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Bevezetés

A szamelmélet szamtalan kérdése az egész szamok additiv illetve multipli-
kativ struktarajaval kapcsolatos. Ezek koziil tobb érdekes, nehéz klasszikus
probléma olyan Osszefiiggésekre vonatkozik, ahol additiv moédon definialt ob-
jektumok multiplikativ tulajdonsagaira vagyunk kivancsiak, avagy éppen for-
ditva, multiplikativ eszkdzokkel meghatarozott szamok, halmazok bizonyos
additiv tulajdonsagait firtatjuk. Az ilyen jellegii kérdések altalaban rendkiviil
nehezek, mivel igen laza a kapcsolat az egészek additiv és multiplikativ struk-
taraja kozott. Tipikus példaként megemlithetjiik a hires Fermat-egyenletet,
vagy akar a mindmaig megoldatlan ikerprim-problémat és a Goldbach-sejtést.

Disszertacionkban olyan eredményeket targyalunk, melyek multiplikativ
modon definidlt szaimhalmazokban talalhaté szamtani sorozatokkal kapcso-
latosak. Ertekezésiink harom fejezetbdl all. Az els6 fejezetben n-edik hat-
vanyokbol all6 szamtani sorozatokat vizsgalunk, illetve altalanosabban szam-
tani sorozatok tagjainak szorzataiban talalhato teljes hatvanyokkal foglalko-
zunk. A masodik fejezetben a kérdéskor altalanositasaként teljes (de nem
feltétleniil azonos kitevGjii) hatvanyokbol allo szamtani sorozatokat vizsga-
lunk. Végiil a harmadik fejezetben tigynevezett S-egységek Gsszeghalmazai-
ban taldlhato szamtani sorozatokkal foglalkozunk. Eredményeinknek t&bb,
egymastol meglehet&sen tévol allo, elsG ranézésre meglepének tiing alkal-
mazasat adjuk. Mindharom fejezetben elGszor az éppen vizsgéalt problémat
illetve annak hatterét, irodalmat mutatjuk be. Ezek utian a disszertacio-
ban szerepld legfontosabb eredményeink ismertetése kovetkezik. Mivel a tar-
gyalt témakorok a diofantikus szdmelmélet homlokterébe tartozo, sokak al-
tal vizsgalt teriiletek kozé tartoznak, az eredmények irodalmi elhelyezésére
kiilonds hangsulyt fektetiink.

A disszertacioban szerepld eredményeket a kovetkezs kilenc (nyole mar
megjelent, valamint egy kozlésre elfogadott) publikdcioban kozoltiik: [FHO1|,
|GyHP09]|, [BBGyHO06], [HTT09]|, [H04|, [BGyHTO06|, [HO8|, [HO7|, [BHP].

1. Szamtani sorozatot alkot6é n-edik hatvanyok

E teriilet alapkérdése a kovetkezd: adott n > 2 egész szam esetén milyen
hosszi lehet egy n-edik hatvanyokbol &l16 szdmtani sorozat? A kérdés Fermat
¢és Euler munkassagaig nyulik vissza (lasd [Di66], 440. és 635. oldal). Amint
azt Fermat megfogalmazta majd Euler be is bizonyitotta, négy kiilonb6zd
négyzetszam nem alkothat szamtani sorozatot. Ugyanakkor jol ismert, hogy



az
X2 -2Y?=-1

Pell-egyenlet végtelen sok X,Y egész megoldassal rendelkezik. Igy (mivel a
megoldasok nyilvanvaloan egy 1, Y2, X? alakti szamtani sorozatot hataroznak
meg) eredeti kérdésiink négyzetszamok esetére megoldottnak tekinthets. A
probléma altalanos n > 3 esetén egy X", Z™, Y™ alaki szamtani sorozatbol

kiindulva az
X"+ Yr =277 (1)

diofantikus egyenlet megoldasainak meghatarozasara vezet. Nyilvan elég az-
zal az esettel foglalkozni, amikor XY, Z relativ primek. Az (1) egyenletet
tobben vizsgaltak. Az n = 3 eset mar Mordell klasszikus kényvében (|[Mo69],
126. oldal) szerepel, mig az n = 5 kitev$ vizsgalata egészen Dirichlet és Le-
besgue bizonyos eredményeiig nytlik vissza (lasd [Di66], 735. és 738. oldal).
Az elsg altalanosabb érvényt eredmény Dénes [Deb2| nevéhez fiizddik, aki-
nek n < 31 esetén sikeriilt (1)-et teljesen megoldania. Valamennyi emlitett
esethben az adodott, hogy az egyenlet csupan az | XY Z| < 1 feltételnek ele-
get tevs megoldasokkal rendelkezik. Az (1) egyenletet végiil a kozelmultban
Darmon és Merel [DM97| oldotta meg teljes altalanossdgban. Azt nyerték,
hogy az egyenlet barmely n > 3 kitevd esetén csak a mar emlitett | XY Z| < 1
feltételt teljesité megoldasokkal bir. Darmon és Merel bizonyitasanak hat-
terében a Fermat-egyenlet megoldasa soran a Wiles [W95| és mésok altal
kidolgozott moduléaris modszer &ll. Megemlitjiik, hogy az (1) egyenlet meg-
oldasa a Fermat-egyenlet megoldasanal lényegesen nehezebb, a nemtrivialis
(X,Y,Z) = (1,1,1) megoldas létezése miatt ugyanis a modularis technika
alkalmazasa komoly nehézségekbe iitkozik.

Az alapkérdés altalanositasaként, egy onmagéaban is érdekes és szerteaga-
z6 problémakor kiindulépontjaként tekintsiik az

r(x+d)... (x+(k—1)d) =by" (2)

diofantikus egyenletet, ahol z, d, k, b, y, n ismeretlen pozitiv egészek, melyekre
k,n > 2, Inko(z,d) = 1 és P(b) < k teljesiil. Ttt P(b) a b legnagyobb prim-
osztojat jeloli; P(1) = 1. Az egyenlettel rengeteg matematikus foglalkozott,
ezen a ponton csupan Fermat, Euler, Erdds, Selfridge, Oblath, Nesterenko,
Shorey, Tijdeman, Saradha, Gyéry, Brindza, Ruzsa, Bennett, Pintér nevét
emlitjiik. A kés6bbiekben majd eredményeket és hivatkozasokat is megfogal-
mazunk.

Egyszeri, de a késGbbiekben rendkiviili jelentGséggel bird észrevételként
megallapithatjuk, hogy Inko(z,d) = 1 miatt (2)-bél

r +id = a;x} (3)
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adodik, ahol a; négyzetmentes és P(a;) < k (i =0,1,...,k—1). Ez az észre-
vétel azért is érdekes, mert gy is értelmezhets, hogy az egyenlet megoldasa
soréan ,majdnem” teljes hatvanyokbol all6 szdmtani sorozatokhoz jutunk: a
sorozat tagjai egy teljes hatvany és egy korlatos, csupan ,kis” primekkel oszt-
haté egyiitthatd szorzataként allnak els. Igy (2) valoban a kordbban emlitett
probléma altalanositédsanak tekinthetd.

A (2) egyenlet kiindulé esete természetes modon a d = 1 valasztas. Ha
a b = 1 értéket is rogzitjiik, akkor egy szép, klasszikus kérdéshez jutunk:
lehet-e egymaést kovets pozitiv egészek szorzata teljes hatvany? Az n = 2
esetben Erdds |Er39| és Rigge |Rig39| egymastol fiiggetleniil nemleges valaszt
adtak erre a kérdésre. A probléma teljes megoldésa Erdds és Selfridge [ES75]
nevéhez fiiz6dik, akik belattak, hogy a (2) egyenletnek (a d = b = 1 esetben)
nincs megoldésa. Egy masik természetes kérdés az egyenlet d = 1, b = E!
esetén torténd vizsgalata. Ekkor ugyanis (2)

(:E—l—llz—l):yn )

alakra hozhat6, azaz teljes hatvanyokat keresiink a binomialis egyiitthatok
korében. Itt a binomialis egyiitthatd szimmetridja miatt elegendé az x > k
esettel foglalkoznunk. Feltessziik tovabba, hogy n = 2 esetén k > 2 teljesiil.
Az n = k = 2 valasztasnal ugyanis (4) (régota ismert modon) egy végte-
len sok megoldassal rendelkezd Pell-egyenletre vezet. A (4) egyenletet Erdds
[Er51] & > 4 esetén teljesen megoldotta. A k = 2,3 esetek azonban Erdds
elemi kombinatorikus szamelméleti megfontolédsokon alapulé, rendkiviil szel-
lemes modszerével nem voltak kezelheték. Tijdeman |Ti89| a Baker-modszer
segitségével megmutatta, hogy ezekben az esetekben max(z,y,n) egy effek-
tiv médon meghatarozhat6 abszolit konstanssal korlatozhatd. Végiil a pro-
bléméat Darmon és Merel [DM97| fent emlitett eredménye segitségével Gyory
[Gy97] oldotta meg, megmutatva, hogy a (4) egyenlet egyetlen megoldésa
(x,k,y,n) = (48,3,140,2). Végiil a d = 1 eset lezarasaként megemlitjiik,
hogy Saradha [Sa97| (k > 4 eset) és Gy6ry [Gy98| (k = 2,3 eset) a P(b) < k
altalanos feltétel mellett a (2) egyenletet teljesen megoldotta. Egyetlen meg-
oldasként P(y) > k esetén a mar emlitett (z, k,y,n) = (48, 3,140, 2) adodott.
(A P(y) > k feltétel nélkiil az egyenlet végtelen sok, konnyen jellemezhetd
trivialis megoldassal bir.)

A d > 1 eset szintén hatalmas, messzire visszanyl6 irodalommal rendel-
kezik: elég csupan Fermat és Euler mar emlitett eredményére gondolnunk.
Valoban, annak igazolasahoz, hogy négy kiilonb6z6 négyzetszam nem alkot-
hat szamtani sorozatot, Euler valojaban (a kérdés altalanositasaként) az

x(z + d)(x + 2d)(z + 3d) = 3>

d



egyenletet vizsgalta - amely nem méas, mint (2) a k = 4, n = 2, b = 1
valasztasok mellett. Euler megmutatta, hogy a fenti diofantikus egyenletnek
nincs x, ¥y, d pozitiv egészekben megoldasa. Mar ezen a ponton megemlitjiik,
hogy a (2) egyenlet d > 1 értékeire torténd teljes megoldasa e pillanathban
még nagyon tavolinak tiinik. Az altaldnos eset ugyanis lényegesen, minGsé-
gileg nehezebb a d = 1 specialis esetnél. Ez jol szemléltethetd példaul (3)
segitségével. Ha d = 1, akkor a szobanforgd szamtani sorozat i-edik és j-edik
(1 # j) tagjainak kiilonbségét képezve egy

AX"— BY" =C (5)

alaki, tgynevezett binom Thue-egyenlethez jutunk, ahol A = a;, B = a;,
X =, Y =x;, C =i—j. Az egyenlet régota ismert. Baker [Bak68| vala-
mint Schinzel és Tijdeman |ScTi76| a Baker-modszer segitségével nyert ered-
ményeibdl kovetkezik, hogy n > 3 és |Y| > 1 esetén (5)-ben max(|X|, |Y],n)
egy csak A, B, C értékétdl fiiggs, effektiv modon meghatarozhatd konstans-
sal korlatozhatd. Megemlitjiik, hogy az A, B, C' egyiitthatokra vonatkozo bi-
zonyos feltételek mellett a kozelmultban az (5) egyenlet dsszes megoldasat si-
keriilt meghatarozni; lasd példaul [BGyMPO06|, |GyP08|, [BMS08|, |[BBGyP|.
Ezzel szemben, ha d > 1 tetszéleges ismeretlen egész, akkor egy (5)-hoz
hasonlo Osszefiiggés levezetéséhez két tag helyett harom tagot, mondjuk az
11,19, 13 indexd tagokat kell hasznalnunk, ahol 0 < 4y < iy < i3 < k. Mivel
egy szamtani sorozattal van dolgunk, konnyen ellenérizhetd, hogy (3) alapjan

ekkor
AX"+BY"=CZ" (6)

teljesiil, ahol X = a7, Y =2, Z = 2, A =iz —iy, B =iy —i1, C = i3—1.
Azonban (6) egy, az (5) egyenletnél 1ényegesen nehezebb tgynevezett ternér
egyenlet, melynek példaul a Fermat-egyenlet (lényegében a legegyszeriibb)
specidlis esete. A (6) egyenlet tetszbleges n-re vald kezeléséhez az (éppen a
Fermat-egyenlet megoldéasa soran Wiles [W95| és masok altal kifejlesztett)
ugynevezett modularis modszer sziikséges. Ezen a ponton e modszerrél még
nem sz6lunk részletesen, erre a kés6bbiekben keriil majd sor. Csupan megem-
litjiik, hogy a (6) tipusi egyenletek hatterében allo6 mély problémék miatt
(2) teljes megoldasa a jelenlegi ismeretekre tamaszkodva egyeldre athidalha-
tatlannak tiing nehézségekbe iitkozik.

A (2) egyenlettel kapcsolatos kutatésok lényegében két {6 iranyban foly-
nak: az egyenlet megoldéasaira vonatkozo végességi tételek levezetése (bi-
zonyos paraméterekre vonatkozo korlatok igazolasa mas paraméterek fligg-
vényében); illetve (2) teljes megoldasa bizonyos paraméterek rogzitése utén.
A jelen disszertacioban az utdbbi irdnyba tartozé eredményekrdl szolunk. Az



elsGként emlitett kutatasi irany legfontosabb eredményeit illetve més kapcso-
16d6 eredményeket tobbek kozott a [Ti76a], [ShTio7|, [Ti98], [Gy99], [Sh02]
attekints cikkekben talalhatunk.

Altalanossagban elmondhat6, hogy a (2) egyenlet bizonyos esetekben valo
teljes megoldasat az algebrai gérbeelmélet kozelmultbeli jelentds fejlédése, és
az 1j eredmények hatékony alkalmazasi lehetGségeinek kidolgozasa tette le-
het6vé. Ezen beliil, a méar emlitett modularis modszer mellett kiillondsen
fontos szerep jut az elliptikus gorbék (1 génusza gorbék) illetve a magasabb
génuszi gorbék, valamint a rajuk vonatkoz6 eredmények alkalmazésainak.
Az ilyen tipust gorbék elsGsorban kis kitevsk (azaz a (2) egyenletben tipiku-
san n = 2,3 esetén) bizonyulnak rendkiviil hasznosnak. Megemlitjiik, hogy
az elliptikus gorbéknek a problémakorben valo elsé alkalmazasa az [FHO1]
cikkiinkben tortént, mig a 2 génuszi gérbék hasznalatara illetve ehhez kap-
csolodoan az tin. Chabauty-modszer alkalmazasara (lasd [C41], [F97], [Br03|
valamint az utobbi két cikkben szerepls hivatkozasokat) (2) vonatkozasaban
elgszor a [BBGyHO06| dolgozatunkban keriilt sor.

Elsgként bemutatando konkrét eredményként a (2) egyenlet teljes meg-
oldasanak lehet&ségeit targyaljuk n = 2 és tetszdleges, de rogzitett d esetén.
Megemlitjiik, hogy (mint azt tobb, a késébbiekben bemutatand6 hivatkozas
is igazolja) az n = 2 eset kiilonleges figyelmet érdemel. Ennek oka abban ke-
resendd, hogy ekkor tobb olyan eszkoz is rendelkezésre all, melyek nagyobb
kitev6kre nem hasznalhatok. Mivel ennek a megforditasa is igaz (azaz a
nagyobb n kitevékre hasznalhat6 modszerek n = 2-re sokszor cs6dét mon-
danak), igy elmondhat6, hogy ez az eset valoban kiilonos jelentGséggel bir.

1.1. A (2) egyenlet teljes megoldasa rogzitett d és n = 2
esetén

Az n = 2 esetben rogzitett d mellet lehetGség nyilik (2) teljes megoldésara.
Ehhez elméleti szempontbdl a legjobb kiindulopontot Shorey és Tijdeman
[ShTi90] egy eredménye jelenti, mely szerint ebben az esetben k értéke méar d
primosztoi szaméanak segitségével is korlatozhato. (A korabbi hasonlo ered-
mények attekintéseért lasd [ShTi90|.) Ez azonban 6nmagaban még messze
nem elegendd a (2) egyenlet teljes megoldasahoz. Az elsd, (2) Gsszes megolda-
sat szolgaltato eredményt Saradha [Sa98| nyerte d < 22 esetén. Saradha ered-
ménye lényegében Erdds és Selfridge [ES75] a d = 1 esetre vonatkozo kombi-
natorikus eredményének a d > 1 esetre torténg adaptalasaval tortént. Ezen
kiviil elmondhat6, hogy Saradha kombinatorikus-primszidmelméleti modszere
heurisztikus elemeket is tartalmaz, elvileg nincs arra garancia, hogy az eljaras
valoban miikodik tetszGleges d esetén is. Az [FHO1]| cikkben egy tjszert, mo-



dern eszk6zokon alapuld, minden esetben hatékonyan miikddd eljarast adtunk
(2) sszes megoldasanak meghatarozasara rogzitett d és n = 2 mellett. A
modszer lényege annak észrevételén mulik, hogy (3) alapjan a szoban forgod
szamtani sorozat barmely harom, mondjuk az 41,9, 73 indexd tagjait Ossze-
Szorozva egy

(z + i1d) (7 + iad) (2 + i3d) = c2° (7)

alaku egyenlethez jutunk. Itt ¢ = a;,a;,a,, és 2 = x;, 25,7, teljesiil. Rog-
zitett d esetén (7) egy elliptikus egyenlet, melynek z,z egész megoldasait
keressiik. Ehhez egy Lang [L64]|, [L78] és Zagier [Za87| altal megalapozott,
Gebel, Pethd, Zimmer |GPZ94| illetve t6liik fiiggetleniil Stroeker és Tzana-
kis [StTz94| altal kidolgozott eljarast érdemes kovetniink, mely az egyenlet
racionalis megoldéasai altal meghatarozott algebrai struktdra, az ugyneve-
zett Mordell-Weil csoport tulajdonsagain alapszik. Az eljaras jol algorit-
mizéalhato, és a SIMATH [Sm93| majd késébb a MAGMA [BCP97| prog-
ramcsomaghban implementalasra is keriilt. Igy ezen programcsomagok fel-
hasznélaséaval (legalabbis elviekben) egy adott elliptikus egyenlet Gsszes egész
megoldasa meghatarozhato.

A fentiek ismeretében a (2) egyenlet n = 2 és rogzitett d esetén torténd tel-
jes megoldasara altalunk [FHO1| adott algoritmus vazlata a kovetkezd. Mivel
d rogzitett, igy k értéke korlatozhato: az elsé ilyen jellegli eredmény Mar-
szalek |Mar85| nevéhez fiiz6dik, mi konkrétan Saradha [Sa98| idevago ered-
ményeit hasznéaltuk. Emiatt (3) alapjan, mivel a; négyzetmentes és P(a;) < k
(¢ =0,1,...,k — 1), valojaban csupan véges sok (7) alaka egyenletet kell
megoldanunk. Az egyenletek megoldasa a fent ismertetett modon tortén-
het. Megemlitendd, hogy ha a k értékére kapott korlat til nagy, akkor a
fellépd elliptikus egyenletek oriasi szama gyakorlati szempontbdél kezelhetet-
lenné teszi a problémat. Részben éppen ez jelentette [BHROO| motivacidjat:
az itt (bizonyos feltételek mellett) levezetett k& < 7 igen éles korlat az ismerte-
tett eljaras hatékony miikodésének egyik elméleti sarokpontja. Modszeriink
illusztralasaként [FHO1]-ben az egyenletet 23 < d < 30 esetén teljesen meg-
oldottuk, és az alabbi eredményt nyertiik.

1. Tétel ([JFHO1]) A (2) egyenlet dsszes megoldasa 23 < d < 30 ésn = 2
esetén:

(z,d, k,b,y) = (2,23,3,6,20), (4,23,3,6,30), (75, 23, 3,6, 385),

(98,23,3,2,924), (338, 23, 3, 3,3952), (3675, 23, 3,6, 91805),
(75,23, 4, 6,4620), (1, 24,3, 1, 35).



Itt valojaban nem maga a konkrét tétel az érdekes (azt csak a teljesség
kedvéért fogalmaztuk meg), sokkal inkabb az alkalmazott modszer bir nagy
jelentGséggel. Eljarasunkat tobbek kozott az [SS03al, [SS03b], [MS04] cikkek
is atvették illetve részben tovabbfejlesztették, igy az a konkrét problémakor-
ben is t6bb alkalmazast nyert. (Példaul [SS03al-ban a szerzdk modszeriink
tovabbfejlesztésével az 1. Tételt kiterjesztették a d < 104 esetre.) Ugyan-
akkor fontos megemliteniink, hogy az altalunk bevezetett 0j eszkoz, azaz az
elliptikus gérbék hasznalata az éppen targyalt probléman messze tilmutat.
Err6l a kés6bbiekben még részletesebben szolunk majd. Most csupan aszt
emlitjiik meg, hogy (2)-ben az altalanos n kitevsk esetén felhasznalhato mo-
dularis modszer a ,kis” kitevékre (pontosabban tipikusan n = 2,3, 5 esetén)
nem miikodik. Ezekben az esetekben a probléma megoldasahoz mas esz-
kozok hasznélatara van sziikség. Az n = 2,3 esetben az egyik ilyen eszkozt
éppen az elliptikus egyenletek a fentiekhez hasonlé vagy annél altalanosabb
hasznalata jelenti.

1.2. A (2) egyenlet teljes megoldasa rogzitett k esetén

A (2)-re vonatkozo egyik legtermészetesebb kérdés a kovetkezs: oldjuk meg
az egyenletet rogzitett k tagszam esetén! Az irodalomban szamos ez iranyt
eredmény talalhato, lasd példaul Euler mar emlitett, vagy Oblath [Ob50)],
|Ob51] tételeit. Ezek az eredmények azonban csupan specialis, fix n kitevo-
kre (nevezetesen n = 2, 3 esetére) vonatkoznak. A moduléris modszer megje-
lenésével lehet6vé valt az egyenlet rogzitett k esetén torténd teljes megolda-
sa, tetszéleges ismeretlen n kitevs mellett. A modularis modszer alkalmaz-
hatdsagat a tekintett probléméra a (3) Gsszefiiggés teszi lehetGvé: ez alapjan
(6) alaku, ugynevezett (n,n,n) szignatirajua ternér egyenlethez jutunk. Fel-
hasznalva Wiles [W95], Darmon és Merel [DM97] valamint Ribet [Rib97]
erdeményeit, ahol A = B = 1 mellett C értéke rendre 1, 2 és 2%, Gy6ry
|Gy99] megmutatta, hogy a (2) egyenletnek k = 3 és P(b) < 2 esetén nincs
megoldéasa. A késébbiekben (altalanosabb ternér egyenletekre vonatkozo, az
alabbiakban bemutatandé eredmények segitségével) Gyoryvel és Saradhaval
|GyHS04] sikeriilt kiterjeszteniink az eredményt a k = 4,5 esetre is.
A jelen értekezésben targyalt ez iranyu {6 eredményiink a kovetkezd.

2. Tétel. ([GyHPO09]) Ha 3 < k < 35 és b = 1, akkor a (2) egyenletnek
nincs megoldasa.

Mas szavakkal, 3 < k < 35 esetén egy k-tagu primitiv (az Inko(z,d) = 1
feltételnek eleget tevs) szamtani sorozat tagjainak szorzata nem lehet teljes
hatvény.



Ez az eredmény az aldbbi, altalanosabb tételek kovetkezményeként ado-
dik. Megemlitjiik, hogy a felsorolt eredmények, pontosabban a 3-7. Tételek
valojaban az x < 0,y < 0 esetet is lefedik. Ezekben az allitasokban (a tobbi
korabbi feltétel valtozatlanul hagyasa mellett) x és y tetszGleges nemnulla
egészek lehetnek. ElsG eredményiink a £ < 11 esetre vonatkozik.

3. Tétel. (|BBGyHO06]) Legyenek k és n olyan egészek, melyekre 3 <
kE <11, n > 2 prim és (k,n) # (3,2) teljesiil. Tegyiik fel tovabba, hogy x
olyan egész, valamint d és b olyan pozitiv egészek, hogy Inko(z,d) = 1 és
P(b) < Py, ahol Py, értékeit az alabbi tablazat tartalmazza:
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Ekkor a (2) egyenlet megoldasaira

(z,d, k) € {(=9,2,9),(—=9,2,10), (=9,5,4), (=7, 2,8), (=7, 2,9), (=6, 1,6),
(—6,5,4), (=5,2,6), (—4,1,4), (—4,3,3), (=3,2,4), (—2,3,3), (1,1,4), (1,1,6)}

teljestil.

Az egyszertiség kedvéért csupan a megoldasokban elGforduld z,d, k ér-
tékeket adtuk meg; a hozzajuk tartozo b,y,n értékek (2)-bdl konnyen kiszé-
molhatok.

Amint azt kordbban is emlitettiik, a 2. Tétel (illetve a kapcsolodo al-
talanosabb eredmények) bizonyitasa soran érdemes megkiilonboztetni az n >
7, n =25 n =3 é n = 2 eseteket. Ennek oka az, hogy az egyes ese-
tek targyalasa eltéré modszereket igényel. Az n > 7 eset lényegében egy, a
moduléris technikian alapul6 megkozelitéssel kezelhets. Az n = 5 kitevGér-
tékhez tartozo eset klasszikus algebrai szamelméleti eredmények segitségével
targyalhato. Az n = 3 és n = 2 esetben tobb mddszer 6tvozése hozza meg
a kivant eredményt: a bizonyitasok tobbek kozott a Chabauty-modszeren,
az elliptikus egyenletek elméletén, illetve lokalis vizsgalatokon alapulnak. A
késébbiekben a bizonyitasok hatterében allo6 modszerekrdl részletesebben is
szolunk majd.
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Az alabbiakban eszerint a felosztas szerint haladunk, a 3. Tétel altal nem
lefedett 12 < k < 35 értékekre szoritkozva. A kovetkezd tételiink az n > 7
esetre vonatkozik.

4. Tétel. (|[GyHPO09]|) Han > 7 prim, 12 < k < 35 és P(b) < P, teljesiil,
ahol
7 ha 12 <k <22
Py, = { ’ ? - ’

Ll ha22 <k <35,

akkor a (2) egyenletnek nincs megoldasa.
Koévetkez6 eredményiink az n = 5 esetet targyalja. Megemlitjiik, hogy
8 <k <11 esetén az 5. Tétel a 3. Tétel javitasat is szolgaltatja.

5. Tétel. ([GyHPO09]) Legyen n =5, 8 < k < 35 és P(b) < Py, ahol

7. ha8<k<22
-

L ha22 <k < 35.

Ekkor a (2) egyenlet megoldasaira az aldbbiak egyike teljesiil:
(k,d) = (8,1), v € {—10,-9,-8,1,2,3}, (k,d) =(8,2), x € {—9,-7, -5},

(k,d) = (9,1), z € {~10,-9,1,2}, (k,d) = (9,2), z € {9, -7},
(k,d) = (10,1), = € {~10,1}, (k,d,z) = (10,2, —9).

Az alabbi két tételiink az n = 3 esetre vonatkozik. Az elsG, b = 1 mel-
lett megfogalmazott allitds valojaban a mésodik, altalanosabb b értékekre
vonatkoz6 eredmény kovetkezménye.

6. Tétel. ([HTTO9]) Legyen (x,d, k,y) a (2) egvenlet egy megolddsan = 3,
k <39 és b =1 mellett. Ekkor

(z,d, k,y) = (—4,3,3,2),(=2,3,3,-2),(=9,5,4,6), (—6,5,4,6).

7. Tétel. ([HTTO9]|) Legyen (x,d,k,b,y) a (2) egy olyan megoldésa,
melyre n = 3, k < 32, és P(b) < k ha k = 3 vagy k > 13. Ekkor (z,d, k) az
alabbiak egyike:

(x,1,k) ahol —30 <x < —4vagy 1 <z <5,
(x,2,k) ahol —29 < x < -3,
(—10,3,7), (=8,3,7), (~8,3,5), (—4,3,5), (—4,3,3), (-2, 3,3),
(—9,5,4), (=6,5,4), (—16,7,5), (—12,7,5).
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Hirata-Kohno, Laishram, Shorey és Tijdeman [HKLST07| megmutatta,
hogy ha 3 < k < 110 és b = 1, akkor a (2) egyenletnek n = 2 esetén nincs
megoldasa. (Valojaban |[HKLSTO7| és [Te08| alapjan egy ennél lényegesen
pontosabb allitas is megfogalmazhato, amely a P(b) < k esetet is lefedi,
bizonyos k értékek mellett.) Amint az konnyen lathato, a 2. Tételiink a 3-7.
Tételeink és az n = 2 esetre vonatkozo emlitett allitas kovetkezménye.

A kovetkezékben bemutatjuk a felsorolt tételek bizonyitasanak hatterét.
Itt is a korabbi, az n kitevé kiillonb6z6 értékeihez tartozo felosztéast kovetjiik.
Célunk az, hogy roviden ismertessiik a legfontosabb felhasznalt modszere-
ket illetve azok alkalmazasédnak elveit. A részletes bizonyitasok a megfelelg
cikkekben talalhatok. Eloljaroban csupan annyit emlitiink meg, hogy min-
den vizsgalt esetben sikeriilt olyan korabban még nem hasznalt modszert
kifejleszteniink, mely a probléma kezelése sorén igen hatékonynak bizonyult.

1.2.1. Az n > 7 eset

Ebben az esetben az egyenlet megoldasat a Wiles [W95], Darmon és Me-
rel [DM97]| Kraus [K97], Ribet [Rib97| és masok altal kifejlesztett modularis
technika teszi lehet6vé. Ertekezésiinkben nem ismertetjiik a modszer elméleti
hatterét, sokkal inkdbb annak problémankra valé (tavolrél sem automatikus,
tobb szempontbol is 1j megkozelitésmodot igényls) alkalmazasara koncentra-
lunk. A moédszer tomor felvazolasa, illetve altalanos diofantikus alkalmazési
lehetGségeinek Osszegzése Bennett [Ben03] ismertets dolgozataban talalhato.

A modularis modszer alapvetGen haromféle szignatiraju ternér egyenlet
kezelését teszi lehetévé, nevezetesen az alabbiakét:

(n,n,n) szignatira: AX"+ BY" =CZ",

(n,n,3) szignatira: AX" + BY" = CZ?,
(n,n,2) szignattira: AX"+ BY" = CZ>.

Itt valamennyi esetben A, B, C' régzitett primosztokkal rendelkezé nemnulla
egészek, XY, Z pedig ismeretlen relativ prim egészek. Megemlitjiik, hogy
A = B = (C =1 esetén az elss egyenlet éppen a Fermat-egyenlet. Mar ezen a
ponton felhivjuk a figyelmet két, a késGbbiekben fontos szerepet jatszo ossze-
fiiggésre. Egyrészt, bar elvileg a fenti tipusiu egyenletek kezelheték (és itt
nem feltétleniil a megoldasukra, csupan azok szamitogép segitségével torténd
vizsgalatara gondolunk), &m a gyakorlatban csak azok az egyenletek hasz-
nalhatok, melyek viszonylag alacsony szintid modularis formakhoz tartoznak
- azaz tipikusan azok, melyekben ABC' csupan ,kevés” és , kicsi” kiillonb6z6
primosztoval rendelkezik. Masrészt, az elmélet alkalmazhatosagat nagyban
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megkonnyiti (s6t sokszor csupén az teszi lehet6vé), ha egy tovabbi informa-
cioval is rendelkeziink: ismerjiik az XY egy konkrét primosztojat.

A modszer (2) egyenletre valo alkalmazéasanak kiindulopontja a (3) Gssze-
fiiggés. Az alapelv (meglehetGsen leegyszeriisitve) a kovetkezs: az Osszes
(3) alaki szamtani sorozatot megvizsgéilva a (2) egyenlet Gsszes megoldasat
megkapjuk. Ha k értéke ,kicsi” (mondjuk k& < 11), akkor egy meglehetd-
sen komplikélt, de alapvet&en szisztematikus vizsgalat is hasznélhato - 1é-
nyegében ez tortént a [BBGyHO06] publikidcionkban. Amint azt a (6) alaka
egyenletek levezetésénél lathattuk, a (2) egyenletbdl kiindulva (n,n,n) szig-
naturaju ternér egyenletek levezetése nem okoz gondot. Az ilyen egyenletek
megoldasa viszont mar lényegesen nagyobb nehézségekbe iitkozik: Osszességé-
ben elmondhato, hogy az irodalomban csupan néhany (n,n,n) szignaturaja
ternér egyenlet teljes megoldésa szerepel; lasd példaul [W95|, [DM97], [K97],
[Rib97], [SSO1]. A meglévs eredmények probléméankra jol hasznalhatok, de
onmagukban messze nem elegenddek. Viszont olyan 1j, (n, n,n) szignatiraji
egyenletekre vonatkozé eredményt, amely a problémank megoldasa soran
jol alkalmazhato, nehéz levezetni. Ennek f6 oka az, hogy nem tudjuk ga-
rantalni, hogy a kapott egyenletben p | XY teljesiilne valamilyen adott p
primszammal. Az attorést az (n,n,2) szignatiraju egyenletek alkalmazasa
hozza. Ilyen tipusi egyenletek (3)-bol a kovetkezé modon nyerhetSk. Legyen
0 <iy <ig <ig<iy <kgy, hogy iy + i3 = i1 + 4 teljesiil. Ekkor fennall a
kovetkez$ azonossag:

Igy (3) alapjan egy
iy iy (Tig iy )" — @3y 3 (5, 25,)" = (inig — iyig)d” (8)

alaki (n,n,2) szignaturaju ternér egyenlethez jutunk. Az (n,n,n) szigna-
tardhoz képest a kiilonbség abban rejlik, hogy itt mar (az indexek ,iigyes”
megvalasztasaval) garantalhato egy p | XY tipusu feltétel, és ezaltal a fellépd
ternér egyenlet kezelhetGvé valik, annak Gsszes megoldasa meghatarozhato.

A jelenséget egy példan keresztiil illusztraljuk. Legyen k = 4, és vizsgal-
juk a (2) egyenletet a P(b) < 2 feltétel mellett. Ekkor (3)-ban P(a;) < 3
(i = 0,1,2,3) teljesiil. Tegyiik fel, hogy 3 | ao. Ekkor persze 3 | x, igy
Inko(z,d) = 1 miatt 3 1 d, valamint 3 { (z + d)(z + 2d) teljesiil. Mivel
P(b) < 2, igy azt kapjuk, hogy 3 kitevGje xz(z + 3d)-ben sziikségképpen
oszthaté n-nel. De akkor a (8) egyenletben, i; = 0,iy = 1,i3 = 2,44 = 3
valasztas mellett 3 ,beolvaszthatd” az x; x;, alapba, és igy a fellép6 ternér
egyenletben végiil is a 3 | XY feltételhez jutunk.

Az (n,n,2) szignaturaju egyenletek elsé alkalmazasara a |[GyHS04] cik-
kiinkben keriilt sor. Itt azonban csupan az irodalomban taldlhatd néhény
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egyenletet (lasd példaul [BS04|) hasznaltuk, melyek csak a k = 4,5 esetek
kezelését tették lehetévé. A késGbbiek soran, a [BBGyHO06]| dolgozatban szé-
mos 1j, a megoldasok vizsgalata soran felleps (n, n, 2) szignatiraju egyenletet
megoldva lehetGvé valt az eredmény kiterjesztése a k < 11 esetre. Megem-
litjiik, hogy a probléma k < 35 esetén torténd vizsgalatiahoz a |GyHPO09|
dolgozatunkban még t6bb (n,n, 2) szignaturaji egyenlet megoldésa valt szii-
kségessé - errdl az alabbiakban részletesebben is szo6lunk majd.

Az eredmény tovabbviteléhez lényeges tjitasra volt sziikség. A k érté-
kének ndovelésével ugyanis meg kell birkdzni a kombinatorikus robbanas je-
lenségével: a (3) alapjan (elméletileg) felleps szamtani sorozatok szama rend-
kiviil gyorsan novekszik. Emiatt a korabban alkalmazott szisztematikus jel-
legii vizsgalat a gyakorlatban mar nem hasznalhato. A [GyHPO09]| cikkiinkben
a nehézségek athidalasara szitédk egy egymaésra épiils rendszerét dolgoztuk ki.
Ennek lényege (meglehetdsen leegyszertisitve) a kovetkezd. A szamtani so-
rozatunk tagjainak p < k primosztoira az Inko(z,d) = 1 Osszefiiggés miatt
p | (x4 id), (x + jd) esetén p | j — 4 teljesiil. Igy ha tudjuk, hogy egy ilyen
p prim oszt egy x + td tagot, akkor az Gsszes p-vel oszthato tagot fel tudjuk
sorolni. (Ugyanakkor a k-nal nagyobb primszamok nyilvan csak egy tagot
oszthatnak, n-nel oszthato kitevén szerepelve.) Az esetek vizsgalatanal eld-
szOr csak az 5-nél nagyobb primszamok ,helyeit” (azaz egy veliik oszthato tag
indexét) rogzitsiik. A  kimarado” helyek (azaz azon tagok, melyek nem ren-
delkeznek 5-nél nagyobb primosztoval) segitségével megprobalhatunk olyan
(n,n,n), (n,n,3) vagy (n,n,2) szignatiraju ternér egyenlethez jutni, mely-
nek megoldasa az irodalomban mar szerepel. A fennmaradé esetekben rog-
zitsiik az 5, majd a 3, végiil a 2 ,helyét” - minden esetben hasonl6 vizsgala-
tokat folytatva. Végiil a még mindig kimarad6 esetekben probéaljunk meg
levezetni olyan ternér egyenletet, mely korabban még nem volt megoldva, de
kezelhets. Ez a lépés egyfajta iteracidval torténik: olyan ternér egyenlete-
ket érdemes keresni és megoldani, melyek ,;sok” potencialis szamtani sorozat
létezését zarjak ki egyszerre. Az ezen egyenletek segitségével sem kizarhato
sorozatok esetén keressiink tovabbi, hasonlo jellegii ternér egyenleteket, stb.
Végiil a (2) egyenlet k£ < 34 esetén térténd megoldasahoz Gsszesen 55 darab
(n,n,2) szignattaraju egyenlet megoldasara keriilt sor, mindegyik esetben egy
tovabbi p | XY (p € {11,13,17,19, 23,29, 31}) feltétel mellett. Megemlitjiik,
hogy ez Gsszesen koriilbeliil kétszer annyi 0j egyenlet megoldésat jelentette,
mint amennyi az altalunk felhasznalt irodalomban szerepelt. A modszer jel-
lege miatt bizonyos n kitevik egy-egy konkrét ternér egyenlet megoldasanél
Jkimaradtak” néhany AX"™ + BY"™ = (CZ? alaku egyenletet sokszor csak
egy n ¢ N feltétel mellett sikeriilt megoldanunk, ahol N egy véges, jellem-
z6en kevés’ és  kicsi” elemekbdl allo halmaz. Az N-beli n kitevéket kiilon
vizsgalatok segitségével (tipikusan lokalis szamitasok alapjan) sikeriilt ke-
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zelniink.

Az eredmény jelentGsége nem csupan annyi, hogy sikeriilt viszonylag nagy
k értékekre is megoldani a (2) egyenletet. A bizonyitas soran feltart Gssze-
fiiggések reményeink szerint a késGbbiekben egy még dltalanosabb eredmény
levezetésében is fontosak lehetnek. Mivel jelenleg csupan talalgatni tudunk,
egyetlen konkrét tényre szeretnénk felhivni a figyelmet: a vizsgalt szamtani
sorozatok mindegyike esetében sikeriilt alacsony szintid ternér egyenletet
taldlnunk. E tapasztalati megfigyelés valamilyen elméleti tétel forméjaba
val6 ontése rendkiviil nagy jelent&séggel birna.

1.2.2. Az n =25 eset

Ebben az esetben mind a [BBGyHO06| mind a [GyHP09| cikkeinkben ered-
ményeink az AX® + BY® = CZ° alakt egyenletekre vonatkozo tételeken ala-
pulnak. Igy tobbek kozott felhasznaltuk Dirichlet, Lebesgue, Maillet (lasd
[Di66]) és Dénes [De52| klasszikus eredményeit az A = B = 1 esetben, illetve
Saradha és Shorey [SS01] bizonyos tételeit C' = 1 esetén. Ezeken til tobb 1j
eredmény levezetésére is sziikségiink volt. Kiterjesztettiik példaul Dirichlet
és Dénes emlitett eredményeit a P(C') < 7 esetre (a korabbiakban csupan a
P(C) < 3 esetekkel foglalkoztak). Eredményeinket klasszikus algebrai szam-
elméleti eszkozok kombinaldséval, valamint lokalis vizsgélatok segitségével
bizonyitottuk. A részletek a [BBGyHO06], [GyHP09] cikkeinkben talalhatok.

1.2.3. Az n =3 eset

Viszonylag kis k értékek esetén (azaz mondjuk k& < 11 mellett) (3) alapjan
az esetek szisztematikus vizsgéalata is célravezetd volt (lasd [BBGyHO06]). A
sziikséges hatteret Selmer [Se51] AX?® + BY3 = CZ? alaku egyenletekre
vonatkoz6 eredményei, valamint a mar emlitett Chabauty-mddszer szolgal-
tatja. Nagyobb k értékekre azonban a fellépG esetek hatalmas szdma miatt
finomabb meggondolasokra van sziikség. Ezért a [HTT09] cikkiinkben beve-
zettiink egy modulo 7 és modulo 9 kébmaradékokon alapulé szitamodszert,
amely jelentés mértékben megkonnyiti az esetek vizsgalatat. A fennmarado
lehetséges szamtani sorozatokat Selmer [Seb51| méar emlitett eredményeivel,
illetve a Cahabauty-modszerrel kezeltiik. Az el6bbi eszkiz alkalmazasa (3)
alapjan kézenfekvs, az utobbi hasznédlatat egy példéan illusztraljuk. Tegyiik
fel, hogy k = 7 és (3)-ban

((10, ay, a2, a3, a4, as, a6) = (47 57 67 77 17 97 10)
teljesiil. Mivel egy szamtani sorozattal van dolgunk, igy a

3, .3_0.3 g 3 3_ 3
8ry + a7 =925 €és x5 — 3x] = —2x
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Osszefiiggésekhez jutunk. Az els§ egyenletet faktorizdlva kénnyen lathato,
hogy 4z%—2x176+27 = 3u? teljesiil valamilyen u egésszel. A masodik egyenlet
bal oldalat a K = Q(+/3) testben faktorizalva x4 —v/3z; = (1—+/3)v* adodik,
valamilyen K-beli v algebrai egésszel. A fenti Gsszefiiggésekbdl az

(X — V3)(4X? —2X 4+ 1) = (3 - 3V3)Y3

egyenlethez jutunk, ahol X = z4/z; illetve Y = wv/x;. Mivel ez az egyenlet
egy K feletti 1 génuszi gorbét hataroz meg, igy ennek (X,Y) € Q x K
megoldasai az elliptikus Chabauty-modszer segitségével meghatarozhatok.
Visszahelyettesitéssel kapjuk, hogy a megoldasok az z; = +1, x4 = +1
értékekhez tartoznak. A modszer részletesebb leirasat lasd a [BBGyHO6] és
[HTTO09| cikkeinkben.

1.2.4. Az n =2 eset

Ebben az esetben a (3) egyenlet vizsgalatanak egyik hatékony eszkozét az el-
liptikus egyenletek jelentik. Mivel azonban most d nem régzitett, igy a korab-
ban [FHO1]-ben alkalmazott technikink atalakitaséra van sziikség. Ennek a
|IBBGyHO6| cikkiinkben bevezetett 1 eljarasnak a bemutatésahoz valasszunk
négy tagot a szoban forgd szamtani sorozathol. Ekkor (3) alapjan

X(X + j1d)(X + j2d)(X + jzd) = BY?

adodik. Itt (ha az 4,19, i3, 14 indext tagokat valasztottuk) j; = i;,1 — 11 (I =
1,2,3) és X = x + i1d, illetve B = ajasagay valamint Y = z20x374 teljesiil.
Innen, felhasznalva hogy X # 0, az u = d/z és v = Y/ X? helyettesitésekkel
kapjuk, hogy

(14 j1w) (1 + jou) (1 + jsu) = Bv?,

ami egy elliptikus egyenlet. A probléma az, hogy itt u,v raciondlis sza-
mok lehetnek, igy az egyenlet akar végtelen sok megoldassal is rendelkez-
het. Viszont ha az egyenlet (pontosabban a hozza tartozo elliptikus gorbe)
Mordell-Weil csoportjanak rangja nulla (amire a teriilet egy ,folklor” sejtése
alapjan egy véletlenszertien valasztott gorbe esetében mintegy 40 szazalék
sesély” van), akkor a megoldasok szama véges. Ezek a megoldasok a gorbe
Mordell-Weil csoportjanak torziopontjaihoz tartoznak, és standard matema-
tikai programcsomagok (példaul a MAGMA |BCP97|) segitségével egysze-
riien meghatarozhatok. Igy ebben az esetben a (2) egyenlet megoldasai is
konnyen adodnak. A problémat elsGsorban a potencialisan felléps (3) so-
rozatok (k értékével rendkiviil gyorsan novekvs) nagy szama jelenti. Ez a
nehézség azonban a megfelel§ szitatechnikakkal, legalabbis £ < 11 esetén, a
[IBBGyHO06| cikkiinkben kezelhetének bizonyult. Erdekes médon egy konkrét
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esetben, nevezetesen k = 6 és b = 5 mellett valamennyi fellépd elliptikus
gbrbe rangja pozitiv. Ekkor az alabbi egyenlethez jutunk:

X(X +1)(X +2)(X +3)(X +4)(X +5) =5V,

ahol X = z/d és Y = y/d®. A fenti egyenlet egy 2 génuszi gorbét hatéroz
meg, melynek racionélis pontjai (és igy visszahelyettesités utan x,y,d ér-
téke) a Chabauty-modszer segitségével meghatarozhato. Ezt az eredményt az
iménti eljarassal kombindlva a 3. Tétel n = 2 esetén torténd bizonyitasahoz
jutunk.

Végiil megemlitjiik, hogy az emlitett [HKLSTO07]-beli eredmény bizonyi-
tasa részben mas modszerrel (egy lokalis megfontolasokon alapuld eljarassal
és a Chabauty-modszer segitségével) tortént, mely elsGsorban az x > 0 meg-
oldasok meghatéarozasakor tiinik hatékonynak, lasd a [HKLSTO7| és [Te08|
cikkeket. (Valoban, az = < 0 esetet [HKLSTO07] nem targyalja.)

2. Szamtani sorozatot alkot6é vegyes hatvanyok

A (2) egyenlettel kapcsolatos eredmények (3) alapjan tgy is interpretél-
hatoak, hogy olyan szamtani sorozatokat keresiink, melyek ,majdnem” teljes
n-edik hatvanyokbol allnak. Ebben a fejezetben egy altalunk nyitott, de sza-
mos korébbi hires problémahoz és eredményhez kapcsolodo kutatasi iranyban
nyert eredményeket mutatunk be. Tekintsiik az

no 1 Nk—1
apTy ", A1T1 "y« oy Ap—1Tp_ 4 (9)

alaki szamtani sorozatokat. Itt a;,x; € Z, P(a;) < P (i = 0,...,k — 1)
ahol P egy rogzitett konstans, és az n; > 2 hatvanykitevék kiilonbézéek is
lehetnek. Az alapkérdés a kivetkezs: bizonyos természetes feltételek mellett
korlatozhato-e a (9) sorozat k hossza? Megemlitjiik, hogy konnyen lathato,
hogy feltételek elGirasa nélkiil k£ értéke nem korlatozhat6. Ezt az aldbbi egy-
szerti példa segitségével illusztraljuk (mely a disszertacioban is bemutatott
|[HO4]-ben talalhato). Két tetszéleges kiilonbozs x(°, )" teljes hatvany fel-
foghato kéttagti szdmtani sorozatként. Induktivan gondolkodva tegyiik fel,

hogy
no ni ng—1
[ AN A

egy t tagi szamtani sorozat, valamilyen ¢ > 2 mellett. Legyen y = x,"" +d,
ahol d = z7" — 23° a sorozat differenciaja. Vegyiik észre, hogy ekkor az
N=ng...ny_1 és N;=N/n; (i=0,1,...,t— 1) jeloléseket bevezetve

(:L.OyNo)no’ (mlle)nl> ) (xt—lyNt_l)m_l ) yN+1
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egy teljes hatvanyokbol 4ll6 ¢+ 1 tagt szamtani sorozat. Igy k értéke valoban
nem korlatozhato.

Amint azt a késébbiekben latni fogjuk, az n; (i =0,1,...,k — 1) kitevok
illetve Inko(agxo, a1x1) korlatozasa esetén a helyzet mer6ben maés jelleget 6lt.
Az eredmények bemutatéisa el6tt azonban még szeretnénk ravilagitani két
dologra. Egyrészt, a probléma nyilvanvaléan a homogén hatvanyok eseté-
nek egyfajta altalanositasanak tekinthetd. A vegyes hatvanyokbol allo szam-
tani sorozatok problémakore ugyanakkor lényegesen nehezebb az azonos hat-
vanyok eseténél. Ezt jol illusztralja, hogy az itt hasznalhat6 egyik mély eszkoz
a (6)-hoz képest is jelentdsen tovabb altalanositott Fermat-egyenletek, azaz
az

AX? + BY'=CZ" (10)

alaki egyenletek elmélete, ahol A, B,C' nemnulla egészek. A (10) alaku
egyenletekre vonatkozo jelenlegi legjobb, Darmontol és Granville-t6l [DG95)|
szarmazé eredmény azonban csupan rogzitett p, ¢, r esetén (a szokasos 1/p+
1/q + 1/r > 1 feltétel mellett) biztosit végességet, raadéasul csak ineffek-
tiv formaban. (Szemben a mar korabban emlitett, példaul (6)-ra vonatkozo
eredményekkel, melyek tetszdleges n-re érvényesek.)
Masrészt, a nevezetes
XP—-Yi=1

Catalan-egyenlet megoldéasai 1ényegében egy kettd hosszisagi, d = 1 diffe-
renciaju ,,vegyes’ hatvanyokbol all6 szamtani sorozatot alkotnak, igy a fel-
vetett probléma ehhez az egyenlethez is szorosan kapcsolodik. (A teljesség
kedvéért megemlitjiik, hogy a Catalan-egyenlet Tijdeman [Ti76b] egy tétele
alapjan csak véges sok, effektive meghatarozhaté6 megoldéssal rendelkezik.
Az egyenlet teljes megoldasa Mihailescu [Mi04| nevéhez fiiz6dik. Az egyetlen
megoldas: (X,Y,p,q) = (3,2,2,3).)

Ebben a témakorben lényegében két kiilonboz6 kutatasi irdny kezd korvo-
nalazodni: a bizonyos feltételek mellett k-ra (illetve esetlegesen a sorozatok
szamara) vonatkozo korlatok levezetése, valamint bizonyos specialis esetek-
ben az Gsszes megfelel§ tulajdonsigi sorozat meghatarozasa. ElGszor az elsd
irAnyba sorolhat6 eredményeinket mutatjuk be.

8. Tétel. (|[HO4]) Legyen L egy rogzitett egész, L > 2. Ekkor barmely
olyan (9) alakii szamtani sorozatra melyben n; < L (i = 0,1,...,k — 1),
k < C(P, L) teljesiil, ahol C(P, L) egy csak P és L értékétdl fiiggd konstans.

Tételiink bizonyitasa soran tobbek kézott van der Waerden [vdW27| egy
hires (ilyen tipusiti probléma vonatkozésaban korabban nem alkalmazott),
monokromatikus szamtani sorozatokra vonatkozo tételét, illetve Euler vala-
mint Darmon és Merel korabban emlitett eredményeit kombinaltuk.
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Megemlitjiik, hogy [HO4]-ben megmutattuk, hogy az abe-sejtés teljesiilése
esetén az n; < L feltételt az Inko(agxo,a1z1) = 1 feltétellel helyettesitve,
k a P egy fliggvénye segitségével korlatozhat6. Ezen a ponton célszertinek
tlinik az abc-sejtés pontos ismertetése. A sejtés szerint tetszGleges relativ
prim pozitiv egész a, b, c szdmok és € pozitiv valos szam esetén az a +b = ¢

Osszefliggéshdl
1+e

c<Cle) | IIr

plabe

kovetkezik, ahol C'(g) egy csupan e-t06] fiiggd konstans. A sejtés egy gyengébb
alakja Oesterlétsl [Oe88| szarmazik, fenti formajaban el6szér Masser [Mas85|
fogalmazta meg. Az abc sejtésbdl rengeteg fontos eredmény levezethetd, tobb
vezet$ szaktekintély szerint a modern diofantikus szamelmélet egyik legfon-
tosabb sejtésérél van szo. Itt csupan az érdekesség kedvéért azt emlitjiik
meg, hogy egy |GyHS04]-beli eredményiink alapjan az abe-sejtés fennallasa
esetén k > 3 és n > 4 mellett a (2) egyenlet csupan véges sok x,d, k,b,y,n
megoldassal rendelkezik (azaz itt minden tovabbi feltétel nélkiil az Osszes
paraméter korlatozhato).

9. Tétel. (|[BGyHTO06]) Legyen L egy rogzitett egész, L > 2. Ekkor csak
véges sok olyan (10) alaki szamtani sorozat létezik, melyre n; < L, a; = 1
(t=0,1,...,k—1) és Inko(xg, 1) = 1 teljesiil.

E tételiink bizonyitdsaban 1j eszkozt jelent Darmon és Granville fent em-
litett, az altaldnositott Fermat-egyenletre vonatkoz6 tétele. Megemlitjiik,
hogy a [BGyHTO06| dolgozatban a 9. Tételt bizonyos egyéb feltételek mellett
sikeriilt tetszdleges a; egyiitthatok esetére is kiterjeszteniink.

A fentieken til olyan eredményeket is sikeriilt nyerniink, melyek szerint
egy (9) tipusi szamtani sorozat hossza a sorozat (lényegében) barmely tag-
janak ismeretében, illetve a d differencia segitségével is korlatozhato.

10. Tétel. ([HO8|) Legyenek x és n olyan egészek, melyekre |x| > 2 és
n > 2 teljesiil. Ekkor létezik egy olyan, csak x és n értékétdl fiiggs C'(x,n)
konstans, hogy barmely nemkonstans, x"-et tartalmazo teljes hatvanyokbdl
allo szamtani sorozat hossza legfeljebb C(z,n).

A bizonyitas soran a 8. Tételt kiilonb6z6 elemi aritmetikai megfontola-
sokkal kombinaltuk. Megemlitjiik, hogy a 10. Tételben az x # 0 feltétel
sziikséges, ugyanakkor x = +£1 esetén a probléma nyitott marad.

11. Tétel. ([HO8]) Tekintsiink egy olyan (9) alaki szamtani sorozatot,
ahol a; =1 (i = 0,1,...,k —1). Jeldlje d a sorozat differenciajat. Ekkor
mindkét alabbi Gsszefiiggés fennall:

i) k < max(3.125log(d) — 1,73)

J
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ii) k < max(2(w(d) + 1)(log(w(d) + 1) 4+ loglog(w(d) + 1)) — 1,21),
ahol w(d) a d kiilénbéz6 primosztoinak szama.

Az utobbi tétel jelentGségét és érdekességét a kovetkezd Osszefiiggés mu-
tatja. Mint azt méar korabban emlitettiik, a (2) egyenlettel kapcsolatos egyik
legfontosabb kutatasi irdny a kovetkez§: rogzitett d esetén korlatozzuk a
tobbi ismeretlent! Shorey és Tijdeman [ShTi90| egy eredménye alapjan bar-
mely n esetén k egy csupan w(d) értékétsl fiiggs konstans segitségével kor-
latozhato. Bar (3) alapjan itt a szamtani sorozat tagjai csupan ,majdnem”
teljes hatvanyok, lathato, hogy a 11. Tétel ezen eredmény egyfajta kiterjesz-
tését jelenti a ,,vegyes” hatvanyok esetére.

A kovetkezdkben két olyan eredményiinket ismertetjiik, melyek bizonyos
specidlis, de érdekes esetekben az Gsszes (9) alaku szamtani sorozatot meg-
hatarozzék.

12. Tétel. (|[BGyHTO06]) Tegyiik fel, hogy egy (9) alaki szamtani sorozat-
ra k > 4, Inko(xg,x1) = 1, a; = 1 és n; € {2,3} teljesiil minden i =
0,1,...,k—1 esetén. Ekkor a sorozat a trivialis1,1,...,1és—1,—1,...,—1
sorozatok egyike.

Ez az eredmény az Euler és Fermat valamint Mordell mar emlitett, négy-
zetszdmokbol illetve kobszamokbol 4116 szdmtani sorozatokrol szolo tételeinek
kozos altalanositasat jelenti. Az eredmény igazolasanak f6 eszkozét a 2 gé-
nuszi gorbék elmélete, illetve a Chabauty-modszer valamint ennek elliptikus
valtozata adja. Megemlitjiik, hogy a (disszertacioban nem szerepls) [HT]|
dolgozatban bizonyos feltételek mellett az n; € {2,n}, n;, € {3,n}, illetve
n; € {2,5} eseteket is kezelni tudtuk.

A fejezet utols6 eredményeként egy specidlis sorozattal kapcsolatos tételt
mutatunk be. Ehhez sziikségiink van egy 1j fogalom bevezetésére. Egy

1,2 i
Ty Ty Ty

A

alaki szamtani sorozatot hatvanygazdag (elsé irodalombeli megjelenése alap-
jan angolul kicsit félrevezetGen ,powerful”) szamtani sorozatnak neveziink.
Ha Inko(x1,22) = 1, akkor azt mondjuk, hogy a sorozat primitiv. Boklan
[Bo98] problémafelvetése utan Robertson, illetve téle fiiggetleniil Elkies és
masok (lasd |[Ro00]) megmutattak, hogy egy hatvianygazdag szamtani soro-
zat hossza legfeljebb 6t. Az alabbi eredmény ennél lényegesen pontosabb
eredményt szolgaltat.

13. Tétel. (JHO8]) Az egyetlen Gttagi primitiv hatvanygazdag szamtani
sorozat a trivialis 1,1,1,1,1 sorozat. Ugyanakkor végtelen sok ottagi nem-
primitiv hatvanygazdag szamtani sorozat létezik.

A fenti tételen tul a [HO8| dolgozatban a hatvanygazdag szamtani soro-
zatok lehetséges hosszainak teljes karakteriziciojat is elvégeztiik.
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3. Szamtani sorozatok S-egységek 0sszeghalma-
zaiban

A szamelmélet szamos fontos teriiletén rendkiviili jelentGséggel birnak bi-
zonyos multiplikativ csoport vagy részcsoport elemeire vonatkozo linearis
egyenletek. (Az érdekesség kedvéert itt példaul megemlithetjiik az ikerprim
problémat.) A diofantikus egyenletek teriiletén a legfontosabb egyenletosz-
talyok egyikét az S-egység egyenletek alkotjak. Ezek bemutatasihoz sziiksé-
giink van néhany jelolés bevezetésére. Megjegyezziik, hogy az egyszertibb
bemutathatosdg kedvéért a szokdsoshoz képest itt egy kissé leegyszeriisitett
jelolés- és fogalomrendszert hasznalunk.

Legyen K egy algebrai szamtest, Og a K-beli algebrai egészek gytirije, S
pedig az Ok primideéljainak egy véges halmaza. Ha 0 # o € K rendelkezik
azzal a tulajdonsaggal, hogy az Ogx barmely S-en kiviili P primideélja e-
setén ordp(a) = 0 teljesiil, akkor azt mondjuk, hogy a egy S-egység. (Itt
ordp(a) a P kietvGje az («) tortideal faktorizaciojaban.) Jelolje Us a K-beli
S-egységek halmazat, legyenek ag, aq, . .., a, (n > 2) K-beli nemnulla elemek,
és tekintsiik az

a1y + -+ apTy, = Qg (11)
alakid, tgynevezett S-egység egyenletet, ahol zq,...,x, € Ug ismeretlenek.
Az egyenlet egy (1, ..., x,) megoldasat nemelfajulonak nevezziik, ha a;, x;, +
<-4 a;x;, az {1,...,n} halmaz egyetlen {i,...,4,} részhalmaza esetében

sem nulla.

A (11) alaku egyenletek a diofantikus egyenletek elméletében igen fontos
szerepet jatszanak. Ennek oka részben az a kiemelkedGen fontos dsszefiiggés,
hogy a szétes§ forma egyenletek (tobbek kizott a norma forma egyenletek,
a Thue-egyenletek, a diszkriminéns forma egyenletek, az index forma egyen-
letek) visszavezethetSk S-egység egyenletekre; lasd példaul [Gy80], [EGy85],
|[EGy88al, [EGy88b|, [EGySTS88|. Emellett sok mas klasszikus, kozponti
diofantikus probléma direkt modon egységegyenletek megoldasara vezet; az
|[EGyST88| és [Gy92] dolgozatokban szamos ilyen alkalmazas talalhato. Mi-
vel mi elsgsorban nem egy konkrét (11) egyenlet megoldasara koncentralunk,
igy ehelyiitt csupan a targyalas szempontjabol legfontosabb végességi ered-
ményekrdl szolunk. Mély diofantikus approximacidelmeéleti eszkozok felhasz-
nalasaval megmutathato, hogy (11) barmely rogzitett (ag, aq, ..., a,) esetén
csupan véges sok nemelfajul6 megoldassal rendelkezik; az elsé ilyen jellegi, az
n = 2 esetre vonatkozo eredmény Siegel [Si21]| nevéhez kéthetd. Ezen til (a
Schmidt-féle altér tétel segitségével) (11) megoldasszama is korlatozhato. Az
altalunk a késébbiekben hasznélando, jelenleg ismert legaltaldnosabb becslés
Evertse, Schlickewei és Schmidt [ESS02| nevéhez fiizGdik, mely szerint (11)
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nemelfajulé megoldésainak szdma egy csupan S elemszamétol és n-tdl fiiggd
(a konkrét egyiitthatoktol fiiggetlen!) explicit értékkel korlatozhato. (Meg-
jegyezziik, hogy tjabban ezt az eredményt Amoroso és Viada [AV] egy kozlés
alatt allo dolgozatban élesitette.) Mivel a témakor irodalma rendkiviil gaz-
dag és szertedgazo, ugyanakkor targyalasunkhoz az emlitett [ESS02|-beli kor-
lat elégséges, igy a kapcsolodd eredményekért csak az [ShTi86|, [EGyST88|,
[Gy92|, [ESS02], [AV] munkakra, illetve a benniik talalhato megfelelg hivat-
kozasokra utalunk. Megemlitjiik még, hogy n = 2 esetén a Baker-modszer
segitségével maguk az xq, s megoldasok (pontosabban azok magassiga) is
korlatozhato. Mivel ebbe az irdanyba nem tesziink lépéseket, igy csak a
|Gy79], [ShTi86|, [EGySTS88|, [Gy92|, |[BGy96|, [Gy02|, [GyY06] publika-
ciokban talalhato eredményekre és hivatkozasokra utalunk.

Az altalunk vizsgalt problémakor lényegében a (11) jobboldalan lehetsé-
ges értékként felleps (azaz S-egységek n-tagu, adott K-beli egyiitthatokkal
képzett linearis kombinacioiként elGallo) ag szamokbol allo halmaz szerke-
zetére, aritmetikai tulajdonsidgaira vonatkozik. Mar ezen a ponton megem-
litjiik, hogy alaperedményiink tobb, egymastol latszolag teljesen fiiggetlen
diofantikus probléma esetén is fontos alkalmazést nyert.

Jelolje H a (11) egyenlet jobboldalan lehetséges értékként felleps ag sza-
mokbol 4116 halmazt; pontosabban H az Ug elemeinek 6sszes, adott aq, ..., a,
egyiitthatokkal képzett linearis kombinacioibol 4ll. A H halmaz szerkezetét,
tulajdonsagait tobben, tébb szempontbol vizsgaltak. Gydéry, Mignotte és
Shorey [GyMS90] (t6bb mas eredmény mellett) kvantitativ formaban iga-
zolta, hogy ha ay € H és Ng(ag) (ag ugynevezett S-norméaja) ,elég nagy”,
akkor egyrészt Ng(ag) nem rendelkezhet csupa ,kicsi” primtényezGvel, mas-
részt Ng(ag) négyzetmentes része sem lehet  kicsi”. Ezen til, Everest [grE89|
bizonyos feltételek mellett aszimptotikus formulat is nyert azon H-beli ele-
mek szamara, melyek S-norméja egy adott korlat alatt marad. Az utobbi
eredményt (a jelen disszertacioban nem szereplé) [AHL09| publikicionkban
sikeriilt pontositanunk. Mivel ezek az eredmények csak érintGlegesen kapcso-
lodnak az altalunk vizsgalt irdnyhoz, igy azokat részletesen nem ismertetjiik.

Targyalasunk f6 csapésat a H halmazban taldlhatd szdmtani sorozatok
vizsgalata jelenti. A kovetkezGkben megfogalmazzuk ez iranyua alapered-
ményiinket. Ehhez sziikség van néhany jelolés bevezetésére. Valojaban a
fenti jelolések felhasznalasaval mar megfogalmazhatnank tételiink egy leegy-
szeriisitett valtozatat, A&m az irodalommal val6 minél pontosabb Osszevetés
érdekében érdemesnek tiinik az eredmény preciz ismertetése.

Legyen K egy nullkarakterisztikdjua, algebrailag zart test. Jeldlje K* a
K nemnulla elemei alkotta multiplikativ csoportot, és legyen I' a K* egy
r (véges) rangi multiplikativ részcsoportja. Legyen tovabba t egy pozitiv
egész, és legyen A a K' egy n-elemii (véges) részhalmaza. Vezessiik be az
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alabbi jelolést:

t
Hy(T',A) = {Zaixi c(ar, .. ap) €A, (21,...,3) € Ft}.
i=1

Ezen a teriileten a bemutatni kivant ,,alaperedményiink” a kévetkezd.

14. Tétel. ([HO7|) Létezik egy olyan, csak r,t,n értékétdl fiiggs C(r,t,n)
konstans, hogy barmely H;(I', A)-beli nemkonstans szdmtani sorozat hossza
legfeljebb C(r,t,n).

Jol ismert, hogy Usg végesen generalt (multiplikativ) csoport. Igy a korab-
bi jelolésekkel, K-t és I'-t a megfelel§ K algebrai szamtestnek illetve Ug S-
egység csoportnak valasztva eredményiink kozvetlen kovetkezményeként a H
halmazban talalhaté nemkonstans szamtani sorozatok hossza is korlatozhato.

Megemlitjiik, hogy a C(r,t,n) korlatban mindharom paraméter jelenléte
sziikséges, tovabba, hogy a konstanst [AHL09|-ben explicit alakban is megad-
tuk. Azt is megjegyezziik, hogy a tekintett tulajdonsigi sorozatok szama
nem korlatozhato. Eredményiink bizonyitasa a kordbban emlitett, (11)-re
vonatkozo [ESS02]-beli végességi tételen (végsé soron a Schmidt-féle altér-
tételen), valamint van der Waerden [vdW27| mar idézett klasszikus ered-
ményén miilik.

Toliink fiiggetleniil Jarden és Narkiewicz [JNO7| szintén levezettek egy,
a 14. Tételhez hasonlo eredményt. A mi eredményiink azonban lényegesen
altalanosabb és pontosabb: Jarden és Narkiewicz eredményében egyrészt I’
egy végesen generalt integritasi tartomény egységcsoportjanak valasztando,
masrészt (és az alkalmazasok szempontjahol ez kiilonosen fontos kiilonbégnek
tiinik) allitasuk csupan az A = {(1,...,1)} esetre vonatkozik. Amint latni
fogjuk, az utobbi kiillénbség alapjan a mi eredményiink valoban &ltalanosabb
alkalmazasokhoz vezet.

Az aldbbiakban a 14. Tétel harom, latszolag teljesen kiilonb6z6 gyokert
probléméra vonatkozo6 alkalmazasat mutatjuk be.

M. Pohst [Po06| vetette fel a kovetkezs kérdést: igaz-e, hogy minden
primszam elGall egy kettShatvany és egy haromhatviny oOsszegeként vagy
kiilonbségeként? A kérdés nyilvanvaloan rengeteg, a primszamok halma-
zara vonatkozd problémaéaval rokon. A kapcsolodo irodalom akarcsak hozza-
vetGleges feltérképezése is reménytelen vallalkozasnak tiinik, igy arra kisér-
letet sem tesziink. A |[HO7| dolgozatban Pohst probléméajat sikeriilt lényege-
sen altaldnosabb alakban megoldanunk. Ennek bemutatisidhoz legyen most
K = Q. Egy racionalis primszamokbol all6 véges S halmaz esetén jelolje Zg
azon egészek halmazat, melyek nem oszthatok S-en kiviili primszdmmal. Vé-
giil, legyen t egy adott pozitiv egész, és legyen A a Z! egy véges részhalmaza.
Ekkor a kovetkezd allitas igaz.
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15. Tétel. ([HO7]) Bdrmely fenti alakii S,t, A esetén végtelen sok olyan
t

primszam létezik, amely nem &ll el6 > a;x; alakban, ahol (ay,...,a;) € A és
i=1
T1,...,T; € Lg.

A fenti tétel lényegében a 14. Tétel valamint Green és Tao [GT08| azon
iinnepelt eredményének kdvetkezménye, mely szerint a primszamok korében
tetszGleges (véges) hosszusagu szamtani sorozat talalhato. Amint az az

S=1{2,3}, t=2, A={(1,1),(1,-1)}

valasztasokkal azonnal lathato, a 15. Tétel azonnali negativ valaszt szolgaltat
Pohst fenti kérdésére.

A 14. Tétel egy masik alkalmazasaként végességi eredményt nyertiink
norma forma egyenletek megoldashalmazaiban talalhato szamtani sorozatok-
kal kapcsolatban [BHP|. A kiilonb6z6 tipust diofantikus egyenletek megol-
dashalmaza szerkezetének vizsgalata a diofantikus szdmelmélet klasszikus
teriiletei kozé tartozik. Szamos ilyen irdnyu eredmény ismert mér a szétesd
forma egyenletek vonatkozésidban is. Eredményiink, valamint a kapcsolodo
irodalom bemutatashoz sziikségiink van néhany jellés bevezetésére.

Legyen K egy k-ad foku algebrai szamtest, aq,...,qa, € K pedig Q fe-
lett linearisan fiiggetlen elemek. Jeldlje D € Z az ay, ..., a, szdmok kozos
nevezdjét, és legyen 5; = Doy (1 = 1,...,n). Ekkor persze (i,..., 3, K-beli
algebrai egészek. Legyen m egy tetszéleges nemnulla egész szam, és tekintsiik
az alabbi (igynevezett norma forma) egyenletet

Nio(xion + ... + zp00) = m, (12)

ahol xq,..., x, ismeretlen egészek. Legyen most H a (12) egyenlet megol-
dashalmaza, |H| pedig H elemszama. Jol ismert klasszikus eredmény (lasd
példaul [Sc72]), hogy ha az a, ..., a, elemek altal generalt Z-modulus tar-
talmaz olyan részmodulust, mely teljes a Q(ay, ..., a,) szamtest egy Q-tol
és a képzetes masodfoku szamtestektdl kiilonbozé valamely részteste felett,
akkor (12) végtelen sok megoldassal is rendelkezhet.

A H halmaz aritmetikai tulajdonsagait tébben, tobb szempontbol vizsgal-
tak. Az n = 2 esetben, bizonyos tovabbi feltételek mellett Peths [Pe82] il-
letve Shorey és Stewart [ShSt83] egymastol fiiggetleniil megmutattak, hogy
(12) megoldasainak koordinatai kozott csak véges sok teljes hatvany szere-
pelhet, és ezek effektiv modon meghatarozhatok. Evertse és Gyéry [EGy97|,
illetve Everest és Gyory |grEGy05] altalanos szétes6 forma egyenletek esetén
(bizonyos egyéb feltételek mellett) egyrészt aszimptotikus formulakat nyer-
tek a korlatos magassagi megoldasok szaméra, illetve kvantitativ forméaban
megmutattik, hogy ha egy megoldas x; koordinataja ,elég nagy”, akkor z;
sziikségképpen rendelkezik ,nagy” primosztoval.
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Uj kutatasi iranyként Pethé és tarsszerzoi a kozelmiltban szamos olyan

eredményt nyertek, melyek két, a H-beli elemek koordinatdiban talalhato
szamtani sorozatokra vonatkozo problémaval kapcsolatosak. A ,vizszintes”
probléma a kovetkez6 modon fogalmazhatéo meg: hény olyan H-beli elem
van, melynek koordinatai szamtani sorozatot alkotnak? Ebben az irAnyban
tobb érdekes effektiv és numerikus végességi eredmény is sziiletett, példaul
Bérczes és Peths [BP04|, [BP06|, Bérczes, Pethd és Ziegler [BPZ06] valamint
Bazso [Bazs07| tollabol. Mi most az alabbi ,fiigg6leges” problémara koncen-
tralunk: létezik-e a H-beli elemek valamelyik koordinatdjaban tetszéleges
hosszisagi szamtani sorozat? E kérdést a kvadratikus esetben (amikoris
(12) egy Pell-egyenlet) Peth$ és Ziegler [PZ08] megvalaszolta: megmutattak,
hogy az ilyen tipusi sorozatok hossza effektiv modon korlatozhato (1asd még
[DPTO08]). Az altaluk kifejlesztett modszer azonban a magasabbfokii esetben
nem hasznalhatd. A 14. Tétel alkalmazasaval ugyanakkor lehetGség nyilik az
alabbi altalanos végességi eredmény igazolasara.
16. Tétel. ([BHP]) Legyen (z\,...,2%) (j = 1,...,t) egy H-beli soro-
zat, melyre xl(-j ) egy nemkonstans szamtani sorozat valamilyen i € {1,...,n}
esetén. Ekkor t < C(k,m, D) teljesiil, ahol C(k,m, D) egy, csak k,m,D
értékétdl fiiggd explicit médon meghatarozhaté konstans.

Megemlitjiik, hogy a [BHP] dolgozatban tobb mas eredmény is sziiletett;
sikeriilt példaul a konstans szamtani sorozatok esetét is kezelniink. A 16.
Tétel bizonyitasanak egyik legfontosabb lépését a 14. Tétel alkalmazésa je-
lenti.

A 14. Tétel harmadik bemutatandé alkalmazéisa az irodalomban a ,,unit
sum number” néven ismert probléméaval kapcsolatos. Az alapprobléma a ko-
vetkezd: adott R egységelemes gytiri esetén dontsiik el, 1étezik-e egy olyan ¢
egész szam, hogy R valamennyi eleme elGall legfeljebb ¢ szamu R-beli egység
Osszegeként. Az elsG ilyen jellegii kérdést 55 évvel ezel6tt Zelinsky |Zeb4|
vetette fel, bizonyos endomorfizmus-gytiriikkel kapcsolatban. Késébb a ki-
indul6 probléméat tébben altalanositottak, mig végiil a fent megfogalmazott
alakjat Goldsmith, Pabst és Scott [GPS98| cikkében érte el. Ashrafi és Vamos
[AV05]-ben a méasod- és harmadfoku algebrai szamtestek egészeinek gytirije
esetén, valamint bizonyos korosztasi testek vonatkozésaban a kérdésre ne-
gativ vilaszt adott. Végiil, a probléma algebrai szdmtestekben vald egyfajta
lezarasaként Jarden és Narkiewicz [JNO7| az alabbi &ltalanos tételt nyerte.

Tétel (Jarden és Narkiewicz, [JNO7]) Legyen R egy végesen generélt
nullkarakterisztikaji integritasi tartomany. Ekkor mindent természetes szam-
hoz talalhaté olyan R-beli elem, amely nem all el6 legfeljebb t szami R-beli
egység dsszegeként.

A fenti tétel a 14. Tételhez hasonld (bar annal specialisabb) [JNO7]|-beli
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eredmény trivialis kovetkezménye. Csupéan az érdekesség kedvéért megemlit-
jiik, hogy valojaban a 14. Tételbdl az alabbi élesebb (még nem publikalt)
kovetkezmény automatikusan adodik.

A 14. Tétel kévetkezménye. Legyen R egy végesen generalt nullkarakte-
risztikaju integritasi tartoméany. Ekkor barmely t természetes szamhoz és R
barmely véges A részhalmazahoz talialhaté olyan R-beli elem, mely nem all
el

t
Z a;x; ((a1,...,a;) € A, xq1,...,x; R-beli egység) (13)
i=1

alakban.

Mivel itt a; = 0 is megengedett, a fenti kdvetkezmény valoban Jarden és
Narkiewicz tételének élesitése. Ugyanakkor az allitds valoban a 14. Tétel
egyszerii kovetkezménye. Ennek igazoldsdhoz csupan azt kell észrevenniink,
hogy tetszéleges nemnulla R-beli a0 elem esetén «, 2q, . .., ka szamok szam-
tani sorozatot alkotnak. Igy ha k ,elég nagy”, akkor a 14. Tétel miatt ezen
elemek mindegyike nem allhat elg (13) alakban.
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THE RESOLUTION OF THE DIOPHANTINE
EQUATION z(z +d)...(z + (k— 1)d) = by> FOR FIXED d

P. FiLAkovszKy AND L. HAJjpU™

ABSTRACT. In this paper we provide an algorithm for the resolution of the title
equation, which works for any d. To illustrate the simplicity of the method, we
extend a result of Saradha by giving all solutions with 23 < d < 30, k > 3, (z,d) =1
and P(b) < k, in positive integers z,d, k, b, y.

1. INTRODUCTION

A classical problem of Number Theory is to determine those finite arithmetical
progressions, for which the product of the terms yields a perfect power, or an
"almost’ perfect one. Erdés and Selfridge in 1975 (cf. [2]) proved that the product
of two or more consecutive positive integers is never a perfect power, i.e. the
equation

zz+1) ... (z+k—1)=1

has no solutions with k£, > 2 and « > 1. There are many results in the literature
concerning the various generalizations of the above equation, see e.g. the extensive
survey papers [8], [9], [10], [11], or the very recent papers [1], [4], [5], [6], [7], and
the references given there.

Let P(b) denote the greatest prime factor of a positive integer b > 1, and put
P(1) = 1. In this paper we investigate the following equation:

(1) z(z+d)...(x+ (k—1)d) = by? withd > 1,k >3, (2,d) =1, P(b) <k,

in positive integers z,d, k,b,y. In [7] Saradha proved that equation (1) has only
the solutions

(z,d, k,b,y) = (2,7,3,2,12), (18,7,3,1,120), (64, 17, 3, 2, 504),

provided that d < 22 holds. In fact she gave an algorithm for the resolution of (1)
for fixed values of d, and used her method to compute all solutions with 1 < d < 23.
The main steps of her method are the following. Put C' = (k — 1)2al2 /4, and suppose
first that for a solution (z,d, k,b,y) of (1) z > C holds. For such a solution Saradha
derived an upper bound ky(d) for k, which varies between 18 and 314 as d ranges
through the interval [7,22]. It is not guaranteed that her method provides an upper
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bound ky(d) for an arbitrary value of d. Subsequently she proved that 4 < k < 6 if
d=17,4<k<8ifd e {11,13,17,19}, respectively, and that (1) has no solutions for
other values of d with 1 < d < 23. The remaining cases were verified by numerical
calculations.

In [1] Brindza, Hajdu and Ruzsa proved the following result.

Theorem A. If (x,d, k,b,y) is a solution to (1) with k > 8, then x < D, where
D = 4d*(log d)*.

This implies that we can take ko(d) = 8 if z > D. This uniform bound makes
it possible, at least in principle, to resolve equation (1) for any fixed d. This paper
provides an algorithm to do so. We shall illustrate the algorithm by determining
all solutions of (1) with 23 < d < 30.

2. RESULT AND DESCRIPTION OF THE ALGORITHM

The main steps of our method for the resolution of (1) with fixed d are the
following. First we provide a simple search algorithm to find the solutions with
small x. According to Theorem A we have k < 7 for the large solutions. We show
that each such solution corresponds to a point on one among 16 elliptic curves. The
elliptic equations can be resolved by a mathematical software package.

Theorem. Suppose that 23 < d < 30. The only solutions to equation (1) are the
following ones:

d=23,k=3:(z,by) =(2,6,20), (4,6,30), (75,6,385), (98,2,924), (338, 3,3952),
(3675, 6,91805),

d=23, k=4: (z,b,y) = (75,6,4620),

d=24, k=3: (z,b,y) = (1,1, 35).

Remark. The above theorem provides a solution to (1) with k& > 3, namely
(x,d,k,b,y) = (75,23,4,6,4620). This is not surprising, as it was pointed out by
F. Beukers that equation (1) has infinitely many solutions with k = 4.

Proof of the Theorem. Suppose first that (x,d,k,b,y) is a solution to (1) with
23 < d <30 and x < D, where D is defined in Theorem A. Using the estimate
k < 4d(logd)® due to Saradha [7], the left hand side of equation (1) is bounded by
a constant depending only on d. Hence after fixing d, all solutions to (1) can be
found by a simple search. However, as a huge amount of computation is needed, it
is worth to be more economical.

Let d be fixed. A positive integer a is called a bad number, if some prime p with
p > 4d(log al)2 occurs in the prime factorization of a on an odd exponent. Suppose
that  + ¢d is a bad number for some ¢ with 0 < ¢ < k — 1, and choose a prime p
with the above properties for a = x + id. Then by Saradha’s result we have p > k.
By the condition (x,d) = 1, there is no other factor x + jd which is divisible by p.
Hence p divides the left-hand side on an odd exponent, which yields a contradiction
with P(b) < k. This argument shows that no factor = + id is bad.

We work with the residue classes (mod d) separately. Let m be a positive integer
with (m,d) =1, m < d. We make a list L3 consisting of all those positive integers
' < D with 2’ = m (mod d) for which none of the numbers 2/, 2’ + d, =’ + 2d
is bad. Then we make a list Ly of all the numbers 2’ € L3 with 2’ +d € Ls.
Subsequently we make a list Ls of all the numbers 2’ € Ly with 2’ +d € Ly and
so on. For 23 < d < 30 the process stops around Li5. Observe that 2’ € L; if and
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only if none of the numbers o', 2" +d, ..., 2’ 4+ (i — 1)d is bad. Hence every solution
(x,d,k,b,y) of (1) with < D satisfies © € L. Finally, for each number 2’ € Ly
we check if /(2 +d) ... (2" + (k — 1)d) has a square-free part which has a greatest
prime factor < k, for all lists L. The numbers which pass this last test provide all
the solutions with z = m (mod d). Finally we take the union over all m to collect
all solutions of (1) with x < D.

Now suppose that (z,d, k, b, y) is a solution to (1) with > D. Then, by Theorem
A, k < 7. Write now z +id = a;2? (i = 0,...,k — 1) with square-free a;’s and
suppose that P(a;) > k for some i¢. By the assumption (z,d) = 1 this implies
P(b) > k, which is a contradiction. This shows that P(a;) < k. Hence we get

(2) z(z + d)(z + 2d) = cz?,

where ¢ and z are positive integers with P(c) < k, ¢ square-free. Moreover, by the
assumption (x,d) = 1 we get that (¢,d) = 1 in (2). Hence ¢ € {1,2,3,5,6,7, 10, 14,
15,21, 30, 35,42, 70,105,210}. Thus for each d we have to resolve 16 elliptic equa-

tions of the form

w = AdPu=v* in u,veZ,

where u and v are given by u = c(z + d) and v = c?z, respectively. Using the

program package SIMATH (cf. [12]) these elliptic equations can be resolved easily.
For a detailed description of the algorithm implemented in SIMATH, see e.g. [3].

The simple search method already yielded all the solutions mentioned in the
theorem. As in these solutions k < 7, all of them, but no more were also provided
by the resolution of the elliptic equations. [J
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Perfect powers from products of consecutive terms in
arithmetic progression

K. Gyory, L. Hajdu and A. Pintér

ABSTRACT

We prove that for any positive integers x,d, k with ged(z,d) = 1 and 3 < k < 35 the
product z(z +d) ... (x 4+ (k — 1)d) cannot be a perfect power. This yields a considerable
extension of previous results of Gyory, Hajdu, Saradha, and Bennett, Bruin, Gyory, Hajdu
which covered the cases k£ < 11. We also establish more general theorems for the case when
x can also be a negative integer and the product yields an almost perfect power. As in
the proofs of the earlier theorems, for fixed k we reduce the problem to systems of ternary
equations. However, our results do not follow as a mere computational sharpening of
the approach utilized previously, but instead require the introduction of fundamentally
new ideas. For k > 11, a great number of new ternary equations arise that we solve by
combining the Frey curve and Galois representation approach with local and cyclotomic
considerations. Furthermore, the number of systems of equations grows so rapidly with &
that, in contrast with the previous proofs, it is practically impossible to handle the different
cases in the usual manner. The main novelty of this paper is that we algorithmize our
proofs which enables us to use a computer. We apply an efficient, iterated combination of
our procedure for solving the arising new ternary equations with several sieves based on
the ternary equations already solved. In this way we are able to exclude the solvability of
the enormous number of systems of equations under consideration. Our general algorithm
seems to work for larger k£ as well, but there is of course a computational time limit.

1. Introduction and new results

A classical theorem of Erdés and Selfridge [ES] asserts that the product of consecutive positive
integers is never a perfect power. A natural generalization is the Diophantine equation

2(@+d)... (z+ (k—1)d) = by", (1)

in non-zero integers x, d, k, b, y,n with ged(z,d) =1,d > 1, k> 3, n > 2 and P(b) < k. Here P(u)
denotes the largest prime divisor of a non-zero integer u, with the convention that P(£1) = 1.

Equation (1) has an extremely rich literature. For d = 1, equation (1) has been completely solved
by Saradha [Sar] (for £ > 4) and Gyéry [Gyl] (for k < 4). Instead of trying to overview all branches
of related results for d > 1 (which seems to be an enormous task), we refer to the excellent survey
papers of Tijdeman [Ti] and Shorey [S1], [S2]. Here we mention only those contributions which are
closely related to the results of the present paper, that is which provide the complete solution of
(1) when the number k of terms is fixed.

If (k,n) = (3,2), equation (1) has infinitely many solutions even with b = 1. Euler (see [Di])
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showed that (1) has no solutions if b = 1 and (k,n) = (3,3) or (4,2). A similar result was obtained
by Oblath [O1], [O2] for (k,n) = (3,4), (3,5) and (5,2). By a conjecture of Erdés equation (1) has
no solutions in positive integers when k > 3 and b = 1. In other words, the product of k consecutive
terms in a coprime positive arithmetic progression with k& > 3 can never be a perfect power. By
coprime positive progression we mean one of the form

r,x+d,...,x+ (k—1)d,
where x, d are positive integers with ged(z,d) = 1.
Erdos’ conjecture has recently been verified for certain values of k in a more general form. In

the following Theorem A the case k = 3 is due to Gy6ry [Gy2], the cases k = 4,5 to Gyéry, Hajdu
and Saradha [GyHS], and the cases 6 < k < 11 to Bennett, Bruin, Gyéry and Hajdu [BBGyH].

Theorem A. Suppose that k and n are integers with 3 < k < 11, n > 2 prime and (k,n) # (3,2),
and that x and d are coprime integers. If, further, b is a non-zero integer with P(b) < P}, where
Py, is given in Table 1, then the only solutions to (1) are with (x,d, k) in the following list:

(_97 27 9)7 (_97 27 10)’ (—9’ 57 4)7 (_77 2> 8)’ (_77 27 9)7
(*67 17 6)7 (767 5a 4)7 (757 27 6)7 (*47 1a 4)7 (*47 37 3)7
(_37 27 4)7 (_27 37 3)7 (1> 17 4)7 (17 1> 6)

k n=2 | n=3 | n=5| n>7
3 — 2 2 2
4 2 3 2 2
) 3 3 3 2
6 5 5 5 2
7 5 5 5 3
8 5 ) 5 3
9 5 5 5 3
10 ) ) ) 3
11 5 5 5 )
TABLE 1.

It is a routine matter to extend Theorem A to arbitrary (that is, not necessarily prime) values
of n. Further, we note that knowing the values of the unknowns on the left-hand side of (1), one
can easily determine all the solutions (x,d, k,b,y,n) of (1).

Very recently, for £ = 5,6 and n > 7 the bounds P, have been improved to 3 by Bennett
[B2]. Further, for n = 2 and positive x, Theorem A has been extended by Hirata-Kohno, Laishram,
Shorey and Tijdeman [HLST]. In fact they did not handle (1) for some exceptional values of b > 1
for which (1) has been solved later by Tengely [Te|. Putting together the results in [HLST] and [Te],
the following theorem holds.

Theorem B. Equation (1) withn =2, d > 1 and 5 < k < 100 has no solution in positive integer
x.

In case of b = 1, the assumption k& < 100 can be replaced by & < 109 in Theorem B (see [HLST]).
When n = 3, Hajdu, Tengely and Tijdeman [HTT] obtained the following extension of Theorem A.

Theorem C. Suppose that n = 3 and that (x,d, k,b,y) is a solution to equation (1) with k < 32
46
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such that P(b) < k if4 <k <12 and P(b) < k if k = 3 or k > 13. Then (z,d, k) belongs to the
following list:
(—10,3,7), (=8,3,7), (—8,3,5), (—4,3,5), (—4,3,3), (-2,3,3),
(—9,5,4),(-6,5,4),(—16,7,5),(—12,7,5),
and (x,1,k) with —30<z < —-4orl<z<5,
(z,2,k) with — 29 <z < —3.

Further, if b =1 and k < 39, then we have

(z.d,k,y) = (—4,3,3,2), (—2,3,3,—2), (—9,5,4,6), (—6,5,4,6).

Theorems A, B and C confirm the conjecture of Erdés for the corresponding values of k£ and n.
Moreover, under the additional assumptions made on P(b) they provide the complete solution of
(1) for b > 1 as well.

In the present paper we considerably extend Theorem A, up to k < 35. Our main result is the
following theorem which proves Erdés’ conjecture for k < 35.

Theorem 1.1 The product of k consecutive terms in a coprime positive arithmetic progression with
3 < k < 35 is never a perfect power.

When n < 3 or k < 11, Theorem 1.1 follows from the above mentioned results. The remaining
cases are covered by the following theorems.

Theorem 1.2 Equation (1) has no solutions with n > 7 prime, 12 < k < 35 and P(b) < Py,
where

Pkn:

)

7, if12<k <22
L if22 <k < 35.

Theorem 1.3 The only solutions to equation (1) withn =15, 8 < k < 35 and P(b) < Py 5, with

Py5=

)

7, if8<k<22
L if22 <k <35

are given by
(k,d) = (8,1), z € {~10,-9,-8,1,2,3}; (k,d) = (8,2), = € {~9,~7,—5};
(k,d) = (9,1), z € {-10,-9,1,2}; (k,d) = (9,2), = € {~9, ~T};
(k,d) = (10,1), z € {~10,1}; (k,d,z) = (10,2, —9).

Note that in the case n = 5 Theorem 1.3 yields an extension of Theorem A already for 8 < k£ < 11.

Similarly as in [GyHS] and [BBGyH], results on equation (1) have a simple consequence for the
rational solutions of equations of the form

uu+1)...(u+k—1)=0" (2)

More precisely, we have the following

Corollary 1.1 Suppose that n > 2, 1 < k < 35 and (k,n) # (2,2). Then equation (2) has no
solutions in positive rational numbers u,v.
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For k < 11, this was proved in [BBGyH]. When k£ > 11, the statement is a straightforward con-
sequence of Theorem 1.1, see [GyHS] and [BBGyH] for the necessary arguments. We note that
equation (2) has been first studied by Sander [San].

In the case k < 11 and n > 5, equation (1) was reduced in Gyéry [Gy2], Gyéry, Hajdu and
Saradha [GyHS]|, Bennett, Bruin, Gy6ry and Hajdu [BBGyH] and Bennett [B2] to finitely many
ternary equations of signature (n,n,n), (n,n,2) or (n,n,3). In our proofs we start with the same
reduction strategy. However, for £ > 11 and n > 5 prime, numerous new ternary equations arise
which must be solved under certain arithmetic conditions. On solving these equations, in the case
n > 7 we combine the Frey curve and modular Galois representation approach with local methods
and some classical work on cyclotomic fields. Our results concerning ternary equations, which may
be of independent interest, do not follow from straightforward application of the modularity of
Galois representations attached to Frey curves, it is also necessary to understand the reduction
types of these curves at certain small primes.

For n = 5, hardly any new information is available through the theory of ”general” modular
forms. In this case we make use of some classical and new results concerning equations of the
shape AX® + BY® = CZ®. The proof of these new results involves some cyclotomic and local
considerations.

For increasing k, the number of possible k-tuples (ag,...,ar_1) introduced in (3) below and
hence also the number of arising systems of ternary equations grow so rapidly with k that, in
contrast with the cases k < 11 treated in [Gy2], [GyHS], [BBGyH], [B2], practically it is already
impossible to handle all cases one-by-one without using computer. The principal novelty of our
paper is that we algorithmize our proof. For fixed k, we combine our algorithm for solving the new
ternary equations with several sieves based on the arising ternary equations already solved, and we
use a computer to exclude the solvability of enormous number of systems of ternary equations. Our
general method seems to work for larger k as well, we do not see any theoretical obstacle to extend
the results even further. However, the time consumption of the method increases rather rapidly,
that is why we stopped at k = 34. As it can be of some interest, we give a few details here.

We have used a 2.4 MHz PC with a Quad processor to execute the calculations. To establish our
new results for ternary equations of signature (n,n,2) (see Proposition 2.2) we have implemented
our algorithm in Magma [BCP]. The total running time to prove Proposition 2.2 was about two
weeks. The proof of Theorem 1.1 goes via proving Theorems 1.2 and 1.3. To verify the latter results,
we have implemented our sieving procedures in Maple, separately for the cases n > 7 and n = 5.
The program codes utilized in our computations are available from the authors on request. In both
cases n > 7 and n = 5 the running time of the program was the following: a few seconds up to
k =19, a few minutes up to k = 23, a few hours up to k = 29, a few days for k = 30,31 and about
a week for k = 32,33,34 each. Altogether, after having Proposition 2.2 the calculations to prove
Theorems 1.2 and 1.3 took about a month each. We mention that because of the extremely huge
number of cases to be looked after, having only the ”ternary” results it is hopeless to attack the
problem without some additional, new ”sieving” ideas. Vice versa, using only the sieving procedures
with the previously known ”ternary” results, one would be left with a lot of cases which are not
handled. So to prove our theorems, we need to find a balanced and efficient combination of both
techniques.

The organization of the paper is as follows. In the next section we introduce notation and
summarize some old and establish some new results about ternary equations which we shall use in
the proofs of Theorems 1.1, 1.2 and 1.3. The final section is devoted to the proofs of our theorems.
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2. Notation and auxiliary results
For integers d, z, k with k > 3 and for indices 0 <41 < --- <4 < k put
(i1, ..., 4) = (x +i1d) ... (x + 4;d)
and
I, =11(0,1,...,k—1) =z(z+d)...(z + (k — 1)d).

Assume that (1) has a solution in non-zero integers x,d, k,b,y,n with the requested properties.
Further, we may assume that n is an odd prime. From (1) one can then deduce that

x+id=azx] (1=0,1,...,k—1) (3)

where z; is a non-zero integer and a; is an nth power free positive integer with P(a;) < k. For given
k, there are only finitely many and effectively determinable such k-tuples (ag, a1, ..., ax—1).

For brevity, we introduce the following notation. Write
[i1,42,13] : cilailxﬁ + ci3a¢3$?3 = ciQaizxZ (4)
where 0 < i1 < i < i3 < k and ¢;; = (i3 — i2)/D,ci, = (i3 —i1)/D,ciy = (i2 —i1)/D with
D = ged(ig —i9, i3 — 1,42 —91). Further, if 0 < j; < jo < js < ja < k with 51 + j4 = jo + j3, then let
2o ga) > U dal = ajpagy(@j,2,)" — ajiag, (e,25,)" = (jajs — j1ja)d”.

Given a k-tuple (ap, a1, ...,ax_1), we obtain in this way a complicated system of ternary equations
to be solved.

In the proofs of our theorems we use several results concerning ternary equations to solve the
arising systems of equations. In this section we collect some earlier theorems and establish two new
results for ternary equations which we need later on. We start with ternary equations of signature
(n,n,2).

Proposition 2.1 Let n > 7 be prime, u, v nonnegative integers, and A and B coprime positive
integers. Then the following Diophantine equations have no solutions in pairwise coprime non-zero
integers X, Y, Z with XY # +1:
X424y =372 u#£1
X"+Y"=CZ% C € {2,6}
X" 454y =222 withn > 11 if u > 0
AX"4+ BY" = 7% AB =2%", u#1, p e {11,19}.

Proof. This result is due to Bennett, Bruin, Gyéry and Hajdu [BBGyH]. O

The following result is new. For its formulation, we need a further standard notation. If m is a
positive integer, let rad(m) denote the radical of m, i.e. the product of distinct prime divisors of m
with the convention that rad(1) = 1.

Set
L ={(2,1),(2,3),(2,5),(2,7),(6,1),(6,5),(10,1), (10, 3), (14, 1), (14, 3), (22,1), (26, 1), (30, 1),
(34,1),(38,1),(42,1),(46,1), (66, 1),(70,1), (78,1),(102,1),(114,1), (130,1), (138,1)},
I, ={(3,1),(3,5),(5,1),(5,3),(7,1),(13,1), (15,1),(17,1),(21,1),(23,1),(33,1),(35,1), (39, 1),
(51,1),(57,1),(69,1), (165,1)}
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and
Is ={(3,2),(5,6),(7,2),(11,2),(13,2), (15, 2), (17, 2), (19, 2), (21, 2), (23, 2), (33, 2), (35, 2), (39, 2) }

Proposition 2.2 Let n > 31 be a prime, A, B and C pairwise coprime positive integers with
(rad(AB),C) € I UI, U I3 and p € {11,13,17,19,23,29,31} such that pt AB. Then the equation
AX" 4+ BY" = CZ* (9)

has no solutions in pairwise coprime non-zero integers X,Y,Z with p | XY, unless, possibly, in the
cases listed in Table 2.

n (rad(AB),C,p)
37 (2,7.31), (3,5,31), (6,5,31), (19,2,29), (22,1,31), (46,1,29), (46,1,31),
(70,1,29)
Al (2,7,11), (21,2,13), (21,2,19), (21,2,29), (22,1,31), (46,1,31), (51,1,13),
(102,1,13), (165,1,13), (165,1,31)

| 43 | (5,6,13), (6,5,23) |
| 47 | (5,6,11), (5,6,29), (6,5,31), (15,2,11), (15,2,29), (33,2,13), (33,2,23), (39,2,31) |
| 59 | (3,5,31), (6,5,31), (39,2,23), (165,1,17) |
| 61 | (5,6,13), (5,6,29),(14,3,17), (15,2,13), (15,2,29), (39,2,17), (39,2,19) |
| 67 | (165,1,29) |
| 71 ] (33,2,23) |
179 | (5,6,17), (15,2,17), (165,1,19) |
| 83 | (165,1,29) |
| 89 | (165,1,29), (165,1,31) |
| 97 | (5,6,31), (15,2,31), (165,1,29) |
| 107 | (5,6,31), (15,2,31) |
| 127 | (33,2,31), (165,1,29) |
| 137 | (5,6,23) |
| 193 | (5,6,31), (15,2,31) |
[ 229 | (33,2,31) |
239 | (33,2,31), (165,1,29) |

TABLE 2.

As we mentioned in the introduction, to prove our results in the case n > 7 we had to find
an efficient combination of the "modular” and ”sieving” techniques. A very great number of new
ternary equations arose for each k > 11. We followed the strategy explained below. We first solved
a few well-chosen ternary equations (considering only a small subset I of Iy U Is U I3 in Proposi-
tion 2.2), and using our sieves (which will be detailed in the next section) we tried to reduce each
case (ag,a1,...,ai_1) to ternary equations either treated already in Propositions 2.1, 2.4 or 2.5
or belonging to I. After a while (for larger values of k) there were exceptional cases where such a
reduction was unavailable. At that point we enlarged the set I in several steps and gradually we
reached the finite sets I, I2, I3 in Proposition 2.2. By utilizing the equations occurring in Proposi-
tions 2.1, 2.4, 2.5 or corresponding to I; Ul U I3 in Proposition 2.2 we were able to ”cover” all cases
(ag,a1,...,ax—1), i.e. to prove the insolubility of each arising system of equations. For the details
we refer to the proof of Theorem 1.2.
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Proof of Proposition 2.2. To solve our equations of the form (9) we shall apply the modular ap-
proach. Specifically, to a putative nontrivial solution X,Y, Z of (9) one can associate a Frey curve
E/Q, with the corresponding mod n Galois representation

Py Gal(Q/Q) — GLa(Fy)

on the n-torsion E[n] of E. This representation arises from a cuspidal newform f = >"°2, ¢,.¢" of
weight 2 and trivial Nebentypus character. For details, we refer to [BS]. As usual, for a positive
integer m let radz(m) denote the 2-free radical of m, i.e. the product of distinct odd prime divisors of
m, with the convention that rads(1) = 1. It can be shown that the level N of the newform considered
above is contained in {2%-rads(AB)-rad3(C),a = 0,1,2,3,5,7},{2% rady(AB) -rad3(C), o = 1,5},
or {256-rady(AB)-rad3(C)}, according as (rad(AB),C) € Iy, Iy or I3, respectively. The assumption
that p|XY for a prime p with p € {11,13,17,19,23,29,31} implies that if p is relatively prime to
N then

Normy, jg(cp £ (p+1)) =0 (mod n), (10)
where ¢, is the pth Fourier coefficient of f, and K is the field generated by the Fourier coefficients
of f. This means that if (10) does not hold, we arrive at a contradiction. For the recipes of this
technique see [B1] or [C].

We illustrate our approach in the case (rad(AB),C) = (38,1). The corresponding levels are
19,2-19,4-19,8-19,32 - 19 and 128 - 19. Suppose that X,Y, Z is a solution of the corresponding
equation (9) in pairwise coprime non-zero integers such that p | XY, where p is a prime with
11 < p < 31. Using a simple Magma program, we calculate the Fourier coefficients ¢, of the
corresponding one-dimensional newforms f at the levels considered above. Then we have

n|(ep =@+ D) +p+1)=: By (11)

For the corresponding higher dimensional newforms f at the levels under consideration we use a
stronger sieve. Let

Ap = Norme/Q(c?n — (m+1)?) H Normg, qg(cm — a)
lal<2v/m

a is even

for m = 3,5, 7. Our method yields now that
n | ged(Bp, Az, As, A7). (12)

Consequently, if for some prime p with 11 < p < 31 (11) and (12) do not hold for any f in question,
then in the case (rad(AB),C) = (38,1) equation (9) has no solution in pairwise coprime non-zero
integers X,Y, Z with p | XY

Using the same arguments for each equation considered in Proposition 2.2, we infer that equation
(9) may have a solution with the prescribed properties only in the cases listed in Table 2.

We note that the Hasse-Weil bound implies that B, # 0. Further, for the pairs (rad(AB),C)
and for the higher dimensional case we omit A, from the stronger sieve if A,, =0 or m|ABC. [O

Remark. We can choose further primes m for making a more stronger sieve. For example, in the
case (rad(AB),C) = (165, 1) we can apply the sieve n|gcd(By, A7, A1, Ars) for higher dimensional
forms and we can exclude the cases
(n,p) = (41,13), (41, 31), (59, 17), (67,29), (79, 19),
(89,31),(97,29), (127,29), (239, 29)

as well. However, to find such appropriate primes m involves a long computation. Since for our later
purposes Table 2 and its refinement excluding the cases listed in (13) are already sufficient, we do
not continue this procedure.

(13)
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We use ternary equations of signature (n,n,3) via the following result of Bennett [B2]. For a
prime p and non-zero integer u, ord,(u) denotes as usual the largest integer v for which p* | u holds.

Proposition 2.3 Let n be a prime with n > 7. Then the equation
z(z + d)(z + 3d)(z + 4d) = by"

—~

14)

has the only solutions (x,d,b,y) = (£2,F1,4,1) in non-zero integers x,d,b,y with ged(z,d) = 1
and P(b) < 3.

Proof. The statement is a simple consequence of a recent result of Bennett [B2]. However, for the
sake of completeness we give the main steps of the proof.

Suppose to the contrary that x,d,b,y,n is a solution to (14) with by # 0. If 3 1 x(x 4+ d) then
using the notation (3) the identity [1, 3] x [0, 4] gives

a1a3(1‘1$3)n — a0a4(x0m4)" = 3d2,

and we also have ged(ajaszizs, apaszors) = 1 and P(apajazas) < 2. As either orda(ajaz) =
ordz(apas) = 0, or orda(ajas) = 0 and ordz(apas) > 2 (or vice versa), the statement follows from
(5) of Proposition 2.1 in this case.

Otherwise, if 3 | z(x + d) then the identity (z + d)?(z + 4d) — z(x + 3d)? = 4d® yields
a2ay(2324)" — agad(xox3)™ = 4d°>.
After simplifying with a suitable power of 2, we get an equality either of the form
X430y =273 uw>1, v >3, ged(X,3Y) =1,
or of the shape
AX" 4+ BY" =273 AB=2"3", u>1, v >3, ged(AX,BY) = 1.

However, using results from [BVY] and [B2] about certain ternary equations of signature (n,n, 3),
the statement follows also in this case. O

We will also use results on ternary equations of signature (n,n,n) which have been proved by
the method involving Frey curves and modular forms; cf. [W], [K], [DM] and [R].

Proposition 2.4 Let n > 3 and u > 0 be integers. Then the equation
has no solutions in pairwise coprime non-zero integers X,Y, Z with XY Z # +1.

Proof. This result is essentially due to Wiles [W] (in case n | u), Darmon and Merel [DM] (if u = 1
(mod n)) and Ribet [R] (in the remaining cases for n > 5 prime); see also Gydry [Gy2]. O

Proposition 2.5 Let n > 5, and let A, B be coprime positive integers with AB = 2“3V or 25",
where u and v are non-negative integers with w > 4. Then the equation

AX"+ BY"=2" (15)
has no solutions in pairwise coprime non-zero integers X,Y and Z.

Proof. This is Lemma 13 in [SS]. O

For n = 5, most of the above assertions on ternary equations cannot be applied. Then we shall
use the following results as well.
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Proposition 2.6 Let n > 3 be an integer. All the solutions of the equation

z(x+1)...(z+k—1)=0by" (16)
in positive integers x, k,b,y with k > 8 and P(b) <7 are given by
ke{89,10} and ze{1,2,...,p" —k}, (17)

where p*) denotes the least prime satisfying p™*) > k.

Proof. 1t follows from a theorem of Saradha [Sar| that, in (16), P(y) < k. As was seen in Gy6ry
[Gyl1], we then get = € {1,2,...,p®) — k}, whence p(*) > x 4+ k — 1. Denote by P(k) the greatest
prime with p(;) < k. Then, for k > 11, p(y) > 11. Further, by Chebyshev’s theorem p) < 2p@y- In
view of py < k we have pyy | x(x +1)...(x +k — 1). But it follows that 2p(,) > x + k — 1. Hence
(16) and P(b) < 7 give Pl | z(x 4+ 1)...(x + k — 1), which implies that Py < @+ k—1. Hence we
get p?k) < 2p®) a contradiction.

It remains to treat the case k € {8,9,10}. Then p®*) =11 and it is easy to check that the values
k,x listed in (17) are the solutions of (16). O

Lemma 2.1 Let n =5. For k =5, P(b) < 3, and for 6 < k <11, P(b) <5, equation (1) has the
only solution (x,d, k) = (—5,2,6) with d > 2.
Proof. This is a special case of Theorem 1.2 in [BBGyH]. O

Lemma 2.2 Let n = 5. Suppose that x,d,y,b provides a solution to equation (1) with P(b) < 3 and
k =4. Then either (x,d) = (—3,2), or, up to symmetry, (ag,a1,a2,a3) = (4,3,2,1) or (9,4,1,6).

Proof. This is Lemma 6.3 in [BBGyH]. O

Let C be a 5th power free positive integer with P(C') < 7. Then we can write
C=2v.30.57.7 (18)

with non-negative integers «, 3,7, § not exceeding 4.

Proposition 2.7 If the equation
X 4+YS =025 (19)

has solution in pairwise coprime non-zero integers X,Y and Z, then one of the following cases
holds:

(i)C=2,X=Y =1,
(ii)) C =7 with1 <6 <4, 5| XY, 51 Z and Z is odd,
(i4i) C € {2-32-79,22.34.70.23.3.7924.33.79) with1 <5 <4 and 5| Z.

This implies that if in (19) 5 ¢+ XY Z, then (i) must hold. If in particular P(C') < 5, then
Proposition 2.7 reduces to Proposition 6.1 of [BBGyH].

Proof. Let X,Y, Z be a solution of (19) in pairwise coprime non-zero integers. By results of Dirichlet
and Dénes [De], it suffices to deal with the case C' > 2 and XY Z # +1. It follows from a theorem
of Lebesgue ([Di], p. 738, item 37) that 51 C and

C=41,47 (mod 5?). (20)
First assume that 5t Z. We have
C*=1 (mod5% and 2'#1 (mod 5?),
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whence
C*#2' (mod 5%).
Applying Lemma 6.1 and Corollary 6.2 of [BGyP] to (19), we deduce that 5 | XY, CZ is odd and
=1 (mod 5?) (21)

for each prime divisor r of C. In view of (18) and (21) we infer that only » = 7 can hold, and (ii)
follows.

Now suppose that 5 | Z. The prime 5 being regular, a theorem of Maillet (see e.g. [Di], p. 759,
item 167) implies that C' must have at least three distinct prime factors. This means that in (18)
v=0and «, 3,0 > 1. It is easy to check that together with (20) this gives (iii). O

3. Proofs

First we prove Theorems 1.2 and 1.3. As was mentioned already, we need to consider the cases
n =5 and n > 7 separately. The reason is that the theory of ternary equations cannot be efficiently
applied in case of n = 5. We start with n > 7.

Proof of Theorem 1.2. To prove the theorem we eventually reduce the problem to the solution of
several ternary diophantine equations. We now explain the main ideas of our proof. Suppose that
under the assumptions of our theorem equation (1) has a solution. Observe that, by (3), to determine
all solutions to (1) with fixed k it is sufficient to characterize the arithmetic progressions of the shape
apry,a1xy, . .., ap_1T}_;, where the z; are non-zero integers, and the a; are positive integers such
that ged(apzy, a12t) =1,

P(a;) < k and a; is nth power free for i = 0,1,...,k— 1. (22)

Further, the assumption P(b) < Py, implies that

k—1

n | ord, <H a,-) for all primes p > Py . (23)
i=0

In particular, if p is a prime and w > 1 is an integer with p* | a;z}" then p* | a;x7 if and only if

p" | i — j. This assertion will be used later on without any further reference.

The number of possible k-tuples (ag,a1,...,ax—1) with properties (22) and (23) grows very
rapidly with k, and it is impossible to look at them one-by-one if k is relatively large. So we apply
the following strategy. We exclude the possible coefficient k-tuples (ag, a1, ..., ar—1) in several steps,
using certain procedures in a well-determined order. A k-tuple will be excluded after assuring that
in the corresponding case equation (1) has no solution. We start with arguments with which we
can exclude a great number of k-tuples (ag,aq,...,ax_1). By induction we can exclude a lot of
possibilities. Namely, if for some £ > 3 P(aqg...as—1) < Py or Plag—¢...ax—1) < Py, holds, then
the statement follows either by induction, or by Theorem A. By this observation the number of k-
tuples to be considered can be reduced drastically. Subsequently, after each step, it will be simpler
and simpler to manage and exclude the remaining k-tuples. We shall explain the details later on,
at the sieves. Further, we provide examples to illustrate how the sieves work.

In what follows, we always assume that k is fixed with 11 < k < 35. We use the following
convention. Let 2 = p; < pa < -+ < prp_1) be the primes < k — 1, where m(k — 1) denotes the
number of primes not exceeding k—1. Observe that as Py ,, < k for n > 7, by (23) we have P(a;) < k
n (22) for all : = 0,1,...,k — 1. We indicate the distribution of the primes p1, ... s Pr(k—1) AMONg
the a;z] resp. a; (or in other words, the prime divisors < k — 1 of the a;x} resp. a;) by the help of
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certain 7(k — 1)-tuples of the form (my(y_1y,...,m1). For 3 <j < m(k —1) let
mj € {x,0,1,...,p; — 1} (24)

where m; = x if p; { II; (i.e. p; does not divide z(xz + d)...(xz + (k — 1)d)); otherwise, let m;
denote the integer from among 0, 1,...,p; — 1 for which p; | z +m;d. In our proof first we consider
such cases when it is not specified which terms of the progression =,z + d,...,z + (k — 1)d are
divisible by 2 and 3. Then we write m; = * for j = 1,2. In such a case we say that the distribution
of p1,...,Pr(k—1) among the a;x} resp. a; corresponds to the 7(k — 1)-tuple (mzx_1),...,m1). By
means of these m(k — 1)-tuples we shall get information about the location of the coefficients a;
without ”large” prime factors which will be of crucial importance in our proof. To each of these

m(k — 1)-tuples there correspond a great number of k-tuples (ag, a1, ...,ar—1) under consideration.
Hence the use of our tests sieving with all 7(k — 1)-tuples of the form (mﬂ(k_l), ooy mg, k) will
enable us to exclude simultaneously full branches of k-tuples (ag,ai,...,ax_1) at the same time.

This makes our algorithm very efficient. Our first three tests below seem to be especially efficient,
at least for the range of k under consideration.

Later we shall need to refine our algorithm by specifying also those terms of x,x + d, ...,z +

(k — 1)d which are divisible by 2 and/or 3. For j = 1 and 2, let
mj € {x,0,1,...,k—1} (25)
such that, as in the case j > 3, m; = x if p; { II; otherwise let m; be such a number from

{0,1,...,k —1} for which p; |  + m;d and

ordy, (r +m;d) = [ Jhax ordy, (z + £d).

This will enable us to calculate the exact orders of the primes p; = 2 and py = 3 in the numbers
a;x}. Then we shall continue our proof with further tests, sieving first with all possible w(k —

1)-tuples of the form (my(y—1y,...,m3,m2, %), (Mr—-1),---,m3,%,m1) and thereafter with tuples
(Mr(k=1),- - -, M3, M2, m1) with my, ma satisfying (25). Finally, a relatively few number of k-tuples
(ap,a,...,ax—1) will be left with some small exponents n which will be excluded by means of a

local sieve.

In our sieves we shall use ternary equations. We shall distinguish between (n,n,n), (n,n,3) and
n,n, 2)-sieves, according as the ternary equations involved are of signature (n,n,n), (n,n,3) or

(
(n,n,?2).
(

n,n,n)-sieve 1. Suppose that we are dealing with a m(k — 1)-tuple T' = (My(x_1), - -, M3, %, *).
First (by the help of T') we check whether there exists an arithmetic progression ij,19,i3 with
0 < i <2 < i3 < k—1such that P(a;,ai,ai;) < 3 and i1 = i2 = i3 (mod 3). If there are
such indices, then by Proposition 2.4 the identity [ij,i2,43] implies that 3 | = + i1d (and then
consequently 3 | x +iad, x +i3d) must be valid, otherwise we are done. Then we apply an exhaustive
search for indices iy4,i5 with which some appropriately chosen identities of the form (4) lead to
a contradiction. For example, assume that P(agasag) < 3. Then by [2,5,8] we know that 3 |
x+2d, x+5d, x+8d. Suppose further that P(asas) < 3. Then ged(z, d) = 1 shows that P(asas) < 2.
Hence, as exactly one of ords(z + 2d) > 2, ords(x + 5d) > 2, ords(z + 8d) > 2 holds, one of the
identities [2,4, 5], [5, 6, 8], [2, 6, 8] (again by Proposition 2.4) leads to a contradiction.

After having checked all the possible 7(k —1)-tuples T' of the form (my_1),. .., ms3, *, *) and all
the possible triples (i1,142,43) in question, we exclude the tuples T' and the corresponding k-tuples
(ap,ai,...,ax—1) which lead in this way to a contradiction.

As an example, take k = 15 and let
T =(0,3,0, X, *,%).
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Then we have P(azaqasagag) < 3, and by the previous argument 7" and the corresponding 15-tuples
can be excluded.

(n,n, 3)-sieve. Suppose that a m(k — 1)-tuple T" survives the previous test. Then we try to find an
index i¢ and a difference dy with P(dy) < 3, ig — 2dp > 0 and ig + 2dy < k — 1 such that

P(aio—Qdoaio—doaio-i-doai0+2do) <3. (26)

Let g = ged(x + (ip — 2dy)d, dod). Obviously, ged(z,d) = 1 and P(dy) < 3 imply that P(g) < 3.
Putting X = (z + (ip — 2do)d)/g, D = dod/g and using (3) and (26), we infer that for these X, D
the equation

X(X+D)(X+3D)(X+4D)=BY"
has a solution in non-zero integers B,Y with P(B) < 3. However, this by Proposition 2.3 implies
X 4+ 2D = 0 which is impossible. We check all the possible g, dy, and exclude again all the T" and
all the corresponding k-tuples leading in this way to a contradiction.

To see an example, let £ = 15 and
T =(0,3,4,2, %,%).

Note that T' survives the previous test. We have P(asagagag) < 3, hence we can take ig = 7 and
dop = 1, and by the above test T" and the corresponding 15-tuples can be excluded.

(n,n,n)-sieve II. Consider a m(k—1)-tuple T' = (my(_1), - - ., M3, *, ) which is not excluded by the
previous tests. We let m; run through the set {x,0,1,...,k — 1} and examine all 7(k — 1)-tuples
of the form T = (mﬂ(k,l), ...,ma,%,my). We perform an exhaustive search to find an identity

of the form [i1,9,i3] leading to a ternary equation of the shape AX™ + BY"™ = Z" such that
ged(A, B) =1, and AB is either of the form 2%3Y or 2“5Y, with u > 4 in both cases. If we succeed,
then the corresponding 7(k — 1)-tuple and k-tuples can be excluded by Proposition 2.5.

As an example, choose k = 15 and
T = (0,3,1,4, % 11).

Note that this 7(k — 1)-tuple cannot be excluded by the previous tests. However, taking the iden-
tity [2,10,11], after cancelling an appropriate power of 3 we get a ternary equation of the form
AX"™ 4+ BY"™ = Z" with ged(A,B) = 1 and AB = 2“3V, u > 4. Hence we can exclude 7" and the

corresponding 15-tuples.

(n,n,2)-sieve 1. Suppose that a 7(k — 1)-tuple 7" = (my(y_1), .. .,mM3,*,Mm1) passes the previous
tests. Then we consider all 7(k — 1)-tuples of the form T = (m;p_1),...,ma,m1) with my €
{x,0,1,...,k — 1}. We search for an identity of the form [ja, j3] X [j1,ja] which leads to a ternary
equation of the shape AX"™ + BY™ = CZ? such that ged(4, B,C) = 1 and one of the following
holds: AB = 2% (u# 1), C = 3% AB =1, C € {2,6}; AB = 2" (u # 1,p € {11,19}), C = 1.
Then applying Proposition 2.1, the corresponding m(k — 1)-tuples 7™ and corresponding k-tuples
(ap,ai,...,ax_1) can be excluded.

For example, choose again k = 15, and take
T =(0,3,1,2,0,3).

Note that T* passes all the previous sieves. However, the identity [5,10] x [4,11] gives rise to a
ternary equation of the form X™ + 4Y"™ = 322, which leads to a contradiction, as explained above.

(n,n,2)-sieve II. Assume that a 7(k — 1)-tuple T survives the previous tests. Then we try to find
again an identity of the form [ja, j3] X [j1,j4], leading to a ternary equation AX™ + BY™ = 272
with AB = 5%, u > 1. Then Proposition 2.1 implies that n = 7. We collect these 7(k — 1)-tuples T
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to a set S, and make a note that these tuples T* have to be reconsidered later separately for the
exponent n = 7.

As an example, let k = 15 and let
T =(0,3,4,1,8,3).

As one can easily see, T survives the previous tests. However, after cancellations, the identity
[5,6] x [2,9] leads to a ternary equation of the shape X" +5“Y" = 272 with u > 0. Then Proposition
2.1 gives that n = 7 and we can put 7™ into S.

(n,n,2)-sieve III. Assume that a 7m(k — 1)-tuple 7™ survives the previous tests. Then we search
for an identity [j2,73] X [j1,74] such that the implied ternary equation satisfies the conditions of
Proposition 2.2. Then this proposition and the subsequent Remark yield that n is (explicitly)
bounded for the case corresponding to 7. We put these 7(k — 1)-tuples T* into the set S, and to
each of them we attach the list of the corresponding ”exceptional” exponents, to be checked later.

For example, let kK = 15 and
T* = (0,3,1,4,0,0).
As one can check, this 7(k — 1)-tuple passes each earlier sieve. However, the identity [6, 11] x [3, 14]

gives (after cancellations) a ternary equation of the shape X" +5%Y" = Z2 with u > 1 and 11 | XY,
and by Proposition 2.2 we get that n < 31. Then we can put T™ into S.

After accomplishing the above procedures one can exclude (or put into S) all the w(k — 1)-tuples
(Mzr(k-1),---,m1) and the corresponding k-tuples (ag,a,...,ar—1) for all values of k, up to very
few exceptions. In the remaining cases we proceed as follows. Let (ag,ai,...,ar—1) be a k-tuple
which passes all the above tests. Let T* = (my(y—1),--.,m1) be the corresponding m(k — 1)-tuple,
with m; subject to (24) and (25) for j > 3 and j = 1,2, respectively. We ”split” T into several
m(k — 1)-tuples, according to which indices i, j ords(z + id) and ord7(z + jd) is maximal. Then for
these "refined” m(k — 1)-tuples we try to find identities either of the form [i1,i2,73] or of the shape
[72, 73] X [J1,Ja] such that Proposition 2.1, 2.2, 2.4 or 2.5 yields a contradiction. Obviously, for this
purpose we can use the sieves explained above. On these "refined” 7(k — 1)-tuples we have more
information than about T™. Hence it often happens that a sieve which did not work for T™ itself

excludes a "refined” 7(k — 1)-tuple together with the corresponding k-tuples (ag,ai,...,ar_1). In
fact this is exactly what we perform in all the remaining cases. After having gone through all the
remaining 7(k — 1)-tuples (my_1),...,m1) and the corresponding k-tuples (ao, a1, ...,ax_1), we

are left with the m(k—1)-tuples in the set S only. All the other w(k—1)-tuples (and the corresponding
k-tuples) are already excluded.

We show an example to illustrate the above method. For this purpose let k = 24 (there are no
exceptional k-tuples for k£ < 23), and let

T* = (my,...,m1) = (0,0,6,10,3,1,2,4,7).

One can check that this tuple passes all the previous sieves. Then we ”split” T* into 9-tuples of the
form (0,0, 6, 10, 3, m/, m5,4,7) with

mly € {2,7,12,17,22} and m) € {1,8,15,22}.
Here for fixed m} (j = 3,4) we assume that

ordy, (x + mjd) = Jmax, ordy, (v + £d).

We try to find an identity of the form [i1, i2, i3] or [j2, j3] X [j1, j4] which by Proposition 2.1, 2.2, 2.4
or 2.5 leads to a contradiction. In the present example, noting that ords(ayz?) > 5, one can easily
check that for m4 = 2 and m4 € {12,17,22} the identity [5,7,17] and [2, 5, 7], respectively, leads to
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a contradiction by Proposition 2.5, regardless of the value of m/. Furthermore, for mj =7, [2,5, 17]
yields a contradiction by Proposition 2.4, for any m,.

It remains to check the m(k —1)-tuples in S and the corresponding k-tuples (ag, a1, . ..,ar_1) for
the remaining small values of the exponent n. This can be done very easily by the following local
argument.

Local sieve. For each element in S and for the corresponding remaining values of n (obtained by
Propositions 2.1, 2.2 and the subsequent Remark) we consider the problem locally. For each such
n we choose a prime ¢ of the form ¢ = tn + 1, with ¢ as small as possible. For example, in the
cases n = 11,13,17,19, 23 we take ¢ = 23,53, 103, 191, 47, respectively. Then we check the putative
arithmetic progressions modulo ¢ in the following way. By the choice of the corresponding modulus,
the use of Euler-Fermat theorem guarantees that x}' may assume only very few values modulo q.
Checking all the cases one-by-one and using that the numbers a;2 (i = 0,1,...,k — 1) should be
consecutive terms of an arithmetic progression, we get a contradiction in each case.

To illustrate the local argument, chose k = 15, n = 23 and take the 7(k — 1)-tuple
(0,3,1,4,0,0)

from S. Observe that the 23rd powers modulo 47 are exactly —1, 0, 1. Hence in this case the putative
progression a;x2* (i = 0,1,...,14) should be of the form

+20030013%0 7% 49 +3.11%%, £22 . 57 41,423, +1, +£237%  +32579,

42, 41,4223, £13718, £2 . 54111

modulo 47 with non-negative exponents smaller than 23 and with the possible diversion that at
most one of the terms can be equal to 0. However, as one can easily check even by hand, such an
arithmetic progression does not exist. In all other cases a similar argument works, and this completes
the proof. O

Proof of Theorem 1.3. Let (x,d,k,b,y) be a solution of (1) with n = 5. For d = 1, each factor
x +1id in (1) must be positive or negative. Then we can reduce equation (1) to the case z > 0, and
Proposition 2.6 applies to obtain the solutions listed in the theorem.

In what follows, we assume that d > 2. Further, if £ < 11, in view of Lemma 2.1 we can restrict
ourselves to the case 7| ag...ag_1.

For 8 < k < 13, most of our work in proving Theorem 1.3 is concentrated on the case k = 8.
For the values 9 < k < 13 we can then proceed by induction on k. We note that the above sieves
can be utilized to prove our theorem for larger values of k only. For £ < 13, too many exceptions
would remain after using our sieves. Hence for these values of k we shall handle the arising k-tuples
(ap,ai,...,ax—1) without using sieves, tests and computer.

The case k = 8. If 7| ag, a7 then omitting in (1) x and x + 7d, we arrive at the case k = 6, and
by Lemma 2.1 we get  +d = —5, d = 2. This yields the solution (x,d) = (—=7,2). If 7| aj or 7 | ag,
then we omit the factors z,z + d resp. « + 6d,z + 7d and we obtain in a similar way the solutions
(x,d) =(-9,2),(-5,2).

It remains the case 7 | az...as. By symmetry it suffices to consider the case 7 | azas.

First suppose that 7 | as. If 51 ag...a7, then Lemma 2.1 applied to I1(3,4,5,6,7) shows that
there is no solution. If 5 | = + 2d, then 5 | z + 7d and for (i1,12,13,74) = (3,4,5,6) we get

(i1, iz, i5,1a) = b1yy, (27)
where b1, y; are non-zero integers with P(b1) < 3. Then Lemma 2.2 gives that either (z + 3d,d) =
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(—3,2) which leads to the solution (x,d) = (—9,2) or, up to symmetry,
(ag,a4,a5,a6) = (473a2a1) or (974,1,6)'

If (a3, a4, as5,a6) equals (4,3,2,1) or (1,2,3,4), then applying Proposition 2.7 to [0, 3, 6] we arrive
at a contradiction. In the remaining cases Proposition 2.7 can be applied to [1,3,5] or [0, 1, 3] and
we get again a contradiction.

Next assume that 5 | z. If 3 1 IIg or 3 | z, we can apply Proposition 2.7 to [1,4, 7]. Otherwise, to
obtain a contradiction Proposition 2.7 can be applied to [1,3,7], [4,6,7] or [1,3,4] if 3 | z + d, and

0[1,4,7]if 3 | + 2d.

Let 5| o 4+ d. If 3 11Ig or 3 | z, one of the equations [3,4,5], [0,3,4], [5,6,7], [4,5,7] leads to
a contradiction by Proposition 2.7. In the remaining cases at least one of the equations [3,4, 5],
[0,1,3], [4,5,7], [0,3,6], [3,5,7], [0,2,4] is not solvable by Proposition 2.7.

Let now 5 | 4+ 3d. If 3 1 Ilg or 3 | z(z + 2d), then using Proposition 2.7, equation [1,4,7]
leads to a contradiction. If 3 | x + d, we get the equation (27) with (iy,49,13,44) = (4,5,6,7). Then
Lemma 2.2 gives that either (z + 4d, d) = (—3,2) which does not yield any solution of (1) or, up to
symmetry,

(aq,as5,a¢,a7) = (4,3,2,1) or (9,4,1,6).
It is easy to verify that only the second option can occur. Then [0, 3,6] or [1,4, 5] has no solution,
according as (ay, as, ag, a7) equals (9,4,1,6) resp. (6,1,4,9).

Finally assume that 5 | 2 + 4d. Then applying Lemma 2.2 to equation (27) with (i1, 2, 13,4) =
(1,3,5,7) we get that either (x +d,d) = (—3,2) which yields the solution (z,d) = (—5,2) of (1) or,
up to symmetry,

(a17a37a57a7) = (473a2a1) or (974,1,6)'

It follows that in each case = + d, z 4+ 3d, x + 5d and x + 7d are all divisible by 4 which contradicts
the assumption that ged(z,d) = 1.

Next consider the case 7 | © +3d. If 5 f ag...a7 or if 5 |  + 3d then we have (27) with
(i1,12,13,14) = (4,5,6,7). Then, by Lemma 2.2, (a4, as, ag, a7) equals (4,3,2,1), (1,2,3,4), (9,4,1,6)
or (6,1,4,9). Now Proposition 2.7 proves that [1,4, 7], [2,3,4] or [1,3,5], [0, 1,2] resp. [1,4,5] is not
solvable.

Let now 5 | z. If 31 2 + d then Proposition 2.7 applies to [1,4, 7], leading to a contradiction. If
3 |  + d, then by Proposition 2.7 at least one of the equations [2,4,6], [1,4,7], [4,6,7], [1,2,4] has
no solution.

Assume now that 5 | © +d. If 3 t IIg or 3 | x, then by Proposition 2.7 at least one of the
equations [0,2,4], [2,3,4] and [5,6,7] has no such a solution which would yield a solution of (1).
Let now 3 | x +d. If x is odd then equation [0, 1, 2] is not solvable by Proposition 2.7. Otherwise, if
x is even then by ged(w,d) = 1 d is odd, whence 22 | z or 22 | x +2d. If 32 Y v + 7d or 3% | x + 7d
and 22 | 2 then Proposition 2.7 shows that [4,5,7] resp. [2,4, 5] is not solvable. When 32 | 2 + 7d
and 22 | z + 2d, then using the fact that

X5=0,+1 (mod 11) (28)

for any integer X, we deduce that 1 = x4 = x5 = 0 is the only solution of [1,4,5] (mod 11) which
leads to a contradiction.

Next let 3 | x + 2d. If x is odd or orda(z) = orda(z + 4d), then in view of Proposition 2.7 [0, 2, 4]
has no solution. As ged(r,d) = 1, it remains the case when 23 | x or 23 | x + 4d. If 3% { x + 2d and
32} x + 5d, then [2,4,5] is not solvable by Proposition 2.7.
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Assume that 3% | z + 2d. If 23 | z, then [4,5, 7] yields the only solution

i=a2 =22 =41 (mod 11).

[N

Together with (3) this gives d = F1 (mod 11) and = +8 (mod 11). Then = + d = 529 (mod 11)
with 5 { 1 cannot hold. Thus 52 | x4 d, whence ords(x +6d) = 1, and [5, 6, 7] yields a contradiction
(mod 11). If 23 | z +4d, then [0, 5, 7] is not solvable (mod 11). Finally, consider the case 32 | x + 5d.
If 23 | = + 4d, then Proposition 2.5 shows that equation [1,4, 7] is not solvable. By assumption we
have 5 | x + 6d. If 23 | =, then [1,4, 7] or [2,4,6] is not solvable (mod 11), according as 52 | x + 6d
or not.

Let now 5 | x 4+ 2d. If 3 {IIg, then solving [4, 5, 6] by means of Proposition 2.7 we do not get any
solution for (1). First assume that 3 | x + d. Then, by Proposition 2.7 and 5 { z(z + 6d), [0, 3, 6]
or [4,5,6] has no solution, according as 22 { x or 22 | x. Next let 3 | x + 2d. Then Proposition
2.7 implies that [0,1,4], [0,4,6] or [1,2,4] is not solvable, according as 23 | z, 23 | = + 4d or
ordg(z) = orda(x + 4d). Assume now that 3 | z. If orda(z + d) = orda(z + 5d) then [1,3,5] is not
solvable in view of Proposition 2.7. It remains the case 23 | z + d or 23 |  + 5d. Then Proposition
2.5 proves that [0, 1,4] has no solution.

Finally, assume that 5 | x 4+ 4d. If 3 { IIg or 3 | = + 2d, then at least one of the equations
[0,3,6], [1,4, 7] is not solvable by Proposition 2.7. If 3 | x, then, by Proposition 2.7, [1,2, 5], [1,5, 7]
or [1,3,5] is not solvable, according as 23 | z + d, 23 |  + 5d or ords(z + d) = orda(x + 5d). If
3| # + d, then [0,2,6], [2,5,6] or [2,4,6] has no solution, according as 23 | = + 2d, 23 | x + 6d or
orda(z + 2d) = orda(z + 6d). This completes the proof of the case k = 8.

The cases k =9,10,11. In view of P(b) <7, (1) implies (3) with P(a;) < 7 for each i. Hence
we deduce from (1) that

(0, 1,...,k — 2) = bayss (29)

where bo, y2 are non-zero integers with P(by) < 7. We can now proceed by induction on k. For k = 9,
we apply to (29) our results proved above in the case k = 8 and we infer that all the solutions of (1)
with d > 2 are given by d = 2, z € {—9, —7}. For k = 10, we obtain similarly that d = 2, x = —9,
while, for k£ = 11, we do not get any solution for (1).

The cases k = 12,13. First suppose that at most one factor, say = + id, is divisible by 11.
Then 11 { a;, and we get (29). Using again induction on k, we infer that in these cases (1) has no
solution. If two factors, say « 4 i¢d and = + jd with ¢ < j, are divisible by 11 then we deduce from
(1) that

(i +1,...,5—1) = bsy3, (30)

where j = i + 11 and bs,y3 are non-zero integers with P(b3) < 7. We can now apply our results
obtained for k = 10 and it follows that no new solutions of (1) arise.

The cases k>14. From this point on it is definitely worth algorithmizing the proof and using a
computer. We execute the following tests. As they are rather similar to those used in case of n > 7,
we apply the same notation.

(5,5,5)-sieve I-II. We apply the sieves (n,n,n)-sieve I and (n,n,n)-sieve II like in case of
n > 7, but consecutively. As the underlying Propositions 2.4 and 2.5 are valid also for n = 5, this
can be done without any restrictions.

(5,5,5)-sieve III. This is a new sieve. From this point on we work with 7 (k — 1)-tuples T* of the
same type (Mq(x—1),---,mM1) as in (n,n,2)-sieve I in the proof of Theorem 1.2, that is m; satisfies
(24) for j > 3 and (25) for j = 1, 2. For each such 7(k — 1)-tuple T* we check whether it is possible
to find three terms of the arithmetic progressions under consideration such that their corresponding
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linear combination leads to an equation of the form

X5+YS=Czb
with P(C) < 5. If we can find such terms, then the corresponding m(k — 1)-tuple T and the k-
tuples (ag, a1, ...,a,_1) can be excluded by Proposition 2.7. (We can easily take care of the cases

corresponding to part (i) of the proposition.) If a m(k — 1)-tuple 7™ cannot be excluded in this way,
we put it into a set S.

Sieve modulo 11. Similarly as in Local sieve, we test all elements of S locally. In this case we
can obviously use the prime 11 because of (28). By the help of the same method as in the proof of
Theorem 1.2, all m(k — 1)-tuples in S and hence all the k-tuples (ag, a1, ...,ax—1) can be excluded,
and the proof is complete. O

Proof of Theorem 1.1. We must prove that for 3 < k < 35 and b = 1, equation (1) has no solution
in positive integers x,d,y and n. Suppose that such a solution exists. By the result of Erdés and
Selfridge we have d > 1. Further, as was mentioned earlier, we may assume without loss of generality
that n is prime. If n = 2 or n = 3, then the statement immediately follows from Theorem B and
Theorem C, respectively. In case of n = 5, Theorem 1.1 is a consequence of Theorem A and Theorem
1.3. Finally, for any prime n > 7 Theorem A together with Theorem 1.2 imply the assertion. O
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ABSTRACT. We show that if k is a positive integer, then there
are, under certain technical hypotheses, only finitely many coprime
positive k-term arithmetic progressions whose product is a perfect
power. If 4 < k < 11, we obtain the more precise conclusion that
there are, in fact, no such progressions. Our proofs exploit the
modularity of Galois representations corresponding to certain Frey
curves, together with a variety of results, classical and modern, on
solvability of ternary Diophantine equations. As a straightforward
corollary of our work, we sharpen and generalize a theorem of
Sander on rational points on superelliptic curves.

1. INTRODUCTION

A celebrated theorem of Erdds and Selfridge [14] states that the
product of consecutive positive integers is never a perfect power. A
more recent and equally appealing result is one of Darmon and Merel
[11] who proved an old conjecture of Dénes to the effect that there
do not exist three consecutive nth powers in arithmetic progression,
provided n > 3. One common generalization of these problems is to
ask whether it is possible to have a product of consecutive terms in
arithmetic progression equal to a perfect power. In general, the answer
to this question is yes, as the Diophantine equation

(1) nn+d)---(n+k-10d) =y, k>3 1>2

may have infinitely many solutions in positive integers n,d, k,y and [
if either the integers n and d have suitable common factors (as in the
example 9 - 18 - 27 - 36 = 543), or (k,l) = (3,2) and ged(n,d) =1 (e.g.
1-25-49 = 35?). If, however, we restrict our attention to progressions
with

2) ged(n,d) =1, k>3, 1>2, (k1) #(3,2),

Research supported in part by grants from NSERC (M.B. and N.B.), the Erwin
Schrodinger Institute in Vienna (M.B. and K.G.), the Netherlands Organization for
Scientific Research (NWO) (K.G. and L.H.), the Hungarian Academy of Sciences
(K.G. and L.H.), by FKFP grant 3272-13/066/2001 (L.H.) and by grants T29330,
T42985 (K.G. and L.H.), T38225 (K.G.) and F34981 (L.H.) of the Hungarian Na-
tional Foundation for Scientific Research.
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a number of special finiteness results are available in the literature.
Euler (see e.g. [13]) showed that then (1) has no solutions if (k,l) =
(3,3) or (4,2); asimilar statement was obtained by Obléth [26], [27] for
the cases (k,1) = (3,4), (3,5) or (5,2). It has been conjectured by Erdés
(as noted in [37]; see also Darmon and Granville [10]) that (1) (with
(2)) has, in fact, no solutions whatsoever. This conjecture has been
recently established by Gy6ry [18] for £ = 3 (and [ > 3 arbitrary) and
by Gyory, Hajdu and Saradha [19], in case k = 4 or 5. Unfortunately,
the arguments of [19] are invalid if | = 3; we correct these in Section 5
of the paper at hand.

In general, however, it appears to be a very hard problem to prove
even that the number of solutions to (1), with (2), is finite. As a rough
indication of its depth, this does not seem to be a consequence of the
ABC Conjecture of Masser and Oesterlé, unless we further assume
that [ > 4; see Theorem 7 of [19]. Further work in this direction,
under restrictive hypotheses, includes that of Marszalek [23] (in case
d is fixed), Shorey and Tijdeman [37] (if  and the number of prime
divisors of d is fixed) and Darmon and Granville [10] (if both k& and
[ are fixed). For a broader sample of the abundant literature in this
area, the reader may wish to consult the survey articles of Tijdeman
[42] and Shorey [35], [36].

In this paper, we will address the problem of establishing finiteness
results for equation (1), under the sole assumption that k is fixed. One
of the principal results of this paper is an extension of the aforemen-
tioned work of Gy6ry [18] and Gydry, Hajdu and Saradha [19] to k& < 11
(with a requisite correction of the latter work, in case [ = 3).

Theorem 1.1. The product of k consecutive terms in a coprime pos-
itive arithmetic progression with 4 < k < 11 can never be a perfect
power.

By coprime progression, we mean one of the form

with ged(n, d) = 1. We should emphasize that this does not follow as a
mere computational sharpening of the approach utilized in [18] or [19],
but instead necessitates the introduction of fundamentally new ideas.
Indeed, the principal novelty of this paper is the combination of a new
approach for solving ternary Diophantine equations under additional
arithmetic assumptions, via Frey curves and modular Galois represen-
tations, with classical (and not so classical!) results on lower degree
equations representing curves of small (positive) genus. Further, for the
most part, our results do not follow from straightforward application
of the modularity of Galois representations attached to Frey curves,
but instead require additional understanding of the reduction types of
these curves at certain small primes.
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Theorem 1.1 is, in fact, an immediate consequence of a more general
result. Before we state this, let us introduce some notation. Define,
for integer m with |m| > 1, P(m) and w(m) to be the largest prime
dividing m and the number of distinct prime divisors of m, respectively
(where we take P(£1) = 1, w(£1) = 0). Further, let us write

(3) II (i1, 42, ...,1) = (n+i1d)(n + iad) - - - (n + i:d)

and

(4) I, =11(0,1,2,...,k = 1) =n(n+d)(n+2d)--- (n+ (k — 1)d).
With these definitions, we have the following theorem.

Theorem 1.2. Suppose that k and | are integers with 3 < k < 11,
[ > 2 prime and (k,l) # (3,2), and that n and d are coprime integers
with d > 0. If, further, b and y are nonzero integers with P(b) < Py,
where Py is as follows :

o
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then the only solutions to the Diophantine equation

(5) I =11, = by

are with (n,d, k) in the following list :

(—9,2,9),(-9,2,10),(-9,5,4),(-7,2,8),(-7,2,9),(—6,1,6), (—6,5,4),
(—5,2,6),(—4,1,4),(—4,3,3),(-3,2,4),(-2,3,3),(1,1,4),(1,1,6).

For k = 3, this theorem was proved in [18]. Our Theorem 1.2 sharp-
ens and generalizes the corresponding results of [19], which treated the
cases k = 4 and 5 (with [ # 3). Note that the upper bound on P(b) in
the above theorem may be replaced in all cases by the slightly stronger
but simpler bound

(6) P(b) < max{3,k/2},

leading to a cleaner but weaker theorem. Further, in cases (k,[) = (4, 2)
and (3, 3), the result is best possible (in the sense that Py, cannot be
replaced by a larger value). This is almost certainly not true for other
values of (k,1).
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It is a routine matter to extend Theorem 1.2 to arbitrary (i.e. not
necessarily prime) values of [. For (k,l) = (3,4), equation (5) has no
solutions with (6), cf. Theorem 8 of [19]. For all other pairs (k, 1) under
consideration, Theorem 1.2 yields the following result.

Corollary 1.3. Suppose that n,d and k are as in Theorem 1.2, and
that I > 2 is an integer with (k,1) # (3,2). If, further, b and y are
nonzero integers with (6), then the only solutions to equation (5) are
with (n,d, k) in the following list :

(=9,2,9),(—9,2,10), (=9,5,4), (=7,2,8), (=7, 2,9),
(—6,5,4), (=5,2,6), (—4,3,3), (—3,2,4), (—2,3,3).

Note that knowing the values of the unknowns on the left hand side
of (5), one can easily determine all the solutions (n,d, k,b,y,[) to (5).

In the special case d = 1, the set of solutions of equation (5), for k > 2
fixed, has been described in [17], [20] and [31], under less restrictive
assumptions upon b. For further partial results on (5), we refer again
to the survey papers [18], [35] [36] and [42].

For fixed values of £ > 3 and [ > 2 with k + 1 > 6, equation (5)
has at most finitely many solutions in positive integers (n,d, b, y) with
ged(n,d) =1 and P(b) < k; see Theorem 6 of [19].

If we turn our attention to £ > 11, we may prove a number of results
of a similar flavour to Theorem 1.2, only with a corresponding loss of
precision. If k is slightly larger than 11, we have the following theorem.

Theorem 1.4. If 12 < k < 82, then there are at most finitely many
nonzero integers n,d,l, b and y with gcd(n,d) = 1, 1 > 2 and satisfying
(5), with P(b) < k/2. Moreover, for all such solutions to (5), we have

log P(1) < 3".

For arbitrary values of k, we may deduce finiteness results for equa-
tions (1) and (5), only under certain arithmetic assumptions. Write

(7) D= ][ »
k/2<p<k

where the product is over prime p.

Theorem 1.5. If k > 4 is fized, then the Diophantine equation (5) has
at most finitely many solutions in positive integers n,d, b,y and | with

ged(n,d) =1, y>1, I >1, P(b) <k/2 and d# 0 (mod Dy).
For each such solution, we necessarily have log P(l) < 3F.

A corollary of this which yields a finiteness result for (1), provided k
is suitably large (relative to the number of prime divisors of d), is the
following.
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Corollary 1.6. Let D be a positive integer and suppose that k is a
fized integer satisfying

4 ifDe{l,2)
(8) kz{(iDlogD ifD>3.

Then the Diophantine equation (5) has at most finitely many solutions
in positive integers n, d, b,y and | with

ged(n,d) =1, y>1, I >1, w(d) <D, and P(b) < k/2.

We remark that a sharp version of this result, in the special case
[ =2and b =D = 1, was recently obtained by Saradha and Shorey
[33].

Finally, we mention an application of Theorem 1.2 to a family of
superelliptic equations first studied by Sander [30]. Specifically, let us
consider equations of the form

(9) z(x+1)... (v +k—1)=£2%

where x and z are rational numbers with z > 0, and £, and « are
integers with k,l > 2 and -l < a < [. If =] < a < 0, by replacing «
and z in (9) with [+« and z/2, respectively, we may restrict ourselves
to the case where « is nonnegative.

If x and z are further assumed to be integers and a = 0, then, by
the result of Erdés and Selfridge [14], we have that the only solutions
to (9) are with z = 0. Since these are also solutions of (9) for each
a, we will henceforth refer to them as trivial; in what follows, we shall
consider only non-trivial solutions. Let us return to the more general
situation when x,z € Q. By putting x = n/d and z = y/u with
integers n, d,y,u such that ged(n,d) = ged(y,u) =1, d > 0,y > 0
and u > 0, we see that (9) reduces to equation (5) with P(b) < 2
and (by comparing denominators) satisfying the additional constraint
that u! = 27d* for some nonnegative integer . An almost immediate
consequence of Theorem 1.2 is the following.

Corollary 1.7. Let 2 < k < 11 and | > 2 with (k,l) # (2,2) (and, if
a >0, (k1) #(2,4)). Then the only non-trivial solutions of (9) with
0 < a <! are those (z,k) in the following list :

(_9/27 9)7 (_9/27 10)> (_7/27 8)7 (_7/27 9)7 (_5/27 6)7 <_27 2)7
(=3/2,4), (=4/3,3), (=2/3,3),(=1/2,2), (1, 2).

This result follows easily from Theorem 1.2; the reader is directed
to [19] for the necessary arguments. Indeed, in [19], our Corollary 1.7
is established for [ > 4, k = 3,4 and, if a =0, k =5. If 2 < k < 4,
[ > 2 and o = 0, Sander [30] completely solved equation (9) and noted
that, for (k,l) = (2,2), there are, in fact, infinitely many solutions. We
remark, however, that the solutions listed in Corollary 1.7 for £k = 3
and 4 are missing from Sander’s result. Further, as discussed in [19],
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the assumption (k,1) # (2,4) (if & > 0) is necessary, since, in that case,
equation (9) has, again, infinitely many solutions.

The structure of this paper is as follows. In the second section, we
will indicate how the problem of solving equation (5) may be trans-
lated to a question of determining solutions to ternary Diophantine
equations. In Sections 3-6, we prove Theorem 1.2 for, respectively,
prime [ > 7,1 =2,1 =3 and [ = 5. In many cases, for [ = 2 or 3, the
problem may be reduced to one of finding the torsion points on certain
rank 0 elliptic curves £/Q. In a number of situations, however, this
approach proves inadequate to deduce the desired result. We instead
turn to recent explicit Chabauty techniques due to Bruin and Flynn
[5]; we encounter some interesting variations between the cases with

= 2 and those with [ = 3. If [ = 5, we depend on either classical
results of Dirichlet, Lebesgue, Maillet (cf. [13]), Dénes [12] and Gyéry
[16] on generalized Fermat equations of the shape X' +Y'! = CZ' or
recent work of Kraus [21]. For [ > 7, we apply recent results of the first
author and Chris Skinner [1], together with some refinements of these
techniques; our proofs are based upon Frey curves and the theory of
Galois representations and modular forms. Section 7 is devoted to the
proof of Theorem 1.5. Finally, we conclude the paper by considering
values of k with 12 < k < 82.

2. THE TRANSITION TO TERNARY EQUATIONS

For virtually every argument in this paper, we will rely heavily on
the fact that a “nontrivial” solution to (5) implies a number of similar
solutions to related ternary Diophantine equations which we may, if all
goes well, be able to treat with the various tools at our disposal. The
only situation where we will not follow this approach is in Section 4
(i.e. when [ = 2). From equation (5) and the fact that ged(n,d) = 1,
we may write

(10) n+id= by for 0<i<k—1,

where b; and y; are integers with P(b;) < k. We note that, in terms
of b;, such a representation is not necessarily unique. We will thus
assume, unless otherwise stated, that each b; is [th power free and, if [
is odd, positive.

Let us first observe that any three of the linear forms n + id, 0 <
1 < k — 1, are linearly dependent. In particular, given distinct integers
0<gq,r,s <k—1, we may find relatively prime non-zero integers A,,

Ay Ag, for which

(11) A(n+qd) + A (n+rd) = Xs(n + sd).

It follows from (10) that, writing A = Ab,, B = A\b., C = Ab;,
(u7 v, Z) = (yq> Yr, ys)7 we have

(12) Aut + But = C2
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where it is straightforward to show that P(ABC) < k. This is a
ternary Diophantine equation of signature (I,[,1). In case [ = 3,5 and,
sometimes, [ > 7, we will prove Theorem 1.2 through analysis of such
equations. In the sequel, we will employ the shorthand [g, r, s] to refer
to an identity of the form (11) (and hence a corresponding equation
(12)) — for given distinct integers ¢, and s, coprime nonzero integers
Ags A and A satisfying (11) are unique up to sign.

A second approach to deriving ternary equations from a solution to
(5) proves to be particularly useful for larger values of (prime) [. If
p,q,r and s are integers with

0<p<qg<r<s<k—1and p+s=q+r,
then we may observe that
(13) (n+qd)(n +rd) — (n+ pd)(n + sd) = (qr — ps)d* # 0.

It follows that identity (13) implies (nontrivial) solutions to Diophan-
tine equations of the form

(14) Au' + Bul = C2?

with P(AB) < k, for each quadruple {p,q,r,s}. This is a ternary
Diophantine equation of signature (,[,2). Henceforth, we will use the
shorthand {p, ¢,r, s} to refer to an identity of the form (13).

Our arguments will rely upon the fact that a triple [q, r, s] or quadru-
ple {p,q,r, s} can always be chosen such that the resulting equation
(12) or (14) is one that we may treat with techniques from the theory
of Galois representations and modular forms, or, perhaps, with a more
classical approach. In essence, once we have established certain results
on the equations (12) and (14), as we shall see, this can be regarded as
a purely combinatorial problem.

3. PROOF OF THEOREM 1.2 IN CASE [ > 7

We will primarily treat equation (5) with prime exponent [ > 7 by
reducing the problem to one of determining the solvability of equations
of the shape (14). For a more detailed discussion of these matters, the
reader is directed to [1], [11], [22] and [25]. We begin by cataloguing
the required results on such ternary equations :

Proposition 3.1. Letl > 7 be prime, «, 3 be nonnegative integers, and
let A and B be coprime nonzero integers. Then the following Diophan-
tine equations have no solutions in nonzero coprime integers (z,y, z)
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with xy # £1 :
15) o+ 2% =3P a#1
) at + 2%' = 22 with p | xy for p € {3,5,7}
) at 4 2%y = 322 with p | xy for p € {5,7}
) ' +y' = D2 De {26}
) ot 4 3%y = 227 with p | xy for p € {5,7}, 1 > 11
20) b+ 5% =222 with1 > 11 ifa > 0
) Azl + Byl = 2%, AB=2%", a >6, pec {3,5,13}
) Azt + Byl =22, AB=2%", a #1, pe {11,19}
) Az’ + By' = 2%, P(AB) < 3, with p | zy for p € {5,7}
) Az + Byt = 22, P(AB) <5, with 7 | zy and | > 11.

In each instance where we refer to a prime p, we further suppose that
the exponent [ > p.

Proof. We begin by noting that the stated results for equations (15),
(18), (20) and (22) are, essentially, available in Bennett and Skinner
[1]. The cases of equation (21) with p = 3 or 5, and # > 1, while not
all explicitly treated in [1], follow immediately from the arguments of
that paper, upon noting that the modular curves Xy(/N) have genus 0
for all N dividing 6 or 10.

For the remaining equations, we will begin by employing the ap-
proach of [1]. Specifically, to a putative nontrivial solution of one of
the preceding equations, we associate a Frey curve E/Q (see [1] for
details), with corresponding mod [ Galois representation

p : Gal(Q/Q) — GLy(F))

on the [-torsion E|l] of E. Via Lemmata 3.2 and 3.3 of [1], this rep-
resentation arises from a cuspidal newform f of weight 2 and trivial
Nebentypus character. The level N of this newform may be shown to
satisfy

N € {20,24,30, 40, 96, 120, 128, 160, 384, 480, 640, 768, 1152, 1920}

(for example, a nontrivial solution to (16) with a = 1 and x,y odd
necessarily leads to a newform of level 128; for details, the reader is
directed to Lemma 3.2 of [1]). The assumption that p | zy for p €
{3,5, 7} implies, if p is coprime to [N, that

trace p;’ (Frob,) = £(p + 1).
It follows, if f has Fourier coefficents a,, in a number field K, that

(25) Normyg, g (a, £ (p+1)) =0 (mod 1).
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Using William Stein’s “Modular Forms Database” [38], we find a,,
p € {3,5,7}, for each newform at the levels N of interest, provided p
is coprime to IN. In most cases the corresponding Fourier coefficients
are even integers: from the Weil bounds, a3 € {0,+2} (if 3 + N),
as € {0,£2,+4} (if 5 is coprime to N) and a7 € {0, £2, +4} (if 7 fails
to divide V). Congruence (25) thus implies a contradiction for these
forms. The only forms f encountered with K; # Q are (in Stein’s
notation) form 3 at level 160, forms 9-12 at level 640, forms 9-12 at
level 768 and forms 25-28 at level 1920. In the case of form 3, N = 160,
we find that a; = £21/2 and so 2v/2 = £8 (mod P) for some prime P
lying over [. It follows that [ | 56 and so [ = 7. Similarly, form 9 at level
672 has a; = —9 — 2 where ¥? 4+ 29 — 4 = 0. From a; = +8 (mod P)
we thus have ¥ = 6 (mod P) (whereby | = 11) or ¥ = —10 (mod P)
(whence [ = 19). On the other hand, a3 = ¥ and hence, from the Weil
bounds, ¥ = 0, +2, 4 (mod P), a contradiction in each case. Arguing
in a like fashion for the remaining forms completes the proof. O

We will also need a result on equations of signature ((,[,1). Specifi-
cally, we apply the following.

Proposition 3.2. Letl > 3 and o > 0 be integers. Then the Diophan-
tine equation

(26) X4 yt=2v7

has no solutions in coprime nonzero integers X,Y and Z with XY Z #+
+1.

Proof. This is essentially due to Wiles [43] (in case [ | o), Darmon and
Merel [11] (if & = 1 (mod [)) and Ribet [28] (in the remaining cases for
[ > 5 prime); see also Gydry [18]. O

Let us begin the proof of Theorem 1.2. For the remainder of this
section, we will suppose that there exists a solution to equation (5) in
nonzero integers n, d, k,y,l and b with n and d > 0 coprime, 3 < k <
11, and [ > 7 prime. We suppose further that b satisfies (6). We treat
each value 3 < k£ <11 in turn.

3.1. The case k=3. If k = 3, the identity {0, 1, 1,2} yields solutions
to an equation of the shape (15) with f = 0 and o = 0 (if II is odd)
or a > 2 (if I is even). By Proposition 3.1, after a modicum of work,
we obtain the solutions (n,d, k) = (—4,3,3) and (-2, 3, 3) listed in the
statement of Theorem 1.2.

3.2. The case k=4. If n is coprime to 3, we may use the same identity
as for k£ = 3 to deduce that there is no solution to (5). If 3 | n, then
{0,1,2,3} gives an equation of type (18) with D = 2 (if I is odd), and
one of the form (16) with p = 3 (if I is even). In either case, we infer
from Proposition 3.1 that equation (5) has no solution.
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3.3. The case k=5. Considering the product of the first or the last
four terms of II, according as 3 | n, or not, we may reduce this to the
preceding case and reach the desired conclusion.

3.4. The case k=6. If £ = 6 and 5 fails to divide n, then we may
apply what we have for the case k = 4 to the product of the first,
middle or last four terms of II, to obtain that there is no solution
to (5). Similarly, if 3 ¥ n(n + 5d), the middle four terms lead to a
contradiction. Thus we may suppose that 5 | n, and, by symmetry,
that also 3 | n. Considering the identity {0,1,4,5} (if IT is odd) or
{0,2,3,5} (if IT is even), we obtain an equation of the shape (23) with
p = 5. We can thus apply Proposition 3.1 to conclude that (5) has no
solution with k£ = 6 and [ > 7 prime.

3.5. The case k=7. Next, let k = 7. If 5 { n(n + d), then we may
apply {1,2,4,5} (if 3 | n) or {0,3,3,6} (if 3 t n). These lead to
equations of type (15). Next, suppose that 5 | n(n + d); by symmetry,
we may assume 5 | n. Suppose first that 6 | II, and consider the identity
{0,2,3,5}. If 3| n+ d, we are led to an equation of the shape (16) or
(17), with p = 5. On the other hand, if 3 | n(n + 2d), then the same
identity induces an equation of the form (23), again with p = 5.

Assume now that 6 { II, and consider {0, 1,4,5}. If ged(I1,6) = 3,
this identity gives equation (23) with p = 5. If, however, ged(11,6) = 2,
then the same identity leads either to (16) with p =5 or to (18), with
D = 2. Finally, if ged(I1,6) = 1, then again employing the identity
{0,1,4,5}, we find a solution to (15) with @ = 8 = 0. In all cases, we
conclude from Proposition 3.1 that (5) has no solution, in the situation
under consideration.

3.6. A diversion. In case k > 8, in a number of instances, Proposition
3.1 enables us to prove our statement only for [ > 11 prime. We are
thus forced to deal with the exponent | = 7 separately. As we shall
observe, in each case where we encounter difficulties for [ = 7, there
are precisely two distinct factors in II which are divisible by 7. By
our assumptions, we have that 7 | v7(II) where, here and henceforth,
we write v,(m) for the largest integer ¢ such that p' divides a nonzero
integer m. It follows that one of these two factors is necessarily divisible
by 72. We will use the following argument to finish the proof in this
case.

Choose three factors n+ gd, n+ rd and n+ sd of 11, such that one of
them, n+ qd say, is divisible by 72, but 7 fails to divide (n+rd)(n+sd).
The identity [q, 7, s] thus yields

by y” = Abgy! (mod 77),
whence, upon taking sixth powers, it follows that

(27) ub = " (mod 72),
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where u = \.b, and v = A\;b,. If we choose n + qd, n + rd and n + sd
appropriately, then we can use the fact that, for a = uv™! (mod 7?),

(28) a® =1 (mod 7%) <= a = 1,418, £19 (mod 7?)

to obtain a contradiction, thereby verifying that (5) has no solution in
the case in question.

3.7. The case k=8. Let us return to our proof. Suppose k = 8. If
7 1 n, then we may reduce to the preceding case by considering the
first or last seven terms of II. Suppose, then, that 7 | n. Notice that
if ged(I1,15) = 1, then we may apply our results with & = 6 to the
middle six terms of II to conclude that (5) has no solution. If 5t II, it
therefore follows that 3 | II. If 3 | n or 3 | n + d, using {1,2,4,5} or
{2, 3,5, 6} respectively, we are led to an equation of the shape (15) with
B = 1, contradicting Proposition 3.1. If 3 | n 4 2d, then the identity
{0,1,6,7} gives rise to an equation of the form (18) with D = 6, if II
is odd, and of the form

(29) at 2%y = 322,

if IT is even. We may apply Proposition 3.1 again, unless a = 1, i.e.
unless vo(n + id) = 2 for one of ¢ = 0,1,6,7. If this last condition
occurs, it follows that ve(n + jd) > 3 for one of j = 2,3,4,5. For this
J, the identity {j — 1,7, 7,7 + 1} leads to an equation of the form (21)
with p = 3. By Proposition 3.1, we infer that (5) has no solution in
this case.

We may thus suppose that 5 | II. If 3 1 II, then we may apply our
results obtained for £ = 3 to II(é,7 + 1,7 + 2) with an appropriate
1 = 1,3 or 4 to conclude that there is no solution in this case. We
may therefore assume that 15 | II. Further, if 5 | (n + 3d)(n + 4d),
we can argue as previously to obtain a contradiction. Hence we may
suppose that 5 | n(n + d)(n + 2d). Assume first that 5 | n +d. If II
is odd, then the identity {1,2,5,6} leads to (23) with p = 5 and so,
via Proposition 3.1, a contradiction. If II is even, then we consider the
identity {1,3,4,6}. If 3| n+ 2d, we are led to an equation of the form
(17) with p = 5. On the other hand, if 3 | n(n + d), then we find a
nontrivial solution to (23) with p = 5. In either case, we contradict
Proposition 3.1.

To complete the proof of Theorem 1.2, in case k = 8, we may thus,
by symmetry, suppose that 5 | n. We divide our proof into two parts.
First suppose that [ > 11 prime.

We begin with the case where 3 | n. Necessarily one of n,n + 3d or
n—+6d is divisible by 9. If 9 | n, then {1, 3, 4,6} gives rise to an equation
of the form (18) with D = 2, at least provided II is odd. When II is
even, the identity {0,2,5,7} yields (24) and hence a contradiction. If
9| n+3d, {0,1,6,7} leads to (20), if II is odd. If II is even, from
the same identity we have (24). By Proposition 3.1, in each case, we
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conclude that there is no solution to (5). Finally, if 9 | n+ 6d, then the
identity {0, 3,4, 7} provides either (20) or (24). In both cases, we have
a contradiction, at least for [ > 11 prime.

We argue in a similar fashion if 3 | n 4+ d or 3 | n + 2d. In the first
of these cases, one of the identities {0,3,4,7}, {0,1,6,7}, {1,3,4,6}
or {0,2,5,7}, necessarily implies solutions to either (20) or (24). In
the second, either {1,3,4,6} yields a solution to (18) with D = 6, or
{0,2,5,7} provides one to equation (24). By Proposition 3.1, we thus
derive a contradiction, in all cases, for [ > 11 prime.

Now suppose that [ = 7. We use the argument outlined in subsection
3.6; i.e. we appeal to identities of the form (11), corresponding to triples
(g, 7, s].

Assume first that, together with 5 | n, we have 3 | n. Since, neces-
sarily, either n or n + 7d is divisible by 7%, we distinguish two cases.
Suppose first that 7 | n, and consider the identity [0, 2, 4]. This implies
a congruence of the form

(2u2(b2)+1)6 = (21/2(54))6 (mod 72),

whereby, from (28), (v2(b2),v2(bs)) = (0,1) or (1,2). From the identity
{1,2,2,3}, if v9(n + 2d) > 3, we derive a nontrivial solution to (21)
with p = 3, contrary to Proposition 3.1. We conclude, then, that
vo(n + 2d) = 1 (and hence v5(n + 6d) = 1). It thus follows, from
0,3, 6], that

(3u3(b3))6 = (31/3(66))6 (mod 72)

and so v3(bs) = v3(bg) = 1. The identity [3,4, 6] thus leads to a non-
trivial solution to equation (26), with n = 7 and a = 1, contradicting
Proposition 3.2.

We next suppose that 72 | n+ 7d. If 2 4 II, then [1,4, 7] immediately
contradicts (28). If 2 | n, arguing as previously, we find, from [1, 3, 7],
that v5(bs) = 4 and hence [2,3, 7] implies that v5(by) = 6. If, however,
2 | n+d, [4,6,7] gives that v3(bg) = 6 whence, from [3, 6, 7], v2(b3) = 6.
In either case, [3,4, 7] now contradicts (28).

Assume next that 3 | n + d. Suppose first that 72 | n. The identity
0,2, 6] implies that

(3 . 21/2(52))6 = (2V2(b6))6 (mod 72)
and so
(30) Vg(b6> — Vg(bg) € {—4, 3}

On the other hand, [0, 3, 6] implies that v5(bs) = 1, contradicting (30)
(since we have min{rs(n + 2d), v2(n + 6d)} < 2).

Next, let 72 | n + 7d. In this case, the identity [2, 6, 7] plays the role
of [0,2, 6] in the previous situation. We have that

2(by) — a(bg) € {—4,3}
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and hence, since [3, 6, 7] implies that v5(bg) = 5, again a contradiction.

Finally, suppose that 3 | n + 2d. As the situation with IT odd was
covered previously for [ = 7, we need distinguish only two cases. If
2 | n, then [0,1,3] (if 7* | n) or [1,3,7] (if 7* | n + 7d) each contradict
(28). If, however, 2 | n + d, the identities [0,4,6] and [4,6,7] play a
like role. This completes the proof of Theorem 1.2 for k=8 and [ > 7
prime.

3.8. The case k=9. Next, consider £ = 9. Symmetry allows us to
assume that 7 | n, otherwise we can reduce to the preceding situation.
We may also assume that 5 | n+3d, or, by applying our results with & =
8 to the first eight terms of II, again obtain a contradiction. If 3 fails
to divide the product II, then we may use what we have proved already
for k = 3, via consideration of I1(4, 5, 6), to deduce a contradiction. If
3 | n, then {1,2,4,5} yields (15) with § = 1. Similarly, if 3 | n + d,
{3,5,6,8} provides (18) with D = 6, if II is odd, and (17) with p = 5,
if IT is even. Using Proposition 3.1, we obtain contradictions in either
case. If 3 | n+2d, then the identity {0, 1,6, 7} gives rise to an equation
of the shape (18) with D = 6, if IT is odd, while {3, 5,6, 8} leads to an
equation of the form (23) with p = 5, if IT is even. Applying Proposition
3.1 thus completes the proof of Theorem 1.2, in case k =9 and [ > 7
prime.

3.9. The case k=10. When k£ = 10, we reduce to the preceding case
unless either 7 | n, 5 | n+9d, or 5 | n, 7 | n+9d. By symmetry, we may
suppose that the first of these occurs. Then, if 3 1 I, we may apply
our result with £ = 3 for II(1, 2,3) to obtain a contradiction. In case
3| n(n+d), {2,5,5,8} yields (15) with 8 = 0, providing a contradiction
by Proposition 3.1. We thus suppose that 3 | n + 2d. To complete
the proof of Theorem 1.2 in this case, we will utilize Proposition 3.2.
Necessarily, precisely one of n + 2d, n + 5d or n + 8d is divisible by 9.
If 9 | n + 2d, the identity [5, 6, 8] implies a nontrivial solution to (26),
contradicting Proposition 3.2. Similarly, if 9 | n 4+ 5d or 9 | n + 8d,
application of [2,3,8] or [2, 3, 5], respectively, leads to a contradiction.
We conclude, then, that equation (5) has no solution, with £ = 10 and,
again, prime [ > 7.

3.10. The case k=11. Finally, let £ = 11. If 5 1 II, then we may
apply the results from the preceding case to the first or last ten terms
of TI, to obtain a contradiction. If 5 | II, we will, as when k& = 10,
repeatedly appeal to Proposition 3.2 to complete the proof. In what
follows, we will assume, via symmetry, that either 7 ¢ Il or 7 | (n +
4d)(n 4 5d)(n 4 6d), or that 7 | n(n + d). The last case is the only one
in which 7 | b; for some 0 < < 10.

Let us begin by supposing that 5 | n. From the identity {3,6,6,9},
we deduce a solution to (15) unless 3 | n. If 3 | n, then 9 divides
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exactly one of n,n + 3d or n + 6d. If 9 | n, then [3,4,6] thus implies
a (nontrivial) solution to (26), contrary to Proposition 3.2. Similarly,
6,7,9] (if 7| n+ d) and [6,8,9] (in the remaining cases) lead to the
same conclusion if 9 | n + 3d. Finally, if 9 | n 4+ 6d, we may apply
3,7,9] (if 7| n+ d) and [1,3,9] (in the remaining cases) to reach a
contradiction.

In case 5 | n + id for i = 1,2 or 4, we argue similarly. In the first of
these cases, either {4,7,7,10} (if 7 | n + d) or {2,5,5,8} (otherwise)
implies that 3 | n 4 d (respectively, 3 | n 4+ 2d). The identities [4, 5, 7],
[7,9,10] and [2,4,10] (respectively, [2,3,5], [5,7,8] and [2,4,8]) thus
combine to contradict Proposition 3.2. If 5 | n+2d, {3,6,6,9} leads to
the conclusion that 3 | n, whereby [3,4, 6], [3, 5, 9] and either [0, 4, 6] (if
7| n+d)or [6,8,9] (in all other cases) provide the desired conclusion.
If 5| n+ 4d, we combine the identities {2,5, 5,8}, [2,3,5], [5,6, 8] and
2,8,10] (if 7 | n), or {0,3,3,6}, [0,2,3], [3,5,6] and [0,2,6] (in all
other cases) to obtain a contradiction.

It remains, then, to deal with the possibility that 5 | n + 3d. In
this situation, we require a somewhat more involved argument. If n
is not divisible by 7, then {4,7,7,10}, together with Proposition 3.1,
implies that 3 | n + d, whereby one of [4,6,7], [7,9,10] or [2,4,10]
contradicts Proposition 3.2. We may thus suppose that 7 | n. In this
case, {1,2,4,5} yields a solution to (15) unless 3 | (n + d)(n + 2d). If
3| n+2d,{0,1,6,7} implies a solution to either (15) or (18) (with
D = 6), unless

(31) max{vs(n +1id) :i=0,1,6,7} = 2.
In the latter case, from {0,1,6,7}, we have a solution to (17) (with
p = 7) and hence may conclude further that [ = 7. If 7% | n, the
identity [0, 1,9] implies that

(9 . 2V2(b1))6 = (2V2(b9))6 (mod 72)7
contrary to (31). If 72 | n + 7d, then, from [1,7,9),

(3 . 2”2(b9))6 = (2V2(b1))6 (mod 72)7

again contradicting (31).
Finally, if 3 | n + d, from {2,5,6,9}, we deduce solutions to either
(15) or (18) (with D = 6), unless

(32) max{va(n +id) : i =2,5,6,9} = 3.

In this case, {0,1,6,7} implies solutions to equation (24) and so, via
Proposition 3.1, we may assume further that [ = 7. If 7% | n, [0, 2, 6]
gives

(3 . 2V2(b2))6 (2V2(b6))6 (mod 72)7
contradicting (32). If 72 | n + 7d, [2,6, 7] yields

(5 . 21’2(b6))6 = (2V2(b2))6 (mod 72)7
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again contrary to (32). This completes the proof of Theorem 1.2, in
case [ > 7 is prime.

4. PROOF OF THEOREM 1.2 IN CASE [ = 2

Having disposed of the possibility of equation (5) having solutions
with [ divisible by a large prime, we are now left with the task of
dealing with the primes [ = 2,3 and 5. In this section, we treat the
first of these cases. For [ = 2 and fixed k > 4, a solution to (5)
corresponds to a rational point on one of finitely many hyperelliptic
curves. Our argument will essentially rely upon the fact that, with the
given restrictions on b, the curves in question may often be shown to
cover elliptic curves of rank 0 over Q.

4.1. The case k=4. In case k = 4, we actually deduce a stronger
result, which will prove useful for larger values of k :

Lemma 4.1. The only solutions in coprime nonzero integers n and d,
with d > 0, and nonzero integer y, to the Diophantine equations

(33) 11(0,1,2,3) = by, b€ {£1,£2,43,5, —6,15, 30}
(34) I1(0,1,2,4) = by*, be {—1,+£2,+3,5,6,£10,—15,—30}
(35) I1(0,1,3,4) = by*, b€ {+1,+£2,+£3 -56,—15,30}
(36) I1(0,1,2,5) = by, bec {—1,£2,3,4£56,+10,+15}
correspond to the identities

(=3)-(=1)-1-3=3* and (=2)-(=1)-1-2=2%

We remark that, by symmetry, results for I1(0, 1, 2,4) and I1(0, 1, 2, 5)
lead to similar statements for I1(0, 2, 3,4) and I1(0, 3, 4, 5), respectively.
Further, we may translate a claim for I1(0, p, g, 7) to one for I1(i,p +
i,q+1i,r+1), for any i € Z.

Proof. Via the change of variables
d b?
X:qu(r +n>, y _ Py

n2
if p,q and r are integers with

?

O<p<qg<m,
solutions in nonzero integers n,d,y to
(37) 110, p,q,7) = by?
correspond to rational points (X,Y") on the elliptic curve
E :Y?=X(X4pr—q)b)(X +q(r—p)b).

The lemma follows from the observation that, for the choices of p, q,r
and b described above, the curves E = E(p, ¢, r,b) have rank 0 over Q
(together with a routine calculation to ensure that the torsion points
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yield only the stated solutions to (37)). For the given triples (p,q,r)
and all other values of b dividing 30, the curves F have positive rank
(and hence the equations (37) have, for these p,q,r and b, infinitely
many solutions in nonzero coprime integers n and d). To verify these
facts requires a routine computation in, say, mwrank (though Magma
or other symbolic computation packages would be equally suitable). By
way of example, if (p,q,7) = (1,2,3), the elliptic curves correspond-
ing to (37) are birational to the following curves (where we adopt the
notation of Cremona [9]) :

b Cremona b Cremona b Cremona b  Cremona
1 24 A 3 144B 6 5761 15 3600K
-1 48 A -3 T2A —6 576D —15 18008

2 192C 5 600D 10 4800C 30 14400S8SSS
-2 192D | -5 1200A | —-10 4800BBB |—-30  14400X

If b € {+1,£2,43,5,—6,15,—30}, then it is readily checked that
the corresponding curves have rank 0. In all cases, except for b = 1,
we have E(Q)ors iSomorphic to Z/27 x Z /27, where the torsion points
map back to only the trivial solutions to (37), with n/d = 0, —p, —q, —r
and y = 0. If b = 1, then there are additional torsion points given by
(X,Y) = (—2,4£2) and (2,46). The latter of these corresponds to a
solution to (37) with d = 0, while the former yields (n,d) = (—3,2).

For the remaining triples (p,q,r), we argue similarly. In all cases,
for the stated values of b, we find rank 0 curves with

E(Q)tors = Z/27 X 7./ 2Z,
unless (p,q,r,b) = (1,3,4,1), in which case
E(Q) ~ Z/27 x 7,47

The additional torsion points, on this model of Cremona’s 48A, cor-
respond to, again, a trivial solution to (5), and to the case (n,d) =
(—2,1). O

4.2. The case k=5. Next, let Kk = 5. By the above results for equation
(33), if we write S(m) for the square-free integer of maximum modulus
dividing m, it follows, recalling (10), that

S(bobybabs) = S(brbsbsbs) = 6.

Multiplying these two terms together, we conclude that S(bybs) = 1 and
so, since d > 0 implies that the sequence sign(b;) is nondecreasing in 7,
necessarily the b; are all of the same sign. On the other hand, Lemma
4.1, as applied to (35), leads to the conclusion that S(bob1bsbs) = —6,
a contradiction.
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4.3. The case k=6. The great majority of our work, if [ = 2, is
devoted to the situation when k£ = 6. The easy part of this case is the
following result.

Lemma 4.2. The Diophantine equation
(38) T11(0,1,2,3,4,5) = by?, be {£1,+2, 43, 5 46,410, +15,30}

has no solutions in coprime nonzero integers n and d, with d > 0 and
nonzero integer y.

Proof. Writing
n/d= (r—>5)/2, y=dv/2°
we find that solutions to (38) correspond to rational points on the genus
2 curve
(2% — 1) (2 — 9)(2* — 25) = b’
This genus 2 curve obviously covers the elliptic curves
(X —1)(X —9)(X —25) =bY? and (1 — X)(1—9X)(1 —25X) = bY2

It is easily checked with a suitable computer algebra package that for
each of the values of b mentioned in the lemma, at least one of these
curves has rank 0 and that its rational points are only the 4 rational
2-torsion points with Y = 0 or Y = oco. These points correspond to
solutions with y = 0. Il

To complete the proof of Theorem 1.2 in case k = 6 and [ = 2, it
remains to deal with the values

b e {-30,5}.

First assume that b = —30. By symmetry, we may suppose that
5 | bob1bs (and consequently, 5t b3bybs). We start with the case where
5| by. By Lemma 4.1 (equation (36)),

S(boblebg)) = 1430 and S(bgbgb4b5) = £30.

Thus S(b1bebsbs) = £1 which, by Lemma 4.1, gives a contradiction. If
5 | by then Lemma 4.1 leads to the conclusion that S(bybsbsbs) = 6,
whence, from the fact that b < 0, n < 0 and n+ d > 0. From (34), we
thus have S(bgbzb3b4) = —6, S(bob1b2b4) = —5 and so S(bgb5) = —1,
whereby by = —1, b5 = 1. From Lemma 4.1, as applied to (33), we
thus have b = —30, S(b1babsbs) = 30. It follows, then, that b; = 5 and
so S(baby) =1 and bs = 6, whence

S(boblebg) = —30,

contradicting Lemma 4.1. If 5 | by then by Lemma 4.1, as applied to
(35), S(bob1bsby) = —6. As n+5d > 0, we have n+2d > 0. Hencen < 0
and n+d > 0. By Lemma 4.1, we have S(bob1b2by) = S(bobabsby) = —5.
Thus 3 1 byb1b3bs, which contradicts S(byb;b3by) = —6.

Finally, let b = 5. In this case, the equation Il = by? defines a
hyperelliptic curve of genus 2, which fails to cover a rank 0 elliptic
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curve over Q. Further, since the Jacobian of this curve has Mordell-
Weil rank 2, traditional Chabauty-type methods do not suffice to find
the rational points in question. To deal with this situation, we will
apply recent techniques of Bruin and Flynn [5] (cf. [3] and [4]). For
our purposes, it will be preferable to consider the isomorphic curve
C :Y?=(X—-60)(X —30)(X +20)(X + 30)(X + 60).

To see how this is obtained from a solution to Il = 532, write z = n/d
and t = by /d?, so that, after homogenizing,

2% = B2’ + 752°z + 4252 2% + 11252°2° + 13702%2" + 600z2°.
The change of variables

r=-2X+4607, t=-60Y, z=X
thus leads to
Y?Z® = X°+420X'Z —4500X°Z* — 90000X°Z?
+3240000X Z* + 648000002°

or, dehomogenizing, the curve C.

Proposition 4.3. The only rational solutions (X,Y") to the equation
Y2 = (X —60)(X —30)(X + 20)(X +30)(X + 60)

are with
X € {-60,—-30,—20, —15,20,30,60}.

Proof. Begin by observing that a rational point on C' gives rise to a
rational solution to the system of equations

X —60 = &Y
X —30 = &Y
X420 = 5372
X430 = 0,77
X+60 = 05Y2,

for some 5-tuple (dy,...,05) where §; € Q*/Q*. In fact, since the
roots of the linear factors are all distinct modulo any prime p outside
the set {2,3,5}, it can easily be shown that these {J;} can be taken
to be {2,3,5}-units. A straightforward 2-descent on Jacc(Q) (see e.g.
7], [40]) shows that the {4;} lie in a group isomorphic to (Z/27Z)",
generated by
(—3,-5,5,15,5), (3,1,—1,—15,5), (2,5,1,5,2),
(3,6,1,15,30), (15,15,10,3,30), (3,1,5,30,2).
This group corresponds to the 2-Selmer group of the Jacobian of our

curve. Since the torsion part of the Mordell-Weil group of Jaco(Q) is
generated by

{[(607 O) - OO], [(307 0) - OO], [(_207 O) - OO], [(_307 0) - OO]}7



POWERS FROM TERMS IN ARITHMETIC PROGRESSION 83

this implies, upon noting the (independent) divisors [(—15, 3375) — 0]
and [(20,8000) — oo], of infinite order, that the rank of Jacs(Q) is
2. As mentioned earlier, this fact ensures that a direct application of
traditional Chabauty methods is not a viable option. To proceed, we
will consider covers of C, as in [3], [4].

Note that if the system above has a solution, then this gives rise to
a solution to, say,

(X —60)(X — 30)(X + 20) = 610203(Y1Y2V3)*.

Since this equation describes a genus 1 curve and there are obvious
rational points on it, it models an elliptic curve, the Mordell-Weil rank
of which we may bound via 2-descent. If this rank turns out to be zero,
then we automatically find only a finite number of candidate solutions
to our original system.

Applying this argument with all choices of 3 or 4 equations from
the above system enables us to greatly reduce the possibilities for the
5-tuples {d;}. We readily verify that, for the choices of {d;} which
lead to coverings of rank 0 elliptic curves over Q, the corresponding
torsion points produce no points on C other than those with Y = 0.
Carrying out this procedure for all 64 potential {d;}, there remain only
2 possible 5-tuples that lead, in all cases, to elliptic curves of positive
rank, namely

(=3,-5,5,15,5) and (—10,—10,10,2,5).

They correspond to the solutions (X,Y) = (—15,3375) and (X,Y) =
(20,8000), respectively. This is to be expected: these are non-trivial
solutions and, on each of the covered genus 1 curves, they have no
particular reason to map to a torsion point. Indeed, in each case, they
correspond to points of infinite order.

Note also that the original equation has an extra automorphism given
by (X,Y) — (6 — X,Y) and that these two rational points are inter-
changed under this automorphism. Therefore, if we show that the
values (X,Y) = (—15,£3375) are the only solutions corresponding to
the 5-tuple (=3, —5,5,15,5), then we may reach a similar conclusion,
via symmetry, for (X,Y) = (20,£8000) and (—10,—10,10,2,5). We
will therefore specialize the ¢; to (=3, —5,5,15,5).

From consideration of the system of equations

—3X +180 = Z2
—5X 4150 = Z2
5X +100 = Z2
15X +450 = 22
5X 4300 = Z2,

let us therefore adopt the strategy suggested in [5] and analyze the
fibre product of the following two covers of the X-line :

(39) (—5X + 150)(5X + 100)(15X + 450) = (Z1Z»Zs3)?
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and
5X + 300 = Z2.
This gives us a Vj-extension of the X-line. The fibre-product D is a

new curve of genus 2 with Jacobian isogenous to the product of the
elliptic curve (39) and the quadratic subcover

(=5X + 150)(5X + 100)(15X + 450)(5X + 300) = (Z,2223%5)*
(each of these genus 1 curves has rank 1). Substituting
X = (23 —300) /5
into (39), we obtain a curve isomorphic to
D: —(u® —2)(9u* — 8)(3u® — 2) = v*.

Arguing as previously, a rational point (u,v) on this curve gives rise to
a solution of the system of equations

ut—2 = vt
u?—-8 = w2
u?—2 = —uvi.

Again, we might, via products of pairs of these equations, be led to
consider elliptic covers E over Q. The presence of the points (+1,£1)
on each of these curves, however, suggests that they will have positive
rank and, indeed, it is easy to verify that they do. On the other hand,
by factoring the above equations, we may obtain elliptic curves over
a suitable ground field extension. This is a useful observation at this
stage because, in such a situation, a rank 1 curve may still permit a
successful Chabauty-type argument.

Let us choose o with o = 2 and set K = Q(«). Consider the
equations

Qu) = (u — a)(3u + 2a)
and
R(u) = —9u* — 3au® + 18u? + 2au — 8.
Since Normy/g(Q) = (u®—2)(9u*—8), if, for u € Q, there are vy, vq,0 €
K* satisfying
Qu) = ovf

R(u) = 6v3,
we must have that —Normpg g(d) is a square in Q. Furthermore, it is
clear that ¢ can be taken to be a square-free {2,3,5}-unit in K* (or
perhaps, to be more precise, we should say a {«, 3, 5}-unit).

Applying local arguments, restricting v to values in Q, and seeing if
there are v1,v9 € K ® Q, satisfying the equations above, we find that,
in fact, we can restrict attention to either § = —a— 1 or 6 = o + 1.
These are readily seen to correspond to the points (1, £1) and (—1, £1),
respectively. Again, the automorphism (u,v) — (—u,v) interchanges
these points. It thus suffices, by symmetry, to consider only the case
where 6 = o + 1.
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We find, after a little work, that the curve defined by the equation
R(u) = (a+ 1)v3 is isomorphic to
E o ¢y’ =2"+18(1 — a)2® +4(3 — 2a)z.
In these coordinates,
 (2a—3)z+ (—2a —2)y —4a — 19
7r + (2a + 2)y + (—15a — 36)/2
The group E(K) = Z x Z/27Z is generated (up to a finite index, prime
to 2-41) by g = (4o + 6,10 + 10) and T = (0,0). A standard
Chabauty-type argument (see (3], [4]) using the prime 41 shows that 0
and —2g are the only two points in F(K) that yield a rational value for
u, namely —1. Tracing this backwards, we find that this corresponds

to the point (X,Y) = (—15,43375), as claimed. This completes the
proof of Proposition 4.3. O

With this proposition in place, it is a simple matter to check that
the equation ITg = 5y* has only the nontrivial solutions n € {—1,6}
and d = 1, concluding the proof of Theorem 1.2 for (k,[) = (6,2).

4.4. The cases k = 7, 8, 9, 10 and 11. To treat the cases 7 <
k < 11, it is enough to observe that either there exists an ¢ with
0 <i < k—38 for which 7 | n+id (so that 7 divides precisely two terms
of the product II), or that no such 7 exists (whence, 2 divides v7(n+ jd)
for 0 < j < k—1). In the former case, we may apply our result for k = 6
to the product II(:4+1,i+2,...,i+6) to reach the desired conclusion.
In the latter, considering I1(0,1,2,3,4,5) suffices. In particular, we
find only the solutions corresponding to (n,d) = (—7,2) (with £k = 8
or 9) and to (n,d) = (—9,2) (with £ = 9 or 10). This completes the
proof of Theorem 1.2, in case [ = 2.

5. PROOF OF THEOREM 1.2 IN CASE [ = 3

As noted in Section 2, given [ and k, finding all coprime solutions
n,d to equation (1) can be accomplished by determining the rational
points on a finite number of algebraic curves. Up to this point, we
have essentially relied upon equation (10) to derive single curves of, for
instance, the shape (12). In this section, we will use all the information
at our disposal, noting that a solution to (1), via elimination of n and d
in the corresponding equations (10), implies the existence of a rational
point on the non-singular curve (in P*~1) C}, 1 ;, defined by the equations

(s = )byl + (t — 1)bsyl + (r — )byt = 0,

where {r,s,t} runs through all 3-element subsets of {0,...,k — 1}.
Here, we write b as shorthand for (b, ...,bx_1). We will suppress the
dependence on k and [ in the notation, and merely write C}. For the
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rest of this section we take [ = 3. For any given triple {r,s,t} C

{0,...,k — 1}, we have, as noted previously, a morphism
T{rs,t} * CQ - D{’r,s,t},b
(ot :y1) = (Yr:¥s: )

where Dy, ;45 18 a smooth diagonal plane cubic of the form
Dgsirp Au?® + Bv® + Cw?® = 0.
It is convenient, for our purposes, to consider a second morphism

¢ : D{r,s,t},@ - Eabc
(w:v:w) — (aPbuvw : a®b*v® : a*w?),
to the curve
Ey : y?z 4+ dy2* = 23
Since E; and Ey are isomorphic if and only if d/d’ is a cube and, for our
applications, we only need to consider d with P(d) < 5, the following
lemma thus classifies the ranks of E;(Q) we encounter.

Lemma 5.1. Let d = 2°2335% for ey, e3,e5 € {0,1,2}. For
d € {6,9,12, 15,20, 50, 75,90, 180, 450,900}
we have tk Eq(Q) = 1. For other values of d we have rk E4(Q) = 0.

Proof. For each of the 27 possible values of d, the statement is easily
checked with any of the computer algebra systems capable of bounding
ranks of elliptic curve using 2-descent. Alternatively, one could com-
pute the analytic ranks of these curves and, since we find them to be
at most 1, conclude they must equal the actual ranks. U

For each (0, it thus suffices to find an elliptic curve Ej of rank 0 which
it covers. For each such rank 0 curve encountered, we may analyze
each of the (finitely many) torsion points 7" € E4(Q) and determine
the rational points in the O-dimensional fibre (¢ o 7)~!(T). This is
easily done with any modern computer algebra package; for a Magma
2] transcript of these computations, see [6].

We will now treat the cases 3 < k£ < 11 in turn. For 3 < k < 5
and | = 3, we note that Theorem 1.2 appears to be a consequence of
Theorems 8 and 9 of [19]. Unfortunately, as we have previously noted,
the proofs of these theorems require modification as they depend upon
an incorrect result (Lemma 6 of [19]).

5.1. The case k=3. To begin, we need to determine the solutions to
the equation
n(n +d)(n + 2d) = by,
for b =1,2 and 4. The coprimality of n and d implies that ged(b;, ;) |
(1 — 7), yielding 10 possible values for b.
Note that, in this case, C} is the same as the curve Dy 1,9y . Further-
more, each corresponding FE; is of rank 0. The points corresponding
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to the rational torsion of E; lead, after a little work, to the arithmetic
progressions (modulo reversion and (n,d) — (—n, —d))

(=2,1,4),(0,1,2),(=1,0,1) and (1,1,1).

5.2. The case k=4. Here, we have to consider
be{l,2,4,3,6,12,9,18,36}.

Using the coprimality of n and d, these lead to 180 values of b. For
most choices of b, one of the curves Dyg 12y, D1o,1,3y, D1o,2,3 OF D{1,2,33
corresponds to an Ejy of rank 0. A straightforward computation shows
that those values of b lead only to the arithmetic progressions

(0,1,2,3),(—-1,0,1,2),(1,1,1,1) and (-3,1,1,3).

However, for b = (1,2,3,4) or (—6,—1,4,9), we find that all corre-
sponding genus 1 subcovers of Cj, have infinitely many rational points.
Furthermore, since (1:1:1:1) € (3(Q), local considerations also fail
to rule out these possibilities. To proceed, we need to consider other
quotients of Cj,.

Let us write ¢ for a primitive cube root of unity and define morphisms

Co: Woryr:y2:ys) — (Cyo:yi:y2:y3)
Ci: (Woryr:y2:ys) — (Yo:Cyi:y2:y3)
G: (Woryr:y2:ys) — (Yo:yr:Cyz:ys)

Obviously, we have

(€0, C1, G2) C Autg(Cy).

Writing C' for one of Cy234) or C(__1,49), We note that quotients
of C' by subgroups defined over Q yield curves covered by C. For
instance, Dy 23y ~ C/((o) and the corresponding Ey is isomorphic to

C/ {0, G163

For our purposes, we will focus on the order 9 subgroup

H = (o1, CoC2)-

To derive a model for the curve D = C/H, we consider the H-invariant
functions yoyiyay2, vs, ys on C. In fact, for b= (1,2,3,4) and

v = 2y3yiydys/(9yS — 8ydy3)
y = (—27ys + 36ysy3 — 1645)/(9yS — 8y343),
we obtain
D :y*=2%-32°+0.

Via a 2-descent in the style of [8], implemented by Stoll in Magma
as described in [40], together with a point search and some canonical
height computations (see [39], [41]), we find that

Jac(D)(Q) ~Z/3 x Z/3 x Z.
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Using the identification Jac(D)(Q) = Pic’(D/Q) and the convention
that oo™, 0o~ denote the two branches of D above = 0o, we write

JaC(D)<Q) = <[OO+ - OO_]’ [(07 3) - OO_]v [(27 7) - OO_D?

where the first two generators are of order 3 and the last generates the
free part.

Via a standard application of explicit Chabauty-type methods in
the style of [15], implemented in Magma by Stoll, and using p = 7, we
compute that D(Q) has at most 6 elements and that, in fact,

D(Q) = {OOJr: ooia (07 3)7 (Oa _3)7 (27 7)7 (27 _7)}
When we pull back these points along the map

T (Yo Y1 Y2t ys) (2, Y),
we see that only (2, —7) lifts to a rational point (1:1:1:1) € C(Q).
This completes the first part of the proof.
For b = (6,1,4,9) we proceed similarly and, in fact, writing

x = 2y0y7yay3/ (8ysy3 — 9y

y = (165 — 36y5y3 + 27y3)/ (8yzy5 — 9y5),
find that C(g1,4,9) covers the same curve D. Lifting the rational points
of D along the map 7 yields, again, that only (2, —7) gives rise to a

rational point on C,. This completes the proof of Theorem 1.2 provided
k=4 and [ =3.

5.3. The case k=5. If £k = 5, dividing II by one of n or n + 4d
necessarily reduces the problem to the case k = 4. A short calculation
shows that no new solutions to (5) accrue.

5.4. The case k=6. Let k = 6. If 51 (n + 2d)(n + 3d), then we may
apply our result for k = 4 to I1(i,i+1,i+2,i+ 3) for one of i = 0,1 or
2, to conclude that the only solutions to (5), in this case, are given by

(n,d) = (=5,2), (—6,1) and (1,1).

By symmetry, we may suppose that 5 | n+ 2d. This leads to 1976 pos-
sible values for b. For each of these, one of the 20 elliptic curves covered
by C} is of rank 0, whereby we can employ our previous approach. To
cut down on the amount of computation required, however, it is worth
noting that one can eliminate most b from consideration by testing if
Cy(Q,) is nonempty for, say, p = 2,3 and 7. This reduces the number
of b to treat to 18 and, for each of these, C}, indeed has a rational point.
These all correspond to the arithmetic progression

(=2,-1,0,1,2,3).

5.5. The cases k =7, 8,9, 10 and 11. For the cases 7 < k < 11, we
argue exactly as when [ = 2; in all situations, consideration of one of
(i +1,i+2,...,i+6) suffices to reduce the problem to the previously
treated £ = 6. This completes the proof of Theorem 1.2 when [ = 3.
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6. PROOF OF THEOREM 1.2 IN CASE [ =5

We begin this section by proving a pair of results on ternary Dio-
phantine equations of signature (5,5, 5). The first follows from a variety
of classical arguments. The second is a consequence of work of a much
more recent vintage, due to Kraus [21].

Proposition 6.1. Let C' be a positive integer with P(C) < 5. If the
Diophantine equation

(40) X°+Y?=C2°
has solutions in nonzero coprime integers X,Y and Z, then C = 2 and

X =Y =41.

Proof. Without loss of generality, we may suppose C' = 2°3%57 with
0 < a,f,7 < 4. By old results of Dirichlet, Lebesgue (see e.g. [13], p.
735, item 20 and p. 738, item 37), and P. Dénes (c.f. [12]), for (40)
to have a solution in coprime nonzero integers with XY 7 # +1, we
require C' > 2 and

C* =1 (mod 5?).
This implies that v = 0 and

(a, 8) €{(1,2),(2,4),(3,1),(43)}.

From the fact that both 2 and 3 are primitive roots modulo 5, and the
exponent 5 is a regular prime, a classical result of E. Maillet (see e.g.
[13], p. 759, item 167) leads to the conclusion that 51 Z. Since, for
each remaining value of ', we have

C* # 2* (mod 5%),
Theorem 1 of Gy6ry [16] thus implies that

r* =1 (mod 5?),

for every divisor r of C. The parity of the remaining C' (whereby we
are free to choose r = 2 above) provides an immediate contradiction
and hence the desired result. U

Proposition 6.2. Let A and B be coprime positive integers with AB =
238 for nonnegative integers o and 3 with oo > 4. Then the Diophan-
tine equation

(41) AX® + BY® =7°
has no solutions in coprime nonzero integers X,Y and Z.

Proof. This is a result of Kraus [21] and is essentially a consequence of
the fact that there are no weight 2, level N cuspidal newforms of trivial
character, for N dividing 6. O
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We suppose throughout this section that [ = 5. In what follows,
our arguments will typically rely upon the fact that a careful choice of
identity [q,r, s] leads to an equation of the form (40). In other cases,
such identities imply equations which may be proven insoluble modulo
11 or 25. We shall employ the trivial observation that, for £ < 11, at
most one factor of Il is divisible by 11.

6.1. The case k=3. From the identity [0, 1, 2], we deduce a solution in
nonzero integers to equation (40), with P(C') < 2 (and hence C = 2).
A short calculation leads to the conclusion that (n,d) = (—2,3) or
(_47 3)

6.2. The case k=4. The following lemma is a more precise version
of Theorem 1.2 in case k = 4. It will prove useful in analyzing larger
values of k.

Lemma 6.3. Suppose that there exist nonzero integers n,d,y and b
with b, d positive and ged(n, d) = 1, satisfying

(42) I, = by® with P(b) < 3.
Then either (n,d) = (—3,2) or, up to symmetry,
(43) (bo,bl,bg,bg) = (4, 3,2,1) or (9,4,1,6)

It is likely that (n,d) = (=9,5),(—6,5),(—4,1),(—3,2) and (1,1)
are the only solutions of (42).

Proof. Let us suppose we have a solution to (42) in nonzero integers
n,d,y and b, with b,d > 0 and ged(n,d) = 1. If 3 fails to divide the
product b;b;11b;1 5 for either ¢« = 0 or ¢ = 1, we may reduce immediately
to the case k = 3. We may thus assume, via symmetry, that either
3| bp and 3 | bs, or that 3 | b;. In the first case, if v3(bobs) = 2, the
identity [0, 1, 3] implies a nontrivial solution to an equation of the form
X5 4+ Y5 = 2°75 and hence, after a little work, a contradiction via
Proposition 6.1. We may thus suppose, again by symmetry, that 9 | by.
Further, unless 2 | n + d, we may apply the same identity [0, 1, 3] to
deduce a nontrivial solution to

(44) X° 4 Y? =23°75,

contrary to Proposition 6.1. Combining the identities [0,1,2] and
[0, 2, 3] with Proposition 6.2, we may assume that v5((n+d)(n+3d)) =
3. lf iy(n+d) =1, [1,2,3] leads to a solution to (44) with a = § = 1.
If, on the other hand, v»(n + 3d) = 1, from the fact that

= 0,41 (mod 11), for t € Z,

the identity [1,2,3] implies that II(1,2,3) is not divisible by 11. It
follows from [0,1,3] that v3(n) = 2 (whereby (b, by, b, b3) is just
(9,4,1,6)).
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If, however, 3 | by, [0,1,2] and Proposition 6.1 imply that we may
suppose 2 | n, whereby, again combining [1, 2, 3], [0, 1, 3] and Proposi-
tion 6.2, we may assume that ve(n(n + 2d)) = 3. In case ra(n) = 1,
0,2,3] leads to a solution to (44) with § = 1, a contradiction. If
va(n) = 2, the same identity [0,2,3] implies that 11 fails to divide
n + 2d and so, modulo 11, from [0, 1, 2], we are able to conclude that
v3(by) = 1, whence

(b07 b17 b?a b3) - (4, 3, 2, 1)
|

6.3. The case k=5. Let £ = 5 and suppose that we have a non-
trivial solution to (5). Then applying Lemma 6.3 to I1(0,1,2,3) and
I1(1,2,3,4), it follows that either n +id = —3, d = 2 for i = 0 or 1
(which fails to yield a solution to (5)) or that both 4-tuples (bg, b1, ba, b3)
and (by, by, b3, by) are in the set :

{(1,2,3,4),(4,3,2,1),(6,1,4,9),(9,4,1,6)} .

Since this is readily seen to be impossible, we conclude that equation
(5) has no solutions in this case.

6.4. The case k=6. Asin case [ = 2 or 3, most of our work in proving
Theorem 1.2 is concentrated, if [ = 5, in treating k£ = 6. Let us suppose
we have a nontrivial solution to (5) with P(b) < 5. If 5 fails to divide
the product bybibsb3bsbs, then, omitting the factor n + 5d in Ilg, we
reduce to the case k = 5 and hence find no new solutions.

By symmetry, it suffices to deal with the cases when 5 | n, 5 | n+d
or 5 | n+ 2d. We consider them in turn.

6.4.1. 5| n. First assume that 5 | n and hence also 5 | n + 5d. Then,
applying Lemma 6.3 to I1(1,2,3,4), we infer that either n + d = —3,
d = 2 (which gives the solution (n,d) = (—5,2)), or we have, again up
to symmetry,

(bl, b2, bg, b4) = (4, 3, 2, 1) or (9, 4, 1, 6)
Consider the identity
(45) 3(n+d)(n+4d) —2(n+ 2d)(n + 3d) = n(n + 5d).

If (b1, ba,b3,bs) = (4,3,2,1), (45) implies a nontrivial solution to (40),
contradicting Proposition 6.1. If, however, (by,bs, b3, bs) = (9,4, 1,6),
(45) leads to an equation of the form

34X5 + 22y5 — 5t25
where t > 2 and 51 XY. Working modulo 25 and taking 4th powers,
we deduce the congruence

31% = 2% (mod 57),

and hence a contradiction.
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6.4.2. 5 | n + d. Consider now the case when 5 | n + d. We apply
Lemma 6.3 to I1(2, 3,4, 5). It is clear that n+2d = —3, d = 2 does not
provide a further solution to (5). We thus have

(b, b3, by, bs) € {(4,3,2,1),(1,2,3,4),(9,4,1,6),(6,1,4,9)}.

In the first of these cases, necessarily by = 2-3! for a nonnegative integer
t. From the identity [2, 3, 4], we find that

295 + i = 3y3

and hence 11 fails to divide yoy3y4. Similarly, [1, 3, 4] yields the conclu-
sion that y; is coprime to 11, whereby, from [1,2, 3] and its companion
equation

55 Vyd + 3y = 8y3,
we may conclude not only that v5(b;) = 1 (so that by = 5), but also

ys = y5 = +1 (mod 11).

Applying [0, 2, 3], then, we obtain a solution to the equation
(46) 30yl + 3 = 245,
and find, working modulo 11, that necessarily v3(bg) = 1. Applying
Proposition 6.1 to (46), we have that XY Z = +1. From this, we obtain
the solution (n,d) = (—6,1) to (5) (together with the symmetrical
solution (1,1)).

If we have (b, bs, by, bs) equal to either (1,2,3,4) or (9,4, 1,6), then
the identities [0, 1,2] and [0, 2, 4], respectively, lead to nontrivial solu-
tions to (40), contradicting Proposition 6.1. Finally, if (bs, b3, by, bs) =
(6,1,4,9), then [0, 1, 5] implies that

gr2(b) 4205 — 99% (mod 25)

and so, taking 4th powers, we conclude that v5(by) = 2. This, together
with [0, 2, 4], contradicts Proposition 6.1.

6.4.3. 5 | n + 2d. Finally, consider the case where 5 | by. In light
of the identity {0, 1,3,4} and Proposition 3.1, we may suppose that
3 | n(n + d). First, assume that 3 | n. The identity [1,3,5] implies
a nontrivial solution to (40) unless 4 | n 4+ d. Under this assumption,
0, 3,4] and Proposition 6.1 yield the conclusion that v3(n) > 2, whence
v3(n +3d) =1 (and so by = 6). From [2, 3, 4], we deduce that

50y +yi = 1243,
whereby, upon consideration modulo 52, v5(n+2d) = 1. Analyzing the
same equation, modulo 11, implies that 11 | y5. It follows, then, from
the identity [0, 2, 4], that

3300ys + y3 = 10y5.

Modulo 11, we therefore have that v5(by) = 0 and hence contradict
Proposition 6.1.
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The last case to consider in this subsection is when 5 | by and 3 | n+d.
From [3, 4, 5] and Proposition 6.1, we may assume that 2 | n+d, whence,
applying a like argument with [0, 1, 3], we necessarily have vy(n+d) = 1.
Identity [0, 1,4], again with Proposition 6.1, gives v3(n + 4d) > 2 (so
that v3(n +d) = 1 and by = 6). Applying [0, 1,2] thus leads to the
equation

yo + 57502)y0 — 1990

Modulo 5% and 11, we again find that vs(by) = 1 and that 11 | . To
conclude, then, we apply the identity [0, 2,4] which yields

yo + 370y — 10y5.

This implies, modulo 11, that v3(bs) = 0 and so, via Proposition 6.1, a
contradiction.

6.5. The cases k = 7, 8,9, 10 and 11. Again, we argue as for [ = 2
or 3, applying our results for k = 6 to one of II(¢,74+1,--- ,i+5). This
completes the proof of Theorem 1.2.

7. PROOFS OF THEOREM 1.5 AND COROLLARY 1.6

Having dispatched Theorem 1.2, we will now present the proof of
Theorem 1.5. The reason we proceed in this order is that the techniques
introduced in this section will prove useful in the subsequent treatment
of Theorem 1.4.

Proof of Theorem 1.5. If k < 11, Theorem 1.5 is an immediate con-
sequence of Theorem 1.2 (without any conditions upon d). We thus
assume that k£ > 12 and that [ > 2 is prime. For the 7(k) prime values
of | < k, we may apply Theorem 6 of [19] (a slight generalization of
Corollary 2.1 of [10], itself a nice application of Falting’s Theorem) to
conclude that (5) has finitely many solutions as claimed. We may thus
suppose that [ > k.

Since d # 0 (mod Dy,) (recall definition (7)), there exists a prime in
the interval [k/2, k) which is coprime to d and hence divides y. Define
p to be the largest such prime. From (5), since ged(n,d) = 1 and
P(b) < k/2, it follows that either

(i) p | n+ id for precisely one ¢ with 1 <i <k —2, or
(ii) p | n+id and p | n+ (i + p)d, for some i with 0 <i < k—1—p.

In case (i), the identity {i—1,4,4,i+ 1} leads to a ternary equation of
the form (14) where C' =1 and A, B, u and v are nonzero integers with
P(AB) < p and p | uv. We associate to this equation, as in the proof
of Proposition 3.1, a Frey elliptic curve £//Q, with corresponding mod
[ Galois representation pf. Again, this arises from a cuspidal newform
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f of weight 2, trivial Nebentypus character and level N. Here, from
Lemma 3.2 of [1], N divides

Ny =64-]]a

a<p
where the product is over prime ¢. Since p | uv and p is coprime to

[N, our Frey curve E has multiplicative reduction at p and so we may
conclude, as in the proof of Proposition 3.1, that

Normg, /g (a, £ (p+1)) =0 (mod 1),

where Ky is the field of definition for the Fourier coefficients a,, of f.
By the Weil bounds for a,, we have

(47) [<(p+1+2yp8W

where gj (N) denotes the dimension of the space of weight 2, level N
cuspidal newforms of trivial character (as a C-vector space).
Similarly, in case (ii), we have the identity {i,i+ j,i +p — j,i + p},
where we are free to choose any j with 1 < j < (p—1)/2. If n(n + d)
is odd, p =7 and k£ = 12 or 13, we will take 5 = 3 whereby the above
identity leads to a ternary equation of the shape (14) with coprime
A, B, C satisfying ABC = 1 (mod 2), P(AB) < 7, C € {1,3} and
7 | wv. Otherwise, we take j = 2 (if n(n+d) is even) or j = 4 (if n(n+d)
is odd). These choices lead to equations (14) with P(AB) < p, p—j is
divisible by C, ged(AB,C) = 1 and p | uv. Since [ > k, in each case we
may argue as previously to deduce the existence of a cuspidal newform
f of weight 2, trivial Nebentypus character and level N dividing either

1440 or
N2:64'HQ1' H q2

a1 <p q2|p—J
where again the products are over ¢; prime. Arguing as before, we once
more obtain inequality (47).
From Martin [24], we have, for any N, that
N +1

TNy < —— =
90( )_ 12

and, via Schoenfeld [34],
> "logp < 1.000081z,

p<z
valid for all x > 0. It follows, by routine computation, that
G (V) < e
and hence, from (47), that
logl < 3% < 3.

Since k is fixed, this leaves us with finitely many pairs (k,[) to consider.
Again, via Theorem 6 of [19], we may conclude that, for each pair
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(k,1) # (3,2), equation (5) has at most finitely many coprime solutions
with (6). This therefore completes the proof of Theorem 1.5. O

Proof of Corollary 1.6. To deduce Corollary 1.6, suppose now that d =
0 (mod Dy) (and, again, that [ > k). Since it is easy to show that the
left hand side of (5) is divisible by every prime ¢ < k coprime to d, it

follows, writing
kE—1
Po=nk—1)—7 — )

that
(48) P, <w(d) <D.
By the Prime Number Theorem, Py is asymptotically ﬁ, as k — oo.

Applying Chebyshev-type estimates for m(x), say those of Rosser and
Schoenfeld [29], we may show that

P.>——> if k> 18.
"= 3logk’ e

From our lower bound (8) for k, we therefore have
2Dlog D
by > e R )
log (6D log D)
for k > 18, contradicting (48). For 12 < k < 17 and (via inequality
(8)) D € {1,2}, we check to see if inequality (48) is satisfied, obtaining
a contradiction in all cases except when D = 2 and k = 12,13,15,16

or 17. For each of these, P, = 2 and so the fact that y fails to have a
prime divisor p with k£/2 < p < k implies

g T itk =12,13
1\ 110138 if k = 15,16, 17,

where v and 3 are positive integers. Theorem 2 of Saradha and Shorey
[32], however, shows that d necessarily has a prime divisor congruent
to 1 (mod ). It follows that [ € {2,3,5}, contradicting [ > k. This
completes the proof of Corollary 1.6. U

8. FINITENESS RESULTS FOR 12 < k£ < 82

In this section, we will present the proof of Theorem 1.4. We begin
by noting that, if P and () are consecutive primes and if we know that
equation (5) has finitely many solutions with k = 2P + 1 and (6), then
a similar result is immediately obtained for

k=2P+2,2P+3,...,20.

Indeed, for any of these values of k, if Il is divisible by a prime in the
interval [Q, k], then Theorem 1.5 implies the desired result. We may
thus suppose, if p | I, that either p > k or p < P. It follows that we
can write

11(0,1,--- ,2P 4+ 1) = BY"
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for nonzero integers B and Y with P(B) < P, whereby the result
follows, as claimed, from the case k = 2P + 1. To prove Theorem 1.4,
we may, in light of Theorem 1.2, restrict attention to

k € {15,23,27,35,39,47,59,63, 75},
where we further suppose that 1I; is coprime to D;. Now, for each
prime 3 < p < P, there are p + 1 possibilities : either p | n + sd for
some 0 < s < p—1, or p fails to divide II (i.e. p | d). Analyzing these

(49) N(P) = H (p+1)

3<p<P

cases, for each k under consideration (actually, symmetry allows us to
reduce this number somewhat), we note that if we can find integers
1> 0and 57 > 1 such that 65 +7 <k —1 and

(50) ged <H(z’,3j+z’,6j+z’), 1T p> € {1,11,19},

3<p<P

then {7,375 +14,3j + 1,65 +1i} leads to an equation of the form (22). We
obtain a like conclusion if there exist ¢ > 0, 5 > 1 with 105 +¢ < k—1,
for which

(51)  ged <H(i,j+i,9j+i,10j+i), 1T p) e {1,11,19}

3<p<P
(where we employ the identity {4, j + 4,95 + 1,105 + ¢}).
8.1. The case k = 15. For k = 15 (i.e. if P = T7), a short search

indicates that we can find ¢ and j for which (50) or (51) holds, unless
p | n+iyd for p € {3,5,7} where i, are as follows :

case (i3,15,17) | case (i3, is5,17) | case (i3,15,1i7)
i) (2,4,6) | (v) (0,3,4) | (iz) (2,4,0)

i) (1,3,5) | (vi) (2,2,3) | () (1,3,6)
(@) (0,2,4) | (wid) (1,1,2) | (=) (1,1,1)

By symmetry, we may suppose that we are in one of the cases (i),
(i), (iii), (iv), (ix) or (x). In case (i), {1, 3,10, 12} implies an equation
of the form (18) with D = 2, if IT is odd, and (15) with g = 0, if II is
even, unless, in this latter case, we have
(52) max{ve(n +1id) :i=1,3,10,12} = 2.

It follows, in this situation, that {2,3,11,12} leads to equation (15)
with a > 2, unless 9 | n + 2d. If we assume, then, that 9 | n + 2d,
{5,7,8,10} implies an equation of the form (15) with 5 = 0, unless

(53) max{ve(n +id) :i=5,7,8,10} = 2.
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Combining (52) and (53), we may thus assume v5(n+10d) = 2, whereby
{5,8,9,12} leads to an equation of the form (20), completing the proof,
in case (i).

In cases (ii), (ix) and (x), we argue in an identical fashion as for case
(i), only with the identities

(1,3,10,12}, {2,3,11,12}, {5,7,8,10} and {5,8,9,12}

replaced by

{0,2,9,11}, {1,2,10,11}, {4,6,7,9}, {4,7,8,11}, in case (i),

{1,3,10,12}, {2,3,11,12}, {3,5,6,8}, {1,4,5,8}, in case (ix)
and

{0,2,9,11}, {1,2,10,11}, {2,4,5,7}, {0,3,4,7}, in case (x).
In case (iii) (respectively case (iv)), the identity {1,5,10,14} (respec-
tively {0,4,9,13}) leads to the conclusion that

max{vs(n +id) : i =1,5,10,14} = 3

whence {8,9,9,10}, {2,5,5,8}, {7,10,10,13} and {3,6,6,9} (respec-
tively {7,8,8,9}, {1,4,4,7}, {6,9,9,12} and {2,5,5,8}) lead to equa-
tions of the shape (21) with p € {3,5}. This completes the proof of
Theorem 1.4, if k =15 (i.e. for k& < 22).

8.2. The cases k € {23,27,35,39}. A (reasonably) short calculation
reveals that for each of the N(P) possibilities with P € {11, 13,17},
we can always find i and j satisfying (50) or (51). If P = 19 (so that
k = 39), then we are left with, up to symmetry, the following cases to
consider (where, as previously, p | n + i,d) :

case 13 15 47 l11 113 l17 19
103 6 1 9 6
G) 1 0 4 1 8 9 17
Gi) 0 4 3 0 7 8 16
@) 2 3 2 10 6 7 15

In the first of these {8,11,33,36} leads immediately to an equation
of the shape (15) with § = 1. In the remaining three,

{2-4,6—14,20—14,33 1}

(for 1 = 0,1 or 2, respectively) implies a solution to equation (15) with
(a, B) = (0,1), if IT is odd. If, however, II is even, the identity

{28 —,29 — 0,37 —i,38 — i}

leads to equation (15) with @ > 2 and 5 = 1, unless 9 | n + (28 — 4)d.
In this case, the identity

{13 —i,14 — 4,16 — 4,17 — i}
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thus leads to equation (22) with p = 19. This completes the proof for
k = 39 (and hence for k£ < 46).

8.3. The cases k € {47,59,63,75}. We verify via Maple that, for each
of the N(P) possibilities with P € {23,29}, we can always find 7 and j
satisfying (50) or (51). For P = 31 (i.e. k = 63), there are again some
possibilities that elude our sieve (the computation is now becoming
rather more substantial). These 28 cases correspond, after symmetry,
to p | n +1i,d for i, as follows :

case |43 15 17 U117 013 l17 f19 923 fl29 131
@) [0 3 5 1 7 1 18 2 14 10
@) |2 2 4 0 6 0 17 1 13 9
(¢i) |O 3 5 1 7 15 18 14 16 10
o) [2 2 4 0 6 14 17 13 15 9
W |1 13 8 5 15 11 4 8 23
wi) [0 0 2 7 4 14 9 3 7 22
(i) |2 4 1 6 3 13 8 2 6 21
(wii)]1 1 3 8 5 15 8 4 1 23
Gz) |0 3 5 10 7 14 13 6 10 25
(x 2 2 4 9 6 13 12 5 9 24
(@) |0 0 2 3 4 14 9 3 7 22
i) [2 4 1 2 3 13 8 2 6 21
(rige) |O 3 5 10 7 14 10 6 3 25
(wiv) |2 2 4 9 6 13 9 5 2 24

Our arguments will prove similar in each case. From an initial identity
of the form {p,q,r, s}, we will conclude that 8 | n + id for some i
congruent, modulo 8, to p+4, ¢+ 4, r + 4 or s + 4. For each of these
possibilities, one of a collection of 4 (or 2) secondary identities of the
shape {p1, ¢, ¢, 71} then implies a nontrivial solution to an equation
of the form (21), contradicting Proposition 3.1. For example, in case
(i), {31,32,49,50} implies the desired conclusion unless

max{vy(n +id) : i = 31,32,49,50} = 2.

This hypothesis ensures that 8 | n + id for one of i = 3,4,5,6 which,
with the identities {6,11,11,16}, {11,20,20,29}, {4,13,13,22} and
{29, 30, 30, 31}, contradicts Proposition 3.1. For the remaining cases,
we choose our identities as follows :

case initial identity | 8 | n +id
@) {31,32,49,50} | i = 3,4, 5,6
(i) {(2,4,29,31} |i=0,2,3,5
(), (viid) | {12,14,60,62} | i=4,6
(iz), (wiit) | {16,17,34,35} | i = 4,5,6,7
(zi) | {11,13,59,61} | i=3,5
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and

case secondary identities

(0) {6, 11,11, 16}, {11, 20, 20, 20}, {4, 13, 13, 22}, {29, 30, 30, 31}

(i) | {21,24,24,27},{27,42,42,57}, {2, 11, 11, 20}, {4, 13,13, 22}

(v), (vidi) {13,28, 28,43}, {9, 22,22, 35}
(iz), (zwidi) | {1,4,4,7},416,37,37,58}, {17, 22,22, 27}, {2, 23, 23, 44}
(zi) {6,19,19, 32}, {8,13,13, 18}

In case (ii), (iv), (vi), (vii), (x), (xii) and (xiv), we argue as for (i),
(iii), (v), (ix) and (xi), only with {p,q,r, s} replaced, in each case, by
{p—i,q—i,r —i,s —i} for i =1 or i = 2. This completes the proof
of Theorem 1.4, for 63 < k < 74.

To finish the proof of Theorem 1.4, it remains to handle the case
k = 75. In this situation, after lengthy calculations (carried out in
Maple on a Beowulf cluster at Simon Fraser University), we conclude
that there always exist ¢ and j satisfying either (50) or (51). The code
utilized in this computation is available from the authors on request.

9. CONCLUDING REMARKS

Presumably, the cases 2 < [ < 5 in Theorem 1.2 may be sharpened
with a more careful combinatorial analysis, at least if (k,1) # (4,2)
or (3,3). As far as we can tell, the statement, for large prime values
of [, essentially reflects the limitations of our method. An extension
of Theorem 1.2 to larger values of k£ would be a reasonably routine
matter if one had available a full set of Galois conjugacy classes of
weight 2 cuspidal newforms at larger levels than currently present in
[38]. Proving an analog of Theorem 1.4 for larger k is also certainly
possible via the techniques described herein; to some degree, at this
stage, the problem is primarily a matter of combinatorics.
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CUBES IN PRODUCTS OF TERMS IN ARITHMETIC
PROGRESSION

L. HAJDU, SZ. TENGELY, R. TIJDEMAN

ABSTRACT. Euler proved that the product of four positive integers
in arithmetic progression is not a square. GyoOry, using a result
of Darmon and Merel, showed that the product of three coprime
positive integers in arithmetic progression cannot be an I-th power
for [ > 3. There is an extensive literature on longer arithmetic
progressions such that the product of the terms is an (almost)
power. In this paper we extend the range of k’s such that the
product of k coprime integers in arithmetic progression cannot be
a cube when 2 < k£ < 39. We prove a similar result for almost
cubes.

1. INTRODUCTION

In this paper we consider the problem of almost cubes in arithmetic
progressions. This problem is closely related to the Diophantine equa-
tion
(1) nin+d)...(n+ (k—1)d) = by’
in positive integers n,d, k,b,y,l with [ > 2, k > 3, ged(n,d) = 1,
P(b) < k, where for u € Z with |u| > 1, P(u) denotes the greatest
prime factor of u, and P(+1) = 1.

This equation has a long history, with an extensive literature. We
refer to the research and survey papers [3], [10], [11], [14], [16], [18], [19],
20, [23], (25], [26], (28], [20], [31], [32], [33], [34], [35], [36], [37], [38],
[40], [41], the references given there, and the other papers mentioned
in the introduction.

In this paper we concentrate on results where all solutions of (1)
have been determined, under some assumptions for the unknowns. We
start with results concerning squares, so in this paragraph we assume
that [ = 2. Already Euler proved that in this case equation (1) has
no solutions with k = 4 and b = 1 (see [7] pp. 440 and 635). Obldth
[21] extended this result to the case k = 5. Erdés [8] and Rigge [22]
independently proved that equation (1) has no solutions with b = d = 1.
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Saradha and Shorey [27] proved that (1) has no solutions with b = 1,
k > 4, provided that d is a power of a prime number. Later, Laishram
and Shorey [19] extended this result to the case where either d < 10,
or d has at most six prime divisors. Finally, most importantly from
the viewpoint of the present paper, Hirata-Kohno, Laishram, Shorey
and Tijdeman [17] completely solved (1) with 3 < k < 110 for b = 1.
Combining their result with those of Tengely [39] all solutions of (1)
with 3 < k <100, P(b) < k are determined.

Now assume for this paragraph that [ > 3. FErddés and Selfridge
[9] proved the celebrated result that equation (1) has no solutions if
b =d = 1. In the general case P(b) < k but still with d = 1, Saradha
[24] for k > 4 and Gyo6ry [12], using a result of Darmon and Merel
6], for k = 2,3 proved that (1) has no solutions with P(y) > k. For
general d, Gy6ry [13] showed that equation (1) has no solutions with
k = 3, provided that P(b) < 2. Later, this result has been extended to
the case k < 12 under certain assumptions on P(b), see Gy6ry, Hajdu,
Saradha [15] for & < 6 and Bennett, Bruin, Gy6ry, Hajdu [1] for k < 12.

In this paper we consider the problem for cubes, that is equation (1)
with [ = 3. We solve equation (1) nearly up to k& = 40. In the proofs
of our results we combine the approach of [17] with results of Selmer
[30] and some new ideas.

2. NOTATION AND RESULTS

As we are interested in cubes in arithmetic progressions, we take
[ =3in (1). That is, we consider the Diophantine equation

(2) nn+d)...(n+ (k—1)d) = by*

in integers n,d, k,b,y where k > 3, d > 0, ged(n,d) = 1, P(b) < k,
n # 0,y # 0. (Note that similarly as e.g. in [1] we allow n < 0, as
well.)

In the standard way, by our assumptions we can write

(3) n+id=ax} (i=0,1,....,k—1)
with P(a;) < k, a; is cube-free. Note that (3) also means that in fact
n+id (1 =0,1,...,k—1) is an arithmetic progression of almost cubes.

In case of b =1 we prove the following result.

Theorem 2.1. Suppose that (n,d, k,y) is a solution to equation (2)
with b =1 and k < 39. Then we have

(n,d, k,y) =(—4,3,3,2),(-2,3,3,-2),(—9,5,4,6) or (—6,5,4,6).
We shall deduce Theorem 2.1 from the following theorem.

Theorem 2.2. Suppose that (n,d, k,b,y) is a solution to equation (2)
with k < 32 and that P(b) < k if k = 3 or k > 13. Then (n,d, k)
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belongs to the following list:
(—10,3,7),(-8,3,7),(-8,3,5),(—4,3,5),(—4,3,3),(—2,3,3),
(—9,5,4),(—6,5,4),(—-16,7,5),(—12,7,5),
(n,1,k) with —30<n<-—-4o0rl1<n<35,
(n,2,k) with —29 <n < —3.
Note that the above statement follows from Theorem 1.1 of Bennett,

Bruin, Gyéry, Hajdu [1] in case k < 12 and P(b) < Py with Py = 2,
P4:P5:3,P6:P7:P8:P9:P10:P11:5.

3. LEMMAS AND AUXILIARY RESULTS
We need some results of Selmer [30] on cubic equations.

Lemma 3.1. The equations
4P =2 ce{1,2,4,5,10,25,45, 60,100, 150, 225, 300},
az® +by® = 2%, (a,b) € {(2,9),(4,9), (4,25), (4,45), (12,25)}
have no solution in non-zero integers x,y, z.

As a lot of work will be done modulo 13, the following lemma will

be very useful. Before stating it, we need to introduce a new notation.

For u,uv,m € Z, m > 1 by u = (mod m) we mean that uw?® = v

(mod m) holds for some integer w with ged(m,w) = 1. We shall use
this notation throughout the paper, without any further reference.

Lemma 3.2. Let n,d be integers. Suppose that for five values i €
{0,1,..., 12} we have n+id =1 (mod 13). Then 13 | d, and n+id = 1
(mod 13) for alli=0,1,...,12.

Proof. Suppose that 13 1 d. Then there is an integer r such that n =
rd (mod 13). Consequently, n + id = (r + i)d (mod 13). A simple
calculation yields that the cubic residues of the numbers (r +i)d (i =
0,1,...,12) modulo 13 are given by a cyclic permutation of one of the
sequences

0,1,2,2,4,1,4,4,1,4,2,2,1,
0,2,4,4,1,2,1,1,2,1,4,4,2,
0,4,1,1,2,4,2,2,4,2,1,1,4.

Thus the statement follows. Il

Lemma 3.3. Let o = /2 and = /3. Put K = Q(a) and L = Q(f).
Then the only solution of the equation

Ci: X]—(a+1)X*+(a+1)X —a=(-3a+6)Y?
in X €QandyY € K is (X,Y) = (2,1). Further, the equation
Co: 4XP—(4+2)X°+(28+1)X —B3=(-33+3)Y*
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has the single solution (X,Y)=(1,1) in X € Q and Y € L.

Proof. Using the point (2, 1) we can transform the genus 1 curve C; to
Weierstrass form

B v+ (a*+a)y =2°+ (260 — 5a — 37).

We have E)(K) ~ Z as an Abelian group and (z,y) = (—a® — a +
3, —a? — 3+ 4) is a non-torsion point on this curve. Applying elliptic
Chabauty (cf. [4], [5]), in particular the procedure ”Chabauty” of
MAGMA (see [2]) with p = 5, we obtain that the only point on C; with
X eQis (2,1).

Now we turn to the second equation C;. We can transform this
equation to an elliptic one using its point (1,1). We get

Ey: y*=a2°+ %% + Bo + (413° — 585 — 4).

We find that Ey(L) ~ Z and (z,y) = (48 — 2,-26> + S+ 12) is a
non-torsion point on Fy. Applying elliptic Chabauty (as above) with
p = 11, we get that the only point on Cy with X € Q is (1,1). O

4. PROOFS

In this section we provide the proofs of our results. As Theorem 2.1
follows from Theorem 2.2 by a simple inductive argument, first we give
the proof of the latter result.

Proof of Theorem 2.2. As we mentioned, for k = 3,4 the statement
follows from Theorem 1.1 of [1]. Observe that the statement for every

ke {6,8,9,10,12,13,15,16,17,19, 21,22, 23,25, 26, 27, 28, 29, 31}

is a simple consequence of the result obtained for some smaller value of
k. Indeed, for any such k let p; denote the largest prime with p, < k.
Observe that in case of k < 13 P(apa; .. .ap,—1) < pj holds, and for
k > 13 we have P(apa; .. .a,,) < pr+ 1. Hence, noting that we assume
P(b) <k for 3 < k <11 and P(b) < k otherwise, the theorem follows
inductively from the case of pg-term products and pg+ 1-term products,
respectively. Hence in the sequel we deal only with the remaining values
of k.

The cases k£ = 5,7 are different from the others. In most cases a
"brute force” method suffices. In the remaining cases we apply the
elliptic Chabauty method (see [4], [5]).

The case k£ = 5. In this case a very simple algorithm works already.
Note that in view of Theorem 1.1 of [1], by symmetry it is sufficient
to assume that 5 | asaz. We look at all the possible distributions of
the prime factors 2, 3,5 of the coefficients a; (i = 0,...,4) one-by-one.
Using that if = is an integer, then 2® is congruent to 41 or 0 both
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(mod 7) and (mod 9), almost all possibilities can be excluded. For
example,

(CL(], a, az, as, CL4) - (17 ]-7 ]-7 107 ]-)
is impossible modulo 7, while

(0,0, a, Qz, as, CL4) = (17 17 157 17 1)

is impossible modulo 9. (Note that the first choice of the a; cannot be
excluded modulo 9, and the second one cannot be excluded modulo 7.)

In case of the remaining possibilities, taking the linear combinations
of three appropriately chosen terms of the arithmetic progression on the
left hand side of (2) we get all solutions by Lemma 3.1. For example,

(CL(), a1, as, as, CL4) - (27 37 47 57 6)

obviously survives the above tests modulo 7 and modulo 9. However,
in this case using the identity 4(n+d)—3n = n+4d, Lemma 3.1 implies
that the only corresponding solution is given by n =2 and d = 1.

After having excluded all quintuples which do not pass the above
tests we are left with the single possibility

(a07 ai, az,as, CL4> - <2a 97 27 57 12)
Here we have
(4) x4+ 73 = 923 and z) — 225 = —627.

Factorizing the first equation of (4), a simple consideration yields that
T3 — xory+ 23 = 3u? holds for some integer u. Put K = Q(«a) with o =
/2. Note that the ring O of integers of K is a unique factorization
domain, o — 1 is a fundamental unit and 1, o, o? is an integral basis of
K, and 3 = (o — 1)(a + 1), where o + 1 is a prime in O. A simple
calculation shows that xq — axs and x% + azowy + a?x3 can have only
the prime divisors a and o 4+ 1 in common. Hence checking the field

norm of xg — auwg, by the second equation of (4) we get that

Ty — azy = (a — 1)¥(a® + a)y?

with y € Ok and € € {0,1,2}. Expanding the right hand side, we
deduce that ¢ = 0,2 yields 3 | xy, which is a contradiction. Thus we
get that ¢ = 1, and we obtain the equation

(o — O[IQ)(.ZU(Q) — XoTo + x%) = (—3a+ 6)23

for some z € Og. Hence after dividing both sides of this equation by
3, the theorem follows from Lemma 3.3 in this case.
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The case k = 7. In this case by similar tests as for £ = 5, we get that
the only remaining possibilities are given by

(ao, ai, ag, as, g, as, aﬁ) = (47 57 67 77 17 97 10)7 (107 97 17 77 6a 5a 4)
By symmetry it is sufficient to deal with the first case. Then we have
(5) 2} + 8xf = 922 and z} — 327 = — 217,

Factorizing the first equation of (5), just as in case of k = 5, a simple
consideration gives that 4z%—2z;26+237 = 3u® holds for some integer w.
Let L = Q(3) with # = ¥/3. As is well-known, the ring Oy, of integers
of L is a unique factorization domain, 2 — 3? is a fundamental unit and
1,3, 3 is an integral basis of L. Further, 2 = (8 — 1)(8* + 8 + 1),
where 3 — 1 and 82 + 3 + 1 are primes in Oy, with field norms 2
and 4, respectively. A simple calculation yields that z¢ — Gzr; and
12+ Bx 26+ %23 are relatively prime in Or. Moreover, as ged(n,d) = 1
and x4 is even, x, should be odd. Hence as the field norm of >+ 3+1
is 4, checking the field norm of x4 — Bz, the second equation of (5)
yields
v — o1 = (2 — 7)°(1 = B)y’

for some y € Op and ¢ € {0,1,2}. Expanding the right hand side,

a simple computation shows that ¢ = 1,2 yields 3 | xg, which is a
contradiction. Thus we get that ¢ = 0, and we obtain the equation

(w6 — Bry)(4af — 27176 + 73) = (=33 + 3)2°

for some z € Or. We divide both sides of this equation by x? and apply
Lemma 3.3 to complete the case k = 7.

Description of the general method. So far we have considered all
the possible distributions of the prime factors < k among the coef-
ficients a;. For larger values of k we use a more efficient procedure
similar to that in [17]. We first outline the main ideas. We explain the
important case that 3, 7, and 13 are coprime to d first.

The case ged(3-7-13,d) = 1. Suppose we have a solution to equation
(2) with & > 11 and ged(3 - 7,d) = 1. Then there exist integers r7
and rg such that n = r7d (mod 7) and n = ry9d (mod 9). Further, we
can choose the integers r7 and r9 to be equal; put r := r; = rg. Then
n+id = (r +1i)d (mod ¢) holds for ¢ € {7,9} and i = 0,1...,k — 1.
In particular, we have r + i = a;s, (mod q), where ¢ € {7,9} and s, is
the inverse of d modulo ¢q. Obviously, we may assume that r + 7 takes
values only from the set {—31,—-30,...,31}.

First we make a table for the residues of h modulo 7 and 9 up to
cubes for |h| < 32, but here we present only the part with 0 < h < 11.

In the first row of the table we give the values of h and in the second
and third rows the corresponding residues of h modulo 7 and modulo
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h o 1 2 3 4 5 6 7 8 9 10
h mod 7 o 1 2 4 4 2 1 0 1 2 4
h mod 9 o 1 2 3 4 4 3 2 1 0 1

9 up to cubes, respectively, where the classes of the relation
represented by 0, 1, 2,4 modulo 7, and by 0, 1,2, 3,4 modulo 9.

Let a;,,...,a; be the coefficients in (3) which do not have prime
divisors greater than 2. Put

E = {(u;,vi;) : 7+i; = u;; (mod 7),r+i; = v, (mod9),1<j <t}
and observe that F is contained in one of the sets
Ey={(1,1),(2,2), (4,4)}, Ey:={(1,2),(2,4), (4,1)},

Es:={(2,1),(4,2),(1,4)}.
We use this observation in the following tests which we shall illustrate
by some examples.
In what follows we assume k£ and r to be fixed. In our method we
apply the following tests in the given order. By each test some cases
are eliminated.

Class cover. Let u; = r +i (mod 7) and v; = r +i (mod 9) (i =
0,1,...,k—1). For [ =1,2,3 put

C[:{Z : ('LLZ',’UZ')EEl, Z:O,l,,k—l}

Check whether the sets C7 U Cy, C7 U (5, Cy U C5 can be covered by
the multiples of the primes p with p < k, p # 2,3,7. If this is not
possible for Cj, UC},, then we know that £ C Ej, is impossible and £,
is excluded. Here {l3, 15,13} = {1,2,3}.

The forthcoming procedures are applied separately for each case where
E C E; remains possible for some [. From this point on we also assume
that the odd prime factors of the a; are fixed.

Parity. Define the sets
I, = {(uj,v;) € By : r+iiseven, Pla;) <2},

I, = {(uj,v;) € E) : r+iisodd, Pla;) <2}

As the only odd power of 2 is 1, min(|Z.|, |,]) < 1 must be valid. If
this does not hold, the corresponding case is excluded.

Test modulo 13. Suppose that after the previous tests we can decide
whether a; is even for the even values of i. Assume that £ C E; with
fixed [ € {1,2,3}. Further, suppose that based upon the previous tests
we can decide whether a; can be even for the even or the odd values of
1. Fort =10,1,2 put

Ut:{'l . ai::I:2t, ZG{O,l,,k—l}}
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and let

Us={i : a;=45",i€{0,1,...,k—1},v€{0,1,2}}.

C

Assume that 13 | n + iod for some ig. Recall that 13 1 d and 5 = 1
(mod 13). If i,j € U, for some ¢ € {0,1,2,3}, then i — iy = j — i
(mod 13). If i € Uy,, j € Uy, with 0 < t; < t5 < 2, then i — ig £ j — ig
(mod 13). We exclude all the cases which do not pass these tests.

Test modulo 7. Assume again that £ C E; with fixed | € {1,2,3}.
Check whether the actual distribution of the prime divisors of the a;
yields that for some i with 7 1 n+id, both a; = +t and |r +i| =t hold
for some positive integer ¢ with 7 1 ¢. Then

t=n+id=(r+i)d=td (mod7)

implies that d = 1 (mod 7). Now consider the actual distribution of
the prime factors of the coefficients a; (i = 0,1,...,k —1). If in any
a; we know the exponents of all primes with one exception, and this
exceptional prime p satisfies p = 2,3,4,5 (mod 7), then we can fix
the exponent of p using the above information on n. As an example,
assume that 7 | n, and a; = £57 with v € {0,1,2}. Then d = 1
(mod 7) immediately implies v = 0. Further, if 7 | n and ay = £137
with v € {0,1,2}, then d = 1 (mod 7) gives a contradiction. We
exclude all cases yielding a contradiction. Moreover, in the remaining
cases we fix the exponents of the prime factors of the a;-s whenever it
is possible.

We remark that we used this procedure for 0 > r > —k + 1. In
almost all cases it turned out that a; is even for r + ¢ even. Further,
we could prove that with |r +i| = 1 or 2 we have a; = £1 or +2,

respectively, to conclude d =1 (mod 7). The test is typically effective
in case when r is "around” —k/2. The reason for this is that then in
the sequence r,r+1,...,—1,0,1,... . k—r—2,k—r —1 several powers
of 2 occur.

Induction. For fixed distribution of the prime divisors of the coefficients
a;, search for arithmetic sub-progressions of length [ with [ € {3,5,7}
such that for the product II of the terms of the sub-progression P(II) <
L; holds, with Ly = 2, Ly = 5, Ly = 7. If there is such a sub-
progression, then in view of Theorem 1.1 of [1], all such solutions can
be determined.

An example. Now we illustrate how the above procedures work. For
this purpose, take k¥ = 24 and » = —8. Then, using the previous
notation, we work with the following stripe (with ¢ € {0,1,...,23}):

r+1 —-8-7-6-5-4-3-2-1012345678910111213 1415
mod7 1 0 1 2 4 4 2 101244210124 4 2 1 0 1
mod9 1 2 3 4 4 3 2 101234432101 2 3 4 4 3
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In the procedure Class cover we get the following classes:
C1=40,4,6,7,9,10,12,16}, Cy=1{3,13,18}, (3 ={19,21}.
For p =5,11,13,17,19,23 put
my={i : 1€ CLUCy, p|n+id},

respectively. Using the condition ged(n,d) = 1, one can easily check
that

ms <3, mip <2, mug <2, mip <1, myg <1, moz < 1.

Hence, as |Cy U Cy] = 11, we get that £ C E5 cannot be valid in this
case. By a similar (but more sophisticated) calculation one gets that
E C Ej is also impossible. So after the procedure Class cover only the
case £ C Ej remains.

JFrom this point on, the odd prime divisors of the coefficients a; are
fixed, and we look at each case one-by-one. Observe that p | n + id
does not imply p | a;. Further, p | n + id implies p | n + jd whenever
i =7 (mod p).

We consider two subcases. Suppose first that we have

3|ln+2d, 5|n+d, 7T|n+d, 11 |n+7d, 13| n+17d,
17 |n+3d, 19| n, 23| n+ 13d.
Then by a simple consideration we get that in Test modulo 13 either
4 € Uy and 10 € Uy,

or
10 € U; and 4 € U,.

In the first case, using 13 | n + 7d we get
—3d=2 (mod 13) and 3d =4 (mod 13),

which by —3d = 3d (mod 13) yields a contradiction. In the second
case we get a contradiction in a similar manner.
Consider now the subcase where

3|n+2d, 5|n+d, 7T|n+d, 11 |n+7d, 13| n+ 8d,
17 | n+3d, 19 | n, 23| n+ 13d.

This case survives the Test modulo 13. However, using the strategy
explained in Test modulo 7, we can easily check that if a; is even then
is even, which yields ag = +1. This immediately gives d =1 (mod 7).
Further, we have a; = +11°7 with e; € {0,1,2}. Hence we get that

+11" =n+7d=d=1 (mod 7).

This gives €7 = 0, thus a; = £1. Therefore P(ajarai) < 2. Now we
apply the test Induction.
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The case ged(3-7-13,d) # 1. In this case we shall use the fact that
almost half of the coefficients are odd. With a slight abuse of notation,

when k& > 11 we shall assume that the coefficients aq, a3, ..., ax_1 are
odd, and the other coefficients are given either by ag, as, ..., ar_o or by
ag, ay, . .., ag. Note that in view of ged(n, d) = 1 this can be done with-

out loss of generality. We shall use this notation in the corresponding
parts of our arguments without any further reference.

Now we continue the proof, considering the remaining cases k > 11.

The case k = 11. When ged(3-7,d) = 1, the procedures Class cover,
Test modulo 7 and Induction suffice. Hence we may suppose that
ged(3-7,d) > 1.

Assume that 7 | d. Observe that P(aga; . ..as) < 5or Plasag .. .ag) <
5. Hence the statement follows by induction.

Suppose next that 3 | d. Observe that if 11 { ajasae then P(apa; . . . ag)
7 or P(asas...a10) < 7. Hence by induction and symmetry we may as-
sume that 11 | asag. Assume first that 11 | ag. If 7 | apag then we have
P(ajasasagas) < 5. Further, in case of 7 | a5 we have P(agajasazay) <
5. Thus by induction we may suppose that 7 | ajasazay. If 7| ajasay
and 5 1 n, we have P(agasai9) < 2, whence by applying Lemma 3.1
to the identity n + (n + 10d) = 2(n + 5d) we get all the solutions
of (2). Assume next that 7 | ajasay and 5 | n. Hence we deduce
that one among P(asazas) < 2, P(ajasar) < 2, P(ajasasz) < 2 is
valid, and the statement follows in each case in a similar manner as
above. If 7 | as, then a simple calculation yields that one among
P(apajas) < 2, P(agasag) < 2, P(ajasa;) < 2 is valid, and we are
done. Finally, assume that 11 | a5. Then by symmetry we may suppose
that 7 | aparasas. If 7| asas then P(agarasagarg) < 5, and the state-
ment follows by induction. If 7 | ag then we have P(asasagasaig) < 5,
and we are done too. In case of 7 | a; one among P(apazas) < 2,
P(agazay) < 2, P(agasag) < 2 holds. This completes the case k = 11.

The case k = 14. Note that without loss of generality we may assume
that 13 | a; with 3 < ¢ < 10, otherwise the statement follows by
induction from the case k = 11. Then, in particular we have 13 1 d.

The tests described in the previous section suffice to dispose of the
case ged(3 - 7+ 13,d) = 1. Assume now that ged(3-7-13,d) > 1 (but
recall that 13 1 d).

Suppose first that 7 | d. Among the odd coefficients ay, as, ..., a3
there are at most three multiples of 3, two multiples of 5 and one

multiple of 11. As 13 =1 (mod 7), this shows that at least for one of

these a;-s we have a; = 1 (mod 7). Hence a; = 1 (mod 7) for every
1 = 1,3,...,13. Further, as none of 3,5,11 is a cube modulo 7, we
deduce that if ¢ is odd, then either ged(3 -5 - 11,a;) = 1 or a; must
be divisible by at least two out of 3,5,11. Noting that 13 1 d, by

<
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Lemma 3.2 at most four numbers among ay, as, ..., a3 can be equal
to 1. Moreover, ged(n,d) = 1 implies that 15 | a; can be valid for
at most one ¢ € {0,1,...,k — 1}. Hence among the coefficients with

odd indices there is exactly one multiple of 11, exactly one multiple
of 15, and exactly one multiple of 13. Moreover, the multiple of 11
in question is also divisible either by 3 or by 5. In view of the proof
of Lemma 3.2 a simple calculation yields that the cubic residues of
ai,as, . ..,a;3 modulo 13 must be given by 1,1,4,0,4,1, 1, in this order.
Looking at the spots where 4 occurs in this sequence, we get that either
3| as,ag or 5 | as, ag is valid. However, this contradicts the assumption

ged(n, d) = 1.
Assume now that 3 | d, but 71 d. Then among the odd coefficients
ai,as, ..., a3 there are at most two multiples of 5 and one multiple of 7,

11 and 13 each. Lemma 3.2 together with 5= 1 (mod 13) yields that

there must be exactly four odd i-s with a; = 1 (mod 13), and further,
another odd ¢ such that a; is divisible by 13. Hence as above, the proof
of Lemma 3.2 shows that the a;-s with odd indices are = 1,1,4,0,4,1,1
(mod 13), in this order. As the prime 11 should divide an a; with odd 4

and a; = 4 (mod 13), this yields that 11 | asag. However, as above, this
immediately yields that P(agas...a12) < 7 (or Plagay...a14) < 7),
and the case k = 14 follows by induction.

The case k£ = 18. Using the procedures described in the previous
section, the case ged(3 -7 -13,d) = 1 can be excluded. So we may
assume ged(3-7-13,d) > 1.

Suppose first that 7 | d. Among aj,as,...,a1; there are at most
three multiples of 3, two multiples of 5 and one multiple of 11, 13 and
17 each. Hence at least for one odd ¢ we have a; = £1. Thus all of
ay,as, ..., ap; are = 1 (mod 7). Among the primes 3,5,11,13,17 only
13is = 1 (mod 7), so the other primes cannot occur alone. Hence we
get that a; = +1 for at least five out of aq,as,...,a;;. However, by
Lemma 3.2 this is possible only if 13 | d. In that case a; = £1 holds
for at least six coefficients with ¢ odd. Now a simple calculation shows
that among them three are in arithmetic progression. This leads to an
equation of the shape X? + Y3 =273, and Lemma 3.1 applies.

Assume next that 13 | d, but 7 + d. Among the odd coefficients
ai,as, ...ap; there are at most three multiples of 3, two multiples of
5 and 7 each, and one multiple of 11 and 17 each. Hence, by 5 = 1
(mod 13) there are at least two a; = 1 (mod 13), whence all a; = 1
(mod 13). As from this list only the prime 5 is a cube modulo 13,
we get that at least four out of the above nine odd a;-s are equal to
+1. Recall that 7t d and observe that the cubic residues modulo 7 of a
seven-term arithmetic progression with common difference not divisible

Il= 1l
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by 7 is a cyclic permutation of one of the sequences
0,1,2,4,4,2,1, 0,2,4,1,1,4,2, 0,4,1,2,2,1,4.

Hence remembering that for four odd ¢ we have a; = £1, we get that the
cubic residues of aq, as, . . ., a;7 modulo 7 are given by 1,1,4,2,0,2,4,1, 1,
in this order. In particular, we have exactly one multiple of 7 among
them. Further, looking at the spots where 0,2 and 4 occur, we deduce
that at most two of the a;-s with odd indices can be multiples of 3.
Switching back to modulo 13, this yields that a; = &1 for at least five
a;-s. However, this contradicts Lemma 3.2.

Finally, assume that 3 | d. In view of what we have proved already,
we may further suppose that ged(7-13,d) = 1. Among the odd coef-
ficients aq, as, ..., a7 there are at most two multiples of 5 and 7 each,
and one multiple of 11, 13 and 17 each. Hence as 7  d and 13 =1
(mod 7), we get that the cubic residues modulo 7 of the coefficients a;
with odd ¢ are given by one of the sequences

1,0,1,2,4,4,2,1,0, 0,1,2,4,4,2,1,0,1, 1,1,2,4,0,4,2,1,1.

In view of the places of the values 2 and 4, we see that it is not possible
to distribute the prime divisors 5,7, 11 over the a;-s with odd indices.
This finishes the case k = 18.

The case k = 20. By the help of the procedures described in the
previous section, in case of ged(3-7-13,d) = 1 all solutions to equation
(2) can be determined. Assume now that ged(3-7-13,d) > 1.

We start with the case 7 | d. Then among the odd coefficients
ai,as, ..., a9 there are at most four multiples of 3, two multiples of 5,

and one multiple of 11, 13, 17 and 19 each. As 13 =1 (mod 7), this

yields that a; = 1 (mod 7) for all i. Hence the primes 3,5,11,17,19
must occur at least in pairs in the a;-s with odd indices, which yields
that at least five such coefficients are equal to +1. Thus Lemma 3.2

gives 13 | d, whence a; = 1 (mod 13) for all i. Hence we deduce that
the prime 5 may be only a third prime divisor of the a;-s with odd
indices, and so at least seven out of ay,as,..., a9 equal £1. However,
then there are three such coefficients which belong to an arithmetic
progression. Thus by Lemma 3.1 we get all solutions in this case.
Assume next that 13 | d. Without loss of generality we may further
suppose that 7 4 d. Then among the odd coefficients ay,as, ..., a9
there are at most four multiples of 3, two multiples of 5 and 7 each,
and one multiple of 11, 17 and 19 each. As 5 =1 (mod 13) this implies
a; =1 (mod 13) for all 7, whence the primes 3, 7,11, 17, 19 should occur
at least in pairs in the a;-s with odd i. Hence at least four of these
coefficients are equal to £1. By a similar argument as in case of k = 18,
we get that the cubic residues of ay,as, ..., a;9 modulo 7 are given by
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one of the sequences
1,0,1,2,4,4,2,1,0,1, 1,1,4,2,0,2,4,1,1,4, 4,1,1,4,2,0,2,4,1,1.

In view of the positions of the 0,2 and 4 values, we get that at most
two corresponding terms can be divisible by 3 in the first case, which
modulo 13 yields that the number of odd i-s with a; = £1 is at least
five. This is a contradiction modulo 7. Further, in the last two cases
at most three terms can be divisible by 3, and exactly one term is a
multiple of 7. This yields modulo 13 that the number of odd i-s with
a; = £1 is at least five, which is a contradiction modulo 7 again.
Finally, suppose that 3 | d. We may assume that ged(7-13,d) = 1.
Then among the odd coefficients aq,as, ..., a9 there are at most two
multiples of 5 and 7 each, and one multiple of 11, 13, 17 and 19 each.
Hence Lemma 3.2 yields that exactly four of these coefficients should

be = 1 (mod 13), and exactly one of them must be a multiple of 13.
Further, exactly two other a;-s with odd indices are multiples of 7,
and these a;-s are divisible by none of 11,13,17,19. So in view of the
proof of Lemma 3.2 a simple calculation gives that the cubic residues
of ay,as, ..., a9 modulo 13 are given by one of the sequences

0’2’4747172’ ]" ]‘72717 172’ ]‘7 ]‘727174’472707
2,4,2,1,1,4,0,4,1,1, 1,1,4,0,4,1,1,2,4,2.

In the upper cases we get that 7 divides two terms with a; = 2
(mod 13), whence the power of 7 should be 2 in both cases. How-
ever, this implies 72 | 14d, hence 7 | d, a contradiction. As the lower
cases are symmetric, we may assume that the very last possibility oc-
curs. In that case we have 7 | a5 and 7 | ajg. We may assume that
11 | ay7, otherwise P(agas . ..ais) < 7 and the statement follows by in-
duction. Further, we also have 13 | a7, and 17 | ag and 19 | a5 or vice
versa. Hence either P(azagaiz) < 2 or P(ajajpass) < 2, and induction
suffices to complete the case k = 20.

The case k£ = 24. The procedures described in the previous section
suffice to completely treat the case ged(3-7-13,d) = 1. So we may
assume that ged(3-7-13,d) > 1 is valid.

Suppose first that 7 | d. Among the odd coefficients ay, as, ..., ass
there are at most four multiples of 3, three multiples of 5, two multiples
of 11, and one multiple of 13, 17, 19 and 23 each. We know that
all a; belong to the same cubic class modulo 7. As 3 = 4 (mod 7),
5= 2 (mod 7) and among the coefficients ay, as, ..., ass there are at
most two multiples of 3% and at most one multiple of 52, we get that

these coefficients are all = 1 (mod 7). This yields that the primes
3,5,11,17,19,23 may occur only at least in pairs in the coefficients
with odd indices. Thus we get that at least five out of aq,as,...,as

are = 1 (mod 13). Hence, by Lemma 3.2 we get that 13 | d and
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consequently a; =1 (mod 13) for all 4. This also shows that the 5-s
can be at most third prime divisors of the a;-s with odd indices. So we
deduce that at least eight out of the odd coefficients aq, as, ..., as3 are
equal to +1. However, a simple calculation shows that from the eight
corresponding terms we can always choose three forming an arithmetic
progression. Hence this case follows from Lemma 3.1.

Assume next that 13 | d, but 7 { d. Among the coefficients with
odd indices there are at most four multiples of 3, three multiples of
5, two multiples of 7 and 11 each, and one multiple of 17, 19 and
23 each. Hence, by 5 = 1 (mod 13) we deduce a; = 1 (mod 13) for
all 7. As before, a simple calculation yields that at least for four of
these odd coefficients a; = +1 hold. Hence looking at the possible
cases modulo 7, one can easily see that we cannot have four multiples
of 3 at the places where 0,2 and 4 occur as cubic residues modulo 7.
Hence in view of Lemma 3.2 we need to use two 11-s, which yields that
11 | a; and 11 | ags. Thus the only possibility for the cubic residues of
ai,as,...,as3 modulo 7 is given by the sequence

2,1,0,1,2,4,4,2,1,0,1,2.

However, the positions of the 2-s and 4-s allow to have at most two a;-s
with odd indices which are divisible by 3 but not by 7. Hence switching
back to modulo 13, we get that there are at least five a;-s which are
+1, a contradiction by Lemma 3.2.

Finally, assume that 3 | d, and ged(7 - 13,d) = 1. Then among
ai,as,...,as3 there are at most three multiples of 5, two multiples of
7 and 11 each, and one multiple of 13, 17, 19 and 23 each. Hence by
Lemma 3.2 we get that exactly four of the coefficients aq,as, ..., as;
are = 1 (mod 13), and another is a multiple of 13. Further, all the
mentioned prime factors (except the 5-s) divide distinct a;-s with odd
indices. Using that at most these coefficients can be divisible by 72 and
112, in view of the proof of Lemma 3.2 we get that the only possibilities
for the cubic residues of these coefficients modulo 13 are given by one
of the sequences

2,2,4,2,1,1,4,0,4,1,1,2, 2,1,1,4,0,4,1,1,2,4,2,2.

By symmetry we may assume the first possibility. Then we have 7 | as,
11| a1, 13 | ay5, and 17,19, 23 divide as, ar, a13 in some order. Hence
P(agagary) < 2, or 5| n+ 4d whence P(ajgaigaz) < 2. In both cases
we apply induction.

The case k = 30. By the help of the procedures described in the
previous section, the case ged(3-7-13,d) = 1 can be excluded. Assume
now that ged(3-7-13,d) > 1.

We start with the case 7 | d. Then among the odd coefficients
ai,as,...,as there are at most five multiples of 3, three multiples of
5, two multiples of 11 and 13 each, and one multiple of 17, 19, 23 and
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29 cach. As 13 = 29 = 1 (mod 7), this yields that a; = 1 (mod 7)
for all 7. Hence the other primes must occur at least in pairs in the
a;-s with odd indices, which yields that at least six such coefficients are
equal to £1. Further, we get that the number of such coefficients = 0,1
(mod 13) is at least eight. However, by Lemma 3.2 this is possible only

if 13 | d, whence a; = 1 (mod 13) for all i. Then 5 and 29 can be
at most third prime divisors of the coefficients a;-s with odd i-s. So
a simple calculation gives that at least ten out of the odd coefficients
ai,as,...,as are equal to 1. Hence there are three such coefficients
in arithmetic progression, and the statement follows from Lemma 3.1.

Assume next that 13 | d, but 71 d. Then among the odd coefficients
ai,as,...,as there are at most five multiples of 3, three multiples of
5 and 7 each, two multiples of 11, and one multiple of 17, 19, 23 and
29 cach. From this we get that a; = 1 (mod 13) for all <. Hence the
primes different from 5 should occur at least in pairs. We get that at
least five out of the coefficients aq,as, ..., as are equal to £1. Thus
modulo 7 we get that it is impossible to have three terms divisible by
7. Then it follows modulo 13 that at least six a;-s with odd indices
are equal to £1. However, this is possible only if 7 | d, which is a
contradiction.

Finally, assume that 3 | d, but ged(7 - 13,d) = 1. Then among the
odd coefficients aq, as, . . . , asg there are at most three multiples of 5 and
7 each, two multiples of 11 and 13 each, and one multiple of 17, 19, 23
and 29 each. Further, modulo 7 we get that all primes 5,11,17,19,23
divide distinct a;-s with odd indices, and the number of odd i-s with

a; = 0,1 (mod 7) is seven. However, checking all possibilities modulo
7, we get a contradiction. This completes the proof of Theorem 2.2. [

Proof of Theorem 2.1. Obviously, for k < 32 the statement is an imme-
diate consequence of Theorem 2.2. Further, observe that b = 1 implies
that for any k with 31 < k£ < 39, one can find j with 0 < 7 < k — 30
such that P(aja;ji1...a5199) < 29. Hence the statement follows from
Theorem 2.2. Il

Acknowledgement. The authors are grateful to the referee for the useful
remarks.
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PERFECT POWERS IN ARITHMETIC PROGRESSION.
A NOTE ON THE INHOMOGENEOUS CASE

L. Hajpu!

Dedicated to Professor R. Tijdeman on the occasion of his siztieth birthday

ABSTRACT. We show that the abc conjecture implies that the number of terms of
any arithmetic progression consisting of almost perfect ”inhomogeneous” powers is
bounded, moreover, if the exponents of the powers are all > 4, then the number of
such progressions is finite. We derive a similar statement unconditionally, provided
that the exponents of the terms in the progression are bounded from above.

1. INTRODUCTION

Arithmetic progressions consisting of almost perfect powers are widely investi-
gated in the "homogeneous” case. That is, one is interested in arithmetic progres-
sions of the shape

aoxh, .- g1y, with a2, €Z (0<i<k—1),

with some fixed integer [ > 2, such that the coefficients a; are "restricted” in some
sense. It was already known by Fermat and proved by Euler (see [D] pp. 440
and 635) that four distinct squares cannot form an arithmetic progression. The
contributions of Darmon and Merel [DM] on the Fermat equation imply that there
are no three [-th powers with [ > 3 in arithmetic progression, up to the trivial cases.
In this paper we take up the problem when the arithmetic progression consists of
almost perfect ”inhomogeneous” powers. Let S = {p1,...,ps} be any set of positive
primes with p; < ... < ps, and write Zg for the set of those non-zero integers whose
prime divisors belong to S. Put

H={nz'|neZs, x,1cZwith z#0and > 2},

and note that £1 € H, but 0 ¢ H. To guarantee that the representation of every
element h € H is unique, we further assume that for h = na! we have that 7 is [-th
power free, x > 0, and [ = 2 if h € Zg. In particular, if x = 1 then 7 is square-free.
The main purpose of this paper is to show that the abc conjecture implies that the
number of terms of any ”coprime” arithmetic progression in H is bounded by a

2000 Mathematics Subject Classification: 11D41.
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grants T42985 and F34981 of the Hungarian National Foundation for Scientific Research, and by
the FKFP grant 3272-13/066/2001.
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constant ¢(s, P) depending only on s = |S| and P = ps. Moreover, the number of
such progressions having at least three terms, where the exponents of the powers
are > 4, is finite. We derive a similar statement unconditionally, provided that the
exponents of the terms in the progression are bounded from above. Our main tools,
besides the abc conjecture, will be a theorem of Euler on equation (1) below with
[ = 2, the above mentioned result of Darmon and Merel on Fermat-type ternary
equations, and a famous theorem of van der Waerden from Ramsey theory, about
arithmetic progressions.
Finally, we mention that our problem is related to the equation

(1) n(n+d)...(n+ (k—1)d) = by

in non-zero integers n,d,b,y, k > 2, I > 2 with ged(n,d) = 1, P(b) < k, where for
any integer u with |u| > 1 we write P(u) for the greatest prime factor of u and we
put P(£1) = 1. It is easy to show that using (1) one can write

(2) n+id=a;xt with Pa;)<k—-1 (0<i<k—1).

Equation (1) and its various specializations have a very extensive literature. For
related results we just refer to the survey papers and recent articles [BGyH], [Gy],
[GyHS], [SS], [S1], [S2], [S3], [T1], [T2], and the references given there. We only
mention two particular theorems about (1), which are relevant from our viewpoint.
Shorey (see [S1]) proved that the abc conjecture implies that with [ > 4, k is
bounded by an absolute constant in (1). Extending this result, Gyéry, Hajdu and
Saradha [GyHS| deduced from the abc conjecture that with [ > 4 and k£ > 3,
equation (1) has only finitely many solutions. Thus our theorems yield a kind of
extension of the above mentioned results of Shorey [S1] and Gydry, Hajdu and
Saradha [GyHS], to the inhomogeneous case. However, it is important to note that
as in (2) P(a;) < k — 1, and we fix the prime divisors of the I-th power free part
of h € H in advance, the results obtained here do not imply the corresponding
theorems in [S1] and [GyHS].

2. MAIN RESULTS

In what follows, cg,...,c15 will denote constants depending only on s and P.
Though s < P, our arguments will be more clear if we indicate the dependence
also upon s. By a non-constant arithmetic progression we will simply mean a
progression with non-zero common difference.

Theorem 1. Suppose that the abc conjecture is valid. Let hg, . ..,hi_1 be any non-

constant arithmetic progression in H, with h; = ma:i (0 <i<k-—1), such that

gcd(ho, hy) < ¢o for some co. Then we have max(k,l) < c1, where | = o Jnax 1li.
_/L_ -

Moreover, the number of such progressions with k > 3 and l; > 4, is bounded by
some 3.

Remark 1. Looking at the proof of Theorem 1 closely, one can easily see that
the second part of the statement can be extended as follows. Consider progressions
ho,...,hx—1 as above, such that k£ > 3 and for every i € {0,...,k — 1} there exist
gt € {0,...,k =1} \ {¢} with j # ¢ and 1/l; + 1/l; + 1/l; < 1. Then the abc
conjecture implies that the number of such progressions is bounded by some cs.
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Remark 2. The condition ged(ho,h1) < ¢o in Theorem 1 is necessary. Indeed,
there exist non-constant arithmetic progressions in H consisting of non-zero perfect
powers, having arbitrarily many terms. To see this, observe that each pair of distinct
positive perfect powers can be considered as a non-constant arithmetic progression
of two terms. Suppose that for some i > 2, hg,...,h;_1 is such a progression of
positive perfect powers, say h; = :cé-j with z; > 1and [; >2 (0 <j <i—1). Let
i—1
[T 7, and write
j=0

t= 2hi_1 — hi_g and l; =

Wy =tih; for 0<j<i—1, and hj=titl

In this way we obtain a non-constant arithmetic progression hy,...,h._;, h} con-

sisting of positive perfect powers, having exponents ly,...,l;—1,l; = I} + 1. This
verifies our claim, which shows that the assumption ged(hg,h1) < ¢y cannot be
omitted.

If we drop the abc conjecture, we need a further assumption to get a finiteness
statement for the number of terms in our arithmetic progressions.

Theorem 2. Let | be a fixed integer with | > 2. Then for any non-constant
arithmetic progression hg,...,hix_1 in H such that I; < | in the representation
hi = izt (0 < i <k —1), we have k < Cy(s, P,1), where Cy(s, P,1) is a constant
depending only on s, P and I.

Remark 3. Note that in Theorem 2 we do not need the assumption ged(hg, hy) <
¢o. However, the example in Remark 2 shows that the condition l; <1 (0 <i < k—1)
is necessary in this case.

Finally, we propose the following
Conjecture. Theorem 1 is true unconditionally, i.e. independently of the abc
conjecture.
3. SOME LEMMAS

To prove our theorems, we need several lemmas. The first one concerns almost
perfect squares in arithmetic progression.

Lemma 1. The product of four consecutive terms in a non-constant positive arith-
metic progression iS mever a Square.

Proof. This is a classical result of Euler (cf. [M], p. 21). O
Our next lemma is about Fermat-type ternary equations.

Lemma 2. Letl > 3 be an integer. Then the equation
X' +vt =27
has no solution in coprime non-zero integers X, Y, Z with XY Z # +1.

Proof. This was proved by Darmon and Merel [DM]. O

The next lemma is from Ramsey theory, concerning arithmetic progressions.
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Lemma 3. For every positive integers u and v there exists a positive integer w
such that for any coloring of the set {1, ..., w} using u colors, we get a non-constant
monochromatic arithmetic progression, having at least v terms.

Proof. This nice result is due to van der Waerden (cf. [vdW]). O

The next statement takes care of Theorem 1 unconditionally, in case of homo-
geneous powers.

Lemma 4. Let | be a fized integer with | > 2. Suppose that hg,...,hx_1 is an
arithmetic progression in H, such that h; = m-xé, for alli =0,...,k—1. Then
k < Cy(s, P,l), where C1(s, P,1) is a constant depending only on s, P and l.

Proof. Color the terms of the arithmetic progression hg,...,hr_1 in such a way
that h; and h; have the same color if and only if n; =n; (0 <4,j <k —1). As
and 7, are [-th power free, at most 2{° colors are necessary. (We need the factor 2
because of the signs.)

Assume first that [ = 2. We apply Lemma 3 with (u,v) = (2°T1,4) to conclude
that if £ > w with some w = w(s), then there exist indices 0 < i1 < iy < iz < iy <
k —1 such that h;,, hi,, hiy, hi, is a non-constant arithmetic progression of non-zero
integers, with 7;, = 17;, = i, = 1;,. Then we have

5 2
hi1hi2hi3hi4 = (nilmilthisxu) .
However, by Lemma 1, this is impossible. (Note that it does not make a difference
whether 7;, is positive or negative.) This gives a contradiction, whence k& < w, and
the lemma follows when [ = 2.

Suppose now that [ > 3. We apply again Lemma 3, this time with (u,v) =
(20°,3) to derive that if k& > w with some w = w(s,[), then there exist indices
0 <11 <1tz <i3 <k —1such that h;,, hy,, h;, is an arithmetic progression, with
i, = Mi, = Ni,. Hence we obtain
(3) al 42l =22l .

By Lemma 2, as h;; # 0 (j = 1,...,3) and our progression is non-constant, we
deduce that (3) is impossible. Thus we get a contradiction, whence k < w, and the
lemma is proved. [J

Remark 4. Note that assuming the abc conjecture, this lemma follows from the
afore mentioned result of Shorey [S1], in the case when ged(hg, hi) = 1.

Lemma 5. Suppose that the abc conjecture is valid, and let cs = Cy(s, P,2) be the
constant given in Lemma 4, corresponding to the exponent | = 2. Then there exists
a cq4 such that if hg,...,hk_1 is any arithmetic progression in H with h; = mxéi,
such that gcd(hg, h1) < c5 and k > 2cs, then l; < ¢4 holds for alli =0,...,k — 1.

Proof. Suppose that we have an arithmetic progression hg, ..., hix_1 as above, and
take any ¢ € {0,...,k—1} with [; > 7. (If no such i exists, then the lemma follows
with ¢4 = 7.) Note that x; > 1. By Lemma 4 we infer that there exists a j with
0 < |i—j| < c3 such that [; > 3. Choose any t € {0,...,k—1}\{7,j} with [i—¢| < 2.
Then with some coprime non-zero integers \;, A;, Ay with max(\;, Aj, A\y) < |[i—7]+2
we have \;h; + Ajh; + Athy = 0. This gives

. 1
(4) )\mimél + Az + )\mtxff =0.
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Let D denote the ged of the above three terms, and observe that as ged(hg, h1) < cs,
we have D < cg.

We show that the abc conjecture implies that [; is bounded. Note that when
D =1, and the coefficients of xiz , xéj , mit are fixed, by a similar argument Tijdeman
derived from the abc conjecture that (4) has only finitely many solutions (see [T1],
p. 234). Let r € {i,5,t} be the index for which |\.n,z!| is maximal among these
three terms. The (effective version of) the abc conjecture, with ¢ = 1/42 gives

43/42

’)‘rnrxir‘ <c7 H b

plrizjzt
Asl; > 7,1; >3, and l; > 2, whence 1/l; +1/l; +1/l; <1 —1/42, this yields
Al | < cga(1763/1764)0
If z,, =1 (implying that r = ¢, [, = 2, and 7, is square-free), then by

(5) xiz < |/\z‘771$éi < |)‘r7]r$£f|

and z; > 1, we get [; < ¢g. Otherwise, x,, > 1 gives [,- < ¢19, whence |)\an$§;\ < c11-
Thus using again (5) and z; > 1, we obtain I; < c¢;2 also in this case. As i was
taken arbitrarily with [; > 7, the statement follows with ¢4 = max(7,cg,c12). O

4. PROOFS OF THE THEOREMS

Now we are ready to prove our main results. We start with the proof of Theorem
2, because it is more convenient to do so.

Proof of Theorem 2. Let Cy(s, P,1) be the maximum of the values Ci(s, P, L) de-
fined in Lemma 4, where L ranges through the interval [2,[]. Apply Lemma 3 to our
progression with (u,v) = (I—1,Cs(s, P,1)). (The terms having the same exponents,
have the same colors.) Thus Lemma 3 gives some constant Cy(s, P, 1), depending
only on s, P and [, such that k& > Cy(s, P,l) would be a contradiction by Lemma
4. Thus k < Cy(s, P,1), and the theorem follows. [

Proof of Theorem 1. We may suppose that k > 2c3, where c3 > 2 is given in Lemma
5. Then by Lemma 5 we have that [; < ¢4, for all i = 0,...,k — 1. Thus the first
part of the theorem follows from Theorem 2, with ¢; = max(cq, Co(s, P,c4)).

To prove the second part, suppose that [; > 4 for alli =0,...,k—1. We already
now that max(k,l) < ¢;. Fix k and choose any different i, j,t € {0,...,k—1}. Just
as in the proof of Lemma 5, we get an equation of the form

. 1
)\ﬂ]zl'il + )\j’f}jl'jj + )\tntil?it =0

with some integers \;, A;, A, such that max(|\;], |\, |\¢e]) < k& < ¢1. Moreover, the
gcd of the three terms on the left hand side is bounded by some c;3. Following the
argument of Lemma 5, as z;, x;, x; are all > 1, and 1/l;+1/1;+1/l; < 3/4, using the
!

abc conjecture we derive that max(z,

c15, the theorem follows. [

Lal,w) < . As also max(|mil, Iy, Inel) <
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ARITHMETIC PROGRESSIONS
CONSISTING OF UNLIKE POWERS

N. Bruin!, K. GYOry?, L. HAJDU? AND Sz. TENGELY?

ABSTRACT.
In this paper we present some new results about unlike powers in arithmetic

progression. We prove among other things that for given k£ > 4 and L > 3 there

. . . . I .
are only finitely many arithmetic progressions of the form (xéo , a:lll R ,:vkk_ll) with

xi € Z, ged(zo,z1) =1land 2 <; < L fori=0,1,... ,k— 1. Furthermore, we show
that, for L = 3, the progression (1,1,...,1) is the only such progression up to sign.
Our proofs involve some well-known theorems of Faltings [F], Darmon and Granville
[DG] as well as Chabauty’s method applied to superelliptic curves.

1. INTRODUCTION

By a classical result of Euler, which apparently was already known to Fermat
(see [D] pp. 440 and 635), four distinct squares cannot form an arithmetic progres-
sion. Darmon and Merel [DM] proved that, apart from trivial cases, there do not
exist 3-term arithmetic progressions consisting of [-th powers, provided [ > 3. More
generally, perfect powers from products of consecutive terms in arithmetic progres-
sion have been extensively studied in a great number of papers; see e.g. [T], [Sh]
and [BBGyH]| and the references there. In our article we deal with the following
problem.

Question. For all k > 3 characterize the non-constant arithmetic progressions
(h(b hla < 7hk—1)

with ged(hg, h1) = 1 such that each h; = a:i for some x; € Z and l; > 2.

Note that we impose the seemingly artificial primitivity condition ged(hg, hy) =
1. In case the h; are all like powers, the homogeneity of the conditions ensures that
up to scaling, we can assume ged(hg, h1) = 1 without loss of generality. If we do
not take all /; equal, however, there are infinite families that are not quite trivial,

2000 Mathematics Subject Classification: 11D41.
IResearch supported in part by National Science and Engineering Research Council Canada
(NSERC).
2Research supported in part by grants T42985 and T38225 of the Hungarian National Foundation
for Scientific Research (HNFSR).
3Research supported in part by grants T42985 and T'48791 of the HNFSR and by the J4nos Bolyai
Research Fellowship of the Hungarian Academy of Sciences.
4Research supported in part by grant T48791 of the HNFSR.

Typeset by ApS-TEX
135



136 N. BRUIN, K. GYORY, L. HAJDU AND SZ. TENGELY

but are characterized by the fact they have a fairly large common factor in their
terms; see the examples below Theorem 3.
By a recent result of Hajdu [H] the ABC conjecture implies that if

Ly
(xéo,xlf,... L Th 1)

is an arithmetic progression with ged(zg,z1) = 1 and I; > 2 for each 4, then k and
the [; are bounded. Furthermore, he shows unconditionally that £ can be bounded
above in terms of max;{l;}. In fact Hajdu proves these results for more general
arithmetic progressions which satisfy the assumptions (i), (ii) of our Theorem 2
below.

As is known (see e.g. [M],[DG],[PT],[T1],[T2] and the references given there),
there exist integers lg, l1,lo > 2 for which there are infinitely many primitive arith-
metic progressions of the form (méo,xlll , 33122) In these progressions the exponents in
question always satisfy the condition

11 1 S 1

I + I + Lot
One would, however, expect only very few primitive arithmetic progressions of
length at least four and consisting entirely from powers at least two. A definitive
answer to the above question seems beyond present techniques. As in [H], we
restrict the size of the exponents [; and prove the following finiteness result:

Theorem 1. Let k > 4 and L > 2. There are only finitely many k-term integral
arithmetic progressions (ho,hi,... ,hg—1) such that ged(hg,h1) = 1 and h; = xi
with some x; € Z and 2 <1; < L fori=0,1,...  k—1.

The proof of this theorem uses that for each of the finitely many possible ex-
ponent vectors (lg,...,lx—1), the primitive arithmetic progressions of the form
(90607 e 902’“__11) correspond to the rational points on finitely many algebraic curves.
In most cases, these curves are of genus larger than 1 and thus, by Faltings’ theorem
[F], give rise to only finitely many solutions.

In fact, our Theorem 1 above is a direct consequence of the following more general
result and a theorem by Euler on squares in arithmetic progression. For a finite
set of primes .S, we write Z§ for the set of rational integers not divisible by primes
outside S.

Theorem 2. Let L,k and D be positive integers with L > 2,k > 3, and let S be a
finite set of primes. Then there are at most finitely many arithmetic progressions
(ho, hi,...,hik_1) satisfying the following conditions:

(i) Fori=0,...,k—1, there exist x; € Z, 2 <l; < L and n; € Z§ such that
hi =n;

(11) ng(ho,hl) < D,
(iii) either k > 5, or k=4 andl; > 3 for some i, or k =3 and%%—ﬁ—ki <1.

Remark. In (iii) the assumptions concerning the exponents I; are necessary. For
k = 3 this was seen above. In case of K = 4 the condition [; > 3 for some %
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cannot be omitted as is shown by e.g. the arithmetic progression z3, 2%, 23, 7323
with S = {73}. We have the homogeneous system of equations

2 2 _ 9.2
Ty + x5 = 227

x3 + 7323 = 223

A non-singular intersection of two quadrics in P3 is a genus 1 curve. If there is
a rational point on it, it is isomorphic to its Jacobian - an elliptic curve. In this
example the elliptic curve has infinitely many rational points. Therefore we also
have infinitely many rational solutions (xg : x1 : @3 : x3). After rescaling, those all
give primitive integral solutions as well.

For small [; we can explicitly find the parametrising algebraic curves and, using
Chabauty’s method, the rational points on them. This allows us to prove:

Theorem 3. Let k > 4, and suppose that (hg, h1,... ,hx—1) = (xéo,:vlf, e ,:L’;kjll)
1s a primitive integral arithmetic progression with x; € Z and 2 < l; < 3 for
1=0,1,... ,k—1. Then

(hosh, ... h—1) = +(1,1,...,1).

The proof is rather computational in nature and uses p-adic methods to derive
sharp bounds on the number of rational points on specific curves. The methods
are by now well-established. Of particular interest to the connoisseur would be
the argument for the curve C4 in Section 3, where we derive that an elliptic curve
has rank 0 and a non-trivial Tate-Shafarevich group by doing a full 2-descent on an
isogenous curve and the determination of the solutions to equation (7). The novelty
for the latter case lies in the fact that, rather than considering a hyperelliptic curve,
we consider a superelliptic curve of the form

f(x) =y, with deg(f) = 6.

We then proceed similarly to [B]. We determine an extension K over which f(x) =
g(x) - h(x), with g, h both cubic. We then determine that Q-rational solutions to
f(z) = y3 by determining, for finitely many values &, the K-rational points on the
genus 1 curve g(x) = dy3, with x € Q.

Remark. The condition ged(hg,h1) = 1 in Theorems 1 and 3 is necessary. This
can be illustrated by the following examples with k = 4. Note that the progressions
below can be "reversed” to get examples for the opposite orders of the exponents

lo, 11,12, 13.
e In case of (lo,l1,12,13) = (2,2,2,3)

((w? = 2uv = v*) f(u,0))?, (0 +0°) f(u,0))?, (W + 2uv — %) f(u, 0))?, (f(u, )

is an arithmetic progression for any u,v € Z, where f(u,v) = u* + 8u3v + 2u?v? —
Suv? + vt
e In case of (lg,l1,12,03) = (2,2,3,2)

((w? = 2uv = 20%)g(u, v))?, ((u® +20%)g(u, v))?, (g(u, v)), ((u® + 4uv — 20°)g(u, v))*

is an arithmetic progression for any u,v € Z, where g(u,v) = u* + 4u3v + 8u?v? —
Suv? + 4o
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2. AUXILIARY RESULTS

The proof of Theorem 2 depends on the following well-known result by Darmon
and Granville [DG]J.

Theorem A. Let A, B,C and r,s,t be non-zero integers with r,s,t > 2, and let S
be a finite set of primes. Then there exists a number field K such that all solutions
x,y,2 € L with ged(x,y, z) € Z§ to the equation

Ax" + By® = Czt,

correspond, up to weighted projective equivalence, to K-rational points on some
algebraic curve X, ¢ defined over K. Putting u = —Az"/Cz", the curve X is a
Galois-cover of the u-line of degree d, unramified outside u € {0,1,00} and with
ramification indices eg = r,e; = s,e9 =t. Writing x(r,s,t) = 1/r+1/s+ 1/t and
g for the genus of X, we find

o if x(r,s,t) > 1 then ¢ =0 and d =2/x(r,s,t),
o if x(r,s,t) =1 theng=1,
o if x(r,s,t) <1 then g > 1.

The two results below will be useful for handling special progressions, containing
powers with small exponents. The first one deals with the quadratic case.

Theorem B. Four distinct squares cannot form an arithmetic progression.

Proof. The statement is a simple consequence of a classical result of Euler (cf. [M],
p. 21), which was already known by Fermat (see [D] pp. 440 and 635). O

We also need a classical result on a cubic equation.

Theorem C. The equation z3 + y> = 223 has the only solutions (v,y,z) =
+(1,1,1) in non-zero integers x,y, z with gcd(x,y, z) = 1.

Proof. See Theorem 3 in [M] on p. 126. [

The next lemma provides the parametrization of the solutions of certain ternary
Diophantine equations.

Lemma. All solutions of the equations
i) 20 —a® =¢, i) a® + b =2c%, i) a® +2b* =3¢, iv) 3b? — a® = 26,

v) 3b% —2a% =, vi) a® + b =2¢%, vii) 2a® 4+ b = 3¢,  viil) a® 4 3b% = 2

in integers a, b and ¢ with gcd(a,b,c) = 1 are given by the following parametriza-
tions:

+ (23 + 62y?) or a= +(x®+ 622y + 6xy? + 4y>)
+(32%y + 2y3) b= (2 + 322y + 62y + 2°)
ii) + (2% — 322y — 3xy? +1°)
+
+
+

iii)

(3 + 322y — 3ay? — y?3)
(23 — 622y — 62y? + 4y3)
(2 + 322y — 62y — 21°)
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iv)  a=+(23+92%y +92y® +9y3)  or a=+(5x+ 27z%y + 45zy? + 27y°)
b= (2 + 322y + 9xy? + 3y3) b= +(3x3 + 152%y + 27zy? + 1593)
v)  a==%(z3+92%y + 18zy? + 18y3) or a = £(1123 + 8122y + 198zy? + 162y3)
b= +(z3 + 622y + 18zy? + 12y3) b= £(923 + 6622y + 162xy* + 132y3)
vi)  a= (2 - 22y — y?)
b= (22 + 22y — y?)
vil) a = +(2? + 22y — 2y?)
b= +(z? — 4oy — 2¢?)
viii) a = +(2? — 3y?)/2
b= *duxy

Here x and y are coprime integers and the &+ signs can be chosen independently.

Proof. The statement can be proved via factorizing the expressions in the appro-
priate number fields. More precisely, we have to work in the rings of integers of the

following fields: Q(v/—2),Q(7), Q(v/2), Q(v/3), Q(v/6). Note that the class number
is one in all of these fields. As the method of the proof of the separate cases are
rather similar, we give it only in two characteristic instances, namely for the cases
i) and vii).

i) In Z[/2] we have
(a+ Vab)(a— V3b) = (~c)"

Using ged(a,b) = 1, a simple calculation gives that
ged(a + v/2b,a — V/2b) ] 2v/2

in Z[v/2]. Moreover, 1 4 /2 is a fundamental unit of Z[+/2], and the only roots of
unity are +1, which are perfect cubes. Hence we have

(1) o+ V2= (1+v2) " v2) (x + V2y)’,

where o € {—1,0,1}, 8 € {0,1,2} and x,y are some rational integers. By taking
norms, we immediately obtain that 3 = 0. If a = 0, then expanding the right hand
side of (1) we get

a=a2>+6zy?, b=32%y+ 2>

Otherwise, when oo = +£1 then (1) yields
a=12>+ 6x2y + 633y2 + 4y3, b=4z3+ 3a:2y + 6my2 + 2y3.

In both cases, substituting —x and —y for x and y, respectively, we obtain the
parametrizations given in the statement. Furthermore, observe that the coprimality
of a and b implies ged(z,y) = 1.

vii) By factorizing in Z[/—2] we obtain
(b++v—2a)(b—v/—2a) = 3c2.
Again, ged(a,b) = 1 implies that

ged(b 4+ v —2a,b — vV —2a) | 2/ -2
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in Z[v/—2]. Note that Z[\/—2] has no other units than +1. Since 2 = —(v/—2)?, we

can write
2 b+vV=2a= (11 +v=2 1 -v=2) (V=2 (z + V=2,

where «, 3,7,0 € {0,1} and x,y are some rational integers. By taking norms, we
immediately get that 6 = 0 and 3 4 v = 1. In these cases, by expanding the right
hand side of (2) we obtain (choosing the + signs appropriately) that

a=+(£2? +2zy F9?), b= +(2? F 4oy — 2y°).

Substituting —x and —y in places of x and y, respectively, we get the parametriza-
tions indicated in the statement. Again, ged(a,b) =1 gives ged(z,y) =1. O

3. PROOFS OF THE THEOREMS

Note that Theorem 1 directly follows from Theorem B and Theorem 2. Hence
we begin with the proof of the latter statement.

Proof of Theorem 2. Since an arithmetic progression of length £ > 5 contains an
arithmetic progression of length 5, we only have to consider the cases k = 5,4 and
3. The condition that 2 < [; < L leaves only finitely many possibilities for the
exponent vector [ = (lg, ... ,lx—1). Therefore, it suffices to prove the finiteness for
a given exponent vector [.

Note that if h; = mxiz for some n; € Z%, then without loss of generality, n;
can be taken to be [;-th power free. This means that, given [, we only need to
consider finitely many vectors n = (ng,...,nr—1). Hence, we only need to prove
the theorem for k = 3,4,5, and [ and 7 fixed. Note that if ged(hg, h1) < D, then
certainly ged(z;,x;) < D. We enlarge S with all primes up to D.

We write n = h; — hg for the increment of the arithmetic progression. With
k,l,n fixed, the theorem will be proved if we show that the following system of
equations has only finitely many solutions:

(a) nzxi —njxé-j =@{—gnforal0<i<j<k-—1.
(b) (zo,...,Tx_1) € ZF with ged(zo,21) < D.

Hence, we need to solve
(j — m)mxhi 4 (m — i)njscéj + (i — j)nmalm =0 for all 0 < m,i,j <k —1.

For m = 0,7 = 1, we obtain that each of our solutions would give rise to a solution
to

. l; .
(3) Jmatt —niz} + (1= )y = 0.

By applying Theorem A we see that such solutions give rise to K;-rational points
on some algebraic curve C; over some number field K;. Furthermore, putting

l

. may
= I

770$00

we obtain that C; is a Galois-cover of the u-line, with ramification indices lo, l1,;
over u = 00,0,5/(j — 1) respectively and unramified elsewhere.
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If k£ = 3, we recover the approach of Darmon and Merel. Theorem A immediately
implies that if 1/lp + 1/l1 + 1/ls < 1 then Cy has genus larger than 1 and thus
(by Faltings) has only finitely many rational points. This establishes the desired
finiteness result.

If kK = 4, we are interested in solutions to (3) for j = 2,3 simultaneously. Let M
be a number field containing both K5 and K3. Then the solutions we are interested
in, correspond to M-rational points on Cs and C3 that give rise to the same value of
u, i.e., we want the rational points on the fibre product Cs x,, C3. This fibre product
is again Galois and has ramification indices at least lg,l1,l2,1l35 over u = 00,0, 2, %,
respectively. Since Cy x,, C3 is Galois over the u-line, all its connected components
have the same genus and degree, say, d. Writing g for the genus of this component,
the Riemann-Hurwitz formula gives us

Hence, we see that ¢ < 1 only if [ = |1 = I3 = I3 = 2. For other situations, we have
g > 2, s0 (5 x,, C3 has only finitely many M-rational points.

If £ =5, we argue similarly, but now we consider Cy x, C3 X, C4, with ramifi-
cation indices at least lg, (1, [2,13,1l4 over u = 0,00,1, %, %, respectively. Hence, we
obtain

so that g > 2 in all cases.
O

Proof of Theorem 3. The proof involves some explicit computations that are too
involved to do either by hand or reproduce here on paper. Since the computations
are by now completely standard, we choose not to bore the reader with excessive
details and only give a conceptual outline of the proof. For full details, we refer the
reader to the electronic resource [notes|, where a full transcript of a session using
the computer algebra system MAGMA [magma] can be found. We are greatly
indebted to all contributors to this system. Without their work, the computations
sketched here would not at all have been trivial to complete.

It suffices to prove the assertion for k& = 4. We divide the proof into several
parts, according to the exponents of the powers in the arithmetic progression. If
(lo, l1,12,13) = (2,2,2,2), (3,3,3,3), (2,3,3,3) or (3,3,3,2), then our statement
follows from Theorems B and C. We handle the remaining cases by Chabauty’s
method. We start with those cases where the classical variant works. After that
we consider the cases where we have to resort to considering some covers of elliptic
curves.

The cases (lg,l1,1l2,1l3) = (2,2,2,3) and (3,2,2,2).

From the method of our proof it will be clear that by symmetry we may suppose
(lo,l1,12,13) = (2,2,2,3). That is, the progression is of the form z3,z% 23, 3.
Applying part i) of our Lemma to the last three terms of the progression, we get
that either

1) = +(2® + 629%), w2 = £(32%y + 29°)
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or
x1 = +(23 + 62%y + 6zy® + 4y°), o = £(2® + 327y + 62y* + 2¢°)

where x,y are some coprime integers in both cases.

In the first case by 22 = 227 — 23 we get

x% = 22% + 152%y% + 6022y? — 49°.

Observe that = # 0. By putting Y = x¢/2% and X = y?/2? we obtain the elliptic
equation
YV? = —4X® +60X* + 15X + 2.

A straightforward calculation with MAGMA gives that the elliptic curve described
by this equation has no affine rational points.
In the second case by the same assertion we obtain

x?, = 2% + 1825y + 75xty? 4+ 120233 + 1202%y* + 722y + 284°.

If y = 0, then the coprimality of x and y yields x = +1, and we get the trivial
progression 1,1,1,1. So assume that y # 0 and let Y = zq/y®, X = x/y. By these
substitutions we are led to the hyperelliptic (genus two) equation

Cr:Y? =X+ 18X+ 75X%+120X3 + 120X2 + 72X + 28.

We show that C;(Q) consists only of the two points on C; above X = oo, denoted
by oo™ and oo™

The order of Jiors(Q) (the torsion subgroup of the Mordell-Weil group J(Q)
of the Jacobian of Cy) is a divisor of ged(#J (F5), #J (F7)) = ged(21,52) = 1.
Therefore the torsion subgroup is trivial. Moreover, using the algorithm of M. Stoll
[St] implemented in MAGMA we get that the rank of 7(Q) is at most one. As the
divisor D = [oo™ — co™] has infinite order, the rank is exactly one. Since the rank
of 7(Q) is less than the genus of C1, we can apply Chabauty’s method [C] to obtain
a bound for the number of rational points on C;. For applications of the method
on related problems, we refer to [CF], [Fl], [FPS], [P].

As the rank of J(Q) is one and the torsion is trivial, we have J(Q) = (D) for
some Dy € J(Q) of infinite order. A simple computation (mod 13) shows that
D ¢ 57(Q), and a similar computation (mod 139) yields that D ¢ 297 (Q). Hence
D = kDy with 5t k, 29 1 k. The reduction of C; modulo p is a curve of genus two
for any prime p # 2,3. We take p = 29. Using Chabauty’s method as implemented
in MAGMA by Stoll, we find that there are at most two rational points on Cj.
Therefore we conclude that C;(Q) = {co™, 00~ }, which proves the theorem in this
case.

The cases (lo,l1,102,1l3) = (2,2,3,2) and (2,3,2,2).

Again, by symmetry we may suppose that (lo,l1,l2,l3) = (2,2,3,2). Then the
progression is given by x3, 7, 23, 3. Now from part iii) of our Lemma, applied to

the terms with indices 0, 2, 3 of the progression, we get

zo = +(23 — 62%y — 6xy® + 4y°), x3 = £(2® + 32%y — 62y* — 2¢%)
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where z,y are some coprime integers. Using 27 = (222 + 23%)/3 we obtain
2?2 =25 — 62°y + 15242 + 4023y — 24xy® + 124/5.

If y = 0, then in the same way as before we deduce that the only possibility is given
by the progression 1,1,1,1. Otherwise, if y # 0, then write Y = z1/y3, X = z/y
to get the hyperelliptic (genus two) curve

Co:Y?=X—6X°4+15X*+40X3 — 24X +12.

By a calculation similar to that applied in the previous case (but now with p = 11
in place of p = 29) we get that C2(Q) consists only of the points oo™ and oo™
Hence the statement is proved also in this case.

The cases (lg,l1,12,13) = (3,2,3,2) and (2,3,2,3).

As before, without loss of generality we may assume (lo,l1,12,13) = (3,2,3,2).
Then the progression is given by x3,z?, x3, 3. We have

3 3 3 3
2 _ Ty + x5 o TG+ 37
(4) xl = 2 ? x3 = 2 ‘
We note that x5 = 0 implies 23 = —2, hence x1 = 23 = 0. So we may assume that

x2 # 0, whence we obtain from (4) that

2x125 20" z0\°
() () -+ (2)
5 1) T2
Thus putting Y = 2xi23/23 and X = z0/x9, it is sufficient to find all rational
points on the hyperelliptic curve

Cy:Y?=—-X64+2Xx3+3.

We show that C3(Q) = {(—1,0), (1,£2)}.

Using MAGMA we obtain that the rank of the Jacobian J(Q) of C3(Q) is at
most one, and the torsion subgroup Jiors(Q) of J(Q) consists of the elements O
and [(1_T\/§”,O) + (1+T\/§i,0) — 00" —007]. As the divisor D = [(—1,0) + (1, —2) —
oot — 007 ] has infinite order, the rank of 7(Q) is exactly one. The only Weierstrass
point on Cs is (—1,0). We proceed as before, using the primes 7 and 11 in this case.
We conclude that (1,+2) are the only non-Weierstrass points on Cs. It is easy to
check that these points give rise only to the trivial arithmetic progression, so our
theorem is proved also in this case.

The case (lo,l1,12,103) = (3,2,2,3).

Now the arithmetic progression is given by x3, 2%, 23, 23. A possible approach
would be to follow a similar argument as in the previous case. That is, multiplying
the formulas 5 . . .

x% _ 2x0+;1:3, x% _ Ty + 23
3 3
and using that we get

(33@1332)2 = 2x8 + 533%30% + 2:52.
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If 23 = 0 then ged(wo, x3) = 1 yields 27 = £2, a contradiction. So we may suppose
that x3 # 0, and we obtain

Y2 =2X%4+5X3+2

with X = zo/r3 and Y = 3z125/23. However, a calculation with MAGMA gives
that the rank of the Jacobian of the above hyperelliptic curve is two, hance we
cannot apply the classical Chabauty argument in this case. So we follow a different
method, which also makes it possible to exhibit an elliptic curve (over some number
field) having non-trivial Tate-Shafarevich group.

For this purpose, observe that we have

(—l’ol’g)g = 2d2 — (.%’133'2)2,

where d denotes the increment of the progression. Using part i) of our Lemma we
get that there are two possible parametrizations given by

129 = +(2® 4622y +6xy> +41°), d = £(2> +32%y+62y> +2y%), xors = —2% 42>

or
r129 = +(23 + 62y?), d = £(32%y + 2%, woxs = 2? — 2%

Therefore from 2?7 + d = x3 either

(5) x] +det — (2% + 62%y + 6xy* + 49°)? = 0
or
(6) x] +dad — (2° + 62y%)* =0

follows, respectively. In the first case, the left hand side of (5) can be considered as
a polynomial of degree two in #2. Hence its discriminant must be a perfect square
in Z, and we get the equation

52° + 542°y + 2132%y? + 36023y> + 3842%y* + 2162y° + 68y° = 22

in integers x,y, z. A simple calculation with MAGMA shows that the Jacobian of
the corresponding hyperelliptic curve

Y? =5X% +54X° +213X% 4+ 360X3 4 384X2 + 216X + 68

is of rank zero (anyway it has three torison points), and there is no rational point on
the curve at all. Hence in this case we are done. It is interesting to note, however,
that this curve does have points everywhere locally. We really do need this global
information on the rank of its Jacobian in order to decide it does not have any
rational points.

In case of (6) by a similar argument we obtain that d? + 4(2% + 6zy?)? = 22,
whence

425 4 57z y? 4+ 1562%y* + 4y = 22
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with certain integers x,y,z. Observe that y = 0 yields a non-primitive solution.
Hence after putting Y = z/2y3 and X = x/y, we get that to solve the above
equation it is sufficient to find all rational points on the curve

Ci:Y?=f(X)= X+ (57/4)X* +39X* + 1.

We show that the rational points on C4 all have X € {0, co}.

A straightforward computation shows that the rank of the Jacobian J(Q) of C4
is two, so we cannot apply Chabauty’s method as before (cf. also [CF]). We use
part of the 2-coverings of C4 following [B]. For details, see [notes|. Let

K =Q(a) = Q[X]/(X? + (57/4)X* + 39X + 1).
Over this field, we have
f(X)=Q(X)R(X) = (X? — a)(X* + (a+57/4)X? + o + (57/4)a + 39).

One easily gets that Res(Q, R) is a unit outside S = {places p of K dividing 6 or co}.
Therefore, if (X,Y) € C4(Q) then we have

for some Y7,Ys € K and § € K* representing some element of the finite group
K(S,2) :={[d] € K*/K**: 2| ord,(d) for all places p ¢ S}.

Furthermore, since Ngix)/qx](Q) = [, we see that Ng/g(f) € Q*?. Running
through these finitely many candidates, we see that the only class for which Dy has
points locally at the places of K above 2 and oo is represented by § = 1. Over K,
the curve D, is isomorphic to

3 Aa+57 5 4802 + 45600 — 753

E 02 =
v 2 16 :

where X = v/(2u). This curve has full 2-torsion over K and a full 2-descent or
any 2-isogeny descent gives a rank bound of two for F(K). However, one of the
isogenous curves,

E' Y%= X4 (4a +57)X? + (1602 4 228 + 624) X

has S (E’/K) ~ 7./27, which shows that E’(K) is of rank zero, since E’ has 4-
torsion over K. This shows that E has non-trivial 2-torsion in its Tate-Shafarevich
group and that E'(K) consists entirely of torsion. In fact,

BE(K) = {00, (0,0), (1202 + 195 + 858)/32,0), ((—120% — 131a + 54)/32,0)}.

It follows that
X(C4(Q)) C X(Dy(K)) = {0, 00},
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where X (.) denotes the set of the X-coordinates of the appropriate points on the
corresponding curve. This proves that for all the rational points on C; we have
X € {0, 00}, which implies the theorem also in this case.

The cases (lo,l1,102,13) = (2,2,3,3) and (3,3,2,2).
Again by symmetry, we may assume that (lo,l1,l2,l3) = (2,2,3,3). Then the

rogression is x2, x2, 3, 3, whence
0y~ v2y43

2 _ 9,3 _ 3
r]=2z5 —r3 and xf = 3z5 — 273,

If 3 = 0 then the coprimality of x5 and 3 gives 2 = 42, which is a contradiction.
Hence we may assume that x3 # 0, and we get the equation

y* = F(z) = 62° — 72° + 2

with = zo/x3, y = Toz1/x3. Put K = Q(a) with o = v/2 and observe that we
have the factorization F'(z) = G(x)H (x) over K where

G(z) = 3ax* —32° —202+2 and H(z)= 2toax+1.

A simple calculation by MAGMA gives that Res(G, H) is a unit outside the set
S = {places p of K dividing 6 or co}. Hence we can write

3azt — 323 — 200 + 2 = 622

with some z from K and ¢ from the integers of K dividing 6. Moreover, observe
that the norm of ¢ is a square in Z. Using that @ — 1 is a fundamental unit of K,
2 =a?%and 3 = (a — 1)(a + 1)3, local considerations show that we can only have
solutions with = € Q with both G(z) and H(x) € K*? if, up to squares, § = o — 1.
We consider

3art —32° — 202+ 2 = (a — 1)22

with x € Q and z € K. Now by the help of the point (1, 1), we can transform this
curve to Weierstrass form

E: X3+ (~-720% — 90a — 108) X + (504a® + 630a + 798) = Y2,

We have E(K) ~ 7 as an abelian group and the point (X,Y) = (—a? — 1,12a% +
15a 4+ 19) is a non-trivial point on this curve. Again applying elliptic Chabauty
with p = 5, we get that the only solutions of our original equation is (z, z) = (1,1).
Hence the theorem follows also in this case.

The case (l(), ll, lz, lg) = (2, 3, 3, 2).

Now we have a progression x3,x3, 3, 22, and we can write

r3=2x% — x5 and 23 = —x% + 223,

If x5 = 0 then the coprimality of x1 and x5 gives 23 = 42, which is a contradiction.
Hence we may assume that x5 # 0, and we are led to the equation

y? = F(x) = —225 + 52° — 2
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with © = 1 /29, y = xox3/x3. Now we have the factorization F(z) = G(x)H (z)
over K = Q(a) with a = ¥/2, where

G(z) =z + (a +2)2 + (a® + 20+ D)2 + (a + 2)z + o

and
H(z) = —az® + (@® + 1)z — a.

One can easily verify that Res(G, H) = 1. Thus we obtain
Pt 4+ (a+2)2® + (@ + 20+ 1)z? + (a4 2)z + a? = 6§22

where z € K and ¢ is a unit of K. Moreover, as the norm of ¢ is a square in Z, we
get that, up to squares, d =1 or a — 1. The case when d = 1 yields the equation

o2zt +(a+2)23 + (o® + 20+ )22 + (e + 2z + o = 22

inx € Q and z € K. We can transform this equation to an elliptic one by the
help of its point (1,a? + a + 1). Then applying elliptic Chabauty, the procedure
”Chabauty” of MAGMA with p = 5 in this case gives that this equation has four
solutions with € Q, namely (z,z) = (0,1), (1,0),(£1,1). Lifting these solutions
to the original problem, our theorem follows also in this case.

When 6 = a — 1, using = x1/x2 we get the equation

o2xl + (a+ 2)2dzy + (@ + 20 + a2zl + (o + 2)x25 + o?2) = (o — 1)7?
with some integer v of K. Writing now ~ in the form v = u + av + o?w with some
u,v,w € Z and comparing the coefficients of 1 and « in the above equation, a simple
calculation shows that z3zo+x223 42123 must be even. However, then 2 | 2172, and
considering the progression 3, z3,r3, 3 modulo 4 we get a contradiction. Hence
the theorem follows also in this case.

The case (lp,11,12,13) = (3,3,2,3) and (3,2,3,3).

As previously, without loss of generality we may assume that (lg,l1,l2,l3) =
(3,3,2,3). Then the progression 1s of the form x3,x3, 23, 23. We note that using
the cubes one would find 3z3 = x3 + 223 which leads to an elliptic curve. However,
this elliptic curve has positive rank, hence this approach does not work.

So we use some other argument. We have x3 + z3 = 223, whence

T+ 23 = 23u2, x% —x1x3 + x§ = 8122,
where u,v, s € Z with s | 3. By considerations modulo 3 we obtain that only s =1

is possible. Hence (221 — x3)? 4+ 323 = (2v)? and from part viii) of our Lemma we
get that

(7) f(x,y) = 325 + 1825y +9zy? — 14823y> — 272%y* +1622y° — 81y°® = 2(d4x)?

in coprime integers z,y.

Note that the equation f(x,y) = 223 is invariant under the transformation
(z,y,2) — (—3y,x,—3z). The two obvious solutions (x,y,z) = (1,—1,—4) and
(x,y,2) = (3,1,12) are interchanged by this involution.
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We have the factorisation f(z,y) = g(z,y)h(z,y) with
g(z,y) = (&® + 2o+ 1)a® + (—2a° — o + 2a + 1)’y +
(3a? — 26 — 13)zy” + (—6a° — 3a* + 6a + 3)y°
and
h(z,y) = (203 + 30% — 2a + 9)z3 + (1202 + 1702 — 10 + 53)x%y+
(60 +9a? — 6a + 27)xy® + (—92a° — 141a* + 66 — 401)y?

over the number field Q(«) defined by a root « of the polynomial X*+2X3 44X +2.
Using the same reasoning as before, we have that a rational solution to f(z,y) =
223 with z,y, z not all 0, yields a solution to the system of equations

g(z,y) =0(up + w1 + usa® + U3a3)3

h(z,y) =2/6(vo + via + v2e® + v3a®)?

with x,y, ug, ... ,v3 € Q and where ¢ is a representative of an element of the finite
group K (S5, 3), with S = {places p of K dividing 6 or co}. For each §, the equations
above can be expressed as eight homogeneous equations of degree 3, describing some
non-singular curve in P® over Q. The only values of § for which this curve is locally
solvable at 3 are

61 = (@® +20% — 20— 2)/2 and §; = (a® + 4a* + 6a + 2)/2.

These values correspond to the obvious solutions with (z,y) = (1, —1) and (z,y) =
(3,1) respectively.
We now determine the K-rational points on the curve

g(z,y) =612}

with z/y € Q. Using the K-rational point (x :y:2) = (1: —1: —2a), we can see
that this curve is isomorphic to the elliptic curve

E:Y? = X3 — 4802 + 33a? + 480a + 210.

Using a 2-descent we can verify that F(K) has rank at most 3 and some further
computations show that E(K) ~ Z3, where the points with X-coordinates

(=203 4 13a? — 28a + 44) /9,
(160> + 52a* + 14a — 1)/9,
(202 4 302 — 140 — 6)/3

generate a finite index subgroup with index prime to 6. The function z/y on the
curve g(z,y) = 6,25 yields a degree 3 function on E as well.

Using the Chabauty-method described in [B] and implemented in MAGMA 2.11
as Chabauty, using p = 101, we determine that the given point is in fact the only
one with z/y € Q. For details, see [notes].

For §; we simply observe that using the involution (z,y) — (—3y,x), we can
reduce this case to the computations we have already done for 6;.

We conclude that (x,y) = (1,—1) and (z,y) = (3,1) give the only solutions to
f(x,y) = 2z3. These solutions correspond to the arithmetic progressions (0, 1,2, 3)
(which up to powers of 2,3 indeed consists of second and third powers), (1,1,1,1)
and their 2?2’3}—equivalent counterparts. [
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POWERFUL ARITHMETIC PROGRESSIONS
L. HAJDU!

ABSTRACT. We give a complete characterization of so called pow-
erful arithmetic progressions, i.e. of progressions whose kth term
is a kth power for all k. We also prove that the length of any
primitive arithmetic progression of powers can be bounded both
by any term of the progression different from 0 and 41, and by
its common difference. In particular, such a progression can have
only finite length.

1. INTRODUCTION

In this paper we consider arithmetic progressions of mixed powers.
We start with a question concerning a special but interesting case, then
we turn to the general problem.

In 1998 Boklan [1] asked the following question: what is the length
of the longest nonconstant arithmetic progression of integers with the
property that the kth term (for all £ > 1) is a perfect kth power? Such
progressions are called powerful arithmetic progressions.

The problem was solved by Robertson [15], who proved that there
are no such progressions of length six. He gave a particular example of
a length five progression, too. Note that the same result was obtained
by Manoharmayum, Reid, the GCHQ Problems Group, and Boklan
and Elkies, as well (see [15] again).

In this paper we give a complete characterization of possible lengths
of powerful arithmetic progressions. For this we need a simple notion.
A (finite or infinite) arithmetic progression a, as, . .., a,, ... of integers
is called primitive, if ged(aq,as) = 1 is valid. Throughout the paper
we shall write d for the common difference of such a progression. Note
that the progression is primitive if and only if a; and d are coprime.
We prove that the only primitive powerful arithmetic progression of
length five is the trivial one, but there are infinitely many such pro-
gressions of length four. We also prove that in the nonprimitive case
there are infinitely many pairwise nonproportional powerful arithmetic
progressions of length five. In view of the above mentioned result of

2000 Mathematics Subject Classification. 11D61, 11B25, 11Y50.
Key words and phrases. Perfect powers, arithmetic progression.
1) Research supported in part by the Hungarian Academy of Sciences, and by
the OTKA grants T48791 and T67580.
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Robertson, our results (and their proofs) provide a complete charac-
terization of the possible lengths of powerful arithmetic progressions.
For some related results we refer to the papers [6], [10] and the refer-
ences there. For example, in [6], all arithmetic progressions of squares
and cubes are completely described. The main tool of our proofs is
the elliptic Chabauty method (see e.g. [3], [4] and the references given
there).

We also prove some results about more general arithmetic progres-
sions of powers. That is, we consider progressions of the form

(1) aht gk gk

with x; € Z, k; > 2 (i = 1,2,...). Obviously, such arithmetic progres-
sions are closely related to generalized Fermat-type equations of the
form
AXP+ BY?1=CZ7",

where A, B,C,p,q,r are integers with ABC' # 0, p,q,r > 2, and
X, Y, Z are unknown integers. For general finiteness results about such
equations (in the case when the exponents p,q,r are arbitrary, but
fixed), see the excellent paper [8] and the references there.

We are interested in bounding the length of (1). Under some condi-
tions, there are certain related results in the literature. The author in
[9] proved that if k; < K holds in (1) for all ¢, then the length of the
progression is bounded in terms of K only. Later, under the further
assumption of primitivity, the number of such progressions has been
bounded, as well (see [6]). In [9] it is also proved that assuming the abe
conjecture, the condition k; < K can be replaced by primitivity, and
the length of the progression is still bounded.

In the present paper we show that the length of a progression (1)
can be bounded both by the help of any of its terms different from
0, +1, and with its common difference. As an immediate consequence
we obtain that the length of any nonconstant arithmetic progression of
powers is finite. Though the latter theorem can also be obtained as a
simple consequence of a classical result of Dirichlet, we were unable to
find it in the literature.

2. RESULTS

We start with characterizing powerful arithmetic progressions. Our
main result in this direction is the following.

Theorem 2.1. The only primitive powerful arithmetic progression of
length five is the trivial one, given by 1,1,1,1,1.

For the complete characterization of lengths, we also need

Theorem 2.2. There are infinitely many primitive powerful arithmetic
progressions of length four.
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Note that in the proof of Theorem 2.2 we give a complete description
of length four primitive powerful arithmetic progressions.

The next result shows why it is necessary to impose the primitivity
condition in the above two theorems. Note that having a particular
primitive powerful arithmetic progression, after multiplying by appro-
priate factors one can obtain infinitely many nonprimitive progressions.
Hence to get some meaningful statement we need to avoid this trivial-

1ty.
Theorem 2.3. There are infinitely many pairwise nonproportional
powerful arithmetic progressions of length five.

The result of Robertson and others mentioned in the introduction
yields that there are no length six nonconstant powerful arithmetic pro-
gressions. So the above theorems provide a complete characterization
of the lengths of powerful arithmetic progressions.

We also prove some results about general arithmetic progressions of
powers. First we show that the length of such a progression can be
bounded by its terms different from 0, £1.

Theorem 2.4. Let x and k be integers, with |x| > 2 and k > 2. Then
there exists a constant C(z, k), depending only on x and k, such that
the length of any arithmetic progression of powers containing x* is at

most C(x, k).
The next result shows that the assumption x # 0 is necessary in the

previous theorem. We mention that the cases x = £1 remain open; see
also the problem posed in Remark 2.3.

Proposition 2.1. There exist arithmetic progressions of powers of ar-
bitrary (finite) length containing 0 as a term.

Now we prove that the length of an arithmetic progression of powers
can also be bounded by its common difference.

Theorem 2.5. Let d denote the common difference of a nonconstant
arithmetic progression (1) of powers and write n for the length of the
progression. Then we have both estimates:

i) n < max(3.125log(d) — 1,73),

ii) n < max(2(w(d) + 1)(log(w(d) + 1) + loglog(w(d) + 1)) — 1,21),
where w(d) denotes the number of prime divisors of d.

Remark 2.1. Note that in view of the proof, for small values of d, both
bounds i) and ii) for the length of the progression can be improved. As
the most interesting example, in case of d = 1 the first two terms of
the progression give rise to the famous Catalan-equation

Xt —yU=1

in unknown integers X, Y, u,v with u,v > 2. As is well-known, the
only solution to this equation with XY # 0 is given by (X, Y, u,v) =
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(3,2,2,3) (see [13]). Hence in this case, taking into account the trivial
progression —1,0, 1, the length of (1) is at most three.

Remark 2.2. In [17], Shorey and Tijdeman investigated the equation
(2) z(x+d) ... (z+ (n—1)d) = by,

where x,d, n,b,y, k are unknown positive integers with ged(z,d) = 1,
k > 2 and P(b) < n where P(b) denotes the greatest prime divisor of
b (with the convention P(1) = 1). They proved for the solutions of (2)
that n < C(w(d)) must be valid for some effective constant C(w(d))
depending only on w(d). By a simple standard argument, one can show
that equation (2) is equivalent to having an arithmetic progression of

the form
k

ar o amah, . anak
with some positive integers a; with P(a;) < n. Thus interestingly
(though with different settings) we have similar bounds for the lengths
of arithmetic progressions of powers with "equal” and ”different” ex-

ponents, in terms of the common difference d.

As a simple and immediate consequence of both Theorem 2.4 and
Theorem 2.5, we obtain the following result.

Corollary 2.1. The length of any nonconstant arithmetic progression
of powers s finite.

Remark 2.3. One can easily construct progressions (1) of arbitrary
finite length, see e.g. Proposition 2.1 and Remark 2 of [9]. Hence
Corollary 2.1 is best possible in the qualitative sense. However, by
the constructions in Proposition 2.1 and in [9], only nonprimitive pro-
gressions can be obtained. We propose the following problem: prove
that the length of any primitive nonconstant arithmetic progression of
powers is bounded by an absolute constant.

3. PROOFS

Proof of Theorem 2.1. Suppose that

1 2 3 4 5
(3) Ty, Loy, T3y, Ty, Ty

is a primitive powerful arithmetic progression of integers. We observe
from the primitivity condition that ged(xs, z3) = 1. Further we have

(4) 3(x1)” — x5 = 2a5.

Let K = Q(a) with o = v/3, and let O denote the ring of integers of
K. Factorizing the above equation in Ok we get

(5) (o — m9) (]} + 19) = 225,
It is well known that ¢ = a + 2 is a fundamental unit of K of norm
Nikjo(e) = —1, the only roots of unity of K are £1 and we have

2 = e(a— 1)%. Further {1,a} is an integral basis of K.



POWERFUL ARITHMETIC PROGRESSIONS 157

By the primitivity condition one can easily check that ged(zq,x4) <
2. If ged(wq, 4) = 2, then we get 2d = x§ — x3. Hence d is even which
violates the primitivity condition. So we conclude that ged(xq, x4) = 1.
Using this assertion, keeping in mind the well-known fact that Ok is a
Euclidean ring, we obtain from (5) that

(6) az] + 1o = " (a+ 1)2(au + v)°

holds with some integers u,v,t;,t5 with —2 < t; < 2 and 0 <ty < 4.
Here we used the fact that —1 is a full fifth power. By ged(z2,z4) = 1,
we have ged(u,v) = 1. We shall use this fact later on without any
reference. Further, taking the field norms of both sides of (6), we
immediately get that ¢t = 1. Finally, taking field conjugates over K
and substituting —zs and —v in places of x5 and v, respectively, we may
assume without loss of generality that ¢; € {0,1,2}. We investigate
these cases in turn.

The case t; = 0. Using that ¢ = 1, by comparing the coefficients of
a on both sides of (6), we get

(7) v® + 5vtu + 30v3u? 4 30v%u? + 450u* 4+ u® = 27,

Let fo(v,u) denote the left hand side of (7), and define the polynomial
go by go(x) = 2 + 5t + 3023 + 302% + 452 + 9 (i.e. go(z) = fo(x, 1)).
A simple check, for e.g. by Magma [2], assures that g is irreducible
over Q. Let 8 denote a root of gg, and put L = Q(f). Write Oy, for
the ring of integers of L.

To proceed smoothly, we need some information about L. These
data are available by the use of Magma again. The class number of L
is one,

Yo=1, V=8 U= (6+1)/2,
Oy = (B2 +56%+98+9)/12, 4= (8" + 85> +15)/24
is an integral basis of L, and
m= —191+2193—2194, T2 = —190—191 —2192+2193+194
is a system of fundamental units for L, with Ny o(m) = Npjg(n2) = 1.
Further, the only roots of unity in L are +1, and we also have
2=m7, 3=, 5=m,

where the v; (i = 1,...,4) are some prime elements in Oy, with

Nrjo(m) =2, Npjg(v2) =4, Npjg(ys) =3, Npjg(ys) =5.

As the v; do not play any role later on, we suppress the concrete values.
Note that ¥, is also a prime in Op, and N q(¥;) = —9.

Factorizing the left hand side of (7) over O (using Magma again)
we get

(8) (v — Vu)ho(v,u) = 23
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with
ho(v,u) = v* + (500 + 91)v3u + (299 + 591 + 20,)v*u?+
+ (210 + 21091 + 1203)vu® — (1200 + 159 + 695 — 60093 — 2494 )u’.

Using that the only prime divisors of the discriminant of gq are 2, 3,5,
we obtain from (8) that both

9) v—thu = (=1)" ni* n5t A3t 45% 50 O A0 50 6
and
(10) ho(v,u) = (—1)% 02 m5® 45 5° 750 957 45 422 63

must hold, with some d1,d2 € Op and s; € {0,1} (i =1,...,9). (As the
product of the right hand sides of (9) and (10) should be a full square,
one can easily check that the exponents s; must indeed coincide in (9)
and (10).) Taking field norms of both sides of (9), we immediately get
that s4 = s5 = s¢ = sg = S9 = 0 and s; + sy # 1. Hence we are left
with eight possibilities.

In case of s, = 1, all the four corresponding equations can be ex-
cluded locally. If u = 0, then v = +1 and using (7) and (6), we get
that the progression (3) is given by 1,1,1,1,1. Otherwise, after divid-
ing both sides of equation (10) by u* and merging it into 62, we consider
the corresponding equations as hyperelliptic curves over L (using the
HyperellipticCurve command of Magma). Then we determine those
prime ideals of Op, where the equation might not be solvable locally
(by the procedure BadPrimes). Finally, we test whether these equa-
tions are locally solvable at all these prime ideals or not (using the
procedure IsLocallySolvable). In all four cases mentioned above, we
could find a prime ideal where the curves has no points locally. Hence
these cases can be excluded.

Suppose next that, together with s, = 0, we have s; = s3 = s7 = 1.
Then writing §; = 2o+ 2191 + 2202 + 2303+ 2494 in (9) and expanding
both sides of the equation, we obtain from matching the coefficients of
¥o, U1, 94 that the integers

2,2, .2 2,2, .2
otz tet+u, u, zyt+ 2+ 23

must all be even. Hence we conclude that both v and u are even.
However, by (7), this implies that x; is even which contradicts the
primitivity of the arithmetic progression, in a similar manner as before.

Assume next that (beside s, = 0) we have s = s7 = 0, s3 = 1.
Then by the same method used in the previous paragraph, following
the same notation (but now matching the coefficients of ¥, ¥y, V3, ¥4)
we get that the integers

2 2 2 2 2 2 2 2 2 2 2 2
Zgtzitzez3t+zi+v, zgt+tztztzitu, zp, zgt+ 2]+ 23

are all even. Hence we easily obtain that both v and u are even, thus by
(7), x4 is even once again. So this case is also excluded by contradiction.
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Consider now the case s; = s3 = s; = 0 (and s2 = 0). Then (10)
defines a projective genus 1 curve Cfo) over L (considering v, u,ds to
be unknowns from L). By the help of the point P = (0 : 1 : 0) the
curve Cfo) can be transformed into an elliptic curve. More precisely,
by a method of Cassels (see [7]) using P, one can find a homogeneous
elliptic curve C” in the usual form

C': Pz 4 rmayz 4+ ryyz? = a2 + roxty + ryw? + 2
with coefficients ry,ry,1r3,74,76 € L such that C’fo) and C’" are bira-
tionally equivalent. After dehomogenizing C’ we get a plane elliptic
curve over L. In our case the resulting dehomogenized elliptic curve
has a minimal model

B v? = X% — () 4 U+ 05 + 04) X2 + (730 + 950, +
+ 26095 — 28703 — 12504) X + 12500 + 1580 + 48095 — 46603 — 2041 4.

Note that all the curves, together with the transformations among them
can be handled by Magma. For more explanation about the techniques
we use we refer to [5]. Now, as v and u are known to be rational
coordinates of C’fo), one can apply the elliptic Chabauty method to
solve (10) completely. Here we only indicate the main steps of the
solution, without explaining the background theory. For the theory of
the method we refer to [3] and [4] and the references given there. To see
how the method works in practice, in particular by the help of Magma,
[5] is an excellent source. For applying elliptic Chabauty in similar
context, beside the above references see also [6], [10], [11], [12], [19].
So, to have the method work, the rank of Eio)(L) should be strictly
less than the degree of L (which is five). In the present case it turns
out that the rank of Ef)) (L) is three, so elliptic Chabauty is applicable.
Further, the procedure PseudoMordellWeilGroup of Magma is able to
find a subgroup G\* of E\”(L) of finite odd index. Then, using the
procedure Chabauty with the prime 11, we get that all solutions to (10)
with v, u coprime rational integers are

(’U, u, (52) = (:l:l7 0, :l:l), (—1, 4, :l:(51790 + 50191 + 18192 — 168193 - 68194))
The first solution by (7) yields that x4 = +1. Further, (6) implies that
x9 = %1, so the arithmetic progression (3) is given by 1,1,1,1,1. In
the second case (7) gives an immediate contradiction.

Finally, assume that s; = s; = 1, s3 = 0 (and also sy = 0). Then
similarly as in the previous paragraph, (10) defines a projective genus

1 curve C’éo) over L. Using the point (0 : 3/9; : 1), 02(0) can be
transformed into an elliptic curve, which has a minimal model

EY Y2 = X3 4 (9 — 95 + 94) X% — (12610, + 16570+
+224595—269193—70194) X — 1100y —46841; —48715+8571193—90961 4.
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The rank of ESO)(L) is one, so elliptic Chabauty can be applied for
Eéo). Note that here the procedure PseudoMordellWeilGroup with the

default settings fails to find a subgroup Gg)) of Eéo)(L) of finite odd
index. However, using the procedure SelmerGroup and the nontorsion
point

<28190 + 4491 + 5492 — 68U3 — 594 266U + 2000, + 46195 — 29693 — 450194)
5) ’ )

of Eéo) (L), by aslightly more involved procedure (explained in detail in

[5], pp. 18 and 19), we can find such a subgroup Ggo). Then again, using
the procedure Chabauty now with the prime 7, we get all solutions to
(10) with v, u rational. Note that now by the procedure IsPSaturated

we also need to check that the index [Eéo)(L) ; G;O)] is not divisible by
5. After all, we get that

(’U, u, 52) = (07 j:]_, j:(4190 + 5191 + 2’(92 - 20’[93 - 8’[94))

are the only solutions to (10) with coprime integers v,u. Then (7)
implies 4 = 43 and (6) yields that 9 = £27. Though this with
x5 = —3 extends to a solution of (4), however, as one can easily check,
does not yield any (even nonprimitive) arithmetic progression of the
form (3).

The case t; = 1. Noting that ¢, = 1, comparing again the coefficients
of a on both sides of (6) in this case, we obtain

(11) 3v° + 250*u 4+ 90v3u? + 150v%u® + 135vu? + 45u° = 27,

Let fi(v,u) denote the left hand side of (11) and define the polynomial
g1 as gi(x) = 32° + 25z + 302 + 3022 + 452z 4+ 9 (that is ¢;(x) =
fi(z,1)). Using Magma we get that g; is irreducible over Q. Let L
denote the same number field as in case of t; = 0 and keep all the
related notation as well. (Note that go and ¢; define the same number
field L.) Factorizing the left hand side of (11), we get

(12) ((—27190 — 32191 — 10792 + 96193 + 40194)?]"‘
+ (2600 + 2501 + 805 — 72005 — 300, u)hi (v, u) = x5

where

h1<U, U) = (—190 + 2192)2]4 - (5190 - 3191 - 14792"‘
+20,) v u— (39— 139, — 4005 +803+ 1494 ) v*u? — (99— 31, — 30095 — 12005+
+ 189,)vu® — 69y — 301 + 695 + 12093 — 61,4,
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As the only prime divisors of the discriminant of g, are 2,3,5, from
(12), we get that both

(13) (=270 — 3201 — 100 + 9605 + 400,)v + (2600 + 2501+
+ 80y — 7203 — 3004 )u = (—1)F ni> nhs A+ Abs yle it s ko €2

and

(14) hi(v,u) = (—1)F n)2 nb® A A5° 448 O A A &

hold, with some &;1,& € Of and k; € {0,1}. (Similarly as in case of
t; = 0, the k; must coincide in (13) and (14).) Taking field norms of
both sides of (13) yields ky = ks = k¢ = ks = ko = 0 and ky + k7 # 1.
Hence we are left with eight possibilities again.

In case of ks = 1, all the four corresponding equations (14) can be
excluded locally. As it can be done in the same way as for t; = 0, we
suppress the details.

If k3 = 1 (together with ks = 0), then, in both possible cases, we
can apply the same method as with t; = 0. Looking at the coefficients
of the ¥; in (13), modulo 2 we obtain that both v and u should be
even which gives a contradiction in a similar manner as previously. We
suppress the details once again.

Consider now the case k1 = k3 = k7 = 0 (and k2 = 0). Then similarly

as with t; = 0, (14) defines a projective genus 1 curve C’%l) over L. By

the help of the point (0 : 1 :0) (after dividing each coefficients by the

leading coefficient 92 of hi(v,u), and also merging it into £2), C’fl) can

be transformed into an elliptic curve which has a minimal model

EM Y2 = X3 — (91 + 05 + 93) X7 + (2600 + 500, +
+ 4709 — 84093 + 1804) X + 1480 + 1409, + 26005 — 216193 — 1929,,.
Using elliptic Chabauty as previously, by the procedure Chabauty of

Magma with the prime 7, we obtain that all solutions to (14) with
coprime integers v, u are

(U, u, 52) = (:l:l, 0, :l:"l91)
This by (11) yields a contradiction.
Finally let ky = k7 = 1, ks = 0 (together with ko = 0). Then as
before, (14) defines a projective genus 1 curve 02(1) over L. Using the

point (0 : 70 + 701 4+ 209 — 1993 — 89,4 : 1), Cél) can be transformed
into an elliptic curve having a minimal model

EY 0 v = X3 — (9 — Oy 4 Vs — 95 — U4) X% + (1200 + 179, +
+ 2405 — 2905 — TY) X — 110 — 2601 — 2109 + 4405 — 16,.
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By the help of the procedure Chabauty with the prime 11, we obtain
that

(U,U,fg) = (0, :t]_, j:(2190 - 5’[93 - 2’[94)),
(12,17, £(7280¢ — 64209, + 40202 — 31705 + 2981,))

are the only solutions to (14) with coprime integers v,u. In case of
the first possibility, (11) immediately implies a contradiction. In the
second case, (11) and (7) give x4 = +3- 6323 and 2o = +3? - 23094391,
respectively. These values with x5 = —3 - 241 yield a solution to (4).
However, as one can readily check, they do not give rise to any (even
nonprimitive) arithmetic progression (3).

The case t; = 2. In this case, from equation (6), we obtain
(15) (v +u) fo(v,u) = ]

with fo(v,u) = 11v* + 84v3u + 246v%u? + 324vu® + 171ut. Put go(z) =
fa(z,1). As the discriminant of (v+u) fo(v, u) is divisible by the primes
2,3,5 only, from (15), we get

(16) fo(v,u) = (1) 2m2 3ms 5ma )2

with some integer w and m; € {0,1} (i = 1,2,3,4). If my = 1, then by
(15) x4 is even, which leads to a contradiction in a similar manner as
many times before. Hence we may assume that mgs = 0 in (16). In the
remaining eight cases, after dividing both sides by u* (which by (15)
cannot be zero), (16) gives rise to hyperelliptic equations of the form

(17) (=1)™ 3™ 5™ g (x) =y,

where go(x) = fao(x,1). In the cases where mg = 1 and also in case of
my = 1, mg = my = 0, the procedure IsLocallySolvable of Magma
gives a contradiction modulo one of 2,3,5. In the cases m; = m3 =
my = 0 and my = my = 1, mg = 0, by (16), one can easily check that
3 | v must be valid. Then, in view of (15), we obtain 3 | x4 and by
(6) also that 3 | 5 which contradicts the primitivity of the progression
(3). Finally, if m; = mg =0, m4 = 1 then checking (16) modulo 4, we
easily obtain that w must be even. However, then x4 is also even by
(15), which leads to a contradiction in the usual fashion. O

Proof of Theorem 2.2. To prove the theorem, it is obviously sufficient
to show that there are infinitely many primitive arithmetic progressions
of integers of the form

(18) T3, T, T
We give a full characterization of progressions of the form (18). For

this purpose, in fact we need to completely describe the solution set of
the equation

(19) x5+ 1] = 273,
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As is well-known, the solutions of equation (19) can be parametrized.
More precisely, xq, z3, x4 are coprime solutions to (19) if and only if

(20) xy = u*—3utv—3uv*+v°, 13 = v’+v?, 27 = v +3uv—3uv® —v?

hold with some coprime integers u,v, u Z v (mod 2) (see e.g. [14]).
Trivially, we need to focus only on the last item of (20). Having it
satisfied, the values of x5 and x3 are automatically chosen.

Obviously, we can find integers ¢, z such that v = ¢z uniquely if we
assume t to be square-free. As z = 0 leads to the constant progression
1,1,1 in (18), we may also suppose that z # 0. Then the last item of
(20) gives

(21) B Y?P=X>4+3tX*-3t°X - t*
where
(22) X =v/2" and Y =ua,/2"

We may consider (21) as a parametric family of elliptic curves E;, tak-
ing t to be a square-free integral parameter and X,Y to be unknown
rationals. As is well-known, any rational point on this curve has the
property that the square of the denominator of Y is the same as the
cube of the denominator of X (see e.g. [18]). That is, the transforma-
tion in (22) can be reversed.

Hence, taking any square-free t and choosing any rational point
(X,Y) of E;, we can write X = U;/V? and Y = U,/V? with inte-
gers Uy, Uy, V such that ged(U,Us, V) = 1. If further ged(Uy,t) = 1
and U; # tV? (mod 2), then putting v = U; and v = tV? we get a
parametrization by (20) leading to a primitive arithmetic progression
of the form (18). Already the choice t = 1 is sufficient to find infin-
itely many such solutions. Indeed, by Magma, we get that the rank
of E; is one and the point P = (—1,2) generates the free part of the
Mordell-Weil group of E;. In particular, there are infinitely many ra-
tional points on E; leading to (different) arithmetic progressions of the
shape (18). As one can easily see, this is the case for all points nP
where n is a power of 2. To see an example, consider the point

AP = (10961/1936, —1372655/85184)

on F;. Then putting v = 10961 and v = 1936 in (20), we get the
primitive arithmetic progression

5031072368012, 1238916173, 1372655%.

Observe that by the above procedure all progressions (18) can be
determined. U

Proof of Theorem 2.3. By Theorem 2.2 we know that there are infin-
itely many primitive arithmetic progression of integers of the form

(23) Ty, T3, T3, T
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Choose any progression of the shape (23) and put s = z} + d, where
d denotes the common difference of the progression. Observe that by
writing
g1 = 0157, Yo = T98'%, Y3 = 38", Yo = 148°, Y5 = 5°,
the progression
Y1 Y3 Y3 Yis s

is of the desired shape, and further the progressions obtained in this
way are pairwise nonproportional. Hence the theorem follows. O

To prove Theorem 2.4 we need the following lemma.

Lemma 3.1. Suppose that for a nonconstant arithmetic progression of
powers of the form (1) we have k; < K for all i. Then the length of
the progression is bounded by a constant depending only on K.

Proof. The statement is a simple consequence of Theorem 2 of [9]. O

Proof of Theorem 2.4. Suppose that z* is a member of an arithmetic
progression of the form (1) where x and k are integers with |z| > 2,
k > 2. Let p be a prime divisor of z and put o = ord,(z). Further, write
d for the common difference of the progression, and set § = ord,(d).
Let v be an arbitrary integer with v > max(0, ka + 1 — ). Observe
that, for any ¢ € Z, we have ord,(y;) = ka where y, = z* + tp7d.
Hence if y;, = xft holds for some ¢, then k; < ka must be valid. As the
numbers y; form an arithmetic progression (with common difference
p’d), by Lemma 3.1 we obtain that the length of this progression is
bounded in terms of ka. Hence the length of the original progression
must be bounded by a constant C'(k,p,a) depending only on k, p, a.
As p <z and a <log(z)/log(2), the statement follows. O

Proof of Proposition 2.1. Let p; denote the ith prime. Take an arbi-
trary positive integer n. Then all integers m with 1 < m < p,41 can
Q1m

be uniquely written in the form m = p{'™...pS»™ with nonnegative
integers oy, (1 =1,...,n). Put

H={(1m,-s0nm) : 1 <m < ppi1}

Further, for each (hi,...,h,) € H pick up an odd prime g, n,)-
Then for every ¢ = 1,...,n choose a positive (3; such that

(24) 61 = —hz (mod q(hl,---ﬁn)) for all (hl, e hn) c H.

By the Chinese remainder theorem we know that such [; exists for all
1. Let d = pfl ...pP and observe that for every t from the interval
[=Pnt1 + 1, ppi1 — 1], by (24), td is a g, ,...n,)th power for the appro-
priate (hq,...,h,) € H. Hence these numbers td form an arithmetic
progression of powers of length 2p,,.; — 1, and the statement follows.
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We illustrate the construction with a simple example. Take n = 2.
Then we have

H ={(0,0),(1,0),(0,1),(2,0)},
corresponding to the exponents of p; = 2 and ps = 3 in the numbers
1,2,3,4. Let

40,00 = 3, 41,00 = 9, qo,1) = 7, q2,0) = 11.

Then (24) yields 3; = 504 and (3, = 825. Hence setting d = 2504382°
the numbers td (—4 < t < 4) form a progression of the shape (1) of
length 2-p3 —1=0. U

Proof of Theorem 2.5. Let p be any prime which does not divide d.
Then among any 2p consecutive terms of the progression there are
two, say yo and y, = yo + pd, which are divisible by p. Further, either
ord,(yo) = 1 or ord,(y,) = 1 must be valid. However, as these terms
are perfect powers, this is impossible. Hence n < 2p — 1.

To derive the bound i), write ¥*(p) for the logarithm of the product
of all primes < p, with the convention ¥*(2) = 0. Then the Corollary
of Theorem 4 of [16] implies that

J*(p) > p(1 —1/log(p)) — log(p)

provided that p > 41. Hence a simple calculation yields that for p > 41
we have

V*(p)/p > 0.64.
As clearly log(d) > ¢*(p) if p > 41, we have

2p —1 < 3.125log(d) — 1

in this case. Otherwise, trivially 2p — 1 < 73 holds, and the bound 1)
follows.

To get the estimate ii), write p; for the ith prime. The Corollary of
Theorem 3 of [16] gives that for i > 6

pi < i(log(i) 4 loglog(i))

holds. Noting that p < p,(a)+1, the above inequality immediately yields
ii), and the theorem follows. O

Proof of Corollary 2.1. Obviously, the statement is a trivial and imme-
diate consequence both of Theorem 2.4 and of Theorem 2.5. However
we show here that the result easily follows also from Dirichlet’s famous
theorem about primes in arithmetic progressions. Let

(25) A1, A2, ... Uy, ...

be a nonconstant arithmetic progression of integers. Suppose that a; =
2% holds with k; > 2 for alli = 1,2, .... Let D = ged(ay, az). Then we
can write a; = Db; for all i = 1,2, .... Observe that then

by by by, ..
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is also an arithmetic progression, and we have ged(by, by) = 1, as well.
Thus if the length of this progression is infinite, by Dirichlet’s theorem
we obtain that it contains infinitely many primes. Let p be any prime
in the progression with p > D. Then b; = p is valid for some 7, hence we
should have xfl = Dp. However p divides the right hand side exactly
on the first power which contradicts the assumption k; > 2. Hence any
progression of the shape (25) must have finite length and the statement
follows. O
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ARITHMETIC PROGRESSIONS IN
LINEAR COMBINATIONS OF S-UNITS

L. HaJpu

ABSTRACT. M. Pohst asked the following question: is it true that every prime can be
written in the form 2% 43" with some non-negative integers u,v? We put the problem
into a general framework, and prove that the length of any arithmetic progression
in t-term linear combinations of elements from a multiplicative group of rank r (e.g.
of S-units) is bounded in terms of r,t,n, where n is the number of the coefficient
t-tuples of the linear combinations. Combining this result with a recent theorem of
Green and Tao on arithmetic progressions of primes, we give a negative answer to
the problem of M. Pohst.

1. INTRODUCTION AND RESULTS

Linear equations involving elements from a multiplicative group (such as e.g. S-
unit equations) play a vital role and have wide and deep applications in several parts
of diophantine number theory. For theoretical results and applications of such and
related equations we refer to the papers [2-5,8-9], and the references given there.
Combining the underlying theory of such equations and a classical result of van
der Waerden [10] about arithmetic progressions, we show that the length of any
arithmetic progression consisting of ¢-term linear combinations of elements from a
finitely generated multiplicative group of rank r is bounded in terms of r, t, n, where
n is the number of the coefficient ¢-tuples of the linear combinations.

To formulate our results we need some notation. We follow the paper [5], with
slight modifications. Let K be an algebraically closed field of characteristic zero.
Write K* for the multiplicative group of the non-zero elements of K, and let I" be
a multiplicative subgroup of K* having finite rank r. Let t be a positive integer,
and let A be a finite subset of K* having n elements. Put

t
Ht(F,.A): Zaixi:(al,...,at)EA, (ml,...,xt)eft
=1

The main result of this paper is the following.

2000 Mathematics Subject Classification: 11D57 (11B25). Key words and phrases: linear equa-
tions in variables from a multiplicative group, S-unit equations, arithmetic progressions, primes.
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of Sciences and by the OTKA grants T042985 and T048791.
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Theorem 1. There exists a constant C(r,t,n) depending only on r, t and n such
that the length of any non-constant arithmetic progression in Hy(I', A) is at most
C(r,t,n).

Note that in the upper bound C(r,t,n) none of r,t,n could be omitted. This
will be demonstrated by a simple example in Remark 1 after the proof of Theorem
1. Further, at the same place we show that the number of arithmetic progressions
in H¢(I", A) can be infinite, in case of any possible length.

Now as an application, we formulate a result concerning primes represented by
sums of integers which are rational S-units. This is motivated by the next problem.
M. Pohst asked the following question (oral communication): is it true that every
prime can be written in the form 2% + 3Y, with some non-negative integers u, v?
As we will see, by a recent, celebrated result of Green and Tao [7] on arithmetic
progressions consisting of primes, this question can be reduced to S-unit equations
in a natural way. By the help of Theorem 1 we will provide a negative answer
to this question, under much more general circumstances. Note that the theorem
would be true under even more general conditions, as well. However, we think that
it is not natural to use here more general settings.

To formulate this result, let S = {p1,...,p,} be a (nonempty) set of (positive)
primes in Z. As usual, let Zg denote the set of those integers, which do not have
any prime divisors outside S. In particular, we have +1 € Zg. Let t be a positive
integer and let A be a finite non-empty subset of Z!. Put

t
Ht(ZS7A) = {Zaisi : (alv"'vat) € A7 (817"'7St) S ZtS} :
i=1

Theorem 2. For any S, t and A there are infinitely many primes outside the set
Hy(Zg, A).

Taking S = {2,3}, t =2 and A = {(1,1)}, the above theorem yields a negative
answer to the problem of M. Pohst. Note that the smallest prime not of the shape
2% £+ 3V is 53; this fact is demonstrated in Remark 2 after the proof of Theorem 2.
We also mention that it is widely believed that there are infinitely many Mersenne-
primes, i.e. primes of the shape 2% —1 (u € N). As these primes (would) all belong
to Ha(S, A) with S = {2}, t =2 and A = {(1,1)}, we probably cannot claim that
H.(S, A) contains only finitely many primes in general. Hence the theorem seems
to be best possible in the qualitative sense.

2. PROOFS OF THE THEOREMS

To prove our theorems, we need several tools. The first one is a deep and general
finiteness result for the number of solutions of linear equations involving elements
of I', due to Evertse, Schlickewei and Schmidt [5].

Keeping the notation from the previous section, consider the equation

(1) a1x1 + ...+ axy =1

inz = (xy,...,2;) € I'*, where a = (ay,...,a;) € (K*)'. A solution z is called non-

degenerate, if no subsum of the left hand side of (1) vanishes, that is > a;x; # 0 for
iel

any nonempty subset I of {1,...,t}. The next statement is a simple and immediate

consequence of Theorem 1.1 from [5].
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Theorem A. There exists a constant c1(r,t) depending only on r and t (inde-
pendent of a) such that equation (1) has at most ci(r,t) non-degenerate solutions
z eIt

We will also need the following simple and well-known corollary of the above
theorem.

Corollary 1. There exists a constant cy(r,t) depending only on r and t with the
following property. If (x1,...,x:) € I is a solution to (1) then x; = apupyxf (i =
L,...,t) with some apgy,z; € I', where (x7,...,x7) belongs to a set of cardinality
at most co(r,t). Further, here Pi,..., Ps, Psy1 is a partition of {1,...,t}, P(i)
denotes the class P, for which i € P, and ap, , = 1.

Proof. Partitioning the sum at the left hand side of (1) into vanishing subsums
(the indices in the subsums compose the classes Py, ..., Ps, respectively) and a
subsum yielding 1 (the indices in this subsum compose Ps;1) such that none of
these subsums has a vanishing subsum, the statement follows from Theorem A by
a simple inductive argument. [J

The next well-known result from Ramsey theory is due to van der Waerden (cf.
[10]). This theorem will be very helpful in taking care of the vanishing subsums in
the occurring linear equations of the shape (1).

Theorem B. For every positive integers k and h there exists a positive integer
W = W(k,h) such that for any coloring of the set {1,...,W} using k colors, we
get a non-constant monochromatic arithmetic progression, having at least h terms.

Finally, in the proof of Theorem 2 we also make use of the following recent
deep and celebrated theorem of Green and Tao [7] about arithmetic progressions
of primes.

Theorem C. There are arbitrarily long arithmetic progressions of primes.
Now we are ready to prove our results.

Proof of Theorem 1. We proceed by induction on ¢. Let ¢ = 1 and take an arbitrary
non-empty subset A of K having n elements. Let ¢1,...,qz be a non-constant
arithmetic progression in H; (T, A); write ¢; = aWz) (o) € A, 2U) €T, j =
1,...,L). Without loss of generality we may assume that 0 ¢ 4; otherwise we can
give bounds for the lengths of the positive and negative parts of the progression
independently, and then simply combine them. Let d := g2 — ¢1 # 0 denote the
common difference of the progression. Subtracting the consecutive terms, we get
the equalities

(aVTY /d)z0+) — (D) /dyz) =1 (j=1,...,L—1).

If L —1> n%ci(r,2) then by |A| = n and the box principle we get that for some
je{l,...,L— 1} the equation

(@YD) /d)ay — (V) /)2y = 1

has more than c;(r, 2) solutions in (z1,z2) € I'2. However, by Theorem A this is a
contradiction. Hence L < C(r,1,n) := n?c1(r,2) + 1, and the theorem follows for
t=1.
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Let now t be an arbitrary integer with ¢ > 2, and assume that the statement
is true for t — 1. That is, the length of any arithmetic progression in H;_1 (T, B)
with any non-empty B C K*~!, |B| = m is at most C(r,t — 1, m) for some constant
C(r,t—1,m) depending only on r,t— 1, m. Further, let A be a non-empty subset of
K' having n elements, and let ¢i,...,qr be a non-constant arithmetic progression
in H;(I', A). Assume first that n = 1. Let A = {(a1,...,a:)}, and put

t
g=Y az? (j=1,...L)
=1

where (:Ugj),...,.rgj)) e I'". We have

t

S (ai/d)z? T ~ Zt:(ai/d)x,gj) =1 (j=1,...,L—1)

where d := ¢ — ¢1 # 0 is the common difference of the progression. Note that
if a1 ...a; = 0 then by the induction step we immediately have L < C(r,t —1,1)
and the theorem follows in this case. Otherwise, Corollary 1 implies that for each
jged{l,...,L -1}, :zsgj) is of the form :zsgj) = ap@Tr; with certain (z7,...,x})
coming from a finite subset of I'* of cardinality bounded by some c3(r, t) and certain
apig € (1 =1,...,t). Here Py,..., Ps, Psy1 is some partition of the set {1,...,t},
and P(i) denotes the class P, (1 <[ < s+ 1) for which i € P,. Further, Ps;; is
possibly empty, but otherwise ap, ., = 1. Obviously, we have 1 < s+1 < ¢, further
1 <s < tif Psyq is empty. Now we paint the terms ¢; (j = 1,...,L — 1) of the
arithmetic progression. We code the colors in the following way. Those ¢; will
get the same color, where in the above representation the very same partition of
the indices {1,...,t} occurs, moreover, the ”parameter t-tuples” (z7,...,z}) also
coincide. That is, g;, and g;, will get the same color if and only if we have

(acgjl), . 7m§j1)) = (ap)xy, ..., pp)T})
and . '

(xng), Ce ,.731(5]2)) = (CK/P(I)I'T, N 7O/P(t)'rl>:)
with the same partition Pi,..., Ps, Psyq, the same (z%,...,z}) € I'Y, and some
QAp(1), - AP, 0‘/13(1)7 . ,O/P(t) € I'. Observe that by Corollary 1 and elementary

combinatorics, the number of colors is bounded by some constant c3(r, t) depending
only on r and t. Take k = c3(r,t) and h = C(r,t —1,1) + 1. Suppose that L — 1 >
W (k,h). Then by Theorem B we find that there exists a monochromatic arithmetic
progression in H;(I',.A) corresponding to the above coloring, of length C(r,t —
1,1) + 1. If this subprogression corresponds to a case where Ps;1 is non-empty,
then observe that in each corresponding ¢; the very same constant > axl
P(i)=Ps41
occurs. Cancelling this constant from each term of the subprogression, we +get an
arithmetic progression in H;_1(T", A") (with the appropriate one-elemented A’) of
length C'(r,t —1,1) + 1, which is a contradiction. Suppose now that Psy; is empty.
Observe that in this case s < ¢ must be valid. Hence there exists a class, say P;
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with at least two members. However, then writing b, = > azf (I=1,...,5)
P(i)=P,
the representation

S
q = Z biop,
=1

belongs to H;_1(T,{b}), with b = (b1,...,bs,0...,0) € K'~1. Hence we get an
arithmetic progression in the latter set, of length C(r,t — 1,1) 4+ 1, which is a
contradiction again. As there are now more cases to distinguish, we get that L <
C(r,t,1) := W(k,h) must be valid. Hence the theorem follows in this case.

Finally, consider the general case, i.e. with a non-empty A C K', |A| = n,
and let ¢1,...,qr be a non-constant arithmetic progression in H(I',.A). Paint g,
(j = 1,...,L) with a color corresponding to that a € A which belongs to the
representation of ¢;. Let k = n and h = C(r,t,1) + 1. Applying Theorem B
we get that if L > W(k,h), then there exists a monochromatic subprogression
of the original arithmetic progression of length at least C(r,t,1) + 1. As in this
subprogression the terms correspond to the same a € A, this is a contradiction.
Hence L < C(r,t,n) := W(k,h) — 1, and the theorem follows. [

Remark 1. As we mentioned in the introduction, in the upper bound C(r,t,n)
none of r,t,n could be omitted. To see this, for simplicity take K = Q. First
let ¢ be arbitrary but fixed, take I' = {—1,1} and let A = {(1,...,1)}. As the
arithmetic progression —t, —t + 2,...,t — 2,t belongs to H,(T', A), the dependence
on t is necessary. Let now ¢t = 1, and take an arbitrary positive integer k. Choosing
either I' = {1} and A = {1,...,k} or I' = Ug with S = {p : p is prime and p | k!}
(for the notation see the proof of Theorem 2 below) and A = {1}, in both cases we
get that the arithmetic progression 1,...,k belongs to H;(I', . A). This shows that
the dependence on both r and n is necessary, as well.

Further, in general it is not possible to give a bound for the number of pro-
gressions in Hy(I', A). Indeed, take K = Q, S = {2} and let I' = Ug. Setting
A ={0,1} we see that 0,2%,2“T! is an arithmetic progression in H;(T', A) for any
u € N. To get a ”"non-trivial” example, observe that 1,2% + 1,2%*! 4+ 1 is an arith-
metic progression consisting of pairwise relatively prime terms in Ho(T', A), for any
u € N. In general, take arbitrary K, I', ¢t and A, and suppose that ¢i,...,qp is
an arithmetic progression in Hy(I', A). Then ¢; + z,...,qr + = is an arithmetic
progression in H; (T, A") with any x € T', where A" is chosen accordingly. This
shows that H¢(T',.A) can contain infinitely many arithmetic progressions in general.

Proof of Theorem 2. Let t and S be fixed, and let A be a non-empty subset of Z*
with |A| = n. As is well-known, taking K = Q and

Us={p/q:p,q € Z\{0}, ged(p,q) =1, pq € Zs},

Ug is a finitely generated multiplicative subgroup of Q* (with Zg C Ug), of rank r =
|S|]. Further, Theorem C obviously implies that there are infinitely many pairwise
disjoint arithmetic progressions of primes of length C'(r,¢,n)+1 (where C(r,t,n) is
specified in Theorem 1). As by Theorem 1 each such progression contains a prime
outside H;(Ug, A), the statement follows. [

Remark 2. The smallest prime yielding a negative answer to the problem of M.
Pohst is 53. This can be seen as follows. On the one hand, it is easy to check that all
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the smaller primes can be represented in the desired form, with ”small” u,v. (The
"largest” decomposition is given by 27 — 3% = 47.) On the other hand, if 53 is of
the shape 2% 4 37, then we have 2%y? = 3°2> 4+ 53 with a € {0,1} and 8 € {0,1,2}
where +x and y are powers of 3 and 2, respectively. However, a simple computation
with Magma (see [1]) gives that these elliptic equations have no solutions of the
required shape, and our claim follows. Note that as these equations can be easily
transformed into Mordell equations, their solutions are already known from [6].
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ARITHMETIC PROGRESSIONS IN THE SOLUTION
SETS OF NORM FORM EQUATIONS

ATTILA BERCZES, LAJOS HAJDU, AND ATTILA PETHO

1. INTRODUCTION

Let K be an algebraic number field of degree k, and let aq, ..., a,
be linearly independent elements of K over Q. Denote by D € Z the
common denominator of aq,...,a, and put §; = Da; (i = 1,...,n).
Note that fi,..., 3, are algebraic integers of K. Let m be a non-zero
integer and consider the norm form equation

(1.1) Ngjg(zion + ...+ 2p00) =m

in integers x1, . .., x,. Let H denote the solution set of (1.1) and |H| the
size of H. Note that if the Z-module generated by aq, ..., a, contains
a submodule, which is a full module in a subfield of Q(ay,...,a,)
different from the imaginary quadratic fields and Q, then this equation
can have infinitely many solutions (see e.g. Schmidt [19]). Various
arithmetical properties of the elements of H were studied in [11] and [8].
In the present paper we are concerned with arithmetical progressions in
H. Arranging the elements of H in an |H| x n array H, one may ask at
least two natural questions about arithmetical progressions appearing
in H. The "horizontal” one: do there exist infinitely many rows of H,
which form arithmetic progressions; and the ”vertical” one: do there
exist arbitrary long arithmetic progressions in some column of H? Note
that the first question is meaningful only if n > 2.

The "horizontal” problem was treated by Bérczes and Pethé [4] by
proving that if a; = o~ (i = 1,...,n) then in general H contains only
finitely many effectively computable "horizontal” AP’s and they were
able to localize the possible exceptional cases. Later Bérczes and Petho
[5], Bérczes Peth6 and Ziegler [6] and Bazsé [2] computed all horizontal
AP’s in the solution sets of norm form equations corresponding to the
fields generated by the polynomials 2" — a,2 < a < 100, 2® — (a —
a? — (a+2)z —1,a € Z and 2" + a,2 < a < 100, respectively.
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For quadratic norm form equations, which are called Pell equations
if K is a real quadratic field, only the ”vertical” problem is interesting.
In this direction Pethé and Ziegler [18] proved among others that the
length of the "vertical” AP’s in ‘H is bounded by a constant, which
depends on the coefficients of the (quadratic) form and on m. On the
other hand, they proved that every three term AP occurs in the second
column of infinitely many H. Dujella, Peth6 and Tadi¢ [7] was able to
extend this result to four term AP’s.

The main goal of the present paper is to generalize the result of
Pethé and Ziegler [18] to arbitrary norm form equations. In the sequel
AP in H always means a ”vertical” arithmetical progression belonging
to H. A sequence in H, with the property that all the corresponding
coordinate sequences form ”vertical” AP’s, will be called an algebraic
AP in H.

2. RESuLTS

Now we summarize our main results.

Theorem 2.1. Let (chj), . ,:cg)) (j =1,...,t) be a sequence of dis-
tinct elements in H such that a:z(»] ) is an arithmetic progression for some
i€{1,...,n}. Then we have t < ¢y, where ¢; = ¢1(k,m, D) is an ex-
plicitly computable constant.

Theorem 2.2. The set H contains at most c3 arithmetic progressions
of the form x+kd (k = —1,0,1). Here c3 = c3(k,m, D) is an explicitly
computable constant, x = (x1,...,x,), d is a non-zero integer, and d
18 the n-tuple with all entries equal to d.

By Theorem 2.1 the length of any AP in H is bounded. In the
particular case k = 2, H does not contain any algebraic AP (see Peth6
and Ziegler [18]). However, it is not possible to give a bound for the
number of AP-s in H for k£ > 3. It is demonstrated by the following
example. Let P(z) = z(z—1)... (x—k+1)+(—1)* and denote by a one
of its roots. It was proved in [14] (Lemma 2.2, see also [1, 13] and [17]),
that P(z) is irreducible and the conjugates of @ are a+1,...,a+k—1.
Thus these k numbers are units of norm 1 in the algebraic number field
Q(a), moreover they form an AP of length k. If p is an algebraic
integer in Q(«) of norm m then pa, p(a+1),..., u(a+k—1) also have
norm m, and form an AP of length k.

The next theorem shows that in general if H contains algebraic AP-s
at all, then it contains infinitely many.

Theorem 2.3. Suppose that n =k > 3. Let t > 3 be an integer. If H
contains a non-constant t-term algebraic AP, then it contains infinitely
many.
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Now we prove that the algebraic AP’s from the example before The-
orem 2.3 are the longest ones. More precisely, we have the following
theorem.

Theorem 2.4. Let K be an algebraic number field of degree k. Assume
that o, ..., € K have the same field norm and form a non-trivial

AP. Then t < k.

Remark. We note that M. Newman ([16], see also [17]) proved that
the length of arithmetic progressions consisting of units of an algebraic
number field of degree k is at most k. Theorem 2.4 is a generalization
of his result.

To formulate the next result, for a non-zero integer a let w(a) denote
the number of prime divisors of a, and for a prime p denote by ord,(a)
the highest exponent u such that p* divides a.

Theorem 2.5. Suppose that the Galois group of the normal closure of
K is doubly transitive. Then the number of those solutions (xy, ..., Ty,)
of equation (1.1), for which there exists another solution (y1, ..., yn) #
(z1,...,2,), such that [[;_,(z; — y;) = 0, is bounded by

U (k,n,mD*) exp (k(12n)"")

where

T ::< k )MmD’“). 1 (ordp(mD’“>+n—1)‘

n—1 n—1
p|m
p prime

Theorem 2.6. Let S be a set of s rational primes, and let T be the set
of integers without prime divisors outside S. Suppose that the Galois
group of the normal closure of K is doubly transitive. Then the number
of those solutions (x1,...,x,) of equation (1.1), for which there exists
another solution (yi,...,yn) # (x1,...,2y,), such that x; —y; € T for
some i € {1,...,n}, is bounded by

U (k,n,mD") - exp ((s + k)(12n)*"*3) |
where W is the function defined in Theorem 2.5.

Remark. By the help of Theorems 2.5 and 2.6 one can easily give a
bound for the number of sequences x; = (xgj) - ,xﬁf)) € H such that
one of the coordinates of x; forms an arithmetic progression whose
difference is zero or is an S-unit, respectively.

3. AUXILIARY RESULTS

In this section we present some lemmas which will be needed in the
proofs of our theorems. For this purpose we need to introduce some
notation. Let L be a number field of degree [ and denote by Uy the
unit group of L. The next statement is an immediate consequence of
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a result of Hajdu [12]. Note that a similar result was independently
proved by Jarden and Narkiewicz [15]

Lemma 3.1. Let n be an integer and let A be a finite subset of L™.
There ezists a constant Cy = Cy(l,n, |A]) such that the length of any
non-constant arithmetic progression in the set

{Zaiyi c(ay,...,an) €A, (Y1,-..,Yn) € UZ}

i=1
is at most C].

For some other arithmetical properties of the set occurring in Lemma
3.1, see [11].

Let K be a number field of degree k, o, ..., o, linearly independent
algebraic integers in K, m € Z, and A € K. Consider now the equation

(3.2) Ngjglarxy + -+ opxn, +A) =m in xy,...,2, € Z.
The next lemma is a special case of Corollary 8 of [3].

Lemma 3.2. Suppose that ay,...,a, and X are linearly independent
over Q. Then the number of solutions of equation (3.2) does not exceed
the bound

(217/€) (3 (n+1)(n+2)(2n+3)—4) (w(m)+1) .

Let F' be an algebraically closed field of characteristic 0. Write F** for
the multiplicative group of nonzero elements of F', and let (F™*)" be the
direct product consisting of n-tuples x = (x1,...,z,) with x; € F* for
i=1,...,n. For z,y € (F*)" write x *y = (141, - -, TnYn). Let [ be
a subgroup of (F*)" and suppose that (aq,...,a,) € (F*)". Consider
the so-called generalized unit equation

(33) axry + ...+ apx, = 1

in x = (z1,...,2,) € I'. A solution x is called non-degenerate, if no
subsum of the left hand side of (3.3) vanishes, that is ) a;x; # 0 for

i€l
any nonempty subset I of {1,...,n}. The next lemma is Theorem 1.1
of Evertse, Schlickewei and Schmidt [10].

Lemma 3.3. Suppose that I' has finite rank r. Then the number of
non-degenerate solutions x € T of equation (5.3) is bounded by

exp ((6n)*"(r +1)) .

Let M be the Z-module generated by the elements oy, . . ., a,,. Clearly,
equation (1.1) can be transformed to the equation
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Lemma 3.4. The set of solutions of (3.4) is contained in some union
0105 U--- U605, where

t < W(k,n,m)= (n ﬁ 1)W(m) . H <ordp(7:)_+1n — 1)

plm
p prime

and 91, ...,0; are solutions of (3.4).

Proof. This is a special case of Lemma 4 of [9]. O
4. PROOFS
Proof of Theorem 2.1. Recall that H is the solution set of (1. ) D is
the common denominator of ay, ..., a,, and 5; = Doy (i =1,...,n).
Suppose first that we have a non-constant sequence (xg ),. xﬁf ))

(j =1,...,t) in H such that a;g]) is constant for some i € {1,...,n}.
Let A := ml(-j) - Bi. Then equation (1.1) is of the shape (3.2) and by
Lemma 3.2 we see that the number of such solutions of (1.1) (i.e. t) is
bounded by

nn mn — wim k
(217k) +1)(2n+1)—4)(w(mD")+1) < cl(k,m,D).

Assume next that (xgj),...,:c,(lj)) € H for j =1,...,t such that x; 2

forms a non-constant arithmetic progression for some i € {1, . n}
Writing o4, ..., 0y for the isomorphisms of K into C, for u = 1
we have

2100(01) + - o 4 Tnou(Bn)ou(e)ou (1)
where 1 is an element of norm mDF¥ and ¢ is a unit in the Z-module
Z|p,...,Bs]. By Lemma 3.4 u can be chosen from a set having at
most W(k,n,mD") elements. Consider a fixed value of . Choose the
order of the isomorphisms o4, ..., 0, such that the matrix

o1(B1) .. o1(Bn)
(15) Bl
on(B1) .. on(0Bn)

has non-zero determinant. Hence we have

T o1(e)or(p)
(4.6) | =87 :
Tn on(€)on(p)
Writing
M1 - Min
(4.7) B7Y o
Ynl -+ Tnn
we get

Ti=apyr + -+ Ginln
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for all @ = 1,...,n, where a;;, = Ypon(p) and y, = op(e) for h =
1,...,n. Noting that the y, (h = 1,...,n) are units in the splitting
field L of K, and deg(L) < k!, using n < k the theorem follows from
Lemma 3.1. O

Proof of Theorem 2.2. Obviously, in view of Theorem 2.1 it is sufficient
to give an upper bound for the number of three-term progressions in
H. For this purpose, assume that (z1,...,z,) is the middle term of
a three-term arithmetic progression in H, with common difference d1.
Denote by Uy the unit group of the ring of algebraic integers of the
field K. Put

Ui+l = (1'1 + d)ﬁl +. (ZL’n + d)ﬁn and Mo = ZL‘lﬁl + ...+ xnﬁn

Note that Ng/g(p-1) = NK/Q(;LO) Nk (1) = mDF¥, and further
that up = epp;, (h = —1,0,1) where €_1,¢¢,61 € Uk and W s 1)
belong to a finite set Whose cardlnahty is bounded in terms of k, m, D.
Thus we have

pZie-1 — 2p€0 + pye1 = 0.
Hence Lemma 3.3 implies that

(6—17 €0, 61) - 6(6i1, 53, &TT)

with some e € Uy, where (¢* |, &5, %) belongs to a finite subset of U},
of cardinality bounded by some constant depending only on k,m, D.
Thus we conclude that

Hh = 6)\h (h = —1,0, 1)

holds, where ¢ € U and A_1, \g, A1 belong to a finite set of cardinality
depending only on k, m, D again. Observe that d = £(A\; — A\g) holds,
and further that this d can be rational for at most one choice of € € Uy
(up to a factor —1), for any fixed (A_j, Ag, A\1). Hence the theorem
follows. O

Proof of Theorem 2.3. Suppose that (xgj), e ,xff)) (j = 1,...,t) is
a non-constant algebraic AP in H. Let ¢ be an arbitrary unit in
Z|B1, . .., 3] of norm 1, and define (y (J), Ly ) by

I8+ .y, = (a8 + .+ 2DB,) for j=1,... ¢

Obviously, then (ygj oy )) (j =1,...,t) is a non-constant algebraic
AP in H. As there are infinitely many units in Z[f3,, ..., 3,] of norm
1, the theorem follows. U

Proof of Theorem 2.4. Denote by m the common norm of aq, ..., a.
As these numbers form an AP, we have a; = a3 + (i — 1) (e — aq),i =
1,...,t. This implies % = %—I—i— 1 with 0 = ay — aq. Put M for the
norm of 3 and P(x) = z“ +p,_12*" '+ -+ o, p; € Q for the minimal
polynomial of % It is well known that the defining polynomial of %

is a power of its minimal polynomial, i.e. u|k and pg/“ = (—=1)*m/M.
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If kK = u then we even have py = (—1)f¥m/M otherwise, because both
po and m/M are rational numbers, there are at most two possibilities
for pg, which differ from each other only in their sign.

Consider the polynomials P;(z) = P(x — (i — 1)),i =1,...,t. They
are with P(z) irreducible and we have

n(5)r (50 (3)

Le. % is aroot of P;(z), which together with the irreducibility of F;(z)
implies that it is the minimal polynomial of % Thus its constant
term is equal to pg if £ = w and may differ from py only in its sign,
otherwise. Hence P(—i + 1), = 1,...,t is constant if k¥ = w or can
assume only at most two different values. If & = u this implies P(z) =
z(r—1)...(r —t+ 1)+ po and we have t < k as stated. If u < k then
there exists a subset [ C {1,...,t} of size |I| > t/2 such that P(—i+1)
takes the same value for all ¢ € I. By the theory of interpolation the
degree of P must be at least |I], i.e. u > |I| > /2. On the other hand,
u < k and u|k imply u < k/2. ;From the last two inequalities we get

t < k in this case, too. Il
Proof of Theorem 2.5. We shall bound the number of those solutions of
equation (1.1), for which there exists a solution (y1,...,yn) # (Z1,..., %)
with x; = y; for some i € {1,...,n}. Now equation (1.1) means that
(4.8) P11 + Baa + -+ + BpTn = p1&1

and

(4.9) Biyr + Bayz + -+ Buyn = paca

where i1, 1o are elements of norm mD* and €, &, are units in the Z-
module generated by f(i,...,3,. By Lemma 3.4 both p; and ps can
be chosen from a set having at most W(k,n, mD*) elements. Consider
fixed values of p; and us. Denote again by oy, ..., 0 the isomorphic
embeddings of K into C, choosing their order such that the matrix B
in (4.5) has nonzero determinant. Using (4.7), equation (4.8) leads to
equation (4.6). This means that

(4.10) Ti= Y 750;(1m)os(e1).

j=1

Similarly, using equation (4.9) we can show that

(4.11) Yi = Z 10 (H2)0j(€2)-

J=1

One can easily check that v;; # 0 for at least two indices j € {1,...,n}.
Thus without loss of generality we may assume that ~;;,...,v;n are
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non-zero and Y y+1 = -+ = Y = 0, for some 2 < N < n. Now
subtracting equations (4.10) and (4.11) we get

N
(4.12) > (1o (m)oj(e1) = 7550 (p2)o(e2)) = 0.

j=1

This is a homogeneous unit equation consisting of 2V terms. We shall
bound the number of solutions of this equation. First we count the
non-degenerate solutions of (4.12). Dividing the equation by the last
term we obtain

(4.13)

Z <%’j%‘(ﬂ1) oj(€1) _ i 05 (p2) 0’;‘(52)) +0N(M1)0N(51)

YinON(p2) on(€2)  Yinon(p2) on(e2) on(p2) on(e2)

= 17
j=1
which is an inhomogeneous unit equation having 2N — 1 terms. We
easily see that all solutions to this equation are contained in the sub-
group
o1(e1) o1(ea) o3a(e1) o2(e on(e
F:{( 1( 1)7 1(2)7 2< 1)a 2(2)7"'a N< 1)) |81752€O;(}
O'N(EQ) O'N(Ez) UN(EQ) O'N(€2) O'N(€2)

of (C*)*N~=1, Clearly, this group has rank at most 2rx, where rx is the
unit rank of the field K. Indeed, if 1y, ...,n,, denotes a fundamental
system of units in K then, the subgroup I'y of (C*)?¥~1, generated by
the vectors

a; = (Jl<nj)7 1702(7]j)7 ]-7 .- ’7170N(nj)) (j - ]-7 cee 7TK>7

and

b, — (UNl oi(n;) 1 oan) on-1(n;) 1 ) Gl rx)

() on(n) on(ny) on(m;)” " on(ng) " on(n)
has rank at most 2rg. Further, the factor group I' /T is a torsion group.
This means that the solutions of equation (4.13) belong to a subgroup

of rank at most of 2k — 2 of (C*)*~!. Thus, %@12)) is contained in a

set of at most
exp ((12N — 6)°V%(2k — 1))
elements. Fix now such a value. Then using that the Galois group of

Zl((‘;)) is also fixed for each j,1 €
J

{1,...,k}. By multiplying the ratios 21e)) for j € {1,...,k} and using

aj(e2)
that H?:l 0j(e2) = £1 we get that ey may assume at most 2k values.
Similarly, e5 may assume at most 2k values. These altogether show that
the number of non-degenerate solutions of equation (4.12) is bounded
by

(4.14) exp (12N — 6)°V%(4k — 2)) .

Now we have to estimate the number of degenerate solutions of (4.12),
too. If ’71']'0"7'(/,61)0"7'(61) — ’7/1']'0']'(/,62)0']'(62) = 0 for all j € {1, o ,N}

K is doubly transitive, we see that
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then we get that o;(p1)oi(e1)oi(p2)oi(e2) for some I € {1,..., N} and
thus p1e1 = poes. Now subtracting equations (4.8) and (4.9) and using
that fi,..., 3, are linearly independent, we get that z; = y; for all
j €{1,...,n}, which is a contradiction. Thus we must have one of the
following two cases:

(i) Equation (4.12) has a minimal vanishing sub-sum (i.e. a sub-
sum with no further vanishing sub-sums) which contains both
0;(e1) and oy(eq) for some j # I, 7,1 € {1,...,N}. Similarly
to the case of the non-degenerate solutions we can prove that
the number of solutions of (4.12) is bounded by the expression
n (4.14).

(ii) Equation (4.12) has both a minimal vanishing sub-sum which
contains o;(e1) and oy(e1) for some j # 1, j,l € {1,..., N}, and
a minimal vanishing sub-sum which contains o,(e2) and o,(e2)
for some u # v, u,v € {1,..., N}. Further, these vanishing
sub-sums contain at most N terms. Thus we infer again a
much better bound than the bound (4.14) on the number of
solutions in this case.

Finally, we have 22V~1 possibilities for choosing the considered sub-

sums, so altogether the number of solutions (e1,¢2) of equation (4.12)

is bounded by
(4.15) exp (12N — 6)°V 1 (4k — 2)) .

Thus (using that N < n) the number of those solutions of equation
(1.1), for which there exists a solution (yi,...,y,) # (z1,...,x,) with
x; = 1;, is bounded by

U(k,n,mD")exp ((12n — 6)°" ' (4k — 2)) .

Thus the number of those solutions (z1,...,x,) of equation (1.1), for
which there exists another solution (yi,...,y,) # (21,...,2,), such
that [, (z; —y;) = 0 is bounded by

n¥(k,n,mD") exp ((12n — 6)°* " (4k — 2)) < W(k,n,mD") exp (k(12n)%").
O

Proof of Theorem 2.6. We start the proof of the present theorem ex-
actly in the same way as the proof of Theorem 2.5. The first difference
is that instead of equation (4.12) we get

(4.16) Z V505 (m)oj(e1) — 7ioi(p2)oj(e2)) = d € T
7j=1

Now divide this equation by d to get an inhomogeneous S-unit equation

having 2N terms. Using Lemma 3.3 we can bound (similarly to the

proof of Theorem 2.5) the possibilities for either the values of %, or
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the values of @ for some u, depending on the vanishing subsums in
the unit equation. This bound is given by

(4.17) exp ((12N)%V (s + 2k — 1)) .

Since d € Z and o,(e1) is a unit, thus if %jl) is fixed, then d may
assume at most two values and by fixing one of those, o,(¢1) becomes

also fixed. Then we can fix €5, too. A similar argument works also

when first we are able to fix %. Thus for the number of solutions
of equation (1.1), for which there exists another solution (yi,...,y,) #

(x1,...,2,), such that x; — y; € T for some ¢ € {1,...,n}, is bounded
by
U(k,n,mD*)exp ((s + k)(12n)""+?)..
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