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Foreword

This dissertation contains a good part of the results of my reserach in additive combinatorics

I have been conducting during the last decade. It is based on the papers [20] and [51]–[58]

all whose central theme is connected to the theory of set addition. The four main chapters

contain results obtained by four different methods reflected in their respective titles. The

results in the first three of those chapters nicely fit into a general framework that we explain

in the introduction. The last chapter appears to be out of this context at a first glance. Most

of the results therein, however, can be traced back to the Erdős–Heilbronn problem, which is

in the center of these investigations. Therefore we feel that the present work contains quite a

coherent section of our research curriculum.

Most of the above mentioned papers have already been refereed and published. Exceptions

are [57] and [58], from which the whole Chapter 6 is extracted, and [56] that contains Section

4.1. The paper [20] I have written with coauthors; from that paper I only include here those

results in which my contribution was more than essential.

During this work I benefitted a lot from the knowledge, support, encouragement and friend-

ship of many colleagues, including Noga Alon, Imre Bárány, Marc Burger, Jean-Pierre Bour-

guignon, Shalom Eliahou, Komei Fukuda, Yahya Ould Hamidoune, Anna Lladó, Monique

Laurent, Seva Lev, László Lovász, Hans-Jakob Lüthi, Péter Pálfy, Lajos Rónyai, Vera Rosta,

Imre Ruzsa, Lex Schrijver, Oriol Serra, Balázs Szegedy, Tamás Szőnyi, Kati Vesztergombi,

and Emo Welzl. I also greatfully acknowledge the support of the National Scientific Research

Funds (OTKA) and the Bolyai Research Fellowship as well as the support and hospitality of

the following institutions: the CRM in Montréal, the CWI in Amsterdam, the ETH in Zürich,

the IAS in Princeton, the IHÉS in Bures-sur-Yvette, the RI in Budapest, and the UPC in

Barcelona.

My greatest gratitude goes to Gabi and Béla Bollobás who helped me in every possible respect

just when everything seemed to collapse.

I dedicate this dissertation to my father who could have been a great scientist.
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Notation

If q is a power of a prime number, then the Galois field GF(q) of q elements will be denoted

by Fq. For a positive integer n, Zn = Z/nZ denotes the cyclic group of order n, whereas

Qn = Q(e2πi/n) = Q(x)/(Φn(x)) stands for the nth cyclotomic field, Φn denoting the nth

cyclotomic polynomial. The symmetric group of degree k is denoted by Sk.

For a nontrivial group G we denote by p(G) the order of the smallest nontrivial subgroup of

G. If G is finite, then p(G) equals the smallest prime divisor of the order of G. On the other

hand, p(G) = ∞ if and only if G is torsion free. For an abelian group G and a natural number

n we denote by Gn the direct sum of n copies of G.

A and B will always denote (usually nonempty) subsets of some group G. Unless declared

otherwise, their cardinalities will be denoted by |A| = k and |B| = ℓ, respectively. In case of

abelian groups we will use additive notation. In that case

A+B = {a+ b | a ∈ A, b ∈ B}

stands for the usual Minkowski-sum of A and B, whereas

A+̇B = {a+ b | a ∈ A, b ∈ B, a 6= b}

denotes their so-called restricted sum. If G is not declared to be commutative, we will stick to

the more accepted multiplicative notation. Thus, AB = {ab | a ∈ A, b ∈ B} in such a case.

In the last chapter, for positive integers a < b we will use the notation

[a, b] = {a, a+ 1, . . . , b− 1, b}.

The sum of the elements of a set B will be denoted by σ(B), and Σ(A) = {σ(B) | B ⊆ A}
will represent the set of all possible subset sums of A, including 0 = σ(∅). The notation

Σd(A) = {σ(B) | B ⊆ A, |B| = d}

is a deviation from the standard notation used in the context of restricted multiple set addition.

Finally, if A is a set of integers and q is a positive integer, then Nq(A) denotes the number of

elements in A not divisible by q.

The rest of the notation we use throughout this dissertation is all standard.
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Chapter 1

First Principles

Perhaps the most ancient result in combinatorial number theory is the following. Let p denote

a prime number. If the nonempty sets A and B of integers intersect k and ℓ different residue

classes modulo p, respectively, then in case p ≥ k + ℓ − 1, at least k + ℓ − 1 different residue

classes are represented by the numbers a+ b with a ∈ A, b ∈ B. In our terminology: If A,B

are nonempty subsets of Zp, then p ≥ |A|+ |B|−1 implies |A+B| ≥ |A|+ |B|−1. This result

is due to Cauchy [16] who invented it in relation to Lagrange’s famous ‘four squares theorem’,

and is referred to as the Cauchy–Davenport theorem. After Davenport [21] rediscovered the

result in 1935, it was immediately generalized by Chowla [19] and Pillai [72]. The short but

tricky combinatorial proof actually gives the following generalization (see e.g. [53]), which is

a good starting point to the present dissertation.

Theorem 1.1. If A and B are nonempty subsets of an abelian group G such that p(G) ≥
|A| + |B| − 1, then |A+B| ≥ |A| + |B| − 1.

Proof. Assume that |A| ≤ |B|. If |A| = 1, then clearly |A+B| = |B| = |A|+|B|−1. Otherwise

assume for a moment that B intersects A properly, that is, A ∩B 6= ∅ and A \B 6= ∅. In this

case we may replace A with the set A′ = A∩B and B with B′ = A∪B such that 0 < |A′| < |A|,
|A′| + |B′| − 1 = |A| + |B| − 1 and A′ +B′ ⊆ A+B, implying |A′ +B′| ≤ |A+B|. If B does

not intersect A properly, we still can do the following. Choose some c ∈ G such that the set

B + c = B + {c} intersects A properly. Then replace A with the set A′ = A ∩ (B + c) and B

with B′ = A∪ (B+ c). Note that |B+ c| = |B| and that A+ (B+ c) = (A+B) + c, implying

|A+(B+c)| = |A+B|. Therefore again we have that 0 < |A′| < |A|, |A′|+|B′|−1 = |A|+|B|−1

and |A′ + B′| ≤ |A + B|. Thus, it suffices to prove the estimate for the sets A′ and B′. In

a finite number of steps we can reduce the problem to the case when |A| = 1, and the result

follows.

It only remains to prove that an appropriate c ∈ G can be found. First, there is a c0 ∈ G

such that A ∩ (B + c0) is not empty. If A is not contained in B + c0, then c = c0 will do.

Otherwise there are two different elements of A, say a and b = a − c1, that both belong to

5



6 CHAPTER 1. FIRST PRINCIPLES

B+c0. Since |B+c0| = |B| < p(G) and the numbers a, a−c1, a−2c1, . . . , a−(p(G)−1)c1 are all

different, there is a smallest positive integer t such that a−tc1 ∈ B+c0 but a−(t+1)c1 6∈ B+c0.

Writing c = c0 + tc1 we can conclude that a ∈ A∩ (B+ c) and b = a− c1 ∈ A \ (B+ c), which

makes the proof complete.

This idea has eventually led to Vosper’s inverse theorem [87] and also to Kneser’s theorem

[61] that became a very powerful tool in combinatorial number theory.

Kneser’s theorem states that if A,B are finite nonempty subsets of an abelian group G,

then either |A+B| ≥ |A| + |B|, or

|A+B| = |A+H | + |B +H | − |H |,

where H = {g ∈ G | (A+ B) + g = A +B} is the stabilizer, or the set of periods, of A+ B.

Note that H is clearly a subgroup of G and A + B is a union of certain cosets of H . It

implies Theorem 1.1 as follows. Assume that A,B are finite nonempty subsets of G such that

p(G) ≥ |A| + |B| − 1. If |A + B| ≥ |A| + |B|, then we are ready. Otherwise, if 0 is the only

period of A+ B, then |A+ B| = |A+ H | + |B + H | − |H | = |A| + |B| − 1. Finally, if H is a

nontrivial subgroup of G, then |H | ≥ p(G), and therefore |A + H | ≥ |H | and |B + H | ≥ |H |
imply

|A+B| = |A+H | + |B +H | − |H | ≥ |H | ≥ p(G) ≥ |A| + |B| − 1.

Instead of going deeper into the history at this point, we present in the next section a list

of statements that are relevant to our work and can be easily proved in any linearly ordered

abelian group. A standard compactness argument implies that the statements are valid in any

abelian group G with p(G) large enough. A more effective principle is discussed in the section

that follows. After that we return to the history of the subject and describe our main new

results in this context. This is followed by a brief description of the algebraic background and

the new methods we employ in the dissertation.

1.1 A General Framework

Let G be an abelian group and let A,B be nonempty subsets of G. Assume that, like in the

case of Z and Q, there is a linear order < on G, which is compatible with the addition on G,

that is, for arbitrary elements a, b, c ∈ G, a < b implies a + c < b + c. It is immediate that

such a linearly orderable group cannot have any nonzero element of finite order. It is also easy

to see, that if the abelian groups G and H are linearly orderable, then so is their direct sum

G ⊕H . Thus, every finitely generated torsion free abelian group can be equipped with such

a linear order. In fact, it can be proved using transfinite induction, that even the direct sum
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of infinitely many linearly orderable abelian groups can be ordered. Since every torsion free

abelian group is a subgroup of the direct sum of some isomorphic copies of Q (see e.g. [76]),

we arrive at the (well known) conclusion that an abelian group can be ordered if and only if

it is torsion free.

Thus, if G is torsion free, then the elements of A and B can be enumerated as a1 < a2 <

. . . < ak and b1 < b2 < . . . < bℓ such that

a1 + b1 < a2 + b1 < . . . < ak + b1 < ak + b2 < . . . < ak + bℓ.

Moreover, at most one element of A can be equal to b1, and no more than one member of

B can equal ak. It follows that the following statements are valid in any torsion free abelian

group G.

Statement 1.2. If A and B are nonempty finite subsets of the abelian group G,then |A+B| ≥
k + ℓ− 1.

Statement 1.3. If A and B are nonempty finite subsets of the abelian group G,then |A+̇B| ≥
k + ℓ− 3.

In particular,

Statement 1.4. If A is a finite subset of the abelian group G, then |A+A| ≥ 2k − 1.

Statement 1.5. If A is a finite subset of the abelian group G, then |A+̇A| ≥ 2k − 3.

If A is different from B, then we can say something stronger:

Statement 1.6. If A and B are nonempty finite subsets of the abelian group G such that

A 6= B, then |A+̇B| ≥ k + ℓ− 2.

Indeed, if k = 1, then |A+̇B| ≥ |B|−1 = k+ ℓ−2, and we can argue in a similar way if ℓ = 1.

Thus, we may assume that k, ℓ ≥ 2 and we have already proved that |A′| + |B′| < k + ℓ and

|A′+̇B′| = |A′|+ |B′|− 3 implies A′ = B′. If a1 6= b1, then we may assume without any loss of

generality that b1 < a1. In this case no element of A can be equal to b1, so at least k + ℓ− 2

out of the k + ℓ − 1 different numbers

a1 + b1 < a2 + b1 < . . . < ak + b1 < ak + b2 < . . . < ak + bℓ

belong to A+̇B. Thus, we may assume that a1 = b1, and also that k ≤ ℓ, say. Since A 6= B,

there is a smallest integer t with the property that at = bt but at+1 6= bt+1. If t = k, that

is, at+1 does not even exist, we find that ℓ > k ≥ 2 and then A+̇B contains the following

k + ℓ− 2 different numbers:

a1 + b2 < . . . < a1 + bk < . . . < ak−1 + bk <

ak−1 + bk+1 < ak + bk+1 < . . . < ak + bℓ.
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Otherwise we may assume that at+1 < bt+1, and even if t = 1, we can consider the following

2t− 2 elements of A+̇B:

a1 + b2 < . . . < a1 + bt < . . . < at−1 + bt < at+1 + bt−1.

Defining A′ = A \ {a1, . . . , at} and B′ = B \ {b1, . . . , bt} we find that A′ 6= B′, so by our

induction hypothesis, |A′+̇B′| ≥ (k− t)+(ℓ− t)−2. This way we found k+ ℓ−2t−2 elements

of A+̇B, each larger than the previously found 2t−2 numbers. Finally, the elements at+1 + bt

and at + bt+1 also belong to A+̇B and they are both larger than the first 2t− 2 numbers and

at the same time smaller than the elements of A′+̇B′. That is,

|A+̇B| ≥ (2t− 2) + (k + ℓ− 2t− 2) + 2 = k + ℓ− 2,

as we wanted to prove.

It is not difficult to characterize the sets A and B for which equality holds in Statement

1.2, a proof can be found in [69].

Statement 1.7. If A and B are nonempty finite subsets of the abelian group G such that

|A+B| = k + ℓ− 1, then A and B are both arithmetic progressions of the same difference.

In particular, the following statement is also valid in every torsion free abelian group:

Statement 1.8. If A is a nonempty finite subset of the abelian group G such that |A+A| =

2k − 1, then A is an arithmetic progressions.

In view of Statement 1.6, |A+̇B| = k + ℓ− 3 is only possible if A = B. If k is 2 or 3, then

clearly |A+̇A| = 2k − 3. If k is 4, then |A+̇A| is either 5 or 6, where the first case happens if

and only if a1 + a4 = a2 + a3. Otherwise the analogue of the previous statement is true, see

[69].

Statement 1.9. If A is a finite subset of the abelian group G such that k = |A| ≥ 5 and

|A+̇A| = 2k − 3, then A is an arithmetic progression.

Assume now that a1 ≤ a2 ≤ . . . ≤ ak and b1 < b2 < . . . < bk, then clearly

a1 + b1 < a2 + b2 < . . . < ak + bk.

Consequently, the following statements are also valid in every torsion free abelian group G.

Statement 1.10. If A and B are subsets of the abelian group G, each of cardinality k, then

there are numberings a1, a2, . . . , ak and b1, . . . , bk of the elements of A and B, respectively,

such that the sums a1 + b1, a2 + b2, . . . , ak + bk are pairwise different.

Statement 1.11. Let A = (a1, . . . , ak) be a sequence of k elements in the abelian group G.

Then for any subset B ⊂ G of cardinality k there is a numbering b1, . . . , bk of the elements of

B such that the sums a1 + b1, a2 + b2, . . . , ak + bk are pairwise different.
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That is, Statement 1.10 is also true if A is a multiset. Finally, if A is a finite multiset of at least

two nonzero elements in a linearly ordered abelian group, then it can be partitioned into two

nonempty multisets containing the negative and the positive elements of A, respectively, such

that no elements in the same part can add up to zero (take any partition if all the elements of

A have the same sign). Consequently, the following is true in torsion free abelian groups G.

Statement 1.12. Any multiset of k ≥ 2 nonzero elements of G can be partitioned into two

nonempty parts such that in none of the parts does a zero subsum occur.

Common features of all the above statements are that for fixed values of k and ℓ they can

be written as a closed formula in the first order language of abelian groups, and that they

are valid in every linearly ordered, and thus also in every torsion free abelian group. Based

on a standard compactness argument it follows that the same statements hold in any abelian

group G for which p(G) is large enough compared to k and ℓ.

Theorem 1.13. Let Φ be any statement that can be formulated as a sentence in the first

order language of abelian groups. Assume that Φ is true in every linearly orderable abelian

group. Then there is an integer p0 = p0(Φ) such that Φ is valid in every abelian group G with

p(G) ≥ p0.

Proof. Assume that, on the contrary, there is an infinite sequence of prime numbers p1 < p2 <

p3 < . . . such that, for every positive integer i, there is an abelian group Gi with the property

that p(Gi) = pi and Φ is not valid in Gi. Let U denote any non-principal ultrafilter on the

set of positive integers Z+, it contains all co-finite subsets of Z+. Let G =
∏

Gi/U be the

ultraproduct of the groups Gi with respect to U .

According to the fundamental theorem of ultraproducts, also known as  Loś’s theorem

(cf. [17, 40]), a sentence Ψ in the first order language of abelian groups is true in G if and only

if the set

{i ∈ Z+ | Ψ is valid in Gi}

belongs to U . Since ¬Φ is valid in every Gi and, by definition, Z+ ∈ U , it follows that Φ is

not valid in G.

Notice that, for any fixed k, the statement Ψk ‘there is no nonzero element whose order

is less than k’ is in fact a first order sentence for abelian groups. Since for any fixed k there

is only a finite number of indices i with pi < k, the set of indices for which Ψk is valid in Gi

belongs to U . It follows that for every k, no element of G other than 0 can have an order less

than k, implying that G is torsion free. Consequently, G can be ordered, and thus Φ is valid

in G. This contradiction completes the proof.

We note that a similar argument has also been suggested by Ambrus Pál [71], see also [49].
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As we have already mentioned, all the above statements of the previous section can be ex-

pressed as a first order sentence, and thus must be valid, in the view of the above theorem,

whenever p(G) is large enough compared to k and ℓ.

Now we turn our attention to more efficient methods. The drawback of above argument

on one hand is that it depends on the axiom of choice, and on the other hand is that it

does not say how large p(G) should indeed be. An effective, though in general exponentional

admissible bound can be obtained by the rectification principle of Freiman [37], worked out

by Bilu, Ruzsa and Lev for cyclic groups of prime order in [13]. We elaborate on this idea in

the next section.

1.2 The Rectification Principle

Let Φ be any closed formula in the first order language of abelian groups, written inductively

in the usual way. Every atomic formula that occurs in Φ is of the form τ = σ where

τ = x1 + x2 + . . .+ xv(τ) and σ = y1 + y2 + . . .+ yv(σ),

such that x1, x2, . . . , xv(τ) and y1, y2, . . . , yv(σ) are not necessarily different variables of Φ. We

say that Φ is an (s, t)-sentence if Φ = ∀x1 . . . ∀xtΨ, where Ψ only contains the open variables

x1, . . . , xt and, for every atomic formula τ = σ that occurs in Φ, we have v(τ) + v(σ) ≤ s. We

will assume that s ≥ 2. For example, Statement 1.12 in the case k = 3 can be written as a

(2, 3)-sentence as follows:

∀x∀y∀z((¬(x = 0) ∧ ¬(y = 0) ∧ ¬(z = 0)) →

(¬(x + y = 0) ∨ ¬(x + z = 0) ∨ ¬(y + z = 0))),

a formula that is clearly valid in every abelian group G with p(G) > 2. Here, in the atomic

sub-formula x+ y = 0, we have v(x+ y) = 2 and v(0) = 0.

An effective version of Theorem 1.13 is the following

Theorem 1.14. Let Φ be an (s, t)-sentence in the first order language of abelian groups. If

Φ is true in Z, then it is valid in every abelian group G with p(G) > st.

Thus we have a tool even for such problems, where we cannot argue using the appropri-

ate ordering of torsion free abelian groups, but instead of that we somehow can exploit the

arithmetic and/or some other properties of Z, like in the following well-known exercise: If

n1, n2, . . . , n2k+1 are integers with the property that, whichever number we omit, the rest can

be partitioned into two k-element groups with equal sums, then all the numbers are equal.

To prove Theorem 1.14 we follow [13]. Note that we may readily assume that G is finitely

generated. We use the following notion of Freiman-isomorphism. For subsets K and L of



1.2. THE RECTIFICATION PRINCIPLE 11

the abelian groups G and H , respectively, we say that the bijection ϕ : K → L is an F̃s-

isomorphism, if for any a1, . . . , au ∈ K and b1, . . . , bv ∈ K with u+ v ≤ s, we have

a1 + . . .+ au = b1 + . . .+ bv

if and only if

ϕ(a1) + . . .+ ϕ(au) = ϕ(b1) + . . .+ ϕ(bv).

Denote by z1, z2, . . . , zt the variables that occur in Φ. Let g1, g2, . . . , gt be arbitrary ele-

ments of G and let K = {g1, g2, . . . , gt}, then |K| ≤ t. Assume that K is F̃s-isomorphic to

some subset K ′ of Z, and denote by ϕ the corresponding bijection. In G, substitute zi = gi

in Φ; in Z, do the same with zi = ϕ(gi). Then we get the same truth assignment in the case

of each atomic sub-formula of Φ. Since Φ is valid in Z, it follows that the above substitution

makes Φ valid in G. Thus, it is enough to prove the following

Theorem 1.15. Let K be a t-element subset of the finitely generated abelian group G. If

p(G) > st then there exists an F̃s-isomorphism ϕ : K → K ′ for some set K ′ ⊆ Z.

The starting point is the following direct generalization of [13, Theorem 3.1] whose proof

we include for the sake of completeness.

Lemma 1.16. Let K be a t-element subset of Zq where q is a power of a prime p > st.

Then there exists a set of integers K ′ such that the canonical homomorphism Z → Zq = Z/qZ

induces an F̃s-isomorphism of K ′ onto K.

Proof. Identify the elements of K with the unique integers 0 ≤ a1, . . . , at < q they represent.

Let ei (0 ≤ i ≤ t) be the standard basis for Zt+1 and consider the lattice Λ generated by the

vectors

e0 +
t
∑

i=1

ai

q
ei, −e1, −e2 , . . . , −et.

The volume of the fundamental domain of Λ is 1. Since p(1/s)t > 1, it follows from Minkowski’s

convex body theorem that Λ has a nonzero vector in the rectangular box

(−p, p) × (−1/s, 1/s) × . . .× (−1/s, 1/s),

that is, there are integers ni, not all of them zero, such that |n0| < p and

∣

∣

∣

n0ai

q
− ni

∣

∣

∣
<

1

s

for 1 ≤ i ≤ t. Were n0 = 0 it would imply ni = 0 for 1 ≤ i ≤ t. Thus we can conclude that

n0 is not divisible by p and that there are integers mi such that |mi| < q/s and n0ai ≡ mi

(mod q). If r is any multiplicative inverse of n0 modulo q, then rmi ≡ ai (mod q), and thus

the canonical homomorphism ϕ : Z → Zq maps K ′ = {rm1, . . . , rmt} onto K. Moreover,

ai1 + . . .+ aiu
= aj1 + . . .+ ajv



12 CHAPTER 1. FIRST PRINCIPLES

in Zq if and only if
u
∑

k=1

aik
−

v
∑

k=1

ajk

is divisible by q, which by (n0, q) = 1 exactly happens if

u
∑

k=1

mik
−

v
∑

k=1

mjk

is divisible by q. Since |mi| < q/s, under the assumption that u+v ≤ s this is equivalent with

saying that the above expression is zero, or what is the same,

rmi1 + . . .+ rmiu
= rmj1 + . . .+ rmjv

.

This indicates that ϕ indeed induces an F̃s-isomorphism.

Since the identical map ı : Z → Z obviously induces an F̃s-isomorphism of any subset of Z

onto itself, in view of the fundamental theorem of finitely generated abelian groups, to verify

Theorem 1.15, it is enough to prove that whenever the theorem is true for the abelian groups

G1 and G2, it is true for their direct sum G = G1 ⊕ G2 as well. This we can do as follows.

Assume that p(G) > st, then p(Gi) > st for i = 1, 2. Let

K1 = {g ∈ G1 | ∃h ∈ G2 with (g, h) ∈ K},

and define K2 in a similar way as the projection of K to G2. Then ti = |Ki| ≤ |K| ≤ t,

so sti < p(Gi) and by our hypothesis there exist F̃s-isomorphisms ϕi : Ki → K ′
i for some

appropriate ti-element sets K ′
i ⊂ Z. With m = max{|n| : n ∈ K ′

2} and with any integer

α > sm, define the map

ϕ : K1 ×K2 → {αn1 + n2 | n1 ∈ K ′
1, n2 ∈ K ′

2}

by ϕ((g, h)) = αϕ1(g) +ϕ2(h). Since αn1 + n2 = αn′
1 + n′

2 implies that α divides the number

n2 − n′
2 whose modulus is not larger than 2m < α, that is, it implies n2 = n′

2, and in turn

also n1 = n′
1, we find that ϕ is a bijection. A similar argument shows that ϕ is in fact an

F̃s-isomorphism, and thus its restriction to K is also an F̃s-isomorphism. This completes the

proof of Theorem 1.15 and in turn also that of Theorem 1.14.

The above proof appeared in our expository paper [53]. Theorem 1.14 can be applied to

all statements of Section 1.1, with t = k or t = k + ℓ and s = 4 or, in the case of Statement

1.12, s = k − 1. It yields a bound that is exponentially large in k (and ℓ). Such a strong

restriction on p(G) is sometimes necessary, as it happens in the case of Statement 1.12, see

[49]. In many cases, however, more effective results can be obtained. In Chapter 3–5 we study

problems related to Statements 1.2–1.11, giving the ultimate answer in many cases.



Chapter 2

An Overview

In this chapter first we give an overview of our main results in the perspective of the relevant

developments in the field. This is done, whenever appropriate, in the framework presented in

the previous chapter. This is followed by a section in which we briefly explain the tools and

methods we use, and how the dissertation is structured.

2.1 History and Results

In the context of Section 1.1, the Cauchy–Davenpont theorem claims that Statement 1.2 is

valid in any cyclic group Zp with a prime p ≥ k + ℓ − 1. Moreover, it is also valid in any

abelian group G with p(G) ≥ k + ℓ − 1, according to Theorem 1.1. Most of the results that

follow can be appreciated in a similar sense.

Unrestricted Set Addition

In addition to the already mentioned papers [19, 72], there are various further generalizations

of the Cauchy–Davenpont theorem, see for example Shatrowsky [82], Pollard [73] and Yuzvin-

sky [88]. Kemperman [59] proved the analogue of Statement 1.2 in arbitrary (that is, not

necessarily commutative) torsion free groups. In Chapter 5 we will prove that it is also valid

in an arbitrary finite group G with p(G) ≥ k + ℓ− 1. Using multiplicative notation:

Theorem 2.1. If A and B are nonempty subsets of a finite group G such that p(G) ≥
|A| + |B| − 1, then |AB| ≥ |A| + |B| − 1.

It is easy to see that both the condition and the bound are sharp. Denote by µG(k, ℓ) the

minimum size of the product set AB where A and B range over all subsets of G of cardinality k

and ℓ, respectively. For finite abelian groups G, the function µG has been exactly determined

by Eliahou, Kervaire and Plagne [29]. Some partial results in the noncommutative case were

13
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found recently by Eliahou and Kervaire [27, 28]. In particular, they proved the inequality

µG(k, ℓ) ≤ k + ℓ− 1 for all possible values of k and ℓ when G is a finite solvable group. That

equality holds here for k + ℓ − 1 ≤ p(G), a case in which the upper bound is folklore, is the

essence of the above theorem that we proved in [55].

The case of equality in the Cauchy–Davenport theorem was characterized by Vosper [87].

This first inverse theorem in the theory of set addition is the following.

Theorem 2.2. If A,B are nonempty subsets of Zp such that |A + B| = |A| + |B| − 1, then

either |A| + |B| − 1 = p (that is, A+B = Zp), or one of the sets A and B contains only one

element, or |A + B| = p− 1 and with the notation {c} = Zp \ (A +B), B is the complement

of the set c−A in Zp, or both A and B are arithmetic progressions of the same difference.

Hamidoune and Rødseth [48] go one step further; they characterize all pairsA,B with |A+B| =

|A| + |B|.
In the special case when A = B, Vosper’s theorem can be stated as

Theorem 2.3. Let A be a set of k residue classes modulo a prime p > 2k−1. Then |A+A| =

2k − 1 if and only if A is an arithmetic progression.

An extension of Vosper’s theorem to arbitrary abelian groups is due to Kemperman [60],

who employed Kneser’s theorem to obtain a recursive characterization of all critical pairs, that

is, all pairs (A,B) with |A+B| ≤ |A|+ |B|−1. For a related result, see Lev [64]. In particular,

Theorem 2.3 can be extended as

Theorem 2.4. Let A be a set of k elements of an abelian group G with p(G) > 2k− 1. Then

|A+A| = 2k − 1 if and only if A is an arithmetic progression.

That is, Statement 1.8 is valid whenever p(G) ≥ 2k. In fact, Kemperman’s result also implies

that Statement 1.7 is true for p(G) ≥ k + ℓ+ 1.

Kneser’s theorem cannot be extended to noncommutative groups in a natural way ([70, 89]),

and the simple combinatorial proof does not work either. However, Vosper’s theorem has been

extended to torsion free groups by Brailovsky and Freiman [14]. A generalization to arbitrary

noncommutative groups has been obtained by Hamidoune [45]. To state it, we first have to

recall the following notion. Let B be a finite subset of a group G such that 1 ∈ B. B is called

a Cauchy-subset of G if, for every finite nonempty subset A of G,

|AB| ≥ min{|G|, |A| + |B| − 1}.

If the group G is finite, then a subset S that contains the unit element is known to be a

Cauchy subset if and only if for every subgroup H of G,

min{|SH |, |HS|} ≥ min{|G|, |H | + |S| − 1},

see Corollary 3.4 in [45]. Now Theorem 6.6 in the same paper can be stated as follows. (Here

〈q〉 denotes the subgroup generated by the element q.)
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Theorem 2.5. Let G be a finite group and let B be a Cauchy subset of G such that |G| is

coprime to |B| − 1. Assume that |AB| = |A| + |B| − 1 ≤ |G| − 1 holds for some subset A of

G. Then either |A| = 1, or A = G \ aB−1 for some a ∈ G, or there are elements a, b, q ∈ G

and natural numbers k, l such that

A = {a, aq, aq2, . . . , aqk−1} and B = (G \ 〈q〉b) ∪ {b, qb, q2b, . . . ql−1b}.

Since without any loss of generality we may assume in Vosper’s theorem that 1 ∈ B, and any

such B with |B| ≥ 2 is a Cauchy subset of Zp, Vosper’s theorem follows immediately from the

above result of Hamidoune. Note that if G is not a cyclic group of prime order, then a subset

B of G with 2 ≤ |B| ≤ p(G) is not a Cauchy subset in general. Thus the following result of

ours [55] gives a different kind of generalization of Vosper’s inverse theorem, more in the spirit

of Theorem 2.1.

Theorem 2.6. Let A,B be subsets of a finite group G such that |A| = k, |B| = ℓ and

k + ℓ − 1 ≤ p(G) − 1. Then |AB| = k + ℓ − 1 if and only if one of the following conditions

holds:

(i) k = 1 or ℓ = 1;

(ii) there exists a, b, q ∈ G such that

A = {a, aq, aq2, . . . , aqk−1} and B = {b, qb, q2b, . . . ql−1b};

(iii) k + ℓ − 1 = p(G) − 1 and there exists a subgroup F of G of order p(G) and elements

u, v ∈ G, z ∈ F such that

A ⊂ uF, B ⊂ Fv and A = u(F \ zvB−1).

Our proof of Theorems 2.1 and 2.6 depend heavily on the solvability of groups of odd order

and the structure of group extensions. Very recently Ruzsa [80] found in an ingenious way

alternative proofs of these results that do not rely on the Feit–Thompson theorem.

Another far reaching generalization of Vosper’s inverse theorem is due to Freiman. The

starting point is Freiman’s so-called ‘3k − 4’ theorem [34, 37]:

Theorem 2.7. Let A be a set of k ≥ 3 integers. If |A+ A| = 2k − 1 + b ≤ 3k − 4, then A is

contained in an arithmetic progression of length k + b.

This again must be true in any abelian group G with p(G) large enough compared to k.

Freiman [35, 37] derived the following analogue for cyclic groups of prime order.
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Theorem 2.8. If A is a large enough k-element subset of Zp, p a prime, such that k ≤ p/35

and |A+A| = 2k−1+ b ≤ 2.4k−3, then A is contained in an arithmetic progression of length

k + b.

Finally we mention Freiman’s theorem [36, 37] asserting that if a finite set A of integers

satisfies |A + A| ≪ |A|, then A is contained in a ‘generalized arithmetic progression’ whose

size and dimension is bounded in terms of the implied constant, see also Ruzsa [78, 79], Bilu

[12] and Chang [18]. Very recently Green and Ruzsa [42] generalized the result to arbitrary

abelian groups.

The Erdős–Heilbronn Problem

The case of restricted addition is apparently more difficult. In 1994 Dias da Silva and Hami-

doune [22] proved the following analogue of the Cauchy–Davenport theorem, thus settling a

problem of Erdős and Heilbronn (see [30, 32]).

Theorem 2.9. If A is a k-element subset of the p-element group Zp, p a prime, then

|A+̇A| ≥ min{p, 2k − 3}.

More generally, they proved

Theorem 2.10. If A is any subset of the cyclic group Zp, then

|Σd(A)| ≥ min{p, d(|A| − d) + 1}.

These results were obtained via exterior algebra methods and the representation theory of

the symmetric groups. Shortly afterwards Alon, Nathanson and Ruzsa [7, 8] applying the

so-called ‘polynomial method’ gave a simpler proof that also yields

|A+̇B| ≥ min{p, |A| + |B| − 2}

if |A| 6= |B|. Some lower estimates on the cardinality of A+̇B in arbitrary abelian groups were

obtained recently by Lev [65, 66], and also by Hamidoune, Lladó and Serra [47] in the case

A = B. Some ramifications in elementary abelian p-groups have been explored in a series of

papers by Eliahou and Kervaire [24, 25, 26].

In [52] we established the following extension of the Dias da Silva–Hamidoune theorem.

Theorem 2.11. If A is a k-element subset of an abelian group G, then

|A+̇A| ≥ min{p(G), 2k − 3}.



2.1. HISTORY AND RESULTS 17

Thus, Statement 1.5 holds in every abelian group G with p(G) ≥ 2k − 3, and this result

is sharp. The result of Alon, Nathanson and Ruzsa implies Statement 1.3 for G = Zp if

p ≥ k + ℓ − 3. For more than ten years it has been open, whether Statement 1.6 can be

generalized the same way. We prove [56] that this is indeed the case:

Theorem 2.12. Let A 6= B be nonempty subsets of the additive group of a field of character-

istic p. Then |A+̇B| ≥ min{p, |A| + |B| − 2}.

Thus, if A,B are nonempty subsets of an elementary abelian p-group, with p ≥ |A| + |B| − 2,

then |A+̇B| ≥ |A|+|B|−3, and equality can only be attained if A = B. As opposed to the case

of unrestricted set addition, only partial results have been known about the case of equality

here. First, if p(G) ≤ 2k − 3 and A is contained in a subgroup H of G with |H | = p(G),

then |A+̇A| = H in view of Theorem 2.9. Next, if k ≥ 2, p(G) ≥ 2k − 3, and the elements

of A form an arithmetic progression, then A+̇A is an arithmetic progression of length 2k− 3.

Finally, assume that p(G) > 2k− 3. If k is 2 or 3, then clearly |A+̇A| = 2k− 3. If k is 4, then

|A+̇A| is either 5 or 6, where the first case happens if and only if a+ b = c+ d for some order

a, b, c, d of the elements of A. If k ≥ 5 and G is torsion free, then |A+̇A| = 2k − 3 happens

if and only if A is an arithmetic progression. As we have seen, Statement 1.9 must be true

under the assumption that p(G) is large enough. This has been first proved in Z/pZ, where p

is a large enough prime, by Pyber [74]. The same is proved in [13] under the assumption that

p > ck, where c is an effective constant. Further improvements can be derived from the works

of Freiman, Low and Pitman [39] and Lev [65] in the case when k is large enough. Roughly

speaking, under some assumptions on k and p they prove that if |A+̇A| is close to 2k− 3 then

A is contained in a short arithmetic progression. In particular, Theorem 2 of Lev [65] can be

stated as follows.

Theorem 2.13. Let A be a k-element subset of Zp, p a prime, such that 200 ≤ k ≤ p/50. If

k′ = |A+̇A| ≤ 2.18k− 6, then A is contained in an arithmetic progression of length k′− k+ 3.

In particular, if |A+̇A| = 2k − 3, then the elements of A form an arithmetic progression.

That is, there is a general inverse theorem that parallels the Freiman–Vosper theorem (Theo-

rem 2.8). Part of the proof depends on estimates with exponential sums, which explains why

the (somewhat flexible) conditions on p and k enter the theorem.

Here we exploit an algebraic method to get rid of these unnecessary restrictions when

|A+̇A| = 2k − 3. Probably the most important result in this dissertation is the following

inverse counterpart of Theorem 2.9 that we obtained in [54].

Theorem 2.14. Let A be a set of k ≥ 5 residue classes modulo a prime p > 2k − 3. Then

|A+̇A| = 2k − 3 if and only if A is an arithmetic progression.

In fact, with the help of ideas from [52, 53] we can transfer this result, first to cyclic groups

of prime power order then to direct sums, in order to prove the following extension [54].
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Theorem 2.15. Let A be a set of k ≥ 5 elements of an abelian group G with p(G) > 2k − 3.

Then |A+̇A| = 2k − 3 if and only if A is an arithmetic progression.

It is clear from what we have said before, that the bounds on k and p, resp. p(G) cannot be

improved upon in the above theorems. In view of our remarks, Theorems 2.12 and 2.15 imply

the following:

Corollary 2.16. Let A,B be nonempty subsets of the additive group of a field of characteristic

p ≥ |A|+ |B| − 2. Then |A+̇B| ≥ |A| + |B| − 2, unless A = B and one of the following holds:

(i) |A| = 2 or |A| = 3;

(ii) |A| = 4, and A = {a, a+ d, c, c+ d};

(iii) |A| ≥ 5, and A is an arithmetic progression.

Further developing some ideas from our papers [51, 52, 55], very recently Balister and

Wheeler [11] established

|{aϑ(b) | a ∈, b ∈ B, a 6= b}| ≥ min{p(G), |A| + |B| − 3}

for every finite group G and automorphism ϑ ∈ Aut(G). It is quite plausible, that the above

corollary can also be generalized in the very same spirit.

Snevily’s Problem

A transversal of an n×n matrix is a collection of n cells, no two of which are in the same row

or column. A transversal of a matrix is a Latin transversal if no two of its cells contain the

same element. A conjecture of Snevily [83, Conjecture 1] asserts that, for any odd n, every

k × k sub-matrix of the Cayley addition table of Zn contains a Latin transversal. Putting it

differently, for any two subsets A and B with |A| = |B| = k of a cyclic group G of odd order

n ≥ k, there exist numberings a1, . . . , ak and b1, . . . , bk of the elements of A and B respectively

such that the k sums ai + bi, 1 ≤ i ≤ k, are pairwise different. In fact, this is also conjectured

for arbitrary abelian groups G of odd order [83, Conjecture 3]. That is, Statement 1.10 must

be valid in any finite abelian group G with p(G) ≥ 3. The statement does not hold for cyclic

groups of even order as shown, for example, by taking A = B = G, whereas for this choice

it clearly holds when |G| is odd (just take ai = bi, i = 1, . . . , n). For arbitrary groups of even

order take A = B = {0, g}, with g an involution, to get a counterexample. Here we first verify

Snevily’s conjecture for arbitrary cyclic groups of odd order.

Theorem 2.17. Let G be a cyclic group of odd order. Let A = {a1, a2, . . . , ak} and B be

subsets of G, each of cardinality k. Then there is a numbering b1, . . . , bk of the elements of B

such that the sums a1 + b1, . . . , ak + bk are pairwise different.
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Alon [3] proved the conjecture in the particular case when n = p is a prime number. Actually

he proved a stronger result which can be considered as a special case of the following result

when α = 1.

Theorem 2.18. Let p be a prime number, α a positive integer and G = Zpα or G = (Zp)α.

Let (a1, . . . , ak), k < p, be a sequence of not necessarily distinct elements in G. Then, for any

subset B ⊂ G of cardinality k, there is a numbering b1, . . . , bk of the elements of B such that

the sums a1 + b1, . . . , ak + bk are pairwise different.

Note that the above theorem is not true with k = p (see [3]). Putting it otherwise: if G is a

finite elementary abelian group, or a cyclic group of prime power order, then Statement 1.11

is true, assuming p(G) > k.

The above results appeared in [20]. They are discussed, along with proofs, in the recent

monograph of Tao and Vu [86], and were briefly indicated in the 2002 ICM talk of Alon

[4]. Based on our methods, various generalizations were obtained by Sun and Yeh [84, 85].

Employing one of the results in our paper for group rings, Gao and Wang [41] proved that

Statement 1.10 is valid in every finite abelian group G with p(G) > k2. They also verified

Statement 1.11 for finite abelian p-groups with p > k2/4.

The Subset Sum Problem

Representing integers as the sum of some elements of a given set A of integers is a very old

problem, which has many ramifications. Several interesting questions are discussed by Erdős

and Graham in [32]. If A is sufficiently dense, then Σ(A) contains long arithmetic progressions.

This phenomenon has received a lot of attention lately, see for example the last chapter of the

recent monograph by Tao and Vu [86]. The following result is due to Lev [63].

Theorem 2.19. If A ⊂ [1, ℓ] is a set of n integers and ℓ ≤ 3n/2 − 2, then

[2ℓ− 2n+ 1, σ(A) − (2ℓ− 2n+ 1)] ⊆ Σ(A).

Motivated by a possible extension, at the Workshop on Combinatorial Number Theory

held at DIMACS, 1996, V.F. Lev proposed the following problem. Suppose that 1 ≤ a1 <

a2 < . . . < an ≤ 2n − 1 are integers such that their sum σ =
∑n

i=1 ai is even. Does there

always exist I ⊂ {1, 2, . . . , n} such that
∑

i∈I ai = σ/2? The answer is in the affirmative if

n is large enough. Note that such a restriction has to be imposed on n, since the sequences

(1, 4, 5, 6) and (1, 2, 3, 9, 10, 11) provide counterexamples otherwise. The answer can be easily

derived from the following theorem [57].

Theorem 2.20. Let 1 ≤ a1 < a2 < . . . < an ≤ 2n−1 denote integers such that aν+1−aν = 1

holds for at least one index 1 ≤ ν ≤ n − 1. If n ≥ n0 = 89, then there exist ε1, . . . , εn ∈
{−1,+1} such that |ε1 + . . .+ εn| ≤ 1 and |ε1a1 + . . .+ εnan| ≤ 1.



20 CHAPTER 2. AN OVERVIEW

More generally, every integer in a long interval can be expressed as a ‘balanced’ subset sum:

Theorem 2.21. If n is large enough and 1 ≤ a1 < a2 < . . . < an ≤ 2n− 2 are integers, then

for every integer

k ∈ [σ/2 − n2/24, σ/2 + n2/24]

there exists a set of indices I ⊂ {1, 2, . . . , n} such that |I| ∈ {⌊n/2⌋, ⌈n/2⌉} and
∑

i∈I ai = k.

Lev conjectured that if n is sufficiently large, then Theorem 2.19 must remain true under the

weaker condition ℓ ≤ 2n−c with a suitable constant c. Based on the Dias da Silva–Hamidoune

theorem (Theorem 2.10) we verify this conjecture in the ultimate way [58].

Theorem 2.22. If A ⊂ [1, ℓ] is a set of n ≥ n0 integers and ℓ ≤ 2n− 6, then

[2ℓ− 2n+ 1, σ(A) − (2ℓ− 2n+ 1)] ⊆ Σ(A).

The example A = [ℓ − n, 2ℓ − 2n− 1] ∪ [2ℓ − 2n+ 1, ℓ] demonstrates that the interval in the

theorem cannot be extended, whereas A = [n, 2n−1] certifies that the result is no longer valid

with ℓ ≥ 2n− 1.

A different but closely related problem is the following. For positive integers ℓ and m, let

f(ℓ,m) denote the maximum cardinality of a set A ⊂ [1, ℓ] such that m 6∈ Σ(A). The study

of this function was initiated by Erdős and Graham, see [31]. Clearly f(ℓ,m) ≥ ℓ/snd(m),

where snd(m) denotes the smallest positive integer that does not divide m. In [1], Alon proved

that f(ℓ,m) ≤ c(ε) · ℓ/snd(m) for every ℓ1+ε < m < ℓ2/ ln2 ℓ, and conjectured that in fact

f(ℓ,m) = (1 + o(1)) · ℓ/snd(m) holds for ℓ1.1 < m < ℓ1.9 as ℓ → ∞. This was verified by

Lipkin [68] in the range ℓ ln ℓ < m < ℓ3/2. Finally Alon and Freiman [5] determined the exact

value of f(ℓ,m) as

f(ℓ,m) =
⌊ ℓ

snd(m)

⌋

+ snd(m) − 2

for every ε > 0, ℓ > ℓ0(ε) and m satisfying 3ℓ5/3+ε < m < ℓ2/20 ln2 ℓ. The proof of these

results employed the Hardy–Littlewood circle method. It turns out that one can replace the

circle method by subtle combinatorics to solve this problem completely. Our first solution

was based on the ideas we employed to prove Theorem 2.22. A slightly better result can be

obtained, however, by the following theorem of Lev [67]. For any positive integer q we denote

by Nq(A) the number of elements in A that are not divisible by q.

Theorem 2.23. Let A be a set of n ≥ n0 integers in the interval [1, ℓ], where n ≥ 20(ℓ lnn)1/2,

and let λ = 280ℓ/n2. Then there exists a positive integer d < 2ℓ/n such that Σ(A) contains

all multiples of d that belong to the interval

[λσ(A), (1 − λ)σ(A)].
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Moreover, if Nq(A) ≥ q − 1 holds for every positive integer q < 2ℓ/n, then the statement is

valid with d = 1.

See Freiman [38] and Sárközy [81] for the forerunners of this result. Lev [67] notes that the

above theorem is essentially best possible in many respects. In [58] we give the following

refinement.

Theorem 2.24. Let A be a set of n ≥ n1 integers in the interval [1, ℓ], where

n >
ℓ

d
+ d− 2 for some integer 2 ≤ d ≤ n

400 lnn
.

Then there exists an integer t ∈ [1, d−1] such that Σ(A) contains all multiples of t that belong

to the interval [280dℓ, σ(A) − 280dℓ].

It is clear, that the theorem is now best possible also in regard to the common difference t

of the long homogeneous arithmetic progression contained in Σ(A). An almost immediate

consequence is the following ultimate solution to the conjecture of Alon.

Theorem 2.25. For every ε > 0, there is an ℓ0 = ℓ0(ε) such that if ℓ ≥ ℓ0, then

f(ℓ,m) =
⌊ ℓ

snd(m)

⌋

+ snd(m) − 2

holds for any (280 + ε)ℓ ln ℓ < m < ℓ2/(8 + ε) ln2 ℓ.

2.2 Methods and Tools

The most frequently applied and highly developed methods in the structural theory of set

addition are Kneser’s theorem, the method of exponential sums, the isoperimetric method,

and most recently also the polynomial method. A broad perspective of these methods can

be gained from the book of Nathanson [69]. Our work during the last decade was highly

influenced by the latter, which we briefly discuss below.

The Polynomial Method

The roots of this method go back as much as to Rédei, who used polynomials to study extremal

problems in finite geometries. The idea has also occurred several times later, see e.g. Brouwer

and Schrijver [15], Alon and Tarsi [9, 10], Alon and Füredi [6] and of course the already

cited papers of Alon, Nathanson and Ruzsa. A major breakthrough is due to Alon [2], who

formulated the following two theorems that can be applied directly in various situations.

Crucial to our work is the so-called Combinatorial Nullstellensatz. It is a simple conse-

quence of a division algorithm for multivariate polynomials; it can be also viewed as a special

case of Lasker’s unmixedness theorem, see e.g. [23].
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Theorem 2.26. Let F be an arbitrary field and let f = f(x1, . . . , xk) be a polynomial in

F [x1, . . . , xk]. Let S1, . . . , Sk be nonempty finite subsets of F and gi(xi) =
∏

s∈Si
(xi − s). If

f(s1, s2, . . . , sk) = 0 for all si ∈ Si, then there exist polynomials h1, h2, . . . , hk ∈ F [x1, . . . , xk]

satisfying deg(hi) ≤ deg(f) − deg(gi) such that f =
∑k

i=1 higi.

In comparison with Hilbert’s Nullstellensatz, three observations are in due order. First, the

field F need not be algebraically closed, which is a convenience but not crucial in our proofs.

Next, it is inherent in the above theorem that the ideal generated by the polynomials gi is a

radical ideal, this is the truly algebraic explanation why we can express f , instead of some

unknown power of it, in the desired form. It is also very important to us that we have an

explicit bound on the degree of coefficient polynomials hi coming form the division algorithm.

An immediate consequence of the above theorem is what is often referred to as the poly-

nomial lemma:

Theorem 2.27. Let F be an arbitrary field and let f = f(x1, . . . , xk) be a polynomial in

F [x1, . . . , xk]. Suppose that
∏k

i=1 x
ti

i is a monomial such that
∑k

i=1 ti equals the degree of f

and whose coefficient in f is nonzero. Then, if S1, . . . , Sk are subsets of F with |Si| > ti then

there are s1 ∈ S1, s2 ∈ S2, . . . , sk ∈ Sk such that f(s1, . . . , sk) 6= 0.

It can be also applied to derive the Chevalley–Warning theorem, which is a frequently used tool

in zero-sum combinatorics. See [2] for a survey of applications. The most beautiful example

in this direction is due to Rónyai [77] that led to the recent solution of Kemnitz’s conjecture

by Reiher [75].

Although the polynomial method has already demonstrated its power in the additive the-

ory, to our best knowledge our paper [54] is the first instance when a structure theorem is

obtained via this method. The polynomial lemma is a very convenient tool and has been

widely applied for various problems in extremal combinatorics during the last decade. Direct

applications of the Combinatorial Nullstellensatz appear to be a lot more complicated. Its

strength over the polynomial lemma, informally speaking, lies in the fact that applying the

latter we extract information encoded in one particular coefficient of a suitable polynomial,

whereas applying Theorem 2.26 we have access to much more information encoded in a maze

of coefficients.

A Brief Overview of the Contents

In Chapter 1 we generalized the rectification principle of Freiman, a minor contribution. The

main novelties of our work are

• the application of the polynomial method in a multiplicative setting that led to the

solution of a problem of Snevily, the extension of a result of Alon, and a generalization

of the Erdős–Heilbronn conjecture to cyclic groups of prime power order;
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• the application of the Combinatorial Nullstellensatz to obtain structural theorems related

to the Erdős–Heilbronn problem;

• the application of group extensions to obtain results in the theory of set addition for

more general, even noncommutative groups;

• and the application of elementary combinatorial arguments in conjunction with the Dias

da Silva–Hamidoune theorem to prove some conjectures of Alon and Lev related to the

subset sum problem.

These methods are respectively the main themes of the four main chapters that follow. Ac-

cordingly, in Chapter 3 we prove Theorems 2.17, 2.18 and a generalization of Theorem 2.9

to cyclic groups of prime power order. To study a few more examples we apply elementary

algebraic number theory. We exploit some basic properties of cyclotomic fields, and the fact

that the multiplicative group of any finite field is cyclic.

Chapter 4 is devoted to the proof of Theorems 2.12 and 2.14. As a by-product we get an

independent proof of Theorem 2.3. Besides the Combinatorial Nullstellensatz only the notion

of algebraic closure and the Vièta formulae are needed.

Theorems 2.1, 2.6, 2.11 and 2.15 are proved in Chapter 5, which also includes a self-contained

proof of Theorem 2.4. We depend on the structure theory of finitely generated abelian groups,

the Jordan–Hölder theorem, the structure of group extension in general, and in particular that

of cyclic extensions, the Feit–Thompson theorem, Vosper’s inverse theorem, and a result of

Hamidoune (Theorem 2.5).

In Chapter 6 we derive among others, Theorems 2.20, 2.21, 2.22, 2.24 and 2.25. In addition

to the Dias da Silva–Hamidoune theorem (Theorem 2.10) we use Theorems 2.19 and 2.23 of

Lev, and we rely on the prime number theorem.



Chapter 3

The Polynomial Method

The main objective of this chapter is to prove the results related to the problems of Snevily.

This is done by the application of the polynomial lemma in a multiplicative setting. A similar

idea can be used in relation to restricted set addition to extend the Dias da Silva–Hamidoune

theorem to cyclic groups whose order is a power of a prime.

3.1 Snevily’s Problem

Following Alon’s approach, our starting point will be the polynomial lemma (Theorem 2.27).

For the case G = (Zp)α the proof of Theorem 2.18 is almost the same as the one given by

Alon in [3] which we sketch here to demonstrate the method. Identify the group G = (Zp)α

with the additive group of finite field Fq of order q = pα. Consider the polynomial

f(x1, . . . , xk) =
∏

1≤j<i≤k

((xi − xj)(ai + xi − aj − xj))

=
∏

1≤j<i≤k

((xi − xj)(xi − xj)) + terms of lower degree.

The degree of f is k(k − 1) and the coefficient of
∏k

i=1 x
k−1
i in f is c = (−1)(

k
2)k! as we will

see it in the following subsection. Since the characteristic of the field is p > k, it follows that c

is a nonzero element. By applying Theorem 2.27 with ti = k − 1 and Si = B for i = 1, . . . , k,

we obtain elements b1, . . . bk ∈ B such that

∏

1≤j<i≤k

((bi − bj)(ai + bi − aj − bj)) 6= 0.

Therefore, the elements b1, . . . , bk are pairwise distinct and so are the k sums b1+a1, . . . , bk+ak.

This completes the proof for G = (Zp)α.

So far we only have exploited the additive structures of finite fields; and it is clear that (Zp)α

are the only groups that can be treated this way. On the other hand, every cyclic group is

24



3.1. SNEVILY’S PROBLEM 25

the subgroup of the multiplicative group of certain fields, and there exists a multiplicative

analogue of the above described method, which is worked out in the first subsection. We

apply this method to obtain Theorems 2.17 and 2.18 in the subsection that follows. In the

remaining part of this section we study the possibility of further extending these results. In

particular, we attempt to attack another conjecture of Snevily [83, Conjecture 2], namely that,

if n is even, a k×k sub-matrix of the Cayley addition table of Zn contains a Latin transversal

unless k is an even divisor of n and the rows and columns of the sub-matrix are each cosets

of the unique subgroup of order k in Zn.

The multiplicative analogue

In this subsection we study how to modify Alon’s method if we wish to identify G with a

subgroup of the multiplicative group of a suitable field. This will reduce the original problems

to the study of permanents of certain Vandermonde matrices. Denote by V (y1, . . . , yk) the

Vandermonde matrix

V (y1, . . . , yk) =











1 y1 . . . yk−1
1

1 y2 . . . yk−1
2

...
...

...

1 yk . . . yk−1
k











.

For a matrix M = (mij)1≤i,j≤k, the permanent of M is

PerM =
∑

π∈Sk

m1π(1)m2π(2) . . .mkπ(k).

Lemma 3.1. Let F be an arbitrary field and suppose that PerV (a1, . . . , ak) 6= 0 for some

elements a1, a2, . . . , ak ∈ F . Then, for any subset B ⊂ F of cardinality k there is a numbering

b1, . . . , bk of the elements of B such that the products a1b1, . . . , akbk are pairwise different.

Proof. Consider the following polynomial in F [x1, . . . , xk]

f(x1, . . . , xk) =
∏

1≤j<i≤k

((xi − xj)(aixi − ajxj)) .

The degree of f is clearly not greater than k(k − 1). In addition,

f(x1, . . . , xk) = DetV (x1, . . . , xk) · DetV (a1x1, a2x2, . . . , akxk)

=

(

∑

π∈Sk

(−1)I(π)
k
∏

i=1

x
(i−1)
π(i)

)(

∑

τ∈Sk

(−1)I(τ)
k
∏

i=1

(aτ(i)xτ(i))
(i−1)

)

=

(

∑

π∈Sk

(−1)I(π)
k
∏

i=1

x
(i−1)
π(i)

)(

∑

τ∈Sk

(−1)I(τ)
k
∏

i=1

(aτ(k+1−i)xτ(k+1−i))
(k−i)

)

=

(

∑

π∈Sk

(−1)I(π)
k
∏

i=1

x
(i−1)
π(i)

)(

∑

π∈Sk

(−1)(
k
2)−I(π)

k
∏

i=1

(aπ(i)xπ(i))
(k−i)

)

.
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Therefore, the coefficient c(a1, . . . , ak) of the monomial
∏k

i=1 x
k−1
i in f ,

c(a1, . . . , ak) =
∑

π∈Sk

(−1)(
k
2)

k
∏

i=1

ak−i
π(i)

= (−1)(
k
2)
∑

π∈Sk

k
∏

i=1

ai−1
π(k+1−i)

= (−1)(
k
2)
∑

τ∈Sk

k
∏

i=1

ai−1
τ(i)

= (−1)(
k

2)PerV (a1, . . . , ak)

is different from 0 (in particular, c(1, . . . , 1) = (−1)(
k
2)k!). Consequently, f is of degree k(k−1),

and we can apply Theorem 2.27 with ti = k − 1 and Si = B for i = 1, . . . , k to obtain k

distinct elements b1, . . . , bk in B such that the products a1b1, . . . , akbk are pairwise distinct.

This completes the proof of the lemma.

Proof of the Theorems

Proof of Theorem 2.17. Write |G| = m and let α = φ(m), where φ is Euler’s totient function;

then 2α ≡ 1 (mod m). Consider F = F2α , its multiplicative group F× is a cyclic group of

order 2α − 1. Thus, G can be identified with a subgroup of F×, the operation on G being the

restriction of the multiplication in F . Since F is of characteristic 2, we have

PerV (a1, . . . , ak) = DetV (a1, . . . , ak) =
∏

1≤j<i≤k

(ai − aj) 6= 0 .

The result follows immediately from Lemma 3.1.

Proof of Theorem 2.18 for G = Zpα . Consider the cyclotomic field F = Q(ξ), where ξ is a

primitive qth root of unity and q = pα. The degree of this extension is [Q(ξ) : Q] = pα − pα−1.

Identify G with the multiplicative subgroup {1, ξ, ξ2, . . . , ξq−1} of Q(ξ). As before, the result

would be an immediate consequence of the fact PerV (a1, . . . , ak) 6= 0. To verify this fact, note

that each term
∏k

i=1 a
i−1
τ(i) of this permanent is a qth root of unity. Thus, PerV (a1, . . . , ak)

is the sum of qth roots of unity, where the number of summands, k!, is not divisible by p.

Therefore, it is enough to prove the following lemma.

Lemma 3.2. If ǫ1, . . . , ǫt are qth roots of unity such that
∑t

i=1 ǫi = 0, then t is divisible by

p.

Lemma 3.2 follows from the more precise statement in Lemma 3.3 below. Let ωp = e2πi/p.

For each η ∈ F such that ηq = 1 we have
∑p

i=1 ηω
i
p = η

∑p
i=1 ω

i
p = 0. We say that a set

X = {ǫ1, . . . , ǫp} of qth roots of unity is simple if there is η ∈ F with ηq = 1 such that

X = {ηωp, ηω
2
p, . . . , ηω

p
p}.
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Lemma 3.3. Let ǫi, i ∈ I be qth roots of unity such that
∑

i∈I ǫi = 0. Then there is a partition

I = ∪Jr such that {ǫj | j ∈ Jr} is a simple set for each r.

Proof. Consider V = Q(ξ) as a vector space over Q. The dimension of V is φ(q) = pα − pα−1.

Let, for 0 ≤ s ≤ q − 1, Ks = {i | ǫi = ξs}, and write cs = |Ks|. Let s ≡ s̄ mod pα−1,

0 ≤ s̄ < pα−1. Note that {ξs, ξs+pα−1

, . . . , ξs+(p−1)pα−1} is a simple set for every 0 ≤ s < pα−1.

Thus,

0 =
∑

i∈I

ǫi =

q−1
∑

s=0

csξ
s =

q−1
∑

s=0

csξ
s −

pα−1−1
∑

s=0

cs(ξs + ξs+pα−1

+ . . .+ ξs+(p−1)pα−1

)

=

q−1
∑

s=0

(cs − cs̄)ξs =

q−1
∑

s=pα−1

(cs − cs̄)ξs .

Since {1, ξ, ξ2, . . . , ξφ(q)−1} is a basis of V , {ξs | pα−1 ≤ s ≤ pα − 1} is also an independent

set. Thus, cs = cs̄ for every 0 ≤ s ≤ q − 1. Each set Jr of the desired partition of I can then

be obtained by choosing one element in each one of the sets Ks,Ks+pα−1 , . . . ,Ks+(p−1)pα−1 ,

for every choice of s, 0 ≤ s < pα−1 such that Ks 6= ∅.

Since every simple set has exactly p elements, Lemma 3.2 follows and the proof is complete.

The following short proof of Lemma 3.2 was suggested by Imre Ruzsa. There exist positive

integers αi with εi = εαi . Consider the polynomialR(x) =
∑t

i=1 x
αi , then R(ε) = 0. It follows

that the qth cyclotomic polynomial Φq, which is irreducible in Z[x], is a divisor of R in the

ring Z[x]. Consequently, p = Φq(1) divides R(1) = t.

Bad sequences

One of Snevily’s yet unsolved conjectures asserts that the statement of Theorem 2.17 holds

whenever |G| is not divisible by 2. We believe that the statement of Theorem 2.18 is always

true if the smallest prime divisor of |G| exceeds k. We also believe that the structure of the

counterexamples in other cases cannot be arbitrary, see Problem 3.7 below.

Let G be any abelian group and A = (a1, a2, . . . , ak), k ≤ |G|, be any sequence of group

elements. A is said to be a bad sequence if there is a subset B ⊂ G of cardinality k such

that, for any numbering b1, . . . , bk of the elements of B, there are 1 ≤ i < j ≤ k such that

ai + bi = aj + bj . Assume that G is a subgroup of the multiplicative group of some field

F . It follows from Lemma 3.1 that A cannot be bad if PerV (a1, . . . , ak) 6= 0 in F . It is

possible that a better understanding of permanents of Vandermonde matrices may even help

in the characterization of bad sets. We will illustrate this point with the study of the cases

k = 2, 3. There must be, however, certain limitations to this approach, as shown by the

following example.
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Example 3.4. Suppose that G ∼= Z8 is the subgroup of the multiplicative group of some field,

and A = {a1 = 1, a2 = g2, a3 = g3} where g is a generator for G. Then PerV (a1, a2, a3) = 0

although A is not a bad sequence.

Proof. Writing additively A = {0, 2, 3}, a short case analysis based on the number of even/odd

elements of B ⊂ G, |B| = 3 shows that a required numbering b1, b2, b3 of the elements of B

always exists. On the other hand,

PerV (a1, a2, a3) = Per





1 1 1
1 g2 g4

1 g3 g6



 = g2(1 + g + g2)(1 + g4) = 0 ,

given that g4 = −1.

Next we give a complete description of the bad sequences of length ≤ 3 in cyclic groups.

Example 3.5. Characterization of the bad sequences in the case k = 2.

Identify G ∼= Zn with a subgroup of C×, as in the proof of Theorem 2.18. Let ǫ, η be nth

roots of unity. Then PerV (ǫ, η) = ǫ + η = 0 if and only if η = −ǫ = ω
n/2
n ǫ. Consequently,

A = (a1, a2) can be a bad sequence in Zn only if n is even and a2 = a1 + n/2, in which case

it is indeed a bad sequence.

Example 3.6. Characterization of the bad sequences in the case k = 3.

Again we identify G ∼= Zn with a subgroup of C×. Let ǫ, η, ζ be nth roots of unity, n ≥ 3.

In this case PerV (ǫ, η, ζ) = 0 if and only if

(ǫ+ η)(η + ζ)(ζ + ǫ) = 2ǫηζ ,

that is,

(1 + x)(1 + y)(1 + z) = 2 (3.1)

where x = η/ǫ, y = ζ/η, z = ǫ/ζ are all nth roots of unity and xyz = 1.

Recall (see e.g. [62]) that for ω a primitive nth root of unity (n > 1), the norm of 1 −ω in

the nth cyclotomic field Qn = Q(ω) is

NQn/Q(1 − ω) =
∏

1≤j<n
(j,n)=1

(1 − ωj) =

{

1 if n is not a prime power,
p if n is a power of the prime p.

Moreover, −ω is also a primitive nth root of unity if n is even and a primitive (2n)th root of

unity otherwise. Consequently,

NQ2n/Q(1 + ω) =















2φ(2n) if ω = 1,
0 if ω = −1,

2φ(2n)/2α−1

if ω is a primitive (2α)th root of unity, α ≥ 2,
1 otherwise.

By the multiplicative property of the norm, equality (3.1) can hold only if



3.1. SNEVILY’S PROBLEM 29

• one of x, y, z (say x) is 1, or

• one of x, y, z (say x) is a primitive 4th root of unity, while y and z are primitive 8th roots

of unity.

In the first case we have ǫ = η, and with u = ζ/ǫ,

PerV (ǫ, η, ζ) = ǫ3PerV (1, 1, u) = 2ǫ3(1 + u+ u2)

is 0 if and only if u is a primitive 3rd root of unity, in which case (ǫ, η, ζ) is indeed a bad

sequence. In the second case

PerV (ǫ, η, ζ) = ǫ3PerV (1, x, xy)) = ǫ3((x − 1) − y2(1 + x))

is 0 if and only if y2 = x = ±i. This, however, yields no bad sequences, see Example 3.4.

Consequently, A = (a1, a2, a3) is a bad sequence in Zn if and only if n is divisible by 3,

and for some permutation (i, j, k) of the indices (1, 2, 3), ai = aj = ak ± n/3.

These results could have certainly been obtained without any algebraic consideration. We

only worked them out to indicate that there may be further applications of our method. The

above calculations also yield to an alternative proof of Theorem 2.17, and suggest that being

bad is a local property.

2nd proof of Theorem 2.17. Identify G ∼= Zn with a subgroup of C× and suppose a1, a2, . . . , ak

are all nth roots of unity, n odd. Note that PerV (a1, . . . , ak) = DetV (a1, . . . , ak) + 2A =
∏

1≤j<i≤k(ai − aj) + 2A, where A ∈ Qn is an algebraic integer. Were PerV (a1, . . . , ak) = 0 we

would have
∏

1≤j<i≤k(1−aj/ai) = 2B with an algebraic integerB ∈ Qn. The norm of the right

hand side in Qn is divisible by NQn/Q(2) = 2φ(n). On the other hand, if aj/ai is a primitive mth

root of unity for some divisor m of n, then NQn/Q(1−aj/ai) = (NQm/Q(1−aj/ai))
φ(n)/φ(m) is

an odd integer, unless m = 1. Consequently, (a1, a2, . . . , ak) cannot be a bad sequence, unless

there are indices 1 ≤ j < i ≤ k with ai = aj.

Problem 3.7. Is it true that, if A = (a1, a2, . . . , ak) is a bad sequence in an abelian group G,

then there exists a subgroup H ≤ G with |H | = k, a bad sequence A′ = (a′1, a
′
2, . . . , a

′
k) in H,

and an element c ∈ G such that ai = a′i + c for every 1 ≤ i ≤ k?

If true, it would settle down Snevily’s other conjectures mentioned in the introduction.

Indeed, assume that the answer is yes. Let first G be any abelian group of odd order which

contains a bad set A = {a1, . . . ak}. It follows that {a′1, . . . , a′k} is a bad set in a k-element

subgroup H of G. That is, H itself is a bad set in H , a contradiction, since k is odd. Thus,

Snevily’s conjecture [83, Conjecture 3] follows. Next, let A = {a1, . . . ak} be a bad set in Zn,

n even. Then again, A′ = H is a bad set in H ∼= Zk, which can only happen if k is even.

Moreover, A is a translate of A′ = H , implying [83, Conjecture 2] as well.
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3.2 Restricted Addition in Cyclic Groups of Prime Power

Order

In this section we prove that Statement 1.3 is valid in cyclic groups whose order is a power of

a prime p ≥ k + ℓ− 3.

Theorem 3.8. Let A,B ⊆ Z/qZ, where q = pα is a power of a prime p. Then

|A+̇B| ≥ min{p, |A| + |B| − 3}.

Proof. We may clearly assume that |A| = k ≥ 2 and |B| = ℓ ≥ 2. Since A′ ⊇ A and B′ ⊇ B

implies |A′+̇B′| ≥ |A+̇B|, we also may assume that k+ℓ−3 ≤ p. Our proof will again depend

on the polynomial lemma.

Like in the previous section, we will use this lemma in a multiplicative setting. Let ε =

e2πi/q and consider the unique embedding ϕ : G →֒ C× of G into the multiplicative group of

the field of complex numbers with the property ϕ(1) = ε. Write C = A+̇B and define

Ã = {ϕ(a) | a ∈ A}, B̃ = {ϕ(b)−1 | b ∈ B}, C̃ = {ϕ(c) | c ∈ C}.

Observe that for a ∈ A and b ∈ B,

a = b⇐⇒ ϕ(a)ϕ(b)−1 − 1 = 0

and

a+ b = c⇐⇒ ϕ(a) − ϕ(c)ϕ(b)−1 = 0.

Thus, if x ∈ Ã and y ∈ B̃, then either xy−1 = 0, or there exists a c ∈ C̃ such that x− cy = 0.

We wish to prove that |C| ≥ k+ ℓ−3. Assume that on the contrary, |C| = |C̃| ≤ k+ ℓ−4,

and choose any set C̃′ ⊆ G, of cardinality k+ ℓ− 4, that contains C̃. Consider the polynomial

P ∈ C[x, y] defined as

P (x, y) = (xy − 1)
∏

c∈C̃′

(x− cy),

then P (x, y) = 0 for every x ∈ Ã, y ∈ B̃. Since the degree of P is clearly not greater than

k + ℓ − 2, in view of Lemma 2.27, the desired contradiction comes from the fact that the

coefficient of the monomial xk−1yℓ−1 in P is different from 0.

To verify this fact, observe that writing C̃′ = {c1, c2, . . . , ck+ℓ−4}, this coefficient is

coeffP (xk−1yℓ−1) = (−1)ℓ−2Q(c1, c2, . . . , ck+ℓ−4),

where Q(x1, x2, . . . , xk+ℓ−4) is the (ℓ−2)nd elementary symmetric polynomial in the variables

x1, . . . , xk+ℓ−4. In particular, Q(c1, c2, . . . , ck+ℓ−4) is the sum of
(

k+ℓ−4
ℓ−2

)

numbers, each of

which is a product of ℓ− 2 terms. These terms, each being equal to some ci, are all elements
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of ϕ(G). Consequently, each of the
(

k+ℓ−4
ℓ−2

)

summands is an element of ϕ(G), hence equals

some qth root of unity. As p > k + ℓ − 4, the binomial coefficient
(

k+ℓ−4
ℓ−2

)

is not divisible by

p. Thus, it follows from Lemma 3.2 that Q(c1, c2, . . . , ck+ℓ−4) cannot be zero. Accordingly,

coeffP (xk−1yℓ−1) 6= 0, which completes the proof of Theorem 3.8.



Chapter 4

The Combinatorial

Nullstellensatz

In the present chapter we demonstrate the strength of the Combinatorial Nullstellensatz. A

relatively simple application will prove Theorem 2.12. This is done in the first section, whereas

the second section is devoted to the proof of the inverse theorem related to the Erdős–Heilbronn

problem (Theorem 2.14). Not only the main idea is more striking in this case, but also the

technical details are a lot more formidable. The same idea leads to a new proof of Theorem

2.3 whose difficulty is intermediate.

4.1 The Exceptional Case of the Erdős–Heilbronn Con-

jecture

Here we prove Theorem 2.12. Denote the field of characteristic p at issue by F . If |A|+|B|−2 >

p, then there exist nonempty subsets A′ ⊆ A and B′ ⊆ B such that |A| + |B| − 2 = p and

A′ 6= B′. Since A′+̇B′ ⊆ A+̇B, it is enough to prove the theorem for the pair A′, B′. Thus

we may assume that p ≥ |A| + |B| − 2. The statement is obvious if p = 2, so we also assume

that p is an odd prime, or p = ∞.

If A and B are arbitrary nonempty subsets of F with p ≥ |A| + |B| − 2, then |A+̇B| ≥
|A|+ |B|−3. Indeed, if |A| 6= |B|, then in fact |A+̇B| ≥ |A|+ |B|−2 as it was proven by Alon,

Nathanson, and Ruzsa in [7], see Theorem 1 therein. Although it is formally stated only for

prime fields, the proof works in arbitrary fields, as they mention it at the end of the paper. If

|A| = |B| ≥ 2, then this applied for the sets A and B′ = B \ {b} for any b ∈ B gives

|A+̇B| ≥ |A+̇B′| ≥ |A| + |B′| − 2 = |A| + |B| − 3.

If one of the sets has only one element, then the statement is obvious. Accordingly, we only

have to prove the following ‘inverse’ version of Theorem 2.12.

32
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Theorem 4.1. Let A,B be subsets of a field F of characteristic p > 2 such that |A| = |B| =

k ≥ 2 and p ≥ 2k − 1. If |A+̇B| = 2k − 3, then A = B.

Assume that A = {a1, a2, . . . , ak}, B = {b1, b2, . . . , bk}, and put

C = A+̇B = {c1, c2, . . . , c2k−3}.

The polynomial f ∈ F [x, y] defined as

f(x, y) = (x − y)

2k−3
∏

i=1

(x+ y − ci)

has the property that f(ai, bj) = 0 for any 1 ≤ i, j ≤ k.

In order to apply the Combinatorial Nullstellensatz (Theorem 2.26), we introduce the poly-

nomials

g(x) =
k
∏

i=1

(x− ai) = xk − α1x
k−1 + α2x

k−2 − . . .+ (−1)kαk

and

h(y) =

k
∏

i=1

(y − bi) = yk − β1y
k−1 + β2y

k−2 − . . .+ (−1)kβk,

where αi = σi(A) and βi = σi(B) are the elementary symmetric functions of a1, a2, . . . , ak

resp. b1, b2, . . . , bk. In view of Theorem 2.26, there exist polynomials q, r ∈ F [x, y] of degree

at most k − 2 such that

f(x, y) = q(x, y)g(x) − r(y, x)h(y). (4.1)

Writing

q(x, y) =
k−2
∑

i=0

qi(x, y), r(x, y) =
k−2
∑

i=0

ri(x, y) and fi(x, y) = (x− y)(x+ y)i−1,

where qi, ri, fi are homogeneous polynomials of degree i, with the additional notations γi =

σi(C) (1 ≤ i ≤ 2k − 3) and

q−1 = q−2 = r−1 = r−2 = 0, α0 = β0 = γ0 = 1,

Eq. (4.1) implies the following equations of homogeneous polynomials of degree 2k− 2− t for

every integer 0 ≤ t ≤ k:

(−1)tγtf2k−2−t(x, y) =

t
∑

j=0

(−1)t−j
{

αt−jqk−2−j(x, y)xk−t+j (4.2)

−βt−jrk−2−j(y, x)yk−t+j
}

.

Finally writing

qi(x, y) =
∑

u+v=i

Auvx
uyv and ri(x, y) =

∑

u+v=i

Buvx
uyv
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we find that the equations (4.2) encode certain relations between the coefficients Auv, Buv

and the numbers αi, βi, γi. The careful study of these relations, after a technical elimination

process that we postpone until the next section, results in the following

Lemma 4.2. For every integer 1 ≤ t ≤ k, αt = βt and u+ v = k− 2− t implies Auv = Buv.

Consequently, g(z) = h(z). It means that a1, a2, . . . , ak and b1, b2, . . . , bk are the roots of

the same polynomial of degree k, hence A = B as claimed. It only remains to prove Lemma

4.2.

Details I: Proof of Lemma 4.2

For 1 ≤ i ≤ 2k − 3, let

fi(x, y) = (x− y)(x+ y)i−1 =
∑

u+v=i

Cuvx
uyv.

Then Ci,0 = 1, C0,i = −1, and in case u, v 6= 0 we have

Cuv = −Cvu =

(

i− 1

u− 1

)

−
(

i− 1

u

)

=
2u− i

u

(

i− 1

u− 1

)

.

Since i < p, Cuv = 0 if and only if i is even and u = v = i/2. Consider Cuv + Cu−1,v+1. If

u = i, then it is

Ci,0 + Ci−1,1 = 1 +

(

i− 1

i− 2

)

−
(

i− 1

i− 1

)

= i− 1,

a nonzero element in F if i > 1. Similarly in the case u = 1,

C1,i−1 + C0,i = 1 − i 6= 0.

In general, if 2 ≤ u ≤ i− 1, then

Cuv + Cu−1,v+1 =
2u− i

u

(

i− 1

u− 1

)

+
2u− 2 − i

u− 1

(

i− 1

u− 2

)

=
{2u− i

u
· i− u+ 1

u− 1
+

2u− 2 − i

u− 1

}

(

i− 1

u− 2

)

=
i(i− 2v − 1)

u(u− 1)

(

i− 1

u− 2

)

.

Thus we proved:

Claim 4.3. If i > 1, then Cuv + Cu−1,v+1 = 0 if and only if i− 2v − 1 = 0.

We prove Lemma 4.2 by induction on t. Note that if t > k − 2, then by definition

u+ v = k − 2 − t implies Auv = Buv = 0. For the initial step, α0 = β0 = 1 by definition. Let

u+ v = k − 2. To see that Auv = Buv, consider Eq. (4.2) for t = 0. It reads as
∑

u+v=2k−2

Cuvx
uyv =

∑

u+v=k−2

Auvx
u+kyv −

∑

u+v=k−2

Buvy
u+kxv.
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It follows that

Buv = −Cv,u+k = Cu+k,v = Auv. (4.3)

For complete induction, let 1 ≤ t ≤ k, and suppose that Lemma 4.2 has been already

proved for smaller values of t. We start with the first statement. First we verify αt = βt in

the case when t is even, that is, t = 2s for some s ≥ 1. We have k−1− s ≥ k−1− (t−1) ≥ 0.

Consider the coefficient of the term xk−1−syk−1−s in Eq. (4.2). On the left hand side this

coefficient is (−1)tγtCk−1−s,k−1−s = 0. In the polynomial qk−2−j(x, y)xk−t+j , the coefficient

of xk−1−syk−1−s is As−1−j,k−1−s if j ≤ s− 1 and 0 otherwise, whereas in rk−2−j(y, x)yk−t+j ,

the coefficient of the same term is Bs−1−j,k−1−s if j ≤ s− 1 and 0 otherwise. Thus Eq. (4.2)

implies
s−1
∑

j=0

(−1)t−j
{

αt−jAs−1−j,k−1−s − βt−jBs−1−j,k−1−s

}

= 0.

Since (s− 1− j) + (k− 1− s) = k− 2− j and s− 1 < t, based on the induction hypothesis we

have As−1−j,k−1−s = Bs−1−j,k−1−s and αt−j = βt−j for every 1 ≤ j ≤ s− 1. The summation

can thus be reduced to the first term and we obtain

αtAs−1,k−1−s − βtBs−1,k−1−s = 0.

Here (s− 1) + (k − 1 − s) = k − 2, and in view of Eq. (4.3)

As−1,k−1−s = Bs−1,k−1−s = Cs−1+k,k−1−s 6= 0,

since s− 1 + k 6= k − 1 − s, given that s ≥ 1. It follows that αt = βt.

If t is odd, that is, t = 2s + 1 with some s ≥ 0, then in Eq. (4.2) we consider the sum

of the coefficients of the terms xk−1−syk−2−s and xk−2−syk−1−s. (Note that k − 2 − s ≥
k − 2 − (t− 2) ≥ 0, unless k = t = 1, which is excluded by k ≥ 2.) On the left hand side it is

(−1)tγt(Ck−1−s,k−2−s + Ck−2−s,k−1−s) = 0.

Therefore Eq. (4.2) implies

0 =

s
∑

j=0

(−1)t−jαt−jAs−j,k−2−s +

s−1
∑

j=0

(−1)t−jαt−jAs−1−j,k−1−s

−
s
∑

j=0

(−1)t−jβt−jBs−j,k−2−s −
s−1
∑

j=0

(−1)t−jβt−jBs−1−j,k−1−s.

Since (s − j) + (k − 2 − s) = (s − 1 − j) + (k − 1 − s) = k − 2 − j and s < t, the induction

hypothesis once again allows us to reduce the above equation to

0 = (−1)tαtAs,k−2−s + (−1)tαtAs−1,k−1−s

−(−1)tβtBs,k−2−s − (−1)tβtBs−1,k−1−s.
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In view of Eq. (4.3) this equation can be rewritten as

(αt − βt)(Cs+k,k−2−s + Cs−1+k,k−1−s) = 0.

Since (2k − 2) − 2(k − 2 − s) − 1 = 2s+ 1 = t is not zero in F , in view of Claim 4.3 it follows

that the second term is not zero, and we conclude that αt − βt = 0, αt = βt.

It remains to verify the second statement of the lemma under the additional assumption

that the first statement has been already verified. Accordingly, we assume t ≤ k− 2, αt = βt,

and let u + v = k − 2 − t. On the left hand side of Eq. (4.2), the coefficient of xu+kyv is

(−1)tγtCu+k,v . If 0 ≤ j ≤ t, then v ≤ k − 2 − t < k − t + j, thus in rk−2−j(y, x)yk−t+j the

coefficient of xu+kyv is 0. Therefore on the right hand side of Eq. (4.2), the coefficient of

xu+kyv is
t
∑

j=0

(−1)t−jαt−jAt−j+u,v.

Consequently, Eq. (4.2) implies

t
∑

j=0

(−1)t−jαt−jAt−j+u,v = (−1)tγtCu+k,v.

Looking at the coefficient of xvyu+k the same way we obtain

−
t
∑

j=0

(−1)t−jβt−jBt−j+u,v = (−1)tγtCv,u+k.

Since Cv,u+k = −Cu+k,v, it follows that

t
∑

j=0

(−1)t−jαt−jAt−j+u,v =

t
∑

j=0

(−1)t−jβt−jBt−j+u,v.

Because (t− j + u) + v = k− 2− j, the induction hypothesis implies At−j+u,v = Bt−u+j,v for

0 ≤ j < t. We have furthermore assumed αt−j = βt−j for all 0 ≤ j ≤ t, therefore the above

equality can be reduced to

(−1)t−tαt−tAt−t+u,v = (−1)t−tβt−tBt−t+u,v.

Since α0 = β0 = 1, we obtain Auv = Buv.

4.2 Inverse Theorems

Now we are ready for more serious applications of the Combinatorial Nullstellensatz. First we

describe the main idea behind the proofs of Theorem 2.3 and Theorem 2.14. The complicated

technical details are worked in the subsequent subsections.
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The Main Idea

We start with the more interesting Theorem 2.14. The ‘if’ part of the theorem being obvious,

we only focus on the proof of the reverse implication. The group Z/pZ can be embedded

into the additive group of any field F of characteristic p. In particular, if F is the algebraic

closure of the Galois field of order p, then every element of F has a square root in F. Therefore

Theorem 2.14 follows directly from the more general

Theorem 4.4. Given any integer k ≥ 5, let p > 2k − 3 be a prime number and let F be any

field of characteristic p in which every element has a square root. Then every k-element subset

A of F satisfying |A+̇A| = 2k − 3 is an arithmetic progression in F.

Proof. Let us remark in advance that throughout most part of the proof we can work without

the assumption that every element of F has a square root in F; this condition is only needed

in the proof of Lemma 4.8.

We assume that

C = A+̇A = {c1, c2, . . . , c2k−3},

and the elements of A are a1, a2, . . . , ak. We define the polynomial

ḟ(x, y) = (x− y)
∏

c∈C

(x+ y − c)

and also an auxiliary polynomial

g(z) =

k
∏

i=1

(z − ai).

Notice that ḟ(x, y) = 0 for arbitrary x, y ∈ A. Thus once again we may apply the Combina-

torial Nullstellensatz (Theorem 2.26). Accordingly, there exist polynomials ḣ′, ḣ′′ ∈ F[x, y] of

degree at most k − 2 such that

ḟ(x, y) = ḣ′(x, y)g(x) + ḣ′′(x, y)g(y).

Since the polynomial ḟ alternates we can write

ḟ(x, y) = −ḟ(y, x) = −ḣ′(y, x)g(y) − ḣ′′(y, x)g(x)

to obtain that

ḟ(x, y) = ḣ(x, y)g(x) − ḣ(y, x)g(y), (4.4)

where ḣ(x, y) = (1/2)(ḣ′(x, y) − ḣ′′(y, x)) is a polynomial of degree at most k − 2. Thus we

can write

ḣ(x, y) =

k−2
∑

i=0

ḣi(x, y),
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where

ḣi(x, y) =

i
∑

j=0

Ȧijx
jyi−j .

We can also rewrite ḟ(x, y) in the form

ḟ(x, y) =

2k−3
∑

i=0

(−1)iτ̇iṗ2k−2−i(x, y).

Here τ̇0 = 1 and, for 1 ≤ i ≤ 2k − 3, τ̇i is the ith elementary symmetric polynomial of

c1, c2, . . . , c2k−3, while

ṗi(x, y) = (x− y)(x + y)i−1 =

i
∑

j=0

Ḃijx
jyi−j ,

where Ḃii = 1, Ḃi,0 = −1, and otherwise

Ḃij =

(

i− 1

j − 1

)

−
(

i− 1

j

)

=
2j − i

j

(

i− 1

j − 1

)

=
2j − i

j

(

i− 1

i− j

)

.

If we also denote, for 0 ≤ i ≤ k, by σi = σi(A) the ith elementary symmetric polynomial in

a1, a2, . . . , ak, after comparing coefficients we arrive at certain relations between the numbers

τ̇i, the numbers σi and the coefficients Ȧij . To have an idea of what is going on, we refer to

[53] where all the calculations are carried out in the special case k = 5.

After a lengthy argument we obtain the following lemma whose proof we postpone until

the very end of this chapter.

Lemma 4.5. Given any integer k ≥ 5, let p > 2k − 3 be a prime number and let F be any

field of characteristic p. There exist polynomials q̇3, q̇4, . . . , q̇k ∈ F[x, y] whose coefficients only

depend on k and p with the following property. For every integer 3 ≤ i ≤ k, q̇i(x, y
2) is a

homogeneous polynomial of degree i in F[x, y] such that, if A is any set of k distinct elements

of F satisfying |A+̇A| = 2k − 3, then

σi(A) = q̇i(σ1(A), σ2(A)).

In view of this lemma we can conclude that the values of σ1 and σ2 uniquely determine

those of σ3, σ4, . . . , σk, and in turn also the elements of A, since they are the k solutions of

the equation

g(z) = zk − σ1z
k−1 + σ2z

k−2 − . . .+ (−1)kσk = 0.

This means that each k-element subset A of F for which |A+̇A| = 2k − 3 is uniquely

determined by some pair

(σ1, σ2) ∈ F × F.

This is true in particular if A is a (non-constant) arithmetic progression of length k.
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Lemma 4.6. Let A = (a1, a2, . . . , ak) be any arithmetic progression in a field F of character-

istic p > 2k − 3 ≥ 7. Keeping the notation of Lemma 4.5, we have

σi(A) = q̇i(σ1(A), σ2(A))

for every i = 3, 4, . . . , k.

Proof. Note that if the arithmetic progression A is not constant, then |A+̇A| = 2k − 3 and

the assertion follows from Lemma 4.5. Fix the values of k and p. For any a, d ∈ F, let A(a, d)

denote the arithmetic progression

a1 = a, ai = a+ (i− 1)d (i = 2, 3, . . . , k).

For any arithmetic progression A in F there is a unique pair (a, d) ∈ F × F such that A =

A(a, d). Note that, for 1 ≤ i ≤ k, there exist homogeneous polynomials ri ∈ F[x, y] of degree

i such that

σi(A(a, d)) = ri(a, d).

Introducing the polynomial

r̃i(x, y) = q̇i(r1(x, y), r2(x, y))

for i = 3, 4, . . . , k, we find that r̃i ∈ F[x, y] is again a homogeneous polynomial of degree i.

Moreover, it follows from Lemma 4.5 that

ri(a, d) = σi(A(a, d)) = q̇i(σ1(A(a, d)), σ2(A(a, d))) = r̃i(a, d)

holds for every (a, d) ∈ F × (F \ {0}). Recall the following simple lemma (see e.g. [2]).

Lemma 4.7. If f = f(x1, x2, . . . , xk) is a polynomial over a field F , whose degree as a

polynomial in xi is at most ti for 1 ≤ i ≤ k, and f(s1, s2, . . . , sk) = 0 for all s1 ∈ S1, s2 ∈
S2, . . . , sk ∈ Sk where, for 1 ≤ i ≤ k, Si ⊆ F such that |Si| > ti, then f is the zero polynomial.

Noting that |F| − 1 ≥ p− 1 > k ≥ i, we can conclude that ri = r̃i. Consequently,

σi(A(a, d)) = q̇i(σ1(A(a, d)), σ2(A(a, d)))

holds for every a, d ∈ F, and the assertion is proved.

On the other hand, every pair (σ1, σ2) ∈ F×F determines a unique arithmetic progression:

Lemma 4.8. Let k ≥ 3 be any integer and let F be a field of characteristic p > k + 1 in

which every element has a square root. For every pair (σ1, σ2) ∈ F × F there is an arithmetic

progression A = (a1, a2, . . . , ak) such that σ1(A) = σ1 and σ2(A) = σ2. Moreover, this

progression is unique up to the reversal of the order of its elements.
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Proof. Let m be the unique element of F satisfying km = σ1, that is, m = σ1/k. If k = 2ℓ+ 1

is odd, then the arithmetic progression A = (a1, a2, . . . , ak) satisfies σ1(A) = σ1 if and only if

a1 = m− ℓd, a2 = m− (ℓ− 1)d, . . . , aℓ+1 = m, . . . , ak = m+ ℓd

for some element d ∈ F. As

2σ2(A) = σ1(A)2 −
k
∑

i=1

a2
i = σ2

1 − km2 − 2d2
ℓ
∑

i=1

i2,

σ2(A) = σ2 holds if and only if

2
kℓ(ℓ+ 1)

6
d2 = σ2

1 − km2 − 2σ2.

Note that char(F) > k + 1 > 3 guarantees that division by the numbers 2, 3, ℓ, ℓ + 1, k − 1, k

and k + 1 is possible in F. Similarly, if k = 2ℓ is even, then the arithmetic progression

A = (a1, a2, . . . , ak) satisfies σ1(A) = σ1 if and only if

a1 = m− (2ℓ− 1)(d/2), a2 = m− (2ℓ− 3)(d/2), . . . , ak = m+ (2ℓ− 1)(d/2)

for some element d ∈ F. As in the previous case, σ2(A) = σ2 holds if and only if

km2 + 2(d/2)2(12 + 32 + . . .+ (2ℓ− 1)2) = σ2
1 − 2σ2.

In each case, the arithmetic progression A satisfies the conditions if and only if

d2 =
12

k2(k − 1)(k + 1)

(

(k − 1)σ2
1 − 2kσ2

)

.

Since by our assumption on F, every element of F has a square root, there is indeed an

arithmetic progression A that satisfies the two requirements. The uniqueness of A follows

from the fact that square roots in F are unique up to a multiplicative factor ±1.

Now it is straightforward to complete the proof of Theorem 4.4. Given the k-element

subset A of F with |A+̇A| = 2k−3, Lemma 4.8 guarantees the existence of a k-term arithmetic

progression A such that σ1(A) = σ1(A) and σ2(A) = σ2(A). It follows from Lemmas 4.5 and

4.6 that σi(A) = σi(A) is valid for every 1 ≤ i ≤ k. Consequently, there is a bijection between

the elements of A and the terms of A, that is, the elements of A indeed form an arithmetic

progression.

Turning to the proof of Theorem 2.3, note that if k = 1 or k = 2, then A is a priori an arith-

metic progression. Similarly to the previous case, Theorem 2.3 is an immediate consequence

of

Theorem 4.9. Given any integer k ≥ 3, let p > 2k − 1 be a prime number and let F be any

field of characteristic p in which every element has a square root. Then every k-element subset

A of F satisfying |A+A| = 2k − 1 is an arithmetic progression in F.
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Proof. Keeping the notations from the previous proof, the key lemma in this case is

Lemma 4.10. Given any integer k ≥ 3, let p > 2k − 1 be a prime number and let F be any

field of characteristic p. There exist polynomials q3, q4, . . . , qk ∈ F[x, y] whose coefficients only

depend on k and p with the following property. For every integer 3 ≤ i ≤ k, qi(x, y
2) is a

homogeneous polynomial of degree i in F[x, y] such that, if A is any set of k distinct elements

of F satisfying |A+A| = 2k − 1, then

σi(A) = qi(σ1(A), σ2(A)).

We will prove this lemma in the following subsection. Based on this lemma one only has

to mimic the proof of Lemma 4.6 to obtain

Lemma 4.11. Let A = (a1, a2, . . . , ak) be any arithmetic progression in a field F of charac-

teristic p > 2k − 1 ≥ 5. Keeping the notation of Lemma 4.10, we have

σi(A) = qi(σ1(A), σ2(A))

for every i = 3, 4, . . . , k.

Now given the k-element subset A of F with |A+A| = 2k − 1, replacing Lemmas 4.5 and

4.6 by Lemmas 4.10 and 4.11, respectively, the proof of Theorem 4.9 can be completed along

the same lines as that of Theorem 4.4. It only remains to prove Lemma 4.10.

Details II: Proof of Lemma 4.10

The proof of this lemma is very similar to that of Lemma 4.5, but technically it is considerably

more simple. Therefore we begin with the proof of this lemma and postpone the proof of the

more interesting Lemma 4.5 to the next subsection.

Again, let the elements of A be a1, a2, . . . , ak and assume that

D = A+A = {d1, d2, . . . , d2k−1}.

Introduce the polynomial

f(x, y) =
∏

d∈D

(x+ y − d).

This time we find that f(x, y) = 0 for arbitrary x, y ∈ A. It follows from the Combinatorial

Nullstellensatz (Lemma 2.26) that there exist polynomials h′, h′′ ∈ F[x, y] of degree at most

k − 1 such that

f(x, y) = h′(x, y)g(x) + h′′(x, y)g(y),
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where

g(z) =

k
∏

i=1

(z − ai)

is the same auxiliary polynomial as in the previous proof.

Since the polynomial f is symmetric we can write

f(x, y) = f(y, x) = h′(y, x)g(y) + h′′(y, x)g(x)

to obtain that

f(x, y) = h(x, y)g(x) + h(y, x)g(y), (4.5)

where h(x, y) = (1/2)(h′(x, y) + h′′(y, x)) is a polynomial of degree at most k − 1. Thus we

can write

h(x, y) =
k−1
∑

i=0

hi(x, y),

where

hi(x, y) =

i
∑

j=0

Aijx
jyi−j .

We can also rewrite f(x, y) in the form

f(x, y) =

2k−1
∑

i=0

(−1)iτip2k−1−i(x, y).

Here τ0 = 1 and, for 1 ≤ i ≤ 2k − 1, τi is the ith elementary symmetric polynomial of

d1, d2, . . . , d2k−1, while

pi(x, y) = (x + y)i =

i
∑

j=0

Bijx
jyi−j ,

where this time Bij =
(

i
j

)

. Now the coefficients Ak−1,i for 0 ≤ i ≤ k − 1 can be easily

determined if one compares in Equation 4.5 the terms of degree 2k − 1. With our notations,

this equation implies

p2k−1(x, y) = hk−1(x, y)xk + hk−1(y, x)yk,

from which we conclude that

Ak−1,i = B2k−1,i+k =

(

2k − 1

k + i

)

,

which is a nonzero element of F for char(F) = p > 2k − 1.

Now we are ready to prove the following extension of Lemma 4.10.

Lemma 4.12. There exist polynomials qt (0 ≤ t ≤ k) and qti (0 ≤ t ≤ k − 1, 0 ≤ i ≤
k−1− t) in F[x, y] whose coefficients only depend on k and p with the following property. The

polynomials qt(x, y
2) and qti(x, y

2) are homogeneous polynomials of degree t such that

σt(A) = qt(σ1(A), σ2(A))
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and

Ak−1−t,i = qti(σ1(A), σ2(A)).

Proof. We prove this lemma by induction on t. The statement is clearly valid with q0 = 1

and q0,i =
(

2k−1
k+i

)

. Thus we may assume that 1 ≤ t ≤ k, and the polynomials qs, qsi have been

already found for 0 ≤ s ≤ t − 1 and for all appropriate values of i. To prove the statement

for t we will compare in Equation 4.5 the terms of degree 2k− 1− t. That is, we consider the

following consequence of Equation 4.5:

(−1)tτtp2k−1−t(x, y)

=
t
∑

j=0

(−1)t−jσt−j

(

hk−1−j(x, y)xk−t+j + hk−1−j(y, x)yk−t+j
)

, (4.6)

where we use the convenient notation h−1(x, y) = 0, and as before, we write σi = σi(A). First

we determine the polynomial qt. If t = 1 or t = 2, then q1(x, y) = x, resp. q2(x, y) = y

will obviously have the desired properties. Next, if t = 2s + 1 where s ≥ 1, we compare the

coefficients of xk−s−1yk−s−1 in the above equation, and also that of xk−syk−s−2, to obtain

the relations

τtB2k−1−t,k−s−1 = 2

s
∑

j=0

(−1)jσt−jAk−1−j,s−j (4.7)

and

τtB2k−1−t,k−s =
s+1
∑

j=0

(−1)jσt−jAk−1−j,s+1−j +
s−1
∑

j=0

(−1)jσt−jAk−1−j,s−1−j .

Eliminating τt from these equations we find that

2

(

2k − 2s− 2

k − s

) s
∑

j=0

(−1)jσt−jAk−1−j,s−j =

=

(

2k − 2s− 2

k − s− 1

)

{

s+1
∑

j=0

(−1)jσt−jAk−1−j,s+1−j +

s−1
∑

j=0

(−1)jσt−jAk−1−j,s−1−j

}

.

It follows that

(

2k − 2s− 2

k − s− 1

)

{

s+1
∑

j=1

(−1)jσt−jAk−1−j,s+1−j +

s−1
∑

j=1

(−1)jσt−jAk−1−j,s−1−j

}

−

−2

(

2k − 2s− 2

k − s

) s
∑

j=1

(−1)jσt−jAk−1−j,s−j = γtσt,

where

γt = 2

(

2k − 2s− 2

k − s

)(

2k − 1

k + s

)

−
(

2k − 2s− 2

k − s− 1

)

{

(

2k − 1

k + s+ 1

)

+

(

2k − 1

k + s− 1

)

}

.
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To see that γt is a nonzero element of F, we express it as

γt =

(

2k − 2s− 2

k − s− 1

)(

2k − 1

k + s− 1

)

δt,

where the binomial coefficients
(

2k−2s−2
k−s−1

)

and
(

2k−1
k+s−1

)

are nonzero elements of F due to the

assumption p > 2k − 1, as well as

δt = 2 · k − s− 1

k − s
· k − s

k + s
−
{

(k − s)(k − s− 1)

(k + s+ 1)(k + s)
+ 1

}

=
2(k − s− 1)(k + s+ 1) − (k − s)(k − s− 1) − (k + s+ 1)(k + s)

(k + s+ 1)(k + s)

= −2(s+ 1)2 + 2s(s+ 1)

(k + s+ 1)(k + s)

= − 2(s+ 1)t

(k + s+ 1)(k + s)
.

Since s+ 1 < t, it follows from the induction hypothesis that

Ak−1−j,s−j = qj,s−j(σ1, σ2) for 1 ≤ j ≤ s,

Ak−1−j,s+1−j = qj,s+1−j(σ1, σ2) for 1 ≤ j ≤ s+ 1,

Ak−1−j,s−1−j = qj,s−1−j(σ1, σ2) for 1 ≤ j ≤ s− 1,

whereas

σt−j = qt−j(σ1, σ2) for 1 ≤ j ≤ s+ 1,

and that (qt−jqj,s−j)(x, y2), (qt−jqj,s+1−j)(x, y2), (qt−jqj,s−1−j)(x, y2) are homogeneous poly-

nomials of degree t, for all relevant values of j. Therefore the polynomial

qt = γ−1
t

(

s+1
∑

j=1

(−1)jrj +

s−1
∑

j=1

(−1)jr′j − 2

s
∑

j=1

(−1)jr′′j

)

,

where

rj =

(

2k − 2s− 2

k − s− 1

)

qt−jqj,s+1−j , r′j =

(

2k − 2s− 2

k − s− 1

)

qt−jqj,s−1−j

and

r′′j =

(

2k − 2s− 2

k − s

)

qt−jqj,s−j

will certainly satisfy all the requirements.

A similar procedure can be taken also if t = 2s for some integer s ≥ 2. It is done by

comparing the coefficients of xk−syk−s−1 and also that of xk−s+1yk−s−2 in Equation 4.6.

This leads to the relations

τtB2k−1−t,k−s =

s
∑

j=0

(−1)jσt−jAk−1−j,s−j +

s−1
∑

j=0

(−1)jσt−jAk−1−j,s−1−j (4.8)



4.2. INVERSE THEOREMS 45

and

τtB2k−1−t,k−s+1 =

s+1
∑

j=0

(−1)jσt−jAk−1−j,s+1−j +

s−2
∑

j=0

(−1)jσt−jAk−1−j,s−2−j .

After eliminating τt from these equations and rearranging the terms we find that

γtσt =

(

2k − 2s− 1

k − s

)

{

s+1
∑

j=1

(−1)jσt−jAk−1−j,s+1−j +

s−2
∑

j=1

(−1)jσt−jAk−1−j,s−2−j

}

−
(

2k − 2s− 1

k − s+ 1

)

{

s
∑

j=1

(−1)jσt−jAk−1−j,s−j +

s−1
∑

j=1

(−1)jσt−jAk−1−j,s−1−j

}

,

where this time

γt =

(

2k − 2s− 1

k − s+ 1

)

{

(

2k − 1

k + s

)

+

(

2k − 1

k + s− 1

)

}

−
(

2k − 2s− 1

k − s

)

{

(

2k − 1

k + s+ 1

)

+

(

2k − 1

k + s− 2

)

}

.

Again we want to prove that γt is a nonzero element of F, so we write

γt =

(

2k − 2s− 1

k − s

)(

2k − 1

k + s− 2

)

δt,

where the binomial coefficients
(

2k−2s−1
k−s

)

and
(

2k−1
k+s−2

)

are nonzero elements of F due to the

assumption p > 2k − 1, and so is

δt =
k − s− 1

k − s+ 1

{

(k − s+ 1)(k − s)

(k + s)(k + s− 1)
+
k − s+ 1

k + s− 1

}

−
{

(k − s+ 1)(k − s)(k − s− 1)

(k + s+ 1)(k + s)(k + s− 1)
+ 1

}

=
(k − s− 1)(k − s)(k + s+ 1) + (k − s− 1)(k + s)(k + s+ 1)

(k + s+ 1)(k + s)(k + s− 1)

− (k − s+ 1)(k − s)(k − s− 1) + (k + s+ 1)(k + s)(k + s− 1)

(k + s+ 1)(k + s)(k + s− 1)

=
2k(k2 − (s+ 1)2)

(k + s+ 1)(k + s)(k + s− 1)

−2k3 + 2k(s(s+ 1) + s(s− 1) + (s+ 1)(s− 1))

(k + s+ 1)(k + s)(k + s− 1)

= − 2k(2s)(2s+ 1)

(k + s+ 1)(k + s)(k + s− 1)

= − 2kt(t+ 1)

(k + s+ 1)(k + s)(k + s− 1)
.
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Therefore we may introduce the polynomial

qt = γ−1
t

(

s+1
∑

j=1

(−1)jrj +

s−2
∑

j=1

(−1)jr′j −
s
∑

j=1

(−1)jr′′j −
s−1
∑

j=1

(−1)jr′′′j

)

,

where, referring only to polynomials qi, qij we have already defined,

rj =

(

2k − 2s− 1

k − s

)

qt−jqj,s+1−j , r′j =

(

2k − 2s− 1

k − s

)

qt−jqj,s−2−j

and

r′′j =

(

2k − 2s− 1

k − s+ 1

)

qt−jqj,s−j , r′′′j =

(

2k − 2s− 1

k − s+ 1

)

qt−jqj,s−1−j .

According to the induction hypothesis, qt(x, y
2) is a homogeneous polynomial of degree t, and

σt = qt(σ1, σ2).

Now we are in the position to define the polynomials qti, assuming also that t < k. We

start with an intermediate result about the number τt.

Lemma 4.13. There exists a polynomial q∗t ∈ F[x, y] whose coefficients only depend on k and

p, such that q∗t (x, y2) is a homogeneous polynomial of degree t with the property

τt = q∗t (σ1, σ2).

Proof. If t = 2s+ 1, s ≥ 0, then we can use Equation 4.7 to find that the polynomial

q∗t = 2

(

2k − 2s− 2

k − s− 1

)−1 s
∑

j=0

(−1)jqt−jqj,s−j

will have the desired properties. Similarly, in the case when t = 2s, s ≥ 1, it follows from

Equation 4.8 that

q∗t =

(

2k − 2s− 1

k − s

)−1
{

s
∑

j=0

(−1)jqt−jqj,s−j +
s−1
∑

j=0

(−1)jqt−jqj,s−1−j

}

is an appropriate polynomial.

Returning to the polynomials qti, to express the coefficients Ak−1−t,k−1−t−i (0 ≤ i ≤
k − t − 1) in the desired form we compare the coefficients of x2k−1−t−iyi in Equation 4.6.

Since 2k − 1 − t− i ≥ k − t+ j for every 0 ≤ j ≤ t, whereas i < k − t+ j for every 0 ≤ j ≤ t,

we obtain that

τtB2k−1−t,2k−1−t−i =

t
∑

j=0

(−1)jσt−jAk−1−j,k−1−j−i,
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which implies that

Ak−1−t,k−1−t−i = (−1)tτt

(

2k − 1 − t

2k − 1 − t− i

)

−
t−1
∑

j=0

(−1)t−jσt−jAk−1−j,k−1−j−i.

Given that t < k, our induction hypothesis, the already proved properties of qt and Lemma

4.13 imply that, for every 0 ≤ i ≤ k − t− 1, the polynomial

qt,k−1−t−i = (−1)t

(

2k − 1 − t

2k − 1 − t− i

)

q∗t −
t−1
∑

j=0

(−1)t−jqt−jqj,k−1−j−i

is such that qt,k−1−t−i(x, y
2) is homogeneous of degree t and

Ak−1−t,k−1−t−i = qt,k−1−t−i(σ1, σ2).

This completes the proof of the induction step and also that of Lemma 4.10.

Details III: Proof of Lemma 4.5

We intend to carry the proof of Lemma 4.10 through as far as it is possible. Note first of all,

that although Ḃij = 0 for i = 2j, in the case i/2 < j ≤ i ≤ 2k − 2 we have that

Ḃij =
2j − i

j

(

i− 1

i− j

)

is a nonzero element of F for char(F) = p > 2k − 3 implies char(F) ≥ 2k − 1 > max{2j −
i, j, i− 1}.

Collecting the terms of degree 2k − 2 in Equation 4.4 results in the polynomial equation

ṗ2k−2(x, y) = ḣk−2(x, y)xk − ḣk−2(y, x)yk.

Looking at the coefficient of xk+iyk−i−2 on each side we find that

Ȧk−2,i = Ḃ2k−2,k+i =
2i+ 2

k + i

(

2k − 3

k − i− 2

)

is a nonzero element of F for i = 0, 1, . . . , k − 2.

The analogue of Lemma 4.12, which is a direct extension of the lemma we are about to

prove is the following

Lemma 4.14. There exist polynomials q̇t (0 ≤ t ≤ k) and q̇ti (0 ≤ t ≤ k − 2, 0 ≤ i ≤
k−2− t) in F[x, y] whose coefficients only depend on k and p with the following property. The

polynomials q̇t(x, y
2) and q̇ti(x, y

2) are homogeneous polynomials of degree t such that

σt(A) = q̇t(σ1(A), σ2(A))

and

Ȧk−2−t,i = q̇ti(σ1(A), σ2(A)).
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Proof. We prove this lemma by induction on t. The statement is clearly valid with q̇0 = 1

and q̇0,i = 2i+2
k+i

(

2k−3
k−i−2

)

. Thus we may assume that 1 ≤ t ≤ k, and the polynomials qs, qsi

have been already found for 0 ≤ s ≤ t − 1 and for all appropriate values of i. To prove the

statement for t we will compare in Equation 4.4 the terms of degree 2k − 2 − t. That is, we

consider the following consequence of Equation 4.4:

(−1)tτ̇tṗ2k−2−t(x, y)

=

t
∑

j=0

(−1)t−jσt−j

(

ḣk−2−j(x, y)xk−t+j − ḣk−2−j(y, x)yk−t+j
)

, (4.9)

where we conveniently rely on the notation ḣ−1(x, y) = ḣ−2(x, y) = 0, and also σi = σi(A).

Again, the main difficulty is to define the polynomial q̇t, whereas the polynomials q̇ti that

we only need for the purpose of induction can be easily constructed afterwards. If t = 1 or

t = 2, then q̇1(x, y) = x, resp. q̇2(x, y) = y have the desired properties. Next we try to

determine q̇t in the case when t = 2s+ 1, s ≥ 1. For this end we compare the coefficients of

xk−s−1yk−s−2 resp. xk−syk−s−3 in Equation 4.9 to obtain the relations

τ̇tḂ2k−2−t,k−s−1 =

s
∑

j=0

(−1)jσt−jȦk−2−j,s−j −
s−1
∑

j=0

(−1)jσt−jȦk−2−j,s−1−j (4.10)

and

τ̇tḂ2k−2−t,k−s =

s+1
∑

j=0

(−1)jσt−jȦk−2−j,s+1−j −
s−2
∑

j=0

(−1)jσt−jȦk−2−j,s−2−j . (4.11)

After eliminating τ̇t from these equations and rearranging the terms we find that

γ̇tσt = Ḃ2k−2−t,k−s−1

{

s+1
∑

j=1

(−1)jσt−jȦk−2−j,s+1−j −
s−2
∑

j=1

(−1)jσt−jȦk−2−j,s−2−j

}

−Ḃ2k−2−t,k−s

{

s
∑

j=1

(−1)jσt−jȦk−2−j,s−j −
s−1
∑

j=1

(−1)jσt−jȦk−2−j,s−1−j

}

,

where

γ̇t = Ḃ2k−2−t,k−s(Ȧk−2,s − Ȧk−2,s−1) − Ḃ2k−2−t,k−s−1(Ȧk−2,s+1 − Ȧk−2,s−2)

=
3

k − s

(

2k − t− 3

k − s− 1

)

{

t+ 1

k + s

(

2k − 3

k − s− 2

)

− t− 1

k + s− 1

(

2k − 3

k − s− 1

)

}

− 1

k − s− 1

(

2k − t− 3

k − s− 2

)

{

t+ 3

k + s+ 1

(

2k − 3

k − s− 3

)

− t− 3

k + s− 2

(

2k − 3

k − s

)

}

.

We should mention that in the case s = 1 the term Ȧk−2,s−2 is meaningless and in fact does

not occur in the above expression for γ̇t. Nevertheless, the final formula is valid even in this
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case, since s = 1 implies that t−3
k+s−2

(

2k−3
k−s

)

= 0. In an attempt to prove that γ̇t 6= 0 we express

it as

γ̇t =

(

2k − t− 3

k − s− 2

)(

2k − 3

k − s− 3

)

δ̇t,

where the binomial coefficients
(

2k−t−3
k−s−2

)

and
(

2k−3
k−s−3

)

are nonzero elements of F due to the

assumption p > 2k − 3, whereas

δ̇t =
3

k − s
· k − s− 2

k − s− 1

{

t+ 1

k + s
· k + s

k − s− 2
− t− 1

k + s− 1
· (k + s)(k + s− 1)

(k − s− 1)(k − s− 2)

}

− 1

k − s− 1

{

t+ 3

k + s+ 1
− t− 3

k + s− 2
· (k + s)(k + s− 1)(k + s− 2)

(k − s)(k − s− 1)(k − s− 2)

}

=
1

k − s− 1
· 1

(k + s+ 1)(k − s)(k − s− 1)(k − s− 2)
· ǫ̇t,

where (k − s− 1)(k + s+ 1)(k − s)(k − s− 1)(k − s− 2) 6= 0 and

ǫ̇t = 3(t+ 1)(k + s+ 1)(k − s− 1)(k − s− 2)

−3(t− 1)(k + s+ 1)(k + s)(k − s− 2)

−(t+ 3)(k − s)(k − s− 1)(k − s− 2)

+(t− 3)(k + s+ 1)(k + s)(k + s− 1)

= −4t(s+ 1)
{

3k − (2s2 + 4s+ 3)
}

.

We can conclude that γ̇t is a nonzero element of F if and only if 3k − (2s2 + 4s+ 3) 6= 0 in F.

This is indeed the case when s = 1 for then 3k− (2s2 + 4s+ 3) = 3(k− 3) 6= 0, and also when

s = 2 and k = 5. Unfortunately it is not the case in general, thus we cannot really proceed

along the lines of the previous proof. However, if s ≥ 2 and k > 5, then k − s− 4 ≥ 0 and we

may compare the coefficients of xk−s+1yk−s−4 in Equation 4.9 to obtain a new relation

τ̇tḂ2k−2−t,k−s+1 =
s+2
∑

j=0

(−1)jσt−jȦk−2−j,s+2−j −
s−3
∑

j=0

(−1)jσt−jȦk−2−j,s−3−j . (4.12)

Now we can eliminate τ̇t from Equations 4.11 and 4.12 to get

γ̇′tσt = Ḃ2k−2−t,k−s+1

{

s+1
∑

j=1

(−1)jσt−jȦk−2−j,s+1−j −
s−2
∑

j=1

(−1)jσt−jȦk−2−j,s−2−j

}

−Ḃ2k−2−t,k−s

{

s+2
∑

j=1

(−1)jσt−jȦk−2−j,s+2−j −
s−3
∑

j=1

(−1)jσt−jȦk−2−j,s−3−j

}

,

where

γ̇′t = Ḃ2k−2−t,k−s(Ȧk−2,s+2 − Ȧk−2,s−3) − Ḃ2k−2−t,k−s+1(Ȧk−2,s+1 − Ȧk−2,s−2)
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=
3

k − s

(

2k − t− 3

k − s− 1

)

{

t+ 5

k + s+ 2

(

2k − 3

k − s− 4

)

− t− 5

k + s− 3

(

2k − 3

k − s+ 1

)

}

− 5

k − s+ 1

(

2k − t− 3

k − s

)

{

t+ 3

k + s+ 1

(

2k − 3

k − s− 3

)

− t− 3

k + s− 2

(

2k − 3

k − s

)

}

.

Again, if s = 2, then the term Ȧk−2,s−3 is meaningless, but the final formula is nevertheless

correct for t− 5 = 0 in this case. Therefore we can write

γ̇′t =

(

2k − t− 3

k − s− 1

)(

2k − 3

k − s− 4

)

δ̇′t,

where the binomial coefficients
(

2k−t−3
k−s−1

)

and
(

2k−3
k−s−4

)

are nonzero elements of F due to the

assumption p > 2k − 3, whereas

δ̇′t =
3

k − s

{

t+ 5

k + s+ 2
−

− t− 5

k + s− 3
· (k + s+ 1)(k + s)(k + s− 1)(k + s− 2)(k + s− 3)

(k − s+ 1)(k − s)(k − s− 1)(k − s− 2)(k − s− 3)

}

− 5

k − s+ 1
· k − s− 3

k − s

{

t+ 3

k + s+ 1
· k + s+ 1

k − s− 3
−

− t− 3

k + s− 2
· (k + s+ 1)(k + s)(k + s− 1)(k + s− 2)

(k − s)(k − s− 1)(k − s− 2)(k − s− 3)

}

.

That is,

δ̇′t =
1

(k + s+ 2)(k − s+ 1)(k − s)2(k − s− 1)(k − s− 2)(k − s− 3)
· ǫ̇′t

where (k + s+ 2)(k − s+ 1)(k − s)2(k − s− 1)(k − s− 2)(k − s− 3) 6= 0 and

ǫ̇′t = 3(t+ 5)(k − s+ 1)(k − s)(k − s− 1)(k − s− 2)(k − s− 3)

−3(t− 5)(k + s+ 2)(k + s+ 1)(k + s)(k + s− 1)(k + s− 2)

−5(t+ 3)(k + s+ 2)(k − s)(k − s− 1)(k − s− 2)(k − s− 3)

+5(t− 3)(k + s+ 2)(k + s+ 1)(k + s)(k + s− 1)(k − s− 3)

= 8t(s+ 1)
{

15k3 − (10s2 + 20s+ 30)k2 + (25s2 + 50s+ 15)k −

−(2s4 + 8s3 + 17s2 + 18s)
}

.

Thus we can conclude that γ̇′t is a nonzero element of F if and only if the integer

15k3 − (10s2 + 20s+ 30)k2 + (25s2 + 50s+ 15)k − (2s4 + 8s3 + 17s2 + 18s)

is not divisible by p.
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Now we can prove that either γ̇t or γ̇′t is a nonzero element of F. Were it not the case, the

prime p would divide the integers 3k − (2s2 + 4s+ 3) and

15k3 − (10s2 + 20s+ 30)k2 + (25s2 + 50s+ 15)k − (2s4 + 8s3 + 17s2 + 18s).

Thus in turn, by the division algorithm p would also divide the integers

−15k2 + (25s2 + 50s+ 15)k − (2s4 + 8s3 + 17s2 + 18s),

(15s2 + 30s)k − (2s4 + 8s3 + 17s2 + 18s),

and finally also the integer

5s(s+ 2)(2s2 + 4s+ 3) − (2s4 + 8s3 + 17s2 + 18s) = 2s(s+ 2)(2s+ 1)(2s+ 3)

which is absurd since 2s+ 3 = t+ 2 ≤ 2k − 3 < p.

Accordingly, if γ̇t 6= 0 (this is the case if, for example s = 1, or s = 2 and k = 5) we can

define the polynomial q̇t as

q̇t = γ̇−1
t

(

s+1
∑

j=1

(−1)j ṙj −
s−2
∑

j=1

(−1)j ṙ′j −
s
∑

j=1

(−1)j ṙ′′j +

s−1
∑

j=1

(−1)j ṙ′′′j

)

,

where

ṙj =
1

k − s− 1

(

2k − t− 3

k − s− 2

)

q̇t−j q̇j,s+1−j , ṙ
′
j =

1

k − s− 1

(

2k − t− 3

k − s− 2

)

q̇t−j q̇j,s−2−j

and

ṙ′′j =
3

k − s

(

2k − t− 3

k − s− 1

)

q̇t−j q̇j,s−j , ṙ′′′j =
3

k − s

(

2k − t− 3

k − s− 1

)

q̇t−j q̇j,s−1−j .

Note that since s+ 1 < t and also s+ 1 ≤ k − 2, all the polynomials q̇i, q̇ij that occur in the

above expressions have been already defined.

On the other hand, if s ≥ 2, k > 5 and γ̇′t 6= 0, then we can define the polynomial q̇t as

q̇t = (γ̇′t)
−1

(

s+1
∑

j=1

(−1)j ṙ
(4)
j −

s−2
∑

j=1

(−1)j ṙ
(5)
j −

s+2
∑

j=1

(−1)j ṙ
(6)
j +

s−3
∑

j=1

(−1)j ṙ
(7)
j

)

,

where

ṙ
(4)
j =

5

k − s+ 1

(

2k − t− 3

k − s

)

q̇t−j q̇j,s+1−j ,

ṙ
(5)
j =

5

k − s+ 1

(

2k − t− 3

k − s

)

q̇t−j q̇j,s−2−j ,

ṙ
(6)
j =

3

k − s

(

2k − t− 3

k − s− 1

)

q̇t−j q̇j,s+2−j

and

ṙ
(7)
j =

3

k − s

(

2k − t− 3

k − s− 1

)

q̇t−j q̇j,s−3−j .
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Again, all the polynomials q̇i, q̇ij that occur in the above expressions have been already defined,

as in this case clearly s+ 2 < t and also s+ 2 ≤ k− 2. According to the induction hypothesis,

in each case q̇t(x, y
2) is a homogeneous polynomial of degree t, and σt = q̇t(σ1, σ2).

We still have to determine the polynomial q̇t in the case when t = 2s, s ≥ 2. Comparing

in Equation 4.9 the coefficients of xk−s−1yk−s−1 would yield the trivial equation 0 = 0, there-

fore we rather proceed on with comparing the coefficients of xk−syk−s−2 and xk−s+1yk−s−3,

respectively. Thus we obtain the relations

τ̇tḂ2k−2−t,k−s =

s
∑

j=0

(−1)jσt−jȦk−2−j,s−j −
s−2
∑

j=0

(−1)jσt−jȦk−2−j,s−2−j (4.13)

and

τ̇tḂ2k−2−t,k−s+1 =

s+1
∑

j=0

(−1)jσt−jȦk−2−j,s+1−j −
s−3
∑

j=0

(−1)jσt−jȦk−2−j,s−3−j . (4.14)

After eliminating τ̇t from these equations and rearranging the terms we find that

γ̇tσt = Ḃ2k−2−t,k−s+1

{

s
∑

j=1

(−1)jσt−jȦk−2−j,s−j −
s−2
∑

j=1

(−1)jσt−jȦk−2−j,s−2−j

}

−Ḃ2k−2−t,k−s

{

s+1
∑

j=1

(−1)jσt−jȦk−2−j,s+1−j −
s−3
∑

j=1

(−1)jσt−jȦk−2−j,s−3−j

}

,

where

γ̇t = Ḃ2k−2−t,k−s(Ȧk−2,s+1 − Ȧk−2,s−3) − Ḃ2k−2−t,k−s+1(Ȧk−2,s − Ȧk−2,s−2)

=
2

k − s

(

2k − t− 3

k − s− 1

)

{

t+ 4

k + s+ 1

(

2k − 3

k − s− 3

)

− t− 4

k + s− 3

(

2k − 3

k − s+ 1

)

}

− 4

k − s+ 1

(

2k − t− 3

k − s

)

{

t+ 2

k + s

(

2k − 3

k − s− 2

)

− t− 2

k + s− 2

(

2k − 3

k − s

)

}

.

Again, the formula is valid even in the case of s = 2, because then t − 4 = 0. We further

express γ̇t as

γ̇t =

(

2k − t− 3

k − s− 1

)(

2k − 3

k − s− 3

)

δ̇t,

where the binomial coefficients
(

2k−t−3
k−s−1

)

and
(

2k−3
k−s−3

)

are nonzero elements of F due to the

assumption p > 2k − 3, whereas

δ̇t =
2

k − s

{

t+ 4

k + s+ 1
−

− t− 4

k + s− 3
· (k + s)(k + s− 1)(k + s− 2)(k + s− 3)

(k − s+ 1)(k − s)(k − s− 1)(k − s− 2)

}
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− 4

k − s+ 1
· k − s− 2

k − s

{

t+ 2

k + s
· k + s

k − s− 2
−

− t− 2

k + s− 2
· (k + s)(k + s− 1)(k + s− 2)

(k − s)(k − s− 1)(k − s− 2)

}

.

That is,

δ̇t =
2

(k + s+ 1)(k − s+ 1)(k − s)2(k − s− 1)(k − s− 2)
· ǫ̇t

where (k + s+ 1)(k − s+ 1)(k − s)2(k − s− 1)(k − s− 2) 6= 0 and

ǫ̇t = (t+ 4)(k − s+ 1)(k − s)(k − s− 1)(k − s− 2)

−(t− 4)(k + s+ 1)(k + s)(k + s− 1)(k + s− 2)

−2(t+ 2)(k + s+ 1)(k − s)(k − s− 1)(k − s− 2)

+2(t− 2)(k + s+ 1)(k + s)(k + s− 1)(k − s− 2)

= 4t(t+ 1)
{

3k2 − (2s2 + 2s+ 3)k + (2s2 + 2s)
}

= 4t(t+ 1)(k − 1)
{

3k − (2s2 + 2s)
}

.

We can conclude that γ̇t is a nonzero element of F if and only if 3k− (2s2 + 2s) 6= 0 in F. This

is indeed the case when s = 2 for then 3k − (2s2 + 2s) = 3(k − 4) 6= 0, and also when s = 3

and k = 6; but not in general. However, if s ≥ 3 and k > 6, then k − s− 4 ≥ 0 and we may

compare the coefficients of xk−s+2yk−s−4 in Equation 4.9 to obtain a new relation

τ̇tḂ2k−2−t,k−s+2 =
s+2
∑

j=0

(−1)jσt−jȦk−2−j,s+2−j −
s−4
∑

j=0

(−1)jσt−jȦk−2−j,s−4−j . (4.15)

Now we can eliminate τ̇t from Equations 4.14 and 4.15 to get that

γ̇′tσt = Ḃ2k−2−t,k−s+2

{

s+1
∑

j=1

(−1)jσt−jȦk−2−j,s+1−j −
s−3
∑

j=1

(−1)jσt−jȦk−2−j,s−3−j

}

−Ḃ2k−2−t,k−s+1

{

s+2
∑

j=1

(−1)jσt−jȦk−2−j,s+2−j −
s−4
∑

j=1

(−1)jσt−jȦk−2−j,s−4−j

}

,

where

γ̇′t = Ḃ2k−2−t,k−s+1(Ȧk−2,s+2 − Ȧk−2,s−4)

−Ḃ2k−2−t,k−s+2(Ȧk−2,s+1 − Ȧk−2,s−3)

=
4

k − s+ 1

(

2k − t− 3

k − s

)

{

t+ 6

k + s+ 2

(

2k − 3

k − s− 4

)

− t− 6

k + s− 4

(

2k − 3

k − s+ 2

)

}

− 6

k − s+ 2

(

2k − t− 3

k − s+ 1

)

{

t+ 4

k + s+ 1

(

2k − 3

k − s− 3

)

− t− 4

k + s− 3

(

2k − 3

k − s+ 1

)

}

.
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Note that the formula is valid even in the case of s = 3, because then t − 6 = 0. We further

express γ̇′t as

γ̇′t =

(

2k − t− 3

k − s

)(

2k − 3

k − s− 4

)

δ̇′t

where the binomial coefficients
(

2k−t−3
k−s

)

and
(

2k−3
k−s−4

)

are nonzero elements of F, whereas

δ̇′t =
4

k − s+ 1

{

t+ 6

k + s+ 2
− t− 6

k + s− 4
·

· (k + s+ 1)(k + s)(k + s− 1)(k + s− 2)(k + s− 3)(k + s− 4)

(k − s+ 2)(k − s+ 1)(k − s)(k − s− 1)(k − s− 2)(k − s− 3)

}

− 6

k − s+ 2
· k − s− 3

k − s+ 1

{

t+ 4

k + s+ 1
· k + s+ 1

k − s− 3
−

− t− 4

k + s− 3
· (k + s+ 1)(k + s)(k + s− 1)(k + s− 2)(k + s− 3)

(k − s+ 1)(k − s)(k − s− 1)(k − s− 2)(k − s− 3)

}

.

That is,

δ̇′t =
2

(k + s+ 2)(k − s+ 2)(k − s+ 1)2(k − s)(k − s− 1)(k − s− 2)(k − s− 3)
· ǫ̇′t

where (k + s+ 2)(k − s+ 2)(k − s+ 1)2(k − s)(k − s− 1)(k − s− 2)(k − s− 3) 6= 0 and

ǫ̇′t = 2(t+ 6)(k − s+ 2)(k − s+ 1)(k − s)(k − s− 1)(k − s− 2)(k − s− 3)

−2(t− 6)(k + s+ 2)(k + s+ 1)(k + s)(k + s− 1)(k + s− 2)(k + s− 3)

−3(t+ 4)(k + s+ 2)(k − s+ 1)(k − s)(k − s− 1)(k − s− 2)(k − s− 3)

+3(t− 4)(k + s+ 2)(k + s+ 1)(k + s)(k + s− 1)(k + s− 2)(k − s− 3)

= t(k − 5s+ 9)(k + s+ 2)(k + s+ 1)(k + s)(k + s− 1)(k + s− 2)

−t(k + 5s+ 14)(k − s+ 1)(k − s)(k − s− 1)(k − s− 2)(k − s− 3)

= 4t(t+ 1)
{

15k4 − (10s2 + 10s+ 30)k3 + (45s2 + 45s− 15)k2 −

−(6s4 + 12s3 + 29s2 + 23s− 30)k + (6s4 + 12s3 − 6s2 − 12s)
}

= 4t(t+ 1)(k − 1)
{

15k3 − (10s2 + 10s+ 15)k2 + (35s2 + 35s− 30)k −

−(6s4 + 12s3 − 6s2 − 12s)
}

.

Thus we can conclude that γ̇′t is a nonzero element of F if and only if the integer

15k3 − (10s2 + 10s+ 15)k2 + (35s2 + 35s− 30)k − (6s4 + 12s3 − 6s2 − 12s)

is not divisible by p.

Now we can prove that either γ̇t or γ̇′t is a nonzero element of F. Were it not the case, the

prime p would divide the integers M = 3k − (2s2 + 2s) and

15k3 − (10s2 + 10s+ 15)k2 + (35s2 + 35s− 30)k − (6s4 + 12s3 − 6s2 − 12s).
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Consequently, p would also divide the integers

−15k2 + (35s2 + 35s− 30)k − (6s4 + 12s3 − 6s2 − 12s),

N = (25s2 + 25s− 30)k − (6s4 + 12s3 − 6s2 − 12s),

and finally also the integer

3N − (25s2 + 25s− 30)M = 2s(s+ 1)
{

(25s2 + 25s− 30) − 9(s− 1)(s+ 2)
}

= 8s(s+ 1)(2s− 1)(2s+ 3),

which is absurd since 2s+ 3 = t+ 3 ≤ 2k − 3 < p.

Accordingly, if γ̇t 6= 0 (this is the case if, for example s = 2, or s = 3 and k = 6) we can

define the polynomial q̇t as

q̇t = γ̇−1
t

(

s
∑

j=1

(−1)j ṙj −
s−2
∑

j=1

(−1)j ṙ′j −
s+1
∑

j=1

(−1)j ṙ′′j +
s−3
∑

j=1

(−1)j ṙ′′′j

)

,

where

ṙj =
4

k − s+ 1

(

2k − t− 3

k − s

)

q̇t−j q̇j,s−j , ṙ
′
j =

4

k − s+ 1

(

2k − t− 3

k − s

)

q̇t−j q̇j,s−2−j

and

ṙ′′j =
2

k − s

(

2k − t− 3

k − s− 1

)

q̇t−j q̇j,s+1−j , ṙ′′′j =
2

k − s

(

2k − t− 3

k − s− 1

)

q̇t−j q̇j,s−3−j .

Note that since s+ 1 < t and also s+ 1 ≤ k − 2, all the polynomials q̇i, q̇ij that occur in the

above expressions have been already defined.

On the other hand, if s ≥ 3, k > 6 and γ̇′t 6= 0, then we can define the polynomial q̇t as

q̇t = (γ̇′t)
−1

(

s+1
∑

j=1

(−1)j ṙ
(4)
j −

s−3
∑

j=1

(−1)j ṙ
(5)
j −

s+2
∑

j=1

(−1)j ṙ
(6)
j +

s−4
∑

j=1

(−1)j ṙ
(7)
j

)

,

where

ṙ
(4)
j =

6

k − s+ 2

(

2k − t− 3

k − s+ 1

)

q̇t−j q̇j,s+1−j ,

ṙ
(5)
j =

6

k − s+ 2

(

2k − t− 3

k − s+ 1

)

q̇t−j q̇j,s−3−j ,

ṙ
(6)
j =

4

k − s+ 1

(

2k − t− 3

k − s

)

q̇t−j q̇j,s+2−j

and

ṙ
(7)
j =

4

k − s+ 1

(

2k − t− 3

k − s

)

q̇t−j q̇j,s−4−j .

Again, all the polynomials q̇i, q̇ij that occur in the above expressions have been already

defined, as in this case clearly s + 2 < t and also s + 2 ≤ k − 2. According to the induction

hypothesis, in each case q̇t(x, y
2) is a homogeneous polynomial of degree t, and σt = q̇t(σ1, σ2).
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Having thus found the polynomial q̇t, we proceed on with the definition of the polynomials

qti, under the additional assumption that t ≤ k − 2. First we need the following analogue of

Lemma 4.13.

Lemma 4.15. There exists a polynomial q̇∗t ∈ F[x, y] whose coefficients only depend on k and

p, such that q̇∗t (x, y2) is a homogeneous polynomial of degree t with the property

τ̇t = q̇∗t (σ1, σ2).

Proof. If t = 2s+ 1, s ≥ 0, then we can use Equation 4.10 to find that the polynomial

q̇∗t = (k − s− 1)

(

2k − t− 3

k − s− 2

)−1
{

s
∑

j=0

(−1)j q̇t−j q̇j,s−j −
s−1
∑

j=0

(−1)j q̇t−j q̇j,s−1−j

}

will have the desired properties. Similarly, in the case when t = 2s, s ≥ 1, it follows from

Equation 4.13 that

q̇∗t =
k − s+ 1

4

(

2k − t− 3

k − s

)−1
{

s
∑

j=0

(−1)j q̇t−j q̇j,s−j −
s−2
∑

j=0

(−1)j q̇t−j q̇j,s−2−j

}

is an appropriate polynomial.

Returning to the polynomials q̇ti, to express the coefficients Ȧk−2−t,k−2−t−i (0 ≤ i ≤
k − t − 2) in the desired form we compare the coefficients of x2k−2−t−iyi in Equation 4.9.

Since 2k − 2 − t− i ≥ k ≥ k − t+ j for every 0 ≤ j ≤ t, whereas i ≤ k − 2 − t < k − t+ j for

every 0 ≤ j ≤ t, we obtain that

τ̇tḂ2k−2−t,2k−2−t−i =

t
∑

j=0

(−1)jσt−jȦk−2−j,k−2−j−i,

which implies that

Ȧk−2−t,k−2−t−i = (−1)tτ̇t
2k − 2 − t− 2i

2k − 2 − t− i

(

2k − 3 − t

i

)

−
t−1
∑

j=0

(−1)t−jσt−jȦk−2−j,k−2−j−i.

Given that t ≤ k−2, our induction hypothesis, the already proved properties of q̇t and Lemma

4.15 imply that, for every 0 ≤ i ≤ k − t− 2, the polynomial

q̇t,k−2−t−i = (−1)t 2k − 2 − t− 2i

2k − 2 − t− i

(

2k − 3 − t

i

)

q̇∗t −
t−1
∑

j=0

(−1)t−j q̇t−j q̇j,k−2−j−i

is such that q̇t,k−2−t−i(x, y
2) is homogeneous of degree t and

Ȧk−2−t,k−2−t−i = q̇t,k−2−t−i(σ1, σ2).

This completes the proof of the inductional step and also that of Lemma 4.5.



Chapter 5

The Method of Group

Extensions

In the first two sections of the present chapter we extend the Dias da Silva–Hamidoune theorem

and our corresponding inverse theorem to arbitrary abelian groups. The third section con-

cerns general finite groups; we prove the noncommutative analogues of the Cauchy–Davenport

theorem and Vosper’s inverse theorem.

5.1 The Erdős–Heilbronn Problem in Abelian Groups

First we show that Theorem 2.11 is sharp. Assume that p(G) is finite and p(G)/2 + 1 < k ≤
p(G). Let P be a subgroup of G with |P | = p(G) and assume that P = 〈g〉. If

A = {0, g, 2g, . . . , (k − 1)g},

then clearly A+̇A = P , indicating that the bound is tight.

Turning to the proof, we note that, since dealing with a finite problem, we may assume

that G is finitely generated. We have already seen that the result is valid if G ∼= Z (Statement

1.5), and also when G is a cyclic group of prime power order (Section 3.2). In view of the

structure theorem of finitely generated abelian groups, it only remains to prove that if the

statement of Theorem 2.11 is true for two abelian groups G1 and G2, then it is also valid for

their direct sum G1 ⊕ G2. Accordingly, suppose that we have already proved Theorem 2.11

for the abelian groups G1 and G2. Let

G = G1 ⊕G2 = {(g, h) | g ∈ G1, h ∈ G2},

where addition in G is defined by

(g, h) + (g′, h′) = (g + g′, h+ h′).

57



58 CHAPTER 5. THE METHOD OF GROUP EXTENSIONS

Note that p(Gi) ≥ p(G) for i = 1, 2. For a set X ⊆ G write

X1 = {g ∈ G1 | there exists h ∈ G2 with (g, h) ∈ X}.

We define X2 in a similar way. An immediate consequence of this definition is the following

statement.

Proposition 5.1. For arbitrary X,Y ⊆ G we have (X \ Y )1 ⊇ X1 \ Y 1 and X1+̇X1 ⊆
(X+̇X)1 ⊆ X1 +X1.

We have to prove that |A+̇A| ≥ min{p(G), 2k − 3} holds for every A ⊆ G with |A| = k.

This is easy to check if p(G) = 2, and we may assume that 2k − 3 ≤ p(G) otherwise. Then

2|Ai| − 3 ≤ 2k − 3 ≤ p(G) ≤ p(Gi)

for i = 1, 2. Write A = A0 ∪ C, where C = C1 ∪ . . . ∪ Ct,

A0 = {(ai, bi) |1 ≤ i ≤ s}, Ci = {(ci, dij) |1 ≤ j ≤ ki}

for 1 ≤ i ≤ t such that 2 ≤ k1 ≤ k2 ≤ . . . ≤ kt, and a1, . . . , as, c1, . . . , ct are pairwise different

elements of G1. Note that k = s + k1 + . . . + kt. The following easy lemma will be used

frequently throughout the proof.

Lemma 5.2. For 1 ≤ α, β ≤ t, α 6= β we have

|Cα+̇Cα| ≥ 2kα − 3

and

|Cα+̇Cβ | ≥ kα + kβ − 1.

Proof. Since |Cα+̇Cα| = |C2
α+̇C2

α| and

2|C2
α| − 3 = 2kα − 3 ≤ 2k − 3 ≤ p(G) ≤ p(G2),

the first estimate follows directly from our hypothesis on G2. On the other hand we have

|C2
α| + |C2

β | − 1 = kα + kβ − 1 ≤ 2k − 5 < p(G) ≤ p(G2),

and thus Theorem 1.1, applied to G2, immediately implies

|Cα+̇Cβ | = |C2
α + C2

β | ≥ kα + kβ − 1.
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Turning back to the proof of the estimate |A+̇A| ≥ 2k − 3, assume first that t = 0. In this

case |A1
0| = s = k and

|A+̇A| ≥ |A1
0+̇A1

0| ≥ 2k − 3

based on our assumption on the group G1.

Assume next that t ≥ 4. Consider the t numbers ci + ct ∈ G1 for 1 ≤ i ≤ t. Based on

the hypothesis on G1 we have |C1+̇C1| ≥ 2t− 3 ≥ t + 1, and thus there exist indices α 6= β

different from t such that cα + cβ ∈ G1 differs from each number ci + ct. Then

|Cα+̇Cβ | ≥ kα + kβ − 1 ≥ 3

by Lemma 5.2. Since m = |C1 + C1| ≥ 2t − 1 > t + 1 by Theorem 1.1, there is a set I of

m− t− 1 pairs (γ, δ) such that the numbers

cα + cβ , ci + ct (1 ≤ i ≤ t), cγ + cδ ((γ, δ) ∈ I)

are all different. Lemma 5.2 implies |Cγ+̇Cδ| ≥ 1 for these pairs (γ, δ). Based on Proposition

5.1, we can argue that

((A+̇A) \ (C+̇C))1 ⊇ (A+̇A)1 \ (C+̇C)1 ⊇ (A1+̇A1) \ (C1 + C1)

and consequently

|A+̇A| = |(A+̇A) \ (C+̇C)| + |C+̇C|
≥ |((A+̇A) \ (C+̇C))1| + |C+̇C|
≥ |A1+̇A1| − |C1 + C1| + |C+̇C|
≥ (2(s+ t) − 3) −m+ |C+̇C|,

according to our hypothesis concerning A1 ⊆ G1. Based on our previous remarks and Lemma

5.2, we have

|C+̇C| ≥ |Cα+̇Cβ | +
∑

(γ,δ)∈I

|Cγ+̇Cδ| +
t
∑

i=1

|Ci+̇Ct|

≥ 3 + (m− t− 1) +

t−1
∑

i=1

(ki + kt − 1) + (2kt − 3)

≥ (m− t+ 2) + 2
t
∑

i=1

ki − (t− 1) − 3 = (m− 2t) + 2(k − s).

Consequently,

|A+̇A| ≥ (2s+ 2t− 3 −m) + (m− 2t+ 2k − 2s) = 2k − 3,

as is was intended to prove. This completes the proof of the generic case t ≥ 4.
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The last case we study here is that of t = 1. As the remaining cases t = 2 and t = 3 require

some more delicate analysis, these we postpone to the following two subsections, respectively.

First we note that if s = 0, then k1 = k, A = C1 and

|A+̇A| = |C1+̇C1| ≥ 2k1 − 3 = 2k − 3

by Lemma 5.2. Otherwise we have 3 ≤ s+2 ≤ (k+2)−2. Note that in this case (A\C)+̇C =

A0+̇C and C+̇C are disjoint, since (g, h) ∈ C+̇C implies g = c1 + c1, while g = ai + c1 for

some 1 ≤ i ≤ s if (g, h) ∈ A0+̇C. Moreover, the elements (ai + c1, bi + d1j) are pairwise

different for 1 ≤ i ≤ s, 1 ≤ j ≤ k1, thus we obtain the estimate

|A+̇A| ≥ |A+̇C| = |A0+̇C| + |C+̇C|
≥ sk1 + (2k1 − 3) = s(k − s) + 2(k − s) − 3

= ((k + 2) − (s+ 2))(s+ 2) − 3 ≥ 2k − 3,

as it was to be proved.

The Case t = 2

If s = 0, then k = k1 + k2 ≥ 4. Since the numbers c1 + c1, c1 + c2 and c2 + c2 are pairwise

distinct, we have

|A+̇A| ≥ |C1+̇C1| + |C1+̇C2| + |C2+̇C2|
≥ (2k1 − 3) + (k1 + k2 − 1) + (2k2 − 3) = 3k − 7 ≥ 2k − 3

by Lemma 5.2. Thus we may assume that s ≥ 1. Then the numbers ai + c2 (1 ≤ i ≤ s),

c1 + c2 and c2 + c2 are all different, and thus

|A+̇A| ≥ |A+̇C2| = |A0+̇C2| + |C1+̇C2| + |C2+̇C2|
≥ sk2 + (k1 + k2 − 1) + (2k2 − 3)

≥ 2s+ (k2 − 2)s+ 2(k1 + k2) − 4

= (2k − 4) + (k2 − 2)s ≥ 2k − 3,

if k2 ≥ 3. Thus, in the sequel we will assume that s ≥ 1 and k1 = k2 = 2. In particular,

k = s+ 4.

Consider the 2s+ 1 = 2k− 7 numbers (ai + c2, bi + d21), (ai + c2, bi + d22) (1 ≤ i ≤ s), and

(c2 + c2, d21 + d22); they are all distinct, and also differ from the numbers (c1 + c2, d11 + d21),

(c1 + c2, d11 + d22), (c1 + c2, d12 + d21), (c1 + c2, d12 + d22). Out of the latter four numbers at

least 3 must be pairwise different. Thus we have found 2k − 3 or 2k − 4 different elements of

|A+̇A| so far, denote the set of these elements by X .
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If, for some 1 ≤ i ≤ s,

ai + c1 6∈ {a1 + c2, . . . , as + c2, c1 + c2, c2 + c2},

then (ai + c1, bi + d11) ∈ (A+̇A) \X , and therefore |A+̇A| ≥ |X | + 1 ≥ 2k − 3. If ai + c1 =

c2 + c2, then we may replace in X the element (c2 + c2, d21 + d22) by the two new elements

(ai + c1, bi + d11) and (ai + c1, bi + d12) to obtain at least 2k − 3 different elements of A+̇A.

Since ai + c1 = c1 + c2 cannot occur, in any other case we conclude that

{ai + c1 | 1 ≤ i ≤ s} = {ai + c2 | 1 ≤ i ≤ s}.

This, however, is not possible, because in this case we would get A1
0+c = A1

0 with c = c2−c1 6=
0, yielding

A1
0 + (p(G) − 1)c = A1

0 + (p(G) − 2)c = . . . = A1
0 + 2c = A1

0 + c = A1
0,

that in turn implies p(G) ≤ |A1
0| = s = k − 4 < 2k − 3 ≤ p(G), a contradiction.

Since we have considered all possibilities, the study of the case t = 2 is now complete.

The Case t = 3

The numbers ai + c3 (1 ≤ i ≤ s), c1 + c3, c2 + c3 and c3 + c3 are all different, and thus

|A+̇A| ≥ |A+̇C3| = |A0+̇C3| + |C1+̇C3| + |C2+̇C3| + |C3+̇C3|
≥ sk3 + (k1 + k3 − 1) + (k2 + k3 − 1) + (2k3 − 3)

= 2(s+ k1 + k2 + k3) − 5 + s(k3 − 2) + (2k3 − k2 − k1).

Therefore |A+̇A| ≥ 2k − 3, whenever s(k3 − 2) ≥ 2. This is indeed the case if k3 ≥ 3 and

s ≥ 2.

Next, if s ≤ 1, then k1 + k2 + k3 ≥ k − 1, and p(G) ≥ 2k − 3 ≥ 9. The numbers c1 + c2,

c1 + c3, c2 + c3 are pairwise different. By Theorem 1.1 we have

|{c1, c2, c3} + {c1, c2, c3}| ≥ 5.

Consequently, there exist two indices i 6= j such that the five numbers c1 + c2, c1 + c3, c2 + c3,

ci + ci, cj + cj are still pairwise different. Then, according to Lemma 5.11,

|A+̇A| ≥ |C1+̇C2| + |C1+̇C3| + |C2+̇C3| + |Ci+̇Ci| + |Cj+̇Cj |
≥ (k1 + k2 − 1) + (k1 + k3 − 1) + (k2 + k3 − 1) + 1 + 1

= 2(k1 + k2 + k3) − 1 ≥ 2k − 3.

It only remains to handle the case k1 = k2 = k3 = 2, s ≥ 2. Now we have k = s+ 6 ≥ 8, and

then p(G) ≥ 2k − 3 ≥ 13 > 2.
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Assume that there is no 1 ≤ i ≤ s such that ai + c3 = c1 + c2. Then the numbers ai + c3

(1 ≤ i ≤ s), c1 + c2, c1 + c3 and c2 + c3 are all different, and

|A+̇A| ≥ |A0+̇C3| + |C1+̇C2| + |C1+̇C3| + |C2+̇C3|
≥ 2s+ 3 + 3 + 3 = 2k − 3.

Thus, we may assume that ai + c3 = c1 + c2 for some 1 ≤ i ≤ s. By symmetry we may also

suppose that aj + c2 = c1 + c3 for some 1 ≤ j ≤ s. Were i = j, it would follow that

c1 + c2 − c3 = ai = aj = c1 + c3 − c2,

implying 2(c3 − c2) = 0, in contradiction with p(G) > 2. Consequently, i 6= j.

Note that the numbers aα + c3 (1 ≤ α ≤ s, α 6= i), c1 + c2, c1 + c3 and c2 + c3 are still all

different. If there is an index 1 ≤ β ≤ s, β 6= j, such that

aβ + c2 6∈ {a1 + c3, . . . , as + c3, c1 + c3, c2 + c3},

then

|A+̇A| ≥ |(aβ , bβ)+̇C2| + |(A0 \ {(ai, bi)})+̇C3|
+ |C1+̇C2| + |C1+̇C3| + |C2+̇C3|
≥ 2 + 2(s− 1) + 3 + 3 + 3 = 2k − 3.

Since for 1 ≤ β ≤ s, β 6= j,

aβ + c2 6∈ {ai + c3 = c1 + c2, c1 + c3, c2 + c3},

in every other case we can conclude that

{aα + c3 | 1 ≤ α ≤ s, α 6= i} = {aβ + c2 | 1 ≤ β ≤ s, β 6= j}.

In particular, for every α 6= i, aα + (c3 − c2) ∈ A1
0.

Consider now the sequence defined recursively by

x0 = ai, xn+1 = xn + c3 − c2 (n ≥ 0).

Then x1 = c1, x2 = aj ∈ A1
0 \ {ai}, and if xn ∈ A1

0 \ {ai}, then xn+1 ∈ A1
0 holds. It follows

that there is a smallest positive integer n for which there exists an integer 0 ≤ m < n such

that xn = xm, and in this case xm+1, xm+2, . . . , xn are all different elements of A1
0 ∪ {ci}.

Consequently,

1 ≤ n−m ≤ |A1
0| + 1 = s+ 1 < k < p(G),

which contradicts the fact that

(n−m)(c3 − c2) = xn − xm = 0.
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This completes the investigation of the case t = 3 and also the proof of Theorem 2.11.

A more simple proof of Theorem 2.11 can be found in [51]. To avoid repetitions we do not

include it here. However, it is not clear how to apply the method of the previous chapter in a

multiplicative setting. Thus, to prove Theorem 2.15 we will need an additional idea. That is

exactly the novelty contained in [51], which will be clear from the following section.

5.2 Inverse Theorems in Abelian Groups

Since A is contained in a finitely generated subgroup H of G, and obviously p(H) ≥ p(G), it

is enough to prove Theorems 2.4 and 2.15 in the case when G is finitely generated. In this

case we can write

G = G1 ⊕G2 ⊕ . . .⊕Gm,

where each group Gi is isomorphic either to the infinite cyclic group Z or to a cyclic group

Z/pαZ with some prime number p ≥ p(G) and positive integer α. Note that here p(Z) = ∞
while p(G) = p if G ∼= Z/pαZ. Moreover,

p(G1 ⊕G2) = min{p(G1), p(G2)}.

If a set G is equipped with a binary operation ‘+’, then we can naturally talk about

arithmetic progressions in G: the sequence (a1, a2, . . . , ak) is an arithmetic progression in G,

if there exists d ∈ G such that ai = ai−1 + d for i = 2, . . . , k. For simplicity we will call 〈G,+〉
an additive structure. The notations A+B and A+̇B can also be naturally extended to such

structures.

Definition 5.3. Let ℓ denote a positive integer. We say that the additive structure 〈G,+〉
has property Πℓ if

(i) for any positive integer k ≤ ℓ and a k-element subset A of G, |A + A| ≥ 2k − 1 with

equality if and only if A is an arithmetic progression in G;

(ii) for any positive integer k ≤ ℓ+ 1 and a k-element subset A of G, |A+̇A| ≥ 2k − 3 with

equality (in case of k ≥ 5) if and only if A is an arithmetic progression in G.

We have seen that the group Z has property Πℓ for every positive integer ℓ. According to

the Cauchy–Davenport theorem and Theorems 2.3, 2.9 and 2.14, the group Z/pZ has property

Πℓ whenever p is a prime number greater than 2ℓ− 1. In view of all this, to prove Theorems

2.4 and 2.15 it is enough to verify the following two statements. Note that Theorem 2.4 is

obvious if k = 1.
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Statement 5.4. Let G1 and G2 be two abelian groups such that

min{p(G1), p(G2)} > 2ℓ− 1 ≥ 3.

If G1 and G2 have property Πℓ, then so does their direct sum G1 ⊕G2.

Statement 5.5. Let α ≥ 1 and ℓ ≥ 2 be integers and let p > 2ℓ − 1 be a prime number. If

the group Z/pαZ has property Πℓ, then so does the group Z/pα+1Z.

The key observation is that we can verify both statements using the same argument, based

on the following notion. Let G1 and G2 be two abelian groups, and let ϕ : G1 × G1 → G2

be any map. On the set of all ordered pairs (g1, g2) (g1 ∈ G1, g2 ∈ G2), define an additive

structure 〈Gϕ,+ϕ〉 by introducing a binary operation +ϕ as follows:

(g1, g2) +ϕ (h1, h2) =: (g1 + h1, g2 + h2 + ϕ(g1, h1)).

Note that if the map ϕ is symmetric, then the operation +ϕ is commutative. Now Statements

5.4 and 5.5 can be easily derived from the following lemma.

Lemma 5.6. Let ℓ ≥ 2 be any integer and assume that the abelian groups G1 and G2 satisfy

min{p(G1), p(G2)} > 2ℓ− 1 ≥ 3.

Let furthermore ϕ : G1 × G1 → G2 be any symmetric map satisfying ϕ(g, 0) = 0 for every

g ∈ G1 such that the additive structure Gϕ = 〈Gϕ,+ϕ〉 is a group. If G1 and G2 have property

Πℓ, then the abelian group Gϕ also has property Πℓ.

Indeed, letting ϕ ≡ 0 we get back the notion of direct sum: Gϕ
∼= G1 ⊕ G2. Thus,

Statement 5.4 follows immediately. On the other hand, if we choose G1 = Z/pZ, G2 = Z/pαZ

for a prime p > 2ℓ− 1, and we define

ϕ(x + pZ, y + pZ) =

{

0 if x+ y < p
1 otherwise

for x, y ∈ {0, 1, . . . , p− 1}, then Gϕ
∼= Z/pα+1Z. Namely, if we define

f(a+ p/Z, b+ pα/Z) = (pb+ a) + pα+1/Z

for a ∈ {0, 1, . . . , p−1} and b ∈ {0, 1, . . . , pα−1}, then f maps the set Z/pZ×Z/pαZ bijectively

onto the set Z/pα+1Z, and clearly is a homomorphism from Gϕ to Z/pα+1Z. Since Z/pZ has

property Πℓ, Lemma 5.6 implies Statement 5.5 as well. It only remains to prove Lemma 5.6.

Proof of Lemma 5.6. Note that the condition ϕ(g, 0) = ϕ(0, g) = 0 implies

Proposition 5.7. If (a1, a2, . . . , ak) is an arithmetic progression in G2, then

((g, a1), (g, a2), . . . , (g, ak))

is an arithmetic progression in the abelian group Gϕ for any g ∈ G1.
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For a set X ⊆ Gϕ write

X1 = {g1 ∈ G1 | there exists g2 ∈ G2 with (g1, g2) ∈ X}.

We define X2 in a similar way. For A,B ⊆ Gϕ we also introduce

A+B =: {a+ϕ b | a ∈ A, b ∈ B}

and

A+̇B =: {a+ϕ b | a ∈ A, b ∈ B, a 6= b}.

In the sequel we will simply write ‘+’ for ‘+ϕ’. An immediate consequence of these definitions

is the following statement.

Proposition 5.8. For arbitrary X,Y ⊆ Gϕ we have (X \ Y )1 ⊇ X1 \ Y 1 and X1+̇X1 ⊆
(X+̇X)1 ⊆ X1 +X1.

The careful reader may observe that the second part of the statement does not remain valid

in general if, instead of the projection to the first coordinate, one considers the projection to

the second one. We will also need the following easy lemma.

Lemma 5.9. Let G1, G2, ϕ and ℓ as in Lemma 5.6. Assume that (a1, a2, . . . , ak) is a non-

constant arithmetic progression in G1 and let b1, b2, . . . , bk ∈ G2. Consider the set

A = {gi = (ai, bi) | 1 ≤ i ≤ k} ⊂ Gϕ.

(i) If k ≤ ℓ and |A+A| = 2k − 1, then A is an arithmetic progression in Gϕ.

(ii) If 5 ≤ k ≤ ℓ + 1 and |A+̇A| = 2k − 3, then A is an arithmetic progression in Gϕ.

Proof. For 1 ≤ i ≤ k, introduce di = gi+1 − gi ∈ Gϕ. Write a1 = a and a2 − a1 = d, then in

case (i)

(A+A)1 = {2a, 2a+ d, 2a+ 2d, . . . , 2a+ (2k − 2)d}

whereas in case (ii)

(A+̇A)1 = {2a+ d, 2a+ 2d, . . . , 2a+ (2k − 3)d},

the containment ⊇ being obvious from the definition and the assumption p(G1) > 2ℓ− 1. To

prove the first statement we may assume that k ≥ 3. For every 1 ≤ i ≤ k − 2, gi + gi+2 and

gi+1 + gi+1 have the same first coordinate 2a+ 2id. According to the assumption |A + A| =

2k − 1, these elements of Gϕ must be equal. Consequently,

2gi + di + di+1 = 2gi + 2di.

It follows that d1 = d2 = . . . = dk−1, and g1, g2, . . . , gk is indeed an arithmetic progression.
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Similarly, in case (ii) we can argue that

gi + gi+3 = gi+1 + gi+2

for every 1 ≤ i ≤ k − 3, implying

2gi + di + di+1 + di+2 = 2gi + 2di + di+1.

Consequently, we have that di+2 = di for every 1 ≤ i ≤ k− 3. Moreover, since k ≥ 5, we have

g1 + g5 = g2 + g4, that is,

2g1 + d1 + d2 + d3 + d4 = 2g1 + 2d1 + d2 + d3.

Therefore d1 = d4, which completes the proof of the second statement.

We conclude this subsection by proving that 〈Gϕ,+ϕ〉 satisfies condition (i) of property

Πℓ. Remark that the proof below does not depend on the hypothesis that the groups G1, G2

satisfy condition (ii) as well, thus it can be read as a self-contained proof of Theorem 2.4.

That is, we prove that if G1, G2 satisfy (i) of Πℓ, then so does Gϕ.

Thus let A denote a k-element subset of Gϕ. The cases k = 1, 2 being obvious, assume

that 3 ≤ k ≤ ℓ. Write A = A0 ∪ C, where C = C1 ∪ . . . ∪ Ct,

A0 = {(ai, bi) |1 ≤ i ≤ s}, Ci = {(ci, dij) |1 ≤ j ≤ ki}

for 1 ≤ i ≤ t such that 2 ≤ k1 ≤ k2 ≤ . . . ≤ kt, and a1, . . . , as, c1, . . . , ct are pairwise different

elements of G1. In particular, k = s+k1 + . . .+kt and |A1| = s+ t. The following easy lemma

will be used frequently throughout the proof.

Lemma 5.10. For 1 ≤ α, β ≤ t we have |Cα + Cβ | ≥ kα + kβ − 1. Moreover, in the case

α = β, equality holds if and only if C2
α is an arithmetic progression in G2.

Proof. Adding ϕ(cα, cβ) to each element of C2
α + C2

β , we obtain the set (Cα + Cβ)2. Conse-

quently, |Cα + Cβ | = |(Cα + Cβ)2| = |C2
α + C2

β |. Since

|C2
α| + |C2

β | − 1 = kα + kβ − 1 ≤ 2k − 1 ≤ 2ℓ− 1 < p(G2),

the estimate follows from Theorem 1.1. Since kα ≤ k ≤ ℓ, in the case |C2
α + C2

α| = 2kα − 1 it

follows from our hypothesis on G2 that C2
α is an arithmetic progression in G2. On the other

hand, if this is the case, then Proposition 5.7 implies that Cα itself is an arithmetic progression

in Gϕ, consequently |Cα + Cα| ≤ 2kα − 1.

Assume first that t ≥ 2. The numbers ci +ct (1 ≤ i ≤ t) are t distinct elements of C1 +C1.

It follows from Theorem 1.1 that |C1 + C1| ≥ 2t − 1, and thus there is a set I of t − 1 pairs

(γ, δ) such that the numbers

ci + ct (1 ≤ i ≤ t), cγ + cδ ((γ, δ) ∈ I)
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are all different. Lemma 5.10 implies |Cγ + Cδ| ≥ 3 for these pairs (γ, δ). It follows that the

sets

Ci + Ct (1 ≤ i ≤ t), Cγ + Cδ ((γ, δ) ∈ I)

are pairwise disjoint subsets of A + A. Moreover, since s + t ≤ k ≤ ℓ, we have |A1 + A1| ≥
2(s + t) − 1 and thus there exist at least 2s elements of A + A whose first coordinates are

different from the numbers

ci + ct (1 ≤ i ≤ t), cγ + cδ ((γ, δ) ∈ I).

Based on Lemma 5.10 and the inequalities ki ≤ kt for 1 ≤ i ≤ t, we then indeed obtain

|A+A| ≥ 2s+
∑

(γ,δ)∈I

|Cγ + Cδ| +

t
∑

i=1

|Ci + Ct|

≥ 2s+ 3(t− 1) +

t
∑

i=1

(ki + kt − 1)

≥ 2s+ 2

t
∑

i=1

ki + 2t− 3 > 2k − 1.

Next assume that t = 0, that is, |A1
0| = s = k. Then we have

|A+A| ≥ |A1
0 +A1

0| ≥ 2k − 1

according to our assumption on the group G1. Moreover, |A1
0 +A1

0| = 2k− 1 if and only if A1
0

is an arithmetic progression in G1. Consequently, if |A + A| = 2k − 1, we can apply Lemma

5.9 (i) to find that A is an arithmetic progression in Gϕ.

If t = 1 and s = 0, then it follows from Lemma 5.10 that

|A+A| = |C1 + C1| ≥ 2k1 − 1 = 2k − 1,

where equality holds if and only if C2
1 is an arithmetic progression in G2. Note that in this

case A = C1 is an arithmetic progression in Gϕ, according to Proposition 5.7.

Suppose finally that t = 1 and s ≥ 1, then we have 3 ≤ s + 2 ≤ (k + 2) − 2. Note that

in this case (A \ C) + C = A0 + C and C + C are disjoint, since (g1, g2) ∈ C + C implies

g1 = c1 +c1, while g1 = ai +c1 for some 1 ≤ i ≤ s if (g1, g2) ∈ A0 +C. Moreover, the elements

(ai + c1, bi +d1j) are pairwise different for 1 ≤ i ≤ s, 1 ≤ j ≤ k1, thus we obtain the inequality

|A+A| ≥ |A+ C| = |A0 + C| + |C + C|
≥ sk1 + (2k1 − 1) = s(k − s) + 2(k − s) − 1

= ((k + 2) − (s+ 2))(s+ 2) − 1 ≥ 2k − 1,

proving the estimate. Now we prove that |A+A| = 2k− 1 is not possible in this case. Indeed,

it only could happen if it were s + 2 = k, that is, k1 = 2, in which case we could argue as
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follows. Since |A1| = k − 1, we have |A1 + A1| ≥ 2k − 3, according to our assumption on the

group G1. Therefore the elements of A + A have at least 2k − 3 different first coordinates.

One of those is c1 + c1, to which correspond (at least) three different second coordinates:

d11 + d11 + ϕ(c1, c1), d11 + d12 + ϕ(c1, c1), d12 + d12 + ϕ(c1, c1).

Another one is a1 + c1, with two different second coordinates

b1 + d11 + ϕ(a1, c1), b1 + d12 + ϕ(a1, c1).

This way we found at least 2k different elements of A+A.

Thus we have overviewed all possible cases and found that in every case |A+A| ≥ 2k − 1

and |A+A| = 2k− 1 can only happen if A is an arithmetic progression in Gϕ. Noting that if

A is an arithmetic progression then obviously |A+A| ≤ 2k− 1, we find that 〈Gϕ,+ϕ〉 indeed

satisfies condition (i) of property Πℓ.

Proof of Lemma 5.6, continued

The aim of this section is to prove that 〈Gϕ,+ϕ〉 satisfies condition (ii) of property Πℓ, thus

completing the proof of Lemma 5.6. For this end let A denote a k-element subset of Gϕ. Since

we have already discussed the case k ≤ 4 on Page 17, we will assume that 5 ≤ k ≤ ℓ + 1.

Keeping the notation of the previous section, we first verify the following analogue of Lemma

5.10.

Lemma 5.11. Let 1 ≤ α, β ≤ t, α 6= β. Then |Cα+̇Cβ | ≥ kα +kβ −1. Moreover, |Cα+̇Cα| ≥
2kα − 3, where in the case kα ≥ 5 equality holds if and only if C2

α is an arithmetic progression

in G2.

Proof. Since Cα+̇Cβ = Cα + Cβ , the first estimate follows as in the proof of Lemma 5.10,

noting that this time

kα + kβ − 1 ≤ k − 1 ≤ ℓ < p(G2).

On the other hand, adding ϕ(cα, cα) to each element of C2
α+̇C2

α, we obtain the set (Cα+̇Cα)2.

Consequently, |Cα+̇Cα| = |(Cα+̇Cα)2| = |C2
α+̇C2

α|. Since kα ≤ k ≤ ℓ+1, the second statement

follows directly from our hypothesis on G2.

Assume first that t = 0, that is, |A1
0| = s = k. Then we have

|A+A| ≥ |A1
0 +A1

0| ≥ 2k − 3

according to our assumption on the group G1. Moreover, |A1
0 +A1

0| = 2k− 3 if and only if A1
0

is an arithmetic progression in G1. Consequently, if |A + A| = 2k − 3, we can apply Lemma

5.9 (ii) to find that A is an arithmetic progression in Gϕ.
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Next we assume that t ≥ 4. Consider the t numbers ci + ct ∈ G1 for 1 ≤ i ≤ t. Based on

the hypothesis on G1 we have |C1+̇C1| ≥ 2t− 3 ≥ t + 1, and thus there exist indices α 6= β

different from t such that cα + cβ ∈ G1 differs from each number ci + ct. Then

|Cα+̇Cβ | ≥ kα + kβ − 1 ≥ 3

by Lemma 5.11. Since m = |C1 + C1| ≥ 2t − 1 > t + 1 by Theorem 1.1, there is a set I of

m− t− 1 pairs (γ, δ) such that the numbers

cα + cβ , ci + ct (1 ≤ i ≤ t), cγ + cδ ((γ, δ) ∈ I)

are all different. Lemma 5.11 implies |Cγ+̇Cδ| ≥ 1 for these pairs (γ, δ). Based on Proposition

5.8, we can argue that

((A+̇A) \ (C+̇C))1 ⊇ (A+̇A)1 \ (C+̇C)1 ⊇ (A1+̇A1) \ (C1 + C1)

and consequently

|A+̇A| = |(A+̇A) \ (C+̇C)| + |C+̇C|
≥ |((A+̇A) \ (C+̇C))1| + |C+̇C|
≥ |A1+̇A1| − |C1 + C1| + |C+̇C|
≥ (2(s+ t) − 3) −m+ |C+̇C|,

according to our hypothesis concerning A1 ⊆ G1. Based on our previous remarks and Lemma

5.11, we have

|C+̇C| ≥ |Cα+̇Cβ | +
∑

(γ,δ)∈I

|Cγ+̇Cδ| +
t
∑

i=1

|Ci+̇Ct|

≥ 3 + (m− t− 1) +

t−1
∑

i=1

(ki + kt − 1) + (2kt − 3)

≥ (m− t+ 2) + 2
t
∑

i=1

ki − (t− 1) − 3 = (m− 2t) + 2(k − s).

Putting these estimates together we obtain that

|A+̇A| ≥ (2s+ 2t− 3 −m) + (m− 2t+ 2k − 2s) = 2k − 3,

as it was intended to prove. Now we proceed to show that in fact |A+̇A| > 2k − 3 in this

case. If k1 < kt, then we can immediately increase the estimate on |C+̇C| and thus on |A+̇A|
as well. On the other hand, if k1 = k2 = . . . = kt, then we can argue as follows. First,

since |C1+̇C1| ≥ 2t − 3, there is a set J of 2t − 3 pairs (α, β), α 6= β such that the numbers

cα + cβ, ((α, β) ∈ J) are all different. It follows from Lemma 5.11 that |Cα+̇Cβ | ≥ 2kt − 1 for
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(α, β) ∈ J . Next, since m ≥ 2t− 1 > |J |, there is a set K of m− 2t+ 3 pairs (γ, δ) such that

the numbers

cα + cβ, ((α, β) ∈ J), cγ + cδ ((γ, δ) ∈ K)

are all different. For (γ, δ) ∈ K we have the estimate |Cγ+̇Cδ| ≥ 2kt − 3. Consequently,

|C+̇C| ≥
∑

(α,β)∈J

|Cα+̇Cβ | +
∑

(γ,δ)∈K

|Cγ+̇Cδ|

≥ (2t− 3)(2kt − 1) + (m− 2t+ 3)(2kt − 3)

= 2mkt − 3m+ 4t− 6.

It follows that

|A+̇A| ≥ (2(s+ t) − 3) −m+ |C+̇C|
≥ 2(k − tkt) + 2t− 3 −m+ (2mkt − 3m+ 4t− 6)

= 2k + (m− t)2kt − 4m+ 6t− 9

= 2k + (m− t)(2kt − 4) + (2t− 9) ≥ 2k − 1.

This completes the proof for the generic case t ≥ 4.

The next case we study is that of t = 1. If s = 0, then it follows from Lemma 5.11 that

|A+̇A| = |C1+̇C1| ≥ 2k1 − 3 = 2k − 3,

where equality holds if and only if C2
1 is an arithmetic progression in G2. Note that in this

case A = C1 is an arithmetic progression in Gϕ, according to Proposition 5.7. If t = 1 and

s ≥ 1, then we have 3 ≤ s + 2 ≤ (k + 2) − 2. Note that in this case (A \ C)+̇C = A0+̇C

and C+̇C are disjoint. Moreover, the elements (ai + c1, bi + d1j) are pairwise different for

1 ≤ i ≤ s, 1 ≤ j ≤ k1, thus we obtain the estimate

|A+̇A| ≥ |A+̇C| = |A0+̇C| + |C+̇C|
≥ sk1 + (2k1 − 3) = s(k − s) + 2(k − s) − 3

= ((k + 2) − (s+ 2))(s+ 2) − 3 ≥ 2k − 3,

proving the estimate. Now we prove that |A+̇A| = 2k− 3 is not possible in this case. Indeed,

it only could happen if it were s + 2 = k, that is, k1 = 2, in which case we could argue as

follows. Since |A1| = k − 1, we have |A1+̇A1| ≥ 2k − 5, according to our assumption on the

group G1. Therefore the elements of A+̇A have at least 2k − 5 different first coordinates.

Since k ≥ 5, that is, s ≥ 3, at least three of these first coordinates are in the form ai + c1 for

some 1 ≤ i ≤ s. To each of these correspond two different second coordinates

bi + d11 + ϕ(ai, c1), bi + d12 + ϕ(ai, c1).

This way we found at least 2k − 2 different elements of A+̇A.
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Next we will show that if t = 2, then |A+̇A| ≥ 2k − 2. Assume first that s = 0, that is,

k = k1 + k2 ≥ 5. Since the numbers c1 + c1, c1 + c2 and c2 + c2 are pairwise distinct, we have

|A+̇A| ≥ |C1+̇C1| + |C1+̇C2| + |C2+̇C2|
≥ (2k1 − 3) + (k1 + k2 − 1) + (2k2 − 3) = 3k − 7 ≥ 2k − 2

by Lemma 5.11. Thus we may assume that s ≥ 1. Then the numbers ai + c2 (1 ≤ i ≤ s),

c1 + c2 and c2 + c2 are all different, and thus

|A+̇A| ≥ |A+̇C2| = |A0+̇C2| + |C1+̇C2| + |C2+̇C2|
≥ sk2 + (k1 + k2 − 1) + (2k2 − 3)

= 2s+ (k2 − 2)s+ 2(k1 + k2) + (k2 − k1) − 4

= (2k − 4) + (k2 − 2)s+ (k2 − k1) ≥ 2k − 2,

unless k1 = k2 = 2, or s = 1 and k1 = k2 = 3. In the latter case either a1 + c1 or a1 + c2

does not belong to the set that consists of the three distinct numbers c1 + c1, c1 + c2, c2 + c2.

Indeed, otherwise we would have a1 + c1 = c2 + c2 and a1 + c2 = c1 + c1, which implies

3(c2 − c1) = 0, contradicting p(G1) > 3. Hence we may assume without any loss of generality

that the numbers a1 + c1, c1 + c1, c1 + c2, c2 + c2 are pairwise distinct, in which case by Lemma

5.11

|A+̇A| ≥ |A0+̇C1| + |C1+̇C1| + |C1+̇C2| + |C2+̇C2|
≥ 2 + 3 + 5 + 3 > 12 = 2k − 2.

If k1 = k2 = 2 and s ≥ 3, then c1 + c2, a1 + c2, a2 + c2 and a3 + c2 are 4 pairwise disjoint

elements of A1+̇A1. These elements are first coordinates of at least 3, 2, 2 and 2 elements of

A+̇A, respectively. Since |A1| = k−2, we have |A1+̇A1| ≥ 2k−7, based on our hypothesis on

the group G1. Given that 2k − 7 > 4, there are at least (2k − 7) − 4 elements of A+̇A whose

first coordinates do not belong to the set

{c1 + c2, a1 + c2, a2 + c2, a3 + c2}.

This way we found 3+2+2+2+(2k−11) = 2k−2 different elements of A+̇A. If k1 = k2 = 2

and s = 1, that is, k = 5, then in A+̇A we can respectively find 3, 2 and 2 elements whose

first coordinates are c1 + c2, a1 + c1 and a1 + c2, in this order. It cannot happen that both

c1 + c1 and c2 + c2 belong to the set {c1 + c2, a1 + c1, a1 + c2}, since it would imply that

a1 + c1 = c2 + c2 and a1 + c2 = c1 + c1, and we have already seen the contradiction arising

from that. Therefore, in addition to the 7 elements of A+̇A we have already found, there is

at least one more element of A+̇A whose first coordinate is either c1 + c1 or c2 + c2, that is,

|A+̇A| ≥ 8 = 2k − 2, as claimed. If k1 = k2 = 2 and s = 2, that is, k = 6, then |A1| = 4

and thus |A1+̇A1| ≥ 5. The number c1 + c2 is among the elements of A1+̇A1 as well as the
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four numbers ai + cj (1 ≤ i, j ≤ 2). At least three of the last four numbers must be different,

otherwise we would have a1 + c1 = a2 + c2 and a1 + c2 = a2 + c1, leading to the contradiction

2(c1 − c2) = 0. Thus we can choose three such numbers; each of which is the first coordinate

of at least 2 elements of A+̇A. On the other hand, the number c1 + c2, which is definitely

different from the previous three numbers, is the first coordinate of at least 3 elements of

A+̇A. So far we have found at least 9 elements of A+̇A, but they only have 4 different first

coordinates. Since |(A+̇A)1| ≥ |A1+̇A1| ≥ 5, there must be at least one more element in

A+̇A, that is, |A+̇A| ≥ 10 = 2k − 2 follows in this case, too.

Finally we discuss the case t = 3. First suppose that s ≥ 2. The numbers c1 + c2, c1 +

c3, c2 + c3 are pairwise distinct. Among the numbers ai + c1 (1 ≤ i ≤ s) at most one can be

equal to c2 + c3 and none is equal to c1 + c2 or c1 + c3. Thus there is a set I of s− 1 indices

such that the numbers

c1 + c2, c1 + c3, c2 + c3, ai + c1 (i ∈ I)

are s + 2 different elements of A1+̇A1. Since |A1| = s + 3, based on the assumption on the

group G1 we have that |A1+̇A1| ≥ 2s+ 3, and thus there are at least s+ 1 elements of A+̇A

whose first coordinates are not among the above numbers. It follows that

|A+̇A| ≥ (s+ 1) +
∑

i∈I

|{ai} + C1| + |C1+̇C2| + |C1+̇C3| + |C2+̇C3|

≥ (s+ 1) + 2(s− 1) + (k1 + k2 − 1) + (k1 + k3 − 1) + (k2 + k3 − 1)

= 2(k − s) + 3s− 4 = 2k + s− 4 ≥ 2k − 2.

If s ≤ 1, then we can do the following. The numbers c1 + c2, c1 + c3, c2 + c3 are pairwise

different. By Theorem 1.1 we have

|{c1, c2, c3} + {c1, c2, c3}| ≥ 5.

Consequently, there exist two indices i 6= j such that the five numbers c1 + c2, c1 + c3, c2 + c3,

ci + ci, cj + cj are still pairwise different. Then, according to Lemma 5.11,

|A+̇A| ≥ |C1+̇C2| + |C1+̇C3| + |C2+̇C3| + |Ci+̇Ci| + |Cj+̇Cj |
≥ (k1 + k2 − 1) + (k1 + k3 − 1) + (k2 + k3 − 1) + 1 + 1

= 2(k1 + k2 + k3) − 1.

Thus we have |A+̇A| ≥ 2k − 1 if s = 0, and |A+̇A| ≥ 2k − 3 if s = 1. In the latter case

we can immediately increase the estimate, whenever |(A+̇A)1| > 5. On the other hand, if

|(A+̇A)1| = 5, then the numbers a1 + c1, a1 + c2, a1 + c3 belong to the set

{c1 + c2, c1 + c3, c2 + c3, ci + ci, cj + cj}.
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If a1 + cα = cβ + cβ for some α ∈ {1, 2, 3} and β ∈ {i, j}, then we can replace |Cβ+̇Cβ | by

|{a1}+Cα| = kα ≥ 2 in the above estimate to conclude that |A+̇A| ≥ 2k− 2. Were it not the

case we would obtain that

a1 + c1 = c2 + c3, a1 + c2 = c1 + c3, a1 + c3 = c1 + c2,

resulting in the contradiction 2(c1 − c2) = 0. Therefore we have |A+̇A| ≥ 2k − 2 whenever

t = 3.

All in all, we found that in every case |A+̇A| ≥ 2k−3 and |A+̇A| = 2k−3 can only happen

if A is an arithmetic progression in Gϕ. Noting that if A is an arithmetic progression then

obviously |A+̇A| ≤ 2k − 3, we find that 〈Gϕ,+ϕ〉 indeed satisfies condition (ii) of property

Πℓ. This completes the proof of Lemma 5.6, and in turn that of Theorem 2.15 as well.

5.3 Noncommutative Groups

Hidden behind the previous proof is the fact that for any prime p, the group Zpα+1 can be

obtained as a cyclic extension of the group Zpα by the group Zp. This eluded us previously and

only became clear later, leading to the proof of Theorem 2.1 first and then to that of Theorem

2.6. Based on the theory of group extensions, the proof of the former result is surprisingly

simple. Most of this section is devoted to the study of critical pairs A,B for which equality is

attained in Theorem 2.1.

A Brief Outline of the Proofs

Note that the assertions of both Theorems 2.1 and 2.6 are obvious if p(G) = 2. Thus in view

of the Feit–Thompson theorem [33], it is enough to prove the assertions for solvable groups.

Given that the results hold for cyclic groups of prime order, the natural approach is then to

transfer the results to group extensions. In the case of Theorem 2.1 it is relatively simple, and

only depends mildly on the structure of the extension, see Lemma 5.14. We prove this result

in the next subsection. The proof of Theorem 2.6 is more delicate, in this case we cannot

directly transfer the result to group extensions. In the third subsection we study how much

the general approach of the second subsection can contribute towards the characterization of

critical pairs if we also assume that the group H in Lemma 5.14 is a cyclic group of prime

order, meaning that we can also take advantage of Vosper’s inverse theorem. We complete

the proof of Theorem 2.6 in the last subsection, where we finally take into account the specific

structure of cyclic extensions. The proof also relies on Hamidoune’s result Theorem 2.5.

Finally we note that the following alternative proof of Theorem 2.1 has been suggested

by Hamidoune [46]. Let A and S denote nonempty finite subsets of an arbitrary group G.

Denote by 〈S〉 the subgroup generated by S and by ν(S) the minimum order of an element in



74 CHAPTER 5. THE METHOD OF GROUP EXTENSIONS

S. According to a result of Hamidoune [43], if A ∪AS 6= A〈S〉, then

|A ∪AS| ≥ |A| + min{|S|, ν(S)}.

Now let A and B be arbitrary nonempty finite subsets of G satisfying |A|+ |B| − 1 ≤ p(G). If

|B| = 1, then obviously |AB| = |A| + |B| − 1. Otherwise, replacing A by Ab and B by b−1B

for some element b ∈ B, we may assume that 1 ∈ B. Let S = B \ {1}, then ν(S) ≥ p(G) and

|〈S〉| ≥ p(G). Moreover, A ∪AS = AB. Thus either AB = A〈S〉, in which case

|AB| ≥ |〈S〉| ≥ p(G) ≥ |A| + |B| − 1,

or the above theorem implies

|AB| = |A ∪AS| ≥ |A| + min{|S|, ν(S)} = |A| + |S| = |A| + |B| − 1.

Even though this argument extends Theorem 2.1 to infinite groups, we feel that our direct

approach is more transparent. We also depend on our proof in order to derive Theorem 2.6.

Proof of Theorem 2.1

For simplicity, we say that the group G possesses the Cauchy–Davenport property if for any

pair of nonempty subsets A,B of G with p(G) ≥ |A| + |B| − 1, we have |AB| ≥ |A| + |B| − 1.

In view of our previous remarks, Theorem 2.1 can be reduced to the following

Theorem 5.12. Every finite solvable group G possesses the Cauchy–Davenport property.

Let G = G0 ⊲ G1 ⊲ . . . ⊲ Gr = {1} be a composition series of G. Here every composition

factor Gi/Gi+1 is a cyclic group of prime order, and the length of the series r = r(G), being

equal to the total number of prime divisors of the order of G, does not depend on the particular

choice of the composition series. If G/N = H for some proper normal subgroup N of G, then

|G| = |N | · |H | and thus p(G) = min{p(N), p(H)}. We just remark that even if the group

G is not finite, the inequality p(G) ≥ min{p(N), p(H)} is not difficult to verify. Since every

cyclic group of prime order has the Cauchy–Davenport property, Theorem 5.12 follows easily

by induction on r from the following lemma.

Lemma 5.13. Let G be an arbitrary group with a proper normal subgroup N . Assume that

p(G) = min{p(N), p(G/N)}. If both N and G/N possess the Cauchy–Davenport property,

then so does G.

Before we indicate how this lemma follows from a more general statement, we briefly recall

the structure of general group extensions, following the terminology of [50]. Namely, if H =

G/N , then the group G can be reconstructed from N and H as follows. There exist a map

f : H ×H → N and for every h ∈ H an automorphism ϑh ∈ Aut(N) such that the following

conditions hold for every n ∈ N and h1, h2, h3 ∈ H :



5.3. NONCOMMUTATIVE GROUPS 75

(i) f(1, h1) = f(h1, 1) = 1;

(ii) f(h1, h2)f(h1h2, h3) = ϑh1(f(h2, h3))f(h1, h2h3);

(iii) ϑh1ϑh2(n) = f(h1, h2)ϑh1h2(n)f(h1, h2)−1;

(iv) ϑ1 is the unit element of Aut(N).

Then G is isomorphic to the group we obtain if we equip the set of ordered pairs {(n, h) | n ∈
N, h ∈ H} with the multiplication

(n1, h1)(n2, h2) =: (n1ϑh1(n2)f(h1, h2), h1h2).

The behavior in the second coordinate is just like in the case of direct product, thus the

properties of H can be exploited in a natural way. Note also that for every h1, h2 ∈ H , the

mapping

n→ ϑh1(n)f(h1, h2)

is an N → N bijection. This is the key fact that allows us to exploit the properties of N , too.

Now it is clear that Lemma 5.13 is a special case of the following statement.

Lemma 5.14. Let N and H be arbitrary groups that possess the Cauchy–Davenport property.

Assume that bijections ϕh1,h2 , ψh1,h2 : N → N are given for every h1, h2 ∈ H. Define on the

set of ordered pairs G = {(n, h) | n ∈ N, h ∈ H} a binary operation as follows:

(n1, h1)(n2, h2) =: (ϕh1,h2(n1)ψh1,h2(n2), h1h2).

Then |AB| ≥ |A| + |B| − 1 holds for arbitrary subsets A,B of G which satisfy

|A| + |B| − 1 ≤ min{p(N), p(H)}.

Proof. The assertion is obvious if one of the sets A and B is infinite. Thus we assume that

A,B are finite subsets of G such that |A|+ |B|−1 ≤ min{p(N), p(H)}. Write k = |A|, ℓ = |B|
and let A = C1 ∪ . . . ∪ Cs and B = D1 ∪ . . . ∪ Dt, where Ci = {(aij , ci) | 1 ≤ i ≤ ki} and

Di = {(bij , di) | 1 ≤ i ≤ ℓi}. We assume that C = {c1, . . . , cs} and D = {d1, . . . , dt} are

subsets of H of cardinalities s and t, respectively. We will also assume that k1 ≤ · · · ≤ ks

and ℓ1 ≤ . . . ≤ ℓt. Thus, s ≤ k, t ≤ ℓ and
∑s

i=1 ki = k,
∑t

i=1 ℓi = ℓ. Introduce also

Ai = {aij | 1 ≤ j ≤ ki} and Bi = {bij | 1 ≤ j ≤ ℓi}, they are subsets of N . In CiDj ,

the second coordinate of each element is cidj , whereas the first coordinates form the set

ϕci,dj
(Ai)ψci,dj

(Bj). Since ϕci,dj
and ψci,dj

are N → N bijections and

ki + ℓj − 1 ≤ k + ℓ− 1 ≤ min{p(N), p(H)} ≤ p(N),
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our hypothesis on the group N implies that

|CiDj | = |ϕci,dj
(Ai)ψci,dj

(Bj)| ≥ ki + ℓj − 1 ≥ 1

holds for every 1 ≤ i ≤ s and 1 ≤ j ≤ t. Due to the symmetry of the multiplication

introduced on G, without any loss of generality we may assume that s ≥ t. Consider the

numbers c1dt, c2dt, . . . , csdt ∈ H , they are s different elements of the set product CD. Since

s+ t − 1 ≤ k + ℓ − 1 ≤ p(H), our hypothesis on the group H implies that |CD| ≥ s+ t− 1.

Therefore there exists a set I of t− 1 pairs (γ, δ) such that the numbers

cidt (1 ≤ i ≤ s), cγdδ ((γ, δ) ∈ I)

are all different. Since the sets

CiDt (1 ≤ i ≤ s), CγDδ ((γ, δ) ∈ I)

are pairwise disjoint subsets of AB, it follows that

|AB| ≥
s
∑

i=1

|CiDt| +
∑

(γ,δ)∈I

|CγDδ| (5.1)

≥
s
∑

i=1

(ki + ℓt − 1) + (t− 1) (5.2)

= k + tℓt + (s− t)ℓt − s+ t− 1 (5.3)

= k + tℓt + (s− t)(ℓt − 1) − 1 (5.4)

≥ k + ℓ− 1, (5.5)

as it was to be proved.

An intermediate step

Now we take a closer look at the proof of Lemma 5.14. For the rest of this subsection we

assume that the finite sets A,B satisfy

|AB| = |A| + |B| − 1 ≤ min{p(N), p(H)} − 1.

Then we must have equality in (5.5) which means that ℓ1 = ℓ2 = . . . = ℓt and also that either

s = t or ℓt = 1 must hold. Note that we have assumed s ≥ t. In the case t ≥ s a similar

argument yields that k1 = k2 = . . . = ks and, in addition, either s = t or ks = 1. Thus, if

s > t = 1, then ℓ = ℓ1 = 1, and similarly, if t > s = 1, then k = 1.

Assume now that s, t ≥ 2. If H is a cyclic group of order p for some prime number p,

then H clearly possesses the Cauchy–Davenport property. In (5.1) we also must have equality,

which means that

|CD| = s+ t− 1 ≤ k + ℓ− 1 ≤ min{p(N), p(H)} − 1 ≤ p− 1.
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Vosper’s inverse theorem applied to H leaves us two possibilities, one being that C = H\hD−1

for some h ∈ H , but this only can occur if s = k, ℓ = t and k + ℓ = p ≤ p(N). The other

possibility is that C = {c′1, . . . , c′s} and D = {d′1, . . . , d′t}, where c′i = cqi−1 and d′i = dqi−1 for

suitable elements c, d, q ∈ H . There is an index 1 ≤ α ≤ s such that cs = c′α. Clearly,

CD = {cd, cdq, cdq2, . . . , cdqs+t−2}
= {c′1d′1, c′2d′1, . . . , c′αd′1, c′αd′2, . . . , c′αd′t, c′α+1d

′
t, . . . , c

′
sd

′
t}.

Writing C′
i = Cj , k′i = ki if c′i = cj and D′

i = Dj , ℓ′i = ℓj if d′i = dj , and noticing that the sets

C′
1D

′
1, C

′
2D

′
1, . . . , C

′
αD

′
1, C

′
αD

′
2, . . . , C

′
αD

′
t, C

′
α+1D

′
t, . . . , C

′
sD

′
t

are pairwise disjoint subsets of G that satisfy

|C′
iD

′
j | ≥ k′i + ℓ′i − 1 ≥ k′i,

we may argue that

|AB| ≥
α−1
∑

i=1

|C′
iD

′
1| +

t
∑

i=1

|C′
αD

′
i| +

s
∑

i=α+1

|C′
iD

′
t|

≥
t
∑

i=1

(ks + ℓi − 1) +
s−1
∑

i=1

ki

=

s
∑

i=1

ki +

t
∑

i=1

ℓi + (t− 1)ks − t

= k + ℓ− 1 + (t− 1)(ks − 1)

≥ k + ℓ− 1.

From the conditions |AB| = |A| + |B| − 1 and t ≥ 2 it follows that ks = 1, that is, s = k. A

similar argument also yields t = ℓ.

We summarize these observations in the following lemma.

Lemma 5.15. Let N be an arbitrary group that possesses the Cauchy–Davenport property,

and let H = Zp for some prime number p. Assume that bijections ϕh1,h2 , ψh1,h2 : N → N are

given for every h1, h2 ∈ H. Define on the set of ordered pairs G = {(n, h) | n ∈ N, h ∈ H} a

binary operation as follows:

(n1, h1)(n2, h2) =: (ϕh1,h2(n1)ψh1,h2(n2), h1h2).

If A,B are subsets of G which satisfy

|AB| = |A| + |B| − 1 ≤ min{p(N), p} − 1,

then (using the notations introduced in the proof of Lemma 5.14) one of the following conditions

holds:
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(a) k = 1 or ℓ = 1;

(b) k, ℓ ≥ 2 and s = t = 1;

(c) s = k ≥ 2, t = ℓ ≥ 2 and C,D are progressions in H of the same common quotient;

(d) s = k ≥ 2, t = ℓ ≥ 2, k+ ℓ = p ≤ p(N) and C = H \hD−1 for a suitable element h ∈ H.

Proof of Theorem 2.6

The ‘if’ part is quite simple. First, if k = 1 then |AB| = |B| = ℓ, and if ℓ = 1 then

|AB| = |A| = k. Next, if the second condition holds, then again

|AB| = |{aqib | 0 ≤ i ≤ k + ℓ− 2}| = k + ℓ− 1,

because the order of q is at least k + ℓ. Finally, in the third case we also have

|AB| = |uFv \ {uzv}| = |F | − 1 = k + ℓ− 1.

To prove the necessity of the conditions, we may assume that the group G is solvable. We

proceed by induction on the length of the composition series of G. If r(G) = 1, then G is a

cyclic group of prime order and the result is contained in Vosper’s theorem. So we assume

that r(G) ≥ 2 and the theorem has been already verified for every finite solvable group G′

with r(G′) < r(G). Choose a normal subgroup N ⊳ G such that H = G/N ∼= Zp for a prime

number p. Then G is a cyclic extension of N by H , and can be reconstructed from N and

H = 〈h〉 as follows. There is an element n0 ∈ N and an automorphism ϑ ∈ Aut(N) such that

ϑ(n0) = n0, ϑp(n) = n0nn
−1
0 for every n ∈ N and the multiplication on the set of ordered

pairs

G0 = {(n, hi) | n ∈ N, 0 ≤ i ≤ p− 1}

introduced as

(n1, h
i)(n2, h

j) = (n1ϑ
i(n2)f(hi, hj), hi+j),

where

f(hi, hj) =

{

1 if i+ j < p
n0 if i+ j ≥ p

makes G0 a group isomorphic to G, which we may as well identify with G. In particular, the

function f : H ×H → N satisfies among others the relations

f(hu, 1) = f(1, hv) (5.6)

and

ϑi(f(hu, hv)) = f(hu, hv) (5.7)

for every integer i and 0 ≤ u, v ≤ p− 1.
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According to Theorem 2.1, N possesses the Cauchy–Davenport property. We also have

|A| + |B| − 1 ≤ p(G) − 1 = min{p(N), p} − 1.

Thus we may apply Lemma 5.15 with

ϕhi,hj ≡ id and ψhi,hj (n) = ϑi(n)f(hi, hj).

Accordingly, we distinguish between four cases.

(a) If k = 1 or ℓ = 1, then condition (i) holds.

(b) If k, ℓ ≥ 2 and s = t = 1, then |A1| = k1 = k and |B1| = ℓ1 = ℓ. Thus,

A = {(ai, h
α) | 1 ≤ i ≤ k} and B = {(bj, h

β) | 1 ≤ j ≤ ℓ}

with suitable integers 0 ≤ α, β ≤ p− 1. Therefore

AB = {(aiϑ
α(bj)f(hα, hβ), hα+β) | 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ}.

Put B′
1 = {ϑα(bj) | 1 ≤ j ≤ ℓ}. Then A1, B

′
1 are subsets of N of cardinalities k and ℓ, respec-

tively. Since every element of AB has the same second coordinate hα+β and multiplication by

f(hα, hβ) is an N → N bijection, these sets satisfy

|A1B
′
1| = |AB| = k + ℓ− 1 ≤ p(N) − 1.

N is a finite solvable group with r(N) = r(G) − 1, thus our induction hypothesis implies

that either (b1) there exist elements a, b, q ∈ N such that A1 = {a, aq, . . . , aqk−1} and B′
1 =

{b, qb, . . . , qℓ−1b}, or (b2) k + ℓ − 1 = p(N) − 1 = p(G) − 1 and there exist a subgroup

F of N of order p(N) and elements u, v ∈ N , z ∈ F such that A1 ⊂ uF , B′
1 ⊂ Fv and

A1 = u(F \ zv(B′
1)−1).

We elaborate on these two subcases separately.

(b1) We prove that in this case condition (ii) holds. More precisely, we prove that

A = {a0, a0q0, . . . , a0q
k−1
0 } and B = {b0, q0b0, . . . , qℓ−1

0 b0}, (5.8)

where a0 = (a, hα), b0 = (ϑ−α(b), hβ) and q0 = (ϑ−α(q), 1).

We may assume that ai+1 = aqi and bj+1 = ϑ−α(qjb) holds for 0 ≤ i ≤ k − 1 and

0 ≤ j ≤ ℓ − 1. Thus (a1, h
α) = a0 and (b1, h

β) = b0. We proceed by induction as follows.

Assume first that we have already verified that (ai, h
α) = a0q

i−1
0 holds for some 1 ≤ i ≤ k−1.

Then

a0q
i
0 = (ai, h

α)q0 = (aqi−1, hα)(ϑ−α(q), 1)

= (aqi−1ϑα(ϑ−α(q))f(hα, 1), hα) = (aqi, hα) = (ai+1, h
α).
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On the other hand, if we have (bj , h
β) = qj−1

0 b0 for some 1 ≤ j ≤ ℓ− 1, then

qj
0b0 = q0(bj , h

β) = (ϑ−α(q), 1)(ϑ−α(qj−1b), hβ)

= (ϑ−α(q)ϑ0(ϑ−α(qj−1b))f(1, hβ), hβ) = (ϑ−α(qjb), hβ) = (bj+1, h
β),

since ϑ, and thus also ϑ−α is an automorphism of N . This verifies (5.8).

(b2) In this case we can write

A1 = {uȧ1, uȧ2, . . . , uȧk} and B′
1 = {ḃ1v, ḃ2v, . . . , ḃℓv},

where ai = uȧi, ϑ
α(bj) = ḃjv and

{ȧ1, ȧ2, . . . , ȧk} = F \ z{ḃ−1
1 , ḃ−1

2 , . . . , ḃ−1
ℓ }. (5.9)

Let F0 = {(ϑ−α(f), 1) | f ∈ F}, then |F0| = |F | = p(N) = p(G), and clearly F0 is a subgroup

of G isomorphic to F . Introduce also u0 = (u, hα) and v0 = (ϑ−α(v), hβ), and consider the

sets A0, B0 ⊂ F0 defined as follows:

A0 = {(ϑ−α(ȧi), 1) | 1 ≤ i ≤ k} and B0 = {(ϑ−α(ḃj), 1) | 1 ≤ j ≤ k}.

Then A = u0A0 ⊂ u0F0, because for any 1 ≤ i ≤ k,

u0(ϑ−α(ȧi), 1) = (u, hα)(ϑ−α(ȧi), 1)

= (uϑα(ϑ−α(ȧi))f(hα, 1), hα) = (uȧi, h
α) = (ai, h

α)

holds. Similarly, for every 1 ≤ j ≤ ℓ we have

(ϑ−α(ḃj), 1)v0 = (ϑ−α(ḃj), 1)(ϑ−α(v), hβ)

= (ϑ−α(ḃj)ϑ0(ϑ−α(v))f(1, hβ), hβ)

= (ϑ−α(ḃjv), hβ) = (bj , h
β),

implying that B = B0v0 ⊂ F0v0. Finally, applying ϑ−α to Equation (5.9) and observing that

the map ϕ : N → G defined as ϕ(x) = (x, 1) induces a group isomorphism from ϑ−α(F ) onto

F0, we find that A0 = F0 \ z0B−1
0 , where z0 = (ϑ−α(z), 1) ∈ F0. Consequently,

A = u0A0 = u0(F0 \ z0(Bv−1
0 )−1) = u0(F0 \ z0v0B−1),

justifying that condition (iii) holds in this case.

(c) s = k ≥ 2, t = ℓ ≥ 2 and C,D are progressions in H of the same common quotient. In

this case we may write

A = {(ai, ci) | 1 ≤ i ≤ k} and B = {(bj , dj) | 1 ≤ j ≤ ℓ},
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where ci = hα+(i−1)γ and dj = hβ+(j−1)γ with suitable integers 0 ≤ α, β, γ ≤ p − 1, γ 6= 0.

Let a0 = (a1, c1) = (a1, h
α), b0 = (b1, d1) = (b1, h

β) and q0 = (x, hγ) where

x = ϑ−α(a−1
1 a2(f(hα, hγ))−1).

This implies that

a0q0 = (a1, h
α)(x, hγ) = (a1ϑ

α(x)f(hα, hγ), hα+γ) = (a2, h
α+γ) = (a2, c2).

We claim that in general,

(ai, ci) = a0q
i−1
0 and (bj, dj) = qj−1

0 b0

holds for every 1 ≤ i ≤ k and 1 ≤ j ≤ ℓ, indicating that condition (ii) is satisfied in this case.

Let 1 ≤ i ≤ k, 1 ≤ j ≤ ℓ and m = i+ j − 2. Then

(ai, ci)(bj , dj) = (aiϑ
α+(i−1)γ(bj)f(hα+(i−1)γ , hβ+(j−1)γ), hα+β+mγ).

Thus, for each 0 ≤ m ≤ k + ℓ − 2, there is an element xm of AB whose second coordinate is

hα+β+mγ . Moreover, the facts that p is a prime, 1 ≤ γ ≤ p− 1 and k + ℓ − 1 ≤ p imply that

the numbers hα+β+mγ (0 ≤ m ≤ k + ℓ − 2) are k + ℓ − 1 different elements of H , thus the

element xm ∈ AB must be unique. It follows that

(ai, ci)(bj , dj) = (ai′ , ci′)(bj′ , dj′ )

holds whenever i+ j = i′ + j′. We know that (a2, c2) = (a1, c1)q0. For arbitrary 1 ≤ j ≤ ℓ− 1

we have

(a2, c2)(bj , dj) = (a1, c1)(bj+1, dj+1),

which then implies q0(bj , dj) = (bj+1, dj+1). Thus, (bj , dj) = qj−1
0 b0 follows by induction on

j. In particular, (b2, d2) = q0(b1, d1). Thus the relation

(ai+1, ci+1)(b1, d1) = (ai, ci)(b2, d2)

implies (ai+1, ci+1) = (ai, ci)q0 for every 1 ≤ i ≤ k − 1, and we also obtain (ai, ci) = a0q
i−1
0

by induction on i.

(d) s = k ≥ 2, t = ℓ ≥ 2, k + ℓ = p ≤ p(N) and C = H \ hD−1 for a suitable element h ∈ H .

Let us note first, that we may assume ℓ ≥ k. This is because A = u(F \ zvB−1) is equivalent

to B = (F \A−1uz)v and therefore, by reversing the multiplication on G (that is, introducing

a∗b = ba) we may exchange the roles of A and B while not changing the statement of Theorem

2.6. Once again, we may write

A = {(ai, ci) | 1 ≤ i ≤ k} and B = {(bj , dj) | 1 ≤ j ≤ ℓ}.
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Introduce Ȧ = (a1, c1)−1A and Ḃ = B(b1, d1)−1, then we can write

Ȧ = {(ȧi, ċi) | 1 ≤ i ≤ k} and Ḃ = {(ḃj , ḋj) | 1 ≤ j ≤ ℓ},

where (ȧ1, ċ1) = (ḃ1, ḋ1) = (1, 1) ∈ Ȧ∩ Ḃ, and writing Ċ = {ċi | 1 ≤ i ≤ k} and Ḋ = {ḋj | 1 ≤
j ≤ ℓ}, we have |Ȧ| = |Ċ| = k, |Ḃ| = |Ḋ| = ℓ, and Ċ = H \ ḣḊ−1 holds with ḣ = c−1

1 hd−1
1 . In

addition, clearly |ȦḂ| = |AB| = |Ȧ| + |Ḃ| − 1. We distinguish between two cases.

(d1) G0 = 〈Ḃ〉 6= G. Now we claim that Ȧ ⊂ G0. Indeed, if a ∈ Ȧ \G0 then (1, 1)Ḃ and aḂ

are disjoint subsets of ȦḂ, yielding

|ȦḂ| ≥ 2|Ḃ| = 2ℓ > p > |Ȧ| + |Ḃ| − 1,

a contradiction. Note that G0 is a proper subgroup of G, hence solvable with r(G0) < r(G)

and p(G0) ≥ p(G). Thus we may apply our induction hypothesis to conclude that either there

exist ȧ, ḃ, q0 ∈ G0 such that

Ȧ = {ȧ, ȧq0, ȧq20 , . . . , ȧqk−1
0 } and Ḃ = {ḃ, q0ḃ, q20 ḃ, . . . , qℓ−1

0 ḃ},

or p(G0) = p(G) and there exist a subgroup F of G0 < G of order p(G) and elements u, v ∈ G0,

z ∈ F such that

Ȧ ⊂ uF, Ḃ ⊂ Fv and Ȧ = u(F \ zvḂ−1).

In the first case we have

A = {a0, a0q0, a0q
2
0 , . . . , a0q

k−1
0 } and B = {b0, q0b0, q20b0, . . . , qℓ−1

0 b0}

with a0 = (a1, c1)ȧ and b0 = ḃ(b1, d1), and thus condition (ii) holds. In the other case, based

on (1, 1) ∈ Ȧ ∩ Ḃ, we may assume u = v = 1, and writing u0 = (a1, c1), v0 = (b1, d1) we may

conclude that

A ⊂ u0F,B ⊂ Fv0 and A = u0(F \ zv0B−1),

implying condition (iii).

(d2) G0 = 〈Ḃ〉 = G. In this case we show that Ḃ is a Cauchy-subset of G. To see that, let H0

be any subgroup of G. If H0 = G, then clearly

min{|ḂH0|, |H0Ḃ|} = |G| ≥ min{|G|, |H0| + |Ḃ| − 1}.

If H0 = {(1, 1)}, then

min{|ḂH0|, |H0Ḃ|} = |Ḃ| = min{|G|, |H0| + |Ḃ| − 1}.

Otherwise Ḃ 6⊆ H0, |H0| ≥ p(G) > |Ḃ|, and thus

min{|ḂH0|, |H0Ḃ|} ≥ 2|H0| ≥ |H0| + |Ḃ| − 1 = min{|G|, |H0| + |Ḃ| − 1}.
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Therefore we can apply Theorem 2.5. Since |Ȧ| 6= 1 and |Ȧ| + |Ḃ| < |G|, it follows that there

are elements a, b, q ∈ G and a natural number l such that

Ȧ = {a, aq, aq2, . . . , aqk−1} and Ḃ = (G \ 〈q〉b) ∪ {b, qb, q2b, . . . ql−1b}.

Were 〈q〉 6= G, we would have |G| ≥ p(G)|〈q〉b|, and thus it would follow that

ℓ = |Ḃ| ≥ p(G) − 1

p(G)
|G| ≥ p(G) − 1

p(G)
(p(G))2 ≥ p(G) > ℓ,

a contradiction. Consequently, 〈q〉 = G, l = ℓ,

Ȧ = {a, aq, aq2, . . . , aqk−1} and Ḃ = {b, qb, q2b, . . . qℓ−1b},

and with the notation a0 = (a1, c1)a, b0 = b(b1, d1) we see that

A = {a0, a0q, a0q
2, . . . , a0q

k−1} and B = {b0, qb0, q2b0, . . . qℓ−1b0},

implying that condition (ii) must hold.

This concludes the induction step, and the proof of Theorem 2.6 is complete.



Chapter 6

Elementary Methods

In the first section of the present chapter we verify a conjecture of Lev in a very strong sense.

Here we use only elementary arguments. In the second section a stronger conjecture of Lev is

proved along with a conjecture of Alon. The starting point of those proofs is Theorem 2.10,

which is due to Dias da Silva and Hamidoune.

6.1 Balanced Subset Sums in Dense Sets of Integers

In this section we prove Theorems 2.20 and 2.21. The latter can be easily derived from the

following result.

Theorem 6.1. For every ε > 0 there is an integer n0 = n0(ε) with the following property.

If n ≥ n0, 1 ≤ a1 < a2 < . . . < an ≤ 2n − 2 are integers, and N is an integer such that

|N | ≤ ( 9
100 − ε)n2, then there exist ε1, . . . , εn ∈ {−1,+1} such that |ε1 + . . . + εn| ≤ 1 and

|ε1a1 + . . .+ εnan −N | ≤ 1.

Indeed, choose ε = 9/100− 1/12 in the above theorem. If k = σ/2 + x is an integer in the

prescribed interval, then for the integer N = 2x there exist ε1, . . . , εn ∈ {−1,+1} such that

|ε1 + . . .+ εn| ≤ 1 and |ε1a1 + . . . + εnan −N | ≤ 1. Since N = 2x ≡ σ ≡ ε1a1 + . . . + εnan

(mod 2), it follows that ε1a1 + . . . + εnan = N , and with I = {i | εi = +1} we have |I| ∈
{⌊n/2⌋, ⌈n/2⌉} and

∑

i∈I

ai =
1

2

(

n
∑

i=1

ai +
n
∑

i=1

εiai

)

=
σ

2
+ x = k.

Thus Theorem 2.21 follows.

Now the first conjecture of Lev we mentioned on Page 18, assumed that n ≥ 89, follows

immediately in a similar way from the Theorem 2.20, unless ai = 2i−1 for 1 ≤ i ≤ n. Even in

that case, it is easy to check that the statement of Theorem 2.20 remains valid if n ≡ 0, 1 or 3

(mod 4). This is not the case, however, if n ≡ 2 (mod 4).

84
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Indeed, let n = 4k + 2 and suppose that ε1, . . . , εn ∈ {−1,+1} such that |ε1 + . . .+ εn| ≤ 1.

Consider I = {1 ≤ i ≤ n | εi = +1}, then |I| = 2k + 1. Therefore A =
∑

i∈I ai and

B =
∑

i6∈I ai are odd numbers. However, A+B =
∑n

i=1 ai = (4k+ 2)2 is divisible by 4, hence

A−B ≡ 2 (mod 4), and |ε1a1 + . . .+ εnan| = |A−B| ≥ 2. Nevertheless, choosing

I = {1, 2, 3, 5} ∪
k
⋃

i=2

{4i, 4i+ 1} ⊆ {1, 2, . . . , n}

we find that
∑

i∈I

ai =
1

2

n
∑

i=1

ai ,

confirming the conjecture of Lev in this remaining case, too.

The First Conjecture of Lev: Proof of Theorem 2.20

Before turning to the proof we note that although most likely the condition n ≥ 89 can essen-

tially be relaxed, it is not merely technical. The sequence (1, 2, 3, 8, 9, 10, 14, 15) demonstrates

that Theorem 2.20 is not valid with n0 = 8. An other formulation of the condition in the

theorem is the requirement that there exists an index 1 ≤ ν ≤ n such that aν is even. Finally,

if an ≤ 2n− 2, then the condition is automatically fulfilled.

Turning to the proof, first we note that it is enough to prove Theorem 2.20 when n is an

even number. Indeed, let n be odd, and assume that the statement has been proved for n+ 1.

Consider the sequence

b1 = 1 < b2 = a1 + 1 < . . . < bn+1 = an + 1 < 2(n+ 1) − 1.

There exist η1, . . . , ηn+1 ∈ {−1,+1} such that,

|η1 + . . .+ ηn+1| ≤ 1 and |η1b1 + . . .+ ηn+1bn+1| ≤ 1.

Since n+ 1 is even, it follows that η1 + . . .+ ηn+1 = 0. Let εi = ηi+1, then |ε1 + . . .+ εn| =

| − η1| = 1, and
∣

∣

∣

n
∑

i=1

εiai

∣

∣

∣
=
∣

∣

∣

n
∑

i=1

ηi+1ai +
n+1
∑

i=1

ηi

∣

∣

∣
=
∣

∣

∣

n+1
∑

i=1

ηibi

∣

∣

∣
≤ 1.

Accordingly, we assume that n = 2m with an integer m ≥ 45. To illustrate the initial

idea of the proof, consider the differences ei = a2i − a2i−1 for i = 1, 2, . . . ,m. If we found

δ1, . . . , δm ∈ {−1,+1} such that |∑m
i=1 δiei| < 2, then the choice ε2i = δi, ε2i−1 = −δi would

clearly give the desired result. This is the case, in fact, when
∑m

i=1 ei ≤ 2m− 2, as it can be

easily derived from the following two simple lemmas.
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Lemma 6.2. Let e1, . . . , ek ≥ 1 and suppose that

E =

k
∑

i=1

ei ≤ βk − (β2 − β)

for some positive real number β. Then

∑

ei<s+1

ei ≥ s

holds for every positive integer β − 1 ≤ s ≤ k − β.

Proof. If s is a positive integer, then obviously

∑

ei<s+1

ei ≥
∑

ei<s+1

1 = k −
∑

ei≥s+1

1 ≥ k − E

s+ 1
.

As long as

(k − 1)2 − 4(E − k) ≥ (k − α)2 , (6.1)

we have

k − E

s+ 1
≥ s

for every (α − 1)/2 ≤ s ≤ k − (α + 1)/2. To complete the proof we only have to notice that

(6.1) is satisfied if α = 2β − 1.

Lemma 6.3. Let e1, . . . , ek ≥ 1 and suppose that

∑

ei<s+1

ei ≥ s (6.2)

holds for every integer 1 ≤ s ≤ max{ei | 1 ≤ i ≤ k}. Let F be any number such that

|F | <
k
∑

i=1

ei + 2 . (6.3)

Then there exist ε1, . . . , εk ∈ {−1,+1} such that

∣

∣

∣

k
∑

i=1

εiei − F
∣

∣

∣ < 2 ,

in particular F =
∑k

i=1 εiei if the ei’s are integers and F ≡∑k
i=1 ei (mod 2).

Proof. Without loss of generality, we may suppose that that e1 ≥ e2 ≥ . . . ≥ ek, then ek < 2.

The point is, that the condition allows us to construct ε1, . . . , εk sequentially so that the

sequence of partial sums
∑i

j=1 εjej oscillates about F with smaller and smaller amplitude,

until it eventually approximates F with the desired accuracy.
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More precisely, let ∆0 = F , and define εn and ∆n recursively as follows. Let, for n = 1, 2, . . . , k,

εn =

{

1 if ∆n−1 ≥ 0
−1 if ∆n−1 < 0

and let ∆n = ∆n−1 − εnen, then

∆n = F − ε1e1 − ε2e2 − . . .− εnen

for every 0 ≤ n ≤ k. We prove, by induction, that

|∆n| < en+1 + . . .+ ek−1 + ek + 2 (6.4)

for n = 0, 1, . . . , k.

This is true for n = 0. Thus, let 1 ≤ n ≤ k, and suppose that (6.4) is satisfied with n− 1

in place of n. Assume, w.l.o.g, that ∆n−1 ≥ 0. Then, by definition,

−en ≤ ∆n = ∆n−1 + (−1)en < en+1 + . . .+ ek + 2 .

Thus, to verify (6.4), it suffices to show that en < en+1 + . . .+ ek + 2. This is definitely true,

if en+1 = en or n = k. Otherwise we can write

k
∑

i=n+1

ei =
∑

ei<en

ei ≥
∑

ei<⌊en⌋

ei ≥ ⌊en⌋ − 1 > en − 2 ,

proving the assertion. Letting n = k in (6.4), the statement of the lemma follows.

The main idea of the proof of Theorem 2.20 is to find a partition

{a1, a2, . . . , an} =

k
⋃

i=1

{xi, yi} ∪ {z1, . . . , zn−2k} (6.5)

such that ei = xi − yi (1 ≤ i ≤ k) and F =
∑n−2k

i=1 (−1)izi satisfy the conditions of Lemma

6.3. Then Theorem 2.20 follows immediately.

To achieve this we will construct the above partition so that

k
∑

i=1

ei ≤ 4k − 12 (or

k
∑

i=1

ei ≤ 3k − 6), (6.6)

ei ≤ k − 4 (or ei ≤ k − 3) for i = 1, 2, . . . , k , (6.7)

|F | ≤ k + 1 , and (6.8)
∑

ei≤s

ei ≥ s if s = 1 or s = 2 . (6.9)

Then an application of Lemma 6.2 with β = 4 (or with β = 3) will show that ei (1 ≤ i ≤ k)

and F satisfy the conditions of Lemma 6.3. More precisely, it follows from (6.6) and (6.9) that
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condition (6.2) holds for s ≤ k−β, hence for every integer 1 ≤ s ≤ max{ei | 1 ≤ i ≤ k} in view

of (6.7). Finally, (6.3) follows from (6.8), given that
∑k

i=1 ei ≥ k. Therefore, once we found a

partition (6.5) with properties (6.6)–(6.9), the proof of Theorem 2.20 will be complete.

First we take care of the condition (6.9). If we take xk = aν+1 and yk = aν , then ek = 1.

Moreover, since
n−1
∑

i=1

(ai+1 − ai) ≤ 2n− 2,

there must be an index µ 6∈ {ν − 1, ν, ν + 1, n}, such that aµ+1 − aµ ≤ 2. Taking xk−1 = aµ+1

and yk−1 = aµ, condition (6.9) will be satisfied. Enumerating the remaining n − 4 elements

of the sequence (ai) as

1 ≤ b1 < b2 < . . . < b2m−4 ≤ 4m− 1,

with fi = b2i − b2i−1 we find that

m−2
∑

i=1

fi =

m−2
∑

i=1

(b2i − b2i−1) ≤ (4m− 2) − (m− 3) = 3m+ 1. (6.10)

Since m > 21, there cannot be 3 different indices i with fi ≥ m− 5. We distinguish between

three cases.

Case 1) If fi ≤ m− 6 for 1 ≤ i ≤ m− 2, then we can choose k = m, F = 0. Taking xi = b2i

and yi = b2i−1 for 1 ≤ i ≤ k − 2, conditions (6.7) and (6.8) are obviously satisfied, whereas

(6.6) follows easily form (6.10):

k
∑

i=1

ei ≤
m−2
∑

i=1

fi + 3 ≤ 3m+ 4 ≤ 4m− 12,

given that m ≥ 16.

Case 2) There exist indices u, v such that m − 5 ≤ fu ≤ fv. In view of (6.10) we have

fu + fv ≤ (3m + 1) − (m − 4) = 2m + 5, and consequently m − 5 ≤ fu ≤ fv ≤ m + 10 and

0 ≤ fv − fu ≤ 15. Therefore we may choose k = m − 2, z1 = b2v−1, z2 = b2v, z3 = b2u,

z4 = b2u−1. Constructing xi, yi (1 ≤ i ≤ m− 4) from the remaining elements of the sequence

(bi) in the obvious way we find that |F | ≤ 15 < m−2 = k, each ei satisfies ei ≤ m−6 = k−4,

and once again (6.10) gives

k
∑

i=1

ei ≤
m−2
∑

i=1

fi − 2(m− 5) + 3 ≤ m+ 14 < 4m− 20 = 4k − 12.

Case 3) There exists exactly one index u with m − 5 ≤ fu. From (6.10) it follows that

fu ≤ (3m + 1) − (m − 3) = 2m + 4. We claim that there exist indices v, w different from u

such that

|b2w + b2w−1 − b2v − b2v−1 − fu| ≤ m− 2. (6.11)
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In that case we can choose k = m − 3 and z1 = b2u, z2 = b2u−1, z3 = b2v, z4 = b2w,

z5 = b2w−1, z6 = b2u−1 to have |F | ≤ m− 2 = k+ 1. Constructing xi, yi (1 ≤ i ≤ m− 4) from

the remaining elements of the sequence (bi) in the obvious way this time we find that each ei

satisfies ei ≤ m− 6 = k − 3, and

k
∑

i=1

ei ≤
m−2
∑

i=1

fi − (m− 5) − 2 + 3 ≤ 2m+ 7 ≤ 3m− 15 = 3k − 6.

It only remains to prove the above claim. The idea is to find v, w such a way that fv, fw

are small and at the same time b2w − b2v lies in a prescribed interval that depends on the size

of fu. It turns out that the optimum strategy for such an approach is the following. First, for

any positive integer κ ≥ 2, introduce

Iκ = {i | 1 ≤ i ≤ m− 2, i 6= u, fi ≤ κ}.

Denote by x the number of indices i 6= u for which fi > κ. Then

(m− 3 − x) + (κ+ 1)x ≤
m−2
∑

i=1

fi − fu ≤ (3m+ 1) − (m− 5) = 2m+ 6.

Thus, κx ≤ m+ 9, and m− 3 − x ≥ (1 − 1/κ)m− 3 − 9/κ. We have proved

Claim 6.4. |Iκ| ≥
κ− 1

κ
m− 9

κ
− 3. In particular t = |I7| ≥

6m− 30

7
.

Write c0 = 0 and let

⋃

i∈I7

{b2i−1, b2i} = {c1 < c2 < . . . < c2t−1 < c2t}.

Now we separate two subcases as follows.

Case 3A) m− 5 ≤ fu ≤ 2m− 14. We will prove that there exist 1 ≤ i < j ≤ t such that

m

2
− 3 ≤ ∆i,j = c2j − c2i ≤ m− 7. (6.12)

Since we have

1 ≤ c2i − c2i−1, c2j − c2j−1 ≤ 7, (6.13)

we can argue that

m− 12 ≤ 2∆i,j − 6 ≤ c2j + c2j−1 − c2i − c2i−1 ≤ 2∆i,j + 6 < 2m− 7,

and that implies (6.11). If there exists 1 ≤ i ≤ t− 1 such that

m

2
− 3 ≤ c2i+2 − c2i ≤ m− 7,
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then (6.12) is immediate. Otherwise we have

c2i+2 − c2i ≤
m

2
− 7

2
or c2i+2 − c2i ≥ m− 6

for every integer 1 ≤ i ≤ t− 1. This way we distinguish between ‘small gaps’ and ‘large gaps’

in the sequence c2, c4, . . . , c2t. The large gaps partition this sequence into ‘blocks’, where

the gap between two consecutive elements within a block is always small. For such a block

B = (c2i, c2i+2, . . . , c2i′), the quantity ℓ(B) = 2(i′ − i) we call the length of the block. Since

2 ·
(m

2
− 7

2

)

< m− 6,

in order to have a pair i, j with (6.12), it is enough to prove that at least one block has a

length ≥ m/2 − 3. Then the smallest integer j satisfying c2j − c2i ≥ m/2 − 3 will do the job.

We claim that there cannot be more than 3 blocks. Indeed, since every gap is at least 2,

were there 3 or more large gaps, we would find that

4m− 1 ≥
t−1
∑

i=0

(c2i+2 − c2i) ≥ 3(m− 6) + (t− 3)2

≥ 3m− 18 + 2
(6m− 30

7
− 3
)

,

implying m ≤ 221/5 < 45, a contradiction.

Since there are at most 3 blocks, one must contain at least t/3 different c2i’s, and thus its

length

ℓ(B) ≥ 2
( t

3
− 1
)

≥ 4m− 20

7
− 2.

Given that m ≥ 26 we conclude that indeed ℓ(B) ≥ m/2 − 3.

Case 3B) 2m− 13 ≤ fu ≤ 2m+ 4. This time we prove that

m

2
+ 6 ≤ ∆i,j ≤ 3

2
m− 21

2
(6.14)

holds with suitable 1 ≤ i < j ≤ t. In view of (6.13) this implies

m+ 6 ≤ 2∆i,j − 6 ≤ c2j + c2j−1 − c2i − c2i−1 ≤ 2∆i,j + 6 ≤ 3m− 15,

and from that (6.11) follows. Similarly to the previous case, we may assume that there are

only small and large gaps, which in this case means that

c2i+2 − c2i ≤
m

2
+

11

2
or c2i+2 − c2i ≥

3

2
m− 10

holds for every integer 1 ≤ i ≤ t− 1. Given that (here we use m ≥ 44)

2 ·
(m

2
+

11

2

)

<
3

2
m− 10,

it suffices to prove that there is a block B with ℓ(B) ≥ m/2 + 6.



6.1. BALANCED SUBSET SUMS IN DENSE SETS OF INTEGERS 91

Were there 2 or more large gaps, we would find that

4m− 1 ≥
t−1
∑

i=0

(c2i+2 − c2i) ≥ 2
(3

2
m− 10

)

+ (t− 2)2

≥ 3m− 20 + 2
(6m− 30

7
− 2
)

,

implying m ≤ 221/5 < 45, a contradiction. Therefore there are at most 2 blocks, one of which

containing at least t/2 different c2i’s. The length of that block thus satisfies

ℓ(B) ≥ 2
( t

2
− 1
)

≥ 6m− 30

7
− 2.

Since m ≥ 172/5, we find that ℓ(B) ≥ m/2 + 6, and the proof is complete.

An Extension: Proof of Theorem 6.1

Obviously we may assume that ε > 0 is small enough so that all the below arguments work.

We fix such an ε and assume that n is large enough. As in the proof of Theorem 2.20, we may

assume that n = 2m is an even number. Put c = 1/5− 2ε. We will prove that there exists an

integer k ≥ (1− c)m−7 and a partition in the form (6.5) such that for ei = xi −yi (1 ≤ i ≤ k)

and F = N +
∑n−2k

i=1 (−1)izi the following conditions hold:

k
∑

i=1

ei ≤ 4k − 12, (6.15)

ei ≤ (1 − c)m− 11 ≤ k − 4 for i = 1, 2, . . . , k , (6.16)

|F | ≤ (1 − c)m− 6 ≤ k + 1 , and (6.17)
∑

ei≤s

ei ≥ s if s = 1 or s = 2 . (6.18)

As in the proof of Theorem 2.20, we can apply Lemma 6.2 with β = 4, and then Lemma 6.3

gives the result.

Clearly there exist 1 ≤ µ, ν ≤ n − 1, µ 6∈ {ν − 1, ν, ν + 1} such that aν+1 − aν = 1 and

aµ+1 − aµ ≤ 2. Putting x1 = aν+1, y1 = aν , x2 = aµ+1, y2 = aµ then takes care of (6.18).

Enumerate the remaining n− 4 elements of the sequence (ai) as

1 ≤ b1 < b2 < . . . < b2m−4 ≤ 4m− 2.

Take q = ⌈cm⌉. Since

q
∑

i=1

(b2m−3−i − bi) ≥
q
∑

i=1

(2m− 2i− 3) = 2qm− q(q + 4)

> 2cm2 − (cm+ 1)(cm+ 5) = (2c− c2)m2 − (6cm+ 5)

>
( 9

25
− 16

5
ε− 4ε2

)

m2 − 2m >
( 9

25
− 4ε

)

m2 ≥ |N |
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and b2m−3−i − bi ≤ 4m− 3 for every i, there exists an integer 0 ≤ r < cm+ 1 such that

∣

∣

∣N − sgn(N)

r
∑

i=1

(b2m−3−i − bi)
∣

∣

∣ ≤ 2m− 2,

where sgn(N) = +1, if N ≥ 0 and sgn(N) = −1, if N < 0. Consider

r + 1 ≤ br+1 < br+2 < . . . < b2m−4−r ≤ 4m− 2 − r,

and let fi = br+2i − br+2i−1 for 1 ≤ i ≤ m− 2 − r, then

m−r−2
∑

i=1

fi ≤
(

(4m− 2 − r) − (r + 1)
)

− (m− r − 3) ≤ 3m. (6.19)

Were there 3 or more indices i with fi > (1 − c)m− 11, it would imply

m−r−2
∑

i=1

fi > 3
(

(1 − c)m− 11
)

+ (m− r − 5) > (4 − 4c)m− 39 > 3m,

a contradiction if m is large enough. Thus there exist an integer s ∈ {0, 1, 2} and indices

i1, . . . , is such that fi > (1 − c)m− 11 if and only if i ∈ {i1, . . . , is}. Moreover, if s ≥ 1, then

for each j ∈ {1, . . . , s} we have

fij
≤ 3m− (m− r − 3) < (2 + c)m+ 4.

Consequently, there exist δ1, . . . , δs ∈ {−1,+1} such that

∣

∣

∣N − sgn(N)
r
∑

i=1

(b2m−3−i − bi) −
s
∑

j=1

δjfij

∣

∣

∣ < (2 + c)m+ 4. (6.20)

Put κ = ⌈3/ε⌉ ≤ (1 − c)m− 11 and introduce

Iκ = {i | 1 ≤ i ≤ m− r − 2, fi ≤ κ}.

Denoting by x the number of indices i with fi > κ we have

(m− r − 2 − x) + (κ+ 1)x ≤
m−r−2
∑

i=1

fi ≤ 3m,

implying κx < (2 + c)m+ 3, and thus

t = |Iκ| = m− r − 2 − x >
(

1 − c− 2 + c

κ

)

m− 3 − 3

κ
>
(4

5
+ ε
)

m.

Write c0 = 0 and let

⋃

i∈Iκ

{br+2i−1, br+2i} = {c1 < c2 < . . . < c2t−1 < c2t}.
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We prove that there exist 1 ≤ i1 < j1 ≤ t such that

2

5
m ≤ ∆1 = c2j1 − c2i1 ≤ 4

5
m. (6.21)

This is immediate if there exists 1 ≤ i ≤ t− 1 such that

2

5
m ≤ c2i+2 − c2i ≤

4

5
m,

otherwise we have

c2i+2 − c2i <
2

5
m or c2i+2 − c2i >

4

5
m

for every integer 1 ≤ i ≤ t − 1. Gaps in the sequence c2, c4, . . . , c2t, which are larger than

4m/5, partition this sequence into blocks, where the gap between two consecutive elements

within a block is always smaller than 2m/5. We claim that there cannot be more than 3 such

blocks. Were there on the contrary at least 3 large gaps, we would find that

4m− 2 ≥
t−1
∑

i=0

(c2i+2 − c2i) > 3 · 4

5
m+ (t− 3) · 2 > (4 + 2ε)m− 6,

a contradiction. Now one of the blocks must contain at least t/3 different c2i’s, and thus its

length satisfies

ℓ(B) ≥ 2
( t

3
− 1
)

>
2

5
m.

Consequently, (6.21) holds with suitable elements c2i1 , c2j1 of B. Removing i1, j1 from Iκ

and repeating the argument we find 1 ≤ i2 < j2 ≤ t such that {i2, j2} ∩ {i1, j1} = ∅ and

2m/5 ≤ ∆2 = c2j2 − c2i2 ≤ 4m/5. Since for α = 1, 2 we have

1 ≤ c2iα
− c2iα−1, c2jα

− c2jα−1 ≤ κ, (6.22)

we can argue that

2∆α − κ+ 1 ≤ Γα = c2jα
+ c2jα−1 − c2iα

− c2iα−1 ≤ 2∆α + κ− 1,

that is,
4

5
m− 3

ε
< Γα <

8

5
m+

3

ε
. (6.23)

In view of (6.20) and (6.23), there exist an integer p ∈ {0, 1, 2} and η1, . . . , ηp ∈ {−1,+1} such

that

∣

∣

∣N − sgn(N)

r
∑

i=1

(b2m−3−i − bi) −
s
∑

j=1

δjfij
−

p
∑

α=1

ηαΓα

∣

∣

∣ <
4

5
m+

3

2ε
≤ (1 − c)m− 6.

Consequently, we can choose k = m− r − s− 2p > (1 − c)m− 7, and the elements of the set

r
⋃

i=1

{bi, b2m−3−i} ∪
s
⋃

j=1

{br+2ij
, br+2ij−1} ∪

p
⋃

α=1

{c2iα
, c2iα−1, c2jα

, c2jα−1}
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can be enumerated as z1, . . . , zn−2k so that F = N +
∑n−2k

i=1 (−1)izi satisfies (6.17). Since

fi ≤ (1 − c)m− 11 holds for every 1 ≤ i ≤ m− r − 2, i 6∈ {i1, . . . , is}, removing z1, . . . , zn−2k

form the sequence b1, . . . , b2m−4, the rest can be rearranged as x3, y3, . . . , xk, yk such that

1 ≤ ei = xi − yi satisfies (6.16). Finally, it follows from (6.19) that

k
∑

i=1

ei ≤
m−r−2
∑

i=1

fi + 3 ≤ 3m+ 3 ≤ (4 − 4c)m− 40 ≤ 4k − 12,

therefore condition (6.15) is also fulfilled. This completes the proof of Theorem 6.1.

6.2 Arithmetic Progressions and a Conjecture of Alon

In this section we first collect a few simple consequences of the Dias da Silva–Hamidoune

theorem. Based on these we prove Theorem 2.22 in the second subsection. Finally we derive

Theorems 2.24 and 2.25 based on Lev’s result (Theorem 2.23) and briefly sketch how the ideas

of the first two subsections can be applied to prove Alon’s conjecture without depending on

Lev’s theorem.

Preliminaries

Throughout this subsection we work with and integer d ≥ 2 and a prime p which is usually

large enough compared to d. By a d-set we mean a set of cardinality d. To simplify notation,

we introduce

nd(p) =
⌊p+ d− 2

d

⌋

<
p

d
+ 1.

From now on A will always denote a subset of [1, p]. An immediate consequence of the

Dias da Silva–Hamidoune theorem (Theorem 2.10) is that if |A| ≥ nd(p) + d, then Σd(A)

intersects every residue class modulo p, see [44]. By routine induction one obtains the following

generalization (see [44], Corollary 2.3).

Lemma 6.5. Let j be a positive integer, and assume that |A| ≥ nd(p) + jd. Then for every

sequence x1, x2, . . . , xj of integers there exists a sequence A1, A2, . . . , Aj of pairwise disjoint

d-sets of A such that σ(Ai) ≡ xi (mod p) for every 1 ≤ i ≤ j.

To prove Theorem 2.22 we use a method similar to the one developed by Hamidoune in

[44]. From this point on, however, we proceed somewhat differently.

Lemma 6.6. Let j be a positive integer, and assume that |A| ≥ nd(p)+jd. Then there exists a

sequence A1, A2, . . . , Aj of pairwise disjoint d-sets of A such that σ(Ai) ∈ {p, 2p, . . . , (d−1)p}
for every 1 ≤ i ≤ j. In particular, with K = ⌈j/(d− 1)⌉, there exists an integer t ∈ [1, d− 1]

and a sequence B1, B2, . . . , BK of pairwise disjoint d-sets of A such that σ(Bi) = tp for every

1 ≤ i ≤ K.
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Proof. Apply the previous lemma with x1, x2, . . . , xj = 0. Then σ(Ai) < dp is divisible by p

for every 1 ≤ i ≤ K. The second statement follows from the pigeonhole principle.

This inspires the following definition. We denote by t(A) = td(A) any integer 1 ≤ t ≤ d − 1

for which the number of pairwise disjoint d-subsets B of A with the property σ(B) = tp is

maximum.

Lemma 6.7. Assume that |A| ≥ nd(p) + 2d4. Then for every integer x which is divisible by

t(A) and satisfies t(A)dp ≤ x < d2p, there is a subset X ⊂ A such that σ(X) = x.

Proof. Consider the integer y = x/t(A). In view of Lemma 6.5, there exist pairwise disjoint

sets A1, A2, . . . , A(t(A)−1)d+1 ⊂ A of cardinality d such that σ(Ai) ≡ y (mod p) for each

1 ≤ i ≤ (t(A) − 1)d+ 1. Since σ(Ai) < dp, there is a subsequence Ai1 , Ai2 , . . . , Ait(A)
and an

integer 0 ≤ s ≤ d − 1 such that σ(Aij
) = sp + y0, where 0 ≤ y0 < p and y ≡ y0 (mod p).

Then B = Ai1 ∪. . .∪Ait(A)
satisfies |B| = t(A)d ≤ d(d−1), σ(B) = t(A)(sp+y0) < t(A)dp ≤ x

and x− σ(B) ≡ x− t(A)y0 ≡ x− t(A)y ≡ 0 (mod p). Moreover, it is also divisible by t(A),

hence also by t(A)p. Due to the definition of t(A), in view of Lemma 6.6 there exist pairwise

disjoint d-sets B1, . . . , B2d2 such that σ(Bi) = t(A)p. Since |B| < d2, wlog. we may assume

that B1, . . . , Bd2 are disjoint from B. Since x − σ(B) < d2p is divisible by t(A)p, there is an

index j < d2 such that x− σ(B) = σ(B1) ∪ . . . ∪ σ(Bj). Thus, x = σ(B ∪B1 ∪ . . . ∪Bj).

The Second Conjecture of Lev: Proof of Theorem 2.22

In view of Theorem 2.19 we may assume that

3n− 3

2
≤ ℓ ≤ 2n− 6.

From Corollary 1 in [63] it follows, that

[2ℓ− 2n+ 1, 3ℓ+ 2] ⊆ Σ(A).

Moreover, 2ℓ − 2n + 1 ≤ ℓ − 5, thus the above interval contains at least 2ℓ + 8 consecutive

integers.

Our strategy is the following. First we choose a prime (1− ε)ℓ ≤ p ≤ ℓ. Note that we need

only a few terms to represent each number in the above interval I as an element of Σ(A). Thus

if ε is small enough, then the density of the remaining elements of A in [1, p] is considerably

larger than 1/3, and then we can use Lemma 6.6 to extend the length of the interval I by 2p

in each of several iterations, until it gets long enough to continue with the second phase.

Since Σ(A) is symmetric about σ(A)/2, it is enough to extend the interval until it contains

⌊σ(A)/2⌋. In the second phase we choose a prime q between ℓ and (1 + δ)ℓ and consider A

as a subset of [1, q]. As the length of I grows, the density of the remaining elements that we
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can use for the extension of I is getting smaller. The point is, it stays above a certain bound,

and thus in each iteration we can extend the length of I by the same universal multiple of q,

which allows us to complete the phase.

To see what exactly is needed in the first phase, we start with the second one. If n

is large enough, then there is a prime number q such that ℓ ≤ q ≤ 17ℓ/16. Denote by

L the least common multiple of the numbers 2, 3, . . . , 17. Assume that x ≤ σ(A)/2, and

y = x − Lq belongs to Σ(A), that is, there is a subset B of A such that y = σ(B). Then

σ(A \B) = σ(A) − y > σ(A)/2 > n2/4. Consequently,

|A \B| > n2

4ℓ
>
n

8
>

ℓ

16
≥ p

17
> N18(p) +

p

17 · 18
− 1 > N18(p) + 182L,

if n and hence p is large enough. According to Lemma 6.6, there exists an integer t ≤ 17 and

a sequence B1, B2, . . . , BL of pairwise disjoint subsets of A \B such that σ(Bi) = tq for every

1 ≤ i ≤ L. It follows that

x = σ(B ∪B1 ∪ . . . ∪BL/t),

proving that x ∈ Σ(A). Accordingly, we only have to prove that

[2ℓ− 2n+ 1, 2ℓ− 2n+ Lq] ⊆ Σ(A).

Then it follows from the above argument that [2ℓ− 2n+ 1, ⌊σ(A)/2⌋] ⊆ Σ(A). By symmetry

we find that [⌈σ(A)/2⌉, σ(A) − (2ℓ− 2n+ 1)] ⊆ Σ(A), implying Theorem 2.22.

Turning thus to the first phase, we choose a prime p such that (15/16)ℓ ≤ p ≤ ℓ, and put

M = 17L/30, so that Lq ≤ 2Mp. Let A′ = A ∩ [1, p], then |A′| ≥ n − (ℓ − p). Choose any

integer x satisfying 3ℓ+2 < x ≤ 3ℓ+2+2Mp. Then there is an integer y ∈ [3ℓ+3−2p, 3ℓ+2]

such that y ≡ x (mod 2p). Since 2p ≤ 2ℓ, we have y ∈ [2ℓ − 2n+ 1, 3ℓ+ 2], and thus there

is C ⊆ A such that y = σ(C). Note that |C| <
√

6ℓ+ 4 and we have x− y = 2mp with some

integer m ∈ [1,M ]. Now

|A′ \ C| > n− (ℓ− p) −
√

6ℓ+ 4 >
ℓ

2
− ℓ

16
−
√

6ℓ+ 4 > N3(p) + 12M,

provided that n is large enough. In view of Lemma 6.6, there exists a sequence C1, C2, . . . , C2M

of pairwise disjoint subsets of A′ \C such that either σ(Ci) = p holds for every 1 ≤ i ≤ 2M , or

σ(Ci) = 2p is true for every 1 ≤ i ≤ 2M . In the first case we find that x = σ(C∪C1∪. . .∪C2m),

whereas x = σ(C ∪ C1 ∪ . . . ∪ Cm) in the second case. Consequently x ∈ Σ(A), hence

[3ℓ+ 3, 3ℓ+ 2 + 2Mp] ⊆ Σ(A). Since [2ℓ− 2n+ 1, 3ℓ+ 2] ⊆ Σ(A), it follows that

[2ℓ− 2n+ 1, 2ℓ− 2n+ Lq] ⊆ [2ℓ− 2n+ 1, 3ℓ+ 2 + 2Mp] ⊆ Σ(A).

This completes the proof of Theorem 2.22.

We note that applying the method of Section 6.1 and developing Lemmas 6.5 and 6.6 in a

different direction the idea of the previous proof leads to a more effective version of Theorem

2.22. We do not elaborate on this here.
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The Conjecture of Alon

Proof of Theorem 2.24. We prove the statement by induction on d with n1 = n1(d) =

n0 + d log3/2 d, where n0 is as in Theorem 2.23. If d ≤ n/400 lnn, then

d log3/2 d ≤ n

400 lnn
· lnn

ln(3/2)
<

n

101
,

hence the theorem follows with n1 = 1.01n0. For the inductional step we may clearly assume

that

n ≤ ℓ

d− 1
+ (d− 1) − 2. (6.24)

It may also be assumed for the initial step d = 2, since otherwise we have ℓ = n, in which case

obviously Σ(A) = [0, σ(A)].

Assume that Nq(A) ≥ q − 1 holds for every positive integer q < d; this is a priori true if

d = 2. Since n ≥ ⌊ℓ/d⌋+ d− 1, it is also true for q = d. Moreover, if q = d+ r with 1 ≤ r < d,

then in view of n > 10d ≥ 5d2/(d− 1), condition (6.24) implies

ℓ ≥ (d− 1)n− (d− 1)(d− 3) > 4d2 >
(

1 +
1

r

)

d(d+ r),

and consequently

Nq(A) ≥ n−
⌊ ℓ

q

⌋

>
ℓ

d
− ℓ

d+ r
+ d− 2 ≥ (r + 1) + (d− 2) = q − 1.

Therefore in this case nq(A) ≥ q − 1 holds for every q < 2d ≤ 2ℓ/n. Since n ≥ ℓ/d ≥
400ℓ lnn/n, we have n ≥ 20(ℓ lnn)1/2. Thus it follows from Theorem 2.23 that Σ(A) contains

every integer in the interval [λσ(A), (1 − λ)σ(A)] with λ = 280ℓ/n2. Given that

λσ(A) < λ(nℓ) =
280ℓ2

n
≤ 280dℓ,

our statement follows with t = 1 in this case. This includes the initial step d = 2.

It remains to study the case when Nq(A) ≤ q−2 for some integer 2 ≤ q < d. Collect in A0

those elements of A that are not divisible by q, and define the a set of integers A′ such that

A = A0 ∪ {qa | a ∈ A′}.

Introduce the integers ℓ′ = ⌊ℓ/q⌋ and d′ = ⌈d/q⌉, then 2 ≤ d′ ≤ (2/3)d < d and A′ is a set of

integers in the interval [1, ℓ′] whose cardinality satisfies

n′ = |A′| = |A| − |A0| >
ℓ

d
+ d− q >

ℓ′

d′
+ d′ − 2

and

n′ ≥ n− (q − 2) > n0 + d log3/2 d− d ≥ n0 + d log3/2 d
′ > n1(d′).

Since n > 3d, we also have

n′

400 lnn′
>

n− d

400 lnn
>

2

3
· n

400 lnn
≥ 2d

3
≥ d′.
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It follows from the inductional hypothesis that there is an integer t′ ∈ [1, d′ − 1] such that

Σ(A′) contains all multiples of t′ that belong to the interval

[280d′ℓ′, σ(A′) − 280d′ℓ′].

Accordingly, qΣ(A′) ⊆ Σ(A) contains all multiples of t = qt′ < d lying in the interval

[280qd′ℓ′, qσ(A′) − 280qd′ℓ′].

Given that qd′ℓ′ ≤ d′ℓ ≤ (2/3)dℓ < dℓ, and that in view of σ(A0) ≤ (q− 2)ℓ < dℓ we also have

qσ(A′) − 280qd′ℓ′ > σ(A) − σ(A0) − 200dℓ > σ(A) − 280dℓ,

this completes the inductional step. �

Now it is easy to prove Theorem 2.25. For any integer s ≥ 2, denote by ψ(s) the least

common multiple of the numbers 2, 3, . . . , s. A routine application of the prime number

theorem gives lnψ(s) = (1 + o(1))s. Thus, if m ≤ ℓ2, then d = snd(m) < (2 + o(1)) ln ℓ. If ℓ is

sufficiently large, then d ≤ 3 ln ℓ, and a set A ⊆ [1, ℓ] of cardinality |A| = ⌊ℓ/d⌋ + d − 2 with

the property that m 6∈ Σ(A) can be constructed as follows. Suppose that m ≡ i (mod d),

where 1 ≤ i ≤ d − 1. Let A consist of all ⌊ℓ/d⌋ multiples of d in I = [1, ℓ], i − 1 different

elements of I that are congruent to 1 modulo d, and d − i − 1 additional members of I that

are congruent to −1 modulo d. It is easy to check that A has the claimed property, see [5] for

details.

It remains to check that if ℓ is large enough and (280 + ε)ℓ ln ℓ < m < ℓ2/(8 + ε) ln2 ℓ,

then with d = snd(m) it is true that A ⊆ [1, ℓ], |A| ≥ ⌊ℓ/d⌋ + d − 1 implies that m ∈
Σ(A). We may assume that ε < 1. If ℓ is large enough and (280 + ε)ℓ ln ℓ < m < 574ℓ ln ℓ,

then d < (1 + ε/280) ln ℓ, the conditions of Theorem 2.24 are satisfied, and m belongs to

the interval [280dℓ, σ(A) − 280dℓ]. Since m is divisible by every integer t ∈ [1, d − 1], it

follows that m ∈ Σ(A). If ℓ is large enough and 574ℓ ln ℓ ≤ m < ℓ2/(8 + ε) ln2 ℓ, then

d < (2 + ε/20) ln ℓ, the conditions of Theorem 2.24 are once again satisfied, and m belongs to

the interval [280dℓ, σ(A) − 280dℓ], since 280dℓ < 574ℓ ln ℓ and

σ(A) − 280dℓ >
1

2

( ℓ

(2 + ε/20) ln ℓ

)2

− 574ℓ ln ℓ >
ℓ2

(8 + ε) ln ℓ2
.

Once again, it follows that m ∈ Σ(A).

Our original idea to prove Theorem 2.25 for a slightly shorter range of m was to follow the

method we described in the second subsection for the proof of Theorem 2.22. Here Lemma

6.7 seems to be a good starting point to build up a long arithmetic progression in Σ(A) for A

dense enough. To control the difference when extending this arithmetic progression the way

the large block is extended in the proof of Theorem 2.22 is, however, a nontrivial task which
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leads to several technical difficulties that we do not discuss here. Basically we prove a mixture

of Theorems 2.23 and 2.24 when ℓ is a prime and d does not exceed a small power of n. The

transfer to the general case depends on the following simple lemma:

Lemma 6.8. Let A be a set of integers and q a positive integer such that Nq(A) ≥ q − 1.

Then there exists a proper divisor d of q such that Σ(A) intersects each residue class modulo

q that is divisible by d.

We note that this lemma is tight when q is a power of a prime p: If A consist of q/p − 1

elements that are congruent to −1 modulo q and (p− 1)q/p− 1 additional elements that are

congruent to 1 modulo q, then the conclusion fails.

We find it stylish to conclude this dissertation indicating a proof of Lemma 6.8 in the case

when q is a prime. Assume for that end that a1, . . . , aq−1 are nonzero elements of the Galois

field Fq. All we have to prove is that

Σ(a1, . . . , aq−1) =
{

q−1
∑

i=1

εiai | εi ∈ {0, 1}
}

= Fq.

Assume on the contrary that Σ(a1, . . . , aq−1) is contained in a set C ⊂ Fq of cardinality q− 1.

Put Ai = {0, ai}, then |A1| = . . . = |Aq−1| = 2. The polynomial

f(x1, . . . , xq−1) =
∏

c∈C

(x1 + . . .+ xq−1 − c) ∈ Fq[x1, . . . , xq−1]

has a leading term αx1 . . . xq−1, where α = (q− 1)! is a nonzero element of Fq. It follows from

the polynomial lemma (Lemma 2.27) that f cannot vanish on A1× . . .×Aq−1, a contradiction.



Epilogue

It may be interesting to see how the work contained in this dissertation has developed. My

first encounter with combinatorial number theory occurred at the 1996 DIMACS Workshop.

During that workshop I solved the first problem of Lev and started studying his work which

led to some versions of the results discussed in Chapter 6. The original proofs were fairly

complicated, and I never since had the time and the energy to write them up. This summer,

however, I received a letter from Stefanie Gerke in London, who wanted to apply Theorem

2.22 for a problem in graph theory. That inquiry finally triggered a follow-up work I could

carry out in the peaceful environment of the CWI. It led to a lot of simplifications, stronger

results and the papers [57, 58].

At the end of 1999 I visited Oriol Serra in Barcelona, who showed me Alon’s paper [3].

The multiplicative analogue I invented during that visit resulted in the paper [20]. During the

spring of 2003, enjoying the privileged life of a research associate at the Rényi Institute without

any teaching duties, I first started further pursuing that idea, which led to the paper [52]. That

was when I convinced myself of the possibility that the Combinatorial Nullstellensatz may be

applied to get structural results. Having no stress and time pressure at the time — a rare

occasion —, I could concentrate on just one difficult problem for months, and the result was

Theorem 2.14. It was also during that period and a month spent at the UPC in Barcelona,

when I could finally write the expository paper [53], invited by Shalom Eliahou, Isidoro Gitler

and Jarik Nešetřil for a special volume of DM. In order to extend Theorem 2.14 to general

abelian groups I had to first invent a new proof of Theorem 2.11, which appeared in [51].

The submission of the paper [54] had yet to wait for another year when I once again had a

chance working on it at the I.H.É.S. in France. Extending the ideas of [51] to noncommutative

groups I was able to carry out during a month’s visit at the ETH Zürich in 2005. A second

application of the Combinatorial Nullstellensatz [56] occurred to me during my last visit at

the I.H.É.S. the following summer. In retrospect, that paper should have preceded [54], but

at that time it seemed very complicated to handle the restricted sumset of two different sets

this way. Here we presented them in the more logical order. Once again, I am indebted to all

these great institutions where I was given the chance to carry out my research.
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101



102 BIBLIOGRAPHY

[17] C.C. Chang and H.J. Keisler, Model Theory, North-Holland, 1973

[18] M-C. Chang, A polynomial bound in Freiman’s theorem, Duke Math. J. 113 (2002)
399–419

[19] I. Chowla, A theorem on the addition of residue classes: Application to the number
Γ(k) in Waring’s problem, Proc. Indian Acad. Sci. A 1 (1935) 242–243
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