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Personal Preface

The present work describes some results of my research done between 2001-2009. Among
the three chapters the work of two were done in a great extent abroad, and/or with
collaborators whom I met during my stay in Greece and France. Thanks must be given
to the European Union for the two Marie Curie fellowships which I obtained and which
indeed helped me to revive my interest in mathematics, to turn my attention to new
problems, and to open up collaboration with new colleagues. The experiences of these
fellowships greatly boosted my research activity in all aspects.

Chapter 3 on idempotent exponential polynomials is a joint work with Aline Bonami –
moreover, at a certain point, we even used a suggestion from T. Tao, without whom we
might have been blocked at a – rather early! - -stage in our progress. Chapter 2 about the
so-called Turán extremal problem for positive definite functions is partially joint work with
Mihalis Kolountzakis, and the chapter partially contains my further results. In Chapter 1
on the Turán type converse Markov inequalities in the complex plane, almost everything
is exclusively my result – except the main theorem, where also an insightful suggestion of
G. Halász is fruitfully employed.

Nevertheless, in all chapters I used many discussions, feedback, references etc., provided
by many other colleagues. Mathematics research is not done in a lonely cell, without
communication to others - and it is better, nicer and more fair to admit and record
the many stimulating interactions than to behave like an outer-worldly creature, doing
mathematics in itself, without relying on the stimulating milieu around. I especially
enjoyed and benefitted from discussions with V. Totik, G. Halász, J. Kincses, E. Makai,
I. Ruzsa and B. Farkas.

Also the Alfréd Rényi Institute of Mathematics in general provided a really outstanding
environment for my research. Getting acquainted with other research and academic centers
in Europe prompted me to appreciate more and more the place where I have the fortune
to work. Hopefully for still some more years!

Each chapters have their own detailed introduction, so there is no need to describe the
mathematical content here. Perhaps a few words about the selection of topics and my
personal favorites is in order, however.

Putting together the material of a thesis serves several purposes. The candidate must
choose a subject which is well-focused and can be explained in itself, while he is to present,
in some way, his research work in general. In my case, since relatively independent,
different topics frequently occurred in my work, an exhaustive presentation of my research
would have required much more space and would not have been really focused. So I had
to drop many abstract analysis topics - rendezvous numbers, polarization constants and
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iv PERSONAL PREFACE

their relation to general linear potential theory e.g. – which I like and which, on the other
hand, do relate, through potential theory, to the harmonic analysis nature of most of the
material here. Also, multivariate polynomial inequalities – one of my most cultivated
areas – were neglected, too. People knowing my work may argue that this was not the
right choice – but I had to make selection in order to keep the size reasonable. Several
other issues, like e.g. the recently reviving area of periodic-, or invariant decomposition
of functions, also had to be left aside. The current some one and a half hundred pages
should be enough for any referee to read – I should not demand more work from anyone.

Still, I feel, that the selected topics more or less exhibit my research spectrum and style,
give reasonable samples of my research results, and should be sufficient to give basis for
an evaluation. And, after all, that is the main purpose of a thesis.

Most of the material here has been published or is under publication. Nevertheless,
writing this summary also prompted me to finish three more papers, pending for long, for
their writing was not so simple. So a positive side effect of writing this thesis is perhaps
this forced success of finishing what could have been left unpublished otherwise.

Among these, I especially like the otherwise elementary treatise on the Blaschke Rolling
Ball theorem. Geometry having been my favorite topics in secondary school, dealing with
that brought back the good feelings of doing mathematics so constructively in those old
days. A close second is, however, another issue, the very definition of uniform asymptotic
upper density, explained and used in §2, which is not a “result”, not in the strict sense, but I
feel that it is still a very nice and useful mathematical finding which has appealing aesthetic
value in itself. And, perhaps, not only aesthetic value, but also use: such an unexpectedly
(to me) simple formulation of an extended notion could, and perhaps should, have many
good applications in the future. I myself satisfactorily settled the issue I was after (a
packing type estimate in the so-called Turán extremal problem), but I am convinced that
the notion of u.a.u.d. itself is good for much more things.

Finally I would like to express my sincere gratitude to all those – abroad and in Hungary
– who suggested, encouraged, helped, supported my application for the doctor of the
academy degree, and my work in putting together all the materials for that. Without
their continuous encouragement and support, I would have not accomplish this, not in the
current period of my life. Nevertheless, such personal support is perhaps too personal to
be recorded by names here. So without naming anyone whom I am really very thankful,
let me just record that in the long run surely I will appreciate their support even more
than now. Good colleagues and friends form an ever increasing asset of my life, and this
aspect of my life is surely enriched by my current experience with this work.

Budapest, April 2009

Szilárd Gy. Révész



CHAPTER 1

Turán-Erőd type converse Markov inequalities for convex

domains on the plane

1.1. Introduction

On the complex plane polynomials of degree n admit a Markov inequality1 ‖p′‖K ≤
cKn

2‖p‖K on all convex, compact K ⊂ C. Here the norm ‖·‖ := ‖·‖K denotes sup
norm over values attained on K.

In 1939 Paul Turán studied converse inequalities of the form ‖p′‖K ≥ cKn
A‖p‖K . Clearly

such a converse can hold only if further restrictions are imposed on the occurring polyno-
mials p. Turán assumed that all zeroes of the polynomials must belong to K. So denote
the set of complex (algebraic) polynomials of degree (exactly) n as Pn, and the subset
with all the n (complex) roots in some set K ⊂ C by Pn(K). The (normalized) quantity
under our study is thus the “inverse Markov factor”

(1.1) Mn(K) := inf
p∈Pn(K)

M(p) with M := M(p) :=
‖p′‖
‖p‖

.

Theorem 1.1.1 (Turán, [20, p. 90]). If p ∈ Pn(D), where D is the unit disk, then we
have

(1.2)
∥∥p′∥∥

D
≥ n

2
‖p‖D .

Theorem 1.1.2 (Turán, [20, p. 91]). If p ∈ Pn(I), where I := [−1, 1], then we have

(1.3)
∥∥p′∥∥

I
≥
√
n

6
‖p‖I .

Theorem 1.1.1 is best possible, as the example of p(z) = 1+zn shows. This also highlights
the fact that, in general, the order of the inverse Markov factor cannot be higher than n.
On the other hand, a number of positive results, started with J. Erőd’s work, exhibited
convex domains having order n inverse Markov factors (like the disk). We come back to
this after a moment.

Regarding Theorem 1.1.2, Turán pointed out by the example of (1 − x2)n that the
√
n order is sharp. The slightly improved constant 1/(2e) can be found in [8], but the

value of the constant is computed for all fixed n precisely in [6]. In fact, about two-
third of the paper [6] is occupied by the rather lengthy and difficult calculation of these
constants, which partly explains why later authors started to consider this achievement
the only content of the paper. Nevertheless, the work of Erőd was much richer, with many
important ideas occurring in the various approaches what he had presented.

1Namely, to each point z of K there exists another w ∈ K with |w − z| ≥ diam(K)/2, and thus

application of Markov’s inequality on the segment [z, w] ⊂ K yields |p′(z)| ≤ (4/diam(K))n2‖p‖K .

1



2 1. TURÁN-ERŐD TYPE CONVERSE MARKOV INEQUALITIES

In particular, Erőd considered ellipse domains, which form a parametric family Eb nat-
urally connecting the two sets I and D. Note that for the same sets Eb the best form of
the Bernstein-Markov inequality was already investigated by Sewell, see [18].

Theorem 1.1.3 (Erőd, [6, p. 70]). Let 0 < b < 1 and let Eb denote the ellipse domain
with major axes [−1, 1] and minor axes [−ib, ib]. Then

(1.4)
∥∥p′∥∥ ≥ b

2
n‖p‖

for all polynomials p of degree n and having all zeroes in Eb.

Erőd himself provided two proofs, the first being a quite elegant one using elementary
complex functions, while the second one fitting more in the frame of classical analytic
geometry. In 2004 this theorem was rediscovered by J. Szabados, providing a testimony
of the natural occurrence of the sets Eb in this context2.

In fact, the key to Theorem 1.1.1 was the following observation, implicitly already in
[20] and [6] and formulated explicitly in [8].

Lemma 1.1.4 (Turán, Levenberg-Poletsky). Assume that z ∈ ∂K and that there
exists a disc DR of radius R so that z ∈ ∂DR and K ⊂ DR. Then for all p ∈ Pn(K) we
have

(1.5) |p′(z)| ≥ n

2R
|p(z)| .

So Levenberg and Poletsky [8] found it worthwhile to formally introduce the next defi-
nition.

Definition 1.1.5. A compact set K ⊂ C is called R-circular, if for any point z ∈ ∂K

there exists a disc DR of radius R with z ∈ ∂DR and K ⊂ DR.

With this they formulated various consequences. For our present purposes let us chose
the following form, c.f. [8, Theorem 2.2].

Theorem 1.1.6 (Erőd; Levenberg-Poletsky). If K is an R-circular set and p ∈
Pn(K), then

(1.6)
∥∥p′∥∥ ≥ n

2R
‖p‖ .

Note that here it is not assumed that K be convex; a circular arc, or a union of disjoint
circular arcs with proper points of join, satisfy the criteria. However, other curves, like e.g.
the interval itself, do not admit such inequalities; as said above, the order of magnitude
can be as low as

√
n in general.

Erőd did not formulate the result that way; however, he was clearly aware of that. This
can be concluded from his various argumentations, in particular for the next result.

2After learning about the overlap with Erőd’s work, the result was not published.



1.1. INTRODUCTION 3

Theorem 1.1.7 (Erőd, [6, p. 77]). If K is a C2-smooth convex domain with the
curvature of the boundary curve staying above a fixed positive constant κ > 0, and if
p ∈ Pn(K), then we have

(1.7)
∥∥p′∥∥ ≥ c(K)n‖p‖.

From Erőd’s argument one can not easily conclude that the constant is c(K) = κ/2; on
the other hand, his statement is more general than that. Although the proof is slightly
incomplete, let us briefly describe the idea3.

Proof. The norm of p is attained at some point of the boundary, so it suffices to prove
that |p′(z)|/|p(z)| ≥ cn for all z ∈ ∂K. But the usual form of the logarithmic derivative
and the information that all the n zeroes z1, . . . , zn of p are located in K allows us to draw
this conclusion once we have for a fixed direction ϕ := ϕ(z) the estimate

(1.8) <
(
eiϕ

1
z − zk

)
≥ c > 0 (k = 1, . . . , n).

Choosing ϕ the (outer) normal direction of the convex curve ∂K at z ∈ ∂K, and taking
into consideration that zk are placed in K\{z} arbitrarily, we end up with the requirement
that

(1.9) <
(
eiϕ

1
z − w

)
=

cosα
|z − w|

≥ c (w ∈ K \ {z}, α := ϕ− arg(z − w)) .

Now if K is strictly convex, then for z 6= w we do not have cosα = 0, a necessary
condition for keeping the ratio off zero. It remains to see if |z − w|/ cosα stays bounded
when z ∈ ∂K and w ∈ K \ {z}, or, as is easy to see, if only w ∈ ∂K \ {z}. Observe that
F (z, w) := |z − w|/ cosα is a two-variate function on ∂K2, which is not defined for the
diagonal w = z, but under certain conditions can be extended continuously. Namely, for
given z the limit, when w → z, is the well-known geometric quantity 2ρ(z), where ρ(z) is
the radius of the osculating circle (i.e., the reciprocal of the curvature κ(z)). (Note here a
gap in the argument for not taking into consideration also (z′, w′) → (z, z), which can be
removed by showing uniformity of the limit.) Hence, for smooth ∂K with strictly positive
curvature bounded away from 0, we can define F (z, z) := 2/κ(z) = 2ρ(z). This makes F
a continuous function all over ∂K2, hence it stays bounded, and we are done. �

We will return to this theorem and provide a somewhat different, complete proof giving
also the value c(K) = κ/2 of the constant later in §1.8. For an analysis of the slightly
incomplete, nevertheless essentially correct and really innovative proof of Erőd see [15].

From this argument it can be seen that whenever we have the property (1.9) for all given
boundary points z ∈ ∂K, then we also conclude the statement. This explains why Erőd
could allow even vertices, relaxing the conditions of the above statement to hold only
piecewise on smooth Jordan arcs, joining at vertices. However, to have a fixed bound,
either the number of vertices has to be bounded, or some additional condition must be
imposed on them. Erőd did not elaborate further on this direction.

3For more about the life and work of János Erőd, see [15] and [16].



4 1. TURÁN-ERŐD TYPE CONVERSE MARKOV INEQUALITIES

Convex domains (or sets) not satisfying the R-circularity criteria with any fixed positive
value of R are termed to be flat. Clearly, the interval is flat, like any polygon or any
convex domain which is not strictly convex. From this definition it is not easy to tell if a
domain is flat, or if it is circular, and if so, then with what (best) radius R. We will deal
with the issue in this work, aiming at finding a large class of domains having cn order of
the inverse Markov factor with some information on the arising constant as well.

On the other hand a lower estimate of the inverse Markov factor of the same order as
for the interval was obtained in full generality in 2002, see [8, Theorem 3.2].

Theorem 1.1.8 (Levenberg-Poletsky). If K ⊂ C is a compact, convex set, d :=
diamK is the diameter of K and p ∈ Pn(K), then we have

(1.10)
∥∥p′∥∥ ≥ √

n

20 diam (K)
‖p‖ .

Clearly, we can have no better order, for the case of the interval the
√
n order is sharp.

Nevertheless, already Erőd [6, p. 74] addressed the question: “For what kind of domains
does the method of Turán apply?” Clearly, by “applies” he meant that it provides cn order
of oscillation for the derivative.

The most general domains with M(K) � n, found by Erőd, were described on p. 77
of [6]. Although the description is a bit vague, and the proof shows slightly less, we can
safely claim that he has proved the following result.

Theorem 1.1.9 (Erőd). Let K be any convex domain bounded by finitely many Jordan
arcs, joining at vertices with angles < π, with all the arcs being C2-smooth and being either
straight lines of length ` < ∆(K)/4, where ∆(K) stands for the transfinite diameter of
K, or having positive curvature bounded away from 0 by a fixed constant. Then there is a
constant c(K), such that Mn(K) ≥ c(K)n for all n ∈ N.

To deal with the flat case of straight line boundary arcs, Erőd involved another approach,
cf. [6, p. 76], appearing later to be essential for obtaining a general answer. Namely, he
quoted Faber [7] for the following fundamental result going back to Chebyshev.

Lemma 1.1.10 (Chebyshev). Let J = [u, v] be any interval on the complex plane with
u 6= v and let J ⊂ R ⊂ C be any set containing J . Then for all k ∈ N we have

(1.11) min
w1,...,wk∈R

max
z∈J

∣∣∣∣∣∣
k∏

j=1

(z − wj)

∣∣∣∣∣∣ ≥ 2
(
|J |
4

)k

.

Proof. This is essentially the classical result of Chebyshev for a real interval, cf. [2, 9],
and it holds for much more general situations (perhaps with the loss of the factor 2) from
the notion of Chebyshev constants and capacity, cf. Theorem 5.5.4. (a) in [11]. �

The relevance of Chebyshev’s Lemma is that it provides a quantitative way to handle
contribution of zero factors at some properly selected set J . One uses this for compar-
ison: if |p(ζ)| is maximal at ζ ∈ ∂K, then the maximum on some J can not be larger.
Roughly speaking, combining this with geometry we arrive at an effective estimate of the
contribution, hence even on the location of the zeroes.
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In his recent work [5], Erdélyi considered various special domains. Apart from further
results for polynomials of some special form (e.g. even or real polynomials), he obtained
the following.

Theorem 1.1.11 (Erdélyi). Let Q denote the square domain with diagonal [−1, 1].
Then for all polynomials p ∈ Pn(Q) we have

(1.12)
∥∥p′∥∥ ≥ C0n‖p‖

with a certain absolute constant C0.

Note that the regular n-gon Kn is already covered by Erőd’s Theorem 1.1.9 if n ≥ 26,
but not the square Q, since the side length h is larger than the quarter of the transfinite
diameter ∆: actually, ∆(Q) ≈ 0.59017 . . . h, while

∆(Kn) =
Γ(1/n)

√
π21+2/nΓ(1/2 + 1/n)

h > 4h iff n ≥ 26,

see [11, p. 135]. Erdélyi’s proof is similar to Erőd’s argument4: sacrificing generality gives
the possibility for a better calculation for the particular choice of Q.

Returning to the question of the order in general, let us recall that the term convex
domain stands for a compact, convex subset of C having nonempty interior. Clearly,
assuming boundedness is natural, since all polynomials of positive degree have ‖p‖K = ∞
when the set K is unbounded. Also, all convex sets with nonempty interior are fat,
meaning that cl(K) = cl(intK). Hence taking the closure does not change the sup norm
of polynomials under study. The only convex, compact sets, falling out by our restrictions,
are the intervals, for what Turán has already shown that his c

√
n lower estimate is of the

right order. Interestingly, it turned out that among all convex compacta only intervals
can have an inverse Markov constant of such a small order.

To study (1.1) some geometric parameters of the convex domainK are involved naturally.
We write d := d(K) := diam (K) for the diameter of K, and w := w(K) := width (K) for
the minimal width of K. That is,

(1.13) w(K) := min
γ∈[−π,π]

(
max
z∈K

<(ze−iγ)−min
z∈K

<(ze−iγ)
)
.

Note that a (closed) convex domain is a (closed), bounded, convex set K ⊂ C with
nonempty interior, hence 0 < w(K) ≤ d(K) <∞. Our main result is the following.

Theorem 1.1.12 (Halász and Révész). Let K ⊂ C be any convex domain having
minimal width w(K) and diameter d(K). Then for all p ∈ Pn(K) we have

(1.14)
‖p′‖
‖p‖

≥ C(K)n with C(K) = 0.0003
w(K)
d2(K)

.

On the other hand, as regards the order of magnitude, (and in fact apart from an absolute
constant factor), this result is sharp for all convex domains K ⊂ C.

4Erdélyi was apparently not aware of the full content of [6] when presenting his rather similar argument.
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Theorem 1.1.13. Let K ⊂ C be any compact, connected set with diameter d and minimal
width w. Then for all n > n0 := n0(K) := 2(d/16w)2 log(d/16w) there exists a polynomial
p ∈ Pn(K) of degree exactly n satisfying

(1.15)
∥∥p′∥∥ ≤ C ′(K) n ‖p‖ with C ′(K) := 600

w(K)
d2(K)

.

Remark 1.1.14. Note that here we do not assume that K be convex, but only that it is
a connected, closed (compact) subset of C. (Clearly the condition of boundedness is not
restrictive, ‖p‖ being infinite otherwise.)

In the proof of Theorem 1.1.12, due to generality, the precision of constants could not
be ascertained e.g. for the special ellipse domains considered in [6]. Thus it seems that
the general results are not capable to fully cover e.g. Theorem 1.1.3.

However, even that is possible for a quite general class of convex domains with order
n inverse Markov factors and a different estimate of the arising constants. This will be
achieved working more in the direction of Erőd’s first observation, i.e. utilizing information
on curvature.

Since these results need some technical explanations, formulation of these will be post-
poned until §1.8. But let us mention the key ingredient, which clearly connects curvature
and the notion of circular domains. In the smooth case, it is well-known as Blaschke’s
Rolling Ball Theorem, cf. [1, p. 116].

Lemma 1.1.15 (Blaschke). Assume that the convex domain K has C2 boundary Γ = ∂K

and that there exists a positive constant κ > 0 such that the curvature κ(ζ) ≥ κ at all
boundary points ζ ∈ Γ. Then to each boundary points ζ ∈ Γ there exists a disk DR of
radius R = 1/κ, such that ζ ∈ ∂DR, and K ⊂ DR.

Again, geometry plays the crucial role in the investigations of variants when smoothness
and conditions on curvature are relaxed. We will strongly extend the classical results of
Erőd, showing that conditions on the curvature suffices to hold only almost everywhere
(in the sense of arc length measure) on the boundary.

Theorem 1.1.16. Assume that the convex domain K has boundary Γ = ∂K and that
the a.e. existing curvature of Γ exceeds κ almost everywhere, or, equivalently, assume the
subdifferential condition (1.60) (or any of the equivalent formulations in (1.55)-(1.60))
with λ = κ. Then for all p ∈ Pn(K) we have

(1.16) ‖p′‖ ≥ κ

2
n‖p‖ .

This also hinges upon geometry, and we will have two proofs. One is essentially an
application of a recent, quite far-reaching extension of the Blaschke Theorem by Strantzen.
The other involves even more geometry: it hinges upon a new, discrete version of the
Blaschke Rolling Ball Theorem, (which easily implies also Strantzen’s Theorem), but which
is suitable, at least in principle, to provide also some degree-dependent estimate of Mn(K)
by means of the minimal oscillation or change of the outer unit normal vector(s) along
the boundary curve.
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For applications to various domains, where yields of the different estimates can also
be compared, see the later sections. Before that, in the next section we prove the most
general result, Theorem 1.1.12, and we follow by proving sharpness of the result, i.e.
proving Theorem 1.1.13.

In §1.4 we start with describing the underlying geometry, and in §1.7 we will describe
variants and extensions on the theme of the Blaschke Roling Ball Theorem. Finally, in
§1.8 we will formulate the resulting theorems and analyze the yields of them on various
parametric classes of domains.

1.2. Proof of the main theorem

Idea of proof. Throughout we will assume, as we may, that K is also closed, hence a
compact convex set with nonempty interior. Our proof will follow the argument of [13],
with one key alteration, suggested to us by Gábor Halász. Let us first describe the original
idea and then the additional suggestion of Halász, even if the reader may understand the
proof below without these notes as well.

We start with picking up a boundary point ζ ∈ ∂K of maximality of |p|, and consider
a supporting line at ζ to K. Our original argument of [13] then used a normal direction
and compared values of p at ζ and on the intersection of K and this normal line. Essential
use were made of the fact that in case the length h of this intersection is small (relative
to w), then, due to convexity, the normal line cuts K into half unevenly: one part has to
be small (of the order of h). That was explicitly formulated in [13], and is used implicitly
even here through various calculations with the angles.

However, here we compare the values of p at ζ and on a line slightly slanted off from the
normal. Comparing the calculations here and in [13] one can observe how this change led
to a further, essential improvement of the result through improving the contribution of
the factors belonging to zeroes close to the supporting line. In [13] we could get a square
term (in h there) only, due to orthogonality and the consequent use of the Pythagorean
Theorem in calculating the distances. However, here we obtain linear dependence in δ via
the general cosine theorem for the slanted segment J . (That insightful observation was
provided by G. Halász.)

One of the major geometric features still at our help is the fact, that when h is small,
then one portion of K, cut into half by our slightly tilted line, is also small. This is the
key feature which allows us to bend the direction of the normal a bit towards the smaller
portion of K5.

As a result of the improved estimates squeezed out this way, we do not need to employ
the second usual technique, also going back to Turán, i.e. integration of (p′/p)′ over a
suitably chosen interval. As pointed out already in [13], this part of the proof yields

5If we try tilting the other way we would fail badly, even if the reader may find it difficult to distill

from the proof where, and how. But if there were zeroes close to (or on) the supporting line and far from

ζ in the direction of the tilting, then these zeroes were farther off from ζ, than from the other end of the

intersecting segment. That would spoil the whole argument. However, since K is small in one direction of

the supporting line, tilting towards this smaller portion does work.
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weaker estimates than cn, so avoiding it is not only a matter of convenience, but is an
essential necessity.

Proof. We list the zeroes of a polynomial p ∈ Pn(K) according to multiplicities
as z1, . . . , zn, and the set of these zero points is denoted as Z := Z(p) := {zj : j =
1, . . . , n} ⊂ K. (It suffices to assume that all zj are distinct, so we do not bother with
repeatedly explaining multiplicities, etc.) Assume, as we may, p(z) =

∏n
j=1(z − zj).

We start with picking up a point ζ of K, where p attains its norm. By the maximum
principle, ζ ∈ ∂K, and by convexity there exists a supporting line to K at ζ with inward
normal vector ν, say. Without loss of generality we can take ζ = 0 and ν = i. Now by
definition of the minimal width w = w(K), there exists a point A ∈ K with =A ≥ w; by
symmetry, we may assume <A ≤ 0, say.

Sometimes we write the zeroes in their polar form

(1.17) zj = rje
iϕj (rj := |zj |, ϕj := arg zj (j = 1, . . . , n)) .

Throughout the proofs with [(ϕ,ψ)] being any open, closed, half open-half closed or half
closed-half open interval we use the notations

(1.18) S[(ϕ,ψ)] := {z ∈ C : arg(z) ∈ [(ϕ,ψ)]}

and

(1.19) Z[(ϕ,ψ)] := Z ∩ S[(ϕ,ψ)] , n[(ϕ,ψ)] := #Z[(ϕ,ψ)] ,

for the sectors, the zeroes in the sectors, and the number of zeroes in the sectors determined
by the angles ϕ and ψ.

In all our proof we fix the angles

(1.20) ψ := arctan
(w
d

)
∈ (0, π/4] and θ := ψ/20 ∈ (0, π/80].

Since |p(0)| = ‖p‖, M ≥ |p′(0)/p(0)|. Observe that for any subset W ⊂ Z we then have

(1.21) M ≥
∣∣∣∣p′p (0)

∣∣∣∣ ≥ =p
′

p
(0) =

n∑
j=1

=−1
zj

≥
∑

zj∈W
=−1
zj

=
∑

zj∈W

sinϕj

rj
,

since all terms in the full sum are nonnegative.
Let us consider now the ray (straight half-line) emanating from ζ = 0 in the direction

of ei(π/2−2θ). This ray intersects K in a line segment [0, D], and if D = 0, then K ⊂
S[π/2−2θ, π] and a standard argument using e.g. Turán’s Lemma 1.1.4 yieldsM ≥ n/(2d).
Hence we may assume D 6= 0.

Consider now any point B ∈ K with maximal real part, and take B′ := <B =
max{<z : z ∈ K}. Since D 6= 0, B′ > 0, and as <A ≤ 0 and <B is maximal,
[A,B′] intersects [0, D] in a point D′ ∈ [0, D], i.e. [0, D′] ⊂ [0, D] ⊂ K. Moreover, the
angle at B′ between the real line and AB′ is − arg(B′ − A) = − arg(B′ −D′) ∈ [ψ, π/2).
Indeed, =(A−B′) ≥ w and <(B′ −A) = <(B −A) ≤ d (resulting from A,B ∈ K) imply
− arg(B′ −A) ≥ arctan(w/d) = ψ.

In the following let us write δ := |D′| > 0; it can not vanish, as B′ 6= 0 and the
line segment [B′, A] intersects the real line only in B′. Consider the point B” ∈ R with
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B” ≥ B′ > 0 and − arg(B”−D′) = ψ. We can say now that K lies both in the upper half
of the disk with radius d around 0 (which we denote by U), and the halfplane <z ≤ B”
(which we denote by H); moreover, [0, D′] ⊂ K ⊂ (U ∩H).

Now we put D” := 3D′/4 and take

(1.22) J :=
[
D”, D′] ⊂ K i.e. J := {τ := tei(π/2−2θ)δ : 3/4 ≤ t ≤ 1} .

Denoting Dr(0) := {z : |z| ≤ r} we split the set Z into the following parts.

Z1 : = Z[0, θ] , µ := #Z1 = n[0, θ]

Z2 : = Z(θ, π − θ) ∩
{
=(ei2θz) <

3
8
δ

}
, ν := #Z2

Z3 : = Z(θ, π − θ) ∩
{
=(ei2θz) ≥ 3

8
δ

}
∩D2δ(0) , κ := #Z3

Z4 : = Z(θ, π − θ) ∩
{
=(ei2θz) ≥ 3

8
δ

}
\D2δ(0) =(1.23)

= Z(θ, π − θ) \ (Z2 ∪ Z3) , k := #Z4

Z5 : = Z[π − θ, π] , m := #Z5 = n[π − θ, π] .

In the following we establish an inequality from condition of maximality of |p(0)|. First
we estimate the distance of any zj ∈ Z1 from J . In fact, taking any point z = reiϕ ∈
H ∩ S[0, θ] the sine theorem yields r cosϕ = <z ≤ |B”| = δ sin(π/2 + 2θ − ψ)/ sinψ =
δ cos(ψ − 2θ)/ sinψ < δ cot(18θ), and so

(1.24) r sin θ <
sin θ
cosϕ

δ

tan(18θ)
≤ δ

tan θ
tan(18θ)

<
δ

18
.

Now dist (z, J) = min3/4≤t≤1 |z−τ |, (where τ := tei(π/2−2θ)δ) and by the cosine theorem
|z−τ |2 = t2δ2 +r2−2 cos(π/2−ϕ−2θ) rtδ. Because of cos(π/2−ϕ−2θ) = sin(ϕ+2θ) ≤
sin(3θ) ≤ 3 sin θ, (1.24) implies |z − τ |2 ≥ t2δ2 + r2 − 6tδ sin θ r ≥ t2δ2 + r2 − (1/3)tδ2,
and thus min3/4≤t≤1 |z − τ |2 ≥ min3/4≤t≤1 t

2δ2 + r2 − (1/3)tδ2 = r2 + (5/16)δ2. It follows
that we have

|z − τ |2

|z|2
≥ r2 + (5/16)δ2

r2
> 1 +

(90/16) sin θ δ
r

> 1 +
5 sin θ δ

d
(τ ∈ J) ,

applying also (1.24) to estimate δ/r in the last but one step. Now δ/d ≤ 1 and 5 sin θ < 0.2,
hence we can apply log(1 + x) ≥ x− x2/2 ≥ 0.9x for 0 < x < 0.2 to get

|z − τ |2

|z|2
≥ exp

(
0.9

5 sin θ δ
d

)
> exp

(
4 sin θ δ

d

)
(τ ∈ J) .

Applying this estimate for all the µ zeroes zj ∈ Z1 we finally find

(1.25)
∏

zj∈Z1

∣∣∣∣zj − τ

zj

∣∣∣∣ ≥ exp
(

2 sin θ δµ
d

) (
τ = tδei(π/2−2θ) ∈ J

)
.

The estimate of the contribution of zeroes from Z5 is somewhat easier, as now the angle
between zj and τ exceeds π/2. By the cosine theorem again, we obtain for any z = reiϕ ∈
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S[π − θ, π] ∩ U the estimate

|z − τ |2 =r2 + t2δ2 − 2 cos(ϕ− (π/2− 2θ)) rtδ

≥r2 + t2δ2 + 2 sin θ rtδ > r2
(

1 +
3 sin θ δ

2d

)
(τ ∈ J) ,(1.26)

as t ≥ 3/4 and r ≤ d. Hence using again δ/d ≤ 1 and 1.5 sin θ < 0.06 we can apply
log(1 + x) ≥ x− x2/2 ≥ 0.97x for 0 < x < 0.06 to get

|z − τ |
|z|

≥ exp
(

0.97
2

3 sin θ δ
2d

)
≥ exp

(
18 sin θ δ

25d

)
(τ ∈ J) ,

whence

(1.27)
∏

zj∈Z5

∣∣∣∣zj − τ

zj

∣∣∣∣ ≥ exp
(

18 sin θ δm
25d

) (
τ = tδei(π/2−2θ) ∈ J

)
.

Observe that zeroes belonging to Z2 have the property that they fall to the opposite side
of the line =(ei2θz) = 3δ/8 than J , hence they are closer to 0 than to any point of J . It
follows that

(1.28)
∏

zj∈Z2

∣∣∣∣zj − τ

zj

∣∣∣∣ ≥ 1
(
τ = tδei(π/2−2θ) ∈ J

)
.

Next we use Lemma 1.1.10 to estimate the contribution of zero factors belonging to Z3.
We find

(1.29) max
τ∈J

∏
zj∈Z3

∣∣∣∣zj − τ

zj

∣∣∣∣ ≥ 2
(
|J |
4

)κ ∏
zj∈Z3

1
rj
>

(
1
32

)κ

> exp(−3.5κ) ,

in view of |J | = δ/4 and rj ≤ 2δ.
Note that for any point z = reiϕ ∈ D2δ(0) ∩ {=(ei2θz) ≥ 3δ/8} we must have

3δ
8
≤ =(ei2θreiϕ) = r sin(ϕ+ 2θ) ,

hence by r ≤ 2δ also

sin(ϕ+ 2θ) ≥ 3δ
8r

≥ 3
16

and sinϕ ≥ sin(ϕ + 2θ) − 2θ ≥ 3/16 − π/40 > 1/10. Applying this for all the zeroes
zj ∈ Z3 we are led to

(1.30) 1 ≤ 2δ
rj
≤ 20δ

sinϕj

rj
(zj ∈ Z3) .

On combining (1.29) with (1.30) we are led to

(1.31) max
τ∈J

∏
zj∈Z3

∣∣∣∣zj − τ

zj

∣∣∣∣ ≥ exp

−70δ
∑

zj∈Z3

sinϕj

rj

 .

Finally we consider the contribution of the zeroes from Z4, i.e. the “far” zeroes for which
we have =(zje2iθ) ≥ 3δ/8, ϕj ∈ (θ, π − θ) and |rj | ≥ 2δ. Put now Z := zje

2iθ = u+ iv =
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reiα, and s := |τ | = tδ, say. We then have∣∣∣∣zj − τ

zj

∣∣∣∣2 =
|Z − tδi|2

r2
=
u2 + (v − s)2

r2
= 1− 2vs

r2
+
s2

r2
(1.32)

> 1− 2vs
r2

+
s2

r2
v2

r2
=
(
1− vs

r2

)2
≥
(

1− |v|δ
r2

)2

=
(

1− δ| sinα|
r

)2

.

Recall that log(1−x) > −x− x2

2
1

1−x ≥ −x(1 + 1/2) whenever 0 ≤ x ≤ 1/2. We can apply
this for x := δ| sinα|/rj ≤ δ/rj ≤ 1/2 using r = rj = |zj | ≥ 2δ. As a result, (1.32) leads to

(1.33)
∣∣∣∣zj − τ

zj

∣∣∣∣ ≥ exp
(
−3

2
δ
| sin(ϕj + 2θ)|

rj

)
,

and using | sin(ϕj + 2θ)| ≤ sin(ϕj) + sin(2θ) ≤ 3 sinϕj (in view of ϕj ∈ (θ, π − θ)), finally
we get

(1.34)
∏

zj∈Z4

∣∣∣∣zj − τ

zj

∣∣∣∣ ≥ exp

−9δ
2

∑
zj∈Z4

sinϕj

rj

 (
τ = tδei(π/2−2θ) ∈ J

)
.

If we collect the estimates (1.25) (1.27) (1.28) (1.31) and (1.34), we find for a certain
point of maxima τ0 ∈ J in (1.31) the inequality

1 ≥|p(τ0)|
|p(0)|

=
∏

zj∈Z

∣∣∣∣zj − τ0
zj

∣∣∣∣ >(1.35)

exp

18
25

sin θ δ
µ+m

d
− 70δ

∑
zj∈Z2∪Z3∪Z4

sinϕj

rj

 ,

or, after taking logarithms and cancelling by 18δ/25

(1.36) sin θ
µ+m

d
<

875
9

∑
zj∈Z2∪Z3∪Z4

sinϕj

rj

Observe that for the zeroes in Z2 ∪ Z3 ∪ Z4 we have sinϕj > sin θ, whence also

(1.37) (ν + κ+ k)
sin θ
d

≤
∑

zj∈Z2∪Z3∪Z4

sinϕj

rj
.

Adding (1.36) and (1.37) and taking into account #Z =
∑5

j=1 #Zj , we obtain

(1.38) sin θ
n

d
= sin θ

µ+m+ ν + κ+ k

d
<

884
9

∑
zj∈Z2∪Z3∪Z4

sinϕj

rj
.

Making use of (1.21) with the choice of W := Z2 ∪ Z3 ∪ Z4 we arrive at

sin θ
n

d
<

884
9
M ,

that is,

(1.39) M >
9 sin θ
884d

n .

It remains to recall (1.20) and to estimate

sin θ = sin
(

arctan(w/d)
20

)
.
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As θ ∈ (0, π/80], sin θ > θ(1 − θ2/6) ≥ θ(1 − π/240) > 0.98θ and as 0 < w/d ≤ 1,
arctan(w/d) ≥ (w/d)(π/4), whence

sin θ ≥ 0.98
arctan(w/d)

20
≥ 0.98π

80
w

d
.

If we substitute this last estimate into (1.39) we get

M >
9

884
· 0.98π

80
· w
d2
· n > 0.0003

w

d2
n ,

concluding the proof. �

1.3. On sharpness of the order n lower estimate of Mn(K)

Proof. Take a, b ∈ K with |a − b| = d and m ∈ N with m > m0 to be determined
later. Consider the polynomials q(z) := (z−a)(z−b), p(z) = (z−a)m(z−b)m = qm(z) and
P (z) = (z − a)m(z − b)m+1 = (z − b)qm(z). Clearly, p, P ∈ Pn(K) with n = deg p = 2m
and n = degP = 2m + 1, respectively. We claim that for appropriate choice of m0 these
polynomials satisfy inequality (1.15) for all n > 2m0.

Without loss of generality we may assume a = −1, b = 1 and thus d = 2, as substitution
by the linear function Φ(z) := 2

b−az −
a+b
b−a shows. Indeed, if we prove the assertion for

K̃ := Φ(K) and for p̃(z) = (z + 1)m(z − 1)m, P̃ (z) = (z + 1)m(z − 1)m+1 defined on K̃,
we also obtain estimates for p = p̃ ◦ Φ and P = P̃ ◦ Φ on K. The homothetic factor
of the inverse substitution Φ−1 is Λ :=

∣∣ b−a
2

∣∣ = d(K)/2, and width changes according
to w(K̃) = 2w(K)/d(K). Note also that under the linear substitution Φ the norms are
unchanged but for the derivatives ‖p′‖ = Λ−1‖p̃′‖ and ‖P ′‖ = Λ−1‖P̃ ′‖. So now we restrict
to a = −1, b = 1, d = 2 and q(z) := z2 − 1 etc.

First we make a few general observations. One obvious fact is that the imaginary axes
separates a = −1 and b = 1, and as K is connected, it also contains some point c = it of
K. Therefore, ‖q‖ ≥ |q(c)| = 1+ t2 ≥ 1. Also, it is clear that q′(z) = 2z = (z−1)+(z+1):
thus, by definition of the diameter

(1.40) ‖q′‖ ≤ ‖|z − 1|+ |z + 1|‖ ≤ 4 .

Let us put w+ := supz∈K =z and w− := − infz∈K =z. We can estimate w′ := max(w+, w−)
from above by a constant times w. That is, we claim that for any point ω = α + iβ ∈ K
we necessarily have |β| ≤

√
2w and so the domain K lies in the rectangle R := con{−1−

i
√

2w, 1− i
√

2w, 1 + i
√

2w,−1 + i
√

2w}.
To see this first note that β ≤

√
3, since d(K) = 2 by assumption. Recalling (1.13), take

eiγ be the direction of the minimal width of K: by symmetry, we may take 0 ≤ γ < π.
Then there is a strip of width w and direction ieiγ containing K, hence also the segments
[−1, 1] and [α, α+ iβ]. It follows that 2| cos γ| ≤ w and β sin γ ≤ w. The second inequality
immediately leads to β ≤

√
2w if γ ∈ [π/4, 3π/4]. So let now γ ∈ [0, π/4) ∪ [3π/4, π), i.e.

| cos γ| ≥ 1/
√

2. Applying also β ≤
√

3 now we deduce β ≤
√

3 ≤
√

3/2 2| cos γ| ≤
√

3/2w,
whence the asserted w± ≤

√
2w is proved.
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Consider now the norms of the derivatives. As for p, we have p′ = mq′qm−1, hence

(1.41) ‖p′‖ ≤ m‖q′‖‖q‖m−1 ≤ m4
‖p‖
‖q‖

≤ 4m‖p‖ .

Concerning P we can write using also (1.41) above

(1.42) ‖P ′‖ ≤ ‖p‖+ ‖p′‖‖z − 1‖ ≤ ‖p‖+ 2‖p′‖ ≤ (8m+ 1)‖p‖ .

Consider any point z ∈ K where ‖q‖, and thus also ‖p‖ is attained. We clearly have
‖P‖ ≥ |P (z)| = |z − 1|‖p‖. But here |z − 1| ≥ 2/5: for in case |z − 1| ≤ 2/5 we also have
|z + 1| ≤ 12/5 and thus |q(z)| ≤ 24/25 < ‖q‖, as ‖q‖ ≥ 1 was shown above. We conclude
‖P‖ ≥ (2/5)‖p‖ and (1.42) leads to

(1.43) ‖P ′‖ ≤ 5(8m+ 1)
2

‖P‖ < 10n‖P‖ ( n := 2m+ 1 = degP ) .

Now consider first the case w ≥ 2/25. Using (25w/2) ≥ 1 we obtain both for p and for
P the estimate

(1.44) M(p),M(P ) ≤ 10n ≤ 125wn (n := deg p or degP, respectively).

Note that here we have these estimates for any n ∈ N, without bounds on n.
Let now w < 2/25. For the central part Q := {α+ iβ ∈ R : |α| ≤ 10w} of R we have

(1.45) ‖q′‖K∩Q = ‖2z‖K∩Q ≤ 2
√

(10w)2 + (
√

2w)2 ≤ 2
√

102w2 < 21w,

while for the remaining part (1.40) remains valid as above.
Next we estimate q in K \ Q. It is easy to see that here we have ‖q‖K\Q ≤ ‖q‖R\Q =∣∣q (10w + i

√
2w
)∣∣, hence using also w ≤ 2/25 we are led to

‖q‖2
K\Q ≤

[
(1 + 10w)2 + (

√
2w)2

] [
(1− 10w)2 + (

√
2w)2

]
= 1− 196w2 + 10404w4 ≤ 1− 196w2 + 10000

(
2
25

)2

w2 + 404w4(1.46)

= 1− 132w2 + 404w4 ≤ 1− 128w2 + 4096w4 =
[
1− (8w)2

]2
.

Now for z ∈ K ∩Q we have in view of (1.45) and ‖q‖K ≥ 1

|p′(z)| = m · |q′(z)| · |qm−1(z)| ≤ m21w‖q‖m =
21
2
wn‖p‖ ,(1.47)

and for z ∈ K \Q using ‖p‖K = ‖q‖m
K ≥ 1, (1.40) and (1.46) we get

|p′(z)| ≤ m · 4 · ‖q‖m−1
K\Q ≤ 4m‖p‖

[
1− (8w)2

]m−1
.(1.48)

In view of w < 2/25, a standard calculation shows that

(1.49)
[
1− (8w)2

]m−1
≤ 25

2
w if m ≥ m0 :=

(
1

8w

)2

log
(

1
8w

)
.

Indeed, as log(1− x) < −x for all 0 < x < 1, using w < 2/25 we find

(m− 1) log
[
1− (8w)2

]
< −(m− 1) (8w)2 < −m (8w)2 + 0.41,
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which entails for m ≥ m0 that[
1− (8w)2

]m−1
< e−m0(8w)2+0.41 = e− log( 1

8w )+0.41 <
25w
2

.

It follows from (1.48) and (1.49) that

(1.50) ‖p′‖K\Q ≤ 25wn‖p‖ .

Collecting (1.47) and (1.50) we get also in this case of w < 2/25 the estimate

(1.51) ‖p′‖ ≤ 25wn‖p‖ (n = 2m = deg p, m ≥ m0) .

It remains to consider the odd degree case of n = 2m+ 1, i.e. P . Now write

(1.52) |P ′(z)| ≤ |p(z)|+ |p′(z)| · |z − 1| ≤ ‖p‖+ 2‖p′‖ ≤ (1 + 100wm)‖p‖ (m ≥ m0),

in view of (1.51). As shown above, we have ‖P‖ ≥ ‖p‖/(2/5), while m ≥ m0 entails
1 ≤ m/m0 < m(8w)(16/25)(1/ log(25/16)) < 12mw, hence (1.52) yields

‖P ′‖ ≤ 112mw‖p‖ ≤ 280mw‖P‖ .

Since now n = 2m+ 1 > 2m, we finally find

(1.53) ‖P ′‖ < 140wn‖P‖ (n = 2m+ 1 = degP, m > m0) .

Collecting (1.44), (1.51) and (1.53), in view of max(125, 25, 140) < 150 we always get

(1.54) M(p),M(P ) < 150wn (n := deg p or degP, respectively) .

As remarked at the outset, for the general case the homothetic substitution Φ can be
considered. That yields < 600w/d2 on the right hand side of (1.54). �

1.4. Some geometrical notions

Let Rd be the usual Euclidean space of dimension d, equipped with the Euclidean dis-
tance | · |. Our starting point is the following classical result of Blaschke [1, p. 116].

Theorem 1.4.1 (Blaschke). Assume that the convex domain K ⊂ R2 has C2 boundary
Γ = ∂K and that with the positive constant κ0 > 0 the curvature satisfies κ(z) ≤ κ0 at
all boundary points z ∈ Γ. Then to each boundary points z ∈ Γ there exists a disk DR of
radius R = 1/κ0, such that z ∈ ∂DR, and DR ⊂ K.

Note that the result, although seemingly local, does not allow for extensions to non-
convex curves Γ. One can draw pictures of leg-bone like shapes of arbitrarily small upper
bound of (positive) curvature, while at some points of touching containing arbitrarily small
disks only. The reason is that the curve, after starting off from a certain boundary point
x, and then leaning back a bit, can eventually return arbitrarily close to the point from
where it started: hence a prescribed size of disk cannot be inscribed.

On the other hand the Blaschke Theorem extends to any dimension d ∈ N.
Also, the result has a similar, dual version, too, see [1, p. 116]. This was formulated

already in Lemma 1.1.15 above.
Now we start with introducing a few notions and recalling auxiliary facts. In §1.5 we

formulate and prove the two basic results – the discrete forms of the Blaschke Theorems.
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Then we show how our discrete approach yields a new, straightforward proof for a more
involved sharpening of Theorem 1.4.1, originally due to Strantzen.

Recall that the term planar convex body stands for a compact, convex subset of C ∼= R2

having nonempty interior. For a (planar) convex body K any interior point z defines a
parametrization γ(ϕ) – the usual polar coordinate representation of the boundary ∂K,
– taking the unique point {z + teiϕ : t ∈ (0,∞)} ∩ ∂K for the definition of γ(ϕ). This
defines the closed Jordan curve Γ = ∂K and its parametrization γ : [0, 2π] → C. By
convexity, from any boundary point ζ = γ(θ) ∈ ∂K, locally the chords to boundary points
with parameter < θ or with > θ have arguments below and above the argument of the
direction of any supporting line at ζ. Thus the tangent direction or argument function
α−(θ) can be defined as e.g. the supremum of arguments of chords from the left; similarly,
α+(θ) := inf{arg(z−ζ) : z = γ(ϕ), ϕ > θ}, and any line ζ+eiβR with α−(θ) ≤ β ≤ α+(θ)
is a supporting line to K at ζ = γ(θ) ∈ ∂K. In particular the curve γ is differentiable
at ζ = γ(θ) if and only if α−(θ) = α+(θ); in this case the tangent of γ at ζ is ζ + eiαR
with the unique value of α = α−(θ) = α+(θ). It is clear that interpreting α± as functions
on the boundary points ζ ∈ ∂K, we obtain a parametrization-independent function. In
other words, we are allowed to change parameterizations to arc length, say, when in case
of |Γ| = ` (|Γ| meaning the length of Γ := ∂K) the functions α± map [0, `] to [0, 2π].

Observe that α± are nondecreasing functions with total variation Var [α±] = 2π, and
that they have a common value precisely at continuity points, which occur exactly at
points where the supporting line to K is unique. At points of discontinuity α± is the
left-, resp. right continuous extension of the same function. For convenience, and for
better matching with [3], we may even define the function α := (α+ + α−)/2 all over the
parameter interval.

For obvious geometric reasons we call the jump function β := α+−α− the supplementary
angle function. In fact, β and the usual Lebesgue decomposition of the nondecreasing
function α+ to α+ = σ+α∗+α0, consisting of the pure jump function σ, the nondecreasing
singular component α∗, and the absolute continuous part α0, are closely related. By
monotonicity there are at most countable many points where β(x) > 0, and in view of
bounded variation we even have

∑
x β(x) ≤ 2π, hence the definition µ :=

∑
x β(x)δx

defines a bounded, non-negative Borel measure on [0, 2π). Now it is clear that σ(x) =
µ([0, x]), while α′∗ = 0 a.e., and α0 is absolutely continuous. In particular, α or α+ is
differentiable at x provided that β(x) = 0 and x is not in the exceptional set of non-
differentiable points with respect to α∗ or α0. That is, we have differentiability almost
everywhere, and

∫ y

x
α′ =α0(y)− α0(x) = lim

z→x−0
α0(y)− α0(z)

= lim
z→x−0

{[α+(y)− σ(y)− α∗(y))]− [α+(z)− σ(z)− α∗(z)]}

=α+(y)− β(y)− µ([x, y))− lim
z→x−0

α+(z)− lim
z→x−0

[α∗(y)− α∗(z)] ≤ α−(y)− α+(x) .
(1.55)
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It follows that

(1.56) α′(t) ≥ λ a.e. t ∈ [0, a]

holds true if and only if we have

(1.57) α±(y)− α±(x) ≥ λ(y − x) ∀x, y ∈ [0, a] .

Here we restricted ourselves to the arc length parametrization taken in positive orientation.
Recall that one of the most important geometric quantities, curvature, is just κ(s) := α′(s),
whenever parametrization is by arc length s.

Thus we can rewrite (1.56) as

(1.58) κ(t) ≥ λ a.e. t ∈ [0, a] ,

or, with radius of curvature ρ(t) := 1/κ(t) introduced (writing 1/0 = ∞),

(1.59) ρ(t) ≤ 1
λ

a.e. t ∈ [0, a] .

Again, ρ is a parametrization-invariant quantity (describing the radius of the osculating
circle). Actually, it is easy to translate all these conditions to arbitrary parametriza-
tion of the tangent angle function α. Since also curvature and radius of curvature are
parametrization-invariant quantities, all the above hold for any parametrization.

Moreover, with a general parametrization let |Γ(η, ζ)| stand for the length of the coun-
terclockwise arc Γ(η, ζ) of the rectifiable Jordan curve Γ between the two points ζ, η ∈ Γ =
∂K. We can then say that the curve satisfies a Lipschitz-type increase or subdifferential
condition whenever

(1.60) |α±(η)− α±(ζ)| ≥ λ|Γ(η, ζ)| (∀ζ, η ∈ Γ) ,

here meaning by α±(ξ), for ξ ∈ Γ, not values in [0, 2π), but a locally monotonously
increasing branch of α±, with jumps in (0, π), along the counterclockwise arc Γ(η, ζ) of Γ.
Clearly, the above considerations show that all the above are equivalent.

In the paper we use the notation α (and also α±) for the tangent angle, κ for the
curvature, and ρ for the radius of curvature. The counterclockwise taken right hand side
tangent unit vector(s) will be denoted by t, and the outer unit normal vectors by n. These
notations we will use basically in function of the arc length parametrization s, but with a
slight abuse of notation also α−(ϕ), t(x), n(x) etc. may occur with the obvious meaning.

Note that t(x) = in(x)) and also t(x) = γ̇(s) when x = x(s) ∈ γ and the parametriza-
tion/differentiation, symbolized by the dot, is with respect to arc length; moreover, with
ν(s) : arg(n(x(s)) we obviously have α ≡ ν + π/2 mod 2π at least at points of continuity
of α and ν. To avoid mod 2π equality, we can shift to the universal covering spaces and
maps and consider α̃, ν̃, i.e. t̃, ñ – e.g. in case of ñ we will somewhat detail this right below.
However, note a slight difference in handling α and ñ: the first is taken as a singlevalued
function, with values α(s) := 1

2{α−(s) + α+(s)} at points of discontinuity, while ñ is a
multivalued function attaining a full closed interval [ñ−(s), ñ+(s)] whenever s is a point
of discontinuity. Also recall that curvature, whenever it exists, is |γ̈(s)| = α′(s) = ñ′(s).
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In this work we mean by a multi-valued function Φ from X to Y a (non-empty-valued)
mapping Φ : X → 2Y \ {∅}, i.e. we assume that the domain of Φ is always the whole of
X and that ∅ 6= Φ(x) ⊂ Y for all x ∈ X. Recall the notions of modulus of continuity and
minimal oscillation in the full generality of multi-valued functions between metric spaces.

Definition 1.4.2 (modulus of continuity and minimal oscillation). Let (X, dX)
and (Y, dY ) be metric spaces. We call the modulus of continuity of the multivalued function
Φ from X to Y the quantity

ω(Φ, τ) := sup{dY (y, y′) : x, x′ ∈ X, dX(x, x′) ≤ τ, y ∈ Φ(x), y′ ∈ Φ(x′)}.

Similarly, we call minimal oscillation of Φ the quantity

Ω(Φ, τ) := inf{dY (y, y′) : x, x′ ∈ X, dX(x, x′) ≥ τ, y ∈ Φ(x), y′ ∈ Φ(x′)}.

If we are given a multi-valued unit vector function v(x) : H → 2Sd−1\{∅}, where H ⊂ Rd

and Sd−1 is the unit ball of Rd, then the derived formulae become:
(1.61)
ω(τ) := ω(v, τ) := sup{arccos〈u,w〉 : x,y ∈ H, |x− y| ≤ τ, u ∈ v(x),w ∈ v(y)},

and
(1.62)

Ω(τ) := Ω(v, τ) := inf{arccos〈u,w〉 : x,y ∈ H, |x− y| ≥ τ, u ∈ v(x), w ∈ v(y)}.

For a planar multi-valued unit vector function v : H → 2S1\{∅}, whereH ⊂ R2 ' C and
S1 is the unit circle in R2, we can parameterize the unit circle S1 by the corresponding
angle ϕ and thus write v(x) = eiΦ(x) with Φ(x) := arg(v(x)) being the corresponding
angle. We will somewhat elaborate on this observation in the case when our multi-valued
vector function is the outward normal vector(s) function n(x) of a closed convex curve.

Let γ be the boundary curve of a convex body in R2, which will be considered as oriented
counterclockwise, and let the multivalued function n(x) : γ → 2S1 \ {∅} be defined as the
set of all outward unit normal vectors of γ at the point x ∈ γ. Observe that the set
n(x) of the set of values of n at any x ∈ γ is either a point, or a closed segment of
length less than π. Then there exists a unique lifting ñ of n from the universal covering
space γ̃(' R, see below) of γ to the universal covering space R = S̃1 of S1, with the
respective universal covering maps πγ : γ̃ → γ and πS1 : S̃1 → S1, with properties to be
described below. Here we do not want to recall the concept of the universal covering spaces
from algebraic topology in its generality, but restrict ourselves to give it in the situation
described above. As already said, S̃1 = R and the corresponding universal covering map
is πS1 : x → (cosx, sinx) (We consider, as usual, S1 as R mod 2π.) Similarly, for γ we
have γ̃ = R, with universal covering map πγ : R → γ given in the following way. Let us
fix some arbitrary point x0 ∈ γ, (the following considerations will be independent of x0,
in the natural sense). Let us denote by ` the length of γ. Then for λ ∈ R = γ̃ we have
that πγ(λ) ∈ γ is that unique point x of γ, for which the counterclockwise measured arc
x0x has a length λ mod `.
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Now we describe the postulates for the multivalued function ñ : R = γ̃ → S̃1 = R,
which determine it uniquely. First of all, we must have the equality πS1 ◦ ñ = n ◦ πγ ,
where ◦ denotes the composition of two multivalued functions. (In algebraic topology
this is called commutativity of a certain square of mappings.) Second, the values of ñ
must be either points or non-degenerate closed intervals (of length less than π; however
this last property follows from the other ones). Third, ñ must be non-decreasing in the
following sense: for λ1, λ2 ∈ R, λ1 < λ2 we have r1 ∈ ñ(λ1), r2 ∈ ñ(λ2) =⇒ r1 ≤ r2.
Further, ñ must be a non-decreasing multivalued function, continuous from the left, i.e.,
for any λ ∈ R we have that for any ε > 0 there exists a δ > 0, such that ∪µ∈(λ−δ,λ)ñ(µ) ⊂
(min ñ(λ)− ε,min ñ(λ)). Analogously, ñ must be a non-decreasing multi-valued function
continuous from the right, i.e., for any λ ∈ R we have that for any ε > 0 there exists a
δ > 0, such that ∪µ∈(λ,λ+δ)ñ(µ) ⊂ (max ñ(λ),max ñ(λ) + ε). These are all the postulates
for the multi-valued function ñ. It is clear, that ñ exists and is uniquely determined,
for fixed x0 (and, for x0 arbitrary, only the parametrization of R = γ̃ changes, by a
translation.)

The above listed properties imply still one important property of the multi-valued func-
tion ñ: we have for any λ ∈ R that ñ(λ+ `) = ñ(λ) + 2π.

Definition 1.4.3. We define the modulus of continuity of the multi-valued normal
vector function n(x) with respect to arc length as the (ordinary) modulus of continuity of
the multi-valued lift-up function ñ : R → R \ {∅}, i.e. as

ω̃(τ) := ω̃(n, τ) := ω(ñ, τ)

:= sup{|r1 − r2| | r1 ∈ ñ(λ1), r2 ∈ ñ(λ2), λ1, λ2 ∈ R, |λ1 − λ2| ≤ τ}.(1.63)

Similarly, we define the minimal oscillation of the multi-valued normal vector function
n(x) with respect to arc length as the (ordinary) minimal oscillation function of ñ, i.e. as

Ω̃(τ) := Ω̃(n, τ) := Ω(ñ, τ)

:= inf{|r1 − r2| | r1 ∈ ñ(λ1), r2 ∈ ñ(λ2), λ1, λ2 ∈ R, |λ1 − λ2| ≥ τ}.(1.64)

By writing ”modulus of continuity” we do not mean to say anything like continuity of
ñ. In fact, if for some λ ∈ R ñ(λ) is a non-degenerate closed segment, then the left-hand
side and right-hand side limits of ñ at λ - in the sense of the definition of continuity from
the left or right, respectively - are surely different.

We evidently have that the modulus of continuity of ñ is subadditive, meaning ω̃(τ1 +
τ2) ≤ ω̃(τ1) + ω̃(τ2), and similarly, that the minimal oscillation of ñ is superadditive,
meaning Ω̃(τ1 + τ2) ≥ Ω̃(τ1) + Ω̃(τ2). In fact, a standard property of the modulus of
continuity of any (non-empty valued) multivalued function from R (or from any convex
set, in the sense of metric intervals) to R is subadditivity, and similarly, minimal os-
cillation of such a function is superadditive. These properties with non-negativity and
non-decreasing property also imply that ω̃(τ)/τ and Ω̃(τ)/τ have limits when τ → 0;
moreover, limτ→0 ω̃(τ)/τ = sup ω̃(τ)/τ and limτ→0 Ω̃(τ)/τ = inf Ω̃(τ)/τ . Note that met-
ric convexity is essential here, so e.g. it is not clear if in Rd any proper analogy could be
established.
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Observe that if the curvature of γ exists at x0, then for the non-empty valued multi-
valued function n(x) :=”set of values of all outer unit normal vectors of γ at x”, we
necessarily have #n(x0) = 1 and the curvature can be written as

(1.65) κ(x0) = lim
y→x0 v∈n(y)

arccos〈n(x0),v〉
|x0 − y|

,

where the limit in (1.65) exists with arbitrary choice of v ∈ y and is independent of this
choice.

The next two propositions are well-known.

Proposition 1.4.4. Let γ be a planar convex curve. Recall that (1.61) and (1.62) is
the modulus of continuity and the minimal oscillation of the multi-valued normal vector
function n(x) with respect to chord length, and that (1.63) and (1.64) stand for the modulus
of continuity and the minimal oscillation of n(x) with respect to arc length. Then for all
x ∈ γ with curvature κ(x) ∈ [0,∞] we have

(1.66) lim
τ→0

Ω(τ)
τ

= lim
τ→0

Ω̃(τ)
τ

≤ κ(x) ≤ lim
τ→0

ω̃(τ)
τ

= lim
τ→0

ω(τ)
τ

.

Proof. First of all, by definition and the obvious fact that chord length does not
exceed arc length, it follows that Ω(τ) ≤ Ω̃(τ) ≤ ω̃(τ) ≤ ω(τ). We have already
remarked, that the limits limτ→0 Ω̃(τ)/τ and limτ→0 ω̃(τ)/τ exist; moreover, the limit
limτ→0 Ω̃(τ)/τ = inf Ω̃(τ)/τ ≤ 2π/`(γ) is necessarily finite.

On the other hand, let τ be any fixed value, chosen sufficiently small, and choose 0 ≤ s <

t < `(γ), γ(s) = x and γ(t) = y with |x−y| = τ such that Ω(τ) = arccos〈u,v〉 with some
u ∈ n(x), v ∈ n(y). Then clearly arg u = ñ+(s), arg v = ñ−(t), also Ω(τ) = ñ−(t)−ñ+(s),
and for all s < σ < t we have ñ(σ) ⊂ [ñ+(s), ñ−(t)]. Moreover, putting ν for the
normal vector of the chord y − x, having right angle with it in the clockwise direction,
we also have arg(ν) ∈ [ñ+(s), ñ−(t)] because y − x =

∫ t
s t(σ)dσ =

∫ t
s in(σ)dσ, and thus

arg(y − x) ∈ [ñ+(s) + π/2, ñ−(t) + π/2] mod 2π.
Now we compare arc length and chord length. We find τ = |y−x| =

∫ t
s 〈n(σ),ν〉dσ ≥ (s−

t) cos(ñ−(t)−ñ+(s)) = (s−t) cos Ω(τ), and, as Ω(τ) = O(τ), we surely have cos(Ω(τ)) → 1
when τ → 0. It is also clear that t−s→ 0 together with τ → 0, so for τ chosen sufficiently
small,

Ω(τ)
τ

≥ Ω̃(t− s)
τ

=
t− s

τ

Ω̃(t− s)
t− s

≥ t− s

τ
(1− ε) lim

ξ→0

Ω̃(ξ)
ξ

≥ (1− ε)2 lim
ξ→0

Ω̃(ξ)
ξ

and it follows that the two limits of the oscillation functions coincide.
For the modulus of continuity type quantities note that if n is really multivalued, i.e.

there exists some point x ∈ γ where n(x) consists of more than one vector, then ñ attains
some closed interval and ω̃(τ) does not go to 0 with τ : whence the arising limits must be
+∞. Therefore, it suffices to consider the case when n, i.e. ñ, are single-valued (and thus
ñ is monotonous and continuous) functions.

Again, consider a given value τ > 0, sufficiently small, and a pair of extremal points
x = γ(s) and y = γ(t) with 0 ≤ s < t < `(γ) such that τ = |y − x| and ω(τ) =
arccos〈n(x),n(y)〉 = ñ(t)− ñ(s). As above, for all s < σ < t we have ñ(σ) ⊂ [ñ(s), ñ(t)].
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Moreover, τ = |y − x| =
∫ t
s 〈n(σ),ν〉dσ ≥ (t − s) cos(ñ(t) − ñ(s)) = (t − s) cosω(τ), and,

as ω(τ) → 0, we surely have cos(ω(τ)) → 1 when τ → 0. (Observe that we already have
t− s→ 0 together with τ → 0 – however, we do not need it here.) At last, we find for τ
chosen sufficiently small,

ω(τ)
τ

≤ t− s

τ

ω̃(t− s)
t− s

≤ 1
cosω(τ)

sup
ξ

ω̃(ξ)
ξ

≤ (1 + ε) lim
ξ→0

ω̃(ξ)
ξ

.

It follows that the leftmost and rightmost limits in (1.66) exist and are equal to the corre-
sponding limits with respect to arc length. Therefore, it suffices to prove the inequalities
involving κ(x) for the quantities ω and Ω only.

Clearly, Ω(n, |x− y|) ≤ arccos〈u,v〉 ≤ ω(n, |x− y|) for all u ∈ n(x), v ∈ n(y). Putting
τ = |y−x|, and recalling that n(x) is unique by condition of existence of κ(x), we obtain

lim
τ→0

Ω(n, τ)
τ

≤

(
κ(x) =

)
lim

y→x v∈n(y)

arccos〈n(x),v〉
|x− y|

≤ lim
τ→0

ω(n, τ)
τ

.

�

In the following proposition arccos will denote the branch with values in [0, π].

Proposition 1.4.5. Let γ be a closed convex curve, and (1.61) and (1.62) be the modulus
of continuity and the minimal oscillation of the (in general, multi-valued) unit normal
vector function n(x).

(i) If the curvature exists and is bounded from above by κ0 all over γ, then there
exists a bound τ0 > 0 so that for any two points x,y ∈ γ with |x − y| ≤ τ ≤ τ0

we must have ω(n, τ) < π/2 and arccos〈n(x),n(y)〉 ≤ κ0τ/cos(ω(n, τ)). Thus
we also have ω(n, τ) ≤ κ0τ/ cos(ω(n, τ)) for τ ≤ τ0.

(ii) If the curvature κ(x) exists (linearly, that is, according to arc length parametriza-
tion) almost everywhere, and is bounded from below by κ0 (linearly) almost ev-
erywhere on γ, then for any two points x,y ∈ γ with |x − y| ≥ τ and for all
u ∈ n(x),v ∈ n(y) we have arccos〈u,v〉 ≥ κ0τ and hence Ω(n, τ) ≥ κ0τ .

Proof. Consider first (i). In this case n is a single-valued function. Recall that
α stands for the tangent angle function, and therefore with x = γ(s0) and y = γ(t)
arccos〈n(x),n(y)〉 = α(t) − α(s0), supposing that on the counterclockwise closed arc xy
of γ the rotation of the outer unit normal vector is at most π. (In case of the rotation
exceeding π, the complementary arc must have rotation below π, and considering the
negatively oriented curve, i.e. a reflection of γ, we can conclude the same way.) Since the
curvature is just κ = α′ (α written in arc length parametrization), by condition α is an
everywhere differentiable function (with respect to arc length). Thus we can apply the
Lagrange mean value theorem to find some parameter u ∈ (s0, t) satisfying

α(t)− α(s0) = α′(u)(t− s0).

Now we can apply the condition α′ = κ ≤ κ0 to get

(1.67) arccos〈n(x),n(y)〉 ≤ κ0(t− s0).
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It remains to estimate the arc length t− s0 in function of τ .
Let now x,y be two arbitrary points of γ and consider the counterclockwise arc of γ

between these points. Let us suppose that this arc has total curvature less than π/2.
Since κ exists and is bounded everywhere by κ0, a standard compactness argument yields
ω(n, τ) < π/2 for τ := |y−x| ≤ τ0. As now n(x) is single-valued, we have arg t(x) = α(s0)
with the unique tangent vector at x, and we can write

t− s0 =
∫ t

s0

1ds ≤
∫ t

s0

cos(α(s)− α(s0))
cos(α(t)− α(s0))

ds =
1

cos(α(t)− α(s0))

∫ t

s0

〈γ̇(s); t(x)〉ds

≤ 1
cosω(n, |y − x|)

〈∫ t

s0

γ̇(s)ds; t(x)
〉

=
〈y − x; t(x)〉
cosω(n, τ)

≤ τ

cosω(n, τ)
.

On combining this with (1.67), the assertion (i) follows.
To prove (ii) we still can use that α is a monotonic function, hence is almost everywhere

differentiable and, as detailed above, for any u ∈ n(x), v ∈ n(y) we have

arccos〈u,v〉 = arg u−arg v ≥ ñ−(t)− ñ+(s0) = α−(t)−α+(s0) ≥
∫ t

s0

α′(s)ds ≥ κ0(t− s0)

by condition of κ = α′ ≥ κ0 (linearly) a.e. on γ. (As above, we may assume that
arg u − arg v does not exceed π, as otherwise we may consider the complementary arc,
i.e. the reflected curve with respect to the line of x and y, e.g.) It is obvious that the
arc length of γ between x and y is at least the distance of x and y, hence the assertion
follows. �

Rotations of C = R2 about the origin O by the counterclockwise measured (positive)
angle ϕ will be denoted by Uϕ, that is,

(1.68) Uϕ =

(
cosϕ − sinϕ
sinϕ cosϕ

)
.

We denote T the reflection to the y-axis, i.e. the linear mapping defined by

(
−1 0
0 1

)
.

Definition 1.4.6 (Mangled n-gons). Let 2 ≤ k ∈ N and put n = 4k − 4, ϕ∗ := π
2k .

We define the standard mangled n-gon as the convex n-gon

(1.69) Mk := con {A1, . . . , Ak−1, Ak+1, . . . , A2k−1, A2k+1, . . . , A3k−1, A3k+1, . . . , A4k−1},

of n = 4k − 4 vertices with

(1.70) Am :=

 m∑
j=1

cos(jϕ∗)−
bm/kc∑
`=1

cos(`kϕ∗),
m∑

j=1

sin(jϕ∗)−
bm/kc∑
`=1

sin(`kϕ∗)

 ,

where m ∈ {1, . . . , 4k} \ {k, 2k, 3k, 4k}. That is, we consider a regular 4k-gon of unit
sides, but cut out the middle ”cross-shape” (i.e., the union of two rectangles which are
the convex hulls of two opposite sides of the regular 4k-gon, these pairs of opposite sides
being perpendicular to each other) and push together the left over four quadrants (i.e.,
shift the vertices A`k to the position of A`k−1 consecutively to join the remaining sides
of the polygon. Observe that taking A0 := O, the same formula (1.70) is valid also for
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A0 := O = A4k = A4k−1 and A`k = A`k−1, ` = 1, 2, 3, 4, showing how the vertices of the
regular 4k-gon were moved into their new positions.)

Now let τ > 0, α ∈ R, x ∈ R2 and ϕ ∈ (0, π/4] be arbitrary. Take k :=
⌊

π
2ϕ

⌋
, so that

ϕ∗ := π
2k ≥ ϕ.

Then we write M(ϕ) := Mk, and, moreover, we also define

(1.71) M(x, α, ϕ, τ) := M(x, α, ϕ∗, τ) := Uα (τMk) + x,

that is, the copy shifted by x of the 4k − 4-gon obtained by dilating M(ϕ) = Mk from
O = A0 = A4k−1 with τ and rotating it counterclockwise about O by the angle α.

E.g. if ϕ ∈ (π/6, π/4], then k = 2, ϕ∗ = π/4, n = 4, and M2 is just a unit square,
its side lines having direction tangents ±1 and having its lowest vertex at O. It is the
left over part, pushed together, of a regular octagon of unit side length, when the middle
cross-shape is removed from its middle.

It is easy to see that the inradius ρ(ϕ) and the circumradius R(ϕ) of M(ϕ) = M(ϕ∗) =
Mk are  r(ϕ) = 1

2

{
cot π

4k −
√

2 cos
(

1−(−1)k

8k π
)}

,

R(ϕ) = 1
2

{
cot π

4k − 1
}
,

(
k :=

⌊
π

2ϕ

⌋)
,(1.72)

respectively.
Similarly to the mangled n-gons Mk, we also define the fattened n-gons Fk.

Definition 1.4.7 (Fattened n-gons). Let k ∈ N and put n = 4k, ϕ∗ := π
2k . We first

define the standard fattened n-gon as the convex n-gon

(1.73) Fk := con {A1, . . . , Ak−1, Ak, Ak+1, . . . , A4k−1, A4k},

of n = 4k vertices with

(1.74) Am :=

 m∑
j=1

cos(jϕ∗) +
bm/kc∑
`=0

cos(`kϕ∗),
m∑

j=1

sin(jϕ∗) +
bm/kc∑
`=0

sin(`kϕ∗)

 .

That is, we consider a regular 4k-gon , but fatten the middle ”cross-shape” to twice as
wide, and move the four quadrants to the corners formed by this width-doubled cross (i.e.,
shift the vertices A`k to the position of A`k−1 + 2(A`k − A`k−1) consecutively to join the
remaining sides of the polygon). Observe that A4k−1 = (−1, 0) and A4k = (1, 0).

Let τ > 0, α ∈ R, x ∈ R2 and ϕ ∈ (0, π) be arbitrary. Now we take k :=
⌈

π
2ϕ

⌉
, whence

ϕ∗ := π
2k ≤ ϕ.

Then we write F (ϕ) := Fk, and, moreover, we also define

(1.75) F (x, α, ϕ, τ) := F (x, α, ϕ∗, τ) := Uα (τFk) + x,

that is, the copy shifted by x of the 4k-gon obtained by dilating F (ϕ) = Fk from O with
τ and rotating it counterclockwise about O by the angle α.

E.g. if ϕ ≥ π/2, then k = 1, ϕ∗ = π/2, n = 4, and F4 is just the square spanned by the
vertices (1,0), (1,2), (-1,2), (-1,0) and having sides of length 2.



1.6. DISCRETE VERSIONS OF THE BLASCHKE ROLLING BALL THEOREMS 23

Observe that using the usual Minkowski addition, we can represent the connections
of these deformed n-gons and the regular n-gon easily. Write Qn for the regular n-gon
placed symmetrically to the y-axis but above the x-axis with O ∈ ∂Qn a midpoint (hence
not a vertex) of a side of Qn. (This position is uniquely determined.) Also, denote the
standard square as S := Q4 := con {(1/2, 0); (1/2, 1); (−1/2, 1); (−1/2, 0)}. Then we have
Mk + S = Q4k and Q4k + S = Fk.

It is also easy to see that the inradius r(ϕ) and the circumradius R(ϕ) of F (ϕ) = F (ϕ∗)
are

(1.76) r(ϕ) =
1
2

cot
π

4k
+

1
2

(
k :=

⌈
π

2ϕ

⌉)
,

and

(1.77) R(ϕ) =


1

2 sin π
4k

+ 1√
2

if 2 - k√
1
2 + 1

4 sin2 π
4k

+ 1√
2
cot π

4k if 2 | k

(
k :=

⌈
π

2ϕ

⌉)
,

respectively.
The actual values of the above in- and circumradii in (1.72), (1.76), (1.77) are not

important, but observe that for ϕ→ 0, or, equivalently, for k →∞, we have the asymptotic
relation r(ϕ) ∼ R(ϕ) ∼ r(ϕ) ∼ R(ϕ) ∼ 1

ϕ .

1.5. The discrete Blaschke theorems

1.6. Discrete versions of the Blaschke Rolling Ball Theorems

Theorem 1.6.1. Let K ⊂ C be a convex body and 0 < ϕ < π/4. Denote n the (multi-
valued) function of outer unit normal(s) to the closed convex curve γ := ∂K and assume
that ω(n, τ) ≤ ϕ < π/4. Put k :=

⌊
π
2ϕ

⌋
. If x ∈ ∂K = γ, and n0 = (sinα,− cosα) ∈ n(x)

is outer unit normal to γ at x, then M(x, α, ϕ, τ) ⊂ K.

Proof. Because ϕ ≤ ϕ∗ := π/(2k) and M(x, α, ϕ, τ) = M(x, α, ϕ∗, τ), it suffices to
present a proof for the case when ϕ = ϕ∗ = π

2k .
Applying simple transformations we may reduce to the case x = O and α = 0, τ = 1.

With these restrictions we are to prove Mk ⊂ K, where O ∈ K = ∂γ, (0,−1) is an outer
normal to K at O, and ω(n, 1) ≤ ϕ. Denote P = (a, b) the first point, along γ following
O counterclockwise, satisfying that (1, 0) is outer normal to K at P . Clearly, then γ can
be parameterized with the x-values along the x-axis so that γ(x) = (x, g(x)) for values
x ∈ [0, a], and g is a convex function on [0, a].

Consider Am = (am, bm) defined in (1.70) for m = 0, . . . , k − 1, putting here A0 :=
A4k−1 = O, and consider the function

(1.78) f(x) :=


. . .

(x− am−1) tan mπ
2k + am−1 (am−1 ≤ x ≤ am)

. . .

(m = 1, . . . , k − 1).

Moreover, denote the broken line joining O = A0, A1, . . . , Ak−1 as L, that is,

(1.79) L := {(x, f(x)) : 0 ≤ x ≤ ak−1}.
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Lemma 1.6.2. Let O ∈ γ = ∂K, (0,−1) is outer normal to K at O, and ω(n, 1) ≤ ϕ =
π
2k . With the notations above, we have

(i) a ≥ ak−1 = 1
2(cot π

4k − 1)(= R(ϕ)).
(ii) 0 ≤ g(x) ≤ f(x) for all x ∈ [0, ak−1].
(iii) g′±(x) ≤ f ′±(x) for all x ∈ (0, ak−1) and g′+(0) ≤ f ′+(0), g′−(ak−1) ≤ f ′−(ak−1).
(iv) b := g(a) ≥ ak−1.
(v) L ⊂ K.

Proof. Let a∗ := min(a, ak−1). We argue by induction on m, where m = 1, . . . k− 1,
and the inductive assertions will comprise

(i’) a∗ ≥ am;
(ii’) 0 ≤ g(x) ≤ f(x) for all x ∈ [am−1, am];
(iii’) g′±(x) ≤ f ′±(x) for all x ∈ (am−1, am) and g′+(am−1) ≤ f ′+(am−1), g′−(am) ≤

f ′−(am).

Clearly, if we show this for all m = 1, . . . , k− 1 then (i)-(iii) of the Lemma will be proved.
Let us start with m = 1. Since O = (0, 0) ∈ γ, we have g(am−1) = g(0) = 0 ≤

f(am−1) = f(0) = 0. Let S := {x ∈ [0, a1] : g|[0,x] ≤ f |[0,x]}. Clearly, S is a (possibly
degenerate) closed interval with left end point 0, say [0, X]. Our aim is to prove that
S = [0, a1]. Clearly, if X = a1 ∈ S, then a relative neighborhood of X belongs to S, too.
We prove the same thing for any other X ∈ S. Observe that the distance of O = A0 and
A1 is 1, and all other points of the triangle ∆ := ∆(O, (a1, 0), A1) are closer than 1 to
O = A0. In particular, in case X < a1, both {(x, g(x)) : 0 ≤ x ≤ X} and also a small
neighborhood of (X, g(X)) ∈ ∆ is also closer to O than 1. It follows that the continuous
curve γ runs in the 1-neighborhood of O even in an appropriately small neighborhood of
(X, g(X)) ∈ γ. Therefore, by assumption on the change of the normal to γ, the vector
(0, 1) in the counterclockwise taken angular region between the left and right hand side
half-tangents (oriented according to the positive orientation of γ) to γ at O, cannot rotate
over (cosϕ, sinϕ) along {(x, g(x)) : 0 ≤ x ≤ X+η} for some positive value of η. That is,
a∗ ≥ X + η and the representation γ(x) = (x, g(x)) is valid for x ∈ [0, X + η]; moreover,
g′±(x) ≤ tanϕ for all x ∈ [0, X + η]. In conclusion, g(x) =

∫ x
0 g

′(ξ)dξ ≤ x · tanϕ = f(x)
for all x ∈ [0, X + η]. As a result, we find that S is relatively open. As it is also closed
and nonempty, it is the whole interval [0, a1]. This proves (i’) and (ii’) for m = 1, and
(iii’) follows from the fact that {(x, g(x)) : 0 ≤ x ≤ a1} ⊂ ∆ and thus the distance of
any point of {(x, g(x)) : 0 ≤ x ≤ a1} from O is at most 1.

We proceed by induction. Let 1 < m < k and assume the assertion for all m′ < m.
Then from the inductive hypothesis a∗ ≥ am−1, µ := µm−1 := g′−(am−1) ≤ f ′−(am−1) =
tan((m − 1)ϕ) and g(am−1) := ym−1 ≤ f(am−1) = bm−1. Consider now the function
h(x) := ym−1 + (x− am−1) tan(mϕ) (defined for x ∈ Im := [am−1, am]), denote the points
Pm−1 := (am−1, ym−1) and Pm := (am, h(am)), and define the triangle ∆ := ∆m :=
∆(Pm−1, (am, ym−1 + µ cos(mϕ)), Pm). Then h = f |Im − (bm−1 − ym−1) ≤ f |Im , and
h′± = f ′± on Im.
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Our aim now is to show that γ proceeds inside ∆ = ∆m. Observe that for points Q
inside ∆ we have |Q − Pm−1| ≤ 1, with equality holding only if Q = Pm. Therefore, for
Q ∈ γ ∩∆ the right half-tangent direction to γ cannot exceed arctanµ + ϕ ≤ mϕ, and,
moreover, the same properties hold even for a relative neighborhood of Q on γ if Q 6= Pm.

So we proceed similarly to the case m = 1. It is obvious that a∗ > am−1 as γ proceeds
between slopes µ and tan(mϕ) in the 1-neighborhood of Pm−1. Take S := Sm := {x ∈
Im : g|[am−1,x] ≤ h|[am−1,x]}. Again, by continuity of g and linearity of h S is a closed
interval [am−1, X], say. Also, if X = am, then S = Im and so S is relatively open in Im,
and if am 6= X ∈ S, then (X, g(X)) ∈ γ ∩ ∆ has a small neighborhood where γ stays
within the 1-neighborhood of Pm−1, therefore its slope is below tan(arctanµ + ϕ) and
γ(x) = (x, g(x)) extends even until some X + η; moreover, a∗ ≥ X + η and µ ≤ g′± ≤
tan(arctanµ+ ϕ) ≤ tan(mϕ) holds all over [am−1, X + η] (where for am−1 and X + η we
claim only the inequalities for g+ and g−, resp.), proving
(1.80)

µ(x− am−1) + ym−1 ≤ g(x) =
∫ x

am−1

g′(ξ)dξ + ym−1 ≤ tan(mϕ)(x− am−1) + ym−1 = h(x)

for all am−1 ≤ x ≤ X + η. That is, γ stays inside ∆ and S contains a small neighborhood
of X, too. It follows that S 6= ∅ is open and closed, while Im is connected, thus Sm = Im

and (1.80) holds true even for the whole of Im. This proves (i’)-(iii’), hence (i)-(iii) of the
Lemma.

Applying the above we find a > ak−1. However, a simple argument immediately gives
also b > ak−1, too. Indeed, it suffices to consider the new curve γ̂ := T (U−π/2(γ − (a, b)),
obtained from γ first shifting it by −P = −(a, b), then rotating it by −π/2 about O, and
finally reflecting it at the y-axis. This shows (iv).

Also, applying the Lemma for the reflected curve γ̃ of γ with respect to the y-axis gives
a similar result for the part of γ towards the ”negative x-direction”. That is, we find that
γ joins the points P̃ = (ã, b̃) and P = (a, b) with (some of their) outer unit normals (−1, 0)
and (1, 0), respectively, so that the part strictly between these points (and containing O)
does never have horizontal normals, and we have a parametrization γ(x) = (x, g(x)) for
all ã ≤ x ≤ a with ã ≤ −ak−1, a ≥ ak−1, and 0 ≤ g(x) ≤ f(|x|), |g′±(x)| ≤ f ′±(|x|) for all
x ∈ [−ak−1, ak−1]. Note that we also have b̃ ≥ ak−1, as above.

Finally let us show (v). Consider any point (x, f(x)) of L, where x ∈ [0, ak−1]. There is a
vertical line ` through it that intersects K in a vertical chord C of K. The lower endpoint
of C is (x, g(x). The upper endpoint of C has second coordinate at least min{b, bb̃} ≥ ak−1.
Hence the point (x, f(x)) lies on the chord C of K, whence in K. This proves (v).

�

Continuation of the proof of Theorem 1.6.1. From the above argument –
or just reflecting L to the y-axis – it is immediate that also the broken line L̃ joining
A3k+1, . . . , A4k−1 = O in this order that lies on the boundary of Mk belongs to K, too.
We are left with the upper part joining Ak−1, Ak+1, . . . , A2k−1, A2k+1, . . . , A3k−1. Let
(1.81)
L+ := [Ak−1, Ak+1] ∪ · · · ∪ [A2k−2, A2k−1], L− := [A2k−1, A2k+1] ∪ · · · ∪ [A3k−2, A3k−1].
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Next, let us apply the Lemma to the curve from P onwards in the counterclockwise sense.
That is, take K+ := U−π/2(K−P ) (with Uα as defined in (1.68) ) and γ+ := U−π/2(γ−P )
and check that O ∈ γ+ and also γ+ has an outer normal (0,−1) at O; moreover, the same
estimate on the modulus of continuity of the normal holds for γ+. Thus we obtain that
L ⊂ K+, that is, Uπ/2(L) + P ⊂ K. Observe Uπ/2(L) = L+ − (ak−1, ak−1), which entails
L+ + (a− ak−1, b− ak−1) ⊂ K. It suffices to say that L+ + (u, v) ⊂ K with u, v ≥ 0.

Very similarly (or from this and using reflection) we also obtain L− + (p, q) ⊂ K with
p ≥ 0 and q ≤ 0.

We claim that A2k−1 = (0, 2ak−1) ∈ K. Indeed, A2k−1 + (0,−2ak−1) = O ∈ K and
A2k−1 +(u, v) ∈ L+ +(u, v) ⊂ K, A2k−1 +(p, q) ∈ L−+(p, q) ⊂ K, and the convex hull of
the vectors (0,−2ak−1), (u, v) and (p, q) contains (0, 0), hence by convexity A2k−1 ∈ K.

Now, for showing L+ ⊂ K, recall that Ak−1 ∈ L ⊂ K, A2k−1 ∈ K, and L+ +(u, v) ⊂ K.
So it remains to see that L+ is in the convex hull of its two endpoints and the set L++(u, v)
whenever u, v ≥ 0. Similarly one obtains L− ⊂ K. That concludes the proof. �

An even stronger version can be proved considering the modulus of continuity ω̃ with
respect to arc length. We thank this sharpening to Endre Makai, who kindly called our
attention to this possibility and suggested the crucial Lemma 1.6.4 for the proof.

Theorem 1.6.3. Let K ⊂ C be a planar convex body and 0 < ϕ < π/4. Denote n the
(multivalued) function of outer unit normal(s) to the closed convex curve γ := ∂K and
assume that ω̃(τ) ≤ ϕ < π/4. Put k :=

⌊
π
2ϕ

⌋
. If x ∈ ∂K = γ, and n0 = (sinα,− cosα) ∈

n(x) is outer unit normal to γ at x, then M(x, α, ϕ, τ) ⊂ K.

Proof. We can repeat the argument yielding Theorem 1.6.1 with the only change
that in the inductive argument for proving Lemma 1.6.2, we have to use twice (once for
the case m = 1 to start the inductive argument, and once for general m) a slightly sharper
geometric assertion to ensure that even in this setting the boundary curve γ of K will again
proceed in the triangles ∆ := ∆(O, (a1, 0), A1) and ∆ := ∆m := ∆(Pm−1, (am, ym−1 +
µ cos(mϕ)), Pm).

The general situation will be covered by the following lemma.

Lemma 1.6.4. Let ∆ = ∆(P,Q,R) be the right- or obtuse triangle spanned by the points
P = (a, p), Q = (b, q) with b > a and q ≥ p, and R = (b, r) with r > q. Denote
ρ :=

√
(b− a)2 + (r − p)2 the length of the longest side of ∆, and let µ := (q− p)/(b− a),

resp. ν := (r−p)/(b−a) be the slopes of sides PQ and PR, respectively, with corresponding
angles ψ := arctanµ and λ := arctan ν. Denote ϕ := λ− ψ the angle of ∆ at P .

Let Γ be a convex curve of arc length ρ, connecting the points P and N = (n, s) and
having all its tangent vectors at all points of Γ (including the right half tangent at P and
the left half tangent at N) with angles between ψ and ψ + ϕ = λ. Then n ≥ b, the only
possibility for equality is when N = R, otherwise n > b and Γ intersects the vertical side
of ∆ at a mesh point M = (b,m) with q ≤ m < r. Moreover, s ∈ [p+ µ(n− a), r].

Proof. By convexity, the non-empty valued, multivalued tangent vector function t
along Γ is continuous (in the weak sense) and nondecreasing, and also we have for the
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multi-valued tangent angle function α̂(σ) = arg t(σ) ∈ [ψ, λ] for all 0 ≤ σ ≤ ρ, i.e. all
along Γ. Therefore,

(n− a, s− p) = N − P =
∫ ρ

0
t(σ)dσ =

∫ ρ

0
(cos(α(σ)), sin(α(σ))dσ,

now neglecting the linearly 0-measure set of points where t or α̂ is indeed multi-valued.
By condition we find n − a ≥ ρ cosλ = b − a and equality would imply cosα(σ) = cosλ
a.e., that is Γ = [P,R]. Otherwise by |Γ| = ρ and n > b we surely have s < r. Finally, for
the directional tangent of the chord [P,N ] we see

s− p

n− a
=

∫ ρ
0 sinα(σ)dσ∫ ρ
0 cosα(σ)dσ

≥
∫ ρ
0 sinψdσ∫ ρ
0 cosψdσ

= tanψ = µ.

The lemma follows. �

In applying the above lemma we start with the observation that by condition ω̃(1) ≤ ϕ,
the tangent angle of γ can increase at most ϕ along the part of γ which is closer than
1 to the point O (in case m = 1) or to Pm−1 (in case of the inductive step with general
m). Therefore, proceeding along γ with arc length 1 and denoting this arc of γ as Γ,
we will have a convex curve, with tangent angles between ψ and ψ + ϕ, as in the above
lemma. Therefore, Lemma 1.6.4 will ensure that the argument goes through for proving
the corresponding version of Lemma 1.6.2 with ω(n, 1) replaced by ω̃(1). Otherwise the
argument is the same. �

Theorem 1.6.5. Let K ⊂ C be a (planar) convex body and τ > 0. Denote n the
(multivalued) function of outer unit normal(s) to the closed convex curve γ := ∂K and
assume that Ω(n, τ) ≥ ϕ. Take k :=

⌈
π
2ϕ

⌉
. If x ∈ ∂K = γ, and n0 = (sinα,− cosα) ∈

n(x) is normal to γ at x, then F (x, α, ϕ, τ) ⊃ K.

Proof. Because ϕ ≥ ϕ∗ := π
2k and F (x, α, ϕ, τ) = F (x, α, ϕ∗, τ), it suffices to present

a proof for the case when ϕ = ϕ∗ = π
2k .

Applying simple transformations we may reduce to the case x = O and α = 0, τ = 1.
With these restrictions we are to prove Fk ⊃ K, where O ∈ K = ∂γ, (0,−1) is an outer
normal to K at O, and Ω(n, 1) ≥ ϕ.

Denote P = (a, b) the first point counterclokwise after O, along γ, satisfying that (1, 0)
is an outer unit normal to K at P . Clearly, then γ can be parameterized with the x-values
along the x-axis so that γ(x) = (x, g(x)) for values x ∈ [0, a], and g is a convex function
on [0, a].

Note that in case a = 0 we necessarily have K ⊂ {(x, y) : x ≤ 0}, and so the degenerate
case becomes trivial as regards proving K ∩ {(x, y) : x ≥ 0} ⊂ Fk ∩ {(x, y) : x ≥ 0}.
Therefore, we can assume that we have the non-degenerate case.

Similarly to (1.74), we define Am = (am, bm) for m = 0, . . . , k (here A0 := (0, 0) = O),
and consider the function

(1.82) f(x) :=


. . .

(x− am) tan mπ
2k + am (am ≤ x ≤ am+1)

. . .

(m = 0, . . . , k − 1).
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Moreover, now L will denote the broken line joining O = A0, A1, . . . , Ak,
1
2(Ak +Ak+1) =

(ak, ak) in this order, that is,

(1.83) L := {(x, f(x)) : 0 ≤ x ≤ ak} ∪ [Ak, (ak, ak)].

We write

(1.84) L1 := L ∪ {(x, 0) : x ≤ 0} ∪ {(ak, y) : y ≥ ak}.

Then R2 \L1 will have two connected components; the convex one will be denoted by K1.

Lemma 1.6.6. Let O ∈ K = ∂γ, (0,−1) be an outer normal to K at O, and Ω(n, 1) ≥
ϕ = π

2k . With the notations above, we have

(i) a ≤ ak = 1
2(cot π

4k + 1)(= r(ϕ)).
(ii) 0 ≤ f(x) ≤ g(x) for all for all x ∈ [0, a].
(iii) f ′±(x) ≤ g′±(x) x ∈ (0, a) and f ′+(0) ≤ g′+(0), f ′−(a) ≤ g′−(a).
(iv) b := g(a) ≤ ak.
(v) K ⊂ K1.

Proof. Since the degenerate case a = 0 is trivial (observe that (ii) is then undefinied,
but cf. the paragraph before (1.82) ), we assume a > 0.

Let a∗ := min(a, ak). We argue by induction on m, where m = 0, . . . k − 1, and the
inductive assertions will comprise

(i’) Either a ≤ am or both(ii’) and (iii’) hold, where
(ii’) 0 ≤ f(x) ≤ g(x) for all x ∈ [am,min(a, am+1)];
(iii’) g′±(x) ≥ f ′±(x) for all x ∈ [am,min(a, am+1)] (except for g′−(0) and also for g′+(a)

if the second occurs).

Clearly, if we show this for all m = 0, . . . , k− 1 then (i)-(iii) of the Lemma will be proved.
Let us start with m = 0. Since O = (0, 0) ∈ γ, we have g(am) = g(0) = 0 ≥ f(am) =

f(0) = 0. Let S := {x ∈ [0, a1] : g|[0,x] ≥ f |[0,x]}. Clearly, by continuity of f and g,
S is a closed interval with left endpoint 0. Our aim is to prove that S = [0,min(a, 1)].
Indeed, since f |[0,1] ≡ 0, and as (0,−1) is normal to K at O, we must have g(x) ≥ 0 for
all 0 ≤ x ≤ a, as stated in (ii’). Moreover, since g is a convex curve, g′±(x) ≥ 0 = f ′±(x)
for all x ∈ (0,min(a, 1)), and also g′+(0) ≥ f ′+(0) = 0, furthermore, g′−(min(a, 1)) ≥
f ′−(min(a, 1)). It remains to show g′+(1) ≥ tanϕ = f ′+(1) in case min(a, 1) = 1. But in
this case either a = 1, and then g′+(1) does not exist (and the case is listed as exceptional
in (iii’)), or in view of |O−(1, g(1))| ≥ 1 any point (x, g(x)) along γ in the counterclockwise
sense after (1, g(1)) but before P (that is, with 1 < x < a) is of distance > 1 from O,
hence by condition its any outer normal direction is at least ϕ larger than that of the outer
normal (0,−1) of O: it follows that g′±(x) ≥ tanϕ and thus g′+(1) ≥ tanϕ = f ′+(1).

We proceed by induction. Let 1 ≤ m < k and assume the assertion for all 0 ≤ m′ < m.
If min(a, am) = a, then (i’) holds and we have nothing to prove. Let now a∗m+1 :=
min(a, am+1). If min(a, am) = am < a, then by the inductive assumption we must have
g(am) ≥ f(am) and g′−(am) ≥ f ′−(am), g′+(am) ≥ f ′+(am) = tan(mϕ) ≡ f ′±|(am,am+1).
In view of convexity we thus obtain g′±|(am,a∗m+1) ≥ g′+(am) ≥ f ′+(am) = tan(mϕ) ≡
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f ′±|(am,a∗m+1) and by left continuity of the left hand derivative this extends to g′−(a∗m+1) ≥
f ′−(a∗m+1), too. Furthermore, if a∗m+1 = am+1, i.e. a < am+1, then g′+(a∗m+1) = g+(a)
does not exist (and is listed in (iii’) as exceptional). The only case remaining is when
a∗m+1 = am+1, i.e. a ≥ am+1. Let first a = am+1. As before, in this case g′+(a∗m+1) = g′+(a)
does not exist and is excepted in (iii’). Let now a > am+1, and consider a small right
neighborhood [am+1, am+1 + ε] of am+1 which is contained fully in [0, a). Then in this
neighborhood the parametrization γ(x) = (x, g(x)) extends for a small arc of γ in the
counterclockwise sense from Pm+1 := (am+1, g(am+1)), hence for this arc the condition on
Ω can be applied. (We will use also the notations P0, P1, . . . , Pm defined analogously as
Pk := (ak, g(ak)), k = 0, 1, . . . ,m).

First we prove that |Pm − Pm+1| ≥ 1, which will also imply |Pm − (x, g(x))| > 1 for all
x ∈ [am+1, am+1+ε], too. For this purpose consider the line `(x) := Pm+(tan(mϕ))(x−am)
and let Q := Qm := (am+1, `(am+1)). Note that between am and am+1 the line ` runs
below the curve of γ, since for any point x between the endpoints g′±(x) ≥ f ′±(x) =
tan(mϕ) = `′(x), and g(am) = `(am). It follows that g(am+1) ≥ `(am+1) and thus
|Pm+1 − Pm|2 ≥ (am+1 − am)2 + (tan(mϕ) · (am+1 − am))2 = 1, as stated.

Hence |Pm − (x, g(x))| > 1 for all x ∈ [am+1, am+1 + ε] holds and the Ω-condition can
be applied to get arctan g′±(x) ≥ g′+(am) + ϕ ≥ f ′+(am) + ϕ = (m + 1)ϕ = arctan f ′±(x).
In view of the right continuity of the right hand derivative, we thus obtain g′+(am+1) ≥
tan((m+ 1)ϕ) = f ′+(am+1), too.

Therefore, in case (i’) does not hold, we conclude (iii’). Since in this case we have
f(am) ≤ g(am) by the inductive hypothesis, a simple integration using (iii’) proves also
(ii’).

Therefore, the inductive argument for (i’)-(iii’) concludes and we obtain (i)-(iii) of the
Lemma. It remains to show (iv) and (v). To prove (iv), it suffices to consider the curve
γ̂ := T (U−π/2(γ − (a, b)) γ1 from the proof of Lemma 1.6.2, which will have P̂ = (b, a)
while satisfying all our requirements.

Finally, let us prove (v): clearly it suffices to prove intK ⊂ K1. Because at O K has
an outer normal (0,−1), we have intK ⊂ {(x, y) : y > 0}. Similarly, as at P = (a, b) K
has an outer normal (1, 0), in view of Lemma 1.6.6 (i) we also have intK ⊂ {(x, y) : x <
a} ⊂ {(x, y) : x < ak}.

In view of intK ⊂ {(x, y) : x < a}, it remains to show that (x, y) ∈ intK, 0 < x < a

imply y > f(x). However, the part of ∂K above the open segment (O, (a, 0)) consists
of two open arcs, the lower one being {(x, g(x)) : 0 < x < a}. Thus, for 0 < x < a,
(x, y) ∈ intK we necessarily have y > g(x) ≥ f(x), as was to be shown. �

Lemma 1.6.7. Let K,L,L1,K1 as above. Let L1 + (u, v) a translate of L1 such that
intK ⊂ K1 +(u, v). Further, let u′ ≥ u and v′ ≤ v. Then also intK ⊂ K1 +(u′, v′) holds.

Proof. In fact, we are to prove that K1 ⊂ K1 + (w, z), with arbitrary w ≥ 0 ≥ z.
(Then this can be applied with (w, z) = (u′−u, v′−v) to get K1 +(u, v) ⊂ (K1 +(w, z))+
(u, v) = K1+(u′, v′).) Observe that the special cases with one coordinate of the translation
vector being zero already suffice, for K1 ⊂ K1+(w, 0) ⊂ (K1+(0, z))+(0, w) = K1+(w, z)
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gives the general case, too. Also observe that by symmetry of K1 to the line y = −x, it
suffices to prove one such case, e.g. K1 ⊂ K1 + (0, z). However, as K1 can be defined as
the set of points above a function graph, this last inclusion withz ≤ 0 is evident. �

Continuation of the proof of Theorem 1.6.5. Recall that T is the reflection on
the y-axis; let us introduce also S as the reflection on the line y = ak.

From the above argument – or just reflecting L to the y-axis – it is immediate that we
have also K ⊂ TK1.

We are left with the upper part joining 1
2(Ak + Ak+1), Ak+1, . . . , A3k,

1
2(A3k + A3k+1).

Let

L+ : =
[
Ak +Ak+1

2
, Ak+1

]
∪

2k−1⋃
m=k+1

[Am, Am+1] ∪
[
A2k,

A2k +A2k+1

2

]
,(1.85)

L− : =
[
A2k +A2k+1

2
, A2k+1

]
∪

3k−1⋃
m=2k+1

[Am, Am+1] ∪
[
A3k,

A3k +A3k+1

2

]
.(1.86)

Next, let us apply Lemma 1.6.6 to the curve from P = (a, b) onwards to the counter-
clockwise sense. That is, take K+ := U−π/2(K−P ) and γ+ := U−π/2(γ−P ) and check that
O ∈ γ+ and also γ+ has normal (0,−1) at O; moreover, the same estimate on the minimal
oscillation of the normal holds for γ+. Thus we obtain that K ⊂ SK1 + (a− ak, b− ak) ⊂
SK1, where the last inclusion follows from a, b ≤ ak and Lemma 1.6.7.

Very similarly (or from this and using reflection) we also obtain K ⊂ TSK1. So putting
together the four inclusions, we obtain K ⊂ K1 ∩ TK1 ∩ SK1 ∩ TSK1 = Fk, i.e. K ⊂ Fk,
and the proof concludes.

�

1.7. Extensions of the Blaschke Rolling Ball Theorem

As the first corollaries, we can immediately deduce the classical Blaschke theorems. We
denote by D(x, r) the closed disc of centre x and radius r.

Proof of Theorem 1.4.1. Let τ0 be the bound provided by (i) of Proposition 1.4.5.
Under the condition, we find (with ω(n, τ) < π/2)

(1.87) ω(n, τ) ≤ κ0τ

cos(ω(n, τ))
=: ϕ(τ) (τ ≤ τ0).

Let us apply Theorem 1.6.1 for the boundary point x ∈ γ with normal vector n(x) =
(sinα,− cosα). If necessary, we have to reduce τ so that the hypothesis ϕ(τ) ≤ π/4 should
hold. We obtain that the congruent copy Uα(τMk) + x of τMk is contained in K, where
k = bπ/2ϕ(τ)c. Note that Uα(τMk) + x ⊃ D(z, τr(ϕ(τ))), where z = x− τR(ϕ(τ))n(x).
When τ → 0, also ϕ(τ) → 0, therefore also ω(n, τ) → 0 in view of (1.87), and we see

lim
τ→0

(τR(ϕ(τ))) = lim
τ→0

(τr(ϕ(τ))) = lim
τ→0

τ

ϕ(τ)
= lim

τ→0

cos(ω(n, τ))
κ0

=
1
κ0
.

Note that we have made use of ω(n, τ) → 0 in the form cos(ω(n, τ)) → 1. It follows that
D(x− 1

κ0
n(x), 1

κ0
) ⊂ K, whence the assertion. �
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Note that in the above proof of Theorem A we did not assume C2-boundary, as is usual,
but only the existence of curvature and the estimate κ(x) ≤ κ0. So we found the following
stronger corollary (still surely well-known).

Corollary 1.7.1. Assume that K ⊂ R2 is a convex domain with boundary curve γ,
that the curvature κ exists all over γ, and that there exists a positive constant κ0 > 0 so
that κ ≤ κ0 everywhere on γ. Then to all boundary point x ∈ γ there exists a disk DR of
radius R = 1/κ0, such that x ∈ ∂DR, and DR ⊂ K.

Similarly, one can deduce also the “dual” Blaschke theorem, i.e. Lemma1.1.15, in a
similarly strengthened form. In fact, the conditions can be relaxed even further, as was
shown by Strantzen, see [3, Lemma 9.11]. Our discrete approach easily implies Strantzen’s
strengthened version, originally obtained along different lines.

Corollary 1.7.2 (Strantzen). Let K ⊂ R2 be a convex body with boundary curve γ.
Assume that the (linearly) a.e. existing curvature κ of γ satisfies κ ≥ κ0 (linearly) a.e.
on γ. Then to all boundary point x ∈ γ there exists a disk DR of radius R = 1/κ0, such
that x ∈ ∂DR, and K ⊂ DR.

Proof. Now we start with (ii) of Proposition 1.4.5 to obtain Ω(τ) ≥ κ0τ for all τ . Put
ϕ := ϕ(τ) := κ0τ . Clearly, when τ → 0, then also ϕ(τ) → 0 and k := dπ/(2ϕ(τ))e → ∞.
Take n(x) = (cosα, sinα) and apply Theorem 1.6.5 to obtain Uα(τFk) + x ⊃ K for all
τ > 0. Observe that Dϕ := D((0, r(ϕ)),R(ϕ)) ⊃ Fk, hence Uα(τDϕ) + x ⊃ K. In the
limit, since r(ϕ(τ)) ∼ R(ϕ(τ)) ∼ 1/(ϕ(τ)) = 1/(κ0τ), we find D(x− (1/κ0)n, 1/κ0) ⊃ K,
for any n ∈ n(x), that implies the statement. �

1.8. Further results for non-flat convex domains

The above Theorem 1.1.3 was formulated with very precise constants. In particular, it
gives a good description of the ”inverse Markov factor”

M(Eb) := inf
p∈Pn(Eb)

M(p),

when n is fixed and b→ 0. In this section we aim at a precise generalization of Theorem
1.1.3 using appropriate geometric notions. Our argument stems out of the notion of
”circular sets”, used in [8] and going back to Turán’s work. This approach can indeed
cover the full content of Theorem 1.1.3. Moreover, the geometric observation and criteria
we present will cover a good deal of different, not necessarily smooth domains. First let
us have a recourse to Theorem 1.1.7.

Theorem 1.8.1. Let K ⊂ C be any convex domain with C2-smooth boundary curve
∂K = Γ having curvature κ(ζ) ≥ κ with a certain constant κ > 0 and for all points ζ ∈ Γ.
Then M(K) ≥ (κ/2)n.

Proof. The proof hinges upon geometry in a large extent. For this smooth case we
use Blaschke’s Rolling Ball Theorem, i.e. Lemma 1.1.15. This means, with our definition
above, that if the curvature of the boundary curve of a twice differentiable convex body
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exceeds 1/R, then the convex body is R-circular. From this an application of Theorem
1.1.6 yields the assertion. �

So now it is worthy to calculate the curvature of ∂Eb.

Lemma 1.8.2. Let Eb be the ellipse with major axes [−1, 1] and minor axes [−ib, ib].
Consider its boundary curve Γb. Then at any point of the curve the curvature is between
b and 1/b2.

Proof. Now we depart from arc length parameterization and use for Γb := ∂Eb the
parameterization γ(ϕ) := (cos(ϕ), b sin(ϕ)). Then we have

κ(γ(ϕ)) =
|γ̇(ϕ)× γ̈(ϕ)|

|γ̇(ϕ)|3
,

that is,

κ(γ(ϕ)) =
|(− sinϕ, b cosϕ)× (− cosϕ,−b sinϕ)|

|(− sinϕ, b cosϕ)|3

=
b sin2 ϕ+ b cos2 ϕ

(sin2 ϕ+ b2 cos2 ϕ)3/2

=
b

(sin2 ϕ+ b2 cos2 ϕ)3/2
.

Clearly, the denominator falls between (b2 sin2 ϕ + b2 cos2 ϕ)3/2 = b3 and (sin2 ϕ +
cos2 ϕ)3/2 = 1, and these bounds are attained, hence κ(γ(ϕ)) ∈ [b, 1/b2] whenever b ≤
1. �

Proof of Theorem 1.1.3. The curvature of Γb at any of its points is at least b
according to Lemma 1.8.2. Hence M(Eb) ≥ (b/2)n in view of Theorem 1.8.1, and Theorem
1.1.3 follows. �

However, not only smooth convex domains can be proved to be circular. Eg. it is easy
to see that if a domain is the intersection of finitely many R-circular domains, then it is
also R-circular. The next generalization is not that simple, but is still true.

Lemma 1.8.3 (Strantzen). Let the convex domain K have boundary Γ = ∂K with angle
function α± and let κ > 0 be a fixed constant. Assume that α± satisfies the curvature
condition κ(s) = α′(s) ≥ κ almost everywhere. Then K is R = 1/κ-circular.

Proof. This result is essentially the far-reaching, relatively recent generalization of
Blaschke’s Rolling Ball Theorem by Strantzen, i.e. Corollary 1.7.2 above. The only slight
alteration from the standard formulation in [3], suppressed in the above quotations, is
that Strantzen’s version assumes κ(t) ≥ κ wherever the curvature κ(t) = α′(t) exists (so
almost everywhere for sure), while above we stated the same thing for almost everywhere,
but not necessarily at every points of existence. This can be overcome by reference to the
subdifferential version, too. �

Now we are in an easy position to prove Theorem 1.1.16.
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Proof of Theorem 1.1.16. The proof follows from a combination of Theorem 1.1.6
and Lemma 1.8.3. �

Let us illustrate the strengths and weaknesses of the above results on the following
instructive examples, suggested to us by J. Szabados (personal communication). Consider
for any 1 < p <∞ the `p unit ball

(1.88) Bp := {(x, y) : |x|p + |y|p ≤ 1}, Γp := ∂Bp = {(x, y) : |x|p + |y|p = 1}.

Also, let us consider for any parameter 0 < b ≤ 1 the affine image (”`p-ellipse”)

(1.89) Bp
b := {(x, y) : |x|p + |y/b|p ≤ 1}, Γp

b := ∂Bp
b = {(x, y) : |x|p + |y/b|p = 1}.

By symmetry, it suffices to analyze the boundary curve Γ := Γp
b in the positive quadrant.

Here it has a parametrization Γ(x) := (x, y(x)), where y(x) = b (1− xp)1/p. As above, the
curvature of the general point of the arc in the positive quadrant can be calculated and
we get

(1.90) κ(x) =
(p− 1)bxp−2(1− xp)1/p−2(

1 + b2x2p−2(1− xp)2/p−2
)3/2

For p > 2, the curvature is continuous, but it does not stay off 0: e.g. at the upper point
x = 0 it vanishes. Therefore, neither Theorem 1.8.1 nor Theorem 1.1.16 can provide any
bound, while Theorem 1.1.12 provides an estimate, even if with a small constant: here
d(B) = 2, w(B) = 2b, and we get M(B) ≥ 0.00015bn.

When p = 2, we get back the disk and the ellipses: the curvature is minimal at ±ib, and
its value is b there, hence M(B) ≥ (b/2)n, as already seen in Theorem 1.1.3. On the other
hand Theorem 1.1.12 yields only M(B) ≥ 0.00015bn also here.

For 1 < p < 2 the situation changes: the curvature becomes infinite at the ”vertices” at
±ib and ±1, and the curvature has a positive minimum over the curve Γ. When b = 1, it is
possible to explicitly calculate it, since the role of x and y is symmetric in this case and it is
natural to conjecture that minimal curvature occurs at y = x; using geometric-arithmetic
mean and also the inequality between power means (i.e. Cauchy-Schwartz), it is not hard
to compute minκ(x, y) = (p − 1)21/p−1/2, (which is the value attained at y = x). Hence
Theorem 1.1.16 (but not Theorem 1.8.1, which assumes C2-smoothness, violated here at
the vertices!) provides M(Bp) ≥ (p− 1)21/p−3/2n, while Theorem 1.1.12 provides, in view
of w(Bp) = 23/2−1/p, something like M(Bp) ≥ 0.0003 2−1/2−1/pn ≥ 0.0001n, which is much
smaller until p comes down very close to 1.

For general 0 < b < 1 we obviously have d(B) = 2, (
√

2b <)2b/
√

1 + b2 < w(B) < 2b,
and Theorem 1.1.12 yields M(B) ≥ 0.0001bn independently of the value of p.

Now minκ can be estimated within a constant factor (actually, when b → 0, even
asymptotically precisely) the following way. On the one hand, taking x0 := 2−1/p leads to
κ(x0) = (p− 1)b21+1/p/(1 + b2)3/2 < b(p− 1)21+1/p, hence minκ(x < b(p− 1)21+/p. Note
that when b → 0, we have asymptotically κ(x − 0) ∼ b(p − 1)21+/p. On the other hand
denoting ξ := xp and β := 2/p− 1 ∈ (0, 1), from (1.90) we get

(p− 1)b
κ(x)

= [ξ(1− ξ)]β
[
ξ1−β + b2(1− ξ)1−β

]3/2
≤ 2−2β

[
(ξ + (1− ξ))1−β(1 + (b2)1/β)β

]3/2
,
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with an application of geometric-arithmetic mean inequality in the first and Hölder in-
equality in the second factor. In general we can just use b < 1 and get

κ(x) ≥ (p− 1)b22β
[
1 + b2/β

]−3β/2
≥ (p− 1)b2β/2 = (p− 1)b21/p−1/2,

within a factor 23/2 of the upper estimate for minκ.
Thus, inserting this into Theorem 1.1.16 as above, we derive M(Bp

b ) ≥ (p− 1)b21/p−3/2n.
In all, we see that Theorems 1.8.1 (essentially due to Erőd) and 1.1.16 usually (but not
always, c.f. the case p ≈ 1 above !)) give better constants, when they apply. However,
in cases the curvature is not bounded away from 0, we can retreat to application to the
fully general Theorem 1.1.12, which, even if with a small absolute constant factor, but still
gives a precise estimate even regarding dependence of the constant on geometric features
of the convex domain. According to Theorem 1.1.13, this latter phenomenon is not just
an observation on some particular examples, but is a general fact, valid even for not
necessarily convex domains.

1.9. Further remarks and problems

In the case of the unit interval also Turán type Lp estimates were studied, see [22]
and the references therein. It would be interesting to consider the analogous question
for convex domains on the plane. Note that already Turán remarked, see the footnote
in [20, p.141], that on D an Lp version holds, too. Also note that for domains there are
two possibilities for taking integral norms, one being on the boundary curve and another
one of integrating with respect to area. It seems that the latter is less appropriate and
convenient here.

In the above we described a more or less satisfactory answer of the problem of inverse
Markov factors for convex domains. However, Levenberg and Poletsky showed that star-
shaped domains already do not admit similar inverse Markov factors. A question, posed
by V. Totik, is to determine exact order of the inverse Markov factor for the ”cross”
C := [−1, 1] ∪ [−i, i]; clearly, the point is not in the answer for the cross itself, but in the
description of the inverse Markov factor for some more general classes of sets.

Another question, still open, stems from the Szegő extension of the Markov inequality,
see [19], to domains with sector condition on their boundary. More precisely, at z ∈ ∂K
K satisfies the outer sector condition with 0 < β < 2, if there exists a small neighborhood
of z where some sector {ζ : arg(ζ − z) ∈ (θ, βπ + θ)} is disjoint from K. Szegő proved,
that if for a domain K, bounded by finitely many smooth (analytic) Jordan arcs, the
supremum of β-values satisfying outer sector conditions at some boundary point is α < 2,
then ‖P ′‖ � nα‖P‖ on K. Then Turán writes: ”Es ist sehr wahrscheinlich, daß auch
den Szegőschen Bereichen M(p) ≥ cn1/α...”, that is, he finds it rather likely that the
natural converse inequality, suggested by the known cases of the disk and the interval
(and now also by any other convex domain) holds also for general domains with outer
sector conditions.
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http://pages.cs.wisc.edu/∼deboor/HAT/erod.pdf.
[17] M. Riesz, Eine trigonometrische Interpolationsformel und einige Ungleichungen für Polynome,

Jahrsber. der deutscher Math. Vereinigung, 23, (1914), 354–368.

[18] W. E. Sewell, On the polynomial derivative constant for an ellipse, Amer. Math. Monthly, 44

(1937), 577-578.
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CHAPTER 2

Turán type extremal problems for positive definite functions

2.1. Introduction

2.1.1. The Turán problem. We study the following problem, generally investigated
under the name of ”Turán’s Problem”, following Stechkin [86], who recalls a question posed
to him in personal discussion.

Problem 2.1.1. Given an open set Ω, symmetric about 0, and a continuous, positive
definite, integrable function f , with supp f ⊆ Ω and with f(0) = 1, how large can

∫
f be?

Although this name for the problem is quite widespread, one has to note that all the
important versions of the problem were investigated well before the beginning of the
seventies, when the discussion of Turán and Stechkin took place.

About the same time when Turán discussed the question with Stechkin, American re-
searchers already investigated in detail the square integral version of the problem, see
[28, 67, 20]. Their reason for searching the extremal function and value came from radar
engineering problems at the Jet Propulsion Laboratory.

more importantly, Problem 2.1.1 appears as early as in the thirties [84], when Siegel
considered the question for Ω being a ball, or even an ellipsoid in Euclidean space Rd,
and established the right extremal value |Ω|/2d. The question occurred to Siegel as a
theoretical possibility to sharpen the Minkowski Latice Point Theorem. Although Siegel
concluded that, due to the extremal value being just as large as the Minkowski Lattice
Point Theorem would require, this geometric statement can not be further sharpened
through improvement on the extremal problem, nevertheless he works out the extremal
problem fully and exhibits some nice applications in the theory of entire functions.

Furthermore, the same Problem 2.1.1 appeared in a paper of Boas and Kac [13] already
in the forties, even if the main direction of the study there was a different version, what is
nowadays generally called the pointwise Turán problem. However, as is realized partially in
[13] and fully only later in [55], the pointwise Turán problem – formulated in the classical
setting of Fourier series, but nevertheless equivalent to the Euclidean space settings of [13]
– goes back already to Caratheodory [16] and Fejér [24].

The Turán problem was considered by Stechkin on an interval in the torus T = R/Z
[86] and in R by Boas and Kac [13], but extensions were to follow in several directions.

Such a question is interesting in the study of sphere packings [30, 17, 18], in additive
number theory [79, 46, 64, 34] and in the theory of Dirichlet characters and exponential
sums [57], among other things.

39
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2.1.2. One dimensional case of the Turán problem. Already the symmetric
interval case in one dimension presents nontrivial complications, which were resolved sat-
isfactorily only recently. We discuss the development of the problem from the outset to
date.

Actually, Turán’s interest might have come from another area in number theory, namely
Diophantine approximation. (Let us point out that [3] starts with the sentence: ”With
regard to applications in number theory, P. Turán stated the following problem:”, while
at the end of the paper there is special expression of gratitude to Professor Stechkin for
his interest in this work. Also, Gorbachev writes in [29, p. 314]): ”Studying applications
in number theory, P. Turán posed the problem ...”)

One can hypothesise that Turán thought of the elegant proof of the well-known Dirichlet
approximation theorem, stating that for any given α ∈ R at least one multiple nα in the
range n = 1, . . . , N have to approach some integer as close as 1/(N +1). The proof, which
uses Fourier analysis and Fejér kernels in particular, is presented in [64, p. 99], and in
a generalized framework it is explained in [12], but it is remarked in [64, p. 105] that
the idea comes from Siegel [84], so Turán could have been well aware of it. Let us briefly
present the argument right here.

If we wish to detect multiples nα of α ∈ R which fall in the δ-neighborhood of an
integer, that is which have ‖nα‖ < δ (where, as usual in this field, ‖x‖ := dist (x,Z)),
then we can use that for the triangle function F (x) := Fδ(x) := max(1 − ‖x‖/δ)+, we
have F (nα) > 0 iff ‖nα‖ < δ. So if with an arbitrary δ > 1/(N + 1) we can work through
a proof of F (nα) > 0 for some n ∈ [1, N ], then the proof yields the sharp form of the
Dirichlet approximation theorem. (It is indeed sharp, because for no N ∈ N can any better
statement hold true, as the easy example of α := 1/(N + 1) shows.)

So we take now S :=
∑N

n=1(1−
|n|

N+1)F (nα), or, since F is even and F (0) = 1, consider the

more symmetric sum 2S+1 =
∑N

n=−N (1− |n|
N+1)F (nα). Note that F̂δ(t) = δ ·

(
sin(πδt)

πδt

)2
, so

in particular with the nonnegative coefficients F̂ (k) = ck we can write (with e(t) := e2πit)

(2.1) Fδ(x) =
∞∑

k=−∞
cke(kx) c0 = δ, ck = δ ·

(
sin(πkδ)
πkδ

)2

(k = ±1,±2, . . . ).

It suffices to show S > 0. With the Fejér kernels σN (x) :=
∑N

n=−N

(
1− |n|

N+1

)
e(nx) =

1
N+1 ·

(
sin(π(N+1)x)

πx

)2
≥ 0, after a change of the order of summation we are led to

2S + 1 =
∞∑

k=−∞
ck

N∑
n=−N

(
1− |n|

N + 1

)
e(nkα)

= c0σN (0) + 2
∞∑

k=1

ckσN (kα) ≥ c0σN (0) = δ(N + 1) > 1,

which concludes the argument.
Now if in place of the triangle function with δ = 1/(N + 1) another positive definite

(i.e. f̂ ≥ 0) function f could be put with supp f ⊂ [−δ, δ] and f(0) = 1 but with
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f̂(0) > δ then the above argument with f in place of F would give S > 0 even for
δ = 1/(N + 1), clearly a contradiction since the Dirichlet approximation theorem cannot
be further sharpened. That round-about argument already gives that for h a reciprocal
of an integer, the triangle function Fh is extremal in the Turán problem for [−h, h]. In
other words, we obtain Stechkin’s result [86], (see also below) already from considerations
of Diophantine approximation.

So Turán asked Stechkin if for any h > 0 the triangle function provides the largest
possible integral among all positive definite functions vanishing outside [−h, h] and nor-
malized by attaining the value 1 at 0. Stechkin derived that this is the case for h being the
reciprocal of a natural number: by monotonicity in h for other values he could conclude
an estimate. Anticipating and slightly abusing the general notations below, denote the
extremal value by T (h): then Stechkin obtained T (h) = h + O(h2). This was sharpened
later by Gorbachev [29] and Popov [69] (cited in [31, p. 77]) to h+O(h3).

The corresponding Turán extremal value TR(h) on the real line is, by simple dilation,
depends linearly on the interval length and is just hTR(1) for any interval I = [−h, h].
On the other hand it follows already from limh→0+ T (h)/h = 1 that e.g. for the unit
interval [−1, 1] the extremal function must be the triangle function and TR(1) = 1, hence
TR(h) = h. In fact, this case was already settled earlier by Boas and Katz in [13] as a
byproduct of their investigation of the pointwise question.

But there is another observation, seemingly well-known although no written source can
be found. Namely, it is also known for some time that for h not being a reciprocal of an
integer number, the triangle function can indeed be improved upon a little. Indeed, the
triangle function Fh has Fourier transform which vanishes precisely at integer multiples of
1/h, and in case 1/h /∈ N, some multiples fall outside Z. And then the otherwise double
zeroes of F̂h can even be substituted by a product of two close-by zero factors, allowing a
small interval in between, where the Fourier transform can be negative. This negativity
spoils positive definiteness regarding the function on R: but on T it does not, for only
the values at integer increments must be nonnegative in order that a function be positive
definite on T. With a detailed calculus (using also the symmetric pair of zeroes) such an
improvement upon the triangle function is indeed possible. (Note that here F̂ , so also∫
F̂ = F (0) is perturbed while F̂ (0) =

∫
F is unchanged.) I have heard this construction

explained in lectures during my university studies [37]; in Russia, a similar observation
was communicated by A. Yu Popov [69] and later recorded in writing in [33, 35, 31].

As said above, the computation of exact values of T (h) started with Stechkin for h = 1/q,
q ∈ N: these are the only cases when T (h) = h. Further values, already deviating from
this simple formula, were computed for some rational h in [59, 33, 35] and finally for all
rational h in [31, 44]. Knowing the value for rational h led Ivanov to further investigations
which established continuity of the extremal value in function of h, and thus gave the
complete solution of Turán’s problem on the torus [43]. In fact, the above works also
established that for [−h, h] ⊂ T the Turán extremal problem and the Delsarte extremal
problem (see §2.1.4) has the same extremal value (and extremal functions). Note that this
coincidence does not hold true in general.
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However, it seems that almost nothing is known about Turán extremal values of other,
one would say ”dispersed” sets not being intervals. A natural conjecture is that e.g. on R
(or perhaps even on T ?) a set Ω ⊂ R of fixed measure |Ω| = m can have maximal Turán
constant value if only it is a zero-symmetric interval [−m/2,m/2].

What we know at present from Theorem 2.6.16, (that is from [56, Theorem 6]) is that we
certainly have T (Ω) ≤ m/2, that is, in R no ”better sets”, than zero-symmetric intervals,
can exist. However, uniqueness is not known, not even for R. The result is in fact a more
general estimate in function of the prescribed measure m, but for higher dimensions it is
far less precise. Also, regarding the discrete group Z one must observe that zero-symmetric
intervals [−N,N ] ⊂ Z have the same Turán extremal values as their homothetic copies
k[−N,N ] (k ∈ N) which already destroys the hope for ”uniqueness only for intervals”.
In higher dimensions not even the right class of the corresponding ”condensed sets”, like
intervals in dimension one, has been identified.

2.1.3. Turán’s problem in the multivariate setting. Already as early as in the
1930’s, Siegel [84] proved that for an ellipsoid in Rd the extremal value in Problem 2.1.1
is |Ω|/2d.

In the 1940’s, Boas and Katz [13] mentioned that Poisson summation may be used
to treat similar questions in higher dimensions. Besides mentioning the group settings,
Garcia & al. [28] and Domar [20] also touches upon the question without going into
further details. The packing problem by balls in Euclidean space has already been treated
by many authors via multivariate extremal problems of the type, but there the optimal
approach is to pose a closely related, still different variant, named Delsarte- (and also as
Logan- and Levenshtein-) problem. See e.g. [30, 17] and the references therein.

As a direct generalization of Stechkin’s work, Andreev [2] calculated the Turán constants
of cubes Qd

h in Td obtaining hd + O(hd+1). Moreover, he estimated the Turán constant
of the cross-politope (`1-ball) Od

h in Td: his estimates are asymptotically sharp when
d = 2. Gorbachev [29] simultaneously sharpened and extended these results proving that
for any centrally symmetric body D ⊂ [−1, 1]d and for all 0 < h < 1/2 we always have
TTd(hD) = TRd(D) · hd +O(hd+2).

Arestov and Berdysheva [6] offers a systematic investigation of the multivariate Turán
problem collecting several natural properties. They also prove that the hexagon has Turán
constant exactly one fourth of the area of itself. Gorbachov [29] proved that the unit ball
Bd ⊂ Rd has Turán constant 2−d|Bd|, where |Bd| is the volume (d-dimensional Lebesgue
measure) of the ball. Another proof of this fact can be found in [54], but we have already
noted that the result goes back to Siegel [84].

There is a special interest in the case which concerns Ω being a (centrally symmetric)
convex subset of Rd [6, 7, 29, 54], since in this case the natural analog of the triangle
function, the self-convolution (convolution square) of the characteristic function χ 1

2
Ω of the

half-body 1
2Ω is available showing that TRd(Ω) ≥ |Ω|/2d. The natural conjecture is that

for a symmetric convex body this convolution square is extremal, and TRd(Ω) = |Ω|/2d.
(Note that this fails in Td, already for d = 1, for some sets Ω.) Convex bodies with
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this property may be called Turán type, or Stechkin-regular, or, perhaps, Stechkin-Turán
domains, while symmetric convex bodies in Rd with TRd(Ω) > |Ω|/2d as anti-Turán or
non-Stechkin-Turán domains. Thus the above mentioned result about the ball can be
reworded saying that the ball is of Stechkin-Turán type.

To date, no non-Stechkin-Turán domains are known, although the family of known
Stechkin-Turán domains is also quite meager (apart from d = 1 when everything is clear
for the intervals).

In [6, 7] Arestov and Berdysheva prove that if Ω ⊆ Rd is a convex polytope which can tile
space when translated by the lattice Λ ⊆ Rd (this means that the copies Ω+λ, λ ∈ Λ, are
non-overlapping and almost every point in space is covered) then TRd(Ω) = |Ω|/2d. Whence
the class of Stechkin-Turán domains includes, by the result of Arestov and Berdysheva,
convex lattice tiles.

Kolountzakis and Révész [54] showed the same formula for all convex domains in Rd

which are spectral. This rsult is presented here in Corollary 2.7.3. For the definition and
some context see §2.4.2, where it will be explained that all convex tiles are spectral, and
so the result of Arestov and Berdysheva is also a consequence of Corollary 2.7.3.

For not necessarily convex sets, further results are contained in our work, e.g. Theorem
2.7.2 for Rd and Theorem 2.7.1 for finite groups. These appeared first in [54]

2.1.4. Variants and relatives of the Turán problem. In the same class of func-
tions F various similar quantities may be maximized. The two most natural versions
concern the square-integral of f ∈ F , henceforth called the square-integral Turán problem,
and the function value at some arbitrarily prescribed point z ∈ Ω, called the pointwise
Turán problem. About the latter see §2.1.5.

The square-integral Turán problem occurred for applied scientists in connection with
radar design (radar ambiguity and overall signal strength maximizing), see [67, 28]. Fur-
ther interesting results were obtained in [20]. Nevertheless, already on the torus T the
exact answer is not known, even if Page [67] provides convincing computational evidence
for certain conjectures in case h = π/n, and the existence of some extremal function is
known.

Further ramifications are obtained with considering different variations of the above def-
initions. E.g. Belov and Konyagin [9, 10] considers functions with integer coefficients,
and periodic even functions f ∼

∑
k ak cos(kx) with

∑
k |ak| = 1 but with not necessar-

ily ak ≥ 0, i.e. not necessarily positive definite. Berdysheva and Berens considers the
multivariate question restricted to the class of `1-radial functions.

A very natural version of the same problem is the Delsarte problem [19] (also known
under the name of Logan and Levenshtein): here the only change in the conditioning
of the extremal problem is that we assume, instead of vanishing of f outside a given
set Ω, only the less restrictive condition that f be nonnegative outside the given set.
Both extremal problems are suitable in deriving estimates of packing densities through
Poisson summation: this is exploited in particular for balls in Euclidean space, see e.g.
[19, 45, 58, 4, 18, 5, 30, 17].
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There are several other rather similar, yet different extremal problems around. E.g.
one related intriguing question [83], dealt with by several authors, is the maximization of∫
f for real functions f supported in [−1, 1], admitting ‖f‖∞ = 1, but instead of being

positive definite, (which in R is equivalent to being represented as g ∗ g̃), having only a
representation f = g ∗ g with some g ≥ 0 supported in the half-interval [−1/2, 1/2].

Here we do not consider these relatives of the Turán problems, apart from the so-called
pointwise Turán problem, to be introduced in more detail next.

2.1.5. The pointwise Turán problem. The natural pointwise analogue of Problem
2.1.1 is the maximization of the function value f(z), for given, fixed z ∈ Ω, in place of
the integral, over functions from the same class than in Problem 2.1.1. (Actually, the
question can as well be posed in any LCA group.) For intervals in T or R this was studied
in [8] under the name of ”the pointwise Turán problem”, although the same problem was
already settled in the relatively easy case of an interval (−h, h) ⊂ R by Boas and Kac in
[13]. For general domains in arbitrary dimension the problem was further studied in [55]:
we present the results of this paper below in §2.9. Here we introduce the problem and
make some preparations, too.

Let us denote Td :=
[
−1

2 ,
1
2

)d ⊂ Rd with the usual modified topology of periodicity, that
is, take the topology of Td := Rd/Zd. For Ω ⊆ Td any open domain1, we put

(2.2) F∗(Ω) := {f : Td → R : supp f ⊆ Ω, f(0) = 1, f positive definite},

and, analogously, when Ω ⊆ Rd is any open set,

(2.3) F(Ω) := {f : Rd → R : supp f ⊆ Ω, f(0) = 1, f positive definite}.

Recall that positive definiteness of functions (and even measures and tempered distribu-
tions) can be defined or equivalently characterized by nonnegativity of Fourier transform.
In case (2.2) positive definiteness means f̂(n) ≥ 0 (∀n ∈ Zd), while in case (2.3) it means
f̂(x) ≥ 0 (∀x ∈ Rd).

For general domains in arbitrary dimension the problem can be formulated as follows.

Problem 2.1.2 (Boas-Kac - type pointwise extremal problem for the space). Let Ω ⊆ Rd

be an open set, and let f : Rd → R be a positive definite function with supp f ⊆ Ω and
f(0) = 1. Let also z ∈ Ω. What is the largest possible value of f(z)? In other words,
determine

(2.4) M(Ω, z) := sup
f∈F(Ω)

f(z).

Remark 2.1.3. Obviously, M(Ω, z) ≤ 1, as 1 ± f(z) =
∫

R(1 ± exp(2πizt))f̂(t)dt =∫
R(1± cos(2πzt))f̂(t)dt ≥ 0.

1Note that 0 /∈ Ω entails f(0) = 0, hence the function classes F∗(Ω) and F(Ω) defined in (2.2) and

(2.3) are empty; therefore, it suffices to restrict attention to the case 0 ∈ Ω.
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One might miss a more precise specification of the function class f : Rd → R here and
similarly in the problems listed below. The fact that considering L1, C or C∞ leads to
the same answer i.e. same extremal values, will be discussed at the beginning of §2.9.1.

Problem 2.1.4 (Turán - type pointwise extremal problem for the torus). Let Ω ⊆ Td

be any open set, and let f : Td → R be a positive definite function with supp f ⊆ Ω and
f(0) = 1. Let also z ∈ Ω. What is the largest possible value of f(z)? In other words,
determine

(2.5) M∗(Ω, z) := sup
f∈F∗(Ω)

f(z).

Remark 2.1.5. Let Ω ⊆ (−1
2 ,

1
2)d and f : Ω → R. For the function f to be positive

definite on the torus means a nonnegativity condition for the Fourier Transform

f̂(ξ) =
∫

Rd

e2πi〈ξ,x〉f(x) dx

only for a discrete set of values of ξ, namely ξ ∈ Zd, while positive definiteness of f as a
function on Rd is equivalent to nonnegativity of the Fourier transform f̂ for all occurring
values. From this it follows that we always have

(2.6) M∗(Ω, z) ≥M(Ω, z).

The extremal value in the above Problem 2.1.2 was estimated together with its periodic
analogue Problem 2.1.4 in the work [8] for dimension d = 1. However, Boas and Kac have
already solved the d = 1 case of Problem 2.1.2, a fact which seems to have been unnoticed
in [8].

These problems are not only analogous, but also related to each other, and, in fact,
Problem 2.1.2 is only a special, limiting case of the more complex Problem 2.1.4 (see
Theorem 2.9.18 below). On the other hand, Boas and Kac have already observed, that
Problem 2.1.2 (dealt with for R in [13]) is connected to trigonometric polynomial extremal
problems. In particular, from the solution to the interval case they deduced the value
(2.107) below of the extremal problem due to Carathéodory [16] and Fejér [24]. They also
established a connection (see [13, Theorem 6]) what corresponds to the one-dimensional
case of the first part of our Theorem 2.9.1.

It is appropriate at this point to consider also the following type of trigonometric poly-
nomial extremal problems. Let us define for any H ⊆ N2 := N ∩ [2,∞)

Φ(H) := {ϕ : T → R+ : λ ∈ R, ϕ ≥ 0,(2.7)

ϕ(t) ∼ 1 + λ cos 2πt+
∑
k∈H

ck cos 2πkt}

and with a given m ∈ N2 and H ⊆ N2 also

Φm(H) := {ϕ : T → R : λ ∈ R,ϕ(
j

m
) ≥ 0 (j ∈ Z), ϕ(t) =(2.8)

= 1 + λ cos 2πt+
∑
k∈H

ck cos 2πkt}.
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Problem 2.1.6 (Carathéodory-Fejér type trigonometric polynomial problem). Deter-
mine the extremal quantity

(2.9) M(H) := sup{λ = 2ϕ̂(1) : ϕ ∈ Φ(H)}.

Remark 2.1.7. Observe that M(H) ≤ 2, always, as

|λ/2| = |ϕ̂(1)| ≤ ‖ϕ‖1 =
∫
ϕ = ϕ̂(0) = 1.

Problem 2.1.8 (Discretized Carathéodory-Fejér type extremal problem). Determine

(2.10) Mm(H) := sup{λ = 2ϕ̂(1) : ϕ ∈ Φm(H)}.

Remark 2.1.9. It should be remarked here that obviously we have Φ(H) ⊆ Φm(H). So
we always have Mm(H) ≥M(H).

Here we will present the exact solution of Problem 2.1.2 that is in line with what the
paper [13] suggests. Actually, we have to acknowledge that Boas and Kac mentioned the
possibility of extending one of their methods – Poisson summation – to higher dimensions,
so some parts of what follows can be interpreted as implicitly present already in their work
[13]. But here we obtain some results also for the more complex periodic version.

However, the main result of the present investigation is perhaps the understanding that
the above point-value extremal problems are in fact equivalent to the above trigonometric
polynomial extremal problems, thus transferring information on one problem to the equiv-
alent other problem in several cases. Until now the equivalence formulated below remained
unclear in spite of the fact that, e.g., Boas and Kac found ways to deduce the solution of
the trigonometric extremal problems in Problem 2.1.6 from their results on Problem 2.1.2.
We also obtain a clear picture of the limiting relation between torus problems and space
problems, and, parallel to this, between the finitely conditioned trigonometric polynomial
extremal problems of Problem 2.1.8 and the positive definite trigonometric polynomial
extremal problems of Problem 2.1.6.

2.1.6. Extension of the problem to LCA groups. Some authors have already
extended the investigations, although not that systematically as in case of the multivariate
setting, to locally compact abelian groups (LCA groups henceforth). This is the natural
settings for a general investigation, since the basic notions used in the formulation of
the question – positive definiteness, neighborhood of zero, support in and integral over a
0-symmetric set Ω – can be considered whenever we have the algebraic and topological
structure of an LCA group. Note that we always have the Haar measure, which makes the
consideration of the integral over a compact set (hence over the support of a compactly
supported positive definite function) well defined.

Note that the Turán problem, posed for a sequence H ⊂ Z, has a key relevance in
additive number theory, namely in studying van der Corput sets, see [46, 79, 64, 36].

We find the first mention of the group case in [28], and a more systematic use of the
settings (for the square-integral Turán problem) in [20]. Utilizing also the work in [6] on
extensions to the several dimensional case, the framework below was set up in [56], see
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§2.1.7 and §2.2.1. In [56] there we obtained some fairly general results for compact LCA
groups as well as for the most classical non-compact groups: Rd, Td and Zd. These will
mostly be presented in §’s 2.6 and 2.7.

In this work we study the problem in the generality of LCA groups. This simplifies and
unifies many of the existing results and gives several new estimates and examples. If G is
a LCA group a continuous function f ∈ L1(G) is positive definite if its Fourier transform
f̂ : Ĝ→ C is everywhere nonnegative on the dual group Ĝ. For the relevant definitions of
the Fourier transform we refer to [47, Chapter VII] or [77].

The set Ω will always be taken in this paper work to be a 0-symmetric, open set in
G. This is not serious restriction, since the support of any positive definite function is
necessarily symmetric, see §2.2.1, hence Ω could always be substituted by Ω ∩ (−Ω) in
case of lack of symmetry.

We say that f belongs to the class F(Ω) of functions if f ∈ L1(G) is continuous, positive
definite and is supported on a closed subset of Ω. For any positive definite function f it
follows that f(0) ≥ f(x) for any x ∈ G. This leads to the estimate

∫
G f ≤ |Ω|f(0) for all

f ∈ F , which is called (following Andreev [2]) the trivial estimate from now on.

Definition 2.1.10. The Turán constant TG(Ω) of a 0-symmetric, open subset Ω of a
LCA group G is the supremum of the quantity

∫
G f/f(0), where f ∈ F(Ω), i.e. f ∈ L1(G)

is continuous and positive definite, and supp f is a closed set contained in Ω.

In fact, depending on the precise requirements on the functions considered, here we have
certain variants of the problem: an account of these is presented below in §2.1.7.

Remark 2.1.11. The quantity TG(Ω) depends on which normalization we use for the
Haar measure on G. If G is discrete we use the counting measure and if G is compact and
non-discrete we normalize the measure of G to be 1.

The trivial upper estimate or trivial bound for the Turán constant is thus TG(Ω) ≤ |Ω|.

2.1.7. Various equivalent formulations of the Turán problem. In fact, it is
worth noting that Turán type problems can be, and have been considered with various
settings, although the relation of these has not always been fully clarified. Thus in ex-
tending the investigation to LCA groups or to domains in Euclidean groups which are
not convex, the issue of equivalence has to be dealt with. One may consider the following
function classes.

F1(Ω) :=
{
f ∈ L1(G) : supp f ⊂ Ω, f positive definite

}
,(2.11)

F&(Ω) :=
{
f ∈ L1(G) ∩ C(G) : supp f ⊂ Ω, f positive definite

}
,(2.12)

Fc(Ω) :=
{
f ∈ L1(G) : supp f ⊂⊂ Ω, f positive definite

}
,(2.13)

F(Ω) :=
{
f ∈ C(G) : supp f ⊂⊂ Ω, f positive definite

}
.(2.14)
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In F1,F& supp f is assumed to be merely closed ad not necessarily compact, and in F1,Fc

the function f may be discontinuous.
The respective Turán constants are

T (1)
G (Ω) or T &

G (Ω) or T c
G(Ω) or TG(Ω) :=(2.15)

sup
{∫

G f

f(0)
: f ∈ F1(Ω) or F&(Ω) or Fc(Ω) or F(Ω), resp.

}
.

In general we should consider functions f : G→ C. But according to (2.17) also f and
thus even ϕ := <f is positive definite, while belonging to the same function class. As we
also have f(0) = ϕ(0) and

∫
f =

∫
ϕ, restriction to real valued functions does not change

the values of the Turán constants.
To start with, we prove in §2.2.2.

Theorem 2.1.12. We have for any LCA group the equivalence of the above defined
versions of the Turán constants:

(2.16) T (1)
G (Ω) = T &

G (Ω) = T c
G(Ω) = TG(Ω) .

Note that the original formulation, presented also above in Definition 2.1.10, corresponds
to T &

G (Ω). Also note that with this setup, e.g. the interval case Ω = [−h, h] ⊂ T or R
admits no extremal function, because the support of ∆h is the full Ω, not a closed subset of
the open set (−h, h) In this case an obvious limiting process is neglected in the formulation
of the results above.

Remark 2.1.13. It is not fully clarified what happens for functions vanishing only out-
side of Ω, but having nonzero values up to the boundary ∂Ω.

2.2. Positive definite functions and equivalent formulations of the Turán
problem

2.2.1. Positive definite functions on LCA groups. Positive definite functions
were introduced by Maximilian Matthias [60]. By the analogous definition these can be
defined also on locally compact Abelian groups (LCA groups).

In this section we explore a few facts on positive definite, not necessarily continuous
functions. We could not decide if anything is new here, as we have found it very hard
to locate these facts in the literature without assuming continuity of the positive definite
function at the outset. So we collected these facts here. Everything in this section is taken
from our joint work with Mihalis Kolountzakis [56].

Recall that on a LCA group G a function f is called positive definite if the inequality

(2.17)
N∑

n,m=1

cncmf(xn − xm) ≥ 0 (∀x1, . . . , xN ∈ G,∀c1, . . . , cN ∈ C)

holds true. Note that positive definite functions are not assumed to be continuous. Still,
all such functions f are necessarily bounded by f(0) [77, p. 18, Eqn (3)]. Moreover,
f(x) = f̃(x) := f(−x) for all x ∈ G [77, p. 18, Eqn (2)], hence the support of f is
necessarily symmetric, and the condition supp f ⊂ Ω implies also supp f ⊂ Ω∩ (−Ω). The
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latter set being symmetric, without loss of generality we can assume at the outset that Ω
is symmetric itself.

It is immediate from (2.17) that for any subgroup K of G, the restriction f |K of a
positive definite function f is also positive definite on K.

The Fourier transform f̂ of an f ∈ L1(G) belongs to A(Ĝ) ⊂ C0(Ĝ), and the Fourier
transform of the convolution f ∗ g of f, g ∈ L1(G), defined almost everywhere, satisfies
f̂ ∗ g = f̂ ĝ [77, Theorem 1.2.4]. Similarly, for ν, µ ∈ M(G) and their convolution µ ∗ ν ∈
M(G) the Fourier transforms are bounded and uniformly continuous and µ̂ ∗ ν = µ̂ν̂ [77,
Theorem 1.3.3].

In case f, g ∈ L2(G), the convolution h := f ∗ g is defined even in the pointwise sense
and h ∈ C0(Ĝ) [77, Theorem 1.1.6(d)]. For f ∈ L2(G) arbitrary (denoting as above,
f̃(x) := f(−x)), f ∗ f̃ is continuous and positive definite with Fourier transform |f̂ |2 [77,
§1.4.2(a)].

Note that for any given γ ∈ Ĝ f is positive definite if and only if f(x)γ(x) is positive
definite; this can be checked by modifying the coefficients in (2.17) accordingly.

Lemma 2.2.1. Suppose that f is (measurable and) positive definite and g ∈ L2(G) is
arbitrary. Then the product f · (g ∗ g̃) is positive definite.

Proof. As written above, h := g ∗ g̃ ∈ C0(G), while f , being positive definite, is also
bounded. Take now xn ∈ G and cn ∈ C for n = 1, . . . , N arbitrarily. Then

N∑
n,m=1

cncmf(xn − xm)h(xn − xm)

=
N∑

n,m=1

cncmf(xn − xm)
∫

G
g(xn − y)g(xm − y)dy

=
∫

G

N∑
n,m=1

an(y)am(y)f(xn − xm) dy ,

where an(y) := cng(xn − y) ∈ L2(G) (n = 1, . . . , N). Since the expression under the
integral sign is nonnegative by (2.17) for each given y, also the integral is nonnegative and
the assertion follows. �

Observe that Lemma 2.2.1 ensures positive definiteness of fh only if h has a ”convolution
root” g ∈ L2(G). We do not know if the same holds for any positive definite h ∈ C(G),
say, as in general positive definite functions may have no convolution roots, see e.g. [21].

Note that we did not assume f to be integrable, and neither the product fh is supposed
to belong to any subspace. By positive definiteness, f is bounded; but if G is not compact,
f̂ is not necessarily defined. However, as h ∈ C0(G), in any case we must have fh ∈ L∞(G).
This follows from positive definiteness of fh, too.

The next Lemma is obvious for compact groups as we can take k = 1.

Lemma 2.2.2. Suppose C is a compact set in a LCA group G and δ > 0 is given.
Then there exists a compactly supported, positive definite and continuous “kernel function”
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k(x) ∈ Cc(G) satisfying k(0) = 1, 0 ≤ k ≤ 1, and k|C ≥ 1 − δ. Moreover, we can take
k = h ∗ h̃, where h is the L2-normalized indicator function of a suitable Borel measurable
set V ⊃ C with compact closure V .

Proof. We may clearly assume that G is not compact.
The deduction will follow the proof of 2.6.7 Theorem on page 52 of [77] with a slight

modification towards the end of the argument. In this proof the compact set C is given,
and then another Borel set E and an increasing sequence of Borel sets VN (N ∈ N) are
found, so that C ⊂ E = V0 and |VN | = (2N + 1)n|E| (with n a fixed nonnegative integer
constant); moreover, all the VN have compact closure and VN + E ⊂ VN+s is ensured for
some fixed s and for all N ∈ N. Hence for every c ∈ C ⊂ E we have VN+s − c ⊃ VN .
Denoting the indicator function of VN+s by χ we are led to

∫
G χ(x + c)χ(x)dx ≥ |VN |.

Putting h := |VN+s|−1/2χ yields h∗h̃(c) ≥ |VN |/|VN+s| > 1−δ, if N is chosen large enough
(depending on the constants n, s and the given δ). With this choice of h and V := VN+s

all assertions of the Lemma are true. �

Remark 2.2.3. As Rudin points out, this argument essentially depends on structure
theorems of LCA groups.

Lemma 2.2.4. Suppose that f ∈ L1(G) is positive definite. Then the Fourier transform
f̂ is nonnegative.

Proof. Since for any character γ ∈ Ĝ we have γ̂f = f̂(·−γ), and f is positive definite
precisely when γf is such, it suffices to prove that f̂(0) ≥ 0.

For technical reasons, we need to modify f to have compact support. Let δ be any
positive parameter. Since dν(x) := f(x)dx is a regular Borel measure, for some compact set
C we have ‖f‖L(G\C) < δ. Take the function k provided by Lemma 2.2.2 for the compact
set C and the chosen parameter δ > 0. If g := kf , Lemma 2.2.1 shows that g is positive
definite, while |ĝ(0) − f̂(0)| ≤ |

∫
C f −

∫
C g| + ‖f‖L1(G\C) < δ

∫
C |f | + δ ≤ δ(1 + ‖f‖L1).

Choosing δ small enough, it follows that there exists a compactly supported positive
definite g ∈ L1(G) with ĝ(0) < 0 provided that f̂(0) < 0. Hence it suffices to prove the
assertion for compactly supported positive definite functions g.

Applying definition (2.17) with all cn chosen as 1 yields

0 ≤
N∑

n=1

N∑
m=1

g(xn − xm) .

Integrating over CN (where C := supp g) we obtain

0 ≤ N |C|Ng(0) + (N2 −N)|C|N−1

∫
C
g ,

which implies

−|C|g(0)
N − 1

≤ ĝ(0).

Letting N →∞ concludes the proof. �

Lemma 2.2.5. Suppose that f, g ∈ L1(G) are two positive definite functions. Then the
convolution f ∗ g ∈ L1(G) is uniformly continuous and positive definite.
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Proof. Since a positive definite function is bounded, we have also f ∈ L∞(G), hence
f ∗ g is uniformly continuous c.f. [77, Theorem 1.1.6(b)]. For the Fourier transform
f̂ ∗ g = f̂ ĝ of the continuous function f ∗ g positive definiteness is equivalent to f̂ ∗ g ≥ 0.
Now Lemma 2.2.4 gives f̂ ≥ 0 and ĝ ≥ 0, hence f̂ ∗ g ≥ 0 and f ∗g is positive definite. �

Lemma 2.2.6. Suppose U is a given neighborhood of 0 in a LCA group G. Then there
exists a compactly supported, continuous, positive definite and nonnegative “kernel func-
tion” k(x) ∈ Cc(G) satisfying supp k ⊂⊂ U and

∫
k = 1. Moreover, we can take k = h∗ h̃,

with h = |W |−1χW , where χW is the indicator function of a compact set W satisfying
W −W ⊂ U .

Proof. By continuity of the operation of subtraction, there exists a compact neighbor-
hood W of 0 satisfying W −W ⊂ U . With the above definitions of k and h we clearly have
supp k ⊂⊂ W −W ⊂ U (c.f. [77, Theorem 1.1.6(c)] and also

∫
k = |W |−2(

∫
χW )2 = 1.

As h, h̃ ∈ L2(G), k ∈ C0(G), and in view of supp k being compact, k ∈ Cc(G). Because h
is nonnegative, so is k. Finally, [77, 1.4.2(a)] gives positive definiteness of k. �

Lemma 2.2.7. Let f be positive definite and integrable. Then for any ε > 0 and open set
U containing 0, there exists a nonnegative, positive definite function of the form k = h ∗ h̃
(with h ∈ L2(G)), so that supp k b U ,

∫
U k = 1, and ‖f − f ∗ k‖1 < ε.

Proof. For the given function f there exists a neighborhood V of 0 with the property
that ‖f − f ∗ u‖ < ε whenever

∫
G u = 1 and u ≥ 0 is Borel measurable and vanishing

outside V [77, Theorem 1.1.8]. Now we can construct for the open set U0 := V ∩ U
the kernel function k as in Lemma 2.2.6. Clearly, k satisfies all conditions for u, hence
‖f − f ∗ k‖1 < ε follows. By construction, supp k ⊂⊂ U0 ⊂ U and

∫
U k = 1. �

Lemma 2.2.8. For any pair of sets K b U with K compact and U open, there exists a
neighborhood V of 0 satisfying K + V ⊂ U .

Proof. Since addition is continuous, for any open neighborhood U0 of 0 there exists
a neighborhood W so that W + W ⊂ U0. Take now to each point x ∈ K an open
neighborhood Wx of 0 such that x + Wx + Wx ⊂ U , ie. Wx + Wx ⊂ U − x. Clearly
the family of open sets {x + Wx : x ∈ K} form an open covering of K, so in view of
compactness of K there exists a finite subcovering {Wxk

+ xk : k = 1, . . . , n}. Take now
V :=

⋂n
k=1Wxk

. We claim that K + V ⊂ U . Indeed, if y ∈ K and z ∈ V then considering
any index k with y ∈ xk +Wxk

, we find y+z ∈ (xk +Wxk
)+V ⊂ xk +Wxk

+Wxk
⊂ U . �

Lemma 2.2.9. Let ε > 0 be arbitrary. Assume that f is measurable and positive definite
and compactly supported in the open set Ω. Then there exists another positive definite, but
also continuous function g with f(0) ≥ g(0) and

∫
G g ≥

∫
G f − ε, also supported compactly

in Ω.

Proof. Observe that f , being positive definite, is also bounded, and since it is com-
pactly supported, it also belongs to L1(G). Thus we can use the Fourier transform f̂ .
Let K := supp f ⊂⊂ Ω and consider a neighborhood U of 0 with K + U ⊂ Ω. Such
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a U is provided by Lemma 2.2.8. Lemma 2.2.7 provides a positive definite, continuous
kernel k ∈ Cc(G), compactly supported in U and satisfying

∫
G f ∗ k ≥

∫
G f − ε. In view of

k = h ∗ h̃ and Lemma 2.2.5 also g := f ∗ k is positive definite while obviously g ∈ Cc(G)
is supported compactly in K + U ⊂ Ω. It remains to note that by k ≥ 0,

∫
k = 1 and

|f | ≤ f(0) we also have g(0) =
∫
k(x)f(−x)dx ≤ f(0)

∫
k = f(0). �

2.2.2. Proof of Theorem 2.1.12 on the equivalence of various definitions of
TG(Ω) on LCA groups.

Proposition 2.2.10 (Kolountzakis-Révész). With the definitions above we have that
T (1)

G (Ω) = T c
G(Ω).

Proof. Let ε > 0 and δ > 0 be arbitrary and f ∈ F1(Ω) be chosen so that
∫
G f >

T (1)
G (Ω) − δ. As f ∈ L1(G), the measure |f(x)|dx is absolutely continuous with respect

to the Haar measure, hence it is also a regular Borel measure and there exists a compact
subset C ⊂⊂ supp f so that

∫
G\C |f | < δ. Now an application of Lemma 2.2.2 with C

and δ provides us the positive definite, compactly supported kernel function k satisfying
k(0) = 1, and k|C > (1 − δ). Let g := fk. Then supp g ⊂ (supp k ∩ supp f) ⊂⊂ supp f ,
hence g is compactly supported within Ω. Moreover, g(0) = 1 and g is positive definite in
view of Lemma 2.2.1. Hence g ∈ Fc(Ω). We now have∫

g =
∫

Ω
kf =

∫
Ω
f −

∫
Ω
(1− k)f

≥
∫

Ω
f − δ

∫
C
|f | −

∫
Ω\C

|f |

≥
∫

Ω
f − δ

∫
Ω
|f | − δ ≥ (1− δ)

(
T (1)

G (Ω)− δ
)
− δ.

Clearly, if δ was chosen small enough, we obtain
∫
g > T (1)

G (Ω)− ε. Now taking sup over
g ∈ Fc(Ω) concludes the proof, since ε > 0 was arbitrary. �

Proposition 2.2.11 (Kolountzakis-Révész). With the definitions above we have that
TG(Ω) = T c

G(Ω).

Proof. Since Fc(Ω) ⊃ F(Ω), it suffices to prove T c
G(Ω) ≤ TG(Ω).

Let ε > 0 and f ∈ Fc(Ω) be chosen so that
∫
f > T c

G(Ω)− ε, while supp f is a compact
subset of the open set Ω. Hence an application of Lemma 2.2.9 provides a g ∈ F(Ω) with
TG(Ω) ≥

∫
g >

∫
f − ε > T c

G(Ω)− 2ε. Now ε→ 0 yields the Proposition. �

Proof of Theorem 2.1.12. We have the obvious inclusions F1(Ω) ⊃ F&(Ω) ⊃
F(Ω) and F1(Ω) ⊃ Fc(Ω) ⊃ F(Ω), hence T (1)

G (Ω) ≥ T &
G (Ω) ≥ TG(Ω) and T (1)

G (Ω) ≥
T c

G(Ω) ≥ TG(Ω). On combining these inequalities with Propositions 2.2.10 and 2.2.11 the
assertion follows. �

If we consider a continuous positive definite function f , then it must also be uniformly
continuous [77, p. 18, Eqns (3), (4)]. When supp f has bounded Haar measure (and, in
particular, when supp f is compact) then f belongs to L1(G), too. For an integrable,
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continuous and positive definite function f the Fourier transform f̂ of f exists, and the
Fourier inversion formula holds, cf. [77, §1.5.1]. The well-known Bochner-Weil charac-
terization says that f ∈ C(G) being positive definite is equivalent to the existence of a
non-negative measure µ on the dual group Ĝ so that

f(x) =
∫

Ĝ
γ(x) dµ(γ);

moreover, this representation is unique cf. [77, §1.4.3], Comparing the Fourier inversion
formula and the unique representation above leads to the further characterization that for
a continuous and integrable f being positive definite is equivalent to f̂ ≥ 0, compare [77,
§1.7.3(e)]. Thus it is really advantageous to restrict the function class considered from
F1(Ω) to F(Ω), say.

Our setting is that Ω is an open (symmetric) set, and we require that f can be nonzero
only in Ω. This is an essential condition. In this respect approximation has its limitations:
eg. we cannot relax the conditions to require supp f ⊂ Ω only.

Indeed, if Ω is not fat, meaning that Ω = int Ω, this can lead to essential changes of
the Turán constants. Eg. if G = R and Ω = (−a, a) \ {±b}, then intΩ = (−a, a) and
TR((−a, a)) = a, while TR(Ω) = b if a/2 ≤ b ≤ a, see Theorem 2.6.20 below. Similarly, if
G = T and Ω = T \ {π}, then TT(Ω) = 1/2, but obviously TT(Ω) = 1. That is, forcing the
function f to vanish at one single point can, through positive definiteness, bring down the
values essentially in general.

In this respect, original formulations of the Turán problem in [7] and [54] may be mis-
leading, since for a convex body Ω in Rd or Td the allegedly extremal function χΩ/2 ∗χΩ/2

does not belong to the function class F&(Ω) considered there. Instead, a corresponding
limiting argument should provide the same extremal value. In convex or star bodies in
Euclidean spaces one can easily obtain a positive definite function supported properly in
the body from one that may be “non-zero up to the boundary”, by a slight dilation of
space, without losing much integral. It is unclear how to do this in general, even for
domains in Rd.

2.3. Uniform asymptotic upper density on LCA groups

2.3.1. Measuring large, but not necessarily dense infinite sequences and
sets in groups. Although only definitions are constructed here, we feel that in the long
run this part may prove to be the most interesting part of the whole analysis we present.

Our aim here is to extend the notion of uniform asymptotic upper density, used in case
of R already by Beurling and Pólya in the analysis of entire functions. The same notion
is frequently called by others as Banach density, c.f. e.g. [27, p. 72].

The notion of uniform asymptotic upper density – u.a.u.d. for short – is a way to grab
the idea of a set being relatively considerable, even if not necessarily dense or large in some
other more easily accessible sense. In many theorems, in particular in Fourier analysis and
in additive problems where difference sets or sumsets are considered, the u.a.u.d. is the
right notion to express that a set becomes relevant in the question considered. However,
to date the notions was only extended to sequences and subsets of the real line, and some
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immediate relatives like Zd, Rd, as well as to finite, or at least finitely constructed (e.g.
σ-finite) cases.

A framework where the notion might be needed is the generality of LCA groups. In
recent decades it is more and more realized that many questions e.g. in additive number
theory can be investigated, even sometimes structurally better understood/described, if
we leave e.g. Z, and consider the analogous questions in Abelian groups. In fact, when
some analysis, i.e. topology also has a role – like in questions of Fourier analysis e.g. –
then the setting of LCA groups seems to be the natural framework. And inded several
notions and questions, where in classical results u.a.u.d. played a role, have already been
defined, even in some extent discussed in LCA groups. Nevertheless, it seems that no
attempt has been made to extend the very notion of u.a.u.d. to this setup.

One of the more explicit attempts to really ”measure sets in infinite groups” is perhaps
the work of Borovik at al. [15], [14]. Other papers, where some ideas close to ours can be
seen, are [65] – considering measures, not sets, although the investigation there is focused
on local structure at small neighborhoods of points – and in [66], where at least the setup
of LCA groups is apparent (although the interest is quite different).

For cases of σ-finite groups G it is easy to design the u.a.u.d., compare [38]. In the more
general framework of discrete groups, I.Z. Ruzsa [82] had two constructions to define
u.a.u.d..

However, neither of these constructions were the same as ours. Below we will explain,
how one may construct notions of u.a.u.d., which finely extend the classical notion.

2.3.2. Some additive number theory flavored results for difference sets.
Let us denote the upper density of A ⊂ N as d(A) := lim supn→∞A(n)/n > 0 with
A(n) := #(A∩ [1, n]). Erdős and Sárközy (seemingly unpublished, but quoted in [38] and
in [81]) observed the following.

Proposition 2.3.1 (Erdős-Sárközi). If the upper density d(A) of a sequence A ⊂ N is
positive, then writing the positive elements of the sequence D(A) := D1(A) := A − A as
D(A) ∩ N = {(0 <)d1 < d2 < . . . } we have dn+1 − dn = O(1).

This is analogous, but not contained in the following result of Hegyvári, obtained for
σ-finite groups. An abelian group is called σ-finite (with respect to Hn), if there exists
an increasing sequence of finite subgroups Hn so that G = ∪∞n=1Hn. For such a group
Hegyvári defines asymptotic upper density (with respect to Hn) of a subset A ⊂ G as

(2.18) dHn(A) := lim sup
n→∞

#(A ∩Hn)
#Hn

.

Note that for finite groups this is just #(A∩G)/#G. Then Hegyvári proves the following
result, see [38, Proposition 1].

Proposition 2.3.2 (Hegyvári). Let G be a σ-finite abelian group with respect to the
increasing, exhausting sequence Hn of finite subgroups and let A ⊂ G have positive upper
density with respect to Hn. Then there exists a finite subset B ⊂ G so that A−A+B = G.
Moreover, we have #B ≤ 1/dHn(A).
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Fürstenberg calls a subset S ⊂ G in a topological Abelian (semi)group a syndetic set, if
there exists a compact set K ⊂ G such that for each element g ∈ G there exists a k ∈ K
with gk ∈ S; in other words, in topological groups ∪k∈KSk

−1 = G. Then he presents as
Proposition 3.19 (a) of [27] the following.

Proposition 2.3.3 (Fürstenberg). Let S ⊂ Z with positive upper Banach density. Then
S − S is a syndetic set.

In the following we extend the notion of uniform asymptotic upper density, (also called
as Banach density) to arbitrary LCA groups, and present various generalized versions of
the above results, which cover all of them.

2.3.3. Various forms of the asymptotic density. We start with the frequently
used definition of asymptotic upper density in Rd. Let K ⊂ Rd be a fat body, i.e. a set
with 0 ∈ intK, K = intK and K compact. Then asymptotic upper density with respect
to K is defined as

(2.19) dK(A) := lim sup
r→∞

|A ∩ rK|
|rK|

.

The definition (2.18) is clearly analogous to (2.19). As is easy to see, both (2.19) and
(2.18) depends on the choice of the fundamental set K or sequence Hn, even if positivity
of (2.19) is invariant for a large class of underlying sets including all convex, but also many
other bodies. The similar notion of density applies and has the same properties also for
the discrete group Zd. On the other hand, for a given subset A in a σ-finite group G,
(2.18) can easily be zero for some fundamental sequence Hn, while being maximal (i.e., 1)
for some other choice H ′

n of fundamental sequence.

Example 2.3.4. Let G := Q/Z, which is a σ-finite additive abelian group. Let Hn :=
{r ∈ G : r = p

q , q ≤ n}; then Hn is an increasing and exhausting sequence of finite
subgroups of G. Note that #Hn =

∑
j≤n ϕ(j) ∼ 6

π2n
2. Let then Ak := {r ∈ G : r =

p
q , (p, q) = 1, (k2 + k)! < q ≤ (k + 1)2!} and A := ∪∞k=1Ak. Then it is not hard to

prove that lim infn→∞
#A∩Hn

#Hn
= 0 but lim supn→∞

#A∩Hn

#Hn
= 1. Then it is clear that the

value of the upper density can be either 0 or 1 depending on the choice of an appropriate
subsequence of Hn as fundamental sequence. With a little modification an example with
arbitrary numbers as possible upper densities can be derived.

However, results corresponding to the above ones of Erdős, Sárközi and Hegyvári are
easily sharpened by using only a weaker notion, that of asymptotic uniform upper density.
It could be defined as

(2.20) DHn(A) := lim sup
n→∞

supx∈G #(A ∩ (Hn + x))
#Hn

for σ-finite abelian groups and is defined as

(2.21) DK(A) := lim sup
r→∞

supx∈Rd |A ∩ (rK + x)|
|rK|
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in Rd. It is obvious that these notions are translation invariant, and DHn(A) ≥ dHn(A),
DK(A) ≥ dK(A). It is also well-known, that DK(A) gives the same value for all nice -
e.g. for all convex - bodies K ⊂ Rd, although this fact does not seem immediate from the
formulation. Actually, we will obtain this as a side result, being an immediate corollary
of Theorem 2.3.6, see Remark 2.3.7.

Similar definitions can be used for Zd. However, dependence on the fundamental se-
quence Hn makes the σ-finite case less appealing, and we lack a successful notion for
abelian groups in general. In particular, a natural requirement is to find a common gen-
eralization of asymptotic upper density, which works both for Rd and Zd, and also for a
larger class of (say, abelian) groups, including, but not restricted to σ-finite ones.

Note also the following ambiguity in the use of densities in literature. Sometimes even
in continuous groups a discrete set Λ is considered in place of A, and then the definition
of the asymptotic upper density is

(2.22) D
#
K(A) := lim sup

r→∞

supx∈Rd #(Λ ∩ (rK + x))
|rK|

.

That motivates our further extension: we are aiming at asymptotic uniform upper den-
sities of measures, say measure ν with respect to measure µ, (whether related by ν being
the trace of µ on a set or not). E.g. in (2.22) ν := # is the cardinality or counting measure
of a set Λ, while µ := | · | is just the volume. The general formulation in Rd is thus

(2.23) DK(ν) := lim sup
r→∞

supx∈Rd ν(rK + x)
|rK|

.

Of course, to extend these notions some natural hypotheses should apply. We are con-
sidering abelian groups (although non-abelian groups come to mind naturally, here we do
not consider this extension), and in accordance to the group settings only densities with
respect to translation-invariant measures µ are suitable. Otherwise we want ν to be a
measure, possibly infinite, and µ be another, translation-invariant, nonnegative (outer)
measure with strictly positive, but finite values when applied to sets considered.

We will consider two generalizations here. The first applies for the class of abelian groups
G, equipped with a topological structure which makes G a LCA (locally compact abelian)
group. Considering such groups are natural for they have an essentially unique translation
invariant Haar measure µG (see e.g. [77]), what we fix to be our µ. By construction, µ is
a Borel measure, and the sigma algebra of µ-measurable sets is just the sigma algebra of
Borel mesurable sets, denoted by B throughout. Furthermore, we will take B0 to be the
members of B with compact closure: note that such Borel measurable sets necessarily have
finite Haar measure. This will be important for not allowing a certain degeneration of the
notion: e.g. if we consider G = R, ν is the counting measure # and A is some sequence
A = {ak : k ∈ N}, say tending to infinity, then it is easy to define a (non-compact,
but still measurable) union V of decreasingly small neighborhoods of the points ak such
that the Haar measure of V does not exceed 1, but all of A stays in V , hence the relative
density of A, with respect to the counting measure, is infinite. (Another way to deal with
this phenomenon would have been to fix that ∞/∞ = 0, but we prefer not to go into such
questions.)
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Note if we consider the discrete topological structure on any abelian group G, it makes
G a LCA group with Haar measure µG = #, the counting measure. Therefore, our notions
below certainly cover all discrete groups. This is the natural structure for Zd, e.g. On the
other hand all σ-finite groups admit the same structure as well, unifying considerations.
(Note that Zd is not a σ-finite group since it is torsion-free, i.e. has no finite subgroups.)

The other measure ν can be defined, e.g., as the trace of µ on the given set A, that is,
ν(H) := νA(H) := µG(H ∩ A), or can be taken as the counting measure of the points
included in some set Λ derived from the cardinality measure similarly: γ(H) := γΛ(H) :=
#(H ∩ Λ).

Definition 2.3.5. Let G be a LCA group and µ := µG be its Haar measure. If ν is
another measure on G with the sigma algebra of measurable sets being S, then we define

(2.24) D(ν;µ) := inf
CbG

sup
V ∈S∩B0

ν(V )
µ(C + V )

.

In particular, if A ⊂ G is Borel measurable and ν = µA is the trace of the Haar measure
on the set A, then we get

(2.25) D(A) := D(νA;µ) := inf
CbG

sup
V ∈B0

µ(A ∩ V )
µ(C + V )

.

If Λ ⊂ G is any (e.g. discrete) set and γ := γΛ :=
∑

λ∈Λ δλ is the counting measure of Λ,
then we get

(2.26) D
#(Λ) := D(γΛ;µ) := inf

CbG
sup

V ∈B0

#(Λ ∩ V )
µ(C + V )

.

Theorem 2.3.6. Let K be any convex body in Rd and normalize the Haar measure of
Rd to be equal to the volume | · |. Let ν be any measure with sigma algebra of measurable
sets S. Then we have

(2.27) D(ν; | · |) = DK(ν) .

The same statement applies also to Zd.

Remark 2.3.7. In particular, we find that the asymptotic uniform upper density DK(ν)
does not depend on the choice of K. For a direct proof of this one has to cover the
boundary of a large homothetic copy of K by standard (unit) cubes, say, and after a
tedious ε-calculus a limiting process yields the result. However, Theorem 1 elegantly
overcomes these technical difficulties.

Furthermore, we also introduce a second notion of density as follows.

Definition 2.3.8. Let G be a LCA group and µ := µG be its Haar measure. If ν is
another measure on G with the sigma algebra of measurable sets being S, then we define

(2.28) ∆(ν;µ) := inf
F⊂G, #F<∞

sup
V ∈S∩B0

ν(V )
µ(F + V )

.
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In particular, if A ⊂ G is Borel measurable and ν = µA is the trace of the Haar measure
on the set A, then we get

(2.29) ∆(A) := ∆(νA;µ) := inf
F⊂G, #F<∞

sup
V ∈B0

µ(A ∩ V )
µ(F + V )

.

If Λ ⊂ G is any (e.g. discrete) set and γ := γΛ :=
∑

λ∈Λ δλ is the counting measure of Λ,
then we get

(2.30) ∆#(Λ) := ∆(γΛ;µ) := inf
F⊂G, #F<∞

sup
V ∈B0

#(Λ ∩ V )
µ(F + V )

.

The two definitions are rather similar, except that the requirements for ∆ refer to finite
sets only. Because all finite sets are necessarily compact in an LCA group, (2.24) of
Definition 2.3.5 extends the same infimum over a wider family of sets than (2.28) of
Definition 2.3.8; therefore we get

Proposition 2.3.9. Let G be any LCA group, with normalized Haar measure µ. Let ν
be any measure with sigma algebra of measurable sets S. Then we have

(2.31) ∆(ν;µ) ≥ D(ν;µ) .

This specializes to Rd as follows.

Proposition 2.3.10. Let us normalize the Haar measure of Rd to be equal to the volume
| · |. Let ν be any measure with sigma algebra of measurable sets S. Then we have

(2.32) ∆(ν; | · |) ≥ D(ν; | · |) .

Moreover, the following is obvious, since in discrete groups the Haar measure is the
counting measure and the compact sets are exactly the finite sets.

Proposition 2.3.11. Let ν be any measure on the sigma algebra S of measurable sets
in a discrete Abelian group G. Take µ := # the counting measure, which is the normalized
Haar measure of G as a LCA group. Then

(2.33) ∆(ν;#) = D(ν;#) .

So there is no difference for Z, e.g. In general, however, the two densities, defined above,
may well be different: in fact, we would bet for that, but we have no construction to show
this.

2.3.4. Proof of Theorem 2.3.6. Proof of D(ν; | · |) ≥ DK(ν).
Let now τ < τ ′ < DK(ν) and C b G be arbitrary. Since C is compact, for some

sufficiently large r′ > 0 we have C b r′K, hence by convexity also C + rK ⊂ (r + r′)K
for any r > 0. On the other hand by τ ′ < DK(ν) there exist rn → ∞ and xn ∈ Rd

with |ν(rnK + xn)| > τ ′|rnK|. With large enough n, we also have |(rn + r′)K|/|rnK| =
(1 + r′/rn)d < τ ′/τ , hence with V := rnK + xn we find ν(V ) > τ ′|rnK| > τ |(rn + r′)K| =
τ |xn + rnK + r′K| ≥ τ |V + C|. This proves that D(ν; | · |) ≥ τ , whence the assertion.
Proof of DK(ν) ≥ D(ν; | · |).
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Take now τ < D(ν; | · |), put C := rK with some r > 0 given, and pick up a measurable
set V satisfying ν(V ) > τ |V + C|. We can then write

(2.34)
∫
χV (t)dν(t) > τ |V + C| .

If t ∈ V , u ∈ C(= rK), then t+ u ∈ V + C, hence χV +C(t+ u) = 1, and we get

χV (t) ≤ 1
|C|

∫
χV +C(t+ u)χC(u)du (∀t ∈ V ) .

If t /∈ V , this is obvious, as the left hand side vanishes: hence (2.34) implies
(2.35)

τ |V + C| <
∫

1
|C|

∫
χV +C(t+ u)χC(u)dudν(t) =

∫
χV +C(y)

1
|C|

∫
χC(y − t)dν(t)dy .

Sinve C = −C, the inner function is

f(y) :=
1
|C|

∫
χC(y − t)dν(t) =

ν(C + y)
|C|

,

and according to (2.35) we have τ |V + C| <
∫
χV +C(y)f(y)dy =

∫
V +C f , hence for some

appropriate point z ∈ V + C we must have τ < f(z). That is, ν(C + z) > τ |C|, and we
get by C := rK the estimate

(2.36) ν(rK + z) > τ |rK|.

Since r was arbitrary, it follows that DK(ν) ≥ τ , and applying this to all τ < D(ν; | · |)
the statement follows.

2.3.5. Extension of the propositions of Erdős-Sárközy, of Hegyvári and of
Fürstenberg.

Theorem 2.3.12. If G is a LCA group and A ⊂ G has ∆(A) > 0, then there exists a
finite subset B ⊂ G so that A−A+B = G. Moreover, we can find B with #B ≤ [1/∆(A)].

Remark 2.3.13. We need a translation-invariant (Haar) measure, but not the topology
or compactness.

Proof. Assume that H ⊂ G satisfies (A − A) ∩ (H − H) = {0} and let L =
{b1, b2, . . . , bk} be any finite subset of H. By condition, we have (A + bi) ∩ (A + bj) = ∅
for all 1 ≤ i < j ≤ k. Take now C := L in the definition of density (2.30) and take
0 < τ < ρ := ∆(A). By Definition 2.3.8 of the density ∆(A), there are x ∈ G and V ⊂ G

open with compact closure – or, a V ∈ S with 0 < |V | <∞ – satisfying

(2.37) |A ∩ (V + x)| > τ |V + L| .

On the other hand

(2.38) V + L =
k⋃

j=1

(V + x+ (bj − x)) ⊃
k⋃

j=1

(((V + x) ∩A) + bj)− x

and as A+bj (thus also ((V +x)∩A)+bj) are disjoint, and the Haar measure is translation
invariant, we are led to

(2.39) |V + L| ≥ k|(V + x) ∩A| .
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Comparing (2.37) and (2.39) we obtain

(2.40) |A ∩ (V + x)| > τk|(V + x) ∩A| and also |V + L| > kτ |V + L| ,

hence after cancellation by |V +L| > 0 we get k < 1/τ and so in the limit k ≤ K := [1/ρ].
It follows that H is necessarily finite and #H ≤ K.

So let now B = {b1, b2, . . . , bk} be any set with the property (A − A) ∩ (B − B) = {0}
(which implies #B ≤ K) and maximal in the sense that for no b′ ∈ G \ B can this
property be kept for B′ := B ∪ {b′}. In other words, for any b′ ∈ G \ B it holds that
(A−A) ∩ (B′ −B′) 6= {0}.

Clearly, if A − A = G then any one point set B := {b} is such a maximal set; and if
A−A 6= G, then a greedy algorithm leads to one in ≤ K steps.

Now we can prove A − A + B = G. Indeed, if there exists y ∈ G \ (A − A + B),
then (y − bj) /∈ A − A for j = 1, . . . , k, hence B′ := B ∪ {y} would be a set satisfying
(B′ −B′) ∩ (A−A) = {0}, contradicting maximality of B. �

Corollary 2.3.14. Let A ⊂ Rd be a (measurable) set with ∆(A) > 0. Then there exists
b1, . . . , bk with k ≤ K := [1/∆(A)] so that ∪k

j=1(A−A+ bj) = Rd.

This is interesting as it shows that the difference set of a set of positive Banach density
∆ is necessarily rather large: just a few translated copies cover the whole space.

Observe that we have Proposition 2.3.3 as an immediate consequence, since Z is discrete,
and thus the two notions ∆ and D of Banach densities coincide; moreover, the finite set
B := {b1, . . . , bK} is a compact set in the discrete topology of Z. But in fact we can as
well formulate the following extension.

Corollary 2.3.15. Let G be a LCA group and S ⊂ G a set with positive upper Banach
density, i.e. D(S) > 0, where here D(S) = D(µ|S ;µ). Then the difference set S − S is
a syndetic set: moreover, the set of translations K, for which we have G = KS, can be
chosen not only compact, but even to be a finite set with #K ≤ [1/D(S)] elements.

This corollary is immediate, because ∆(S) ≥ D(S) according to Proposition 2.3.9.
This indeed generalizes the proposition of Fürstenberg. Also this result contains the

result of Hegyvári: for on σ-finite groups the natural topology is the discrete topology,
whence the natural Haar measure is the counting measure, and so on σ-finite groups
Corollary 2.3.15 and Theorem 2.3.12 coincides. Finally, this also generalizes and sharpens
the Proposition of Erdős and Sárközy. Indeed, on Z or N we naturally have ∆(A) =
D(A) ≥ d(A), so if the latter is positive, then so is D(A); and then the difference set is
syndetic, with finitely many translates belonging to a translation set K, say, covering the
whole Z. Hence dn+1 − dn is necessarily smaller than the maximal element of the finite
set K of translations.

Theorem 2.3.16. Let G be a LCA group and S ⊂ G a set with a positive, (but finite)
uniform asymptotic upper density, regarding now the counting measure of elements of S
in the definition of Banach density, i.e. D(S) = D(#|S ;µ) > 0. Then the difference set
S − S is a syndetic set.
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Remark 2.3.17. One would like to say that a density +∞ is ”even the better”. However,
in non-discrete groups this is not the case: such a density can in fact be disastrous.
Consider e.g. the set of points S := {1/n : n ∈ N} as a subset of R. Clearly for
any compact C of positive Haar /i.e. Lebesgue/ measure |C| > 0, and for any V ∈ B0

of finite measure and compact closure, |V + C| is positive but finite: whence whenever
0 ∈ intV , we automatically have #(S∩V ) = ∞ and also #(S∩V )/|C+V | = ∞, therefore
D(#|S ; | · |) = ∞; but S − S ⊂ [−2, 2] and thus with a compact B it is not possible that
B + S − S covers G = R, whence S − S is not syndetic.

Problem 2.3.18. The implicitly occurring set of translations K, for which we have
G = K + (S −S), is not controlled in size by the proof below. However, one would like to
say that there must be some bound, hopefully even µ(K) ≤ [1/D(S)], for an appropriately
chosen compact set of translates K. This we cannot prove yet.

Proof. We are not certain that our argument is the simplest possible: also, it does not
give a good estimate for the measure of the required compact set exhibiting the syndetic
property of S−S. Nevertheless, we consider it worthwhile to present it in full detail, since
the various steps, eventually leading to the result, seem to be rather general and useful
auxiliary statements, having their own independent interest. Correspondingly, we break
the argument in a series of lemmas.

Lemma 2.3.19. Let S ⊂ G and assume D(#|S ;µ) = ρ ∈ (0,∞). Consider any compact
set H ⊂ G satisfying the ”packing type condition” H −H ∩ S − S = {0} with S. Then we
necessarily have µ(H) ≤ 1/D(S).

Proof. Let 0 < τ < ρ be arbitrary. By definition of D(S), (using H in place of
C) there must exist a measurable set V ∈ S ∩ B0, with compact closure so that ∞ >

#(S ∩V ) > τµ(V +H), therefore also #(S ∩V ) > µ((S ∩V ) +H). However, for any two
elements s 6= s′ ∈ (S ∩V ) ⊂ S, (s+H)∩ (s′+H) = ∅, since in case g ∈ (s+H)∩ (s′+H)
we have g = s + h = s′ + h′, i.e. s − s′ = h − h′, which is impossible for s 6= s′ and
(H − H) ∩ (S − S) = {0}. Therefore for each s ∈ (S ∩ V ) there is a translate of H,
totally disjoint from all the others: i.e. the union (S ∩ V ) + H = ∪s∈(S∩V )(s + H) is a
disjoint union. By the properties of the Haar measure, we thus have µ((V ∩ S) + H) =∑

s∈(S∩V ) µ(s+H) = #(V ∩ S)µ(H).
Whence we find #(S ∩ V ) ≥ τ#(S ∩ V )µ(H), and, since #(S ∩ V ) > τµ(V +H) was

positive, we can cancel with it and infer µ(H) < 1/τ . This holding for all τ < ρ = D(S),
we obtained that any compact set H, satisfying the packing type condition with S, is
necessarily bounded in measure by 1/D(S). �

Lemma 2.3.20. Suppose that S − S ∩ H − H = {0} with D(#|S ;µ) = ρ ∈ (0,∞) and
H b G with 0 < µ(H −H). Then the set A := S + (H −H) has the uniform asymptotic
upper density D(µ|A;µ), with respect to the Haar measure (restricted to A), not less than
ρ · µ(H −H).

Proof. Let C b G be arbitrary and denote Q := H − H. We want to estimate
from below the ratio µ(A ∩ V )/µ(C + V ) for an appropriately chosen V ∈ B0. Let us



62 2. TURÁN TYPE EXTREMAL PROBLEMS FOR POSITIVE DEFINITE FUNCTIONS

fix that we will take for V some set of the form U + Q with U ∈ B0. Clearly A ∩ V =
(S+Q)∩ (U +Q) ⊃ (S ∩U)+Q. Now for any two elements s 6= t ∈ S, thus even more for
s, t ∈ (S ∩ V ), the sets s+Q and t+Q are disjoint, this being an easy consequence of the
packing property because s+ q = t+ q′ ⇔ s− t = q − r, which is impossible for s− t 6= 0
by condition. Therefore by the properties of the Haar measure we get µ((S ∩ U) +Q) =∑

s∈(S∩U) µ(s+Q) = #(S ∩ U) · µ(Q). In all, we found µ(A ∩ V ) ≥ #(S ∩ U) · µ(Q).
It remains to choose V , that is, U , appropriately. For the compact set C +Q b G and

for any given small ε > 0, by definition of D(#|S ;µ) = ρ there exists some U ∈ B0 such
that #(S ∩ U) > (ρ − ε)µ((C +Q) + U). Choosing this particular U and combining the
two inequalities we are led to µ(A∩V ) ≥ (ρ−ε)µ(C+Q+U)µ(Q), that is, for V := U+Q
written in µ(A ∩ V )/µ(C + V ) ≥ (ρ− ε)µ(H −H).

As we find such a V for every positive ε, the sup over V ∈ B0 is at least ρµ(H − H),
and because C b G was arbitrary, we infer the assertion. �

Lemma 2.3.21. Suppose that S − S ∩ H − H = {0} with D(#|S ;µ) = ρ ∈ (0,∞) and
H b G with 0 < µ(H−H). Then there exists a finite set B = {b1, . . . , bk} ⊂ G of at most
k ≤ [1/(ρµ(H−H))] elements so that B+(H−H)−(H−H)+(S−S) = G. In particular,
the set S − S is syndetic with the compact set of translates B + (H −H +H −H).

Proof. By the above Lemma 2.3.20 we have an estimate on the density of A :=
S + (H − H) with respect to Haar measure. But then we may apply Corollary 2.3.15
to see that the difference set S + (H − H) − (S + (H − H)) is a syndetic set with the
set of translates B admitting #B ≤ [1/D(µ|A;µ)] ≤ [1/(ρµ(H −H))]. Because also the
set H is compact, this yields that S is syndetic as well, with set of translations being
B + (H −H) + (H −H). �

One may think that it is not difficult, for a discrete set S of finite density with respect to
counting measure, to find a compact neighborhood R of 0, so that R ∩ (S − S) be almost
empty with 0 being its only element. If so, then by continuity of subtraction, also for
some compact neighborhood H of zero with (H − H) ⊂ R (and, being a neighborhood,
with µ(H) > 0, too) we would have (H −H)∩ (S−S) = {0}, the packing type condition,
whence concluding the proof of Theorem 2.3.16.

Unfortunately this idea turns to be naive. Consider the sequence S = {n + 1/n : n ∈
N}∪N (in R), which has uniform asymptotic upper density 2 with the cardinality measure,
whilst S − S is accumulating at 0.

Nevertheless, this example is instructive. What we will find, is that sets of finite positive
uniform asymptotic upper density cannot have a too dense difference set: it always splits
into a fixed, bounded number of disjoint subsets so that the difference set of each subset
already leaves out a fixed compact neighborhood of 0. This will be the substitute for the
above naive approach to finish our proof of Theorem 2.3.16 through proving also some kind
of subadditivity of the uniform asymptotic upper density – another auxiliary statement
interesting for its own right.

Lemma 2.3.22. Let Q b G be any symmetric compact neighborhood of 0 and let S have
positive but finite uniform asymptotic upper density with respect to cardinality measure,
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i.e. D(#|S ;µ) = ρ ∈ (0,∞). Then there exists a finite disjoint partition S =
⋃n

j=1 Sj of
S such that (Sj − Sj) ∩Q = {0}. Moreover, choosing an appropriate symmetric compact
neighborhood Q of 0, depending on ε > 0, we can even guarantee that the number of subsets
in the partition is not more than k ≤ [(1 + ε)ρµ(Q)].

Proof. Let s ∈ S be arbitrary, consider R := s + Q, and let us try to estimate the
number of other elements of S falling in R. Clearly for any C b G we have #(S∩R)/µ(C+
R) ≤ supV ∈B0

#(S∩V )/µ(C+V ) so for any ε > 0 and with some appropriate C b G this
is bounded by ρ+ε according to the density condition. Note that the choice of C depends
only on ε, but not on R. That is, we already have a bound k := #(S∩R) ≤ (ρ+ε)µ(C+R)
with the given C = C(ε), independently of R, i.e. of Q.

Next we show how to obtain the bound k ≤ [ρµ(Q)] + 1 for some appropriate choice of
Q. This hinges upon a lemma of Rudin, stating that for any given compact set C b G

and ε > 0 there exists another Borel set V , also with compact closure, so that µ(C+V ) <
(1 + ε)µ(V ), c.f. 2.6.7 Theorem on page 52 of [77]; moreover, Rudin remarks that this
can even be proved (actually, read out from the proof) with open sets V having compact
closure. It is a matter of invariance of Haar measure with respect to translations to
ascertain that (some) of the interior points of V be 0, so that V is a neighborhood of
0: also, by regularity of the Borel measure, and by compactness of the closure, we can
as well take V to be its own closure. Furthermore, the same proof also shows that V
can even be taken symmetric. In all, for an appropriate choice of V for Q, we even have
k := #(S ∩R) ≤ (ρ+ ε)µ(C+R) < (ρ+ ε)(1+ ε)µ(Q). Note that here the dependence on
C disappears from the end formula, but there is a dependence of Q on ε. This is equivalent
to the estimate in the Lemma.

It remains to construct the partition once we have a compact neighborhood Q of 0 and a
finite number k ∈ N such that #(S ∩ (Q+ s) ≤ k for all s ∈ S. this is standard argument.
Consider a graph on the points of S defined by connecting two points s and t exactly when
t ∈ s+Q. Since Q is symmetric, this is indeed a good definition for a graph (and not for
a directed graph only).

In this graph by condition the degree of any point of s ∈ S is at most k − 1: there are
at most k− 1 further points of S in s+Q. But it is well-known that such a graph can be
partitioned into k subgraphs with no edges within any of the induced subgraphs.2 That
is, the set of points split into the disjoint union of some Sj with no two points s, t ∈ Q

being in the relation t ∈ s+Q, defining an edge between them.
It is easy to see that now we constructed the required partition: the Sj are disjoint, and

so are (Sj − Sj) and Q \ {0}, for any j = 1, . . . , k, too. This concludes the proof. �

Lemma 2.3.23 (subadditivity). Let ν0 =
∑n

j=1 νj be a sum of measures, all on the
common set algebra S of measurable sets. Then we have D(ν0, µ) ≤

∑n
j=1D(νj , µ). In

2The proof of this is very easy for finite or countable graphs: just start to put the points, one by one,

inductively into k preassigned sets Sj so that each point is put in a set where no neighbor of it stays; since

each point has less than k neighbors, this simple greedy algorithm can not be blocked and the points all

find a place. Same for countable many points, while for larger cardinalities transfinite induction is needed

to carry out the same reasoning.
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particular, this holds for one given measure ν and a disjoint union of sets A0 = ∪n
j=1Aj,

with νj := ν|Aj , for j = 0, 1, . . . , k.

Proof. Uniform asymptotic upper density is clearly monotone in the sets considered,
therefore all Sj have a density 0 ≤ ρj ≤ ρ < ∞ Let ε > 0 be arbitrary, and take Cj b G

so that for all V ∈ B0 in the definition of D(ν|A;µ) we have νj(V ) ≤ (ρj + ε)µ(Cj + V ).
Such Cj exists in view of the infinum on C b G in the definition of u.a.u.d.

Consider the (still) compact set C := C1 + · · · + Cn. By definition of u.a.u.d. there is
V ∈ B0 such that ν(V ) ≥ (ρ − ε)µ(C + V ). Obviously, µ(Cj + V ) ≤ µ(C + V ), so on
combining these we obtain

ρ− ε ≤ ν(V )
µ(C + V )

=

∑k
j=1 νj(V )
µ(C + V )

≤
k∑

j=1

νj(V )
µ(Cj + V )

≤
k∑

j=1

(ρj + ε),

that is, ρ− ε ≤
∑

j(ρj + ε) holding for all ε, we find ρ ≤
∑

j ρj , as was to be proved. �

Continuation of the proof of Theorem 2.3.16. We take now an arbitrary com-
pact neighborhood H b G of 0, with of course µ(H) > 0, and also Q := H−H again with
0 < µ(Q) < ∞ and Q a symmetric neighborhood of 0. By Lemma 2.3.22 there exists a
finite disjoint partition S = ∪n

j=1Sj with (Sj − Sj) ∩ (H −H) = {0}. By subadditivity of
u.a.u.d. (that is, Lemma 2.3.23 above), at least one of these Sj must have positive u.a.u.d.
ρj (with respect to the counting measure), namely of density 0 < ρ/n ≤ ρj ≤ ρ <∞, with
ρ := D(#|S , µ).

Selecting such an Sj , we can apply Lemma 2.3.21 to infer that already Sj – hence also
S ⊃ Sj – is syndetic. �

2.4. Structural properties of sets – tiling, packing and spectrality

2.4.1. Tiling and packing. Suppose G is a LCA group.

Definition 2.4.1. We say that a nonnegative function f ∈ L1(G) tiles G by translation
with a set Λ ⊆ G at level c ∈ C if ∑

λ∈Λ

f(x− λ) = c

for a.a. x ∈ G, with the sum converging absolutely. We then write “f + Λ = cG”.
We say that f packs G with the translation set Λ at level c ∈ R, and write f + Λ ≤ cG,

if ∑
λ∈Λ

f(x− λ) ≤ c,

for a.a. x ∈ G. When the same properties hold with constant c = 1 for a characteristic
function χΩ of some Ω ∈ B0, then we simply say that Ω tiles or packs G, and write
Ω + Λ = G, Ω + Λ ≤ G, respectively.

Neglecting some measure zero sets, packing occurs when for any point x ∈ G x− λ ∈ Ω
for at most one point of λ ∈ Λ, which in turn is equivalent to λ + Ω being disjoint for
different λ ∈ Λ. This explains the term ”packing”. On the other hand this latter statement
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is equivalent to saying that λ+ x = λ′ + x′ with λ, λ′ ∈ Λ and x, x′ ∈ Ω can occur only if
λ = λ′ and hence also x = x′. Writing this in the form of differences, λ− λ′ = x′ − x only
for both sides being 0, that is, (Λ − Λ) ∩ (Ω − Ω) = {0}. This is an equivalent condition
to Ω packing with Λ. More generally, we will say that the set S satisfies a ”packing type
condition” with L, if (L− L) ∩ S ⊂ {0}, irrespectively of the situation whether S can be
represented as a difference set of some other Ω or not.

So in an Euclidean space about a nonnegative f ∈ L1(Rd) we say that f tiles with Λ at
level ` if ∑

λ∈Λ

f(x− λ) = `, a.e. x.

We denote this latter condition by f + Λ = `Rd.
In particular, a measurable set Ω ⊆ Rd is a translational tile if there exists a set Λ ⊆ Rd

such that almost all (Lebesgue) points in Rd belong to exactly one of the translates

Ω + λ, λ ∈ Λ.

We denote this condition by Ω + Λ = Rd.
In any tiling the translation set has some properties of density, which hold uniformly in

space.

Definition 2.4.2. A set Λ ⊆ Rd has (uniform) density ρ if

lim
R→∞

#(Λ ∩BR(x))
|BR(x)|

→ ρ

uniformly in x ∈ Rd. We write ρ = dens Λ.
We say that Λ has density uniformly bounded by ρ, if the fraction above is bounded by

the constant ρ uniformly for x ∈ R and R > 1.

Remark 2.4.3. It is not hard to prove (see for example [51], Lemma 2.3, where it is
proved in dimension one – the proof extends verbatim to higher dimension) that in any
tiling f + Λ = `Rd the set Λ has density `/

∫
f .

When the group is finite (and we do not, therefore, have to worry about the set Λ being
finite or not) the tiling condition f + Λ = cG means precisely f ∗ χΛ = c. Taking Fourier
transform, this is the same as f̂ χ̂Λ = c|G|χ{0}, which is in turn equivalent to the condition

(2.41) supp χ̂Λ ⊆ {0} ∪
{
f̂ = 0

}
and c =

|Λ|
|G|

∑
x∈G

f(x).

The packing type condition Ω ∩ (Λ − Λ) = {0} will be used in Theorem 2.6.4 below.
This result will be an essential extension of the earlier result of Arestov and Berdysheva,
stating that in Rd a convex lattice tile is necessarily of the Stechkin-Turán type. Another
generalization of this result appears in Corollary 2.7.3, through another structural property
of sets, namely spectrality.
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2.4.2. Spectra.

Definition 2.4.4. Let G be a LCA group and Ĝ be its dual group, that is the group of
all continuous group homomorphisms (characters) G→ C. We say that the set T ⊆ Ĝ is
a spectrum of H ⊆ G if and only if T forms an orthogonal basis for L2(H).

In particular, let Ω be a measurable subset of Rd and Λ be a discrete subset of Rd. We
write

eλ(x) = exp(2πi〈λ, x〉), (x ∈ Rd),

EΛ = {eλ : λ ∈ Λ} ⊂ L2(Ω).

The inner product and norm on L2(Ω) are

〈f, g〉Ω =
∫

Ω
fg, and ‖f‖2

Ω =
∫

Ω
|f |2.

The pair (Ω,Λ) is called a spectral pair if EΛ is an orthogonal basis for L2(Ω). A set Ω
will be called spectral if there is Λ ⊂ Rd such that (Ω,Λ) is a spectral pair. The set Λ is
then called a spectrum of Ω.

Example 2.4.5. If Qd = (−1/2, 1/2)d is the cube of unit volume in Rd then (Qd,Zd) is
a spectral pair, as is well known by the ordinary L2 theory of multiple Fourier series.

Bent Fuglede formulated the following famous conjecture in 1974.

Conjecture 2.4.6. (Fuglede [26]) Let Ω ⊂ Rd be a bounded open set. Then Ω is
spectral if and only if there exists L ⊂ Rd such that Ω + L = Rd is a tiling.

One basis for the conjecture was that the lattice case of this conjecture is easy to show,
(see for example [26, 49]). In the following result the dual lattice Λ∗ of a lattice Λ is
defined as usual by

Λ∗ =
{
x ∈ Rd : ∀λ ∈ Λ 〈x, λ〉 ∈ Z

}
.

Theorem 2.4.7 (Fuglede [26]). The bounded, open domain Ω admits translational tilings
by a lattice Λ if and only if EΛ∗ is an orthogonal basis for L2(Ω).

Note that in Fuglede’s Conjecture no relation is claimed between the translation set L
and the spectrum Λ.

The Conjecture in its full generality was recently disproved. First, T. Tao showed [88]
that in R5 there exists a spectral set, which however fails to tile space. The method,
roughly speaking, is to construct counterexamples on finite groups, and then lift them up
first to Zd and finally to Rd. Soon after that breakthrough, Tao’s construction was further
sharpened to provide non-tiling spectral sets in R4 [61] and finally even in dimension 3
[53].

More importantly, the converse implication was also disproved, first in dimension 5 by
Kolountzakis and Matolcsi [52]. Subsequently, examples of tiling, but non-spectral sets
were constructed in R4 by Farkas and Révész [23], and then even in R3 by Farkas, Matolcsi
and Móra [22].
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Positive results are far more meager, and basically restrict to special sets on the real
line. However, for planar convex domains, it also holds true [42].

In these results – in particular in the construction of counterexamples – finite groups
played a decisive role. Therefore it indeed makes sense to investigate the analogous prob-
lem in groups.

Suppose from now on that G is finite.
It follows that |T | = |H|, the dimension of `2(H), and with a little more work it follows

that T is a spectrum of H if and only if we have the tiling condition

(2.42) |χ̂H |2 + T = |H|2Ĝ.

Indeed, for t1, t2 ∈ Ĝ we have by definition of the Fourier transform that

〈t1, t2〉H =
∑
x∈H

t1(x)t2(x) =
∑
x∈H

(t1 − t2)(x) = χ̂H(t1 − t2).

Suppose now that T is a spectrum of H. If t ∈ Ĝ we have (Parseval)

|H| = ‖t‖2
`2(H)

=
∑
s∈T

∣∣∣∣〈t, s

‖s‖

〉∣∣∣∣2
=

1
|H|

∑
s∈T

|〈t, s〉|2

=
1
|H|

∑
s∈T

|χ̂H(t− s)|2,

which is precisely the statement that |χ̂H |2 + T = |H|2Ĝ. That this tiling condition is
also sufficient to imply that T is a spectrum of H follows similarly (we are not using this
direction in this work).

By the analysis of tiling shown in §2.4.1 it follows that this happens if and only if

(2.43) supp χ̂T ⊆ {0} ∪ (H −H)c and |T | = |H|.

2.4.3. Packing, covering, tiling and uniform asymptotic upper density.

Proposition 2.4.8. Assume that H ∈ B and that H+Λ ≤ G (H packs G with Λ ⊂ G),
i.e. (H −H) ∩ (Λ− Λ) ⊆ {0}. Then Λ must satisfy D#(Λ) ≤ 1/µ(H).

Proof. Let B b H and V ∈ B0 be arbitrary. Denote L := Λ∩V . Then B+V ⊃ B+
L = ∪λ∈L(B+λ), and this union being disjoint (as (B+λ)∩(B+λ′) ⊂ (H+λ)∩(H+λ′) = ∅
unless λ = λ′), from additivity and translation invariance of the Haar measure we obtain
µ(B + V ) ≥ µ(B + L) = #Lµ(B). This yields #L/µ(B + V ) ≤ 1/µ(B), therefore
supV ∈B0

#(Λ∩V )/µ(B+V ) ≤ 1/µ(B). Approximating µ(H) by µ(B) of B b H arbitrarily

closely, we thus obtain infBbH supV ∈B0
#(Λ ∩ V )/µ(B + V ) ≤ 1/µ(H). However, D#(Λ)

is a similar infimum extended to a larger family of compact sets, so it can not be larger,
and the assertion follows. �
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Proposition 2.4.9. Assume that H ∈ B0 and that it covers G with Λ ⊂ G (”H + Λ ≥
G”), i.e. H + Λ contains µ-almost all points of G. Then we necessarily have D#(Λ) ≥
1/µ(H).

Proof. Let C b G be arbitrary, and take W := H −C, which is again a compact set
of G by assumption on H and in view of the continuity of the group operation on G. So the
Theorem in §2.6.7. on p. 52 of [77] applies to the compact set W and to any given ε > 0,
and we find some Borel measurable set U = Uε,C ∈ B0 satisfying µ(U −W ) < (1+ε)µ(U).

Consider now V := Vε,C := U −H ∈ B0. Then µ(C+V ) = µ(C+U −H) ≤ µ(U − (H−
C)) = µ(U−W ) < (1+ε)µ(U). Denote L := Λ∩V . Then L = {λ ∈ Λ : ∃h ∈ H, λ+h ∈
U} = {λ ∈ Λ : (λ + H) ∩ U 6= ∅}, and so clearly U ∩ (Λ + H) = ∪λ∈L(λ + H), while
U0 := U\(U∩(Λ+H)) is of measure zero by assumption on the covering property ofH with
Λ. So in all µ(U) ≤ µ(U0)+

∑
λ∈L µ(λ+H) = 0+#Lµ(H) and µ(C+V ) < (1+ε)#Lµ(H).

It follows that with the arbitrarily chosen C b G and for all ε > 0 we have with a certain
Vε,C ∈ B0

#(Λ ∩ Vε,C)
µ(C + Vε,C)

≥ 1
(1 + ε)µ(H)

,

so taking supremum over all V ∈ B0 we even get supV ∈B0
#(Λ ∩ V )/µ(C + V ) ≥ 1/µ(H).

This holding for all C b G, taking infimum over C does not change the lower estimation,
so finally we arrive at D#(Λ) ≥ 1/µ(H), whence the proposition. �

Tiling means simultaneously packing and covering. Therefore, from the above two propo-
sitions the following corollary obtains immediately.

Corollary 2.4.10. Assume that H ∈ B0 tiles with the set of translations Λ ⊂ G:
H + Λ = G. Then we also have D#(Λ) = 1/µ(H).

2.5. Generalities about Turán constants on groups

Again this section is taken entirely from our joint work with Mihalis Kolountzakis [56].

2.5.1. Homomorphic images and the Turán constant. Let G and H be two
LCA groups, and ϕ : G→ H a continuous group homomorphism which maps G onto H.
Denote K := Ker(ϕ) ≤ G. By continuity of ϕ, K is a closed subgroup, hence a LCA
group itself. We consider G/K as fixed together with the canonical or natural projection
π : G → G/K defined as π(g) := [g] := g + K ∈ G/K. By definition of the topology of
G/K, π is an open and continuous mapping. Compare §B.2, B.6 in Appendix B of [77].
Moreover, ϕ ◦ π−1 : G/K → H is an isomorphism of the LCA groups G/K and H.

For the determination of the Turán constants, the choice of the Haar measure is relevant.
Haar measures are unique up to a constant factor: we can always choose the Haar measures
µK and µG/K so that dµG = dµKdµG/K , in the sense of (2) in [77, §2.7.3]. On the
other hand fixing a particular Haar measure µH of H always leaves open the question of
compatibility with the fixed measure µG/K and the mapping ϕ. Let A ⊂ H be an arbitrary
Borel set. Then one can define ν(A) := µG/K(π(ϕ−1(A))); since ϕ is onto, clearly this
defines another Haar measure on H. Since Haar measures are constant multiples of each
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other, we necessarily have C := dµH/dν a constant. Once H and µH are given, various
homomorphisms ϕ may generate different measures, but the constant C = C(ϕ) can
always be read from this relation.

Proposition 2.5.1 (Kolountzakis-Révész). Let G and H be LCA groups, and ϕ :
G → H be a continuous group homomorphism onto H. Suppose an open subset Ω ⊂ G

is given, and let Θ := ϕ(Ω) ⊂ H. Consider the closed subgroup K := Ker(ϕ) ≤ G, and
the quotient group G/K together with their Haar measures µG/K and µK , normalized as
above. We then have

(2.44) TG(Ω) ≤ 1
C
TH(Θ)TK(Ω ∩K) (C :=

dµH

dν
) .

Here ν := µG/K ◦ π ◦ ϕ−1 is defined as above.

Proof. AsK is the kernel of the continuous homomorphism ϕ, K is a closed subgroup
of G. Therefore, the factor group G/K is a LCA group, which is continuously isomorphic
to H.

The image Θ of the open set Ω is open, since ϕ is also an open mapping. Indeed, π is
open by its definition, and thus π(Ω) is open in G/K for any open Ω in G. However, the
isomorphism ψ : G/K → H, defined by ψ := ϕ ◦ π−1, brings over the open set π(Ω) to Θ,
which is then open by the isomorphism itself.

Observe that Ωg := Ω ∩ (K + g) is relatively open for any g ∈ G, while the coset K + g

is closed. Let us choose arbitrarily a representative g(h) ∈ G of each coset ϕ−1(h) of K
to all h ∈ H. Now for any uniformly continuous function f : G→ C we can define

(2.45) F (h) :=
∫

K
f(g(h) + k) dµK(k) =

∫
K
f(x) dµK(x− g(h)).

Since f is uniformly continuous, the function F : H → C is continuous, F (0) =
∫
K fdµK ,

and by Fubini’s Theorem∫
H
F (h)dµH(h) =

∫
H

∫
ϕ−1(h)

f(g(h) + k) dµK(k)Cdν(h)

= C

∫
H

∫
K
f(g(h) + k) dµK(k)dµG/K(πϕ−1(h))(2.46)

= C

∫
H×K

f(g(h) + k) dµK(k)dµG/K([g(h)]) = C

∫
G
f dµG ,

taking into account the choice of normalization of the Haar measures for K and G/K.
Next we prove that F is positive definite on H in case f is positive definite on G. Indeed,
for any character χ on H there is a character γ := χ ◦ ϕ on G, and applying (2.46) to fγ
yields ∫

H
F (h)χ(h)dµH(h) = C

∫
G
f(g)γ(g) ≥ 0 .

Thus we have
∫
H FdµH ≤ TH(Θ)F (0). Moreover, f |K is positive definite on K, hence we

also have F (0) =
∫
K∩Ω f dµK ≤ TK(K∩Ω)f(0). Comparing these inequalities with (2.46)

yields C
∫
G f dµG ≤ TH(Θ)TK(K ∩Ω)f(0), and taking supremum of

∫
G fdµG/f(0) (2.44)

obtains.
�
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2.5.2. Automorphic invariance of the Turán constant. One of the reasons to
work out Proposition 2.5.1 is its corollary to the case when we deal with an automorphism
of the group G.

Corollary 2.5.2 (Kolountzakis-Révész). Let G be a LCA group and let ϕ : G→ G

be an automorphism. Then we have for any open set Ω ⊂ G the identity

(2.47) TG(ϕ(Ω)) =
|ϕ(Ω)|
|Ω|

TG(Ω) .

Proof. In our case H = G and ϕ is an automorphism. Clearly then K = {0} is the
trivial group, µK = δ0 is the trivial measure, K∩Ω = {0}, TK(K∩Ω) = 1, µK(K∩Ω) = 1
and G/K ∼= G, µG/K

∼= µG. Thus we find ν = µG ◦ ϕ−1, and C := dµH/dν being
constant, it can be computed on Ω∗ := ϕ(Ω) as C = |Ω∗|/|ϕ−1(Ω∗)| = |Ω∗|/|Ω|. Applying
Proposition 2.5.1 yields (2.47) with ≥ first. However, ϕ−1 is also an automorphism, and
that implies the reverse inequality, too. Whence Corollary 2.5.2 follows. �

The important special case when G = Rd and ϕ is any linear mapping A : Rd → Rd

was already noted in [6]. There the computation of the constant C is equivalent to the
calculation of the volume element, ie. the determinant, of the linear mapping A.

The next assertion was also observed in [6] for Rd.

Corollary 2.5.3 (Kolountzakis-Révész). Let G = G1 × · · · ×Gn and Ωj ⊂ Gj (j =
1, . . . , n), Ω = Ω1 × · · · × Ωn. Then we have

(2.48) TG(Ω) = TG1(Ω1) · · · TGn(Ωn) .

Proof. The ≤ direction easily follows from iteration of Proposition 2.5.1. On the
other hand take any continuous positive definite functions fj on Gj with supp fj b Ωj for
(j = 1, . . . , n). It is easy to see that then the product f := f1 · · · fn is a positive definite
function on G, with supp f b Ω, hence also the ≥ part of (2.48) follows. �

2.5.3. Turán constants on quotient groups.

Corollary 2.5.4 (Kolountzakis-Révész). Let G be a LCA group, K a closed subgroup
of G, and suppose that the Haar measures µK and µG/K of G and G/K, respectively, are
normalized (as always) so that dµG = dµKdµG/K . Let Ω be any open set in G and Θ be
its projection on G/K, ie. Θ := {g +K : g ∈ Ω}. Then we have

(2.49) TG(Ω) ≤ TG/K(Θ)TK(Ω ∩K) .

In particular, if Ω ∩K = {0}, then TG(Ω) ≤ TG/K(Θ).

Proof. Consider H := G/K and the natural projection π : G → G/K. It is a
continuous group homomorphism and thus Proposition 2.5.1 can be applied with ϕ := π.
In this case Θ = π(Ω) comprises the class of cosets K + g so that K + g ∩Ω 6= ∅, and the
arising measure ν is identical to µG/K . Hence C = 1 and we are led to (2.49). The special
case is obvious. �
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2.5.4. Restrictions to subgroups and the Turán constants. We show now that
there is some sort of monotonicity in the first argument of TG(Ω) as well.

Corollary 2.5.5 (Kolountzakis-Révész). Let G be a compact abelian group, and K
a closed subgroup of G. Let the Haar measures µK and µG be normalized arbitrarily, and
let Ω be any open set in G. Then we have

(2.50) TG(Ω) ≤ |G|
|K|

TK(Ω ∩K) .

Here |G| = µG(G) and |K| = µK(K).

Proof. With µG and µK already given, we can define the Haar measure µG/K so
that the condition µG = µKµG/K still holds. Let ϕ := π and H := G/K as in the
previous Corollary. Since we always have Θ ⊂ G/K, and thus TG/K(Θ) ≤ TG/K(G/K) =
µG/K(G/K), an application of Corollary 2.5.4 yields TG(Ω) ≤ µG/K(G/K)TK(Ω ∩ K).
It remains to see that for a compact group G and (closed, hence compact) subgroup
K also the quotient is compact, and according to our choice of normalization we have
µG/K(G/K) = µG(G)/µK(K). The assertion follows. �

Example 2.5.6. Let us remark here that Lemma 1 of [33] can be proved via Corollary
2.5.5 by taking G = T, Ω to be the interval (−p/q, p/q) ⊆ T (for some co-prime integers
p and q with p/q ≤ 1/2) and K to be the (finite) subgroup of T generated by 1/q. The
results in [33] first show that the Turán problem in this case can be reduced to a finite
problem of linear programming (this is obviously the case for any Turán problem on a
finite group) and Corollary 2.5.5 shows half the reduction. The reverse inequality is also
true in this particular case (this can be shown by “convolving” a positive definite function
on the subgroup with a Fejér kernel of half-base 1/q) but it cannot be expected to hold in
general.

2.6. Upper bound from packing

2.6.1. Bounds from packing in some special cases. In the type of results we
now present, some kind of “packing” condition is assumed on Ω which leads to an upper
bound for TG(Ω). The first result we present here is taken from [56]: we repeat it here
for sake of a simpler situation which nevertheless may shed light on the general case. The
second result, valid in some non-compact cases, will be detailed, too, for a part of its proof
will be directly referred to later in the general version.

Theorem 2.6.1 (Kolountzakis-Révész). Suppose that G is a compact abelian group,
Λ ⊆ G, Ω ⊆ G is a 0-symmetric open set and (Λ − Λ) ∩ Ω ⊆ {0}. Suppose also that
f ∈ L1(G) is a continuous positive definite function supported on Ω. Then

(2.51)
∫

G
f(x) dx ≤ µ(G)

#Λ
f(0).

In other words TG(Ω) ≤ µ(G)/#Λ.

(Observe that the conditions imply that Λ is finite.)
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Proof. Define F : G→ C by

F (x) =
∑

λ,µ∈Λ

f(x+ λ− µ).

In other words F = f ∗ δΛ ∗ δ−Λ, where δA denotes the finite measure on G that assigns

a unit mass to each point of the finite set A. It follows that F̂ = f̂
∣∣∣δ̂Λ∣∣∣2 ≥ 0 so that F is

continuous and positive definite. Moreover, we also have

(2.52) suppF ⊆ supp f + (Λ− Λ) ⊆ Ω + (Λ− Λ)

and

(2.53) F (0) = #Λf(0),

since Ω ∩ (Λ− Λ) ⊆ {0}. Finally

(2.54)
∫

G
F = #Λ2

∫
G
f.

Applying the trivial upper bound
∫
G F ≤ F (0)µ(Ω + (Λ − Λ)) to the positive definite

function F and using (2.53) and (2.54) we get

(2.55)
∫

G
f ≤ µ(Ω + (Λ− Λ))

#Λ
f(0).

Estimating trivially µ(Ω + (Λ− Λ)) from above by µ(G) we obtain the required TG(Ω) ≤
µ(G)/#Λ. �

Corollary 2.6.2 (Kolountzakis-Révész). Let G be a compact abelian group and
suppose Ω,H,Λ ⊆ G, H + Λ ≤ G is a packing at level 1, that Ω ⊆ H − H and that
f ∈ F(Ω). Then (2.51) holds.

In particular, if H + Λ = G is a tiling, we have

(2.56) TG(Ω) ≤ µ(H).

Proof. Since H + Λ ≤ G it follows that (H −H)∩ (Λ−Λ) = {0}. Since Ω ⊆ H −H
by assumption it follows that Ω and Λ − Λ have at most 0 in common. Theorem 2.6.1
therefore applies and gives the result. If H + Λ = G then µ(G)/#Λ = |H| and this proves
(2.56). �

A partial extension of the result to the non-compact case was also worked out in [56].
However, it used the notion of u.a.u.d. which then restricted considerations to classical
groups only. Nevertheless note that some parts of the proof for this theorem will be used
even in the proof for our more general result, see the end of Lemma 2.6.5.

Theorem 2.6.3 (Kolountzakis-Révész). Suppose that G is one of the groups Rd or
Zd, that Λ ⊆ G is a set of uniform asymptotic upper density ρ > 0, and Ω ⊆ G is a
0-symmetric open set such that Ω ∩ (Λ − Λ) ⊆ {0}. Let also f ∈ L1(G) be a continuous
positive definite function on G whose support is a compact set contained in Ω. Then

(2.57)
∫

G
f(x) dx ≤ 1

ρ
f(0).

In other words TG(Ω) ≤ 1/ρ.
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Proof. Let ε > 0 and choose R > 0 and x ∈ G such that

|Λ ∩QR(x)| ≥ (ρ− ε)|QR(x)| ≥ (ρ− ε)(R− 1)d,

where QR(x) is the cube of side R and center at x. Assume also that supp f ⊆ Qr(0).
Let Λ′ = Λ∩QR(x) and construct the function F as in the proof of Theorem 2.6.1, with

Λ′ in place of Λ. We now have that

suppF ⊆ supp f + (Λ′ − Λ′) ⊆ Q2R+r(0).

This time we do not apply the trivial upper estimate to F as we did in Theorem 2.6.1
(then, we had no detailed information on the support). Instead we use that for L ∈ 2N

(2.58) TG(QL(0)) ≤ (L/2 + 1)d .

The validity of TRd(QL(0)) ≤ 2−dLd (∀L > 0) and hence (2.58) in the case of G = Rd has
been proved, for example, in [6, 7, 54]. For G = Zd we give a proof here.

Notice first that for any finite Ω ⊆ Zd and any large enough positive integer M we have

(2.59) TZd(Ω) ≤ TZd
M

(Ω).

Indeed, if M is large enough (e.g. M > diam(Ω)/2) then the closed subgroup K := MZd

only intersects Ω in 0, while the factor group Zd
M will have an injective image Θ of Ω:

hence Corollary 2.5.4 applies.
If Ω = Qd

L(0) = {−L/2, . . . , L/2}d define H to be the set {0, . . . , L/2}d such that
Ω = H − H. Take now M = 10(L/2 + 1), for example, so that (a) H tiles Zd

M by
translation, and, (b) M is large enough to have all elements of Ω distinct mod Zd

M . Using
Corollary 2.6.2 we obtain (2.58) from (2.56) in the group Zd

M , and hence also in Zd because
of (2.59).

Hence taking L := L(R, r) in (2.58) as the least even integer not less than 2R + r, we
obtain both for G = Rd and G = Zd the estimate

∫
G F ≤ TG(QL(0))F (0) ≤ (R + r/2 +

2)dF (0). Comparing this with (2.53) and (2.54) (with Λ′ in place of Λ) we are led to∫
G
f ≤ f(0)

(R+ r/2 + 2)d

|Λ′|
≤ f(0)

(R+ r/2 + 2)d

(ρ− ε)(R− 1)d
.

Since ε > 0 can be taken arbitrarily small and R arbitrarily large, we get
∫
G f ≤

1
ρf(0). �

2.6.2. Bounds from packing in general LCA groups. Now we have ready a
notion of u.a.u.d. as defined in §2.3. With this notion, we have the following general
version of the above particular results.

Theorem 2.6.4. Let Ω ⊂ G be a 0-symmetric open neighborhood of 0 and Λ ⊂ G be a
subset satisfying the ”packing-type condition” Ω∩ (Λ−Λ) = {0}. If ρ := D

#(Λ) > 0, then
we have TG(Ω) ≤ 1/ρ.

Proof. Let ε > 0 be fixed small, but arbitrary. By Theorem 2.1.12, there exists
f ∈ F(Ω) with

∫
G f > TG(Ω)− ε. Denote S := supp f , which is a compact subset of Ω in

view of f ∈ F(Ω).
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In the following we consider a compact, 0-symmetric neighborhood of 0 which we denote
by W . We require W to be the closure of a 0-symmetric open subset O containing S−S in
it. (Such a compact set exists: by continuity of the group operation, the compact subset
S×S is mapped to a compact set, i.e. S−S is compact, and then for any symmetric, open
neighborhood Q of 0 with compact closure Q choosing O := (S−S)+Q, W := (S−S)+Q
suffices.)

Let us consider the subgroup G0 of G, generated by W . Here we repeat the construction
on [77, p. 52]. First, by [77, Lemma 2.4.2], 〈W 〉 = G0 implies that there exists a closed
subgroup K ≤ G0 which is isomorphic to Zk with some natural number k and satisfies
W ∩K = {0}, so that H := G0/K is then compact. Let φ be the natural homomorphism
(projection) of G0 onto H.

Because S−S ⊂ intW , there exists an open neighborhood X1 of S such that X1−X1 ⊂
W , whence φ(x) − φ(y) = 0 ∈ H with x, y ∈ X1 would imply x − y ∈ kerφ = K, i.e.
x − y ∈ K ∩ W = {0} and thus x = y. In other words, φ is a homeomorphism on
X1, and Y1 := φ(X1) ⊂ H is open. By compactness of H, finitely many translates of
Y1, say Y1, Y2, . . . , Yr will cover H, and there are open subsets Xi of G0 with compact
closure such that φ maps Xi onto Yi homeomorphically for each i = 1, . . . , r. If Y ′

1 := Y1,
Y ′

i := Yi \ (∪i−1
j=1Yj) (i = 2, . . . , r) and X ′

i := Xi∩φ−1(Y ′
i ) (i = 1, . . . , r), then E := ∪r

i=1X
′
i

is a Borel set in G0 with compact closure, φ is one-to-one on E, and φ(E) = H, i.e., each
x ∈ G0 can be uniquely represented as x = e+ n, with e ∈ E and n ∈ K.

In the following we put ‖n‖ := max1≤j≤k |nj |, where (n1, . . . , nk) ∈ Zk is the element
corresponding to n ∈ K under the fixed isomorphism from K to Zk. Note also that
S ⊂ X1 = X ′

1 ⊂ E and that E is compact. Hence also E + E − E − E has compact
closure, and the discrete set K can intersect it only in finitely many points. So we put
s := max{‖n‖ : n ∈ (E + E − E − E) ∩K}, which is finite. Next we define

(2.60) VN := ∪{E + n : n ∈ K, ‖n‖ ≤ N} (N ∈ N).

Note that |VN | = (2N + 1)k|E| for all N ∈ N, and the VN are Borel sets with compact
closure. Let N,M ∈ N, and x = e+ n, y = f +m be the decomposition of two elements
x ∈ VN and y ∈ VM in terms of E + K, i.e. e, f ∈ E and n,m ∈ K. Then x + y =
e+ f + n+m = g+ p+ n+m, where e+ f has the standard decomposition g+ p, and so
p = e+f − g ∈ (E+E−E), therefore in (E+E−E)∩K, and we find ‖p‖ ≤ s. In all, we
find x+ y ∈ E+ q, where q := p+n+m satisfies q ≤ N +M + s, and so x+ y ∈ VN+M+s.
It follows that VN + VM ⊂ VN+M+s.

Lemma 2.6.5. With the above notations we have TG0(VN ) ≤ (N+s+1)k|E| for arbitrary
N ∈ N.

Proof. Consider again the natural homeomorphism (projection) φ : G0 → G0/K =:
H. Proposition 2.5.1 gives

(2.61) TG0(VN ) ≤ CTH(φ(VN ))TK(VN ∩K) (C :=
dν

dµH
)
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with ν := µG0/K ◦π ◦φ−1 = µG0/K , as π = φ in our case. Note that now G0/K := H, but
the Haar measures are normalized differently: H, as a compact group, has µH(H) = 1,
K ∼= Zk has the counting measure as its natural Haar measure, but G0 has the restriction
measure µG0 inherited from | · | = µG. Therefore, following the standard convention (as
explained e.g. in [77, §2.7.3]), under what convention the above quoted Proposition 2.5.1
holds, we must take care of dµG0 = dµG0/KdµK , which determines dµG0/K and hence
C. It suffices to consider one test function, which we chose to be χE , the characteristic
function of E. We obtain

|E| = µG0(E) =
∫

G0

χEdµG0 =
∫

G0/K

∫
K
χE(x+ y)dµK(y)dµG0/K([x])

=
∫

G0/K
1 dµG0/K([x]) = µG0/K(G0/K)(2.62)

in view of #{y ∈ K : x+y ∈ E} = 1 by the above unique representation of G0 as E+K.
It follows that

(2.63) C

(
:=

dν

dµH

)
=
µG0/K(G0/K)

µH(H)
= |E|

and we are led to

(2.64) TG0(VN ) ≤ |E|TH(φ(VN ))TK(VN ∩K).

Since E ⊂ VN and φ(E) = H, TH(φ(VN ) = TH(H) = 1. Let us write from now on
QM := Q2M (0) = {m : ‖m‖ ≤ M}. On the other hand (VN ∩K) ⊂ QN+s, because for
any e ∈ E ∩K we necessarily have ‖e‖ ≤ s. These observations yield

TG0(VN ) ≤ |E| · 1 · TK ({m ∈ K : ‖m‖ ≤ N + s}) = |E|TZk(Q2N+2s(0)),

by the isomorphism of K and Zk. It remains to see that TZk(Q2L(0)) ≤ (L + 1)k, which
follows from formula (2.58) from the proof of Theorem 2.6.3. �

Lemma 2.6.6. Let V be any Borel measurable subset of G with compact closure and let
ν be a Borel measure on G with DG(ν;µ) = ρ > 0. If ε > 0 is given, then there exists
z ∈ G such that

(2.65) ν(V + z) ≥ (ρ− ε)|V |.

Proof. Let D := −V . V is a Borel set with compact closure D b G. So by Definition
2.3.5 we can find, according to the assumption on DG(ν;µ) = ρ, some Z ∈ B0 which satisfy

(2.66) ν(Z) ≥ (ρ− ε)|Z +D| ≥ (ρ− ε)|Z +D|.

We can then write

(2.67)
∫
χZ(t)dν(t) ≥ (ρ− ε)|Z +D|.

For t ∈ Z u ∈ D(= −V ) also t+ u ∈ Z +D, hence χZ+D(t+ u) = 1, and we get

(2.68) χZ(t) ≤ 1
D

∫
χZ+D(t+ u)χD(u)dµ(u)
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for all t ∈ Z. But for t 6∈ Z χZ(t) = 0 and the right hand side being nonnegative, inequality
(2.68) holds for all t ∈ G, hence (2.67) implies

(ρ− ε)|Z +D| ≤ 1
|D|

∫ ∫
χZ+D(t+ u)χD(u)dµ(u)dν(t)

=
∫
χZ+D(y)

(
1
|D|

∫
χD(y − t)dν(t)

)
dµ(y)

=
∫
χZ+D(y)f(y)dµ(y)

(
with f(y) :=

ν(y −D)
|D|

)
(2.69)

=
∫

Z+D
fdµ.

It follows that there exists z ∈ Z + D ⊂ G satisfying f(z) ≥ (ρ − ε). That is, we find
ν(z −D) ≥ (ρ− ε)|D| or ν(z + V ) = ν(z −D) ≥ (ρ− ε)|D| = (ρ− ε)|V |. �

Lemma 2.6.7. If DG(ν;µ) = ρ > 0 with µ = µG and ν any given Borel measure on the
LCA group G, then for any open subgroup G′ of G, compact D b G′ and ε > 0 there exist
x ∈ G and Z ⊂ G′, Z ∈ B0 so that ν(Z + x) ≥ (ρ− ε)µ(Z +D).

Remark 2.6.8. One would be tempted to assert that on some coset G′ + x of G′ the
relative density of ν must be at least ρ−ε, i.e. DG′(νx;µ|G′) = ρ−ε with νx(Z) := ν(Z+x)
for Z ⊂ G′ Borel and x ∈ G. However, this stronger statement does not hold true.
Consider e.g. G = Z2, G′ := Z × {0}, A := {(k, l) : k ∈ N, l ≥ k}, and ν := µA the
trace of the counting measure µ of Z2 on A. Since A contains arbitrarily large squares,
D(ν;µ) = 1. (In fact, ν has a positive asymptotic density δ(ν;µ) = 1/8, too.) However, for
each cosetG′+x = Z×{m} ofG′ the intersection A∩G′ is only finite andDG′(νx;µ|G′) = 0.

Proof. By condition, for D b G′ ≤ G there exists V b G such that

(2.70) ν(V ) ≥ (ρ− ε)µ(V +D).

Let now U be an open set containing V +D and with compact closure U b G. Because
the cosets of G′ cover G, we have

V +D =
⋃
x∈G

(
(V +D) ∩ (G′ + x)

)
⊂
⋃
x∈G

(
U ∩ (G′ + x)

)
.

Since both U and G′ are open, and V + D is compact, the covering on the right hand
side has a finite subcovering; moreover, we can select all covering cosets only once, hence
arrive at a disjoint covering

V +D ⊂
m⋃

j=1

Uj

(
Uj := U ∩ (G′ + xj), j = 1, . . . ,m

)
.

Take now Vj := Uj ∩ (V + D). As the Uj are disjoint, so are the Vj ; and as the Uj

together cover V + D, so do the Vj . So we have the disjoint covering V + D = ∪m
j=1Vj .

Furthermore, if x ∈ (V + D) ∩ (G′ + xj) ⊂ V + D, it must belong to Vj , for all Vi with
i 6= j are disjoint from G′ + xj and hence x 6∈ Vi for i 6= j. Therefore all Vj are compact,
in view of Vj = Uj ∩ (V +D) = (V +D) ∩ U ∩ (G′ + xj) = (V +D) ∩ (G′ + xj) because
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V +D is compact and G′ + xj is also closed (as an open subgroup, hence its cosets, are
always closed, too.)

Next we define Wj := V ∩Vj . Plainly, Wj b G and disjoint, and V = ∪m
j=1Wj . Moreover,

Wj +D = Vj ; indeed, Wj +D = (V ∩ (G′ + xj)) +D = (V +D)∩ (G′ + xj) since D ⊂ G′

and G′ ≤ G. So we find

(2.71) ν(V ) =
m∑

j=1

ν(Wj)

and also

(2.72) µ(V +D) =
m∑

j=1

µ(Vj) =
m∑

j=1

µ(Wj +D) =
m∑

j=1

µ(Wj − xj +D)

Collecting (2.71), (2.70) and (2.72) we conclude

(2.73)
m∑

j=1

ν(Wj) ≥ (ρ− ε)
m∑

j=1

µ(Wj − xj +D),

hence for some appropriate j ∈ [1,m] we also have ν(Wj) ≥ (ρ−ε)µ(Wj−xj +D). Taking
Z := Wj − xj and x = xj concludes the proof. �

End of the proof of Theorem 2.6.4. Let now ν := δΛ be the counting measure of the
(discrete) set Λ ⊂ G. Then DG(ν;µ) = D

#
G(Λ) = ρ > 0 and Lemma 2.6.6 applies

providing some z := zN ∈ G with

(2.74) M := # (Λ ∩ (VN + z)) ≥ (ρ− ε)|VN |.

Take now Λ′ := Λ ∩ (VN + z) = {λm : m = 1, . . . ,M}. Put F := f ? δΛ′ ? δ−Λ′ , i.e.

F (x) :=
M∑

m=1

M∑
n=1

f(x+ λm − λn),

which is a positive definite continuous function supported in S + (VN + z) − (VN + z) =
S + VN − VN = S +E −E +Q2N ⊂ E +E −E +Q2N ⊂ V2N+s. (Recall QL := Q2L(0) =
{m ∈ Zd : ‖m‖ ≤ L}.) Furthermore, as S ⊂ G0,

(2.75)
∫

G0

F = M2

∫
G0

f ≥M2(TG(Ω)− ε)

and

(2.76) F (0) =
M∑

m=1

M∑
n=1

f(λm − λn) = Mf(0) = M,

because if λm − λn ∈ S then λm − λn ∈ S ∩ (Λ− Λ) ⊂ Ω ∩ (Λ− Λ) = {0} and λm = λn,
i.e. n = m. By this construction we derive that

TG0(V2N+s) ≥
1

F (0)

∫
G0

F ≥M(TG(Ω)− ε)

≥ (ρ− ε)(TG(Ω)− ε)|VN | = (ρ− ε)(TG(Ω)− ε)(2N + 1)k|E|.(2.77)

On the other hand Lemma 2.6.5 provides us

(2.78) TG0(V2N+s) ≤ (2N + s+ 1)k|E|.
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On comparing (2.77) and (2.78) we conclude (ρ− ε)(TG(Ω)− ε)(2N + 1)k|E| ≤ (2N + s+
1)k|E|, that is

TG(Ω)− ε ≤ 1
ρ− ε

(
2N + s+ 1

2N + 1

)k

.

Letting N →∞ and ε→ 0 gives the assertion. �

Corollary 2.6.9. Suppose that Ω ⊂ G is an open and symmetric set and Ω = H −H,
where H tiles space with Λ ⊂ G. Moreover, assume that H has compact closure H b G

and is measurable, i.e. H ∈ B0. Then TG(Ω) = µ(H).

Proof. First, observe that for any A b H we have f := χA ∗ χ−A ∈ F&(Ω). Indeed,
χ̃A = χ−A because χA is real valued, also χA ∈ L2(G), and such a convolution representa-
tion guarantees that f ∈ C(G) ∩L1(G) is positive definite; furthermore, if f(x) 6= 0, then
necessarily x = a− a′ with some a, a′ ∈ A ⊂ H, hence supp f ⊂ Ω.

Therefore, calculating with the admissible function f , we find TG(Ω) ≥
∫
G f/f(0) =

µ(A)2/µ(A) = µ(A). Since H is Borel measurable, its measure can be approximated
arbitrarily closely by measures of inscribed compact sets A: therefore, taking supremum
over compact sets A b H, we obtain the lower estimate TG(Ω) ≥ µ(H).

On the other hand, H + Λ = G entails that H packs with Λ, and so an application of
Theorem 2.6.4 gives TG(Ω) ≤ 1/D#(Λ). Now we can apply that H also covers G with Λ,
so that Proposition 2.4.9 also applies, giving D

#(Λ) ≥ 1/µ(H). On combining the last
two inequalities, TG(Ω) ≤ µ(H), whence the assertion, follows. �

2.6.3. Sharpness and further examples. Again, everything in this section is from
our joint work with Mihalis Kolountzakis [56].

First let us point out that the bound (2.51) can be sharp. Take, for example, Ω to
be a subgroup of G of finite index and H = Ω. Take also Λ to a complete set of coset
representatives of G/Ω, so that |Λ| < ∞. Then H + Λ = G and Corollary 2.6.2 applies
and gives

(2.79)
∑
x∈G

f(x) ≤ |Ω|f(0)

for every positive definite function f : G → C supported in Ω, which is also the trivial
bound. Taking f = χΩ, which is positive definite because Ω is a group, gives equality in
(2.79).

More generally (and as in the next example) the inequality (2.51) is sharp whenever
H + Λ = G and Ω = H −H. In such a case the function f = χH ∗ χ−H achieves equality
in (2.51).

Example 2.6.10. Take G = Z8 = {0, 1, . . . , 7}, H = {0, 1, 4, 5}, Ω = H − H =
{0, 1, 3, 4, 5, 7} and Λ = {0, 2}, so that Λ − Λ = {0, 2, 6} and H + Λ = G. It follows
that ∑

x∈G

f(x) ≤ 4f(0)

for any positive definite function on Z8 which vanishes on ±2, instead of the trivial∑
x∈G f(x) ≤ 6f(0). The equality can be achieved by the function f = χH ∗ χ−H .
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Example 2.6.11. Let G := Z and Ω := ΩN := {−N,−1, 0, 1, N}; then the trivial
estimate is A(N) := TZ(ΩN ) ≤ 5. Let f ∈ F(Ω) be a positive definite and real valued
function: then f(k) = f(−k), that is, f is even. The dual group is T, and positive
definiteness of f means p(x) := 1 + 2f(1) cosx + 2f(N) cosNx ≥ 0 (as f(0) = 1 by
normalization). In the Turán problem we are to maximize

∫
Z f = 1+2f(1)+2f(N) = p(0);

we have A(N) = max p(0).
To find A(N) in case when N = 2n + 1 is odd we may look at the value p(π) =

1 − 2f(1) − 2f(2n + 1) ≥ 0 to see that p(0) = 2 − p(π) ≤ 2. Clearly, any function
with f(1) + f(2n + 1) = 1/2 achieves this bound while p ≥ 0 if additionally we require
0 ≤ f(1), f(2n+ 1). Hence A(2n+ 1) = 2.

If N = 2n is even, the solution is less simple, see [72]. We claim that A(N) = 1 +
1/ cos π

2n+1 =: C(N), say, and the extremal function is

p0(x) := 1 +
2n

(2n+ 1) cos π
2n+1

cosx+
1

(2n+ 1) cos π
2n+1

cos 2nx .

Clearly p0(0) = C(N), and standard calculus proves nonnegativity of p0, hence it is an
admissible trigonometric polynomial and A(N) ≥ C(N).

To show its extremality we consider a general p(x) = 1 + a cosx + b cos 2nx (where
a := 2f(1), b := 2f(N)) at the point z0 := π + π/(2n + 1), which yields 0 ≤ p(z0) =
1− a cos π

2n+1 − b cos π
2n+1 . Thus p(0) = 1 + a+ b = 1 + (1− p(z0))/ cos π

2n+1 ≤ C(N), and
the calculation is concluded.

Now let us consider the estimates obtainable from the use of Theorem 2.6.3. In case N
is odd, taking Λ := 2Z is optimal. Indeed, since Λ is a subgroup, Λ− Λ = Λ, and it does
not intersect ΩN (apart from 0), hence an application of Theorem 2.6.3 gives the right
value A(N) ≤ 1/dens(Λ) = 2. Hence in this case Theorem 2.6.3 is sharp.

Let us see that it is not in the case when N = 2n is even. To this, first we have to find
the best upper density, that is,

L(N) := sup
ΩN∩(Λ−Λ)={0}

dens(Λ) .

Let us consider the set Λ∗ := {0, 2, . . . , 2n−2}∪{2n+1, 2n+3, . . . , 4n−1}+(4n+2)Z,
which contains 2n elements in each interval

[
k(4n+2), (k+1)(4n+2)

)
of 4n+2 numbers and

hence has density n/(2n+1). A direct calculation shows that ΩN ∩(Λ∗−Λ∗) = {0}, hence
L(N) ≥ n/(2n+1). On the other hand we assert that for no Λ satisfying ΩN∩(Λ−Λ) = {0}
can any interval I = [k, k+2n] of 2n+1 consecutive numbers contain more than n elements
of Λ. Indeed, no pair of neighboring numbers belong to Λ, because 1 ∈ ΩN , and (at least)
n + 1 non-neighboring numbers can be placed into I only if all m ∈ I with the same
parity as k is contained. However, then both k and k + 2n is contained, having difference
2n ∈ ΩN , a contradiction. Hence for a Λ satisfying our condition, the upper density can
not exceed n/(2n+ 1), which proves L(N) = n/(2n+ 1).

Now we can compare the best estimate TZ(ΩN ) ≤ 1/L(N) = 2 + 1/n arising from
Theorem 2.6.3 to the exact value 2+1/ cos π

2n+1 found above. It shows that application of
Theorem 2.6.3 – although much better than the trivial estimate, but still – is not optimal
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in this case. This example highlights also the fact that number theoretical, intrinsic
structural properties – like e.g. N being even or odd – essentially influence the values of
the Turán constants and sharpness of the estimates we have.

Example 2.6.12. Another example of a nice set with nontrivial, but not sharp estimate
arising from Theorem 2.6.3 is the unit disk D in R2 (with Lebesgue measure). The area
of D is π and the right value of the Turán constant, first computed by Siegel [84] and
then again by Gorbachev [29], is |D|/2d = π/4 in this case. Now D is the difference set
of H := D/2, and the best density we can have is, in fact, the sphere packing constant
of R2. It is well-known [1] that the best packing is the regular hexagon lattice packing,
hence L(D) = 2/

√
3 and the arising estimate is

√
3/2. In comparison, note that the

estimate of §2.6.5 gives |D|/2 = π/2, while the estimate of Theorem 2.7.2 from the spectral
approach does not apply, since the ball is not spectral. The above values compare as
π/4 = 0.785 · · · <

√
3/2 = 0.866 · · · < π/2 = 1.57 . . . .

Example 2.6.13. We see that for a general Ω ⊂ H −H or even Ω = H −H the “best
translational set”, (i.e. the maximal number of elements or the highest possible upper
density), does not always achieve an exact bound of TG(Ω). In this respect it is worth
mentioning that, on the other hand, results of Herz [39], [40] show that each subgroup
Λ of G provides the theoretically best possible, sharp estimate for some open set Ω. E.g.
if G is compact, and Λ is a finite subgroup having n elements, there exists a Borel set
H with the properties |H| = 1/n, Ω := H −H is open, and Ω ∩ Λ = {0}. See also [77,
§7.4.1]. Clearly for this Ω and H we have that H + Λ = G is a tiling, and TG(Ω) = 1/n,
achieved by χH ∗ χ−H .

Example 2.6.14. The size of the Turán constant of a set Ω may be extremely small.
Take for example in the group G = Z2n the set Ω = {0} ∪Kc, where K is the subgroup
generated by 2. Let then Λ = K and apply Theorem 2.6.1. It follows that TG(Ω) ≤ 2
while |Ω| = n+ 1.

The same way we have TZ(Ω) ≤ 2 for any subset Ω ⊂ ({0}∪(2Z+1)) in view of Theorem
2.6.3 and considering the set Λ := 2Z. (This covers the N odd case of Example 2.6.11,
too.)

The generality of this example should be obvious.

2.6.4. The Turán constant of difference sets of tiles in Rd or Zd. Here we show
how to generalize the results in [7] (see also [54]). In [7] the Turán constant of convex
polytopes which tile Rd by lattice translation was determined.

Actually being a polytope and lattice translation need not be assumed as it is a fact
(see e.g. the references in [54]) that any convex body that tiles space by translation is a
polytope and can also tile by lattice translation.

From Theorem 2.6.3 it follows that if H is any measurable set of finite measure that
tiles Rd or Zd by translation with Λ then the Turán constant of H − H is equal to
1/dens Λ = |H|.

Whenever Ω is a convex body in Rd one can take H = 1
2Ω, so Theorem 2.6.3 is indeed

a generalization of the result in [7].
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However, Theorem 2.6.3 can determine the Turán constant of many more sets than those
dealt with in [7].

Example 2.6.15. Let H ⊂ Z2 be the three-element set {(0, 0), (0, 1), (1, 0)} and Ω be
the difference set H − H = {(−1, 0), (−1, 1), (0,−1), (0, 0), (0, 1), (1,−1), (1, 0)}. Then
|Ω| = 7, but H tiles Z2, hence Theorem 2.6.3 applies and yields TZ2(Ω) = 3. Observe
that the set Λ := Z(1, 1) + Z(2,−1) provides a translational set. Indeed, any points
(n+ 2m,n−m) of Λ, and thus also of Λ−Λ, has the property that the first coordinate is
congruent to the second mod 3, hence Ω∩Λ−Λ = {(0, 0)}. On the other hand all points
of Z2 with the above congruence property belong to Λ, i.e. Λ is a subgroup of index 3. It
follows that the density of Λ is 1/3, and Theorem 2.6.3 gives the assertion.

2.6.5. The Turán constant of dispersed sets. As an application of Theorem 2.6.3
we show that, in R, the Turán constant of a set of given length is the largest if the set
is an interval. The construction extends to Z, and even to Rd and Zd giving a generally
valid improvement of the trivial bound by about a factor of 2.

Theorem 2.6.16 (Kolountzakis-Révész). Let Ω ⊆ Rd be an open set of finite measure
m. Then we have

(2.80) TRd(Ω) ≤ m

2
.

Let Ω ⊆ Zd be a set of size m containing the origin and denote by m+ the number of lattice
points in the ”nonnegative half of Ω”, i.e. in Ω ∩

(
[0,∞)× Zd−1

)
. Then we have

(2.81) TZd(Ω) ≤ m+ .

Proof. Let us denote P := [0,∞) × Rd−1 or [0,∞) × Zd−1, respectively, and put
Ω+ := Ω ∩ P . Note that in Rd we simply have m+ := |Ω+| = m/2. It is easy to see
that Theorem 2.1.12 (on the equivalent formulations of the Turán constant), allows us to
assume that Ω is bounded: so let Ω ⊂ B(0, r) with some fixed ball of radius r. Take a
large parameter L0 > max{2, r}, define Lk = L2k

0 = L2
k−1 (∀k ∈ N), say, and put

(2.82) Qk := QLk
((Lk, 0, . . . , 0)) = [0, 2Lk]× [−Lk, Lk]d−1 (k ∈ N), Q0 := ∅ .

Note that |Qk| = (2Lk)d in Rd and (2Lk + 1)d in Zd. Define

(2.83) Sk := Qk \ (Qk−1 + Ω) (k ∈ N) .

Obviously, Sk are closed sets of measure
(2.84)

|Sk| ≥ |Qk|−|Qk−1 +Ω| ≥ (2Lk)d−((2Lk−1 +1)+2r)d ≥ 2dLd
k

(
1−

(2 + r

Lk−1

)d) (k ∈ N),

satisfying (Sk − Sn) ∩ Ω = ∅ for k 6= n. We aim at constructing the discrete set

(2.85) Λ :=
∞⋃

k=1

Λk, Λk ⊂ Sk (k ∈ N)

with as many as possible elements but satisfying (Λk − Λk) ∩ Ω = {0}. Note that if the
latter condition is satisfied, then we will also have (Λ − Λ) ∩ Ω = {0} in view of the
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respective property of Sk ⊃ Λk. So now we define the elements of Λk inductively by a
“greedy algorithm” as follows. Let λ(k)

0 be any element of the nonempty set Sk with first
coordinate 0. Such an element clearly exists. Then for n ≥ 1 take any

λ(k)
n := (x1,n, . . . , xd,n) ∈

(
Sk \

n−1⋃
j=1

(λ(k)
j + Ω+)

)
with(2.86)

x1,n = min
{
x1 : ∃ x = (x1, . . . , xd) ∈

(
Sk \

n−1⋃
j=1

(λ(k)
j + Ω+)

)}
.

Defining new elements λ(k)
n of Λk terminates in a finite number of steps, but not before

∪n−1
j=1 (λ(k)

j + Ω+) covers Sk, so with m+ := |Ω+| we must have

(2.87) #Λk ≥
|Sk|
|Ω+|

≥
2dLd

k

(
1− ( 2+r

Lk−1
)d
)

m+
(k ∈ N) .

By construction, for any n > j λ
(k)
n − λ

(k)
j ∈ Ω is not possible, hence Λ − Λ ∩ Ω = {0}.

Moreover, in view of (2.87) we have

(2.88) dens Λ ≥ lim sup
k→∞

#Λk

|Qk|
≥ lim sup

k→∞

(
1− ( 2+r

Lk−1
)d
)

m+
=

1
m+

.

Now an application of Theorem 2.6.3 with Λ concludes the proof. �

Remark 2.6.17. For d = 1 (2.80) is sharp for intervals in R. It is plausible, but we do
not know if intervals are the only cases of equality.

Remark 2.6.18. As Ω is always symmetric, in Z we always have m+ = (m+ 1)/2. The
estimate (2.81) can also be sharp at least for d = 1. Take e.g. Ω = Ω0 or Ω1 from Example
2.6.11, or, more generally, take Ω := [−N,N ]. Then m = 2N+1, m+ = (m+1)/2 = N+1,
and the Fejér kernel shows that this value can be achieved. Thus TZ([−N,N ]) = N+1, and
intervals have maximal Turán constants once again. However, here the sets k[−N,N ] :=
{kn : |n| ≤ N} of similar size have equally large Turán constants, hence intervals are not
the only extremal examples in Z.

Remark 2.6.19. It can be proved that the asymptotic uniform upper density of all sets
remain the same both in Rd and in Zd if we define it replacing QR by RK with any other
convex body K. Thus in the above proof one can consider the slightly modified basic
sets RQ(T ), where RQ(T ) is the R-dilated copy of the unit box rotated by the isometry
T ∈ SO(d). If we choose T to be ”irrational” in the sense that no lattice point (apart from
the origin) moves to the hyperplane {x1 = 0}, then with these sets a similar argument
leads the same estimate but now with m+ = #Ω+ = (m + 1)/2. We leave the details to
the reader.
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2.6.6. The Turán constant of an interval missing two points. Our next result
shows the effect of forcing a positive definite function to vanish at a neighborhood of one
point in an interval.

Theorem 2.6.20 (Kolountzakis-Révész). Suppose 0 < b < a ≤ 2b and let

Ω = (−a,−b) ∪ (−b, b) ∪ (b, a).

Then TR(Ω) = TR(−b, b) = b.

Proof. Simply take Λ = bZ and apply Theorem 2.6.3 to obtain that TR(Ω) ≤ b. The
other direction is obvious by the monotonicity of TG(·). �

The condition a < 2b is necessary in Theorem 2.6.20. Indeed, if a > 2b then, with
c = min{b, (a − b)/2} > b/2 and d := (a + b)/2 the function f := χ(0,c) ∗ χ(−c,0) ∗ (δ0 +
δd) ∗ (δ0 + δ−d), whose graph consists of three triangles centered at 0 and ±d of width 2c
and heights 1 (for the central triangle) and 1/2 (for the other two) is positive definite and
supported in Ω, yet has f(0) = 2c and

∫
R f = 4c2. Hence TR(Ω) ≥ 2c > b.

2.7. Upper bound from spectral sets

2.7.1. Some easy cases of using spectrality for estimating the Turán con-
stant. The second type of result we give is analogous to that proved in [54]. Here we
suppose that Ω can be embedded in the difference set of a spectral set (see definition in
§2.4.2) and we derive an upper bound for TG(Ω) from that.

Theorem 2.7.1 (Kolountzakis-Révész). Suppose G is a finite abelian group, Ω,H ⊆
G, Ω ⊆ H −H, and that H is a spectral set with spectrum T ⊆ Ĝ. Then for any positive
definite function on G with support in Ω we have

(2.89)
∑
x∈G

f(x) ≤ |H|f(0).

In other words TG(Ω) ≤ |H|.

Proof of Theorem 2.7.1. Since T is a spectrum of H we have (see §2.4.2)

supp χ̂T ⊆ {0} ∪ (H −H)c

⊆ {0} ∪ Ωc

⊆ {0} ∪ {f = 0}.

Hence f̂ + T = cĜ is a tiling and c = |T |f(0), as
∫
Ĝ
f̂ =

∣∣∣Ĝ∣∣∣f(0).

Since f̂ ≥ 0 in Ĝ it follows that f̂(0) ≤ c or∑
x∈G

f(x) ≤ |T |f(0) = |H|f(0).
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2.7.2. Estimates of the Turán constant of spectral sets in Rd. What was
essentially proved in [54] was a “continuous” version of Theorem 2.7.1.

Theorem 2.7.2 (Kolountzakis-Révész). If H is a bounded open set in Rd which is
spectral, then for the difference set Ω = H −H we have TRd(Ω) = |H|.

Originally, we formulated in [54] only the following special case of the above result. The
possibility of deriving even Theorem 2.7.2 essentially from the same proof, was noted only
later in [56]; however, no detailed proof appeared in writing yet. In §2.7.3 we will give the
full proof.

Corollary 2.7.3 (Kolountzakis-Révész). Let Ω ⊆ Rd be a convex domain. If Ω is
spectral, then it has to be a Stechkin-Turán domain as well.

Proof. First let us note that convex spectral domains are necessarily symmetric ac-
cording to the result in [49]. Let now Ω be a symmetric convex domain. Then taking
H := 1

2Ω, we have H −H = Ω. Moreover, if Ω is spectral, say with spectrum Λ, then also
H is clearly spectral with the dilated spectrum 2Λ. So Theorem 2.7.2 applies and we are
done, in view of |H| = |12Ω| = |Ω|/2d. �

Corollary 2.7.4 (Arestov-Berdysheva). Suppose the symmetric convex domain Ω ⊆ Rd

is a translational tile. Then it is a Stechkin-Turán domain.

Proof of Corollary 2.7.4. We start with the following result which claims that
every convex tile is also a lattice tile.

Theorem 2.7.5 (Venkov [89] and McMullen [63]). Suppose that a convex body K tiles
space by translation. Then it is necessarily a symmetric polytope and there is a lattice L
such that

K + L = Rd.

A complete characterization of the tiling polytopes is also among the conclusions of the
Venkov-McMullen Theorem but we do not need it here and choose not to give the full
statement as it would require some more definitions.

So, if a convex domain is a tile, it is also a lattice tile, hence spectral by Theorem 2.4.7,
and as such it is Stechkin-Turán, by Corollary 2.7.3. �

Remark 2.7.6. If one wants to avoid using the Venkov-McMullen theorem in the proof
of Corollary 2.7.4 one should enhance the assumption of Corollary 2.7.4 to state that Ω is
a lattice tile. Arestov and Berdysheva in [7] prove Corollary 2.7.4 without going through
spectral domains.

The result of [6] about the hexagon being a Stechkin-Turán domain is thus a special case
of our Corollary 2.7.4, but not the result in [84] and [29] about the ball being Stechkin-
Turán type. The ball, and essentially every smooth convex body [41], is known not to be
spectral, in accordance with the Fuglede Conjecture.

Fuglede’s Conjecture for convex domains is still open except for dimension d = 2, in
which case it was answered in the affirmative recently [42]. Thus our Theorem 2.7.3
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conceivably (though not very likely) applies to a wider class of convex domains than just
convex tiles, dealt with in Corollary 2.7.4.

2.7.3. Proof of Theorem 2.7.2.

Proof of Theorem 2.7.2. The proof of the theorem relies on Fourier theoretic char-
acterizations of translational tiling [49].

First, let C b H be any compact set: then Φ := χC + χ−C is supported in the compact
set C − C b Ω, is in L1(G) ∩ C(G), and is positive definite with Fourier transform |χ̂C |2,
that is, it is in F&, and it provides the lower estimation TRd(Ω) ≥

∫
χC = |C|, which can

be arbitrarily close to |H|, so TRd(Ω) ≥ |H| as well.
Without loss of generality let us assume from now on that H has measure 1.
Let H have spectrum Λ ⊆ Rd. This is equivalent to the following (see [49])

(2.90)
∑
λ∈Λ

|χ̂H |2(x− λ) = 1, for a.e. x ∈ Rd.

That is, |χ̂H |2 tiles Rd with translation set Λ at level 1, i.e. |χ̂H |2 + Λ = Rd. According to
Remark 2.4.3 we then have dens Λ = 1/|H| = 1.

For any given Λ ⊂ Rd with bounded density (see Definition 2.4.2) we denote by δΛ the
(infinite) measure

∑
λ∈Λ δλ. This is a tempered distribution, as the total mass in a ball of

radius R grows polynomially with R, and therefore we can speak of its Fourier transform.
We shall use the following result from [49].

Lemma 2.7.7 (Kolountzakis [49]). Suppose that f ≥ 0 is not identically 0, that f ∈
L1(Rd), f̂ ≥ 0 has compact support and Λ ⊂ Rd. If f + Λ is a tiling then

(2.91) supp δ̂Λ ⊆
{
x ∈ Rd : f̂(x) = 0

}
∪ {0}.

When applied to our case, f = |χ̂H |2. Note thatH being bounded and open, the function
f̂ = χH ∗ χ−H is nonzero exactly at points of Ω = H −H. It follows that

(2.92) supp δ̂Λ ⊆ {0} ∪ (H −H)c = {0} ∪ Ωc.

The necessary support condition (2.91) in Lemma 2.7.7 cannot by itself guarantee that
f tiles with Λ. The reason is that a tempered distribution, such as δ̂Λ, which is supported
in the zero-set of a function, is not necessarily killed when multiplied by that function.
One has to know some extra information about the order of the distribution (“what order
derivatives it involves”) versus the degree of vanishing of the function on the support of
the distribution3.

In the following partial converse to Lemma 2.7.7 (see [49]), this problem is solved as the
separation of the supports guarantees infinite order of vanishing of f .

3An important special case is when one knows the distribution to be a measure, as is the case when Λ

is either a lattice or fully periodic. In that case any vanishing of the function will do and the implication

in Lemma 2.7.7 can essentially be reversed.
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Lemma 2.7.8 (Kolountzakis [49]). Suppose that g ∈ L1(Rd), and that Λ ⊂ Rd has
uniformly bounded density. Suppose also that O ⊂ Rd is open, that

(2.93) ĝ(0) =
∫
g 6= 0,

and that for some δ > 0

(2.94) supp δ̂Λ \ {0} ⊆ O and O +Bδ(0) ⊆ {ĝ = 0}.

Then g + Λ is a tiling at level ĝ(0) · δ̂Λ({0}).

The conclusion of Lemma 2.7.8 demands some explanation. Conditions (2.93) and (2.94)
imply that in a neighborhood of 0 the tempered distribution δ̂Λ is supported at 0 only.
That’s because ĝ is continuous and, since ĝ(0) 6= 0, it does not vanish in some neighborhood
of 0. It then follows that, near 0, δ̂Λ is not only a tempered distribution but a measure,
that is, it is just a point mass at 0 (see [51], Theorem 5.1, Step 1, for the proof in dimension
1, which works in any dimension). For this reason it makes sense to write δ̂Λ({0}) for that
point mass.

From Lemma 2.7.9 below, it follows that the value of this constant is precisely the density
of Λ, if such a density exists.

Lemma 2.7.9 (Kolountzakis [50]). Suppose that Λ ∈ Rd is a multiset with density ρ,
δΛ =

∑
λ∈Λ δλ, and that δ̂Λ is a measure in a neighborhood of 0. Then δ̂Λ({0}) = ρ.

Conclusion of the proof of Theorem 2.7.2. If Ω is of non-Stechkin-Turán type. Then there
exists a positive definite function F supported in S := suppF b Ω with F (0) = 1 and∫
F > |Ω|/2d = |H| = 1.
Now define

Ĝ(x) = F ((1 + ε)x) ,

where ε > 0 is to be taken so small that we still have G(0) =
∫
Ĝ > 1 and that we

also have S′ := supp Ĝ = (1 + ε)−1S b Ω. The function Ĝ is also positive definite, and
Ĝ(0) = F (0) = 1.

Because of (2.92) we can now write supp δ̂Λ ⊆ {0} ∪
{
Ĝ = 0

}
, but instead of this

immediate fact, we would like to have the two inclusions

supp δ̂Λ ⊆ {0} ∪O and O +Bδ(0) ⊂
{
Ĝ = 0

}
,

with some proper open set O and a positive δ, in order to apply Lemma 2.7.8 with g = G.

As S′ b Ω, the distance of S′ from the the complement Ωc is positive, so taking δ <

d(S′,Ωc)/2, we find that for O := Ωc + Bδ(0) we still have d(O,S′) > δ. Note that
according to (2.92), supp δ̂Λ ⊆ {0} ∪ Ωc, so indeed supp δ̂Λ ⊆ {0} ∪ O with this open set
O. But then we are done, since supp Ĝ = S′ means that

{
Ĝ = 0

}
certainly contains S′c,

so even O +Bδ(0) in view of d(O,S′) > δ. In all, we can indeed apply Lemma 2.7.8 with
g = G. Note that (2.93) is also satisfied here as ĝ(0) = Ĝ(0) = F (0) = 1 by the definition
of Ĝ.
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Thus Lemma 2.7.8 can be applied and we find that G tiles Rd with translation set Λ at
level ĝ(0)δ̂Λ{(0)} = Ĝ(0)dens Λ by Lemma 2.7.9. Here Ĝ(0) = 1 and also dens Λ = 1 in
view of the considerations following formula (2.90). Thus the level of tiling by G and Λ is
found to be 1.

However, G(0) =
∫
Ĝ > 1, hence the continuous nonnegative function G can not tile Rd

at level 1. This contradiction proves that there is no function F with the given properties
as supposed at the outset. That is, Ω is a Stechkin-Turán domain. �

2.8. Some further results on the Turán constant

2.8.1. Another proof that the ball is a Turán domain. Here we give a new
proof, rather different from that in [29], that the ball is a Stechkin-Turán domain. Recall
that the result was already proved by Siegel in 1935, see [84]. Let B denote the unit ball
in Rd. To say that the ball is Turán is to prove the inequality

(2.95)
∫
f ≤ 2−d|B|f(0)

for every positive definite f supported in B. By an easy approximation argument it is
enough to prove (2.95) under the extra assumption that f is smooth. Noticing further
that both sides of the inequality are linear functionals of f invariant under rotation, we
can assume that f is radial by examining the spherical average of f∫

f(Tx) dT

the integral being over T ∈ On, the group of all orthogonal transformations equipped with
Haar measure.

The key ingredient in the proof is the following result.

Theorem 2.8.1 (Rudin [78]). Suppose f is a radial smooth positive definite function
with support in the ball B. Then f can be written as a uniformly convergent series

(2.96) f =
∞∑

k=1

fk ∗ f̃k, (f̃k(x) = fk(−x)),

with fk being smooth and supported in the half ball (1/2)B.

Notice that for any integrable function g with support in the compact set K we have for
f = g ∗ g̃ ∫

f =
∣∣∣∣∫ g

∣∣∣∣2
≤

∫
|g|2|K| (Cauchy-Schwartz)

≤
∫
|g|2 · 2−d|K −K| (Brunn-Minkowski)

= f(0) · 2−d|K −K|.
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Taking K = (1/2)B we obtain for every fk in (2.96):∫
fk ∗ f̃k ≤ 2−d|B|(fk ∗ f̃k)(0).

Summing the series we have (2.95) for f .

2.8.2. Comparison of Theorems 2.6.1, 2.6.3 and 2.7.1, 2.7.2. Now we show
that there are cases when Theorems 2.7.1 and 2.7.2 give provably better results than any
application of Theorems 2.6.1 and 2.6.3, respectively. For this we use one of Tao’s [88]
recent examples which show one direction of Fuglede’s conjecture to be false.

First we give an example when Theorem 2.7.1 gives a better bound than any possible
application of Theorem 2.6.1. Let G = Z12

2 and H = {e1, e2, . . . , e12}, where ei is the
vector in G with all zeros except at the i-th position where we have 1. The set H was
recently shown by Tao [88] to have a spectrum, and it is clear that H cannot tile G since
|H| = 12 does not divide |G| = 212.

Let Ω = H −H. This means that Ω consists of the all-zero vector plus all vectors in G
with precisely two 1’s, hence |Ω| =

(
12
2

)
+ 1 = 67.

By Theorem 2.7.1 we have that if f : G → C is a positive definite function supported
on Ω then ∑

x∈G

f(x) ≤ 12f(0).

Suppose now that Theorem 2.6.1 applies with some Λ ⊆ G, such that Ω∩ (Λ−Λ) = {0}.
Since Ω = H −H this implies that H + Λ ≤ G is a packing at level 1, hence |Λ| ≤ 1

12 |G|.
In fact |Λ| < 1

12 |G| as |Λ| is an integer but 1
12 |G| is not. Clearly then (2.51) is inferior

than
∑

x∈G f(x) ≤ 12f(0) given by Theorem 2.7.1.
Tao [88] also shows how to construct a domain (in fact, a finite union of unit cubes) in

Rd, d ≥ 5, which is spectral but not a translational tile. Suppose H is such a domain.
Theorem 2.7.2 shows that TRd(H −H) ≤ |H|. We claim that Theorem 2.6.3 gives a worse
upper bound for the set Ω = H −H. Indeed, suppose that Λ ⊆ Rd is a set for which

Ω ∩ (Λ− Λ) = {0},

as required by Theorem 2.6.3, and that ρ is the upper density of Λ. Condition (2.97)
means that H +Λ is a packing, hence |H|dens Λ ≤ 1. The fact that H is not a tile implies
(this requires a proof, an easy diagonal argument) that the inequality above is strict, so
that 1/ρ > |H|, which shows that any application of Theorem 2.6.3 gives a worse result
than Theorem 2.7.2 for H −H.

2.9. The pointwise Turán problem

2.9.1. Preliminaries. Formulation of the Equivalence Results. Note that in
the above definitions (2.2), (2.3) or (2.7), (2.8) it is left a bit unclear, what function classes
are considered as Rd → R, Td → R or T → R. However, this causes no ambiguity, since it
is not hard to see that the extremal problems (2.4), (2.5), (2.9) or (2.10) yield the same
extremal values when e.g., integrable functions (with continuity of f supposed only at z in
case of (2.4) or (2.5)) are considered, and when e.g., compactly supported C∞ functions
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are taken into account. Indeed, on T or Td this follows after a convolution by e.g. the
Fejér kernels. The same way we can restrict ourselves even to trigonometric polynomials
in Φ(H) or Φm(H) as well.

Passing on to the case of the real space Rd, first we show that it suffices to consider
bounded open sets only. To this end let us consider the auxiliary positive definite function

(2.97) ∆R(x) :=
1

|BR/2|
χBR/2

∗ χBR/2

with Br := {x ∈ Rd : |x| ≤ r}, and take fN := f∆N to obtain

M(Ω, z) = lim
N→∞

M(ΩN , z) = lim
N→∞

M(int ΩN , z),

where ΩN := {x ∈ Ω : |x| ≤ N} = Ω ∩BN , and thus ΩN ⊆ intΩN+1.
Next observe that for any bounded open Ω, the condition supp f ⊆ Ω entails that supp f

is compact and of a fixed positive distance η from the boundary of Ω. Thus convolution of
f with the (convolution) square of some approximate identity kδ with supp kδ ⊆ Bδ leads
to a function fδ := f ∗ kδ ∗ kδ satisfying supp fδ ⊆ supp f + B2δ ⊆ Ω if δ < 1

2η. Hence
with a smooth kδ we have fδ ∈ F(Ω) ∩C∞(Ω), while for arbitrary fixed ε > 0 and with δ
correspondingly small enough fδ(z) ≥ f(z)− ε in view of the continuity of f at z.

Now let us define for z ∈ Ω the derived set

(2.98) H(Ω, z) := {k ∈ N2 : kz ∈ Ω, −kz ∈ Ω}

Our first goal is to show that in fact the Boas-Kac type Problem 2.1.2 is a one-
dimensional problem. This is contained in the following result.

Theorem 2.9.1 (Kolountzakis-Révész). Let 0 ∈ Ω ⊆ Rd be any open set and z ∈
Ω ∩ (−Ω). With the above notations we have

M(Ω, z) =
1
2
M(H(Ω, z)).

Remark 2.9.2. Note that in case z ∈ Ω, z /∈ −Ω, we trivially conclude that M(Ω, z) = 0
since for all f ∈ F(Ω), supp f ⊆ Ω ∩ (−Ω) follows from (2.103) below. Also 0 ∈ Ω is
necessary, for a positive definite function f must vanish a.e. if 0 /∈ supp f .

To tackle the Turán-type Problem 2.1.4, one may consider f ∈ L1(Td) with continuity
supposed at z, or even f ∈ C∞(Td).

Here positive definiteness of f is equivalent to f̂(n) ≥ 0 (∀n ∈ Zd), and similarly to
(2.103), one gets f(x) = f(−x) (∀x ∈ Td). Thus supp f is symmetric, hence supp f ⊆
Ω ∩ (−Ω).

Once again we see that (2.5) vanishes unless z ∈ Ω∩ (−Ω) and that it suffices to restrict
ourselves to sets symmetric about the origin. In other words, if z /∈ Ω or if z /∈ (−Ω), then
M∗(Ω, z) = 0, while for z = 0 obviously M∗(Ω, 0) = 1. These are the trivial cases, and
for the remaining cases we introduce a further notation. Put

(2.99) Z := Z(z) := {nz (mod Td) | n ∈ Z}.
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The set Z is finite if and only if we have z ∈ Qd, that is, z = (p1

q1
, . . . , pd

qd
) with pj , qj ∈

Z, (pj , qj) = 1 (j = 1, . . . , d). In this case we have with m = [q1, . . . , qd], the least
common multiple of the denominators, that mz = 0 (mod Td), and for arbitrary n, n′ ∈ Z
nz = n′z (mod Td) if and only if n ≡ n′ (modm).

Let us keep the definition (2.98) with an interpretation (mod Td) for infinite Z. On
the other hand, in case #Z = m we put

(2.100) Hm(Ω, z) := {k ∈ [2,m/2] : kz ∈ Ω, −kz ∈ Ω} = H(Ω, z) ∩ [2,m/2].

Moreover, for any set H ⊂ Z we define

H(m) := {k ∈ [2,m/2] : ∃h ∈ Hsuch that± k ≡ h (mod m)}.

Remark 2.9.3. Note the following relations for an arbitrary H ⊆ N2. First, if there
exists any index k ∈ H with k ≡ 1 (mod m), then we obtain Mm(H) = ∞, because
1 + a cos 2πt − a cos 2kπt is nonnegative at j/m for all j = 1, . . . ,m and for any a ∈ R.
Similarly, for k ≡ ` (mod m) cos 2kπt − cos 2`πt vanishes at all points of the form j/m,
hence the frequencies can be changed mod m to reduce ϕ to a trigonometric polynomial
of degree at most m. Moreover, since this can be used even for negative indices, and
as cos(−k2πt) = cos k2πt, we can reduce the support of ϕ̂ to [0,m/2]. That is, either
Mm(H) = ∞ (in case there is a k ∈ H with k ≡ ±1 (mod m)), or Mm(H) = Mm(H(m)).

Now we can formulate

Theorem 2.9.4 (Kolountzakis-Révész). Let 0 ∈ Ω ⊆ Td be any open set and z ∈
Ω ∩ (−Ω). Then the extremal quantity (2.5) depends only on the set Z. In case Z is
infinite, we have

(2.101) M∗(Ω, z) =
1
2
M(H(Ω, z)).

In case #Z = m is finite, we have

(2.102) M∗(Ω, z) =
1
2
Mm(Hm(Ω, z)).

2.9.2. Proof of Theorem 2.9.1. First note that it suffices to consider symmetric
sets Ω′ = Ω ∩ (−Ω) only. Indeed, if Ω is arbitrary, and f ∈ F(Ω), f ∈ C∞0 (Rd), then by
f̂ ≥ 0 Fourier inversion yields

(2.103) f(x) = f(x) =
∫
f̂(y)e2πi〈x,y〉dy =

∫
f̂(y)e−2πi〈x,y〉dy = f(−x).

Thus for all f ∈ F(Ω) supp f is necessarily symmetric. On the other hand, H(Ω, z) is
symmetrized by definition (2.98) with respect to Ω. Hence we can restrict ourselves to
symmetric sets. Without loss of generality we can assume that Ω is also bounded.

Now given a bounded symmetric open set Ω the proof consists of proving the two in-
equalities below.
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M(Ω, z) ≤M(H(Ω, z))/2

Let f have f(0) = 1, be positive definite and have support in Ω. Define also the positive
definite Radon measure

µz :=
∑
k∈Z

δkz.

The function f being continuous, the measure

(2.104) νz = f · µz =
∑
k∈Z

f(kz)δkz

is well defined and positive definite as well.
Notice now, because of the boundedness of Ω, that the sum in (2.104) is actually a finite

one. More precisely, if we have e.g., Ω ⊆ Bn, then we find

νz :=
n−1∑

k=−(n−1)

f(kz)δkz = δ0 + f(z)(δz + δ−z) +
∑

k∈H(Ω,z)

f(kz)(δkz + δ−kz),

and that

0 ≤ ν̂z(x) = 1 + 2f(z) cos 2π〈z, x〉+
∑

k∈H(Ω,z)

2f(kz) cos 2πk〈z, x〉, (x ∈ Rd).

Setting t = 〈z, x〉 and observing that the trigonometric polynomial

1 + 2f(z) cos 2πt+
∑

k∈H(Ω,z)

2f(kz) cos 2πkt

is nonnegative, we obtain 2f(z) ≤M(H(Ω, z)).

M(Ω, z) ≥M(H(Ω, z))/2

For a function ϕ : T → R let us call the (restricted) spectrum of ϕ the set S := S(ϕ) :=
supp ϕ̂ ∩ N2 ⊆ N2. Also, we will use the term full spectrum and the notation S′ := S′(ϕ)
for the set S′ := {−1, 0, 1} ∪ S ∪ (−S), whether the exponential Fourier coefficients at
−1, 0 or 1 happen to vanish or not.

Take any trigonometric polynomial ϕ ∈ Φ(H) with spectrum S ⊆ H := H(Ω, z). Recall
that taking the supremum in (2.9) over the function class (2.7) yields the same result as
considering such trigonometric polynomials only. Consider the measure

αz := δ0 + (λ/2)(δz + δ−z) +
∑
k∈S

(ck/2)(δkz + δ−kz),

whose Fourier transform is essentially equal to the polynomial ϕ(t) in (2.7). Hence αz is
a positive definite measure.

Take now the “triangle function” ∆ε defined as in (2.97), but here with a subscript ε
small enough to guarantee that

(1) The sets kz +Bε, k ∈ S′, are disjoint, i.e., ε < |z|
2 , and

(2) These sets are all contained in Ω, i.e., ε < dist{∂Ω, S′z}.
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Finally define

f := αz ∗∆ε,

which is a positive definite function supported in Ω with value 1 at the origin and with
f(z) = λ/2. This proves that M(Ω, z) ≥M(H(Ω, z))/2, as desired.

2.9.3. Applications of Theorem 2.9.1. The first application concerns the original
convex case of the pointwise Boas-Kac type problem formulated in Problem 1. A sym-
metric, bounded convex domain with nonempty interior – that is, a convex body – defines
a norm. So for a vector x let ||x|| denote the norm of x defined by Ω, that is

||x|| := inf
{
λ > 0 :

1
λ
x ∈ Ω

}
.

In other words, Ω is the unit ball of the norm || · ||.

Corollary 2.9.5. (Boas – Kac [13]). Let Ω ⊆ Rd be a convex open domain, sym-
metric about 0. Suppose that

(2.105)
1

n+ 1
≤ ||z|| < 1

n
,

for some n ≥ 1. Then

M(Ω, z) = cos
π

n+ 2
.

Proof of Corollary 2.9.5. First observe that for the symmetric, convex, bounded,
open set Ω the norm of z satisfies (2.105) if and only if H(Ω, z) = [2, n]. Thus by Theorem
2.9.1 the problem reduces to the extremal problem

(2.106) Mn := sup{λ : ∃ϕ(t) ≥ 0, ϕ(t) = 1 + λ cos 2πt+
n∑

k=2

ck cos 2πkt}.

This problem was settled by Fejér, see e.g., [24] or [25, p. 869-870]. To finish the proof,
we quote from these or from [68, Problem VI. 52, p. 79] the formula

(2.107) Mn = 2 cos
π

n+ 2
.

�

Note that [8, Theorem 2] gave the estimate n
n+1 ≤ M(Ω, z) ≤ 1

2(1 + cos( π
n+1)) for the

one-dimensional case. The above exact solution and some calculation shows that both
of these estimates are sharp for n = 1, but none of them is for n > 1. However, this is
covered (at least for d = 1) by [13, Theorem 2].

Now the n→∞ limiting case easily leads to

Corollary 2.9.6. (Boas – Kac [13]). Suppose that the open set Ω ⊆ Rd contains all
integer multiples of the point z ∈ Rd. Then M(Ω, z) = 1.

Moreover, we also derive easily the d-dimensional extension of [13, Theorem 3].
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Corollary 2.9.7. (Boas – Kac). Suppose that for some n ∈ N the open set Ω ⊂ Rd

contains no integer multiples kz of the point z ∈ Rd with k > n. Then we have again
M(Ω, z) ≤Mn = 2 cos π

n+2 .

Apart from the convex case there are several cases of (2.4) when through the trigono-
metric extremal problem (2.9) either the precise value, or at least some estimate can be
found.

Theorem 2.9.8 (Kolountzakis-Révész). Let Ω be a symmetric open set and z ∈ Ω.
Then the value of the extremal quantity (2.4) satisfies the following relations.

(i) If H(Ω, z) = {n}, then M(Ω, z) = 1
2 cos π

2n
.

(ii) If H(Ω, z) = N2 \ {n}, then M(Ω, z) = cos π
2n .

(iii) If H(Ω, z) = (n,∞) ∩ N2, then M(Ω, z) = 1
2 cos π

n+2
.

(iv) If H(Ω, z) = 2N + 1, then M(Ω, z) = 2
π .

(v) If H(Ω, z) = 2N, then M(Ω, z) = π
4 .

Remark 2.9.9. The extremal quantities M and M are monotonic in the sets Ω and H,
respectively, hence the above relations imply the corresponding inequalities when we know
only that e.g., nz ∈ Ω, etc. We skip the formulation.

Proof of Theorem 2.9.8. In view of Theorem 2.9.1, the calculation of M(Ω, z)
hinges on finding the value of M(H(Ω, z)). The solutions of the corresponding trigono-
metric polynomial extremal problems, relevant to the above list (i)-(v), can be looked up
from the literature as follows.

(i) An easy calculation, see e.g., [70].
(ii) See [70], Proposition 1.
(iii) See [73].
(iv) See the end of [85].
(v) See [71, p. 492-493].

�

When M(Ω, z) is known for a certain H(Ω, z), then further cases can be obtained via
the following duality result.

Lemma 2.9.10. (see [70]). Let H ⊆ N2 be arbitrary. Then we have

M(H)M(N2 \H) = 2.

In fact, this gives (ii) once (i) is known; (iii) and Corollary 2.9.7 and also (iv) and (v) are
similarly related, although they were obtained differently in the works mentioned above.

To formulate the corresponding relation in Problem 2.1.2 we can record

Corollary 2.9.11 (Kolountzakis-Révész). For any open set Ω ⊆ Rd and z ∈ Ω we
have

M(Ω, z)M(Ω∗, z) =
1
2
,

where Ω∗ is any open, symmetric set containing 0, z and (N2\H(Ω, z))z, but disjoint from
H(Ω, z)z.
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Ending this section, let us recall that investigation of Turán-type problems started with
keeping an eye on number theoretic applications and connected problems. The interesting
papers of Gorbachev and Manoshina [33, 35] mention [57]; applications to van der Corput
sets were mentioned in the introduction. Here we mention another question of a number
theoretic relevance.

Problem 2.9.12. Determine

∆(n) := sup{M(H)/2 : H ⊆ N2, |H| = n}.

We only know (cf [70])

1− 5
(n+ 1)2

≤ ∆(n) ≤ 1− 0.5
(n+ 1)2

.

The question is relevant to the Beurling theory of generalized primes, see [74].

2.9.4. Proof of Theorem 2.9.4. As above, without loss of generality we can restrict
ourselves to sets Ω symmetric about the origin. Similarly to the proof of Theorem 2.9.1,
we are to prove two inequalities for both cases.

Case #Z = ∞ : M∗(Ω, z) ≤M(H(Ω, z))/2

Let f ∈ F∗(Ω) ∩ C∞(Td). We consider the measure

σ(N)
z :=

N∑
k=−N

(1− |k|
N

)δkz.

This measure is positive definite since for all n ∈ Zd we have

σ̂
(N)
z (n) =

∫
Td

e−2πi〈n,x〉dσ(N)
z (x) =

N∑
k=−N

(1− |k|
N

)e2πi〈n,z〉 =: K(N)(2π〈n, z〉),

where K(N) is the usual Fejér kernel, which is nonnegative. Let us denote H(N) :=
H(Ω, z) ∩ [2, N ].

The function f being continuous and even, the measure

(2.108) ρz := f · σ(N)
z = f(0)δ0 +

∑
k∈{1}∪H(N)

(1− k

N
)f(kz)(δkz + δ−kz)

is well defined and, by ρ̂z = f̂ ∗ σ̂(N)
z , is positive definite as well. In view of f(0) = 1 we

now find for arbitrary n ∈ Zd that

0 ≤ ρ̂z(n) = 1 + (2− 2
N

)f(z) cos 2π〈z, n〉+
∑

k∈H(N)

(2− 2k
N

)f(kz) cos 2πk〈z, n〉.

Setting t := 〈z, n〉 yields

0 ≤ ϕN (t) := 1 + 2(1− 1
N

)f(z) cos 2πt+
∑

k∈H(N)

2(1− k

N
)f(kz) cos 2πkt.
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Since #Z = ∞, here for the various values of n ∈ Zd the derived variable t will be dense
in T.

Hence we can conclude that in the infinite case ϕN (t) ∈ Φ(H(Ω, z)). This gives 2(1 −
1
N )f(z) ≤M(H(Ω, z)) for all N ∈ N. Whence the stated inequality.

Case #Z = m <∞ : M∗(Ω, z) ≤Mm(Hm(Ω, z))/2

Let again f ∈ F∗(Ω) ∩ C∞(Td). Now we consider the measure

σz,m :=
1
2

[m−1
2

]∑
k=−[m−1

2
]

δkz +
1
2

[m
2

]∑
k=−[m

2
]

δkz.

For all n ∈ Zd we have

σ̂z,m(n) =
∫

Td

e−2πi〈n,x〉dσz,m(x) = 1 +
[m−1

2
]∑

k=1

cos 2πk〈n, z〉+
[m

2
]∑

k=1

cos 2πk〈n, z〉.

Since #Z = m < ∞, where m = [q1, . . . , qd] with z = (p1

q1
, . . . , pd

qd
), (pj , qj) = 1 (j =

1, . . . , d), for the various values of n ∈ Zd the derived variable t := 〈n, z〉 will cover exactly
the values of j/m (mod T). For these values, however, direct calculation shows that the
above sum is either exactly m (in case j ≡ 0 (modm)), or vanishes. Thus, again, the
measure σz,m will be positive definite.

The function f being continuous and symmetric, the measure

(2.109) ρz,m := f · σz,m = f(0)δ0 +
[m−1

2
]∑

k=1

f(kz)(δkz + δ−kz) +
[m

2
]∑

k=1

f(kz)(δkz + δ−kz)

is well defined and, by ρ̂z,m = f̂ ∗ σ̂z,m, is positive definite as well. In view of f(0) = 1
we now find for all n ∈ Zd

(2.110) 0 ≤ ρ̂z(n) = 1 + 2f(z) cos 2πt+
[m−1

2
]∑

k=2

f(kz) cos 2πkt+
[m

2
]∑

k=2

f(kz) cos 2πkt,

where t = 〈z, n〉 as above. So let us write now

ϕz,m(t) := 1 + 2f(z) cos 2πt+
[m−1

2
]∑

k=2

f(kz) cos 2πkt+
[m

2
]∑

k=2

f(kz) cos 2πkt.

It follows that
ϕz,m(t) = 1 + 2f(z) cos 2πt+

∑
k∈Hm(Ω,z)

c∗k cos 2πkt,

for some c∗k ∈ R. Similarly as above, (2.110) implies ϕz,m(j/m) ≥ 0 (j = 0, . . . ,m − 1).
That is, we conclude ϕz,m ∈ Φm(Hm(Ω, z)) and thus 2f(z) ≤ Mm(Hm(Ω, z)). Hence the
statement.

Case #Z = ∞ : M∗(Ω, z) ≥M(H(Ω, z))/2
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Let ϕ be any trigonometric polynomial from the class (2.7). Then ϕ has (restricted)
spectral set S and full spectrum S′ := {−1, 0, 1} ∪±S with S ⊆ H := H(Ω, z) necessarily
finite. Note that the supremum in the definition (2.9) of M(H(Ω, z)) can be restricted to
the trigonometric polynomials of (2.7).

Consider the measure

αz = δ0 + (λ/2)(δz + δ−z) +
∑
k∈S

(ck/2)(δkz + δ−kz),

whose Fourier transform α̂z(n) = ϕ(〈z, n〉) (n ∈ Zd) is essentially the polynomial ϕ(t)
itself. Hence αz is a positive definite measure.

Take now the “triangle function” ∆ε, defined in (2.97), with a parameter ε small enough
to guarantee that

(1) The sets kz +Bε, (k ∈ S′), are disjoint, and
(2) These sets are all contained in Ω, i.e., ε < dist{∂Ω, S′z}.

Since we consider only a finite subset S of H, and S′ = {−1, 0, 1} ∪±S), these conditions
are met with some positive ε as no two different multiples of z are equal in Td. Finally
define

f := αz ∗∆ε,

which is a positive definite function supported in Ω with value 1 at the origin and with
f(z) = λ/2. This proves that M∗(Ω, z) ≥ λ/2, hence taking supremum over all polyno-
mials ϕ ∈ Φ(H) concludes the proof.

Case #Z = m <∞ : M∗(Ω, z) ≥Mm(Hm(Ω, z))/2

We denote here H := Hm(Ω, z). Now take any ϕ in (2.8).
Consider the measure

αz = δ0 + (λ/2)(δz + δ−z) +
∑

k< m
2

,k∈H

(ck/2)(δkz + δ−kz) + cm/2δmz/2,

with the last term appearing only if m is even and m/2 belongs to the spectral set (2.100).
Observe that for the true spectrum of this measure we have

(2.111) S∗ := supp α̂z := S∗(αz) ⊆ {−1, 0, 1} ∪ ±H \ {−m/2} = S′ \ {−m/2},

where the last term (\{−m/2}) appears only if m is even. Thus it is easy to see that the
multiples kz (k ∈ S∗) are different even in Td.

Now let us prove that αz is positive definite. Taking n ∈ Zd arbitrarily, consider the
Fourier transform

α̂z(n) = 1 + λ cos 2π〈z, n〉+
∑

k< m
2

,k∈H

ck cos 2πk〈z, n〉+ cm/2e
−imπ〈z,n〉.

Here, by the condition 〈z, n〉 = j/m for some integer j, we have in the last term
e−mπ〈z,n〉 = (−1)j = cosπj = cosmπ〈z, n〉 and we get α̂z(n) = ϕ(〈z, n〉) = ϕ(j/n).
It follows that α̂z(n) ≥ 0 by definition (2.8).
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Take now the “triangle function” ∆ε defined in (2.97) with a parameter ε small enough
to ensure

(1) The sets kz +Bε, (k ∈ S∗), are disjoint, and
(2) These sets are all contained in Ω, i.e., ε < dist{∂Ω, S∗z}.

These conditions are met with some positive ε since no two different multiples kz (k ∈ S∗)
are equal in Td, and by definitions (2.8) and (2.111) we necessarily have S∗z ⊆ Ω.

Finally define

f = αz ∗∆ε,

which is a positive definite function supported in Ω with value 1 at the origin and with
f(z) = λ/2. This proves that M∗(Ω, z) ≥ λ/2, hence taking supremum over all polyno-
mials ϕ ∈ Φm(H) concludes the proof.

2.9.5. Applications of Theorem 2.9.4 and further connections. Arestov, Ber-
dysheva and Berens [8] mention the one dimensional symmetric interval special case of
the following fact.

Proposition 2.9.13 (Kolountzakis-Révész). Suppose Ω ⊆ (−1
2 ,

1
2)d is an open set.

Then

M(Ω, z) ≤M∗(Ω, z).

Proof. The original proof of [8] uses the natural periodization of functions f ∈ F(Ω).
Taking g(x) :=

∑
n∈Zd

f(x − n) maps F(Ω) injectively to F∗(Ω), which proves the Propo-

sition. However, we have also an alternative argument here, as Theorems 2.9.1 and 2.9.4
translate the extremal problems in question to extremal problems for trigonometric poly-
nomials. In case #Z = ∞ the Rd and Td interpretations of (2.98) give HRd(Ω, z) ⊂
HRd(Ω + Zd, z) = HTd(Ω, z). For #Z = m < ∞ HRd(Ω, z) ⊆ [2,m − 2]. Indeed,
−z ∈ Ω ⊆ (−1

2 ,
1
2)d, and as 0 6= mz but mz ≡ 0 (mod Td), we obtain that (m − 1)z /∈ Ω

in Rd, and similarly for k ≥ m kz /∈ [−1
2 ,

1
2)d excludes the possibility of k ∈ HRd(Ω, z).

Thus it is easy to see that

(2.112) Mm(Hm(Ω, z)) = Mm(H(Ω, z) ∩ [2,m− 2]) = Mm(HRd(Ω, z)).

Now it is obvious that Φm(H) ⊇ Φ(H) and thus Mm(H) ≥M(H) for arbitrary H ⊆ N2,
and we get the assertion even for the finite case. �

Corollary 2.9.14 (Kolountzakis-Révész). Let Ω ⊆ (−1
2 ,

1
2)d be a convex, symmetric

domain. Then we have

M∗(Ω, z) ≥ w(||z||), where w(t) := cos
π

d1/te+ 1
.

Proof. Corollary 2.9.5 gives M(Ω, z) ≥ w(||z||). Thus combining Proposition 2.9.13
and Corollary 2.9.5 proves the assertion. �
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Remark 2.9.15. The above estimate is a sharpening of (14) in [8, Theorem 3].

The following assertion is obvious both directly and by Theorem 2.9.1.

Proposition 2.9.16 (Kolountzakis-Révész). For all open sets Ω ⊆ Rd and z ∈ Rd,
α > 0 we have

M(αΩ, αz) = M(Ω, z).

Proposition 2.9.17 (Kolountzakis-Révész). For Ω ⊆ (−1
2 ,

1
2)d open, z ∈ Td and

N ∈ N we have
M∗(

1
N

Ω,
1
N
z) ≤M∗(Ω, z).

Proof. One can work out the generalization of the proof of [8, Lemma 5], which is the
one-dimensional interval special case of this assertion. Instead, we note that k 1

N z ∈
1
N Ω

(mod Td) entails kz ∈ Ω (mod Td), and by Theorem 2.9.4 the #Z = ∞ case follows.
On the other hand for finite #Z(z) = m < ∞ we have #Z( 1

N z) = Nm and Φm(H) ⊇
ΦmN (H). Thus combining (2.102) and (2.112) yields

2M∗(Ω, z) = Mm(Hm(Ω, z)) = Mm(HRd(Ω, z)
= Mm(HRd( 1

N Ω, 1
N z) ≥MmN∗(HRd( 1

N Ω, 1
N z)

= MmN∗(HmN∗( 1
N Ω, 1

N z)) = 2M∗( 1
N Ω, 1

N z).

�

.
The next assertion is the generalization of [8, Theorem 4].

Theorem 2.9.18 (Kolountzakis-Révész). For any bounded open set Ω ⊂ Rd and
z ∈ Rd we have

lim
α→+0

M∗(αΩ, αz) = M(Ω, z).

Remark 2.9.19. Here the condition of boundedness ensures that for α small enough we
have αΩ ⊂ (−1

2 ,
1
2)d and the expression under the limit on the left hand side is defined by

(2.5).

Proof. Again, extending the original arguments of [33, 35] or [8] leads to a proof.
There the idea is to multiply f ∈ F∗(αΩ) by a fixed positive kernel, say ∆ 1

4
, and exploit

that for α small ∆ 1
4
|αΩ is approximately 1.

Alternatively, we can argue as follows. Let Ω, be bounded by R, and let α < 1
2R : then

αΩ ⊆ (−1
2 ,

1
2)d. Moreover, using Rd interpretation of the arising sets we always have

(2.113) HRd(Ω, z) = HRd(αΩ, αz) ⊂
[
2,
R

|z|

]
,

while m(α) := #Z(αz) ≥ 1
α|z| → ∞ (α → 0). Note that here for irrational α we can

have m(α) = +∞, but defining the index function m(α) in this extended sense does not
question the asserted limit relation.

In what follows we unify terminology by writing H∞(Θ, w) = H(Θ, w) while keep-
ing the notation Hn(Θ, w) = H(Θ, w) ∩ [2, n/2] for finite n. For the finite case we
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have HRd(αΩ, αz) = HRd(Ω, z) ⊆ [2, m(α)
2 ], and in view of (2.98) and (2.113) H :=

Hm(α)(αΩ, αz) = HTd(αΩ, αz) ∩ [2, m(α)
2 ] = HRd(αΩ, αz) = HRd(Ω, z), too. Now if

m(α) = ∞, then we are to consider the normalized, nonnegative trigonometric poly-
nomials ϕ ∈ Φ∞(H) := Φ(H) defined by (2.7), while for finite m(α) < ∞, the function
set to be considered is Φm(H) defined by (2.8).

Let now αn → 0, and ϕn be an extremal polynomial in Φm(αn)(H). In view of the
nonnegativity conditions for these sets we get |ck| ≤ 2 (k ∈ H), applying finite Fourier
Transform in case m(αn) < ∞. Hence with K :=

⌈
2R
|z|

⌉
we find ϕn ∈ FK := {ϕ(t) =

1+2
∑K

k=1 ak cos 2πkt | |ak| ≤ 1, k = 1, . . . ,K}, which is a compact subset of C(T). Thus
without loss of generality we can suppose that ϕn → φ ∈ FK uniformly as n→∞. Since
m(αn) → ∞, we must have φ ≥ 0. Moreover, if we write φ(t) = 1 + 2

∑K
k=1 ak cos 2πkt

and ϕn(t) = 1 + 2
∑K

k=1 a
(n)
k cos 2πkt, then limn→∞ a

(n)
k = ak, so φ ∈ Φ(H) and

lim
n→∞

M∗(αnΩ, αnz) = lim
n→∞

a
(n)
1 = a1 ≤M(Ω, z).

On the other hand Proposition 2.9.13 gives the converse inequality. �

2.9.6. Calculations of extremal values for some special cases. Now we formu-
late a periodic case analogue of the Boas-Kac result Corollary 2.9.6.

Proposition 2.9.20 (Kolountzakis-Révész). Suppose that the open set Ω ⊆ Td con-
tains all integer multiples of the point z ∈ Td, i.e., Z ⊂ Ω with Z defined in (2.99). Then
M∗(Ω, z) = 1.

Proof. In case #Z = ∞, Theorem 2.9.4 immediately gives the equality M∗(Ω, z) =
M(H(Ω, z))/2 = M(N2)/2 = 1. Let now #Z = m < ∞. Then Theorem 2.9.4 yields
the equality M∗(Ω, z) = Mm(Hm(Ω, z))/2 = Mm([2,m/2])/2. To see that this quantity
achieves 1, it suffices to consider the cosine polynomial

ϕm(t) := 1 +
[m−1

2
]∑

k=1

cos 2πkt+
[m

2
]∑

k=1

cos 2πkt.

Direct calculation proves again ϕm(j/m) ≥ 0 (j ∈ N), thus ϕm ∈ Φm([2,m/2]) and
now we find Mm([2,m/2])/2 = 1. �

With the following applications in mind we first prove

Lemma 2.9.21 (Kolountzakis-Révész). For m ∈ 2N even we have Mm([2,m/2)) =
1 + cos 2π

m .

Proof. Let m = 2n and

ϕ(t) = 1 +
n−1∑
k=1

ck cos 2πkt ∈ Φm(Mm([2, n))).
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Using the finite Fourier Transform coefficient formula and ϕ(j/m) ≥ 0 (j ∈ N) we obtain

c1 =
2
m

m−1∑
j=0

ϕ(
j

m
) cos

2πj
m

=
1
n

n−1∑
l=0

ϕ(
l

n
) cos

2πl
n

+
1
n

n−1∑
l=0

ϕ(
2l + 1
m

) cos(
2πl
n

+
π

n
)

≤ 1
n

n−1∑
l=0

ϕ(
l

n
) +

1
n

n−1∑
l=0

ϕ(
l

n
+

1
m

) cos(
π

n
) = 1 + cos(

π

n
).

On the other hand take the cosine polynomial

φm(t) := 1 +
n−1∑
k=1

(1 + cos
πk

n
) cos 2πkt.

Direct calculation gives

φm(
j

m
) =


m j ≡ 0 (mod m)
m/2 j ≡ ±1 (mod m)
0 otherwise,

whence φm( j
m) ≥ 0 (j ∈ N) and φm ∈ Φm(Mm([2, n))). �

Corollary 2.9.22. (Arestov – Berdysheva – Berens [8]) For dimension one we
have

(i) For (p, q) = 1, q even we have M∗((−1
2 ,

1
2), p

q ) = 1
2(1 + cos 2π

q ).
(ii) For (p, q) = 1, q odd we have M∗((−1

2 ,
1
2), p

q ) = 1.
(iii) For z /∈ Q we have M∗((−1

2 ,
1
2), z) = 1.

Proof. In case (i) #Z = q = 2r, and H(Ω, z) = N2 \ rN, H∗
q (Ω, z) = [2, r− 1]. Hence

in view of Theorem 2.9.4 it suffices to show that M∗
q ([2, r)) = 1+cos(2π/q), which follows

from Lemma 2.9.21. For the cases (ii) and (iii) we clearly have Z ⊆ Ω, hence Proposition
2.9.20 applies. �

Similarly to the above result of Arestov et al, we can also answer the pointwise Turán
extremal problem for Ω = (−1

2 ,
1
2)d.

Theorem 2.9.23 (Kolountzakis-Révész). Let Ω = (−1
2 ,

1
2)d ∈ Td. Then we have

(i) M∗((−1
2 ,

1
2)d, z) = 1 if z /∈ Qd.

Moreover, if z ∈ Qd, z = (p1

q1
, . . . , pd

qd
) with (pj , qj) = 1, qj = 2sj tj (sj ∈ N), tj ∈

2N + 1 (j = 1, . . . , d) and m := [q1, . . . , qd] = 2st t ∈ 2N + 1, then we have either

(ii) 1 ≤ s = s1 = · · · = sd, and then M∗((−1
2 ,

1
2)d, z) = 1

2(1 + cos 2π
m ), or

(iii) s = 0 or ∃j, 1 ≤ j ≤ d with sj < s and then M∗((−1
2 ,

1
2)d, z) = 1.

Proof. Case (i) is covered by Proposition 2.9.20 above. If z ∈ Qd, then the set
defined in (2.99) is finite and we have #Z = m = [q1, . . . , qd]. Let us determine the
set H(Ω, z) first. For k ∈ N we have kz /∈ Ω iff kpj/qj ≡ 1/2 (mod 1) (j = 1, . . . , d),
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i.e., 2kpj/qj ≡ 1 (mod 2) (j = 1, . . . , d). It follows that qj |2k (j = 1, . . . , d), and
we can not have a solution k ∈ N if ∃j so that qj is odd, since then 2k/qj must be
even. Hence we can consider the case when all sj ≥ 1 and, by (pj , qj) = 1, all pj is
odd. Then using pj ∈ 2Z + 1 the condition becomes 2k/qj ≡ 1 (mod 2) (j = 1, . . . , d).
Hence m = [q1, . . . , qd]|2k and s = sj (j = 1, . . . , d) since otherwise for any sj < s we
get 2k/qj = nm/qj = n2s−sj t/tj ≡ 0 (mod 2). In all, kz /∈ Ω occurs only in case (ii),
while case (iii) will again be covered by Proposition 2.9.20. In case (ii), when kz /∈ Ω
happens, it occurs precisely for multiples of m/2 ∈ N. That is, case (ii) now reduces to
the determination of M∗(Ω, z) = Mm([2,m/2))/2 = (1+cos 2π/m)/2 in view of Theorem
2.9.4 and Lemma 2.9.21. �
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[70] Révész, Sz. Gy., Extremal problems and a duality phenomenon, in Approximation, Optimization

and Computing, (A. G. Law, C. L. Wang, eds.), Elsevier, 1990, 279-281.
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[74] Révész, Sz. Gy., On Beurling’s Prime Number Theorem, Periodica Math. Hung., 28 (3), 1994,

195-210.
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CHAPTER 3

Integral concentration of idempotent trigonometric

polynomials with gaps

3.1. Introduction

Let us first record here that the results in this chapter are all belong to our joint work
with Aline Bonami. That is, theorems, lemmas, propositions etc. the authorship of which
are not given explicitly, are all joint results of Bonami & Révész.

Put T := R/Z for the circle, and denote e(t) := e2πit the usual exponential function
adjusted to interval length 1. We will denote eh(t) the function e(ht). For obvious reasons
of being convolution idempotents, the set

(3.1) P :=

{∑
h∈H

eh : H ⊂ N, #H <∞

}

is called the set of (convolution-)idempotent exponential (or trigonometric) polynomials,
or just idempotents for short.

Observe that we assume all frequencies of idempotents under consideration to be non-
negative. This we can do without loss of generality since we will only be interested in the
modulus of idempotents, which is not modified by multiplication by some exponential eN .
We will denote as well

(3.2) T :=

{∑
h∈H

aheh : H ⊂ N, #H <∞ ; ah ∈ C, h ∈ H

}

the space of all trigonometric polynomials.

The starting point of our work was a conjecture in [3] regarding the impossibility of the
concentration of the integral norm of idempotents.

Before recording the main result of the paper [3], let us give some notations and defi-
nitions. We first start by the notion of concentration on symmetric open sets, for which
results are more complete, and proofs are more elementary.

A set E is symmetric if x ∈ E implies −x ∈ E.

Definition 3.1.1. Let p > 0 and a ∈ T. We say that there is p-concentration at a if
there exists a constant c > 0 so that for any symmetric open set E that contains a, one
can find an idempotent f ∈ P with

(3.3)
∫

E
|f |p ≥ c

∫
T
|f |p.

107
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Moreover, the supremum of all such constants c will be denoted as cp(a): it is called the
level of the p-concentration at a. Such an idempotent f will be called a p-concentrating
polynomial.

Definition 3.1.2. Let p > 0. We say that there is p-concentration if there exists a
constant c > 0 so that for any symmetric non empty open set E one can find an idempotent
f ∈ P with

(3.4)
∫

E
|f |p ≥ c

∫
T
|f |p.

Moreover, cp will denote the supremum of all such constants c. Correspondingly, cp is
called the level of p-concentration. If cp = 1, we say that there is full p-concentration.

Clearly, as remarked in [14], the local constant cp(a) is an upper semi-continuous function
on T, and cp = infa∈T cp(a).

Remark 3.1.3. We have taken symmetric open sets because the function |f | is even
for f ∈ P. Without the assumption of symmetry, the constant cp(a) would be at most
1/2 for a different from 0 and 1/2. With this definition, as we will see, cp(a) and even
cp can achieve the maximal value 1. Nevertheless, using the alternative definition with
arbitrary open sets (or just intervals) would only mean taking half of our constants cp(a)
for a 6= 0, 1/2 and of cp.

The question of p-concentration, and the computation or at least estimation of the best
constant cp, originated from the work of Cowling [13], and of Ash [4] on comparison of
restricted type and strong type for convolution operators. This is described recently in
the survey [5]. It has since then been the object of considerable interest, with improving
lower bounds obtained by Pichorides, Montgomery, Kahane and Ash, Jones and Saffari,
see [1, 2, 3] for details. In 1983 Déchamps-Gondim, Piquard-Lust and Queffélec [14, 15]
answered a question from [1], proving the precise value

(3.5) c2 = sup
0≤x

2 sin2 x

πx
= 0.46 · · · .

Moreover, they obtained cp ≥ 21− p
2 c

p/2
2 for all p > 2.

As in [14, 15, 2, 3], we will consider the same notion of p-concentration of (convolution-
)idempotents for measurable sets, too.

Definition 3.1.4. Let p > 0 and a ∈ T. We say that there is p-concentration for
measurable sets at a, if there exists a constant γ > 0 so that for any symmetric measurable
set E, with a being a density point of E, there exists some idempotent f ∈ P with

(3.6)
∫

E
|f |p ≥ γ

∫
T
|f |p.

The supremum of all such constants γ will be denoted as γp(a). Furthermore, we say that
there is p-concentration for measurable sets if such an inequality holds for any symmetric
measurable set E of positive measure. The supremum of all such constants is denoted by
γp.
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It is clear that p-concentration for measurable sets implies p-concentration. On the other
hand it is not clear, if γp(a) is upper semicontinuous, too. If we knew this, by our methods
that would easily imply the same strength of the results for measurable sets, as we will
obtain for open sets.

The main theorem of [3] can be stated as:

Theorem 3.1.5 (Anderson, Ash, Jones, Rider, Saffari). There is p-concentration
for measurable sets for all p > 1.

We also refer to them for the fact that γ2 = c2 is given by (3.5). The proof of [2, 3] is
based on the properties of the function

(3.7) Dn(x)Dn(qx),

where Dn stands for the Dirichlet kernel. We will use the same notation as in [3] and
define the Dirichlet kernel as

(3.8) Dn(x) :=
n−1∑
ν=0

e(νx) = eπi(n−1)x sin(πnx)
sin(πx)

.

The idea is that the first Dirichlet kernel in (3.7) will have sufficiently peaky behavior (re-
garding |·|p), while the second one simulates a Dirac delta, so that the p-th integral outside
very close neighborhoods of the points k/q is small. They use the multiplicative group
structure of Z/qZ, when q is prime, to prove that concentration at k/q and concentration
at 1/q may be compared.

Their proof yields p-concentration only with cp → 0 when p → 1. Based on these
and some other heuristical arguments and calculations the authors conjectured that for
p-concentration the value 1 should be a natural limit. We will disprove this conjecture,
even for measurable sets and we will even prove more: all concentrating idempotents can
be taken with arbitrarily large gaps. Recall that the trigonometric polynomial

(3.9) f(x) :=
K∑

k=1

ake(nkx)

has gaps larger than N if it satisfies the gap condition nk+1 − nk > N (k = 1, . . . ,K − 1).
Before describing our results more precisely, we need other definitions.

Definition 3.1.6. We say that there is p-concentration with gap (resp. p- concentration
with gap for measurable sets) at a if for all N > 0 the p-concentrating polynomial in (3.3)
(resp. in (3.6)) can be chosen with gap larger than N . If this holds for every a, we say that
there is p-concentration with gap (resp. p-concentration with gap for measurable sets).
If, moreover, the constant c can be taken arbitrarily close to 1, we say that there is full
p-concentration with gap (resp. p-concentration with gap for measurable sets).

With these definitions, we can give our main theorems.

Theorem 3.1.7. For all 0 < p < ∞, we have p-concentration. Moreover, if p is not
an even integer, then we have full concentration, i.e. cp = 1. When considering even
integers, we have c2 given by (3.5), then 0.495 < c4 ≤ 1/2, and for all other even integers
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0.483 < c2k ≤ 1/2. Moreover, unless p = 2, we have concentration with gap at the same
level of concentration. On the other hand for p = 2 requiring arbitrarily large gaps would
decrease the level of concentration to 0.

For measurable sets, our results are just as good for p > 1. Arriving at the limits of our
current methods, we leave it as an open problem what happens for p ≤ 1/2, and whether
there is full concentration for 1/2 < p ≤ 1.

Theorem 3.1.8. For all 1/2 < p < ∞ we have p-concentration for measurable sets.
If p is not an even integer, then we have full concentration for measurable sets when
p > 1. If p = 2, the level of the concentration is given by (3.5), and for p = 4 we
have 0.495 < γ4 ≤ 1/2. For other even integers we have uniformly 0.483 < γ2k ≤ 1/2.
Moreover, unless p = 2, the same level of concentration can be achieved with arbitrarily
large gaps.

This improves considerably the constants given in [2, 3], which tend to zero when p→∞
or when p → 1+ (however, to compare constants, be aware of the notational difference
between us and [3, 2]).

We postpone to section 3.10 what concerns measurable sets. The proofs will follow from
an adaptation of the methods that we develop for open sets, and also from the use of
diophantine approximation. As in [3], we do not know whether constants γp and cp differ
when p 6= 2, except when we know that both of them are 1, which is the case of all p > 1
not an even integer.

Let us hint some of the key ideas in our proofs, which may be of independent interest.
The first one is an explicit construction of concentrating idempotents for the points 0 and
1/2 at a level of concentration arbitrarily close to 1 and with arbitrarily large gaps. To
emphasize their role in our construction, we will term such concentrating idempotents as
‘ ‘peaking idempotents”, or, when referring to the large gaps required, as “gap-peaking
idempotents” – for a more precise meaning see the beginning of §3.3.

Proposition 3.1.9. For all p > 0, except for p = 2, one has full p-concentration with
gap at 0. For p = 2, positive concentration with arbitrarily large gaps is possible at neither
points a ∈ T.

Note that, using the Dirichlet kernel that peaks at 0, we find full p-concentration at 0
for p > 1. For p ≤ 1, the Dirichlet kernel cannot be used. For a given concentration,
our examples will be obtained using idempotents of much higher degree. So as for the
behavior at point 0 and p > 1 different from 2, the novelty is the fact that the peaking
polynomial may have arbitrarily large gaps.

This is what cannot occur in L2, in view of Ingham’s inequalities [23, 45]. The somewhat
surprising new fact here is that it does occur for all other values of p.

Zygmund [45, Chapter V §9, page 380] pointed out concerning Ingham’s results on
essentially uniform distribution of square integrals (norms) for Fourier series with large
gaps: “Nothing seems to be known about possible extensions to classes Lp, p 6= 2”. To
the best of our knowledge the problem has not been addressed thus far. But now we find
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that an Ingham type inequality is characteristic to the Hilbertian case, and for no p 6= 2
one can have similar inequalities, not even when restricting to idempotent polynomials.

The next proposition is even more surprising. It is the key to full concentration at other
points than 0.

Proposition 3.1.10. Full p-concentration with gap at 1/2 holds whenever p > 0 is not
an even integer. On the other hand, for p = 2k ∈ 2N, c2k(1/2) = 1/2.

The assertion for p an even integer will follow directly from the work of Déchamps-
Gondim, Lust-Piquard and Queffélec [14, 15].

For 0 < p < 2 we base our argument on the properties of the bivariate idempotent
1 + e(y) + e(x+ 2y).

For p > 2, we will rely on a construction of Mockenhaupt and Schlag, see [30], given
in their work on the Hardy-Littlewood majorant problem, which we describe now in its
original formulation. Following Hardy and Litlewood, f is said to be a majorant to g

if |ĝ| ≤ f̂ . Obviously, then f is necessarily a positive definite function. The (upper)
majorization property (with constant 1) is the statement that whenever f ∈ Lp(T) is a
majorant of g ∈ Lp(T), then ‖g‖p ≤ ‖f‖p. Hardy and Littlewood proved this for all
p ∈ 2N. On the other hand, already Hardy and Littlewood observed that this fails for
p = 3: they took f = 1+e1 +e3 and g = 1−e1 +e3 (where ek(x) := e(kx)) and calculated
that ‖f‖3 < ‖g‖3.

The failure of the majorization property for p /∈ 2N was shown by Boas [8] (see also [7]
for arbitrarily large constants, and also [18, 29] for further comments and similar results
in other groups.) Montgomery conjectured that it fails also if we restrict to majorants
belonging to P, see [31, p. 144]. This has been recently proved by Mockenhaupt and
Schlag in [30].

Theorem 3.1.11 (Mockenhaupt & Schlag). Let p > 2 and p /∈ 2N, and let k > p/2
be arbitrary. Then for the trigonometric polynomials g := (1 + ek)(1 − ek+1) and f :=
(1 + ek)(1 + ek+1) we have ‖g‖p > ‖f‖p.

Our proof of Proposition 3.1.10 for p > 2 and p /∈ 2N, will be based on the construction
of Mockenhaupt and Schlag.

Once we have our peaking polynomials at 1/2, we conclude in proving the following
assertion.

Proposition 3.1.12. Let p > 0 and assume that we have full p-concentration with gap
at 1/2 for this value of p. Then we also have p-concentration. Moreover, cp = 1 and we
have full p-concentration with gap.

The proof of Proposition 3.1.12 consists of considering products like

(3.10) Dr(s1x) · · ·Dr(snx)T (qx),

where the similarity to (3.7) may be misleading in regard of the role of the Dirichlet kernels
here: the role of the “approximate Dirac delta” is fully placed on T , which is a peaking
function at 1/2 with large gaps that insure that the product is still an idempotent. The
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first factors will be chosen in such a way that they coincide with a power of a Dirichlet
kernel on some grid 1

2q +Z/qZ. For measurable sets, the use of diophantine approximation
forces us to take at most two factors, resulting in the restriction p > 1/2.

When there is not full p-concentration at 1/2, i.e. for p = 2k, we could not determine
c2k precisely. Still, we can use a peaking function at 0, provided by Proposition 3.1.9, thus
obtaining reasonable uniform bounds.

Our final results for p > 1 derive from the consideration of the class of positive definite
trigonometric polynomials

(3.11) P+ :=

{∑
h∈H

aheh : H ⊂ N, #H <∞ ; ah > 0 for h ∈ H

}
,

for which full p-concentration for measurable sets can be proved for p > 0 not an even
integer. We then use a randomization process to transfer this result to the class P for
p > 2, and then using that even to p > 1.

As seen above, the conjecture of Ash, Anderson, Jones, Rider and Saffari on nonexis-
tence of L1-concentration, described after Theorem 3.1.5, fails. Moreover, we have full
concentration (for open sets), and for measurable sets the level of concentration is also
considerably large. In fact, pushing our methods somewhat further, we show in Theorem
3.14.1 that the L1 concentration constant for measurable sets satisfy even γ1 > 0.96, quite
close to 1. Moreover, once again we can ascertain this level of concentration even with
arbitrarily large gaps.

Nevertheless, in a sense this all is due to a ”cheating” in the extent that we can simulate
powers of Dirichlet kernels by products of their scaled versions. In Theorem 3.13.3 we
show, however, that on the finite groups Z/qZ uniform in q L1 concentration does really
fail.

In summary, for open sets or positive definite polynomials on measurable sets we proved
full concentration unless p ∈ 2N. Furthermore, we proved that the constant γp is equal to
1 when p > 1 and p is not an even integer. As for the exceptional situation for p ∈ 2N, this
is in line with the fact that Lp norms behave differently depending on whether p is an even
integer or not in a certain number of problems, such as the Hardy-Littlewood majorant
problem (does an inequality on absolute values of Fourier coefficients imply an inequality

on Lp norms?), as well as Zygmund’s question (does a Wiener-Ingham type essentially

uniform distribution of the p-norm holds on intervals longer than 2π/N , when f ∈ Lp(T)
has gaps exceeding N in its Fourier series?) or the Wiener property for periodic positive
definite functions (does a positive definite function belong to Lp when it is the case on a

small interval around 0?). These we will have a closer look in Section 3.15.
Indeed, our results are built on partial results already stronger than a negative answer

to Zygmund’s question, posed by A. Zygmund in his classical book, see Notes to Chapter
V §9, page 380 in [45]. The answer to this question was only partially known, in the
extent that constructions were given by Erdős and Rényi [17] for p /∈ 2N and p > 2
with an existential (probabilistic) proof, and, for p > 6, by Turán [41] with a concrete
construction, (based on primes). In these examples they provided lacunarity, i.e. large
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gaps, in the Fourier series, while local boundedness in Lp was ascertained somewhere in a
small interval not containing 0. From our constructions the negative answer to Zygmund’s
question for all p 6= 2 can easily be seen e.g. already from the combination of Propositions
3.3.1 and 3.3.4 below.

Our results are also well adapted to give counter-examples for the Wiener property. But
to exploit our methods better, here in the last section we will provide joint counterexamples
to these famous problems in very strong forms. To explain the results more precisely, let
us discuss the Wiener problem in a bit more detail.

Let f be a periodic integrable function which is positive definite, that is, has non negative
Fourier coefficients. Assume that it is bounded (in ‖ · ‖∞) in a neighborhood of 0, then
it necessarily belongs to L∞(T), too. In fact, its maximum is obtained at 0 and, as
f(0) =

∑
k f̂(k), f has an absolutely convergent Fourier series.

The same question can be formulated in any Lp space. Actually, the following question
was posed by Wiener in a lecture, after he proved the L2 case.
Wiener’s Problem. Let 1 ≤ p <∞. Is it true, that if for some ε > 0 a positive definite

function f ∈ Lp(−ε, ε), then we necessarily have f ∈ Lp(T), too?

We refer to [36] for the story of this conjecture, see also [26] and [43]. The observation
that the answer is positive if p ∈ 2N has been given by Wainger [42], as well as by Erdős
and Fuchs [16]. The key of the proof is Wiener’s Inequality stating that all 1-periodic
positive definite trigonometric polynomials satisfy

(3.12)
1
2a

∫ +a

−a
|f |p ≥ 1

2

∫ +1/2

−1/2
|f |p

for p = 2, and hence for all p ∈ 2N, see [36]. For optimality of constants, see [26, 27].
Generalizations in higher dimension may be found in [22] for instance.

It was shown by Shapiro [36] and Wainger [42] that the answer to Wiener’s problem is
to the negative for all other values of p. Negative results were obtained for other groups
in e.g. [18] and [26].

There is even more evidence that the Wiener property must hold when p = 2 and we
prescribe large gaps in the Fourier series of f . Indeed, in this case by well-known results
of Wiener and Ingham, see e.g. [43, 45], we necessarily have an essentially uniform
distribution of the L2 norm on intervals longer than the reciprocal of the gap, even without
the assumption that f be positive definite. To clarify the notions, for f with Fourier series∑

k ake
2iπnkx, where nk is increasing, we define Gap(f) by

(3.13) Gap(f) := min
k

(nk+1 − nk) .

Then we say that f has gaps tending to ∞ when Gap(f − SN (f)) tends to ∞, where
SN (f) denote the partial sums of the Fourier series of f .

As Zygmund pointed out, see the Notes to Chapter V §9, page 380 in [45], Ingham type
theorems were not known for p 6= 2, nevertheless, one would feel that prescribing large
gaps in the Fourier series should lead to better control of the global behavior by means
of having control on some subset like e.g. (−ε, ε). So the analogous Wiener question
can be posed restricting to positive definite functions having gaps tending to ∞. That
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is, we combine conditions of the Wiener problem (positive definiteness) and that of the
Wiener-Ingham inequalities, i.e. the problem of Zygmund.

However, we answer negatively as well.

Theorem 3.1.13. For all 0 < p < ∞, p not an even integer, whenever a 0-symmetric
measurable set E of positive measure |E| > 0 is given, then for all ε > 0 there exists
f ∈ T + so that

(3.14)
∫

cE
|f |p ≤ ε

∫
T
|f |p.

Moreover, f can be taken such that Gap(f) is arbitrarily large. When E is an open set or
when p > 1, then f can be chosen an idempotent for all p.

Theorem 3.1.13 allows us to see immediately that there is no inequality like (3.12) for
p not an even integer. What is new, compared to the results of Shapiro and Wainger, is
the fact that this is also the case if f has arbitrarily large gaps, and that we can replace
intervals (−a,+a) by arbitrary measurable sets of measure less than 1.

In this strong form the question, to the best of our knowledge, has not been dealt with
yet. Neither extension can be obtained by a straightforward use of the methods of Shapiro
and Wainger. In fact, our construction gives a simultaneous, combined negative answer
to the Wiener problem and to Zygmund’s question of Lp versions of the Ingham-Wiener
theorems for functions with large gaps in the Fourier series. Nevertheless, we will obtain
a few further sharpening and pose some open questions, too.

Let us finally fix some notations that will be used all over. We denote

(3.15) Tq :=

{
q−1∑
h=0

aheh ; ah ∈ C for h = 0, · · · , q − 1

}
the space of trigonometric polynomials of degree smaller than q and

(3.16) Pq :=

{∑
h∈H

eh : H ⊂ {0, 1, · · · q − 1}

}
the set of idempotents of degree smaller than q.

3.2. Negative results regarding concentration when p ∈ 2N

Let us first start with proving that in case p = 2, requiring arbitrarily large gaps decreases
the level of concentration to 0, as said in Theorem 3.1.7 and Proposition 3.1.9 (and,
consequently, in Theorem 3.1.8, too).

For this there is a well known argument. We take an interval E centered at 0 and a
triangular function ∆ supported by 2E and equal to 1 at zero. Let N be an integer and
f an idempotent with gap N . Then∫

E
|f |2dt ≤ 2

∫
∆|f |2dt = 2

∑
m

∑
n

∆̂(m)f̂(n)f̂(n−m).
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If we write separately the term with m = 0 and insert ∆̂(0) = |E|, then the right hand
side becomes

2|E|
∑

n

|f̂(n)|2 + 2
∑
|m|>N

∆̂(m)
∑

n

f̂(n)f̂(n−m).

Finally, by an application of the Cauchy-Schwarz inequality,∫
E
|f |2dt ≤ 2|E|

∑
n

|f̂(n)|2 + 2
∑
|m|>N

|∆̂(m)|
∑

n

|f̂(n)|2.

According to Parseval’s identity
∫

T |f |
2dt =

∑
n |f̂(n)|2, hence∫

E |f |
2dt∫

T |f |2dt
≤ 2|E|+ 2

∑
|m|>N

|∆̂(m)|.

The last estimate can be taken arbitrarily small by taking the interval E small enough,
and then the gap N large enough, using the fact that the Fourier series of ∆ is absolutely
convergent. This contradicts the peaking property with gap.

Remark 3.2.1. The same proof, using for ∆ a triangular function supported by E, gives
the reverse inequality ∫

E |f |
2dt∫

T |f |2dt
≥ |E|

2 + ε
,

valid for functions with sufficiently large gaps, depending on E and ε > 0. These type of
estimates are known as Ingham type inequalities, and various generalizations have many
applications e.g. in control theory, see [25], [39], [40]. The fact that one can have full
p-concentration with gap at 0 may be interpreted as the impossibility of an Ingham type
inequality for p 6= 2. This settles to the negative a problem posed by Zygmund.

Next, we explain how to obtain the necessary condition c2k ≤ 1/2. In fact one knows
more, since this is also valid for the problem of concentration on the class P+ of positive
definite exponential polynomials (see (3.11)). Let us denote by c+p and cp(a)+, as well as
γ+

p and γ+
p (a), the corresponding concentration constants, with the class P of idempotents

replaced by the class P+. One has the inequalities

cp(a) ≤ c+p (a), cp ≤ c+p , γp(a) ≤ γ+
p (a) γp ≤ γ+

p .

It was proved in [14, 15] that c+2 (1/2) = 1/2. From this we obtain that for p = 2k an even
integer, c2k(1/2) ≤ c+2k(1/2) ≤ 1/2. Indeed, if f ∈ P+, so is fk, and using the already
known value c+2 (1/2) = 1/2 we infer c2k(1/2) ≤ c+2 (1/2) = 1/2. In fact we have equality,

c2k(1/2) = c+2k(1/2) = 1/2,

taking the Dirichlet kernel DN (2x) as concentrating polynomial.
While [14, 15] gives also c+2 = 1/2, we do not know the exact values of c2k and c+2k for

k > 1.
We do not have any other negative result than the ones in this §.
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3.3. Full concentration with gap and peaking functions

In this section, we will prove Proposition 3.1.9 and Proposition 3.1.10. For a = 0 or 1/2,
we are interested in the construction of gap-peaking idempotents, that is, for all ε, δ and
N > 0, idempotent exponential polynomials

(3.17) T (x) :=
K∑

k=1

e(nkx),

with gap condition nk+1 − nk > N (k = 1, . . . ,K), so that

(3.18)
∫ a+δ

a−δ
|T |p > (1− ε)

∫
T
|T |p.

The first step is to prove the following.

Proposition 3.3.1. Let f be an idempotent exponential polynomial in two variables and
of the form

(3.19) f(x, y) =
K∑

k=1

e(nkx+mky),

where K ∈ N and nk,mk ∈ N are two sequences of nonnegative integers, with mk strictly
increasing. Assume that f has the property that its “marginal p-integral”, given by

(3.20) F (x) :=
∫ 1

0
|f(x, y)|pdy,

has a strict maximum at a, for a = 0 or a = 1/2. Then one has full p-concentration with
gap at the point a.

Proof. Choose M with 0 ≤ mk, nk < M for all k and consider the Riesz product

(3.21) g(x) := gR,J(x) :=
J∏

j=1

f(x,Rjx)

where R is a very large integer, f is given by (3.19) satisfying the assumption, and J

will be chosen later on. If we take R > M(J + 1), then g ∈ P; moreover, g will obey
a gap condition of size N if R is large enough depending on J , M and N . Recall that
the marginal p–integral (3.20) has a strict maximum at a. For any fixed interval I, the
integral of |g|p on I will approach the integral of F J on I as R→∞. Indeed,∫

I
|g|p =

∫
I

J∏
j=1

|f(x,Rjx)|pdx ,

and as the function |f |p ∈ C(T2), we can apply Lemma 3.3.2 below.

Lemma 3.3.2. Assume that ϕ ∈ C(T × TJ). Denote the marginal integrals by Φ(x) :=∫
TJ ϕ(x,y)dy. Then, for E a measurable set of positive measure, we have

(3.22) lim
n1,n2,...,nJ→∞

∫
E
ϕ (x, n1x, n1n2x, . . . , n1n2 · · ·nJx) dx =

∫
E

Φ(x)dx.
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Here by n1, . . . , nJ → ∞ we naturally mean min(n1, . . . , nJ) → ∞. For the sake of
remaining self-contained, we give a proof below, even if this one is standard, mentioned
also e.g. in [29, 31, 7] (for J = 1).

Proof. By density, it is sufficient to prove this for ϕ an exponential polynomial on
T×TJ . By linearity, it is sufficient to consider a monomial. When it does not depend on the
second variable there is nothing to prove. Assume that ϕ(x,y) = e(kx+ l1y1 + · · ·+ lJyJ),
with at least one of the lj ’s being nonzero. We want to prove that∫

E
ϕ (x, n1x, n1n2x, . . . , n1n2 · · ·nJx) dx −→ 0 (n1, . . . , nJ →∞).

This integral is the Fourier coefficient of the characteristic function of E at the frequency
k + n1l1 + n1n2l2 + · · · + n1n2 · · ·nJ lJ , which tends to infinity for n1, . . . , nJ → ∞. We
conclude using the Riemann-Lebesgue Lemma. �

Let us go back to our Riesz product g in (3.21). Let us first choose J large enough.
Then F J will be arbitrarily concentrated on I := [a − δ, a + δ] in integral because F has
a strict global maximum at a. More precisely, we fix J large enough so that∫

I
F J > (1− ε)

∫
T
F J .

Once J is fixed, we use Lemma 3.3.2 for the function

ϕ(x,y) :=
J∏

j=1

|f(x, yj)|p.

We know that

lim
R→∞

∫
I
|gR,J |p =

∫
I
F J ,

and the same for the integral over the whole torus. The proposition is proved. �

This concludes the proof of Proposition 3.1.9, assuming that the condition of Proposition
3.3.1 holds. Next we will focus on this point.

Remark 3.3.3. The function |f | is even in the sense that |f(−x,−y)| = |f(x, y)|, since
the quantities inside the absolute value sign are just complex conjugates. Therefore, F is
even. Moreover it can have a unique maximum in T if only this maximum is either at 0
or at 1/2.

Proposition 3.3.4. Let f(x, y) := 1 + e(y) + e(x + 2y). Then the marginal integral
function Fp(x) :=

∫ 1
0 |f(x, y)|pdy is a continuous function, which has a unique, strict

maximum at 0 for p > 2, while it has a strict maximum at 1/2 for p < 2.

Proof. Since Fp is even, it suffices to prove that it is monotonic on [0, 1
2 ], with the

required monotonicity. Note that

|f(x, y)| = |2e(x/2) cos (π(x+ 2y)) + 1| .
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So

Fp(x) =
∫ 1/2

−1/2
|2e(x/2) cos(2πy) + 1|p dy

=
∫ 1/4

−1/4
(|2e(x/2) cos(2πy) + 1|p + |2e(x/2) cos(2πy)− 1|p) dy.

It is sufficient to show that for fixed y ∈ (−1
4 ,

1
4) the quantity

Φ(x, y) := |2e(x/2) cos(2πy) + 1|p + |2e(x/2) cos(2πy)− 1|p

is monotonic in x for 0 < x < 1
2 . Considering its derivative

∂Φ
∂x

(x, y) =− 2pπ sin(πx) cos(2πy)

×
{
|2e(x

2
) cos(2πy) + 1|p−2 − |2e(x

2
) cos(2πy)− 1|p−2

}
we find that its signum is the opposite of the signum of the difference in the second line.
It follows that Φ, hence Fp has a strict global maximum at zero when p > 2 and a strict
global maximum at 1/2 when p < 2. �

This concludes for the existence of a peaking function at 0 for p > 2, and for a peaking
function at 1/2 for p < 2.

We will need the following lemma later on.

Lemma 3.3.5. The function Fp is a C2 function for p > 2 and its second derivative at 0
is strictly negative. For all values of p it is a C∞ function outside 0. Its second derivative
at 1/2 is strictly negative for p < 2.

Proof. For p > 2 the smoothness of the composite function follows from smoothness
of | · |p. We already know from monotonicity of Φ(x, y) for fixed y that Φ

′′
xx(0, y) is non

positive. Since it is clearly not identically 0, it is somewhere strictly negative, hence
F
′′
p (0) < 0. To prove that Fp is a C∞ function outside 0, it is sufficient to remark that
f(x, y) does not vanish for x 6= 0. The same reasoning as above gives the sign of the
second derivative at 1/2. �

Proof of Proposition 3.1.10. Let us now concentrate on peaking functions at 1/2
for p > 2 not an even integer and prove Proposition 3.1.10. We will prove the following,
which relies entirely on the methods of Mockenhaupt and Schlag [30], but tailored to
our needs with introducing also a second variable and slightly changing the occurring
idempotents, too.

Proposition 3.3.6. Let p > 2 not an even integer. For k an odd number that is larger
than p/2, the bivariate idempotent function

(3.23) g(x, y) := (1 + e1(x)ek(y))(1 + e1(x)ek+1(y))

is such that its marginal integral Gp(x) :=
∫

T |g(x, y)|
pdy has a strict maximum at 1/2.

Moreover, it is a C4 function, whose second derivative at 1/2 is strictly negative.
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Proof. After a change of variables, we see that

Gp(x) = 4p

∫ 1

0
| cos(πky)|p

∣∣∣∣cos
(
π(k + 1)(y − x

k(k + 1)
)
)∣∣∣∣p dy.

The smoothness of Gp follows from the fact that it is the convolution of two functions of
class C2. Mockenhaupt and Schlag have computed that

2p| cos(πy)|p =
∑

n

(−1)ncne
2iπny

with real coefficients cn = c−n, such that, for non negative n,

cn+1 =
n− p

2

n+ p
2 + 1

cn.

In the convolution, only frequencies that are multiples of both k and k+ 1 are present, so
that

Gp(x) =
∑

n

(−1)ncknc(k+1)ne
2iπnx.

Indeed, the Fourier coefficient Ĝp(n) is equal to cmcm′ , where km = (k + 1)m′, and
n = m′/k, which gives also m = (k + 1)n.

Now, looking at the inductive formula for the coefficients, and using the fact that all
cknc(k+1)n are positive for k > p/2, we find that Gp is maximum when e2iπnx = (−1)n for
all n, that is, for x = 1/2. The computation of the Fourier series of its second derivative
implies that it is strictly negative at this point. �

It remains to prove that we have the gap peaking property at 0 for 0 < p < 2. It
could be deduced from the theorems below, but we can also build on the construction of
Mockhenhaupt and Schlag. Indeed, consider for 0 < p < 2, the bivariate idempotent

h(x, y) := (1 + e1(y))(1 + e1(x)e3(y)).

Using the computations of Mockenhaupt and Schlag, similarly to the above it is again
straightforward to see that the p-th marginal integral Hp(x) :=

∫
T |h(x, y)|

pdy has a strict
maximum at 0.

This concludes the proof of Proposition 3.1.10. �

Remark 3.3.7. Note that 1 + re± rk+1ek+1, with r > 0 very small, already occurred in
the work of Boas [8] as a counterexample to the Hardy-Littlewood majorant property for
2k − 2 < p < 2k, while already Hardy and Littlewood [21] has shown that 1 + e± e3 is a
counterexample for p = 3. This seems to be the motivation to Montgomery for formulating
his conjecture on existence of idempotent counterexamples for all p 6= 2N. Mockenhaupt
[29] discussed that 1+e±e3 is a counterexample for all 2 < p < 4, but his argument is not
complete, with the quoted ”numerical estimates” not existing where he had referred to
them. Nevertheless, it seems that he thought that even 1+e±ek+1 is a counterexample for
all 2k−2 < p < 2k. At the end the answer to Montgomery’s Conjecture came from giving
this up and considering instead a 4-term idempotent, which on the other hand can be
calculated more easily due to its product structure. Thus the original idea of 1 + e± ek+1

being a three-term idempotent counterexample for all 2k − 2 < p < 2k remains an open
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question. In this respect, however, note that the k = 1 case of this is implied by the above
Proposition 3.3.4, by comparing x = 0 and x = 1/2, where e(x) = −1.

3.4. Restriction to a discrete problem of concentration

The second step of our proof consists of restricting the problem of p-concentration of an
idempotent polynomial on a small interval into the one of concentration of an idempotent
polynomial at one point of either of the two discrete grids

(3.24) Gq :=
1
q

Z/qZ G?
q :=

1
2q

+
1
q

Z/qZ.

The idea is that if we take a gap-peaking polynomial T , then multiplication by T (qx) will
concentrate integrals on a neighborhood of the grid: for the first grid we need T to be
peaking at 0, and for the second one we need T to do so at 1/2.

Definition 3.4.1. For f ∈ T we denote by Πq(f) the polynomial in Tq which coincides
with f on the grid Gq, that is, the polynomial having Fourier coefficients

Π̂q(f)(k) :=
∑
j∈N

f̂(k + jq), k = 0, 1, · · · , q − 1.

In particular, if f is positive definite, so is Πq(f). However, in general the class of
idempotent polynomials is not preserved by this projection.

Let us first define concentration on Gq.

Definition 3.4.2. We shall say that there is p-concentration at a/q on Gq with constant
c > 0 if there exists an idempotent polynomial R such that

(3.25)
∣∣∣∣R(aq

)∣∣∣∣p > c

q−1∑
k=0

∣∣∣∣R(kq
)∣∣∣∣p .

The next well-known lemma (see [14, 3] etc.) allows to restrict to a = 1.

Lemma 3.4.3. Assume that there is p-concentration at 1/q on Gq with constant c, that
is, with some appropriate idempotent R we have

(3.26)
∣∣∣∣R(1

q

)∣∣∣∣p > c

q−1∑
k=0

∣∣∣∣R(kq
)∣∣∣∣p .

Let now a ∈ N, 0 < a < q be a natural number so that a and q are relatively prime. Then
there is also p-concentration at a/q on Gq with constant c: that is, (3.26) implies (3.25)
with some appropriately chosen (possibly different) idempotent R.

Proof. Let Q be the idempotent that satisfies (3.26). Let now a 6≡ 0, 1 (mod q, of
course) be another value, coprime to q. We then have a multiplicative inverse b of a
mod q so that 1 ≤ b < q and ab ≡ 1 mod q. With this particular b we can consider

(3.27) R(x) := Q(bx).

Clearly we have R(0) = Q(0), R(a/q) = Q(ab/q) = Q(1/q), and the values of R(j/q) =
Q(jb/q) with j = 0, . . . , q−1 will cover all values of Q(k/q) with k = 0, 1, . . . , q−1, exactly
once each. Therefore, we conclude that (3.25) holds with a and R. �
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Remark 3.4.4. If Q is in Pq, then instead of Q(bx) we can take for R the polynomial
in Tq which coincides with Q(bx) on the grid Gq, that is, the polynomial Πq(Q(b ·)) of
Definition 3.4.1. Indeed, it is also an idempotent polynomial since b and q are coprime.

So now it makes sense to formally define the following concentration coefficient.

Definition 3.4.5. We define, for q ∈ N,

(3.28) c]p(q) := sup
R∈P

∣∣∣R(1
q

)∣∣∣p∑q−1
k=0

∣∣∣R(k
q

)∣∣∣p ,
and

(3.29) c]p := lim inf
q→∞

c]p(q).

We want to extend concentration results on discrete point grids to the whole of T, and
keep track of constants. We state this as a proposition.

Proposition 3.4.6. Let p > 0 be such that there is full p-concentration with gap at 0.
If c]p > 0, then p-concentration holds for the whole of T, and we have the inequality

(3.30) cp ≥ 2c]p.

Moreover, the same level of concentration holds with gap.

Proof. Let us fix a symmetric open set E and construct a related peaking idempotent.
First, there exists some interval J :=

[
a
q −

1
2q ,

a
q + 1

2q

]
with (a, q) = 1, such that J and −J

are contained in E. We fix R that gives the p-concentration at a/q on Gq with a constant
C: this can be done with C arbitrarily close to c]p(q) in view of Lemma 3.4.3.

Now, let ε be given. By uniform continuity we may choose 0 < δ < 1/2 so that we have
the inequalities

(3.31) |R(t+ a/q)|p ≥ |R(a/q)|p − ε |R(a/q)|p , (|t| ≤ δ/q)

and, for k = 0, 1, · · · , q − 1,

|R(t+ k/q)|p ≤ |R(k/q)|p + ε|R(0)|p, (|t| ≤ δ/q)

which implies immediately

(3.32)
q−1∑
k=0

|R(t+ k/q)|p ≤ (1 + qε)
q−1∑
k=0

|R(k/q)|p. (|t| ≤ δ/q)

Once δ is chosen, we will take T a gap-peaking idempotent at 0, provided by Proposition
3.1.9 – compare also (3.17)-(3.18) – with the given ε, δ as above, and N larger than the
degree of R, so that

(3.33) S(x) := R(x)T (qx)

is an idempotent, too. It remains to show

(3.34) 2C
∫

T
|S|p ≤ κ(ε)

∫
E
|S|p,
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with κ(ε) getting arbitrarily close to 1 when ε is chosen appropriately small.
Denoting τp :=

∫
T |T |

p and I := [a
q −

δ
2q ,

a
q + δ

2q ], we find

1
2

∫
E
|S|p ≥

∫
J
|S|p ≥ (1− ε) |R(a/q)|p

∫
I
|T (qx)|pdx

≥ (1− ε) |R(a/q)|p 1
q

∫ δ

−δ
|T |p

≥ (1− ε)2τp

q
|R(a/q)|p .(3.35)

We now estimate the whole integral of |S|p. We define the intervals

Jk :=
[
k

q
− 1

2q
,
k

q
+

1
2q

]
, Ik :=

[
k

q
− δ

q
,
k

q
+
δ

q

]
(k = 0, . . . , q − 1).

Then, if we proceed as in (3.35), using (3.32) this time, we find that

q−1∑
k=0

∫
Ik

|S|p =
∫

I0

q−1∑
k=0

|R(t+ k/q)|p|T (qt)|p ≤ τp

q
(1 + qε)

q−1∑
k=0

|R(k/q)|p,

while ∫
Jk\Ik

|S|p ≤ 2 |R(0)|p
∫ k

q
+ 1

2q

k
q
+ δ

q

|T (qx)|pdx =
2
q
|R(0)|p

∫ 1
2

δ
q

|T (x)|pdx

≤ ετp

q
|R(0)|p ≤ ετp

q

q−1∑
k=0

|R(k/q)|p.

Taking the sum over k for the last integrals and adding the above sum for integrals over
the Ik’s, we obtain the estimate

(3.36)
∫

T
|S|p ≤ τp

q
(1 + 2qε)

∑
k

|R(k/q)|p.

Combining (3.35) and (3.36), (3.34) obtains with κ(ε) := (1− ε)−2(1 + 2qε).

Let us finally prove p-concentration with gap. It is sufficient to remark that instead of
taking the polynomialR in (3.33) we could have as well taken the polynomialR((Mq+1)x),
with M arbitrarily large. From this point, the proof is identical, since the two polynomials
take the same values on the grid. If the gaps of the peaking idempotent T are taken large
enough, then S will have gaps larger than M . �

We can modify slightly the previous proof of Proposition 3.4.6 to prove concentration
results on the corresponding second grid, using the peaking property with gap at 1/2
instead of 0.

Definition 3.4.7. We shall say that there is p-concentration at 2a+1
2q on the grid G?

q

with constant c if there exists an idempotent polynomial R such that

(3.37)
∣∣∣∣R(2a+ 1

2q

)∣∣∣∣p > c

q−1∑
k=0

∣∣∣∣R(2k + 1
2q

)∣∣∣∣p .
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Remark that in particular we restrict to idempotents R that do not vanish identically
on the grid under consideration, which we assume in the following definition.

Definition 3.4.8. If q ∈ N, then we define

(3.38) c?p(q) := sup
R∈P

∣∣∣R( 1
2q

)∣∣∣p∑q−1
k=0

∣∣∣R(2k+1
2q

)∣∣∣p
and

(3.39) c?p := lim inf
q→∞

c?p(q).

Again, the first step is to restrict to 1/(2q).

Lemma 3.4.9. Assume that there is p-concentration at 1/(2q) on G?
q with constant c.

Let now a ∈ N, 0 ≤ a < q be so that 2a+ 1 and q are relatively prime. Then there is also
p-concentration at (2a+ 1)/(2q) on the grid G?

q with the same constant c.

Proof. Let Q be the idempotent that satisfies (3.37) with a = 0. We then have
a multiplicative inverse b of 2a + 1 mod 2q so that 1 ≤ b < 2q and (2a + 1)b ≡ 1
mod 2q; hence, in particular, also b is odd. Now with this particular b we can consider
R(x) := Q(bx) exactly as before in (3.27).

Clearly we have R(0) = Q(0), R((2a+1)/(2q)) = Q((2a+1)b/(2q)) = Q(1/(2q)), and the
values of R(j/(2q)) = Q(jb/(2q)) with j = 0, . . . , 2q − 1 will cover all values of Q(k/(2q))
with k = 0, 1, . . . , 2q − 1, exactly once each, and such a way, that odd j’s correspond to
odd k’s. Therefore, we conclude that (3.37) holds with 2a+ 1 and R. �

Remark 3.4.10. As in Remark 3.4.4, if Q is in P2q then instead of Q(bx) we can take
for R the polynomial Π2q(Q(b ·)), which coincides with Q(bx) at each point of the grid
G2q, hence a priori on G?

q .

The corresponding proposition goes as follows:

Proposition 3.4.11. Let p > 0 be such that there is full p-concentration with gap at
1/2. If c?p > 0, then p-concentration holds for the whole of T and we have the inequality

(3.40) cp ≥ 2c?p.

Moreover, the same property holds with arbitrarily large gaps.

Proof. Similarly to the above, it suffices to derive the concentration phenomenon for
the symmetrized of an interval J := [aq ,

(a+1)
q ] for q a sufficiently large number, 2a + 1

coprime to 2q.
In this setup for any c < c?p(q) Lemma 3.4.9 leads to the inequality

(3.41)
∣∣∣∣R(2a+ 1

2q

)∣∣∣∣p > c

q−1∑
k=0

∣∣∣∣R(2k + 1
2q

)∣∣∣∣p .
with an appropriate R ∈ P.
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At this point, the proof is exactly the same as the one of the previous proposition,
considering intervals Ik centered at (2k+ 1)/(2q) with radius δ/q, with δ small enough so
that R is nearly constant on Ik, and then considering S(x) := R(x) · T (qx) again, where
T is now a gap-peaking idempotent at 1/2, with gaps sufficiently large, so that S is still
an idempotent. Using the fact that outside Ik but within (k/q, (k + 1)/q), the integral of
T is arbitrarily small in view of the peaking property at 1/2, we obtain the assertion as
before. The only difference is the fact that 0 is no more in the grid, so that the quotient of
R(0)p with

∑q−1
k=0 |R ((2k + 1)/(2q))|p appears in the rests, but does not change the limit

since it remains fixed while ε tends to 0.
The p-concentration with gap at the same level of concentration is obtained also in a

similar way. �

3.5. p-concentration by means of peaking at 1/2

We now prove the part of Theorem 3.1.7 concerning p not an even integer, which we
state separately for the reader’s convenience. The following proof contains also the one of
Proposition 3.1.12, which we gave in the introduction as a hint for the methods.

Proposition 3.5.1. Let p > 0 be a given value for which there is full p-concentration
with gap at 1/2. Then for each nonempty symmetric open set E ⊂ T and each constant
c < 1 we can find an idempotent S ∈ P with the property that

(3.42)
∫

E
|S|p > c

∫
T
|S|p.

Moreover, S may be chosen with arbitrarily large gaps.

Proof. By Proposition 3.4.11, it is sufficient to prove that c?p = 1/2, that is,

(3.43) lim inf
q→∞

sup
R∈P

∣∣∣R( 1
2q

)∣∣∣p∑q−1
k=0

∣∣∣R(2k+1
2q

)∣∣∣p =
1
2
.

We will restrict to a sub-family of polynomials in P, obtained by products of Dirichlet
kernels. Observe first that for r < q, the product

Dr(x)
L−1∏
l=1

Dr

(
((2q)l + 1)x

)
is also an idempotent polynomial, the modulus of which coincides with the L-th power of
|Dr| on the grid under consideration. So we are to prove also the last inequality in

(3.44)
1

2c?p
= lim sup

q→∞

1
2c?p(q)

≤ inf
L

lim sup
q→∞

min
r<q

1
2
·

∑q−1
k=0

∣∣∣Dr

(
2k+1

2q

)∣∣∣Lp

∣∣∣Dr

(
1
2q

)∣∣∣Lp
≤ 1.

Let us define

(3.45) A(λ, r, q) :=

∣∣∣∣∣∣
sin
(

π
2q

)
sin
(

rπ
2q

)
∣∣∣∣∣∣
λ ∑

k∈N ;k<q/2

∣∣∣∣∣∣
sin
(

(2k+1)rπ
2q

)
sin
(

(2k+1)π
2q

)
∣∣∣∣∣∣
λ

.
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Substituting the explicit value of Dr and using parity, the quantity appearing inside the
minr<q in (3.44) can be written as A(Lp, r, q) for q even. When q is odd, we have to
subtract half of the term obtained for k = (q − 1)/2, which gives only a 0 contribution to
the limit below. In any case, we have the inequality

(3.46)
(

1
2c?p(q)

≤
)

1
2

∑q−1
k=0

∣∣∣Dr

(
2k+1

2q

)∣∣∣Lp

∣∣∣Dr

(
1
2q

)∣∣∣Lp
≤ A(Lp, r, q).

We then have the following lemma.

Lemma 3.5.2. For fixed λ > 1, we have the inequality

(3.47) lim sup
q→∞

min
r<q

A(λ, r, q) ≤ inf
0<t<1/2

A(λ, t),

where

(3.48) A(λ, t) :=
1

(sin(πt))λ

∞∑
k=0

∣∣∣∣sin ((2k + 1)πt)
2k + 1

∣∣∣∣λ .
Proof. Let us fix t ∈ (0, 1/2), and consider the limit of A(λ, 2[qt], q) when q tends to

∞. It has the same limit as∣∣∣∣ π
2

sin (πt)

∣∣∣∣λ (q−1)/2∑
k=0

∣∣∣∣∣∣
sin
(

(2k+1)[qt]π
q

)
q sin

(
(2k+1)π

2q

)
∣∣∣∣∣∣
λ

.

As q sin( (2k+1)π
2q ) ≥ (2k + 1), Lebesgue’s theorem for series justifies taking the limit

termwise. This concludes the proof of the lemma. �

So in view of Lemma 3.5.2 1/(2c?p(q)) ≤ infL inftA(Lp, t). If we take t = 1/4, all the
absolute values of the occurring sines in A(λ, t) are equal, hence cancel out. It remains

A(λ, 1/4) =
∑

k

(2k + 1)−λ = (1− 2−λ)ζ(λ).

Now we can take L, or λ = Lp, arbitrarily large. Therefore, the infimum in (3.44) is just
1. �

Note that we found that 1/(2c?p) ≤ infL inftA(Lp, t) holds always.
Let us conclude this section by a remark that will be used later on for measurable sets,

where we will not be able to consider large products of Dirichlet kernels for p ≤ 1, and will
have to restrict to two factors, that is, take L = 2. Observe that each term

∣∣∣ sin((2k+1)πt)
(2k+1) sin(πt)

∣∣∣
is below 1, so that A(λ, t) and inftA(λ, t) are strictly decreasing functions of λ.

Moreover, inf0<t<1/2A(2, t) can be computed explicitly. To compute the summation, we
can use Plancherel Formula once we have recognized the Fourier coefficients (at k and −k)
of the function

π

2
(
χ[−t/2,t/2](x)− χ[−t/2,t/2](x− 1/2)

)
.

It follows that

(3.49) A(2, t) =
π2t

4 sin2(πt)
.



126 3. INTEGRAL CONCENTRATION OF IDEMPOTENTS

Substituting x = πt and recalling (3.5) we find 1/mintA(2, t) = 2c2 ≈ 0.92..., which is
already much larger than 1/2, and close to 1.

3.6. Uniform lower bounds for p-concentration

We now prove the lower estimation in the p ∈ 2N part of Theorem 3.1.7. We proceed
as in the last section, using Proposition 3.4.6 instead of Proposition 3.4.11, since we have
now gap-peaking idempotents at 0 only. Similarly to the above, we consider a product of
Dirichlet kernels:

(3.50) R(x) := Dr(x)
L−1∏
`=1

Dr((q` + 1)x).

We have to consider the quantities (3.28) and (3.29), i.e. we are to calculate

(3.51)
2
cp
≤ 1

c]p
= lim sup

q→∞

1

c]p(q)
≤ inf

L
lim sup

q→∞
min
r<q

∑q−1
k=0

∣∣∣Dr

(
k
q

)∣∣∣Lp

∣∣∣Dr

(
1
q

)∣∣∣Lp
.

As before, in order to estimate the quotient in (3.51) we have to consider the equivalent
quantity B(Lp, r, q) defined by

(3.52) B(λ, r, q) :=

∣∣∣∣∣∣
r sin

(
π
q

)
sin
(

rπ
q

)
∣∣∣∣∣∣
λ

+ 2

∣∣∣∣∣∣
sin
(

π
q

)
sin
(

rπ
q

)
∣∣∣∣∣∣
λ

q/2∑
k=1

∣∣∣∣∣∣
sin
(

krπ
q

)
sin
(

kπ
q

)
∣∣∣∣∣∣
λ

.

We then have the following lemma.

Lemma 3.6.1. For fixed λ > 1, we have the inequality

(3.53) lim sup
q→∞

min
r<q

B(λ, r, q) ≤ inf
0<t<1/2

B(λ, t),

where

(3.54) B(λ, t) :=
(

πt

sinπt

)λ
(

1 + 2
∞∑

k=1

∣∣∣∣sin (kπt)
kπt

∣∣∣∣λ
)
.

Proof. For fixed t ∈ (0, 1/2), the left hand side of (3.53) is bounded by the value
that we obtain when letting q →∞ with r/q tending to t at the same time. We conclude
as in Lemma 3.5.2. �

Let us define for any fixed value of κ > 0, the quantity

(3.55) β(κ) := lim sup
λ7→∞

B
(
λ, κ

√
6/λ
)
,

which will be useful later on, since 2/cp ≤ infL inftB(Lp, t) ≤ β(κ). For fixed s, the
quantity

(√
λ/s · sin(s/

√
λ)
)λ tends to exp(−s2/6). We use this for the computation of

β(κ) and see that the first factor of (3.54) tends to exp(κ2π2).
Applying the well-known Weierstrass product for sin we get

log
(

sinx
x

)
=

∞∑
n=1

log
(

1− x2

n2π2

)
≤ −

( ∞∑
n=1

1
n2

)
x2

π2
= −x

2

6
.
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For the log function here we must restrict to 0 < x < π: that provides us the useful
inequality

sinx
x

≤ exp
(
−x

2

6

)
(0 < x < π),

what we apply in the second factor of (3.54) for the range 1 ≤ k < 1/t. Thus (at the end
extending the sum up to ∞) we are led to

(3.56)
∑

k<1/t

∣∣∣∣sin (kπt)
kπt

∣∣∣∣λ ≤ ∑
k<1/t

exp
(
−λk

2π2t2

6

)
≤

∞∑
k=1

e−κ2k2π2
.

Using the trivial bound | sinu| ≤ 1, the tail sum can be estimated as

(3.57)
∑

k≥1/t

∣∣∣∣sin (kπt)
kπt

∣∣∣∣λ ≤ (πt)−λ

(
tλ +

∫ ∞

1/t

du

uλ

)
= π−λ

(
1 +

1/t
λ− 1

)
,

which tends to 0 with t = κ
√

6/λ and λ→∞.
Collecting the above estimates for β := infκ>0 β(κ), we are led to

(3.58) β ≤ inf
κ>0

eπ
2κ2

{
1 + 2

∞∑
k=1

e−κ2k2π2

}
.

Note that the sum in the last curly brackets is well-known as Jacobi’s theta function.
Choosing here κ = 0.225, we can compute β ≤ 4.13273, which leads to cp ≥ 2/β ≥ 0.48394,
surprisingly close to the theoretical upper bound of 1/2.

The computation of inf0<t<1/2B(λ, t) can be executed explicitly for λ = 4. We recognize
the Fourier coefficients of the convolution product χ[−t/2,t/2] ∗ χ[−t/2,t/2], whose L2 norm
is equal to (2t3/3)1/2. Then we use the Plancherel Formula and obtain that

(3.59) c4 ≥ max
0<t<1/2

3
(
sin4(πt)

)
π4t3

> 0.495,

the concrete numerical value having been obtained for the choice of t = 0.267.

Comparing the results of the last two sections, it should become clear why gap-peaking
at 1/2 is even more useful for us, than gap-peaking at 0. Indeed, once we can apply gap-
peaking at 1/2, we are able to consider G?

q in place of Gq: and that means that instead
of the second largest term |Dr(1/q)|, we can consider the very largest term |Dr(1/2q)| in
comparison to the whole grid sum. Thus in the translated grid case we can take advantage
of considering arbitrarily large powers L, eventually killing all other terms compared to
our |Dr(1/2q)|L, while in the original grid Gq this is subject to a fine balance, restricted
by the necessity of keeping control of the dominance of the very largest term Dr(0)L.

Part III : Concentration for measurable sets

We will go back to all steps of the previous proofs in order to partly generalize the
results to measurable sets. We start by using the theorem of Khintchine on diophantine
approximation, see [24]. We prove that a symmetric measurable set of positive measure
contains large parts of intervals which are centered at a point of one of the two grids, Gq
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or G?
q . This is done in Section 3.7. Then in Section 3.8 we prove the gap-peaking property

at 0 or 1/2 in the even stronger form that some measurable set of measure 2ηδ can be
deleted from the interval [−δ,+δ]. In Section 3.9 we prove that values of an idempotent,
concentrating on the grid, does not take too different values on the intervals of length 2δ.
Here we may consider additional assumptions on the degree of the polynomials. Based
on the results of these sections, we will prove p-concentration for measurable sets when
p > 1/2, with some estimates on constants. We conclude the proof of Theorem 3.1.8
finally in §3.10.

3.7. The use of Diophantine Approximation

We will state two propositions, used respectively on Gq and G?
q . The first one is a direct

corollary of Khintchine’s Theorem, while the second one is its inhomogeneous extension,
first proved by Szüsz [37] and later generalized by Schmidt [35].

Proposition 3.7.1. Let E be a measurable set of positive measure in T. For all θ > 0,
η > 0 and Q ∈ N, there exists an irreducible fraction k/q such that q > Q and

(3.60)
∣∣∣∣[kq − θ

q2
,
k

q
+

θ

q2

]
∩ E

∣∣∣∣ ≥ (1− η)
2θ
q2
.

Moreover, given a positive integer ν, it is possible to choose q such that (ν, q) = 1.

Proposition 3.7.2. Let E be a measurable set of positive measure in T. For all θ > 0,
η > 0 and Q ∈ N, there exists an irreducible fraction (2k + 1)/(2q) such that q > Q and

(3.61)
∣∣∣∣[2k + 1

2q
− θ

q2
,
2k + 1

2q
+

θ

q2

]
∩ E

∣∣∣∣ ≥ (1− η)
2θ
q2
.

Moreover, given a positive integer ν, it is possible to choose q such that (ν, q) = 1.

Proof of Propositions 3.7.1 and 3.7.2. Let α be 0 or 1/2. Then according to
Szüsz’ Theorem [37] for ξ belonging to a set of full measure,

(3.62) ‖qξ − α‖ ≤ θ

q

has an infinite number of solutions. For α = 1/2, for instance, it means that with a certain
k ∈ N (0 ≤ k < q) we have

(3.63) |qξ − 1/2− k| < θ

q
, i.e.

∣∣∣∣ξ − 2k + 1
2q

∣∣∣∣ < θ

q2
.

We may assume, and we will do it, that the denominator and numerator are coprime: if not,
we cancel out the common factors, and the error, compared to the new denominator q′, is
even better. Note that for irrational ξ we have infinitely many different such denominators
q′: indeed, if not we get a contradiction with the fact that the error tends to zero with q.

Let us choose for ξ an irrational density point of E having infinitely many solutions of
(3.62). This we can do, since almost every point of E is such. For η fixed and q sufficiently
large we then have ∣∣∣∣T \ E ∩

[
ξ − 2θ

q2
, ξ +

2θ
q2

]∣∣∣∣ ≤ 2ηθ
q2

.
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So, if q and k are such that (3.63) holds and if q is large enough, then (3.61) is satisfied
by the triangle inequality.

It remains to prove that the denominators q can be taken so that (ν, q) = 1. Schmidt
proves in [35] that, for each polynomial P with integer coefficients and each α ∈ T, for
almost every ξ one can find an infinite number of integers r such that

(3.64) ‖P (r)ξ − α‖ ≤ θ

r
.

Both for α = 0 or 1/2, it suffices to consider P (r) = νr + 1. Schmidt’s Theorem then
allows (3.64) for a.e. ξ by infinitely many r. So we can approach ξ for α = 0 by fractions
k/(νr+1), and for α = 1/2 by fractions 2k+1

2(νr+1) , eventually simplified. So the denominator
and ν will always remain coprime. The rest of the proof is identical. �

3.8. Peaking idempotents at 0 and 1/2

We will prove the following, which is a more accurate statement than those of Section
3.3.

Proposition 3.8.1. Let p > 2. For ε > 0 there exists δ0 > 0 and η > 0 such that, for
all δ < δ0 and N ∈ N, if E is a measurable set that satisfies |E ∩ [−δ, δ]| > 2(1− η)δ, then
there exists an idempotent T with gaps larger than N such that∫

E∩[−δ,δ]
|T |p > (1− ε)

∫ 1

0
|T |p.

Let p > 0 not an even integer. Then for ε > 0 there exists δ0 > 0 and η > 0 such that, for
all δ < δ0 and N ∈ N, if E is a measurable set that satisfies |E∩ [12 − δ,

1
2 + δ]| > 2(1−η)δ,

then there exists an idempotent T with gaps larger than N such that∫
E∩[ 1

2
−δ, 1

2
+δ]

|T |p > (1− ε)
∫ 1

0
|T |p.

Proof. We will proceed as in Section 3.3. The main point is, for our peaking bivariate
functions f , to find an appropriate power L of the marginal function F for which the same
kind of estimate is valid: we will then take a Riesz product with L factors. The proposition
will be a consequence of the following lemma, with F the associated marginal function.

Lemma 3.8.2. Let F : [0, 1/2] → [0,∞) be a nonnegative, continuous function, having a
strict global maximum at 0. Moreover, assume that there exist 0 < a < A and ∆ > 0 with
F admitting the estimates

(3.65) F (0) exp(−Ax2) < F (x) < F (0) exp(−ax2) (x ∈ [0,∆]).

Then for all ε > 0 there exists an η > 0 so that for any 0 < δ < ∆ there is an
L = L(ε, δ) ∈ N with the property that whenever E ⊂ [0, 1/2) is a measurable set satisfying
|E ∩ [0, δ]| > (1− η)δ, then we have the inequality∫

E∩[0,δ]
FL > (1− ε)

∫ 1/2

0
FL.
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Remark 3.8.3. Observe that (3.65) certainly holds true in case F has a nonvanishing
second derivative (from the right) at 0. Also note the validity of the obvious modification
for even functions on [−1/2, 1/2] assuming the analogous two-sided conditions.

Proof. We can assume F (0) = 1. By condition, max[∆,1/2] F < 1, hence – perhaps
with a different value of a, which still depends only on F – we have F (x) < exp(−ax2) on
the whole of [0, 1/2]. Extending F to the halfline [0,∞) as 0 outside [0, 1/2], we thus still
have this estimate.

Let now H := [0,∞) \ ([0, δ] ∩ E). Then we have

(3.66)
∫

H
FL <

∫
[0,δ]\E

1 +
∫ ∞

δ
e−Lax2

dx < |[0, δ] \ E|+
∫ ∞

δ

dx

Lax2
< ηδ +

1
δaL

.

On the other hand with a very similar calculation we obtain∫
[0,δ]∩E

FL >

∫
[0,δ]∩E

e−LAx2
dx =

(∫ ∞

0
−
∫

[0,δ]\E
−
∫ ∞

δ

)
e−LAx2

dx

≥ 1
2

√
π

LA
− |[0, δ] \ E| −

∫ ∞

δ

dx

Lax2
>

1
2

√
π

LA
− ηδ − 1

δaL
.(3.67)

A combination of (3.66) and (3.67) reveals that it suffices to ascertain

ηδ <
ε

8

√
π

LA
and

1
δaL

<
ε

8

√
π

LA
,

that is, with a constant C = C(a,A) = CF ,

ηδ
√
L ≤ ε′ and

1
δ
√
L
≤ ε′ with ε′ := ε/C.

Thus we conclude the proof choosing L := dε′−2δ−2e and η = ε′2/2. �

To prove both cases of the proposition, note that we can also translate F so that the
maximum point falls to 1/2 instead of 0.

At this point the proof of the proposition is identical to the proofs of Section 3.3, using
Lemma 3.3.2. For the given E, we find an idempotent T such that integrals of |T |p,
respectively on E ∩ [−δ,+δ] and on the whole torus, satisfy the same inequality as the
corresponding integrals for the function FL. �

3.9. Bernstein-type inequalities

In order to adapt our proof of Proposition 3.4.6, we need to control the error done when
replacing values of idempotents in a neighborhood of one of the grids by its values on the
grid.

We introduce the following notation, which will simplify the proofs. For f a periodic
function, we will use the sums of its values on the two grids, which we denote by

(3.68) Σq(f) :=
q−1∑
k=0

f

(
k

q

)
, Σ?

q(f) :=
q−1∑
k=0

f

(
2k + 1

2q

)
.

The aim of this paragraph is to recall classical inequalities, and modify them according
to our purposes. Let us prove the following lemma.
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Lemma 3.9.1. For 1 < p < ∞ there exists a constant Cp such that, for P ∈ Tq and for
|t| < 1/2, we have the two inequalities

(3.69)
q−1∑
k=0

|P (t+ k/q)|p ≤ Cp

q−1∑
k=0

|P (k/q)|p,

(3.70)
q−1∑
k=0

||P (t+ k/q)|p − |P (k/q)|p| ≤ Cp|qt|
q−1∑
k=0

|P (k/q)|p.

Proof. For 1 < p <∞, the Lp norm of a trigonometric polynomial in Tq is equivalent
to the `p norm of its values on the grid Gq. This is known as the Marcinkiewicz-Zygmund
Theorem: the implied constants depend only on p but tend to ∞ for p tending to 1 or ∞.
For the exact form fitting to our Taylor polynomials see Theorem (7.10), p. 30 chapter
X in [45]; see also [32] for recent extensions. Inequality (3.69) then follows using the
Marcinkiewicz-Zygmund Theorem twice, and invariance by translation of the Lp norm.

To obtain (3.70), we use a variant of Bernstein’s Inequality, which may be stated, for
P ∈ Tq, as

(3.71)
∫ 1

0
|P (x+ t)− P (x)|pdx ≤ (2πq|t|)p

∫ 1

0
|P (x)|pdx.

Since this is not the usual form of Bernstein’s Inequality, we indicate how to obtain it. We
write, for positive t,

|P (x+ t)− P (x)|p ≤ tp−1

∫ x+t

x
|P ′(u)|pdu,

apply this estimate on the left hand side of (3.71) and then change the order of integration.
We then conclude by using Bernstein’s Inequality as stated in Theorem (3.16), chapter X
in [45], that is, ∫ 1

0
|P ′(x)|pdx ≤ (2πq)p

∫ 1

0
|P (x)|pdx.

Let us proceed with the proof of (3.70). By using the Marcinkiewicz-Zygmund Theorem
for both sides of (3.71), we find that, for 1 < p < ∞, there exists some constant Cp,
(independent of P ∈ Tq), such that

(3.72)
q−1∑
k=0

|P (t+ k/q)− P (k/q)|p ≤ Cp|qt|p
q−1∑
k=0

|P (k/q)|p.

Let us use the elementary inequality

(3.73) ||a|p − |b|p| ≤ p|a− b|
(
|a|p−1 + |b|p−1

)
and the Hölder Inequality together with (3.72), as well as our notation given in (3.68).
We obtain the estimate

q−1∑
k=0

||P (t+ k/q)|p − |P (k/q)|p| ≤

pC
1
p
p |qt| (Σq|P |p)

1
p ·
(
Σq

((
|P |p−1 + |P (t+ ·)|p−1

) p
p−1

)) p−1
p
.
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After having used Minkowski’s inequality and the estimate (3.69), i.e. Σq(|P (t + ·)|p) ≤
CpΣq(|P |p), the last factor on the right hand side becomes C ′p (Σq(|P |p))

p−1
p , which con-

cludes the proof of (3.70). �

The following is an easy consequence of Lemma 3.9.1.

Lemma 3.9.2. For 1 < p < ∞ and with the same constant Cp as in Lemma 3.9.1 we
have the following property. Whenever P ∈ T2q satisfies

(3.74)
q−1∑
k=0

|P (k/q)|p ≤ KΣ?
q(|P |p),

then, for any |t| < 1/2, we have the two inequalities

(3.75)
2q−1∑
k=0

∣∣∣∣P ( k

2q
+ t

)∣∣∣∣p ≤ Cp(K + 1)Σ?
q(|P |p),

(3.76)
2q−1∑
k=0

∣∣∣∣∣∣∣∣P ( k

2q
+ t

)∣∣∣∣p − ∣∣∣∣P ( k

2q

)∣∣∣∣p∣∣∣∣ ≤ 2Cp(K + 1)|qt|Σ?
q(|P |p).

This lemma explains why we introduce the next definition.

Definition 3.9.3. Let 0 < p <∞ and q ∈ N. We say that a polynomial f satisfies the
grid-condition with constant K, if we have

(3.77)
q−1∑
k=0

∣∣∣∣f (kq
)∣∣∣∣p ≤ K

q−1∑
k=0

∣∣∣∣f (2k + 1
2q

)∣∣∣∣p ,
that is, with the notation (3.68), Σq(|f |p) ≤ KΣ?

q(|f |p).

Remark 3.9.4. When P ∈ Tq, (3.74) – i.e., the grid condition (3.77) for P – holds with
K = Cp depending only on p > 1: just use (3.69) for the translated by 1/2q polynomial.

We will use these considerations for products of such polynomials as well.

Lemma 3.9.5. For 1/2 < p <∞ there exists a constant Ap such that, whenever Q ∈ T2q

satisfies the grid-condition (3.77) with exponent 2p, i.e.

(3.78) Σq(|Q|2p) :=
q−1∑
k=0

|Q(k/q)|2p ≤ KΣ?
q(|Q|2p),

then for the product polynomial R(x) := Q(x)Q((2q + 1)x) we have for all |t| < 1/2 and
for all a := 0, 1, . . . , q − 1 the two inequalities

(3.79)
q−1∑
k=0

∣∣∣∣R(t+
2k + 1

2q

)∣∣∣∣p ≤ (1 +Ap(K + 1)q2|t|)Σ?
q(|Q|2p),

(3.80)
∣∣∣∣R(t+

2a+ 1
2q

)∣∣∣∣p ≥ ∣∣∣∣R(2a+ 1
2q

)∣∣∣∣p −Ap(K + 1)q2|t|Σ?
q(|Q|2p).
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Proof. Let us put, for k = 0, 1, . . . 2q − 1,

(3.81) Xk(t) :=
∣∣∣∣Q(t+

k

2q

)∣∣∣∣2p

.

Note that the two factors of R take the same values on the grid G?
q . Moreover, since

Q ∈ T2q and 2p > 1, it follows from Lemma 3.9.2, formula (3.76) that
2q−1∑
k=0

|Xk(t)−Xk(0)| ≤ 2C2p(K + 1)q|t|Σ?
q(|Q|2p).

Let us pass to

Yk(t) :=
∣∣∣∣R(t+

k

2q

)∣∣∣∣p =
√
Xk(t)Xk((2q + 1)t).

Using the Cauchy-Schwarz Inequality and the previous inequality, we find for all |t| ≤ 1/2

q−1∑
k=0

Y2k+1(t) ≤

(
q−1∑
k=0

X2k+1(t)

) 1
2
(

q−1∑
k=0

X2k+1((2q + 1)t)

) 1
2

≤

(
Σ?

q(|Q|2p) +
2q−1∑
k=0

|Xk(t)−Xk(0)|

) 1
2

×

(
Σ?

q(|Q|2p) +
2q−1∑
k=0

|Xk((2q + 1)t)−Xk(0)|

) 1
2

≤ (1 + 2C2p(2q + 1)q(K + 1)|t|)Σ?
q(|Q|2p).

We have proved (3.79). We can write in the same way that

Y2a+1(t)2 ≥

(
X2a+1(0)−

2q−1∑
k=0

|Xk(t)−Xk(0)|

)

×

(
X2a+1(0)−

2q−1∑
k=0

|Xk((2q + 1)t)−Xk(0)|

)
,

so that
Y2a+1(t) ≥ Y2a+1(0)− 2C2p(K + 1)(2q + 1)q|t|Σ?

q(|Q|2p).

�

3.10. From discrete concentration to concentration for measurable sets

Definition 3.10.1. We define

(3.82) γ]
p := lim inf

q→∞
γ]

p(q), γ]
p(q) := sup

R∈Pq

∣∣∣R(1
q

)∣∣∣p∑q−1
k=0

∣∣∣R(k
q

)∣∣∣p .
Using the notation (3.54), the results of Section 3.6 give immediately

(3.83) (γ]
p)
−1 ≤ inf

0<t<1/2
B(p, t),

valid for any p > 1.
Let us give the corresponding definition for the grid G?

q .
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Definition 3.10.2. We define

(3.84) γ?
p := lim inf

q→∞
γ?

p(q), γ?
p(q) := sup

R∈Pq

∣∣∣R( 1
2q

)∣∣∣p∑q−1
k=0

∣∣∣R(2k+1
2q

)∣∣∣p .
We have seen in Section 3.5 that, for p > 1, with the notation (3.48),

(3.85) (2γ?
p)−1 ≤ inf

0<t<1/2
A(p, t).

Proposition 3.10.3. Let p > 1/2 not an even integer. Then there is p-concentration
for measurable sets, and γp ≥ 2γ?

2p; furthermore, there is p concentration for measurable
sets with gap at the same level.

Proof. We postpone to the end of the proof the fact that peaking idempotents can
be taken with arbitrary large gaps.

The proof is organized as the one of Proposition 3.4.6. At the outset we have a measur-
able and symmetric set E ⊂ T with |E| > 0. Let us first take C < γ?

2p arbitrarily close to
γ?

2p, then fix ε a small constant. Let η and δ0 be given by Proposition 3.8.1 (second case),
depending on ε. Let θ > 0 be a small constant which will be fixed later on, and q0 large
enough so that, for q > q0 one has C < γ?

2p(q) and θ/q ≤ δ0. With this data we consider
some interval centered at (2a + 1)/(2q) given by Proposition 3.7.2. Let P ∈ Pq be such
that

(3.86)
∣∣∣∣P ( 1

2q

)∣∣∣∣2p

> C

q−1∑
k=0

∣∣∣∣P (2k + 1
2q

)∣∣∣∣2p

= CΣ?
q(|P |2p).

By Lemma 3.4.9, and Remark 3.4.10, we can find an idempotent Q ∈ P2q such that we
have

(3.87)
∣∣∣∣Q(2a+ 1

2q

)∣∣∣∣2p

=
∣∣∣∣P ( 1

2q

)∣∣∣∣2p

and

(3.88)
q−1∑
k=0

∣∣∣∣Q(2k + 1
2q

)∣∣∣∣2p

=
q−1∑
k=0

∣∣∣∣P (2k + 1
2q

)∣∣∣∣2p

,

and also

(3.89)
q−1∑
k=0

∣∣∣∣Q(kq
)∣∣∣∣2p

=
q−1∑
k=0

∣∣∣∣P (kq
)∣∣∣∣2p

.

Recall that P ∈ Pq, so for 2p > 1 according to Remark 3.9.4 it satisfies the grid condition
(3.77) with a constant C2p depending only on p. Since P and Q attain exactly the same
set of values both on the two grids Gq and G?

q , the idempotent Q also satisfies the grid-
condition (3.77) for 2p with the constant C2p. So the idempotent

(3.90) R(x) := Q(x)Q((2q + 1)x),

matching with Q2 on both grids, also satisfies

(3.91) |R(0)|p ≤ Σq(|R|p) ≤ C2pΣ?
q(|R|p),
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i.e. the grid condition (3.77) holds for R, too (with K = C2p). Whence Lemma 3.9.5
applies to R, so choosing θ satisfying Ap(C2p + 1)C−1θ ≤ ε and in view of (3.87), (3.88)
and (3.89) for all |t| < θ/q2 we obtain the estimates

(3.92)
q−1∑
k=0

∣∣∣∣R(t+
2k + 1

2q

)∣∣∣∣p ≤ (1 + ε)Σ?
q(|P |2p) = (1 + ε)Σ?

q(|R|p),

(3.93)
∣∣∣∣R(t+

2a+ 1
2q

)∣∣∣∣p ≥ (1− ε)
∣∣∣∣R(2a+ 1

2q

)∣∣∣∣p ,
using also that, on comparing (3.86), (3.87), (3.88) and (3.90) we are led to

(3.94) CΣ?
q(|R|p) ≤

∣∣∣∣R(2a+ 1
2q

)∣∣∣∣p .
Next, we will need a peaking idempotent at 1/2, as obtained by Proposition 3.8.1. This

one will depend on our given constants ε, η, δ = θ/q and N larger than the degree of
R, and also on a measurable set of finite measure Eε that we define now. The mapping
x 7→ qx is bijective from J := (k/q, (k+ 1)/q) onto (0, 1), and we take for Eε the image of
E ∩ J . It is clear that the condition

|Eε ∩ [
1
2
− δ,

1
2

+ δ]| > 2(1− η)δ

has been satisfied. We take the idempotent T provided by Proposition 3.8.1 for this data,
satisfying

(3.95)
∫

Eε∩[ 1
2
−δ, 1

2
+δ]

|T |p > (1− ε)
∫ 1

0
|T |p.

We finally consider the product

(3.96) S(x) := T (qx)R(x),

which is also an idempotent. We will prove as in Section 3.4 that

(3.97) 2C
∫

T
|S|p ≤ κ(ε)

∫
E
|S|p,

with κ(ε) being arbitrarily close to 1 when ε is sufficiently small. In order to do this, we
put

(3.98) Jk :=
[
k

q
,
k + 1
q

]
, Ik :=

[
2k + 1

2q
− θ

q2
,
2k + 1

2q
+

θ

q2

]
for k = 0, . . . , q − 1. From now on the proof of the proposition is similar to the one of
Proposition 3.4.6. We repeat briefly the steps for the reader’s convenience. Denoting
τp :=

∫
T |T |

p, we find, using the property (3.95), that

1
2

∫
E
|S|p ≥

∫
Ia∩E

|S|p ≥ (1− ε)
∣∣∣∣R(2a+ 1

2q

)∣∣∣∣p ∫
Ia∩E

|T (qx)|pdx

≥ (1− ε)
∣∣∣∣R(2a+ 1

2q

)∣∣∣∣p 1
q

∫
Eε∩[ 1

2
−δ, 1

2
+δ]

|T |p(3.99)

≥ (1− ε)2τp

q

∣∣∣∣R(2a+ 1
2q

)∣∣∣∣p .
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Then we give an upper bound for the integral on the whole torus:
q−1∑
k=0

∫
Ik

|S|p =
∫ θ/q2

−θ/q2

q−1∑
k=0

∣∣∣∣R(2k + 1
2q

+ t

)∣∣∣∣p |T (qt)|p dt

≤ (1 + ε)Σ?
q(|R|p)

τp

q
,

while ∫
Jk\Ik

|S|p ≤ 2‖R‖p
∞

∫ k
q
+ 1

2q

k
q
+ δ

q

|T (qx)|pdx = 2 |R(0)|p 1
q

∫ 1
2

δ
q

|T (x)|pdx

≤ ετp

q
|R(0)|p ≤ C2pετ

p

q
Σ?

q(|R|p),

making use of (3.91), too. Summing the last integrals over k, we obtain

(3.100)
∫

T
|S|p ≤ τp

q
(1 + ε+ C2pε)Σ?

q(|R|p).

Now (3.94), (3.99) and (3.100) give (3.97) with κ(ε) :=(1 + ε+ C2pε)(1− ε)−2, concluding
the proof, except for assuring arbitrarily large gaps.

It remains to indicate how to modify the proof to get peaking idempotents with arbi-
trarily large gaps. So we fix ν as a large odd integer, and we will prove that we can replace
the polynomial Q(x) by some polynomial Q̃(νx), with gaps at least ν. Recall first that we
can take arbitrarily large q satisfying (ν, q) = 1. So we now choose Q̃ similarly as before,
to be the polynomial of degree 2q that coincides with P (bx) on the grid Gq, but now with
b chosen so that νb(2a+ 1) ≡ 1 mod 2q. Such a b exists, as ν(2a+ 1) and 2q are coprime.
We then fix

R(x) := Q̃(νx)Q̃((2q + 1)νx).

There is an additional factor ν, which modifies the value of θ, but otherwise the proof is
identical. We know that Q̃(νx) and P (bx), and thus P (x), take globally the same values on
both grids Gq and G?

q , because in each case we multiply by an odd integer that is coprime
with 2q. So in particular the grid condition (3.78) is satisfied with C2p once again. �

Similarly, but with the grid Gq instead of G?
q , we obtain the following.

Proposition 3.10.4. Let p > 2 an even integer. Then there is p-concentration for
measurable sets, and γp ≥ 2 max

(
γ]

p, γ
]
2p

)
. Moreover, we can choose the concentrating

trigonometric polynomials with arbitrarily large gaps.

Proof. We do not give the proof, since most modifications are straightforward, and
even simpler. Now if γ]

p ≥ γ]
2p, we consider C < γ]

p and P satisfying

(3.101)
∣∣∣∣P (1

q

)∣∣∣∣p > C

q−1∑
k=0

∣∣∣∣P (kq
)∣∣∣∣p.

We build R := Q := ΠqP (b ·) of degree lower than q, using Lemma 3.4.3 and Remark
3.4.4, with b chosen such that b · a ≡ 1 mod q, and thus a/q is mapped on 1/q. Thus we
obtain the required concentration as above.
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If γ]
p < γ]

2p, we take C < γ]
2p and an idempotent P ∈ Pq satisfying

(3.102)
∣∣∣∣P (1

q

)∣∣∣∣2p

> C

q−1∑
k=0

∣∣∣∣P (kq
)∣∣∣∣2p

.

In this case we consider R := R(x) := Q(x)Q((q+ 1)x) with Q := ΠqP (b ·) ∈ Pq, and the
proof is even more like the above argument.

�

3.11. Positive definite trigonometric polynomials

The proof of Proposition 3.10.3 generalizes directly to the class P+, with the main
difference that, when considering the values of a polynomial P on some grid Gq or G?

q , we
can always consider the projected polynomial Π2q(P ), taking the same values on G2q and
hence both on Gq and on G?

q : here we need not be concerned for occasional coincidences of
projected terms in the sum, as the projection Π2q leaves P+ invariant anyway. Therefore,
the concentration constants γ+

p , that we will obtain for positive definite functions and
measurable sets, will be the same as the ones for open sets (i.e. cp). In particular, we have
the following.

Theorem 3.11.1. Let p > 0 not an even integer. Then there is full p-concentration
for the class P+ for measurable sets. Moreover, we can choose the concentrating positive
definite trigonometric polynomials with arbitrarily large gaps.

Proof. The proof follows the same lines as the one of Proposition 3.10.3, but is
simpler. We know that for p /∈ 2N there is full p-concentration at 1/2, and also from
Section 3.5 that this implies c?p = 1/2, c.f. the proof of Proposition 3.5.1. So it is sufficient
to prove the following lemma, which is very similar to Proposition 3.10.3. �

Lemma 3.11.2. Let p > 0. Then there is p-concentration for the class P+ for measurable
sets, and if p /∈ 2N, then the level of concentration satisfies γ+

p ≥ 2c?Lp for any L such
that Lp > 1. Moreover, unless p = 2, we can choose the concentrating trigonometric
polynomials with arbitrarily large gaps.

Proof. We only sketch the modifications to accomplish in the proof of Proposition
3.10.3. Now C < c?Lp. Naturally, we choose P ∈ Pq such that,

(3.103)
∣∣∣∣P ( 1

2q

)∣∣∣∣Lp

> C

q−1∑
k=0

∣∣∣∣P (2k + 1
2q

)∣∣∣∣Lp

.

Then, as before, we choose Q := Π2q(P (b ·)). Now we can take R := QL, as clearly
R ∈ P+, and its degree is less than 2Lq (instead of 2q(2q+1) previously). So the Bernstein
type inequalities can be applied more easily, with better estimates than previously, not
restricting the value of L in this case. (In fact, we could as well consider Π2qR ∈ T2q∩P+,
too.)
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Note that here there is no need to L→∞, but only to take some L > 1/p, as we already
have c?p = 1/2 for p /∈ 2N. On the other hand L > 1/p we really do need, as we apply
Marcinkievicz-Zygmund inequalities in the proof.

Otherwise the proof for Lp > 1 can be adapted from Proposition 3.10.3, with all other
modifications being straightforward. �

When p ∈ 2N, we do not have gap-peaking at 1/2, but, unless p = 2, we have that at 0.
With a completely analogous argument, we obtain the corresponding result as follows.

Theorem 3.11.3. Let p 6= 2 be an even integer. Then there is p-concentration for the
class P+ for measurable sets at the level γ+

p ≥ 2 supL∈N c
]
Lp. Moreover, we can choose the

concentrating positive definite trigonometric polynomials with arbitrarily large gaps.

3.12. Concentration of random idempotents

We will see that part of the estimates proved for P+ in Section 3.11 extend to P. This
will be shown by certain random constructions of idempotents.

We have seen in Section 3.6 that inftB(λ, t) appears naturally when proving lower
bounds for cp when p > 2 is an even integer: for cp (and thus for γ+

p ) we obtained the
lower bound supL 2/ inftB(Lp, t). We will now prove the same lower bound for γp.

Proposition 3.12.1. Let p > 2 an even integer. Then, for L ≥ 1 an integer, γp ≥
2/ inftB(Lp, t).

Proof. Let C < 1/mintB(Lp, t) = 1/B(Lp, t0), say, and let us chose some c :=
c(L, p) < t0. Then let q be large enough, and P ∈ Pq such that

(3.104)
∣∣∣∣P (1

q

)∣∣∣∣Lp

> C

q−1∑
k=0

∣∣∣∣P (kq
)∣∣∣∣Lp

.

Reflecting back to Section 3.6, we know that P may be taken as some Dirichlet kernel
Dr, with r = [t0q] > cq. (This is the only specific property of Dr that we will use.)
Let us take R := M−1Πq(PL), which coincides with M−1PL on the grid Gq. Choosing
M := LrL−1, which is a majorant of the Fourier coefficients of Πq(PL), the polynomial R
may be written as

R =
q−1∑
k=0

αkek,

with all αk ∈ [0, 1] and
∑

k αk = R(0) = r/L. By construction, we also have

(3.105)
∣∣∣∣R(1

q

)∣∣∣∣p > C

q−1∑
k=0

∣∣∣∣R(kq
)∣∣∣∣p.

We now define a random idempotent Rω by

Rω =
q−1∑
k=0

Xk(ω)ek,
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where Xk are independent Bernoulli random variables, with Xk of parameter αk, that is,
P(Xk = 1) = αk. We want to prove that for any ε > 0 and for q > q0(ε), with positive
probability the random idempotent Rω satisfies the inequality

(3.106)
∣∣∣∣Rω

(
1
q

)∣∣∣∣p > K(ε)
q−1∑
k=0

∣∣∣∣Rω

(
k

q

)∣∣∣∣p,
with K(ε) := Kp(ε) arbitrarily close to C with ε sufficiently small.

Observe that our random idempotents Rω are such that E(Rω(x)) = R(x), so in view of
(3.105), in order to prove (3.106) we have to measure the error done when replacing Rω by
its expectation. Let us center our Bernoulli variables Xk by considering X̃k := Xk − αk.
Clearly, X̃k has variance V(X̃k) = αk(1 − αk) ≤ αk, so Rω(k/q) has expectation R(k/q)
and variance bounded by r/L. Also, by assumption, |R(1/q)| > C1/pR(0) > cC1/p

L q, so
after an application of Markov’s Inequality we find

P
(∣∣∣∣Rω(1/q)

R(1/q)

∣∣∣∣ ≤ 1− ε

)
≤ Aε−2q−1,

where A depends on p, c, L, but is independent of q and ε. Whence for q large enough,
the inequality

(3.107)
∣∣∣∣Rω(1/q)
R(1/q)

∣∣∣∣ > 1− ε

holds with probability say at least 2/3.
Let us now consider the sums

S(ω) :=
q−1∑
k=0

∣∣∣∣Rω

(
k

q

)∣∣∣∣p S :=
q−1∑
k=0

∣∣∣∣R(kq
)∣∣∣∣p ,

which we want to compare. So we also put

R̃ω(k/q) := Rω(k/q)−R(k/q), S̃(ω) :=
q−1∑
k=0

∣∣∣R̃ω(k/q)
∣∣∣p .

We claim that

(3.108) E(S̃(ω)) ≤ qCp

(
1 +

∑
αk

) p
2 = qCp

(
1 +

r

L

) p
2
.

Let us first assume this inequality and conclude the proof of the proposition. So, using
(3.108), S ≥ R(0)p = (r/L)p and S̃(ω) ≥ 0 we are led to

P
(
C(ε)S̃(ω) ≥ εS

)
≤ C(ε)

εS
· qCp

(
1 +

r

L

) p
2 ≤ Aε−1q1−p/2.

Therefore the inequality

(3.109) C(ε)S̃(ω) < εS

also holds with probability at least 2/3 for q large enough.
Next we will need the elementary inequality

(3.110) |a|p ≤ (1 + ε)|b|p + C(ε)|a− b|p,
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valid for arbitrary ε > 0 with some corresponding constant C(ε). This is indeed obvious
in case we have |a| ≤ µ|b| with µ := (1 + ε)1/p > 1, while otherwise we can write |a− b| ≥
|a|−|b| ≥ |a|(1−1/µ)), therefore |a| ≤ µ/(µ−1)|a−b| and we obtain the inequality again.
So applying this inequality with a = Rω(k/q) and b = R(k/q) we can estimate |Rω(k/q)|p

by (1 + ε)|R(k/q)|p + C(ε)|R̃ω(k/q)|p, yielding

S(ω) ≤ (1 + ε)S + C(ε)S̃(ω).

Therefore, taking into account (3.109), (3.105) and (3.107), we find that

CS(ω) ≤ C(1 + 2ε)S < (1 + 2ε)|R(1/q)|p ≤ 1 + 2ε
(1− ε)p

|Rω(1/q)|p

holds with probability at least 1/3 for q > q0 = q0(ε, p, c, L).
So we find that (3.106) does indeed hold with K(ε) := C(1 − ε)p/(1 + 2ε) and for

some appropriate idempotent Rω, once we have (3.108), which we prove now. This is a
consequence of the following lemma, which is certainly classical, but which we give here
for the reader’s convenience.

Lemma 3.12.2. For p > 1 there exists some constant Cp with the following property.
Let αk ∈ [0, 1] and ak ∈ C be arbitrary for k = 0, 1, . . . , N . Let Xk be a sequence of
independent Bernoulli random variables with parameter αk, and let X̃k := Xk − αk be
their centered version, again for k = 0, 1, . . . , N . Then we have

E

∣∣∣∣∣
N∑

k=0

akX̃k

∣∣∣∣∣
2p
 ≤ Cp · max

k=1,...,N
|ak|2p · (1 +

N∑
k=0

αk)p.

Proof. We can normalize by taking maxk=1,...,N |ak| = 1. It follows from classical
martingale inequalities (see [12]) that

E

∣∣∣∣∣
N∑

k=0

akX̃k

∣∣∣∣∣
2p
 ≤ ApE

(∣∣∣∣∣
N∑

k=0

X̃2
k

∣∣∣∣∣
p)

.

So we are left with proving the inequality

(3.111) E

(∣∣∣∣∣
N∑

k=0

X̃2
k

∣∣∣∣∣
p)

≤ A′p

(
1 +

N∑
k=0

αk

)p

.

If 0 ≤ α ≤ 1 and Y is a centered Bernoulli variable with parameter α, then

E
(
eY

2
)

= αe(1−α)2 + (1− α)eα
2 ≤ α(1 + e(1− α)2) + (1− α)(1 + eα2) ≤ eeα,

because ex ≤ 1 + ex for 0 ≤ x ≤ 1 and 1 + eα(1− α) ≤ 1 + eα ≤ eeα. So

(3.112) E
(
e
∑N

k=0 X̃2
k

)
≤ ee

∑N
k=0 αk .
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Finally, we use the fact that, whenever Z is a nonnegative random variable such that
E(eZ) ≤ eκ, then

E(Zp) = p

∫ ∞

0
P(Z > λ)λp−1dλ ≤ (2κ)p + p

∫ ∞

2κ
eκ−λλp−1dλ

≤ 2pκp + p

∫ ∞

0
e−λ/2λp−1dλ = 2pκp +A′′p ≤ (2p +A′′p)(1 + κ)p.

Putting Z :=
∑

k X̃
2
k and κ := e

∑
k αk, (3.112) leads to (3.111). �

So there exists Rω ∈ Pq with (3.106), whence lim infq→∞ γ]
p(q) ≥ C, even γ] :=

lim infq→∞ γ]
p(q) ≥ 1/ inftB(Lp, t), and referring to Proposition 3.10.4 concludes the proof

of Proposition 3.12.1. �

Note that the result implies γ4 ≥ 2/ inftB(4, t) = 0.495 . . . , as computed in (3.59) at
the end of Section 3.6 for the sake of c4, and similarly γ2k ≥ 0.483 . . . for general k > 2
according to the calculations of (3.58).

Remark 3.12.3. These results could also have been obtained by applying the direct
estimates of Salem and Zygmund [33], which allow here to have estimates of the maximum
value of |R̃ω| on the grid Gq. The same remark holds for the next case, using the grid
G2Lq.

The use of the same methods for p > 2 not an even integer is somewhat more delicate:
nevertheless, we will prove full p-concentration with gap for measurable sets. According
to Proposition 3.10.3, it would suffice to show γ?

p = 1/2 for p > 2. Essentially, we will do
this, but with some necessary modifications. On the other hand we do know c?p = 1/2 e.g.
from the proof of Proposition 3.5.1: this proof also provides us a concrete construction,
with the product of certain Dirichlet kernels in the proof, which we will make use in some
extent. We start with

Lemma 3.12.4. Let p > 2. Then for all C < 1/2, there exists a constant K := Kp(C)
with the property that for q large there exists an idempotent P ∈ P2q which satisfies the
two inequalities ∣∣∣∣P ( 1

2q

)∣∣∣∣p > C

q−1∑
k=0

∣∣∣∣P (2k + 1
2q

)∣∣∣∣p,(3.113)

∣∣∣∣P ( 1
2q

)∣∣∣∣p > K

q−1∑
k=0

∣∣∣∣P (kq
)∣∣∣∣p.(3.114)

Proof. We use now from Section 3.5 that for L large enough and q large enough there
exists an idempotent in Pq, which actually can be taken some Dirichlet kernel Dr, with
say r := [q/4] > cq (for some fixed value of c = c(L, p) < 1/4), such that∣∣∣∣Dr

(
1
2q

)∣∣∣∣Lp

> C

q−1∑
k=0

∣∣∣∣Dr

(
2k + 1

2q

)∣∣∣∣Lp

.

From now on we fix L, so that constants may as well depend on L.
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Next, we wish to ensure, with some constant K = K(C, p, L), that

(3.115)
∣∣∣∣Dr

(
1
2q

)∣∣∣∣Lp

> K

q−1∑
k=0

∣∣∣∣Dr

(
k

q

)∣∣∣∣Lp

.

In view of the concrete form of the Dirichlet kernel, it is obvious, that |Dr(1/2q)| ≥
|Dr(1/q)|. Consider now, recalling the estimation of the concentration constants c]p(q) →
c]p in Section 3.6, and in particular reflecting back to (3.50) – (3.52), the lower estimates∣∣∣∣Dr

(
1
q

)∣∣∣∣Lp

>
1

B(Lp, [q/4], q)

q−1∑
k=0

∣∣∣∣Dr

(
k

q

)∣∣∣∣Lp

.

As B(Lp, [q/4], q) → B(Lp, 1/4) > 0 (q →∞), this clearly implies (3.115).
At this point we proceed as above. First we consider the Lth power of Dr and take for

P the projected polynomial M−1Π2q(DL
r ), with M := LrL−1 a majorant of the Fourier

coefficients of DL
r . The polynomial P may be written as

P =
2q−1∑
k=0

αkek,

with all αk ∈ [0, 1] and
∑
αk = P (0) = r/L (' c(L)q). So we have

(3.116)
∣∣∣∣P ( 1

2q

)∣∣∣∣p > C

q−1∑
k=0

∣∣∣∣P (2k + 1
2q

)∣∣∣∣p.
Moreover, by construction we also have the grid condition

(3.117)
∣∣∣∣P ( 1

2q

)∣∣∣∣p > K

q−1∑
k=0

∣∣∣∣P (kq
)∣∣∣∣p

with a certain constant K = K(C, p, L).
Observe that the only required property what P does not have is being an idempotent:

here P ∈ T2q ∩ P+, while we need some polynomial in P2q. So we define, as before, a
random idempotent Pω by

Pω :=
2q−1∑
k=0

Xk(ω)ek,

where Xk are independent Bernoulli random variables, with Xk of parameter αk, that
is, P(Xk = 1) = αk. Then again P (x) = EPω(x), and we measure the error done when
replacing Pω by its expectation.

Let us write Xk = αk + X̃k, where X̃k is centered and has variance αk(1−αk) ≤ αk. So
Pω(k/(2q)) has expectation P (k/(2q)) and variance bounded by r/L.

By construction |P (1/(2q))| > K1/pP (0) > cK1/p

L q. So, by Markov Inequality, as before,
we find that for q large enough, the inequalities

(3.118)
∣∣∣∣Pω(1/(2q))
P (1/(2q))

∣∣∣∣ > 1− ε,

∣∣∣∣Pω(1/q)
P (1/q)

∣∣∣∣ > 1− ε

hold with probability 2/3.
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Denoting again P̃ω(x) := Pω(x)− P (x), let us now consider the sums

S(ω) :=
q−1∑
k=0

∣∣∣∣Pω

(
2k + 1

2q

)∣∣∣∣p , S′(ω) :=
q−1∑
k=0

∣∣∣∣Pω

(
k

q

)∣∣∣∣p ,
S :=

q−1∑
k=0

∣∣∣∣P (2k + 1
2q

)∣∣∣∣p , S′ :=
q−1∑
k=0

∣∣∣∣P (kq
)∣∣∣∣p ,

S̃(ω) :=
q−1∑
k=0

∣∣∣∣P̃ω

(
2k + 1

2q

)∣∣∣∣p , S̃′(ω) :=
q−1∑
k=0

∣∣∣∣P̃ω

(
k

q

)∣∣∣∣p .
To compare these again we use the elementary inequality (3.110) to get |Pω(k/(2q))|p ≤
(1 + ε)|P (k/(2q))|p + C(ε)|P̃ω(k/(2q))|p and thus

S(ω) ≤ (1 + ε)S + C(ε)S̃(ω), S′(ω) ≤ (1 + ε)S′ + C(ε)S̃′(ω).

Applying Lemma 3.12.2 as before, analogously to (3.108) we now obtain

E|P̃ω(k/(2q))|p ≤ qCp

(
1 +

∑
αk

) p
2 ≤ c′(p, L)q1+p/2.

So for q large enough, similarly to (3.109), we prove as before that the inequalities

C(ε)S̃(ω) < εS, C(ε)S̃′(ω) < εS′

hold with probability 2/3, thus combining with the above, we even have

S(ω) < (1 + 2ε)S, S′(ω) < (1 + 2ε)S′

with probability at least 1/3. Taking into account also (3.116), (3.117) and (3.118), we
can summarize our estimates so that with positive probability

CS(ω) <
1 + 2ε

(1− ε)p

∣∣∣∣Pω

(
1
2q

)∣∣∣∣p ,
KS′(ω) <

1 + 2ε
(1− ε)p

∣∣∣∣Pω

(
1
2q

)∣∣∣∣p .
Since ε is arbitrary, we conclude that some Pω ∈ P2q satisfies the requirements of the
Lemma. �

At this point, we have all the elements to have the best constant for all p > 1 not even.

Proposition 3.12.5. Let p > 1 not an even integer. Then there is full p-concentration
with gap for measurable sets.

Proof. The proof follows the same lines as the proof of Proposition 3.10.3. We take
now C < 1/2 and, instead of choosing P ∈ Pq satisfying (3.86) and starting the consruction
of Q with that, we start with choosing P ∈ P2q given by Lemma 3.12.4, with exponent
2p > 2.

Note that the only point of the proof of Proposition 3.10.3 using the fact that P is in
Pq is the grid condition (3.78), which is given now by (3.114). Thus Lemma 3.9.5 applies
even in this case, while otherwise the proof is exactly as for Proposition 3.10.3. �
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3.13. p-concentration on Zq

In all the above proofs, the same kind of estimates as (3.4), but with finite sums on a
grid of points replacing integrals, plays a central role. So it was natural to get interested
in best constants on these finite structures. This led us to the same problem, but taken
on finite groups, which we describe now.

Consider Zq := Z/qZ, which identifies with the grid (or subgroup) Gq ⊂ T, defined in
(3.24). We still denote by e(x) := e2πix/q the exponential function adapted to the group Zq

and by eh the function e(hx). Note that the dual group of Zq is again Zq, i.e. characters
of the group Zq are the exponential functions {eh : h ∈ Zq}. Again the set

(3.119) Pq :=

{∑
h∈H

eh : H ⊂ Zq ' {0, · · · , q − 1}

}
is called the set of idempotents on Zq. In this context, the set of idempotents has 2q

elements.
We then adapt the definition of p-concentration to the setting of Zq. This strongly

corresponds to Definition 3.10.1, the reason for the repetitious explanation being only the
slight change of context (from Gq to Zq). Nevertheless, we keep the same notations for
the various concentration constants which strictly correspond to each other.

Definition 3.13.1. Let p > 0. We then define

(3.120) γ]
p(q) := max

f∈Pq

|f(1)|p∑q−1
k=0 |f(k)|p

and also

(3.121) γ]
p := lim inf

q→∞
γ]

p(q).

Note the slight alteration of notions between the continuous group T and the discrete
group Zq. Since the latter occurred as a technical tool in the analysis of T, in the definition
of γ]

p(q) we did not keep considering only symmetric sets. Also the reader may note that
in order to define p-concentration in the group Zq, one should also look for f that satisfies
(3.120), but with f(a), for some arbitrary a ∈ Zq, in the left hand side.

Again for technical convenience, as it was sufficient in the analysis of T, above we mainly
restricted considerations to cases when q was a prime. Then it was easy, for a = 0 the
Dirac mass at 0, which is an idempotent, has the required concentration property with
constant 1, and for a 6= 0 and f chosen to satisfy (3.120), the function g(x) := f(a−1x)
– with a−1 being the unique inverse of a for the multiplication in Zq – satisfies the same
inequality, but with g(a) in the numerator. Indeed, g(a) = f(1), and all other values
taken by f are taken by g since multiplication is one-to-one in Zq for q prime, so that the
denominator is the same sum, but in different order, for f and g.

We can also replace 1 by a in the numerator of (3.120) when q is any integer, but a and q
are coprime. For composite q, and with a consideration of symmetry again for allowing full
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concentration with constant 1, we give the definition, corresponding to definitions 3.1.1,
3.1.2 and 3.1.4, too.

Note that distinction of constants according to openness or measurability of concentrat-
ing subsets does not occur here. On the other hand, it seems to be reasonable to make
a new distinction regarding the restriction if q is assumed to be prime, or arbitrary. As
in the case of open an measurable sets, at the end it may turn out that the constants
coincide: but at the outset we don’t have it for granted. That is, a precise definition of
p-concentration on Zq would be the following.

Definition 3.13.2. The concentration constants of Zq is defined as

γp(Zq) := min
∅6=E⊂Zq
E=−E

max
f∈Pq

∑
a∈E |f(a)|p∑q−1
k=0 |f(k)|p

= min

 min
a∈Zq

a≡−a mod q

γp(a; Zq), min
a∈Zq

a6≡−a mod q

2γp(a; Zq)

 ,(3.122)

where

(3.123) γp(a; Zq) := max
f∈Pq

|f(a)|p∑q−1
k=0 |f(k)|p

Then the uniform level of p-concentration on prime Zq is defined as

Cp := lim inf
q→∞, q prime

γp(Zq)

and the uniform level of p-concentration on integer Zq is defined as

Γp := lim inf
q→∞

γp(Zq).

For q prime – and anyway, for q odd – the first part in the minimum of the second line
of (3.122) can be neglected, as γp(0,Za) = 1 anyway. Moreover, if q ∈ 2N, i.e. q = 2r,
then the first minimum is the minimum of 1 (arising from concentration at 0) and 1/2,
as concentration at q/2 is always 1/2: it can not be larger, since |f(r)| ≤ f(0), but also
it achieves 1/2, since the function f := (1/2)(δ0 + δr) = δ0(2 ·)/2 =

∑q
h=1 e2h exhibits

f(a) = 0 for a 6≡ 0, r mod q, while f(0) = f(r) = r. So we have

(3.124) γp(Zq) =


min

(
1
2 , 2 min

a∈Zq
a6≡−a mod q

γp(a; Zq)
)

q ∈ 2N

2 min
a∈Zq

a6≡−a mod q

γp(a; Zq) q ∈ 2N + 1
,

and in particular

(3.125) γp(Zq) = 2γ]
p(q) q prime,

for a 6≡ 0 mod q has a multiplicative inverse mod q, giving γp(a; Zq) = γp(1; Zq), while
γp(0; Zq) = 1, always.

Here we can formulate a discrete analogue of the problem in [2, 3]: Does q-uniform

concentration fail for p = 1? Also, for its own sake, we can ask for the determination of
γp(Zq) and of Cp = 2γ]

p or Γp. The interest in the latter is purely a matter of curiosity,
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because in the transference to the torus it suffices to consider prime q’s: henceforth also our
interest will be restricted to this case here, leaving the somewhat more number theoretical
question of Γp for future investigations.

As we said, p-concentration on Zq plays a role in proofs for p-concentration on the torus.
In order to solve the 2-concentration problem on the torus, Déchamps-Gondim, Piquard-
Lust and Queffélec [14, 15] have considered the concentration problem on Zq, proving the
precise value that we already mentioned,

(3.126) C2 = lim
q→∞, q prime

γ2(Zq) = 2γ]
2 = sup

0≤x

2 sin2 x

πx
= 0.4613 · · · .

Moreover, they obtained γ]
p ≥ (γ]

2)
p/2 for all p > 2. The last assertion is an easy conse-

quence of the decrease of `p norms with p, and we have, in general,

(3.127) γ]
p ≥ (γ]

p′)
p/p′

for p > p′.
Let us also mention that they considered the same problem for the class of positive

definite polynomials (3.11) (with the interpretation of eh changing from e2πiht to e2πiht/q

corresponding to the shift to Zq). The corresponding concentration constants in Definition
3.13.1, but with Pq replaced by P+

q (' P+ on Zq), are denoted by c+p (q) and c+p .
With these notations, it has been proved in [14] that c+2 = 1/4. Since the class of positive

definite polynomials is stable by taking products, it follows that, for all even integers 2k,

γ]
2k ≤ c+2k ≤ 1/4.

It is easy to see that there is uniform p-concentration on Zq for all p > 1, using Dirichlet
kernels. This has been extensively used above, where the discrete problem under consid-
eration here has been largely studied, at least for p an even integer.

On the other hand, coming back to our main point, i.e. to the case of p = 1, and using
the recent results of B. Green and S. Konyagin [19], we answer negatively in this case,
which gives an affirmative answer to the conjecture of [3] for finite groups Zq.

All the results on Zq summarize in the following theorem, which gives an almost complete
answer to the p-concentration problem under consideration, except for the best constants,
which are not known for p 6= 2.

Theorem 3.13.3. For all 1 < p <∞ we have uniform p-concentration on Zq. We have
2γ]

2 given by (3.126), then 0.495 < 2γ]
4 ≤ 1/2. For all p > 2, we have 2γ]

p > 0.483. On the
other hand for p ≤ 1 we do not have uniform p-concentration, moreover, already C1 = 0.

Positiveresults are already contained in the above, where they were used as tools for the
problem of concentration on the torus. As for upper bounds for γ]

p, since the polynomials
f with positive coefficients have their maximum at 0, we have the trivial upper bound
γ]

p ≤ 1/3. Moreover, for p an even integer, we have seen that 2γ]
p ≤ 1/2. Observe that

(3.127) provides an improvement on the bound 2/3 between two even integers. Indeed,
for p ≤ 2k, using 2γ]

2k ≤ 1/2, we obtain

γ]
p ≤ 2−p/k.
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Recall the situation on the group Zq by transferring the results that have been obtained
for the grid Gq ⊂ T, defined in (3.24). In spite of a slight abuse of notation, let us still keep
the notation Pq from (3.16) for the set of trigonometrical idempotents of degree less than
q on T, with eh denoting the exponential eh(x) := e2πihx adapted to T. When restricted
to Gq identified with 1

q Zq, it coincides with the corresponding idempotent (the coefficients
are the same, but the exponential is now adapted to Zq) on Zq. This is a one-to-one
correspondence between idempotents of Zq and idempotents of degree less than q, since
these last ones are determined by their values on q points, and, in particular, on Gq. We
will prefer to deal with ordinary trigonometrical polynomials, and see Zq as the grid Gq.

Unless explicitly mentioned, we will only consider Taylor polynomials, that is, trigono-
metrical polynomials with only non negative frequencies.

Again with the same slight lack of precision, we identify the quantities γ]
p, γ

]
p(q) in

Definition 3.13.1 with the ones in Definition 3.10.1.
One can obtain a lower bound of γ]

p, with p > 1, by the only consideration of the
Dirichlet kernels (3.8). Here the constraint on the degree restricts us to n < q and L = 1,
but essentially formula (3.51) provides the required estimate of 1/γ]

p. Having n and q tend
to infinity with n/q tending to t, we can refer to Lemma 3.6.1 for the fact that for p > 1
the inequality

(3.128) (γ]
p)
−1 ≤ inf

0<t<1/2
B(p, t),

holds with B(λ, t) (defined in (3.54) for all λ > 1).

It is clear that B(λ, t) is bounded for λ > 1, so that γ]
p > 0 and there is uniform

p-concentration: just take as a bound the value for t = 1/4. Let us try to get more
precise estimates. The computation of inf0<t<1/2B(λ, t) can be executed explicitly for
λ = 2 and λ = 4. In the first case we recognize in the sum the Fourier coefficients of
χ[−t/2,t/2], whose L2 norm is

√
t. So (3.128) leads to the minimization of the function

2 sin2 t
πt , and to the estimate γ]

2 ≥ sup0≤t
2 sin2 t

πt = 0.4613 · · · . This is the formula given
by Déchamps-Gondim, Lust-Piquard and Queffélec in [14]. We refer to them for the
necessity of the condition, for which they give a smart proof. For λ = 4, repeating the
argument leading to (3.59), we recognize in the sum of (3.54) the Fourier coefficients of
the convolution product χ[−t/2,t/2] ∗ χ[−t/2,t/2], whose L2 norm is equal to (2t3/3)1/2, and
then using Plancherel Formula we obtain that

(3.129) γ]
4 ≥ max

0<t<1/2

3
(
sin4(πt)

)
π4t3

> 0.495.

For larger integer values of λ, the computations do not seem to be easily handled. But we
can prove that there exists a uniform lower bound for γ]

p when p > 2. To see this, we will
use a version of Lemma 3.12.2 above. Let us first give new definitions, relative to positive
definite polynomials.

Similarly as for idempotents, by the same slight abuse of notation, let us denote

(3.130) P+
q :=

{∑
h∈H

aheh : ah ≥ 0, h ∈ {0, · · · , q − 1}

}
.
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the set of trigonometrical polynomials with non negative coefficients of degree less than
q on T, with eh denoting the exponential adapted to T. Again, when restricted to Gq, it
coincides with the corresponding positive definite polynomial with non negative coefficients
on Zq, and this defines a one-to-one correspondence between positive definite polynomials
of Zq and positive definite polynomials on T of degree less than q. The constant C+

p can
then be defined by

(3.131) C+
p := lim inf

q→∞
C+

p (q), C+
p (q) := sup

R∈P+
q

∣∣∣R(1
q

)∣∣∣p∑q−1
k=0

∣∣∣R(k
q

)∣∣∣p .
It is much easier to find positive definite polynomials in P+

q than idempotents. The reason
for that is that here the restriction on the degree is not essential: any polynomial P ∈ P+

can be projected (see the notation of Definition 3.4.1) to P̃ := ΠqP ∈ P+
q while keeping

its values on the grid i.e. on Zq. The closedness of P+ under projections explains why
the concentration constants C+

p (q) and C+
p are in fact equal to the constants c+p (q), c+p ,

(i.e. the same constants lacking any restrictions on the degree), which can be defined
analogously to Definition 3.4.8 of c]p, c

]
p(q) with P changed to P+.

In particular, whenever P is in Pq, then, for each positive integer L the polynomial
Q := ΠqP

L is also in P+
q . So we can take as well powers of Dirichlet kernels as polynomials

R in the right hand side of (3.131). This leads to the following bounds, via (3.51) and
Lemma 3.6.1. The first estimate gives a non explicit bound for a fixed p:

(3.132) C+
p ≥ sup

L≥1
sup

0<t<1/2
B(Lp, t)−1.

The next two estimates

(3.133) inf
L≥1

inf
0<t<1/2

B(Lp, t) ≤ inf
κ>0

lim sup
λ7→∞

B
(
λ, κ

√
6/λ
)
≤ 4.13273

may be found in and right after (3.58). These lead to

(3.134) 2C+
p > 0.483.

We prove now that we have the same estimates for γ]
p when p > 2.

Theorem 3.13.4. We have 2γ]
p > 0.483 uniformly for all p > 2 .

This is a consequence of the following proposition, which is more general than the cor-
responding Lemma 3.12.2 above.

Proposition 3.13.5. Let p > 2 and c > 0, ε > 0. Then there exists q0 := q0(c, ε) such
that, if q > q0 and P :=

∑q−1
0 aheh is a polynomial of degree less than q that satisfies the

two conditions

(3.135) cqmax
h
|ah| ≤

∑
|ah| ≤ c−1|P (1/q)|,

(3.136) |P (1/q)| ≥ c

(
q−1∑
k=0

|P (k/q)|p
)1/p

,
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then there exists a polynomial Q of degree less than q, whose coefficients are either ah/|ah|
or 0, such that

|Q(1/q)| ≥ (1− ε)|P (1/q)|,(3.137) (
q−1∑
k=0

|Q(k/q)− P (k/q)|p
)1/p

≤ ε|P (1/q)|.(3.138)

Observe that, for P positive definite, Q is an idempotent. In this case, the first condition
can be reduced to P (0) ≥ cqmaxh |ah|. Indeed, the fact that |P (1/q)| ≥ cP (0) follows
from the second one.

Let us take the proposition for granted, and use it in our context.

Proof of Theorem 3.13.4. Let us take a positive definite polynomial P of degree
less than q for which

2
∣∣∣P (1

q

)∣∣∣p∑q−1
k=0

∣∣∣P (k
q

)∣∣∣p ≥ c0 > 0.483.

Such P ∈ P+
q exists in view of (3.134). We claim that there exists an idempotent Q for

which the same ratio is bounded from below by c0C(ε), with C(ε) being arbitrarily close
to 1 when ε > 0 is chosen sufficiently small. Indeed, we can apply the proposition as
soon as we have proved that P satisfies the condition (3.135) (uniformly for q large). We
have seen that P can be taken as ΠqD

L
n , i.e. the polynomial of degree less than q, which

coincides with DL
n on the grid Gq, for n chosen in such a way that n/q ≈ t = κ

√
6/λ is

small enough so that we approach the extremum in (3.133). Next, it is easy to see that
P (0) = nL, while |P̂ (k)| ≤ LnL−1. So we have (3.135) with a very small constant c, but
what is important that it does not depend on q tending to ∞ (for fixed ε). To conclude
the proof, we use the fact that, by Minkowski’s inequality, and using the assumption on
P , we have (

q−1∑
k=0

∣∣∣∣Q(kq
)∣∣∣∣p
)1/p

≤

(
q−1∑
k=0

∣∣∣∣P (kq
)∣∣∣∣p
)1/p

+ ε|P (1/q)|

≤ ((2/c0)1/p + ε)|P (1/q)|

≤ (1− ε)((2/c0)1/p + ε)|Q(1/q)|.

The constant tends to (2/c0)1/p when ε tends to 0, which concludes the proof. �

The same method leads to

(3.139) γ]
p ≥ sup

L≥1
sup

0<t<1/2
B(Lp, t)−1.

This finishes the proof of the part of Theorem 3.13.3 concerning p > 1, except for the
proof of Proposition 3.13.5, which we do now. It relies on the construction of random
polynomials, which may have an independent interest.
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Proof of Proposition 3.13.5. Without loss of generality we may assume maxh |ah| =
1. We put αk := |ak| and σ; =

∑
αk, so that 0 ≤ αk ≤ 1 and cq ≤ σ ≤ c−1|P (1/q)|.

We take a sequence of independent random variables X0, X1, . . . , Xq−1 that follow the
Bernoulli law with parameters α0, α1, . . . , αq−1 on some probability space (Ω,A,P) and
set

Pω :=
q−1∑
0

bhXh(ω)eh

with bh := ah/|ah| for ah 6= 0, otherwise bh = 0. Then the expectation of Pω is equal to P .
We will prove that Q = Pω satisfies (3.137) and (3.138) with positive probability. Let us
first consider (3.137), and prove that the converse inequality holds with probability less
than 1/3 for q large enough. Indeed, one has the inclusions

{ω; |Pω(1/q)| ≤ (1− ε)|P (1/q)|} ⊂ {ω; |Pω(1/q)− P (1/q)| > ε|P (1/q)|},

so that, by Markov inequality, using the fact that the variance of Pω(1/q) is
∑
αk(1−αk) ≤

σ, we have

P
(∣∣∣∣Pω(1/q)

P (1/q)

∣∣∣∣ ≤ 1− ε

)
≤ c−2ε−2σ−1.

By (3.135) we know that this quantity is small for q large.
Next, to show (3.138), in view of (3.135) it is sufficient to prove that with probability

2/3,
q−1∑
k=0

|Pω(k/q)− P (k/q)|p ≤ cpεpσp.

We claim that there exists some uniform constant Cp, for p > 2, such that, for each k,

(3.140) E(|Pω(k/q)− P (k/q)|p) ≤ Cpσ
p/2.

Let us take this for granted and finish the proof. By simple estimation

P
(∑

|Pω(k/q)− P (k/q)|p ≥ (cεσ)p
)
≤ c−pε−pCp q σ

−p/2.

From this we conclude easily, using the fact that σ ≥ cq, so that the right hand side tends
to 0 when q tends to infinity.

Finally, (3.140) is a well-known property of independent sums of Bernoulli variables, see
Lemma 3.12.2 above. �

Of course one would like to know whether constants are the same for classes Pq and P+
q .

Thanks to the work of Déchamps-Gondim, Lust-Piquard and Queffélec, we know that it
is not the case for p = 2, but the last proposition induces to conjecture that they are the
same for p > 2.

Note that Proposition 3.13.5 holds when (3.135) is replaced by the weaker assumption
σ ≥ δ(q)q2/p max |ah|, with δ tending to infinity with q. However, for sparse coefficients this
cannot go through, take e.g. P (x) = frac12e(x). Therefore, one would like to ascertain
somehow that the extremal P in C+(q) has a somewhat dense coefficient sequence, an
issue to be studied more closely.
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Finally, we prove here the negative result of Theorem 3.13.3. It will be more convenient,
in this part, to work directly on Zq, and not on the grid Gq. We now restrict to q prime,
which is sufficient to conclude negatively.

Assume that there exists some constant c and some idempotent f =
∑

h∈H eh such that

(3.141) |f(1)| ≥ c

q−1∑
k=0

|f(k)|.

We claim that H may be assumed having cardinality ≤ q/2. Indeed, H is certainly not
the whole set {0, · · · , q−1}, since the corresponding idempotent is q times the Dirac mass
at 0. Moreover, the idempotent f̃ , having spectrum cH, takes the same absolute values as
f outside 0, while its value at 0 is q−#H. So, if #H > q/2, then f̃ satisfies also (3.141).

From now on, let r := #H ≤ q/2. We have by assumption (3.141)
∑q−1

k=0 |f(k)| ≤
|f(1)|/c ≤ f(0)/c = r/c. So the function

g := r−1 (f − rδ0)

is 0 at 0, has `1 norm bounded by 1
c +1, while its Fourier coefficients are equal to 1/r−1/q

(r of them), or −1/q, since the delta function has all Fourier coefficients equal to 1/q. But,
according to Theorem 1.3 of [19], we should have qmink |ĝ(k)| tending to 0 when q tends
to ∞ (note that the Fourier transform here is replaced by the inverse Fourier transform in
[19], which is the reason for multiplication by q compared to the statement given there).
This gives a contradiction, and allows to conclude that there is no uniform 1-concentration.
This finishes the proof.

We leave the following as an open question.

Problem 3.13.6. With the notation of Definition 3.13.1, we obtained that γ]
1(q)) → 0

as q →∞. Determine β := lim inf
q→∞

log(1/γ]
1(q))/ log log q.

Using the full strength of the result of [19], the constant c in the proof of Theorem 3.13.3
may be chosen uniformly bounded from below in q by log−α q, with α less than 1/3 (that
is, the proof by contradiction shows that c > log−α q is not possible, hence β ≥ 1/3). On
the other hand the Dirichlet kernel exhibits γ]

1(q) ≥ C/ log q, i.e. β ≤ 1. This leaves open
the question if β achieves 1, i.e. log(1/γ]

1(q))/ log log q can be taken anything less than 1.
The problem is in relation with the Littlewood conjecture on groups Zq, for which there
has been new improvements by Sanders [34].

3.14. More on L1 concentration

Recall the definition of p-concentration for measurable sets given in Definition 3.1.4. The
main theorem of [3], described in Theorem 3.1.5, formulated that there is p-concentration
for all p > 1. We have proved above that there is p-concentration even for all p > 1/2,
while the same authors conjectured that idempotent concentration fails already for p = 1.

Furthermore, we proved that the constant γp is equal to 1 when p > 1 and p is not an
even integer. As for the exceptional situation for p ∈ 2N, this is in line with the fact that
Lp norms behave differently depending on whether p is an even integer or not in a certain



152 3. INTEGRAL CONCENTRATION OF IDEMPOTENTS

number of problems, such as the Hardy-Littlewood majorant problem (does an inequality

on absolute values of Fourier coefficients imply an inequality on Lp norms?), Zygmund’s
question (does a Wiener-Ingham type essentially uniform distribution of the p-norm holds,

at least on intervals longer than 2π/N , when f ∈ Lp(T) has gaps exceeding N in its Fourier

series?) or the Wiener property for periodic positive definite functions (does a positive

definite function belong to Lp when it is the case on a small interval around 0?). To these
we shall return in Section 3.15.

The other open question is what happens for 0 < p < 1, where there is full concentration
(for open sets), but we could not achieve the same strength of results for measurable sets
as well. In particular, even if we disproved the conjecture of [3] for p = 1, the situation is
not yet entirely clear. Indeed, when we restrict the class of symmetric measurable sets to
symmetric open sets or enlarge the class of idempotent polynomials to all positive definite
ones, that is, allow all non negative coefficients and not only 0 or 1, then we obtain full
concentration, i.e. c1 = 1 and c+1 = γ+

1 = 1. So one may conjecture that even γ1 = 1
(even if we understand that one should be cautious with such conjectures).

We can not achieve this ultimate result, neither we can determine the exact value of γ1.
Nevertheless, by pushing forward our techniques, we can somewhat further improve our
previous estimate on the concentration constant γ1 for measurable sets, and prove a lower
estimation quite close to 1. Our goal here is to prove the following numerically improved
concentration estimate in the critical case of p = 1.

Theorem 3.14.1. For p = 1 there is concentration for measurable sets at the level γ1 >

0.96. Moreover, for arbitrarily large given N the corresponding concentrating idempotent
can be chosen with gaps at least N between consecutive frequencies.

Our argument will be a refined version of the proof of Proposition 3.10.3, where the grid
condition of Definition 3.9.3 played a crucial role. In fact, now it is better to make this
role more explicit by introducing the following modified discrete concentration constants.
We start with some further notations for the grid condition itself.

Definition 3.14.2. Let 0 < p <∞ and q ∈ N. The set of polynomials satisfying a grid-
condition (3.77) of Definition 3.9.3 with the constant K is denoted as T (K). Furthermore,
for arbitrary degree m ∈ N we write Tm(K) := T (K) ∩ Tm, and we also set P(K) :=
P ∩ T (K) and Pm(K) := Pm ∩ T (K).

Then we can define the modified concentration constants as follows.

Definition 3.14.3. With P2q(K) defined in Definition 3.14.2 we define

(3.142) Γ?
p := sup

K<∞
lim inf
q→∞

Γ?
p(q,K), Γ?

p(q,K) := sup
R∈P2q(K)

∣∣∣R( 1
2q

)∣∣∣p∑q−1
k=0

∣∣∣R(2k+1
2q

)∣∣∣p .
In other words, Γ?

p is positive when there is uniform concentration at 1/2q, (which is the
case for p > 1), but the grids Gq and G?

q do not play the same role; the constant Γ?
p is

only the relative concentration on G?
q (the coset 1

2q + Gq of Gq in G2q), which we try to
maximize.
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Taking the supremum in K means that we do not mind and do not take into account
the actual value of the bound, until it stays bounded uniformly.

In order to carry over the proof of Theorem 3.14.1, we need to control the error done
when replacing idempotents in a neighborhood of points of a grid by its values on the grid.
So as above, we will make use of the Bernstein type Lemma 3.9.1.

This also explains why we have introduced Definitions 3.14.2 and 3.14.3. When P ∈ Tq,
the grid condition (3.77) for P holds with K = Cp depending only on p > 1, c.f. Remark
3.9.4. Therefore, we immediately obtain P2q(K) ⊃ Pq for p > 1 and K ≥ Cp, resulting in
Γ?

p(q,K) ≥ γ?
p(q) for K ≥ Cp and p > 1. Whence

(3.143) Γ?
p ≥ γ?

p (p > 1).

It is then clear that proving inequalities with Γ?
p can yield sharper results than proven

before.

Remark 3.14.4. We can also replace 1 by 2a+ 1 in the numerator of (3.142) when q is
any integer, but 2a+ 1 and 2q - i.e, 2a+ 1 and q – are coprime.

This is the same as Lemma 3.4.9. Note that if R(x) ∈ P2q(K) and b is the multiplicative
inverse of 2a + 1 mod q, then Q(x) := Π2qR(bx) ∈ P2q(K) attaining the same set of
values both on Gq and on G?

q , while Q( 1
2q ) = R(2a+1

2q ). Here Π2q does not spoil being an
idempotent, since for (b, 2q) = 1 bk ≡ bj mod 2q occurs only for k ≡ j mod 2q, so the
projection of nonzero coefficient frequencies is one to one.

A lower bound for Γ?
p is provided by the estimate below.

Lemma 3.14.5. For p > 1, we have the inequality

(3.144)
1

2Γ?
p

≤ inf
0<t<1/2

A(p, t),

where for λ > 1 A(λ, t) is the quantity defined in (3.48).

Proof. This is a combination of (3.46) with L = 1 – when it is easy to see that
Dr ∈ P2q(K) – and Lemma 3.5.2.

Obviously, taking Dirichlet kernels Dr, with r/2q tending to t ∈ (0, 1/2), leads to Dr ∈
Pq. The boundedness condition (3.77), to ensure also Dr ∈ P2q(K), is provided either by
a concrete calculation, or referring to Remark 3.9.4, where in the full generality of P ∈ Pq

and p > 1 we have noted the validity of a grid condition with K = Cp independently also
of q, hence uniformly in q.

Then an application of Lemma 3.5.2 concludes the argument. �

Observe that A(λ, t) tends to ∞ when t tends to 0, so that the infimum in the right hand
side of (3.144) is obtained away from 0. Also note that (for fixed t) A(λ, t), and hence
also inf0<t<1/2A(λ, t) are decreasing functions of λ. Above in (3.49) we have calculated
A(2, t). Substituting x = πt and recalling (3.5), (3.49), (3.85) and (3.143), we find that

Γ?
2 ≥ γ2 ≥

1
2 inf0<t<1/2A(2, t)

= c2 ≈ 0.4613.
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Moreover, it is easy to see that inf0<t<1/2A(λ, t) is left continuous in λ at 2, so that

(3.145) lim inf
p→2−0

Γ?
p ≥ 0.4613.

Let us next give a slight reformulation of Lemma 3.9.2.

Lemma 3.14.6. Let 1 < p <∞ and Cp be the same constant as in Lemma 3.9.1. Then
for all P ∈ T2q(K) and for any |t| < 1/2 we have the two inequalities

(3.146)
2q−1∑
k=0

∣∣∣∣P ( k

2q
+ t

)∣∣∣∣p ≤ Cp(K + 1)Σ?
q(|P |p),

(3.147)
2q−1∑
k=0

∣∣∣∣∣∣∣∣P ( k

2q
+ t

)∣∣∣∣p − ∣∣∣∣P ( k

2q

)∣∣∣∣p∣∣∣∣ ≤ 2Cp(K + 1)|qt|Σ?
q(|P |p).

Let us revisit now the above Lemma 3.12.4! This Lemma means that if p > 2, then for
all C < 1/2 we have Γ?

p(q,K) ≥ C for K = K(C) and q > q0(K,C, p). An immediate
corollary is

Corollary 3.14.7. For p > 2 we have Γ?
p = 1/2.

Actually, we will prove the following result.

Theorem 3.14.8. Let p > 1/2 not an even integer, and 1 < r, s such that p/r+p/s = 1.
Then there is p-concentration for measurable sets, and γp ≥ 2 · Γ?

r
p/r · Γ?

s
p/s; furthermore,

there is p-concentration for measurable sets with gap at the same level.

This implies Theorem 3.14.1 because for p = 1 we can choose r < 2, but converging to
2, and s := r/(r − 1) > 2. Then Γ?

s = 1/2 in view of Corollary 3.14.7. Thus using also
(3.145) we obtain

γ1 ≥ lim inf
r→2−0

2Γ?
r
1/rΓ?

s
1/s

= 2 lim inf
r→2−0

Γ?
r
1/r21/r−1 =

√
2 lim inf

r→2−0
Γ?

r ≥
√

0.9226 > 0.96.

This is the assertion stated in Theorem 3.14.1.

Proof of Theorem 3.14.8. The proof is organized essentially as the proof of Propo-
sition 3.10.3. However, a number of technical changes are necessary, so we give a complete
proof.

In the following we denote p1 := r and p2 := s: the index j will always cover the two
values j = 1 and j = 2.

Let us first take Cj < Γ?
pj

arbitrarily close to Γ?
pj

, and q0 and Kj := K(Cj) be constants
so that for all q > q0 one has Cj < Γ?

pj
(q,Kj).

As the combined constants

(3.148) C := C
p/p1

1 C
p/p2

2 , K := K
p/p1

1 K
p/p2

2

appear frequently, we will use the short notations given above.
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We fix ε > 0 a small constant. Let η and δ0 be given by Proposition 3.8.1, depending
on ε, and let θ > 0 be a small constant which will be fixed later on satisfying θ/q0 ≤ δ0.

Let now q > q0 be chosen with this data so that there exists some interval centered at
(2a+ 1)/(2q) satisfying (3.61) (with a in place of k) of Proposition 3.7.2.

By definition, we have idempotents Pj ∈ P2q(Kj) such that

(3.149)
∣∣∣∣Pj

(
1
2q

)∣∣∣∣pj

> Cj

q−1∑
k=0

∣∣∣∣Pj

(
2k + 1

2q

)∣∣∣∣pj

= CjΣ?
q(|Pj |pj ),

and

(3.150)
q−1∑
k=0

∣∣∣∣Pj

(
k

q

)∣∣∣∣pj

< Kj

q−1∑
k=0

∣∣∣∣Pj

(
2k + 1

2q

)∣∣∣∣pj

= KjΣ?
q(|Pj |pj ).

Next we consider a multiplication by b ∈ N, where b is the multiplicative inverse of 2a+1
mod 2q. With this unique b the multiplication x → bx maps the points of both grids Gq

and G?
q onto themselves bijectively.

So the idempotents Qj(x) := Π2qPj(bx) ∈ P2q attain exactly the same set of values both
on the two grids Gq and G?

q as Pj do. Consequently, we have

(3.151)
∣∣∣∣Qj

(
2a+ 1

2q

)∣∣∣∣pj

=
∣∣∣∣Pj

(
1
2q

)∣∣∣∣pj

and

(3.152)
q−1∑
k=0

∣∣∣∣Qj

(
2k + 1

2q

)∣∣∣∣pj

=
q−1∑
k=0

∣∣∣∣Pj

(
2k + 1

2q

)∣∣∣∣pj

,

and also

(3.153)
q−1∑
k=0

∣∣∣∣Qj

(
k

q

)∣∣∣∣pj

=
q−1∑
k=0

∣∣∣∣Pj

(
k

q

)∣∣∣∣pj

.

As a result, we now have

(3.154)
∣∣∣∣Qj

(
2a+ 1

2q

)∣∣∣∣pj

> CjΣ?
q(|Qj |pj )

and the idempotents Qj also satisfy the grid-conditions (3.150) for pj with the constant
Kj :

(3.155) Σq(|Qj |pj ) ≤ KjΣ?
q(|Qj |pj ).

Our example will be the idempotent

(3.156) R(x) := Q1(x)Q2((2q + 1)x),

matching with Q1Q2 on both grids. By an application of Hölder’s inequality and (3.155)
we obtain

|R(0)|p = Q1(0)pQ2(0)p ≤ Σq(|Q1|p1)p/p1Σq(|Q2|p2)p/p2

≤ KΣ?
q(|Q1|p1)p/p1Σ?

q(|Q2|p2)p/p2 ,(3.157)
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with K in (3.148). Now we assume that θ satisfies

θ <
ε′

max (2Cp1(K1 + 1), 2Cp2(K2 + 1))

with some ε′, to be chosen in function of ε. Lemma 3.14.6 applies to both Qj , so with this
choice of θ in view of (3.151), (3.152), (3.153) and (3.155) for all |t| < θ/q2 we obtain the
estimates

(3.158)
2q−1∑
k=0

∣∣∣∣Qj

(
k

2q
+ t

)∣∣∣∣pj

≤ Cpj (Kj + 1)Σ?
q(|Qj |pj ),

(3.159)
q−1∑
k=0

∣∣∣∣∣∣∣∣Q1

(
2k + 1

2q
+ t

)∣∣∣∣p1

−
∣∣∣∣Q1

(
2k + 1

2q

)∣∣∣∣p1
∣∣∣∣ ≤ ε′Σ?

q(|Q1|p1).

and

(3.160)
q−1∑
k=0

∣∣∣∣∣∣∣∣Q2

(
(2q + 1)

(
2k + 1

2q
+ t

))∣∣∣∣p2

−
∣∣∣∣Q2

(
2k + 1

2q

)∣∣∣∣p2
∣∣∣∣ ≤ ε′Σ?

q(|Q2|p2).

In particular, we get∣∣∣∣Q1

(
2a+ 1

2q
+ t

)∣∣∣∣p1

≥
∣∣∣∣Q1

(
2a+ 1

2q

)∣∣∣∣p1

− ε′Σ?
q(|Q1|p1)

≥
(
1− ε′/C1

) ∣∣∣∣Q1

(
2a+ 1

2q

)∣∣∣∣p1

,(3.161)

and similarly

(3.162)
∣∣∣∣Q2

(
2a+ 1

2q
+ (2q + 1)t

)∣∣∣∣p2

≥
(
1− ε′/C2

) ∣∣∣∣Q2

(
2a+ 1

2q

)∣∣∣∣p2

.

As a result, we find∣∣∣∣R(t+
2a+ 1

2q

)∣∣∣∣p ≥ (1− ε′/C1

)p/p1
(
1− ε′/C2

)p/p2

∣∣∣∣R(2a+ 1
2q

)∣∣∣∣p
> (1− ε)

∣∣∣∣R(2a+ 1
2q

)∣∣∣∣p (
|t| ≤ θ

q2

)
,(3.163)

if ε′ is chosen appropriately small in function of Cj , pj , p and ε.
We estimate the shifted grid sums of |R|p now. By Hölder’s inequality and using (3.159),

(3.160) for arbitrary |t| ≤ θ/q2 we are led to
q−1∑
k=0

∣∣∣∣R(t+
2k + 1

2q

)∣∣∣∣p

≤

(
q−1∑
k=0

∣∣∣∣Q1

(
2k + 1

2q
+ t

)∣∣∣∣p1
) p

p1
(

q−1∑
k=0

∣∣∣∣Q2

(
2k + 1

2q
+ (2q + 1)t

)∣∣∣∣p2
) p

p2

≤ (1 + ε′)p/p1Σ?
q(|Q1|p1)p/p1(1 + ε′)p/p2Σ?

q(|Q2|p2)p/p2

≤ (1 + ε)Σ?
q(|Q1|p1)p/p1Σ?

q(|Q2|p2)p/p2 ,(3.164)

if again ε′ is chosen small enough in function of p, the pj and ε.
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Next, we will need a peaking idempotent at 1/2, as obtained by Proposition 3.8.1. This
one will depend on our given constants ε, η, δ = θ/q and N larger than the degree of
R, and also on a measurable set of finite measure Eε that we define now. The mapping
x 7→ qx is bijective from J := (a/q, (a+ 1)/q) onto (0, 1), and we take for Eε the image of
E ∩ J . It is clear that the condition

|Eε ∩ [
1
2
− δ,

1
2

+ δ]| > 2(1− η)δ

has been satisfied. We take the idempotent T provided by Proposition 3.8.1 for this data,
satisfying

(3.165)
∫

Eε∩[ 1
2
−δ, 1

2
+δ]

|T |p > (1− ε)
∫ 1

0
|T |p.

We finally consider the product

(3.166) S(x) := T (qx)R(x),

which is also an idempotent. We will now prove that

(3.167) 2C
∫

T
|S|p ≤ κ(ε)

∫
E
|S|p,

with κ(ε) being arbitrarily close to 1 when ε is sufficiently small. In order to do this, we
put

(3.168) Jk :=
[
k

q
,
k + 1
q

]
, Ik :=

[
2k + 1

2q
− θ

q2
,
2k + 1

2q
+

θ

q2

]
for k = 0, . . . , q − 1.

Denoting τp :=
∫

T |T |
p, we find, using the property (3.165), that

1
2

∫
E
|S|p ≥

∫
Ia∩E

|S|p ≥ (1− ε)
∣∣∣∣R(2a+ 1

2q

)∣∣∣∣p ∫
Ia∩E

|T (qx)|pdx

≥ (1− ε)
∣∣∣∣R(2a+ 1

2q

)∣∣∣∣p 1
q

∫
Eε∩[ 1

2
−δ, 1

2
+δ]

|T |p(3.169)

≥ (1− ε)2τp

q

∣∣∣∣R(2a+ 1
2q

)∣∣∣∣p
=

(1− ε)2τp

q

∣∣∣∣Q1

(
2a+ 1

2q

)∣∣∣∣p ∣∣∣∣Q2

(
2a+ 1

2q

)∣∣∣∣p
≥ (1− ε)2τp

q
C Σ?

q(|Q1|p1)p/p1Σ?
q(|Q1|p2)p/p2 ,

at the end applying the definition (3.148) of the constants Cj and (3.155), too.
Then we give an upper bound for the integral on the whole torus. First of all, (3.164)

yields
q−1∑
k=0

∫
Ik

|S|p =
∫ θ/q2

−θ/q2

q−1∑
k=0

∣∣∣∣R(2k + 1
2q

+ t

)∣∣∣∣p |T (qt)|p dt

≤ (1 + ε)Σ?
q(|Q1|p1)p/p1Σ?

q(|Q2|p2)p/p2
τp

q
.
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For the integration on the remaining parts of the intervals (3.157) can be used to get∫
Jk\Ik

|S|p ≤ 2‖R‖p
∞

∫ k
q
+ 1

2q

k
q
+ δ

q

|T (qx)|pdx = 2 |R(0)|p 1
q

∫ 1
2

δ
q

|T (x)|pdx

≤ ετp

q
|R(0)|p ≤ ετp

q
K Σ?

q(|Q1|p1)p/p1Σ?
q(|Q2|p2)p/p2 .

Summing the last integrals over k, we obtain

(3.170)
∫

T
|S|p ≤ τp

q
(1 + ε+ εK)Σ?

q(|Q1|p1)p/p1Σ?
q(|Q2|p2)p/p2 .

Now (3.169) and (3.170) give (3.167) with

κ(ε) := (1 + ε+ εK) (1− ε)−2

concluding the proof, except for assuring arbitrarily large gaps.

It remains to indicate how to modify the proof to get peaking idempotents with arbi-
trarily large gaps. So we fix ν as a large odd integer, and we will prove that we can replace
the polynomial Q(x) by some polynomial Q̃(νx), with gaps at least ν. Recall first that we
can take arbitrarily large q satisfying (ν, q) = 1. So we now choose Q̃ similarly as before,
to be the polynomial of degree 2q that coincides with P (bx) on the grid Gq, but now with
b chosen so that νb(2a+ 1) ≡ 1 mod 2q. Such a b exists, as ν(2a+ 1) and 2q are coprime.
We then fix

R(x) := Q̃(νx)Q̃((2q + 1)νx).

There is an additional factor ν, which modifies the value of θ, but otherwise the proof is
identical. We know that Q̃(νx) and P (bx), and thus P (x), take globally the same values on
both grids Gq and G?

q , because in each case we multiply by an odd integer that is coprime
with 2q. So in particular the grid condition (3.155) is satisfied with Kj once again. �

3.15. Counterexamples in the problems of Wiener and Zygmund

Our above results enable us to draw strong conclusions in the Wiener-Zygmund circle
of questions. We formulated in the Introduction Theorem 3.1.13 as a first example. This
can now be seen simply by referring to Theorems 3.1.7, 3.1.8 and 3.11.1, above.

Theorem 3.1.13 can be strengthened for open sets, using an improvement of the methods
of Shapiro in [36]. The construction is closely related to the failure of the Hardy Littlewood
majorant property.

Theorem 3.15.1. For all 0 < q ≤ p < 2, whenever a 0-symmetric open set E of positive
measure |E| > 0 is given, then for all ε > 0 there exists f ∈ T + which satisfies

(3.171)
∫

cE
|f |p ≤ ε

(∫ +1/2

−1/2
|f |q
)p/q

.

The same is valid for q < p with p not an even integer, provided that q is sufficiently close
to p, that is q > q(p), where q(p) < p.
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Proof. Let us first assume that p < 2. Then, for Dn the Dirichlet kernel defined by
(3.8), with n sufficiently large depending on ε, there exists a choice of ηk = ±1 such that

‖Dn‖p ≤ ε‖
n∑

k=0

ηkek‖q.

Indeed, if it was not the case, taking the q-th power, integrating on all possible signs
and using Khintchine’s Inequality, we would find that cε

√
n ≤ ‖Dn‖p ≤ Cn

1− 1
p (p >

1), cε
√
n ≤ ‖Dn‖1 ≤ C log n and cε

√
n ≤ ‖Dn‖p ≤ C (0 < p < 1) which leads to a

contradiction. We note g(t) :=
∑n

k=0 ηkek(t) and G(t) := Dn(t).
We assume that E contains I∪(−I), where I := ( k

N ,
k+1
N ). Let ∆ be a triangular function

based on the interval (− 1
2N ,+

1
2N ), that is, ∆(t) := (1− 2N |t|)+. We finally consider the

function

f(t) := ∆(t− a)g(2Nt) + ∆(t+ a)g(2Nt) + 2∆(t)G(2Nt),

where a is the center of the interval I. Then an elementary computation of Fourier
coefficients, using the fact that ∆ has positive Fourier coefficients while the modulus of
those of g and G are equal, allows to see that f is positive definite. Let us prove that one
has (3.171). The left hand side is bounded by 2

N ‖G‖
p
p, while

∫
T |f |

q is bounded below by
1

2N ‖g‖
q
q − 2

N ‖G‖
q
q. We conclude the proof choosing n,N sufficiently large.

Let us now consider p > 2 not an even integer. Mockenhaupt and Schlag in [30] have
given counter-examples to the Hardy Littlewood majorant conjecture, which are based
on the following property: for j > p/2 an odd integer, the two trigonometric polynomials
g0 := (1+ej)(1−ej+1) andG0 := (1+ej)(1+ej+1) satisfy the inequality ‖G0‖p < ‖g0‖p. By
continuity, this inequality remains valid when p is replaced by q in the right hand side, with
q > q(p), for some q(p) < p. By a standard Riesz product argument, for K large enough,
as well as N1, N2, · · ·NK , depending on ε, the functions g(t) := g0(t)g0(N1t) · · · g0(NKt)
and G(t) := G0(t)G10(N1t) · · ·G0(NKt) satisfy the inequality ‖G‖p ≤ ε‖g‖q. From this
point the proof is identical. �

We do not know whether, for p > 2 not an even integer, that is 2k < p < 2k+ 2, we can
take q(p) = 2k. Due to (3.12), we cannot take q(p) < 2k. We do not know either whether
the statement is valid for functions with arbitrarily large gaps.

In the next theorems, Hq(T) denotes the space of periodic distributions f whose negative
coefficients are zero, and such that the function fr are uniformly in Lq(T) for 0 < r < 1,
where fr(t) :=

∑
n f̂(n)rne2iπnt.

Moreover, the norm (or quasi-norm) of f is given by ‖f‖q
Hq(T) := sup0<r<1

∫ 1
0 |fr|q. It

is well known that, for f ∈ Hq(T), the functions fr have an a. e. limit f∗ for r tending
to 1. The function f∗, which we call the pointwise boundary value, belongs to Lq(T).
When q ≥ 1, then f is the distribution defined by f∗, and Hq(T) coincides with the
subspace of functions in Lq(T) whose negative coefficients are zero. In all cases the space
Hq(T) identifies with the classical Hardy space when identifying the distribution f with
the holomorphic function

∑
n≥0 f̂(n)zn on the unit disc. This explains the use of the term

of boundary value.
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Theorem 3.15.2. Let 0 < p < ∞, and p /∈ 2N. Then for any symmetric, measurable
set E ⊂ T with |E| > 0 and any q < p, there exists a function f in the Hardy space Hq(T)
with positive Fourier coefficients, so that its pointwise boundary value f∗ is in Lp(cE)
while f∗ /∈ Lp(T). Moreover, f can be chosen with gaps tending to ∞.

The key of the proof is Theorem 3.1.13. Observe that we can assume that p > q > 1.
Indeed, f ` is a positive definite function when f is, and counter-examples for some p > 1
will lead to counter-examples for p/`. We do not give the details of the proof, which is
analogous to the one of the next theorem.

Using Theorem 3.15.1 instead of Theorem 3.1.13, we have the following.

Theorem 3.15.3. (i) Let p > 2, with p /∈ 2N, and let ` ∈ N such that 2` < p <

2(` + 1). Then, for any symmetric open set U ⊂ T with |U | > 0 and q > q(p),
there exists a positive definite function f ∈ L2`(T), whose negative coefficients
are zero, such that f /∈ Lq(T) while f is in Lp(cU).

(ii) Let 0 < p < 2. Then for any symmetric open set U ⊂ T with |U | > 0 and any
s < q < p, there exists a function f in the Hardy space Hs(T) with non negative
Fourier coefficients, so that f /∈ Hq(T) while f∗ is in Lp(cU).

Proof. Let us first prove (i). We can assume that cU contains a neighborhood of 0.
So, by Wiener’s property, if f is integrable and belongs to Lp(cU), then f is in L2`(T). Let
us prove that there exists such a function, whose Fourier coefficients satisfy the required
properties, and which does not belong to Lq(T). By using Theorem 3.15.1, we can find
positive definite polynomials fk such that ‖fk‖q = 2k/2 → ∞, while ‖fk‖Lp(cUk) ≤ 2−k/2

with Uk ⊂ U , so that
∑
‖fk‖Lp(cU) < ∞. Moreover, we may choose the Uk disjoint and

such that |Uk| < 2−αk , with α(1− 1/q) = 1. Then, using Hölder’s Inequality, we obtain∫
T
|fk| ≤ 2−α(1−1/q)k

(∫
Uk

|fk|q
)1/q

+

(∫
T\Uk

|fk|p
)1/p

≤ 2 2−k

(∫
T
|fk|q

)1/q

,

so that
∑
‖fk‖1 <∞. The function f :=

∑
k≥1 emk

fk has the required properties. Indeed,

‖f‖Hq(T) ≥ ‖f∗‖Lq(Uk) ≥ ‖fk‖q −
∑

j

‖fj‖Lq(cUj) ≥ 2
k
2 −

∑
j>0

2−
j
2 ,

from which we infer that f is not in Hq(T).
Let us now consider 1 < p < 2 and q < 1, from which we conclude for (ii). We proceed as

before, with fk’s given by Theorem 3.15.1, such that ‖fk‖q = 2k/2 and ‖fk‖Lp(cUk) ≤ 2−k/2.
The Uk’s are assumed to be disjoint and of small measure, so that

∑
k ‖fk‖s

Hs < ∞. It
follows that f ∈ Hs(T). The proof follows the same lines, even if f is not a function, in
general, but a distribution.

Remark 3.15.4. As Wainger in [42], we can prove a little more: the function f may
be chosen such that supr<1 |fr| is in Lp(cU). Let us give the proof in the case (i). We
can assume that U may be written as I ∪ (−I) for some interval I. Let J be the interval
of same center and length half, and take f constructed as wished, but for the open set
J ∪ (−J). Finally, write f = φ + ψ, with φ := fχc(J∪(−J)). Then using the maximal
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theorem we know that supr<1 |φr| ∈ Lp(T), while the Poisson kernel Pt(x−y) is uniformly
bounded for x /∈ U and y ∈ J ∪ (−J), so that supr<1 |ψr| is uniformly bounded outside U .

In the case (ii), the proof is more technical, f being only a distribution. We use the fact
that derivatives of the Poisson kernel Pt(x− y) are also uniformly bounded for x /∈ U and
y ∈ J ∪ (−J).

�
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