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Preface

The two principal application areas of digital image processing are improve-
ment of visual information for human interpretation, and processing of image
data for autonomous computer vision. The generic model of a modular com-
puter vision system comprises of image acquisition, preprocessing (i.e., image
restoration and enhancement), segmentation (i.e., subdividing an image into
its objects), object or shape representation (i.e., extracting shape features
from segments), classification and/or interpretation. In this dissertation, our
attention is focussed on shape representation, particularly computationally
efficient extraction of ‘reliable’ (i.e., geometrically and topologically correct)
skeleton-like features from 2D and 3D objects.

Skeletonization (i.e., extracting skeleton-like features from discrete ob-
jects in a topology-preserving ways) goes back to Blum’s suggestion. He
defined the skeleton (i.e., a region-based shape feature of a continuous ob-
ject) via the medial axis transform. There is a fairly general agreement that
skeletonization procedures play a key role in a broad range of problems in
image processing and computer vision.

Digital topology deals with the ‘topological’ nature (particularly, proper-
ties of 2D and 3D objects that involve the concept of connectedness, but do
not depend on size or shape), and with algorithms that compute or preserve
such properties. The importance of topological properties and algorithms
show an upward tendency in the analysis of 2D and 3D digital images.

This dissertation presents a selection of my results concerning digital
topology, topology-preserving thinning (i.e., a skeletonization technique), and
a complex medical application of one of my 3D thinning algorithms. The
results included in this work all originate from a period well after defending
my PhD dissertation in the year 2000.

The introductory chapter (i.e., Chapter 1) presents the underlying results,
and reviews the most important applications of skeletonization. It is followed
by three chapters (i.e., Chapters 2—4) that summarize my results.

Chapter 2 reviews some theoretical results concerning diversified topolog-
ical problems. These results were achieved by the author and Péter Kardos
(i.e., the author’s former PhD student and colleague now). Note that the
reported results are absolutely not autotelic, they provide methods of verify-
ing that an operator preserves the topology, allow us to generate topology-
preserving operators, and provide computationally efficient thinning algo-
rithms.
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In Chapter 3, only some selected results concerning thinning are pre-
sented. The collaborators were my former PhD students and colleagues now:
Péter Kardos and Gabor Németh. This chapter presents a computationally
efficient general implementation scheme for thinning algorithms, a safe tech-
nique for designing topology-preserving parallel thinning algorithms, four
pairs of equivalent sequential and parallel 3D subiteration-based surface-
thinning algorithms, and two maximal sequential 3D curve-thinning algo-
rithms.

Chapter 4 describes our complex method for quantitative analysis of pul-
monary airway trees that is based on one of the author’s 3D curve-thinning
algorithm. Among others, the collaborators were Eric A. Hoffman and Milan

Sonka (i.e., outstanding researchers at The University of lowa, Iowa City, IA,
USA).
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Chapter 1

Introduction

This chapter reviews the fundamental concepts and surveys the major theo-
retical results that we need later on.

Section 1.1 discusses the basic concepts of digital topology including dis-
crete grids, adjacency relations in regular planar grids and the 3D cubic grid,
and binary digital pictures.

Section 1.2 surveys sufficient conditions to prove that an algorithm (or
an operator) preserves the topology for all possible pictures.

Lastly, in Section 1.3, we review the skeleton of a continuous object, the
skeleton-like features to be extracted from 2D and 3D digital objects, the
major skeletonization techniques, and the applications of skeletonization.
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1.1 Basic Concepts of Digital Topology

Digital topology deals with the topological properties of digital pictures [137].
Here, we apply the fundamental concepts of digital topology as reviewed by
Kong and Rosenfeld [137, 139]. Note that there are other approaches that
are based on cellular/cubical complexes [142] or polytopal complexes [141],
but we insist on the ‘historical paradigm’.

Our attention is focussed on the digital topology of binary pictures that
assign a color of black (value 1) or white (value 0) to each point of the given
grid [137, 184].

1.1.1 Grids

A number of different grids (i.e., sampling schemes) have been considered for
performing picture processing operations. The Voronoi diagram [13] gener-
ated by the given grid points is a partitioning of the continuous space into
regions that are called cells. The cell associated with a grid point p is com-
posed of all points in the Euclidean space that are at least as close to p as to
any other grid point. Note that a cell is always a closed convex polygon (in
2D) or a polyhedron (in the 3D case).

A regular Voronoi diagram of the 2D Euclidean space is formed by tiling
the plane with uniform cells having equal angles, and sides of the same length.
There are exactly three polygons that can form such regular Voronoi diagrams
the equilateral triangle, the square, and the regular hexagon [133, 137, 138,
184] (see Figure 1.1). The points in the triangular grid, the square grid,
and the hexagonal grid are the centroids of the cells/polygons and they are
denoted by T, Z?%, and H, respectively.

Throughout this dissertation, the three regular planar grids are illustrated
by their associated Voronoi diagrams (see Figure 1.1), and the notation V
means that V belongs to {7, Z? H}.

Note that the dual of a 2D Voronoi diagram is formed by taking the
center of each cell as a vertex and joining the centers of cells that share
an edge. It can be easily seen that the triangular and the hexagonal grids
are duals of each other (see Figure 1.2), and the square grid is equal to
its own dual. Although 2D digital pictures sampled on the square grid are
generally assumed, triangular and hexagonal grids also attract remarkable
interest [21, 43, 75, 81, 133, 137, 184, 190, 200, 287, 296, 346, 357].

In the 3D case, our attention has been focused only on the cubic grid
denoted by Z® — i.e., the grid points are the points (z,y,2) with integer
coordinates, hence each associated Voronoi cell is a cube in 3D Euclidean
space, whose edges are of length 1 and parallel to the coordinate axes, and

2
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Figure 1.1: The three regular planar Voronoi diagrams associated with the
three possible regular planar grids.

Figure 1.2: Duality between the triangular and the hexagonal grids.

whose center is a grid point (see Figure 1.3).

There are two additional remarkable 3D grids: The grid points in the
face-centered cubic grid are the points with coordinates (z,y, z), where z,
y, and z are integers such that x + y + 2 is even, therefore the Voronoi cell
associated with each grid point is a rhombic dodecahedron [137, 138] (see
Figure 1.3). Many authors have suggested the use of the body-centered cubic
grid [137, 138] whose grid points are the points with (z,y, z) in which z, v,
and z are integers and x = y = z (mod 2), in consequence the Voronoi cell
associated with each grid point is a truncated octahedron (see Figure 1.3).

Note that some further interesting grids (e.g., Khalimsky grids) are also
discussed in the seminal work of Kong and Rosenfeld [137].

1.1.2 Adjacency Relations

Let us focus on the grid V (V € { T,Z?,H}). Two points in V are 1-adjacent
if the associated cells (i.e., regular polygons) share an edge, and they are
2-adjacent if those cells share an edge or a vertex. Note that both binary
relations are reflexive and symmetric. Let us denote the set of points being
j-adjacent to a point p € V by NY(p), and let N;¥(p) = Ngv(p)\{p} (2j =1,2)
(see Figure 1.4). It is obvious that N{ (p) C NJ (p), N¥ (p) € NZ (p), and
N{(p) = N3t(p).

In the triangular grid, N;7 (p) and N;7 (p) contain 3 and 12 elements, re-

3
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Figure 1.3: A 3D object sampled on the cubic grid (left), the face-centered
cubic grid (middle), and the body-centered cubic grid (rlght).
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Figure 1.4: Adjacency relations on the three possible regular planar grids.
Points that are 1-adjacent to the central point p are marked ‘e’; while points

being 2-adjacent but not 1-adjacent to p are marked ‘o’. (Note that relations
on the triangular grid for ‘A’ and ‘V’ points are differentiated.)

spectively. Hence, 1-adjacency and 2-adjacency are also called, respectively,
3-adjacency and 12-adjacency [133, 184]. Note that the triangular grid is
formed by two kinds of points: A-triangles and V-triangles (see Figure 1.4).
Without loss of generality, throughout this dissertation the topological prop-
erties of the triangular grid are illustrated for ‘A’ points.

In the conventional square grid, Ni%*(p) contains 4 elements, and N;Z* (p)
is formed by 8 elements. That is why they are often referred to as 4-adjacency
and 8-adjacency, respectively [133, 137, 184]. In the case of hexagonal grid,
Ni*(p) = N;™(p) contains 6 elements, hence these two relations are also
called 6-adjacency [184].

In the 3D cubic grid Z3 two points are 6-adjacent, 18-adjacent, and 26-
adjacent if the associated Voronoi cells (i.e., unit cubes) share a face, share
a face or an edge, and share a face, an edge, or a vertex, respectively.

Note that all the three binary relations are reflexive and symmetric. Let
us denote the set of points that are j-adjacent to a point p € Z* by szg (p),

and let NY%°(p) = NZ°(p) \ {p} (j = 6,18,26) (see Figure 1.5).

4
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Figure 1.5: Frequently used adjacency relations in Z3. The set NGZS (p) con-
tains point p and the six points marked U, D, N, E, S, and W. The set
N% (p) contains NZ’(p) and the twelve points marked ‘. The set NZ (p)
contains N% (p) and the eight points marked ‘.

1.1.3 Binary Digital Pictures

Let us consider the adjacency relation j (j = 1,2) on a regular planar grid.

A point p € V is j-adjacent to a set of points X C V if there is a point
q € X such that ¢ € NY(p) [137].

A sequence of distinct points (pg, p1, ..., Pm) in V is called a j-path from
po to p, in a non-empty set of points X C V if each point of the sequence is
in X and p; is j-adjacent to p;_; for each i = 1,2,..., m. Note that a single
point is a j-path of length 0.

Two points are said to be j-connected in a set X if there is a j-path in X
between them. A set of points X is j-connected in the set of points Y O X if
any two points in X are j-connected in Y. A j-component of a set of points
X is a maximal (with respect to inclusion) j-connected subset of X. Figure
1.6 illustrates the components of a set X C Z2.

In their seminal work [137], Kong and Rosenfeld defined a binary digital
picture as follows:

Definition 1.1.1 [137] A (k, k) binary digital picture (or, in short picture)
on grid V is a quadruple (V, k, k, B), where B C'V is the set of black points
(consequently, V \ B is the set of white points), k-adjacency and k-adjacency

are used for B and V \ B (k,k € 1,2), respectively.

For practical purposes, we assume that all pictures are finite (i.e. they
contain finitely many black points).

A black component or object is a k-component of B, while a white compo-
nent is a k-component of V' \ B. In a finite picture there is a unique infinite

bt
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Figure 1.6: The set of points X C Z? depicted in black. There are nine 1-
components of X, where all points labeled by ‘4’ belong to the i-th component
(t=1,...,9). Note that X forms just one 2-component.

white component, which is said to be the background, and a finite white
component is called a cavity!.

A black point p is called an interior point if all points in Ngv(p) are black.
A black point is said to be a border point if it is not an interior point (i.e., it
is k-adjacent to at least one white point). A (black) border-point p is called
an isolated point if all points in N;V(p) are white (i.e., {p} is a singleton
object).

In order to avoid connectivity paradozes [137], and verify the discrete
Jordan’s theorem [184], different adjacency relations are usually taken into
consideration for the black and white points (i.e., k # k).

All concepts reviewed in the 2D case can be extended to the cubic grid
Z3. In this work, our attention has been focussed on (26, 6) pictures.

A black point p in picture (Z3,26,6, B) is called an interior point if
NZ(p) € B (i.e., all 6-neighbors of p are black). A black point p in this
picture is said to be a border point if it is not an interior point (i.e., it is 6-
adjacent to at least one white point). A black point p in picture (Z3, 26,6, B)
is called a d-border point if its 6-neighbor marked d in Figure 1.5 is a white
point (d€ { U, D, N, E, S, W }).

1Some researchers use the term hole to refer to finite white components in 2D pictures,
and the ‘tunnel’ that a 3D doughnut (torus) has is said to be a hole, as well. To avoid pos-
sible confusion, we reserve the term cavity to refer to finite white components in arbitrary
dimensions.

6
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1.2 Topology-Preserving Operators

Topology preservation is a major concern in topological algorithms. It is
crucial to guarantee that an operator preserves the topology for all possible
pictures.

This section defines the concepts of an operator and a simple point, and
reviews some sufficient conditions for topology preservation.

1.2.1 Operators

Recall that only two possible values are assigned to each grid point in a
(binary digital) picture. It is assumed that these two values are black (1)
and white (0).

Let T be an operator that transforms the input picture with the set of
black points B into the output picture in which the set of black points is
denoted by T(B). A local operator gives each point p a ‘new’ value that
depends only on the ‘old’ values of the local neighborhood or support of p. If
the support contains n points, local operator T is specified by its alteration
rule fr: {0,1}™ — {0, 1} that is a Boolean function of n variables.

Operator T is called a reduction if T(B) C B for each possible set of black
points B. Hence, reductions transform pictures only by changing some black
points to white ones which is referred to as deletion. Operator T is said to
be an addition if B C T(B) for each B. Thus additions change only some
white points which is referred to as filling. An operator which does not fall
into either of these two categories is called a mized operator.

Note that reductions play a key role in various topological algorithms, e.g.,
thinning [89, 147, 324] (i.e., iterative object reduction to extract skeleton-
like features) or reductive shrinking [90] (i.e., that is capable of producing a
minimal structure that is topologically equivalent to the original object).

Parallel operators can change a set of points simultaneously, while se-
quential operators traverse the points of a picture, and focus on the actually
visited single point for possible alteration [90]. Evidently, the result of a
sequential operator may depend on the visiting order which is applied.

1.2.2 Topology Preservation in Reductions

In [319], Stefanelli and Rosenfeld laid down the following criterion for topology-
preserving 2D reductions:

Criterion 1.2.1 [319] A reduction (acting on 2D pictures) preserves the
topology if and only if the following conditions all hold:

7
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1. It never splits an object into two or more.
2. It never deletes completely any object in the input picture.

3. It never merges a cavity in the input picture with the background or
another cavity.

4. It never creates a cavity where there was none in the input picture.

Figure 1.7 illustrates a 2D reduction that is not topology-preserving.

Figure 1.7: A reduction for a (2,1) picture on Z? that is not topology-
preserving. Deletion of the point marked ‘a’ splits the larger object into
two; the smaller object is completely deleted by deleting the points marked
‘b’; deletion of the point marked ‘c’ merges a cavity with the background;
the remaining two cavities are merged with each other by deleting the point
marked ‘d’; deletion of the point marked ‘e’ creates a brand new cavity.

In effect, Criterion 1.2.1 was rephrased as follows:

Criterion 1.2.2 [137] Let (V, k,k, B) be a (2D) picture. The deletion of the
set of points D C B preserves the topology if and only if

1. each k-component of B contains exactly one k-component of B\ D, and

2. each k-component of V' \ (B \ D) contains exactly one k-component of
V\ B.

Note that Criteria 1.2.1 and 1.2.2 are only valid in 2D.

There is an additional concept called a hole (or a tunnel) in 3D pictures
[137, 139]. Holes (of the kind that doughnuts have) are formed by white
points, but they are not white components. Topology preservation implies
that creating, eliminating, and merging holes are not allowed (see Figure 1.8).
That is why the proposed criteria for topology-preserving 3D reductions are
rather complicated [137]. They are based on digital deformation of closed
paths and a digital fundamental group introduced by Morgenthaler [193] and
Kong [136], respectively.
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Figure 1.8: A 3D reduction that satisfies all conditions of Criteria 1.2.1, but
is not topology-preserving on (26, 6) pictures, since a hole not present in the
input picture is created, a hole is eliminated, and four holes are merged with
each other.

1.2.3 Simple Points

General conditions for topology preservation were obtained with the help of
the concept of a simple point [137]. Since we have dealt with all the three
kinds of operators (i.e., reductions, additions, and mixed operators), we have
respect for the following definition?:

Definition 1.2.1 A black point in an arbitrary picture is a simple point if
and only if its deletion preserves the topology (i.e., it is a topology-preserving
reduction). Likewise, a white point in an arbitrary picture is a simple point
if and only if its filling preserves the topology (i.e., its filling is a topology-
preserving addition).

Kardos and Paldgyi gave unified formal characterizations of simple (black
or white) points in the given five types of 2D pictures:

Theorem 1.2.1 [122, 126] Let p be a point in a picture (V, k,k, B). Then p
1s simple if and only if the following conditions hold:

1. p is k-adjacent to ezactly one k-component of N3¥(p) N B.

2. p is k-adjacent to exactly one k-component of NY(p)\ B.

2Since the attention of most researchers has been focused only on reductions, it is
usually assumed that a simple point may only be black.

9
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Theorem 1.2.1 shows that simplicity of a point p is a local property: it
can be decided by examining the set NjY(p) containing just 12, 8, and 6
points for 7, Z?, and H, respectively. As a straightforward consequence of
the above theorem we note that if a black point is an isolated or interior
point then it is not simple (i.e., some border points may be simple). Another
immediate consequence of Theorem 1.2.1 is the following duality theorem:

Theorem 1.2.2 A point p is simple in picture (V, k, k, B) if and only if p is
simple in picture (V, k, k,V\ B) (i.e., in the picture that is obtained from the
former by swapping the black and white sets of points and their associated
adjacency relations).

Figure 1.9 gives some examples of simple and non-simple points in (1, 2)
and (2, 1) pictures on Z2.

(a) (c) (d)

Figure 1.9: Examples of simple and non-simple points in (1,2) and (2,1)
pictures on Z2. Point p is simple in both (1,2) and (2, 1) pictures (a); p is
simple in (1,2) pictures and it is non-simple in (2, 1) pictures (b); p is non-
simple in (1, 2) pictures and it is simple in (2, 1) pictures (c); p is non-simple
in both (1,2) pictures and (2, 1) pictures (d). Note that p may be either a
black or a white point.

In [139], Kong proposed an easily visualized characterization of simple
points on (2,1) pictures on Z? by using the concept of an attachment set.
Kardos and Paldgyi adapted Kong’s model for all the three regular planar
grids [120, 124].

We should add that Kardos and Palagyi illustrated simple points in all the
given five types of 2D pictures by a few configurations (so-called matching
templates), which make an efficient implementation of the verification of
simplicity possible [122, 124, 126].

Malandain and Bertrand established the following characterization of sim-
ple points on the 3D (26,6) pictures on Z3:

Theorem 1.2.3 [179] Let p be a point in a picture (Z3,26,6, B). Then p is
simple in that picture if and only if all the following conditions hold:

10
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1. N3Z(p) N B contains exactly one 26-component.
2. N;Z(p)N(ZP\B) # 0 (i.e., p is 6-adjacent to at least one white point).

3. Any two points in NG (p)N(Z?\ B) is 6-connected in the set N2 (p)N
(Z*\ B).

Similarly to the examined 2D cases (see Theorem 1.2.1), the simplicity of
a point p in (26, 6) pictures is a local property: it can be decided by examining
the set N;GZS (p). Figure 1.10 gives some examples of simple and non-simple
points in (26, 6) pictures on Z3.
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Figure 1.10: Examples of simple and non-simple points in (26, 6) pictures
on Z3. In configuration (a), p is not simple (since Condition 1 of Theorem
1.2.3 is violated); in configuration (b), p is not simple (since Condition 2
of Theorem 1.2.3 is violated); in configuration (c), p is not simple (since
Condition 3 of Theorem 1.2.3 is violated); in configuration (d), p is simple
since all the three conditions of Theorem 1.2.3 are satisfied.

Note that Kong extended his characterization of simple points in (2, 1)
pictures on Z* by using attachment sets to 3D (26, 6) pictures [139].

1.2.4 Sufficient Conditions

Let us see first three general sufficient conditions for topology preservation
(i.e., conditions that are valid for arbitrary binary pictures).

Altering a single point p in a picture preserves the topology if and only if p
is simple in that picture (see Subsection 1.2.3). Parallel operators can change
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a set of points at a time. Hence, we need a precise definition of what is meant
by topology preservation when a number of points are changed (deleted or
filled) simultaneously.

Definition 1.2.2 [139, 168] Let P be an arbitrary picture. A set of n points
Q is a simple set® in P if it is possible to arrange the elements of Q in
a sequence {(qu,...,qn) such that g, is a simple point in P and each q; is
simple after the set of points {qi,...,q_1} is changed (i =2,...,n). Such a
sequence is called a simple sequence. (And let the empty set be called simple.)

Figure 1.11 gives examples of simple and non-simple sets of black points
in a (2,1) picture on the grid Z?.

Figure 1.11: Examples of simple and non-simple sets in picture
(Z?,2,1,{a,...,j}). The set of black points {a,b,c,d} is simple since all
the 12 sequences (of the possible 24 ones) (a,b,c,d), {a,b,d,c), {a,c,b,d),
(a,d,b,c), (bya,c,d), (b,a,d,c), (b,c,a,d), (b,d,a,c), {(c,a,b,d), (c,b,a,d),
(d,a,b,c), and (d,b,a,c) are simple. The set of black points {f,i} is non-
simple, since both sequences (f, i) and (i, f) are non-simple. (Note that each
black point is simple. Hence, all the 10 singleton sets {a},...,{j} are simple
sets.)

There is general agreement that the concept of a simple set trivially im-
plies a sufficient condition for topology-preserving parallel operators:

Criterion 1.2.3 [139, 168, 272] A parallel operator is topology-preserving
if, for all possible pictures, it changes only simple sets.

Bertrand [23] and Kong [139] reported alternative solutions to the prob-
lem: they introduced the notions of a P-simple set and a hereditarily sim-
ple set, respectively, whose simultaneous deletion is proved to be topology-
preserving.

3Since most researchers have studied only reductions, it is usually assumed that a
simple set is a subset of black points. We have dealt with all the three kinds of operators
(i.e., reductions, additions, and mixed operators), hence there may be white points in ‘our’
simple sets.

12
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Definition 1.2.3 [23] Let P = (V, k, k, B) be an arbitrary picture. A set of
black points QQ C B is a P-simple set in P if for any point ¢ € QQ and any set
of points R C Q \ {q}, q is simple in picture (V,k,k, B\ R). Each element
of a P-simple set is called a P-simple point.

Theorem 1.2.4 [23] A reduction that deletes a subset composed solely of
P-simple points is topology-preserving.

Note that Bertrand gave a local characterization of P-simple points in
(26,6) pictures on Z3 [23]. Later Bertrand and Couprie proposed a similar
characterization in (2, 1) pictures on Z? [27], and Kardos and Paldgyi pre-
sented both formal and easily visualized sufficient and necessary conditions
of P-simple points in all the given five types of 2D pictures [125].

Figure 1.12 shows a P-simple set in a (2, 1) picture on Z2.

Figure 1.12: Example for a P-simple set in a (2, 1) picture on Z2. Non-simple
black points are depicted in black, simple black points are depicted in gray,
elements in a P-simple set are marked ‘x’. Note that all possible P-simple
sets are subsets of simple points.

Definition 1.2.4 [139] A set of black points Q is said to be hereditarily
simple in a picture if all subsets of Q (including Q itself) are simple sets in
that picture.

Theorem 1.2.5 [139] A reduction that deletes only hereditarily simple sets
15 topology-preserving.

To ensure topology preservation for parallel reductions, Ronse gave the
following specific sufficient condition:

13
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Theorem 1.2.6 [272] A parallel reduction R acting on (2,1) pictures on Z?
1s topology-preserving, if all the following conditions hold:

1. Only simple points are deleted by R.

2. For any two 1-adjacent black points p and q that are deleted by R, {p, ¢}
18 a simple set.

3. R never deletes completely any object contained in a 2 X 2 square (i.e.,
a set of four mutually 2-adjacent points).

Ma [168] and Kong [139] gave the foremost sufficient condition for topology-
preserving reductions on 3D (26, 6) pictures. They introduced the concepts
of a unit lattice square and a unit lattice cube: a unit lattice square in Z3 is
formed by four mutually 18-adjacent points, and a unit lattice cube is a set
of eight mutually 26-adjacent points (see Figure 1.13).

* * *
*/ */ * * */ |

*«‘i* | ‘ * * ‘ *
*/ */ * * */ */ */

(a) (b) () (d)

Figure 1.13: A unit lattice cube (a), and three unit lattice squares (b)-(d).
Their corners (i.e., points in Z?) are marked ‘x’. (Notice that each ‘face’ of
a unit lattice cube is a unit lattice square.)

Theorem 1.2.7 [139, 168] A 3D parallel reduction R acting on (26,6) pic-
tures is topology-preserving if all the following conditions hold:

1. Only simple points are deleted by R.

2. For any two black points p and q contained in a unit lattice square that
are deleted by R, {p,q} is a simple set.

3. For any three black points p, q, and r contained in a unit lattice square
that are deleted by R, {p,q,r} is a simple set.

4. For any four black points p, q, r, and s contained in a unit lattice
square that are deleted by R, {p,q,r, s} is a simple set.

5. R never deletes completely any object contained in a unit lattice cube.

14
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In order to verify the topological correctness of some 3D thinning algo-
rithms, Paldgyi and Kuba [221] proposed a simplified condition?:

Theorem 1.2.8 [221] A 3D parallel reduction R acting on (26,6) pictures
on Z3 is topology-preserving if all the following conditions hold:

1. Only simple points are deleted by R.

2. Let p € B be any point in a picture (Z3,26,6, B) such that p is deleted
by R. Let Q C B\ {p} be any set of points that are deleted by R from
picture (Z3,26,6, B) such that Q U {p} is contained in a unit lattice
square. Then p is simple in picture (Z3,26,6, B\ Q).

3. R never deletes completely any object contained in a unit lattice cube.

4This result originated before defending the author’s Ph.D. dissertation in the year
2000. 15
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1.3 Skeletonization

In his seminal work [32], Blum introduced a shape feature called skeleton
that jointly describes the topology and the geometry of a binary object. The
skeleton of a continuous object in R™ was historically given by the Medial
Axis Transform (also-called Symmetry Axis Transform), which tracks the
points having at least two closest boundary points. It can be defined in two
alternative ways:

e Blum’s grassfire (or prairie-fire) propagation assumes that the object is
a field of dry grass and its entire boundary is set on fire at a time. It is
also supposed that the fire spreads in all directions with equal velocity.
Then the skeleton is the set of points where the concurrent fire fronts
meet and quench each other (see Figure 1.14).

e The skeleton is the loci of the centers of all maximal inscribed hyper-
spheres (i.e., disks in 2D, balls in 3D, etc.), where a hypersphere is
inscribed if it is completely included by the object, and it is maximal if
it is not covered by any other inscribed hypersphere (see Figure 1.15).

The equivalence of the above two approaches was proved by Calabi and

Hartnett [46, 92].

Figure 1.14: Illustrating the prairie-fire propagation for a horse. Colored lay-
ers removed by the isotropic object reduction process (left) and the skeleton

(right).

The skeleton is a widely used shape descriptor due to its advantageous
properties:

e It represents local object symmetries [39, 59, 79, 290].

e [t reflects the topological structure of the object to be characterized
[45, 188].
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Figure 1.15: Skeleton of a solid (2D) rectangle. Both points ‘A’ and ‘B’
belong to the skeleton, since they have more than one closest boundary points
and they are centers of maximal inscribed disks. On the contrary, point ‘C’
is not skeletal, since the corresponding disk is not maximal (i.e., it touches
the boundary in just one point).

e It can be used to object decomposition (i.e., to partition an object into
a set of primitives) [33, 34, 199].

e [t reduces the dimensionality since a 2D object is reduced to 1D curves;
the skeleton of a 3D object may contain just 2D and 1D structures
(surfaces and curves) [59, 79, 199, 280] (see Figure 1.16).

e [t is ‘thin’ (i.e., the skeleton contains 1-point width manifolds and offers
dramatically less information than the original object) [59, 79].

Figure 1.16: A solid 3D box (left) and its skeleton (right) that contains some
2D surface patches.

The above-defined skeleton assumes continuous approach. Since we deal
with digital pictures, skeletonization means extraction of skeleton-like fea-
tures from digital binary objects [42, 54, 280]. These features are presented
in Subsection 1.3.1.

Subsection 1.3.2 describes the major skeletonization approaches, and ap-
plications are reviewed in Subsection 1.3.3.
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1.3.1 Skeleton-Like Features in 2D and 3D

In 2D, two kinds of skeleton-like features are taken into consideration (see
Figure 1.17): the centerline that approximates the continuous skeleton, and
the topological kernel that is a minimal set of points being topologically
equivalent [137] to the original object (i.e., if we remove any further point
from it, then the topology is not preserved). If an object does not contain
any cavity, its topological kernel is an isolated point. Otherwise, topological
kernels are formed by 1-point thick closed curves.

S ' JJd

Figure 1.17: Centerline (left) and topological kernel (right) superimposed on
a 2D (discrete) object.

In the 3D case, there are three types of skeleton-like features: the cen-
terline, the medial surface (see Figure 1.18), and the topological kernel (see
Figure 1.19).

The centerline in 3D is a line-like or stick-like 1D representation of objects
that captures the part-whole structure of the object to be described [53, 307].
In many applications (see Subsection 1.3.3), it is a concise representation of
tubular and tree-like 3D objects. The medial surface provides an approxi-
mation to the the continuous 3D skeleton, since it can contain 2D surface
patches. Similarly to the 2D topological kernel, a topological kernel of a
3D object is a minimal set of points that is topologically equivalent to the
original object. It is fairly useful in representing or checking the topological
structure of the object to be described. Note that a topological kernel of a
3D object is an isolated point if and only if it does not contain any holes nor

Figure 1.18: Centerline (left) and medial surface (right) superimposed on a
3D image of a biplane.
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cavities.

Figure 1.19: Topological kernels superimposed on incorrectly segmented 3D
human airway trees. Since the segmented trees contain some holes (left) and
some cavities (right), there are some closed ‘thin’ curves (loops) and some
‘bubbles’ (cavities) with one point thick walls in their topological kernels.

It is an important property of (2D and 3D) centerlines that they contain
just three types of elements: endpoints (which have only one skeletal neigh-
bor), line-points (that are ‘adjacent’ to exactly two skeletal points), and
branch-points (that have more than two skeletal neighbors) that form junc-
tions (bifurcations, trifurcations, etc.). Hence, a complex descriptor named
skeletal graph® can be derived from centerlines. The set of vertices of a skele-
tal graph is formed by the endpoints and the branch-points, and there is an
edge between two vertices if they are connected via ‘adjacent’ line-points
[15, 16, 41, 62, 109, 167, 177, 231, 269, 273] (see Figures 1.20 and 1.21).

Lastly, we mention that Pizer et al. [256, 258] proposed a particular type
of shape feature called deformable m-reps (a sampled medial object represen-
tation). It is derived from the medial surface of a 3D object, and represents
3D object boundaries using sheets of medial atoms [304].

1.3.2 Skeletonization Techniques

Several approaches have been proposed for producing skeleton-like features
from (segmented) binary objects. Some authors presented comprehensive

5Some researchers use the term skeleton graph for the same shape descriptor. That is
ambiguous, since the notion of skeleton graph also means a particular edge- and vertex-
weighted simple graph introduced by Erd6s et al. [66].
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line-point

branch-point /’\
Figure 1.20: A 3D centerline with the three types of elements (left), the
derived skeletal graph (right).

<—— endpoint

Figure 1.21: Centerline superimposed on a 2D image of a horse and the
corresponding skeletal graph.

and concise surveys [278, 279, 280, 282, 304, 307, 330]. Here we summarize
the three major skeletonization techniques: generation from distance maps,
geometric approach based on Voronoi diagrams, and modeling the fire-front
propagation (thinning).

Distance-based skeletonization refers to the definition of the (continuous)
skeleton by the centers of all maximal inscribed hyperspheres. It uses distance
maps that are the results of distance transform algorithms [35]. The input
of a (discrete) distance transform algorithm is a binary picture in which
white points form the set of feature points, and it is converted into a (non
binary) array, where each element has a value that gives the distance to the
‘nearest’ feature point. The produced distance map strongly depends on the
applied distance [86]. The most popular ones are distance family derived
from adjacency relations [35, 321], weighted or chamfer distances [35, 322],
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quasi-Euclidean distances [35, 60, 191], and the exact (error-free) Euclidean
distance [67, 189, 284, 353]. Note that computing distance transform takes
linear time in arbitrary dimensions [35, 189).

If a distance transform is calculated from the white points in a binary
picture, some local maxima in the distance map form centerlines in 2D, and
medial surfaces in the 3D case. These ‘ridges’ have been identified by stan-
dard techniques of differential geometry and heuristic methods [5, 36, 270].

Note that distance-based skeletonization can produce geometrically accu-
rate features (from exact Euclidean distance maps), but some ridge-detectors
cannot provide topologically correct results.

The Voronoi skeleton is obtained by computing the Voronoi diagram of
sampled boundary points [3, 280, 329]. In [289], Schmitt has shown that
if the density of the sampled boundary points uniformly goes to infinity,
the ‘internal’ elements of the corresponding Voronoi diagram converges to
the (exact continuous) skeleton. Several authors proposed computationally
efficient algorithms for computing the Voronoi diagram [40, 131, 202, 216,
262]. The raw Voronoi skeleton may contain a large number of spurious
branches in 2D, and unwanted surface patches in the 3D case. Thus the
Voronoi skeletonization is to be paired with a proper pruning method [12,
202, 217, 218].

Although the Voronoi skeleton is correct in both geometrical and topolog-
ical senses, this method is rather time-consuming and ‘hybrid’ (i.e., its input
is a discrete set of points, but the output if formed by continuous segments).

The third major skeletonization technique is the digital simulation of
the fire-front propagation. Thinning [89, 147, 280, 307, 324] is an itera-
tive object-reduction process for producing any skeleton-like feature in a
topology-preserving way: the outmost layer of an object is deleted, and the
entire process is repeated until stability is reached (see Figure 1.22).

Most of the existing thinning algorithms are parallel, since the fire-front
propagation is parallel by nature [8, 22, 25, 27, 28, 29, 56, 57, 58, 82, 88, 89,
113, 115, 120, 121, 147, 150, 162, 165, 166, 168, 169, 170, 171, 172, 174, 175,
180, 181, 203, 204, 205, 206, 208, 209, 210, 211, 219, 220, 221, 222, 225, 229,
232, 233, 234, 235, 236, 237, 242, 243, 244, 246, 248, 268, 275, 276, 324, 338,
354, 358]. We should add that some sequential algorithms have also been
proposed [55, 112, 114, 116, 117, 147, 150, 197, 198, 224, 240, 242, 243, 244,
246, 252, 266, 320, 324].

The topology-oriented thinning pays less attention to the metric proper-
ties of the object to be represented, since the invariance under arbitrary rota-
tion angles or scaling factors is not fulfilled. In spite of these drawbacks, our
attention has been focussed on thinning, since thinning is the fastest skele-
tonization method, it can be implemented easily, it can produce all types of
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original object after 15 iterations after 30 iterations
after 45 iterations after 60 iterations centerline

Figure 1.22: Thinning of Escher’s (rep)tile. Some phases of the iterative
object reduction are shown.

skeleton-like features, the topology-preservation is guaranteed, and thinning
provides practically exquisite descriptors for a number of applications.

Note that there are some additional skeletonization approaches:

e Some attempts have been made to approximate the result of Medial
Axis Transform in discrete spaces. The ‘skeletons’ are defined in terms
of a new concept, called the Integer Medial Axis (IMA) transform [98,
186].

e Distance transform has been combined with thinning. Some authors
proposed skeletonization algorithms in which the distance transform
is followed by (non-iterative) sequential deletion of ‘deletable’ points
in ascending distance order [263, 285, 309]. In [327], ‘peak’ points
are detected in distance maps, then these points are preserved by an
iterative reductive shrinking.

e The ‘skeleton’ can be expressed in terms of the basic morphological
operations [69, 83, 296, 308|, where hyperspheres are approximated
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by successive dilations, and the original object can be exactly recon-
structed from the the skeletal subsets [149]. Note that some simple
thinning algorithms can be described by the morphological hit-or-miss
transform (as a basic tool for detecting the ‘deletable’ points of the
applied reduction) [83, 133, 184, 296, 308].

e Some authors have used minimal cost method for generating 2D and
3D centerlines (i.e., path optimization can be carried out with graph
algorithms) [107, 108, 161].

e Several techniques use continuous curve propagation for simulating the
fire-front propagation: active contour [152], anisotropic partial differ-
ential equation [365], Gaussian affinity voting [371], principal curves
[154], shock of boundary evolution [128, 302], normal field [104, 176],
level set [129, 332, 351], flux [37, 255, 303], Markov framework (MRF)
[2], absolute scale [11], potential field [1, 51], and gradient vector flow
[93].

e Some authors have reported skeletonization algorithms acting on grey-
scale pictures and fuzzy objects [6, 7, 31, 106, 173, 183, 266, 283, 293,
297, 331, 363].

Numerous authors have proposed methods to evaluate the performance of
skeletonization algorithms [9, 53, 85, 103, 145, 276, 286, 288, 306, 307, 330].
Due to the lack of definition of the ‘true skeleton’ for a discrete object, a
widely accepted approach evaluating the goodness of skeletonization algo-
rithms is yet absent [280]. That is why we have proposed a method for the
quantitative comparison of ‘skeleton’ features [212]. The two key compo-
nents of our approach are a specific similarity measure for ‘skeletons’ and a
gold standard image database containing pairs of reference objects and their
expected results.

1.3.3 Applications of Skeletonization

Skeleton-like features have been widely used in different image processing
and computer vision applications. Here, we provide a list of these appli-
cations with no claim to completeness: animation [54, 61, 74, 347|, chordal
surface generation [146], computer graphics [53], coding [100, 158, 143, 182],
design and engineering applications [264], fingerprint analysis [68, 84, 369],
generating mesh sizing functions [265], measuring shape similarity [336], mo-
tion analysis [73, 74], multiscale shape analysis [335], object recognition and
classification [11, 16, 62, 95, 291, 300, 362], off-line character recognition
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[10, 65, 148], part-patch segmentation and object decomposition [135, 295],
porous filter permeability, analysis of porous media, and pore space morphol-
ogy [155, 156, 159, 261, 305, 368], raster-to-vector conversion [18, 253, 310],
registration [345], segmentation [44, 53, 257, 259|, shape deformation and
morphing [30, 361], shape matching and retrieval [15, 41, 49, 53, 54, 70,
80, 96, 104, 167, 178, 213, 267, 325], shape modeling [71, 304, 347], terrain
modeling [333], tracing and virtual navigation [53, 101, 104].

Skeletonization has been frequently applied in many medical image pro-
cessing applications, including airway analysis and virtual bronchoscopy [19,
76, 107, 195, 196, 360, 363, brain tissue analysis [132], characterization of
complex anatomic object [38, 202, 367], colonography and virtual colonoscopy
(63, 111, 274, 102, 318, 348], estimating the motion of arteries [334], malig-
nant tumor identification [134], medical image segmentation and registration
[47, 254, 260, 364], mesh generation of tubular geometries [185], neuron traces
[344], path planning [352], stenosis detection [50, 72, 85, 215, 288, 351], sur-
gical planning [292], trabecular bone analysis [105, 277, 281, 283], vascular
and endovascular surgery, vessel lumen segmentation, angiography, angiogen-
esis, and detection of aortic aneurism [4, 48, 78, 91, 151, 154, 157, 261, 194,
214, 271, 301, 337, 349, 350, 355, 356, 359, 366, 370, 371], virtual endoscopy
[94, 161], and visualization of tomographic molecular imaging [17].

In [153], Leymarie and Kimia covered a wide spectrum of applications of
medical symmetries (including applications in geography, cartography, wire-
less sensor networks, urbanism, architecture, archaeology, visual arts, motion
analysis, body animation, robotics, machining, industrial design, registra-
tion, medicine, and biology).

The author’s 3D thinning algorithms have been involved in the follow-
ing biomedical applications: assessment of infrarenal aortic aneurysm [224],
assessment of tracheal stenosis [224, 311, 313, 315, 316], unraveling and vir-
tual dissection of the colon [224, 312, 314, 317], colorectal polyp detection
[314], characterization of the interstitial lung diseases [99], matching and
anatomical labeling of human airway tree [339, 341], quantitative analysis of
pulmonary airway trees [226, 227, 228, 231], liver segmentation for surgical
resection planning [20], and identifying synaptic connections [187].

For reasons of scope, in this dissertation, our method for quantitative
analysis of pulmonary airway trees (see Chapter 4) is only described.
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Chapter 2

Topology Preservation

This chapter is to summarize our theoretical results concerning diversified
topological problems. These results provide methods of verifying that an
operator preserves the topology, allow us to generate topology-preserving
operators, and provide computationally efficient thinning algorithms.

For reasons of scope, in this chapter, only some selected results are pre-
sented.

Configuration-based and point-based sufficient conditions for topology-
preserving reductions are presented for 2D pictures in Section 2.1.

In Section 2.2, both symmetric and asymmetric point-based conditions
are given for topology-preserving reductions acting on 3D (26, 6) pictures on
Z3.

Instead of investigating the sets of altered points, the author proposed
a novel sufficient condition for topology-preserving operators that takes the
alteration rules of operators into consideration. In Section 2.3, it is de-
scribed that the general-simple alteration rules provide pairs of equivalent
and topology-preserving sequential and parallel operators.

In Section 2.4, the relationships among the five types of sufficient condi-
tions for topology-preserving reductions are reviewed.
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2.1 Sufficient Conditions for 2D Pictures

In this section sufficient conditions for topology-preserving reductions. These
results are valid for all the given five types of 2D pictures. Configuration-
based conditions provide methods of verifying that an operator preserves the
topology, and point-based conditions allow us to generate directly topology-
preserving operators.

For reasons of scope, our sufficient conditions for topology-preserving ad-
ditions [119, 122, 126] and mixed operators [123, 126] are not presented here.

2.1.1 Configuration-Based Conditions for Reductions

In [272], Ronse gave a sufficient condition for topology-preserving reductions
in (2,1) pictures on Z? (see Theorem 1.2.6).

Condition 2 of Theorem 1.2.6 examines the simplicity of a set of two
points. Thanks to the following (absolutely general and dimensionless) lemma
stated by Kardos and Palagyi, it can be simplified:

Lemma 2.1.1 [122, 124] Let p and q be two (black) simple points in an
arbitrary picture. If p remains simple after the deletion of q, then q remains
simple after the deletion of p.

Lemma 2.1.1 can be rephrased as follows:

e If a simple set is formed by two simple points, then both possible se-
quences of its elements are simple sequences.

e If two black points p and ¢ are simple in a picture, then the following
two statements are equivalent:

— pis simple after the deletion of ¢ (i.e., (g, p) is a simple sequence).

— ¢ is simple after the deletion of p (i.e., (p, q) is a simple sequence).

In other words, the simplicity of a set of two simple points can be de-
cided by testing just one sequence/permutation of its elements. Hence, no
‘repechage’ is needed.

Condition 3 of Theorem 1.2.6 examines objects contained in a 2 x 2 square.
It is easy to check that there are exactly ten such objects (see Figure 2.1).

With the help of Lemma 2.1.1 and Figure 2.1, Ronse’s condition (i.e.,
Theorem 1.2.6) can be rephrased as follows:

Theorem 2.1.1 [122, 124, 208] A parallel reduction R acting on (2,1) pic-
tures on Z? is topology-preserving, if all the following conditions hold:
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Figure 2.1: The ten possible objects contained in a 2 x 2 square.

1. Only simple points are deleted by R.

2. For any two 1-adjacent black points p and q that are deleted by R, p is
simple after the deletion of q.

3. R never deletes completely any objects shown in Figure 2.1(d) — Figure
2.1(j).

Note that the object in Figure 2.1(a) is not deleted by Condition 1 of
Theorem 2.1.1, and the next two objects shown in Figure 2.1(b) and Figure
2.1(c) cannot be deleted by Condition 2 of Theorem 2.1.1, therefore, Condi-
tion 3 of Theorem 2.1.1 is satisfied if the remaining seven objects shown in
Figure 2.1(d) — Figure 2.1(j) are not deleted completely.

Kardos and Paldgyi extended Theorem 2.1.1 to all the given five types
of 2D pictures [122, 126]. They introduced two notions: the maximal set
composed of mutually 2-adjacent points on V is called a unit element (V =
T,7Z% H) (see Figure 2.2). An object in a (2,1) picture on V is said to be a
small object if it is contained in a unit element, it is not singleton, and it is
not formed by two 1-adjacent points (see Figures 2.3-2.5).

Figure 2.2: All the possible unit elements on grids 7, Z2, and H.
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Figure 2.3: Base small objects in (2, 1) pictures on 7. All their rotated and
reflected versions give all the possible 50 cases.
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Figure 2.4: Base small objects in (2,1) pictures grid Z%. All their rotated
and reflected versions give all the possible 7 cases. (They correspond to the
seven objects shown in Figure 2.1(d) — Figure 2.1(j

& v

Figure 2.5: The two possible small objects in (1,2) = (2, 1) pictures on H.

Theorem 2.1.2 [122, 126] A parallel reduction R acting on (k, k) pictures
on V 1is topology-preserving, if all the following conditions hold:

1. Only simple points are deleted by R.

2. For any two k-adjacent black points p and q that are deleted by R, p is
simple after the deletion of q.

3. For the (k, k) = (2,1) case, no small object is deleted completely by R.

2.1.2 Point-Based Conditions for Reductions

Condition 2 of Theorem 2.1.2 takes pairs of k-adjacent deleted points into
consideration, and Condition 3 deals with small objects. Hence, that the-
orem states a configuration-based condition, and just provides a method of
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verifying that a formerly constructed parallel reduction preserves the topol-
ogy, rather than a methodology, for constructing topology-preserving reduc-
tions. That is why we proposed point-based conditions that directly provide
deletion rules of topology-preserving reductions, and allow us to construct
topology-preserving thinning algorithms.

2.1.2.1 Symmetric Conditions

Kardos and Palagyi proposed the following theorem that states the deletabil-
ity of individual points:

Theorem 2.1.3 [120, 124, 126] A parallel reduction acting on (k, k) pictures
on V is topology-preserving, if each point p deleted by that reduction satisfies
the following conditions:

1. Point p is simple for B.

2. For any point q € Ngv(p) N B being simple for B, point p is simple for

B\ {q}.

3. For the (k, k) = (2,1) case, p is not an element of a small object.

2.1.2.2 Asymmetric Conditions

Conditions of Theorem 2.1.3 may be viewed as symmetric since elements in
pairs of k-adjacent points and small objects are not distinguished.

Let us focus on the addressing schemes shown in Figure 2.6, which maps
every point in Z? and H to a pair of coordinates. The lezicographical order
relation ‘<’ between two distinct points p = (p,, py) and ¢ = (s, gy ) is defined
as follows: p<q & (p, <qy)V ((py =qy) N (pz < qz)). Let @ be a finite
subset of V. Then, point p € @ is said to be the smallest element of @) if for

any ¢ € Q\ {p},p < ¢q.

(-1-1)|(0,-1)|(1,-1) @@
(-1.0)[ (0,0)| (1,0) IIINE::DEI:I
(-Ly[O,1)[(1,1) @@

Figure 2.6: Feasible addressing schemes for the grids Z? and H. All points ¢
in N;%* (p) and N3*(p) such that p < ¢ are depicted in gray, where p is the
central point with coordinates (0, 0).
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With the help of the proposed ordering, Kardos and Palagyi gave the fol-
lowing asymmetric point-based condition for topology-preserving reductions:

Theorem 2.1.4 [120, 124, 248] A parallel reduction R acting on (k, k) pic-
tures on V is topology-preserving, if the following conditions hold for each
point p deleted by R:

1. Point p 1s simple for B.

2. For any point q € N,—:V(p) N B that is simple for B and p < q, point p
is simple for B\ {q}.

3. For the (k,k) = (2,1) case, p is not the smallest element of a small
object.

Note that Kardos and Paldgyi marked the smaller point in the possible
pairs of k-adjacent points, and the smallest point in the possible small objects
on T [124]. Therefore relation ‘<’ on the triangular grid is also defined.

Our symmetric and asymmetric point-based sufficient conditions (see
Theorems 2.1.3 and 2.1.4) allow us to frame the following reductions:
Definition 2.1.1 Let Rl’gﬁ,’f;,’? be the reduction acting on (k, k) pictures on V
that deletes all points satisfying all conditions of Theorem 2.1.5.

Definition 2.1.2 Let R}fsg’;@ be the reduction acting on (k, E) pictures on V
that deletes all points satisfying all conditions of Theorem 2.1.4.

Note that all derived reductions are evidently topology-preserving.

The supports (i.e., the minimal set of points whose values determine
the operator) of the five pairs of reductions (Rl)ggf}ﬁ), R;jséﬁﬁ) are shown in
Figures 2.7-2.9. It can readily be seen that the asymmetric reductions can
delete much more points than the symmetric ones derived from point-based
sufficient conditions for topology preservation.

Note that Kardos and Palagyi gave an advanced asymmetric sufficient
condition for topology-preserving reductions acting on (2, 1) pictures on Z?2
[127]. It is based on an ordered classification of border points.
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R7-(12) _ pT.(21) R7:(12) _ RT.(2.1)

symm symm asymm asymm

Figure 2.7: Supports of the reductions for ‘A’ and ‘V’ triangles on 7. The
36 and 31 points whose values determine the operators are depicted in gray.

Z?,(1,2) pZ?*(2,1) Z%,(1,2) pZ?(2,1)
Rsymm s Rsymm Rasymm, Rasymm

Figure 2.8: Supports of the derived reductions on Z2. The 24 and 18 points
whose values determine the operators are depicted in gray.

R?—l,(l,2) R'H,(2,1)

asymm — Nasymm

Figure 2.9: Supports of the derived reductions on H. The 18 and 13 points
whose values determine the operators are depicted in gray.
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2.2 Point-Based Sufficient Conditions for 3D
Reductions

Ma [168] and Kong [139] gave the foremost sufficient condition for topology-
preserving reductions acting on 3D (26, 6) pictures on Z3 (see Theorem 1.2.7).
Later Paldgyi and Kuba [221] proposed a simplified condition (see Theorem
1.2.8). Both conditions fall into the configuration-based category, and they
provide general methods of verifying that a parallel reduction (or thinning
algorithm) preserves the topology.

The following point-based sufficient conditions were derived from Theo-
rem 1.2.8:

Theorem 2.2.1 The parallel reduction R is topology-preserving for (26,6)
pictures on Z3 if all the following conditions hold for any black point p in
any picture P = (Z3,26,6, B) such that p is deleted by R.

1. Point p is simple in P.

2. Let () C B be any set of simple points in P such that p € @, and
Q is contained in a unit lattice square. Then p is simple in picture

(2%,26,6, B\ (Q\ {p}))-

3. Point p is not an element of any object C' C B in P such that C' s
contained in a unit lattice cube.

It can readily be seen that if a reduction satisfies Condition ¢ of Theorem
2.2.1 (i.e., the point-based result), Condition ¢ of Theorem 1.2.8 (i.e., our
former configuration-based result) holds for each i € {1,2,3}.

Theorem 2.2.1 provides a symmetric point-based condition since elements
contained in unit lattice squares and unit lattice cubes are not distinguished.

The lexicographical order relation ‘<’ between two distinct points p =
(Das Py> =) and ¢ = (qu, @y, ¢-) in Z? is defined as follows:

p=4q < (pz<QZ)v(pz:(h/\py<Qy)v(pz:q,z/\py:%//\px<q$)'

Let S C Z3 be a finite set of points. Point p € S is the smallest element
of S if for any ¢ € S\{p}, p < q.

With the help of the lexicographical ordering we stated the following
asymmetric point-based condition:

Theorem 2.2.2 [236] A parallel reduction R is topology-preserving for (26, 6)
pictures on Z2 if all the following conditions hold for any black point p in any
picture P = (Z3,26,6, B) such that p is deleted by R.
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1. Pownt p is simple in P.

2. Let QQ C B be any set of simple points in P such that p € Q, and Q)
18 contained in a unit lattice square. Then point p is simple in picture
(Z3,26,6, B\(Q\{p})), or p is not the smallest element of Q.

3. Point p is not the smallest element of any object C' C B in P such that
C' is contained in a unit lattice cube.
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2.3 Equivalent Sequential and Parallel Oper-
ators

All above mentioned sufficient conditions for topology-preserving operators
examine some configurations of deletable points or individual deletable points.
The author proposed a novel condition that takes the alteration rules of op-
erators into consideration [238, 239, 241]. This approach is momentous since:

e it is universal (i.e., it is valid for arbitrary binary pictures);

e it provides a condition not only for topology-preserving reductions, but
also for topology-preserving additions and mixed operators;

e it provides a verification method to design topology-preserving thinning
algorithms;

e it allows us to implement parallel thinning algorithms directly on con-
ventional sequential computers.

Here our attention is focussed on reductions that play a key role in various
topological algorithms, e.g., thinning [89, 147, 324] or reductive shrinking
[90].

Parallel reductions can change a set of black points simultaneously, while
sequential reductions traverse the black points of a picture, and focus on
the actually visited single point for possible deletion. These two absolutely
dissimilar strategies are illustrated in Algorithm 1 and Algorithm 2.

Algorithm 1: Parallel reduction

1 Input:  set of black points B,

2 constraint set C' C B, and

3 deletion rule R

4 Qutput: set of black points PB

5 // selecting interesting points

6 X+ B\C

7 // determining deletable points

8 D« {p|peX and R(p, B,C)=true }
9 // deletion

10 PB<+ B\ D

Thinning algorithms generally classify the set of black points in input
pictures into two (disjoint) subsets: the deletion rule associated with a phase

34



dc 1721 19

Algorithm 2: Sequential reduction

1 Input:  set of black points B,

2 constraint set C' C B,
3 permutation (total ordering) IT of elements in B\ C'
4 deletion rule R

5 Qutput: set of black points PB

6 // selecting interesting points

7 X« B\C

8 // setting initial black points

9 SB+ B

10 // traversal of X according to 11
11 foreach p € X do

12 if R(p,SB,C) =true then
13 // deletion

14 SB «+ SB\ {p}

of an algorithm is evaluated for the elements of its set of interesting points,
and black points in its constraint set are not taken into consideration. That
is why Algorithm 1 and Algorithm 2 examine a constraint set C' C B (as an
input parameter) and its complementary X = B\ C as a set of interesting
points.

An interesting point p € X is deletable, if R(p,Y,C) = true, where Y
denotes the set of black points in the (actual) picture, ie., Y = SB C B
in sequential reductions (see Algorithm 2), and Y = B in the parallel case
(see Algorithm 1). Therefore, in a parallel reduction, the initial picture is
examined when the deletion rule is evaluated. In contrast, the picture is
dynamically altered when a sequential reduction is performed. We should
add that elements of the constraint set C' are omitted when the deletion rule
R is evaluated. For practical purposes we deal with finite pictures (i.e., B
contains finitely many points).

The sequential approach suffers from the drawback that different visiting
orders of interesting points may provide different results. A deletion rule R is
said to be order-independent if the result of Algorithm 2 is uniquely specified
by R (i.e., the result of Algorithm 2 does not depend on the order II in which
the interesting points are selected by the foreach loop) [114, 238, 266].

Definition 2.3.1 [239] Two reductions are called equivalent if they produce
the same result for each input picture. A deletion rule is said to be equivalent
iof it provides a pair of equivalent parallel and sequential reductions.
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Recall that the support of a deletion rule R applied at a point is a minimal
set of points whose values determine whether the examined points are deleted
by R from a picture. Note that thinning and reductive shrinking algorithms
use local supports with ‘small’” diameters. Let us denote the support of
the deletion rule R with respect to a point p by Sg(p). It is clear that
R(p, Y, C) = R(p, Yn SR(p), cn SR(p))

The author introduced two special classes of deletion rules:

Definition 2.3.2 [239] Let R be a deletion rule, let B be the set of black
points in a picture, let p € B\ C be an interesting point with respect to the
constraint set C C B, and let us assume that R(p, B,C) = true (i.e., p can
be deleted by R). Then R is general if R(¢q, B,C) = R(q, B\ {p},C) for any
point ¢ € B\ C.

In other words, a deletion rule is general if the deletability of any point
does not depend on the ‘color’ of any deletable point. It is obvious that a
method of verifying that a deletion rule R is general may ignore each point

q & Sr(p)-

Definition 2.3.3 [239] A deletion rule is general-simple if it is general, and
it deletes only simple points.

The following theorem gives a necessary and sufficient condition for order-
independent deletion rules:

Theorem 2.3.1 [239] A deletion rule is order-independent if and only if it
15 general.

Figure 2.10 presents an example of a non-general deletion rule. Hence, it
is not order-independent by Theorem 2.3.1.
Let us see a useful property of general deletion rules.

Lemma 2.3.1 [239] Let R be a general deletion rule. Then the parallel and
the sequential reductions with R are equivalent.

We are now ready to state a condition for equivalent deletion rules as an
immediate consequence of Lemma 2.3.1.

Theorem 2.3.2 [239] A deletion rule is equivalent if it is general.
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(a) (b) (c) (d) (e)

Figure 2.10: Example of a non-general deletion rule that removes interior
points from (2,1) pictures on Z*. We can state that the parallel and the
sequential reductions with that rule cannot produce the same result for the
original picture (a). The result of the parallel reduction (b), and three of the
possible pictures produced by the sequential reduction with various visiting

orders (c)—(e).

Note that Theorem 2.3.2 gives a sufficient (but not necessary) condition
for equivalent deletion rules, since a non-general deletion rule may specify a
pair of equivalent parallel and sequential reductions. Examine the deletion
rule on Z? that deletes a black point if its southern neighbor is black. It is
clear that it is not order-independent, hence it is not general by Theorem
2.3.1. It can readily be seen that if we apply the row-by-row visiting order,
then that sequential reduction with that deletion rule is equivalent to the
parallel reduction with the same rule.

The following theorem provides a novel sufficient condition for topology-
preserving reductions in arbitrary pictures.

Theorem 2.3.3 [239] A parallel reduction is topology-preserving if its dele-
tion rule is general-simple.

Examine the deletion rule R}, .qcr that deletes all border points from (2, 1)
pictures on Z?2, and assume that the constraint set is formed by the interior
points. It can readily be seen that Ry, ;qer 1S general (and order-independent),
hence it provides a pair of equivalent parallel and sequential reductions. Since
some border points are not simple, Ryo e 1S Dot general-simple, and the
specified parallel and sequential reductions are not topology-preserving (see
Figure 2.11).

In the additional example, deletion rule Rg;p1e deletes all simple points
from (2,1) pictures on Z?, and the constraint set C' C B is formed by the
interior points in B. In this case, the parallel reduction (see Algorithm
1) is not topology-preserving, since simple points may form non-simple sets.
Notice that a black component is disconnected into three components and the
three white components are merged. Algorithm 2 with respect to Rgjpple may
specify numerous topology-preserving sequential reductions as it is illustrated
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Figure 2.11: Example of a general deletion rule that is not general-simple.
The sample original picture (left), where interior points (i.e., elements of the
constraint set) are marked ‘x’. The picture produced by the parallel and the
(unique) sequential reductions (right) with the general deletion rule Ry, der
(right). Deleted points are depicted in light gray. These reductions are not
topology-preserving since one black component is completely deleted and the
three white components are merged.

by Figure 2.12, hence deletion rule Rgjy, e is not general (and it is not general-
simple).

F

Figure 2.12: Example of a deletion rule that is not general-simple. The
sample original picture (top-left), where interior points (i.e., elements of the
constraint set) are marked ‘«’. The picture produced by the parallel re-
ductions (top-right) with deletion rule Ry p1e. Two of the possible results
generated by the sequential reductions with Rgpple (bottom). The bottom-
left picture is the result with respect to the row-by-row visiting order, and we
got the bottom-right picture by applying the opposite ordering (i.e., scanning
from the bottom upwards, and right to left on each row). Deleted points are

depicted in light gray.

The following theorem summarizes our most important results concerning
general-simple deletion rules:

Theorem 2.3.4 Let R be general-simple deletion rule. Then the following
conditions hold:
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1. The parallel reduction with deletion rule R (see Algorithm 1) is topology-
preserving.

2. The sequential reduction with deletion rule R (see Algorithm 2) is to-
pology-preserving.

3. The parallel and the sequential reductions with deletion rule R are equiv-
alent.

We should add that the author extended those results to mixed operators
(that also include reductions and additions), and he proposed an equivalent
contour-smoothing algorithm [241].

In [239], the author gave a method of verifying that a deletion rule
provides a pair of topology-preserving and equivalent parallel and sequen-
tial reductions. With the help of that method, we managed to prove that
deletion rules of some 2D and 3D thinning algorithms are general-simple
(242, 243, 244, 246].
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2.4 Relationships Among Conditions for Re-
ductions

Let us review the existing sufficient conditions for topology-preserving reduc-
tions that fall into the following five categories:

e configuration-based (see Theorems 1.2.6, 1.2.7, 1.2.8, and 2.1.2),

point-based (see Theorems 2.1.3, 2.1.4, 2.2.1, and 2.2.2),

P-simple sets (see Theorem 1.2.4),

hereditarily simple sets (see Theorem 1.2.5), and
e general-simple deletion rules (see Theorem 2.3.4).

Next, the relationships among these five approaches are presented.

2.4.1 Hereditarily Simple Sets and P-Simple Sets

In [140], Kong and Gau proved that the two kinds of sufficient conditions for
topology-preserving reductions based on P-simple sets (i.e., Theorem 1.2.4)
and hereditarily simple sets (i.e., Theorem 1.2.5) are equivalent.

Theorem 2.4.1 [140] A set of black points in a picture is hereditarily simple
if and only if it is a P-simple set in that picture.

2.4.2 Configuration-Based and Point-Based Conditions

Let us now examine the relationship between the point-based and the configu-
ration-based conditions (see Sections 2.1 and 2.2):

e In the case of reductions acting on (k, k) pictures on V:
It can readily be seen that if a reduction satisfies Condition i of The-
orem 2.1.3 (i.e., the symmetric point-based result) or Theorem 2.1.4
(i.e., the asymmetric point-based result), Condition ¢ of Theorem 2.1.2
(i.e., the configuration-based result) holds for each ¢ € {1, 2, 3}.

e In the case of reductions acting on (26, 6) pictures on Z3:
It is clear that if a parallel reduction satisfies Condition i of Theorem
2.2.1 (i.e., the symmetric point-based result) or Theorem 2.2.2 (i.e., the
asymmetric point-based result), Condition i of Theorem 1.2.8 (i.e., the
configuration-based result) holds for each i € {1,2, 3}.
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Thus we can state the following theorem.

Theorem 2.4.2 If a reduction satisfies a (symmetric or asymmetric) point-
based condition, it satisfies the corresponding configuration-based condition
as well.

2.4.3 Configuration-Based Conditions and P-Simple Sets
In [248], Paldgyi and Kardos proved the following theorem:

Theorem 2.4.3 [248] If a reduction acting on (k, k) pictures on V deletes
only P-simple points, all conditions of Theorem 2.1.2 (i.e., the configuration-
based result) are satisfied.

It is clear that the analogous statement is valid for reductions acting on
(26,6) pictures on Z3.

Theorem 2.4.4 If a reduction acting on (26,6) pictures on Z? deletes only
P-simple points, all conditions of Theorem 1.2.8 (i.e., the configuration-based
result) are satisfied.

We managed to prove that the contrary of Theorem 2.4.3 holds for re-
ductions acting on the given five types of pictures on the regular 2D grids:

Theorem 2.4.5 (248, 249] If a reduction acting on (k, k) pictures on V sat-
isfies all conditions of Theorem 2.1.2, it deletes only P-simple sets.

In [24], Bertrand proposed a two-step (topology-preserving) thinning tech-
nique that is based on P-simple points. One phase/reduction of the iterative
thinning process is performed as follows:

1. A set of black points ) in the actual picture is (somehow) chosen and

labeled.
2. All P-simple points in @ are deleted (simultaneously).

Note that Step 2 concerns tricolor pictures (say: the value ‘0’ corresponds
to white points, the value ‘1’ is assigned to (black) points that are not in @,
and value ‘2’ corresponds to (black) points in Q). Hence this two-step scheme
is both space- and time-consuming.

Theorems 2.4.2 and 2.4.5 provide a single-step 2D thinning scheme that
deletes P-simple points as well [248]. The deletion rule of a phase of the itera-
tive thinning process can be directly constructed by combining the reduction
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Rl’g;,(ﬁg’? (see Definition 2.1.1) or Rgsg;% (see Definition 2.1.2) with different
thinning strategies (i.e., fully parallel, subiteration-based, and subfield-based
[89]) and various geometric constraints (say endpoints [89] or isthmuses [26]).
The generated deletion rule is a common Boolean function that is to be eval-
uated for the neighborhood of the points in question in binary (two-level)
pictures. As this Boolean function can be stored in a pre-calculated look-up-
table, the proposed single-step scheme can be implemented efficiently.

An immediate consequence of Theorem 2.4.5 is that the five pairs of
reductions (Rl@&’i;ﬁ’, lesg’:n’%) directly mark out P-simple sets in 2D pictures.

Note that there may be numerous P-simple sets in a picture. That is why
Kardos and Palagyi introduced the concept of a maximal P-simple set [127]:

Definition 2.4.1 [127] A P-simple set Q C B is a maximal P-simple set for
B if for any q € (B\ Q), QU {q} is not a P-simple set for B.

In [127], we gave a novel asymmetric point-based sufficient condition for
topology-preserving reductions acting on (2,1) pictures on Z?, and proved
that this condition directly marks out a maximal P-simple set.

2.4.4 P-Simple Sets and General-Simple Deletion Rules

Let us consider two important properties of P-simple sets and general-simple
deletion rules:

Proposition 2.4.1 [249] Any set of points Q C B is a P-simple set for B
if and only if all possible permutations of Q) form simple sequences.

Proposition 2.4.2 [249] All permutations of the elements in the set of points
deleted by a (sequential or parallel) reduction with a general-simple deletion
rule form simple sequences.

The following theorem is an immediate consequence of Proposition 2.4.1
and Proposition 2.4.2.

Theorem 2.4.6 [249] Reductions with general-simple deletion rules delete
P-simple sets.

Note that the contrary statement does not hold:

Theorem 2.4.7 [249] The deletion rule of a reduction that deletes only P-
simple sets may not be general-simple.

In [245], the author constructed a special deletion rule that deletes only
simple sets, and he proved that it is general-simple. In [249], the author
showed that for each simple set () in a picture, there is a general-simple
deletion rule that deletes () from this picture.
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2.4.5 Summarized Relationships

We summarize the relationships among the five types of sufficient conditions
for topology-preserving reductions below with the help of Figure 2.13. Note
that three of them (namely: deletion of simple sets, deletion of hereditarily
simple sets, and general-simple deletion rules) are absolutely universal, and
the relationships among them are valid for arbitrary pictures.

point-based
conditions
configuration-based
conditions

deletion of deletion of

P-simple sets hereditarily simple sets

general-simple
deletion rules

Figure 2.13: How the five kinds of sufficient conditions for topology-
preserving reductions are related for the given five types of 2D pictures.
Unfortunately, it is an open problem whether the contrary of Theorem 2.4.4
is valid for the examined type of 3D pictures.
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Chapter 3

Advanced Thinning

As it is sketched in Subsection 1.3.2, thinning is a major skeletonization
technique. It is an iterative object reduction process capable of producing
all types of skeleton-like features in a topology-preserving way: some border
points that satisfy certain topological and geometric constraints are deleted
from the object, and the entire process is repeated until stability is reached
(i.e., no points are deleted).

Parallel and sequential thinning algorithms are composed of parallel and
sequential reductions, respectively. Parallel reductions (i.e., thinning phases)
can delete all black points from a picture that satisfy their deletion rules
simultaneously, while sequential reductions consider a single black point for
possible deletion at a time.

From 2D and 3D pictures, curve-thinning algorithms are used to extract
centerlines, and kernel-thinning algorithms are capable of extracting topo-
logical kernels. (Note that kernel-thinning algorithms are often referred to
as reductive shrinking algorithms [90].) In the 3D case, surface-thinning al-
gorithms produce medial surfaces.

Curve-thinning and surface-thinning algorithms do not delete some points
that provide relevant geometrical information with respect to the shape
of the object. Endpoint-based curve-thinning algorithms preserves curve-
endpoints, and surface-thinning algorithms never delete surface-endpoints.
Isthmus-based curve-thinning and surface-thinning algorithms preserve ac-
cumulated isthmuses [26] (i.e., generalization of curve- or surface-interior
points). Kernel-thinning algorithms do not take geometric constraints into
consideration.

Unfortunately, all skeletonization methods including thinning are rather
sensitive to coarse object boundaries, hence the produced skeleton-like fea-
tures generally contain some false segments. Unwanted skeletal parts are
usually removed by a pruning process as a post-processing step [14, 87, 110,
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144, 160, 192, 294, 298, 299, 323, 328]. In order to overcome this problem,
Németh, Kardos, and Palagyi proposed a novel thinning scheme that uses
iteration-by-iteration contour smoothing [207].

There are three major strategies for parallel thinning [89]: a fully par-
allel algorithm applies the same parallel reduction in each iteration step; a
subiteration-based (also frequently referred to as directional) algorithm de-
composes an iteration step into k > 2 successive parallel reductions according
to k deletion directions, and a subset of border points associated with the
actual direction can be deleted by a parallel reduction; and in subfield-based
algorithms the digital space is partitioned into s > 2 subfields which are
alternatively activated, at a given iteration step s successive parallel reduc-
tions assigned to these subfields are performed, and some black points in the
active subfield can be designated for deletion.

We have constructed a number of 2D and 3D algorithms [112, 113, 114,
115, 116, 117, 118, 120, 121, 203, 204, 205, 206, 207, 208, 209, 210, 211, 219,
220, 221, 222, 224, 225, 229, 232, 233, 234, 235, 236, 237, 240, 243, 244, 246,
248, 252]. It should be stressed that all of them are topology-preserving.

In our ‘conventional’ parallel thinning algorithms [113, 219, 220, 221, 222,
225, 232, 233, 234], first the deletion rules were designed, then their topo-
logical correctness were verified with the help of configuration-based suf-
ficient conditions for topology-preserving reductions (see Subsections 1.2.4
and 2.1.1). The remaining parallel algorithms [115, 120, 121, 203, 204, 205,
206, 208, 209, 210, 211, 229, 235, 236, 237, 243, 244, 246, 248] are based on
a novel approach invented by the author: the deletion rules are derived from
‘advanced’ sufficient conditions (see Subsection 2.1.2, Section 2.2, and Section
2.3) combined with parallel thinning strategies and geometric constraints.

Thinning algorithms iterate reductions until stability is reached. If a
border point is not deleted in an iteration step, it is examined again for
possible deletion in the next step. Hence, it is important to characterize
survival points whose rechecking is not needed in the remaining phases of
the iterative process. Palagyi and Németh introduced the notions of a 2D-
simplifier point [247], a weak-3D-simplifier point [251], and a fixpoint [250].
With the help of these concepts, computationally efficient implementation
schemes were proposed for sequential endpoint-based thinning algorithms
[251] and iterated equivalent reductions [250].

For reasons of scope, in this chapter, only some selected results concerning
thinning are presented.

In Section 3.1, a general implementation scheme is presented. Although
thinning is an iterative process, the author proposed an easy and computa-
tionally efficient implementation scheme for arbitrary (sequential and paral-
lel) thinning algorithms.
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Section 3.2 reviews a safe technique for designing topology-preserving
parallel thinning algorithms. We describe 15 parallel 3D algorithms (5 curve-
thinning, 5 surface-thinning, and 5 kernel-thinning ones) that are derived
from our asymmetric point-based sufficient condition (see Theorem 2.2.2)
combined with the three major parallel thinning strategies and three types
of geometric constraints.

Four pairs of equivalent sequential and parallel subiteration-based 3D
surface-thinning algorithms are reviewed in Section 3.3. They use the same
deletion rule, but four types of constraints are taken into consideration.

Lastly, Section 3.4 presents two maximal 3D curve-thinning algorithms
(i.e, algorithms that can produce centerlines containing only non-simple
points and 3D-curve-endpoints). These algorithms have been successfully
applied in several medical image processing applications.
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3.1 A General Implementation Scheme

The author proposed a general and computationally efficient implementation
scheme for arbitrary thinning algorithms [230, 231, 234]. His method utilizes
the following properties of topology-preserving thinning:

e Only border points in the current picture are examined in each reduc-
tion / thinning phase (i.e., we do not have to evaluate the deletion rules
for interior points).

e Only some simple points in the current picture may be deleted in each
thinning phase (since all existing sufficient conditions for topology-
preserving reductions require that).

e Since deletion rules of thinning algorithms use local supports, the corre-
sponding Boolean functions can be evaluated for all possible configura-
tions, and the results can be stored in (pre-calculated) look-up-tables.

The proposed method uses a list for storing the border points in the
current picture, thus the repeated scans/traverses of the entire array (that
stores the picture) are avoided. The pseudocode of collecting border points
in the input picture (i.e., the initialization step of the thinning process) is
described by Algorithm 3.

Algorithm 3: Collecting border points

Input: array A storing the picture to be thinned
Output: list border_list storing the border points in that picture
border_list +— < empty list >
foreach element p in array A do
if A[p] =1 and p is a border point then
border_list <— border_list + < p >
L Alp] « 2

b B =R B VU VU

In input array A, the value ‘1’ corresponds to black points in the picture
to be thinned, and the value ‘0’ is assigned to white ones. In order to avoid
storing more than one copy of a border point in border_list, a three-color
picture is assumed in which the value ‘2’ corresponds to border points to be
checked in the forthcoming reductions / thinning phases.

Algorithm 4 and Algorithm 5 describe one phase of arbitrary sequential
and parallel thinning algorithms, respectively.
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Algorithm 4: Sequential thinning phase

© 00 N O Uk W N =

e e
B W N = O

Input: array A storing the (input or interim) (m, n)-picture and
list border_list storing the border points in that picture
Output: array A containing the result of the reduction and

the updated border_list
foreach point p in border_list do
if p is ‘deletable’ then
// deletion
Alp] < 0
border_list <— border_list — < p >

foreach point ¢ being n-adjacent to p do
if Alg] =1 then

LAM%2

border_list <— border_list + < q >

Algorithm 5: Parallel thinning phase

© W N O kA W N =

—
o

11
12
13
14
15
16
17
18

Input: array A storing the (input or interim) (m, n)-picture and
list border_list storing the border points in that picture
Output: array A containing the result of the reduction and

the updated border_list
// collecting deletable points
deletable_list < < empty list >
foreach point p in border_list do
if p is ‘deletable’ then
border_list <— border_list — < p >
L deletable_list < deletable_list + < p >

foreach point p in deletable_list do
// deletion
Alp] < 0
// updating the list of border points
foreach point ¢ being n-adjacent to p do
if Alg] =1 then
LAM%Q

border_list <— border_list + < q >
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In parallel case (see Algorithm 5), a second list is used for storing the
‘deletable’ points of the current iteration (see Figure 3.1). In order to ensure
that both the input and the output pictures of an iteration can be stored in
a single array, the evaluation and the deletion phases are separated: first all
‘deletable’ points are added to the deletable_list, then they are deleted and
border_list is updated accordingly.

In both the sequential and the parallel cases, if a border point is deleted,
all interior points that are n-adjacent to it become border points. These
brand new border points of the resulted picture are added to the border_list.

array A: array A:

|| 0: white point

0
[ 1: interior point e |
i u

] 2: border point

-

b
p
s

> |
=
— Eadiel O
O [
ol < — joX
—. |
(7]
—

3 K=

k

border _list: a,b,c,d e f,g hij kIl mn border_list: f,i,0,p,q,r,S,t,u, v
deletable_list: a,b,c,d,e, g, h,j kI mn

Figure 3.1: A thinning phase of an imaginary 2D fully parallel thinning
algorithm acting on (2,1) pictures on Z2. Array A contains 14 border points
and 12 of them are deletable points (left). There are 10 border points in
the resultant array A after this reduction, because 8 interior points turn into
border points (right).

In Algorithm 4 and Algorithm 5, the thinning process terminates when
no more points can be deleted (i.e., stability is reached). After thinning, all
points having a nonzero value in array A belong to the produced skeleton-like
feature.
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3.2 3D Parallel Thinning Algorithms Derived
from Sufficient Conditions for Topology
Preservation

A crucial issue in producing skeleton-like features is to ensure topology preser-
vation. In [56], Couprie examined fifteen frequently cited 2D parallel thinning
algorithms (acting on (2, 1) pictures on Z?). He showed that five among these
fifteen algorithms are not topology-preserving.

In order to prove that a parallel 2D or 3D thinning algorithm preserves
the topology for all possible pictures, some configuration-based sufficient con-
ditions for topology-preserving reductions have been proposed, see Theorem
1.2.6 [272], Theorem 2.1.1 [122, 124], Theorem 2.1.2 [122, 126], Theorem
1.2.7 [139, 168], and Theorem 1.2.8 [221]. The proofs in the literature that
show that some thinning algorithms satisfy these conditions are generally
combinatorial. Despite complex proofs, Paldgyi [223], Lohou [163], just as
Wang and Basu [354] detected that Ma and Sonka’s 3D fully parallel curve-
thinning algorithm [170] does not preserve the topology. Furthermore, Lohou
[164] stated that Ma’s 3D fully parallel surface-thinning algorithm [169] is
not topology-preserving, and Lohou and Dehos [165] showed that the correc-
tion of Ma and Sonka’s algorithm [170] proposed by Wang and Basu [354]
does not preserve the topology, either.

That is why we proposed a safe technique for designing topology-preser-
ving parallel thinning algorithms [208, 209, 236]. It is based on our (symmet-
ric and asymmetric) point-based sufficient conditions for topology-preserving
reductions (see Theorem 2.1.3, Theorem 2.1.4, Theorem 2.2.1, and Theorem
2.2.2). Our conditions directly provide deletion rules of topology-preserving
reductions, and allow us to generate topology-preserving thinning algorithms
by combining these reductions with parallel thinning strategies and geomet-
ric constraints (i.e., preserving endpoints or isthmuses) [115, 120, 121, 124,
203, 204, 205, 206, 208, 209, 210, 235, 236].

Next, we present 15 parallel 3D thinning (and shrinking) algorithms that
are derived from the asymmetric point-based sufficient condition (see The-
orem 2.2.2) combined with the three major strategies for parallel thinning
(i.e., fully parallel, subiteration-based, and subfield-based) and three types
of endpoints [236].

These endpoint-preserving thinning algorithms do not delete some bor-
der points that provide relevant geometrical information with respect to the
shape of the object. We focused on the following three types of endpoints:

Definition 3.2.1 There is no endpoint of type TK.
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To standardize the notations, reductive shrinking algorithms capable of
producing topological kernels are examined as kernel-thinning algorithms,
where no endpoint is preserved, hence we apply endpoints of type TK (i.e.,
the empty set of the endpoints).

Definition 3.2.2 A black point p in picture (Z3,26,6, B) is an endpoint of
type CE (in short 3D-curve-endpoint) if (NZ (p)\{p}) N B contains exactly
one point (i.e., p is 26-adjacent to exactly one further black point).

Endpoints of type CE have been taken into consideration by numerous
existing 3D curve-thinning algorithms [204, 205, 206, 219, 220, 222, 221, 231].

Definition 3.2.3 A black point p in picture (Z3,26,6, B) is an endpoint of
type SE (in short surface-endpoint ) if there is no interior point in N2Z63 (p)NB.

Note that endpoints of type SE are preserved by some existing surface-
thinning algorithms [8, 180, 204, 205, 206, 233, 234, 235].

Throughout this section, the notation € means that ¢ belongs to { TK,
CE, SE }.

3.2.1 Fully Parallel Algorithms

In fully parallel algorithms, the same parallel reduction is applied in each
iteration step [8, 165, 169, 170, 234, 354].

Algorithm 6 shows the scheme of the fully parallel thinning algorithm
3D-FP-¢.

Algorithm 6: Fully parallel thinning algorithm 3D-FP-¢
1 Input: picture (Z3, 26,6, X)

2 Output: picture (Z?,26,6,Y)

3 Y+ X

4 repeat

5 // one iteration step

6

7

8

D < { p| pis 3D-FP-e-deletable in YV }
Y« Y\D
until D = (;

‘3D-FP-e-deletable’ points are defined as follows:

Definition 3.2.4 A black point is 3D-FP-e-deletable if it is not an endpoint
of type €, and all conditions of Theorem 2.2.2 hold.
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It is obvious that Algorithm 3D-FP-¢ is topology-preserving. (Note that
all objects contained in a unit lattice cube are formed of endpoints of type
SE. Hence, condition 3 of Theorem 2.2.2 can be ignored in algorithm 3D-
FP-SE.)

Note that in [235], Paldgyi and Németh proposed three fully parallel 3D
surface-thinning algorithms, but those are based on an alternative point-
based sufficient condition that is ‘weaker’ than Theorem 2.2.2.

3.2.2 Subiteration-Based Algorithms

In subiteration-based thinning algorithms, an iteration step is decomposed
into d > 2 successive parallel reductions according to d deletion directions,
and only border points of a certain kind can be deleted in each subiteration
[89]. Since there are six kinds of major directions in 3D cases, 6-subiteration
algorithms were generally proposed [23, 82, 150, 171, 197, 206, 219, 268,
338, 358]. Moreover, we have also proposed 3-subiteration [225, 233, 232],
8—subiteration [222], and 12-subiteration [221, 237] algorithms.

Here we present three examples of parallel 3D 6-subiteration thinning
algorithms. Algorithm 7 sketches the scheme of algorithm 3D-6-SI-¢ that
preserves endpoints of type €.

Algorithm 7: Subiteration-based thinning algorithm 3D-6-SI-¢
Input: picture (Z3,26,6, X)
Output: picture (Z3,26,6,Y)
Y+ X
repeat
// one iteration step
foreach i€ { U, D, N, E, S, W } do
// subiteration for deleting some i-border points
D(i) < { p| pis a 3D-6-SI-i-e-deletable point in Y }
Y <Y\ D(i)

until D(U) U D(D) U D(N) U D(E) U D(S) U D(W) = §;

© 000 N & Uk W N =

1

o

The ordered list of deletion directions (U, D,N,E, S, W) is examined
in the proposed algorithm 3D-6-SI-c. Note that subiteration-based thin-
ning algorithms are not invariant under the order of deletion directions (i.e.,
choosing different orders may provide various results).

In the first subiteration of our 6-subiteration thinning algorithms, all ‘3D-
6-SI-U-e-deletable’ points are deleted simultaneously, and the set of ‘3D-6-
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SI-W-e-deletable’” points are deleted in the last (i.e., the 6th) subiteration.
Now we lay down ‘3D-6-SI-U-e-deletable’ points.

Definition 3.2.5 A black point p in picture (Z3,26,6, X) is 3D-6-SI-U-e-
deletable if all of the following conditions hold:

1. Point p is a simple and U-border point, but it is not an endpoint of
type € in picture (Z3,26,6, X).

2. Let A(p) be the family of the following 13 sets (see Figure 3.2b):

{e}, {s}, {se}, {sw}, {dn}, {de}, {ds}, {dw},

{e, s}, {e, se}, {s,se}, {s,sw},

{e, s, se}.

For any set A in family A(p) composed of simple and U-border points,
but no endpoints of type € in picture (Z3,26,6,X), point p remains
simple in picture (Z3,26,6, X\ A).

3. Let B(p) be the family of the following 32 objects in picture (Z3, 26,6, X)
(see Figure 3.2c):
{a.}, {b.g}. fe. 1}, {del,
{a,h,b}, {a,h,c}, {a h, [}, {a,h, g}, {b.g,a}, {b,g,d}, {b,g,e},
{b7 g7 h}’ {C7 f’ a}7 {C7 f7 d}7 {C7 f’ 6}7 {C7 f7 h}7 {d7 67 b}7 {d7 e’ C}7
{d’ 67 f}’ {d’ 67 g}}
{a’ h’ b7 C}’ {a’ h’ b7 g}’ {a7 h7 C7 f}’ {a’ h’ f? g}’ {b7 g’ a? d}’ {b’ g7 d’ 6}7
{b,g,e,h}, {c, f,a,d}, {c, f,d, e}, {c, f,e,h}, {d,e,b,c}, {d,e, f,q}.

Point p is not the smallest element of any object in B(p).

Note that the deletable points at the remaining five subiterations can be
derived from ‘3D-6-SI-U-e-deletable’ points (assigned to the deletion direc-
tion U, see Definition 5) by reflections and rotations.

In [236], it is proved that Algorithm 3D-6-SI-¢ is topology-preserving.

3.2.3 Subfield-Based Algorithms

The third type of parallel thinning algorithms applies subfield-based tech-
nique [89]. In existing subfield-based parallel 3D thinning algorithms, Z?
is partitioned into two [172, 174, 205], four [175, 204], and eight [22, 204]
subfields which are alternatively activated. At a given iteration step of an
s-subfield algorithm, s > 2 successive parallel reductions associated to the
s subfields are performed. In each parallel reduction, some border points in
the active subfield can be designated to be deleted.
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Figure 3.2: The examined right-handed 3D coordinate system (a). Notation
for the points in N% (p) (b). Notation for the points in a unit lattice cube

().
Let us denote SF,(i) the i-th subfield if Z? is partitioned into s subfields
(s=2,4,8,i=0,...,5s—1). SF(i) is defined formally as follows:

SFy(i) = { (Pe:py,p2) | Pz +py +p: mod 2) =1 },

SEy (1) = { (P2, py:D:) | (px+1 mod 2)-[2- (p, mod 2) + (p, mod 2)] +
(pz mod2)-[2-(p,+1 mod 2) + (p.+1 mod 2)] =i },

SFs(i) = { (puspy:p:) | 4+ (pr mod 2) + 2 (p, mod 2) + (p, mod 2) =i }

The examined divisions are illustrated in Figure 3.3.

|
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Figure 3.3: The divisions of Z* into 2 (a), 4 (b), and 8 (c) subfields. If
partitioning into s subfields is considered, then points marked ‘" are in the
subfield SF,(i) (s =2,4,8; i =0,1,...,5s —1).

Proposition 3.2.1 For the 2-subfield case (see Figure 3.3a), two points p
and q € NZ (p) are in the same subfield, if ¢ € N% (p)\NZ (p).
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Proposition 3.2.2 For the j-subfield case (see Figure 3.3b), two points p
and q € NZ (p) are in the same subfield, if ¢ € NZ% (p)\N% (p).

Proposition 3.2.3 For the 8-subfield case (see Figure 3.3c), two points p
and q € NQZg (p) are not in the same subfield.

In order to reduce the noise sensitivity and the number of skeletal points
(without overshrinking the objects), Németh, Kardos, and Paldgyi intro-
duced a novel subfield-based thinning scheme [205]. It takes the endpoints
into consideration at the beginning of iteration steps, instead of preserving
them in each parallel reduction as it is done in the conventional subfield-based
thinning scheme.

Here we present nine parallel 3D subfield-based thinning algorithms. The
scheme of the subfield-based parallel thinning algorithm 3D-s-SF-¢ with
iteration-level endpoint checking using endpoint of type ¢ is sketched by
Algorithm 8 (s = 2,4, 8).

Algorithm 8: Subfield-based thinning algorithm 3D-s-SF-¢
Input: picture (Z?,26,6, X)
Output: picture (Z?,26,6,Y)
Y« X
repeat
// one iteration step
E + {p]|pis aborder point, but not an endpoint of type ¢ in Y }
for i< 0tos—1do
// subfield SF,(i) is activated
D(i) < { q| q is a 3D-SF-s-deletable point in E'N SF,(i) }
Y <Y\ D(i)

until D(0)UD(1)U...UD(s—1)=0;

© 00 N O otk W N =
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The 3D-SF-s-deletable points are defined as follows (s = 2,4, 8):

Definition 3.2.6 A black point p is 3D-SF-s-deletable (s = 2,4,8) in pic-
ture (Z3,26,6, X) if all of the following conditions hold:

1. Point p is simple in (Z3,26,6, X).

2. If s = 2, then point p is simple in picture (Z3,26,6, X\{q}) for any
simple point q such that q € le; (p)\NGZB (p) and p < q.

3. e Ifs=2 then point p is not the smallest element of the ten objects
shown in Figure 3.4.
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o [fs =4, then point p is not the smallest element of the four objects

shown in Figure 3.5.

Figure 3.4: The ten objects that are taken into consideration by 2-subfield
algorithms. Notations: each point marked ‘®’ is a black point; each point
marked ‘O’ is a white point. (Note that each of these objects is contained in
a unit lattice cube.)
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Figure 3.5: The four objects examined by 4-subfield algorithms. Notations:
each point marked ‘@®’ is a black point; each point marked ‘O’ is a white
point. (Note that each of these objects is contained in a unit lattice cube.)

In [236], it is proved that Algorithm 3D-s-SF-¢ (s = 2,4, 8) is topology-
preserving.

3.2.4 Implementation and Results

Here we outline a method for implementing the presented parallel thinning
algorithms on conventional sequential computers. The proposed computa-
tionally efficient method follows our general framework (see Algorithm 3
and Algorithm 5), and uses a pre-calculated look-up-table to encode simple
points. In addition, two lists are used to speed up the process: one for stor-
ing the border points in the current picture (since thinning can only delete
border points, thus the repeated scans/traverses of the entire array storing
the picture are avoided); the other list is to collect all deletable points in
the current phase of the process. At each iteration, the deletable points are
detected and deleted, and the list of border points is updated accordingly.
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For simplicity, the pseudocode of the proposed 3D fully parallel thin-
ning algorithms is given (see Algorithm 9). The subiteration-based and the
subfield-based variants can be implemented in similar ways.

Algorithm 9: Fully parallel thinning

S A W N -

®
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11
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13
14
15

16
17
18

19
20
21
22
23
24

25

Input: array A and endpoint characterization e
Output: array A

border_list +—< empty list >

foreach p in A do

-

if p is border point then
| border_list < border_list + < p >; Alp] + 2;

epeat

deleted < 0

deletable_list <— < empty list >

foreach point p in border_list do

if p is a simple point and not an endpoint of type € then
L deletable_list < deletable_list + < p >; Alp] < 3;

foreach point p in deletable_list do

if deletion p does not satisfy Cond. 2 of Th. 2.2.2 then
| deletable_list = deletable_list — < p >; Alp] < 2;

foreach point p in deletable_list do

if deletion p does not satisfy Cond. 3 of Th. 2.2.2 then
| deletable_list = deletable_list — < p >; Alp] < 2;

foreach point p in deletable_list do
Alp] <= 0; deleted < deleted+1;
border_list <— border_list — < p >
foreach point q that is 6-adjacent to p do
if Alg] =1 then
L | border_list < border_list + < q >; Alq] + 2;

until deleted = 0;

The two input parameters of the process are array A which stores the
input picture to be thinned and the type of the endpoint €. In input array
A, the value ‘1’ corresponds to black points and the value ‘0’ denotes white
ones. According to the proposed scheme, the input and the output pictures
can be stored in the same array, hence array A will contain the resultant
structure.
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First, the input picture is scanned and all the border points are inserted
into the list border_list. Since only a small part of points in a usual picture
belongs to the objects, the thinning process is much faster if we just deal with
the set of border points in the actual picture. This subset of object points
is stored in border_list. The border_list is then updated: if a border point
is deleted, then all interior points that are 6-adjacent to it become border
points. These new border points are added to the border_list. In order to
avoid storing more than one copy of a border point in border_list, array A
represents a four-colour picture during the thinning process: the value of
‘0" corresponds to the white points, the value of ‘1’ corresponds to (black)
interior points, the value of ‘2 is assigned to all (black) border points in
the actual picture (added to border_list), and the value of ‘3’ corresponds to
points that are added to the deletable_list (i.e., a sublist of border_list).

3D-FP-TK (194,114) 3D-6-SI-TK (200,150)

3D-2-SF-TK (181,200) 3D-4-SF-TK (171,324) 3D-8-SF-TK (185,496)

Figure 3.6: A 191 x 96 x 114 image of a hand and its topological kernels
produced by the five proposed parallel 3D kernel-thinning algorithms. The
original image contains 455295 black points. Since the original object con-
tains a hole, there are holes in its topological kernels, too.

The kernel of the repeat cycle corresponds to one iteration step of the
thinning process. The number of deleted points is stored in the variable
called deleted. The process terminates when no more points can be deleted
(i.e., no further changes occur). After thinning, all points having a nonzero
value belong to the produced skeleton-like feature.
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3D-FP-CE (1218 48)

3D-4-SF-CE (1241,108) 3D-8-SF-CE (1230,208)

Figure 3.7: A 103 x 381 x 255 image of a helicopter and its centerlines
produced by the five proposed parallel 3D curvethinning algorithms. The
original image contains 273 743 black points.

Simple points in (26, 6) pictures can be locally characterized; the simplic-
ity of a point p can be decided by examining the set ]\72263 (p) [137]. There
are 22° possible configurations in the 3 x 3 x 3 neighborhood if the central
point is not taken into consideration. Hence, we can assign an index (i.e.,
a non-negative integer code) for each possible configuration and address a
pre-calculated (unit time access) look-up-table having 226 entries of 1 bit in
size, therefore, it requires only 8 megabytes storage space in memory.

By adapting this implementation method, our algorithms can be well
applied in practice: they are capable of extracting skeleton-like features from
large 3D pictures containing 1.000.000 object points within one second on a
usual PC.

The presented 5+ 5+ 5 =3+ 3+ 3 x 3 = 15 algorithms were tested on
objects of different shapes. Here we present some of them in Figures 3.6-3.8.
The pairs of numbers in parentheses are the counts of object points in the
produced skeleton-like feature and the parallel speed (i.e., the number of the
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required parallel reductions [89]).

original image 3D-FP-SE (25022,18) 3D-6-SI-SE (24873,78)

3D-2-SF-SE (17825,34) 3D-4-SF-SE (17235,72) 3D-8-SF-SE (17527,136)

Figure 3.8: A 45x 191 x 191 image of a gear and its medial surfaces produced
by the five proposed parallel 3D surface-thinning algorithms. The original
image contains 596 360 black points.
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3.3 Equivalent Thinning

Equivalent thinning algorithms are composed of reductions with equivalent
deletion rules (see Definition 2.3.1).

In [242], the author proved that the deletion rule of the 2D fully paral-
lel thinning algorithm proposed by Manzanera et al. [181] is equivalent, and
Palagyi, Németh, and Kardos proposed a pair of 2D equivalent sequential and
parallel 4-subiteration (subiteration-based) thinning algorithms [243]. In the
3D case, Palagyi, Németh, and Kardos proposed four pairs of equivalent se-
quential and parallel 6-subiteration surface-thinning algorithms [244], and
Paldgyi and Németh presented a pair of equivalent sequential and fully par-
allel surface-thinning algorithms [246]. Furthermore, the author also showed
that each fully parallel thinning algorithm with an equivalent deletion rule
provides various subfield-based algorithms that are equivalent to the original
fully parallel one [239).

For reasons of scope, only four pairs of equivalent sequential and paral-
lel 3D subiteration-based surface-thinning algorithms (S-6-SI-i, P-6-SI-i)
(1 =1,2,3,4) acting on (26, 6) pictures are presented in this section. All of
these algorithms use the same deletion rule, but diverse pairs of them apply
different constraint sets.

Thinning algorithms generally classify the set of black points of the input
picture into two (disjoint) subsets: the set of interesting points (i.e., poten-
tially deletable points) for which the deletion rule associated with a thinning
phase is evaluated, and the constraint set whose black points are not taken
into consideration (i.e., safe points that cannot be deleted). Since a phase
of a subiteration-based algorithm cannot delete interior points and border
points that do not fall into the actual type, these points are certainly in the
constraint set.

Our algorithms preserve some points that provide relevant geometrical
information with respect to the shape of the object to be thinned. Here
we consider the following four characterizations of protected points that are
elements in the constraint set of a subiteration.

Definition 3.3.1 A black point p in picture (Z3,26,6, B) is a protected
point of type 1 if there is no interior point in NGZS(p) N B (i.e., p is not
6-adjacent to any interior point).

Note that the concept of the protected points of type 1 coincides with
surface-endpoints of type SE (see Definition 3.2.3).

Definition 3.3.2 [221] A black point p in picture (Z3,26,6, B) is a protected
point of type 2 if at least one of the three pairs of points in N6ZB (p) (U,D),
(N,S), and (E,W) (see Figure 1.5) is formed by two white points.
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Definition 3.3.3 [82] A black point p in picture (Z3,26,6, B) is not a pro-
tected point of type 3 if ||N3Z* (p) N B|| > 8, or 4 < |[N;Z’(p) N B|| < 7 and
N:Z(p) N B contains three mutually 26-adjacent points. (||S|| stands for the
counts of elements in set S').

Definition 3.3.4 [26] A black point p in a (26, 6) picture is a protected point
of type 4 if p is a non-simple border point (i.e., Condition 1 of Theorem 1.2.3
or Condition 3 of Theorem 1.2.3 is violated).

Definitions 3.3.1-3.3.3 make it possible for us to specify endpoint-based
surface-thinning algorithms, and Definition 3.3.4 is the basis of isthmus-based
surface-thinning algorithms

The proposed sequential algorithms S-6-SI-: and the parallel algorithms
S-6-SI-i are given by Algorithm 10 and Algorithm 11, respectively (i =
1,2,3,4).

Algorithm 10: Sequential algorithm S-6-SI-i (i = 1,2,3,4)

1 Input: set of black points B

2 Output: set of black points S

3 5=HB

a I=10

5 repeat

6 foreach d e {U, D, N, E, S, W} do

7 if ¢ =4 then

8 LI:IU{p|p€Sisaprotectedpointoftypei}
9 C=1U{p]|pé€Sisnot ad-border point }

10 if i <4 then

11 LC':C'U{p|p€Sisapr0tectedpoint of type 7 }
12 X=5\C

13 del(d) =0

14 foreach p € X do

15 if point p is &-DELETABLE in S then

16 S=5\{p}

17 L del(d) = del(d) + 1

18 until del(U) + del(D) + del(N) + del(E) + del(S) + del(W) = 0;

We can state that the pair of sequential and parallel algorithms (S-6-SI-i,
P-6-S1I-i) never deletes any protected points of type 7.
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Algorithm 11: Parallel algorithm P-6-SI-i (i = 1,2,3,4)

1 Input: set of black points B

2 Output: set of black points P

3 P=DB

aI=1

5 repeat

6 foreach d € {U, D, N, E, S, W} do

7 if ¢ =4 then

8 LI:IU{p|pEPisaprotectedpointoftypei}
9 C=I1U{p|pé€ P isnot ad-border point }

10 if i <4 then

11 L C=CU{p]|pe P is aprotected point of type i }
12 X=P\C

13 del(d) =0

14 Dy={p|pe XisadDELETABLE point in P }

15 P=P\ Dy

16 untilDUUDDUDNUDEUDsLJDW:®;

By comparing the sequential algorithm S-6-SI-i (see Algorithm 10) and
the parallel algorithm P-6-SI-i (see Algorithm 11), we can state that in
the parallel case the initial set of black points P is considered when the
deletability of all the interesting points are investigated. On the contrary,
the set of black points S is dynamically altered when a sequential reduc-
tion/subiteration is performed; the deletability of the actual point is evalu-
ated in a modified picture (in which some previously visited interesting points
are white).

The applied deletion rules that specify d-DELETABLE points (d = U,
D, N, E, S, W) are given by 3 x 3 x 3 matching templates depicted in
Figure 3.9. Note that the six deletion rules were originally proposed by Gong
and Bertrand [82] in their endpoint-based 6-subiteration surface-thinning
algorithm with respect to surface-endpoints of type 3 (see Definition 3.3.3).
An interesting black point (p € X) is d-DELETABLE if template T, matches
it (d=U, D, N, E, S, W). Note that the templates assigned to the deletion
direction d give the condition to delete certain d-border points, and templates
associated with the last five deletion directions can be obtained by proper
rotations of the template Ty.

A period (i.e., the kernel of the repeat cycle in Algorithm 10 and Algo-
rithm 11) is decomposed into six successive subiterations according to the six
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Figure 3.9: Matching template T, associated with d-DELETABLE points
(d=U, D, N, E, S, W). Notations: the central position marked p matches
an interesting (black) point; the position marked ‘B’ matches a (black) point
in the constraint set; the position marked ‘)" matches a white point; if the
position marked ‘v’ coincides with a white point, then the position marked
‘wy,” coincides with a white point (k = 0,1,2,3); if all the three positions
marked “vr’, “T(k41) moa 4's ANA “V(k41) moa 4  coincide with white points, then
the position marked ‘Y(x41) moa 4’ coincides with a white point (k = 0,1, 2, 3);
each ‘-’ (don’t care) matches either a black or a white point.

main directions in 3D, and this period is repeated until stability is reached
(i.e., no point is deleted within the last six reductions).

In [244], we proved that the deletion rule that deletes all &-DELETABLE
points (with arbitrary constraint sets) is general simple (d = U, D, N,
E, S, W). Hence, by Theorems 2.3.2 and 2.3.3, the pair of algorithms
(P-6-SI-i,S-6-S1-i) are equivalent and topology-preserving (i = 1,2, 3,4).

It is important to emphasize that the parallel algorithm P-6-SI-3 coin-
cides with the 6-subiteration 3D parallel surface-thinning algorithm proposed
by Gong and Bertrand in 1990 [82]. We showed that algorithm P-6-SI-3 is
equivalent to the sequential algorithm S-6-SI-3. In addition, the topological
correctness of an existing parallel thinning algorithm is also confirmed. Note
that (in 1990) Gong and Bertrand could not apply the very first sufficient
conditions for topology-preserving 3D parallel reductions introduced by Ma
(in 1994) [168].

In experiments the proposed four pairs of equivalent parallel and sequen-
tial surface-thinning algorithms were tested on objects of different shapes.
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original — 74 250 (S-6-SI-1,P-6-SI-1) — 15840 (S-6-SI-2,P-6-SI-2) — 2310

4

(S-6-SI-3,P-6-SI-3) — 2308 (S-6-SI-4,P-6-SI-4) — 1856

Figure 3.10: The original 45 x 45 x 45 image of a cube with two tunnels
and its medial surfaces produced by the proposed four pairs of equivalent
surface-thinning algorithms.

Here we present two illustrative examples, see Figures 3.10 and 3.11.

original — 767 233 (S-6-SI-1,P-6-SI-1) — 55243 (S-6-SI-2,P-6-SI-2) — 40 568

(S-6-SI-3,P-6-SI-3) — 32571  (S-6-SI-4,P-6-SI-4) — 30928

Figure 3.11: The original 321 x 153 x 227 image of a bird and its medial
surfaces produced by the proposed four pairs of equivalent surface-thinning
algorithms.
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3.4 Maximal 3D Curve-Thinning Algorithms
First, let us introduce the concept of a maximal 3D curve-thinning algorithm.

Definition 3.4.1 A 3D curve-thinning algorithm is maximal if each point
in the centerline produced by this algorithm contains only non-simple points
and (simple) 3D-curve-endpoints (see Definition 3.2.2).

Producing such centerline is crucial in many applications (e.g. raster-to-
vector conversion [18, 253, 310] and skeletal graph construction [15, 16, 41,
62, 109, 167, 177, 231, 269, 273]).

Next, we present two maximal 3D curve-thinning algorithms acting on
(26, 6) pictures. Both of them fall into the category of sequential and subitera-
tion-based. The first algorithm named 6SI-S-CT [224] is endpoint-based,
since it never deletes 3D-curve-endpoints. The second thinning algorithm
called 6SI-S-CT-EPRC [227, 231] may be viewed as the advanced version
of the first one. It uses a novel endpoint-rechecking technique for reducing
the number of unwanted side-branches. Thus it is a unique algorithm, since
it is neither endpoint-based nor isthmus-based. Note that the author con-
structed two further maximal curve-thinning algorithms based on isthmuses
[240] and anchored shrinking [252].

3.4.1 An Endpoint-Based Sequential Curve-Thinning
Algorithm

The algorithm 6SI-S-CT [224] is outlined by Algorithm 12.

One iteration step of the sequential object reduction process (i.e., the
kernel of the repeat cycle) is decomposed into six successive sub-iterations
according to the six main directions in 3D. In this way, the objects are
shrunk uniformly in each direction. Each subiteration consists of two phases;
first the border points of the actual type that are simple and not 3D-curve-
endpoints are marked as potential deletable points. This marking phase
can be performed in parallel, but the forthcoming deletion phase must be
sequential. The algorithm terminates if stability is reached.

It is obvious that algorithm 6SI-S-CT deletes all simple points that are
not 3D-curve-endpoints. Thus the produced centerline may contain only
non-simple points and (simple) 3D-curve-endpoints. Therefore, algorithm
6SI-S-CT is maximal.

Algorithm 6SI-S-CT can be implemented according to the general (and
computationally efficient) scheme given by Algorithm 3 and Algorithm 4.
Two linked lists are used; the first one stores all border points and the second
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Algorithm 12:  Endpoint-based 6-subiteration sequential curve-
thinning

1 repeat

2 // one iteration step

3 foreach de { U, D, N, E, S, W } do

4 // subiteration associated with deletion direction d
5 mark all simple d-border points that are not
3D-curve-endpoints

// deletion of some d-border points

7 foreach marked point p do

if p is simple and not a 3D-curve-endpoint in the actual
image then

9 L delete p

(=]

10 until no points are deleted;

one contains the marked points of the actual subiteration. The deletability
of a point is decided by determining an integer code corresponding to the
3 x 3 x 3 neighborhood of the point in question and addressing a single
pre-calculated (unit time access) 8MB look-up-table (LUT) containing the
answers for all possible 3 x 3 x 3 configurations [230].

Algorithm 6SI-S-CT has been successfully applied in several medical im-
age processing problems, including assessment of infrarenal aortic aneurysms
[224], assessment of tracheal stenosis [224, 311, 313, 315, 316], unraveling and
virtual dissection of the colon [224, 312, 314, 317], and colorectal polyp de-
tection [314].

3.4.2 Curve-Thinning with Endpoint-Rechecking

Next, the advanced version of the endpoint-based 6-subiteration sequential
curve-thinning algorithm 6SI-S-C'T is presented. It uses endpoint-rechecking
that compares the situation at some stage of the thinning process with the
previous object configuration. The modified algorithm 6SI-S-CT-EPRC
[227, 231] is outlined by Algorithm 13.

During a (sequential) subiteration, a marked point is deleted if it remains
simple and is not a 3D-curve-endpoint after the deletion of some previously
visited marked points. In addition, in some special cases, some points are
also deleted if they have become 3D-curve-endpoints (see lines 13-15 in Algo-
rithm 13). The algorithm uses an extra parameter ¢ € {0,1,2,3,4,5,6} and
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Algorithm 13: 6-subiteration sequential curve-thinning with
endpoint-rechecking

1 repeat

2 // one iteration step

3 foreach i€ { U, D, N, E, S, W } do
4

5

// subiteration associated with deletion direction d
mark all simple d-border points that are not
3D-curve-endpoints

6 // deletion of some d-border points

7 foreach marked point p do

8 if p is simple in the actual image then

9 if p is not a 3D-curve-endpoint then

10 // ‘conventional’ deletion

11 delete p

12 else if #( deleted 6-neighbors of p) > t then

13 // deletion of a 3D-curve-endpoint

14 delete p

15 until no points are deleted;

a marked (simple and 3D-curve-endpoint) point can be deleted if at least ¢
points of its 6-neighbors have been deleted during the actual subiteration.
This additional condition identifies the configurations that are likely to pro-
duce ‘spurious’ side branches. Note that if £ = 6, the endpoint-rechecking
has no effect (since a point is not simple if all of its 6-neighbors are black).
In that case, algorithm 6SI-S-CT-EPRC produces the same result as al-
gorithm 6SI-S-CT. According to our experience, setting t = 1 or t = 2 is
suggested for human airway trees [231]. See Figure 3.12 for an example of
the usefulness of the endpoint-rechecking.

Since the centerline produced by algorithm 6SI-S-CT-EPRC contains
less points than the maximal thinning algorithm 6SI-S-CT, curve-thinning
algorithm 6SI-S-CT-EPRC is also maximal.

Algorithm 6SI-S-CT-EPRC has been applied in some biomedical image
processing applications, including characterization of the interstitial lung dis-
eases [99], matching and anatomical labeling of human airway tree [339, 341],
quantitative analysis of pulmonary airway trees [227, 231], liver segmenta-
tion for surgical resection planning [20], and identifying synaptic connections
[187].
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Figure 3.12: A part of a segmented human airway tree and its centerline pro-
duced by algorithm 6SI-S-CT or algorithm 6SI-S-CT-EPRC with ¢t =6
(top). The centerline made by algorithm 6SI-S-CT-EPRC with t =1
(down). The centerline produced by endpoint-rechecking contains only 125
(true) branch-points (junctions) and 128 3D-curve-endpoints. There are 167
branch-points and 176 3D-curve-endpoints in the centerline generated with-
out endpoint-rechecking. Several of the unwanted branches are marked by
arrows.
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Chapter 4

Quantitative Analysis of
Pulmonary Airway Trees

The author’s 3D curve-thinning algorithms have been applied in several
biomedical applications, including assessment of infrarenal aortic aneurysm
[224], assessment of tracheal stenosis [224, 311, 313, 315, 316], unraveling and
virtual dissection of the colon [224, 312, 314, 317], colorectal polyp detection
[314], characterization of the interstitial lung diseases [99], matching and
anatomical labeling of human airway tree [339, 341], quantitative analysis of
pulmonary airway trees [227, 231], liver segmentation for surgical resection
planning [20], and identifying synaptic connections [187].

For reasons of scope, in this chapter, only our method for quantitative
analysis of pulmonary airway trees is presented®.

Tubular structures are frequently found in living organisms. The tubes
— e.g., arteries or veins are organized into more complex structures. Trees
consisting of tubular segments form the arterial and venous systems, in-
trathoracic airways form bronchial trees, and other examples can also be
found. Computed tomography (CT) or magnetic resonance (MR) imaging
provides volumetric image data allowing identification of such tree struc-
tures. Frequently, the trees represented as contiguous sets of points must be
quantitatively analyzed. The analysis may be substantially simplified if the
point-level tree is represented in a formal tree structure consisting of a set of
nodes and connecting arcs. To build such formal trees, the point-level tree
object must be transformed into a set of interconnected single-point center-
line representing individual tree branches. Therefore, the aim of our work
was to develop a robust method for identification of centerline and bifurca-
tion (trifurcation, etc.) points in segmented tubular tree structures acquired

6Thanks to the invitation by Milan Sonka, the author could work on this topic during
his visits at the Departments of Electrical and Computer Engineering, The University of
Towa, TA, USA.

71



dc 1721 19

in vivo from humans and animals using volumetric CT or MR scanning,
rotational angiography, or other volumetric imaging means.

There are many reasons why identifying tree centerlines is important.
Centerlines can serve as one-dimensional structures allowing guidance for or-
derly exploration of the entire tree, they can serve as viewpoint trajectory
for navigation purposes in virtual bronchoscopy or angioscopy. To facilitate
quantitative analysis of the vascular or bronchial tree, e.g., luminal area or
wall thickness, measurements must be obtained in cross-sections perpendic-
ular to the long axis of the tree segments. Clearly, planes normal to the tree
centerlines must be identified and centerline correctness is of paramount im-
portance. As such, quantitative assessment of asthma or cystic fibrosis from
pulmonary CT images depend on the performance of the centerline extraction
method. Similarly, accuracy and reproducibility of arterial plaque thickness
measurements from coronary CT or intravascular ultrasound depends on the
ability to producing centerlines of tubular structures.

In this chapter, our method for quantitative analysis of pulmonary air-
way trees is presented. The developed method was validated in 343 computer
phantom instances subjected to changes of its orientation, in a rigid plastic
phantom CT-scanned under 9 orientations, in a rubber plastic phantom CT-
scanned under 9 orientations, and in 54 in vivo scans of human lungs. The
validation studies demonstrated sub-voxel accuracy of branch point position-
ing, insensitivity to changes of object orientation, and high reproducibility
of derived quantitative indices of the tubular structures offering a significant
improvement over previously reported methods [99, 227, 231, 341].

Assuming that an imperfectly segmented tree was obtained from volumet-
ric data in the previous stages, our method allows us to obtain a single-point
centerline of the tree while overcoming many segmentation imperfections,
yields formal tree representation, and performs quantitative analysis of indi-
vidual tree segments on a tree-branch basis. The input of our method is a
3D binary image representing a segmented point-level tree object. All main
components of our method were specifically developed to deal with imaging
artifacts typically present in volumetric medical image data. As such, the
method consists of the following main steps: airway segmentation, correction
of the segmented tree, identification of the tree root, producing centerline,
pruning, smoothing, identification of branch-points, generating a formal tree
structure, tree partitioning, calculating associated measures, tree matching,
and re-sampling 2D slices perpendicular to airway segments.

The rest of this chapter describes the main steps in more detail.
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4.1 Airway Segmentation

The employed airway segmentation method is based on fuzzy connectivity
[97, 343]. After automatically identifying a seed point in the upper trachea,
two regions — foreground and background — are grown simultaneously and are
competing against each other during the segmentation process. To minimize
occurrence of leaks into the surrounding lung parenchyma during the region-
growing process, the root of a leak is identified once the leak is observed and
the segmentation parameters are modified. To accomplish such behavior, a
relatively small adaptive region of interest (ROI) is defined in an iterative
fashion. The ROI follows the airway tree branches as they are segmented.
The ROI has a cylindrical shape and adapts its geometrical dimensions, its
orientation, and position to the predicted size, orientation, and position of
the airway branch to be segmented, see Figure 4.1a. Using a cylindrically
shaped ROI (versus the more common cubical ROI used in other 3D image
segmentation tasks) has the advantage of the better adaptation of the ROI
to the target shape, which is close to cylindrical. This means less ‘useless’
background points have to be analyzed and the computing time can be short-
ened. (Note that a similar approach was independently used by Kitasaka et
al. [130].) After the series of iteration steps, an airway tree is segmented, see
Figure 4.1b.

Figure 4.1: Adaptive cylindrical regions of interest (ROIs) follow airway tree
branches as the segmentation proceed (left). Segmentation result using the
proposed method (right).

The segmentation algorithm was shown to be robust in low dose and
regular dose scans from normal and diseased subjects when compared to
previous airway segmentation approaches [340].
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4.2 Correction of the Segmented Tree

When applied to clinical volumetric images, segmentation algorithms may
produce imperfect results in which the segmented objects contain internal
cavities (i.e., 6-connected set of white points surrounded by 26-connected set
of black points), holes (i.e., white points forming tunnels), and bays (i.e., dis-
turbances without a topological change). Some of such imperfections cause
unwanted changes of the underlying topology, and all of them disturb the
centerline detection process and consequently yield an incorrect centerline
and thus incorrect formal tree representation, see Figure 4.2. To overcome
the effects of artifactual cavities, the white points connected to the frame of
the volume are first labeled by sequential forward and backward scanning (in-
stead of the conventional object labeling). Then, all unlabeled white points
are changed to black points. The applied method is similar to the linear-time
Chamfer distance mapping [35]. As a result, all cavities are filled with no
connectivity alteration.

Figure 4.2: Part of a segmented human airway tree containing some cavities.
Its topological kernel shown superimposed. FEach cavity of the structure
corresponds to a cavity in the topological kernel thus appearing as an enlarged
‘bubble’ with unit wide hull. Therefore, topologically correct centerline of
any structure with a false cavity yields an incorrect formal representation
since it cannot deal with cavity elimination.

Holes and bays are removed by applying morphological closing [83] (i.e.,
a dilation followed by an erosion with an experimentally determined struc-
turing element). Note that the closing is a double-edged sword; it is suitable
for filling small gaps, holes, and cavities, but new holes may be created in
the process. This side effect can be handled by a post-processing pruning
process. In this application, however, the object of interest is a single tubular
structure and the potential negative effect of the closing operation is maxi-
mal.
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4.3 Root Detection

Our work deals with analysis of intrathoracic airway trees from volumetric
CT (or MR) image data. Consequently, a priori knowledge of the data set is
used to identify the tree root. In other applications, a different root identi-
fication approach may be needed. The root detection is not a critical phase
of the process. It can be identified interactively or automatically [196, 349].
In pulmonary CT images, the center of the topmost nonzero 2D slice in
direction z (detected by 2D reductive shrinking [90]) defines the root of the
formal tree to be generated and belongs to the trachea, see Figure 4.3. The
detected root point acts as an anchor point during the centerline extraction
(i.e., it cannot be deleted by the forthcoming iterative peeling process).

Figure 4.3: The detected tree root (as an anchor point) is shown in green.
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4.4 Producing Centerline

The well-known approach to represent a 3D tubular structure is to construct
its centerline by a skeletonization algorithm. However, some of the properties
of these algorithms are undesirable. Specifically, we do not need the presence
of surface patches (i.e., branched 2D manifolds [202]) nor ‘thick’ curves (i.e.,
line segments that are wider than one point). As a solution, we applied the
maximal 3D curve-thinning algorithm 6SI-S-CT-EPRC, see Algorithm 13
in Section 3.4.2. The produced centerline of a segmented human airway tree
is illustrated in Figure 4.4.

Note that the selected 6-subiteration sequential curve-thinning algorithm
with endpoint-rechecking was modified, since the detected root of the tree
is to be preserved during the iterative process (i.e., we applied anchor-
preserving thinning [326, 358]).
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Figure 4.4: The produced centerline superimposed on the segmented tree.
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4.5 Pruning

Unfortunately, each skeletonization algorithm (including ours) is sensitive
to coarse object boundaries. As a result, the produced (approximation to
the) ‘skeleton’ generally includes false segments that must be removed by
a pruning step [14, 87, 110, 144, 160, 192, 294, 298, 299, 323, 328]. The
simplest pruning method is the morphological pruning [64, 83]. It removes
all side branches from the raw centerline that are shorter than a predefined
threshold. This method necessarily fails in structures consisting of tubular
segments of varying thickness.

Applying a proper pruning method that would yield reliable centerline is
critical in all tree-representation applications. An unwanted branch causes
false generation numbering and consequently false measurements correspond-
ing to the individual segments of the tree (including length, volume, surface
area, etc.). Therefore, we have developed a method capable of removing
‘long’ parasitic branches from ‘thick’ parts and preserving ‘short’ correctly
determined branches in ‘thin’ segments. Spurious branches are identified
by assessing the distance-from-surface function and the branch length. Our
pruning process consists of the following two phases:

e cutting holes that remain after the morphological closing, and
e deleting side branches using both the length and depth information.

At first, the centerline is converted into a graph structure (each point
corresponds to a graph node/vertex and there is an edge between two nodes
if the corresponding points are 26-adjacent). Then, Dijkstra’s algorithm is
applied to solve the single-source shortest-paths problem [52] that maintains
a rooted tree from a source node (i.e., the root detected in the first nonzero
2D slice in direction z). Since the result of Dijkstra’s algorithm is always a
(cycle-free) tree, we can detect and cut holes (loops) in the centerline easily:
a point is to be deleted if it is not an endpoint (i.e., 3D-curve-endpoint, see
Definition 3.2.2) and is not the parent of any other point in the Dijkstra’s tree.
This heuristic hole-cutting approach works well, although counter-examples
can be given in which the heuristic approach does not apply, see Figure 4.5.

After the hole cutting, the parasitic side branches shall be removed. We
have developed a pruning method for centerline pruning that uses both the
branch length and the distance-from-surface (depth) information for the iden-
tification of a pruning candidate, see Figure 4.6. We delete all branches if
their lengths are shorter than a given threshold ¢; and their branch-points
are not closer to the border/surface of the spacious tree (after topological
correction) than a given threshold ¢;. Note, that a similar, but not identical
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Figure 4.5: Examples of the hole-cutting method. Dark points are preserved,
bright ones are deleted. Arrows correspond to the edges in the Dijkstra’s tree.
Holes are successfully eliminated in most cases (left, middle), but counter-
examples can be found (right).

% dS
5

pruning rule has been introduced by Mori et al. [196]. They delete a branch
if its length is shorter than a given threshold ¢; or it starts from a branch
whose diameter is larger than a given threshold ¢;. Our method with re-
peated pruning steps (applying different pairs of thresholds (¢;,¢,)) is more
general and can also delete unwanted subtrees as it is shown in Figure 4.7.

. \
.7 1

- * depth ]
)

Figure 4.6: Pruning centerline based on the branch length and the distance-
from-surface (depth) information. A side branch is to be deleted if it is shorter
than ¢; (length) and its branch-point is not closer to the border/surface than
tq (depth).

The following algorithm is applied:

1. Calculate the linear time (3,4,5)-Chamfer distance map [35] for the
spacious tree (after topological correction) in which the feature points
are formed by the white points in the picture. The resulting ‘distance-
from-surface’ map DSM is a non-binary array containing the distance
to the closest feature point.
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Figure 4.7: Example of removing some unwanted subtrees. (Deleted points
are depicted in red.)

2. Initialization of the ‘skeletal distance map’ SD:

if v is a branch-point and DSM (v) > t,
if v is a branch-point and DSM (v) < t4
if v is the root of the tree

m otherwise

oW e

SDM(v) =

)

where values ‘B’ and ‘m’ should be larger than the maximal length in
the tree. The ‘B’ points are ‘bumpers’ during the forthcoming distance-
propagation step while the ‘m’ points (assigned to line-points and end-
points in the centerline) are to be changed.

3. Distance propagation in SDM according to the (3,4,5)-Chamfer dis-
tance can be performed similarly to the linear time Chamfer distance
mapping. Note that the ‘B’ points remain unchanged during this step.

4. Branch deletion: a side branch with an associated endpoint v is deleted
if SDM(v) < t;. It can be done easily by using the Dijkstra’s tree or
in the following way:

for i = t; downto 1 do
for each endpoint v in the centerline do
if SDM (v) =i then delete v from the centerline

Steps 24 of the above process can be repeated k—times for different pairs
of thresholds: (t;,,t4,), (tiy, tay)s - - -5 (t1,s ta, )s- In our experience, 2 to 4 iter-
ations typically provide satisfactory results for in vivo airway trees. Note,
that the thresholds are to be experimentally determined.
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4.6 Smoothing

The pruned centerline may be rough, therefore, a smoothing step is applied.
It alters some one-, two-, and three-point long sequences of line-points. The
smoothing rules are given by a set of matching templates. For brevity, only
the templates capable of altering one point long segments are presented in
Figure 4.8. The smoothing process is illustrated in Figure 4.9.

FNlTY

Figure 4.8: The five base matching templates of our smoothing process ca-
pable of altering one point long parts. If the two blue points and the red one
are line-points in the centerline, then the red point is deleted (i.e., changed
to white) and the white point shown in green is filled (i.e., changed to black).
Note, that all rotations of these base matching templates (where the rotation
angles are 90°, 180°, and 270°) are also matching templates.

Figure 4.9: Example of the smoothing process: the same part of the centerline
before smoothing (left) and after smoothing (right).
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4.7 Branch-point Identification

There are three types of points in a centerline produced by a maximal 3D
curve-thinning algorithm: endpoints (which have only one 26-neighbor), line-
points (which have exactly two 26-neighbors), and branch-points (which have
more than two 26-neighbors) that form junctions (bifurcations, trifurcations,
etc.), see Figure 4.10. Clearly, branch-identification in a maximally thinned
centerline is trivial. One problem is that more than one branch-point may
form a junction. In that case, the branch-point closest to the root of the tree
is assigned the junction label. The branch-point identification is illustrated

in Figure 4.11.
E i A
-<+—+ root

line-point

branch-point—= reference — =

| |
lz end-point l:/

Figure 4.10: The three types of points in a centerline (left). Sometimes, a
junction is formed by more than one branch-point (right). In that case, the
branch-point closest to the root is the reference point of the junction.

Figure 4.11: Identified branch-points in a human airway tree.
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4.8 Generating Formal Tree Structure

The formal tree structure (i.e., skeletal graph) assigned to the pruned cen-
terline is based on the updated Dijkstra’s tree (after pruning). It is stored
in an array of n elements for a centerline containing n points. Each element
of that array stores the coordinates of a point, its depth in the volume, and
the index of the element that corresponds to the parent/predecessor point in
the tree. This internal data structure is suitable for the forthcoming mea-
surements, and provides an efficient coding of the resulting binary image.
A similar structure is assigned to the branch-points. In the formal tree,
a path between two branch-points is replaced by a single edge, see Figure
4.12. Note, that similar methods were already presented by several authors
(77, 195, 196, 349]. The skeletal graph is stored in an XML file, which pro-
vides associated measures for each part of the partitioned tree.

Figure 4.12: A human airway tree and its centerline (left). The corresponding
formal tree structure, in which a path between two branch-points is replaced
by a single edge (right).
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4.9 'Tree Partitioning

The aim of the partitioning procedure is to partition all points of the seg-
mented tree into branches (i.e., a branch-specific label is assigned to each).
There are two inputs into the process — the segmented tree after topological
corrections, and the formal tree structure corresponding to the centerline.
The output is a gray-level image, in which value ‘0’ corresponds to the back-
ground and different non-zero values are assigned to the points belonging to
different tree branches/partitions.

The automated partitioning consists of two steps, see Figure 4.13. First,
only the points in the centerline are partitioned so that each branch/partition
of the centerline has a unique label. Points of the segmented tree that are
not in the centerline are then partitioned by label propagation — each point
in the tree gets the label of the closest point in the centerline.

Figure 4.13: Partitioning process: the segmented volume and the partitioned
centerline (left) and the partitioned volume after label-propagation (right).
(Note, that we used only 9 colors in displaying these trees, therefore, the
same color was assigned to multiple branches.)

The first step (i.e., centerline partitioning) uses a queue @ (first-in-first-
out data structure) and assigns label [(v) and generation number g(v) to the
point in the centerline v. That process is outlined by Algorithm 14.

At first, the starting label is set and queue @ is initialized to contain the
root of the skeletal tree. Each time through the outer while loop, a vertex
v (i.e., the root or a branch-point) is extracted from the queue and labeled
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Algorithm 14: Centerline partitioning

label < starting_label
g(tree_root) < 1; ENQUEUE(Q, tree_root);
while NONEMPTY(Q) do
v <~ DEQUEUE(Q); l(v) < label; generation < g(v);
while v has only one child do
u <— ONLYCHILD(v); I(u) < label;
L g(u) < generation; v < u;

i =R L S VR VR

03]

label <~ NEXT(label); generation < generation + 1;
9 for each child u of v do
10 L g(u) < generation; ENQUEUE(Q,u);

by the current label. Then all vertices (i.e., line-points) along the path from
point v to the next branch-point are labeled by the same value (see the inner
while loop). After labeling an entire branch, the current label is modified
and the starting points of all adjacent branches are placed at the tail of the
queue (see the for loop).

The algorithm — as implemented — is more difficult than as was presented.
To deal with trifurcations, it is also capable to merge two branch-points if the
distance between them is less than a given threshold. Trifurcations routinely
appear in human airway trees, represented by a sequence of two bifurcations
in a close proximity along the identified centerline, see Figure 4.14.

o’

Figure 4.14: Two close branch-points represent a trifurcation. They are
merged in our formal tree.
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4.10 Calculating Associated Measures

For each partition/branch of the tree, the following measures/indices are
calculated:

e branch length — defined as a Euclidean distance between the parent
and child branch-points (in mm),

e branch volume — defined as a volume of all voxels belonging to the
branch (in mm?),

e branch surface area — defined as a surface area of all boundary voxels
belonging to the branch (in mm?),

e branch radius — derived from the branch length and the branch volume
assuming ‘cylindrical’” partition (in mm):

) volume
radius = | —————.
\/ 7 - length

Determining the first three indices is fairly straightforward, but calculat-
ing a reliable approximation to the branch radius is rather complicated. The
two ends of a partition/branch are ‘conic’, therefore, they must be suppressed
to get measurements only from the ‘cylindrical’ partitions.

First, points in the centerline are re-labeled as follows:

I

I(v) [(v) + maz_label if voxel v belongs to a ‘branch-point area’
l(v) otherwise

where [(v) is the original label of point v and max_label is greater than the
largest label assigned during the centerline partitioning process (therefore,
[(v) + maz_label is a brand new label). ‘Branch-point areas’ (i.e., the set of
points to be re-labeled) are determined by the values in the distance map
corresponding to the branch-points.

During the label propagation step (i.e., when each point in the tree
gets the label of the closest centerline point), the new labels are propa-
gated. Determining branch volume and branch surface is based on labels
[(v) mod mazx_label. Calculating the branch radius is based on ‘cylindrical’
branch volume and ‘cylindrical” branch surface. Those indices are determined
by labels that are less than max_label. (Note that branch radius is derived
from the ‘cylindrical’ branch length that is shorter than the calculated branch
length.) The method is illustrated in Figures 4.15 and 4.16.
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Figure 4.15: Calculating branch radius in a computer phantom. Centerline
points belonging to the excluded branch- and end-areas are in red (left),
‘cylindrical’ partitions for estimating branch radius (right). (Note, that the
partitioned trees are displayed by using only 9 colors, therefore, the same
color may have been assigned to some adjacent partitions.)

Figure 4.16: ‘Cylindrical’ partitions in a human airway tree.

Lastly, we can state that the described automated method for pruned and
smoothed centerline extraction, branch-point identification and quantitative
analysis of tubular tree structures is robust, efficient, and highly reproducible.
It facilitates calculation of a number of morphologic indices described above
as well as indices not considered in this work — branch angle, curvature, and
many others.
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4.11 Tree Matching

The goal of matching human intrathoracic airway trees is to find anatom-
ically corresponding branch-points in two different trees, see Figure 4.17.
Two types of matching are of utmost interest: intra-subject and inter-subject
matching. In the first case, trees coming from different scans of the same
subject are matched. In the second case, two or more trees are matched
originating from different subjects. The latter case only allows matching of
the primary branch-points (the first three or four generations). These pri-
mary branch-points are frequently (although not universally) identical among
humans. The branching pattern of higher airway generations varies from sub-
ject to subject, much like fingerprints do.

Figure 4.17: Finding correspondences among branch-points in two airway
trees.

Our matching algorithm [339, 341] performs the following three main
steps:

e Aligns the two input trees by performing a rigid registration.
e Finds and match major branch-points.

e Matches subtrees underneath major branch-points, one pair of subtrees
at a time.

The proposed branch-point matching allowed us to match pairs of volu-
metric high resolution in vivo CT scans. Each subject was scanned twice, one
scan at functional residual capacity (FRC, 55% lung volume), and one scan
at total lung capacity (TLC, 85% lung volume). After matching a pair of
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Figure 4.18: Matched partitioned trees: FRC (left) and TLC (right).

FRC/TLC tree (see Figure 4.18) we could analyze the changes of the quan-
titative indices (i.e., length, volume, surface area, and radius) of the paired
individual branches.

Assigning anatomical names to the segments and branch-points of the
human airway tree, is of significant interest for clinical applications and
physiological studies. Our anatomical labeling algorithm aims to assign 32
anatomical names to their respective segments (the left inferior bronchus was
divided into two parts, which accounts for the one additional segmental name
compared to the standard nomenclature), see Figure 4.19.

Figure 4.19: Anatomical labeling of a human airway tree. Anatomical atlas
(i.e., airway tree with assigned labels) in which labels refer to segments, but
are assigned to the terminating branch-point of the respective segment (left).
The labeled formal tree (right).
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4.12 Re-sampling 2D Slices

The quantitative analysis of airway trees is based on the segmentation of the
airway tree. Consequently, approximate surfaces of the airway tree segments
together with the centerline can be used to guide the accurate detection of
the airway walls [342]. A 2D slice is re-sampled from the original gray-level
volume (i.e., a high resolution in vivo CT scan) using centerline, and a 2D
slice is re-sampled from the earlier airway segmentation result, see Figure
4.20.

Figure 4.20: A segmented airway tree with three 2D slices perpendicular to
airway segments in the original CT scan.
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Chapter 5

Summary of New Scientific
Results

This dissertation presents a selection of my results all originate from a period
well after defending my PhD dissertation in the year 2000. The three theses
are related to Chapters 2-4, and include only results in which my contribution
were essential.

Thesis 1: Topology Preservation

This thesis summarizes our theoretical results concerning diversified topo-
logical problems:

1.1:

1.2:

1.3:

Kardos, Németh and me proposed configuration-based and point-based
sufficient conditions for topology-preserving operators for 2D pictures.

See Section 2.1. Related publications: [119, 120, 122, 123, 124, 126,
208, 243].

I gave both symmetric and asymmetric point-based sufficient conditions
for topology-preserving reductions acting on 3D (26, 6) pictures on Z>.

See Section 2.2. Related publication: [236].

Instead of investigating the sets of altered points, I proposed a novel
sufficient condition for topology-preserving operators that takes the
alteration rules of operators into consideration. I proved that the
general-simple alteration rules provide pairs of equivalent and topology-
preserving sequential and parallel operators.

See Section 2.3. Related publications: [238, 239, 241].
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1.4:

Kardos and me disclosed the relationships among the different types of
sufficient conditions for topology-preserving reductions.

See Section 2.4. Related publications: [245, 248, 249]

Thesis 2: Advanced Thinning

Thinning is an iterative object reduction process capable of producing all
types of skeleton-like features in a topology-preserving way. For reasons of
scope, this thesis contains only some selected results concerning thinning:

2.1:

2.2:

2.3:

Although thinning seems to be a time-consuming process, I proposed an
easy and computationally efficient implementation scheme for arbitrary
(sequential and parallel) thinning algorithms.

See Section 3.1. Related publications: [230, 231, 234).

I proposed a safe technique for designing topology-preserving parallel
thinning algorithms.

Kardos, Németh, and me generated some families of 2D and 3D topol-
ogy-preserving parallel thinning algorithms. For reasons of scope, this
dissertation describes only 15 parallel 3D algorithms (5 curve-thinning,
5 surface-thinning, and 5 kernel-thinning ones) that are derived from
our asymmetric point-based sufficient condition (for topology-preserv-
ing 3D parallel reductions) combined with the major parallel thinning
strategies and some types of geometric constraints.

See Section 3.2. Related publications: [206, 208, 209, 211, 235, 236].

I proved that the deletion rules of two existing parallel thinning algo-
rithms (i.e., a fully parallel 2D algorithm [181], and a 6-subiteration
3D surface-thinning algorithm [82]) are general-simple, thus they are
equivalent. I constructed a pair of topology-preserving equivalent se-
quential and parallel 4-subiteration 2D thinning algorithms and a pair
of topology-preserving equivalent sequential and parallel fully parallel
3D surface-thinning algorithms. These algorithms were implemented
and tested by Kardos and Németh.

For reasons of scope, only four pairs of equivalent sequential and parallel
subiteration-based 3D surface-thinning algorithms are described in this
dissertation.

See Section 3.3. Related publications: [242, 243, 244, 246].
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2.4:

I proposed two maximal 3D curve-thinning algorithms (i.e, algorithms
that can produce centerlines containing only non-simple points and
3D-curve-endpoints). These topology-preserving algorithms have been
successfully applied in several medical image processing applications.

See Section 3.4. Related publications: [224, 227, 231].

Thesis 3: Quantitative Analysis of Pulmonary
Airway Trees

My 3D thinning algorithms have been involved in several biomedical ap-
plications. For reasons of scope, in this dissertation, my method for quanti-
tative analysis of pulmonary airway trees is only described.

3.1:

3.2:

I proposed, implemented, tested, and validated a complex method for
extracting reliable centerlines from segmented human airway trees. It
consists of the following phases: correction of the segmented tree, iden-
tification of the tree root, producing centerline, centerline pruning, and
centerline smoothing.

I proposed, implemented, tested, and validated algorithms for symbolic
description of airway trees and characterizing the individual branches.
My algorithms solve the following problems: identification of branch-
points, generating a formal tree structure, tree partitioning, calculating
associated measures (i.e., length, radius, volume, and surface area) for
individual branches, and re-sampling 2D slices perpendicular to airway
segments.

Among others, the collaborators were Eric A. Hoffman and Milan Sonka
(i.e., outstanding researchers at The University of lowa, Iowa City, IA, USA).

See Chapter 4. Related publications: [99, 227, 231, 341].
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