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Összefoglalás

A matematikailag megalapozott teljeśıtőképességi elemzések jelentős
szerepet gyakorolnak és fognak gyakorolni az infokommunikációs rendszerek
specifikálásában, tervezésében és üzemeltetésében. Kutatásaimat a
sorbanálláselmélet és alkalmazásai témakörében folytatom, jelen értekezés az
eddig elért, legfontosabb tudományos eredményeimet ismerteti:
1. Több szerveres Markovi sorbanállási rendszer általánośıtása és több
problémára való alkalmazása

Kidolgoztunk egy módszert az ún. HetSigma sor (MM
∑K

k=1CPPk/GE/c/L G)
állandósult állapot-valósźınűségeinek meghatározására. Bebizonýıtottam
a HetSigma sor stacionárius állapotvalósźınűségeinek meghatározásában
fontos szerepet játszó tulajdonságokat. Megadtam a szerzőtársam javasolt
transzformációk következményeként a karakterisztikus mátrix polinom
együtthatóira vonatkozó zárt képletet. Felismertem, hogy a HetSigma sor
alkalmas néhány kommunikációs hálózatokban és informatikai rendszerekben levő
probléma (optikai börszt kapcsolt multiplexer, MPLS forgalomiránýıtás, HSDPA,
Apache Web szerver) modellezésére és elemzésére.
2. Az újra-próbálkozási sorokkal modellezhető rendszerek jellemzőinek
hatékony meghatározása

Az újra-próbálkozási sorok számos infokommunikációs rendszer (DHCP
szerver, vezetéknélküli hálózat) elemzésére használhatóak, ugyanakkor legtöbb
esetben matematikailag kezelhetetlenek. A témakörben közeĺıtő modelleket
javasoltam. A közeĺıtő modellek fontos tulajdonságainak felhasználásával hatékony
algoritmusokat származtattam a rendszer állandósult állapotvalósźınűségeinek
meghatározására. A valóságot követő szimulációs vizsgálatokkal megmutattam,
hogy a javasolt módszerek képesek pontosan meghatározni a teljeśıtőképességi
paramétereket. Az általam kidolgozott algoritmusok számı́tás-igénye O(c) (ahol c a
szerverek száma), ı́gy azok nagyszámú erőforrással gazdálkodó rendszerek (DHCP
szerver, mobil hálózat) méretezésére különösen alkalmasak.

Az M/M/c/N+c visszacsatolásos és újrapróbálkozási sorbanállási sort
vizsgáltam. Felismertem és bebizonýıtottam, hogy a karakterisztikus mátrix
polinomnak b(N + c + 2)/2c db nulla értékű sajátértéke van. A Grassmann
által kidolgozott algoritmust módośıtottam a nulla értékű sajátérték kezelésére.
Megmutattam, hogy az általam módośıtott eljárás a nagy kapacitású rendszer
esetén a hagyományos algoritmusoknál gyorsabban tudja meghatározni a
jellemzőket.
3. A CPP/M/c vakációs sorbanállási modell

A virtuális gép-szolgáltatók vakációs alapú karbantartási politikájának
elemzésére egy új CPP/M/c vakációs sorbanállási modellt vezettem be.
Bebizonýıtottam a rendszer stabilitási feltételére vonatkozó tételt, ennek
következményeként a vakációs alapú karbantartási politika a túlterhelés veszélye
nélkül alkalmazható a virtuális-szerver szolgáltatóknál. Levezettem a pontos
képleteket a rendszer állandósult állapot-valósźınűségeinek meghatározására.
Megadtam a rendszer sztochastikus dekompoziciójára vonatkozó tétel bizonýıtását.
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1
Motivations and Contributions

1.1 Motivations

The performance modeling and evaluation activities play an important
role in the design and operation of ICT (Information and Communication
Technologies) systems. According to Kleinrock there are four types of
solutions to predict the performance of networks as follows [74, 75]:

1. Conduct a mathematical analysis which yields explicit performance
expressions.

2. Conduct a mathematical analysis which yields an algorithmic or
numerical procedure.

3. Write and run a simulation program.

4. Build the system and then measure its performance.

Therefore, the search of new mathematical analysis methods for the
performance evaluation of ICT systems has been an intensive research area.

The concept of Quasi Birth-Death (QBD) processes, as a generalization
of the classical birth and death processes (e. g. the M/M/1 queue) was
first introduced in the late 1960s by Wallace [123] and Evans [60]. The
state space of a QBD process, in the Markovian framework, is defined
on a two-dimensional lattice, finite in one dimension (finite or infinite in
the other). The random variable in the finite dimension is the phase
and the other variable is called the level [82, 97, 102]. Transitions in
a QBD process are possible within the same level or between adjacent
levels. It is observed that the QBD framework is a mature technique for
the performance evaluation of many problems in telecommunications and
computer networks [18, 33, 38, 54, 79, 80, 101, 103, 106, 124].

There are four main methods to compute the steady state probabilities of
a QBD process.

• The first method by Seelen [108] is based on the truncation of the
original Markov process to a finite state Markov chain. Utilizing the
special structure an efficient iterative solution algorithm can be applied.

3



4 CHAPTER 1. MOTIVATIONS AND CONTRIBUTIONS

• The second method is to reduce the problem of infinite-states to a
linear equation involving vector generating function and some unknown
probabilities. The latter are then determined with the aid of the
singularities of the coefficient matrix. A comprehensive treatment of
that approach, in the context of a discretetime process with a general
M/G/1 type structure, is presented in [64].

• The third way of solving these models is the well known matrix
geometric method, first proposed by Evans [60, 102]. In this method a
nonlinear matrix equation is first formed from the system parameters
and the minimal nonnegative solution R of this equation is computed
by an iterative method. The invariant vector is then expressed in terms
of the powers of R. However, the number of iterations which are needed
to compute R to a given accuracy is unknown. It can also be shown that
for certain parameter values the computational efforts are uncertain and
formidably large.

• The fourth method is known as the spectral expansion method [21,
31, 97]. It is based on expressing the invariant vector of the process
in terms of the eigenvalues and left eigenvectors of a certain matrix
polynomial. The generating function approach and the spectral
expansion method are closely related. However, the latter computes
steady state probabilities directly using an algebraic expansion while
the former provides them through a transform. The interested reader
can find more detail on the comparison of methods for QBD processes
in [119].

It is confirmed by a number of works that the spectral expansion method
is better than the matrix geometric one in a number of aspects [68, 70, 97].
Furthermore, the spectral expansion method is proved to be a mature
technique for the performance analysis of various problems [21, 24–27, 29,
31–37, 47, 51, 52, 54, 55, 58, 61, 62, 66, 68, 96, 97, 117, 118, 120, 127] and
can be used for network dimensioning purposes [44, 128].
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1.2 Contributions

After the short summary of the background on the spectral expansion
method in Chapter 2 in Part I, this dissertation summarizes the author’s
contributions (see the list of the author’s publications in Appendix B) to the
performance evaluation of ICT systems using the spectral expansion method
in Chapters 3, 4, 5, 6, 7 and 8. These chapters are organized into three topics:

(1) a generalized Markov multi-server queue and ICT applications are
presented in Part II,

(2) retrial queues and ICT applications are discussed in Part III, and

(3) vacation queues and an application are presented Part IV.

Chapter 3 in Part II: The Generalized Markov
Multi-Server Queue

We propose a new generalized multi-server queue, referred here as the
HetSigma queue [33, 49], in the Markovian framework, in order to model
(cf. [33, 34, 49, 51, 54]) nodes in modern telecommunication networks. The
queue has many of the necessary properties such as, joint (or, individual)
Markov modulation of the arrival and service processes, superposition of K
CPP (compound Poisson process) streams of (positive) customer arrivals,
and a CPP of negative customer arrival stream in each of the modulating
phases, a multi-server with c non-identical (can also be identical) servers,
GE (generalized exponential) service times in each of the modulating
phases and a buffer of finite or infinite capacity. Thus, the model can
accommodate correlations of the inter-arrival times of batches, geometric
as well as non-geometric batch size distributions of customers in both
arrivals and services. The use of negative customers can facilitate modelling
server failures, packet losses, load balancing, channel impairment in wireless
networks, and in many other applications. An exact and computationally
efficient solution of this new queue for the steady state probabilities and
performance measures is developed. A closed form for the coefficient matrices
of the characteristic matrix polinomial is derived. The fundamental properties
which serve as the background for the efficient computational algorithm to
obtain the steady state probabilities of the HetSigma queue are presented and
proved.

The proposed model does provide a useful tool for the performance
analysis of many problems of the emerging telecommunication systems and
networks. The queuing model and its variants were successfully used to
model Optical Burst/Packet (OBS) Switching networks [23, 34, 50], MPLS
networks [32, 55, 104] and another variant to successfully compute the
performance of the Apache web server [54]. The HetSigma model has been
applied to model wireless networks [33, 34, 51].
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Chapter 4 in Part II: Modeling Apache Web Server
Software

We consider the non-threaded multi-processing module (MPM) Prefork
of Apache’s UNIX architecture [54]. For the first time, we propose a
mathematically tractable analytic queueing model based on the HetSigma
one to predict the performance of an Apache server with its load-dependent
dynamic pool size. It is derived from certain Markov assumptions concerning
the number of active service processes and applies a decomposition approach
to the client population, the Web server and the TCP transport system.
In particular, we suppose that TCP connection requests demanding the
support of a HTTP service process follow a Markov-Modulated Compound
Poisson Process (MMCPP). We use the MMCPP because it can cope with
the fluctuations of the arrival rate, the autocorrelation of inter-arrival times
of requests and also with simultaneous arrivals of multiple requests. As a
consequence, the well-known WAGON traffic model of [90] is a special case
of our more general workload model.
In addition to the development of a tractable analytic model we have also
measured the performance of a real Apache Web server where the number
of service processes does not follow a Markov property. Comparing the
numerical results of the analytic model with those obtained by the actual
measurements, we observe a rather good coincidence of mean values and an
acceptable accuracy of our predictions regarding control purposes. Moreover,
the results are used to identify the impact of major control parameters of an
Apache configuration on relevant performance measures.

Chapter 5 in Part III: A Model for the Performance
Evaluation of DHCP

We propose a retrial queueing model to approximate the performability of the
DHCP dynamic allocation mechanism [48]. We show that interarrival times
of DHCP requests from clients follow the exponential distribution. We make
a relaxed assumption concerning the lease time sent by a DHCP server and
the retrial process of clients. We develop an efficient computational algorithm
to calculate the steady state probabilities and the performance measures of a
continuous time discrete state Markov (CTMC) process associated with the
proposed retrial queue. The computational algorithm has the computational
complexity of the order O(c), where c is the number of IP addresses in a
DHCP server. Besides possessing the capability of tackling the problem with
large c in a very short time, it also gives numerically stable solution. Here,
it is worth emphasizing that many existing solutions [14, 84, 97, 99] of QBD
processes have the computational time complexity of O(c3). It is shown via
simulation of more detailed model than an analytical abstract one that the
proposed approach is accurate to calculate the performance of the interaction
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between the behavior of clients and the DHCP mechanism. A numerical
study is also performed, which provides an insight for the impact of trade-off
parameters and factors on the operation of the DHCP mechanism.

Chapter 6 in Part III: A New Algorithm to a Retrial
Queue for Wireless Networks

Retrial queueing models have been applied to evaluate the impact of
arriving new and handover calls on the call admission control mechanisms
of cellular mobile networks. The fact that the retrial rate depends on
the number of retried calls waiting in the system leads to an analytically
intractable model. Therefore, approximation procedures should be used to
compute the performability of the system. However, there exists a numerical
problem concerning a recursive computational algorithm for the probabilities
of the truncated state space, which is first identified by the author of
this dissertation. Namely, the consideration of guard channels results on
calculations with negative terms in the recursive algorithm. Negative terms
and extremely small values involved in the computation are the main causes
for a numerical instability in the recursive algorithm.

We construct a new numerically stable algorithm in order to solve the
problem [46]. Moreover, we prove that the distribution of the number of calls
in the orbit is the “mixture” of geometric distributions in the presence of the
guard channel concept. It is worth emphasizing that the numerical stability,
the small memory requirement for the implementation of the algorithm and
the capability to obtain results with a large number of channels within a short
time are the strengths of the new approach.

Chapter 7 in Part III: A New Algorithm for a
Multi-Server Feedback Retrial Queue

We deal with an algorithm to find the eigenvalues of the matrix quadratic
equation of a tridiagonal form based on the sign variations of the Sturm
sequences. We consider a case where multiple zero-eigenvalues are involved.

The example for investigation is the M/M/c/N+c feedback queue with
constant retrial rate, which is solved by the matrix-geometric method in [80].
However, the existing approaches face the state explosion problem when
the queueing capacity (N + c) is large. We prove [45] that the number
of zero-eigenvalues of the characteristic matrix polynomial associated with
the balance equation is b(N + c + 2)/2c. As a consequence, the remaining
eigenvalues inside the unit circle can be computed in a quick manner based
on the Sturm sequences. It is worth emphasizing that the algorithm of [67]
should be slightly modified in order to determine the remaining eigenvalues
of the characteristic matrix polynomial inside the unit circle. Numerical
results are presented to compare computation times which are needed by the
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matrix geometric method, the pure spectral expansion approach, the method
proposed by Naoumov et al. and the new algorithm to calculate the steady
state probabilities. The comparison [45] clearly demonstrates the advantage
of the new algorithm on the computation of the steady probabilities of the
queue with a large queueing capacity.

Chapter 8 in Part IV: Vacation Queues and an
Application to a Virtualized Server Environment

In order to extend the application opportunities of queues with working
vacation to the performance evaluation of practical systems with bursty
traffic, we introduce the CPP/M/c queue with working vacations [53]. In
these queues customers arrive in a batch having a geometric size distribution.
We present a method and give closed form expressions for the steady state
probabilities. We also show that a stochastic decomposition property exists
for the queue with working vacations.

To model the queueing and congestion phenomena arising from
maintenance tasks of a virtualized server environment, we use the CPP/M/c
multi-server system with Poisson batch arrivals and working vacations [53].

To model the maintenance activities, we have assumed that a certain
number of servers goes simultaneously to a maintenance state for a random
period when they have completed the service of jobs and find no further
requests in the waiting line. By a relatively simple model we theoretically
prove a property which has a significant impact on the organization of
maintenance activities of virtualized servers [53]. It means that instead of
migrating virtual servers to expensive physical backup servers during software
maintenance, a wise and simple strategy based on the vacation approach can
be used. That is, the system is not overloaded if we organize the maintenance
according to the vacation model. We believe that our model can be useful for
administrators to choose an appropriate parameter set for the maintenance
activities.



2
The Spectral Expansion Method for

QBD Processes

2.1 Definitions

Consider a two-dimensional continuous time, irreducible Markov chain
X={(I(t), J(t)), t ≥ 0} on lattice strips.

• I(t) is called the phase (e.g.: the state of the environment) of the
system at time t. Random variable I(t) takes values from the set
{0, 1, 2, . . . , N}, where N is the maximum value of the phase variable.

• Random variable J(t) is often called the level of the system at time t
and takes a set of values {0, 1, . . . , L}, where L can be finite or infinite.

The state space of Markov chain X is {(i, j) : 0 ≤ i ≤ N, 0 ≤ j ≤ L}.
Let pi,j denote the steady state probability of the state (i, j) as

pi,j = lim
t→∞

P(I(t) = i, J(t) = j); (i = 0, . . . , N ; j = 0, 1, . . . , L).

Vector vj is defined as

vj = (p0,j, . . . , pN,j) (j = 0, 1, . . . , L).

Since the sum of all the probabilities pi,j is 1.0, we have the normalization
equation as

L∑
j=0

vjeN+1 = 1 ,
�� ��2.1

where eN+1 is a column vector of size N + 1 with all ones.

2.1.1 Continuous Time QBD Processes

Definition 2.1. A continuous time Quasi-Birth-and-Death (QBD) process is
formed when one-step transitions of the Markov chain X are allowed to states
in the same level or in the two adjacent levels. That is, the dynamics of the
process are driven by

9
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(a) purely phase transitions. Aj(i, k) denotes the transition rate from state
(i, j) to state (k, j) (0 ≤ i, k ≤ N ; j = 0, 1, . . . , L);

(b) one−step upward transitions. Bj(i, k) is the transition rate from state
(i, j) to state (k, j + 1) (0 ≤ i, k ≤ N ; j = 0, 1, . . . , L);

(c) one−step downward transitions. Cj(i, k) is the transition rate from state
(i, j) to state (k, j − 1) (0 ≤ i, k ≤ N ; j = 0, 1, . . . , L).

Let Aj, Bj and Cj denote (N+1)×(N+1) matrices with elements Aj(i, k),
Bj(i, k) and Cj(i, k), respectively. Note that their diagonal elements are zero.
Let DAj , DBj and DCj be the diagonal matrices of size (N + 1) × (N + 1),
defined by the ith (i = 0, . . . , N) diagonal element as follows

DAj(i, i) =
N∑
k=0

Aj(i, k); DBj(i, i) =
N∑
k=0

Bj(i, k); DCj(i, i) =
N∑
k=0

Cj(i, k).

For the convenience of the presentation we define matrices B−1 = 0, BL = 0
and C0 = 0.

The steady state balance equations satisfied by the vectors vj are

vj[D
Aj +DBj +DCj ] = vj−1Bj−1 + vjAj + vj+1Cj+1 ∀j .

�� ��2.2

Assume that there exist thresholds T ∗1 and T ∗2 such that

Aj = A (T ∗2 ≥ j ≥ T ∗1 ),

Bj = B (T ∗2 ≥ j ≥ T ∗1 − 1),

Cj = C (T ∗2 + 1 ≥ j ≥ T ∗1 ).

DA, DB and DC are the corresponding diagonal matrices with the diagonal
elements as

DA(i, i) =
N∑
k=1

A(i, k), DB(i, i) =
N∑
k=1

B(i, k), DC(i, i) =
N∑
k=1

C(i, k).
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The generator matrix of the QBD process is written as

A
(1)
0 B0 0 0 . . . . . . . . . . . . . . .

C1 A
(1)
1 B1 0 . . . . . . . . . . . . . . .

0 C2 A
(1)
2 B2 . . . . . . . . . . . . . . .

...
...

...
. . . . . . . . . . . . . . .

0 0 . . . CT ∗1−1 A
(1)
T ∗1−1

BT ∗1−1 0 0 . . .

0 0 . . . 0 CT ∗1 A
(1)
T ∗1

BT ∗1 0 . . .

0 0 . . . 0 0 CT ∗1 +1 A
(1)
T ∗1 +1 BT ∗1 +1 . . .

...
...

...
... . . . . . .

. . . . . . . . .



=



A
(1)
0 B0 0 0 . . . . . . . . . . . . . . . . . .

C1 A
(1)
1 B1 0 . . . . . . . . . . . . . . . . . .

0 C2 A
(1)
2 B2 . . . . . . . . . . . . . . . . . .

...
...

...
. . . . . . . . . . . . . . . . . . . . .

0 0 . . . CT ∗1−1 A
(1)
T ∗1−1

Q0 0 0 . . . . . .

0 0 . . . 0 CT1 Q1 Q0 0 . . . . . .
0 0 . . . 0 0 Q2 Q1 Q0 . . . . . .
0 0 . . . 0 0 0 Q2 Q1 Q0 . . .
...

...
...

... . . . . . .
. . . . . . . . . . . .


,

where A
(1)
j = Aj −DAj −DBj −DCj .

The j-independent balance equations can be rewritten as follows

vj−1Q0 + vjQ1 + vj+1Q2 = 0 (T ∗1 ≤ j ≤ T ∗2 ),
�� ��2.3

where Q0 = B, Q1 = A−DA −DB −DC , Q2 = C.

2.1.2 Continuous Time QBD-M Processes

Definition 2.2. The Markov chain X is called a continuous time quasi
simultaneous-bounded-multiple births and simultaneous-bounded-multiple
deaths (QBD-M) process if the balance equation for level j can be written
as

y∑
i=0

vj−y1+iQi = 0 (T1 ≤ j ≤ T2),
�� ��2.4

where y, y1, T1 and T2 are integer constants for a specific system, while Qi

are j-independent matrices of size (N + 1)× (N + 1).
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The class of continuous time QBD-M processes is the generalization of
QBD. As we will see in Chapter 3 and 4, QBD-M processes can be used to
evaluate the performance of systems with multiple arrivals and/or multiple
departures.

2.1.3 Generalized Exponential Distribution

Definition 2.3. The versatile Generalized Exponential (GE) distribution is
given in the following form:

F (t) = P (W ≤ t) = 1− (1− φ)e−µt (t ≥ 0),
�� ��2.5

where W is the GE random variable with parameters µ, φ. Thus, the GE
parameter estimation can be by obtained by 1/ν, the mean, and C2

coeff , the
squared coefficient of variation of the inter-event time of the sample as

1− φ = 2/(C2
coeff + 1) ; µ = ν(1− φ) .

�� ��2.6

Remarks. For C2
coeff > 1, the GE model is a mixed-type probability

distribution having the same mean and coefficient of variation, and with
one of the two phases having zero service time, or a bulk type distribution
with an underlying counting process equivalent to a Batch (or Bulk) Poisson
Process (BPP) with batch-arrival rate µ and geometrically distributed batch
size with mean 1/(1 − φ) and SCV (C2

coeff − 1)/(1 + C2
coeff ) (cf. [111]). It

can be observed that there is an infinite family of BPP’s with the same
GE-type inter-event time distribution. It is shown that, among them, the
BPP with geometrically distributed bulk sizes (referred as the CPP) is the
only one that constitutes a renewal process (the zero inter-event times within
a bulk/batch are independent if the bulk size distribution is geometric [78]).
The GE distribution is versatile, possessing pseudo-memoryless properties
which make the solution of many GE-type queuing systems analytically
tractable [78]. The choice of the GE distribution is often motivated by the fact
that measurements of actual inter-arrival or service times may be generally
limited and so only a few parameters (for example the mean and variance)
can be computed reliably. Typically, when only the mean and variance can
be relied upon, a choice of a distribution which implies least bias is that of
GE-type distribution [78, 111].

Definition 2.4 (CPP). The inter-arrival time distribution of customers of
the Compound Poisson Process (CPP) is GE with parameters (σ, θ). That is,
the inter-arrival time probability distribution function is 1−(1−θ)e−σt. Thus,
the arrival point-process has batches arriving at each point having independent
and geometric batch-size distribution. Specifically the probability that a batch
is of size s is (1− θ)θs−1.
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2.2 The Spectral Expansion Method for

QBD-M Processes

Let Q(λ) denote the characteristic matrix polynomial associated with the
balance equation (2.4) as

Q(λ) =

y∑
i=0

Qiλ
i.

�� ��2.7

If (λ,ψ) is the left-eigenvalue and eigenvector pair of the characteristic
matrix-polynomial, the following equation holds

ψQ(λ) = 0; det[Q(λ)] = 0.
�� ��2.8

Assume that Q(λ) has d pairs of eigenvalue-eigenvectors. For the kth

(k = 1, . . . , d) non-zero eigenvalue-eigenvector pair, (λk,ψk), by substituting
vj = ψkλ

j
k (T1 − y1 ≤ j ≤ T2 − y1 + y) in the equations (2.4), it can be seen

that this set of equations is satisfied. Hence, that is a particular solution.
The equations can even be satisfied with ψkλ

j+lk
k for any real lk. It is easy

to prove that the general solution for vj is the linear sum of all the factors

(ψkλ
j−T1+y1
k ) as

vj =
d∑
l=1

alψlλ
j−T1+y1
l (j = T1 − y1, T1 − y1 + 1, . . . , T2 − y1 + y),

�� ��2.9

where al (l = 1, . . . , d) are constants.
Therefore, the steady state probability can be written as follows

pi,j =
d∑
l=1

alψl(i)λ
j−T1+y1
l (j = T1 − y1, T1 − y1 + 1, . . . , T2 − y1 + y).

�� ��2.10

An interesting property can be observed concerning the eigenvalues of
Q(λ) for QBD-M process X as follows. If (λk,ψk) is the left-eigenvalue and
eigenvector pair of Q(λ), then (1/λk,ψk) is the left-eigenvalue and eigenvector

pair of Q(λ) =

y∑
i=0

Qy−iλ
i, the characteristic matrix polynomial of the dual

process of X (cf. [31]).

2.2.1 Infinite QBD-M Processes

When L and T2 are infinite (unbounded), consider the probability sum

∞∑
j=T1−y1

pi,j =
∞∑

j=T1−y1

d∑
l=1

alψl(i)λ
j−T1+y1
l .

�� ��2.11
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In order to ensure that this sum is less or equal to 1.0, the necessary
condition is

ak = 0, if |λk| ≥ 1.

Thus, by renumbering the eigenvalues inside the unit circle, the general
solution is obtained as

vj =

χ∑
l=1

alψlλ
j−T1+y1
l (j = T1 − y1, T1 − y1 + 1, . . .),

�� ��2.12

pi,j =

χ∑
l=1

alψl(i)λ
j−T1+y1
l (j = T1 − y1, T1 − y1 + 1, . . .).

�� ��2.13

where χ is the number of eigenvalues that are present strictly within the unit
circle. These eigenvalues appear some as real and others as complex-conjugate
pairs, and as do the corresponding eigenvectors.

In order to determine the steady state probabilities, the unknown
constants al are to be determined. Their number is χ. We still have other
unknowns v0,v1, . . . ,vT1−y1−1. These unknowns are determined with the
aid of the state dependent balance equations (their number is T1(N + 1))
and the normalization equation (2.1), out of which T1(N + 1) are linearly
independent. These equations can have a unique solution if and only if
(T1 − y1)(N + 1) + χ = T1(N + 1), or equivalently

χ = y1(N + 1)
�� ��2.14

holds.

2.2.2 Finite QBD-M Processes

In order to compute the steady state probabilities, the unknown constants
al are to be determined. Their number is d. We still have other unknowns
v0,v1, . . . ,vT1−y1−1, vT2−y1+y+1,vT2−y1+y+2, . . . ,vL. Therefore, the number of
unknowns is

d+ (T1 − y1)(N + 1) + (L− T2 + y1 − y)(N + 1).

These unknowns are determined with the aid of the state dependent
balance equations (their number is T1(N + 1) + (L − T2)(N + 1)) and the
normalization equation, out of which T1(N +1)+(L−T2)(N +1) are linearly
independent. These equations can have a unique solution if and only if

d+(T1−y1)(N +1)+(L−T2 +y1−y)(N +1) = T1(N +1)+(L−T2)(N +1),

equivalently
d = y(N + 1)

�� ��2.15

holds.
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2.3 Comments and References

Besides the spectral expansion method, there are a number of methods to
solve QBD and QBD-M processes such as in [3, 16, 40, 84, 101]. Some
approaches are based on the fact that QBD-M processes can also be
considered as a special case of Markov chains having non-skip-free structure,
such as M/G/1 chains with multiple boundary or combined M/G/1-G/M/1
type structured chains. As a consequence, some recent numerical methods for
non-skip-free Markov chains apply more or less straightforwardly to QBD-M
processes. A set of methods presented in [17, 65] takes advantage of the special
structure of the Markov chain along with that of re-blocking. Works [4, 71, 72]
apply the concept of the linear system theory based on the generalized
invariant subspace background.

Note that the focus of this dissertation is the development of
performability analysis solutions based on the spectral expansion method.
Therefore, the detailed discussion of other methods is outside the scope of
this dissertation.
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3
The Generalized Markov Multi-Server

Queue‖

3.1 System Description

The HetSigma queue is defined as the MM
K∑
k=1

CPPk/GE/c/L G-queue with

heterogenous servers. The arrival process is the superposition of the MM
K∑
k=1

CPPk and an independent CPP of negative customers (denoted by G).

The MM
∑K

k=1CPPk is obtained by Markov modulation of the parameters of
the superposition ofK independent CPP streams. That is, theK independent
CPP’s are jointly Markov modulated by a single modulating Markov process.
L is the capacity of the system.

We consider a case where the arrival (of positive and negative customers)
and service processes are modulated by the same continuous time, irreducible
Markov phase process. The system is a multi-server queue with c
heterogeneous servers. It is described below, by illustrating the various
components and their interactions.

3.1.1 Modulation

The arrival process is modulated by a continuous time, irreducible Markov
process with N + 1 states (or phases of modulation). Let Q be the generator
matrix of this process, given by

Q =


−q0 q0,2 . . . q0,N
q1,0 −q1 . . . q1,N

...
...

. . .
...

qN,0 qN,1 . . . −qN

 ,

‖R. Chakka and Tien Van Do. The MM
∑K

k=1 CPPk/GE/c/L G-Queue with
Heterogeneous Servers: Steady state solution and an application to performance evaluation.
Performance Evaluation, 64:191–209, March 2007.
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where qi,k(i 6= k) is the instantaneous transition rate from phase i to phase k,

and the diagonal elements, −qi = −
N∑
j=0

qi,j (i = 0, . . . , N), where qi,i = 0 ∀i.

Let r = (r0, r1, . . . , rN) be the vector of equilibrium probabilities of the
modulating phases. Then, r is uniquely determined by the equations:

rQ = 0; reN+1 = 1,

where eN+1 stands for the column vector with N + 1 elements, each of which
is unity.

3.1.2 Customer Arrival Process

The arrival process is the superposition of K independent CPP [41] arrival
streams of (positive) customers. The positive customers of the different arrival
streams are not distinguishable. In the modulating phase i, the parameters
of the GE inter-arrival time distribution of the kth (k = 1, 2, . . . , K) positive
customer arrival stream are (σi,k, θi,k). That is, the inter- arrival time
probability distribution function is 1 − (1 − θi,k)e

−σi,kt, in phase i, for the
kth stream of positive customers. Thus, all the K arrival point-processes
can be seen as batch-Poisson, with batches arriving at each point having
geometric size distribution. Specifically, the probability that a batch is of
size s is (1− θi,k)θs−1i,k , in phase i, for the kth stream of positive customers.

Let σi,., σi,. be the average arrival rate of customer batches and customers
in phase i respectively. Let σ, σ be the overall average arrival rate of batches
and customers respectively. Then, we get

σi,. =
K∑
k=1

σi,k ; σi,. =
K∑
k=1

σi,k
(1− θi,k)

; σ =
N∑
i=0

σi,.ri ; σ =
N∑
i=0

σi,.ri.
�� ��3.1

Because of the superposition of many CPP’s, the overall arrivals in phase i
can be considered as bulk-Poisson (M [x]) with arrival rate σi,. and with a batch
size distribution in phase i, {πl/i}, that is more general than mere geometric.
The probability that this batch size is l (in phase i) is given by

πl/i =
K∑
k=1

σi,k
σi,.

(1− θi,k)θl−1i,k .
�� ��3.2

The overall batch size distribution is then given by πl/. =
∑N

i=0 riπl/i. The
joint probability {πi,l} (i.e., the probability that a given batch is from phase i
and of length l) is then given by πi,l = riπl/i.
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3.1.3 Negative Customer Arrival Process

The arrival process is the superposition of K independent CPP [41] arrival
streams of (positive) customers and an independent CPP of negative
customers. In the modulating phase i, the parameters of the GE inter-arrival
time distribution of the negative customer arrival process are (ρi, δi). That
is, the inter- arrival time probability distribution function is 1− (1− δi)e−ρit
for the negative customers in phase i.

The uses of negative customers with appropriate killing discipline are of
many fold, viz. for facilitating flow control studies, load balancing studies,
to model breakdowns and to model packet losses caused by the arrival of
corrupted packets, as explained in [27].

A negative customer removes a positive customer in the queue, according
to a specified killing discipline. We consider here a variant of the RCE
killing discipline (removal of customers from the end of the queue), where the
most recent positive arrival is removed, but which does not allow a customer
actually in service to be removed: a negative customer that arrives when
there are no positive customers waiting to start service has no effect. We
may say that customers in service are immune to negative customers or that
the service itself is immune servicing. Such a killing discipline is suitable for
modelling of load balancing where work is tranferred from overloaded queues
but never work that is actually in progress.

When a batch of negative customers of size l (1 ≤ l < j − c) arrives,
l positive customers are removed from the end of the queue leaving the
remaining j − l positive customers in the system. If l ≥ j − c ≥ 1, then
j − c positive customers are removed, leaving none waiting to commence
service (queue length equal to c). If j ≤ c, the negative arrivals have no
effect.

ρi, the average arrival rate of negative customers in phase i and ρ, the
overall average arrival rate of negative customers are given by

ρi =
ρi

1− δi
; ρ =

N∑
i=0

riρi.
�� ��3.3

3.1.4 The GE Multi-Server

The service facility has c heterogeneous servers in parallel. A number of
scheduling policies can be thought of. Though, in principle, a number of
scheduling policies can indeed be modelled by following our methodology, the
one that we have adopted in this Chapter, for illustration and detailed study,
is as follows. A set of service priorities is chosen by giving each server a
unique service priority: 1 is the highest and c is the lowest. This set can be
chosen arbitrarily from the c! different possible ways. However, the impact
of choosing service priorities can be very high on the performance measures,
whose study is not in the scope of this Chapter.
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Each server is then numbered, without loss of generality, by its own service
priority. The GE-distributed service time parameters of the nth server (n =
1, 2 . . . , c), in phase i, are denoted by (µi,n, φi,n).

The service discipline is FCFS (First Come First Scheduled for service)
and each server serves at most one positive customer at any given time.
Customers, on their completion of service, leave the system. When the
number of customers in the system, j, (including those in service if any) is≥ c,
then only c customers are served with the rest (j−c) waiting for service. When
j < c, only the first j servers, (i.e., servers numbered 1, 2, . . . , j), are occupied
and the rest are idle. This is made possible by what is known as customer
switching. Thus, when server n becomes idle, an awaiting customer would
be taken up for service. If there is no awaiting customer, then a customer
that is being served by the lowest possible priority server (i.e., among servers
(c, c − 1, . . . , n + 1)) switches to server n. In such a switching, the (batch)
service time is governed by either resume or repeat with resampling, thus
preserving the Markov property. The switching is instantaneous and the
switching time is treated negligible. Negative customers neither wait in the
queue, nor are served.

The operation of the GE server is similar to that described for the CPP
arrival processes above. However, the batch size associated with a service
completion is bounded by one more than the number of customers waiting
to commence service at the departure instant. When c ≤ j < L + 1, the
maximum batch size at a departure instant is j− c+ 1, only one server being
able to complete a service period at any one instant under the assumption
of exponentially distributed batch-service times. Thus, here the probability

that a departing batch is of size s is,
∑c

n=1

µi,n(1−φi,n)φs−1
i,n

µi.
for 1 ≤ s ≤ j − c

and
∑c

n=1

µi,nφ
j−c
i,n

µi.
for s = j − c + 1, where µi. =

∑c
n=1 µi,n. However, when

1 ≤ j ≤ c, the departing batch has size 1 with probability 1.0 since each
customer is already engaged by a server and there are then no customers
waiting to commence service.

It is assumed that the first positive customer in a batch arriving at an
instant when the queue length is less than c (so that at least one server is
free) never skips service, i.e. always has an exponentially distributed service
time [27]. However, even without this assumption the methodology described
in this Chapter is still applicable.

The assumption, that the arrival and service processes are modulated
by the same continuous time, irreducible Markov process with N + 1 states
(phases or modulating phases), does not limit the usage of the model. That
is because, the case of different and independent modulating processes for the
arrivals and the services can be traced back to our model: i.e., if the number
of the phases in the modulation of the arrival process is Na and that of the
service process is Ns independently, then we can convert this case into our
model by considering an appropriate joint modulating Markov process with
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N + 1 = NsNa states.

3.1.5 Condition for Stability

L is the queueing capacity, in all phases, including the customers in service,
if any. L can be finite or infinite. We assume, when the number of customers
is j and the arriving batch size of positive customers is greater than L −
j (assuming finite L), that only L− j customers are taken in and the rest are
rejected.

When L is finite, the system is ergodic since the representing Markov
process is irreducible. Otherwise, i.e. when the queueing capacity is
unbounded, the overall average departure rate increases with the queue
length, and its maximum (the overall average departure rate when the queue
length tends to ∞) can be determined as

µ =
c∑

n=1

N∑
i=0

riµi,n
1− φi,n

.
�� ��3.4

Hence, we conjecture the necessary and sufficient condition for the existence
of steady state probabilities is

σ < ρ+ µ.
�� ��3.5

3.2 The Steady State Balance Equations

The state of the system at any time t can be specified completely by two
integer-valued random variables, I(t) and J(t). I(t) varies from 0 to N
(known as operative states), representing the phase of the modulating Markov
chain, and 0 ≤ J(t) < L + 1 represents the number of positive customers in
the system at time t, including those in service. The system is now modelled
by a continuous time discrete state Markov process, Y (Y if L is infinite), on
a rectangular lattice strip. Let I(t), the operative state, vary in the horizontal
direction and J(t), the queue length or the level, in the vertical direction.

We denote the steady state probabilities by {pi,j}, where pi,j =
limt→∞ P(I(t) = i, J(t) = j), and let vj = (p0,j, . . . , pN,j).

The process Y evolves due to the following instantaneous transition rates:

(a) qi,k – purely lateral transition rate – from state (i, j) to state (k, j), for
all j ≥ 0 and 0 ≤ i, k ≤ N (i 6= k), caused by a phase transition in the
Markov chain governing the arrival phase process;

(b) Bi,j,j+s – s-step upward transition rate – from state (i, j) to state (i, j+
s), for all phases i, caused by a new batch arrival of size s of positive
customers. For a given j, s can be seen as bounded when L is finite and
unbounded when L is infinite;
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(c) Ci,j,j−s – s-step downward transition rate – from state (i, j) to state
(i, j − s), (j − s ≥ c + 1) for all phases i, caused by either a batch
service completion of size s or a batch arrival of negative customers of
size s;

(d) Ci,c+s,c – s-step downward transition rate – from state (i, c+ s) to state
(i, c), for all phases i, caused by a batch arrival of negative customers
of size ≥ s or a batch service completion of size s (1 ≤ s ≤ L− c);

(e) Ci,c−1+s,c−1 – s-step downward transition rate, from state (i, c− 1 + s)
to state (i, c − 1), for all phases i, caused by a batch departure of size
s (1 ≤ s ≤ L− c+ 1);

(f) Ci,j+1,j – 1-step downward transition rate, from state (i, j + 1) to state
(i, j), (c ≥ 2 ; 0 ≤ j ≤ c − 2), for all phases i, caused by a single
departure.

The transition matrices can be obtained as follows

Bi,j−s,j =
K∑
k=1

(1− θi,k)θs−1i,k σi,k (∀i ; 0 ≤ j − s ≤ L− 2 ; j − s < j < L) ;

Bi,j,L =
K∑
k=1

∞∑
s=L−j

(1− θi,k)θs−1i,k σi,k =
K∑
k=1

θL−j−1i,k σi,k (∀i ; j ≤ L− 1) ;

Ci,j+s,j =
c∑

n=1

µi,n(1− φi,n)φs−1i,n + (1− δi)δs−1i ρi

(∀i ; c+ 1 ≤ j ≤ L− 1 ; 1 ≤ s ≤ L− j)

=
c∑

n=1

µi,n(1− φi,n)φs−1i,n + δs−1i ρi (∀i ; j = c ; 1 ≤ s ≤ L− c)

=
c∑

n=1

φs−1i,n µi,n (∀i ; j = c− 1 ; 1 ≤ s ≤ L− c+ 1)

= 0 (∀i ; c ≥ 2 ; 0 ≤ j ≤ c− 2 ; s ≥ 2)

=

j+1∑
n=1

µi,n (∀i ; c ≥ 2 ; 0 ≤ j ≤ c− 2 ; s = 1) .

Define

Bj−s,j = Diag [B0,j−s,j, B1,j−s,j, . . . , BN,j−s,j] (j − s < j ≤ L) ;

Bs = Bj−s,j (j < L)

= Diag

[
K∑
k=1

σ0,k(1− θ0,k)θs−10,k , . . . ,

K∑
k=1

σN,k(1− θN,k)θs−1N,k

]
;
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Σk = Diag [σ0,k, σ1,k, . . . , σN,k] (k = 1, 2, . . . , K) ;

Θk = Diag [θ0,k, θ1,k, . . . , θN,k] (k = 1, 2, . . . , K) ;

Σ =
K∑
k=1

Σk ;

R = Diag [ρ0, ρ1, . . . , ρN ] ; ∆ = Diag [δ0, δ1, . . . , δN ] ;

Mn = Diag [µ0,n, µ1,n, . . . , µN,n] (n = 1, 2, . . . , c) ;

Φn = Diag [φ0,n, φ1,n, . . . , φN,n] (n = 1, 2, . . . , c) ;

Cj =

j∑
n=1

Mn (1 ≤ j ≤ c) ;

=
c∑

n=1

Mn = C (j ≥ c) ;

Cj+s,j = Diag [C0,j+s,j, C1,j+s,j, . . . , CN,j+s,j] ;

E = Diag(e
′

N) .

Then, we get

Bs =
K∑
k=1

Θs−1
k (E −Θk)Σk ; B1 = B =

K∑
k=1

(E −Θk)Σk ;

BL−s,L =
K∑
k=1

Θs−1
k Σk ;

Cj+s,j =
c∑

n=1

Mn(E − Φn)Φs−1
n +R(E −∆)∆s−1

(c+ 1 ≤ j ≤ L− 1 ; s = 1, 2, . . . , L− j) ;

=
c∑

n=1

Mn(E − Φn)Φs−1
n +R∆s−1 (j = c ; s = 1, 2, . . . , L− c) ;

=
c∑

n=1

MnΦs−1
n (j = c− 1 ; s = 1, 2, . . . , L− c+ 1) ;

= 0 (c ≥ 2 ; 0 ≤ j ≤ c− 2 ; s ≥ 2) ;

= Cj+1 (c ≥ 2 ; 0 ≤ j ≤ c− 2 ; s = 1) .
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The steady state balance equations are:

(1) for the Lth row or level:

L∑
s=1

vL−sBL−s,L + vL [Q− C −R] = 0 ;
�� ��3.6

(2) for the jth row or level:

j∑
s=1

vj−sBs + vj [Q− Σ− Cj −RIj>c] +

L−j∑
s=1

vj+sCj+s,j = 0

(0 ≤ j ≤ L− 1) ;
�� ��3.7

(3) normalization
L∑
j=0

vjeN+1 = 1 .
�� ��3.8

Note that Ij>c = 1 if j > c else 0, and eN+1 is a column vector of size N + 1
with all ones.

One can observe that there are infinite number of equations in infinite
number of unknowns, viz. v0, v1, . . ., when L =∞. Also, each of the balance
equation is infinitely long containing all the infinite number of unknowns, viz.
v0, v1, . . .. The coefficient matrices of the unknown vectors are j-dependent.
This is a very complex system of equations for which there is neither an
existing solution (exact or approximate) nor a solution methodology. Hence,
in the next section we transform this system of equations to a computable
form.

3.3 A Solution Method

Let us consider equations (3.6), (3.7) and (3.8). Each equation has all the
unknown vectors vj’s. If L is unbounded, then each of these are infinite
number of equations in infinite number of unknowns, vj’s, and each equation
is infinitely long containing all the infinite number of unknowns. Also, the
coefficient matrices of vj are j-dependent. It may be noted that there has
been neither a solution nor a solution methodology to solve these equations.
In this Chapter a novel methodology is developed to solve these equations
exactly and efficiently. First these complicated equations are transformed to
a computable form. The resulting transformed equations are of the QBD-M
type and hence can be solved by one of the several available methods, viz.
the spectral expansion method, Bini-Meini’s method or the matrix-geometric
method with folding or block size enlargement [69].
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3.3.1 Transforming the Balance Equations

Let the balance equation for level j be denoted by < j >. Hence, < 0 >,
< 1 >, . . ., < j >, . . ., < L > are the balance equations for the levels

0, 1, . . . , j, . . . , L respectively. Substituting BL−s,L =
K∑
k=1

Θs−1
k Σk and Bs =

K∑
k=1

Θs−1
.k (E −Θk)Σk in (3.6, 3.7), we get the balance equations for level L

and for all the other levels as:

< L > :
L∑
s=1

K∑
k=1

vL−sΘ
s−1
k Σk + vL [Q− C −R] = 0;

< L− 1 > :
L−1∑
s=1

K∑
k=1

vL−1−sΘ
s−1
k (E −Θk)Σk+

vL−1 [Q− Σ− CL−1 −R] + vLCL,L−1 = 0;

...

< j > :

j∑
s=1

K∑
k=1

vj−sΘ
s−1
k (E −Θk)Σk + vj [Q− Σ− Cj −R]

+

L−j∑
s=1

vj+sCj+s,j = 0 (j = L− 2, L− 3, . . . , c+K + 2);

< c + K + 1 > :
c+K+1∑
s=1

K∑
k=1

vc+K+1−sΘ
s−1
k (E −Θk)Σk

+vc+K+1 [Q− Σ− Cc+K+1 −R]

+
L−c−K−1∑

s=1

vc+K+1+sCc+K+1+s,c+K+1 = 0;

...

< j > :

j∑
s=1

K∑
k=1

vj−sΘ
s−1
k (E −Θk)Σk + vj [Q− Σ− Cj −RIj>c]

+

L−j∑
s=1

vj+sCj+s,j = 0 (j = c+K, c+K − 1, . . . , 0).
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Define the functions, FK,l (l = 1, 2, . . . , K) and Hc,n (n = 1, 2, . . . , c) as

FK,l =
∑

1≤k1<k2<...<kl≤K

Θk1Θk2 . . .Θkl (l = 1, 2, . . . , K)

= E if l = 0

= 0 if l ≤ −1 or l > K,
�� ��3.9

Hc,n =
∑

1≤k1<k2<...<kn≤c

Φk1Φk2 . . .Φkn (n = 1, 2, . . . , c)

= E if n = 0

= 0 if n ≤ −1 or n > c .
�� ��3.10

These functions have the following alternate definitions, properties and
recursion by which they can be conceived and computed quite easily.

Fk,0 = E , Fk,k =
k∏
i=1

Θi (k = 1, 2, . . . , K);

Fk,l = 0 (k = 1, 2, . . . , K; l < 0) ;

Fk,l = 0 (k = 1, 2, . . . , K; l > k)
�� ��3.11

Hm,0 = E , Hm,m =
m∏
i=1

Φi (m = 1, 2, . . . , c);

Hm,n = 0 (m = 1, 2, . . . , c; n < 0) ;

Hm,n = 0 (m = 1, 2, . . . , c; n > m).
�� ��3.12

The recursion, then, is

F1,0 = E ; F1,1 = Θ1 ;

Fk,l = Fk−1,l + ΘkFk−1,l−1 (2 ≤ k ≤ K , 1 ≤ l ≤ k − 1) ;
�� ��3.13

H1,0 = E ; H1,1 = Φ1 ;

Hm,n = Hm−1,n + ΦmHm−1,n−1 (2 ≤ m ≤ c , 1 ≤ n ≤ m− 1) .
�� ��3.14

Transformation 1. Modify simultaneously the balance equations for
levels j (L− 2− c ≥ j ≥ c+K + 1), by the transformation:

< j >(1) ←− < j >+
K∑
l=1

(−1)l< j− l >FK,l (c+K + 1 ≤ j ≤ L− 2− c);

< j >(1) ←− < j > (j > L− 2− c or j < c+K + 1).
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The balance equation for level j after Transformation 1 is < j >(1).

Transformation 2. Modify simultaneously the balance equations for
levels j (L− 2− c ≥ j ≥ c+K + 1), by the transformation:

< j >(2) ←− < j >(1) +
c∑

n=1

(−1)n< j + n >(1)Hc,n;

(c+K + 1 ≤ j ≤ L− 2− c)
< j >(2) ←− < j >(1) (j > L− 2− c or j < c+K + 1).

The balance equation for level j after Transformation 2 is denoted by < j >(2).

Transformation 3. Modify simultaneously the balance equations for
levels j (L− 2− c ≥ j ≥ c+K + 1), by the transformation:

< j >(3) ←− < j >(2) −< j + 1 >(2)∆ (c+K + 1 ≤ j ≤ L− 2− c),
< j >(3) ←− < j >(2) (j > L− 2− c or j < c+K + 1) .

The balance equation for level j after Transformation 3 is denoted by < j >(3).

3.3.2 The j-independent Balance Equations

Theorem 3.1. With these above three transformations, the transformed
balance equation, < j >(3)’s, for the rows (c + K + 1 ≤ j ≤ L − 2 − c),
will be of the form:

vj−KQ0 + vj−K+1Q1 + . . .+ vj+c+1QK+c+1 = 0

(j = L− 2− c, L− 1− c, . . . , c+K + 1),
�� ��3.15

where Q0, Q1, . . . , QK+c+1 are K + c + 2 number of j-independent matrices
which can be derived algebraically from the system parameters.

Proof. Consider any row j where c + K + 1 ≤ j ≤ L − 2 − c. With
Transformation 1, we get

< j >(1) ←− < j >+
K∑
l=1

(−1)l< j− l >FK,l.
�� ��3.16

Applying Transformation 2 to the jth row, from the above (3.16), we obtain

< j >(2) ←− < j >(1) +
c∑

n=1

(−1)n< j + n >(1)Hc,n.
�� ��3.17
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Expanding the terms, equation (3.17) can be written as

< j >(2) ←− < j >+
K∑
l=1

(−1)l< j− l >FK,l

+
c∑

n=1

(−1)n

[
< j + n >+

K∑
l=1

(−1)l< j− l + n >FK,l

]
Hc,n.�� ��3.18

Applying Transformation 3 to the jth row, and substituting from the
above (3.18), for < j + 1 >(2)

< j >(3) ←− < j >+
K∑
l=1

(−1)l< j− l >FK,l

+
c∑

n=1

(−1)n

[
< j + n >+

K∑
l=1

(−1)l< j− l + n >FK,l

]
Hc,n

−

[
< j + 1 >+

K∑
l=1

(−1)l< j + 1− l >FK,l

]
∆

−
c∑

n=1

(−1)n

[
< j + 1 + n >+

K∑
l=1

(−1)l< j + 1− l + n >FK,l

]
Hc,n∆.�� ��3.19

Expanding and grouping the terms together, equation (3.19) can be
written as

< j >(3) ←−
K∑

m=−c−1

< j−m >GK,c,m ,
�� ��3.20

where

GK,c,m =
∑
l−n=m

l=−1,...,K
n=0,...,c

(−1)l+n[FK,lHc,n + FK,l+1Hc,n∆]

=
c∑

n=0

(−1)m+2n[FK,m+n + FK,m+n+1∆]Hc,n

= (−1)m
c∑

n=0

[FK,m+n + FK,m+n+1∆]Hc,n (m = −1− c, . . . ,K).�� ��3.21
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The balance equations < j + c + 1 >,. . . ,< j >, . . ., < j− l >, . . .,
< j−K >, respectively are given by

j+c+1∑
s=1

K∑
k=1

vj+c+1−sΘ
s−1
k (E −Θk)Σk + vj+c+1 [Q− Σ− Cj+c −R]

+

L−j−c−1∑
s=1

vj+c+1+sCj+c+1+s,j+c+1 = 0;

...
j∑
s=1

K∑
k=1

vj−sΘ
s−1
k (E −Θk)Σk + vj [Q− Σ− Cj −R]

+

L−j∑
s=1

vj+sCj+s,j = 0 ;

...

j−l∑
s=1

K∑
k=1

vj−l−sΘ
s−1
k (E −Θk)Σk + vj−l [Q− Σ− Cj−l −R]

+

L−j+l∑
s=1

vj−l+sCj−l+s,j−l = 0 ;

...

j−K∑
s=1

K∑
k=1

vj−K−sΘ
s−1
k (E −Θk)Σk + vj−K [Q− Σ− Cj−K −R]

+

L−j+K∑
s=1

vj−K+sCj−K+s,j−K = 0 .

Substituting or applying the above to (3.20), for the coefficients (QK−m)
of vj−m in < j >(3), we get

QK−m =
m−1∑

l=−1−c

[
K∑
n=1

Θm−l−1
n (E −Θn)Σn

]
GK,c,l +

[Q− Σ− Cj−m −R]GK,c,m +
K∑

l=m+1

[Cj−m,j−l]GK,c,l

(m = j − L, . . . ,−2,−1, 0, . . . , K, . . . , j) .
�� ��3.22
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Also, for m = −1 − c, 0, . . . , K, substituting Cj−m = C and Cj−m,j−l =

Cj−l+l−m,j−l =
c∑

n=1

Mn(E − Φn)Φl−m−1
n +R(E −∆)∆l−m−1 in (3.22), we get

QK−m =
m−1∑

l=−1−c

[
K∑
n=1

Θm−l−1
n (E −Θn)Σn

]
GK,c,l + [Q− Σ− C −R]GK,c,m

+
K∑

l=m+1

[
c∑

n=1

Mn(E − Φn)Φl−m−1
n +R(E −∆)∆l−m−1

]
GK,c,l

(m = −1− c, . . . , 0, . . . , K).
�� ��3.23

With these above three transformations, the transformed balance
equation, < j >(3)’s, for the rows (c + K + 1 ≤ j ≤ L − 2 − c), will be
of the form:

vj−KQ0 + vj−K+1Q1 + . . .+ vj+c+1QK+c+1 = 0

(j = L− 2− c, L− 1− c, . . . , c+K + 1),

where Q0, Q1, . . . , QK+c+1 are K + c + 2 number of j-independent matrices.
The other coefficients, i.e. those of vj−K−1,vj−K−2, . . . ,v0 and of
vj+c+2,vj+c+3, . . ., can be shown to be zero (see Section 3.3.3).

Remark 1. Due to (3.15), the HetSigma queue can be analyzed in the
QBD-M framework. The values of the threshold parameters and the constants
for a QBD-M process are illustrated in Table 3.1.

y1 K
y K + c+ 1
T1 K + c+ 1
T2 L− 2− c

Table 3.1: Value of the constants for equation (2.4)

3.3.3 Some Important Properties

After obtaining FK,l’s and Hc,n’s thus, GK,c,k, (k = −1 − c, . . . ,K) can be
computed from (3.21). Then, using them directly in (3.23), the required
Ql (l = 0, 1, . . . , K + c+ 1) can be computed.

An alternate way of computing the GK,c,l’s is by the following properties
and recursion which are obtained from (3.13), (3.14) and (3.21):

Gk,n,l = Gk,n−1,l − ΦnGk,n−1,l−1

(2 ≤ k ≤ K , −1 ≤ l + c ≤ k + n ≤ k + c),

Gk,c,l = Gk−1,c,l −ΘkGk−1,c,l−1 (2 ≤ k ≤ K , −1 ≤ l ≤ k + c).
�� ��3.24
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From (3.21) and (3.24), we have

Gk+1,c,l = Gk,c,l −Θk+1Gk,c,l−1 ,
�� ��3.25

Gk+1,c,l = 0 , if l ≤ −2− c or l ≥ k + 2 .

Since, K itself is arbitrary in this section, let the Ql’s be designated
differently to take that into account. Let Q

(k,h)
k−m (m = j − L, j − L+ 1, . . . , j)

be the Ql’s of < j >(3) when only the first k customer arrival streams and the
first h servers are present and others are absent.

Theorem 3.2. Referring to equation (3.22) for the row j (c + K + 1 ≤ j ≤
L− 2− c), for all K, Q

(K,c)
K−m = 0 (j − L ≤ m ≤ −2− c).

Proof. Assume the proposition is true for any K=k. Hence, from (3.22), for
the range j − L ≤ m ≤ −2− c, we have

Q
(k,c)
k−m =

k∑
l=m+1

Cj−m,j−lGk,c,l =
k∑

l=−1−c

Cj−m,j−lGk,c,l

(since Gk,c,l = 0 if l ≤ −2− c)
= 0 (j − L ≤ m ≤ −2− c) .

�� ��3.26

For K = k + 1, from (3.22), we get

Q
(k+1,c)
k+1−m =

k+1∑
l=m+1

Cj−m,j−lGk+c+1,l

=
k+1∑

l=m+1

Cj−m,j−lGk,c,l −Θk+1

k+1∑
l=m+1

Cj−m,j−lGk,c,l−1 (substituting (3.25))

= 0−Θk+1

k+1∑
l=m+1

Cj−m,j−lGk,c,l−1 (since Gk,c,k+1 = 0 & using (3.26))

= −Θk+1

k∑
l−1=m

Cj−(m−1)−1,j−(l−1)−1Gk,c,(l−1) (rearranging)

= −Θk+1

k∑
l−1=(m−1)+1

Cj−(m−1),j−(l−1)Gk,c,(l−1)

(since Gk,c,m = 0 & Cj−(m−1)−1,j−(l−1)−1 = Cj−(m−1),j−(l−1))

= 0 (comparing with (3.26)) .

Hence the proposition is true for K = k + 1. Also, the proposition has been
proved for K = 2 in Appendix A.1. Hence, the theorem is true for all values
of K ≥ 2.
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Theorem 3.3. Referring to equation (3.22) for the row j (K + 1 ≤ j ≤
L− 2− c), for all K, Q

(K,c)
K−m = 0 (K + 1 ≤ m ≤ j).

Proof. Assume the proposition is true for any K = k. Hence, from (3.22), we
have

Q
(k,c)
k−m =

m−1∑
l=−1−c

[
k∑

n=1

Θm−l−1
n (E −Θn)Σn

]
Gk,c,l (k + 1 ≤ m ≤ j)

=
k∑

l=−1−c

[
k∑

n=1

Θm−l−1
n (E −Θn)Σn

]
Gk,c,l = 0

(since Gk,c,l = 0 for l > k) .
�� ��3.27

Then, for K = k + 1, writing down the expression for Q
(k+1)
k+1−m from (3.22),

substituting (3.25) as before and expanding the terms, we get

Q
(k+1,c)
k+1−m =

k+1∑
l=−1−c

[
k∑

n=1

Θm−l−1
n (E −Θn)Σn + Θm−l−1

k+1 (E −Θk+1)Σk+1

]
Gk,c,l

−Θk+1

k+1∑
l=−1−c

[
k∑

n=1

Θm−l−1
n (E −Θn)Σn + Θm−l−1

k+1 (E −Θk+1)Σk+1

]
Gk,c,l−1.

Using (3.27) and Gk,c,k+1 = 0 in the above, it simplifies to

Q
(k+1,c)
k+1−m =

k+1∑
l=−1−c

Θm−l−1
k+1 (E −Θk+1)Σk+1Gk,c,l

−Θk+1

k∑
l−1=−2−c

[
k∑

n=1

Θ(m−1)−(l−1)−1
n (E −Θn)Σn

]
Gk,c,l−1

−Θk+1

k∑
l−1=−2−c

Θm−l−1
k+1 (E −Θk+1)Σk+1Gk,c,l−1 .

However the middle term of the R.H.S. above would be 0 for k+1 ≤ m−1 ≤ j
by comparing with (3.27) and by using Gk,c,−2−c = 0. Hence, we obtain, for
k + 1 ≤ m− 1 ≤ j and hence for k + 2 ≤ m ≤ j,

Q
(k+1,c)
k+1−m =

k+1∑
l=−1−c

Θm−l−1
k+1 (E −Θk+1)Σk+1Gk,c,l

−
k∑

l−1=−2−c

Θ
m−(l−1)−1
k+1 (E −Θk+1)Σk+1Gk,c,l−1

= 0 (m = k + 2, k + 3, . . . , j) (since Gk,c,k+1 = 0) .
�� ��3.28
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Hence, the proposition is true for K = k + 1. The proposition has already
been proved for K = 1 in [27] and for K = 2 in Appendix A.1. Hence, the
theorem is true.

Theorem 3.4. Referring to equation (3.22) for the row j (K + 1 ≤ j ≤
L− 2− c), for all K, Q

(K,c)
K−m (m = −1− c, 0, . . . , K) are j-independent.

Proof. Q
(K,c)
K−m for m = −1 − c, 0, . . . , K are separately derived in (3.23).

From the R.H.S. of (3.23), it is clear that Q
(K)
K−m (m = −1 − c, . . . ,K) are

j- independent.

Theorem 3.5. Referring to equation (3.22) for the row j (K + 1 ≤ j ≤

L− 2− c), for all K,
K∑

m=−1−c

Q
(K,c)
K−m is singular.

Proof. Assume the theorem is true for some K = k. The expressions for
Q

(k,c)
k−m and Q

(k+1,c)
k+1−m are

Q
(k,c)
k−m =

m−1∑
l=−1−c

[
k∑

n=1

Θm−l−1
n (E −Θn)Σn

]
Gk,c,l

+

[
Q−

k∑
n=1

Σn − C −R

]
Gk,c,m

+
k∑

l=m+1

[
C(E − Φ)Φl−m−1 +R(E −∆)∆l−m−1]Gk,c,l

(m = −1− c, 0, . . . , k),

Q
(k+1)
k+1−m =

m−1∑
l=−1−c

[
k+1∑
n=1

Θm−l−1
n (E −Θn)Σn

]
Gk+1,c,l

+

[
Q−

k+1∑
n=1

Σn − C −R

]
Gk+1,c,m

+
k+1∑

l=m+1

[
C(E − Φ)Φl−m−1 +R(E −∆)∆l−m−1]Gk+1,c,l

(m = −1− c, 0, . . . , k + 1).
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Substituting Gk+1,c,l = Gk,c,l −Θk+1Gk,c,l−1 in the latter, we get

Q
(k+1,c)
k+1−m =

m−1∑
l=−1−c

[
k+1∑
n=1

Θm−l−1
n (E −Θn)Σn

]
(Gk,c,l −Θk+1Gk,c,l−1)

+

[
Q−

k+1∑
n=1

Σn − C −R

]
(Gk,c,m −Θk+1Gk,c,m−1)

+
k+1∑

l=m+1

[
C(E − Φ)Φl−m−1 +R(E −∆)∆l−m−1] (Gk,c,l −Θk+1Gk,c,l−1).

After expanding, rearranging and regrouping the terms, we get

Q
(k+1,c)
k+1−m = Q

(k)
k−m −Q

(k)
k−(m−1)Θk+1

+
m−1∑

l=−1−c

(E −Θk+1)Σk+1

[
Θm−l−1
k+1

]
Gk+1,c,l − Σk+1Gk+1,c,m

(m = −1− c, . . . , k + 1)

= Q
(k)
k−m −Q

(k)
k−(m−1)Θk+1

+(E −Θk+1)Σk+1

m−1∑
l=−1−c

[
Θm−l−1
k+1 Gk+1,c,l

]
− Σk+1Gk+1,c,m

(m = −1− c, . . . , k + 1).

Then, summing up the terms from m = −1− c, . . . , k + 1, we get

k+1∑
m=−1−c

Q
(k+1,c)
k+1−m =

[
k∑

m=−1−c

Q
(k)
k−m

]
[E −Θk+1]

+Σk+1

[
m−1∑

l=−1−c

Θm−l−1
k+1 Gk+1,c,l −

m∑
l=−2−c

Θm−l
k+1Gk+1,c,l

]
.

By substituting Gk+1,c,l = Gk,c,l − Θk+1Gk,c,l−1 in the r.h.s. of the above
equation and expanding, the terms other than the first term cancel off,
leaving,

k+1∑
m=−1−c

Q
(k+1,c)
k+1−m =

[
k∑

m=−1−c

Q
(k)
k−m

]
[E −Θk+1] .

�� ��3.29

The above r.h.s. expression is clearly a singular matrix if the theorem is

true for K = k, that is,

[
k∑

m=−1−c

Q
(k)
k−m

]
is singular, since [E − Θk+1] is a

diagonal matrix. The theorem is easily proved for K = 1 and for K = 2
(Appendix A.1). Hence the theorem is true for any K.
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3.4 Summary

The HetSigma queue in the Markovian framework is proposed in order
to model nodes in modern telecommunication networks [33]. An exact
and computationally efficient solution of this new queue for steady state
probabilities and performance measures is developed and presented. The
fundamental properties which serve as the background for the efficient
computational algorithm to calculate the steady state probabilities of the
HetSigma queue are presented.

The HetSigma queue and its variants have been successfully applied to
carry out the performance analysis of various problems in communication
networks. The proposed model does provide a useful tool for the performance
analysis of many problems of the emerging telecommunication systems and
networks. The queuing model and its variants were successfully used to model
Optical Burst/Packet (OBS) Switching networks [34], MPLS networks [55]
and another variant to successfully compute web server performance [54]. The
HetSigma model has been successful to model the wireless networks [33, 51].
Due to the limited space, we only present one application of the HetSigma
queue in Chapter 4.





4
Modeling Apache Web Server

Software‖

4.1 Introduction

Considering the service infrastructure of the current Internet, Web servers
play a dominant role. It is their main task to receive and process requests
of clients demanding specific objects from the servers and to return them
by related responses. The associated request and response messages are
transported by the Hypertext Transfer Protocol (HTTP) or Hypertext
Transfer Protocol Secure (HTTPS) using TCP connections between the
clients and the server. The resulting performance of the service delivery
crucially depends on the proper and efficient processing of these tasks.
Regarding the software design of HTTP servers the concurrency of connection
requests poses a critical issue. To tackle it, two orthogonal components
have been implemented in the Web server software architecture on the host
machine: the processing model and the dynamic size of a resource pool of
instantiated parallel processes serving the requests (cf. [7]). Considering the
processing model of the software architecture of an HTTP server, there are
several choices, viz. a process based, a thread based, or a hybrid model which
is a combination of the former two (cf. [93]). The behavior of the pool size
is characterized by a fixed or varying number of concurrent HTTP processes
(or threads) to serve incoming connection requests and, thus, determines the
performance of the server. When a dynamic behavior of the pool size is
incorporated into the server software, the number of processes (or threads)
can vary depending on the load of the offered connection requests.
Nowadays, the Unix version of the Apache Web server constitutes one of
the most frequently used software solutions of the Internet. In Apache
2.0 the introduction of the multi-processing module (MPM) combined with
the dynamic pool size efficiently supports a stable and scalable operation.
Moreover, it is currently considered as an important topic regarding the

‖Tien Van Do, U. R. Krieger, and R. Chakka. Performance modeling of an Apache
Web Server with a Dynamic Pool of Service Processes. Telecommunication Systems,
39(2):117–129, 2008.
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optimal resource allocation (cf. [7], [89]).
Therefore, we need to understand both the performance of different software
solutions of a Web server, and the dynamic behavior of the pool size subject to
various workload conditions. Slothouber [112] has proposed an open queueing
network to model a Web server and predicted the response time versus the
load. Dilley et al. [42, 43] have used layered queueing models regarding
the performance evaluation of a Web server in the Internet and Intranet.
Squillante et al. [113, 114] developed a Web traffic model using the access
logs of the Web site of the Winter Olympic Games in Nagano, Japan, 1998.
To analyze the tail behavior of the request latency, the authors fed these traffic
processes into a Web server modelled by a G/G/1 queue. Reeser et al. [105]
have presented an analytic queueing model of Web servers in a distributed
environment. They have argued that a Poisson assumption regarding the
process of HTTP (object) requests is reasonable. They have also shown that
the performance predictions of their analytic model match well with results
obtained by simulations. In [20] a queueing model M/G/1/K∗PS has been
proposed to predict the performance metrics of a Web server in terms of the
average response time, throughput and blocking probability. Recent work of
the same authors ([6]) was carried out assuming that the arrival stream of
HTTP requests forms a Markov-Modulated Poisson Process (MMPP).
However, all these previous investigations of a Web server have not studied in
more detail the internal software architecture and the dynamic behavior of the
number of available service processes and their impact on major performance
indices applying analytic means.
Menasce [93] has been one of the first researchers who considered the software
architecture of a Web server. In his performance evaluation approach a
queueing network (QN) models the physical resources of the Web server and
the software architecture of Apache is represented by a Markov chain. Liu et
al. [89] have recognized the importance of the Apache directive MaxClients
as a tuning parameter and proposed an online optimization to determine an
optimal operating point. However, so far all presented models have not been
able to capture explicitly the dynamic behavior of the pool size that handles
the concurrency of requests. Moreover, they cannot cope with simultaneous
arrivals of multiple requests arising from the client population.
In this Chapter we consider the non-threaded multi-processing module
(MPM) Prefork of Apache’s UNIX architecture. For the first time, we
propose a mathematically tractable analytic queueing model to predict the
performance of an Apache server with its load-dependent dynamic pool
size. It is derived from certain Markovian assumptions concerning the
number of active service processes and applies a decomposition approach
to the client population, the Web server and the TCP transport system.
In particular, we suppose that TCP connection requests demanding the
support of an HTTP service process follow a Markov-Modulated Compound
Poisson Process (MMCPP). We use the MMCPP because it can cope with
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the fluctuations of the arrival rate, the autocorrelation of inter-arrival times
of requests and also with simultaneous arrivals of multiple requests. As a
consequence the well-known WAGON traffic model of [90] is a special case
of our more general workload model.
In addition to the development of a tractable analytic model we have also
measured the performance of a real Apache Web server where the number
of service processes does not follow a Markovian property. To generate
the workload as a generalization of the WAGON traffic model (cf. [89]),
either the benchmarking program ab (cf. [2]) or httperf (cf. [98]) can
be used. Comparing the numerical results of the analytic model with those
obtained by the actual measurements, we observe a rather good coincidence
of mean values and an acceptable accuracy of our predictions regarding
control purposes. Moreover, the results are used to identify the impact of
major control parameters of an Apache configuration on relevant performance
measures.
Since we are only dealing with non-threaded multi-processing, modeling
the thread-based Apache multi-processing module winnt1 used by Microsoft
Windows operating systems is out of the scope of our study. However, by
appropriate modifications the presented methodology can be used to analyze
this Apache MPM winnt as well.
The rest of the Chapter is organized as follows. In Section 4.2 we provide
an overview of the operation of the Apache MPM Prefork with dynamic
pool size. In Section 4.3 the proposed queueing model and its analysis are
introduced. Section 4.4 presents some performance results and the validation
of the proposed model by measurements. Finally, some conclusions are drawn
in Section 4.5.

4.2 Multi-processing Operation of an Apache

Web Server with Dynamic Pool Size

In this section we sketch the operation of an Apache 2.0 Web server that
implements the non-threaded multi-processing module (MPM) Prefork. At
the beginning of the operation, the Apache 2.0 running on top of UNIX starts
a single master control process. The latter is responsible for launching child
processes to handle the incoming or waiting HTTP service requests (see Fig.
4.1). The Web server listens for requests at the well-known TCP port number
80. Web browsers, i.e. the clients, are normally used to communicate with the
Web server. When a client opens or clicks on the first URL during a specific
session of the Web browser, the set-up of a TCP connection is initiated and
one of the following three alternatives may happen (see Fig. 4.1):

1winnt has a single control process which gives birth to a single child process. The
latter creates in turn threads to handle HTTP requests.
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Figure 4.1: MPM prefork operation of an Apache Web server with a Unix
operating system

1. One idle child process of the Apache HTTP server is allocated to
handle the incoming TCP connection and the associated HTTP requests
conveyed by that connection.

2. The TCP request waits in the software queue for an idle process and will
get service either after the MPM has successfully launched an idle child
process or when a child process has completed the service of another
request.

3. The TCP connection and associated HTTP request is blocked if the
Listen Queue2 of the server system is full. The client receives a message
that the Web server is not available. In our model the request is
considered to be lost.

If a free child process is allocated, the related service process locates the
Web page and its referenced resources as requested objects. It normally
consists of a single HTML file, an HTML file with several inline images
or other items. An object may be a static HTML file stored at the Web
server or may be dynamically generated from databases by a special script
engine. An obtained object is encapsulated as HTTP response message and
handled by the TCP/IP stack. The latter encapsulates and segments the
message into TCP/IP packets, and sends the resulting packet stream through
the already opened TCP connection from the HTTP server to the browser.
The service time of an HTTP request, i.e. the interval between the arrival
time of the request at the HTTP server and the completion instant of the
initiated processing and its resource allocations, i.e. the tear-down of the TCP
connection and the release of the related HTTP service process, constitutes

2Note that the terms “software queue” and “Listen Queue” are interchangeable
throughout the Chapter.
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a basic performance index of the system. Obviously, the service time of a
specific request and, hence, the overall response time of the HTTP server
depend in a very complex manner on a number of different items, such as the
physical resources of the operating machine with regard to CPU power and
disks’ operation, the number of other concurrently served requests competing
for these physical resources of the Web server as well as the network conditions
influencing the TCP flow-control algorithm.

In the Unix version of Apache 2.0, the number of available busy and
idle service processes varies dynamically in terms of the load of TCP session
requests. It creates a dynamic resource pool of HTTP service processes whose
size is controlled by the following three main control parameters of the server
software, called directives (cf. [7]):

• The MaxClients directive limits the maximal number of operating busy
and idle HTTP service processes, therefore it sets a threshold N for
the maximal number of simultaneously served requests. Any further
connection attempt exceeding the MaxClient limit will normally be
queued in the Listen Queue based on the ListenBacklog directive. Once
a child process is released from serving a previous connection request,
a new connection from the queue will be served in FCFS order.

• The MaxSpareServers directive determines the desired maximum
number hmax of idle child service processes which are not handling
a connection request. If the number of idle child processes exceeds
MaxSpareServers hmax, then the control process will kill idle processes
at a predetermined rate ε.

• The MinSpareServers directive determines the desired minimum
number hmin of idle child processes. If the number of idle child processes
drops below hmin and the number of busy and idle processes in the
system is less than N , then the parent process creates new child
processes at a predetermined rate η.
However, when the number of processes reaches the limit MaxClients
(N), e.g. due to heavy traffic, and the number of idle process is smaller
than hmin, no creation of a new child process is allowed.

In summary, it is the rationale of this design to serve the incoming HTTP
requests in an efficient way saving the spare resources of the operating system.
Considering the number of idle child processes in the host machine of the Web
server, the MPM Prefork module tries as effectively as possible to keep this
number at any given time less than or equal to hmax and greater than or equal
to hmin.
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4.3 Modeling and Analysis of an Apache Web

Server with the MPM Strategy Prefork

4.3.1 Hierarchical Workload Modeling of a Web Server

Following the approach of [39] the workload of a Web server can be described
by a hierarchically layered model. It is generated by traffic streams of a
client population and depicted in Figure 4.2. The associated processes that
characterize the traffic patterns arising from the activity of a Web user and
their corresponding time scales are related to the following levels:

• Level of Web requests by users: The behavior of a Web user can be
characterized as an ON-OFF process. During the HTTP ON state,
called activity period, the user is downloading a specific Web page and
waiting for its presentation. The OFF state, called think time, simply
describes the following silence period. Here the user is not sending any
requests, only viewing and perhaps reading the downloaded document.
During the OFF state no user traffic is generated at the other traffic
layers beneath.

• Level of Web pages with their corresponding objects: A requested Web
page with its objects denotes an HTML file and the referenced inline
objects, e.g. images, included in such an HTML document.

• Level of TCP sessions: When the user clicks on a URL reference or
enters a URL into the command line of the Web browser, the client first
opens a TCP connection to the specified Web server. After the TCP
connection is established, the client sends a HTTP request in the HTTP
format typically by one TCP segment, that is encapsulated in one IP
packet, over the already opened TCP connection to the HTTP server.
The request normally specifies which HTTP version the client is using.
If it is HTTP/0.9 or HTTP/1.0, the server will automatically work
in the transitory connection mode, will only send one reply and then
close the connection. If it is HTTP/1.1, it is assumed that a persistent
connection is desired. This means that multiple HTTP requests can be
sent through the opened TCP connection.

• Packet level: The HTTP object request and response messages for
HTML files or object files and their referenced inline images etc. are
encapsulated into TCP packets and segmented into a stream of IP
packets. The resulting TCP/IP packet stream is transmitted along a
path between the server and the requesting client inside the Internet and
the transport is governed by the TCP congestion-control mechanism.
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Figure 4.2: Hierarchical workload modeling of Web traffic

In this Chapter we primarily focus on the workload modeling at the
TCP session level. Liu et al. [89] have proposed a related stochastic model
(called WAGON) of the generated HTTP traffic between a specific user and
a Web server at this time scale. The WAGON model can be described by a
marked point process where the arrival times correspond to the start times
of sessions followed by a cluster of further object requests and think times
(see Figure 4.3). We follow this line of reasoning and subsequently extend
the corresponding approach.

4.3.2 Resource Contention During Web Server
Operation

Considering a scenario of a single Web server and multiple clients, contention
about its resources may happen at the following two traffic layers (see
Figure 4.4):

• TCP/IP flow layer: Flows of IP packets encapsulating TCP segments
that are carrying HTTP requests of clients and responses of the Web
server compete with other traffic streams in the switching nodes and
on the links of the underlying transport network.

• TCP session layer:

– Child process level of the Web server: At the child process level of
the Web server (called software level), HTTP requests compete
for such service processes controlled by the related software
components of the server. An arriving request may wait in a Listen
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Figure 1: User Session

Lognormal and Inverse Gaussian). The marginal distribution of the interclick idle times most often belong
to the class sub-exponential distribution functions including Pareto, Lognormal, Inverse Gaussian and Weibull
distributions.

2.2 Statistical Analysis

We report now some of the statistical analyses we performed on traces (log �les) of Web servers. They are con-
cerned with the Web servers at W3C (http://www.w3.org/), INRIA (http://www.inria.fr/) and www.clark.net
(http://ita.ee.lbl.gov/html/contrib/ClarkNet-HTTP.html). Some characteristics of these server traces are pre-
sented in Table 1.

www.w3.org www.inria.fr www.clark.net inria proxy
Time period: Feb 97 Oct 96 Sep 95 Nov 99
Duration: 24h 24h 18h 24h
Total number of requests: 275000 50000 150000 125000
Total number of pages: 4726 7773 9294 9712
Average page size: 23kB 15kB 13kB 9kB

Table 1: Characteristics of the servers www.w3.org, www.inria.fr, www.clark.net, and the inria proxy cache

The goal of this part of the work is to identify the statistical laws of the above described random variables
of the tra�c model. For ease of use of the tra�c model in performance evaluation, we consider only the
class of parametric distributions. Moreover, we are interested in distribution functions with a small number of
parameters.

Thus, we �x a small set of most commonly used exponential type and sub-exponential distribution functions
including Exponential, Geometric, Weibull, Normal, Lognormal, Pareto and Inverse Gaussian distributions.
These are the hypothetical distributions that samples are to be tested on. For each sample, we calculate
the maximum likelihood estimators (except for some scale parameters) according to each of the hypothetical
distributions, and compare the goodness-of-�t of these distributions.

In order to develop a tool that recognize the best �tting distribution function, we used, in conjunction with
statistical test, a combination of three metrics: �2 ([23, 3]), Cramer-von Mises and Anderson-Darling [8]. The
�rst metrics is based on splitting the values into bins (as in the �2 test) and count the number of samples in
each bins, and compare it with the theoretical distribution to match (see [22]):

�2 =

PN
i=1

(Yi�npi)2
(npi)

�K � df

n� 1
;

INRIA

Figure 4.3: The WAGON traffic model

Queue for an available service process that can handle the request
regarding a demanded page and its objects.

– Level of physical resources: At the kernel level of the host machine
running the Web server (called hardware level), processes may wait
to use any of the server’s physical resources, i.e. CPU power and
disk processing of the underlying machine etc. (see Fig. 4.4).

All these contentions have an impact on the performance experienced by the
Web clients of the users. As a consequence of these mutual interactions of the
corresponding queues at two different time scales, a queueing model which
takes into consideration all these factors, such as the arrivals of requests, the
transmission of every TCP/IP packet governed by TCP congestion control,
contentions both in the transport network and about the physical resources
of the server etc., becomes mathematically intractable. Therefore, we will
study the Web server in isolation and try to model its offered workload in an
appropriate manner (see Fig. 4.4).

4.3.3 The Markovian Performance Model

Considering the operation of a Web server at the page level in more detail,
we can make the following observations:

• A TCP connection (i.e. a session) may be initiated when a client
starts to download a new page and its objects from the Web server
if a previously opened TCP connection has been closed.
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Figure 4.4: Resource contention and queueing in the operation of a Web
server

• Multiple HTTP object requests can be transmitted over a single TCP
connection between a client and the Web server.

• One new TCP connection requires a HTTP service process either from
the group of idle processes or it is a newly created child process. It
serves the new HTTP request to download a page and subsequent
HTTP requests to further transfer its embedded objects in the case
of a persistent connection.

To predict the performance of the dynamic pool size of HTTP service
processes in the UNIX operating system of an Apache Web server, we have
extended a convenient queueing model fed by these processing requests (cf.
[93], [105]). As illustrated by Figure 4.4, it takes into consideration the
impact and interaction of other components such as the client population,
the transport protocol stack of TCP, as well as the software and resource
contention level of a Web server. In the queueing system of the Web server
at the child process level we primarily consider the arrivals of initial HTTP
requests by TCP sessions which require the service of an idle or a new service
process. Here all HTTP requests compete for service processes controlled by
the software of the Web server. A request may wait in the software queue,
i.e. Listen Queue, until a service process becomes available to handle it. At
the physical level these processes may wait until they can use any of the
server’s physical resources, i.e. CPUs and disks. Thus, the associated service
time of a specific HTTP request is strongly influenced by the interaction of
other HTTP requests.
To generate a mathematically tractable model, we propose a system
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decomposition of the queueing network describing the Web server (see Fig.
4.4). Our approach is based on the following Markovian workload model.

4.3.3.1 Arrival Process of HTTP Requests

Considering multiple simultaneous arrivals of HTTP requests to the Web
server arising from the client population, we use the generalization of the
WAGON traffic model at the TCP session level. Therefore, we assume
that the arrival process of TCP connection requests demanding the service
of child processes follows a Markov-Modulated Compound Poisson Process
(MMCPP). Its inter-arrival times are governed by a Markov-Modulated
Generalized Exponential (MMGE) distribution.
The arrival process is modulated by an irreducible continuous-time Markov
chain X with M states called phases of modulation. Let QX denote its
generator matrix. Then an off-diagonal element QX(i, k) = qxi,k , i 6= k
describes the instantaneous transition rate from phase i to phase k, and the

ith diagonal element is given by QX(i, i) = −qxi = −
i−1∑
l=1

qxi,l −
M∑

l=i+1

qxi,l.

Let ΩX denote the off-diagonal matrix of the transition rates of process X
defined by ΩX(i, k) = QX(i, k), i 6= k, ΩX(i, i) = 0, 1 ≤ i ≤ M . Let I1(t),
1 ≤ I1(t) ≤ M , represent the phase of the modulating process X at any
time t.
The arrivals in each modulating phase follow a Compound Poisson Process
(CPP) process (cf. [77]). Strictly speaking, during the modulating phase i,
1 ≤ i ≤ M , the probability distribution function of the inter-arrival times τi
is governed by a Generalized Exponential (GE) distribution P(τi = 0) = θi
and P(0 < τi ≤ t) = (1 − θi)(1 − e−σit) with the associated parameters
(σi, θi). Note that the GE distribution is the least biased distribution with
two parameters which can approximate other distributions by matching the
first two moments (cf. [77]).
Thus, the point process of session arrivals during a given modulating
phase can be considered as a batch Poisson process with a geometric
batch size distribution, i.e. during phase i size s ≥ 1 happens with
probability (1− θi)θs−1i .

4.3.3.2 Service Time of HTTP Requests

The service time of HTTP requests is a result of the complex competition for
physical resources of the Web server, the interactions with all HTTP requests
concurrently served by other service processes and the TCP flow-control
algorithm. Thus, it strongly depends on the contention for physical resources
of CPUs and disks in the host machine. To approximate the latter a closed
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queueing network (CQN) is used. It has been validated by [94] in their
experimental test-bed that such a CQN model is accurate enough to estimate
the response time of a HTTP server.
Let Tp(k) denote the throughput of the Web server when there are k requests
and p processes in the system (note that Tp(k) = Tp(p), if k ≥ p, i.e. there is
no idle process in the system). Following the approach of [93] and describing
the physical resources of the Web server by a CQN (see Fig. 4.4), we
approximate the service time by the mean sojourn time of a request in this
CQN. In this manner the associated conditional service rates of an equivalent
server are determined by Tp(k).

4.3.3.3 Modeling the Varying Number of the HTTP Service
Processes

We introduce an integer-valued random variable I2(t) to describe the number
of busy and idle HTTP service processes at time t (- it does not include the
master process in the case of Apache 2.0). I2(t) (1 ≤ I2(t) ≤ N) varies due to
the creation of a new service process by forking of the Apache master process
or due to a process cancellation by killing an existing idle child process. When
the number j of concurrent connection requests is larger than I2(t), the excess
of requests beyond I2(t) resides in a software queue. We assume that at any
time the number j of connection requests in the Web server is bounded by the
fixed value L. It means that the software queue is resized accordingly to keep
the maximum number of connection requests in the system equal to L. Note
that this assumption is quite reasonable for the software of the Web server
because this behavior guarantees the fairness for those requests arriving after
different periods of low and high traffic load.
We model the changing number I2(t) = i2 of child processes that are available
in the Web server to process the HTTP requests by N × N rate matrices
Uj, j = 0, 1, . . . , L. They represent the applied server strategy to regulate
this number. To capture correctly the dynamics of this mechanism, that
handles the idle service processes in the Apache MPM Prefork, the Uj’s are
constructed as follows:

• if i2 − j < hmin, ∀ j = 0, . . . , L, i2 = 1, . . . , N − 1 then
Uj(i2, i2 + 1) = η,

• if i2 − j > hmax, ∀ j = 0, . . . , L, i2 = 2, . . . , N then
Uj(i2, i2 − 1) = ε,

• otherwise Uj(i2, k) = 0.

Thus, the number of idle processes is kept smaller than or equal to hmax ≥ 1
and larger than or equal to hmin. In state i2 = N a creation and in state
i2 = 1 a cancellation of a service process is not possible.
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Here, we assume that the times between successive creations or terminations
of HTTP service processes are generalized exponentially distributed and,
hence, I2(t) is a Markov chain. As a consequence we propose a mathematically
tractable performance model of the software architecture of the Web server.
We will show in the subsequent Section 4.4 that despite this approximation
our computationally efficient model can successfully and rather accurately
predict the performance of the real operation of an Apache server. There
the times between successive creations/terminations of service processes are
neither exponentially distributed nor independent, but correlated, generally
distributed entities.

4.3.4 Analysis and Solution of the Multi-server Model

The Apache Web server with its dynamic pool size is modelled by a
continuous-time Markov chain Z = {[I1(t), I2(t), J(t)]; t ≥ 0} with state space
{1, . . . ,M}×{1, . . . , N}×{0, . . . , L}. Here J(t), 0 ≤ J(t) ≤ L, represents the
number of connection requests that are actually served in the HTTP server
or wait to get service at time t.

Then the two state variables (I1(t), I2(t)) are lexicographically sorted to
form a single variable I(t) as illustrated in Table 4.1.

Table 4.1: Ordering of the phase variable I(t)

I (I1, I2)
1 (1, 1)
2 (2, 1)
...

...
M (M, 1)
M + 1 (1, 2)
...

...
2M (M, 2)
...

...
MN −M + 1 (1, N)
...

...
MN (M,N)

The index transformation is determined by the following equations:

I(t) = I1(t) + (I2(t)− 1)M,

I2(t) = f2(I(t)) =

⌊
I(t)− 1

M

⌋
+ 1,

I1(t) = f1(I(t)) = (I(t)− 1) mod M + 1.
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Then we get the equivalent Markov chain Y = {[I(t), J(t)]; t ≥ 0} with a
generator matrix QY to describe the operation of the non-threaded Web server
with the MPM module Prefork. It evolves on a finite rectangular strip and
belongs to the class of level-dependent Quasi Simultaneous-Multiple Births
and Simultaneous-Multiple Deaths (QBD-M) processes (cf. [22]). Its possible
transitions are determined by the following events with corresponding rates:

• Aj(i, k) describes the purely lateral transition rate from state (i, j)
to (k, j), for all 0 ≤ j ≤ L and 1 ≤ i, k ≤ MN, i 6= k. It is
caused by either a phase transition of the modulating Markov process
of the arrival stream or a change of the number I2(t) of available HTTP
service processes. We can write Aj = Uj

⊕
ΩX , where

⊕
denotes the

Kronecker sum of two matrices.

• Bi,j,j+s denotes the s-step upward transition rate from state (i, j) to
(i, j + s), 1 ≤ s ≤ L − j, 0 ≤ j ≤ L and 1 ≤ i ≤ MN . It is caused by
a new batch arrival of size s ≥ 1 of connection requests. For a given j,
s can be considered as bounded variable if L is finite and unbounded if
L is infinite. When s ≥ L − j ≥ 0 the queue gets full and j + s − L
requests are lost. Then it holds for 1 ≤ i ≤MN :

Bi,j−s,j = (1− θf1(i))θs−1f1(i)
σf1(i) 0 ≤ j − s ≤ L− 2; 1 ≤ j ≤ L− 1,

Bi,j,L =
∞∑

s=L−j

(1− θf1(i))θs−1f1(i)
σf1(i) = θL−1−jf1(i)

σf1(i) 0 ≤ j ≤ L− 1.

• Ci,j,j−1 is the departure rate of HTTP connections, i.e., the Web server
finishes the service of a request and the downward transition from state
(i, j) to (i, j − 1), 1 ≤ j ≤ L, 1 ≤ i ≤MN, represents the departure of
the corresponding connection request from the HTTP server.
We assume that a maximum of one request departs at any time.
Therefore, the one-step downward transitions take place by the
departures of single connection requests after their service completion.
The service of requests depends on the contention for physical resources,
i.e. CPU processing and disks’ operations, in the host machine.
Applying [93]’s approach with a CQN model of the Web server’s
physical resources (see Fig. 4.4) and Mean Value Analysis to solve
it, we obtain the corresponding values of the throughput Tp(j) for j
requests and p active processes in the system. Hence, Ci,j,j−1 = Tf2(i)(j)
for 1 ≤ i ≤MN .

Since the Markov chain Y (t) with its finite state space is
ergodic, its corresponding steady-state probabilities {pi,j}, pi,j =
limt→∞ P(I(t) = i, J(t) = j), exist. Let vj = (p1,j, . . . , pNM,j) denote the row
vector of these probabilities corresponding to level J(t) = j for 0 ≤ j ≤ L
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and v = (v0,v1, . . . ,vL).
We define the diagonal matrices

Bj−s,j = diag

[
B1,j−s,j, B2,j−s,j, ..., BNM,j−s,j

]
, (0 ≤ j − s < j ≤ L),

Bs = Bj−s,j (1 ≤ s ≤ j ≤ L− 1)

= EN
⊗

diag

[
σ1(1− θ1)θs−11 , ..., σM(1− θM)θs−1M

]
,

Σ = EN
⊗

diag[σ1, σ2, ..., σM ],

Θ = EN
⊗

diag[θ1, θ2, ..., θM ],

Cj = diag[Ci,j,j−1] = diag[T1(min(j, 1)), ..., TN(min(j,N))]
⊗

EM

(0 < j ≤ L),

where diag(·) represents a diagonal matrix of the corresponding elements and
EN , EM denote an NxN and MxM identity matrix, respectively.
Then we get (since Θ0 = ENM is the identity matrix):

Bs = Θs−1(EMN −Θ)Σ (1 ≤ s ≤ L− 1),

BL−s,L = Θs−1Σ (1 ≤ s ≤ L).

Let eNM and eM be a column vector with all ones of size NM and M ,
respectively. DAj , DCj are those diagonal matrices whose diagonal elements
are the sums of the elements in the corresponding rows of Aj and Cj,
respectively.
Consequently, the steady-state balance equations v · QY = 0 and
normalization condition read as follows.

(1) For the Lth column of QY , i.e. level j = L:

L∑
s=1

vL−sBL−s,L + vL[AL −DAL −DCL ] = 0,

(2) For the jth column of QY , i.e. level 0 < j ≤ L− 1:

j∑
s=1

vj−sBs + vj[Aj −DAj − Σ−DCj ] + vj+1Cj+1 = 0,

(3) For the 0th column of QY , i.e. level j = 0:

v0[A0 −DA0 − Σ] + v1C1 = 0,
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(4) Normalization condition:

L∑
j=0

vj · eNM = 1.

The steady-state probabilities {pi,j} can be obtained either by either directly
solving the steady-state balance equations or by advanced matrix-geometric
methods or the spectral expansion method (cf. [95], [15], [81] and [100]).
Before we can use these advanced matrix-geometric techniques or the spectral
expansion method, the computational methodology proposed by [33] has to
be applied.

4.3.5 Performance Measures

Then important performance measures can be determined in terms of the
steady-state probabilities:

• The mean number of idle processes (and in a similar way the variance)
is determined by

E(Idle) =
NM∑
i=1

L∑
j=0

pi,j ·max(f2(i)− j, 0).
�� ��4.1

• The probability pW that a new TCP request has to wait until the Web
server provides a new idle child process is determined as follows. Upon
the arrival of a batch of size s, the number of idle processes is given by
max(f2(i)−j, 0) and max(j−f2(i), 0) is the number of waiting processes.
Hence, max(s − max(f2(i) − j, 0), 0) is the number of requests which
cannot “immediately” get service by idle processes, i.e. they have to
wait in the software queue for the birth of new httpd processes or get
lost due to the shortage of buffering in state (i, j). Taking into account
that a maximum of L− j requests can be admitted in state (i, j), then
min(max(s−max(f2(i)−j, 0), 0), L−j−max(f2(i)−j, 0)) is the number
of requests which are forced to wait. The arrival rate of batches is given
by σf1(i) and σf1(i).(1−θf1(i)).θs−1f1(i)

determines the arrival rate of batches

of size s in state (i, j). Therefore, pW can be written as

pW =
NM∑
i=1

L∑
j=0

∞∑
s=max(f2(i)−j,0)+1

pi,j ·
σf1(i)(1− θf1(i))θs−1f1(i)

s

σ

·min(max(s−max(f2(i)− j, 0), 0), L− j −max(f2(i)− j, 0))

s

=
NM∑
i=1

L∑
j=0

∞∑
s=max(f2(i)−j,0)+1

pi,j ·
σf1(i)(1− θf1(i))θs−1f1(i)

σ

·min(s−max(f2(i)− j, 0), L− j −max(f2(i)− j, 0)),
�� ��4.2
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where σ denotes the overall mean arrival rate of the individual requests
given by

σ =
M∑
l=1

σl
(1− θl)

rl.
�� ��4.3

Here r = (r1, r2, . . . , rM) is the vector of the equilibrium probabilities
of the modulating Markov chain X that is uniquely determined by the
equations:

r ·QX = 0 ; r · eM = 1.

4.4 Performance Results

4.4.1 Validation of the Analytic Model

To validate the proposed modeling approach, a measurement configuration
of an Apache Web server operating on a host with a 3.00GHz Intel(R)
Pentium(R) D CPU, 2 Mbyte cache, and 2 Gbyte memory has been set
up under Linux. The corresponding workload described in Section 4.3.3.1
has been generated by an appropriate shell script running on another Linux
machine in combination with the traffic generator ab3 (see [2]). Moreover,
the major statistics have been captured, e.g. the creation and killing times,
the idle and busy times of each HTTP process.
In the following, we present some numerical results related to a HTTP/1.0
workload model. The Web server system has the parameters hmin = 5, hmax =
10, N = 30, L = 40. In our corresponding traffic model the modulating
process X has only one state. This means that the arrivals of TCP
connection requests constitute a recurrent process and its inter-arrival times
are approximated by a GE distribution with the parameters (σ, θ). Hence, we
capture only the burstiness of the arrivals without considering a sophisticated
autocorrelation structure of the request process. Despite of this restriction,
the derived results already indicate a sufficient level of accuracy of our new
performance model. To generate the numerical results of the latter analytic
model, we need the service time parameters as well as the killing and the
creation rate of the httpd process. These parameters were determined based
on the statistics, i.e. the creation and killing times, the idle and busy times,
of each HTTP service process arising from the measurements.

In Table 4.2 we show a comparison between the measurements and the
results arising from the solution of our analytic model by a procedure for
QBD-M processes (cf. [22], [33]). The performance metric includes the

3 We have used the tool ab since it is capable to initiate simultaneously a batch of
HTTP requests. To generate complex arrival distributions of sessions, an additional shell
script is needed.
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Table 4.2: Comparison of the measurement results and the analytic solution

Parameters Measurement Study Analytic Model
σ θ η ε E(Idle) Var(Idle) Waiting Prob. E(Idle) Var(Idle) Waiting Prob.
5 0.4 0.003960 0.001500 9.92740 0.4323 0.000087 9.933774 0.333595 0.0003301
5 0.5 0.007042 0.003130 9.89174 0.6153 0.003466 9.906068 0.437426 0.0023988
5 0.6 0.011198 0.007337 9.83198 0.8833 0.015859 9.858125 0.602280 0.0122027
5 0.7 0.020465 0.016675 9.70886 1.3312 0.056009 9.762665 0.895090 0.0485737
5 0.8 0.062304 0.058661 9.47287 2.0765 0.175968 9.545315 1.460498 0.1602376
5 0.9 0.230746 0.227524 9.23774 3.8538 0.385522 8.876794 2.732862 0.4270081

10 0.4 0.006120 0.001749 9.87653 0.5695 0.000028 9.865037 0.477537 0.0001713
10 0.5 0.007774 0.003455 9.82228 0.7829 0.002989 9.812958 0.618592 0.0029087
10 0.6 0.016354 0.012161 9.72373 1.1271 0.015115 9.716133 0.852531 0.0146051
10 0.7 0.040675 0.036607 9.54612 1.6814 0.056359 9.525983 1.265490 0.0576934
10 0.8 0.095757 0.091942 9.15435 2.5931 0.178238 9.098354 2.055569 0.1883662
10 0.9 0.330487 0.327367 9.00565 4.5981 0.360757 7.918966 3.700704 0.4729701
20 0.4 0.007869 0.002951 9.82219 0.6871 0.000782 9.733936 0.671095 0.0006167
20 0.5 0.012012 0.007207 9.74126 0.9354 0.003211 9.628082 0.872976 0.0041383
20 0.6 0.020740 0.016131 9.60848 1.3171 0.015597 9.447366 1.195716 0.0200142
20 0.7 0.057788 0.053410 9.37257 1.9583 0.054940 9.083828 1.772014 0.0775575
20 0.8 0.130866 0.126864 8.88637 2.9865 0.166680 8.328340 2.831075 0.2433198
20 0.9 0.408192 0.405091 8.23474 5.3645 0.536450 7.083550 4.933103 0.5040300

mean E(Idle) and the variance V ar(Idle) of the number of idle processes
as function of the workload parameters σ and θ, as well as the probability
pW that a new TCP request needs to wait until the Web server offers a new
httpd process, i.e., the probability that a new request does not find an idle
httpd process upon its arrival.
In the selected scenario the measurements generate an average of 9.5 idle
processes and a minimum and maximum of 8.2 and 9.9, respectively, whereas
the analytic model has a range of [7.1, 9.9] and a mean of 9.3 idle processes.
Regarding the mean number of idle processes the analytic model generates
an average relative error of less than 3% subject to the measured values,
the relative error of the variance is about 20%. Considering the waiting
probability the absolute error is less than 11.3%, however, the relative error
is larger since the correlation of the arrivals is not fully considered in the
selected scenario. For a properly tuned system, the waiting probability can
be kept small. Regarding control purposes the model is accurate enough and
can be successfully applied to predict the average behavior of idle processes.
In conclusion, the numerical results justify the claim that our mathematically
tractable model can be used to predict rather accurately the mean-value
performance of the MPM Prefork process, despite of its explicit assumption
about the Markovian property of I2(t).

4.4.2 Performance Impact of Apache Directives

In real operation it is of major importance to analyze the impact of basic
Apache directives such as MaxClients, MaxSpareServers and MinSpareServers
on the performance indices perceived by the users such as the waiting
probability and the efficiency observed by operators, e.g. in terms of the
average number of idle processes. Therefore, we have depicted in Figure 4.5
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Figure 4.5: Average number of idle processes vs. η and ε

the average number of idle processes as function of the creation rate η and
the killing rate ε for some specific parameter values of the request rate. The
results quantitatively show that ε has a crucial influence on the number of
idle processes. The average number is almost independent of the creation
rate η if the killing rate ε is large enough. The rationale of this behavior is as
follows: when the killing rate ε is large enough, the control policy of a Web
server can achieve its goal in a very fast manner, i.e. to enforce a number
of idle processes less than hmax. This means that the interval determined by
the reaction to the critical load period until the compliance with the control
policy is very short. From the point of view of an autonomous Web server
operation, this behavior of the MPM Prefork module is useful. It is proved
by the operational success of Apache Web servers every day.
The overall response time of the Web server observed by a user sending
HTTP requests depends upon the physical configuration of the corresponding
machine running the Web server, the parameter setting of the Web server,
the size of the objects associated with the specific request and the network
status. Since the response time at the server side plays a very significant role
in the overall response time perceived by the users, we focus on those factors
which have a major impact on the latter performance index.

Following the approach in [93] we have assumed in our analysis that
after the successful TCP connection set-up the residual service time upon
the acceptance of a HTTP request is approximated by a CQN. The latter
provides the input of our service time model. If the machine running the Web
server is powerful enough, then after the TCP connection set-up the service
time should be small enough to satisfy the QoS requirement of a specific user.
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From the users’ perspective, the most disturbing event happens when there is
no idle service process available upon the arrival of a request. Then the user
does not receive any response and has to wait until a new service process is
spawned by the Web server. Therefore, this waiting time to generate a new
service instance can significantly contribute to the overall response time. In
Table 4.2 we can observe, for example, that the resulting waiting probability
is around 0.5 when σ = 20 and θ = 0.9.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10  20  30  40  50  60  70  80

W
ai

tin
g 

pr
ob

ab
ili

ty

hmax

MaxClients=30
MaxClients=40
MaxClients=50
MaxClients=60
MaxClients=70

 0.001

 0.01

 0.1

 1

 10  20  30  40  50  60  70  80

W
ai

tin
g 

pr
ob

ab
ili

ty

hmax

MaxClients=30
MaxClients=40
MaxClients=50
MaxClients=60
MaxClients=70

Figure 4.6: Waiting probability pW vs. MaxClients N and MaxSpareServers
hmax on a linear (left) and a logarithmic scale (right) for the parameters
σ = 20 and θ = 0.9

To further explore the impact of the Apache directives on the waiting
probability pW , we illustrate in Figure 4.6 the latter performance index as
function of the parameters MaxClients N and MaxSpareServers hmax on
a linear and a logarithmic scale of the vertical axis, respectively. Note
that MaxSpareServers is upper bounded by MaxClients. However, the
MaxSpareServers directive has a much stronger influence on the waiting
probability governed by a nearly linear shape on the logarithmic scale, i.e. it
follows an exponential decay characteristic in hmax.
In summary, we have clearly shown by our analytic means that for the given
non-threaded multi-processing module Prefork both the MaxClients and the
MaxSpareServers directive have a strong impact on the waiting probability
of HTTP requests and, therefore, on the response time of the Apache Web
server.
Considering the autonomous operation and optimized control of an Apache
Web server with MPM Prefork, we see that the appropriate dynamic tuning of
these major directives and control parameters provides the highest potential
to satisfy both the operator’s efficiency and the users’ QoS requirements.
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4.5 Summary

In this Chapter we have studied the dynamic behavior of the resource pool of
service processes that is implemented in the non-threaded multi-processing
module (MPM) Prefork of an Apache Web server. To describe the latter
and to analyze its performance we have proposed a new Markovian queueing
model with a variable number of servers.
Applying a batch Markovian arrival process and the advanced spectral
expansion method, numerical results on the performance of Apache’s dynamic
pool of service processes have been derived from this tractable analytic
multi-server model. We have also compared it with actual measurements
of the real dynamic pool-size behavior. The latter justify and validate the
proposed decomposition modeling and analysis approach. It is derived from
our major assumption that the modulating joint arrival and service process
I(t) is governed by a Markovian property. Furthermore, the model can
be easily extended to capture multiple arrivals and multiple departures of
connection requests.
In conclusion, we believe that our approach is a useful tool to predict and
to tune the performance of an Apache Web sever with the non-threaded
multi-processing module Prefork. It can also be extended to evaluate other
Web server software architectures under UNIX such as the Apache 2.2 hybrid
multi-threaded multi-processing module Worker which is the subject of future
research.
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5
A Model for the Performance

Evaluation of DHCP‖

5.1 Introduction

Dynamic Host Configuration Protocol (DHCP) is designed by the dynamic
host configuration working group within the framework of the Internet
Engineering Task Force (IETF). At present, DHCP is specified for Internet
Protocol version 4 in IETF “draft standard” RFC 2131 [59] and for Internet
Protocol version 6 in IETF RFC 4361 [86]. The main aim of DHCP is
to provide an automatic mechanism for the allocation, configuration and
management of IP addresses and IP networking parameters (netmask, router
IP address, etc) for computers and devices in IP networks.

The important feature of DHCP is a “dynamic allocation” mechanism,
which assigns an IP address to a client for a limited period of time (called a
lease time). Therefore, a previously allocated IP address which is not used
by one host can automatically be assigned to another host by a DHCP server
implementing the dynamic allocation mechanism. It is recognized that the
appropriate setting of a lease time in a DHCP server plays an important role
in the efficient allocation of IP addresses. In [73], the authors investigated the
impact of setting lease times using the data from the Georgia Tech campus
network. However, due to the lack of a quantitative performability model
and the lack of data at clients (whether they are forced to wait for an IP
address), they only examined the utilization of the allocatable address space
in a DHCP server.

We propose a method to quantitatively evaluate the performance of
a DHCP dynamic allocation mechanism and the impact of a lease time.
To construct a retrial queue and a tractable solution, the following steps
are performed. We show that interarrival times of DHCP requests from
clients follow the exponential distribution. We make a relaxed assumption
concerning the lease time sent by a DHCP server and the retrials of clients.

‖Tien Van Do. “An Efficient Solution to a Retrial Queue for the Performability
Evaluation of DHCP”. Computers and Operations Research, 37(7):1191–1198, 2010,
http://dx.doi.org/10.1016/j.cor.2009.05.014
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We develop an efficient computational algorithm to calculate the steady state
probabilities and the performance measures of a continuous time discrete
state Markov (CTMC) process associated with the proposed retrial queue.
It is shown via simulation of a more detailed model than an analytical
abstract model of DHCP that the proposed model is accurate to calculate
the performance of the interaction between the behavior of clients and the
DHCP mechanism. A numerical study is also performed, which provides an
insight for the impact of trade-off parameters and factors on the operation of
DHCP.

The rest of this chapter is organized as follows. In Section 5.2, the overview
of DHCP operation is presented. In Section 5.3, the proposed model and a
computational algorithm is described. In Section 5.4 a numerical study is
provided to reveal some interesting behaviors of the IP address allocation
mechanism. Finally, the chapter is concluded in Section 5.5.

5.2 Overview of the DHCP Operation

The operation of DHCP assumes two roles. A centralized DHCP server
manages a range of IP addresses allocated by a network administrator for a
specific IP subnet. The communications between a DHCP server and a client
are delivered by the DHCP protocol. A DHCP client software running on
computers or devices normally sends a broadcast query (DHCPDISCOVERY
message) requesting information from a DHCP server. The DHCP server
checks whether the message is sent from the client with a permissible Media
Access Control (MAC) address. If the client is authorized, the server assigns
the client an IP address, a lease time, the subnet mask and the default gateway
address encapsulated in the DHCPOFFER message.

Note that the whole process is performed in the similar way, if a client
knows the IP address of a DHCP server in advance of the request of an IP
address. The only exception is that a client sends DHCPREQUEST message
instead of DHCPDISCOVERY message.

Three main modes for IP address allocation are supported: manual,
automatic and dynamic allocation. The purpose of the “manual allocation”
mode is to allow the network administrator to centrally store information
concerning client hosts. In this mode the IP address is assigned by the
network operator to a client host. After the identification of a specific client
(e.g. based on hardware MAC address) DHCP sends a fixed IP address and
configuration parameters (e.g.: the subnet mask, the default gateway address)
for the client. This kind of operation is typically applied in a campus or LAN
environment. In the mode ”automatic allocation”, a DHCP server assigns a
permanent IP address to a client host.

The most important feature of DHCP is the “dynamic allocation”
mechanism, which assigns an IP address to a client for a limited period of
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time. A lease time is defined as a period of time for which the server gives
a permission for a client to use the address. Note that a lease time is also
sent to a client. Upon the expiration of the lease time, the allocated address
becomes free and can be assigned to another client unless a client extends
the right to use a specific IP address before the expiration of the lease time.
This feature is often applied in the environment of Internet Service Providers
because the reuse of scarce IP addresses is possible.

The decision that a DHCP client “leaves” the system or renews the use of
the allocated IP address depends on the relation between the lease time and
the holding time (e.g.: the working time) of clients. In order to extend the
use of the allocated IP address the client sends a DHCPREQUEST message
which includes the client’s allocated IP address in the “requested IP address”
option of a DHCPREQUEST message.

5.3 An Efficient Algorithm to a Retrial Queue

Model for DHCP

5.3.1 A Retrial Queue

The size of the pool (i.e.: the number of allocatable IP addresses) is c. The
fix lease time value sent by the DHCP server is denoted by Tl.

We assume the inter-arrival times of DHCP DISCOVERY messages are
exponentially1 distributed with a mean inter-arrival time 1/λ.

Assume that the holding times (i.e.: how long does a client need an IP
address) of clients are represented by random variable H with a cumulative
distribution function P(H < x) = F (x). Upon the expiration of the lease
time, the previously allocated address at the DHCP server becomes free and
can be allocated to another client unless the client extends the use of a specific
IP address before the expiration of the lease time. Let a denote the probability
that DHCP clients leave (i.e.: switch off the computer) the system or do not
renew the allocated IP address after the expiration of its lease time. We can
write

a = P(H < Tl) = F (Tl).

It is worth emphasizing that there is no any specific assumption concerning
about the relation of the average holding time and the lease time in our model.

I(t) denotes the number of allocated IP addresses at time t. Note that
0 ≤ I(t) ≤ c holds. A client who does not receive the allocation of an IP

1We process the log file of the DHCP server of our department between the period of
January 2 and May 28, 2008. In Figure 5.1, the straight line of the Q-Q plot, where the
interarrival times of DHCP requests between 8h and 18h during the investigation period
to the DHCP server are plotted against the theoretical exponential distribution, confirms
our assumption.



64 CHAPTER 5. A MODEL FOR THE PERFORMANCE EVALUATION OF DHCP

Figure 5.1: Q-Q plot for the interarrival times (measured in seconds) of
DHCPDISCOVERY messages

address because the shortage (when I(t) = c) of IP addresses sets a timer to
wait for a limited time and will retry the request for an IP address upon the
expiration of backoff time. We model this phenomenon as the client joins the
“virtual orbit”. J(t) represents the number of DHCP clients in the ”orbit”
at time t and takes values from 0 to ∞.

In order to have a mathematically tractable model, we make the following
assumptions.

• Lease times are exponentially distributed with a mean lease time 1/µ =
Tl.

• Clients waiting in the orbit repeat the request for the DHCP server with
rate ν (i.e.: the inter-repetition times are exponentially distributed with
parameter ν), which is independent from the number of waiting clients
in the orbit.

Therefore, the presented approach below is the application of an approximate
model for the DHCP mechanism presented in Section 5.2. It will be shown
in Section 5.4 (through the comparison with the simulation of the DHCP
mechanism) that the approximate model provides a quite good prediction for
the performance measures of the DHCP dynamic allocation mechanism.

As a consequence, the system is modeled by a CTMC, Y = {I(t), J(t)},
with the state space {0, 1, . . . , c} × {0, 1, . . .}.

Remarks: The stationary distributions of the main M/M/c retrial queue
with c > 2 can be computed using approximation techniques [9, 12, 63].
Falin and Templeton proposed a truncation model and a numerically tractable
solution with a threshold in their book [63], which is followed by the work [10].
The retrial queue presented in this chapter is indeed a numerically tractable
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model [63] with 0 threshold value. However, only matrix-geometric solution
is suggested in [63]. We show in the later section that we develop an efficient
computational algorithm for the considered retrial queue and the evaluation
of the DHCP dynamic allocation mechanism based on the considered retrial
queue is accurate.

5.3.2 A Quasi-Birth-and-Death Representation

We denote the steady state probabilities by pi,j = lim
t→∞

P(I(t) = i, J(t) = j),

and introduce vj = (p0,j, . . . , pc,j).

The evolution of Y is driven by the following transitions.

(a) Aj(i, k) denotes a transition rate from state (i, j) to state (k, j)
(0 ≤ i, k ≤ c; j = 0, 1, . . .), which is caused by either the arrival of
DHCPDISCOVERY requests or by the expiration of the lease time
without the renewal of an allocated IP address. Matrix Aj is defined as
the matrix with elements Aj(i, k). Since Aj is j-independent, it can be
written as

Aj = A =


0 λ 0 . . . 0 0 0
aµ 0 λ . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . a(c− 1)µ 0 λ
0 0 . . . 0 acµ 0

 ∀j ≥ 0.

(b) Bj(i, k) represents one step upward transition from state (i, j) to state
(k, j + 1) (0 ≤ i, k ≤ c; j = 0, 1, . . .), which is due to the arrival of
DHCPDISCOVERY requests when no free IP address is available in
the IP address pool. In the similar way, matrix Bj (B) with elements
Bj(i, k) is defined as

Bj = B =


0 0 0 . . . 0 0 0
0 0 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . 0 0 0
0 0 . . . 0 0 λ

 ∀j ≥ 0.

(c) Cj(i, k) is the transition rate from state (i, j) to state (k, j − 1) (0 ≤
i, k ≤ c; j = 1, . . .), which is due to the successful retrial of a request
from the orbit. Matrix Cj (∀j ≥ 1) with elements Cj(i, k) is written as
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Cj = C =


0 ν 0 . . . 0 0 0
0 0 ν . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . 0 0 ν
0 0 . . . 0 0 0

 ∀j ≥ 1.

DA and DC are diagonal matrices whose diagonal elements are the sum
of the elements in the corresponding row of A and C, respectively. The
infinitesimal generator matrix of Y can be written as follows

A00 B 0 . . . . . . . . . . . .
C Q1 B 0 . . . . . . . . .
0 C Q1 B 0 . . . . . .
0 0 C Q1 B 0 . . .
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . .


,

�� ��5.1

where A00 = A−DA −B and Q1 = A−DA −B −DC .
Because of the special structure of the QBD, the steady state probabilities

can be obtained with the existing methods like the matrix-geometric and its
variants [14, 84, 99], and the spectral expansion [97]. However, the existing
methods have the “state-space explosion” problem when c is large. The
problem starts when c reaches a value of several hundreds (no results or a
very long-running time of computer programs implementing these methods).
Therefore, in what follows we present an efficient computational procedure to
find the steady state probabilities.

5.3.3 An Efficient Computational Procedure

For j ≥ 1, the balance equations are written as follows

vj−1B + vjQ1 + vj+1C = 0 (j ≥ 1).
�� ��5.2

Q(x) = B +Q1x+Cx2 is defined as the characteristic matrix polynomial
associated with equations (5.2). In the present chapter, Q(x) is a tridiagonal
matrix

Q(x) =



q11(x) λx+ νx2 0 . . . 0 0 0
aµx q2,2(x) λx+ νx2 . . . 0 0 0

0 a2µx q3,3(x) λx+ νx2 . . . 0 0
...

...
...

...
...

...
...

0 0 . . . a(c− 1)µx qc,c(x) λx+ νx2

0 0 . . . 0 acµx qc+1,c+1(x)


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where

q1,1(x) = −(λ+ ν)x,

qi,i(x) = −(λ+ ν + (i− 1)aµ)x (i = 2, . . . , c),

qc+1,c+1(x) = λ− (λ+ cµa)x.

The steady state probabilities are closely related to the
eigenvalue-eigenvector pairs (x,ψ) of Q(x), which satisfy ψQ(x) = 0 and
det[Q(x)] = 0 (cf. [97]). It is easy to see that Q(x) has c zero-eigenvalues.
The corresponding independent eigenvectors for c zero-eigenvalues are
ψ1 = {1, 0, . . . , 0}, ψ3 = {0, 1, 0, . . . , 0},. . . ,ψc = {0, 0, . . . , 1, 0}.

Note that if the system is ergodic, then the number of eigenvalues of
Q(x) of an infinite QBD process, which are inside the unit disk, is c+ 1 (see
Section 2.2.1 and [97] for the proof). Therefore, Q(x) should have a single
eigenvalue x0 inside the unit disk because Q(x) has c zero-eigenvalues. Let
ψ0 the corresponding left-hand-side eigenvector of Q(λ) for the eigenvalue x0.

As a consequence, the steady state probabilities can be expressed as
follows

vj = b0ψ0x
j
0 (j ≥ 1),

v0 =
c∑

k=0

bkψk,
�� ��5.3

where bi are the coefficients to be determined. Since the probabilities are
greater or equal 0, 0 < x0 < 1 holds.

The straightforward way to obtain the steady state probabilities is to find
the eigenvalues of Q(x) (see [13] for the methodology to find the eigensystem
of the matrix polynomial). Then, one could use the balance equation for
level 0

v0A00 + v1C = 0
�� ��5.4

and the normalization equation

c∑
i=0

∞∑
j=0

pi,j =
c∑

k=1

bkψke + b0ψ0e/(1− x0) = 1
�� ��5.5

to determine the coefficients bi. Note that e is a 1 × (c + 1) vector with all
elements equal 1.

The key step towards the steady state probabilities is to determine x0 and
the corresponding eigenvector ψ0.
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Theorem 5.1. 0 < x0 < 1 is the root of lc+1(x), the last diagonal element of
L(x) when we make the LU decomposition of Q(x) = L(x)U(x).

Proof. Since Q(x0) is a tridiagonal matrix and qi,i(x0) 6= 0, the component
matrices of the LU decomposition of Q(x0) are written as

L(x0) =


l1(x0) 0 0 . . . 0 0 0
aµx0 l2(x0) 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . a(c− 1)µx0 lc(x0) 0
0 0 . . . 0 acµx0 lc+1(x0)

 ,

U(x0) =


1 u1(x0) . . . 0 0 0 0
0 1 u2(x0) . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . 0 1 uc(x0)
0 0 . . . 0 0 1

 ,

where li(x0) (i = 1, . . . , c + 1) and ui(x0) (i = 1, . . . , c) are the elements of
L(x0) and U(x0), respectively. After a simple algebra, it can be written as

l1(x0) = q1,1(x0) = −(λ+ ν)x0,

li(x0) + a(i− 1)µx0ui−1(x0) = qi,i(x0), (i = 2, . . . , c+ 1),

li(x0)ui(x0) = λx0 + νx20, (i = 1, . . . , c).
�� ��5.6

Therefore, the determinant of Q(x0) is expressed as

Det[Q(x0)] = Det[L(x0)]Det[U(x0)] =
c+1∏
i=1

li(x0).
�� ��5.7

As the consequence of equation (5.6), li(x0) 6= 0 (1 < i ≤ c) holds. Hence,
Det[Q(x0)] = 0 follows lc+1(x0) = 0.

It is easy to prove that lc+1(0) is positive and lc+1(1) is negative. Therefore,
a bisection algorithm can be proposed to determine x0 as illustrated in
Algorithm 5.1. Note that the recursive relations (see Algorithm 5.1) between
ψ0,i and ψ0,i+1 (i = c, . . . , 1) are easily derived from equation

ψ0Q(x0) = ψ0L(x0)U(x0) = 0.

Based on the property that multiplying an eigenvector with a scalar number
results in an eigenvector, we can determine ψ0 = {ψ0,1, ψ0,2, . . . , ψ0,c+1} by
setting ψ0,c+1 = 1 and using the recursive relations.
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Algorithm 5.1 Bisection algorithm to determine x0 and the calculation of
ψ0

Initialize the required accuracy ε
x0,u = 1.0, x0,d = 0
repeat
x0 =

x0,u+x0,d
2

calculate lc+1(x0) based on equation (5.6)
if lc+1(x0) > 0 then
x0,d = x0

else
x0,u = x0

end if
until |lc+1(x0)| < ε
ψ0,c+1 = 1
for i = c to 1 do
ψ0,i = −aiµx0

li(x0)
ψ0,i+1

end for
return x0, ψ0

Let us introduce bcf =
∑c

i=1 biψi = {b1, b2, . . . , bc, 0}. From
equations (5.3) and (5.4), we can write

c∑
i=0

biψi

[
DA +B − A

]
= b0ψ0x0C,

bcf
[
DA +B − A

]
= b0ψ0x0C − b0ψ0

[
DA +B − A

]
,



λb1 − µab2
−λb1 + (λ+ µa)b2 − 2µab3

...
−λbi−1 + (λ+ (i− 1)µa)bi − iµabi+1

...
−λbc−1 + (λ+ (c− 1)µa)bc

−λbc


=



- b0λψ0,1 + b0µaψ0,2

b0(x0νψ0,1 + λψ0,1 − (λ+ µa)ψ0,2 + 2µaψ0,3)
...

b0(x0νψ0,i−1 + λψ0,i−1 − (λ+ (i− 1)µa)ψ0,i + iµaψ0,i+1)
...

b0(x0νψ0,c + λψ0,NN − (λ+ cµa)ψ0,c+1)


.

�� ��5.8

The computation of the coefficients is based on the following observations
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• both the left and right hand side of equation (5.8) are vectors.

• the last element (i.e.: element c+1) of the left hand side of equation (5.8)
contains only bc.

• only bc and bc−1 are in element c of the left hand side of equation (5.8).
only bc−1, bc−2 and bc−3 are in element c − 1 of the left hand side of
equation (5.8), etc.

As a consequence, bc can be expressed in b0. Then, bi (i = c − 1, . . . , 1) can
be calculated recursively. That is, all bi (i = c, . . . , 1) can be given in terms
of b0. Thus, b0 can be determined from the normalization equation. Then
other coefficients b1, . . . , bc are calculated.

In summary, the steps of the proposed method are

• the application of Algorithm 5.1 to find root x0,

• the computation of ψ0,

• the calculation of coefficient b0 and b.

5.3.4 Performance Measures

Note that performance parameters related to the DHCP dynamic allocation
mechanism are obtained as follows:

• average number of occupied IP addresses

Nocc =
c∑
i=1

i
∞∑
j=0

pi,j =
c∑
i=1

i(pi,0+
∞∑
j=1

b0ψ0,i+1x
j
0) =

c∑
i=1

i(pi,0+
b0ψ0,i+1x0

1− x0
),�� ��5.9

• average number of clients waiting in the orbit

Norbit =
∞∑
j=1

j

c∑
i=0

pi,j =
∞∑
j=1

jb0

c∑
i=0

ψ0,i+1x
j
0 =

b0x0
(1− x0)2

c∑
i=0

ψ0,i+1.�� ��5.10

5.4 Case Study

Three scenarios are investigated in this section. The first scenario represents
a case which may happen in a private company or in a small campus. In this
case, a small number (c = 250) of IP addresses can be allocated to clients.
The second and third scenarios correspond to a case where a large number
(c = 1000 and c = 3000) of IP addresses are available to clients. In three
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Lease time: Tl = 5 minutes
Average holding time Analytical Model Simulation (conf. level=99%)

th (minutes) Nocc Norbit Nocc Norbit
10 12.7075 0 12.715630 0
30 32.5694 0 32.590180 0
60 62.5347 0 62.574540 0
90 92.5231 0 92.582617 0

120 122.5170 0 122.596091 0
150 152.5140 0 152.612031 0
180 182.5120 0.000004 182.628786 0.000002

Lease time: Tl = 30 minutes
10 31.5719 0 31.591576 0
30 47.4593 0 47.490397 0
60 76.2448 0 76.293760 0
90 105.832 0 105.899821 0

120 135.624 0 135.709828 0
150 165.500 0 165.605376 0
180 195.416 0.000437 195.540905 0.000423

Lease time: Tl = 60 minutes
10 60.1491 0 60.186734 0
30 69.3911 0 69.436389 0
60 94.9186 0 94.980781 0
90 123.309 0 123.385416 0

120 152.49 0 152.587474 0
150 181.995 0 182.111794
180 211.664 0.03816 211.799544 0.033517

Lease time: Tl = 90 minutes
10 90.0111 0 90.068141 0
30 94.7156 0 94.774729 0
60 115.850 0 115.921970 0
90 142.378 0 142.471148 0

120 170.573 0 170.679458 0
150 199.473 0.001519 199.600627 0.001356
180 228.734 1.299020 228.881151 1.016362

Lease time: Tl = 120 minutes
10 120.001 0 120.076530 0
30 122.239 0 122.315397 0
60 138.782 0 138.872755 0
90 162.954 0 163.052606 0

120 189.837 0.000067 189.961514 0.000060
150 217.916 0.154400 218.052797 0.114559
180 246.618 67.667500 247.106000 66.585000

Table 5.1: Analytical and simulation results (c = 250, λ = 1 requests/minute)
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cases, we choose 1/ν = 30 s and the exponential distribution of holding times
(i.e.: F (x) = 1 − e−x/th), where th is the mean holding time. The request
rate, λ, is of 1 request/minute for the first scenario, and 6 requests/minute
for the second and third scenario.

For the first case, we present the comparison of our model with simulation.
We have developed an own simulation program in language C based on the
SimPack toolkit2 and the statistical module3 from Politecnico di Torino,
which have been used for many simulation studies. Note that the simulation
model follows the real interaction of clients and the DHCP mechanism
as much as possible. Therefore, it is different from the analytical model
presented in Section 5.3 in three aspects:

• the retrial rate from the orbit: in the simulation the retrial rate depends
on J(t) (i.e.: each waiting client retrial after 1/ν), while the retrial rate
in the queueing model is of fixed value when J(t) > 0.

• the holding time: in the simulation we simulate the phenomenon of the
holding time of a specific request4, while in the queueing model we use
parameter a to take into account the phenomenon of the holding time.

• the lease time: the allocated lease times are of fixed value in the real
DHCP operation and our simulation model, while the lease times are
exponentially distributed in the queueing model.
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Figure 5.2: Average number of occupied IP addresses

2 http://www.cise.ufl.edu/~fishwick/simpack.html
3We use the statistical module (http://www.telematica.polito.it/class/

statistics.ps.gz) to collect simulation data and to perform the analysis of simulation
runs.

4The lease time sent to each a client is of a fixed value in a specific simulation and each
client independently retries an IP requests after 30 s (it is the normal value observed in a
DHCP client software implemented in the present operating systems).

http://www.cise.ufl.edu/~fishwick/simpack.html
http://www.telematica.polito.it/class/statistics.ps.gz
http://www.telematica.polito.it/class/statistics.ps.gz
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Figure 5.3: Average number of requests waiting in the orbit

That means, the simulation model does not follow the assumption of the
analytical one. Note that the simulation results are generated with the
confident level of 99%. Simulation runs are stopped when the relative
precision (i.e.: the ratio of the half-width of the confidence interval and
the mean of collected observations) of Nocc reaches 0.099%. The collected
measures for Norbit show high variability and the relative precision of Norbit

is ±49%. As observed from Table 5.1 the agreement between the simulation
and analytical results is excellent concerning Nocc. The analytical values of
Norbit are within the confidence interval.
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(a) c = 250, λ = 1 requests/minute
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(b) c = 1000, λ = 6 requests/minute

Figure 5.4: Probability that all IP addresses are being allocated

We plot the average number of occupied IP addresses versus the average
holding time and the lease time in Figures 5.2, the average number of requests
waiting in the orbit versus the average holding time and the lease time in
Figure 5.3, and the probability that all IP addresses are being allocated in
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Figure 5.5: Renewal rate (λ = 6 requests/minute)

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  100  200  300  400  500

A
ve

ra
ge

 o
f 

oc
cu

pi
ed

 I
P 

ad
dr

es
se

s

Average holding time

Lease time=  5
Lease time= 30
Lease time= 60
Lease time= 90
Lease time=120

(a) Occupied IP address

 1e-010

 1e-005

 1

 100000

 1e+010

 1e+015

 0  100  200  300  400  500

A
ve

ra
ge

 n
um

be
r 

in
 o

rb
it

Average holding time

Lease time=  5
Lease time= 30
Lease time= 60
Lease time= 90
Lease time=120

(b) Waiting in the orbit
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Figure 5.6: The third scenario (c = 3000, λ = 6 requests/minute)
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Figure 5.4. It can be observed that the system is overloaded when the average
holding time is higher than 200 min.

The most important resource of a DHCP server is the pool of IP addresses,
so the efficient allocation of IP addresses poses a crucial issue for the network
administrator. As one observes that the allocation of IP addresses can be
controlled with the appropriate setting of the lease length. If a DHCP server
is not overloaded, then the smaller the lease time is, the more efficient the
allocation of IP address (Figure 5.2) and the smaller the number of requests
waiting in the orbit is (Figure 5.3). For example in the second scenario when
the average holding time is 90 min and a lease time has a value of 30 min,
the average number of occupied IP addresses is 635 (365 free IP addresses
are available in average). If we change the setting of a lease time to 120
min, only 186 free IP addresses are available in a DHCP server. It is worth
emphasizing that the small value setting of the lease time has the impact
of increased number (load) of renewal messages (DHCPREQUEST). Similar
observations can be obtained in the third scenario (Figure 5.6) as well (the
only difference between the second and third scenario that we increase the
size of the IP address pool to 3000).

In Figure 5.5, we show the rate of renewal messages versus the lease time
and the average holding time. We observe that the smaller the lease time is,
the larger the rate of renewal messages is, which contrasts with the behavior
of the average number of occupied IP addresses versus the lease time and the
average holding time (Figure 5.2). Therefore, the trade-off parameter of the
DHCP dynamic allocation mechanism is the rate of renewal messages. That
is, the choice of an appropriate lease time depends on the processing capacity
(how many messages can be handled during one minute or one second) of a
DHCP server.

We compare the running time needed by different methods to get the
steady state probabilities of the QBD process. Four methods are considered
in the numerical comparison: the original spectral expansion method [31],
the classical matrix-geometric method based on the successive substitution
(SS) procedure [102], the variant of the matrix-geometric method [101] and
the proposed procedure. Note that the stopping criteria for the methods is
10−10.

In Figure 5.7, we plot the computational time of the methods
(implemented in Mathematica) versus c on a machine with Intelr Xeonr

E5410 2.33GHz processor. It can be observed from Figure 5.7 that
the proposed method has the smallest computation time amongst the
methods. Moreover, the original spectral expansion method, the classical
matrix-geometric method and the Naoumov et al. method fail5 at the large
value of c (e.g. c > 600) due to the state explosion problem. For example the

5Either caused by the shortage of memory or no results are obtained in a reasonable
time.
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Figure 5.7: Computational time versus c of the analytical method

classical matrix-geometric method needs more than 2 hours and the Naoumov
et al. method takes approximately 2 hours) to get results for c = 600. The
classical spectral expansion method could not give reliable numerical results
for c > 300 because a large value of c gives rise to an ill-conditioned linear
system of algebraic equations, while the proposed method takes a remarkable
short time (approximately 30 s) to compute results for a much higher c
value (c = 100000).

5.5 Summary

We have provided a methodology to evaluate the performability of the DHCP
dynamic allocation mechanism. We are able to derive a solution approach
with the QBD model for the performability analysis of the DHCP mechanism,
which computational complexity is of the order O(c). Here, it is worth
noting that many existing solutions [31, 82, 97] of QBD processes have the
computational time complexity of O(c3). Besides possessing the capability of
tackling the problem with large c (the number of available IP addresses is of
the order of tens of thousands in the DHCP server) in a very short time, it
gives numerically stable solution too. We are not aware of the works of any
other authors who have succeeded in solving QBD models with such large c
(that is, number of phases in the QBD). Therefore, our analytical model for
the performability analysis of DHCP with a large number of IP addresses can
efficiently be used in the design and dimensioning process for ISP.



6
A New Computational Algorithm to a

Retrial Queue for Wireless Cellular
Networks with Guard Channels‖

6.1 Introduction

Retrial queues have been used to model the queueing problem of new and
handover calls in cellular mobile networks [11, 12, 56, 91, 92, 110, 121] and
telecommunication systems [5, 8–10, 107, 115, 125]. The fact that the retrial
rate depends on the number of retried calls waiting in the system leads to an
analytically intractable model [12, 63]. Therefore, approximation procedures
should be used to compute the performability of the system. In the literature,
there are only two notable contributions which explicitly dealt with the retrial
problem in the presence of guard channels: a computational method [121]
based on the truncation of the state space and an approach [92] based on
approximate Continuous Time Markov Chains (CTMC) with Boolean flags
to take into account the presence of retrial calls.

Tran-Gia and Mandjes [121] proposed a retrial queueing model to evaluate
the performance of cellular mobile networks which takes into account the
customer retrial phenomenon, the fresh and handover calls, and the guard
channel concept. They provided a recursive algorithm to calculate the
probabilities of the truncated state space. It is worth mentioning that the
consideration of guard channels in the queueing model leads to calculations
with negative terms in a recursive algorithm. Negative terms and extremely
small values involved in the computation contribute to a numerical instability
in the recursive algorithm. This numerical problem is first discovered in this
Chapter.

Ajmone Marsan et al. [92] presented several approximate Continuous
Time Markov Chain (CTMC) models with one and two Boolean flags for the
computation of blocking probabilities of new and handover calls in cellular
mobile networks. They assumed that the number of customers in the orbit

‖Tien Van Do. An Efficient Computational Method for Retrial Queues to Cellular
Mobile Systems with Guard Channels. Submitted
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follows a geometric distribution. It will be shown later that this assumption is
only valid when there are no guard channels in the system. That is, there is an
accuracy issue concerning the estimation of the number of waiting customers.

Moreover, there is a need to have a fast and numerically stable
computation method when a cellular area can serve a large number of calls
because of the increase of the system capacity due to advanced techniques
(some GSM cells with sectorial antenna and employing half rate coding for
voice can accommodate a significant number of voice channels, adaptive
coding and modulation techniques such as one introduced in recent standards
of wireless systems [1, 76]).

The aim of this Chapter is to propose a new numerically stable and
computationally efficient algorithm in order to deal with the problems
mentioned above. We also show that the distribution of the number of calls
in the orbit of the approximate queueing model is the mixture of geometric
distributions in the presence of guard channels. It is worth emphasizing that
the numerical stability, small memory requirement for the implementation of
the algorithm and the capability to obtain accurate results within a short
time when there is a large number of channels, are the strengths of the new
approach.

The rest of this Chapter is organized as follows. The considered system
is described in Section 6.2. Existing approximation approaches and a new
computational approach are presented in Section 6.3. Some numerical results
are demonstrated in Section 6.4. Finally, the Chapter is concluded in
Section 6.5.

6.2 The Basic Problem

We consider a particular cell in a cellular mobile system with infinite
user population, where there are c channels to serve incoming calls. The
interarrival times of new and handover calls are exponentially distributed
with rate λF and λH , respectively. Let λ = λF + λH . Call durations (of new
and handover calls) in the cell follow an exponential distribution with mean
1/µ. A blocked call due to the lack of capacity or the resource allocation
policy (e.g.: the guard channel concept) will retry with probability θ and
rate α0. Note that θ is used to represent the degree of impatience of users.
Throughout this Chapter, the orbit is defined as a collection of blocked calls
which will repeat a request for service (see Figure 6.1, cf. [92, 121]). Note
that retried calls are allowed to capture the guard channels similarly to the
assumption in [92, 121].

The number of channels which are exclusively reserved for handover calls
is given by nH . If the number of occupied channels is larger than c−nH , only
an arriving handover call is accepted (Figure 6.1).
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Figure 6.1: A retrial queueing model

The system is described by a two-dimensional continuous time Markov
process (I(t), J(t)), where I(t) (0 ≤ I(t) ≤ c) represents the number of
occupied channels and J(t) (0 ≤ J(t)) is the number of customers waiting
for reattempt at time t. The steady state probabilities are denoted by
pi,j = lim

t→∞
P(I(t) = i, J(t) = j). We introduce vj = (p0,j, . . . , pc,j). It is

worth emphasizing that the system is analytically intractable. Therefore,
approximation approaches should be applied to evaluate the performance of
the system.

6.3 Approximation Procedures

6.3.1 The TGM Algorithm

Tran-Gia and Mandjes [121] applied the truncation of the state space (i.e.:
from {0, . . . , c} × {0, 1, . . .} to {0, . . . , c} × {0, 1, . . . , q} for an appropriate
large q value). It is observed that all probabilities can be written as
functions of p0,q = K0 with the use of the appropriate order of the balance
equations. Therefore, a nearly recursive algorithm (we refer to it as the
TGM algorithm) is applied to express the steady state probabilities in K0.
Next, the normalization equation is used to calculate K0 and the steady
state probabilities. However, there exists a problem of numerical instability
concerning the TGM algorithm because negative terms are involved in the
computation and K0 is extremely small for a number of cases (see Section 5.4).

6.3.2 The AJM Method

Ajmone Marsan et al. [92] proposed several approximated Continuous Time
Markov Chain (CTMC) models with one and two Boolean flags for the
problem (throughout this Chapter, the term AJM approach is used to refer
to the models defined by Ajmone Marsan et al.). The key ideas of the
AJM approach are as follows. (i) The states of the approximate CTMCs are
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described by the number of active calls in the cell and one (or two) Boolean
variable(s) indicating the presence of blocked calls. (ii) The estimation of
the average number (E(J)) of blocked calls in the system is based on an
assumption that the number of customers in the orbit follows a geometric
distribution. The retrials are approximated with an interrupted Poisson
process with rate proportional to E(J). (iii) The rate of retrials which leave
the orbit empty and the rate of retrials which leave the orbit nonempty is
estimated from P (the steady-state probability that a departing customer
leaves the orbit nonempty) and E(J).

A CTMC with a reduced state space can be constructed, for which the
knowledge of P and E(J) is needed. Therefore, an iterative procedure was
proposed to compute P and E(J) (cf. [92]).

6.3.3 A New Computational Algorithm

In this section we present a new computational algorithm. In order to ease
the comprehension, we show the computational procedure for nH = 1. The
same algorithm can be applied with the modification of appropriate elements
in transition matrices defined below for nH > 1. We approximate the original
system (described in Section 6.2 where the individual retrial rate of each call
is α0) with a system where rate α of all repeated calls is independent of the
number of calls in the orbit. The computation of α is based on the iteration,
which will be presented at the end of this Section.

6.3.3.1 Notations

A Quasi-Birth-and-Death representation of the approximated system is
introduced with the following notations.

• Aj(i, k) denotes a transition rate from state (i, j) to state (k, j) (0 ≤
i, k ≤ c; j = 0, 1, . . .), which is caused by either the departure of a call
after service or the arrival of a call. For j ≥ 0, matrix Aj is defined as
the matrix with elements Aj(i, k). Since Aj is j-independent, it can be
written as

Aj = A =


0 λ 0 . . . 0 0 0
µ 0 λ . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . (c− 1)µ 0 λH
0 0 . . . 0 cµ 0

 .

• Bj(i, k) represents one step upward transition from state (i, j) to state
(k, j + 1) (0 ≤ i, k ≤ c; j = 0, 1, . . .), which is due to a call joining
the orbit. In the similar way, matrix Bj (B) with elements Bj(i, k) is
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defined as

Bj = B =


0 0 0 . . . 0 0 0
0 0 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . 0 λF θ 0
0 0 . . . 0 0 λF θ

 ∀j ≥ 0.

• Cj(i, k) is the transition rate from state (i, j) to state (k, j − 1) (0 ≤
i, k ≤ c; j = 1, . . .), which is due to a call which leaves the orbit. Matrix
Cj (∀j ≥ 1) with elements Cj(i, k) is written as

Cj = C =


0 α 0 . . . 0 0
0 0 α . . . 0 0
...

...
...

...
...

...
0 0 . . . (1− θ)α α
0 0 . . . 0 (1− θ)α

 .

DA and DC are diagonal matrices whose diagonal elements are the sum
of the elements in the row of A and C. The infinitesimal generator matrix of
Y is given by 

A00 B 0 . . . . . . . . . . . .
C Q1 B 0 . . . . . . . . .
0 C Q1 B 0 . . . . . .
0 0 C Q1 B 0 . . .
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . .


,

where A00 = A−DA −B and Q1 = A−DA −B −DC .
The balance equations are written as

v0A00 + v1C = 0,
�� ��6.1

vj−1B + vjQ1 + vj+1C = 0 (j ≥ 1).
�� ��6.2

In addition, the normalization equation is

c∑
i=0

∞∑
j=0

pi,j = 1.
�� ��6.3

Since the system is described by a homogeneous Quasi-Birth and Death
process, the steady state probabilities can be obtained with the existing
methods like the matrix-geometric and its variants [14, 84, 99], or the spectral
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expansion [47, 97]. However, the existing methods have the state space
explosion problem (no results due to a very long-running time of computer
programs implementing these methods) and numerically instable due to the
ill-conditioned linear equations (which are needed to solve for the steady-state
probabilities) when c is large (the problem starts when c reaches a value of
several hundreds).

6.3.3.2 A Spectral Expansion Solution

The characteristic matrix polynomial associated with equations (6.2)
is Q(x) = B + Q1x + Cx2. Assume that Q(x) has d pairs of
eigenvalue-eigenvectors (xi,ψi), thus satisfying the equation:

ψiQ(xi) = 0; det[Q(xi)] = 0 for i = 0, . . . , d− 1.
�� ��6.4

For the kth (k = 0, . . . , d − 1) eigenvalue-eigenvector pair, (xk,ψk), by
substituting vj = ψkx

j
k in the equations (6.2), this set of equations is satisfied.

This means vj = ψkx
j
k is a particular solution. As a consequence, the general

solution for vj is a linear sum of all the factors (ψkx
j
k). That is, we can write

vj =
d∑

k=0

bkx
j
kψk (j ≥ 0),

�� ��6.5

where (x0,ψ0), . . ., (xd,ψd) are left-hand-side eigenvalue-eigenvector pairs of
Q(x) and b0, . . . , bd are coefficients to be determined. In order to satisfy the
normalization equation (6.3), only |xi| < 1 should be considered. Without
the loss of generality, we let d is the number of these eigenvalues xi. The
number of coefficients b0, . . . , bd to be determined is d + 1. We can utilize
equation (6.1) and the normalization equation to compute the coefficients.
Thus, the number of linear equations is c+2. However, only c+1 are linearly
independent. Therefore, the linear equations have a unique solution if and
only if c = d. This means, the exact number of eigenvalues (|xi| < 1) is c+ 1.

In summary, the first step of the spectral expansion (SE) method [97]
finds the eigenvalues and eigenvectors (after the linearization of the problem
to the generalized eigenproblem, the implicitly restarted Arnoldi method [85]
is applied to the generalized eigenproblem). Then, coefficients b0, . . . , bc are to
be computed as the solution of linear equations based on equation (6.1) and
the normalization equation. However, the SE method is numerically instable1

if c is large because of the state explosion problem. It is worth emphasizing
that the methods [14, 84, 99] have the same problem as well. In section 6.3.3.3
we propose a new computational algorithm which does not suffer the problem
mentioned above.

1then incorrect results are produced.
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6.3.3.3 Proposed Computational Algorithm

In the present Chapter, Q(x) is a tridiagonal matrix

Q(x) =

 q0,0(x) q0,1(x) 0 . . . 0 0
q1,0(x) q1,1(x) q1,2(x) . . . 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
0 0 . . . qc−1,c−2(x) qc−1,c−1(x) qc−1,c(x)
0 0 . . . qc,c−1(x) qc,c(x)

 ,
where the elements of Q(x) are expressed as

q0,0(x) = −(λ+ α)x,

qi,i(x) = −(λ+ α + iµ)x (i = 1, . . . , c− 2),

qi,i+1(x) = λx+ αx2 (i = 1, . . . , c− 2),

qi,i−1(x) = iµx (i = 1, . . . , c),

qc−1,c(x) = λHx+ αx2,

qc−1,c−1(x) = λF θ − (λF θ + λH + (c− 1)µ)x

−(α + (1− θ)α)x+ (1− θ)αx2,
qc,c(x) = λF θ − (λF θ + cµ+ (1− θ)α)x

+(1− θ)αx2.

It is observed that only qc−1,c−1(x) and qc,c(x) is not divideable by x
amongst the elements of the characteristic polynomial. Thus Q(x) has
c − 1 zero-eigenvalues (x0 = x1 = . . . = xc−2 = 0). The corresponding
independent eigenvectors for c − 1 zero-eigenvalues are ψ0 = {1, 0, . . . , 0},
ψ1 = {0, 1, 0, . . . , 0},. . . ,ψc−2 = {0, 0, . . . , 1, 0, 0}. As a consequence, the
steady state probabilities can be expressed as follows

vj = bc−1ψc−1x
j
c−1 + bcψcx

j
c (j ≥ 1),

�� ��6.6

v0 =
c∑

k=0

bkψk = b + bc−1ψc−1 + bcψc,
�� ��6.7

where b =
c−2∑
k=0

bkψk = {b0, b1, . . . , bc−2, 0, 0}.

Remarks. Since xc−1 6= xc holds in order to ensure that eigenvectors
ψk (k = 1, . . . , c) are orthogonal, it is readily observed from (6.6) that the
probability distribution of the number of calls in the orbit is the “mixture”
of geometric distributions when nH = 1 holds, which does not confirm the
assumption [92] that the number of customers in the orbit follows a geometric
distribution (it is only when nH = 0). It can also be proved that the number
of zero-eigenvalues of Q(x) is c− nH for nH ≥ 1.

Q(xi) (i = c − 1, c) is a tridiagonal matrix and qk,k(xi) 6= 0 (for k =
0, . . . , c − 2). Hence, the component matrices of the LU decomposition of
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Q(xi) are written as

L(xi) =


l1(xi) 0 0 . . . 0 0 0
µxi l2(xi) 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . (c− 1)µx1 lc(xi) 0
0 0 . . . 0 cµxi lc+1(xi)

 ,
�� ��6.8

U(xi) =


1 u1(xi) . . . 0 0 0 0
0 1 u2(xi) . . . 0 0 0
...

...
...

...
...

...
...

0 0 . . . 0 1 uc(xi)
0 0 . . . 0 0 1

 ,
�� ��6.9

where lj(xi) (j = 1, . . . , c + 1) and uj(xi) (j = 1, . . . , c) are the elements of
L(xi) and U(xi), respectively. After a simple algebra, it can be written as

l1(xi) = q1,1(xi) = −(λ+ ν)xi,

lj(xi) + α(j − 1)µx0uj−1(x0) = qj,j(xi), (j = 2, . . . , c+ 1),

lj(xi)uj(xi) = λxi + νx2i , (j = 1, . . . , c).
�� ��6.10

Therefore, the determinant of Q(xi) is expressed as

Det[Q(xi)] = Det[L(xi)]Det[U(xi)] =
c+1∏
j=1

lj(xi).
�� ��6.11

As the consequence of equation (6.10), lj(xi) 6= 0 holds for (1 < j < c) i =
c − 1, c. Hence, Det[Q(xi)] = 0 follows lc(xi)lc+1(xi) = 0, which means xi
is the root of lc(x)lc+1(x). To compute the roots of lc(x)lc+1(x) in interval
(0, 1), several algorithms can be applied. In this Chapter, we use the Brent
method [19] to find xi in interval (0, 1).

For each eigenvalue x the corresponding eigenvector ξ(x) =
{ξ0(x), ξ1(x), . . . , ξc(x)} can be determined by equation ξ(x)Q(x) = 0 and
ξ0(x) = 1 (because multiplying an eigenvector with a scalar number results
in an eigenvector).

1 = ξ0(x),

0 = ξ0(x)q0,0(x) + ξ1(x)q1,0(x),

0 = ξi−1(x)qi−1,i(x) + ξi(x)qi,i(x) + ξi+1(x)qi+1,i(x)

i = 1, . . . , c− 1,

0 = ξc−1(x)qc−1,c(x) + ξc(x)qc,c(x).
�� ��6.12

After a simple algebra on equation (6.1), we obtain

b = −bc−1ψc−1 − bcψc − (bc−1ψc−1xc−1 + bcψcxc)A
−1
00 .

�� ��6.13
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That is, b0, . . . , bc−2 are expressed in bc−1 and bc (it is worth emphasizing
that the inverse of A00 can be efficiently obtained by the recursive formula
in [122] because A00 is a tridiagonal matrix). Moreover, the last two elements
of vector b are zero. Hence, bc−1 can be expressed in bc as well with setting
one of these last two elements to zero (note that these two equations are not
independent). Let e denote a column vector of size c + 1 with all elements
equal to 1. Utilizing the normalization equation

1 =
c∑
i=0

∞∑
j=0

pi,j = (b +
bc−1

1− xc−1
ψc−1 +

bc
1− xc

ψc).e,
�� ��6.14

bc can be computed first. Then coefficients bi (i = c − 1, . . . , 0) can be
determined.

All the steps of the proposed computational procedure are summarized in
Algorithm 6.1.

Algorithm 6.1 The proposed computation algorithm

{α0 is the retrial rate of each call in the orbit}
{α is the retrial rate of the approximated model}
{En(J) is the average number of calls in the orbit in the approximated
model}
α = α0

repeat
Compute xc−1 and xc (i.e the roots of lc(xi)lc+1(xi) = 0 based the Brent
algorithm)
Compute ψc−1 and ψc

Express b based on (6.13)
Express bc−1 in bc
Compute bc based on the normalization equation
Compute all bi (i = c− 1, . . . , 1)
Compute En(J)
α = α0En(J)

until En(J) converges

6.4 Numerical Results

In the following, we present a comparison between the original TGM
approach, the AJM method and the proposed algorithm. Note that
the recursive algorithm proposed by Tran-Gia and Mandjes requires some
algebraic steps. Therefore it is most suitably implemented with the
use of a computer algebra system (CAS) which allows the manipulation
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of mathematical expressions in symbolic form (it is possible to use the
conventional programming languages like C, C++, etc to implement the
algorithm, however it is tiresome work to make algebraic steps). In the present
Chapter, we apply the CAS tool Mathematica (http://www.wolfram.com)
for the implementation of the TGM algorithm. We programmed the AJM
approach based on a CMTC model with one flag.

Similarly to the numerical example2 in [121], we use the following
parameter values unless stated otherwise: c = 15, 1/µ = 120 s, α0/µ = 20,
λF/λH = 24 and θ = 1.0. The offered load is defined by ρ = λ/(cµ). All the
computations are performed with machine precision 10−16.

6.4.1 The Numerical Problem of the TGM Algorithm

We report the obtained results versus q concerning the TGM approach in
Table 6.1. It is observed that the recursive algorithm for the main M/M/m
retrial queue converges from an appropriate large value of q, while the TGM
approach gives ill results at a large value of q.

6.4.2 The Lower Bound and Upper Bound of The
Average Number of Busy Channels

Now we investigate the average number of busy channels (i.e. E(I)) in the
system described in Section 6.2). We have the following intuitive observations
concerning E(I) when θ = 1.0 holds.

• E(I) is greater than or equal to Elower(I) which is defined as the average
number of busy servers of the considered system with appropriate
setting of input parameters such that there is no handover call in the
system (λH = 0) and the guard channel is not used to accept either new
or retried calls. That means, the system now is modeled by the classical
main M/M/m retrial queue with m = c − 1 and the arrival rate equal
to λF .

• E(I) is upper-bounded by Eupper(I) which is the average number of
busy servers of the classical main M/M/m retrial queue with m = c
and the arrival rate equal to λ.

In Table 6.2, E(I) values computed by our method (En(I)), the TGM
algorithm and the AJM approach, are compared against Elower(I) and
Eupper(I), which shows that our method produces results within the lower
and upper bound, and close to the simulation results. The results obtained
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Table 6.1: Results by the TGM approach vs q

q θ = 1.0, ρ = 0.9
PrTGM(I = c− 1) PrTGM(I = c) ETGM(I) ETGM(J)

5 0.0979144 0.060649 9.71497 0.145959
6 0.0978954 0.0606622 9.71492 0.146905
7 0.0978893 0.0606671 9.71491 0.147343
8 0.0978872 0.060669 9.71491 0.147546
9 0.0978864 0.0606698 9.71491 0.14764

10 0.0978861 0.0606701 9.71491 0.147683
15 0.0978859 0.0606703 9.71491 0.14772
18 0.0980308 0.0607493 9.71779 0.147921
20 0.0656716 0.0441439 7.80233 0.106539
25 0.0072863 0.0000391481 7.33665 -0.00144331
30 -0.0000952519 0.0000255201 4.82715 -0.000411096
35 -0.0335317 -0.0000583539 2.06684 -0.0111385
40 -0.015773 0.00159368 5.30805 -0.00615581
45 -0.0159268 0.0146501 10.0892 -0.0463782
50 0.00207165 -4.64961*10−8 5.96606 0.00339289
60 -0.0292324 -0.00370845 5.0368 0.0016369
70 0.00368597 -0.00691 9.72773 0.00775322
80 0.0013226 -0.00065035 5.98353 0.00231422
90 -0.0916223 -0.0000688937 5.31296 -0.0419629

100 -0.0663172 0.00352705 2.99921 -0.0293509

Table 6.2: E(I) –the average number of busy servers– compared with the
thresholds

ρ Elower(I) new method Eupper(I) TGM AJM Simulation
0.1 1.344 1.5 1.5 1.5 1.5 1.499949
0.2 2.688 3.0 3.0 3.0 2.99999 3.0000
0.3 4.032 4.49999 4.5 4.49964 4.49923 4.499798
0.4 5.376 5.99979 6.0 5.98881 5.98708 5.999880
0.5 6.72 7.49805 7.5 7.39322 7.41707 7.497120
0.6 8.064 8.99012 9.0 8.52668 8.70443 8.989000
0.7 9.048 10.4666 10.5 9.24279 9.77815 10.453600
0.8 10.752 11.9143 12.0 9.59074 10.6223 11.884100
0.9 12.096 13.3194 13.5 9.71491 11.2653 13.250500
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by the TGM and AJM method is only close to our method and within the
bounds when the load is moderate or small.

6.4.3 Comparison with Simulation

We have built a simulation for the original and analytically intractable system
described in Section 6.2, where the retrial rate depends3 on the number
of waiting calls in the orbit. In Table 6.3 we present some illustrative
results to show the accuracy of the new method concerning to the blocking
probabilities of calls and the average number of occupied channels. Note that
the simulation results are generated with the confidential level of 99%, and
the ratio of the half-width of the confidence interval and the mean of collected
observations is 0.099%.

Table 6.3: Comparison with simulation

ρ θ = 0.1
Simulation Analytical

Es(I) Es(J) Ps(I = Ps(I = c) En(I) En(J) Pn(I = Pn(I = c)
c− 1) c− 1)

0.1 1.500250 0.000000 0.000000 0.000000 1.5 5.6 10−13 7.5 10−10 6.5 10−12

0.2 3.000170 0.000000 0.000002 0.000000 2.99999 4.2 10−9 0.000002 4.8 10−8

0.3 4.500090 0.000000 0.000161 0.000005 4.49925 4.5 10−7 0.000178 0.000005
0.4 5.992940 0.000000 0.002161 0.000091 5.98737 0.00000 0.002236 0.000078
0.5 7.418670 0.000485 0.011387 0.000611 7.41839 0.000046 0.011449 0.000502
0.6 8.712900 0.001767 0.034116 0.002205 8.70786 0.000165 0.033841 0.001781
0.7 9.796540 0.004544 0.071726 0.005546 9.78445 0.000408 0.070401 0.004325
0.8 10.649000 0.008906 0.118981 0.010615 10.6317 0.000784 0.116733 0.008202
0.9 11.302100 0.014681 0.170403 0.017407 11.2777 0.001282 0.167009 0.013212

θ = 0.3
0.1 1.500250 0.000000 0.000000 0.000000 1.5 1.9 10−12 7.5 10−10 1.5 10−11

0.2 3.000600 0.000000 0.000002 0.000000 2.99999 1.5 10−8 0.0000027 1.1 10−7

0.3 4.500360 0.000000 0.000164 0.000011 4.49932 0.0000015 0.000178 0.000011
0.4 5.994750 0.000000 0.002234 0.000224 5.99969 0.001129 0.002387 0.0012942
0.5 7.431050 0.001831 0.011728 0.001494 7.4239 0.000174 0.011521 0.0011505
0.6 8.750470 0.007213 0.035735 0.005646 8.72407 0.000643 0.034040 0.0040884
0.7 9.862670 0.019015 0.074871 0.014397 9.78445 0.000408 0.070401 0.0043254
0.8 10.760900 0.038974 0.123618 0.028256 10.6317 0.000785 0.116733 0.0082025
0.9 11.455700 0.067699 0.175191 0.046835 11.2777 0.001282 0.167009 0.0132115

θ = 1.0
0.1 1.500250 0.00 0.00 0.000 1.5 1.99 10−11 7.5 10−10 7.4 10−11

0.2 3.000920 0.000000 0.000003 0.000000 3.0 2.5 10−7 0.000003 6.0 10−7

0.3 4.500000 0.000073 0.000181 0.000043 4.49999 0.000041 0.000186 0.0000669
0.4 5.999880 0.001795 0.002508 0.000912 5.99969 0.001129 0.002387 0.0012942
0.5 7.497120 0.017323 0.014018 0.007419 7.49959 0.011952 0.012508 0.0097432
0.6 8.989000 0.095756 0.043888 0.033434 8.99538 0.071775 0.041080 0.0373981
0.7 10.453600 0.379311 0.091433 0.102135 10.4503 0.305958 0.0761227 0.118219
0.8 11.884100 1.244660 0.140123 0.239130 11.8743 1.09335 0.167975 0.20876
0.9 13.250500 4.081900 0.155641 0.468458 13.2458 4.22319 0.153844 0.470658

2Note that the results of the TGM approximation was not compared with
simulation [121].

3It is the only difference between the simulation and the proposed approach is the retrial
rate of calls waiting in the orbit.
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6.4.4 Computation with a Large Value of c

In this Section we compare the computational cost of the AJM and our
proposed method. Note that the computation time by the TGM method is
not compared due to its numerical instability. It is also worth mentioning
that Domenech-Benlloch et al. [56] proposed the generalized truncation
approach for the main retrial queue M/M/c (without guard channels) based
on the homogenization of the problem and the matrix-geometric approach.
The approach [56] can be appropriately modified to handle the current
problem (i.e. retrial queue with guard channels). However, it certainly
takes more time to get results4 than the AJM method since the approach
by Domenech-Benlloch et al. [56] has to compute the rate matrix and solve a
significant number of linear equations. In addition, the approach [56] needs
a significant amount of memory to store matrices during the computation.

In Table 6.4, we report the computation times needed by different methods
(the results are obtained in a machine with processor Quad-Core Xeon E5410
2.33GHz running Linux) versus c with ρ = 0.9, 1/µ = 120 s, α0/µ = 20,
λF/λH = 24 and θ = 1.0, which show that the new method is very fast and
efficient in the term of memory usage.

Table 6.4: Computational time in seconds

c AJM New method
500 79 16

1000 334 70
1500 693 178

6.5 Conclusions

We have presented a new stable algorithm in order to deal with the numerical
problems concerning the computation of the steady state probabilities of
wireless systems with retrial calls and guard channels. We have also shown
that the distribution of the number of calls in the orbit of the approximate
queueing model is the sum of the corresponding components of geometric
sequences. The numerical stability, the small memory requirement for the
implementation of the algorithm and the capability to obtain results for a
large number of channels are the strengths of the new approach.

4It is also stated in [56] that their approach results in an increase in the computational
cost compared to the AJM approach





7
An Efficient Computation Algorithm

for a Multi-Server Feedback Retrial
Queue with a Large Queueing

Capacity‖

7.1 Introduction

There are two main methods to find the steady state probabilities for QBD
processes on semi-infinite strips. The matrix-geometric [102] method (which is
widely used to analyze queues [18, 87]) and its variants [82, 101] are numerical
approaches to recursively compute the rate matrix (the minimal nonnegative
matrix solution) of the matrix quadratic equation. The spectral expansion
method is based on the eigenvalues and eigenvectors of the characteristic
matrix polynomial [47, 97]. It is worth emphasizing that there have been
no works which consider or develop an algorithm for queues involving
zero-eigenvalues (see [28, 30, 33, 67, 97] for more detail). In this Chapter,
we deal with an algorithm to find the eigenvalues of the matrix quadratic
equation of a tridiagonal form based on the sign variations of the Sturm
sequences. We consider a case where multiple zero-eigenvalues are involved.

The example for investigation is the M/M/c/N+c feedback queue with
constant retrial rate, which is solved by the matrix-geometric method in [80].
However, the existing approaches face the state explosion problem when
the queueing capacity (N + c) is large. We prove that the number of
zero-eigenvalues of the characteristic matrix polynomial associated with the
balance equation is b(N + c + 2)/2c. As a consequence, the remaining
eigenvalues inside the unit circle can be computed in a quick manner based
on the Sturm sequences. It is worth emphasizing that the algorithm of [67]
should be slightly modified in order to determine the remaining eigenvalues
of the characteristic matrix polynomial inside the unit circle. Numerical

‖Tien Van Do. “An Efficient Computation Algorithm for a Multiserver Feedback
Retrial Queue with a Large Queueing Capacity”. Applied Mathematical Modelling.
http://dx.doi.org/10.1016/j.apm.2009.10.025
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results are presented to compare computation times which are needed by the
matrix geometric method, the pure spectral expansion approach, the method
proposed by Naoumov et al. and the new algorithm to calculate the steady
state probabilities. The comparison clearly demonstrates the advantage of
the new algorithm on the computation of the steady state probabilities of the
queue with a large queueing capacity.

The rest of this Chapter is organized as follows. In Section 7.2, the
M/M/c/N+c feedback queue with constant retrial rate is described. A
main theoretical result concerning the number of zero-eigenvalues of the
characteristic matrix polynomial associated with the balance equation and
the modified algorithm to calculate the eigenvalues is presented in Section 7.3.
Numerical results are demonstrated in Section 7.4. Finally, Section 7.5
concludes the Chapter.

7.2 A System Description

The M/M/c/N+c feedback queue with constant retrial rate has a limited
waiting position of size N and c homogeneous servers. Service times are
exponentially distributed with parameter µ. External customers arrive
according to a Poisson process with rate λ. Upon the arrival, an external
customer

• either is served if there is a free server,

• or occupies a waiting position if all c servers are busy and there is a free
waiting position,

• or is blocked and is forced to leave the system forever if all c servers are
busy and waiting positions are occupied.

When one of the servers becomes free, the customer in the first waiting
position immediately starts getting served.

A customer who leaves a system after service either join the retrial group
(orbit) for another service with probability q (0 ≤ q < 1) or leave the system
forever with probability p = 1 − q. Customers in the retrial group request
service with constant retrial rate σ, which is independent of the number of
customers in the retrial group [80]. Note that a customer in the orbit can
enter the service facility at the retrial instant only when there are idle servers.

The system is completely described by two random variables. I(t) (0 ≤
I(t) ≤ c + N) is a random variable to denote the number of customers in
the system (being served by servers or waiting in the waiting positions). J(t)
(J(t) ≥ 0) is a random variable to represent the number of customers in
the retrial group. Y = {I(t), J(t)} is a Continuous Time Markov Chain
(CTMC) with a state space {0, 1, . . . , c + N} × {0, 1, . . .}. We denote the
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steady state probabilities by πi,j = lim
t→∞

P(I(t) = i, J(t) = j), and introduce

vj = (π0,j, . . . , πc+N,j).
The evolution of Y is driven by the following transitions.

(a) Aj(i, k) denotes a transition rate from state (i, j) to state (k, j) (0 ≤
i, k ≤ n = c + N ; j = 0, 1, . . .). These transitions happen due to either
the arrival of an external customer or the departure of a customer from
the system. Aj(i, k) does not depend on j, so we can write

Aj(i, k) = A(i, k) =


pµmin(i, c) if k = i− 1 and i ≥ 1
λ if k = i+ 1
0 otherwise

.
�� ��7.1

(b) Bj(i, k) represents one step upward transition from state (i, j) to state
(k, j+ 1) (0 ≤ i, k ≤ n = c+N ; j = 0, 1, . . .). These transitions are due
to customers who join the retrial group.

Bj(i, k) is independent of j, thus it is valid

Bj(i, k) = B(i, k) =

{
qµmin(i, c) if k = i− 1 and i ≥ 1
0 otherwise

.
�� ��7.2

(c) Cj(i, k) is the transition rate from state (i, j) to state (k, j − 1) (0 ≤
i, k ≤ n = c+N ; j = 1, . . .). These transitions are initiated by requests
from the retrial group. Cj(i, k) does not depend on j, so we can write

Cj(i, k) = C(i, k) =

{
σ if k = i+ 1 and i < c
0 otherwise

.
�� ��7.3

A(i, k), B(i, k) and C(i, k) are the elements of A, B and C matrices,
respectively. We introduce diagonal matrices DA, DB and DC . The diagonal
elements are the sum of the elements in the row of A, B and C. The
infinitesimal generator matrix of Y can be written as follows

A00 Q0 0 . . . . . . . . . . . .
Q2 Q1 Q0 0 . . . . . . . . .
0 Q2 Q1 Q0 0 . . . . . .
0 0 Q2 Q1 Q0 0 . . .
...

...
...

...
...

...
...

. . . . . . . . . . . . . . . . . . . . .


,

�� ��7.4

where A00 = A−DA−DB, Q0 = B, Q1 = A−DA−DB −DC and Q2 = C.
The forms of the matrices are illustrated in Table 7.1.
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A =


0 λ 0 0 0 0
pµ 0 λ 0 0 0
0 2pµ 0 λ 0 0
0 0 2pµ 0 λ 0
0 0 0 2pµ 0 λ
0 0 0 0 2pµ 0

 ;Q0 = B =


0 0 0 0 0 0
qµ 0 0 0 0 0
0 2qµ 0 0 0 0
0 0 2qµ 0 0 0
0 0 0 2qµ 0 0
0 0 0 0 2qµ 0

 ;

Q2 = C =


0 σ 0 0 0 0
0 0 σ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ;

Q1 =


−λ− σ λ 0 0 0 0
pµ −λ− µ− σ λ 0 0 0
0 2pµ −λ− 2µ λ 0 0
0 0 2pµ −λ− 2µ λ 0
0 0 0 2pµ −λ− 2µ λ
0 0 0 0 2pµ −2µ

 ;

Q(x) =


(−λ− σ)x λx+ σx2 0 0 0 0
qµ+ pµx (−λ− µ− σ)x λx+ σx2 0 0 0
0 2qµ+ 2pµx (−λ− 2µ)x λx 0 0
0 0 2qµ+ 2pµx (−λ− 2µ)x λx 0
0 0 0 2qµ+ 2pµx (−λ− 2µ)x λx
0 0 0 0 2qµ+ 2pµx −2µx

 .

Table 7.1: Matrices for c = 2 and N = 3

7.3 An Efficient Computational Algorithm

7.3.1 The Number of Zero Eigenvalues

For j ≥ 1, the balance equations is written as follows

vj−1Q0 + vjQ1 + vj+1Q2 = 0 (j ≥ 1).
�� ��7.5

Q(x) = Q0+Q1x+Q2x
2 is defined as the characteristic matrix polynomial

associated with equations (7.5). In the present Chapter, Q(x) is a tridiagonal
matrix

Q(x) =



q0,0(x) q0,1(x) 0 . . . 0 0 0
q1,0(x) q1,1(x) q1,2(x) . . . 0 0 0

0 q2,1(x) q2,2(x) q2,2(x) . . . 0 0
...

...
...

...
...

...
...

0 0 . . . qn−1,n−2(x) qn−1,n−1(x) qn−1,n(x)
0 0 . . . 0 qn,n−1(x) qn,n(x)


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where

q0,0(x) = −(λ+ σ)x,

qi,i−1(x) = qµmin(i, c) + pµmin(i, c)x (i = 1, . . . , n),

qi,i(x) = −(λ+ µmin(i, c) + C(i, i+ 1))x (i = 1, . . . , n− 1),

qi,i+1(x) = λx+ C(i, i+ 1)x2 (i = 0, . . . , n− 1),

qn,n(x) = −cµx.

The steady state probabilities are closely related to the
eigenvalue-eigenvector pairs (xi,ψi) of Q(x), which satisfy ψQ(x) = 0
and det[Q(x)] = 0 (cf. [31, 97]). If the system is ergodic, then the number
of eigenvalues of the characteristic polynomial Q(x) with a degree of n + 1,
which are strictly inside the unit circle, has to be n + 1 (see the proof in
Section 2.2.1). So we can write

vj =
n∑
i=0

aix
j
iψi (j ≥ 0),

�� ��7.6

where xi are the eigenvalues inside the unit circle. Coefficients ai can be
determined from the balance equation for level j = 0 and the normalization
equation.

Theorem 7.1. The number of zero-eigenvalues of Q(x) is b(n+ 2)/2c.

Proof. We provide a proof with mathematical induction. Let [Q(x)]{0,...,k}
denote a submatrix formed by the first k+ 1 rows and columns of Q(x). It is
easy to verify that det[Q(x)]{0,1} = 0 has one zero-root and det[Q(x)]{0,1,2} = 0
has two zero-roots.

Assume that det[Q(x)]{0,...,k−2} = 0 (k ≥ 3) has bk/2c zero-roots and
det[Q(x)]{0,...,k−1} = 0 has b(k + 1)/2c zero-roots.

[Q(x)]{0,...,k} is a tridiagonal matrix. Therefore we can write

det[Q(x)]{0,...,k} = qk,k(x)det[Q(x)]{0,...,k−1}−qk,k−1(x)qk−1,k(x)det[Q(x)]{0,...,k−2}.

Note that qk,k(x) and qk−1,k(x) is divideable by x, while qk,k−1(x) is not. As a
consequence, det[Q(x)]{0,...,k} = 0 has bk/2c+ 1 = b(k+ 2)/2c zero-roots.

7.3.2 A Computational Algorithm

Following [67], ψQ(x) = 0 can be written as,

0 = ψ0q0,0(x) + ψ1q1,0(x),

0 = ψi−1qi−1,i(x) + ψiqi,ix+ ψi+1qi+1,i(x) (i = 1, . . . , n− 1),

0 = ψn−1qn−1,n + ψnqn,n(x),
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where ψ = {ψ0, . . . , ψn}.
We set ψ0 = 1 and qn+1,n = 1 + x, therefore

ψ1(x) = −q0,0(x)/q1,0(x),

ψi+1(x) = −ψi(x)qi,i(x) + ψi−1(x)qi−1,i(x)

qi+1,i(x)
(i = 1, . . . , n).

�� ��7.7

It is proved by [67] that the sequence {ψi(x), i = 0, . . . , n+1} associated with
the characteristic matrix polynomial of tridiagonal form is a Sturm sequence
within a given interval if for any fixed x within this interval ψ0(x) = 1 and
ψi(x) = 0, i = 1, . . . , n implies ψi−1(x)ψi+1(x) < 0. Furthermore, the number
of sign variations is defined by [67] as

nsv(x) = #{ψi(x)ψi+1(x) < 0, 0 ≤ i ≤ n}+ #{ψi(x) = 0, 0 ≤ i ≤ n}.
�� ��7.8

Grassmann [67] has reported a divide-and-conquer procedure (called getx

in Algorithm 7.1) to find eigenvalues inside the unit circle for QBD processes
with the characteristic polynomial matrix of a tridiagonal form if they are all
non-zero. Grassmann’s algorithm discards any interval (x1, x2] if nsv(x1) =
nsv(x2). To compute the eigenvalues in interval (0, 1), it is proposed to start
the algorithm with getx(0,n+1,1,0) (cf.: [67]). It is also mentioned [67]
that handling zero-eigenvalues will be developed in future.

Algorithm 7.1 getx procedure

{Xeg is the vector of eigenvalues}
{ε is the required accuracy}
PROCEDURE getx(x1, nx1, x2, nx2)
if nx1 == nx2 then

Return
end if
if x2 − x1 < ε then

if nx1 == nx2 + 1 then
Xeqnx2 = x1

end if
Return

end if
x = x1+x2

2

nx = nsv(x)
Call getx(x1, nx1, x, nx)
Call getx(x, nx, x2, nx2)
END OF PROCEDURE getx

If the QBD process of the M/M/c/N+c feedback queue with constant
retrial rate is ergodic, then the number of eigenvalues inside the unit circle is
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n+ 1. We have proved that the number of zero-eigenvalues is b(n+ 2)/2c. In
order to deal with zero-eigenvalues, two modifications are needed.

• The modified function for the number of sign variations is defined as
follows

mnsv(x) = #{ψi(x)ψi+1(x) < 0, 0 ≤ i ≤ n}.
�� ��7.9

The new function for the number of sign variations should be applied
inside the getx function as well.

• The modified initialization should be applied as illustrated in
Algorithm 7.2 to find the remaining non-zero eigenvalues of Q(x). Note
that mnsv(ε) = n − bn/2c because the number of other eigenvalues
inside the unit circle is n− bn/2c.

Note that for each eigenvalue, the corresponding eigenvector can be
determined with equation (7.7), then the steady state probabilities can be
computed.

Algorithm 7.2 Initialization to find n − bn/2c non-zero eigenvalues inside
the unit circle
{ ε is the required accuracy}
{Xeg is the vector of eigenvalues indexed from 0 to n− bn/2c}
x1 := ε
x2 := 1− ε
nx1 := mnsv(x1)
nx2 := mnsv(x2)
Call getx(x1, nx1, x2, nx2)

7.4 Numerical Results

In this Section, we illustrate the efficiency of the computation method
for a large queueing capacity vs other methods (direct computation of
the eigenvalues of the characteristic matrix polynomial and the matrix
geometric method). As already analyzed in [47], both the spectral expansion
and the matrix-geometric method have the same complexity of solving
the unknowns after the computation of eigenvalue-eigenvectors and the
rate matrix. Therefore, we compare the computational time needed to
obtain the eigenvalues/eigenvectors (for the new method and the direct
calculation of the eigenvalues) and the rate matrix in the case of the
matrix-geometric method. Four methods are compared in this section: the
original spectral expansion method [31], the successive substitution procedure
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of the matrix-geometric method [102] proposed by Kumar et al. [80] for the
M/M/c/N+c feedback queue with constant retrial rate, the variant of the
matrix-geometric method [101] (which is considered as one of the best and
latest improvements for the original matrix-geometric method) and the new
algorithm.
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Figure 7.1: Computational time in seconds

For the numerical study, we choose the following parameters N = 3,
σ = 2.0, µ = 1.0/c, p = 0.6, q = 0.4. The accuracy is ε = 10−10. This
value is also the stopping criteria for the matrix geometric approach. Results
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were produced in a machine with Intelr Xeonr E5410 2.33GHz processor.
In Figure 7.1, we plot the computation time versus the queueing capacity
n and λ. In the plots the GEO, SPE, NAO and NEW denotes results
obtained by successive substitution procedure, original spectral expansion,
an improvement for the matrix-geometric method by Naoumov et al. and the
new method, respectively. It is observed that the matrix geometric method
(the successive substitution procedure and a procedure proposed by Naoumov
et al.) takes the smallest time to compute the steady state probabilities when
n is smaller than 300. Note that the difference between Naoumov’s method
and the successive substitution (SS) procedure is that the SS procedure
involves a less computation effort (matrix multiplication, substraction and
addition) in one iteration than Naoumov’s method. However, the convergence
of the SS procedure is slower than Naoumov’s method. When n is small, the
computation effort is a dominant factor in the case of Naoumov’s method, so
we can observe that the computation time is higher than the SS procedure in
the plots.

For n < 50, the original spectral expansion method needs less time than
the new method. The new method outperforms other methods for n > 300,
where the computation time of the successive substitution procedure jumps
to very high. The difference is more than one order of magnitude. It is worth
mentioning that the memory requirement of the new method is minimal (e.g.
no need to store matrices).

7.5 Conclusions

We have proved that the number of zero-eigenvalues of the characteristic
matrix polynomial associated with the balance equation is b(N + c + 2)/2c.
We present an approach to deal with the multiple zero-eigenvalues. As a
consequence, the steady state probabilities are determined in an efficient way
for the M/M/c/N+c feedback queue with a large queueing capacity.

Numerical results are presented to compare computation times which
are needed by the matrix geometric method, the pure spectral expansion
approach, Naoumov’s method and the new algorithm to calculate the steady
state probabilities. The comparison clearly demonstrates the advantage of the
new algorithm on the computation of the steady probabilities of the queue
with a large queueing capacity.
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8
Vacation Queues and Applications‖

8.1 Introduction

At present, virtualization constitutes a main trend in information systems
and advanced business engineering. Recent studies have shown that a
proportion of 39% among 808 of the largest companies worldwide apply server
virtualization to achieve new business goals and to provide more efficient
services to their customers. Disaster recovery, avoidance of service outage
and dynamic load balancing represent some of the most important areas for
the application of the rapidly evolving virtualization concepts. Compared to
existing service technologies 25% of the cost or even more can be saved by
these methods.

In this context, virtualization means either to let a federation of servers
appear as multiple computing entities or to let many computing entities
appear as a single computer. The latter is commonly called server
aggregation or grid computing. It is identified by an IDC research report
(http://www.idc.com) that virtualization of system resources in severs with
an x86 compatible instruction set is one disruptive technology. In the near
future it may initiate a paradigm shift in IT industry providing new powerful
services like enhanced server hosting.

As indicated by various studies, it is the rationale behind this trend
that virtualization can reduce the infrastructure and IT management cost.
The reason is that it substantially improves the utilization of the physical
infrastructure, i.e. servers, storage systems and network components, while
it can provide the same safety and performance compared to a solution where
each ASP obtains a separate physical machine/server from the owner of the
infrastructure. It is another advantage that the infrastructure can provide

‖

• Tien Van Do and Udo R. Krieger. “A performance model for maintenance tasks in
an environment of virtualized servers”. In IFIP/TC6 NETWORKING 2009, pages
931–942, Aachen, Germany, 5 2009.

• Tien Van Do. M/M/1 retrial queue with working vacations. Acta Informatica,
47:(1) pp. 67-75. (2010)
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in a flexible manner different service packages concerning specific operating
systems running on top of the same hardware.

From a practical perspective, it is observed that virtualization is a
well founded area. However, there are no theoretical investigations which
consider contention problems arising in the virtualized environment of a server
farm. To model the interaction between application service providers and
an infrastructure provider this Chapter studies the CPP/M/c queue with a
compound Poissonian arrival process (CPP) and working vacations.

Such vacation queues have been an intensively studied research topic of
queueing theory (cf. [57, 88, 109, 116, 126]). However, most of those studies
assume a Poissonian arrival model [57, 88, 109, 126] or a model of single
arrivals [116]. Regarding the performance evaluation of practical systems,
this assumption limits the application of vacation queues.

Recently, queues with working vacations have obtained a big attention,
see, e.g., the work of Servi et al. [109] and Liu et al. [88]. It is motivated
by the performance evaluation of Wavelength Division Multiplexing (WDM)
in optical systems. In this respect, the multi-server queue introduced
here is indeed a generalization of the M/M/c system with synchronous
vacations [126] regarding two different aspects, namely, the Poissonian batch
arrivals and working vacations.

The rest of the Chapter is organized as follows. In Section 8.2, we first
provide a description of the CPP/M/c model with working vacations (WV),
develop then a matrix-analytic solution approach and prove some interesting
property of this CPP/M/c WV-queue. Then some illustrative numerical
results are presented in Section 8.3. Finally, we summarize our findings in
the conclusions.

8.2 Modeling the Maintenance of a

Virtualized Server Environment

8.2.1 Description of the Maintenance Model

In a virtualization environment three different roles can be identified (see
Figure 8.1):

• users/applications,

• application service providers and

• owners of the hardware infrastructure.

Applications and related services, e.g. Web servers with Web, information
retrieval and business services, are provided by application service providers
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that require virtual machines from an infrastructure owner to run their
virtualized application servers.

In this environment two interrelated categories of Service Level Agreement
(SLA) can be defined:

• an SLA between users and application service providers specifying the
service requirements, e.g. the response time and availability of a service,
etc,

• an SLA between application service providers and an infrastructure
owner.

The SLAs between users and application service providers are complicated
and they also depend on the nature of the hosted applications.

To operate the infrastructure efficiently, it is recognized that advanced
management tools are needed. In this respect, system management activities
should also include the tasks of managing both virtual servers and physical
resources efficiently.

In this Chapter, we consider the interaction between application service
providers and an infrastructure owner. We suppose that there are c virtual
servers available in the server pool of the infrastructure owner. To realize
a pay-as-you-go approach, application service providers can initiate requests
for servers to the provider of the infrastructure and server releases after task
completion.

We assume that server requests arrive in batches following the Compound
Poisson Process (CPP) (cf. [41]). This means that the inter-arrival times
follow a Generalized Exponential (GE) distribution. The arrival process is
motivated by the fact that GE is the only distribution of least bias [41] if only

Figure 8.1: Utility computing environment based on virtual machines
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the mean and variance of inter-arrival times can be reliably computed by the
available measurement data. This situation typically arises in virtualized
computing environments exploiting the capabilities of monitoring systems. It
has been shown by recent studies [51, 54] that the CPP is sufficiently accurate
to model Internet traffic in a Web server environment (i.e. the relevant CPP
parameters have been estimated by the captured Internet traffic) and that it
can be applied to the performance evaluation of wireless telecommunication
systems.

To create a reliable computing system with these c servers, the provider
of the infrastructure can initiate specific maintenance actions, e.g. software
updates, a virtual server live migration etc., when any d servers become idle
after a service completion instant. This kind of maintenance activities are
modeled in such a way that d servers take a simultaneous vacation. During
such a vacation period, the residual c− d servers do not take a vacation even
if they are idle. To ensure the mathematical tractability of the model, we
assume that the durations of the vacation periods are independent, identical
exponentially distributed random variables with parameter θ. The service
rate of each server which is not in a vacation state is given by an independent
exponential distribution with parameter µ. A server on vacation can serve
customers following an independent exponential distribution with rate µv.
Note that an application service provider who receives the allocation of a
server which is on vacation may pay less as a form of compensation.

8.2.2 Analysis of an Advanced Multi-Server Model
with Working Vacations

Here, we consider the CPP/M/c multi-server queue with working vacations,
infinite waiting room and First In First Out (FIFO) service principle that
we have derived as performance model to analyze maintenance tasks in a
virtualized server environment.
The arrival process of customer requests is determined by a Compound
Poisson Process (CPP) with parameters (λ, ω). It means that the probability
distribution function of the inter-arrival times τ is defined by P{τ = 0} = ω ∈
(0, 1) and P{0 < τ < t} = (1−ω)(1−e−λt). Therefore, the arrival process can
be seen as a batch Poisson process whose batches of the random size S arriving
at some epoch follow a geometric distribution P{S = s} = (1−ω)ωs−1, s ≥ 1,
with mean E(S) = 1/(1− ω) and variance Var(S) = ω/(1− ω)2.

The requests are served by c servers following a specific working-vacations
policy with independent, identical, exponentially distributed service and
vacation times with rates µ, µv, θ, respectively. Let us suppose that there are
no servers on vacation due to maintenance activities. Then a simultaneous
vacation period of d servers starts if there are d idle servers after a service
completion. At the end of a simultaneous vacation period of these d servers,
three alternatives are possible:
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• if there are no waiting customers, the d servers stay idle and are ready
to serve any arriving new customers;

• if there are c− d < j < c, customers in the system, j − c+ d returning
servers immediately start serving these customers and the other c − j
returning servers become idle;

• if there are j ≥ c customers in the system, the d returning servers all
start serving these customers immediately.

At any time t the state of the system Y (t) = (I(t), J(t)) can be completely
specified by two integer-valued random variables:

• I(t) =

{
0 if d servers are on vacation at time t
1 if there are no servers on vacation at time t

• J(t) represents the number of customers in the system at time t
including any in service or the waiting room.

The system is now modeled by a continuous-time discrete state Markov
process Y = {I(t), J(t)} on a rectangular lattice strip S = {0, 1} × N0 due
to our Markovian assumptions. We denote its corresponding steady-state
probabilities by π = {πi,j}(i,j)∈S, where πi,j = limt→∞ P{I(t) = i, J(t) = j},
and let vj = (π0,j, π1,j) be the partitioned vector of state probabilities.

The one-step transitions of the Markov chain Y have a specific tridiagonal
block structure since the possible transitions are driven by following events:

(a) changing the status of I(t), i.e. from the vacation to non-vacation of
servers. Then Aj(i, k) denotes the corresponding transition rate from
state (i, j) to state (k, j), i, k ∈ {0, 1}, j ≥ 0. Let

A = Aj =

[
0 θ
0 0

]
, ∀j ≥ 0; and A∗ =

[
−θ θ
0 0

]
.

(b) the arrivals of customers. Then Bi,j,s is the rate of the s−step upward
transition from state (i, j) to state (i, j + s), i ∈ {0, 1}, j ≥ 0, caused
by a batch arrival of size s and

Bi,j,s = (1− ω)ωs−1λ, j ≥ 0, i ∈ {0, 1}, s ≥ 1.

(c) the departures of customers. Cj(i, k) is the transition rate from state
(i, j) to state (k, j − 1); i, k ∈ {0, 1}, j ≥ 0. Then we get:
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Cj =



[
jµ 0
0 jµ

]
, 1 ≤ j ≤ c− d[

(c− d)µ+ µv 0
(c− d+ 1)µ 0

]
, j = c− d+ 1[

(c− d)µ+ (j − c+ d)µv 0
0 jµ

]
, c− d+ 1 < j ≤ c[

(c− d)µ+ dµv 0
0 cµ

]
= C, j > c.

Note that by a transition from (1, c − d + 1) to (0, c − d) after a service
completion with rate (c−d+1)µ we get a simultaneous vacation of d servers.

Let Diag(x) denote the diagonal matrix defined by a row vector x and
E ∈ R2×2 be the identity matrix. We introduce the following notations

Λ = Diag[λ, λ] = λE; Ω = Diag[ω, ω] = ωE;

Bs = Bj,s = Diag[(1− ω)ωs−1λ, (1− ω)ωs−1λ], j ≥ 0,

and obtain

Bs = Ωs−1(E − Ω)Λ = ωs−1(1− ω)λE, j ≥ 1,

Λ =
∞∑
s=1

Bs = λE.

Theorem 8.1. The necessary and sufficient condition for the existence of the
steady-state probabilities of the process Y = (I, J) is determined by

λ

cµ
+ ω < 1 ⇔ ρ =

λ

(1− ω) · cµ
< 1.

�� ��8.1

Remark 2. The standard condition (8.1) states that the traffic intensity ρ
must be less than one to achieve the ergodicity of Y . Neither the rate θ of the
vacations period nor the number d of simultaneous servers on vacations have
an impact on the stability of the system. In other words, the system will not
be overloaded due to a maintenance activity. Indeed, this is good news for a
system administrator who shall organize the maintenance tasks of idle virtual
machines.

Proof. The steady-state balance equation of the M/G/1-like upper
Hessenberg system can be written as follows:

j∑
s=1

vj−sBs + vj
[
A∗ − Λ−DCj

]
+ vj+1Cj+1 = 0, ∀j ≥ 1.

�� ��8.2
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Here DCj are diagonal matrices whose diagonal elements are the sum of the
elements in the rows of Cj. Note that by construction DCj = Cj holds for all
j 6= c− d+ 1.

For j ≥ c+ 1 we can write

j∑
s=1

vj−sBs + vj [A∗ − Λ− C] + vj+1C = 0.
�� ��8.3

Substituting Bs = Ωs−1(E − Ω)Λ into this equation (8.3), we get

j∑
s=1

vj−sΩ
s−1(E − Ω)Λ + vj [A∗ − Λ− C] + vj+1C = 0 ∀j ≥ c+ 1,

�� ��8.4

and
j−1∑
s=1

vj−1−sΩ
s−1(E − Ω)Λ+vj−1 [A∗ − Λ− C]+vjC = 0 ∀j ≥ c+2.

�� ��8.5

If we multiply equation (8.5) by Ω and then subtract the result from
equation (8.4), we obtain the three-term recurrence equations

vj−1[Λ− A∗Ω + CΩ] + vj [A∗ − Λ− C − CΩ] + vj+1C = 0 , j ≥ c+ 2,

vj−1Q0 + vjQ1 + vj+1Q2 = 0 , j ≥ c+ 2,
�� ��8.6

where Q0 = Λ− A∗Ω + CΩ, Q1 = A∗ − Λ− C − CΩ, Q2 = C.
Q(x) = Q0+Q1x+Q2x

2 is defined as the characteristic matrix polynomial
associated with the equations (8.6). It is proved in [97] that the solution
of these matrix equations (8.6) is closely related to the eigenvalues and
left-eigenvectors of the polynomial Q(x). If (x,ψ) is an eigenvalue-eigenvector
pair of Q(x), then it holds

ψQ(x) = 0, det[Q(x)] = 0.

Consequently, we obtain:

det[Q(x)] = det

[
q00(x) θx− θω

0 q11(x)

]
= q00(x)q11(x),

q00(x) = λ+ ((c− d)µ+ dµv)ω + ωθ −
(λ+ (c− d)µ+ dµv + ((c− d)µ+ dµv)ω + θ)x+ ((c− d)µ+ dµv)x

2,

q11(x) = λ+ cµω − (λ+ cµ+ cµω)x+ cµx2 = (1− x)(λ+ cµω − cµx).

Therefore, Q(x) has four eigenvalues

x1 =
1

2G
{H +G−

√
(H +G)2 − 4G(λ+ ((c− d)µ+ dµv)ω + ωθ)},

x2 =
1

2G
{(H +G+

√
(H +G)2 − 4G(λ+ ((c− d)µ+ dµv)ω + ωθ)},

x3 = λ/(cµ) + ω, x4 = 1,
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where

G = (c− d)µ+ dµv,

H = λ+ ((c− d)µ+ dµv)ω + θ

holds.
Note that ψ1 = (1, (θω − θx1)/q11(x1)) is the left-hand-side (LHS)

eigenvector of Q(x) for the eigenvalue x1, and ψ3 = ψ4 = (0, 1) are the
LHS eigenvectors of Q(x) for the eigenvalues x3 and x4, respectively.

Since ω < 1 holds, we have

(λ+ ((c− d)µ+ dµv)ω + ωθ) < H,

4G(λ+ ((c− d)µ+ dµv)ω + ωθ) < 4GH,

(H +G)2 − 4G(λ+ ((c− d)µ+ dµv)ω + ωθ) > (H +G)2 − 4GH,

0 < x1 <
1

2G
(H +G− |H −G|) ≤ 1,

x2 >
1

2G
(H +G+ |H −G|) ≥ 1.

Applying results from [97] (summarized in Section 2.2.1), it is a necessary
and sufficient condition for the ergodicity of the Markov chain Y that the
number of eigenvalues of Q(x) inside the unit disk is given by 2. Therefore,
x3 < 1 is required which yields condition (8.1).

The steady-state balance equations of J(t) ∈ {0, . . . , c+1} can be written
in the following form:

v0 [A∗ − Λ] + v1C1 = 0,
j∑
s=1

vj−sBs + vj
[
A∗ − Λ−DCj

]
+ vj+1Cj+1 = 0 , 1 ≤ j ≤ c+ 1.

For j ≥ c + 1 the steady-state probabilities can be expressed as follows
(cf. [97]):

vj = αψ1x
j
1 + βψ3x

j
3,

π0,j = αxj1,

π1,j = α
θω − θx1
q11(x1)

xj1 + βxj3,
�� ��8.7

where α and β are coefficients that have to be determined by the boundary
conditions.

Furthermore, we have to satisfy the normalization equation:

∞∑
j=0

1∑
i=0

πi,j = 1.
�� ��8.8
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Consequently, we have to determine the vectors vj, 0 ≤ j ≤ c, α and β.
The total number of these unknowns is given by 2(c+ 1) + 2 = 2(c+ 2). To
determine these unknowns, we have the steady-state balance equations of the
levels j = 0, . . . , c + 1 and the normalization equation. Thus, 2(c + 2) + 1 is
the number of boundary equations, among those only 2(c+ 2) equations are
independent.

It can be observed from the steady-state balance equations of J(t) ∈
{0, . . . , c} that vj, 1 ≤ j ≤ c and j 6= c − d + 1, can be expressed as a
function of v0, i.e π0,0 and π1,0, and vc−d+1. Therefore, we have only six
unknowns (π0,0, π1,0, π0,c−d+1, π1,c−d+1, α, β), which can be solved efficiently
using the steady-state balance equations of the states J(t) = c, J(t) = c− d,
J(t) = c+ 1 and the normalization equation.

8.2.3 Conditional Stochastic Decomposition

In the following, we prove a conditional stochastic decomposition property
for the CPP/M/c queue with working vacations.

Theorem 8.2. If the ergodicity condition for the CPP/M/c queue with
working vacations holds, then the conditional steady-state queue length Jb =
limt→∞{J(t)− c−1|J(t) > c, I(t) = 1} provided that the server system is not
on a working vacation can be decomposed into the sum of two independent
random variables

Jb = J0 + Jc.

Here J0 is the conditional steady-state queue length of the CPP/M/c queue
without vacations and Jc is the additional steady-state queue length due to
vacations.

Proof. The probability that the server is busy and the number of jobs is larger
than c is determined by:

Pb = P{J(t) > c, I(t) = 1} =
∞∑

j=c+1

π1,j =
∞∑

j=c+1

(
α
θω − θx1
q11(x1)

xj1 + βxj3

)
= α

θω − θx1
q11(x1)

xc+1
1

1− x1
+ β

xc+1
3

1− x3
.

The probability generating function of Jb can be expressed as follows:

GJb(z) =
∞∑
j=0

P{Jb = j}zj =
∞∑
j=0

π1,j+c+1

Pb
zj

=
1

Pb

∞∑
j=0

(
α
θω − θx1
q11(x1)

xj+c+1
1 + bxj+c+1

3

)
zj

=
1

Pb

(
α
θω − θx1
q11(x1)

xc+1
1 /(1− x1z) + βxc+1

3 /(1− x3z)

)
.
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The steady-state probabilities of the CPP/M/c queue without vacations can
be obtained by setting θ = 0, d = 0 and µv = µ. The probability that the
number of customers in the CPP/M/c queue without vacations is given by
πj = β∗xj3 for j ≥ c + 1, where β∗ is an appropriate coefficient. Therefore,

GJ0(z) = β∗
xc+1
3

1−x3z follows for the probability generating function of J0. These
relations yield the stated result.

8.3 Illustrative Numerical Results

In this section we present some numerical results to illustrate the impact of the
model parameters on the formulation of an effective maintenance policy, i.e.
how many servers should be simultaneously on vacations. For demonstration
purposes, we investigate the average number of customer requests waiting for
free servers

E(LQ) =
∞∑

j=c+1

(j − c) · (π0,j + π1,j)

=
∞∑

j=c+1

(j − c) ·
(
α[1 +

θω − θx1
q11(x1)

]xj1 + βxj3

)

=
α[1 + θω−θx1

q11(x1)
]x

(c+1)
1

(1− x1)2
+

βx
(c+1)
3

(1− x3)2

as major performance metrics and select some illustrative parameter set.
Other characteristics like the mean number of requests in the system

E(L) =
∞∑
j=1

j · (π0,j + π1,j) ,

or the mean number of active servers E(NV ) =
∞∑
j=1

min(j, c) · (π0,j + π1,j) and

the throughput η =
∞∑
j=1

vj ·Cj ·
(

1
1

)
=
∞∑
j=1

1∑
i=0

πi,j · (Cj(i, 0) + Cj(i, 1)) can

be computed in a similar manner.
In Figure 8.2(a) we plot the average number of waiting requests E(LQ)

versus d for the following parameter set of a high load regime: c = 100 servers,
ω = 0.2, θ = 1.0, µ = 5.0, µv = 2.5, ρ = λ/[(1−ω)cµ] ∈ [0.7, 0.9]. It generates
batch arrivals of mean size E(S) = 1.25 and variance Var(S) = 0.3125 for a
high traffic intensity 0.7 ≤ ρ ≤ 0.9 and assumes that the average service time
1/µ of requests needs only 20 % of the mean maintenance time 1/θ while
during these maintenance periods the latter service time is extended by 100
% compared to the normal operation mode.
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Considering the average number E(LQ) of requests waiting in the system,
it is observed that increasing the load ρ from 0.7 to 0.8 or from 0.8 to 0.9
generates an increment of one order of magnitude. To show the impact of the
size S of arriving batches and the influence of ω = 1 − 1/E(S) and E(S) ∈
{1.25, 1.67, 2, 5, 10}, respectively, we use the set of the same parameters but
fix the load at ρ = 0.8. Figure 8.2(b) illustrates the average number of waiting
requests E(LQ) versus d and ω. In Figure 8.3 E(LQ) is plotted against d and
µv for the load ρ = 0.9 and a mean batch size of E(S) = 1/(1− ω) = 1.25.

(a) (b)

Figure 8.2: Average number E(LQ) of waiting requests versus d for different
traffic load ρ (left) and different control parameter ω = 1 − 1/E(S) of the
mean batch size E(S) (right)

Figure 8.3: Average number E(LQ) of waiting requests versus d and µv

It is observed that batch arrivals have the strongest impact on the average
number of waiting customers. The impact of the offered load ρ and the
service rate µv during maintenance can be handled by choosing an appropriate
number d of servers under maintenance.
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8.4 Summary

To model the queueing and congestion phenomena arising from maintenance
tasks of a virtualized server environment, we have presented in this Chapter
a CPP/M/c multi-server system with Poissonian batch arrivals and working
vacations.

In the proposed queueing system the inter-arrival times of jobs requesting
service by a virtualized server follow a Generalized Exponential distribution.
To model the maintenance activities, we have assumed that a certain number
of servers goes simultaneously to a maintenance state for a random period
when they have completed the service of jobs and find no further requests in
the waiting line.

Analyzing the arising Markovian model by the spectral expansion method,
we have derived a new expression for the steady-state probabilities and
proved a conditional stochastic decomposition property. The validation of
the approach in a testbed and the estimation of the parameters by gathered
data is a topic of future research.

In conclusion, we believe that the proposed Markovian multi-server
system with working vacations can serve as a useful tool to define efficient
maintenance policies in the virtualized environment of current server farms.
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A
Proofs related to the HetSigma queue

A.1 Illustration for K = 2

Now, let us look at the other Ql’s in (3.20) pertaining to K = 2. Then, the
coefficients Q−n of vj−K−n (n ≥ 1) for possible values of n are from (3.22)

Q−1 =
2∑

l=−1−c

[
Θ2+c−l

1 (E −Θ1)Σ1 + Θ2+c−l
2 (E −Θ2)Σ2

]
G2,c,l ,

Q−n =
2∑

l=−1−c

[
Θ2+c+n−l−1

1 (E −Θ1)Σ1 + Θ2+c+n−l−1
2 (E −Θ2)Σ2

]
G2,c,l

(n = 1, 2, . . . , j −K) .
�
 �	A.1

Theorem A.1. Referring to equation (A.1) for all c, Q−n = 0 (n =
1, 2, . . . , j −K) .

Proof. For c = 1, we have

G2,1,−2 = ∆Φ1,

G2,1,−1 = −(∆ + Φ1 + Θ1∆Φ1 + Θ2∆Φ1),

G2,1,0 = E + Θ1∆ + Θ2∆ + (Θ1 + Θ2 + Θ1Θ2∆)Φ1,

G2,1,1 = −(Θ1 + Θ2 + Θ1Θ2∆ + Θ1Θ2Φ1),

G2,1,2 = Θ1Θ2,

G2,1,−2 = ∆Φ1, G2,1,−1 = −(∆ + Φ1 + Θ1∆Φ1 + Θ2∆Φ1),

G2,1,0 = E + Θ1∆ + Θ2∆ + (Θ1 + Θ2 + Θ1Θ2∆)Φ1,

G2,1,1 = −(Θ1 + Θ2 + Θ1Θ2∆ + Θ1Θ2Φ1), G2,1,2 = Θ1Θ2.

Expanding and simplifying (A.1), we get

Q−n = 0 (n = 1, 2, . . . , j −K).
�
 �	A.2
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Assume the proposition is true for any c = h. Hence,

Q−1 =
2∑

l=−1−h

[
Θ2+h−l

1 (E −Θ1)Σ1 + Θ2+h−l
2 (E −Θ2)Σ2

]
G2,h,l

Q−n =
2∑

l=−1−h

[
Θ2+h+n−l−1

1 (E −Θ1)Σ1 + Θ2+h+n−l−1
2 (E −Θ2)Σ2

]
G2,h,l

(n = 1, 2, . . . , j −K) .
�
 �	A.3

For c = h+ 1 we have from (3.24),

Q−n =

2∑
l=−1−h−1

[
Θ2+h+1+n−l−1

1 (E −Θ1)Σ1 + Θ2+h+1+n−l−1
2 (E −Θ2)Σ2

]
G2,h+1,l

=

2∑
l=−1−h−1

[
Θ2+h+1+n−l−1

1 (E −Θ1)Σ1 + Θ2+h+1+n−l−1
2 (E −Θ2)Σ2

]
[G2,h,l − Φh+1G2,h,l−1]

= 0 (n = 1, 2, . . . , j −K) .
�� ��A.4

Therefore, the theorem is true.

The coefficients QK−m of vj−m

QK−m =
K∑

l=m+1

[
c∑

n=1

Mn(E − Φn)Φl−m−1
n +R(E −∆)∆l−m−1

]
GK,c,l

=
K∑

l=−1−c

[
c∑

n=1

Mn(E − Φn)Φl−m−1
n +R(E −∆)∆l−m−1

]
GK,c,l

(m = j − L, . . . ,−2− c).
�
 �	A.5

We can prove in the similar way as the above, that QK−m = 0 (K = 2;m =
j − L, . . . ,−2− c).

A.2 Automatic Validation of Equations

In this section we an empirical validation, using Mathematica for some
theorems in Section 3.3.3 (note that the rigorous proofs are presented therein).
The theorems can be symbolically validated for any values of N , K and c by
Mathematica.

The Mathematica code for the validation of Theorem 3.2 and 3.3 is
illustrated in Table A.1.
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(*This is a Q_{K - m}*) QPolyCoeff[NN_,K_,c_,m_]:=Block[{},

Q=Array[q,{NN+1,NN+1},{0,0}];

For[i = 0, i <= NN,

i++, {seged = Sum[q[i, j], {j, 1, NN}] - q[i, i]; q[i, i] = -seged }];

(*this to compute the diagonal elements of the Q matrix*)

TheSigmaMatrix=Array[sigmaM,{NN+1,K},{0,1}];

TheThetaMatrix=Array[thetaM,{NN+1,K},{0,1}];

For[i=1,i<=K,i++,Sigma[i]=DiagonalMatrix[Transpose[TheSigmaMatrix][[i]]]];

SumSigma=Sum[Sigma[i],{i,1,K}];

For[i=1,i<=K,i++,Theta[i]=DiagonalMatrix[Transpose[TheThetaMatrix][[i]]]];

TheMuMatrix=Array[mu,{NN+1,c},{0,1}];

ThePhiMatrix=Array[phiM,{NN+1,c},{0,1}];

For[i=1,i<=c,i++,M[i]=DiagonalMatrix[Transpose[TheMuMatrix][[i]]]];

Cmatrix=Sum[M[i],{i,1,c}];

For[i=1,i<=c,i++,Phi[i]=DiagonalMatrix[Transpose[ThePhiMatrix][[i]]]];

Delta=DiagonalMatrix[Array[deltaM,NN+1]];

R=DiagonalMatrix[Array[rho,NN+1]];

H[1,-1]=IdentityMatrix[NN+1]-IdentityMatrix[NN+1];

F[k_,l_]:=If[l>=0&&l<=k,F[k-1,l]+Theta[k].F[k-1,l-1],H[1,-1]];

F[1,0]=IdentityMatrix[NN+1];

F[1,1]=Theta[1];F[1,-1]=IdentityMatrix[NN+1]-IdentityMatrix[NN+1];

H[k_,l_]:=If[l>=0&&l<=k,H[k-1,l]+Phi[k].H[k-1,l-1],H[1,-1]];

H[1,0]=IdentityMatrix[NN+1];

H[1,1]=Phi[1];

H[1,-1]=IdentityMatrix[NN+1]-IdentityMatrix[NN+1];

G[k_]:=Power[-1,k] Sum[(F[K,k+n]+F[K,k+n+1] Delta) H[c,n],{n,0,c}];

Return[Sum[MatrixPower[Theta[n],m-l-1].

(IdentityMatrix[NN+1]-Theta[n]).Sigma[n]. G[l],{l,-1-c,m-1},{n,1,K}]+

(Q-SumSigma-Cmatrix-R).G[m]+

Sum[(Sum[M[n].(IdentityMatrix[NN+1]-Phi[n]).

MatrixPower[Phi[n],l-m-1],{n,1,c}]+

R.(IdentityMatrix[NN+1]-Delta).MatrixPower[Delta,l-m-1]).G[l],{l,m+1,K}]]

];

NN = 2; K = 3; c = 4;

Print[Simplify[QPolyCoeff[NN, K, c, K +1]]];

{{0, 0, 0},{0,0,0},{0, 0, 0}}

Print[Simplify[QPolyCoeff[NN, K,c,K+2]]];

{{0,0,0},{0,0,0},{0,0,0}}

Print[Simplify[QPolyCoeff[NN,K,c,-c-2]]];

{{0,0,0},{0,0,0},{0,0,0}}

Print[Simplify[QPolyCoeff[NN, K, c, -c -3]]];

{{0,0,0},{0,0,0},{0,0,0}}

NN = 1; K = 2; c = 2;

Print[Simplify[QPolyCoeff[NN, K, c, K +1]]];

{{0,0},{0,0}}

Print[Simplify[QPolyCoeff[NN, K, c, K + 2]]];

{{0,0},{0,0}}

Print[Simplify[QPolyCoeff[NN, K, c, -c - 2]]];

{{0,0},{0,0}}

Print[Simplify[QPolyCoeff[NN, K, c, -c - 3]]];

{{0,0},{0,0}}

Table A.1: Mathematica code to symbolically verify that the Ql (l < 0 or
l > K + c + 1) are zero. This program works for any values of N , K and c
(NN is used because N is a reserved keyword in Mathematica)
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SS[k_, h_] := Sum[QPolyCoeff[NN, k, h, m], {m, -h - 1, k}];

NN = 1; K = 2; c = 2;

Simplify[Det[SS[K, c]]];

Out[99]=0

NN = 3; K = 4; c = 3;

Simplify[Det[SS[K, c]]];

Out[100]=0

Table A.2: Mathematica code to automatically and symbolically verify that
k∑

m=−1−c

Q
(k)
k−m is singular. Note that is valid for any values of N , K and c.

The Mathematica code for the validation of Theorem 3.5 is presented in

Table A.2. It can be seen that the determinant of
K∑

m=−1−c

Q
(K,c)
K−m is zero.
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[9] Jesús R. Artalejo, Antonis Economou, and Antonio Gómez-Corral.
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