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Chapter 1

Introduction

If you have ever walked through a public park, you may have noticed that besides
paved ways, many unpaved paths are used by people. A clear sign of this is the
presence of trampled grass paths (despite the "Keep off the grass!" warnings). Mod-
ern parks are paved only after a few months of public usage, and the paving follows
people’s trampled paths. These paths usually unite in a visible network. People use
the park in their unique way. They typically enter, and exit at various points of the
park, and their behavior inside the park is also different. Some people are interested
in the statues; others seek benches under shady trees or free workout areas. The
network which is finally paved emerges from the summation of people’s interaction
with the park.

The example of public parks enlightens the nature of interaction and the co-
evolution of a network and its users. In this entangled relationship, users form the
structure of the web. Conversely, the emerged structure influences the behavior of
the users. More abstractly, usage, or function creates structure while structure alters
function. Classical studies of networks usually cover only the latter direction of the
relationship. In network science [134], the observable structure of a network forms
the basis of the analysis over which dynamic processes such as navigation, search,
or spreading as functions hosted by the network are investigated. In this case, the
structural properties of networks are modeled in a function-agnostic manner since
the function is only considered after the structure is well-identified. The backward,
i.e., the function → structure direction is rarely tackled in the literature. The most
plausible explanation for this is that the function of a network is something tough
to grasp or measure. The web of paved segments in the public park example can
be easily reconstructed after a few hours or days of walking, depending on the size
of the park. In fact, such maps are usually placed at the entrances showing the
main attractions and roads inside the park (Figure 1.1). The map of the park acts
as a kind of public information. Function, manifesting itself in the paths of people
behave quite differently. The paths belong to people. The paths describe the habits
of people and tell us about them. About their favorite places, the location of their
homes, and even about their health (if they prefer long or short walks). The nature
of the function is somewhat confidential. Some people may talk about it and give
their names, others may talk about it anonymously, and others may ignore you if
you ask them about their paths.

This dissertation contains models and results on the possible application and
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Figure 1.1: The official map of Central Park in New York City.
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benefits of the function → structure approach to complex networks. Although the
behavior of the users of the network may be specific; we still can find some basic
rules describing the high-level behavior of users, which gives a rudimentary charac-
terization of function. In this work, we set out of such rules governing function and
investigate networks as emergent objects coming out of the interaction of users. We
show that the function→ structure approach gives a complementary insight to net-
works compared to the widely known structure → function type studies. While the
structure → function type analysis mostly reflect high-level statistics (e.g., degree
distribution, clustering, diameter), the function → structure direction can identify
omnipresent sub-networks or frames, and predict connection likelihood.

Although the function→ structure approach may be beneficial for a broad spec-
trum of complex networks like biological, technological, social, or ecological net-
works, the rudimentary formulation of function required by the analysis is not cur-
rently available in most of the existing complex networked systems. Thus, in this
dissertation, two types of networks are considered whose function can be grasped
to a sufficient extent that permits the function → structure analysis. Navigable
networks are a family of complex networks, over which navigation, i.e., the function
of the network, can be described in terms of distributed greedy mechanisms in-
spired by social networks. Secondly, we investigate hierarchical networked systems
in which paths, i.e., the function of the network, can be characterized by some rudi-
mentary hierarchical relations like a customer-provider relationship. The Internet is
a pathological example of such systems to which this dissertation dedicates special
attention.
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Chapter 2

An overview of complex networks

In the 18th century, the city of Königsberg, Prussia, was wealthy enough to have
seven bridges across the river Pregel. The seven bridges connected four parts of lands
separated by the branches of the river. The constellation is shown in Figure 2.1
where capitals (A, B, C, D) denote the lands and the bridge drawings and the
corresponding handwriting (ending with the B. and Br. abbreviations) mark the
location of the bridges. This scenery inspired the fantasy of the leisured inhabitants

Figure 2.1: Euler’s Figure 1 for the seven bridges of Königsberg problem from ‘Solu-
tio problematis ad geometriam situs pertinentis,’ Eneström 53 [source: MAA Euler
Archive]

of Königsberg who made a virtual playground from the bridges and lands. Their
favorite game was to think about a possible walk around the bridges and lands, in
which they cross over each bridge once and only once. Nobody could come up with
such a fancy walk and nobody managed to prove that such a walk is impossible to
find, until Leonhard Euler, the famous mathematician, took a look at the problem.
Euler quickly noticed that from the perspective of the problem, most of the details
of the map shown in Figure 2.1 can be omitted and a much simpler figure can be
drawn focusing on the essence of the problem (see Figure 2.2).

This new representation contains only “nodes” marked with capitals (A, B, C,
D) in circles representing the lands and “edges” drawn with curved lines between the
nodes representing the bridges. A walk now can be described as a sequence of nodes
and edges. For example the sequence A→ E1→ C→ E3→ D→ E4→ A represents
a walk starting from land A which proceeds to land C via bridge E1, then to land
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Figure 2.2: Euler’s idea of abstracting away the network underlying the Seven
Bridges of Königsberg puzzle.

D via bridge E3, and finally back to land A via bridge E4. All sorts of walks can be
created using only the nodes and edges. All the possible walks that one can imagine
throughout the bridges and lands are captured by this simple representation. The
collection of nodes and edges called a network (or graph in mathematics) G(V,E)
turned out to be so powerful in modeling real-world problems that a whole new
branch of mathematics, called graph theory has been defined based on them. In the
first-ever graph-theoretic argumentation Euler showed that to find a walk crossing
each bridge once and only once requires that the underlying network can contain
only two nodes with an odd number of edges. In Figure 2.2, one can see that all
nodes have an odd number of edges (A has five, while B, C, and D has three), which
makes the problem insolvable in this network.

The network in the case of Königsberg’s bridges is tiny and well-defined (contains
four nodes and seven edges). Such small networks, completed with more extensive
but regular networks, provided the main inputs of classical graph theory problems
for around 250 years. However, the information revolution and the rapid develop-
ment of digital information storage and processing technologies made it possible to
gather data and analyze large, complex, and dynamic networks from all areas of
life. Biological (e.g., metabolic, protein or brain networks), technological (e.g., the
Internet, software, and hardware networks) and social networks (e.g., human ac-
quaintance networks, online social networks) are the most representative examples
of such complex networked systems. The need for characterization of such large and
complex networks led to the definition of a wealth of network metrics, which were
unknown for classical graph theory.

2.1 Structural properties of networks

Since the budding of network science, quite a long list of structural network proper-
ties have been defined and analyzed. However, the main resemblance of real-world
networks is mostly reflected by three classes of high-level network metrics. The first
class is the distance-related metrics from which diameter and average path length
are of interest regarding this dissertation. The diameter (D) of a network is de-
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Figure 2.3: Visualization of the diameter in Zachary’s karate club network [176]
(left), Diameter of various real networks compared to their size (right).

fined as the length of the longest shortest path in the network. Differently put, it
is the length of the shortest path between the two most distant nodes in the net-
work (see the left panel of 2.3). Through this dissertation, we consider undirected
and unweighted networks; thus, the length of a path is simply given by the number
of its constituting edges. The average path length is the average of the lengths of
shortest paths measured between all pairs of nodes in the network. Surprisingly,
despite containing a very large number of nodes, the diameter and the average path
length of real networks is very low. Numerous measurements [5, 57, 134] confirm
that the diameter and the average path length of real networks are proportional to
the logarithm of the number of nodes N . Such behaviour is called as the small-
world property. The right panel of Figure 2.3 illustrates this relationship between
network size and diameter for the Ythan estuary food web [123], Silwood park food
web [123], the C. Elegans neural network [170], the E. coli, substrate graph [61], E.
coli, reaction graph [61], Metabolic network of the E. coli [89], Word co-occurence
network [64], MEDLINE co-authorship network [132], domain-level Internet [60] and
the network of movie actors [10].

The second class of metrics captures the modular structure of the network. The
most influential metric to capture network modularity is the clustering coefficient.
Although this metric is defined in various forms in the literature [134], in this dis-
sertation, we define the local clustering coefficient of node i as :

ci =
number of triangles connected to node i
number of triples centered on node i

, (2.1)

where a “triple” means a single node with edges running to an unordered pair of
others. If node i has a degree of ki then the local clustering coefficient is computed
in the form if:

ci =
2ei

ki(ki − 1)
, (2.2)

where ei denotes the number of edges between i’s neighbours. The global clustering
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Network N k̄ C
Ythan estuary food web 134 8.7 0.22
Silwood park food web 154 4.75 0.15
C. Elegans neural network 282 14 0.28
E. coli substrate graph 282 7.35 0.32
E. coli reaction graph 315 28.3 0.59
Words co-occurence network 460902 70.13 0.437
MEDLINE co-authorship network 1520251 18.1 0.066

Table 2.1: Similarities in the clustering coefficients of real networks. k̄ denotes the
average degree of the network.

coefficient is defined as the average of the local coefficients of the nodes, i.e.:

C =
1

N

N∑

i=1

ci. (2.3)

Table 2.1 shows the striking resemblance of clustering coefficients in real networks.

Finally, the third class of metrics focuses on the variation of node degrees in the
network. The degree distribution is widely used to represent the high-level structure
of a system in terms of node degrees. It is defined as the distribution function P (k),
which gives the probability that a randomly selected node has exactly k edges.
Remarkably, most real networks have a power-law tail

P (k) ∼ k−γ, (2.4)

where γ is usually between 2 and 3. When it comes to visualization of the de-
gree distribution, the complement cumulative distribution is generally used, that is
P (X > k). Figure 2.4 illustrates the unexpected similarity of degree distribution in
networks from very diverse corners of life.

Although they are out of the scope of this dissertation, tons of other network
metrics have been defined and analyzed in the literature of network science. See [48]
for a nice summary of various network metrics.

2.2 Generative network models
Since the identification of the unexpected structural resemblance of real networks,
the research community is driven by the dire need to understand the significant gov-
erning laws of network organization. One possible way of doing this is to find a set
of underlying wiring mechanisms eventuating the observed high-level connectivity
between the nodes of the network. Finding the appropriate wiring mechanism that
generates the desired network structure casts these models as generative models.
Most of the existing network models are qualify as generative, starting from proba-
bilistic random graphs [29], general complex network models e.g. [11, 170], metric
space models e.g. [102], fractal models [97], random walk models [29], optimization
models [37] but simulation-based approaches [111, 84] are counted here too. To
illustrate the philosophy of generative models, here we give a brief summary of the
three most influential models of network science.
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Figure 2.4: The similarity of degree distribution in three networks from diverse areas
of life. The Airport network represents the network of airports and flights around
the globe, the Debian network is the dependency network of packages in the Debian
Linux distribution, while the Internet is the domain-level topology of the Internet.

2.2.1 The Erdős-Rényi (E-R) model

The most basic yet powerful network model is the random network model proposed
by Pál Erdős and Alfréd Rényi. In its most simple form, all pairs of nodes are
connected by a given probability p. Due to pure randomness, the expected number
of edges in the E-R model is:

Ē =

(
N

2

)
p =

N(N − 1)

2
p, (2.5)

thus the average degree is expected to be:

k̄ =
Ē

N
= (N − 1)p ≈ Np, (2.6)

for large networks, since each edge adds two degrees to the network. The E-R model
thus can be easily tuned to produce realistic average degrees by setting p = k̄

N
.

Due to pure randomness, the small-world property of E-R graphs can be easily
explained. An arbitrary node x in the network will have k̄ neighbors on average.
For the neighbors of x this is also approximately true. Thus, from node x we will
find roughly k̄2 nodes at a distance of two. In distance D we find around k̄D nodes.
Thus, the diameter of the network can be implicitly given by:

k̄D = N, (2.7)

from which we get D ≈ log(N)

log(k̄)
, which means that the diameter is indeed proportional

to the logarithm of the number of nodes. Thus the E-R model explains the small-
world property through pure randomness.

The local clustering coefficient of a given node can also be easily deduced from
the properties of the model. Recall that:

ci =
2ei

ki(ki − 1)
, (2.8)
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where ei denotes the number of edges between i’s neighbours. Easily, ei is expected
to be:

ei =
ki(ki − 1)

2
p, (2.9)

thus ci is expected to be p, while C ≈ p. Now this is in high contrast with the
measured results seen in real networks. For an example let’s see what clustering
coefficient we should see if the word co-occurrence network (see Table 2.1) was
completely random. In this case k̄ = 70.13 and n = 460902, thus we should set
p = k̄

N
= 70.13

460902
= 0.0001521582 which means that the clustering coefficient for

the corresponding random network is also 0.0001521582. In the real word network,
however we see that the clustering coefficient is 0.437, which is orders of magnitude
bigger (one would get similar results from any network picked from Table 2.1). This
result readily proves that real networks cannot be completely random.

Finally, we show that E-R networks have a very different degree distribution
from what we observe in most real-world networks. The distribution of the degree
of any particular node is binomial:

P (ki = k) =

(
N − 1

k

)
pk(1− p)1−N−k. (2.10)

Since

P (ki = k)→ (Np)ke−Np

k!
(2.11)

as N → ∞ and Np = constant, this distribution is Poissonian. This result is also
in contrast with real measurements supporting that real networks have power-law
degree distribution.

2.2.2 The Small-world model

We have seen that random networks readily explain the small-world property ex-
hibited by real networks, but pure randomness cannot account for their power-law
degree distribution and high clustering. There is a seeming controversy between the
small-world property and high clustering since making clusters arguably counter-
acts to small diameter. Duncan Watts and Steven Strogatz at Columbia University
studied the relation of these with a very simple model [170]. Their model starts
with a highly regular circular graph in which every node located in a circle layout
is connected to the K closest (K/2 in both directions) nodes on the circle. At this
starting stage, the network does not exhibit the small-world property as its diameter
is:

D ≈ N

2K
, (2.12)

which grows linearly with N . However, the network has a high clustering coefficient
given by:

C0 =
3(K − 2)

4(K − 1)
, (2.13)

independently of N . From the starting stage, the model iteratively goes through
the nodes and take every edge connecting them to their K/2 rightmost neighbors
and rewire it with probability p. Rewiring is done by replacing the endpoint of the
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edge to a node picked uniformly at random from the other nodes while avoiding
self-loops and link duplication. When p = 1, the model produces a structure close
to an Erdős-Rényi random graph (see Figure 2.5).
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2 Diameter and clustering through the transition
from crown to random network.

crown.graph <- sample_smallworld(dim=1, size=5000, nei=3, p=0.0)

x <- array()
diam <- array()
clust <- array()
index <- 1
diam_orig <- diameter(crown.graph, weights=NULL)
clust_orig <- mean(transitivity(crown.graph, type="local"), na.rm=TRUE)
index <- 1
myseq <- 0.00001*2^seq(1,16,1)
for (p in myseq){

4

Figure 2.5: Visualization of the small-world model with p = 0 (left), p = 0.05
(middle) and p = 0.5 (right).

The model transforms a regular lattice having high clustering but no small-world
property, into a small-world random graph with low clustering. What is interesting
what happens between the two extremes, i.e., when 0 < p < 1. Figure 2.6 shows the
normalized diameter and clustering coefficient with respect to the p = 0 case when
transiting to the completely random network at p = 1 in a 5000-node network.
In this case, the first rewired links appear at around p = 10−4. The diameter
drops very quickly after rewiring a tiny portion of the edges. On the contrary, the
clustering coefficient remains almost unaffected by these early rewirings until around
p = 10−2. There is a large space for networks exhibiting both small diameter and
large clustering at 10−3 < p < 10−2. In this regime, the generated networks are
both small-worlds and highly clusterized.

ylim=c(0,1),log="x",cex.lab=2.2,axes=F)
axis(1,at=c(0.00001,0.0001,0.001,0.01,0.1,1),label=c(expression(10^-5),

expression(10^-4),expression(10^-3),expression(10^-2),expression(10^-1),expression(10^0)),cex.axis=1.8)
axis(2,at=c(0,0.2,0.4,0.6,0.8,1),label=c(0,0.2,0.4,0.6,0.8,1),cex.axis=1.8,las=2)
box(lwd=1)
points(x,diam,pch=16,cex=1.5)
points(x,clust,pch=1,cex=1.5)
text(10^-4,0.3,expression("D"[p]/"D"[0]),cex=2.6)
text(10^-1,0.9,expression("C"[p]/"C"[0]),cex=2.6)
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Figure 2.6: Transition from regular lattice to a random graph with the small-world
model (n=5000).
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Nevertheless, the degree distribution of the model is given by [16]:

P (k) =

min(k−K/2,K/2)∑

ν=0

(
K/2

ν

)
(1− p)νpK/2−ν (pK/2)k−K/2−ν

(k −K/2− ν)!
e−pK/2. (2.14)

The shape of the degree distribution is similar to that of a random graph and has
a peak at k = K and decays exponentially for large |k − K|, which is unlike the
power-law degree distribution of real networks.

2.2.3 The Barabási-Albert (B-A) model

We have seen that the Small-world network model can conciliate the small-world
property and high clustering, however, it cannot reproduce realistic degree distribu-
tion. The most popular model in the literature capable of that was defined by Albert
László Barabási and Réka Albert [11]. Their model has two main rules. First, the
network is grown incrementally by adding and connecting a node at every step to
the existing network, which can be an arbitrary small network in the initial phase.
Secondly, the connections are not formed uniformly at random; rather, a newly ar-
riving node tends to connect to existing nodes proportional to their degrees. More
specifically, the probability that a new node connects to an existing node i with a
degree of ki is pi = ki∑

j kj
. This rule is called a linear preferential attachment, as the

chance of the nodes present in the network to get an edge from the newly connected
node grows linearly with their current degree. Figure 2.7 presents a network after
100 iterations of the model and the power-law degree distribution of a 5000-node
B-A network. The average degree of the model is controlled via the fixed num-
ber of edges created by the newly arrived nodes at every step. The average path
length of the B-A model is known to be growing logarithmically with the size of the
network [45]. Thus B-A networks are small-worlds.
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Figure 2.7: 100-node network generated with the B-A model (left) and the comple-
ment cumulative degree distribution of an 5000-node B-A network (right).

However, the clustering coefficient is proven to be inversely proportional with
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the network size [96], which is unlike the high clustering coefficient independent of
n exhibited by real networks.

2.2.4 Checkpoint

Although the corresponding volume of the literature is considerable still, we can
identify the following points in almost all cases of generative models:

• Define node dynamics: This is usually a set of rules regarding how the set
of nodes residing in the network varies over time. In the simplest case, the
set of nodes can be fixed a priori [29] but growth models e.g. [11] where the
number of nodes increases over time seem to capture a fundamental aspect of
complex networks.

• Define edge dynamics: This is again a rule set controlling how the edges
are created between the nodes in the network. The set of rules here can be
constructed in a black box fashion [29] where we want to mimic some high
level edge statistics (degree distribution, diameter, clustering etc.), but also
can be inspired by processes [11, 37] assumed to take place on networks.

• Analyse and compare with measurement data: This final and most
crucial step where the outcomes of the model are computed, simulated or
analytically derived and verified against the available measurement data.

While the above three-step process resulted in a great variety, often precise (as
far as the power of measurement data can verify) and usable network models, the
generative approach suffers basically from the inability to prove that the processes
these models are defined upon, are actually there on the real network. For exam-
ple, one cannot think that preferential attachment in its pure form (where a node
chooses its neighbors according to their exact nodal degree) is happening in a real
networked system. This inability makes the generative models and their predictions
somewhat ambiguous. Such models can capture the fundamental mechanisms lead-
ing to realistic networks, but they usually cannot cope with the incentives of the
nodes. Differently put, generative models readily answer the “how” question, (i.e.,
How real networks are generated?) but usually leave the “why” question out of scope,
i.e., Why it is beneficial for nodes choosing neighbors according to a given pattern?
Now, we introduce a different family of models concentrating on the incentives of
the nodes and investigate the consequences of various motives.

2.3 Incentive-oriented models

Network formation games (NFG) constitute a nice game-theoretical framework pro-
viding considerable insight into the mechanisms that form the topology of complex
real-world networks [59]. The nodes of the network are considered as selfish ra-
tional players, whose goal is to minimize costs regarding the formation of the net-
work. More formally P is the set of nodes (the players in game-theory terminology)
with cardinality N . The strategy space for node u ∈ P is to create some set of
edges to other nodes in the network: Su = 2P\{u}. Let s be a strategy vector:
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s = (s0, s1 . . . sN−1) ∈ (S0, S1 . . . SN−1) encompassing the strategies of all nodes and
G(s) be the graph defined by the strategy vector s as G(s) =

⋃N−1
i=0 (i × si). The

objective of the nodes is to minimize their cost, which is calculated as:

cu =
∑

∀u6=v

dsh
G(s)(u, v) + α|su|, u, v ∈ P (2.15)

where dsh
G(s)(u, v) stands for the length of the shortest path between u and v in

G(s) and α is a constant, characterizing the cost of building an edge. With such a
definition network formation games can effectively analyze the balance between link
costs and distance costs as the key incentives of building specific networks structures.

In their seminal paper [59], Fabrikant et al. study the Nash equilibria (NE)
of the game and show that the price of anarchy (the relative cost of the lack of
coordination, PoA) can be low. In recent years there has been a flurry of research
in the field of network formation games; here, we only mention a few of them. The
price of stability (ratio of the best equilibrium and the social optimum, PoS) has
been shown to be of O(logn) if edge costs are shared fairly among nodes [7]. Bilateral
NFG and its relation to the unilateral game in the context of PoA has been studied
in [46]. Some improved bounds of PoA have been presented in [4] and [52], while
the latter paper has also introduced a variant of NFG, where maximum distance is
used instead of the sum of distances. Michalák and Schlegel [117] improve previously
known bounds on PoA in both NFG variants, and show that PoA is mostly constant
in the original NFG. Network formation games also appeared in many variants since
its introduction in [59]. Besides the original unweighted version, state-of-the-art
literature has records for weighted games and modifications with different goals of
the agents. A nice summary of the state-of-the-art can be found in [21].

While network formation games can account for the incentives of the nodes for
building a specific network, it turned out that finding the appropriate incentives
leading to realistic network structures is far from trivial. There have been attempts
to solve this problem by altering the cost function (Eqn. 2.15) to contain structure-
related parts. This flow of research enforces a particular global network structure
by manipulating some terms in the local cost functions of the nodes. Several studies
recovered realistic clustering and degree distribution using this technique. However,
these models qualify as exogeneous models, where the topological constraints are
explicitly built into the cost functions. Such variations of the incentive-oriented
approach are very close to the philosophy of generative models. Thus the devel-
opment of an incentive-oriented and endogenous model of network formation, that
would generate more heterogeneous and realistic networks without explicitly enforc-
ing that in the cost function, is still an open challenge [135]. We argue that the key
to address this challenge is to think about how the networks are used and formalize
this functioning in terms of the cost function.
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Chapter 3

Do we pick the shortest paths in
networks?

The implicit "shortest path" assumption prevailing network formation games (see
Eqn. 2.15), meaning that the used communication path in a network is the one
with the shortest length, also seems to dominate the network science community
and most of the fundamental network metrics (diameter (Section 2.1), average path
length (Section 2.1), centrality metrics [133], etc.) are computed using this assump-
tion. Other works are supposing various models [136], network metrics (e.g. degree,
centrality, congestion, homophily [156, 2, 110]) and hidden structures (e.g., hidden
hierarchies and metric spaces [169, 26, 93]) guiding path selection. The contribution
of these studies is remarkable in modeling and understanding path selection (alter-
natively routing) strategies that can recover near shortest paths without requiring
global knowledge of the topology. However, a lack of confirmation with empirical
data leaves an important question open: What kind of paths are actually chosen by
nature in real-world networks?

In this chapter, we approach the question of path selection in networks from this
lacking empirical angle based on [49]. Using existing and newly created datasets of
the traffic flow on real-world networks, we compare the topology of the networks to
the structure of empirically-determined paths extracted from these datasets. From
this comparison, we infer a common characteristic of path selection in different net-
works called stretch. We present the analysis of empirically-determined paths in
air transportation networks, the Internet, the fit-fat-cat word morph game, and
empirically-inferred paths in the human brain. Our publicly accessible path dataset
collected by the fit-fat-cat word game smartphone application is published in Sci-
entific Data [98]. For the remainder of this chapter, we will refer to empirically-
determined and inferred paths as empirical paths.

Due to their confidential nature, collecting or inferring paths in networks is a
non-trivial problem. Here we list our methods capable of recording or inferring paths
for every specific network in our analysis.
Internet AS topology and real AS paths – From the perspective of path mea-
surements, the Internet is one of the more straightforward cases since the Internet
protocol stack permits the tracing of packets using the traceroute network diagnos-
tic tool. Although this method has its limitations [114], traceroute datasets are still
the primary sources of Internet paths today. CAIDA (Center for Applied Internet
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Data Analysis [163]) runs large-scale traceroute measurements regularly within the
Archipelago project using the Scamper tool [113]. The recorded datasets are publicly
available for download and analysis. We have downloaded a full dataset of domain-
level packet traces from CAIDA, recorded on 09/29/2015, which contains around 2.5
million traces. We have also reconstructed a domain-level Internet topology based
on the routing information bases of looking glass routers participating in the Route-
views project [167] and the trace records of Archipelago. The obtained topology
contains 52194 nodes and 117251 connections. Having both traces and the topol-
ogy of the network, we were able to compare the empirical paths to their shortest
possible counterparts in an approximate topology of the domain-level Internet.
Air transportation network and flight travels – The world’s flight map is
available from OpenFlights [137], from which the topology of the air transportation
network can be reconstructed. For a realistic estimation of the flights used by
customers, we used the Rome2Rio [148] trip planner and generated routes between
27444 randomly chosen pairs of airports. From the offered paths, we have chosen
the cheapest one in the analysis. However, we note that picking according to other
parameters (lowest number of transfers, lowest travel time) did not qualitatively
change our results. To achieve a more realistic topology, we used airport connections
extracted from Rome2Rio traces to increase the accuracy of the OpenFlight topology.
The reconstructed map contained 3433 airports and 20347 flights connecting them.
fit-fat-cat word morph game app and word chains – For collecting paths
from word networks, we have implemented a word morph game named “fit-fat-cat”
for smartphones. The goal of the game is to transform a source word into a target
word through meaningful intermediate words by changing only one letter at a time.
The word chain fit-fat-cat is a good solution to a game with source word fit and
target word cat. These word chains, collected anonymously from our users, can
be considered as the footprints of human pathfinding over the word-maze of the
English language. For the reconstruction of the word graph, we have downloaded
the official three-letter English Scrabble words from WordFind [172] and created an
edge between all the words differing only in one letter. The collected three-letter
word chains were considered as our traces. For capturing only the “working” paths,
we have filtered out the first 20 games (the warming up phase) and the games taking
more than 30 seconds (when the players are not just using a known path but discover
an unknown one) of every player. After all, we have a dataset of more than 2500
paths from 100+ players. The application is still recoding data, a current snapshot
of the dataset is available from the “fit-fat-cat” public Open Science Framework data
repository [99] and described in details in [98].
Human brain and estimated paths – Getting realistic paths from inside the
human brain is tough, if not impossible. As a consequence, almost all studies in the
literature concerning path-related analysis assume shortest path signaling paths.
Taking into account the extreme non-triviality of path estimation in the brain, we
ask here if we can use empirical anatomical and functional data to infer possible
communication traces. Our dataset comprises 40 healthy human subjects who un-
derwent an MRI session where Diffusion Spectrum Imaging (DSI) and resting-state
functional MRI data were acquired for each subject. DSI data was processed fol-
lowing the procedures described in [80, 34, 51], resulting in 40 weighted, undirected
structural connectivity maps (GS) comprising 1015 nodes, where each node repre-
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sents a parcel of cortical or subcortical gray matter, and connections represent white
matter streamlines connecting a pair of brain regions. Connection weights determine
the average density of white matter streamlines and here only consider connections
with density above 0.0001, resulting in GS with an average of 12596.2 connections
per subject. Functional MRI data were processed following state of the art pipelines
described in [127, 145], yielding a BOLD signal time-series per node, each with 276
points that were sampled every 1920 ms. The magnitude of the BOLD signal is
an indicator of the degree of neural activity at a node. Combining structural and
functional data, we infer feasible structural pathways through which neural signals
might propagate using the following process. (i) Identify source-destination pairs
with high statistically-dependent brain activity. We searched for pairs of nodes such
that the Pearson correlation of the BOLD signal time series - without global regres-
sion - was above 90%. These nodes were used as the source-destination pairs of our
paths. (ii) Determine which nodes are active at every time-step. We say that a node
is “active” at a given time-step if the BOLD signal is > γ and “inactive” otherwise.
We construct activity vectors for each time-step indicating which nodes were active.
Here we use γ = 0, but we get qualitatively similar results for near-zero γ. (iii)
Construct subgraphs of active nodes. We constructed a subgraph GSi of GS for
each time-step by considering only the nodes that are active at a given time-step
i. (iv) Define paths between source-destination node pairs. For all of our source-
destination pairs (generated in step (i)), we considered the shortest path in the GSi
graphs, if the path existed. If there were multiple shortest paths between a source-
destination pair, we choose one randomly. Our source-destination traces include the
paths found across all GSi subgraphs. It is worth noting that this method assumes
that information can only traverse active nodes. Furthermore, we are considering
here a model for large spatial and temporal scale communication in brain networks
that is not necessarily applicable to neural networks at smaller scales. While we
cannot validate with empirical data whether these paths are actually used for the
flow of neural signals, from a path inflation perspective, we can consider these paths
as a lower bound on the length of the real signaling pathways.

The main topological features of our networks and the statistics of the empirical
paths are shown in Table 3.1.

Network Airport Intern. Brain fit-fat-cat
# Nodes 3433 52194 1015 1015
# Edges 20347 117251 12596.2 8320
Avg. deg. 11.85 4.49 24.82 16.39
Avg. clust. 0.64 0.32 0.42 0.44
Avg. dist. 3.98 3.93 2.997 3.52
Diam. 13 11 6.4 9

# Emp. paths 13722 2422001 394072 2700
Path avg. dist. 4.67 4.21 4.16 3.82

Table 3.1: Basic structural properties of our networks and paths we have analyzed.
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Figure 3.1: Stretch of the empirical paths with respect to their shortest counterparts.
While most of the empirical paths exhibit zero stretch (confirming the shortest path
assumption), a large fraction (20-40%) of the paths is “inflated” even up to 4-5 hops.
The plot indicates a stunning resemblance in the distribution of path stretch in our
networks.

Our striking finding based on the datasets is that traffic in networks does not
necessarily follow the shortest paths. Fig. 6.9 presents the stretch of the paths,
which is computed as the length of the empirical path minus the length of the
corresponding shortest path having the same source and destination pair. The
figure shows a significant resemblance in the distribution of path stretch across our
networks. While around 60-80% of the empirical paths exhibit zero stretches, the
remaining paths show path stretch which can exceed up to 4-5 hops. From this
result, two things follow. First, the plot confirms the shortest path assumption of
previous studies in the sense that most of the empirical paths are shortest indeed. In
this respect, nature’s path selection policy definitely “prefers short paths”. However,
the non-negligible portion (20-40%) of inflated paths suggests that there may be
other navigational policies at use simultaneously. The main topological features of
our networks and the statistics of the empirical paths are shown in Table 3.1.

3.1 Navigability: The primary function of networks

The most plausible explanation of the above-experienced stretch is that real pathfind-
ing algorithms somewhat differ from the shortest path algorithm. While an algo-
rithm in possession of the global topology of the network can easily find the shortest
path between arbitrary pairs of nodes, real entities having localized views of the
network need to operate differently when navigating in the wild between nodes (see
Figure 3.2). Milgram’s famous experiment [165] was the first empirical evidence
that complex networks are navigable by distributed greedy search algorithms. Be-
sides the remarkable approximation of the diameter of the social network, Milgram
showed that people can effectively navigate through their social acquaintances with-
out knowing the structure of the complete network of social interactions. This
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experiment triggered the extensive study of the navigational aspect of complex net-
works.

Networks are efficient conduits of information and other media. News, ideas,
opinions, rumors, and diseases spread through social networks fast, sometimes be-
coming viral for reasons that are often difficult to predict [15, 91, 169, 142, 147, 62,
56, 116, 17, 121, 67, 125]. Many biological networks are also paradigmatic exam-
ples of information routing, ranging from information processing and transmission
in the brain, to signaling in gene regulatory networks, metabolic networks, or pro-
tein interactions [13, 174, 30, 40]. Perhaps the most basic example is the Internet
whose primary function is to route information between computers. If one is to list
some common functions of different networks, then information routing will likely
be close to the top. It is thus not surprising that many networks were found naviga-
ble, meaning that nodes can efficiently route information through the network even
though its global structure is not known to any individual node [118, 166, 92, 53,
109, 156, 26, 36, 85, 105, 106, 35].

Recent research efforts suggest that presuming the existence of a hidden metric
space behind complex networks seems a plausible explanation for their excellent
navigational properties [26, 102]. A distributed greedy navigation algorithm always
makes the locally optimal choice at each step, hoping that this will result in a global
optimum or its sufficiently good approximation. If greedy navigation can lean on a
metric space during the search, this hope becomes a reality with high probability
(see Figure 3.2). For example, in his pioneering model [93] Kleinberg effectively used
the D-dimensional euclidean lattice to describe navigation in small worlds, while for
the explanation of Milgram’s experiment, a hierarchical model has been proposed in
[169]. Since metric spaces are either existent [169] or can be efficiently constructed
concerning social and computer networks [25, 95], greedy navigation is a remarkably
efficient strategy in finding network paths. Furthermore, many practical routing
solutions are based on the greedy navigation principle. Perhaps the most successful
practical systems using greedy forwarding are the overlay networking solutions based
on distributed hash tables, e.g., CAN [152] and Chord [159]. These schemes employ
different underlying abstract geometries, torus [152] and circle [159] respectively,
as a basis of forwarding. In [160] several greedy navigation schemes for ad hoc
networks, based on geographical distance, are surveyed. Hamming-distance based
greedy navigation has been utilized in Microsoft’s BCube data center design [32].
In the field of cognitive neuroscience, recent studies reported major correlations
between navigation and learning skills of humans [128, 122] while others go even
further and investigate the possibility that navigation in cognitive spaces may lie in
the core of any form of organized knowledge and thinking [20, 58, 19].

Our observations with empirical paths and the wealth of studies in the literature
suggest that instead of shooting for the shortest possible path, real path selec-
tion mechanisms use greedy navigation supported by a physical or cognitive metric
space. Since the primary purpose of a network is to enable traffic exchange between
its constituting nodes somehow, navigability seems to be the primary function real
networks host in the first place. Now we will start from the functionality of navi-
gation and try to deduce the structure of the network as a consequence of hosting
navigability. Thus in the following, the function → structure approach could be
either translated into navigation → structure, but we reserve the framework to be
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Fig. 1: Deviation of shortest and greedy paths in the 2D Euclidean grid between nodes
(2, 2) and (0, 0).

navigability (missing in network formation games) into a single framework. First,
we propose the Greedy Network Formation Game (GNFG): we assume a hidden
metric space underneath the network, and use the length of greedy paths as the
communication cost between players. Since shortest and greedy paths deviate in
essence (see Figure 1), this shift will substantially change the corresponding equi-
libria. We play the game in a classical Euclidean grid-like setting, which is used
predominantly for analyzing and describing greedy forwarding behavior [2, 1].
Second, we present our main finding: albeit constant dimensional Euclidean grids
lend themselves naturally for analysis, greedy-routable networks cannot emerge
from the interaction of selfish players over such underlying structure. This result
is somewhat surprising, given that small-world networks do emerge in the real
world. Motivated by recent success of hyperbolic models to describe navigability
[3, 4], we give a very brief outlook on how this change in the underlying met-
ric space can facilitate the emergence of small-world equilibrium topologies and
promote such games for further research.

Motivation. Existing work on network formation games assumes shortest
path routing when measuring distance between nodes. There are several reasons
why this view is limited. First, greedy routing usually produces short, but not
necessarily shortest paths. Second, in the context of the current (and more so
the future) Internet, both the need for global topology knowledge hindered by
autonomy and policy issues, and the linearly scaling router memory requirement
[5] raising scalability issues suggest that shortest path routing has its limitations.
On the contrary, Internet-like networks can be navigated in an ultrashort time
using greedy routing, without maintaining sophisticated topology information
[6]. As a consequence, NFG with greedy routing looks like a prime candidate to
be studied. It is Even-Dar and Kearns [7] who come closest; they present a NFG
played on a Kleinberg-like grid, while nodes create extra edges with a probabil-
ity decreasing with distance according to a power law. Authors determine the
equilibrium graphs according to shortest paths, then show that greedy routing
works reasonably on these graphs. Therein lies a contradiction: equilibria are
calculated in shortest paths, but players do route in a greedy manner. In this
case, players do not implement their equilibrium paths.

Outline. The rest of the paper is organized as follows. Section 2 provides
the necessary background to our study. Section 3 describes the Greedy Network
Formation Game (GFNG) in constant dimensional Euclidean grids and analyze

Figure 3.2: Deviation of shortest and greedy paths in the 2D Euclidean grid between
nodes (2, 2) and (0, 0). In possession of the complete topology of the network, the
shortest path algorithm can easily find the shortest (represented by a continuous
line) path. Greedy navigation relies on the metric properties of the grid. When
starting at node (2, 2), the greedy navigation algorithm computes the distances of
the possible next hops (i.e. nodes (1, 2), (2, 3), (3, 2), (2, 1)) from the destination
(0, 0). Nodes (1, 2) and (2, 1) are found to be 3, while nodes (2, 3) and (3, 2) to be 5
steps away. Thus the greedy navigation algorithm picks a local optimum and chooses
randomly between the two closest nodes (i.e. (1, 2) and (2, 1), in the illustrated case
its node (2, 1). The global optimum in this case would be node (3, 2). After stepping
to node (2, 1), the greedy navigation algorithm draws a similar decision based on
distance computations in the 2D grid.

able to handle functions other than greedy navigability (see an argument for hier-
archical systems in Chapter 6). More specifically, we will set up and analyze an
incentive-oriented model, capable of handling the function of navigability in its cost
functions.

26

dc_1742_20

Powered by TCPDF (www.tcpdf.org)



Chapter 4

From function to structure in
navigable networks

The finding that real networks are navigable with greedy algorithms does not neces-
sarily mean that they evolve to become navigable. Navigability can be a by-product
of some other evolutionary incentives because different networks have many other
different functions as well. In other words, it remains unclear if ideal networks
whose only purpose is to be maximally navigable at minimal costs have anything
in common with real networks. Even if they do, then how close are real networks
to these ideal maximally navigable configurations? If they are close but not exactly
there, or if their navigability suddenly deteriorates, possibly signifying the onset of
a disease [47], then what can we do to cure the network and boost its navigability?

Here we show that the ideal maximally navigable networks do share some ba-
sic structural properties with the Internet, E.coli metabolic network, English word
network, US airport network, the Hungarian road network, and a structural net-
work of the human brain. Yet these ideal networks are not generative models of the
real networks, where by generative models we mean function-agnostic models that
simply try to reproduce some structural properties of real networks. Instead, these
ideal networks coming out of function-based incentive-oriented models identify min-
imal sets of edges that are most critical for navigation in the real network. In other
words, they are navigation skeletons or subgraphs of real networks. We find that the
considered real networks contain high percentages, exceeding 90% in certain cases,
of edges from their navigation skeletons, while the probability of such containment
in randomized null models is exponentially small. The knowledge of these skeletons
allows us to quantify precisely what connections the considered real networks lack
to be maximally navigable, and which of their connections are not exactly necessary
for that. To define and construct these maximally navigable network skeletons, we
employ game theory.

Game theory is a standard tool to study the behavior of a population with given
incentives. The population members are called players, and their possible actions are
strategies, while cost functions or payoffs express players’ incentives. The purpose of
a player is to minimize her costs (or maximize her payoffs) by adjusting her strategy.
A Nash equilibrium is a game state such that no player can further reduce her costs
by altering her strategy unilaterally. Such equilibrium states are local optima where
the game can eventually settle after some transient dynamics. The global optimum
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Figure 4.1: Illustration of game theory. Alice and Bob are happy only if they go
out to the movies together, but the level of their happiness depends on what movie
they watch. The basic notions of a game: Players: Alice and Bob; Strategies:
Go to see an action or a romantic movie; Payoffs: The level of happiness 0, 1, 2, 3;
Nash equilibria: situations in which the players cannot be happier by unilaterally
modifying their strategies. In the figure, states (a) and (d) are equilibria when Alice
and Bob go together to watch a movie. State (a) is the global optimum since the
total happiness 3 + 2 = 5 is maximized.

is an optimum where the total cost of all players is minimized. Since the inception
of game theory, a broad palette of games has been introduced, modeling diverse
properties of real-life situations [135], Figure 4.1.

Here we use game theory to find the structure of networks that are Nash equi-
libria of a network construction game [135, 59, 7, 46, 4, 52, 117] with navigability
incentives. The concept of Nash equilibrium captures the idea of self-organization,
i.e., of the emergence of structures from the local interaction of rational but selfish
players, in contrast with global optimization used in centralized planning of glob-
ally optimal navigable structures [104]. In our Network Navigation Game (NNG),
players are network nodes whose optimal strategy is to set up a minimal number
of edges to other nodes ensuring maximum navigability. That is, the cost function
reflects trade-offs between the number of created edges and navigability. If each
node connects to every other node, then this construction is maximally navigable
but maximally expensive, too. If no edges are set up, then the cost is zero, but so
is navigability. There is a sweet spot of the least expensive but still 100%-navigable
network, defined as the network in which all pairs of nodes can successfully com-
municate using geometric routing [138]. The goal of our game is to find this sweet
spot.

The network construction game that we employ is very general and applies to any
set of points in any geometry. The latent geometry of numerous real networks is not
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Euclidean but hyperbolic, as shown in [141]. Specifically, the model in [141] extends
the preferential attachment mechanism of network growth by observing that in many
real networks, the probability of establishing a connection depends not only on the
popularity of nodes, i.e., their degrees but also on the similarity between nodes. The
similarity is modeled in [141] as a distance between nodes on the simplest compact
space, the circle. The connection probability thus depends both on node degrees
(popularity) and on the distance between nodes on the circle (similarity). The node
degrees are then mapped to radial coordinates of nodes, thus moving nodes from
the circle to its interior, the disk. One can then show that the resulting connection
probability depends only on the hyperbolic (versus Euclidean) distance between
nodes on the disk, and that the resulting graphs are random geometric graphs [144]
growing over the hyperbolic plane. As shown in earlier work [101], these graphs
are maximally random, i.e., maximum-entropy graphs that have power-law degree
distributions and strong clustering. In other words, power-law degree distributions,
coupled with strong clustering, are manifestations of latent hyperbolic geometry
in networks. If this geometry is not hyperbolic but Euclidean, then the resulting
random geometric graphs still have strong clustering, but their degree distributions
are Poisson distributions that do not have any fat tails [144]. The model in [141] has
been validated against long histories of growth of several real networks, predicting
their growth dynamics with remarkable precision. It is then not surprising that, as
a consequence, the same model also reproduces a long list of structural properties
of these networks [141].

Random geometric graphs [144] are defined as sets of points sprinkled uniformly
at random over a (chunk of) geometric space. Every pair of points is then connected
if the distance between the points in the space is below a certain threshold. Given
that the latent space of real scale-free networks is hyperbolic, our starting point is the
first part (uniform sprinkling) of the random geometric graph definition. That is, we
first randomly sprinkle a set of points over a hyperbolic disk. We then do not proceed
to the second part of the random geometric graph definition. Instead, given only the
coordinates of sprinkled nodes, we identify the sets of edges, ideal for navigation,
that corresponds to the Nash equilibria of our NNGs. We then analyze the structural
properties of the resulting ideal-navigation networks and find that, surprisingly, they
also have power-law degree distributions and strong clustering. This result invites us
to investigate if these navigation-critical edges exist in real networks. To check that,
we have to know the hyperbolic coordinates of nodes in these real networks in the
first place. We infer these coordinates in the considered collection of real networks
using the deterministic HyperMap algorithm (Section 5.6). Given only these inferred
coordinates, we then construct the ideal-navigation Nash equilibria defined by these
coordinates, and compare, edge by edge, the resulting Nash equilibrium networks
against the real networks. We find that the real networks contain large percentages
of edges from their Nash equilibria. This methodology thus allows us to identify
the navigation skeleton of a given real network. We finally check directly that edges
in these skeletons are indeed most critical for navigation by showing that their
alterations affect drastically network navigability.
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4.1 Definition of the function-structure approach for
navigable networks

We start with a set of nodes u = 1, 2, . . . , N , i.e., N nodes, scattered randomly
over a hyperbolic disk of radius R. The densities of nodes’ polar coordinates (r, φ),
r ∈ [0, R], φ ∈ [0, 2π], are [101]

ρ(r) =
α sinh(αr)

cosh(αR)− 1
, ρ(φ) =

1

2π
, (4.1)

where α > 1/2 is a parameter controlling the heterogeneity of the layout. If
α = 1, the nodes are distributed uniformly over the hyperbolic disk because the
area element at coordinates (r, φ) is dA = sinh(r) dr dφ. The desired node scat-
tering is achieved in simulations by placing nodes u at polar coordinates ru =
(1/α) acosh {1 + [cosh(αR)− 1]U} and φu = 2πU where U for each u is a ran-
dom number drawn from the uniform distribution on [0, 1]. The hyperbolic distance
between any two nodes u and v is

d(u, v) = acosh [cosh ru cosh rv − sinh ru sinh rv cos(φu − φv)] . (4.2)

In greedy geometric routing, node u routes information to some remote node v by
forwarding the information to its connected neighbour u′ closest to v in the plane
according to the distance above. If u has no neighbour u′ closer to v than uself, then
navigation fails, and we say that u cannot navigate to v. The percentage of pairs of
nodes u, v such that u can successfully navigate to v is called the success ratio. If
this percentage is 100%, we say that the network is maximally (100%) navigable.

The strategy space of node u is all possible combinations of edges that u can
establish to other nodes. One extremal strategy is to establish no edges. The other
extreme is to connect to everyone. The total number of possibilities for u is 2N−1.
Any combination of strategies that all nodes select is a network on N nodes.

The objective of each node u is to set up a minimal number of edges to other
nodes such that u can still navigate to any other node in the network. Formally, the
cost function of node u that it minimises is cu = ku + nu, where ku is the number
of edges that u establishes, and nu is either zero if u can navigate to everyone, or
infinity otherwise. A more formal description of the strategies and payoffs can be
found in Figure 4.2.

Given any node u, we call node v’s coverage area the set of all points closer
to v than to u (see Figure 4.3). Trivially v covers itself, since it is closer to itself
(d(v, v) = 0) than to u. Therefore if u connects to all other nodes, then u trivially
covers them all. The optimal strategy for u minimizing u’s costs is thus to connect
to a minimal number of nodes such that the union of their coverage areas contains all
the other nodes. Indeed, if u does that, and if all other nodes do the same, then the
resulting network is 100%-navigable at the minimal number of edges. The network
is fully navigable because if u wants to navigate to any remote node w, then by
construction, there exists u’s neighbour v that contains w in its coverage area, and
u can use v as the next hop towards w. If v is not directly connected to w, then there
exists v’s neighbour v′ that contains w in its coverage area, so that v can route to v′,
and so on until the information reaches destination w lying within the intersection
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Strategies. The strategy space for a node u ∈ P is to create some set of
arcs to other nodes in the network: Su = 2P\{u}. Let s be a strategy vector:
s = (s0, s1 . . . sN−1) ∈ (S0, S1 . . . SN−1) and G(s) be the graph defined by the
strategy vector s as G(s) =

⋃N−1
i=0 (i× si).

Payoff. The objective of the nodes is to minimise their cost which is calculated
as:

cu =
∑

∀u6=v

dG(s)(u, v) + |su|, u, v ∈ P (4.3)

where
dG(s)(u, v) =

{
0 ∃ u→ v greedy path in G(s)
∞ otherwise.

Figure 4.2: Formal definition of the Network Navigation Game (NNG)

of all the coverage areas along the path (Figure 4.3). The problem of finding the
optimal set of edges for u thus reduces to the minimum set cover problem [70]. More
formally The Nash equilibria of the Network Navigation Game can be characterized
for each node independently as follows: take a node u, and for all v ∈ V \ u let
Suv = {w|d(v, w) < d(u,w)}. Trivially Suv ⊂ V and

⋃
v∈V \u Suv = V . The optimal

strategy sopt
u of u is the minimal set cover of V with the sets Suv , independently from

the strategies of the other nodes. This means that s = (sopt
1 , sopt

2 . . . sopt
N−1) is both a

NE and a social optimum.
The Nash equilibrium is not necessarily unique as there can exist different so-

lutions of the above set cover problem. In our work, we concentrate on a specific
equilibrium, which, besides being a solution, it also minimizes the sum of edge the
edge lengths all over the network. This is fully in line with the edge-locality prin-
ciple of complex networks [169] [93] [26] which many times accounted for the high
clustering coefficient. More formally, from the strategy vectors constituting a Nash
equilibria si and the corresponding graphs G(si) =

⋃N−1
i=0 (i × si) = (V,Ei) we seek

for the one minimising
∑

j∈Ei d(Ei(j)).
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Figure 4.3: Illustration of the network navigation game (NNG). Panel (a) shows
the optimal set of connections (optimal strategy) of node A in a small simulated
network. All nodes are distributed uniformly at random over the hyperbolic disk,
and A’s optimal strategy is to connect to the smallest number of nodes ensuring
maximum (100%) navigability. These nodes are B, C, and D because it is the
smallest set of nodes whose coverage areas, shown by the colored shapes, contain
all other nodes in the network. B’s coverage area for A (red) is defined as a set of
points hyperbolically closer to B than to A, therefore if A is to navigate to any point
in this area, A can select B as the next hop, and the message will eventually reach
its destination, as the second panel illustrates. Link AC (and AD) in panel (a) is
also a frame link, because A is the closest node to C, as illustrated by the hyperbolic
disk of radius |AC| centred at C (the line-filled shape), which does not contain any
nodes other than C and A. Therefore to navigate to C, A has no choice other than
to connect directly to C. Panel (b) shows the sequence of shrinking coverage areas
along the navigation path (blue arrows) from D to E. The red curve is the geodesic
between D and E in the hyperbolic plane. The coverage areas are shown by the
shapes filled with lines of increasing density. The largest is A’s coverage for D. The
next one is B’s coverage for A. The smallest is E’s coverage for B.
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4.2 An Euclidean exampleSupplementary Figures
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Supplementary Figure 1: Network Navigation Game in the Euclidean plane.
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Figure 4.4: Network Navigation Game in the Euclidean plane.

As an example, let us compute the Nash equilibrium topology for four points
in the Euclidean plane A,B,C,D (see Figure 4.4). Any node u out of these four
needs to have a greedy next hop towards any other nodes (to avoid infinite cost)
while having its number of edges minimized. Note that having a greedy next hop
is sufficient since all the other nodes will have greedy next hops towards any other
nodes for ensuring cu ≤ ∞, which implies greedy paths between arbitrary pairs of
nodes.

Let us compute the sets Suv = {w|d(v, w) < d(u,w)} for the nodes, where d(x, y)
is the Euclidean distance and the minimal set covers for each node to get the Nash
equilibrium.

• SBA = {w|d(A,w) < d(B,w)} = {A,D}, which means that A is a good greedy
next hop towards A and D for B, similarly SBC = {C,D}, SBD = {D} therefore
the minimal cover for B is {A,C} so B creates two edges to A and C

• SAB = {B,C}, SAC = {C,B,D}, SAD = {D} therefore the minimal cover for A
is {C} so A creates one edge to C

• SCA = {A}, SCB = {B,A}, SCD = {D} therefore the minimal cover for C is
{B,D} so C creates two edges th B and D

• SDA = {A,B,C}, SDB = {B,C,A}, SDC = {C,B,A} therefore the minimal cover
for D is for example {C} (A and B would be also good) so D creates one edge
to C

Thus we can construct the graph from these minimal set coverings see Figure 4.4.
This is a Nash equilibrium and a social optimum as there are no lower cost equilibria
or state for this game.

4.3 Reformulation of the problem using statistical
mechanics

The network navigation game for navigable networks above grasps many aspects of
the function → structure approach to networks. The navigational incentive of the
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nodes manifests the function of the network while the game-theoretical formulation
incorporates self-organization. A major problem, however, with this formulation is
raised by computability. The set-cover problem is NP-hard [90] and the network
construction game relies on solving N instances of that. Thus, the solution of the
construction game in its current form prohibits theoretical analysis and tractable
numerically only up to a few thousand nodes with contemporary software solvers. To
grasp high-level statistics of the equilibrium networks, we recast the problem using
statistical mechanics. Although we loose capturing the exact solution to a given
constellation, what we gain is a high-level analysis valid even in the limit limN→inf .
We prove the validity of the analysis via extensive computer simulations.

4.3.1 A brief overview of the statistical mechanics of net-
works

Statistical mechanics is proven to be a useful theoretical toolset for the analysis
of complex networks [43]. Models of networks based on statistical mechanics are
ensemble models, meaning that a model is defined to be not a single network, but a
probability distribution over many possible networks. Using this approach, the goal
of our analysis will be to choose a probability distribution such that networks that
are a better fit to observed characteristics (e.g., the consequences of navigability) are
given higher probability in the model. Consider the set of all simple graphs without
self-loops and multiple edges on N vertices G of graphs.

Suppose we have a collection of graph observables xi, i = 1...r, that we have
measured in empirical observation of some real-world network or networks. We also
assume that we have an estimate 〈xi〉 of the expectation value of each observable.
Let G ∈ G be a graph in our set of graphs and let P (G) be the probability of that
graph within our ensemble. We want to choose P (G) so that the expectation value
of each of our graph observables xi within that distribution is equal to its observed
value, but in any other aspect, it ensures maximal randomness. This condition is
fulfilled if maximizing the Gibbs entropy,

S = −
∑

G∈G

P (G) lnP (G), (4.4)

subject to the constraints ∑

G

P (G)xi(G) = 〈xi〉, (4.5)

and the normalization condition
∑

G

P (G) = 1. (4.6)

Here xi(G) stands for the value of xi in graph G. By assigning Lagrange multipli-
ers α, θi, we then find that the maximum entropy is achieved for the distribution
satisfying

∂

∂P (G)

[
S + α

(
1−

∑

G

P (G)

)
+
∑

i

θi

(
〈xi〉 −

∑

G

P (G)xi(G)

)]
= 0 (4.7)
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for all graphs G. This gives

lnP (G) + 1 + α +
∑

i

θixi(G) = 0, (4.8)

or equivalently

P (G) =
e−H(G)

Z
, (4.9)

where H(G) is the graph Hamiltonian

H(G) =
∑

i

θixi(G), (4.10)

and Z is the partition function

Z = eα+1 =
∑

G

e−H(G). (4.11)

It is useful to define the free energy

F = − lnZ, (4.12)

derivatives of which specify a system of equations between the Lagrange multipliers
and the observables

∂F

∂θi
= 〈xi〉. (4.13)

Equations 4.9 4.10 and 4.9 define the so called exponential random graph model.
The expected value of any graph property x within the model is simply

〈x〉 =
∑

G

P (G)x(G). (4.14)

For an example, consider one of the simplest of exponential random graphs hav-
ing N nodes. Our observation is only the expected number of edges 〈m〉 that our
network should have. In that case the Hamiltonian takes the simple form

H(G) = θm(G). (4.15)

We define the adjacency matrix σ to be the symmetric N ×N matrix with elements

σij =

{
1, if i is connected to j
0, otherwise.

(4.16)

Then the number of edges is m =
∑

i<j σij, and the partition function is

Z =
∑

G

e−H(G) =
∑

σij

exp

(
−θ
∑

i<j

σij

)
=
∏

i<j

1∑

σij=0

e−θσij =
∏

i<j

(1+e−θ) =
[
1 + e−θ

](N2 )
.

(4.17)
The free energy in this case is

F = −
(
N

2

)
ln(1 + e−θ). (4.18)
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Then, for instance, the expected number of edges in the model is simply

〈m〉 =
1

Z

∑

G

me−H = − 1

Z

∂Z

∂θ
=
∂F

∂θ
=

(
N

2

)
1

eθ + 1
. (4.19)

We can also express the parameter θ in terms of

p =
1

eθ + 1
, (4.20)

so that 〈m〉 =
(
N
2

)
p. The probability P (G) of a graph in this ensemble can be

written as

P (G) =
e−H

Z
=

e−θm

[1 + e−θ](
n
2)

= pm(1− p)(N2 )−m. (4.21)

In other words, P (G) is the probability for a graph in which each of the
(
n
2

)
possible

edges appears with an independent probability p. This model is basically identical
to the Erdős-Rényi model defined in section 2.2.1.

Instead of specifying a Hamiltonian for a global quantity like the expected num-
ber of edges, we can define one coupling to each edge. In this case, we suppose
that the observables are the edges, i.e., the elements of the adjacency matrix σij
and the model constraints are defined on 〈aij〉. This defines a maximally random
ensemble of graphs with fixed expected values of the adjacency matrix elements.
The Hamiltonian is given by

H =
∑

i<j

Θijσij. (4.22)

The partition function is

Z =
∑

G

e−H(G) =
∑

σij

exp

(
−
∑

i<j

Θijσij

)
=
∏

i<j

1∑

σij=0

e−Θijσij =
∏

i<j

(
1 + e−Θij

)
.

(4.23)
Thus the free enery in this case is given by

F = −
∑

i<j

ln
(
1 + e−Θij

)
, (4.24)

The probability of an edge between nodes i, j is simply computed by the partial
derivatives of the free energy

pij = 〈aij〉 =
∂F

∂Θij

=
1

eΘij + 1
. (4.25)

The probability P (G) of a graph in this ensemble can be written as

P (G) =
e−H(G)

Z
=
∏

i<j

p
aij
ij (1− pij)1−aij . (4.26)

36

dc_1742_20

Powered by TCPDF (www.tcpdf.org)



4.3.2 Statistical mechanics of the function → structure ap-
proach to networks

We will use this framework of graph ensembles based on statistical mechanics to
determine the average degree, degree distribution and the clustering coefficient of
the networks coming out of our network navigation game. Apparently, we cannot
compute the exact edges in a given constellation, however, we will show, that con-
nection probabilities pij between the nodes can be captured analytically. We will
use these connection probabilities as observables to define our maximally random
ensemble of graphs with Hamiltonian

H =
∑

i<j

Θijσij, (4.27)

with
Θij = ln

(
1− pij
pij

)
. (4.28)

Our connection probabilities will, of course, depend on the position of the nodes. The
positions will be treated as hidden variables πi = (ri, φi) of each node, sampled from
the distribution %(π). Then each pair of nodes will be connected with probability
pij = p(πi, πj). Thus the probability P (G) of a graph in this ensemble can be written
as

P (G) =

∫
p(G|π)%(πdπ) =

∫ ∏

i<j

p
aij
ij (1− pij)1−aij

N∏

i=1

%(πi)dπi, (4.29)

where π = (π1, π2, . . . πN). This equilibrium graph ensemble is thus fully defined
by two functions: the hidden variable probability density function %(π) and the
connection probability function p(πi, πj).

Most commonly, the edge probabilities of graph ensembles originate from struc-
tural peculiarities of networks, i.e., to enable analytical investigation of an ensemble
matching an observable structural pattern. In the case of the function → structure
approach, we originate the connection probabilities from the function of the graph,
which is providing maximum navigability to the constituting nodes. The structural
peculiarities of our networks will arise from fulfilling this navigation functionality at
the lowest possible cost.
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Chapter 5

Function-structure analysis of
navigable networks

The Nash equilibrium of the network navigation game capturing the navigation
function (Figure 4.2) is not necessarily unique. There can exist different networks
minimizing the cost defined above. In what follows, among all the NNG equilibria,
we always select the unique one that minimizes the sum of distances span by its
edges, thus making the NNG Nash equilibrium network construction deterministic.
However, there also exist certain edges, which we call frame edges, necessarily present
in any Nash equilibrium. Edge u → v is a frame edge if u is the closest node to v.
In this case u cannot navigate to v through any other nodes since there is no one
closer to v than uself, so that u must connect directly to v to reach it, Figure 4.3.
If at least one of such edges is absent, the network is not fully navigable. More
exactly there is a well defined “frame topology” Gframe with scale-free out-degree
distribution which is present in every Nash equilibrium, or social optimum of the
NNG (Gframe ⊂ G(s∗)) and other possible games having navigation as an incentive
(ps = 1). In other words the frame topology serves as a skeleton of any equilibrium
topology emerging from navigational games. The frame topology is defined as:

Definition 1 (Frame topology). Let Gframe =
⋃N−1
u=0 (u × gu), where gu = {v|v /∈

su ⇒ cu =∞}.

Practically, the arc (u, v) is contained in Gframe if and only if the d(u, v)-disk
centred at v does not contain any node other than u (see Figure 5.1). This means
that u cannot reach v by greedy routing through any other nodes then v, and so it
must create an arc towards v to avoid of having infinite cost. Note that the in-degree
of each node in Gframe will be exactly one.

In any Nash equilibrium of this game, each node computes its optimal strategy
independently of others. In game theory, such equilibria are called dominant strategy
equilibria. Moreover, the equilibrium is also a social optimum since one cannot create
a fully navigable network using fewer edges.

5.1 General formula for the connection probability
Here we cast the problem in statistical terms. We estimate the percentage of pairs of
nodes located at a given distance that is connected in the NNG equilibrium. We call
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O v

u

Tu,v

Figure 5.1: An edge in the Gframe

this percentage the effective connection probability. First, the connection probability
of the Frame Topology is derived. This connection probability is a lower bound
for the connection probability in the NNG equilibrium network because the Frame
Topology is contained in every NNG equilibrium network. A direct upper bound
of the connection probability is also studied. Based on a statistically equivalent
lower bound and the direct upper bound, the general formula for the connection
probability is induced, in which the average degree of the network is implicitly
encoded. This makes it possible to approximate the connection probability (and
all other quantities defined by it) using the observed average degree in the NNG
simulation.

5.1.1 Connection probability in the Frame Topology

An arc (u, v) in the Frame Topology is established if and only if there are no other
nodes within the intersection of the v−centered disk with radius d(u, v), and the
original disk with radius R. Let Tuv (see Figure 5.1) denote the area of the inter-
section of the R-disk and the d(u, v)-disk at origin v, and δ = N/TR be the density
of the points (TR denotes the area of the R-disk). The probability of this event is

(
TR − Tuv

TR

)N−2

≈ e−δTuv (5.1)

An approximation for Tuv is as follows: Tuv is apparently equals to 2π(cosh duv−1)(≈
πe

duv
2 for not so small duv) when the duv−disk is completely inside the R−disk. On

contrary, if R − rv < d(u, v) (there is real intersection) then much less evidently
Tuv is approximately Tuv ≈ 4e

duv
2 e

R−rv
2 . In Figure 5.2 two characteristic cases are

depicted when there is real intersection of the duv-disk and the R-disk. Let the polar
coordinates of node v be (rv, φv), and of node u be (ru, φu). Let φ = |φu − φv|. The
area Tuv is the function of ru, rv, φ, and R, and can be calculated as the sum of the
two circle sectors with angle 2α, radius duv and angle 2β radius R, and minus the
area of the two triangles with angles α, β, γ. That is

Tuv = 2β (cosh(R)− 1) + 2α (cosh(duv)− 1)− 2 (π − α− β − γ) . (5.2)

where the angles and duv are given by the hyperbolic law of cosines, however, here
the following simpler approximations are used (which are accurate enough when ru
and duv appear in exponents):

duv ≈ R + rv + 2 ln
β

2
⇒ β ≈ 2e

duv
2
−R+rv

2 (5.3)
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Figure 5.2: Illustration for Tuv

R ≈ duv + rv + 2 ln
α

2
⇒ α ≈ 2e−

duv
2

+R−rv
2 . (5.4)

Applying (5.2) with neglecting the triangle areas, and using cosh(R) − 1 ≈ eR/2,
cosh(duv)− 1 ≈ eduv

2
we get Tuv ≈ 4e

duv
2 e

R−rv
2 .

In summary:

Tuv ≈
{

πeduv , if 0 < duv < R− rv
4e

duv
2 e

R−rv
2 , if duv > R− rv .

(5.5)

This Tuv approximations are illustrated in Figure 5.3 for R = 12, rv = 6 and rv = 8.

2 4 6 8 10 12

10

100

1000

10
4

duv

Tuv

rv=6, H3L

rv=8, H3L

rv=6, H6L

rv=8, H6L

Figure 5.3: Tuv ≈ 4e
duv
2 e

R−rv
2 when there are real intersections (that is when

d(u, v) > 6 and 4, respectively).

Solid lines are the exact Tuv calculations based on (5.2) and exact computations of
angles. Note that there is a sharp change on logarithmic scale between the duv-slope
and duv/2-slope around R− rv. The dashed lines are the Tuv approximations when
duv > R− rv.
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The calculation of the expected degree of node u requires e−δTuv in the following
double integration:

δ

∫ R

0

∫ 2π

0

e−δTuvdφ sinh(rv)drv . (5.6)

Because the joint expansion of the double integral with respect to rv and φ reveals
that the dominant terms will be those in which duv > R− rv

δ

∫ R

0

∫ 2π

0

e−δTuvdφ sinh(rv)drv ≈ δ

∫ R

0

∫ 2π

0

e−δ4e
duv
2 e

R−rv
2 dφ sinh(rv)drv . (5.7)

Using (5.3) it can also be shown that

δ

∫ R

0

∫ 2π

0

e−δ4e
duv
2 e

R−rv
2 dφ sinh(rv)drv ≈ δ

∫ R

0

∫ 2π

0

e−δ8e
duv
2 dφ sinh(rv)drv . (5.8)

Therefore,

p̌(duv) = e−δ8e
duv
2 (5.9)

can be considered as a statistically equivalent connection probability of the Frame
Topology and as a latent (a statistically equivalent) lower bound of the connection
probability of the equilibrium network of the NNG.

5.1.2 A direct upper bound for the connection probability

An upper bound for connection probability p(duv) can be derived as follows. Let
u and v be two points in the R-disk and let Cu,v = {w|dwv < dwu} denote the
area for which v is a good greedy next hop for u. This area is on the side of v
bounded by the perpendicular bisector (Buv) of (u, v), see Figure 5.4. (The figure
is in the Poincare model). Let A = {x|Cu,x ⊃ Cu,v}. If there is a node w ∈ A then

u

v

Cuv

A

O

R1

R2

R

Buv

Figure 5.4: Calculation of p(duv)

u does not connect to v since it has a node w which covers the whole area that
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v can and some extra portion of the disk. Putting it differently w can be in the
optimal set cover (for u) instead of v. It is easy to see that A is the intersection
of two disks with radii R1 and R2 (the smaller circles on Figure 5.4). We can
approximate the area of this intersection by the union of two sectors having angles
φ1 ≈ 2e

duv
2
−R1 and φ2 ≈ 2e

duv
2
−R2 (by using an approximation on the hyperbolic

distance duv ≈ 2Ri + 2 ln φi
2

) of the R1 and the R2 disks respectively. Using this the
area of A is given by:

TA ≈ φ1(cosh(R1)− 1) + φ2(cosh(R2)− 1) ≈ 2e
duv
2
−R1

eR1

2
+ 2e

duv
2
−R2

eR2

2
, (5.10)

which further simplifies to:
TA ≈ 2e

duv
2 . (5.11)

The probability that there is a node in A is:

p(∃w ∈ A) = 1−
(
Tdisk − TA
Tdisk

)N−2

≈ 1− e−δTA , (5.12)

where N denotes the number of nodes and Tdisk is the area of the R-disk. Trivially
p(d) ≤ 1− p(∃w ∈ A) so:

p(duv) ≤ e−δTA . (5.13)

By substituting TA we get the following upper bound for the connection probability:

p(duv) ≤ e−δTA ≈ e−2δe
duv
2 =: p̂(duv) (5.14)

5.1.3 A general formula for the connection probability

In the Frame Topology (by definition), every node has exactly one incoming link;
hence, the total number of links is N . From this, it immediately follows that the
average out-degree of Frame Topology is 1. Regarding the direct upper bound of
the connection probability, consider a network in which links are established by this
upper bound probability. Also, the analysis in Section 5.2.1 implies that the average
degree of such a network is 4. Based on the upper (5.14) and lower (5.9) bounds
and the corresponding average degrees 1 and 4, a general formula of the connection
probability can be induced as

p(duv, δ, k̄) = Exp

(
−8

k̄
δe

duv
2

)
. (5.15)

It will be shown in the next sections that a network formed by this connection
probability has an average degree k̄.

This formula is important because if an empirical average degree (which happens
to be 2.27) can be observed in experiments (simulations) resulting in equilibrium
networks of NNG, then not only upper and lower bounds on the expected degree of
a node u and degree distribution, but analytical approximations of them can also
be given with this empirical mean. Figure 5.5 illustrates the relation of the upper
and lower bounds, and the approximation of the connection probability to that of
simulated NNG.

42

dc_1742_20

Powered by TCPDF (www.tcpdf.org)



u

v

Cuv

A

O

R1

R2

R

Buv

Supplementary Figure 5: Calculation of p(duv)
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Supplementary Figure 6: Connection probability as a function of distance in NNG simulations. The figure
shows the analytic upper and lower bounds, as well as the analytic approximation with the empirical mean.

3

Figure 5.5: Connection probability as a function of distance in NNG simulations.
The figure shows the analytic upper and lower bounds, as well as the analytic ap-
proximation with the empirical mean.

5.2 Structural properties of Nash-equilibrium net-
works.

Thus, if the node density is uniform (α = 1), then the probability p(d) that two
nodes u and v located at distance d ≡ d(u, v) are connected in a Nash equilibrium
network lies between exp(−8 δ ed/2) and exp(−2 δ ed/2),

e−8 δ ed/2 ≤ p(d) ≤ e−2 δ ed/2 , (5.16)

where δ is the average density of nodes on the disk, that is δ = N/A, where A is the
disk area.

5.2.1 Expected degree

The expected degree of node u at polar coordinates (ru, 0) — we can assume that
u’s angular coordinate is φu = 0 without loss of generality — is then k̄(ru) =
N
∫
p[d(u, v)] ρ(rv)ρ(φv) drv dφv, where ρ(rv) and ρ(φv) are the node densities from

Eq. (4.1). The expected (out-) degree of a node u with radial coordinate ru in a
network generated with the effective connection probability formula is given by the
following double integral

kout(ru, k̄, R) = δ

∫ R

0

∫ 2π

0

p(duv, δ, k̄)dφ sinh(rv)drv . (5.17)

The expected node-degree of the equilibrium network of NNG is lower bounded
by kout(ru, 1, R) (which coincides the expected node-degree of the Frame Topology)
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whilst kout(ru, 4, R) is the upper bound. An analytical approximation with the
empirical mean k̄ = 2.27 can be given by kout(ru, 2.27, R).

In what follows a formula is derived for kout(ru, k̄, R) based on the integral above.
Considering the first integral by φ and applying the approximation (consider the
hyperbolic law of cosine for duv, ru, rv, cosh duv = cosh ru cosh rv−sinh ru sinh rv cosφ
)

e
duv
2 ≈ e

ru+rv
2

√
1− cosφ

2
(5.18)

we get that the integral can be approximated as

δ

∫ 2π

0

Exp

(
−δ 8

k̄
e
duv
2

)
dφ ≈ 2πδ(I(0, x)− S(0, x)) ≈ 1

2
k̄e−

ru+rv
2 (5.19)

where x = 8
k̄
δe

ru+rv
2 and the last wave due to that I(0, x)− S(0, x) (difference of the

BesselI and the modified Struve functions) quickly tends to 2
π
x−1 as x increases [1].

Now the second integration by rv gives the expected degree approximation, that is

kout(ru, k̄, R) ≈
∫ R

0

1

2
k̄e−

ru+rv
2 sinh(rv)drv ≈

1

2
k̄e

R
2 e−

ru
2 . (5.20)

One can check that the average degree is indeed k̄ with this expected node-degree:
∫ R

ru=0

1

2
k̄e

R
2 e−

ru
2

sinh ru
coshR− 1

dru ≈
1

6
k̄ sech2

(
R

4

)(
sinh

(
R

2

)
+ 2 cosh

(
R

2

)
+ 1

)
≈ k̄ .

(5.21)
We have numerically studied the accuracy of the approximations above. We

have found that the exponential decay of the expected degree of nodes (kout(ru)) is
a good approximation of the numerically evaluated expected degree function for a
wide range of node density δ ∈ [10−8, 10−2]. For example, consider a Frame Topol-
ogy (k̄ = 1) with R = 16.5, n = 10000. In this case δ = 2.17 · 10−4. Figure 5.6
shows how the expected degree decay is matching the exponential decay. We ob-
serve that while at smaller ru there are some approximation errors, for larger values
of ru the match is very good. To quantify further, we note that 99.9% of points
have ru > 10 (that is in case of uniformly distributed points on the R(=16.5)-disk,
expectedly only about 10 points of the 10000 are inside the disk with radius 10).
If we consider the relative errors of the matching one can reveal that for ru > 10
it is smaller than 0.15%, that is for 99.9% of points the expected degree approxi-
mation has smaller than 0.15% relative error. To increase the number of points to
n = 30000 and n = 50000 (δ = 6.54 · 10−4, δ = 1.08 · 10−3), the relative error is
increasing, especially for smaller values of ru, but still for 99.9% of the points the
relative error smaller than 0.25% and 1%, respectively. If we dramatically decrease
the node-density, for example n = 500, the relative errors also increase (compared
to the n = 10000 case), however, it still remains under 0.2% for 99.9% of the points.

5.2.2 Degree distribution

So we find that the expected number k̄(r) of connections of a node at radial coordi-
nate r is bounded by

1

2
e(R−r)/2 ≤ k̄(r) ≤ 2 e(R−r)/2 , (5.22)
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Figure 5.6: Exponential decay (C(R)e−
ru
2 , larger blue dots) versus the numerically

evaluated exact decay (smaller red dots) of u’s expected degree as a function of ru
(R = 16.5, n = 10000).

where r ≡ ru. It then follows that the average degree of nodes in the network, given
by k̄ =

∫ R
0
k̄(r)ρ(r) dr, lies between 1 and 4,

1 ≤ k̄ ≤ 4. (5.23)

We also see from Eq. (5.22) that the degree of nodes decays exponentially as the
function of their radial position, k̄(r) ∼ e−r/2, while their density exponentially
increases, ρ(r) ∼ er, Eq. (4.1). The combination of these two exponentials yields
the power-law degree distribution in the network [28, 130]. Let us recall that in case
of uniform distribution of points on an R−disk of the hyperbolic plane, the density
of the radial coordinates of the points is

ρ(r) =
sinh r

coshR− 1
(5.24)

Note that the expected degree of node u is exponential in the radial coordinate ru
as in [139]. Because of this and the fact that equilibrium network of NNG is also
sparse [24] the degree distribution can be calculated in the same way as in [139] :

P (k) =

∫ R

0

g(k, kout(ru))ρ(ru)dru =
k̄

2

Γ(k − 2, k̄
2
)

k!
(5.25)

where g(k, kout(ru)) is the conditional distribution of the degree of a node with radial
coordinate u, and it is Poissonian with mean kout(ru) in case of sparse networks. It
can also be shown that for larger k

P (k) ≈ k̄2

2k3
. (5.26)
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The direct derivation of the complement cumulant degree distribution from P (k)
seems to be intangible, however, from its approximation it can be computed as

F̄ (k, k̄) ≈ 1−
(∫

k̄2

2k3
dk + C

)
(5.27)

where the constant C is 1, and k ≥ 1
2
k̄ (in order to have distribution function), that

is

F̄ (k, k̄) ≈ k̄2

4
k−2 , k ≥ 1

2
k̄ . (5.28)

It is interesting to show that this approximation can also be obtained as the
exact ccdf of the conditional expected node degrees kout(ru). This approximation
can be computed as

F̄ (k, k̄) ≈
∫ ru(k)

r=0

ρ(r)dr ≈ eru(k)−R (5.29)

where ru(k) is the inverse function of kout(ru, k̄, R) w.r.t. ru, i.e.

ru(k) = R− 2 ln
(
2k/k̄

)
. (5.30)

Applying this one can obtain the same before as

F̄ (k, k̄) ≈ k̄2

4
k−2 , k ≥ 1

2
k̄ . (5.31)

Note that this yields the average degree equal to k̄ as expected:
∫ ∞

k= 1
2
k̄

(
k
∂(1− F̄ (k, k̄))

∂k

)
= k̄. (5.32)

From this, an analytical approximation of the ccdf of the NNG equilibrium net-
work is F̄ (k, 2.27), its lower and upper bounds are F̄ (k, 1), F̄ (k, 4), respectively.
In Figure 5.7 these analytical formulae are also drawn with a completely empirical
distribution obtained from NNG simulation.

We also note that the δ-independence of kout(ru) and F̄ (k) is approximate, but
it holds with a high accuracy for δ ∈ [10−8, 10−2], including the frame topology.

So the degree distribution is:

P (k) =
1

k!

∫ R

0

e−k̄(r)[k̄(r)]kρ(r) dr = 2

(
k̄

2

)2
Γ(k − 2, k̄/2)

k!
∼ k−3. (5.33)

.

5.2.3 Clustering coefficient

Here we analyze local clustering using the effective connection probability (5.15).
By means of quasi-symbolic calculations we also show that local clustering depends
on the expected node degree k similarly for both lower and upper bounds of the
effective connection probability, and that average clustering does not depend on
average degree k̄.

46

dc_1742_20

Powered by TCPDF (www.tcpdf.org)



1 2 5 10 20 50 100

5e
−0
4

5e
−0
3

5e
−0
2

5e
−0
1 NNG simulation

Upper bound, F̄ (k, 4)

Lower bound, F̄ (k, 1)

Approximation, F̄ (k, 2.27)

k

F̄
(k

,k̄
)

Supplementary Figure 8: Empirical CCDF of the degree distribution, its analytical upper and lower bounds
F̄ (k, 4), F̄ (k, 1), and analytical approximation with the empirical mean F̄ (k, 2.27).

5

Figure 5.7: Empirical CCDF of the degree distribution, its analytical upper and
lower bounds F̄ (k, 4), F̄ (k, 1), and analytical approximation with the empirical
mean F̄ (k, 2.27).

Let the hyperbolic polar coordinates of the point triplet u, v, w be (ru, φu), (rv, φv), (rw, φw)
and φ = φu − φv, ψ = φu − φw. The local clustering coefficient cl(ru) for a given
node u is calculated as the ratio of the expected number of link pairs with common
edge u and the expected number of link triangles with edge u. For calculating these
expected numbers, the joint probabilities of the existence of (u, v) and (u,w) link
pair and the existence of the (u, v, w) link triangle are substituted by p(duv)p(duw)
and p(duv)p(duw)p(dvw), respectively. This requires link independence assumption,
which is not true, however, correlations are expectedly diminished due to averag-
ing processes (like in mean field calculations [66]). In this way, the local clustering
coefficient is formulated as

cl(ru) =
δ2
∫ R
rw=0

∫ R
rv=0

∫ 2π

ψ=0

∫ 2π

φ=0
p(duv)p(duw)p(dvw)dφdψ sinh(rv) sinh(rw)drvdrw

δ2
∫ R
rw=0

∫ R
rv=0

∫ 2π

ψ=0

∫ 2π

φ=0
p(duv)p(duw)dφdψ sinh(rv) sinh(rw)drvdrw

.

(5.34)
For estimating these integrals in the numerator and the denominator the following
functions are defined:

∫ 2π

ψ=0

∫ 2π

φ=0

p(duv)p(duw)p(dvw)dφdψ ≈ (5.35)

≈
∫ 2π

ψ=0

∫ 2π

φ=0

exp

(
−x sin

φ

2
− y sin

ψ

2
− z sin

|ψ − φ|
2

)
dφdψ =: Nu(x, y, z)
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and
∫ 2π

ψ=0

∫ 2π

φ=0

p(duv)p(duw)dφdψ ≈
∫ 2π

ψ=0

∫ 2π

φ=0

exp

(
−x sin

φ

2
− y sin

ψ

2

)
dφdψ =: De(x, y)

(5.36)
where the general connection probability formula (5.15), the approximation e

duv
2 ≈

e
ru+rv

2

√
1−cosφ

2
are applied and

x =
8

k̄
δe

ru+rv
2 , y =

8

k̄
δe

ru+rw
2 , z =

8

k̄
δe

rv+rw
2 . (5.37)

Now we apply asymptotic expansions of Nu(x, y, z) and De(x, y) in order to
approximate them. (Asymptotic expansion here means that x, y, z are large pa-
rameters and we are interested in the asymptotic behaviour of these integrals as
{x, y, z} → ∞). Note that De(x, y) is simply the product of two integrals which
reads as

De(x, y) :=

∫ 2π

ψ=0

exp

(
−y sin

ψ

2

)
dψ

∫ 2π

φ=0

exp

(
−x sin

φ

2

)
dφ

= 4π2(I(0, x)− S(0, x))(I(0, y)− S(0, y)) ≈ 16

xy
(5.38)

due to that I(0, x)-S(0, x) ≈ 2
π
x−1 based on its asymptotic expansion [1] .

For approximating Nu(x, y, z) we use Laplace’s [22] method to generate first
orders of the asymptotic expansion with respect to x, y, and z. For this, we take
the first-order Taylor series expansion of the sinus functions around 0 and 2π where
the integral is dominant for larger x, y, z. Performing the double integral (5.35)
with these series and erasing the exponentially small terms, we get the following
four terms with respect to that x is in the neighborhood of 0 or 2π and y is in the
neighborhood of 0 or 2π :

Nu(x, y, z) ≈ 2
4(x+ y + 2z)

(x+ y)(x+ z)(y + z)
+ 2

4

(x+ z)(y + z)
=

16(x+ y + z)

(x+ y)(x+ z)(y + z)
.

(5.39)
Now the clustering coefficient can be written as

cl(ru) ≈
δ2

2

∫ R
rw=0

∫ R
rv=0

Nu(x, y, z) sinh(rv) sinh(rw)drvdrw
δ2

2

∫ R
rw=0

∫ R
rv=0

De(x, y, z) sinh(rv) sinh(rw)drvdrw
≈

≈
∫ R
rw=0

∫ R
rv=0

16(x+y+z)
(x+y)(x+z)(y+z)

sinh(rv) sinh(rw)drvdrw
∫ R
rw=0

∫ R
rv=0

16
xy

sinh(rv) sinh(rw)drvdrw
(5.40)

Based on this it can be seen that cl(ru) does NOT depend on the density parameter
δ, and depends on the average degree k̄ only through ru(k, k̄) (see equation (5.20) )
because all the x, y, z terms contain a 8

k̄
δ factor. In this way both integrals in the

numerator and denominator posses a 1
δ2

factor. (Note, that both the numerator and
denominator are independent from δ).
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In what follows we explore how the local clustering coefficient of a node is de-
pending on the expected degree k. This is possible to perform through the inverse
function of k̄(ru) (based on (5.20)) which is ru(k) = R − 2 ln

(
2k/k̄

)
. First the

denominator is calculated which is possible in a parametric way.
∫ R

rw=0

∫ R

rv=0

16

xy
sinh(rv) sinh(rw)drvdrw =

1

9
e−4R(1− 4e3R/2 + 3e2R)2k2 ≈ k2 (5.41)

with the substitutions x, y in (5.37) and ru(k) above. (The term 16
xy

does not depend
on k̄ due to the x, y and ru(k) substitution). Note that this is a good cross-validation
of this formula, because the expected number of link pairs of a node with given
expected degree k is approximately k(k − 1)/2 ≈ k2/2. This is because if the node
degree κ has Poisson distribution with parameter k then the expected number of
link pairs at this node is E

[
κ(κ−1)

2

]
=
∑∞

l=0
l(l−1)

2
kl

l!
e−l, which is exactly k2

2
. Based on

the equations (5.40), (5.41) and substituting x, y, z into the formula of the integrand
one can obtain

cl(k, k̄, R) ≈
∫ R

rw=0

∫ R

rv=0

k̄e
1
2

(rv+rw−R)
(
k̄e

1
2

(rv+R) + k̄e
1
2

(rw+R) + 2ke
1
2

(rv+rw)
)

4
(
e
rv
2 + e

rw
2

) (
eR/2k̄ + 2ke

rv
2

) (
eR/2k̄ + 2ke

rw
2

) drvdrw .

(5.42)
This double integral on the right hand side can be assessed symbolically by substi-
tution, but even a simplified result is still quite spacious. Nevertheless, the detailed
analysis of this function reveals that it is approximately independent of R, and as
k is increasing, the local clustering coefficient tends to

cl(k, k̄) ≈ ln(2)k̄k−1 . (5.43)

For simplicity and for catching the behaviour of cl(k, k̄) even for smaller k values,
the following intuitive form of approximation is calculated by numerical matching.
The intuition is based on the observation that the integrand itself is in the form of
a fraction of a first order and a second order polynomial of k.

∫ R

rw=0

∫ R

rv=0

k̄e
1
2

(rv+rw−R)
(
k̄e

1
2

(rv+R) + k̄e
1
2

(rw+R) + 2ke
1
2

(rv+rw)
)

4
(
e
rv
2 + e

rw
2

) (
eR/2k̄ + 2ke

rv
2

) (
eR/2k̄ + 2ke

rw
2

) drvdrw ≈
1 + ak

b+ ck + dk2

(5.44)
where the coefficient a, b, c, d are approximately independent of R and is depending
only on k̄. The coefficient is summarised in Table 5.1 for three cases: for the lower
bound of the average degree 1, for the upper bound 4, and k̄ = 2.27 which latter
average degree comes from the numerical simulation of the network formation game.

Note that, for larger k’s
1 + ak

b+ ck + dk2
≈ a

d
k−1 ,

1

2
k̄ ≤ k ≤ 1

2
k̄e

R
2 , (5.45)

and a
d
is very close to ln(2)k̄ for all the three cases, as expected.

It is now possible to compute average clustering based on the approximation
above as

cl =

∫ 1
2
k̄e
R
2

k= 1
2
k̄

cl(k, k̄)
∂

∂k
(1− F̄ (k))dk ≈

∫ 1
2
k̄e
R
2

k= 1
2
k̄

1 + ak

b+ ck + dk2

k̄2

2k3
dk . (5.46)
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k̄ a b c d
1 0.598 1.008 2.168 0.869

2.27 0.331 1.002 1.019 0.209
4 0.220 1.002 0.618 0.080

Table 5.1: The clustering coefficient as a function of the average degree.

Evaluating this integral for the average degree lower bound k̄ = 1, upper bound k̄ =
4, and the average degree in simulations k̄ = 2.27, we obtain, using Table 5.1, cl =
0.447075, 0.447615, 0.447146, respectively. We have also performed more extensive
numerical experiments showing that average clustering does not significantly depend
on the average degree for δ ∈ [10−8, 10−2], and R ∈ [10, 20]. Its dependence on R is
also negligible, which is not surprising since R appears only on the upper limit of
the integral, and this upper limit negligibly affects the result since the integrands
decrease as ∼ k−5. All these analytic and numeric results are in a good agreement
with simulations, see Figure 5.8.
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Supplementary Figure 9: Average clustering as a function of δ, and local clustering as a function of node degree.
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Figure 5.8: Average clustering as a function of δ, and local clustering as a function
of node degree.

Evaluating the integral
The integral for computing the local clustering coefficient presented (5.42) can

be evaluated by the following substitution

ξ = Exp
(rv

2

)
, ζ = Exp

(rw
2

)
, dξ = Exp

(rv
2

) 1

2
drv , dζ = Exp

(rw
2

) 1

2
drw ,

(5.47)
which is in the form

cl(k, k̄, R) ≈
∫ e

R
2

1

∫ e
R
2

1

e−
R
2 k̄
(
e
R
2 k̄(ζ + ξ) + 2ζkξ

)

(ζ + ξ)
(
e
R
2 k̄ + 2ζk

)(
e
R
2 k̄ + 2kξ

)dξdζ . (5.48)

50

dc_1742_20

Powered by TCPDF (www.tcpdf.org)



A simplified version of the result of the integral (5.42) is

(5.49)
1

8k2


e−R2


k̄eR/2


k̄


Li2




2
(

1 + e−
R
2

)
k

2k − k̄


− Li2




2
(

1 + e−
R
2

)
k

2k + k̄


+

Li2

(
−2
(
1 + eR/2

)
k

eR/2k̄ − 2k

)
+Li2

(
4k

2k + eR/2k̄

)
−Li2

(
2
(
1 + eR/2

)
k

2k + eR/2k̄

)
−Li2

(
4k

2k − eR/2k̄

)
−

Li2
(
− 4k

k̄ − 2k

)
+Li2

(
4k

2k + k̄

)
+k̄

(
log
(
eR/2+1

)
(

ln

(
−2ke−

R
2 + k̄

2k − k̄

)
−ln

(
k̄ − 2ke−

R
2

2k + k̄

)
+

ln

(
eR/2(2k + k̄)

k̄eR/2 − 2k

)
−ln

(
eR/2(k̄ − 2k)

2k + k̄eR/2

))
+ln

(
2eR/2

)(
ln

(
1− 4k

2k + k̄

)
−ln

(
4k

k̄ − 2k
+1

))
+

ln(2)

(
ln

(
1− 4k

2k + k̄eR/2

)
− ln

(
4k

k̄eR/2 − 2k
+1

))
+2
(
ln
(
eR/2(2k+ k̄)

)
−

ln
(
2k+k̄eR/2

))
(

tanh−1

(
2k

k̄

)
−tanh−1

(
2ke−

R
2

k̄

)))
+8k

(
ln
(
eR/2

)
−ln

(
eR/2+1

)
+ln(2)

)

+

4kk̄
(
ln(4)− 2 ln

(
eR/2 + 1

))



 ,

where the function Li2(z) =
∑∞

k=1
zk

k2
is the di-logarithm special function. We observe

that factors Exp(−R/2) and Exp(R/2) appear in several terms. If R is sufficiently
large, e.g., ranging between realistic values of 10 and 20, then we can neglect the
exponentially smaller terms, keeping only the exponentially large dominating terms.
For example,

k̄ − 2ke−
R
2

2k + k̄
≈ k̄

2k + k̄
and

eR/2(2k + k̄)

k̄eR/2 − 2k
≈ 2k + k̄

k̄
. (5.50)

Using this procedure, after some simplifications, we finally obtain an R−free expres-
sion for clustering:

cl(k, k̄) ≈ 1

8k2
k̄

(
8k ln(2) + k̄

(
ln

(
k̄ + 2k

k̄

)
ln

(
k̄ + 2k

k̄ − 2k

)
+ ln(2) ln

((
k̄ − 2k

)2

(
k̄ + 2k

)2

))
+

k̄

(
Li2
(

2k

2k − k̄

)
+ Li2

(
−2k

k̄

)
− Li2

(
2k

k̄

)
−

Li2
(
− 4k

k̄ − 2k

)
− Li2

(
2k

2k + k̄

)
+ Li2

(
4k

2k + k̄

)))
(5.51)

We can now see that cl(k, k̄) → ln(2)k̄ k−1 as k increases, because the logarithmic
terms become zero, while the dilogarithmic terms eliminate each other. The analysis
of this function at k = 0 also shows that cl(0, k̄) = 1, from which it follows that
b = 1 in the polynomial matching the numerical calculations, cf. Table 5.1.

In summary, the average clustering c̄(k) of nodes of degree k decays with k as
1/k, while the average clustering c̄ =

∑
k P (k)c̄(k) in the network is around 0.45,
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also confirmed in simulations. Clustering does not depend on network size or average
degree, meaning that clustering is a positive constant even in the large graph size
limit. Remarkably, neither degree distribution nor clustering depends on the node
density δ.

5.2.4 Non-uniform node density

For non-uniform node density α 6= 1, we can analytically obtain only the lower
bound for k̄(r, α), which is still proportional e−

r
2 , i.e., independent of α if α > 1/2.

The radial coordinate density in case of quasi-uniform node density is

ρ(r, α) :=
α sinh(αr)

cosh(αR)− 1
≈ αeα(r−R) (5.52)

while the angle density remains uniform ( 1
2π
) over the range [1, 2π]. Given a point

pair (u, v), first we determine the probability p(ru, α) that the u → v link exists,
then based on this the average out degree k(ru, α) of u is calculated, and finally
F̄ (k, α) is also given.

Probability p(ru, α) is equal to the probability that none of the remaining N − 2
points fall in the intersection of the v-centred duv circle and the R-disk. Let us denote
by p1 the probability that a point whose coordinates generated randomly according
to the densities above falls inside the intersection. Using p1 the probability p(ru, α)
can be calculated and approximated as

p(ru, α) = (1− p1)N−2 ≈ e−Np1 (5.53)

The calculation of p1 can be performed by using the node density function in the
following way [139]

p1 =

∫ max(0,d−rv)

0

ρ(r, α)dr +
1

2π

∫ min(R,d+rv)

|d−rv |
ρ(r, α)2θ(r)dr (5.54)

where
θ(r) = arccos

cosh rv cosh r − cosh d

sinh rv sinh r
. (5.55)

In [139] a useful approximation is presented for quite similar integrals, based on
which one can write

p1 ≈
4e

1
2

(d−R−rv)α

π(−1 + 2α)
(5.56)

for 0.5 < α ≤ 1 .
Now the expected out-degree of u can be written as

kout(ru, α) ≈ N

2π

∫ R

0

∫ 2π

0

e−Np1dφρ(rv)drv . (5.57)

Using the approximation of p1 and cosh(d/2) ≈ e
ru+rv

2 sin φ
2
one can formulate

∫ 2π

0

e−Np1dφ ≈
∫ 2π

0

e−x sin φ
2 dφ ≈ 2π(I(0, x)− S(0, x)) ≈ 4

x
(5.58)
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where
x = 4

N

π

α

2α− 1
e
ru−R

2 . (5.59)

Note, that x does not depend on rv, therefore the second integration by rv results

kout(ru, α) ≈ N

2π

4

x

∫ R

0

ρ(rv, α)drv =
2α− 1

2α
e
R
2 e−

ru
2 . (5.60)

Note, that for α = 1 we get back the result for the uniform density case, (5.20).
Now the (approximation of the) complement cumulative distribution function

F̄ (k) can be derived as,

F̄ (k) =

∫ ru(k)

0

ρ(r, α)dr ≈ eα(ru(k)−R) =

(
1− 1

2α

k

)2α

(5.61)

where ru(k) is the inverse function of kout(ru) . The simulation results displayed in
Figure 5.9 readily confirm this finding.
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Supplementary Figure 9: Average clustering as a function of δ, and local clustering as a function of node degree.
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Supplementary Figure 10: The in and out degree distributions of the NNG for various settings of the α param-
eter.

6

Figure 5.9: The in and out degree distributions of the NNG for various settings of
the α parameter.

This lower bound suggests that the degree distribution is a power-law P (k) ∼ k−γ

with exponent γ = 2α + 1. Figure 5.10 shows that the closer the γ to 2, the
stronger the clustering, the cheaper the network, and the more efficient and robust
the navigability is. The value of γ = 2 thus appears as the “best choice” for a
network—the network is maximally navigable at the lowest cost.

These results complement existing works [45, 26] showing that γ = 2 yields most
navigable networks, by adding that this γ provides a minimum cost equilibrium
topology as well, explaining the emergence of these networks from the interaction
of selfish players.

Figure 5.11 and Table 5.2 confirm our analytic results and shows that some basic
structural properties of NNG-simulated networks are similar to some real networks.
Our results also suggest that the incentive for navigability alone may be sufficient
to explain the properties of complex networks to a certain degree. Yet we cannot
really make this claim based only on such large-scale statistical similarities. A more
detailed link-by-link comparison between real and corresponding NNG networks is
needed to understand how well the NNG reflects reality.
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Figure 5.10: Topological properties of NNG equilibrium networks as a function of
the power-law exponent. Panel (a) shows the total cost (number of edges), average
clustering c̄, and stretch in NNG-simulated networks as functions of γ. Stretch
(shown in the inset) is the average factor showing by how much longer the greedy
navigation paths are compared to the shortest paths in the network. Stretch equal
to 1 means that all navigation paths are shortest possible. The plotted points are
mean values, while the error bars show the minimum and maximum values obtained
for the NNG over 10 random sprinklings of nodes for a given value of γ. Panel (b)
shows the success ratio as a function of the percentage of edges randomly deleted
from the network. The smaller the γ, the more robust the navigability concerning
this network damage.
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Figure 5.11: NNG equilibrium networks share basic structural properties with real
networks. The real networks considered are the Internet, metabolic reactions, and
the English word network, see Section 5.6. Panel (a) and (b) shows the degree
distribution and the average clustering coefficient of nodes of a given degree in the
real and NNG networks. The dashed black lines are the power laws with exponents
−2 and −1. The clustering coefficient of a node of degree k is the number of
triangular subgraphs containing the node, divided by the maximum possible such
number, which is k(k − 1)/2. In the NNG network, the disk radius is R = 21.2 and
α = 0.5. There are no other parameters.
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Network Internet Metabolic Word NNG
Nodes 23748 602 4065 5000
Edges 58414 2498 38631 7955

Avg. deg. 4.92 8.29 19.01 3.18
Avg. clust. 0.61 0.55 0.45 0.60
Avg. dist. 3.52 3.22 2.43 3.89
Diam. 10 6 6 10

Table 5.2: Comparison of basic structural properties of real and NNG networks.
The average distance and diameter are the average and maximum hop lengths of the
shortest paths in the network. The average degree in the NNG-simulated network
is lower than in the real networks because the NNG generates navigable networks
with minimum numbers of edges. In the NNG network, the disk radius is R = 21.2
and α = 0.5. There are no other parameters.

5.3 Network Navigation Game versus real networks.

Figure 5.12 and Table 5.3 show the results of our analysis applied to real networks.
Panels (a), (b), and (c) on Figure 5.12 visualize the Internet, metabolic, and word
networks mapped to the hyperbolic plane as described in the Section 5.6. The hy-
perbolic coordinates of nodes are then supplied to the minimum set cover algorithm
that finds a Nash equilibrium of the NNG for each network. Panels (d) and (e) do
the same for the US airport network and for the human brain, except that in the
brain, the physical coordinates of nodes are used. The grey edges are present in the
real networks but not in the NNG networks. These edges may exist in real networks
for different purposes other than navigation so that the NNG can say nothing about
them. The false-positive turquoise edges are present in the NNG networks but not
in the real networks. The true positive magenta edges are present in both networks.
Panels (f) and (g) show the NNG equilibrium network based on the physical (ge-
ographic, versus hyperbolic) coordinates of US airports and the NNG network for
the Hungarian road network. The NNG networks have the same sets of nodes as the
corresponding real networks, but the sets of edges are different. For visualization
purposes, the grey edges are suppressed in the human brain and Hungarian road
networks.

The detailed statistics of edges are in Table 5.3. We cannot expect real networks
to be identical to NNG networks because the latter are minimum-cost maximum-
navigation idealizations, while each real network performs many other functions
different from navigation. In particular, since real networks must be error-tolerant
and robust with respect to different types of network damage, we expect the number
of edges in real networks to be noticeably larger then in their minimalistic NNG
counterparts—something we indeed observe in Table 5.3. Yet if navigation efficiency
does matter for real networks, then we should expect a majority of edges present
in these NNG idealizations to be also present in the corresponding real networks.
Table 5.3 confirms these expectations. The NNG precision in predicting links in real
networks, defined as the ratio of NNG true positive links to the total number of NNG
links, exceeds 80% for most networks, while the precision in predicting frame links,
crucial for navigation, exceeds 90% for some networks. In what follows we juxtapose
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Original network edge True positive edge False positive edge

Internet

(a)

Metabolic

(b)

Word
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Human Brain

(e)

Airports geographic

Original airports network edge

NNG (geographic) edge

(f)

Roads

NNG edge

Frame edge

(g)

Figure 7

20

Figure 5.12: Network Navigation Game (NNG) predicts links in real networks.
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Inter. H Metab. H Word H Roads E Airp. S Airp. H Brain E
Nodes 4919 602 4065 3136 283 283 998

Real edges (|R|) 28361 2498 38631 - 1973 1973 17865
NNG edges (|M |) 5490 743 4634 9808 643 328 2591

True positives (|T |) 4556 643 3311 8776 65 277 2306
False positives (|F |) 934 100 1323 1032 578 51 285
Precision (|T |/|M |) 83% 87% 71.5% 89.48% 10.1% 84% 89%
Frame edges (|MF |) 3680 415 3304 3105 199 249 716

Frame true positives (|TF |) 3243 378 2528 2931 15 216 677
Frame prec. (|TF |/|MF |) 88% 91% 77% 94.40% 7.5% 87% 94.6%

Navigation success ratio 87% 85% 81% - 54% 89% 89%

Table 5.3: The table quantifies the relevant edge statistics in Figure 5.12, showing
the total number of edges in the real networks |R|, and in their NNG equilibrium
networks |M |, the number of true positive (magenta edges in Figure 5.12) |T |= |M∩
R|, the number of false positive (turquoise edges in Figure 5.12) |F |= |M \R|, and
the true positive rate, or precision, defined as |T |/|M |. The precision statistics are
also shown for the frame edges. Capital letters H,E,S after the network names refer
to the embedding geometry: H:hyperbolic, E:Euclidean, S:spherical. The Euclidean
coordinates in the brain are three-dimensional.

these numbers against the corresponding numbers in randomized null models, where
they are exponentially small, upper bounded by 0.1%. Now, we provide probability
estimates which represent the statistical significance of that the NNG equilibrium
network links’ containment by the real networks is very unlikely to occur by random
chance, but rather is likely to be attributable to the specific characteristics of our
embedding and NNG processes.

The NNG equilibrium network (graph) is a transformation of the real network
under investigation by an embedding and a gaming (NNG) process. Although this
transformation is completely deterministic, the statistical significance test can be
performed in the following two ways: In the first approach the NNG equilibrium
network is substituted by a completely random network with the same average
degree k̄NNG, that is N

2
k̄NNG links are randomly chosen from the possible N(N−1)

2

number of links. The probability that p fraction of these links (e.g. p = 0.83) are
contained by the real network (having N

2
k̄ links) can be calculated as

(
N(N−1)/2−N/2k̄
(1−p)N/2k̄NNG

)(
N/2k̄

pN/2k̄NNG

)
(
N(N−1)/2

N/2k̄NNG

) (5.62)

which is in the order of O(e−N). Because this probability is extremely small for
reasonable N , our result is very unlikely to occur also along with fully random
networks with fixing only the number of edges. For example, taking the values
on the Internet AS-level topology embedding (N = 4919, N

2
k̄ = 28361, N

2
k̄NNG =

5490, p = 0.83) the probability above is 5.62× 10−11068.
More refined randomization of the NNG equilibrium network is to substitute

only the embedding process by fully random generation of H2 coordinates (with such
coordinate distribution similar to the one resulted by the embedding process) and
then apply the gaming process (as if the embedding was wrong and had no concern to
the original real network). In this way, the resulted random NNG network preserves
not only the average degree but the degree distribution and the clustering coefficient
of the original NNG equilibrium network. Let X be a random variable denoting the
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number of links from the randomized NNG equilibrium network contained by the
original real network. Inevitably, X is a non-negative random variable bounded
also from above by P := N

2
k̄NNG. Although the exact distribution of X cannot

be calculated due to the dependent link establishment of the gaming process, the
expected value of X (which is insensitive to link dependence) is

E(X) =
N

2
k̄
N
2
k̄NNG

N(N−1)
2

≈ 1

2
k̄NNG k̄. (5.63)

Based on this average value, a conservative upper bound can also be given on the
probability that the level of this link containment exceeds a certain threshold 0 <
C < P . Applying Hoeffding’s inequality [83] we can state that

P (X > C) ≤
(
E(X)

C

)C
P
(
P − E(X)

P − C

)1−C
P

(5.64)

This upper bound is far below 0.05 for several reasonable k̄ and N . For example, the
probability that more than 83 percent of the randomized NNG equilibrium network
links (C =4556 of the total 5490 edges) coincide real Internet edges (among the
total 28 361) is upper bounded by 0.00136044. The complement of the upper bound
of the probability above (1-upper bound) can also be considered as a weight of our
statement (in the example above 0.99864).

We also note that since the real networks have many more links than NNG
networks, their navigability may not suffer much from missing a small percentage
of NNG links, as confirmed by the success ratio results in the same figure.

Of particular interest to us here are networks that are explicitly embedded in
the physical space. In these cases, we may not need to embed the network, but use
the physical coordinates of its nodes instead to construct the NNG equilibria. We
consider three examples: the Hungarian road network, the airport network of the
United States, and a structural network of the human brain. In the first network, the
nodes are the cities, towns, and villages of Hungary, while in the second network, the
nodes are US airports. Two nodes are linked if they are connected by a direct road or
flight. In the brain network, the nodes are small regions of an average size of 1.5cm2

both hemispheres of the cerebral cortex entirely, and two regions are connected if a
structural connection between them is detected in diffusion spectrum imaging. We
expect the NNG to be particularly accurate in predicting links in these networks
using the physical—instead of hyperbolic—coordinates of nodes. We note that these
physical coordinates are Euclidean in all three cases. The embedding space is two-
dimensional Euclidean and spherical space in the road and airport cases, and it
is three-dimensional Euclidean space in the brain case. Our method to construct
an NNG equilibrium applies without change to any set of points in any geometric
space. For example, we show analytic results on the structure of NNG equilibrium
networks in Euclidean spaces.
Results for the Euclidean space

We analyze the degree distribution in NNG equilibrium networks constructed
on sets of points sprinkled uniformly at random over Euclidean disks. We show
that the expected degree of a node located in the disk center is around 1, while the
expected degree of a node at the disk boundary is around 1/2. Because of this lack
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of variability of node degrees, the degree distribution in the Euclidean case cannot
have any fat tails.

According to (5.6) the expected degree of node u is

δ

∫ R

0

∫ 2π

0

e−δTuvdφrvdrv , (5.65)

where δ = N/TR = N
R2π

. To give an upper bound we will give a lower bound for Tuv.
If u is the centre of the disk, then Tuv is the area of the intersection of the disk and
an circle around v with radius rv. If rv ≤ R/2, then this intersection is the circle
itself around v, else the intersection contains a circle with radius R/2, hence

k(0) ≤ δ

∫ R/2

0

∫ 2π

0

e−δr
2
vπdφrvdrv + δ

∫ R

R/2

∫ 2π

0

e−δ(R/2)2πdφrvdrv

≤ 1− e− 1
4
δR2π +

3

4
δR2πe−

1
4
δR2π ≤ 1 + 3

N

4
e−N/4 ≤ 1 +

3

e
. (5.66)

Moreover, if N ≥ 6 then k(0) ≤ 1.05
To give a lower bound on the expected degree we will count with the whole circle

around v instead of the intersection:

k(0) ≥ δ

∫ R

0

∫ 2π

0

e−δr
2
vπdφrvdrv = δ2π

∫ R

0

e−δr
2
vπrvdrv = 1− e−δR2π = 1− e−N .

(5.67)
If N ≥ 6, then k(0) ≥ 0.99.

Similarly, for the expected degree of a node u at the disk boundary

k(R) ≥ δ

∫ R

0

∫ 2π

0

e−δd
2πdφrvdrv, (5.68)

where d is the distance between u and v, and according to the cosines law, d2 =
R2 + r2

v − 2Rrv cosφv. The inner integration is
∫ 2π

0

e−δπ(R2+r2v−2rurv cosφv)dφ = 2πI(0, 2πδrvR)e−δπ(R2+r2v), (5.69)

where I(0, x) is the BesselI function. Unfortunately the BesselI cannot be integrated,
but we can use that I(0, x) ∼ ex/

√
2πx. Hence

k(R) ≥
∫ R

0

2πδ√
4π2δRrv

e2πδRrv−δπ(R2−r2v)rvdrv =

∫ R

0

rvN√
R3π

e−π(R−rv)2N/R2

drv

≥ 2
√
N

3
√
π

HypergeometricPFQ

({
1

2
, 1

}
,

{
5

4
,
7

4

}
,−N

)
−−−→
N→∞

1

2
(5.70)

On the left panel of Figure 5.13 the simulation results support the analytical
findings that in the Euclidean case the expected degree nodes as a function of their
radial coordinates have very low variability in the NNG equilibrium networks and
their frame topologies. As a consequence of this low variability the degree distribu-
tions do not have any fat tails or power laws and decay fast with the node degree,
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the right panel of Figure 5.13. Clustering is still relatively strong however: in the
synthetic Euclidean NNG network it is 0.19, in the road NNG network it is 0.22,
while in the brain network and its NNG, the clustering values are 0.46 and 0.21,
respectively.
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Figure 5.13: The average degree of nodes as a function of their radial coordinates
on a Euclidean disk (left), and the cumulative distribution function of node degrees
in the corresponding NNG equilibrium, its frame topology, the Hungarian road
network, the brain network, and its NNG equilibrium (right).

We apply our method to find the NNG equilibrium networks using the physical
coordinates of nodes in these three real networks, and then compare them to their
NNG equilibria also in Figure 5.12 and Table 5.3. We observe that in the brain and
road networks, the NNG link prediction accuracy is particularly high, reaching 89%
for all the links and 94-95% for the frame links. For the brain, this result implies that
the spatial organization of the brain is nearly optimal for information transfer, in
agreement with previous results [164, 103, 82, 72]. In the Hungarian road network,
nearly all frame links, crucial for efficient navigation using geography, are present.
Practically this means that Hungarians have the luxury to go on a road trip without
a map since all the major roads required by geographic navigation are there, albeit
the condition of some of those roads is not as luxurious. Simply put, there are roads
where people with a compass may think they should be.

For the US airport network, however, the geographic results are poor. These
poor results may be unexpected at first, but they have a simple explanation in that
the geometry of the airport network is not really Euclidean, as the geometry of the
nearly planar road network, but hyperbolic. Indeed, efficient paths in the airport
network optimize not so much the geographic distance traveled, but the number
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Figure 5.14: NNG equilibria of real networks helps to improve or degrade their
navigability. The edges from the NNG equilibria of the considered real networks are
first sorted in the decreasing order of betweenness centrality, and then either added
to the real network if not already there (panel (a)), or removed from the network
if present (panel (b)). The x-axis shows the percentage of added or removed edges
compared to the number of edges in the original real network. The navigation success
ratio is computed as the number of node pairs between which geometric routing is
successful, divided by the number of all node pairs.

of connecting flights. As a consequence, most paths go via hubs. As opposed to
the road network, where the number of roads meeting at an intersection does not
vary that much from one intersection to another, the presence of hubs in the airport
network makes the network heterogeneous, i.e., node degrees vary widely. This het-
erogeneity effectively creates an additional dimension (the “popularity.” dimension
in [141]). That is, in addition to their geographic location, airports also have an-
other important characteristic—the size or degree. This extra dimension makes the
network hyperbolic [101]. The NNG results for the hyperbolic map of the airport
network in Figure 5.12 are as good as for the other networks.

5.4 How to cure or injure a network efficiently.

The knowledge of the NNG equilibrium of a given real network makes it possible
to efficiently identify links that are most critical for navigation in the network.
Since NNG equilibrium networks are maximally navigable networks composed of the
smallest number of links, we expect that if we alter a real network by either adding
or removing a relatively small number of links belonging to the NNG equilibrium
of the network, then such network modifications may significantly affect network
navigability.

Figure 5.14 supports these expectations. In the figure, we take the considered
real networks, and add to them certain numbers of links that are present in the NNG
equilibria of the real networks, but not present in the networks themselves. About
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1-2% of added edges, compared to the original numbers of edges in the networks,
increase network navigability significantly, while the addition of 2-5% of edges make
all the networks 100%-navigable. Similarly, the targeted removal of a small portion
(1-5%) of edges belonging both to the NNG equilibria of the networks, and the
network themselves, degrades network navigability by 10-30%.

5.5 Discussion

We emphasize that the considered Nash equilibrium networks are minimalistic ide-
alizations, concerned only with maximizing the efficiency of the navigation function
at minimal cost (number of links). Reality differs from this ideal in many ways.
First, real networks must be robust concerning noise and random failures. This ro-
bustness requirement explains why the considered real networks have strictly more
links that their Nash equilibria. Maximum navigability can be achieved not only
at the minimal cost but also at a higher cost. Second, transport processes in real
networks are also noisy and can follow not only steepest descent path (greedy nav-
igation) but also any downstream paths, still achieving 100% reachability. Yet the
noisier the transport process, the less likely it stays to the shortest path, leading to
higher stretch and longer travel times, thus degrading navigation efficiency in terms
of these parameters. Third, navigability does not always have to be maximized as
many specific networks perform many specific functions other than navigation. Our
game-theoretic approach can be extended to accommodate some of these functions,
such as error tolerance or policy compliance [161], but not all possible functions
of different real networks can be formalized within this game-theoretic framework.
Some networks are centrally designed to optimize a particular function globally [104].
Game theory is not needed to formalize such global optimization strategies. It is
more suited for self-organized networks, in which each node behaves selfishly accord-
ing to its incentive, independent of other nodes. In other words, Nash equilibrium
networks are structural manifestations of local incentives of nodes for efficient trans-
port or communication, in contrast with existing generative or optimization models
of complex networks [50, 126]. Finally, all real networks are dynamic and growing,
while Nash equilibria correspond to static network configurations. However, it has
been recently shown [100] that in case of random geometric graphs—to which the
considered Nash equilibrium networks effectively belong according to the following
results —one can map an equilibrium network model to an identical growing one.
The Heaviside step function with the step at

R′ = 2 ln
k̄

8δ
(5.71)

is a good approximation to the effective connection probability in Eq. (5.15) for
δ ∈ [10−6, 10−3] and R = [12, 18]. With this step-function approximation, node
u connects to v iff duv ≤ R′. Therefore the expected degree of u is the expected
number of points lying within the intersection of the R−disk and the u-centred disk
of radius R′.

To see that this step function is indeed a good approximation to the effective
connection probability in the NNG equilibrium, recall that the area of the two disks
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above can be approximated as

TR′,R = 4e
R′
2 e

R−ru
2 . (5.72)

From these one can obtain

kout(ru) ≈ N
TR′,R
TR−disk

= N
4e

R′
2 e

R−ru
2

πeR
. (5.73)

If R′ from (5.71) is substituted into the formula above we get back the expected
out-degree in (5.20). In particular, if R′ = R (as in [102]), then

kout(ru) =
4

π
Ne−

ru
2 (5.74)

and
k̄ =

8

π
Ne−

R
2 , (5.75)

which coincides with Eqs. (12,13) in [102].

Notwithstanding these limitations, we have shown that ideal networks designed
to be maximally navigable at minimal cost, share basic structural properties with
real networks. Compared to existing works on navigation-optimal distributions of
shortcut edges in Euclidean grids [92, 108, 151, 107] which do not yield realistic net-
work topologies, this result is quite unexpected because there is absolutely nothing
in the definition of these ideal networks that would enforce or even welcome a forma-
tion of any particular network structure. The networks are defined purely in terms
of navigation optimality. The surprising finding that the structure of these ideal
networks is similar to the structure of real networks should not be misinterpreted
as if these idealizations are generative models for real navigable networks. Instead
the former are skeletons or subgraphs of the latter. Since these skeletons consist of
the minimum number edges required for 100% navigability, there is no even a pa-
rameter to control the most basic structural network property—the average degree,
which is always controllable in generative models. On the contrary, as follows from
Eq. (5.23), the average degree in these skeletons is uncontrollable and lies between 1
and 4.

We find that if network geometry is hyperbolic, then our navigation skeletons
have power-law degree distributions and strong clustering. The values of power-law
exponent γ close to 2, observed in many real networks [131, 23], appear as the best
possible choice. In this case, not only reachability is 100%, but also the network
cost and stretch are minimized and navigability robustness is maximized, compared
to other values of γ in Figure 5.10.

These results apply to sets of points in hyperbolic space, but the navigation
skeleton construction itself is by no means limited to these hyperbolic settings. It
is very general and applies to any set of points in any geometric space, as illus-
trated by the brain and road networks where we have used the Euclidean 2d and 3d
physical coordinates of nodes to construct the navigation skeleton of the network.
Our finding that the brain contains almost fully its navigation skeleton appears as
a mathematically clear and conclusive evidence that the spatial organization of the
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brain is nearly optimal for communication and information transfer, corroborating
existing work on the subject s [164, 103, 82, 72].

We note that the connection between the structure and function of networks
are often studied in the logically reverse direction: structure→function. That is,
first some data about the structure of real networks is obtained, and then questions
concerning how optimal this structure is with respect to a given network function
are investigated. This logic does provide some evidence that the network might have
evolved optimizing this function, but this evidence is quite indirect and unreliable
compared to the direct demonstration that functionally optimal networks have the
structure observed in reality: function→structure. Common sense suggests that this
causal direction must reflect reality more adequately since networks, either designed
or naturally evolving, do not have a completely random structure but the structure
(effectively) optimizing some functions. Yet studying networks in this direction is
much more challenging primarily because of difficulties in formalizing the constraints
that a given function imposes, and deriving the resulting optimal network structure.
Here, with the help of game theory, we have done so for the navigation function that
many real networks (implicitly) perform.

As one would logically expect, the function→structure approach provides a
deeper insight into specific details of the network’s structural organization that is
critical for its functional efficiency. We have confirmed this expectation by demon-
strating that our approach can identify links in real networks that are most criti-
cal for navigation. A targeted attack on these critical links degrades navigability
rapidly, while if a real network is not 100%-navigable, our approach finds the min-
imal number of not-yet-existing links whose addition to the network boosts up its
navigability to 100%. Therefore our approach can be used to identify real network
links that should be protected most in a critical network infrastructure. On the
other hand, this approach can also, help network designers to prioritize possible link
placement options, i.e., pairs of not directly connected nodes, that, if connected,
would maximize navigability improvement.

Finally, all the real networks considered here are expected to be navigable. In-
deed, the primary functions of the Internet, brain, metabolic, or airport and road
networks are to transport information, energy, or people. Semantic and syntactic
navigability of word networks is an established fact in cognitive science [63, 41, 14].
However one cannot expect all real networks to be highly navigable as navigation
is not an important function of every network in the world. One example is a
technosocial web of trust, in which nodes are public keys of users of a distributed
cryptosystem, linked by users’ certifications of key-user bindings. There is no rea-
son why this network should be navigable. In agreement with this observation, we
then find that this network does not contain a large percentage of edges from its
NNG equilibrium, suggesting that the introduced methodology can also be used as
a litmus test to investigate if navigation is an important function of a given real
network, and if so, then to what degree. One cannot expect every real network to
be highly navigable because navigation is not an important function of every real
network. Here we consider one example, the Pretty-Good-Privacy (PGP) web of
trust network, specifically the December 2006 snapshot and its hyperbolic coordi-
nates from [141]. These data are then processed exactly as for all the other networks.
However, as expected, the navigation success ratio and precision metrics reported
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for this network in Table 5.4 are substantially lower than for the navigable networks.

PGP
Nodes 4899

Real edges (|R|) 67650
NNG edges (|M |) 29311
True positives (|T |) 6945
False positives (|F |) 22366
Precision (|T |/|M |) 24%

Navigation success ratio 36%

Table 5.4: The table quantifies the relevant edge statistics showing the total number
of edges in the core of the PGP network |R|, and in its NNG equilibrium network |M |,
the number of true positive edges |T |= |M ∩ R|, the number of false positive green
edges |F |= |M \R|, and the true positive rate, or precision, defined as |T |/|M |.

5.6 Technical details

The real network data. The Internet dataset representing the global Internet
structure at the Autonomous System (AS) level is from [27]. The metabolic network
is the post-processed network of metabolic reactions in E. coli from [141], Snapshot
S1 there. The post-processing details can be found in [141]. The word network is the
largest connected component of the network of adjacent words in Charles Darwin’s
“The Origin of Species” from [120]. The airport network was downloaded from
the Bureau of Transportation Statistics http://transtats.bts.gov/ on November
5, 2011. The structural human brain network and physical coordinates of nodes
(regions of interest (ROIs)) in it are the diffusion spectrum imaging (DSI) data
from [80].
The hyperbolic maps of real networks. The hyperbolic coordinates of ASes
and metabolites are from [27] and [141]. The hyperbolic coordinates of words and
airports are inferred using the HyperMap algorithm [140]. This algorithm is deter-
ministic and is based on the growing network model in [141] used to show that the
latent geometry of scale-free strongly clustered real networks is hyperbolic. Given an
adjacency matrix of a real network, the algorithm infers the hyperbolic coordinates
of its nodes by replaying its growth as the model in [141] prescribes. Accurately, the
nodes are first sorted in the order of decreasing degrees, and then, starting with the
highest-degree node, nodes and their edges are added, one node at a time, to a grow-
ing network. The probability, or the likelihood, with which model [141] generates
this growing network, depends on the node coordinates. The HyperMap algorithm
sets the coordinate of each added node to the coordinate corresponding to the global
maximum of this probability.
The Nash equilibrium networks of NNGs. The hyperbolic or physical, in
the airport and brain cases, coordinates are then supplied to the GNU Linear
Programming Kit (GLPK) http://www.gnu.org/software/glpk/ used to find a
solution to the corresponding minimum set cover problem. To yield acceptable
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running times of the solver, the Internet and word networks are reduced in size
by extracting their high-degree cores of about 4500 nodes. The Hungarian road
data is processed slightly differently. First, the cities in Hungary are mapped
to their geographic coordinates using the database in http://www.kemitenpet.
hu/letoltes/tables.helyseg_hu.xls. Then these coordinates are used in the
GLPK to find the NNG equilibrium. Each edge in this equilibrium network is then
checked for existence in the real road network. To check that, the GoogleMaps API
https://pypi.python.org/pypi/googlemaps/ is used to find the shortest path
between the two cities connected by the edge. The edge is defined to also exist in
the real road network if this shortest path does not go via any other city.
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Chapter 6

Hierarchical systems

We have seen so far that greedy navigation, supported by the hidden metric space
of the network, can account for the excellent navigability of networks. Although the
framework of greedy navigation is very compelling, the embedding of real networked
systems into metric spaces ensuring reliable navigation can be very cumbersome
and non-intuitive in many cases (see [25]). In such cases, the function→structure
approach clearly inherits the non-trivialities of greedy navigation and metric spaces.

In this chapter, we show that the characterization of navigation paths used in
networks can be achieved to a sufficient extent. This enables the function→structure
analysis without assuming the mechanism of greedy navigation. Our approach here
focuses on the high-level structure of the paths used in the network. There are nu-
merous examples that real networks exhibit a hierarchical structure. Organizational
(e.g., military) networks, for example, are well-known to have a clearly defined hier-
archy. The Internet is another example in which the connections between internet
domains are hierarchical, pointing from customer to provider. We show that these
underlying hierarchies have a significant impact on the operative paths in the net-
work. At this point, we turn back to our networks and paths investigated in Chap-
ter 3, the Internet AS topology, the air transportation network, the word morph
network, and the human brain. Recall that for these networks, we have collected
large datasets about both the structure of the networks and the empirical paths. A
deeper analysis of these empirical paths uncovers two additional features (on top of
stretch introduced in Chapter 3) in connection with the underlying hierarchy.

One such feature our measurements support is “conform hierarchy.” (CH), mean-
ing that the used paths follow the topological hierarchy of the network. For showing
this, we have computed the closeness centrality of the nodes comprising the em-
pirical paths indicating which (inner or outer) parts of the network the information
flows through. The closeness centrality of the node is computed as: C(x) = N∑

y d(y,x)
,

where d(y, x) is the distance between vertices x and y, while N refers to the number
of nodes in the network. We found that most of the empirical paths do not contain
a large-small-large pattern forming a “ valley” anywhere in their closeness centrality
sequence. This informally means that higher-level nodes do not prefer the exchange
of information through their subordinates, even if there are short paths through
them. On a CH path, the closeness centrality increases monotonically at first up
to a point (upstream), then starts to decrease (downstream) until it reaches the
destination, or it is just going upstream or downstream all the way. Fig. 6.1 illus-
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Figure 6.1: Illustration of paths with regard to the internal logic of the network.
A path is CH if it does not contain a large-small-large pattern forming a “valley”
anywhere in its centrality sequence (green and orange paths). Red paths show
examples of non-CH paths. An upstream path contains at least one step upwards
in the hierarchy of the network (orange paths), while in downstream paths, the
centrality decreases all the way (green paths).

trates this graphically. One could argue that maybe short paths on real networks
have this property as a default, but Fig. 6.2a-d verify that this is not the case. For
comparison, we picked random paths between the source-destination pairs of our
empirical paths with the same stretch distribution and plotted the results for that
case too. One can see that, while the path length distribution is the same for the
two datasets, a much larger fraction of stretch-equivalent random paths violate the
CH feature.

There can be subtle differences between CH paths of similar length. For example,
a path can contain upstream than downstream steps or downstream steps only.
Recall that an upstream step goes towards the core, while a downstream step goes
towards the periphery of the network. Is there a preference among these? For
answering this, we plotted the Cumulative Distribution Function (CDF) of CH paths
with respect to the number of upstream steps preceding the downstream phase
(Figure 6.3a-d). For comparison, we have also plotted the results of a random
policy that picks randomly from the possible CH paths of the given length. The
plots confirm that the empirical paths contain much less upstream steps, which
means that these paths try to avoid stepping towards the core. This finding adds
“prefer downstream” as a third identifiable path selection feature (see Fig. 6.1 for an
illustration). We note that such behavior is easy to interpret on the Internet, since
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stepping towards the core of the network implies paying for a transit provider for
carrying the traffic while going downstream comes for (almost) free. However, at
this time, it is not clear what causes the same behavior in the other networks.
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Figure 6.2: Identified path selection features confirmed by our measurement data.
Panels a-d show the hierarchical conformity of the empirically-determined paths
against stretch. The inset of the plots shows the relative difference between the
number of CH paths in the empirical and random paths. In the case of small
networks, there are 15-85% more CH paths in the empirical traces, but in the case
of the large AS level Internet, this goes up to 100-500%. The cyan colored data in
the plots show the number of CH paths in a randomized version of our networks
generated with the degree sequence (DS) algorithm, which produces exactly the
same degrees for the nodes, but the edges are completely randomized. The plots
confirm that the topological peculiarities of real networks increase the number of
CH paths between endpoints with respect to the DS networks (see the explanation
brackets between the cyan and magenta-colored dots of panel a and b). However,
we argue that the effect of the CH feature is at least that important or even more
fundamental (e.g., in case of the Internet).

69

dc_1742_20

Powered by TCPDF (www.tcpdf.org)



# of upward steps

Tr
ac

e 
C

D
F

0 1 2 3 4 5
0

20

40

60

80

100

●

●

●

● ● ●

●

●

●

●

● ●

●

●

Emp. paths
Random

a

Airport

# of upward steps

Tr
ac

e 
C

D
F

0 1 2 3 4 5
0

20

40

60

80

100

●

●

● ● ● ●

●

●

●

● ● ●

●

●

Emp. paths
Random

b

Internet

# of upward steps

Tr
ac

e 
C

D
F

0 1 2 3 4 5
0

20

40

60

80

100

●

●

●

● ● ●

●

●

●

●

● ●

●

●

Emp. paths
Random

c

Brain

# of upward steps

Tr
ac

e 
C

D
F

0 1 2 3 4 5
0

20

40

60

80

100

●

●

●

● ● ●

●

●

●

●

● ●

●

●

Emp. paths
Random

d

fit-fat-cat

Figure 6.3: Panels a-d show the cumulative distribution of upstream steps in the
traces of our datasets. The empirical paths tend to avoid stepping towards the core,
which is reflected by the much lower number of upstream steps (in comparison with
the randomly selected CH paths of the same length) before entering the downstream
phase.

6.1 Function-structure analysis of the Internet

The Internet with its intrinsic customer-provider hierarchy is the pathological ex-
ample of networks clearly built under hierarchical relationships. Our current un-
derstanding of the domain-level topology of the Internet is based on measurements
and generative models which set up rules describing the behavior (node and edge
dynamics) of the individual ASes and generalize the consequences of these individ-
ual actions for the complete AS ecosystem. Here we apply the function→structure
approach on the Internet, based on our observation of hierarchies influencing path
selection in networks and the Internet’s policy routing ecosystem. We show that
such a function→structure approach can give complementary insights into the topo-
logical properties of the AS network. In contrast with generative models reflecting
high-level statistics (e.g., degree distribution, clustering, diameter), our reasoning
can identify omnipresent subgraphs and peering likelihood.

One cannot overestimate the value of knowing more about the topology of the In-
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ternet. The last decades have supplied us with thousands of stories where topology-
related information about the Internet was directly transformed into more efficient
architectures and services, or more appropriate business decisions. The most specific
example is clearly Content Delivery Networks (CDN) [143], where global topological
peculiarities are highly exploited, e.g. in surrogate and cache placement strategies
or request routing mechanisms [143] but CDN is just a narrow segment of the whole
spectrum. The placement of data centers [74], peer-to-peer networks [39, 112], traf-
fic engineering [9], business based AS peering strategies [44], just to mention a few,
can clearly benefit from Internet topology related knowledge. The investigation of
the AS topology is also a popular topic [26, 25, 6, 38, 173, 115, 149] in the network
science community, which consolidates researchers from diverse or multidisciplinary
research areas. One reason behind this popularity is that compared to other com-
plex networks, active and passive measurements can be executed on the Internet
topology, thus we can create Internet “screenshots” easily.

With this non-comprehensive list of consumers in mind, it comes at no surprise
that many researchers, even from diverse or multidisciplinary research communi-
ties have contributed to our current understanding of the Internet’s Autonomous
Systems (AS) level topology. The only way to obtain ground-truth data about the
AS topology is via active or passive measurements. Today we have historical and
contemporary measurement data collected continuously and made publicly avail-
able according to various approaches (e.g., using BGP info [33, 167], traceroute
measurements [155], IXP anatomy [3]). Meanwhile, the data stemming from these
measurements are the exclusive source of direct information about the AS topology
and thus can be treated as the ground truth, we can keep ourselves to, the way
these measurement systems work is continuously reported to be imperfect and far
from optimal [3]. Additionally, the collected data reveals only the current state of
the network and cannot give usable predictions and clear characterization of the
topology-forming processes lying in the background. Over the last four decades the
Internet has evolved from a carefully engineered computer network, connecting uni-
versities and research institutes in the US, into a complex ecosystem on top of an
overwhelming variety of stakeholders all over the world. The network science com-
munity emphasizes mostly the resemblance of the AS network to many real-world
self-organizing networks, which is clearly the case but we argue that this network
also has a second face as it apparently exhibits topological peculiarities stemming
from technological underpinnings (e.g., the used networking technologies and pro-
tocol stacks). The underlying interdomain routing protocol guiding path selection
on the Internet provides a good starting point for finding an analytically tractable
set of path features for our function→structure analysis while providing non-trivial
insights into the lineament of the AS network’s technological face.

The interdomain routing policies of all the ASes are expressed through the well-
defined framework of the Border Gateway Protocol (BGP) [146]. The main respon-
sibility of BGP is to distribute the available forwarding paths between ASes and
let them select their preferred paths according to their special interests. Table 6.1
recalls a simplified version of the usual steps of the path selection process in BGP
from [71]. Here we highlight the vital valley-free criteria as a rule No. 0 since BGP
path selection works over valley-free paths, which means that paths have to conform
to the Internet’s underlying customer-provider hierarchy. On top of the valley-free
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Table 6.1: The simplified BGP best path selection process.

# Rule
0. Valley-free route
1. Highest local preference
2. Shortest AS path
3. Lowest origin type
4. Lowest MED
5. eBGP-learned over IBGP-learned
6. lowest IGP metric to the BGP next-hop

feature, we also include the local preference rule, which formalizes the prefer down-
stream feature (see our measurements at the beginning of Chapter 6) adapted more
rigorously to the context of the Internet.

6.1.1 The Internet’s path selection policy

In the AS ecosystem, the business relationships between ASes can be quite diverse,
still we can classify most AS-AS links into basically two major groups [86]: in a
customer-provider relationship the customer AS pays the provider for forwarding its
traffic, while in a peering relationship neighboring ASes voluntarily exchange traffic
with each other in a settlement-free manner1. The valley-free policy manifests the
simple economic principle that the flow of traffic must coincide with the flow of cash.
In very short the policy dictates that AS A can use a link to a neighboring AS B
to forward the traffic if and only if either the incoming traffic is from a customer,
or B is a customer of A. Putting it differently valley-free compliant paths comprise
arbitrary (maybe zero) number of customer-provider links, zero or one peer link and
again arbitrary provider-customer links strictly in this order (Fig. 6.4).

Figure 6.4: Illustration of valid (a) and invalid (b) valley-free path types. A valid
path contains n customer-provider, at most 1 peer and m provider-customer link
strictly in this order, where n,m ∈ N. All the other types are invalid paths.

The local preference policy is applied on top of valley-free routes meaning that an
AS can pick one from the available valley-free routes according to its local interest.
Meanwhile, these local interests can exhibit great variety the minimalistic rule that
customer and peer paths are favored over provider paths, is contained in basically
every local preference setting within the ASes. This is in line with the nature of
these routes as customer and peer paths are entirely free unlike provider paths in
which the provider has to be compensated in some way for the carried transit traffic.

1We omit sibling and backup relationships for simplicity.
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6.1.2 Formulation of the function-structure approach to the
Internet

Similarly to the function→structure analysis of navigable networks in Chapter 5, in
the followings we think about the ASes as rational but selfish players whose incentive
is to communicate with each other using the valley-free and local preference poli-
cies. On top of these incentives we define the Hierarchical Network Game (HNG).
Formally, let P be the set of players (identified as the ASes) with cardinality N . Ac-
cording to the valley-free rule an edge connecting two nodes u, v can be of type either
uv or −→uv, where uv denotes a peer edge and −→uv denotes a customer-provider edge.
The strategy space for node u ∈ P is a vector of the preferred edges to other nodes in
the AS network, i.e., the set Su = {(suv)v∈P\{u} : suv ∈ {0, p, r}} where |Su|= 3N−1

and p, r refer to −→uv, uv edges, respectively. Easily, node u seeks to contact node v
if suv ∈ {p, r}, otherwise suv = 0. We assume simultaneous announcement of the
strategies between the nodes. Any state of the game is represented by an undirected
graph G(s) = (P , E(s)) generated by the strategies of the nodes s, where E(s) is
given by E(s) = {→uv|suv = p∧svu = 0}∪{uv|suv ∈ {r}∧svu ∈ {r}}. This settlement
of the edges reflects the rational behavior of the ASes as they prefer to create peer
edges over customer-provider edges.

The goal of the nodes is to minimize their costs which for a given node u we
define as:

Cu(s) =
1

N

∑

∀v 6=u

dG(s)(u, v)

︸ ︷︷ ︸
communication cost

+ ϕpup + ϕrur︸ ︷︷ ︸
maintenance cost

, v ∈ P (6.1)

where

dG(s)(u, v) =





0 if exists a valley free path of which first edge is peer or
provider-customer

1 if exists at least one valley free path and the first edge of
all of them is customer-provider

∞ if valley free path does not exist
(6.2)

represents the price of communication between u and v over G(s) in compliance
with the policies defined, ϕp and ϕr are fix maintenance costs of the provider and
peer edges and up and ur refer to the number of the p and r edges of u respectively.
We note that the cost function in Eq. 6.1 is intentionally made as simple as possible
for two reasons. First, we want to concentrate purely on the consequences of our
premises; thus, we avoid incorporating cost elements that can mask them. The
second reason is simply analytical tractability. So basically, the first sum in Eq.
6.1 represents the most simple way of capturing our premises, and ϕp and ϕr are
introduced for setting up a meaningful game (e.g., without attributing costs to the
edges the game would end up in producing full graphs) but can be easily justified as
inter-AS links clearly have maintenance costs. Also, note that we regard provider-
customer edges to be financed unilaterally by the customer.

The Nash equilibrium of the Hierarchical Network Game (HNG) is a state such
that no node can further reduce her costs by altering her strategy unilaterally. Since
we have a network game, we will use the following more natural and slightly tailored
equilibrium definition for our case:
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Figure 6.5: An example of the spider graph. The dashed and directed edges are the
peer and customer-provider edges respectively and the black nodes are the ASes of
the clique K i.e. the tier-1 ASes.

Definition 2 (Pairwise Stable Nash Equilibrium (PNE)). We say G(s) constitutes
a pairwise stable Nash equilibrium [88] if (a) Nash equilibrium, (b) ∀uv ∈ E(G(s)) :
Cu(s) ≤ Cu(s

′) ∧ Cv(s) ≤ Cv(s
′), where s′ differs from s only in deleting uv edge

from G(s), (c) ∀uv /∈ E(G(s)) : Cu(s) ≤ Cu(s
′) ∨ Cv(s) ≤ Cv(s

′), where s′ differs
from s only in adding uv edge to G(s) and (d) contains no provider loops. Note that
the latter requirement is fully in line with the Gao-Rexford conditions [68] ensuring
BGP stability.

6.1.3 Omnipresent subgraphs

Now we are interested in the equilibrium topologies of the HNG game as these
structures will reflect the consequences of the function of the network, which is the
provisioning of valley-free and local preference paths. For stating the claims, we
need two more definitions.

Definition 3 (Spider graph (Fig. 6.5)). A graph is a Spider graph if it consists of:

1. a clique Kr (representing the tier-1 ASes) comprising peer edges only

2. trees rooted at some subset of V (Kr) having customer-provider edges, such that
the provider in the relationship is always closer to the root than the customer

3. additional peer edges, such that ∀uv, uw ∈ G(s) : t(v) ∩ t(w) = ∅, where t(x)
is the set of nodes in the subtree (i.e. the customer cone) of node x, including
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x itself.

Definition 4 (Clear-cut Peer Edge (CPE)). An uv ∈ G(s) edge is a clear-cut peer
edge if:

• ϕr < min{ |t(u)|
N
, |t(v)|

N
}

• @w ∈ P : v ∈ t(w) ∧ uw ∈ G(s).

Our first claim characterizes all meaningful states (i.e., where all the ASes can
communicate with each other) of the HNG (and thus the AS topology) by identifying
an omnipresent subgraph.

Theorem 1. Every meaningful (
∑
Cu 6= ∞) outcome of the HNG contains the

Spider graph as a spanning subgraph.

Proof. The subgraph of the customer-provider edges is a spanning DAG, as provider
loops are not allowed. For having

∑
Cu 6= ∞ the sinks of this DAG has to be

connected by peer edges in pairs. Hence the set of the sinks correspond to the Kr

clique of the Spider graph.
Obviously each AS has a directed customer-provider path to some ASes of Kr.

So one spanning forest of the DAG and the Kr clique is a proper spanning Spider
graph in the original graph.

Using Theorem 1, we can characterize the pairwise stable equilibria of the HNG.

Theorem 2. Every pairwise stable equilibrium of the HNG is the Spider graph.

Proof. According to Theorem 1, any pairwise stable equilibrium contains the Spider
graph as a spanning subgraph. Easily it contains a Kr clique in which ASes do
not have customer-provider edges. If there are any extra customer-provider edges,
then there must be an AS which has at least two customer-provider links. Since
the additional customer-provider edge does not reduce the communication cost but
enlarges the maintenance cost, such an outcome cannot be a Nash equilibrium.

If the subgraph of the customer-provider edges is a forest, then in it if exists two
nodes v and w such that t(v) ∩ t(w) 6= ∅, then v ∈ t(w) or w ∈ t(v). Hence, if there
is a peer edge uv such that there exists a node w: uw ∈ E(G) and t(w) ∩ t(v) 6= ∅,
then v ∈ t(w) or w ∈ t(v). Let w ∈ t(v), so u can reduce its cost removing uw,
which contradicts the definition of the Nash equilibrium.

6.1.4 Placement of peer links

The following theorem gives a high-level insight into the placement of the peer edges.

Theorem 3. If G(s) constitutes a PNE then each peer edge is a CPE or part of Kr.

Proof. We prove this indirectly. If there exists a peer edge out of Kr which is not
CPE then either (i) ϕr ≮ min{ |t(u)|

N
, |t(v)|

N
} or (ii) ∃w ∈ V (G(s)) : v ∈ t(w) ∧ uw ∈

G(s). For (i) it is easy to see that at least for one AS it is worth to delete the edge.
For (ii) it’s trivial that for w is worth to delete uw. In both cases we appear to a
contradiction.
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Finally our theorems lead to the following three corollaries.

Corollary 1. In a PNE a peer edge appears only if it is in Kr or its both endpoint
ASes has sizable customer cones.

Corollary 2. For PNEs there exists an upper bound for the size of the customer
cones of the ASes in Kr, or more formally PNE =⇒ maxu∈V (Kr) t(u) ≤ N(ϕp −
ϕr(|V (Kr)|−1) + 1).

Proof. The cost of a node u ∈ V (Kr) is ϕr(|V (Kr)|−1). However, if u leaves Kr

and creates only one customer-provider edge to another node in Kr, its cost would
change to N−t(u)

N
+ ϕp. Hence in PNE

ϕr(|V (Kr)|−1) ≤ N − t(u)

N
+ ϕp,∀u ∈ V (Kr), (6.3)

and thus
max

u∈V (Kr)
t(u) ≤ N(ϕp − ϕr(|V (Kr)|−1) + 1) (6.4)

Corollary 3. In the case of PNE there exists an upper bound for the size of Kr

independent from N , i.e. PNE =⇒ |V (Kr)|≤ ϕp+ϕr+1+
√

(ϕp+ϕr+1)2−4ϕr

2ϕr

Proof. According to Corollary 2

max
u∈V (Kr)

t(u) ≤ N(ϕp − ϕr(|V (Kr)|−1) + 1), (6.5)

and obviously

N

|V (Kr)|
= avgu∈V (Kr)t(u) ≤ max

u∈V (Kr)
t(u), (6.6)

hence
N

|V (Kr)|
≤ N(ϕp − ϕr(|V (Kr)|−1) + 1). (6.7)

Dividing by N and rearranging the inequality we get:

0 ≤ −ϕr|V (Kr)|2+(ϕp + ϕr + 1)|V (Kr)|−1, (6.8)

implying

|V (Kr)|≤
ϕp + ϕr + 1 +

√
(ϕp + ϕr + 1)2 − 4ϕr
2ϕr

(6.9)

The above theorems deliver the following high-level sketch of the AS topology as
a main intuitive message: (i) it is a Spider-like graph with a clique (of tier-1 ASes)
in the center and trees routed in the nodes of the clique, (ii) the peer edges appear
more likely between ASes having sizable customer cones, (iii) the size of the clique
is constrained by the maintenance cost of peer and customer-provider relationships
and (iv) the largest customer cone size in the nodes of the clique is also driven by
these maintenance costs.
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6.1.5 Discussion and double-checking against measurement
data

For validating our analytical results, we used the AS Relationships dataset of May
2012, provided by CAIDA [33]. Although this dataset received some criticism over
the last years, at this moment, no other sources of data are available containing
more accurate tracing of the peer and customer-provider edges at the AS level.

This dataset contains AS-AS relationships for 41203 ASes with 57158 peer and
83374 customer-provider edges, thus let us build a labeled AS graph. Regarding
Theorem 1 and 2 we investigated the existence of the Spider graph in two steps.
First, we followed the customer-provider relationships in a top-down manner pro-
ceeding from the top tier-1 clique and kept all the nodes we could reach, this way
we get a 92.5% node coverage which properly validates that the AS graph meets
the first two properties (clique inside and trees rooted on the nodes of the clique)
of Spider graphs. Secondly, we examined how typical for an AS C with peering
neighbors A and B that t(A)∩ t(B) = ∅. In other words, we calculated how typical
is that the customer cones of the peers of an AS are overlapping (this is the direct
checking of the third property of Spider graphs see Definition 3). For this, we ran-
domly sampled the measured AS graph by choosing 500000 (A, B) node pairs for
which CA,CB exists. In each sample, we drew AS C according to a degree-weighted
probability function, and then we picked the peering neighbors with a uniform nor-
mal distribution. Our results confirmed that more than 75% of the pairs (Fig. 6.6a)
have zero overlappings, and in other cases, the ratio of overlapping vanishes very
quickly. These results readily support our claim that the AS level Internet topology
is a Spider-like graph.
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(b) Peering likelihood between ASes as
the function of their customer cone size.

After that, as a next step, we measured the peering likelihood between two ASes
as a function of the minimum of their customer cone sizes. The AS graph dataset
of Fig. 6.6b shows the empirical probability that two ASes with a given minimum
customer cone size (min(t(A), t(B))) are in a peering relationship. The dataset
supports that the peering likelihood is in a high correlation with the customer cone
sizes of the ASes in the peering relationship.

Finally, we present a short argument illustrating our deductive predictions on
the maximum customer cone size and the max size of the tier-1 clique. For doing
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this, we used historical AS datasets from CAIDA. Based on the number of customer-
provider and peering relationships we have estimated ϕp = Nc1

#of c-p edges and ϕr =
Nc2

#of peer edges with c1 = 1.1 and c2 = 0.05. Using these values, we have computed
the results of our corresponding theorems and measured the maximal cone size and
tier-1 clique size as a function of time in the CAIDA datasets. Fig. 6.7a shows
that our rough estimation about the maximal customer cone size in the AS level
Internet approximates the measured one based on CAIDA snapshots at a reasonable
extent. Fig. 6.7b shows the prediction of our model regarding the size of the tier-1
clique. Although our simple formulae forecast a more increasing trend, the order of
magnitudes is quite the same in both cases.

As a discussion, we first call the reader to notice the complementary nature
of the deductive findings as opposed to the existing inductive models. While the
existing inductive models concentrate on degree distribution, clustering, diameter,
etc. the deductive reasoning give hints about spanning subgraphs, peering likelihood
and constraints on the size of different parts of the network. We also recall that
our deductive model is extremely simple and squeezes all maintenance cost related
quantities into two constants (ϕr, ϕp). In the light of this simplicity it is remarkable
that the model gives practically usable predictions regarding the size of the tier-1
clique and the maximal customer cone of an AS.

One may argue that the results coming out of our deductive analysis are some-
what weak and don’t say too much about the AS network. Such criticism may seem
to be all right at first, but we find to be important and interesting in itself that the
found topological peculiarities (summarized in Theorem 1,2,3 and Corollary 1,2,3)
are direct consequences of the used BGP policies and thus will be present on the AS
topology as far as these policies are at use. We believe that showing this causality
contributes to our very limited amount of information about the Internet AS level
topology. Finally, we note that more powerful premises can lead to more precise
deductive topology characterization in future works.
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6.2 The nature of the hierarchy in word networks

Everyday life is full of complex networked systems that humans recurringly navigate
on a daily basis (e.g., traveling between locations in a city using public transporta-
tion). The available navigational datasets [119, 54, 171, 87] and models [93, 169,
157, 2, 26, 49, 171, 87] considering networked systems mostly target uncovering
the average properties of a group of subjects and capture collective human behav-
ior. Moreover, in terms of human navigation, the existing experiments focus on
the dynamic process of learning to navigate, i.e., how people incrementally learn
an approximate map of the network. Thus, existing datasets do not have sufficient
data or appropriate tracing methods, permitting the analysis of long-term individual
patterns. Here, we analyze the results of an experiment [98] with human subjects
solving navigational tasks in a complex word-morph network. The recorded average
of 40.9 timely ordered paths from 259 subjects and more than 200 paths from 9
subjects make the analysis of individual human navigation patterns possible. In
contrast to existing studies, this amount of data enables the inference of character-
istics about the steady-state way in which people choose a path between endpoints
of a network after they have learned how to navigate the network in their particular
way. We argue that this routine navigation process is more valuable to investigate
since people use this approach on a daily basis. In the remainder of this text, we
refer to this steady-state navigation simply as human navigation.

The nodes of the word-morph network, from which we process the navigation
paths, are English words that are connected if they differ in only a single letter. In
this vast and complex network, human subjects are given navigational tasks, i.e.,
to reach a destination word from a starting word by changing only one letter at a
time, while still having meaningful words in intermediate states. Figure 6.8a shows
a sample fragment of the word-morph network and two solutions (a shortest path
and a human path) of the task with the starting word “yob” and destination word
“way”.

Network theoreticians across many disciplines[168, 170, 12, 124, 31] argue that
the shortest path, i.e., the path containing the minimal number of intermediate
steps in a network, between a source and a destination is a useful approximation of
the real paths between them. In contrast with these results, our study shows that
human subjects frequently apply detours, even in the long run. Our main finding is
that these detours are the consequences of how an individual interprets a complex
networked system on its level. We show that people tend to build up a significantly
simpler representation of the word-morph network in the form of a hierarchy in their
minds. A hierarchy is a way of interpreting an interconnection network by defining
a central node (or a set of nodes) and referring to all other nodes with positions
relative to, i.e., “above” or “below”, the central node. These hierarchies are then
used as helper structures when forming the paths in the network. In this work, we
will refer to these hierarchical helper structures simply as “scaffolds”.

As a result, real paths will be somewhat longer than the shortest alternatives,
but the detours will be characteristic to the individual taking them, as no two
individuals may abstract the same hierarchy of the network. Although existing
models are assuming latent hierarchical scaffolds aiding navigation [169, 55, 94, 49,
68, 81], this is the first study processing sufficient individual human navigation data
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Figure 1. An example and high-level statistics of our navigation experiment. Panel (a) shows a sample section of the network
of three-letter English words, in which two words are connected if they differ only in a single letter. When human subjects
solve a navigation task, they come up with a path from a randomly given starting word to a destination word by changing only a
single letter at each step such that they always obtain a valid intermediate English word. The red and green paths show a
shortest and a slightly detoured human solution from “yob” to “way”. Panel (b) presents the average time it takes for human
subjects to solve the n-th task in a row, while panel (c) shows the stretch of the human paths, i.e., the ratio of the length of the
paths found by human subjects to the length of the shortest possible path in the word-morph network. While the average time to
solve a task clearly decreases with the number of tasks solved, the stretch of the solutions stabilizes between 1.2 and 1.1. This
suggests that human subjects develop a specific strategy in the first few rounds, but after a few tens of solved tasks, their
strategy is not improved any further in terms of length. Therefore, they have a simplified interpretation of the network, and they
find their paths through this, only slightly faster as time elapses.
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Figure 6.8: An example and high-level statistics of our navigation experiment. Panel
(a) shows a sample section of the network of three-letter English words, in which
two words are connected if they differ only in a single letter. When human subjects
solve a navigation task, they come up with a path from a randomly given starting
word to a destination word by changing only a single letter at each step such that
they always obtain a valid intermediate English word. The red and green paths show
a shortest and a slightly detoured human solution from “yob” to “way”. Panel (b)
presents the average time it takes for human subjects to solve the n-th task in a row,
while panel (c) shows the stretch of the human paths, i.e., the ratio of the length
of the paths found by human subjects to the length of the shortest possible path in
the word-morph network. While the average time to solve a task clearly decreases
with the number of tasks solved, the stretch of the solutions stabilizes between 1.2
and 1.1. This suggests that human subjects develop a specific strategy in the first
few rounds, but after a few tens of solved tasks, their strategy is not improved any
further in terms of length. Therefore, they have a simplified interpretation of the
network, and they find their paths through this, only slightly faster as time elapses.

to visualize and analyze these individually created hierarchies.
We discuss that navigational scaffold hierarchies may boost the learning pro-

cess to navigate the word-morph network and reduce the memory requirement of
navigation by order of magnitude. Moreover, identifying the individual scaffold hier-
archies as the enablers of memory-efficient navigation in the word-morph network is
of particular importance since this may promote uncovering of navigational schemes
in other complex networked systems considering not only humans. Similar detours
have been identified in measurements capturing the collective behavior in networks
from diverse areas of life. Gao et al. showed that the paths of packets going through
the internet are also detoured to a non-negligible extent [69], and they showed that
the hierarchical policies of internet packet routing may be responsible for a major
proportion of inflation. Detours have been identified in road networks by Zhu et al.
[177] and in cattle pen systems by Grandin [73], while similar phenomena were also
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reported in airports [49, 150] and brain networks [8, 49].

6.2.1 Results

For our research, we use data from an experiment with a word-morph game applica-
tion for smartphones [65] (see Methods for details). The application collected 19828
paths from 259 human subjects navigating the word-morph network, and the corre-
sponding dataset was published in Scientific Data [98]. After cleaning the data from
paths not referring to steady-state navigation, by removing tasks that were either
unfinished, contained loops or took an extraordinarily long time (> 300 seconds) to
complete, our working dataset of paths was reduced to 10857 paths (for more details
about data filtering, see Methods). The word-morph network is a complex network
that is impossible for a human subject to keep fully in mind with its 1008 nodes
and 8320 edges. The values of the average degree (i.e., the average number of edges
emanating from the nodes), the diameter (the longest shortest path in the network)
and the clustering coefficient [170] of the network are 16.39, 9 and 0.44 respectively.
To attain a high-level impression about the performance of human navigation, we
have plotted the average time needed to solve the n-th task in a row in Figure 6.8-
b. We can see that after a few initial rounds, human subjects find a solution in
approximately 30 seconds on average, and from there on, they slowly improve to
approximately 20 seconds after solving 100 tasks. Notably, it is an intrinsically as-
tonishing finding that after a few rounds, people can find paths in this complex maze
very efficiently. Strikingly, the improvement in time does not imply that the paths
found are also shorter. In Figure 6.8-c, the stretch of human solutions is shown
compared to the shortest paths. The stretch of a path P is computed as the ratio
of the length of P to the length of the shortest path between identical starting and
destination words. In the example of Figure 6.8-a, the stretch of the human path
(green) is 5

4
= 1.25 compared to the shortest possible path (red). Figure 6.8-c shows

that although human subjects improve in terms of the time needed to solve a task,
the stretch of the paths they find stabilizes slightly below 1.2. Thus, the length of
the human paths seems not to converge to the length of the shortest path (i.e., to
stretch 1), and they always include some detours. A plausible explanation for this is
that human subjects develop some sub-optimal strategy through the course of the
game and use this strategy to solve upcoming tasks. The improvement in time only
means that the application of the same strategy becomes increasingly more effective.
Nevertheless, how can we characterize the strategy in use?

Panels a and b in Figure 6.9 illustrate how differently an algorithm implementing
shortest paths and a single human subject use the word-morph network to solve the
navigational tasks. The plots show only edges traversed more than two times in the
course of solving 1000 tasks. In the case of the shortest path algorithm, the usage of
edges is homogeneous. The algorithm has no clear concept or in-depth interpretation
of the word-morph network. It thus picks the paths mechanically without any sign of
favoring specific regions of the network. The selected human subject behaves quite
differently. The subject seems to have a clear concept of the network. The subject
structures the network in a subjective manner by identifying various regions and
places a larger emphasis on nodes and edges connecting these regions. A clear sign
of this structuring is that from the human solution, a hierarchical scaffold structure

81

dc_1742_20

Powered by TCPDF (www.tcpdf.org)



a

Shortest
Paths

b Human Paths

Scaffold

ads

aim

ain

ais

ait

ana

ane

ant

ape
apo

apt

are

arf
ark

arm

ars
art

ate

ava
aveaye

baa

ban
bapbat bee

ben

bin

bit

boa

bot

bra

dad

dam

den

did

dim

dit

dom

dot

eme emu

era

ereers

fil

fin

fit

hem

hen

hid

him

hin

hit

hon

hot

ids

lam

lat

let

lit

mim
mom

mon

nim

obe

oca
ole oraorb

oreors
ort

pan

pat

pea
pee

pen

pet

pia
pin

pit

pom

pot

ram

rat

rim

rin

rom

rot

run

sim

tae

tag

tam

tan

tao

tat

tet

tin

tit

tom

ton

wan

wat

way

wee

wen

why

win

wit

won

woo

wot

Vowel 
in 

the 
middle

Consonant in the middle

c

> 50
> 30
> 10
> 7
> 4
> 2

Figure 2. Structures behind human paths and shortest paths. Panel (a) shows how many times an edge is crossed after solving
1000 random tasks by using the shortest path between the source and target word. The almost homogeneous distribution of
edge crossings suggests that the entity using these paths does not have any form of understanding or interpretation of the
word-morph network; conversely, it mechanically picks paths. Human paths are quite the contrary. Panel (b) shows the edge
crossings of a single human subject when solving the same 1000 random tasks. The human solution appears to be highly
structured, suggesting that humans possess a characteristic concept of the word-morph network. The structure is very close to a
pure hierarchy. There is a clear scaffold that guides navigation, consisting of red, orange and green edges with a high number of
crossings. This scaffold shows that the human subject tends to simplify the problem and form a simpler and systematic,
although not necessarily optimal, strategy. From the sides of the network, where a navigation task starts, the human subject
tends towards the scaffold where a switch is performed to other sides of the network. How this particular scaffold is built up is
quite specific. Panel (c) shows the words in the middle of the scaffold. “Aim”, “art”, “arm” and “are” depict words where
consonants and vowels can be changed very effectively. In this case, the scaffold is used to switch between regimes of the
network based on the location of vowels and consonants.
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Figure 3. Properties of individual human scaffolds. Panel (a) shows the size of the human scaffolds compared to the shortest
path case. The human subjects’ behaviour clearly deviates from the shortest path algorithm, as they form sizeable navigational
scaffolds compared to shortest paths. The average degree of the scaffolds is close to approximately 2, as shown in panel (b);
thus, the structure is very close to trees. Panel (c) confirms that the scaffold is heavily used by human subjects when completing
the navigation tasks. We define usage simply as the sum of intersections between the subject’s paths and the scaffold. If we
denote the solutions of the subject as P1,P2 . . .PK , where K is the number of puzzles solved by the subject, then the usage of the
scaffold S is computed as ÂK

i=1 E(Pi)
T

E(S), where E(Pi) denotes the set of edges contained in Pi, while E(S) is the set of
edges in the scaffold. Panel (d) shows that the individual human scaffolds are indeed “individual” as the observed overlaps
between the subjects’ scaffolds is only 2.6% on average.
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Figure 6.9: Structures behind human paths and shortest paths. Panel (a) shows how
many times an edge is crossed after solving 1000 random tasks by using the shortest
path between the source and target word. The almost homogeneous distribution of
edge crossings suggests that the entity using these paths does not have any form of
understanding or interpretation of the word-morph network; conversely, it mechan-
ically picks paths. Human paths are quite the contrary. Panel (b) shows the edge
crossings of a single human subject when solving the same 1000 random tasks. The
human solution appears to be highly structured, suggesting that humans possess a
characteristic concept of the word-morph network. The structure is very close to a
pure hierarchy. There is a clear scaffold that guides navigation, consisting of red,
orange, and green edges with a high number of crossings. This scaffold shows that
the human subject tends to simplify the problem and form a simpler and systematic,
although not necessarily optimal, strategy. From the sides of the network, where a
navigation task starts, the human subject tends towards the scaffold where a switch
is performed to other sides of the network. How this particular scaffold is built up
is quite specific. Panel (c) shows the words in the middle of the scaffold. “Aim”,
“art”, “arm” and “are” depict words where consonants and vowels can be changed
very effectively. In this case, the scaffold is used to switch between regimes of the
network based on the location of vowels and consonants.

is formed (see Figure 6.9-b for an example). To capture this behavior, we focused
on subjects highly engaged with the game, thus producing enough data to examine
the navigation strategy they use deeply. We investigated subjects having more than
200 completed navigation tasks (9 subjects qualified for this). For these subjects,
we processed all the solutions of the navigational tasks and assigned weights to the
edges of the word-morph network, reflecting how many times they were used in the
solutions. We dropped the rarely used edges, for which the usage could be the result
of randomly choosing the source and destination words. From the remaining graph,
we took the largest component as the scaffold. In 90% of the cases, the scaffolds of
the human subjects were at least two times larger in size compared to the random
case, but in the majority of the cases, the human scaffolds were found to be an order
of magnitude larger (see Panel a in Figure 6.10).

Panel b of Figure 6.10 shows that the average degree of the scaffolds is approx-
imately 2 in the case of all subjects. This means that the scaffolds are tree-like
connected sub-networks of the original word-morph network. This result is fully in
line with the assumptions of existing hierarchical human navigational models[169,
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Figure 2. Structures behind human paths and shortest paths. Panel (a) shows how many times an edge is crossed after solving
1000 random tasks by using the shortest path between the source and target word. The almost homogeneous distribution of
edge crossings suggests that the entity using these paths does not have any form of understanding or interpretation of the
word-morph network; conversely, it mechanically picks paths. Human paths are quite the contrary. Panel (b) shows the edge
crossings of a single human subject when solving the same 1000 random tasks. The human solution appears to be highly
structured, suggesting that humans possess a characteristic concept of the word-morph network. The structure is very close to a
pure hierarchy. There is a clear scaffold that guides navigation, consisting of red, orange and green edges with a high number of
crossings. This scaffold shows that the human subject tends to simplify the problem and form a simpler and systematic,
although not necessarily optimal, strategy. From the sides of the network, where a navigation task starts, the human subject
tends towards the scaffold where a switch is performed to other sides of the network. How this particular scaffold is built up is
quite specific. Panel (c) shows the words in the middle of the scaffold. “Aim”, “art”, “arm” and “are” depict words where
consonants and vowels can be changed very effectively. In this case, the scaffold is used to switch between regimes of the
network based on the location of vowels and consonants.
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Figure 3. Properties of individual human scaffolds. Panel (a) shows the size of the human scaffolds compared to the shortest
path case. The human subjects’ behaviour clearly deviates from the shortest path algorithm, as they form sizeable navigational
scaffolds compared to shortest paths. The average degree of the scaffolds is close to approximately 2, as shown in panel (b);
thus, the structure is very close to trees. Panel (c) confirms that the scaffold is heavily used by human subjects when completing
the navigation tasks. We define usage simply as the sum of intersections between the subject’s paths and the scaffold. If we
denote the solutions of the subject as P1,P2 . . .PK , where K is the number of puzzles solved by the subject, then the usage of the
scaffold S is computed as ÂK

i=1 E(Pi)
T

E(S), where E(Pi) denotes the set of edges contained in Pi, while E(S) is the set of
edges in the scaffold. Panel (d) shows that the individual human scaffolds are indeed “individual” as the observed overlaps
between the subjects’ scaffolds is only 2.6% on average.
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Figure 6.10: Properties of individual human scaffolds. Panel (a) shows the size of the
human scaffolds compared to the shortest path case. The human subjects’ behavior
clearly deviates from the shortest path algorithm, as they form sizeable navigational
scaffolds compared to shortest paths. The average degree of the scaffolds is close
to approximately 2, as shown in panel (b); thus, the structure is very close to
trees. Panel (c) confirms that the scaffold is heavily used by human subjects when
completing the navigation tasks. We define usage simply as the sum of intersections
between the subject’s paths and the scaffold. If we denote the solutions of the
subject as P1, P2 . . . PK , where K is the number of puzzles solved by the subject,
then the usage of the scaffold S is computed as

∑K
i=1 E(Pi)

⋂
E(S), where E(Pi)

denotes the set of edges contained in Pi, while E(S) is the set of edges in the scaffold.
Panel (d) shows that the individual human scaffolds are indeed "individual," as the
observed overlaps between the subjects’ scaffolds are only 2.6% on average.

55, 94, 81]. Compared to the shortest paths, the edges of the scaffolds are heavily
used by the subjects (see Figure 6.10-c) with a very specific usage pattern. The
scaffold has a definite core of a few nodes, between which the usage of the edges
can exceed 50 in the particular example of Figure 6.9-b. This core behaves as a
switching device among different parts of the network and abstracts the individual’s
concept of the structure of the whole network. The scaffold is built up in a hier-
archical, tree-like fashion, as edge utilization drops when receding from the core.
In the course of navigating between words, subjects use the scaffold as a guiding
framework. Figure 6.9-c shows the words residing in the scaffold. In this example,
the network is clearly divided into regions based on the position of consonants and
vowels in words, and the core words are picked by the human subject in order to
switch effectively among these regions. Our results show that although these indi-
vidual scaffolds may have some similarities, every subject used a fairly unique set
of nodes and edges forming their hierarchical scaffolds (see supplementary Figure 1
for additional examples of personal scaffolds). This finding is readily supported by
Figure 6.10-d, which shows the percentage of overlap between all possible pairs of
scaffolds. The overlap for scaffolds i and j is computed according to the Jaccard
index over the sets of edges: E(Si)

⋂
E(Sj)

E(Si)
⋃
E(Sj)

, i.e., the ratio of edges present in both
scaffolds (E(Si) denotes the set of edges contained in scaffold i) to the edges in the
union of the scaffolds. Thus a network’s overlap with itself is practically 100%. One
can see that in the case of the scaffolds of the subjects, the average of the overlap is
minimal, approximately 2.6%, and the maximum overlap is only 7%.

To quantify the statistical significance of the results regarding the scaffolds, we
tested the null hypothesis that human paths can be explained by the shortest path
algorithm. To test this hypothesis, we generated 500 solutions with the random

83

dc_1742_20

Powered by TCPDF (www.tcpdf.org)



Parameters of fitting and p-values for scaffold sizes
# Wei. shape Wei. scale p-value
1 3.06 25.22 4.57E-62
2 3.09 12.83 0.00E+00
3 3.83 18.97 3.10E-03
4 4.14 16.38 3.56E-04
5 3.81 14.50 6.98E-149
6 4.07 5.16 2.61E-03
7 3.96 9.37 1.70E-304
8 3.26 9.99 3.05E-04
9 4.25 7.36 0.00E+00

Parameters of fitting and p-values for scaffold usages
# Wei. shape Wei. scale p-value
1 2.92 87.47 9.58E-202
2 2.86 25.26 0.00E+00
3 3.72 40.97 1.99E-03
4 4.19 38.74 4.78E-05
5 3.51 28.97 0.00E+00
6 3.18 8.60 2.84E-03
7 3.50 18.60 4.31E-298
8 2.89 19.50 1.05E-04
9 3.93 14.91 0.00E+00

Table 6.2: Statistical analysis of scaffold size and usage. The null hypothesis is that
the solutions of human subjects are random shortest paths. To test this hypothesis,
we generated 500 solutions with the random shortest path algorithm over the same
set of puzzles that the subjects solved. Parameters of the Weibull distributions fitted
to the scaffold sizes (left panel) and usages (right panel) and the p-value referring
to the null hypothesis are given for all the subjects.

shortest path algorithm over the same set of puzzles that the subjects solved. We
found that the distribution of scaffold sizes and usage can be nicely estimated with
a Weibull distribution (see Methods) in the case of all subjects. Table 6.2 shows the
parameters of the Weibull distributions fitted to the scaffold sizes and usages plus the
p-value indicating the tail probability that a scaffold of similar size and usage to the
human solution could be derived from randomly chosen shortest paths. The p-values
never exceed the alpha level of 0.05 and are extremely small in most of the cases,
meaning that we have to reject the null hypothesis with high statistical significance.
This substantiates the conclusion that the behavior of the human subjects cannot
be explained based on the shortest path algorithm.

The identification of the individual scaffold hierarchies as core switching devices
in the human interpretation of the word-morph network poses an intriguing question:
Why do we use them even after mastering our ability in the navigation task? Why
do we tolerate sub-optimal paths through these scaffold hierarchies and not strive
for shorter paths? Recall that detours in the subjects’ paths persisted even after
completing 100 navigation tasks. We argue that the reason behind this is related
to our information encoding and processing capabilities. In short, we build scaffold
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hierarchies while being satisfied with sub-optimal paths because this way, we do not
have to process every bit of information about a large and complex system, and we
can get away with an interpretation that is an order of magnitude simpler. To show
this, we use the following minimalist information-theoretic model inspired by our
results above. The word-morph network is represented by a graph G(N,E) defining
its nodes N and edges E.

For modeling human behavior, we use a simple tree hierarchy as a scaffold for
navigation. The construction of the hierarchy proceeds by picking the node with
the highest closeness centrality [18] and building the breadth-first search (BFS) tree
emanating from it. This BFS tree will be used as the scaffold. Inspired by the
information exchange algorithm well-fitted for hierarchically structured organiza-
tions [55], we define human navigation based on the scaffold hierarchy as follows:
(i) if the destination node is below the current node or its neighbors in the hierar-
chy, then we step to its closest superior or the destination itself provided that the
destination and the current nodes are connected; (ii) if the destination node is not
below the current node in the hierarchy, then we step to the current node’s direct
superior in the hierarchy. As an analogy, this simple navigation mechanism captures
that if somebody is my subordinate in the hierarchy or the subordinate of someone
that I know, then I know who is the closest to them among my acquaintances. If I
know nothing about the target, then I turn to my direct superior. Note that this
straightforward process gives only a possible way of using a very artificial scaffold,
the BFS tree. Our goal with analyzing this simplified navigation process is to en-
able the information-theoretic analysis of the paths formed by the usage of scaffolds.
Paths emanating from this simple model will clearly not match the paths used by
any of the subjects for multiple reasons. First, although scaffolds built by humans
are very similar to trees, they are not trees in many of the cases (see Fig. 6.10b).
Second, human scaffolds vary subject by subject and have only a minimal overlap
across subjects (see. Fig. 6.10d) and with the BFS hierarchy.

To characterize the complexity of implementing the paths provided by the short-
est path algorithm and human navigation, we approximate the required minimum
information in every node to decide which next step to take towards all destina-
tions in the word-morph network. Let us assign positive integers, i.e., 1,2,3 . . . , as
IDs to the nodes of the network. At each node x, we can represent the amount of
information needed to make the right choice by a node table Tx. At node x, this
node table has |N |−1 entries (where |N | is the number of nodes in the word-morph
network) belonging to all the nodes other than x, and each entry contains the ID
of a neighbor to take next towards a given destination. For example, a node table
T5 = (1, 2, 1, 2) tells us that at node 5, if we want to go toward node 1, 2, 3, 4, we
should take nodes 1, 2, 1, 2 as next steps, respectively. This node table implicitly
tells us that node 5 is connected to nodes 1 and 2 and that, in this example, the
network has five nodes. Now, tables Tx,∀x ∈ N contain all the information required
to implement the given paths between arbitrary pairs of nodes in the word-morph
network. To approximate how many bits of information are needed to store these
tables in memory, we compute their empirical Shannon entropy[154], defined as
H0(Tx) =

∑
c∈Σ

nc
n

log n
nc
, where Σ denotes the set of different numbers in Tx, while

n and nc represent the length of TX and the number of occurrences of each number
c ∈ Σ in Tx, respectively. Then,

∑
x∈N H0(Tx)

n
yields the global per node entropy to

85

dc_1742_20

Powered by TCPDF (www.tcpdf.org)



implement the paths.
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Figure 4. Comparison of stretch and entropy of various paths. Shortest paths clearly have a stretch of 1, but this optimality
comes at a price of high entropy, i.e., a high memory requirement for storage. Hierarchies 1-7 show the very efficient
stretch-entropy tradeoff if we memorize only 1-7 uplinks in the simplest BFS hierarchy. The decentralized In-and-Out hierarchy
with one direct superior, based on the highest closeness centrality, is a sweet spot in this tradeoff space. This simulates the case
when people know all subordinates in the network but remember only one superior closest to the centre of the network. It
provides a realistic stretch, but the required entropy is an order of magnitude lower than that in the shortest path case.

Figure 5. Shortest and hierarchically guided paths in the word network. Learning only the shortest paths between the words
pit and aye and between pit and emu makes us conclude that the word aye is 7 nodes away from emu. However, with a
hierarchical scaffold, a four-node path between aye and emu can be found even though both of the paths between pit and aye
and between pit and emu are longer through the scaffold than through the shortest possible path.

Figure 6. Learning curves in the word-morph network. Panel (a) shows the size of the giant component vs. the number of
paths learned according to various learning scaffolds. Using the shortest paths as the scaffold yields sporadic knowledge about
the network, especially in the initial steps of learning, since the size of the giant component is very low compared to the other
scaffolds. The most integrated knowledge about the network is given by the simplest Hierarchy 1 in the initial steps of learning.
The inset of panel (b) shows that after learning only approximately 700 paths, one can infer valid paths between 90% of all
possible node pairs using either the shortest path or hierarchical scaffolds. In this exploration phase, learning based on shortest
paths seems to be quite inefficient, as the stretch can even reach 3. In this phase, the simplest hierarchical scaffold yields the
shortest established path on average. Only in the improvement phase, in which no significant new parts of the word-morph
network are explored, is the relation is reversed. The entropy of the paths is shown in panel (c). The exploration phase shows
no difference among the scaffolding schemes; however, in the improvement phase, the entropy of the hierarchical scaffolds is
much lower compared to the shortest paths.

Figure 7. The main screen of the fit-fat-cat application.

Figure 8. Goodness of fit of the Weibull distribution to the scaffold sizes given by the random shortest path algorithm over the
puzzles of subject 4.
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Figure 6.11: Comparison of stretch and entropy of various paths. Shortest paths
clearly have a stretch of 1, but this optimality comes at a price of high entropy, i.e., a
high memory requirement for storage. Hierarchies 1-7 show the very efficient stretch-
entropy tradeoff if we memorize only 1-7 uplinks in the simplest BFS hierarchy. The
decentralized In-and-Out hierarchy with one direct superior, based on the highest
closeness centrality, is a sweet spot in this tradeoff space. This simulates the case
when people know all subordinates in the network but remember only one superior
closest to the center of the network. It provides a realistic stretch, but the required
entropy is an order of magnitude lower than that in the shortest path case.

In Figure 6.11, the required information for implementing the shortest paths
and hierarchical paths in the word-morph network are shown. Shortest paths have
a stretch of one, but the price of this is high entropy, as approximately 3.18 bits per
node are required to store the shortest paths in the node tables (see the Shortest
Path column on the left of Figure 6.11). Navigation with the simple BFS scaffold
has an order of magnitude less (approximately 0.83 bits per node) entropy (see the
Hierarchy 1 column of Figure 6.11), but hierarchically guided paths are much longer;
they have a stretch of 1.46. Recall that our results with human subjects indicate
a stretch slightly below 1.2. Hierarchy 2, 3 and 7 columns in Figure 6.11 stand for
a slightly modified version of the BFS hierarchy in which we do not have strictly
one direct superior but can have links to at most 2, 3, and 7 superiors in the BFS
tree, respectively. These hierarchies are no longer trees, but they are still as sparse
as the human scaffolds. These modifications readily illustrate that there is a clear
tradeoff between stretch and entropy. Having to remember more superiors reduces
the stretch but inevitably increases the complexity. Nevertheless, with hierarchy 7,
a stretch of 1.14 is achievable at the cost of only 2.32 bits of memory per node.
These results readily illustrate that even the most rudimentary scaffold guiding
navigation can achieve an effective stretch-entropy tradeoff. However, BFS scaffolds
are constructed in a centralized fashion and rely on global information about the
network, which is not realistic. A more realistic decentralized scaffold with only one
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direct superior yields a sweet spot in this tradeoff space while being computable with
local algorithms [175]. In this hierarchy, called In-or-Out, every node’s superior is
the neighbor lying in the most central location in the network in terms of closeness
centrality. This simple, local strategy can provide a very low stretch for an order
of magnitude less entropy compared to the shortest paths. This is because the
In-or-Out hierarchy is aware of the neighbors’ centrality; thus, every node’s direct
superior is a neighbor that is closest on average to any other node in the network.
Interestingly, the In-or-Out hierarchy stretch is close to what we have observed with
human subjects.
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Figure 4. Comparison of stretch and entropy of various paths. Shortest paths clearly have a stretch of 1, but this optimality
comes at a price of high entropy, i.e., a high memory requirement for storage. Hierarchies 1-7 show the very efficient
stretch-entropy tradeoff if we memorize only 1-7 uplinks in the simplest BFS hierarchy. The decentralized In-and-Out hierarchy
with one direct superior, based on the highest closeness centrality, is a sweet spot in this tradeoff space. This simulates the case
when people know all subordinates in the network but remember only one superior closest to the centre of the network. It
provides a realistic stretch, but the required entropy is an order of magnitude lower than that in the shortest path case.
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Figure 5. Shortest and hierarchically guided paths in the word network. Learning only the shortest paths between the words
pit and aye and between pit and emu makes us conclude that the word aye is 7 nodes away from emu. However, with a
hierarchical scaffold, a four-node path between aye and emu can be found even though both of the paths between pit and aye
and between pit and emu are longer through the scaffold than through the shortest possible path.
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Figure 6.12: Shortest and hierarchically guided paths in the word network. Learning
only the shortest paths between the words pit and aye and between pit and emu
makes us conclude that the word aye is 7 nodes away from emu. However, with
a hierarchical scaffold, a four-node path between aye and emu can be found even
though both of the paths between pit and aye and between pit and emu are longer
through the scaffold than through the shortest possible path.

In addition to simplifying the process of navigation, scaffold hierarchies can boost
learning the structure of an unknown network by observing its paths. To show this,
we use a straightforward incremental model where, in every step, we show a single
path connecting randomly chosen nodes and compare the reconstructed network
structure and the efficiency of navigation based solely on the given paths to the
original network. Fig. 6.12 illustrates the steps of this learning process for the
cases in which we show paths according to shortest or hierarchical scaffolds from
the word-morph network. In the first case, we show the shortest paths between
the words “aye” and “pit” (green) and between “pit” and “emu” (olive), and based
solely on this knowledge, one may implicitly deduce a path from “aye” to “emu”
traversing six nodes. Alternatively, showing paths using hierarchical scaffold yields
somewhat longer paths (red). However, one can see that the newly gained path
between “aye” and “emu” leads to a substantially shorter path requiring only three
intermediate nodes. In Fig. 6.13, the integrity and the stretch and entropy footprint
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of the various learning scaffolds are shown when we continue simulating the learning
process up to 2000 paths with a computer program (see Methods for details). In
panel (a), the size of the giant component in the network reconstructed from the
paths is shown as a function of learned paths. The shortest path scaffold provides
only very sporadic knowledge about the network in the initial (0 − 120) learning
steps, as the size of the giant component hardly grows with the number of learned
paths. The most integrated knowledge is provided by the most simple scaffold of
Hierarchy 1. In panel (b), we can clearly distinguish between two phases of the
learning process. Until approximately 700 paths, rough exploration of the nodes
and possible connections in the network occurs. According to the inset of the panel,
by the end of this exploration phase, one can connect more than 90% of all possible
node pairs in the case of all scaffolds. Using the shortest paths as learning scaffolds,
we can find only very long paths in the exploration phase, as the average stretch can
exceed even 3. Interestingly, if paths are picked according to a hierarchical scaffold,
we can obtain paths with a lower stretch as the scaffold becomes increasingly simpler,
i.e., the number of direct superiors decreases. In the case of the simplest one-superior
case, the stretch is very stable at approximately 1.5. Therefore, in the exploration
phase, one can learn reasonable paths much faster if paths are given according to a
hierarchical scaffold. After the exploration phase, we do not explore new territories
of the word-morph network; what we do is only improve our knowledge. In this
improvement phase, the shortest path scaffold takes the lead over the hierarchical
scaffolds, yielding the best stretch values. The price of being better in stretch is a
higher entropy, as can be seen in panel (c): The entropy of the scaffolds is similar
in the exploration phase; however, as the number of paths learned increases, the
entropy of the simplest Hierarchy 1 scaffold starts to decrease substantially, while
the shortest path one continues to increase almost linearly.

6.2.2 Discussion

Although this study concentrates on a networked system, the underlying problem of
human navigation in the word-morph network seems even more interesting in light
of the fact that the current explanations of physical navigation tend to apply models
considering the graph-like abstraction of the surrounding physical environment. In
fact, there is an ongoing debate about whether we build a detailed cognitive map
or a much simpler cognitive graph of the possible physical choice points [129, 42]
inside our head. Furthermore, recent studies reported major correlations between
the navigation and learning skills of humans [128, 122], while others went even fur-
ther and investigated the possibility that navigation in cognitive spaces may lie at
the core of any form of organized knowledge and thinking [20, 58, 19]. The word-
morph network is a special mixed system over which navigation relies strongly on
domain-general mechanisms since both spatial, manifested in the Hamming distance
between words, and cognitive, i.e., the function and meaning of the words, dimen-
sions contribute to the formation paths. Thus promising speculation is that the
identification of individual scaffolds guiding human navigation in the word-morph
network may contribute to a better understanding of how humans structure, encode
and navigate through cognitive spaces.

The empirical confirmation of individual scaffold hierarchies may also, help re-
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Figure 6. Learning curves in the word-morph network. Panel (a) shows the size of the giant component vs. the number of
paths learned according to various learning scaffolds. Using the shortest paths as the scaffold yields sporadic knowledge about
the network, especially in the initial steps of learning, since the size of the giant component is very low compared to the other
scaffolds. The most integrated knowledge about the network is given by the simplest Hierarchy 1 in the initial steps of learning.
The inset of panel (b) shows that after learning only approximately 700 paths, one can infer valid paths between 90% of all
possible node pairs using either the shortest path or hierarchical scaffolds. In this exploration phase, learning based on shortest
paths seems to be quite inefficient, as the stretch can even reach 3. In this phase, the simplest hierarchical scaffold yields the
shortest established path on average. Only in the improvement phase, in which no significant new parts of the word-morph
network are explored, is the relation is reversed. The entropy of the paths is shown in panel (c). The exploration phase shows
no difference among the scaffolding schemes; however, in the improvement phase, the entropy of the hierarchical scaffolds is
much lower compared to the shortest paths.

Figure 7. The main screen of the fit-fat-cat application.
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Figure 6.13: Learning curves in the word-morph network. Panel (a) shows the
size of the giant component vs. the number of paths learned according to various
learning scaffolds. Using the shortest paths as the scaffold yields sporadic knowledge
about the network, especially in the initial steps of learning, since the size of the
giant component is very low compared to the other scaffolds. The most integrated
knowledge about the network is given by the simplest Hierarchy 1 in the initial steps
of learning. The inset of panel (b) shows that after learning only approximately 700
paths, one can infer valid paths between 90% of all possible node pairs using either
the shortest path or hierarchical scaffolds. In this exploration phase, learning based
on shortest paths seems to be quite inefficient, as the stretch can even reach 3. In
this phase, the simplest hierarchical scaffold yields the shortest established path
on average. Only in the improvement phase, in which no significant new parts of
the word-morph network are explored, is the relation is reversed. The entropy of
the paths is shown in panel (c). The exploration phase shows no difference among
the scaffolding schemes; however, in the improvement phase, the entropy of the
hierarchical scaffolds is much lower compared to the shortest paths.

solve known anomalies in modeling human navigation behavior in networks. Human
paths over networks are reported to exhibit non-negligible memory [150, 153, 158],
which leads to problems when applying first-order Markov chains to approximate
paths in spreading dynamics and community detection [150]. Individual scaffold
hierarchies explain the source of these anomalies, as the next step of hierarchically
guided paths depends on nodes visited previously by the given individual. Build-
ing on the assumption of hierarchical scaffolds behind network paths, we may be
able to refine higher-order Markov models, which may bring us closer to a better
understanding of how real systems are organized and function.

6.2.3 Methods

Dataset – For our study, we have used the dataset collected by a smartphone ap-
plication called "fit-fat-cat" running on the Android platform. The dataset [98] is
published in Scientific Data, with the appropriate ethical consent. Here, we sum-
marize the data collection process; for a detailed description of the experiment,
consult [98]. The application is available from the Google Play store [65]. When a
subject starts a navigational task, the source and destination words are generated
randomly from all possible three-letter English words. The source and destination
words are displayed in a box (see Figure 6.14). Below this box, the list of words
that the subject visited so far in that particular task is shown. When starting a new
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task, the list contains only the source word. The subject can enter the consecutive
words in a user-friendly manner by using a virtual keyboard of the phone. First, the
subject selects the letter to change, then chooses the new letter with the keyboard.
After changing a letter, the app automatically adds the new word to the list. In
this way, the subjects can see which words they have already tackled when solving
a particular navigation task. A task may end in three ways. If the subject reached
the target word through such one-letter transformations, then the task is solved.
In this case, the word becomes green-colored to show the end of the task. Second,
the subject can give up the task by pressing the "new game" button. In this case,
the subject acquires the next task automatically. Finally, the subject can press the
"magic wand" button. In this case, a possible (shortest path) solution of the task
is shown before starting a new task. No matter how the task is ended, the list of
words is anonymously submitted to our database stored in the cloud. Due to the
scale of the experiment, we couldn’t control the external conditions under which
the subjects carried our the solutions, apart from standard software checking of the
validity of the subjects’ inputs. For more details, see [98].

Figure 6.14: The main screen of the fit-fat-cat application.

Detecting an individual scaffold requires a relatively high number of completed
navigation tasks. Completing many puzzles can be a very tedious and repetitive
task. Doing this in a single row (e.g., in a paid, controlled experiment during which
the subject can concentrate from the beginning to the end) is arguably unfeasible.
Luckily, 9 of the subjects found the game interesting enough to solve more than 200
puzzles. Thus it is not the number of subjects that are uniquely large in the dataset,
but the number of paths collected from a single subject.
Path filtering – Instead of focusing on the dynamic process of how we learn to
navigate, i.e., how we learn an approximate picture of the network by exploration,
we concentrate on the way people routinely choose paths in a network after they
have developed an individual path selection strategy. In this steady state, subjects
do not explore the network or wander around; they solve the puzzle by routine.
To analyze this steady-state behavior, we have to drop all unfinished paths, paths
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taking too much time to complete and loops from the dataset. Of the recorded 19828
paths, we dropped 8177 because they did not reach the target for some reason, 712
paths because the time to solve the puzzle was unusually large (> 300 seconds),
which raises the question of if the subjects concentrated on the puzzle, and only 352
paths (1.7% of the total paths) because they contained loops.
Weibull fitting to the random shortest path algorithm – The scaffold sizes
and usages of the random shortest path algorithm can be well-estimated with a
two-parameter Weibull distribution. As an illustration, we verify the goodness of
the fit for the puzzle set of subject 4 in Fig. 6.15. The results for the other subjects
are highly similar.

Figure 7. The main screen of the fit-fat-cat application.
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Figure 8. Goodness of fit of the Weibull distribution to the scaffold sizes given by the random shortest path algorithm over the
puzzles of subject 4.
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Figure 6.15: Goodness of fit of the Weibull distribution to the scaffold sizes given
by the random shortest path algorithm over the puzzles of subject 4.

Computer simulations – For the investigation of the incremental learning of a
network via its paths, we have written a simulator in the Python programming
language. In the beginning, the simulator reads the network N . After that, it
iteratively picks random pairs from the network and computes the shortest and
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hierarchical paths between them according to the given BFS hierarchy. At each
iterative step, the current knowledge about the network is the union of nodes and
edges contained in the previous iterations. Therefore, at step t, the knowledge
about the network is a graph Gt(V,E); then, after adding a path Pt, it is extended
to Gt+1 = Gt

⋃
Pt. The simulator computes the required entropy and stretch of the

paths in Gt compared to the shortest paths in N every 50 steps. We note that we
have run the simulations beyond 2000 paths, but the relative positions of the stretch
and entropy plots of the algorithms remain the same in that regime.
Data Availability – The data supporting the findings of this study are available
from the “fit-fat-cat” public Open Science Framework data repository [99] and de-
scribed in detail in [98].
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Chapter 7

Conclusion

Which was first the chicken or the egg? In this dissertation, we have studied a
question very similar in spirit. What is first, the network, or the paths? Our work
points out that there is a compelling co-evolution between the network structure and
the operational paths taken by entities using the network for transferring many kinds
of information. We have seen that operational paths are not necessarily shortest
paths. Paths are thus not mechanical results of an algorithm working over the
network. Real paths are the results of a non-trivial path selection process serving
as the main function of the network. We have studied the consequences of two
classes of path selection hypotheses on the structure of the network by using a new
approach called function→structure analysis.

The function→structure analysis of navigable networks, which are navigable by
distributed greedy search algorithms guided by the metric space underlying the
network, yielded a whole new way of generating realistic complex networks. For-
malizing the function→structure analysis as a game-theoretical problem, we have
been able to characterize the properties of networks, ensuring maximal navigability
in hyperbolic and euclidean spaces. The hyperbolic navigation game results yielded
very realistic, complex network structures with a scale-free degree distribution, small
diameter, and high clustering coefficient. Interestingly, applying the model on the
three-dimensional coordinates showing the location of various parts of the human
brain obtained by MRI, yielded edges present in the real human brain with very high
probability, in the form of dense neural connections. On top of the basic structural
features, our analysis located the edges critical for navigability. The collection of
critical edges constitute the greedy frame, which has to be included as a subgraph
in any network ensuring maximal navigability over a given metric space. We have
shown that adding a small subset of the greedy frame, missing from a real navigable
network, can dramatically increase the navigability of the original network.

Numerous real networks exhibit hierarchical structure, and the connections be-
tween the nodes reflect relationships concerning the hierarchy. Social and orga-
nizational networks are clearly hierarchical, but the most pathological example of
hierarchical networks is the Internet, which is the interconnection system of internet
providers and customers. The path selection process on the Internet is also formu-
lated in terms of the customer-provider hierarchy. Our function→structure study
of the Internet revealed a complementary insight to hierarchical complex networks.
We have shown that the path selection function used on the Internet requires a well-
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defined subgraph to be present to provide policy-compliant paths between arbitrary
Internet domains. Our analysis also explained some rules of thumbs. The peer-
ing likelihood and the possible customer cone sizes of peering ASs are well-known
by Internet practitioners. Still, this work proves a theoretical connection between
the applied path selection policy and these structural features of the network. We
have also shown by real measurements that navigation in real networks is aided by
hierarchical subgraphs, or scaffolds of the network.

The mechanisms of path selection and its connection with the very structure
of the network is not well-understood at this moment. We argue that the in-depth
understanding of the interaction between function and structure is inevitable for the
deeper understanding and controlling the behavior of the networks surrounding us.
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Chapter 8

Summary of New Results

The new results, in this work, can be divided into three groups. The first group
contains the fundamentals of the function→structure approach to networks. The
second and third groups unfold the steps of the function→structure analysis of
networks, concerning two specific routing mechanisms, as functions.

1. Fundamentals of the function→structure approach to net-
works

Thesis 1.1 ([49, 79]). By the analysis of measurements regarding paths in networks
from various areas of life (Internet, biology, air transportation, words), I have shown
that, contrary to the most popular assumption, the computation of routes in networks
is not due to the shortest path method.

Thesis 1.2 ([76, 77, 75, 78, 162]). I have developed a game-theoretic model capable
of handling the possible navigation schemes flexibly and unfolding their effects on
the structure of the network, as follows.

The possible strategies of node u ∈ P is to create a set of edges: Su = 2P\{u}.
The strategy vector s = (s0, s1 . . . sN−1) ∈ (S0, S1 . . . SN−1) of all the nodes defines
the G(s) graph as: G(s) =

⋃N−1
i=0 (i× si). The cost function of node u is:

cu =
∑

∀u6=v

dG(s)(u, v) + k(su), u, v ∈ P (8.1)

where dG(s)(u, v) is the communication cost from u to v over G(s), and k(su) is the
cost of implementing the edges in su.

2. The function→structure analysis of navigable networks

Thesis 2.1 ([76]). I have shown analytically that the network navigation game
(NNG) contains a so-called greedy frame, which is present in all possible equilibrium
states. Using analytical methods, I have given the connection probabilities between
all possible node pairs in the greedy frame, which is a lower bound on the connection
probability in the equilibrium state. I have given an upper bound on the connection
probability analytically. Using the lower and upper bounds, I have given a general
formula for the connection probability in the equilibrium state.
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Thesis 2.2 ([76]). I have shown analytically that the equilibrium network of the
network navigation game (NNG) is sparse (average degree < 4), which is in good
agreement with the observations in real complex networks. I have proven analytically
that the equilibrium network’s degree distribution is a power-law (γ = 3) in the case
of the homogeneous sprinkling of the nodes. I have shown analytically that a non-
homogeneous sprinkling of the nodes can adjust the exponent of the power-law. I
have shown via simulations that the (γ ≈ 2) case gives the lowest cost while the
network is maximally navigable. I have shown with analytic approximations, that
the clustering coefficient of the network is high (c̄ ≈ 0.45).

Thesis 2.3 ([76]). I have shown, by the analysis of real metrically embedded net-
works (air transportation network, human brain network, word network, Internet),
that 70-90% the edges (depending on the network) of the greedy frame and the equi-
librium network of the network navigation game (NNG) is also present in the real
network. I have shown via simulations that the NNG can identify the critical edges,
which addition or removal from the network results in the significant improvement
or deterioration of navigability.

3. Navigation and hierarchy

Thesis 3.1 ([162, 161]). I have shown analytically that the equilibrium state of
the hierarchical network game (HNG) always contains a Spider graph, which is the
topological consequence of the valley-free and local preference routing policies. I have
shown that the model correctly predicts that peer edges appear between providers
having a similar number of customers. I have validated the conclusions of the model
via Internet measurements.

Thesis 3.2 ([49, 79, 98, 99, 65]). I have shown by the analysis of time series recorded
from human subjects, that there is an underlying hierarchy guiding human naviga-
tion in complex networked systems. I have shown that humans tend to simplify the
navigation process by using a tree-like hierarchical subgraph (a scaffold) instead of
the whole network.

Thesis 3.3 ([79, 98, 99]). I have shown via entropy calculations that navigation
based on hierarchical scaffolds can reduce the memory requirement of navigation by
order of magnitude and speed up the process of learning to navigate a network from
scratch compared to the shortest paths.

96

dc_1742_20

Powered by TCPDF (www.tcpdf.org)



Bibliography

[1] M. Abramovitz and I. Stegun. Handbook of Mathematical Functions. Courier
Dover Publication, 1965 (cit. on pp. 44, 48).

[2] Lada A Adamic et al. “Search in power-law networks”. In: Physical review E
64.4 (2001), p. 046135 (cit. on pp. 21, 79).

[3] Bernhard Ager et al. “Anatomy of a large European IXP”. In: ACM SIG-
COMM Computer Communication Review 42.4 (2012), pp. 163–174 (cit. on
p. 71).

[4] S. Albers et al. “On Nash equilibria for a network creation game”. In: Proc.
of SODA’06. 2006, pp. 89–98 (cit. on pp. 20, 28).

[5] Reka Albert and A.-L. Barabási. “Statistical Mechanics of Complex Net-
works”. In: Rev Mod Phys 74 (2002), pp. 47–97. doi: 10.1103/RevModPhys.
74.47 (cit. on p. 13).

[6] Réka Albert, Hawoong Jeong, and Albert-László Barabási. “Error and attack
tolerance of complex networks”. In: nature 406.6794 (2000), p. 378 (cit. on
p. 71).

[7] E. Anshelevich et al. “The Price of Stability for Network Design with Fair
Cost Allocation”. In: Proc. of FOCS’04. 2004, pp. 295–304 (cit. on pp. 20,
28).

[8] Andrea Avena-Koenigsberger et al. “A spectrum of routing strategies for
brain networks”. In: PLoS computational biology 15.3 (2019), e1006833 (cit.
on p. 81).

[9] Daniel Awduche et al. Overview and principles of Internet traffic engineering.
Tech. rep. 2002 (cit. on p. 71).

[10] A.-L. Barabási and Reka Albert. “Emergence of Scaling in Random Net-
works”. In: Science 286 (1999), pp. 509–512. doi: 10.1126/science.286.
5439.509 (cit. on p. 13).

[11] Albert-László Barabási and Réka Albert. “Emergence of scaling in random
networks”. In: science 286.5439 (1999), pp. 509–512 (cit. on pp. 14, 18, 19).

[12] Albert-Laszlo Barabasi and Zoltan N Oltvai. “Network biology: understand-
ing the cell’s functional organization”. In: Nature reviews genetics 5.2 (2004),
p. 101 (cit. on p. 79).

[13] Albert-László Barabási and Zoltán N Oltvai. “Network biology: understand-
ing the cell’s functional organization.” In: Nat. Rev. Genet. 5.2 (Feb. 2004),
pp. 101–13. doi: 10.1038/nrg1272 (cit. on p. 25).

97

dc_1742_20

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.1038/nrg1272


[14] A. Baronchelli et al. “Networks in Cognitive Sciences”. In: Trends in Cognitive
Sciences 17.7 (2013), pp. 348–360 (cit. on p. 64).

[15] Alain Barrat, Marc Barthelemy, and Alessandro Vespignani. Dynamical pro-
cesses on complex networks. Vol. 1. Cambridge University Press Cambridge,
2008 (cit. on p. 25).

[16] Alain Barrat and Martin Weigt. “On the properties of small-world network
models”. In: The European Physical Journal B-Condensed Matter and Com-
plex Systems 13.3 (2000), pp. 547–560 (cit. on p. 18).

[17] Marc Barthélemy et al. “Velocity and hierarchical spread of epidemic out-
breaks in scale-free networks”. In: Phys. Rev. Lett. 92.17 (2004), p. 178701
(cit. on p. 25).

[18] Alex Bavelas. “Communication patterns in task-oriented groups”. In: The
Journal of the Acoustical Society of America 22.6 (1950), pp. 725–730 (cit.
on p. 85).

[19] Timothy EJ Behrens et al. “What is a cognitive map? Organizing knowledge
for flexible behavior”. In: Neuron 100.2 (2018), pp. 490–509 (cit. on pp. 25,
88).

[20] Jacob L. S. Bellmund et al. “Navigating cognition: Spatial codes for hu-
man thinking”. In: Science 362.6415 (2018). issn: 0036-8075. doi: 10.1126/
science.aat6766. eprint: http://science.sciencemag.org/content/
362/6415/eaat6766.full.pdf. url: http://science.sciencemag.org/
content/362/6415/eaat6766 (cit. on pp. 25, 88).

[21] Davide Bilò et al. Geometric Network Creation Games. Apr. 2019 (cit. on
p. 20).

[22] N. Bleistein and R.A. Handelsman. Asymptotic Expansions of Integrals. Dover
Publications (New York), 1986 (cit. on p. 48).

[23] S Boccaletti et al. “Complex Networks: Structure and Dynamics”. In: Phys.
Rep. 424 (2006), pp. 175–308. doi: 10.1016/j.physrep.2005.10.009 (cit.
on p. 63).

[24] M. Boguna. “Class of correlated random networks with hidden variables”. In:
Phys. Rev. E 68 (3 2003), pp. 1–13 (cit. on p. 45).

[25] M. Boguna, F. Papadopoulos, and D. Krioukov. “Sustaining the Internet with
hyperbolic mapping”. In: Nat Comm 1.6 (2010), pp. 1–8 (cit. on pp. 25, 67,
71).

[26] Marian Boguna, Dmitri Krioukov, and Kimberly C Claffy. “Navigability of
complex networks”. In: Nature Physics 5.1 (2009), p. 74 (cit. on pp. 21, 25,
31, 53, 71, 79).

[27] Marián Boguñá, Fragkiskos Papadopoulos, and Dmitri Krioukov. “Sustaining
the Internet with Hyperbolic Mapping”. In: Nat. Comms. 1 (2010), p. 62. doi:
10.1038/ncomms1063 (cit. on p. 65).

[28] Marián Boguñá and Romualdo Pastor-Satorras. “Class of Correlated Random
Networks with Hidden Variables”. In: Phys. Rev. E 68 (2003), p. 36112. doi:
10.1103/PhysRevE.68.036112 (cit. on p. 45).

98

dc_1742_20

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1126/science.aat6766
https://doi.org/10.1126/science.aat6766
http://science.sciencemag.org/content/362/6415/eaat6766.full.pdf
http://science.sciencemag.org/content/362/6415/eaat6766.full.pdf
http://science.sciencemag.org/content/362/6415/eaat6766
http://science.sciencemag.org/content/362/6415/eaat6766
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1038/ncomms1063
https://doi.org/10.1103/PhysRevE.68.036112


[29] Béla Bollobás. “Random graphs”. In: Modern graph theory. Springer, 1998,
pp. 215–252 (cit. on pp. 14, 19).

[30] E Bullmore and O Sporns. “Complex Brain Networks: Graph Theoretical
Analysis of Structural and Functional Systems”. In: Nat. Rev. Neurosci. 10
(2009), pp. 168–198. doi: 10.1038/nrn2575 (cit. on p. 25).

[31] Ed Bullmore and Olaf Sporns. “Complex brain networks: graph theoretical
analysis of structural and functional systems”. In: Nature Reviews Neuro-
science 10.3 (2009), p. 186 (cit. on p. 79).

[32] Guo C. et al. “BCube: a high performance, server-centric network architecture
for modular data centers”. In: ACM SIGCOMM CCR 39.4 (2009), pp. 63–74
(cit. on p. 25).

[33] CAIDA. The CAIDA project. http://www.caida.org (cit. on pp. 71, 77).

[34] Leila Cammoun et al. “Mapping the human connectome at multiple scales
with diffusion spectrum MRI”. In: Journal of neuroscience methods 203.2
(2012), pp. 386–397 (cit. on p. 22).

[35] José A Capitán et al. “Local-based semantic navigation on a networked rep-
resentation of information”. In: PLoS ONE 7.8 (Jan. 2012), e43694. doi:
10.1371/journal.pone.0043694 (cit. on p. 25).

[36] Cécile Caretta Cartozo and Paolo De Los Rios. “Extended Navigability of
Small World Networks: Exact Results and New Insights”. In: Phys. Rev. Lett.
102.23 (June 2009), p. 238703. doi: 10.1103/PhysRevLett.102.238703 (cit.
on p. 25).

[37] Jean M Carlson and John Doyle. “Highly optimized tolerance: A mecha-
nism for power laws in designed systems”. In: Physical Review E 60.2 (1999),
p. 1412 (cit. on pp. 14, 19).

[38] Claudio Castellano and Romualdo Pastor-Satorras. “Competing activation
mechanisms in epidemics on networks”. In: Scientific reports 2 (2012), p. 371
(cit. on p. 71).

[39] Miguel Castro et al. “Topology-aware routing in structured peer-to-peer over-
lay networks”. In: Future directions in distributed computing. Springer, 2003,
pp. 103–107 (cit. on p. 71).

[40] Dante Chialvo. “Emergent complex neural dynamics”. In: Nat. Phys. 6.10
(Oct. 2010), pp. 744–750. doi: 10.1038/nphys1803 (cit. on p. 25).

[41] M. Choudhury and A. Mukherjee. “The structure and dynamics of linguistic
networks”. In: Dynamics on and of complex networks. Springer, 2009, pp. 145–
166 (cit. on p. 64).

[42] Elizabeth R Chrastil and William H Warren. “From cognitive maps to cog-
nitive graphs”. In: PloS one 9.11 (2014), e112544 (cit. on p. 88).

[43] Giulio Cimini et al. “The statistical physics of real-world networks”. In: Nature
Reviews Physics 1.1 (2019), pp. 58–71. doi: 10.1038/s42254-018-0002-6.
url: https://doi.org/10.1038/s42254-018-0002-6 (cit. on p. 34).

[44] David Clark, William Lehr, and Steven Bauer. “Interconnection in the Inter-
net: the policy challenge”. In: (2011) (cit. on p. 71).

99

dc_1742_20

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1038/nrn2575
http://www.caida.org
https://doi.org/10.1371/journal.pone.0043694
https://doi.org/10.1103/PhysRevLett.102.238703
https://doi.org/10.1038/nphys1803
https://doi.org/10.1038/s42254-018-0002-6
https://doi.org/10.1038/s42254-018-0002-6


[45] Reuven Cohen and Shlomo Havlin. “Scale-free networks are ultrasmall”. In:
Phys. Rev. Lett. 90.5 (2003), p. 058701 (cit. on pp. 18, 53).

[46] J. Corbo and D. Parkes. “The price of selfish behavior in bilateral network
formation”. In: Proc. of PODC’05. Las Vegas, NV, USA, 2005, pp. 99–107.
isbn: 1-58113-994-2 (cit. on pp. 20, 28).

[47] Sean P Cornelius, Joo Sang Lee, and Adilson E Motter. “Dispensability of
Escherichia coli’s latent pathways.” In: Proc. Natl. Acad. Sci. USA 108.8 (Feb.
2011), pp. 3124–9. doi: 10.1073/pnas.1009772108 (cit. on p. 27).

[48] L da F Costa et al. “Characterization of complex networks: A survey of
measurements”. In: Advances in physics 56.1 (2007), pp. 167–242 (cit. on
p. 14).

[49] Attila Csoma et al. “Routes obey hierarchy in complex networks”. In: Scien-
tific reports 7.1 (2017), pp. 1–7 (cit. on pp. 21, 79, 81, 95, 96).

[50] Raissa M D’Souza et al. “Emergence of tempered preferential attachment
from optimization”. In: Proc. Natl. Acad. Sci. USA 104.15 (2007), pp. 6112–
6117 (cit. on p. 62).

[51] Alessandro Daducci et al. “The connectome mapper: an open-source process-
ing pipeline to map connectomes with MRI”. In: PloS one 7.12 (2012), e48121
(cit. on p. 22).

[52] E. D. Demaine et al. “The price of anarchy in network creation games”. In:
Proc. of PODC ’07. 2007, pp. 292–298 (cit. on pp. 20, 28).

[53] Peter Sheridan Dodds, Roby Muhamad, and Duncan J Watts. “An experi-
mental study of search in global social networks.” In: Science 301.5634 (Aug.
2003), pp. 827–9. doi: 10.1126/science.1081058 (cit. on p. 25).

[54] Peter Sheridan Dodds, Roby Muhamad, and Duncan J. Watts. “An Exper-
imental Study of Search in Global Social Networks”. In: Science 301.5634
(2003), pp. 827–829. issn: 0036-8075. doi: 10 . 1126 / science . 1081058.
eprint: http://science.sciencemag.org/content/301/5634/827.full.
pdf. url: http://science.sciencemag.org/content/301/5634/827 (cit.
on p. 79).

[55] Peter Sheridan Dodds, Duncan J. Watts, and Charles F. Sabel. “Informa-
tion exchange and the robustness of organizational networks”. In: Proceedings
of the National Academy of Sciences 100.21 (2003), pp. 12516–12521. issn:
0027-8424. doi: 10.1073/pnas.1534702100. eprint: https://www.pnas.
org/content/100/21/12516.full.pdf. url: https://www.pnas.org/
content/100/21/12516 (cit. on pp. 79, 83, 85).

[56] Christian Doerr, Norbert Blenn, and Piet Van Mieghem. “Lognormal infec-
tion times of online information spread”. In: PloS ONE 8.5 (2013), e64349
(cit. on p. 25).

[57] S N Dorogovtsev and J F F Mendes. Evolution of Networks: From Biological
Nets to the Internet and WWW. Oxford: Oxford University Press, 2003 (cit.
on p. 13).

100

dc_1742_20

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1073/pnas.1009772108
https://doi.org/10.1126/science.1081058
https://doi.org/10.1126/science.1081058
http://science.sciencemag.org/content/301/5634/827.full.pdf
http://science.sciencemag.org/content/301/5634/827.full.pdf
http://science.sciencemag.org/content/301/5634/827
https://doi.org/10.1073/pnas.1534702100
https://www.pnas.org/content/100/21/12516.full.pdf
https://www.pnas.org/content/100/21/12516.full.pdf
https://www.pnas.org/content/100/21/12516
https://www.pnas.org/content/100/21/12516


[58] Russell A Epstein et al. “The cognitive map in humans: spatial navigation
and beyond”. In: Nature neuroscience 20.11 (2017), p. 1504 (cit. on pp. 25,
88).

[59] A. Fabrikant et al. “On a network creation game”. In: Proc. of PODC’03.
2003, pp. 347–351 (cit. on pp. 19, 20, 28).

[60] M Faloutsos, P Faloutsos, and C Faloutsos. “On Power-law Relationships of
the {Internet} Topology”. In: SIGCOMM. 1999 (cit. on p. 13).

[61] D a Fell and a Wagner. “The small world of metabolism.” In: Nat Biotechnol
18.11 (Dec. 2000), pp. 1121–2. issn: 1087-0156. doi: 10.1038/81025. url:
http://www.ncbi.nlm.nih.gov/pubmed/11062388 (cit. on p. 13).

[62] Neil Ferguson. “Capturing human behaviour”. In: Nature 446.7137 (2007),
pp. 733–733 (cit. on p. 25).

[63] R. Ferrer i Cancho and R.V. Sole. “The small world of human language”. In:
Proc. R. Soc. Lond. B, Biological Sciences 268.1482 (2001), pp. 2261–2265
(cit. on p. 64).

[64] R Ferrer I Cancho and R V Solé. “The small world of human language.”
In: Proc Biol Sci 268.1482 (Nov. 2001), pp. 2261–5. issn: 0962-8452. doi:
10 . 1098 / rspb . 2001 . 1800. url: http : / / www . pubmedcentral . nih .
gov / articlerender . fcgi ? artid = 1088874 % 5C & tool = pmcentrez % 5C &
rendertype=abstract (cit. on p. 13).

[65] fit-fat-cat. Smartphone application. https://play.google.com/store/
apps/details?id=hu.bme.tmit.lendulet.wordnavigationgame. [Online;
accessed 03-20-2019]. 2016 (cit. on pp. 81, 89, 96).

[66] A. Fronczak, P. Fronczak, and J. A. Holyst. “Mean-field theory for cluster-
ing coefficients in Barabasi-Albert networks”. In: Arxiv preprint arXiv:cond-
mat/0306255 [cond-mat.stat-mech] (2003) (cit. on p. 47).

[67] Lazaros K Gallos et al. “Scaling theory of transport in complex biological
networks”. In: Proc. Natl. Acad. Sci. USA 104.19 (2007), pp. 7746–7751 (cit.
on p. 25).

[68] Lixin Gao and Jennifer Rexford. “Stable Internet routing without global co-
ordination”. In: IEEE/ACM Transactions on Networking (TON) 9.6 (2001),
pp. 681–692 (cit. on pp. 74, 79).

[69] Lixin Gao and Feng Wang. “The extent of AS path inflation by routing
policies”. In: Global Telecommunications Conference, 2002. GLOBECOM’02.
IEEE. Vol. 3. IEEE. 2002, pp. 2180–2184 (cit. on p. 80).

[70] Robert S Garfinkel and George L Nemhauser. Integer programming. Vol. 4.
Wiley New York, 1972 (cit. on p. 31).

[71] Phillipa Gill, Michael Schapira, and Sharon Goldberg. “A survey of inter-
domain routing policies”. In: ACM SIGCOMM Computer Communication
Review 44.1 (2013), pp. 28–34 (cit. on p. 71).

101

dc_1742_20

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1038/81025
http://www.ncbi.nlm.nih.gov/pubmed/11062388
https://doi.org/10.1098/rspb.2001.1800
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1088874%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1088874%5C&tool=pmcentrez%5C&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1088874%5C&tool=pmcentrez%5C&rendertype=abstract
https://play.google.com/store/apps/details?id=hu.bme.tmit.lendulet.wordnavigationgame
https://play.google.com/store/apps/details?id=hu.bme.tmit.lendulet.wordnavigationgame


[72] Joaquin Goni et al. “Resting-brain functional connectivity predicted by an-
alytic measures of network communication”. In: Proc. Natl. Acad. Sci. USA
111.2 (2014), pp. 833–8. issn: 1091-6490. doi: 10.1073/pnas.1315529111
(cit. on pp. 60, 64).

[73] Temple Grandin. “Observations of cattle behavior applied to the design of
cattle-handling facilities”. In: Applied Animal Ethology 6.1 (1980), pp. 19–31
(cit. on p. 80).

[74] Albert Greenberg et al. “The cost of a cloud: research problems in data center
networks”. In: ACM SIGCOMM computer communication review 39.1 (2008),
pp. 68–73 (cit. on p. 71).

[75] András Gulyás et al. “Brief announcement: network formation games can
give rise to realistic networks”. In: Proceedings of the 2012 ACM symposium
on Principles of distributed computing. 2012, pp. 329–330 (cit. on p. 95).

[76] András Gulyás et al. “Navigable networks as Nash equilibria of navigation
games”. In: Nature communications 6 (2015) (cit. on pp. 95, 96).

[77] András Gulyás et al. “On Greedy Network Formation”. In: Proceedings of the
SIGMETRICS W-PIN WS (2012) (cit. on p. 95).

[78] András Gulyás et al. “On greedy network formation”. In: ACM SIGMETRICS
Performance Evaluation Review 40.2 (2012), pp. 49–52 (cit. on p. 95).

[79] András Gulyás et al. “The role of detours in individual human navigation
patterns of complex networks”. In: Scientific Reports 10.1 (2020), pp. 1–10
(cit. on pp. 95, 96).

[80] Patric Hagmann et al. “Mapping the structural core of human cerebral cor-
tex”. In: PLoS Biol. 6.7 (2008), pp. 1479–1493. issn: 15449173. doi: 10.
1371/journal.pbio.0060159 (cit. on pp. 22, 65).

[81] Denis Helic et al. “Models of human navigation in information networks based
on decentralized search”. In: Proceedings of the 24th ACM conference on hy-
pertext and social media. ACM. 2013, pp. 89–98 (cit. on pp. 79, 83).

[82] Martijn P Van Den Heuvel et al. “Brain Communication”. In: Proc. Natl.
Acad. Sci. USA 109.28 (2012), pp. 11372–77. doi: 10.1073/pnas.1203593109/-
/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1203593109
(cit. on pp. 60, 64).

[83] W. Hoeffding. “Probability Inequalities for Sums of Bounded Random Vari-
ables”. In: Journal of the American Statistical Association 58 (Mar. 1963),
pp. 13–30 (cit. on p. 58).

[84] Petter Holme, Josh Karlin, and Stephanie Forrest. “An integrated model of
traffic, geography and economy in the internet”. In: ACM SIGCOMM Com-
puter Communication Review 38.3 (2008), pp. 5–16 (cit. on p. 14).

[85] Yanqing Hu et al. “Possible Origin of Efficient Navigation in Small Worlds”.
In: Phys. Rev. Lett. 106.10 (Mar. 2011), p. 108701. doi: 10.1103/PhysRevLett.
106.108701 (cit. on p. 25).

[86] Geoff Huston. “Analyzing the Internet’s BGP routing table”. In: The Internet
Protocol Journal 4.1 (2001), pp. 2–15 (cit. on p. 72).

102

dc_1742_20

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1073/pnas.1315529111
https://doi.org/10.1371/journal.pbio.0060159
https://doi.org/10.1371/journal.pbio.0060159
https://doi.org/10.1073/pnas.1203593109/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1203593109
https://doi.org/10.1073/pnas.1203593109/-/DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1203593109
https://doi.org/10.1103/PhysRevLett.106.108701
https://doi.org/10.1103/PhysRevLett.106.108701


[87] Sudarshan Iyengar et al. “A network analysis approach to understand human-
wayfinding problem”. In: Proceedings of the Annual Meeting of the Cognitive
Science Society. Vol. 33. 2011 (cit. on p. 79).

[88] Matthew O Jackson. “A survey of network formation models: stability and
efficiency”. In: Group Formation in Economics: Networks, Clubs, and Coali-
tions (2005), pp. 11–49 (cit. on p. 74).

[89] H Jeong et al. “The Large-Scale Organization of Metabolic Networks”. In:
Nature 407 (2000), pp. 651–654 (cit. on p. 13).

[90] Richard M Karp. “Reducibility among combinatorial problems”. In: Complex-
ity of computer computations. Springer, 1972, pp. 85–103 (cit. on p. 34).

[91] Maksim Kitsak et al. “Identification of influential spreaders in complex net-
works”. In: Nat. Phys. 6.11 (2010), pp. 888–893 (cit. on p. 25).

[92] Jon Kleinberg. “Navigation in a Small World”. In: Nature 406 (2000), p. 845.
doi: 10.1038/35022643 (cit. on pp. 25, 63).

[93] Jon M Kleinberg. “Navigation in a small world”. In: Nature 406.6798 (2000),
pp. 845–845 (cit. on pp. 21, 25, 31, 79).

[94] Jon M Kleinberg. “Small-world phenomena and the dynamics of information”.
In: Advances in neural information processing systems. 2002, pp. 431–438 (cit.
on pp. 79, 83).

[95] R. Kleinberg. “Geographic routing using hyperbolic space”. In: Proc. of IN-
FOCOM. 2007 (cit. on p. 25).

[96] Konstantin Klemm and Victor M Eguiluz. “Growing scale-free networks with
small-world behavior”. In: Physical Review E 65.5 (2002), p. 057102 (cit. on
p. 19).

[97] J. Komjáthy and K. Simon. “Generating hierarchial scale-free graphs from
fractals”. In: Chaos, Solitons & Fractals (2011) (cit. on p. 14).

[98] Attila Kőrösi et al. “A dataset on human navigation strategies in foreign
networked systems”. In: Scientific data 5 (2018), p. 180037 (cit. on pp. 21,
22, 79, 81, 89, 90, 92, 96).

[99] Attila Kőrösi et al. “fit-fat-cat dataset”. In: Open Science Framework (2018).
eprint: http://dx.doi.org/10.17605/OSF.IO/JTYVD (cit. on pp. 22, 92,
96).

[100] Dmitri Krioukov and Massimo Ostilli. “Duality between equilibrium and
growing networks”. In: Phys. Rev. E 88.2 (Aug. 2013), p. 022808. doi: 10.
1103/PhysRevE.88.022808 (cit. on p. 62).

[101] Dmitri Krioukov et al. “Hyperbolic Geometry of Complex Networks”. In:
Phys. Rev. E 82 (2010), p. 36106. doi: 10.1103/PhysRevE.82.036106 (cit.
on pp. 29, 30, 61).

[102] Dmitri Krioukov et al. “Hyperbolic geometry of complex networks”. In: Phys-
ical Review E 82.3 (2010), p. 036106 (cit. on pp. 14, 25, 63).

[103] Simon B Laughlin and Terrence J Sejnowski. “Communication in neuronal
networks”. In: Science 301.5641 (2003), pp. 1870–1874. issn: 0036-8075. doi:
10.1126/science.1089662 (cit. on pp. 60, 64).

103

dc_1742_20

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1038/35022643
http://dx.doi.org/10.17605/OSF.IO/JTYVD
https://doi.org/10.1103/PhysRevE.88.022808
https://doi.org/10.1103/PhysRevE.88.022808
https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1126/science.1089662


[104] Sang Hoon Lee and Petter Holme. “A greedy-navigator approach to navigable
city plans”. In: Eu. Phys. Journ. Spec. Top. 215 (2013), pp. 135–144 (cit. on
pp. 28, 62).

[105] Sang Hoon Lee and Petter Holme. “Exploring Maps with Greedy Naviga-
tors”. In: Phys. Rev. Lett. 108.12 (Mar. 2012), p. 128701. doi: 10.1103/
PhysRevLett.108.128701 (cit. on p. 25).

[106] Sang Hoon Lee and Petter Holme. “Geometric properties of graph layouts op-
timized for greedy navigation”. In: Phys. Rev. E 86.6 (Dec. 2012), p. 067103.
doi: 10.1103/PhysRevE.86.067103 (cit. on p. 25).

[107] G Li et al. “Optimal transport exponent in spatially embedded networks”.
In: Phys. Rev. E 87.4 (2013), p. 042810 (cit. on p. 63).

[108] G Li et al. “Towards design principles for optimal transport networks”. In:
Phys. Rev. Lett. 104.1 (2010), p. 018701 (cit. on p. 63).

[109] D Liben-Nowell et al. “Geographic Routing in Social Networks”. In: Proc.
Natl. Acad. Sci. USA 102 (2005), pp. 11623–11628 (cit. on p. 25).

[110] Xiang Ling et al. “Global dynamic routing for scale-free networks”. In: Phys-
ical Review E 81.1 (2010), p. 016113 (cit. on p. 21).

[111] Aemen Lodhi, Amogh Dhamdhere, and Constantine Dovrolis. “GENESIS:
An agent-based model of interdomain network formation, traffic flow and
economics”. In: INFOCOM, 2012 Proceedings IEEE. IEEE. 2012, pp. 1197–
1205 (cit. on p. 14).

[112] Eng Keong Lua et al. “A survey and comparison of peer-to-peer overlay
network schemes”. In: IEEE Communications Surveys & Tutorials 7.2 (2005),
pp. 72–93 (cit. on p. 71).

[113] Matthew Luckie. “Scamper: a scalable and extensible packet prober for active
measurement of the internet”. In: Proceedings of the 10th ACM SIGCOMM
conference on Internet measurement. ACM. 2010, pp. 239–245 (cit. on p. 22).

[114] Zhuoqing Morley Mao et al. “Towards an Accurate AS-level Traceroute Tool”.
In: Proceedings of the 2003 Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications. SIGCOMM ’03.
Karlsruhe, Germany: ACM, 2003, pp. 365–378. isbn: 1-58113-735-4. doi:
10.1145/863955.863996. url: http://doi.acm.org/10.1145/863955.
863996 (cit. on p. 21).

[115] Sergei Maslov, Kim Sneppen, and Alexei Zaliznyak. “Detection of topological
patterns in complex networks: correlation profile of the internet”. In: Physica
A: Statistical Mechanics and its Applications 333 (2004), pp. 529–540 (cit. on
p. 71).

[116] Sandro Meloni, Alex Arenas, and Yamir Moreno. “Traffic-driven epidemic
spreading in finite-size scale-free networks”. In: Proc. Natl. Acad. Sci. USA
106.40 (2009), pp. 16897–16902 (cit. on p. 25).

[117] M. Mihalák and J. Schlegel. “The price of anarchy in network creation games
is (mostly) constant”. In: Alg. Game Theory (2010), pp. 276–287 (cit. on
pp. 20, 28).

104

dc_1742_20

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1103/PhysRevLett.108.128701
https://doi.org/10.1103/PhysRevLett.108.128701
https://doi.org/10.1103/PhysRevE.86.067103
https://doi.org/10.1145/863955.863996
http://doi.acm.org/10.1145/863955.863996
http://doi.acm.org/10.1145/863955.863996


[118] S Milgram. “The Small World Problem”. In: Psychol. Today 1 (1967), pp. 61–
67 (cit. on p. 25).

[119] Stanley Milgram. “The small world problem”. In: Psychology today 2.1 (1967),
pp. 60–67 (cit. on p. 79).

[120] R Milo et al. “Superfamilies of Evolved and Designed Networks”. In: Science
303 (2004), pp. 1538–1542. doi: 10.1126/science.1089167 (cit. on p. 65).

[121] Giovanna Miritello, Esteban Moro, and Rubén Lara. “Dynamical strength of
social ties in information spreading”. In: Phys. Rev. E 83.4 (2011), p. 045102
(cit. on p. 25).

[122] Wenke Möhring, Andrea Frick, and Nora S. Newcombe. “Spatial scaling,
proportional thinking, and numerical understanding in 5- to 7-year-old chil-
dren”. In: Cognitive Development 45 (2018), pp. 57–67. issn: 0885-2014. doi:
https://doi.org/10.1016/j.cogdev.2017.12.001. url: http://www.
sciencedirect.com/science/article/pii/S0885201417300011 (cit. on
pp. 25, 88).

[123] J M Montoya and R V Solé. Small World Patterns in Food Webs. Technical
Report 00-10-059. Santa Fe Institute, 2000 (cit. on p. 13).

[124] José M Montoya, Stuart L Pimm, and Ricard V Solé. “Ecological networks
and their fragility”. In: Nature 442.7100 (2006), p. 259 (cit. on p. 79).

[125] Yamir Moreno, Maziar Nekovee, and Amalio F Pacheco. “Dynamics of rumor
spreading in complex networks”. In: Phys. Rev. E 69.6 (2004), p. 066130 (cit.
on p. 25).

[126] Lev Muchnik et al. “Origins of power-law degree distribution in the hetero-
geneity of human activity in social networks.” In: Sci. Rep. 3 (2013), p. 1783.
issn: 2045-2322. doi: 10.1038/srep01783 (cit. on p. 62).

[127] Kevin Murphy et al. “The impact of global signal regression on resting state
correlations: are anti-correlated networks introduced?” In: Neuroimage 44.3
(2009), pp. 893–905 (cit. on p. 23).

[128] Nora Newcombe. “Harnessing Spatial Thinking to Support Stem Learning”.
In: OECD Education Working Papers 161 (2017). doi: https://doi.org/
https://doi.org/10.1787/7d5dcae6- en. url: https://www.oecd-
ilibrary.org/content/paper/7d5dcae6-en (cit. on pp. 25, 88).

[129] Nora S. Newcombe. “Individual variation in human navigation”. In: Current
Biology 28.17 (2018), R1004–R1008. issn: 0960-9822. doi: https://doi.
org/10.1016/j.cub.2018.04.053. url: http://www.sciencedirect.
com/science/article/pii/S0960982218305256 (cit. on p. 88).

[130] M E J Newman. “Power Laws, Pareto Distributions and Zipf’s Law”. In:
Contemp. Phys. 46.5 (2005), pp. 323–351. doi: 10.1080/00107510500052444
(cit. on p. 45).

[131] M E J Newman. “The Structure and Function of Complex Networks”. In:
SIAM Rev. 45.2 (2003), pp. 167–256. doi: 10.1137/S003614450342480 (cit.
on p. 63).

105

dc_1742_20

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1126/science.1089167
https://doi.org/https://doi.org/10.1016/j.cogdev.2017.12.001
http://www.sciencedirect.com/science/article/pii/S0885201417300011
http://www.sciencedirect.com/science/article/pii/S0885201417300011
https://doi.org/10.1038/srep01783
https://doi.org/https://doi.org/https://doi.org/10.1787/7d5dcae6-en
https://doi.org/https://doi.org/https://doi.org/10.1787/7d5dcae6-en
https://www.oecd-ilibrary.org/content/paper/7d5dcae6-en
https://www.oecd-ilibrary.org/content/paper/7d5dcae6-en
https://doi.org/https://doi.org/10.1016/j.cub.2018.04.053
https://doi.org/https://doi.org/10.1016/j.cub.2018.04.053
http://www.sciencedirect.com/science/article/pii/S0960982218305256
http://www.sciencedirect.com/science/article/pii/S0960982218305256
https://doi.org/10.1080/00107510500052444
https://doi.org/10.1137/S003614450342480


[132] M E J Newman. “The Structure of Scientific Collaboration Networks”. In:
Proc. Natl. Acad. Sci. USA 98 (2001), pp. 404–409 (cit. on p. 13).

[133] Mark Newman. Networks: an introduction. Oxford university press, 2010 (cit.
on p. 21).

[134] Mark EJ Newman. “The structure and function of complex networks”. In:
SIAM review 45.2 (2003), pp. 167–256 (cit. on pp. 8, 13).

[135] N. Nisan. Algorithmic game theory. Cambridge Universiy Press, 2007 (cit. on
pp. 20, 28).

[136] Jae Dong Noh and Heiko Rieger. “Random walks on complex networks”. In:
Physical review letters 92.11 (2004), p. 118701 (cit. on p. 21).

[137] OpenFlights. Airport Database. www.openflights.org. [Online; accessed
05-06-2016] (cit. on p. 22).

[138] Christos H. Papadimitriou and David Ratajczak. “On a conjecture related
to geometric routing”. In: Theor. Comput. Sci. 344.1 (Nov. 2005), pp. 3–14.
doi: 10.1016/j.tcs.2005.06.022 (cit. on p. 28).

[139] F. Papadopoulos et al. “Greedy Forwarding in Dynamic Scale-Free Networks
Embedded in Hyperbolic Metric Spaces”. In: Proc. of IEEE Infocom. IEEE.
2010, pp. 1–9 (cit. on pp. 45, 52).

[140] Fragkiskos Papadopoulos, Constantinos Psomas, and Dmitri Krioukov. “Net-
work mapping by replaying hyperbolic growth”. In: IEEE ACM T Netw
(2014). doi: 10.1109/TNET.2013.2294052 (cit. on p. 65).

[141] Fragkiskos Papadopoulos et al. “Popularity versus similarity in growing net-
works”. In: Nature 489 (Sept. 2012), pp. 537–540. doi: 10.1038/nature11459
(cit. on pp. 29, 61, 64, 65).

[142] Romualdo Pastor-Satorras and Alessandro Vespignani. “Epidemic spreading
in scale-free networks”. In: Phys. Rev. Lett. 86.14 (2001), p. 3200 (cit. on
p. 25).

[143] Mukaddim Pathan and Rajkumar Buyya. “A taxonomy of CDNs”. In: Con-
tent delivery networks. Springer, 2008, pp. 33–77 (cit. on p. 71).

[144] M Penrose. Random Geometric Graphs. Oxford: Oxford University Press,
2003 (cit. on p. 29).

[145] Jonathan D Power et al. “Spurious but systematic correlations in functional
connectivity MRI networks arise from subject motion”. In: Neuroimage 59.3
(2012), pp. 2142–2154 (cit. on p. 23).

[146] Yakov Rekhter, Tony Li, and Susan Hares. A border gateway protocol 4 (BGP-
4). Tech. rep. 2005 (cit. on p. 71).

[147] Chris J Rhodes and Roy M Anderson. “Power laws governing epidemics in
isolated populations”. In: Nature 381.6583 (1996), pp. 600–602 (cit. on p. 25).

[148] Rome2Rio. Flights Database. https://www.rome2rio.com/. [Online; ac-
cessed 05-07-2016] (cit. on p. 22).

106

dc_1742_20

Powered by TCPDF (www.tcpdf.org)

www.openflights.org
https://doi.org/10.1016/j.tcs.2005.06.022
https://doi.org/10.1109/TNET.2013.2294052
https://doi.org/10.1038/nature11459
https://www.rome2rio.com/


[149] Vittorio Rosato et al. “Is the topology of the Internet network really fit to sus-
tain its function?” In: Physica A: Statistical Mechanics and its Applications
387.7 (2008), pp. 1689–1704 (cit. on p. 71).

[150] Martin Rosvall et al. “Memory in network flows and its effects on spreading
dynamics and community detection”. In: Nature communications 5 (2014),
p. 4630 (cit. on pp. 81, 89).

[151] Hernán D Rozenfeld, Chaoming Song, and Hernán A Makse. “Small-world to
fractal transition in complex networks: a renormalization group approach”.
In: Phys. Rev. Lett. 104.2 (2010), p. 025701 (cit. on p. 63).

[152] Ratnasamy S. et al. “A scalable content-addressable network”. In: Proc. of
SIGCOMM ’01. San Diego, California, United States, 2001, pp. 161–172 (cit.
on p. 25).

[153] Vsevolod Salnikov, Michael T Schaub, and Renaud Lambiotte. “Using higher-
order Markov models to reveal flow-based communities in networks”. In: Sci-
entific reports 6 (2016), p. 23194 (cit. on p. 89).

[154] Claude Elwood Shannon. “A mathematical theory of communication”. In:
Bell system technical journal 27.3 (1948), pp. 379–423 (cit. on p. 85).

[155] Yuval Shavitt and Eran Shir. “DIMES: Let the Internet measure itself”. In:
ACM SIGCOMM Computer Communication Review 35.5 (2005), pp. 71–74
(cit. on p. 71).

[156] Ozgür Simsek and David Jensen. “Navigating networks by using homophily
and degree.” In: Proc. Natl. Acad. Sci. USA 105.35 (Sept. 2008), pp. 12758–
62. doi: 10.1073/pnas.0800497105 (cit. on pp. 21, 25).

[157] Özgür Şimşek and David Jensen. “Navigating networks by using homophily
and degree”. In: Proceedings of the National Academy of Sciences 105.35
(2008), pp. 12758–12762 (cit. on p. 79).

[158] Philipp Singer et al. “Detecting memory and structure in human navigation
patterns using markov chain models of varying order”. In: PloS one 9.7 (2014),
e102070 (cit. on p. 89).

[159] Ion Stoica et al. “Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications”. In: Proc. of SIGCOMM’01. San Diego, California, Aug. 2001
(cit. on p. 25).

[160] I. Stojmenovic. “Position-based routing in ad hoc networks”. In: IEEE Com-
munications Magazine (2002) (cit. on p. 25).

[161] Dávid Szabó and András Gulyás. “Notes on the Topological Consequences of
BGP Policy Routing on the Internet AS Topology”. In: Advances in Commu-
nication Networking. Springer Berlin Heidelberg, 2013, pp. 274–281 (cit. on
pp. 62, 96).

[162] David Szabo et al. “Deductive way of reasoning about the internet AS level
topology”. In: Chinese Physics B 24.11 (2015), p. 118901 (cit. on pp. 95, 96).

[163] The Cooperative Association for Internet Data Analysis (CAIDA) (cit. on
p. 22).

107

dc_1742_20

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1073/pnas.0800497105


[164] P. H E Tiesinga et al. “Optimal information transfer in synchronized neocorti-
cal neurons”. In: Neurocomputing 38-40 (2001), pp. 397–402. issn: 09252312.
doi: 10.1016/S0925-2312(01)00464-7 (cit. on pp. 60, 64).

[165] J. Travers and S. Milgram. “An Experimental Study of the Small World
Problem”. In: Sociometry 32 (1969), pp. 425–443 (cit. on p. 24).

[166] J Travers and S Milgram. “An Experimental Study of the Small World Prob-
lem”. In: Sociometry 32 (1969), pp. 425–443 (cit. on p. 25).

[167] University of Oregon RouteViews Project (cit. on pp. 22, 71).

[168] John Glen Wardrop. “Some theoretical aspects of road traffic research”. In:
Inst Civil Engineers Proc London/UK/. 1952 (cit. on p. 79).

[169] Duncan J Watts, Peter Sheridan Dodds, and Mark EJ Newman. “Identity
and search in social networks”. In: Science 296.5571 (2002), pp. 1302–1305
(cit. on pp. 21, 25, 31, 79, 82).

[170] Duncan J Watts and Steven H Strogatz. “Collective dynamics of ‘small-
world’networks”. In: Nature 393.6684 (1998), p. 440 (cit. on pp. 13, 14, 16,
79, 81).

[171] Robert West and Jure Leskovec. “Human wayfinding in information net-
works”. In: Proceedings of the 21st international conference on World Wide
Web. ACM. 2012, pp. 619–628 (cit. on p. 79).

[172] WordFind. Three Letter English Word Database. http://www.wordfind.
com/3-letter-words/. [Online; accessed 10-10-2016] (cit. on p. 22).

[173] Bo Xiao et al. “Modeling the IPv6 internet AS-level topology”. In: Physica A:
Statistical Mechanics and its Applications 388.4 (2009), pp. 529–540 (cit. on
p. 71).

[174] Takuji Yamada and Peer Bork. “Evolution of biomolecular networks: lessons
from metabolic and protein interactions.” In: Nat. Rev. Mol. Cell. Bio. 10.11
(Nov. 2009), pp. 791–803. doi: 10.1038/nrm2787 (cit. on p. 25).

[175] Keyou You, Roberto Tempo, and Li Qiu. “Distributed algorithms for com-
putation of centrality measures in complex networks”. In: IEEE Transactions
on Automatic Control 62.5 (2017), pp. 2080–2094 (cit. on p. 87).

[176] Wayne W Zachary. “An information flow model for conflict and fission in
small groups”. In: Journal of anthropological research 33.4 (1977), pp. 452–
473 (cit. on p. 13).

[177] Shanjiang Zhu and David Levinson. “Do people use the shortest path? An
empirical test of Wardrop’s first principle”. In: PloS one 10.8 (2015) (cit. on
p. 80).

108

dc_1742_20

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1016/S0925-2312(01)00464-7
http://www.wordfind.com/3-letter-words/
http://www.wordfind.com/3-letter-words/
https://doi.org/10.1038/nrm2787


List of Symbols

k̄ Average degree of the network

γ Exponent of the power-law degree distribution

C Global clustering coefficient of a network

ci Local clustering coefficient of node i

D Diameter of a network

ki Degree of node k

N Number of nodes in a network

P (k) Degree distribution of a network
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