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Notation

If ¢ is a power of a prime number, then the Galois field GF(q) of ¢ elements will be denoted
by F,. For a positive integer n, Z, = Z/nZ denotes the cyclic group of order n, whereas
Q, = Q™) = Q(z)/(®,(2)) stands for the nth cyclotomic field, ®, denoting the nth

cyclotomic polynomial. The symmetric group of degree k is denoted by Sk.

For a nontrivial group G we denote by p(G) the order of the smallest nontrivial subgroup of
G. If G is finite, then p(G) equals the smallest prime divisor of the order of G. On the other
hand, p(G) = oo if and only if G is torsion free. For an abelian group G and a natural number

n we denote by G™ the direct sum of n copies of G.

A and B will always denote (usually nonempty) subsets of some group G. Unless declared
otherwise, their cardinalities will be denoted by |A| = k and |B| = ¢, respectively. In case of

abelian groups we will use additive notation. In that case
A+B={a+bla€ A be B}
stands for the usual Minkowski-sum of A and B, whereas
Ad+B={a+b|lac A bec B,a#b}

denotes their so-called restricted sum. If G is not declared to be commutative, we will stick to

the more accepted multiplicative notation. Thus, AB = {ab | a € A, b € B} in such a case.

In the last chapter, for positive integers a < b we will use the notation
[a,b] = {a,a+1,...,b—1,b}.

The sum of the elements of a set B will be denoted by o(B), and £(A4) = {o(B) | B C A}

will represent the set of all possible subset sums of A, including 0 = ¢((}). The notation
24(A) ={o(B) | BC A,|B| =d}

is a deviation from the standard notation used in the context of restricted multiple set addition.
Finally, if A is a set of integers and ¢ is a positive integer, then N,(A) denotes the number of

elements in A not divisible by gq.

The rest of the notation we use throughout this dissertation is all standard.



Chapter 1

First Principles

Perhaps the most ancient result in combinatorial number theory is the following. Let p denote
a prime number. If the nonempty sets A and B of integers intersect k and ¢ different residue
classes modulo p, respectively, then in case p > k+ ¢ — 1, at least k + ¢ — 1 different residue
classes are represented by the numbers a + b with a € A, b € B. In our terminology: If A, B
are nonempty subsets of Zj,, then p > |A|+|B| — 1 implies |A+ B| > |A| +|B| — 1. This result
is due to Cauchy [16] who invented it in relation to Lagrange’s famous ‘four squares theorem’,
and is referred to as the Cauchy—Davenport theorem. After Davenport [21] rediscovered the
result in 1935, it was immediately generalized by Chowla [19] and Pillai [72]. The short but
tricky combinatorial proof actually gives the following generalization (see e.g. [53]), which is

a good starting point to the present dissertation.

Theorem 1.1. If A and B are nonempty subsets of an abelian group G such that p(G) >
|A| 4+ |B| —1, then |A+ B| > |A|+ |B| — 1.

Proof. Assume that |A| < |B|. If |A| = 1, then clearly |A+ B| = |B| = |A|+|B|—1. Otherwise
assume for a moment that B intersects A properly, that is, AN B # @ and A\ B # 0. In this
case we may replace A with the set A’ = ANB and B with B’ = AUB such that 0 < |A'| < |4],
|A'|+|B'|—1=|A|+|B|—1and A’ + B’ C A+ B, implying |A" + B’| < |A + B|. If B does
not intersect A properly, we still can do the following. Choose some ¢ € G such that the set
B+ ¢ = B + {c} intersects A properly. Then replace A with the set A’ = AN (B +¢) and B
with B’ = AU (B + c¢). Note that |B+ ¢| = |B] and that A+ (B +c¢) = (A+ B) + ¢, implying
|A+(B+c)| = |A+B|. Therefore again we have that 0 < |A’| < |A|, |A'|+|B’|-1 = |A|+|B|—-1
and |A’ 4+ B'| < |A + BJ|. Thus, it suffices to prove the estimate for the sets A" and B’. In
a finite number of steps we can reduce the problem to the case when |A| = 1, and the result
follows.

It only remains to prove that an appropriate ¢ € G can be found. First, there is a ¢y € G
such that AN (B + ¢p) is not empty. If A is not contained in B + ¢, then ¢ = ¢ will do.

Otherwise there are two different elements of A, say a and b = a — ¢;, that both belong to
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B+-cg. Since |B+c¢o| = |B| < p(G) and the numbers a,a—cy,a—2c¢y, . ..,a—(p(G)—1)cy are all
different, there is a smallest positive integer ¢ such that a—tey € B+c¢o but a—(t+1)c1 & B+co.
Writing ¢ = ¢g +te; we can conclude that a € AN (B+c¢) and b=a—c¢; € A\ (B +¢), which

makes the proof complete. O

This idea has eventually led to Vosper’s inverse theorem [87] and also to Kneser’s theorem
[61] that became a very powerful tool in combinatorial number theory.

Kneser’s theorem states that if A, B are finite nonempty subsets of an abelian group G,
then either |A + B| > |A| + | B, or

|A+B|=|A+ H|+ |B+ H|— |H|,

where H = {g € G | (A+ B) + g = A + B} is the stabilizer, or the set of periods, of A+ B.
Note that H is clearly a subgroup of G and A + B is a union of certain cosets of H. It
implies Theorem 1.1 as follows. Assume that A, B are finite nonempty subsets of G such that
p(G) > |A| + |B|— 1. If |A+ B| > |A| + | B|, then we are ready. Otherwise, if 0 is the only
period of A+ B, then |A+ B|=|A+ H|+|B+ H| — |H| = |A| +|B| — 1. Finally, if H is a
nontrivial subgroup of G, then |H| > p(G), and therefore |A + H| > |H| and |B + H| > |H|
imply
|A+B|=[A+H|+ B+ H|-[H|>|H| > p(G) > |A| +|B| - 1.

Instead of going deeper into the history at this point, we present in the next section a list
of statements that are relevant to our work and can be easily proved in any linearly ordered
abelian group. A standard compactness argument implies that the statements are valid in any
abelian group G with p(G) large enough. A more effective principle is discussed in the section
that follows. After that we return to the history of the subject and describe our main new
results in this context. This is followed by a brief description of the algebraic background and

the new methods we employ in the dissertation.

1.1 A General Framework

Let G be an abelian group and let A, B be nonempty subsets of G. Assume that, like in the
case of Z and Q, there is a linear order < on G, which is compatible with the addition on G,
that is, for arbitrary elements a,b,c € G, a < b implies a + ¢ < b+ c¢. It is immediate that
such a linearly orderable group cannot have any nonzero element of finite order. It is also easy
to see, that if the abelian groups G and H are linearly orderable, then so is their direct sum
G @ H. Thus, every finitely generated torsion free abelian group can be equipped with such

a linear order. In fact, it can be proved using transfinite induction, that even the direct sum
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of infinitely many linearly orderable abelian groups can be ordered. Since every torsion free
abelian group is a subgroup of the direct sum of some isomorphic copies of Q (see e.g. [76]),
we arrive at the (well known) conclusion that an abelian group can be ordered if and only if
it is torsion free.

Thus, if G is torsion free, then the elements of A and B can be enumerated as a; < as <

... <ag and by < by < ... < by such that
a1+ <as+b <...<ap+b<ap+by<...<ay+ by

Moreover, at most one element of A can be equal to b;, and no more than one member of
B can equal ag. It follows that the following statements are valid in any torsion free abelian

group G.

Statement 1.2. If A and B are nonempty finite subsets of the abelian group G,then |A+ B| >
k+0—1.

Statement 1.3. If A and B are nonempty finite subsets of the abelian group G ,then |A+B| >
k+0—3.

In particular,

Statement 1.4. If A is a finite subset of the abelian group G, then |A+ A| > 2k — 1.
Statement 1.5. If A is a finite subset of the abelian group G, then |[A+A| > 2k — 3.
If A is different from B, then we can say something stronger:

Statement 1.6. If A and B are nonempty finite subsets of the abelian group G such that
A+ B, then |A+B| >k + £ —2.

Indeed, if k = 1, then |A+B| > |B| -1 = k+{—2, and we can argue in a similar way if £ = 1.
Thus, we may assume that k, ¢ > 2 and we have already proved that |A’| 4+ |B’| < k + £ and
|A’+B'| = |A’'| 4+ |B’| — 3 implies A’ = B’. If aj # b1, then we may assume without any loss of
generality that by < a;. In this case no element of A can be equal to b1, so at least k + ¢ — 2
out of the k + ¢ — 1 different numbers

al+bh <ar+b <...<ap+b<ap+by<...<ap+Dby

belong to A+B. Thus, we may assume that a; = by, and also that k < ¢, say. Since A # B,
there is a smallest integer ¢ with the property that a; = b; but a;41 # byp1. If ¢ = k, that
is, a;4+1 does not even exist, we find that £ > k > 2 and then A4 B contains the following
k + £ — 2 different numbers:

a1 +by < ... <ar+be<...<ap_1+bp<

ap—1 +bi+1 < ap+ b1 < ... <ag+ by
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Otherwise we may assume that a;+1 < bey1, and even if ¢t = 1, we can consider the following
2t — 2 elements of A+B:

a1+b2<...<a1+bt<...<at_1+bt<at+1+bt_1.

Defining A" = A\ {a1,...,a;} and B' = B\ {b1,...,b:} we find that A’ # B’, so by our
induction hypothesis, |A’+B’| > (k—t)+ (£ —t) —2. This way we found k+ £ — 2t — 2 elements
of A+ B, each larger than the previously found 2¢ — 2 numbers. Finally, the elements a1 + by
and a; + by 1 also belong to A+B and they are both larger than the first 2t — 2 numbers and

at the same time smaller than the elements of A’4+B’. That is,
|A+B| > (2t —2)+ (k+{—2t—2)+2=k+(—2,

as we wanted to prove. [l
It is not difficult to characterize the sets A and B for which equality holds in Statement
1.2, a proof can be found in [69].

Statement 1.7. If A and B are nonempty finite subsets of the abelian group G such that
|A+ B|=k+{—1, then A and B are both arithmetic progressions of the same difference.

In particular, the following statement is also valid in every torsion free abelian group:

Statement 1.8. If A is a nonempty finite subset of the abelian group G such that |A+ A| =

2k — 1, then A is an arithmetic progressions.

In view of Statement 1.6, |A+B| = k + £ — 3 is only possible if A = B. If k is 2 or 3, then
clearly |A+A| = 2k — 3. If k is 4, then |A+A]| is either 5 or 6, where the first case happens if

and only if a3 + a4 = as + a3. Otherwise the analogue of the previous statement is true, see
[69].

Statement 1.9. If A is a finite subset of the abelian group G such that k = |A| > 5 and
|A+A| = 2k — 3, then A is an arithmetic progression.

Assume now that a1 < as <...<ay and by < by < ... < by, then clearly
a1 +by <as+by<...<ag—+ b.
Consequently, the following statements are also valid in every torsion free abelian group G.

Statement 1.10. If A and B are subsets of the abelian group G, each of cardinality k, then

there are numberings ai,as,...,ar and by, ..., by of the elements of A and B, respectively,
such that the sums a1 + b1, as + ba, ..., ar + by are pairwise different.
Statement 1.11. Let A = (ay,...,ax) be a sequence of k elements in the abelian group G.

Then for any subset B C G of cardinality k there is a numbering by, ..., b, of the elements of

B such that the sums a1 + by, as + ba, . .., ax + by are pairwise different.
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That is, Statement 1.10 is also true if A is a multiset. Finally, if A is a finite multiset of at least
two nonzero elements in a linearly ordered abelian group, then it can be partitioned into two
nonempty multisets containing the negative and the positive elements of A, respectively, such
that no elements in the same part can add up to zero (take any partition if all the elements of

A have the same sign). Consequently, the following is true in torsion free abelian groups G.

Statement 1.12. Any multiset of k > 2 nonzero elements of G can be partitioned into two

nonempty parts such that in none of the parts does a zero subsum occur.

Common features of all the above statements are that for fixed values of k and ¢ they can
be written as a closed formula in the first order language of abelian groups, and that they
are valid in every linearly ordered, and thus also in every torsion free abelian group. Based
on a standard compactness argument it follows that the same statements hold in any abelian

group G for which p(G) is large enough compared to &k and ¢.

Theorem 1.13. Let ® be any statement that can be formulated as a sentence in the first
order language of abelian groups. Assume that ® is true in every linearly orderable abelian

group. Then there is an integer po = po(P) such that © is valid in every abelian group G with
p(G) = po.

Proof. Assume that, on the contrary, there is an infinite sequence of prime numbers p; < ps <
p3 < ...such that, for every positive integer i, there is an abelian group G; with the property
that p(G;) = p; and ® is not valid in G;. Let U denote any non-principal ultrafilter on the
set of positive integers Z,, it contains all co-finite subsets of Zy. Let G = [[G;/U be the
ultraproduct of the groups G; with respect to U.

According to the fundamental theorem of ultraproducts, also known as Lo$’s theorem
(cf. [17, 40]), a sentence ¥ in the first order language of abelian groups is true in G if and only
if the set

{i € Z4 | U is valid in G;}

belongs to U. Since —® is valid in every G; and, by definition, Z € U, it follows that ® is
not valid in G.

Notice that, for any fixed k, the statement Wy ‘there is no nonzero element whose order
is less than £’ is in fact a first order sentence for abelian groups. Since for any fixed k there
is only a finite number of indices ¢ with p; < k, the set of indices for which ¥y, is valid in G;
belongs to U. It follows that for every k, no element of G other than 0 can have an order less
than k, implying that G is torsion free. Consequently, G can be ordered, and thus ® is valid

in G. This contradiction completes the proof. O

We note that a similar argument has also been suggested by Ambrus P4l [71], see also [49].
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As we have already mentioned, all the above statements of the previous section can be ex-
pressed as a first order sentence, and thus must be valid, in the view of the above theorem,
whenever p(G) is large enough compared to k and £.

Now we turn our attention to more efficient methods. The drawback of above argument
on one hand is that it depends on the axiom of choice, and on the other hand is that it
does not say how large p(G) should indeed be. An effective, though in general exponentional
admissible bound can be obtained by the rectification principle of Freiman [37], worked out
by Bilu, Ruzsa and Lev for cyclic groups of prime order in [13]. We elaborate on this idea in

the next section.

1.2 The Rectification Principle

Let ® be any closed formula in the first order language of abelian groups, written inductively

in the usual way. Every atomic formula that occurs in @ is of the form 7 = ¢ where
T=T1+T2+... +Tyi) and o =y1 + Y2 + ... + Yu(o)s

such that x1,x2,...,%y(;) and y1,Y2, - - ., Yu(o) are not necessarily different variables of ®. We
say that @ is an (s, t)-sentence if ® = Vx; ...Vz,; ¥, where ¥ only contains the open variables
Z1,...,2¢ and, for every atomic formula 7 = o that occurs in ®, we have v(7) + v(o) < s. We
will assume that s > 2. For example, Statement 1.12 in the case k = 3 can be written as a

(2, 3)-sentence as follows:
VaVyVz((—(x = 0) A=(y = 0) A=(2 =0)) —

((z+y=0)V-(z+2z=0)V-(y+z=0))),

a formula that is clearly valid in every abelian group G with p(G) > 2. Here, in the atomic
sub-formula x + y = 0, we have v(x + y) = 2 and v(0) = 0.

An effective version of Theorem 1.13 is the following

Theorem 1.14. Let ® be an (s,t)-sentence in the first order language of abelian groups. If
® is true in Z, then it is valid in every abelian group G with p(G) > st.

Thus we have a tool even for such problems, where we cannot argue using the appropri-
ate ordering of torsion free abelian groups, but instead of that we somehow can exploit the
arithmetic and/or some other properties of Z, like in the following well-known exercise: If
ni,Ng,...,Naokt1 are integers with the property that, whichever number we omit, the rest can
be partitioned into two k-element groups with equal sums, then all the numbers are equal.
To prove Theorem 1.14 we follow [13]. Note that we may readily assume that G is finitely

generated. We use the following notion of Freiman-isomorphism. For subsets K and L of
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the abelian groups G and H, respectively, we say that the bijection ¢ : K — L is an F,-

isomorphism, if for any ay,...,a, € K and by, ...,b, € K with u 4+ v < s, we have
a1+...+au:b1+...+bv

if and only if
plar) + ...+ (ay) = p(b1) + ...+ @(by).

Denote by 21, 23, ..., 2: the variables that occur in ®. Let g1, 92,...,9: be arbitrary ele-
ments of G and let K = {g1,92,...,0t}, then |K| < ¢. Assume that K is F,-isomorphic to
some subset K’ of Z, and denote by ¢ the corresponding bijection. In G, substitute z; = g;
in ®; in Z, do the same with z; = ¢(g;). Then we get the same truth assignment in the case
of each atomic sub-formula of ®. Since ® is valid in Z, it follows that the above substitution

makes ® valid in G. Thus, it is enough to prove the following

Theorem 1.15. Let K be a t-element subset of the finitely generated abelian group G. If
p(G) > s' then there exists an Fy-isomorphism ¢ : K — K' for some set K' C Z.

The starting point is the following direct generalization of [13, Theorem 3.1] whose proof
we include for the sake of completeness.
Lemma 1.16. Let K be a t-element subset of Z, where q is a power of a prime p > st.
Then there exists a set of integers K' such that the canonical homomorphism Z — Zq = Z/qZ

induces an Fs-isomorphism of K' onto K.

Proof. Identify the elements of K with the unique integers 0 < a1, ...,a; < q they represent.
Let e; (0 < i <t) be the standard basis for Z!*! and consider the lattice A generated by the

vectors

t
a;

€y + E —e;, —ey, —€y,..., —e.
i—1 4

The volume of the fundamental domain of A is 1. Since p(1/s)! > 1, it follows from Minkowski’s

convex body theorem that A has a nonzero vector in the rectangular box
(=p,p) X (=1/s5,1/s) x ... x (=1/s,1/s),
that is, there are integers n;, not all of them zero, such that |ng| < p and

1
< =
S

noa;
—n;

q
for 1 <1 <t. Were ng = 0 it would imply n; = 0 for 1 < i < ¢t. Thus we can conclude that

ng is not divisible by p and that there are integers m; such that |m;| < ¢/s and nga; = m;
(mod ¢). If r is any multiplicative inverse of ng modulo ¢, then rm; = a; (mod ¢), and thus

the canonical homomorphism ¢ : Z — Z; maps K’ = {rmu,...,rm;} onto K. Moreover,

ail—i—...—l—aiu:ajl—i—...—i—ajv
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in Z, if and only if
u v
> e =D a,
k=1 k=1

is divisible by ¢, which by (ng,q) = 1 exactly happens if

u v
E :mlk - E My,
k=1 k=1

is divisible by ¢. Since |m;| < g/s, under the assumption that v+ v < s this is equivalent with

saying that the above expression is zero, or what is the same,
My, + ...+ rmg, =rmy, + ...+ rmj,.
This indicates that ¢ indeed induces an Fj,-isomorphism. |

Since the identical map 2 : Z — Z obviously induces an Fs—isomorphism of any subset of Z
onto itself, in view of the fundamental theorem of finitely generated abelian groups, to verify
Theorem 1.15, it is enough to prove that whenever the theorem is true for the abelian groups
G1 and (o, it is true for their direct sum G = G; @ G2 as well. This we can do as follows.
Assume that p(G) > st, then p(G;) > st for i = 1,2. Let

K1 ={g€ Gy |3he Gy with (g,h) € K},

and define K> in a similar way as the projection of K to Gy. Then t;, = |K;| < |K| < t,
so s* < p(G;) and by our hypothesis there exist Fy-isomorphisms ¢; : K; — K/ for some
appropriate t;-element sets K| C Z. With m = max{|n| : n € Kj} and with any integer

a > sm, define the map
0: K1 x Ky — {an; +ns2 | n1 € Ky,ne € Kb}

by ©((g,h)) = ap1(g) + w2(h). Since any +na = an) +nf implies that « divides the number
ny — n), whose modulus is not larger than 2m < «, that is, it implies ny = n), and in turn
also n1 = n}, we find that ¢ is a bijection. A similar argument shows that ¢ is in fact an
F,-isomorphism, and thus its restriction to K is also an Fs-isomorphism. This completes the
proof of Theorem 1.15 and in turn also that of Theorem 1.14. O

The above proof appeared in our expository paper [53]. Theorem 1.14 can be applied to
all statements of Section 1.1, with ¢ =k or t = k + ¢ and s = 4 or, in the case of Statement
1.12, s = k — 1. It yields a bound that is exponentially large in k (and ¢). Such a strong
restriction on p(G) is sometimes necessary, as it happens in the case of Statement 1.12, see
[49]. In many cases, however, more effective results can be obtained. In Chapter 3-5 we study

problems related to Statements 1.2-1.11, giving the ultimate answer in many cases.



Chapter 2

An Overview

In this chapter first we give an overview of our main results in the perspective of the relevant
developments in the field. This is done, whenever appropriate, in the framework presented in
the previous chapter. This is followed by a section in which we briefly explain the tools and

methods we use, and how the dissertation is structured.

2.1 History and Results

In the context of Section 1.1, the Cauchy—Davenpont theorem claims that Statement 1.2 is
valid in any cyclic group Z, with a prime p > k£ + ¢ — 1. Moreover, it is also valid in any
abelian group G with p(G) > k + ¢ — 1, according to Theorem 1.1. Most of the results that

follow can be appreciated in a similar sense.

Unrestricted Set Addition

In addition to the already mentioned papers [19, 72], there are various further generalizations
of the Cauchy—Davenpont theorem, see for example Shatrowsky [82], Pollard [73] and Yuzvin-
sky [88]. Kemperman [59] proved the analogue of Statement 1.2 in arbitrary (that is, not
necessarily commutative) torsion free groups. In Chapter 5 we will prove that it is also valid

in an arbitrary finite group G with p(G) > k 4+ ¢ — 1. Using multiplicative notation:

Theorem 2.1. If A and B are nonempty subsets of a finite group G such that p(G) >
|A| +|B| — 1, then |AB| > |A| + |B| — 1.

It is easy to see that both the condition and the bound are sharp. Denote by pa(k,£) the
minimum size of the product set AB where A and B range over all subsets of G of cardinality k
and /¢, respectively. For finite abelian groups G, the function ug has been exactly determined

by Eliahou, Kervaire and Plagne [29]. Some partial results in the noncommutative case were

13
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found recently by Eliahou and Kervaire [27, 28]. In particular, they proved the inequality
e (k,€) < k+¢—1 for all possible values of k and ¢ when G is a finite solvable group. That
equality holds here for k + ¢ — 1 < p(G), a case in which the upper bound is folklore, is the
essence of the above theorem that we proved in [55].

The case of equality in the Cauchy—Davenport theorem was characterized by Vosper [87].

This first inverse theorem in the theory of set addition is the following.

Theorem 2.2. If A, B are nonempty subsets of Z,, such that |A+ B| = |A| + |B| — 1, then
either |A| +|B| — 1 =p (that is, A+ B =1Z,), or one of the sets A and B contains only one
element, or |[A+ B| = p — 1 and with the notation {c} = Z, \ (A + B), B is the complement

of the set c — A in Zyp, or both A and B are arithmetic progressions of the same difference.

Hamidoune and Rgdseth [48] go one step further; they characterize all pairs A, B with |A+B| =
Al +|B].

In the special case when A = B, Vosper’s theorem can be stated as

Theorem 2.3. Let A be a set of k residue classes modulo a prime p > 2k—1. Then |A+ A| =

2k — 1 if and only if A is an arithmetic progression.

An extension of Vosper’s theorem to arbitrary abelian groups is due to Kemperman [60],
who employed Kneser’s theorem to obtain a recursive characterization of all critical pairs, that
is, all pairs (A, B) with |[A+ B| < |A|+|B|—1. For a related result, see Lev [64]. In particular,

Theorem 2.3 can be extended as

Theorem 2.4. Let A be a set of k elements of an abelian group G with p(G) > 2k — 1. Then
|A+ A| =2k — 1 if and only if A is an arithmetic progression.

That is, Statement 1.8 is valid whenever p(G) > 2k. In fact, Kemperman’s result also implies
that Statement 1.7 is true for p(G) > k+ £ + 1.

Kneser’s theorem cannot be extended to noncommutative groups in a natural way ([70, 89]),
and the simple combinatorial proof does not work either. However, Vosper’s theorem has been
extended to torsion free groups by Brailovsky and Freiman [14]. A generalization to arbitrary
noncommutative groups has been obtained by Hamidoune [45]. To state it, we first have to
recall the following notion. Let B be a finite subset of a group G such that 1 € B. B is called
a Cauchy-subset of G if, for every finite nonempty subset A of G,

|AB| > min{|G|, |A] + |B| — 1}

If the group G is finite, then a subset S that contains the unit element is known to be a

Cauchy subset if and only if for every subgroup H of G,
min{|SH|,|HS|} = min{|G|, |[H]| + |S] — 1},

see Corollary 3.4 in [45]. Now Theorem 6.6 in the same paper can be stated as follows. (Here

(q) denotes the subgroup generated by the element g.)
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Theorem 2.5. Let G be a finite group and let B be a Cauchy subset of G such that |G| is
coprime to |B| — 1. Assume that |AB| = |A] +|B| — 1 < |G| — 1 holds for some subset A of
G. Then either |A| =1, or A= G\ aB~! for some a € G, or there are elements a,b,q € G

and natural numbers k,l such that

A={a,agaq....ad"""} and B=(G\(g)b)U{bab.g*....q4'b}.

Since without any loss of generality we may assume in Vosper’s theorem that 1 € B, and any
such B with |B| > 2 is a Cauchy subset of Z,,, Vosper’s theorem follows immediately from the
above result of Hamidoune. Note that if G is not a cyclic group of prime order, then a subset
B of G with 2 < |B| < p(G) is not a Cauchy subset in general. Thus the following result of
ours [55] gives a different kind of generalization of Vosper’s inverse theorem, more in the spirit
of Theorem 2.1.

Theorem 2.6. Let A, B be subsets of a finite group G such that |A| = k, |B| = £ and
k+¢—1<p(G)—1. Then |AB| = k+ ¢ — 1 if and only if one of the following conditions
holds:

(i) k=1ort=1;
(i1) there exists a,b,q € G such that

A={a,aq,aq’,...,a¢" '} and B ={b,qb,¢°b,...q" " b};

(iii) k+ ¢ —1 = p(G) — 1 and there exists a subgroup F of G of order p(G) and elements
u,v € G, z € F such that

ACuF, BCFv and A=u(F\zvB™").

Our proof of Theorems 2.1 and 2.6 depend heavily on the solvability of groups of odd order
and the structure of group extensions. Very recently Ruzsa [80] found in an ingenious way
alternative proofs of these results that do not rely on the Feit-Thompson theorem.

Another far reaching generalization of Vosper’s inverse theorem is due to Freiman. The

starting point is Freiman’s so-called ‘3k — 4’ theorem [34, 37]:

Theorem 2.7. Let A be a set of k > 3 integers. If |A+ Al =2k —1+b<3k—4, then A is

contained in an arithmetic progression of length k + b.

This again must be true in any abelian group G with p(G) large enough compared to k.

Freiman [35, 37] derived the following analogue for cyclic groups of prime order.
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Theorem 2.8. If A is a large enough k-element subset of Z,, p a prime, such that k < p/35
and |A+ Al =2k —1+b < 2.4k —3, then A is contained in an arithmetic progression of length
k+0.

Finally we mention Freiman’s theorem [36, 37] asserting that if a finite set A of integers
satisfies |A + A| < |A], then A is contained in a ‘generalized arithmetic progression’ whose
size and dimension is bounded in terms of the implied constant, see also Ruzsa [78, 79], Bilu
[12] and Chang [18]. Very recently Green and Ruzsa [42] generalized the result to arbitrary

abelian groups.

The Erddés—Heilbronn Problem

The case of restricted addition is apparently more difficult. In 1994 Dias da Silva and Hami-
doune [22] proved the following analogue of the Cauchy—Davenport theorem, thus settling a
problem of Erdés and Heilbronn (see [30, 32]).

Theorem 2.9. If A is a k-element subset of the p-element group Z,, p a prime, then

|A+A| > min{p, 2k — 3}.

More generally, they proved

Theorem 2.10. If A is any subset of the cyclic group Z,, then

Xa(A)| = min{p, d(|A] —d) + 1}.

These results were obtained via exterior algebra methods and the representation theory of
the symmetric groups. Shortly afterwards Alon, Nathanson and Ruzsa [7, 8] applying the

so-called ‘polynomial method’ gave a simpler proof that also yields
|A+B| > min{p, |A| + |B| — 2}

if |A| # | B|. Some lower estimates on the cardinality of A+B in arbitrary abelian groups were
obtained recently by Lev [65, 66], and also by Hamidoune, Llad6 and Serra [47] in the case
A = B. Some ramifications in elementary abelian p-groups have been explored in a series of
papers by Eliahou and Kervaire [24, 25, 26].

In [52] we established the following extension of the Dias da Silva-Hamidoune theorem.

Theorem 2.11. If A is a k-element subset of an abelian group G, then

|A+A| > min{p(G), 2k — 3}.
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Thus, Statement 1.5 holds in every abelian group G with p(G) > 2k — 3, and this result
is sharp. The result of Alon, Nathanson and Ruzsa implies Statement 1.3 for G = Z, if
p > k+ ¢ — 3. For more than ten years it has been open, whether Statement 1.6 can be

generalized the same way. We prove [56] that this is indeed the case:

Theorem 2.12. Let A # B be nonempty subsets of the additive group of a field of character-
istic p. Then |A+B| > min{p,|A| + |B| — 2}.

Thus, if A, B are nonempty subsets of an elementary abelian p-group, with p > |A| 4 |B| — 2,
then |A+B| > |A|+|B|—3, and equality can only be attained if A = B. As opposed to the case
of unrestricted set addition, only partial results have been known about the case of equality
here. First, if p(G) < 2k — 3 and A is contained in a subgroup H of G with |H| = p(G),
then |A+A| = H in view of Theorem 2.9. Next, if k > 2, p(G) > 2k — 3, and the elements
of A form an arithmetic progression, then A+ A is an arithmetic progression of length 2k — 3.
Finally, assume that p(G) > 2k — 3. If k is 2 or 3, then clearly |A+A| = 2k — 3. If k is 4, then
|A+A] is either 5 or 6, where the first case happens if and only if a + b = ¢+ d for some order
a,b, c,d of the elements of A. If k > 5 and G is torsion free, then |[A+A| = 2k — 3 happens
if and only if A is an arithmetic progression. As we have seen, Statement 1.9 must be true
under the assumption that p(G) is large enough. This has been first proved in Z/pZ, where p
is a large enough prime, by Pyber [74]. The same is proved in [13] under the assumption that
p > ck, where c¢ is an effective constant. Further improvements can be derived from the works
of Freiman, Low and Pitman [39] and Lev [65] in the case when k is large enough. Roughly
speaking, under some assumptions on k and p they prove that if | A+A4| is close to 2k — 3 then
A is contained in a short arithmetic progression. In particular, Theorem 2 of Lev [65] can be

stated as follows.

Theorem 2.13. Let A be a k-element subset of Z,,, p a prime, such that 200 < k < p/50. If
k' = |A+A| < 2.18k — 6, then A is contained in an arithmetic progression of length k' — k + 3.
In particular, if |A+A| = 2k — 3, then the elements of A form an arithmetic progression.

That is, there is a general inverse theorem that parallels the Freiman—Vosper theorem (Theo-
rem 2.8). Part of the proof depends on estimates with exponential sums, which explains why
the (somewhat flexible) conditions on p and k enter the theorem.

Here we exploit an algebraic method to get rid of these unnecessary restrictions when
|A+A| = 2k — 3. Probably the most important result in this dissertation is the following

inverse counterpart of Theorem 2.9 that we obtained in [54].

Theorem 2.14. Let A be a set of k > 5 residue classes modulo a prime p > 2k — 3. Then
|A+A| = 2k — 3 if and only if A is an arithmetic progression.

In fact, with the help of ideas from [52, 53] we can transfer this result, first to cyclic groups

of prime power order then to direct sums, in order to prove the following extension [54].
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Theorem 2.15. Let A be a set of k > 5 elements of an abelian group G with p(G) > 2k — 3.
Then |A+A| = 2k — 3 if and only if A is an arithmetic progression.

It is clear from what we have said before, that the bounds on k and p, resp. p(G) cannot be
improved upon in the above theorems. In view of our remarks, Theorems 2.12 and 2.15 imply

the following:

Corollary 2.16. Let A, B be nonempty subsets of the additive group of a field of characteristic
p > |A|+|B| —2. Then |A+B| > |A| + |B| — 2, unless A = B and one of the following holds:

(i) |Al =2 or |A] =3;
(ii) |Al =4, and A={a,a+d,c,c+d};

(iii) |A| > 5, and A is an arithmetic progression.

Further developing some ideas from our papers [51, 52, 55|, very recently Balister and
Wheeler [11] established

[{ad(b) | a €,b € B,a#b}| > min{p(G),|A] +|B| - 3}

for every finite group G and automorphism ¥ € Aut(G). It is quite plausible, that the above

corollary can also be generalized in the very same spirit.

Snevily’s Problem

A transversal of an n X n matrix is a collection of n cells, no two of which are in the same row
or column. A transversal of a matrix is a Latin transversal if no two of its cells contain the
same element. A conjecture of Snevily [83, Conjecture 1] asserts that, for any odd n, every
k x k sub-matrix of the Cayley addition table of Z,, contains a Latin transversal. Putting it
differently, for any two subsets A and B with |A| = |B| = k of a cyclic group G of odd order
n > k, there exist numberings a1, ..., ax and by, ..., bg of the elements of A and B respectively
such that the k sums a; + b;, 1 < i < k, are pairwise different. In fact, this is also conjectured
for arbitrary abelian groups G of odd order [83, Conjecture 3]. That is, Statement 1.10 must
be valid in any finite abelian group G with p(G) > 3. The statement does not hold for cyclic
groups of even order as shown, for example, by taking A = B = G, whereas for this choice
it clearly holds when |G| is odd (just take a; = b;,i = 1,...,n). For arbitrary groups of even
order take A = B = {0, g}, with g an involution, to get a counterexample. Here we first verify

Snevily’s conjecture for arbitrary cyclic groups of odd order.

Theorem 2.17. Let G be a cyclic group of odd order. Let A = {a1,aq,...,ar} and B be
subsets of G, each of cardinality k. Then there is a numbering by, ..., by of the elements of B

such that the sums a1 + b1, ..., ax + by are pairwise different.
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Alon [3] proved the conjecture in the particular case when n = p is a prime number. Actually
he proved a stronger result which can be considered as a special case of the following result

when o = 1.

Theorem 2.18. Let p be a prime number, o a positive integer and G = Zps or G = (Zp)“.
Let (a1,...,ar), k < p, be a sequence of not necessarily distinct elements in G. Then, for any
subset B C G of cardinality k, there is a numbering by, ..., by of the elements of B such that

the sums ai + by, ..., ar + by are pairwise different.

Note that the above theorem is not true with k& = p (see [3]). Putting it otherwise: if G is a
finite elementary abelian group, or a cyclic group of prime power order, then Statement 1.11
is true, assuming p(G) > k.

The above results appeared in [20]. They are discussed, along with proofs, in the recent
monograph of Tao and Vu [86], and were briefly indicated in the 2002 ICM talk of Alon
[4]. Based on our methods, various generalizations were obtained by Sun and Yeh [84, 85].
Employing one of the results in our paper for group rings, Gao and Wang [41] proved that
Statement 1.10 is valid in every finite abelian group G with p(G) > k2. They also verified
Statement 1.11 for finite abelian p-groups with p > k%/4.

The Subset Sum Problem

Representing integers as the sum of some elements of a given set A of integers is a very old
problem, which has many ramifications. Several interesting questions are discussed by Erdds
and Graham in [32]. If A is sufficiently dense, then X(A) contains long arithmetic progressions.
This phenomenon has received a lot of attention lately, see for example the last chapter of the

recent monograph by Tao and Vu [86]. The following result is due to Lev [63].

Theorem 2.19. If A C [1,4] is a set of n integers and £ < 3n/2 — 2, then

[20 — 2n41,0(A) — (20 — 2n+1)] C B(A).

Motivated by a possible extension, at the Workshop on Combinatorial Number Theory
held at DIMACS, 1996, V.F. Lev proposed the following problem. Suppose that 1 < a1 <
as < ... < ap < 2n —1 are integers such that their sum o = 2?21 a; is even. Does there

always exist I C {1,2,...,n} such that > . ;a; = 0/2?7 The answer is in the affirmative if

iel
n is large enough. Note that such a restriction has to be imposed on n, since the sequences
(1,4,5,6) and (1,2,3,9,10,11) provide counterexamples otherwise. The answer can be easily

derived from the following theorem [57].

Theorem 2.20. Let1 <aj; <as <...<a, < 2n—1 denote integers such that a,+1 —a, =1
holds for at least one index 1 < v < n—1. Ifn > ng = 89, then there exist €1,...,e, €
{=1,+1} such that |e1 + ...+ en| <1 and |e1a1 + ... +epan| < 1.
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More generally, every integer in a long interval can be expressed as a ‘balanced’ subset sum:

Theorem 2.21. If n is large enough and 1 < a1 < as < ... < a, < 2n — 2 are integers, then

for every integer

kelo/2—n?/24,0/2+ n?/24]
there exists a set of indices I C {1,2,...,n} such that |I| € {|n/2],[n/2]} and Y ,c;a; = k.

Lev conjectured that if n is sufficiently large, then Theorem 2.19 must remain true under the
weaker condition ¢ < 2n—c¢ with a suitable constant ¢. Based on the Dias da Silva—Hamidoune

theorem (Theorem 2.10) we verify this conjecture in the ultimate way [58].

Theorem 2.22. If A C [1,/] is a set of n > ng integers and £ < 2n — 6, then

20 —2n+1,0(A) — (20 —2n+ 1)] C 2(A).

The example A = [{ —n,2¢ — 2n — 1] U [2¢ — 2n + 1, {] demonstrates that the interval in the
theorem cannot be extended, whereas A = [n, 2n — 1] certifies that the result is no longer valid
with ¢ > 2n — 1.

A different but closely related problem is the following. For positive integers £ and m, let
f(¢,m) denote the maximum cardinality of a set A C [1,4] such that m ¢ ¥(A). The study
of this function was initiated by Erdds and Graham, see [31]. Clearly f(¢,m) > ¢/snd(m),
where snd(m) denotes the smallest positive integer that does not divide m. In [1], Alon proved
that f(¢,m) < c(e) - £/snd(m) for every €115 < m < £2/In® ¢, and conjectured that in fact
f(&,m) = (1 +o0(1)) - £/snd(m) holds for ¢*! < m < ¢19 as £ — oco. This was verified by
Lipkin [68] in the range £In¢ < m < ¢3/2. Finally Alon and Freiman [5] determined the exact
value of f(¢,m) as

Ft,m) = L J +snd(m) — 2

14
snd(m)
for every € > 0, £ > £y(¢) and m satisfying 3¢5/3t¢ < m < ¢2/20In*¢. The proof of these
results employed the Hardy-Littlewood circle method. It turns out that one can replace the
circle method by subtle combinatorics to solve this problem completely. Our first solution
was based on the ideas we employed to prove Theorem 2.22. A slightly better result can be
obtained, however, by the following theorem of Lev [67]. For any positive integer ¢ we denote

by N, (A) the number of elements in A that are not divisible by g¢.

Theorem 2.23. Let A be a set of n > ng integers in the interval [1, €], where n > 20(¢1nn)/?,
and let \ = 280¢/n>. Then there exists a positive integer d < 2¢/n such that (A) contains
all multiples of d that belong to the interval

[Aa(A4), (1 = Ao (A)].
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Moreover, if Ny(A) > q — 1 holds for every positive integer ¢ < 2¢/n, then the statement is
valid with d = 1.

See Freiman [38] and Sarkozy [81] for the forerunners of this result. Lev [67] notes that the
above theorem is essentially best possible in many respects. In [58] we give the following

refinement.

Theorem 2.24. Let A be a set of n > ny integers in the interval [1,£], where
n>£+d—2 for some integer 2 <d < L
d ~ T 4001lnn
Then there exists an integer t € [1,d — 1] such that X(A) contains all multiples of t that belong
to the interval [280d¢, o (A) — 280d/].

It is clear, that the theorem is now best possible also in regard to the common difference ¢
of the long homogeneous arithmetic progression contained in X(A). An almost immediate

consequence is the following ultimate solution to the conjecture of Alon.

Theorem 2.25. For every € > 0, there is an o = {o(e) such that if £ > Ly, then

fl,m) = LﬁJ + snd(m) — 2

holds for any (280 + &)lInf < m < £2/(8 +¢)In® L.

2.2 Methods and Tools

The most frequently applied and highly developed methods in the structural theory of set
addition are Kneser’s theorem, the method of exponential sums, the isoperimetric method,
and most recently also the polynomial method. A broad perspective of these methods can
be gained from the book of Nathanson [69]. Our work during the last decade was highly

influenced by the latter, which we briefly discuss below.

The Polynomial Method

The roots of this method go back as much as to Rédei, who used polynomials to study extremal
problems in finite geometries. The idea has also occurred several times later, see e.g. Brouwer
and Schrijver [15], Alon and Tarsi [9, 10], Alon and Firedi [6] and of course the already
cited papers of Alon, Nathanson and Ruzsa. A major breakthrough is due to Alon [2], who

formulated the following two theorems that can be applied directly in various situations.

Crucial to our work is the so-called Combinatorial Nullstellensatz. It is a simple conse-
quence of a division algorithm for multivariate polynomials; it can be also viewed as a special

case of Lasker’s unmixedness theorem, see e.g. [23].
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Theorem 2.26. Let F be an arbitrary field and let f = f(x1,...,2x) be a polynomial in
Flxy,...,xg). Let Si,..., Sy be nonempty finite subsets of I and gi(z;) = [[,cg, (xi — ). If
f(s1,82,...,58:) =0 for all s; € S;, then there exist polynomials hy, ha, ..., hy € Flx1,..., 2]
satisfying deg(h;) < deg(f) — deg(g;) such that f = Zle hig;.

In comparison with Hilbert’s Nullstellensatz, three observations are in due order. First, the
field F' need not be algebraically closed, which is a convenience but not crucial in our proofs.
Next, it is inherent in the above theorem that the ideal generated by the polynomials g; is a
radical ideal, this is the truly algebraic explanation why we can express f, instead of some
unknown power of it, in the desired form. It is also very important to us that we have an
explicit bound on the degree of coefficient polynomials h; coming form the division algorithm.

An immediate consequence of the above theorem is what is often referred to as the poly-

nomial lemma:

Theorem 2.27. Let F be an arbitrary field and let f = f(x1,...,zk) be a polynomial in
Flz1,...,zk]. Suppose that Hle zt is a monomial such that Zle t; equals the degree of f
and whose coefficient in f is nonzero. Then, if S1,...,Sk are subsets of F with |S;| > t; then
there are s1 € S1,82 € Sa,...,8k € Sk such that f(s1,...,s5) #0.

It can be also applied to derive the Chevalley—Warning theorem, which is a frequently used tool
in zero-sum combinatorics. See [2] for a survey of applications. The most beautiful example
in this direction is due to Rényai [77] that led to the recent solution of Kemnitz’s conjecture
by Reiher [75].

Although the polynomial method has already demonstrated its power in the additive the-
ory, to our best knowledge our paper [54] is the first instance when a structure theorem is
obtained via this method. The polynomial lemma is a very convenient tool and has been
widely applied for various problems in extremal combinatorics during the last decade. Direct
applications of the Combinatorial Nullstellensatz appear to be a lot more complicated. Its
strength over the polynomial lemma, informally speaking, lies in the fact that applying the
latter we extract information encoded in one particular coefficient of a suitable polynomial,
whereas applying Theorem 2.26 we have access to much more information encoded in a maze

of coefficients.

A Brief Overview of the Contents

In Chapter 1 we generalized the rectification principle of Freiman, a minor contribution. The

main novelties of our work are

e the application of the polynomial method in a multiplicative setting that led to the
solution of a problem of Snevily, the extension of a result of Alon, and a generalization

of the Erdés—Heilbronn conjecture to cyclic groups of prime power order;
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e the application of the Combinatorial Nullstellensatz to obtain structural theorems related

to the Erdés—Heilbronn problem:;

e the application of group extensions to obtain results in the theory of set addition for

more general, even noncommutative groups;

e and the application of elementary combinatorial arguments in conjunction with the Dias
da Silva—Hamidoune theorem to prove some conjectures of Alon and Lev related to the

subset sum problem.

These methods are respectively the main themes of the four main chapters that follow. Ac-
cordingly, in Chapter 3 we prove Theorems 2.17, 2.18 and a generalization of Theorem 2.9
to cyclic groups of prime power order. To study a few more examples we apply elementary
algebraic number theory. We exploit some basic properties of cyclotomic fields, and the fact

that the multiplicative group of any finite field is cyclic.

Chapter 4 is devoted to the proof of Theorems 2.12 and 2.14. As a by-product we get an
independent proof of Theorem 2.3. Besides the Combinatorial Nullstellensatz only the notion

of algebraic closure and the Vieta formulae are needed.

Theorems 2.1, 2.6, 2.11 and 2.15 are proved in Chapter 5, which also includes a self-contained
proof of Theorem 2.4. We depend on the structure theory of finitely generated abelian groups,
the Jordan—Holder theorem, the structure of group extension in general, and in particular that
of cyclic extensions, the Feit-Thompson theorem, Vosper’s inverse theorem, and a result of
Hamidoune (Theorem 2.5).

In Chapter 6 we derive among others, Theorems 2.20, 2.21, 2.22, 2.24 and 2.25. In addition
to the Dias da Silva-Hamidoune theorem (Theorem 2.10) we use Theorems 2.19 and 2.23 of

Lev, and we rely on the prime number theorem.



Chapter 3

The Polynomial Method

The main objective of this chapter is to prove the results related to the problems of Snevily.
This is done by the application of the polynomial lemma in a multiplicative setting. A similar
idea can be used in relation to restricted set addition to extend the Dias da Silva—Hamidoune

theorem to cyclic groups whose order is a power of a prime.

3.1 Snevily’s Problem

Following Alon’s approach, our starting point will be the polynomial lemma (Theorem 2.27).
For the case G = (Zp)“ the proof of Theorem 2.18 is almost the same as the one given by
Alon in [3] which we sketch here to demonstrate the method. Identify the group G = (Z,)*
with the additive group of finite field F, of order ¢ = p*. Consider the polynomial

fln,nm) = T (@ —2p)(a+ a2 — a5 —y))

1<j<i<k
= H ((®; — z)(x; — x;)) + terms of lower degree.
1<j<i<k
The degree of f is k(k — 1) and the coefficient of Hle e lin fisc= (71)(§)k! as we will
see it in the following subsection. Since the characteristic of the field is p > k, it follows that ¢
is a nonzero element. By applying Theorem 2.27 with t; =k —1 and S; = B fori =1,...,k,

we obtain elements by, ...b; € B such that

IT (s =b)(ai+ b —a; —b;)) #0.

1<j<i<k
Therefore, the elements by, .. ., by are pairwise distinct and so are the k sums by +aq, ..., bg+ag.
This completes the proof for G = (Z,)“. O

So far we only have exploited the additive structures of finite fields; and it is clear that (Z,)*

are the only groups that can be treated this way. On the other hand, every cyclic group is

24
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the subgroup of the multiplicative group of certain fields, and there exists a multiplicative
analogue of the above described method, which is worked out in the first subsection. We
apply this method to obtain Theorems 2.17 and 2.18 in the subsection that follows. In the
remaining part of this section we study the possibility of further extending these results. In
particular, we attempt to attack another conjecture of Snevily [83, Conjecture 2], namely that,
if n is even, a k x k sub-matrix of the Cayley addition table of Z,, contains a Latin transversal
unless k is an even divisor of n and the rows and columns of the sub-matrix are each cosets

of the unique subgroup of order k in Z,.

The multiplicative analogue

In this subsection we study how to modify Alon’s method if we wish to identify G with a

subgroup of the multiplicative group of a suitable field. This will reduce the original problems

to the study of permanents of certain Vandermonde matrices. Denote by V(y1,...,yx) the
Vandermonde matrix 1
U1 e yk )
Ly Y
VY, y) = .
1y ... y,]fl

For a matrix M = (mi;)1<i j<k, the permanent of M is

PerM = Z Mir(1)M2r(2) - - - Mir(k)-
TES

Lemma 3.1. Let F be an arbitrary field and suppose that PerV(ay,...,ar) # 0 for some

elements ay,as,...,ax € F. Then, for any subset B C F of cardinality k there is a numbering
b1,...,b, of the elements of B such that the products a1by,...,arb; are pairwise different.
Proof. Consider the following polynomial in F[z1,...,zk]
fyom) = I (@ —2))(am - aza;)).
1<j<i<k

The degree of f is clearly not greater than k(k — 1). In addition,

flx1,...,z) = DetV(ay,.. DetV (aiz1, asxa, . .., apry)
k
_ I ™) (i— 1) (r i—
ﬂ'ESk TESk i=1

k

T i—1 (r -

(Z( 1! Er(z )> < )H(ar(kﬂ—i)zf(kﬂ—i))(k )>

TESk TES) i=1

— I T (l 1) (m -

— (Z( (m (i) ) < )H ”(Z)x”(z )> .
TESK

TES)
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Therefore, the coefficient ¢(ay, ..., a) of the monomial Hle xffl in f,
K k .
clar,..ar) = > (-DE [k
TES) 1=1
. k
i—1
= D 3 TTewiay
TESE i=1
. k
_ i—1
= (0B 3 ITer
TES) i=1

= (-1)G)PerV(ay,. .., ax)

is different from 0 (in particular, ¢(1,...,1) = (—1)(§)k!). Consequently, f is of degree k(k—1),
and we can apply Theorem 2.27 with ¢t;, = k— 1 and S; = B for ¢ = 1,...,k to obtain k
distinct elements b1,...,b; in B such that the products a1by,...,axrbr are pairwise distinct.

This completes the proof of the lemma. O

Proof of the Theorems

Proof of Theorem 2.17. Write |G| = m and let o = ¢(m), where ¢ is Euler’s totient function;
then 2* =1 (mod m). Consider F = Faa, its multiplicative group F* is a cyclic group of
order 2% — 1. Thus, G can be identified with a subgroup of F'*, the operation on G being the

restriction of the multiplication in F'. Since F is of characteristic 2, we have
PerV(ay,...,a;) = DetV(ay,...,a;) = H (a;i —aj) #0.
1<j<i<k

The result follows immediately from Lemma 3.1. (|

Proof of Theorem 2.18 for G = Zy~. Consider the cyclotomic field F = Q(&), where & is a
primitive ¢*" root of unity and ¢ = p®. The degree of this extension is [Q(¢) : Q] = p* —p
Identify G' with the multiplicative subgroup {1,&,£2,...,£971} of Q(£). As before, the result
would be an immediate consequence of the fact PerV (aq, ..., ar) # 0. To verify this fact, note

that each term Hle ai?il) of this permanent is a ¢*” root of unity. Thus, PerV (ai,...,ax)

a—1

is the sum of ¢ roots of unity, where the number of summands, k!, is not divisible by p.

Therefore, it is enough to prove the following lemma.

Lemma 3.2. Ifey,..., ¢ are ¢t roots of unity such that 22:1 €; = 0, then t is divisible by
p.

Lemma 3.2 follows from the more precise statement in Lemma 3.3 below. Let w, = e2mi/p,
For each n € F such that ¢ = 1 we have Y. nw) = Y0 w, = 0. We say that a set
X = {e1,...,¢6} of ¢ roots of unity is simple if there is n € F with ¢ = 1 such that
X = {nwp,nw3, ..., nwb}.
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Lemma 3.3. Let¢;,i € I be ¢" roots of unity such that > ic1 € = 0. Then there is a partition
I =UJ, such that {¢; | j € J.} is a simple set for each r.

Proof. Consider V = Q(£) as a vector space over Q. The dimension of V is ¢(q) = p® —p*~L.

Let, for 0 < s < g—1, Ky = {i | ¢ = £}, and write ¢, = |K,|. Let s
0 <5< p*!. Note that {¢%,¢s+p" "

5 mod p*~ 1,

L., et =P L ig g simple set for every 0 < s < p@~ L.

Thus,
g—1 q—1 pTl-1
0:261'220855220555_ Z CS(§S+§s+p +.-.+§S+(p71)p )
el s=0 s=0 s=0
q—1 q—1
=Y (e =) = > (es—ca)E” .
s=0 s=pa—1

Since {1,£,€2,...,62@D=1} is a basis of V, {¢° | p*~! < 5 < p® — 1} is also an independent
set. Thus, c; = c5 for every 0 < s < ¢ — 1. Each set J,. of the desired partition of I can then
be obtained by choosing one element in each one of the sets Ky, Kypa-1,..., Ko (p_1)pa-1,
for every choice of s, 0 < s < p®~! such that K, # 0. O

Since every simple set has exactly p elements, Lemma 3.2 follows and the proof is complete. [

The following short proof of Lemma 3.2 was suggested by Imre Ruzsa. There exist positive
integers a; with e; = ¢®. Consider the polynomial R(z) = 22:1 x% then R(e) = 0. It follows
that the ¢** cyclotomic polynomial ®,, which is irreducible in Z[z], is a divisor of R in the

ring Z[z]. Consequently, p = ®,(1) divides R(1) = ¢.

Bad sequences

One of Snevily’s yet unsolved conjectures asserts that the statement of Theorem 2.17 holds
whenever |G| is not divisible by 2. We believe that the statement of Theorem 2.18 is always
true if the smallest prime divisor of |G| exceeds k. We also believe that the structure of the
counterexamples in other cases cannot be arbitrary, see Problem 3.7 below.

Let G be any abelian group and A = (a1, as,...,ar), k < |G|, be any sequence of group
elements. A is said to be a bad sequence if there is a subset B C G of cardinality k& such
that, for any numbering b1, ...,b; of the elements of B, there are 1 < ¢ < j < k such that
a; +b; = a; + b;. Assume that G is a subgroup of the multiplicative group of some field
F. Tt follows from Lemma 3.1 that A cannot be bad if PerV(ay,...,a;) # 0 in F. Tt is
possible that a better understanding of permanents of Vandermonde matrices may even help
in the characterization of bad sets. We will illustrate this point with the study of the cases
k = 2,3. There must be, however, certain limitations to this approach, as shown by the

following example.
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Example 3.4. Suppose that G = Zg is the subgroup of the multiplicative group of some field,
and A = {a; = 1,a2 = g%, a3 = g3} where g is a generator for G. Then PerV (aj,as,a3) = 0

although A is not a bad sequence.

Proof. Writing additively A = {0, 2, 3}, a short case analysis based on the number of even/odd
elements of B C G, |B| = 3 shows that a required numbering by, bs, bs of the elements of B

always exists. On the other hand,

1 1 1
PerV(ai,az,a3) =Per [ 1 ¢*> ¢* | =¢*(1+g+¢>)(1+g") =0,
1 g° ¢
given that ¢* = —1. |

Next we give a complete description of the bad sequences of length < 3 in cyclic groups.
Example 3.5. Characterization of the bad sequences in the case k = 2.

Identify G = Z,, with a subgroup of C*, as in the proof of Theorem 2.18. Let €, be n**
roots of unity. Then PerV(e,n) = e+ n = 0 if and only if n = —e = wi/2e. Consequently,
A = (a1, a2) can be a bad sequence in Z,, only if n is even and as = a1 + n/2, in which case

it is indeed a bad sequence.
Example 3.6. Characterization of the bad sequences in the case k = 3.

Again we identify G = Z,, with a subgroup of C*. Let ¢, n, ( be n'" roots of unity, n > 3.
In this case PerV (e, n,¢) = 0 if and only if

(e+n)(n+ Q¢ +e€) =2enC,

that is,
14+2)1+y)(1+2)=2 (3.1)

where x = n/e,y = (/1,2 = €/ are all n'" roots of unity and zyz = 1.
Recall (see e.g. [62]) that for w a primitive n** root of unity (n > 1), the norm of 1 — w in
the n*" cyclotomic field Q,, = Q(w) is

{ 1 if n is not a prime power,

J— — _ ‘j =
Ng, /(1 —w) H (1-w’) p if n is a power of the prime p.
1<j<n
(Gn)=1

t

Moreover, —w is also a primitive n‘" root of unity if n is even and a primitive (2n)*" root of

unity otherwise. Consequently,

2¢(2n) ifw=1,
0 ifw=-1
N, 1 = a-1 ’
@n/all +w) 26(2n)/2 if w is a primitive (2%)™" root of unity, a > 2,

1 otherwise.

By the multiplicative property of the norm, equality (3.1) can hold only if
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e one of x,y,z (say z) is 1, or

e one of x,7, z (say ) is a primitive 4°* root of unity, while y and z are primitive 8 roots

of unity.
In the first case we have e = i, and with u = (/e,
PerV (e, n,¢) = €PerV (1,1,u) = 263(1 + u + u?)

is 0 if and only if u is a primitive 3"¢ root of unity, in which case (e,n,¢) is indeed a bad

sequence. In the second case
PerV (e, n,¢) = €PerV (1, z,2y)) = ((x — 1) — y*(1 + 1))

is 0 if and only if y? = x = 44. This, however, yields no bad sequences, see Example 3.4.
Consequently, A = (a1,as2,as3) is a bad sequence in Z,, if and ouly if n is divisible by 3,

and for some permutation (i, , k) of the indices (1,2,3), a; = a; = ar £ n/3.

These results could have certainly been obtained without any algebraic consideration. We
only worked them out to indicate that there may be further applications of our method. The
above calculations also yield to an alternative proof of Theorem 2.17, and suggest that being

bad is a local property.

2% proof of Theorem 2.17. Identify G = Z,, with a subgroup of C* and suppose a1, az, . . . , ax
are all n'® roots of unity, n odd. Note that PerV(ai,...,ar) = DetV(ay,...,ax) + 24 =
[li<jcici(ai —a;) +2A, where A € Q, is an algebraic integer. Were PerV(a1,...,ax) =0 we
would have [, ; ;<4 (1—a;/a;) = 2B with an algebraic integer B € Q,,. The norm of the right
hand side in Q,, is divisible by Ng, /q(2) = 2#("). On the other hand, if a;/a; is a primitive m*"
root of unity for some divisor m of n, then Ng, /o(1—a;/a;) = (Ng,, /o(1 - a;/a;))?m/em) is

an odd integer, unless m = 1. Consequently, (a1, as,...,a)) cannot be a bad sequence, unless
there are indices 1 < j < ¢ < k with a; = a;. O
Problem 3.7. Is it true that, if A = (a1, az,...,ax) is a bad sequence in an abelian group G,

then there exists a subgroup H < G with |H| =k, a bad sequence A’ = (a, a5, ...,a}) in H,
and an element ¢ € G such that a; = a}, + ¢ for every 1 <i < k?

If true, it would settle down Snevily’s other conjectures mentioned in the introduction.
Indeed, assume that the answer is yes. Let first G be any abelian group of odd order which
contains a bad set A = {a1,...ax}. It follows that {a},...,a}} is a bad set in a k-element
subgroup H of G. That is, H itself is a bad set in H, a contradiction, since k is odd. Thus,
Snevily’s conjecture [83, Conjecture 3] follows. Next, let A = {ay,...ax} be a bad set in Z,,
n even. Then again, A’ = H is a bad set in H = Zj, which can only happen if % is even.

Moreover, A is a translate of A’ = H, implying [83, Conjecture 2] as well.
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3.2 Restricted Addition in Cyclic Groups of Prime Power
Order

In this section we prove that Statement 1.3 is valid in cyclic groups whose order is a power of
a prime p > k + ¢ — 3.

Theorem 3.8. Let A, B C Z/qZ, where ¢ = p® is a power of a prime p. Then

|A+B| > min{p, |A| + |B| — 3}.

Proof. We may clearly assume that |[A| =k > 2 and |[B| =¢ > 2. Since A’ D A and B’ O B
implies |A’+B’| > |A+B|, we also may assume that k+£—3 < p. Our proof will again depend
on the polynomial lemma.

Like in the previous section, we will use this lemma in a multiplicative setting. Let ¢ =
e2™/4 and consider the unique embedding ¢ : G — C* of G into the multiplicative group of
the field of complex numbers with the property (1) = e. Write C' = A+B and define

A={pla) |ac A}, B={p(b)"" |be B}, C={p(c)|ceC}.
Observe that for a € A and b € B,
a="b<= pla)pd)™t —1=0

and
a+b=c+=>pa) - p(c)p(b)~" =0.

Thus, if z € A and y € B, then either zy — 1 = 0, or there exists a ¢ € C such that z —cy = 0.
We wish to prove that |C| > k+¢— 3. Assume that on the contrary, |C| = |C| < k+£—4,
and choose any set C' C G, of cardinality k+ ¢ — 4, that contains C. Consider the polynomial
P € C[z,y] defined as
P(z,y) = (zy—1) [] (@ =),
ceC’
then P(x,y) = 0 for every x € A, Yy € B. Since the degree of P is clearly not greater than
k+ ¢ — 2, in view of Lemma 2.27, the desired contradiction comes from the fact that the
coefficient of the monomial z*~1y*~1 in P is different from 0.

To verify this fact, observe that writing ¢’/ = {c1,¢2y ..., Chyo—a}, this coefficient is
Coeﬂp(zk71y87l) - (71)272Q(Cla C2y ..y Ck+€74);

where Q(x1,2,...,Tr1¢_4) is the (£ —2)"? elementary symmetric polynomial in the variables

X1y, Thto—4. In particular, Q(c1,ca,. .., Ckre—a) is the sum of (k;{f;‘l) numbers, each of

which is a product of £ — 2 terms. These terms, each being equal to some ¢;, are all elements
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of p(G). Consequently, each of the (kﬁ;l) summands is an element of ¢(G), hence equals

some ¢'" root of unity. As p > k + ¢ — 4, the binomial coefficient (kﬁ;l) is not divisible by
p. Thus, it follows from Lemma 3.2 that Q(c1,co, ..., Ckte—a) cannot be zero. Accordingly,

coeffp(xF~1y*=1) # 0, which completes the proof of Theorem 3.8. O



Chapter 4

The Combinatorial
Nullstellensatz

In the present chapter we demonstrate the strength of the Combinatorial Nullstellensatz. A
relatively simple application will prove Theorem 2.12. This is done in the first section, whereas
the second section is devoted to the proof of the inverse theorem related to the Erdés—Heilbronn
problem (Theorem 2.14). Not only the main idea is more striking in this case, but also the
technical details are a lot more formidable. The same idea leads to a new proof of Theorem

2.3 whose difficulty is intermediate.

4.1 The Exceptional Case of the Erdés—Heilbronn Con-
jecture

Here we prove Theorem 2.12. Denote the field of characteristic p at issue by F'. If |A|+|B|—2 >
p, then there exist nonempty subsets A’ C A and B’ C B such that |A| + |B| — 2 = p and
A’ # B'. Since A'+B’ C A+B, it is enough to prove the theorem for the pair A’, B’. Thus
we may assume that p > |A| 4+ |B| — 2. The statement is obvious if p = 2, so we also assume
that p is an odd prime, or p = oo.

If A and B are arbitrary nonempty subsets of F' with p > |A| + |B| — 2, then |A+B| >
|A|+|B| —3. Indeed, if |A| # |B|, then in fact |A+B| > |A|+|B| —2 as it was proven by Alon,
Nathanson, and Ruzsa in [7], see Theorem 1 therein. Although it is formally stated only for
prime fields, the proof works in arbitrary fields, as they mention it at the end of the paper. If
|A| = |B| > 2, then this applied for the sets A and B’ = B\ {b} for any b € B gives

|A+B| > [A+B'| = |A| + |B'| - 2 = |A| + |B| - 3.

If one of the sets has only one element, then the statement is obvious. Accordingly, we only

have to prove the following ‘inverse’ version of Theorem 2.12.

32
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Theorem 4.1. Let A, B be subsets of a field F' of characteristic p > 2 such that |A| = |B| =
k>2andp>2k—1. If | A+B| =2k — 3, then A = B.

Assume that A = {aj,az,...,ar}, B={b1,bs,...,br}, and put
C = A+B = {01,62, .. .,Cgk_3}.

The polynomial f € F[z,y] defined as

2k—3

fay) =@-y) [[@+y—c)

i=1
has the property that f(a;,b;) =0 for any 1 <i,j <k.
In order to apply the Combinatorial Nullstellensatz (Theorem 2.26), we introduce the poly-

nomials i
g(z) = H(:c —a;) =2 —arF Tl f a2 — L (=) kg
i=1
and
k
h(y) =] —b:) =" = Bry* + By 2 — .+ (—1)F B,
i=1
where «; = 0;(A) and 8; = 0;(B) are the elementary symmetric functions of aj,as,...,ax

resp. by, ba,...,bg. In view of Theorem 2.26, there exist polynomials q,r € F[z,y| of degree
at most k — 2 such that

fla,y) = a(z,y)g(x) — r(y, 2)h(y). (4.1)
Writing
k—2 k—2
g(w,y) =D ai(w.y), rlzy) = rley) and fi(z,y) = (@ —y)z+y)",
1=0 1=0

where g;,7;, f; are homogeneous polynomials of degree i, with the additional notations v; =
0i(C) (1 <i<2k—3) and

g-1=gq2=7_1=7_2=0, ag=0F=v=1,

Eq. (4.1) implies the following equations of homogeneous polynomials of degree 2k — 2 — ¢ for

every integer 0 <t < k:

(=D fak-2-t(z,y) = Z(*l)t_j {oe—jap—2—j(, y)at =t (4.2)
=0

—Bt—jTk—2—5 (Y, $)yk_t+j}-

Finally writing

G@y) = 3 Awa'y®  and  ri(ay) = S By

utv=1 ut+v=1
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we find that the equations (4.2) encode certain relations between the coefficients A, Byy
and the numbers «;, 3;,v;. The careful study of these relations, after a technical elimination

process that we postpone until the next section, results in the following
Lemma 4.2. For every integer 1 <t <k, a; = B andu+v =k —2—1t implies Ayy = Byy-

Consequently, g(z) = h(z). It means that a1,as,...,ar and by, ba, ..., by are the roots of
the same polynomial of degree k, hence A = B as claimed. It only remains to prove Lemma
4.2.

Details I: Proof of Lemma 4.2
For 1 <i <2k -3, let

filmy)=@-y)@+y) = > Cus"y’

ut+v=1

Then C; 9 =1, Cp,; = —1, and in case u,v # 0 we have

1 —1 1 —1 2u—1(1—1
chvu<u—1>< U > U <u—1>'

Since ¢ < p, Cyy = 0 if and only if ¢ is even and u = v = i/2. Consider Cyy, + Cy—1 p41. If

,— 1 ,— 1
Ci,O“l‘Ci—l,l:l‘f'(l. )—(l )zi—l,
71— i —1

a nonzero element in F if ¢ > 1. Similarly in the case u =1,

u = 1, then it is

0111;1 + Co,i =1—1 7& 0.

In general, if 2 <wu <i—1, then

2u—1(1—1 2u—2—31—-1
Cuv+cu—1,v+1 = ( )""7( )

u u—1 u—1 u— 2
_ {2u—i i—u+1+2u—2—i} 1—1
N U u—1 u—1 u—2

- )

Claim 4.3. Ifi > 1, then Cyy + Cy—1,041 = 0 if and only if i —2v —1 =0.

Thus we proved:

We prove Lemma 4.2 by induction on ¢t. Note that if ¢ > k — 2, then by definition
u+v=Fk—2—timplies A, = By, = 0. For the initial step, ag = By = 1 by definition. Let
u+ v =k — 2. To see that A,, = By, consider Eq. (4.2) for t = 0. It reads as

Z C’Lﬂ}xuyv = Z Auvxu+kyv - Z Bu’l}yu-‘rk‘rv

utv=2k—2 utv=k—2 utv=k—2
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It follows that
Buv - *Cv,quk - Cquk,v - Auv- (43)

For complete induction, let 1 < ¢t < k, and suppose that Lemma 4.2 has been already
proved for smaller values of t. We start with the first statement. First we verify az = (; in
the case when ¢ is even, that is, t = 2s for some s > 1. Wehave k—1—s>k—1—(t—1) > 0.
Consider the coefficient of the term z¥~17%y*~17% in Eq. (4.2). On the left hand side this
coefficient is (—1)'y;Cx—1—sk—1—s = 0. In the polynomial gx_o_;(z,y)z* 17 the coefficient
of ak=1=syk=1=sig A 4, 1, if j < s—1 and 0 otherwise, whereas in r_o_;(y, z)y*~*+7,
the coefficient of the same term is Bs_1_j x—1—5 if j < s—1 and 0 otherwise. Thus Eq. (4.2)

implies
s—1

Z(*l)t_j{OétfjAs—kj,kfks - ﬂtijsflfj,kflfs} =0.

=0
Since (s—1—j)+(k—1—s)=k—2—jand s —1 < ¢, based on the induction hypothesis we
have As_1—jk—1—s = Bs—1—jk—1—s and az—; = f;—; for every 1 < j < s —1. The summation

can thus be reduced to the first term and we obtain
apAs 1 k—1-s — BeBs_1p-1-5 = 0.
Here (s — 1)+ (k—1—s) =k — 2, and in view of Eq. (4.3)
Asip1-s=Bs1pm1-s = Cs_14pk—1-5 # 0,

since s — 1+ k #k —1— s, given that s > 1. It follows that oy = ;.

If t is odd, that is, ¢ = 2s + 1 with some s > 0, then in Eq. (4.2) we consider the sum
of the coefficients of the terms x*~17%y*=2=% and zF=2-syk=1=s  (Note that k — 2 — s >
k—2—(t—2) >0, unless k = ¢ = 1, which is excluded by k > 2.) On the left hand side it is

(=194 (Cr—1—s k—2-5 + Cr—a—s k—1-5) = 0.

Therefore Eq. (4.2) implies

S

s—1
0 = Z(_l)t_jat—jAs—j,k—2—s+Z(—l)t_jat—jAs—1—j,k—1—s
=0

=0
s s—1

- Z(—l)t_Jﬁt—st—j,k—Q—s - Z(—l)t_Jﬁt—st—l—j,k—l—s-
j=0 7=0

Since (s —j)+(k—2—s)=(s—1—j)+(k—1—5s)=k—2—jand s < ¢, the induction
hypothesis once again allows us to reduce the above equation to
0 = (_1)tatAs,k—2—s + (_1)tatAs—1,k—1—s
_(_1)tﬁtBs,k—2—s - (_1)tﬁtBs—1,k—1—s-
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In view of Eq. (4.3) this equation can be rewritten as
(Oét - ﬁt)(cs-l-k,k—Q—s + Cs—l-l—k,k—l—s) =0.

Since (2k —2) —2(k—2—s) —1 =2s+ 1 =t is not zero in F, in view of Claim 4.3 it follows

that the second term is not zero, and we conclude that a; — 6 = 0, oy = .

It remains to verify the second statement of the lemma under the additional assumption
that the first statement has been already verified. Accordingly, we assume t < k —2, ay = [,
and let u +v = k — 2 —t. On the left hand side of Eq. (4.2), the coefficient of z%**y? is
(1)t Cuskp. FO<j <t thenv <k—2—t<k—t+7, thus in rp_o_;(y, 2)y* 7 the
coefficient of x“**y? is 0. Therefore on the right hand side of Eq. (4.2), the coefficient of
v tEyv is

t

S (Do A

j=0
Consequently, Eq. (4.2) implies

t
S A jruw = (1) %Cuih
§=0
Looking at the coefficient of z?y*+* the same way we obtain

t
- Z(_l)t_jﬁt—jBt—j-l-u,v = (_1)t7tcv,u+k-
§=0
Since Cy y+k = —Custk,v, it follows that

t

t
(71)t_Jat*jAt*j+u,v = Z(*l)t_Jﬂt—jBt—jJru,v-
=0 =0

J
Because (t —j+u) +v =k — 2 — j, the induction hypothesis implies A;_ .y, = Bi—ytj,o for
0 < j < t. We have furthermore assumed a;_; = f;_; for all 0 < j < ¢, therefore the above

equality can be reduced to
(D)t Artruw = (1) Bt Bi—ttu.o

Since ag = By = 1, we obtain Ay, = Bys.

4.2 Inverse Theorems

Now we are ready for more serious applications of the Combinatorial Nullstellensatz. First we
describe the main idea behind the proofs of Theorem 2.3 and Theorem 2.14. The complicated

technical details are worked in the subsequent subsections.
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The Main Idea

We start with the more interesting Theorem 2.14. The ‘if” part of the theorem being obvious,
we only focus on the proof of the reverse implication. The group Z/pZ can be embedded
into the additive group of any field F of characteristic p. In particular, if F is the algebraic
closure of the Galois field of order p, then every element of F has a square root in F. Therefore

Theorem 2.14 follows directly from the more general

Theorem 4.4. Given any integer k > 5, let p > 2k — 3 be a prime number and let F be any
field of characteristic p in which every element has a square root. Then every k-element subset

A of F satisfying |A+A| = 2k — 3 is an arithmetic progression in F.

Proof. Let us remark in advance that throughout most part of the proof we can work without
the assumption that every element of F has a square root in F; this condition is only needed
in the proof of Lemma 4.8.
We assume that
C=A+A={c1,ca,...,c06-3},

and the elements of A are a1, as,...,ar. We define the polynomial

fay=@-y[[@+ty-0o

ceC

and also an auxiliary polynomial

Notice that f (z,y) = 0 for arbitrary x,y € A. Thus once again we may apply the Combina-
torial Nullstellensatz (Theorem 2.26). Accordingly, there exist polynomials i/, " € F[z,y] of
degree at most k£ — 2 such that

Flxy) = (z,9)9(z) + " (z,1)9(y).

Since the polynomial f alternates we can write

f@y) =—fly,x) = -1 (y,2)9(y) — 1" (y,x)g(x)

to obtain that

f(z,y) = h(z,y)g(x) — h(y,v)g(y), (4.4)

where h(z,y) = (1/2)(F(x,y) — I (y,z)) is a polynomial of degree at most k — 2. Thus we

can write
k—2

h(xvy) - Z hi(xvy)a

=0
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where .
K3
hi(z,y) = Z Ajjady'=I.
i=0

We can also rewrite f (z,y) in the form

2k—3
flz,y) = Z (—=1)"Fip2k—2-i(7, ).
i=0
Here 7p = 1 and, for 1 < i < 2k — 3, 7; is the i*" elementary symmetric polynomial of
C1,C2,y...,C2k—3, while
pilz,y) = (@ —y)(x+y)" " =D Byaly',
j=0

where B;; = 1, Bi,O = —1, and otherwise

B“_(i—l)_(i—l)_Qj—i(i—l)_2j—i(i—1)
VRS j i -1 T \i-i)

If we also denote, for 0 < i < k, by 0; = 0;(A) the i*" elementary symmetric polynomial in
ai,as, ..., ak, after comparing coefficients we arrive at certain relations between the numbers
7;, the numbers o; and the coefficients Aij. To have an idea of what is going on, we refer to
[53] where all the calculations are carried out in the special case k = 5.

After a lengthy argument we obtain the following lemma whose proof we postpone until

the very end of this chapter.

Lemma 4.5. Given any integer k > 5, let p > 2k — 3 be a prime number and let F be any
field of characteristic p. There exist polynomials qs, qa, - - ., qr € Flx,y] whose coefficients only
depend on k and p with the following property. For every integer 3 < i < k, ¢;i(z,y?) is a
homogeneous polynomial of degree i in Flxz,y] such that, if A is any set of k distinct elements
of F satisfying |A+A| = 2k — 3, then

O'Z(A> = Qz(Ul (A), O'Q(A))

In view of this lemma we can conclude that the values of o1 and oy uniquely determine
those of 03,04, ...,0k, and in turn also the elements of A, since they are the k solutions of
the equation

g(2)=2F —01 2" F o0 - (~1)ko = 0.

This means that each k-element subset A of F for which |A+A| = 2k — 3 is uniquely
determined by some pair
(0'170'2> cF xF.

This is true in particular if A is a (non-constant) arithmetic progression of length k.
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Lemma 4.6. Let A= (a1,as,...,a;) be any arithmetic progression in a field F of character-

istic p > 2k — 3 > 7. Keeping the notation of Lemma 4.5, we have
0i(A) = gi(o1(A), 02(A))
for everyi=3,4,... k.

Proof. Note that if the arithmetic progression A is not constant, then |A+A| = 2k — 3 and
the assertion follows from Lemma 4.5. Fix the values of k and p. For any a,d € F, let A(a, d)

denote the arithmetic progression
a=a, a;=a+(—1)d (i=2,3,...,k).

For any arithmetic progression A in F there is a unique pair (a,d) € F x F such that A =
A(a,d). Note that, for 1 < i < k, there exist homogeneous polynomials r; € F[z,y] of degree
i such that

oi(A(a,d)) = ri(a,d).

Introducing the polynomial
7:1'(:67 y) = %‘(7"1 (ZL', y)v T2 (ZL', y))

for i = 3,4,...,k, we find that 7; € F[x,y] is again a homogeneous polynomial of degree i.

Moreover, it follows from Lemma 4.5 that
ri(a,d) = 0i(A(a, d)) = ¢i(01(A(a, d)), 02(A(a, d))) = 7i(a, d)

holds for every (a,d) € F x (F\ {0}). Recall the following simple lemma (see e.g. [2]).

Lemma 4.7. If f = f(x1,22,...,2) is a polynomial over a field F, whose degree as a
polynomial in x; is at most t; for 1 < i <k, and f(s1,82,...,58k) = 0 for all s1 € S1,s92 €
Sa,..., 8k €Sy where, for 1 <i <k, S; CF such that|S;| > t;, then f is the zero polynomial.

Noting that |F| —1>p—1 > k > i, we can conclude that r; = 7;. Consequently,
0 (A(aa d)) = ql (01 (A(aa d))a 02 (A(a’a d)))
holds for every a,d € F, and the assertion is proved. O

On the other hand, every pair (o1,02) € F x F determines a unique arithmetic progression:

Lemma 4.8. Let k > 3 be any integer and let F be a field of characteristic p > k+ 1 in
which every element has a square root. For every pair (c1,02) € F x F there is an arithmetic
progression A = (a1, as,...,a) such that 01(A) = o1 and o2(A) = o2. Moreover, this

progression is unique up to the reversal of the order of its elements.
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Proof. Let m be the unique element of F satisfying km = o1, that is, m = o1 /k. f k =20+ 1

is odd, then the arithmetic progression A = (a1, as,...,a) satisfies o1(A) = o7 if and only if
ap=m—Lldyjaa=m— (L —-1)d,...,ap41 =m,...,a, =m+{d

for some element d € F. As

k

¢
202 (A) = a1 (A)? — Za? =07 —km? —2d* ZiQ,
i=1

i=1
02(A) = o9 holds if and only if
9 k(¢4 1)
6
Note that char(F) > k + 1 > 3 guarantees that division by the numbers 2,3,¢, { + 1,k — 1,k

and k + 1 is possible in F. Similarly, if & = 2¢ is even, then the arithmetic progression

d*> = 0% — km? — 20,.

A = (a1,as,...,ax) satisfies 01(A) = o7 if and only if
a; =m— (20 —1)(d/2),aa =m — (20 — 3)(d/2),...,ar = m+ (20 — 1)(d/2)
for some element d € F. As in the previous case, o2(A) = o2 holds if and only if
km? +2(d/2)2(17 + 3%+ ... 4 (20 — 1)) = 67 — 205.

In each case, the arithmetic progression A satisfies the conditions if and only if

12

& = 20k — 1)(k+ 1) ((k

— 1)0’% — 2k0‘2).
Since by our assumption on F, every element of F has a square root, there is indeed an
arithmetic progression A that satisfies the two requirements. The uniqueness of A follows

from the fact that square roots in F are unique up to a multiplicative factor +1. O

Now it is straightforward to complete the proof of Theorem 4.4. Given the k-element
subset A of F with |[A+A| = 2k—3, Lemma 4.8 guarantees the existence of a k-term arithmetic
progression A such that o1(A) = 01(A) and 02(A) = 02(A). It follows from Lemmas 4.5 and
4.6 that 0;(A) = 0;(A) is valid for every 1 < i < k. Consequently, there is a bijection between
the elements of A and the terms of A, that is, the elements of A indeed form an arithmetic

progression. ([l

Turning to the proof of Theorem 2.3, note that if K = 1 or kK = 2, then A is a priori an arith-
metic progression. Similarly to the previous case, Theorem 2.3 is an immediate consequence
of

Theorem 4.9. Given any integer k > 3, let p > 2k — 1 be a prime number and let F be any
field of characteristic p in which every element has a square root. Then every k-element subset

A of F satisfying |A + Al = 2k — 1 is an arithmetic progression in F.
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Proof. Keeping the notations from the previous proof, the key lemma in this case is

Lemma 4.10. Given any integer k > 3, let p > 2k — 1 be a prime number and let F be any
field of characteristic p. There exist polynomials g3, qa, . .., qr € Flx,y] whose coefficients only
depend on k and p with the following property. For every integer 3 < i < k, q;(x,y?) is a
homogeneous polynomial of degree i in Flx,y] such that, if A is any set of k distinct elements

of F satisfying |A + A| = 2k — 1, then

O'Z(A) = Qi(gl (A), O'Q(A))

We will prove this lemma in the following subsection. Based on this lemma one only has

to mimic the proof of Lemma 4.6 to obtain

Lemma 4.11. Let A = (a1,as,...,ax) be any arithmetic progression in a field F of charac-

teristic p > 2k — 1 > 5. Keeping the notation of Lemma 4.10, we have
0i(A) = qi(01(A), 02(A))

for everyi=3,4,... k.

Now given the k-element subset A of F with |A + A| = 2k — 1, replacing Lemmas 4.5 and
4.6 by Lemmas 4.10 and 4.11, respectively, the proof of Theorem 4.9 can be completed along

the same lines as that of Theorem 4.4. It only remains to prove Lemma 4.10. O

Details II: Proof of Lemma 4.10

The proof of this lemma is very similar to that of Lemma 4.5, but technically it is considerably
more simple. Therefore we begin with the proof of this lemma and postpone the proof of the
more interesting Lemma 4.5 to the next subsection.

Again, let the elements of A be ay,as,...,a; and assume that
D=A+A= {dl,dg,...,kofl}.

Introduce the polynomial
fay) =[] @+y-a.
deD
This time we find that f(z,y) = 0 for arbitrary =,y € A. It follows from the Combinatorial
Nullstellensatz (Lemma 2.26) that there exist polynomials h', h" € F[x,y] of degree at most
k — 1 such that

flx,y) = h(x,y)g(x) +h"(z,y)9(y),
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where i
O | ()

is the same auxiliary polynomial as in the previous proof.

Since the polynomial f is symmetric we can write

fx,y) = fy,x) = W' (y, 2)g(y) + 1" (y,z)g(x)

to obtain that
f(x,y) = h(z,y)g(x) + h(y, )g(y), (4.5)

where h(x,y) = (1/2)(h'(z,y) + b (y,x)) is a polynomial of degree at most k — 1. Thus we

can write
k—1

h(xvy) = Z hi(xvy)a

1=

where )
1

hi(z,y) = Ajjaly'.
=0

We can also rewrite f(x,y) in the form

2k—1
flz,y) = Z (=)' Tip2rk—1-i(2, ).
i=0
Here 79 = 1 and, for 1 < i < 2k — 1, 7; is the " elementary symmetric polynomial of

dl,dg, N ,dgk_l, while

pi(z,y) = (z+y)" =Y Bialy'™,
=0

where this time B;; = (;) Now the coefficients A;_1; for 0 < ¢ < k — 1 can be easily
determined if one compares in Equation 4.5 the terms of degree 2k — 1. With our notations,
this equation implies

pak—1(2,y) = h—1(z, y)2* + b1 (y, 2)y",
from which we conclude that

2k —1
Ap_ ,L:B —1,% = A )
k—1, 2k—1,i+k (k/’—l—l)

which is a nonzero element of F for char(F) = p > 2k — 1.

Now we are ready to prove the following extension of Lemma 4.10.

Lemma 4.12. There exist polynomials ¢t (0 < ¢t < k) and ¢z (0 <t <k—-1,0<1i <
k—1—t) in Flz,y] whose coefficients only depend on k and p with the following property. The

polynomials q;(z,y?) and q;(z,y?) are homogeneous polynomials of degree t such that

Ut(A) = Qt(al(A)a Uz(A))
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and
Ak_1-t: = qri(01(A), 02(4)).

Proof. We prove this lemma by induction on ¢. The statement is clearly valid with ¢o = 1
2k—1
ki
already found for 0 < s <t — 1 and for all appropriate values of i. To prove the statement

and qo,; = ( ) Thus we may assume that 1 <t < k, and the polynomials g5, ¢s; have been
for ¢t we will compare in Equation 4.5 the terms of degree 2k — 1 —¢. That is, we consider the

following consequence of Equation 4.5:

(=)' epok—1-t(z,y)
t
(_1)t_jat—j (hk—l—j (:Ea y)xk_“_j + hk—l—j (ya x)yk_“_j) ) (46)
=0

where we use the convenient notation h_;(x,y) = 0, and as before, we write o; = 0;(A). First
we determine the polynomial ¢;. If ¢t = 1 or ¢ = 2, then ¢1(z,y) = z, resp. ¢(z,y) =y

will obviously have the desired properties. Next, if £ = 2s + 1 where s > 1, we compare the

coefficients of z*~5~1y*~5~1 in the above equation, and also that of z*~y*~5=2 to obtain
the relations
S
TeBok—1—tk—s—1 = 22(*1)J0t7j14k717j,sfj (4.7)
=0

and

s+1 s—1

TiBok—1—tk—s = Z(*l)jgtfjAkflfj,erlfj + Z(*l)]atfj/lkqu,squ-
=0 =0

Eliminating 74 from these equations we find that

2%k — 25 — 2\ @ ‘

7=0
2% —2s—2\ [, . s=1
- < k—s—1 >{Z(1)j‘7tﬁ4k1jﬂs+lj +Z(71)j0—t7j14k717j,5717j .
y =0 =0
It follows that
2% — 25 — 2\ [~ sl
< —s—1 ){Z 1 01— Ak—1—js1-5 + Z(fl)jatfjAkflfj,s—l—j -
J=1 Jj=1

2k — 25 — 2\ — ‘
2< k—s ) Z(7I)JUt*j‘leflﬂ',sfj = Yt0t,

=1
where

_ s 2k — 25 —2\ [2k —1 2k —2s —2 2k —1 . 2k —1
V= k—s k+s k—s—1 k+s+1 k+s—1 '
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To see that 7 is a nonzero element of F, we express it as

_ (2k—25-2 2k —1 5
"= k—s—1 k+s—1 b

where the binomial coefficients (2Z:§i_12) and (lff;ll) are nonzero elements of F due to the

assumption p > 2k — 1, as well as
k—s—1 k- k—s)(k—s—1
5 — g kms=1 k=s [H-sk-s-1
k—s k+s (k+s+1)(k+s)

2k —s—1(k+s+1)—(k—s)(k—s—1)—(k+s+1)(k+s)
(k+s+1)(k+s)

2(s+1)2+2s(s+1)
k+s+1)(k+s)
2(s+ 1)t
(k+s+1)(k+s)

Since s + 1 < t, it follows from the induction hypothesis that
Ap—1-js—j = Qjs—j(o1,02) for 1<j<s,

Ap—1—jst1—j = Qj,s41—j(01,02) for 1<j<s+1,
Ap—1—js—1-j = @j,s—1—j(01,02) for 1<j<s—1,

whereas

or—j = qi—j(o1,00) for 1<j<s+1,

and that (gi—;qj.—;) (2, ¥?), (q—jqj.s11-5)(@,¥?), (@—;4j.s—1-5)(x,y*) are homogeneous poly-
nomials of degree ¢, for all relevant values of j. Therefore the polynomial

s+1 s—1 s
N OISR YRR wEH)]
j=1 j=1 j=1

where
2k —2s — 2 , 2k — 25 —2
i\ g JUiBsti=i T T\ g JTt-i%s-1-d

” 2k — 25— 2
Ty = E—s qt—j9j,5—j

will certainly satisfy all the requirements.

and

A similar procedure can be taken also if ¢ = 2s for some integer s > 2. It is done by

comparing the coefficients of x*~*y¥=5~1 and also that of zF¥~s*t1yk=5=2 in Equation 4.6.
This leads to the relations
s s—1
TeBok 1 ¢ ks = Z(_l)jat—jAk—l—j,s—j + Z(_l)jgt—jAk—l—j,s—l—j (4.8)

Jj=0 Jj=0
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and
s+1 s—2
TeBog—1—t k—st1 = g (=1 o jAp—1—jsy1—5 + E (=1 o4 jAp_1—js—2—j.
=0 =0

After eliminating 7y from these equations and rearranging the terms we find that

2%k — 25— 1\ [SX . =
Mot = < b s ) {Z(l)]gtjAklj,erlj + Z(l)jat]’Aklj,s2j}

J=1 J=1

2k — 25 — 1\ | < : =
< E—s+1 >{Z(1)j0tjx4k1j,sj +Z(1)J0tj14k1j,s1j},

j=1 j=1

where this time

- 2k —2s—1 2k -1 + 2k -1
= k—s+1 k+s k+s—1

_ 2k —2s—1 2k —1 " 2k -1

k—s k+s+1 k+s—2/) [

Again we want to prove that v is a nonzero element of F, so we write
 (2k—-2s5-1 2k —1 5
= k—s k+s—2)"

where the binomial coefficients (Qk;i_l) and (sz;lz) are nonzero elements of F due to the

assumption p > 2k — 1, and so is

E—s+1|(k+s)(k+s—1) k+s—1

(k—s+1)(k—s)(k—s—1)
{(k+s+1)(k+s)(k+s_1)“}
(k—s—1)(k—s)k+s+1)+(k—s—1)(k+s)(k+s+1)
(k+s+1)(k+s)(k+s—1)
(k—s+1D)(k—s)(k—s—1)+(k+s+1)(k+s)(k+s—1)
(k+s+1)(k+s)(k+s—1)
2k(k? — (s +1)?)
(k+s+1)(k+s)(k+s—1)
2k3 + 2k(s(s+ 1) +s(s— 1)+ (s +1)(s — 1))
a (k+s+1)(k+s)(k+s—1)
2k(2s)(2s + 1)
C(k+s+)(k+s)(k+s—1)
2kt(t +1)
C(k+s+D)k+s)k+s—1)

N ksl{(ks+1)(k5)+ks+1}




46 CHAPTER 4. THE COMBINATORIAL NULLSTELLENSATZ

Therefore we may introduce the polynomial

a1 s—2 S s—1
@ =" (ZU)% + 21 = D (1) - Z(l)ﬂ'r;"),

j=1 j=1 j=1

where, referring only to polynomials ¢;, g;; we have already defined,

2%k — 25— 1 , 2k — 25— 1
Ty = k—s Qt—j95,s+1—5, T = E—s qt—jdj,5—2-3

and

L (2k—2s—1 o (2k—2s—1
P — e M —
J k—s+1 U—jdjs=3> 7 k—s+1

According to the induction hypothesis, g;(z,%?) is a homogeneous polynomial of degree ¢, and

)Qt—ij,s—1—j-

oy = qi(01,02).
Now we are in the position to define the polynomials ¢;;, assuming also that t < k. We

start with an intermediate result about the number 7.

Lemma 4.13. There exists a polynomial qf € Flx,y] whose coefficients only depend on k and

p, such that g (z,y?) is a homogeneous polynomial of degree t with the property

Tt = q; (01,02).

Proof. If t =2s+ 1, s > 0, then we can use Equation 4.7 to find that the polynomial

2% —2s —2\ 1 < :
* WV car .
qr = 2( Eos—1 ) Z( 1) qt—54;5,5—j
7=0
will have the desired properties. Similarly, in the case when ¢ = 2s, s > 1, it follows from
Equation 4.8 that

2% —25s—1\ [ , =, .
g = ( b ) {Z(_l)JQt—jQJ‘,s—j +Z(—1)th—qu‘,s—1—j}
=0

Jj=0

is an appropriate polynomial. [l

Returning to the polynomials g, to express the coefficients Ag_1_¢p—1-¢—; (0 < ¢ <

k —t — 1) in the desired form we compare the coefficients of 2?*~1=~iy? in Equation 4.6.

Since 2k —1—t—i>k—t+j for every 0 < j <t, whereasi < k —t+ j for every 0 < j <,

we obtain that
t

TtB2k—1—t,2k—1—t—i = E (—1)J0t—jf4k—1—j,k—1—j—ia
j=0
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which implies that

2% —1—t =l
Ap1tk1-t—i = (=1)'n <2k: 1t l> - jzo(*1)t7]0't7jAk717j7k717j*i.

Given that ¢ < k, our induction hypothesis, the already proved properties of ¢; and Lemma
4.13 imply that, for every 0 < ¢ < k —t — 1, the polynomial

t—1

2% —1—t »

Gt h-1-t—i = (=1)' (% L Z) G = (D" g5 h1-
=0

is such that g; x—1-+—;(z,y?) is homogeneous of degree ¢ and

Ap—1—th—1—t—i = Qt.k—1—-t—i(01,02).

This completes the proof of the induction step and also that of Lemma 4.10. O

Details III: Proof of Lemma 4.5

We intend to carry the proof of Lemma 4.10 through as far as it is possible. Note first of all,
that although BZ—]— =0 for i = 27, in the case i/2 < j <i < 2k — 2 we have that

. 2] —ifi—1
B;; = j.Z<Z._.>
J t=J

is a nonzero element of F for char(F) = p > 2k — 3 implies char(F) > 2k — 1 > max{2j —
i,7,4—1}.
Collecting the terms of degree 2k — 2 in Equation 4.4 results in the polynomial equation

p2k—2($a y) = hk—Q(‘T’ y)xk - hk—Q(ya x)yk-

Looking at the coefficient of 2**%y*=%=2 on each side we find that
. . 20+2( 2k—3
Ap_ i = Bop_ i = . .
k—2, 2k—2,k+ k+z<k—z—2>
is a nonzero element of F for ¢ =0,1,...,k — 2.

The analogue of Lemma 4.12, which is a direct extension of the lemma we are about to

prove is the following

Lemma 4.14. There exist polynomials ¢ (0 < ¢t < k) and ¢ (0 <t <k—2,0<1i<
k—2—t) in Flz,y] whose coefficients only depend on k and p with the following property. The

polynomials ¢;(z,y?) and G;(z,y?) are homogeneous polynomials of degree t such that
ot(A) = Gi(01(A), 02(A))

and
Ap_o v = qri(o1(A), 02(A)).
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Proof. We prove this lemma by induction on ¢t. The statement is clearly valid with ¢y = 1

2142 ( 2k—3
k+i \k—i—2

have been already found for 0 < s < ¢ — 1 and for all appropriate values of <. To prove the

and qo; = ) Thus we may assume that 1 < ¢ < k, and the polynomials gs, gs;
statement for ¢ we will compare in Equation 4.4 the terms of degree 2k — 2 — t. That is, we

consider the following consequence of Equation 4.4:

(=)' Fepok—2—t(z,y)
¢

=> ()"0 (hk—Q—j (2, )"~ — hy_a_j(y, w)yk7t+j)a (4.9)
=0

where we conveniently rely on the notation i_y(z,y) = h_a(x,y) = 0, and also o; = 0;(A).
Again, the main difficulty is to define the polynomial ¢;, whereas the polynomials ¢;; that

we only need for the purpose of induction can be easily constructed afterwards. If t = 1 or

t = 2, then ¢1(x,y) = x, resp. ¢a(x,y) = y have the desired properties. Next we try to

determine ¢; in the case when ¢t = 2s+ 1, s > 1. For this end we compare the coefficients of

aF =571y =5=2 resp. aF5yF=5=3 in Equation 4.9 to obtain the relations
s s—1
TeBog_o ¢ p—s—1 = Z(*l)jgtfjAkafj,sfj — Z(*l)]gtfjAk72fj,sflfj (4.10)
j=0 j=0
and
s+1 ) s—2 _
TtBok—2—th—s = Z(_l)jat—jAk—2—j,s+1—j - Z(_l)]at—jAk—Q—j,s—2—j- (4.11)
Jj=0 j=0

After eliminating 7y from these equations and rearranging the terms we find that

s+1 s—2
Yiop = BQk—2—t,k—s—1{Z(_l)JUt—jAk—Q—j,s-i-l—j - Z(_l)JUt—jAk—Q—j,s—2—j}

j=1 j=1

s s—1
B2k2t,ks{2(1)j0t]’Ak2j,sj - Z(l)jatjAkzj,slj},
j=1 j=1
where
4 = Bopo tps(Aros—Ap 2. 1)— Bopo s 1(Aros1 — Ar_os2)
3 (2k—t—3){t+1(2k—3)_ t—1 (2k—3)}
k—s\k—s—1 k+s\k—s—2 k4+s—1\k—s—1

B 1 2k —t—3 t+3 2k —3 B t—3 2k —3
k—s—1\k—s5—-2 k+s+1\k—s5—3 k+s—2\k—s '

We should mention that in the case s = 1 the term Ak,275,2 is meaningless and in fact does

not occur in the above expression for ;. Nevertheless, the final formula is valid even in this
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t—3 (2k—3
k+s—2\ k—s

_(2k—t=3\( 2k=3\;
M=\ kes—2)\k—s—3)%

where the binomial coefficients (2kk__:__23) and (k2_ks__‘°’3) are nonzero elements of F due to the

case, since s = 1 implies that ) = 0. In an attempt to prove that 4; # 0 we express

it as

assumption p > 2k — 3, whereas

i - 3 k—s—-2ft+1 k+s t—1 (k+s)(k+s—1)
b k=5 k—s—1|k+s k—s—2 k+s—1 (k—s—1)(k—s—2)
1 t+3 t—3 (k+s)(k+s—1)(k+s—2)
T k—s—1\k+s+1 k+s—2 (k—s)(k—s—1)(k—s—2)
1 1 .
T ks 1 (ktstDk-9)k-s_1Dk-s—2) P
where (k—s—1)(k+s+1)(k—s)(k—s—1)(k—s—2) #0 and
¢ = 3t+D)(k+s+1)(k—s—1)(k—s—2)

3Bt—-1)(k+s+1)(k+s)(k—s—2)

—(t+3)(k—s)(k—s—1)(k—s—2)

+(t—=3)k+s+1)(k+s)(k+s—1)
= dt(s+ 1){3k (28 +4s+ 3)}.

We can conclude that 4 is a nonzero element of F if and only if 3k — (2s® + 4s+3) # 0 in F.
This is indeed the case when s = 1 for then 3k — (252 +4s+3) = 3(k — 3) # 0, and also when
s = 2 and k = 5. Unfortunately it is not the case in general, thus we cannot really proceed

along the lines of the previous proof. However, if s > 2 and k& > 5, then £k — s — 4 > 0 and we

may compare the coefficients of xk_s"’lyk_s_‘l in Equation 4.9 to obtain a new relation
s+2 s—3
TtBok—o—t k—st1 = Z(*l)]gtfjAkufj,erij - Z(*l)]gtfjAkf2fj,sfoj- (4.12)
Jj=0 7=0

Now we can eliminate 7 from Equations 4.11 and 4.12 to get

s+1 s—2
Y10t = Bog—2—t k—s+1 {Z(_l)JUt—jAk—Q—j,s-i-l—j - Z(_l)]at—jAk—2—j,s—2—j}

j=1 j=1

s+2 s—3
—Bop—2—t k—s {Z(—l)j Ot—jAp—o—jsta—j — Z(_l)jat—jAk—2—j,s—3—j } ,

j=1 j=1

where

Y = Bok—o_k—s(Ak—2s+2 — Ak—25-3) — Bok—2—t k—s+1(Ak—2,5641 — Ap—2,s-2)
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B 3 2k —t—3 t+5 2k — 3 _t=5 2k — 3
k—s\k—s—1 k+s+2\k—s—4 k+s—3\k—s+1
B 5 2k—t—3 t+3 2k —3 _ t—3 2k —3
k—s+1 k—s k+s+1\k—s5—3 k+s—2\k—s ’

Again, if s = 2, then the term Ak_27s_3 is meaningless, but the final formula is nevertheless

correct for ¢ — 5 = 0 in this case. Therefore we can write

g (2k—t—=3 2k—3 \
%_(ksl k—s—4 Ot

where the binomial coefficients (Qkk:;:f’) and (;f;i) are nonzero elements of ' due to the

assumption p > 2k — 3, whereas

i o_ 3 t+5
b k—s|k+s+2
_t=5 (k+s+)(k+s)(k+s—1)(k+s—2)(k+s—3)
k+s—3 (k—=s+1)(k—s)(k—s—1)(k—s—2)(k—s—3)
B 5 k—s—3 t+3 k+s+1
k—s+1 k—s k+s+1 k—s5-3

t—3 k+s+D(k+s)k+s—1)(k+s—2)
T k+s—2 (k—s)k—s—Dk—-s—2)k—s—3) [

That is,

1 .
kts+2)k—s+t1)(k—s2(k—s—1)(k—s—2)(k—s5—3)

j =
where (k +s+2)(k—s+1)(k—s)?(k—s—1)(k—s—2)(k—s—3) # 0 and

¢ = 3t+5)(k—s+1)(k—s)(k—s—1)(k—s—2)(k—s—3)
—3t—-5)k+s+2)(k+s+1)(k+s)(k+s—1)(k+s—2)
5t +3)k+s+2)(k—s)(k—s—1)(k—s—2)(k—s—3)
45t —3)k+s+2)(k+s+ 1) (k+s)(k+s—1)(k—s—3)
- 8t(s+1){15k3—(105 4205 4 30)k2 + (2552 + 505 + 15)k —

(251 + 853 + 1752 + 185)}.
Thus we can conclude that 4; is a nonzero element of F if and only if the integer
15k% — (10s* 4 20s + 30)k* 4 (255% + 50s + 15)k — (2s* + 8s® + 17s% + 18s)

is not divisible by p.



4.2. INVERSE THEOREMS o1

Now we can prove that either 4; or 4, is a nonzero element of F. Were it not the case, the
prime p would divide the integers 3k — (25 + 4s + 3) and

15k — (10s* 4 20s + 30)k* + (255 + 50s + 15)k — (2s* + 8s® 4+ 17s% + 18s).
Thus in turn, by the division algorithm p would also divide the integers
—15k? + (258% 4 50s + 15)k — (25* 4 85 + 175 + 185),

(155% + 30s)k — (25* + 85® 4+ 175 + 18s),

and finally also the integer
5s(s +2)(28% + 45 +3) — (25" + 85> + 1757 + 185) = 2s(5 + 2)(25 + 1)(25 + 3)

which is absurd since 2s +3 =¢t+2 <2k -3 < p.
Accordingly, if 4¢ # 0 (this is the case if, for example s = 1, or s = 2 and k = 5) we can

define the polynomial ¢; as

s+1 s—2 s
Gt =%‘1<Z(—1)j¢j (-1, —Z r”—l—z "'>

j=1 j=1

where

' 1 2k —t—3 y 1 2k—t-3
N s s\ ks o JlmiGienie T = gy L g g JBmitie2ei
» 3 <2kt3

r, = 7;///7 3 2k—t—3
I T k—s\k—-s5—1 Q=i js—is 7 T Ek_s\Ek_s5—1 dt—jGj,s—1—j-

Note that since s +1 < t and also s +1 < k — 2, all the polynomials ¢;, §;; that occur in the

and

above expressions have been already defined.

On the other hand, if s > 2, k > 5 and 4; # 0, then we can define the polynomial ¢; as

s+1 s—2 +2 s—3
G = (31)7" (Z(l)ffj(.‘” =S (=1 Z Y7 ¥ + Z(l)ﬂfj(.?)),

j=1 j=1 j=1 j=1
where
J(4) _ 5 Qkftf .
T k—s+1 Gt—jdj,s+1—5>
M) _ 5 Qkftf p
J k_s+1 t]q]52j5
NON 3 2k —t—3
i Tk _s\k_s_1 Gi— ]Q]erQ]
and

(7) 3 2k —t—3
r =
J k—s

b s 1)%;'(1;',53;'-
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Again, all the polynomials ¢;, ¢;; that occur in the above expressions have been already defined,
as in this case clearly s+ 2 < t and also s+ 2 < k — 2. According to the induction hypothesis,
in each case ¢;(z,y?) is a homogeneous polynomial of degree t, and o; = G;(o1,02).

We still have to determine the polynomial ¢; in the case when t = 2s, s > 2. Comparing

in Equation 4.9 the coefficients of 2*~*~1y*~5~1 would yield the trivial equation 0 = 0, there-

fore we rather proceed on with comparing the coefficients of 2*~5y¥=5=2 and gk—s+lyk—s=3

respectively. Thus we obtain the relations

s s—2
Tt Bok—o_t ks = Z(*l)jgtfjAk72fj,sfj — Z(*l)jgtfjAk72fj,5727j (4.13)
§=0 §=0
and
] s+1 . . s—3 ) )
TtBok—o_t k—st1 = Z(*l)jgtfjAk72fj,s+1fj — Z(*l)]gtfjAk72fj,5737j- (4.14)
Jj=0 7=0

After eliminating 7¢ from these equations and rearranging the terms we find that

s s—2
Yiop = sz2t,ks+1{2(1)j0tjAk2j,sj - Z(l)jUtjAkzj,szj}

j=1 j=1

s+1 s—3
—Bok—2—t,k—s {Z(_l)jat—jAk—2—j,s+1—j - Z(_l)jat—jAk—2—j,s—3—j },

j=1 j=1

where

Y = Bop—o—ts—s(Ar—2s+1 — Ap—2,5-3) — Bok—a—sh—st1(Ak—2,s — Ar—25-2)
_ 2 2k —t—3 t+4 2k — 3 _ t—4 2k —3
T o k—s\k—s—-1 k+s+1\k—s—3 k+s—3\k—s+1
_ 4 2k—t—3 t+2 2k — 3 _ t—2 2k —3
k—s—+1 k—s k+s\k—s5—2 k+s—2\k—s '

Again, the formula is valid even in the case of s = 2, because then t — 4 = 0. We further

_(2R—t=3\( 2%-3 )\,
M=\ k—s—1)\k—s—3)%

where the binomial coefficients (2;_7;:13) and (,f_k;_33) are nonzero elements of ' due to the

express 7y as

assumption p > 2k — 3, whereas

5 - 2 t+4 B
T ok—s k+s+1

t—4 (k+s)(k+sl)(k+52)(k+53)}

k+s—-3 (k—s+1)(k—s)(k—s—1)(k—s—2)
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4 k—s—2|t+2 k+s _
k—s+1 k—s k+s k—s—2

t—2  (k+s)(k+s—1)(k+s—2)
T k+s—2 (k—-s)(k—-s—-Dk—-s—2)(

That is,
oy =

@+5+U@75+U%—sﬁ%fsfn%—sf%.Q

where (k +s+1)(k—s+1)(k—s)?(k—s—1)(k—s—2) #0 and
¢ = (t+4)k—s+D)(k—s)k—s—1)(k—s—2)
—(t—-4dk+s+1)(k+s)(k+s—1)k+s—2)
2t 2kt s+ 1)k —s)(k—s—1)(k—s—2)
42t —2)(k+s+1)(k+8)(k+s—1)(k—s—2)
= 4t + 1) {3k% - (257 + 25+ 3)k + (252 +2s)}

= 4tt+1)(k— ){ (252+25)}.

We can conclude that 4; is a nonzero element of I if and only if 3k — (2524 2s) # 0 in F. This
is indeed the case when s = 2 for then 3k — (2s% + 2s) = 3(k — 4) # 0, and also when s = 3
and k = 6; but not in general. However, if s > 3 and k£ > 6, then £k — s — 4 > 0 and we may

compare the coefficients of 2¥~5+2yk=5=4 in Equation 4.9 to obtain a new relation

542 s—4
TtBok—o—t k—st2 = Z(*l)]gtfjAk72fj,s+27j = (1o jAp—o—js—a—j. (4.15)
Jj=0 7=0

Now we can eliminate 7; from Equations 4.14 and 4.15 to get that

s+1 s—3

, ) . . : .

Y10t = Bog—2—t k—s+2 E (=1 o jAr—2jsy1-j — g (=1)Y 01 jAr—2-js—3j
j=1 j=1
s+2 s—4

—Bok—2—t k—s+1 g (1) or—jAp—2—jsta—j — g (=1 01— jAp—2—js—a—j ¢,
=1 i=1
where
, ) . .
4y = Bok—o—ik—st1(Ak—2s42 — Ak—2.5-4)

—Bog—o—t k—st2(Ar—2,641 — Ax—2,s-3)

B 4 2k —t—3 t+6 2k —3 B t—06 2k —3
 k—s+1 k—s k+s+2\k—s—4 k+s—4\k—s+2

6 2k —t—3 t+4 2k —3 t—4 2k —3
k—s+2\k—s5+1 k+s+1\k—s5—3 k+s—3\k—s+1 '
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Note that the formula is valid even in the case of s = 3, because then t — 6 = 0. We further

g (2k—=t-3 2k—3 1\,
%_( k—s k—s—4 %

where the binomial coefficients (2k_t_3) and ( k=3 ) are nonzero elements of ', whereas

express ¥, as

k—s k—s—4
i - 4 t+6  t—6
b k—s+1k+s+2 kt+s—4
(kt+s+D)(k+s)k+s—1)(k+s—2)(k+s—3)(k+s5—4)
(k—s+2)(k—s+1)(k—s)k—s—1)k—s—2)(k—s—3)
6 k—s—3 t+4 kE+s+1
k—s+2 k—s+1|k+s+1 k—5-3
t—4 (k+s+)(k+s)(k+s—1)(k+s—2)(k+s—3)
k+s—3 (k—s+1)(k—s)(k—s—1)(k—s—2)(k—s—3) [
That is,
: 2
i = 4

k+s+2)(k—s+2)(k—s+1D)2(k—s)(k—s—1)(k—s—2)(k—s—3)
where (k +s+2)(k—s+2)(k—s+1)%(k—s)(k—s—1)(k—s—2)(k—s—3)#0 and

¢ = 2t+6)(k—s+2)(k—s+1)(k—s)(k—s—1)(k—s—2)(k—s—3)
2t —-6)(k+s+2)(k+s+1)(k+s)(k+s—1)(k+s5s—2)(k+s—3)
“3t+4)(k+s+2)(k—s+1)(k—s)(k—s—1)(k—s—2)(k—s—3)

+3(t—4)k+s+2)(k+s+1)(k+s)(k+s—1)(k+s—2)(k—s5—3)
= tk=5s+9Nk+s+2)(k+s+1)(k+s)k+s—1)(k+s—2)
—t(k+5s+14)(k—s+1)(k—s)(k—s—1)(k—s—2)(k—s—3)
= 4t(t+ 1){15/<;4 — (108 + 105 + 30)k” + (455 + 455 — 15)k* —
— (68 + 1253 + 2957 4 235 — 30)k + (65" + 125> — 652 — 125)}
= 4dt(t+1)(k— 1){15k3 — (108 + 105 + 15)k* + (355 + 355 — 30)k —
—(6s* + 125 — 6% — 125)}.
Thus we can conclude that 4; is a nonzero element of F if and only if the integer
15k — (10s% 4 10s + 15)k* + (355 + 355 — 30)k — (65 + 125 — 65% — 125)

is not divisible by p.
Now we can prove that either 4; or 4 is a nonzero element of F. Were it not the case, the

prime p would divide the integers M = 3k — (2s% + 2s) and

15k% — (10s% 4 105 + 15)k* 4 (355> 4 355 — 30)k — (65" + 125® — 657 — 125).
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Consequently, p would also divide the integers
—15k% 4 (35s5% 4 355 — 30)k — (65" + 125® — 657 — 125),

= (2557 + 255 — 30)k — (65 + 125® — 65 — 125),

and finally also the integer

3N — (2552 + 255 — 30)M 25(s + 1){(2552 + 255 —30) — 9(s — 1)(s + 2)}

8s(s+1)(2s —1)(2s + 3),

which is absurd since 2s +3 =t +3 < 2k — 3 < p.
Accordingly, if 4¢ # 0 (this is the case if, for example s = 2, or s = 3 and k = 6) we can
define the polynomial ¢; as

s s—2 s+1 -3
'W(Z(WMZ(N%Z Z ”)

Jj=1 Jj=1 Jj=1

where

_— 4 2k—t—3 g 4 2k—t—3
rjik:—s—l—l k_s Gt — J%s Js rjik:—s—i—l k— s Gt— qusgj

a2 (2k—t-3\. . w2 (2k—t—3\. |
L R o AN Bl W L LR SR

Note that since s +1 < ¢ and also s + 1 < k — 2, all the polynomials ¢;, ¢;; that occur in the

and

above expressions have been already defined.

On the other hand, if s > 3, k > 6 and 4; # 0, then we can define the polynomial ¢; as

s+1 s—3 5+2 s—4
QFWW(Z@W&— ew&—Z@w&+Z@w&)
j=1

j=1 j=1 j=1
where
SO _ 2k—t—-3\. .
" — s+ k—s+2\k—s +1 Q=39 s+1-7>
A5 _ 2k —t — . ‘
7 7S+2 k75+1 qt—545,5—3—3,
.(6) 2k—t—3\. .
T — +1 b Gt—jGj,s+2—;
and
.(7) 4 2k —t — 3\ . .
BRI ks )il

Again, all the polynomials ¢;, ¢;; that occur in the above expressions have been already
defined, as in this case clearly s + 2 < ¢t and also s + 2 < k — 2. According to the induction

hypothesis, in each case ¢ (z, y?) is a homogeneous polynomial of degree ¢, and o = ¢;(01, 02).
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Having thus found the polynomial ¢;, we proceed on with the definition of the polynomials
q+i, under the additional assumption that ¢ < k — 2. First we need the following analogue of
Lemma 4.13.

Lemma 4.15. There exists a polynomial §; € Flx,y] whose coefficients only depend on k and

p, such that ¢ (z,y?) is a homogeneous polynomial of degree t with the property

7.—t = qz(o—laO—Q)-

Proof. If t =2s+ 1, s > 0, then we can use Equation 4.10 to find that the polynomial

2k —t -3\ [ =
g =(k—s-1) ( b s 2) {Z(—l)JCJt—jdj,s—j = Z(—l)JCJt—jdj,s—1_j}
=0 =0

will have the desired properties. Similarly, in the case when t = 2s, s > 1, it follows from
Equation 4.13 that

G ks 12kt -3\ . =2
4 = 4 < k—s > {Z(l)JQtjqjvsj - Z(fl)JQtquj,sf2fj
J=0 j=0
is an appropriate polynomial. n

Returning to the polynomials ¢:;, to express the coefficients Ak_g_t,k_g_t_i 0<i<

2k—2—t—z‘yi in Equation 4.9.

k —t — 2) in the desired form we compare the coefficients of x
Since 2k —2—t—i1>k>k—t+jforevery 0 <j <t whereasi: < k—-—2—-t<k—t+j for
every 0 < 7 < t, we obtain that

t

7.'tB2k—2—t,2k—2—t—i = E (—1)J0t—jf4k—2—j,k—2—j—ia
j=0

which implies that

Ak72ft,k72ft7i = (-1

T ok—2_t—;

L 2k2t2z‘<2k3t>
i

t—1
s .
> D)o jAp o ko
i=0

Given that t < k—2, our induction hypothesis, the already proved properties of ¢; and Lemma
4.15 imply that, for every 0 < i < k —t — 2, the polynomial

t2k2t21‘<2k3t> =

Gt k—2—t—i = (—1) T G =Y ()" ik

Jj=0

)
is such that ¢; x—2—¢—:(z,y?) is homogeneous of degree ¢t and

Ap—2—tk—2—t—i = qt.k—2-1—i(01,02).

This completes the proof of the inductional step and also that of Lemma 4.5. |



Chapter 5

The Method of Group
Extensions

In the first two sections of the present chapter we extend the Dias da Silva—Hamidoune theorem
and our corresponding inverse theorem to arbitrary abelian groups. The third section con-
cerns general finite groups; we prove the noncommutative analogues of the Cauchy—Davenport

theorem and Vosper’s inverse theorem.

5.1 The Erdos—Heilbronn Problem in Abelian Groups

First we show that Theorem 2.11 is sharp. Assume that p(G) is finite and p(G)/2+1 < k <
p(G). Let P be a subgroup of G with |P| = p(G) and assume that P = (g). If

A:{ngvzgv)(kil)g}a

then clearly A+A = P, indicating that the bound is tight.

Turning to the proof, we note that, since dealing with a finite problem, we may assume
that G is finitely generated. We have already seen that the result is valid if G = Z (Statement
1.5), and also when G is a cyclic group of prime power order (Section 3.2). In view of the
structure theorem of finitely generated abelian groups, it only remains to prove that if the
statement of Theorem 2.11 is true for two abelian groups G' and G2, then it is also valid for
their direct sum G' @ G2. Accordingly, suppose that we have already proved Theorem 2.11
for the abelian groups G and G2. Let

G=G'©G?*={(g,h) | g€ G*,h € G?},
where addition in G is defined by

(g,h)+ (¢, h)=(g+g ,h+ 1)

o7
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Note that p(G*) > p(G) for i = 1,2. For a set X C G write
X! ={g € G" | there exists h € G with (g,h) € X}.

We define X2 in a similar way. An immediate consequence of this definition is the following

statement.

Proposition 5.1. For arbitrary X,Y C G we have (X \ Y)! O X1\ Y1 and X'+ X! C
(X4+X)cx+ X1

We have to prove that |A+A| > min{p(G), 2k — 3} holds for every A C G with |A| = k.
This is easy to check if p(G) = 2, and we may assume that 2k — 3 < p(G) otherwise. Then

2|A" -3 <2k -3 < p(G) < p(G*)
for i =1,2. Write A = Ao UC, where C =Cy U...UC,
Ao ={(ai,b;) 1 <i<s}, C;={(ci,diz) |1 <5< ki}

for 1 <i<tsuchthat 2 <k; <ks <...<ks and aq,...,as,c1,...,c are pairwise different
elements of G'. Note that k = s + k; + ... + k;. The following easy lemma will be used
frequently throughout the proof.

Lemma 5.2. For1 < a,08 <t, a # [ we have
|Co+Co| > 2ko — 3

and
|Cajng| > ko +ksg—1.

Proof. Since |Co+Cy| = |C%24C2| and
2|C2| — 3 = 2k — 3 < 2k — 3 < p(G) < p(G?),
the first estimate follows directly from our hypothesis on G2. On the other hand we have
|Cal +1C3l =1 =ka + kg — 1 < 2k =5 < p(G) < p(G?),
and thus Theorem 1.1, applied to G2, immediately implies

|Co+Cp| = |C2 + C’§| > ko + kg — 1.
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Turning back to the proof of the estimate |A+A| > 2k — 3, assume first that t = 0. In this
case |A}| = s = k and
|A+A| > |AF+AS| > 2k — 3

based on our assumption on the group G'.

Assume next that ¢t > 4. Consider the ¢ numbers ¢; + ¢, € G! for 1 < ¢ < t. Based on
the hypothesis on G! we have |C'+C1| > 2t —3 >t + 1, and thus there exist indices a # 3
different from ¢ such that c, + cg € G! differs from each number ¢; + ¢;. Then

|CotCp|l > ko +kg—1>3

by Lemma 5.2. Since m = |C' + C'| > 2t —1 > t + 1 by Theorem 1.1, there is a set I of
m —t — 1 pairs (v, ) such that the numbers

Catceg, Gi+eo (1<i<t), cy+c5 ((v,0) el

are all different. Lemma 5.2 implies |C,+C;s| > 1 for these pairs (,d). Based on Proposition

5.1, we can argue that
(AFA)\ (CHO)! 2 (AFA)\ (CHO)F 2 (ATFAN \ (€t + )

and consequently

|[A+Al = |(A+A)\ (C+O)| + |C+C|
> [((AFA)\ (CHO)' +[CHC
> JAMRAY —|Ct + O+ |00
> (2(s+t)—3)—m+|C+C|,

according to our hypothesis concerning A' C G'. Based on our previous remarks and Lemma

5.2, we have

t
ICHC| > |CatCsl+ Y |C4Cs + ) |CitCy|

(v.0)€r i=1
t—1
> B34 (m—t—1)+> (ki+k — 1)+ (2k — 3)
=1
t
> (m—t+2)+2> ki—(t—1)—3=(m—2t)+2(k—s).

i=1

Consequently,
|A+A| > (2s+2t =3 —m) + (m — 2t + 2k — 2s) = 2k — 3,

as is was intended to prove. This completes the proof of the generic case t > 4.
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The last case we study here is that of ¢ = 1. As the remaining cases t = 2 and t = 3 require
some more delicate analysis, these we postpone to the following two subsections, respectively.
First we note that if s =0, then k; =k, A = C7 and

|A+A|=|C1+Cy| > 2k —3=2k—3

by Lemma 5.2. Otherwise we have 3 < s+2 < (k+2) — 2. Note that in this case (A\ C)+C =
Ap+C and C+C are disjoint, since (g,h) € C+C implies g = ¢; + ¢1, while g = a; + ¢; for
some 1 < i < sif (g,h) € Ap+C. Moreover, the elements (a; + ¢1,b; + dij) are pairwise
different for 1 <i < s, 1 < j < ki, thus we obtain the estimate

|A+A] = [A+C| = [Ao+C| +|C+C|
ski+(2k1 —3)=s(k—s)+2(k—s)—3
(k+2)—(s+2)(s+2)—3>2k—3,

V

as it was to be proved.

The Case t =2

If s =0, then k = k1 4+ ko > 4. Since the numbers ¢; 4+ ¢1, ¢ + ¢2 and cs + ¢ are pairwise

distinct, we have

|A+A|

v

|C1+C1| + |C1+C2| + |Ca+Cs|
(2k1 —3) + (ki + ko — 1) + (2ka — 3) = 3k — 7> 2k — 3

Y]

by Lemma 5.2. Thus we may assume that s > 1. Then the numbers a; + c2 (1 < i < 3),

c1 + ¢co and ¢ + co are all different, and thus

|[A+A] > |A+Co| = [Ao+Ca| 4 |C1+Co| + |Ca4Cs
> ska+ (k1 + ko — 1)+ (2k2 — 3)
> 28+(k2—2)8+2(k1+k2)—4

= (2k—4) + (ks — 2)s > 2k — 3,

if ko > 3. Thus, in the sequel we will assume that s > 1 and k1 = ko = 2. In particular,
k=s+4.

Consider the 2s 4 1 = 2k — 7 numbers (a; 4 ¢2, b; + da1), (a; + c2,b; + da2) (1 <1i < s), and
(ca + c2,da1 + da2); they are all distinct, and also differ from the numbers (¢1 + co, d11 + da1),
(c1 4+ c2,d11 +do2), (c1 4+ c2,d12 + do1), (c1 + c2,d12 + da2). Out of the latter four numbers at
least 3 must be pairwise different. Thus we have found 2k — 3 or 2k — 4 different elements of
|A+A| so far, denote the set of these elements by X.
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If, for some 1 < i < s,
a; +c1 €{a1+ca,...,a5+ ca,c1 4 ca,c0 + 2},

then (a; + c1,b; +d11) € (A+A) \ X, and therefore |[A+A| > |X|+1>2k—3. Ifa; +¢; =
¢o + ¢a, then we may replace in X the element (¢ + c2,d21 + d22) by the two new elements
(a; + c1,b; + di1) and (a; + c1,b; + di2) to obtain at least 2k — 3 different elements of A+A.

Since a; + ¢1 = ¢1 + ¢2 cannot occur, in any other case we conclude that
{a;+a |1<i<st={a;+ca|1<i<s}.

This, however, is not possible, because in this case we would get A} +c = A} with c = co—c; #

0, yielding
Al + (@) == A+ (p(G) =2)c=...= Al +2c= A} +c = A},

that in turn implies p(G) < |A}| = s = k — 4 < 2k — 3 < p(G), a contradiction.

Since we have considered all possibilities, the study of the case ¢ = 2 is now complete.

The Case t =3

The numbers a; + ¢3 (1 <7 <s), ¢1 + ¢3, ¢ca + ¢c3 and c3 + c3 are all different, and thus

|A+A|

Y

|A+C3| = [Ag+C3| + |C14Cs| + |Co+C5| + |C5+Cs|
Sk’3+(k/’1+/{33—1)+(/€2+/{33—1)+(2k3—3)
2(S+k1+k2+k3)75+8(k372)4’(2]637]{327]{31).

V

Therefore |A+A| > 2k — 3, whenever s(kz — 2) > 2. This is indeed the case if k3 > 3 and
s> 2.
Next, if s < 1, then k1 + ko + ks > k — 1, and p(G) > 2k — 3 > 9. The numbers ¢; + ¢2,

c1 + c3, 2 + c3 are pairwise different. By Theorem 1.1 we have
{e1, e, e3} +{c1,c,c3} > 5.

Consequently, there exist two indices ¢ # j such that the five numbers ¢; + ¢3, ¢1 + ¢3, c2 +c3,

¢i + ¢i, ¢j + ¢; are still pairwise different. Then, according to Lemma 5.11,

|A+A

Y

|C1+Cs| + |C1+C3| + |Ca+C3| + |C+Ci| + |CjﬁLCj|
(k1 +ka—1)+ (k1 +ks—1)+(ka+hks—1)+1+1
2(k1+k2+k3)—122k—3.

V

It only remains to handle the case k1 = ko = k3 = 2, s > 2. Now we have k = s+ 6 > 8, and
then p(G) > 2k —3 > 13 > 2.
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Assume that there is no 1 < 7 < s such that a; + ¢3 = ¢1 + ¢2. Then the numbers a; + c3

(1<i<s),c1+co, 1+ csand co + ¢z are all different, and

|[A+A] > |Ao+Cs| + |C14Ca| + |C1+C5 + |Co+C3)
> 254+3+3+3=2k-3.

Thus, we may assume that a; + ¢3 = ¢; + ¢o for some 1 < ¢ < s. By symmetry we may also

suppose that a; + ca = ¢; + c3 for some 1 < j < 5. Were ¢ = j, it would follow that
Cl+02703:ai:aj :Cl+03702,

implying 2(c3 — c2) = 0, in contradiction with p(G) > 2. Consequently, i # j.
Note that the numbers a, +¢3 (1 < a <s, a #1), ¢1 + ¢, c1 + ¢3 and co + ¢3 are still all
different. If there is an index 1 < 3 < s,  # j, such that

ag +ca & {a1+cs,...,as +c3,c1 + 3,2+ c3},
then

|A+A4] |(ag,b)+C2| + (Ao \ {(ai, b:) })+Cs]

>
+ |C1+Cs| + |C1+C3| + |C2+Cs
> 242(s—1)+34+3+3=2k-3.

Since for 1 < 3 <s, B # 7,
ag+ca & {a; +c3=ci1+ca,c1+c3, 00+ 3},
in every other case we can conclude that
{aa+cs|1<a<sa#i}={ag+e|1<B<s B8+ )}

In particular, for every a # i, an + (c3 — ¢2) € Ad.

Consider now the sequence defined recursively by
To = @i, Tpy1 = Tp +c3 —c2 (n>0).

Then 21 = c1, x3 = aj € A} \ {a;}, and if x, € A} \ {a;}, then z,41 € A} holds. It follows
that there is a smallest positive integer n for which there exists an integer 0 < m < n such
that x, = x,,, and in this case T+1, Tm+2, - - -, Ty are all different elements of Ay U {c¢;}.
Consequently,

1<n-m<|A)+1=s5+1<k<pG),

which contradicts the fact that

(n—m)(es —c2) = Ty, — Ty, = 0.
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This completes the investigation of the case ¢ = 3 and also the proof of Theorem 2.11.

A more simple proof of Theorem 2.11 can be found in [51]. To avoid repetitions we do not
include it here. However, it is not clear how to apply the method of the previous chapter in a
multiplicative setting. Thus, to prove Theorem 2.15 we will need an additional idea. That is

exactly the novelty contained in [51], which will be clear from the following section.

5.2 Inverse Theorems in Abelian Groups

Since A is contained in a finitely generated subgroup H of G, and obviously p(H) > p(G), it
is enough to prove Theorems 2.4 and 2.15 in the case when G is finitely generated. In this

case we can write

G=G'aG¢...G™,

where each group G' is isomorphic either to the infinite cyclic group Z or to a cyclic group
Z/p*7Z with some prime number p > p(G) and positive integer . Note that here p(Z) = oo
while p(G) = p if G =2 Z/p*7Z. Moreover,

p(G' & G?) = min{p(G"),p(G*)}.

If a set G is equipped with a binary operation ‘+’, then we can naturally talk about
arithmetic progressions in G: the sequence (a1, as,...,ax) is an arithmetic progression in G,
if there exists d € G such that a; = a;—1 +d for i = 2,..., k. For simplicity we will call (G, +)
an additive structure. The notations A + B and A+ B can also be naturally extended to such

structures.

Definition 5.3. Let ¢ denote a positive integer. We say that the additive structure (G,+)
has property Il, if

(i) for any positive integer k < £ and a k-element subset A of G, |A+ Al > 2k — 1 with

equality if and only if A is an arithmetic progression in G;

(ii) for any positive integer k < £+ 1 and a k-element subset A of G, |A+A| > 2k — 3 with

equality (in case of k > 5) if and only if A is an arithmetic progression in G.

We have seen that the group Z has property I, for every positive integer . According to
the Cauchy—Davenport theorem and Theorems 2.3, 2.9 and 2.14, the group Z/pZ has property
II, whenever p is a prime number greater than 2¢ — 1. In view of all this, to prove Theorems
2.4 and 2.15 it is enough to verify the following two statements. Note that Theorem 2.4 is

obvious if k = 1.
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Statement 5.4. Let G and G? be two abelian groups such that
min{p(G'), p(G*)} > 2¢ -1 > 3.
If G* and G? have property Il;, then so does their direct sum G @ G2.

Statement 5.5. Let o > 1 and ¢ > 2 be integers and let p > 2¢ — 1 be a prime number. If
the group Z/p*Z has property Iy, then so does the group Z/p*+1Z.

The key observation is that we can verify both statements using the same argument, based
on the following notion. Let G' and G? be two abelian groups, and let ¢ : G! x Gt — G?
be any map. On the set of all ordered pairs (gt,¢%) (¢* € G, g% € G?), define an additive

structure (G, +,) by introducing a binary operation +, as follows:

(9%, 9%) +o (R, %) =t (" + ', g° + h° + p(g", h1)).
Note that if the map ¢ is symmetric, then the operation +, is commutative. Now Statements
5.4 and 5.5 can be easily derived from the following lemma.

Lemma 5.6. Let £ > 2 be any integer and assume that the abelian groups G' and G? satisfy
min{p(G'), p(G*)} > 2¢ -1 > 3.

Let furthermore ¢ : G' x Gt — G? be any symmetric map satisfying ©(g,0) = 0 for every
g € G such that the additive structure Gy = (Gy,+,) is a group. If G' and G? have property
Ty, then the abelian group G, also has property Il,.

Indeed, letting ¢ = 0 we get back the notion of direct sum: G, = G' & G?. Thus,
Statement 5.4 follows immediately. On the other hand, if we choose G = Z/pZ, G* = Z/p*7Z
for a prime p > 2¢ — 1, and we define

0 ifz+y<p
1 otherwise

o(z +pZ,y + pZ) ={
for z,y € {0,1,...,p — 1}, then G, 2 Z/p**'Z. Namely, if we define
fla+p/Z,b+p*/Z) = (pb+a) +p* T /L

fora € {0,1,...,p—1}and b € {0,1,...,p*—1}, then f maps the set Z/pZ x Z/p*Z bijectively
onto the set Z/p®*1Z, and clearly is a homomorphism from G, to Z/p***Z. Since Z/pZ has

property II,, Lemma 5.6 implies Statement 5.5 as well. It only remains to prove Lemma 5.6.
Proof of Lemma 5.6. Note that the condition ¢(g,0) = ¢(0, g) = 0 implies
Proposition 5.7. If (a1, as,...,ax) is an arithmetic progression in G2, then

((gaal)a (gaa2)a KR (gaak))

is an arithmetic progression in the abelian group G, for any g € G*.
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For a set X C G, write
X! ={g" € G' | there exists g* € G* with (g%, ¢%) € X}.
We define X2 in a similar way. For 4, B C G, we also introduce
A+B=:{a+,b|ac Abe B}

and
A+B =:{a+,b|a€ Abe B,a#b}.

In the sequel we will simply write ‘4’ for ‘+,’. An immediate consequence of these definitions

is the following statement.

Proposition 5.8. For arbitrary X,Y C G, we have (X \Y)! D X'\ Y! and X'4+X! C
(X4+X)' C X'+ X1,

The careful reader may observe that the second part of the statement does not remain valid
in general if, instead of the projection to the first coordinate, one considers the projection to

the second one. We will also need the following easy lemma.

Lemma 5.9. Let G', G2, ¢ and { as in Lemma 5.6. Assume that (a1,az,...,ax) is a non-

constant arithmetic progression in G' and let by, b, ..., b, € G?. Consider the set

(i) If k <0 and |A+ A| =2k — 1, then A is an arithmetic progression in G.,.

(ii) If 5 <k <€+ 1 and |A+A| = 2k — 3, then A is an arithmetic progression in G,.
Proof. For 1 <1 < k, introduce d; = ¢g;+1 — g; € G,. Write a; = a and a2 — a1 = d, then in

case (i)
(A+ A ={2a,2a+d,2a+2d,...,2a+ (2k — 2)d}

whereas in case (ii)
(A+A)' = {2a+d,2a +2d,...,2a + (2k — 3)d},

the containment O being obvious from the definition and the assumption p(G*!) > 2¢ — 1. To
prove the first statement we may assume that £ > 3. For every 1 <i¢ <k —2, g; + ¢g;+2 and
gi+1 + gi+1 have the same first coordinate 2a + 2id. According to the assumption |A 4+ A| =

2k — 1, these elements of G, must be equal. Consequently,
29; + di + diy1 = 2g9; + 2d;.

It follows that dy = ds = ... =di_1, and g1, go,- . ., gx is indeed an arithmetic progression.
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Similarly, in case (ii) we can argue that
9i + 9i+3 = git1 T Git2
for every 1 < i < k — 3, implying
2g; +di +dig1 +digo = 2g; +2d; + ditq.

Consequently, we have that d; 12 = d; for every 1 <17 < k — 3. Moreover, since k > 5, we have

g1+ gs = g2 + g4, that iSa
291+d1+d2+d3+d4:2g1+2d1+d2+d3.
Therefore dy = d4, which completes the proof of the second statement. [l

We conclude this subsection by proving that (G, +,) satisfies condition (i) of property
II,. Remark that the proof below does not depend on the hypothesis that the groups G*, G
satisfy condition (ii) as well, thus it can be read as a self-contained proof of Theorem 2.4.
That is, we prove that if G, G? satisfy (i) of II;, then so does G,,.

Thus let A denote a k-element subset of G,. The cases k = 1,2 being obvious, assume
that 3 <k < /. Write A = Ag UC, where C = Cy U...UC},

Ao = {(ai, bi) 1 < i< s}, Co={(cidiy) [ <j < hi}

for 1 <i<tsuchthat 2 <k; <k <...<ks and aq,...,as,c¢1,...,c are pairwise different
elements of G'. In particular, k = s+k1 +...+k; and |A'| = s+¢. The following easy lemma
will be used frequently throughout the proof.

Lemma 5.10. For 1 < a, <t we have |Cq + Cg| > ko + kg — 1. Moreover, in the case

a = B3, equality holds if and only if C2 is an arithmetic progression in G2.

Proof. Adding ¢(ca,cg) to each element of C3 + CF, we obtain the set (C + Cj)*. Conse-
quently, [Cy + Cp| = [(Ca + Cp)?| = |C2 4 C3|. Since

IC2|+|C5| =1 =ka+ks—1<2k—1<20—1<p(G?),

the estimate follows from Theorem 1.1. Since k, < k < £, in the case |C2 + C2| = 2k, — 1 it
follows from our hypothesis on G2 that C2 is an arithmetic progression in G2. On the other
hand, if this is the case, then Proposition 5.7 implies that C, itself is an arithmetic progression
in G, consequently |Cyp + Co| < 2kq — 1. O

Assume first that ¢+ > 2. The numbers ¢; +¢; (1 < i < t) are t distinct elements of C* + C?.
It follows from Theorem 1.1 that |C* + C!| > 2t — 1, and thus there is a set I of t — 1 pairs
(7, 6) such that the numbers

cte (1<i<t), ¢y +cs ((v,0) €1)
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are all different. Lemma 5.10 implies |C,, + Cs| > 3 for these pairs (v, ). It follows that the
sets

are pairwise disjoint subsets of A + A. Moreover, since s +t < k < /£, we have |A! + Al| >
2(s +t) — 1 and thus there exist at least 2s elements of A + A whose first coordinates are

different from the numbers
citea (1<i<t), cy+c5 ((7,9) €I).

Based on Lemma 5.10 and the inequalities k; < k; for 1 <4 < t, we then indeed obtain

t
A+A] > 25+ Y |C,+Csl+ > |Ci+Cyf

(v,0)erl i=1
t
> 2s+43(t—1)+ > (ki+ke—1)
1=1
t
> 25+2Zk1-+2t—3> 2%k — 1.

=1

Next assume that ¢ = 0, that is, |A}| = s = k. Then we have
|A+ Al > |A) + A} > 2k —1

according to our assumption on the group G*. Moreover, |A} + A}| = 2k — 1 if and only if A}
is an arithmetic progression in G'. Consequently, if |A + A| = 2k — 1, we can apply Lemma
5.9 (i) to find that A is an arithmetic progression in G,,.

If t =1 and s = 0, then it follows from Lemma 5.10 that

[A+ Al =|Cy +C1] > 2k — 1 =2k —1,

where equality holds if and only if C? is an arithmetic progression in G2. Note that in this
case A = (' is an arithmetic progression in G, according to Proposition 5.7.

Suppose finally that ¢ = 1 and s > 1, then we have 3 < s+ 2 < (k + 2) — 2. Note that
in this case (A\ C) + C = Ag + C and C + C are disjoint, since (¢!, ¢?) € C + C implies
gt = c1+c1, while gt = a; +¢; for some 1 <i < sif (g1, g?) € Ag+ C. Moreover, the elements
(a;i+c1,b; +dy;) are pairwise different for 1 <i <s, 1 < j < ky, thus we obtain the inequality

A+ Al = [A+C=]A+C[+|C+C
> ski+ 2k —1)=sk—s)+2(k—s)—1
(E+2)—(s+2)(s+2)—1>2k—1,

proving the estimate. Now we prove that |A+ A| = 2k — 1 is not possible in this case. Indeed,

it only could happen if it were s + 2 = k, that is, k&1 = 2, in which case we could argue as



68 CHAPTER 5. THE METHOD OF GROUP EXTENSIONS

follows. Since |A| = k — 1, we have |A! + Al| > 2k — 3, according to our assumption on the
group G'. Therefore the elements of A + A have at least 2k — 3 different first coordinates.

One of those is ¢; + ¢1, to which correspond (at least) three different second coordinates:
di1 +di1 + @(c1, c1),din + dig + (e, 1), diz + diz + @(c1, c1).
Another one is a; + ¢1, with two different second coordinates
b1+ di1 + ¢(ar,c1),b1 + diz + (aq, c1).

This way we found at least 2k different elements of A + A.

Thus we have overviewed all possible cases and found that in every case |[A + A| > 2k — 1
and |A+ A| = 2k — 1 can only happen if A is an arithmetic progression in G,. Noting that if
A is an arithmetic progression then obviously |A+ A| < 2k — 1, we find that (G, +,) indeed
satisfies condition (i) of property II,.

Proof of Lemma 5.6, continued

The aim of this section is to prove that (G, +,) satisfies condition (ii) of property II,, thus
completing the proof of Lemma 5.6. For this end let A denote a k-element subset of G,. Since
we have already discussed the case £ < 4 on Page 17, we will assume that 5 < k£ < ¢4 1.
Keeping the notation of the previous section, we first verify the following analogue of Lemma
5.10.

Lemma 5.11. Let 1 < o, 3 <t, a # 3. Then |Co+Cs| > ko + ks —1. Moreover, |Co+Cha| >
2ko, — 3, where in the case ko > 5 equality holds if and only if C% is an arithmetic progression
in G2.

Proof. Since C,+Cps = C, + Cg, the first estimate follows as in the proof of Lemma 5.10,
noting that this time
ko +ks—1<k—1</t<p(G?.

On the other hand, adding ¢(cq, cq) to each element of C2+C?, we obtain the set (Co+Cy)?.
Consequently, |Cp+Cy| = [(CoatCa)?| = |C2+C2|. Since ko < k < £+1, the second statement
follows directly from our hypothesis on G?2. O

Assume first that ¢ = 0, that is, |[A}| = s = k. Then we have
|A+ A| > |A} + Ad| > 2k —3

according to our assumption on the group G'. Moreover, |A} + A}| = 2k — 3 if and only if A}
is an arithmetic progression in G'. Consequently, if |A + A| = 2k — 3, we can apply Lemma

5.9 (ii) to find that A is an arithmetic progression in G.,.
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Next we assume that ¢ > 4. Consider the ¢ numbers ¢; + ¢; € G for 1 < i < t. Based on
the hypothesis on G! we have |[C'+C1| > 2t —3 >t + 1, and thus there exist indices a # 3
different from ¢ such that c, + cg € G! differs from each number ¢; + ¢;. Then

|CotCp|l > ko +kg—1>3

by Lemma 5.11. Since m = |C! + C1| > 2t — 1 > t + 1 by Theorem 1.1, there is a set I of
m —t — 1 pairs (v, ) such that the numbers

Catceg, Giteo (1<i<t), cy+cs ((v,0)el)

are all different. Lemma 5.11 implies |C,+Cj| > 1 for these pairs (v, d). Based on Proposition

5.8, we can argue that
(AFA)\ (CHO)! 2 (AFA)\ (CHO)' 2 (AT AN\ (€t + )

and consequently

|A+A| [(A+A) \ (C+O)| + |C+C]

> [((AFA)\ (CHO)' +[CHC
> |A'AY - |Ct + O + |0+
> (2(s+1t)—3)—m+ |C+C|,

according to our hypothesis concerning A' C G'. Based on our previous remarks and Lemma

5.11, we have

t
ICHC| > |CatCsl+ Y |C4Cs + ) |CitCy|

(v.0)€l i=1
t—1
> 34 (m—t—1)+> (ki+k — 1)+ (2k — 3)
=1
t
> (m—t+2)+2) ki—(t—1)=3=(m—2t)+2(k—s).

i=1

Putting these estimates together we obtain that
|A+A| > (2s+2t —3 —m) + (m — 2t + 2k — 25) = 2k — 3,

as it was intended to prove. Now we proceed to show that in fact |[A+A| > 2k — 3 in this
case. If k1 < k¢, then we can immediately increase the estimate on |C+C| and thus on |A+4A]
as well. On the other hand, if ky = ky = ... = k¢, then we can argue as follows. First,
since |C1+C1| > 2t — 3, there is a set J of 2t — 3 pairs (o, 8),a # 3 such that the numbers
ca+cg, ((a, ) € J) are all different. It follows from Lemma 5.11 that |C,+Cps| > 2k; — 1 for
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(o, B) € J. Next, since m > 2t — 1 > |J|, there is a set K of m — 2t + 3 pairs (v, ) such that
the numbers
Ca + Cﬁ’ ((aaﬂ) € J)7 C’Y + Cs ((755) € K)

are all different. For (v,d) € K we have the estimate |C,,+Cj| > 2k; — 3. Consequently,
IC+C] > Y7 |CatCsl+ > CHCs]

(a,8)€JT (v,9)eK
(2t — 3)(2ky — 1) + (m — 2t + 3)(2k: — 3)

= 2mk; — 3m+ 4t — 6.

Y]

It follows that

|A+A|

Y

(2(s +1t) —3) —m + |C+C|

2(k — tky) + 2t — 3 —m+ (2mk; — 3m + 4t — 6)
2k + (m — )2k, — 4m + 6t — 9

2% + (m — t)(2k, — 4) + (2t — 9) > 2k — 1.

v

This completes the proof for the generic case t > 4.
The next case we study is that of ¢t = 1. If s = 0, then it follows from Lemma 5.11 that

|A+A| = |C1+C1| > 2k — 3 = 2k — 3,

where equality holds if and only if C? is an arithmetic progression in G2. Note that in this
case A = (1 is an arithmetic progression in G, according to Proposition 5.7. If ¢ = 1 and
s > 1, then we have 3 < s +2 < (k +2) — 2. Note that in this case (A \ C)+C = Ap+C
and C+C are disjoint. Moreover, the elements (a; + c1,b; + dy;) are pairwise different for
1<i<s,1<j <k, thus we obtain the estimate

|A+A] = [A+C| = [Ao+C| + |C+C|
sk1+(2k1 —3)=s(k—s)+2(k—s)—3
(k+2)—(s+2))(s+2)—3>2k—3,

Y

proving the estimate. Now we prove that |A-+A| = 2k — 3 is not possible in this case. Indeed,
it only could happen if it were s + 2 = k, that is, k&1 = 2, in which case we could argue as
follows. Since |A'| = k — 1, we have |A'4+A!| > 2k — 5, according to our assumption on the
group G!. Therefore the elements of A+A have at least 2k — 5 different first coordinates.
Since k > 5, that is, s > 3, at least three of these first coordinates are in the form a; + ¢; for

some 1 < i < s. To each of these correspond two different second coordinates
bi + di1 + ¢(ai, c1),b; + diz + p(ag, c1).

This way we found at least 2k — 2 different elements of A+A.
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Next we will show that if t = 2, then |A+A| > 2k — 2. Assume first that s = 0, that is,

k = k1 + ko > 5. Since the numbers c¢; + ¢1, ¢1 + ¢2 and ¢y + ¢o are pairwise distinct, we have

|AJ.rA| > |C1ﬁL01| + |01Jr02| + |02ﬁLCQ|
> (2k1—3)+ (k1 +ka—1)+(2k2—3)=3k—T7>2k—2

by Lemma 5.11. Thus we may assume that s > 1. Then the numbers a; + ¢2 (1 < i < 3),

c1 + ¢co and ¢ + co are all different, and thus

|[A+A| > [A+Co| = [Ag+Co| + [CL+Ca| + [Ca+Cy|
> Sk2+(1€1+1€2—1)+(2k2—3)

= 2S+(k272)5+2(k1+k2)+(k27k1)74
= (2k74)+(k$272)8+(1€2*]€1)22]{372,

unless k1 = ko = 2, or s = 1 and k1 = ko = 3. In the latter case either a; + ¢; or a3 + c»
does not belong to the set that consists of the three distinct numbers ¢; + ¢1,¢1 + ¢2, co + co.
Indeed, otherwise we would have a1 + ¢; = ¢3 + ¢2 and ay + co = ¢1 + ¢1, which implies
3(ca — ¢1) = 0, contradicting p(G') > 3. Hence we may assume without any loss of generality
that the numbers a1 + ¢1, ¢1 4 ¢1, ¢1 + €2, 2 + co are pairwise distinct, in which case by Lemma
5.11

|A+A

Y]

|Ag+C1| + |C1+Ch| + |C1+C3| + |Ca+Cs|
24+3+5+3>12=2k— 2.

\

If k1 = ko = 2 and s > 3, then ¢ + ¢2,a1 + ¢2,a2 + ¢3 and a3 + co are 4 pairwise disjoint
elements of A'+A'. These elements are first coordinates of at least 3,2,2 and 2 elements of
A+A, respectively. Since |A!| = k—2, we have |A'+A| > 2k — 7, based on our hypothesis on
the group G'. Given that 2k — 7 > 4, there are at least (2k — 7) — 4 elements of A+A whose

first coordinates do not belong to the set
{c1 +c2,a1 + c2,a0 + 2, a3 + 2}

This way we found 3+2+2+2+ (2k — 11) = 2k — 2 different elements of A+A. If k1 = ko = 2
and s = 1, that is, kK = 5, then in A+A we can respectively find 3,2 and 2 elements whose
first coordinates are ¢; + c2,a1 + ¢1 and a; + ca, in this order. It cannot happen that both
c1 + ¢1 and ¢ + c2 belong to the set {¢1 + c2,a1 + ¢1,a1 + c2}, since it would imply that
a1 +c1 = cy+co and a1 + c2 = ¢1 + ¢1, and we have already seen the contradiction arising
from that. Therefore, in addition to the 7 elements of A+A we have already found, there is
at least one more element of A+A whose first coordinate is either ¢; + ¢; or o + ¢, that is,
|A+A| > 8 = 2k — 2, as claimed. If k; = ko = 2 and s = 2, that is, k = 6, then |A!| = 4
and thus |[A'+A!| > 5. The number c¢; + ¢y is among the elements of A'4+A! as well as the
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four numbers a; +¢; (1 <i,5 < 2). At least three of the last four numbers must be different,
otherwise we would have a1 +¢; = as + ¢ and a; + ¢2 = as + ¢1, leading to the contradiction
2(¢1 — ¢2) = 0. Thus we can choose three such numbers; each of which is the first coordinate
of at least 2 elements of A+A. On the other hand, the number ¢; + ¢z, which is definitely
different from the previous three numbers, is the first coordinate of at least 3 elements of
A+A. So far we have found at least 9 elements of A-+A, but they only have 4 different first
coordinates. Since |(A+A)!| > |A'4AY| > 5, there must be at least one more element in
A+A, that is, |[A+A| > 10 = 2k — 2 follows in this case, too.

Finally we discuss the case ¢t = 3. First suppose that s > 2. The numbers ¢; + c2,c1 +
¢s, c2 + ¢ are pairwise distinct. Among the numbers a; + ¢; (1 < i < s) at most one can be
equal to c3 + ¢3 and none is equal to ¢; + ¢2 or ¢; + ¢3. Thus there is a set I of s — 1 indices

such that the numbers
c1+ca, c1+c3, cates, a;tcy (i€

are s + 2 different elements of A'4A'. Since |A!| = s + 3, based on the assumption on the
group G we have that |A'+A!| > 2s + 3, and thus there are at least s + 1 elements of A+A

whose first coordinates are not among the above numbers. It follows that

|AFAl > (s+ 1)+ Hai} + Ci| + |C1+Co| + |C1+Cs| + |Co+Cs
i€l
> (s+1)+2(s—1)+(ki+hko—1)+ (ki +hks—1)+ (ko +ks—1)
= 2(k—s)+3s—4=2k+s—4>2k—2.

If s <1, then we can do the following. The numbers ¢; + c2, ¢1 + ¢3, c2 + c3 are pairwise

different. By Theorem 1.1 we have
[{e1, ez, 3t +{c1, e, c3} = 5.

Consequently, there exist two indices ¢ # j such that the five numbers ¢; + ¢a, ¢1 + ¢3, ¢2 + ¢3,

¢i + ¢i, ¢j + ¢; are still pairwise different. Then, according to Lemma 5.11,

|A+A|

Y

|C14+Ca| + |C14Cs| + |Ca+-Cs| + |Ci+Ci| + |C;+C;]
(k1 +hka—1)+ (K1 +ks—1)+(ka+hks—1)+1+4+1
2(ky + ko + k3) — 1.

%

Thus we have |[A+A| > 2k — 1 if s = 0, and |A+A| > 2k — 3 if s = 1. In the latter case
we can immediately increase the estimate, whenever |(A+A)!| > 5. On the other hand, if
|(A+A)| = 5, then the numbers a; + c1, a1 + c2, a1 + c3 belong to the set

{e1+co,c1+ 3,004 3,6 + ¢, ¢ + ¢}
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If a1 + co = cg + cg for some « € {1,2,3} and 3 € {4,j}, then we can replace |C3+Cs| by
{a1} + Ca| = kq > 2 in the above estimate to conclude that |[A+A| > 2k — 2. Were it not the

case we would obtain that
ay+c =c2+c3,a1 +c2=c1+c3,a1+c3=c1+ co,

resulting in the contradiction 2(c; — ¢2) = 0. Therefore we have |A+A| > 2k — 2 whenever
t=3.

Allin all, we found that in every case |A+A| > 2k —3 and |A+A| = 2k — 3 can only happen
if A is an arithmetic progression in G,. Noting that if A is an arithmetic progression then
obviously |A+A| < 2k — 3, we find that (G, +,) indeed satisfies condition (ii) of property
II,. This completes the proof of Lemma 5.6, and in turn that of Theorem 2.15 as well.

5.3 Noncommutative Groups

Hidden behind the previous proof is the fact that for any prime p, the group Z,.+1 can be
obtained as a cyclic extension of the group Zy« by the group Z,. This eluded us previously and
only became clear later, leading to the proof of Theorem 2.1 first and then to that of Theorem
2.6. Based on the theory of group extensions, the proof of the former result is surprisingly
simple. Most of this section is devoted to the study of critical pairs A, B for which equality is

attained in Theorem 2.1.

A Brief Outline of the Proofs

Note that the assertions of both Theorems 2.1 and 2.6 are obvious if p(G) = 2. Thus in view
of the Feit-Thompson theorem [33], it is enough to prove the assertions for solvable groups.
Given that the results hold for cyclic groups of prime order, the natural approach is then to
transfer the results to group extensions. In the case of Theorem 2.1 it is relatively simple, and
only depends mildly on the structure of the extension, see Lemma 5.14. We prove this result
in the next subsection. The proof of Theorem 2.6 is more delicate, in this case we cannot
directly transfer the result to group extensions. In the third subsection we study how much
the general approach of the second subsection can contribute towards the characterization of
critical pairs if we also assume that the group H in Lemma 5.14 is a cyclic group of prime
order, meaning that we can also take advantage of Vosper’s inverse theorem. We complete
the proof of Theorem 2.6 in the last subsection, where we finally take into account the specific

structure of cyclic extensions. The proof also relies on Hamidoune’s result Theorem 2.5.

Finally we note that the following alternative proof of Theorem 2.1 has been suggested
by Hamidoune [46]. Let A and S denote nonempty finite subsets of an arbitrary group G.
Denote by (S) the subgroup generated by S and by v(S) the minimum order of an element in
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S. According to a result of Hamidoune [43], if AU AS # A(S), then
|AU AS| > |A| 4+ min{|S|, »(S)}.

Now let A and B be arbitrary nonempty finite subsets of G satisfying |A| + |B| — 1 < p(G). If
|B| = 1, then obviously |AB| = |A| + |B| — 1. Otherwise, replacing A by Ab and B by b~'B
for some element b € B, we may assume that 1 € B. Let S = B\ {1}, then v(S) > p(G) and
[{(S)| > p(G@). Moreover, AU AS = AB. Thus either AB = A(S), in which case

|AB| = [(S)| = p(G) = |[A] +|B| - 1,
or the above theorem implies
|AB| = [AU AS| = |A| + min{|S],v(5)} = |A| + |5| = [A| + |B] - 1.

Even though this argument extends Theorem 2.1 to infinite groups, we feel that our direct

approach is more transparent. We also depend on our proof in order to derive Theorem 2.6.

Proof of Theorem 2.1

For simplicity, we say that the group G possesses the Cauchy-Davenport property if for any
pair of nonempty subsets A, B of G with p(G) > |A| + |B| — 1, we have |AB| > |A| + |B| — 1.

In view of our previous remarks, Theorem 2.1 can be reduced to the following
Theorem 5.12. FEvery finite solvable group G possesses the Cauchy—Davenport property.

Let G = Go> Gy ...> G, = {1} be a composition series of G. Here every composition
factor G;/G;y1 is a cyclic group of prime order, and the length of the series r = r(G), being
equal to the total number of prime divisors of the order of GG, does not depend on the particular
choice of the composition series. If G/N = H for some proper normal subgroup N of G, then
|G| = |N| - |H| and thus p(G) = min{p(N),p(H)}. We just remark that even if the group
G is not finite, the inequality p(G) > min{p(N),p(H)} is not difficult to verify. Since every
cyclic group of prime order has the Cauchy—Davenport property, Theorem 5.12 follows easily

by induction on r from the following lemma.

Lemma 5.13. Let G be an arbitrary group with a proper normal subgroup N. Assume that
p(G) = min{p(N),p(G/N)}. If both N and G/N possess the Cauchy-Davenport property,
then so does G.

Before we indicate how this lemma follows from a more general statement, we briefly recall
the structure of general group extensions, following the terminology of [50]. Namely, if H =
G/N, then the group G can be reconstructed from N and H as follows. There exist a map
f:+Hx H — N and for every h € H an automorphism ¥;, € Aut(N) such that the following
conditions hold for every n € N and hy, hs, hs € H:
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1) f(,h) = f(h1,1) =15
(ii) f(h1,h2)f(hiha, h3) = On, (f(h2, h3)) f(h1, hohs);
(iil) I, On, (n) = f(h1, ha)On,ny (n) f (R, ha) ™Y

(iv) ¥ is the unit element of Aut(N).

Then G is isomorphic to the group we obtain if we equip the set of ordered pairs {(n,h) | n €
N,h € H} with the multiplication

(nl, h1>(n2, hg) = (7’1,119}11 (7’L2)f(h1, hg), hlhg).

The behavior in the second coordinate is just like in the case of direct product, thus the
properties of H can be exploited in a natural way. Note also that for every hqi, ho € H, the
mapping

n — O, (n)f(hi, ha)

isan N — N bijection. This is the key fact that allows us to exploit the properties of NV, too.

Now it is clear that Lemma 5.13 is a special case of the following statement.

Lemma 5.14. Let N and H be arbitrary groups that possess the Cauchy—Davenport property.
Assume that bijections @p, hy, Yy hy : N — N are given for every hi,he € H. Define on the
set of ordered pairs G = {(n,h) | n € N,h € H} a binary operation as follows:

(nla hl)(nQa h2) = ((phhhz (nl)whhhz (nQ)a h1h2)'
Then |AB| > |A| 4+ |B| — 1 holds for arbitrary subsets A, B of G which satisfy

|A[ +|B| =1 < min{p(N), p(H)}.

Proof. The assertion is obvious if one of the sets A and B is infinite. Thus we assume that
A, B are finite subsets of G such that |A|+|B|—1 < min{p(N), p(H)}. Write k = |A|, { = | B]
and let A =C1U...UCs and B = Dy U...UDy, where C; = {(aij,¢) | 1 < i < k;} and
D; = {(b;j,di) | 1 < i < £;}. We assume that C = {c1,...,¢:} and D = {di,...,d:} are
subsets of H of cardinalities s and ¢, respectively. We will also assume that k1 < --- < kg
and ¢; < ... < 4. Thus, s < k, t < ¢and >, | k =k, 21;:1 ¢; = ¢. Introduce also
A ={ai; |1 <j<k}and B, = {b; | 1 < j < ¥}, they are subsets of N. In C;D;,
the second coordinate of each element is c;d;, whereas the first coordinates form the set

©e;,d; (Ai)e; q,(Bj). Since @, 4, and 1), 4; are N — N bijections and

ki+0; —1<k+{¢—1<min{p(N),p(H)} < p(N),
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our hypothesis on the group NV implies that
|CiDj| = |900i,dj (Ai)wciadj (BJ)| > ki +£j -1>1

holds for every 1 < i < s and 1 < 5 < t. Due to the symmetry of the multiplication
introduced on G, without any loss of generality we may assume that s > ¢. Consider the
numbers c1dy, cady, . .., csd; € H, they are s different elements of the set product C'D. Since
s+t—1<k+/¢—1<p(H), our hypothesis on the group H implies that |CD| > s+t — 1.
Therefore there exists a set I of ¢ — 1 pairs (v, d) such that the numbers

cidy (1<i<s), cyds ((,9) €1)
are all different. Since the sets
CiDy (1<i<s), CyDs ((v,0) € I)

are pairwise disjoint subsets of AB, it follows that

4B = Sland+ Y |¢,Dsl (5.1)

i=1 (v,9)el
> Z(kz +l—1)+ (1) (5.2)

i=1

= k+th+(s—t)y—s+t—1 (5.3)
= k+th+(s—0):—1)—-1 (5.4)
> k+£-1, (5.5)
as it was to be proved. O

An intermediate step

Now we take a closer look at the proof of Lemma 5.14. For the rest of this subsection we

assume that the finite sets A, B satisfy
|AB| = |A| + |B| — 1 < min{p(N), p(H)} — 1.

Then we must have equality in (5.5) which means that {; = o = ... = {; and also that either
s =t or £; = 1 must hold. Note that we have assumed s > ¢. In the case t > s a similar
argument yields that k&1 = ks = ... = ks and, in addition, either s = t or ks = 1. Thus, if
s >t=1, then £ = ¢, = 1, and similarly, if £ > s = 1, then k£ = 1.

Assume now that s,¢ > 2. If H is a cyclic group of order p for some prime number p,
then H clearly possesses the Cauchy—Davenport property. In (5.1) we also must have equality,

which means that

[CD|=s4+t—1<k+{¢—1<min{p(N),p(H)} -1<p-—1.
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Vosper’s inverse theorem applied to H leaves us two possibilities, one being that C = H\hD™!
for some h € H, but this only can occur if s = k, £ = ¢ and k+ ¢ = p < p(N). The other
possibility is that C' = {c},...,c.} and D = {d},...,d,}, where ¢, = cq'~! and d; = dq*~" for

suitable elements ¢, d,q € H. There is an index 1 < a < s such that ¢; = ¢,. Clearly,

CD = {ecd,cdg,cdg?, ..., cdg*2}
= {dd},cdy, ... cody, cody, ... chdy chady, .. cudi ).

Writing C] = Cj, k} = k; if ¢, = ¢; and D} = D;, ¢; = ¢; if dj = d;, and noticing that the sets
C1D},CyDy, ..., CoDy, Cu Dy, ..., Co Dy, Co 1 Dy, ., CLD;
are pairwise disjoint subsets of G that satisfy

|C;D;.| >ki+0—1>k,

we may argue that

a—1 t S
|AB| > > _|CIDi+ ) ICLD+ > |CiDy]
i=1 i=1 i=a+1
t s—1
> Z(ksﬁLfi*l)Jeri
i=1 i=1
S t
= > kit Y L+ (t— 1k —t
i=1 i=1
= k4 l—14(t—1)(ks—1)
> k401

From the conditions |AB| = |A| + |B| — 1 and ¢ > 2 it follows that ks = 1, that is, s = k. A
similar argument also yields t = ¢.

We summarize these observations in the following lemma.

Lemma 5.15. Let N be an arbitrary group that possesses the Cauchy—Davenport property,
and let H = Z,, for some prime number p. Assume that bijections ©n, hy, Vn, hy : N — N are
given for every hi,ha € H. Define on the set of ordered pairs G = {(n,h) | n € Nyh € H} a

binary operation as follows:
(n1, h1)(n2, ha) =: (O, by (P1) Ry hy (12), R1ho).
If A, B are subsets of G which satisfy
|AB| = |A| + |B| = 1 < min{p(N),p} — 1,

then (using the notations introduced in the proof of Lemma 5.14) one of the following conditions

holds:
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(a) k=1ortl=1;
(b) k,4>2ands=t=1;
(c) s=k>2,t=40>2 and C, D are progressions in H of the same common quotient;

(d) s=k>2,t=0>2k+{=p<p(N)and C = H\hD™! for a suitable element h € H.

Proof of Theorem 2.6

The ‘if” part is quite simple. First, if ¥ = 1 then |AB| = |B| = ¢, and if ¢ = 1 then
|AB| = |A| = k. Next, if the second condition holds, then again

|AB| = [{ag’b | 0<i<k+€—2} =k+(—1,
because the order of ¢ is at least k + ¢. Finally, in the third case we also have
|AB| = [uFv \ {uzv}| = |F| ~1=Fk+¢—1.

To prove the necessity of the conditions, we may assume that the group G is solvable. We
proceed by induction on the length of the composition series of G. If r(G) = 1, then G is a
cyclic group of prime order and the result is contained in Vosper’s theorem. So we assume
that 7(G) > 2 and the theorem has been already verified for every finite solvable group G’
with 7(G’) < r(G). Choose a normal subgroup N < G such that H = G/N = Z,, for a prime
number p. Then G is a cyclic extension of N by H, and can be reconstructed from N and
H = (h) as follows. There is an element ny € N and an automorphism ¢ € Aut(N) such that
I(ng) = ng, ¥(n) = ngnny ' for every n € N and the multiplication on the set of ordered
pairs

Go={(n,h") |neN,0<i<p-—1}

introduced as
(n1, k) (ng, h9) = (' (ng) f (W, 1), W),
where
1 ifi+j<p
ng ifi+j=>p

o) =

makes GGy a group isomorphic to G, which we may as well identify with G. In particular, the

function f : H x H — N satisfies among others the relations
f(h*1) = F(1,h°) (5.6)

and
G'(f(h*,h?)) = f(h*, k") (5.7)

for every integer ¢ and 0 < u,v <p — 1.
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According to Theorem 2.1, N possesses the Cauchy—Davenport property. We also have
[ Al +[B] =1 < p(G) — 1 = min{p(N),p} — 1.
Thus we may apply Lemma 5.15 with
prip =id and Yy i (n) = 0" (n) f (R, B).
Accordingly, we distinguish between four cases.

(a) If k=1 or £ =1, then condition (i) holds.

(b) If k,£ > 2 and s =t =1, then |A1| = k1 = k and |B;| = ¢; = ¢. Thus,
A={(ah*) |1<i<k} and  B={(bh") [1<j<0)
with suitable integers 0 < «, 3 < p — 1. Therefore
AB = {(a;9%(bj) f(h®, hP), hetPY | 1 <i <k, 1 < j </}

Put By = {9%(b;) | 1 <j < ¢}. Then A;, B} are subsets of N of cardinalities k& and ¢, respec-
tively. Since every element of AB has the same second coordinate h*T# and multiplication by
f(h®,hP) is an N — N bijection, these sets satisfy

|AB)| = |AB| =k +£—1< p(N) — 1.

N is a finite solvable group with r(N) = r(G) — 1, thus our induction hypothesis implies
that either (bl) there exist elements a,b,q € N such that A; = {a,aq,...,a¢" '} and B} =
{b,qb,...,q""tb}, or (b2) k+ £ —1 = p(N) —1 = p(G) — 1 and there exist a subgroup
F of N of order p(N) and elements u,v € N, z € F such that A; C uF, B} C Fv and
Ap =u(F \ zv(B))™1).

We elaborate on these two subcases separately.

(b1) We prove that in this case condition (ii) holds. More precisely, we prove that

A ={ao, a0qo; - - -, aoqy '} and B = {bo, qobo, - - -, g5 "bo}, (5.8)

where ag = (a, h®), bg = (9~*(b), h%) and qo = (9~ %(q), 1).

We may assume that a;41 = aq’ and bj1 = 97%(¢’b) holds for 0 < ¢ < k — 1 and
0<j<{£—1. Thus (a,h®) = ag and (b1, h?) = by. We proceed by induction as follows.
Assume first that we have already verified that (a;, h®) = aoqé_l holds for some 1 <7 < k—1.
Then

aogs = (ai,h")qo = (ag'" ", h*)(¥~%(q), 1)
(ag" "' 9*(0=*(q)) f(h*, 1), h*) = (aq’, h®) = (ait1, h®).
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On the other hand, if we have (b;, h%) = qéflbo for some 1 < 7 </ —1, then

qo(bj, h?) = (97%(q), 1)(9~ (¢’ 'b), h°)
(O~ (@) (O~ (¢/ ') F(1,h7),h7) = (97 %(¢’D), h”) = (bj41,h7),

@bo

since 1, and thus also ¥~ is an automorphism of N. This verifies (5.8).
(b2) In this case we can write
Ay = {uay, uas, ..., uag} and B = {bl’U,i)QU,...,i)g’U},
where a; = ua;, 9*(b;) = bjv and
{ar,a2,. .. ax} = F\ 2{b7 b5 %, ... b ). (5.9)

Let Fo = {(9~*(f),1) | f € F}, then |Fy| = |F| = p(N) = p(G), and clearly Fy is a subgroup
of G isomorphic to F. Introduce also ug = (u, h®) and vy = (9~%(v), h?), and consider the
sets Ag, By C Fy defined as follows:

Ao ={(W (@), 1) | 1<i<k} and  Bo={(W “(b;),1)|1<j<k}

Then A = ugAg C ugFp, because for any 1 <i < k,

up(97%(a:), 1) = (u, AW (a;), 1)
(Wi (97 (a:)) (R, 1), h®) = (uas, h*) = (ai, h®)

holds. Similarly, for every 1 < 5 < ¢ we have

W0~ (b;), oo = (07(b;), DO~ (v), h%)
= (0709 (W (W) S (1, 1), 0P
= (97 (bv),h?) = (b;, 17,

implying that B = Bovg C Fyvg. Finally, applying 9~% to Equation (5.9) and observing that
the map ¢ : N — G defined as ¢(z) = (z,1) induces a group isomorphism from ¢¥~%(F) onto
Fy, we find that Ay = Fp \ zOBo_l, where zp = (97%(z),1) € Fy. Consequently,

A = UoAO = UO(FO \Zo(B’UOil)il) = Uo(FO \Zo’UoBil),

justifying that condition (iii) holds in this case.

(¢) s=k>2,t=4¢2>2and C,D are progressions in H of the same common quotient. In

this case we may write

A={(ac) [1<i<k} and  B={(b;,d;j)[1<j<{},
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where ¢; = h*T(=D7 and d; = hP+U=D7 with suitable integers 0 < o, 8,7 < p — 1, v # 0.
Let apg = ((11,01) = (al, ha), bo = (bl,dl) = (bl, hﬂ) and qo = (SC,h’Y) where

@ =0"(ay az(f(h*, h7)) 7).
This implies that
apqo = (a’la ha)(xvh’y) = (alﬁa(x)f(havh’y)a haJr’Y) = (a‘?vhaJr’Y) = (aQ,cQ)'

We claim that in general,

(ai,ci) = aogy ' and  (bj,d;) =g} bo

holds for every 1 < i < k and 1 < j < ¢, indicating that condition (ii) is satisfied in this case.
Let1<i<k 1<j<flandm=1i+j—2. Then

(ai,¢;)(bj, dj) = (aiﬁwr(ifl)v(bj)f(hwr(ifl)v’ RAHE=17y patBtmy,

Thus, for each 0 < m < k + ¢ — 2, there is an element x,, of AB whose second coordinate is
he+P+my Moreover, the facts that p is a prime, 1 <y <p—1and k+ /¢ — 1 < p imply that
the numbers h*T5+™Y (0 < m < k+ £ —2) are k + £ — 1 different elements of H, thus the

element x,, € AB must be unique. It follows that
(ai,ci)(bj, d;j) = (ai, ci)(bjr, djr)

holds whenever i 4+ j = ¢’ + j'. We know that (a2, ¢c2) = (a1, ¢1)qo. For arbitrary 1 < j </£¢—1

we have
(a2, c2)(bj, dj) = (a1, c1)(bj1,dj+1),

which then implies qo(b;,d;) = (bj11,d;j51). Thus, (bj,d;) = ¢} "bo follows by induction on
j. In particular, (be, d2) = qo(b1,d1). Thus the relation

(@it1,¢it1)(b1,d1) = (as, ¢;) (b2, d2)

implies (ajt1,ci+1) = (ai,¢;)qo for every 1 < i < k — 1, and we also obtain (a;,¢;) = aoqéfl

by induction on 1.

(d)ys=k>2,t=0>2k+{=p<p(N)and C = H\ hD~! for a suitable element h € H.
Let us note first, that we may assume £ > k. This is because A = u(F \ zvB™!) is equivalent
to B = (F\ A~ luz)v and therefore, by reversing the multiplication on G (that is, introducing
axb = ba) we may exchange the roles of A and B while not changing the statement of Theorem

2.6. Once again, we may write

Az{(ai,ci)|1§i§kz} and B:{(b],dj)|1§j§£}
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Introduce A = (a1,¢1)"1A and B= B(by,d1)™!, then we can write
A={(ai,¢;) |1<i<k} and  B={(bj,d;)|1<j<¢},

where (a1,¢é1) = (b1,d1) = (1,1) € AN B, and writing C = {¢; | 1 <i<k}and D = {d; | 1 <
j <}, we have |A| = |C| =k, |B| = |D| = ¢, and C = H\ hD~" holds with i = ¢ *hdy . In
addition, clearly |AB| = |AB| = |A| + |B| — 1. We distinguish between two cases.

(d1) Go = (B) # G. Now we claim that A C Gy. Indeed, if a € A\ Gy then (1,1)B and aB
are disjoint subsets of AB, yielding

|AB| > 2|B| = 20> p > |A| + |B| - 1,

a contradiction. Note that Gy is a proper subgroup of G, hence solvable with r(Gy) < 7(G)
and p(Gp) > p(G). Thus we may apply our induction hypothesis to conclude that either there
exist a, b, qo € Gy such that

A: {aaaq()va(Igvvaqlg_l} and B: {baq067ngv"'aqg_1b}a

or p(Gp) = p(G) and there exist a subgroup F of Gy < G of order p(G) and elements u, v € Gj,
z € F such that
AcCuF,BC Fv and A=wu(F\ z2vB™).

In the first case we have

_ 0
A = {ag, apqo, a0qg, - - -, aoqy and B = {bo, qobo, qgbo, - - -y g5 bo}

with ag = (a1, ¢1)a and by = b(by, dy), and thus condition (ii) holds. In the other case, based
on (1,1) € AN B, we may assume u = v = 1, and writing uo = (a1, ¢1), vo = (b1, d1) we may
conclude that

A CupF,B C Fug and A =uo(F\ zv9B™1),

implying condition (iii).

(d2) Go = (B) = G. In this case we show that B is a Cauchy-subset of G. To see that, let Hy
be any subgroup of G. If Hy = G, then clearly

min{|BHol, |HoB|} = |G| > min{|G|, |Ho| +|B| — 1}.
If Hy ={(1,1)}, then

min{| BHol, |[HoB|} = |B| = min{|G|, |Ho| +|B| - 1}.
Otherwise B ¢ Ho, |Ho| > p(G) > |B|, and thus

min{|BHy|,|HoB|} > 2|Ho| > |Ho| + |B| — 1 = min{|G|, |Ho| + |B| — 1}.
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Therefore we can apply Theorem 2.5. Since |A| # 1 and |A| + |B| < |G, it follows that there
are elements a,b,q € G and a natural number [ such that

A={a,aq,aq’,...,ad"'} and B=(G\ (g)b) U{b,qb,¢’b,...q" b}
Were (¢q) # G, we would have |G| > p(G)|{g)b|, and thus it would follow that

(=B > %m > %(MW > p(G) > £,

a contradiction. Consequently, (¢) = G, [ =¥,
A={a,aq,a¢® ...,a¢" '} and B = {b,qb,¢%,...q" b},
and with the notation ag = (a1, ¢1)a, bg = b(b1,d1) we see that
A = {ag,a0q, aoq?, ..., a0¢" "'} and B = {bg, gbo, ¢*bo, ... ¢ 1o},

implying that condition (ii) must hold.

This concludes the induction step, and the proof of Theorem 2.6 is complete.



Chapter 6

Elementary Methods

In the first section of the present chapter we verify a conjecture of Lev in a very strong sense.
Here we use only elementary arguments. In the second section a stronger conjecture of Lev is
proved along with a conjecture of Alon. The starting point of those proofs is Theorem 2.10,

which is due to Dias da Silva and Hamidoune.

6.1 Balanced Subset Sums in Dense Sets of Integers

In this section we prove Theorems 2.20 and 2.21. The latter can be easily derived from the

following result.

Theorem 6.1. For every € > 0 there is an integer ng = no(e) with the following property.
Ifn>ng, 1 <a; <asx <...<ap < 2n—2 are integers, and N is an integer such that
IN| < (135 — €)n?, then there ezist e1,...,en € {—1,+1} such that |ey + ... +en| < 1 and
lerar + ...+ epan, — N| < 1.

Indeed, choose € =9/100 — 1/12 in the above theorem. If k = ¢/2 + z is an integer in the
prescribed interval, then for the integer N = 2z there exist €1,...,&, € {—1,41} such that
ler+...+en] <1and |era1 + ...+ epa, — N| < 1. Since N =2z =0 =¢c1a1 + ... + epan
(mod 2), it follows that e1a; + ...+ ena, = N, and with I = {i | &; = +1} we have |I] €
{ln/2),Tn/2]} and o

1 o
iezlai = §<;ai+;5iai) =3 +x=k.
Thus Theorem 2.21 follows. |

Now the first conjecture of Lev we mentioned on Page 18, assumed that n > 89, follows
immediately in a similar way from the Theorem 2.20, unless a;, = 2i — 1 for 1 <+¢ < n. Even in
that case, it is easy to check that the statement of Theorem 2.20 remains valid if n =0, 1 or 3

(mod 4). This is not the case, however, if n =2 (mod 4).

84
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Indeed, let n = 4k + 2 and suppose that e1,...,e, € {—1,+1} such that |e; + ...+ &,| < 1.
Consider I = {1 < i < n | g = +1}, then |[I| = 2k + 1. Therefore A = .,
B = 3,4 ai are odd numbers. However, A+ B =371 | a; = (4k+ 2)? is divisible by 4, hence
A—B=2 (mod4), and |g1a1 + ...+ epan| = |A — B| > 2. Nevertheless, choosing

a; and

k
I={1,2,3,5}U( J{4i,4i + 1} C{1,2,...,n}

i=2
we find that

1 n
Zai:§;ai,

iel

confirming the conjecture of Lev in this remaining case, too.

The First Conjecture of Lev: Proof of Theorem 2.20

Before turning to the proof we note that although most likely the condition n > 89 can essen-
tially be relaxed, it is not merely technical. The sequence (1,2,3,8,9, 10, 14, 15) demonstrates
that Theorem 2.20 is not valid with ng = 8. An other formulation of the condition in the
theorem is the requirement that there exists an index 1 < v < n such that a, is even. Finally,

if a, < 2n — 2, then the condition is automatically fulfilled.

Turning to the proof, first we note that it is enough to prove Theorem 2.20 when n is an
even number. Indeed, let n be odd, and assume that the statement has been proved for n+ 1.

Consider the sequence
hh=1<br=a1+1<...<bpy1=a,+1<2(n+1)—1.
There exist 71, ...,Mn4+1 € {—1,+1} such that,
lm + ...+ s1l <1 and  |mbr + ... + Nup1bugr] < 1

Since n + 1 is even, it follows that m + ...+ 9p41 = 0. Let &; = 41, then |1 + ... +&,| =

| —m| =1, and
n n n+1 n+1
‘ZEiai = ’ZTH—Hai + Zm = ’Z nibi| < 1.
i=1 i=1 i=1 i=1
Accordingly, we assume that n = 2m with an integer m > 45. To illustrate the initial
idea of the proof, consider the differences e; = as; — ag;—1 for i = 1,2,...,m. If we found

61,...,0m € {—1,+1} such that |}, §;e;| < 2, then the choice e2; = &;, €2,-1 = —d; would
clearly give the desired result. This is the case, in fact, when 3" e; < 2m — 2, as it can be

easily derived from the following two simple lemmas.
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Lemma 6.2. Letey,...,e; > 1 and suppose that
k
E=>Y e <pBk—(3"-p)
i=1

for some positive real number 3. Then

Z €e; > S

e;<s+1

holds for every positive integer § —1 < s <k — [3.

Proof. If s is a positive integer, then obviously

E
Z e; > Z 1=k— Z 12/<;-S+1.

e; <s+1 e; <s+1 e;>s+1
As long as
(k—1)2 —4(FE —k) > (k—a)?, (6.1)
we have
E
— >s
s+1 7~

for every (o —1)/2 < s < k — (a+ 1)/2. To complete the proof we only have to notice that
(6.1) is satisfied if « =25 — 1. O
Lemma 6.3. Let eq,...,er > 1 and suppose that

Z € >s (6.2)

e;<s+1

holds for every integer 1 < s <max{e; | 1 <i <k}. Let F be any number such that

k
Fl <> eit+2. (6.3)
=1

Then there exist €1,...,e € {—1,+1} such that

k
‘Zsiei f F‘ <2,
=1

in particular F = Zle ei€; if the e;’s are integers and F' = Zle e; (mod 2).

Proof. Without loss of generality, we may suppose that that e; > ey > ... > e, then e, < 2.
The point is, that the condition allows us to construct e1,...,e; sequentially so that the
sequence of partial sums Z;Zl g;e; oscillates about F' with smaller and smaller amplitude,

until it eventually approximates F' with the desired accuracy.
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More precisely, let Ag = F, and define ¢, and A,, recursively as follows. Let, forn =1,2,... k,
1 A, >0
T -1 i A, <0

and let A,, = A,,_1 — enen, then
A, =F —cie1 —egeg — ... —eney,
for every 0 < n < k. We prove, by induction, that
Al <ept1+...+tep—1+er+2 (6.4)

forn=0,1,... k.
This is true for n = 0. Thus, let 1 < n <k, and suppose that (6.4) is satisfied with n — 1
in place of n. Assume, w.l.o.g, that A, _; > 0. Then, by definition,

—en <A, =Ap 1+ (—De,<epy1+...+ex+2.

Thus, to verify (6.4), it suffices to show that e, < en4+1 + ...+ e + 2. This is definitely true,

if ep41 = e, or n = k. Otherwise we can write

k
Z e = Z e > Z ei > len] —1>e,—2,

i=n+1 ej<en ei<len|

proving the assertion. Letting n = k in (6.4), the statement of the lemma follows. O

The main idea of the proof of Theorem 2.20 is to find a partition

k

{a1,az,...,a,} = U{xl, yit U{z1, ., 22k} (6.5)
i=1

such that e; = 2, —y; (1 <i<k)and F = Z?:_l%(fl)izi satisfy the conditions of Lemma
6.3. Then Theorem 2.20 follows immediately.

To achieve this we will construct the above partition so that

iei§4k—12 (or zk:ei§3k—6), (6.6)
i=1 i=1
ei<k—4 (or ¢ <k-3) for i=1,2,...,k, (6.7)
|[F|<k+1, and (6.8)
deizs if s=1 or s=2. (6.9)
ei<s

Then an application of Lemma 6.2 with § = 4 (or with 8 = 3) will show that ¢; (1 <17 < k)
and F satisfy the conditions of Lemma 6.3. More precisely, it follows from (6.6) and (6.9) that
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condition (6.2) holds for s < k— 3, hence for every integer 1 < s < max{e; | 1 <14 < k} in view
of (6.7). Finally, (6.3) follows from (6.8), given that Zle e; > k. Therefore, once we found a
partition (6.5) with properties (6.6)—(6.9), the proof of Theorem 2.20 will be complete.

First we take care of the condition (6.9). If we take x; = a,4+1 and yi = a,, then e = 1.

Moreover, since
n—1

Z(aHl — ai) S 27L — 2,

i=1
there must be an index p & {v —1,v,v+1,n}, such that a,1 —a, < 2. Taking xp—1 = au41
and yr—1 = a,, condition (6.9) will be satisfied. Enumerating the remaining n — 4 elements
of the sequence (a;) as
1<by<by<...<bgypmyg<4dm-—1,

with fz = b2i — b2i71 we find that

m—2

m—2
S fi= (bai—bai1) < (4m—2) — (m —3) =3m + 1. (6.10)
i=1 i=1
Since m > 21, there cannot be 3 different indices ¢ with f; > m — 5. We distinguish between
three cases.

Case 1) If f; <m —6 for 1 < i < m — 2, then we can choose k = m, F' = 0. Taking z; = by;
and y; = bg;—1 for 1 < i < k — 2, conditions (6.7) and (6.8) are obviously satisfied, whereas
(6.6) follows easily form (6.10):

m—2

k
de< > fi+3<3m+4<4m—12,

i=1 i=1
given that m > 16.

Case 2) There exist indices u,v such that m — 5 < f, < f,. In view of (6.10) we have
fut fo < (Bm+1)— (m—4) =2m+ 5, and consequently m — 5 < f, < f, < m + 10 and
0 < fy, — fu < 15. Therefore we may choose k = m — 2, z1 = bay_1, 22 = bay, 23 = boy,
24 = bay—1. Constructing z;,y; (1 <i < m — 4) from the remaining elements of the sequence
(b;) in the obvious way we find that |F| < 15 < m—2 = k, each e; satisfies e; <m—6 = k—4,
and once again (6.10) gives

m—2

k
dlei< > fi—2(m—5)+3<m+14<4dm—20 =4k —12.

=1 i=1

Case 8) There exists exactly one index u with m —5 < f,. From (6.10) it follows that
fu < @Bm+1)—(m—3) =2m+ 4. We claim that there exist indices v, w different from wu
such that

2w + baw—1 — bay — bao_1 — fu <m —2. (6.11)
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In that case we can choose k = m — 3 and 21 = boy, 20 = boy_1, 23 = boy, 24 = boy,
25 = baw—1, 26 = bay—1 to have |F| <m —2 = k+ 1. Constructing z;,y; (1 <i <m —4) from
the remaining elements of the sequence (b;) in the obvious way this time we find that each e;
satisfies e; <m — 6 =k — 3, and

k m—2

e fi—(m—5)-2+3<2m+7<3m—15=3k—6.

It only remains to prove the above claim. The idea is to find v, w such a way that f,, f,
are small and at the same time bs,, — b2, lies in a prescribed interval that depends on the size
of f,. It turns out that the optimum strategy for such an approach is the following. First, for

any positive integer xk > 2, introduce
Lo={i|1<i<m—2 i#u, fi <}

Denote by x the number of indices i # u for which f; > k. Then
m—2
(m—3-2)+(k+1)r< Y fi—fu<@m+1)—(m—5)=2m+6.
i=1

Thus, kz <m+9,and m —3—x > (1 — 1/k)m — 3 — 9/k. We have proved

kr—1 9 6m — 30

Claim 6.4. |I,,| > m — — — 3. In particular t = |I7| > -
K

Write ¢g = 0 and let

U {bgi_l,bgi} = {01 << ... <1 < Cgt}.
i€l7

Now we separate two subcases as follows.

Case 8A) m — 5 < f, < 2m — 14. We will prove that there exist 1 <14 < j <t such that
%*3§Ai,j :c2j—cm- STI’L*? (612)

Since we have

1 < e — 41, €25 — C25-1 < 7, (6.13)
we can argue that
m— 12 S 2Ai,j —6 S C2j + C25—1 — €24 — C24—1 S 2Ai,j + 6 <2m — 7,

and that implies (6.11). If there exists 1 <4 <t — 1 such that

m
5_3§02i+2_02i§m_7a
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then (6.12) is immediate. Otherwise we have

< >m—6
S—— = Or (942 —Coi =M —
92 2 1+ )

C2i+2 — C24
for every integer 1 < i <t — 1. This way we distinguish between ‘small gaps’ and ‘large gaps’
in the sequence co,c4,...,cor. The large gaps partition this sequence into ‘blocks’, where
the gap between two consecutive elements within a block is always small. For such a block
B = (c2;,C2i+2, - - -, C2ir), the quantity £(B) = 2(i’ — i) we call the length of the block. Since

in order to have a pair ¢,j with (6.12), it is enough to prove that at least one block has a
length > m/2 — 3. Then the smallest integer j satisfying co; — c2; > m/2 — 3 will do the job.
We claim that there cannot be more than 3 blocks. Indeed, since every gap is at least 2,
were there 3 or more large gaps, we would find that
t—1

4m —1 Z Z(CQ»L'JFQ 7021') Z 3(m76)+ (t*3)2
i=0
6m — 30
> 3m—18+2(mf —3),
implying m < 221/5 < 45, a contradiction.
Since there are at most 3 blocks, one must contain at least ¢/3 different co;’s, and thus its

length
4m — 20 5

7
Given that m > 26 we conclude that indeed £(B) > m/2 — 3.

UB) > 2(% - 1) >

Case 3B) 2m — 13 < f,, < 2m + 4. This time we prove that

m 3 21
— <A< -m—— 14
2+6_ PSS EgmT g (6.14)

holds with suitable 1 < ¢ < j <t. In view of (6.13) this implies
m+6 < 2A;,; —6 <cgj +cj—1 — c2i — C2i—1 < 2A;; +6 < 3m — 15,

and from that (6.11) follows. Similarly to the previous case, we may assume that there are

only small and large gaps, which in this case means that

m 11 3
C2i42 — C2i < e + o Or Cait2 —Ca > oM 10

holds for every integer 1 <i <t — 1. Given that (here we use m > 44)
m 11 3
2. (— —) %m —10,
> T2) 3"
it suffices to prove that there is a block B with ¢(B) > m/2 + 6.
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Were there 2 or more large gaps, we would find that

t—1
3
_ > o) > 22 — _
dm—1 > ;(CQHQ 021)_2(2771 10)+(t 2)2
> 3m72o+2(6m’7;3072),

implying m < 221/5 < 45, a contradiction. Therefore there are at most 2 blocks, one of which

containing at least ¢/2 different co;’s. The length of that block thus satisfies

6m —30
7

Since m > 172/5, we find that £(B) > m/2 + 6, and the proof is complete.

UB) 22(54) > 2.

An Extension: Proof of Theorem 6.1

Obviously we may assume that € > 0 is small enough so that all the below arguments work.
We fix such an € and assume that n is large enough. As in the proof of Theorem 2.20, we may
assume that n = 2m is an even number. Put ¢ = 1/5 — 2e. We will prove that there exists an
integer k > (1 —c)m — 7 and a partition in the form (6.5) such that fore; = z; —y; (1 <i < k)
and F = N + Y."2%(—1)iz; the following conditions hold:

=1
k
D e <4k —12, (6.15)
=1
e <(l—=¢m—-11<k—-4 for i=1,2,...,k, (6.16)
|IF|<(l—¢)m—-6<k+1, and (6.17)
ZeiZS if s=1 or s=2. (6.18)

ei<s
As in the proof of Theorem 2.20, we can apply Lemma 6.2 with § = 4, and then Lemma 6.3
gives the result.
Clearly there exist 1 < p,v <n—1, p & {v — 1,v,v + 1} such that a,41 —a, = 1 and
aut+1 — oy < 2. Putting ©1 = avy1, ¥y1 = G, T2 = au41, Y2 = a, then takes care of (6.18).

Enumerate the remaining n — 4 elements of the sequence (a;) as
1<by<by<...<bop_g <4dm — 2.

Take ¢ = [em]. Since

q

> (bam-s-i — bi)

i=1

Y

q

> (2m—2i—3) =2gm — q(q +4)

i=1

> 2cm? — (em 4+ 1)(em +5) = (2¢ — ¢2)m? — (6em + 5)

9 16 9
(2—5 - —452)m2 —2m > (% —4€)m2 > |N|
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and bop—3—; — b; < 4m — 3 for every i, there exists an integer 0 < r < ¢m + 1 such that

T

N — sgn(N) Z(bgmfgfi — bz> S 2m — 2,

i=1

where sgn(N) = +1, if N > 0 and sgn(N) = —1, if N < 0. Consider
7’+1§br+1 <br+2< e < bom_4_y <4dm-—-2—r,

and let f; = byy9; — byyo;—1 for 1 <i<m —2—r, then

m—r—2

> fi<((dm—2-r)—(r+1)) = (m—r-3) <3m. (6.19)

i=1
Were there 3 or more indices ¢ with f; > (1 — ¢)m — 11, it would imply

m—r—2

Z fi>3((1—c)ym—11) + (m —r —5) > (4 — 4c)m — 39 > 3m,

a contradiction if m is large enough. Thus there exist an integer s € {0,1,2} and indices
i1,...,0s such that f; > (1 —¢)m — 11 if and only if ¢ € {iy,...,is}. Moreover, if s > 1, then
for each j € {1,...,s} we have

fi, <3m —(m—7r—-3)<(2+c)m+4.

Consequently, there exist d1,...,d; € {—1,+1} such that

N —sgn(N) Y (bam-s—i —bi) = > _ i fi,| < (2+c)m +4. (6.20)
j=1

i=1
Put k = [3/¢] < (1 — ¢)m — 11 and introduce
I.={i|1<i<m-r-—-2, f; <k}

Denoting by x the number of indices ¢ with f; > x we have

m—r—2
(m—-r—2-—2)+Hr+1z< Z fi <3m,

i=1

implying xkz < (24 ¢)m + 3, and thus

2 3 4
t=|],€|:m—7°—2—x>(1—c— +c)m—3——>(—+€)m.
K K 5

Write ¢g = 0 and let

U {brg2i—1,brq2i} = {1 < ca <...<ca—1 < ca}
i€l
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We prove that there exist 1 <3 < 77 <t such that

2 4

gm S Al = C2j5; — C24, S gm (6.21)
This is immediate if there exists 1 <7 <t — 1 such that

gm < o402 — €2 < gm,

otherwise we have

2 4
C2i4+2 — C2i < gm Or Coi42 — C2i > gm
for every integer 1 < i < t — 1. Gaps in the sequence co,cy, ..., cot, which are larger than

4m/5, partition this sequence into blocks, where the gap between two consecutive elements
within a block is always smaller than 2m/5. We claim that there cannot be more than 3 such
blocks. Were there on the contrary at least 3 large gaps, we would find that

t

4
dm — 2 > (02i+2—02i)>3-gm+(t—3)-2>(4+2€)m—6,

|
—

Il
=]

i
a contradiction. Now one of the blocks must contain at least t/3 different co;’s, and thus its
length satisfies

UB) > 2(% - 1) > %m.

Consequently, (6.21) holds with suitable elements c;,,c2j, of B. Removing 1,71 from I
and repeating the argument we find 1 < iy < jo < t such that {ia,52} N {i1,71} = 0 and

2m/5 < Ay = cgj, — c2i, < 4m/5. Since for o = 1,2 we have
1 <95, — €25 —1,C25, — C2j0—1 < K, (6.22)
we can argue that
200 —k+1 < Ty =cgj, +C25,—1 — C2ip, — C2i0—1 <204 + K — 1,

that is,

4 3 8 3

-m—-——-<Ty << —. 6.23

5m € 5m + € ( )
In view of (6.20) and (6.23), there exist an integer p € {0,1,2} and m1,...,7n, € {—1,+1} such
that

T

’N —sgn(N) Y (bam-s-i —bi) = > _5ifi; = > nala
j=1 a=1

i=1

4 3
<5m—|—26 ( c)m

Consequently, we can choose k =m —r —s—2p > (1 — ¢)m — 7, and the elements of the set

s S p
U{bi; bam—3—i} U U {br42i;, bry2i;—1} U U {c2in s C2i0—1,C2j,, C2j—1}
=1 a=1

j=1
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can be enumerated as z1,...,z,_ox s0 that F = N + S22 (—1)iz; satisfies (6.17). Since

1=1
fi < (1 —¢)m —11 holds for every 1 <i<m —1r — 2,4 & {i1,...,is}, removing 21, ..., zZn_ak
form the sequence by, ...,ba,—4, the rest can be rearranged as xs,ys,..., Tk, yr such that

1 <e; =x; — y; satisfies (6.16). Finally, it follows from (6.19) that

k m—r—2
Slei< Y fi+3<3m+3< (4 doym — 40 < 4k — 12,

=1 i=1

therefore condition (6.15) is also fulfilled. This completes the proof of Theorem 6.1.

6.2 Arithmetic Progressions and a Conjecture of Alon

In this section we first collect a few simple consequences of the Dias da Silva-Hamidoune
theorem. Based on these we prove Theorem 2.22 in the second subsection. Finally we derive
Theorems 2.24 and 2.25 based on Lev’s result (Theorem 2.23) and briefly sketch how the ideas
of the first two subsections can be applied to prove Alon’s conjecture without depending on

Lev’s theorem.

Preliminaries

Throughout this subsection we work with and integer d > 2 and a prime p which is usually
large enough compared to d. By a d-set we mean a set of cardinality d. To simplify notation,
we introduce

p
<=+1
d+

From now on A will always denote a subset of [1,p]. An immediate consequence of the
Dias da Silva-Hamidoune theorem (Theorem 2.10) is that if |A| > ng(p) + d, then X4(A)

intersects every residue class modulo p, see [44]. By routine induction one obtains the following

na(p) = V#J

generalization (see [44], Corollary 2.3).

Lemma 6.5. Let j be a positive integer, and assume that |A| > ngq(p) + jd. Then for every
sequence 1,T2,...,%; of integers there exists a sequence Ay, Aa, ..., A; of pairwise disjoint
d-sets of A such that o(A;) = x; (mod p) for every 1 <i < j.

To prove Theorem 2.22 we use a method similar to the one developed by Hamidoune in

[44]. From this point on, however, we proceed somewhat differently.

Lemma 6.6. Let j be a positive integer, and assume that |A| > nq(p)+jd. Then there exists a
sequence Aq, Az, ..., Aj of pairwise disjoint d-sets of A such that o(A;) € {p,2p,...,(d—1)p}
for every 1 <4 < j. In particular, with K = [j/(d — 1)], there exists an integer t € [1,d — 1]
and a sequence By, Ba, ..., Bx of pairwise disjoint d-sets of A such that o(B;) = tp for every
1<i<K.
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Proof. Apply the previous lemma with x1,22,...,2; = 0. Then o(4;) < dp is divisible by p
for every 1 < i < K. The second statement follows from the pigeonhole principle. O

This inspires the following definition. We denote by t(A) = t4(A) any integer 1 < ¢ < d—1
for which the number of pairwise disjoint d-subsets B of A with the property o(B) = tp is

maximum.

Lemma 6.7. Assume that |A| > nq(p) + 2d*. Then for every integer x which is divisible by
t(A) and satisfies t(A)dp < x < d?p, there is a subset X C A such that o(X) = x.

Proof. Consider the integer y = x/t(A). In view of Lemma 6.5, there exist pairwise disjoint
sets A1, Az, ..., Aga)y-1ya+1 C A of cardinality d such that 0(A;) = y (mod p) for each
1 <i<(t(A) —1)d+ 1. Since o(A;) < dp, there is a subsequence 4;,, 4;,,..., A
integer 0 < s < d — 1 such that o(4;,) = sp+ yo, where 0 < yp < pand y = yo (mod p).
Then B = A;, U...UA;, , satisfies |B| = t(A)d < d(d—1), o(B) = t(A)(sp+yo) < t(A)dp < =
and x —o(B) =z —t(A)yo =z —t(A)y =0 (mod p). Moreover, it is also divisible by ¢(A),
hence also by t(A)p. Due to the definition of ¢(A), in view of Lemma 6.6 there exist pairwise

iray and an

disjoint d-sets By, ..., Byge such that o(B;) = t(A)p. Since |B| < d?, wlog. we may assume
that Bi,..., Bge are disjoint from B. Since x — o(B) < d?p is divisible by t(A)p, there is an
index j < d? such that x — 0(B) = o(B1)U...Uc(Bj). Thus,z =c(BUB; U...UBj). O

The Second Conjecture of Lev: Proof of Theorem 2.22

In view of Theorem 2.19 we may assume that

3n—3

</l <2n-—6.
From Corollary 1 in [63] it follows, that
20— 2n + 1,30+ 2] C B(A).

Moreover, 2¢ — 2n + 1 < ¢ — 5, thus the above interval contains at least 2¢ 4+ 8 consecutive
integers.

Our strategy is the following. First we choose a prime (1 —¢)¢ < p < ¢. Note that we need
only a few terms to represent each number in the above interval I as an element of ¥(A). Thus
if € is small enough, then the density of the remaining elements of A in [1,p] is considerably
larger than 1/3, and then we can use Lemma 6.6 to extend the length of the interval I by 2p
in each of several iterations, until it gets long enough to continue with the second phase.

Since 3(A) is symmetric about o(A)/2, it is enough to extend the interval until it contains
loc(A)/2]. In the second phase we choose a prime ¢ between ¢ and (1 + §)¢ and consider A

as a subset of [1,¢]. As the length of I grows, the density of the remaining elements that we
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can use for the extension of I is getting smaller. The point is, it stays above a certain bound,
and thus in each iteration we can extend the length of I by the same universal multiple of ¢,
which allows us to complete the phase.

To see what exactly is needed in the first phase, we start with the second one. If n
is large enough, then there is a prime number ¢ such that ¢ < ¢ < 17¢/16. Denote by
L the least common multiple of the numbers 2,3,...,17. Assume that z < ¢(A4)/2, and
y = © — Lq belongs to X(A), that is, there is a subset B of A such that y = o(B). Then
o(A\ B) =c(A) —y > o(A)/2 > n?/4. Consequently,

2
|A\ B| > % > g > % > % >N18(p)+ﬁ — 1> Nis(p) + 182L,

if n and hence p is large enough. According to Lemma 6.6, there exists an integer ¢ < 17 and

a sequence Bi, Bo, ..., By, of pairwise disjoint subsets of A\ B such that o(B;) = tq for every

1 <4< L. It follows that

r=0(BUBU...UBpL;),

proving that € ¥(A). Accordingly, we only have to prove that
(20— 2n + 1,20 — 2n + Lq] C B(A).

Then it follows from the above argument that [2¢ — 2n 4 1, |0(A)/2]] C X(A). By symmetry
we find that [[0(A)/2],0(A) — (20 — 2n + 1)] C X(A), implying Theorem 2.22.

Turning thus to the first phase, we choose a prime p such that (15/16)¢ < p < ¢, and put
M = 17L/30, so that Lqg < 2Mp. Let A’ = AN|[1,p|, then |A'| > n — (£ — p). Choose any
integer x satisfying 3/+2 < & < 3¢+ 2+ 2Mp. Then there is an integer y € [3¢+3 —2p, 3¢+ 2]
such that y = (mod 2p). Since 2p < 2¢, we have y € [2¢ — 2n + 1,3¢ + 2], and thus there
is C' C A such that y = o(C). Note that |C] < v/6 + 4 and we have x — y = 2mp with some
integer m € [1, M]. Now

|A"\ C >n—(€—p)—\/m>g—%—\/m>Ng(p)+12M,

provided that n is large enough. In view of Lemma 6.6, there exists a sequence C1,Cs, ..., Caps
of pairwise disjoint subsets of A’\ C' such that either o(C;) = p holds for every 1 < i < 2M, or
o(C;) = 2pis true for every 1 < i < 2M. In the first case we find that z = o(CUCU...UC%y,),
whereas ¢ = o(C UCy U...UC,,) in the second case. Consequently x € ¥(A), hence
[30+4 3,30+ 2+ 2Mp] C X(A). Since [2¢ —2n + 1,30+ 2] C X(A), it follows that

[20 —2n+ 1,20 — 2n+ Lq] C [2¢ — 2n+ 1,30 + 2 + 2Mp] C S(A).
This completes the proof of Theorem 2.22.
We note that applying the method of Section 6.1 and developing Lemmas 6.5 and 6.6 in a

different direction the idea of the previous proof leads to a more effective version of Theorem
2.22. We do not elaborate on this here.
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The Conjecture of Alon

Proof of Theorem 2.24. We prove the statement by induction on d with ny = ni(d) =
no + dlogs 5 d, where ng is as in Theorem 2.23. If d < n/400Inn, then

dlogspd < — on - n
832 = 400Inn In(3/2) ~ 101’

hence the theorem follows with n; = 1.01ng. For the inductional step we may clearly assume

that

4
< —1) -2 ,
n_d_lJr(d 1)—2 (6.24)

It may also be assumed for the initial step d = 2, since otherwise we have £ = n, in which case
obviously 3(A) = [0,0(A)].

Assume that Ng(A) > g — 1 holds for every positive integer ¢ < d; this is a priori true if
d = 2. Since n > |¢/d| +d—1, it is also true for ¢ = d. Moreover, if ¢ = d+r with 1 <r < d,
then in view of n > 10d > 5d?/(d — 1), condition (6.24) implies

0> (d—1)n—(d—1)(d—3) > 4d® > (1+%)d(d+r),

and consequently

T
Sn—|Z|>c——— _4+d-2> — ) =¢q—1.
N,(A) > n L]J>d T tdm2z () ([d-2) =g -1

Therefore in this case ny(A) > ¢ — 1 holds for every ¢ < 2d < 2¢/n. Since n > {/d >
400¢1nn/n, we have n > 20(¢1nn)*/2. Thus it follows from Theorem 2.23 that ¥(A) contains
every integer in the interval [Ao(A), (1 — X)o(A)] with X\ = 280¢/n?. Given that

280/¢2
n

Ao(A) < A(nk) = < 280d¢,

our statement follows with ¢ = 1 in this case. This includes the initial step d = 2.
It remains to study the case when Ny(A) < ¢ —2 for some integer 2 < ¢ < d. Collect in Ay
those elements of A that are not divisible by ¢, and define the a set of integers A’ such that

A=AjU{qa|ae A'}.

Introduce the integers ¢’ = |¢/q] and d’ = [d/q], then 2 < d' < (2/3)d < d and A’ is a set of
integers in the interval [1,¢'] whose cardinality satisfies
I / E 6/ !
n :|A|:|A|7|A0|>E+d7(]>g+d -2
and
n' >n—(q—2)>no+dlogpd—d>ng+dlogy,,d > ni(d).

Since n > 3d, we also have

n' n—d 2 n

1007 ~ 400lnn ~ 3 400Inn

2d
>—>d.
=3 =
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It follows from the inductional hypothesis that there is an integer ¢ € [1,d’ — 1] such that
3(A’) contains all multiples of ¢’ that belong to the interval

280d'¢', 5(A') — 280d'C').
Accordingly, ¢X(A’) C X(A) contains all multiples of t = gt < d lying in the interval
[280gd'V', qo(A") — 280qd'(’].
Given that qd'¢/ < d'¢ < (2/3)d¢ < d¢, and that in view of o(Ag) < (¢ —2)¢ < df we also have
qo(A") —280qd't' > o(A) — o(Ap) — 200d¢ > o(A) — 280d,
this completes the inductional step. (I

Now it is easy to prove Theorem 2.25. For any integer s > 2, denote by v(s) the least
common multiple of the numbers 2,3,...,s. A routine application of the prime number
theorem gives Int(s) = (1+0(1))s. Thus, if m < €2, then d = snd(m) < (2+o(1))Inf. If £ is
sufficiently large, then d < 3In¢, and a set A C [1,/] of cardinality |A| = [£/d| + d — 2 with
the property that m & 3(A) can be constructed as follows. Suppose that m =i (mod d),
where 1 < i < d— 1. Let A consist of all |¢/d] multiples of d in I = [1,/¢], i — 1 different
elements of I that are congruent to 1 modulo d, and d — ¢ — 1 additional members of I that
are congruent to —1 modulo d. It is easy to check that A has the claimed property, see [5] for
details.

It remains to check that if ¢ is large enough and (280 + )/Infl < m < ¢%2/(84¢)In*¢,
then with d = snd(m) it is true that A C [1,4], |A| > |¢/d] + d — 1 implies that m €
¥(A). We may assume that ¢ < 1. If £ is large enough and (280 4 €)¢In¢ < m < 574¢1n¥,
then d < (1 4 £/280)1In#, the conditions of Theorem 2.24 are satisfied, and m belongs to
the interval [280d¢,o(A) — 280d¢]. Since m is divisible by every integer ¢t € [1,d — 1], it
follows that m € X(A). If £ is large enough and 574¢Inf < m < (?/(8 4 ¢)In®¢, then
d < (24 ¢/20)In¢, the conditions of Theorem 2.24 are once again satisfied, and m belongs to
the interval [280d¢, o(A) — 280d/¢], since 280d¢ < 574¢1n¢ and

(A) — 2800 > * ( : )2 5740l t > — &

o(4) — ] - nl>-———.
2\(2+¢/20)In¢ (8 +¢)Ine?

Once again, it follows that m € X(A). O

Our original idea to prove Theorem 2.25 for a slightly shorter range of m was to follow the
method we described in the second subsection for the proof of Theorem 2.22. Here Lemma
6.7 seems to be a good starting point to build up a long arithmetic progression in X(A) for A
dense enough. To control the difference when extending this arithmetic progression the way

the large block is extended in the proof of Theorem 2.22 is, however, a nontrivial task which
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leads to several technical difficulties that we do not discuss here. Basically we prove a mixture
of Theorems 2.23 and 2.24 when ¢ is a prime and d does not exceed a small power of n. The

transfer to the general case depends on the following simple lemma:

Lemma 6.8. Let A be a set of integers and q a positive integer such that Ny(A) > ¢ — 1.
Then there exists a proper divisor d of q such that X(A) intersects each residue class modulo
q that is divisible by d.

We note that this lemma is tight when ¢ is a power of a prime p: If A consist of ¢/p — 1
elements that are congruent to —1 modulo ¢ and (p — 1)q/p — 1 additional elements that are

congruent to 1 modulo ¢, then the conclusion fails.

We find it stylish to conclude this dissertation indicating a proof of Lemma 6.8 in the case
when ¢ is a prime. Assume for that end that aq,...,a,—1 are nonzero elements of the Galois
field F4. All we have to prove is that

qg—1
Z(al, .. .,aqfl) = {Zsiai | g; € {0, 1}} = Fq.
=1

Assume on the contrary that ¥(aq,...,aq—1) is contained in a set C' C F, of cardinality ¢ — 1.
Put A; = {0,a;}, then |A1| =...=|A4—1] = 2. The polynomial

fl@r, . zg-1) = H(ZE1 .t xg—1 — ) € Fglr, ... wg1]
ceC

has a leading term a1 ...24—1, where a = (¢ —1)! is a nonzero element of Fy. It follows from

the polynomial lemma (Lemma 2.27) that f cannot vanish on A; x...x A4_1, a contradiction.



Epilogue

It may be interesting to see how the work contained in this dissertation has developed. My
first encounter with combinatorial number theory occurred at the 1996 DIMACS Workshop.
During that workshop I solved the first problem of Lev and started studying his work which
led to some versions of the results discussed in Chapter 6. The original proofs were fairly
complicated, and I never since had the time and the energy to write them up. This summer,
however, I received a letter from Stefanie Gerke in London, who wanted to apply Theorem
2.22 for a problem in graph theory. That inquiry finally triggered a follow-up work I could
carry out in the peaceful environment of the CWI. It led to a lot of simplifications, stronger

results and the papers [57, 58].

At the end of 1999 I visited Oriol Serra in Barcelona, who showed me Alon’s paper [3].
The multiplicative analogue I invented during that visit resulted in the paper [20]. During the
spring of 2003, enjoying the privileged life of a research associate at the Rényi Institute without
any teaching duties, I first started further pursuing that idea, which led to the paper [52]. That
was when I convinced myself of the possibility that the Combinatorial Nullstellensatz may be
applied to get structural results. Having no stress and time pressure at the time — a rare
occasion —, I could concentrate on just one difficult problem for months, and the result was
Theorem 2.14. It was also during that period and a month spent at the UPC in Barcelona,
when I could finally write the expository paper [53], invited by Shalom Eliahou, Isidoro Gitler
and Jarik Nesettil for a special volume of DM. In order to extend Theorem 2.14 to general

abelian groups I had to first invent a new proof of Theorem 2.11, which appeared in [51].

The submission of the paper [54] had yet to wait for another year when I once again had a
chance working on it at the LH.E.S. in France. Extending the ideas of [51] to noncommutative
groups I was able to carry out during a month’s visit at the ETH Ziirich in 2005. A second
application of the Combinatorial Nullstellensatz [56] occurred to me during my last visit at
the LH.E.S. the following summer. In retrospect, that paper should have preceded [54], but
at that time it seemed very complicated to handle the restricted sumset of two different sets
this way. Here we presented them in the more logical order. Once again, I am indebted to all

these great institutions where I was given the chance to carry out my research.
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