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Preface

During the last decade a major shift has begun in process and chemical industry,
since there was an urgent need for new tools that are able to support the optimi-
sation of process operations and the development of new production technolo-
gies. Approaches of this shift differ from company to company but one common
feature is the requirement of the intensive communication between those who
conduct research, design, manufacturing, marketing and management. Such
communication should be centered on modeling and simulation due to the need
of the integration of the whole product and process development chain in all time
and scale levels of the company.

To explore and transfer all the useful knowledge needed to operate and op-
timise technologies and the business processes, the research of the applicant
aimed the development of a novel methodology to integrate heterogeneous infor-
mation sources and heterogeneous models. The proposed methodology can be
referred as model mining, since it is based on the extraction and transformation
of information not only from historical process data but also from different type
of process models. The introduction of this novel concept required the develop-
ment of new algorithms and tools for model analysis, reduction and information
integration. For this purpose fuzzy systems based modelling, clustering and
visualization algorithms have been developed. To handle multi-objective opti-
mization problems where the goals are non-commensurable and are in conflict
with each other a novel interactive optimization algorithm has been worked out
based on visualization tools and evolutionary algorithms.

The proposed knowledge discovery and management framework addresses
important challenges in the fields of systems science, process engineering and
information technology. Although the primary goal of the developments was
to design new tools that can be fruitfully applied in process engineering, the
development and unconventional integration of computational intelligence, data
mining, and system identification algorithms resulted in useful results that can
also be applied to support marketing, management, scientific research and other
engineering activities.

i



Contents

1 Introduction 1
1.1 State-of-the-art and objectives . . . . . . . . . . . . . . . . . . . 1
1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Motivation, roadmap of the thesis . . . . . . . . . . . . . . . . . . 6

2 Process Data Warehousing and Mining 8
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Process Data Warehouse . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Integrated Framework for Process Development . . . . . . . . . 12
2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Fuzzy Clustering for Regression, System Identification,
and Classifier Induction 18
3.1 Fuzzy Clustering for Nonlinear Regression . . . . . . . . . . . . . 18
3.2 Fuzzy Clustering for Time-series Segmentation . . . . . . . . . . 34
3.3 Fuzzy Clustering for Classifier Induction . . . . . . . . . . . . . . 48
3.4 Fuzzy Clustering for Model Order Selection . . . . . . . . . . . . 52
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Prior Knowledge based Constraints in Parameter Identification 63
4.1 Grey-Box Fuzzy Model Identification . . . . . . . . . . . . . . . . 63
4.2 Prior Knowledge based Spline Smoothing . . . . . . . . . . . . . 72
4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Improvement of Polupation based Optimization Algorithms 85
5.1 Genetic Programming for System Identification . . . . . . . . . . 85
5.2 Interactive Optimization . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A Appendix: Application Examples 94
A.1 Process Data Warehouse . . . . . . . . . . . . . . . . . . . . . . 94
A.2 Monitoring Process Transitions by State Estimation . . . . . . . . 104
A.3 Semi-mechanistic Models for Product Quality Estimation . . . . . 113

B Appendix: Theoretical Background 119
B.1 Introduction to Fuzzy Clustering . . . . . . . . . . . . . . . . . . 119
B.2 Introduction to Fuzzy Modeling . . . . . . . . . . . . . . . . . . . 125

ii



B.3 Fuzzy Model Structures for Classification . . . . . . . . . . . . . 129
B.4 Population Based Optimization . . . . . . . . . . . . . . . . . . . 134
B.5 Identification of Linear-in-Parameters Models . . . . . . . . . . . 141

iii



Chapter 1

Introduction

1.1 State-of-the-art and objectives

As it is emphasized by the 7th Framework Programme, it is essential to de-
velop new methods to increase industrial competitiveness in order to speed up
the transformation of the European economy. Hence, there is an urgent need
for new tools which are able to support product and process design, and the
optimization of production technologies. These tools require intensive commu-
nication between design, manufacturing, marketing and management that could
be centred on modelling and simulation. This goal has been already realised
by engineers and directors of leading companies, e.g. DuPont and Dow Chem-
ical, think that "model integrates the whole organization" (see Figure 1.1). They
believe that the extensive use of models is the way that data, information, and
knowledge should be conveyed from research to engineering, to manufacturing,
and on to the business team [1].
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Figure 1.1: Time and scale levels in process engineering. Different scales define
different engineering problems.
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Figure 1.2: Knowledge management in "life-cycle modeling" and integrated
modeling - a concept by Dow Chemical Co. Models are applied at every level
of a technology and used to transfer information from conceptual design to the
optimization of the production.

This led to the the idea of life-cycle modeling: integrating and connecting the
model islands, which use different approaches and tools in each life-cycle phase
and thus transfer the information and knowledge between the stages [2]. Figure
1.2 shows the knowledge management of life-cycle modeling by Dow Chemical,
while Figure 1.3 shows its applicability in process optimization: the continuous
improvement cycle centered around the integrated models [3].

The concept of life-cycle modelling is only a vision of how companies should
operate in the 21st century. But instead of this there are only model islands
for the time being, where isolated models are used for different and limited pur-
poses on different levels of the technology (if they exist at all). These models are
heterogeneous not only because they have different purposes, but also because
information for the modelling and identification of the processes can be obtained
from different sources: (i) mechanistic knowledge obtained from first-principles
(physics and chemistry), (ii) empirical or expert knowledge, expressed as lin-
guistic rules, (iii) measurement data, obtained during normal operation or from
an experimental process, and different modelling paradigms should be used for
an efficient utilisation of these different sources of information.
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Figure 1.3: The concept of life-cycle modeling for continuous process optimiza-
tion.

Figure 1.4: The proposed scheme combines expert and mechanistic knowledge
and measured data in the form of rule-based systems, model structure, param-
eter constrains and local models. The model is optimized to ensure booth good
prediction performance and interpretability.

Therefore, the aim of the research of the applicant is to develop novel method-
ologies to integrate heterogeneous information sources and heterogeneous mod-
els1. The key idea is the utilization of data mining and computational intelligence
techniques2 since the synergistic integration of qualitative and quantitative mod-
els require tools to handle uncertain information (by fuzzy logic), systems com-
plexity (by neural networks and evolutionary algorithms), and expert knowledge
(by rule-based systems) (see Figure 1.4).

1The first attempt of the author to integrate these information sources is concluded in: Abonyi
J, Fuzzy Model Identification for Control, Boston: Birkhauser Verlag, 2003. 273 p.,(ISBN:978-0-
8176-4238-9), Independent citatitions: 30

2Abonyi J, Feil B, Abraham A, Computational intelligence in data mining, INFORMATICA
(LJUBLJANA) 29:(1) pp. 3-12. (2005), Independent citatitions: 8
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Figure 1.5: Scheme of model mining. The concept is similar to data mining, but
in this schemes not only historical process data but different type of models are
also analysed.

1.2 Methodology

The key of the proposed approach is the integration of the existing models and
information sources to explore useful knowledge. The whole process can be
called model mining. This type of knowledge discovery is relatively new, its
importance has only been recognized by the Global Modelling and Assimilation
Office at NASA in mining of atmospheric phenomena relationships. Hence, this
research is the first concentrated attempt to develop a new methodology for
model mining. The proposed approach, depicted in Figure 1.5, consists of the
following steps.

1. Developing and understanding of the application domain and identifying
the problem.

2. Creating and pre-processing the target set. This phase starts with activi-
ties in order to get familiar with the models and data, to identify problems,
to get first insights into the data and models to detect interesting subsets,
to form hypotheses. To support this step, the utilized models should be
as transparent as possible since model transparency allows the user to
effectively combine different types of information.

3. Model Mining. The ultimate goal of the whole process is to extract poten-
tially useful knowledge which could not be explored from one single model
or database, but only from the integrated information sources and mod-
els in the model warehouse. The goals of model mining are achieved via
solving following problems:

• 3.a Model Transformation and reduction: information presented by
different type of models can be used to transform or reduce other
models to make them more precise and/or robust, or to expand their
operational range (e.g. to improve the extrapolation capability of a
black-box model using a priori knowledge based constraints on the
model parameters). Some of the computational intelligence mod-
els lend themselves to be transformed into other model structures
that allow information transfer between different models (e.g. radial
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basis functions are functionally equivalent to fuzzy systems) which
makes possible the combination of expert knowledge and data inten-
sive modeling.

• 3.b Model Fusion: the integration of the information content of dif-
ferent models is the key issue of the proposed research. During
this process it should be kept in mind in what range the particular
models are valid and how these local models can be combined to
get global model. Information can be stored within nominal, ordi-
nal, ratio or fuzzy data; images and pictures, multivariate time se-
ries or documents can also be information sources [4]. Besides of
these several type of models should be treated, e.g. graphs, deci-
sion trees, neural networks, rule based systems, etc. Although these
models need different types of reduction methods (e.g. spanning
trees for graphs, pruning for decision trees, rule base reduction for
fuzzy models etc.), but they can be integrated by fuzzy systems (ex-
tended Takagi-Sugeno fuzzy models).

• 3.c Visualization is a very promising field because it makes possible
merging the best of computer (calculation) capabilities with the best
of human perception (cognitive) abilities. There are several meth-
ods to visualize multidimensional data [5, 6]. However, the visual-
ization of the results of the knowledge discovery process is much
more complex than the visualization of multivariate data. The world-
leading companies like AT&T and Microsoft are also dealing with
these problems. The common feature of the solutions is that the
novel visualization methods are based on novel similarity measures.
The visualization of clustering results have been also dealt with by
our research group, where a similarity of the fuzzy clusters are mea-
sured. In the last three years we also developed a new measure for
multivariate data based on the introduction of a particular distance
measure based on the correlation of the process variables. These
results illustrate that for model mining purposes there is a clear need
to define tailored similarity measures according to the heterogeneous
information sources (similarity of models, images, graphs etc.).

• 3.d Application of model mining algorithm(s): Selecting algorithms for
searching for patterns. It is essential to involve the user or the experts
into this key step because it is often very difficult to formalize the
complex and many times contradictory goals. One possible solution
is to increase the degree of interactivity. Such a tool will be developed
in Chapter 5.

4. Interpreting and application of the mined patterns: Whereas the "knowl-
edge worker" judges the success of the application of modelling and dis-
covery techniques more technically, she or he contacts domain experts
later in order to discuss the results and their applicability. Based on the
results it can be necessary to return to any of steps 1-3 for further iteration.
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1.3 Motivation, roadmap of the thesis

Concluding the previously described need for integration, the main motivation of
the thesis is to create an integrated framework whereto data mining, modeling
and simulation, experimentation tools can be incorporated. To achieve model
integrity, the existing models should be reapplied, the non-existing models cre-
ated, and all the models connected in an appropriate way. If it is possible to
collect sufficiently large amount of data from the process, Knowledge Discov-
ery in Databases (KDD) technique can be applied to extract information focused
on the maintenance or control operation problems to make the production more
efficient [7].

As I suggest in Figure 1.6, the information flow of such integrated method-
ologies should be centered around a process data warehouse in a process im-
provement cycle. Sources come from available process data, current process
knowledge (rules, constraints, etc.) and an integrated global model of products,
process and process control. As these information are collected in the data
warehouse, data mining tools, modeling and experimentation tools can be ap-
plied to aid the improvement of the process while extracting further knowledge.

All these developments and the process data warehouse, which they are
centered around, were created within the research project of the Cooperative
Research Centre of Chemical Engineering Institute entitled as "Optimization of
multi-product continuous technologies" with implementation at the Polypropy-
lene plant of Tisza Chemical Group Plc., Hungary.
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According to the motivations and main goals explained above, the thesis is
structured as follows: Chapter 2 describes an integrated process data ware-
house with applications to product quality and operating cost estimations, while
Chapter 3 presents novel clustering based data analysis tools to be able to an-
alyze data queried from or transferred to the data warehouse. As shown pre-
viously, process data and simulator models are linked together through exper-
imentation, hence a genetic algorithm based tool for interactive process opti-
mization was developed, which is detailed in Chapter 4. Till know some tools
for process intensification, scaling up, control and monitoring have been worked
out and implemented to demonstrate the potential impact of the developed ap-
proach in technology development. The details of these application examples
are presented in Appendix A. As this chapter illustrates, the results presented in
this thesis can be immediately applied in the field of process engineering by de-
signing tools that can support model based process and product development.
For readers not familiar with every concept and notation used in this theses the
theoretical background of the contributions are briefly discussed in Appendix B.
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Chapter 2

Process Data Warehousing and
Mining

According to costumers’ expectations and market challenge, process industry
needs to have the ability to operate complex, highly interconnected plants that
are profitable and that meet quality, safety, environmental and other standards.
In ideal case this requires modeling and simulation tools, which integrate not
only the whole product and process development chains, but all the process
units, plants, and subdivisions of the company. These information islands are
also formed at the level of the collection and analysis of historical process data,
however the access to this data is limited due to the heterogeneity of the infor-
mation sources (the data is generated in different places and stored in different
type of databases) and due to the data is stored only in shorter periods of time.
This chapter proposes a know-how for the design and implementation of pro-
cess data warehouses that integrates plant-wide information, where integration
means information, location, application and time integrity. The process data
warehouse contains non-violate, consistent and preprocessed historical process
data and works independently from other databases operating at the level of the
control system. To extract information from historical process data stored in
the process data warehouse tools for data mining and exploratory data analysis
have been developed.

2.1 Motivation

The increasing automation and tighter quality constraints related to production
processes make the operator’s and plant engineer’s job more and more difficult.
The operators in the process industry have many tasks such as to keep the
process condition as closely as possible to a given operating point, to preserve
optimality, to detect failures and to maintain safety. The more heterogenous the
units are the less transparent the system is. Hence, there is a need for integrated
information system that solves these problems and supports process monitoring
and development.
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Figure 2.1: Three-level model of skilled human operator.

As the three-level model of the performance of skilled operators shown in
Figure 2.1 suggests, such Operator Support Systems (OSS) should indicate in-
tuitive and essential information on what is happening with the process and give
suggestions according to operator’s experience and skills [8], [9], [10]. Hence,
the OSS of complex processes should be the combination of information sys-
tems, mathematical models and algorithms aimed to extract relevant information
(signs, e.g. process trends and symbols) to "ease" the operator’s work. In the
following the main elements of this kind of system are described.

In modern industrial technologies the existence of a distributed control sys-
tem (DCS) is a basic requirement. This system is responsible for the safe op-
eration of the technology in the local level. In the coordination level of the DCS
many complex tasks are handled, like controller tuning, process optimization,
model identification and error diagnostic. These tasks are based on process
models. As new products are required to be introduced to the market over a
short time scale to ensure competitive advantage, the development of process
models necessitates the use of empirical based techniques, since phenomeno-
logical model development is unrealizable in the time available [9]. Hence, the
mountains of data that computer-controlled plants generate, must be effectively
used. For this purpose most of the DCS systems are able to store operational
process data. However, DCS has limited storage capacity because this is not its
main function, only data logged in the last one or two months is stored in these
computers. Since data measured in a longer time period have to be used for so-
phisticated process analysis, quality control, and model building, it is expedient
to store data in a historical database that is useful to query, group and analyze
the data related to the production of different products and different grade tran-
sitions. Today several software products in the market provides the capability of
integration of historical process data of DCS’s: e.g. Intellution I-historian [11],
Siemens SIMATIC [12], the system of Fisher-Rosemount PlantWeb [13] and the
Wonderware FactorySuite 2000 MMI software package [14].

As it will be deeply described in the the case study shown in Section A.1,
there are several heterogeneous information sources that have to be integrated
to support the work of engineers and operators with relevant, accurate and use-
ful information. In case of process systems standard data warehousing and
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OLAP techniques are not always suitable for this purpose because the opera-
tion units in the process industry have significant dynamical behavior that re-
quires special attention contrary to the classical static business models. The
source of this dynamical behavior is the dynamical effect of the transportation
and mixing of material flows. Since process engineering systems rarely oper-
ate on steady-state manner (process transitions, product changes significantly
occur), and the control and monitoring of these dynamical transitions are the
most critical tasks of the process operators, the synchronization of data taken
from heterogeneous information sources of process systems requires dynamical
process models. These dynamic qualities of process units and the related data
sources make it unsuitable to simply apply standard OLAP techniques. Hence,
as it will be presented in the following section, the integration of the historical
databases of DCS’s into OSSs is not only a technical problem, in this process
the special features of the technology have to be taken into account.

2.2 Process Data Warehouse

In case of complex processes the design of integrated information system is
extremely important. This is is especially true in higher level of control of the
process and enterprize. E.g. to monitor and control of the quality of the produc-
tion (better product quality, less environmental pollution, less off-specification
product etc.), data taken from different units of the production-line (e.g. qual-
ity of the row materials, operating parameters of the reaction system, product
quality measurements) have to be analyzed. Since there is a strong but com-
plex and dynamically changing dependency among these data, there is a need
to improve the classical functions and models of standard Data Warehouses to
help the work of operators.

The proposed focus on process approach means stronger focus on the ma-
terial and information flow through the entire enterprise, where the OSS follows
the process through the organization instead of focusing separate tasks of the
isolated process units. This also means that most of the information moves hor-
izontally within the organization, thus requiring a higher degree of cooperation
and communication across the different divisions in the plant [10], [15].

This session proposes the integration of heterogeneous historical data taken
from the various production units into a data warehouse with focus on the spe-
cialties of the technology. The resulted model-based information system con-
tains only consistent, non-violate, pre-processed, historical data [16], and it is
working independently from the distributed control system (DCS). This type of
data warehouse has the features presented Table 2.1, and it is called as Process
Data Warehouse.
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DCS relational database Process Data Warehouse
Function day to day data storage decision supporting
Data actual, daily, detailed, in-

cluded in relation, isolated
historical, summarized, in-
tegrated, consolidated

Using iterative ad-hoc
Unit of work short, general transactions complex queries
User operator engineer, operator plant

manager
Design application oriented subject oriented
Access read-write engineer, many queries
Number of
accessed
records

decimal order million order

Size 100 MB-GB 100 GB-TB
Degree transactional time inquiry time
Region process unit whole production line
Detectable
dependen-
cies (type of
analysis)

static dynamic

Main elements SQL database of DCS SQL database of DCS and
independent DW and com-
putational unit of models

Table 2.1: The main differences between the DCS relational database and the
Process Data Warehouse.
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2.3 Integrated Framework for Process Development

The developed components for an integrated information system are shown in
Figure 2.2. It shows the structure of the proposed process analysis methodology
for the development of a complex systems. This structure supposes that there
are a DCS (with data storage functions) and a process computer in the system,
so a process Data Warehouse integrated into the framework can be created and
all the developed tools are centered around this data warehouse.

Process Data Warehouse. The data stored by DCS definitely have the po-
tential to provide information for product and process design, monitoring and
control. However, these data have limited access in time on the process control
computers, since they are archived retrospectively, and can be unreliable be-
cause of measurement failure or inconsistent storage. Process Data Warehouse
is a data analysis-decision support and information process unit, which operates
separately from the databases of the DCS. It is an information environment in
contrast to the data transfer-oriented environment, which contains trusted, pro-
cessed and collected data for historic data analysis. The data collected into DW
directly provide input for different data mining, statistical tools, like classification,
clustering, association rules, etc., and visualization techniques, e.g. quantile-
quantile plots, box plots, histograms, etc. Besides these tools and techniques,
DW indirectly creates a basis for optimization and system performance analysis
techniques through a process simulator of the process and its advanced local
control system, since models can be validated based on historic data stored in
DW.

(Dynamic) Data model. Actually, data is simply a record of all business ac-
tivities, resources, and results of the organization. The data model is a well-
organized abstraction of that data. So, it is quite natural that the data model has
become the best method to understand and manage the business of the organi-
zation. Without a data model, it would be very difficult to organize the structure
and contents of the data in the data warehouse [17]. The application of data
and enterprize modeling (EM) is extremely important, as these models describe
the organization, maps the work-processes, and thereby identifies the needs of
OSS. The data model plays the role of a guideline, or plan, to implement the data
warehouse. The design of a process data warehouse is based on the synchro-
nization of the events related to the different information sources which requires
the understanding the material, energy and information flow between the units of
the plant. For this purpose not only classical data modeling techniques have to
be used, but models related to the nonlinear functional relationships of the pro-
cess and product variables and dynamic models that represent the dynamical
behavior of these variables.

Process model. It is an integrated application of laboratory kinetics, thermo-
dynamics, transport phenomena and experiments with plant scale-up param-
eters embedded into different process unit models. Therefore, a multi-scale
model, whose complexity depends on the current technology. Its parts can be
achieved by first principle, black-box or semi-mechanistic (hybrid) modeling ap-
proaches. Advanced control and monitoring algorithms of OSS are based on
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state variables which are not always measurable or they are measured off-line.
Hence, for the effective application of these tools there is a need for state estima-
tion algorithms that are based on the model of the monitored and/or controlled
process. In the presence of additive white Gaussian noise Kalman filter provides
optimal estimates of the states of a linear dynamical system. For nonlinear pro-
cesses Extended Kalman Filtering (EKF) should be used [18]. The dynamic
model of EKF can be a first-principle model formulated by a set of nonlinear
differential equations or black-box model, e.g. a neural network (NN). Gener-
ally, models used in the state estimation of process systems are formulated by
macroscopic balance equations, for instance, mass or energy balances. In gen-
eral, not all of the terms in these equation are exactly or even partially known.
In semi-mechanistic modeling black-box models, like neural networks are used
to represent the otherwise difficult-to-obtain parts of the model. Usually, in the
modeling phase it turns out which parts of the first principles model are eas-
ier and which are more laborious to obtain and often we can get the so-called
hybrid model structure that integrates a first-principle model with a NN model
which serves as an estimator of unmeasured process parameters that are diffi-
cult to model from first-principles [19]. Since this seminal paper of Psichogios,
many industrial applications of these semi-mechanistic models have been re-
ported, and it has been proven that this kind of models has better properties
than stand-alone NN applications, e.g. in the pyrolysis of ethane [20], in indus-
trial polymerization [21], and or bioprocess optimization [22]. The aim of the
case study of this thesis is the examination of the applicability of such semi-
mechanistic models in industrial environment, namely how this model structure
can be identified and applied for state estimation in OSS.

Product model i.e. inferential model. Models that are attached to process
models, hence in many applications they are not considered separately from
them, but inferential product models are rather closely related to product at-
tributes than to process models. For example, if the process model defines the
composition of a reactor liquid phase output stream, a possible product model
can estimate boiling curve of the output mixture. They can also be modeled by
different approaches for proper estimation of property relationships. Formulated
products (plastics, polymer composites) are generally produced from many in-
gredients, and large number of the interactions between the components and
the processing conditions all have the effect on the final product quality [23].
When a reliable nonlinear model is available that is able to estimate the qual-
ity of the product, it can be inverted to obtain the suitable operating conditions
required for achieving the target product quality [24]. If such model is incorpo-
rated to the OSS, significant economic benefits can be realized. To estimate the
product quality, an approximate reasoning system is needed which is capable of
handling imperfect information. In the proposed structure with the integration of
modeling and monitoring functions a new method is developed which based on
semi-mechanistic modeling and nonlinear-state estimation was proposed for this
purpose. For the identification of a neural network a spline-smoothing approach
has been followed, where splines have been used to extract the desired outputs
of the neural network from infrequent and noisy measurements. The results
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show that the proposed process data warehousing and data mining methods
are efficient and useful tools for data integration, decision support, state and
product quality estimation, which tools can be useful to increase the productivity
of complex technological processes.

Process Control model. It uses the designed structure of regulatory process
control system, information about the controlled and the perturbed variables,
possible states, and operation ranges. In case of a complex system, usually
distributed control system (DCS) assures locally the secure and safe operating
of the technology. It is extended by an advanced model based process control
computer (Process Computer) that calculates among others the operation set
points (OP’s) to DCS.

(Graphical) Interface, Front-end Tools. It handles the input-output connec-
tions between process-product model, control model, data warehouse and the
user. Complex process technologies are multivariable, exhibit nonlinear charac-
teristics, and often have significant time delays. In this case the operator cannot
easily follow and visualize what is happening in the process, so the computer
should aid for visualization of the process states and their relation to the qual-
ity of the final product. As the final product quality is measured in the quality
control laboratory, not only WYSIWYW (What You See Is What You Want) inter-
faces between the operator and the console are important but WYSIWIS (What
You See Is What I See) interfaces between the operators (operators at the reac-
tor, at the product formation process and at the laboratory) are needed to share
the information horizontally in the organization. A data warehouse provides the
base for the powerful data analysis techniques that are available today such as
data mining and multidimensional analysis, as well as the more traditional query
and reporting. Making use of these techniques along with process data ware-
housing can result in easier access to the information the operators need for
more informed decision making.

Plant operators are skilled in the extraction of real-time patterns of process
data and the identification of distinguishing features (see Figure 2.1). Hence,
the correct interpretation of measured process data is essential for the satis-
factory execution of many computer-aided, intelligent decision support systems
(DSS) that modern processing plants require. The aim of the incorporation of
multivariate statistical based approaches into the OSS is to reduce the dimen-
sionality of the correlated process data by projecting them down onto a lower
dimensional latent variable space where the operation can be easily visualized.
These approaches use the techniques of principal component analysis (PCA)
or projection to latent structure (PLS). Beside process performance monitoring,
these tools can be used for system identification [24], [25], ensuring consistent
production and product design [26]. The potential of existing approaches has
been limited by its inability to handle more than one recipe/grade. There is,
therefore, a need for methodologies from which process representations can be
developed which simultaneously handle a range of products, grade and recipes
[9].
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In supervisory control, detection and diagnosis of faults, product quality con-
trol and recovery from large operation derivations, determining the mapping from
process trends to operating conditions is the pivotal task. Query and reporting
analysis is the process of posing a question to be answered, retrieving rele-
vant data from the data warehouse, transforming it into the appropriate context,
and displaying it in a readable format. It is driven by analysts who must pose
those questions to receive an answer. These tasks are quite different from data
mining, which is data driven.

For particular analysis, the applicability of the integrated model depends on
the applied components. It can be a soft-sensor (e.g. used product quality
estimation as it is shown in Section A.3), process monitoring (e.g. state estima-
tion and visualization), reasoning or reverse engineering tool (e.g. production
parameter estimation), operator training/qualification (e.g. state transition opti-
mization, product classification) or decision support system application.

2.4 Conclusions

In this chapter I proposed a novel know-how for the design and implementation
of process data warehouses that integrates plant-wide information, where inte-
gration means information, location, application and time integrity. The process
data warehouse contains non-violate, consistent and preprocessed historical
process data and works independently from other databases operating at the
level of the control system 1. I have also pointed out that such information sys-
tem should also contain the model of the control system2. The details of the
components of the presented information system define whether the resulted
data warehouse supports soft sensors, process monitoring, reverse engineer-
ing or operator training/qualification. When the simulator outputs are also stored
in the DW, comparison of the simulated outputs to the real industrial data can
provide further information for optimization and tuning the parameters of the
control systems. This scheme results in a DW-centered continuous process im-
provement cycle. Generally, the advantage of having an offline simulator of the
system is that it can be used to predict product quality, estimate the state of the
system and find new optimal operating points in a multi-objective environment,
results of operability tests, effects of e.g. new recipes or catalyst can be investi-
gated without any cost attachment or system failure, and it is easily extendable
for system performance analysis tools and optimization techniques.

1Pach F P, Feil B, Nemeth S, Arva P, Abonyi J, Process-data-warehousing-based operator
support system for complex production technologies, IEEE TRANSACTIONS ON SYSTEMS
MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS 36: pp. 136-153. (2006), IF:
0.980, Independent citations: 4

2Balasko B, Nemeth S, Nagy G, Abonyi J, Integrated Process and Control System Model for
Product Quality Control - Application to a Polypropylene Plant, Chemical Product and Process
Modeling , 3:(1) pp. 1-12. Paper 50. (2008), DOI: 10.2202/1934-2659.1213
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I have successfully applied the prototype of this system for estimation of
product quality by a new semi-mechanistic product model extension and for the
extraction of cost and energy consumption based on box-plots and quantile-
quantile plots 3. To extract information from historical process data stored in
the process data warehouse tools for data mining and exploratory data analysis
have been developed. 4

In case of complex production processes it is often not sufficient to ana-
lyze only input-output data for process monitoring purposes. The reasons may
be that historical process data alone do not have enough information content,
it can be incomplete, not measured frequently or not at regular intervals. In
these cases it is important to obtain information about state variables; therefore
(nonlinear) state estimation algorithm is needed. This phenomenon has been
proved experimentally at the time-series segmentation based process monitor-
ing, where the result of the segmentation was much more reliable when the es-
timated state variables or the error covariance matrices computed by the state
estimation algorithm have been also utilized by the segmentation algorithms5.
When models of process and control systems are integrated to a process Data
Warehouse the resulted structure support engineering tasks related to analysis
of system performance, process optimization, operator training (OTS), reverse
engineering, and form decision support (DSS) systems.

In chemical production processes it often happen that the product quality
can be measured only relatively rarely or with considerable dead time (e.g. be-
cause of the time demand of laboratory tests). In these situations it would be
advantageous if the product quality could be estimated using a state estimation
algorithm. However, due to the complexity of the production processes there
are often no enough a priori knowledge to build a proper model to estimate the
important, but unknown process variables6. In these cases black box models
are worth applying to approximate the unknown phenomena and building into
the white box model of the system. These models are called semi-mechanistic
models. Such semi-mechanistic model was developed for the on-line product
quality estimation in an industrial polyethylene reactor. Since in the proposed
semi-mechanistic model structure a neural network is designed as a part of a
nonlinear algebraic-differential equation set, there were no available direct input-
output data to train the weights of the network. To handle this problem a simple,
yet practically useful spline-smoothing based technique has been used7.

3Abonyi J, Application of Exploratory Data Analysis to Historical Process Data of Polyethylene
Production, HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY 35: pp. 85-93. (2007)

4Abonyi J, Nemeth S, Vincze C, Arva P, Process analysis and product quality estimation by
Self-Organizing Maps with an application to polyethylene production, COMPUTERS IN INDUS-
TRY 52: pp. 221-234. (2003), IF: 0.692, Independent citations: 10

5Feil B, Abonyi J, Nemeth S, Arva P, Monitoring process transitions by Kalman filtering and
time-series segmentation, COMPUTERS & CHEMICAL ENGINEERING 29: pp. 1423-1431.
(2005), IF: 1.501, Independent citations: 5

6Feil B, Abonyi J, Pach P, Nemeth S, Arva P, Nemeth M, Nagy G, Semi-mechanistic mod-
els for state-estimation - Soft sensor for polymer melt index prediction, LECTURE NOTES IN
ARTIFICIAL INTELLIGENCE 3070: pp. 1111-1117. (2004), IF: 0.251, Independent citations: 3

7Abonyi J, Roubos H, Babuska R, Szeifert F, Identification of Semi-Mechanistic Models with
Interpretable TS-fuzzy submodels by Clustering, OLS and FIS Model Reduction. In: J Casillas,
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Similary to the design of soft-sensors, the bottleneck of nonlinear model
based controller design is also the modeling of the controlled system. In prac-
tice, the effectiveness of nonlinear controllers is limited due to the uncertainties
in model parameters, e.g. kinetic parameters, and in model structure. To cope
with this problem, a semi-mechanistic model has been developed which com-
bines a priori and a posteriori models in such a way that the uncertain part of
the a priori model is replaced by an artificial neural network. The effectiveness
of this approach has been demonstrated by the nonlinear control of a simulated
continuous stirred tank reactor8.

O Cordon, F Herrera, L Magdalena (szerk.) Fuzzy modeling and the interpretability-accuracy
trade-off, Heidelberg: Physica Verlag, 2003,pp. 221-248. Independent citations: 2

8Madar J, Abonyi J, Szeifert F, Feedback linearizing control using hybrid neural networks
identified by sensitivity approach, ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLI-
GENCE 18: pp. 343-351. (2005), IF: 0.709, Independent citations: 7
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Chapter 3

Fuzzy Clustering for Regression,
System Identification,
and Classifier Induction

The amount of the data stored in various information systems grows very fast.
These data sets could contain hidden, potentially useful knowledge. Clustering,
as a special area of data mining is, one of the most commonly used methods
for discovering the hidden structure of the considered data set. The main goal
of clustering is to divide objects into well separated groups in a way that objects
lying in the same group are more similar to each another than to objects in
other groups. In the literature several clustering and visualization methods can
be found. However, due to the huge variety of problems and data sets, it is a
difficult challenge to find a powerful method that is adequate for all problems. In
this chapter I summarize the results I obtained at the development of problem-
specific clustering algorithms.

3.1 Fuzzy Clustering for Nonlinear Regression

Fuzzy identification is an effective tool for the approximation of uncertain non-
linear systems on the basis of measured data [27]. Among the different fuzzy
modeling techniques, the Takagi-Sugeno (TS) model [28] has attracted most
attention. This model consists of if–then rules with fuzzy antecedents and math-
ematical functions in the consequent part (see Section B.2 for more details). The
antecedents fuzzy sets partition the input space into a number of fuzzy regions,
while the consequent functions describe the system’s behavior in these regions
[29]. The construction of a TS model is usually done in two steps. In the first
step, the fuzzy sets (membership functions) in the rule antecedents are deter-
mined. This can be done manually, using knowledge of the process, or by some
data-driven techniques. In the second step, the parameters of the consequent
functions are estimated. As these functions are usually chosen to be linear in
their parameters, standard linear least-squares methods can be applied.

18



The bottleneck of the construction of fuzzy models is the identification of
the antecedent membership functions, which is a nonlinear optimization prob-
lem. Typically, gradient-decent neuro-fuzzy optimization techniques are used
[30], with all the inherent drawbacks of gradient-descent methods: (1) the op-
timization is sensitive to the choice of initial parameters and hence can easily
get stuck in local minima; (2) the obtained model usually has poor generaliza-
tion properties; (3) during the optimization process, fuzzy rules may loose their
initial meaning (i.e., validity as local linear models of the system under study).
This hampers the a posteriori interpretation of the optimized TS model. An al-
ternative solution are gradient-free nonlinear optimization algorithms. Genetic
algorithms proved to be useful for the construction of fuzzy systems [31, 32].
Unfortunately, the severe computational requirements limit their applicability as
a rapid model-development tool.

Fuzzy clustering in the Cartesian product-space of the inputs and outputs
is another tool that has been quite extensively used to obtain the antecedent
membership functions [33, 34, 35]. Attractive features of this approach are the
simultaneous identification of the antecedent membership functions along with
the consequent local linear models and the implicit regularization [36]. By clus-
tering in the product-space, multidimensional fuzzy sets are initially obtained,
which are either used in the model directly or after projection onto the individ-
ual antecedent variables. As it is generally difficult to interpret multidimensional
fuzzy sets, projected one dimensional fuzzy sets are usually preferred. However,
the projection and the approximation of the point-wise defined membership func-
tions by parametric ones may deteriorate the performance of the model. This
is due to two types of errors: the decomposition error and the approximation
error. The decomposition error can be reduced by using eigenvector projection
[35, 37] and/or by fine-tuning the parameterized membership functions. This
fine-tuning, however, can result in overfitting and thus poor generalization of the
identified model.

In this section, a new cluster prototype is introduced, that can easily be rep-
resented by an interpretable Takagi-Sugeno (TS) fuzzy model. Similarly to other
fuzzy clustering algorithms, the alternating optimization method is employed in
the search for the clusters. This new technique is demonstrated on the MPG
(miles per gallon) prediction problem. The obtained results are compared with
results from the literature. It is shown that with the presented modified Gath–
Geva algorithm not only good prediction performance is obtained, but also the
interpretability of the model improves.
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Clustering based Fuzzy Model Identification

The available data samples are collected in matrix Z formed by concatenating
the regression data matrix X and the output vector y:

X =




xT
1

xT
2
...

xT
N


 , y =




y1

y2
...

yN


 , ZT = [Xy] . (3.1)

Each observation thus is an n + 1-dimensional column vector
zk = [x1,k, . . . , xn,k, yk]

T = [xT
k yk]

T . Through clustering, the data set Z is parti-
tioned into c clusters. The c is assumed to be known, based on prior knowledge,
for instance (refer to [35] for methods to estimate or optimize c in the context
of system identification). The result is a fuzzy partition matrix U = [µi,k]c×N ,
whose element µi,k represents the degree of membership of the observation zk

in cluster i.
Clusters of different shapes can be obtained by using an appropriate defi-

nition of cluster prototypes (e.g., linear varieties) or by using different distance
measures. The Gustafson–Kessel (GK) clustering algorithm has often been
applied to identify TS models. The main drawbacks of this algorithm are that
only clusters with approximately equal volumes can be properly identified and
that the resulted clusters cannot be directly described by univariate parametric
membership functions.

To circumvent these problems, Gath–Geva algorithm [38] is applied. Since
the cluster volumes are not restricted in this algorithm, lower approximation error
and more relevant consequent parameters can be obtained than with Gustafson–
Kessel (GK) clustering. An example can be found in [35], p. 91. The clusters ob-
tained by GG clustering can be transformed into exponential membership func-
tions defined on the linearly transformed space of the input variables.

Probabilistic Interpretation of Gath–Geva Clustering

The Gath–Geva clustering algorithm can be interpreted in the probabilistic frame-
work. Denote p(ηi) the unconditional cluster probability (normalized such that∑c

i=1 p(ηi) = 1), given by the fraction of the data that it explains; p(z|ηi) is the
domain of influence of the cluster, and will be taken to be multivariate gaussian
N(vi,Fi) in terms of a mean vi and covariance matrix Fi. The Gath–Geva al-
gorithm is equivalent to the identification of a mixture of Gaussians that model
the p(z|η) probability density function expanded into a sum over the c clusters

p(z|η) =
c∑

i=1

p(z, ηi) =
c∑

i=1

p(z|ηi)p(ηi) (3.2)

where the p(z|ηi) distribution generated by the i-th cluster is represented by the
Gaussian function

p(z|ηi) =
1

(2π)
n+1

2

√
|Fi|

exp

(
−1

2
(z− vi)

T (Fi)
−1(z− vi)

)
. (3.3)
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Through GG clustering, the p(z) = p(x, y) joint density of the response vari-
able y and the regressors x is modeled as a mixture of c multivariate n + 1-
dimensional Gaussian functions.

The conditional density p(y|x) is also a mixture of Gaussian models. There-
fore, the regression problem can be formulated on the basis of this probability
as

y = f(x) = E[y|x] =

=

∫
yp(y|x)dy =

∫
yp(y,x)dy

p(x)
=

=
c∑

i=1

[
[xT 1]θi

]
p(x|ηi)p(ηi)

p(x)
=

c∑
i=1

p(ηi|x)
[
[xT 1]θi

]
. (3.4)

Here, θi is the parameter vector of the local models to be obtained later on
(Section 3.1) and p(ηi|x) is the probability that the i-th Gaussian component is
generated by the regression vector x:

p(ηi|x) =

p(ηi)

(2π)n/2
√
|Fxx

i | exp
(−1

2
(x− vx

i )
T (Fxx

i )−1(x− vx
i )

)

c∑
i=1

p(ηi)

(2π)n/2
√
|(F)xx

i | exp
(−1

2
(x− vx

i )
T (Fxx

i )−1(x− vx
i )

) (3.5)

where Fxx is obtained by partitioning the covariance matrix F as follows

Fi =

[
Fxx

i Fxy
i

Fyx
i Fyy

i

]
(3.6)

where

• Fxx
i is the n× n submatrix containing the first n rows and columns of Fi,

• Fxy
i is an n×1 column vector containing the first n elements of last column

of Fi,

• Fyx
i is an 1×n row vector containing the first n elements of the last row of

Fi, and

• Fyy
i is the last element in the last row of Fi.
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Construction of Antecedent Membership Functions

The ‘Gaussian Mixture of Regressors’ model [39] defined by (3.4) and (3.5) is
in fact a kind of operating regime-based model where the validity function is
chosen as φi(x) = p(ηi|x). Furthermore, this model is also equivalent to the TS
fuzzy model where the rule weights in (B.26) are given by:

wi =
p(ηi)

(2π)n/2
√
|Fxx

i |
(3.7)

and the membership functions are the Gaussians. However, in this case, Fxx
i

is not necessarily in the diagonal form and the decomposition of Ai(x) to the
univariate fuzzy sets Ai,j(xj) is not possible.

If univariate membership functions are required (for interpretation purposes),
such a decomposition is necessary. Two different approaches can be followed.

The first one is an approximation, based on the axis-orthogonal projection
of Ai(x). This approximation will typically introduce some decomposition error,
which can, to a certain degree, be compensated by using global least-squares
re-estimation of the consequent parameters. In this way, however, the interpre-
tation of the local linear models may be lost, as the rule consequents are no
longer local linearizations of the nonlinear system [40, 41].

The second approach is an exact one, based on eigenvector projection [35],
also called the transformed input-domain approach [37]. Denote λi,j and ti,j ,
j = 1, . . . , n, the eigenvalues and the unitary eigenvectors of Fxx

i , respectively.
Through the eigenvector projection, the following fuzzy model is obtained in the
transformed input domain:

Ri : If x̃i,1 is Ai,1(x̃i,1) and . . . and x̃i,n is Ai,n(x̃i,n) then ŷ = aT
i x + bi (3.8)

where x̃i,j = tT
i,jx are the transformed input variables. The Gaussian member-

ship functions are given by

Ai,j(x̃i,j) = exp

(
−1

2

(x̃i,j − ṽi,j)
2

σ̃2
i,j

)
(3.9)

with the cluster centers ṽi,j = tT
i,jv

x
i and and variances σ̃2

i,j = λ2
i,j .

Estimation of Consequent Parameters

Two least-squares methods for the estimation of the parameters in the local lin-
ear consequent models are presented: weighted total least squares and weighted
ordinary least squares.

• Ordinary Least-Squares Estimation

The ordinary weighted least-squares method can be applied to estimate
the consequent parameters in each rule separately, by minimizing the fol-
lowing criterion:

min
θi

1

N
(y −Xeθi)

T Φi (y −Xeθi) (3.10)
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where Xe = [X 1] is the regressor matrix extended by a unitary column
and Φi is a matrix having the membership degrees on its main diagonal:

Φi =




µi,1 0 · · · 0
0 µi,2 · · · 0
...

...
. . .

...
0 0 · · · µi,N


 . (3.11)

The weighted least-squares estimate of the consequent parameters is
given by

θi =
(
XT

e ΦiXe

)−1
XT

e Φiy . (3.12)

When µi,k is obtained by the Gath–Geva clustering algorithm, the covari-
ance matrix can directly be used to obtain the estimate instead of (3.12):

ai = (Fxx)−1 Fxy ,

bi = vy
i − aT

i vx
i . (3.13)

This follows directly from the properties of least-squares estimation [42].

• Total Least-Squares Estimation

As the clusters locally approximate the regression surface, they are n-
dimensional linear subspaces of the (n+1)-dimensional regression space.
Consequently, the smallest eigenvalue of the i-th cluster covariance matrix
Fi is typically in orders of magnitude smaller than the remaining eigenval-
ues [35]. The corresponding eigenvector ui is then the normal vector to
the hyperplane spanned by the remaining eigenvectors of that cluster:

uT
i (z− vi) = 0 . (3.14)

Similarly to the observation vector z = [xT y]T , the prototype vector and

is partitioned as vi =
[
(vx

i )
T vy

i

]
, i.e., into a vector vx corresponding

to the regressor x, and a scalar vy
i corresponding to the output y. The

eigenvector is partitioned in the same way, ui =
[
(ux

i )
T uy

i

]T

. By using

these partitioned vectors, (3.14) can be written as
[
(ux

i )
T uy

i

] (
[xT y]−

[
(vx

i )
T vy

i

])T

= 0 (3.15)

from which the parameters of the hyperplane defined by the cluster can
be obtained:

y =
−1

uy
i

(ux
i )

T

︸ ︷︷ ︸
aT

i

x +
1

uy
i

(ui)
T vi

︸ ︷︷ ︸
bi

. (3.16)

Although the parameters have been derived from the geometrical inter-
pretation of the clusters, it can be shown [35] that (3.16) is equivalent to
the weighed total least-squares estimation of the consequent parameters,
where each data point is weighed by the corresponding membership de-
gree.
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The TLS algorithm should be used when there are errors in the input vari-
ables. Note, however, that the TLS algorithm does not minimize the mean-
square prediction error of the model, as opposed to the ordinary least-squares
algorithm. Furthermore, if the input variables of the model are locally strongly
correlated, the smallest eigenvector then does not define a hyperplane related
to the regression problem; it may rather reflect the dependency of the input vari-
ables.

Modified Gath–Geva Clustering

The main drawback of the construction of interpretable Takagi–Sugeno fuzzy
models via clustering is that clusters are generally axes-oblique rather than
axes-parallel (the fuzzy covariance matrix Fxx has non-zero off-diagonal ele-
ments) and consequently a decomposition error is made in their projection. To
circumvent this problem, I propose a new fuzzy clustering method in this section.

Each cluster is described by an input distribution, a local model and an output
distribution:

p(x, y) =
c∑

i=1

p(x, y, ηi) =
c∑

i=1

p(x, y|ηi)p(ηi)

=
c∑

i=1

p(y|x, ηi)p(x|ηi)p(ηi) . (3.17)

The input distribution, parameterized as an unconditional Gaussian [43], defines
the domain of influence of the cluster similarly to the multivariate membership
functions

p(x|ηi) =
1

(2π)
n
2

√
|Fxx

i |
exp

(
−1

2
(x− vx

i )
T (Fxx

i )−1(x− vx
i )

)
. (3.18)

The output distribution is

p(y|x, ηi) =
1√
2πσ2

i

exp

(
−(y − xT θi)

T (y − xT θi)

2σ2
i

)
. (3.19)

When the transparency and interpretability of the model is important, the cluster
covariance matrix Fxx can be reduced to its diagonal elements similarly to the
simplified axis-parallel version of the Gath–Geva clustering algorithm [44]:

p(xk|ηi) =
n∏

j=1

1√
2πσ2

i,j

exp

(
−1

2

(xj,k − vi,j)
2

σ2
i,j

)
. (3.20)

The identification of the model means the determination of the cluster parame-
ters: p(ηi),v

x
i ,F

xx
i , θi, σi. Bellow, the expectation maximization (EM) identifica-

tion of the model is presented, followed by a re-formulation of the algorithm in
the form of fuzzy clustering.

The basics of EM are the following. Suppose we know some observed val-
ues of a random variable z and we wish to model the density of z by using a
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model parameterized by η. The EM algorithm obtains an estimate η̂ that maxi-
mizes the likelihood L(η) = p(z|η) by iterating over the following two steps:

• E-step In this step, the current cluster parameters ηi are assumed to be cor-
rect and based on them, the posterior probabilities p(ηi|x, y) are com-
puted. These posterior probabilities can be interpreted as the probability
that a particular piece of data was generated by the particular cluster’s
distribution. By using the Bayes theorem, the conditional probabilities are:

p(ηi|x, y) =
p(x, y|ηi)p(ηi)

p(x, y)
=

p(x, y|ηi)p(ηi)∑c
i=1 p(x, y|ηi)p(ηi)

. (3.21)

• M-step In this step, the current data distribution is assumed to be correct and
the parameters of the clusters that maximize the likelihood of the data are
sought. The new unconditional probabilities are:

p(ηi) =
1

N

N∑

k=1

p(ηi|x, y) . (3.22)

The means and the weighted covariance matrices are computed by:

vx
i =

N∑
k=1

xkp(ηi|xk, yk)

N∑
k=1

p(ηi|xk, yk)

, (3.23)

Fxx
i =

N∑
k=1

(xk − vx
i ) (xk − vx

i )
T p(ηi|xk, yk)

N∑
k=1

p(ηi|xk, yk)

. (3.24)

In order to find the maximizing parameters of the local linear models, the
derivative of the log-likelihood is set equal to zero:

0 =
∂

∂θi

ln
N∏

k=1

p(xk, yk) =
N∑

k=1

∂

∂θi

ln p(xk, yk)

=
1

Np(ηi)

N∑

k=1

p(ηi|x, y) (yk − fi(xk, θi))
∂fi(xk, θi)

∂θi

(3.25)

Here, fi(xk, θi) represents the local consequent models, fi(xk, θi) = aT
i xk+

bi. The above equation results in weighted least-squares identification of
the local linear models (3.12) with the weighting matrix

Φj =




p(ηi|x1, y1) 0 · · · 0
0 p(ηi|x2, y2) · · · 0
...

...
. . .

...
0 0 · · · p(ηi|xN , yN)


 . (3.26)
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Finally, the standard deviations σi are calculated. These standard devi-
ations are parameters of the p(y|x, ηi) distribution functions defined by
(3.19).

σ2
i =

N∑
k=1

(yk − fi(xk, θi))
T (yk − fi(xk, θi))p(ηi|xk, yk)

Np(ηi)
. (3.27)

In this section, the EM algorithm is re-formulated to provide an easily imple-
mentable algorithm, similar to Gath–Geva clustering, for the identification of TS
fuzzy models that do not use transformed input domains. See Algorithm 3.1.1.

Note that the distance measure (3.32) consists of two terms. The first one is
the distance between the cluster centers and x, while the second one quantifies
the performance of the local linear models.

Algorithm 3.1.1 (Gath–Geva Clustering for Takagi–Sugeno Models).

Initialization Given the data set Z, specify c, choose the weighting exponent m = 2 and the termination tolerance ε > 0. Initialize
the partition matrix such that (B.1), (B.2) and (B.3) holds.

Repeat for l = 1, 2, . . . (l is the iteration counter)

Step 1 Calculate the parameters of the clusters:

• Centers of the membership functions:

v
x (l)
i =

N∑

k=1

µ
(l−1)
i,k

xk/
N∑

k=1

µ
(l−1)
i,k

. (3.28)

• Standard deviations of the Gaussian membership functions:

σ
2 (l)
i,j =

N∑

k=1

µ
(l−1)
i,k

(xj,k − vj,k)
2
/

N∑

k=1

µ
(l−1)
i,k

. (3.29)

• Parameters of the local models:

θi =
(
X

T
e ΦiXe

)−1
X

T
e Φiy , (3.30)

where the weights are collected in the Φi matrix given by (3.11).

• A priori probabilities of the clusters: αi = 1
N

∑N
k=1 µi,k .

• Weights of the rules:

wi =
n∏

j=1

αi√
2πσ2

i,j

. (3.31)

Step 2 Compute the distance measure D2
i,k :

1

D2
i,k

=
n∏

j=1

αi√
2πσ2

i,j

exp


− 1

2

(
xj,k − vi,j

)2
σ2

i,j


 · (3.32)

1√
2πσ2

i

exp

(
− (yk − fi(xk, θi))

T (yk − fi(xk, θi))

2σ2
i

)
.

Step 3 Update the partition matrix

µ
(l)
i,k

=
1

∑c
j=1

(
Di,k(zk, ηi)/Dj,k(zk, ηj)

)2/(m−1)
, 1 ≤ i ≤ c, 1 ≤ k ≤ N . (3.33)

until ||U(l) −U(l−1)|| < ε.
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Example 3.1. Comparative study among clustering based techniques
The example under consideration is the Automobile MPG (miles per gallon) predic-

tion benchmark. The following methods were used and compared:

1. GG-TLS: Gath–Geva clustering with total least-squares estimation of the conse-
quent parameters.

2. GG-LS: Gath–Geva clustering with weighted ordinary least-squares estimation of
the consequent parameters.

3. EM-TI: The presented method with transformed input variables.

4. EM-NI: The presented method with the original input variables.

As some clustering methods are sensitive to differences in the numerical ranges of the
different features, the data can be normalized to zero mean and unit variance:

z̃j,k =
zj,k − z̄j

σj
(3.34)

where z̄j and σj are the mean and the variance of the given variable, respectively. The
goal is to predict the fuel consumption of an automobile on the basis of several given
characteristics, such as the weight, model year, etc. The data set was obtained from
the UCI Repository of Machine Learning Databases and Domain Theories1. After re-
moving samples with missing values, the data set was reduced to 392 entries. This
data set was divided into a training set and a test set, each containing 196 samples.
The performance of the models is measured by the root mean squared prediction error

(RMSE): RMSE =
√

1
N

∑N
k=1 (yk − ŷk)2 . The approximation power of the identified

models is then compared with fuzzy models with the same number of rules obtained by
the Fuzzy Toolbox for MATLABr (the ANFIS model [45]) and the Fuzzy Model Identifi-
cation (FMID) Toolbox based on Gustafson–Kessel clustering [35]. The inputs to the TS
fuzzy model are: x1: Displacement, x2: Horsepower, x3: Weight, x4: Acceleration and
x5: Model year. Originally, there were six features available. The first one, the number of
cylinders, is neglected here because the clustering algorithms run into numerical prob-
lems on features with only a small number of discrete values. Fuzzy models with two,
three and four rules were identified with the presented method. With the two rule-model,
the presented clustering method achieved RMSE values of 2.72 and 2.85 for the training
and test data, respectively, which is nearly the same performance as with the three and
four-rule models. The FMID Toolbox gives very similar results: RMSE values of 2.67
and 2.95 for the training and test data. Considerably worse results where obtained with
the ANFIS algorithm, which gave an overtrained model with the RMSE of 1.97 on the
training data but 91.35 on the test data. These results indicate that the presented clus-
tering method has very good generalization properties. For a further comparison I also
give the results of a linear regression model given in [45]. This linear model has seven
parameters and six input variables (the previously given five variables and the number
of cylinders). The training and test RMSE of this model are 3.45 and 3.44, respectively.

1FTP address: ftp://ics.uci.edu/pub/machine-learning-databases/auto-mpg
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Fuzzy models with only two input variables were also identified, where the selected
features were taken from [45], where the following model structure was proposed:

MPG = f (Weight,Year) . (3.35)

As the Gath–Geva and EM-TI models capture correlations among the input variables,
the TS fuzzy model extracted from the clusters should use multivariable antecedent
membership functions:

Ri : If x is Ai then ŷ = aT
i x + bi

or transformed input variables:

Ri : If tT
i,1x is Ai,1 and tT

i,2x is Ai,2 then ŷ = aT
i x + bi

where i = 1, . . . , c, ŷ is the estimated MPG and xT = [Weight, Year].
These models cannot be easily analyzed, interpreted and validated by human ex-

perts, because the fuzzy sets (linguistic terms) are defined in a multidimensional or
linearly transformed space. However, the presented EM-NI method (Modified Gath–
Geva clustering) results in the standard rules with the original antecedent variables in
the conjunctive form:

Ri : If Weight is Ai,1 and Year is Ai,2 then ŷ = ai,1Weight + ai,2Year + bi [wi] .
(3.36)

Table 3.1 compares the prediction performance of the obtained models:

Table 3.1: Comparison of the performance of the identified TS models with two
input variables.

Method 2 rules (train) 2 rules (test) 4 rules (train) 4 rules (test)
GG-TLS 3.34 3.43 5.58 5.71
GG-TLS-N 3.25 3.57 3.43 4.00
GG-LS 2.97 2.97 2.77 2.95
EM-TI 2.97 2.95 2.62 2.93
EM-NI 2.97 2.95 2.90 2.95
ANFIS 2.67 2.95 2.37 3.05
FMID 2.96 2.98 2.84 2.94

Among the four presented approaches, only the total-least-squares identification is
sensitive to the normalization of the data. Hence, in Table 3.1 GG-TLS-N denotes the
results obtained by making the identification with the use of normalized data.

Normally, the model performance on the training data improves with the increasing
number of clusters, while the performance on the evaluation data improves until the
effect of over-fitting appears and then it starts degrading (bias-variance tradeoff). How-
ever, when the total-least squares (TLS) method is applied, the training error became
larger with the increase of the model complexity. This is because the input variables
of the model are strongly correlated and the smallest eigenvector does not define a
hyperplane related to the regression problem, but it reflects the dependency of the in-
put variables. Already for two clusters, the difference between the two small eigenval-
ues is very small (the eigenvalues are [10.92, 2.08, 3.4 · 105] for the first cluster and
[1.37 · 105, 37.69, 4.93] for the second one).
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The presented fuzzy clustering method showed a slightly better performance than
the Gath–Geva algorithm. As these methods identify fuzzy models with transformed
input variables, they have good performance because of the effective axes-oblique par-
tition of the input domain, which can be seen in Figure 3.1.
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Figure 3.1: Clusters detected by GG clustering algorithm.

The EM-NI algorithm yields clusters that are not rotated in the input space (see
Figure 3.2). These clusters can be projected and decomposed to easily interpretable
membership functions defined on the individual features as shown in Figure 3.3 for the
two-rule model and in Figure 3.4 for the four-rule model. This constraint, however, re-
duces the flexibility of the model, which can result in worse prediction performance. I
use EMR-TI to demonstrate how much performance one has to sacrifice for the inter-
pretability. For this example, the difference in performances turns out to be negligible
(see Table 3.1).
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Figure 3.2: Clusters detected by the modified algorithm.
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Figure 3.3: Membership functions obtained.
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Figure 3.4: Membership functions of the TS model for MPG prediction based on
five inputs.

The Fuzzy Toolbox of MATLABr (ANFIS, neuro-fuzzy model) [46] and the Fuzzy
Model Identification (FMID) Toolbox [35] were also used to identify fuzzy models for the
MPG prediction problem. As can be seen from Table 3.1, the presented method obtains
fuzzy models that have good performance compared to these alternative techniques.

The resulted model is also good at extrapolation. The prediction surface of the
model with two inputs is shown in Figure 3.5. If this surface is compared to the prediction
surface of the ANFIS generated model (see [45]), one can see that the ANFIS model
spuriously estimates higher MPG for heavy cars because of lack of data due to the
tendency of manufacturers to begin building small compact cars during the mid 70s. As
can be seen in Figure 3.5, the obtained EM-NI model does not suffer from this problem.

¤
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Figure 3.5: Prediction surface of the model.

Selection of the Antecedent and Consequent Variables

Using too many antecedent and consequent variables results in difficulties in the
prediction and interpretability capabilities of the fuzzy model due to redundancy,
non-informative features and noise. To avoid these problems in this section two
methods are presented.

As the fuzzy model is linear in the parameters θi, the parameters can be
identified by the least squares method (see (3.12)) that can be also formulated
as:

θi = B+y
√

βi (3.37)

where B+ denotes the Moore-Penrose pseudo inverse of Φe

√
βi.

The OLS method transforms the columns of B into a set of orthogonal ba-
sis vectors in order to inspect the individual contribution of each rule. To do this
Gram-Schmidt orthogonalization of B = WA is used, where W is an orhogonal
matrix WTW = I and A is an upper triangular matrix with unity diagonal ele-
ments. If wi denotes the i–th column of W and gi is the corresponding element
of the OLS solution vector g = Aθi, the output variance (y

√
βi)

T (y
√

βi)/N
can be explained by the regressors

∑nr

i=1 giw
T
i wi/N . Thus, the error reduction

ratio, %, due to an individual rule i can be expressed as

%i =
g2

i w
T
i wi

(y
√

βi)
T (y

√
βi)

(3.38)

This ratio offers a simple mean for ordering the consequent variables, and can
be easily used to select a subset of the inputs in a forward-regression manner.

Feature selection is usually necessary. For this purpose, I modify the Fischer
interclass separability method which is based on statistical properties of the data
and has been applied for feature selection of labeled data [47]. The interclass
separability criterion is based on the FB between-class and the FW within-class
covariance matrices that sum up to the total covariance of the training data FT ,
where:

FW =
∑c

i=1 p(ηi)Fi,FB =
∑c

i=1 p(ηi) (vi − v0)
T (vi − v0)
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v0 =
∑c

i=1 p(ηi)vi (3.39)

The feature interclass seperatibility selection criterion is a trade-off between FW

and FB:

J =
detFB

detFW

(3.40)

The importance of a feature is measured by leaving out the feature and cal-
culating J for the reduced covariance matrices. The feature selection is made
iteratively by leaving out the least needed feature.

Example 3.2. Orthogonal Least Squares and Interclass Separability
The presented fuzzy modeling approach is applied the previously studied Automo-

bile MPG (miles per gallon) prediction case study [45] (see Example ??). The above
presented model reduction techniques, OLS and FIS, are now applied to remove re-
dundancy and simplify the model. First, based on the obtained fuzzy clusters, the OLS
method is used for ordering of the input variables. The fuzzy model with two rules is
applied. It turned out that for both clusters (local models) the “model year” and the
“weight” become the most relevant input variables. Without re-estimation (re-clustering)
of the model and additional removal of the other variables from the consequent part of
the model, the modeling performance drops only to 3.75 and 3.55 RMSE for the training
and the test data, respectively. It is worth noting, that the same features turned out to
be the most important in [45], where a cross-validation based method has been used
for input selection of neuro-fuzzy models.

Based on the above considerations, the clustering has been applied again to identify
a model based on the two selected attributes “weight” and “model year”. This results in
RMSE values of 2.97 and 2.95 for training and test data, respectively. In addition, the
Fisher Interclass separability method is applied and the second attribute “model year”
could be removed from the antecedent of both rules. The final result is a model with
RMSE values of 2.97 and 2.98 for training and test data, respectively. The other meth-
ods are now applied with the same attributes and their performances are summarized
in Table 3.2.

The clusters are much more separated on the input “weight” (see Figure 3.3). Hence,
the application of Fisher Inteclass separability shows that it is enough to use only this
input on antecedent part of the model:

R1 : If Weight is Ai,1 then MPG =
[−0.0107 1.0036]T [Weight, Y ear]T − 23.1652, [0.57] (3.41)

R2 : If Weight is Ai,2 then MPG =
[−0.0038 0.4361]T [Weight, Y ear]T − 1.4383, [0.43]

Concluding, the obtained model has good approximation capabilities, similar to some
other advanced methods, but is also very compact. Furthermore, the methods seems
to have good generalization properties because results on learning data are similar
to those on training data. If the prediction surface surface of the obtained model is
compared to the prediction surface of the ANFIS model (see [45]), one can see that the
ANFIS approach spuriously estimates higher MPG for heavy cars because of luck of
data due to the tendency of manufacturers to begin building small compact cars during
the mid 70’s, while the presented approach does not suffer from this problem.
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Table 3.2: Performance of the identified TS models with two rules and only two
input variables. HYBRID: Clustering + OLS + FIS, GG: Gath–Geva clustering, ANFIS:
neuro-fuzzy model, FMID: Fuzzy Model Identification Toolbox

Method train RMSE test RMSE
HYBRID 2.97 2.95
GG 2.97 2.97
ANFIS 2.67 2.95
FMID 2.94 3.01

¤
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3.2 Fuzzy Clustering for Time-series Segmentation

In this section a fuzzy clustering based algorithm is presented which is useful for
the fuzzy segmentation of multivariate temporal databases (these results were
published in [48]). Time-series segmentation addresses the following data min-
ing problem: given a time-series, T , find a partitioning of T into c segments that
are internally homogeneous [49]. Depending on the application, the goal of the
segmentation is to locate stable periods of time, to identify change points, or
to simply compress the original time-series into a more compact representation
[50]. Although in many real-life applications a lot of variables must be simulta-
neously tracked and monitored, most of the segmentation algorithms are used
for the analysis of only one time-variant variable [51]. Hoverer, in some cases it
is necessary to synchronously segment the time-series of the variables.

The segmentation of multivariate time-series is especially important in the
data-based analysis and monitoring of modern production systems, where huge
amount of historical process data are recorded with distributed control systems
(DCS). These data definitely have the potential to provide information for prod-
uct and process design, monitoring and control [52]. This is especially important
in many practical applications where first-principles modeling of complex "data
rich and knowledge poor" systems are not possible [53]. Therefore, KDD meth-
ods have been successfully applied to the analysis of process systems, and
the results have been used in process design, process improvement, operator
training, and so on [25]. Hence, the data mining algorithm presented in this
session has been developed to the analysis of the historical process data of
a medium and high-density polyethylene (MDPE, HDPE) plant. The operators
of this polymerization process should simultaneously track many process vari-
ables. Of course, due to the hidden nature of the system the measured variables
are correlated. Hence, it is useful to monitor only some principal components
that is widely applied in advanced process monitoring. The main problem of
this approach is the fact that in some cases the hidden process, which can be
observed as the correlation among the variables, varies in time. In our example
this phenomenon can occur when a different product is formed, and/or different
catalyst is applied, or there are significant process faults, etc. The segmentation
of only one measured variable is not able to detect such changes. Hence, the
segmentation algorithm should be based on multivariate statistical tools.

To demonstrate this problem let us consider the synthetic dataset shown
in Figure 3.6. The observed variables that can be seen in Figure 3.6(b) are not
independent, they were generated by the latent variables shown in Figure 3.6(a).
The correlation among the observed variables changes at the quarter of the
time period, and the mean of the latent variables changes at the half of the time
period. These changes are marked by vertical lines in Figure 3.6(a). As it can be
seen in Figure 3.6(b), such information can be detected neither by application of
univariate segmentation algorithms, nor by the visual inspection of the observed
variables.

Hence, the aim of this session is to develop an algorithm that is able to
handle time-varying characteristics of multivariate data: (i) changes in the mean;
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(d) Results obtained by the bottom-up
algorithm, (–): q = 2 ,(- -): q = 5

Figure 3.6: The synthetic dataset and its segmentation by different algorithms
based on two and five principal components.

(ii) changes in the variance; and (iii) changes in the correlation structure among
the variables.

To discover that type of changes of the hidden relationships of multivariate
time-series, multivariate statistical tools should be applied by the segmentation
algorithm. Among the wide range of possible tools, e.g. random projection, in-
dependent component analysis, the presented algorithm utilizes Principal Com-
ponent Analysis (PCA). Linear PCA can give good prediction results for sim-
ple time-series, but can fail in the analysis of historical data having changes
in regime or having nonlinear relations among the variables. The analysis of
such data requires the detection of locally correlated clusters [54]. These algo-
rithms do the clustering of the data to discover the local relationship among the
variables similarly to mixture of Principal Component Models [55].

Time-series segmentation may be considered as clustering with a time- or-
dered structure. The contribution of this session is the introduction of a new
fuzzy clustering algorithm which can be effectively used to segment large, mul-
tivariate time-series. Since the points in a cluster must come from successive
time points, the time-coordinate of the data has to be also considered during the
clustering. One possibility to deal with time is to define a new cluster prototype
that uses time as an additional variable. Hence, the clustering is based on a
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distance measure which consists of two terms: the first distance term is based
on how the data are in the given segment defined by the Gaussian fuzzy sets
defined in the time domain, while the second term measures how far the data
are from the hyperplane of the PCA model of the segments.

The fuzzy segmentation of time-series is an adequate idea. The changes
of the variables of the time-series are usually vague and are not focused on
any particular time point. Therefore, it is not practical to define crisp bounds of
the segments. For example, if humans visually analyze historical process data,
they use expressions like "this point belongs to this operating point less and
belongs to the other more". A good example of this kind of fuzzy segmentation
is how fuzzily the start and the end of early morning is defined. Fuzzy logic is
widely used in various applications where the grouping of overlapping and vague
objects is necessary [56], and there are many fruitful examples in the literature
for the combination of fuzzy logic with time-series analysis tools [57, 58, 50, 59].

The key problem of the application of fuzzy clustering for time-series seg-
mentation is the selection of the number of segments for the clustering process.
Obviously, this is a standard problem also in the classical c-means clustering.
In the context of time series, however, it appears to be even more severe. For
this purpose a bottom-up algorithm has been worked out where the clusters
are merged during a recursive process. The cluster merging is coordinated by
a fuzzy decision making algorithm which utilizes a compatibility criterion of the
clusters [60], where this criterion is calculated by the similarity of the Principal
Component Models of the clusters [61].

Time-series Segmentation Problem Formulation

A time-series T = {xk|1 ≤ k ≤ N} is a finite set of N samples labeled by
time points t1, . . . , tN , where xk = [x1,k, x2,k, . . . , xn,k]

T . A segment of T is a
set of consecutive time points S(a, b) = {a ≤ k ≤ b}, xa,xa+1, . . . ,xb. The c-
segmentation of time-series T is a partition of T to c non-overlapping segments
Sc

T = {Si(ai, bi)|1 ≤ i ≤ c}, such that a1 = 1, bc = N , and ai = bi−1 + 1. In
other words, a c-segmentation splits T to c disjoint time intervals by segment
boundaries s1 < s2 < . . . < sc, where Si(si−1 + 1, si).

Usually the goal is to find homogeneous segments from a given time-series.
In such cases the segmentation problem can be defined as constrained clus-
tering: data points should be grouped based on their similarity, but with the
constraint that all points in a cluster must come from successive time points.
(See [62] for the relationship of time series and clustering from another point of
view.) In order to formalize this goal, a cost(S(a, b)) cost function with the in-
ternal homogeneity of individual segments should be defined. The cost function
can be any arbitrary function. For example in [63, 49] the sum of variances of the
variables in the segment was defined as cost(S(a, b)). Usually, the cost(S(a, b))
cost function is defined based on the distances between the actual values of the
time-series and the values given by a simple function (constant or linear func-
tion, or a polynomial of a higher but limited degree) fitted to the data of each
segment. Hence, the optimal c-segmentation simultaneously determines the
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ai, bi borders of the segments and the θi parameter vectors of the models of the
segments by minimizing the cost of c-segmentation which is usually the sum of
the costs of the individual segments:

cost(Sc
T ) =

c∑
i=1

cost(Si) . (3.42)

This cost function can be minimized by dynamic programming, which is com-
putationally intractable for many real datasets [63]. Consequently, heuristic op-
timization techniques such as greedy top-down or bottom-up techniques are
frequently used to find good but suboptimal c-segmentations [64, 65]. In data
mining, the bottom-up algorithm has been used extensively to support a variety
of time-series data mining tasks [64]. This algorithm is quite powerful since the
the merging cost evaluations requires simple identifications of Principal Com-
ponent Analysis (PCA) models which is easy to implement and computationally
cheap to calculate. Because of this simplicities and because PCA defines lin-
ear hyperplane, the presented approach can be considered as the multivariate
extension of the piecewise linear approximation (PLA) based time-series seg-
mentation and analysis tools developed by Keogh [64, 66].

Although PCA is well known tool, it is advantageous to overview this method
just because of the notation as well. PCA is based on the projection of correlated
high dimensional data onto a hyperplane. This mapping uses only the first few q
nonzero eigenvalues and the corresponding eigenvectors of the Fi = UiΛiU

T
i ,

covariance matrix, decomposed to the Λi matrix that includes the eigenvalues
λi,j of Fi in its diagonal in decreasing order, and to the Ui matrix that includes
the eigenvectors corresponding to the eigenvalues in its columns. The vector
yi,k = W−1

i (xk) = WT
i (xk) is a q-dimensional reduced representation of the

observed vector xk, where the Wi weight matrix contains the q principal or-

thonormal axes in its column Wi = Ui,qΛ
1
2
i,q.

Based on PCA the cost(Si) can be calculated in two ways. This cost can be
equal to the reconstruction error of this segment

cost(Si) =
1

bi − ai + 1

bi∑

k=ai

Qi,k (3.43)

where Qi,k = (xk − x̂k)
T (xk − x̂k) = xT

k (I − Ui,pU
T
i,p)xk. When the hyper-

plane of the PCA model has adequate number of dimensions, the distance of
the data from the hyperplane is resulted by measurement failures, disturbances
and negligible information, so the projection of the data into this p-dimensional
hyperplane does not cause significant reconstruction error.

Although the relationship among the variables can be effectively described
by a linear model, in some cases it is possible that the data is distributed around
some separated centers in this linear subspace. The Hotelling T 2 measure is
often used to calculate the distance of the data point from the center in this linear
subspace. This can be also used to compute cost(Si)

cost(Si) =
1

bi − ai + 1

bi∑

k=ai

T 2
i,k =

1

bi − ai + 1

bi∑

k=ai

yT
i,kyi,k. (3.44)
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When the variance of the segments are minimized during the segmentation,
equation (3.42) results in the following equation:

cost(Sc
T ) =

c∑
i=1

si∑

k=si−1+1

‖ xk − vx
i ‖2=

c∑
i=1

N∑

k=1

βi(tk)d
2(xk,v

x
i ) . (3.45)

where d2(xk,v
x
i ) represents the distance between the vx

i mean of the variables
in the i-th segment (center of the i-th cluster) and the xk data point; and βi(tk) ∈
{0, 1} stands for the crisp membership of the k-th data point in the i-th segment,
and:

βi(tk) =

{
1 ifsi−1 < k ≤ si

0, otherwise.
(3.46)

This equation is well comparable to the typical error measure of standard k-
means clustering but in this case the clusters are limited to contiguous segments
of the time-series instead of the Voronoi regions in Rn.

The changes of the variables of the time-series are usually vague and are not
focused on any particular time point. As it is not practical to define crisp bounds
of the segments, in this session Gaussian membership functions, Ai(tk), are
used to represent the βi(tk) ∈ [0, 1] fuzzy segments of a time-series:

Ai(tk) = exp

(
−1

2

(tk − vt
i)

2

σ2
i,t

)
, βi(tk) =

Ai(tk)
c∑

j=1

Aj(tk)
(3.47)

(These terms are analogous to the Gaussian membership function and the de-
gree of activation of the ith rule in classical fuzzy classifier as can be seen in
Section B.3.) For the identification of the vt

i centers and σ2
i,t variances of the

membership functions, a fuzzy clustering algorithm is introduced. The algo-
rithm, which is similar to the modified Gath–Geva clustering [67], assumes that
the data can be effectively modelled as a mixture of multivariate (including time
as a variable) Gaussian distribution, so it minimizes the sum of the weighted
squared distances between the zk = [tk,x

T
k ]T data points and the ηi cluster

prototypes

J =
c∑

i=1

N∑

k=1

(µi,k)
m d2(zk, ηi) (3.48)

where µi,k represents the degree of membership of the observation zk = [tk,x
T
k ]T

is in the i-th cluster (i = 1, . . . , c) and m ∈ [1,∞) is a weighting exponent that
determines the fuzziness of the resulting clusters (usually chosen as m = 2).

The Gath–Geva clustering algorithm can be interpreted in a probabilistic
framework, since the d2(zk, ηi) distance is inversely proportional to the prob-
ability that the zk data point belongs to the i-th cluster, p(zk|ηi). The data are
assumed to be normally distributed random variables with expected value vi and
covariance matrix Fi. The Gath–Geva clustering algorithm is equivalent to the
identification of a mixture of Gaussians that represents the p(zk|η) probability
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density function expanded in a sum over the c clusters

p(zk|η) =
c∑

i=1

p(zk|ηi)p(ηi) (3.49)

where the p(zk|ηi) distribution generated by the i-th cluster is represented by
the Gaussian function

p(zk|ηi) =
1

(2π)
n+1

2

√
det(Fi)

exp

(
−1

2
(zk − vi)

TF−1
i (zk − vi)

)
(3.50)

and p(ηi) is the unconditional cluster probability (normalized such that
∑c

i=1 p(ηi) =
1 holds), where ηi represents the parameters of the i-th cluster, ηi = {p(ηi),vi,Fi|i =
1, . . . , c}.

Since the time variable is independent from the xk variables, the presented
clustering algorithm is based on the following d2(zk, ηi) distance measure

p(zk|ηi) =
1

d2(zk, ηi)
= αi︸︷︷︸

p(ηi)

1√
2πσ2

i,t

exp

(
−1

2

(tk − vt
i)

2

σ2
i,t

)

︸ ︷︷ ︸
p(tk|ηi)

×

1

(2π)
r
2

√
det(Ai)

exp

(
−1

2
(xk − vx

i )
TA−1

i (xk − vx
i )

)

︸ ︷︷ ︸
p(xk|ηi)

(3.51)

which consists of three terms. The first αi term represents the a priori probability
of the cluster, while the second represents the distance between the k-th data
point and the vt

i center of the i-th segment in time. The third term represents the
distance between the cluster prototype and the data in the feature space where
vx

i means the coordinate of the i-th cluster center in the feature space and r is
the rank of Ai distance norm corresponding to the i-th cluster.

The presented cluster prototype formulated by (3.51) is similar to that used
by the Gath–Geva clustering algorithm. However, it utilizes a different distance
norm, Ai. In the following section, it will be demonstrated how this norm can be
based on the principal component analysis of the cluster.
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PCA based Distance Measure

The Ai distance norm can be defined in many ways. It is wise to select this
norm to scale the variables so that those with greater variability do not dominate
the clustering. One can scale by dividing by standard deviations, but a better
procedure is to use statistical (Mahalanobis) distance, which also adjusts for the
correlations among the variables. In this case Ai is the fuzzy covariance matrix
Ai = Fi, where

Fi =

N∑
k=1

(µi,k)
m (xk − vx

i ) (xk − vx
i )

T

N∑
k=1

(µi,k)
m

. (3.52)

When the variables are highly correlated, the Fi covariance matrix can be ill-
conditioned and cannot be inverted. Recently two methods have been worked
out to handle this problem [68]. The first method is based on fixing the ratio
between the maximal and minimal eigenvalues of the covariance matrix. The
second method is based on adding a scaled unity matrix to the calculated co-
variance matrix. Both methods result in invertible matrices, but neither of them
extracts the potential information about the hidden structure of the data.

One limiting disadvantage of PCA is the absence of an associated probabil-
ity density or generative model which is required to compute p(xk|ηi). Tipping
and Bishop [55] developed a method called Probabilistic Principal Component
Analysis (PPCA). In the PPCA the log-likelihood of the observing the data under
this model is

L =
N∑

k=1

ln(p(xk|ηi)) = −N

2

{
n ln(2π) + ln (det(Ai)) + trace(A−1

i Fi)
}

(3.53)

where Ai = σ2
i,xI + WiW

T
i is the modified covariance matrix of the i-th clus-

ter which can be used to compute the p(xk|ηi) probability. The log-likelihood is
maximized when the columns of Wi span the principal subspace of the data.
Tipping and Bishop proofed that the only nonzero stationary points of the deriva-
tive of (3.53) with respect to Wi occur for

Wi = Ui,q

(
Λi,q − σ2

i,xI
)1/2

Ri (3.54)

where Ri is an arbitrary q × q orthogonal rotation matrix and σ2
i,x is given by

σ2
i,x =

1

n− q

n∑
j=q+1

λi,j. (3.55)

The algorithmic description of the Expectation Maximization (EM) approach to
PPCA model is given in [55] but it can also be found in the following section,
where the estimation of this model is incorporated into the clustering procedure.
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Modified GG-Clustering for Time-series Segmentation

One of the most important advantages of PPCA models is that it allows their
combination into mixture of models. Mixtures have been extensively used as
models where data can be viewed as arising from several populations mixed in
varying proportions, and Expectation Maximization (EM) is widely used to esti-
mate the parameters of the components in a mixture [69]. The clusters obtained
by Gath–Geva (GG) clustering, also referred to Fuzzy Maximum Likelihood clus-
tering, are multivariate Gaussian functions. The Alternating Optimization (AO) of
these clusters is identical to the Expectation Maximization (EM) (maximum like-
lihood estimation) identification of the mixture of these Gaussian models when
the fuzzy weighting exponent m = 2 [70].

Similarly to GG clustering, in the presented algorithm the optimal parame-
ters of the ηi = {vx

i ,Ai, v
t
i , σ

2
i,x, αi} cluster prototypes are determined by the

minimization of the (3.48) functional subjected to the classical clustering con-
straints (B.1), (B.2) and (B.3). The Alternating Optimization results in the easily
implementable algorithm described in Algorithm 3.2.1.

The usefulness and accuracy of the algorithm depends on the right choice of
the q number of principal components (PCs) and the c number of the segments.
Hence, the crucial question of the usefulness of the presented cluster algorithm
is how these parameters can be determined in an automatic manner. This will
be presented in the following two subsections.
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Algorithm 3.2.1 (Clustering for Time-Series Segmentation).

Initialization Given a time-series T specify c and q, choose a termination tolerance ε > 0, and initialize the values of
Wi, vx

i , σ2
i,x, µi,k .

Repeat for l = 1, 2, . . .

Step 1 Calculate the ηi parameters of the clusters

• a priori probability of the cluster

αi =
1

N

N∑

k=1

µi,k. (3.56)

• the cluster centers

v
x
i =

∑N
k=1(µi,k)m (

xk −Wi〈yi,k〉
)

∑N
k=1(µi,k)m

(3.57)

where the expectation of the latent variables is 〈yi,k〉 = M−1
i WT

i

(
xk − vx

i

)
and the q × q matrix

Mi = σ2
i,xI + WT

i Wi .

• the new values of Wi

W̃i = FiWi

(
σ
2
i,xI + M

−1
i W

T
i FiWi

)−1
(3.58)

where Fi computed by (3.52).

• the new value of σ2
i,x

σ
2
i,x =

1

q
trace(Fi − FiWiM

−1
i W̃

T
i ). (3.59)

• the distance norm (n× n matrix)

Ai = σ
2
i,xI + W̃iW̃

T
i . (3.60)

• the model parameters in time: the center and the standard deviation

v
t
i =

N∑
k=1

(
µi,k

)m tk

N∑
k=1

(
µi,k

)m

, σ
2
i,t =

N∑
k=1

(
µi,k

)m
(

tk − vt
i

)2

N∑
k=1

(
µi,k

)m

. (3.61)

Step 2 Compute the d2(zk, ηi) distance measures by (3.51).

Step 3 Update the partition matrix

µ
(l)
i,k

=
1

∑c
j=1

(
d(zk, ηi)/d(zk, ηj)

)2/(m−1)
, 1 ≤ i ≤ c, 1 ≤ k ≤ N . (3.62)

until ||U(l) −U(l−1)|| < ε.

Automatic Determination of the Number of Segments

In data mining, the bottom-up segmentation algorithm has been extensively
used to support a variety of time series data mining tasks [64]. The algorithm
starts by creating a fine approximation of the time series, and iteratively merges
the lowest cost pair of segments until a stopping criteria is met. For the auto-
matic selection of the number of segments, a similar approach is presented in
this section. The presented recursive cluster merging technique evaluates the
adjacent clusters for their compatibility (similarity) and merges the clusters that
are found to be compatible. Then, after the proper initialization of the parame-
ters of the new cluster the clustering is performed again. During this merging
and re-clustering procedure the number of clusters is gradually reduced, until an
appropriate number of clusters is found. This procedure is controlled by a fuzzy
decision making algorithm based on the similarity between the PCA models.
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Similarity of PCA Models

The similarity of two PCA models (i.e. hyperplanes) can be calculated by the
PCA similarity factor, SPCA, developed by Krzanowski [61, 71]. Consider two
segments, Si and Sj , of a dataset having the same n variables. Let the PCA
models for Si and Sj consist of q PC’s each. The similarity between these
subspaces is defined based on the sum of the squares of the cosines of the
angles between each principal component of Ui,q and Uj,q:

Si,j
PCA =

1

q

q∑
i=1

q∑
j=1

cos2 θi,j =
1

q
trace

(
UT

i,qUj,qU
T
j,qUi,q

)
(3.63)

Because the Ui,q and Uj,q subspaces contain the q most important principal
components that account for the most of the variance in their corresponding
datasets, Si,j

PCA is also a measure of similarity between the segments Si and Sj .
Since the purpose of the segmentation is also to detect changes in the mean

of the variables, it is not sufficient to compute only the Si,j
PCA similarity factor but

the distance among the cluster centers also has to be taken into account

d(vx
i ,v

x
j ) = ‖vx

i − vx
j ‖. (3.64)

Hence, the compatibility criterion has to consider the c1
i,j = Si,j

PCA and c2
i,j =

d(vx
i ,v

x
j ) factors.

The Decision Making Algorithm

Because the compatibility criterion quantifies various aspects of the similarity
of the clusters, the overall cluster compatibility should be obtained through an
aggregation procedure. A fuzzy decision making algorithm can be used for this
purpose [60].

Compatibility criteria (3.63) and (3.64) are evaluated for each pair of clusters.
The resulted compatibility matrix is descriptive concerning the structure of the
whole time-series, e.g. repetitive motifs can be also detected from the analysis
of the compatibility of the non-adjacent clusters. Following a fuzzy decision
making approach, the decision goals for each criterion have to be defined using
a fuzzy set. Figure 3.7 shows the triangular membership functions defined for
the two criteria. The important parameters of the membership functions are the
limits of their support, characterized by the ν1 knot point for parallelism and ν2

for closeness. The values of ν1 and ν2 are given by averaging compatibilities
according to

ν1 =
1

c(c− 1)

c∑
i=1

c∑
j=1
j 6=i

c1
i,j, (3.65)

ν2 =
1

c(c− 1)

c∑
i=1

c∑
j=1
j 6=i

c2
i,j. (3.66)
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Figure 3.7: Membership functions for parallelism and closeness of clusters

Evaluating the membership functions with the values c1
i,j and c2

i,j , one obtains
the µ1

i,j degree of parallelism and µ2
i,j of closeness. The overall cluster compat-

ibility is determined by the aggregation of the two criteria. A fuzzy aggregation
operator is used for this purpose. The outcome of the decision procedure is the
O overall compatibility matrix whose Oi,j elements are given by

Oi,j =

[
(µ1

i,j)
2 + (µ2

i,j)
2

2

]1/2

. (3.67)

Given the O compatibility matrix, the clusters that will be merged must be iden-
tified and combined. Clusters can be merged in several ways. Our method
merges the most similar pair of adjacent clusters as long as the value of the
corresponding Oi,i+1 is above a threshold γ.

Cluster Merging

The applied bottom-up strategy merges two adjacent clusters in each iteration.
To preserve the information represented by the clusters there is a need for a
merging method that can directly compute the new initial parameters of the
cluster from the merged clusters. This can be done by several ways [72]. In
this session the method developed by P. M. Kelly is applied [73]. The vx

i∗ mean
of the resulting cluster is computed from the individual cluster means

vx
i∗ =

Ni

Ni∗
vx

i +
Nj

Ni∗
vx

i+1 (3.68)

where Ni =
∑N

k=1 µi,k, Ni+1 =
∑N

k=1 µi+1,k and Ni∗ = Ni + Ni+1, while the
Fi∗ new covariance matrix is calculated from the Fi and Fi+1 old covariance
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matrices as

Fi∗ =
Ni − 1

Ni∗ − 1
Fi +

Ni+1 − 1

Ni∗ − 1
Fi+1 +

NiNi+1

Ni∗(Ni∗ − 1)
[(vx

i − vx
i+1)(v

x
i − vx

i+1)
T ].

(3.69)
The new values of Wi∗ and σ2

i∗,x can be computed by (3.54) and (3.55) based
on the eigenvector-eigenvalue decomposition of Fi∗. Based on the obtained
results the p(xk|ηi∗) probabilities can be easily computed (see the algorithm in
Section 3.2).

This method can also be applied to merge the membership functions charac-
terized by the parameters vt

i , σ2
i,t and vt

i+1, σ2
i+1,t, and the p(tk|ηi∗) probabilities

can be determined from the new values of vt
i∗ and σ2

i∗,t by (3.51). The uncon-
ditional probability of the i∗-th cluster is equal to the sum of the probabilities of
the previous clusters p(ηi∗) = p(ηi) + p(ηi+1). After the previously presented
initialization of the new cluster prototype the new µi∗,k membership values can
be computed by (3.51) and (3.62).

Number of Principal Components

Beside the selection of the right number of clusters, the second bottleneck of
the successful application of the presented algorithm is the selection of the the
right number of principal components. This can be done by the analysis of the
eigenvalues of the covariance matrices of the initial segments. For this purpose
a so-called screeplot can be drawn that plots the ordered eigenvalues according
to their contribution to the variance of data. Another possibility is to define q
based on the desired accuracy (loss of variance) of the PPCA models:

q−1∑
j=1

λi,j/

n∑
j=1

λi,j < accuracy ≤
q∑

j=1

λi,j/

n∑
j=1

λi,j. (3.70)

The syntetic dataset shown in Figure 3.6 was initially partitioned into ten
segments. As Figure 3.8(a) illustrates, the magnitude of the eigenvalues and
their cumulative rate to their sum show that two PCs are sufficient to approximate
the distribution of the data with 98% accuracy. Obviously, this analysis can be
fully automatized.

It is interesting to note that the analysis of the fuzzy hypervolume cluster
validity measure is similar to the approach of the analysis of the eigenvalues,
because the Vi = (det(Fi))

1/2 hypervolume of a cluster is proportional to the
product of the eigenvalues. Hence, the right number of principal components
can be also determined based on the product of the q largest eigenvalues.
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(a) Synthetic dataset.
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(b) Industrial dataset.

Figure 3.8: Screeplots of the synthetic and the industrial data shown in Fig-
ure 3.6 and Figure A.9, respectively.

The Segmentation Algorithm

Based on the the previously presented building blocks the presented clustering
based segmentation algorithm is formulated as follows:

Algorithm 3.2.2 (Time-Series Segmentation Algorithm).

Step 1 Uniformly segment the data by a large number of segments (In the
examples given in this session ten segments were used as starting
point). Determine the q number of the principal components based
on the analysis of the eigenvalues of these segments. For this pur-
pose screeplot or cluster validity measure can be used (see Sec-
tion 3.2 for more details).

Step 2 The values of m fuzziness parameter, the γ threshold for the O
compatibility matrix and the ε termination tolerance must be chosen.
In the case studies m = 2, ε = 10−4, the value of γ is usually be-
tween 0.3− 0.75 depending of the homogeneity of the time-series.

Step 3 Execute the clustering algorithm (see Section 3.2). The cluster
merging must be evaluated after predefined number of iteration steps
(see Section 3.2). In all of our applications this number was 100. The
algorithm stops if the termination tolerance is reached and cluster
merging is not necessary.

As this formulation of the algorithm shows, although there is a need to de-
fine some parameters of the algorithm before its application (γ, ε, and the initial
number of clusters), it is possible to apply the method for high dimensional time-
series even if almost nothing is known about the structure of these series in
advance. Hence, the method is useful for knowledge discovery. Of course,
data mining is an iterative procedure. The results of the segmentation should
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be evaluated by human experts or by the performances of other modelling and
data mining tools based on the segmented data, and if it is needed, the "knowl-
edge worker" should return to the segmentation task with a new set of these
parameters.

In the following the effectiveness of the developed algorithm will be illustrated
by two examples: the synthetic dataset introduced in Section 3.2 and an indus-
trial dataset taken from an industrial polymerization reactor, and the obtained
results will be compared to the results given by the multivariate extension of the
bottom-up segmentation algorithm of Keogh [64].

Example 3.3. Synthetic time-series segmentation based on GG clustering
The synthetic dataset given in Figure 3.6 is designed to illustrate how a multivariate

segmentation algorithm should detect the changes of the latent process behind the high
dimensional data.

In Figure 3.8 it has been shown that the screeplot of the eigenvalues suggests
that the clustering algorithm should take into account two principal components. From
Figure 3.6(c) – which shows the βi normalized and the Ai(t) = p(tk|ηi) Gaussian mem-
bership functions, and the p(zk|ηi) probabilities – it can be seen that with this parameter
the presented method found five segments and it is able to detect the changes in the
correlation structure and in the mean of the data. The S

i(i+1)
PCA similarity measures of the

adjacent clusters are 0.99, 0.17, 0.99, and 0.99812, which suggest that the correlation
among the variables has significantly changed between the first and the second seg-
ments, while the other segments differ mainly in their mean. These results agree with
Figure 3.6(a) and justify the accuracy and the usefulness of the presented method.

To illustrate the importance of the selection of the right number of PCs the same
segmentation has been performed with only one PC. In this case, the algorithm found
10 nearly symmetric segments, hence it was not able to explore the hidden information
behind the data. As it is depicted in Figure 3.6(c), in case of five PCs the algorithm gave
reasonable, but not so characteristic result. These results were compared to the results
of the bottom-up method based on the Hotelling T 2 (top) and the reconstruction error Q
(bottom) shown in Figure 3.6(d). The bottom-up algorithm based on the reconstruction
error Q is sensitive to the change in the correlation structure but it was not able to find
the change in the mean. The method based on the Hotelling T 2 measure is on the
contrary. The method based on the Q measure is very sensitive to the number of PCs.
As can be seen in Figure 3.6(d) when q = 2 the result is very different from that obtained
by q = 5, but in both cases the algorithm finds the change in the correlation structure.

This comparison showed contrary to the multivariate extensions of the classical
bottom-up segmentation algorithm, the developed cluster analysis based segmentation
algorithm can simultaneously handle the problems of the detection of the change of the
latent process and the change of the mean of the variables and it is more robust with
respect to the number of principal components.

¤
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3.3 Fuzzy Clustering for Classifier Induction

Algorithm 3.3.1 (Supervised Fuzzy Clustering).

Initialization Given a set of data Z specify R, choose a termination tolerance ε > 0. Initialize the U = [µi,k]R×N partition matrix
randomly, where µi,k denotes the membership that the zk data is generated by the ith cluster.

Repeat for l = 1, 2, . . .

Step 1 Calculate the parameters of the clusters

• Calculate the centers and standard deviation of the Gaussian membership functions (the diagonal elements of the
Fi covariance matrices):

v
(l)
i =

N∑
k=1

(
µ
(l−1)
i,k

)m
xk

N∑
k=1

(
µ
(l−1)
i,k

)m
, σ

2 (l)
i,j =

N∑
k=1

(
µ
(l−1)
i,k

)m
(xj,k − vj,k)2

N∑
k=1

(
µ
(l−1)
i,k

)m
(3.71)

• Estimate the consequent probability parameters,

p(ci|rj) =

∑
k|yk=ci

(
µ
(l−1)
j,k

)m

∑N
k=1

(
µ
(l−1)
j,k

)m , 1 ≤ i ≤ C, 1 ≤ j ≤ R (3.72)

• A priori probability of the cluster and the weight (impact) of the rules:

P (ri) =
1

N

N∑

k=1

(
µ
(l−1)
i,k

)m
, wi = P (ri)

n∏

j=1

1√
2πσ2

i,j

(3.73)

Step 2 Compute the distance measure d2(zk, ri) by (3.75).

Step 3 Update the partition matrix

µ
(l)
i,k

=
1

R∑
j=1

(
d(zk, ri)/d(zk, rj)

)2/(m−1)
, 1 ≤ i ≤ R, 1 ≤ k ≤ N (3.74)

until ||U(l) −U(l−1)|| < ε.

The automatic determination of compact fuzzy classifiers rules from data has
been approached by several different techniques. Generally, the bottleneck of
the data-driven identification of fuzzy systems is the structure identification that
requires nonlinear optimization. Thus for high dimensional problems, the initial-
ization the fuzzy model becomes very significant. Common initializations meth-
ods such as grid-type partitioning [74] and rule generation on extrema initial-
ization, result in complex and non-interpretable initial models and the rule-base
simplification and reduction steps become computationally demanding. To avoid
these problems, fuzzy clustering algorithms [75] were put forward. However, the
obtained membership values have to be projected onto the input variables and
approximated by parameterized membership functions that deteriorates the per-
formance of the classifier. This decomposition error can be reduced by using
eigenvector projection [37], but the obtained linearly transformed input variables
do not allow the interpretation of the model. To avoid the projection error and
maintain the interpretability of the model, the presented approach is based on
the Gath–Geva (GG) algorithm [38], because the simplified version of GG clus-
tering allows the direct identification of fuzzy models with exponential member-
ship functions [44].
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Neither GG nor GK algorithm does not utilize the class labels. Hence, they
give suboptimal result if the obtained clusters are directly used to formulate a
classical fuzzy classifier. Hence, there is a need for fine-tuning of the model.
This GA or gradient-based fine-tuning, however, can result in overfitting and thus
poor generalization of the identified model. Unfortunately, the severe computa-
tional requirements of these approaches limit their applicability as a rapid model-
development tool. This section focuses on the design of interpretable fuzzy rule
based classifiers from data with low-human intervention and low-computational
complexity. Hence, a new modelling scheme is introduced based only on fuzzy
clustering (see also in [76]). The presented algorithm uses the class label of
each point to identify the optimal set of clusters that describe the data. The
obtained clusters are then used to build a fuzzy classifier.

The contribution of this approach is twofold.

• The classical fuzzy classifier consists of rules each one describing one of
the C classes. In this section a new fuzzy model structure is presented
where the consequent part is defined as the probabilities that a given rule
represents the c1, . . . , cC classes. The novelty of this new model is that
one rule can represent more than one classes with different probabilities.

• Classical fuzzy clustering algorithms are used to estimate the distribution
of the data. Hence, they do not utilize the class label of each data point
available for the identification. Furthermore, the obtained clusters cannot
be directly used to build the classifier. In this section a new cluster proto-
type and the related clustering algorithm have been introduced that allows
the direct supervised identification of fuzzy classifiers.

The presented algorithm is similar to the Multi-Prototype Classifier technique
[77, 78]. In this approach, each class is clustered independently from the other
classes, and is modeled by few components (Gaussian in general). The main
difference of this approach is that each cluster represents different classes, and
the number of clusters used to approximate a given class have to be determined
manually, while the presented approach does not suffer from these problems.

Classical fuzzy clustering algorithms are used to estimate the distribution of
the data. Hence, they do not utilize the class label of each data point available
for the identification. Furthermore, the obtained clusters cannot be directly used
to build the classifier. In the following a new cluster prototype and the related
distance measure will be introduced that allows the direct supervised identifi-
cation of fuzzy classifiers. As the clusters are used to obtain the parameters
of the fuzzy classifier, the distance measure is defined similarly to the distance
measure of the Bayes classifier (B.33):

1

d2(zk, ri)
= P (ri)

n∏
j=1

exp

(
−1

2

(xj,k − vi,j)
2

σ2
i,j

)

︸ ︷︷ ︸
Gath–Geva clustering

P (cj = yk|ri) (3.75)

This distance measure consists of two terms. The first term is based on the ge-
ometrical distance between the vi cluster centers and the xk observation vector,
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while the second is based on the probability that the ri-th cluster describes the
density of the class of the k-th data, P (cj = yk|ri). It is interesting to note, that
this distance measure only slightly differs from the unsupervised Gath–Geva
clustering algorithm which can also be interpreted in a probabilistic framework
[38]. However, the novelty of the presented approach is the second term, which
allows the use of class labels.

Similarly to the update equations of Gath–Geva clustering algorithm, the fol-
lowing equations will result in a solution using Lagrange multipliers method.

Example 3.4. Classification of the Wine data
In order to examine the performance of the presented identification method the well-

known multidimensional classification benchmark problem is presented. The studied
Wine data come from the UCI Repository of Machine Learning Databases2. The per-
formance of the obtained classifiers was measured by ten-fold cross validation. The
data divided into ten sub-sets of cases that have similar size and class distributions.
Each sub-set is left out once, while the other nine are applied for the construction of the
classifier which is subsequently validated for the unseen cases in the left-out sub-set.

For comparison purposes, a fuzzy classifier, that utilizes all the 13 information profile
data about the wine has been identified by the presented clustering algorithm based on
all the 178 samples. Fuzzy models with three and six rules were identified. The three
rule-model gave only 2 misclassification (correct percentage 98.9%). When a cluster
was added to improve the performance of this model, the obtained classifier gave only
1 misclassification (99.4%). The classification power of the identified models is then
compared with fuzzy models with the same number of rules obtained by Gath–Geva
clustering, as Gath–Geva clustering can be considered the unsupervised version of
the presented clustering algorithm. The Gath–Geva identified fuzzy model achieves 8
misclassifications corresponding to a correct percentage of 95.5%, when three rules
are used in the fuzzy model, while 6 misclassifications (correct percentage 96.6%) in
the case of four rules. The results are summarized in Table 3.3. As it is shown, the
performance of the obtained classifiers are comparable to those in [79] and [74], but
use far less rules (3-5 compared to 60) and less features.

Table 3.3: Classification rates on the Wine data for ten independent runs.

Method Best result Aver result Worst result Rules Model eval

Corcoran and Sen [79] 100% 99.5% 98.3% 60 150000
Ishibuchi et al. [74] 99.4% 98.5% 97.8% 60 6000
GG clustering 95.5 % 95.5 % 95.5 % 3 1

Sup (13 features) 98.9 % 98.9 % 98.9 % 3 1
Sup (13 features) 99.4 % 99.4 % 99.4 % 4 1

These results indicate that the presented clustering method effectively utilizes the
class labels. As can be seen from Table 3.3, because of the simplicity of the presented
clustering algorithm, the presented approach is attractive in comparison with other it-
erative and optimization schemes that involves extensive intermediate optimization to
generate fuzzy classifiers.

2http://www.ics.uci.edu
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Figure 3.9: Membership functions obtained by fuzzy clustering.

Table 3.4: Classification rates and model complexity for classifiers constructed
for the Wine classification problem. Results from averaging a ten-fold validation.

Method minAcc. meanAcc. maxAcc. min ]Feat. mean]Feat. max ]Feat.

GG: R = 3 83.33 94.38 100 10 12.4 13
Sup: R = 3 88.88 97.77 100 12 12.6 13
GG: R = 3 88.23 95.49 100 4 4.8 5
Sup: R = 3 76.47 94.87 100 4 4.8 5
GG: R = 6 82.35 94.34 100 4 4.9 5
Sup: R = 6 88.23 97.15 100 4 4.8 5

The ten-fold validation is a rigorous test of the classifier identification algorithms.
These experiments showed 97.77% average classification accuracy, with 88.88% as the
worst and 100% as the best performance (Table 3.4). The above presented automatic
model reduction technique removed only one feature without the decrease of the classifi-
cation performance on the training data. Hence, to avoid possible local minima, the fea-
ture selection algorithm is used to select only five features, and the presented scheme
has been applied again to identify a model based on the selected five attributes. This
compact model with average 4.8 rules showed 97.15% average classification accuracy,
with 88.23% as the worst and 100% as the best performance. The resulted membership
functions and the selected features are shown in Figure 3.9. Comparing the fuzzy sets
in Figure 3.9 with the data shows that the obtained rules are highly interpretable. For
example, the Flavonoids are divided in Low, Medium and High, which is clearly visible
in the data.

¤
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3.4 Fuzzy Clustering for Model Order Selection

Most data-driven identification algorithms assume that the model structure is a
priori known or that it is selected by a higher-level ‘wrapper’ structure-selection
algorithm. Several information-theoretic criteria have been proposed for struc-
ture selection in linear dynamic input–output models. Examples of the classical
criteria are the Final Prediction-Error (FPE) and the Akaike Information Criterion
(AIC) [80]. Later, the Minimum Description Length (MDL) criterion developed
by Schwartz and Rissanen was proven to produce consistent estimates of the
structure of linear models [81]. With these tools, determining the structure of
linear systems is a rather straightforward task. However, relatively little research
has been done into the structure selection for nonlinear models. In the paper of
Aguirre and Billings [82], the concepts of term clusters and cluster coefficients
are defined and used. It is argued that if a certain type of term in a nonlinear
model is spurious, the respective cluster coefficient is small compared with the
coefficients of the other clusters represented in the model. In [83], this approach
is used to the structure selection of polynomial models. In [84] an alternative
solution to the model structure selection problem is introduced by conducting a
forward search through the many possible candidate model terms initially and
then performing an exhaustive all subset model selection on the resulting model.
A backward search approach based on orthogonal parameter-estimation is also
applied [56, 85]. As can be seen, these techniques are ‘wrapped’ around a
particular model construction method. Hence, the result of the estimate can
be biased due to the particular construction method used. To avoid this prob-
lem a ‘model free’ approach is followed where no particular model needs to be
constructed in order to select the order of the model. The advantage of this
approach is that this estimate is based on geometrical/embedding procedures
and does not depend on the model representation that will be used a poste-
riori, i.e. the results would have a rather general character. This is important
advantage, as the construction of a NARX model consists of the selection of
many structural parameters which have significant effect to the performance of
the designed model: e.g. the model order, type of the nonlinearity (Hammer-
stein or Wiener type system) [86], scheduling variables, number of neurons in a
neural network, etc. The simultaneous selection of these structural parameters
is a problematic task. The primary objective of this section is to decompose
this complex problem by providing some useful guidance in selecting a tentative
model order. However, it should be bore in mind that there is no escape of per-
forming a model-driven structure selection, once a certain model representation
is chosen. For instance, suppose a model-free model order selection algorithm
is used to determine the correct model order. If a neural network is used to
model the process, the designer still need to decide on the activation function,
the number of nodes etc. Therefore, the model order selection method that will
be presented definitely not spare the user of having to go through some sort of
structure selection. Indeed, if the orders of the nonlinear input-output model are
well chosen, then structure selection will be much facilitated.
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Deterministic suitability measures [87] and false nearest neighbor (FNN) al-
gorithms [88] have already been proposed for data-based selection of the model
order. These methods build upon similar methods developed for the analysis of
chaotic time series [89]. The idea behind the FNN algorithm is geometric in
nature. If there is enough information in the regression vector to predict the
future output, then for any two regression vectors which are close in the regres-
sion space, the corresponding future outputs are also close in the output space.
The structure is then selected by computing the percentage of false neighbors,
i.e., vectors that violate the above assumption. A suitable threshold parameter
must be specified by the user. For this purpose, heuristic rules have been pro-
posed [87]. Unfortunately, for nonlinear systems the choice of this parameter
will depend on the particular system under study [88]. The computational effort
of this method also rapidly increases with the number of data samples and the
dimension of the model.

To increase the efficiency of this algorithm, I present two clustering-based
algorithms, which can be found in one of our previous work [90] as well. The
main idea of these algorithms is the following. When the available input–output
data set is clustered in the product space of the regressors and the model out-
put, the obtained clusters will approximate the regression surface of the model.
Although a clustering algorithm is utilized, the method does not assume that the
data exhibit a cluster substructure. Clustering is used to detect clusters that are
local linear approximations of the regression surface. In the first algorithm the
threshold constant that is used to compute the percentage of the false neighbors
is estimated from the shape of the obtained clusters. Departing from the the-
ory behind the MDL algorithm, a new direct model structure selection algorithm
is also developed. If the right input variables are used, because of the func-
tional relationship between the regressors and the model output, the data are
locally highly correlated and the obtained clusters are flat. In this way, the prob-
lem of determining the appropriate regressors is transformed into the problem of
checking the flatness of the clusters, similarly to [35, 91]. The main advantage
of the presented solution is that it is model-free. This means that no particular
model needs to be constructed in order to select the model structure. There is
also no need for finding the nearest neighbors for each data point, which is a
computationally expensive task.

FNN Algorithm

Many non-linear static and dynamic processes can be represented by the fol-
lowing regression model

yk = f(φk) (3.76)

where f(.) is a nonlinear function and φk represents its input vector and k =
1, . . . , N represents the index of the k-th available input-output data.

Among this class of models, the identification of discrete-time, Non-linear
Auto-Regressive models with eXogenous inputs (NARX) is considered. In the
NARX model, the model regressors are past values of the process outputs yk
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and the process inputs uk.

φk = [yk−1, . . . , yk−na , uk−1, . . . , uk−nb
]T (3.77)

while the output of the model is the one-step ahead prediction of the process, yk.
The number of past outputs used to calculate yk is na, and the number of past
inputs is nb. The values na and nb are often referred to as model orders. The
above SISO system representation can be assumed without a loss of generality
since the extension to MISO and MIMO systems is straightforward.

The method of false nearest neighbors (FNN) was developed by Kennel [89]
specifically for determining the minimum embedding dimension, the number of
time-delayed observations necessary to model the dynamic behavior of chaotic
systems. For determining the proper regression for input-output dynamic pro-
cesses, the only change to the original FNN algorithm involves the regression
vector itself [88].

The main idea of the FNN algorithm stems from the basic property of a func-
tion. If there is enough information in the regression vector to predict the future
output, then any of two regression vectors which are close in the regression
space will also have future outputs which are close in some sense. For all re-
gression vectors embedded in the proper dimensions, for two regression vectors
that are close in the regression space and their corresponding outputs are re-
lated in the following way:

yk − yj = df (φna,nb

k )
[
φna,nb

k − φna,nb
j

]
+ o

([
φna,nb

k − φna,nb
j

])2
(3.78)

where df (φna,nb

k ) is the Jacobian of the function f(.) at φna,nb

k .
Ignoring higher order terms, and using the Cauchy-Schwarz inequality the

following inequality can be obtained:

|yk − yj| ≤ ‖df (φna,nb

k )‖2

∥∥φna,nb

k − φna,nb
j

∥∥
2

(3.79)

|yk − yj|∥∥φna,nb

k − φna,nb
j

∥∥
2

≤ ‖df (φna,nb

k )‖2 (3.80)

If the above expression is true, then the neighbors are recorded as true neigh-
bors. Otherwise, the neighbors are false neighbors.

Based on this theoretical background, the outline of the FNN algorithm is the
following.

1. Identify the nearest neighbor to a given point in the regressor space. For
a given regressor:

φna,nb

k = [yk−1, . . . , yk−na , uk−1, . . . , uk−nb
]T

find the nearest neighbor φna,nb
j such that the distance d is minimized:

d = ||φna,nb

k − φna,nb
j ||2
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2. Determine if the following expression is true or false

|yk − yj|
||φna,nb

k − φna,nb
j ||2 ≤ R

where R is a previously chosen threshold value. If the above expression
is true, then the neighbors are recorded as true neighbors. Otherwise, the
neighbors are false neighbors.

3. Continue the algorithm for all times k in the data set.

4. Calculate the percentage of points in the data that have false nearest
neighbors J(na, nb).

5. Continue the algorithm for increasing na and nb using the percentage of
false nearest neighbors drops to some acceptably small number.

The FNN algorithm is sensitive to the choice of the R threshold. In [87]
the threshold value was selected by trial and error method based on empirical
rules of thumb, 10 ≤ R ≤ 50. However, choosing a single threshold that will
work well for all data sets is impossible task. In this case, it is advantageous
to estimate R based on (3.80) using the the maximum of the Jacobian, R =
maxk ‖df (φna,nb

k )‖, as it was suggested by Rhodes and Morari [88].
Since this method uses the Jacobian of the identified models, the perfor-

mance and the flexibility of these models can deteriorate the estimate of the
model order. When the Jacobian is overestimated, the algorithm underestimates
the order of the system. Contrary, if the model estimates smaller Jacobian than
the real Jacobian of the system, the model order selection algorithm overes-
timates the order of the model. Hence, the modeler should be careful at the
construction of the model used to estimate the Jacobian of the system (e.g. the
model can be over or under parameterized, etc.). To increase the efficiency of
the FNN based structure selection, a clustering-based algorithm will be intro-
duced in the following section.

Fuzzy Clustering based FNN

The main idea of this section is the following. When the available input-output
data set is clustered in the product space of the regressors and the model out-
put and when the appropriate regressors are used, the collection of the obtained
clusters will approximate the regression surface of the model. In this case the
clusters can be approximately regarded as local linearizations of the system
and can be used to estimate R. Clusters of different shapes can be obtained by
different clustering algorithms by using an appropriate definition of cluster proto-
types (e.g., points vs. linear varieties) or by using different distance measures.
The Gustafson–Kessel clustering algorithm [92] has been often applied to iden-
tify Takagi–Sugeno fuzzy systems that are based on local linear models [35].
The main drawback of this algorithm is that only clusters with approximately
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equal volumes can be properly identified which constrain makes the applica-
tion of this algorithm problematic for the task of this section. To circumvent this
problem, in this section Gath–Geva algorithm is applied [67, 38].

The clustering algorithm has only one parameter: c, the number of the clus-
ters. In general, the increase of c increases the accuracy of the model. However,
to avoid overfitting and the excessive computational costs, it is recommended
to determine the number of the clusters automatically. For this purpose various
methods can be applied [35, 38].

The applied validity measure is based on the hyper-volume index:

Vfc =
c∑

i=1

det(Fi) . (3.81)

This index represents the volume of the clusters. When the nonlinear hyper-
surface of the identification data is correctly approximated by the clusters, this
volume should be small. I scale this index by the volume of covariance matrix of
the data

I =
Vfc

det(cov(X))
. (3.82)

Estimation of the R Threshold Coefficient

The collection of c clusters approximates the regression surface. Hence, the
clusters can be approximately regarded as local linear subspaces described by
the cluster ellipsoids. The smallest eigenvalues λi,nb+na+1 of the cluster covari-
ance matrices Fi are typically in orders of magnitude smaller than the remaining
eigenvalues [67, 35].

The eigenvector corresponding to this smallest eigenvalue, ti
nb+na+1, deter-

mines the normal vector to the hyperplane spanned by the remaining eigenvec-
tors of that cluster

(ti
nb+na+1)

T (xk − vi) = 0 (3.83)

Similarly to the observation vector xk = [φT
k yk]

T , the prototype vector is

partitioned as vi =

[(
vφ

i

)T

vy
i

]
into a vector vφ corresponding to the regressor

φk, and a scalar vy
i corresponding to the output yk. The smallest eigenvector is

partitioned in the same way, ti
na+nb+1 =

[(
ti,φ
na+nb+1

)T

ti,yna+nb+1

]T

. By using this

partitioned vectors (3.83) can be written as
[(

ti,φ
na+nb+1

)T

ti,yna+nb+1

]T (
[φT

k yk]
T −

[(
vφ

i

)T

vy
i

])
= 0 (3.84)

from which the parameters of the hyperplane defined by the cluster can be ob-
tained:

yk =
−1

ti,yna+nb+1

(
ti,φ
na+nb+1

)T

︸ ︷︷ ︸
aT

i

φk +
1

ti,yna+nb+1

(
ti
na+nb+1

)T
vi

︸ ︷︷ ︸
bi

= aT
i φk + bi (3.85)
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Although the parameters have been derived from the geometrical interpreta-
tion of the clusters, it can be shown [35] that (3.85) is equivalent to the weighed
total least-squares estimation of the consequent parameters, where each data
point is weighed by the corresponding

√
µi,k.

The main contribution of this section is that it suggests the application of an
adaptive threshold function to FNN, which takes into account the nonlinearity
of the system. This means, based on the result of the fuzzy clustering, for all
input-output data pairs different Rk values are calculated. Since, the optimal
value of Rk is Rk = ‖df (φna,nb

k )‖ and the df (φna,nb

k ) partial derivatives can be
estimated based on the shape of the clusters from (3.85)

df (φna,nb

k ) ≈
c∑

i=1

µi,k
−1

ti,yna+nb+1

(
ti,φ
na+nb+1

)T

(3.86)

the threshold can be calculated as

Rk =

∥∥∥∥∥
c∑

i=1

µi,k
−1

ti,yna+nb+1

(
ti,φ
na+nb+1

)T

∥∥∥∥∥
2

(3.87)

Cluster Analysis based Direct Model Order Estimation

In the previous section a new cluster analysis based approach to the adap-
tive choice of the R threshold value of the FNN algorithm has been presented.
Based on the geometric idea behind this algorithm, in this section an alternative
structure selection algorithm will be presented that does not require the time-
consuming calculation of the nearest neighbors in the identification data.

The idea of this second algorithm is based on the well known fact that in
the absence of the observation noise, the covariance matrix of the identification
data generated by a linear system has a zero eigenvalue with multiplicity s given
by

s = 1 + min(na − na,l, nb − nb,l) (3.88)

when the selected model orders nb and na are greater than or equal to the true
orders of the linear system, i.e., nb ≥ nb,l and na ≥ na,l [93]. This relationship
between the parameters na, nb and the eigenvalues of the covariance matrix
can be used to select the model order.

In [81] it has been shown that the widely applied Minimum Description Length
(MDL) model order selection criterion can be expressed based on the smallest
eigenvalue of the data covariance matrix:

Jna,nb

MDL =
N

2
log(λmin) +

1

2
(na + nb) log N (3.89)

Multiplying both sides by 2/N and combining the terms results in

2

N
Jna,nb

MDL = log
(
λmin

(
N1/N

)na+nb
)

(3.90)
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As log(.) is a monotonically increasing, in [81] a criterion containing exactly the
same information as MDL has been proposed:

Jna,nb = λmin

(
N1/N

)na+nb (3.91)

Since N1/N ≈ 1 for large N , one can see that the MDL criterion asymptotically
provides the same information as the minimum eigenvalue of the covariance
matrix. The advantage of the above formulation is that it can also be applied
to noise-free data, in which λmin is zero and where the logarithm in (3.89) thus
cannot be calculated.

The utilized fuzzy clustering obtains local linear approximation of the nonlin-
ear system, (3.91) can be easily modified for cluster-based model order estima-
tion by weighting the values of this simplified cost functions calculated from the
cluster covariance matrices with the a priori probability of the clusters:

Jna,nb =
c∑

i=1

αiλi,min (3.92)

Because the model order is determined by finding the number of past outputs
na and past inputs nb, the J(na, nb) indices form a table in these two dimensions.
It is possible to find a ’global’ solution (or solutions) for the model orders by
computing the index over all values of na and nb in a certain range and search
for a rapid decrease of J(na, nb). The indices that have the smallest J(na, nb)
relative to J(na − 1, nb) and J(na, nb − 1) represents the ‘best’ estimate of the
model order. Hence, each row of the table is divided by the previous row to
form a row ratio table, and each column is divided by the previous column to
create a column ratio table. With the use of these ratios the model order can be
determined:

[na, nb] = arg min
na,nb

{
max

(
J(na, nb)

J(na−1, nb)
,

J(na, nb)

J(na, nb−1)

)}
. (3.93)

Example 3.5. Direct Model order selection of a polymerization reactor
In this example, taken from [88], I use data generated by a simulation model of a

continuous polymerization reactor. This model describes the free-radical polymerization
of methyl methacrylate with azobisisobutyronitrile as an initiator and toluene as a sol-
vent. The reaction takes place in a jacketed CSTR. Under some simplifying assumption,
the first-principle model is given by:

ẋ1 = 10(6− x1)− 2.4568x1
√

x2

ẋ2 = 80u− 10.1022x2

ẋ3 = 0.024121x1
√

x2 + 0.112191x2 − 10x3

ẋ4 = 245.978x1
√

x2 − 10x4

y =
x4

x3
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The dimensionless state variable x1 is the monomer concentration, and x4/x3 is
the number-average molecular weight (the output y). The process input u is the dimen-
sionless volumetric flow rate of the initiator. For further information on this model and its
derivation, see [94]. According to [88], I apply a uniformly distributed random input over
the range 0.007 to 0.015 with the sampling time of 0.2 s.

With four states, a sufficient condition for representing the dynamics is a regression
vector that includes four delayed inputs and outputs. In this case, however, the system
has two states that are weakly observable. This can be observed by linearizing the sys-
tem and performing balanced realization, which shows that two of the Hankel singular
values are larger than the remaining singular values. This week observability leads to
the system can be approximated by a smaller input–output description [95]. Obviously,
the results may change depending on where the system is linearized. Although, in this
case such effect have not occurred, the local linear behavior of a nonlinear system can
significantly vary, even if the system is analyzed around off-equilibrium operating points
[56, 96]. The main advantage of the presented clustering based approach is that the
clusters are the local linear approximations of the nonlinear system, so they can be di-
rectly used to estimate the operating regions and the orders of the local linear models
[67].

The presented clustering-based algorithm was applied to 960 data points. The in-
dices J(na, nb) obtained by using the direct model order estimation (see (3.92)) are
given in Table 3.5.

Table 3.5: Polymerization data: J(na, nb) values obtained based on the eigen-
values of 3 clusters.

Input lags (nb) Output lags (na)
0 1 2 3 4

0 - 5.55 4.84 4.80 4.81
1 4.28 1.28 0.54 0.43 0.42
2 1.23 0.30 0.44 0.41 0.37
3 0.37 0.34 0.31 0.33 0.34
4 0.29 0.35 0.30 0.32 0.32

With the use of (3.93), the ratios of the J(na, nb) values were computed and tab-
ulated in Table 3.6. One can see that the structure with na = 1 and nb = 2 is clearly
indicated. This result is in agreement with the analysis of Rhodes [88] who showed that
a nonlinear model with these orders is appropriate.

Table 3.6: Polymerization data: Ratios obtained from Table 3.5.
Input lags (nb) Output lags (na)

1 2 3 4
1 0.30 0.42 0.80 0.98
2 0.24 1.47 0.95 0.90
3 1.13 0.91 1.06 1.03
4 1.21 0.97 1.07 1.00

59



The clustering based false nearest neighbor (FNN) algorithm is also applied to the
data, and the results are given in Table 3.7. The model structure with na = 1 and
nb = 2 is indicated, which confirms the above results. The main drawback of the FNN
algorithm, however, is that it requires demanding calculations of the nearest neighbors
for each data point.

Table 3.7: Polymerization data: results obtained with the FNN method.
Input lags (nb) Output lags (na)

0 1 2 3 4
0 100.00 99.59 92.32 53.64 0.40
1 99.46 69.54 10.24 0.94 0.27
2 73.18 3.10 2.69 0.40 0.00
3 8.76 0.81 0.13 0.00 0.00
4 0.54 0.00 0.00 0.00 0.00

Table 3.8 shows results obtained for the linear ARX model structure. Note that
for this particular process, the linear method also works satisfactorily, although the de-
crease is less sharp.

Table 3.8: Polymerization data: results obtained with a linear model (smallest
eigenvalue of the covariance matrix of the data).

Input lags (nb) Output lags (na)
0 1 2 3 4

0 - 19.65 16.62 14.98 14.04
1 10.02 3.33 2.14 2.00 1.99
2 2.91 1.94 1.93 1.91 1.87
3 1.93 1.91 1.82 1.81 1.80
4 1.88 1.82 1.81 1.75 1.75

I can allocate that this linear model-based method does not give conspicuously
incorrect results, as it behaves similarly to the method presented in [88]. The only differ-
ence is that the linear model-based approach applies the "average" gain of the system,
while the method of Rhodes and Morari utilizes the maximal gain of the nonlinear sys-
tem [88]. For highly nonlinear systems both approaches can induce large model order
estimation error, as the linear model-based approach can over-, while the maximum
gain-based approach can under-estimate the order of the system.

¤
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3.5 Conclusions

I developed a novel fuzzy clustering algorithm that is able to simultaneously fit
local linear models of fuzzy models and determine their operating regions3,4.
Comparing with well-known methods it can be determined that the developed
method gives the most transparent results at similar accuracy to these methods.

The classical fuzzy classifier consists of rules each one describing one of
the classes. In this chapter I proposed a novel fuzzy model structure where
each rule can represent more than one classes with different probabilities. The
obtained classifier can be considered as an extension of the quadratic Bayes
classifier that utilizes mixture of models for estimating the class conditional den-
sities. A supervised clustering algorithm has been worked out for the identifi-
cation of this fuzzy model. The relevant input variables of the fuzzy classifier
have been selected based on the analysis of the clusters by Fisher’s interclass
separability criteria. This new approach is applied to the well-known wine and
Wisconsin Breast Cancer classification problems5. The proposed method can
be used for the discretization of continuous features to form efficient fuzzy de-
cision tree based classifiers. The resulted fuzzy classifiers are very compact
and well interpretable while the accuracy is still comparable to the best results
reported in the literature6.

To develop a method that is able to detect changes in the hidden relationship
between variables and/or in their average I worked out a novel method based
on mixtures of probabilistic principal component analysis (PPCA) models. PPCA
model parameters and the borders of the segments are determined by a fuzzy
clustering based algorithm. The developed tool is able to determine the number
of principal components and segments automatically. The effectiveness of the
developed method was demonstrated by synthetic and also industrial data sets7.

3Abonyi J, Babuska R, Szeifert F, Modified Gath-Geva fuzzy clustering for identification of
Takagi-Sugeno fuzzy models, IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNET-
ICS PART B-CYBERNETICS 32: pp. 612-621. (2002), IF: 0.630, Independent citations: 97

4Abonyi J, Roubos JA, Oosterom M, Szeifert F, Compact TS-fuzzy models through clustering
and OLS plus FIS model reduction, IEEE International Conference on Fuzzy System., 2001. pp.
1420-1423. Independent citations: 18

5Abonyi J, Szeifert F, Supervised fuzzy clustering for the identification of fuzzy classifiers,
PATTERN RECOGNITION LETTERS 24: pp. 2195-2207. (2003), IF: 0.809, Independent cita-
tions: 54

6Abonyi J, Supervised Fuzzy Clustering Based Initialization of Fuzzy Partitions for Decision
Tree Induction. The 14th Online World Conference on Soft Computing in Industrial Applications
WWW, 2009.11.17-2009.11.29,pp. 1-10.

7Abonyi J, Feil B, Nemeth S, Arva P, Modified Gath-Geva clustering for fuzzy segmentation
of multivariate time-series, FUZZY SETS AND SYSTEMS 149: pp. 39-56. (2005), IF: 1.039,
Independent citations: 16
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I recognized that the false nearest neighbor method (FNN) usually used for
model order estimation can be improved using clustering because time demand-
ing model identification steps can be omitted. I proposed an algorithm that can
be used to accurately estimate model orders without FNN on the only basis
of clustering results with the analysis of cluster covariance matrices, so other
time consuming computational steps, searching for nearest neighbors, can be
avoided. The developed algorithms gave accurate results linear as well as non-
linear cases (polymerization and Van der Vusse reactors)8. There is an anal-
ogous problem related to autonomous systems as well. The proper selection
of the state space dimension is a challenge by chaotic systems. As a solution,
a novel method has been worked out with its help three tasks can be solved
simultaneously utilizing clustering results: (1) selection of the dimension of the
state space, (2) estimation of the dimension of the manifold that data extend,
and (3) identification of a model that can be used for prediction. It can be deter-
mined from the examples that the developed method gave accurate results by
the autonomous systems with known dimensions9.

8Feil B, Abonyi J, Szeifert F, Model order selection of nonlinear input-output models - a clus-
tering based approach, JOURNAL OF PROCESS CONTROL 14: pp. 593-602. (2004), IF:
1.241, Independent citations: 20

9Balazs Feil, Balazs Balasko, Janos Abonyi, Visualization of Fuzzy Clusters by Fuzzy Sam-
mon Mapping Projection – Application to the Analysis of Phase Space Trajectories, special
issue of "Soft Computing" on "Soft Computing for Information Mining", 11, (5), 479-488,. 2006
(IF: 0.33)
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Chapter 4

Prior Knowledge based
Constraints in Parameter
Identification

In many practical situations, the involvement of laboratory and industrial exper-
iments are expensive and time consuming and accurate measurements cannot
be made. This problem results in a small number of data points that can be used
for parameter identification. Explicit regularization, like penalties on non-smooth
behavior of the model and application of a priori knowledge-based parameter
constraints, can dramatically improve the robustness of the identification algo-
rithm, eventually leading to more accurate parameter estimates [97]. In this
chapter two algorithms will be presented based on this concept.

4.1 Grey-Box Fuzzy Model Identification

Constrained Identification of TS Fuzzy Models

Fuzzy models are often overparametrized, even with the implicit regularization
effect of the local identification [98]. In this sectoion a new approach to data-
driven identification of TS fuzzy models will be presented based on constrained
identification of fuzzy models. Therefore, in the following the generating ele-
ment of this algorithm, the constrained identification of the consequent param-
eters, is presented. When linear equality and inequality constraints are defined
on these parameters, quadratic programming (QP) can be applied instead of
the previously presented least-squares method, which can be solved effectively
compared to other constrained nonlinear optimization algorithms [99].

The possible parameter constraints can be grouped into three categories:

• Local constraints are valid only for the parameters of a regression model,
Λiθi ≤ ωi.

• Global constraints are related to all of the regression models, Λglθi ≤
ωgl, i = 1, . . . , c.
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• Relative constraints define the relative magnitude of the parameters of
two or more regression models,

Λrel,i,j

[
θi

θj

]
≤ ωrel,i,j

.

These constraints can be written in a compact form:

Λθ ≤ ω (4.1)

with

Λ =




Λ1 0 · · · 0
0 Λ2 · · · 0
...

...
. . .

...
0 0 · · · Λc

Λgl 0 · · · 0
0 Λgl · · · 0
...

...
. . .

...
0 0 · · · Λgl

{Λrel}




, ω =




ω1

ω2
...

ωc

ωgl

ωgl
...

ωgl

{ωrel}




, . (4.2)

An example of these types of constraints is illustrated in Figure 4.1.

  θ i,2

Global constraints

Local constraints

[θ4,1 ,θ4,2
 ]

  θ i,1

[θ1,1 ,θ1,2
 ]

[θ2,1 ,θ2,2
 ]

[θ3,1 ,θ3,2
 ]

θ1,2 < θ4,2

Relative
constraints

Figure 4.1: Example for local, global and relative constraints.

With the use of (4.1), a constrained global optimization problem can be for-
mulated:

min
θ′

{
1

2
θTHθ + cT θ

}
(4.3)

with H = 2Xe
TXe c = −2Xe

Ty subject to (4.1), where Xe is defined by the
method described in [100].
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When relative constraints are present at local identification, the set of the
weighted optimization problems has to be solved simultaneously. In this case H
and c are formulated as follows: H = 2XTΦX, c = −2XTΦy, where

y =




y
y
...
y


 , Xe =




X 0 · · · 0
0 X · · · 0
...

...
. . .

...
0 0 · · · X


 , Φ =




Φ1 0 · · · 0
0 Φ2 · · · 0
...

...
. . .

...
0 0 · · · ΦNr


 . (4.4)

Prior Knowledge based Parameter Constraints

The proposed grey-box identification method is based on the constrained data-
driven identification of fuzzy systems presented in the previous subsection. The
linear inequality constraints can be based on prior knowledge about the dynamic
behavior of the process. The aim of this section is to show how such knowledge
can be transformed into the constraints.

It has been shown in [101, 102, 103] that certain types of a priori knowledge
about the dynamic behavior of a linear system can be expressed in the form
of linear inequality constraints on the parameters of a linear time-invariant (LTI)
model:

ΛLTIθLTI ≤ ωLTI (4.5)

where θLTI = [a1, a2, . . . , ana , b1, . . . , bnb
, c] denotes the parameters of the LTI

model

ŷ(k) =
na∑
i=1

aiy(k − i) +

nb∑
i=1

biu(k − i− nd) + c . (4.6)

These constraints on the LTI model parameters define a convex parameter set
Ω:

Ω = {θLTI |ΛLTIθLTI ≤ ωLTI} . (4.7)

The aim of this session is to incorporate important prior knowledge into the fuzzy
model. The parameter set, θLTI , of the LTI model (4.6) has to be a subset of Ω.

Because of the convexity of Ω and the convexity of the applied fuzzy infer-
ence method, if we would like to use the fuzzy model in LPV interpreted mode,
it is sufficient to check the constraints for the rule consequents. This means that
the constraints can easily be adapted to the TS fuzzy model:

Λ∗θj ≤ ω∗ (4.8)

where θj =
[
aj

1, . . . , a
j
na

, . . . , bj
nb

, cj
]

denotes the parameters of the j-th local
model, Λ∗ and ω∗ represent global constraints on the fuzzy model.

In the following, it will be shown how prior knowledge about the stability,
stationary gains and the settling time of the process can be transformed into the
linear inequalities (4.8).
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• Prior Knowledge About Sampling It is well known that the poles of a stable
discrete-time model that emerge from a correctly sampled, continuous-
time system cannot be situated in C−, the left half of the complex plane.
This knowledge on sampling can be translated into inequality constraints
on the model parameters:

(−1)i (−aj
i

) ≥ 0, 1 ≤ i ≤ ny . (4.9)

• Prior Knowledge About Process Stability Additional constraints can be de-
rived from stability considerations. Let C(m,R) denote the set of complex
numbers within or at a circle with a real-valued center m and radius R,

C(m,R) = {z ∈ C | ‖z −m‖ ≤ R; m ∈ R; R ∈ R+} .(4.10)

Tulleken [103] has shown that for the poles of a linear discrete-time system
to be in C(m,R), the following linear constraints on the model parameters
must be satisfied:

< · [1, (−aj
1

)
,
(−aj

2

)
, . . . ,

(−aj
na

)]T ≥ 0 , (4.11)

< · = · [1, (−aj
1

)
,
(−aj

2

)
, . . . ,

(−aj
na

)]T ≥ 0 , (4.12)

where the nonzero elements of the upper and lower triangular matrices <
and = are defined by

[<]ij = (−1)i

(
j

i

)
, i = 0, 1, . . . , ny, j = 0, 1, . . . , na , (4.13)

[=]ij = (m−R)i−j

(
na − j

i− j

)
(2R)na−i . (4.14)

If m = 0 and R = 1, the previous equation constitutes the smallest convex
hull of the admissible parameter region corresponding to the stable system
model having all poles in the unit circle, C(0, 1), in the complex plane.
Therefore, these are necessary conditions for asymptotic stability. More
details about the derivation of the above constraints can be found in [103].

Example 4.1. Stability of a second-order system. Let us consider a second-order
system with na = 2 and nb = 1: y(k + 1) = a1y(k) + a2y(k − 1) + b1u(k) + c. In this
case < · = becomes:




1 1 1
0 −1 −2
0 0 1







4 0 0
−4 2 0
1 −1 1


 =




1 1 1
2 0 −2
1 −1 1




It can be seen from the coefficients of the above matrices and equation (4.11) that for
the given second-order system the following holds:

1 + a1 + a2 ≥ 0,
−a1 − 2a2 ≥ 0,

a2 ≥ 0 .
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From (4.12) and (4.1), the following inequality constraints are obtained:

1 + a1 + a2 ≥ 0,
2− 2a2 ≥ 0,

1− a1 + a2 ≥ 0 .

¤

• Knowledge About Process Gain Often not only the stability of the plant is
known beforehand, but also the admissible intervals or at least the signs of
the static gains are known. Since the steady-state gain is only defined for
stable systems, open-loop stability (4.11) – (4.12) must also be imposed
on the estimates. From equation (4.6), the restrictions on the gain of the
local model are given by

Kj
min ≤

∑nb

i=1 bj
i

1−∑na

i=1 aj
i

≤ Kj
max . (4.15)

This knowledge can be represented by the following inequality constraints:

Kj
min

(
1−

na∑
i=1

aj
i

)
−

nb∑
i=1

bj
i ≤ 0 , (4.16)

−Kj
max

(
1−

na∑
i=1

aj
i

)
+

nb∑
i=1

bj
i ≤ 0 . (4.17)

• Knowledge About Settling Time The approximate settling time around a
given operating point (the time required for a step response to settle within
a band around its final value) is usually known. For second-order discrete-
time systems, a known maximum settling time τ j

s approximately translates
to all poles lying within a circle, centered at the origin in the z-plane with the

radius rj = exp
(
−4.6Ts

τ j
s

)
, where Ts denotes the sampling time. Based on

this consideration, the following inequality constraints can be developed
[102]:

− (
rj
max

)2
a1 +

(
rj
min − 2rj

max

)
aj

2 ≤ − (
rj
max

)2
rj
min , (4.18)

rj
maxa

j
1 + aj

2 ≤ (
rj
max

)2
,

aj
2 ≤ 0 .

• Knowledge About the Nonlinearity For nonlinear processes, besides the
bounds on the gain and/or the settling time, the tendency of the change of
these parameters may be known as well.

By using local constraints, the prior information on the nonlinear behavior
around a given operating point can be used in the identification procedure, while
the global constraints (4.8) represent knowledge that is independent of the op-
erating point.
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Example 4.2. Identification of a liquid level process.
The following example is used to illustrate the advantages of the proposed iden-

tification method. The laboratory process consists of two cascaded tanks depicted in
Figure 4.2. Water is supplied into the upper tank through a controlled peristaltic pump.
A pressure transmitter attached to the bottom of the lower tank measures the level of
the liquid in this tank. The process is connected to a personal computer through a data
acquisition board. The identification and control software is written under Matlab, using
the Real-Time Toolbox to collect data and to control the process. The sampling time is
2.5 seconds.

Figure 4.2: The cascaded-tanks setup.

The TS model was constructed from process measurements. The input variables
of the fuzzy model were selected on the basis of prior knowledge about the process.
Since the system can be modelled approximately as a second-order system with a time
delay, and the source of the nonlinearity is the level-dependent outflow from the tank,
the antecedent variable of the fuzzy model is chosen to be z(k) = y(k). This results in
the following TS fuzzy model structure:

Rj : If y(k) is A1,j then (4.19)

ŷ(k + 1) = aj
1y(k) + aj

2y(k − 1) + bj
1u(k − 2) + cj .

Six triangular fuzzy sets were used on the antecedent universe y(k). Based on the
range of the liquid level and after some manual optimization, the cores of the fuzzy
sets were selected to be a1,j ={ 0.0781, 0.2000, 0.4000, 0.5000, 0.6000, 0.8081}. The
identification data set contains N = 1400 samples, using an input signal shown in Fig-
ure 4.3. In this example, the process input and output signals are plotted in percentage
of their full range. The signal was designed to contain the important frequencies in
the expected range of the process dynamics. Later on, we will see that the frequency
content of this signal is not ideal, which is typical for real-life experiments.

Three different models were identified:

• Model 1: No prior knowledge was used during the identification.

• Model 2: Prior knowledge on process stability was used and the minimal and
maximal steady-state gain were assumed: Kmin = 0 and Kmax = 2.5.

• Model 3: The second case was extended by the following constraints on the
settling time of each submodel (Table 4.2).
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Figure 4.3: The training control sequence.
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Figure 4.4: The measured (—) and simulated (− −) process output.

rule index 1 2 3 4 5 6
τmin 15 40 60 70 80 80
τmax 30 60 100 120 140 140

Table 4.1: Settling times of the local models.
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The developed fuzzy models were validated by means of (recurrent) simulation on
a separate validation data set. The simulated and the measured liquid levels are shown
in Figure 4.4. The two curves can hardly be distinguished from each other.

The performance of the obtained models was measured by the variance accounted
for (VAF) index.

Models 1 and 2 both achieve the performance VAF =99.89 and Model 3 has
VAF=99.9. Clearly, there is no significant difference between the performance of the
fuzzy models identified with and without the use of a priori knowledge. It is interesting to
note that even though the modeling performance is almost unchanged, the consequent
parameters of the three models differ considerably (Table 4.2). This effect is caused
by the fact that the unconstrained global least-squares estimation method biases the
estimate of the local model parameters, which may hamper the local interpretation of
the TS fuzzy model, while the prior knowledge-based constraints regularize the model
parameters. If the incorporated constraints are adequate, this regularization does not
result in worse modeling performance. Moreover, if the identification data do not contain
all information about the process (which is the usual case), the constraints can even
improve the modeling performance.

Figure 4.5 shows three measured step responses of the process and the step re-
sponses of the fuzzy model at these operating points. The generated step responses
clearly show the above-mentioned regularization effect of the constraints. One can see
that by using more prior knowledge, more accurate local models can be identified from
the global process data. The large deviation in the step response and the small differ-
ence in the modeling performance is mainly caused by the offset parameters, cj , of the
rules. By using the proposed constrained identification method, the offset parameters
influence the steady-state behavior of the plant only (as one would normally expect).
The reason why the constraints on the settling time give the most significant improve-
ment is that the identification data do not contain enough information on low-frequency
and steady-state behavior of the system. This is a typical real-life situation, as it is often
difficult to design identification experiments that yield data with an appropriate balance
between low and high frequencies. An advantage of the proposed method is that the
information on low-frequency behavior can originate from other sources or separate ex-
periments (step responses) and it can easily be integrated with the information coming
from the dynamic data.

¤
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Model 1
1 2 3 4 5 6

ai
1 -0.2419 -0.0398 -0.0217 -0.0238 0.0375 0

ai
2 -0.4630 -0.6574 -0.6499 -0.6470 -0.7032 -0.6680

bi
1 0.0217 0.0691 0.0350 0.0392 0.0325 0.0384

ci 0.1315 0.3112 0.6487 0.8094 0.9753 1.3141

Model 2
1 2 3 4 5 6

ai
1 1.1271 1.3291 1.3472 1.3452 1.4064 1.3689

ai
2 -0.4630 -0.6574 -0.6499 -0.6470 -0.7032 -0.6680

bi
1 0.0217 0.0691 0.0350 0.0392 0.0325 0.0384

ci 0.0246 0.0374 0.1011 0.1250 0.1539 0.2079

Model 3
1 2 3 4 5 6

ai
1 1.3632 1.5495 1.6560 1.6134 1.6827 1.6422

ai
2 -0.4646 -0.6047 -0.6815 -0.6407 -0.7049 -0.6668

bi
1 0.0297 0.0718 0.0333 0.0394 0.0324 0.0384

ci 0.0055 -0.0182 -0.0088 -0.0124 -0.0107 -0.0139

Table 4.2: Parameters of the local models obtained rby different identification
methods.
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Figure 4.5: Step responses of the fuzzy models (- - model 1, - · model 2, −
model 3) and the measured step response at the corresponding operating points
(· · · · · · ).
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4.2 Prior Knowledge based Spline Smoothing

In many practical situations, laboratory and industrial experiments are expen-
sive and time consuming and accurate measurements cannot be made. This
problem results in a small number of data points that are often noisy and ob-
tained at irregular time intervals. Hence, data smoothening and re-sampling are
often required to handle such data sets. A good method for this purpose is the
cubic spline approximation [104, 105] that provides acceptable results and has
practical relevance [106], e.g. it was used for the estimation of reaction kinetic
models [107, 108].

The identification of reaction rates is an important problem, as chemical pro-
cess models usually contain reaction networks, and the kinetic parameters of
these models often cannot be identified on the basis of a priori knowledge alone.
Therefore, process modeling is generally supported by experiments to identify
the kinetic parameters. Many methods have been suggested to obtain reason-
able estimates for these rate coefficients from experimental data [109]. For
example, an interesting method for estimating rate constants of complex kinetic
models from isothermal, batch or plug flow reactor data was described in the
well-known paper of Himmelblau at al. [110]. This method, similarly to other
approaches, is applicable when large numbers of data points along the concen-
tration trajectories are available. If there are few data points, it is worth fitting
individual splines for each measured variable and re-sampling the data based
on these splines [106, 107, 108]. Unfortunately, the low number of the mea-
sured data points and the measurement noise also affect the quality of a spline
approximation. Hence, there is a need for a new approach that can handle this
problem.

The main goal of this section is to develop a multivariate spline approximation
method that employs a priori knowledge in the approximation. It will be shown
that a priori knowledge, e.g. assumed material balance or the visual inspection
of the data, can be easily incorporated into the spline approximation. It should
be noted that, though, this idea is used for the cubic spline approximation in this
session, it can be applied to other approximation techniques too.

Standard Cubic Spline Approximation

Cubic splines are piecewise third-order polynomials. The polynomials are de-
fined such that their values and first derivatives are continuous at so-called
knots where the individual polynomials are interconnected. So when a cubic
spline is identified, a continuous function is fitted to the available measured
data, x = [x1, . . . , xn]T given at time instants t = [t1, . . . , tn]T . An efficient
way to calculate the coefficients of the cubic spline is given by Horiuchi [107].

To formulate this algorithm, let us define a cubic spline for a knot sequence:
t1 = k1 < k2 < k3 < . . . < kn−1 < kn = tN . The cubic spline is a sequence
of cubic polynomials defined for each interval, [k1, k2], [k2, k3], . . . , [kn−1, kn], by
the combination of the function-values and the first-order derivatives at the knots

S(t) = s′iai(t) + s′i+1bi(t) + sici(t) + si+1di(t) (4.20)
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for ki ≤ t < ki+1, where

si = S(ki), s′i =
dS(t)

dt
|t=ki

(4.21)

ai(t) = (ki+1−t)2(t−ki)

h2
i

, bi(t) = − (ki+1−t)(t−ki)
2

h2
i

ci(t) = (ki+1−t)2(2(t−ki)+hi)

h3
i

, di(t) = (t−ki)
2(2(ki+1−t)+hi

h3
i

, (4.22)

where hi = ki+1 − ki. As can be seen from (4.21), the spline is linear in the
parameters

θ = [s1, s
′
1, s2, s

′
2, . . . , sn, s

′
n]T . (4.23)

Hence, the θ parameter vector can be determined by minimizing the following
quadratic cost function

min
θ

Q(θ) where Q(θ) =
1

N

N∑
i=1

(
xi − S(ti)

)2
= ‖x−Ψθ‖2, (4.24)

where

Ψ =




c(t1) a(t1) d(t1) b(t1) 0 0 . . . 0
c(t2) a(t2) d(t2) b(t2) 0 0 . . . 0

.

.

.
.
.
.

0 0 c(tj) a(tj) d(tj) b(tj) 0 . . . 0

.

.

.
.
.
.

. . .
0 0 . . . c(tn) a(tn) d(tn) b(tn)




N×2n

. (4.25)

This optimization problem can be solved analytically by the ordinary linear least
squares (LS) method

θ =
(
ΨΨT

)−1
ΨTx. (4.26)

The advantage of the utilized cubic spline is that the integral and derivative of
the spline is also linear in the parameters of the spline, that is

dS(t)

dt
= s′ia

′
i(t) + s′i+1b

′
i(t) + sic

′
i(t) + si+1d

′
i(t), (4.27)

where

a′i(t) =
(−2(ki+1 − t)(t− ki) + (ki+1 − t)2

h2
i

b′i(t) = −2(ki+1 − t)(t− ki)− (t− ki)
2

h2
i

c′i(t) =
−2(ki+1 − t)(2(t− ki) + hi) + 2(ki+1 − t)2

h3
i

d′i(t) =
2(t− ki)(2(ki+1 − t) + hi − 2(t− ki)

2)

h3
i

. (4.28)
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Simultaneous Spline Approximation

The basic idea of this section is the simultaneous spline-smoothing of multi-
variate data. In this case, the unknown parameter vector contains the param-
eters of l individual splines, θ̃ = [θT

1 , . . . , θT
l ]T , where θj = [sj,1, s

′
j,1, sj,2, s

′
j,2,

. . . , sj,nj
, s′j,nj

]T is the parameter vector of j-th spline. The available measured

data are arranged into vectors, x̃ = [xT
1 , . . . ,xT

l ]T and t̃ = [tT
1 , . . . , tT

l ]T , where
xj = [xj,1, xj,2, . . . , xj,Nj

]T is the data vector for j-th spline. (Note that Nj does
not have to be identical to Ni if i 6= j). The θ̃ parameter vector can also be
estimated by minimizing the following quadratic cost function

min
θ̃

Q(θ̃),

where

Q(θ̃) =
l∑

j=1


 1

Nj

Nj∑
i=1

(
xj,i − Sj(tj,i)

)2


 = ‖x̃− Ψ̃θ̃‖2. (4.29)

This LS formulation allows for the incorporation of the available a priori knowl-
edge into the simultaneous spline fitting procedure. Because the parameters
of the splines are function values and function derivatives at the knots, a pri-
ori knowledge can be easily represented by equality and inequality constraints
defined on the parameters of the model. It is advantageous to apply linear in-
equality and equality constraints, that is

min
θ̃

Q(θ̃) subject to Gθ̃ ≤ g and Hθ̃ = h, (4.30)

as the obtained quadratic programming (QP) optimization problem has a global
optimum, and can be effectively solved by standard numerical packages, such
as MATLAB [111].

Such a priori knowledge can be based on the visual inspection of the data,
for example, one might observe that the concentration of a component is monotonously
decreasing or it can come from balance equations such as

Wx = 0, V
dx

dt
= 0 (4.31)

The drawback of this hard-constrained method is that it constrains the values
and the derivatives of the splines only at the knot points. To constrain the com-
plete spline, a "soft-constrained" approach has been developed that handles
equality constraints formulated as

Aj,iSj(t̂i) = bj,i

Cj,i
dSj(t̂i)

dt
= dj,i, (4.32)

where Sj is the j-th spline function and t̂i is an arbitrary time instant used for the
evaluation of the constrains, t̂ = [t̂1, ..., t̂N̂ ]T . With the use of these additional
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equations, the resulting LS estimation problem is formulated as

Q(θ̃) =
l∑

j=1


 1

Nj

Nj∑
i=1

(
xj,i − Sj(tj,i)

)2




+ λ1

l∑
j=1


 1

N̂

N̂∑
i=1

(
bj,i − Aj,iSj(t̂i)

)2




+ λ2

l∑
j=1


 1

N̂

N̂∑
i=1

(
dj,i − Cj,i

dSj(t̂i)

dt

)2


 (4.33)

Q(θ̃) = ‖x̃− Ψ̃θ̃‖2 + λ1‖ỹ1 − Ψ̃1θ̃‖2 + λ2‖ỹ2 − Ψ̃2θ̃‖2. (4.34)

In general, several constraints can be defined in the form

Q(θ̃) = ‖x̃− Ψ̃0θ̃‖2 +

p∑
i=1

λi‖ỹi − Ψ̃iθ̃‖2, (4.35)

where the λ1, λ1, . . . , λp regularization parameters determine the weight of the
soft-constraints. There is no general recipe for the design of these regularization
parameters. In this session, a heuristic approach is followed, where the parame-
ters are set according to the modeler’s belief in the accuracy and the importance
of the corresponding constraints. Certainly, the soft-constrained method can be
combined with hard-constraints, for example, by using the soft constrains for
regularizing (smooth) the spline, while using the hard-constraints to incorporate
the a priori knowledge into the parameter identification.

Because the spline approximation is black-box modeling approach, when a
priori knowledge is incorporated into the identification of the parameters, a grey-
box modeling scheme is obtained. Hence, the above-presented method can be
called as grey-box spline approximation.

Two examples are presented to demonstrate the applicability of the above-
mentioned method. In the first example, the proposed approach is used to iden-
tify the kinetic parameters of a simulated reaction network, whereas in the sec-
ond example it is applied to the analysis of data taken from an industrial batch
reactor.
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Example 4.3. Estimation of Kinetic Rate Constants
In this example, the proposed spline-smoothing approach is used to identify

the rate constants of kinetic models from concentration profiles. The assumed
reaction network is given by the following equation

dCi

dt
=

n∑
j=1

wi,jk
r
jRj, (4.36)

where t is the time or a time-like variable, wi,j is the stoichiometric coefficient for
component i in reaction j, kr

j is the rate constant for reaction j, and the factors
Rj are functions of the concentrations. Using t1 as the initial time, (4.36) can be
integrated to yield

Ci,k − Ci,1 =
n∑

j=1

wi,jk
r
jRj,k, (4.37)

where

Rj,k =

∫ tk

t1

Rjdt. (4.38)

If the Ci,k values are known and Rj,k values can be estimated, (4.37) becomes
a system of linear equations in the rate constants kr

j . Hence, the rate constants
can be estimated by ordinary least squares method, assuming that the number
of independent equations is not less than the number of rate constants. When
the concentration trajectories are frequently sampled, (4.38) can be integrated
by numerical quadrature, using data points [110]. This scheme, however, is
no longer available when the number of data points is small, due to lack of
precision. In this case, a spline-smoothing procedure should be followed. E.g.,
in the paper of Tang [112], a natural cubic spline was fitted for each Rj .

In this example a new approach will be presented where the splines of the
concentration profiles are simultaneously fitted and constraints based on the
component balance equations are incorporated to ensure the consistency of the
parameters of the estimated splines.

The numerical example is taken from Himmelblau, et al. [110] and Tang
[112], and involves the following isothermal reactions

A ↔ B ↔ C (4.39)

described by the following differential equations

dCA(t)

dt
= −kr

1CA(t) + kr
2CB(t)

dCB(t)

dt
= kr

1CA(t)− kr
2CB(t)− kr

3CB(t) + kr
4CC(t)

dCC(t)

dt
= kr

3CB(t)− kr
4CC(t). (4.40)

The initial concentrations at t0 = 0 are CA = 1, CB = 0 and CC = 0, and the
real parameters are kr

1 = 1, kr
2 = 0.5, kr

3 = 10, kr
4 = 5.
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The aim of the experiment is to identify the kinetic parameters (kr
1, . . . , k

r
4)

from the available concentration measurements. According to the quality and
the quantity of the available data, 10 data sets were used to demonstrate the
performances of different methods (see Table 4.3). These data sets were de-
fined from combinations of different

• number of data points (the data points are taken at 12 or 31 time instants),

• level of normal distributed noise added to the measured data (0%, 5% or
10%),

• type of noise (independent or correlated).

Table 4.3: Data sets
data sets number of relative noise independent

data points level (%) noise
1 31 0 –
2 31 5 yes
3 31 5 no
4 31 10 yes
5 31 10 no
6 12 0 –
7 12 5 yes
8 12 5 no
9 12 10 yes

10 12 10 no
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Figure 4.6: Spline approximations for 12 noisy measurements (Data Set 9)
plus sign: measured conc. of A, asterisk: measured conc. of B, cross:

measured conc. of C, solid line: real concentration trajectory, dashed line:
spline estimation with Model 3., dotted line: spline approximation with Model 4

(proposed model)

Four different approaches were followed for the estimation of the kinetic pa-
rameters from these data sets:

Method 1. Nonlinear direct search method. The Nelder-Mead simplex
algorithm is used for the identification of the kinetic parameters. The concentra-
tion trajectories are calculated by solving the differential equation of the model
(4.40). This method is very effective, but it is rather slow.
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Method 2. Raw data based estimation. In this case, the raw data points
are integrated numerically to estimate the R̃j,k values and the estimation prob-
lem is solved by the least squares method.

Method 3. Spline based estimation. The standard cubic spline approxi-
mation is used, and the smoothed concentration trajectories represented by the
splines are analytically integrated to estimate the R̃j,k values needed by the least
squares method.

Method 4. Grey-box spline based estimation. This approach is similar to
Model 3., but it utilizes the following prior-knowledge-based constraints

CA + CB + CC = 1
dCA

dt
+

dCB

dt
+

dCC

dt
= 0

dCA

dt
< 0,

dCB

dt
> 0,

dCC

dt
> 0 , (4.41)

where the equality constraints represent the component balance equations, and
the inequality constraints describe the monotonic changes of the concentrations
(see Figure 4.6).

In the cubic spline approximation, the choice of the knot sequence plays
an important role. These parameters can be determined automatically by seg-
menting the time-series defined by the concentration profiles [113]; heuristically
based on the visual inspection of the variables by looking for significant breaks
in the concentration trajectories; or intuitively by using some a priori knowledge
about the system to be modeled (see the second example Section 4.4). In this
example, three equidistant knot sequences with two, three and four knots were
investigated and compared. Splines with more than four knots were not identi-
fied, because when the number of data points is 12 (Data set 6-10) too few data
points would fall in the knot-intervals which would make the estimation problem
to be ill-conditioned.

The performances of the models were measured by the following normalized
cost function

P1 =

√√√√ 4∑
i=1

(
kr

i − k̂r
i

kr
i

)2

, (4.42)

where k̂r
i represents the estimated kinetic parameters and kr

i represents the real
parameters.

Method 1, 3, and 4 can also be evaluated in terms of another cost function,
which measures the error between the "real" and the estimated concentration
trajectories

P2 = 1000
3∑

i=1

∫ tN

0

(
Ci(τ)− Ĉi(τ)

)2
dτ. (4.43)

Tables 4.4 and 4.5 show that the spline based methods (Method 3 and 4)
estimate the rate coefficients more accurately than the raw-data based method
(Method 2). When the constrained spline approximation is applied (Method 4),
not only the estimated rate coefficients are much more accurate, but also better
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Table 4.4: Estimation of kinetic parameters (P1)
a

data sets
Mb #kc 1 2 3 4 5 6 7 8 9

10
1 0.0023 0.18 0.088 0.37 0.18 0.060 0.30 0.16 0.65

0.31

2 0.024 0.38 0.32 0.75 0.64 0.17 0.42 0.36 0.76
0.64

3 4 0.035 0.34 0.29 0.68 0.58 0.064 0.40 0.34 0.78
0.67

3 0.12 0.33 0.26 0.62 0.46 0.15 0.41 0.36 0.78
0.64

2 0.23 0.34 0.28 0.57 0.38 0.33 0.53 0.42 0.94
0.59

4 4 0.029 0.19 0.11 0.39 0.23 0.064 0.31 0.20 0.67
0.41

3 0.13 0.24 0.16 0.44 0.25 0.15 0.34 0.24 0.68
0.41

2 0.42 0.49 0.42 0.72 0.46 0.45 0.67 0.48 1.4
0.62

aMeans of 100 independent runs
bModel
cNumber of knots for splines

Table 4.5: Estimation of concentration trajectories (P2)
a

data sets

Mb #kc 1 2 3 4 5 6 7 8 9
10

1 1.5e-6 0.041 0.011 0.016 0.043 0.003 0.11 0.033 0.43
0.12

3 4 0.003 0.29 0.30 1.2 1.2 0.005 0.77 0.76 3.1
3.0

3 0.016 0.23 0.22 0.86 0.82 0.028 0.56 0.54 2.2
2.1

2 0.036 0.18 0.18 0.62 0.61 0.065 0.42 0.38 1.5
1.3

4 4 0.004 0.16 0.075 0.59 0.27 0.005 0.43 0.19 0.16
0.70

3 0.035 0.13 0.066 0.40 0.016 0.035 0.31 0.13 1.1
0.39

2 0.12 0.18 0.13 0.35 0.18 0.12 0.27 0.16 0.69
0.28

aMeans of 100 independent runs
bModel
cNumber of knots for splines

approximation of the concentration trajectories are obtained compared to the un-
constrained spline approximation (Method 3). The constrained spline estimation
method (Method 4) always estimates the rate coefficients better than the simple
LS method (Method 2). The nonlinear method (Method 1) offers the best esti-
mation of rate coefficients but this method is much slower than other methods
(see Table 4.6). Furthermore, the nonlinear method is based on the differential
equations of the process. Hence, in contrast to the spline approximation, this
method requires full knowledge of the differential equations. Therefore, if only
the approximation of the concentration trajectories is the modeler’s purpose, the
application of the proposed spline approach is suggested. Furthermore, for the
estimation of the kinetic parameters, the spline-based approach can be used
to provide a good initial condition for nonlinear method as it was suggested in
[112].

When the measurement noise was correlated with each other (data sets
3,5,8 and 10), usually better estimations were obtained compared to the un-
correlated case (data sets 2,4,7 and 9). This suggests that the concentration
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Table 4.6: Computational effort in the identification of the modelsa

model time (s)
1 12
2 0.0069
3 0.65
4 0.67

aOne typical run on AMD Duron 800-MHz computer

trajectories with correlated noise are less conflicting to each other and to the
measured data, thus the constraints can more easily handle such measurement
errors compared to the totally random uncorrelated case.

In general, an increase of the number of knots improves the accuracy of the
approximation. However, similarly to other estimation problems, overfitting can
be occurred, so the number of the parameters (number of knots) has an optimal
value. As Tables 4.4 and 4.5 show, this optimum is the function of the noise
level.

¤

Example 4.4. Estimation of Concentration Profiles for Industrial Batch Re-
actor

The second example is taken from one of the industrial partner of the Depart-
ment of Process Engineering. In the studied industrial batch reactor only the
concentrations of the three main components are measured (see Figure 4.7).
As it will be shown in this example, the proposed grey-box spline smoothing
approach can be effectively used in such typical real-world situations. Two ap-
proaches were used and compared: Standard cubic spline approximation and
simultaneous spline approximation with hard- and soft-constraints.

Because the chemistry of this technology is very complex and not fully known,
the reaction network is modeled by the following scheme

A + B → C
A → A∗

B → B∗

C → C∗ (4.44)

where the first reaction represents the product formation, and last three reactions
represent the decay of three measured components (by-product formation). Due
to the fact that the technology is confidential, the components are denoted as
A, B and C. As it can be seen in Figure 4.7, the rate of the reactions are rel-
atively small until the 60th minutes of operation. At about this time, a catalyst
was added into the reactor that makes the product formation much faster. This
a priori knowledge is used at the selection of the knot sequence. Several alter-
natives were tested with more and fewer number of intervals and different knot
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Figure 4.7: Spline approximation (second example) without constraints

sequences, and finally, based on the recipe of the technology and the analysis
of the shapes of the trajectories the following knot sequence was set as [0, 57.3,
80.3, 250].

From the visual inspection of the data (see Figure 4.7, the following con-
straints can be defined

CA(0) = CA0, CB(0) = CB0, CC(0) = CC0 (4.45)

and
dCA

dt
≤ 0,

dCB

dt
≤ 0 (4.46)

dCC

dt
≥ 0 if t ≤ 114 (4.47)

dCA

dt
+

dCB

dt
+

dCC

dt
≤ 0. (4.48)

The component balance can be formulated as

C0 = CA + CB + CC + CA∗ + CB∗ + CC∗ , (4.49)

where C0 = CA0 + CB0 + CC0.
Although the A∗, B∗ and C∗ concentrations are not measured, with the use

of the assumed kinetic models

dCA∗(t)

dt
= kr

1CA(t)

dCB∗(t)

dt
= kr

2CB(t)

dCC∗(t)

dt
= kr

3CC(t), (4.50)

the material balance (4.49) can be used in practice in the following form

C0 = CA(t) + CB(t) + CC(t) + kr
1

∫ t

0

CA(τ)dτ+
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kr
2

∫ t

0

CB(τ)dτ + kr
3

∫ t

0

CC(τ)dτ. (4.51)

(4.51) is linear in the parameters kr
1, kr

2 and kr
3 and linear in the θ̃ parameters

of the splines. Hence, as the concentration trajectories are represented by the
S1, S2 and S3 splines, in the last three terms of (4.51) the product of these
parameters appear. Hence, this material balance represents a bilinear constraint
defined on the unknown parameters. Such bilinear optimization problems are
often solved by alternating optimization (see [114] for a practical application in
system identification), this approach results in the following algorithm:

Step 1. Hard-constrained spline identification. The CA(t), CB(t),
CC(t) concentration trajectories are represented by the S1, S2, S3 spline
functions obtained by simultaneous spline approximation with (4.45)-(4.48)
hard-constraints.

Step 2. Identification of the k1, k2, k3 parameters. The three kinetic
parameters are identified by linear least squares algorithm from (4.51):

min
kr
1 ,kr

2 ,kr
3

Q(kr
1, k

r
2, k

r
3),

where

Q(kr
1, k

r
2, k

r
3) =

N̂∑
i=1

(
C0 −

(
3∑

j=1

Sj(t̂i) +
3∑

j=1

kr
j

∫ t̂i

0

Sj(τ)dτ

))2

.

(4.52)

Step 3. Soft- and Hard-constrained spline identification. In this step,
one incorporates the material balance (4.51) into the spline identification
as a soft-constraint, so the new quadratic objective function is:

min
θ̃

Q(θ̂),

where

Q(θ̃) =
3∑

j=1


 1

Nj

Nj∑
i=1

(
xj,i − Sj(tj,i)

)2




+λ
1

N̂

N̂∑
j=1

(
C0 −

(
3∑

j=1

Sj(t̂i) +
3∑

j=1

kr
j

∫ t̂i

0

Sj(τ)dτ

))2

. (4.53)

Because Sj(t) and
∫ t

0
Sj(τ)dτ are linear functions of the θ̃ parameters and

minθ̃ Q(θ̃) is subject to the constraints (4.45)-(4.48), the optimization prob-
lem can be solved by quadratic programming. The results of this step are
the S1, S2, S3 splines related to the CA(t), CB(t) and CC(t) concentration
trajectories.
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Step 4. Iteration. Repeat from step 2 until the estimated trajectories
converge.

Before the application of the soft-constraint, the t̂ = [t̂1, . . . , t̂N̂ ] time instants
used for the evaluation of the soft-constraints and the λ parameter have to be
selected. In this example, the soft-constrains were evaluated in every minutes
of the operation, and the λ parameter was set according to a rough sensitivity
analysis. An increase in λ improved the accuracy of the mass balance. When λ
was greater than 15, this increase did not cause further significant improvement,
thus this parameter was chosen as 15 (see Figure 4.8).
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Figure 4.8: Spline approximation (second example) with constraints

Table 4.7 compares the numerical results of the two methods. The proposed
constrained method fulfils the mass balance very well, in contrast to the standard
spline approximation method. Certainly, the spline that was calculated by the
standard method fits to the measured data better, but this difference is quite
small. Hence, these numerical results support the conclusion that the proposed
method is more accurate.

Table 4.7: Numerical results of spline methods in the second example
without with

constraints constraints
mean absolute difference between estimated

and measured concentrations (g/dm3) 5.29 5.99
mean absolute error

in the mass balance (g/dm3) 6.36 0.18
absolute error in the balance at

the end of the experiment (g/dm3) 10.50 0.08

¤

83



4.3 Conclusions

Fuzzy model identification is an effective tool for the approximation of uncer-
tain nonlinear systems on the basis of measured data1. I developed a novel
approach to data-driven identification of Takagi-Sugeno fuzzy models that al-
lows to translate prior knowledge about the process (including stability, minimal
or maximal static gain and settling time) into constraints on the model parame-
ters2. This grey box fuzzy model approach allows the development of models
also in cases where little experimental data are available. I have shown that
the concept can be applied to fuzzy models with multivariate membership func-
tions3, and fuzzy (Hammerstein) models built on the basis of data combined with
prior knowledge perform better in control than models obtained from data only4.

In many practical situations, the involvement of laboratory and industrial ex-
periments are expensive and time consuming and accurate measurements can-
not be made. This problem results in a small number of data points that are
often noisy and obtained at irregular time intervals. Hence, data smoothing
and re-sampling are often required to reduce the effect of measurement noise
and irregular time intervals. Typically, an interpolation method is used for this
purpose, e.g. cubic spline interpolation, but the disadvantage of the common
interpolation methods is that they can not utilize any a priori information. Hence,
I developed a new cubic spline interpolation approach which utilizes a priori
knowledge, e.g. material balance, or prior information about the measured prop-
erties. The methodology has been demonstrated through the investigation of a
simulated and an industrial chemical reactor that the new method improves the
accuracy of the data-driven estimation of kinetic parameters.5

1Abonyi J, Babuska R, Local and global identification and interpretation of parameters in
Takagi-Sugeno fuzzy models, IEEE International Conference on Fuzzy System, 9th IEEE Inter-
national Conference on Fuzzy Systems, Independent citations: 8

2Abonyi J, Babuska R, Verbruggen H B, Szeifert F, Incorporating prior knowledge in fuzzy
model identification, INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE 31: pp. 657-667.
(2000), IF: 0.290, Independent citations: 16

3Abonyi J, Babuska R, Szeifert F, Fuzzy modeling with multivariate membership functions:
Gray-box identification and control design, IEEE TRANSACTIONS ON SYSTEMS MAN AND
CYBERNETICS PART B-CYBERNETICS 31: pp. 755-767. (2001), IF: 0.789, Independent
citations: 27

4Abonyi J, Babuska R, Botto M A, Szeifert F, Nagy L, Identification and control of nonlin-
ear systems using Fuzzy Hammerstein models, INDUSTRIAL & ENGINEERING CHEMISTRY
RESEARCH 39: pp. 4302-4314. (2000), IF: 1.294 , Independent citations: 33

5Madar J, Abonyi J, Roubos H, Szeifert F, Incorporating prior knowledge in a cubic spline
approximation-application to the identification of reaction kinetic models, INDUSTRIAL & EN-
GINEERING CHEMISTRY RESEARCH 42: pp. 4043-4049. (2003), IF: 1.317, Independent
citations: 10

84



Chapter 5

Improvement of Polupation based
Optimization Algorithms

5.1 Genetic Programming for System Identification

Because nonlinear dynamical models play very important role in process en-
gineering, it is important to deal with the structure identification of these mod-
els. One of the most preferred structure identification method is Genetic Pro-
gramming (GP) which is a data-driven symbolic optimization algorithm. Genetic
Programming selects potential solutions from a given space of possible struc-
tures using evolutionary technique to find a minima (or maxima) of a given cost
function. Although GP is an effective algorithm for the identification of model
structures, it tends to generate overparameterized models when it is used for
structure identification of dynamical models. Because the model transparency
is very important from the aspect of practical usefulness, it is important to find
a balance between accuracy and model transparency. Relatively little research
has been done on this problem. The main goal of this section is to propose a
method that eliminates superfluous model terms during structure identification
in such a way that the model preserves its accuracy.

To improve structure identification, this session suggests the application of
OLS in Genetic Programming. During the operation of GP, the algorithm gener-
ates a lot of potential solutions in the form of tree structures. These trees may
have better and worse terms (subtrees) that contribute more or less to the ac-
curacy of the model. The concept is the following: first, the trees (the individual
members of the population) are decomposed to subtrees (function terms of the
linear-in-parameters model) in such way that presented in Section B.4; then, the
err ’s of these function terms are calculated; finally, the less significant term(s)
is/are eliminated. This "tree pruning" method is realized in every fitness eval-
uation before the calculation of fitness value of the tree. The main goal of this
approach is to transform the trees to simpler trees that are more transparent,
but whose accuracies are close to those of the original trees. Because a further
goal is to preserve the original structure of trees as much as possible (because
GP works with tree structures), the decomposition of the trees was based on the
algorithm presented in Section B.5.
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This method always guarantees that the elimination of one or more function
terms of the model can be done by only "pruning" of the corresponding subtrees,
so there is no need for structural rearrangement of the tree after this operation.

Example 5.1. Let us consider a simple example that illustrates how the proposed
method works. In this example the model, which must be identified, is y(k) = 0.8u(k −
1)2 +1.2y(k−1)−0.9y(k−2)−0.2. The GP algorithm found the following solution with
four terms after a few iteration steps: u(k− 1)2, y(k− 1), y(k− 2), u(k− 1) ∗ u(k− 2);
Figure 5.1 illustrates the tree structure. Table 5.1 shows the calculated err’s for the
function terms and the MSE of the linear-in-parameters model represented by this tree
(the parameters were determined by LS method). Then the subtree that had the least
err (F4 = u(k − 1) ∗ u(k − 2)) was eliminated from the tree. After that, the err’s and
MSE values (and model parameters) were calculated again. The results show that the
new model has a little higher MSE but a more adequate structure.

Table 5.1: OLS example
Before pruning After pruning

[err]1 0.9170 0.7902
[err]2 0.0305 0.1288
[err]3 0.0448 0.0733
[err]4 0.0002 –
MSE 0.558 0.574

Figure 5.1: Tree pruning with OLS

¤

The proposed approach has been implemented in MATLAB. The aim of the
toolbox is the data-based identification of static and dynamic models. This
toolbox is suitable for structure identification of dynamical input-output linear-
in-parameters models, but it can also be applied for static nonlinear equation
discovery. Special attention was given to the identification of dynamical models
at the development of the toolbox, hence the generated model equations can be
simulated to get both one- and n-step ahead predictions.
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Genetic Programming has some parameters which must be adjusted. Ta-
ble 5.2 shows the default parameters of the toolbox selected based on a set of
trial-and-error experiments.

Table 5.2: Parameters of GP in the application examples
Population size 50
Maximum number of evaluated individuals 2500
Type of selection roulette-wheel
Type of mutation point-mutation
Type of crossover one-point (2 parents)
Type of replacement elitist
Generation gap 0.9
Probability of crossover 0.5
Probability of mutation 0.5
Probability of changing terminal – non-terminal
nodes (vica versa) during mutation

0.25

Because polynomial models play an important role in process engineering,
there is an option for generating polynomial models in the toolbox. If this option
is selected, the set of operators is defined as F = {+, ∗}, and after every
mutation and crossover, the algorithm validates whether the model structure is in
a class of polynomial models. If necessary, the algorithm exchanges the internal
nodes that are below a ’∗’-type internal node to ’∗’-type nodes. This simple trick
transforms every non-polynomial model into a well-ordered polynomial model.

The OLS evaluation is inserted into the fitness evaluation step. The algo-
rithm calculates the err ’s of the branches of the tree before calculating of fitness
of the tree. The terms (branches of the tree) that have err ’s below a certain
threshold value ([err]limit) are eliminated from the tree. Then, the resulted in-
dividual proceeds on its way in the classical GP algorithm (fitness evaluation,
selection, etc.)

Example 5.2. Continuous Polymerization Reactor
In this example the application of proposed GP-OLS method is illustrated at the

identification of the model order of a continuous polymerization reactor used in Example
??. In this experiment, a perfect model structure does not exist, but an appropriate
model order is known [88]. To estimate the model structure, 960 data points were
generated by computer simulation. Four methods were compared:

• Method 1 generates all of the possible polynomials with degree d = 2. The model
consists of all of these terms.

• Method 2 generates all of the possible polynomials with degree d = 2, but the
model only consists of the terms which have greater error reductions ratios than
0.01.

• Method 3 is the polynomial GP-OLS method. The operator set is F = {∗, +}.
The OLS threshold value is 0.02.
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• Method 4 is the non-polynomial GP-OLS method. The operator set is F =
{∗,+, /,

√}. The OLS threshold value is 0.02.

Table 5.3 shows the MSE of the obtained models for one-step and free-run predictions.
Because GP is a stochastic algorithm, 10 identical experiments were performed for the
third and fourth methods, and the table contains the minimum, maximum and mean
results of these experiments. The input and output orders were constrained to four:
T = {u(k − 1), · · · , u(k − 4), y(k − 1), · · · , y(k − 4)}.

Table 5.3: Results of Example II.
Free-run MSEa One-step-ahead MSEa

min mean max min mean max
Method 1 - ∞ - - 7.86 -
Method 2 - 26.8 - - 30.3 -
Method 3 1.65 10.2 23.7 1.66 9.23 22.1
Method 4 0.95 7.15 20.6 0.84 6.63 17.8

aMSE in 10−3

In the first method, the model consisted of 45 polynomial terms (m = 8 and d = 2).
This model was very accurate for the one-step ahead prediction, but it was unstable in
the free-run prediction. So this model cannot be used in free-run simulation.

In the second method, the err’s were calculated for the 45 polynomial terms, and the
terms that have very small values (below 0.01) were eliminated. After that, only three
terms remained:

u(k − 1), y(k − 1), y(k − 2).

All of the bilinear terms were eliminated by OLS. This model is a simple linear model,
which is stable in free-run, but its performance is quite weak.

The third method resulted in different models in the 10 experiments, because of
stochastic nature of GP. All of resulting models were stable in free-run simulation. The
most accurate model contained the the terms:

u(k − 1)u(k − 1), y(k − 1), u(k − 2), u(k − 1)y(k − 1);

which is the correct model order. This method found the correct model order in 6 cases
out of 10 cases.

The fourth method (GP-OLS) resulted in correct model orders in 3 out of 10 cases.
This method found the most accurate model, and all of the obtained models were stable
in free-run simulation. Some of the obtained models were the same that was generated
by the third method. Statistically, this method generated the most accurate models, but
the third method was better at finding the correct model order.

¤

88



5.2 Interactive Optimization

System identification, process optimization and controller design are often for-
mulated as optimization problems. The key element of the formalization of op-
timization problems is defining a cost function. Cost function is a mathematical
function which represents the objectives of the expected solution, and the goal of
optimization is usually to find the minima (or the maxima) of this function. How-
ever the cost function is explicitly/mathematically not available in some cases.
Sometimes, the relationship among the design variables and objectives is so
complex that the cost function cannot be defined, or even there is no point in
defining a quantitative function. In this kind of situation, it is very difficult to
apply the common optimization methods. This session presents an interactive
optimization approach that allows process engineers to effectively apply their
knowledge during the optimization procedure without the explicit formalization
of this knowledge.

Interactive optimization needs a special optimization algorithm. Most opti-
mization techniques which work by improving a single solution step by step are
not well-suited for this approach, because one cannot use the gradient informa-
tion of the psychological space of the user. The population based optimization
algorithms seem to be more plausible. The population based algorithms can be
easily utilized for interactive optimization, e.g. by replacing the fitness function
by a subjective evaluation. EA is especially ideal for interactive optimization,
since the user can directly evaluate the fitness of the potential solutions, for
example, by ranking them. This approach become known as Interactive Evo-
lutionary Computation (IEC). In general, IEC means an EA in which the fitness
evaluation is based on subjective evaluation. In most works, it means the fit-
ness function is simply replaced with a human user who ranks the individuals
[115]. For example, he/she gives marks such as "good", "acceptable", "non-
acceptable". The subjective rates given by the user are transformed to fitness
values (or directly applied as fitness values) for the algorithmic part of IEC.

This approach is simple, but I developed another approach for process engi-
neering problems. In the proposed approach there is not fitness evaluation, the
selection and replacement operators are replaced by human intervention , see
Figure 5.2.

Selection

Genotype

Phenotype

Replacement

Crossover, mutation

Fitness evaluation

Genotype

Phenotype

Selection
Crossover, mutation

Replacement

Figure 5.2: Classical IEC (left) and proposed IEC (right)

89



In contrast to the high number of IEC application examples, this approach
has not been applied in process engineering so far. The interfacing of human
ability with machine computation requires resolving some issues. This is espe-
cially relevant problem in process engineering where the user should evaluate
the performances of simulated solutions obtained on the basis of different mod-
els. This section presents an IEC framework which was developed for process
engineering problems in MATLAB environment. The EAsy-IEC Toolbox was
designed to be applicable for different types of optimization problems, e.g.: sys-
tem identification, controller tuning, process optimization. Thanks to the MAT-
LAB environment, the toolbox can be used easily for various problems. In the
developed toolbox, the user can analyze individuals based on the output of the
target systems realized by the individuals. For example, the user can simulta-
neously analyze the numerical results with the plotted trajectories, profiles, etc.
The number of displayed individuals is usually around seven, because it can
be displayed spatially. Based on this visual inspection of the solutions and the
analysis of some calculated numerical values and parameters, the user selects
individuals that are used to formulate the next generation, and selects individu-
als that are replaced by offsprings, i.e. see Figure 5.3. The number of searching
generations is limited to twenty generations due to the fatigue of human users.

In process engineering, one of the oldest optimization method is the heuris-
tic method of trial-and-error. So the developed toolbox also allows active hu-
man intervention in which the user is able to modify individuals directly. This
approach suits to process engineering problems more than visualised IEC or
on-line knowledge embedding [115].

Because the population size is very small in IEC, the effective realization of
IEC needs an EA that is able to search for a goal with a small population size
within a few number of searching generations. Therefore Evolutionary Strategy
was chosen, which was developed for small population size. Certainly, the appli-
cation of ES for IEC involves some modification of ES. In the toolbox, a human-
machine interface replaces selection and replacement operators. It should be
noted that the user is able to use either the (µ, λ) or the (µ + λ) replacement
strategy, since he/she determines which individuals can survive.

Example 5.3. MPC Controller Tuning
In this example the tuning of the parameters of a Model Predictive Control (MPC)

controller is considered. The controller controls a binary distillation column which is a
Multiple Input Multiple Output (MIMO) process with two manipulated inputs, reflux-flow
and reboiler-flow, and two outputs, top product purity and bottom product purity. The
column has two other non-manipulated input, feed rate and feed composition. When
the column operates in a wide range, its characteristic are strongly nonlinear, especially
towards high purity. (Certainly, the aim is to produce high-purity products at both ends
of the column). In order to simulate the controlled process, this example relies on the
model published by Skogestad [116]. Two disturbances were applied throughout the
experiment: feed rate and feed composition disturbances.
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Figure 5.3: Interactive display of IEC toolbox
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Figure 5.4: MPC controller tuning with Interactive Evolutionary Strategy
first row: manipulated inputs, second row: controlled top purity and set-point,
third row: controlled bottom purity and set-point, fourth row: design variables

91



These disturbances were simulated by uniformly distributed white noise signal: 10%
relative noise was added to the feed rate and 5% to the composition, because such dis-
turbance levels are common under industrial conditions [116]. Because the controlled
process is inherently nonlinear, nonlinear control algorithm should be utilized to achieve
good control performance. Hence, according to [100], a Fuzzy Model Predictive Control
was used in this example. The aim of MPC algorithm is to select a set of future control
moves in control horizon in such a way to minimize a cost function:

min
u(k),...,u(k+Hc)

Q1

Hp∑

i=1

(w1(k + i)− y1(k + i|k))2

+Q2

Hp∑

i=1

(w2(k + i)− y2(k + i|k))2

+R1

Hc∑

i=1

(∆u1(k + i))2 + R2

Hc∑

i=1

(∆u2(k + i))2 (5.1)

where k is the current time instant; u(j) = [u1(j), u2(j)]T is the manipulated input
vector at j-th time instant; y(j|i) = [y1(j|i), y2(j|i)]T is the predicted output vector for
j-th time instant predicted from i-th time instant; w(j) = [w1(j), w2(j)]T is the set-point
vector; Q1, Q2, R1, R2 are weighting parameters; Hp and Hc are prediction and control
horizon.

The goal is to tune the parameters of MPC controller: the Hp prediction horizon,
the Hc control horizon, the weights of different terms (Q1, . . . , R2) in (5.1). Tuning of a
controller is a classical optimization problem in process engineering. It is usually solved
by minimization of a cost function. The main problem of this method is that it is difficult
to select an appropriate cost function, because there are several objectives that must
be considered. In this case, there are four objectives that the controller must meet:

• To follow set-point changes accurately.

• To keep controlled variable constant at its set-point against disturbances and in-
teraction of multiple outputs.

• To avoid aggressive manipulation of input variables.

• To avoid fast changing of output variables and big overshoot of output variables.

Of course it is not possible to fully satisfy all of these objectives, because they are
conflicting. Therefore an appropriate cost function should contain several terms and
tuning parameters to balance these conflicting objectives. The selection of these tuning
parameters is difficult. If the reader has already tried to obtain a cost function, he/she
knows that the performance of the resulting controller does not always meet with the
expectations of the designer. In this case, the interactions between outputs especially
renders the control more difficult. For example, if one concentrates on control-error (e.g.
the integral squared errors of outputs), the interaction causes fast changing of interacted
outputs that causes aggressive manipulation of the inputs. The great advantage of IEC
is that a human expert is able to observe conflicts and interactions, so he/she can
handle and balance them easily. Hence, the application of interactive optimization is a
promising approach to this problem. Figure 5.4 shows simulation results of a generation
from IEC after 41 function evaluation. I found satisfying solutions quickly with IEC (e.g.
see the second column in Figure 5.4).
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The SQP optimization method was tested for this example too; where the optimiza-
tion goal was to minimize a cost function. The cost function was similar to (5.1), it
contained the squared error from the difference between system outputs and set-points
and from the change of manipulated inputs. The application of SQP algorithm was diffi-
cult because it often got stuck into a local minima near the initial point. Hence, the SQP
algorithm was not able to find an acceptable solution in contrast to the proposed IEC
algorithm.

¤

5.3 Conclusions

The data-driven model structure identification based on genetic programming is
a quite new, but more and more popular technique in the scientific literature.

I recognized that genetic programming tends to identify too complex mod-
els, especially when measurement noise is present, and most of the published
works pay little attention to this problem. As a solution, I developed a new
method that eliminates the negligible terms from linear-in-parameters models
during the identification process based on orthogonal least squares method. I
demonstrated that if the orthogonal least squares method is used, it results in
more transparent models than without using it. The new method is also useful
for identification of model order1.

Process optimization problems often lead to multi-objective problems where
optimization goals are non-commensurable and they are in conflict with each
other. In such cases, the common approach, namely the application of a quan-
titative cost-function, may be very difficult or pointless. For these problems, I
developed a method that handles these problems by introducing a human user
into the evaluation procedure. The poposed method uses the knowledge of
the experts directly in the optimization procedure. The practical usefulness of
the framework was demonstrated through two application examples: tuning of
a multi-input multi-output controller and optimization of a fermentation process2.
The algorithm has been adapted to particle swarm optimization 3.

1Madar J, Abonyi J, Szeifert F, Genetic programming for the identification of nonlinear input -
Output models., INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH 44: pp. 3178-3186.
(2005), IF: 1.504, Independent citations: 24

2Madar J, Abonyi J, Szeifert F, Interactive evolutionary computation in process engineering,
COMPUTERS & CHEMICAL ENGINEERING 29: pp. 1591-1597. (2005), IF: 1.501, Indepen-
dent citations: 5, www.fmt.uni-pannon.hu/softcomp/EAsy/ és a www.mathworks.com

3Madar J, Abonyi J, Szeifert F, Interactive particle swarm optimization, In: Kwasnicka H,
Paprzycki M, Proceedings 5th International Conference on Intelligent Systems Design and :
Applications (ISDA 2005), Wroclaw: IEEE Computer Society, 2005. pp. 314-319, Independent
citations: 10
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Appendix A

Appendix: Application Examples

A.1 Process Data Warehouse

Formulated products (plastics, polymer composites) are generally produced from
many ingredients, and large number of the interactions between the components
and the processing conditions all have the effect on the final product quality. If
these effects are detected, significant economic benefits can be realized. The
major aims of monitoring plant performance are the reduction of off-specification
production, the identification of important process disturbances and the early
warning of process malfunctions or plant faults. Furthermore, when a reliable
model is available that is able to estimate the quality of the product, it can be
inverted to obtain the suitable operating conditions required for achieving the
target product quality. The above considerations lead the foundation of the "Op-
timization of Operating Processes" project of the VIKKK Research Center at the
University of Veszprem supported by the largest Hungarian polymer production
company (TVK Ltd).

Problem description

TVK Ltd produces the medium (MDPE) and the high density polyethylene (HDPE)
with the technology of Phillips Petroleum Co., which is divided into three sepa-
rated units in aspect of information sources: A., Polymerisation Production Unit,
B., Granulation Production Unit, C., Polyethylene (PE) Quality Control Labo-
ratory. In Figure A.1 the information flow between these units are depicted.
The production of the polymer powder in the Polymerisation Production Unit is
the most important step of the process (see Figure A.2). The main properties
of polymer products (Melt Index (MI) and density) are controlled by the reac-
tor temperature, monomer, comonomer and chain-transfer agent concentration.
An interesting problem with the process is that it requires to produce about ten
product grades according to market demand. Hence, there is a clear need to
minimize the time of changeover because off-specification product may be pro-
duced during transition. The difficulty of the problem comes from the fact that
there are more than ten process variables to consider.
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Powder analysis

Granulate analysis Production quality

Batch qualification

Figure A.1: The information connections between the production units.

Figure A.2: Scheme of the Polymerisation Production Unit (Phillips loop reactor
process).

The problem is not only arising from the wide product palette and from the
frequent product change, but also the heterogeneity of the measurement data
in terms of time horizons and formats:

1. A Honeywell Distributed Control System (DCS) operates in the Polymeri-
sation Production Unit, which serves the data via the so-called Process
History Database (PHD) module. This database contains the most im-
portant process variables and some technological variables calculated by
the Advanced Process Control (APC) module of the DCS. In the follow-
ing among these process variables the most important ones are men-
tioned, which are used for process modeling and monitoring purposes.
Measurements are available in every 15 seconds on process variables
which consist of input and output variables: uk,(1,...,8) the comonomer, the
monomer, the solvent and the chain transfer agent inlet flowrate and tem-
perature, uk,9 polymer production rate, uk,10 the flowrate of the catalyzator,
uk,(11,...,13) cooling water flowrate, inlet and outlet temperature.

2. The devices of the Granulation Production Unit are controlled by Pro-
grammable Logical Controllers (PLCs). In this unit not all of data are stored
electronic. The data are mostly logged manually in reports related to the
events that happen in every one or two hours.
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Figure A.3: Time horizons of the measured data.

3. In the PE Quality Control Laboratory the measured data are stored in
reports (e.g. Polymer powder and Granulate classification report, Batch
qualification report, Product change report). The product quality, yk, is
determined by off-line laboratory analysis after drying the polymer that
causes one hour time-delay. The most important quality variables are the
Melt Index and the density whose sampling time intervals are between
half and five hours. While the sampling and the measurement of the qual-
ity of the polymer powder and the granulate are made in every one or two
hours, the time of the qualification of the batches strongly depends on the
technology.

Figure A.3 shows the relation between these information sources and their
sampling frequency, and the time horizons of the measured data.

Since, it would be useful to know if the product is good before testing it, the
monitoring and the estimation of the state and product quality variables would
help in the early detection of poor-quality product. There are other reasons why
monitoring the process is advantageous. Only a few properties of the product
are measured and sometimes these are not sufficient to define entirely the prod-
uct quality. For example, if only rheological properties of polymer are measured
(melt index), any variation in end-use application that arise due to variation of
chemical structure (branching, composition, etc.) will not be captured by follow-
ing only these product properties. In these cases the process data may contain
more information about events with special causes that may effect the product
quality [117].

The data warehouse project was implemented in three steps depicted on
Figure A.4. Beside the operational database of DCS the information sources
are the standard data sheets and reports which often include redundant infor-
mation. Unfortunately the comparison of these reports collected from different
process units proved that these separated sources of information include con-
tradictions as well. Consequently, electronic forms have been created to avoid
these problems. The following aspects were kept in mind at the design of these
forms and related data tables: one data should be inserted into only one table;
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Figure A.4: Main tasks of the project.

"everybody" should be able to access the necessary information; the rights for
data upload, query and change of the data should be clarified; the identification
of responsible users for the data and data security should be solved. The de-
signed database includes the measurements of the laboratory and the events
which are recorded by the chargeman (and by the operators). The technological
variables of the polymerisation reactors are stored via the PHD module of Hon-
eywell system (reactor data, cleaning system etc.) as well as the features calcu-
lated by APC module: some state variables and variables of the input streams
(e.g. temperature, pressure, concentrations), and other data (e.g. catalyst acti-
vation). Beside the WEB based front-end tools, applications based on MS-Excel
and MS-Access and Visual Basic have been worked out. This was proven to be
practical at the beginning of the project because the employees in the production
unit and in the laboratory were expert in the usage of these simple tools.

Dynamic Model for Data Integration

To detect and analyze causal relationships among the process and quality vari-
ables taken from several heterogenous information sources, the laboratory mea-
surements and the operating variables of the reactors and extruders have to be
synchronized based on the model of the main process elements (e.g., pipes,
silos, flash-tanks). For this purpose, based on the models of the material and
information flows, MATLAB scripts were written to collect all the logged events
of the whole production-line and to arrange and re-calculate the time of these
events according to the "life" of the product from the reactor to the final product
storing. In this subsection, the basic considerations behind of this dynamic data
integration are presented. The general theoretical issues behind this implemen-
tation step are presented in Chapter 2.

The connection between the Polymerization Production Unit and the Granu-
lation Unit is determined by the input flow from Polymerization Production Unit
into the top of the silos and the output flow from the bottom of silos into the
Granulation Unit (Figure A.5).
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Figure A.5: Dynamic behavior of the polymer powder silos.

Since the dynamical behaviour of the silos, the integration of the informa-
tion about these units is not realizable by static Structured Query Language
(SQL) queries and On-Line Analytical Processing (OLAP) functions. This solu-
tion should be based on the dynamic model of the silos:

Mi(T ) =

∫ T

t0

(Fin,i(t)− Fbatch,i(t)− Fadd,i(t)) dt + M0,i, (A.1)

where Fin,i(t) is the input mass flow that can be calculated based on the trans-
port report and the productivity estimated by the DCS; Fbatch,i(t) and Fadd,i(t)
are the mass flows of the feeding container and of the pre-mixed additive in-
gredients calculated by the reports which include details of extrusion process;
and M0,i is the mass which are calculated by the previously measured levels of
the silo. This simple model is the base of the calculation of the actual polymer
mass, Mi(T ) in the ith silo.

From technological viewpoint the age of the polymer powder leaving the silo
is more important than the actual mass of the polymer in the silo, because the
measured polymer quality can be retrievable based on the age of the polymer.
The modification of (A.1) can give the answer how old the polymer is, (T∗ time):

0 =

∫ T ∗

t0

Fin,i(t)dt−
∫ T

t0

(Fbatch,i(t) + Fadd,i(t)) dt + M0,i. (A.2)

The combination of (A.1) and (A.2) gives the age of the polymer powder leaving
the silo:

Mi(T ) =

∫ T

T ∗
Fin,i(t)dt. (A.3)
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Based on this model the data warehouse is able to answer to the following
questions:

1. What is the content of the silos? How much powder is there with a
given feature in a particular silo at an arbitrary time instant? The answer
of this question is very useful in the scheduling of powder processing.

2. What kind of polymer will be granulated? Polymer powder with what
property is being processed from which silos at a given time instant. This
is important to the estimation of the powder quality before the extrusion,
because the operation of the extrusion could be controlled feed forward
based on this estimated feature before the granulate product qualification.
For this purpose, the effect of the mixing of polymer powders and the
operation parameters of extrusion (e.g. temperature, power consumption)
should be explored.

The density of the mixed polymer powder is calculated by the properties
of the "raw" polymers in proportion of their quantities. In the calculation
of the Melt Index, it is assumed that the average molecule mass (M) can
be calculated by the average molecule masses of the polymer powders in
proportion with their total masses:

F1M1 + F2M2 = (F1 + F2)M, (A.4)

while the relationship between the average molecule mass and the melt
index is the following [118]:

M2

M1

=

(
MI2

MI1

)0.294

. (A.5)

In case of two polymer powders the melt index is calculated by the follow-
ing way:

log MI =
1

0.294
log




F1 + F2

(
MI2
MI1

)0.294

F1 + F2


 + log MI1 (A.6)

3. What will be the quality of the end product? It is an important ques-
tion how the end-product features are correlated to the measurements of
the laboratory samples used for the quality control of the process to the
final batch qualification measured after the homogenization (mixing) of the
product. For this purpose the mass of the batch calculated based on the
extruding data sheets should be compared to its measured value. The
next step of the validation is the pre-estimation of the batch features by
the hourly sampled mass rate. These features are measured after the ho-
mogenization of the product which takes eight hours. Figure A.6 shows
the accuracy of the estimation.

99



Figure A.6: Validation and estimation of the final product quality.

4. Product retrieval: Due to the dynamical behavior of the complex produc-
tion technology, it is not trivial to assign in with period of the operation
of a given process unit which final product is produced. Hence, process
(silo) model shown above makes possible to calculate the time-delays rep-
resented by the flows among the distributed process units, and use these
time-delays to synchronize the events of the production of a given product,
that makes possible the retrieval of the details of the production process
(process and product variables).

Analysis of Grade Transitions

Based on the historical data of a half-year operation, all of the productions and
grade transitions have been pre-processed by the above mentioned models.
As Figure A.7 shows, based on the database of the grade transitions, we have
designed special plots that can be used by the operators as patterns of recent
control strategies. Not only tools for the visualization of time-series have been
developed but plots illustrating the safety constraints too (see Figure A.8 (a)).
In some cases, the difficulty of the analysis of these plots comes from the fact
that there are more than ten process variables to consider. As Figure A.8 (b)
shows, the proposed OSS consists of Principal Component Analysis (PCA)-
based visualization tools to solve this problem, since the two-dimensional space
of the transformed variables, the plotted Hotelling T 2 and model error measures,
Q are able to give insight to the process behaviour and to detect faults.

Example A.1. Application of clustering based time-series segmentation to
process monitoring

The aim of this example is to show how the time-series segmentation algorithm pre-
sented in Section 3.2 is able to detect meaningful temporal shapes from multivariate
historical process data. The dataset used in this example represents 160 hours of oper-
ation of the reactor and includes three product transitions around the 24, 54, and 86-th
hours. The initial number of the segments was ten and the γ threshold was chosen to
γ = 0.4. In the Figure 3.8 it can be seen that q = 5 principal components must be con-
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Figure A.7: Grade transition from product A to product E (upper: reactor process
variables, lower: quality-related variables, lab. measurements).

sidered for 95% accuracy. As Figure A.9 shows, both the bottom-up and the clustering
based algorithm are able to detect the product transitions, and all the three methods
gave similar results. This reflects that the mean and the covariance of the data were
not independently changed. This is also confirmed by the analysis of the compatibili-
ties of the adjacent clusters. As it can be seen, the product transitions are represented
by two independent clusters, while the third transition was not so characteristic that it
would require an independent segment. This smooth transition between the third and
the fourth products is also reflected by how the p(zk|ηi) probabilities overlap between
the 75-125th hour of operations. The changes of the p(zk|ηi) probabilities around the
135th hour of operation are also informative, as the period of lower or drastically chang-
ing probabilities reflect some erroneous operation of the process. The results are similar
if more than 5 principal components are taken into account.
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(a) Example of a safety constraint plot.

(b) PCA plot of grade-transitions from product A to
product E.

Figure A.8: OSS plots based on Principal Component Analysis.
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This example illustrated that the proposed tool can be applied for the segmentation
of a historical database and with the application of this tool useful information can be
extracted concerning the changes of the operation regimes of the process and process
faults. In the current state of our project we use this tool to compare the production of
different products and extract homogenous segments of operation that can be used by
a Kalman-filter based state estimation algorithm for the identification of useful kinetic
parameters and models which are able to predict the quality of the products [119].
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(d) Bottom-up segmentation results.

Figure A.9: Segmentation of the industrial dataset
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A.2 Monitoring Process Transitions by State Esti-
mation

Historical process data alone usually may not sufficient for monitoring complex
processes.The current measured input-output data pairs are often not in casu-
ality relationship because of the dead time and the dynamical behavior of the
system. In practice, the state variables happen to be not measurable, or rarely
measured only by off-line laboratory tests. To solve these problems, different
methods can be applied that happen to force the usage of delayed measured
data besides the current data, e.g. the method proposed in [120] which is based
on Dynamic Principal Component Analysis. The main idea of this section is to
apply nonlinear state-estimation algorithm to detect changes in the estimated
state-variables and the correlation of their modelling error.

Covariance based Similarity Measure

Time-series segmentation is often used to extract internally homogeneous seg-
ments from a given time-series. Usually, the cost function describing the internal
homogeneity of the individual segments is defined based on the distances be-
tween the actual values of the time-series and the values given by a simple
univariate function fitted to the data of each segment.

Due to the hidden nature of the process the measured variables are corre-
lated. In some cases the hidden process, so the correlation among the vari-
ables, vary in time. This phenomena can occur at process transitions or when
there is a significant process fault, etc. The segmentation of only one measured
variable is not able to detect such changes. Hence, the segmentation algorithm
should be based on multivariate statistical tools as it was seen in Chapter 2.

Covariance matrices, Pk, describe the relationship between the variables
around the kth data point and they can also be used to calculate the cost function
based on a covariance matrix similarity measure:

cost(Si(ai, bi)) =
1

bi − ai + 1

bi∑

k=ai

Scov(Pk,PSi
) (A.7)

where PSi
is the covariance matrix of the ith segment with the borders ai and bi

which can be calculated by the averaging of the matrices Pk|ai ≤ k ≤ bi, and
Scov is the PCA similarity factor introduced by Krzanowski [121, 71], which can
be seen as a measure of the similarity between the two covariance matrices.

The similarity of the found segments can be displayed as a dendrogram.
A dendrogram is a tree-shaped map of the similarities that shows the merging
of segments into clusters at various stages of the analysis. The interpretation
of the results is intuitive, which is the major reason of these methods used to
illustrate the results of hierarchical clustering (see Figure A.14).
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Covariance of the Monitored Variables

In the previous subsection it has been shown that the covariance of the mon-
itored process variables can be used to measure the homogeneity of the seg-
ments of multivariate time-series. The main problem of the application of this
approach is how we can estimate covariance matrices that contain useful infor-
mation about the operation of the monitored process.

The most straightforward approach is the recursive estimation of the Pk co-
variances:

Pk =
1

αj,k

[
Pk−1 − Pk−1x̃kx̃

T
k Pk−1

αj,k + x̃T
k Pk−1x̃k

]
(A.8)

where Pk is a matrix proportional to the covariance matrix, and αj is a scalar
forgetting factor of the jth rule adaptation.

This tool can be directly used to analyze the measured input-output data,
x̃k = [uT ,y]T , which approach is considered as the basis of the first algorithm
proposed in this section (Algorithm 1). Historical input-output process data
alone may be not sufficient for the monitoring of complex processes. Hence, the
main idea of this section is to apply nonlinear state-estimation algorithm to detect
changes in the estimated state-variables (Algorithm 2) and the correlation of
their modelling error (Algorithm 3).

The proposed algorithms have been developed for the general nonlinear
model of a dynamical system:

xk+1 = f(xk,uk,vk), yk = g(xk,wk) (A.9)

where vk and wk are noise variables assumed to be independent of the current
and past states, vk ∼ N (vk,Qk), wk ∼ N (wk,Rk).

The developed algorithm is based on the results of standard state-estimation
algorithms, i.e. the estimated state-variables,

x̂k = xk + Kk[yk − yk] (A.10)

and their a posteriori covariance matrix,

P̂k = E[(xk − x̂k)(xk − x̂k)
T ] (A.11)

In these expressions
xk = E[xk|Yk−1],

yk = E[yk|Yk−1],

where Yk−1 is a matrix containing the past measurements, and Kk is the Kalman
gain:

Kk = Pxy,kP
−1
y,k,

where

Pxy,k = E[(xk − xk)(yk − yk)
T |Yk−1],

Py,k = E[(yk − yk)(yk − yk)
T |Yk−1]. (A.12)
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By selecting the update of the estimated variables and their covariance so
that the covariance for the estimation error is minimized, we can obtain the fol-
lowing update-rule of the covariance matrix

P̂k = Pk −KkPy,kK
T
k , (A.13)

where
Pk = E[(xk − xk)(xk − xk)

T |Yk−1] . (A.14)

As the various expectations used in these equations in general are intractable,
some kind of approximation is commonly used. The Extended Kalman Filter
(EKF) is based on Taylor linearization of the state transition and output equa-
tions. Although the developed algorithm can be applied to any state-estimation
algorithms, the effectiveness of the selected filter has an effect on the results of
the segmentation. The utilized DD2 filter is based on approximations obtained
with a multivariable extension of Stirling’s interpolation formula. This filter is
simple to implement as no derivatives of the model equations are needed, yet it
provides excellent accuracy [122].

Based on the result of this nonlinear state estimation two different algorithms
can be defined. Algorithm 2 is based on the direct analysis of the estimated
state variables, x̃ = x̂ in (A.8), while Algorithm 3, which is the main contribu-
tion of this section, uses the a posteriori covariance matrices, P̂k, given by the
nonlinear state estimation algorithm (Pk = P̂k in (A.8)).

The proposed process monitoring tool has been implemented independently
from the DCS; the database of the historical process data is stored by a MySQL
SQL-server. Most of the measurements are available in every 15 seconds on
process variables which consist of input and output variables: the comonomer
hexene, the monomer ethylene, the solvent isobutene and the chain trans-
fer agent hydrogen inlet flowrates and temperatures (u1,...,4 = F in

C6,C2,C4,H2
and

u5,...,8 = T in
C6,C2,C4,H2

), the flowrate of the catalyst (u9 = F in
cat), and the flowrate,

the inlet and the outlet temperatures of the cooling water (u10,...,12 = F in
w , T in

w , T out
w ).

The prototype of the proposed process monitoring tool has been imple-
mented in MATLAB with the use of the Database and Kalman filter Toolboxes.

The Model of the Process

The model used in the state-estimation algorithm contains the mass, compo-
nents and energy balance equations to estimate the mass of the fluid and the
formulated polymer in the reactor, the concentrations of the main components
(ethylene, hexene, hydrogen and catalyst) and the reactor temperature. Hence,
the state-variables of this detailed first-principles model are the mass of the fluid
and the polymer in the reactor (x1 = GF and x2 = GPE), the chain transfer agent
concentration (x3 = cH2), monomer, comonomer and catalyst concentration in
the loop reactor (x4 = cC2 , x5 = cC6 and x6 = ccat), and reactor temperature
(x7 = TR). Since there are some unknown parameters related to the reaction
rates of the different catalysts applied to produce the different products, there
are additional state-variables: the reaction rate coefficients x8 = kC2 , x9 = kC6 ,
x10 = kH2 .
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With the use of these state variables the main model equations are formu-
lated as follows:

dGF

dt
=

∑
j

F in
j − F out

F −
∑

i

kiciGF ccatGPE (A.15)

dGPE

dt
=

∑
i

kiciGF ccatGPE − F out
PE (A.16)

dci

dt
=

1

GF

(
F in

i − F out
F ci − kiciGF ccatGPE − ci

dGF

dt

)
(A.17)

dccat

dt
=

1

GPE

(
F in

cat − F out
PEccat − ccat

dGPE

dt

)
(A.18)

dTR

dt
=

1

GF cF
p + GPEcPE

p + Greactorcreactor
p

(∑
j

F in
j cj

p(T
in
j − TR)+

+
∑

i

kiciGF ccatGPE∆Hi −Qcooling + Qstirring

)
(A.19)

Notation: i = C2, C6, H2, j = C4, C2, C6, H2, Qcooling = F in
w cw

p (T out
w − T in

w ), and

G(.) means mass, F(.) means mass rate, c
(.)
p means the specific heat of the (.)

component, and ∆Hi represents the heat of the ith reaction.
For the feedback to the filter, measurements are available on the chain trans-

fer agent, monomer and comonomer concentration (y1,2,3 = x3,4,5), reactor tem-
perature (y4 = x7) and the density of the slurry in the reactor ( y5 = ρslurry,
which is related to x1 and x2). The concentration measurements are available
only in every 8 minutes.

The dimensionless state variables are obtained by the normalizing of the
variables,

xn =
x− xmin

xint

,

where xmin is a minimal value and xint is the interval of the variable (based on
a priori knowledge, e.g. the operators’ experiences if available). The values of
the input and state variables have not been depicted in the figures presented in
the next sections because they are secret so not publishable.

Parameters of the Segmentation Algorithms

The results studied in the next sections have been obtained by setting the initial
process noise covariance matrix to Q = diag(10−4), the measurement noise
covariance matrix to R = diag(10−8), and the initial state covariance matrix
to P0 = diag(10−8). The values of these parameters heavily depends on the
analyzed dataset. That is why the proper normalization method has an influence
on the results. However, the parameters above can be used to estimate the
state variables not only the datasets presented in the next sections, but also
other datasets that contain data from production of other products in different
operation conditions but in the same reactor and produced by the same type
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Figure A.10: Screeplot for determining the proper number of principal compo-
nents in case of datasets presented in (a) Example A.2 and (b) Example A.3,
respectively.

of catalyst. In these cases the state estimation algorithm was robust enough
related to the parameters above, they can be varied in the range of two orders
of magnitude around the values above.

For the segmentation algorithm some parameters have to be chosen in ad-
vance, one of them is the number of principal components. This can be done by
the analysis of the eigenvalues of the covariance matrices of some initial seg-
ments. This method was used in Section 3.2. The datasets shown in Figure A.12
and in Figure A.13 were initially partitioned into ten segments. As Figure A.10
illustrates, the cumulative rate of the sum of the eigenvalues shows that five PCs
are sufficient to approximate the distribution of the data with 97% accuracy in
both cases.

Another important parameter is the number of segments. Unlike the seg-
mentation method presented in Section 3.2, the number of segments should be
defined before the segmentation because the hierarchical clustering applied in
this section is not able to determine this value. One of the applicable methods
is presented by Vasko et al in [49]. This method is based on permutation test so
as to determine whether the increase of the model accuracy with the increase of
the number of segments is due to the underlying structure of the data or due to
the noise. In this section the simplified version of this method has been used. It
is based on the relative reduction of the modelling error (see (3.42) and (A.7)):

RR(c|T ) =
cost(Sc−1

T )− cost(Sc
T )

cost(Sc−1
T )

(A.20)

where RR(c|T ) is the relative reduction of error when c segments are used
instead of c− 1 segments.
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Figure A.11: Determining the number of segments by Algorithm 3 in case of
datasets presented in (a) Example A.2 and (b) Example A.3, respectively.

As it can be seen in Figure A.11, significant reductions are not achieved by
using more than 5 or 6 segments in case of both datasets. Similar figures can
be obtained by Algorithm 2.

Example A.2. Monitoring of process transitions]
In this study a set of historical process data covered 100 hours period of operation

has been analyzed. These datasets include at least three segments because of a prod-
uct transition around the 45th hour (see Figure A.12). Based on the relative reduction of
error in Figure A.11 (a), the algorithm searched for five segments (c = 5).

The results depicted in Figure A.12 show that the most reasonable segmentation
has been obtained based on the covariance matrices of state estimation algorithm (Al-
gorithm 3). The segmentation obtained based on the estimated state variables is simi-
lar: the boundaries of the segment that contains the transition around the 45th hour are
nearly the same, and the other segments contain parts of the analyzed dataset with sim-
ilar properties. Contrary to these nice results, when only the measured input-output data
were used for the segmentation the algorithm was not able to detect even the process
transition.

It has to be noted that Algorithm 3 can be found more reasonable than Algorithm
2, because one additional parameter has to be chosen in the last case: the forgetting
factor, α in the recursive estimation of the covariance matrices in (A.8). The result
obtained by Algorithm 2 is very sensitive to its choice. The α = 0.95 seemed to be a
good trade-off between robustness and flexibility.

¤
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Figure A.12: a., b.: Segmentation based Algorithm 1; c., d.: Segmentation
based on Algorithm 2,; e., f.: Segmentation based on Algorithm 3; a., c., e.:
Input variables: F in

C2
, F in

C4
, F in

C6
, F in

H2
, F in

cat, T
in
w , T out

w ; b., d., f.: Process outputs and
states: TR, cC2 , cC4 , cC6 , ρslurry, kC2 , kC6 , kH2
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Example A.3. Detection of changes in the catalyst productivity
Beside the analysis of the process transitions, the time-series of "stable" operations

have also been segmented to detect interesting patterns of relatively homogeneous
data. For this purpose Algorithm 3 was chosen from the methods presented above,
because it gives good results in case of product changes. One of these results can
be seen in Figure A.13, which shows a 120-hour long production period without any
product changes. Based on the relative reduction of error in Figure A.11 (b), the number
of segments was chosen to be equal to six (c = 6).
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Figure A.13: Segmentation based on the error covariance matrices.

The homogeneity of a historical process data set can be characterized by the simi-
larity of the segments that can be illustrated as a dendrogram (see Figure A.14).
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Figure A.14: Similarity of the found segments.

This dendrogram and the border of the segments give a chance to analyze and
to understand the hidden processes of complex systems. E.g. in this example these
results confirm that the quality of the catalyst has an important influence in productivity.
During the 20, 47, 75, 90th hours of the presented period of operation changes between
the catalyst feeder bins happened. The segmentation algorithm based on the estimated
state variables was able to detect these changes that had an effect to the catalysis
productivity, but when only the input-output variables were used segments without any
useful information were detected.
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It has to be noted that the borders of the segments given by Algorithm 2 and Algo-
rithm 3 are similar also in this case, but the dendrograms are different. This is because
that the segments without product transition are much more similar to each other than
in case of the time-series which contains a product transition. So it is a more difficult
problem to differentiate segments of operations related to the minor changes of the
technology, like the changes of the catalyst productivity. This phenomena can also be
seen in the dendrogram: the values that belong to the axis of ordinates are smaller with
one or two order(s) of magnitude in case of a time-series without product transition. In
case of product transition not only the borders of the segments are similar but also the
shape of the dendrograms are nearly the same. This shows that both algorithms are
applicable for similar purposes.

¤

This section presented the synergistic combination of state-estimation and
advanced statistical tools for the analysis of multivariate historical process data.
The key idea of the presented segmentation algorithm is to detect changes in
the correlation among the state-variables based on their a posteriori covariance
matrices estimated by a state-estimation algorithm. PCA similarity factor can be
used to analyze these covariance matrices. Although the developed algorithm
can be applied to any state-estimation algorithms, the performance of the filter
has huge effect on the segmentation. The applied DD2 filter has been proven
to be accurate, and it was straightforward to include a varying number of pa-
rameters in the state vector for simultaneous state and parameter estimation,
which was really useful for the analysis of the reaction kinetic parameters dur-
ing process transitions. The application example showed the benefits of the
incorporation of state estimation tools into segmentation algorithms.
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A.3 Semi-mechanistic Models for Product Quality
Estimation

Process monitoring based on multivariate statistical analysis, neural networks
and advanced state-estimation tools has recently been investigated by a num-
ber of researchers, and widely applied in polymer industry. This is not surpris-
ing. Formulated products (plastics, polymer composites) are generally produced
from many ingredients, and large number of the interactions between the com-
ponents and the processing conditions all have the effect on the final product
quality. If these effects are detected, significant economic benefits can be re-
alized. The major aims of monitoring plant performance are the reduction of
off-specification production, the identification of important process disturbances
and the early warning of process malfunctions or plant faults. Furthermore,
when a reliable model is available that is able to estimate the quality of the
product, it can be inverted to obtain the suitable operating conditions required
for achieving the target product quality. The aim of the this section is to present
how neural-networks can be used as a soft sensor, and how the neural-network
part of the developed semi-mechanistic model can be identified based on a
spline-smoothing approach.

Advanced process control and monitoring algorithms are based on state vari-
ables which are not always measurable or they are measured off-line. Hence,
for the effective application of these tools there is a need for state estimation
algorithms that are based on the model of the monitored and/or controlled pro-
cess. In the presence of additive white Gaussian noise Kalman filter provides
optimal (in the sense of maximum likelihood) estimates of the states of a linear
dynamical system. For nonlinear processes Extended Kalman Filtering (EKF)
should be used. The model of EKF can be a first-principle model formulated
by a set of nonlinear differential equations or black-box model, e.g. a neural
network (NN).

Sometimes it is advantageous to combine these modeling approaches. E.g.
Psichogios et. al. [123] applied so-called hybrid models that combines a first-
principle model with a NN model which serves as an estimator of unmeasured
process parameters that are difficult to model from first-principles. Since this
seminar thesis, many industrial applications of these semi-mechanistic models
have been reported, and it has been proofed that this kind of models has bet-
ter properties than stand-alone NN applications, e.g. in the pyrolysis of ethane
[124], in industrial polymerization [125], and or bioprocess optimization [126].
The aim of this section is the examination of the applicability of semi-mechanistic
models in industrial environment, namely how this model structure can be iden-
tified and applied for state estimation.

Problem description

The proposed approach is applied to the modeling and monitoring of a medium-
and high-density polyethylene plant. The polymerization unit is controlled by
a Honeywell Distributed Control System. Measurements are available in every
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15 seconds on process variables which consist of input and output variables:
uk,(1,...,8) the comonomer, the monomer, the solvent and the chain transfer agent
inlet flowrate and temperature, uk,9 polymer production rate, uk,10 the flowrate
of the catalyzator, uk,(11,...,13) cooling water flowrate, inlet and outlet tempera-
ture. The product quality yk is determined by off-line laboratory analysis after
drying the polymer that causes approximately one hour time-delay. The interval
between the product samples is between half and five hours. Since, it would
be useful to know if the product is good before testing it, the monitoring of the
process would help in the early detection of poor-quality product. This section
focuses on the melt index prediction. MI depends on the state variables which
describe the behavior of the dynamic system, so for the development of a soft-
sensor it is necessary to estimate these variables. There are additional state
variables except these ones which must be identified in this example: the con-
centration of the comonomer in the instantly formulated polyethylene is x11 (it is
needed for the MI prediction), and the melt index is also can be seen as a state
variable x12.

Semi-mechanistic model of the polymerization unit

Generally, models used in the state estimation of process systems are formu-
lated by macroscopic balance equations, for instance, mass or energy balances.
In general, not all of the terms in these equation are exactly or even partially
known. In semi-mechanistic modeling black-box models are used to represent
the otherwise difficult-to-obtain parts of the model. It is a very difficult question
to choose the architecture of the applied black-box model in advance, and there
is no general procedure to do that. There are various viewpoints that should be
taken into account, e.g. the problem type, intended use, problem dimensional-
ity, available amount and quality of data, memory restrictions, learning methods,
experience of the user and availability of tools [127]. Because there is no a pri-
ori information about what type of black-box models should be used in case of
the problem described above, feedforward neural network was chosen. From
a didactical point of view, it could be better to choose normalized radial basis
function networks (NRBF) because under some conditions they are equivalent
to fuzzy models [127]. However, feedforward neural network with global, e.g.
sigmoid type nonlinear activation function has the advantage that it could have
better extrapolation capability than the NRBF because the later has only local
activation function. (However, in general black-box models should not be used
for extrapolation but in case of semi-mechanistic models, during the training it
could be that it is needed.)

Usually, in the modeling phase it turns out which parts of the first principles
model are easier and which are more laborious to obtain and often we can get
the following hybrid model structure:

xk+1 = f(xk,uk,vk, fNN(xk,uk), θ) , (A.21)

yk = g(xk,wk) , (A.22)

where xk,yk and uk represents the states, the outputs and the inputs of the
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system at kth time instant, vk and wk are noise variables.
The fNN = [fNN,1, . . . , fNN,n]T represents the black-box elements of the

model (neural networks) and θ the parameter set of fNN represented by feed-
forward multi-input single-output neural networks with one hidden layer and one
output neuron:

fNN,i(z, θ) = w2 tanh(W1z + b1) + b2 , (A.23)

where nn represents the number of hidden neurons, z = [z1, . . . , zni]
T is the

input of network (ni×1), W1 is the weight of hidden layer (nn×ni), b1 is the
bias of hidden layer (nn×1), w2 is the weight of output layer (1×nn), b2 is
the bias of output layer (1×1), so the θ denotes the set of parameters: θ =
{W1,w2,b1, b2}.

The melt index of the instantly produced polyethylene is mainly depend on
the current ethylene concentration in the loop reactor (x4), the reactor tempera-
ture (x7) and the concentration of the hexene in the instantly formulated polyethy-
lene (x11). These three variables and the other state variables can be calculated
by a nonlinear state estimation algorithm based on the first-principle model of
the system (see FP1 in Figure A.15). The BB1 box contains a black-box in
which a neural network calculates the melt index of the instantaneously pro-
duced polyethylene (fNN ). Since the produced polyethylene which leaves the
reactor is the mixture of the previously produced products, the evolving MI can
be calculated by the first-principle model of the mixing (see FP2 in Figure A.15):

dxξ
12

dt
=

1

x2

(
R f ξ

NN(x4, x7, x11)− F out
PE xξ

12 − xξ
12

dx2

dt

)
(A.24)

where R = (x8x4x1x6x2 + x9x5x1x6x2 + x10x3x1x6x2) represents the instanta-
neously produced mass of the polyethylene, F out

PE is the polymer mass leaving
the reactor, and ξ = −0.294 is an empirical coefficient.

Figure A.15: The semi-mechanistic model of the system.
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Spline-smoothing based identification of neural networks

To train the NN parts of the previously presented semi-mechanistic process
model, pairs of input/output data should be used to determine the θ parame-
ter set (weights of the NN) in such way that the sum of the squared deviations,

VN =
1

2N

N∑

k=1

(yk − ỹk)
2 (A.25)

between the predicted output of network and the corresponding training data
becomes minimal. The usual way to minimize VN is to use gradient procedures,
like Gauss-Newton algorithm. Weights in the ith step of this iterative process are
changed in the direction of gradient.

θi+1 = θi − µR−1
i V′

N (A.26)

where

Ri = 1
N

∑N
k=1 jk,θj

T
k,θ, V′

N = − 1
N

∑N
k=1 (yk − ỹk) jk,θ,

jk,θ =
∂yk,θ

∂θ
= ∂gk

∂x

∂xk,θ

∂θ
. (A.27)

The key problem of the application of this approach is the determination of
∂x/∂θ, because in semi-mechanistic models the NN’s output does not appear
explicitly in the above expression as it is part of the differential equation system.
In this case NN can be trained by the integration of the sensitivity equations,
using a Nonlinear Programming Technique, using Extended Kalman Filter for
state and parameter estimation, or by using a spline-smoothing approach [126].

In this thesis the Hermite spine-smoothing method (see e.g. [128]) has been
applied to interpolate between the measured data (shown in Figure A.16) and
estimate the corresponding derivatives in the rearranged (A.24) to obtain the
desired outputs of the neural network:

fNN(x4, x7, x11) =

(
1

R

(
x2

dxξ
12

dt
+ F out

PE xξ
12 + xξ

12

dx2

dt

))1/ξ

(A.28)

In the applied cubic splines, which are piecewise third-order polynomials,
the polynomials are defined such that their values and first derivatives are con-
tinuous at so-called knots where the individual polynomials are interconnected.
When such splines are identified, a continuous function is fitted to the available
measured data, x = [x1, . . . , xn]T given at time instants t = [t1, . . . , tn]T (see
Figure A.16).
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Figure A.16: (a) Spline-interpolation of MI (solid line) and current MI (dashed
line), (b) Comparison the NN (solid line) and linear model (dashed line)

Example A.4. Application of semi-mechanistic model in real-time state-
estimation

For the identification of the neural network four data sets that include the same prod-
uct transition have been used. Each data set contains 80 hours of operation in which
the product change starts around the 50th hour. Among the four data sets three were
used for the training of the semi-mechanistic model and the other one for the validation.
This ratio fits to the proposed ratio in [129], and it could improve the accuracy of the NN.
The Levenberg-Marquardt algorithm was used for training the NN. The number of the
hidden neurons, nn = 4, was estimated by applying the four cross-validation method.
The results were compared with the results of a linear model identified based on the
same datasets. The average validation mean square error (MSE) is equal to 0.0037 in
case of NN with 4 hidden neurons, but this value is much worse, 0.0204 in case of the
linear model. It can be determined that the linear model gives acceptable, but worse re-
sults than the NN in case of ’normal’ operating conditions, i.e. without product changes.
However, it cannot be handle and predict accurately product changes and unusual op-
erations like changes in the catalyst activity because of changes from one catalyst tank
to another etc.

The identified hybrid model was used in nonlinear state estimation. The Extended
Kalman Filter is based on Taylor linearization of the state transition and output model
equations. Instead of this solution, a more advanced state-estimation tool, the DD1 filter,
has been used that is based on approximations of the model equations with a multivari-
able extension of Stirling’s interpolation formula. This filter is simple to implement as no
derivatives of the model equations are needed, yet it provides excellent accuracy [18].
For the feedback of the filter the yk outputs of the system were chosen variables that
are measured connected to the reactor and the product. Measurements are available
on yk,1 chain transfer agent, yk,2 monomer and yk,3 comonomer concentration in every
8 minutes, yk,4 reactor temperature and yk,5 density of the slurry in the reactor (which
is connected with the mass of the fluid and the polymer in the reactor) in every 15 sec-
onds. Measurements of yk,6 melt index was mentioned above. As Figure ?? shows, the
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resulted soft-sensor gives an excellent performance.
For the identification of the neural network four data set that include the same prod-

uct transition has been used. Each data set contains 80 hours of operation in which the
product change starts around the 50th hour. Among the four data sets three were used
for the training of the semi-mechanistic model and the other one for the validation. The
Levenberg-Marquardt algorithm was used for training the NN. The number of the hid-
den neurons, nn = 4, was estimated by applying the four cross-validation method. The
results were compared with the results of a linear model identified based on the same
datasets. The difference between the simple estimation performances of the linear and
neural models can be seen on the right side of Figure A.16.
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Figure A.17: (a) Estimated MI given by the DD1 algorithm, (b) Estimated state
variables used by the fNN model.

The identified hybrid model was used in nonlinear state estimation based on the
so-called DD1 filter. This filter is simple to implement as no derivatives of the model
equations are needed, yet it provides excellent accuracy [122] (see also in Section A.2).
For the feedback of the filter the yk outputs of the system were chosen variables that
are measured connected to the reactor and the product. Measurements are available
on yk,1 chain transfer agent, yk,2 monomer and yk,3 comonomer concentration in every
8 minutes, yk,4 reactor temperature and yk,5 density of the slurry in the reactor (which is
connected with the mass of the fluid and the polymer in the reactor) in every 15 seconds.
In this example, according to our purpose another variable has to be chosen as output:
yk,6 melt index because its measured value is available but not as frequent as other
state variables’ (see Section A.3 for more details). As Figure A.17 shows, the resulted
soft-sensor gives an excellent performance.
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Appendix B

Appendix: Theoretical Background

B.1 Introduction to Fuzzy Clustering

The goal of clustering is to determine the intrinsic grouping in a set of unlabeled
data. Since clusters can formally be seen as subsets of the data set, one possi-
ble classification of clustering methods can be according to whether the subsets
are fuzzy or crisp (hard). Hard clustering methods are based on classical set
theory, and require that an object either does or does not belong to a cluster.
Hard clustering in a data set X means partitioning the data into a specified
number of mutually exclusive subsets of X. The number of subsets (clusters)
is denoted by c. Fuzzy clustering methods allow objects to belong to several
clusters simultaneously, with different degrees of membership. The data set X
is thus partitioned into c fuzzy subsets. In many real situations, fuzzy clustering
is more natural than hard clustering, as objects on the boundaries between sev-
eral classes are not forced to fully belong to one of the classes, but rather are
assigned membership degrees between 0 and 1 indicating their partial mem-
berships. The discrete nature of hard partitioning also causes analytical and
algorithmic intractability of algorithms based on analytic functionals, since these
functionals are not differentiable.

The objective of clustering is to partition the data set X into c clusters. For
the time being, assume that c is known, based on prior knowledge, for instance.
Fuzzy and possibilistic partitions can be seen as a generalization of hard parti-
tion.

A c×N matrix U = [µi,k] represents the fuzzy partitions, where µi,k denotes
the degree of the membership of the xk-th observation belongs to the 1 ≤ i ≤ c-
th cluster, so the i-th row of U contains values of the membership function of
the i-th fuzzy subset of X. The matrix U is called the fuzzy partition matrix.
Conditions for a fuzzy partition matrix are given by:

µi,k ∈ [0, 1], 1 ≤ i ≤ c, 1 ≤ k ≤ N, (B.1)
c∑

i=1

µi,k = 1, 1 ≤ k ≤ N, (B.2)

0 <
N∑

k=1

µi,k < N, 1 ≤ i ≤ c. (B.3)
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Fuzzy partitioning space Let X = [x1,x2, . . . ,xN ] be a finite set and let 2 ≤
c < N be an integer. The fuzzy partitioning space for X is the set

Mfc = {U ∈ Rc×N |µi,k ∈ [0, 1],∀i, k;
c∑

i=1

µi,k = 1,∀k; 0 <

N∑

k=1

µi,k < N, ∀i}.
(B.4)

(B.2) constrains the sum of each column to 1, and thus the total membership
of each xk in X equals one. The distribution of memberships among the c fuzzy
subsets is not constrained.

A large family of fuzzy clustering algorithms is based on minimization of the
fuzzy c-means objective function formulated as:

J(X; U, V ) =
c∑

i=1

N∑

k=1

(µi,k)
m‖xk − vi‖2

A (B.5)

where U = [µi,k] is a fuzzy partition matrix of X,

V = [v1,v2, . . . ,vc], vi ∈ Rn (B.6)

is a matrix of cluster prototypes (centers), which have to be determined,

D2
i,kA = ‖xk − vi‖2

A = (xk − vi)
TA(xk − vi) (B.7)

is a squared inner-product distance norm where A is the distance measure,
and m ∈ 〈1,∞) is a weighting exponent which determines the fuzziness of
the resulting clusters. The measure of dissimilarity in (B.5) is the squared dis-
tance between each data point xk and the cluster prototype vi. This distance
is weighted by the power of the membership degree of that point (µi,k)

m. The
value of the cost function (B.5) is a measure of the total weighted within-group
squared error incurred by the representation of the c clusters defined by their
prototypes vi. Statistically, (B.5) can be seen as a measure of the total variance
of xk from vi. The minimization of the c-means functional (B.5) represents a
nonlinear optimization problem that can be solved by using a variety of available
methods, ranging from grouped coordinate minimization, over simulated anneal-
ing to genetic algorithms. The most popular method, however, is a simple Picard
iteration through the first-order conditions for stationary points of (B.5), known
as the fuzzy c-means (FCM) algorithm. The stationary points of the objective
function (B.5) can be found by adjoining the constraint (B.2) to J by means of
Lagrange multipliers:

J(X; U, V, λ) =
c∑

i=1

N∑

k=1

(µi,k)
mD2

i,kA +
N∑

k=1

λk

(
c∑

i=1

µi,k − 1

)
, (B.8)

and by setting the gradients of J with respect to U, V and λ to zero. If D2
i,kA >

0,∀i, k and m > 1, then (U, V ) ∈ Mfc × Rn×c may minimize (B.5) only if

µi,k =
1∑c

j=1 (Di,kA/Dj,kA)2/(m−1)
, 1 ≤ i ≤ c, 1 ≤ k ≤ N, (B.9)
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and

vi =

N∑
k=1

µm
i,kxk

N∑
k=1

µm
i,k

, 1 ≤ i ≤ c. (B.10)

This solution also satisfies the remaining constraints (B.1) and (B.3). Note that
equation (B.10) gives vi as the weighted mean of the data items that belong
to a cluster, where the weights are the membership degrees. That is why the
algorithm is called "c-means". One can see that the FCM algorithm is a simple
iteration through (B.9) and (B.10) (see Algorithm B.1.1).

A common limitation of clustering algorithms based on a fixed distance norm
is that such a norm induces a fixed topological structure on Rn and forces the
objective function to prefer clusters of that shape even if they are not present.
Generally, different matrices Ai are required for the different clusters, but there
is no guideline as to how to choose them a priori. The norm-inducing matrix A
can be adapted by using estimates of the data covariance, and can be used to
estimate the statistical dependence of the data in each cluster. The Gustafson–
Kessel algorithm (GK) and the fuzzy maximum likelihood estimation algorithm
(Gath–Geva algorithm (GG)) are based on an adaptive distance measure.

The fuzzy maximum likelihood estimates clustering algorithm employs a dis-
tance norm based on the fuzzy maximum likelihood estimates, proposed by
Bezdek and Dunn [70]:

Di,k(xk,vi) =
(2π)(

n
2 )

√
det(Fi)

αi

exp

(
1

2
(xk − vi)

T F−1
i (xk − vi)

)
(B.11)

Note that, contrary to the GK algorithm, this distance norm involves an expo-
nential term and thus decreases faster than the inner-product norm. Fi denotes
the fuzzy covariance matrix of the i-the cluster. The αi is the prior probability of
selecting cluster i, given by: αi = 1

N

∑N
k=1 µi,k. The membership degrees µi,k

are interpreted as the posterior probabilities of selecting the i-th cluster given
the data point xk. Gath and Geva reported that the fuzzy maximum likelihood
estimates clustering algorithm is able to detect clusters of varying shapes, sizes
and densities. This is because the cluster covariance matrix is used in con-
junction with an "exponential" distance, and the clusters are not constrained in
volume. However, this algorithm is less robust in the sense that it needs a good
initialization, since due to the exponential distance norm, it converges to a near
local optimum. The minimum of (B.5) is sought by the alternating optimization
(AO) method (Gath–Geva clustering algorithm) given in Algorithm B.1.2:
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Algorithm B.1.1 (Fuzzy c-Means).
Given the data set X, choose the number of clusters 1 < c < N , the weighting exponent m > 1, the termination tolerance ε > 0

and the norm-inducing matrix A. Initialize the partition matrix randomly, such that U(0) ∈ Mfc .

Repeat for l = 1, 2, . . .

Step 1 Compute the cluster prototypes (means):

v
(l)
i =

N∑
k=1

(µ
(l−1)
i,k

)mxk

N∑
k=1

(µ
(l−1)
i,k

)m

, 1 ≤ i ≤ c. (B.12)

Step 2 Compute the distances:

D
2
i,kA = (xk − vi)

T
A(xk − vi), 1 ≤ i ≤ c, 1 ≤ k ≤ N. (B.13)

Step 3 Update the partition matrix:

µ
(l)
i,k

=
1

∑c
j=1

(
Di,kA/Dj,kA

)2/(m−1)
. (B.14)

until ||U(l) −U(l−1)|| < ε.

Algorithm B.1.2 (Gath–Geva Algorithm).
Given a set of data X specify c, choose a weighting exponent m > 1 and a termination tolerance ε > 0. Initialize the partition matrix such that (B.1), (B.2)
and (B.3) holds.

Repeat for l = 1, 2, . . .

Step 1 Calculate the cluster centers: v
(l)
i =

N∑
k=1

(µ
(l−1)
i,k

)mxk

N∑
k=1

(µ
(l−1)
i,k

)m

, 1 ≤ i ≤ c

Step 2 Compute the distance measure D2
i,k .

The distance to the prototype is calculated based the fuzzy covariance matrices of the cluster

F
(l)
i =

N∑
k=1

(µ
(l−1)
i,k

)m
(
xk − v

(l)
i

) (
xk − v

(l)
i

)T

N∑
k=1

(µ
(l−1)
i,k

)m

, 1 ≤ i ≤ c (B.15)

The distance function is chosen as

D
2
i,k(xk, vi) =

(2π)

(
n
2

)√
det(Fi)

αi

exp

(
1

2

(
xk − v

(l)
i

)T
F
−1
i

(
xk − v

(l)
i

))
(B.16)

with the a priori probability αi = 1
N

∑N
k=1 µi,k

Step 3 Update the partition matrix

µ
(l)
i,k

=
1

∑c
j=1

(
Di,k(xk, vi)/Dj,k(xk, vj)

)2/(m−1)
, 1 ≤ i ≤ c, 1 ≤ k ≤ N . (B.17)

until ||U(l) −U(l−1)|| < ε.
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Example B.1 (Demonstration for Gath–Geva algorithm). In Figure B.1 the effect
of the different cluster size can be seen as the Gath-GevaG algorithm can cluster the
data perfectly.
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Figure B.1: The results of the Gath–Geva algorithm by the synthetic data set.

In Figure B.2 the results obtained by the clustering of the well-known motorcycle
dataset is shown where two different initializations are compared. On the left part of
the membership values and the distances obtained by random initialization are shown,
while on the remaining two subplots the results of the clustering initialized by fuzzy c-
means are shown. As the difference between these two plots shows, the GG algorithm
is very sensitive to initialization, and it can adapt the distance norm to the underlying
distribution of the data which is reflected in the different sizes of the clusters.

The motorcycle data set can be considered a function with additional noise. There-
fore the human analyzer finds better the results shown on the second two diagrams
of Figure B.2. However, the value of the fuzzy objective function (B.5) is bigger in the
second case than in the first case.

¤
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Figure B.2: The results of the Gath–Geva algorithm by the motorcycle data set.
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Figure B.3: The results of the Gath–Geva algorithm by the motorcycle data set
with normalization.
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B.2 Introduction to Fuzzy Modeling

For many real world applications a great deal of information is provided by hu-
man experts, who do not reason in terms of mathematics but instead describe
the system verbally through vague or imprecise statements like,

If The Temperature is Big then The Pressure is High (B.18)

Because so much human knowledge and expertise come in terms of verbal
rules, one of the sound engineering approaches is to try to integrate such lin-
guistic information into the modeling process. A convenient and common ap-
proach of doing this is to use fuzzy logic concepts to cast the verbal knowledge
into a conventional mathematics representation (model structure), which subse-
quently can be fine-tuned using input-output data.

A fuzzy model is a computation framework based on the concepts of fuzzy
sets, fuzzy if-then rules, and fuzzy reasoning. This section will present detailed
information about particular fuzzy models which are used in this thesis. It will
not attempt to provide a broad survey of the field. For such a survey the reader
is referred to “An Introduction to Fuzzy Control” by Driankov, Hellendoorn, and
Reinfrank [130] or “Fuzzy Control“ by K.M. Passino and S. Yurkovic [131], or “A
course in Fuzzy Systems and Control“ by L.X. Wang [132].

In fuzzy set theory, a precise representation of imprecise knowledge is not
enforced since strict limits of a set are not required to be defined, instead a
membership function is defined. A membership function describes the relation-
ship between a variable and the degree of membership of the fuzzy set that
correspond to particular values of that variable. This degree of membership is
usually defined in terms of a number between 0 and 1, inclusive, where 0 implies
total absence of membership, 1 implies complete membership, and any value
in between implies partial membership of the fuzzy set. This may be written as
follows: A(x) ∈ [0, 1] for x ∈ U where A(·) is the membership function
and U is the universe of discourse which defines the total range of interest over
which the variable x should be defined. For example, to define membership of
the fuzzy set, hot, a function which rises from 0 to 1 over the range 15◦C to 25◦C
may be used, i.e.

A(x) =





0 x < 15◦C
x−15

10
15 ≥ x ≥ 25◦C

1 x > 25◦C

While seeming imprecise to a human being, fuzzy sets are mathematically
precise in that they can be fully represented by exact numbers. They can there-
fore be seen as a method of tieing together human and machine knowledge rep-
resentations. The basic configuration of a fuzzy model is shown in Figure B.4.
As it is depicted, the fuzzy model involves the following components [133]:

• Data preprocessing. The physical values of the input of the fuzzy system
may differ significantly in magnitude. By mapping these to proper normal-
ized (but interpretable) domains via scaling, one can instead work with
signals roughly are of the same magnitude, which is desirable from an
estimation point of view.
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Figure B.4: Structure of a fuzzy system.

• Fuzzification. Fuzzification maps the crisp values of the preprocessed in-
put of the model into suitable fuzzy sets represented by membership func-
tions (MF). As the antecedent and consequent fuzzy sets take on linguistic
meanings such as "high temperature" they are called linguistic labels of
the sets of linguistic variables.

• Rule base. The rule base is the cornerstone of the fuzzy model. The
expert knowledge, which is assumed to be given as a number of if-then
rules, is stored in a fuzzy rule base. In rule-based fuzzy systems, the
relationship between variables are represented by means of If-Then rules
of the following general form:

If antecedent proposition then consequent proposition (B.19)

This thesis deals with this Takagi-Sugeno (TS) fuzzy models where the
consequent is a crisp function of the input variables, fj(x), rather than a
fuzzy proposition [28].

Rj : If x1 is A1,j and . . . and xn is An,j then y = fj(x) (B.20)

• Inference engine.

The inference mechanism or inference engine is the computational method
which calculates the degree to which each rule fires for a given fuzzified
input pattern by considering the rule and label sets. A rule is said to fire
when the conditions upon which it depends occur. Since these conditions
are defined by fuzzy sets which have degrees of membership, a rule will
have a degree of firing or firing strength, βj . The firing strength is de-
termined by the mechanism which is used to implement the and in the
expression (B.20); in this book the product of the degrees of membership
will be used, that is:

βj =
n∏

i=1

Ai,j (B.21)

where Ai,j defines the membership function on input i is used in rule j.
Again, there are different methods for implementing each of the logical
operators and the reader is referred to [130] for details on these.
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• Defuzzification. A defuzzifier compiles the information provided by each of
the rules and makes a decision from this basis. In linguistic fuzzy models
the defuzzification converts the resulted fuzzy sets defined by the infer-
ence engine to the output of the model to a standard crisp signal. The
method which is used in this book is the method commonly called the
centre-of-gravity or centroid method. In case of TS fuzzy models it is de-
scribed by the following equation:

y =

∑Nr

j=1 βjfj(x)
∑Nr

j=1 βj

(B.22)

It can be seen that the centroid method of defuzzification takes a weighted
sum of the designated consequences of the rules according to the firing
strengths of the rules. There are numerous other types of defuzzifiers
such as centre-of-sums, first-of-maxima, and middle-of-maxima [130].

• Postprocessing. The preprocessing step gives the output of the fuzzy
system based on the crisp signal obtained after defuzzification. This often
means the scaling of the output.

This thesis mainly deals with a Takagi-Sugeno (TS) fuzzy model proposed
by Takagi, Sugeno, and Kang [28, 29] to develop a systematic approach for
generating fuzzy rules from a given input-output data set. In the following the
structure of this model and the related modeling paradigms will be presented.

The TS model is a combination of a logical and a mathematical model. This
model is also formed by logical rules; that consists of a fuzzy antecedent and
a mathematical function as consequent part. The antecedents of fuzzy rules
partition the input space into a number of fuzzy regions, while the consequent
functions describe the system behavior within a given region:

Rj : If z1 is A1,j and . . . and zn is An,j then
y = fj (q1, . . . , qm) (B.23)

where z = [z1, . . . , zn]T is the n-dimensional vector of the antecedent variables,
z ∈ x, q = [q1, . . . , qm]T is the m-dimensional vector of the consequent variables
q ∈ x, where x denotes the set of all inputs of the y = f (x) model. Ai,j(zi)
denotes the antecedent fuzzy set for the i-th input. The antecedents of fuzzy
rules partition the input space into a number of fuzzy regions, while the fj(q)
consequent functions describe the system behavior within a given region.

The spirit of fuzzy inference systems resembles that of ’divide and conquer’
concept – the antecedent of fuzzy rules partition the input-space into a number
of local fuzzy regions, while the consequents describe the behavior within a
given region via various constituents [30].

This is based on the fact that while it may be difficult to find a model to
describe the unknown system globally, it is often possible to construct local lin-
ear models around selected operating points. The modeling framework that is
based on combining local models valid in predefined operating regions is called
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operating regime-based modeling [98]. In this framework, the model is generally
given by:

ŷ =
c∑

i=1

φi(x)
(
aT

i x + bi

)
(B.24)

where φi(x) is the validity function for the ith operating regime and θi = [aT
i bi]

T

is the parameter vector of the corresponding local linear model. The operating
regimes can also be represented by fuzzy sets in which case the Takagi–Sugeno
fuzzy model is obtained [28]:

Ri : If x is Ai(x) then ŷ = aT
i x + bi, [wi] i = 1, . . . , c . (B.25)

Here, Ai(x) is a multivariable membership function, ai and bi are parameters of
the local linear model, and wi ∈ [0, 1] is the weight of the rule. The value of wi

is usually chosen by the designer of the fuzzy system to represent the belief in
the accuracy of the i-th rule. When such knowledge is not available wi = 1, ∀ i
is used.

The antecedent proposition "x is Ai(x)" can be expressed as a logical com-
bination of propositions with univariate fuzzy sets defined for the individual com-
ponents of x, usually in the following conjunctive form:

Ri : If x1 is Ai,1(x1) and . . . and xn is Ai,n(xn) then ŷ = aT
i x + bi, [wi] .

(B.26)
The degree of fulfillment of the rule is then calculated as the product of the
individual membership degrees and the rule’s weight:

βi(x) = wiAi(x) = wi

n∏
j=1

Ai,j(xj) . (B.27)

The rules are aggregated by using the fuzzy-mean formula

ŷ =

c∑
i=1

βi(x)
(
aT

i x + bi

)

c∑
i=1

βi(x)
. (B.28)
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B.3 Fuzzy Model Structures for Classification

Classical Bayes Classifier

The identification of a classifier system means the construction of a model that
predicts the class yk = {c1, . . . , cC} to which pattern xk = [x1,k, . . . , xn,k]

T

should be assigned. The classic approach for this problem with C classes is
based on Bayes’ rule. The probability of making an error when classifying an
example x is minimized by Bayes’ decision rule of assigning it to the class with
the largest a posteriori probability:

x is assigned to ci ⇐⇒ p(ci|x) ≥ p(cj|x) ∀j 6= i (B.29)

The a posteriori probability of each class given a pattern x can be calculated
based on the p(x|ci) class conditional distribution, which models the density of
the data belonging to the class ci, and the P (ci) class prior, which represents
the probability that an arbitrary example out of data belongs to class ci

p(ci|x) =
p(x|ci)P (ci)

p(x)
=

p(x|ci)P (ci)∑C
j=1 p(x|cj)P (cj)

(B.30)

As (B.29) can be rewritten using the numerator of (B.30)

x is assigned to ci ⇐⇒ p(x|ci)P (ci) ≥ p(x|cj)P (cj)∀j 6= i , (B.31)

we would have an optimal classifier if we would perfectly estimate the class
priors and the class conditional densities.

In practice one needs to find approximate estimates of these quantities on
a finite set of training data {xk, yk}, k = 1, . . . , N . Priors P (ci) are often esti-
mated on the basis of the training set as the proportion of samples of class ci or
using prior knowledge. The p(x|ci) class conditional densities can be modeled
with non-parametric methods like histograms, nearest-neighbors or parametric
methods such as mixture models.

A special case of Bayes classifiers is the quadratic classifier, where the
p(x|ci) distribution generated by the class ci is represented by a Gaussian func-
tion

p(x|ci) =
1

(2π)n/2
√

det(Fi)
exp

(
−1

2
(x− vi)

TF−1
i (x− vi)

)
(B.32)

where vi = [v1,i, . . . , vn,i]
T denotes the center of the i-th multivariate Gaussian

and Fi stands for a covariance matrix of the data of the class ci. In this case,
the (B.31) classification rule can be reformulated based on a distance measure.
The sample xk is classified to the class that minimizes the d2(xk,vi) distance,
where the distance measure is inversely proportional to the probability of the
data:

d2(xk,vi) =

(
P (ci)

(2π)n/2
√

det(Fi)
exp

(
−1

2
(xk − vi)

TF−1
i (xk − vi)

))−1

(B.33)
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Classical Fuzzy Classifier

The classical fuzzy rule-based classifier consists of fuzzy rules each one de-
scribing one of the C classes. The rule antecedent defines the operating region
of the rule in the n-dimensional feature space and the rule consequent is a crisp
(non-fuzzy) class label from the {c1, . . . , cC} label set:

ri : If x1 is Ai,1(x1,k) and . . . xn is Ai,n(xn,k) then ŷ = ci, [wi] (B.34)

where Ai,1, . . . , Ai,n are the antecedent fuzzy sets and wi is a certainty factor
that represents the desired impact of the rule. The value of wi is usually chosen
by the designer of the fuzzy system according to his or her belief in the accuracy
of the rule. When such knowledge is not available, wi is fixed to value 1 for any
i.

The and connective is modeled by the product operator allowing for interac-
tion between the propositions in the antecedent. Hence, the degree of activation
of the ith rule is calculated as:

βi(xk) = wi

n∏
j=1

Ai,j(xj,k) (B.35)

The output of the classical fuzzy classifier is determined by the winner takes all
strategy, i.e. the output is the class related to the consequent of the rule that
gets the highest degree of activation:

ŷk = ci∗ , i∗ = arg max
1≤i≤C

βi(xk) (B.36)

To represent the Ai,j(xj,k) fuzzy set, we use Gaussian membership functions

Ai,j(xj,k) = exp

(
−1

2

(xj,k − vi,j)
2

σ2
i,j

)
(B.37)

where vi,j represents the center and σ2
i,j stands for the variance of the Gaussian

function. The use of Gaussian membership function allows for the compact
formulation of (B.35):

βi(xk) = wiAi(xk) = wi exp

(
−1

2
(xk − vi)

T F−1
i (xk − vi)

)
(B.38)

where vi = [v1,i, . . . , vn,i]
T denotes the center of the i-th multivariate Gaussian

and Fi stands for a diagonal matrix that contains the σ2
i,j variances.

The fuzzy classifier defined by the previous equations is in fact a quadratic
Bayes classifier when Fi in (B.32) contains only diagonal elements (variances).

In this case, the Ai(x) membership functions and the wi certainty factors can
be calculated from the parameters of the Bayes classifier following equations
(B.32) and (B.38) as

Ai(x) = p(x|ci)(2π)n/2
√

det(Fi), wi =
P (ci)

(2π)n/2
√

det(Fi)
. (B.39)
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Bayes Classifier based on Mixture of Density Models

One of the possible extensions of the classical quadratic Bayes classifier is to
use mixture of models for estimating the class-conditional densities. The usage
of mixture models in Bayes classifiers is not so widespread [39]. In these solu-
tions each conditional density is modeled by a separate mixture of models. A
possible criticism of such Bayes classifiers is that in a sense they are modeling
too much: for each class many aspects of the data are modeled which may or
may not play a role in discriminating between the classes.

In this section a new approach is presented. The p(ci|x) posteriori densities
are modeled by R > C mixture of models (clusters)

p(ci|x) =
R∑

l=1

p(rl|x)P (ci|rl) (B.40)

where p(rl|x) represents the a posteriori probability of x has been generated
by the rl-th local model and P (ci|rl) denotes the prior probability of this model
represents the class ci.

Similarly to (B.30) p(rl|x) can be written as

p(ri|x) =
p(x|ri)P (ri)

p(x)
=

p(x|ri)P (ri)∑R
j=1 p(x|rj)P (rj)

(B.41)

By using this mixture of density models the posteriori class probability can be
expressed following equations (B.30), (B.40) and (B.41) as

p(ci|x) =
p(x|ci)P (ci)

p(x)
=

R∑

l=1

p(x|ri)P (ri)
R∑

j=1

p(x|rj)P (rj)

P (ci|rl) =

R∑
l=1

p(x|ri)P (ri)P (ci|rl)

p(x)

(B.42)
The Bayes decision rule can be thus formulated similarly to (B.31) as

x is assigned to ci ⇐⇒ (B.43)∑R
l=1 p(x|rl)P (rl)P (ci|rl) ≥

∑R
l=1 p(x|rl)P (rl)P (cj|rl)∀j 6= i

where the p(x|rl) distribution is represented by Gaussians similarly to (B.32).

Extended Fuzzy Classifier

A new fuzzy model that is able to represent Bayes classifier defined by (B.43)
can be obtained. The idea is to define the consequent of the fuzzy rule as the
probabilities of the given rule represents the c1, . . . , cC classes:

ri : If x1 is Ai,1(x1,k) and . . . xn is Ai,n(xn,k) then (B.44)

ŷk = c1 with P (c1|ri) . . . , ŷk = cC with P (cC |ri) [wi]
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Similarly to Takagi-Sugeno fuzzy models [28], the rules of the fuzzy model are
aggregated using the normalized fuzzy mean formula and the output of the clas-
sifier is determined by the label of the class that has the highest activation:

ŷk = ci∗ , i∗ = arg max
1≤i≤C

R∑
l=1

βl(xk)P (ci|rl)

R∑
i=1

βl(xk)

(B.45)

where βl(xk) has the meaning expressed by (B.35).
As the previous equation can be rewritten using only its numerator, the

obtained expression is identical to the Gaussian mixtures of Bayes classifiers
(B.43) when similarly to (B.39) the parameters of the fuzzy model are calculated
as

Ai(x) = p(x|ri)(2π det(Fi))
n/2, wi =

P (ri)

(2π det(Fi))n/2
, (B.46)

The main advantage of the previously presented classifier is that the fuzzy
model can consist of more rules than classes and every rule can describe more
than one class. Hence, as a given class will be described by a set of rules, it
should not be a compact geometrical object (hyper-ellipsoid).

Fuzzy Decision Tree for Classification

Using not only crisp but also fuzzy predicates, decision trees can be used to
model vague decisions. The basic idea of fuzzy decision trees is to combine
example based learning in decision trees with approximative reasoning of fuzzy
logic [134]. This hybridization integrates the advantages of both methodologies
compact knowledge representation of decision trees with the ability of fuzzy
systems to process uncertain and imprecise information. Viewing fuzzy decision
trees as a compressed representation of a (fuzzy) rule set, enables us to use
decision trees not only for classification, but also for approximation of continuous
output functions.

An example of how a fuzzy decision tree can be used for the compressed
representation of a fuzzy rule base is given in Figure B.5, where the rule defined
by the dashed path of the tree is the following:

If x3 is large and x2 is medium and x1 is small and x5 is medium then C1

(B.47)
ID3 and its fuzzy variant (FID) assume discrete and fuzzy domains with small
cardinalities. This is a great advantage as it increases comprehensibility of the
induced knowledge, but may require an a priori partitioning of the numerical
attributes (see the bottom of Figure B.5 for the illustration of such fuzzy par-
titioning). Since this partitioning has significant effect to the performance of
the generated model, recently some research has been done in the area of
domain partitioning while constructing a symbolic decision tree. For example,
Dynamic-ID3 [135] clusters multivalued ordered domains, and Assistant [136]
produces binary trees by clustering domain values (limited to domains of small
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Figure B.5: Example of a fuzzy decision tree and a fuzzy partitioning

cardinality). However, most research has concentrated on a priori partitioning
techniques [137].

An example for a fuzzy decision tree is given in Figure B.5. As can be seen in
this figure each internal node is associated with a decision function (represented
by a fuzzy membership function) to indicate which nodes to visit next. Each
terminal node represents the output of a given input that leads to this node. In
classification problems each terminal node contains the conditional probabilities
P (c1|ri), . . . , P (cC |ri) of the predicted classes.

As a result of the increasing complexity and dimensionality of classification
problems, it becomes necessary to deal with structural issues of the identifi-
cation of classifier systems. Important aspects are the selection of the rele-
vant features and the determination effective initial partition of the input domain
[138]. Moreover, when the classifier is identified as part of an expert system, the
linguistic interpretability is also an important aspect which must be taken into
account.
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B.4 Population Based Optimization

Evolutionary Algorithm

Evolutionary Algorithm (EA) [139, 140, 141, 142] is a widely used population
based iterative optimization technique that mimics the process of natural selec-
tion. EA works with a population of individuals, where every individual within
the population represents a particular solution. Every individual has a chromo-
some that encodes the decision variables of the represented solution. Because
a chromosome can contain a mixture of variable formats (numbers, symbols,
and other structural parameters), EA can simultaneously optimize diverse types
of variables. Every individual has a fitness value that expresses how good the
solution is at solving the problem. Better solutions are assigned higher values
of fitness than worse performing solutions. The key of EA is that the fitness also
determines how successful the individual will be at propagating its genes (its
code) to subsequent generations.

The population is evolved over generations to produce better solutions to the
problem. The evolution is performed using a set of stochastic operators which
manipulate the genetic code used to represent the potential solutions. Evolution-
ary algorithm includes operators that select individuals for reproduction, produce
new individuals based on those selected, and determine the composition of the
population at the subsequent generation. Algorithm B.4.1 outlines a typical EA.
The individuals are randomly initialized, then evolved from generation to gener-
ation by repeated applications of evaluation, selection, mutation, recombination
and replacement.

Algorithm B.4.1. A typical evolutionary algorithm
procedure EA; {

Initialize population;
Evaluate all individuals;
while (not terminate) do {

Select individuals;
Create offsprings from selected individuals
using Recombination and Mutation;
Evaluate offspring;
Replace some old individuals by offsprings;

}
}

In the selection step, the algorithm selects the parents of the subsequent
generation. The population is subjected to "environmental pressure". It means
that the higher fitness the individual has, the higher probability it is selected. The
most important selection methods are Tournament Selection, Fitness Ranking
Selection and Fitness Proportional Selection. After the selection of the parents,
the new individuals of the subsequent generation (also called offsprings) are
created by recombination and mutation.
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• The recombination (also called crossover) operator exchanges information
between two selected individuals to create one or two new offsprings.

• The mutation operator makes small, random changes to the chromosome
of the selected individual.

The final step in the evolutionary procedure is the replacement, when new indi-
viduals are inserted into the population, and old individuals are deleted. Once
the new generation has been constructed, the whole procedure is repeated until
termination criterions satisfy.

Evolutionary Algorithm searches directly and represents potentially much
greater efficiency than a totally random or enumerative search [143]. The main
benefit of EA is that it can be applied to a wide range of problems without signifi-
cant modification. However, it should be noted that EA has several implementa-
tions: Evolutionary Programming (EP), Evolutionary Strategy (ES), Genetic Al-
gorithm (GA) and Genetic Programming (GP). The main difference among them
is that GA uses bit-string representation, ES uses real-valued representation,
and GP uses symbolic representation. In the case of common process engi-
neering optimization problems, the decision variables are usually real-valued,
hence ES will be presented in the following subsection.

Evolutionary Strategy

Evolution Strategy was developed by Rechenberg [143], with selection, muta-
tion, and a population of size one. Schwefel introduced recombination and pop-
ulations with more than one individual, and provided a nice comparison of ES
with more traditional optimization techniques [144]. The main elements of the
ES algorithm are the followings:

Evolutionary Strategy typically searches in continuous space, i.e. it uses
real-valued representation. Search points in ES are n-dimensional vectors x ∈
Rn of object variables. To allow for a better adaptation to the objective func-
tions’s topology, the object variables are accompanied by a set of so-called
strategy parameters. The function of strategy variables is to control the muta-
tion operator separately for each individual. So an ES-individual aj = (xj, σj)

T

consists of two components, the object variables xj = [xj,1, . . . , xj,n]T and the
strategy variables σj = [σj,1, . . . , σj,n]T .

The mutation operator adds zj,i normal distributed random numbers to the
objective variables:

xj,i = xj,i + zj,i, (B.48)

where zj,i = N(0, σj,i) is a normal distributed random number with σj,i standard
deviation. Thus the σj strategy variables control the step size of standard devia-
tions in the mutation for j-th individual. Before the object variables are changed
by mutation operator, σj standard deviations are mutated using a multiplicative
normally distributed process, that is

σ
(t)
j,i = σ

(t−1)
j,i exp(τ ′N(0, 1) + τNi(0, 1)), (B.49)
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with exp (τ ′N(0, 1)) as a global factor which allows an overall change of the
mutability and exp (τNi(0, 1)) allowing for individual changes of the mean step
sizes σj,i. The τ ′ and τ parameters can be interpreted in the sense of global
learning rates. Schwefel suggests to set them as [145]:

τ ′ =
1√
2n

, τ =
1√
2
√

n
. (B.50)

Recombination in ES can be either sexual, where only two parents are in-
volved in the creation of an offspring, or global, where up to the whole population
contributes to a new offspring. Traditional recombination operators are discrete
recombination, intermediate recombination, and geometric recombination, all
existing in a sexual and global form. When F and M denote two randomly se-
lected individuals from the µ parent population, the following operators can be
defined:

x′i =





xF,i no recombination
xF,i or xM,i discrete
(xF,i + xM,i) /2 intermediate∑µ

k=1 xK,i/µ global avarage

(B.51)

σ′i =





σF,i no recombination
σF,i or xM,i discrete
(σF,i + σM,i) /2 intermediate√

(σF,iσM,i) geometric∑µ
k=1 σK,i/µ global avarage

. (B.52)

At first, a certain number of individuals are selected from the current gen-
eration to be parent. The number of parents is usually denoted as µ. Then
the algorithm composes a certain number of parent-pairs from the set of par-
ents. The number of parent-pairs is usually denoted as λ. The parent pairs are
selected uniformly randomly. After that, the algorithm generates λ number of off-
springs using recombination and then mutation. Finally, the algorithm arranges
the subsequent generation. Evolutionary Strategy has two commonly-used re-
placement strategies: the (µ + λ) and the (µ, λ) strategy. The (µ + λ) strategy
inserts the parents to the subsequent generation (it is elitist), while the (µ, λ)
strategy does not conserve the parents. So when the (µ + λ) strategy is used,
the size of population is µ + λ, while when the (µ, λ) strategy is used, the size
of population is λ.

Genetic Programming

Genetic Programming is a symbolic optimization technique, developed by Koza
[146]. It is an evolutionary computation technique (like e.g. Genetic Algorithm,
Evolutionary Strategy) based on the so-called "tree representation". This repre-
sentation is extremely flexible, because trees can represent computer programs,
mathematical equations or complete models of process systems. This scheme
has been already used for circuit design in electronics, algorithm development
for quantum computers, and it is suitable for generating model structures: e.g.
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identification of kinetic orders [147], steady-state models [148], and differential
equations [149]. It should be noted that there are several variants of Genetic
Programming, e.g. Gene Expression Programming [150], the [151] provides a
good general review of algorithm of GP.

In contrast to common optimization methods, in which potential solutions
are represented as continuous numbers (usually a vector of real numbers), the
symbolic optimization algorithms represent the potential solutions by structured
ordering of several symbols. One of the most popular method for representing
structures is the binary tree.; e.g. see Figure B.6.

A population member in GP is a hierarchically structured tree consisting of
functions and terminals. These functions and terminals are selected from a set
of functions (operators) and a set of terminals. For example, the set of operators
F can contain the basic arithmetic operations: F = {+,−, ∗, /}; however, it
may also include other mathematical functions, Boolean operators, conditional
operators or Automatically Defined Functions (ADFs). ADFs [152] are sub-trees
which are used as functions in the main tree, and they are varied in the same
manner as the main trees. It is especially worth using of ADF if the problem is
regularity-rich, because GP with ADF may solve these problems in a hierarchical
way (e.g. chip design). In this work, only arithmetic operations and mathemat-
ical functions were used. The set of terminals T contains the arguments for
the functions. For example, T = {x, y} with x and y being two independent
variables.

In general, GP creates nonlinear models in addition to linear-in-parameters
models. In order to avoid nonlinear-in-parameters models, the parameters must
be removed from the set of terminals, i.e. T contains only variables: T =
{x1(k), · · · , xm(k)}, where xi(k) denotes the i-th regressor variable. Hence,
a population member represents only the Fi nonlinear functions (??). The pa-
rameters are assigned to the model after ’extraction’ of the Fi function terms
from the tree, and they are determined using the LS method (??).

Figure B.6: Decomposition of a tree to function terms
x1 + x2 + (x3 + x2)/x1

A very simple method was applied for the decomposition of the tree into
function terms. The subtrees, which represent the Fi function terms, were deter-
mined by decomposing the tree starting from the root and reaching to non-linear
nodes (nodes are not ’+’ or ’-’).

137



For example, let us see Figure B.6. The root node is a ’+’ operator, so it
is possible to decompose the tree to two subtrees: ’A’ and ’B’ subtrees. The
root node of ’A’ subtree is again a linear operator, so we decompose it to ’C’
and ’D’ subtrees. The root node of ’B’ is a nonlinear node (’/’) so we do not
decompose it. The root nodes of ’C’ and ’D’ are nonlinear too, so finally we
get three subtrees: ’B’, ’C’ and ’D’. After that we can assign the parameters
to the function terms represented by these subtrees, so the resulted linear-in-
parameters model is: y = p0 + p1(x3 +x2)/x1 + p2x1 + p3x3. Certainly, one may
use other decomposition methods (which may lead different results, e.g. in this
case y = p0 + p1x3/x1 + p2x2/x1 + p3x1 + p4x3).

Besides, GP can be used to identify polynomial models. To achieve this goal,
one has to restrict the set of operators and introduce some syntactic rules. For
example, if the set of operators is defined as F = {+, ∗}, and there is a syntactic
rule that exchanges the internal nodes that are below a ’∗’-type internal node to
’∗’-type nodes, the algorithm will generate only polynomial models.

Create initial
population

Evaluation

Selection

ReproductionCrossover Mutation

New generation

Terminate?

End

Yes

No

Figure B.7: Algorithm of GP

Genetic Programming is an Evolutionary Algorithm, see Section B.4. In ev-
ery iteration, the algorithm evaluates the individuals (potential solutions), selects
individuals for reproduction, generates new individuals by mutation, crossover
and direct reproduction, and finally creates the new generation. Figure B.7
shows the scheme of the algorithm. The initial step is the creation of an ini-
tial population. This usually means generating individuals randomly to achieve
high diversity. The first step is fitness evaluation, i.e. calculation of fitness val-
ues of individuals. Usually, the fitness value is calculated on the basis of a cost
function. After that, in the selection step, the algorithm selects the parents of the
next generation. In this chapter, the roulette-wheel selection strategy was used.
In the roulette-wheel selection, every individual has a probability to be selected
as parent, and this probability is proportional to fitness value:

pi =
fi∑
fi

(B.53)
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When an individual is selected for reproduction, three operators can be applied:
direct reproduction, mutation and crossover (recombination). The probability of
mutation is pm, the probability of crossover is pc, and the probability of direct
reproduction is 1− pm − pc. The direct reproduction puts the selected individual
into the new generation without any change. In mutation (see Figure B.8), a
random change is performed on the selected tree structure. It means that the
operator selects a node randomly and then replaces it with another element
randomly. If an internal element (an operator) is changed to a leaf element
(an argument) or vice-versa, the structure of tree changes, too. In crossover,
two individuals are selected, and their tree structure are divided at a randomly
selected crossover point, and the resulting sub-trees are exchanged to form
two new individuals. There are two types of crossover, one-point and two-point
crossover. In one-point crossover, the same crossover point selected for the two
parent-trees, in two-point crossover, the two parent-trees are divided at different
points (see Figure B.8).

Figure B.8: Mutation and crossover operations

Before new individuals are inserted to the population, it is necessary to ’kill’
the old individuals. In this chapter, the elitist replacement strategy was used in
order to keep the best solutions. A ’generation gap’ Pgap parameter determines
how many individuals can survive. For example, Pgap = 0.9 means that 90% of
population are ’killed’ (replaced by new offsprings) and the best 10% survive.

The fitness function has two aspects. On the one hand, it reflects the good-
ness of a potential solution from the viewpoint of the cost function. On the other
hand, it reflects a selection probability to determine which individuals form the
next generation. Usually, the fitness function is based on the mean square error
(MSE) between estimated and measured output values:

χ2 =
1

N

N∑

k=1

(
y(k)−

M∑
i=1

piFi (x(k))

)2

, (B.54)

where N is the number of data points used for the identification of the model. In-
stead of MSE, in symbolic optimization often the correlation coefficient between
the desired and the estimated (model) output are used [153].
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A good model is not only accurate but also simple, transparent, and inter-
pretable. In addition, a complex, overparametrized model decreases the general
estimation performance of the model. Hence there is a need for such a fitness
function that ensures a tradeoff between the complexity and model accuracy.
[148] suggests using a penalty term in the fitness function:

fit =
r

1 + exp (a1(L− a2))
, (B.55)

where fit is the fitness value, r is the correlation coefficient between the desired
and the estimated (model) output, L is the size of the tree (number of nodes),
and a1 and a2 are parameters of the penalty function.

In practice, the measured data contains noise, so a model that gives a good
prediction performance on the training data may be overparameterized and may
contain unnecessary, complex terms. The penalty function (??) handles this
difficulty because it decreases the fitness values of trees that have large number
of terms. However, parameters of this penalty term are not easy to determine
and the penalty function does not provide efficient solution for this difficulty.
An efficient solution may be the elimination of complex and unnecessary terms
from the model. For linear-in-parameters models, it can be done by the OLS
algorithm. In the following section, this method will be presented.
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B.5 Identification of Linear-in-Parameters Models

Linear-in-parameters Models

Data-driven identification of model structure cannot be separated from the iden-
tification of model parameters, because it is not possible to determine how good
and accurate a given model structure is without the parameters. So to evaluate
potential model structures, one has to identify the parameters for these models.
Unfortunately, if a model is nonlinear, the identification of its parameters re-
quires nonlinear optimization algorithm. In most cases data-driven model struc-
ture identification leads to very difficult and ill-conditioned nonlinear optimization
problems with numerical difficulties and high sensitivity to noise. Hence, even if
one finds a good model structure, this model structure may turn out to be use-
less due to the model parameter identification step. For example, it is possible
that the modeler chooses a poor model structure instead of a good one because
he or she is not able to identify the parameters of the ’better’ model.

The very first step of model structure identification is the selection a model
family that contains the set of candidate model structures. Consequently, it
is worth to select such a model family which does not suffer from the above
described difficulties. For this purpose this chapter proposes the application of
linear-in-parameters models. Linear-in-parameters models are quite widespread
in process engineering, e.g. let us consider the following well-known model
classes:

• NAARX Nonlinear Additive AutoRegressive models with eXogenous in-
puts models are defined as [154]

ŷ(k) =
na∑
i=1

fi(y(k − i)) +

nb∑
j=1

gj(u(k − j)) + e(k) (B.56)

where the functions fi and gi are scalar nonlinearities. As can be seen,
this model does not permit ’cross terms’ involving products of input and
output values at different times.

• Volterra models are defined as multiple convolution sums

ŷ(k) = y0 +

nb∑
i=1

biu(k − i)

+

nb∑
i=1

nb∑
j=1

biju(k − i)u(k − j) + · · ·+ e(k) . (B.57)

• Polynomial ARMA models are superior to Volterra series models in the
sense that the number of parameters needed to approximate a system is
generally less than with polynomial models [155] because of the use of
previous output values.

ŷ(k) = y0 +
na∑
i=1

a1,iy(k − i) +

nb∑
i=1

b1,iu(k − i)
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+
na∑
i=1

i∑
j=1

a1,ijy(k − i)y(k − j)

+

nb∑
i=1

i∑
j=1

b2,iju(k − i)u(k − j) + . . . + e(k) . (B.58)

Generally, linear-in-parameters models are formulated as

ŷ(k) =
M∑
i=1

piFi (x(k)) , (B.59)

where F1, . . . , FM are nonlinear functions (they do not contain parameters),
p1, . . . , pM are model parameters, ŷ(k) is the model output at k-th time instant.
x(k) is the regressor-vector at the k-th time instant and it consists of u input, y
output and e error values:

x(k) = (u(k − nd − 1), · · · , u(k − nd − nu), y(k − nd − 1), · · · ,
y(k − nd − ny), e(k − nd − 1), · · · , e(k − nd − ne)), (B.60)

where nd is the dead-time, nu, ny and ne are the input-, output- and error-orders.
Structure identification of linear-in-parameters models includes two types of prob-
lems:

• Identification of model order, namely finding appropriate M , nd, nu, ny and
ne values (integer values).

• Identification of F1, . . . , FM nonlinear model equations (symbolic optimiza-
tion).

This chapter will deal with these types of identification problems in the followings.
The great advantage of linear-in-parameters models is that the linear Least

Squares (LS) method can be used for parameter identification, which is much
less computationally demanding than nonlinear optimization algorithms. The LS
method minimizes the square error between measured output and calculated
output, i.e. minimizes the

χ2 =
N∑

k=1

(
y(k)−

M∑
i=1

piFi (x(k))

)2

(B.61)

cost function, where N is the number of data-points and M is the number of
regressors. The optimal p = [p1, . . . , pM ] parameter vector, where χ2 is minimal,
can be calculated by

p =
(
FTF

)−1
FTy, (B.62)

where y = [y(1), . . . , y(N)] is the measured output vector, and the F regression
matrix is:

F =




F1(x(1)) . . . FM(x(1))
...

. . .
...

F1(x(N)) . . . FM(x(N))


 . (B.63)
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Orthogonal Least Squares Method for Linear-In-Parameter Models

The problem of model structure identification for linear-in-parameters models is
to find the model order and the proper set of nonlinear Fi functions of (B.59). To
attack this problem, two approaches can be distinguished:

• The first approach generates all of the possible model structures and then
selects the best.

• The second approach transforms the problem into an optimization problem
and solves it by an optimization algorithm.

The bottleneck of the first approach is that there are a vast number of possible
structures; hence, it is impossible to evaluate all of them in practice. Even if the
set of possible structures is restricted only to polynomial models

ŷ(k) = p0 +
m∑

i1=1

pi1xi1(k) +
m∑

i1=1

m∑
i2=i1

pi1i2xi1(k)xi2(k)

+ · · ·+
m∑

i1=1

· · ·
m∑

id=id−1

pi1···id

m∏
j=1

xij(k), (B.64)

the number of possible terms could be very large. If the number of regressors is
m and the maximum polynomial degree is d, the number of parameters (number
of polynomial terms) is

np =
(d + m)!

d! ·m!
. (B.65)

E.g. if m = 8 and d = 4 then np = 495. If the model does not only consist
of polynomial terms, the number of possible terms multiplies. In the case of
a reasonable number of regressors, the model terms can be sorted based on
their err ’s, and the best terms (which have the biggest values) can be selected
to constitute the model.

The second approach transforms the structure selection problem into an op-
timization problem, in which the search space consists of the possible model
structures. This method uses a search algorithm that looks for an optimal struc-
ture. The advantage of this method is that it does not need to evaluate every
possible model structure. This chapter suggests the application of Genetic Pro-
gramming to this task.

The Orthogonal Least Squares (OLS) method [156, 157] is an effective algo-
rithm to determine which terms are significant in a linear-in-parameters model.
The OLS method introduces error reduction ratio, which provides the decrease
in the variance of output by a given term. The compact matrix form of linear-in-
parameters models (B.59) is the following:

y = F · p + e, (B.66)

where F is the regression matrix (B.63), p is the parameter vector, e is the error
vector. The OLS method transforms columns of F matrix into a set of orthogonal
basis vectors in order to inspect the individual contributions of each term.
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The OLS method assumes that the F regression matrix can be orthogonally
decomposed as F = WA, where A is an M × M upper triangular matrix (it
means Ai,j = 0 if i > j) and W is an N ×M matrix with orthogonal columns
in the sense that WTW = D diagonal matrix. (N is the length of y vector, M
is the number of regressors.) The orthogonal decomposition can be done by
standard mathematical packages such as MATLAB. Then one can calculate the
OLS auxiliary parameter vector as

g = D−1WTy, (B.67)

The output variance (yTy)/N can be explained as

yTy =
M∑
i=1

g2
i w

T
i wi + eTe, (B.68)

thus the err (error reduction ratio) of Fi can be expressed as

[err]i =
g2

i w
T
i wi

yTy
. (B.69)

This ratio offers a simple mean for ordering the terms, so it can be easily used
to select the significant model terms.
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