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1 Introduction

Quantum impurity models have continuously been in the focus of intense research

in the past 50 years. While the expression designating this class of models indicates

that these models were originally constructed to describe the quantum mechanical

properties of an impurity or imperfection such as a magnetic atom, dislocation, or

a substitutional ion in a lattice, in reality, the history of these models dates back

to the very early days of quantum mechanics, when the quantum mechanics of the

electron spin and magnetic ions in an external magnetic field and the tunneling of a

particle in a double well potential (two level system) have been worked out.

The behavior of an isolated spin or two level system is, of course, trivial. However,

their physics becomes extremely complex once one considers them as ’impurities’,

i.e., once one takes into account that they couple to excitations in the environment.

In fact, quantum impurity models represent the simplest non-trivial quantum field

theories which, despite of their simplicity, provide the simplest examples of excit-

ing phenomena such as quantum criticality, dynamical mass generation, asymptotic

freedom, duality, or universality. Besides being interesting on their own, quantum

impurity models also serve as a test ground for more complicated strongly correlated

lattice systems that occur in nature. As an introduction to this thesis, let me give

here a short overview of some of the most important milestones in the theory of

quantum impurity problems to introduce the reader into this exciting field.

1.1 The Kondo effect

The complexity of the problem of coupling a quantum mechanical degree of freedom

to a dissipative environment has been probably first realized by Kondo, who proposed

to describe the interaction of a magnetic impurity and the conduction electrons by

the following simple Hamiltonian [1]

Hint =
J

2

∑

k,k′,σ,σ′

~S c†kσ~σσσ′ck′σ′ , (1)

where J > 0 denotes the antiferromagnetic coupling between the impurity spin ~S

and the conduction electron spin density at the origin, and the operator c†kσ creates

a conduction electron with momentum k and spin σ. Kondo discovered that the

simple Hamiltonian Eq. (7) - called the Kondo model after Kondo - gives rise to a
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logarithmic increase in the resistivity at low temperatures. However, while the theory

of Kondo successfully explained the low-temperature resistivity anomaly observed in

various magnetic alloys, it also alerted physicists: the seemingly innocent and simple

Kondo model contains infrared singularities which make it impossible to understand

the low-temperature properties of this model by simple perturbation theory, that

breaks down at the so-called Kondo temperature,

TK ≈ EF e−1/J̺0 . (2)

In the above expression EF denotes the Fermi energy, and ̺0 is the density of states

of the conduction electrons at the Fermi level for a given spin direction.

One of the major steps in understanding the Kondo model was made by Anderson

and his coworkers [3, 4]. First Anderson, Yuval, and Hamann used renormalization

group (RG) techniques to study the strongly anisotropic version of Eq. (7)

Hint =
J⊥
2

∑

kk′

(c†k↑ck′↓S
− + h.c.) +

J‖
2

∑

kk′

(c†k↑ck′↑ − c†k↓ck′↓)S
z , (3)

where the coupling in the z-direction is much larger than the one in the x, y direc-

tions, J‖ ≫ J⊥. Anderson, Yuval and Hamann expanded the free energy functional

of this model as an imaginary time path integral by treating J⊥ as a perturbation,

and mapping it to the one-dimensional Coulomb gas: spin flips behave as charged

particles after the mapping and interact through a logarithmic interaction in time.

The scaling analysis of Anderson et al. showed that the amplitude of spin-flip pro-

cesses increases as one lowers the temperature, and ultimately dominate the low

temperature physics [3].

Later Anderson proposed a much simpler version of renormalization group anal-

ysis, the so-called ’poor man’s scaling method’, where the elimination of high-energy

conduction electrons has been compensated by changing the value of the dimension-

less coupling, ̺0J , while keeping matrix elements of the T -matrix in the vicinity of

the Fermi surface invariant [4]. Anderson’s scaling approach can be shown to sum up

the most singular diagrams in the perturbation series, first identified by Abrikosov

[5], and it breaks down at the Kondo scale (2), where the effective coupling obtained

diverges. Anderson believed that this is an artifact of the approach, and conjectured

that the effective coupling diverges only in the T → 0 limit. The divergence of the ef-

fective coupling could be formally cured by extending Anderson’s method to sum up
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subleading diagrams and casting in the form of multiplicative renormalization group,

though the results of these perturbative renormalization group calculations remained

consistent only above (a somewhat reduced) TK , where the effective coupling was

much less than unity [6, 7, 8]

The real break-through in understanding the low-temperature behavior of the

Kondo problem came from Nozières [9], who took the divergence of the effective

coupling seriously, and showed by an expansion in 1/J that the J = ∞ fixed point is

indeed stable. He also identified the leading corrections around the J → ∞ limit, and

showed that at low temperatures the Kondo model becomes a ’local Fermi liquid’,

with weakly interacting quasiparticles at the impurity site, and derived the behavior

of resistivity and thermodynamic quantities. In other words, the impurity spin forms

a singlet state with the conduction electrons at low temperatures, and completely

disappears from the problem. A quantitative understanding of the Kondo problem

has been finally achieved by Wilson who - in the spirit of renormalization group -

proposed a numerical scheme (discussed in Section 2.3 of this thesis) to diagonalize

the Kondo Hamiltonian iteratively [10]. With this method, he was able to compute

thermodynamic quantities at all temperatures, and he has also been able to deduce

the renormalization group flow of the effective coupling, and confirm Anderson’s

conjecture and Nozières Fermi liquid picture.

The solution of the Kondo problem, however, did not end with the work of

Wilson: five years after Wilson’s work a complete Bethe ansatz solution of the

Kondo problem was constructed [11, 12, 13], but one had to wait another fifteen

years until it became also possible to compute dynamical correlation functions and

the resistivity numerically with a high accuracy [14, 15].

Parallel to the efforts to understand the Kondo model, the problem of magnetic

impurities has been attacked from another direction as well. In 1961 Anderson

proposed a more detailed model to describe the formation of magnetic moments on

the d-level of rare earth metals [16]. Anderson showed that if the interaction energy

U of the d-electrons is strong enough compared to the hybridization energy Γ then,

in general, a magnetic moment will be formed on the d-level. Later, Schrieffer and

Wolff constructed a unitary transformation and showed that, for small values of

Γ/U and small enough energy scales, the physics of Anderson’s model is practically

equivalent to that of the Kondo model in the local moment regime [17]. A year after

Nozières’ Fermi liquid theory, Yamada and Yosida published a series of papers [18],
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where they showed that perturbation theory in the Anderson model is convergent,

and the low temperature properties are that of a Fermi liquid. In a way, the results

of Yamada and Yosida were the logical extensions of the general theory of Luttinger

[19, 20].

Based on the above results, we now understand the Kondo effect as follows (see

Fig. 1): Due to the strong coulomb interaction, a local moment is formed on the deep

d or f -levels of rare earth and actinide materials. This local moment is essentially

free at temperatures T > TK , and its susceptibility - apart from small logarithmic

corrections - increases as χimp ∼ 1/T for T > TK . However, as we lower the tem-

perature, the system tries to get rid of the high temperature entropy of the spin,

S = kB ln(2S + 1), and a conduction electron spin is bound to the impurity antifer-

romagnetically to screen the impurity spin and form a local singlet. The energy of

this many-body state is given by the Kondo energy TK . Since a finite energy ∼ TK

is needed to break up this singlet, conduction electrons at the Fermi energy are not

allowed to enter the impurity site and correspondingly, scatter off elastically with a

phase shift π/2, and the impurity contribution to the susceptibility is finite at low

temperatures, χimp ∼ 1/TK .

T > TK T < TK

J = 0 J = infty

Figure 1: renormalization group flow of the effective coupling and the the formation of
the corresponding local singlet in the single channel Kondo model.

1.2 Dissipative two level systems

One of the most important and most interesting quantum impurity problems is that

of a dissipative two level system (TLS). This model has been maybe first proposed

by Leggett in the context of macroscopic quantum tunneling [21, 22], who studied

how coupling to a dissipative environment destroys the quantum-coherent motion of
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a two state system. Leggett proposed to study the simplest non-trivial model one

can envision, a tunneling system coupled to a bath of harmonic oscillators:

HSB = −1

2
∆τx +

1

2
ετz +

∑

i

ωi(a
†
iai +

1

2
) +

1

2
τz
∑

i

Ci√
2miωi

(ai + a†i ). (4)

Here τi, i = x, y, z are Pauli spin matrices, the two states of the system correspond

to τz = ±, ∆ is the bare tunneling matrix element and ε is a bias.1 The harmonic

oscillators are labeled by the index i, have masses mi and frequencies ωi, and couple

linearly to the coordinate Q = 1
2
τz of the two level system with couplings Ci. Eq. (4)

being quadratic in the oscillator coordinates, one can integrate out the bosonic de-

grees of freedom, and finds that the dynamics of the spin operators is uniquely

determined by the oscillators’ spectral function J(ω) = π
2

∑
i(

C2
i

miωi
)δ(ω − ωi).

Maybe the most interesting case is that of an Ohmic heat bath, where J(ω) is

linear below a high frequency cut-off ωc, J(ω) = 2παω. In this case, as we shall

discuss in Section 3.1.3, increasing dissipation strength α first makes the motion of

the tunneling particle incoherent, and for α > 1 dissipation can even completely

suppress tunneling and localize the tunneling particle [22]. Remarkably, there is

an exact mapping outlined in Section 3.1.2, which maps the above basic model of

dissipation on the anisotropic Kondo model, Eq. (3) [22, 23]. This mapping connects

the parameters of the two models as

∆

ωc

= ̺0J⊥ ≡ j⊥ (5)

α = (1 − 2δ

π
)2, (6)

where δ = arctan
πρJ‖

4
is the scattering phase shift for conduction electrons generated

by the potential J‖/4, and the bias ε in Eq. (4) corresponds to a local magnetic

field in the Kondo problem. This surprising result implies that many dynamical

properties of the two models and their thermodynamics are completely equivalent,

and essentially all dissipative physics is contained in the anisotropic Kondo problem.

1Throughout this dissertation we use units h̄ = kB = µB = 1. In many cases we also set the
Fermi velocity to vF = 1.
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1.3 Non-Fermi liquid models

In the eighties another new class of fascinating quantum impurity problems chal-

lenged theoretical physicists. In 1980 Noziéres and Blandin attempted to construct

realistic models for magnetic impurities, i.e., to take into account crystal field effects

properly [24]. Under special circumstances they found that the coupling between

the magnetic moment and the conduction electrons is described by a multichannel

version of Eq. (7)

Hint =
J

2

∑

σ,σ′,a

~S ψ†
σa~σσσ′ψσ′a , (7)

where the channel quantum number a = 1, .., f is conserved in course of the scattering

process. The variant of this model with spin S = 1/2 and f = 2 is the so-called

two-channel Kondo model.

T > TK

J = 0 J = inftyJ*

= = ....

T < TK

Figure 2: Renormalization group flow of the effective coupling in the two-channel Kondo
model. No singlet can be formed because of the symmetry of the two channels, and an
intermediate coupling fixed point governs the T → 0 physics.

Nozières and Blandin realized that this model must have properties very differ-

ent from the usual spin S = 1/2 Kondo problem, as can be understood by simple

renormalization group arguments: similar to the Kondo problem, for small values

of j = ̺0J the effective coupling increases under the renormalization group trans-

formation, suggestive of a strong coupling fixed point. However, the j → ∞ fixed

point of the RG is unstable: For j = ∞ the impurity spin would bind a conduction

electron from each channel, thus giving a local residual spin S̃ = 1/2. This residual

spin couples to the rest of the system through an antiferromagnetic exchange cou-

pling of size j̃ ∼ 1/j. This coupling is again relevant, implying that for very large

values of j, j̃ must increase and thus j must decrease under the RG (see Fig. 2).

These arguments imply that the effective low energy theory has a finite exchange
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coupling j∗, and is not trivial. As a consequence, the model has a residual entropy at

T = 0 temperature, the susceptibility and the linear specific heat coefficient diverge

as T → 0 [25, 26], and the resistivity shows a power-law anomaly [27]. Furthermore,

Maldacena and Ludwig showed that quasiparticles at the Fermi energy are orthog-

onal to conduction electrons [28], and an incoming electron at the Fermi surface

’evaporates’ and scatters to infinitely many electron-hole excitations.

Nozières and Blandin realized that non-Fermi liquid states are extremely fragile,

and therefore they did not really believe in the existence of realizations of these

exotic models [29]. It came therefore as a surprise when D.L. Cox suggested that

many of the logarithmic anomalies in Uranium and Cerium based heavy fermion

compounds can be explained in terms of the two-channel Kondo model, and showed

that the two-channel Kondo model naturally shows up as a consequence of the crystal

field structure of these materials [30, 31]. The most important ingredient of these

models is the strong spin-orbit coupling at the deep f -levels of Uranium and Cerium,

originally not considered by Nozières and Blandin.

Since then, a few other realizations of non-Fermi liquid systems have been pro-

posed such as non-commutative two level systems [32, 33, 34], quantum dots in the

vicinity of their degeneracy point [35], and multi-dot systems [36], some of which

will be also discussed in this thesis.

1.4 New Directions

To close this Introduction, let us discuss a few more recent applications of quantum

impurity models.

1.4.1 Heavy Fermion physics, strongly correlated systems, and quantum

critical points

One of the major challenges of today’s solid state physics is to understand strongly

correlated heavy fermion systems and strongly correlated systems such as high tem-

perature superconductors or manganites. Heavy fermion compounds are usually

(seemingly) complicated Cerium or Uranium-based alloys, where much of the phys-

ical properties is governed by the f -electrons on the Ce and U ions. These ions

usually form a dense lattice, and provide local moments at high temperature which

are screened by the conduction electrons as one lowers temperatures. At these low

temperatures, the f electrons form a narrow resonance (Kondo resonance) at the

7



Fermi level which gives the dominant contribution to the specific heat and the sus-

ceptibility, corresponding to an effective mass 100 − 1000-times larger than the free

electron mass me.[2, 34] It is for this reason that we call these systems heavy Fermion

systems or heavy Fermi liquids.

Surprisingly, many of the thermodynamic properties of these systems could be

qualitatively understood in terms of single impurity physics [34]. To obtain a better

understanding, however, more elaborate methods are needed. One of the most effi-

cient methods is the so-called dynamical mean field theory in which one keeps local

time-dependent correlations, but spatial correlations are treated only at the mean

field level [37, 38]. This theory becomes exact in the limit of infinite coordination

number, and entails solving a quantum impurity problem, where the conduction

electrons’ spectral function is determined self-consistently. Therefore, having a deep

understanding of quantum impurity problems is essential in understanding phenom-

ena such as the Mott metal-insulator transition. There is currently a major effort

in combining dynamical mean field theory with usual band theoretical methods to

keep track of correlations, however, efficient impurity solvers still need be developed

to achieve this goal.

As mentioned before, in heavy Fermion compounds the conduction electrons

screen out the magnetic moments at low temperatures. This is, however, not the

only way to get rid of the residual entropy of the local moments: the conventional

way to get rid of the residual entropy in a magnetic material is through the for-

mation of a magnetically ordered state. In fact, in most heavy Fermion systems

these two mechanisms compete with each other, and depending on the ratio of ex-

change coupling between neighboring ions and the Kondo temperature one or the

other prevails. The before-mentioned ratio can be fine-tuned by pressure, impurity

concentration, or magnetic field to lead to a transition from a non-magnetic metal

state to a magnetically ordered metal [39, 40, 41, 42, 43, 44, 45]. In many cases this

T = 0 temperature transition is of second order, and the corresponding transition is

a quantum phase transition governed by quantum fluctuations [46]. In some systems

neutron scattering data are suggestive of a quantum critical point that can be de-

scribed in terms of local quantum fluctuations, i.e., some quantum impurity models

[41]. One of the most prominent candidates to describe these locally quantum criti-

cal systems is the Bose-Fermi Kondo model, and shall be analyzed in Section 3.3 of

this dissertation.
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Finally, another open question to answer is the origin of heavy Fermion super-

conductivity. In many heavy Fermion systems the heavy electrons become supercon-

ducting at low temperature and usually form a non-conventional superconducting

condensate with gapless nodes or lines at the Fermi level [34]. The mechanism

to form this superconducting state is almost certainly provided by local quantum

fluctuation-generated correlations, which probably also determine the symmetry of

the superconducting state. This is a fascinating possibility that has never been care-

fully studied before, probably because of the difficulty of the problem. With the fast

development of numerical methods, however, it appears to be possible to study these

phenomena in the near future by combining dynamical mean field theory with other

approaches.

1.4.2 Mesoscopic systems: Building artificial atoms from electrical cir-

cuits

With the recent development of lithography it became possible to design and build

electronic circuits in a controlled way with sizes down to the µ range and below.

The energy needed to put an electron to such a small island is roughly EC ∼ e2/d ∼
10−3eV ∼ 10K, i.e. it can be larger than the temperature of the device. Under these

conditions the island operates as an ’artificial atom’ [47]. One can also build ’artifi-

cial molecules’ by joining several ’artificial atom’, attach them to leads to measure

transport properties and the effect of quantum fluctuations and change the number

of electrons on them by simply varying gate voltages.

One can also engineer narrow constrictions (point contacts or nano-wires), al-

lowing one to measure the dynamical properties of individual atoms [71]. Similar to

single electron transistors, these point contacts can also be used as voltage probes

or amplifiers in nanoscale circuits.

Quantum impurity models proved extremely useful in mesoscopic physics, since

much of these systems including single electron transistors, metallic islands, or

Josephson qubits (being maybe the most promising candidates for quantum com-

puting) can be described in terms of them.

Mesoscopic technology also makes it possible to study out of equilibrium trans-

port properties of these ’artificial’ atoms in an unprecedented way, and many unex-

pected strongly correlated states have been observed in this way [48, 49, 50, 51, 135].

More recently, it became also possible to contact real molecules, and perform ex-
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periments on them [118]. The experiments are performed in many cases out of

equilibrium. The complete understanding of these mesoscopic and nanoscopic cir-

cuits with strong correlation effects represents therefore a major challenge for todays’

theoretical physicists, and represents an unsolved problem of this field [54, 56, 55].

In this effort quantum impurity problems serve as a test ground, but combining

quantum field theoretical techniques to study transport through molecules is still a

dream.

1.5 Structure and subject of the dissertation

The purpose of this dissertation is to review some of the results obtained by the

author in the field of quantum impurity problems. First, in Chapter 2 I give a short

review of the theory of Kondo effect and introduce some of the methods I shall use to

study quantum impurity models later, such as multiplicative renormalization group,

numerical renormalization group, and Bethe ansatz.

In Chapter 3 I study dissipation effects. First I introduce and analyze using vari-

ous methods the most basic Ohmic dissipative two level system model in Section 3.1.

Then in Section 3.2 I study the same system by numerical renormalization group

methods in the case when the tunneling particle has a spin. The last section of this

chapter is devoted to the ǫ-expansion study of the Bose-Fermi Kondo problem, where

both dissipative bosonic fields and conduction electrons couple to an impurity spin.

Chapter 4 is devoted to various non-Fermi liquid models and the discussion of

their physical realizations. First in Section 4.1.1 I show using 1/f expansion methods

how the physics of fast two level systems maps on the two-channel Kondo problem.

Then in Sections 4.1.2 and 4.1.3 I study the anisotropic Kondo model using Abelian

bosonization and Bethe ansatz methods. In the last two sections of the chapter,

Sections 4.2.1 and 4.2.2, I generalize the mapping discussed in Section 4.1.1 to the

case of M -state systems, and then solve the corresponding Coqblin-Schrieffer model

by Bethe ansatz techniques.

Finally, in Chapter 5 I study mesoscopic systems. After giving a short introduc-

tion to the theory of single electron transistors, in this chapter I analyze phenomena

such as the singlet-triplet transition, the SU(4) Kondo effect, quantum fluctuations

of a ferromagnetic grain, and study magnetic impurities in point contacts.

Section 3.1.4, Section 3.2, Section 3.3, Section 4.1.1, the second part of Sec-

tion 4.1.2, Section 4.1.3, Section 4.2, Section 5.1.3, Section 5.1.4, and Section 5.2
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contain mostly or exclusively my own results.
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2 The single channel Kondo problem

The Kondo model given by Eq. (7) is one of the most elementary quantum impurity

problems, and much of our understanding of other quantum impurity problems relies

on our experience with it and the methodology that has been used to study it. We

shall therefore start by reviewing part of the theory of Kondo model in this chapter.

2.1 Renormalization group analysis

2.1.1 Poor man’s scaling

As mentioned in the introduction, the Kondo model contains infrared singularities.

This can be seen most easily if one computes the on-shell matrix elements of the

many-body T -matrix at T = 0 temperature between single electron states, |in〉 =

c†k′σ′|s′〉 and |out〉 = c†kσ|s〉 doing perturbation theory in Eq. (7). Here |s〉 denotes the

filled Fermi see (vacuum) with the impurity spin in state Sz = s. Straightforward

second order perturbation theory yields [1]

〈out|T̂ |in〉 ≈ J

2
~Sss′~σσσ′(1 + J̺0 ln

D

ω
+ . . .) , (8)

where ω is the energy of the incoming electron (or hole) measured from the Fermi

energy, andD is a bandwidth cut-off of the order of Fermi energy. Clearly, the second

order term diverges as ω approaches the Fermi energy. This infrared divergence is due

to intermediate electron states with arbitrarily small energies, and is characteristic

of almost all quantum impurity problems where an impurity is coupled to the Fermi

sea.

Higher order contributions can be most easily computed using Feynman dia-

grams, and can be classified according to their leading singularity [5]. In general,

the most singular order n corrections to the T -matrix diverge as ∼ Jn+1 lnn D
ω
, and

correspond to a special subset of diagrams, the so-called parquet diagrams. These

diagrams can be explicitly summed up and give the following result,

〈out|̺0T̂ |in〉leading =
1

2
~Sss′~σσσ′t(ω) , t(ω) =

̺0J

1 − J̺0 ln D
ω

=
1

ln TK

ω

, (9)

where the Kondo temperature defined by Eq. (2) has been introduced and t(ω) is

the dimensionless T -matrix. Most disturbingly, the sum of the leading logarithmic
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diagrams diverges at TK .

Anderson provided a much simpler way to sum up these most divergent contri-

butions [4]. One only has to assume that the physical properties of the Kondo model

are not sensitive to the high-energy cut-off D, and the only energy scale that enters

is the dynamically generated scale TK , as also suggested by Eq. (9). In other words,

one can reduce the cut-off D in Eq. (9) and compensate it by rescaling the exchange

coupling J such that all physical (measurable) quantities remain constant. In the

language of particle physics, this simply means that the theory is renormalizable,

i.e. that one can remove the cut-off from the problem through a renormalization

procedure [57]. With this assumption one can immediately derive solely from Eq. (8)

the dimensionless T -matrix t(ω) as follows: Clearly, to keep the dimensionless quan-

tity 〈out|̺0T̂ |in〉 constant, one must change the value of J in the following way to

compensate the reduction of the cut-off, D → D′,

D → D′ , J → J ′ = J + J2̺0 ln
D

D′ + . . . . (10)

For infinitesimal transformations this equation can be cast in the form of a differential

(or scaling) equation, originally constructed by Gell-Mann and Low

∂j

∂l
= β(j) , (11)

where β(j) = j2 + . . . is the beta function, j(l) = ̺0J(D) the renormalized dimen-

sionless coupling, D0 is the original cut-off, and we introduced the logarithmic energy

scale l = ln D0

D
.

To obtain the effective coupling for an equivalent model with band-width D one

has to integrate Eq. (11) up to l = ln D0

D
with the initial condition j(l = 0) = j0. This

invariance can be used to determine physical quantities in a very efficient way if we

observe that in a theory with cut-off D ≡ ω the logarithmic terms identically vanish,

and physical quantities are thus given by the leading order (non-logarithmic) dia-

grams. The dimensionless T -matrix, e.g. can be immediately obtained from Eq. (11)

using t(ω) = j(l = lnD0/ω) in this way. Leading singularities of thermodynamic

quantities and the resistivity can be obtained in a similar way, by exploiting the fact

that all physical (measurable) quantities are invariant under the renormalization

group (RG) transformation.
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2.1.2 Multiplicative Renormalization Group

Although possible, it is not very easy to generalize the method of Anderson to sum

up subleading singularities, which correspond to higher order terms in the beta

function on the r.h.s of Eq. (11) [6]. A more efficient way to do this was invented

independently by Fowler and Zawadowski and Abrikosov and Migdal [7, 8], who used

field theoretical renormalization group methods to derive the scaling equations. The

essence of this technique is to represent spin states by pseudofermions as |Sz = s〉 ↔
b†s|0〉 and the spin operator as [5]

~S →
∑

s,s′
b†s~Sss′bs′ ,

∑

s

b†sbs ≡ 1 . (12)

The latter constraint can be enforced by introducing a chemical potential λ for the

pseudofermions and then collecting leading contributions ∼ e−βλ as λ→ ∞.

The theory is then formulated in terms of the electronic Green function, G(ω, ξ(k)),

the pseudofermion Green function, G(iω, ξ(k)), and the pseudofermion-conduction

electron vertex function Γ({ωi}), where {ωi} denote the external Matsubara fre-

quencies of the pseudofermions and the electrons, respectively. Implicitly, all these

functions depend on the high energy cut-off D and the dimensionless coupling j.

Similar to poor man’s scaling, the multiplicative renormalization group scheme pro-

vides connection between equivalent physical systems with different parameters but

the equivalence is formulated as an internal symmetry of the Green’s functions. The

main assumption of of the multiplicative renormalization group is that the Green’s

functions and vertex functions of the original and the renormalized problem have

the same functional form, apart from overall multiplicative factors Ze and Z, which

are independent of ω [7, 8]

G(ω,D′, j′) = Ze(D
′/D, j) G(ω,D, j) , (13)

G(ω,D′, j′) = Z(D′/D, j) G(ω,D, j) , (14)

Γ(ω,D′, V ′) = Ze(D
′/D, j)−1Z(D′/D, j)−1Γ(ω,D, j) , (15)

where the primed parameters are those of the renormalized system, and the renor-

malized electron- and pseudofermion Greens functions are given by

G = (iω − ǫ− Σe(ω))−1 , (16)
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G = (iω − λ− Σ(ω))−1 , (17)

with Σe(ω) and Σ(ω) the electrons’ and the pseudofermion’s self-energy. Note that

the multiplicative prefactors do not contain the dynamical variables ω, and that

the prefactor of the vertex function and the two Green’s functions are related (see

Eq. (15)). This latter relation is necessary to ensure that the singular part of the

free energy remain invariant. Again, the connection between j and j′ is given by

the scaling equation (11), where the β function can be determined order by order by

computing logarithmic corrections to the pseudofermion self energy and the vertex

function. For quantum impurity problems the above equations greatly simplify as

Ze = 1 in all orders. The vertex and self-energy corrections needed to compute β to

third order in j are given in Fig. 3, and the corresponding pseudofermion Green’s

function and vertex function read

G−1(ω) = ω

(
1 + S(S + 1) j2 ln

D

−ω + . . .

)
, (18)

Γ(ω) =
j

2
~σ · ~S

(
1 + ln

D

−ω
(
j + [S(S + 1) − 1] j2 + . . .

)
+ . . .

)
, (19)

where iω−λ→ ω measures the energy with respect to the chemical potential of the

pseudofermions. Replacing these expressions into Eqs. (14) and (15) we obtain the

following scaling equations,
∂j

∂l
≈ j2 − j3 . (20)

As is obvious, the third order term in this expression cuts off the divergence of the

effective coupling, which approaches 1 for electrons with energies at the Fermi level,

ω → 0 (corresponding to l → ∞). This result should, however, not be taken too seri-

ously, since for j ∼ 1 higher order terms in the β function cannot be neglected. The

third order term in Eq. (20) also results in a suppression of the Kondo temperature

Eq. (2) by a factor ∼ √
j.

The next to leading logarithmic scaling equations and the multiplicative RG do

not give qualitatively new information for the Kondo model, although they formally

solve the problem of infrared singularities and accidentally they happen to give back

even the ∼ T 2 Fermi liquid property of the impurity contribution to the resistivity.

However, as we shall see in Sections 3.3 and 4.1.1, the multiplicative renormalization

group proves to be an extremely useful technique for non-Fermi liquid models, where
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Fig. a

Fig. b

Figure 3: Diagrams generating the leading and next to leading logarithmic contributions
to the scaling equations. Dashed lines denote unperturbed pseudofermion propagators,
continuous lines stand for unperturbed conduction electron propagators.

it can be used to generate systematic and controlled expansions in some parameter.

2.2 The Bethe ansatz solution

To obtain an analytical solution of the Kondo problem, we first observe that the

coupling to conduction electrons in Eq. (7) is local. This implies that only s-electrons

with angular momentum l = 0 scatter off the impurity spin, and we thus have to

keep only the s-wave part of the Hamiltonian:

H → H =
∑

σ

∫
dk k a†σ(k)aσ(k) +

∑

σ,σ′

j

2
~S
∫
dk
∫
dk′a†σ(k)~σσσ′aσ′(k′) , (21)

where a†σ(k) creates a conduction electron in the s-wave channel with radial momen-

tum p = k + kF , and is normalized as {a†σ(k), aσ′(k′)} = δσσ′δ(k − k′). In Eq. (21)

we linearized the dispersion relation around the Fermi energy, ξ(k) ≈ vFk ≡ k, and

the coupling j = ̺0J is just the dimensionless coupling defined earlier.

It is useful to introduce the left-going fields ψσ ≡ ∫
dk e−ikxaσ(k), and rewrite

this Hamiltonian in real space as

H =
∑

σ=±

∫ dx

2π
ψ†

σ(x) i∂xψσ(x) +
j

2
~S (ψ†(0)~σψ(0)) , (22)
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The field ψσ(x) above is related to the s-wave part of the three-dimensional field

operator as ψ(s)
σ (r) = ψσ(r) ∼ (e−ikF rψσ(r) − eikF rψσ(−r))/r, i.e. the x > 0 and

x < 0 pieces of ψσ(x) represent incoming and outgoing s-electrons, respectively.

The Bethe ansatz method provides a way find directly the eigenfunctions Φ of

Eq. (22) in a first quantized form as [58]

[ N∑

i=1

i
∂

∂xi

+
j

2

N∑

i=1

~S ~σiδ(xi)
]

Φ = E Φ (23)

Φ{σi},s({xi}) = A
∑

Q

AQ
σ1,..,σN ,s e

−i
∑

i
xiki ΘQ({xi}) , E =

∑

i

ki . (24)

Here the permutation Q specifies the order of the impurity spin x0 = 0 and the

conduction electrons xi (i = 1, .., N), and the function ΘQ({xi}) is one if xQ0 < xQ1 <

. . . < xQNe and vanishes for other permutations. Of course, the wave function must

be fully antisymmetric with respect to the electronic coordinates, which is assured

by the operator A in front that antisymmetrizes the wave function. To obtain a well-

defined spectrum, one further assumes a finite system size L and imposes periodic

boundary conditions.

In principle, Eq. (23) determines only the impurity-conduction electron S-matrix,

Rs′σ′

sσ = [ei j ~σ~S/2]s
′σ′

sσ , (25)

which connects amplitude of the wave function with one electron on the right, A(x >

0)sσ, to the amplitude As′σ′(0 < x) corresponding to having the electron on the left.

In a similar way, for N electrons the scattering matrix between electron i and the

impurity can be defined as

[S0i]
{σi},s
{σ′

i},s′
= (

∏

j 6=i

δ
σj

σ′
j
)Rs′σ′

i
sσi

. (26)

However, as a consequence of the linearized dispersion, we are free to choose any

scattering matrix between two conduction electrons,

A(. . . < xj < xi < . . .){σi},s ≡
∑

{σ′
i},s′

[Sij]
{σi},s
{σ′

i},s′
A(. . . < xi < xj < . . .){σ′

i,s
′

=
∑

σ′
i,σ

′
j

[R̃]
σ′

iσ
′
j

σiσjA(. . . < xi < xj < . . .)σ1,..,σ′
i,...,σ

′
j ,...,s . (27)
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This freedom in the choice of R̃ can be used to solve the model exactly as we discuss

below.

Two regions corresponding to two different permutations Q and Q′ can be usually

related in many independent ways in the configuration space. As shown in Fig. 4,

from the region x0 < x1 < x2, e.g., we can reach region x0 > x1 > x2, in two different

ways. Of course, the wave function amplitude A should be independent of the way

we proceed, and in general, the ansatz Eq. (24) can only provide a consistent solution

of the Schrödinger equation if the two-body scattering matrices satisfy the so-called

Yang-Baxter or triangle equations:

SjkSikSij = SijSikSjk , (28)

where in our case i, j, k = {0, 1, . . . , N}. For the single channel Kondo model this

can be achieved by choosing R̃ to be the exchange operator. This choice corresponds

to selecting a particular basis in the space of many-body wave functions, dictated

by the impurity-conduction electron interaction.

201

021

120

102

210

012

Fig. a

Sik

Sjk

Sjk
Sik

Sij

Sij

SijSikSjk SjkSikSij

=

j ki i j k

Fig. b

Figure 4: Graphical representation of the Yang-Baxter relations assuring integrability. (a)
There are two ways to connect region 012 with region 210 in the parameter space. (b) The
scattering matrices connecting the wave function in neighboring regions of the parameter
space must satisfy the ’triangle equation’ for consistency.
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A

1 2 N 0

Figure 5: Graphical representation of the monodromy matrix. T (α) is a 2 × 2 matrix in
the auxiliary space A, and each element of it acts on the spin part of the wave function,
A{σi},s. The auxiliary particle is denoted by A. The last dashed line corresponds to the
impurity scattering matrix.

2.2.1 The algebraic Bethe ansatz

Relation (28) ensures consistency. However, to determine the eigenstates and the

spectrum of the Hamiltonian one has to construct amplitudes A such that the many-

body wave function satisfies periodic boundary conditions in all electronic coordi-

nates. This is a difficult task that we shall complete using the algebraic Bethe

ansatz [58].

Instead of attempting to give a detailed description of the method here, we shall

rather outline its main ingredients. The spectrum can be constructed in an algebraic

way if the scattering matrices can be written in the following form,

Sij = Sij(αi − αj) , (29)

where Sij(α) acts only on particles i and j, and the spectral parameter (rapidity)

αi characterizes particle i. Usually, in most other Bethe ansatz problems α is re-

lated to the momentum of the particles. In our case the S-matrices can be simply

parametrized as

Sij(αi − αj) =
αi − αj + icP ij

αi − αj + ic
, (30)

with the parameter c related to the exchange coupling j,2 α0 = −1 and αi = 0 for

i = 1, .., N . As a next step, one defines the monodromy matrix T (α), depicted in

Fig. 5

T (α) ≡
(
A(α) B(α)

C(α) D(α)

)
= S0A(α0 − α)S1A(α1 − α) . . . SNA(αN − α) , (31)

2The relation between c and j is non-universal, but for small j-s c ∼ j.
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where A refers to an auxiliary particle. The monodromy matrix is a 2 × 2 matrix

in the subspace of the auxiliary particle. Its matrix element B(α) lowers the spin

of the spin part of the wave function A{σi},s by one, and its trace over the auxiliary

particle, trAT (α) = A(α) +B(α) is related to the operator which takes one particle

and commutes it through all other particles. In other words, periodic boundary

conditions can be rewritten as

T (αi)A = e−iLkiA . (32)

This equation determines the spin structure A of the wave function, and can be

diagonalized in a simple algebraic way using the Yang-Baxter relations. The basic

idea is to produce states from the fully polarized state, Ω(0) by multiple application

of the operator B as

A(Λ1, ..,ΛM ) ≡ B(Λ1)B(Λ2) . . . B(ΛM)Ω(0) . (33)

This state is an eigenstate of T (αi = 0) with an eigenvalue zi provided that λγ ≡
Λ/c− i/2 satisfy the so-called Bethe ansatz equations, that read in our case:

M∏

δ=1

λδ − λγ + i

λδ − λγ − i
= −

(
λγ − i

2

λγ + i
2

)N
λγ + 1

c
− i

2

λγ + 1
c

+ i
2

, γ = 1, . . . ,M , (34)

e−ikjL = zj =
M∏

δ=1

λδ + i
2

λδ − i
2

, j = 1, . . . , N . (35)

The logarithm of the second equation determines the eigenvalues kj and thus the

energy,

E =
N∑

j=1

2π

L
nj +

N

L

M∑

γ=1

(Θ(2λγ) − π) , (36)

where the integers nj denote the ’holon’ quantum numbers of the ground state,

Θ(λ) = −2tan−1(λ), and the spin rapidities λδ must be determined from Eq. (34).

One of the most important features of Eq. (36) is that - as a manifestation of spin-

charge separation - the contributions from the spin and charge sectors to the energy

separate. This is characteristic of impurity models with a linear dispersion.
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2.2.2 The T = 0 temperature limit

Equations (34) and (35) are not particularly useful. To make some progress, one

usually takes the thermodynamic limit, N → ∞ L → ∞, while keeping the energy

cut-off D = N/L fixed. As we have seen before, each eigenstate of the Hamiltonian

is characterized by a set of holon quantum numbers {nj} and possibly complex

rapidities {λδ}. More precisely, one can show [13, 59] that in the thermodynamic

limit the solutions λδ of Eq. (34) are organized into strings on the complex plane,

i.e., consist of sets containing n complex rapidities λ
(n)
j = λ̃+ i[j − (n+ 1)/2], with

λ̃ the center of the string (j = 1, . . . , n).

In general, all these string solutions should be considered. One can show, how-

ever, that for the ground state of the single channel Kondo problem all λδ’s are real,

and taking the logarithm of Eq. (34) we obtain

−NΘ(2λγ) − Θ(2λγ + 2/c) +
M∑

δ=1

Θ(λγ − λδ) = 2πIγ , (37)

with {Iγ} a set of integers (or half-integers). This equation can be rewritten in terms

of the density of solutions, ̺(λ) and the density of ’holes’, ˜̺(λ) as

a(λ) −
∫
K(λ− λ′)̺(λ′)dλ′ = ̺(λ) + ˜̺(λ) , (38)

where the kernel K and the driving term a are defined as

K(λ) = − 1

2π

∂

∂λ
Θ(λ) =

1

π

1

1 + λ2
, (39)

a(λ) =
2

π

(
N

1 + 4λ2
+

1

1 + 4(λ+ 1/c)2

)
. (40)

The spin part of the energy can be expressed as

Espin = D
∫
dλ[Θ(2λγ) − π] ̺(λ) . (41)

In the ground state there is no hole in the series of rapidities, ˜̺o ≡ 0, and the

ground state density of solutions, ̺o(λ), can thus be determined by simply solving

the inhomogeneous integral equation (38). The corresponding ground state energy

can be computed from (41). The contribution of the impurity can be separated and

is of order ∼ TK .
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The simplest excitations of the ground state turn out to be spin 1/2 spinons,

where one creates a hole in the series of λδ, i.e. ˜̺(λ) = δ(λ − λh). Note, that

in reality -for a nonlinear dispersion - this spinon is always glued together with a

holon, thus forming a spin 1/2 charge 1 quasiparticle. In the Bethe ansatz solution,

however, spinons and holons are independent quasiparticles.

2.2.3 The thermodynamic Bethe ansatz equations

While at T = 0 temperature it was sufficient to consider only real λδ’s, at finite tem-

peratures all kinds of string excitations must be considered. However, the previous

considerations can easily be generalized to this case. One has to introduce string

quantum numbers I(n)
γ and corresponding densities ̺n and ˜̺n. These densities are

then related to each other by integral equations similar to Eq. (38),

̺n(λ) = an(λ) −
∑

n′

∫
dλ′Knn′(λ− λ′)̺n′(λ′) , (42)

and the expression of the energy takes also a similar form,

Espin =
∑

n

∫
dλEn(λ)̺n(λ) , (43)

where the an’s, En’s and Knn′ ’s denote appropriately defined driving terms, string

energies, and kernels, whose specific form is not very important for the discussion

here.

At finite temperature, microscopic rapidity distributions (i.e., the λ
(n)
δ ’s of a given

state) fluctuates, and a state characterized by a given set of ̺n’s corresponds to many

such ’microscopic’ state. These internal degrees of freedom can be taken into account

through the entropy defined as

Sspin = kB

∑

n

∫
dλ[̺n ln(1 +

˜̺n

̺n

) + ˜̺n ln(1 +
̺n

˜̺n

)] . (44)

Minimizing the free energy, F spin[̺n] = Espin − TSspin with respect to the ̺n’s with

the constraint (42) yields then the famous thermodynamic Bethe ansatz equations

for ηn ≡ ˜̺n/̺n,

ln ηn = G ∗ [ln(1 + ηn+1) + ln(1 + ηn−1)] , (45)
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ln η1 = −2D

T
tan−1eπλ +G ∗ ln(1 + η2) , (46)

with the integral operator G defined as

[G ∗ f ](λ) ≡ 1

2

∫ ∞

−∞
dλ′

f(λ′)

cosh (π(λ− λ′))
. (47)

Together with the expression of the spin contribution to the free energy,

F spin = −T
∫
dλ

1

2

[
N

coshπλ
+

1

coshπ(λ+ 1/c)

]
ln(1 + η1(λ)) , (48)

the above equations constitute the full thermodynamic ’solution’ of the Kondo prob-

lem. Of course, one still has to solve a set of coupled integral equations, but this can

be relatively easily done numerically, and one can also obtain asymptotic expansions

from them in the limit T ≫ TK and T ≪ TK , respectively [11, 12, 13].

It is remarkable, that the integral equations (46) are totally independent of the

magnetic impurity, which finally only enters in Eq. (48) as an additive term to the

free energy, which is uniquely determined by the distribution of one-strings.

The manipulations above can also be carried out in the presence of an exter-

nal magnetic field, H which enters through the expression of the string energies as

En → En +2Hn, and modifies the asymptotic values of the ηn’s. At T = 0 the ther-

modynamic Bethe ansatz equations simplify to a single integral equation, analogous

to Eq. (38), and can be solved analytically.

Instead of a rather demanding detailed analysis of these integral equations, let

us just list the main results that can be obtained from them:

• Universality: In the limit, T, h≪ D the bandwidth cut-off D can be scaled out

of the thermodynamic Bethe ansatz equations, and the impurity contribution

to the free energy can be written in a scaling form:

F imp = Tf

(
T

TK

,
h

T

)
, (49)

where the Kondo scale is defined as TK ≡ 2De−π/c.

• High temperature expansion: A high temperature expansion of the free energy
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yields

F imp = −T
[
ln(2cosh

h

T
) − 1

2

h

T
tanh

h

T

(
1

ln(T/TK)
+

1

2

ln ln(T/TK)

ln2(T/TK)

)]
, (50)

implying a a logarithmic suppression of the Curie susceptibility.

• Fermi liquid regime: For T ≪ TK the susceptibility and the linear specific heat

coefficient become finite corresponding a the Fermi liquid behavior,

C imp =
π

6TK

T , χimp =
µ2

B

πTK

. (51)

These results also imply that the so-called Wilson ratio, Tχimp/C imp is a factor

of two larger than that of a free electron gas [10]. This surprising result is simply

the consequence of spin-charge separation: For a free electron gas the specific

heat comes from both the spin and the charge sectors, Cel = Ccharge + Cspin =

2Cspin, while the susceptibility only comes from the spin sector, χel = χspin.

The impurity spin, however, only gives quasiparticle excitations in the spin

sector, implying χimp/cimp = χspin/cspin = 2χel/cel.

• T = 0 magnetization: The impurity contribution to the zero temperature

magnetization is a universal function of h/TK , M imp = M imp(h/TK). In the

h≫ TK limit

M imp = 1 − 1

2 ln h
T1

+
ln 2

ln2 h
T1

−
ln h

T1
+

2 ln2 h
T1

+ . . . (52)

with T1 = (eπ/2)1/2TK .

These results of the exact solution fully justify Nozières’ Fermi liquid picture and

the existence of a single, dynamically generated energy scale TK , as suggested by the

renormalization group method.

2.3 Numerical renormalization group (NRG)

While the Bethe ansatz provides a solution of the full thermodynamics of a quantum

impurity problem, it is not possible to obtain dynamical correlation functions with it.
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To this purpose, it is much more convenient to use Wilson’s numerical renormaliza-

tion group (NRG) method [10, 14], which is a powerful technique to study almost any

quantum impurity problem, and actually preceded five years the Bethe ansatz solu-

tion of the Kondo problem. Since we shall use Wilson’s numerical renormalization

group method later on, let us shortly review this technique here.

2.3.1 Discretization

There are two crucial observations that naturally lead to Wilson’s numerical solution

of the Kondo problem:

(a) Perturbation theory results in logarithmic singularities. This implies that all

electrons in the conduction band contribute to the formation of the Kondo state, and

a logarithmic discretization procedure is needed to perform an accurate numerical

calculation. To this end, one first divides the conduction band onto logarithmic

’subbands’, and discretizes the kinetic part of Eq. (21) as

Hband ≈
∑

σ

∞∑

n=1

ǫn(b†nσbnσ − d†nσdnσ) , (53)

where bn ∼ ∫ Λ1−n

Λ−n a(k), dn ∼ ∫−Λ−n

−Λ1−n a(k), ǫn is the average energy ǫn ≈ (Λ−n +

Λ1−n)/2, and the cut-off energy has been taken to be unity D0 ≡ 1. The constant

Λ > 1 here is a discretization parameter. In the limit Λ → 1 the discrete levels

introduced represent the conduction electron band faithfully, but numerically a very

good accuracy can be reached even with Λ ≈ 3.

(b) Second, we want to be able to capture the strong coupling limit J ≫ D0 = 1

too. In this limit, the exchange coupling to the magnetic moment dominates. This

interaction part of the Hamiltonian can be simply written as

H int = jD0
~S (f †

0~σf0), (54)

where f †
0,σ = (

∫
dka†σ(k))/

√
2D0 creates an electron at the impurity site. Clearly,

to solve the Kondo problem with sufficient accuracy, one only has to capture the

time-dependence of f0 with a logarithmic accuracy. To this end, one first writes f0,σ

as a sum of the operators bnσ and dnσ, computes the commutator [Hband, f0] using

Eq. (53), and identifies the piece f1 in this expression, which is orthogonal to f0.

This procedure can be repeated recursively to yield the following approximation for
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Figure 6: Structure of the effective Hamiltonian of Wilson.

Hband

Hband =
∑

σ

∞∑

i=0

ti
(
f †

i,σf
†
i+1,σ + h.c.

)
. (55)

where the hopping matrix elements decay exponentially, ti ≈ 1+Λ−1

2
Λ−i/2, with Λ

the NRG discretization parameter defined earlier. The structure of this Hamiltonian

is shown in Fig. 6: the impurity is sitting at the end of this semi-infinite chain.

Taking longer and longer segments of the chain corresponds to taking electron-hole

excitations with lower and lower energy into account. One can also show that the

operators f †
iσ above create states of larger and larger spatial extension, Ri ∼ Λi/2.

2.3.2 Numerical procedure

To solve H = H imp +Hband numerically, we shall first rewrite the Hamiltonian in a

more inspiring way as

H̃N+1 = Λ1/2 H̃N +
∑

σ

(
f †

Nσf
†
N+1 σ + h.c.

)
(56)

H = lim
N→∞

1 + Λ−1

2
Λ−(N−1)/2H̃N , (57)

where we have introduced the rescaled Hamiltonians

H̃N ≡ 2

1 + Λ−1
Λ(N−1)/2HN , (58)

HN ≡ Himp +
∑

σ

N−1∑

i=0

ti
(
f †

i,σfi+1,σ + h.c.
)
. (59)

Note that H0 in this series just represents the impurity Hamiltonian and contains

only f0.

To compute the physical properties of the Kondo model, one diagonalize the

Hamiltonians H̃N iteratively: Knowing the eigenstates |E〉N of a chain of length N
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and the matrix elements of the operators f †
Nσ between these states, one can construct

new basis states for a chain of length N + 1 from them by simply adding the site

N + 1. Clearly, one can also compute the matrix elements of the hopping term

∼ ∑
σ(f †

N,σfN+1,σ + h.c.), and of the operator f †
N+1,σ in this new basis, construct the

eigenstates |E〉N+1 of H̃N+1, and determine the matrix elements of f †
N+1,σ between

these states. Of course, this procedure cannot be repeated too many times without

making further approximations, since the Hilbert space increases exponentially fast.

Therefore, after a few iterations, one truncates the spectrum of H̃N , and keeps only

a finite number of eigenstates |E〉N to build the new basis set.

To increase the accuracy and speed of the calculation, one usually exploits sym-

metries too. This is a rather complex task, especially if more complex symmetries

with non-Abelian generators such as spin SU(2) symmetry, pseudospin symmetries

etc. are considered. The difficulty arises, because f †
σ being a spin 1/2 charge one

operator (which may also have additional quantum numbers in more complicated

models) connects states corresponding to different irreducible representations in a

non-trivial way. To keep track of these matrix elements one has to use irreducible

tensor operators and the Wigner-Eckhart theorem [60].

A typical spectrum of H̃N for the Kondo model is shown in Fig. 7 as a function

of iteration number. The spectrum of H̃N is practically the finite size spectrum of

the Hamiltonian, Eq. (22), where the iteration number controls the system size. To

understand this, we recall that the f †
N creates a conduction electron state of spatial

extent L ∼ ΛN/2. Thus HN is the Hamiltonian of a Kondo impurity put into a box

of finite size, L ∼ ΛN/2. On the other hand, the energy scale ∆L ≡ 2π/L ∼ Λ−N/2

occurring in the definition of H̃N in Eq. (58) is nothing, but the single particle level

spacing of a system of size L. In other words, apart from a constant, the spectrum of

H̃N is just the spectrum of a system of size L divided by the level spacing ∆L = 2π/L,

i.e. the finite size spectrum.

This finite size spectrum contains already a lot of information: For large iter-

ation numbers N the spectrum simplifies and becomes usually invariant under the

iteration. Thus H̃N becomes universal and independent of N (see Fig. 7). The

Hamiltonian corresponding to this spectrum is called the fixed point Hamiltonian,

and the spacing, quantum numbers, and degeneracy of the states is characteristic

of the universal fixed point Hamiltonian of the renormalization group as l → ∞.

From the relaxation of the levels to their fixed point value one can determine the
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Figure 7: Spectrum of the operators H̃N as a function of iteration number for the Kondo
problem.
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Figure 8: Spectral function of the local spin-spin correlation function.

scaling dimensions of the irrelevant operators around the fixed point, which are di-

rectly related to the low temperature exponents of the free energy, and other physical

quantities. As we shall discuss in Chapter 5, the finite size spectrum can also be

directly used to compute physical quantities such as magneto-conductance [50, 61] .

Having the many-body eigenstates and eigenenergies of HN at hand, one can

calculate thermodynamic quantities at an energy scale T, ω ∼ ωN ∼ Λ−(N+1)/2,

by simply computing the partition function and numerically differentiating it. More

interestingly, however, it is possible to compute local dynamical correlation functions

too. More precisely, one can calculate the spectral function of any local correlation

function. To compute, e.g., the T = 0 temperature spectral function of the spin-spin
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autocorrelation function, we express it as

̺spin(ω) = 2π
∑

E

δ(En − EG − ω)|〈n|Sz|G〉| , (60)

where |G〉 denotes the exact ground state and |n〉 are the exact eigenstates of Eq. (21).

Replacing the Dirac delta above by some average over a finite window, we can then

use the finite size spectrum H̃N with ωN ∼ ω to obtain the spectral function at

frequency ω with a very high accuracy. As a typical example, we show the spin

spectral function of the single channel Kondo model in Fig. 8. The peak in the

spectral function is around ω ∼ TK . Below that scale the spectral function scales as

̺spin ∼ ω/T 2
K . This behavior is characteristic of a Fermi liquid and corresponds to a

finite susceptibility

χ ∼
∫
dω

̺spin(ω)

ω
∼ 1

TK

, (61)

by the Kramers-Kronig relation, in agreement with the Bethe ansatz results [12, 13].
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3 Dissipation effects in quantum impurity models

Dissipation effects are present whenever we couple some degree of freedom to a

macroscopic heat bath: This coupling opens up relaxation channels and is ultimately

responsible for irreversibility. Dissipation is thus implicitly present in practically

any quantum impurity problem, whether it includes bosonic or fermionic degrees of

freedom.

Dissipative models are usually constructed to study how dissipation destroys the

quantum coherent motion of some microscopic degree of freedom. However, the

distinction between ’dissipative’ models and ’non-dissipative’ models is somewhat

academic. As we already mentioned in Chapter 1, the Ohmic dissipative two level

system (TLS) - the most studied model of dissipation - is equivalent to an anisotropic

Kondo problem, and thus the Kondo model could also be considered as a model with

’dissipation’.

In the present chapter we shall study dissipative models in the above loose sense.

First, we shall review the physics of the Ohmic dissipative two state system and

compute its full thermodynamics with Bethe ansatz techniques. Then we shall study

how dissipation is generated by the spin of a tunneling particle. Finally, we shall

analyze a very general dissipation model, the so-called Bose-Fermi Kondo model,

where a spin is coupled to bosonic and fermionic degrees of freedom at the same

time.

3.1 The Ohmic dissipative two state system

The Ohmic spin-boson (or dissipative two state) model is defined by Eq. (4) and the

spectral function J(ω) = 2παω below a high frequency cut-off, ωc, and is one of the

most frequently used models of dissipation. The reason we call this model ’Ohmic’

is that the linear spectral function J(ω) ∼ ω naturally arises whenever we consider

the motion of a particle in a metal.

3.1.1 Microscopic model

To show this more explicitly, let us study the motion of an atom (that we shall

sometimes call heavy particle) with a mass M moving in a double well potential

U(R) and coupled to free conduction electrons through an interaction V (R − r),

with R and r the coordinates of the atom and the conduction electrons, respectively
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Figure 9: TLS formed in a disordered region and the effective potential U(R) describing
its motion.

(see Fig. 9). Such a tunneling center can form in amorphous metals or disordered

regions of a metal. The potential U(R) is the effective potential produced by all

other atoms and conduction electrons. At low temperatures the wave function of

the heavy particle is localized around the right/left minimum RL/R of the double

well potential. For typical parameters the extension of the wave function around

the minima is in the range of ∼ 0.01Å, and for a separation between the minima,

d = |RR − RL| ∼ 0.1Å, the particle moves with tunneling from one minimum to

the other. Therefore, at low temperatures we can describe the heavy particle by the

tunneling Hamiltonian

HTLS = −1

2
∆τx −

1

2
ετz , (62)

where the τi’s denote Pauli matrices, ∆ ≡ ∆x is the tunneling amplitude, and ε ≡ ∆z

denotes the asymmetry of the double well potential, and τz = ±1 correspond to the

two tunneling positions.

For the sake of simplicity, let us consider a symmetrical tunneling system. To

take the effect of conduction electrons into account, we introduce operators a†s,σ(k)

and a†p,σ(k) creating spherical waves in the s and p-channels around the impurity

a†s,σ(k) ∼
∫ dp̂

4π
c†p,σ , a†p,σ(k) ∼

∫ dp̂

4π
p̂ẑ c†p,σ . (63)

Here the direction ẑ is oriented along the axis of the two level system, c†p,σ creates

a free electron with momentum p and spin σ, and we average over all directions p̂

while fixing |p| = kF + k. For a symmetrical two state system we can construct the

31



leading interaction term by simple symmetry considerations and express it as

HTLS
int = vz

∑

σ

(ψ†
p,σψs,σ + h.c) τz + vx

∑

σ

(ψ†
s,σψs,σ − ψ†

p,σψp,σ) τx + . . . . (64)

where ψ†
s/p,σ =

∫
dk a†s/p,σ(k) creates a local fermion state with s or p-wave symmetry

around the two state system. One can simply estimate the dimensionless couplings

above, and one finds that vz ∼ kFd while vx ∼ (kFd)
2e−γ ≪ vz with γ the Gamow

factor [32]. For the time being, we shall drop the latter - usually rather small

- coupling, which describes ’electron assisted tunneling’ and shall keep only the

dissipative term vz, that hinders the tunneling process. To make the structure of

(64) more transparent, it is worth making a unitary transformation and introducing

the ’right’ and ’left’ fields ψs/p → ψ± ≡ (ψs ± ψp)/
√

2. In this basis, the dissipative

part of (64) reads

HTLS
z = vz

∑

σ

(ψ†
+,σψ+,σ − ψ†

−,σψ−,σ)τz . (65)

The conduction electrons can be described in terms of chiral fermions, ψµ,σ(x) ≡
∫
dk e−ikx a†s/p,σ(k), just as in Section 2.2,

Hband =
∑

σ=±

∑

µ=±

∫ dx

2π
ψ†

µ,σ(x) i∂xψµ,σ(x) . (66)

From Eq. (65) it is clear why the coupling vz suppresses dissipation. For τz = − the

fermions ψ+,σ experience an attractive potential at the origin. Accordingly, they try

to screen this potential by accumulating charge at the origin. If the particle tunnels

to the state τz = +, then the potential scattering changes sign, and accordingly, the

previously accumulated charge in channel ψ+,σ has to be removed and piled up in

channel ψ−,σ. In other words, the tunneling particle has to carry along its screening

cloud, and thereby its tunneling amplitude is reduced.

The simplest way to show the equivalence of this model with Eq. (4) is to use

bosonization techniques (see Appendix A for more details). With this method, we

can rewrite HTLS
z as

Hz =

√
α

2
∂xφ(0) τz , φ(x) = −

∑

q 6=0

(
2π

|q|L

)1/2

e−iqxe−|q|a/2 bq , (67)
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where the dissipation strength α is related to vz as

α = 2
(2δTLS

π

)2
, δTLS = artan(πvz) . (68)

The operators b†q>0 = b−q ∼ ∑
µ,σ

∑
k µ a

†
µ,σ(k + q)aµ,σ(k) satisfy canonical anticom-

mutation relations, and create a density wave with energy q: Hband → ∑
q>0 q b

†
qbq.

The factor 2 in the expression of α is due to the spin of the electrons. It is easy to

show that the bosonic spectral function indeed takes the form J(ω) = 2παωe−ω/ωc ,

where the cut-off ωc can be identified as the inverse of the cut-off length a that

appears in the bosonization procedure.

3.1.2 Equivalence with the anisotropic Kondo problem

The simplest way to prove the equivalence of the Kondo problem and the spin-boson

model is by using the bosonization techniques presented in Appendix A. We can,

however, understand the mapping between these two models quite easily from a

simple scattering point of view.

Let us first write the anisotropic Kondo model as

HAK =
∑

σ=±

∫ dx

2π
ψ†

σ(x) i∂xψσ(x) +
1

2
jzSzψ

†(0)σzψ(0) +
1

2
j⊥(S+ψ↓(0)ψ↑(0) + h.c.) ,

(69)

where, as in Eq. (22), the left-moving fermionic fields with x > 0 and x < 0 represent

incoming and outgoing conduction electrons in the s-wave scattering channel. For

j⊥ ≡ 0 this model can be solved exactly, and it is a simple matter to show that the

fields ψσ get a phase shift δz = artan(πjz/4) as they pass from the right to the left:

ψσ(x < 0) = e∓2iδzψσ(x > 0) , (70)

where the sign of the phase depends on the orientation of the impurity spin.

To prove the equivalence of Eqs. (69) and (4), one constructs a unitary transfor-

mation U that transforms Eq. (69) into Eq. (4) (see Appendix A.2 for details). This

transformation simply consists of tying a conduction electron antiferromagnetically

to the impurity spin and considering the states:

|+〉 ≡ 1√
a
ψ↓|Sz = 1/2〉 , |−〉 ≡ 1√

a
ψ↑|Sz = −1/2〉 , (71)
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Figure 10: Sketch of the mapping between the dissipative Ohmic two state system and
the anisotropic Kondo problem.

as shown in Fig. 10. The prefactor 1/
√
a = (〈0|ψ(0)ψ†(0)|0〉)1/2 above is needed to

normalize the states |±〉, where 1/a is of the order of the bandwidth. Clearly, the

effect of j⊥ is simply to flip the states |±〉. However, the scattering properties of the

conduction electrons are also changed in this new basis: Since there is a fermion tied

to the impurity at the origin, they pick up an additional phase π/2 as they pass the

impurity, due to the fermionic anticommutation relations. In other words, the part

∼ jz of the Hamiltonian becomes after this unitary transformation:

H̃K =
1

2a
j⊥τx + λzτz(ψ

†
↑ψ↑ − ψ†

↓ψ↓) , (72)

where the τi’s act in the subspace of the states |±〉, and λz is a coupling producing

a phase shift δeff = δz − π/2 for the conduction electrons in the transformed Hamil-

tonian. Clearly, this Hamiltonian is just the spinless version of Eq. (65), and thus

maps on the dissipative two level system with

∆ = j⊥/a , (73)

and the effective dissipation strength given by the spinless version of Eq. (68),

α =

(
2δeff
π

)2

=

(
1 − 2δz

π

)2

. (74)

Evidently, a local field hSz in the Kondo problem maps on an asymmetry ǫ = h for

the tunneling system,

hSz →
h

2
τz . (75)
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3.1.3 Renormalization Group analysis and phase diagram

To construct the phase diagram of the spin-boson model, we shall use a scaling

analysis. The scaling equations can be directly computed for the dissipative two state

system model, however, one can also exploit the previously established mapping to

construct them. For the anisotropic Kondo problem the scaling equations have been

constructed by Yuval and Anderson using a path integral approach for arbitrary

values of jz but small j⊥ [3]. They can be written most easily in terms of the phase

shifts δz introduced earlier as

d

dl

(
δz
π

)
=

1

4

(
1 − 2

δz
π

)
j2
⊥

dj⊥
dl

= 4
δz
π

(
1 − δz

π

)
j⊥ . (76)

For ferromagnetic δz < 0’s the scaling trajectories scale to fixed points with j⊥ = 0.

Along this line of fixed points the impurity spin is essentially free. For antiferro-

magnetic δz > 0, on the other hand, j⊥ increases under scaling, spin flip processes

ultimately win, and lead to a Kondo effect.
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Figure 11: The scaling trajectories of the Ohmic two state system obtained from the
Anderson-Yuval scaling equations for the anisotropic Kondo model. Only the region 0 <
α < 3 is shown. The arrows indicate the direction of increasing l. .
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Figure 12: Sketch of the mapping between the dissipative Ohmic two state system and
the anisotropic Kondo problem. The dot indicates the Toulouse point.

By equations (73) and (74) the scaling equations (76) map onto

dα

dl
= α

(
∆

ωc

)2

+ . . . ,
d(∆/ωc)

dl
= (1 − α)(

∆

ωc

) + . . . (77)

where ωc ≡ 1/a is the cut-off energy, and l = ln a. These equations can be easily

integrated, and the corresponding scaling trajectories are plotted in Fig. 11.

Let us first assume that ∆/ωc ≪ 1. Then we can neglect the renormalization

of α, at least initially. The antiferromagnetic (δz > 0) and ferromagnetic (δz < 0)

regions map onto the regimes of weak (α < 1) and strong (α > 1) dissipations,

respectively, where the physical properties of the model are qualitatively different:

For very small dissipations the variable ∆/ωc increases under scaling and dominates

the low energy physics of the tunneling system. We therefore expect that the two

state system oscillates, i.e., the correlation function 〈τz(t)τz(0)〉 is a slowly decaying

oscillatory function. However, the frequency of the oscillations becomes renormalized

due to dissipation. From the scaling equations it is easy to obtain this renormalized

oscillation frequency,

∆r ≈ ∆0

(
ωc,0

∆0

)− α
1−α

, (78)

where ωc,0 denotes the initial value of the cut-off frequency.

On the other hand, we can see that for sufficiently large α, the effective tunneling

amplitude scales to zero, and ∆/ωc is irrelevant: This can be interpreted as the

dissipation-induced localization of the particle. In other words, at T = 0 temperature

the two state system cannot tunnel. The correlation function 〈τz(t)τz(0)〉 does not go

to zero for t→ ∞, and there is a spontaneous symmetry breaking (the ground state
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Figure 13: Spectral function of the dissipative two state system obtained by Costi and
Kieffer using the numerical renormalization group method and exploiting the discussed
mapping (from Ref. [62]). The inset shows the dissipation dependence of the renormalized
tunneling rate.

becomes two-fold degenerate for large α’s). The physics in the delocalized regime is

qualitatively the same for all α < 1, however, there is a special point, α = 1/2, where

the physical properties of the dissipative two state system change quantitatively:

For α > 1/2 the oscillations disappear from the correlation function. At this special

point (Toulouse point for the Kondo problem), the model can be analytically solved

using bosonization and refermionization methods. The correspondence between the

anisotropic Kondo model and the dissipative tunneling system is sketched in Fig. 12.

The correspondence between the two models can be extensively used to determine

the properties of the spin boson model. In Fig. 13 we show, e.g., the numerically

computed spectral functions of the dissipative two state system model, which have

been obtained using the numerical renormalization group method for the anisotropic

Kondo problem and exploiting the mapping above [62]. These results of Costi beau-

tifully show how the finite energy peak describing coherent oscillations gradually

disappears as we increase dissipation. In the next subsection, we shall use the same

mapping to determine the thermodynamic properties of the spin boson model by

Bethe ansatz methods.
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3.1.4 Bethe ansatz results

In this subsection we shall study the thermodynamic behavior of the dissipative two

state system model using Bethe ansatz methods, by exploiting the existing mapping

between the anisotropic Kondo problem, and the fact that the latter is integrable.

The anisotropic Kondo problem has been solved by Melnikov and Tsvelik [63, 13].

However, these authors used their solution just to get a systematic approximation to

the isotropic Kondo problem, and their study did not focus to the strongly anisotropic

regime, corresponding to weak dissipations.

Similar to the isotropic single channel problem discussed in Section 2.2.1, there

is a spin-charge separation and spin excitations can be characterized in terms of

rapidities jδ, which satisfy the analogues of Eqs. (34) and (35),

eikjL =
M∏

β=1

sinh(µ(λβ + i
2
))

sinh(µ(λβ − i
2
))
, (79)

M∏

β=1

sinh(µ(λα − λβ + i))

sinh(µ(λα − λβ − i))
= −

sinh(µ(λα + θ
µ

+ i
2
))

sinh(µ(λα + θ
µ
− i

2
))

[
sinh(µ(λα + i

2
))

sinh(µ(λα − i
2
))

]N

.

Here the parameters µ and θ are related to the dimensionless couplings j⊥ and

jz, however, the particular connection between them depends on the regularization

scheme used. Therefore, in the Bethe ansatz solution, it is rather µ and θ that should

be viewed as independent microscopic couplings. The coupling µ is usually called

anisotropy, µ = π/2 corresponding to the fully isotropic case. As we have proven in

[64], µ it is directly related to the dissipation through:

µ

π
= 1 − α . (80)

The coupling θ determines a universal low temperature scale in the Kondo prob-

lem, which we can call the Kondo temperature, and can identify essentially as the

renormalized tunneling rate ∆r defined in the previous subsection,

∆r = αTK =
(
1 − µ

π

)
2D exp

(
−πθ
µ

)
. (81)

The thermodynamic Bethe ansatz equations can be constructed along similar

lines as in Section 2.2.1. Similar to Eqs. (34), i the thermodynamic limit, Eqs. (79),

admit string solutions. However, in this case strings can have different parities and
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only strings of certain lengths are allowed. The allowed string solutions can be

classified in terms of an infinite fraction expansion of µ/π [65] Furthermore, the

thermodynamic Bethe ansatz equations reduce to a finite set of integral equations if

µ/π can be written as a finite fraction.

We have deduced many of the thermodynamic properties of the Ohmic spin-boson

model by analyzing this set of integral equations for µ/π = 1/ν and µ/π = (ν−1)/ν.

There is, however, two important things that should be kept in mind when analyzing

the dependence on the asymmetry energy ε:

(a) Firstly, to make the model integrable, one has to introduce an artificial interaction

between the conduction electrons. As already emphasized by Tsvelik and P. B.

Wiegmann [13], interaction renormalizes the g-factor of the electrons, and one has

to take this renormalization into account.

(b) Secondly, the Bethe ansatz solution can only take into account the effect of

a global magnetic field. As a consequence, the external field h = ε acts on the

conduction electrons too.

We have shown using an exact result due to Wiegmann and Finkelstein [66], that

these two mechanisms exactly compensate each-other, and therefore the Bethe ansatz

computations give directly the free energy of the spin boson model (dissipative two

state system model).

In the high temperature limit, T ≫ ∆r, ǫ we find

F (T ≫ ∆r, ε) ≈ −T
{
ln

sinh(ε/T )

sinh(ε/2T )
− (

∆r

T
)2−2α

(
A+B(

ε

T
)2
)}

, (82)

χ(T ≫ ∆r; ε = 0) = −∂
2F

∂ǫ2
≈ 1

T
(
1

4
− 2B(

∆r

T
)2−2α) , (83)

c(T ≫ ∆r; ε = 0) ∼ (
∆r

T
)2−2α , (84)

where the constants A and B depend only on α. The power law corrections are

characteristic of the spin-boson model. In the low temperature limit we find:

F (ε≪ T ≪ ∆r) ≈ −T 2

∆r

(απ
6

+
1

4π

ε2

T 2

)
, (85)

χ(T ≪ ∆r; ε = 0) ≈ 1

∆r

1

2π
, (86)

c(T ≪ ∆r; ε = 0) ≈ π

3

Tα

∆r

, (87)
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Figure 14: Left: Entropy, S(T ), for the symmetric two state system (ε = 0) for weak
(α < 1/2) and strong (α > 1/2) dissipation cases. Right: Specific heat, c(T )/(αT/∆r) = γ̃,
showing the development of the peak at kBT ≈ ∆r for α ≤ 1/3 and ε = 0. γ̃(T = 0) =
π/3 = 1.04719755 is recovered to 5 decimal places. The T 3 coefficient in C(T )/T is negative
for α > 1/3 and positive for α < 1/3.

where the numerical constants have been calculated following the same lines as in

Ref. [13]. Thus at low temperatures the well-known Fermi liquid behavior is recovered

[9, 18].

To obtain the thermodynamic quantities for all temperatures and asymmetries,

one has to solve the Bethe ansatz integral equations numerically. This is particularly

difficult for large values of ε, where the numerical procedure needs some care. In

this regime, to compute the specific heat and susceptibility, we derived separate set

of integral equations, similar to Eqs. (46) [64].

Here we shall just discuss the few most important results. The entropy of the

symmetric two state system is shown in Fig. 14.a as a function of temperature for

several values of the dimensionless dissipation strength, α, ranging from weak to

strong dissipation. The correct value of the entropy, S = ln 2, is recovered at high

temperature for all α.

At low temperature the specific heat is given by c(T ) = απ
3

(T/∆r)+b(α)(T/∆r)
3+

. . .. The coefficient b(α) of the T 3 term is negative for α ≥ 1/3, a special point in

the parameter space of the dissipative two state system. For small dissipations, the

linear specific heat coefficient develops a peak at ∼ ∆r, which is reminiscent to the

resonance in the spectral function in Fig. 13.

Fig. 15.a shows that the dielectric susceptibility of the dissipative two state system

remains finite down to T = 0 for all dissipation strengths α < 1. In contrast to the
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Figure 15: Left: Dielectric susceptibility, χ(T ), for the symmetric two state system
(ε = 0) for weak (α < 1/2) and strong (α > 1/2) dissipation cases. The susceptibility
is finite at T = 0 with ∆r(α)χ(T = 0) = 1/2π in all cases as seen in (a) and attains its
free-spin value of 1/4T at high temperatures. Right: Dielectric susceptibility, χsb(T ), for
the special case of strong dissipation, α = 4/5.

specific heat, c(T )/T , the susceptibility is a monotonically decreasing function of

temperature for all dissipation strengths, and there is no signature of the onset of

activated behavior in the susceptibility as there was for α < 1/3 in c(T )/T . As

shown in Fig. 15.b, the finite temperature peak in χ only arises when there is a finite

level asymmetry ǫ.

3.2 Dynamics of a tunneling particle with spin

In the previous two subsections we studied the dynamics of a tunneling impurity

coupled to an Ohmic bath. In particular, we have shown that the problem of a

tunneling impurity in a metal can be mapped to the spin-boson model and worked

out the correspondence between the dissipation strength α and the coupling vz for

short tunneling distances, Eq. (68). It has been shown by Yoshida for arbitrary

separations d that for a simple s-wave scatterer in a free electron gas the dissipation

can be expressed as

α< ≡
( 2

π
atan

tan δs
√

1 − F 2

√
1 + F 2 tan2δs

)2
, F =

sin(kFd)

kFd
, (88)

where δs denotes the phase shift in the s-channel, and F is an overlap parameter.
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From Eq. (88) it is clear that to obtain strong dissipations one needs resonant

scattering at the Fermi energy, i.e. δs ∼ π/2. One possible mechanism that could

lead to such a resonant scattering is the Kondo effect. This motivated us to study a

simple model, where the tunneling particle has a spin, tunnels between two positions,

R± and couples locally to the conduction electrons by a simple exchange interaction,

Hint = J P+
~S (Ψ†

+~σΨ+) + J P− ~S (Ψ†
−~σΨ−)+ , (89)

where P± = 1
2
(1 ± τz) are projector operators and the fields ψ± create conduction

electrons at positions R±,

Ψ†
±,µ =

∫
eikR±c†kµ

d3k

(2π)3
. (90)

Following Ref. [68], we have mapped this model to a two-channel problem and studied

it using the numerical renormalization group technique. In Fig. 16 we present the

obtained spin and orbital spin spectral functions for various overlap parameters F

[69]. Two energy scales appear in the spectral functions: The Kondo scale TK , which

appears as a peak in the spin spectral function, and the renormalized tunneling

energy, ∆∗. Quite surprisingly, we find that in the peculiar case, F = 0 the spin

susceptibility diverges logarithmically, and a two-channel Kondo effect appears below

∆∗. This behavior is, however, not generic, and for any finite F crosses over to a

Fermi liquid with ̺S(ω) ∼ ω. Consequently, for very small values of F a third

crossover occurs at an energy T ∗. For generic F ’s, however, this crossover takes

place almost simultaneously with the crossover at ∆∗ and only a small kink remains

from the two-channel Kondo behavior of F = 0.

To determine the scale ∆∗ and the temperature-dependence of the tunneling

rate we invoke renormalization group arguments. The Hamiltonian involves three

dimensionless parameters: j ≡ Jk2
F/2π

2, F , and ∆0/ω0, with ω0 the high-energy

cutoff of the order of the Debye frequency [124]. Well above ∆∗, the dimensionless

effective tunneling ∆̃(ω) ≡ ∆(ω)/ω at energy scale ω is small, and therefore ∆(ω)

must satisfy the following scaling equation:

d ln ∆(ω)

d ln ω
= α(j(ω), F ) , (∆(ω0 = ∆0)). (91)

Above ∆∗ the impurity is immobile. Therefore the effective Kondo coupling j(ω)
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Figure 16: Logarithmic plot of the spin (̺S) and orbital spin (̺T ) spectral functions for
the tunneling spin model, computed by numerical renormalization group methods. The
energy scales TK and ∆∗ are also indicated.

does not depend on the other two parameters, and is a universal function of ω/TK .

In this regime F can be completely transformed out of the Hamiltonian and is

therefore constant. Thus α = α(ω/TK , F ) is a universal function of ω/TK and F

for ω ≫ ∆(ω). This function is related to the time-dependent correlation function

as 〈τx(t)τx(0)〉 ∼ 1/t2α(ω) (t ∼ 1/ω) [81]. Assuming that the retarded and the

time ordered correlation functions have the same singular behavior, this immediately

implies that, within logarithmic accuracy, α can be determined from the logarithmic

derivative of the corresponding spectral function, ̺x
T as

α(ω) ≈ 1

2
(
d ln ̺x

T

d lnω
+ 1) , (ω ≫ ∆∗). (92)

We plotted this universal function in Fig. 17. For large frequencies α ≈ 0, meaning
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tom), as determined from the logarithmic derivative of the spectral function ̺x

τ . Bottom:
Temperature dependence of the normalized tunneling rate, R̃(T ) = R(T )/∆2

0. F decreases
from top to bottom. We used Λ = 3, g = 0.144, and ∆0 = 2.31 · 10−5 in both figures.

that the tunneling amplitude remains unrenormalized above TK . Below TK , on the

other hand, it scales to an overlap-dependent constant, α<(F ). As shown in the

inset, α< coincides with the expression Eq. (88) for a maximally strong scatterer

with a phase shift δs = π/2 [67]. Thus, far below TK (but still above ∆∗) the Kondo

impurity can be replaced by maximally strong potential scatterer in agreement with

Nozières’ Fermi liquid picture [9]. Thus for T < TK the Kondo effect indeed leads

to a strong dissipation as we expected.

We also determined the renormalized temperature dependent tunneling rate,

R(T ), which can be experimentally determined by performing real-time measure-

ments [71]. By dimensional analysis, we obtain [69]

R(T ) ∼ ∆(ω ∼ T )2/T , (93)
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where ∆(T ) has been computed by numerically integrating Eq. (91). As the most

striking consequence of the Kondo effect, the logarithmic slope of R(T ) changes at

T ≈ TK (see Fig. 17, bottom).

Finally, in Fig. 18 we show ̺z
T/ω, where coherent tunneling appears as a peak.

Even though the exchange coupling j is small initially, below the Kondo scale it

becomes large, and suppresses the coherent tunneling of the particle even for inter-

mediate values of the overlap F .

3.3 The Bose-Fermi Kondo model

In the previous seubsections we studied the simplest possible case of a tunneling

particle, where dissipation appears as a coupling to the operator τz only. In many

cases, however, dissipative fields couple to several spin components. Moreover, in

some cases fermionic degrees of freedom may also couple independently to the im-

purity:

(a) In case of a megnetic impurity in a three-dimensional antiferromagnet the mag-

netic impurity may couple to the Goldstone modes in the ordered phase [72]. These

Goldstone modes give rise to two bosonic fields that induce Ohmic dissipation.

(b) Similar dissipative models emerge in mean field theories of quantum spin glasses

[74, 73]. In these theories the dissipative field acting on a given spin is provided by

the back-reaction of the other spins, and must be determined selfconsistently.
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(c) It has been also argued [75] that replacing a magnetic ion in the Néel state of a

two-dimensional antiferromagnet by a non-magnetic impurity leads to the formation

of a local magnetic moment, which then couples to the order parameter fluctua-

tions. The resulting interaction involves three bosonic fields corresponding to the

three spin components. At the quantum critical point of the antiferromagnet these

bosonic fluctuations become gapless and decay with some anomalous dimension.

(d) A ’locally quantum critical’ phase transition has been observed in the alloy

CeCu5−xAux, where a quantum phase transition between a paramagnetic (heavy

fermion) metal and an antiferromagnetic metal takes place as a function of doping

[41, 76, 77]. In this material Ce ions provide a spin, which is screened by the con-

duction electrons in the paramagnetic phase through a Kondo effect, and this spin is

responsible for the antiferromagnetism in the ordered phase. Clearly, a competition

of the bosonic order parameter fluctuations and the fermionic screening mechanism

gives rise to this interesting quantum critical point, where the critical fluctuations

are experimentally found to be local in space but anomalous in time. To capture

this competition, an extended dynamical mean field approach has been proposed,

where an impurity spin is considered in the presence of both bosonic and fermionic

fluctuations, the so-called Bose-Fermi Kondo problem [78, 79].

In the present subsection we shall study the fully anisotropic Bose-Fermi Kondo

model, defined by the interaction Hamiltonian:

Hint =
∑

α

jαS
α(ψ†1

2
σαψ) +

∑

α

Λǫ/2γαS
αϕα . (94)

Here jα and γα (α = x, y, z) denote dimensionless coupling constants, and Λ is a high

energy cutoff. We assume that the fermionic imaginary time propagator corresponds

to a free degenerate Fermi gas and it therefore decays as ∼ 1/τ while the bosonic field

shows critical imaginary time correlations at zero temperature with an anomalous

dimension ǫ ≥ 0 at T = 0:

〈Tψσ(τ)ψ†
σ′(0)〉 =

δσσ′

τ
, 〈Tϕα(τ)ϕβ(0)〉 = cst.

δαβ

τ 2−ǫ
. (95)

For ji = γx = γy = 0 and ǫ = 0 this model reduces to the spin boson model with a

dissipation parameter α = γ2
z/2, and the field ϕ corresponding to ∂xφ in Eq. (67).

The SU(2) invariant version of this model has been studied first independently

by Sengupta, and Smith and Si [78, 79], who performed a leading order expansion in
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Figure 19: Renormalization group flows for the SU(2) symmetrical Bose-Fermi Kondo
model. “BF” denotes the SU(2) symmetrical Bose-Fermi fixed point. Here the spin is
partially screened and both the Fermi and Bose fields couple to it. At the Bose fixed point
the fermionic degrees of freedom fully decouple from the spin.

the exponent ǫ. A second order expansion has been later performed for the purely

bosonic and SU(2)-invariant model in Ref. [75]. In this subsection we shall present

our ∼ ǫ2 results for the fully anisotropic Bose-Fermi Kondo problem, and show that

anisotropy is relevant in this model and cannot be neglected [80]. We shall use a

scaling approach to study this problem. In most of what follows we shall assume

that the magnetic field is negligible. Then the Gell-Mann-Low equations take the

form
djα
dl

= β(f)
α ({jγ}, {gγ}) ,

dgα

dl
= β(b)

α ({jγ}, {gγ}) , (96)

where we introduced the new couplings, gα = γ2
α, since (by a Z2 gauge invariance)

only the latter can appear in any physical quantity.

3.3.1 The SU(2) symmetrical case

To start our analysis, let us first discuss the case of SU(2) symmetry with non-zero

bosonic and fermionic couplings, g, j 6= 0. It is enough to consider the leading order

scaling equations to obtain a qualitative picture of what happens in this case [78, 79],

dj

dl
= j2 − jg ,

dg

dl
= ǫg − 2g2 . (97)

47



The sketch of the renormalization group flows is shown in Fig. 19. Eqs. (97) have

three different fixed points, each of which correspond to different T → 0 behaviors.

Two of these fixed points are stable: At one of the stable fixed points the bosonic

couplings vanish and the Kondo coupling j diverges. We can thus identify this fixed

point as the ’Kondo phase’, where the impurity spin is completely screened by the

fermions at low temperatures. At the other stable fixed point the bosonic coupling

is finite, g ∼ ǫ, and the Kondo coupling vanishes. This state can be identified as the

bosonic fixed point, where the spin only interacts with the Bose field (representing

the collective modes corresponding to spin fluctuations. This can be identified as a

’magnetic’ phase. Finally, but very importantly, these two stable fixed points are

separated by a critical Bose-Fermi fixed point, where both bosonic and fermionic

couplings are present, j, g ∼ ǫ. Si and his collaborators suggested to identify this

fixed point with the experimentally observed locally quantum critical behavior.

The fact that two of the fixed points are of order ∼ ǫ makes us possible to carry

out a systematic ǫ expansion and compute all critical exponents around these fixed

points. We shall, however, not bore the reader with the rather complicated details of

this calculation and the enumeration of all diagrams, which can be found in Ref. [80].

Instead, we discuss some exact results concerning the dynamical susceptibility.

Figure 20: Diagrammatic representation of the Ward identity. Dashed lines denote spin
(pseudofermion) propagators and wavy lines denote the bosonic propagators. The circles
denote the local magnetic field. There is a one to one correspondence between self energies
linear in ~h and the vertex functions.

To compute the susceptibility, we first add a local magnetic field to the Hamil-

tonian:

H → H −
∑

α=x,y,z

hαSα . (98)
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In this bosonic model, there is a relation (Ward identity) between the magnetic field

dependent part of the self-energy and the bosonic vertex function, demonstrated to

lowest order in Fig. 20. This Ward identity ultimately results in the following exact

relation:
1

hα

dhα

dl
= − ǫ

2
+

1

2 gα

β(b)
α (jα, gα) , (99)

where β(b) is the bosonic beta function defined earlier. At a non-trivial fixed point

with finite bosonic coupling g∗α 6= 0, the corresponding beta function β(b)
α vanishes,

and the scaling dimension of the dimensionless magnetic field, h̃ ≡ h/Λ is simply

1 − ǫ/2. This scaling dimension is, however, known to be related to the anomalous

dimension of spin-spin correlation function [81], giving

χ
SU(2)
αβ (τ) = 〈TτSα(τ)Sβ(0)〉 =

δαβ

(T ∗τ)ǫ
, (T = 0) , (100)

where T ∗ is a dynamically determined energy scale (similar to the Kondo tempera-

ture, TK), and 〈Tτ . . .〉 denotes imaginary time ordering.

It is easy to extend these results to finite temperature by assuming that there

exists a boundary conformal field theory that corresponds to the critical dynamics

of the fixed point [80, 82]. In this boundary conformal field theory the impurity lives

at the x = 0 line of the complex plane, z = τ + ix, and the theory is invariant under

conformal mappings that map this boundary onto itself.

The finite temperature correlation functions can be obtained by mapping the

complex plane on a strip of width β = 1/T using e.g. the function w = 1
πT

artg z.

Assuming that Sα transforms as a primary field of dimension ηα/2 = ǫ/2,

〈Sα(w1)S
α(w2)〉T =

( ∂z1

∂w1

)ǫ/2( ∂z2

∂w2

)ǫ/2〈Sα(z1)S
α(z2)〉0 , (101)

we obtain that at the critical point:

χα(τ, T ) =
( πT

T ∗
αsin(πTτ)

)ǫ
. (102)

Taking then the Fourier transform of Eq. (137) and continuing it analytically to the

real axis one obtains an exact expression of the finite temperature susceptibility,

χα(ω) =
T ǫ

T ∗
α

ǫ

πǫ−1/2

T

Γ(1
2
− ǫ

2
)Γ( ǫ

2
− iω

2πT
)

Γ( ǫ
2
)Γ(1

2
− ǫ

2
− iω

2πT
)
. (103)

49



The imaginary part of the susceptibility (measurable directly by inelastic neutron

scattering) can be written in a scaling form using the asymptotic properties of the

Γ function as

χ
′′

α =
[T ∗

T

]1−ǫ
f(ǫ,

ω

T
) sgnω , f(ǫ, x) ≈




C> |x|ǫ−1 |ω| ≫ T ,

C< |x| |ω| ≪ T .
(104)

3.3.2 Relevance of anisotropy

Until now, we have only considered the case of isotropic (SU(2) symmetric) couplings.

However, as discussed in Ref. [80], anisotropy, present in most heavy fermion systems

or in high temperature superconductors, is relevant, and completely changes the map

of possible fixed points.

The fully anisotropic ∼ ǫ2 scaling equations have been derived in Ref. [80], and

are given by the following expressions

djx
dl

= jyjz −
1

2
jx(gy + gz) −

1

4
jx(j

2
y + j2

z ) +
1

2
jx(gx(gy + gz) − gygz) + O(ǫ4) ,(105)

dgx

dl
= gx(ǫ− gz − gy) + g2

x(gy + gz) −
1

2
gx(j

2
y + j2

z ) + O(ǫ4) . (106)

These equations have a much richer structure than Eq. (97), and a number of new

fixed points appear.

The purely bosonic case:

Let us first consider the simplest case of bosonic couplings only, when the renor-

malization group equations simplify to

dgx

dl
= gx(ǫ− gz − gy) + g2

x(gy + gz) . (107)

This equation is rather surprising at a first sight. The second order term on the right

indicates that dissipations acting in different directions weaken each-other. This can

be understood as follows: Suppose that gx ≪ gz and gy = 0. In this case, for gx = 0

the spin would point upwards or downwards. Fluctuations of the field ϕx try to flip

the impurity spin. However, the impurity spin also has a bosonic screening cloud

since it is strongly coupled to the field ϕz. Therefore, to flip the spin, the field ϕx

also has to flip this bosonic cloud, and as a result, the coupling gx is suppressed.

This effect is the most striking in the case of Ohmic fields (ǫ = 0), when strong
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Figure 21: χ
′′

⊥(ω, α)/ω as a function of ω/∆∗. The dissipative couplings are αx = αy =
gx/2 = gy/2, and ∆∗ corresponds to the renormalized Weiss field, hz. The spin rotates
coherently around the z axis for any dissipation.

dissipation is typically suppressed and a flow to weak dissipation takes place. This

is shown in Fig. 21, where the spectral function of an impurity spin in an anti-

ferromagnet (ordered in the z-direction) is shown, as computed by the numerical

renormalization group [72]. In this case the dissipative couplings appear in the x

and y directions, while the Weiss field of the surrounding spins produces a local field

in the z-direction, playing the role of tunneling. As shown in Fig. 21, the spectral

function of spin fluctuations in the x − y direction displays a beautiful coherence

peak, even for extremely strong dissipations.

The situation is even more striking for ǫ 6= 0. The RG flows are shown in Fig. 22.

We find two non-trivial (∼ ǫ) fixed points. One is the SU(2) symmetrical with

gx = gy = gz = g, while the other one has XY symmetry, gx = gy 6= gz = 0. Both

fixed points are unstable against spin anisotropy. This instability is due to the finite

residual entropy associated with these fixed points: The system tries to get rid of

this entropy by breaking the symmetry, and in fact, the only stable fixed point of

the purely bosonic model seems to be an infinite coupling Ising fixed point of the

form gx = gy = 0 6= gz → ∞. Note that the flow to a strong Ising-type coupling

is a consequence of the super-Ohmic heat bath (ǫ > 0). For ǫ = 0 this fixed point

is replaced by a stable line of fixed points with Ising symmetry, gz = finite and

gx = gy = 0.

In a realistic case, a number of cross-overs may occur between SU(2)-type, XY
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Figure 22: Fig. (a) Sketch of the renormalization flows in the purely bosonic model.
We find one non-trivial SU(2)-invariant fixed point and three fixed points with XY sym-
metry. Both are unstable against breaking the SU(2) and XY symmetries, respectively.
Fig. (b) Quantum phase transition in the purely bosonic model with XY symmetry as
the anisotropy, δg = gz − g⊥ changes sign. The dashed lines indicate cross-over regions
corresponding to T ∗∗.

or Ising behaviors. In particular, for a system with XY-type symmetry, a quantum

phase transition occurs between the XY-type and Ising fixed points as δg ≡ gz −
gx = gz − gy changes sign (see Fig 22). In this case, the quantum phase transition

is controlled by the SU(2) type fixed point below an energy scale T ∗. For small

g⊥ = gx = gy ≈ gz ≡ g one can determine T ∗ by integrating the scaling equations

Eq. (107), and is approximately given by

T ∗ ∼ Λ0 g
1/ǫ . (108)

As T → 0 another cross-over occurs at an energy scale

T ∗∗ ∼ (δg)1/yrT ∗ ,

where yr = ǫ/2 + ǫ2/2 + ... is the scaling dimension of spin-anisotropy at the SU(2)

fixed point. Between T ∗ and T ∗∗ the SU(2)-invariant Bosonic model describes the

behavior of the impurity, while below T ∗∗ the physical properties of the model are

controlled by the Ising (δg > 0) or the XY-type (δg < 0) bosonic fixed points,

respectively.

Although anisotropy is relevant at both O(ǫ) fixed points above, in many cases the

SU(2)-invariant or XY-type fixed points can be also of physical interest: In the case of

high temperature superconductors, e.g., spin-orbit interaction is weak and therefore

the anisotropy is presumably weak. In this case the SU(2)-symmetrical fixed point
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may appropriately describe the physics over a wide energy range of interest. On the

other hand, in most magnetic heavy Fermion compounds spin-spin interactions are

generically anisotropic, and the physics is expected to be controlled by XY type or

Ising fixed points.

The anisiotropic Bose-Fermi model

The analysis of the full scaling equations reveals an even richer structure, summa-

rized in Fig. 23, and shows that the SU(2) symmetrical critical point is also unstable.

Similar to the purely bosonic case, critical fixed points with XY and Ising symmetry

appear, though the Ising fixed point is in this case out of the reach of our ǫ expansion.

Our previous analysis of the spin correlation functions carries over to this case.

At the fixed points with XY symmetry we find, e.g. that only the exponents of

the T = 0 temperature x and y correlation functions are determined by the Ward

identity, while the z component of the spins decays with a non-universal exponent

ηz = 2ǫ+ 7ǫ2/4 + . . . .

3.3.3 Implications for the dynamical mean field theory of the locally

quantum critical behavior

It has been shown in a beautiful series of neutron scattering measurements by

Schröder et al. that the quantum critical behavior in CeCu5−xAux is entirely local

within experimental accuracy [41]. This material shows a quantum phase transi-

tion from a non-magnetic heavy Fermi liquid state to a metallic antiferromagnetic

state under Au doping. The Fermi liquid energy scale below which the Ce spins are

screened appears to go to zero as one approaches the quantum critical point from

the metallic side, indicating that at the quantum critical point (QCP) spins remain
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asymptotically free at low temperature. At the quantum critical point the dynamical

susceptibility is found to behave with a good accuracy as

χ−1(ω, T,q) ∼ cst.(χ−1(q) + (T − iω)α) (109)

with an exponent α ≈ 0.75, where χ−1(q) is an approximately frequency and

temperature-independent function with minima at the ordering wave vectors. The

quantum phase transition in CeCu5−xAux is clearly driven by the competition be-

tween Kondo screening and magnetic ordering.

Based on these observations, Si et al. proposed a self-consistent version of the

Bose-Fermi Kondo model as a good candidate to describe the above quantum critical

behavior within a dynamical mean field approach [77]. Our results have essential

implications on this theory:

(a) Firstly, within the mean field theory, at the critical point, the correlations of the

Bose field should decay with the same power law as the correlations of individual

spins, since these two are basically identical. This immediately implies that the only

possible non-trivial exponent is ǫ = 1, leading to a logarithmic divergence of the

local susceptibility

χlocal =
∫ d3q

(2π)3
(ω, T,q) ∼ ln

T ∗

T
, (110)

Eqs. (110) and (109) are only compatible if magnetic fluctuations are strictly two-

dimensional. This is indeed supported to some extent by the neutron scattering data,

however, at low temperatures a cross-over to a trivial behavior would be expected

based on this analysis, which has not been observed yet.

(b) Secondly, we find that for ǫ = 1 the scaling dimension of the magnetic field at the

critical point is 1/2. This implies an h2/T scaling, which is clearly in contradiction

with the experimental data, exhibiting h/T scaling. However, in the experiments

one applies a global field, and we know cases where the the scaling dimension of the

global field is different from that of the local field acting only on the impurity. It is

therefore conceivable that the global field could give rise to a h/T scaling.

(c) Finally, but very importantly, Si and his coworkers assumed fully isotropic SU(2)-

symmetrical couplings. However, magnetic interactions in CeCu5−xAux and most

heavy fermion materials are strongly spin-anisotropic. As we have shown, anisotropy

is relevant at the SU(2)-invariant Bose-Fermi Kondo fixed point, and therefore a the-

ory with Ising symmetry must describe the quantum critical point. Luckily enough,
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due to the Ward identity discussed, our most important results carry over to this case

too in the easy axis direction, where our results imply a logarithmically divergent sus-

ceptibility again, χ
′

easy,local(ω) ∼ ln(T ∗/ω), and a step-like singularity in its imaginary

part, χ
′′

easy,local(ω) ∼ sgn(ω). In the other directions, however, the local susceptibility

should show a power law behavior, χ
′

not−easy,local(ω) ∼ ωα, χ
′′

not−easy,local(ω) ∼ ωβ, and

is likely to be dominated by analytic contributions with α = 0 and β = 1. These

predictions should be directly observable by polarized neutron scattering and NMR

relaxation measurements.
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4 Non-Fermi liquid models

In this Chapter, we shall study a few examples of non-Fermi liquid models. These

models have rather unusual physical properties, and as their name indicates, they

cannot be described in terms of Nozières’ Fermi liquid theory [9]: The thermody-

namic and transport properties of these models are singular at T = 0 temperature

and electrons are not well-defined quasiparticles even at the Fermi energy. These

singular properties are related to the generic unstability of non-Fermi liquid fixed

points: all known non-Fermi liquid fixed models possess a fractional residual en-

tropy, indicating the presence of some non-trivial decoupled degrees of freedom, and

by a rule of thumb, all such non-zero entropy states are unstable. The low temper-

ature behavior of these models can only be accessed by non-perturbative methods

such as conformal field theory [83], numerical renormalization group [10, 29, 84],

Bethe ansatz [25, 26, 85], bosonization [86, 87, 88], 1/f expansion [89, 90, 91], or

slave particle methods [92].

Its has been believed for a long time that, due to their unstability, these exotic

fixed points cannot be observed in nature [24]. However, in the early 80’s a number

of Uranium and Cerium alloys have been found that showed clear deviations from

’usual’ heavy Fermi liquid behavior [34]. Even more interestingly, some of these

materials enter a superconducting phase at low enough temperatures directly from

an incoherent metal [34]. It has been proposed by Daniel Cox [30] that in these

materials the interplay of local symmetry properties and strong spin-orbit interaction

can generate a two-channel Kondo effect.

More recently, Dan Ralph and his co-workers also discovered a rather striking

zero-bias anomaly in Cu point contacts, that showed universal V/T scaling of non-

Fermi liquid character and apparently originated from some dynamical defects [33].

Ralph and his collaborators explained these anomalies in terms of non-commutative

two level systems [32], discussed in Section 4.1.1. This interpretation is, however, still

debated because of some difficulty with the original theoretical model proposed by

Vladár and Zawadowski [124, 96]. Nevertheless, there is quite a few circumstantial

evidence that most likely the original interpretation of Ralph et al. is correct, and

these anomalies are indeed due to some so far ’unidentified dynamical impurities’.
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4.1 The prototype of non-Fermi liquid models: the two-

channel Kondo problem

To gain some insight into the generic structure of non-Fermi liquid systems, we shall

study first the prototype of all non-Fermi liquid models, the multi-channel Kondo

model [34]. In general, the f -channel Kondo model consists of a spin S = 1/2

magnetic impurity, that we couple to f independent and identical Fermion fields

with the same exchange coupling j,

H =
∑

σ=±

f∑

a=1

∫ dx

2π
ψ†

σa(x) i∂xψσa(x) +
j

2

f∑

a=1

∑

σ,σ′

~S ψ†
σ′a(0)~σσσ′ψσ′a(0)) . (111)

Here the left-moving fields ψσa(x) are defined in a similar way as in Section 2.2, and

represent the radial part of the conduction electrons’ wave function. It is crucial that

all channels a couple with the same strength j to the spin in Eq. (111), otherwise

the most strongly coupled channel screens the impurity spin and drives the system

to a ’boring’ Fermi liquid fixed point [34].

To motivate the study of this model we shall first discuss in Section 4.1.1 how the

problem of a tunneling impurity in a metal maps onto the anisotropic two-channel

Kondo model. To establish this mapping and to gain access to the non-Fermi liquid

fixed point, we shall carry out a large f expansion for the two level system model

[91]. Then in Section 4.1.2 we shall study the anisotropic Kondo problem by Abelian

bosonization following the original work of Emery and Kivelson [86], and show how

the full finite size spectrum and scattering properties of this model can be obtained

through this method [88]. Finally, we shall shortly discuss the exact solution of the

anisotropic two-channel Kondo problem in Section 4.1.3 [93].

4.1.1 Large f expansion for the two level system model

In Section 3.1 we constructed the minimum model to describe a tunneling system

in a metal, Eq. (64). The Hamiltonian Eq. (64) already suggests that the physi-

cal properties of a tunneling system can be described by Eq. (111), although with

anisotropic coupling constants: the orbital spin ~τ in Eq. (64) plays the role of the

impurity spin ~S in Eq. (111), while the angular momentum labels of the electrons

(s and p) replace the electron spin in Eq. (111). The electron spin in the tunneling

system problem, on the other hand, is a conserved quantum number and plays the
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role of the channel index a with f = 2.

In Section 3.1 we neglected the assisted tunneling term vx by saying that it is

typically much smaller than the coupling vz that leads to dissipation. However, as

noticed by Kondo [94], the coupling vx generates logarithmic corrections. A detailed

renormalization group analysis by Zawadowski and Vladár revealed that vx is indeed

relevant, and generates a Kondo effect [32]. The perturbative treatment of Vladár

and Zawadowski also showed that two of the angular momentum channels dominate

the scattering processes at low temperature, and coupling between these two channels

and the orbital degrees of freedom of the tunneling impurity leads to an orbital Kondo

effect.

Unfortunately, the perturbative renormalization group analysis of Vladár and

Zawadowski broke down at the orbital Kondo energy, TK , and did not allow for the

analysis of the low-energy fixed point of the renormalization group. Therefore Vladár

and Zawadowski did not know if other angular momentum channels are important

below the Kondo temperature, and originally they believed that the low temperature

fixed point is a Fermi liquid [32]. In this problem, however, the spin of the conduction

electron plays a crucial role. As noticed first probably by Nozières and Blandin [24],

the presence of the additional channel index destabilizes the infinite coupling Fermi

liquid fixed point, and leads to singular behavior at low temperatures.

In the present Subsection we shall show how one can access this non-Fermi liquid

fixed point by replacing the spin by a flavor index in the two level system problem,

σ = ± → σ = 1, . . . , f , and performing an expansion in 1/f [91]. The basic idea

of this approach is very similar to that of the ǫ expansion: for large values of f

a non-trivial fixed point appears in the weak coupling regime [90]. Therefore, all

contributions to the β function can be organized according to powers of 1/f , and a

systematic expansion can be performed to compute critical exponents and determine

the fixed point structure. This analysis will show that the conjecture of Vladár and

Zawadowski is indeed correct, and at the only stable fixed point two conduction

electron channels dominate the physics. Moreover, we shall be able to determine

the relevant and leading irrelevant operators and their dimensions at the non-Fermi

liquid fixed point systematically. These operators are responsible for the singularities

of various physical quantities at the non-Fermi liquid fixed point and determine the

cross-over scales to other simple Fermi liquid fixed points.

To start our analysis, we generalize the simple interaction Hamiltonian Eq. (64)
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to the case of any number of angular momentum channels and for non-symmetrical

tunneling centers as [32]

H int =
f∑

σ=1

∑

µ,µ′=s,p,...

∑

i=x,y,z

τi v
i
µ,µ′ψ†

µσψµ′σ (112)

where now ψ†
µσ =

∫
dǫ a†µσ(ǫ) creates a local fermion state with angular momentum

µ. The operator a†µσ(ǫ) in the expression of ψ†
µσ creates a conduction electron with

angular momentum µ and energy ǫ around the impurity and is normalized to satisfy

the anticommutation relation {aµσ(ǫ), a†µσ(ǫ′)} = δµµ′ δσσ′ δ(ǫ − ǫ′). The couplings

vi
µ,µ′ → vi are now infinite-dimensional matrices, but in general only their first few

columns/rows are non-negligible, because conduction electrons with large angular

momenta couple only very weakly to the impurity. We also included another coupling

vy in Eq. (112). While vy can be chosen to be zero initially, it is generated under

the renormalization group transformation.

To simplify our analysis, we rewrite Eq. (62) as

HTLS = −1

2

∑

i

∆i τi , (113)

where ∆x = ∆0 denotes the tunneling amplitude, and ∆z = ε is the asymmetry of

the tunneling system.

The next to leading logarithmic order scaling equations for this model have been

derived by Vladár and Zawadowski (for f = 2), and read

dvi

dl
= −2iεijkvjvk − 2 f [viTr(vjvj) − vjTr(vjvi)] , (114)

d∆i

dl
= −2 f [∆iTr(vjvj) − ∆jTr(vivj)] , (115)

where we used Einstein’s convention, and Tr{. . .} indicates a trace over all angular

momentum indices µ. The derivation of these equations follows similar lines as the

one outlined for the Kondo problem in Chapter 2, the only complication being that

now we have infinitely many couplings. The scaling variable l above is defined as

l = lnD0/D, with D and D0 the high energy cut-off and its initial value.

Let us first ignore Eq. (115) that describes the renormalization of the tunneling

rate. To have some feeling about the solution of these equations, it is instructive to
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Figure 24: Scaling of the three couplings vx, vy, and vz.

study the case where we keep only s-wave scattering and p-wave scattering in the

pz-channel (with the tunneling system moving along the z-direction). In this case

the Hamiltonian simplifies to Eq. (64), and the matrices vi are simply proportional

to Pauli matrices, vz = vz · σx, vx = vx · σz, and vy = vy · (−σy). Then the scaling

equations simplify to those of the anisotropic Kondo problem [95],

dvx

dl
= 4vyvz − 4f vx(v

2
y + v2

z) , (116)

dvy

dl
= 4vzvx − 4f vy(v

2
x + v2

z) , (117)

dvx

dl
= 4vxvy − 4f vz(v

2
y + v2

x) . (118)

The solution of these equations is shown in Fig. 24. In the very initial stage of

the scaling vy is generated, and the two couplings vx and vy soon become equal,

vx ≈ vy ≪ vz. In the next stage the two couplings vx ≈ vy gradually approach vz,

and all three couplings become of the order of unity at the Kondo temperature, TK .

This Kondo scale is usually called orbital Kondo temperature to emphasize that it is

generated by purely orbital fluctuations. In the vicinity of the Kondo temperature

all three couplings are approximately equal, implying that the system acquires an

SU(2) symmetry in orbital space.

The solutions of the more complicated Eq. (114) behave quite similarly: the sec-

ond order terms in Eq. (114) tend to increase the couplings and thus generate a

Kondo effect. The third order terms, on the other hand, tend to decrease the cou-

plings vi. As we shall discuss later, while Eq. (114) admits an infinite number of
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Figure 25: Pseudofermion self-energy corrections (left) and vertex corrections (right) up
to the order ∼ 1/f2. Dashed and the continuous lines denote pseudofermion (spin) and
conduction electron propagators, respectively. The cross indicates the contribution of the
counterterm, which must be calculated up to the order ∼ 1/f . For the sake of simplicity
only vertex diagrams without counterterm correction are shown, and vertex diagrams that
can be generated by reversing the pseudofermion and the electron lines have been also
omitted.

non-trivial (finite coupling) fixed points, only the one discussed before turns out to

dominate the physics at low temperatures. All non-trivial fixed points of Eq. (114)

are of order vi ∼ 1/f , i.e., for large values of f they remain in the reach of perturba-

tion theory. This simple observation makes it possible to carry out a systematic 1/f

expansion [90, 91], and in fact, Eqs. (114) generate just the leading terms in such an

expansion. We have to mention that while a strong coupling analysis reveals that

for f ≥ 2 the fixed point coupling is indeed finite, for f = 1 the presence of a finite

coupling fixed point is just an artifact of the perturbative scaling approach, and in

reality, the strong coupling fixed point is at infinitely large couplings.

To compute the next terms in a 1/f expansion we can make use of the fact that

vi ∼ 1/f , and accordingly, we can organize all diagrams by simply counting powers

of 1/f . In Fig. 25 we show all those self-energy and vertex diagrams that contribute

in order ∼ 1/f2. Note that each fermion loop results in a factor ∼ f , which partially

compensates the 1/f factors coming from the vertices vi. There are two subtleties

in these calculations: (a) Some of the diagrams shown have a leading ∼ ln2(D/ω)

behavior. For these diagrams one must determine the subleading contribution ∼
ln(D/ω) as well, because these subleading logarithmic contributions renormalize the

vertex function. (b) Some of the diagrams contain spurious divergences. To this

order, these divergences originate essentially from the first self-energy diagram, which

renormalizes the pseudofermion’s chemical potential. In order to get rid of these

divergences one has to apply a counterterm procedure, which amounts in expanding
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around the physical (renormalized) chemical potential of the pseudofermions.

Without going too much into details, let us just give here the expressions of the

pseudofermion Green’s function and the vertex function obtained this way:

G−1 = ω

{
1 + (1 − ln 2)fOjj + ln

( D
−ω

) [
fOjj + 12fβ

− (5 − 3 ln 2)f 2OjjOkk − (4 ln 2 − 6)f 2OjkOkj
]
+ . . .

}
, (119)

Γi = vi − ln 2 f(2Oijvj −Ojjvi)

− ln
( D
−ω

) {
2iǫijkvjvk − f(2Oijvj −Ojjvi)

− 4(2 − ln 2)fiǫjklOijvkvl + 2 ln 2 fiǫijkOllvjvk + (2 + 5 ln 2)f 2OjjOkkvi

− (8 + 12 ln 2)f 2OkkOijvj + (8 + 12 ln 2)f 2OijOjkvk

− (2 + 4 ln 2)f 2OjkOkjvi

}
+ . . . , (120)

where Oij = Tr(vivj), β = −iTr(vxvyvz − vzvyvx) and a summation must be carried

out over all repeated indices. The energy scale ω is measured from the (renormal-

ized) chemical potential of the pseudofermions, and in the vertex function we have

set the electrons’ energy to the Fermi surface. Plugging these two expressions in the

multiplicative renormalization group equations (Eqs. (14) and (15) of Section 2.1.2),

we can determine the pseudofermion Z-factor and obtain the following scaling equa-

tions:

dvi

dl
= 2iǫijkvjvk + 2f(Ojjvi −Oijvj) − 8(1 − ln 2)fiǫjklOijvkvl

+ 16 ln 2 fβvi + 8f 2OijOjkvk − 8f 2OkkOijvj , (121)

It is possible to classify all fixed points of Eq. (121) and show that at all non-

trivial fixed points the couplings are essentially just spin operators [91], vi = cst Si
e,

where the matrices Si
e realize 2Se +1-dimensional spin representations, now acting in

the angular momentum indices, [Si
e, S

j
e ] = iǫijkS

k
e . One can also show, however, that

fixed points with Se > 1/2 are unstable and the only stable fixed point corresponds

to an Se = 1/2 representation, i.e., to the selection of only two orbital labels [91]. The

couplings at the stable non-Fermi liquid fixed point are thus essentially proportional
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f > 2 f = 2

χ∆
imp(∆, T = 0) ∼

(
∆
TK

)2/f −1 ∼ ln (∆/TK)

χ∆
imp(∆ = 0, T ) ∼

(
T

TK

)(2−f)/(f+2) ∼ ln (T/TK)

cimp/T ∼
(

T
TK

)(2−f)/(f+2) ∼ ln (T/TK)

∆Rimp ∼
(

T
TK

)2/(2+f) ∼
(

T
TK

)1/2

Table 1: Low temperature behavior of the impurity ’orbital susceptibility’ χ∆
imp =

∂2Fimp/∂∆2, specific heat cimp and resistivity Rimp of a two level system. All energy
scales and crossover scales are assumed to be smaller than the Kondo energy TK .

to Pauli matrices,

vi
fp =

1

2f
(1 − 2 ln 2/f)

(
σi 0

0 0

)
(122)

One can linearize Eq. (121) and the scaling equations for ∆i to study the oper-

ator content of this fixed point [91]. We shall not bore the reader with the details

of the rather straightforward but lengthy diagonalization of the corresponding infi-

nite dimensional matrix equations. In the end of these calculations one finds that

the leading irrelevant operator is simply ∼ ∑
i,σ

∑
µµ′ τi ψ

†
µσσ

i
µµ′ψµ′σ and has scaling

dimension

y = − 2

f
+

4

f 2
+ . . . , (123)

while the dimensionless fields ∆̃i ≡ ∆i/D have scaling dimension 1 + y. Eq. (123)

gives in fact the first two terms in the expansion of the exact exponent y = −2/(2+f),

determined through conformal field theory [27]. Note that the physical case, f = 2,

is marginal in the sense that the expansion in 1/f is strictly speaking convergent

only for f > 2. However, the properties of the fixed point happen to be similar in

the whole regime f ≥ 2, and therefore the 1/f expansion gives useful information

on the two-channel case f = 2 as well. Once the scaling dimension y at hand, we

can determine the scaling properties of the impurity susceptibility, specific heat, and

conductance as well by expanding the free energy. The results are summarized in

Table 1.

To close this subsection, let us shortly discuss the effect of ∆i. For the sake of

simplicity, let us assume that the tunneling system is symmetrical, ε = ∆z = 0,

and only the tunneling amplitude ∆0 = ∆x must be considered. As we have seen,
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the perturbation ∆0 is relevant at the two-channel Kondo fixed point and has a

scaling dimension 1 + y = 1/2. Correspondingly, even if it is small, it will generate

a cross-over at a temperature

T ∗ ∼ ∆2
0(TK)

TK

,

where ∆2
0(TK) denotes the renormalized tunneling rate at temperatures TK . This

scale can be computed, e.g., by solving the perturbative renormalization group equa-

tions for D > TK . Below the scale T ∗ the tunneling dominates the physics and the

tunneling system freezes into its ’symmetrical’ state. For T < T ∗ quantum fluctua-

tions of the tunneling center are suppressed, it acts merely as a potential scatterer,

and a Fermi liquid state develops. Accordingly, the interesting non-Fermi liquid

behavior can be only observed in the temperature range T ∗ < T < TK . In their

original calculation, Vladár and Zawadowski assumed that the high energy cut-off

D0 is of the order of the Fermi energy [32], and showed that with this assumption

one can find typically an extended non-Fermi liquid regime for fast and symmetri-

cal tunneling systems. However, it has been pointed out recently by Aleiner et al.

that the assumptions of Vladár and Zawadowski were incorrect, and D0 is rather

in the range of the Debye temperature, ωD [124]: The physical reason for this is

that tunneling processes take place at a time scale ∼ 1/ωD. Therefore, electronic

excitations with energy ǫ > ωD follow the tunneling particle adiabatically, and only

electrons in a narrow band ǫ < ωD contribute to logarithmic singularities and thus

the Kondo effect. As a consequence, D0 must be replaced by ωD, and in the weak

coupling regime T ∗ is always larger than the Kondo temperature TK , i.e., no non-

Fermi liquid regime can be observed. Fortunately, the arguments of Aleiner et al.

stand only in the weak coupling regime [96]. It turns out that for tunneling centers

with resonant scattering the coupling vz can easily become sufficiently strong so that

these tunneling centers are deep in the non-perturbative regime, where T ∗ ≪ TK ,

with TK in the few Kelvin range [96]. Tunneling centers with resonant scattering

may thus provide indeed a physical realization for the two-channel Kondo model,

as originally proposed by Vladár and Zawadowski, though not in the weak coupling

regime.
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4.1.2 Abelian bosonization of the two-channel Kondo problem

In the present subsection we shall study the anisotropic two-channel Kondo problem

through Abelian bosonization, by generalizing the work of Emery and Kivelson to

finite system sizes [86, 88]. Emery and Kivelson studied the spin-anisotropic version

of Eq. (111),

H =
∑

σ=±

∑

a=1,2

∫ dx

2π
ψ†

σa(x) i∂xψσa(x) +
∑

i

ji
2

∑

a,σσ′

Si ψ†
σa(0)σi

σσ′ψσ′a(0) , (124)

where i = x, y, z labels the three components of the spin, and for the sake of simplicity

jx = jy = j⊥. We can simplify this Hamiltonian somewhat if we bosonize Eq. (124)

using the identities Eqs. (252) and (254) of Appendix A. After this transformation

the Hamiltonian reads

H =
∑

σ,a

2π

L

1

2
N̂2

σ,a +
∑

σ,a

∫ L/2

−L/2

dx

4π
:

(
∂φσa

∂x

)2

: , (125)

+
∑

σ,a

jz
2
Sz σ

(
∂xφσa(x) + N̂σa

2π

L

)
+
j⊥
2

∑

a

(
S+ F †

↓aF↑ae
−i(φ↑a−φ↓a) + h.c.

)
,

where we assumed a finite system size L and assumed antiperiodic boundary condi-

tions for the sake of simplicity. In the above equations N̂σa denote the total number

of electrons with spin σ in channel a and the field ∂xφσa can be thought of as repre-

senting density fluctuations of the fermions ψσa(x). The Klein factors F †
σa keep track

of changes in the total Fermion number and also assure that fields with different

quantum numbers (σ, a) anticommute [97].

Motivated by the observation that jz only couples to the spin density of the

fermions, Emery and Kivelson made a unitary transformation by introducing charge,

spin, flavor and spin-flavor quantum numbers,




N̂c

N̂s

N̂f

N̂x




=
1

2




1 1 1 1

1 −1 1 −1

1 1 −1 −1

1 −1 −1 1







N̂↑1

N̂↓1

N̂↑2

N̂↓2



, (126)

and introduced new fields ϕc, ϕs, ϕf , and ϕx in a similar way. With this notation,

the charge and flavor fields ϕc and ϕf completely decouple from the impurity spin,
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and the spin-dependent part of the Hamiltonian simplifies to

H → H =
∑

y=s,x

[2π
L

1

2
N̂ 2

y +
∫ L/2

−L/2

dx

4π
:

(
∂ϕy

∂x

)2

:
]

+ jz S
z
(
∂xϕs(x) + N̂s

2π

L

)
(127)

+
j⊥
2a

[
S− eiϕs(0)

(
F †
↑1F↓1e

iϕx(0) + F †
↑2F↓2e

−iϕx(0)
)

+ h.c.
]
,

To complete the transformation, we want to introduce Klein factors that corre-

spond to the new fields, ϕy. This is, however, far from being trivial [88]. On one hand,

we can convince ourself very easily that all bilinear combinations F †
σjFσ′j′ change ev-

ery quantum number Ny by an integer. To give an example, the product F †
↑2F↓2

changes the new quantum numbers as {Nc,Ns,Nf ,Nx} → {Nc,Ns +1,Nf ,Nx − 1}.
Therefore one is tempted to replace these operators by

F †
sFx ≡ F †

↑2F↓2 , (128)

where the operators Fy are new Klein factors and satisfy similar commutation rela-

tions as the original Klein factors. One can also show that any bilinear combination

of the original Klein factors can be expressed in terms of two new Klein factors.

However, the Ny’s are not just independent integers as the original Nσj’s: Either all

Ny’s are half-integers, or all of them are integers, and moreover, they are related to

each other by the following gluing conditions:

Nc ±Nf = (Ns ±Nx) mod 2 . (129)

While these gluing conditions do not play an important role in the L → ∞ limit,

they are crucial to obtain the correct finite size spectrum. The reason is simply that

the global excitations accounted for by the ∼ N2
σj terms represent only a negligible

fraction of all possible bosonic excitations, and can be neglected for L → ∞, but

they do give a correction ∼ 1/L to the finite size spectrum.

The thermodynamic limit

Let us first consider the thermodynamic limit, L → ∞, and rewrite the spin-
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dependent part of the Hamiltonian with the above definitions as

H =
∫ dx

4π
: (∂xϕs)

2 + (∂xϕx)
2 : +jz S

z ∂xϕs(x)

+
j⊥
2a

(
Fxe

−iϕx(0) + h.c.
)(
S−F †

s e
iϕs(0) − h.c.

)
. (130)

Now the key observation of Emery and Kivelson was that one can completely

eliminate the term ∼ Sz∂xϕs(0) by making a unitary transformation with the oper-

ator U ≡ ei jzSzϕs(0), which transforms ∂xϕs(x) and S± as

∂xϕs(x) → ∂xϕs(x) − 2πjzSzδ(x) , S± → S±e±i jzϕs(0) . (131)

Moreover, the field ϕs is completely eliminated by this transformation, if jz = 1.

The condition jz ≡ 1 defines the so-called Emery-Kivelson line [86]. At this line the

transformed Hamiltonian H ′ reads:

H ′ =
∫ dx

4π
: (∂xϕx)

2 : +
j⊥
2a

(
Fxe

−iϕx(0) + h.c.
)(
S−F †

s − h.c.
)
, (132)

where we dropped the decoupled parts that describe the energy of charge, flavor,

and spin-wave excitations. Introducing the Fermion fields

cd ≡ F †
sS

− , ψx(x) ≡ Fx
1√
a
e−iϕx(x) , (133)

the above Hamiltonian becomes quadratic

H ′ =
∫
dx iψ†

x∂xψx +
j⊥

2
√
a
(ψ†

x(0) + ψx(0))(c†d − cd) . (134)

This Hamiltonian is almost that of a resonant level, with the important difference

that the hybridization ∼ j⊥ only couples half of the field ψx to half of the fermion

cd. In mathematical terms, both complex fields ψx and cd can be written as a sum

of two real Majorana fermions, ψx = (ψ1 + iψ2)/
√

2, cd ≡ (d1 + id2)/
√

2, and j⊥ only

couples one of these fields to each-other:

H ′ =
∫
dx i (ψ1(x)∂xψ1(x) + ψ2(x)∂xψ2(x)) + (−i)2j⊥√

a
ψ1(0) d2 . (135)

The structure of this coupling has a major consequence: Half of the local fermion
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cd will form a resonance with the conduction electrons. However, the other half

of it, d1 ∼ c†d + cd, remains completely decoupled, resulting in a residual entropy

[25, 27, 86],

Sres =
1

2
ln(2) . (136)

It is worth mentioning, that a special line similar to the Emery-Kivelson line also

exists for the single channel Kondo problem [98]: at this so-called Toulouse line

the anisotropic Kondo problem can be bosonized and refermionized in a way very

similar to the above procedure, and the final Hamiltonian is just a usual resonant

level Hamiltonian very similar to Eq. (135), with the sole exception that there the

hybridization couples both components of cd to the fermion field. As a consequence, in

the single channel Kondo problem both d1 and d2 participate in the formation of the

resonance and the entropy associate with the impurity spin completely disappears.

It is instructive to see what happens if we apply a local magnetic field h on

the impurity spin along the z-direction. The z-component of the spin can be easily

fermionized as

Sz = c†dcd − 1/2 = id2d1 ,

and thus h results in a coupling to the other half of the local fermion, H ′ → H ′ −
ih d1d2. As a consequence, in a magnetic field the other half of the fermion becomes

also part of the resonance and the system is driven to a Fermi liquid state without

residual entropy.

The Hamiltonian (135) is quadratic, and can be trivially solved using standard

Green’s function methods [86]. It is rather straightforward to compute the imaginary

time correlation function of Sz

〈Tτ Sz(τ)Sz(0)〉




≈ 1/4 for τ < 1/Γ ,

∼ 1/Γτ for τ > 1/Γ ,
(137)

where Γ = j2
⊥/4a denotes the width of the resonance that can be identified as the

Kondo scale TK . As a consequence, the spin susceptibility (given by the Fourier

transform of Eq. (137)) diverges logarithmically at the two-channel Kondo fixed

point [86],

χimp
spin =

1

πΓ
ln

Γ

T
. (138)

There is many more information that can be extracted from this resonant level
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Hamiltonian. One can, e.g., determine the scaling dimensions of the magnetic field

and j⊥ at the Emery-Kivelson line. Requiring the invariance of the Kondo temper-

ature implies [88],
dj⊥
dl

=
1

2
j⊥ (jz = 1)

for small values of j⊥, where l = lna denotes the scaling variable. The scaling

equation of the dimensionless magnetic field, h̃ ≡ a h can be determined from the

scaling properties Eq. (137): As we already explained in Sec. 3.3, the standard theory

of critical phenomena tells us that the scaling dimension of h̃ and the decay of the

corresponding correlation function are related [81]. This relation implies that

dh̃

dl
=





1 for a≪ 1/Γ ,

1/2 for a≫ 1/Γ .
(139)

The latter equation also implies that a small magnetic field is a relevant perturbation

at the two-channel Kondo fixed point and induces a cross-over to a Fermi liquid fixed

point at an energy scale

Th ∼ h2/Γ ,

as one can also verify it by a direct diagonalization of the Hamiltonian H ′ in the

presence of a magnetic field h [86].

Before we proceed with the calculation of the finite size spectrum, let us discuss

the scattering properties of the electrons. Constructing the scattering matrix is a

rather non-trivial task, because the original fermion fields ψσj are related to the

field ψx by a very complicated transformation. Nevertheless, we can determine the

asymptotic scattering properties of the conduction electrons in the following way.

We can solve analytically the Lippmann-Schwinger equation for the filed ψx using

the quadratic Hamiltonian, Eq. (135) to determine the scattering field ψ̃x(x) [88].

The resulting formula is rather complicated, but it simplifies in the limit |x| → ∞
to

ψ̃†
x(x) ∼

√
L

2π

∫
dk′eik′x[c†k′xθ(x) − c−k′xθ(−x)] . (140)

where ck is the Fourier transform of the original field ψx(x). Clearly, since the x > 0

and x < 0 parts represent incoming and outgoing waves, respectively, this expression

implies that the field ψx scatters as ψx → −ψ†
x. This simple relation means that the

Majorana field ψ1 picks up a sign while the decoupled field ψ2 remains unaffected.

69



In terms of Eq. (133) this also implies that the field ϕx changes sign in course of a

scattering, while all other bosonic fields ϕc,s,f remain unaffected. In the language of

the original fermion fields this means that all incoming fermions ψσj scatter into a

state which is completely orthogonal to the incoming state,

〈ψ̃σj(x) ψ̃
†
σ′j′(x

′)〉 → 0 , (x < 0 < x′) , (141)

establishing the so-called unitarity paradox [28] Note that this formula implies that

the scattering matrix identically vanishes, and an incoming electron ’evaporates’ into

an infinite number of electron-hole excitations during the scattering. The vanishing of

the scattering matrix between single particle states implies that half of the scattering

processes at the Fermi energy remain inelastic even at T = 0 temperature, and

generate dephasing for the conduction electrons [99, 100].

Finite size spectrum

Almost all the above procedure can be generalized to the case of finite system

sizes, however, special care must be exercised with the Klein factors when computing

the finite size spectrum. This is because the Klein factors do not commute with the

terms ∼ 2πN 2
y /L, and therefore affect the precise values of the energy by amounts

∼ 1/L. It is essential to keep track of these small changes to determine the correct

finite size spectrum. Furthermore, we have to keep track of the gluing conditions,

Eq. (129). Our strategy to do that will be to first diagonalize the Hamiltonian for

all possible states (integer and half-integer {Ny}’s) and then in the end project out

those states which satisfy all gluing conditions.

As a first step, we just make the Emery-Kivelson transformation again to arrive

at the following Hamiltonian:

H ′ =
2π

L

∑

y

N̂ 2
y

2
+
∑

y

∫ dx

4π
(∂xϕy)

2 + jz
2π

L
N̂sSz (142)

+
j⊥
2a

(
Fxe

−iϕx(0) + h.c.
)(
S−F †

s − h.c.
)
.

This Hamiltonian can be diagonalized by introducing the fields ψx and cd, however,
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the definition of ψx must be changed as

ψx(x) ≡ Fxa
−1/2e−i(N̂x−1/2)2πx/L e−iϕx(x) ≡

√
2π

L

∑

k̄

e−ik̄xck̄x , (143)

where the last term defines the Fourier components of ψx. Note that for Nx integers

the field ψx is anti-periodic, while for Nx half-integers it is periodic. Therefore the

boundary conditions of this field depend on the particular sector of the Fock space

we analyze. To keep track of the boundary conditions, let us introduce the label P

as

P =




P = 0 for {Ny} integers

P = 1 for {Ny} half-integers
. (144)

With some algebra, one can then show that the kinetic energy of the x-fields can be

refermionized, as

2π

L

N̂ 2
x

2
+
∫ L/2

−L/2

dx

4π
: (∂xϕx)

2 :=
∑

k̄

k̄ :c†
k̄x
ck̄x : +

2π

L

P

8
. (145)

Note that in the sectors P = 0 and P = 1 the momenta k̄ take half-integers and

integers in units of 2π/L, respectively. The last term here is absolutely crucial to

get the finite size spectrum correctly.

It is important to notice that the fermion cd = F †
sS

− does not commute with N̂s

either. Fortunately, this difficulty can be solved by noticing that the z-component

of the total spin ST ≡ (N̂s + Sz) is conserved. We can thus finally rewrite the

Hamiltonian as

H ′ =
2π

L

(N 2
c

2
+

N 2
f

2

)
+
∑

q>0

q(b†qcbqc + b†qfbqf )

+ h :c†dcd : +
∑

k̄

k̄ :c†
k̄x
ck̄x : +

√
2πΓ

L

∑

k̄

(c†
k̄x

+ ck̄x)(cd − c†d)

+
2π

L

(1

2
S2

T +
P

8
) + hn

(0)
d + const . (146)

Here we introduced the Fourier components bqy of the fields ϕy in the same way as

in Appendix A.1, : . . . : denotes the normal ordering with respect to some reference

state and n
(0)
d = 1, 0 is the expectation value of c†dcd in this reference state. Clearly,

the second line Hxd of the above Hamiltonian can be diagonalized. Introducing
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Majorana fermions, performing a Bogolubov transformation for them, and finally

pairing all Majorana fermions to real fermions again one obtains [88]

Hxd =
h

2
+
∑

ε≥0

ε
(
α̃†

εα̃ε −
1

2

)
+
∑

k̄>0

k̄
(
β†

k̄
βk̄ +

1

2

)
, (147)

4πΓε

ε2 − h2
= − cot π

(Lε
2π

− P

2

)
, (148)

where the operators α̃† and β† create quasiparticles with energy ǫ and k̄, and the

second equation determines the quasiparticle energies ǫ. In principle, the above two

equations together with Eq. (146) give the full spectrum of the anisotropic Kondo

model with jz = 1. However, we enlarged the Hilbert space in course of the solution,

and now we have to project out some of the states by applying the gluing conditions.

It turns out that the gluing conditions (129) translate to a simple condition on the

parity of total fermionic quasiparticles, PẼ ≡
[∑

ε≥0 : α̃†
εα̃ε : +

∑
k̄>0 : β†

k̄
βk̄ :

]
mod 2,

PẼ =





(
Nc + Nf − ST − P+1

2

)
mod 2 (h > 0) ,(

Nc + Nf − ST − P−1
2

)
mod 2 (h ≤ 0) .

(149)

This generalized gluing condition specifies which of all possible states in the extended

Fock space are physical.

Having Eqs. (146), (147), and (148) and the gluing condition Eq. (149) at hand,

we can easily compute the finite size spectrum along the Emery-Kivelson line, jz = 1,

by solving Eq. (148) numerically. The final results of this calculation are shown in

Fig. 26. The first panel shows the evolution of the spectrum for h = 0 in the absence

of the spin-flip term j⊥ for 0 < jz < 1. As soon as we turn on the spin-flip term,

the spectrum evolves to the finite size spectrum characteristic of the two-channel

Kondo problem. Both the positions and degeneracies of the many-body excitation

spectrum obtained are characteristic of the two-channel Kondo fixed point, and are in

perfect agreement with earlier numerical renormalization group and conformal field

theory results [29, 84, 27]. Note that in a Fermi liquid spectrum for any electron-like

excitation with energy E < 2π/L there is another hole-like excitation with energy

E ′ = 2π/L − E. Clearly, the energy spectrum ENFL does not satisfy this criterion.

Note, that here we computed the finite size spectrum through a straightforward

diagonalization. This is not true for the conformal field theory solution which is

rather an intelligent guess for the boundary operators that describe the numerically
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obtained spectrum. (Of course, one can use the predictive power of conformal field

theory once the appropriate conformal boundary conditions have been identified

[27].) Application of a small magnetic field deforms the non-Fermi liquid spectrum

into a simple Fermi liquid spectrum characterized by phase shifts ±π/4.

The evolution of the spectra in Fig. 26 is in some sense the analytical version of

the numerical renormalization group (NRG) spectrum. As we already discussed in

Section 2.3, the NRG transformation is equivalent to rescaling the size of the system

and the corresponding energy unit ∆L = 2π/L as L → Λ1/2L, and ∆L → ∆Λ1/2L =

∆L/Λ
1/2. In our case this corresponds to the step

Hx(L,Γ, εd)

∆L

→ Hx(Λ
1/2L,Γ, h)

∆Λ1/2L

=
Hx(L,Λ

1/2Γ,Λ1/2h)

∆L

, (150)

In other words, performing an NRG iteration is equivalent to increasing Γ and h at

fixed L.

phase phfree NFL

(L
) 

=
 

(a) (b) (c)

j hZ

Figure 26: Finite-size spectrum of the 2CK model with antiperiodic boundary conditions.
with degeneracies given in brackets. Energies are measured in units of ∆L ≡ 2π/L. (a)
For 0 < jz < 1, j⊥ = 0 the free Fermi-liquid spectrum evolves smoothly into a simple
phase-shifted spectrum, Ephase. (b) jz = 1, 0 < j⊥ < ∞: the spectrum crosses to the
two-channel Kondo spectrum, ENFL, at an energy Γ = j2

⊥/4a ∼ ∆L. (c) Turning on a local
magnetic field h induces a further cross-over in the spectrum to a simple phase shifted
spectrum with a phase shift π/4 at a field h ∼ (Γ2π/L)1/2.

The finite size spectrum can also be used to extract a lot more information about

the fixed point. In particular, it is also straightforward to implement Wilson’s pre-

scription [10] for extracting the exact scaling exponent of perturbations around the
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fixed point from its effect on the finite-size spectrum [88]: In general, a perturbation

causes the dimensionless energy Ẽ(L) calculated at a finite, non-zero ∆L ≪ Γ to

differ from its universal fixed point value ENFL by an amount δẼ(L), whose leading

asymptotic behavior for L→ ∞ is

δẼ(L) ≡ Ẽ(L) − ENFL ∼ (Ly)n , (151)

where n ≥ 1 is some integer and y is the scaling dimension of the perturbation. Thus

deviations from the universal spectrum are characteristic of the operator content of

the fixed point. The scaling dimensions of these operators, on the other hand,

directly determine the scaling properties of various response functions and physical

observables.

Let us, e.g. consider deviations from the Emery-Kivelson line, jz → 1 + δjz.

We can do perturbation theory in δjz to find that the first excited states (with

ENFL = 1/8) are shifted relative to the ground state by an amount

δẼ(L) ≃ −1

4
δjz

1

(1 + 4π2Γ/∆L)1/2
∼ L−1/2 . (152)

This relation implies that the scaling dimension of δjz is yz = −1/2, and is therefore

irrelevant. This is, in fact, one of the three the leading irrelevant operators, and it

is responsible for the anomalous behavior of the electronic scattering rate and the

resistivity, Rimp ∼ cst− T 1/2.

An analysis of the magnetic field dependence of the spectrum also reveals that

for very small fields the energy levels (in units of 2π/L) are shifted by an amount

∼ h2L, corresponding to n = 2 and yh = 1/2. The magnetic field is therefore a

relevant perturbation of scaling dimension 1/2, in agreement with the logarithmically

divergent susceptibility discussed before.

To conclude this subsection, let us mention that the whole finite size diagonaliza-

tion procedure can be also applied with some modifications to the case of the single

channel Kondo model. The results are shown in Fig. 27

4.1.3 Exact solution of the anisotropic two-channel Kondo problem

In the present section we show how one can solve the anisotropic two-channel Kondo

problem by the algebraic Bethe ansatz to obtain its thermodynamic properties. First
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Figure 27: Evolution of the many-body finite-size spectrum of the anisotropic 1CK
model for anti-periodic boundary conditions (P0 = 1). (a) For 0 < jz < j∗z = 2−

√
2,

j⊥ = 0. the spectrum is simply a phase shifted spectrum. (b) At the Toulouse line,
jz = j∗z , j⊥ 6= 0 the spectrum smoothly evolves into the well-known Fermi liquid
spectrum as a function of Γ/∆L = j2

⊥/(4a∆L) originally obtained by Wilson [10].

of all, we write the Hamiltonian in real space as

H =
Ne∑

j=1

{
i
∂

∂xj

+
1

2

∑

α=x,y,z

jα δ(xj)σ
α
j S

α
0

}
+ h

(
g Sz

0 + g′
∑

j

1

2
σz

j

)
. (153)

The xj denote the coordinates of the conduction electrons, Ne = N × f is the total

number of electrons, and the σj’s (j = 0, .., Ne) denote the spin operators of the

electrons. The conserved flavor quantum numbers, a = {1, .., f}, are implicit in

Eq. (153). In the following we shall discuss the case f ≥ 2 too, though for all

currently known physical realizations f = 2.

It is very hard to make analytical progress for the fully anisotropic case, jx 6=
jy 6= jz. We shall therefore restrict our considerations to the jx = jy = j⊥ version of

the above model, that has a U(1) symmetry in spin space.

Fortunately, in view of the results of Section 4.1.1, the Hamiltonian above is

enough to account for the low temperature properties of a fast (Kondo) tunneling

center. For a two level system the asymmetry of the double well potential plays the

role of a local magnetic field, which couples only to the impurity spin. In Eq. (153),

however, we also coupled the magnetic field to the conduction electrons’ spin, al-

though with a different g-factor, g′. The Bethe ansatz allows one to treat exclusively
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the case, g = g′, but we can also obtain results for the g 6= g′ case by combining the

Bethe ansatz method with other non-perturbative arguments [93, 101].

The first step towards the Bethe ansatz solution of this model is to construct the

scattering matrices and show that they satisfy the Yang-Baxter equations, Eq. (28).

The impurity-conduction electron S-matrix, R0j can be simply obtained from Eq. (153),

and turns out to belong to the following U(1) family of scattering matrices in the

spin sector,

R0j = U0j(α) = a(α)P↑↑ + b(α)P↑↓ +
1

2
c(α)(S+

0 S
−
j + S−

0 S
+
j ) , (154)

with P↑↑ and P↑↓ the projection operators for parallel and opposite spin directions.

These scattering matrices are parametrized by the spectral parameter α, and the

functions a(α), b(α) and b(α) satisfy

a(α)

c(α)
=

sinh(iµ+ αθ)

sinh(iµ)
,

a(α)

b(α)
=

sinh(iµ+ αθ)

sinh(αθ)
, (155)

Electrons move with the same velocity, and therefore we are free to choose their

S-matrix as we wish. To maintain integrability, we choose their scattering matrix to

be simply

Rij = Uij(αi − αj) ⊗ Fij(αi − αj) . (156)

Here U(α) is given by Eq. (155) and F describes scattering in the flavor sector:

Fij(αi − αj) =
αi − αj + icXij

αi − αj + ic
, (157)

with Xij the flavor exchange operator of particle i and j and c an arbitrary constant

to be defined later. The spectral parameters αj must be all equal, and we are free

to set them all equal to αj ≡ 0. With this choice, the impurity-conduction electron

S-matrix is simply

R0j = U
(spin)
0j (α0 − αj)σ0σ′

0
;σjσ′

j
, (158)

where α0 denotes the spectral parameter (rapidity) of the impurity, that we are free

to choose α0 = −1. With this choice one can easily find the connection between the

parameters µ and θ and the couplings j⊥, and jz. The precise connection depends

somewhat on the cut-off scheme, i.e., the regularization of the delta function in

Eq. (153), and is of no importance. It is more appropriate to consider the parameters
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µ and θ as the relevant parameters, which will turn out to be directly related to some

physical observables: µ turns out to be connected to the renormalized phase shift

of the conduction electrons while the ratio µ/θ determines the Kondo temperature,

below which non-Fermi-liquid correlations develop:

TK = (1 − f
µ

π
) 2De−πθ/µ, (159)

with D = N/L a cut-off of the order of the Fermi energy, L being the system size.

Once the scattering matrices in hand, we can use the machinery of algebraic

Bethe ansatz outlined in Section 2.2.1 to construct the analogues of Eqs. (34) and

(34). There is, however, one complication: now the conduction electrons also possess

a flavor quantum number, and therefore Bethe ansatz equations must be constructed

in the flavor sector too. In fact, one has to construct a series of Bethe ansatz equa-

tions to obtain the flavor structure of the wave function, which is called the nested

Bethe ansatz in the literature [13, 25]. The resulting Bethe ansatz equations are

rather complicated: In addition to the rapidities, {λα;α = 1, ..,M} that charac-

terize spin excitations from the vacuum, one must introduce f − 1 sets of flavor

rapidities, {χ̃(b)
µ } (b = 1, . . . , f − 1 µ = 1, . . . ,Mb), that keep track of excitations in

the flavor sector. Fortunately, the complications coming from the flavor excitations

completely disappear due to the so-called fusion [25]: it turns out, that due to the

interaction introduced in the flavor sector between conduction electrons, flavor exci-

tations become gapped once one allows for a non-linear dispersion of the electrons.

As a result, conduction electrons ’fuse’ to form flavor singlets, the Bethe ansatz equa-

tions simplify a lot in the spin sector, and with the choice c ≡ µ
θ

the spin rapidities

{λα;α = 1, ..,M} satisfy

sinh(µ(λα + i
2
) + θ)

sinh(µ(λα − i
2
) + θ)

[
sinhµ(λα + if

2
)

sinhµ(λα − if
2
)

]N

= −
M∏

β=1

sinhµ(λα − λβ + i)

sinhµ(λα − λβ − i)
.

The momenta of the electrons and thus the total energy is determined by the periodic

boundary conditions

eikALf =
M∏

α=1

sinhµ(λα + if
2
)

sinhµ(λα − if
2
)

; E =
N∑

A=1

fkA , (160)

where fkA denotes the total momentum of the fused f -electron composites.
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Just as in case of the single channel Kondo model, in the thermodynamic limit,

L,N → ∞, N/L = D, the ’spin rapidities’ λα in Eq. (160) are organized into strings

[13, 64] of length r and parity v = ±: λ→ {λ(r,v)
q ; q = 1, .., r} with

λ(r,v) ↔ λ(r,v)
q = λ(r,v) + [ r+1

2
− q] + i π

4µ
(1 − v) . (161)

These strings, however, must satisfy also a stability condition, i.e., v and r must

satisfy the inequality [65, 13]

v sin(µq) sin(µ(r − q)) > 0 , q = 1, .., [r/2] (162)

for µ < π/f . This rather non-trivial inequality has been analyzed by Takahashi

and Susuki [65], who studied the anisotropic Heisenberg chain, and showed that all

allowed (r, v) strings can be classified on the basis of an infinite (or finite) fraction

expansion of µ/π. For simplicity, here we only discuss the most simple case µ = π/ν

and f < ν, where only ν different stable string configurations exist: n = (r, v) =

(1,+), (2,+), .., (ν−1,+) and (1,−). To simplify our notation, we shall refer to these

strings by the labels n = 1, . . . , ν, the last index referring to odd parity one-strings.

To derive the thermodynamic Bethe ansatz (BA) equations in the continuum

limit L,N → ∞ and D ≡ N/L = cst one can proceed in the usual way, and defined

the density of rapidities (rapidity holes), ̺n(λ) (˜̺n(λ)), and derive integral equations.

After some algebraic manipulations one finds the following set of integral equations

for the functions ηn ≡ ˜̺n/̺n,

ln ην = g h ν/2T −G ∗ ln(1 + ην−2) + δν,f+1Θ(λ)

ln ην−1 = g h ν/2T +G ∗ ln(1 + ην−2) − δν,f+1Θ(λ) (163)

ln ηj = G ∗ ln
[
(1 + ηj+1)(1 + ηj−1)

]
+ δj,ν−2 G ∗ (1 + 1/ην)

− δj,fΘ(λ) (j < ν − 1).

G ∗ denotes convolution with the Kernel G(λ) = 1
2 cosh(πλ)

, the driving term is given

by Θ(λ) = 2D/T tan−1(eπλ) and η0 ≡ 0. The impurity contribution to the free

energy is given by

F imp = −T
∫ ∞

−∞
dλ

1

2 cosh
(
π(λ+ θ

µ
)
) ln(1 + η1(λ))) ,
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and, in principle, all thermodynamic quantities can be calculated by taking the

derivatives of F imp. The bandwidth can be easily eliminated from these equations

by replacing the driving term by Θ(λ) ≈ eπλ+ln(2D/T ), and shifting the variable

λ̃ ≡ λ + 1
π
ln(2D/T ). Then the functions ηn(λ̃) become universal functions of h/T ,

and the Free energy can be written as

F imp = −T
∫ ∞

−∞
s
(
λ̃− 1

π
ln(2De−πθ/µ/T )

)
ln(1 + η1(λ̃,

h

T
))) dλ̃ .

Clearly, F imp/T is just a universal function of T/TK and h/T with the definition

Eq. (159) of the Kondo scale. Furthermore, we see that the behavior of η1 in the

λ̃→ ∞ and λ̃→ −∞ regimes determines the low and high temperature behavior of

the free energy.

We can, in fact, obtain a lot of information from the asymptotic analysis of the

functions ηn. Using the ansatz ηn(λ → ±∞) ≈ η±n + b±n e∓π τ±λ one obtains a set of

algebraic equations for the η±n ’s, b±n ’s and the exponents τ±. The latter exponents

govern the scaling of the free energy in the vicinity of the low- and high-energy fixed

points and are given by τ+ = 4/(2 + f) and τ− = 2µ/π. The crossover between the

two regimes occurs at the Kondo scale Eq. (159).

Note that the exponent τ+ = 4/(2 + f) determines the asymptotic scaling of all

thermodynamic quantities below the Kondo scale. For h ≪ T ≪ TK the impurity

free energy is given by

−F imp/T ∼




Simp +

(
a+ b

(
gh
T

)2)(
T

TK

)4/(2+f)
(f > 2, T ≪ TK)

Simp +
(
a+ b

(
gh
T

)2)(
T

TK
ln( T

TK
)
)

(f = 2, T ≪ TK)
(164)

implying the divergence of the linear specific heat coefficient cimp/T at h = 0 and

the susceptibility as T → 0,

χimp ∼ cimp

T
∼





1
TK

(
T

TK

) 2−f
2+f (f > 2, T ≪ TK),

1
TK

ln
(

T
TK

)
(f = 2, T ≪ TK).

(165)

The constants a and b in Eq. (164) depend on the specific value of f and µ (but are

independent of θ). The residual entropy Simp is determined by the limiting value η+
1 ,
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and is the same as in the isotropic case [25],

Simp = ln

(
sin( fπ

f+2
)

sin( π
f+2

)

)
, (166)

also in agreement with the results of conformal field theory [27] and the Abelian

bosonization approach discussed in the previous Section [86].

A similar analysis can be carried out to obtain the susceptibility and the impurity

contribution to the specific heat for T ≫ TK , and we obtain [93],

χimp(T ≫ TK) =
1

4T

[
1 −B(

TK

T
)2µ/π

]
, (167)

cimp(T ≫ TK) ∼
(
TK

T

)2µ/π

. (168)

The second relation allows us to determine the physical meaning of the parameter µ

as well. Simple perturbation theory in j⊥ shows that the leading correction to the

free energy at high temperatures is proportional to F im ∼ T j2
⊥+. . .. Combining this

with scaling arguments one can immediately identify µ/π as the scaling dimension of

the spin flip term, j⊥. This, however, can be determined exactly using a the integral

approach of Yuval and Anderson [3, 102] and can be expressed as

µ

π
= 4

δz
π

− 4f
δ2
z

π2
. (169)

where δz is the phase shift of the conduction electrons generated by the coupling jz

[102].

An analysis of the integral equations also reveals that for finite magnetic fields

h there is a cross-over to a Fermi liquid fixed point with vanishing residual entropy

at a scale T ∗ ∼ h2/TK . Correspondingly, for small magnetic fields, the entropy of

the impurity is quenched in two steps, and the logarithmic divergences are cut off

below the energy scale T ∗. The two steps in the entropy translate into two peaks

in the specific heat at the energies TK and T ∗. Some typical curves obtained from

the numerical solution of the integral equations are shown for the case ν = 3 in

Fig. 28. For all other values of ν we found that the low temperature part of the

data almost collapsed for any value of µ. These results show that anisotropy in the

couplings plays very little role around the Kondo scale and below, where the system

is already essentially isotropic. At high temperatures, however, the specific heat and
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Figure 28: The impurity contribution to the entropy, Simp, specific heat, cimp, and
(local) susceptibility, χimp, as functions of T/TK for magnetic fields h/TK = 2−6 (solid),
h/TK = 2−4 (dotted), h/TK = 1 (dashed) and h/TK = 24 (long-dashed) for the case ν = 3
corresponding to the largest anisotropy studied.

the susceptibility exhibit anomalous power law behavior, that is governed by the

non-universal exponent µ.

4.2 SU(N) models

In the previous section we studied the simplest non-Fermi liquid model, the mul-

tichannel Kondo problem, where a spin 1/2 impurity is coupled to f channels of

conduction electrons through an antiferromagnetic exchange coupling. We have seen

that for f > 1 this model has singular behavior at low temperatures, and displays a

non-Fermi liquid behavior.

There is a number interesting generalizations of this model. First of all, one

can replace the impurity spin S = 1/2 by a higher SU(2) representation, S > 1/2.

Already this modification gives non-trivial results. It turns out that a Fermi liquid

state only appears if S = f/2, in which case the impurity spin is exactly screened
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by the conduction electrons [25]. For S > f/2 the impurity spin is underscreened at

low temperatures, and the T → 0 behavior remains singular [12, 103], although in

some sense it still resembles a Fermi liquid [104]. While in most cases the impurity

spin is exactly screened, the underscreened state can sometimes also be realized,

e.g., in quantum dots having a triplet ground state [49]. For S < f/2, on the

other hand, the impurity spin is overscreened, and the behavior of the specific heat

is essentially identical to that of the spin S = 1/2 impurity model, although the

residual entropy is different. Such underscreened states are most likely realized in

some Uranium or Cerium based compounds and by fast tunneling enters [34]. These

various possibilities are shown in Fig. 29.

Another possibility is to consider electrons with spin Se > 1/2. These types of

models emerged, e.g., in Section 4.1.1. Fortunately, it turns out that the spin sector

of the Se > 1/2 f -channel models can be simply mapped to that of the multichannel

spin 1/2 Kondo model with an effective channel number [105]

f̃ = f
2

3
Se(Se + 1)(2Se + 1) . (170)

Therefore these models are conceptually not different from the spin Se = 1/2 multi-

channel models.

In this section we shall focus on a more exciting family of models, where the

SU(2) spins of the impurity and the conduction electrons are replaced by SU(N)

spin operators, i.e., we replace the exchange interaction as

3∑

i=1

σi
imp(ψ

†σiψ) →
N2−1∑

i=1

λi
imp(ψ

†λiψ) , (171)

S < f / 2S = f / 2S > f / 2
underscreened

liquid
non−Fermi

liquid
Fermi

Figure 29: Simplistic, pictorial representation of the various ground states of the spin S
multichannel Kondo model.
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with λi the generators of the SU(N) Lie algebra. On one hand, these models serve

as interesting test grounds, because in many cases, in the limit N → ∞ they have

’simple’ mean field solutions, which nevertheless capture many aspects of the Kondo

and the non-Fermi liquid physics [92, 106, 107]. Furthermore, SU(N) spin models are

sometimes also realized in nature: as we shall see in Chapter 5, double quantum dot

systems or quantum dots with degenerate levels can realize an SU(4) spin model.

In the next subsection we first show how the low temperature physics of a fast

N -state system can be described by a two-channel SU(N) model [108]. Then in

subsection 4.2.2 we show how this model can be solved exactly by the algebraic

Bethe ansatz approach.

4.2.1 The N-state tunneling system: 1/f expansion

In some experimental systems like the narrow gap semiconductor Pb1−xGexTe or

the insulating system K1−xLixCl, tunneling systems are formed by substitutional

impurities that are sitting in the middle of a highly symmetrical ’cavity’ of neigh-

boring atoms [109, 110]. In these systems the two level system model is inappropriate

since the tunneling impurity tunnels between many (three, six, or eight) equivalent

positions, and forms an N -state system. In some of these systems Kondo-like anoma-

lies have been observed that could be attributed to the presence of these tunneling

centers [109].

To study how a strongly correlated state forms in these systems, we first write

the Hamiltonian of the tunneling system as

Hhp =
N∑

i,j=1

∆ij |i〉〈j| , (172)

where now |i〉 denotes the state localized at position i of the tunneling particle. The

off-diagonal matrix elements of matrix ∆ij describe tunneling between these states,

while the diagonal ones correspond to an asymmetry of them, generated by some

strain field.

The most general interaction term generated by a Coulomb interaction between

the tunneling particle and the conduction electrons takes on the form

Hint =
∑

σ

∑

i,j

∑

µ,µ′=s,p,...

vij
µµ′ |i〉〈j|ψ†

µσψµ′σ , (173)
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where similar to the two level system case, Eq. (112), the operator ψ†
µσ =

∫
dǫ a†µσ(ǫ)

creates a local fermion state with angular momentum µ. The off-diagonal couplings

(vij with i 6= j) correspond to assisted tunneling processes, while diagonal terms

(vij with i = j) generate dissipation and tend to suppress spontaneous tunneling

processes. In known physical realizations, the spin σ of the electrons can take only

two different values, but here we shall consider here the general case, σ = 1, .., f ,

which allows us to perform a 1/f expansion for the critical exponents.

To construct the scaling equation, we proceed by representing the states of the

tunneling atom by pseudofermion operators, |i〉〈j| → b†ibj, and computing the con-

duction electron vertex functions, and the pseudofermion’s self-energy. In leading

order in 1/f we obtain the following results for the pseudofermion propagator and

the vertex function [108],

(G−1)ij = ω δij − ∆ij + f ln
D

ω
(δij ω tr{vklvlk} − tr{vik∆klvlj})

Γij = vij − ln
D

ω

(
[vik, vkj] − ftr{vikvlj}vkl

)
, (174)

where the matrix notations vij
mn → vij, Γij

mn → Γij, have been introduced, D is the

high energy cut-off of the order of the Debye temperature, and a summation must

be carried out over repeated indices.

To generate the scaling transformation, we should now determine the pseud-

ofermion’s Z-factor by substituting the above expressions into Eqs. (14) and (15) of

Section 2.1.2. However, it turns out that Eqs. (14) and (15) cannot be satisfied with

a constant Z-factor. Therefore we proposed the following generalized multiplicative

renormalization group transformation [108]:

G(ω, v′,∆′, D′) = A G(ω, v,∆, D) A+ ,

Γ(ω, v′,∆′, D′) = [A+]−1Γ(ω, v,∆, D) A−1 , (175)

where we introduced a matrix notation in the indices i, j too, D′ stands for the

rescaled cut-off and A denotes an N ×N matrix acting only on the indices i, j. The

matrix A = A(v′,∆′, D′/D) is independent of the dynamical variable ω, and should

be though of as the square root of the Z-factor. While for finite D/D′ the matrix A

has a rather complicated structure, for an infinitesimal change of D it can be chosen

to be Hermitian and Eq. (175) can be cast in the form of a scaling equation for the
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dimensionless couplings vij. Note also, that Eq. (175) has been constructed to leave

the free energy invariant, and also assures that the generated Hamiltonian remains

Hermitian.

From Eqs. (175) and (174) we now obtain the following scaling equations

dvij

dl
= −[vik, vkj] +

1

2
f
(
2tr{vikvlj}vkl − tr{vikvkl}vlj − viktr{vklvlj}

)
,

d∆ij

dl
= −f

2

[
tr{vikvkl}∆lj + ∆iktr{vklvlj} − 2tr{vik∆klvlj}

]
(176)

with l = ln D/D′ the scaling variable. Apart from some special cases the above

differential equations can be solved only numerically. However, even for a numerical

solution it is useful first to introduce some site representation in the orbital indices of

the conduction electrons to exploit the symmetry properties of the system. This can

be achieved most simply by taking some linear combinations of the most strongly

scattered angular momentum channels and hybridize them using group theoretical

methods. For a regular 3-state system in the xy plane and a free electron band, e.g.,

one can use the three orthogonal electron states:

|1〉 =
1√
3
|s〉 +

√
2

3
|px〉 ,

|2, 3〉 =
1√
3
|s〉 − 1√

6
|px〉 ±

1√
2
|py〉 , (177)

where the states |px〉 and |py〉 are defined in the usual way from the l = 1 angular

momentum states |m〉. Working with these electron states directed towards the

impurity positions, the vij’s become N4-dimensional tensors. However, the number

of independent couplings is largely reduced by symmetry. For an octahedron, e.g.,

the 64 = 1296 couplings may be replaced by 32 independent couplings making the

numerical solution reasonably fast.

In Fig. 30 the dashed line shows the typical scaling of the norm of the dimension-

less couplings, u =
∑ ||vij||, for initial couplings estimated similar to Refs. [32, 111].

Clearly, the couplings gradually increase and scale to a strong coupling fixed point.

While we could not find all possible fixed points of Eq. (176), based upon the results

obtained for the two level system in Section 4.1.1, it quite natural to guess that the
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l

Figure 30: Scaling of the norm of the dimensionless couplings, u =
∑ ||vij || (dashed line),

and of the algebra coefficient α (continuous line) for a 6-state system with f = 2.

fixed point couplings must be unitary equivalent to the SU(N) generators,

vij
fp =

1

f
Oij ; [Oij, Okl] = δilOkj − δkjOil , (178)

where the Oij’s are N × N matrices. In other words, in an appropriate basis, the

effective low-temperature interaction Hamiltonian simply reads,

Heff ∼
∑

σ=1,...,f

∑

α,β=1,...,N

|α〉〈β|ψ†
βσψασ . (179)

The model (179) is called the multichannel Coqblin-Schrieffer model [112], and is one

of the models displaying non-Fermi liquid properties (see the following section). The

above conjecture can be verified numerically, by computing the ’algebra coefficient’

α ≡ ∑
i,j,k,l ||f 2[vij, vkl]− fδilvkj + fδkjvil||, that measures in a natural way how well

the fixed point algebra (178) is satisfied. As shown in Fig. 30, α indeed vanishes at

the strong coupling fixed point.

One can also carry out a stability analysis of the above fixed point in the large

f limit, where the multiplicative renormalization group is reliable, and show that it

is indeed stable. The operator content of the N -state system’s fixed point is though

slightly different from that of the Coqblin-Schrieffer model [108], and the leading ir-

relevant operator of the N -level system is not captured by the latter. However, very

likely the amplitude of this operator is quite small compared to that of the subleading

operator, which is just the exchange operator itself, and has almost the same dimen-
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sion. Therefore the f -channel Coqblin-Schrieffer model, Eq. (179) should describe

the physics of the N -level system rather well in a large range of temperatures. To or-

der 1/f we find that the dimension of this subleading irrelevant operator is given by

y = −N/f , which agrees with the expansion of the exact exponent y = −N/(f +N)

obtained using conformal field theory and slave particle techniques [92, 113].

Let us close this subsection by shortly discussing the role of the splitting ∆ij. In

case of an N -state system, usually symmetry guarantees that the diagonal matrix

elements ∆ii are the same. However, just as for the two level system model, the

tunneling between neighboring positions generates a crossover scale T ∗ to a Fermi-

liquid state. This scale must be smaller than the Kondo scale to access the interesting

non-Fermi liquid regime. Though no quantitative analysis has been carried out, we

believe that the arguments of Aleiner et al. and those of Ref. [96] also carry over

to the present model, implying that the tunneling impurity must act as a resonant

scatterer for the conduction electrons to satisfy the criterion T ∗ < TK [124, 96].

4.2.2 Exact solution of the SU(N) × SU(f) model

In this subsection we shall construct the exact solution of the f -channel Coqblin-

Schrieffer model, Eq. (179), closely following the discussion of Ref. [85]. Apart form

a trivial potential scattering term, the Coqblin-Schrieffer model can well be written

using the generators λi of SU(N) as

H =
N∑

σ=1

f∑

a=1

∫ dx

2π
ψ†

σa(x) i∂xψσa(x) + J
N2−1∑

i=1

∑

a,σσ′

λi
imp ψ

†
σa(0)λi

σσ′ψσ′a(0) . (180)

Here the exchange coupling acts on the spins σ of the electrons, which can take N

different values, and correspond to orbital indices in the N -state system problem.

The electron spin in the tunneling system problem, on the other hand, corresponds

to the conserved channel (flavor) label a in Eq. (180).

The diagonalization procedure of this Hamiltonian is the same as the one out-

lined in subsection Ref. 4.1.3: One must introduce a curvature in the conduction

electrons’ dispersion, and also an effective exchange interaction between them both

in the spin and in the flavor sectors to maintain integrability. Then the scattering

matrix between the impurity and electron ’i’ and conduction electrons i and j read,
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respectively,

R0j = U0j(α0 − αj) , Rij = Uij(αi − αj) ⊗ Fij(αi − αj) , (181)

where Uij and Fij denote the scattering matrices in the spin and flavor sectors,

respectively,

Uij(α) =
α+ icPij

α+ ic
, Fij(α) =

α+ icXij

α+ ic
, (182)

with P and X the exchange operators for spin and flavor. The constant c in Eq. (182)

measures the strength of the exchange coupling, c = c(J). The rapidities αj are

related to the momenta of the electrons, but in the limit of linear dispersion they

simply become α0 → −1 and αj → 0.

This multichannel Coqblin-Schrieffer model is more complicated than the multi-

channel Kondo model studied in Section 4.1.3 in that here a nested Bethe ansatz must

be made in both the spin and the charge sectors. As a consequence, the spin structure

of the wave function is now characterized by rapidities {λ(r)
α ; r = 1, .., N − 1, α =

1, ..,Mr}, while the rapidities {χ(b)
α ; b = 1, .., f − 1, α = 1, .., Nb} determine its fla-

vor structure. The interaction introduced in the flavor sector leads to the fusion of

conduction electrons when we remove the cut-off: f conduction electrons are bound

to form a flavor singlet of total momentum p = fpδ (δ = 1, .., Ne/f) and we obtain

a set of equations that involves only the spin sector:

eifpδL =
M1∏

γ=1

λ(1)
γ + if/2

λ
(1)
γ − if/2

,

−
Mr∏

β=1

λ(r)
γ − λ

(r)
β + i

λ
(r)
γ − λ

(r)
β − i

=
∏

t=r±1

Mt∏

β=1

λ(r)
γ − λ

(t)
β + i/2

λ
(r)
γ − λ

(t)
β − i/2

; (r = 2, ..., N − 1),

−
M1∏

β=1

λ(1)
γ − λ

(1)
β + i

λ
(1)
γ − λ

(1)
β − i

=
λ(1)

γ + 1/c+ i/2

λ
(1)
γ + 1/c− i/2

Ne/f∏

δ=1

λ(1)
γ + if/2

λ
(1)
γ − if/2

M2∏

β=1

λ(1)
γ − λ

(2)
β + i/2

λ
(1)
γ − λ

(2)
β − i/2

.

A state is thus characterized by a set of spin rapidities {λ(r)
α } that provide a solution

for the above equations, and its energy is given by

E =
Ne/f∑

δ=1

fpδ.

In the thermodynamic limit, Ne, L → ∞, D ≡ Ne/fL = cst, the solutions
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λ(r)
α organize into n-strings. The thermodynamic Bethe ansatz equations can be

derived for the densities ̺(r)
n (λ) of these n-strings (and the hole-densities, ˜̺(r)

n (λ))

following the same procedure that we outlined in Section 2.2.3. In the end of this

tedious procedure, we obtain the following set of integral equations for the ratios

η(r)
n (λ) ≡ ˜̺(r)

n (λ)/̺(r)
n (λ),

ln η
(r)
1 = − 2

f

D

T
arctan eπλ δr,1δ1,f +G ∗ ln(1 + η

(r)
2 )

−G ∗ (ln(1 + (η
(r−1)
1 )−1) + ln(1 + (η

(r+1)
1 )−1)), (183)

ln η(r)
n = −2D

Tf
arctan

(
eπλ

)
δr,1δn,f +G ∗ (ln(1 + η

(r)
n−1) + ln(1 + η

(r)
n+1))

−G ∗ (ln(1 + (η(r−1)
n )−1) + ln(1 + (η(r+1)

n )−1)), (184)

with G the integral operator given by Eq. (47). These equations are, unfortunately,

not well-defined in the scaling limit. The reason is that the driving term ∼ D/T

drives the functions η
(r)
f to zero in the λ → ∞ limit (corresponding to T → 0

temperatures). In this limit, the terms ∼ G ∗ ln(1 + (η
(r±1)
1 )−1) also diverge, and an

iterative solution is unstable.

With some algebraic manipulations it is therefore better rewriting these equations

as [12]

− ln(1 + (η(r)
n )−1) = −∆Efund

N,r

T
δn,f (185)

+
N−1∑

q=1

Gr,q
N

(
ln(1 + η

(q)
n+1) + ln(1 + η

(q)
n−1) −G−1 ln(1 + η(q)

n )
)
,

where ln(1+η
(r)
0 ) ≡ 0, and the Fourier transform of the kernel of the integral operator

Gr,q
N is given by

G̃r,q
N (ω) ≡

sinh
(

ω
2

min(r, q)
)

sinh
(

ω
2

(N − max(r, q))
)

sinh (ω/2) sinh (Nω/2)
. (186)

The right hand sides of Eqs. (185) behave already nicely in the λ → ∞ limit. The

driving term in these equations is the energy of the fundamental excitation, ∆Efund
N,r ,

that can be calculated explicitly as

∆Efund
N,r =

D

f

{
π
N − r

N
− 2 arctan

(
tan

(
π

2

N − r

N

)
tanh

(
π

N
λ
))}

.
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For large negative values of λ these energies scale as

∆Efund
N,r (λ→ −∞) ≈ 2D

f
sin
(
π
r

N

)
e2πλ/N . (187)

Based on this asymptotic formula, we can now eliminate the bandwidth D from

Eqs. (185) by introducing the new variables, ξ ≡ 2πλ
N

+ ln D
T

. Then the η(r)
n ’s be-

come universal functions of ξ, independent of the temperature, and the impurity

contribution to the free energy can be expressed as

F i = − T

2π

N−1∑

q=1

∫ ∞

−∞
dξ

sin πN−q
N

cosh
(
ξ − ln(TK/T )

)
+ cos πN−q

N

ln(1 + η
(q)
1 (ξ)) , (188)

where the Kondo temperature is defined as

TK = D e−2π/Nc . (189)

Clearly, the free energy is determined by the distributions of one-strings only (but in

all spin sectors), and is a universal function of T/TK and H/T . The magnetic field-

dependence only appears implicitly in Eqs. (185) through the boundary conditions

for the functions η(q)
n .

The asymptotic analysis of Eqs. (185) can be carried out similar to Section 4.1.3.

The residual entropy is determined by the limiting value of the functions η(r)
n (λ →

∞), and is given by

Si
T=0 = ln

sin πN
f+N

sin π
f+N

. (190)

The behavior of the susceptibility and the specific heat depend on the ratio N/f .

For f > N the thermodynamics is singular, and the susceptibility and the linear

specific heat coefficients diverge as

χimp
f>N ∼ cimp

f>N/T ∝ 1

TK

(
T

TK

)N−f
N+f

. (191)

The power law divergences are reduced to logarithmic singularities for the marginal

case, f = N ,

χimp
f=N ∼ cimp

f=N/T ∝ 1

TK

ln
TK

T
. (192)
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Finally, in the case 1 < f < N , also relevant for the N -state tunneling system

problem, χimp and cimp/T display cusp-like singularities:

χimp
f<N ∼ cimp

f<N/T ∝ 1

TK

−B
(
T

TK

)N−f
N+f

. (193)

The above results are only valid for f > 1. For f = 1 channels, on the other

hand, the ground state is always simply that of a Fermi liquid, and χimp and cimp/T

are analytical functions of T/TK

The above results can be also verified through the numerical solution of the Bethe

ansatz integral equations. As an example, in Fig. 31 we present the scaling of the

leading singularity of the linear specific heat coefficient for f = 2. The numerical

data are in full agreement with Eq. (193).

Let us close this subsection by mentioning that the Bethe ansatz solution can

be easily generalized to the case of ’higher’ impurity spin representations, which are

analogues of an impurity spin S > 1/2 in the multichannel Kondo problem. Similar

to the multichannel Kondo problem, the low temperature thermodynamics depends

then on the details of this representation, which can give rise to new interesting

underscreened SU(N) fixed points [85]. Unfortunately, the discussion of these fixed

points exceeds already the page limits of the present dissertation.
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5 Correlations in mesoscopic devices

Although no rigorous definition exists, we usually call a device ’mesoscopic’ if its

characteristic size is in the range of ∼ 100 − 10000Å. In these small devices elec-

trons can move coherently, and physical properties of the system usually depend

on microscopic details. Moreover, since electrons are confined to a small region,

electron-electron interactions start to become very important in these structures.

In most of the present chapter, we shall focus our attention on the physics of

mesoscopic grains, metallic islands and quantum dots. All these mesoscopic devices

consist of a tiny island weakly connected to various leads that are used to send

current through them or control their charge state through the application of gate

voltages. While these structures can be prepared using a variety of techniques, they

have the common feature that Coulomb interaction-induced electronic correlations

play a dominant role in them, and that quantum impurity models are of great value

to understand these correlation effects and the physical properties of these systems.

While most of the present chapter deals with grains and quantum dots, at the end

of this chapter, we shall also discuss the physics of point contacts. These mesoscopic

structures turn out to be ideal tools to study small grains and also to measure the

properties of individual atomic defects in detail and test quantum impurities.

5.1 Coulomb blockade and Kondo effect in quantum dots

Although no rigorous definition exists, we typically call a ’quantum dot’ a small

artificial structure containing conduction electrons, and weakly coupled to the rest

of the world. There is a variety of ways to produce these structures: Maybe the most

common technique to do this is by defining a typically µ-size region by shaping a two-

dimensional electron gas using gate electrodes placed on the top of a semiconductor

heterostructure or by etching (see, e.g., Refs. [47, 114, 115]). In Fig. 32 we show the

top view of such a single electron transistor (SET) that has been first used to detect

the Kondo effect in such a structure [114, 130]. Beside semiconductor technologies,

quantum dots can also be built from metallic grains [116, 117], and more recently

it became possible to integrate even real molecules into electronic circuits[118]. The

common feature of all these devices is that Coulomb correlations play an essential

role in them, and induce Coulomb blockade [119] and Kondo effect [114, 120, 121].

There is two essential energy scales that characterize an isolated quantum dot:
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Figure 32: Top view of the SET used by David Goldhaber-Gordon and his collaborators
to first observe the Kondo effect in a quantum dot, from Ref. [114]: The white areas indicate
regions where conduction electrons are present. The quantum dot is at the central region
(white circle). The various electrodes (1-4) have been used to define the dot and the
junctions.

One of them is the charging energy, EC , the typical cost of putting an extra electron

on the device. The other is the typical separation of single particle energies, also

called level spacing, ∆. Typically ∆ ≪ EC , but for very small structures (e.g. in

the extreme case of a molecule) these two energy scales can be of the same order

of magnitude. While the charging energy EC is usually of the order of e2/L with

L the characteristic size of the device, the level spacing ∆ depends very much on

the material and dimensionality of the dot: it is typically very small in mesoscopic

metallic grains, where it roughly scales as ∆ ∼ EF/(kFL)3, and becomes of the order

of one Kelvin only for nanoscale structures with L ∼ 20Å. For two-dimensional

semiconductor structures, on the other hand, both kF and the Fermi energy are

much smaller and since ∆ scales as ∆ ∼ EF/(kFL)2, in these structures, ∆ becomes

of the order of a Kelvin typically for L ∼ 0.1µ.

Coulomb correlations may become only important if the measurement temper-

ature is less than the charging energy, T < EC . Clearly, this criterion can be only

satisfied with our current cooling technology if EC is in the range of a few Kelvins,

i.e. the size of the system is in the µ range or below. The behavior of a quantum dot

is also very different in the regimes T > ∆ and T < ∆: while in the former regime

electron-hole excitations on the dot are important, for T < ∆ these excitations do

not play an essential role.
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Beside the difference in the typical energy scales EC and ∆, there is also a differ-

ence in the way semiconducting and metallic devices are usually connected. Although

metallic particles can be also contacted through single or few mode contacts using

e.g. STM tips, these grains are typically connected through multichannel leads with

contact sizes much larger than the Fermi wavelength λF . Lateral semiconducting

devices are, on the other hand, usually contacted through few or single mode con-

tacts (though e.g. vertical dots are connected through a large contact area). While

these details can be important for some phenomena [122, 123], the behavior of all

these devices is very similar in many respects. In the following, we shall therefore

mainly focus on lateral quantum dots with single mode contacts.

5.1.1 Coulomb blockade

In almost all systems discussed in the introduction we can describe the isolated dot

by the following second quantized Hamiltonian

Hdot =
∑

j,σ

ǫj d
†
jσdjσ +Hint +Hgate , (194)

where the second term describes interactions between the conduction electrons on

the island, and the effects of various gate voltages are accounted for by the last term.

The operator d†jσ creates a conduction electron in a single particle state ϕj with spin

σ on the dot.

Fortunately, the terms HC = Hint + Hgate can be replaced in most cases with a

very good accuracy by a simple classical interaction term [124]

HC =
e2

2C

(
ndot −

VgCg

e

)2

, (195)

where C denotes the total capacitance of the dot, Cg is the gate capacitance, e is the

electron’s charge, Vg stands for the gate voltage (roughly proportional to the voltage

on electrode ’2’ in Fig. 32), and ndot =
∑

j,σ : d†jσdjσ is the number of extra electrons

on the dot. This simple form can be derived by estimating the Coulomb integrals

for a chaotic dot [124], however, it also follows from the phenomenon of screening in

a metallic particle. We outline this rather instructive derivation of Eq. (195) within

the Hartree approximation in Appendix B. Clearly, the dimensionless gate voltage

Ng = VgCg/e sets the number of electrons on the dot, 〈ndot〉 ≈ Ng.
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Figure 33: Excitation spectrum of an island. Lines represent eigenenergies of the island.
Charging excitations typically need an energy ∼ EC while internal electron-hole and spin
excitations cost an energy ∆ ≪ EC .

The single particle levels ǫj above are random but correlated: The distribution of

these levels for typical (i.e. large and chaotic) islands is given with a good accuracy

by random matrix theory [125], which predicts among others that the separation s

between two neighboring states displays a universal distribution,

P (s) =
1

∆
p (s/∆) , (196)

with ∆ the average level spacing between two neighboring levels. For small sepa-

rations, energy levels repel each-other and p vanishes as p
(

s
∆

)
∼
(

s
∆

)β
, where the

exponent is β = 1, 2 or 4, depending on the symmetry of the Hamiltonian (orthogo-

nal, unitary, and symplectic, respectively). In some special cases cross-overs between

various universality classes can also occur,and in some cases level repulsion may be

even absent for dots with special symmetry properties.

The spectrum of an isolated dot described by Eqs. (194) and (195) is sketched in

Fig. 33. As we already mentioned, for typical parameters and relatively large lateral

dots or metallic islands, the charging energy is much larger than the level spacing,

EC ≫ ∆. Accordingly, internal electron-hole excitations cost much smaller energy

than charge excitations of the dot. For dot sizes in the 0.1µm range the capacitance

C can be small enough so that the charging energy EC = e2/2C associated with

putting an extra electron on the dot can safely be in the meV range. Therefore,

unless Ng = VgCg

e
is a half-integer, it costs a finite energy to charge the device,

and therefore the number of electrons on the dot becomes quantized at low enough

temperatures, T ≪ EC , and a Coulomb blockade develops - provided that quantum

fluctuations induced by coupling the dot to leads are not very strong.
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Figure 34: The number of electrons on a quantum dot as a function of the dimensionless
gate voltage. The sudden jumps of an isolated dot become smeared out due to quantum
fluctuation as soon as we couple the dot to leads.

Let us now consider a quantum dot that is weakly tunnel-coupled to leads, ’weak

coupling’ in this context meaning that the conductance between the island and the

leads is less than the quantum conductance, GQ ≡ 2e2/h. In the particular case of

a lateral quantum dot this condition is satisfied when the last conduction electron

channel is being pinched off. If the lead-dot conductance is much larger than GQ then

the Coulomb blockade is lifted by quantum fluctuations. In the absence of tunneling

processes, the charge on the dot would change in sudden steps at T = 0 temperature

(see Fig. 34). However, in the vicinity of the jumps, whereNg = VgCg

e
is a half-integer,

two charging states of the island become almost degenerate. Therefore quantum

tunneling to the leads induces quantum fluctuations between these two charging

states, smears out the steps, and eventually completely suppresses the steps only

leaving some small oscillations on the top of a linear 〈ndot〉(Vg) dependence [126]. At

a finite temperature T 6= 0, thermal fluctuation play a similar role, and the charging

steps are also washed out if T ≫ EC .

Charge quantization is also reflected in the transport properties of the dot. To

study transport through a quantum dot, one typically builds a single electron tran-

sistor (SET) by attaching it to two leads, as shown in Figs. 32 and 35. Let us first

assume that the conductances GL and GR between the dot and the lead on the left

/ right are small compared to GQ and that quantum fluctuations are small. In this

limit we can describe charge fluctuations on the dot by the following simple tunneling
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Hamiltonian:

V̂ =
∑

j

∑

ǫ

{
tLj d

†
jσψL,ǫσ + h.c.

}
+ “L↔ R′′ , (197)

where we assumed single mode contacts. The fields ψ†
L,ǫσ and ψ†

R,ǫσ denote the

creation operators of conduction electrons of energy ǫ and spin σ in the left and

right leads, respectively, and are normalized to satisfy the anticommutation relations

{ψ†
L/R,ǫσ, ψL/R,ǫ′σ′} = δσσ′δǫǫ′ . Note that the tunneling matrix elements tLj and tRj

fluctuate from level to level since they depend on the amplitude of the wave function

ϕj at the tunneling position. Using a simple Boltzmann equation approach one then

finds that for T < EC the linear conductance of the SET has peaks whenever two

charge states of the dot are degenerate and Ng is a half-integer. In the regime,

∆ ≪ T ≪ EC , in particular, one finds that [127]

G(T ) ≈ 1

2

GLGR

GL +GR

∆E/T

sinh(∆E/T )
, (198)

where ∆E is the energy difference between the two charging states of the dot, and

GL/R = (8π2e2/h) ̺dot ̺L/R 〈|tL/R
j |2〉j is the tunnel conductance of the two junc-

tions, with ̺dot and ̺L/R the density of states on the dot and the leads. Note

that even for perfect degeneracy, ∆E = 0, the resistance of the SET is twice as

large as the sum of the two junction resistances due to Coulomb correlations. As

we decrease the temperature, the conductance peaks become sharper and sharper,

while the conductance between the peaks decreases exponentially, and the Coulomb

blockade develops. This simple Boltzmann equation picture, however, breaks down

at somewhat lower temperatures, where higher order processes and quantum fluctu-

ations become important. These quantum fluctuations may even completely lift the

Coulomb blockade and result in a perfect conductance at low temperatures as we

shall explain in the next section.

Let us first study the conductance of the SET in the regime where the difference

∆E between the energy of the two charging states considered is much larger than

the temperature. It turns out that the range of validity of Eq. (198) describing an

activated behavior is rather small for typical parameters, and the conductance is

dominated by second order virtual processes as soon as we lower the temperature

much below ∆E. From the point of view of these second order processes two regimes

must be distinguished: In the regime ∆ ≪ T ≪ EC the leading term to the conduc-
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Figure 35: (a) Sketch of a single electron transistor. (b) Conductance of the SET as a
function of gate voltage for EC ≪ T ≪ ∆. At the degeneracy points Coulomb blockade is
lifted and transport is allowed through the single electron transistor.
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Figure 36: Elastic (a) and inelastic (b) co-tunneling processes. Inelastic co-tunneling
processes give a conductance ∼ T 2 while elastic co-tunneling gives a finite conductance as
T → 0.

tance comes from elastic and inelastic co-tunneling processes shown in Fig. 36 [128]:

In the inelastic co-tunneling process a conduction electron jumps into the dot from

one lead and another electron jumps out of the dot to the other lead in a second or-

der virtual process, leaving behind (or absorbing) an electron-hole excitation on the

dot, while in an elastic co-tunneling it is the same electron that jumps out. Inelastic

co-tunneling gives a conductance Ginel ∼ GLGR(T/EC)2/(e2/h), and is thus clearly

suppressed as the temperature decreases [128], while elastic co-tunneling results in

a small temperature independent residual conductance, Gel ∼ GLGR(∆/EC)/(e2/h)

even at T = 0 temperature [128].
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5.1.2 Kondo effect

For T ≪ ∆ ≪ EC inelastic co-tunneling processes are not allowed, and the properties

of the SET depend essentially on the number of electrons on the dot. The ground

state of the isolated dot must be spin degenerate if there is an odd number of electrons

on the dot, while it is usually non-degenerate, if the number of electrons on the dot

is even. In the latter case nothing special happens: quantum fluctuations due to

coupling to the leads produce just a residual conductance as T → 0. If, however,

the number of the electrons on the dot is odd, then the ground state has a spin

degeneracy, which can give rise to the Kondo effect discussed below. In this case,

exchange processes shown in Fig. 37 give a contribution to the conductance. As

we lower the temperature, the effective amplitude of these processes increases due

to the Kondo effect, and ultimately gives a conductance that can be as large as

the quantum conductance GQ = 2e2/h at T = 0 temperature [120]. This strong

enhancement is due to strong quantum fluctuations of the spin of the dot, and the

formation of a strongly correlated Kondo state. The typical temperature-dependence

of the conductance for Ng odd is shown in Fig. 38.

right

eV

left

Figure 37: Exchange process leading to the enhancement of the conductance as T → 0.

To understand why the conductance of the dot becomes large, let us keep only

the last, singly occupied level that gives rise to the Kondo effect, djσ → dσ, ǫj → ǫd,

and write the Hamiltonian of the dot as

H =
∑

σ

ǫd d
†
σdσ +HC

+
∑

σ

∑

µ=L,R

∫
dǫ ǫ ψ†

µ,σ(ǫ)ψµ,σ(ǫ) (199)

+
∫
dǫ
{
tL̺

1/2
L (d†σψL,σ(ǫ) + h.c.) + “L↔ R′′

}
,

where we introduced the fields, ψL,σ(ǫ) ≡ ̺
1/2
L/R ψL/R,ǫσ. For the sake of simplicity,
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let us assume that tR̺
1/2
L = tL̺

1/2
R . If we then make a unitary transformation and

introduce the even and odd field operators,

ψ± ≡ ψR ± ψL√
2

, (200)

then obviously the odd combination ψ− fully decouples from the dot, and the tun-

neling part of the Hamiltonian can be written as

V̂ = t̃
∫
dǫ (d†σψ+,σ(ǫ) + h.c.) , (201)

where t̃ =
√

2 tR̺
1/2
R . One can now perform second order degenerate perturbation

theory in V̂ in the subspace
∑

σ d
†
σdσ = 1 to obtain the following effective exchange

Hamiltonian:

Heff =
∑

σ

∑

ǫ

ǫ ψ†
+,σ(ǫ)ψ+,σ(ǫ) (202)

+
j

2
~S
∑

σ,σ′

∫ ∫
dǫ dǫ′ψ†

+σ(ǫ)~σσσ′ψ+σ′(ǫ′) ,

where ~S = 1
2
(d†~σd) is the spin of the dot, and j ∼ t̃2/EC is a dimensionless an-

tiferromagnetic exchange coupling. Thus electrons in the even channel ψ+ couple

antiferromagnetically to the spin on the partially occupied d-level, and try to screen

it to get rid of the residual entropy associated with it.

N g
T~ E    C~ T    K

2
h
e 2
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h
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−1 10

1

1

(a) (b)

1
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Figure 38: (a) Linear conductance of the SET for TK ≪ T ≪ EC (dashed line) and
T → 0 (solid line). (b) Temperature-dependence of the conductance of a SET for an odd
number of electrons on the dot (continuous line) and for an even number of electrons with
non-degenerate ground state (dashed line).

Written in the original basis, Eq. (202) contains terms ∼ j ~Sψ†
R(ǫ)~σψL(ǫ′), which

allow for charge transfer from one side of the dot to the other side, and in leading
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order these terms give a conductance ∼ j2. However, higher order terms in j turn

out to give logarithmically divergent contributions,

G ∼ e2

h

(
j2 + 2 j3 ln(∆/T ) + . . .

)
. (203)

As a result, the conductance of the device increases as we decrease the temperature

and our perturbative approach breaks down at the so-called Kondo temperature,

TK ≈ ∆e−1/j . (204)

One can try to get rid of the logarithmic singularity in Eq. (203) by summing up

the most singular contributions in each order in j. This can be most easily done by

performing a renormalization group calculation and replacing j by its renormalized

value in the perturbative expression, G ∼ e2

h
j2 [4, 7, 8]. However, this procedure

does not cure the problem and gives a conductance that still diverges at T = TK ,

G ∼ e2

h

1

ln2(T/TK)
. (205)

It is not difficult to show that then for tL̺
1/2
L = tR̺

1/2
R the SET must have perfect

conductance at T = 0 temperature. To show this, let us apply the Friedel sum rule

[2, 129]. that relates the number Nbound of electrons bound to the impurity and the

phase shifts δ of the electrons ψ+, as

Nbound = 2
δ

π
, (206)

where the factor 2 is due to the spin. This relation implies that in the even channel

conduction electrons acquire a phase shift δ = π/2, and correspondingly, ψ+ →
e2iδψ+ = −ψ+ in course of a scattering process at T = 0 temperature. Going back

to the original left-right basis, this implies that left and right electrons scatter as

ψL → −ψR , ψR → −ψL . (207)

In other words, an electron coming from the left is transmitted to the right without

any backscattering, and thus the quantum dot has a perfect conductance, 2e2/h.

We remark here that only a symmetrical device can have a perfect transmission,

101



Figure 39: The Kondo resonance appears as a peak in the differential conductance of the
SET (figure taken from Ref. [130]). At T = 0 temperature the conductance approaches
the quantum limit of the conductance, 2e2/h.

and only if the the number of electrons on the d-level is approximately one, 〈nd〉 ≈ 1.

All the considerations above can be easily generalized to the case tL̺
1/2
L 6= tR̺

1/2
R ,

and one obtains for the zero temperature conductance in the Kondo limit,

G(T → 0) =
2e2

h

4̺Lt
2
L ̺Rt

2
R

(̺Lt2L + ̺Rt2R)2
, (208)

which is clearly less than 2e2/h for non-symmetrical dots.

The phase shift δ = π/2 also implies that there must be a resonance at the Fermi

energy. In fact, this resonance is called the Kondo resonance, and can be directly

seen in the differential conductance (related to the density of states as usual) of

the single electron transistor shown in Fig. 39. This is a many-body resonance that

develops at the Fermi energy (zero bias) as the temperature is cooled down below

the Kondo temperature TK .

The basic transport properties of the SET have been summarized in Fig. 38.

Although we could get a fairly good analytical understanding of behavior of a SET,

based on the simple considerations outlined above, it is rather difficult to obtain a

quantitative description. In fact, even to obtain a quantitative description extensive

computations such as numerical renormalization group calculations are needed [15].

A valid and complete description of the out of equilibrium physics of a SET is still

missing [54, 55, 56].

5.1.3 Orbital degeneracy and correlations in quantum dots

In the previous section we sketched the generic behavior of a quantum dot, and

assumed that the separation of the last, partially occupied level is by an energy
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distance ∼ ∆ ≫ T separated from all other single particle levels of the dot. This

is, however, not always true. In the case of a symmetrical arrangement like the

one shown in Fig. 40, e.g., some of the states of the dot are orbitally degenerate

by symmetry [132, 133], while in some other cases almost degenerate orbitals may

show up just by accident [48, 49]. This orbital degeneracy can play a very important

role when we fill up these degenerate (or almost degenerate) levels, and leads to

such phenomena as the SU(4) Kondo state [133, 50] or eventually the singlet-triplet

transition [48, 49, 132].
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Figure 40: Arrangement with triangular symmetry and the structure of the four-fold
degenerate ground state of the isolated triangular dot.

SU(4) physics and triangular dots

Let us first discuss what happens if we have just a single electron on an orbitally

degenerate level. As first shown in Ref. [133], the presence of the orbital degeneracy

leads to an unusual state of (approximate) SU(4) symmetry in this case, where spin

and charge degrees of freedom are entangled. This SU(4) state has been proposed

first theoretically to appear in double dot systems and quantum dots with triangular

symmetry in Refs. [50] and [133]. However, while there is no unambiguous experi-

mental evidence of an SU(4) Kondo effect in double dot devices [134], the SU(4) state

has been recently observed in vertical dots of cylindrical symmetry [51] as well as

in carbon nanotube single electron transistors [135]. In both chases the degeneracy

index is due to a chiral symmetry just as in Ref. [133]. Other realizations of states

with SU(4) symmetry have been also proposed later in more complicated systems

[136, 137], and also in the context of heavy fermions [138].

For the sake of concreteness, we shall focus here to the case of the triangular dot

shown in Fig. 40. However, our discussions carry over with trivial modifications to

the previously mentioned experimental systems in Refs. [51] and [135]. Let us first

assume that we have two orbitally degenerate levels |±〉 that can be labeled by some
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chirality index τ = ±, and let us focus on the charging of this multiplet only. At the

Hartree-Fock level, these levels of the isolated dot can be described by:

Hdot =
∑

τ,τ ′,σ

d†τσ(Eττ ′ + ∆E δττ ′)dτ ′σ − JH

2
~S 2

+
EC

2
(n+ + n−)2 +

ẼC

2
(n+ − n−)2 , (209)

where d†τσ creates an electron on the dot within the degenerate multiplet with spin σ

and orbital label τ . The energy shift ∆E above is proportional to the (symmetrically-

applied) gate voltage and controls the charge on the dot, while Eττ ′ accounts for the

splitting generated by deviations from perfect triangular symmetry (
∑

τ Eττ = 0).

We denote the total number of electrons in state τ = ± by nτ ≡ ∑
σ d

†
τσdτσ, and

~S = 1
2

∑
τ,σ,σ′ d†τσ~σσσ′dτσ′ is the total spin of the dot. The terms proportional to EC

and ẼC are generated by the Hartree interaction, while that proportional to JH in

Eq. (209) is the Hund’s rule coupling, generated by exchange. This term has no

importance if there is only a single electron on the dot.

SU(4) Kondo

Γ1 2(Γ )
3Γ

G

E ~ V∆ g

S=1/2 S=1/2 S=0S=0S=1/2S=0 S=1

Figure 41: Structure of the Coulomb blockade peaks of the triangular dot. The multiplets
are labeled by the corresponding irreducible representations. The arrows indicate the
direction the peaks move when applying a Zeeman field.

Let us first consider the linear conductance. The currents Ij between leads j and

the dot are related to the voltages Vj applied on them by the conductance tensor,

Ij =
∑

j′
Gjj′Vj′ , (210)

which further simplifies to Gjj′ = 3
2
Gδjj′ − G/2 for a symmetrical system. A

schematic plot of the conductance G as a function of ∆E is shown in Fig. 41.

104



The arrangement of the four Coulomb blockade peaks associated to the Γ3 state

is symmetrical, and the height of the four peaks turns out to be numerically almost

identical at high temperatures [133].

The most interesting regime in Fig. 41 appears between the first two peaks. Here

there is one electron on the dot, and correspondingly the ground state of the isolated

dot is fourfold degenerate. Let us now tunnel couple the dots to conduction electrons

in the three leads, ψj (j = 1, 2, 3). To simplify the Hamiltonian we first introduce

new fields that transform with the same symmetry as the states |τ〉,

ψj → ψ± ≡ 1√
3

∑

j

e±i 2πj/3ψj . (211)

With this notation the tunneling Hamiltonian of a perfectly symmetrical dot becomes

V̂ = t
∑

σ,τ

∫
dǫ
(
d†τσψτσ(ǫ) + h.c.

)
. (212)

To describe the fourfold degenerate ground state of the dot, we can introduce

the spin and and orbital spin operators ~S and ~T , with Sz = ±1/2 and Tz = ±1/2

corresponding to the states σ = ± and τ = ±. Likewise, we can introduce spin and

orbital spin operators ~σ and ~τ also for the conduction electrons, and then proceed

as in the previous section to generate an effective Hamiltonian by performing second

order perturbation theory in the tunneling V̂ , Eq. (212). The resulting interaction

Hamiltonian is rather complex, and contains all kinds of orbital and spin couplings

of the type ∼ T+τ−~S~σ or ∼ T zτ z [50, 133]. These terms are generated by processes

like the one shown in Fig. 42, and clearly couple spin and orbital fluctuations to

each-other.

Fortunately, a renormalization group analysis reveals that at low temperatures

the various couplings become equal, and the Hamiltonian can be simply replaced by

the following, remarkably simple SU(4) symmetrical effective Hamiltonian (Coqblin-

Schrieffer model),

Heff(T → 0) = J̃
∑

α,β=1,..,4

ψ†
αψβ |β〉〈α| , (213)

where the index α labels the four combinations of possible spin and pseudospin

indices, and the |α〉’s denote the four states of the dot. This can be also verified by

solving the original complicated Hamiltonian by the powerful machinery of numerical

renormalization group [10, 50]. The numerical renormalization group spectrum of
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Figure 42: (a) Example of a virtual process generating a coupling between the spin
and the orbital spin. (b) To screen the SU(4) spin of a triangular dot one needs three
conduction electrons. The singlet formed corresponds to the Young tableau on the right,
while the defining four-dimensional SU(4) representations are denoted by squares.

the strongly anisotropic model is shown in Fig. 43, and exhibits a beautiful structure,

characteristic of the SU(4) Coqblin-Schrieffer model.
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Figure 43: (a) Finite size spectrum of the double dot system. The regular pattern is
characteristic of the SU(4) fixed point. (b) Spin and orbital spin spectral functions as a
function of an external field.

We remark here that the structure of the fixed point Hamiltonian, Eq. (213) is

rather robust. Even if the system does not have a perfect triangular symmetry, the

exchange part of the effective Hamiltonian at low temperatures will take the form

Eq. (213), and the effect of imperfect symmetry only generates some splitting Eττ ′

for the orbitally degenerate levels and some small potential scattering [108]. These

terms, of course, break the SU(4) symmetry of Eq. (213), but represent only marginal

perturbations, and do not influence the physical properties of the system if they are

small. In a similar way, the SU(4) symmetric fixed point discussed here may be
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relevant even for systems with (approximate) accidental degeneracy even if they do

not have a perfect SU(4) symmetry. Spin and orbital entangled states apparently

also show up in molecular clusters, but there they may lead to the appearance of

unusual non-Fermi liquid states [139, 140, 141].

The Hamiltonian Eq. (213) is one of the exactly solvable models [13], and has

been studied thoroughly before [24, 112]. Just as in the Kondo problem, the SU(4)

spin of the dot is screened below the ’SU(4)’ Kondo temperature, T
(0)
K . However, to

screen an SU(4) spin, one needs three conduction electrons, as shown in Fig. 42. As

a result, the Friedel sum rule in the present case is modified to

3 =
∑

σ,τ

δστ

π
= 4

δ

π
, (214)

corresponding to a phase shift δ = 3π/4 for the electrons ψ±,σ.

The application of a magnetic field on the dot, H → H−B Sz clearly suppresses

spin fluctuations.3 However, it does not suppress orbital fluctuations, which still

lead to a more conventional SU(2) Kondo effect, by replacing the spin in the original

Kondo problem. The Kondo temperature of this orbital Kondo effect is, however,

somewhat reduced compared to the SU(4) Kondo temperature [133],

T orb
K ∼ (T

(0)
K )2

∆
. (215)

The emergence of this new scale and the suppression of the spin Kondo effect can be

nicely seen in the numerically computed spin and pseudospin spectral functions of

Fig. 43. The phase shifts in this case are simply δ±,↑ ≈ π/2, while δ±,↓ ≈ 0, just as

for the original Kondo problem. The splitting of the two levels τ = ± has a similar

effect and drives the dot to a simple spin SU(2) state.

The zero-temperature phase shifts can be related to the transport properties

of the device: From the T = 0 phase shifts δτσ one can construct the conduction

electrons’ scattering matrix in the original basis ψj and compute all transport coeffi-

cients using the Landauer-Buttiker formula [142, 133, 143]. The T = 0 conductance

G turns out to be independent of the magnetic field, and both for the SU(4) and

3A Zeeman field B corresponds to a field applied parallel to the surface in a lateral quantum
dot experiment.
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magnetic field.

orbital Kondo states one finds the same value,

G(B) =
8e2

9h

∑

σ

sin2(δσ(B)) =
8e2

9h
.

The polarization of the current,

P =
sin2(δ↑) − sin2(δ↓)

sin2(δ↑) + sin2(δ↓)
, (216)

however, does depend on the magnetic field and takes the values P = 0 and P = 1 in

the SU(4) and orbital Kondo states, respectively. The phase shifts in Eq. (216) can

be extracted with very high accuracy from the finite size spectrum computed via the

numerical renormalization group procedure [10, 50, 61], and the results (originally

computed for the double dot system in Ref. [50]) are shown in Fig. 44. Clearly,

this device can be used as a spin filter: Applying a Zeeman field one can induce a

large spin polarization at low temperatures while having a large ∼ e2/h conductance

through the device. A slightly modified version of this spin filter has indeed been

realized in Ref. [135], where two orbital states originating from different multiplets

have been used to generate the orbital Kondo effect.

To close the analysis of the SU(4) Kondo effect, let us shortly discuss how the

SU(4) state emerges in capacitively coupled quantum dots, where it actually has

been identified first. In this device, shown in Fig. 45, the capacitively coupled dots

108



Ng+

Ng

(1,1)

(0,0)

(0,1)

(1,0)

−

 1/2

 3/2

 3/2 1/2

(2,0)

Fig.a Fig.b

Figure 45: (a) A virtual process leading to entanglement between charge and spin fluc-
tuations and the SU(4) Kondo state in the double dot device. (b) Charging states of the
double dot device as a function of the dimensionless gate voltages Ng±. The colored region
indicates the regime where the two states (1, 0) and (0, 1) are almost degenerate.

can be described by the following simple Hamiltonian

Hdot =
EC+

2
(n+ −Ng+)2 +

EC−
2

(n− −Ng−)2 + ẼCn+n− , (217)

where the dimensionless gate voltages Ng± set the number n+ and n− of the electrons

on the left and right dots, respectively. The last term is due to the capacitive

coupling between the two dots, and it is essentially this term which is responsible for

the SU(4) physics discussed. As shown in Fig. 45.b, in the parameter space of the

two-dot regions appear, where the two states (n+, n−) = (1, 0) and (n+, n−) = (0, 1)

are almost degenerate, while the states (n+, n−) = (0, 0) and (n+, n−) = (1, 1) are

pushed to higher energies of order ∼ ẼC . In the simplest, however, most frequent

case the states (1, 0) and (0, 1) have both spin S = 1/2, associated with the extra

electron on the dots. Therefore, in the regime above for temperatures below the

charging energy ẼC and the level spacing ∆ of the dots, the dynamics of the double

dot is restricted to the subspace {Sz = ±1/2; n+ + n− = 1}, and we can describe

its charge fluctuations in terms of the orbital pseudospin T z ≡ (n+ − n−)/2 = ±1
2
.

Coupling the two dot system to leads, we arrive at the very same Hamiltonian as for

the triangular dots, although with very different parameters. Much of the previous

discussions apply to this system as well which, in addition to being a good spin-filter,

also exhibits a giant magneto-resistance [50].

Singlet-triplet transition
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So far we discussed the case where there is a single conduction electron on the

degenerate levels. The regime between the two middle peaks in Fig. 41 where there

is two electrons on the (almost) degenerate multiplet is, however, also extremely

interesting.

In this regime the Hund’s rule coupling JH in Eq. (209) is very important. This

coupling is usually smaller than the typical level spacing ∆. If, however, it is larger

than the separation between the last occupied and first empty levels, δǫ, then it gives

rise to a triplet ground state with S = 1. Since in many cases one can shift the levels

and actually tune δǫ by an external magnetic field [48, 135] or simply by changing

the shape of the dot by gate electrodes [49], one can actually drive the a quantum

dot from a triplet to a singlet state as illustrated in Fig. 46. Although in the case

of a triangular dot or a nanotube δǫ ≈ 0 are guaranteed by symmetry [133, 135],

almost degenerate states may also occur in usual single electron transistors just by

accident [48].

δε >> J H
δε << J H

δε

Figure 46: The state of a quantum dot changes from a triplet to a singlet as the separation
δǫ between the last occupied and first empty level increases.

While this transition has been first studied in vertical dots [132, 143, 144], here

we shall focus on the usual lateral arrangement of Fig. 46 which has very different

transport properties [48, 61, 145]. For the sake of simplicity let us assume that we

have a completely symmetrical device and that the two levels |±〉 participating in

the formation of the triplet state are even and odd. In this case we can introduce

the even and odd fields ψ± ≡ (ψR ± ψL)/
√

2 by Eq. (200), which by symmetry only

couple to the even and odd states, |+〉 and |−〉, respectively. The hybridization term

in this case simply reads

V̂ = t+
∑

σ

∫
dǫ
(
d†+σψ+σ(ǫ) + h.c.

)
+ t−

∑

σ

∫
dǫ
(
d†−σψ−σ(ǫ) + h.c.

)
. (218)
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To describe the isolated dot we can use the following simplified version of Eq. (209),

Hdot =
∑

σ

(
ǫ+d

†
+σd+σ + ǫ−d

†
−σd−σ

)
− JH

2
~S 2 +

EC

2
(n+ + n−)2 . (219)

It is instructive to study the triplet state of the dot first, δǫ≪ JH . Second order

perturbation theory in Eq. (218) in this regime gives the following Hamiltonian

replacing (202)

Heff =
∑

τ=±

∑

σ

∑

ǫ

ǫ ψ†
τ,σ(ǫ)ψτ,σ(ǫ) +

j+
2
~S
∑

σ,σ′

∫ ∫
dǫ dǫ′ψ†

+σ(ǫ)~σσσ′ψ+σ′(ǫ′)

+
j−
2
~S
∑

σ,σ′

∫ ∫
dǫ dǫ′ψ†

−σ(ǫ)~σσσ′ψ−σ′(ǫ′) . (220)

Clearly, the even and odd electrons couple with different dimensionless exchange

couplings j± to the spin. However, now ~S is a spin S = 1 operator, and to screen it

completely, one needs to bind two conduction electrons to it. This implies that an

electron from both the even and the odd channels will be bound to the spin, and

correspondingly two consecutive Kondo effects will take place at temperatures

T+ ≈ ∆ e−1/j+ ≫ T− ≈ ∆ e−1/j− . (221)

This also implies that the conductance at T = 0 temperature must vanish in the

Kondo limit by the following simple argument [145]: Again, we can use the Friedel

sum rule to obtain the T = 0 temperature phase shifts δ± = π/2 in both the even

and odd channels. In the original left-right basis this implies that the lead electrons

scatter as ψL/R → −ψL/R, i.e., their wave function vanishes at the dot position (by

Pauli principle), and ψL/R are completely reflected.

It is a simple matter to express the T = 0 temperature conductance in terms of

the T = 0 temperature phase shifts using the Landauer-Buttiker formula as [142]

G =
e2

h

∑

σ

sin2(δ+,σ − δ−,σ) . (222)

This formula immediately implies that the conductance as a function of a Zeeman

field B must be non-monotonic [145]: for T− ≪ B ≪ T+ the Kondo effect in the

odd channel is suppressed and correspondingly the phase shifts in this channel are

approximately given by δ−↑ ≈ π and δ−↓ ≈ 0, and by Eq. (222) the conductance must
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be close to 2e2/h. The magnetic field-dependence of the phase shifts obtained from

a numerical renormalization group calculation and the corresponding conductance

are shown in Fig. 47 [61]. By general arguments, similar non-monotonic behavior

must occur in the temperature- and bias-dependence of the conductance, as it has

indeed been observed experimentally [145, 48].
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Figure 47: Phase shifts (top) and dip structure in the conductance as a function of
Zeeman field B on the triplet side of the transition at zero temperature.

Clearly, the T = 0 temperature conductance must be also small on the singlet

side of the transition, δǫ ≫ JH , where the dot is in a singlet state and no Kondo

effect occurs. However, in the vicinity of the degeneracy point, δǫ ≈ JH , the triplet

and the singlet states of the dot are almost degenerate, and quantum fluctuations

between these four states generate another type of strongly correlated state with an

increased Kondo temperature and a large conductance [48, 61, 145].

To compute the full T = 0 conductance as a function of δǫ, non-perturbative

methods such as numerical renormalization group are needed [61]. In the vicinity of

the transition point the conductance goes up to 2e2/h, in perfect agreement with the

experimental observations. While the non-monotonic behavior characteristic of the

triplet disappears in the vicinity of the transition, it reappears on the singlet side.

However, there the size of the dip is not determined by the smaller Kondo scale, T−,

but rather by the excitation energy of the triplet, ∼ δǫ − JH [48, 61]. Note that

the transition between the triplet and singlet states is smooth and the singlet-triplet

transition is rather a cross-over than a phase transition in the above scenario.
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Figure 48: Phase shifts (top) and corresponding conductance (bottom) as a function of
orbital splitting δǫ at temperature T = 0.

Also, the picture outlined above changes substantially if both states |±〉 happen

to have the same symmetry, and couple only to one of the fields, say ψ+. In this case

the spin of the dot cannot be screened on the triplet side even at T = 0 temperature,

and a real Kosterlitz-Thouless type quantum phase transition occurs, where the

T = 0 temperature conductance has a jump at the transition point [146]. The

triplet phase in this case is also anomalous, and in fact is of a ’marginal Fermi liquid

type’ [104, 147], since the spin is underscreened. Correspondingly, the conductance

saturates very slowly, and behaves asymptotically as G ∼ cst−1/ ln2(T+/T ). Similar

behavior is expected to occur if the smaller Kondo temperature T− is much below the

measurement temperature, and indeed a behavior in agreement with the Kosterlitz-

Thouless scenario of Ref. [146] has been observed in some experiments [49].

5.1.4 Kondo effect from ferromagnetic grains

In quantum dots the Hund’s rule coupling is small, and the formation of the triplet

state is a consequence of ’accidental degeneracy’. This must be contrasted to ferro-

magnetic grains, where the Hund’s rule coupling plays an an essential role and the

magnetic moment of the cluster is typically large.

One expects that for a large ferromagnetic cluster the spin of the cluster should

behave as a classical object and no Kondo effect should be found. Experiments of

Odom et al. have found, however, that small ferromagnetic grains can display zero-
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bias anomalies clearly indicating the formation of a correlated Kondo state [148].

In these experiments small clusters of Co have been deposited on carbon nanotubes

and transport through these clusters has been measured by means of an STM tip

directly positioned above the cluster. The clusters consisted of 10 up to 50 atoms, but

only the small clusters exhibited a clear zero bias anomaly with an experimentally

observed Kondo temperature as large as TK ∼ 80 K.

Motivated by these experiments, in this section we shall attempt to understand

how the strongly correlated Kondo state disappears as we increase the size of a

ferromagnetic cluster.

Itinerant model

First we shall analyze a cluster described by the mean field Hamiltonian,

Hcluster =
∑

j,σ

ǫjd
†
jσdjσ − JH

2
~S2 +

EC

2
(N̂ − ng)

2 , (223)

which is a simplified version of Eq. (209). Throughout this section we shall denote the

number of electrons on the dot by N̂ . This Hamiltonian has been successfully used

earlier to study the transport properties of itinerant ferromagnetic grains within

a master equation approach [149, 150]. In the end of this section we shall also

construct and analyze another mean field model of local moment ferromagnetism,

where local moments couple to conduction electrons antiferromagnetically to form a

ferromagnetic state.

In order to have a cluster spin that increases linearly with the number of atoms

NA on the cluster, JH in Eq. (195) must clearly scale as JH ∼ 1/NA. We therefore

introduce the energy scale U ≡ JHNA > 0, which is roughly independent of the size

of the cluster. In the present context the first term in Eq. (223) represents the kinetic

energy of the hybridized s, p and d-band electrons on the cluster The second term

in Eq. (223) gives rise to a spontaneous polarization of the cluster by making spin

alignment of different levels energetically favorable, while the last term describes the

charging energy of the cluster with Ng the dimensionless gate voltage. In the more

general situation a magnetic anisotropy term should be added to the Hamiltonian.

Nevertheless, for the experimentally investigated clusters this anisotropy is much less

then the width of the Kondo resonance observed, and we shall therefore neglect it.

The Hamiltonian in Eq. (223) can be diagonalized exactly and the ground state
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can be explicitly constructed as

|S0, S
z = S0〉NG =

n↑∏

j=1

d†j↑

n↓∏

j=1

d†j↓|vac〉 (224)

with S0 and N the spin and particle number in the ground state. The remaining

states within the ground state multiplet can be generated by applying the operator

S− =
∑

j d
†
j↓dj↑ to this state. In itinerant ferromagnets there is an approximate rigid

band splitting between spin up and spin down electron density of states [151]. In the

mean field model, this band splitting energy can be defined as the energy difference

between the highest occupied spin up level, ǫA, and the highest occupied spin down

level, ǫI :

∆s ≡ ǫA − ǫI ,

and is typically of the order of a few electron volts [151]. The value of ∆s is deter-

mined by demanding that the ground state of the ferromagnetic cluster be stable to

fluctuations of energy level occupations with constant particle number, and is related

to the interaction parameter U as [149]

U =
NA

S0

∆s + d0 , (225)

where d0 is a mesoscopic sample-dependent scale, d0 ∼ 1/NA.
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Figure 49: Spin excitations of a ferromagnetic nanoparticle. For the precise definition
of ǫA/I , δA/I , and ∆s see text. Fig. A: The fully polarized ground state. Figs. B and C:
Lowest lying particle-hole excitations having energy ∼ δA/I .

For later purposes we also determine the energy of various excitations of the

cluster. The lowest energy particle-hole excitations turn out to be the ones shown
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in Fig. 49, and have energies

δE(S0 ± 1, N) ≡ min{Eexcited(S0 ± 1, N) − EG} ∼ δA, δI . (226)

where EG denotes the ground state energy, and δA (δI) is the level spacing near ǫA

(ǫI). The minimum cost of adding a particle or a hole to the cluster so that the

total spin changes as S0 → S0 + σ/2 is given by δE±,σ. These energies can also be

estimated by carrying out a stability analysis similar to the previous one to find that

typically

δE±,σ ≡ min{E(N ± 1, S0 + σ/2) − EG} ∼ EC . (227)

Let us now couple our cluster to a lead through a tunnel coupling.While the theory

has been worked out for the general case in Ref. [153], for the sake of simplicity we

shall assume here that there is only a single point of contact. Then the tunneling

Hamiltonian can be written as

V̂ =
∑

σ,j,ǫ

(tjǫd
†
jσaǫσ + h.c.) , (228)

where aǫσ denotes the creation operator of a conduction electron of energy ǫ in the

lead. The tunneling coefficients above are proportional to the product of the wave

functions ψǫ and ϕj of the electrons in the lead and at the dot at the tunneling

position ~R. These amplitudes have therefore random phases and amplitudes and

scale as tjǫ ∼ ϕj(~R)∗ψǫ(~R)1/
√
NA.

Let us first compute the tunneling spectrum of the cluster through an attached

STM tip at position ~r. This is approximately given by

dI

dV
(~r, V ) ∝ ̺(~r, eV ) = − 1

π
Im[GR(~r, ω = eV )], (229)

where GR denotes the retarded Green’s function and V is the voltage drop between

the STM tip and the cluster. Though it is not very simple, one can carry out

perturbation theory up to second order in the tj-s to compute the tunneling spectrum.

To lowest order, the STM spectrum of the cluster can then be approximated as [153]

dI

dV
∝
∑

j,σ,±
|ϕj(~r)|2

Γj
±,σ

(ω ∓ δEj
±,σ)2 + (Γj

±,σ/2)2
(230)
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where δEj
±,σ denotes the energy cost of adding a particle or hole to any level j in the

ground state, δEj
±,σ(N ± 1, S0 +σ/2), and Γj

±,σ is the total decay rate of this excited

state. It must be emphasized that Γj
±,σ incorporates all possible decay processes

generated by the couplings tj to the lead, and these processes leave the cluster

in general in some excited state with some particle-hole excitations. As a result,

Γj
±,σ is not simply the broadening of the j’s single particle level, Γj

0 ≈ 2π̺(ǫ =

±δEj
±,σ)〈|tjǫ|2〉ǫ, with ̺(ǫ) the density of states of the electrons in the lead.

Typical tunneling spectra computed in this way are shown in Fig. 50 for a cluster

of NA = 32 atoms. For the sake of simplicity, we neglected the fluctuations of

the single particle decay rates, Γj
0 = Γ0 = .02eV, and those of the amplitudes

ϕj(~r). We also fixed the charging energies E+
C = .01eV, E−

C = .08eV, and took

level spacings δA and δI , that correspond to a Co cluster of this size. Remarkably,

the only difference between the two spectra in Fig. 50 is just a small change in the

value of the unknown mesoscopic energy d0 that appears in Eq. (225). The small

difference in d0 completely changes the structure of the STM spectrum by opening

up more decay channels on the electron or hole side of the STM spectrum, and makes

the spectrum very asymmetrical, thereby reproducing this characteristic feature of

the experimental spectra [148]. The dip in the middle of the spectrum is just the

Coulomb gap, while the many small peaks correspond to single particle excitations

of the cluster.

The above perturbative approach is, of course, unable to account for the Kondo

anomaly observed in small clusters. Therefore we followed the strategy of [154]

of simply estimating the Kondo temperature and then adding the corresponding

resonance to the STM spectrum by hand. To obtain the Kondo temperature, we

first have to compute the effective exchange coupling between the cluster spin and

the spin of the electrons. A relatively straightforward second order calculation yields

in this case that the Kondo coupling is given as a some of three terms,

J = Jd + Js + Je . (231)

The couplings Jd and Je are generated by virtual tunneling processes to empty and

doubly occupied states on the cluster and are ferromagnetic, while Js comes from

the singly occupied states and is therefore antiferromagnetic. Instead of giving the

full and rather lengthy expression of these terms, let us consider the limit where the

level spacings are small. Then the dimensionless coupling j = J̺0 can be expressed
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Figure 50: Calculated STM spectra of nanometer-size ferromagnetic clusters with param-
eters NA = 32, E+

C = .01eV, E−
C = .08eV, Γj

0 = Γ0 = .02eV, and |ϕ(~r)|2 = const. In
Fig. A we set d0 = .07eV while in Fig. B d0 = −.05eV. The difference between the two
cases demonstrates the sensitivity to mesoscopic parameters.

as

j ≈ Γ0

2πS0NA

[∫ ∞

−∞

∆s̺(ξ)dξ

(ξ − ǫI)(ǫA − ξ)
− ̺(ǫI) ln

δE+,↓
δE−,↑

+ ̺(ǫA) ln
δE+,↑
δE−,↓

]
, (232)

where ̺ is the (unshifted) bulk density of states per atom of the cluster (Cobalt in

our case). The second two terms are mesoscopic fluctuations that depend on the

specific charging energy of the nanocluster and the density of states at the top of

the minority and majority bands. These mesoscopic corrections become more and

more pronounced for smaller cluster sizes and lead to strong fluctuations around the

average coupling j . Remarkably, the effective coupling is inversely proportional to

the cluster size, implying that the Kondo effect must be indeed suppressed for larger

clusters, in agreement with the experimental findings.
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The Kondo temperature of the cluster can then be estimated as

TK ∼ min{EC , δA,I}
√
j e−1/j , (233)

where the prefactor is just the energy cut-off given by the typical energy of inelastic

excitations of the grain. To have an estimate for TK , we extracted the parameters Γ0

and the level spacings from the experimental data and plugged them into Eq. (232).

Unfortunately, even with the optimistic assumptions of a single point of contact

and the coincidence of the single particle decay rate Γ0 and the full decay rate

Γj, we find a TK which is more than two orders of magnitude smaller than the

experimentally observed TK . On the other hand, this discrepancy is largely due to

the fact that the Kondo scale is exponentially sensitive to the specific value of j and

already a factor of two increase of j could account for the experimentally observed

TK . Just for curiosity we mention here that, had we neglected the ferromagnetic

contribution to the Kondo couplings, we would have obtained perfect agreement

with the experiments. However, in view of this large ferromagnetic contribution to

the effective exchange coupling j, the experimentally observed anomalously large

Kondo scale still remains a puzzle.

Local moment model

Let us briefly discuss the results obtained by using an alternative mean field model

before closing this subsection. This simple mean field model has been proposed in

Ref. [153] to describe local moment ferromagnetism on a cluster, and reads

Ĥcluster =
∑

j,σ

ǫjd
†
jσdjσ +

Js−d

NA

Ŝ · Ŝloc +
EC

2
(N̂ − ng)

2. (234)

Here Ŝ and Ŝloc denote the total spin of the extended states on the cluster and

of the local moments, respectively. Similar to the itinerant model, the first term

describes the kinetic energy of the extended electron states, and the third term

accounts for the finite charging energy of the cluster. The second term of Eq. (234)

describes the exchange interaction between the local moments and the extended

states and tends to polarize the latter. We assume in what follows that the total

spin of the conduction electrons is much smaller than that of the localized electrons.

The exchange Js−d is typically antiferromagnetic, Js−d > 0, and the conduction
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electrons are thus polarized opposite to d-electrons [155].

Similar to Eq. (223), the Hamiltonian Eq. (234) can also be exactly diagonal-

ized. Though the calculations are somewhat more involved in this case, essentially

all previously obtained results carry over to this local moment model (see Ref. [153]

for details). The only difference is that S0 in Eq. (232) is replaced by the total spin

of the cluster, ST = S−Sloc. This result has a deep physical meaning. Though both

the local moment’s spin Sloc and the electron’s polarization S can be large, what

really matters from the point of view of quantum fluctuations (and thus that of the

Kondo effect), is the total spin of the cluster: the smaller ST the larger is the effective

coupling. This observation also provides a possible explanation for the discrepancy

between the experimentally observed and estimated Kondo temperatures: It is quite

possible that the interaction between spins in these small clusters is partially frus-

trated. As a consequence, the total spin of the cluster may be reduced compared to

our previous estimates, which could lead to a substantial increase in TK .

5.2 Quantum impurities in point contacts

In the last section of this chapter we shall discuss slightly different mesoscopic struc-

tures called point contacts (PCs), where quantum impurities can be studied. These

structures consist of two typically metallic pieces that are attached to each-other at a

small area of diameter d (see Fig. 51). There is a number of techniques that are used

to prepare these tiny structures: One can fabricate atomic scale break junctions by

simply breaking a thin mesoscopic wire and then re-attaching the two pieces [156],

or just plugging an STM tip into a piece of metal and then slowly removing it. It

is also possible to construct very stable point contacts by means of chemical etching

techniques [33, 71], but semiconductor technologies can be also used to produce such

contacts by gating a two-dimensional electron gas [157].

While all these structures have slightly different characteristics, they have the

common feature that they are inherently out of equilibrium. In fact, the transport

properties of these contacts have features somewhat similar to tunnel junctions, and

their differential conductance provides detailed information on inelastic scattering

processes that take place in the contact region [158]. The big advantage of these

structures is that they test local properties, unlike tunnel junctions which average

over the whole surface of the junction.

To understand how such a point contact works, let us first assume that the
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current

(a) (b)

eV

Figure 51: (a) Schematic cross section of a point contact. (b) Semiclassical momentum
distribution of the electrons in the middle of the point contact. Electrons coming from
the right have a larger chemical potential, and elastic scattering scatters these electrons
always backwards thus reducing the current.

temperature is very small (T = 0) and that the contact is ballistic, i.e., the electron’s

elastic mean free path is larger than the diameter of the contact. The distribution of

the conduction electrons can then be determined in a semiclassical approach, and in

leading order one obtains that the chemical potential of electrons coming from the

right is shifted with respect that of electrons coming from the left, resulting in the

intrinsically out of equilibrium distribution sketched in Fig. 51 [159].

Suppose now that an electron is subject to an inelastic scattering process and

gives an energy ω to its environment. Clearly, because of the Pauli principle this

electron can be scattered only backwards and furthermore this process is only possible

if the voltage drop is large enough, eV > ω. A simple calculation then shows that

the differential conductance at bias V is proportional to the inelastic cross section

σ(ω) at the corresponding energy [158, 159],

dI

dV
≈ G0 −B σ(ω = eV ) , (235)

where the conductance G0 is roughly the geometrical conductance of the ballistic

junction, the so-called Sharvin’s conductance, and is proportional to Nc e
2/h with

Nc ∼ k2
FA the number of conductance channels through the contact and A ∼ d2 the

junction area. The constant B is proportional to the volume of the junction and the

concentration c of scattering centers producing the inelastic process, B ∼ c d3.

Since the inelastic scattering length of the electrons is very large compared to the

diameter d, G0 depends on the microscopic details of the junction geometry and even

the move of a single atom changes its value by an amount ∼ e2/h. This property

enables one to use quantum point contacts to detect the time-dependent motion of
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individual atoms [71]. The most interesting information is, however, buried in the

second, inelastic piece of Eq. (235): This makes it possible to detect the phonon

spectrum (weighted by the electron-phonon coupling) of a metal and also various

inelastic processes in the contact region [158], to study inelastic scattering properties

of magnetic impurities [160, 161], or the transprot properties of small grains [117].

Figure 52: Experimental point contact spectra obtained by Yanson et al. for a CuMn
break junctions.

As an example, in Fig. 52 we show the point contact spectrum obtained by Yanson

et al. for small Mn doped Cu break junctions [162]. One can see a nice zero-bias

anomaly that develops due to the resonant Kondo scattering at the Fermi energy.

This zero bias disappears at large energies (voltages) and is also suppressed with

increasing temperature. There is only one strange thing about these experimental

data: Yanson et al. used a number of methods to determine the Kondo temperature,

TK , but all of them gave consistently orders of magnitude larger Kondo temperatures

than observed in bulk CuMn alloys. Moreover, the extracted TK strongly depended

on the diameter of the junction. In the rest of this subsection, we shall give an

explanation to these experiments.

In the present subsection we show that the increase of the Kondo temperature

observed by Yanson et al. can be understood as a consequence of mesoscopic fluc-

tuations. We show that in a small point contact the electronic local density of

states, ̺(r, ǫ) strongly fluctuates both as a function of energy and position. As a

result, magnetic impurities in the contact region experience very different environ-

ment depending on their specific position, and their Kondo temperarures have a

broad distribution. Transport properties of the contact at some finite temperature

turn out to be dominated by impurities having large Kondo temperatures, leading
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to a an increase in the experimentally measured Kondo temperature. Similar ideas

emerged in the context of disordered magnetic alloys, where the vicinity to a local-

ization transition produces large fluctuations in the local density of states, and may

eventually generate a non-Fermi liquid behavior [163].

The local density of states is defined as

̺(r, ǫ) =
∑

n

δ(ǫ− ǫn) |ϕn(r)|2 , (236)

where the summation is over all eigenstates with wave function ϕn(r) and energy ǫn.

For an open system as a point contact, the summation in Eq. (236) must be done

over all scattering states [164, 165].

To gain some insight to the structure of ̺(r, ǫ) we studied a simple free electron

model where the point contact consists simply of two infinite half-spaces connected

by a cylinder of radius R and length L [165]. In this case one can make use of the

symmetry and write the electron’s wave function in cylindrical coordinates as

ϕ±,ǫλm(r, z, ϕ) = eiϕmJm(λr)e±ikz(λ) z , (237)

where m is the angular momentum around the axis z and electrons propagate along

the axis z of the PC. The signs ± correspond to right- and left-going states, respec-

tively, ǫ denotes the energy of the conduction electron, and Jm stands for the m’th

Bessel function. The z component of the momentum in Eq.(237), kz, is related to

the energy ǫ and the radial momentum λ of the electron as kz = (2meǫ− λ2)1/2 and

kz = i(λ2 − 2meǫ)
1/2 for

√
2meǫλ and

√
2meǫ < λ, respectively. (To avoid confusion,

we denoted the electron mass by me). The radial momentum λ is a continuous pa-

rameter in the infinite half-spaces while it must take discrete values inside the tube.

We were able to solve the above scattering problem numerically by performing a

Bessel-Fourier transform, and matching the wave functions and their derivatives at

the two ends of the cylinder [165, 166]. In Fig. 53 we show the local density of states

obtained in this way at a fixed position as a function of energy and at the Fermi

energy as a function of position inside the tube for a point contact with diameter

d = 2R = 30Å and L = 15Å.

Clearly, the local density of states shows huge fluctuations as a function of energy.

These fluctuations have a simple origin: as we mentioned before, inside the tube the

radial momentum is quantized and takes discrete values λ→ λn,m. Correspondingly,

123



Figure 53: (a): Fluctuations of the local density of states (LDOS) ̺(ǫ, z, r) inside the tube
for a PC with R = 15Å and L = 15Å at the point r = 7Å and z = 7Å. The fluctuating
LDOS does not integrate exactly to its bulk value (dashed line) because the hard wall of
the PC pushes the conduction electrons in the inside region of the tube. (b): ̺(ǫ, z, r) for
the same PC at z = 7Å and energy ǫ = 7eV as a function of the radius r.

the spectrum of an infinite cylinder would consist of one-dimensional subbands of

energies dispersion

ǫn,m(kz) =
λ2

n,m + k2
z

2me

. (238)

The density of states and thus the local density of states have therefore a ∼ 1/
√
ǫ

singularity at every energy, E0
n,m = λ2

n,m/2me. When we connect a finite segment

of the cylinder to two infinite half-planes then these singularities evolve into large

peaks/fluctuations in the local density of states. Of course, for large diameters these

fluctuations become less and less pronounced and they are only important in the

vicinity of the boundaries defining the point contact.

Let us consider now a magnetic impurity in the contact region. The interaction

of this Kondo impurity with its environment can be expressed as

Hint =
J

2

∑

n,n′,σ,σ′,i

ϕ∗
n(r)ϕn′(r) a+

nσσ
i
σσ′an′σ′S i , (239)
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where we assumed that the impurity is at the position r, and the a†nσ’s create con-

duction electrons in a scattering state ϕn with spin σ. In this basis the conduction

electron’s Green function and self energies as well as the vertex function defined in

Section 2.1.2 become matrices,

Ge, Σe, Γ → Gnn′ , Σnn′ , Γnn′ . (240)

Fortunately, as one can easily see by a direct evaluation of Feynman diagrams, due

to the local character of the exchange interaction, all the above matrices can be

factorized. The vertex function reads, in particular, as

Γnn′(ωi) = ϕ∗
n(r) Γ(ωi) ϕn′(r) , (241)

where Γ(ωi) depends only on the local density of states at the position of the impu-

rity [165]. This also holds for the pseudofermion’s self energy, Σ and their Green’s

function G, which all depend solely on the local density of states [165]. The usual

multiplicative renormalization group equations discussed in Section 2.1.2 can then

be easily generalized to the quantities Σ, Γ, and G to give

dj

dl
=

1

2
j2(R(D) +R(−D)) (242)

− 1

2
j3
∫ D

0

dξ

D

1

(1 + ξ/D)2
(R(ξ)R(−D) +R(−ξ)R(D)) ,

where l = ln(D0/D) is the scaling variable, and R(ξ) = ̺(ξ)/̺bulk(ǫF ), with ξ the

energy of an electron measured from the Fermi level. The dimensionless coupling in

this equation is defined in terms of the bulk density of states at the Fermi energy,

j = J̺bulk(ǫF ). Sufficiently far from the contact region the function R approaches

one, and we recover the usual scaling equations.

It is instructive to solve these equations in the leading logarithmic order, i.e. by

dropping the ∼ j3 term in Eq. (242). In this limit we can obtain a simple expression

for the ratio of the Kondo temperature in the bulk, T ∗
K , and in the local environment,

TK ,
TK

T ∗
K

= exp

{∫ D

T ∗
K

dξ

2ξ
(δR(ξ) + δR(−ξ))

}
. (243)

Here δR(ξ) = R(ξ)−Rbulk(ξ) is just the relative change in the local density of states

compared to the bulk at energy ξ, and T ∗
K denotes the Kondo temperature in the
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bulk. The important feature of this formula is the appearance of the weight 1/ξ

in the exponent: the physical meaning of this factor is that, while the contribution

of high-energy electron-hole excitations is also significant, the Kondo resonance is

mainly formed by low-energy electron-hole excitations. Therefore, in a very crude

estimate, TK is increased at sites with δ̺(ǫF ) > 0, while positions with δ̺(ǫF ) < 0

will tend to have a smaller TK . Since TK is exponentially sensitive to the local density

of states, even relatively small ∼ 20% fluctuations in the density of states may lead

to huge fluctuations in the Kondo scale depending on the impurity position.

Having established how to determine the Kondo temperature in an environment

with an arbitrary local density of states, we can now proceed to estimate the Kondo

temperature in a small point contact by just substituting the ratio δR(ξ) of the free

electron model calculations into Eq.(243) and then averaging over the contact region.

The result is shown in Fig. 54.(a). We indeed find an average Kondo temperature

which is orders of magnitude larger than the bulk Kondo temperature of CuMn,

T ∗
K ∼ 0.01 K. Although mesoscopic fluctuations are large, a rough fitting of the

diameter-dependence of our data gives 〈TK〉 ∼ d−α with an exponent α = 2.2 ± 0.5,

which agrees quite reasonably with the experimentally found exponent, α = 2.

We can also estimate the change in the conductance of the point contact due to

backscattering from these magnetic impurities as

∆G(eV ) ≈ −e
2

h
Ω c̺2(ǫF ) 〈J2(max{eV, T})〉 , (244)

where c is the concentration of the impurities, 〈. . .〉 denotes the average over the

contact region, and Ω = d3/3 is the effective volume of the point contact [162].

From Eq. (244) we can compute the size-dependence of the zero bias anomaly

at the measurement temperature and compare it to the experimental data (see

Fig. 54.b). Both the amplitude of ∆G(R) and its sample to sample fluctuations

are in very good agreement with the experiments. We have to emphasize at this

point that there is no free parameter in Eq. (244) except for the length of the PC

which hardly influenced our results. To show that there is a striking size effect in

Fig. 2(b) we also plotted the theoretically computed amplitude of the Kondo signal

with impurities having the bulk Kondo temperature T ∗
K . Clearly, both the overall

amplitude and the size-dependence (∆G ∼ d2.2) of the experimental and the com-

puted Kondo conductances are quite different from the one we obtained by assuming

the bulk Kondo temperature for each impurity in the contact region (∆G ∼ d3).
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Figure 54: (a) 〈TK/T ∗
K〉 as a function of the radius R of a CuMn point contact with

L = 5Å. Crosses and diamonds denote the results obtained in the leading and in the next
to leading logarithmic orders, while boxes indicate the experimental results of Ref. [162].
The large fluctuations are due to the sensitivity of the interference pattern to the geometry
of the PC. (b) Size-dependence of the amplitude of the dimensionless Kondo conductance
∆g = ∆G h/e2 for impurity concentration c = 0.1% at T = 0.05 K. Diamonds denote
experimental data from Ref. [162] while our results are indicated by crosses. The dashed
line shows the results without any local density of states fluctuations. (g ∼ R3) while the
continuous line is the best fit g ∼ R2.17.

Although the results of this subsection were obtained for the rather special case of

a point contact, the phenomenon we discussed here is rather general: In a mesoscopic

wires and films or disordered alloys local density of states fluctuations will always

have a large influence on physical quantities that depend on the local density of

states at the Fermi energy. Note that local density of states fluctuations propagate

deep inside the bulk, much farther than Friedel oscillations in the charge density.

In mesoscopic wires, however, other phenomena like surface-induced anisotropy may

also be important [167, 168], and therefore the interplay of local density of states

fluctuations and spin-orbit coupling can give rise to rather rich physics.
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6 Conclusion

In the present thesis, I tried to review some recent results within the field of quantum

impurity problems, with a special emphasis on a few topics covered by my research

in the past ten years.

After introducing in Chapter 2 the basic notions related to quantum impurity

models and giving an introduction to the most important techniques used to inves-

tigate them in this thesis, I studied various aspects of dissipative quantum impurity

problems in Chapter 3. First, in Section 3.1, I showed how one can obtain an exact

solution for the dissipative two state system model using the Bethe ansatz method

and utilizing an exact mapping between the dissipative two state system model and

the anisotropic Kondo problem, and determined the full thermodynamic behavior

of the dissipative two state system model by solving the Bethe ansatz equations

numerically for all magnetic fields.

Then, in Section 3.2, I studied the problem of a tunneling particle with spin

using numerical renormalization group methods. In this case exchange coupling to

the conduction electrons generated dissipation. I found that the spin of the particle

induced a Kondo effect at a temperature TK , below which the particle acted as

a maximally strong potential scatterer. Thus the Kondo effect gave rise to a large

increase in the dissipative coupling in this case, and resulted in the suppression of the

coherent motion of the particle. I determined the corresponding effective dissipation

αeff(T/TK , F ) numerically, with F a dimensionless overlap parameter characterizing

the separation between the two tunneling positions.

In Section 3.3, I studied the so-called anisotropic Bose-Fermi Kondo model where,

beside the conduction electrons’ spin, a dissipative bosonic field is also coupled to the

impurity spin. The bosonic field in this model usually represents some collective de-

grees of freedom. In this model several quantum-phase transitions take place between

a fermion-dominated Kondo fixed point and various dissipation-dominated (bosonic)

fixed points. I classified the non-trivial fixed points of this model by performing an ǫ

expansion up to second order in ǫ, and showed that at the SU(2) symmetric and XY

symmetric critical points anisotropy is relevant and drives the system to a critical

point of Ising symmetry. This latter Ising critical point is probably relevant for most

applications (e.g., magnetic quantum phase transitions, dissipative phase transitions

in quantum dots). I also obtained an exact expression for the impurity susceptibility

at these quantum critical points using a Ward identity and a conformal mapping. I
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showed that the exponent of the local susceptibility is simply related to the spec-

tral function of the dissipative field coupled to the spin. This result has important

implications on the so-called locally quantum critical theory.

In Chapter 4, I studied exotic quantum impurity models that display non-Fermi

liquid behavior. First, in Section 4.1.1, I investigated the problem of a tunneling

two state system in a metal by performing a 1/f expansion up to second order in

1/f , with f the spin degeneracy of the conduction electrons. These calculations

allowed me to prove in the large f limit even below the Kondo temperature the

conjectures of Vladár and Zawadowski, that only two orbital channels dominate the

low temperature physics of the tunneling systems, which therefore maps on the two-

channel Kondo problem. I could also identify the leading irrelevant operators and

determine their scaling dimension.

Then, in Section 4.1.2, I showed how one can solve by the simple Abelian

bosonization and refermionization technique of Emery and Kivelson the two-channel

Kondo problem and obtain an almost complete understanding of this model. I gen-

eralized the method of Emery and Kivelson to the case of a finite system sizes, and

derived the famous non-Fermi liquid spectrum by straightforward diagonalization. I

also determined the scattering states and showed how the unitarity paradox appears

in this approach.

In Section 4.1.3, I constructed the thermodynamic Bethe ansatz equations for

the anisotropic f -channel Kondo problem. I showed that while at high temperatures

the susceptibility χimp and the specific heat cimp display non-universal power law

behavior, at low temperatures the properties of this model become universal and

are characterized by the exponents characteristic of the isotropic two-channel Kondo

problem. I determined the complete thermodynamics of this model by numerically

solving the Bethe ansatz integral equations.

In Section 4.2.1, I carried out a 1/f expansion for an atom that tunnels between

N different positions. For this purpose, I introduced a new version of the multi-

plicative renormalization group, where the square roots of the Z-factors are replaced

by matrices to handle anisotropic mass generation. Performing a stability analysis

and solving numerically the scaling equations I showed that in the large f limit this

model maps to the SU(N) × SU(f) Coqblin-Schrieffer model. In Section 4.2.2 I

derived the Bethe ansatz equations for the latter model, and discussed its singular

low temperature thermodynamic behavior.
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In the last chapter of this thesis I presented some applications of quantum im-

purity models in mesoscopic and nanoscale systems. In Section 5.1.3, I studied

capacitively coupled quantum dots and symmetrical quantum dots with orbitally

degenerate ground states using renormalization group methods, and showed that in

both systems an SU(4)-symmetrical correlated state develops where spin and charge

degrees of freedom are entangled. I also determined the transport properties of these

devices using numerical renormalization group methods and showed that, in a rela-

tively small magnetic field, these devices can be used as efficient spin filters. This

theoretically predicted SU(4) state has been observed in several systems since then.

In Section 5.1.3, I introduced a new method to determine the T = 0 temperature

transport properties of quantum dot systems by a direct use of the finite size spec-

trum obtained from a numerical renormalization group calculation. I applied this

technique first for the so-called singlet-triplet transition and I was able to reproduce

all important features of the experimental data with this method.

Motivated by the experiments of [148], in Section 5.1.4 I studied theoretically the

tunneling spectrum of a ferromagnetic nanocluster coupled to leads using a simple

mean field Hamiltonian. I showed that for a ferromagnetic cluster the effective ex-

change coupling contains large ferromagnetic contributions that depend on specific

details of the band structure. I also computed the STM spectrum of this cluster and

showed that, in agreement with the experimental data, it displays rather asymmet-

rical features that have mesoscopic origin.

As a last application in mesoscopic physics, in Section 5.2, I showed that in a

mesoscopic point contact very strong local density of states fluctuations show up.

I showed that these fluctuations can lead to a broad distribution of the Kondo

temperatures of magnetic impurities in the contact region, and gave a consistent

explanation of some experimentally observed anomalies.
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A Bosonization techniques

A.1 Basic bosonization identities

In this appendix we shall review the Abelien bosonization technique. This method

- which is a powerful tool to study (1+1)-dimensional relativistic quantum field

theories - relies on the observation that for a one-dimensional relativistic fermion

field almost all excitations can be constructed in terms of bosonic denisty waves.

To start width, we shall consider a spinless left-moving fermion field ψ(x) on a

string of length L, satisfying the anticommutation relations {ψ(x), ψ†(x′)} = δ(x −
x′). For the sake of simplicity, we shall assume here that ψ satisfies antiperiodic

boundary conditions. The field ψ can, of course, be expanded in Fourier basis as

ψ(x) ≡
√

2π
L

∑

k

e−ikxck , (245)

where k = 2π
L

(nk − 1/2) with nk an integer. The Hamiltonian is defined as

H0 =
∫ L/2

−L/2

dx

2π
ψ†(x) i∂xψ(x) =

∑

k

k : c†kck : , (246)

where the symbol : . . . : denotes normal ordering with respect to the free Fermi sea

or “vacuum state” |0〉0, defined by

ck|0〉0 ≡ 0 for k > 0, c†k|0〉0 ≡ 0 for k < 0. (247)

Next, we define bosonic electron-hole creators by

b†q ≡ i

√
2π

qL

∑

k

c†k+qck , (248)

where q = 2π
L
nq > 0 is the momentum of the electron-hole excitation with nq a

positive integer. Very importantly, these operators can be shown to satisfy canonical

commutation relations. They also commute with the total fermion number, N̂ ≡
∑

k : c†kck :, the latter being a conserved quantity. The Hilbert space can be devided

onto subspaces characterized by given values of N̂ = N , and within each subspace

there is a unique state |N〉0 which contains no electron-hole excitations. One can

show that one can build up each subspace of (and thus the whole) Hilbert space from
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these states using just the operators b†q and that H0 can be simply expressed as

H0 =
2π

L

1

2
N̂2 +

∑

q>0

q b†qbq . (249)

To compute ferionic correlation functions, however, it is not sufficient to bosonize

the Hamiltonain, we need to construct the fermionic field ψ in terms of the bq’s. To

this end, we define bosonic fields by

φ(x) ≡
∑

q>0

−
√

2π

qL

(
e−iqxbq + eiqxb†q

)
e−aq/2 . (250)

Here a ∼ 1/pF is a short-distance cutoff; it is introduced to cure any ultraviolet

divergences. It is easy to prove that the field ∂xφ(x) is canonically conjugate to

φ(x), in that

[φ(x), ∂x′φ(x
′)] = 2πi(δa(x− x′) − 1/L) , (251)

where δa(x − x′) is a smeared delta function, δa(x − x′) = a/π
(x−x′)2+a2 . With this

definition, H0 can be also written in a somewhat simpler form:

H0 =
2π

L

1

2
N̂2 +

∫ L/2

−L/2

dx

4π
:

(
∂φ

∂x

)2

: , (252)

which is more frequently used in the literature.

The field φ is, however, obviously not enough to represent fermion operators since

it does not change the value of N while fermionic fields do so. Therefore, we need

to define another operator, F , the so-called co-cycle or Klein factor, which does this

job

[F, N̂ ] = F , [F, bq] = 0 , FF † = F †F = 1 . (253)

The Klein factor can be constructed explicitely in terms of the original fermionic

operators.

Now we are ready to present the most important identities relating the field φ to

the fermionic operator ψ and the density operator ̺ ∼: ψ†ψ :,

ψ(x) = F
1√
a
e−i(N̂−1/2)2πx/L e−iφ(x) ,

1

2π
:ψ†(x)ψ(x) :=

1

2π
∂xφ(x) +

N̂

L
. (254)

The last equation is particularily transparent: The field φ can be interpreted as a
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displacement field, the divergence of which gives the changes in the density. However,

it contains only excitations which reorder the spatial charge distribution along the

line without changing the total fermion number; the last term is needed to take into

account changes in the latter.

In many cases, one can take the L → ∞ limit. Then the bosonization identities

simplify,

H0 =
∫ dx

4π
:

(
∂φ

∂x

)2

: , [φ(x), ∂x′φ(x′)] = 2πiδa(x− x′) , (255)

ψ(x) = F
1√
a
e−iφ(x) ,

1

2π
:ψ†(x)ψ(x) :=

1

2π
∂xφ(x) . (256)

The above procedure can be readily generalized to the case of several Fermi

fields. The only important difference is, that in this case Klein factors belonging to

different fermionic field must anticommute to insure the anticommutation relations

of the Fermi fields. In the L → ∞ limit these operators can usually be replaced

by Majorana fermions, but sometimes it is important to keep track of the time-

dependence of these fields.

A.2 Mapping between the spin-boson model and the dissi-

pative two state system model

To establish the mapping, we bosonize the Hamiltonian (69) using the bosonization

rules of the previous subsection as

HAK =
∑

σ=±

∫ dx

4π

(
∂φσ

∂x

)2

+
1

2
j̃zSz(

∂φ↑(0)

∂x
− ∂φ↓(0)

∂x
)

+
1

2

j⊥
a

(
ei(φ↑(0)−φ↓(0))F †

↑F↓ S
− + h.c.

)
. (257)

We have to remark that the bosonization cut-off scheme defined by the length scale

a changes the meaning of the original couplings, jz → j̃z, and the new coupling is

simply related to the phase shift of the fermions as [88]

j̃z = 4δz = 4 atan(π jz/4) . (258)
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Next we introduce charge and spin fields, as

φc =
1√
2

(φ↑ + φ↓) , φs =
1√
2

(φ↑ − φ↓) , (259)

and realize that only the spin part couples to the spin operator. Thus the spin

dynamics is fully captured by the Hamiltonian:

Hspin
AK =

∫ dx

4π

(
∂φs

∂x

)2

+
1√
2
j̃zSz

∂φs(0)

∂x
+

1

2

j⊥
a

(
ei

√
2φs(0)F †

↑F↓ S
− + h.c.

)
. (260)

Finally, we show that the unitary transformation U = exp(i
√

2SzφS(0)) applied

to Hspin
AK gives the spin-boson Hamiltonian, HSB, for Ohmic dissipation. Using the

commutation relation of the fields φs and ∂φs we find

U



∫ dx

4π

(
∂φs

∂x

)2

U † =

∫ dx

4π

(
∂φs

∂x

)2

−
√

2Sz
∂φs(0)

∂x
,

US−U † = e−i
√

2φS(0)S−, US+U † = ei
√

2φS(0)S+,

implying that under this unitary transformation j̃z → j̃z−2, and that φs is completely

transformed out of the term ∼ j⊥. Finally, we notice that the operators τ− ≡
F↓F

†
↑ S

+, τ+ ≡ (τ−)† and τz ≡ −2Sz, satisfy the usual algebra of Pauli matrices and

rewrite Hspin
AK as

UHspin
AK U † = Hspin

AK =
∫ dx

4π

(
∂φs

∂x

)2

+
1√
2
(1 − j̃z√

2
)τz

∂φs(0)

∂x
− j⊥

2a
τx , (261)

which is just the spin-boson model with

√
α = 1 − j̃z

2
= 1 − 2δz

π
. (262)

To clarify the meaning of this uitary transformation we notice that the spin

density, given by ̺s = 1
2π

(∂xφ↑ − ∂xφ↓) = 1
π
√

2
∂xφs, transforms under the unitary

transformation as

̺s → ̺s − Szδ(x) , (263)

implying that we indeed bind a conduction electron to the impurity spin antiferro-

magnetically at the origin, x = 0, as stated in the main text.
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B Hartree approximation for a quantum dot

To derive Eq. (195), let us consider a metallic grain within the Hartree approxima-

tion. Then the wave functions ϕj must be determined self-consistently by solving

the following equations:

(
− ∆

2m
+ VH(~r)

)
ϕj = Ej ϕj ,

VH(~r) = V (~r) +
∫
d~r′U(~r − ~r′)̺(~r′) , (264)

where V is the confining potential generated by the positively charged ions, U is

the electron-electron interaction, and VH is the Hartree potential. The electronic

density ̺(~r) in Eq. (264) must be computed as ̺(~r) =
∑

j,σ nj,σ |ϕj|2, with nj,σ the

occupation number of the levels.

The total energy of the system with N =
∑

j,σ nj,σ electrons is

EN
H =

∑

j,σ

Ej nj,σ − 1

2

∫
d~r d~r′̺(~r)V (~r − ~r′)̺(~r′) , (265)

where the second term compensates for overcounting the electron-electron interac-

tion. In order to compute the energy cost of adding another electron to the grain,

we should solve selfconsistently Eqs. (264) for
∑

j,σ nj,σ = N +1, compute EN+1
H and

then determine the difference between these two energies, EN+1
H − EN

H . However,

one can approximately compute this energy by just noticing that the charge of the

extra electron in state N + 1 must go to the surface of the grain to produce an

approximately constant potential inside the grain, and is screened within a layer of

the Fermi wavelength ∼ λF . The change in the Hartree potential is simply given as

δVH =
∫
d~r′U(~r − ~r′) δ̺(~r′) . (266)

But since the change of the electronic density can be very well approximated by a

classical surface charge for a grain size L ≫ λF , δVH is just the classical potential

of the charged grain. Consequently, δVH ≈ e2/C inside the metallic grain. Using

this simple fact we find that adding an extra electron to the grain shifts all Hartree

energies as Ej → Ej + e2/C and requires an energy

E+ ≈ Ef +
e2

2C
, (267)
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with Ef the Hartree energy of the first unoccupied level, and C the classical capaci-

tance of the grain. Defining the chemical potential as the Hartree energy of the last

occupied level, µ ≡ ǫl and defining the quasiparticle energies as ǫj ≡ Ej − µ we find

by extending the above analysis to the excited states as well that the energy of the

dot is approximately described by Eqs. (194) and (195). Note that for an isolated

dot this analysis gives Ng = −µC/e2, which is usually not equal to zero, so adding

and removing an electron requires different energies, just as in case of an atom.
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