems in ad hoc, fixed and cellular
networks. Qiu and Marbach [69] define a price-based approach for bandwidth allocation
in wireless ad hoc networks. Jin and Kesidis [49] propose a generic mechanism for rate
control and study Nash equilibria in a networking game. Alpcan et al. [6] apply game
theory for uplink power control in cellular networks. In [81], Xiao, Schroff and Chong
describe a utility-based power control framework for a cellular system. In [36], Good-
man and Mandayam introduce the concept of network-assisted power control to equalize
signal-to-interference ratio between the users. Korilis, Lazar and Orda [52] address the
problem of allocating link capacities in routing decisions; in [53], Korilis and Orda suggest
a congestion-based pricing scheme. Roughgarden [71] quantifies the worst-possible loss
in network performance arising from non-cooperative routing behavior. In [82], Yäıche,
Mazumdar and Rosenberg present a game theoretical framework for bandwidth allocation;
they study the centralized problem and show that the solution can be distributed in a way
that leads to a system-wide optimum.

Cooperation studies in other areas of science

Most of the studies that consider cooperation of entities use the Iterated Prisoner’s
Dilemma (IPD) game as their underlying model (see e.g., Axelrod [9], Rapaport and

26

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Chammah [70], or Trivers [76]). The simplicity of the IPD makes it an attractive model.
The Continuous valued Prisoner’s Dilemma (CPD) game was studied by Wahl and Nowak
[78]. In the CPD game, the nodes can choose a degree of cooperation between full cooper-
ation and full defection. In [9], Axelrod identifies Tit-for-Tat (TFT) as a robust strategy
that performs surprisingly well (in terms of maximizing the player’s payoff) in the Pris-
oner’s Dilemma games. TFT begins with cooperation in the first round and then repeats
the previous move of the other player. We will see that cooperation based on TFT exists
also in the ad hoc networking context. The classical Prisoner’s Dilemma game is not ap-
propriate for modelling packet forwarding because it involves only two players that have
symmetric roles. Hence, we define a multi-player, asymmetric game that is inspired by
the classical Prisoner’s Dilemma game, which better suits our purposes.

2.2 Game theoretic model of packet forwarding

THESIS 2.1. I define a model and a meta-model that allow for the study of strategic
interactions between the nodes in an ad hoc network. The model is based on game theory,
and it essentially consists in the definition of a forwarding game played by the source and
the forwarders of a data flow. The meta-model is based on automata theory, and it is
used to study the properties of the forwarding game. I introduce the important notions of
dependecy graph and dependency loop. [C6, J3]

System model

Let us consider an ad hoc network of n nodes. Let us denote the set of all nodes by N .
Each node has a given power range and two nodes are said to be neighbors if they reside
within the power range of each other. We represent the neighbor relationship between the
nodes with an undirected graph, which we call the connectivity graph. Each vertex of the
connectivity graph corresponds to a node in the network, and two vertices are connected
with an edge if the corresponding nodes are neighbors.

Communication between two non-neighboring nodes is based on multi-hop relaying.
This means that packets from the source to the destination are forwarded by intermediate
nodes. For a given source and destination, the intermediate nodes are those that form
the shortest path4 between the source and the destination in the connectivity graph. We
call such a chain of nodes (including the source and the destination) a route. We call the
topology of the network with a given set of communicating nodes a scenario.

We use a discrete model of time where time is divided into slots. We assume that both
the connectivity graph and the set of existing routes remain unchanged during a time slot,
whereas changes may happen at the end of each time slot. We assume that the duration
of the time slot is much longer than the time needed to relay a packet from the source to
the destination. This means that a node is able to send several packets within one time
slot. This allows us to abstract away individual packets and to represent the data traffic
in the network with flows. We assume CBR flows, which means that a source node sends
the same amount of traffic in each time slot. Note, however, that this amount may be
different for every source node and every route.

Forwarding game

4In other words, here, we abstract away the details of the routing protocol, and we model it as a function
that returns the shortest path between the source and the destination. If there are multiple shortest paths,
then one of them is selected at random.

27

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

We model the operation of the network as a game, which we call the forwarding game.
The players of the forwarding game are the nodes. In each time slot t, each node i
chooses a cooperation level pi(t) ∈ [0, 1], where 0 and 1 represent full defection and full
cooperation, respectively. Here, defection means that the node does not forward traffic for
the benefit of other nodes, whereas cooperation means that it does. Thus, pi(t) represents
the fraction of the traffic routed through i in t that i actually forwards. Note that i has
a single cooperation level pi(t), which it applies to every route in which it is involved as
a forwarder. We prefer to not require the nodes to be able to distinguish the flows that
belong to different routes, because this would require identifying the source-destination
pairs and applying a different cooperation level to each of them; this would probably
increase the computation at the nodes significantly.

Let us assume that in time slot t there exists a route r with source node s and `
intermediate nodes f1, f2, . . . , f`. Let us denote by Ts(r) the constant amount of traffic
that s wants to send on r in each time slot. The throughput τ(r, t) experienced by the
source s on r in t is defined as the fraction of the traffic sent by s on r in t that is delivered
to the destination. Since we are studying cooperation in packet forwarding, we assume
that the main reason for packet losses in the network is the non-cooperative behavior of
the nodes. In other words, we assume that the network is not congested and that the
number of packets dropped because of the limited capacity of the nodes and the links is
negligible. Hence, τ(r, t) can be computed as the product of Ts(r) and the cooperation
levels of all intermediate nodes:

τ(r, t) = Ts(r) ·
∏̀
k=1

pfk(t) (1)

In addition, we define the normalized throughput τ̂(r, t) as follows:

τ̂(r, t) =
τ(r, t)

Ts(r)
=
∏̀
k=1

pfk(t) (2)

We will use the normalized throughput later as an input of the strategy function of s.
The payoff ξs(r, t) of s on r in t depends on the experienced throughput τ(r, t). In

general, ξs(r, t) = us(τ(r, t)), where the utility us is some non-decreasing function. We
further assume that us is concave, derivable at Ts(r), and us(0) = 0. We place no other
restrictions on us. Note that the utility function of different nodes may be different.

The payoff ηfj (r, t) of the j-th intermediate node fj on r in t is non-positive and
represents the cost for node fj to forward packets on route r during time slot t. It is
defined as follows:

ηfj (r, t) = −Ts(r) · c · τ̂j(r, t) (3)

where c is the cost of forwarding one unit of traffic, and τ̂j(r, t) is the normalized through-
put on r in t leaving node j. For simplicity, we assume that the nodes have the same,
fixed transmission power, and therefore c is the same for every node in the network, and it
is independent from r and t. τ̂j(r, t) is computed as the product of the cooperation levels
of the intermediate nodes from f1 up to and including fj :

τ̂j(r, t) =

j∏
k=1

pfk(t) (4)

In our model, the payoff of the destination is 0. In other words, we assume that only
the source benefits if the traffic reaches the destination (information push). However,

28

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

our model can be applied in the reverse case: all our results also hold when only the
destination benefits from receiving traffic. An example of this case is a file download
(information pull).

The total payoff πi(t) of node i in time slot t is then computed as

πi(t) =
∑

q∈Si(t)

ξi(q, t) +
∑

r∈Fi(t)

ηi(r, t) (5)

where Si(t) is the set of routes in t where i is the source, and Fi(t) is the set of routes in
t where i is an intermediate node.

Strategy space

In every time slot, each node i updates its cooperation level using a strategy function
σi. In general, i could choose a cooperation level to be used in time slot t, based on the
information it obtained in all preceding time slots. In order to make the analysis feasible,
we assume that i uses only information that it obtained in the previous time slot. More
specifically, we assume that i chooses its cooperation level pi(t) in time slot t based on
the normalized throughput it experienced in time slot t− 1 on the routes where it was a
source:

pi(t) = σi([τ̂(r, t− 1)]r∈Si(t−1)) (6)

where [τ̂(r, t− 1)]r∈Si(t−1) represents the normalized throughput vector for node i in time
slot t−1, each element of which is the normalized throughput experienced by i on a route
where it was source in t − 1. The strategy of a node i is then defined by its strategy
function σi and its initial cooperation level pi(0).

Note that σi takes as input the normalized throughput and not the total payoff received
by i in the previous time slot. The rationale is that i should react to the behavior of the
rest of the network, which is represented by the normalized throughput in our model.

There is an infinite number of possible strategies; here we highlight only a few of them
for illustrative purposes. In these examples, we assume that the input of the strategy
function is a scalar (i.e., a vector of length 1) denoted by in below.

• Always Defect (AllD): A node playing this strategy defects in the first time slot, and
then uses the strategy function σi(in) = 0.

• Always Cooperate (AllC): A node playing this strategy starts with cooperation, and
then uses the strategy function σi(in) = 1.

• Tit-For-Tat (TFT): A node playing this strategy starts with cooperation, and then
mimics the behavior of its opponent in the previous time slot. The strategy function
that corresponds to the TFT strategy is σi(in) = in.

• Suspicious Tit-For-Tat (S-TFT): A node playing this strategy defects in the first
time slot, and then applies the strategy function σi(in) = in.

• Anti Tit-For-Tat (Anti-TFT): A node playing this strategy does exactly the opposite
of what its opponent does. In other words, after cooperating in the first time slot,
it applies the strategy function σi(in) = 1− in.

If the output of the strategy function is independent of its input, then the strategy
is called a non-reactive strategy (e.g., AllD or AllC). If the output depends on the input,
then the strategy is reactive (e.g., TFT or Anti-TFT).

29

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Our model requires that each source be able to observe the throughput in a given time
slot on each of its routes. We assume that this is made possible with high enough precision
by using some higher level control protocol above the network layer.

Meta-model

We introduce a meta-model in order to formalize the properties of the packet forward-
ing game. In the meta-model, we focus on the evolution of the cooperation levels of the
nodes; all other details of the model defined earlier (e.g., amounts of traffic, forwarding
costs, and utilities) are abstracted away. Unlike in the model, in the meta-model, we will
assume that routes remain unchanged during the lifetime of the network. In addition, we
assume for the moment that each node is the source of only one route (we will relax this
assumption later).

Let us consider a route r. The payoff received by the source on r depends on the
cooperation levels of the intermediate nodes on r. We represent this dependency relation-
ship between the nodes with a directed graph, which we call the dependency graph. Each
vertex of the dependency graph corresponds to a network node. There is a directed edge
from vertex i to vertex j, denoted by the ordered pair (i, j), if there exists a route where
i is an intermediate node and j is the source. Intuitively, an edge (i, j) means that the
behavior (cooperation level) of i has an effect on j. The concept of dependency graph is
illustrated in Figure 9.

Figure 9: Representation of a network: (a) a graph showing 5 routes and (b) the corre-
sponding dependency graph.

Now we define the automaton Θ that will model the unfolding of the forwarding game
in the meta-model. The automaton is built on the dependency graph. We assign a machine
Mi to every vertex i of the dependency graph and interpret the edges of the dependency
graph as links that connect the machines assigned to the vertices. Each machine Mi thus
has some input and some (possibly 0) output links.

The internal structure of the machine is illustrated in Figure 10. Each machine Mi

consists of a multiplication5 gate
∏

followed by a gate that implements the strategy

5The multiplication comes from the fact that the experienced normalized throughput for the source
(which is the input of the strategy function of the source) is the product of the cooperation levels of the
forwarders on its route.

30

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

function σi of node i. The multiplication gate
∏

takes the values on the input links and
passes their product to the strategy function gate6. Finally, the output of the strategy
function gate is passed to each output link of Mi.

Figure 10: Internal structure of machine Mi.

The automaton Θ works in discrete steps. Initially, in step 0, each machine Mi outputs
some initial value xi(0). Then, in step t > 0, each machine computes its output xi(t) by
taking the values that appear on its input links in step t− 1.

Figure 11: The automaton that corresponds to the dependency graph of Figure 9.

Note that if xi(0) = pi(0) for all i, then in step t, each machine Mi will output the
cooperation level of node i in time slot t (i.e., xi(t) = pi(t)), as we assumed that the set of
routes (and hence the dependency graph) remains unchanged in every time slot. Therefore,
the evolution of the values (which, in fact, represent the state of the automaton) on the
output links of the machines models the evolution of the cooperation levels of the nodes
in the network.

In order to study the interaction of node i with the rest of the network, we extract
the gate that implements the strategy function σi from the automaton Θ. What remains
is the automaton without σi, which we denote by Θ−i. Θ−i has an input and an output
link; if we connect these to the output and the input, respectively, of σi (as illustrated in
Figure 12), then we get back the original automaton Θ. In other words, the automaton
in Figure 12 is another representation of the automaton in Figure 11, which captures the
fact that from the viewpoint of node i, the rest of the network behaves like an automaton:

6Note that here σi takes a single real number as input, instead of a vector of real numbers as we defined
earlier, because we assume that each node is source of only one route.

31

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

The input of Θ−i is the sequence xi = xi(0), xi(1), . . . of the cooperation levels of i, and
its output is the sequence yi = yi(0), yi(1), . . . of the normalized throughput values for i.

Figure 12: Model of interaction between node i and the rest of the network represented
by the automaton Θ−i.

By using the system of equations that describe the operation of Θ, one can easily
express any element yi(t) of sequence yi as some function of the preceding elements xi(t−
1), xi(t − 2), . . . , xi(0) of sequence xi and the initial values xj(0) (j 6= i) of the machines
within Θ−i. We call such an expression of yi(t) the t-th input/output formula or the t-th
i/o formula of Θ−i, for short. It is important to note that the i/o formulae of Θ−i may
involve any strategy function σj where j 6= i, but they never involve σi. Considering again
the automaton in Figure 11, and extracting, for instance, σA, we can determine the first
few i/o formulae of Θ−A as follows:

yA(0) = xC(0) · xE(0)

yA(1) = σC(xE(0)) · σE(xA(0))

yA(2) = σC(σE(xA(0))) · σE(xA(1))

yA(3) = σC(σE(xA(1))) · σE(xA(2))

.

A dependency loop L of node i is a sequence (i, v1), (v1, v2), . . . , (v`−1, v`), (v`, i) of edges
in the dependency graph. The length of a dependency loop L is defined as the number of
edges in L, and it is denoted by |L|. The existence of dependency loops is important: if
node i has no dependency loops, then the cooperation level chosen by i in a given time
slot has no effect on the normalized throughput experienced by i in future time slots. In
the example, nodes B and D have no dependency loops.

Every node i has two types of dependency loops; these types depend on the strategies
played by the other nodes in the loop. If L is a dependency loop of i, and all other nodes
j 6= i in L play reactive strategies, then L is said to be a reactive dependency loop of i.
If, on the contrary, there exists at least one node j 6= i in L that plays a non-reactive
strategy, then L is called a non-reactive dependency loop of i.

2.3 Conditions for cooperative and non-cooperative equilibria

THESIS 2.2. I determine the conditions for the existence of cooperative and non-cooperative
equilibria in the forwarding game. In particular, I prove the following [J3]:

32

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

• If a node is a forwarder on some route, but it has no dependency loop, then its best
strategy is to defect, i.e., to deny packet forwarding. (Theorem 2.1)

• If a node is a forwarder on some route, and it has only non-reactive dependency loops,
then its best strategy is to defect, i.e., to deny packet forwarding. (Theorem 2.2)

• If every node j (j 6= i) defects, then node i cannot have any reactive dependency
loop, and hence its best response is to defect. Consequently, every node defecting is
a Nash equilibrium of the forwarding game. (Corollary 2.1)

• Assuming that node i is a forwarder on at least one route, its best strategy is to
cooperate, i.e., to forward packets if (a) node i has a dependency loop with all of the
sources for which it forwards packets; and (b) all these dependency loops are reactive;
and (c) the maximum forwarding cost for node i on every route where it is a forwarder
is smaller than its possible future benefit averaged over all those routes. If all three
conditions are satisfied, then node i has an incentive to cooperate, since otherwise
its defective behavior will negatively affect its own future payoff. (Theorem 2.3)

• If conditions (a) and (c) described above hold for all nodes which act as a forwarder
on some route, then all nodes playing the Tit-for-Tat reactive strategy is a Nash
equilibrium in the forwarding game. (Corollary 2.2)

Our goal is to find possible Nash equilibria of packet forwarding strategies. In the
next section, we will investigate the probability of fulfillment of the conditions for possible
Nash equilibria in randomly generated scenarios. The existence of a Nash equilibrium
based on cooperation would mean that there are cases in which cooperation is “naturally”
encouraged, i.e. without using incentive mechanisms. In the following, we use the model
and the meta-model that we introduced earlier.

The goal of the nodes is to maximize the payoff that they accumulate over time.
However, the end of the game is unpredictable. Thus, we apply the standard technique
used in the theory of iterative games [9]. We model the finite forwarding game with an
unpredictable end as an infinite game where future payoffs are discounted. The cumulative
payoff πi of a node i is computed as the weighted sum of the payoffs πi(t) that i obtains
in each time slot t:

πi =
∞∑
t=0

[πi(t) · ωt] (7)

where 0 < ω < 1, and hence, the weights exponentially decrease with t. The discounting
factor ω represents the degree to which the payoff of each time slot is discounted relative
to the previous time slot.

Recall that Si(t) denotes the set of routes for which i is the source, and that Fi(t)
denotes the set of routes for which i is an intermediate node. As we assume that the
routes remain static, meaning that Si(t) and Fi(t) do not change over time, we will simply
write Si and Fi instead of Si(t) and Fi(t). In addition, since we assume that each node is
a source on exactly one route, Si is a singleton. We denote the single route in Si by ri,
and the amount of traffic sent by i on ri in every time slot by Ti. The cardinality of Fi
will be denoted by |Fi|. For any route r ∈ Fi, we denote the set of intermediate nodes on
r upstream from node i (including node i) by Φ(r, i). Moreover, Φ(r) denotes the set of
all forwarder nodes on route r, and src(r) denotes the source of route r. Finally, the set of
nodes that are forwarders on at least one route is denoted by Φ (i.e., Φ = {i ∈ N : Fi 6= ∅}).

33

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Theorem 2.1. If a node i is in Φ, and it has no dependency loops, then its best strategy
is AllD (i.e., to choose cooperation level 0 in every time slot).

Proof. Node i wants to maximize its cumulative payoff πi defined in (7). In our case, πi(t)
can be written as:

πi(t) = ξi(ri, t) +
∑
r∈Fi

ηi(r, t)

= ui(Ti · yi(t))−
∑
r∈Fi

Tsrc(r) · c ·
∏

k∈Φ(r,i)

xk(t)

Given that i has no dependency loops, yi(t) is independent of all the previous cooperation
levels xi(t

′) (t′ < t) of node i. Thus, πi is maximized if xi(t
′) = 0 for all t′ ≥ 0.

Theorem 2.2. If a node i is in Φ, and it has only non-reactive dependency loops, then
its best strategy is AllD.

Proof. The proof is similar to the proof of Theorem 2.1. Since all dependency loops of
i are non-reactive, its experienced normalized throughput yi is independent of its own
behavior xi. This implies that its best strategy is full defection.

From this theorem, we can easily derive the following corollary.

Corollary 2.1. If every node j (j 6= i) plays AllD, then the best response of i to this is
AllD. Hence, every node playing AllD is a Nash equilibrium.

If the conditions of Theorems 2.1 and 2.2 do not hold, then we cannot determine
the best strategy of a node i in general, because it very much depends on the particular
scenario (dependency graph) in question and the strategies played by the other nodes.

Now, we will show that, under certain conditions, cooperative equilibria do exist in
the network. In order to do so, we first prove the following lemma:

Lemma 2.1. Let us assume that node i is in Φ, and let us consider a route r ∈ Fi. In
addition, let us assume that there exists a dependency loop L of i that contains the edge
(i, src(r)). If all nodes in L (other than i) play the TFT strategy, then the following holds:

yi(t+ δ) ≤
∏

k∈Φ(r,i)

xk(t) (8)

where δ = |L| − 1.

Proof. Let L be the following sequence of edges in the dependency graph: (v0, v1), (v1, v2), . . . ,
(vδ, vδ+1), where vδ+1 = v0 = i and v1 = src(r). We know that each node is the source of
a single route; let us denote by rvj (0 < j ≤ δ+ 1) the route, on which vj is the source. It
follows that rv1 = r. In addition, we know that the existence of edge (vj , vj+1) (0 ≤ j ≤ δ)
in the dependency graph means that vj is a forwarder on rvj+1 . The following holds for
every node vj (0 ≤ j ≤ δ):

xvj (t) ≥
∏

k∈Φ(rvj+1 ,vj)

xk(t) ≥
∏

k∈Φ(rvj+1)

xk(t) = yvj+1(t) (9)

Furthermore, since every node except for v0 = vδ+1 = i plays TFT, we have the following
for every 0 < j ≤ δ:

xvj (t+ 1) = yvj (t) (10)

34

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Using (9) and (10) in an alternating order, we get the following:

xv0(t) ≥
∏

k∈Φ(rv1 ,v0)

xk(t) ≥ yv1(t) = xv1(t+ 1) ≥ yv2(t+ 1) = xv2(t+ 2) ≥ . . . ≥ yvδ+1
(t+ δ)

(11)
By substituting i for v0 and vδ+1, and r for rv1 , we get the statement of the lemma:

xi(t) ≥
∏

k∈Φ(r,i)

xk(t) ≥ . . . ≥ yi(t+ δ) (12)

Figure 13: Example to illustrate the propagation of behavior as expressed formally in
Lemma 2.1.

As an example, let us consider Figure 13, which illustrates a dependency loop of length
5 (i.e., δ = 4). According to Lemma 2.1, if nodes v1, v2, v3, and v4 play TFT, then the
normalized throughput enjoyed by node i in time slot t+ 4 is upper bounded by its own
cooperation level in time slot t. Intuitively, this means that if node i does not cooperate,
then this defection “propagates back” to it on the dependency loop. The delay of this
effect is given by the length of the dependency loop.

Theorem 2.3. Assuming that node i is in Φ, the best strategy for i is full cooperation in
each time slot, if the following set of conditions holds:

1. for every r ∈ Fi, there exists a dependency loop Li,src(r) that contains the edge
(i, src(r));

2. for every r ∈ Fi,
u′i(Ti) · Ti · ω

δi,src(r)

|Fi|
> Tsrc(r) · c (13)

where u′i(Ti) is the value of the derivative7 of ui(τ) at τ = Ti, and δi,src(r) =
|Li,src(r)| − 1; and

3. every node in Φ (other than i) plays the TFT strategy.

7Recall the assumption that ui is derivable at Ti.

35

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Proof. In this proof we will express the maximum possible value of the total payoff for node
i in general. Then we will show that the maximum corresponds to the case in which node i
fully cooperates. First, we introduce the linear function f(τ) = u′i(Ti)·τ+ui(Ti)−u′i(Ti)·Ti.
Function f is the tangent of function ui at τ = Ti. Note that due to the fact that ui is
non-decreasing and concave, we have that f(τ) ≥ ui(τ) for all τ ; in addition, we have
equality at τ = Ti (i.e., f(Ti) = ui(Ti)).

By definition, the total payoff πi of node i is the following:

πi =
∞∑
t=0

ξi(ri, t) +
∑
r∈Fi

ηi(r, t)

ωt
=

∞∑
t=0

ui(Ti · yi(t))−∑
r∈Fi

Tsrc(r) · c ·
∏

k∈Φ(r,i)

xk(t)

ωt (14)

Because of Condition 1 and Condition 3, we can use Lemma 2.1 to obtain the following
inequality for every r ∈ Fi: ∏

k∈Φ(r,i)

xk(t) ≥ yi(t+ δi,src(r)) (15)

which leads to the following upper bound on πi:

πi ≤
∞∑
t=0

ui(Ti · yi(t))−∑
r∈Fi

Tsrc(r) · c · yi(t+ δi,src(r))

ωt (16)

Since the first term of the right side of (16), ui(Ti ·yi(t)), is independent of r, the following
holds:

ui(Ti · yi(t)) =
∑
r∈Fi

ui(Ti · yi(t))
|Fi|

(17)

By substituting the right side of (17) into (16), we get the following:

πi ≤
∞∑
t=0

∑
r∈Fi

ui(Ti · yi(t))
|Fi|

−
∑
r∈Fi

Tsrc(r) · c · yi(t+ δi,src(r))

ωt
=

∑
r∈Fi

[∞∑
t=0

ui(Ti · yi(t))
|Fi|

· ωt −
∞∑
t=0

Tsrc(r) · c · yi(t+ δi,src(r)) · ωt
]

(18)

Let us consider the first term of (18). We will now split up the summation that goes from
t = 0 to ∞ into two summations such that one goes from t = 0 to δi,src(r) − 1, and the
other goes from t = δi,src(r) to ∞. Then, we shift the index in the second sum in such a
way that the summation goes from t = 0 to ∞ again:

∞∑
t=0

ui(Ti · yi(t))
|Fi|

· ωt

=

δi,src(r)−1∑
t=0

ui(Ti · yi(t))
|Fi|

· ωt +

∞∑
t=δi,src(r)

ui(Ti · yi(t))
|Fi|

· ωt

=

δi,src(r)−1∑
t=0

ui(Ti · yi(t))
|Fi|

· ωt +

∞∑
t=0

ui(Ti · yi(t+ δi,src(r)))

|Fi|
· ωt+δi,src(r) (19)

36

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

By writing (19) back into (18), we get the following:

πi ≤
∑
r∈Fi

δi,src(r)−1∑
t=0

ui(Ti · yi(t))
|Fi|

· ωt (20)

+
∞∑
t=0

[
ui(Ti · yi(t+ δi,src(r)))

|Fi|
· ωδi,src(r) − Tsrc(r) · c · yi(t+ δi,src(r))

]
· ωt
]

Let us consider the first term of (20). Since the utility function ui is non-decreasing and
yi(t) ≤ 1, we get the following:

δi,src(r)−1∑
t=0

ui(Ti · yi(t))
|Fi|

· ωt ≤
δi,src(r)−1∑

t=0

ui(Ti)

|Fi|
· ωt

=
ui(Ti)

|Fi|
· 1− ωδi,src(r)

1− ω
(21)

Now let us consider the second term of (20). By using the fact that f(τ) ≥ ui(τ) for all
τ , we get the following:

∞∑
t=0

[
ui(Ti · yi(t+ δi,src(r)))

|Fi|
· ωδi,src(r) − Tsrc(r) · c · yi(t+ δi,src(r))

]
· ωt

≤
∞∑
t=0

[
f(Ti · yi(t+ δi,src(r)))

|Fi|
· ωδi,src(r) − Tsrc(r) · c · yi(t+ δi,src(r))

]
· ωt

=

∞∑
t=0

[
u′i(Ti) · Ti · yi(t+ δi,src(r)) + ui(Ti)− u′i(Ti) · Ti

|Fi|
· ωδi,src(r) − Tsrc(r) · c · yi(t+ δi,src(r))

]
· ωt

=
∞∑
t=0

[
ui(Ti)− u′i(Ti) · Ti

|Fi|
· ωδi,src(r) +

(
u′i(Ti) · Ti · ω

δi,src(r)

|Fi|
− Tsrc(r) · c

)
· yi(t+ δi,src(r))

]
· ωt

=
ui(Ti)− u′i(Ti) · Ti

|Fi|
· ω

δi,src(r)

1− ω
+

∞∑
t=0

(
u′i(Ti) · Ti · ω

δi,src(r)

|Fi|
− Tsrc(r) · c

)
· yi(t+ δi,src(r)) · ωt

≤ ui(Ti)− u′i(Ti) · Ti
|Fi|

· ω
δi,src(r)

1− ω
+
∞∑
t=0

(
u′i(Ti) · Ti · ω

δi,src(r)

|Fi|
− Tsrc(r) · c

)
· ωt

=
ui(Ti)− u′i(Ti) · Ti

|Fi|
· ω

δi,src(r)

1− ω
+

(
u′i(Ti) · Ti · ω

δi,src(r)

|Fi|
− Tsrc(r) · c

)
· 1

1− ω

=
ui(Ti)

|Fi|
· ω

δi,src(r)

1− ω
−
Tsrc(r) · c

1− ω

where in the transition from (22) to (22), we used Condition 2 and the fact that yi(t +

37

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

δi,src(r)) ≤ 1. By using (21) and (22) in (20), we get the following:

πi ≤
∑
r∈Fi

[
ui(Ti)

|Fi|
· 1− ωδi,src(r)

1− ω
+
ui(Ti)

|Fi|
· ω

δi,src(r)

1− ω
−
Tsrc(r) · c

1− ω

]

=
1

1− ω
·
∑
r∈Fi

[
ui(Ti)

|Fi|
− Tsrc(r) · c

]

=
1

1− ω
·

ui(Ti)− c ·∑
r∈Fi

Tsrc(r)

Now let us consider what payoff is achieved by node i if it fully cooperates in every

time slot. In this case, since all the other nodes play TFT, every node will always fully
cooperate, and hence, every node will experience a normalized throughput equal to 1 in
each time slot. This can easily be derived from the i/o formulae describing the behavior
of the nodes, which take a simple form due to the simplicity of the strategy function of
the TFT strategy. As a consequence, we have that yi(t) = 1 for every t, and xk(t) = 1 for
every k and for every t. In this case expression 14 becomes:

πi =

∞∑
t=0

ui(Ti · yi(t))−∑
r∈Fi

Tsrc(r) · c ·
∏

k∈Φ(r,i)

xk(t)

ωt
=

1

1− ω
·

ui(Ti)− c ·∑
r∈Fi

Tsrc(r)

This means that by fully cooperating, the payoff of node i reaches the upper bound
expressed in (22); in other words, there is no better strategy for node i than full coopera-
tion.

We have derived necessary conditions for spontaneous cooperation from Theorem 2.1
and 2.2. The fulfillment of the three conditions of Theorem 2.3 is sufficient for cooperation
to be the best strategy for node i. We now discuss these three conditions one by one.
Condition 1 requires that node i has a dependency loop with all of the sources for which
it forwards packets. Condition 2 means that the maximum forwarding cost for node i on
every route where i is a forwarder must be smaller than its possible future benefit averaged
over the number of routes where i is a forwarder. Finally, Condition 3 requires that all
forwarding nodes in the network (other than node i) play TFT. This implies that all the
dependency loops of node i are reactive. We note that the reactivity of the dependency
loops can be based on other reactive strategies, different from TFT (for example Anti-
TFT), but in that case the analysis becomes very complex. The analysis of the case
when every node plays TFT is made possible by the simplicity of the strategy function
σ(x) = x, which belongs to the TFT strategy. If all three conditions of Theorem 2.3 are
satisfied, then node i has an incentive to cooperate, since otherwise its defective behavior
will negatively affect its own payoff. However, as we will show later, Condition 1 is a very
strong requirement that is virtually never satisfied in randomly generated scenarios.

Both the AllC and TFT strategies result in full cooperation if the conditions of The-
orem 2.3 hold. However, node i should not choose AllC, because AllC is a non-reactive
strategy, and this might cause other nodes to change their strategies to AllD, as we will
show later. Hence, we can derive the following corollary for cooperative Nash equilibria.

38

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Corollary 2.2. If the first two conditions of Theorem 2.3 hold for every node in Φ, then
all nodes playing TFT is a Nash equilibrium.

In the next subsection, we study Condition 1 of Theorem 2.3, more specifically, the
probability that it is satisfied for all nodes in randomly generated scenarios. Now, we
briefly comment on Condition 2. As it can be seen, the following factors make Condition 2
easier to satisfy:

• Steep utility functions: The steeper the utility function of node i is, the larger the
value of its derivative is at τ = Ti, which, in turn, makes the left side of (13) larger.

• Short dependency loops: In Condition 2, δi,src(r) + 1 is the length of any dependency
loop of node i that contains the edge (i, src(r)). Clearly, we are interested in the
shortest of such loops, because the smaller δi,src(r) is, the larger the value of ωδi,src(r)

is, which, in turn, makes the left side of (13) larger. It is similarly advantageous
if ω is close to 1, which means, in general, that the probability that the game will
continue is higher and thus possible future payoffs count more.

• Small extent of involvement in forwarding: The left side of (13) is increased if the
cardinality of Fi is decreased. In other words, if node i is a forwarder on a smaller
number of routes, then Condition 2 is easier to satisfy for i.

2.4 On the spontaneous emergence of cooperation

THESIS 2.3. I show by means of simulations that the probability of satisfying all condi-
tions for the existence of a cooperative equilibrium is very small in practice. In particular,
among 1000 randomly generated scenarios, there was not any scenario that satisfied the
condition that requires that all forwarder nodes have dependecy loops with all the source
nodes whose traffic they are forwarding. Hence, in practice, with high probability, there
will be some nodes in the network whose best strategy is defecting. Yet, I also show by
means of simulation that the behavior of these defectors affects only a fraction of the nodes
in the network; hence, local subsets of cooperating nodes are not excluded. [J3]

We have run a set of simulations to determine the probability that the conditions
of our theorems and their corollaries hold. In particular, our goal is to estimate the
probability that the first condition of Theorem 2.3 holds for every node in randomly
generated scenarios8. In addition, we also estimate the probability that the condition of
Theorem 2.1 does not hold for any of the nodes in randomly generated scenarios.

In our simulations, we randomly place nodes on a toroid9 area. Then, for each node, we
randomly choose a number of destinations and we determine a route to these destinations
using a shortest path algorithm. If several shortest paths existed to a given destination,
then we randomly choose a single one. From the routes, we build up the dependency graph
of the network. The simulation parameters are summarized in Table 1.

8The second condition of Theorem 2.3 is a numerical one. Whether it is fulfilled or not very much
depends on the actual utility functions and parameter values (e.g., amount of traffic and discounting
factor) used. Since, by appropriately setting these parameters, the second condition of Theorem 2.3 can
always be satisfied, in our analysis, we make the optimistic assumption that this condition holds for every
node in Φ.

9We use this area type to avoid border effects. In a realistic scenario, the toroid area can be considered
as an inner part of a large network.

39

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Table 1: Parameter values for the simulation
Parameter Value

Number of nodes 100, 150, 200

Distribution of the nodes random uniform

Area type Torus

Area size 1500x1500m, 1850x1850m, 2150x2150m

Radio range 200 m

Number of destinations per node 1-10

Route selection shortest path

Note that we increase the network size and the simulation area in parallel in order to
keep the node density at a constant level. All the presented results are the mean values
of 1000 simulation runs.

In the first set of simulations, we investigate the probability that the first condition of
Theorem 2.3 holds for every node. Among the 1000 scenarios that we generated randomly,
we observed that there was not a single scenario in which the first condition of Theorem 2.3
was satisfied for all nodes. Thus, we conclude that the probability of a Nash equilibrium
based on TFT as defined in Corollary 2.2 is very small.

In the second set of simulations, we investigate the proportion of random scenarios,
where cooperation of all nodes is not excluded by Theorem 2.1. Figure 14 shows the
proportion of scenarios, where each node in Φ has at least one dependency loop as a
function of the number of routes originating at each node. We can observe that for an
increasing number of routes originating at each node, the proportion of scenarios, where
each node has at least one dependency loop, increases as well. Intuitively, as more routes
are introduced in the network, more edges are added to the dependency graph. Hence, the
probability that a dependency loop exists for each node increases. Furthermore, we can
observe that the proportion of scenarios in which each node has at least one dependency
loop decreases, as the network size increases. This is due to the following reason: the
probability that there exists at least one node for which the condition of Theorem 2.1
holds increases as the number of nodes increases.

Figure 14 shows that the proportion of scenarios, where cooperation of all nodes is
not excluded by Theorem 2.1 becomes significant only for cases in which each node is a
source of a large number of routes. This implies that the necessary condition expressed
by Theorem 2.1 is a strong requirement for cooperation in realistic settings (i.e., for a
reasonably low number of routes per node).

Now let us consider the case, in which the nodes for which Theorem 2.1 holds begin to
play AllD. This non-cooperative behavior can lead to an “avalanche effect” if the nodes
iteratively optimize their strategies: nodes that defect can cause the defection of other
nodes. We examine this avalanche effect in a simulation setting as follows.

Let us assume that each node is a source on one route. First, we identify the nodes
in the set of forwarders Φ that have AllD as the best strategy due to Theorem 2.1. We
denote the set of these defectors by Z0. Then, we search for sources that are dependent
on the nodes in Z0. We denote the set of these sources by Z+

0 . Since the normalized
throughput of the nodes in Z+

0 is less than or equal to the cooperation level of any of their
forwarders (including the nodes in Z0), their best strategy becomes AllD, as well, due to
Theorem 2.2. Therefore, we extend the set Z0 of defectors, and obtain Z1 = Z0 ∪Z+

0 . We
extend the set Zk of defectors iteratively in this way until no new sources are affected (i.e.,

40

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Figure 14: Proportion of scenarios, where each node that is a forwarder has at least one
dependency loop.

Zk ∪ Z+
k = Zk). The remaining set Φ \ Zk of nodes is not affected by the behavior of the

nodes in Zk (and hence the nodes in Z0); this means that they are potential cooperators.
Similarly, we can investigate the avalanche effect when the nodes are sources of several
routes. In that case, we take the pessimistic assumption that the defection of a forwarder
causes the defection of its sources. Then, we can iterate the search for the nodes that are
affected by defection in the same way as above.

In Figure 15, we present the proportion of scenarios, where there exists a subset of
nodes that are not affected by the defective behavior of the initial AllD players. We can
see that this proportion converges rapidly to 1 as the number of routes originating at
each node increases. The intuitive explanation is that increasing the number of routes
per source (i.e., adding edges to the dependency graph) decreases the probability that
Theorem 2.1 holds for a given node. Thus, as the number of routes per sources increases
the number of forwarders that begin to play AllD decreases and so does the number of
nodes affected by the avalanche effect.

Additionally, we present in Figure 16 the proportion of forwarder nodes that are not
affected by the avalanche effect. The results show that if we increase the number of routes
originating at each node, the average number of unaffected nodes increases rapidly. For a
higher number of routes per node, this increase slows down, but we can observe that the
majority of the nodes are not affected by the defective behavior of the initial AllD players.

2.5 Discussion

In this subsection, we give a detailed discussion of the paper written by Srinivasan et al.
[75], as this is the work that is the closest to our framework.

In [75], the authors propose a game theoretic model that considers cooperation from
the energy efficiency point of view. They consider a maximal battery level and an expected
lifetime for each node, and they group the nodes into energy classes according to this infor-
mation. They derive the energy class for a connection as the minimum of the energy classes
of the participants. The energy class is a novel idea that allows the authors to express
the heterogeneity of devices. They define time slots as a unit of operation for the nodes,
as we also do in our framework. However, in contrast to our approach, they do not take
into account the topology of the network and the existing communication flows. Instead,

41

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Figure 15: Proportion of scenarios, where at least one node is not affected by the defective
behavior of the initial nodes.

Figure 16: Average proportion of forwarder nodes that are not affected by the avalanche
effect.

they assume that a single communication session with random participants is generated
in each time slot. Based on the random session generation, they show that cooperation
emerges within the network, because, by the nature of the random participation in the
sessions, nodes have a symmetric interaction pattern. However, in reality, the interactions
between nodes are likely to be asymmetric; this is practically true in the extreme case of
a static network. In our work, we have shown that spontaneous cooperation exists only if
the interaction between the nodes is balanced and we have also shown that this property
does not hold in general. Our conclusion justifies the need for incentive mechanisms, that
should reestablish the balance between the utilities of nodes, for example by remunerating
nodes that contribute more.

The authors of [75] provide a framework that relies on two mechanisms: the first
communicates energy class information while the second enables the relays of a session to

42

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

communicate their decision to the source (accept or refuse relaying). These mechanisms
are needed to optimize the nodes’ contribution with respect to energy conditions. From
the security point of view, however, these mechanisms are vulnerable. This is an important
issue, since the whole analysis is about selfish nodes that want to maximize their utility,
even if it means disobeying the network protocols. Cheating can be done as follows.
First, a high energy node could use its own identity when sending its own packets and
pretend to be a low energy node when asked to forward packets. By doing this, it could
decrease its load in terms of packet forwarding. This kind of selfish behavior could be
detected using an appropriate authentication scheme, combined with a cheating detection
mechanism. Second, in [75] it is assumed that once nodes agree to relay packets in a
session, they do so. But there is no guarantee that a node really complies to its promise.
Thus, an additional mechanism should be applied to punish nodes whenever it is necessary.
Although far from perfect, our model relies on the real behavior of the nodes (and not on
their declared behavior), and does not require any form of authentication.

A major contribution of [75] is the investigation of both the existence and emergence
of cooperation in wireless ad hoc networks; in our work, we focused only on the existence
of cooperative equilibria. Another important result of [75] is the proof that the emerging
cooperative Nash equilibrium is Pareto-efficient (thus it is a desired outcome of the packet
forwarding game).

2.6 Summary

We have presented a game theoretic model to investigate the conditions for cooperation
in wireless ad hoc networks, in the absence of incentive mechanisms. Because of the
complexity of the problem, we have restricted ourselves to a static network scenario. We
have then derived conditions for cooperation from the topology of the network and the
existing communication routes. We have introduced the concept of dependency graph,
based on which we have been able to prove several theorems. As one of the results,
we have proven that cooperation solely based on the self-interest of the nodes can in
theory exist. However, our simulation results show that in practice, the conditions of such
cooperation are virtually never satisfied. We conclude that with a very high probability,
there will be some nodes that have AllD as their best strategy and therefore, these nodes
need an incentive to cooperate. We have also shown that the behavior of these defectors
affects only a fraction of the nodes in the network; hence, local subsets of cooperating
nodes are not excluded.

43

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

44

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

3 Wormhole detection in wireless sensor networks

Wireless sensor networks (WSNs) consist of a large number of sensors that monitor the
environment, and a few base stations that collect the sensor readings. The sensors are
usually battery powered and limited in computing and communication resources, while the
base stations are considered to be more powerful. In order to reduce the overall energy
consumption of the sensors, it is conceived that the sensors send their readings to the base
station via multiple wireless hops. Hence, in a wireless sensor network, the sensor nodes
are responsible not only for the monitoring the environment, but also for forwarding data
packets towards the base station on behalf of other sensors.

In order to implement the above described operating principle, the sensors need to be
aware of their neighbors, and they must also be able to find routes to the base station. An
adversary may take advantage of this, and may try to control the routes and to monitor
the data packets that are sent along these routes. One way to achieve this is to set
up a wormhole in the network. A wormhole is an out-of-band connection, controlled by
the adversary, between two physical locations in the network. The two physical locations
representing the two ends of the wormhole can be at any distance from each other; however,
the typical case is that this distance is large. The out-of-band connection between the two
ends can be a wired connection or it can be based on a long-range, directional wireless
link. The adversary installs radio transceivers at both ends of the wormhole. Then,
she transfers packets (possibly selectively) received from the network at one end of the
wormhole to the other end via the out-of-band connection, and there, re-injects the packets
into the network.

Wormholes affect route discovery mechanisms that operate on the connectivity graph.
For instance, many routing protocols search for the shortest paths in the connectivity
graph. With a well placed wormhole, the adversary can achieve that many of these shortest
paths go through the wormhole. This gives a considerable power to the adversary, who
can monitor a large fraction of the network traffic, or mount a denial-of-service attack
by permanently or selectively dropping data packets passing through the wormhole so
that they never reach their destinations. Therefore, in most of the applications, wormhole
detection is an important requirement.

The wormhole attack is also dangerous in other types of wireless applications where
direct, one-hop communication and physical proximity play an important role. An example
is a wireless access control system for buildings, where each door is equipped with a
contactless smart card reader, and they are opened only if a valid contactless smart card
is presented to the reader. The security of such a system depends on the assumption that
the personnel carefully guard their cards. Thus, if a valid card is present, then the system
can safely infer that a legitimate person is present as well, and the door can be opened.
Such a system can be defeated if an adversary can set up a wormhole between a card reader
and a valid card that could be far away, in the pocket of a legitimate user: the adversary
can relay the authentication exchange through the wormhole and gain unauthorized access.
The feasibility of this kind of attack has been demonstrated in [51].

Wormhole detection mechanisms fall into two classes: centralized mechanisms and
decentralized ones. In the centralized approach, data collected from the local neighbor-
hood of every node are sent to a central entity (e.g., the base station in case of sensor
networks). The central entity uses the received data to construct a model of the entire
network, and tries to detect inconsistencies in this model that are potential indicators
of wormholes. In the decentralized approach, each node constructs a model of its own
neighborhood using locally collected data; hence no central entity is needed. However,

45

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

decentralized wormhole detection mechanisms often require special assumptions, such as
tightly synchronized clocks, knowledge of geographical location, or existence of special
hardware, e.g., directional antennas.

In this section, we propose 3 mechanisms for wormhole detection in wireless sensor
networks. Two of these are centralized mechanisms and the third one is a decentralized
mechanism. Both proposed centralized mechanisms are based on hypothesis testing and
they provide probabilistic results. The first mechanism, called the Neighbor Number Test
(NNT), detects the increase in the number of the neighbors of the sensors, which is due
to the new links created by the wormhole in the network. The second mechanism, called
the All Distances Test (ADT), detects the decrease of the lengths of the shortest paths
between all pairs of sensors, which is due to the shortcut links created by the wormhole
in the network. Both mechanisms assume that the sensors send their neighbor list to the
base station, and it is the base station that runs the algorithms on the network graph that
is reconstructed from the received neighborhood information. The decentralized detection
mechanism that we propose is based on an authenticated distance bounding protocol.

3.1 Centralized wormhole detection algorithms

THESIS 3.1. I propose two centralized wormhole detection mechanisms for wireless sen-
sor networks based on a statistical hypothesis testing approach. Both mechanisms require
the nodes to send their neighbor list to a central base station, which reconstructs the net-
work topology graph and identifies inconsistencies that may be caused by wormholes. The
first mechanism (called Neighbor Number Test or NNT for short) identifies distortions in
the node degree distribution in the network, while the second mechanism (called All Dis-
tances Test or ADT for short) identifies distortions in the distribution of the length of
the shortest paths in the network. Both mechanisms use the χ2–test as hypothesis testing
method, and I describe how its parameters should be determined. I show by means of sim-
ulations that NNT accurately detects a wormhole if its radius is comparable to the nodes’
radio range and the distance between the areas affected by the two ends of the wormhole is
sufficiently large; however, NNT’s detection accuracy is unacceptable, when the wormhole’s
radius is significantly smaller than the radio range of the nodes. I also show by means of
simulations that ADT can very accurately detect wormholes with radii comparable to the
nodes’ radio range, and it can accurately detect even a wormhole with a small radius when
the distance between the areas affected by the two ends of the wormhole is sufficiently large.
Furthermore, the false positive rate of both algorithms is low. [C2]

System and adversary models

We assume that the system consists of a large number of sensor nodes and a few
base stations placed on a two dimensional surface. We assume that the base stations
have no resource limitations, and they can run complex algorithms. We assume that
the sensors have a fixed radio range r, and two sensors are neighbors, if they reside in
the radio range of each other. We assume that the sensors run some neighbor discovery
protocol, and they can determine who their neighbors are. We also assume that the
sensors send their neighborhood information to the closest base station regularly in a
secure way. By security we mean confidentiality, integrity, and authenticity; in other words,
we assume that the adversary cannot observe and change the neighborhood information
sent to the base stations by the sensors, neither can it spoof sensors and fabricate false
neighborhood updates. This can be ensured by using cryptographic techniques. Note that

46

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

the neighborhood information can be piggy-backed on regular data packets. In addition,
as sensor networks tend to be rather static, sending only the changes in the neighborhood
since the last update would reduce the overhead significantly. The base stations can pool
the received neighborhood information together, and based on that, they can reconstruct
the graph of the sensor network. We assume that the node density is high enough so that
the network is always connected.

We assume that the adversary can set up a wormhole in the system. The wormhole is a
dedicated connection between two physical locations. There are radio transceivers installed
at both ends of the wormhole, and packets that are received at one end can be sent to and
re-transmitted at the other end. In this way, the adversary can achieve that nodes that
otherwise do not reside in each other’s radio range can still hear each other and establish
a neighbor relationship (i.e., they can run the neighbor discovery protocol). This means
that the adversary can introduce new, otherwise non-existing links in the network graph
that is constructed by the base stations based on the received neighborhood information.

The wormhole is characterized by the distance between the two locations that it con-
nects and the radio ranges of its transceivers. We assume that the receiving and the
sending ranges of both transceivers are the same, and we will call this range the radius of
the wormhole. The radius of the wormhole is not necessarily equal to the radio range of
the sensors.

In principle, the adversary can drop packets carrying neighborhood information that
are sent to the base stations via the wormhole. However, consistently missing neighbor-
hood updates can be detected by the base stations and they indicate that the system is
under attack. Therefore, we assume that the adversary does not drop the neighborhood
updates. In addition, by the assumptions made earlier, it cannot alter or fabricate them
either.

Neighbor Number Test (NNT)

Our first detection mechanism is based on the fact that by introducing new links into
the network graph, the adversary increases the number of neighbors of the nodes within
its radius. If the distribution of the placement of the nodes is given, then it is possible to
compute the hypothetical distribution of the number of neighbors. Then, the base stations
can use statistical tests to decide if the network graph constructed from the neighborhood
information that is received from the sensors corresponds to this hypothetical distribution.
In order to illustrate this idea, let us consider the example depicted in Figure 17, where
the dark bars correspond to the hypothetical distribution of the number of neighbors,
and the light bars show the actual distribution in the network graph reconstructed from
the sensors’ neighborhood updates. One can see that the probability of higher neighbor
numbers (15-20) is increased with respect to the hypothetical distribution, and the idea
of the proposed mechanism is to detect this increase by using statistical tests.

Based on the above observations, the NNT algorithm is given as follows:

1. The base station computes the expected histogram of the neighbor numbers using
the hypothetical distribution of the number of neighbors.

2. The base station collects the neighborhood updates from the sensors, constructs the
network graph, and computes the histogram of the real neighbor numbers in the
graph.

3. The base station compares the two histograms with the χ2–test.

47

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Figure 17: Hypothetical (dark) and real (light) distributions of the number of neighbors

4. If the computed χ2 number is larger than a preset threshold that corresponds to a
given significance level, then a wormhole is indicated.

Assuming that the sensors are placed uniformly at random on the plane, the probability
of two nodes being neighbors is

q =
r2 · π
T

where r is the radio range of the sensor nodes and T is the size of the area where the
sensor network is deployed. The probability p(k) of having exactly k neighbors is

p(k) =

(
N

k

)
· qk · (1− q)N−k

where N + 1 is the total number of nodes in the network. Let us partition the set
{0, 1, 2, . . .} into subsets B1, B2, · · · , Bm, such that e(i) = (N + 1)

∑
k∈Bi p(k) be larger

than 5 for all i (a requirement needed by the χ2–test [14]). The χ2 number is then com-
puted using the following formula:

χ2 =
∑
∀i

r(i)− e(i)
e(i)

where r(i) is the real number of nodes with number of neighbors in Bi. If χ2 is below
the threshold that corresponds to a given significance level (this threshold can be looked
up in published tables of χ2 values), then the hypothesis is accepted, and no wormhole is
indicated. Otherwise the hypothesis is rejected, and a wormhole is indicated.

All Distances Test (ADT)

Our second detection mechanism is based on the fact that the wormhole shortens the
paths in the network, or more precisely, it distorts the distribution of the length of the

48

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

shortest paths between all pairs of nodes. This is illustrated by the example depicted in
Figure 18, where the dark bars represent the hypothetical distribution of the length of the
shortest paths and the light bars represent the real distribution. As it can be seen, the
two distributions are different, and in the real distribution, shorter paths are more likely
than in the hypothetical one. The idea is to detect this difference with statistical tests.

Figure 18: Hypothetical (dark) and real (light) distributions of the length of the shortest
paths between all pairs of nodes

The ADT algorithm is very similar to the NNT algorithm:

1. The base station computes the histogram of the length of the shortest paths between
all pairs of nodes in the hypothetical case when there is no wormhole in the system
using the knowledge of the distribution of the node placement.

2. The base station collects the neighborhood information from the sensors, and com-
putes the histogram of the length of the shortest paths in the real network.

3. The base station compares the two histograms with the χ2–test.

4. If the computed χ2 number is larger than a preset threshold that corresponds to a
given significance level, then a wormhole is indicated.

In this case, we were not able to derive a close formula that describes the hypothetical
distribution of the length of the shortest paths. Instead, we propose to estimate that
distribution by randomly placing nodes on the plane according to the distribution of the
node placement, and compute the lengths of the shortest paths between all pairs of nodes
in the resulting graph. We propose to repeat the experience many times and average the
normalized histograms obtained in these experiences. Once the hypothetical distribution
is estimated in this way, the χ2–test can be used in a similar way as we described above.

49

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Simulation settings

In order to evaluate the effectiveness of the proposed centralized mechanisms, we built
a simulator that places 300 sensor nodes uniformly at random on a 500 m × 500 m flat area
with one base station in the middle, and it also places a wormhole randomly in the same
area. The simulator permits us to set three parameters: the radio range of the sensors,
the radius of the wormhole, and the distance between the affected areas at the two ends
of the wormhole.

We chose two extreme values for the radio range of the sensor nodes: 40 m and 70 m.
The expected neighbor number is 5.9 in the 40 m case, and 18.5 in the 70 m case. Then,
we split up the range between 5.9 and 18.5 evenly into 5 intervals to get the six radio
range values that we used in our simulations (see Table 2).

Number of nodes 300

Size of deployment area 500 m × 500 m

Radio range of sensor nodes 40 m, 47 m, 54 m, 60 m, 65 m, 70 m

Radius of the wormhole 16 m, 50 m

Distance between the affected areas 20 m, 50 m, 100 m, 200 m, 300 m, 400 m
at the two end of the wormhole

Number of simulation runs 100

Table 2: Simulation parameters

We set the radius of the wormhole to 16 m or to 50 m (see Table 2). These two values
have been selected in such a way that the number of nodes affected by the wormhole
differs significantly in the two cases. When the radius of the wormhole is 16 m, one
node is affected (falls in the wormhole’s range) on both ends of the wormhole on average,
whereas when the radius of the wormhole is 50 m, 9.4 nodes are affected on both ends on
average.

Finally, we varied the distance between the affected areas at the two ends of the
wormhole between 20 m and 400 m (see Table 2).

A given combination of the possible parameter values define a test case. For each test
case we run 100 simulations and averaged the results. For each radio range setting, we
first determined the rate of the false positive alarms (i.e., the percentage of the simulation
runs where the algorithms indicate a wormhole when there is no wormhole in the system).
Then, we placed wormholes with different parameters in the system and determined the
rate of the true positive alarms of both of our centralized wormhole detection mechanisms
(i.e., the percentage of simulation runs where the wormhole is detected when there is
indeed a wormhole in the system). The results are presented below.

Simulation results for NNT

The results of the NNT algorithm are shown on Figures 19 and 20. Figure 19(a) shows
the true positive rate as a function of the radio range of the sensors when the radius of
the wormhole is 50 m. As it can be seen, the detection accuracy decreases as the sensors’
radio range increases. The reason is that in the case of larger radio ranges, the sensors
have more real neighbors, and therefore, the increase in the number of neighbors caused by
the wormhole becomes less significant, and consequently, more difficult to detect. We can
also observe that the detection accuracy is better when the areas affected by the wormhole

50

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

are more distant from each other, although increasing this distance above 100 m has no
real influence on the results. In fact, if the distance between the affected areas is smaller
than the radio range of the sensors, then it is possible that two affected nodes that do not
belong to the same affected areas are already real neighbors, and therefore, the wormhole
does not create a new link between them. In other words, the larger the distance between
the affected areas is, the higher the probability is that the wormhole introduces new links
into the graph, and by doing so it increases the number of neighbors of the affected nodes.

(a) (b)

Figure 19: Rate of true positive detections plotted against the radio range of the sensor
nodes. The different curves belong to different distances between the areas affected by the
wormhole with a radius of 50 m (a) and 16 m (b)

Figure 19(b) shows the rate of true positive detection as a function of the radio range
of the sensors when the radius of the wormhole is 16 m. It is clear from the figure that the
NNT algorithm does not work in this case, as the accuracy of the detection is unacceptably
low. The huge difference between the performance in the 50 m case and that in the 16 m
case can be explained with the large difference in the number of the affected nodes in the
two cases. As we described earlier, when the radius of the wormhole is 16 m, on average
one node is affected at both ends on the wormhole. Hence, practically, such a wormhole
creates a single new link in the graph, which is extremely difficult to detect with statistical
techniques. On the other hand, as the average number of affected nodes is around 10 at
both ends of the wormhole when the radius is 50 m, the number of new links introduced in
the graph is around 100. More importantly, around 20 nodes out of the total of 300 have
around 10 more neighbors due to the wormhole, and this can be detected by the NNT
algorithm.

Figure 20 shows the rate of the false positive alarms as a function of the radio range
of the sensors. As it can be seen, the NNT algorithm performs quite well regarding the
false positive alarms. Indeed, the false positive alarm rate is determined by the selected
significance level of the χ2–test, which in our case was 0.025.

In summary, the NNT algorithm detects the wormhole reasonably well if the radius
of the wormhole is comparable to or larger than the radio range of the sensors, but it
performs very badly if the radius of the wormhole is small. We note, however, that a
smaller wormhole radius has also smaller effect on the system in terms of the number of
sensors that send measurement data to the base station through the wormhole.

51

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Figure 20: Rate of false positive detections plotted against the radio range of sensor nodes

Simulation results for ADT

The results of the ADT algorithm are shown on Figures 21 and 22. Figure 21(a)
shows the rate of true positive detection as a function of the sensors’ radio range when
the radius of the wormhole is 50 m, whereas Figure 21(b) shows the same when the radius
of the wormhole is 16 m. Similar to the NNT algorithm, the ADT algorithm performs
better when the radius of the wormhole is larger. However, unlike the NNT algorithm, the
ADT algorithm is not completely unusable in the case when the radius of the wormhole
is 16 m. Rather, its performance depends on the distance between the areas affected by
the wormhole: the higher this distance is, the more accurate the detection is. Moreover,
when the distance between the affected areas is 400 m, the accuracy is close to 100% . The
explanation for this is quite obvious: a longer wormhole reduces the length of the shortest
paths between more distant nodes, and thus overall, it represents a larger decrease in the
average length of the shortest paths between all pairs of nodes.

(a) (b)

Figure 21: Rate of true positive detection plotted against the radio range of the sensor
nodes. The different curves belong to different distances between the areas affected by the
wormhole with a radius of 50 m (a) and 16 m (b)

Regarding the rate of false positive alarms (Figure 22), the ADT algorithm performs
quite well except for small radio ranges.

52

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Figure 22: Rate of false positive detection plotted against the radio range of the sensor
nodes

3.2 Decentralized wormhole detection algorithm

THESIS 3.2. I propose a decentralized wormhole detection mechanism that uses a new
distance bounding protocol that features mutual authentication of the protocol participants
and a commitment phase that prevents attacks aiming at shortening the estimated distance
between the participants. I show by informal reasoning that the protocol is suitable for the
purpose of wormhole detection, as wormholes typically make distances appear shorter than
they really are. [C5]

The main idea of distance-bounding is simple but very powerful. It is based on the
facts that electro-magnetic waves propagate nearly with the speed of light and with current
technology it is easy to measure local timings with nanosecond precision. The distance
bounding technique essentially consists of a series of rapid bit exchanges between the two
nodes. Each bit sent by the first node is considered to be a challenge for which the other
node is required to send a one bit response immediately. By locally measuring the time
between sending out the challenges and receiving the responses, the first node can estimate
its real physical distance to the other node, assuming that the messages travel with the
speed of light and the processing delay at the other node is negligible.

Note that the estimated distance is only an upper bound on the real distance between
the nodes, because the second node could be closer, but it can delay the responses in order
to appear to be further. Even if the nodes are trusted for not delaying their responses,
an active adversary can delay the messages between the parties, and hence, the estimated
distance will still be just an upper bound on the real distance. However, in the case of a
wormhole attack, the adversary’s goal is not to make the two nodes believe that they are
far away from each other. On the contrary, the adversary wants the two nodes to believe
that they are within each other’s range, when in reality they are not. In order to achieve
that the estimated distance is smaller than the nodes’ real distance, the adversary should
arrange that the messages travel faster than the speed of light, which is impossible. Thus,
distance-bounding can be used for wormhole detection.

We slightly modify the above described distance-bounding technique such that it allows
both nodes to measure the distance between them simultaneously and it uses symmetric
key cryptographic primitives for authentication purposes. In order for this to work, it is
assumed that each pair of nodes share a symmetric key. We call the resulting protocol
Mutual Authenticated Distance-bounding, or shortly MAD.

Let x and y denote the two nodes in the protocol, and let their shared key be kxy. We

53

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

will denote the message authentication function controlled by the key kxy by mackxy . The
operation of the protocol is summarized in Figure 23, and it is explained as follows:

• Initialization phase:
Both x and y generate uniformly at random two numbers. The numbers of x are
denoted by r and r′, and the numbers of y are denoted by s and s′. Numbers r and
s are ` bits long, and r′ and s′ are `′ bits long (i.e., r, s ∈ {0, 1}` and r′, s′ ∈ {0, 1}`′)
Both x and y compute a commitment to the generated numbers by using a collision
resistant one-way hash function H: cx = H(r||r′) and cy = H(s||s′). Finally, x sends
cx to y and y sends cy to x. Note that the random numbers can be generated and
the commitments can be computed well before running the protocol.

• Distance-bounding phase:
Let the bits of r and s be denoted by ri and si (i = 1, 2, . . . , `), respectively. The
following two steps are repeated ` times, for i = 1, 2, . . . , `:

– x sends bit αi to y immediately after it received βi−1 from y (except for α1 which
is sent without receiving any bit from y), where α1 = r1 and αi = ri ⊕ βi−1 for
i > 1;

– y sends bit βi = si ⊕ αi to x immediately after it received αi from x.

x measures the times between sending αi and receiving βi, and y measures the times
between sending βi and receiving αi+1. From the measured times, they both estimate
their distance.

• Authentication phase:
Node x computes the bits si = αi ⊕ βi, and the MAC

µx = mackxy(x||y||r1||s1|| . . . ||r`||s`)

Similarly, y computes the bits r1 = α1 and ri = αi ⊕ βi−1 for i > 1, and the MAC

µy = mackxy(y||x||s1||r1|| . . . ||s`||r`)

Finally, x sends r′||µx to y and y sends s′||µy to x. Node x verifies that the com-
mitment cy and the MAC µy of y are correct, and y verifies that the commitment
cx and the MAC µx of x are correct.

In the above protocol, the MAC ensures the authenticity of the exchange: both x and
y can believe that they ran the distance-bounding phase with the other, and thus, the
distance that they estimate is really the distance between x and y. Committing to r and
s in the initialization phase ensures that the protocol is successful only if exactly the bits
of r and s are exchanged. As r and s are random, an adversary cannot try to cheat x
by predicting the bits of s and responding earlier than y, and similarly it cannot cheat
y either. More precisely, the probability that such an attack succeeds is 2−` and hence
decreases exponentially in `.

The advantage of MAD is that it does not require the localization of the nodes or
the synchronization of their clocks. MAD still requires, however, special hardware in the
nodes in order to quickly switch the radio from receive mode into send mode. In addition,
it needs a special medium access control protocol that allows for the transmission of bits
without any delay.

54

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

x y

generate random numbers generate random numbers

r ∈ {0, 1}`, r′ ∈ {0, 1}`
′

s ∈ {0, 1}`, s′ ∈ {0, 1}`
′

compute commitment cx = H(r||r′) compute commitment cy = H(s||s′)
cx−→
cy←−

— start of distance-bounding phase —
the bits of r are r1, r2, . . . , r` the bits of s are s1, s2, . . . , s`

α1 = r1
α1−→
β1←− β1 = s1 ⊕ α1

· · ·
αi = ri ⊕ βi−1

αi−→ measure delay between βi−1 and αi

measure delay between αi and βi
βi←− βi = si ⊕ αi
· · ·

α` = r` ⊕ β`−1
α`−→ measure delay between β`−1 and α`

measure delay between α` and β`
β`←− β` = s` ⊕ α`

— end of distance-bounding phase —

compute MAC compute MAC
si = αi ⊕ βi (i = 1, . . . , `) r1 = α1 and ri = αi ⊕ βi−1 (i = 2, . . . , `)

µx = mackxy (x||y||r1||s1|| . . . ||r`||s`) µy = mackxy (y||x||s1||r1|| . . . ||s`||r`)
r′||µx−→
s′||µy←−

verify cy and µy verify cx and µx

Figure 23: Mutual Authenticated Distance-bounding (MAD) protocol

3.3 Related work

In [45], the authors propose two approaches for detecting wormholes in wireless ad hoc
networks, where sensors are allowed to move during the communication. The first approach
is called geographical packet leashes, and it requires the nodes to be aware of their own
location and to maintain loosely synchronized clocks. Every time when a node A sends a
packet to its neighbor B, it puts its location and the time of sending into the header of the
packet. When the packet is received by B, it compares the time of reception to the time
of sending, and calculates the maximum distance between A and B using the difference
between their locations and the distance that they could move away between sending and
receiving the packet. If the estimated distance is longer than the possible maximum radio
range then B rejects the communication with A.

The other approach is called temporal packet leashes, and it avoids using any special
hardware for localization, but it requires tightly synchronized clocks. Every time when a
node A sends a packet to its neighbor B, it puts an authenticated time stamp into the
header. When B receives the packet, it calculates the possible maximum distance between
A and B from the difference between the time of sending and the time of receiving of
the packet, and assuming that the packet travels with the speed of light. If the resulting
distance is too large, then this indicates a wormhole. This procedure relies on the fact that
going through the wormhole means covering a longer distance than the normal distance
between neighboring nodes, and this longer distance can be precisely measured due to the
tightly synchronized clocks.

The disadvantage of the above approaches is that they require either location informa-

55

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

tion of each node or tight clock synchronization between the nodes, and these requirements
cannot always be satisfied in sensor networks.

Another wormhole detection approach that uses the node’s location information is
proposed in [68]. However, as opposed to the geographical leash approach proposed in
[45], here only a small fraction of the nodes need to be equipped with a GPS receiver.
These special nodes are called guards and it is also assumed that the guards have a larger
radio range (denoted by R) than the other nodes. The guards broadcast their positions in
their one hop neighborhood. Two nodes consider each other neighbor only if they hear a
threshold number of common guards. The nodes use the location information broadcast
by the guards to detect wormholes based on the following two principles: (i) since any
guard heard by a node must lie within a range of radius R around the node, a node cannot
hear two guards that are 2R apart from each other; and (ii) since the messages sent by
the guards are authenticated and protected against replay, a node cannot receive the same
message twice from the same guard. It is shown in [68] that based on these principles,
wormholes can be detected with probability close to one. However, the disadvantage of
this approach is that the guards are distinguished nodes in the network that differ from
the regular nodes.

In [41], the authors propose a wormhole detection approach that assumes that the
nodes know from which direction they got a packet. The intuitive idea behind this ap-
proach is that if there is no wormhole in the system, then the following must be true: if
one node sends a packet in a given direction, then its neighbor will hear that packet from
the opposite direction. However, if there is a wormhole in the system, then the above
statement is not always true (depending on the placement of the wormhole), and thus,
the wormhole becomes detectable. Unfortunately, it has a significant probability that the
wormhole is there, but it is not caught. In order to address this problem, the authors
worked out two algorithms in which the nodes involve their neighbors during the commu-
nication to help to discover the wormhole. The main disadvantage of this approach is that
it requires directional antennas, which are usually not available in sensor networks.

In [79], a centralized wormhole detection technique is proposed, which uses inaccurate
distance estimations between neighboring nodes. The main idea of the proposed technique
is to reconstruct a virtual layout of the network and identify inconsistencies in it. For this
reason, the connectivity information and the inaccurately estimated distances between
the neighbors are fed into a multi-dimensional scaling (MDS) algorithm, which tries to
determine a virtual position for every node in such a way that the constraints induced by
the connectivity and the distance estimation data are respected. Since the distances are
estimated inaccurately, the algorithm has a certain level of freedom in “stretching” the
nodes within the error bounds of the distance estimation. If the estimated distance between
two nodes connected by a wormhole are much larger than the nodes’ communication range,
then the wormhole is detected immediately. Hence, the adversary must falsify the distance
estimation and arrange that the estimated distances between the nodes affected by the
wormhole become credible. However, this will result in a distortion in the virtual layout
constructed by the MDS algorithm; in particular, the layout will be contracted between
the affected nodes. By visualizing the virtual layout or by computing appropriate indicator
values, the distortion can be detected and the wormhole can be located.

Several research efforts have been reported that propose various location verification
mechanisms for mobile networks. Waters and Felten [80] propose a system for proving
the location of tamper-resistant devices, based on the exchange of RF messages. The
system uses round-trip time of flight measurements to distance-bound the devices. A

56

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

similar protocol, based both on RF and ultrasound, is devised by Sastry, Shankar and
Wagner [72]. Brands and Chaum [13] have proposed a set of efficient distance-bounding
protocols that operate with bit exchange and rely on measurements of round-trip time of
flight.

3.4 Summary

In this section, we have studied the problem of wormhole detection in wireless sensor
networks. We proposed two centralized wormhole detection mechanisms that are based
on hypothesis testing, and that provide probabilistic results. The first mechanism, called
the Neighbor Number Test (NNT), detects the increase in the number of the neighbors
of the sensors, which is due to the new links created by the wormhole in the network.
The second mechanism, called the All Distances Test (ADT), detects the decrease of the
lengths of the shortest paths between all pairs of sensors, which is due to the shortcut links
created by the wormhole in the network. Both mechanisms assume that the sensors send
their neighbor list to the base station, and it is the base station that runs the algorithms
on the network graph constructed from the received neighborhood information.

We investigated the detection accuracy of the two proposed mechanisms by means of
simulation. Our results show that both mechanisms can detect the wormhole with high
accuracy when the radius of the wormhole is comparable to the radio range of the sensors.
In addition, the ADT algorithm remains accurate even if the wormhole radius is small,
given that the distance between the areas affected by the two ends of the wormhole is
sufficiently large. Both algorithms have a low false detection rate.

We also proposed a decentralized wormhole detection mechanism that combines the
idea of distance-bounding and mutual authentication of nodes. Distance-bounding allows
the nodes that run the protocol to estimate the real physical distance between them,
therefore, the approach can be used for detecting wormholes. In addition, the advantage
of the proposed approach is that, unklike other decentralized approaches, it does not
require the localization of the nodes or the synchronization of their clocks.

57

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

58

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

4 Securing coding based distributed storage in wireless sen-
sor networks

In many wireless sensor network (WSN) applications, there are multiple, distributed
sources that generate data that must be stored efficiently in multiple storage nodes, each
having constrained communication, computation, and storage capabilities. Using the prin-
ciples of network coding [5, 33, 39, 58] and storing encoded data instead of raw data, one
can increase the efficiency of the system. Suppose we have k source nodes and n storage
nodes. Instead of storing raw data packets, each storage node stores a linear combination
of a subset of the k data packets. Random coding techniques (distributed erasure codes,
fountain codes) introduced in [27, 28, 29, 30] ensure that, for appropriately selected pa-
rameters, a collector node can reconstruct all the k data packets with high probability by
downloading the encoded packets from any k storage nodes and solving a system of linear
equations (s.l.e.). Thus, the collector node can retrieve the required data from k nearby
nodes, which results in decreased energy consumption, and hence, longer network lifetime.
Note that these are primary design criteria in WSNs.

While coding may increase the efficiency of distributed storage systems in a benign
environment, it has a potential problem in hostile environments, where an adversary may
attack the storage nodes. In particular, the problem that we are interested in in this
section is the so called pollution attack, whereby the adversary modifies some of the stored
encoded data, which results in erroneous decoding of a large part of the original data
upon retrieval. Note that these coding schemes mix (typically, linearly combine) blocks
of the original data, therefore, a single corrupted encoded block can affect the decoding
of multiple data blocks. This amplification effect of the pollution attack is particularly
annoying and undesirable.

An approach to prevent the pollution attack is to require the source nodes to digitally
sign [56] (or hash [40]) the data blocks before they are injected in the system. However,
the digital signature scheme must have some homomorphic properties that allows for the
combination of signed data blocks. Unfortunately, homomorphic signature schemes are
computationally expensive, and they need a public key infrastructure (PKI) for the man-
agement of the signature verification keys. These problems hinder their usage in practical
applications; in particular, due to the large computational complexity they cannot be used
in sensor networks.

Our main contribution is a novel non-cryptographic approach to counteract pollution
attacks in coding based distributed storage systems in WSNs. Compared to other ap-
proaches in the same vein, we do not add redundancy to the data packets, but rather, we
take advantage of the inherent redundancy provided by the coding scheme itself that is
designed for the distributed storage system. To the best of our knowledge, our proposal
is the first error detection/correction method that does not require any new functionality
at the source nodes or at the storage nodes.

Our proposal is more practical than the approach based on homomorphic digital sig-
natures. First of all, we need neither a PKI, nor any cryptographic key management
scheme, as we do not use cryptography at all. The practical value of this feature should
not be underestimated. Second, while our approach also requires intensive computational
effort, this is required only for the entity that retrieves information from the distributed
storage system. In wireless sensor networks, where the computational overhead really
matters, this entity is typically the base station, which is usually assumed to be powerful
enough. In contrast to this, in the approach based on homomorphic digital signatures, the

59

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

source nodes and the storage nodes need to perform intensive computation, and those are
typically resource constrained sensor nodes.

In order to measure the performance of our algorithms, we calculate the probability
of success together with the complexity of the algorithms. Two complexity measures are
considered: the computational complexity, measured in the number of s.l.e.’s that need to
be solved, and the communication complexity, measured in the number of encoded packets
that need to be downloaded when data is retrieved from the distributed storage system. We
propose an attack detection algorithm that has optimal communication and computational
complexity in the given system model. We also propose a recovery algorithm with very low
computational complexity, and another recovery algorithm with optimal communication
complexity, which has also feasible computational complexity for small to medium size
practical systems.

4.1 System and adversary models

System model

The general model of the distributed storage systems that we consider in this work
is taken from [28] and it is illustrated in Figure 24. The system consists of k source
nodes, n storage nodes, and one or more collector nodes. Note that these are roles, and
therefore, the sets of source nodes, storage nodes, and collector nodes may overlap. Only
the collector node is assumed to be a powerful computer (base station), while source and
storage nodes may be low capacity devices.

Figure 24: System model

Each source node i generates a data block Xi, and transfers it to some randomly
selected subset of the storage nodes. Each storage node j computes a random linear
combination of all the data blocks that it receives; the result is a single code block Yj .
Formally, we can write that Yj = XGj , where X = (X1, X2, . . . , Xk) is the row vector of
all the data blocks, and Gj = (g1j , g2j , . . . , gkj)

T is a column vector, the non-zero elements
of which are the random coefficients used in the linear combination. Here, gij ∈ GF (q) for
all i = 1, 2, . . . , k and j = 1, 2, . . . , n, and for some q. Each storage node j stores the pair
Zj = (Gj , Yj), which represents the equation Yj = XGj . The entire system is represented

60

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

by the system of linear equations (s.l.e.) Y = XG, where Y = (Y1, Y2, . . . , Yn) is the row
vector of all code blocks, and G = (G1, G2, . . . , Gn) is a k × n matrix that contains the
coefficient vectors in its columns. Matrix G is also called generator matrix.

For appropriately selected values of k and q, any k× k submatrix of G is non-singular
with high probability. According to [28], the probability of non-singularity is at least
(1− k

q)c2(k), where c2(k) → 1, if k → ∞. Larger values of q increase the probability of
successful decoding, but makes the overhead of storage higher. [28] also shows that storage
nodes required to store O(ln k) coefficients. E.g. if k = 100 and q = 220, the probability of
singularity is ≈ 10−4, while the average overhead of a storage node is 92 bits. Therefore,
the collector node can reconstruct all the data blocks with high probability by downloading
the equations from any k storage nodes and solving the obtained s.l.e. for X. In the rest
of this presentation, we assume that this property of G holds.

In fact, each data blockXi can itself be a column vector ofm symbols (x1i, x2i, . . . , xmi)
T,

where x`i ∈ GF (q) for all i = 1, 2, . . . , k and ` = 1, 2, . . . ,m. In that case, each code
block Yj is also a column vector (y1j , y2j , . . . , ymj)

T of m symbols in GF (q). The lin-
ear combination Yj = XGj is computed in a symbol-by-symbol manner, meaning that

y`j =
∑k

i=1 x`igij for all j = 1, 2, . . . , n and ` = 1, 2, . . .m. Thus, one can think of X and
Y in the s.l.e. Y = XG as matrices of size m× k and m× n, respectively.

Adversary model

We assume that the adversary has access to t storage nodes, and she can observe and
modify the equations stored by them. This means that if the adversary has access to
storage node j, then she can modify both Gj and Yj stored by node j. Let G∗ = G+ ∆G
and Y ∗ = Y + ∆Y be the modified generator matrix and the modified code block vector
after an attack, where the modifications made by the adversary are contained in matrix
∆G and vector ∆Y . We further allow the adversary to compromise the communication
links of the t storage nodes. It gives more possibility to the adversary, but does not extend
the possible effect of the attack. For simplicity, we refer to nodes that store modified data
as compromised nodes, and not distinguish them upon the way of modification.

Note that the adversary has no access to the source nodes, rather she aims at com-
promising the output of the storage system. The rationale behind this assumption is that
storage nodes are exposed to attacks for an extended period of time, whereas the source
nodes must be attacked during the limited time period of data generation. Data distribu-
tion from the source nodes to the storage nodes typically takes place on a wireless channel,
that is exposed to various attacks. Accordingly, our applied model of adversary is realistic
in most cases.

Recall that when reconstructing the data blocks, the collector node chooses the k
storage nodes, from which it downloads the k linear equations, randomly. Therefore, the
adversary has no information on which storage nodes will be chosen when she performs
the attack. At the same time, the collector node does not know which storage nodes are
compromised. In the sequel, we will assume without loss of generality that the adversary
randomly chooses the t storage nodes to be compromised, and the collector node downloads
the equations of the first k storage nodes, where the order of the storage nodes is defined
randomly by the collector node. Thus, the set of equations downloaded by the collector
node is Z∗1..k = (G∗1..k, Y

∗
1..k), where G∗1..k = (G∗1, G

∗
2, . . . , G

∗
k) and Y ∗1..k = (Y ∗1 , Y

∗
2 , . . . , Y

∗
k).

Let us now investigate the effect of an attack. The collector node solves the s.l.e.
Y ∗1..k = XG∗1..k for X, and obtains the result X∗ = Y ∗1..k(G

∗
1..k)

−1. Let us suppose for the
moment that the adversary modifies only the code blocks, meaning that G∗ = G. In this

61

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

case, X∗ = Y ∗1..k(G1..k)
−1. The modification induced by the attack in the decoded data

blocks can be computed as follows:

∆X = X∗ −X
= Y ∗1..k(G1..k)

−1 −X
= (Y1..k + ∆Y1..k)(G1..k)

−1 −X
= ∆Y1..k(G1..k)

−1

where in the last step we used that Y1..k(G1..k)
−1 = X. This means that (a) if a given row

of ∆Y1..k contains only zeros, then the corresponding row of ∆X will contain only zeros
too, and (b) a non-zero element in a given row of ∆Y1..k will affect the entire corresponding
row in ∆X. Thus, a modification made by the adversary in a given row in any of the first
k code blocks will, in general, affect all decoded data blocks, but the effect will be limited
to the corresponding row.

Now, let us suppose that the adversary modifies only the coefficient vectors, meaning
that Y ∗ = Y . In this case, X∗ = Y1..k(G

∗
1..k)

−1. If at least one of the first k coefficient
vectors has been modified by the adversary, then G∗1..k 6= G1..k, and thus, (G∗1..k)

−1 can be
completely different from (G1..k)

−1. Therefore, in general, such a modification affects all
decoded data blocks in every row.

If the adversary modifies both the coefficient vectors and the code blocks, then these
effects are combined. In the general case, the modification induced by the attack on the
decoded data blocks can be derived as follows:

X + ∆X = (Y1..k + ∆Y1..k)(G
∗
1..k)

−1

(X + ∆X)G∗1..k = Y1..k + ∆Y1..k

X∆G1..k + ∆XG∗1..k = ∆Y1..k

∆X = (∆Y1..k −X∆G1..k)(G
∗
1..k)

−1

where in the second step we used that G∗1..k = G1..k + ∆G1..k and XG1..k = Y1..k.
The above formulas imply the following observation. If ∆Y1...k is controlled by the

adversary, meaning that all downloaded equations are from compromised nodes, the value
of ∆X can be chosen by the adversary. The adversary can reconstruct X from the contents
of the nodes, so she is able to enforce arbitrary X∗ = X + ∆X solution by loading
Y ∗i = X∗i Gi as the modified content of the i-th compromised storage node. As a result,
the adversary can not only destroy the original data block vectors, but she can also enforce
a particular value. This scenario may occur, if t ≥ k.

Actually, these observations illustrate the amplification effect of the pollution attack:
a small amount of modifications in the stored coded information can result in a large
amount of modifications in the decoded data. In the worst case all data blocks are entirely
destroyed. This is highly non-desirable, and requires the development of some counter-
measures. Below, we address this problem by proposing mechanisms to detect and recover
from such attacks.

4.2 Attack detection algorithm

THESIS 4.1. I propose a new algorithm to detect pollution attacks in coding based dis-
tributed storage schemes. The algorithm is optimal in terms of communication and com-
puting complexity, and its false negative detection rate can be made small by appropriate
parameter selection. Its false positive detection rate is t

n−k , where k is the number of

62

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

source nodes, n is the number of storage nodes, and t is the number of compromised stor-
age nodes. Hence, the false positive detection rate may not be small, but the only effect of
false alarms is that one of the recovery algorithms that I propose later is invoked, which
handle this situation efficiently. [C1, J2]

Principle

The basic idea of our attack detection mechanism is the following: We observe that
it is very unlikely that the adversary will compromise all the first k equations. Indeed,
the probability of this event is around (t/n)k. Thus, some parts of Y ∗1..k and G∗1..k are not
controlled by the adversary, and for this reason, she cannot enforce a particular solution
X∗ = Y ∗1..k(G

∗
1..k)

−1. Indeed, X∗ will be a random vector in most of the cases, except if
all the first k equations are intact, in which case X∗ = X will hold.

Now, suppose that we have an additional intact equation: Yk+1 = XGk+1 (i.e., the
collector downloaded Zk+1 = (Gk+1, Yk+1)). If X∗ is random, then it will not satisfy the
additional intact equation with high probability, while it will satisfy it with probability 1
if X∗ = X. Thus, we can detect if the decoded data block vector X∗ is polluted with the
help of an additional intact equation.

Algorithm

The proposed attack detection algorithm works in the following way: The collector
downloads the first k equations Z∗1..k and computes X∗ = Y ∗1..k(G

∗
1..k)

−1. Then, the col-
lector downloads the next equation Z∗k+1. If Y ∗k+1 = X∗G∗k+1, then no attack is detected
(and the collector accepts X∗ as the correct solution). Otherwise, if Y ∗k+1 6= X∗G∗k+1, an
attack is signaled.

Analysis

In this subsection, we investigate the complexity of the attack detection algorithm, as
well as its false negative and false positive error probabilities.

Complexity: We measure the communication complexity in the number of downloaded
equations and the computational complexity in the number of s.l.e.’s that we need to solve.
Thus, the communication complexity of the proposed attack detection algorithm is k+ 1,
and its computational complexity is 1. As the collector needs to download k equations
and solve one s.l.e. in any case, the incurred overhead of the attack detection is extremely
small: 1 more equation to download.

Probability of a false negative decision: Let us assume for the moment that the
adversary does not modify the coefficient vectors, meaning that G∗ = G. As we saw
earlier, in this case, the collector obtains the solution X∗ = X + ∆Y1..kG

−1
1..k = X + ∆X.

If we further assume that the additional equation that we use for detection is intact,
then we have Z∗k+1 = Zk+1 = (Gk+1, Yk+1). In this case, the false negative error probabil-
ity, denoted by Pfneg , can be computed as follows:

Pfneg = Pr{Yk+1 = X∗Gk+1|∆Y1..k 6= 0}
= Pr{Yk+1 = (X + ∆X)Gk+1|∆Y1..k 6= 0}
= Pr{∆XGk+1 = 0|∆Y1..k 6= 0} (22)

where in the last step we used that Yk+1 = XGk+1.

63

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Recall that if ∆Y1..k has a non-zero element in the i-th row (and G1..k is intact), then
∆X also has some non-zero elements in the i-th row. Otherwise, if the i-th row of ∆Y1..k

contains only zeros, then the i-th row of ∆X contains only zeros too.
We can write the i-th element of ∆XGk+1 as

k∑
`=1

∆xi`g`(k+1) (23)

By the argument above, (23) is a non-trivial linear combination of the elements of Gk+1.
However, the elements of Gk+1 are chosen randomly, therefore, the probability of (23)
being 0 is equal to 1/q.

From this, it follows that

Pfneg =
1

qt′
(24)

where t′ is the number of rows in ∆Y1..k that contain non-zero elements. Clearly, in order
to maximize the error probability (and hence minimize the success probability) of the
detection, the adversary must make all modifications to the code blocks in a single row10.

Next, we keep the assumption that the adversary does not modify the coefficient vectors
(hence G∗ = G), but we assume that the code block of the additional equation that we
use for detection is attacked, meaning that Z∗k+1 = (Gk+1, Y

∗
k+1) = (Gk+1, Yk+1 + ∆Yk+1).

In this case, a simple derivation similar to the previous case can be used to arrive to the
following result:

Pfneg = Pr{∆XGk+1 = ∆Yk+1|∆Y1..k 6= 0} (25)

Recall from the previous discussion that the i-th row of ∆X contains only zeros if the
i-th row of ∆Y1..k contains only zeros. In this case, the i-th element of ∆XGk+1 must be
a zero too. Thus, if the i-th element in ∆Yk+1 is not zero, then the above error probability
is 0 (i.e., we can detect the attack even though the additional equation used for detection
is not intact). On the other hand, if ∆Yk+1 contains zeros in every row where ∆Y1..k

contains only zeros, then due to the randomness of Gk+1, we get again that Pfneg = 1/qt
′
,

where t′ is the number of rows in ∆Y1..k that contain non-zero elements.
Finally, let us consider the general case when the adversary may modify both the

coefficient vectors and the code blocks, hence ∆G 6= 0 and ∆Y 6= 0. Recall that if
∆G1..k 6= 0, then the solution X∗ = Y ∗1..k(G

∗
1..k)

−1 obtained from the first k equations
is a random vector. It follows that the equation Y ∗k+1 = X∗G∗k+1 holds with probability
around 1/qm, and thus

Pfneg = Pr{Y ∗k+1 = X∗G∗k+1|∆G1..k 6= 0} ≈ 1

qm
(26)

The conclusion of this analysis is that the probability Pfneg of false negative detection
is maximized if the adversary makes modifications only in a single row of the code block
matrix Y and leaves the coefficient matrix G intact. In this case, Pfneg = 1/q. Hence, if q
is chosen sufficiently large, then the probability of not detecting a pollution attack can be
made negligible.

Probability of a false positive decision: Let us assume that the first k equations
downloaded by the collector node are intact, meaning that Z∗1..k = Z1..k. Thus, the

10Note that if the code blocks contain standard error detection elements, such as a CRC checksum, then
at least 2 rows must be changed by the adversary in every attacked code block. Consequently, in that case,
we have that Pfneg ≤ 1/q2.

64

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

collector computes the correct solution X∗ = Y ∗1..k(G
∗
1..k)

−1 = Y1..k(G1..k)
−1 = X. If the

additional equation downloaded for attack detection is also intact (i.e., Z∗k+1 = Zk+1),
then no attack is detected as Y ∗k+1 = Yk+1 = XGk+1 = X∗G∗k+1. Thus, an attack may
be signaled only in the case when the additional equation is not intact. From this, a
good approximation of the probability of a false positive decision, denoted by Pfpos , is the
following:

Pfpos ≈ Pr{∆Zk+1 6= 0|∆Z1..k = 0} (27)

Given that the first k equations are intact, the probability that the (k+ 1)-st equation
is also intact is (

n− k − 1
t

)
(
n− k
t

) =
n− k − t
n− k

(28)

where t is the number of randomly chosen storage nodes that are attacked by the adversary.
From this, we get that

Pfpos ≈ 1− n− k − t
n− k

=
t

n− k
(29)

While Pfpos is not negligible, false positive decisions do not have serious effects. Indeed,
when the attack detection algorithm signals an attack, the recovery procedures described
in the next section are executed. These procedures try to recover the original data block
vector, and as we will see, they succeed in a few steps when the number of attacked
equations is small (which is the true by definition in case of a false positive decision of the
attack detection algorithm).

4.3 Algorithms for recovering from an attack

Principle

When the collector node detects that the originally downloaded set S = Z∗1..k of equa-
tions is polluted, it can download more equations and use them to clean the polluted set
S. The basic idea of cleaning is the following: Let us denote the set of equations down-
loaded for cleaning by C, and let e be an additional equation. We use the equations in
C to replace a subset of size |C| of the equations in S. We denote the resulting new set
of equations by S′. Then, we run our attack detection mechanism on S′ with equation e
used for testing. In other words, we solve the s.l.e. corresponding to S′ and check if the
solution satisfies equation e. If no attack is detected, then we accept the obtained solution
as the correct data block vector. Otherwise, we take S again, replace another subset of
size |C| of its equations, and run the attack detection again. We repeat these steps until
either the cleaning succeeds or all possible subsets of size |C| of set S has been replaced.

Note that if e is intact, C contains only intact equations, and the number of the
attacked equations in S is not greater than |C|, then the above described procedure even-
tually succeeds, because eventually we will replace all the attacked equations in S by the
intact equations in C. In case of failure, either e is attacked, or C contains an attacked
equation, or the number of attacked equations in S is greater than |C|. In this case, we
may download another set C ′ of equations such that |C ′| > |C|, as well as another testing
equation e′, and try the cleaning of S again.

65

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

In the rest of this subsection, we propose two specific recovery algorithms based on
the principle described above. As we will see, the first algorithm is optimized for com-
munication complexity, however, its computational complexity does not scale well with k.
Nevertheless, it may still be usable for smaller systems. The second algorithm that we
propose has improved computational complexity, however, in general, it has a higher com-
munication complexity than the first algorithm has, and it can recover only from attacks
where the number of the compromised storage nodes is limited.

THESIS 4.2. I propose a new algorithm aiming at recovering from pollution attacks
in coding based distributed storage schemes. The algorithm uses additionally downloaded
equations for cleaning the originally downloaded, polluted set of equations. The size of
the cleaning set is iteratively increased, and thanks to that, the success probability of the
algorithm is 1, if t < n − k, and 0 otherwise, where k is the number of source nodes, n
is the number of storage nodes, and t is the number of compromised storage nodes. As k
can be an order of magnitude smaller than n, n− k is close to n, and thus, the algorithm
is successful even if a large fraction of the storage nodes is attacked. The communication
complexity of the algorithm is optimal, and it is approximately kp+1

1−p , where p = t/n. The
computational complexity of the algorithm is exponential in the number t of compromised
storage nodes, but my numerical analysis shows that it can still work in practice for small
to medium size systems (i.e., 10-50 source nodes, 100-600 storage nodes, and tolerating
50-10% of compromised storage nodes). [C1, J2]

Algorithm 1

The basic idea of our first algorithm is to start the cleaning with a cleaning set C of
size one (i.e., to assume first that there is only one attacked equation in set S), and then,
if cleaning fails, to increase the size of C iteratively. In this way, sooner or later, we arrive
to a cleaning set C that contains as many intact equations as the number of attacked
equations in S. In each iteration, we select all possible subsets of the equations in C and
replace with them all possible subsets of equations in S. Thus, eventually, we replace the
attacked equations with the intact ones, and arrive to a clean set.

The pseudo-code of the algorithm is presented in Table 3. Its operation is explained
as follows: The algorithm first downloads Z∗1..k+1 (line 1) and runs the attack detection
algorithm on Z∗1..k using Z∗k+1 as the testing equation (line 2). If no attack is detected,
then Z∗1..k is clean and the algorithm stops (line 3). Otherwise, the algorithm starts the
cleaning of S = Z∗1..k (lines 5–24). This is an iterative process, where in each iteration
(lines 7-24), exactly one new equation is downloaded (line 8). The newly downloaded
equation, denoted by e, becomes the testing equation used for attack detection in the
current iteration (line 10). The rest of the equations downloaded so far, not counting the
equations in S, constitute the cleaning set denoted by C (line 9). The algorithm takes
every possible subset C ′ of C, such that |C ′| = τ is not greater than k (lines 12–13), and
uses the equations in C ′ to replace τ equations in S in all possible ways (lines 14–16).
After each replacement, the attack detection mechanism is executed on the resulting set
S′ of equations using e as the testing equation (line 17). If no attack is detected, then S′

is clean and the algorithm stops (line 18).

Analysis of Algorithm 1

Below, we first analyze the success probability of the algorithm, and then, we analyze
its communication complexity and computational complexity.

66

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

1 download Z∗1..k+1

2 if attack detection(Z∗1..k, Z
∗
k+1) = no attack

3 return Z∗1..k
4 endif

5 let S = Z∗1..k
6 let w = 1
7 while w < n− k
8 download Z∗k+w+1

9 let C = Z∗k+1..k+w

10 let e = Z∗k+w+1

11 for τ = 1 to min(w, k)
12 for every possible selection s1

of τ elements out of w elements
13 let C ′ be the subset of equations

determined by s1 in C
14 for every possible selection s2

of τ elements out of k elements
15 let S′ = S
16 replace the equations determined by s2

in S′ with the equations in C ′

17 if attack detection(S′, e) = no attack
18 return S′

19 end if
20 end for
21 end for
22 end for
23 let w = w + 1
24 end while

Table 3: Pseudo-code of Algorithm 1.

Success probability: It is easy to see that the algorithm succeeds iff the number t′ of
the attacked equations in S = Z∗1..k is smaller than the number of the intact equations in
the remaining set Z∗k+1..n. On the one hand, if this condition holds, then we have at least
t′ + 1 intact equations in Z∗k+1..n, and therefore, as we continue downloading more and
more equations for cleaning, we eventually reach a state where the cleaning set C contains
at least t′ intact equations and the last downloaded equation e used for attack detection
is also intact. In this case, eventually, all the attacked equations in S will be replaced by
intact equations from C, hence S will be cleaned. In addition, as e is intact, the attack
detection mechanism will indicate no attack, and we can actually realize that S is cleaned.

On the other hand, if t′ is not smaller than the number of the intact equations in
Z∗k+1..n, then either the cleaning set C contains fewer than t′ intact equations, and hence,
S cannot be cleaned, or C contains exactly t′ intact equations and S can be cleaned, but
we have no more intact equation for attack detection purposes, and therefore, we cannot
realize that S is cleaned.

Given that there are t attacked equations all together, and t′ of them are in Z∗1..k, we

67

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

get that the number of intact equations in Z∗k+1..n is (n−k)−(t−t′). Hence, the algorithm
succeeds iff t′ < (n− k)− (t− t′), or equivalently, t < n− k. Thus, we get that

Psuccess =

{
1 if t < n− k
0 otherwise

(30)

As k can be an order of magnitude smaller than n, n − k is close to n, and thus, the
algorithm is successful even if a large fraction of the equations is attacked.

Communication complexity: Recall that we measure the communication complexity
in the number of the downloaded equations. As the algorithm downloads a new equation
in every iteration, its communication complexity depends on the number of the iterations
it performs. More precisely, if the algorithm performs R iterations, then its communica-
tion complexity is (k + 1) + R, because it downloads k + 1 equations at the beginning
before the iterative phase is started. As k is a fixed parameter, we are interested in the
characterization of R.

The algorithm stops as soon as the following two conditions hold: (a) the number of
intact equations in the cleaning set C is equal to the number of attacked equations in
S, and (b) the last downloaded equation e used for attack detection is intact. Indeed,
if condition (a) is satisfied, then eventually the intact equations in C will be used to
replace the attacked equations in S, hence S will be cleaned. If, in addition, condition
(b) is satisfied, then the attack detection mechanism will indicate no attack, and we can
actually realize that S is cleaned. Thus, R is the number of equations needed to be
downloaded to satisfy the two conditions above.

It must be clear that if S contains t′ attacked equations, then C ∪{e} must contain at
least t′ + 1 intact equations, as otherwise, we cannot clean S and realize that it has been
cleaned at the same time. Thus, R is minimal in the sense that for R′ < R downloaded
equations, C ∪ {e} contains fewer than t′ + 1 intact equations, and hence, the algorithm
cannot succeed. This means that our algorithm is optimal in terms of communication
complexity.

We give an estimation of R in the following way. Let p = t/n, and let W1 denote
the number of equations that need to be downloaded in order for the downloaded set
of equations to contain exactly the same number of intact equations, on average, as the
number of attacked equations in S. The average number of attacked equations in set S
is approximately kp. The average number of intact equations among the W1 equations
is approximately W1(1 − p). Hence, we get that W1 ≈ kp/(1 − p). Furthermore, let W2

denote the average number of equations that need to be downloaded until we download an
intact equation. Clearly, W2 ≈ 1/(1−p). Thus, when W1 +W2 equations are downloaded,
both conditions (a) and (b) are satisfied. In other words, a good estimate of R is

R ≈ W1 +W2 ≈
kp+ 1

1− p
(31)

Computational complexity: Recall that we measure the computational complexity in
the number of s.l.e.’s that need to be solved. In our case, each call to the attack detection
algorithm requires the solution of an s.l.e.

The worst case computational complexity Pworst of the algorithm can be easily deter-
mined by inspecting the structure of the nested loops in the algorithm:

Pworst ≈
R∑
w=1

min(w,k)∑
τ=1

(
w
τ

)(
k
τ

)
(32)

68

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

where R is the number of iterations, which we can estimate according to (31).
For the derivation of the average case computational complexity Pavg , we assume that

the number of the attacked equations in S is t′, where the average value of t′ is kt/n. We
make the following observations:

• All but the last iterations of the algorithm execute fully. (term (33) in the sum
below)

• In the last iteration, the loops that try to clean S with τ < t′ equations from C also
execute fully. (term (34) in the sum below)

• When we use τ = t′ equations from C for cleaning, we have to process on average
half of the possible selections of t′ equations from C until we end up with the subset
that contains the t′ intact equations of C. For all those selections, the inner loop
executes fully and we must process all the possible selections of t′ equations from S.
(term (35) in the sum below)

• Finally, when we select the subset of C that contains the t′ intact equations, we have
to process on average half of the possible selections of t′ equations from S until we
end up with the t′ attacked equations of S. (term (36) in the sum below)

Thus, we get that

Pavg ≈
R−1∑
w=1

min(w,k)∑
τ=1

(
w
τ

)(
k
τ

)
+ (33)

t′−1∑
τ=1

(
R
τ

)(
k
τ

)
+ (34)

1

2

(
R
t′

)(
k
t′

)
+ (35)

1

2

(
k
t′

)
(36)

Figure 25 shows the average computational complexity of Algorithm 1 as a function
of the number t of attacked equations. The different curves belong to different values of
n and k, and the computation is based on the formula given above. Note the logarithmic
scale of the y axis.

As we can see, the computational complexity of Algorithm 1 increases rapidly with the
number t of attacked equations. Still, for the presented values of n, k, and t, it does not
exceed 109 ≈ 230, which is still feasible. Thus, for small systems, where k is in the range of
10 – 50, Algorithm 1 provides a practical solution: it succeeds in recovering from attacks
even if the number t of the attacked equations is very large, its communication complexity
is optimal, and it is still computationally feasible up to t ≈ 55 attacked equations. Note
that in the case of n = 100, t ≈ 55 means that more than half of the storage nodes are
compromised, yet Algorithm 1 can recover from the attack and it is practically feasible.
In the case of n = 500, Algorithm 1 can cope only with a weaker attacker that can
compromise around 10% of the storage nodes.

While Algorithm 1 is a good choice for small scale systems (n = 100 – 600 and k = 10
– 50), it is computationally infeasible for larger systems (e.g., when k is around 100) even
if we assume that t is limited.

69

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Figure 25: Average computational complexity of Algorithm 1 as a function of the number
t of attacked equations. The different curves belong to different values of n and k.

THESIS 4.3. I propose another algorithm for recovering from pollution attacks in cod-
ing based distributed storage schemes that uses a fixed size cleaning set, and hence, it
has reduced computational complexity compared to the first recovery algorithm. I show,
by means of simulations, that with the same, still practical amount of computation, this
algorithm can work in an order of magnitude larger systems (100 source nodes and 1000
storage nodes) and succeeds with probability close to 1 up to 10% compromised storage
nodes, but its success rate decreases rapidly for higher percentage of compromised nodes.
The communication complexity of the algorithm grows with the number of compromised
storage nodes, but it remains below the acceptable value of n/2 up to 10% compromised
nodes, and it is close to optimal up to 5% compromised nodes. [J2]

Algorithm 2

Contrary to our first algorithm, where the size of the cleaning set is iteratively in-
creased, our second algorithm uses a fixed size cleaning set C. In this way, the number of
the possible selections of the different subsets of C does not grow, and hence, the compu-
tational complexity of the algorithm scales better with k. Instead of iteratively increasing
C, this algorithm changes the fixed size sets S and C in each iteration. In effect, S and C
consist of the equations that are taken from a fixed size window that slides over Z∗.

The pseudo-code of the algorithm is presented in Table 4. First, we download the
equations Z∗1..k+1 and perform attack detection in a way similar to Algorithm 1 (lines
1–4). If no attack is detected, then the algorithm stops; otherwise, we start an iterative
cleaning process (lines 5–26). As we said above, in this algorithm, the size w of the
cleaning set C is a fixed value dαke (line 5), where α is an input parameter. We download
the equations Z∗k+2..k+w (line 6), and initialize the set S to be cleaned with Z∗1..k and the
cleaning set C with Z∗k+1..k+w. Both sets change in each iteration, and we use variables iS
and iC to point to the first equations of them in the current iteration. Similarly, ie points

70

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

to the equation that we use in attack detection for testing. Variables iS , iC , and ie are
initialized (line 7) and the iteration starts. In each iteration (lines 8–26), we download
exactly one new equation (line 9), which becomes the equation that is used as the testing
equation in attack detection (line 12). The algorithm takes every possible subset C ′ of
C, such that |C ′| = τ is not greater than τmax (lines 13–15), and uses the equations in
C ′ to replace τ equations in S in all possible ways (lines 16–18). Here τmax is another
input parameter that limits the computational complexity of the algorithm by limiting
the size of the subsets of the equations that we choose from C and replace in S. After
each replacement, the attack detection mechanism is executed on the resulting set S′ of
equations using e as the testing equation (line 19). If no attack is detected, then S′ is
clean and the algorithm stops (line 20). Otherwise, we increment each of our pointers iS ,
iC , and ie (line 25), and continue the iteration. Note that set S ∪ C ∪ {e} consists of the
equations in a sliding window of size k +w + 1 that slides over Z∗ until either cleaning is
successful or we downloaded all equations in Z∗.

1 download Z∗1..k+1

2 if attack detection(Z∗1..k, Z
∗
k+1) = no attack

3 return Z∗1..k
4 endif

5 let w = dαke
6 download Z∗k+2..k+w

7 let iS = 1, iC = iS + k, ie = iC + w
8 while ie ≤ n
9 download Z∗ie
10 let S = Z∗iS ..iS+k−1

11 let C = Z∗iC ..iC+w−1

12 let e = Z∗ie
13 for τ = 1 to τmax

14 for every possible selection s1

of τ elements out of w elements
15 let C ′ be the subset of equations

determined by s1 in C
16 for every possible selection s2

of τ elements out of k elements
17 let S′ = S
18 replace the equations determined by s2

in S′ with the equations in C ′

19 if attack detection(S′, e) = no attack
20 return S′

21 end if
22 end for
23 end for
24 end for
25 let iS = iS + 1, iC = iS + k, ie = iC + w
26 end while

Table 4: Pseudo-code of Algorithm 2.

71

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Analysis of Algorithm 2 by simulations

Algorithm 2 is more difficult to examine analytically, therefore, we used simulations,
written in Matlab, to investigate its performance. In our simulations, we set n = 1000
and k = 100, and we range the value of τmax over the values {4, 5, 6}. For each value of
τmax , we set

α =
τmax

k − τmax
(37)

The rationale behind this setting of α is the following: Intuitively, we are prepared to clean
at most τmax attacked equation in S. If we assume that S, which has size k, contains τmax

attacked equation, then we may estimate the probability that a given equation in Z∗ is
attacked as τmax/k. Thus, the number of intact equations in C, which has size w, can be
estimated as w(1−τmax/k). In order to be able to clean S, the number of intact equations
in C must be at least τmax . Thus, we must have that

τmax ≤ w
(

1− τmax

k

)
(38)

from which
w ≥ τmax

1− τmax
k

=
τmax

k − τmax
k (39)

Moreover, for each setting of τmax and α, we range the number t of attacked equations
form 10 to 150 with a step size of 10. For each setting of the parameters, we run 100
simulations, where the t attacked equations are chosen uniformly at random in the set Z∗

of n equations.
We are interested in the success probability of the algorithm, which we estimate as the

fraction of the simulation runs, for a given setting of the parameters, where the algorithm
succeeds. In addition, we are interested in the average communication and computational
complexity of the algorithm, which we obtain as the mean of the communication and
computational complexities, respectively, of the simulation runs for a given setting of the
parameters.

Success probability: Figure 26 shows the success probability of Algorithm 2 as the
function of the number t of the attacked equations. The different curves belong to different
values of τmax .

As we can see, the success probability of the algorithm is larger than 90% until a
threshold value of t, and begins to decrease rapidly after the threshold. This threshold
value is approximately t = 85, t = 100, and t = 110, for τmax = 4, τmax = 5, and τmax = 6,
respectively. Thus, as we expected, if we increase τmax , the algorithm ensures recovery
from stronger attacks that involve more attacked equations. Unfortunately, as we will see
below, the computational complexity increases too.

Recall that in case of Algorithm 1, the success probability remained one until the
threshold t = n−k−1, which would be t = 899 for n = 1000 and k = 100. This threshold
is much larger than the threshold values that we got for Algorithm 2. Despite of this, the
threshold values that we obtained are still surprisingly large given that the algorithm is
prepared to handle much smaller number of attacked equations. Indeed, when τmax = 4,
the algorithm is prepared to clean 4 attacked equations in a set of size k = 100, which
means 40 attacked equations in the entire set of size n = 1000. However, the algorithm
succeeds with high probability even if the number of attacked equations is around 85. A
similar observation can be made for the other values of τmax .

The reason of this is that when t = 85, the average number of attacked equations in
a set of size k = 100 is 8.5, but this means that there are sets with a smaller number of

72

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Figure 26: Success rate of Algorithm 2 as a function of the number t of attacked equations.
n = 1000 and k = 100.

attacked equations. Apparently, we can find a set with not more than 4 attacked equations
with a rather high probability among the sets that we obtain by sliding a window of size
k = 100 over the entire set Z∗ of equations. A similar argument applies for the other
cases.

Communication complexity: Figure 27 shows the average communication complexity
(i.e., the number of the downloaded equations) of Algorithm 2. The different curves belong
to different values of τmax . We truncated the plot at t = 120, because above that value,
the success probability of the algorithm is rather poor anyway, hence, we are not really
interested in its complexity.

As we expected, the average communication complexity increases as the number t of
the attacked equations increases, because it becomes more difficult to find, at the same
time, a set S of k equations that contains no more than a fixed τmax attacked equations,
and a set C of αk equations that contains at least τmax intact equations. However, on
average, the number of the downloaded equations is smaller than half of the total number
n of equations, and the standard deviation is also acceptably small. In particular, when
the number t of attacked equations is around 50 (i.e., only 5% of the storage nodes are
compromised), the communication overhead is very small.

We can also observe that the communication complexity increases as τmax decreases.
Unfortunately, as we will se below, the price of this decrease is the substantially increased
computational complexity.

Computational complexity: Figure 28 shows the computational complexity (i.e., the
number of s.l.e.’s that need to be solved) of Algorithm 2 as a function of the number t
of attacked equations. The different curves belong to different values of τmax . Note the
logarithmic scale of the y axis.

We can observe that the computational complexity increases as the number t of the
attacked equations increases, but the increase shows a slowing tendency. In addition, the
computational complexity also increases with the increase of τmax . Indeed, incrementing

73

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Figure 27: Average communication complexity of Algorithm 2 as a function of the number
t of attacked equations. n = 1000 and k = 100.

τmax by one results, roughly, in an order of magnitude more computations. The best trade-
off seems to be the τmax = 4 case, where Algorithm 2 can handle up to t = 50 attacked
equations (i.e., up to 5% of the total number of equations) with a very low communication
overhead, and still reasonable computational complexity (109 ≈ 230 s.l.e.’s to solve).

4.4 Related work

An algorithm to detect errors in communication systems based on network coding princi-
ples is presented in [40]. In that algorithm, a hash value is appended to each data packet.
It is assumed that the destination node receives at least one or more unmodified packets,
and checks the inconsistency of the decoded packets using the appended hash values.

One important result for correcting errors introduced by a Byzantine adversary in
network coding based communication systems is presented in [48]. In that paper, the
authors introduce an information-theoretically rate optimal code. The packets from the
adversarial nodes are intuitively considered as packets coming from a second source, and
the packets arriving at the destination are linear combinations of the source’s batch of
packets and the adversary’s batch of packets. Linear independence is assumed within
and between these batches. The destination node is assumed to receive all the packets
destined to it, and then, it tries to distill out the original data packets from the polluted
set of packets. Compared to these works, we do not assume any encoding of packets at
the source nodes. In addition, in distributed storage systems, we do not download all the
available packets. Rather, our algorithms try to download packets only until the original
data packets can be reconstructed.

Due to the distributed source classical error correction codes (such as Reed-Solomon
codes) are also not appropriate, furthermore, unlike our solution they require additional
redundancy. This holds for the error correction code proposed for network coding [54,
55] too. This work describes a Reed-Solomon like code construction that operates with
subspaces instead of Galois symbols.

74

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Figure 28: Average computational complexity of Algorithm 2 as a function of the number
t of attacked equations. n = 1000 and k = 100.

Cryptographic techniques have also been proposed to detect attacks in coding based
communication and storage systems. For instance, in practical P2P file sharing systems,
data blocks are often hashed and the hash values are made available at a central trusted
publisher. By comparing the hash of each downloaded data block to the corresponding
hash available at the publisher, a node can verify whether a downloaded block is valid or
not.

In order to make this idea work in network coding based P2P file sharing systems,
the usage of homomorphic hash functions [56] is proposed in [34, 35]. In the proposed
scheme, the hash of an encoded packet can be easily derived from the hashes of the
blocks contributing to the encoding. It is assumed that the hash value of every block
of a given file is obtained by the nodes in a secure way when they first join the system.
These hash values are then used to verify the integrity of the encoded packets as they
are downloaded. To reduce the computational overhead caused by homomorphic hash
functions, the scheme proposed in [35] also requires the nodes to cooperate and alert each
other when a maliciously modified block is detected. In this way, a given node does not
verify each and every block itself, but it can rely on alerts from other peers.

In any case, every scheme that uses hash functions (be it homomorphic or not) requires
the existence of a secure channel between the data sources and the destinations through
which the genuine hash values of the original data blocks can be obtained. We do not
assume such secure channel in our approach.

Another approach to prevent the pollution attack is to require the source nodes to digi-
tally sign the data blocks before they are injected in the system. However, in order to make
this work in systems where intermediate nodes combine data blocks received from different
sources, the digital signature scheme must have some homomorphic properties, similar to
the case of homomorphic hash functions described above. Recently homomorphic digital
signature schemes have been proposed for network coding based content distribution in
[57, 84, 85].

Unlike the approach based on homomorphic hash functions, the approach of using

75

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

homomorphic digital signatures does not require a pre-existing secure channel between
the sources and the destinations. However, it has two other problems: first, homomorphic
signature schemes are computationally even more expensive, and second, they need a
public key infrastructure (PKI) for the management of the signature verification keys.
These problems hinder their usage in practical applications; in particular, due to the
large computational complexity they cannot be used in sensor networks, and due to the
PKI requirement, it is unlikely that they will ever be used in large scale P2P content
distribution systems.

Here we compare our proposal with homomorphic signature schemes in terms of over-
head. We take Algorithm 1 for recovery as a basis for comparison. The operation of
this algorithm is the most similar to that of a digital signature scheme, that is cleaning a
polluted set with additionally downloaded clean equations. Our scheme requires (R+1)D

additional equations to download, where R = (kp+1)
1−p = (kp + 1)α, the number of rounds

Algorithm 1 performs, and D is the size of the data block. The communication overhead
of a digital signature scheme is kγs+ks+W1(D+s), where γ = 5(n/k) ln(k), a value taken
from [28], meaning the number of storage nodes a source needs to transmit its data to
ensure successful decoding, W1 = kpα is the number of additionally downloaded equations
until k clean equations are found, and s is the size of the signature. We do not take into
account the overhead required to operate the PKI. Note that the first term corresponds
to the communication overhead of the source nodes, while our scheme does not add any
overhead to the sources. Comparing the two result, we get that our scheme has lower
communication overhead as long as

D <
(γ + pα+ 1)ks

1 + α
.

For a practical case when n = 100, k = 10, t = 40, assuming the length s of the signature
is 40 bytes, we get that the threshold value is D ≈ 17500 bytes. In sensor networks the
typical size of a data block (few tens of bytes) is much smaller than this value. In larger
systems, this threshold becomes even larger.

As for the computational complexity, our scheme performs much simpler operations,
so if the number of attacked equations in the system is reasonable, our scheme performs
better. However, the digital signature scheme scales better for stronger attacks and larger
systems, but contrary to our proposal source nodes also perform additional computation.

Accordingly, we believe that our proposal is much more practical than the approach
based on homomorphic digital signatures. First of all, we need neither a PKI, nor any
cryptographic key management scheme, as we do not use cryptography at all. The practical
value of this feature should not be underestimated. Second, while our approach also
requires intensive computational effort, this is required only for the entity that retrieves
information from the distributed storage system. In wireless sensor networks, where the
computational overhead really matters, this entity is typically the base station, which is
usually assumed to be powerful enough. In contrast to this, in the approach based on
homomorphic digital signatures, the source nodes and the storage nodes need to perform
intensive computation, and those are typically resource constrained sensor nodes.

4.5 Summary

In this section, we addressed the problem of pollution attacks in coding based distributed
storage schemes, and we proposed specific algorithms for detecting and recovering from
such attacks. A salient feature of the proposed algorithms is that they are not based on

76

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

cryptographic checksums or digital signatures, which are traditionally used for providing
integrity services. Instead, we take advantage of the inherent redundancy in such dis-
tributed storage systems. In particular, our approach is to obtain more encoded packets
than strictly necessary for the decoding of the original data, and to use those additional
encoded packets for attack detection and recovery purposes. Both detection and recovery
require only solving systems of linear equations over a finite field.

The attack detection algorithm that we proposed is effective and extremely efficient
both in terms of communication and computational overhead. In addition, we proposed
two recovery algorithms. The first algorithm is optimal in terms of communication com-
plexity, and it ensures recovery from attacks even if a large fraction of the encoded packets
are modified, but it does not scale up to large systems in terms of computational com-
plexity. It is still a practical solution, though, for smaller systems. The second algorithm
that we proposed scales better, but it is less effective in terms of recovery capabilities and
less efficient in terms of communication overhead.

77

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

78

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

5 Efficient private authentication in resource constrained
environments

Entity authentication is the process whereby a party (the prover) corroborates its identity
to another party (the verifier). Entity authentication is often based on authentication
protocols in which the parties pass messages to each other. These protocols are engineered
in such a way that they resist various types of impersonation and replay attacks [12].
However, less attention is paid to the requirement of preserving the privacy of the parties
(typically that of the prover) with respect to an eavesdropping third party. Indeed, in
many of the well-known and widely used authentication protocols (e.g., [47]) the identity
of the prover is sent in cleartext, and hence, it is revealed to an eavesdropper.

One approach to solve this problem is based on public key cryptography, and it consists
in encrypting the identity information of the prover with the public key of the verifier so
that no one but the verifier can learn the prover’s identity. Another approach, also based
on public key techniques, is that the parties first run an anonymous Diffie-Hellman key
exchange and establish a confidential channel, through which the prover can send its
identity and authentication information to the verifier in a second step. These approaches
provide appropriate solution to the problem only if the parties can afford public key
cryptography. In many applications, such as in wireless sensor networks or in case of low
cost RFID tags, this is not the case.

The problem of using symmetric key encryption to hide the identity of the prover
is that the verifier does not know which symmetric key it should use to decrypt the
encrypted identity, because the appropriate key cannot be retrieved without the identity.
The verifier may try all possible keys in its key database until one of them properly
decrypts the encrypted identity, but this would increase the authentication delay if the
number of potential provers is large. Long authentication delays are usually not desirable,
moreover, in some cases, they may not even be acceptable. As an example, let us consider
contactless smart card based electronic tickets in public transportation: the number of
smart cards in the system (i.e., the number of potential provers) may be very large in big
cities, while the time needed to authenticate a card should be short in order to ensure a
high throughput of passengers and avoid long queues at entry points.

Molnar and Wagner proposed an elegant approach to privacy protecting authentication
[63] that is based on symmetric key cryptography while still ensuring short authentication
delays. More precisely, the complexity of the authentication procedure in the Molnar-
Wagner scheme is logarithmic in the number of potential provers, in contrast with the
linear complexity of the näıve key search approach. The main idea of Molnar and Wagner
is to use key-trees (see Figure 29 for illustration). A key-tree is a tree where a unique key is
assigned to each edge. The leaves of the tree represent the potential provers, which we will
call members in the sequel. Each member possesses the keys assigned to the edges of the
path starting from the root and ending in the leaf that corresponds to the given member.
The verifier knows all keys in the tree. In order to authenticate itself, a member uses all
of its keys, one after the other, starting from the first level of the tree and proceeding
towards lower levels. The verifier first determines which first level key has been used. For
this, it needs to search through the first level keys only. Once the first key is identified,
the verifier continues by determining which second level key has been used. However, for
this, it needs to search through those second level keys only that reside below the already
identified first level key in the tree. This process is continued until all keys are identified,
which at the end, identify the authenticating member. The key point is that the verifier

79

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

can reduce the search space considerably each time a key is identified, because it should
consider only the subtree below the recently identified key.

Figure 29: Illustration of a key-tree. There is a unique key assigned to each edge. Each
leaf represents a member of the system that possesses the keys assigned to the edges of
the path starting from the root and ending in the given leaf. For instance, the member
that belongs to the leftmost leaf in the figure possesses the keys k1, k11, and k111.

The problem of the above described tree-based approach is that upper level keys in
the tree are used by many members, and therefore, if a member is compromised and its
keys become known to the adversary, then the adversary gains partial knowledge of the
key of other members too. This obviously reduces the privacy provided by the system
to its members, since by observing the authentication of an uncompromised member, the
adversary can recognize the usage of some compromised keys, and therefore its uncertainty
regarding the identity of the authenticating member is reduced (it may be able to determine
which subtree the member belongs to).

One interesting observation is that the näıve, linear key search approach can be viewed
as a special case of the key-tree based approach, where the key-tree has a single level and
each member has a single key. Regarding the above described problem of compromised
members, the näıve approach is in fact optimal, because compromising a member does
not reveal any key information of other members. At the same time, as we saw above, the
authentication delay is the worst in this case. On the other hand, in case of a binary key-
tree, we can observe that the compromise of a single member strongly affects the privacy of
the other members, while at the same time, the binary tree is very advantageous in terms
of authentication delay. Thus, there seems to be a trade-off between the level of privacy
provided by the system and the authentication delay, which depends on the parameters of
the key-tree, but it is far from obvious to see how the optimal key-tree should look like.

In this section, we address this problem, and we show how to find optimal key-trees.
More precisely, our main contributions are the following:

• We propose a benchmark metric for measuring the resistance of the system to a
single compromised member based on the concept of anonymity sets.

• We introduce the idea of using different branching factors at different levels of the
key-tree; the advantage is that the system’s resistance to single member compromise
can be increased while still keeping the authentication delay short.

• We propose an algorithm for determining the optimal parameters of the key-tree,
where optimal means that resistance to single member compromise is maximized,
while the authentication delay is kept below a predefined threshold.

• In the general case, when any member can be compromised, we give an approxima-

80

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

tion on the level of privacy provided by the system, and present some simulation
results that show that this approximation is accurate.

In summary, we propose practically usable techniques for designers of key-tree based
authentication systems.

5.1 Resistance to single member compromise

THESIS 5.1. I propose the normalized average anonimity set size as a benchmark metric
for measuring the privacy provided by a key-tree, and I show how to compute this metric
when a single member of the system is compromised. Based in this metric, I propose
a new algorithm for determining the parameters of the optimal key-tree, where optimal
means that the normalized average anonymity set size in the case when a single member
is compromised is maximized, while the worst case authentication delay is kept below a
predefined threshold. [C3]

There are different ways to measure the level of anonymity provided by a system
[26, 73]. Here we will use the concept of anonymity sets [24]. The anonymity set of a
member v is the set of members that are indistinguishable from v from the adversary’s
point of view. The size of the anonymity set is a good measure of the level of privacy
provided for v, because it is related to the level of uncertainty of the adversary. Clearly,
the larger the anonymity set is, the higher the level of privacy is. The minimum size of
the anonymity set is 1, and its maximum size is equal to the number of all members in the
system. In order to make the privacy measure independent of the number of members,
one can divide the anonymity set size by the total number of members, and obtain a
normalized privacy measure between 0 and 1. Such normalization makes the comparison
of different systems easier.

Now, let us consider a key-tree with ` levels and branching factors b1, b2, . . . , b` at
the levels, and let us assume that exactly one member is compromised (see Figure 30 for
illustration). Knowledge of the compromised keys allows the adversary to partition the
members into partitions P0, P1, P2, . . ., where

• P0 contains the compromised member only,

• P1 contains the members the parent of which is the same as that of the compromised
member, and that are not in P0,

• P2 contains the members the grandparent of which is the same as that of the com-
promised member, and that are not in P0 ∪ P1,

• etc.

Members of a given partition are indistinguishable for the adversary, while it can distin-
guish between members that belong to different partitions. Hence, each partition is the
anonymity set of its members.

The level of privacy provided by the system can be characterized by the level of privacy
provided to a randomly selected member, or in other words, by the expected size of the
anonymity set of a randomly selected member. By definition, the expected anonymity set
size is:

S̄ =
∑̀
i=0

|Pi|
N
|Pi| =

∑̀
i=0

|Pi|2

N
(40)

81

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Figure 30: Illustration of what happens when a single member is compromised. Without
loss of generality, we assume that the member corresponding to the leftmost leaf in the
figure is compromised. This means that the keys k1, k11, and k111 become known to the
adversary. This knowledge of the adversary partitions the set of members into anonymity
sets P0, P1, . . . of different sizes. Members that belong to the same partition are indis-
tinguishable to the adversary, while it can distinguish between members that belong to
different partitions. For instance, the adversary can recognize a member in partition P1

by observing the usage of k1 and k11 but not that of k111, where each of these keys are
known to the adversary. Members in P3 are recognized by not being able to observe the
usage of any of the keys known to the adversary.

where N is the total number of members, and |Pi|/N is the probability of selecting a
member from partition Pi. We define the resistance to single member compromise, denoted
by R, as the normalized expected anonymity set size, which can be computed as follows:

R =
S̄

N
=
∑̀
i=0

|Pi|2

N2

=
1

N2

(
1 + (b` − 1)2 + ((b`−1 − 1)b`)

2 + . . .+ ((b1 − 1)b2b3 . . . b`)
2
)

=
1

N2

1 + (b` − 1)2 +

`−1∑
i=1

(bi − 1)2
∏̀
j=i+1

b2j

 (41)

where we used that

|P0| = 1

|P1| = b` − 1

|P2| = (b`−1 − 1)b`

|P3| = (b`−2 − 1)b`−1b`

.

|P`| = (b1 − 1)b2b3 . . . b`

As its name indicates, R characterizes the loss of privacy due to the compromise of
a single member of the system. If R is close to 1, then the expected anonymity set size
is close to the total number of members, and hence, the loss of privacy is small. On the
other hand, if R is close to 0, then the loss of privacy is high, as the expected anonymity
set size is small. We use R as a benchmark metric based on which different systems can
be compared.

Obviously, a system with greater R is better, and therefore, we would like to maximize
R. However, there are some constraints. We define the worst case authentication delay,

82

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

denoted by D, as the number of basic operations needed to authenticate any member in the
worst case. The worst case authentication delay in case of key-tree based authentication
can be computed as D =

∑`
i=1 bi. In most practical cases, there is an upper bound Dmax

on the worst case authentication delay allowed in the system. Therefore, in practice, the
designer’s task is to maximize R under the constraint that D ≤ Dmax.

5.2 Optimal trees in case of single member compromise

The problem of finding the best branching factor vector can be described as an optimization
problem as follows: Given the total number N of members and the upper bound Dmax on
the worst case authentication delay, find a branching factor vector B = (b1, b2, . . . b`) such
that R(B) is maximal subject to the following constraints:

∏̀
i=1

bi = N (42)

∑̀
i=1

bi ≤ Dmax (43)

We analyze this optimization problem through a series of lemmas that lead to an
algorithm that solves the problem. The proof of these lemmas can be found in [C3], but
they are not part of this dissertation. The first lemma states that we can always improve
a branching factor vector by ordering its elements in decreasing order, and hence, in the
sequel we will consider only ordered vectors:

Lemma 5.1. Let N and Dmax be the total number of members and the upper bound on
the worst case authentication delay, respectively. Moreover, let B be a branching factor
vector and let B∗ be the vector that consists of the sorted permutation of the elements of
B in decreasing order. If B satisfies the constraints of the optimization problem defined
above, then B∗ also satisfies them, and R(B∗) ≥ R(B).

The following lemma provides a lower bound and an upper bound for the resistance
to single member compromise:

Lemma 5.2. Let B = (b1, b2, . . . b`) be a sorted branching factor vector (i.e., b1 ≥ b2 ≥
. . . ≥ b`). We can give the following lower and upper bounds on R(B):(

1− 1

b1

)2

≤ R(B) ≤
(

1− 1

b1

)2

+
4

3b21
(44)

Let us consider the bounds in Lemma 5.2. Note that the branching factor vector is
ordered, therefore, b1 is not smaller than any other bi. We can observe that if we increase
b1, then the difference between the upper and the lower bounds decreases, and R(B) gets
closer to 1. Intuitively, this implies that in order to find the solution to the optimization
problem, b1 should be maximized. The following lemma underpins this intuition formally:

Lemma 5.3. Let N and Dmax be the total number of members and the upper bound on
the worst case authentication delay, respectively. Moreover, let B = (b1, b2, . . . , b`) and
B′ = (b′1, b

′
2, . . . , b

′
`′) be two sorted branching factor vectors that satisfy the constraints of

the optimization problem defined above. Then, b1 > b′1 implies R(B) ≥ R(B′).

83

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Lemma 5.3 states that given two branching factor vectors, the one with the larger first
element is always at least as good as the other. The next lemma generalizes this result
by stating that given two branching factor vectors the first j elements of which are equal,
the vector with the larger (j + 1)-st element is always at least as good as the other.

Lemma 5.4. Let N and Dmax be the total number of members and the upper bound
on the worst case authentication delay, respectively. Moreover, let B = (b1, b2, . . . , b`)
and B′ = (b′1, b

′
2, . . . , b

′
`′) be two sorted branching factor vectors such that bi = b′i for all

1 ≤ i ≤ j for some j < min(`, `′), and both B and B′ satisfy the constraints of the
optimization problem defined above. Then, bj+1 > b′j+1 implies R(B) ≥ R(B′).

We will now present an algorithm that finds the solution to the optimization prob-
lem. However, before doing that, we need to introduce some further notations. Let
B = (b1, b2, . . . , b`) and B′ = (b′1, b

′
2, . . . , b

′
`′). Then

•
∏

(B) denotes
∏`
i=1 bi;

•
∑

(B) denotes
∑`

i=1 bi;

• {B} denotes the set {b1, b2, . . . , b`} of the elements of B;

• B′ ⊆ B means that {B′} ⊆ {B};

• if B′ ⊆ B, then B \B′ denotes the vector that consists of the elements of {B}\{B′}
in decreasing order;

• if b is a positive integer, then b|B denotes the vector (b, b1, b2, . . . , b`).

We define our algorithm as a recursive function f , which takes two input parameters,
a vector B of positive integers, and another positive integer d, and returns a vector of
positive integers. In order to compute the optimal branching factor vector for a given
N and Dmax, f should be called with the vector that contains the prime factors of N ,
and Dmax. For instance, if N = 27000 and Dmax = 90, then f should be called with
B = (5, 5, 5, 3, 3, 3, 2, 2, 2) and d = 90. Function f will then return the optimal branching
factor vector.

Function f is defined as follows:

f(B, d)
1 if

∑
(B) > d then exit (no solution exists)

2 else find B′ ⊆ B such that∏
(B′) +

∑
(B \B′) ≤ d and∏

(B′) is maximal
3 if B′ = B then return (

∏
(B′))

4 else return
∏

(B′)|f(B \B′, d−
∏

(B′))

The operation of the algorithm can be described as follows: The algorithm starts with
a branching factor vector consisting of the prime factors of N . This vector satisfies the first
constraint of the optimization problem by definition. If it does not satisfy the second con-
straint (i.e., it does not respect the upper bound on the worst case authentication delay),
then no solution exists. Otherwise, the algorithm successively improves the branching fac-
tor vector by maximizing its elements, starting with the first element, and then proceeding
to the next elements, one after the other. Maximization of an element is done by joining
as yet unused prime factors until the resulting divisor of N cannot be further increased
without violating the constraints of the optimization problem.

84

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Theorem 5.1. Let N and Dmax be the total number of members and the upper bound on
the worst case authentication delay, respectively. Moreover, let B be a vector that contains
the prime factors of N . Then, f(B,Dmax) is an optimal branching factor vector for N
and Dmax.

Proof. We will give a sketch of the proof. Let B∗ = f(B,Dmax), and let us assume that
there is another branching factor vector B′ 6= B∗ that also satisfies the constraints of the
optimization problem and R(B′) > R(B∗). We will show that this leads to a contradiction,
hence B∗ should be optimal.

Let B∗ = (b∗1, b
∗
2, . . . , b

∗
`∗) and B′ = (b′1, b

′
2, . . . , b

′
`′). Recall that B∗ is obtained by first

maximizing the first element in the vector, therefore, b∗1 ≥ b′1 must hold. If b∗1 > b′1, then
R(B∗) ≥ R(B′) by Lemma 5.3, and thus, B′ cannot be a better vector than B∗. This
means that b∗1 = b′1 must hold.

We know that once b∗1 is determined, our algorithm continues by maximizing the next
element of B∗. Hence, b∗2 ≥ b′2 must hold. If b∗2 > b′2, then R(B∗) ≥ R(B′) by Lemma 5.4,
and thus, B′ cannot be a better vector than B∗. This means that b∗2 = b′2 must hold too.

By repeating this argument, finally, we arrive to the conclusion that B∗ = B′ must
hold, which is a contradiction.

5.3 Analysis of the general case

THESIS 5.2. In the general case, multiple members can be compromised, and I denote
their number by c. I still use the average anonymity set size as the privacy metric, and I
give an approximation for its value as follows:

S̃ =

L∑
i=1

bi−1∑
k=1

kNi

(
bi − 1

k − 1

)
(1− qi)kqbi−ki + 1 · p+N · (1− p)N

where L is the depth of the key-tree, b1, b2, . . . , bL are the branching factors at the different
levels in the tree, N = b1 · b2 · . . . · bL is the total number of leaves, Ni = N

b1·b2·...·bi is the
number of leaves in a sub-tree below an edge at level i, p = c/N is the probability of any
member being compromised, and qi = 1− (1− p)Ni is the probability that at least one leaf
in the sub-tree below an edge at level i is compromised. I show, by means of simulations,
that the above approximation is accurate.

So far, we have studied the case of a single compromised member. This was useful,
because it allowed us to compare different key-trees and to derive a key-tree construction
method. However, one may still be interested in what level of privacy is provided by a
system in the general case when any number of members could be compromised. In this
section, we address this problem.

We are interested in the expected anonymity set size S̄ of a randomly selected member
T in the general case when c randomly selected members are compromised in the tree.
Instead of directly computing S̄, we will estimate it by assuming that each member of
the tree is compromised with probability p = c/N . Thus, the number of compromised
members in the tree becomes a random variable with expected value c. Furthermore,
without loss of generality, we assume that T is represented by the left most leaf of the
tree.

Let us denote the branching factors of the tree by b1, b2, . . . , bL, where L is the depth
(number of levels) of the tree. We say that an edge of the tree is compromised if there is

85

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Figure 31: Illustration of what happens when several members are compromised. Just as
in the case of a single compromised member, the members are partitioned into anonymity
sets, but now the resulting partitions depend on the number of the compromised members,
as well as on their positions in the tree. Nevertheless, the expected size of the anonymity
set of a randomly selected member is still a good metric for the level of privacy provided
by the system, although, in this general case, it is more difficult to compute.

a compromised leaf in the sub-tree below the given edge. The probability that an edge at
level i of the tree is compromised is

qi = 1− (1− p)Ni

where Ni = N
b1·b2·...·bi is the number of leaves in the sub-tree below the given edge.

The probability that the anonymity set size of the selected member T is exactly k, for
k = 1, 2, . . . , bL − 1, is

(1− qL)

(
bL − 1

k − 1

)
(1− qL)k−1qbL−kL =

(
bL − 1

k − 1

)
(1− qL)kqbL−kL

Note that if the anonymity set size of T is larger than or equal to bL, then it can only
be the multiple of bL. Hence, the probability that the anonymity set size of T is not a
multiple of bL is 0, while the probability that it is equal to kbL (k = 1, 2, . . . , bL−1 − 1) is(

bL−1 − 1

k − 1

)
(1− qL−1)kq

bL−1−k
L−1

By the same argument, the probability that the anonymity set size of T is not a multiple
of bLbL−1 . . . bi+1 is 0, while the probability that it is equal to kbLbL−1 . . . bi+1 = kNi

(k = 1, 2, . . . , bi − 1) is (
bi − 1

k − 1

)
(1− qi)kqbi−ki

From this, we get that the expected size of T ’s anonymity set is

S̃ =

L∑
i=1

bi−1∑
k=1

kNi

(
bi − 1

k − 1

)
(1− qi)kqbi−ki + 1 · p+N · (1− p)N (45)

where the term 1 · p covers the case when T itself is compromised (this happens with
probability p and in that case the anonymity set size is 1), and the term N · (1 − p)N
covers the case when no member is compromised (this happens with probability (1− p)N
and results in the anonymity set size of N).

86

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 32: Simulation results for different key-trees showing how well S̃/N approximates
the normalized average anonymity set size S̄/N . The top three sub-figures correspond to
trees of size 512, the next three sub-figures correspond to trees of size 4096, and the bottom
three sub-figures correspond to trees of size 32768. The different branching factor vectors
are shown on the top of the sub-figures. The x axis represents the number of compromised
members and the y axis represents the normalized average anonymity set size. The con-
tinuous (blue) curve shows the estimated value S̃/N obtained by using expression (45),
and the (orange) dots and bars show the average and the standard deviation, repectively,
of the real values of S̄/N obtained from the simulations.

In order to see how well S̃ estimates S̄, we ran 9 sets of simulations, where each set
corresponded to a different system size and tree structure. More specifically, in the first
3 sets of simulations, the number of members (leaves of the tree) were 29 = 512, and we
ran simulations for 3 different trees with branching factor vectors of (2, 2, 2, 2, 2, 2, 2, 2, 2),
(8, 8, 8), and (256, 2); in the next 3 sets of simulations, the number of members were
212 = 4096, and we ran simulations for 3 different trees with branching factor vectors of
(4, 4, 4, 4, 4, 4), (16, 16, 16), and (256, 4, 4); and finally, in the last 3 sets of simulations, the
number of members were 215 = 32768, and we ran simulations for 3 different trees with
branching factor vectors of (8, 8, 8, 8, 8), (32, 32, 32), and (256, 16, 8). Note that, in each
set of simulations, we had either a deep tree (with 5 to 9 levels) or a shallow tree (with

87

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

2 to 3 levels), and a tree with either a homogeneous branching factor or a tree where the
first element of the branching factor was orders of magnitude larger than the rest of the
elements.

In each set of simulations, we varied the number c of compromised members from 1
to 101 with a step size of 5 (except in the first set, where c was varied from 1 to 41
with a step size of 2), and we run 24 simulations for each value of c. In each simulation
run, we chose c compromised members uniformly at random from the set of all members,
and we computed the exact value of the normalized expected anonymity set size S̄/N
using expression (40). Then, we averaged the obtained values over all simulation runs.
Moreover, for every c, we also computed the estimated value S̃/N using expression (45).

The simulation results are shown in Figure 32, where the subfigures correspond to the
9 sets of simulations as described above. The x axis represents the number of compro-
mised members and the y axis represents the normalized average anonymity set size. The
continuous (blue) curve shows the estimated value S̃/N obtained by using expression (45),
and the (orange) dots and bars show the average and the standard deviation, repectively,
of the real values of S̄/N obtained from the simulations. As we can see, S̃/N approximates
S̄/N reasonably well11.

We also observed that the curves of the estimated normalized average anonymity set
size we obtain from expression (45) largely depend on the first element of the branching
factor vector of the tree. More specifically, the curves of different trees that have the same
size (in terms of the number of leaves) and the same branching factor at the first level
are almost identical, especially, if that first branching factor is large (which would be the
case for optimal trees as we saw before). This means that, just as in the case of a single
compromised member, in the general case too, the level of privacy provided by the system
essentially depends on the value of the first element of the branching factor vector.

In addition, the curves of trees with the same size but different branching factors at
the first level show that trees with larger branching factor at the first level provide better
privacy not only for one compromised member, but also for larger values of c. This can
easily be seen by comparing the curves in Figures 32(b), 32(d), and 32(g) to those in
Figures 32(c), 32(f), and 32(i), respectively. Thus, a practical design principle for key-tree
based private authentication systems is to maximize the branching factor at the first level
of the key-tree. Further optimization by adjusting the branching factors of the lower levels
may still be possible, but the gain is not significant; what really counts is the branching
factor at the first level.

5.4 Related work

The problem of private authentication has been extensively studied in the literature, but
most of the proposed solutions are based on public key cryptography. One example is
Idemix, which is a practical anonymous credential system proposed by Camenisch et al.
in [21]. Idemix allows for unlinkable demonstration of the possession of various credentials,
and it can be used in many applications. However, it is not applicable in resource con-

11We can observe a relatively large difference between the estimated and real values of the normalized
average anonymity set size in Figure 32(a) for very small values of c, in particular for c = 1. Note, however,
that for c = 1, we can use expression (41) to compute the exact value of the normalized average anonymity
set size and we do not need the estimation (45). Furthermore, we can use interpolation between the exact
value obtained from (41) at c = 1 and a sufficiently accurate value obtained from (45) at a larger c (e.g.,
c = 5) to get a better approximation for very small values of c.

88

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

straint scenarios, such as low-cost RFID systems. For such applications, solutions based
on symmetric key cryptography seem to be the only viable options.

The key-tree based approach for symmetric key private authentication has been pro-
posed by Molnar and Wagner in [63]. However, they use a simple b-ary tree, which means
that the tree has the same branching factor at every level. Moreover, they do not an-
alyze the effects of compromised members on the level of privacy provided. They only
mention that compromise of a member has a wider effect than in the case of public key
cryptography based solutions.

Finally, Avoine et al. analyze the effects of compromised members on privacy in the
key-tree based approach [8]. They study the case of a single compromised member as well
as the general case of any compromised members. However, their analysis is not based on
the notion of anonymity sets. In their model, the adversary is first allowed to compromise
some members, and then it chooses a target member that it wants to trace. Later, the
adversary is given two members such that one of them is the target member chosen by the
adversary. The adversary can interact with the given members, and it must decide which
one is its target. The level of privacy provided by the system is quantified by the success
probability of the adversary. This model is similar to ours in case of a single compromised
member, but it is slightly different in the general case. The authors do not consider the
problem of how to optimize the key-tree, instead, they suggest a hash chain based solution
with a time-memory trade-off to reduce the authentication delay.

5.5 Summary

Key-trees provide an efficient solution for private authentication in the symmetric key
setting. However, the level of privacy provided by key-tree based systems decreases con-
siderably if some members are compromised. We showed that this loss of privacy can be
minimized by the careful design of the tree. In particular, a good practical design principle
is to maximize the branching factor at the first level of the tree such that the resulting tree
still respects the constraint on the worst case authentication delay in the system. Once
the branching factor at the first level is maximized, the tree can be further optimized by
maximizing the branching factors at the successive levels, but the improvement achieved
in this way is not really significant; what really counts is the branching factor at the first
level.

89

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

90

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Summary of results

In Section 1, we studied the problem of securing routing protocols in wireless ad hoc net-
works. First, we presented new attacks on existing on-demand source routing protocols
that were believed to be secure (Thesis 1.1). Our attacks demonstrate that flaws in routing
protocols can be subtle and hard to find by informal reasoning, therefore, we proposed
an analysis framework in which security of routing can be accurately defined and routing
protocols for ad hoc networks can be proved to be secure in a rigorous, mathematically
sound manner (Thesis 1.2). Our framework is tailored for on-demand source routing pro-
tocols, but the general principles are applicable to other types of protocols too. Finally, we
proposed a new on-demand source routing protocol, called endairA, and we demonstrated
the usage of our analysis framework by proving that it is secure in our model (Thesis 1.3).
The results related to this thesis group were published in [C4, J1].

In Section 2, we studied the emergence of cooperation in wireless ad hoc networks.
More specifically, we aimed at determining under which conditions cooperation in packet
forwarding can emerge without incentives. First, we proposed a model based on game
theory to investigate equilibrium conditions of packet forwarding strategies in a static net-
work (Thesis 2.1). Then, we proved theorems about the equilibrium conditions for both
cooperative and non-cooperative strategies (Thesis 2.2). Finally, we performed simula-
tions to estimate the probability that the conditions for a cooperative equilibrium hold in
randomly generated network scenarios. By means of these simulations, we showed that
in static ad hoc networks cooperation does not emerge by itself, but it needs to be en-
couraged (Thesis 2.3). This result formally justifies the value of a large body of research
on mechanisms that aim at stimulating cooperation among the nodes of ad hoc networks.
The results related to this thesis group were published in [C6, J3].

In Section 3, we studied the problem of wormhole detection in wireless ad hoc and
sensor networks. A wormhole is an out-of-band connection, controlled by the adversary,
between two physical locations in the network. Wormholes affect route discovery mecha-
nisms that operate on the connectivity graph, and they also have negative effects in other
types of wireless applications where direct, one-hop communication and physical proximity
play an important role. We proposed three new mechanisms for detecting wormhole at-
tacks in ad hoc and sensor networks. Two of these mechanisms are centralized (Thesis 3.1),
while the third one is decentralized (Thesis 3.2). The proposed centralized wormhole detec-
tion algorithms are based on statistical hypothesis testing and they produce probabilistic
results. For these mechanisms, we used simulations to study their detection performance.
The proposed decentralized wormhole detection mechanism is based on the principles of
distance bounding. We analyzed the properties of this mechanism informally, and we ar-
gued that it resists attacks aiming at shortening estimated distances between the nodes
using the mechanism, which is typically the case for wormhole attacks. The results related
to this thesis group were published in [C2, C5].

In Section 4, we addressed the problem of pollution attacks in coding based distributed
storage systems that may be used in wireless sensor networks for storing sensor readings.
The problem of pollution attacks stems from the possibility that a mobile adversary may
compromise some sensor nodes and modify their stored encoded data, which would result
in erroneous decoding of a large part of the original data upon retrieval. We first pro-
posed a new algorithm to detect such attacks (Thesis 4.1), and then two new algorithms
to recover from them (Theses 4.2 and 4.3). We measured the performance of the pro-
posed algorithms in terms of success rate and communication and computing overhead.
We showed that the attack detection algorithm is optimal in terms of communication

91

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

and computing complexity, and its false negative detection rate can be made small by
appropriate parameter selection. While its false positive detection rate may not be small,
the only effect of false alarms is that one of the recovery algorithms should be invoked,
which handle this situation efficiently. The communication complexity of the first pro-
posed recovery algorithm is optimal, but its computational complexity makes it usable
only in small to medium sized networks. On the other hand, the second proposed recovery
algorithm scales up to larger systems at the price of a somewhat decreased success rate
and increased communication complexity. The results related to this thesis group were
published in [C1, J2].

In Section 5, we dealt with the problem of efficient privacy preserving authentication.
Efficiency here meant that we were aiming at purely symmetric key cryptographic proto-
cols, and we wanted to keep the authentication delay below a given threshold. We started
by studying tree-based protocols proposed by others, and we proposed a new method to
design optimized key-trees for tree-based private authentication schemes. For this pur-
pose, we propose a benchmark metric to measure the level of privacy provided by a given
key-tree, and we propose a key-tree construction algorithm that maximizes this metric
under the constraint of keeping the authentication delay in the system below a given
threshold (Thesis 5.1). We also gave an approximation of the achieved level of privacy
when any number of the system’s members may be compromised, and showed, by means
of simulations, that the approximation formula is sharp (Thesis 5.2). This approximation
can, thus, be used to compare different key-trees in terms of the level of privacy that they
achieve. The results related to this thesis group were published in [C3].

International Journal Papers

[J1] G. Ács, L. Buttyán, and I. Vajda. Provably secure on-demand source routing in
mobile ad hoc networks. IEEE Transactions on Mobile Computing (TMC), 5(11),
November 2006.

[J2] L. Buttyán, L. Czap, and I. Vajda. Detection and recovery from pollution attacks
in coding based distributed storage schemes. IEEE Transactions on Dependable and
Secure Computing, 8(6), November/December 2011.

[J3] M. Félegyházi, J. Hubaux, and L. Buttyán. Nash equilibria of packet forwarding
strategies in wireless ad hoc networks. IEEE Transactions on Mobile Computing,
5(5), May 2006.

International Conference and Workshop Papers

[C1] L. Buttyán, L. Czap, and I. Vajda. Securing coding based distributed storage in
wireless sensor networks. In Proceedings of the IEEE Workshop on Wireless and
Sensor Network Security (WSNS), October 2008.

[C2] L. Buttyán, L. Dóra, and I. Vajda. Statistical wormhole detection in sensor networks.
In Proceedings of the European Workshop on Security and Privacy in Ad Hoc and
Sensor Networks (ESAS). Springer, July 2005.

[C3] L. Buttyán, T. Holczer, and I. Vajda. Optimal key-trees for tree-based private au-
thentication. In Proceedings of the International Workshop on Privacy Enhancing
Technologies (PET 2006). Springer, June 2006.

92

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

[C4] L. Buttyán and I. Vajda. Towards provable security for ad hoc routing protocols.
In Proceedings of the ACM Workshop on Security in Ad Hoc and Sensor Networks
(SASN), October 2004.

[C5] S. Capkun, L. Buttyán, and J. Hubaux. SECTOR: Secure tracking of node encounters
in multi-hop wireless networks. In Proceedings of the ACM Workshop on Security in
Ad Hoc and Sensor Networks (SASN), October 2003.

[C6] M. Félegyházi, L. Buttyán, and J. Hubaux. Equilibrium analysis of packet forward-
ing strategies in wireless ad hoc networks – the static case. In Proceedings of the
International Conference on Personal Wireless Communication (PWC’03), Septem-
ber 2003.

93

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

94

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

Final notes and acknowledgements

The results presented in this dissertation were produced between 2003 and 2011. In that
period of time, wireless ad hoc and sensor networks were a hot and live research topic,
and security and privacy in such networks were considered important problems. Honestly,
ad hoc networks have never become reality in the form they were envisioned originally
almost two decades ago. On the other hand, sensor technology has developed further
and reached a maturity level where it can now be applied in practice beyond research
prototype systems. Indeed, there are many applications where sensing and wireless com-
munications are being used for collecting massive amount of data from the environment,
from man-made structures like buildings, bridges, and tunnels, and from living organisms,
including humans. Today’s smart buildings, smart vehicles, and smart cities are smart,
because they combine sensing, computing, and communications to achieve awareness of
and reactivity to their environment, which are key characteristics of intelligent systems.
Time has passed, and we do not call these systems wireless sensor networks anymore.
The terms (or buzzwords) in use today include cyber-physical systems and the Internet of
Things. However, the foundations of these were laid down by the research activity in the
field of ad hoc and sensor networks at the beginning of this millennium. In addition, by
having smart systems around us, monitoring and controlling many aspects of our everyday
life, security and privacy are more important than ever.

Perhaps, I could have avoided writing the previous paragraph if this dissertation had
been submitted some years ago. The reason I did not do that earlier is simple: I have
been busy with other research topics, teaching, and leading my research group at the
Budapest University of Technology and Economics. Indeed, the results presented in this
dissertation cover only a rather small subset of the areas I have been involved in during
the last two decades. This is clearly illustrated by the fact that this dissertation is built
on only 9 out of my more than 150 publications. I had 12 PhD students so far, from which
7 completed their studies and obtained the PhD degree successfully (2 abandoned and 3
are still in the pipe). I worked and published intensively with these students, but most of
the results we obtained went into their dissertations. I deliberately restricted the content
of this dissertation to those results that are my contributions and to publications where I
was the primary author.

Some of the results presented here have later been extended by my students and co-
workers: my work on provably secure source routing protocols for ad hoc networks has
been extended by Gergely Ács to other types of routing protocols for ad hoc and sensor
networks and with new models in [2, 3, 4, 1]; the study of the problem of cooperation
in static ad hoc networks has been extended by Márk Félegyházi to the dynamic case in
[32]; my initial work on detecting and recovering from pollution attacks in coding based
distributed storage systems has been extended by László Czap with optimizations in [18];
and my work on privacy preserving authentication with symmetric key cryptography has
been continued and extended beyond tree-based solutions by Tamás Holczer in [7]. The
centralized wormhole detection algorithms were published with my student László Dóra,
however, they were not part of his PhD dissertation finally. The decentralized wormhole
detection algorithm described here is my result, but its underlying distance-bounding
technique has been used for other purposes in many publications [22, 23] of my co-author
Srdjan Capkun later on.

Topics I worked on and published with my students and co-workers after finishing my
PhD, but not covered in this dissertation, include malware detection, design of secure cloud
based data storage services, design of robust network topologies, development of query au-

95

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

diting algorithms for protecting aggregate values in statistical databases, traffic analysis
in body area sensor networks, the use of machine learning for predicting undisclosed at-
tributes in social networks, automated formal analysis of secure transport protocols, devel-
opment of secure and reliable transport protocols in sensor networks, private cluster head
election in sensor networks, design of security mechanisms for mesh networks, stimulating
cooperation in mobile opportunistic networks, security and privacy of vehicular commu-
nication systems, resilient data aggregation in sensor networks, and design of lightweight
cryptographic primitives for highly resource constrained applications. Recently, I have
been working on platform level security issues of embedded computing devices, which I
believe is a fundamental building block for securing the Internet of Things. My publication
record on these topics is available in the publication database of the Hungarian Academy
of Sciences12.

I owe a debt of gratitude to many people for all sorts of support and help in my
academic career. I am grateful to my mentors István Vajda and Jean-Pierre Hubaux, who
taught me the basics of academic research and believed in my capabilities even though I
was young and still unexperienced. Later on, I became a mentor too, but I also learned
a lot from my PhD students Péter Schaffer, Gergely Ács, László Dóra, Tamás Holczer,
Vinh Thong Ta, Áron Lászka, Gábor Pék, Máté Horváth, András Gazdag, and Dorottya
Papp. I am thankful to all of them for their commitment and hard work with which we
achieved great results together. Many thanks goes to my co-authors and co-workers too,
in particular, Márk Félegyházi, with whom we had many fruitful discussions, and not only
about science, Boldizsár Bencsáth, with whom we engaged in adventures of setting up and
running a company, and all current and former members of the CrySyS Lab with whom
we worked together as a real team for long days and sometimes nights. I am also thankful
to Sándor Imre, László Pap, and László Györfi, who always supported my career and
kindly encouraged me to complete and submit this dissertation. Finally, I must express
my gratitude to my father for always loving me and to my late father-in-law for always
holding me in high esteem. The completion of this dissertation was more important for
them than it was for me, so I dedicate this work to them with pleasure and respect.

12https://m2.mtmt.hu/gui2/?type=authors&mode=browse&sel=10001261

96

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

References

[1] G. Ács. Secure routing in multi-hop wireless networks. PhD thesis, Budapest University
of Technology and Economics, 2009.

[2] G. Ács, L. Buttyán, and I. Vajda. Provable security of on-demand distance vector
routing in wireless ad hoc networks. In Proceedings of the European Workshop on
Security and Privacy in Ad Hoc and Sensor Networks (ESAS), Visegrad, Hungary,
July 2005.

[3] G. Ács, L. Buttyán, and I. Vajda. Modelling adversaries and security objectives for
routing protocols in wireless sensor networks. In Proceedings of the ACM Workshop
on Security in Ad Hoc and Sensor Networks (SASN), October 2006.

[4] G. Ács, L. Buttyán, and I. Vajda. The security proof of a link-state routing protocol
for wireless sensor networks. In Proceedings of the IEEE Workshop on Wireless and
Sensor Networks Security (WSNS), October 2007.

[5] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W. Yeung. Network
information flow. IEEE Transactions on Information Theory, 46(4):1204–1216, July
2000.

[6] T. Alpcan, T. Basar, R. Srikant, and E. Altman. CDMA uplink power control as a
noncooperative game. Wireless Networks, November 2002.

[7] G. Avoine, L. Buttyán, T. Holczer, and I. Vajda. Group-based private authentication.
In Proceedings of the IEEE Workshop on Trust, Security, and Privacy for Ubiquitous
Computing (TSPUC), June 2007.

[8] G. Avoine, E. Dysli, and P. Oechslin. Reducing time complexity in RFID systems. In
Proceedings of the 12th Annual Workshop on Selected Areas in Cryptography (SAC),
2005.

[9] R. Axelrod. The Evolution of Cooperation. Basic Books, New York, 1984.

[10] M. Bellare, R. Canetti, and H. Krawczyk. A modular approach to the design and
analysis of authentication and key exchange protocols. In Proceedings of the ACM
Symposium on the Theory of Computing, 1998.

[11] D. Boneh, C. Gentry, H. Shacham, and B. Lynn. Aggregate and verifiably encrypted
signatures from bilinear maps. In Advances in Cryptology - Eurocrypt 2003, 2003.

[12] C. Boyd and A. Mathuria. Protocols for Authentication and Key Establishment.
Springer-Verlag, 2003.

[13] Stefan Brands and David Chaum. Distance-bounding protocols (extended abstract).
In Theory and Application of Cryptographic Techniques, pages 344–359, 1993.

[14] I.N. Bronstein, K.A. Semendjajew, G. Musiol, and H. Muehlig. Handbook of Mathe-
matics. Springer, 2004.

[15] S. Buchegger and J-Y. Le Boudec. Performance analysis of the CONFIDANT proto-
col. In Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking
and Computing (MobiHoc), June 2002.

97

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

[16] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. ACM Transac-
tions on Computer Systems, 8(1):18–36, February 1990.

[17] M. Burrows, M. Abadi, and R. Needham. Rejoinder to Nessett. ACM Operating
Systems Review, 24(2):39–40, April 1990.

[18] L. Buttyán, L. Czap, and I. Vajda. Pollution attack defense for coding based sensor
storage. In Proceedings of the IEEE Conference on Sensor Networks, Ubiquitous, and
Trustworthy Computing (SUTC), June 2010.

[19] L. Buttyán and J.-P. Hubaux. Enforcing service availability in mobile ad hoc WANs.
In Proceedings of the 1st ACM/IEEE International Workshop on Mobile Ad Hoc Net-
working and Computing (MobiHoc), August 2000.

[20] L. Buttyán and J.-P. Hubaux. Stimulating cooperation in self-organizing mobile
ad hoc networks. ACM/Kluwer Mobile Networks and Applications (MONET), 8(5),
October 2003.

[21] J. Camenisch and A. Lysyanskaya. An efficient non-transferable anonymous multi-
show credential system with optional anonymity revocation. In Advances in Cryptog-
raphy – EUROCRYPT 2001, 2001.

[22] S. Capkun and J-P. Hubaux. Secure positioning of wireless devices with application
to sensor networks. In Proceedings of IEEE INFOCOM, 2005.

[23] S. Capkun and J-P. Hubaux. Secure positioning in wireless networks. IEEE Journal
on Selected Areas in Communications (JSAC), February 2006.

[24] D. Chaum. The dining cryptographers problem: Unconditional sender and recipient
untraceability. Journal of Cryptology, 1(1):65–75, 1988.

[25] T. Clausen and P. Jacquet. Optimized link state routing protocol (OLSR). Internet
RFC 3626, October 2003.

[26] C. Dı́az, S. Seys, J. Claessens, and B. Preneel. Towards measuring anonymity. In
R. Dingledine and P. Syverson, editors, Designing Privacy Enhancing Technologies,
pages 54–68. Springer LNCS 2482, 2002.

[27] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Distributed data storage
in sensor networks using decentralized erasure codes. In Proceedings of the Asilomar
Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, November
2004.

[28] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Ubiquitous access to dis-
tributed data in large-scale sensor networks through decentralized erasure codes. In
IPSN ’05: Proceedings of the 4th international symposium on Information processing
in sensor networks, page 15, Piscataway, NJ, USA, 2005. IEEE Press.

[29] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Decentralized erasure
codes for distributed networked storage. IEEE/ACM Transactions on Networking,
14(SI):2809–2816, 2006.

98

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

[30] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran. Distributed foutain codes for
networked storage. In Proceedings of the IEEE Conference on Acoustics, Speech and
Signal Processing (ICASSP), Toulouse, France, 2006.

[31] J. R. Douceur. The Sybil attack. In Proceedings of the 1st International Workshop
on Peer-to-Peer Systems (IPTPS), 2002.

[32] M. Félegyházi, J-P. Hubaux, and L. Buttyán. Equilibrium analysis of packet forward-
ing strategies in wireless ad hoc networks – the dynamic case. In Proceedings of the
Workshop on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks
(WiOpt), March 2004.

[33] Christina Fragouli, Jean-Yves Le Boudec, and Jörg Widmer. Network coding: an
instant primer. SIGCOMM Comput. Commun. Rev., 36(1):63–68, 2006.

[34] C. Gkantsidis and P. R. Rodriguez. Network coding for large scale content distribu-
tion. In Proceedings of the 24th Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM), volume 4, pages 2235–2245, March 2005.

[35] Christos Gkantsidis and Pablo Rodriguez. Cooperative security for network coding
file distribution. In Proceedings of the 24th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM), 2006.

[36] D. Goodman and N. Mandayam. Network assisted power control for wireless data.
Mobile Networks and Applications, 6:409–415, 2001.

[37] J. Guttman. Security goals: packet trajectories and strand spaces. In R. Focardi and
R. Gorrieri, editors, Foundations of Security Analysis and Design. Springer, 2000.

[38] Z. J. Haas, M. R. Pearlman, and P. Samar. The zone routing protocol (ZRP) for ad
hoc networks. Internet Draft draft-ietf-manet-zone-zrp-04, July 2002.

[39] Tracey Ho, Ralf Kötter, Muriel Medard, David R. Karger, and Michelle Effros. The
benefits of coding over routing in a randomized setting. In Information Theory Sym-
posium (ISIT). IEEE, June 2003.

[40] Tracey Ho, Ben Leong, Ralf Kötter, Muriel Medard, Michelle Effros, and David
Karger. Byzantine modification detection in multicast networks using randomized
network coding. In Proceedings of the 2004 IEEE International Symposium on Infor-
mation Theory (ISIT), June 2004.

[41] L. Hu and D. Evans. Using directional antennas to prevent wormhole attacks. In Pro-
ceedings of the IEEE Symposium on Network and Distributed System Security (NDSS),
2004.

[42] Y.-C. Hu and A. Perrig. A survey of secure wireless ad hoc routing. IEEE Security
and Privacy Magazine, 2(3):28–39, May/June 2004.

[43] Y.-C. Hu, A. Perrig, and D. Johnson. Ariadne: A secure on-demand routing protocol
for ad hoc networks. In Proceedings of the ACM Conference on Mobile Computing and
Networking (Mobicom), 2002.

99

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

[44] Y.-C. Hu, A. Perrig, and D. Johnson. Packet leashes: A defense against wormhole
attacks in wireless ad hoc networks. In Proceedings of the INFOCOM Conference,
April 2003.

[45] Y-C. Hu, A. Perrig, and D. Johnson. Packet leashes: a defense against wormhole
attacks in wireless ad hoc networks. In Proceedings of IEEE INFOCOM’03, 2003.

[46] Y.-C. Hu, A. Perrig, and D. Johnson. Ariadne: A secure on-demand routing protocol
for ad hoc networks. ACM Wireless Networks, 11(1-2):21–38, 2005.

[47] ISO. Mechanisms using symmetric encipherment algorithms. ISO 9798-2.

[48] S. Jaggi, M. Langberg, S. Katti, T. Ho, D. Katabi, and M. Medard. Resilient network
coding in the presence of byzantine adversaries. In Proceedings of the 24th Annual Joint
Conference of the IEEE Computer and Communications Societies (INFOCOM), pages
616–624, Anchorage, Alaska, USA, 2007.

[49] Y. Jin and G. Kesidis. Nash equilibria of a generic networking game with applications
to circuit-switched networks. In Proceedings of IEEE INFOCOM’03, March 2003.

[50] D. Johnson and D. Maltz. Dynamic source routing in ad hoc wireless networks. In
T. Imilienski and H. Korth, editors, Mobile Computing. Kluwer Academic Publishers,
1996.

[51] Z. Kfir and A. Wool. Picking virtual pockets using relay attacks on contactless smart
card systems. In Proceedings of the IEEE Conference on Security and Privacy in
Communication Networks (SecureComm), 2005.

[52] Y. Korilis, A. Lazar, and A. Orda. Architecting noncooperative networks. IEEE
Journal on Selected Areas in Communication, 13(8), 1995.

[53] Y. Korilis and A. Orda. Incentive compatible pricing strategies for qos routing. In
Proceeding of IEEE INFOCOM’99, March 1999.

[54] Ralf Kötter and Frank R. Kschischang. Coding for errors and erasures in random
network coding. In Proceedings of the IEEE Information Theory Symposium (ISIT),
June 2007.

[55] Ralf Kötter and Frank R. Kschischang. Coding for errors and erasures in random
network coding. IEEE Transactions on Information Theory, 54(8):3579-3591, August
2008.

[56] M. N. Krohn, M. J. Freedman, and D. Mazieres. On-the-fly verification of rateless
erasure codes for efficient content distribution. In Proceedings of 2004 IEEE Symposium
on Security and Privacy, pages 226–240, 2004.

[57] Kristin E. Lauter, Denis Charles X, and Kamal Jain. Signatures for network coding.
In Proceedings of the 40th Annual Conference on Information Sciences and Systems
(CISS ’06), March 2006.

[58] S. Y. R. Li, R. W. Yeung, and Ning Cai. Linear network coding. Information Theory,
IEEE Transactions on, 49(2):371–381, 2003.

[59] W. Mao. Modern Cryptography: Theory and Practice. Prentice Hall PTR, 2004.

100

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

[60] J. Marshall. An analysis of the secure routing protocol for mobile ad hoc network
route discovery: using intuitive reasoning and formal verification to identify flaws. MSc
thesis, Department of Computer Science, Florida State University, April 2003.

[61] S. Marti, T.J. Giuli, K. Lai, and M. Baker. Mitigating routing misbehavior in mobile
ad hoc networks. In Proceedings of ACM/IEEE International Conference on Mobile
Computing and Networking (Mobicom), August 2000.

[62] P. Michiardi and R. Molva. Core: A COllaborative REputation mechanism to enforce
node cooperation in Mobile Ad Hoc Networks. In Proceedings of the International
Conference on Communication and Multimedia Security, September 2002.

[63] D. Molnar and D. Wagner. Privacy and security in library RFID: issues, practices,
and architectures. In Proceedings of the ACM Conference on Computer and Commu-
nications Security, 2004.

[64] P. Papadimitratos and Z. Haas. Secure routing for mobile ad hoc networks. In Proceed-
ings of SCS Communication Networks and Distributed Systems Modelling Simulation
Conference (CNDS), 2002.

[65] C. Perkins, E. Belding-Royer, and S. Das. Ad-hoc on-demand distance vector (AODV)
routing. Internet RFC 3561, July 2003.

[66] A. Perrig, R. Canetti, J. D. Tygar, and D. Song. Efficient authentication and signing
of multicast streams over lossy channels. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, May 2000.

[67] B. Pfitzmann and M. Waidner. A model for asynchronous reactive systems and its
application to secure message transmission. In Proceedings of the IEEE Symposium on
Research in Security and Privacy, May 2001.

[68] R. Poovendran and L. Lazos. A graph theoretic framework for preventing the worm-
hole attack in wireless ad hoc networks. ACM Wireless Networks, 13(1):27–59, 2007.

[69] Y. Qiu and P. Marbach. Bandwidth allocation in wireless ad hoc networks: A price-
based approach. In Proceedings of IEEE INFOCOM’03, March 2003.

[70] A. Rapaport and A. M. Chammah. The Prisoner’s Dilemma. University of Michigan
Press, 1965.

[71] T. Roughgarden. Selfish Routing. PhD thesis, 2002.

[72] Naveen Sastry, Umesh Shankar, and David Wagner. Secure verification of location
claims. Technical Report UCB//CSD-03-1245, EECS, University of California, Berke-
ley, 2003.

[73] A. Serjantov and G. Danezis. Towards an information theoretic metric for anonymity.
In Proceedings of the Privacy Enhancing Technologies (PET) Workshop. Springer
LNCS, 2002.

[74] V. Shoup. On formal models for secure key exchange (version 4). Technical Report
RZ 3120, IBM, November 1999.

101

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

[75] V. Srinivasan, P. Nuggehalli, C. F. Chiasserini, and R. R. Rao. Cooperation in wireless
ad hoc networks. In Proceedings of IEEE INFOCOM’03, March-April 2003.

[76] R. Trivers. The evolution of reciprocal alturism. Quart. Rev. Biol., 46:35–57, 1971.

[77] A. Urpi, M. Bonuccelli, and S. Giordano. Modeling cooperation in mobile ad hoc
networks: A formal description of selfishness. In Proceedings of WiOpt’03: Modeling
and Optimization in Mobile, Ad Hoc and Wireless Networks, March 2003.

[78] L. M. Wahl and M. A. Nowak. The continuous prisoner’s dilemma: Linear reactive
strategies. Journal of Theoretical Biology, 200:307–321, 1999.

[79] W. Wang and B. Bhargava. Visualization of wormholes in sensor networks. In Pro-
ceedings of the ACM Workshop on Wireless Security (WiSe), 2004.

[80] Brent Waters and Ed Felten. Secure, private proofs of location. Technical Report
TR-667-03, Princeton University, 2003.

[81] M. Xiao, N. B. Schroff, and E. K. P. Chong. Utility-based power control in cellular
systems. In Proceedings of IEEE INFOCOM’01, April 2001.

[82] H. Yaiche, R. R. Mazumdar, and C. Rosenberg. A game theoretical framework for
bandwidth allocation and pricing in broadband networks. IEEE/ACM Transactions
on Networking, 8(5), October 2000.

[83] S. Yang and J. Baras. Modeling vulnerabilities of ad hoc routing protocols. In Pro-
ceedings of the ACM Workshop on Security of Ad Hoc and Sensor Networks, October
2003.

[84] Zhen Yu, Yawen Wei, Bhuvaneswari Ramkumar, and Yong Guan. An efficient
signature-based scheme for securing network coding against pollution attacks. In Pro-
ceedings of the IEEE INFOCOM ’08 Conference, 2008.

[85] Fang Zhao, Ton Kalker, Muriel Medard, and Keesok J. Han. Signatures for content
distribution with network coding. In Proceedings of 2007 IEEE International Sympo-
sium on Information Theory (ISIT ’07), June 2007.

[86] S. Zhong, Y. R. Yang, and J. Chen. Sprite: A simple, cheat-proof, credit-based system
for mobile ad hoc networks. In Proceedings of IEEE INFOCOM’03, March-April 2003.

102

dc_1727_20

Powered by TCPDF (www.tcpdf.org)

