
MODELING, CONTROL, AND SIMULATION BASED TESTING

FOR AUTOMATED ROAD TRAFFIC

Tamás Tettamanti, PhD

Faculty of Transportation Engineering and Vehicle Engineering
Budapest University of Technology and Economics

DSc dissertation

January 13, 2022



Acknowledgements

First of all, I would like to express my major gratitude for my family, Zita, Marcell,
Benedek, and Levente for their constant love and support.
I am really thankful to the Department of Control for Transportation and Vehicle
Systems which makes it possible to work simultaneously in higher education, aca-
demic research as well as industrial projects, providing me an exciting and challenging
workplace.
Personally, I would like to thank the wonderful people I have worked together during
the past 15 years, especially to Prof. István Varga, Prof. József Bokor, Prof. Péter
Gáspár, Prof. Balázs Kulcsár, Dr. Balázs Varga, and Márton Tamás Horváth.

i



Contents

Contents ii

List of Figures v

List of Tables viii

Nomenclature ix

1 Introduction 1
1.1 Concept and Levels of Automated Vehicles . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Expected Future of Road Transportation . . . . . . . . . . . . . . . . . . . . 2
1.3 Development Trends of Road Vehicles and Transportation . . . . . . . . . . . . . 3
1.4 The Holistic Approach: Automated Mobility Services . . . . . . . . . . . . . . . . 3
1.5 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Advanced Methods for Road Traffic Measurement and Estimation 6
2.1 Sensors for Road Traffic Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Switching Kalman Filter for Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . 8

2.2.1 Switching Kalman Filter for Travel Time Estimation . . . . . . . . . . . . 8
2.2.2 Simulation Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Moving Horizon Estimation of Traffic Flows in Roundabouts with Missing Ob-
servation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Evaluation and Benchmark of the MHE Method on Real-World Data . . 14
2.3.2 Turning Flow Estimation in Case of Missing Detection . . . . . . . . . . . 15

2.4 Uncertainty Modeling in Urban Road Traffic . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Uncertainty Modeling in General Urban Road Link . . . . . . . . . . . . . 16
2.4.2 Uncertainty Modeling Extended to Signalized Traffic Network . . . . . . . 18

2.5 Spatial Extension of Sensors in Urban Traffic Network . . . . . . . . . . . . . . . 21
2.5.1 Deep Learning Models Applied for Road Link Selection . . . . . . . . . . 21
2.5.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Impacts of Automated Driving on Traffic Dynamics and Traffic Modeling 29
3.1 Impacts on Urban Macroscopic Fundamental Diagram . . . . . . . . . . . . . . . 29

3.1.1 Macroscopic Modeling of Urban Traffic Flow . . . . . . . . . . . . . . . . 30
3.1.2 Simulation Based Methodology . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.3 GAM Regression for Urban MFD . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Impacts of Different Levels of Autonomy of AVs on Urban Traffic . . . . . . . . . 41
3.3 Impacts on Freeway Macroscopic Fundamental Diagram . . . . . . . . . . . . . . 43

3.3.1 Macroscopic Modeling of Freeway Traffic Flow . . . . . . . . . . . . . . . 44
3.3.2 Assessing AV Impacts on Freeway MFD . . . . . . . . . . . . . . . . . . . 45

ii



Contents Contents

3.3.3 Simulation Results on AV Penetration Change on Freeway . . . . . . . . . 47
3.3.4 Impacts of AVs on Fuel Consumption and Emissions . . . . . . . . . . . . 51

3.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Urban Road Traffic Control 55
4.1 Dynamic Pricing Based Urban Traffic Control . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Control Design Based on the Concept of Traveler’s Utility Function . . . 56
4.1.2 Application Example Using Real-World Traffic Network Data . . . . . . . 61

4.2 Dynamic Routing for Automated Public Transport Buses . . . . . . . . . . . . . 64
4.2.1 Routing Methods for Public Buses with Timetable-Based Operation . . . 64
4.2.2 Modeling Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2.3 Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Wireless Traffic Signal Controller with Distributed Control System Architecture 71
4.3.1 Distributed Control Architecture for Traffic Light Controller . . . . . . . 73
4.3.2 The Base of Safe Distributed Operation . . . . . . . . . . . . . . . . . . . 75
4.3.3 Safety Analysis of the Fail-Safe Distributed Traffic Controller Using Petri

Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Simulation Based Testing for Automated Road Traffic 81
5.1 Microscopic Traffic Simulation Practice Considering Automated Vehicles . . . . . 81

5.1.1 Microscopic Traffic Simulation Considering Autonomous Driving . . . . . 82
5.1.2 Simulation-Based Sensitivity Analysis of Model Parameters . . . . . . . . 83
5.1.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Online Calibration of Microscopic Road Traffic Simulator Using Genetic Algorithm 85
5.2.1 Implementation of the Online Calibration . . . . . . . . . . . . . . . . . . 86
5.2.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.3 Calibration Result Verification and Analysis . . . . . . . . . . . . . . . . . 89

5.3 Co-Simulation for CAV Testing with Traffic Simulation . . . . . . . . . . . . . . 90
5.3.1 Integrated VISSIM-MATLAB Environment . . . . . . . . . . . . . . . . . 91
5.3.2 SUMO TraCI Interface for Co-Simulation . . . . . . . . . . . . . . . . . . 92

5.4 Design of a Novel Road Traffic Control System for ZalaZONE Proving Ground . 93
5.4.1 New Challenges of Traffic Light Controllers . . . . . . . . . . . . . . . . . 93
5.4.2 Traffic Control System Design for Test Track . . . . . . . . . . . . . . . . 94

5.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Conclusions 100

A Kalman Filter 101

B Constrained Kalman Filter 103

C Moving Horizon Estimation 104

D Biproportional Procedure 106

E Uncertainty Definition and H-infinity Filter Design for Traffic Estimation 108

F Generalized Additive Model 116

G Requirements for Road Traffic Signal Controllers 117

iii



Contents Contents

H Example for Autonomous Vehicle Testing Using Co-Simulation 119

I Simulation Environment for the Digital Twin of the Traffic Control System 126

Publications of the Author 129

References 136

iv



List of Figures

1.1 Levels of driving automation according to the SAE International . . . . . . . . . 2
1.2 Automation levels of vehicle and traffic control functions (source: Földes et al.

[2021]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Structure overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 The sensor fusion method for the estimation of mean travel times on urban links 11
2.2 Test network in PTV VISSIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Average speed as the function of volume and location . . . . . . . . . . . . . . . . 12
2.4 Operation example of the Switching Kalman Filter . . . . . . . . . . . . . . . . . 12
2.5 Turning movements in a four-legged roundabout . . . . . . . . . . . . . . . . . . 13
2.6 MAE values for all MHE horizon lengths and intervals . . . . . . . . . . . . . . . 15
2.7 Traffic flows in a link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.8 Potential uncertainties in urban road links . . . . . . . . . . . . . . . . . . . . . . 17
2.9 Evolution of performance according to the ratio of monitored links (LSTM Neural

Network) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.10 Comparison between approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Real-world traffic network (GPS coordinates: 47.47733, 19.05358) . . . . . . . . . 32
3.2 Grid network: spline regression where the EDF value is 6.6 in s(density, EDF) . 35
3.3 Grid network data: speed-density relationship . . . . . . . . . . . . . . . . . . . . 35
3.4 Grid network data: estimated flow-density relationship . . . . . . . . . . . . . . . 36
3.5 Grid network data: change of the maximum traffic flow according to the AV

penetration ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.6 Grid network data: change of the critical traffic density (the density at the max-

imum traffic flow) according to the AV penetration ratio . . . . . . . . . . . . . . 37
3.7 Real-world network: spline regression where the EDF value is 3.85 in s(density,

EDF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.8 Real-world network data: speed–density relationship . . . . . . . . . . . . . . . . 39
3.9 Real-world network data: estimated flow–density relationship . . . . . . . . . . . 40
3.10 Real-world network data: change of the maximum traffic flow according to the

AV penetration ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.11 Real-world network data: change of the critical traffic density according to the

AV penetration ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.12 Simulation results for the whole network . . . . . . . . . . . . . . . . . . . . . . . 42
3.13 Simulation results for a single link . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.14 Triangular macroscopic fundamental diagram . . . . . . . . . . . . . . . . . . . . 45
3.15 The network used in the simulations . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.16 The automatized simulation process . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.17 Fundamental diagram of a simulation (penetration = 40%, τ = 1.1 s, speed limit

= 80 km/h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.18 Flow-density relationship changes with reaction time . . . . . . . . . . . . . . . 48

v



List of Figures List of Figures

3.19 The triangular fundamental diagram parameters change with the time headway 49
3.20 Flow-Density relationship changes with AV penetration . . . . . . . . . . . . . . 49
3.21 The triangular fundamental diagram parameters change with the AV penetration 50
3.22 Maximum flow changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.23 The impacts of speed limit on fundamental diagram . . . . . . . . . . . . . . . . 51
3.24 The triangular fundamental diagram parameters change with the speed limit . . 52
3.25 Fuel consumption changes and CO2 emission changes . . . . . . . . . . . . . . . . 52

4.1 Urban macroscopic fundamental diagram . . . . . . . . . . . . . . . . . . . . . . 57
4.2 MFDs for Route 1 and 2 between origin and destination pair . . . . . . . . . . . 57
4.3 Toll function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Test network (area covered by the red arrow) in Budapest (Hungary), global

positioning system: 47.438778, 19.043547 . . . . . . . . . . . . . . . . . . . . . . 60
4.5 MFDs of Route 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 Traffic flows achieved with different control methods . . . . . . . . . . . . . . . . 63
4.7 The routing process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.8 The monitored subnetwork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.9 First route choice (left) and second route choice (right) . . . . . . . . . . . . . . . 67
4.10 Average relative run times with different k values . . . . . . . . . . . . . . . . . . 68
4.11 Effect of weighting parameters on generalized cost (chosen route vs predefined

reference route) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.12 Effect of weighting parameters on travel time (chosen route vs predefined reference

route) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.13 Performance compared to Dijkstra’s algorithm . . . . . . . . . . . . . . . . . . . 70
4.14 The architecture of the traditional centralized traffic signal controller with pair

power cables to each light source . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.15 The architecture of the CAN bus communication based (centralized) traffic signal

controller with a single CAN cable to each signal head (power supply is provided
in the traffic signal poles) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.16 The architecture of the centralized wireless traffic signal controller (power supply
is provided in the traffic signal poles) . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.17 Distributed control architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.18 The architecture (a) of the wireless traffic signal control with distributed control

system (power supply is provided in the traffic signal poles) and an example for
the distributed functioning (b) representing the common knowledge of the actual
signal program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.19 Flowchart of the redundant functioning for distributed traffic signal control (the
picture considers only two signal head units for simplicity) . . . . . . . . . . . . . 74

4.20 Flowchart of the redundant functioning for distributed traffic signal control (the
picture considers only two signal head units for simplicity) . . . . . . . . . . . . . 75

4.21 The Petri Net of the redundant functioning for distributed traffic signal control
(the model considers the operation of two signal head units) . . . . . . . . . . . . 77

5.1 The layout of the intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Variations of mean speed and average travel time . . . . . . . . . . . . . . . . . . 85
5.3 Online calibration framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.4 The variation of fitness function value . . . . . . . . . . . . . . . . . . . . . . . . 89
5.5 The comparison of the traffic volume . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.6 Autonomous vehicle testing and validation layers . . . . . . . . . . . . . . . . . . 91
5.7 Overview of the ZalaZONE traffic light control system . . . . . . . . . . . . . . . 94
5.8 System architecture of the traffic control . . . . . . . . . . . . . . . . . . . . . . . 94

vi



List of Figures List of Figures

E.1 Example network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
E.2 Expected result of simulation (n1 is the number of vehicles on link 1) . . . . . . . 115

G.1 The hierarchy of the technical legislation (also applicable for traffic signal con-
troller design) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

H.1 Simulation possibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
H.2 The system architecture of the test vehicle for autonomous driving tests . . . . . 121
H.3 The whole test environment for autonomous car . . . . . . . . . . . . . . . . . . . 122
H.4 The location of the test (the campus of Budapest University of Technology and

Economics, GPS: 47.478488, 19.056098) . . . . . . . . . . . . . . . . . . . . . . . 123
H.5 The real-world test scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
H.6 The speed transmission between the vehicle and the simulator . . . . . . . . . . . 124
H.7 The braking moment in the simulation . . . . . . . . . . . . . . . . . . . . . . . . 124
H.8 The test environment during the experiment . . . . . . . . . . . . . . . . . . . . . 125

I.1 PTV VISSIM control program and simulation . . . . . . . . . . . . . . . . . . . . 127
I.2 SUMO control program and simulation . . . . . . . . . . . . . . . . . . . . . . . . 127
I.3 Simulation environment for the digital twin of the ZalaZONE traffic control center128

vii



List of Tables

2.1 Different measurement configurations . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Measurement configurations with n sensors . . . . . . . . . . . . . . . . . . . . . 10
2.3 Performance in case of missing detection on intersection leg in case of MHE1

algorithm with 5 min sample time . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Parameter optimization according to the architecture: ”X” stands for Bayesian

optimized, ”-” stands for exhaustively optimized and × for not applied . . . . . . 23
2.5 Parameterization and results between approaches . . . . . . . . . . . . . . . . . . 25

3.1 Parameters of the driver model used in SUMO simulations . . . . . . . . . . . . . 33
3.2 GAM regression of the grid network simulation . . . . . . . . . . . . . . . . . . . 34
3.3 Grid network data: maximum flow, critical density, and their change . . . . . . . 36
3.4 GAM regression of the real-world network simulation . . . . . . . . . . . . . . . . 38
3.5 Real-world network data: maximum flow, critical density, and their change . . . 39
3.6 The AV penetration scenarios used in this simulation . . . . . . . . . . . . . . . . 41
3.7 Parameters of the driver model for different levels of autonomy . . . . . . . . . . 42
3.8 The constant attributes of the different vehicle types . . . . . . . . . . . . . . . . 46
3.9 Maximum flow [veh/h] changes along with the AV penetration and time headway 51

4.1 Average traveling speeds (km/h) with different time delays (in parentheses the
relative changes are given compared with the fixed control case) . . . . . . . . . . 63

5.1 The genetic operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2 The calibration results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

viii



Nomenclature

ACC Adaptive Cruise Control
ADAS Advanced Driver Assistance Systems
AI Artificial Intelligence
ANN Artificial Neural Network
AV Autonomous Vehicle
BASt Bundesanstalt für Straßenwesen
BP Biproportional Procedure
CAV Connected and Autonomous/Automated Vehicle
CACC Cooperative Adaptive Cruise Control
CEN Comité Européen de Normalisation
cKF-I constrained Kalman Filter while matrix W = I
cKF-P constrained Kalman Filter while matrix W = P (k)
DEAP Distributed Evolutionary Algorithms in Python
DSRC Dedicated Short Range Communications
ECU Electronic Control Unit
EDF Estimated Degrees of Freedom
ESP Electronic Stability Program
FCD Floating Car Data
FHWA Federal Highway Administration
FMD Floating Mobile Data
GA Genetic Algorithm
GAM Generalized Additive Model
GEH GEH formula gets its name from Geoffrey E. Havers
GLM Generalized Linear Model
GRE Global Relative Error
GNSS Global Navigation Satellite System
GUI Graphical User Interface
HDV Human Driven Vehicle
ICT Information and Communication Technology
ISO International Organization for Standardization
IT Information Technology
ITS Intelligent Transportation Systems
I2V Infrastructure to Vehicle
LFR Linear Fractional Transformation
LSTM Long Short Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MPC Model Predictive Control
MFD Macroscopic Fundamental Diagram
NN Neural Network
OD Origin-Destination
NHTSA National Highway Traffic Safety Administration

ix



PCU Passenger Car Unit
PN Petri Net
RNN Recurrent Neural Network
SAE Society of Automotive Engineers
SPSA Simultaneous Perturbation Stochastic Approximation
SUMO Simulation of Urban Mobility
TLNN Time Lagged Neural Network
TWPN Time Weighted Passenger Number
VMS Variable Message Sign
VOC Volatile Organic Compounds
VSS Variable Speed Signs
V2I Vehicle to Infrastructure
V2V Vehicle to Vehicle
V2X Vehicle to Everything
XML eXtensible Markup Language

x



Chapter 1

Introduction

Autonomous or highly automated road vehicles are core elements of future’s transportation and
it is not just a vision anymore. In the starting phase of AV developments road tests have been
focused only on the behavior of sole vehicles without exploiting the advanced ability of AVs such
as cooperation with infrastructure or other vehicles. In our days, a plethora of new ideas are
born day after day for automated vehicles. However, the impact of these new technologies must
be carefully assessed preliminary together with extensive and thorough testing. This work is
ensured by the evolution of traffic microsimulation and its use for CAV modelings [Raju and
Farah 2021]. All these shall lead finally to a safe and reliable homologation process of CAVs/AVs
in the future [Varga et al. 2020b]. Accordingly, the main aim of my research is to reveal open
questions in this field especially from the perspective of transportation engineering as well as to
find novel and practical ways for better exploitation of automated traffic towards a sustainable
future traffic.

1.1 Concept and Levels of Automated Vehicles
Automated vehicles are vehicles that are capable of sensing their environment and navigating
with less or without human input [Gehrig and Stein 1999]. The automated driving is grouped into
six different levels by the international Society of Automotive Engineers (SAE) according to the
amount of driver intervention and attentiveness required. It delivers a harmonized classification
and taxonomy for automated driving systems, specifically SAE J3016 Taxonomy and Definitions
for Terms Related to On-Road Motor Vehicle Automated Driving Systems [SAE International
2021].

Accordingly, levels of autonomy are shown by Fig. 1.1. The last two columns in Fig. 1.1
represent the cross-compliance of SAE levels compared to the levels of the German Federal
Highway Research Institute (BASt: Bundesanstalt für Straßenwesen) as well as that of the
National Highway Traffic Safety Administration (NHTSA) of the USA.

As an interpretation SAE phrased the following: ”These levels are descriptive rather than
normative and technical rather than legal. They imply no particular order of market introduction.
Elements indicate minimum rather than maximum system capabilities for each level. A particular
vehicle may have multiple driving automation features such that it could operate at different levels
depending upon the feature(s) that are engaged.” [SAE International 2021]

Basically, the defined levels indicate the balance of the dynamic driving tasks between human
and machine from zero level (no automation) to fifth level (full automation). To achieve the
full automation two evolution paths are possible: the concept of ”something everywhere” or
”everything somewhere” [Corporate Partnership Board 2015]. The first variation means that
automated driving systems appear gradually in the traditional vehicles according to the levels in
Fig. 1.1, i.e. the drivers give more and more driving tasks to the automated systems. The second

1



1. Introduction 1.2. The Expected Future

Figure 1.1. Levels of driving automation according to the SAE International

evolution concept assumes that the fully automated cars could be applied in driverless mode
immediately together with traditional vehicles until a total market penetration is achieved.

1.2 The Expected Future of Road Transportation
It is expected that by 2030, 5-10% of road vehicles in European Union will be autonomous or
at least allowed to be operated in autonomous mode on certain road sections [Alonso Raposo
et al. 2021]. The break-in of fully automated vehicle technology is expected primarily in the
areas of public transport, freight transport and taxi passenger transport, as these are transport
modes whose cost-effective operation is a key issue: financing state / municipal public transport
is a constant problem as it is typically unprofitable; on the other hand, transportation and taxi
services are areas of the economic sector where cost-efficiency is also of crucial importance. The
emergence of fully free-moving autonomous vehicles in cities is not yet expected by 2030 due to
the complexity of traffic scenarios (e.g. pedestrians, intersections, traffic lights). At the same
time, they will already be able to travel on fixed routes (e.g. in separated ”autonomous lane”)
and with dedicated stops: as a public transport vehicle or even as a shuttle service for a vehicle-
sharing service. As far as private passenger cars and lorries are concerned, their primary terrain
by 2030 will be the dedicated lanes of the freeway network, as autopilot function is partly an
available technology today.

The self-driving future is certainly on the verge of. At the same time, it is important to
emphasize that in addition to automotive innovation, there are 3 other keys to intensive devel-
opment: transport and telecommunications infrastructure, technical regulation, and catching up
with the legal framework. Infrastructure development is typically a national competence and in
practice one of the basic criteria for the wide spread of autonomous vehicles (e.g. appropriate

2



1. Introduction 1.3. Development Trends

road markings, roadside equipment, communication base stations). In terms of technical reg-
ulations, domestic standardization obviously shall follow the work of international (ISO) and
European (CEN) standards organizations (requirements for automated vehicle functions and
their methodology for attesting conformity are under constant development), so they need to
localize the relevant standards as soon as possible. Another critical element in the prolifer-
ation of autonomous vehicles is the development and implementation of an appropriate legal
background. The types of liability for road transport (civil, criminal and administrative) are
completely new in the world of autonomous cars, and their interpretation will require the use of
alternative approaches, all in line with international legal harmonization.

1.3 Development Trends of Road Vehicles and Transportation
The development of road vehicles has been accelerated in the last decades. One of the spec-
tacular results of this process is the fast growing number of electronic control units (ECU) in
vehicles. Nowadays, typical compact and mid-size cars contain over 100 ECUs. Beyond the
basic functioning (e.g. engine control unit) these special elements also improve safety (e.g. Elec-
tronic Stability Program, ESP), assist the driver (e.g. Advanced Driver Assistance Systems,
ADAS), as well as ameliorate passenger comfort. ECUs are also becoming increasingly intel-
ligent devices, such that more and more functions are integrated inside them. Moreover, new
communication systems are also appearing in modern vehicles, which are capable to make con-
tact with other cars or infrastructure. This is called V2V (Vehicle to Vehicle) or V2I (Vehicle
to Infrastructure) communication [Gáspár et al. 2014]. The development and standardization
of V2V/V2I technologies are also ongoing processes of our days [Khan et al. 2022]. Beyond the
progressive technical solutions specific to vehicles and transport, recently the data generated
by travelers has also been shown up as a new key factor. Namely, more and more information
arise which are mostly used separately or not utilized at all at the present time. For the future,
huge opportunities open up concerning transport management by exploiting transport related
big data. As an illustrative example, one can mention data fusion methods which enable more
reliable traffic modeling and forecasting by applying different ”data crumbs” [Tettamanti et al.
2014b]. The ongoing transport research generally focuses on the implementation of intelligent
transport systems (ITS). In the ITS concept intelligent infrastructures must be also emphasized
which build up a complex traffic network together with the partly or fully autonomous vehicles.
Another relevant research is the calculability of everyday life and therefore that of transport
needs. Barabási [2010] investigated the predictability of future human mobility based on the
observation of cellular phone locomotion among others [Tettamanti and Varga 2014]. These
research directions contribute to a more extensive understanding and a better management of
transportation processes. Definitely, the development of autonomous vehicles will strongly mod-
ify the transport needs and traffic behavior parameters which will finally trigger the emerging
intelligent transport infrastructure.

1.4 The Holistic Approach: Automated Mobility Services
Automation in road public transportation has been facilitated by the emergence of infocom-
munication and vehicle technologies. The widely accepted definitions of automation level focus
solely on the driving aspects of vehicles. However, automation covers even more fields: service
planning and management, vehicle and traffic control, and passenger-handling functions [Csiszár
et al. 2019; Földes et al. 2021].

A holistic approach is needed for automated mobility innovations in light of trends in auto-
mated vehicles. This is because current transportation systems are transforming into integrated
mobility services based on advanced information management and automation. Novel assess-
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Figure 1.2. Automation levels of vehicle and traffic control functions (source: Földes et al.
[2021])

ment methods and automation levels for urban motorized mobility services make it possible to
assess the operational functions, such as service planning and management, vehicle and traf-
fic control, and passenger-handling functions, jointly in a novel, comprehensive way. Hence,
mobility services can be analyzed and compared with possible areas of development and their
automation potential. An example for the holistic approach for automated level definitions is
shown by Fig. 1.2.

[Földes et al. 2021] introduced a method to be applied for the handling of complex automation
levels, which gives a more comprehensive assessment of new transport technologies and mobility
services. The method was demonstrated through specific, currently available mobility services
and found that several functions (e.g. vehicle-passenger assignment, dynamic pricing, entitlement
checking, handling of boarding process) have significant development potential. Consequently,
human interactions in a future mobility service may be limited merely to supervisory roles. The
more flexible a service is, the more functions need to be automated. Developments should be
focused on whole function categories, rather than specific single functions. Accordingly, complex
methods for system modeling and engineering are required now more than ever before.

Also as a part of the holistic approach of traffic engineering, one must consider the influ-
encing as an effective tool to form future road transport, i.e. beside the direct control tools
we can influence the traffic demand itself. Accordingly, Esztergár-Kiss et al. [2021] introduced
a persuasive technique to promote sustainable daily traveling supported by an effective web
application.

1.5 Overview of the Thesis
The structure overview of the thesis is summarized by Fig. 1.3.

In the introductory part (Chapter 1) background is discussed by enlightening the disruptive
evolution of automated road traffic and the expectation of future traffic. Chapter 2 presents
the contributions of Thesis 1. Advanced traffic estimation methods are introduced to cope with
the problem of fusion of heterogeneous traffic data. Moving horizon estimation is proposed
for roundabout traffic flow estimation. Uncertainty modeling is discussed in the context of
urban road traffic. Artificial intelligence based spatial extension of traffic sensors is developed.
Chapter 3 discusses the contributions of Thesis 2. Impacts of automated vehicles are investigated
in relation with the conventional traffic flow modeling in urban and freeway traffic networks.
Both the effect of penetration rate and the different levels of autonomy are studied. Chapter
4 introduces the contributions of Thesis 3. A dynamic road pricing based control scheme is
proposed for real-time control in urban road traffic network. The solution of the nonlinear
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Figure 1.3. Structure overview of the thesis

predictive control intends to respond to the travelers’ utility functions. A routing method for
public buses is developed with dynamic paths between consecutive bus stops in order to meet
the timetable based operation criteria. Distributed operation based traffic controller concept is
created providing the possibility of operating wireless traffic signal controller. Chapter 5 presents
the contributions of Thesis 4. A real-time calibration method is proposed for microscopic traffic
simulation providing a practical framework for digital twin of real-world traffic dynamics. Co-
simulation framework is also developed based on validated traffic simulators. Novel traffic control
system is designed for test track especially focusing on a fully flexible control opportunities
together with V2X/I2V technologies. Finally, Chapter 6 concludes the thesis results.
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Chapter 2

Advanced Methods for Road Traffic
Measurement and Estimation

The purpose of road traffic detection is twofold. On the one hand, automatically sensed traffic
data serves for real-time traffic management [Papageorgiou 2004], e.g. actuated traffic light
control, congestion monitoring, route guidance. On the other hand, road traffic infrastructure
planning and development are also based on measured or manually counted traffic data.

In our days, a plethora of road traffic data are continuously collected producing historical
and real-time traffic information as well. The available information, however, arrive from inho-
mogeneous sensor systems, possibly with incomplete or biased data. Accordingly, this section
introduces data fusion and data filtering methodologies specialized for road traffic state mea-
surement and estimation for the purpose of practical application. Another important way of
utilization of traffic data is when it is applied for further modeling purposes (e.g. modeling traf-
fic induced emission based on traffic data solely [Gressai et al. 2021; Kovács et al. 2021]) or for
control goals [Tettamanti 2013].

2.1 Sensors for Road Traffic Data
Measurement systems applicable to road traffic data collection can be classified as:

1. traditional and

2. alternative sensor techniques.

Traditional techniques are sensors that have been developed to measure road traffic parameters.
These devices are, e.g. loop-detector, magnetic detector, camera. Unlike the previous ones,
alternative sensor technologies are not originally developed to measure road traffic parameters,
even though they can provide these types of information, e.g. fleet management systems, cellular
and GNSS data of mobile telephones, etc. The features of different measurement types are
described in this section.

Traditional road traffic sensors are directly developed for accurate traffic data measurement.
Basically, cross sectional measurements can be done on the traffic road network [Tettamanti et al.
2016b]. Therefore, time dependent parameters can be obtained. These are time occupancy, time
headway, volume and time mean speed. By using a single cross-sectional detector, time mean
speed can only be estimated (by calculating with a mean vehicle length). If more detectors are
placed after each other within a short distance (usually on motorways), time mean speed can be
measured, not just estimated, therefore the results are more precise. Even though video image
processing systems are quite developed, these devices usually operate as virtual loop-detectors.
The advantage of this method is that the number and size of placed virtual loop-detectors
can be freely set. Therefore, some spatial parameters such as spatial occupancy and density

6



2. Traffic Measurement and Estimation 2.1. Sensors for Road Traffic Data

can be calculated. In general, well-performing measurement systems can be built up by using
traditional sensors (after adequate calibration and smoothing) for continuous measurement. The
drawbacks are the high maintenance and installation costs that make it unrealistic to set up a
system covering all important roads of a town. Another constraint is that measurements take
place only on separated cross sections. In other words, traditional sensors are not capable of
measurements that cover a large area, e.g. OD data or travel time data cannot be obtained by
them.

Alternative sensor technology has become a real option for traffic parameter estimation due
to IT developments of the last few years [Lana et al. 2018]. Nowadays, numerous historic or
real-time databases exist that have relevant information for road traffic parameter estimation
although they have not been directly generated for traffic estimation purposes. Even though
these data are not available yet commonly for business or organizational reasons, they might
be well applied for traffic control or service purposes. One of the most common data types
is the GNSS data of vehicles that are part of a fleet management system. These information
make real-time monitoring possible. During the operation of Floating Car Data (FCD) systems,
an on-board unit provides data of the vehicle, e.g. actual speed, position or other information
which are important basically for the operator, such as the fuel consumption. From these traffic
data travel times, OD and route information can be estimated accurately. FCD are collected
in numerous systems day-by-day either in private or public sector. Well-known examples for
FCD data are Tom Tom Move or Waze application. An example for public transport FCD is
the Hungarian FUTÁR project being developed for public transportation of Budapest. Another
way of estimation is using Floating Mobile Data (FMD) that contains position data of travel-
ing mobile phones. FMD can be divided into 2 classes: client-side and server-side information
systems. Client-side FMD is collected from applications typically running on smartphones for
which users get traffic information in exchange. The other way of gathering FMD information
is using server-side technologies. The basis of this method is the observation of traveling mobile
phones, but only at the operator-side. All of the cellular signals generated by users are automat-
ically observed by the operator through base stations. Therefore mobile phones can be treated
as detectors that do not require additional development of the infrastructure. Nevertheless,
processing these rough data requires special algorithms [Tettamanti and Varga 2014]. The most
important advantage of server-side FMD is the measurement capability on the whole network,
e.g. estimation of OD matrices. Furthermore, the estimation of velocity is also possible only
by using network mobile phone data (without GNSS data) [Nokia Solutions and Networks OY
et al. 2014]. Bluetooth-based vehicle detection is another radiofrequency-based technology that
is already applied in few cities [Qing 2011]. The system is able to estimate traffic parameters by
following unique identifiers (MAC address) of wireless devices situated in vehicles.

The purpose of combined sensor technologies is based on the opportunity that fusion of dif-
ferent data types results in a better outcome than using only one type of sensor data. Integrated
use of different measurement systems means data fusion. Mitchell [2007] defines data fusion as
follows: ”The theory, techniques and tools which are used for combining sensor data, or data
derived from sensory data, into a common representational format. In performing sensor fusion
our aim is to improve the quality of the information, so that it is, in some sense, better than
would be possible if the data sources were used individually.”

Data fusion can help all intelligent transportation subsystems to improve [El Faouzi et al.
2011]. The functions of these subsystems are usually measurement, estimation, forecasting,
control and information collecting or providing [Qing 2011].

• Measurement systems: Data fusion techniques ensure standard platform for data having
different semantics and syntax. The next step is the development of estimating and data
completing algorithms that can also analyze those parts of the network from which in a
current time step no sensor information have been collected.
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• Information systems: Providing information for travelers and drivers is a basic criterion
of transportation. Modern navigation systems are provided with traffic and road state
information.

• Estimation and forecast: The knowledge of the present state of the network is crucial for
traffic control. The result can be even better if the future state can also be forecast.

• Network traffic control: Besides providing information for travelers, the most important
factor of traffic data fusion is providing data for traffic network control. In this case the
state of traffic can be optimized based on traffic volume and OD data knowledge.

Certainly, these systems do not always operate separately. Moreover, they cannot often be
separated, since the systems support or complete each other in many cases.

Many articles have been written recently that have introduced different data fusion tech-
niques. The most common used data fusion technique among researchers is the Kalman Filter
[Kalman 1960] with its variants (e.g. the extended Kalman Filter). The first time it was ap-
plied for road traffic was in 1972 by Szeto and Gazis [1972]. The basic theory of this research
is that most analytic traffic models can be generated by state space representation. One of
these solutions is described in Chu et al. [2005] claiming that even only measuring by more
loop-detectors can meet the requirements of sensor fusion. All the same, some other researches
use inhomogeneous data sources to improve estimation quality. In Herrera and Bayen [2007] the
traditional cross sectional measurement is combined with moving sensors that actually means
following GPS based trajectories of some specific vehicles. In this case from GPS data of moving
vehicles, by using the conservation equation and the macroscopic model, density and speed of
a specific location can be determined. Another way of traffic parameter estimation with low
computing capacity is represented by interpolation techniques. These are similar to convolu-
tion image filtering techniques. A smoothing convolutional filter technique was introduced in
Treiber and Helbing [2002] by using the interpolation technique in order to fuse stationary data
(loop-detectors) and non-stationary (FCD) measurements. Previous techniques exploit the rela-
tionship between the measured data and the traffic model. During using data fusion techniques,
by weighting the traffic model and the measured data, a balance can be set among them.

2.2 Switching Kalman Filter for Sensor Fusion
Different sensors produce inhomogeneous data during road traffic measurements, i.e. different
reliability and diverse sampling frequencies. The Switching Kalman Filter can be applied to
fuse these data; therefore, even the continuously changing number of sensors does not cause any
difficulties, at the same time the benefits of Kalman Filter can be exploited.

2.2.1 Switching Kalman Filter for Travel Time Estimation

The Kalman Filter, introduced in Appendix A, can be directly applied for sensor fusion. The
only condition is that correlation among different measurement noises is not permitted. If the
results of sensor measurements are temporarily available, the state space representation of travel
time estimation is:

x(k + 1) = x(k) + v(k), (2.1)
y(k) = Cx(k) + z(k), (2.2)

where 2.1 describes the system dynamics based on the random walk model, that is A = I
and B = 0. The reason for it is the unknown changing behavior of travel time, therefore it is
considered as a simple random process. Since in the example presented in this thesis travel time

8



2. Traffic Measurement and Estimation 2.2. Switching Kalman Filter for Sensor Fusion

is estimated only for a single link, x(k) and v(k) are scalar variables. At the same time, y(k) in
the measurement equation describes a system of equations. The dimension of y(k) equals the
number of sensors. In the example, two different sensors, loop-detector and FCD are involved
measuring travel time: [

y1(k)
y2(k)

]
=
[
1
1

]
x(k) +

[
z1(k)
z2(k)

]
. (2.3)

The Kalman Filter can estimate state (i.e. travel time) x(k) directly from measurements y1(k)
and y2(k) that are automatically weighted according to their covariance. It is followed by their
fusion that results in an integrated state estimation.

The Switching Kalman Filter (and also the basic Kalman Filter) can be applied if the system
is observable, that is:

rank


CTρ(k)

CTρ(k)Aρ(k)
...

CTρ(k)A
n−1
ρ(k)

 = dim(x). (2.4)

If no measurement data is available for a current time step, this requirement is not met. If
the data of at least one sensor is at service, the requirement is met. Considering the frequency
of sensor measurements and the number of sensors, only spatially fixed sensors are able to
measure continuously by all means. As a consequence, at least one cross sectional loop-detector
is required. On major roads of urban networks this might be usually available. Any other sensors
(e.g. FCD, FMD, Bluetooth, etc.) are considered as potential data sources in the network,
whereas their permanent operation is not a requirement. The main drawback of this approach
is measuring travel times by cross sectional detectors, which obviously cannot be done directly.
Therefore simulations have been done in a modeled environment in which it is possible to
determine the mean travel time on a link within typical traffic volume conditions. The result
can be either a function (T = f(Q)) or a simple determination of volume scales. In that case, as
an example, a mean travel time can be determined for 0-200 PCU/h, another one for 201-400
PCU/h and so on. PCU means the number of vehicles expressed in Passenger Car Unit, i.e. the
different types of road vehicles are expressed in the ratio of the private car [Lay 2009].

Travel times determined for links within different volume conditions during simulations can
be applied as measurement results. For a volume data measured by a real detector, a simulation-
based mean travel time can be assigned.

As a conclusion, it can be stated that loop-detector data are available in every measurement
period, but they are not that reliable, because travel time is not directly measured. In contrast,
FCD is much more reliable, but these data is not generated every time. This make the filter
operate in the following way. If loop detector data is available, which is always true, the esti-
mation has a higher uncertainty. If floating car data is also available, which is not always true,
the estimation is much more accurate. Therefore, FCD are considered as a set of very reliable
measurements, between which the state of traffic is estimated based on the loop-detector data
with higher uncertainty.

The switching system applied in this thesis based on Eqs. 2.1 and 2.2 is as follows

x(k + 1) = x(k) + v(k), (2.5)
yρ(k)(k) = Cρ(k)x(k) + zρ(k)(k), (2.6)
ρ(k) ∈ S = {1, 2}, (2.7)

where state variable x(k) represents the estimated travel time of a specific link. Switching signal
ρ(k) has an effect only on the measurement equation. Set S contains four possible different
measurement combinations using two different sensor types (loop-detector, FCD). These are
shown in Table 2.1.
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Table 2.1. Different measurement configurations

ρ(k) yρ(k)(k) Cρ(k) zρ(k)(k)
1

[
T loop1

] [
1
] [

σ1
]

2
[
T loop1
TFCD2

] [
1
1

] [
σ1
σ2

]

Measurement vector yρ(k)(k) contains the combination of travel times measured by sensors
of different types. Note that the elements of Cρ(k) are always 1, according to the number of
sensor measurements available, hence it satisfies Eq. 2.4. The Switching Kalman Filter switches
according to the signal ρ(k) that is a known value representing the set of sensor types that
provided data in the measurement period. (See Table 2.1.)

Loop-detector measurements are guaranteed in every time step, even if there is no vehicle
on the link. Therefore, the minimum size of matrices is 1 × 1. The size of matrices yρ(k)(k),
Cρ(k), and vρ(k)(k) varies in connection with the number of sensor types providing information
in a time step. The method can be extended to n sensor types. Table 2.2 shows how these
measurements can be combined. The bottom line represents the case when all n sensor types
provide information in a time step.

Table 2.2. Measurement configurations with n sensors

ρ(k) yρ(k)(k) Cρ(k) zρ(k)(k)
1

[
T sensor1

1
] [

1
] [

σ1
]

...
...

...
...

q

T sensor1
1
T sensori
i

T
sensorj

j

 [1
1
1

] [
σ1
σi
σj

]
...

...
...

...

s



T sensor1
1
T sensor2

2
...

T sensori
i

T
sensorj

j

...
T sensorn
n





1
1
...
1
1
...
1





σ1
σ2
...
σi
σj
...
σn


For a precise estimation measurement noise vρ(k)(k) is assumed to be known. Theoretically,

this can be determined based on the standard deviation of measurements. Travel times calculated
by the cross sectional detector have the highest standard deviation. The noise of FCD/FMD
measurements is much lower, which results in more precise estimations. As a consequence,
measurement estimation is expected to be much reliable during the rush hours (when FCD/FMD
are probably available) and less out of them. However, during off-peak periods travel time data
can be calculated from static databases, since the effect of traffic is low. The described data
fusion estimation method is shown by Fig. 2.1.

2.2.2 Simulation Example

The elaborated method was tested in a simulation environment in PTV VISSIM microscopic
traffic simulator [Bede et al. 2020]. In order to be able to apply the Swithing Kalman Filter,
the average travel time and its standard deviation should be known after each measurement
period. The example is shown with loop-detector data and FCD, including the description of
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Figure 2.1. The sensor fusion method for the estimation of mean travel times on urban links

the data processing steps of the two sources. Simulation network was generated by modeling
a specific test link on Villányi út and its network area around BAH-csomópont in the city of
Budapest, Hungary. The test network was generated by taking into consideration the links that
have influence on the traffic flow of the test link (Fig. 2.2). Signal programs were set according
to morning weekdays plans of the real network, cycle time was 90 seconds. Loop-detectors in the
simulation environment were also installed at the same location as it is in the real network. One
detector was set at each lane of the test link. It is an important issue, as some traffic parameters
vary in connection with the position on the link. Figure 2.3 shows an example for this.

Figure 2.2. Test network in PTV VISSIM

Overall 3600 ninety-second-long simulation periods were evaluated on a filled network with
different vehicle inputs ranging from almost empty links to gridlock situation. Traffic volume
and time-occupancy, which is the proportion of time when any vehicle is over the detector, were
measured by the loop-detector in PTV VISSIM in 90 seconds. Volume was calculated as the
sum of the values of two detectors, whereas occupancy is the average of the two measurements
in the cross section.

Travel time can be derived from loop-detector measurements by generating a look-up-table
that contains volume and occupancy data in the cross section as input and an estimated average
time plus its standard deviation as the output. These can be composed by running simulations
or processing historical data.

In order to reach accurate estimation results, tuning of the Switching Kalman Filter is
an important step. Parameters of Q and R of the filter in different operation modes can be

11



2. Traffic Measurement and Estimation 2.2. Switching Kalman Filter for Sensor Fusion

Figure 2.3. Average speed as the function of volume and location

adjusted according to Böker and Lunze [2002]. Q and R can be treated as tuning parameters
using practical assumptions. Matrix R contains the standard deviations of measurement results
in the two configurations as follows. If ρ(k) = 1, i.e. only loop-detector data is available at period
k, then R1(k) =

[
σ2
loop(k)

]
. If ρ(k) = 2, i.e. both loop-detector data and FCD are available at

the period, then R2(k) =
[
σ2
loop(k) 0

0 σ2
FCD(k)

]
. Matrix Q changes its form similarly and the its

values are based on empirical tuning.
The Switching Kalman Filter was implemented in Matlab software. An operation example

is depicted by Fig. 2.4. The uncertainty of loop-detector-based travel time estimation is much
higher than FCD-based, which makes the filter primarily believe the FCD results. The effect
of a floating car measurements last for 4-5 periods, after that the filter gradually returns to
loop-detector data.

Figure 2.4. Operation example of the Switching Kalman Filter
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2.3 Moving Horizon Estimation of Traffic Flows in Roundabouts
with Missing Observation

A roundabout is a circular type of intersection in which vehicles are permitted to flow in one
direction around a central island. Fig. 2.5 shows possible turning movements in a circular
intersection for vehicles arriving at the entrance of Leg 1. V1j denotes the traffic flow from
entrance 1 to exit j, whereas V1,in and V1,out are the total traffic volumes entering and exiting at
Leg 1. Using the notation in Fig. 2.5, turning rates can be expressed as follows (from entrance

Figure 2.5. Turning movements in a four-legged roundabout

i to exit j):
xij = Vij∑nD

j=1 Vij
= Vij
Vi,in

, (2.8)

where nD is the number of exits.
Observing turning rates in roundabouts is a real issue in traffic engineering practice due

to the special geometry and the size of this type of junctions. Therefore, turning flows are
generally counted by human resources, which is quite costly (typically, more than one person
is needed to perceive all movements). Automated methods are also available for turning flow
counts. For instance, it can be carried out by installing cameras on the spot and evaluating
the footage subsequently by using artificial intelligence [Taylor et al. 2016]. However, placing
cameras or shooting aerial videos with drones [Salvo et al. 2014] are also costly. Moreover, the
legal background of drones is not yet clarified for this to be a practical alternative [Budinska
2019]. Another suggested method is to use vehicle trajectory data which has a drawback that
beside input and output traffic the circular flows must be measured as well [Eisenman and List
2005].

Traffic volumes at cross-sections can be straightforwardly measured manually or with the help
of a wide variety of traffic sensors, e.g. inductive loop detectors, cameras, ultrasonic detectors.
Thus, for roundabout turning rate detection, a hybrid solution is suggested, i.e. using simple
cross-sectional detection (manual or automatic) combined with advanced estimation procedures.
Counting traffic on the legs of a roundabout and then adequately estimating turning rates based
on the collected data has the potential to substitute laborious turning flow counts in a cost-
effective way.

As a cost-effective solution to this problem, a hybrid solution is suggested, i.e. using cross-
sectional detection combined with Moving Horizon Estimation (MHE, see Appendix C).
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In case of estimating turning rates in roundabouts based on the traffic flow on the legs,
the elements of the state vector are the turning rates [Tettamanti et al. 2019a]. The applied
dynamical model is the random walk model, meaning that in each period the state variable takes
a random step which is independent of the previous state value. In this approach, matrix A in
state equation (A.1) is an identity matrix, and matrix B can be substituted with 0 as there is
no control vector. Thus, the dynamical model is simplified to:

x(k + 1) = x(k) + v(k). (2.9)

The state vector to be estimated is as follows:

x̂(k) =


x̂11
x̂12
...

x̂nO,nD

 , (2.10)

where x̂ij denotes the estimated turning rate from entrance i (i = 1, 2, ..., nO) to exit j
(j = 1, 2, ..., nD). C(k) in measurement equation (A.2) contains the measured entering traffic
flows (marked by qm where m denotes the mth leg of the roundabout).

C(k) =

 q1(k) q2(k) qm(k)
. . . . . . ...

. . .
q1(k) q2(k) qm(k)

. (2.11)

Thus, exiting traffic flows appear in vector y(k) as measured parameters.

2.3.1 Evaluation and Benchmark of the MHE Method on Real-World Data

In order to validate and benchmark the estimation algorithms, real-world test fields have been in-
vestigated. By using drone technology, video recordings were made at two different roundabouts
in Kecskemét, Hungary (Roundabout 1 at GNSS coordinates: 46.92971, 19.663997; Roundabout
2 at GNSS coordinates: 46.881503, 19.707799). Then, based on the drone footage real turning
movement volumes were counted as ground truth.

In accordance with the drone’s maximal flight time, 26-minute aerial video recordings were
taken at the two four-legged intersections. The counts took place at different times of the day
(morning and afternoon). The 26-minute counts are adequate to be divided into 1, 2, and
5 minute intervals (in the latter case, only 25 minutes are examined). The traffic count was
therefore conducted for 1-minute interval, so that 2 and 5 minute intervals could be calculated
afterward.

The tendency of error measures is similar in all cases, irrespective of the location or the time
of the day. Therefore, for the sake of transparency and a more general result, error values are
averaged over the different traffic counts. The average values form the basis for the comparison
of different estimation procedures.

During the evaluation of estimation procedures the Mean Absolute Error (MAE) error met-
rics was applied:

MAE =
∑n
k=1|x̂k − xk|

n
, (2.12)

where n is the number of samples (intervals), x̂k is the state estimation in interval k, and xk is
the actual state. In the case of turning rate the MAE is a unitless value between 0 and 1. Based
on the average MAE values, it can be stated that the longer the interval, the more accurate
the estimation. Additionally, the MAE values for all MHE horizon lengths are highlighted by
Fig. 2.6. It is observable that higher horizon numbers result in less estimation performance
which is caused by the simple system modeling (random walk model in Eq. (2.9)).
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Figure 2.6. MAE values for all MHE horizon lengths and intervals

The 5-minute interval led to the smallest errors in the case of every examined method. A
possible explanation for this is the following. If the sampling intervals are short, it is more
frequent that a specific turning movement is not executed during that brief time period. This
can result in sharp fluctuations in turning rates, which is harder to track for an estimator. This
implies that 1 or 2 minutes sampling intervals are not suggested to be applied in this practical
problem.

The order of estimation procedures with 5-minute intervals based on MAE values is the
following: MHE1, MHE2, cKF-P (constrained Kalman Filter while W = P (k), see Appendix
B), MHE3, BP (Biproportional Procedure, see Appendix D), cKF-I (constrained Kalman Filter
while W = I), KF (Appendix A), MHE4.

In the case of 5-minute intervals, the MHE and the Kalman Filter with constraints outper-
forms the BP procedure and the unconstrained Kalman Filter. The performance of the MHE
decreases as the horizon length increases. It is also observable that the shorter estimation inter-
vals of 1 or 2 minutes provide higher errors in every estimation procedure. This clearly means
that on longer time intervals, the algorithms can result in smoother estimations.

2.3.2 Turning Flow Estimation in Case of Missing Detection

The temporary unobservability of certain traffic flows represents a likely situation in real practice
due to the potential operational failure of traffic detectors. This is also called as intermittent
sensor data problem. The proposed estimation procedure requires full observability of traffic
flows in the roundabout intersection legs. Therefore, the required detection can be replaced by
exploiting the previous step’s estimation x̂(k− 1) as a practical solution based on the definition
of the measurement equation y(k) = C(k)x(k) [Kalman 1960]. For example, in case of missing
value of y1(k) the following substituting calculation is applied:

y1(k) = ( q1(k) 0 0 0 q2(k) 0 0 0 q3(k) 0 0 0 q4(k) 0 0 0 )


x̂11(k−1)
x̂12(k−1)

...
x̂44(k−1)

. (2.13)
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Similarly, another example for missing value replacement on y3(k) is:

y3(k) = ( 0 0 q1(k) 0 0 0 q2(k)0 0 0 q3(k) 0 0 0 q4(k) 0 )


x̂11(k−1)
x̂12(k−1)

...
x̂44(k−1)

. (2.14)

In order to investigate the effect of missing observation (Fig. 2.5) two special scenarios have
been simulated assuming no direct traffic outflow detection at certain roundabout legs:

• Scenario 1: no detection of y1(k) at Leg 1;

• Scenario 2: no detection of y1(k) and y3(k) at Leg 1 and 3, respectively.

In both scenarios the MHE1 algorithm with 5 min sample time was applied considering the
baseline when no missing observation was used. The missing detections were substituted ac-
cording to Eq. (2.13) and (2.14). The results (Table 2.3) show that in case of only one missing
observation point, the error metrics remained in an acceptable range.

Table 2.3. Performance in case of missing detection on intersection leg in case of MHE1 algorithm
with 5 min sample time

Missing detection points MAE Change in MAE
0 0.0599 0
1 (Leg 1) 0.0678 0.0079
2 (Leg 1 & 3) 0.1255 0.0656

2.4 Uncertainty Modeling in Urban Road Traffic
Advanced dynamic control involves traffic models which contain the most important character-
istics of the network, i.e. topology and further dynamic parameters. In general, these models
then become bases for model-based control solutions. With an appropriately chosen and pa-
rameterized model, future traffic states can be predicted resulting in an optimal traffic control.
However, the applied traffic model can be biased by non-measurable vehicle flows. In the sequel,
uncertainty modeling is investigated specifically focusing on urban road traffic. Based on the
proposed uncertainty approach, robust schemes can be applied for traffic estimation or control.

2.4.1 Uncertainty Modeling in General Urban Road Link

In a general urban road link (see Fig. 2.7) between two signalized intersections (M and N)
different potential traffic streams can be observed.

Figure 2.7. Traffic flows in a link
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g and h represent entering and exiting vehicle flows. In an advanced traffic management
system g and h are usually measured by detectors. Contrarily, entering and exiting flows d and s
are not controllable and might not always be measured. d and s are able to induce uncertainty in
the traffic modeling and consequently to corrupt the traffic control. In urban road traffic network
uncertainties may appear for several reasons. Unexpected traffic fluctuations can be caused
for instance by parking garages or on-street parking. Moreover, demand flow (entering at the
boundary of the network) may increase the uncertainty if it is imprecisely determined, e.g. based
on inappropriate historical data. These potentially ambiguous traffic flows are depicted by the
circles in Fig. 2.8.

Figure 2.8. Potential uncertainties in urban road links

Disturbances d and s are usually assumed to be available as constant nominal values for
traffic light control strategies, see Aboudolas et al. [2009, 2010]; Diakaki et al. [1999]. In these
contributions s is expressed as the ratio of g and considered fixed and known. Similarly, input
d is defined as a constant nominal demand. In de Oliveira and Camponogara [2010] exiting
traffic s and demand d are lumped together creating a single (and known) disturbance term. In
Lin et al. [2011], a mixed integer linear programing based MPC is proposed which is also based
on nominal traffic network model with known traffic demand. Naturally, these approaches use
practical assumptions as the overall and accurate measurement of all vehicle flows would lead
to enormous cost increase.

If certain vehicle flows are not precisely available (e.g. by measurement), a robust approach
can be applied for modeling and control purposes. Ambiguous traffic is proposed to be han-
dled as time-varying but bounded model-mismatch based on the store-and-forward macroscopic
modeling. The state equation for generalized urban link z (see Fig. 2.7) can be formulated as
follows:

xz(k + 1) = xz(k) + T (gz(k)− hz(k) + dz(k)− sz(k)), (2.15)

where xz(k) is the number of vehicles expressed in PCU, gz(k) the inflow, hz(k) the outflow,
dz(k) the demand traffic, and sz(k) the exit traffic (traffic flows in PCU/h) during [kT, (k+1)T ].
Moreover, k denotes the discrete time step index and T is the sampling time. sz(k) can be defined
as the ratio of gz(k):

sz(k) = κzgz(k), (2.16)

where κz is the exit rate, considered fixed and known. Thus, Eq. (2.15) can be rewritten as:

xz(k + 1) = xz(k) + T ((1− κz)gz(k)− hz(k) + dz(k)), (2.17)
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which represents a nominal traffic model. A direct way to consider traffic ambiguity in Eq. (2.17)
is to use additional terms:

xz(k + 1) = xz(k) + pxz (k) + T ((1− κz)gz(k)− hz(k)) + Tdz(k) + pdz(k), (2.18)

where pxz (k) denotes the uncertainty component of state xz(k) and pdz(k) that of traffic demand
dz(k) (both expressed in PCU) with the following definitions:

pxz (k) = δxz (k)γxz xz(k), |δxz (k)| ≤ 1, (2.19)
pdz(k) = δdz (k)γdzTdz(k), |δdz (k)| ≤ 1. (2.20)

δxz (k) and δdz (k) express unknown, time-varying, and bounded uncertainties. γxz and γdz are
the uncertainty weights, not necessary constant scaling parameters; γxz , γdz ∈ [0, 1]. Hence,
product γxz xz(k) denotes the maximal potential uncertainty defined relative to the state variable
xz(k). Similarly, γdzTdz(k) is the a maximal bound for demand uncertainty. The uncertainty
components are only known to be bounded. This means practically that uncertainty pxz (k) may
arbitrarily vary between −γxz xz(k) and γxz xz(k). Respectively, pdz(k) changes between −γdzTdz(k)
and γdzTdz(k). In virtue of the above definitions, Eq. (2.18) can be recast as follows:

xz(k + 1) = (1 + δxz (k)γxz )xz(k) + T ((1− κz)gz(k)− hz(k)) + (1 + δdz (k)γdz )Tdz(k). (2.21)

Uncertain traffic model (2.21) captures traffic ambiguity caused by any off-nominal disturbances,
defined in terms of scaled state or demand dependent uncertainty. In fact, both uncertainty
components intend to express the uncertainty of state xz(k + 1), i.e. the calculated link queue
length in the following time step. The modeling concept (2.21) is chosen by reason of the different
types of uncertainties. pxz (k) can typically model traffic fluctuations of on-street parking or non-
measured side streets in a state dependent way. Thus, the more intensive the traffic is, the larger
the ambiguous vehicle mass becomes within the traffic network, and vice versa. This approach
is especially reasonable for the links where nominal demand dz(k) is negligible (zero or not
available). Contrarily, pdz(k) intends to capture uncertainty around the nominal traffic demand
specifically. dz(k) is often determined from prior measurement and thus involved in the traffic
models. The application of historical data for dz(k), however, may cause modeling error. Hence,
traffic flows of parking garages or entering demands (at the boundary of the network) having
nominal dz(k) can be augmented by uncertainty in the model via pdz(k). The applied structure
of the ambiguity given by Eqs. (2.19-2.20) expresses a state (queue) and demand multiplicative
uncertainty description, i.e. uncertainty varies relative to the nominal traffic states and traffic
demands. Naturally, the determination of γxz and γdz is of capital importance in this approach.
In fact, their value can be estimated precisely enough based on prior observations in a traffic
network. Moreover, γxz and γdz can be defined as time-varying parameters.

2.4.2 Uncertainty Modeling Extended to Signalized Traffic Network

Equation (2.21) describes a single link dynamics. In order to obtain an overall network model
with traffic lights, each of the link equations of the traffic network is required. Moreover, traffic
lights must be incorporated into the model by expressing traffic flows gz and hz as functions of
the green times.

A network can be represented by directed graphs formed of nodes and arcs. Nodes j ∈ J
denote the controlled intersections and arcs z ∈ Z the links. Equation (2.21) can be embedded
therefore into a network dynamics. The equation for vehicle conservation between signalized
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junctions M and N is given by:

xz(k + 1) = xz(k) + pxz (k)

+ T

(1− κz)
∑
w∈IM

αw,z
Sw
∑
i∈vw uM,i(k)
C

−
Sz
∑
i∈vz uN,i(k)
C


+ Tdz(k) + pdz(k),

(2.22)

where C is the cycle time and T = C is applied. IM represents the set of incoming links of
junctionM . αw,z denotes the turning rate of link w entering junctionM towards link z. Sw and
Sz are the saturation flows representing the capacity of the outflow of the link during its green
time. The values of α and S are considered known and constant in the sequel. Nevertheless,
they can be assumed to be time-variant and may be continuously measured or estimated, e.g. by
online state estimation method [Kulcsár et al. 2004]. ∑i∈vw uM,i(k) and ∑i∈vz uN,i(k) represent
the green times of intersections M and N , respectively. vw and vz denote the set of green stages
for links w and z.

The derived model (2.22) must satisfy state and control input constraints. This practically
means that a well designed controller is able to choose suitable green times to ensure all con-
straints. It is evident that the maximum number of vehicles in a link (xmaxz ) is determined
by the length of link z between two junctions. Thus, the states are subject to hard physical
constraints:

0 ≤ xz(k) ≤ xmaxz . (2.23)

uz is limited by the following constraints:

uminz ≤ uz(k) ≤ umaxz , (2.24)
Oj∑
i=1

uj,i(k) ≤ Tmaxj , (2.25)

where Oj is the number of stages at junction j, and Tmaxj = T − Lj (Lj is the fixed lost time
resulted from the geometry of junction j).

The conservation property is a crucial point of model (2.22). Originally, store-and-forward
approach was interpreted with the assumption of saturated traffic condition1 [Diakaki et al.
1999; Gazis and Potts 1963]. Therefore, the conservation equation may fail under oversaturated
traffic condition. A potential solution was provided by Aboudolas et al. [2009] by proposing a
state dependent control input in the control design and allowing uminz = 0. This can be used
to help avoiding overspilling effect, i.e. in case of oversaturated traffic. Thus, the zero length
minimal green time is adopted producing the following expression instead of (2.24):

0 ≤ uz(k) ≤ umaxz . (2.26)

Hence, the conservation property of the model can be guaranteed in saturated and oversaturated
cases through (2.23) and (2.26) indirectly.

The application of (2.22) to an urban traffic network yields a general (vectorized) state space
form by:

x(k + 1) = Ax(k) +Bu(k) + Ed(k) +Gp(k), (2.27)
p(k) = ∆(k)(Dxx(k) +DdEd(k)), ‖∆(k)‖2 ≤ 1. (2.28)

1In saturated traffic the green time intervals are fully utilized. This means that arriving vehicles are always
present during the green time period.
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Equations (2.27-2.28) describe a Linear Fractional Transformation (LFT) with norm-bounded
uncertainty model frequently used in control theory, e.g. Boyd et al. [1994]. Each term of (2.27)
has a real traffic meaning. The elements of the state vector x(k) = [x1 x2 . . . xn]T represent
the number of vehicles (expressed in PCU) on each of the controlled links (by traffic lights).
The values of x(k) may not be directly measurable but estimated by appropriate methods
[Vigos et al. 2008]. State matrix A is an identity matrix. Control input vector u(k) contains
the green times (in seconds) for all stages. The latters’ numerical values are the results of
the corresponding controller actions. The number of control inputs is equal to the number of
the controlled links. Matrix B consists of three basic elements: turning rates, exit rates and
saturation flows. Although B is a time-varying matrix in the reality, it may be considered as
a constant one with fixed nominal rates. If the involved saturation flows or turning rates are
estimated real-time, B is time-variant and can be recalculated for shorter time periods (e.g. in
every 15 minutes) but not necessarily for each time step. Constant B matrix is used in the
following parts. Disturbance vector d(k) represents the non-controlled traffic demand which is a
time-varying term. In practice, however, it is more reasonable to redefine d(k) for shorter time
periods based on continuous real-time measurements or historical data. Coefficient matrix E is
a constant diagonal matrix with T in its diagonal. G = [I|I] is a non-quadratic hyper-matrix
containing two identity matrices and p(k) is the uncertainty vector. Dx and Dd are the constant
diagonal scaling hyper-matrices containing weights, such as:

Dx =



γx1
. . .

γxn

0


, (2.29)

Dd =


0

γd1
. . .

γdn


, (2.30)

where γx1 , . . . , γxn and γd1 , . . . , γdn are predefined design parameters introduced in Section 2.4.2
and n denotes the number of states. Hyper-matrix ∆(k) is organized as:

∆(k) =
[
∆x(k)

∆d(k)

]
=



δx1 (k)
. . .

δxn(k)
δd1(k)

. . .
δdn(k)


. (2.31)

By substituting (2.28) in (2.27), the traffic model can be recast as a dynamics with state
and demand multiplicative uncertainty under the form:

x(k + 1) = (A+G∆(k)Dx)x(k) +Bu(k) + (I +G∆(k)Dd)Ed(k), ‖∆(k)‖2 ≤ 1. (2.32)

The derived traffic model (2.32) is only valid with constraints. Constraints (2.23), (2.25), and
(2.26) determine two sets of linear inequalities; one set for state and one for control input. These

20



2. Traffic Measurement and Estimation 2.5. Spatial Extension of Traffic Sensors

are denoted by X and U, respectively. The dynamic equation described in (2.32) is restricted
along its trajectory by the sets xz(k) ∈ X and uz(k) ∈ U for all k.

In the previous parts, the uncertainty was demonstrated as an extension of the well-known
store-and-forward traffic model. Another example for traffic uncertainty is presented by Ap-
pendix E where a nonlinear traffic model is applied for uncertainty definition. The more, a
robust (H∞ Filter) estimation is demonstrated as an application example on the uncertain
traffic dynamics.

2.5 Spatial Extension of Sensors in Urban Traffic Network
Network-wide traffic monitoring has increased importance in the current and future panorama
due to the verge of adoption of smart mobility technologies, i.e. monitoring all links in a net-
work is a general desired goal. However, installation and maintenance of sensors across the
whole network are not cost-effective. Therefore, traffic networks are frequently suffering from
the lack of well-operating and reliable traffic detectors. Accordingly, the employment of neu-
ral networks based models is suggested to virtualize the measurements on road links without
detectors. The proposed method applies the measurements of monitored links as input to the
deep learning model in order to estimate virtual measurements on the unmonitored road links.
Several neural network models differing in architecture (Artificial Neural Network, Time Lagged
Neural Network and Long Short Term Memory Neural Network) have been implemented and
their hyper-parameterization were optimized using Bayesian search. The methodology is pro-
posed for spatially extended traffic data, and consequently the quality of the monitoring system
through the use of artificial intelligence. That is, using the measurements of monitored links to
infer the values of unmonitored ones.

Artificial Intelligence (AI) based methods have been applied in urban traffic for a long time.
Among the AI methods, Neural Networks (NNs) stand out as the most promising approach, as
depicted in Do et al. [2019], which comprehend for the majority of approaches towards traffic
forecasting. Regarding traffic estimation, some authors divide it into two categories: i) Temporal
estimation (long or short-term prediction, being the latter more relevant and advanced) and ii)
Spatial estimation (extension of traffic data links to links) [De Luca and Gallo 2017]. Temporal
extension is out of the scope from this work, therefore the literature review in this topic will be
omitted. Thorough literature review about this topic can be found in De Luca and Gallo [2017];
Do et al. [2019]; Lana et al. [2018].

The use of AI to solve the spatial extension task was investigated only recently. The pioneer
in doing this was Gallo et al. [2016], employing shallow Neural Network to perform the extension
of traffic flow in a synthetic grid network. A hand-made feature construction, which links would
be considered as monitored (input) and which would be considered unmonitored (output), was
performed. Further work was depicted in Iannella et al. [2017], comparing several regression
methods, such as Linear Regression, Kernel Regression, Support Vector Machine, Generalized
Least Squares and NN, for the same grid network.

2.5.1 Deep Learning Models Applied for Road Link Selection

The research work was supported by traffic simulations carried out in SUMO traffic simulator
[Krajzewicz et al. 2012]. A grid network with 80 road links was used for the simulation. The
demand patterns which generated the flows in the network were randomized and varied during
the simulation. Moreover, the perimeter edges in the corners of the network were considered as
possible origin destination points. The choice of the traffic network and the origin-destination
points was made to match the setup used by [Gallo et al. 2016], providing a baseline for com-
parison. To build up the training and testing database, 30 simulations were performed, each
one lasting one day. The values were aggregated in 60 seconds interval.
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Although, short sampling intervals typically produce noisy data [Houpt et al. 1978], mon-
itoring systems are usually setup for aggregation intervals between 5 and 10 minutes [Park
et al. 2009]. For that reason the loop detector data was aggregated in 10 minutes intervals and
smoothed by a moving average filter for less erratic values [Coifman 1996].

The related works discussed previously were mostly based on artificial neural networks with
one or two hidden layers. The input of these models consists of the immediate measurement of
the links with sensors. The problem formulation can be expressed in a mathematical form:

Vo(t) = f(Vi(t)), (2.33)

where t is the time step, Vo is a traffic variable vector for all unmonitored links and Vi is the
traffic variable vector for every monitored links and f(.) is the NN mapping the input to the
output.

Once past measurements are not taken into account, temporal relation between the measure-
ments is ignored. However, it is known that traffic variables are deeply related to past values.
One of the simplest NN architectures dedicated to time series tasks is the Time Lagged Neural
Network (TLNN) [Werbos 1990]. In this architecture, the input construction process takes into
consideration not only the instant values but an arbitrary number of past values. In this way,
the formulation of the task can be expressed as follows:

Vo(t) = f(Vi(t), Vi(t− 1), ..., Vi(t−D)), (2.34)

where D is the maximum number of past values presented in the input of the model.
Even though this approach can yield good results, a time dependence between the time

steps is not learned explicitly. To this end, Recurrent Neural Networks (RNNs) are commonly
used in time depending problems [Robinson and Fallside 1987]. In this type of network the
output of each layer is fed back as part of the input in the next time step. However, the classic
RNN training process suffers from exploding or vanishing gradient problem [Hochreiter and
Schmidhuber 1997]. Long Short Term Memory (LSTM) Neural Networks is a variety of RNN
that can overcome this limitations by using gates (Input, Output and Forget).

Neural Network based methods performance can be very sensible to hyperparameter setting
(e.g. number of neurons, dropout rate, regularization rate). This parameterization can be per-
formed manually based on empiric knowledge allied with trial and error fine-tuning, even though
it is a common and valid practice it does not assure an optimal solution.

Bayesian search presents a viable solution in fine-tuning deep learning models, requiring
acceptable computing power and great optimization capabilities [Snoek et al. 2012]. In general
lines, the performance of the model is assumed to be a Gaussian process, expressed by the
surrogate function g(.) dependent of the hyperparameters θ. The optimization process is defined
by

θ∗ = arg max
θ∈Θ

g(θ), (2.35)

where Θ corresponds to the domain of the parameters. The guesses of θ can be made in a more
informed manner, choosing the best performing point in the surrogate function g(.), evaluating
in the model and updating g(.) iteratively until the maximum iteration or other stop criteria is
met.

In the research, a Bayesian search was applied to find the optimal parameters in a given
architecture with a set of number of layers. Changing the number of layers introduces new
parameters to the optimization process, such as new number of neurons, activation type and so
on. In this way, the choice of numbers of hidden layers was made exhaustively, varying from 1
to 3 hidden layers. The time window for TLNN and LSTM was also exhaustively searched in
the range of 2 to 20 time lags. Moreover, three activation functions were considered (Sigmoid,
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Table 2.4. Parameter optimization according to the architecture: ”X” stands for Bayesian
optimized, ”-” stands for exhaustively optimized and × for not applied

ANN TLNN LSTM
Number of neurons X X X
Number of layers - - -
Time window × - -
Activation type X X ×
Regularization type X X ×
Regularization rate X X ×
Dropout rate X X X

Hyperbolic tangent (Tanh) and Rectifier linear unit (Relu) and two regularizations (L1 and L2).
Table 2.4 shows the parameters optimized according to the architecture.

For the spatial extension of sensors, the process of road link selection is a crucial step. The
grid network focus of this work presents 80 links. Even in this small network, the number of
possible combinations exceeds 1.2 × 1024 if ratio of monitored and unmonitored links is not
set, and if a fixed ratio the possibilities can surpass 1023. In a real traffic network sensors
are opportunely located to provide maximum information about the network. Here, a different
approach is used. The road link selection was made in a constructive manner, starting from a very
small number of monitored links (the eight corner links). The unmonitored link that presented
worse performance in this configuration was considered to be monitored in the next iteration.
The process continued until stop criteria was met. Initial tests show results favorable to the
LSTM network, so the selection of links was only based on it. The Bayesian optimization showed
similar results between iterations, for that reason it was only performed when a stagnation or
loss in performance was noticed. The complete training process is provided in the pseudo-code,
see Algorithm 1. After establishing the input and output links, TLNN and ANN parameter
were optimized and trained in concern this input/output set.

Algorithm 1: Training process

2.5.2 Simulation Results

In this section, the results achieved by the proposed approach are presented. All the results
presented below are regarded to the testing set, which corresponds to 20% of the whole data set.
The traffic variable chosen as target of the prediction was average traffic speed of the given road
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Figure 2.9. Evolution of performance according to the ratio of monitored links (LSTM Neural
Network)

link (i.e. space mean speed). The speed values were normalized in a standard score manner,
setting the values to present zero mean and the standard deviation equal to one before the
training process.

The results are presented in terms of the coefficient of determination (R2 = 1−∑i
(yi−vi)2

(yi−ȳ)2 ).
For each road link R2 can be defined where v is the predicted speed in a specific link, i is the
index of the value in the test dataset, y and ȳ are the observed data in the specific link and the
average value respectively. The overall R2 score can be calculated as the average of all links R2.

Naturally, as well as in traditional monitoring systems, there is a positive correlation be-
tween the number of monitored points and the monitoring quality. Firstly, a greater number of
monitored links provide more information about the network and therefore enabling better esti-
mations. Secondly, a smaller number of unmonitored links simplifies the task in hand. Fig. 2.9
shows the evolution of the overall performance and the performance of the best estimated links
with respect to the ratio of monitoring links for the LSTM model.

To establish a comparison between approaches, the same input/output configuration must
be considered. It was selected following the procedure as explained previously, until the overall
performance reach results above 0.8. This outcome was achieved with 63.75% of monitored links
in the network. Once the quality of the fitting varies greatly from link to link, a box-plot is
appropriated because it allows a visualization of the result’s dispersion. Fig. 2.10 shows the
results for LSTM, TLNN, ANN and the best ANN parameterization from Gallo et al. [2016]
referred by the author’s name as Gallo.

It can be observed that approaches that take into consideration past values (LSTM and
TLNN) outperforms approaches which consider only instant values. The LSTM model presented
itself superior among all others models, achieving not only better estimations in all links in
network, but also more concise results with less dispersion. The NN configuration of Gallo
et al. [2016] showed poor results for the task in hand. Although, the ANN method and Gallo’s
approach are similar, the ANN outperformed Gallo’s parameterization because of the Bayesian
optimization. Table 2.5 shows the Bayesian optimization parameter results and the numerical
results generated by this configuration in terms R2 score where ”Best” means the best performing
road link, ”Worst” is the link with the worst estimation result and ”Overall” denotes the average
performance on all links. For the LSTM model, the optimization process rejected the use of
dropout between layers, which corroborates the results found in Cheng et al. [2017], disfavoring
the use of per element dropout in LSTM networks. Both LSTM and TLNN agreed on the time
window size, showing 8 time steps as optimal window size for the estimation. Although all the
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Figure 2.10. Comparison between approaches

LSTM TLNN ANN Gallo
Number of neurons [127, 47] [59, 59, 47] [25,11] [10]
Number of hidden layers 2 3 2 1
Time Window 8 8 1 1
Activation type Relu Sigmoid Tanh Tanh
Regularization type - l2 l1 -
Regularization rate - [0.0, 0.05, 0.0] [0.0, 0.0] -
Dropout rate [0.0, 0.0] [0.0, 0.218, 0.0] [0.0, 0.0] -

Worst Overall Best Worst Overall Best Worst Overall Best Worst Overall Best
Result of R2 0.685 0.805 0.953 0.616 0.745 0.952 0.198 0.633 0.943 0.139 0.419 0.896

Table 2.5. Parameterization and results between approaches

NN models could effectually achieve acceptable results on the best-performing link, only LSTM
could maintain acceptable average results. The results for the worst link in the LSTM model
were also superior compared to the results of the other approaches.
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2.6 Contributions
As new scientific contributions advanced methods have been elaborated to enhance the estima-
tion of road traffic parameters in case of noisy or intermittent data. The more the notion of
uncertainty has also been formalized for urban traffic modeling.

Thesis 1
Measurement of road traffic data is possible via several technologies with different
reliability. The measured data might be biased, sparse, or incomplete due to sensor
failure. To overcome these problems, I have developed estimation and modeling
techniques applicable in practice. In this work, I have justified the applicability of
the Switching Kalman Filter based data fusion for traffic parameter estimation. I
have formalized the uncertainty caused by measurement bias or incompleteness in
urban road traffic modeling, so that it can be directly used for traffic estimation and
control. Finally, as a model-free approach the applicability of artificial intelligence
has been proved for the problem of incomplete traffic measurement.

Thesis 1.1

I demonstrated that the problem of inhomogeneous data of road traffic measurements (i.e. diverse
reliability and sampling frequencies of different sensors) can be handled by the Switching Kalman
Filter technique. The method allows to efficiently fuse different sensor data; therefore, even the
continuously changing number of sensors can be managed. The switching system applied with
the random walk model approach is as follows:

x(k + 1) = x(k) + v(k), (2.36)
yρ(k)(k) = Cρ(k)x(k) + zρ(k)(k), (2.37)
ρ(k) ∈ S = {1, 2, . . . }, (2.38)

where x(k) is the traffic parameter to be estimated, yρ(k)(k) denotes the measurements, v(k)
and zρ(k)(k) are state and measurement noise terms with zero mean Gaussian distribution, ρ(k)
is the switching signal having effect only on the measurement equation. Set S contains possible
different measurement combinations according to the different sensor types.

Thesis 1.2

I demonstrated the applicability of Moving Horizon Estimation for roundabout traffic flow esti-
mation together with the special case of missing measurement data. The temporary unobserv-
ability of certain traffic flows represents a likely situation in real practice due to the potential
operational failure of traffic detectors. As a practical solution, in the proposed estimation proce-
dure the required detection can be replaced by exploiting the previous step’s estimation x̂(k−1)
based on the definition of the measurement equation:

y(k) = C(k)x(k). (2.39)

Thesis 1.3

Advanced dynamic control or estimation involves traffic models which contain the most impor-
tant characteristics of the network, i.e. topology and other dynamic parameters (e.g. traffic light
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program). With an appropriately chosen and parameterized model, future traffic states can be
predicted. However, the applied traffic model can be biased by noisy or incomplete sensor data.
Uncertainty modeling is introduced specifically for urban road traffic, i.e. the traffic model is
formalized as a dynamics with state and demand multiplicative uncertainty under the form:

x(k + 1) = (A+G∆(k)Dx)x(k) +Bu(k) + (I +G∆(k)Dd)Ed(k), ‖∆(k)‖2 ≤ 1, (2.40)

where ‖∆(k)‖2 ≤ 1 expresses the bounded uncertainties on traffic state x(k) and non-controlled
traffic demand d(k); u(k) is the control input; Dx, Dd and G are weighing matrices; A, B, and
E denote system matrices of the state equation. Based on the proposed uncertainty approach,
robust schemes can be applied for traffic estimation or traffic control.

Thesis 1.4

The applicability of artificial intelligence for incomplete traffic measurement has been demon-
strated using simulation. The main achievement of the research is the method of spatial ex-
tension of sensors in urban road traffic monitoring by proposing a road selection algorithm to
find the proper set of monitored links regarding to the performance (R2) of the estimation. The
employment of Long Short Term Memory Neural Network to perform spatial extension of traffic
sensor points is a novelty in the field of road traffic prediction and yields better results than the
other approaches proposed in the literature.
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Chapter 3

Impacts of Automated Driving on
Traffic Dynamics and Traffic
Modeling

As a revolutionary technology, Automated Vehicles (AVs) might have great potential to reduce
traffic collisions, increase transportation system performance, and improve environmental sus-
tainability. In order to introduce future policy measures and control for traffic in a conscious
way, it is significant to know how the introduction of AVs in everyday traffic will influence the
road capacity compared to our current knowledge on traffic dynamics. Therefore, the effects
that automated vehicles bring to the macroscopic fundamental diagram (MFD) have been inves-
tigated through microscopic traffic simulation. This is a key issue as the MFD is a basic model
to describe road capacity in practical traffic engineering, i.e. used in strategic traffic planning
or even in real-time traffic control. Additionally, the perspective of fuel economy and emission
reduction have also been investigated in relation with the AV penetration.

3.1 Impacts on Urban Macroscopic Fundamental Diagram
Traffic congestion is now a part of our daily life with examples aplenty. Autonomous vehicles
will change our conventional transportation frameworks. It can possibly fundamentally change
the driver interactions and give huge chances to boost traffic capacity, efficiency, stability, and
safety of existing mobility systems. Accordingly, my research investigates the impacts of AVs,
with a special spotlight on the efficiency of utilizing the existing infrastructure.

Based on the literature review, the advent of AVs to the road network can improve capacity
by i) keeping traffic flow parameters stable, and ii) taking into account more tightly spaced
vehicles. Using simulations, various studies investigated the shifts of driving behavior in AVs.
For example, the reaction time, acceleration, deceleration, platoon size, and their impacts on
road capacity were studied. If AVs were operated at shorter headway, then maximum throughput
could generally increase. If vehicles were operated at lower speeds so as to make the vehicle
flow more stable, this could cut down the capacity of a bottleneck. At the same time, the
delay and travel time would increase [Jerath and Brennan 2012; Kesting et al. 2008; Talebpour
and Mahmassani 2016; Talebpour et al. 2017; Van Arem et al. 2006]. Van Arem et al. [2006]
investigated the impacts of vehicle platoon size on the flow stability and capacity on a freeway
with a lane drop by using a microscopic traffic simulation. Most of these research revealed that
an intermediate (or even lower) AV penetration rate could contribute to a considerable capacity
upgrading [Jerath and Brennan 2012]. With the help of simulation software, Talebpour et al.
[2017] found the throughput was enhanced considerably when the AV penetration rate exceeded
30% as they studied the influences of assigning a lane of a four-lane freeway to AVs on the traffic
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flow dynamics and trip time reliability. Van Arem et al. [2006] found that significant impacts
were noticed only when the AV penetration exceeded 40%. Likewise, Jones and Philips [2013]
found that the positive impact of Cooperative Adaptive Cruise Control (CACC) vehicle on the
traffic flow stability and throughput was realized if the CACC vehicle penetration surpassed 40%.
In contrast, Van Arem et al. [2006] spotted that the capacity increment was negligible unless
the AV penetration rate was above 50% in simulation. Shladover [2012] obtained the consistent
outcome by utilizing field experiments. While, Tientrakool et al. [2011] found that capacity
improved slightly until the CACC penetration rate exceeded 85%. 100% AV penetration scenario
contributes a more noteworthy positive impact on the road capacity. For instance, Friedrich
[2016] found that a capacity increase of 40% could be achieved with purely autonomous vehicles
in city traffic, while capacity could be improved on highway sections by about 80%. Olia et al.
[2018] found that the purely cooperative vehicle scenario can raise the highway capacity by 300%
compared to the traditional vehicles’ scenario.

In most of the articles mentioned above, AVs were considered and these works focused on
freeway traffic. Solely Tientrakool et al. [2011] investigated the AVs impacts on urban road
capacity, but his work concentrated only on the impacts at a single intersection and not on a
whole urban traffic network. In the next sections the effects of AVs without connected technology
are focused by defining the vehicles with different parameters compared to the conventional cars
in order to assess the possible impacts on the urban traffic network capacity.

3.1.1 Macroscopic Modeling of Urban Traffic Flow

In this research, the impacts of AV penetration on the MFD have been investigated. The work
was carried out with SUMO simulations [Lopez et al. 2018] by applying different percentage of
both conventional cars and full automation AVs. The simulations were operated in a real-world
traffic network and a virtual grid road network considering different penetration rates. The sim-
ulator virtually measured the traffic volume on each link and the whole network’s throughput.
Data was obtained through a macroscopic link-level measurement that called ”edgeData” mea-
surement in SUMO. The outcomes were calculated to understand the development of different
situations and to make known how the traffic network capacity changes along with different
penetration levels of self-driving cars.

The macroscopic fundamental diagram of traffic flow defines the relationship among the
traffic flow Q(vehicles/h), the vehicle concentration ρ (vehicles/km) and the space mean speed
V (km/h) [Williams et al. 1987]. The MFD is based on the fundamental equation:

Q(ρ) = ρ · V (ρ) . (3.1)

As described in the previous section, the fundamental diagram can be applied in both
network-level and link-level. The network-level MFD models the throughput of the traffic net-
work per hour:

QN (ρa) , (3.2)

where QN is the number of vehicles that pass through the network. ρa is the average density of
the network, and it simply equals to the known total number of vehicles in the network divided
by the sum of all link lengths of the road network, i.e.

ρa =
∑n
i=1 ρili∑n
i=1 li

, (3.3)

where li is the length of link i, n is the number of links [Tettamanti et al. 2015a]. The second
approach interprets the MFD of one single road link of the network, i.e.

Qi(ρi) = ρi · Vi(ρi) , (3.4)
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where Qi is the flow, ρi means the density, Vi(ρi) defines the mean velocity, and Qi is the flow
on link i.

SUMO traffic simulator was applied for MFD estimation. All trip histories of the vehicles
going through the traffic network were collected to utilize these observations in the MFD pa-
rameter estimation later. The edge-based measurement of SUMO gave link-level concentration,
stop time, overlap travel time, sample second and average speed.

To draw the MFD, concentration ρ, network average velocity V and flow Q are needed. The
following formula were used for the calculation of these values.

ρ =
∑n

1 Nvi∑n
1 li

(veh/km), (3.5)

V =
∑n

1 ViNvi∑n
1 Nvi

(km/h), (3.6)

Q =
n∑
1

3.6 · Viρi (veh/h), (3.7)

where n is the number of the links in the traffic network, Vi and Nvi are the average speed and
vehicle numbers on the ith link during the measurement interval T .

3.1.2 Simulation Based Methodology

Detailed simulation studies were carried out with SUMO to analyze the effect of AVs on the urban
road system capacity. To have a better observation, the simulations were carried out in two road
networks, namely a virtual grid traffic network and a real-world urban road system. In order
to determine the impacts of variations in market penetration of conventional and autonomous
vehicles, the simulation scenarios were characterized to represent various combinations of both
types of vehicles. The penetration of autonomous vehicles varied from 0% to 100% by stepping
with 20%. The results were handled with the Generalized Additive Model (GAM) to find the
relationship between average speed V and vehicle density ρ. Then, with the help of MFD theory,
the flow-density relationship with respect to AV penetration rate could be identified.

For the study a 8 × 8 grid network was created having 60 nodes and 36 intersections in
it. The lengths between adjacent nodes were 300 m. The network links were bidirectional
roads with single lanes. As a traffic-responsive control, the SUMO built-in tool, named ”time
gap based” traffic signal method, was applied. To realize an optimized change of traffic light
phases dynamically, the controller switches to the next phase when it detects an adequate time
opening between successive vehicles. In the simulations all vehicles get automatically routed at
insertion. Routing was created by using trip file of SUMO to form traveling demand, i.e. origin
and destination links. In this situation, vehicles choose the fastest paths according to the current
traffic conditions of the network when they enter. Therefore, the distribution of vehicles is more
flexible and homogeneous compared to the demand modeling with fixed routes. The origin and
destination links were located at the perimeter of the network. The demand increased gradually
till a traffic congestion formed in the network then decreased to zero smoothly. The simulation
scenarios were generated to obtain significant traffic jams but gridlock was avoided.

As shown in Figure 3.1, the real-world study area was located in the 11th district of Budapest.
The network contained five arterial roads: Bartók Béla út, Karinthy Frigyes út, Irinyi József
út, Műegyetem rkp., Budafoki út. Simulations were run in the whole road network shown by
Figure 3.1, but the results were evaluated concerning 30 selected road links only (depicted by
blue color) forming an intrinsically homogeneous sub-network for investigation. The speed limits
for all roads were set to 50 km/h. Link length average was 0.116 km. In these simulations,
traditional fixed traffic light signal method was applied as it works in reality.
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The vehicle flows came from the arterial roads then ran through the investigated area. Ac-
cording to the real-world traffic data, heavy traffic demands were applied to the arterial roads,
while small vehicle flows to other side streets. Moreover, for the purpose of MFD estimation,
simulations were carried out with varying traffic loads, including the situations from the free
flow to the rush hours flow. At the beginning of the simulation, the traffic demand was low.
Then, a series of light additional flows were introduced into the network continuously in order
to arrive at a congested situation. Finally, demand started decreasing. The amount of vehicles
is defined by the departure time in the trip file of SUMO.

Figure 3.1. Real-world traffic network (GPS coordinates: 47.47733, 19.05358)

The vehicle modeling method is the same with the work of Lu and Tettamanti [2018]. De-
fault SUMO parameters have been modified in order to model a plausible future for AVs. The
default car-following model (Krauss Model) was applied. The parameter selection was related
to longitudinal movement, acceleration, deceleration and gap acceptance. These behaviors were
formalized as parameters in the car-following model of SUMO. The implemented model followed
the idea that let vehicles drive as fast as possible while maintaining perfect safety (always being
able to avoid a collision if the leader starts braking within leader and follower maximum accel-
eration bounds). The following list shows the editable parameters of the Krauss car-following
model [Krauß 1998]:

• Mingap: the offset to the leading vehicle when standing in a jam (in m).

• Accel: the acceleration ability of vehicles of this type (in m/s2).

• Decel: the deceleration ability of vehicles of this type (in m/s2).

• Emergency Decel: the maximum deceleration ability of vehicles of this type in case of
emergency (in m/s2).

• Sigma: the driver imperfection (between 0 and 1).

• Tau: the driver’s desired (minimum) time headway (reaction time) (in s).
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For no and full automation vehicles, the deceleration and the emergency deceleration re-
mained the same, considering the safety. The emergency deceleration was set to 8 m/s2. This
value was based on the study of Kudarauskas [2007]. While, the mingap, acceleration and time
headway were taken from Atkins Ltd. [2016]. The parameters were tabulated to Table 3.1.

Table 3.1. Parameters of the driver model used in SUMO simulations

Mingap
(m)

Accel
(m/s2)

Decel
(m/s2)

Emergency decel
(m/s2) Sigma Time headway

(s)
No automation 2.0 2.6 4.5 8 0.5 1.0
Full automation 0.5 3.8 4.5 8 0 0.6

The output of the simulation experiment introduced earlier in this section is a series of
observations at various levels of AV penetration rates and network-level traffic conditions. The
ultimate goal is to estimate the flow-density relationship of the MFD and observe the way how
the share of AVs affects its shape, with a focus of any deviations in the critical density and the
corresponding flow level.

To achieve this goal, firstly the speed-density function was estimated using the simulation
outcomes. This segment of the MFD is closer to a linear relationship, and therefore can be
estimated more reliably than the inverse U-shaped flow-density function. A semiparametric ap-
proach was applied to model the speed-density relationship. This allows to relax the assumption
that the speed-density function is perfectly linear.

Average speed is modeled as

V (r, ρ) = α+ s(ρ) + β · r + γ · r · ρ , (3.8)

where α can be considered as average speed under free-flow conditions, i.e. the intercept of the
speed-density function, and s(ρ) is a spline estimated together with the prespecified parameters
of the model: α, β, and γ. The ratio of AVs among all vehicles (r) enters the regression
equation twice. First, it affects the free-flow speed if the estimate of β will become statistically
significantly different from zero. Second, it affects the slope of speed-density function through
the interaction term between r and ρ, providing that the coefficient of this interaction (γ)
will differ from zero after model fitting. That is, γ tells whether the presence of AVs induces
changes in the way in which increasing traffic density affects average speed. If this parameter
is positive and statistically significant, then the negative impact of traffic density on speed will
be somewhat weaker with the introduction of AVs. This semiparametric representation can be
powerful in prediction because assumptions are not needed about the baseline functional form
of the speed-density curve a priori.

The estimation based on semiparametric regression was applied via GAM (Generalized Ad-
ditive Model) implemented in R software. GAM is basically a generalized linear model in which
the predictor depends linearly on covariates that enter the regression with predefined functional
form, and unknown smooth functions of other predictor variable(s); in this study a smooth
function of traffic density.

For a given level of AV penetration rate, informative flow-density curve can be recovered
with a simple algebraic transformation of the estimated speed-density function. By substituting
V in Eq. (3.1) into Eq. (3.8), one gets the corresponding flow-density relationship Q(ρ; r).

In practice, one generates the full sequence of potential density values from zero to the
highest density observed in the data, and compute the corresponding speed levels using the
estimated model. Then, the average speed values are transformed into flow, based on the
algebraic relationship detailed above. This way one can reproduce the Q(ρ; r) segment of the
MFD for any given AV ratio r ∈ (0, 1). Identifying the critical density and the corresponding
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traffic flow level (i.e. the maximum throughput of the network) is a straightforward numerical
task, so this approach enables us to express the key parameters of the simulated MFDs as
function of the penetration rate of AVs.

3.1.3 GAM Regression for Urban MFD

With the help of GAM regression model, the simulation data were processed. The results of
the grid network and the real-world network are displayed separately in this section. In order
to verify the rationality of the GAM, the statistic coefficients were firstly inspected. After the
validation of the regression model, the maximum capacity and the corresponding density of
different AV penetration are also investigated.

Table 3.2 shows the summary of speed–AV ratio–density relationship estimation of grid
network simulation results of all scenarios. R2 indicates the goodness of fitting, which was 0.983.
So the proposed model is validated for the speed–AV ratio–density relationship estimation. The
t-value and p-value reflect the significance levels of the independent variables. The t-value is a
measure of how many standard deviations the estimate coefficient is far away from zero. It is
expected to be far away from 0 because this would indicate the null hypothesis is rejected. That
is to say, a relationship between velocity and the independent variables mentioned above exists.
In this analysis, the t-values are relatively far away from 0 and are large relative to the standard
error, which could indicate a relationship exists. The p-value is the probability when the null
hypothesis is true. A small p-value for the intercept and independent variables indicates that
the null hypothesis is rejected. This allows us to conclude that there is a relationship between
capacity and the investigated variables. Actually, the p-value can be calculated from t-value.
These two values give equivalent conclusions that all investigated terms have a relationship with
the response average speed V because the p-values of all terms are much less than 0.001.

Table 3.2. GAM regression of the grid network simulation

coefficient estimate standard error t-value p-value R2

α 16.237 0.05988 271.129 < 2E − 16

0.983
β 1.298 0.2073 6.264 5.56E-10
γ 0.024 0.00723 3.372 0.000776

s(density) < 2E − 16

A spline is a piece-wise function defined by polynomials. The spline regression is shown in
Fig. 3.2. The Estimated Degrees of Freedom (EDF) of the smooth term s(density) is 6.603. EDF
is the estimated degrees of freedom of the spline. It can be understood as how much a given
variable is smoothed. Higher EDF value suggests higher complexity of the spline. The dashed
lines in the figure are the confidence lines which indicate two standard error bounds. The rug
on the horizontal axis is used to visualize the distribution of the data. Fig. 3.3 shows the speed
- density relationship of the data from grid network simulation of all scenarios. These data were
obtained in six scenarios with a full range of AV ratios (0%, 20%, 40%, 60%, 80% and 100%).
The AV ratio was also considered to be a variable in the speed-density relationship estimation.
Two lines in Fig. 3.3 represent the regressions of two different AV penetration. The black line
is the speed-density relationship regression of 0% AV scenario. The blue line is the fitted curve
of 100% AV penetration.

After obtaining the speed–AV ratio–density, the flow–AV ratio–density is easily to get by
substituting the speed V in Eq. (3.1) with the fitted function V (r, ρ) . The fitted flow–AV ratio–
density function is illustrated in Fig. 3.4. The black line is the fitted curve of 0% AV scenario.
The blue line is the regression of purely driverless car scenario data. Based on the fitted flow–AV
ratio–density relationship, the maximum flows and the corresponding densities of different AV
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penetration scenarios are marked as black dots, as shown in Fig. 3.4. They are connected to show
the change of the capacity and the critical densities with different AV ratio. From low to high,
the ratios of the self-driving cars corresponding to these points are 0%, 10%, 20%,30%,40%, 50%,
60%, 70%, 80%, 90%, and 100% respectively. The flow–AV ratio–relationship and density–AV
ratio relationship were extracted and plotted in Fig. 3.5 and Fig. 3.6. The relative changes of
the scenarios comparison with the zero AV penetration case are also provided by Table 3.3. It
is observable that the maximum flow is augmenting along with the increase of AV penetration
in an almost linear way. But the final gain of 100% AV penetration is only 16.01%, which is
less than the theoretically calculated result (40%) by Friedrich [2016] formerly. This can be
explained by the fact that the calculated result by Friedrich [2016] merely took one intersection
into consideration which eliminated the accumulation of vehicles on the adjacent roads. The
maximum flow has an approximately linear relationship with AV penetration. The value of
the critical density raises slowly in the beginning. Then the increase accelerates after 40% AV
penetration.

0 10 20 30 40 50

1
0
0
0
0

3
0
0
0
0

5
0
0
0
0

7
0
0
0
0

density  (veh/km)

fl
o
w

  
(v

eh
/h

)

AV ratio = 0

AV ratio = 1

Figure 3.4. Grid network data: estimated flow-density relationship

Table 3.3. Grid network data: maximum flow, critical density, and their change

AV penetration rate 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Maximum traffic flow (veh/h) 57016 57753 58511 59293 60106 60958 61865 62839 63881 64983 66142
Relative change compared to
the zero penetration case - 1.29 2.62 3.99 5.42 6.91 8.50 10.21 12.04 13.97 16.01

Critical traffic density (veh/km) 23.24 23.7 24.24 24.87 25.68 26.75 28.16 29.7 31.08 32.28 33.38
Relative change compared to
the zero penetration case - 1.98 4.30 7.01 10.50 15.10 21.17 27.80 33.73 38.90 43.63

For the real-world network, the calculation and estimation processes were identical with the
methods used for the grid road network (presented in previous section). Table 3.4 shows the
speed–AV ratio–density relationship estimation of the real-world network simulation results in
all scenarios. The high value (0.789) of R2 means a high quality of the fitting. In terms of
significance test, t-values and p-values demonstrate all the terms having relationship with the
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Figure 3.5. Grid network data: change of the maximum traffic flow according to the AV pene-
tration ratio
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Figure 3.6. Grid network data: change of the critical traffic density (the density at the maximum
traffic flow) according to the AV penetration ratio
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response variable (average speed). The t-values are far away from zero and the p-values are
less than 0.001. This means that the model is also validated for the real-world road network.

Table 3.4. GAM regression of the real-world network simulation

coefficient estimate standard error t-value p-value R2

α 21.815 0.1784 122.284 < 2E − 16

0.789
β 1.724 0.51106 3.374 7.57E-04
γ 0.07 0.02066 3.399 0.000693

s(density) < 2E − 16

The EDF values of the smooth term s(density) was 3.853. The spline regression is illustrated
in Fig. 3.7. The confidence lines are depicted as dashed lines in the figure, indicating two standard
error bounds. The visualization of the data distribution is illustrated as a rug on the horizontal
axis. The estimated speed-density relationship can be found in Fig. 3.8. The grey circles
are the simulation data of real-world network in all scenarios. The curves are monotonically
decreasing with a concave shape rather than a linear one. The black curve is the regression of
all conventional vehicle scenarios. The blue line is the fitted speed-density relationship of the
purely driverless vehicle scenario.
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Figure 3.7. Real-world network: spline regression where the EDF value is 3.85 in s(density,
EDF)

Fig. 3.9 shows the fitted flow–AV ratio–density relationship. The gray circles are the simu-
lation data of real-world network in all scenarios. The black curve is fitted with 0% AV ratio
scenario data. The blue line shows the fitted flow–density relationship of purely AV penetration
scenario. In the 100% AV penetration scenario, a plateau occurs when the flow is around the
maximum value. This shows a beneficial property of having AVs in a network. In a range, the
density of vehicles can increase without congestion. The maximum traffic flow and the corre-
sponding densities of different AV penetration scenarios are marked as black dots in Fig. 3.9.
These points represent the capacity and critical densities of a range of self-driving cars penetra-
tions which are 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, and 100% respectively
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Figure 3.8. Real-world network data: speed–density relationship

from the bottom to the roof. A line through these dots shows the change of the capacity and
the critical densities of different AV penetration scenarios in the real-world network simulation.
Both the maximum flow and the corresponding critical density have an increasing trend with
higher AV penetration. From Fig. 3.10, one can see that the maximum flow and AV ratio
also have a quasi-linear relationship in the real-world network simulations. The maximum flow
boosts with the raise of AV penetration. Fig. 3.11 shows the traffic concentration changes with
the different AVs market penetration scenarios. The critical density is increasing with a higher
driverless car penetration. Table 3.5 shows the maximum flow, the corresponding critical traffic
concentration, and their relative comparison with the purely traditional regular vehicle scenario
of different AV penetration scenarios. It shows that a capacity increment value of 23.81% is
achieved with purely autonomous traffic, which is a bit higher than that of the grid network
simulations. This may stem from the fact that the real-world network is smaller. The smaller
the network is, the less the accumulation of vehicles is present. This fact may also lead to higher
critical concentration of same AV penetration than that of the grid network. It also reflects that
the increase of the critical traffic density is moderate at the beginning. After 50% of AV ratio,
however, it becomes steep. The benefits of driverless car are more and more obvious with an
increasing penetration. In all, the critical traffic concentration has a 48.45% raise with 100%
AV penetration.

Table 3.5. Real-world network data: maximum flow, critical density, and their change

AV penetration rate 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Maximum flow (veh/h) 13497 13765 14040 14324 14616 14919 15234 15563 15910 16283 16710

Relative change compared to
the zero penetration case (%) - 1.99 4.02 6.13 8.29 10.54 12.87 15.31 17.88 20.64 23.81
Critical density (veh/km) 25.22 25.67 26.15 26.68 27.25 27.9 28.65 29.57 30.75 32.54 37.44

Relative change compared to
the zero penetration case (%) - 1.78 3.69 5.79 8.05 10.63 13.60 17.25 21.93 29.02 48.45
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Figure 3.9. Real-world network data: estimated flow–density relationship
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Figure 3.11. Real-world network data: change of the critical traffic density according to the AV
penetration ratio

Table 3.6. The AV penetration scenarios used in this simulation

Scenario
nr. Scenarios The ratio of

traditional cars
AV penetration composition

Level 1 Level 2 Level 3 Level 4 Level 5
1 Base 100% 0% 0% 0% 0% 0%
2 25% penetration 75% 15% 5% 5% 0% 0%
3 50% penetration 50% 25% 10% 10% 5% 0%
4 75% penetration 25% 25% 20% 15% 10% 5%
5 100% penetration 0% 15% 20% 20% 25% 20%
6 Upper bound 0% 0% 0% 0% 0% 100%

3.2 Impacts of Different Levels of Autonomy of AVs on Urban
Traffic

In the previous section, only the AV penetration rate’s impact was investigated for the urban
MFD modeling without the consideration of the different levels of autonomy. In the sequel,
the impacts of the levels of autonomy was analyzed together with the penetration change. Here
another approach, the cubic polynomial curve fitting, was used to model the relationship between
density and traffic flow:

Q(ρ) = a · ρ3 + b · ρ2 + c · ρ, (3.9)

where a, b, c are polynomial coefficients.
In this study the same grid network was applied for the simulation as discussed in Sec-

tion 3.1.2 with the same traditional ”time gap based” traffic signal control (a built-in tool of
SUMO). At low market penetration, the technical capability is limited (for example, to driver
assistance which means low autonomous driving level). As market penetration increases, con-
sumer confidence also augments, and better use of connected and automated technology prevails.
Measurements in one link and in the whole network were realized. The modeled scenarios are
summarized in Table 3.6.
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Table 3.7. Parameters of the driver model for different levels of autonomy

Capacity
level

Mingap
(m)

Accel
(m/s2)

Decal
(m/s2)

Emergency Decel
(m/s2)

σ
(driver imperfection)

τ
(s)

Level 0 2.0 2.6 4.5 8 0.5 1
Level 1 2.0 3.05 4.5 8 0.4 0.95
Level 2 1.5 3.5 4.5 8 0.3 0.9
Level 3 1.25 3.6 4.5 8 0.2 0.8
Level 4 0.75 3.7 4.5 8 0 0.7
Level 5 0.5 3.8 4.5 8 0 0.6

For level 0, the default values were taken for all parameters. But the emergency deceleration
was set to 8 m/s2. This value is based on the study of Kudarauskas [2007]. For other autonomous
driving levels, the deceleration and the emergency deceleration remained the same, considering
the safety. For level 2 and level 5, the mingap, acceleration, time headways were taken from
Atkins Ltd. [2016]. For level 1, the values of these items were set as the average value of level
0 and level 2. For level 3 and level 4, the values of these items were changed linearly between
level 2 and level 5. The driver imperfection for level 5 and level 4 was set to 0 because these
levels do not need human driver’s intervention. It was assumed to be 0.4, 0.3, and 0.2 for level
1, level 2, and level 3, respectively. The parameters for all levels are tabulated in Table 3.7.

The main simulation results are provided by Figs. 3.12 and 3.13. From the results for the

Figure 3.12. Simulation results for the whole network

whole network, one can see that from scenario 1 to scenario 6 the capacity of the whole network
and the critical density vary. Scenario 6 has the largest critical density straightforwardly. The
same tendency can be found in the whole network for critical density and capacity. They go up
in the beginning, then decrease, roar up at the end.

From the results for one single link, one can see that the capacities for scenarios 1, 2, 3, and
4 are similar and relatively smaller, and the capacities for scenarios 5 and 6 are bigger and have
an increasing trend. The same change can be found in the critical densities.

In all, the results justified regularity in the change of the urban MFD (network and link
level as well) along with the autonomous technology evolution. The results are also important
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Figure 3.13. Simulation results for a single link

from the point of view of practical traffic engineering as the fundamental diagram is a common
modeling approach when planning or analyzing a road network.

3.3 Impacts on Freeway Macroscopic Fundamental Diagram
Cooperative Adaptive Cruise Control (CACC) and Adaptive Cruise Control (ACC) are essential
technologies towards fully automated driving. They can be used to simulate the cruising behavior
of AVs to study how AVs can beneficially impact transportation systems [Makridis et al. 2018].
At present, there is no consensus on the right value for the headway of self-driving cars. AV
developers confronted a dilemma about the proper setting of safe time headway based on the
driver’s response times [Goodrich and Boer 2003]. Abdulsattar et al. [2020] simulated the AVs
with a time headway of 0.5 seconds. While Berrazouane et al. [2019] used a large time headway
(even large than the conventional vehicles) to model an AV behavior demonstrating that the
preferred driving behavior of AVs is still uncertain. Therefore, it is important to do a sensitivity
analysis on time headway.

The speed limit of freeways varies from country to country. The speed limit has strong
impacts on the road network performance, especially when the times of AVs arrives. Ye and
Yamamoto [2018] concluded that placing a higher speed limit for AVs on the dedicated lane can
improve the performance of AV specific lane. With the improvement of the safety performance
of self-driving cars, it might become a trend to increase the freeway speed limit. Therefore,
studying the effect of different speed limits on AV performance is important. Various researchers
examined the impacts of microscopic driving behavior in AVs with the help of simulation. In
general, a shorter headway could boost maximum throughput. Contrarily, an increasing time
headway would lead to a decreasing road capacity. Lower speed vehicles could contribute to
the stability of vehicle flows. However, as a consequence, they would cut down the bottleneck’s
capacity. The more, the delay and travel time would increase at the same time [Talebpour et al.
2017; Van Arem et al. 2006]. Some of these studies revealed that AV penetration rate in the
intermediate (or even lower) range could result in a significant capacity upgrade. Talebpour
et al. [2017] found that the throughput and trip time stability were improved considerably
when AV penetration rate surpassed 30% assuming dedicated AV lane on a four-lane freeway.
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However, road capability increased marginally until the CACC ratio surpassed 85%, according
to Tientrakool et al. [2011]. Olia et al. [2018] found that the situation with the 100% penetration
of cooperative vehicles could boost the highway capacity by 300%.

Autonomous vehicles have two opposing effects on the environment. On the one hand,
good driving technology would reduce fuel consumption and exhaust emissions. On the other
hand, increased transportation demand would increase pollution in transportation [Brown et al.
2014]. The primary aim of AV technology is to improve traffic safety and make available better
mobility services. Though, AV would predictably and significantly transform the transportation
sector environmental profile as well. Taiebat et al. [2018] classified the impacts of AVs on
the environment into four levels, which are vehicle, transportation system, urban system, and
society levels. As for the vehicle level, operation, electrification, design, and platooning could
affect the vehicles’ consumption and emission. This research focused on the impacts of the
vehicle behavior. Greater driving efficiency might be obtained with AVs through an assortment
of mechanisms, like, counting optimum driving cycle, dynamic system optimum routing, less
idling, reducing cold starts, and speed harmonization.

Fewer idling or less cold start could help decrease fuel consumption and reduce emissions.
Cold starts are significant causation of some air pollutants from the transportation area, for
instance, NOx, CO, and Volatile Organic Compounds (VOCs) [Barth et al. 2014]. A few prop-
erties of AVs might lead to more energy waste. Radars, sensors, information exchanges, and
high-speed network connections need more auxiliary energy from cars, which exposes as extra
noteworthy power draw and subsequently more fuel consumption. Power used in sensing, con-
nectivity units, and computing accessories could considerably change the AVs energy efficiency.
Moreover, advanced protection in AVs might bring about higher freeway speeds. Because aero-
dynamic drag forces build up quadratically with speed, therefore, higher speeds bring about
higher energy waste above a certain threshold. For example, a velocity increasing from 70 to 80
miles per hour was announced to raise average power usage by 13.9% per mile [Thomas et al.
2013]. Even though, it is convincing that improved security in AVs can empower relaxation
of speed limits for freeways. In most countries vehicles are currently restricted to below opti-
mal speeds, which lead to some fuel conservation. This aspect gains less consideration in the
literature.

3.3.1 Macroscopic Modeling of Freeway Traffic Flow

The fundamental diagram is a well-acknowledged theory to characterize freeway traffic dynamics
in a macroscopic way. In this approach averaged traffic flow variables are considered on a given
road stretch, i.e. traffic density ρ (vehicles/km), space mean speed V (ρ) (km/h) depending on ρ,
as well as traffic flow Q(V (ρ)) (vehicles/h). The fundamental diagram of traffic flow is selected
to show the impacts on the freeway capability. The theory of fundamental diagram includes
three important relationships among the macroscopic variables, which are flow-density, speed-
density, and speed-flow. These three diagrams are related via the following equation adopted
from fluid dynamics:

Q(V (ρ)) = V (ρ). (3.10)

A wide range of diverse forms of fundamental diagrams are available in the literature [Carey
and Bowers 2012]. One practical form of the fundamental diagrams (which well reflects the real-
world observations on freeways) is proposed by Newell [1993], i.e. the triangular flow-density
relationship:

Q = min {v · ρ; w · (ρj − ρ)} , for 0 ≤ ρj , (3.11)

where v is free-flow speed, ρ is the vehicle density, w means the backward wave speed, as well as
ρj stands for the jam density. The freeway link is assumed to follow the kinematic wave theory
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with all lanes having the same free-flow speed v and the same backward wave speed w, see
Fig. 3.14. Qm is the maximum flow rate, and the corresponding density ρc is referred to as the
critical density. From the other parameters, ρj = Qm(1/v + 1/w) or ρj = 1000/(lv +minGap),
the jam density can be estimated [Gayah et al. 2014]. Here, lv is the length of vehicle, and
minGap is the minimum distance between two consecutive vehicles. Within the triangular
flow-density relationship, the proportion of jam density ρj to critical density ρc is 1 + v/w:

ρj/ρc = 1 + v/w. (3.12)

The maximum flow Qm is derived as:

Qm = ρjwv

w + v
. (3.13)

In this study, the simulated traffic flow is in line with the kinematic wave theory and the
triangular fundamental diagram is applied for practical reasons [Cassidy et al. 2011].

Figure 3.14. Triangular macroscopic fundamental diagram

3.3.2 Assessing AV Impacts on Freeway MFD

For realistic simulation based analysis SUMO simulator was applied. As shown in Fig. 3.15,
a real-world network was selected for simulation based analysis. The test network is a 10 km
section of the European designation E60 (Hungarian highway M1) near Herceghalom city. The
base data for geometry, average traffic flow, as well other road features were gathered directly
from the open database of Hungarian Public Roads.

Figure 3.15. The network used in the simulations

In this research, a sensitivity analysis was carried out investigating three parameters: reaction
time, AV penetration, and the speed limit to find their impacts on the MFD.
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The realization of AV was accomplished through the parameterization of the vehicle behav-
ioral models which are the Krauss car-following model and the LC2013 lane-changing models.
The execution of different type of cars into SUMO simulation was realized by different vehicle
types definition (declaring sets of cars with the same parameters and performance in transporta-
tion system).

In this work, 2 vehicle types were applied, which are Human Driven Vehicles (HDV) and
AV. The parameters are listed in Table 3.8.

Table 3.8. The constant attributes of the different vehicle types

Vehicle
Type

Acceration
(m/s2)

Deceleration
(m/s2)

speed limit
(km/h) σ τ(s) speed factor

HDV 2.6 4.5
80 - 200 with
an increment
of 20km/h

0.5 2 normc(1,0.1,0.2,2)

AV 2.6 4.5
80 - 200 with
an increment
of 20km/h

0
0.1-1.9

with a 0.2s
increment

normc(1,0.1,0.2,2)

The acceleration and deceleration are considered as constant for HDV and AV. Speed limit
means the speed limit of freeway for both HDV and AV. It varies from 80 km/h to 200 km/h with
an increment of 20 km/h. Theoretical high speed limits are investigated. As the technologies
are developing, a higher speed limit may be possible in the future. The σ in SUMO is the driver
imperfection for which the value 0 denotes perfect driving. The AV is assumed have the perfect
driving behaviors. The τ is the minimum desired time headway of drivers. The time headway
for HDVs is a constant that equals to 2 seconds. The time headway for AVs vary from 0.1 s
to 1.9 s with a 0.2 s increment. The speed factor is used to model the desired driving speed
variation. It represents the driver’s attitude towards the road’s speed limit, by introducing a
randomly generated multiplier. The speed factor in the study is a normal distribution which is
given as ”normc(mean, deviation, minimum, maximum)” form.

A full MFD should be built at each observed speed limit to realize the intentions stated at
the start of this part. Relevant data were collected from the measured section in Fig. 3.15. The
collected data are mainly the volume of vehicles on the measured segment as well as their average
velocity. The traffic flow increased up continuously till the maximum road network capacity.
Then an outside factor was applied to destabilize the flow. After multiple tests, the Variable
Speed Signs (VSS) based traffic flow interference was chosen as it was the most reliable way to
simulate full MFDs. The length of the measured edge is 1033.12 m, and it has two lanes, as
shown in Fig. 3.15. Data is being collected every ten simulated seconds and was valid for the
given time step (0.1 seconds). The nominal traffic flow was set based on the Hungarian Public
Road’s real-world measurement.

In order to obtain a full MFD, the simulation began with a low flow rate of traffic. The cars
were introduced with Poisson distribution to guarantee randomization of the simulations. After
planned periods, the vehicle flow increased up until reached the network’s peak capacity. And
then, the determined flow control program, VSS, was triggered to generate growing amounts
of barrier on the road network, until the simulation reached a near grid-lock state. At this
time, the interference terminated, and the flow started to release. When the jammed traffic flow
disappeared, this simulation completed. Subsequently, a new simulation began with higher AV
penetration. Fig. 3.16 shows the automatized simulation process of the work. The simulation
was operated under three levels of nested loops. The variables of three-level loops from inside
to outside are reaction time (τ), AV Penetration (Pene), and Speed Limit (SL). The reaction
time of AV starts at 1.9 s and goes down to 0.1 s with a 0.2 s step length. The middle loop
changes AV penetration rates starting from 0% to 100% with a 10% increment. The outer loop
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Figure 3.16. The automatized simulation process

defines the speed limit of the simulation, starting from 80 km/h with an increment of 20 km/h
to 200 km/h. The simulation started with the scenario where the speed limit equals 80 km/h,
AV penetration is 0%, and reaction time equals 1.9 s. After different reaction time scenarios
simulated, the simulation goes on with the next predefined AV penetration and reset the reaction
time to be 1.9 s. After running a full penetration range, the simulation goes on with a higher
speed limit. The AV penetration is reset to 0; reaction time to 1.9 s. This procedure repeats
until the outer loop finishes, which means all scenarios are simulated.

3.3.3 Simulation Results on AV Penetration Change on Freeway

To assess the impacts of AV penetration, reaction time variation, and speed limits, different sim-
ulation scenarios were carried out via the sensitivity analysis on reaction time, AV penetration,
and the speed limits.

Fig. 3.17 shows the fundamental diagram of one of the simulations when the AV penetration
is 40%, AV reaction time is 1.1 s, and the speed limit is 80 km/h. They show the fundamental
diagram’s typical shape, shared between all other simulation scenarios. From the flow-density
relationship, one can see that the simulations have a triangular fundamental diagram. Therefore,
a triangular fundamental diagram model was chosen to fit the collected data. The capacity of
an edge is defined by the maximum vehicle number that passes the network per hour. It can be
defined as the product of the traffic density and the space mean speed [Friedrich 2016].

Fig. 3.18 depicts the flow-density relationship of the simulations when the speed limit is 80
km/h and AV penetration is 60%. The time headway of AV varies from 1.9 s to 0.1 s. It is
obvious that the maximum flow is increasing with the decrease of time headway. As the time
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Figure 3.17. Fundamental diagram of a simulation (penetration = 40%, τ = 1.1 s, speed limit
= 80 km/h)

Figure 3.18. Flow-density relationship changes with reaction time
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Figure 3.19. The triangular fundamental diagram parameters change with the time headway

Figure 3.20. Flow-Density relationship changes with AV penetration

headway decreases, the points at the maximum flow rate become more and more scattered. On
the one hand, it increases the capacity of the road, on the other hand, it reduces the stability
of the traffic flow. Fig. 3.19 reveals the values of the fitted fundamental diagram. The free
flow speed v is relatively stable. The wave speed w increases substantially with a shorter time
headway. The maximum flow volume increases when the time headway becomes shorter.

Fig. 3.20 shows the impacts of AV penetration rate on the flow-density relationship when the
speed limit is 80 km/h and reaction time is 1.1 seconds. Obviously, with the gradual increase
in the AV penetration, the maximum flow is also rapidly augmenting. However, when the
penetration rate is less than 40%, the advantage is not so apparent. This observation is in line
with the results of Van Arem et al. [2006] and Jones and Philips [2013]. The highest traffic flow
of pure AV scenario is almost twice that of pure traditional vehicle scenario. Fig. 3.21 depicts
the changes of fitted triangular fundamental diagram parameters. The free flow speed v almost
keeps the same. On the contrary, the wave speed w rises sharply. The maximum flow Qm also
increases drastically when there are more and more AVs on the road. Fig. 3.22 reveals the
variation of the observed maximum traffic flow with AV penetration and time headway. From
the impact of traffic flow, the shorter the time headway and the higher the market penetration
is, the better the road performance becomes. Table 3.9 shows the observed maximum flow
volume changes with different AV penetration and time headway. The simulations with 0% of
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Figure 3.21. The triangular fundamental diagram parameters change with the AV penetration

Figure 3.22. Maximum flow changes
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Table 3.9. Maximum flow [veh/h] changes along with the AV penetration and time headway

Penetration 1.9 s 1.7 s 1.5 s 1.3 s 1.1 s 0.9 s 0.7 s 0.5 s 0.3 s 0.1 s
0% 1559 1570 1587 1558 1562 1567 1580 1566 1566 1565
10% 1580 1593 1656 1657 1672 1746 1740 1702 1833 1763
20% 1609 1640 1659 1718 1733 1814 1809 1902 2005 2029
30% 1622 1663 1713 1793 1871 1896 1957 2011 2053 2323
40% 1610 1672 1724 1773 1855 2004 2241 2153 2470 2589
50% 1611 1700 1774 1954 1991 2258 2406 2413 2492 3259
60% 1615 1693 1789 1984 2138 2279 2600 2762 3075 3218
70% 1623 1731 1894 2092 2103 2549 2606 3016 3458 3831
80% 1627 1754 1935 2102 2282 2604 2936 3510 3978 4596
90% 1663 1780 1962 2163 2471 2877 3273 4144 4606 5160
100% 1650 1817 2008 2231 2548 2960 3519 4331 5506 6257

Figure 3.23. The impacts of speed limit on fundamental diagram

AV penetration rate are treated as the baseline in this research. As the AV penetration rises, the
maximum flow volume grows as well. The shorter the time headway is, the higher the growth is.
The speed limit has a direct impact on the free flow speed. With higher speed limit, free flow
speed v is expected to increase. As an example, consider Fig. 3.23 and Table 3.9 displaying the
simulation results with 1.1 s time headway and 50% AV penetration. In Fig. 3.23, the scatter
points represent the collected data from the simulations. The solid lines are the fitted triangular
fundamental diagrams. Fig. 3.23 reveals the free flow speed and road capacity increase when
the speed limit gets higher. When the speed limit is higher than 160 km/h, the measured points
around the critical density are more scattered. Therefore, in order to maintain the stability of
the flow around the critical density, the speed limit should not exceed 160 km/h.

As shown in Fig. 3.24, the free flow speed v increases with higher speed limit. However, the
value of w, the backward wave speed, remains almost the same while the speed limit varies.
From Eq. (3.12) it is easy to derive that the critical density ρc moves to the left side slightly
when the speed limit grows. This is consistent with the result shown in Fig. 3.23. The maximum
traffic flow has a monotone growing trend, but the maximum difference is only 284 veh/h.

3.3.4 Impacts of AVs on Fuel Consumption and Emissions

In the simulations, it was assumed that the travel demand remains the same when AV penetra-
tion increases. The aggregate fuel consumption and CO2 emission during the whole simulation
run were investigated. The emission model used in the simulation was HBEFA3. For simplicity,
the emission class for all vehicles was gasoline driven passenger car of European emission stan-

51



3. Impacts of Automated Driving on Traffic 3.3. Impacts on freeway MFD

Figure 3.24. The triangular fundamental diagram parameters change with the speed limit

Figure 3.25. Fuel consumption changes and CO2 emission changes

dards 5. Left of Fig. 3.25 indicates the aggregate fuel consumption over the entire simulation
when the speed limit is 80 km/h. When the AV time headway is 1.1 seconds, the consumption
does not change much, no matter what the AV penetration is. When the time headway less
than 0.5 seconds, fuel consumption increases sharply with the rise in AV penetration. The all
HDV scenarios serve as the baseline. One can observe that when time headway is longer than
0.5 seconds the aggregate fuel consumption drops with the increase of AV penetration. When
the reaction time becomes shorter than 0.5 seconds, there will be more frequent braking and
starting and more changes in velocity, especially in traffic jams. As mentioned in the intro-
duction, breaks, starts, and velocity variations may contribute to increasing fuel consumption.
From the perspective of reducing fuel consumption, 0.5 seconds is the lower recommended limit
of the reaction time setting for AVs.

The results of CO2 emission share a similar shape with the fuel consumption. Right of
Fig. 3.25 indicates the aggregate CO2 emission during the whole simulation. When the AV
response time is under 1.1 seconds, the emission does not change much no matter what the
AV penetration is. However, when the time headway is less than 0.5 seconds, carbon dioxide
emissions increase sharply with the increase of AV market share. The all HDV scenarios serve
as the baseline. One can see that when time headway is longer than 0.5 seconds the aggregate
CO2 emission is dropping with the increase of AV penetration. From the perspective of reducing
carbon dioxide emissions, 0.5 seconds is the lower limit of the reaction time setting for AVs when
speed limit is 80 km/h.
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3.4 Contributions
The thorough analysis of the AV impacts on traffic dynamics resulted in new scientific contri-
butions in terms of urban and freeway macroscopic fundamental diagram fitting and related
scientific experiences.

Thesis 2
The impacts of Autonomous Vehicles (AVs) on road traffic have been investigated
using microscopic traffic simulation technique via the macroscopic fundamental
theory. I have proposed a methodology to determine the urban and freeway macro-
scopic fundamental diagrams (MFD) in case of the presence of AVs in traffic flow.
Additionally, I have found relationship between the AV penetration and the MFD
theory in both urban and freeway contexts.

Thesis 2.1

I demonstrated that AVs have significant potential to improve traffic capacity, efficiency, stability,
and safety of existing urban mobility systems. A thorough sensitivity analysis has been carried
out to find the impacts with different AV penetration rate applying grid shape (common in the
USA) and irregular (typical European) urban traffic networks. A new approach for macroscopic
average speed has been proposed as follows

V (r, ρ) = α+ s(ρ) + β · r + γ · r · ρ, (3.14)

where s(ρ) is a spline (depending on density ρ) estimated together with the model parameters
(α, β and γ). The ratio of AVs among all vehicles (r) enters the regression equation twice. First,
it affects the free-flow speed if the estimate of β becomes statistically significantly different from
zero. Second, it affects the slope of speed-density function through the interaction term between
r and ρ. This semiparametric representation is powerful in prediction of macroscopic average
speed considering the ratio of AVs. To fit the speed - AV ratio - density relationship Generalized
Additive Model (GAM) based regression method was applied.

Thesis 2.2

R2 and p-values in the estimation of Eq. (3.14) showed that the GAM regression is a reliable
method to determine the speed - AV ratio - density relationship. This also implies the estima-
tion of urban MFD as well via the well-known fundamental equation of Q(ρ) = ρ ·V (ρ) adopted
from fluid dynamics. The results of the urban MFD fittings showed that the capacity is in-
creasing quasi-linearly with higher AV penetration for both grid and real-world networks. This
improvement is due to shorter headway and less reaction time of autonomous vehicles. When
self-driving cars start dominating the roads, a plateau occurs around the maximum flow. This
phenomenon means that no specific maximum is obtained, i.e. maximum throughput is available
on a longer area and not at a dedicated point as (critical density of conventional MFDs).

Thesis 2.3

I investigated the impacts of AVs on freeway traffic via the triangular flow-density relationship,
i.e. the traffic flow is

Q = min {v · ρ; w · (ρj − ρ)} , for 0 ≤ ρ ≤ ρj , (3.15)
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where v is the free-flow speed, ρ is the vehicle density, w means the backward wave speed, as well
as ρj stands for the jam density. I demonstrated that the parameters of the freeway MFD vary in
correlation with the change of time headway, AV penetration and speed limit. I also found that
reducing time headway in a certain range may result in lower fuel consumption and emission.
At the same time, when the time headway is lower than this range, the energy consumption
and emission increase sharply. In conclusion, from the perspective of fuel economy and emission
reduction, a recommended optimal time headway must be found.
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Chapter 4

Urban Road Traffic Control

Automated vehicles have the advantage of interactive communication possibilities towards other
vehicles or the infrastructure. Autonomous road vehicles with this option are also called Con-
nected and Autonomous/Automated Vehicles (CAVs). In this part novel control methods are
proposed for both private and public road vehicles. Additionally, the novel concept of distributed
road traffic signal controller is introduced.

4.1 Dynamic Pricing Based Urban Traffic Control
The routing problem of road traffic, when only a few alternatives exist between an origin (O)
and a destination (D) point (Fig. (4.2), is a common road traffic issue. Consider for example the
accessibility of a city center from the end of a given freeway or the typical suburban traffic flow
which intends to reach a specific destination zone. Another frequent case to describe this problem
is the routing between two traffic nodes, e.g. the proper route choice between an important
freeway node and a bridge. This setup is indeed very common in Budapest (Hungary) where
Variable Message Signs (VMS) in several points of the network suggest to drivers the shortest
path in an indirect way by displaying travel times of important destinations.

In our days, the high degree of ICT (Information and Communication Technology) device
utilization or ITS (Intelligent Transport System) tools help travelers to make their route choice
in order to avoid congestion, thus minimize travel time. These tools are, on the one hand,
web based applications such as Google Maps providing color coded speed categories on links.
On the other hand, VMS may display travel time information by a traffic management center.
Although drivers continuously check real-time traffic information via smartphone applications or
they are directly informed by VMS, the traffic topology introduced above induces the problem
of uneven utilization of the possible routes, i.e. bad route choice. This phenomenon is mainly
due to the inertia characteristics of the traffic mass, i.e. when a given route is more preferred
and so increasing traffic demand enters, then there is a notable time delay until the steady
state will be reached. Simply, the increased traffic volume at the beginning part of the specific
route will not cause immediate travel time increase on the whole route. While the travel time
estimation is typically provided as an online service intending to reflect the actual state of
the transportation system, the utilization of this information cannot be real-time as the traffic
state can change after picking a given route. Furthermore, ICT tools or VMS displays do not
give short term traffic forecast yet and generally do not deal with the delay in the provided
information. In practice the chosen path might become congested in contrast with the previous
information due to the information given to a large number of travelers who respond similarly
and therefore change the traffic state can lead to oscillation on short run. Therefore, traffic flows
on the possible routes (Fig. 4.5) start an oscillatory behavior in case of heavy (peak hour) traffic
demand when the traffic network is saturated or close to the saturated state. Adequate road
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toll system might be a possible solution to achieve an optimal route choice in such situation
in system level on short run. At the same time, the adequate determination of the applied
tolls is not a straightforward problem. Fixed tolls result in a rigid system which might be only
effective in case of a more or less constant traffic demand. In case of variable traffic (for example
in rush hours) dynamic toll system is needed. In general, user optimum has higher total cost
than system optimum, sometimes much higher [LeBlanc and Abdulaal 1984]. Previous studies
have shown that system optimum [Long et al. 2018; Zhao and Leclercq 2018] is more difficult to
achieve than user optimum [Ma and Gao 2016]. In case of system optimum, the total utilities
are maximized, meanwhile in user optimum the individual user utilities are maximized. In
case of system optimum, some individual utilities will decrease for the common good [Du et al.
2015]. Road pricing has been recognized as an efficient approach to traffic demand management
and control which can be introduced incrementally, according to need, with the feasible aim of
reducing traffic congestion and keep it on an acceptable level [Metz 2015]. Study of Zhu et al.
[2017] proposed to use road pricing as a tool to capture the value of travel time savings in order
to induce better road usage patterns. By using road pricing as a tool to spread out the peak
demand, it could improve the utility of travelers. Although a time-varying toll could achieve
full efficiency, its implementation is a big challenge. In reality, almost all practices follow either
a uniform toll, or a step-toll (peak vs. non-peak, or with a smaller time step). Based on the
classical consumer behavior theory the users would maximize their utility meanwhile the traffic
control could influence this utility due to pricing. Dynamic tolls are shown to be meaningful
from both economic and behavioral viewpoints, and therefore proposed to be a good alternative
toward system optimum [Yang 1999].

4.1.1 Control Design Based on the Concept of Traveler’s Utility Function

Utility represents satisfaction experienced by the consumer of a good or service. Utility max-
imization is the main goal of rational choice theory in economics. It is very hard to directly
measure satisfaction or happiness from consuming a good or service, therefore economists in-
troduced utility functions [Houthakker 1950]. Mathematically let us consider the simple linear
utility function (proposed by Koppelman [1981]) for traveling:

µ = −αT − βC (4.1)

where T is the travel time [min], C is the the toll price concerning the specific route choice
(e.g. in EUR), α and β are appropriate weighting parameters. Considering the utility function
of the ith route Eq. (4.1) can be generalized as follows:

µi = −αTi − βCiLi (4.2)

where i refers to the ith route alternative and ci is the unit toll price [EUR/km].
Note that in Eq. (4.2) toll cost is linked only to distance traveled but not to travel time,

i.e. distance-based pricing is applied. The main reason for this is that a tolling system with time-
based prices can yield several problems. On the one hand, parking time has to be differentiated
from travel time, because the pricing schemes of the two activities differ. On the other hand, it
can be problematic from traffic safety aspect, as time-based pricing forces road users to hurry
on user optimum.

The road traffic dynamics of urban or metropolitan area can be described by the urban
MFD. An example for the MFD is depicted by Fig. 4.1. where x counts the number of vehicles
within the traffic network, Qout denotes the output traffic flow [vehicle/hour].

In the vicinity of the critical number of vehicles (xcrit) the network is operated at maximum
capacity. Moreover, xcrit splits the fundamental diagram to a stable (left side) and an unstable
part (right side). Apparently, the unstable part of the MFD represents traffic congestion as
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Figure 4.1. Urban macroscopic fundamental diagram

network throughput Qout tends to decrease. By using the MFD theory together with the basic
rule of the conservation law, the following nonlinear and discrete-time traffic model can be
deduced:

x(k + 1) = g(x(k), u(k)) = x(k) + TsQ
in(k)− TsQout(k) (4.3)

where g is the function of state variable x(k) and control input u(k) (defined below). k
denotes the discrete time step [sec] and Ts is the discrete sample time (for simplicity Ts is equal
to the control measure period) [sec]. Practically, Eq. (4.3) depicts the state variation over the
time period [kTs, (k + 1)Ts]. State variable x can also be represented as passenger car unit
[PCU] (the different types of road vehicles can be expressed in the ratio of private car). Inflow
traffic Qin(k) compasses the sum of entering vehicles. Total outflow traffic is defined by using
the function of the MFD based on Keyvan-Ekbatani et al. [2014]:

Qout(k) = fMFD(x(k)). (4.4)

The analogy of MFD based traffic model can also be applied for a given route considered as
traffic network. Practically, in this approach a given MFD is equivalent to a given route option
between an origin and a destination point, e.g. two different MFDs (fMFD

1 and f2MFD
2 ) can be

defined for Route 1 and 2 as illustrated by Fig. 4.2. In this case, Eq. (4.3) can be generalized
for the ith route:

xi(k + 1) = gi(xi(k), ui(k)) = xi(k) + Tsq
in
i (k)− Tsqouti (k). (4.5)

Similarly to Eq. (4.4) the outflow can be defined as

Figure 4.2. MFDs for Route 1 and 2 between origin and destination pair
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qouti (k) = fMFD
i (xi(k)). (4.6)

The controlled input traffic flow of the ith route is given as:

qini (k) = Qin(k)ui(k) (4.7)

where ui(k) is the control input which attributes weighting to the total entering flow (Qin). Note
that in this system formulation the input traffic flow is the control, while the output traffic flow
is determined by the characteristics of the system, namely its MFD.

As equivalent utility function is assumed for all drivers, ui(k) is defined as a binary control
input variable for the ith route:

ui(k) ∈ {0, 1} . (4.8)

It is assumed that within time interval [kTs, (k+ 1)Ts] vehicles decide identically concerning
the route choice, i.e. in a typical peak hour time workplace/school travel is dominated. As ui(k)
depends on the utility function (defined by Eq. (4.2)), control input ui(µi(k)) is calculated based
on the maximal achievable utility function:

ui(µi(k)) =
{

1 if µi(k) = max {µ1(k), µ2(k), . . . , µn(k)}
0 otherwise.

(4.9)

Practically, index i is sought where µi(k) obtains the maximal value for i = 1, 2, . . . , n. The
above formula needs the assumption that human drivers have relevant traffic information through
ITS/ICT tools for all route options i = 1, 2, . . . , n before they make their route choice decision.
By considering the example shown by Fig. 4.2, Eq. (4.9) means practically that u1(k) = 1 and
u2(k) = 0 if µ1(k) > µ2(k), or u1(k) = 0 and u2(k) = 1 if µ1(k) < µ2(k).

Utility function of the ith route is given by Eq. (4.2). However, it is modified with a time
delay (h) [min] in the first term:

µi(k) = −αTi(k − h)− βci(k)Li. (4.10)

The replacement of Ti(k) by Ti(k − h) reflects the driver’s slightly outdated perception,
i.e. when traveler makes a route decision, he/she considers the currently available travel time
information of the route options. However, the average travel time of the ith route always reflects
the state shaped by an antecedent traffic demand entered the network by time interval h before.
It practically means that travelers decide based on delayed travel time information. Therefore,
it is a reasonable operation to consider this delay in the utility function as well as in the urban
traffic dynamics.

If there is no road toll or it is uniformly applied as a fixed (i.e. time-invariant) toll for the
different routes, the traffic dynamics can be described as self-controlled system based on the
model Equations (4.6)-(4.10), i.e. in this case drivers make their choice to the best of their
abilities (knowledge on the traffic system) with cost parameter ci(k) = constant. Therefore, it
is practically a user self-controlled system which will be analyzed later by simulation.

To obtain better efficiency, the dynamic control system can be applied to represent a time-
variant toll function ϕ(Ti) as depicted in Fig. 4.3. T freei is an important point of ϕ(Ti), i.e. the
average travel time at free-flow traffic concerning the ith route:

T freei = Li

vfreei

(4.11)

where vfreei is the generalized average free-flow speed (km/h), i.e. an idealized case without any
congestion on the network. It is reasonable to apply a minimum and a maximum toll charge
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Figure 4.3. Toll function

(cmin, cmax) for the system. Of course, Tmaxi is a practical value to pair cmax and maximum
travel time can be infinite theoretically. According to Calfee and Winston [1998], transport
policy is resistant to use congestion tolls to minimize the social costs from urban congestion.
Therefore, a linear charging is considered model to find the short-term equilibrium. With the
increase of average travel time, the road tolls are increasing linearly. The determination of the
toll can be summarized mathematically as follows:

ci(k) =


cmini if Ti < T freei ,

ϕ(Ti) if T freei ≤ Ti ≤ Tmaxi ,

cmaxi if Ti > Tmaxi .

(4.12)

The previously introduced fixed and dynamic control schemes have a common drawback:
both are affected by the time delay of the available travel time information. Thus, a different
approach is needed which is capable to take into consideration the time-delayed system model.
For this purpose, MPC (Model Predictive Control), also called rolling-horizon control [Ma-
ciejowski 2002] can be applied as one of the most powerful adaptations for online optimization
with built-in predicitive modeling. At each time step, this receding horizon technique:

1. predicts the traffic conditions along a future time window based on the system model (even
with a time delay);

2. minimizes an a priori defined network-related performance index by finding the appropri-
ate control input; and

3. applies the first sequence of optimal decision variables.

Accordingly, the optimal control may take shape as a non-linear MPC (NMPC), where the
control inputs are computed by minimizing an objective function J(k) over the prediction horizon
K. This problem is formulated as a non-linear optimization task.

min
u(k+l−1)

J(k),

subject to u(k + l − 1) ∈ U,
x(k + l) ∈ X, l = 1, 2, . . . , K.

(4.13)

where U and X denote the constraint sets for control input vector u and state vector x , respec-
tively. J(k) is defined as a quadratic objective function

J(k) =
K∑
l=1

∥∥∥x(k + l)− xcrit
∥∥∥2

2
(4.14)
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Figure 4.4. Test network (area covered by the red arrow) in Budapest (Hungary), global posi-
tioning system: 47.438778, 19.043547

where xcrit represents the vector of objective values concerning the different MFDs (i = 1, 2, . . . )
(Fig. 4.2), i.e. the objective function intends to minimize state deviation from the optimal value
(xcrit).

xcriti = arg max
x

fMFD
i (x). (4.15)

The control input vector is composed of the binary control variable ui(k) (as defined by
Eqs. (4.8)-(4.9) which is dependent on the utility function µi(k) and µi(k) influenced by road
toll ci(k)

u(k) =


u1(µ1(c1))
u2(µ2(c2))

...
un(µn(cn))

 , i = 1, 2, . . . , n. (4.16)

J(k) is minimized subject to the constraints listed below:

• The non-linear difference equation of the state dynamics (originally given by Eq. (4.5))
concerning the ith route must be held during the NMPC optimization over the prediction
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horizon K :

xi(k + 1) = xi(k)− TfMFD
i (xi) + TQin(k)ui(µi(k)). (4.17)

• To ensure binary control input ui(k) ∈ {0, 1}, one should apply Eq. (4.9). However, it is
not a continuous formula; thus, cannot be directly applied for the NMPC solver. Hence,
an exponential formula is applied as non-linear equality constraint for ui(k):

ui(µi(k)) = eκµi(k)∑n
i=1 e

κµi(k) (4.18)

where κ is a weighting parameter. Via appropriately chosen κ , Eq. (4.18) only results in
values 0 or 1.

• Utility function is also given as equality constraint:

µi(k) = −αTi(k − h)− βci(k)Li. (4.19)

• ci(k) is also restricted as

cmin ≤ ci(k) ≤ cmax. (4.20)

• Optionally, it can be ensured that the optimal tolls do not differ too much from the
previously calculated tolls

|ci(k)− ci(k − 1)| ≤ δ (4.21)

where δ is a design parameter. Simply, Eq. (4.21) helps to avoid toll oscillation. It is
emphasized that the system model is applied to the consideration of the time-delay effect.
The control term in Eq. (4.17) is depending on the travel time estimates with delay h,
i.e. ui(Ti(k−h), ci(k)). Therefore, the NMPC solver must be configured such that it works
with delayed travel time Ti(k − h).

4.1.2 Application Example Using Real-World Traffic Network Data

For simulation purposes, a real-world network within Budapest was chosen (Fig. 4.4) as a realistic
study area. Traffic data of the test area was provided by the Centre for Budapest Transport
and Budapest Public Road Plc. This area perfectly reflects the problem illustrated by Fig. 4.2,
i.e. the corridor traffic between two specific city zones. Namely, the daily morning traffic from
the South to North (from the suburban directions toward the city center) flows via two route
options: route 1 or 2. The choice of this zone is also justified by the fact that VMS displays are
applied in the vicinity of the South traffic input point. Now, these VMSs provide the current
travel times of the two route options, i.e. the problem of this traffic zone is an existing issue. For
realistic simulation setup, the integrated multimodal transport model of Budapest was applied.
The distribution of input traffic demand is shown in Fig. 4.4. Also, for the determination
of the MFDs, real-world data were used obtained from loop detector measurements on the
two alternative routes ((Fig. 4.4). The MFDs were finally defined as fourth-order polynomial
functions with appropriate parameters A, B, C, D as follows:

fMFD(x) = Ax4 +Bx3 + Cx2 +Dx. (4.22)

In the literature typically second, third or even higher-order approximations are used for MFD
fitting, e.g. Keyvan-Ekbatani et al. [2014] or Csikós et al. [2014]. In the simulation study, fourth-
order polynomial was applied in order to better catch the dynamics of the traffic system. The
MFDs are shown in Fig. 4.5.

To run thorough simulation tests, a MATLAB/Simulink test environment has been realized
with 3 options for road pricing based control:
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Figure 4.5. MFDs of Route 1 and 2

1. Fixed (time invariant) control;

2. Dynamic control;

3. NMPC.

To simulate travel time Ti(k − h) for Eq. (4.19), a well-known exponential formula for the
macroscopic average speed was applied, proposed in the literature [Papageorgiou et al. 1990]
with model parameter a

vi(xi) = vfreei e
− 1
a

(
xi

xcrit
i

)a
.

(4.23)

The average travel time on the ith route was calculated in all simulation scenarios simply as
follows:

Ti(k) = Li
vi(xi(k)) . (4.24)

The simulation scenario with fixed control was basically created to mimic a human driver’s
behavior when on both route options fixed tolls are applied. In this scenario, it is assumed
that drivers simply choose the fastest route if the road toll is static. In the simulations, the
normalized road price was used (c1 = c2 = 0.5km−1) in order to avoid modeling real currency.
The utility was, therefore, calculated based on Eq. (4.10) with the fixed costs for route i = 1, 2
as

µi(k) = −αTi(k − h)− β0.5Li. (4.25)

The logic of the fixed control used in the simulation is as follows:

u1(k) =
{

1 if µ1(k) > µ2(k)
0 else

u2(k) =
{

1 if µ1(k) ≤ µ2(k)
0 else.

(4.26)

Then, the controlled input traffic flow of the ith route can be calculated based on Eq. (4.7).
The applied simulation scenario for dynamic control was modeled similarly to the fixed

control case with the only difference that dynamic prices were applied. By using the toll function,
defined by Fig. 4, the price of 1 km road usage was calculated as follows:

ci(k) =


cmin = 0.1 if Ti < T freei

ϕ(Ti) = mTi if T freei ≤ Ti ≤ Tmaxi

cmax = 1 if Ti > Tmaxi

(4.27)

where m is an appropriately chosen parameter, i.e. the slope of the linear function ϕ(Ti),
and T freei is the free-flow travel time defined previously by Eq. (4.11). Thus, the utility can be
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determined as given by Eq. (4.10) with the costs calculated in Eq. (4.27). The controlled input
traffic flow of the ith route can be finally given by Eq. (4.7).

The simulation scenario with NMPC was applied according to the Eqs. (4.13)-(4.21). The
applied solver for the NMPC optimization was borrowed from Grüne and Pannek [2011]. The
weighting parameter κ was 102. Both prediction and control horizon lengths were set to 6 in
the NMPC optimization.

To better understand the effect of time delay h on the network dynamics, a sensitivity analysis
was carried out. Simulations were run with three different time-delay values (h = 0, 2, 5, min)
on the three simulation scenarios defined previously. The results are compared through the
average speeds (see Table 4.1).

Control method h = 0 min h = 2 min h = 5 min
Fixed 30.4 29.3 26.5
Dynamic 30.7 (+1%) 29.6 (+1%) 28.3 (+3%)
NMPC 30.9 (+2%) 30.6 (+4%) 30.6 (+16%)

Table 4.1. Average traveling speeds (km/h) with different time delays (in parentheses the relative
changes are given compared with the fixed control case)

Figure 4.6. Traffic flows achieved with different control methods

The analysis clearly reflects the efficiency of the non-linear predictive control as NMPC incor-
porates the future modeling of states when calculating the actual control input. The evolution
of the aggregated traffic flows in the network (i.e. flows on route 1 and 2 are summed) for the
three different control cases are shown in Fig. 4.6. It is clearly observable that the maximal
throughput of the network can be guaranteed the best by the NMPC method.

In this study the effect of utility-based traffic control was demonstrated on a closed-loop
test system, which can provide an effective usage of road infrastructure without congestion.
Moreover, the time-delay effect in response to vehicle concentration has been investigated. The
simulation results showed that time delay causes oscillation on the route alternatives in case
of fixed and dynamic control. However, the NMPC method described is insensitive to delay
effect, and thus can be used as an efficient regulator type for utility-based traffic management.
Concerning the practical implications of the results, one can emphasize that the technology is
already given to apply dynamic road tolling.
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4.2 Dynamic Routing for Automated Public Transport Buses
Control for public transport buses is an important issue in order to improve service quality
[Polgár et al. 2013; Polgár et al. 2011a,b]. Control methods to avoid bus bunching are deeply
investigated in the literature [Varga et al. 2017, 2018b, 2020a]. However, the published methods
are based on fixed routes of buses. As a new approach, dynamic routing methodology is presented
for autonomous or highly automated buses that have to reach certain stops at given times. The
route choice process is based on minimizing a generalized cost function and also taking into
consideration the expected departure times from stops.

4.2.1 Routing Methods for Public Buses with Timetable-Based Operation

Central management of public buses is a general technology of our days: it is expected that
public transport vehicles are continuously monitored, and the drivers can be instructed real-time
depending on traffic conditions. Even though it would be possible, public transport vehicles do
not leave their predefined route. Therefore, the edge-cost dynamic routing method, introduced
in the dissertation, can also be applied to traditional vehicles as an on-board advisory system
followed by the driver before it is used in AVs. In these cases, it may be sensible to suggest the
”simplest path” (with as few turns as possible) instead of the shortest path so that the routing
information can be easily followed by the driver [Duckham and Kulik 2003].

In urban networks heuristic shortest path algorithms can be efficiently applied for routing.
As Fu et al. [2006] conclude, these algorithms can be generally classified into four strategies: (i)
limit the area searched, (ii) decompose the search problem, (iii) limit the links searched, and
(iv) combination of the previous methods.

When taking more objectives into consideration, Pareto optimization can be used to find
relatively fast the set of routes that are obviously better than the other options, since this requires
no objective aggregation which decreases the complexity of such algorithms. The longer the
computational time is, the more solutions can be found that represent all choices [Diakonikolas
and Yannakakis 2009]. But as Disser et al. [2007] state, even if the Pareto optima are found,
the search algorithms need more time to find a certificate that no further solutions exist.

4.2.2 Modeling Framework

This section introduces a routing approach that allows timetable-based automated vehicles to
travel on different paths between given points, minimizing the generalized cost of the route.
Between public transport stops, possible routes are modeled as a continuously updated weighted
directed graph. The weights represent relevant parameters of links, collected from surrounding
sensors and monitoring systems of the network. Route optimization is done by Yen’s algorithm
[Yen 1970].

The model uses a special edge-cost algorithm [Storandt 2012], generally it proposes the route
with the least generalized cost, but if the vehicle is late, it chooses the fastest way. The proposed
route planning methodology consists four main stages:

1. General preparation is to calculate offline as many steps as possible in advance to spare
computing capacity and data traffic. Between consecutive stops a subnetwork is deter-
mined, which is monitored if the vehicle has to find an alternative route. The subnetworks
are determined by the physical attributes of the vehicle and the streets, especially width
(narrow turns) and traffic rules (turn prohibitions and one-way streets). Expected depar-
ture times from stops are also collected and offline traffic models are prepared (see the
details below).

2. The sequence of stops is determined in advance, each station has to be reached at a
specific time. As the vehicle moves, the state of the subnetwork between the previous and
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the following stop is queried periodically and after each query the k-shortest paths are
calculated using Yen’s algorithm [Yen 1970] taking into consideration a generalized cost
that can be determined by the user depending on the relevant aspects of route choice. If
there are only fewer than k paths, then the calculation continues with this set of paths.

3. Travel times on these paths are calculated and paths exceeding the travel time limit (i.e. to
reach the next stop on time) are excluded. The path with the least generalized cost is
chosen from the remainder. If no paths among these k-shortest paths can guarantee the
arrival on time, another shortest path search is done based only on travel time, in order
to choose the fastest way to minimize delay.

4. Steps (2) and (3) are repeated until the next stop is reached. The whole process ends
when the last stop is reached.

The flowchart of the process is shown in Fig. 4.7.

Figure 4.7. The routing process

The route-search algorithm can be written as follows. Subnetwork G between stops s and
s+ 1 is considered as a weighted directed graph

G = (N,L,w) (4.28)

with N nodes and L links and a cost function w : L → R+, which gives each link (i, j) ∈ L a
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positive cost (i.e. weight): w(i, j) ∈ R+. Formally, the cost function is extended as

w : N ×N → R+ ∪ 0 ∪∞ (4.29)

with w(i, i) = 0 for all i ∈ N and w(i, j) = ∞ for all (i, j) 6∈ L. The chosen route is selected
by comparing paths x0l

p
1, x

p
1l
p
2, . . . , x

p
nl
p
n for i = x0 ∈ N to j = xn ∈ N in subnetwork (graph)

G from p = 1 to P , where P is the number of possible paths between i and j in subnetwork G.
The cost of path p is calculated as

Cp = w(x0, x
p
1) +

n∑
m=2

w(xpm−1, x
p
m). (4.30)

There are two types of costs calculated in the application example: a time cost (Cpt ) that
is actually the time needed to get to the next station and a generalized cost (Cpg ), which can
be determined by the user by combining relevant factors. In the example showed later in this
thesis, it is the combination of trip duration and trip length, but it can include numerous different
factors as well, e.g. monetary cost or the user satisfaction [Apáthy 2017], or even external costs,
such as consequences of air pollution on health [Jadaan et al. 2018]. As the first step of the route-
search algorithm the k-shortest paths (p = 1, 2, . . . k ∈ K) are chosen based on the generalized
cost (C1

g , C
2
g , . . . , C

k
g ). Then trip durations of these paths are calculated and those that exceed

the limit (tlimit) to reach the next stop on time are excluded. The alternative with the least
generalized cost is chosen from these remaining paths: min(Cpg ), p ∈ (P ∩K); Cpt ≤ tlimit. If
there is no path among the k-shortest paths that make it possible to reach the next stop on
time, another route search is done based only on time cost. In this case the shortest path of this
search is chosen: min(Cpt ), p ∈ P .

4.2.3 Application Example

The introduced routing methodology can be operated between stops of which the arrival and
departure times are previously determined. Therefore, the whole journey of the vehicle can
be divided into equivalent sub-processes between consecutive stops. In this example the route
planning methodology is shown between such two stops. The key point is that the vehicle cannot
leave any stop earlier as it is in the timetable.

A subnetwork is defined between each stop pair, in the example from stop 1 (S1) to stop 2
(S2). The vehicle departs from the starting stop and queries the state of the traffic on the links
of the subnetwork (see the black links in Fig. 4.8).

The k (in this case 3) shortest paths with the least generalized cost, A (dash-dotted line), B
(dashed line) and C (solid line) are queried and also the predicted arrival times are calculated
(see Fig. 4.9). The vehicle chooses the alternative with the least generalized cost if the arrival
is predicted on time. In this case, it is route A.

As the vehicle approaches the next node, it calculates again the 3 shortest paths in the
predefined subnetwork. In the example an incident occurred on the previously decided route
(marked with an ’x’ mark in Fig. 4.9), therefore, route A is no longer among the best 3 choices.
The new set of choices is B (dashed line), C (solid line) and D (dash-dotted line) of which the
only one predicting arrival on time is B, so the vehicle chooses this option, even if the generalized
cost of this route is not the lowest one. Note that as the vehicle approaches S2, the generalized
cost decreases in normal cases, since the values of distance and travel time left decrease (see
Fig. 4.9).

Then, the vehicle starts to move on route B and as it reaches the next node, it calculates
again the 3 shortest paths based on the generalized cost, checks predicted arrival times, excludes
alternatives with late predicted arrival and chooses the route from the remainder with the least
generalized cost. If there is no such route, a second shortest path search is done based only on
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Figure 4.8. The monitored subnetwork

Figure 4.9. First route choice (left) and second route choice (right)

travel time. The sub-process ends when the vehicle reaches S2. The whole process ends when
the vehicle reaches the final stop.

The introduced example has been extended and coded in Matlab software environment to
investigate the performance of the algorithm. The route search was done between S1 and S2 on
the same subnetwork as shown in Fig. 4.8. There was a reference route (route A in Fig. 4.9)
representing a traditional transport route when the path between stops is fixed and no deviation
is possible. The reference route has the lowest generalized cost and fastest travel time on an
empty network. Simulation runs started from S1 and lasted until S2 was reached. At the end of
each simulation run the generalized cost and the duration of the actually completed path were
compared to the measures of the original reference route. Overall 1100 scenarios were generated,
990 with regular traffic and 110 with an incident on the link marked with the ’x’ mark (4.9).
The scenarios were generated by assigning random numbers of velocity to links between a lower
bound of 3 m/s and an upper bound of 4 m/s, taking into consideration the average speed
of public transport buses in heavy traffic conditions in off-street areas [Oskarbski et al. 2015].
When an incident occurs the travel time on the marked link will be five times longer than as
usual. Velocity values were always re-generated after a vehicle reached the next node, therefore,
the state of the network changed dynamically.
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4.2.4 Simulation Results

Three aspects of the algorithm were investigated: (1) what is the effect of the number of shortest
paths searched on the simulation time and how does the (2) generalized cost and (3) travel time
of routes change compared to the predefined route with different weighting values α and β (see
the details later).

Having run the simulations for the generated scenarios with each k-shortest path values
from k = 1 to k = 20 the average run times are taken into consideration. Certainly, run times
depend on the complexity of the network. Therefore, a relative value of run times is generated
by dividing the average run time of case k(Tk) by the average run time of case k = 1(T1). The
average relative run times (T rk ) searching the k-shortest paths are generated as follows:

T rk = Tk

T1
(4.31)

where Tk is the average run time of simulations when k-shortest paths are searched and T1 is the
average run time of simulations when only the absolute shortest path is searched. The average
relative run times are shown in Fig. 4.10.

Figure 4.10. Average relative run times with different k values

The average relative run time is almost a linear function of the number of shortest paths
searched, therefore, the number of shortest paths searched can be decided arbitrarily based on
the performance of the computer when using the algorithm. In the example case, k = 3 is chosen,
because the size of the subnetwork is relatively small and computing with more alternatives does
not lead to better results, but in bigger networks it is worth to increase this number. The effect
of weighting factors α and β is investigated using k = 3 configuration.

The generalized cost function can be constructed by the user, depending on their preferences,
what factors they consider important. In the example case, it is constructed as follows:

Ci = αli + βti (4.32)

where Ci is the generalized cost of link i, li, and ti are the length and the current travel time on
link i, α[1/m] and β[1/s] are weighting factors of the lengths and travel times of links. In the
example the connection between the weighting factors is the following:

α+ β = 1. (4.33)

Eq. (4.33) is not necessary, α and β can be completely independent of each other, but it is
useful to have some constraints, because for example increasing both values simultaneously at
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the same time will not have any effect on the route choice. In the application example presented,
the lengths of links are shorter than 100 meters, whereas travel times are mostly between 25
and 33 s during incident-free conditions. So if the values of α and β are equal, then αli > βti,
i.e. the length of the link will have a stronger influence on the generalized cost. As α decreases
and β increases, the travel times of links will be more dominant. Certainly, travel time is also
in connection with the length of the link, but it is true for many factors that can be taken into
consideration, for example emission, tolls etc.

It should be noted that the overall computational time depends only marginally on the
complexity of the cost function. Analyzing the run time of the sub-processes results in that
calculation of the cost function takes only approximately 5% of the total run time. This does
not increase significantly even if more complicated objective functions are deployed. The most
time-consuming process is running Yen’s algorithm which takes 81.5% on average. The internal
processes of the software take the remaining 13.5% of the total simulation time. The effect of
weights on generalized cost and travel time were evaluated by comparing the cost of the route
the vehicle completed to the cost of the originally defined route by calculating with current travel
times in each period and the route lengths, which are permanent. By comparing the predefined
and the realized routes the costs can decrease, increase or stagnate depending on whether the
realized route has a lower, the same or a higher generalized cost than the predefined one.

Overall 1100 simulations were run, 100 with each 11 combinations of α and β for α = 1 and
β = 0 to α = 0 and β = 1 (see Figures 6 and 7). Both the generalized cost and the travel time
decreased in most cases with the combination of α = 0.1 and β = 0.9, a bit more than 50% of
simulations resulted in increased performance, however, in this case almost 20% of simulations
provided weaker results than without using the algorithm (see Figures 6 and 7).

Figure 4.11. Effect of weighting parameters on generalized cost (chosen route vs predefined
reference route)

As a general consequence using a practical engineering approach α = 0.5 and β = 0.5 values
seem to be a sensible compromise, since both the generalized cost and travel times improve in
about 30% of the simulations, whereas there are only 10% when performance decreases (see
Figs. 4.11 and 4.12). Nevertheless, the proper choice of α and β values is always in connection
with the characteristics of the actual network, e.g. topology.

The overall performance of the algorithm was compared to Dijkstra’s algorithm [Dijkstra
1959] which gives the basis of the method. The reference case was Dijkstra’s algorithm optimized
for travel time. The difference in travel times and covered distances of the proposed algorithm
and Dijkstra’s algorithm were analyzed during the 1100 simulation runs, the results are shown
in Fig. 4.13.

As the value of α increases (until α = 0.6), the proportion of simulation runs where the
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Figure 4.12. Effect of weighting parameters on travel time (chosen route vs predefined reference
route)

Figure 4.13. Performance compared to Dijkstra’s algorithm
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vehicle ran on a shorter route increases compared to the reference Dijkstra case. The reference
Dijkstra algorithm is based only on travel time, but the proposed algorithm also includes distance
during calculations, therefore, travel distance never increases. Note that the α = 0 and β = 1
case equals to the reference Dijkstra case, therefore, the two methods result in the same route.

There is only difference in travel times when the two algorithms suggest different routes,
i.e. the proposed algorithm suggests a shorter route. Travel time decreases in a bit less than
half of these cases, in the other part it increases. When a routing decision is made, the future
cannot be foreseen exactly, therefore, sometimes the proposed methodology, which is not clearly
optimized for travel time, results in a faster route than the Dijkstra case, which focuses only on
travel time. Certainly, when the vehicle is predicted to arrive late at the next scheduled stop
the proposed algorithm is also based only on travel time, which equals to the reference Dijkstra
case.

4.3 Wireless Traffic Signal Controller with Distributed Control
System Architecture

Traffic signals (also called as traffic lights) are control devices at road intersections or pedestrian
crossings to ensure safe and efficient traffic flows. The world’s first traffic light (with gas-lit
signals) was designed by J.P. Knight, a railway engineer, and launched in London in 1868.
Then, the first electric traffic lights, similar to today’s traffic signal heads, started operating at
the beginning of the 20th century in the USA. Since then, this technology has spread everywhere
especially due to the persistent expansion of road traffic. A signalized road junction basically
consists of a central controller unit, traffic signal heads, as well as electric power cables, realizing
a fully centralized system (Fig. 4.14). In this concept all signal commands are sent to the light
sources directly from the central controller unit by switching the corresponding relays. Hence,
the traffic lights are electrically energized according to the central controller’s command which
is a one bit information practically, i.e. current does or does not flow to the light sources. This
traditional concept has been in use from the beginning of the traffic light’s history, for more
than 100 years (the conventional architecture is depicted by Fig. 4.14. The technology of our
days, however, enables completely different system architecture for signalization in which the
signal heads can be controlled not only by simple electric power but via digital messages (which
is more than a single bit of information obviously).

Figure 4.14. The architecture of the traditional centralized traffic signal controller with pair
power cables to each light source

An innovative realization in this field is the CAN-communication (Controlled Area Network)
based traffic signalization which is just prior to practical introduction provided by the Swarco
Group [Swarco Group 2018]. Also, the Siemens company uses CAN interfaces for external
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communication for the control of motorway traffic management systems [Siemens AG 2019].
As CAN protocol has mainly been used in the automotive industry, it is a safe and reliable
technology for controlling signal heads as well. In the practical applications of [Siemens AG
2019], a central architecture is used where a main controller unit is in charge of control and
power switching respectively via CAN. In this setup the electric power for the light sources can
be supplied from the central controller unit (as conventionally used) or locally from the traffic
signal pole (the latter case is illustrated by Fig. 4.15.

Figure 4.15. The architecture of the CAN bus communication based (centralized) traffic signal
controller with a single CAN cable to each signal head (power supply is provided in the traffic
signal poles)

This technology naturally indicates that some logic is necessary at the signal head directly.
The digital information must be processed between the central unit and the signal head unit
(local controller). Thus, the light sources are controlled according to the relay switching of
the local controllers. Another unconventional approach is straightforwardly resulted from the
emergence of wireless communication technology, i.e. signal heads can be controlled without
direct physical connection to the central controller unit. Moreover, the advent of Autonomous
Vehicles (AV) make new technologies possible to be applied in traffic control. AVs need to
visually sense the signal heads to gather information of signal heads, or it can be provided via
wireless communication.

Figure 4.16. The architecture of the centralized wireless traffic signal controller (power supply
is provided in the traffic signal poles)

The basic concept of the wireless traffic light with central control system architecture (see
Fig. 4.16) has already been introduced by [Bo and Fusheng 2013; Thatsanavipas et al. 2011].
All these works presented a master-slave operation where a central controller (as a master
unit) controls all signal heads (slaves) through wireless data transmission (the electric power
is provided locally at each signal head). In this setup, again some logic is necessary at the
signal head level identically to the CAN bus based concept (presented previously by Fig. 4.15).
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Although these papers have shown the basic idea of wireless traffic lights, the presented concepts
rest on central control architecture and are limited in terms of reliable and safe engineering design
according to the standards of road traffic signal control.

4.3.1 Distributed Control Architecture for Traffic Light Controller

In practice, the traditional traffic light controllers work on the basis of a central control unit.
Similarly, the papers investigating the wireless concept [Bo and Fusheng 2013; Thatsanavipas
et al. 2011] introduced centralized control system (see Fig. 4.16). Although in their approach
some local processor is also applied at the signal heads, the control logic is operated in a strict
centralized way.

Figure 4.17. Distributed control architecture

Figure 4.18. The architecture (a) of the wireless traffic signal control with distributed control
system (power supply is provided in the traffic signal poles) and an example for the distributed
functioning (b) representing the common knowledge of the actual signal program

Identically to the notions used in control engineering, one can distinguish central and dis-
tributed system architectures for road traffic controllers as well. Centrality means that all infor-
mation about the system is gathered at a single point, where all the calculations are executed
based on this information. Contrarily, in a distributed realization the computational tasks are
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divided among the local units [Tettamanti and Varga 2010]. Distributed control scheme is de-
picted by Fig. 4.17 where u and x mean control and state signals, respectively for i = 1, 2, . . .M
subsystems. Moreover, communication among the controllers and among the subsystems are also
applied. Accordingly, a novel concept (the concept is under national trade-mark protection: [Hu-
jber et al. 2019]) is introduced for wireless traffic signalization with a clear distributed control
system architecture where the central controller unit is eliminated (see Fig. 4.18 (a)), i.e. the
local controllers of the signal heads shown in Fig. 4.18 correspond to the subsystems given in
Fig. 4.17. As an illustrative example, Fig. 4.18 (b) represents a case of a simple T-junction con-
taining three signal heads with three corresponding signal phases. The figure presents the basic
functioning of the distributed concept. Each signal head control unit knows the whole traffic
signal program and only uses its own phase. Furthermore, every unit is able to check the proper
functioning of the others (explained in detail in the sequel). The architecture of the distributed
traffic light is already presented in Fig. 4.18 with power supply provided in the traffic signal pole.
Traditionally, the electric power is typically supplied by the public electricity network for traffic
lights. However, as a new energy efficient approach solar power system can also be used. An
innovative concept of intelligent signal heads with wireless distributed traffic control has been
introduced first by Tamaskovics et al. [2016], where the energy consumption was served with
solar cells for each signal head. The intelligence means that the signal head is not only used
to show the specific signal but it also has an own logic that serves control and communication
tasks. The solution of Tamaskovics et al. [2016] is further developed in the sequel by directly
providing the main safety algorithms to ensure safe functioning even with wireless technology.
The concept is shown by Fig. 4.19.

Figure 4.19. Flowchart of the redundant functioning for distributed traffic signal control (the
picture considers only two signal head units for simplicity)

In order to make a consistent design of the distributed wireless traffic light and be technically
correct, all safety critical aspects must be properly addressed with respect to the technical
standards, i.e. the system must be able to ensure all safety functions given in Appendix G.
As the communication is wireless, the main guarantee for the fulfillment of all requirements is
the safe and reliable communication among the signal head units (see Figs. 4.18-4.19) and the
fail-safe event handling in case of communication loss. Therefore, the proposed control concept
is capable of handling the most critical situation, i.e. when any of the signal head units crashes.
A spectacular example for such failure is the situation when the signal head unit “freezes” due
software error, and thus the signal head cannot produce any light (or even the signal freezes as
well). In this case all units of the system must switch off immediately, including the “frozen”
unit. As a safe solution for this requirement a redundant control unit is applied in the system,
i.e. the solar power unit is not only responsible for power control but also constantly checks
the error-free functioning of the signal head unit. If a critical failure occurs, this redundant
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unit can interrupt the power supply between the battery and the signal head via an emergency
relay. At the same time, the remaining signal head units switch off automatically due to the
lack of communication from the crashed unit. The algorithm of this redundant safety process
is summarized by Fig. 4.20 Note that the figure only represents the case of two parallel signal
heads for simplicity. In the case of more units, every unit is involved in the communication
respectively. The communication depicted in Fig. 4.20 is quasi continuous, i.e. the exchange of
messages among the signal head units as well as that of between the solar power unit and its
related signal head unit must be repeated with high frequency. Of course, the proposed system
can be built without solar power system as well, e.g. by connecting to the public electricity
network. In this case, the safety function of the solar power unit can be substituted with a
similar control unit used for the cabled power supply.

4.3.2 The Base of Safe Distributed Operation

According to the standard EN 12675:2018 (Traffic signal controllers. Functional safety require-
ments. [CEN 2018a]) any signal state endangering the road traffic must be prevented during
operation, i.e. a safeguarding facility shall lead to a safe state of operation as defined in [CEN
2018a]. Beyond the typical hardware/software errors in the traffic light system, the distributed
architecture might also effect additional hazard for safe operation. Therefore, this necessitates
a different safety concept compared to that of the traditional road traffic controller.

Figure 4.20. Flowchart of the redundant functioning for distributed traffic signal control (the
picture considers only two signal head units for simplicity)

The distributed logic is ensured in a way that each signal head unit is identical considering
the hardware as well as the software. It also means that the units know the whole signal program
and this makes it possible that no central unit is needed to dictate the next signal states. The
sole master function dedicated to one of the units is the check and control of time synchronization
together with program change. If any of the units is delayed or is in hurry compared to that
master time, the master shall ensure synchronization. The program changes (e.g. when dynamic
signal programs are used) are also controlled by that master unit, i.e. after the confirmation
of all other units for program change (and the time of change), the master starts the program
change process. The master unit has no any other master function, i.e. every signal head control
unit has the same privilege. This also means that any signal head control unit can start a
fail-safe process in the case of failure. In order to make the distributed signal operation safe as
possible proper checks have to be performed prior to the physical signal visualization on the light
sources. Accordingly, every second (as the smallest discrete time interval in traffic signalization
is typically 1 second) just before the light switching each signal head control unit verifies and
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confirms if the following points (according to the requirements listed in the Appendix G) are
valid regarding the previous signal states:

1. no conflicting green signals;

2. no failure in safety timings (intergreen time or minimum green time);

3. no display of unintended signal and no failure in correct signal timing;

4. no failure in displaying of correct signal sequence.

On the one hand, the signal head units must go through the above checklist concerning itself
(for which no communication is needed with the other units). On the other hand, every unit
has to check the error-free functioning of all other signal heads in parallel based on the wireless
communication. Obviously, the frequency of the communication is critical in this checking
process. Beside the technical capability of the radio unit, one has to consider the standard
EN 50556:2018 (Road traffic signal systems [CEN 2018b]) which defines 7 different classes for
handling dangerous failures: from 100 ms up to 850 ms intervals. The time intervals defined
by the standard mean the maximum times from the dangerous signal is present until the state
has been removed. Accordingly, the safeguarding operation shall become active within 850
ms at most. This value has to be prudently considered when setting the frequency of the
communication for the distributed traffic signal control system.

4.3.3 Safety Analysis of the Fail-Safe Distributed Traffic Controller Using
Petri Net

Petri Net (PN) modeling is a powerful mathematical technique for the description of discrete
event dynamic systems [Peterson 1981]. Moreover, PN can be used for the analysis of safety-
critical systems. As a justification for practical applicability of the proposed distributed traffic
control system, the redundant operation (Fig. 4.20) was modeled by Petri Net. For this reason
PetriDotNet, a PN editor and analysis tool was used [Peterson 1981]. Fig. 4.21 shows the Petri
Net model of the redundant functioning for distributed traffic signal control.

The model only considers two signal head units for the sake of clarity. Nevertheless, the
same operation can be extended for further signal head units due to the identical safety protocol
of the units, i.e. any of the units can lead the whole system to a fail-safe state. The operation
modeled by Petri Net in Fig. 4.21 assumes periodic processes inside, i.e.

• SPU1 / SPU2 periodically checks the error-free functioning of SHCU1 / SHCU2,

• SHCU1 / SHCU2 periodically sends messages towards SHCU2 / SHCU1,

• SHCU1 / SHCU2 periodically receives and checks the messages from SHCU2 / SHCU1.

Based on the Transition-Invariants (T-Invariants) of the modeled Petri Net, one can justify
that the whole system goes to fail-safe state whenever a critical problem occurs in any of the
subsystems, i.e. any of the signal head control units fails or communication is lost among the
units of the system. The calculated T-Invariants simply showed that all firing series of the Petri
Net induced by any error result in the “Power OFF” state of both subsystem, i.e. SPU1, SPU2,
SHCU1, and SHCU2 are switched off. On the other hand, as the modeled Petri Net is deadlock-
free, it is confirmed that the proposed system might work infinitely if error-free operation is
guaranteed. Finally, the Petri Net based analysis also showed that the system is bounded (1-
bounded safe net) which means that the number of tokens is limited in the state space. Thus,
the state space is bounded as well.
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Figure 4.21. The Petri Net of the redundant functioning for distributed traffic signal control
(the model considers the operation of two signal head units)
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4.4 Contributions
Scientific contributions have been achieved in the field of traffic control. Traffic-responsive
control algorithms have been designed for private cars and public buses. Additionally, as a
practical result in this field, a novel concept for road traffic controller was developed realizing a
distributed control concept using wireless communication.

Thesis 3
I have developed a dynamic road toll based control technique for the traffic man-
agement problem of alternative routes using a nonlinear model predictive control
via the utility function of individual travelers. A methodology for dynamic, traffic-
responsive route planning of automated public buses has been elaborated to improve
the reliability of scheduling. I have developed an operational algorithm for wireless
and distributed road traffic controller capable of coordinated control of intelligent
units at individual signal heads without a central control unit. The practical, fail-
safe operation has been demonstrated by formal method.

Thesis 3.1

Dynamic pricing based control scheme has been elaborated for the problem of alternative routes.
The effect of utility-based traffic control was demonstrated on a closed-loop test system showing
its effectivness on congestion reduction. Moreover, the time-delay effect in response to vehicle
concentration has been investigated. The simulation results showed that time delay causes
oscillation on the route alternatives in case of fixed and dynamic control. However, the applied
nonlinear model predictive control method is insensitive to delay effect, and thus can be used
as an efficient regulator type for utility-based traffic management applying the following utility
function:

µi(k) = −αTi(k − h)− βci(k)Li, (4.34)

where Li is the length of the ith route Ti(k − h) is the average travel time of route i (where h
reflects the driver’s slightly outdated perception), and ci is the unit toll price.

Thesis 3.2

A dynamic, traffic-responsive routing methodology has been elaborated for automated public
transport buses allowing them to travel on not predefined paths between stops, minimizing the
generalized cost of the route. The routes between these fixed points have been modeled as
a continuously updated weighted directed graph. The weights represent relevant parameters
(e.g. length, fee) of links, collected from surrounding sensors and monitoring systems of the
network. Route optimization has been done by a k-shortest path search algorithm depending
on the timetable: if the vehicle will reach the next stop on time, the alternative with the lowest
generalized cost is chosen; else the fastest route is followed.

Thesis 3.3

Beside the development of control algorithms, I also worked out the background for a practical
application of control. A novel concept for wireless and distributed traffic control system has
been introduced, which enables that siganl heads of intersections are controlled without a central
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control unit. The system realizes a distributed control method based on the signal head control
units. The solution can reduce installation and maintenance costs, especially if electric power
supply is ensured by solar panels. As a justification for practical applicability and corresponding
to the relevant standards, the fail-safe and redundant operation of the proposed distributed traffic
control system has been modeled by a formal method (Petri Net).
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Chapter 5

Simulation Based Testing for
Automated Road Traffic

The continuous development of road traffic control systems is indispensable due to the increasing
demands. The control measures can be implemented in three different areas: on freeways, in
urban areas or in integrated networks (when the control of freeway and urban roads are managed
together). Traffic control strategies may consist of providing basic information (e.g. congestion
warning) or use complex logical algorithms realizing adaptive operations. The actuators are also
very heterogeneous, e.g. variable message sign, ramp metering, traffic light, intelligent on-board
system, route guidance, etc. In simple static systems (e.g. fixed time ramp metering), the control
strategy is realized based on historical measurement data. At the same time, in case of intelligent
traffic control the advanced use of informatics is evident. As consequence, when traffic engineers
design intelligent traffic control the help of specific computer tools are indispensable. The use
of traffic simulators and mathematical optimization software is more and more expected during
the development process and the validation phase as well.

5.1 Microscopic Traffic Simulation Practice Considering Auto-
mated Vehicles

Traffic simulation is the mathematical modeling of traffic dynamics through the application of
computer software to support planning, operation and development of transportation systems.
Simulation models can be classified into macroscopic, mesoscopic, and microscopic models ac-
cording to the level of detail [de Dios Ortúzar and Willumsen 2001]. Macroscopic models have
applications when detailed information about a single vehicle’s behavior is not required. It
only provides a general evaluation of traffic flows in a network. These models are often used
for regional transportation planning. Microscopic models describe each vehicle’s behavior and
interactions in the traffic system, making more detailed modeling for each movement of the
vehicle. For this reason, microscopic models can be applied with a much higher level of detail.
The microscopic model has the following advantages: by tracking a single vehicle on the road,
it can not only reflect the interaction between vehicles but also predict traffic performance indi-
cators such as vehicle travel time, delay and emission while avoiding the impact on actual road
traffic; through the microscopic simulation model, the impact of a specific parameter on traffic
can be reflected; through the animation interface of the simulator, one can intuitively visualize
the changes in road traffic, and provide a good platform for understanding the traffic operation
status under different traffic demands. It has superiority that traditional mathematical models
cannot match in describing and evaluating the traffic flow of the road network. Microscopic
models are becoming an increasingly important and popular tool in the transportation field.
It has been used for a wide range of applications in network design, analysis of transportation
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problems, the evaluation of Intelligent Transportation System (ITS), and traffic management
strategies formulation. Even though there is a large number of microscopic models, unfortu-
nately, none of them can be considered as an ideal or, at least, a universal one. It is mainly
because every model has different parameters to describe a different traffic situation and vehi-
cle behavior. The early research focused on maintaining the existing distance with the vehicle
in front [Ni et al. 2004]. Car-following models [Brackstone and McDonald 1999] are the most
popular approach to model the interaction between vehicles. Car-following theories examine
the longitudinal movement of each vehicle and are extended by lane-changing maneuver models.
With the development of computer science, the extension extends to the use of cell automation
and multi-agent systems. Continuing these efforts, the expansion was being conducted to get
a more realistic behavior model by adding a stochastic method for making decisions based on
a given environment of the road. Furthermore, the most adopted methodology is to apply the
Monte Carlo procedure to generate random values to show the driving behavior in traffic con-
ditions. The basic steps involved in the development are the same irrespective of the type of
model described above [Brackstone and McDonald 1999].

5.1.1 Microscopic Traffic Simulation Considering Autonomous Driving

Before the autonomous vehicles are officially launched into the market, it must be fully tested
in the different traffic environments, thoroughly verify the autonomous driving function, and
achieve collaboration with roads, traffic facilities, and other transportation participants. Val-
idation is a necessary step in the development and application of autonomous vehicles. The
research and development of autonomous driving systems have been developing rapidly, but
the industry and the governments have not yet reached a clear consensus on how to conduct
safety testing and reliable proving in the real-world. Because dangerous traffic scenes are diffi-
cult to exhaust, there are technical bottlenecks in scene-based actual vehicle testing methods.
According to statistics from the Federal Highway Administration (FHWA), a driver needs to
travel 850,000 kilometers on average to experience a police report accident and close to 150
million kilometers to experience a fatal accident. The industry generally believes that each au-
tonomous driving system requires 16 billion kilometers of driving data to optimize the system.
It would take about 50 years for a fleet of 1,000 autonomous driving test vehicles to complete
a sufficient mileage test. Therefore, the general consensus in the industry is that virtual test-
ing and evaluation of autonomous driving systems based on simulation technology is required.
Microscopic traffic simulation is widely used both by the traffic engineering industry and the
academia research community. In the traffic engineering industry, a microscopic simulation is
a powerful tool in transport development studies, feasibility studies as well as for concrete de-
velopment/construction of infrastructures. In research and development, it is used to study
traffic management and traffic estimation methodologies. Furthermore, in our days traffic simu-
lation is also applied in the development of autonomous vehicle systems beside vehicle dynamics
simulators.

Traffic simulation is a mature field; several microscopic road traffic simulators are available.
Each simulator has its own advantages and aims mimic realistic traffic based on car-following
models. Typical microscopic traffic simulators applied both in academic and industrial fields
are for instance Paramics, CORSIM, PTV VISSIM, or SUMO. It is significant to specify the
microscopic modeling issues of autonomous vehicles because automated functions truly affect
simulation results. The microscopic simulation software development is inevitable. The traffic
impacts of autonomous vehicles should be examined before its implementation. The safety,
mobility, and environmental sustainability of the AVs shall be checked. With the emergence
of AVs, new vehicle models are needed to simulate them, which means practically new vehicle
classes on the simulation software level. Besides, the connected autonomous vehicle (CAV) has a
promising prospect. To simulate CAV, Vehicle to Everything (V2X) communications technology
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also shall be considered. Traffic control features are also expanding. Specific autonomous driver
models of different manufacturers should also be implemented in software. There are currently
two ways to develop a microscopic traffic simulation model in software. The first way is that
the software developer tries to refine the model and features as much as possible. Another
is that the user of the software ”developes”. For example, they can apply their own vehicle
tracking model in traffic simulation applications (e.g. VISSIM API, SUMO TRACI interfaces),
or they fine-tune the default driver model to automation properly. The classical process of
traffic control development concludes data collecting, model development, and finally model
calibration. First, traffic engineers make manual traffic counts or get automatically measured
traffic data (i.e. detector data). Then, the microscopic simulation model can be created. The
last step is to calibrate the model with the data from the reference cross-sections of the test
field. When the reference traffic volumes are fixed, one can tune the model by modifying
the simulation parameters, such as the car-following model, turning rates or dynamic traffic
inflow. Validation ensures that the software represents reality at a satisfying confidence level
by comparing simulation results with real-life observation. Based on reference cross-sections
or full network parameters, the GEH-index based validation is applicable. The GEH index is
commonly used in traffic engineering, traffic forecasting, and traffic modeling to compare two
sets of traffic volumes. The formula used to calculate GEH-index is:

GEH =
√

2(M − C)2

M + C
, (5.1)

where M is the simulated data, and C is the real-world collected data. For traffic modeling,
a GEH of less than 5.0 is considered a good match between the modeled and observed hourly
volumes. 85% of the volumes in a traffic model should have a GEH less than 5.0. And the GEH
value generally should be smaller than 10.0. If the GEH is over 10.0, it is likely that the traffic
demand model or the measured data are biased. In practice, a lower GEH index is applicable
for smaller traffic volumes. Validation also varies from autonomous to highly automated vehicle
simulation. The GEH index is classically cross-referenced based on traffic volume. With the
appearance of AVs, the validation methodology should be extended. Appropriate statistical data
is required for different automated vehicles. The future outlook for the use of microscopic traffic
simulation is also required.

There are many speculations about the impact of autonomous vehicles on the transportation
system. Some researchers pointed out that AVs would reduce road congestion, greenhouse gas
emissions, economic loss and revolutionize the transportation system. Based on the above
background, to have a deeper understanding of the impact of the emerging autonomous driving
technology on the microscopic traffic simulation models, the traffic performance in the micro-
simulation technology was studied via the gap acceptance model parameter. With the help of
PTV VISSIM (as a high-fidelity microscopic simulation software) a detailed sensitivity analysis
was carried out to quantify the traffic performance under different model parameter settings.
The goal of the conducted simulations is to show that the common practice of traffic simulation
requires a thorough revision and modification when it is applied with the presence of autonomous
vehicles.

5.1.2 Simulation-Based Sensitivity Analysis of Model Parameters

The traffic flow model in PTV VISSIM is based on the work of Wiedemann, including a psycho-
physiological car-following model [Higgs et al. 2011]. To simplify the experimental model the
following assumptions were made.

• The traffic flow distribution of the road network remains unchanged. Although AVs can
obtain real-time vehicle status information on the road network and optimize vehicle flow

83



5. Simulation Based Testing for Automated Road Traffic 5.1. Traffic Simulation with CAVs

distribution on the road network, with the continuous development of intelligent trans-
portation systems, travel information services tend to be intelligent and dynamic. Travel-
ers can also obtain road network outbound information and optimize travel routes based
on a series of devices such as onboard networking equipment, smart navigators, and smart-
phones. Therefore, the impact of AVs is ignored in optimizing travel routes. That is, the
distribution of traffic flow in the simulated test network is unchanged.

• To simplify the simulation model, the impact of other vehicle types is ignored in the road
network since this study focuses on the urban network, and normally mostly passenger
cars exist on it.

• Since the current autonomous technology is still developing, and the relevant supporting
data is insufficient, the related parameter values in this research were set based on the
current theory of autonomous driving technology.

Traffic flow is defined as the interactions between travelers (passenger cars, pedestrians,
heavy-duty vehicles, etc.) and road infrastructure systems (traffic lights, traffic signs, etc.). AVs
have the following obvious advantages: smaller gap acceptance, shorter headway, no reaction
time in front of the signal system, maintenance of a constant desired speed, and stable accelera-
tion and deceleration. The main difference between the AVs and CAVs in the simulation study
was the selected parameters of the car-following model. The gap acceptance was chosen as a
main parameter to be changed due to the emerging autonomous driving technology. ”Standstill
Distance” represents the base value for the average desired distance between two stationary cars
in Wiedemann 74 model in PTV VISSIM. The default value is 2.0 meters for passenger vehicles.
In the simulations the following ”Standstill Distance” values have been investigated: 0.5, 0.75,
1.0, 1.25, 1.5, 1.75, 2.0.

5.1.3 Case Study

To analyze the changes in traffic performance, a typical signalized intersection in the city of
Hefei (China) was modeled as a simulation scenario based on an open database (OpenITS).
This network contains two arterial roads, Huangshan road and Kexue avenue. The test network
model was created in VISSIM. The detailed layout of the intersection is shown in Fig. 5.1.

Figure 5.1. The layout of the intersection
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To quantitatively analyze how the changes of the parameters due to the emerging autonomous
technologies affect the urban road network, signalized intersection scenarios were simulated based
on the different traffic demand conditions both in VISSIM as mentioned in the previous section.
The simulation time was set to 3600 seconds. The sensitivity analysis of the different gap
acceptance was carried out in the simulations. As commonly used indicators, mean speed and
average travel time were selected as evaluation indexes of traffic efficiency. In the vehicle network
performance evaluation results of VISSIM, the mean speed is defined as total travel distance
divided by total travel time (km/h). In VISSIM, the average travel time can be calculated from
total travel time divided by the total number of vehicles in the network. Fig. 5.2 shows the mean
speed and the average travel time measurements under different gap acceptances in VISSIM.

Figure 5.2. Variations of mean speed and average travel time

VISSIM shows a clear sensitivity to gap changes in the oversaturated traffic situation, espe-
cially when the gap changes from 2.0 meters to 1.75 meters. Both mean speed and average travel
time show significant fluctuation. Based on the sensitivity analysis of the given test intersection,
it has been demonstrated that the current simulation practice of traffic engineering needs change
due to the emerging presence of highly automated cars and soon the advent of fully autonomous
vehicles on public roads.

5.2 Online Calibration of Microscopic Road Traffic Simulator
Using Genetic Algorithm

Traffic simulation refers to the interaction of models describing the characteristics and behavior
of each vehicle unit in the transportation system via computer technology. Due to microscopic
traffic simulation has benefits on the low simulation cost, simulation without any risk, and
fast simulation run time, it has been intensively applied for designing and operation of traffic
management systems [Csiszár et al. 2020]. To provide a credible microscopic traffic simula-
tion, calibration must be performed to guarantee that the established model truly reflects the
real-world traffic situation. This process is generally implemented by comparing the field mea-
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surements to the corresponding simulation output [Hale et al. 2015]. Numerous studies have
yielded results in terms of providing credible methods such as trial-and-error methods, Genetic
Algorithm (GA), Simultaneous Perturbation Stochastic Approximation (SPSA) [Chu et al. 2003;
Ma et al. 2007]. Another part of the research focuses on the calibration process, a representative
one is the 7-step calibration framework proposed by Hellinga [1988] which many subsequent
studies were based on, e.g. Hourdakis et al. [2003]; Park and Schneeberger [2003]. Unlike the
research mentioned above using historical static data during the calibration process, the method
proposed in the sequel solely applies the previous simulation step output as initial data of the
next step to achieve the online calibration of the microscopic road traffic simulator, i.e. in this
way real-time traffic modeling can be realized based on online traffic sensor measurements.

5.2.1 Implementation of the Online Calibration

Microscopic traffic simulator calibration is performed by selecting one or more parameters and
then repeatedly comparing the measured data with the simulation output until the preset error
range is reached. This process can be seen as a complex optimization problem with huge
search space. There is no specific functional relationship between the fitness function and the
parameter to be calibrated in such kind of optimization problem, therefore, computing based
artificial intelligence, genetic algorithm was applied. The main advantage of GA is that it is able
to search solutions under multiple criteria, which increases the probability of finding a global
solution rather than a local optimal solution [Kyu-Ok and Rilett 2001].

Before using GA, the parameters to be calibrated need to be coded to obtain the individual
used in the algorithm, and the problem to be solved is transformed into the fitness function. Then
GA will find the individual with the smallest value of the fitness function, and then decode, get
the solution to the original problem. When calculating GA, starting from a randomly generated
population which is a group of individuals that corresponding to a feasible solution to the original
optimization, GA will compare the fitness value of each individual in each generation, and select
individuals with the smallest fitness value. Then, with the help of genetic operators, individuals
are selected to crossover and mutate to produce new populations. According to the survival
of the fittest law, individuals who are more adapted to the environment will be evolved. In
past researches, various fitness functions were used to minimize the discrepancies between field
measurement and simulation output, such as Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), Global Relative Error (GRE) [Ma and Abdulhai 2002], and GEH statistic (GEH
formula gets its name from Geoffrey E. Havers) [Paz et al. 2015]. In this research, the L∞-norm
of relative error is used to form the fitness function in the calibration process:

min
Q(k)

n∑
i=1

wwww F̄Measured
i (k)− F̄Simulatedi

(
Q(k)

)
F̄Measured
i (k)

wwww
∞

(5.2)

where:

• F̄Measured
i (k) is the average traffic volume of edge i from the ground truth at step k;

• F̄Simulatedi

(
Q(k)

)
represents the average traffic volume of edge i produced by the calibrated

simulator in the previous simulation time window k;

• Q(k) represents the applied calibration parameter.

During the microscopic simulation, driver behavior, traffic flow characteristics are described
by numerous independent microscopic parameters, and the different setting of these parameters
affect the simulation output a lot. Using the default model parameter settings will cause the
simulated output such as the vehicle number, lane occupancy, traffic density have large errors
compared with the measured values in the field. In order to eliminate the influence of these errors
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on the calibration process, simulated measurements based on real traffic data are used as the
ground truth which represents the field measures. In this study, ”Edge-Based” measurements
of SUMO, which simulate induction loop detector measures are used as ground truth. The
simulation output in SUMO for the same edge can be aggregated to generate the performance
measures, that is ”Average traffic volume (veh/h)”.

The microscopic traffic simulator online calibration based on GA follows the subsequent
steps:

• Define the research objectives and the overall framework;

• Data collection and preprocessing;

• Create microscopic simulation model;

• Model error review and correction;

• Online calibration using GA;

• Results analysis;

• Final report and technical documentation.

Microscopic traffic simulation usually requires several inputs: road static geometric data
(road length, the number of lanes, etc.); traffic control data (signal control schema, right of
way rules, prohibiting left turn, etc.); dynamic model demand data (flow, turning rate, etc.);
calibration data (capacity, travel time, average speed, etc.).

Microscopic traffic simulation modeling is usually divided into several parts, first establishing
a static road network and then setting traffic control rules. On this basis, fuse the traffic demand
and other network operation data. After the model was established, error checking and the
correction needs to be implemented to make sure that the established model truly reflects the
field traffic situation.

The main steps of the model calibration include selecting a few finite key parameters and
importing them into the model for a large number of simulations. By comparing the simulated
data with the measured data, the optimal values of the selected parameter are finally filtered
out.

During the analysis, model calibration work is obtained through a large number of iterations.
The representative parameter values are summarized and analyzed, so that the feedback of
model calibration work on the practicality of model parameters itself can be completed, which
has positive practical significance. Fig. 5.3 shows the whole calibration framework.

The whole calibration process was implemented through the Distributed Evolutionary Al-
gorithms in Python (DEAP) [Rainville et al. 2012]. The core of GA is three operators, namely
mutation, crossover and selection, each with its own characteristics, which can be used to gen-
erate new individuals in different ways. The general rule of the mutation operator is that it
involves only one individual, where a part of its genes will remain unchanged whether the rest
genes accept the change (mutation). Two kinds of mutation were proposed in this research
(Gaussian mutation and Uniform mutation). The Gaussian mutation generates a random num-
ber obeying the normal distribution with a mean µ and a variance σ to replace the real number
in the original gene. The Uniform mutation replaces the original gene value in the individual
with a random probability that matches a uniformly distributed random number within a cer-
tain range. The rate of mutation determines the magnitude of the individual change that will
result in the mutated individual that constitutes the next generation of individuals. To avoid
random search, the small mutation rate was suggested, while the mutation rate that is too small
may hardly change individuals, leading to very slow convergence.
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Figure 5.3. Online calibration framework

The general rule of crossover operators is that they will combine the genes of two or more
individuals. The crossover operation can be performed in several ways (two-point crossover,
binary crossover, uniform crossover), here executes a blend crossover. This operation is a linear
combination of two parents xi and yi. The operation is initialized by choosing a uniform random
real number from the interval [min(xi, yi)− α

∣∣(yi − xi)∣∣,max(xi, yi) + α
∣∣(yi − xi)∣∣], where α is

the positive real parameter, α = 0.1 is selected in this research.
In the evolution process, individuals that are more adaptable to the environment will have

more opportunities to inherit to the next generation, the selection operator used to imitate this
process. There are several selection strategies: Roulette Wheel selection, Stochastic Universal
Sampling, Tournament selection and Boltzmann selection. Due to the high efficiency and easy
implementation of the tournament selection algorithm, it is the most popular selection strategy
in genetic algorithms. The strategy is also very intuitive, extract n individuals from the entire
population and let them compete, then extract the best individuals among them. Since the
first selection is made without considering the fitness values, weak individuals can survive until
the next generation, which is good for genetic variability, high values of tournament size can
compromise variability, where low value can approximate to the random selection. The number
of individuals participating in the tournament becomes the tournament size. Table 5.1 shows
the applied genetic operators.

5.2.2 Case Study

To evaluate the proposed calibration algorithm, a network based on an open database (OpenITS)
was generated in SUMO traffic simulator. Related traffic data was obtained considering a one
hour interval of the morning peak, from 7:00 to 8:00 on March 26, 2015. The field traffic flow
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Table 5.1. The genetic operators

genetic operators method parameter

mutation Gaussian mutation µ=0, σ=5

Uniform mutation lower bound=1,
upper bound= 200

crossover blend crossover α = 0.1
selection tournament selection tournament size=3

data were aggregated into 300 seconds count. The reliability of microscopic simulation is based
on the accuracy of input data, so the investigation of field traffic data should be detailed. In the
research the open data of an intersection of Ningxi Road and Xingye Road was used, the main
road in the Xiangzhou District of Zhuhai City (China) as an example.

5.2.3 Calibration Result Verification and Analysis

In multiple simulation steps, it was possible to converge the vicinity of the above solution within
30 generations. The change of the fitness function value can be observed in Fig. 5.4.

Figure 5.4. The variation of fitness function value

The average traffic volume, (i.e. flow) of the simulation time interval on each edge in the
network was measured. Fig. 5.5 depicts the traffic flow from four directions. Edge based mea-
surements of the simulation output based on the real traffic counts is taken as the default value
(represented by ”Ground truth”), and the result of simulation calibrated output (represented by
”Calibration output”) are compared. The Mean Absolute Percentage Error (MAPE) was used
as validation criteria for the proposed calibration framework, the results are shown in Table 5.2.

Table 5.2. The calibration results

North East South West
Total traffic volume
of ground truth (veh) 3154 9024 13756 10777

Total traffic volume of
calibration output (veh) 3250 9972 13131 11888

MAPE (%) 3.03 10.51 4.55 10.31

The smallest difference of total traffic volume between ground truth and calibrated output
occurred in the North direction of the intersection which was 3.03% and the mean absolute
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Figure 5.5. The comparison of the traffic volume

percentage error in each direction of the intersection was less than 11%. As Fig. 5.5 shows,
the discrepancy in the East direction was a bit bigger than other directions, which probably
caused by the non controlled edge on the network. Vehicles operating on the edges belonging to
the East direction showed more stochastic behavior due to the existence of the right turn lane
(which is not controlled by traffic signal).

5.3 Co-Simulation for CAV Testing with Traffic Simulation
Autonomous driving and related intelligent infrastructure developments open immense possibili-
ties for scientific and technological advance. Beyond the liability issues [Bartolini et al. 2017], the
main condition of practical deployment is, however, the proper and reliable functioning which
is guaranteed by continuous testing and validation in engineering practice [Szalay et al. 2018].

An important possibility for AV development is the Vehicle-in-the-Loop (ViL) testing. There
exist several traffic simulation software capable to mimic realistic dynamics. This opens the way
to insert the self-driving test car into the virtually generated traffic system. The option of adding
autonomous vehicle models to the traffic simulator already exists (e.g. PTV VISSIM). However,
the usual approach today is limited to fully virtual testing, i.e. no real control of autonomous
vehicle functions and behavior implemented (only inserting virtual autonomous vehicles into
traffic simulators).

One of the greatest advantages of this ViL testing method is cost-effectiveness. Obviously,
there is no need to build traffic systems, only the test vehicle must have the software and
hardware to process the data of virtual traffic. It is also important to emphasize the safety of
simulations, since during the experiments the physical safety of the participants or the proper
functioning of a real transport system are not endangered.

The testing and validation structure for autonomous vehicles can be defined as a 5 layer
pyramid depicted by Fig. 5.6 (source: Szalay [2016]). It is emphasized that the first 3 layers
might efficiently use the opportunities of ViL testing, i.e. the phases of Simulation, Laboratory
Testing as well as Proving Ground Testing will benefit from the advantages of microscopic
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ViL testing
opportunity

Figure 5.6. Autonomous vehicle testing and validation layers

traffic simulations. In the sequel, the problem of interfacing traffic simulation is introduced in
the context of ViL testing of autonomous vehicle technologies.

5.3.1 Integrated VISSIM-MATLAB Environment

One of the proposed simulation environment is based on PTV VISSIM, a microscopic traffic
simulation tool. The goal of the microscopic modeling approach is the accurate description of the
traffic dynamics. Thus, the simulated traffic network may be analyzed in detail. The simulator
uses the so-called psycho-physical driver behavior model developed originally by Wiedemann
[1974]. PTV VISSIM is widely used for diverse problems by traffic engineers in practice as well
as by researchers for developments related to road traffic.

PTV VISSIM offers a user friendly graphical interface (GUI) through of which one can design
the geometry of any type of road networks and set up simulations in a simple way. However,
for several problems the GUI is not satisfying. This is the case, for example, when the user
aims to access and manipulate VISSIM objects during the simulation dynamically. For this end,
an additional interface is offered based on the COM (Component Object Model) technology
enabling interprocess communication between software Box [1998]. The VISSIM COM interface
defines a hierarchical model in which the functions and parameters of the simulator originally
provided by the GUI can be manipulated by programming. It can be programmed in any type of
languages which is able to handle COM objects (e.g. C++, Visual Basic, Java, etc.). Through
VISSIM COM the user is able to manipulate the attributes of most of the internal objects
dynamically. The first step of a COM based simulation is to create the COM client. Then, one
can realize the parts or even the whole process of the simulation.

As further possibility Dynamic Link Library (DLL) interface programming is also available
for specific parts of the simulator. The APIs (Application Package Interfaces) for this option is
provided by the VISSIM software manufacturer written in C++ language. This allows flexibility
for the user as one may freely create own developments for the simulations. On the other hand,
the simulation run is much faster by using self-developed DLLs for some specific parts compared
to the the same simulation controlled by COM interface programming. VISSIM DLL interface
programming is available for driver model, emission model, signal control and toll pricing.

VISSIM GUI provides several possibilities to choose for simulation of traffic controllers. In
case of static control, the logic can be easily defined by using the Fixed time module. Fixed
time signal controller is available for editing directly through the VISSIM GUI. In addition, one
can design phase-based and stage-based signal plans. User may design actuated control with the
VAP (Vehicle Actuated Programming) module allowing to create arbitrary logic. The module
is programmable by the VAP language or flowchart editor (VISVAP) provided by VISSIM. The
option of External signal controller may be chosen as well through of which user-defined signal
control can be used. In this case, however, user has to apply the Signal Control API. Hence,
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by using the object oriented C++ language more complex logics can be resulted compared to
VAP. Beside the previous options VISSIM offers further control modules which are commercial
products adapting to the market demands (e.g. SCATS, SCOOT, SIEMENS VA, LISA+).

To create complex signal control logic one can use VISSIM COM interface exploiting the
advantages of the current programming language. By using the attributes of the SignalGroup
interface of VISSIM COM, one can realize arbitrary signal control. For example, attribute
STATE is able to set any signal state (red, red-amber, green, etc.) on the signal heads at any
time.

If one wishes to design logic through VISSIM COM interface Fixed time controller type
should be chosen. In this case, Fixed time module can be used also for adaptive control as at
the end of each control interval the states of all signal groups can be redefined based on the
user-defined logic. Except the Fixed time module, in case of the other control types (VAP,
External, etc.), it makes no sense to manipulate the signal control via VISSIM COM if they are
designed and used in a standard way.

Another possibility to create own control logic is the programming of the VISSIM API which
provides an advanced application. One may choose the External type controller which allows to
connect external control to the simulator through the Signal Control API. By using this method,
separate DLL file must be defined for each Signal Controller which is called at each controller
time step (1 sec by default) during the simulation. When the simulator contacts the DLLs the
current signalization states and detector data are passed to the corresponding DLLs. Then, by
using the acquired data, DLL files calculate the new desired signal states which will be passed
back to the simulation. Depending on the settings, either the new signal states are applied
immediately, or transition signal states (amber, red-amber) are used first automatically.

According to the above described opportunities, VISSIM COM (Component Object Model)
interface and VISSIM API (Application Package Interface) programming can be efficiently used
for customized ViL testing. At the same time, it may worth making calculation by other software
concerning some specific parts of the simulation. In case of optimization procedures, for example,
the user does not necessarily need to know the optimization algorithm in detail to use it right.
Thus, by using specific mathematical software, lots of energy and time can be saved compared to
the realization by programming. To exploit other software’s functionality for VISSIM the main
precondition is the online availability and communication during the simulation. Therefore, as
further possibility, the use of MATLAB is proposed to assist VISSIM simulation. MATLAB can
be controlled through COM interface similarly to VISSIM. Therefore, MATLAB may be used as
a programmable mathematical subroutine library by programming the MATLAB Engine API
[MathWorks 2010].

5.3.2 SUMO TraCI Interface for Co-Simulation

SUMO is an open-source microscopic continuous traffic flow simulation software developed by
the German National Aerospace Center in 2001 [Krajzewicz et al. 2012]. It comes with a road
network editor, which can add roads through interactive editing, modify the connection relation-
ship of lanes, edit signal control schemes. The road network from VISSIM, OpenStreetMap, and
OpenDrive can also be imported into SUMO through a separate conversion program. One can
specify the route of each vehicle by editing the route file or using parameters to generate ran-
domly. It also provides a visualization terminal based on OpenGL to display traffic simulation
results in real-time. Recently, SUMO has also applied to the simulation of autonomous driving,
providing random and complex dynamic environments. SUMO is embedded with a variety of
car-following models; the default one is the Krauss model.

SUMO offers XML based configuration through of which one can design the geometry of any
type of road networks and set up simulations in a simple way. However, for several problems
this option is not satisfying. This is the case, for example, when the user aims to access and
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manipulate SUMO objects during the simulation in a dynamic way. To this end, an additional
interface called Sumo TraCI (Traffic Control Interface) [Wegener et al. 2008] is offered based on
TCP communication which can be programmed in several languages (e.g. Python, Matlab, Java,
etc.). SUMO TraCI allows to control and modify a simulation process online. It also enables to
retrieve information from any of the elements of the simulation network, such as vehicles, road
links, junctions, traffic lights, etc.

A SUMO TraCI based application example for co-simulation realizing ViL testing is intro-
duced in details in Appendix H.

5.4 Design of a Novel Road Traffic Control System for Zala-
ZONE Proving Ground

In this part the basic concepts for felxible road traffic control are introduced, specifically de-
veloped for ZalaZONE Proving Ground where 7 junctions at the Smart City Zone and 3 in-
tersections at the University Test Track will be signalized. Obviously, the methodology can be
adopted for any other test tracks or even for real-world traffic control system.

5.4.1 New Challenges of Traffic Light Controllers

Until now all realizations of traffic lights have been based on the fact that traffic signals are
perceived by human drivers exclusively. Therefore, all relevant standards prescribe the technical
requirements according to the capability of human perception, e.g. traffic lights’ radiation angle
[CEN 2015] or the position and number of traffic signal heads at the road crossing.

With the presence of automated cars the time has arrived to basically reconfigure and re-
think the classical approach concerning the production and operation of traffic light controllers.
The goal of this technological revolution is the cooperation between the traffic controller and
the vehicles, i.e. V2I or I2V based technologies. This can be realized in one-way or two-way
communication:

1. Traffic light controller provides messages to road vehicles which process the received in-
formation for their own purposes.

2. Road vehicles communicate information to traffic light controller.

3. The communication is bidirectional between the traffic controller and the vehicle.

In relation with the wireless technology, the technical specification for Signal Phase and Time
and Map Data (SPaT/MAP) [Group 2015] must be considered in future traffic controller design.
SPaT/MAP offers a potential channel for detailed information exchange between traffic systems
and road users. Based on SPaT data the vehicles (or drivers) can be informed about the current
status and change of the traffic signal ahead as well as about the next signal stage change. It
also provides information about approaching traffic to optimize the signal system. MAP data
describes the physical geometry of one or more intersections. In connection with SPaT/MAP
the ISO/TS 19091:2017 norm [CEN 2017] is also important to mention as it defines the message,
data structures, and data elements to support exchanges between the roadside equipment and
vehicles.

The guidance of the SAE International is also worth mentioning [SAE International 2016].
Under the code SAE J2735_202007 the Dedicated Short Range Communications (DSRC) Mes-
sage Set Dictionary was published. The aim of this document is to provide a message set, and
its data frames and data elements, specifically for use by applications intended to utilize the 5.9
GHz DSRC for wireless access in vehicular environments.
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5.4.2 Traffic Control System Design for Test Track

The aim of the planned road traffic control is to enable a flexible system such that traffic signal
heads (vehicle, bicycle, pedestrian and auxiliary signals) can be controlled even separately and
freely during vehicle tests. The control of all traffic light controllers of the 7 junctions at the
ZalaZONE Smart City Zone and that of the 3 traffic light intersections at the University Test
Track shall be made available by means of a central control software running in a cloud system.
The basic concept of the system is illustrated in Fig. 5.7 where each traffic lights as well as traffic
signal heads can be arbitrary controlled. A more specified architecture is shown by Fig. 5.8.

Figure 5.7. Overview of the ZalaZONE traffic light control system

The central software controls the traffic light system via an open source API. The control
center shall be made available to external systems via an open source API too.

Figure 5.8. System architecture of the traffic control

The main requirements for the control system is defined as follows. The traffic light control
system shall be freely programmable. All safety systems common in road traffic management
systems (and required by standard) shall be deactivatable (when deactivated, there is no inter-
green time matrix, no green conflict monitoring). The central control software shall also ensure
that the signal heads are accessible at all times for verification: the software shall continuously
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check that the predetermined signal phases (even if intentionally irregular for testing purposes)
are displayed on the light points and that the LED bulbs are not broken down. The control
center has three control modes:

1. Signal Control Script:
Operation according to a predefined sequence in a script file (a case of this is the conven-
tional fixed-time program protected by intergreen time matrix).

2. Signal Control API:
Control implemented by commands from an arbitrary program (e.g. Matlab or Python
script) via open API.

3. Signal Control GUI:
Control can be realized via a GUI. In practice, it means an arbitrary modification of the
currently running program.

The hierarchy between the 3 control modes follows the following sequence. A Signal Control
Script based control (1) can be overwritten by logic (2) via the Signal Control API or modified
by control (3) via the GUI at any time. Additionally, a Signal Control API based control (2)
can only be overwritten by an intervention through the Signal Control GUI (3).

In the designed system the following access levels are defined for users. Access level ”admin”
denotes access to every function and the development environment. Access level ”tester” means
access to every relevant function. Access level ” researcher” is the access to every function.
Access level ”demo/viewer” means access to limited functions.

Along with the traffic control system design a simulation environment is also prepared for
the digital twin realization, see Appendix I.
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5.5 Contributions
Scientific contributions have been elaborated in the field of automated vehicle testing and au-
tomated traffic system testing. Novel methods have been developed to support co-simulation
opportunities with real-world or virtual objects. Additionally, a framework is elaborated which
enables to generate surrounding traffic around a given test vehicle.

Thesis 4
I have developed methods including microscopic traffic simulation to support the
testing of vehicle and traffic developments related to automated functions, where
the traffic simulation can be interfaced with other simulators in a flexible and syn-
chronized way. In this system I have elaborated a genetic algorithm based calibration
method which can be used for the real-time tuning of traffic simulation in case of
real-time traffic measurement. I have also designed a special traffic control system
for traffic lights, specifically for testing and proving activities of automated traffic
and vehicles.

Thesis 4.1

Based on sensitivity analysis I have demonstrated that the common practice of microscopic
traffic simulation needs thorough revision and modification when it is applied with the presence
of autonomous vehicles in order to get realistic results. To show the sensitivity of microscopic
simulation to automated vehicle’s behavior I applied validated traffic simulator (PTV VISSIM).

Thesis 4.2

I have elaborated the online calibration of microscopic traffic simulation based on genetic algo-
rithm. Practically, a digital twin of the real-world road traffic can be mapped, which can be
useful in automated vehicle testing or proving processes. The L∞-norm of relative errors was
used to form the fitness function in the genetic algorithm based calibration process:

min
Q(k)

n∑
i=1

wwww F̄Measured
i (k)− F̄Simulatedi

(
Q(k)

)
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i (k)

wwww
∞

(5.3)

where F̄Measured
i (k) is the average traffic volume of edge i, F̄Simulatedi

(
Q(k)

)
is the average traffic

volume of edge i produced by the simulator, and Q(k) is the parameter to be calibrated (traffic
inflow).

Thesis 4.3

A special framework has been developed in which road traffic simulators (such as PTV VISSIM or
SUMO) can be co-simulated with real-world and/or virtual objects resulting in a mixed-reality
system. Via the developed framework it is possible to carry out flexible Vehicle-in-the-Loop
testing of automated vehicles such that the surrounding traffic of the test vehicle is virtually
created in a synchronized way based on validated traffic simulation.
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Thesis 4.4

I designed a special traffic control system applicable on automotive proving ground to realize
fully flexible and customized testing with automated vehicles and intelligent infrastructure. The
system is designed to provide several control levels for traffic lights based on the concept of cloud
based remote control.
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BME Közlekedés- és Járműirányítási Tanszék, 2020. TAMOP-4.1.1.C-12/1/KONV-2012-
0002;
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Chapter 6

Conclusions

It is a fact that automated vehicles will replace conventional human driven vehicles in the next
few decades. Although there is a plenty of open questions, the emerging autonomous driving
technology will definitely bring a massive transformation in the road transport sector soon.
Due to the high complexity of transport systems, efficient traffic estimation, traffic control and
vehicle/traffic simulation techniques are critical to deal with this disruptive change.

In the dissertation, advanced methods and methodologies were presented as potential can-
didates for practical applications in a new era of urban road traffic engineering with the ap-
pearance of automated vehicles. My research results are concluded in four distinct theses. The
main results can be summarized as follows. I have introduced advanced and cost-effective traffic
estimation methods which can be directly applied for traffic system operation purposes. I have
analyzed the impact of automated driving to the conventional traffic system, and based on the
simulation results I proposed an update to the traditional macroscopic fundamental diagram. I
have developed dynamic control schemes for private cars and public buses as well as I have elab-
orated the concept for the distributed road traffic controller. I have worked out methods that
enable the real-time application of microscopic traffic simulation for automotive tests through
digital twin and co-simulation techniques. Finally, I designed a novel concept for flexible traffic
signal control system which is applicable on automotive test track.

Throughout my research, I have always kept in mind that theory should meet practice. Ac-
cordingly, the solutions presented in the dissertation can be used both as practical methodologies
and as concrete practical applications. I have also prepared the achieved results as algorithm
implementations using a combination of validated mathematical and traffic simulation software
tools. These algorithms were verified through real-life examples to highlight their usability. The
practical applicability is also demonstrated by two patents of mine and my developments directly
related to the innovation activities at the ZalaZONE Automotive Proving Ground.
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Appendix A

Kalman Filter

Kalman [1960] published a novel solution to the linear filtering problem. The recursive solution
algorithm provides an efficient estimation of dynamical systems with noisy inputs. The method
is introduced below for the case of a general discrete LTV system.

Let us consider the state and measurement difference equations of a discrete LTV system:

x(k + 1) = A(k)x(k) +B(k)u(k) + v(k), (A.1)
y(k) = C(k)x(k) + z(k). (A.2)

x(k) ∈ Rn denotes the state variable of the system, u(k) ∈ Rm the deterministic control input,
and y(k) ∈ Rp the measurements. The system is given with known and constant system matrices;
A(k) ∈ Rn×n, B(k) ∈ Rn×m, and C(k) ∈ Rp×n. State noise v(k) and measurement noise
z(k) are both stochastic signals having zero mean Gaussian distribution, i.e. E {v(k)} = 0 and
E {z(k)} = 0. The noise covariances and are assumed to be known:

Rv(k) = E
{
v(k)v(k)T

}
, (A.3)

Rz(k) = E
{
z(k)z(k)T

}
. (A.4)

The covariance matrices may change at each time step. They express the measure of the distur-
bances in Eq.(A.1) and (A.2). It is also assumed that there is no correlation between the state
and measurement noise, i.e. E

{
v(k)z(k)T

}
= 0 and E

{
z(k)v(k)T

}
= 0, respectively.

Denote x̂−(k) the a priori and x̂(k) the a posteriori state estimation. Accordingly, the
estimate errors can be defined:

e−(k) = x(k)− x̂−(k), (A.5)
e(k) = x(k)− x̂(k). (A.6)

Moreover, the a priori and a posteriori estimate error covariances can be given as

P−(k) = E
{
e−(k)e−(k)T

}
, (A.7)

P (k) = E
{
e(k)e(k)T

}
. (A.8)

The Kalman Filter can be formulated in a single linear equation as follows:

x̂(k) = F (k)x̂(k) +G(k)y(k) +H(k)u(k), (A.9)

where x̂(k) indicates the statistically optimal estimate of the underlying system state x(k).
F (k), G(k) and H(k) denote the system matrices. Basically, Kalman Filtering represents a
minimum mean square error estimation vie the minimization of P (k) (under the assumption
that E {e(k)} = 0 for all k).
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A. Kalman Filter

F (k), G(k) and H(k) can be given in compact forms [Lantos 2001, 2003]:

F (k) = (I −G(k)C(k))A(k), (A.10)
H(k) = (I −G(k)C(k))B(k). (A.11)

Therefore, only G(k) has to be determined. For this reason, the calculation of a priori state
x̂−(k) is given at time step k:

x̂−(k) = A(k − 1)x̂(k − 1) +B(k − 1)u(k − 1). (A.12)

The a priori estimate error covariance is defined as:

P̂−(k) = A(k)P (k)A(k)T +Rv(k). (A.13)

Moreover, the a posteriori state is calculable as follows:

x̂(k) = x̂−(k) +G(k)(y(k)− C(k)x̂−(k)), (A.14)

where G(k) denotes the Kalman gain which intends to minimize P (k). The Kalman gain is
given as follows:

G(k) = P̂−(k)C(k)T (C(k)P̂−(k)C(k)T +Rz(k))−1. (A.15)

Finally, the a posteriori estimate error covariance is formulated as:

P (k) = (I −K(k)C(k))P̂−(k). (A.16)

According to the above, the linear Kalman Filtering can also be summarized in the well-know
two-phase algorithm:

1. Prediction (time update between measurements):

x̂−(k) = A(k − 1)x̂(k − 1) +B(k − 1)u(k − 1), (A.17)
P̂−(k) = A(k)P (k)A(k)T +Rv(k). (A.18)

2. Correction (measurement update):

G(k) = P̂−(k)C(k)T (C(k)P̂−(k)C(k)T +Rz(k))−1, (A.19)
x̂(k) = x̂−(k) +G(k)(y(k)− C(k)x̂−(k)), (A.20)
P (k) = (I −G(k)C(k))P̂−(k). (A.21)

Algorithm 2: The Kalman Filter algorithm
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Appendix B

Constrained Kalman Filter

As an extension of the standard linear Kalman Filter, constrained filtering can be realized in
order to obtain better estimation results.

Assume that the modeled system satisfies the following constraints:

Aeq x(k) = beq, (B.1)

Ain x(k) ≤ bin, (B.2)

where Aeq and Ain are known matrices as well as beq and bin are known vectors. In this case,
estimated states also need to satisfy these conditions:

Aeq x̂(k) = beq, (B.3)

Ain x̂(k) ≤ bin. (B.4)

Compliance with these constraints can be reached by projecting the state to lie in the constrained
space at each estimation interval [Gupta and Hauser 2007]. This means that the unconstrained
filter runs in a normal way, but at each iteration the updated state estimate is forced to lie in
the constrained space. In this approach, the analytic solution is no longer available for filtering.
Thus, numerical optimization is needed to be applied. The projection is carried out via the
following constrained optimization problem [Gupta and Hauser 2007; Simon 2010]:

x̃(k) = argminx (x− x̂(k))T W (x− x̂(k)), (B.5)

s.t. (B.1) and (B.2),

where x̃ is the projected state estimate and W is a weighing matrix.
W can be chosen as an identity matrix (hereinafter referred to as cKF-I). The result is then

the least square estimate subject to the constraints, which means that estimates necessarily get
closer to the real state values. If noises are assumed to be white and W is set to P−1(k) in each
interval (hereinafter referred to as cKF-P), the result is the maximum probability estimate of
the state subject to state constraints [Simon 2010].
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Appendix C

Moving Horizon Estimation

MHE is an effective alternative for Kalman Filtering as it can also be applied to estimate the
states of a dynamic system. However, this method can manage constraints on the states and
noises, and noises do not need to be described as white noise [Findeisen 1997].

MHE uses the results of N previous steps to estimate the kth state, i.e. every estimation is
based on the examination of steps (k−N) to k. The basis of the method is the same measurement
and state equation as that of the Kalman Filter. The MHE minimizes the measurement and
state noises to execute the state estimation.

The estimated states are obtained through minimizing the following J(x) cost function:

J(x) =
k−1∑

j=k−N+1
[v̂(j)TQ−1v̂(j)] +

k∑
j=k−N+1

[ẑ(j)TR−1ẑ(j)]

+[x̂(k −N + 1)− x̄(k −N + 1)]TP−1[x̂(k −N + 1)− x̄(k −N + 1)].
(C.1)

Index j advances through the steps of the horizon. The first addend of J(x) contains the
state noise and the inverse of its covariance matrix, whereas the second addend involves the
measurement noise and the inverse of its covariance matrix. x̂(k −N + 1) in the third addend
means the earliest estimation of the kth step, x̄(k−N + 1) is the state estimate of the previous
step, and P−1 is the inverse of the state error covariance matrix [Tettamanti et al. 2016b],
[Kulcsár et al. 2005]. To simplify the cost function, the third addend (also known as ”arrival
cost”) can be omitted [Haugen 2018].

The MHE can manage dynamic and static constraints. For the former, the state and mea-
surement equations are used in the kth step (where A, B, and C can be defined as time varying
matrices A(k), B(k), and C(k)):

x̂(k + 1) = A(k) x̂(k) +B(k)u(k) + v̂(k), (C.2)

y(k) = C(k) x̂(k) + ẑ(k). (C.3)

Static constraints can be set up on the estimated states, and on the measurement and state
noises:

xmin ≤ x̂(j) ≤ xmax , (C.4)
vmin ≤ v̂(j) ≤ vmax , (C.5)
zmin ≤ ẑ(j) ≤ zmax . (C.6)

The MHE algorithm in the kth step is detailed as follows.
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C. Moving Horizon Estimation

1. Perform measurements providing y(k).

2. Perform optimization using y(k), subject to dynamic and static constraints:

min
x̂(j),v̂(j),ẑ(j),j=k−N+1,...,k−1

J(k) . (C.7)

3. Move the horizon one step further, then go to Step 1:

k := k + 1 .

The results of the optimization in the kth step are the estimated vectors x̂(j), v̂(j), and ẑ(j)
for each jth step of the horizon (whereN is the length of the horizon, and j = k−N+1, ..., k−1).

Matrix Aeq and vector beq define the equality constraints. The inequality constraint is defined
(using matrix Ain and vector bin) so that every turning rate is non-negative. The structure of
the constraint matrices and vectors are similar to those described in the case of the constrained
Kalman Filter, however, their dimension depends on the length of the horizon (N).

The cost function in Eq. (C.1) contains the measurement and state noise vectors ẑ and v̂.
These are unknown as default, however, they can be expressed from the system equations Eq.
(C.2) and Eq. (C.3) as follows (where A = 1 and B = 0 in the kth estimation step and jth

horizon step):

v̂(j) = x̂(j + 1)− x̂(j) , (C.8)

ẑ(j) = y(j)− C(j) x̂(j) . (C.9)

The third addend of cost function (C.1), the arrival cost is assumed to be 0, as its inclusion
did not affect the results significantly in the testing phase. In this way, substituting Eq. (C.8)
and (C.9) into Eq. (C.1), the cost function is recast as follows:

J(x) =
k−1∑

j=k−N+1
[(x̂(j + 1)− x̂(j))TQ−1(x̂(j + 1)− x̂(j))] +

k∑
j=k−N+1

[(y(j)− C(j) x̂(j))TR−1(y(j)− C(j) x̂(j))] .
(C.10)
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Appendix D

Biproportional Procedure

The Biproportional Procedure (BP) is an iterative algorithm [Ben-Akiva et al. 1985], where the
variation of two coefficients (a and b) causes the variation of turning flows in each iteration. Two
sets of input data are necessary for this procedure. A preliminary origin-destination matrix (t)
and the traffic flows on each leg of the roundabout (Oi entering and Dj exiting counts in case
of entrance i and exit j). tij is the traffic volume from i to j, and there exist nO entrances and
nD exits. The accuracy of the BP estimation depends largely on the accuracy of prior matrix t
[Dixon and Rilett 2005].

The BP procedure aims to estimate the elements of the current OD-matrix T , based on
the current flows on each leg and prior matrix t. Therefore, the resulting matrix of the proce-
dure contains traffic volumes, which then can be converted into turning rates. This assists the
comparison of estimation procedures.

The estimated T has to satisfy the following constraints:

Oi =
nD∑
j=1

Tij , (D.1)

Dj =
nO∑
i=1

Tij . (D.2)

To meet the constraints in Eq. (D.1) and Eq. (D.2), iterations are executed. Each iteration
alters the proportions a and b. These proportions from the previous iteration are marked as a∗
and b∗. Estimated matrix T has a minimal difference from prior matrix t, whilst satisfying the
constraints [Dixon et al. 2007].

The initial conditions for the BP procedure are that a∗i , bj , and b∗j are set to 1, while Tij is
set equal to tij for all turning movements. For a stopping criterion, a sufficiently small value of
ε needs to be reached by the changes in ai and bj .

The steps of the algorithm are detailed as follows.

1. Calculation of ai:

ai =
(

Oi∑nD
j=1 Tij

)
a∗i . (D.3)

2. Calculation of Tij :
Tij = tij ai bj . (D.4)

3. Calculation of bj :

bj =
(

Dj∑nO
i=1 Tij

)
b∗j . (D.5)
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D. Biproportional Procedure

4. Calculation of Tij using Eq. (D.4).

5. End of iteration. If the changes in ai and bj are greater than the previously defined ε,
the iteration starts over from Step 1. If the changes are less than or equal to ε, the last
estimated Tij is the result of the current interval.

The algorithm above depicts only one measurement period. While implementing the BP
procedure, turning flows need to be estimated in each interval. After the stopping criterion is
met, all elements of T are rounded to the nearest integer. T then becomes the prior matrix for
the next period as the volumes of Oi and Dj are updated as well.

An advantage of the BP procedure is its relatively low computational requirements. Also,
OD-matrices are estimated based on 8 cross-sectional counts instead of 16 turning movement
observations. Another benefit that derives merely from the characteristics of the algorithm is
that if U-turns are assumed to be zero in the prior matrix, the estimated matrices also have
zeros in the main diagonal. A disadvantage of the procedure is its heavy dependence on the
accuracy of the prior matrix.
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Appendix E

Uncertainty Definition and H-infinity
Filter Design for Traffic Estimation

Considering a macroscopic approach (individual vehicle dynamics are omitted), for link z the
number of vehicles can be modeled based on the vehicle-conservation law during [kT, (k + 1)T ]
where T denotes the sample time and k = 0, 1, 2, ... is the discrete time index:

nz(k + 1) = nz(k) + T

 ∑
w∈IM

αw,zqw(k)− qz(k)

 . (E.1)

The parameters in Eq. (E.1) are as follows: nz is the number of vehicles on link z (in PCE); IM
denotes the set of incoming links w at junction M , i.e. w ∈ IM ; αw,z ∈ [0, 1] is the turning rate
from link w to link z; qw denotes the traffic flow from link w (PCE/T ); qz is the traffic outflow
from link z (PCE/T ).

A crucial point of Eq. (E.1) is the dynamics of link outflows. A possible approach to describe
traffic outflow in a given network is described by the theory of urban fundamental diagram. The
theory is called macroscopic fundamental diagram (MFD). By using the analogy of the MFD
concept, the outflows qw,z and qz can be defined by restricting the traffic network to link level.
This practically means that each link has a dedicated MFD model. MFD assumes the following
fundamental relationship:

q = ρ · v, (E.2)

where ρ denotes the traffic density and v is the space mean speed on a link. There are several
formulas available in the literature for v. Here, one of the basic relationships is used for describing
the speed of link z (called Pipes-Munjal model [Pipes 1967], which is practically a modified
version of Greenshields’ model):

vz(ρ) = vfreez

[
1−

(
ρz

ρjamz

)a]
, (E.3)

where vfreez represents the free-flow speed (i.e. no congestion), ρjamz is the jam density (practically
a ’bumper-to-bumper’ case within the road link) and a is an empirical parameter. As traffic
density is defined as

ρz = nz
lz
, (E.4)

(lz is the link length) Eq. (E.3) can be recast as follows:

vz(nz) = vfreez

[
1−

(
nz

njamz

)a]
. (E.5)
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E. Uncertainty Definition and H-infinity Filter Design for Traffic Estimation

By substituting Eq. (E.5) into Eq. (E.2), the link-based traffic flow is derived:

qz = ρzvz = nz
lz
vfreez

[
1−

(
nz

njamz

)a]
. (E.6)

Note that flow qw is also calculated by the formula of Eq. (E.6) concerning link w.
The two-fluid model [Herman and Prigogine 1979] considers as the whole traffic flow was

composed by two flows: the flow of moving vehicles and the flow of vehicles stopped in traffic
lanes (e.g. at red signal, in traffic jams, for freight delivery etc). The model defines the fraction
of stopped vehicles as fs, which can represent the ratio of the time while a floating car circulating
in a network is stopped divided by its whole travel time:

fs = T s

T
. (E.7)

The two-fluid model states that fs can be given in term of concentration:

f s =
(

ρ

ρjam

)p
, (E.8)

where ρjam denotes the jam density and parameter p is the measure of quality of the traffic
network. Substituting Eq. (E.4) into Eq. (E.8), f s can be rewritten as:

fs = T s

T
=
(

n

njam

)p
. (E.9)

The two-fluid model is usually applied to characterize a whole traffic network (town or
districts). Nevertheless, the two-fluid approach is also valid for smaller networks. Therefore, a
link-based two-fluid model can be given concerning link z as follows:

fsz = T sz
Tz

=
(

nz

njamz

)p
, (E.10)

where T sz is the average stop time of the floating cars going through link z and Tz is the average
travel time of vehicles on link z. Since fs provides us information on queue lengths on links, it
gives a more specific description of the traffic state on links than average travel time or speed
would.

In road traffic technology the most common used sensor types are magnetic sensors and
inductive loop-detectors. The time-occupancy parameter of these is calculated as follows:

ot =
∑
tocc

T
, (E.11)

where ∑ tocc denotes the sum of all occupancy times while the detector is covered by vehicles
during sample time T .

Papageorgiou and Vigos [2008] derives the relationship between time-occupancy measure-
ments of cross-sectional traffic detectors and the road link’s space-occupancy. Space-occupancy
is defined as the ratio of the sum of all vehicle lengths and the link length:

osz =
∑
lveh

lz
. (E.12)

Moreover, by considering a unit vehicle length lPCE :

osz = nz · lPCE

lz
. (E.13)
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Time and space-occupancy values are quite similar [Zhang and Rakha 2005], therefore the slight
difference between them can be modeled by an appropriate noise term ζ:

otz = osz + ζ = nz · lPCE

lz
+ ζ. (E.14)

The discrete time state space representation of a nonlinear dynamics (without control input
in this case) can be given by the following stochastic difference equation:

x(k + 1) = f (x(k), ν(k)) , (E.15)

with the measurement equation:

y(k) = g (x(k), ζ(k)) , (E.16)

where ν(k) and ζ(k) represent the process and measurement noise respectively.
State vector is composed as follows:

x(k) =


n1(k)
n2(k)
n3(k)

...
nn(k)

 , (E.17)

where nz denotes the number of vehicles on link z (z = 1, 2, ..., n).
Based on Eq. (E.1) the dynamics of each link z in Eq. (E.15) is given as

nz(k + 1) = nz(k) + T

 ∑
w∈IM

αw,zqw(k)− qz(k)

+ νz(k), (E.18)

augmented by νz(k) as a noise term in the system.
Applying Eq. (E.6) for traffic flow dynamics, Eq. (E.18) finally becomes:

nz(k + 1) = nz(k) + T

[ ∑
w∈IM

αw,z
nw(k)
lw

vfreew

[
1 −

(
nw(k)
njamw

)a]
− nz(k)

lz
vfreez

[
1 −

(
nz(k)
njamz

)a]]
+ νz(k).(E.19)

Sample time T can be long, even 15 minutes, therefore, the effect of signal controllers are
taken into consideration as an average value which means that it is not necessary to know the
signal programs.

According to the state space representation form, the measurement equation (E.16) must be
defined as well. Using the models provided in the previous sections, the following measurements
can be defined in the system:

• otz is the time-occupancy on link z, measured by traffic detectors as given by Eq. (E.11).

• fsz = T sz
Tz

from Eq. (E.10) is detected as floating car data (FCD) for a single vehicle. Hence,
the mean of all floating car measurements during the sample time can be calculated as

f̄sz =
∑num
i=1 fsi,z
num

, (E.20)

where num denotes the number of cars measured on link z. As p is a constant parameter,
Eq. (E.10) can be rearranged: (

f̄sz

)1/p
= nz

njamz

. (E.21)

Therefore
(
f̄s
)1/p

is considered as a measured value.
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Finally, the discrete time measurement equation is given as follows:

ot1(k)
ot2(k)
...

otn(k)(
f̄s1

)1/p
(k)(

f̄s2

)1/p
(k)

...(
f̄sn

)1/p
(k)


︸ ︷︷ ︸

y(k)

=



lPCE

l1
lPCE

l2
. . .

lPCE

ln1
njam1 1

njam2
. . .

1
njamn


︸ ︷︷ ︸

C


n1(k)
n2(k)
n3(k)

...
nn(k)


︸ ︷︷ ︸

x(k)

+



ζdet1 (k)
ζdet2 (k)
ζdet3 (k)

...
ζdetn (k)
ζFCD1 (k)
ζFCD2 (k)
ζFCD3 (k)

...
ζFCDn (k)


︸ ︷︷ ︸

ζ(k)

. (E.22)

To better deal with the nonlinear dynamics given, the linearization technique via Taylor
series [Stengel 1986] can be used for Eqs. (E.15)-(E.16), i.e. the real state x and measurement y
vectors are approximated:

x(k + 1) ≈ f(x̂(k), 0) + ∂f(x̂(k), 0)
∂x

(x(k)− x̂(k)) + ∂f(x̂(k), 0)
∂ν

ν(k), (E.23)

y(k) ≈ g(x̂(k), 0) + ∂g(x̂(k), 0)
∂x

(x(k)− x̂(k)) + ∂g(x̂(k), 0)
∂ζ

ζ(k), (E.24)

where x̂(k) denotes the estimate of the state at discrete time step k.
Practically, the linearization means the calculation of Jacobian matrices of partial derivatives

of functions (E.15)-(E.16):

A(k) = ∂f(x̂(k),0)
∂x , (E.25)

Bν(k) = ∂f(x̂(k),0)
∂ν , (E.26)

C(k) = ∂g(x̂(k),0)
∂x , (E.27)

Cζ(k) = ∂g(x̂(k),0)
∂ζ . (E.28)

By using the simplified notation of (E.25)-(E.28) for Eqs.(E.23)-(E.24), the following formu-
las are obtained:

x(k + 1) ≈ x̃(k) +A(k) (x(k)−x̂(k)) +Bν(k)ν(k), (E.29)
y(k) ≈ ỹ(k) + C(k) (x(k)−x̂(k)) + Cζ(k)ζ(k), (E.30)

where x̃(k) and ỹ(k) are the approximated state and measurement variables.
Accordingly, the linearized matrices must be determined. The formula described by (E.25)

is meant as differentiation by each element of state vector x. Therefore, for the state equation
(E.19) two basic cases are given:

1. If the differentiation is done by state variable indexed by z (i.e. nz):

∂nz(k + 1)
∂nz

= 1− T v
free
z

lz

(
1− (a+ 1)

(
nz(k)
njamz

)a)
. (E.31)

2. If the differentiation is done by state variable indexed by w (i.e. nw):

∂nz(k + 1)
∂nw

= αw,zT
vfreew

lw

(
1− (a+ 1)

(
nw(k)
njamw

)a)
. (E.32)
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Jacobian matrix Bν is resulted as

Bν(k) = I. (E.33)

The Jacobian matrices of the measurement equation (E.22) are given as follows:

C =



lPCE

l1
lPCE

l2
. . .

lPCE

ln1
njam1 1

njam2
. . .

1
njamn



, (E.34)

Cζ(k) = I. (E.35)

Since the investigated system of which the noise descriptions (the statistical properties of
turning rates) are unknown, Kalman/H∞ filter is applied to resolve robust state estimation
problem, according to the description provided in Simon [2006].

Turning rate αw,z is a quite ambiguous point of the traffic model described in Eq. (E.19).
Obviously, one is able to estimate this term based on previous measurements. However, ex-
act reliable values cannot be found for turning rates as they are strongly stochastic variables.
Therefore, a robust approach can be applied for state estimation. By following the method of
robust Kalman/H∞ filtering for a linear system [Simon 2006], uncertainties can be encapsulated
into the linearized system model (E.29) derived previously:

x(k + 1) ≈ x̃(k) + (A(k) + ∆A(k)) (x(k)−x̂(k)) +Bν(k)ν(k), (E.36)

where ∆A denotes the uncertainty matrix concerning the turning rates. The uncertainty matrix
is assumed to be of the following structure:

∆A(k) = M(k)Γ(k)E(k), (E.37)

where M(k) and E(k) are known real constant matrices of appropriate dimensions, and Γ(k) is
an unknown real time-varying matrix satisfying the following inequality:

ΓT (k)Γ(k) ≤ I. (E.38)

Apart from robust state estimation, the designed filter must also be able to fuse data collected
from different sensor sources. These sensors can either be installed into the road infrastructure
or can be in connection with the movement of vehicles, for example floating car data (FCD), or
floating mobile data (FMD). On those links where there is at least one built-in road traffic sensor,
data is generated continuously, therefore, the estimation of the Kalman Filter can always be
updated, even if FCD is available. On links where no built-in detector is installed, the continuous
Kalman Filter update cannot be guaranteed, since measurement data is only generated if there is
a vehicle equipped with such device. If there is no measurement data in a period, the intermittent
Kalman Filter technique is used, i.e. the state estimate of the previous time-step is simply
propagated [Sinopoli et al. 2004].

A minimal example modeling a simple junction (see Fig.E.1) is provided to show how the
proposed method can be applied. The state of the network is represented by the number of
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Figure E.1. Example network

vehicles on links while traffic information is collected from on-street traffic detectors and moving
vehicles.

The discrete time system model is given as follows:
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, (E.39)

where dw(k) denotes vehicle input demand appearing at the boundary of the traffic network
entering to link indexed by w = 2, 3, 4.

Assuming that traffic detector stations are only present on link 2 and 4 the discrete time
measurement equation is given as follows:
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. (E.40)

The linearization provides:
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Bν(k) = I. (E.42)
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The Jacobian matrices of the measurement equation (E.22) are given as follows:

C =
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, (E.43)

Cζ(k) = I. (E.44)

The next step is to determine the uncertainty matrix ∆A modeling the ambiguity of the
turning rates. According to the formula of (E.37), M(k) and E(k) are defined as follows:
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E(k) =


0 0 0 0
0 δ2,1 · α2,1 0 0
0 0 δ3,1 · α3,1 0
0 0 0 δ4,1 · α4,1

 , (E.46)

where δ2,1, δ3,1 and δ4,1 are uncertainty factors that weight turning rates. For example, δ = 0.1
expresses that the applied nominal turning rates αw,z of the model might vary by ±10% .

The operation of the filter is tested based on simulation data that were generated using PTV
Vissim microscopic traffic simulation software. The network shown in Fig. E.1 was implemented
into PTV Vissim where the state of traffic was evaluated in 1 minute long periods. Occupancy
data were collected from links 2 and 4 and two-fluid data were collected from each link. The
filter estimates from these input data the number of vehicles on the links. The exact number of
vehicles were also measured and were compared to the estimated number provided by the filter.
The expected operation of the filter can be seen in Fig E.2, even if the performance of the model
does not reach this accuracy so far.
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Figure E.2. Expected result of simulation (n1 is the number of vehicles on link 1)



Appendix F

Generalized Additive Model

A generalized additive model (GAM) is structured as

g(E(Y |X1, X2, · · ·, Xm)) = β0 + s1(X1) + s2(X2) + · · ·+ sm(Xm), (F.1)

where Y is the response variable to some predictor variables, Xi. E(Y |X1, X2, · · ·, Xm) denotes
the expected value of Y . g is a link function which relate E(Y |X1, X2, · · ·, Xm) to Xi. The
functions si are smooth functions [Hastie and Tibshirani 1990]. GAM is a type of Generalized
Linear Model (GLM) in which the linear dependent response variable is linearly dependent on
some unknown smooth functions of independent predictor variables. GAM is a free and flexible
statistical model, which can be used to solve nonlinear regression problems.

Hastie and Tibshirani [1990] invented GAM by combining the properties of GLM and additive
models (AM). Just like in the GLM model, link functions have many commonly used types,
which is why the model called ”generalized”. The smooth function can be parametric or non-
parametric, which can be a linear function, spline function or a local regression smooth function.
Its non-parametric form makes the model very flexible and reveals the nonlinear effects of the
independent variables. However, if the relationship of each predictor variable is fitted with non-
parametric fitting, problems such as large amount of calculation and over-fitting may occur.
It is easier to explain the relationship of the predictor variables to the parametric form, so
semi-parametric generalized additive models appear, the form of which is:

g(E(Y |X1, X2, · · ·, Xm)) = β0 +Xβ +
∑

si(Xi), (F.2)

where, Xβ denotes linear combination. β is the unknown parameters. The matrix of predictor
variables X works as the coefficients. When all the smooth functions are linear function, the
GAM yield to GLM. When the link function is identity function, g(µ) = µ, and smooth functions
are non-parametric, the GAM yield to AM.
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Appendix G

Requirements for Road Traffic Signal
Controllers

Road traffic controller constitutes a safety critical system which also means that relevant tech-
nical and legal rules are clearly determined by international standards as well as by national
legislation. In case of new technological concepts for traffic light, all rules must be reviewed
and one has to prove their feasibility. Accordingly, the wireless traffic signal controller with
distributed system architecture must also ensure the fulfillment of all relevant requirements.

Figure G.1. The hierarchy of the technical legislation (also applicable for traffic signal controller
design)

The basic hierarchy of technical legislation is depicted by Fig. G.1. The pyramid is nearly
identical in all countries. On the one hand, the strongest legislative measures, the laws, contain
the general rules for traffic signal control system and determines the framework of operation on
national level, i.e. this is valid everywhere in the country. On the other hand, technical specifica-
tions encompass the detailed specific requirements for traffic lights on the basis of the industrial
standards and codes. This layer is usually not mandatory per se. At the same time, laws fre-
quently refer to specific technical standards making them or the parts of standards obligatory.
Guidance notes or policies are typically created by road authorities or operators and are based
on industrial standards partly or fully. An important difference compared to the laws is that
the technical specifications are not necessarily held mandatory at all times. They are generally
required by the road authority or operator for specific procurement or acquisition, e.g. the in-
stallation of a traffic signal system on freeways must always fulfill given technical specifications
(note that it can be different to that of urban roads). In conclusion, the manufacturing process
of traffic lights and installation on the spot (location of the poles and signal heads as well as
other structural considerations) are always subject to the valid industrial standards given by
several national and local obligations.

The European organization for public standards (CEN: Comité Européen de Normalisation)
works for harmonized standardization creating and maintaining the European Norms (ENs).
Accordingly, the EU countries fully adopt ENs or integrate them into the national standards
and technical specifications. Three basic European standards hold for road traffic signalization
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systems specifically:

1. EN 12675:2018 Traffic signal controllers. Functional safety requirements. [CEN 2018a]

2. EN 12368:2015 Traffic control equipment. Signal heads. [CEN 2015]

3. EN 50556:2018 Road traffic signal systems. [CEN 2018b]

In the followings, only those parts of the above standards are introduced which are relevant
to determine the functional safety requirements for traffic signal controllers. Moreover, only the
major faults are investigated which are potentially hazardous to traffic (minor faults are defined
as events causing no hazardous situation). As a basic requirement for traffic light, in the case
of any major fault the system shall switch to a specific failure mode, i.e. a fail-safe functioning
is ensured at all times. This failure mode is defined by the standard as „a non operational state
of the traffic signal controller in which the normal operation mode is replaced with a flashing
yellow or a signals off condition”. The major faults can be classified based on standard EN 12675
[CEN 2018a] as follows.

• Conflicting green signals: the simultaneous display of green lights allowing conflicting
traffic movements.

• Failure to display a red signal to traffic: the intended red signal is not displayed.

• Unwanted signal: unintended signal causing ambiguous traffic situation.

• Failure to display the correct signal sequence: the order and appearance of signals, dis-
played to traffic, differ form that are prescribed in national requirements.

• Failure in correct signal timing: the correct timing of any signal group fails.

• Failure in safety timings: critical error when any safety time setting (intergreen time or
minimum green time) fails causing hazardous traffic situation.

According to the listed major faults above, it is indispensable that the wireless and distributed
traffic signal controller shall fulfill all critical requirements, i.e. it must realize the same fail-safe
operation as ensured by the traditional central traffic controllers.

In relation with the wireless technology, the technical specification for Signal Phase and Time
and Map Data (SPaT/MAP) [Group 2015] must be also emphasized in future traffic controller
design. SPaT/MAP defines standards for V2I and I2V information exchange. In relation with
SPaT/MAP the ISO/TS 19091:2017 norm [CEN 2017] is also important as it defines the message,
data structures, and data elements to support exchanges between the roadside equipment and
vehicles.

Finally, for the applications using the 5.9 GHz DSRC in vehicular environments the guid-
ance of [SAE International 2016] is also important: J2735_202007 specifies the Message Set
Dictionary for DSRC.
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Appendix H

Example for Autonomous Vehicle
Testing Using Co-Simulation

Firstly, it is important to distinguish the innovation concerning the vehicle functions and the
development of the entire transportation system. In the first case, the focus is on the car itself
and its close environment. In the second case, however, one aims to ameliorate the performance
of the entire traffic system (vehicle, infrastructure and users). Of course, the automotive in-
dustry runs intensive vehicle developments by applying very detailed vehicle model and vehicle
dynamics simulations. However, these programs have limited capacity to model traffic situa-
tions. From the other side the analysis and design of the whole transport system is performed
by the traffic engineering profession, typically carried out with micro- or macroscopic traffic sim-
ulation software. These software are already capable of detailed modeling of the whole traffic
network, but they operate with simplified vehicle dynamics, e.g. acceleration function can be
defined but detailed engine dynamics or powertrain are not included. It is observable that the
transition between these two simulation methods is currently limited. It is possible to interface
these programs but they are not integrated.

To overcome the above problem, similarly to the ”Hardware-In-the-Loop” method, the so-
called ”Vehicle-in-the-Loop” (ViL) test simulation framework is designed. The essence of this is
to create an environment in which a realistic traffic simulation software (with microscopic traffic
model) can simulate one or more real (autonomous) test vehicles in real time while other vehicles
are implemented as virtual traffic. In this system it is possible to test real-world cars together
with their autonomous functions and capabilities by displaying real vehicle dynamics in the
simulator, while the traffic around is virtually generated. In the ViL test environment, arbitrary
circumstances can be realized. One can create vehicles, traffic control objects, pedestrians,
accident, or simulate situations with poor visibility where vehicle camera is ineffective and are
forced to rely on V2V communication. As shown by Fig. H.1, beyond the simulation of the virtual
environment around a real vehicle, also communication with virtual systems (other vehicles or
the traffic management system) can be realized.

All this makes it possible to carry out cost efficient and safe tests, e.g. on a plain test site
without objects.

In order to build a simulation environment, it is necessary to define the main goals. The
interface to be created is determined according to the requirements of these simulation targets.
The data and control parameters between the test vehicle and the traffic simulation suites are
accordingly to be defined. Some of these are trivial, such as the actual vehicle velocity or the
vehicle position, but other parameters will depend on the tasks planned to be accomplished.
The tasks that can be created in the ViL test environment are classified in the following main
categories:

• keeping and changing vehicle speeds according to environmental impact;
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Real world
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Simulating the V2V communication

Virtual environment

Figure H.1. Simulation possibilities

• test vehicle operation at traffic light;

• emergency brake simulation by virtual interference;

• keeping small headway distance compared to the virtual vehicle ahead;

• platooning situation with two or more real autonomous vehicles.

Of course, each category covers further possible sub-tasks.
In the sequel, the main basic building blocks (hardware, software) and the functioning of the

whole ViL test environment are introduced.
Road traffic modeling is commonly used in traffic engineering practice to assist design and

validation of newly developed control strategies. Users may choose among many different com-
mercial or open source road traffic simulators. Each of them has advantages or drawbacks
depending on the individual demands of the user.

For the purpose of autonomous vehicle tests SUMO software was chosen due to the flexible
programming possibilities. Using CAN based messaging for creating connection between the
test vehicle and the simulation software is an obvious solution as it is the most frequently used
communication bus networks in automotive industry. In most cases, any parameter related to the
vehicle can be found on the CAN bus network. This technology enables communication between
the elements of the vehicle, e.g. sensors, ECUs. Thanks to the well-defined CAN network, one
can easily write databases that can be interpreted and processed in a Matlab environment by
using the standard database of CAN (dbc file). The messages contained in the dbc files can be
selected separately easily and handled as a distinct parameter using the Matlab’s internal CAN
communication module. In this way receiving and transmitting of signals to the network can be
realized straightforwardly. In order to be able to read these messages from the CAN bus, the
Vector CANCaseXL was applied. This device with multi-channel communication acts as a node
on the network that receives and sends all messages with any identifier. Vector CANCaseXL
can be attached to the car’s CAN bus easily.

The Faculty of Transportation Engineering and Vehicle Engineering of BME (Budapest
University of Technology and Economics) owns a Smart Fortwo city car. This test car was
modified by the university researchers to make it fully capable for ”by wire” operation with
fail-safe architecture [Tihanyi and Szalay 2017]. The system architecture of the Smart is shown
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by Fig. H.2. All execution actuators were modified or at least interrupted using a central
Autobox device for realizing the control. (AutoBox is an efficient tool for using dSPACE real-time
system to carry out in-vehicle control experiments such as tests for autonomous functionalities.)
Throttle had originally a potentiometer based control with analog signal that was interrupted
and lead through the device. Steering was solved by additional BLDC motor actuator driven by
an external servo drive with torque control fed also from Autobox device. For the gear control
the original gear button’s parallel interface was substituted by a self developed ECU that can
communicate with the central controller via CAN bus. Brake system required high modifications,
a linear actuator was built in in order to pull the brake pedal via bowden. Brake system also

Figure H.2. The system architecture of the test vehicle for autonomous driving tests

includes a spring actuator in case of fail or emergency situations. The vehicle was also equipped
with environment sensors (LIDAR and camera) with the capability of lane detection and object
detections, however for the ViL tests described in the sequel the LIDAR sensors are not used
intentionally. At the same time, LIDAR CAN messages are reproduced by external computer
(by Matlab in a simple laptop) to input them for the central controller of the Smart. The vehicle
for the time has several automated functions such as lane keeping, lane change and automatic
cruise control. Moreover, a high level autonomous function, the traffic jam assist, is also realized
combining the existing fundamental driver assistance components.

The whole ViL test environment for autonomous car is depicted by Fig. H.3. The environ-
ment can be divided into two main parts:

1. the test vehicle with own computer logic for autonomous functions and its physical envi-
ronment (where it moves);

2. the computer realizing the ViL test environment (simulation software).

The elements of the system devices are connected via CAN communication channels, i.e. Vec-
tor CANCaseXL controls the messages specified for the CAN bus. CAN messages are processed
by Matlab and then transferred to the SUMO traffic simulator via the TraCI interface. Thus, a
complete communication channel is created between the Smart vehicle (central controller) and
the SUMO traffic simulator.

As a real-world demonstration of the developed ViL simulation environment one of the
autonomous functions of the Smart, the traffic jam assist, was tested. The test environment
is depicted in Fig. H.4. The area that serves as a car park in the university campus of BME
was modeled in the traffic simulator. The test scenario simulated the motion of two cars on a
specific route (Fig. H.5), i.e.

1. the virtual car (blue) is going ahead and
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Figure H.3. The whole test environment for autonomous car

2. the real autonomous vehicle (green) follows it.

During the experiment, the acceleration and braking maneuvers of the real vehicle was
directly fitted into the traffic simulator while the motion of the virtual car was simulated by
SUMO.

At the beginning of the test, the two vehicles started from different positions (Fig. H.5). The
virtual vehicle moved at constant speed, slower than the speed of the real car. The real vehicle
accelerated up to 10 km/h and kept this speed constant as long as there was no obstacle in front
it. The braking maneuver occurred when the real vehicle reached the minimum safety distance
(2 meters) allowed to be compared to the car ahead. This distance value was transferred from
the SUMO simulator to the controller via the CAN communication network. Practically, the
CAN messages of the LIDAR and camera signals were overwritten by the traffic simulator’s
data. When the distance dropped below the safety distance the traffic jam assist logic stopped
the real vehicle.

Obviously, the effectiveness of the test depends on the proper online transfer of speed and
distance values. On the one hand, the accuracy of the speed transmission provides the precise
locomotion of the vehicle in the virtual reality. On the other hand, the distance value coming
from the simulator means the input signal to the real car’s controller. Hence, the success of the
whole test is influenced by the reliable data transmission. For later evaluation all parameters
sent and received during the simulation were logged. Fig. H.6 shows the accuracy of the speed
transfer. It can be seen that, as the result of communication at 5 Hz, a slight delay is present
between the received CAN signal and the current speed value in SUMO. However, this delay
is negligible, so that it did not affect the effectiveness of this test. Moreover, one can apply
higher frequency of communication between the real car and the simulator (this is a question
of computational resource). Fig. H.7 shows the change of the distance between the two vehicles
and the speed variation of the real autonomous test car. It is observable (according to the
scenario) that after the start of the real vehicle the headway distance to the virtual car begins
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Figure H.4. The location of the test (the campus of Budapest University of Technology and
Economics, GPS: 47.478488, 19.056098)

Figure H.5. The real-world test scenario
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to decrease. Simultaneously the real car holds a constant speed until the safety distance limit
is attained. Then the test car breaks down immediately.

Figure H.6. The speed transmission between the vehicle and the simulator

Figure H.7. The braking moment in the simulation

The tools used during the experiment and the test site are shown by Fig. H.8. Concerning
the test vehicle, not all autonomous functions of the Smart were used. The self-driving controller
of the test car handled the throttle and the break pedals as well as the gearbox, but steering was
controlled manually. Simulations were performed on a PC with Intel Core i5-6300HQ 2.3-GHz
CPU (4 cores) and 12 GB of RAM.
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Figure H.8. The test environment during the experiment



Appendix I

Simulation Environment for the
Digital Twin of the Traffic Control
System

For the realization of future digital twin of the Smart City Zone at ZalaZONE Proving Ground,
two simulation environments have been carried out in SUMO and PTV VISSIM, respectively
(see Figs. I.1 and I.2). The requirements for the digital twin realization are itemized below:

• display running simulation;

• display simulation time;

• display traffic signal plans;

• display current traffic signal plan in real time;

• display information about the traffic network, junctions, etc.;

• adjust simulation time;

• adjust traffic flow;

• adjust routes;

• adjust vehicle categories/category ratios,

• adjust traffic signal plans:

– switch signals on/off;
– switch between programs;
– stretch/shrink signal phases, cycle lengths;
– switch between fixed and actuated programs;

The complete simulation environment is illustrated by Fig. I.3.

126



127

Figure I.1. PTV VISSIM control program and simulation

Figure I.2. SUMO control program and simulation
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Figure I.3. Simulation environment for the digital twin of the ZalaZONE traffic control center
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