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Introduction and Motivation

Today theoretical condensed matter physics, besides its fundamental mission to facilitate the un-
derstanding of the properties of solid materials at the atomic level, also strives to predict useful
quantitative and qualitative data for the development of high-performance materials. Applied
computational quantum mechanics brings an increasing demand for new techniques, which make
theoretical investigations more handleable by today’s computers. Despite the tremendous devel-
opments during the last few decades, an accurate ab initio description of substitutional random
alloys seemed unreachable. The present work ventures upon creating new perspectives within
this field.

During the 1960s Walter Kohn and co-workers established the Density Functional theory,
the most elegant and useful formulation of the many electron problem, which today dominates
the computational solid state physics and quantum chemistry. Soon after this event, Ole Krogh
Andersen and his colleagues launched the first highly efficient, the so called minimal basis-
set theories to solve the basic Density Functional equations. Methods based on their theories
have become part of the most widely used tools in condensed matter physics. In the 1990s,
Andersen put forward the third generation muffin-tin theory, with the main purpose to increase
the accuracy of former muffin-tin formalism, but at the same time maintaining its outstanding
efficiency. The first part of the thesis reveals the implementation of the original approach within
this family, namely the Exact Muffin-Tin Orbitals (EMTO) method.

With the birth of the EMTO method, a distinct step was made towards the modern com-
putational alloy theory by merging the most efficient theories of random alloys with advanced
Density Functional techniques. This method allows one to establish a theoretical insight to the
electronic structure of complex engineering materials such as the stainless steels: ”Understand-
ing properties at atomic scale is vital to the development of new materials ... Researchers have
now applied their EMTO method to predict two new steel alloys with outstanding properties ...
The method provides the ‘quantum blacksmith’ with a tool for computational alloy design ...”
[quoted from The Theoretical Blacksmith, Research News in Materials Today, June 2002, pg. 7].
The second part of the thesis is intended to give an up to date overview of the applications of
the EMTO method in describing the basic properties of a wide range of important materials.

I acknowledge the financial support from the Hungarian Scientific Research Fund (OTKA
T046773 and T048827).

The continuous encouragement from my parents, my wife and our daughters in the long
process of preparing this work is invaluable. My sincere thanks are due to them.

Budapest, Levente Vitos
February 2008
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Genuineness

The present thesis contains theoretical developments and applications performed by the author
and co-workers and published in the following works. The author’s contribution (AC) to each
work is shown in percent in square brackets [AC:].

The formalism presented in Chapters 2, 3 and 5 is based on:

• Computational Quantum Mechanics for Materials Engineers The EMTO Method
and Applications
Levente Vitos, book, ISBN: 978-1-84628-950-7, Springer-Verlag London, Series: Engineer-
ing Materials and Processes (2007). [AC: 100%]

• Application of the Exact Muffin-Tin Orbitals Theory: the Spherical Cell Ap-
proximation
L. Vitos, H. L. Skriver, B. Johansson, and J. Kollár, Comp. Mat. Sci., 18, 24 (2000).
[AC: 80%]

• Total energy method based on the Exact Muffin-Tin Orbitals Theory
L. Vitos, Phys. Rev. B, 64, 014107, (2001). [AC: 100%]

• Anisotropic lattice distortions in random alloys from first-principles theory
L. Vitos, I. A. Abrikosov, and B. Johansson, Phys. Rev. Lett. 87, 156401 (2001). [AC:
80%]

• Coherent Potential Approximation within the Exact Muffin-Tin Orbitals The-
ory
L. Vitos, I. A. Abrikosov, and B. Johansson, in Complex Inorganic Solids, Structural, Sta-
bility, And Magnetic Properties Of Alloys, eds. A. Meike, P. E. A. Turchi, A. Gonis, K.
Rajan, pg. 339 (14), Springer Verlag (2005). [AC: 80%]

• Quantum-mechanical description of substitutional random alloys
L. Vitos, in Recent Research Developments in Physics Vol. 5, pp. 103-140, Transworld
Research Network Publisher, Trivandrum (India) (2004). [AC: 100%]

• The energy dependence of the Exact Muffin-Tin Orbitals structure constants
A. E. Kissavos, L. Vitos, and I. A. Abrikosov, Phys. Rev. B 75, 115117 (2007). [AC:
60%]

• The Full-Charge Density technique: The FCD package
L. Vitos (1996). [AC: 80%]

• Numerical implementation of the Exact Muffin-Tin Theory: The FCD-EMTO
computer code
L. Vitos (2000). [AC: 90%]

• Implementation of the EMTO-CPA method: The EMTO-CPA computer code
(EMTO5.1-EMTO5.7)
L. Vitos (2001-2008). [AC: 100%]
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Part of Sections 2.1 and 3.1 are based on the original works by Andersen et al. [47, 48, 85,
86, 87, 88]. Sections 4.1, 4.2.3, 4.2.4 and 4.2.5 from Chapter 4 present the original Full Charge
Density method from [44, 45, 46] and are included for completeness. Section 5.1 gives a brief
account of the Coherent Potential Approximation as introduced by Soven and Györffy [69, 71].
Chapter 6 defines a few ground state parameters that can directly be derived from the total
energy, and which are discussed in Chapters 7-8. The results presented in Chapters 7, 8 and 9
are based on:

• Computational Quantum Mechanics for Materials Engineers The EMTO Method
and Applications
Levente Vitos, book, ISBN: 978-1-84628-950-7, Springer-Verlag London, Series: Engineer-
ing Materials and Processes (2007). [AC: 100%]

• Evidence of large magneto-structural effects in austenitic stainless steels
L. Vitos, P. A. Korzhavyi, and B. Johansson, Phys. Rev. Lett. 96, 117210 (2006). [AC:
80%]

• Alloying effects on the stacking fault energy in austenitic stainless steels from
first-principles theory
L. Vitos, J.-O. Nilsson, and B. Johansson, Acta Materialia 54, 3821-3826 (2006). [AC:
80%]

• Stainless steel optimization from quantum mechanical calculations
L. Vitos, P. A. Korzhavyi, and B. Johansson, Nature Materials, 2, 25-28 (2003). [AC:
80%]

• Modeling of alloy steels
L. Vitos, P. A. Korzhavyi, and B. Johansson Review Features, Materials Today, October,
14-23, (2002). [AC: 70%]

• Patent on stainless steel: SE0200554-4
L. Vitos, P. Korzhavyi, and B. Johansson, 24th February (2002). [AC: 60%]

• Elastic property maps of austenitic stainless steels
L. Vitos, P. A. Korzhavyi and B. Johansson, Phys. Rev. Lett., 88, 155501 (2002). [AC:
80%]

• Exceptional surface stability in late transition metal alloys driven by lattice
strain
L. Vitos, M. Ropo, K. Kokko, M. P. J. Punkkinen, J. Kollár, and B. Johansson, Phys.
Rev. B Rapid Communication, accepted (2008). [AC: 80%]

• An atomistic approach to the initiation mechanism of galling
L. Vitos, K. Larsson, B. Johansson, M. Hanson, and S. Hogmark, Comp. Mat. Sci., 37,
193-197 (2006). [AC: 60%]

• Mechanical properties of random alloys from quantum mechanical simulations
L. Vitos and B. Johansson, in Applied Parallel Computing. State of the Art in Scientific
Computing, Lecture Notes in Computer Science, Springer-Verlag Berlin Heidelberg, B.
Kagström et al. (eds.) Volume 4699, 510-519 (2007). [AC: 90%]

• Body-Centered-Cubic Iron-Nickel Alloy in Earth’s Core
L. Dubrovinsky, N. Dubrovinskaia, O.Narygina, A. Kuznetzov, V. Prakapenka, L. Vitos,
B. Johansson, A. S. Mikhaylushkin, S. I. Simak, I. A. Abrikosov, Science 316, 1880 (2007).
[AC: 20%]
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• Theoretical evidence of the compositional threshold behavior of FeCr surfaces
M. Ropo, K. Kokko, M. P. J. Punkkinen, S. Hogmark, J. Kollár, B. Johansson, and
L. Vitos, Phys. Rev. B Rapid Communications 76, 220401(R) (2007). [AC: 40%]

• Thermo-elastic properties of random alloys from first-principles theory
L. Huang, L. Vitos, S. K. Kwon, B. Johansson, and R. Ahuja, Phys. Rev. B 73, 104203
(2006). [AC: 40%]

• The chemical potential in surface segregation calculations: AgPd alloys
M. Ropo, K. Kokko, L. Vitos, J. Kollár, and B. Johansson, Surf. Sci. 600, 904-913 (2006).
[AC: 30%]

• Segregation at the PdAg(111) surface: Electronic structure calculations
M. Ropo, K. Kokko, L. Vitos, and J. Kollár, Phys. Rev. B, 71, 045411(6) (2005). [AC:
30%]

• First-principles phase diagram for Ce-Th system
A. Landa, P. Sönderlind, A. Ruban, L. Vitos, and L. V. Pourovskii, Phys. Rev. B, 70,
224210(5) (2004). [AC: 20%]

• Total energy calculations for systems with magnetic and chemical disorder
A. E. Kissavos, S. I. Simak, P. Olsson, L. Vitos, and I. A. Abrikosov, Comp. Mat. Sci.,
35 1-5 (2006). [AC: 30%]

• Ab initio formation energies of Fe-Cr alloys
P. Olsson, I. A. Abrikosov, L. Vitos, and J. Wallenius J. of Nuclear Materials 321, 84-90
(2003). [AC: 30%]

• Ab initio calculations of elastic constants of the bcc VNb system at high pres-
sures
A. Landa, , J. Klepeis, P. Söderlind, I. Naumov, O. Velikokhatnyi, L. Vitos, and A. Ruban,
Journal of Physics and Chemistry of Solids, 67, 2056-2064 (2006). [AC: 20%]

• Fermi surface nesting and pre-martensitic softening in V and Nb at high pres-
sures
A. Landa, , J. Klepeis, P. Sderlind, I. Naumov, O. Velikokhatnyi, L. Vitos, and A. Ruban,
J. Phys.: Condens. Matter 18, 5079-5085 (2006). [AC: 20%]

• Beating the miscibility barrier between iron and magnesium by high-pressure
alloying
N. Dubrovinskaia, L. Dubrovinsky, I. Kantor, W. A. Crichton, V. Dmitriev, V. Prakapenka,
G. Shen, L. Vitos, R. Ahuja, B. Johansson, and I. A. Abrikosov, Phys. Rev. Lett. 95,
245502 (2005). [AC: 20%]

• Anomalous behavior of lattice parameters and elastic constants in hcp Ag-Zn
alloys
B. Magyari-Köpe, L. Vitos, and G. Grimvall, Phys. Rev. B, 70, 052102(4) (2004). [AC:
50%]

• Elastic anomalies in Ag-Zn alloys
B. Magyari-Köpe, G. Grimvall and L. Vitos, Phys. Rev. B, 66, 064210 (2002); Erratum,
Phys. Rev. B, 66, 179902 (2002). [AC: 50%]

• Ab initio calculation of the elastic properties of Al1−xLix (x ≤ 0.20) random
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A. Taga, L. Vitos, B. Johansson, and G. Grimvall, Phys. Rev. B, 71, 014201(9) (2005).
[AC: 50%]
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Chapter 1

Basics of Electronic Structure
Calculations: Literature survey

Describing the properties of solids from first-principles theory implies solving the Schrödinger
equations for a huge number of interacting electrons and nuclei. This is an impossible task
even for relatively small systems. The first step to overcome this objection is given by the
Born−Oppenheimer approximation. It is assumed that on the timescale of nuclear motion,
the electronic subsystem is always in its stationary state. Then the motion of the nuclei is
solved separately, and this gives rise to the concept of phonons. The remaining set of stationary
Schrödinger equations for electrons is still too large for numerical solution. Density Functional
Theory [1, 2, 3] offers an elegant reformulation of this problem. Instead of considering many
electrons in the external potential of static nuclei, non-interacting electrons in an effective po-
tential are considered. This effective potential is a functional of the total charge density and it
incorporates the effect of all the electrons and nuclei. The complexity of the initial problem is
hidden in the exchange-correlation part of the potential. Solving the single-electron equations
self-consistently, one obtains the equilibrium electron density and the total energy of the system.

Today, Density Functional theory gives a quantum-mechanical basis for most of the ab initio
methods used in computational materials science. These methods have made it possible to study
complex solid materials of great industrial relevance. The main aims of these applications are
the atomic level understanding of the properties and prediction of new data for the development
of high-performance materials. In order to accomplish these goals, the numerical methods for
solving the single-electron equations should have sufficient accuracy and efficiency. In this chap-
ter, we shall start with a short summary of the Density Functional theory and the Kohn−Sham
scheme. We shall briefly review the most important approximations within the Density Func-
tional theory, and the most widely used methods for ordered as well as for disordered systems.
Finally, we shall outline the main features of the Exact Muffin-tin Orbitals method and give the
organization of the rest of the monograph.

1.1 Density Functional Theory

We consider an interacting electron gas moving in an external potential ve(r). The original
theorem of Hohenberg and Kohn [1] states that the ground state of this system is described by
the energy functional

Ee[n] = F [n] +
∫

ve(r) n(r)dr, (1.1)

where the first term is a universal functional of the electron density n(r) and the second term
is the interaction energy with the external potential. According to the variational principle, the
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minimum of Ee[n] is realized for the equilibrium electron density and it equals the total energy
of the electronic system. The universal functional is usually represented as

F [n] = Ts[n] + EH [n] + Exc[n], (1.2)

where the two “large” contributions are the kinetic energy of non-interacting particles Ts[n]
and the Hartree energy EH [n]. The remaining “small” contribution Exc[n] is the so called
exchange-correlation functional .

Within the Kohn−Sham scheme [2], the variational principle leads to the effective single-
electron Schrödinger equations

{
−∇2 + v([n]; r)

}
Ψj(r) = εj Ψj(r). (1.3)

Throughout the book atomic Rydberg units are used1. The non-interacting Kohn−Sham system
is subject to an effective potential

v([n]; r) = ve(r) + vH([n]; r) + µxc([n]; r). (1.4)

Here the second term is the Hartree potential,

vH([n]; r) = 2
∫

n(r′)
|r− r′| dr′, (1.5)

and the last term is the exchange-correlation potential defined as the functional derivative of
Exc[n], i.e.

µxc([n]; r) =
δExc[n]
δn(r)

. (1.6)

This latter includes all the electron−electron interactions beyond the Hartree term. The electron
density is calculated from the single-electron orbitals according to

n(r) =
∑

εj≤εF

|Ψj(r)|2. (1.7)

In this expression, the summation runs over all the Kohn−Sham states below the Fermi level
εF , which in turn is obtained from the condition

Ne =
∫

n(r) dr, (1.8)

where Ne is the number of electrons. The self-consistent solution of Equations (1.3)−(1.8) is
used to compute the ground state energy of the electronic system

Ee[n] = Ts[n] +
1
2

∫
vH([n]; r)n(r)dr + Exc[n] +

∫
ve(r) n(r)dr. (1.9)

Assuming that the self-consistency of the Kohn−Sham equations (1.3) is achieved, the non-
interacting kinetic energy functional may be expressed from the single-electron energies εj and
the self-consistent effective potential as

Ts[n] ≡
∑

εj≤εF

∫
Ψ∗

j (r)(−∇2)Ψj(r)dr

=
∑

εj≤εF

εj −
∫

n(r)v([n]; r)dr. (1.10)

1In atomic Rydberg units, h̄ = 2m = e2/2 = 1.
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For electrons moving in the external potential created by the fixed nuclei located on lattice sites
R we have

ve(r) = −
∑

R

2ZR

|r−R| , (1.11)

where ZR are the nuclear charges. Then the total energy of the system formed by electrons and
nuclei is obtained from Equation (1.9) plus the nuclear−nuclear repulsion, viz.

Etot = Ee[n] +
∑

RR′

′ ZRZR′

|R−R′| . (1.12)

The prime indicates that the R = R′ term is excluded from the sum. Equations (1.3)−(1.8)
and (1.11) represent the non-spin polarized Kohn−Sham scheme for electrons from a solid mat-
ter. The spin-density functional formalism is obtained by introducing the two spin densities
n↑(r) and n↓(r). They are solutions of the Kohn−Sham equation for the spin dependent effec-
tive potential. The spin-up and spin-down channels are connected through the spin polarized
exchange-correlation potential

µσ
xc([n

↑, n↓]; r) = δExc[n↑, n↓]/δnσ(r) (1.13)

(σ =↑ or ↓) that depends on both spin densities [3].

The accuracy of the Density Functional theory is, in principle, limited only by the employed
approximate functionals describing the exchange and correlation energies. The popular Local
Density Approximation (LDA) [4, 5, 6, 7] was found to reproduce the ground-state properties
of many systems with surprisingly high accuracy. In particular, the bulk properties of 4d and
5d transition metals, oxides, etc., or the surface properties of metals [9], are very well described
within the LDA. However, there are situations where the LDA turned out to be inappropriate
even for a qualitative description. The most spectacular failure of it happens in the case of
3d transition metals. For instance, LDA predicts incorrect lowest-energy crystal and magnetic
structure for pure Fe [10, 11]. During the last two decades several more accurate exchange-
correlation density functionals have become available [9, 12, 13, 14, 15, 16, 17]. The most
recent gradient level functionals, e.g., the Generalized Gradient Approximation (GGA) [8, 9,
15, 16] or the Local Airy Gas Approximation (LAG)[17, 18], predict ground-state properties of
solids, including that of the 3d metals, which are in closer agreement with experiments than the
corresponding LDA results.

1.2 Methods for Solving the Kohn−Sham Equations

Developing accurate and at the same time efficient numerical methods for solving the Kohn−Sham
equations has been among the biggest challenges within computational materials science. The
accuracy of the methods is crucial, e.g., when one searches for the answers given by different
approximations used for the exchange-correlation functionals. The full-potential methods have
been designed to fulfill this requirement, and provide the exact local density or gradient level
description of solid materials [19, 20, 21, 22, 23, 24, 25, 26, 27]. These methods have been applied
to calculate the physical properties of ordered compounds, as well as to study defects in these
systems. Though, in principle, these techniques give highly accurate results, they are generally
very cumbersome and possess several limitations due to various numerical approximations.

The required accuracy for a Kohn−Sham method is always set by the actual property to
be computed. For instance, an approximate solution of the Kohn−Sham equations can provide
useful information about properties calculated for a fixed crystal structure, whereas quantities
involving lattice distortions or structural energy differences require a high level of accuracy.

15



Because of this, often a compromise has been made between accuracy and efficiency, and methods
employing certain approximations have been developed. The very expensive computational
efforts of full-potential methods are considerably reduced in the pseudopotential methods [28,
29, 30, 31, 32, 33]. In these methods, the deep-lying core states are excluded from consideration,
focusing on the valence electrons only. A full-potential description is kept in the interstitial
region, where the bonds are located, whereas the true Coulomb-like potential is replaced with
a weak pseudopotential in the region near the nuclei. In practice, one often finds that the
physical and chemical properties calculated using pseudopotential methods are almost identical
with those obtained using all-electron full-potential methods [34]. The high computational
speed attainable in pseudopotential calculations makes it possible to perform ab initio molecular
dynamics [35], that is, to describe the atomic vibrations at high temperatures.

The third important group of Kohn−Sham methods is built around the muffin-tin approxi-
mation to the effective potential and electron density. This approximation originates from the
observation that the exact crystal potential is atomic-like around the lattice sites (where the
core states are located) and almost flat between the atoms. Accordingly, within the muffin-tin
approximation one substitutes the Kohn−Sham potential by spherically symmetric potentials
centered on atoms plus a constant potential in the interstitial region. This family includes the
standard Korringa−Kohn−Rostoker (KKR) [36, 37] and screened-KKR [38] methods as well as
the methods based on the Atomic Sphere Approximation (ASA) [39, 40, 41, 42, 43]. Due to the
involved approximations, the above muffin-tin methods have mostly been restricted to densely
packed systems. Some of the deficiencies could be retrenched by the so called Full Charge
Density technique [44, 45].

In the early 1990s, a new muffin-tin formalism was introduced by Ole Krogh Andersen
and co-workers [47]. Lifting the most significant approximations present in classical muffin-tin
related techniques, this approach brings the group of muffin-tin methods back into the heart
of the modern Density Functional methods. Keeping the original name, we will refer to the
formalism as the Exact Muffin-tin Orbitals (EMTO) theory. Here the term “Exact” refers to
the fact that, in contrast to former muffin-tin methods, within the EMTO theory the single-
electron equations are solved exactly for the optimized overlapping muffin-tin (OOMT) potential
[48].

Originally, the Full Charge Density (FCD) technique [44, 45, 46] was implemented in con-
nection with the Linear Muffin-tin Orbitals (LMTO) method [39, 40]. The FCD-LMTO proved
highly promising in the case of close-packed metals [49, 50], but for systems with low crystal
symmetry, it had serious shortcomings due to the inappropriate treatment of the kinetic en-
ergy term [45]. The accuracy could be maintained only by including overlap and non-spherical
corrections to the kinetic energy [40, 45, 51], and as a consequence the FCD-LMTO method be-
came cumbersome. On the other hand, in the EMTO theory the single-electron kinetic energies
are calculated exactly for the OOMT potential. Because of this, the EMTO theory is an ideal
ground for an accurate FCD total energy technique.

Most of the above full-potential and pseudopotential methods use the Hamiltonian formal-
ism. This means that the electronic spectrum and wave functions are calculated as the eigen-
values and eigenvectors, respectively, of the corresponding Hamiltonian operator. An equivalent
way of solving the Schrödinger equation is to calculate the Green function, which contains all
the information about the electronic spectrum of the system. The Green function formalism
[52, 53, 54] is more computationally demanding than the Hamiltonian formalism for ordered
systems. However, it is suitable for studying disordered systems such as, for instance, impurities
in crystals and random alloys, as well as surfaces and interfaces. Many of the muffin-tin methods
have been implemented in Green function formalism.
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1.3 Chemical and Magnetic Disorder

The main difficulty in the application of Density Functional Theory to real systems is related to
the presence of various kinds of disorder. The most common form of disorder is the breakdown
of the long range order of the crystal lattice sites. Most real solid materials have a hierarchy
of structures beginning with atoms and ascending through various nano or micrometer level
crystalline grains. The misaligned single crystals are separated by grain boundaries, stacking
faults, interphase boundaries, etc. The only way to establish first-principles parameters of these
polycrystalline systems is to first derive data of microscopic nature and then transform these
data to macroscopic quantities by suitable averaging methods based on statistical mechanics
[55, 56].

In single crystals the chemical disorder appears as a consequence of the more or less random
distribution of the atoms on the lattice sites. Different types of atoms can substitute each other.
In systems with spontaneous magnetic ordering at low temperatures, e.g. in elemental Fe, a long
range magnetic structure is formed. Above the critical temperature the magnetic interaction
energy is overtaken by the magnetic entropy contribution, and, as a consequence, the individual
magnetic moments of alloy components become randomly oriented, with vanishing total vector
moment. This paramagnetic phase is also a disordered phase formed by randomly distributed
atomic moments. The temperature induced disorder in the atomic positions, i.e. the lattice
vibration, is not considered here.

There are various techniques used to describe the energetics of the fully or partially disor-
dered systems. A formally exact approach to this problem is to perform ab initio calculations for
a chunk of solid material, in which different kinds of atoms, as well as their magnetic moments,
are arranged in a configuration similar to the atomic and magnetic structure of the actual disor-
dered solid solution. If one tries to apply this straightforward approach to calculate, for instance,
the compositional dependence of some physical properties of a disordered system, one needs to
perform numerous calculations for very large systems. Therefore, this supercell technique is
very cumbersome, and mainly semi-empirical [57, 58] or approximate order-N methods2 have
adopted it [59, 60]. For a more efficient approach, the Density Functional methods should be
combined with techniques that have been developed in alloy theory over the years, and which
are especially designed to deal with disordered systems in a much more efficient way than the
brute-force approach described above.

Within the so-called virtual crystal approximation [61, 62, 63] the disordered alloy is modeled
by replacing the real system with an equivalent monoatomic system with masses and potentials
defined as concentration weighted averages. This simple model suffers from numerous weaknesses
[64], e.g., it is unable to describe correctly the bond proportion and volume effects, and its
application has been limited to alloys with nearly identical chemical species.

In the cluster expansion formalism, the configurational dependent energy is expanded in
terms of the cluster functions [65, 66]. The expansion coefficients are the effective cluster inter-
action parameters. When all possible clusters are included in the expansion, this formalism gives
the exact energy. In practice, however, only a small set of clusters are needed for a reasonably
well converged energy. One defines the largest cluster beyond which interactions are ignored.
In the structure inversion method by Connolly and Williams [67], the cluster interaction pa-
rameters are obtained by fitting the truncated expansion to a set of total energies calculated
for ordered structures. Typically, for a binary alloy 20−30 cluster interactions are needed. For
multicomponent systems the number of interactions increase rapidly with the number of species,
which limits the cluster expansion approach to few-component systems.

The special quasirandom structures method combines the idea of cluster expansion with
the use of supercells [68]. Within this approach one constructs special periodic structures that
reproduce with high accuracy the most relevant radial correlation functions of an infinite substi-

2In an order-N method the computer time grows linearly with the number of atoms in the system.
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tutional random alloy. It has been shown that it is possible to construct the special quasirandom
structures with as few as 8 atoms per cell. However, so far special quasirandom structures have
been designed only for a few selected concentrations on face centered cubic or body centered
cubic underlying lattices [68].

The most powerful technique which allows one to treat systems with substitutional disorder is
the Coherent Potential Approximation (CPA). This approximation was introduced by Soven and
Taylor [69, 70], and Györffy [71] has formulated it in the framework of the multiple scattering
theory using the Green function formalism. In the past, the CPA was exclusively combined
with standard muffin-tin based Kohn−Sham methods [38, 72, 73, 74, 75, 76, 77, 78]. The
involved shape approximation for the potential and density limited the application of the CPA
to undistorted close-packed systems, viz. solids with face centered cubic, body centered cubic
or hexagonal close packed underlying crystal lattice. A few years ago, the CPA was restated
within the framework of the EMTO theory [79, 80, 81, 82] and most recently, the concept of the
CPA was extended to include the short range order effects within the random alloys [83, 84].

1.4 Resumé of the EMTO Method

The implementation and application of the Exact Muffin-tin Orbitals theory combined with the
Coherent Potential Approximation and the Full Charge Density technique is the focus of the
present work. The Kohn−Sham method created on this platform is referred to as the EMTO
method.

The EMTO is a cellular method. The single-electron Schrödinger equations are solved
separately within the units defined around the lattice sites. The unit cells are chosen in such
a way that they should give a proper description of the local surroundings for every lattice
site. For simplicity, we assume that these units are the so called Wigner−Seitz cells or Voronoy
polyhedra3. The polyhedron for a given center is constructed by bisecting with a plane each
line connecting the actual site with another site, and taking the closed region around the lattice
site bounded by these planes. The Kohn−Sham potential is approximated by the optimized
overlapping muffin-tin wells. In the present implementation, these wells are obtained within
the Spherical Cell Approximation. Each spherical potential is centered on a lattice site and
can spread beyond the boundary of the actual polyhedron. The local Schrödinger equations
are solved for these spherical potentials. The local solutions are functions of the energy ε. The
matching condition between these individual solutions is provided by free electron solutions. This
leads to a KKR-type of equation, which selects those energies ε = εj for which the Kohn−Sham
orbitals Ψj(r) exist. For an arbitrary energy, the local solutions join the free electron solutions
with a nonzero kink (discontinuity in the first order derivative). Because of this, within the
EMTO formalism the KKR equation is also named as the kink cancelation equation. In the
case of alloys, the problem of chemical and magnetic disorder is treated via the CPA equations
formulated on the EMTO basis. From the output of the self-consistent EMTO calculation the
total charge density from Equation (1.7) is constructed. This density is used to compute the
total energy (1.12). The energy functional (1.9) is calculated using the FCD technique. The
integrals of the Hartree and exchange-correlation energy components are carried out using the
shape function technique. The interaction energy between remote polyhedra is taken into account
through the standard Madelung term, whereas the interaction between cells with overlapping
bounding spheres is calculated by the so called displaced cell technique.

The most important and prominent feature of the EMTO method is that this approach is
suitable for the determination of the energy changes due to anisotropic lattice distortions in
ordered systems, in alloys with chemical disorder as well as in alloys with both chemical and
magnetic disorder. During recent years, the EMTO has opened new possibilities in the field of

3For strongly inhomogeneous potentials a more appropriate division can be used, which reflects the actual
atomic sizes.
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computational alloy theory. There is a long list of applications on alloys and compounds, which
were not accessible by former CPA related techniques, but they are amenable now. This includes
several crucial areas from materials engineering such as the elastic, structural and mechanical
properties of random alloys of arbitrary compositions. The present monograph gives a complete
account of the EMTO formalism and demonstrates its application through several examples.

1.5 The Thesis

In Chapter 2, we overview the basics of the Exact Muffin-tin Orbitals method. Here we intro-
duce the exact muffin-tin orbitals as a minimal basis set for solving the Kohn−Sham equations
(1.3) for the effective potential (1.4). We define the optimized overlapping muffin-tin wells,
as the best overlapping muffin-tin approximation to the full-potential. In the second part of
Chapter 2, we discuss the Spherical Cell approximation. This is an important approximation
needed to establish a well-behaved optimized overlapping muffin-tin potential in the case when
the Wigner−Seitz polyhedra are approximated by spherical cells. The equations presented in
Chapter 2 form the basis for a self-consistent EMTO calculation.

The slope matrix or the screened structure constant is a central quantity in the muffin-tin
formalism. The Dyson equation for the slope matrix and its energy derivatives is delineated
in Chapter 3. Here we illustrate how the screening parameters influence the behavior of the
slope matrix and establish the range where the screening transformation leads to a slope matrix
which has short range and smooth energy dependence. Efficient parameterizations for the energy
dependence are given in the second part of Chapter 3.

Chapter 4 deals with the FCD approach. The shape function technique is described in
Section 4.1. The FCD method for computing the kinetic and exchange-correlation energies,
as well as the Coulomb interactions inside the cell and between Wigner−Seitz cells with non-
overlapping and overlapping bounding spheres is given in Section 4.2. At the end of this chapter,
the convergence properties of different energy terms are discussed.

In Chapter 5, we briefly review the important features of the Coherent Potential Approxi-
mation. The fundamentals of the Exact Muffin-tin Orbitals−Coherent Potential Approximation
approach are also presented in Chapter 5. Since many of the equations for the EMTO-CPA
formalism can easily be derived from the equations presented Chapter 2, here we give only those
where the extension is not straightforward.

In Chapter 6, it is shown how some ground-state properties can be derived from the output
of a self-consistent Kohn−Sham calculation. Examples of applications to study these properties
in elementary metals, oxides, metallic alloys, including simple metal alloys, Fe-based alloys,
austenitic stainless steels, etc., are presented in Chapters 7−9. All EMTO data presented here
can be reproduced using the EMTO computer program (available from the author) and taking
into account the numerical details listed at the end of each chapter.
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Chapter 2

Exact Muffin-tin Orbitals Method

In order to reduce the very expensive computational effort of full-potential methods, often a
compromise has been made between the accuracy and efficiency, and methods based on approx-
imate single-electron potentials have been developed. The most widely used approach is based
on the physically transparent Muffin-Tin (MT) approximation. Within this approximation, the
effective potential is represented by non-overlapping spherically symmetric potentials around
the atomic nuclei and a constant potential in the interstitial region. Although the mathematical
formulation of the MT approach is very elegant, it gives a rather poor representation of the
exact potential. The so called Atomic Sphere Approximation (ASA) [39] substitutes the space
by overlapping spherical cells. The total volume of the ASA spheres is equal to the volume
of the real space, and thus the region between spheres is completely removed. Because of the
large potential spheres, the ASA brings a real improvement to the MT approximation. How-
ever, most of the conventional methods based on the ASA potential use a similar approximation
for the Schrödinger and Poisson equations [43]. Therefore, with these methods, reasonably
accurate results could only be obtained for close-packed systems. In order to increase the ac-
curacy and extend the ASA methods to open systems, different corrections had to be included
[39, 40, 44, 45, 49, 51].

In the 1990s, a breakthrough was made by Andersen and co-workers by developing the Ex-
act Muffin-Tin Orbitals (EMTO) theory [47, 86, 87, 88]. This theory is an improved screened
Koringa−Kohn−Rostoker method [38, 42], in that large overlapping potential spheres can be
used for an accurate representation of the exact single-electron potential [86]. The single-electron
states are calculated exactly, while the potential can include certain shape approximations, if re-
quired. By separating the approaches used for the single-electron states and for the potential, the
accuracy can be sustained at a level comparable to that of the full-potential techniques without
detracting significantly from the efficiency. In this chapter, we shall review the EMTO theory
and introduce a self-consistent implementation of it within the Spherical Cell Approximation for
the muffin-tin potential.

2.1 The Exact Muffin-tin Orbitals Formalism

The self-consistent solution of the Kohn−Sham equations (1.3), (1.4) and (1.7) involves two
main steps. First, the solution of Equation (1.3) for the effective potential (1.4), and second,
the solution of the Poisson equation1 for the total charge density. In this section, we explicate
the first problem within the EMTO formalism.

1The Hartree potential [89] can be found either by direct integration or as the solution of the Poisson equation
∇2vH(r) = −8πn(r).
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2.1.1 Optimized Overlapping Muffin-tin Wells

Within the overlapping muffin-tin approximation, the effective single-electron potential in Equa-
tion (1.4) is approximated by spherical potential wells vR(rR) − v0 centered on lattice sites R
plus a constant potential v0, viz.

v(r) ≈ vmt(r) ≡ v0 +
∑

R

[vR(rR) − v0] . (2.1)

By definition, vR(rR) becomes equal to v0 outside the potential sphere of radius sR. For sim-
plicity, here and in the following, we suppress the density dependence of the potential. For the
vector coordinate, we use the notation rR ≡ rRr̂R = r−R, where rR is the modulus of rR, and
omit the vector notation for index R.

For fixed potential spheres, the spherical and the constant potentials from the right hand
side of Equation (2.1) are determined by optimizing the mean of the squared deviation between
vmt(r) and v(r), i.e. minimizing the

Fv[{vR}, v0] ≡
∫

Ω

{
v(r)− v0 −

∑

R

[vR(rR) − v0]

}2

dr (2.2)

functional [48]. Here Ω is a region where the potential optimization is performed, e.g., the unit
cell. Since Fv is a functional of the spherical potentials, the minimum condition is expressed as

∫

Ω
δvR(r)

δFv[{vR}, v0]
δvR(r)

dr = 0 for any R, (2.3)

where δ/δvR(r) stands for the functional derivative, and

∂Fv[{vR}, v0]
∂v0

= 0. (2.4)

The solution of these integro-differential equations gives the optimal vR(rR) and v0, and leads
to the so called optimized overlapping muffin-tin (OOMT) potential. The reader is referred to
Andersen et al. [48] for further details about the potential optimization.

In the case of non-overlapping muffin-tins, Equations (2.3) and (2.4) reduce to the spherical
average of the full-potential within the potential sphere, i.e.

vR(rR) =
1
4π

∫
v(r)dr̂, for rR ≤ sR, (2.5)

and to the space average of the full-potential within the s-interstitial region2, i.e.

v0 =
1

ΩIs

∫

Is
v(r)dr, (2.6)

where Is denotes the s-interstitial region and ΩIs = Ω − ∑
R

4πs3
R

3 is the volume of the s-
interstitial. Note that Equation (2.6) gives the well-known muffin-tin zero.

The overlap between potential spheres may be described in terms of the linear overlap. The
linear overlap between two spheres is defined as the relative difference between the sum of the
sphere radii and the distance between them, i.e.,

ωRR′ ≡ sR + sR′

|R−R′| − 1. (2.7)

2The interstitial region is the space outside of the potential spheres.
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Figure 2.1: Optimized overlapping muffin-tin potential approximation to the cosine potential in
a simple cubic lattice. The radius corresponding to inscribed sphere (si = a/2) is marked by a
vertical line.

In a monoatomic system, the inscribed sphere is defined as the largest non-overlapping sphere.
The radius of this sphere is si

R = minR′ |R−R′|/2. The linear overlap is set to zero for potential
spheres with radii sR ≤ si

R. Obviously, in polyatomic crystals, the inscribed sphere depends
upon the convention used to divide the space into units around the lattice sites.

In the following, using a simple model potential, we demonstrate how the full-potential can
be represented by overlapping muffin-tins. We model a general three dimensional full-potential
by a cosine potential in a simple cubic lattice with lattice constant a. Choosing the reference
level in the corner of the Wigner−Seitz cell, i.e. in (a/2, a/2, a/2), the cosine potential has the
form

vc(r) = − cos
(

2π

a
x

)
− cos

(
2π

a
y

)
− cos

(
2π

a
z

)
− 3, (2.8)

where x, y, z are the Cartesian coordinates for r. For this potential, we solve Equations (2.3) and
(2.4), and the v0 and vR(rR) obtained are used to construct the optimized overlapping muffin-tin
potential approximation for vc(r).

The integrated local deviation between vc(r) and its OOMT approximation is plotted in
Figure 2.1 as a function of the potential sphere radius s. Results are shown from s = 0.7si to
s = 1.7si, where si = a/2 is the radius of the inscribed sphere. This interval corresponds to linear
overlaps ωRR′ ranging from −30% to +70%, as indicated at the top of the figure. We observe
that the error in the muffin-tin potential decreases continuously with increasing potential sphere
radius. Around linear overlaps corresponding to the ASA (∼ 24%), the error falls to below half
of the error observed for touching, i.e., non-overlapping spheres. From these results one can
clearly see that the accuracy of the overlapping muffin-tin approximation to the full-potential
can be improved substantially by increasing the overlap between the potential spheres.

2.1.2 Exact Muffin-tin Orbitals

We solve the single-electron Equation (1.3) for the muffin-tin potential defined in Equation (2.1),
by expanding the Kohn−Sham orbital Ψj(r) in terms of exact muffin-tin orbitals ψ̄a

RL(εj , rR),
viz.
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Ψj(r) =
∑

RL

ψ̄a
RL(εj , rR) va

RL,j . (2.9)

The expansion coefficients, va
RL,j , are determined from the condition that the above expansion

should be a solution for Equation (1.3) in the entire space. In the EMTO formalism, the algebraic
formulation of this matching condition is the so called kink cancelation equation [47, 81, 82].
This equation is equivalent to the Korringa−Kohn−Rostoker tail cancelation equation [36, 37]
written in a screened representation [38].

The exact muffin-tin orbitals form a complete basis set for the Kohn−Sham problem. They
are defined for each lattice site R and for each L ≡ (l, m), denoting the set of the orbital (l) and
magnetic (m) quantum numbers. In practice, it is found that in Equation (2.9), the l summation
can be truncated at lmax = 3, i.e. including the s, p, d and f muffin-tin orbitals only.

Screened Spherical Waves
The exact muffin-tin orbitals are constructed using different basis functions inside the potential
spheres and in the interstitial region. In the interstitial region, where the potential is approxi-
mated by v0, we use as basis functions the solutions of the wave equation,

{
∇2 + κ2

}
ψa

RL(κ2, rR) = 0, (2.10)

where κ2 ≡ ε− v0, and ε is the energy. Within the EMTO formalism, the ψa
RL(κ2, rR) functions

are referred to as the screened spherical waves [47].

The boundary conditions for Equation (2.10) are given in conjunction with non-overlapping
spheres centered at lattice sites R with radii aR. Although, the screening sphere radius might
also depend upon the orbital quantum number l, for simplicity, here we assume that aR depends
only on the site index R. The screened spherical waves behave like a pure real harmonic YL(r̂R)3

on their own a-spheres, while the YL′(r̂R′) projections on all the other a-spheres, i.e. for R′ 6= R,
vanish [47]. With these energy independent boundary conditions, for κ2 below the bottom of the
a-spheres continuum, the screened spherical waves have short range and weak energy dependence
[47, 81]. They form a complete basis set in the a-interstitial region and may be expanded in real
harmonics YL′(r̂R′) around any site R′ as

ψa
RL(κ2, rR) = fa

Rl(κ
2, rR) YL(r̂R)δRR′ δLL′

+
∑

L′
ga
R′l′(κ

2, rR′) YL′(r̂R′) Sa
R′L′RL(κ2). (2.11)

The expansion coefficients, Sa
R′L′RL(κ2), are the elements of the slope matrix, which is related to

the well-known bare KKR structure constant matrix through an inhomogeneous Dyson equation
[47]. This is introduced and discussed in Chapter 3.

In Equation (2.11), fa
RL and ga

RL are the value or head and the slope or tail functions,
respectively. The previously described boundary conditions for the screened spherical waves for
l ≤ lmax lead to the following conditions at the a-spheres

fa
Rl(κ

2, r)|aR = 1 and ga
Rl(κ

2, r)|aR = 0. (2.12)

Here we fix the slopes of fa
RL and ga

RL as4

3For the convention used for the real harmonics and for the Bessel and Neumann functions see Ref. [79].
4Different slopes at a-spheres can be used. For example, fixing the slope of ga to −1/a2 leads to a Hermitian

slope matrix.
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∂fa
R(κ2, r)
∂r

∣∣∣∣∣
aR

= 0 and
∂ga

Rl(κ
2, r)

∂r

∣∣∣∣∣
aR

=
1
aR

. (2.13)

Using the spherical Bessel and Neumann functions3, jl(κ2, rR) and nl(κ2, rR) respectively, the
value and slope functions can be expressed as

fa
Rl(κ

2, r) = t1Rl(κ
2)nl(κ2, r) + t2Rl(κ

2)jl(κ2, r) (2.14)

and

ga
Rl(κ

2, r) = −t3Rl(κ
2)nl(κ2, r)− t4Rl(κ

2)jl(κ2, r). (2.15)

The coefficients t1,...,4
Rl are the screening parameters. They are chosen according to the imposed

boundary conditions (2.12) and (2.13), namely

{
t1Rl(κ

2) t2Rl(κ
2)

t3Rl(κ
2) t4Rl(κ

2)

}
= 2

a2
R

w





∂jl(κ
2,aR)

∂rR
−∂nl(κ

2,aR)
∂rR

1
aR

jl(κ2, aR) − 1
aR

nl(κ2, aR)



 . (2.16)

Here w denotes the average atomic or Wigner−Seitz radius defined from the atomic volume V
as

4πw3

3
≡ V =

unit cell volume
number of atoms in unit cell

. (2.17)

Since the Bessel and Neumann functions satisfy the Wronskian

Wr{nl, jl} ≡ r2
[
nl(κ2, r)

∂jl(κ2, r)
∂r

− ∂nl(κ2, r)
∂r

jl(κ2, r)
]

=
w

2
, (2.18)

for the Wronskian of the value and slope functions we get

Wr{fa
Rl, g

a
Rl} = aR, (2.19)

and thus the determinant of the screening matrix becomes

da
Rl ≡ t1Rl(κ

2)t4Rl(κ
2)− t2Rl(κ

2)t3Rl(κ
2) = −2

aR

w
. (2.20)

According to Equations (2.11), (2.14) and (2.15), the screened spherical waves have no pure (lm)
character5, and they are irregular at the origin. This problem is overcome in the next section
by replacing the irregular head functions by the partial waves.

In Equation (2.11), l ≤ lmax and the l′ summation is infinite. In practice, the latter is
truncated at lhmax ≈ 8 − 12. For l′ > lmax, the tail function reduces to the Bessel function, i.e.
ga
R′l′(κ

2, rR′) = −jl(κ2, rR′). These terms are called the highers and unlike the low-l components,
they are allowed to penetrate into the a-spheres.

Partial Waves
Inside the potential sphere at R, the partial waves are chosen as the basis function. These
are defined as the products of the regular solutions of the radial Schrödinger equation6 for the
spherical potential vR(rR),

5A function fL(r) has pure (lm) character if the angular part is fully described by a real harmonic, viz., if
fL(r) = fL(r) YL(r̂).

6In practice, we solve the Dirac equation within the so called scalar relativistic approximation rather than the
non-relativistic Schrödinger equation. This approximation is obtained by taking into account the mass-velocity
and Darwin corrections and neglecting the spin-orbit interaction.
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∂2
[
rR φRl(ε, rR)

]

∂rR
2 =

[ l(l + 1)
r2
R

+ vR(rR)− ε
]

rR φRl(ε, rR), (2.21)

and the real harmonics, viz.

φa
RL(ε, rR) = Na

Rl(ε)φRl(ε, rR) YL(r̂R). (2.22)

The normalization function Na
Rl(ε) should be determined from the matching conditions. The

partial waves are defined for any real or complex energy ε and for rR ≤ sR.

Because a screened spherical wave behaves like YL(r̂R) only on its own a-sphere, the matching
condition between ψa

RL(κ2, rR) and φa
RL(ε, rR) should be set up at this sphere. On the other

hand, as we have seen in Section 2.1.1, for an accurate representation of the single-electron
potential the potential spheres should overlap. Therefore, usually we have sR > aR. Because of
this, an additional free-electron solution with pure (lm) character has to be introduced. This
function realizes the connection between the screened spherical wave at aR and the partial wave
at sR. It joins continuously and differentiable to the partial wave at sR and continuously to
the screened spherical wave at aR. Accordingly, the radial part of this backward extrapolated
free-electron solution can be written in the form

ϕa
Rl(ε, rR) = fa

Rl(κ
2, rR) + ga

Rl(κ
2, rR) Da

Rl(ε), (2.23)

where Da
Rl(ε) = D{ϕa

Rl(ε, aR)} is the logarithmic derivative of ϕa
Rl(ε, rR) calculated for rR = aR.

By definition, the logarithmic derivative of a function f(rR) in the radial mesh point r0
R is

D{f(r0
R)} ≡ r0

R

f(r0
R)

∂f(rR)
∂rR

∣∣∣∣
rR=r0

R

. (2.24)

The normalization function in Equation (2.22) and the logarithmic derivative in Equation (2.23)
are determined from the conditions

Na
Rl(ε)φRl(ε, sR) = ϕa

Rl(ε, sR), (2.25)

and

Na
Rl(ε)

∂φRl(ε, rR)
∂rR

∣∣∣∣
rR=sR

=
∂ϕa

Rl(ε, rR)
∂rR

∣∣∣∣
rR=sR

, (2.26)

After simple mathematics, we obtain

1
Na

Rl(ε)
=

φRl(ε, sR)
fa

Rl(κ2, sR)
D{φRl(ε, sR)} − D{ga

Rl(κ
2, sR)}

D{fa
Rl(κ2, sR)} − D{ga

Rl(κ2, sR)} , (2.27)

and

Da
Rl(ε) = −fa

Rl(κ
2, sR)

ga
Rl(κ2, sR)

D{φRl(ε, sR)} − D{fa
Rl(κ

2, sR)}
D{φRl(ε, sR)} − D{ga

Rl(κ2, sR)} . (2.28)

In these expressions, D{φRl(ε, sR)}, D{fa
Rl(κ

2, sR)} andD{ga
Rl(κ

2, sR)} represent the logarithmic
derivatives calculated according to Equation (2.24). Finally, the exact muffin-tin orbitals are
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constructed as the superposition of the screened spherical waves (2.11), the partial waves (2.22)
and the free-electron solution (2.23), viz.

ψ̄a
RL(ε, rR) = ψa

RL(κ2, rR) + Na
Rl(ε) φRl(ε, rR) YL(r̂R)

− ϕa
Rl(ε, rR) YL(r̂R), (2.29)

where the last two terms are truncated outside the s-spheres.

2.1.3 Kink Cancelation Equation

With the exact muffin-tin orbitals defined in Equation (2.29), the trial wave function (2.9)
around site R can be expressed as

Ψ(rR) =
∑

L

Na
Rl(ε) φRl(ε, rR) YL(r̂R) va

RL

+
∑

L

[
fa

Rl(κ
2, rR)va

RL + ga
Rl(κ

2, rR)
∑

R′L′
Sa

RLR′L′(κ
2)va

R′L′

]
YL(r̂R)

−
∑

L

[
fa

Rl(κ
2, rR) + ga

Rl(κ
2, rR)Da

Rl(ε)
]

YL(r̂R) va
RL. (2.30)

Here the index j has been omitted, emphasizing that the expansion may be written for any
energy ε = κ2 +v0. We observe that the head functions of the screened spherical wave (2.11) are
canceled by the head functions of the free-electron solution (2.23). After rearranging the terms
proportional to the tail function, we obtain

Ψ(rR) =
∑

L

Na
Rl(ε)φRl(ε, rR) YL(r̂R)va

RL +
∑

L

ga
Rl(κ

2, rR) YL(r̂R)

×
∑

R′L′

[
Sa

RLR′L′(κ
2)− δR′RδL′L Da

Rl(ε)
]

va
R′L′ . (2.31)

This trial function will be a solution of Equation (1.3) for the muffin-tin potential (2.1), if inside
the s-spheres the l ≤ lmax part of the second term from the right hand side of (2.31) vanishes
for any rR. That is, if the l ≤ lmax components of the screened spherical waves, multiplied by
the expansion coefficients, are canceled exactly by ϕa

Rl(ε, rR) YL(r̂R) va
RL,j . This is realized if

the kink cancelation equation,

∑

RL

aR′
[
Sa

R′L′RL(κ2
j ) − δR′RδL′L Da

Rl(εj)
]

va
RL,j = 0, (2.32)

is satisfied for all R′ and l′ ≤ lmax. Here and in the following κ2
j ≡ εj−v0, and εj is a Kohn−Sham

single-electron energy for which Equation (2.32) has nontrivial solution. The difference between
the slope matrix and the logarithmic derivative matrix is called the kink matrix,

Ka
R′L′RL(εj) ≡ aR′ Sa

R′L′RL(κ2
j ) − δR′RδL′L aRDa

Rl(εj). (2.33)

Using the kink-cancelation equation, the wave function inside the potential sphere at R reduces
to
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Ψj(rR) =
∑

L

Na
Rl(εj) φRl(εj , rR) YL(r̂R) va

RL,j

+
l′>lmax∑

L′
ga
Rl′(κ

2
j , rR) YL′(r̂R)

∑

R′L
Sa

RL′R′L(κ2
j ) va

R′L,j . (2.34)

Note that the l′ > lmax components of ψa
RL(κ2

j , rR) are present in the potential spheres. However,
due to the l(l + 1)/r2

R centrifugal term in Equation (2.21), the partial waves for large l converge
towards the Bessel functions, i.e. towards the second term from the right hand side of Equation
(2.34).

The solutions of Equation (2.32) are the single-electron energies and wave functions. These
solutions can be obtained from the poles of the path operator ga

R′L′RL(z) defined for a complex
energy z by

∑

R′′L′′
Ka

R′L′R′′L′′(z) ga
R′′L′′RL(z) = δR′RδL′L. (2.35)

In the case of translation symmetry, in Equations (2.32) and (2.35) the site indices run over the
atoms in the primitive cell only, and the slope matrix, the kink matrix, and the path operator
depend on the Bloch vector k from the first Brillouin zone. The k and energy dependent slope
matrix is obtained from the Bloch sum

Sa
Q′L′QL(κ2,k) =

∑

T

eikTSa
Q′L′(Q+T )L(κ2), (2.36)

where Q′ and Q denote two sites from the primitive cell, and T is a translation vector.

2.1.4 Overlap Matrix

The overlap integral of the partial waves within the potential sphere of radius sR is the norm of
φRl(ε, rR), viz.

∫
φa

RL
∗(ε, rR)φa

RL(ε, rR)drR = [Na
Rl(ε)]

2
∫ sR

0
φRl(ε, rR)2r2

RdrR. (2.37)

The radial integral can be calculated using the radial Schrödinger equation (2.21) and the Green’s
second theorem [47], and it gives

∫ sR

0
φRl(ε, rR)2r2

RdrR = −sRḊ{φRl(ε, sR)}φRl(ε, sR)2, (2.38)

where the over-dot denotes the energy derivative

Ḋ{φRl(ε, sR)} ≡ ∂D{φRl(ε, sR)}
∂ε

. (2.39)

The corresponding expression for the free-electron solution (2.23) obtained between the s-sphere
and a-sphere, is

∫ sR

aR

ϕa
Rl(ε, rR)2r2

RdrR =
∫ sR

0
ϕa

Rl(ε, rR)2r2
RdrR −

∫ aR

0
ϕa

Rl(ε, rR)2r2
RdrR

= − sRḊ{ϕRl(ε, sR)}ϕa
Rl(ε, sR)2 + aRḊa

Rl(ε), (2.40)
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where we have taken into account that ϕa
Rl(ε, aR) = 1. According to the matching conditions

(2.25) and (2.26) we have

D{ϕRl(ε, sR)} = D{φRl(ε, sR)} (2.41)

for any ε, and thus

Ḋ{ϕRl(ε, sR)} = Ḋ{φRl(ε, sR)}. (2.42)

Therefore, the first term on the right hand side of Equation (2.40) is equal to the overlap integral
of the partial waves (2.38).

The energy derivative of the logarithmic derivative function Ḋa
Rl(ε) is calculated from Equa-

tion (2.28). The energy derivatives of the Bessel and Neumann functions, and their radial
derivatives are obtained from the recurrence relations (see Ref. [79], whereas Ḋ{φRl(ε, sR)} is
given in Equation (2.38).

The overlap integral of the screened spherical waves over the a-interstitial is obtained in a
similar way using the wave equation (2.10) and Green’s second theorem [47], and it has the
following simple expression

∫

Ia
ψa∗

R′L′(κ
2, rR′)ψa

RL(κ2, rR)dr = aRṠa
R′L′RL(κ2), (2.43)

where Ia denotes a-interstitial. Here we recall that only the low-l components of ψa
RL(κ, rR)

are truncated outside the Ia. The high-l components are present in the whole space, and their
contribution to the overlap integral is included in Equation (2.43). The energy derivative of the
slope matrix can be calculated from finite differences around κ2. Alternatively, one may use an
analytic expression derived from the unscreened slope matrix. This will be presented in Section
3.1.

We can now establish the overlap matrix for the exact muffin-tin orbitals (2.29) calcu-
lated over the whole space. Let us assume, for the moment, that the potential spheres do
not overlap and are smaller than the a-spheres. In this situation, we can split the integral∫

ψ̄∗R′L′(ε, r) ψ̄RL(ε, r) dr into an integral of the partial waves over the potential sphere, an inte-
gral of the free-electron solutions over the region between the a-sphere and the potential sphere
and an integral of the screened spherical waves over the a-interstitial. Using Equations (2.38),
(2.40) and (2.43), we obtain

∫
ψ̄∗R′L′(ε, r) ψ̄RL(ε, r) dr

= aRṠa
R′L′RL(κ2) − aRḊa

Rl(ε) = K̇a
R′L′RL(ε). (2.44)

For overlapping potential spheres, there are other small terms coming from the overlap region.
However, these terms are small, and for reasonable small overlaps the above expression remains
valid. For more details, the reader is referred to the work by Andersen and co-workers [47, 86].

2.1.5 The Fermi Level

During the iterations for solving self-consistently the Kohn−Sham equations (1.3), the Fermi
energy εF is established from the condition that the total number of states N(εF ) below the
Fermi level should be equal to the number of electrons Ne from the system, i.e.

N(εF ) = Ne. (2.45)
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In practice, N(ε∗F ) is computed for a series of trial ε∗F and the proper εF is obtained according
to Equation (2.45).

Within the present method, we make use of the residue theorem (see Ref. [79]) to find the
number of states below the Fermi energy. According to this theorem, the contour integral of the
properly normalized path operator gives the total number of states within the contour. Using
the overlap matrix of the exact muffin-tin orbitals (2.44) to normalize the path operator, each
electronic state will be normalized correctly within the real space. This leads to the following
expression for the total number of states below the Fermi level:

N(εF ) =
1

2πi

∮

εF

G(z) dz, (2.46)

where

G(z) ≡
∑

R′L′RL

ga
R′L′RL(z) K̇a

RLR′L′(z)

−
∑

RL


Ḋa

Rl(z)
Da

Rl(z)
−

∑

εD
Rl

1
z − εD

Rl


 , (2.47)

with l, l′ ≤ lmax. The energy integral in Equation (2.46) is performed on a complex contour that
cuts the real axis below the bottom of the valence band and at εF . It is easy to see that near
each pole εj , the path operator behaves like K̇a

RLR′L′(εj)/(z − εj), and, therefore, the first term
from the right hand side of Equation (2.47) will contribute with 1 to N(εF ).

Because of the overlap matrix, the ga(z)K̇a(z) term may also include the poles of Ḋa(z).
Here, we omit the R and l indices for simplicity. Let us denote by z0 a pole of Ḋa(z). This pole
has no physical meaning and should be removed from N(εF ). Near z0, both Da(z) and Ḋa(z)
diverge, and thus ga(z)K̇a(z) → Ḋa(z)/Da(z) for z → z0. Therefore, subtracting Ḋa(z)/Da(z)
removes the nonphysical pole z0 of ga(z)K̇a(z). In the second step, we have to restore the real
poles of Ḋa(z)/Da(z) due to the zeros of the logarithmic derivative function. We denote by
εD a real energy where Da(z) vanishes. Expanding Da(z) near this energy, we have Da(z) ≈
Ḋa(εD)(z − εD) + ..., and thus Ḋa(z)/Da(z) ≈ 1/(z − εD). Hence, Ḋa(z)/Da(z) − 1/(z − εD)
contains no poles due to the zeros of the logarithmic derivative function. Note that the second
term from the right hand side of Equation (2.47) gives no contribution to N(εF ) if Ḋa(z) is an
analytic function of z inside the complex energy contour.

In Equation (2.44) the negligible terms due to the overlap between potential spheres have
been omitted [86]. Besides these terms, N(εF ) in Equation (2.46) gives the exact number of
states at the Fermi level for the muffin-tin potential from Equation (2.1).

2.2 Electron Density

The electron density (1.7) is given in terms of Kohn−Sham single-electron wave functions.
From the expansion of Ψj(r) (Equation (2.9)), a multi-center form for the charge density can
be obtained. Although, this multi-center expression gives a highly accurate charge density in
the entire space, its application in the Poisson equation or the total energy functional is very
cumbersome. Therefore, we seek a more transparent expression which can easily be used to
compute the Hartree and exchange-correlation terms in Equations (1.4) and (1.9). To this end,
we turn to the one-center expression (2.34). This expression is valid inside the potential spheres.
Nevertheless, due to the kink-cancellation equation, the one-center expression remains valid for
rR > sR as well, if the normalized partial wave Na

Rl(εj) φRl(εj , rR) is replaced by the backward
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extrapolated free-electron solution ϕa
Rl(εj , rR). We use this expression to set up the one-center

form for the charge density.

We divide the total density n(r) into components nR(rR) defined inside the Wigner−Seitz
cells,7 viz.

n(r) =
∑

R

nR(rR). (2.48)

Around each lattice site we expand the density components in terms of the real harmonics, viz.

nR(rR) =
∑

L

nRL(rR)YL(r̂R). (2.49)

The partial components nRL(rR) are radial functions, which are obtained using Equation (2.34),
the residue theorem and the orthogonality condition for the real harmonics [79]. The final
expression can be cast into the following form:

nRL(rR) =
1

2πi

∮

εF

∑

L′′L′
CLL′L′′Z

a
Rl′′(z, rR)

×g̃a
RL′′L′(z) Za

Rl′(z, rR)dz, (2.50)

where CLL′L′′ are the real Gaunt numbers (see Ref. [79]). For the radial functions the following
notation has been introduced:

Za
Rl(z, rR) =





Na
Rl(z)φRl(z, rR) if l ≤ lmax and rR ≤ sR

ϕa
Rl(z, rR) if l ≤ lmax and rR > sR

−jl(κ rR) if l > lmax for all rR

. (2.51)

Note that in Equation (2.50), the l′′ and l′ summations include the highers as well, i.e. l′′, l′ ≤
lhmax. The low-l block of the generalized path operator g̃a

RL′L(z) is given by

g̃a
RL′L(z) = ga

RL′RL(z) +
δL′L

aR Ḋa
Rl(z)


Ḋa

Rl(z)
Da

Rl(z)
−

∑

εD
Rl

1
z − εD

Rl


 , (2.52)

with l, l′ ≤ lmax. The second term from the right hand side of Equation (2.52) is introduced to
remove the nonphysical poles of the normalization function Na

Rl(z). The off-diagonal blocks of
g̃a
RL′L(z) are

g̃a
RL′L =





∑
R′′L′′ g

a
RL′R′′L′′aR′′S

a
R′′L′′RL if l′ ≤ lmax, l > lmax

∑
R′′L′′ S

a
RL′R′′L′′g

a
R′′L′′RL if l′ > lmax, l ≤ lmax

. (2.53)

Finally, the high-l block is

g̃a
RL′L =

∑

R′′L′′R′′′L′′′
Sa

RL′R′′L′′g
a
R′′L′′R′′′L′′′ aR′′′S

a
R′′′L′′′RL, (2.54)

7In practice, in order to be able to compute the density gradients and eventually the higher order density
derivatives, the partial densities should in fact be defined inside a sphere which is slightly larger than the sphere
circumscribed to the Wigner−Seitz cell.
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with l′, l > lmax. For simplicity, in Equations (2.53) and (2.54), the energy dependence has
been suppressed. The high-low and low-high blocks of the slope matrix are calculated by the
blowing-up technique [85], which will be introduced in Chapter 3.

The charge density computed from Equations (2.49) and (2.50) is normalized within the unit
cell, and for reasonably large lhmax, it is continuous at the cell boundaries. Note that because
the real Gaunt numbers vanish for l > l′′ + l′, the partial components of the charge density are
nonzero only for l ≤ 2lhmax. For a reasonably high lhmax (10−12), however, the partial components
with l > lhmax are very small. Because of this, the l-truncation in Equation (2.49) is usually set
to lhmax.

2.3 The Poisson Equation

Equations (2.32), (2.46) and (2.49) constitute the basis of the method used to solve the Schrödinger
equation (1.3). In order to perform a self-consistent calculation, one constructs the electron den-
sity from the solutions of the kink cancelation equation and calculates the new effective single-
electron potential. Within the EMTO formalism, this latter procedure involves two steps [48].
First, we calculate the full-potential from the total charge density (2.49), and second, we con-
struct the optimized overlapping muffin-tin wells (2.1). Due to the l-truncation in the one-center
expression from Equation (2.49), the first step is very demanding and inaccurate in the corners
of the unit cell. Furthermore, the expression for the effective potential (1.4) involves an integral
over the real space. These types of integrals can be performed using, e.g., the shape function
technique (Chapter 4). Applying this technique, however, would unnecessarily overcomplicate
the self-consistent iterations. In the next section, we show that within the so called Spherical
Cell Approximation [82], both of the above problems can be avoided.

2.3.1 Spherical Cell Approximation

To simplify the solution of the Poisson equation, during the self-consistent iterations, we sub-
stitute the Wigner−Seitz cell around each lattice site by a spherical cell. The volume of the
spherical cell at R, ΩwR , may be chosen to be equal to the volume of the Wigner−Seitz cell ΩR

centered on the same lattice site, i.e.

ΩwR ≡
4π

3
w3

R = ΩR, (2.55)

where wR is the radius of the spherical cell.

Next, we investigate the overlapping muffin-tin approximation to the full-potential in the
case of spherical cells. The integrated local deviation between the full-potential and the OOMT
potential was introduced and discussed in Section 2.2. It represents a basic measure to establish
the accuracy of the muffin-tin potential. But there are other important quantities which should
be considered when searching for the best muffin-tin approximation.

The muffin-tin discontinuity is defined as the jump in the muffin-tin potential at the potential
sphere boundary, [vR(sR) − v0]. The error in the single-electron energies due to the overlap
between the s-spheres is given as

∆Eone ≡
∑

εj≤εF

∆εj ≈ − π

24

∑

RR′
|R−R′|5ω4

RR′

× [vR(sR)− v0][vR′(sR′)− v0]n
(
(R−R′)/2

)
. (2.56)

This expression has been obtained by the first order perturbation theory [42, 86]. Accordingly,
∆Eone is proportional to the average density within the overlap region n ((R−R′)/2), the
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Figure 2.2: Overlapping muffin-tin potential approximation to the cosine potential in a sim-
ple cubic lattice. Upper panel: integrated local deviation of the full-potential and overlapping
muffin-tins (in %). Middle panel: muffin-tin discontinuity (in arbitrary units). Lower panel:
muffin-tin zero (relative to the zero potential level, in arbitrary units). Solid line: fully opti-
mized overlapping muffin-tins calculated in the Wigner−Seitz cells; dotted line: fully optimized
overlapping muffin-tins calculated in the spherical cells; dashed line: spherical potential fixed to
the spherical part of the full-potential and muffin-tin zero optimized for this spherical potential.

square of the muffin-tin discontinuity, and the fourth order power of the linear overlap defined
in Equation (2.7). Therefore, if we can keep the muffin-tin discontinuity small, the overlap errors
will be negligible, and thus large overlapping potential spheres can be used.

Another important parameter is the constant potential from Equation (2.1) expressed rel-
ative to the Fermi level. The screened spherical waves have short range for energies below the
bottom of the hard sphere continuum (Chapter 3). Therefore, in order to have localized slope
matrices with a smooth energy dependence for energies below κ2 ≈ εF − v0, one prefers to have
v0 close to εF .

We make use again of the model potential (2.8) to illustrate how the above parameters
depend on the potential sphere radius. For the integral in Equation (2.2) we consider two
different domains: (A) the integral is carried out over the real Wigner−Seitz cells, and (B) the
Wigner−Seitz cells are substituted by the spherical cells and the OOMT potential is derived for
these cells, i.e. the integrals are performed within ΩwR .

In Figure 2.2, we show three sets of results for the integrated local deviation, the muffin-tin
discontinuity and the constant potential. The first set (a, solid line) corresponds to the fully
optimized overlapping muffin-tins calculated within the Wigner−Seitz cells (domain A). The
second set (b, dotted line) is also obtained from the fully optimized overlapping muffin-tins,
but this time they are calculated within the spherical cells rather than the Wigner−Seitz cell
(domain B). The third case (c, dashed line) corresponds to partially optimized muffin-tins. In
this case the spherical potential is fixed to the spherical part of the full-potential according to
Equation (2.5) and for this v(r) the constant potential v0 is optimized within the domain B.
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The integrated local deviations are plotted in the upper part of Figure 2.2. In contrast to
the monotonously decreasing error obtained in case a (also shown in Figure 2.1), in the second
case the error first decreases with s, at ∼ 15% overlap it starts to increase and diverges at
larger overlaps. In the third case, for overlapping s-spheres there is a moderate improvement
of the muffin-tin approach relative to the non-overlapping situation, but above 30% overlap the
integrated local deviation shows no significant dependence on the radius of the potential spheres.

The muffin-tin discontinuity is shown in the middle panel of Figure 2.2. With increasing
overlap between the s-spheres, [v(s)−v0] converges smoothly to zero in case a and it diverges in
case b. When v0 is optimized for v(r) fixed to the spherical part of the full-potential, [v(s)− v0]
approaches zero at small overlaps and remains close to zero up to linear overlaps of 60−70%.
Consequently, in the third case the single-electron energies of monoatomic systems are expected
to depend negligibly on the overlap between the potential spheres [82].

The constant potential v0 is plotted in the lower part of Figure 2.2. In case a, v0 increases
with s and reaches the zero potential level at ∼ 60% overlap. When the muffin-tins are fully
optimized inside the spherical cell, v0 decreases with s for overlaps larger than ∼ 15%. In the
third case, v0 increases slightly with the overlap but always remains well bellow its optimal
value, i.e. the one from the first case.

From these results one clearly sees that using a spherical cell model, due to the improper de-
scription of the full-potential, the fully optimized overlapping muffin-tins approximation breaks
down for linear overlaps larger than 10−15%. One possibility to overcome this problem is given
by the third case (c), which we will refer to as the Spherical Cell Approximation (SCA).

In summary, the SCA involves two approximations. First, in Equation (2.2) the spherical
cells rather than Wigner−Seitz cells are used, and second, vR(rR) is fixed to the spherical
average of the full-potential given in Equation (2.5). With this particular choice, the expression
for parameter v0 obtained from Equation (2.4) becomes [48, 82]

v0 =
∑

R

∫ wR
sR

r2
R [

∫
v(r)dr̂R] drR∑

R

[
4π(w3

R − s3
R)/3

] . (2.57)

When sR → wR, the above expression reduces to

v0 →
∑

R [
∫

v(r)dr̂R]rR=sR
s2
R∑

R 4πs2
R

=
∑

R vR(sR)s2
R∑

R s2
R

. (2.58)

One of the most important consequences of the SCA is that both vR(rR) and v0 from Equation
(2.1) are given in terms of the spherical symmetric part of the full-potential, which can be
computed efficiently and with high accuracy.

2.3.2 The Effective Potential

In this section, we establish an expression for the spherical part of the single-electron potential
(1.4). An electron from a crystal feels the attractive potential (1.11) created by the nuclear
charges located at the lattice sites R, and the repulsive electrostatic potential created by all the
other electrons, i.e. the Hartree potential (1.5). Since both of these potentials have long range,
they should be grouped in such a way that at large distance the negative and positive terms
cancel each other. Usually, this is done by dividing ve(r) + vH(r) into components due to the
charges from inside and from outside of the cell at R. The intra-cell part of the electrostatic
potential then becomes

vI
R(rR) = −2 ZR

rR
+ 2

∫

ΩR

nR(r′R)
|rR − r′R|

dr′R. (2.59)

Using the expansion [89]
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1
|rR − r′R|

= 4π
∑

L

1
2l + 1

rl
R

r′R
l+1

YL(r̂R)YL(r̂′R), (2.60)

valid for r′R > rR, we can separate the r′R integration in Equation (2.59). Calculating the
spherical part of the resulting expression, we arrive at

vI
R(rR) ≡ 1

4π

∫
vI
R(rR)dr̂R = 8π

1
rR

∫ rR

0
r′R

2
nRL0(r

′
R)dr′R

+ 8π

∫ sR

rR

r′RnRL0(r
′
R)dr′R − 2ZR

rR
, (2.61)

where nRL0(rR) is the L0 = (0, 0) partial component of the charge density near site R.

The effect of charges from outside of the potential sphere give the so called Madelung po-
tential

vM
R (rR) = −

∑

R′ 6=R

2 ZR′

|rR′ + R′|

+
∑

R′ 6=R

2
∫

ΩR′

nR′(rR′)
|rR − rR′ + R−R′|drR′ . (2.62)

This is calculated by expanding 1
|r−r′| first around rR = r−R and then around rR′ = r′ −R′,

namely

1
|r− r′| = 4π

∑

L

1
2l + 1

rl
R

|r′ −R|l+1
YL(r̂R)YL( ̂r′ −R), (2.63)

and

YL( ̂r′ −R)
|r′ −R|l+1

=
4π

(2l − 1)!!

∑

L′L′′
CLL′L′′

(−1)l′(2l′′ − 1)!!
(2l′ + 1)!!

rl
R′

|R′ −R|l′′+1

× YL′(r̂R′)YL( ̂R′ −R). (2.64)

These expansions are strictly valid only for rR +rR′ < |R′−R|, i.e. if the spheres circumscribed
on the cells at R and R′ do not overlap. The case of overlapping bounding spheres will be
discussed in connection with the Madelung energy in Chapter 4. Using the above expressions,
for the spherically symmetric part of the Madelung potential we obtain

vM
R ≡ 1

4π

∫
vM
R (rR)dr̂R =

1
w

∑

R′ 6=R,L′
MRL0R′L′ QSCA

R′L′ . (2.65)

Here

MRLR′L′ = 8π(−1)l′
∑

L′′
CLL′L′′

(2l′′ − 1)!!
(2l − 1)!!(2l′ − 1)!!

δl′′,l′+l

×
(

w

|R′ −R|
)l′′+1

YL′′( ̂R′ −R) (2.66)

are the elements of the Madelung matrix, and w is the average atomic radius. Note that because
of the Kronecker delta (δl′′,l′+l), in Equation (2.66) only the l′′ = l′ + l term is nonzero. The
multipole moments, QSCA

RL , are calculated within the SCA,
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QSCA
RL =

√
4π

2l + 1

∫ wR

0

(rR

w

)l
nRL(rR) r2

R d rR

− ZR δL,L0 + δSCA δL,L0 . (2.67)

Since the integral in Equation (2.67) is performed over the spherical cell rather than over the
unit cell, the monopole moments in Equation (2.67) have to be renormalized within the cell [82].
This is realized by the site independent constant δSCA, which is determined from the condition
of charge neutrality, viz.

∑
R QSCA

RL0
= 0.

Usually, the number of electrons inside the s-sphere,

Q(sR) =
√

4π

2l + 1

∫ sR

0
nRL(rR) r2

R d rR, (2.68)

is different from the number of electrons inside the cell, QSCA
RL0

+ZR. This difference contributes
a constant shift, ∆vM

R , to the spherical potential. In the SCA, this extra or missing charge is
redistributed equally on the NNN nearest-neighbor cells, i.e.

∆vSCA
R =

1
w

∑

RNN

MRL0RNNL0 ∆QRNN
, (2.69)

where ∆QRNN
≡ 1

NNN

(
QSCA

RL0
+ ZR −Q(sR)

)
and RNN are the nearest-neighbor sites.

Finally, the spherical symmetric part of the exchange-correlation potential (1.6) is

µxcR(rR) ≡ 1
4π

∫
µxcR([nR]; rR)dr̂R. (2.70)

The total potential within the potential sphere is obtained as the sum of contributions from
Equations (2.61), (2.65), (2.69) and (2.70), namely

vR(rR) = vI
R(rR) + vM

R + ∆vSCA
R + µxcR(rR). (2.71)

Except the negligible approximations made in the Madelung terms, i.e. in Equations (2.65)
and (2.69), the above expression gives the exact spherical part of the full potential inside the
s-sphere.

In many application, the multipole moments in Equation (2.65) can be neglected for l > 0.
Moreover, the non-spherical part of µxcR([nR]; rR) from the right hand side of Equation (2.70),
giving only a small contribution to the spherically symmetric exchange-correlation potential,
can also be omitted. In this situation, all potential components in Equation (2.71) depend only
on the spherical symmetric density nRL0(rR). On the other hand, when the multipole moments
for l 6= 0 are large (e.g., near the free surfaces), the Madelung potential due to the higher order
moments has to be taken into account. In this case, the l-truncation in Equation (2.65) is given
by the l-truncation for the multipole moments, which in turn is lhmax used for the charge density
(see Section 2.2). In practice, however, the l-truncation for the charge density during the self-
consistent iterations can be set to a value (usually 4− 6) smaller than the one used to calculate
the final full charge density, without sacrificing the accuracy of the method.

Before closing this section, we shall comment on the numerical calculation of the Madelung
potential for a periodic bulk (infinite) system. When collecting different contributions to vM

R ,
the R′ summation in Equation (2.65) should run over all the lattice sites. The Madelung
matrix (2.66) can easily be computed for any pair of lattice points R and R′. However, since
MRL0R′L′ ∼ 1/|R − R′|l′+1, for the low order multipole moments (l′ ≤ 1), the R′ summation
diverges. This is because at large distance the number of sites included in the Madelung sum
roughly increases as the surface of the coordination shell, i.e. as 4π|R − R′|2. On the other
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Figure 2.3: The overlap error for face centered cubic Cu (w = 2.669 Bohr) as a function of the
potential sphere radius. In the inset the muffin-tin discontinuity is plotted.

hand, the unit cells are neutral, and thus the contribution coming from a remote cell should
vanish. In order to overcome this problem, the lattice summation should be carried out using
the so called Ewald technique. For details about this technique, the reader is referred to Skriver
[39].

2.3.3 Potential Sphere Radius sR

The potential sphere radius influences the accuracy of the muffin-tin approximation. In Section
2.3.1, we saw that in the case of monoatomic systems the integrated local deviation between
full-potential and OOMT potential decreases and the constant potential is pushed towards the
Fermi level with increasing potential sphere radius. But what is even more important, large
potential spheres also lead to decreased muffin-tin discontinuity and thus to decreased error
coming from the s-sphere overlap. On the other hand, this error is proportional to the fourth
order power of the linear overlap between spheres [42, 86], which sets an upper limit for sR.

In Figure 2.3, the overlap error and the muffin-tin discontinuity (inset) are plotted as a
function of the potential sphere radius in the case of face centered cubic (fcc) Cu. These
calculations were done at the experimental volume using the SCA. We find that for linear
overlaps between ∼ 4% and ∼ 20% the muffin-tin discontinuity is below 10 mRy. This results in
a negligible error in the single-electron energies. On the other hand, at larger overlaps the error
diverges rapidly with increasing sR. Taking into account that the integrated local deviation
shows a weak sR dependence for overlaps above ∼ 10% (see Figure 2.2), we conclude that in
close-packed monoatomic systems the best representation of the full-potential within SCA can
be achieved by choosing potential spheres with a linear overlap between 10% and ∼ 25%.

In a polyatomic system, small muffin-tin discontinuity can be obtained if the individual
spherical potentials at the potential sphere boundary have similar values, i.e.

vR(sR) ≈ vconst. for each R. (2.72)

Then the constant potential, obtained as the average of the spherical potentials calculated in
the vicinity of sR, will be v0 ≈ vconst. and therefore vR(sR) − v0 ≈ 0. For well localized slope
matrices, vconst. from Equation (2.72) should have the maximum possible value.
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Figure 2.4: The two muffin-tin discontinuities in MgB2 compound as functions of the Mg and
B potential sphere radii.

The effect of sR on the muffin-tin discontinuity in polyatomic crystals is illustrated in the
case of magnesium diboride. The crystal structure of MgB2 has the hexagonal symmetry (space
group P6/mmm) with a = 5.833 Bohr and c/a = 1.14 [90, 91, 92]. Layers of Mg and B atoms are
located at z = 0 and z = 0.5c/a, respectively. Using sR = wR corresponding to sMg/sB ≈ 1.12,
the linear overlap between nearest-neighbor B atoms is 42%. In this situation, the actual value
of the muffin-tin discontinuity is crucial for an accurate self-consistent calculation. In Figure 2.4,
we plotted the two muffin-tin discontinuities [vMg(sMg)−v0] and [vB(sB)−v0] calculated around
Mg and B sites, respectively. Different symbols correspond to different pairs of sMg and sB.
For example, triangles represent muffin-tin discontinuities +0.288 Ry and −0.335 Ry obtained
using sMg = 3.37 Bohr and sB = 1.62 Bohr. We can see that there is a particular ratio, namely
sMg/sB ≈ 1.26, when the muffin-tin discontinuity vanishes on both sites. Although the linear
overlap between boron sites is still around 30%, with this choice for sMg and sB the error in the
single-electron energies is found to be negligible.

38



Chapter 3

Slope Matrix

The elements of the slope matrix Sa are the expansion coefficients of the screened spherical
waves centered at lattice site R around site R′. They are related to the well-known expansion
coefficients of a Neumann function in terms of the Bessel functions. Due to the localization, the
slope matrix may be computed on a real space cluster of finite size. Usually, the cluster around R
contains the nearest 40−80 lattice sites, depending on the required numerical accuracy. Because
of this, the present method, like any screened or tight-binding method, can be applied in real
space to treat, e.g., impurities, defects, surfaces, etc.

In a self-consistent calculation, we need to know the slope matrix and its energy derivative
for a set of complex energies on the energy contour enclosing those states which are considered
to be the valence states. During the iterations, the Fermi level is successively updated according
to Equation (2.45), and thus the energy points from the complex contour are changed. Because
of this, the slope matrix has to be recalculated after each iteration. This is a very cumbersome
procedure, especially if the size of the cluster used to compute Sa exceeds 50−70 sites. On
the other hand, using a small cluster leads to inaccurate energy derivative of Sa, and thus to
large errors in the density of states (2.46) and charge density (2.50). Within the Full Charge
Density scheme, which will be introduced in Chapter 4, these errors show up as a loosely nor-
malized charge density and create uncontrollable errors in the total energy. Because of this,
one should search for efficient but at the same time highly accurate algorithms to calculate Sa.
One possibility is offered by the particularly smooth energy dependence exhibited by the slope
matrix, which suggests that accurate parameterized expressions for Sa exist. We shall explore
this question within the present chapter.

In Section 3.1, we shall derive the Dyson equation for the slope matrix, and using the low-
l (l′, l ≤ lmax) block of Sa

R′L′RL, we shall determine the high-l′ and low-l off-diagonal blocks.
Furthermore, in this section an analytic expression for the energy derivatives of the slope matrix
will be given. We shall investigate the effect of the screening sphere radius (Section 3.2) and real
space cluster (Section 3.3) on the localization and energy dependence of Sa. In Section 3.4, we
shall discuss the problems related to the numerical calculation of the slope matrix, and present
useful representations for an efficient self-consistent implementation.

3.1 Inhomogeneous Dyson Equation

The coefficients Sa
R′L′RL(κ2) from expansion (2.11) can be derived from the elements of the bare

Korringa−Kohn−Rostoker (KKR) [36, 37] structure constant matrix S0
R′L′RL(κ2). These are

defined as the expansion coefficients of the bare spherical wave1

1The bare or unscreened representation goes back to the traditional KKR or MTO formalism, where the
Neumann (or Hankel) function was chosen as the envelope function in the interstitial region [20, 39, 40].
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nL(κ2, rR) ≡ nl(κ2, rR) YL(r̂R) (3.1)

centered on site R, in terms of

jL(κ2, rR′) ≡ jl(κ2, rR′) YL(r̂R′) (3.2)

centered on site R′, viz.

nL(κ2, rR) = −
∑

L′
jL′(κ2, rR′) S0

R′L′RL(κ2). (3.3)

In these expressions, nl(κ2, rR) and jl(κ2, rR) are the spherical Bessel and Neumann functions,
with the conventions given in Ref. [79]. In Equation (3.3), the expansion coefficients are the
KKR structure constants,

S0
R′L′RL(κ2) = −8π

∑

L′′
CLL′L′′ [−(κw)2]

l′+l−l′′
2 (−1)l

× (2l′′ − 1)!!
(2l′ − 1)!!(2l − 1)!!

nL′′(κ2,R−R′), (3.4)

where CLL′L′′ are the real Gaunt numbers. Since the Gaunt numbers vanish unless l + l + l′′

is even, all the elements of S0 are real for a real κ2. This is a consequence of the particular
normalization of the Bessel and Neumann functions. We mention that for κ2 = 0, the KKR
structure constant reduces to S0

R′L′RL(0) = −MR′L′RL, where M is the Madelung matrix defined
in Equation (2.66).

To find the connection between the slope matrix and the KKR structure constant we start
from Equation (2.11), which is the definition of Sa. A screened spherical wave defined in the
whole space can be represented by the multi-center expansion

ψa
RL(κ2, r) =

∑

R′L′

[
fa

Rl(κ
2, rR) YL(r̂R)δRR′ δLL′

+ ga
R′l′(κ

2, rR′) YL′(r̂R′) Sa
R′L′RL(κ2)

]
. (3.5)

Using the value and slope functions from Equations (2.14) and (2.15), for the above expansion
we obtain

ψa
RL(κ2, r) =

∑

R′L′
nl′(rR′) YL′(r̂R′)

[
t1RlδRR′ δLL′ − t3R′l′S

a
R′L′RL

]

−
∑

R′L′
jl′(rR′) YL′(r̂R′)

[
−t2RlδRR′ δLL′ + t4R′l′S

a
R′L′RL

]
, (3.6)

where, for simplicity, the common energy argument κ2 has been dropped. Now, since the Bessel
and Neumann functions form a complete basis in the entire space, we should be able to generate
the screened spherical wave (3.6) also from the bare spherical waves (3.3). The superposition of
the nL(κ2, rR′) functions leads to

ψa
RL(κ2, r) =

∑

R′L′
nl′(rR′) YL′(r̂R′)Ma

R′L′RL

−
∑

R′′L′′R′L′
jl′′(rR′′) YL′′(r̂R′′)S0

R′′L′′R′L′M
a
R′L′RL, (3.7)
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where Ma is an unknown transformation matrix to be determined. Comparing the coefficients
of the Bessel and Neumann functions in Equations (3.6) and (3.7), we find

Ma
R′L′RL = t1RlδRR′ δLL′ − t3R′l′S

a
R′L′RL, (3.8)

and

∑

R′′L′′
S0

R′L′R′′L′′M
a
R′′L′′RL = −t2RlδRR′ δLL′ + t4R′l′S

a
R′L′RL. (3.9)

After eliminating Ma from Equations (3.8) and (3.9), we obtain

− t2RlδRR′ δLL′ + t4R′l′S
a
R′L′RL

=
∑

R′′L′′
S0

R′L′R′′L′′
[
t1RlδR′′R′ δL′′L′ − t3R′′l′′S

a
R′′L′′RL

]
. (3.10)

Rearranging for Sa, we arrive at the inhomogeneous Dyson equation

Sa
R′L′RL =

t1Rl

t3Rl

δR′RδL′L +
1

t3R′l′

[
−S0 − t4Rl

t3Rl

]−1

R′L′RL

da
Rl

t3Rl

, (3.11)

where da
Rl is given in Equation (2.20). Equation (3.11), together with (3.4), is used to compute

the slope matrix for an arbitrary complex energy z = κ2 − v0. When the hard sphere radii, aR,
are properly chosen and κ2 lies below the bottom of the hard sphere continuum, the screened
spherical waves have short range, and the slope matrix can be calculated in real space. The
optimal choice for the hard sphere radii will be presented in Section 3.2, and the real space
cluster used to invert the matrix from the right hand side of Equation (3.11) will be investigated
in Section 3.3.

3.1.1 The High−Low Off-diagonal Slope Matrix

In the expressions for the total charge density, Equation (2.50) with (2.53) and (2.54), the
elements of the off-diagonal slope matrix with lhmax ≥ l′ > lmax and l ≤ lmax appear. Computing
the full slope matrix up to lhmax would be a time consuming task, not to mention the immense
computer capacity needed to store this for a large number of energy points. On the other hand,
using the so called blowing-up technique [85], one can generate the high−low off-diagonal blocks
of the screened structure constant by using the high−low block of the bare structure constant.
We rearrange Equation (3.10) as

t4R′l′S
a
R′L′RL = t2RlδR′RδL′L + S0

R′L′RLt1Rl

−
∑

R′′L′′
S0

R′L′R′′L′′t
3
R′′l′′S

a
R′′L′′RL, (3.12)

and apply it for l′ > lmax and l ≤ lmax. According to Equation (2.15), for high-l orbitals, we have
t3Rl = 0 and t4Rl = 1. Therefore, the internal summation in Equation (3.12) can be truncated at
lmax, and the high−low block of the screened slope matrix is obtained from the low−low block
as

Sa
R′HRL = S0

R′HRLt1Rl −
∑

R′′L′′
S0

R′HR′′L′′t
3
R′′l′′S

a
R′′L′′RL, (3.13)
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where H = (l′m′) with l′ > lmax. The HL block of the KKR structure constant is obtained
from Equation (3.4). The LH block of Sa is found from the HL block (3.13) according to

Sa
R′HRL = aRSa

RLR′H . (3.14)

Here we have used the fact that daSa is a Hermitian matrix, as can be seen from Equation
(3.11).

3.1.2 Energy Derivatives of Sa

In the present formalism, the energy derivatives of the slope matrix appear in two different
places. First, the overlap matrix (2.44) is expressed in terms of the first order energy derivative
of Sa. Second, in Section 3.4, we shall demonstrate that the energy dependence of the slope
matrix can be represented as an expansion involving the higher order energy derivatives of Sa

calculated for a fixed energy. Therefore, we need to develop a systematic algorithm to compute
these derivatives. The energy dependence of the slope matrix is usually given in terms of
the dimensionless energy parameter ω ≡ (κw)2, where w is the average atomic radius. After
rearranging Equation (3.10), we get

∑

R′′L′′
BR′L′R′′L′′(ω)AR′′L′′RL(ω) = −2

aR

w
δR′RδL′L, (3.15)

where

AR′L′RL(ω) ≡ t1Rl(ω)
t3Rl(ω)

δR′RδL′L − Sa
R′L′RL(ω), (3.16)

and

BR′L′RL(ω) ≡ t3R′l′(ω)
[
t4Rl(ω)δR′RδL′L + S0

R′L′RL(ω)t3Rl(ω)
]
. (3.17)

Note that the screening parameters, likewise the slope matrix, depend on the energy through
ω. Now, applying the product rule,2 from Equations (3.15) and (3.16) we obtain the nth energy
derivative of the slope matrix as

dnSa(ω)
dωn

= B(ω)−1

[
n−1∑

i=0

n!
(n− i)!i!

dn−iB(ω)
dωn−i

diA(ω)
dωi

+ 2
a

w
δn,0

]

+
dn

dωn

t1(ω)
t3(ω)

, (3.18)

where the RL subscripts have been dropped and the matrix multiplication is implied. The
energy derivatives of the bare structure constant S0(ω) are calculated directly from Equation
(3.4). The derivatives of the screening parameters are obtained from the energy derivatives of
the Bessel and Neumann functions (see Ref. [79]).

2The product rule for the nth order derivative of a matrix product NM gives (NM)(n) =∑n

i=0
n!

(n−i)!i!
N (n−i)M (i), where the superscripts in parenthesis represent the order of the derivative.
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Figure 3.1: The ss element of the bcc slope matrix for ω = 0 plotted as a function of the hard
sphere radius aR and the radius of the coordination shell dR′R (shown by numbers in units of
lattice constant). Note that in panel (a), the scale for dR′R = 0.00a has been divided by 10.

3.2 Hard Sphere Radius aR

The boundary conditions (2.12) and (2.13) lead to specific behavior of the screened spherical
waves and slope matrix. First, because on the hard spheres the value and slope functions are
energy independent, it is expected that the slope matrix exhibits a smooth and weak energy
dependence. Second, since the slope function vanishes on the hard spheres, Sa should decay
rapidly with distance.

The degree of localization of the slope matrix may be characterized by the coordination
shell radius dR′R ≡ |R −R′| dependence of Sa

R′L′RL(κ2). Note that for ω = 0, the unscreened
structure constants behave as S0

R′L′RL(0) ∼ 1/dl′+l+1
R′R . Any well localized slope matrix should

exhibit a significantly faster decay than S0.

In order to illustrate how Sa and Ṡa depend on the hard sphere radius, we consider the slope
matrix of the body centered cubic (bcc) lattice. These calculations were carried out for ω = 0,
i.e., for a band energy ε = −v0. We used s, p and d orbitals (lmax = 2), and the real space cluster
contained the first 137 nearest-neighbor lattice sites. This includes the site at the origin plus 9
coordination shells with dR′R ≈ 0.87, 1.00, 1.41, 1.66, 1.73, 2.00, 2.18, 2.24 and 2.45a, where a is
the cubic lattice constant. In the subsequent section, it will be shown that 9 coordination shells
in the bcc structure are sufficient for a well converged slope matrix in the cluster size.

The L-diagonal elements of Sa
R′L′RL(0) are plotted as functions of aR and dR′R in Figure

3.1. Since the ss elements (L′ = L = L0 ≡ (0, 0)) have the longest range, only these matrix
elements are included in the figure. The hard sphere radius is expressed in units of the bcc
Wigner−Seitz radius w ≈ 0.49a ≈ 1.14si, where si is the inscribed sphere radius. Results are
plotted for 0.1w ≤ aR ≤ 0.8w. Note the scale difference between the four panels corresponding
to different groups of dR′R.

The worst screening is obtained for aR = 0.1w, where the absolute value of the slope matrix
decreases from 1.04 at dR′R = 0 (panel (a)) to 2.3×10−3 at dR′R = 2.0a (panel (c)) and 3.4×10−4

at dR′R = 2.45a (panel (d)). The convergence is somewhat faster for aR = 0.7w, where the on-
site term of 2.14 decreases to 5.5× 10−4 and 1.4× 10−5 at dR′R = 2.0a and 2.45a, respectively.
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Figure 3.4: The fourth order energy derivative of the ss element of the bcc slope matrix for
ω = 0 plotted as a function of the hard sphere radius aR and the radius of the coordination shell
dR′R (shown by numbers in units of lattice constant).

With further increase of aR, the matrix elements for dR′R ≥ 1.41 start to increase, and the
slope matrix becomes less localized. The positive effect of increasing aR on the localization
is even more pronounced in the case of the first order energy derivative Ṡa

R′L0RL0
(ω)/dω|ω=0

shown in Figure 3.2. For aR = 0.1w, the absolute value of Ṡa changes from 0.10 at dR′R = 0
to 6.3 × 10−3 at dR′R = 2.0a and 9.7 × 10−4 at dR′R = 2.45a, whereas for aR = 0.7w, the
energy derivative decreases from 0.15 at dR′R = 0 to 1.0× 10−4 at dR′R = 2.0a and 0.2× 10−5

at dR′R = 2.45a. According to Figures 3.1 and 3.2, a good localization of Sa and Ṡa can be
achieved with 0.40w ≤ aR ≤ 0.75w.

To investigate the energy dependence, in Figures 3.3 and 3.4, we show the second and fourth
order energy derivatives of Sa

R′L0RL0
(ω) calculated at ω = 0. In these two figures, the scales are

identical. A smooth energy dependence requires that the high order derivatives should gradually
vanish. It can immediately be seen from the figures that for aR less than ≈ 0.4w, the higher order
energy derivatives diverge. For these hard sphere radii, the slope matrix has a strong energy
dependence. On the other hand, for aR > 0.5w, both the second and fourth order derivatives
approach zero for shells with dR′R ≥ 2.00. For instance, for aR = 0.6, the fourth energy derivative
|d4Sa

R′L0RL0
/dω4| is 1.6 × 10−3 at dR′R = 0 and it drops to 4 × 10−6 at dR′R = 2.00. The best

convergence of the energy derivatives is obtained for aR = 0.8, where the on-site term of the
fourth order derivative is 3.8× 10−5 and less than 1× 10−6 for R′ 6= R. Therefore, the bcc slope
matrix has short range and smooth energy dependence for 0.50w ≤ aR ≤ 0.75w, corresponding
approximately to

0.57si ≤ aR ≤ 0.85si, (3.19)

and the best behavior is achieved around aR = 0.65w ≈ 0.74si. It was found [47], that condition
(3.19) approximately holds for any crystal structure.
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Table 3.1: The ss elements of the bcc slope matrix calculated at ω = 0 for different cluster sizes.
dR′R is the radius of the cluster, and Ns is the number of sites in the cluster. Sa

0i is the slope
matrix for the ith coordination shell (1.42 is the 3rd shell, 1.66 is the 4th shell and so on).

dR′R 1.42 1.66 1.73 2.00 2.18 2.24 2.45
Ns 27 51 59 65 89 113 137

Sa
00 -2.146048 -2.146081 -2.146182 -2.146185 -2.146185 -2.146185 -2.146185

Sa
01 0.205731 0.205399 0.206237 0.206240 0.206240 0.206240 0.206240

Sa
02 0.074536 0.073510 0.073561 0.073622 0.073622 0.073621 0.073621

Sa
03 0.004867 0.004228 0.004583 0.004585 0.004594 0.004590 0.004590

Sa
04 - 0.000705 0.000999 0.001072 0.001075 0.001066 0.001071

Sa
05 - - -0.002855 -0.002835 -0.002801 -0.002801 -0.002799

Sa
06 - - - -0.000560 -0.000550 -0.000554 -0.000552

Sa
07 - - - - -0.000033 -0.000035 -0.000031

Sa
08 - - - - - 0.000019 0.000018

Sa
09 - - - - - - -0.000014

3.3 Real Space Cluster

For the partial waves explicitly included in the formalism, i.e. the low partial waves with
l ≤ lmax, the hard sphere phase shifts αRl(κ2) are given by

cotαRl(κ2) = −nl(κ2, aRl)/jl(κ2, aRl). (3.20)

For the remaining Rl-channels, αRl(κ2) are the proper phase shifts. For high ls the latter vanish,
and at that point the matrix to be inverted in Equation (3.11) can be truncated. In practice,
the l-block of the matrix is truncated at lmax.

The screened spherical waves have short range, which means that the slope matrix can be
calculated in real space. For each site R, we set up a finite cluster formed by the first few
nearest-neighbor lattice sites, and invert the matrix from the right hand side of Equation (3.11)
on that cluster. For positive energies the screened spherical waves for a finite cluster exhibit
surface resonances. To cure this problem a concave hard sphere, so called Watson sphere, should
be included, which encloses the cluster of hard spheres. The radius of this sphere is chosen to
be somewhat larger than the radius of the cluster plus the largest aR. The maximum orbital
quantum number on the Watson sphere is lwmax. Usually, lwmax =6−8 is sufficient for positive
energies ω ≤ 5.

We investigate the convergence of the slope matrix in terms of the cluster size by calculating
the bcc slope matrix for clusters consisting of Ns = 27, 51, 59, 65, 89, 113 and 137 nearest-neighbor
sites. These calculations were performed for lmax = 2, lwmax = 8, using a hard sphere radius
of aR = 0.70w ≈ 0.80si. In the previous section, we have seen that this choice leads to well
localized screened spherical waves. The energy was fixed at ω = 0.

The ss elements of the bcc slope matrix are listed in Table 3.1. First of all, we can see
that clusters containing more than 65 sites lead to almost vanishing slope matrix elements at
the clusters boundaries. For clusters of 27, 51 and 59 sites, there is still a sizable contribution
coming from the farthest coordination shell. Because of this, small clusters are not suitable
to produce a well converged slope matrix. It is only for clusters larger than 65 atoms, where
the matrix elements remain almost unchanged with increasing Ns. A similar conclusion can be
drawn from the cluster size dependence of the first energy derivative of the slope matrix, listed
in Table 3.2.

It has been found that for most of the crystal structures, clusters of 60−90 sites are sufficient
to obtain slope matrices with high accuracy. Of course, the actual size depends on the screening
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Table 3.2: The first order energy derivative of the ss elements of the bcc slope matrix calculated
at ω = 0 for different cluster sizes. For notation see caption for Table 3.1.

dR′R 1.42 1.66 1.73 2.00 2.18 2.24 2.45
Ns 27 51 59 65 89 113 137

Ṡa
00 0.147962 0.147951 0.147925 0.147923 0.147923 0.147923 0.147923

Ṡa
01 0.013977 0.013861 0.014056 0.014057 0.014057 0.014057 0.014057

Ṡa
02 0.007630 0.007332 0.007347 0.007368 0.007368 0.007368 0.007368

Ṡa
03 0.000679 0.000479 0.000586 0.000587 0.000590 0.000588 0.000588

Ṡa
04 - 0.000052 0.000137 0.000163 0.000164 0.000161 0.000162

Ṡa
05 - - -0.000256 -0.000259 -0.000250 -0.000250 -0.000249

Ṡa
06 - - - -0.000105 -0.000103 -0.000105 -0.000104

Ṡa
07 - - - - -0.000003 -0.000004 -0.000002

Ṡa
08 - - - - - 0.000003 0.000003

Ṡa
09 - - - - - - -0.000002

sphere radii. For an optimal set of aR and a large lwmax the cluster size may be decreased further
without loosing significantly from the accuracy.

3.4 Numerical Determination of the Slope Matrix

In the previous section, we have seen that with properly chosen hard sphere radii, the high order
energy derivatives of the EMTO slope matrix are negligible. This suggests that a polynomial
expansion of Sa(ω) around ω0 might be used to calculate the slope matrix for an arbitrary real or
complex energy. In the following, we discuss separately systems which have a small characteristic
valence bandwidth (≤ 1.0 Ry) and systems with a large bandwidth.

3.4.1 Systems with Narrow Bandwidth

For a self-consistent calculation, the slope matrix is required within an energy window that
includes the valence band plus ∼ 0.2 Ry above the Fermi level, i.e., for energies εb ≤ ε ≤ εF +0.2
Ry, where εb is an energy slightly below the bottom of the valence band. Energies above the
Fermi level are needed when searching for the Fermi level for the next iteration. In systems with
deep-lying core states and a narrow valence band structure, we can take εF − εb ≈ 1.4 Ry. This
is the case for most of the middle and late transition metals, simple metals, etc., and their alloys
at ambient conditions. Since εF − v0 is typically around 0.6± 0.2 Ry, for such systems the slope
matrix should be calculated for −0.8 Ry ≤ ω/w2 ≤ 0.8 Ry. Using an average w2 = 10 Bohr2,
the energy interval of interest turns out to be ±8 around ω = 0. For these energies, we expand
the slope matrix in Taylor series around ω0, viz.

Sa(ω) = Sa(ω0) +
1
1!

dSa(ω)
dω

(ω − ω0) +
1
2!

d2Sa(ω)
dω2

(ω − ω0)2 + .... (3.21)

where, for simplicity, we have dropped the RL subscripts. The first and higher order energy
derivatives are computed using the analytic expression (3.18). In practice, the expansion center
ω0 is chosen somewhere close to 0.

To test the accuracy of the above Taylor expansion we consider the slope matrix in the
complex energy plane, where Sa(ω) will have both real and imaginary components. In Figures
3.5 and 3.6, we plotted the real and imaginary parts of the ss element of the fcc slope matrix
(i.e. elements with L = L′ = (0, 0)) as a function of ω for an interval corresponding to −10 ≤
Re(ω) ≤ 10 and 0 ≤ Im(ω) ≤ 10. Since
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Figure 3.7: The relative error of expansion (3.21) for the ss element of the fcc slope matrix
using six derivatives. The expansion center is ω0 = (0, 0).

Re[Sa(x + iy)] = Re[Sa(x− iy)], (3.22)

and

Im[Sa(x + iy)] = −Im[Sa(x− iy)], (3.23)

where x = Re(ω) and y = Im(ω), in figures results are shown only for positive Im(ω). The
reason for showing only the ss sub-block is that this is the largest and the most delocalized
one within the real space. The fcc slope matrix was calculated on a cluster containing the 79
nearest-neighbor lattice sites using s, p and d orbitals and aR ≈ 0.77si. The real space slope
matrix was transformed to the reciprocal space by means of Equation (2.36). In figures, the
slope matrix is shown for the k = (0, 0, 0) point from the Brillouin zone. These figures confirm
the smooth energy dependence of the slope matrix in the complex energy plane. Note that the
imaginary part of Sa(ω) vanishes for Im(ω) = 0.

The accuracy of the Taylor expansion (3.21) for the slope matrix can be established by
computing the relative deviation between the exact value (Sexact) from Figures 3.5 and 3.6 and
those calculated using the expansion (Sexpan). The relative error, defined as [93]

{[Re(Sexact − Sexpan)]2 + [Im(Sexact − Sexpan)]2}1/2

{[Re(Sexact)]2 + [Im(Sexact)]2}1/2
, (3.24)

is plotted in Figure 3.7 as a function of ω for ω0 = (0, 0). We observe a gradually increasing
error with increasing |ω|. The expansion reproduces the calculated slope matrix with an accuracy
better than ∼ 1% within a radius of ∼ 5 around the expansion center. For a radius of ∼ 10 the
accuracy of the expansion is still below 5%. Therefore, for narrow bands (i.e. for |ω| ≤ 8) a 6th
order Taylor expansion around ω0 = (0, 0) is suitable to reproduce with high accuracy the slope
matrix. Note that around ω = (−10, 10) the relative error in Figure 3.7 reaches one third of the
exact value.
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Figure 3.8: The ss element of the fcc slope matrix and its first four energy derivatives calculated
in the k = (0, 0, 0) point from the Brillouin zone. The matrix elements are plotted as functions
of energy. The insert shows the behavior near the Fermi level at 0 Ry. S is the slope matrix
calculated from the Taylor expansion (3.21), and Si is the ith term from the Taylor expansion
(see text). The Wigner−Seitz radius corresponds to Y, and v0 is the constant potential.

3.4.2 Systems with Wide Bandwidth

In systems with a large characteristic bandwidth, relative to v0 and the Fermi level, problems
may occur in the numerical determination of the slope matrix by the Taylor expansion (3.21).
First, for v0 lying far below the Fermi energy, i.e. for εF − v0 ∼ 1.0 Ry or larger, the Taylor
expansion (3.21) diverges for energies near and above εF . The second problem arises for bands,
where εb ¿ v0. Then the Taylor expansion breaks down for energies near the bottom of the
valence band. Such a situation occurs, e.g., in the case of early transition metals, some of the p
metals, light actinides, oxides and nitrides, etc., where the high-lying core states, the so called
semi-core states are treated like the valence states3. In these systems, the semi-core states are
located with a few Rydbergs below the Fermi level. A typical energy window for these elements
is approximately −2.5 Ry below v0 and 1 Ry above v0. Both the above problems become more
pronounced in solids with a large w (w2 > 10 Bohr2).

As an example, we consider Y with atomic number Z = 39. Near the equilibrium volume,
corresponding to Wigner−Seitz radius of 3.76 Bohr, the 4p6 semi-core states are located with
∼ 1.8 Ry below the Fermi level. On the energy scale with origin pinned to the Fermi level, the
energy window of interest is between εb ≈ −2.0 Ry and 0.2 Ry. To understand how the slope
matrix behaves within this energy interval, we make use of the fcc slope matrix calculated at
the Γ point from the reciprocal space and set up a fourth order expansion around ω0 = 0. The
slope matrix in ω0 and its first four derivatives were calculated in a similar way to that in the
preceding section. The constant potential was fixed at −0.5 Ry, which is a typical v0 for early
transition metals (relative to the Fermi level). In the following, like in Sections 3.2 and 3.3, we
concentrate only on the diagonal L′ = L = L0 element of the slope matrix. We use the notation
S for the ss element calculated from the Taylor expansion, and Si for the energy dependent
terms from the Taylor series, i.e.

S = Sa
RL0RL0

(ω0,k0) + S1 + S2 + S3 + S4,

3The energy levels of the core states lying close to the valence states might be altered significantly by the
crystal potential. These states are usually refereed to as the semi-core states.
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Si =
1
i!

diSa
RL0RL0

(ω0,k0)
dωi

(ω − ω0)i, (3.25)

where Sa
RL0RL0

(ω0,k0) ≈ 0.0003 (see Figure 3.5). Obviously, for a convergent series, Si should
decrease with the order of derivative. For the present case, S and Si for i =1−4 are shown in
Figure 3.8 as a function of energy. We observe that near v0 the expansion converges rapidly.
However, for energies well below v0, the Sis increase when going from the first order to the fourth
order derivative. This leads to the incorrect upturn of S with decreasing energy. Note also the
slow convergence of the Taylor expansion near the Fermi level (insert), which is a consequence
of to the relatively large volume.

The most straightforward way to improve the convergence of the expansion for a large energy
window is to include a second Taylor expansion around a large negative ω. However, joining
the two Taylor expansions usually creates problems in alloys, where the band gap between the
valence and semi-core states contains other states. Alternatively, we may introduce additional
screening spheres in the system. By this, we (a) improve on the localization of the screened
spherical waves, and (b) reduce the interstitial region, and thus the characteristic length scale
of the system.

Extra Screening Sites
In close-packed systems, the potential spheres can usually be chosen in such a way that the error
coming from the potential sphere overlaps is small. In a simple fcc lattice, for instance, there is
one hard sphere and one potential sphere per primitive cell. The optimal overlapping muffin-tin
potential is centered on the lattice site and it has a radius close to the average atomic radius.
This choice gives the minimal muffin-tin discontinuity vR(sR)− v0. We denote by A the lattice
sites belonging to such a parent lattice. The kink cancelation Equation (2.35) for this system
has the following matrix form

Ka
AAga

AA ≡ aA[Sa
AA −Da

A]ga
AA = IAA, (3.26)

where IAA is the NA(lmax + 1)2 × NA(lmax + 1)2 unitary matrix, NA is the number of atomic
sites per primitive cell (i.e. NA = 1 for the original fcc lattice). For the sake of simplicity, in
this section the L subscripts are omitted and the matrix multiplication is implied.

Next, we introduce NE additional hard spheres in the system centered on the E interstitial
positions. Then the average Wigner−Seitz radius becomes w′ = (1 + NE)−1/3w. For instance,
in the case of fcc Y, we put three hard spheres in the interstitial positions (1/4, 1/4, 1/4),
(1/2, 1/2, 1/2) and (3/4, 3/4, 3/4) from the fcc lattice, so we arrive to the bcc packing with
w′ = 2.37 Bohr. For this system, we calculated the slope matrix and its derivatives at ω0 = 0
using real space clusters of 89 sites centered on the A and E sites. We used lmax = 2, lwmax = 8
and the new hard sphere radii were bR = 0.70w′. After the Bloch sum, for the on-site part
of the slope matrix in the Γ point, we set up a fourth order Taylor expansion. The new S
and Si parameters, obtained according to Equation (3.25), are shown in Figure 3.9. A direct
comparison between this figure and Figure 3.8 is not possible, because the hard sphere radii used
to generate the two sets of data are different. Nevertheless, from Figure 3.9 we can see that the
Taylor expansion for the new slope matrix converges well for any energy. The fourth order term
is already negligible, even for energies near εb and for energies close to the Fermi level. This is
a clear improvement compared to Figure 3.8.

When introducing the new screening spheres, we would like to keep the optimized overlapping
potential in the original form. This can be done if we let the radius of the spherical potentials
on the E sites vanish. For sE → 0, the logarithmic derivative on the E potential sphere and its
energy derivative become

D{φEl(ε, sE)} = D{jl(κsE)} → l, (3.27)

and
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Figure 3.9: The ss element of the slope matrix and its first four energy derivatives calculated
at the k = (0, 0, 0) point from the Brillouin zone for an fcc lattice with basis. The four sites
are located in the (0, 0, 0), (1/4, 1/4, 1/4), (1/2, 1/2, 1/2) and (3/4, 3/4, 3/4) positions from the
unit cell. For notation see caption for Figure 3.8.

Ḋ{φEl(ε, sE)} = Ḋ{jl(κsE)} → 0. (3.28)

The logarithmic derivative at the hard sphere radius bE is calculated from Equation (2.28) as

Db
El(ε) = −f b

El(κ
2, sE)

gb
Rl(κ2, sE)

l −D{f b
El(κ

2, sE)}
l −D{gb

El(κ2, sE)} =
t1El(κ

2)
t3El(κ2)

, (3.29)

where we have used the properties of the Bessel and Neumann functions (see Ref. [79]) near the
origin. The kink cancelation equation for the new system has the form

(
Kb

AA Kb
AE

Kb
EA Kb

EE

) (
gb
AA gb

AE

gb
EA gb

EE

)
=

(
IAA 0
0 IEE

)
(3.30)

with Kb = b(Sb − Db). Here Sb is the slope matrix for the A + E lattice and Db is the
proper logarithmic derivative for the A sites and reduces to (3.29) for the E sites. IEE is the
NE(lmax+1)2×NE(lmax+1)2 unitary matrix. When sufficient numbers of E sites are introduced,
the new slope matrix converges well even for a very large bandwidth. The solution of Equation
(3.30) gives the charge density around the A sites. Note that the radial Schrödinger equation
(2.21) and the single-electron potential (2.71) have to be solved only for the A sites, but the kink
cancelation equation contains both the A and E sites. In practice, this limits NE to a relatively
small number.

Before closing this section, we show that Equation (3.30) is equivalent to the original problem
(3.26). For this, we explicitly write the elements of the new kink matrix

Kb
AA = bA[Sb

AA −Db
A] , Kb

AE = bASb
AE

Kb
EA = bESb

EA , Kb
EE = bE [Sb

EE −Db
E ]. (3.31)

Since Db
E does not depend on the potential, the kink cancelation may be solved for gb

AA using
the equation
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Kb
AAgb

AA + Kb
AEgb

EA = IAA (3.32)

obtained from Equation (3.30). In addition to the AA block, this expression contains gb
EA that

couples the original atomic sites A with the additional screening sites E. From Equation (3.30)
we have

Kb
EAgb

AA + Kb
EEgb

EA = 0, (3.33)

so

gb
EA = −(Kb

EE)−1Kb
EAgb

AA = −[Sb
EE −Db

E ]−1Sb
EAgb

AA. (3.34)

After eliminating gb
EA from Equations (3.32) and (3.34), we obtain

[Kb
AA −Kb

AE(Kb
EE)−1Kb

EA]gb
AA = IAA. (3.35)

Using Equation (3.31), the final KKR problem becomes

bA[S̃b
AA −Db

A]gb
AA = IAA, (3.36)

where

S̃b
AA = Sb

AA − Sb
AE [Sb

EE −Db
E ]−1Sb

EA. (3.37)

Equation (3.36) is formally equivalent to the original KKR problem (3.26) written for the lattice
without extra hard spheres. The slope matrix for the reduced system is obtained from the
slope matrix of the A + E system by the potential independent transformation (3.37), where
Db

E is given in Equation (3.29). Note that Equations (3.26) and (3.36) are given in different
representations. Writing the Dyson equation (3.11) for the combined A+E system and for hard
sphere radii bR, we find

−
(

S0
AA + t1A/t3A S0

AE

S0
EA S0

EE + t1E/t3E

) (
t3ASb

AA − t1At3A t3ASb
AE

t3ESb
EA t3ESb

EE − t1Et3E

)

=

(
IAA 0
0 IEE

)
. (3.38)

Eliminating the off-diagonal blocks from the first matrix, and using the fact that for the original
lattice with hard spheres bR we have

−
(
S0

AA + t1A/t3A

) (
t3AS̃b

AA − t1At3A

)
= IAA, (3.39)

we arrive at Equation (3.37). By this, we have demonstrated that Equation (3.30) written for
the system formed by the A + E sites is equivalent to the original Equation (3.26). However,
in order to avoid the convergence problems near the energies far from v0, one should always
use (3.30) rather than (3.26). This is because, the screening is improved due to the extra hard
spheres and as a consequence the energy derivatives of Sb are computed with higher numerical
accuracy than those for the parent lattice.
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Figure 3.10: The ss element of the fcc slope matrix and its four energy derivatives calculated
in the k = (0, 0, 0) point from the Brillouin zone. For notation see caption for Figure 3.8.

3.4.3 Two-center Expansion

In the previous section, we have shown that accurate energy derivatives can improve the Taylor
expansion. Therefore, we could remove the bad behavior at energies around the bottom of the
band by setting up the higher order energy derivatives in a more accurate way. Increasing the
size of the real space cluster is not a feasible solution, because the number of surface resonances
increase with the surface area. Another solution would be to generate the higher order derivatives
using data calculated for a different energy. This can be formulated, e.g., as a two-center
expansion. We consider two distinct energy points ω0 and ω1 where the value and derivatives
of Sa are known. We expand Sa(ω) in such a way that the expansion should reproduce exactly
the first n derivatives of Sa in ω0 and the first m derivatives of Sa in ω1. Mathematically, this
can be formulated as

Sa(ω) ≈ Sn,m(ω; ω0, ω1)

= a0 +
1
1!

a1(ω − ω0) +
1
2!

a2(ω − ω0)2 + ... +
1
n!

an(ω − ω0)n

+
1

(n + 1)!
an+1(ω − ω0)n+1 +

1
(n + 2)!

an+2(ω − ω0)n+2 + ...

+
1

(n + m)!
an+m+1(ω − ω0)n+m+1, (3.40)

where, for simplicity, we have dropped the RL subscripts. Obviously, for the first (n + 1)
coefficients we have

ai =
diSa(ω0)

dωi
for i = 0, 1, 2, ..., n. (3.41)

The last (m + 1) coefficients are obtained from the conditions

Sn,m(ω1; ω0, ω1) = Sa(ω1),
dSn,m(ω; ω0, ω1)

dω
|ω=ω1 =

dSa(ω)
dω

|ω=ω1 , (3.42)
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...
dmSn,m(ω; ω0, ω1)

dωm
|ω=ω1 =

dmSa(ω)
dωm

|ω=ω1 .

These conditions lead to a system of linear equations for an+1, an+2, .... Solving these equations,
we obtain the (n + m + 1)th order expansion for Sa.

The two-center expansion we demonstrate in the case of Y in fcc lattice. The two slope
matrices and the first four energy derivatives were calculated for ω0 = 0 and ω1 = −30 using
lmax = 2, lwmax = 8, a real space cluster of 79 sites and aR = 0.70w. The Wigner−Seitz radius
and constant potential were set to 3.76 Bohr and εF − v0 = 0.5, respectively. In Figure 3.10, we
show S, S4, S6, S8 and S9, calculated from a4, a6, a8 and a9 according to Equation (3.25). For
comparison, we also included in the figure the slope matrix obtained from the fourth order Taylor
expansion (Figure 3.8). We can immediately see that the 9th order expansion is highly accurate
for any energy. The 8th and 9th order terms are already negligible over the entire energy region.
The large diverging derivative terms obtained from a fourth order Taylor expansion (see also
Figure 3.8) are canceled by the 5th, 6th and 7th order terms. In fact, it has turned out that
using a two-center expansion with n ≈ m ≈ 6, for an average w2 ≈ 10 Bohr2 one can accurately
map an energy window as large as 4-6 Ry below and ∼ 0.5 Ry above the Fermi level.
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Chapter 4

EMTO Total Energy

According to the Hohenberg−Kohn variational principle [1], the total energy functional is sta-
tionary for small density variations around the equilibrium density. Therefore, a reasonably ac-
curate trial density is suitable to determine the total energy of the system within an error which
is second order in the difference between the trial and equilibrium charge densities. This recog-
nition has led to the elaboration of the Full Charge Density (FCD) technique [44, 45, 46, 49, 50]
as an alternative to the full-potential methods. The FCD technique is designed to maintain high
efficiency but at the same time to give total energies with an accuracy similar to that of the
full-potential methods. It assumes the knowledge of just the spherically symmetric part of the
potential but at the same time makes use of the full non-spherically symmetric charge density.
In recent years it turned out that results obtained from such a technique compare very well to
those of full potential methods. Today many research groups adopt this technique in combi-
nation with a muffin-tin type of method rather than the formally exact but very demanding
full-potential approach [42, 43, 44, 45, 78, 94, 95].

The principal idea behind the FCD technique is to use the total charge density to compute
the total energy functional given by Equations (1.9) and (1.12). The total density can be taken
from a self-consistent calculation employing certain approximations. In the present case we use
the EMTO total charge density (2.48) written in the one-center form (2.49). In order to be
able to compute the energy components from Equation (1.9) we need to establish a technique to
calculate the space integrals over the Wigner−Seitz cells. For this we adopt the shape function
technique [44]. The interaction energy between remote Wigner−Seitz cells is taken into account
through the Madelung term. A particularly delicate contribution to this energy arises from
Wigner−Seitz cells with overlapping bounding spheres. This energy is calculated by the so
called displaced cell technique [96, 97].

The shape function technique will be introduced in Section 4.1. Here we shall present an
algorithm which is suitable for determining the shape function for an arbitrary crystal structure.
Using the shape function formalism, in Section 4.2 we shall give the expression for the FCD total
energy. The displaced cell technique will be presented in Section 4.2.5. At the end of this chapter,
the convergence properties of the energy components will be discussed.

4.1 Shape Function Technique

There is a large number of numerical techniques used to carry out the 3-dimensional (3D) inte-
grations over the Wigner−Seitz cells [27, 49, 98, 99, 100]. Here we employ the shape function
or truncation function technique originally introduced by Andersen and Woolley [98]. This ap-
proach has also been implemented in different full-potential Korringa−Kohn−Rostoker multiple
scattering methods [22, 95].

By means of the shape function any integral over the cell can be transformed into an integral
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over the sphere which circumscribes the cell. The shape function is a 3D step function defined
as 1 inside the Wigner−Seitz cell (ΩR) and zero otherwise, i.e.

σR(rR) ≡
{

1 for rR ∈ ΩR

0 otherwise
. (4.1)

At each point on the radial mesh rR the shape function is expanded in terms of real harmonics

σR(rR) =
∑

L

σRL(rR)YL(r̂R). (4.2)

The functions

σRL(rR) ≡
∫

σR(rR)YL(r̂R)dr̂R (4.3)

are the partial components of the shape function. They constitute the needed description of the
Wigner−Seitz cell and contain all dependence of the shape function on the cell shape.

Once the partial components have been evaluated for a given cell, any integral over the cell
can be transformed into an integral over the sphere which circumscribes the cell. We denote by
sc
R the radius of the smallest circumscribed or bounding sphere centered on lattice site R. Then

the integral over the Wigner−Seitz cell ΩR of an arbitrary functional of the electron density
K([n]; rR) can be expressed as

∫

ΩR

nR(rR) K([n]; rR) drR =
∫

sc
R

σR(rR) nR(rR) K([n]; rR) drR. (4.4)

We expand the functions σR(rR) nR(rR) in terms of real harmonics, viz.

σR(rR) nR(rR) =
∑

L

ñRL(rR)YL(r̂R). (4.5)

The radial function ñRL(rR) represents the YL(r̂R) projection of the charge density on a spherical
surface that lies inside the Wigner−Seitz cell. In terms of the partial components of the shape
function and charge density, the latter can be expressed as

ñRL(rR) =
∑

L′,L′′
CLL′L′′nRL′(rR)σRL′′(rR), (4.6)

where CLL′L′′ are the real Gaunt coefficients. Now, if K([n]; rR) is also expanded in terms of
the real harmonics, the integral over the Wigner−Seitz cell has a particularly simple expression

∫

ΩR

nR(rR) K([n]; rR) drR =
∑

L

∫ sc
R

0
ñRL(rR)KL(rR)r2

RdrR, (4.7)

where

KL(rR) ≡
∫

K([n]; rR)YL(r̂R)dr̂R (4.8)

is the YL(r̂R) projection of K([n]; rR) on the spherical surface with radius rR.

4.1.1 Numerical Calculation of the Shape Function

The partial components of the shape function are calculated from Equation (4.3), or equivalently
from
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Table 4.1: The inscribed (si), circumscribed (sc) and atomic radii (w) for bcc, fcc and sc
primitive unit cells. The radii are expressed in units of lattice constant a.

bcc fcc sc

si 0.433013 0.353553 0.5
sc 0.559017 0.5 0.866025
w 0.492373 0.390796 0.620350

σRL(rR) =
∫

SR(rR)
YL(r̂R)dr̂R (4.9)

where SR(rR) represents that part of the spherical surface of radius rR which lies inside the
Wigner−Seitz cell.

In Table 4.1, we list the inscribed, circumscribed and atomic sphere radii for the body
centered cubic (bcc), face centered cubic (fcc) and simple cubic (sc) lattices. Obviously, inside
the inscribed sphere the surface integration in (4.9) is performed on the complete solid angle
and thus for the partial components we get

σRL(rR) =
√

4π δl0 for rR ≤ si
R. (4.10)

For radii larger than the circumscribed sphere SR(rR) disappears and we have

σRL(rR) = 0 for rR ≥ sc
R. (4.11)

To calculate the partial shape functions for intermediate radii, we divide the Wigner−Seitz
cell into tetrahedra. This is described in more detail below. Then the surface integral from
Equation (4.9) may also be divided into solid angles corresponding to different tetrahedra and
the total shape function is obtained by summing up the individual contributions. Since many
of these tetrahedra will be equivalent the surface integral has to be carried out only for a few
non-equivalent tetrahedra.

The Wigner−Seitz cell is a convex polyhedron bounded by Nf planes drawn perpendicularly
at the midpoints of the vectors connecting neighboring lattice sites. This polyhedron can be
divided into Nf pyramids, each of them having as base one of the Nf facets and apex set on
the actual lattice site. The base of the pyramid p (p runs from 1 to Nf ) is a polygon with
Ne(p) sides. In the case of fcc lattice, we have Nf = 12 and all the polygons are quadrilaterals
(i.e., Ne(p) = 4). For bcc lattice, eight out of the Nf = 14 polygons are hexagons and six are
quadrilaterals. For sc lattice, we have Nf = 6 and all the polygons are squares.

The line going through the apex and perpendicular to the base of the pyramid together
with the 2 × Ne(p) edges divide the pyramid into Ne(p) tetrahedra. Each of these tetrahedra
has the height of the pyramid and two of the three lateral facets are perpendicular to the
base. Totally there are Nt =

∑Nf

p=1 Ne(p) such tetrahedra, but usually only a few of them are
non-equivalent. We denote by Nn the number of non-equivalent tetrahedra and by Ne(t) the
number of tetrahedra of type t, i.e.

∑Nn
t=1 Ne(t) = Nt. For close-packed crystals, usually we

have Nn ¿ Nt. For instance, for bcc, fcc and sc lattices there are 2, 2 and 1 non-equivalent
tetrahedra, respectively.

According to the above division, the total shape function is obtained as

σRL(rR) =
Nn∑

t

Ne(t)∑

i

{∑

m′
Dl

m m′(αi, βi, γi)σt
Rlm′(rR)

}
, (4.12)

where Dl
m m′ are the matrix elements of finite rotations (see Ref. [79]). For each tetrahedron

i we choose a local coordinate system. The origin of this system is set on the apex (i.e. the

59



0 5 10 15 20 25 30
l
s

max

0

0.1

0.2

0.3

0.4

0.5

re
la

ti
ve

 e
rr

o
r

bcc
fcc
sc

Figure 4.1: The relative errors between the volumes of the bcc, fcc and sc Wigner−Seitz cells
and the corresponding inscribed spheres as functions of the maximum l used in expansion (4.2).

actual lattice site), the x axis is oriented along the edge normal to the base and the xy plane is
chosen to be one of the facets which is perpendicular to the base. In Equation (4.12), αi, βi and
γi are the Euler angles of this local coordinate system for tetrahedron i relative to the original
(common) coordinate system.

The partial shape functions for the tetrahedron t are calculated within the the local coordi-
nate system, viz.

σt
Rlm(rR) =

∫ ϕt
max

ϕt
min

{∫ θt
max(ϕ)

θt
min(ϕ)

Ylm(θ, ϕ) sin θdθ

}
dϕ. (4.13)

The integration intervals for ϕ and θ are specified by ϕt
min and ϕt

max and by θt
min(ϕ) and

θt
max(ϕ), respectively, which can easily be determined from the geometry of the tetrahedron.

The integration over θ is performed analytically using the procedure proposed by Stefanou et
al. [100] (see also Ref. [79]).

4.1.2 The l-convergence of the Shape Function

In Equation (4.2), the number of partial shape functions is infinite. In practice, however, the
l-summation has to be truncated at a reasonably low lsmax. Usually, lsmax is chosen to be less
than ∼ 30 − 40 but significantly larger than lhmax, which is the l-truncation of the one-center
expansion of the charge density, i.e. the largest l in expansion (2.49). Then, the l-truncation
in Equation (4.5) will be lsmax + lhmax ≈ lsmax, which also gives the maximum number of terms
included in integrals such as the one from the right hand side of Equation (4.7).

The shape function calculated from Equation (4.2) oscillates strongly as a function of lsmax

and its convergence towards the exact step function (4.1) is rather slow. To illustrate this, we
consider the volume between the Wigner−Seitz cell and the inscribed sphere

∆Ωi ≡ 4πw3/3− 4π(si)3/3. (4.14)

This quantity may also be calculated as

∫

sc
σ(r) σ(r) dr−

∫

si
σ(r) σ(r) dr =

∑

L

∫ sc

si
σ2

L(r) r2 dr ≡
lsmax∑

l

dl, (4.15)
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where for σ(r) we used expansion (4.2) truncated at lsmax. Obviously, when lsmax →∞ we have∑lsmax
l dl → ∆Ωi. Figure 4.1 shows the relative error

δ∆Ωi(lsmax) = (∆Ωi −
lsmax∑

l

dl)/∆Ωi (4.16)

as a function of lsmax. As can be seen, for all three cubic structures the relative errors are still
very large (∼ 5%) for lsmax = 30. On the other hand, the partial components σL(r) exhibit
several oscillations within the interval si ≤ r ≤ sc and the number of oscillations increases with
the orbital quantum number (see Refs. [46, 79]). Therefore, the quantities derived from the
shape function by integrations like in Equation (4.4) or (4.7) are expected to show a faster lsmax

convergence compared to δ∆Ωi(lsmax). This will be demonstrated in Section 4.2.6.

4.2 The Energy Functional

Our aim is to evaluate the total energy functional from Equations (1.9) and (1.12) using the
total charge density obtained from a self-consistent EMTO calculation. We assume that the
total density is decomposed into cell contributions according to Equation (2.48) and within each
unit cell it has the one-center form (2.49). First, in Etot we separate the kinetic energy, Ts, the
exchange-correlation energy, Exc, and the electrostatic energy, Ec. The latter is given by

Ec[n] =
∫ ∫

n(r′)n(r)
|r− r′| dr′dr

+
∫ (

−
∑

R

2ZR

|r−R|

)
n(r)dr +

∑

RR′

′ ZRZR′

|R−R′| , (4.17)

where the prime indicates that only terms with R 6= R′ are included in the sum. Next, Ec is split
into the intra-cell Fintra and inter-cell Finter contributions. The prior is due to the charges inside
a Wigner−Seitz cell and the latter is the interaction between different cells, which is commonly
referred to as the Madelung energy. According to this division, the total energy becomes

Etot = Ts[n] +
∑

R

(FintraR[nR] + ExcR[nR]) + Finter[n], (4.18)

where we point out that the intra-cell and exchange-correlation energies depend only on the
charge density within the actual cell1, whereas Finter depends on the charge distributions around
different cells and Ts is a nonlocal functional of the density. In the following, we describe how
the different energy contribution to Etot are calculated within the FCD scheme.

4.2.1 Kinetic Energy

Since the kinetic energy is an unknown functional of the density, its direct evaluation from
n(r) is not feasible. On the other hand, using the single-electron Kohn−Sham equations (1.3),
Ts[n] can be derived from the self-consistent single-electron energies and Kohn−Sham potential.
Within the EMTO formalism from Equation (1.10) we obtain

Ts[n] =
1

2πi

∮

εF

z G(z) dz −
∑

R

∫

ΩR

vmt(rR)nR(rR)drR. (4.19)

1In fact, within a gradient level approximation, the exchange-correlation energy also depends on the electron
density slightly beyond the cell boundary needed to compute the density gradient.
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The first term from the right hand side is the sum of the single-electron energies and G(z) is
given in Equation (2.47). In the second term, vmt(rR) is the optimized overlapping muffin-tin
potential. Using Equation (2.1), this term can be recast into the following simple form

−
∑

R

√
4π

∫ sR

0
[vR(rR)− v0]nRL0(rR)r2

RdrR − v0Ne, (4.20)

where Ne is the total number of electrons from the unit cell and L0 = (0, 0). This expression is
not fully consistent with the EMTO overlap matrix in Equation (2.44) and the number of states
in Equation (2.46), where the terms coming from the overlap region have been neglected. A more
appropriate kinetic energy is obtained if the second term in Equation (4.19) is calculated directly
within the unit cell. Denoting by vmt(rR) the muffin-tin potential inside the Wigner−Seitz cell
at R without taking into account the potential wells centered on the neighboring lattice sites,
i.e.

vmt(rR) =

{
vR(rR) if rR ≤ sR

v0 if rR > sR
, (4.21)

for the second term from the right hand side of Equation (4.19) we obtain

−
∑

R

√
4π

∫ sc
R

0
vmt(rR)ñRL0(rR)r2

RdrR, (4.22)

where ñRL(rR) is defined in Equation (4.6). Note that in a numerical integration, the radial
integral from (4.22) should be carried out separately for 0 ≤ rR ≤ sR and sR ≤ rR ≤ sc

R.

4.2.2 Exchange-correlation Energy

The exchange-correlation energy belonging to the cell at R is written as the integral over the
Wigner−Seitz cell of the exchange-correlation energy per electron, εxc([n]; r) = εx([n]; r) +
εc([n]; r), multiplied with the electron density, i.e.

ExcR[nR] =
∫

ΩR

nR(rR)εxc([nR]; rR)drR. (4.23)

A few commonly used approximations for the exchange and correlation energy densities are given
in Ref. [79]. For charge densities which deviate weakly from spherical symmetry, the exchange-
correlation energy density may be represented by Taylor series around the spherically symmetric
charge density [45], and, therefore, the 3D integral may be reduced to a radial integral. However,
for strongly anisotropic electron densities, like in the case of surfaces or open structures, the
Taylor expansion is not convergent. In this case the exchange-correlation energy is evaluated by
a direct 3D integration over the circumscribed sphere, i.e.

Exc[nR] =
∫ 2π

0

∫ π

0

∫ sc
R

0
nR(rR)εxc([nR]; rR)

×
lsmax∑

L

σRL(rR)YL(r̂R) r2
R drR sin θdθdφ. (4.24)

The convergence properties of this expression will be discussed in Section 4.2.6.
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4.2.3 Intra-cell Electrostatic Energy

The intra-cell energy belonging to the cell at R,

FintraR[nR] =
∫

ΩR

∫

ΩR

nR(r′R)nR(rR)
|rR − r′R|

dr′RdrR

−
∫

ΩR

2ZR

rR
nR(rR)drR, (4.25)

may easily be evaluated by introducing the shape function and using expansion (2.60). After
simple mathematics, we arrive at

FintraR[nR] =
√

4π

w

∑

L

∫ sc
R

0
ñRL(rR)

[(
rR

w

)l

PRL(rR)

+
(

rR

w

)−l−1

QRL(rR)− 2ZR
w

rR
δL,L0

]
r2
RdrR, (4.26)

where ñRL(rR) is defined in Equation (4.6) and the two radial functions are

PRL(rR) ≡
√

4π

2l + 1

∫ sc
R

rR

ñRL(r′R)
(

r′R
w

)−l−1

(r′R)2dr′R, (4.27)

and

QRL(rR) ≡
√

4π

2l + 1

∫ rR

0
ñRL(r′R)

(
r′R
w

)l

(r′R)2dr′R. (4.28)

4.2.4 Inter-cell Electrostatic Energy

The inter-cell energy includes the electrostatic interactions between different cells, i.e.

Finter[n] =
∑

RR′

′
{∫

ΩR

∫

ΩR′

nR′(rR′)nR(rR)
|rR − rR′ + R−R′|drR′drR

−
∫

ΩR

2ZR′n(rR)
|rR + R−R′|drR +

ZRZR′

|R−R′|
}

, (4.29)

where the prime on the summation represents the restriction R 6= R′. For cells having non-
overlapping bounding spheres, Equation (4.29) is calculated using expansions (2.63) and (2.64).
The charges within the cell at R′ create a potential

∑

L

√
4π

2l + 1

(
rR

w

)l

YL(r̂R)
∑

L′
MRL,R′L′QR′L′

1
2w

, (4.30)

around site R. In this expression we have introduced the multipole moments defined for the
Wigner−Seitz cell as

QRL =
√

4π

2l + 1

∫

ΩR

(
rR

w

)l

nR(r)YL(r̂R)drR − ZRδL,L0 , (4.31)

which by means of the shape function may be rewritten as
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Figure 4.2: Convergence test for the electrostatic energy of an fcc lattice with homogeneous
charge distribution. The total electrostatic energy is plotted as a function of the maximum l
used in Equations (4.26) and (4.34) and it is scaled so as to yield the Madelung constant of the
lattice.

QRL =
√

4π

2l + 1

∫ sc
R

0

(
rR

w

)l

ñRL(rR)r2
RdrR − ZRδL,L0 . (4.32)

Now, integrating the potential (4.30) multiplied by the density within ΩR and taking into account
the nuclear charge ZR within this cell, we arrive at the following expression for the interaction
energy between charges within ΩR′ and ΩR

1
2w

∑

LL′
QRLMRLR′L′QR′L′ , (4.33)

where MRLR′L′ is the Madelung matrix introduced in (2.66). Summing up for all R and R′ 6= R
with non-overlapping bounding spheres, for the inter-cell energy we obtain

Fno
inter[n] =

1
2w

∑

RR′

′∑

LL′
QRLMRLR′L′QR′L′ . (4.34)

This expression correctly describes the interaction energy between cells with non-overlapping
bounding spheres.

4.2.5 Electrostatic Interaction of Neighboring Cells

Equation (4.30) gives the electrostatic potential created by the charge distribution within ΩR′

at a point r = rR + R outside of the sphere circumscribed to the cell at R′, i.e. for any
|r − R′| ≥ sc

R′ . However, in the case of neighboring cells in the region between ΩR′ and its
circumscribed sphere we have |r −R′| < sc

R′ . Therefore, Equation (4.33) is no longer valid for
such a pair of cells. Mathematically this means that in expansion

1
|r′ − r| = 4π

∑

L

1
2l + 1

rl
R

|rR′ + dRR′ |l+1
YL(r̂R)YL( ̂rR′ + dRR′) (4.35)

the necessary condition for the convergence, i.e. rR < |rR′ + dRR′ |, is not fulfilled everywhere.
Here we have introduced the notation dRR′ ≡ R′ −R.
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In fact, it is found that the total inter-cell energy, if calculated using Equation (4.33) for
both the non-overlapping and overlapping cells, diverges with increasing l. In order to illustrate
this, in Figure 4.2 we show the total electrostatic energy of an fcc lattice with a uniform
charge distribution. The energy was computed from Equations (4.26) and (4.34) and the overlap
between the central site and its 12 nearest-neighbor sites was neglected. The electrostatic energy
is scaled so as to yield the Madelung constant of the lattice defined as

αM = −Ec/(Z2/w). (4.36)

Within the Atomic Sphere Approximation (ASA) this equals 1.8, while the exact value for an
fcc lattice obtained using the Ewald technique [39] is 1.79174723. In this test, the l-truncation
was set to the same lmmax for both the intra-cell and inter-cell energy. As we will see later, an
lmmax =10−12 gives a well converged result for the intra-cell energy. Therefore, the trend from
the figure reflects the divergence of the Madelung energy for the overlapping cells calculated
according to Equation (4.33).

Several methods have been proposed to treat this problem [97, 99, 101, 102, 103]. Here
we follow the approach introduced by Gonis et al. [97] and implemented by Vitos and Kollár
[96]. This approach is based on shifting and back-shifting the neighboring cells R′ and R with
a displacement vector bRR′ . One can always find a “small” vector bRR′ such that |rR′ + dRR′ +
bRR′ − rR| > bRR′ . In this case, we can write

1
|r′ − r| = 4π

∑

L

bl
RR′

2l + 1
YL(b̂RR′)

× 1
|r′R′ + dRR′ + bRR′ − rR|l+1

YL( ̂r′R′ + dRR′ + bRR′ − rR). (4.37)

In this expansion the l sum is always convergent. Next we ask that bRR′ should be large
enough to remove the overlap between the bounding spheres. Assuming that the direction of
the displacement vector coincides with the direction between the two cells, the above condition
may be expressed as

dRR′ + bRR′ > sc
R + sc

R′ . (4.38)

In this situation, for any rR and rR′ we have rR < |rR′ + dRR′ + bRR′ | and thus the right hand
side of Equation (4.37) can be re-expanded around rl′

RYL′(r̂R). The coefficients of this second
expansion are proportional to 1/|dRR′+bRR′ |l′′+1YL′′( ̂dRR′ + bRR′). This can be expanded again
around rl′′′

R′YL′′′(r̂R′). After summing up for all the pairs of cells having overlapping bounding
spheres, we arrive at [44, 96]

F ov
inter[n] =

1
2w

∑

RR′

′∑

L

1
2l + 1

(
bRR′

w

)l

YL(b̂RR′)
∑

L′,L′′
QRL′

× 4π(2l′′ − 1)!!
(2l − 1)!!(2l′ − 1)!!

CLL′L′′δl′′,l+l′
∑

L′′′
MRL′′R̃′L′′′QR′L′′′ , (4.39)

where R̃′ ≡ R′ + bRR′ denotes the position of the displaced cell. We have shown that, as in the
case of non-overlapping cells, the interaction energy between overlapping cells can be expressed
in terms of the original multipole moments and the Madelung matrix. However, in the latter
case, the Madelung matrix is calculated for the displaced lattice sites. The summations in
Equation (4.39) are conditionally convergent and their range of convergence depends sensitively
on bRR′ . For optimal choice, the reader is referred to Refs. [46, 79, 96, 97].
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Figure 4.3: The calculated charge misfit ∆e for fcc Cu plotted as a function of lhmax.

4.2.6 The l Summations

In the following, we discuss the convergence properties of different quantities that appear in
the expression of the FCD total energy (4.18). First of all, we should point out the distinction
between the maximum ls used in the EMTO and FCD formalisms. The number of exact muffin-
tin orbitals is lmax and it is usually set to 3. The total number of tail functions or highers
(see Section 2.1.2) is lhmax. Usually, this parameter represents the maximum l included in the
one-center expansion of the charge density (see Section 2.2) and its actual value depends on how
anisotropic the charge distributions within the Wigner−Seitz cells are. Within the FCD scheme,
the l-truncation used for the shape function plays the central role. As we pointed out earlier,
the partial components with l > lsmax are usually neglected in Equation (4.5). Therefore, it is
lsmax that fixes the maximum ls used in Equations (4.24), (4.26) and (4.34) and the maximum
ls for the inner summations in Equation (4.39).

Charge Neutrality
During the self-consistent EMTO calculation, after each iteration the Fermi level is re-adjusted
through Equation (2.45) so that the condition (2.46) is always exactly fulfilled. Here the electron
count is realized via the overlap matrix (2.44), and thus via the energy derivative of the kink
matrix. On the other hand, in the total energy calculation based on the FCD formalism, the
total number of electrons is found directly by integrating the electron density (2.48) within the
unit cell. In an ideal situation, this integral should give Ne =

∑
R ZR. However, due to the

numerical approximation, in practice there is always a charge misfit

∆e(lhmax) =
∑

R

∫

ΩR

n(rR)drR −Ne

=
∑

R

√
4π

∫ sc
R

0
ñRL0(rR)r2

RdrR −Ne. (4.40)

Since, according to Equation (4.6),

√
4πñRL0(rR) =

∑

L

nRL(rR)σRL(rR) (4.41)
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Figure 4.4: Convergence test for the intra-cell Hartree energy of fcc Cu. The results are plotted
relative to their converged value as a function of the maximal l value used in Equation (4.26).

and usually lhmax ¿ lsmax, the charge misfit depends on lhmax rather than on lsmax. The same is
true for the the kinetic energy given by Equation (4.19) together with (4.22). We mention that
the requirement ∆e → 0 is one of the most severe tests not only for the one-center expansion
but also for the accuracy of the slope matrix and its energy derivative.

In Figure 4.3, ∆e(lhmax) is shown as a function of lhmax in the case of fcc Cu. We can see that
even in this relatively symmetric case, an lhmax ≥ 8 is needed to decrease the error in the total
number of electrons within the Wigner−Seitz below ∼ 0.001 electrons. In the following tests,
we assume that such a convergence of the one-center expansion of the charge density is assured.

Hartree Energy
The convergence properties of the intra-cell electrostatic energy have been studied in detail
[44, 49]. In Figure 4.4, the intra-cell Hartree energy of fcc Cu is plotted relative to its converged
value as a function of lsmax used in (4.26). As may be seen from the figure, the energy difference
of ∼ 0.3 mRy, obtained for lsmax = 8, is reduced below 0.1 mRy for lsmax = 12 and below a few
µRy for lsmax ≥ 20. This result holds for other more open structures as well. We have found
that for a wide range of crystal structures a convergence better than 10 µRy of the intra-cell
energy can be achieved by performing the summation over l in Equation (4.26) up to 14−20.
The convergence properties of the inter-cell or Madelung energy is investigated in details in Refs.
[46, 79, 96].

Exchange-correlation Energy
Here we discuss the convergence properties of the exchange-correlation energy term, calculated
from Equation (4.24). The surface integral over θ and φ is performed using the two-dimensional
(2D) Gaussian integration method. In Figure 4.5, we plotted the exchange-correlation energy of
fcc Cu, relative to its converged value, in terms of lsmax. Different symbols correspond to three
different sets of 2D mesh points.

It is seen on the figure that no convergence can be achieved for a small number of points
(Nθ = 11, Nφ = 21). By doubling the number of 2D mesh points the converged value is recovered
for lsmax =8−10, but for lsmax > 16 − 18 the energy starts to oscillate and it diverges. Only for
a very large number of mesh points does the summation in Equation (4.24) become absolutely
convergent. This behavior is connected with the fact that for large l values, which are important
for the proper mapping of the shape of the Wigner−Seitz cell (especially in the case of open
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structures), the spherical harmonics have more and more structure, and this cannot be described
correctly unless the surface integral is carried out with very high accuracy.
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Chapter 5

The EMTO-CPA Method

In Chapter 1, we briefly presented the most important aspects of the commonly used approaches
to describe the energetics of fully or partially disordered solids (Section 1.3). Among these,
the most powerful technique in the case of multicomponent alloys is the Coherent Potential
Approximation (CPA). In this chapter, first we shall outline the main features of the CPA, and
then present its implementation within the Exact Muffin-Tin Orbitals formalism. Since the
algebraic formulation of the EMTO-CPA method is very similar to that of the EMTO method,
here we shall concentrate only on those details where the extension is not straightforward. At
the end of the chapter, the main difference between the EMTO-CPA method and former CPA
methods will be discussed.

5.1 Coherent Potential Approximation

The Coherent Potential Approximation was introduced by Soven [69] for the electronic structure
problem and by Taylor [70] for phonons in random alloys. Later, Györffy [71] formulated the
CPA in the framework of the multiple scattering theory using the Green function technique.
The CPA is based on the assumption that the alloy may be replaced by an ordered effective
medium, the parameters of which are determined self-consistently. The impurity problem is
treated within the single-site approximation. This means that one single impurity is placed in
an effective medium and no information is provided about the individual potential and charge
density beyond the sphere or polyhedra around this impurity. Below, we illustrate the principal
idea of the CPA within the conventional muffin-tin formalism.

We consider a substitutional alloy AaBbCc..., where the atoms A, B, C, ... are randomly
distributed on the underlying crystal structure. Here a, b, c, ... stand for the atomic fractions of
the A, B, C, ... atoms, respectively. This system is characterized by the Green function g and
the alloy potential Palloy. The latter, due to the environment, shows small variations around the
same type of atoms. There are two main approximations within the CPA. First, it is assumed
that the local potentials around a certain type of atom from the alloy are the same, i.e. the
effect of local environments is neglected. These local potentials are described by the potential
functions1 PA, PB, PC, .... Second, the system is replaced by a monoatomic set-up described by
the site independent coherent potential P̃ . In terms of Green functions, one approximates the
real Green function g by a coherent Green function g̃. For each alloy component i =A, B, C,...
a single-site Green function gi is introduced. A schematic plot of this idea is given in Figure 5.1.

The main steps to construct the CPA effective medium are as follows. First, the coherent
Green function is calculated from the coherent potential using an electronic structure method.
Within the Korringa−Kohn−Rostoker (KKR) [36, 37, 52, 53, 105, 106] or Linear Muffin-Tin
Orbital (LMTO) [20, 39, 40] methods, we have

1For the definition of the potential function within the muffin-tin formalism see [20, 39]
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Figure 5.1: Illustration of the Coherent Potential Approximation to the alloy problem. The real
alloy, composed by atoms A, B, C, ..., within the CPA is replaced by an effective medium. Given
are the notations for the potentials: Palloy is the real alloy potential, P̃ is the coherent potential,
PA, PB, PC, ... are the potentials of the alloy components.

g̃ =
[
S − P̃

]−1
, (5.1)

where S denotes the KKR or LMTO structure constant matrix corresponding to the underlying
lattice. Next, the Green functions of the alloy components, gi, are determined by substituting
the coherent potential of the CPA medium by the real atomic potentials Pi. Mathematically,
this condition is expressed via the real-space Dyson equation

gi = g̃ + g̃
(
Pi − P̃

)
gi , i = A,B, C... (5.2)

Finally, the average of the individual Green functions should reproduce the single-site part of
the coherent Green function, i.e.

g̃ = agA + bgB + cgC + ... (5.3)

Equations (5.1)−(5.3) are solved iteratively, and the output g̃ and gis are used to determine the
electronic structure, charge density and total energy of the random alloy.

Nowadays, the CPA has become a state-of-the-art technique for electronic structure calcu-
lations in random alloys. Numerous applications [78, 107, 108, 109, 110, 111, 112, 113, 114, 115,
116, 117, 118, 119, 120] have shown that within this approximation one can calculate lattice
parameter, bulk modulus, mixing enthalpy, etc., with an accuracy similar to that obtained for
ordered solids. At the same time, the CPA, being a single-site approximation to the impurity
problem, has limited applicability. For example, one cannot take into account directly within
the CPA the effect of short-range order. Also, systems with a large size mismatch between the
alloy components are difficult to describe because of the local lattice relaxations.
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The most spectacular failure of the existing CPA methods happens in the case of anisotropic
lattice distortions in random alloys. This problem was also attributed to the inherent single-site
approximation. However, one should bear in mind that certain limitations of the CPA are not di-
rectly related to the approximation itself. Rather, they originate from additional approximations
introduced by particular implementations. The most common electronic structure calculations
methods used for the implementations of the CPA are the KKR and the LMTO methods based
on the Atomic Sphere Approximation (ASA). The shape approximation for the electron density
and potential, used in these methods, is insufficient for the accurate description of the behavior
of the total energy upon anisotropic lattice distortions. Thus, one cannot calculate, for example,
elastic constants in random alloys or relax c/a ratio in alloys with a tetragonal or hexagonal
symmetry. In addition, the LMTO-ASA method does not give a proper description of the open
structures or structural energy differences between structures with different packing fractions, to
the extent that even the energy difference between the bcc and fcc structures of late transition
metals is incorrectly described [121]. However, the most recent reformulation of the CPA [80, 81],
demonstrates that this approximation implemented within the framework of the EMTO theory,
in contrast to the traditional KKR-CPA and LMTO-CPA methods, is suitable to reproduce the
structural energy differences and energy changes related to small lattice distortions in random
alloys with high accuracy.

5.2 Fundamentals of the EMTO-CPA Method

The EMTO theory formulates an efficient and at the same time accurate muffin-tin method for
solving the Kohn−Sham equations of the Density Functional Theory. By using large overlap-
ping potential spheres, the EMTO approach describes more accurately the exact crystal potential
than any conventional muffin-tin method. Furthermore, in the latter methods, the shape ap-
proximation used for the potential and density is carried on to the solution of the one-electron
equations as well. In contrast to this, in the EMTO approach, while keeping the simplicity
and efficiency of the muffin-tin formalism, the one-electron states are calculated exactly for the
model potential. This is why the EMTO theory provides an ideal ground for developing an
accurate and efficient CPA related method for random alloys.

5.2.1 Average EMTO-CPA Green Function

We consider a substitutional alloy with a fixed underlying lattice. We denote the unit cell sites
of the underlying lattice by Q, Q′, etc. On each site Q, we have NQ alloy components. The
atomic fractions of the components give the concentrations ci

Q (i = 1, 2, ..., NQ). The individual
spherical potentials are denoted by vi

Q(rQ) and they are defined within the potential spheres
of radii si

Q. We note that these potentials are somewhat different from the spherical potentials
vi
R(rR) defined in the case of the real alloy because of different local environments. Within the

CPA, however, we make the approximation [122]

vi
Q(rQ) ≈ vi

R(rR). (5.4)

Accordingly, all the potential dependent functions, such as the partial waves, logarithmic deriva-
tives, normalization functions, etc., belonging to the same sort of atom but different Rs are also
assumed to be the same. Because of this, in the following, we use index R when we refer to the
real space and index Q when we refer to the quantities written for the underlying lattice.

For each sort of atom, the partial waves are constructed from the solutions φi
Rl(ε, rR) of

the radial Schrödinger equation (2.21). From the matching conditions at si
R and the radius aR

of the corresponding a-sphere2, we set up the backwards extrapolated free-electron solutions
2Note that the radii of the hard spheres are determined by the underlying lattice and they do not depend on
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ϕi
Rl(ε, rR), the logarithmic derivative Di

Rl(ε) and the normalization N i
Rl(ε) functions. For the

sake of simplicity, in this chapter we omit the screening index a. Formally, the above functions
are obtained from Equations (2.23), (2.27) and (2.28), by substituting Da

Rl(ε) with Di
Rl(ε) and

φRl(ε, sR) with φi
Rl(ε, sR).

The CPA effective medium is described by a site (Q) dependent coherent potential, which
possesses the symmetry of the underlying crystal lattice. In EMTO formalism, the coherent
potential is introduced via the logarithmic derivative D̃QL′QL(z) of the effective scatterers, and,
therefore, the coherent Green function or the path operator (5.1) is given by [80]

∑

Q′′L′′
aQ′

[
SQ′L′Q′′L′′(κ2,k) − δQ′Q′′D̃Q′L′Q′L′′(z)

]

× g̃Q′′L′′QL(z,k) = δQ′QδL′L, (5.5)

where l, l′, l′′ ≤ lmax, and SQ′L′Q′′L′′(κ2,k) are the elements of the EMTO slope matrix for
complex energy κ2 = z − v0 and Bloch vector k from the Brillouin zone (BZ). For ordered
systems, this equation reduces to Equation (2.35). The logarithmic derivative of the effective
scatterers is site-diagonal with non-zero L′ 6= L off-diagonal elements.

The average of the on-site (QQ) elements of the Green function for alloy component i,
gi
QLQL′ , is calculated as an impurity Green function of the ith alloy component embedded in the

effective medium. In the single-site approximation, this is obtained from the real space Dyson
equation (5.2) as a single-site perturbation on the coherent potential as

gi
QLQL′(z) = g̃QLQL′(z) +

∑

L′′L′′′
g̃QLQL′′(z)

×
[
Di

Ql′′(z)δL′′L′′′ − D̃QL′′QL′′′(z)
]
gi
QL′′′QL′(z), (5.6)

where Di
Ql(z) ≈ Di

Rl(z) is the logarithmic derivative function for the ith alloy component and

g̃QLQL′(z) =
∫

BZ
g̃Q′′L′′QL(z,k)dk (5.7)

is the site-diagonal part of the k-integrated coherent Green function. The condition of vanishing
scattering, on the average, leads to relation (5.3) between g̃QLQL′(z) and the Green functions of
alloy components, namely

g̃QLQL′(z) =
∑

i

ci
Q gi

QLQL′(z), (5.8)

Equations (5.5),(5.6) and (5.8) are solved self-consistently for D̃(z), g̃(z,k) and gi(z). The total
number of states below the Fermi level,

N(εF ) =
1

2πi

∮

εF

< G(z) > dz, (5.9)

is obtained from the average Green function

< G(z) > ≡
∫

BZ

∑

Q′L′QL

g̃Q′L′QL(z,k) aQṠQLQ′L′(κ2,k)dk −

−
∑

Qi

ci
Q

∑

L

[
gi
QLQL(z) aQḊi

Ql(z) +

(
Ḋi

Ql(z)
Di

Ql(z)
− 1

z − ei
Ql

)]
, (5.10)

i.
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where the overdot stands for the energy derivative, and l, l′ ≤ lmax. The site off-diagonal elements
of the coherent Green function g̃Q′L′QL(z,k) are calculated from Equation (5.5) with the self-
consistent logarithmic derivative D̃QL′QL(z) of the effective scatterers. For ordered systems, the
above expressions reduce to Equations (2.46) and (2.47) from Section 2.1.5.

The first term from the right hand side of Equation (5.10) assures the proper normalization
of the one-electron states for the optimized overlapping potential. In fact, within the single-site
approximation for the impurity Green function, Equation (5.9) gives the exact number of states
at the Fermi level [80, 81].

5.2.2 Full Charge Density

The complete non-spherically symmetric charge density of alloy component i is represented in
one-center form

ni
R(rR) =

∑

L

ni
RL(rR)YL(r̂R). (5.11)

This expansion is obtained from the real-space expression

< G(z, rR, rR) >=
∑

i

ciGi(z, rR, rR) (5.12)

of the average Green function (5.10). To this end, we transform the first term from the right
hand side of (5.10), the so called interstitial term, to one-center form. Formally, this procedure
is the same as that from Section 2.2.

Inside the Wigner−Seitz cell at R, the partial components ni
RL(rR) of the average density

ni
R(rR) belonging to the sublattice Q are determined from the restricted average of the on-site

element of the Green function for the ith alloy component gi
QLQL′ and from the coherent Green

function g̃QLQ′L′ . This leads to

ni
RL(rR) =

1
2πi

∮

εF

∑

L′′L′
CLL′L′′Z

i
Rl′′(z, rR)

×D̃i
RL′′L′(z) Zi

Rl′(z, rR)dz, (5.13)

where CLL′L′′ are the real Gaunt numbers and Zi
Rl(z, rR) denote the YL(r̂R) projections of the

exact muffin-tin orbitals

Zi
Rl(z, rR) =





N i
Rl(z)φi

Rl(z, rR) if l ≤ lmax and rR ≤ si
R

ϕi
Rl(z, rR) if l ≤ lmax and rR > si

R

−jl(κ rR) if l > lmax for all rR

. (5.14)

The low-l block of the density matrix Di of the alloy component i is given by

Di
RL′L(z) = gi

QL′QL(z) +
δL′L

aQ Ḋi
Ql(z)




Ḋi
Ql(z)

Di
Ql(z)

−
∑

εi
Ql

1
z − εi

Ql


 , (5.15)

with l, l′ ≤ lmax. Similarly to Equation (2.52), the second term from the right hand side of
(5.15) is introduced to remove the nonphysical poles of the normalization function N i

Rl(z). The
high-l–low-l blocks of Di are

73



Di
RL′L(z) =

∑

Q′′L′′

∫

BZ
g̃QL′Q′′L′′(z,k)aQ′′SQ′′L′′QL(κ2,k)dk (5.16)

for l′ ≤ lmax and l > lmax, and

Di
RL′L(z) =

∑

Q′′L′′

∫

BZ
SQL′Q′′L′′(κ2,k)g̃Q′′L′′QL(z,k)dk (5.17)

for l′ > lmax and l ≤ lmax. Finally, the high-l block of Di is

Di
RL′L(z) =

∑

Q′′L′′R′′′L′′′

∫

BZ
SQL′Q′′L′′(κ2,k)g̃Q′′L′′Q′′′L′′′(z,k)

× aQ′′′SQ′′′L′′′QL(κ2,k)dk, (5.18)

with l′, l > lmax. Note that the expressions for the high-l–low-l and high-l–high-l blocks of Di

do not involve the Green functions for the alloy component.

5.2.3 The EMTO-CPA Effective Potential

In the case of alloys, we define an overlapping muffin-tin potential vi
mt(r) (see Equation (2.1)), for

each alloy component i at sublattice Q of the underlying crystal lattice. The spherical potential
vi
R(rR) is calculated from the restricted average Green function for the ith alloy component,

following the main idea of the CPA as an impurity embedded in the effective medium. The
electrostatic potential of the electronic and protonic charge densities is divided into components
due to the charges from inside and from outside of the potential sphere. The spherical potential
due to the charges inside of the potential sphere is given by (see Equation (2.61))

vI,i
R (rR) = 8π

1
rR

∫ rR

0
r′R

2
ni

RL0
(r′R)dr′R

+ 8π

∫ si
R

rR

r′Rni
RL0

(r′R)dr′R − 2Zi
R

rR
, (5.19)

where Zi are the protonic charges and L0 ≡ (0, 0). The net charges from the outside of the
potential sphere are taken into account by the average Madelung potential from Equation (2.65),
where QSCA

RL are the average multipole moments calculated within the spherical cells,

QSCA
RL =

∑

i

ci
R

[ √4π

2l + 1

∫ wi
R

0

(rR

w

)l
ni

RL(rR) r2
R drR

− Zi
R δL,L0

]
+ δSCA δL,L0 . (5.20)

wi
R denotes the radius of the spherical cell of type i at site R. The site independent normalization

constant δSCA is determined from the condition of charge neutrality
∑

R QSCA
RL0

= 0.

Due to the SCA (see Section 2.3.1), the average number of electrons inside the s-spheres at
R,

Qs
R =

∑

i

ci
R Qi,s

R =
∑

i

ci
R

√
4π

∫ si
R

0
r2
Rni

RL0
(rR)drR, (5.21)
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is different from the average number of electrons inside the cell, which contributes with a constant
shift to the spherical potential. Within the EMTO-CPA method, the SCA shift is calculated
from Equation (2.69) with

∆QRNN
≡ 1

NNN

(
QSCA

RL0
+

∑

i

ci
RZi

R −Qs
R

)
, (5.22)

where NNN is the number of nearest-neighbor cells, and QSCA
RL0

and Qs
R are given by (5.20) and

(5.21), respectively.

Since the impurity problem is treated within the single-site approximation, the Coulomb
system of a particular alloy component may contain a non-zero net charge. The effect of the
charge misfit on the spherical potential is taken into account using the screened impurity model
(SIM) by Korzhavyi et al. [123, 124]. According to this model, an additional shift of

∆vSIM,i
R = −2αc

w

(
Qi,s

R − Qs
R

)
, (5.23)

is added to the spherical part of the full-potential around site R. Here, Qi,s
R and Qs

R are defined
in (5.21). Note that in the case of ordered systems, ∆vCPA,i

R = 0. In Equation (5.23), αc is a
dimensionless parameter that controls the effectiveness of screening around the impurity. We
shall return to this parameter at the end of Section 5.2.4.

The total potential within the potential sphere of the ith alloy component is obtained as the
sum of the intracell potential (5.19), the Madelung potential (2.65), the SCA (2.69) and SIM
(5.23) corrections, and the spherical symmetric exchange-correlation potential (2.70) calculated
from the density of the ith alloy component, namely

vi
R(rR) = vI,i

R (rR) + vM
R + ∆vSCA

R + ∆vSIM,i
R + µi

xcR(rR). (5.24)

Finally, the interstitial potential within the SCA is obtained according to (2.57) as the average
interstitial potential calculated from vi

R(rR)

v0 =
∑

Ri

ci
R

∫ wi
R

si
R

r2
R vi

R(rR) drR/
∑

Ri

ci
R

[
(wi3

R − si3
R)/3

]
. (5.25)

5.2.4 The EMTO-CPA Total Energy

The total energy of the random alloy is calculated according to

Etot = Ts[n] +
∑

R

∑

i

ci
(
F i

intraR[ni
R] + Ei

xcR[ni
R]

)
+

+ Finter[Q] + ∆ESIM . (5.26)

The kinetic energy is determined from the one-electron equations,

Ts[n] =
1

2πi

∮

εF

z < G(z) > dz

−
∑

R

∑

i

ci
∫

ΩR

vi
mt(rR)ni

R(rR)drR, (5.27)

where the first term from the right hand side is the sum of the average one-electron energies with
< G(z) > from Equation (5.10) and vi

mt(rR) is the optimized overlapping muffin-tin potential
for sort i constructed from (5.24) and (5.25).
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The Coulomb energy components of the total energy functional are calculated in a similar
way to the EMTO-FCD method (Sections 4.2.3, 4.2.4 and 4.2.5). In particular, the EMTO-CPA
intra-cell energy is

F i
intraR[ni

R] =
√

4π

w

∑

L

∫ sc
R

0
ñi

RL(rR)

[(
rR

w

)l

P i
RL(rR)

+
(

rR

w

)−l−1

Qi
RL(rR)− 2Zi

R

w

rR
δL,L0

]
r2
RdrR (5.28)

where ñi
RL(rR) is calculated from (4.6) using for the density of the alloy component i,

P i
RL(rR) ≡

√
4π

2l + 1

∫ sc
R

rR

ñi
RL(r′R)

(
r′R
w

)−l−1

(r′R)2dr′R, (5.29)

and

Qi
RL(rR) ≡

√
4π

2l + 1

∫ rR

0
ñi

RL(r′R)
(

r′R
w

)l

(r′R)2dr′R. (5.30)

The EMTO-CPA inter-cell energy is calculated from Equations (4.34) and (4.39) using for the
multipole moments the average moments

QRL =
∑

i

ci
RQi

RL, (5.31)

with

Qi
RL =

√
4π

2l + 1

∫ sc
R

0

(
rR

w

)l

ñi
RL(rR)r2

RdrR − Zi
RδL,L0 . (5.32)

Finally, the EMTO-CPA exchange-correlation energy is

Exc[nR] =
∫ 2π

0

∫ π

0

∫ sc
R

0
ni

R(rR)εxc([ni
R]; rR)

×
lsmax∑

L

σRL(rR)YL(r̂R) r2
R drR sin θdθdφ. (5.33)

For notation and convergence properties, see Sections 4.1, 4.2.2 and 4.2.6.

The last term from (5.26) is the screened impurity model correction [123, 124] to the elec-
trostatic energy given by

∆ESIM = −
∑

i

ci α
′
c

w

(
Qi,s

R − Qs
R

)2
. (5.34)

The SIM parameter α′c is determined from the condition that the total energy (5.26) calculated
within the CPA should match the total energy of the real alloy calculated using a large unit cell
[124]. For most of the alloys, this is achieved for α′c ≈ 0.6− 1.0. In many applications, αc from
(5.23) and α′c from (5.34) are chosen to be the same. When the two SIM parameters are treated
as independent parameters, αc can be used, e.g., to match the charge transfer obtained within
the CPA and the real charge transfer.
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Figure 5.2: Illustration of the difference between conventional muffin-tin based CPA Green
functions (KKR-CPA, LMTO-CPA) and the EMTO-CPA Green function, Equations (5.10) or
(5.35). Shaded area is the interstitial region defined as the domain outside of the muffin-tin
spheres.

5.3 EMTO-CPA Method versus Other CPA Methods

The main difference between the EMTO expression for the average Green function and the one
defined within former CPA methods, such as the KKR-CPA or LMTO-CPA methods, is featured
in Figure 5.2. Circles stand for the muffin-tin or atomic spheres centered on lattice sites and
the shaded area is the region between the spheres.

In order to understand this difference, we decompose the EMTO-CPA Green function (5.10)
into a single-site contribution Gi

ss and multi-site contribution G̃I, viz.

< G > =
∑

i

ciGi
ss + G̃I. (5.35)

The single-site Green function Gi
ss involves the Green functions gi and the logarithmic deriva-

tives Di of the alloy components [122], whereas G̃I depends only on the coherent Green function
g̃. The latter is attributed to several lattice sites rather than to a single-site. It corresponds
approximately to the interstitial states and assures a proper normalization of the single-electron
states [47]. This term was ignored (actually suppressed into the single-site term Gi

ss) in the
former implementations of the CPA. It is important to note that within the single-site approx-
imation, the Green function from Equation (5.35) leads to the exact density of states for the
overlapping muffin-tin potential vi

mt(rR).

77



78



Chapter 6

Ground-state Properties

In this chapter, we shall review some important ground-state properties that can be derived
directly from the total energy calculated for different volumes, geometries and compositions.
For a specific space group, chemical composition and magnetic structure, the equation of state
is obtained from the total energy E(V ) calculated as a function of volume (V ). At each volume,
the crystal structure should be fully relaxed with respect to the internal coordinates and unit
cell shape. The negative volume derivative of E(V ) gives the pressure,

P (V ) = −∂E(V )
∂V

. (6.1)

From the pressure−volume relation, we get the enthalpy H(P ) = E (V (P ))+PV (P ). The bulk
modulus is defined from the volume derivative of the pressure as

B(V ) = −V
∂P

∂V
= V

∂2E(V )
∂V 2

. (6.2)

The third order volume derivative of E(V ) enters the expression of the pressure derivative of
the bulk modulus (B′) or the Grüneisen constant1. In order to minimize the numerical noise
in P,B and B′, usually an analytic form is used to fit the ab initio energies versus volume. In
Section 6.1, we shall describe the most commonly used equation of states: the Murnaghan, the
Birch−Murnaghan and the Morse functions.

The elastic constants may be computed from the strain derivative of the total energy. In
Section 6.2, we shall briefly review the theory of elastic constants and present the technique used
to obtain the single crystal elastic constant in cubic and hexagonal lattices. The polycrystalline
elastic moduli will be introduced in Section 6.3. In Section 6.4, the theoretical determination of
the surface energy, surface stress and stacking fault energy will be presented. A few ideas about
the atomistic modeling of the mechanical properties of alloys will be discussed in Section 6.6.

6.1 Equation of State

The Murnaghan equation of state [126, 127] originates from the observation that the pressure
derivative of the bulk modulus shows negligible pressure dependence. Therefore, we can make
the approximation

∂B

∂P
≈ B′

0 =
∂B

∂P

∣∣∣∣
V =V0

, (6.3)

1The Grüneisen constant (γ) describes the anharmonic effects in the vibrating lattice and it is given by
γ = −f + B′/2. The best agreement with the experimental Grüneisen constant was obtained [125] for f = 1/2.
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where V0 is the equilibrium volume. Using the definition of the bulk modulus, from Equation
(6.3) we obtain

B′
0 = −V

B

∂B

∂V
. (6.4)

After integrating between V0 and V , this leads to

B(V ) = B0

(
V0

V

)B′0
. (6.5)

Repeated integrating gives the pressure

P (V ) =
B0

B′
0

[(
V0

V

)B′0 − 1

]
, (6.6)

and the total energy

E(V ) = E0 +
B0V

B′
0

(
(V0/V )B′0

B′
0 − 1

+ 1

)
− B0V0

B′
0 − 1

, (6.7)

where E0 is the energy at the equilibrium volume. A somewhat more flexible equation of state
is the third-order Birch−Murnaghan function given by [128, 129]

E(V ) = E0 +
9
16

B0V0

×




[(
V0

V

) 2
3 − 1

]3

B′
0 −

[(
V0

V

) 2
3 − 1

]2 [
4

(
V0

V

) 2
3 − 6

]

 , (6.8)

and

P (V ) =
3
2
B0

[(
V0

V

) 7
3 −

(
V0

V

) 5
3

] {
1 +

3
4
(B′

0 − 4)

[(
V0

V

) 2
3 − 1

]}
. (6.9)

The bulk modulus can be obtained from Equation (6.9) according to Equation (6.2). Both the
Murnaghan and Birch−Murnaghan functions involve four independent parameters: E0, V0, B0

and B′
0. While E0, V0, B0 vary significantly from one material to another, the value of B′

0 is
fairly constant for many substances [130].

Sometimes it is more preferable to work with a Morse type of equation of state. The total
energy is fitted by an exponential function [125]

E(w) = a + be−λw + ce−2λw (6.10)

written in terms of the average Wigner−Seitz radius w. Here λ, a, b and c are the four indepen-
dent Morse parameters. Since (4πw2)∂/∂V = ∂/∂w, the expression for the pressure becomes

P (w) =
xλ3

4π(lnx)2
(b + 2cx), (6.11)

where
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Figure 6.1: The difference between total energy (upper panel, in mRy), pressure (middle panel,
in GPa) and bulk modulus (lower panel, in percent) for fcc Ag obtained from the Murnaghan
and Birch−Murnaghan equations of states relative to the Morse equation of state. The fitting
parameters for Murnaghan (solid line) and Birch−Murnaghan (dashed line) are chosen to be
identical with those obtained from the Morse fit. The dotted line is a fit to the ab initio total
energies using the Murnaghan function.

x ≡ e−λw. (6.12)

The equilibrium Wigner−Seitz radius, defined by V0 = 4πw3
0/3, is obtained from the condition

P (w0) = 0 as

w0 = − ln x0

λ
with x0 = − b

2c
. (6.13)

From Equation (6.11), we get the bulk modulus as a function of the Wigner−Seitz radius as

B(w) = − xλ3

12π ln x

[
(b + 4cx)− 2

ln x
(b + 2cx)

]
, (6.14)

which at w0 reduces to

B0 = − cx2
0λ

3

6π ln x0
. (6.15)

Finally, the pressure derivative of the bulk modulus at V0 becomes

B′
0 = 1− ln x0. (6.16)

Equations (6.13), (6.15), (6.16) and the expression for the equilibrium energy E0 = a+bx0 +cx2
0

give the connection between the Morse fitting parameters λ, a, b and c and the parameters
E0, B0, V0 and B′

0 used in the Murnaghan or Birch−Murnaghan equation of states.

In Figure 6.1, we compare the three equations of states for fcc Ag. The parameters E0 =
−10626.843688 Ry, w0 = 3.026 Bohr, B0 = 104.4 GPa and B′

0 = 5.81 were obtained by fitting
the Morse function to 7 ab initio energies calculated for atomic radii between 2.7 and 3.1 Bohr.
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In these calculations the Local Airy Approximation [17, 18] was employed for the exchange-
correlation functional. For comparison, the experimental equilibrium atomic radius and bulk
modulus are 3.018 Bohr and 98.8 GPa [131], and from the experimental Grüneisen constant
2.4 [125] we get B′

0 = 5.92. The above theoretical Morse parameters were used for all three
equations of states from Figure 6.1. The agreement between the total energy, pressure and bulk
modulus obtained by the Birch−Murnaghan (dashed line) and Morse functions is satisfactory.
However, near w = 2.7 Bohr (corresponding to P ≈ 95 GPa) the pressure and bulk modulus
obtained from the Murnaghan expression (solid line) differ by about 20% and 40%, respectively,
from those obtained by the other two expressions. On the other hand, fitting the Murnaghan
function to the ab initio energies (dotted line), we obtain a much better agreement. The so
obtained parameters are E0 = −10626.843742 Ry, w0 = 3.027 Bohr, B0 = 110.2 GPa and
B′

0 = 4.79. The improved agreement between the Morse and Murnaghan equation of states is
mainly due to the ∼ 18% decrease in B′

0.

6.2 Single Crystal Elastic Constants

The adiabatic2 elastic constants are the second order derivatives of the internal energy with
respect to the strain tensor ekl (k, l = 1, 2, 3), viz.

cijkl =
1
V

∂E

∂eij∂ekl
, (6.17)

where E stands for the internal energy and the derivatives are calculated at constant entropy
and constant es other than eij and ekl. The elastic constants form a fourth-rank tensor, which
can be arranged in a 6 × 6 matrix with maximum 21 different elements. Employing the Voigt
notation3, the elastic compliances sαβ are related to the elastic constants by

∑
γ

cαγsγβ = δαβ , (6.18)

where δαβ is the Kronecker delta. The elastic constants determine, for example, the acoustic
velocities v through the Christoffel equation [55]

det(cijklnjnk − ρv2δil) = 0, (6.19)

where n is the propagation direction and ρ is the density. There are usually two quasi-transversal
and one quasi-longitudinal real roots. The ratio between extremal propagation directions defines
the acoustic anisotropy.

In the following, we concentrate on lattices with cubic and hexagonal symmetries. In a
cubic lattice, there are three independent elastic constant c11, c12 and c44. Then, the anisotropic
variation of the sound velocity is determined by the parameter

AE =
c11 − c12 − 2c44

c11 − c44
(6.20)

introduced by Every [132]. An alternative measure of anisotropy is the Zener ratio [133]

AZ =
2c44

c11 − c12
. (6.21)

2The isothermal elastic constants are obtained as the second order strain derivative of the Helmholtz free
energy calculated at constant temperature. For temperatures below the Debye temperature, there is no significant
difference between the adiabatic and isothermal elastic constants [130].

3In the Voigt notation the pair of indices ij are replaced by index α according to: α = 1, 2, 3 for ij = 11, 22, 33,
α = 4 for ij = 23 or 32, α = 5 for ij = 13 or 31 and α = 6 for ij = 12 or 21.
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For an isotropic cubic crystal c11−c12 = 2c44, so AE = 0 and AZ = 1. In a hexagonal lattice, there
are five independent elastic constants c11, c12, c13, c33 and c44, and the anisotropy is described in
terms of one compressional

∆P =
c33

c11
, (6.22)

and two shear

∆S1 =
c11 + c33 − 2c13

4c44
and ∆S2 =

2c44

c11 − c12
(6.23)

anisotropy ratios. Hence, the hexagonal lattice is isotropic if c11 = c33, c12 = c13 and c11− c12 =
2c44.

The dynamical or mechanical stability condition of a lattice implies that the energy change
∆E ∼ V cαβeαeβ upon any small deformation is positive. This condition can be formulated in
terms of elastic constants [130]. The stability criteria for cubic crystals requires that

c44 > 0 , c11 > |c12| , c11 + 2c12 > 0. (6.24)

For a hexagonal lattice the stability conditions are

c44 > 0 , c11 > |c12| , c11 c33 > (c13)2,
c33(c11 + c12) > 2(c13)2. (6.25)

From the single crystal elastic constants one obtains the sound velocity vs(θ, φ) for the
longitudinal (s = L) and the two transverse (s = T1,T2) branches. They are solutions of the
Christoffel Equation (6.19). Explicit expressions for vs(θ, φ) in the case of cubic and hexagonal
crystals can be found in [130]. The average of vs

−3(θ, φ) over all directions (θ, φ) gives the sound
velocity vm, viz.

v−3
m =

1
3

∑
s

1
4π

∫
vs
−3(θ, φ) sin θdθdφ. (6.26)

This velocity is used in the conventional Debye model with the Debye temperature defined as

θD =
h̄

kB

(
6π2

V

)1/3

vm. (6.27)

Here V is the atomic volume, h̄ and kB are the Planck and Boltzmann constants, respectively4.
This Debye temperature gives, for instance, the low-temperature limit of the heat capacity per
atom CD(T ) = (12π4/5)kB(T/θD)3, [130]. At high-temperatures, however, the entropy depends
on the logarithmic average of all the phonon frequencies rather than on the arithmetic aver-
age, Equation (6.26). Then, in a Debye-model description of the entropy, one should use the
logarithmic average vlog of the sound velocities vs(θ, φ) and an entropy-related Debye temper-
ature θD,log. We note that neither θD nor θD,log are defined for systems where the stability
requirements, expressed, e.g., via Equations (6.24) and (6.25), are violated.

6.2.1 Numerical Calculation of the Elastic Constants

At volume V , the elastic constants are obtained by straining the lattice and evaluating the
total energy changes due to the strain as a function of its magnitude. We choose the applied

4In atomic Rydberg units, h̄ = 1 and kB = 6.33363× 10−6 Ry/K.
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strains to be volume conserving (except for the bulk modulus). This is important since the
total energy depends on the volume much more strongly than on strain. By choosing volume
conserving strains we obviate the separation of these two contributions to the total energy. Using
isochoric strains we assure the identity of our calculated elastic constants with the stress-strain
coefficients, which are appropriate for the calculation of elastic wave velocities; this identity is
nontrivial for finite applied pressure. We denote by e1, e2, ..., e6 the elements of the stain matrix,
i.e.

D(e) =




e1
1
2e6

1
2e5

1
2e6 e2

1
2e4

1
2e5

1
2e4 e3


 . (6.28)

The energy change upon strain (6.28) is written as

E(e1, e2, ..., e6) = E(0) +
1
2
V

∑

i,j=1,6

cijeiej +O(e3), (6.29)

where E(0) is the energy of the undistorted lattice, and O(e3) denotes the terms proportional to
ek with k ≥ 3. An arbitrary vector r = (x, y, z) under stain (6.28) transforms to r′ = (x′, y′, z′)
according to




x′

y′

z′


 = (D(e) + I)




x
y
z


 =




(1 + e1)x + 1
2e6y + 1

2e5z
1
2e6x + (1 + e2)y + 1

2e4z
1
2e5x + 1

2e4y + (1 + e3)z


 , (6.30)

where I is the 3 × 3 identity matrix. Mathematically, isochoric strain corresponds to a strain
matrix with determinant det(D + I) = 1.

In practice, e1, e2, ..., e6 are expressed as functions of a single parameter δ so that the energy
change (6.29) becomes

E(δ) = E(0) + V Cδ2 +O(δ3), (6.31)

where C stands for a particular combination of cij . We fit E(δ) by a polynomial of δ, E(δ) =
E(0) + a2δ

2 + a3δ
3 + ..., and C is obtained from the second order coefficient a2 as5

C =
a2

V
. (6.32)

In practice, the total energies are computed for six distortions δ = 0.00, 0.01, ..., 0.05. Examples
for the strain matrix used to determine the single crystal elastic constants in systems with cubic
and hexagonal symmetry are given in Ref. [79].

6.3 Polycrystalline Elastic Constants

In the previous section, we showed how the elastic constants of a monocrystalline material can be
deduced from ab initio total energies calculated for a series of lattices obtained from the parent
lattice by applying “small” strains. In a polycrystalline material, the monocrystalline grains are
randomly oriented. On a large scale, such materials can be considered to be quasi-isotropic or
isotropic in a statistical sense. An isotropic system is completely described by the bulk modulus
B and the shear modulus G. The Young modulus E and Poisson ratio ν are connected to B
and G by the relations

5The elastic constant are usually expressed in gigapascals, 1 Ry/Bohr3 ≈ 14710.5 GPa.
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E =
9BG

3B + G
and ν =

3B − 2G

2(3B + G)
. (6.33)

In these materials, the sound velocity is isotropic but different for the longitudinal and two
transversal branches. The longitudinal velocity is related to the polycrystalline B and G,

ρv2
L = B +

4
3
G, (6.34)

and the transversal velocity is related to the polycrystalline G,

ρv2
T = G, (6.35)

where ρ is the density. Then the average velocity, Equation (6.26), becomes

3
v3
m

=
1
v3
L

+
2
v3
T

, (6.36)

which is used in Equation (6.27) to find the polycrystalline Debye temperature.

The only way to establish the ab initio polycrystalline elastic moduli is to first derive the
monocrystalline elastic constants cij and then to transform these data to macroscopic quantities
by suitable averaging methods based on statistical mechanics. A large variety of methods has
been proposed for averaging cij to obtain the isotropic elastic constants. In the following, we
describe the three most widely used averaging methods for the bulk modulus and shear modulus.
The corresponding Young modulus and Poisson ratio follow from Equations (6.33).

6.3.1 Averaging Methods

The Voigt and Reuss Bounds
In the Voigt averaging method [130] a uniform strain, and in the Reuss method a uniform stress
is assumed. The former is formulated using the elastic constants cij and the latter using the
elastic compliances sij . Within the Voigt approach, the general expressions for the bulk and
shear moduli are

BV =
(c11 + c22 + c33) + 2(c12 + c13 + c23)

9
, (6.37)

and

GV =
(c11 + c22 + c33)− (c12 + c13 + c23) + 3(c44 + c55 + c66)

15
. (6.38)

The corresponding expressions within the Reuss approach are

BR =
1

(s11 + s22 + s33) + 2(s12 + s13 + s23)
, (6.39)

and

GR =
15

4(s11 + s22 + s33)− 4(s12 + s13 + s23) + 3(s44 + s55 + s66)
, (6.40)

respectively. The GV and GR bounds can also be used to characterize the polycrystalline solids
formed by randomly oriented anisotropic single crystal grains. In these quasi-isotropic materials
it is useful to define a measure of elastic anisotropy as
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AV R =
GV −GR

GV + GR
. (6.41)

This ratio has the following properties of practical importance: it is zero for isotropic crystals,
for anisotropic crystals it is a single-valued measure of the elastic anisotropy, and it gives a
relative magnitude of the actual elastic anisotropy. For most of the metals, AV R ≤ 20%, but
exceptionally large values could be observed for K, Na and Li [136].

The Hashin−Shtrikman Bounds
Hashin and Shtrikman [137] derived upper and lower bounds for B and G using a variational
method. Here we give results only for the cubic lattice. For lattices with lower symmetry the
reader is referred to Grimvall [130] and references therein. For a cubic lattice with c′ < c44,
these bounds are

Bu = Bl =
c11 + 2c12

3
,

Gl = c′ + 3
(

5
c44 − c′

+ 4β1

)−1

, (6.42)

Gu = c44 + 2
(

5
c′ − c44

+ 6β2

)−1

,

where

β1 =
3(B + 2c′)

5c′(3B + 4c′)
,

β2 =
3(B + 2c44)

5c44(3B + 4c44)
. (6.43)

For c′ > c44, the upper and lower bounds are reversed.

The Hershey Average
The Hershey’s averaging method [55] turned out to give the most accurate relation between
cubic single-crystal and polycrystalline data in the case of FeCrNi alloys [56]. According to this
approach, the average shear modulus G is a solution of equation [55]

G3 + αG2 + βG + γ = 0, (6.44)

where

α =
1
8
(5c11 + 4c12),

β = −1
8
c44(7c11 − 4c12), (6.45)

γ = −1
8
c44(c11 − c12)(c11 + 2c12). (6.46)

The Hill Average
Hill [138, 139] has shown that the Voigt and Reuss bounds are rigorous upper and lower bounds.
The average bulk and shear moduli can be estimated from these bounds, e.g., as
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GH =
1
2
(GV + GR)

BH =
1
2
(BV + BR). (6.47)

Alternatively, instead of the arithmetic average one might prefer to use the geometric or harmonic
means. In weakly anisotropic materials, of course, all these averages lead to similar mean B and
G.

6.4 Surface Energy and Stress

The surface energy is the surface excess free energy per unit area of a particular crystal facet
and is one of the basic quantities in surface physics. It determines the equilibrium shape of
mezoscopic crystals, it plays an important role in faceting, roughening, and crystal growth phe-
nomena, and may be used to estimate surface segregation in binary alloys. With very few
exceptions the available experimental surface energies stem from surface tension measurements
in the liquid phase extrapolated to zero temperature [140, 141]. Because of the indirect measure-
ment, the experimental surface energy data include large error bars (20− 50%). Furthermore,
they correspond to isotropic crystals and thus yield no information about the crystal orientation
dependence.

The theoretical surface free energy is calculated as half of the free energy needed to split an
otherwise perfect monocrystal into two semi-infinite crystals. The surface energy per unit area
is given by

γ =
Es

A2D
, (6.48)

where Es is half of the free energy and A2D is the area of the two-dimension (2D) unit cell. Since
the surface energy is defined for a particular crystal facet, its magnitude might strongly depend
on the orientation. Usually, the surface energy increases with the roughness of the surface. In
terms of the cleavage force F (z) acting between the two semi-infinite crystals separated by z, γ
can be written as one half of the cleavage work per unit area,

γ =
1
2

∫ ∞

0
F (z)dz. (6.49)

The surface stress is the the reversible work per area to stretch the surface elastically. It
has a decisive role for the understanding of a wide variety of surface phenomena, e.g. for sur-
face reconstruction, shape transitions in nano-scale particles, surface alloying, surface diffusion,
epitaxial growth, and self-assembled domain patterns. Experimental techniques have been used
to establish the polar dependence of the surface stress [142], but a direct measurement of its
magnitude is not feasible.

The stress tensor τij (i, j stand for the in-plane coordinates x, y) is calculated from the
change per unit area of the surface energy Es upon a small deformation εij of the surface unit
cell, namely

τij =
1

A2D

∂Es

∂εij
. (6.50)

Using Equation (6.48), we can write

τij =
1

A2D

∂A2Dγ

∂εij
= γδij +

∂γ

∂εij
, (6.51)
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Table 6.1: The required number of atomic (N) and vacuum (Nv) layers used in a slab geometry
to model the first few close-packed surfaces of transition metals. A2D is the area of the 2D unit
cell and a is the bulk lattice constant.

Structure Surface A2D N Nv

fcc (111)
√

3/4 a2 8 4
(100) 1/2 a2 8 4
(110)

√
2/2 a2 12 6

bcc (110)
√

2/2 a2 12 4
(100) a2 12 6
(211)

√
3/2 a2 16 8

(310)
√

10/2 a2 16 8
(111)

√
3 a2 16 8

hcp (0001)
√

3/2 a2 8 4

where ∂γ/∂εij is the residual surface stress. This is the Shuttleworth equation connecting the
surface energy and the surface stress [143].

It is apparent from the definitions that the surface stress and surface energy are of different
nature. In the case of stable solids the free energy of a surface is always positive, otherwise the
solid would gain energy by fragmentation. The surface stress, on the other hand, can either be
positive or negative. We note that for a liquid, the surface free energy and the surface stress are
equal due to the fact that in this case the surface energy does not change when the surface is
strained, i.e. ∂γ/∂εij = 0. These two quantities are frequently referred to by the common name
“surface tension”.

6.4.1 Numerical Calculation of the Surface Energy and Stress

A free surface is modeled by an atomic slab embedded in vacuum. The slab is formed by N atomic
layers with specific Miller indices. The slab plus vacuum configuration is periodically repeated
along the direction perpendicular to the atomic layers. The vacuum region is represented by a
similar crystallographic lattice occupied by empty sites. The number of empty layers is Nv. The
in-plane lattice constant is fixed to the bulk value, whereas the inter-layer distances near the
surfaces might be relaxed to their equilibrium values to account for the surface relaxation. The
typical slab and vacuum thicknesses for transition metals, needed to obtain bulk-like properties
in the center of the slab and consequently realistic surfaces, are listed in Table 6.1.

Using the slab geometry, at zero temperature, the surface energy may be calculated as

γ =
Eslab(N)−NEbulk

2A2D
, (6.52)

where Eslab is the total energy of the slab including the empty spheres simulating the vacuum,
and Ebulk is the bulk energy per atom. The factor of 2 from the denominator arises from the
two surfaces of the slab.

The surface stress tensor is calculated by “stretching” the two in-plane lattice vectors by ε,
while the third lattice vector, which determines the layer−layer distance, is kept fixed. For this
distortion the deformation tensor has the form

εij =




ε 0 0
0 ε 0
0 0 0


 . (6.53)

Thus, the change in the surface energy δEs = δEslab(N)−NδEbulk is a function of ε. Calculations
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are carried out for both surface and bulk systems for several different ε values. Then, in order
to minimize the numerical noise, we fit a polynomial to the calculated mesh-points,

δEslab/bulk ≈ c0 + c1ε + c2ε
2 + ... (6.54)

The surface stress τ is determined from the linear coefficients of the slab and bulk energies, viz.

τ (s) =
cslab,1 − cbulk,1

4A2D
, (6.55)

where the factor of 4 arises from the two surfaces of the slab and the two elongated in-plane
lattice vectors. Note that at the equilibrium volume, cbulk,1 vanishes and τ is determined merely
by the linear coefficient of the slab energy. In the case of low symmetry surfaces, such as the fcc
or bcc (110) surfaces, Equation (6.55) gives the average of the two main stress tensor components.

6.5 Stacking Fault Energy

A perfect fcc crystal has the ideal ABCABCAB stacking sequence, where the letters denote
adjacent (111) atomic layers. The intrinsic stacking fault is the most commonly found fault in
experiments on fcc metals. This fault is produced by a shearing operation described by the
transformation ABC → BCA to the right hand side of an (111) atomic layer. It corresponds
to the ABCAĊȦḂĊ stacking sequence, where the translated layers are marked by dots.6 The
formation energy of an extended stacking fault is defined as the excess free energy per unit area.
At zero temperature, the stacking fault energy (SFE) is calculated as

γSF =
Efault −Ebulk

A2D
, (6.56)

where Efault and Ebulk are the energies of the system with and without the stacking fault,
respectively, and A2D denotes the area of the stacking fault.

6.5.1 Numerical Calculation of the Stacking Fault Energy

The intrinsic stacking fault creates a negligible stress near the fault core. Therefore, the faulted
lattice approximately preserves the close-packing of the atoms, and can be modeled by an ideal
close-packed lattice. Within the axial interaction model [144, 145] the stacking sequence along
the < 111 > direction is represented by a set of variables, Si, where i is the layer index. The
sign of Si is determined by the translation connecting subsequent close-packed layers. Then the
excess energy of a particular stacking sequence is expanded as −∑

i

∑
n JnSiSi+n, where the

sums run on the atomic layers, and J1, J2, ... are the nearest-neighbor, next nearest-neighbor,
etc., interaction parameters. Using this representation, the energy of an intrinsic SFE can be
expressed as

Efault − Ebulk = −4J1 − 4J2 − 4J3 −O(J4), (6.57)

where O(J4) stands for the contribution coming from the higher order terms (J4, J5, ...). On the
other hand, applying the axial interaction model to periodic structures, we obtain, for instance,

Efcc = J0 + J1 + J2 + J3 +O(J4)
Ehcp = J0 − J1 + J2 − J3 +O(J4) (6.58)

Edhcp = J0 − J2 −O(J4)
6The extrinsic stacking fault corresponds to ABCAĊB̈C̈Ä stacking, whereas the twin stacking fault is a plane

boundary between two fcc stacking sequences with opposite orientation, i.e. ABCABACBA.
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where Efcc, Ehcp and Edhcp are the energies of fcc, hcp and dhcp structures, respectively.
By eliminating the interaction parameters from Equations (6.57) and (6.58), we can derive
a relationship between the SFE and the energies of periodic structures. In the lowest order
approximation, i.e. taking into account J0 and J1, the formation energy of the intrinsic stacking
fault is twice the energy difference between the hcp and fcc phases, viz.

E2nd
fault − Ebulk ≈ 2(Ehcp − 3Efcc). (6.59)

Keeping terms up to the third order, for the stacking fault energy we find7

E3rd
fault − Ebulk ≈ Ehcp + 2Edhcp − 3Efcc. (6.60)

This expression will be used in Section 9.3 to compute the stacking fault energy of fcc FeCrNi
alloys.

6.6 Some Ideas about the Atomistic Modeling of the Mechanical
Properties of Alloys

In general, by mechanical properties we understand the behavior of materials under external
forces. These properties are of special importance in fabrication processes and applications. At
the time of writing, a direct determination of the mechanical properties of complex alloys from
first-principles theory is not feasible. On the other hand, well established phenomenological
models exist, which are suitable for an accurate description of materials behavior under various
mechanical loads. These models involve a large set of atomic-level physical parameters. Below,
we give a very brief overview of some of these model.

Materials behavior are usually described in terms of stress or force per unit area and strain
or displacement per unit distance. On the basis of stress and strain relations, one can distinguish
elastic and plastic regimes. In elastic regime, at small stress, the displacement and applied force
obey Hook’s law and the specimen returns to its original shape on uploading. Beyond the elastic
limit, upon strain release the material is left with a permanent shape. Several models of elastic
and plastic phenomena in solids have been established. For a detailed discussion of these models,
we refer to [146, 147, 148, 149, 150].

Within the elastic regime, the single crystal elastic constants (Section 6.2) and the polycrys-
talline elastic moduli (Section 6.3) play the principal role in describing the stress-strain relation.
Within the plastic regime, the importance of lattice defects in influencing the mechanical be-
havior of crystalline solids was recognized long time ago. Plastic deformations are primarily
facilitated by dislocation motion and can occur at stress levels far below those required for
dislocation free crystals.

The mechanical hardness represents the resistance of material to plastic deformation. It
may be related to the yield stress separating the elastic and plastic regions, above which a
substantial dislocation activity develops. In an ideal crystal dislocations can move easily because
they experience only the weak periodic lattice potential. In real crystals, however, the motion of
dislocations is impeded by obstacles, leading to an elevation of the yield strength. According to
this scenario, the yield stress is decomposed into the Peierls and the solid-solution strengthening
contribution. The stress needed to move a dislocation across the barriers of the oscillating crystal
potential is the Peierls stress. In metals, this is found to be approximately proportional to the
shear modulus G [150]. Therefore, the concentration dependence of the Peierls term is mainly
governed by that of the elastic constants.

7Following the above procedure, the formation energy of the extrinsic stacking fault becomes 4(Edhcp −Efcc)
and that of the twin stacking fault 2(Edhcp − Efcc).
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The solid-solution strengthening contribution is due to dislocation pinning by the randomly
distributed solute atoms. Dislocation pinning by random obstacles has been described by classi-
cal models of Fleisher, Labusch and Nabarro [147, 148, 149] or more recent models by Clerc and
Ledbetter [151]. According to the Labusch−Nabarro model, dislocation pinning is mostly deter-
mined by the size misfit (εb) and elastic misfit (εG) parameters. They are calculated from the
concentration (x) dependent Burgers vector [146] b(x) or lattice parameter, and shear modulus
G(x) as

εb =
1

b(x)
∂b(x)
∂x

, and εG =
1

G(x)
∂G(x)

∂x
. (6.61)

After lengthy calculations, it is obtained that the solid-solution strengthening contribution to the
hardness depends on the concentration of solute atoms as x2/3εL

4/3. Here, εL ≡
√

ε′G
2 + (αεb)2

is the Fleischer parameter, ε′G ≡ εG/(1 + 0.5|εG|) and α =9−16.

Besides the above described bulk parameters, the formation energies of two-dimensional
defects are also important in describing the mechanical characteristics of solids. The surface
energy (Section 6.4) is a key parameter in brittle fracture. According to Griffith theory [150],
the fracture stress is proportional to the square root of the surface energy, that is, the larger the
surface energy is, the larger the load could be before the solid starts to break apart. Another
important planar defect is the stacking fault in close-packed structures, such as the fcc and
hcp lattices. In these structures, the dislocations may split into energetically more favorable
partial dislocations having Burgers vectors smaller than a unit lattice translation [146]. The
partial dislocations are bound together and move as a unit across the slip plane. In the ribbon
connecting the partials, the original ideal stacking of close-packed lattice is faulted. The energy
associated with this miss-packing is the stacking fault energy (Section 6.5). The balance between
the SFE and the energy gain by splitting the dislocation determines the size of the stacking fault
ribbon. The width of the stacking fault ribbon is of importance in many aspects of plasticity, as in
the case of dislocation intersection or cross-slip. In both cases, the two partial dislocations have
to be brought together to form an unextended dislocation before intersection or cross-slip can
occur. By changing the SFE or the dislocation strain energy, wider or narrower dislocations can
be produced and the mechanical properties can be altered accordingly. For instance, materials
with high SFE permit dislocations to cross-slip easily. In materials with low SFE, cross-slip is
difficult and dislocations are constrained to move in a more planar fashion. In this case, the
constriction process becomes more difficult and hindered plastic deformation ensues. Designing
for low SFE, in order to restrict dislocation movement and enhance hardness was adopted, e.g.,
in transition metal carbides [152].

The principal problem related to modeling the mechanical properties of complex solid so-
lutions is the lack of reliable experimental data of the alloying effects on the fundamental bulk
and surface parameters. While the volume misfit parameters are available for almost all the
solid solutions, experimental values of the elastic misfit parameters are scarce. There are exper-
imental techniques to establish the polar dependence of the surface energy [142], but a direct
measurement of its magnitude is not feasible [153, 154, 155]. In contrast to the surface energy,
the stacking fault energy can be determined from experiments. For instance, one can find a large
number of measurements on the stacking fault energy of austenitic stainless steels [156, 157].
However, different sets of experimental data published on similar steel compositions differ sig-
nificantly, indicating large error bars in these measurements. On the other hand, during the last
decade, the theoretical determination of these parameters in the case of metals and alloys has
come within the reach of modern computational physics based on Density Functional Theory.
In fact, a carefully performed computational modeling, based on modern first-principles alloy
theory, can yield fundamental parameters with an accuracy comparable to or better than the
experiments. In this sense, ab intio computer simulations may already have an important impact
on the theoretical modeling of the mechanical properties of alloys.
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Part II

Applications
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Chapter 7

Applications: Ordered Solids

This chapter is dedicated, first of all, to demonstrating the application of the EMTO method in
the case of ordered metallic and non-metallic systems. In Section 7.1, we start by investigating
the equation of state of a large set of simple and transition metals crystallizing in body centered
cubic, face centered cubic or hexagonal close-packed crystal structure. We shall also briefly
discuss the theoretical single crystal elastic constant obtained for a few selected transition metals.
The EMTO determination of the formation energy of mono-vacancies will be illustrated in the
case of fcc Al. The ground state properties of some common non-metallic solids and two silicate
perovskites will be explored in Section 7.2. The high-pressure elastic constant calculation will
be exemplified in the case of solid helium. Some results obtained for transition-metal nitride
surfaces will be discussed in Section 7.3. The most significant numerical details of the EMTO
calculations presented in this chapter are listed in Section 7.4.1

7.1 Simple and Transition Metals

7.1.1 Equilibrium Bulk Properties

Many physical properties depend sensitively on volume. Because of this, a modern ab initio
total energy method should, first of all, be able to reproduce the equation of state and related
quantities (equilibrium volume, bulk modulus and Grüneisen constant) with high accuracy. The
performance of the EMTO method for the equilibrium atomic volume and bulk modulus is
demonstrated in Figures 7.1 and 7.2. Here, we compare the EMTO values with those obtained
using the full-potential linear muffin-tin orbital (FP-LMTO) [158] and linear augmented plane
wave (FP-LAPW) [159] methods. For this test, we selected a few 3d, 4d and 5d transition metals,
for which systematic FP-LMTO and FP-LAPW studies are available. All theoretical data from
Figures 7.1 and 7.2 were computed using the Local Density Approximation (LDA) [6, 7] for the
energy functional. All calculations were carried out for the space groups corresponding to the
low temperature experimental crystal structures [131]. The ferromagnetic order was taken into
account in the case of bcc Fe, and all the other elements were treated as nonmagnetic solids.

The mean deviations between the EMTO and the FP atomic volumes from Figure 7.1 are
0.33%, 0.43%, and 0.49% for the 3d, 4d, and 5d metals, respectively. The same figures for the
bulk moduli2 are 0.20%, 1.20% and 3.28%, respectively. The excellent agreement between the
EMTO and FP data shows that for equations of state the EMTO method has the accuracy of
formally exact full-potential methods.

In the above tests, for the hexagonal metals (Ti, Y, Zr, Tc, Ru, Re, Os) we used the
theoretical axial ratios (c/a) calculated within the LDA. The equilibrium hexagonal axial ratio

1For details about the FP calculations quoted in this chapter, the reader is referred to the corresponding
references.

2The standard unit for the bulk modulus is GPa or MPa: 1 Ry/Bohr3 ≈ 14710.51 GPa.
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Figure 7.1: Comparison between different theoretical equilibrium atomic volumes (in Bohr3) for
selected transition metals calculated using the EMTO method (ordinate) and two full-potential
methods (abscissa) [158, 159]. The volume for Y has been divided by a factor of 2 in order to
fit on the present scale. Circles denote the FP-LMTO results [158], and squares the FP-LAPW
results [159].
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Figure 7.2: Comparison between different theoretical equilibrium bulk moduli (in GPa) for
selected transition metals calculated using the EMTO method (ordinate) and two full-potential
methods (abscissa) [158, 159]. For notation see caption for Figure 7.1.
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Figure 7.3: Comparison between the theoretical and experimental equilibrium hexagonal lattice
parameter (c/a) for hexagonal simple and transition metals. Theoretical values were calculated
using the EMTO method (ordinate) and a full-potential method [158] (abscissa). The experi-
mental data for Sc is from [161], and the rest from [160] (abscissa). The horizontal dashed lines
mark the deviations between the FP-LMTO and experimental values. Note that the FP-LMTO
result for Y (1.529) is not shown.

is determined by minimizing the total energy with respect to the volume and c/a. This type of
calculation necessitates increased accuracy compared to that needed for the equation of state.
This is because the total energy has to be computed against anisotropic lattice distortion, which
usually results in a much smaller energy change than that due to the isotropic distortion, i.e.
volume change.

In Figure 7.3, we compare the EMTO c/a values for 13 hcp metals with those calculated using
the FP-LMTO method [158] and with the available experimental data [160]. At temperatures
below 673 K, lanthanum has a double-hcp (dhcp) structure with c/a ratio of 3.225 [160, 161]. In
Figure 7.3, the EMTO result for La was obtained for the hcp phase, and therefore we compare
this with half of the experimental dhcp axial ratio. Both sets of theoretical results from Figure
7.3 were obtained using the Generalized Gradient Approximation (GGA) for the exchange-
correlation functional [8, 9, 15, 16]. Note that the FP-LMTO calculation used the functional
proposed by Perdew and Wang [8], whereas the EMTO calculations employed the functional by
Perdew, Burke, and Ernzerhof [15].3

Except for Y and Ti, the agreement between the EMTO and the FP-LMTO hexagonal
axial ratios is very good. Yttrium and titanium have high-lying semi-core states, which have a
significant influence on the equilibrium properties. Furthermore, in these metals the total energy
versus c/a is very shallow near the energy minimum. Accordingly, we ascribe the discrepancies
between the theoretical data for Y and Ti to the numerical difficulties associated with such
calculations. The agreement between theory and experiment is also satisfactory. Somewhat
larger deviations (0.7−1.5%) can be seen for Hf, Ti and Sc. However, we should point out
that for these elements the measured c/a values also show some scatter. For instance, two
independent experimental measurements reported 1.58 [161] and 1.60 [162] for the equilibrium
hexagonal axial ratio of Sc.

3In literature, these two GGA level approximations are often referred to as the PW91 [8] and PBE [15]
approximations.
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Table 7.1: Theoretical and experimental equilibrium atomic radius (w in Bohr), bulk modulus
(B in GPa) and single crystal elastic constants (cij in GPa) for fcc Cu, bcc Fe and fcc Co. The
EMTO, PAW and FP-LAPW calculations were performed at the theoretical equilibrium vol-
ume using the GGA functional [15], whereas the FP-LMTO calculations used the experimental
volumes in combination with the LDA functional.

fcc Cu w B c11 c12 c44

EMTO 2.687 142 167 129 84.2
PAWa 2.682 139 171 122 75.3
FP-LMTOb - 165 193 151 82

Expt. 2.667c 133c 169d 122d 75.3d

bcc Fe w B c11 c12 c44

EMTO 2.640 191 294 139 96.3
FP-LAPWe 2.643 186 279 140 99

Expt.f 2.671 172 232 136 117

fcc Co w B c11 c12 c44

EMTO 2.606 213 280 179 161
FP-LAPWe 2.608 216 325 189 156

Expt. 2.623e 182-198g 210-250g 140-201g 77-128g

a Ref. [163] e Ref. [165]
b Ref. [195] f experimental [167]
c experimental [131] g experimental [166]
d experimental [164]

7.1.2 Elastic constants of some selected metals

In Table 7.1, we compare the theoretical single crystal elastic constants for fcc Cu, bcc Fe and
fcc Co calculated using the EMTO method, and the full-potential projected augmented wave
(PAW), linear muffin-tin orbital (FP-LMTO) and linear augmented plane wave (FP-LAPW)
methods. For completeness, available experimental data are also shown.

For both the paramagnetic fcc Cu and the ferromagnetic bcc Fe, there is a good agreement
between the EMTO and former theoretical data. For these two metals theory is found to
reproduce with high accuracy the measured elastic constants. The deviation between the EMTO
and FP-LAPW results is somewhat larger in the case of ferromagnetic fcc Co. However, in
the mirror of the reported experimental uncertainties, these theoretical predictions can also be
considered satisfactory.

7.1.3 Vacancy Formation Energy

The theoretical description of vacancies has been used several times as a benchmark of total
energy calculation methods [168, 169, 170]. The formation energies of mono vacancies in fcc Al
are listed in Table 7.2. There are two important issues that should be considered in this type
of calculation. First, the size of the supercell should be sufficiently large in order to minimize
the vacancy−vacancy interaction. Second, in alkali, alkaline earth and p metals the valence
electrons are free-electron like, and therefore the Brillouin zone sampling should be performed
with high accuracy. The latter problem is less severe for transition metals in which the d states
are more localized in contrast to the long-ranging s and p states.

The EMTO results from Table 7.2 were obtained for fcc supercells of 16 and 32 atoms using
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Table 7.2: Theoretical (LDA) and experimental formation energies (Ev in eV) and relaxation
of the first nearest-neighbor lattice sites (δNN in %) for a vacancy in fcc Al. The EMTO
calculations have been performed on 16 (numbers in parenthesis) and 32 atom supercells.

EMTO Full-potential Experimental

Ev, un-relaxed 0.84(0.89) 0.82a,0.73b -
Ev, relaxed 0.66(0.64) 0.66a,0.62b,0.66c 0.67±0.03d

δNN -1.41(-1.58) -1.50b -
a pseudopotential [168] c pseudopotential [169]
b KKR [170] d experimental [171]
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Figure 7.4: Formation energy as a function of the nearest-neighbor distance (NN) for a vacancy
in fcc Al. The energy minima correspond to −1.58% and −1.41% inward relaxation of the first
coordination shell around the vacancy in 16 (dashed line) and 32 (solid line) atoms supercells,
respectively.

the LDA for the exchange-correlation functional.4 It has been shown [81] that increasing the
size of the supercell beyond 32 atoms, as long as the proper convergence of the Brillouin zone
sampling is ensured, has no significant effect on the formation energy. The un-relaxed energies
from Table 7.2 were obtained for ideal fcc based supercells, while the relaxed values correspond
to the radial relaxation of the nearest-neighbor sites (NN) of the vacancy. The changes of the
vacancy formation energies with the NN distances are shown in Figure 7.4.

The un-relaxed and relaxed EMTO energies for 32 atoms supercell agree very well with
the pseudopotential results from [168, 169], but they are 13% and 6%, respectively, larger than
those obtained using the full-potential KKR method [170]. This difference may be assigned to
the fact that in Ref. [170] the relaxation of the effective potential beyond the nearest-neighbor
sites around the vacancy was neglected. The EMTO method gives a small inward relaxation for
the NN lattice sites, in good accordance with the full-potential KKR results [170].

4Usually, the vacancy formation energies are expressed in eV per vacancy: 1 Ry ≈ 13.605698 eV.
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Table 7.3: Theoretical and experimental [159] equilibrium atomic radii and bulk moduli for some
selected non-metallic solids. The theoretical results were obtained using the EMTO method in
combination with LDA [7], GGA [15] and LAG [17] energy functionals. The mean absolute
values of the relative deviations between the EMTO values and the experimental data are given
(∆tot). The equilibrium atomic radii (w) are expressed in Bohr and the bulk moduli (B) in
GPa. The crystal structures designations are: A4 diamond, B3 zincblende, and B1 NaCl type.

str. wLDA wGGA wLAG wexpt. BLDA BGGA BLAG Bexpt.

Si A4 3.163 3.198 3.189 3.182 100 92.8 94.0 98.8
Ge A4 3.303 3.384 3.354 3.318 71.6 61.2 64.0 76.8
GaAs B3 3.296 3.375 3.346 3.312 73.0 62.0 72.1 74.8
NaCl B1 3.202 3.346 3.337 3.306 32.9 23.0 21.7 24.5
∆tot 1.2% 1.4% 0.8% 11.2% 12.4% 9.1%

7.2 Non-metallic Solids

7.2.1 Equation of State for Selected Semiconductors and Insulators

The EMTO equilibrium atomic radii and bulk moduli for four common non-metallic systems are
compared with the experimental data in Table 7.3. The theoretical values are listed for the LDA
and GGA and LAG approximations for the exchange-correlation functional. We observe that
LDA and GGA give similar mean absolute values of the relative errors. Like for the 5d transition
metals, the LDA over-binding is overcompensated by the gradient correction within the GGA.
On the other hand, for solids from Table 7.3, the simple LAG gradient level approximation
outperforms both LDA and GGA, giving 0.8% and 9.1% for the mean errors in atomic radius
and bulk modulus, respectively.

7.2.2 Elastic Properties of Solid Helium under Pressure

With the refinement of high-pressure techniques, there has been accelerated interest in the
properties of rare gas solids. An obvious question that is raised in connection with high-pressure
measurements is the hydrostatic limit of the pressure medium [186]. Below this pressure limit,
the medium acts as a quasi-hydrostatic pressure-transmitting environment. At higher pressures
nonhydrostaticity develops, which might affect the measured physical properties. Solid helium
is one of the most important among the rare gas solids, because it is considered as the best
quasi-hydrostatic medium [186, 187, 188, 189].

During the last few decades, numerous experimental investigations focused on the high-
pressure physical properties of solid He. Zha et al. [190] measured the complete set of room-
temperature single-crystal elastic constants between 13 and 32 GPa, whereas Nabi et al. [191]
reported a density functional description of the equation of state and elastic properties up to
150 GPa.

At low temperature and pressures below ∼ 12 GPa, He crystalizes in hcp structure [192,
193, 194]. With increasing temperature a fcc phase is stabilized from ∼ 15 K and ∼ 0.1 GPa to
∼ 285 K and ∼ 12 GPa. Apart from this small fcc stability field, the hcp structure remains the
stable phase of solid He up to 58 GPa, the highest pressure considered in experiments [192]. The
stability of hcp phase is fully supported by the EMTO calculations carried out using the LDA,
GGA and LAG energy functionals.5 In Figure 7.5, we show the computed enthalpy (H) as a
function of pressure and crystal structure. The enthalpies for the fcc (∆Hfcc) and bcc (∆Hbcc)

5The low-pressure regime in rare gas solids is governed by van der Waals interactions, which cannot be described
by the traditional density functional approaches. Therefore, the EMTO results for He are presented only for
pressures above ∼ 10 GPa.
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Figure 7.7: Elastic constants of hcp He as functions of pressure. Open triangles: EMTO-GGA
results, filled circles: experimental data [190].

structures are plotted relative to that of the hcp phase (∆Hfcc/bcc ≡ Hfcc/bcc −Hhcp). All three
density functionals predict the hcp structure as the most stable low-temperature phase of He.
At 10 GPa the calculated LDA, LAG and GGA enthalpy differences are ∆Hfcc = 0.03, 0.01 and
0.02 mRy/atom and ∆Hbcc = 0.44, 0.28 and 0.29 mRy/atom. The pressure further stabilizes
the hcp phase relative to the cubic structures, with an average ∂∆H/∂p slope of 0.15 and 0.70
mRy per 100 GPa, for the fcc and bcc structures, respectively.

The LDA, LAG and GGA equation of states for hcp He are compared with the available
experimental data [190, 192] in Figure 7.6. As one can see, the LDA strongly overestimates
the bonding, giving ∼ 15% smaller volume near p = 15 GPa than the experiment. This over-
binding is reduced to below 5% at pressure above 100 GPa. At the same time, both gradient
level approximations give results in good agreement with experiments. The correspondence
between GGA and experiment is remarkable at pressure ≤ 30 GPa. For higher pressure LAG
outperforms the other two approximations. However, because the experimental elastic constant
of hcp He are available only for p =13−33 GPa [190], and for this pressure range the GGA gives
the best agreement with the experimental pressure−volume data, the elastic constants have been
computed using this approximation.

The complete set of hexagonal elastic constants of solid He is plotted as a function of pres-
sure in Figure 7.7. We can see that the theoretical elastic constants agree very well with the
experimental data [190]. In fact, the small discrepancies are below the typical errors obtained
for the transition metals in conjunction with the GGA [17, 159, 195]. We find that all five
elastic constant are positive and increase monotonously with p for the entire pressure interval
considered in this study. Since the theoretical cij values from Figure 7.7 satisfy the stability
conditions from Equation (6.25), the hcp phase of He remains mechanically stable up to at least
150 GPa.

Within the accuracy of the EMTO method, the axial ratio of the hexagonal He is calculated
to be ideal, i.e. (c/a)0 ≈ 1.63, and show negligible volume dependence. This is in line with
experimental findings below 23.3 GPa [194]. Due to the flat volume dependence of (c/a)0, at
each pressure we have c33−c11 ≈ c12−c13. The calculated anisotropy of the compressional wave,
∆P (see Section 6.2) is around 1.12−1.13, and shows no pressure dependence. This result is
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Table 7.4: Theoretical ground state parameters of ScAlO3 calculated using the EMTO method in
combination with the LDA and GGA energy functionals. w, B and dB/dp denote the equilibrium
average atomic radius (in Bohr), bulk modulus (in GPa) and pressure derivative of the bulk
modulus, respectively. For comparison the available room temperature experimental data are
also shown.
str. wLDA wGGA wexpt. BLDA BGGA Bexpt.

(
dB
dp

)
LDA

(
dB
dp

)
GGA

(
dB
dp

)
expt.

Pbnm 2.48 2.52 2.47a,b 245 214 218a 4.2 4.3 4.0a

249c

232d

Pm3̄m 2.49 2.53 - 228 198 - 4.2 4.3 -
a [202], b [200], c [207], d [208].

in slight disagreement with experiment [190], where c11 ≈ c33 (i.e. ∆P ≈ 1) and c12 ≈ c13

was found within the experimental error bars. Therefore, the theoretical results violate the
isotropy condition for a hexagonal symmetry [130]. The pressure factors of the two shear wave
anisotropies, ∆S1 =1.60−1.66, and ∆S2 =0.87−0.83, are also calculated to be small. These
anisotropy ratios are somewhat different from the experimental ones [190]. In particular, we
find that the calculated ∆S1 for He is relatively close to that of solid H2 [190]. It is interesting
to note that the theoretical anisotropy ratios for hcp He are within the range of those obtained
for hexagonal metals with (c/a)0 ≈ 1.63. For instance, Mg has ∆P = 1.04, ∆S1 = 1.19, and
∆S2 = 0.98. These figures for Co are 1.17, 1.52, 1.06 and for Re 1.12, 1.36, 0.95 [196]. Therefore,
at 0 K and zero pressure the monocrystalline He has similar anisotropy to the hcp metals from
the periodic table.

The EMTO polycrystalline anisotropy ratio (Equation (6.41)) of hcp He is ∼ 0.02, and
shows negligible pressure dependence. Most of the cubic and low symmetry crystals have elastic
anisotropy ratios between 0.0−0.21 [130, 136]. On this scale, the anisotropy of hcp He can
be considered to be small. The low polycrystalline anisotropy ratio and its weak pressure
dependence explain why solid He can be used as a quasi-hydrostatic medium in high-pressure
experiments up to at least 150 GPa.

7.2.3 Magnesium-silicate and Scandium-aluminate Perovskites

Magnesium-silicate perovskite is the most abundant mineral of the Earth’s lower mantle, and
thus the knowledge of its properties is crucial in advanced seismic research. Due to the marginal
stability of MgSiO3, a high temperature measurement of its elastic properties requires the si-
multaneous application of sufficient pressure to prevent retrogressive transformation to an amor-
phous or pyroxene phase [197]. The high frequency ultrasonic measurement cannot be reliably
performed in a large volume apparatus within the silicate perovskite stability field, therefore, it
is more suitable from an experimental point of view to measure the thermo-elastic properties of
close structural analogues [198, 199, 200, 201]. Since the orthorhombic ScAlO3 has molar vol-
ume, structural distortion relative to the cubic structure and compressional behavior [202, 203]
similar to that of magnesium-silicate, it was proposed [201] to be the closest structural analogue
of MgSiO3. Furthermore, ScAlO3 has also been considered frequently as a prototype of ABO3

perovskite structures: its structure shows close resemblance to that of rare earth orthoferrites,
e.g., GdFeO3 and LuFeO3 [201]. Using the EMTO method, Magyari-Köpe et al. [204, 205]
studied the thermodynamic properties of MgSiO3 and ScAlO3 and confirmed the observed sim-
ilarities between these two perovskites.

The cubic perovskite structure has Pm3̄m symmetry and the Mg(Sc) cation is situated in the
center of the cube defined by eight corner sharing SiO6(AlO6) octahedra. In the orthorhombic
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Table 7.5: Theoretical (LDA) and experimental equilibrium atomic radii (w in Bohr), bulk
moduli (B in GPa) and structural energy difference (∆E in mRy/atom) of MgSiO3 perovskite
in orthorhombic (Pbnm) and cubic (Pm3̄m) phases.

EMTO Full-potential Experimental

str. w B ∆E w B ∆E w B

Pbnm 2.358 253 - 2.349a,2.333b 266a,259b - 2.357b 261b

Pm3̄m 2.394 258 23.3 2.381b 258b 20a,22.1b - -
a [209], b [210].
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Figure 7.8: Calculated total energies (per atom) of orthorhombic and cubic ScAlO3 as a function
of the average atomic volume. The energies are plotted relative to the orthorhombic ground state
total energy. The symbols denote the EMTO total energies (LDA) and the connecting line is
a Morse-type fit. In inset, the equation of state of orthorhombic phase is compared to the
experimental results [202].

phase with Pbnm symmetry, the Mg(Sc) and four oxygen atoms occupy the (4c) positions, the
Si(Al) atoms are in the (4b) positions, and the rest of the oxygen atoms are situated in the general
(8d) positions. For a fixed volume, there are totally nine independent structural parameters in
Pbnm lattice. Experimental and theoretical investigations on MgSiO3 and ScAlO3 orthorhombic
perovskites [197, 202, 204, 205] confirmed that the Pbnm structural parameters remain nearly
constant with increasing pressure. Because of that, the EMTO study was carried out using the
experimental structural parameters [202, 206].

The EMTO ground state parameters of ScAlO3 are listed in Table 7.4, along with the avail-
able experimental results for the orthorhombic phase. The mean deviations between the theo-
retical average atomic radius and bulk modulus and the experimental data [202, 200, 207, 208]
are 0.4% and 6.5% for the LDA, and 2.0% and 7.9% for the GGA functionals, respectively. We
also note that the theoretical pressure derivative of the bulk modulus for MgSiO3, calculated
within the LDA [209], is 4.2, which agrees very well with the LDA value from Table 7.4. The
fact that for perovskites the LDA yields somewhat better equilibrium parameters than the GGA
is consistent with our observation made in the case of semiconductors and insulators. Further
support for this is given in inset of Figure 7.8, where the LDA pressure−volume relation for
orthorhombic ScAlO3 is compared with the room temperature experimental data [202]. There
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Figure 7.9: Calculated total energies (per atom) of orthorhombic and cubic MgSiO3 as a function
of the average atomic volume. The energies are plotted relative to the orthorhombic ground state
total energy. The symbols denote the EMTO total energies (LDA) and the connecting line is
a Morse-type fit. In inset, the equation of state of orthorhombic phase is compared to the ab
initio molecular dynamics results [210].

is an excellent agreement between the two sets of data, the average deviation between theoretical
and experimental pressures being close to the numerical error bar of the EMTO calculation. In
Table 7.5, the EMTO-LDA zero pressure volumes, bulk moduli and structural energy difference
for MgSiO3 are compared to the full-potential and experimental results [209, 210]. The agree-
ment between the theoretical results, in view of the fact the full-potential techniques also have
their own numerical approximations, may be considered satisfactory.

The EMTO-LDA total energies per atom for the Pbnm and Pm3̄m phases of ScAlO3 and
MgSiO3 are plotted in Figures 7.8 and 7.9, respectively, as a function of the average atomic vol-
ume. The equations of state were obtained by fitting the LDA energy versus volume data to a
Morse form (Section 6.1). It is seen from Figure 7.9, that for MgSiO3 the stability of orthorhom-
bic phase with respect to the cubic phase increases with pressure from 23.3 mRy/atom at zero
pressure to ∼ 48 mRy/atom at 150 GPa. This is in line with the ab initio molecular dynamics
results [210], where at 150 GPa an increase of ∼ 30 mRy/atom (relative to the zero pressure
value) of the stability of the Pbnm phase with respect to the Pm3̄m phase was reported. On
the other hand, for ScAlO3 (Figure 7.8), the total energy difference between the two structures
is ∼ 34 mRy/atom and it shows a weak volume dependence. In the inset of Figure 7.9, we com-
pare the EMTO pressure−volume relation for MgSiO3 with the ab initio molecular dynamics
results [210]. The two sets of data are very close, and the slightly increasing deviation between
them at large pressures may be assigned to the lattice relaxation neglected in the EMTO study.

7.3 Transition-metal Nitrides

Transition-metal nitride films are frequently used as hard, protective coatings for soft materials.
In Table 7.6, we give the EMTO results for the bulk equilibrium properties of titanium-nitride
and vanadium-nitride. For comparison, a few GGA results calculated using pseudopotential
[214, 215] and FP-LMTO [216] methods are also listed (numbers in parenthesis). Except the
pseudopotential result for TiN, the gradient corrections seem to be insufficient to remove the
strong LDA over-binding. Note that the GGA errors for w of TiN and VN are close to those
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Table 7.6: Theoretical and experimental equilibrium atomic radii and bulk moduli of TiN and
VN. The theoretical results were obtained using the EMTO method in combination with LDA [7],
GGA [15] and LAG [17] energy functionals. The mean absolute values of the relative deviations
between the EMTO values and the experimental data are given (∆tot). The equilibrium atomic
radii (w) are expressed in Bohr and the bulk moduli (B) in GPa. Numbers in parenthesis are
theoretical results calculated using pseudopotential [214, 215] and FP-LMTO [216] methods.

wLDA wGGA wLAG wexpt. BLDA BGGA BLAG Bexpt.

TiN 2.433 2.480 2.459 2.486a 332 286 302 318c

(2.492d,2.480e) (278d,270e)
VN 2.346 2.398 2.373 2.427b 342 292 313 268c

(2.421f ,2.398f ) (317f ,330f )

∆tot 2.7% 0.7% 1.7% 16.0% 9.5% 11.0%
a Expt. [211], d Pseudopotential [214],
b Expt. [212], e FP-LMTO [216],
c Expt. [213], f Pseudopotential [215].

obtained for elemental Ti and V (Table 7.1). Generally, when an approximation underestimates
the volume it overestimates the bulk modulus and vice versa. Apparently, this is the case for
VN, but both gradient-level bulk moduli for TiN are found to be smaller than the reported
experimental value of 318 GPa [213]. Furthermore, in contrast to the experimental data, all
three functionals give slightly larger bulk modulus for VN than for TiN. Since independent full-
potential results [214, 215] are in line with the EMTO values, it is tempting to believe that the
experimental B values for TiN and VN from Table 7.6, measured for transition-metal nitride
films on MgO substrate, do not reflect the correct bulk values.

For the above nitrides, the most stable surfaces are the (001) facets of the B1 structure [217].
This means that at equilibrium, the real TiN and VN surfaces are preferentially formed by the
low-energy (001) facets. Using the EMTO method, we investigated the (001) surfaces of TiN
and VN. In Table 7.7, the EMTO top layer relaxations are compared with the pseudopotential
[214, 218, 219] and experimental [220] results. These EMTO calculations were carried out
within the GGA. In the table, λb is the bulk inter-layer distance, and ∆λs

Ti/V and ∆λs
N denote

displacements for the transition metals and nitrogen atoms from the surface layer with respect
to the ideal geometry.

We find a rippled relaxation on both nitride surfaces. The Ti and V atoms move inward with
0.23 and 0.32 Bohr, respectively, which represent 5.5% and 8.5% of the theoretical equilibrium
bulk inter-layer separations. On both nitride surfaces, the N atoms move outward with approx-
imately 0.06 Bohr (∼ 1%). The EMTO figures for the relaxation are in good accordance with
other theoretical [214] and experimental [220] results. It is interesting that the crystallographic
roughness6 on the VN surface is 33% larger than on the TiN surface, i.e. the chemically flat
VN surface is more corrugated in the crystallographic sense compared to the TiN surface.

In the absence of other all-electron results, the EMTO surface energies from Table 7.7 are
compared with the available pseudopotential data [214, 218, 219]. We find that the EMTO
surface energies are significantly larger than the corresponding pseudopotential values. It would
be plausible to ascribe this discrepancy to the relaxation of the subsurface layers, which has been
neglected in the EMTO study. However, the surface energies for unrelaxed geometries also show
large discrepancies. For instance, in EMTO the top layer relaxation reduces the surface energy
of TiN by 0.32 J/m2, whereas this figure in pseudopotential study varies between 0.28 J/m2

[214] and 0.47 J/m2 [218]. Hence, the observed deviations in the surface energies for nitrides
6By crystallographic roughness we mean the distance between the two monoatomic top layers: a transition

metal and a N layer.
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Table 7.7: Equilibrium surface geometry (distance relative to the ideal surface, ∆λ in Bohr)
and the corresponding surface free energy (γ in J/m2) for the (001) surfaces of TiN and VN.
For comparison the bulk inter-layer distances (λb in Bohr) are also listed. The pseudopotential
results [214, 218, 219] were obtained within the self-consistent GGA scheme. In the EMTO
calculations, total energy was calculated within the GGA using the self-consistent LDA electron
density.

surface λb ∆λs
Ti/V ∆λs

N γ(001)

TiN (001) 3.99 -0.23 0.06 1.98
-0.231 0.111 1.361,1.283,1.364

VN (001) 3.86 -0.32 0.06 1.75
-0.302 0.022 1.114

1 pseudopotential [214], 2 experiment [220],
3 pseudopotential [218], 4 pseudopotential [219].

should have another origin.

Liu et al. [219] calculated the surface energies of several ceramics with B1 structure using a
pseudopotential approach combined with both LDA and GGA functionals. For all ceramics con-
sidered, the surface energies turned out to be very sensitive to the choice of exchange-correlation
functional. For instance, their GGA surface energy for TiN agrees well with the previous pseu-
dopotential results from Table 7.7, whereas their LDA surface energy is 2.18 J/m2, i.e. ∼ 60%
larger than the GGA value. The latter is in fact close to the EMTO value of 1.98 J/m2. We
recall that the EMTO self-consistent calculations for TiN and VN were performed within the
LDA for the effective potential and only the total energy was computed within the GGA. This
may explain why the EMTO surface energies from Table 7.7 are significantly higher compared
to the GGA pseudopotential values.

Before closing this section, we comment on the accuracy of the LDA and GGA for metal
surfaces. The performance of some common exchange-correlation approximations was studied
within the self-consistent jellium surface model by Perdew et al. [9]. They found that the LDA
gives surface energy in good agrement with the experimental result, especially for slowly varying
density profiles. Its success was ascribed to a cancelation between the errors in the exchange
and correlation energies. The gradient correction to the LDA [15] represents an important
improvement for the correlation part, but it underestimates the exchange energy, and as a
consequence it gives surface energies which are 7−16% lower than the LDA values for jellium and
16−29% lower than the experimental results. Another important observation is that the LDA
yields surface energies in better agreement with the broken bond model than the GGA [219]. The
broken bond model is based on the cohesive energy7, which can be calculated accurately within
the GGA. Assuming that the broken bond model is valid for nitride surfaces, one concludes that
the GGA surface energies are not reliable. On these grounds, one may therefore prefer the LDA
approximation for the effective potential near the metal surfaces.

7.4 Numerical Details for Chapter 7

In EMTO calculation of the equilibrium bulk properties presented in Sections 7.1.1 and 7.2.1,
the basis set included s, p, d, f orbitals, i.e. lmax = 3 was used (Section 2.1.2). For the slope
matrix we used the two-center Taylor expansion (Section 3.4.3) with n = m = 6 with ω0 = 0
and ω1 = −(20 − 40) depending on the system. The kink-cancelation equation (Section 2.1.3)
was solved for the valence electrons, and the rest of the states, including the high-lying core

7According to the broken bond model, the surface energy per atom is
(
2− η −√η)

)
Ec/2, where η is the

ration between the coordination numbers of surface and bulk atoms, and Ec is the cohesive energy [219].
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states, were recalculated after each iteration. This approximation is often named as the soft-
core approximation. The Green function was calculated for 16 complex energy points distributed
exponentially on a semi-circular contour. The convergency criterion for the total energy and
Fermi level was set to 10−7 Ry and 10−10 Ry, respectively.

For non-metallic solids with A4, B1 and B3 structures (Section 7.2), two empty spheres were
included to reduce the overlap error (Equation (2.56)). In MgSiO3 and ScAlO3 perovskites, the
overlap between the atomic spheres is ∼ 33%, and the muffin-tin discontinuities vary between
−0.13 Ry and 0.11 Ry. In order to reduce the overlap error, the radii of the potential spheres
around the oxygen atoms were set to sO ≈ 0.8wO, where wO is the atomic radius for oxygen.
With this choice, the largest linear overlap was decreased to ∼19−20%, and the error in the
kinetic energy to ∼ 10 µRy.

The equation of state and elastic properties of solid He were computed using s, p, d orbitals.
The Green function was calculated for 32 complex energy points distributed exponentially on a
semicircular contour enclosing the He 1s2 states.

All self-consistent calculations were performed using the LDA effective potential and the
total energies were computed within the LDA, GGA and LAG approximations. The shape
functions were calculated for lsmax = 30 (Section 4.1) on a linear mesh between the inscribed and
circumscribed containing 120−150 mesh points. The equilibrium volume and the bulk modulus
were determined from the Morse function (Section 6.1) fitted to the ab initio total energies
calculated for five different atomic volumes.
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Chapter 8

Applications: Binary Alloys

In this chapter the application of the EMTO method in the case of binary substitutional random
alloys will be demonstrated. First, in Section 8.1, we shall describe how the main shortcoming
of the single-site approximation is handled within the present method. In Section 8.2, applica-
tions in the case of Al-based alloys and (MgAl)B2 will be presented. The thermodynamic and
mechanic stability of two well-known Hume−Rothery systems will be investigated in Section
8.3. Theoretical studies of some binary transition metal alloys will be reviewed in Section 8.4.
The application of the EMTO method to f -electron systems will be illustrated on CeTh alloy
in Section 8.5. Finally, in Section 8.6, the equilibrium concentration profile calculation will be
illustrated in the case of the PdAg system. A few important numerical details of the EMTO
calculations presented in this chapter are listed in Section 8.7.

8.1 The Single-site Approximation

Within the Coherent Potential Approximation (CPA), one single impurity is embedded into a
homogeneous effective medium described by the coherent potential and coherent Green func-
tion. Accordingly, no information is provided on how the actual potential is altered around the
impurity. This single-site approximation is the main drawback of the CPA. In the Schrödinger
equation, the single-site approximation is overcome by compensating the charge redistribution
from the effective medium. However, in the Poisson equation no such simple solution exists. To-
day, probably the most efficient approach to handle this problem is the screened impurity model
(SIM) introduced by Korzhavyi et al. [123, 124]. This model involves two a priori parameters,
which are determined from supercell calculations. They are obtained by matching the CPA total
energy and charge transfer to the real total energy and charge transfer calculated using a large
unit cell. In many applications, these two parameters are related to each other and thus can be
chosen to be the same. The EMTO results from Chapters 8 and 9 were calculated using a single
SIM parameter α.

We illustrate the way the α is determined in the case of Al-rich AlLi, Pu-rich PuGa and PuAl
alloys.1 At ambient conditions, the dilute AlLi solid solutions have the fcc crystal structure.
For Pu-based alloys, we consider the δ-Pu phase (fcc), which is stable at temperatures between
593 and 736 K. First, we set up a 16-atom supercell (SC) containing 15 Al(Pu) atoms and one
impurity, corresponding to an average impurity concentration of 6.25%. The total energy of
the fcc supercell (E(SC)) was computed using the EMTO method. Special care was taken on
the accuracy of the SC calculations (e.g., using a well converged Brillouin zone sampling). In
the second step, using the CPA, we computed the total energies of Al1−xLix, Pu1−xGax and
Pu1−xAlx systems for x = 0.0625 as a function of α. In both SC and CPA calculations the
lattice constant was fixed to the bulk lattice constant calculated for elemental Al(Pu). The

1In the present thesis, we use the short notation AB (instead of the usual A-B) for a solid solution between A
and B.
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Figure 8.1: Total energy for fcc Al0.9375Li0.0625 random alloy calculated using the EMTO method
in combination with the LDA (open circles) and the GGA (filled circles) as a function of SIM
parameter α [123, 124]. The energies are plotted relative to the total energy of an fcc based
supercell containing 15 Al and 1 Li.

CPA energies are plotted in Figures 8.1 and 8.2 relative to the total energy per atom calculated
for the corresponding SC. Results are shown for LDA and GGA energy functionals.

In the AlLi system, the considerable CPA charge misfit leads to a CPA total energy ECPA(α)
which sensitively depends on α. The ∼ 2 mRy difference between the CPA and SC total energies,
calculated for α = 0.6 rapidly drops to zero and becomes negative with increasing α. The
optimal SIM parameter is obtained from the condition ECPA(α) − E(SC) = 0. For the GGA
energy functional, this is realized for αAlLi = 0.987. Note that the optimal α is not sensitive to
the choice of exchange-correlation functional.

In Pu-based alloys, the optimal SIM parameters turn out to be significantly lower compared
to αAlLi. From Figure 8.2, we have αPuGa = 0.686 and αPuAl = 0.643, and, similar to AlLi, they
exhibit a weak dependence on the energy functional. Most of the binary alloys have optimal
α close to those obtained for the above Pu-based alloys, and only a few systems require SIM
parameters as large as 1.

There are situations, like in Al-rich AlMg alloys, where the CPA charge misfit (defined in
Equation (5.23)) is small and therefore the CPA total energy shows negligible dependence on
the SIM parameter. In this situation, the above technique is inappropriate for finding a proper
α value. However, for these systems the calculated physical parameters are also less sensitive to
the choice of α.

8.2 Light Metal Alloys

8.2.1 Aluminum−Lithium Alloys

For years, Al-based alloys were in the focus of theoretical and experimental investigation. Their
complex electronic structure and the observed anomalous trends of bulk properties against com-
position have always presented a great scientific challenge. For instance, several theoretical
investigations [123, 221, 222, 223, 224], based on the virtual crystal approximation (VCA), CPA
and cluster expansion approach, were dedicated to reveal the origin of the rather unusual prop-
erties of AlLi. As two interesting features of this system, one should mention the contraction
of the equilibrium volume relative to a linear interpolation between Al and Li [225], and the
drastic increase of the Young’s modulus with Li content [226]. Although most of the above
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studies reproduced the characteristic features of the composition dependent equilibrium vol-
ume, the theoretical mapping of the elastic properties against concentration has remained a
problem. Taga et al. [227], using the EMTO method, have reviewed this question and presented
a detailed theoretical description of the ground state properties of AlLi solid solutions.

In order to evaluate the relative merits of the LDA, GGA and LAG approximations in the
case of Al-rich Al-Li alloys, we compare their performances for the equilibrium volume and
elastic properties of fcc Al. In Section 7.1.1 we saw that for the equilibrium volume and bulk
modulus of Al the GGA is superior to that of the LDA and LAG approximations. In Table 8.1,
we compare the EMTO single-crystal elastic constants for fcc Al with the experimental data
[226, 232] and some former ab initio results calculated using full-potential (FP) linear augmented
plane wave (LAPW) [228, 231] and linear muffin-tin orbitals (LMTO) [229, 230] methods. Again,
letting the error connected with these calculations be described by the difference between the FP
results from Table 8.1, we obtain that the agreement between the EMTO and former theoretical
values is very good. The calculated average deviations between the experimental [226] and
EMTO data for elastic constants, obtained within LDA, GGA and LAG, are 25%, 10%, and
13%, respectively. Therefore, we can conclude that in general the GGA yields significantly better
ground state properties for Al compared to the LDA, and marginally better compared to the
LAG approximation. The rest of the results presented in this section have been obtained within
the GGA.

In Figure 8.3, we give the EMTO equilibrium volume and enthalpy of formation for AlLi
alloys as a function of concentration. Data are shown for two different α values from Equations
(5.23) and (5.34). We find that α ≈ 0.9, which is close to the optimal value determined in the
previous section, reproduces well the observed trend in the equilibrium volume, whereas α = 0.6
gives an increase in V with Li addition, which is in between the experimental value and the one
estimated from the linear rule-of-mixture. The enthalpy of formation of fcc Al1−xLix alloy is
calculated as

∆H(x) = E(Al1−xLix) − (1− x)E(Al)− xE(Li), (8.1)

where all the energies are obtained for the theoretical equilibrium volumes and expressed per
atom. E(Al) and E(Li) are the total energies of fcc Al and Li, respectively. In Figure 8.3
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Table 8.1: Theoretical and experimental elastic constants (in GPa) and elastic anisotropy for
fcc Al. The EMTO values were obtained within LDA, GGA and LAG approximations for the
exchange-correlation functionals. References are given for the full-potential (FP) and experi-
mental (expt.) data. The linear augmented plane wave (LAPW) study [231] was carried out for
the experimental volume, and the experimental values from Ref. [230] were extrapolated to 0
K.

LDA GGA LAG FP expt.

c11 110.8 98.9 101.3 121.9±1.6a, 101.5b 108e 106.9f

110.5c, 103.3d 114.3g

c12 72.8 65.7 66.9 62.7±1.3a, 70.4b 61e, 60.8f

58.0c, 53.3d 61.9g

c44 45.1 38.1 39.6 38.4±3.0a, 31.7b 29e, 28.2f

31.1c, 28.5d 31.6g

AE -0.79 -0.71 -0.73 -0.21a, -0.46b -0.13e,f,g

-0.12c, -0.09d

a LAPW, LDA, Ref. [228]. e Ref. [226].
b LMTO, LDA, Ref. [229]. f Ref. [232].
c LMTO, GGA, Ref. [230]. g Ref. [230].
d LAPW, LDA, Ref. [231].
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Figure 8.3: Concentration dependence of the theoretical and experimental equilibrium atomic
volume (upper panel) and mixing enthalpy (lower panel) of AlLi random alloys. Experimental
atomic volumes are from Ref. [225] (triangles) and Ref. [233] (squares). CWM stands for the
results obtained using the Connolly−Williams method [123]. The two sets of EMTO results
correspond to two different SIM parameters from Equations (5.23) and (5.34): α = 0.9 (solid
line) and α = 0.6 (dashed line).
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the EMTO enthalpy of formation is compared with that obtained using the Connolly−Williams
method (CWM) [123]. Within the CWM [67] the Madelung energy is treated exactly, and thus
gives a good reference to establish the accuracy of our approach for the formation energy of
completely random alloys. The perfect agreement between values calculated using CWM and
the EMTO method with α = 0.9 demonstrates that the charge-transfer effects can be adequately
taken into account in the single-site EMTO approach. The EMTO result for ∆H(x) confirms
the observations [123, 221] that the thermodynamic stability of AlLi solid solutions is to a large
extent determined by the Madelung energy accounting for the charge-transfer between Al and
Li subsystems.

Using a supercell approach, one can study how the local lattice relaxation (LLR) influences
the heat of formation of AlLi solid solutions. The EMTO equilibrium volume of a 16-atom
supercell containing 15 Al and 1 Li is 111.59 Bohr3. This value is very close to 111.73 Bohr3

calculated for Al0.9375Li0.0625 random alloy using the CPA with α = 0.9. Figure 8.4 shows
the variation of the total energy of Al15Li1 (∆E) as a function of the nearest-neighbor (NN)
Al−Li distance. From the energy minimum we find approximately −0.6% NN relaxation, i.e., in
Al15Li1 the Al−Li distance decreases by 0.6% compared to the equilibrium Al−Al bond length
in pure Al. The LLR decreases the total energy relative to the unrelaxed structure by −0.242
mRy/atom. Compared to other alloys, the LLR in AlLi can be considered very small. Ruban
et al. [234] proposed that the LLR is mainly governed by the change of the volume of the host
material. This is in line with the small difference obtained (∼ 0.2%) between the theoretical
equilibrium volumes of Al15Li1 and fcc Al.

The enthalpy of formation for a 16-atom supercell is −1.588 mRy/atom for an ideal fcc
underlying lattice and −1.830 meV/atom for relaxed structure. These figures slightly exceed
the mixing enthalpy obtained for the Al0.9375Li0.0625 random alloy using α = 0.9 (Figure 8.3).
Note that the optimal α ≈ 0.987 would reproduce exactly the supercell result.

In Figure 8.5, we illustrate the CPA charge-transfer effects on the single-crystal elastic moduli
of AlLi alloys. The two sets of results for c′ and c44, marked by filled symbols connected
with continuous and dashed lines, were obtained from self-consistent EMTO calculations using
α = 0.9 and α = 0.6, respectively. The variation of both sets of elastic constants with Li content
is smooth. They exhibit similar concentration dependencies, and the only important difference
between them is the position of the maxima. We find that the maximum values in c′ and c44 are
shifted towards higher concentrations with increasing α. When the calculations are carried out
at fixed volumes, e.g. those corresponding to α = 0.9 (shown by open symbols), the effect of α
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Figure 8.5: Theoretical (EMTO-GGA) cubic shear moduli (c11−c12)/2 and c44 of AlLi alloys as
a function of Li content. Filled symbols correspond to the results obtained using α = 0.9 (solid
line) and α = 0.6 (dashed line) in Equations (5.23) and (5.34). Open symbols denote results
calculated at volumes corresponding to α = 0.9, and using α = 0.6 for the elastic constant
calculations.

is even less pronounced. The largest effect on the cubic shear moduli is obtained for x = 0.2,
where we get ∂ log c44/∂ log α ≈ 0.45. This variation is one order of magnitude smaller than
∂ log ∆H(0.2)/∂ log α ≈ 4.42, calculated for the enthalpy of formation (Figure 8.4).

In Figure 8.6, the EMTO elastic constants for AlLi random alloys, obtained using α = 0.9, are
compared with the experimental data by Müller et al. [226]. We observe that the experimental
value is slightly overestimated for c12 and c44 and underestimated for c11. Such deviations
are, however, typically obtained for elemental metals in conjunction with the existing density
functional approximations. On the other hand, for all three elastic constants we find that their
variation with concentration are in excellent agreement with the experimental data. At Li
contents below 5% the calculated changes with concentration in c11, c12 and c44 are 0.86, −1.13
and 0.77 GPa per At.-% Li, respectively. These numbers are close to the observed average
variations 0.33, −0.95, and 0.51 GPa per At.-% Li [226]. Taga et al. [227] have shown that the
nonlinear concentration dependence of the cubic elastic constants arises from the peculiar band
structure of AlLi alloys. For instance, the band energy contribution to c44 is negative in the
case of Al, positive for intermediate (approx. 5−15%) Li concentrations, and zero for ∼ 20% Li,
which results in a maximum in c44 near 10 At.-% Li.

We estimate the impact of local lattice relaxations on the single-crystal elastic constant by
computing the tetragonal shear modulus c′ of Al15Li1 supercell with and without NN relaxation.
The agreement between the non-relaxed supercell value of 20.3 GPa and 21.2 GPa obtained
for Al0.95Li0.05 random alloy (Figure 8.6), is satisfactory, especially if one takes into account
the numerical difficulties associated with elastic constant calculations. The relaxed supercell
tetragonal elastic constant is 20.4 GPa. Within the error bars of the EMTO calculations, this
value is identical to that obtained for the unrelaxed geometry. The almost vanishing effect of the
LLR on the elastic constant of AlLi solid solutions can be ascribed to the small volume change
on alloying. However, in systems where the lattice relaxation is more pronounced, like in CuAu
alloys, a substantially larger impact of LLR on the elastic properties can be expected.

In the variation of the elastic constants cij with the concentration x of solute atoms in Figure
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8.6, we may single out that part, which can be accounted for as due to an average change in
the volume, i.e. in the lattice parameter. Data for higher-order elastic constants of Al give the
pressure dependence ∂c11/∂p = 5.9, ∂c12/∂p = 3.3, ∂c44/∂p = 1.9 [130]. From experiments [233]
on the lattice parameter a of dilute AlLi alloys we get (1/a)(∂a/∂x) = −0.011. When combined
with the bulk modulus of Al, we get ∂c11/∂x = 14.4 GPa, ∂c12/∂x = 8.1 GPa, ∂c44/∂x = 4.6
GPa. Thus, the effect of alloying on the lattice parameter would account for about half of the
increase observed in c11 (∼ 33 GPa [226]), about 1/10 of the increase in c44 (∼ 51 GPa [226]),
but it has a sign opposite to that observed for c12 (cf. Figure 8.6). It follows that the Li solute
atoms have an influence on c12 that depends crucially on the changes in the electronic structure.

The theoretical polycrystalline elastic moduli in Figure 8.7 (solid lines) were calculated
using single-crystal results from Figure 8.6 and the averaging techniques presented in Section
6.3.1. In figure, we included the experimental data on AlLi alloys by Müller [226], and those on
commercial 2024 Aluminum Alloy by Sankaran and Grant [235]. The observed decrease of the
bulk modulus, and the sharp increase of the Young’s and shear moduli at low Li concentrations,
are well reproduced by the theory. In order to illustrate how sensitive the polycrystalline elastic
moduli are to the value of α, in Figure 8.7 the theoretical values obtained for α = 0.6 are also
shown (dashed lines). The small effect of α on the cubic elastic constants demonstrated in
Figure 8.5, can be evidenced also in the case of B and G. A somewhat larger effect is obtained
for the Young’s modulus, where the experimental value for 11.4% Li is poorly reproduced by
the theoretical curve obtained for α = 0.6. However, it is not clear whether the 18.3% Young’s
modulus enhancement in this commercial alloy, relative to that of pure Al, is due to the solid
solution itself or to the intermetallic phase, which forms within the solid solution matrix above
∼ 12% Li [235].

The ratio between the bulk modulus and the shear modulus, shown in Figure 8.7 as B/G,
is a measure of the ductility of solids: ductile alloys are characterized by large B/G ratios,
whereas low B/G ratios are representative of brittle solids [236]. We find that a small amount of
Li makes the alloy more brittle compared to pure Al. In dilute AlLi alloys the calculated B/G
decreases with 9.6% per At.-% Li, compared to the experimental decrease of 7.6%. We note
that the opposite trend for c12 from Figure 8.6, compared to c11, leads to a rapid increase in the
cubic shear modulus c′ = (c11 − c12)/2 and thus is essential for the observed rapid decrease in
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Figure 8.9: Misfit parameters for selected Al-based alloys (alloying elements shown at the bottom
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B/G on alloying Al with Li.

8.2.2 Other Aluminum-based Alloys

Following the procedure presented in the previous section, one can compute the ground state bulk
properties of any substitutional random binary system. Below we quote some EMTO results
obtained for Al-rich AlCu, AlMg, AlMn, AlSi and AlZn solid solutions. In Figure 8.8, the
theoretical single-crystal elastic constants for AlMg are compared to the available experimental
data [237]. We find that the variations of the theoretical values with concentration are in perfect
agreement with the experimental data. In particular, we point out that both the experimental
and theoretical c11 and c12 decrease whereas c44 slightly increases with Mg addition. Note that,
in contrast to the effect of Li addition (Figure 8.6), alloying with Mg decreases c11 of Al. It is
gratifying that the EMTO method correctly accounts for such interesting differences between
alloying elements.

The calculated size misfit parameters εb (Equation (6.61)) for five Al-based solid solutions
are compared to the experimental values in Figure 8.9. An excellent agreement between the
computed and experimental εb values is observed. This figure also shows the calculated elastic
misfit parameter εG as a function of theoretical εb. We observe certain correlation between εb

and εG. For example, both the volume and elastic constant changes are negligible upon Zn
addition. Elements producing large |εb| also lead to nonzero εG. According to the theoretical
data from Figure 8.9, we can see that the elastic misfit for Mn, Cu and Mg contributes by ∼ 25%
to ε

4/3
L , i.e. to solid solution hardening (Section 6.6), whereas this effect is below 3% in the case

of Si and Zn.

8.2.3 Magnesium−Aluminum Diboride

The discovery of superconductivity in MgB2 ceramic compound placed this material in the
focus of several research activities [90, 91, 92]. The crystal structure of MgB2 has the hexagonal
symmetry (space group P6/mmm) with c/a = 1.14. Layers of Mg and B atoms are located at
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Figure 8.10: The composition dependence of the EMTO (closed symbols) and experimental [91]
(open symbols) lattice parameters in Al doped magnesium diboride, Mg1−xAlxB2.

z = 0 and z = 0.5c/a, respectively. It has been shown [91] that additional electrons to MgB2, e.g.
substitution of Al for Mg, results in the loss of superconductivity. This transition is associated
with structural collapse of the hexagonal lattice in c direction [91]. The rapid decrease of c/a
in Al doped magnesium diboride is, in turn, related to the smaller (∼ 7%) c-lattice spacing in
AlB2 compared to that of the MgB2. The crystal structure of Mg1−xAlxB2 random alloy can
be investigated using the EMTO method. In Figure 8.10, we show the calculated structural
parameters along with the experimental results from Ref. [91] as a function of Al content.
The overall agreement between theoretical and experimental data is very good. Both methods
predict almost constant a and decreasing c lattice parameters with increasing Al content. The
EMTO method partially captures the small discontinuity in the observed c-lattice spacing: there
is a clear change in the slope of theoretical c at about 20% Al. However, for a more complete
study of the structural collapse in Mg1−xAlxB2 system, the possible formation of pure Al and
Mg layers should also be taken into account.

8.3 Hume−Rothery Alloys

The Hume−Rothery binary alloys present classical systems for testing new alloy theories [60,
80, 110, 117, 240]. Here we consider two common systems: the CuZn and AgZn alloys. Due to
their ability of cold working, outstanding aqueous corrosion resistance, and also to the pleasant
lustrous appearance, the CuZn alloys or brasses have been used for hundreds of years. The AgZn
alloys find their application in rechargeable batteries with very high energy density. According
to the phase diagrams of Cu1−xZnx [239] and Ag1−xZnx [241], in both systems the fcc α-phase
is stable for x ≤ 0.37, and near equimolar concentrations the bcc β-phase is stabilized. In the
CuZn system the hcp ε-phase is stable for 0.78 ≤ x ≤ 0.86, while in the AgZn system this
interval is somewhat larger, 0.68 ≤ x ≤ 0.87. Above ∼ 97% Zn in both systems the second
hexagonal structure, the η-phase, is formed.

8.3.1 Copper−Zinc Alloys

The electronic structure and elastic properties of Hume−Rothery binary alloys have been inves-
tigated as a function of chemical composition using the EMTO method [80, 117, 118, 242]. One
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Cu1−xZnx random alloy as a function of Zn content.

fundamental question associated with such calculations is the choice of the exchange-correlation
functional. This is especially important for Zn-rich alloys, where the hexagonal axial ratio shows
a strong volume dependence. Usually, it is not possible to select a functional that has the same
accuracy for the whole range of concentrations. For instance, the LDA underestimates the equi-
librium atomic radii of Cu, Ag and Zn by 2.6%, 1.6% and 2.6%, whereas the GGA overestimates
them by 0.8%, 1.7% and 0.6%, respectively. It is seen that both approximations lead to system-
atic errors for CuZn, but neither of them are really adequate for AgZn. Note that the difference
between the performances of the LDA and GGA functionals for the end members is even more
pronounced in AuZn alloys (see Table 7.1).

In Figure 8.11, the theoretical equilibrium atomic radii for Cu1−xZnx alloys, calculated
within the LDA, are compared with the available experimental data. The agreement between
the two sets of data is very good. The errors in the α and η phases are practically constant.
Somewhat larger errors are found for the ε phase, but even here the concentration dependence
is negligible. The equilibrium atomic radii for the two hcp lattices were determined at the
theoretical equilibrium hexagonal axial ratios. These are plotted in Figure 8.12, where for
comparison the experimental c/a values [239] are also shown. The anomalously large axial ratio
of pure Zn is slightly underestimated, which is due to the LDA over-binding. On the other
hand, the theoretical c/a for Zn is calculated to be reduced by 2.4% at 3 At.-% Cu, in very good
agreement with the experimental result. At low Cu concentrations the η-phase having a large
c/a ratio is found to be the ground state structure of the CuZn alloy. However, with increasing
Cu concentration a second total energy minimum in the volume versus axial ratio plane starts
to develop [80]. For x ≤ 0.9, the second energy minimum becomes stable relative to the first
one, and the system stabilizes in the ε-phase having a hcp structure with c/a ≤ 1.6. The axial
ratio in the ε-phase initially decreases with the Cu concentration, and above 20 At.-% Cu it
shows an increase towards the ideal value of 1.63 [243]. It turned out that though the η- and
ε-brasses have the same hexagonal crystal structure, they represent two different phases, each
having its own local energy minimum [80].

8.3.2 Cubic Silver−Zinc Alloys

Today, very little is known about the elastic properties of binary metallic alloys for the entire
range of concentrations in a given lattice structure. The solubility is usually limited to from a
few percent up to 30−40%, and even in the thermodynamically stable range of concentrations
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Figure 8.12: Comparison between the theoretical (EMTO-LDA) and experimental [239] hexag-
onal axial ratio for ε- and η-brass. The axial ratio is plotted as a function of Zn concentration.

the experimental information is meagre. On the other hand, results from Figures 8.11 and
8.12 clearly demonstrate that the EMTO method is suitable for an ab initio description of the
equilibrium bulk properties as a function of concentration. The EMTO method allows one
to study both the thermodynamically stable and unstable phases of random alloys [117], and
therefore it can be used to achieve a deep understanding of the dynamical stability and instability
at different concentrations of alloying elements.

In Figure 8.13, we show the EMTO lattice parameters (a, inset) and bulk moduli (B)
calculated for Ag1−xZnx alloys with 0 ≤ x ≤ 1 in the fcc and bcc phases. For comparison,
former theoretical results for the end-members [244, 245] and experimental data for the α- and
β-phases [239, 246] are also shown. The theoretical results from this section were produced using
the LDA. The agreement between the EMTO results for fcc Ag and Zn and those calculated
using the LAPW method [244, 245] is good: the relative differences in a and B being 1.3%
and −4.3% for Ag, and 0.3% and −10.9% for Zn, respectively. We note that for pure Ag the
calculated volume per atom is 0.3% larger for the bcc lattice compared with that of the fcc
lattice. For pure Zn the corresponding difference is 0.7%.

The theoretical and experimental elastic constants c′ and c44 for fcc and bcc AgZn alloys are
presented in Figures 8.14 and 8.15, respectively. The open symbols refer to experimental data
from the Landolt−Börnstein tables [247] (α-phase) and Murakami and Kachi [246] (β-phase).
For both elastic constants the present results are in excellent agreement with the experimental
values. For pure Ag, the theoretical elastic parameters calculated using the FP-LAPW method
[248] and FP-LMTO method [195] are c′fcc = 16 and 21 GPa, and c44,fcc = 52 and 61 GPa,
respectively. If we take, as the error connected with such calculations, the difference between
the two full-potential results, the agreement between the EMTO and former theoretical results
is very good.

We point out that the calculated variations of the elastic constants with the concentration
of Zn everywhere follow the experimental trends. In particular, the theoretical average softening
of c′ for fcc Ag1−xZnx with x ≤ 0.3 is −0.07 GPa per At.-% Zn. The corresponding measured
value lies between −0.07 and −0.22 GPa per At.-% Zn [247]. These figures may be compared to
those obtained for the α-phase of CuZn, where theory and experiments give average softening
of −0.30 GPa [80] and −0.23 GPa per At.-% Zn [196], respectively. Inspecting Figures 8.14 and
8.15, we find that except two narrow concentration intervals we have c′fcc > c′bcc and c44,fcc <
c44,bcc. This means that the Zener anisotropy (Equation (6.21)) is larger for the bcc phase than
for the fcc phase, i.e. fcc AgZn is more isotropic than bcc AgZn.

120



0 20 40 60 80 100
At.−% Zn

0

50

100

150

200

B
 (

G
P

a)

 fcc (EMTO)
 bcc (EMTO)
 fcc (expt.)
 bcc (expt.)
 fcc (FP−LAPW)

0 25 50 75 100
2.5

3.5

4.5

a 
(B

oh
r)

Ag 1−xZnx

Figure 8.13: Theoretical bulk moduli (B) and lattice constants (a, inset) of Ag1−xZnx alloys in
the fcc and bcc structures, calculated using the EMTO method in combination with the LDA for
the energy functional. The EMTO values are compared with the experimental data [239, 246].
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Figure 8.14: Theoretical (EMTO-LDA) and experimental [246, 247] c′ elastic constant for
Ag1−xZnx alloys in the fcc and bcc structures [117].

121



0 20 40 60 80 100
At.−% Zn

−20

0

20

40

60

80

100

fc
c 

c 44
 (

G
P

a)
 fcc (EMTO)
 fcc (expt.)

0 20 40 60 80 100
−20

0

20

40

60

80

100

bc
c 

c 44
 (

G
P

a)

 bcc (EMTO)
 bcc (expt.)

Ag 1−xZnx

Figure 8.15: Theoretical (EMTO-LDA) and experimental [246, 247] c44 elastic constant for
Ag1−xZnx alloys in the fcc and bcc structures [117].

In Ag1−xZnx, the variation of the bulk modulus with the Zn concentration is smooth in
both crystal structures (Figure 8.13). However, a quite different behavior is observed in the
case of c′ and c44. For instance, c′bcc is drastically reduced above x ≈ 0.78, where, in fact, this
system reaches a dynamical instability. At the same time, at large Zn content the fcc AgZn is
strongly stabilized against tetragonal shear. On the other hand, c44 has almost constant value
for x ≤ 0.5 and x ≤ 0.7 in the fcc and bcc structures, respectively. Above these concentration
ranges c44 shows rapid variation in both structures, describing a trend from stable structures
(Ag end) towards unstable (bcc) or barely stable (fcc) structures (Zn end). The instability of
fcc Zn against orthorhombic deformations has been reported in other theoretical investigations
as well [245].

The enthalpy of formation of Ag1−xZnx random alloy (∆H(x)) is plotted in Figure 8.16 as a
function of concentration and crystal structure. The solid solution is formed when ∆H(x) < 0.
According to figure, the Ag1−xZnx alloys form solid solutions in the fcc structure for x < 0.66,
and in the bcc structure for 0.19 < x < 0.70. Furthermore, comparing the enthalpy of formation
for the fcc and bcc lattices, we find that the fcc structure is stable below ∼ 40 At.-% Zn and the
bcc structure is stabilized around 50 At.-% Zn. In the Zn-rich region, the hcp structures are the
most stable lattices (not shown). Figure 8.16 is in qualitative agreement with the experimental
phase diagram of AgZn [241]. However, we note that short range order and entropy effects must
also be considered in a more complete account of the phase diagram.

In studies [195, 250] of elastic constants of transition metals, a correlation between c′ and the
energy difference between the bcc and fcc structures, ∆Ebcc−fcc ≡ Ebcc − Efcc, was proposed.
In the case of AgZn alloys ∆Ebcc−fcc(x) first decreases from 0.9 mRy (x = 0) to −0.4 mRy
(x = 0.6), and then increases to 3.6 mRy (x = 1). This trend correlates reasonably well with
both c′fcc and −c′bcc. However, a much better correlation exists between ∆Ebcc−fcc(x) and the
difference between the two tetragonal shear moduli. At small Zn concentrations c′fcc decreases
and c′bcc increases with x, suggesting the stabilization of the bcc phase against the fcc phase. In
the region between 45 and 65 At.-% Zn the c′bcc becomes slightly larger than the c′fcc, showing
the pronounced energy minimum for the bcc phase. Above 65 At.-% Zn one has c′fcc > c′bcc, and
the re-stabilization of the fcc structure, relative to the bcc structure, occurs.

When a comparison can be made between experiments and EMTO results for the elastic
constants, the agreement is very good. We therefore have confidence in our data also when they
show an anomalous behavior. The abruptness of the variations in c′ and c44 (Figures 8.14 and
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Figure 8.18: The low temperature theoretical (EMTO-LDA) and experimental [246, 251] Debye
temperatures of Ag1−xZnx random alloys in the fcc and bcc crystallographic phases [117].

8.15) is more pronounced than has been reported in any experiments for non-magnetic solids
[247]. This is also seen in the polycrystalline shear modulus (Figure 8.17) calculated from the
single crystal elastic constants using the Hershey averaging method (Section 6.3.1). The often-
used “law-of-mixing” for the shear moduli, i.e. a linear variation between the values at the end
members in the alloy, definitely fails in the case of AgZn alloys. Rapid, but smaller, variations
of elastic constants as a function of composition or temperature have been noted for several
transition metal alloys [247], and attributed to topological Fermi-surface transitions [249].

Figure 8.18 presents the Debye temperatures for fcc and bcc AgZn calculated from Equa-
tions (6.27) and (6.26). Since the Debye temperatures are not defined for dynamically unstable
lattices, for the bcc phase they are shown only for x ≤ 0.76. For reference, the available low
temperature experimental values are also included for the fcc [251] and bcc [246] structures. The
agreement between experimental and theoretical Debye temperatures, including the concentra-
tion dependence, is very good. We recall that the quantity θD goes to zero as one approaches
the critical concentration where the system becomes mechanically unstable [130]. In bcc AgZn,
this happens near x ≈ 0.78 (Figure 8.14). Note how narrow the region of rapid variation in θD

is in Figure 8.18.

8.3.3 Hexagonal Silver−Zinc Alloys

The crystal structure gives the key to many properties of solid materials. Unusual structural
properties that can be subtly tuned by chemical composition or external conditions are of great
interest [91, 252, 253]. Most elemental metals crystallizing in the hexagonal close-packed (hcp)
lattice have an axial ratio c/a that is close to the ideal value 1.633 obtained in a stacking of
rigid spheres [243]. Zn-rich and Cd-rich alloys are exceptions, with c/a > 1.75.

The hcp structure is the thermodynamically most stable phase of Ag1−xZnx in two separate
regions: in the ε-phase from about x = 0.68 to x = 0.87 and in the η-phase when x > 0.95.
Experiments [239, 254, 255] show that c/a decreases very rapidly on alloying in the η-phase.
In the ε-phase c/a is somewhat lower than the ideal value [254], first slowly decreasing as
a function of Zn content, followed by a sudden and pronounced upturn close to the phase
boundary. Contrasting this, the volume per atom varies slowly and monotonically in the hcp
AgZn lattice (inset in Figure 8.13) with values for the intermediate ε-phase agreeing well with
a simple interpolation from pure Ag to the Zn-rich η-phase. The striking variations in c/a on
alloying in the AgZn solid solutions have been investigated using the EMTO method [242]. Since
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Table 8.2: Theoretical (EMTO-GGA) and experimental [255] equilibrium atomic radius w (in
Bohr), hexagonal axial ratio (c/a)0, and elastic constants (in GPa) of the hcp Ag0.3Zn0.7 random
alloy.

w (c/a)0 c11 c12 c13 c33 c44

EMTO 2.98 1.579 110 56 63 129 27

expt. 2.92 1.582 130 65 64 158 41
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Figure 8.19: Concentration dependence of the theoretical (EMTO-GGA) equilibrium axial ratio
(c/a)0 in hcp Ag1−xZnx alloys. The inset shows the calculated equilibrium atomic radii w as a
function of Zn content. Experimental data are from Matsuo [255], Massalski [254] and Pearson
[239].

the GGA reproduces the equilibrium volume of pure Zn with higher accuracy compared to the
LDA (see Section 8.3.1), it is also expected to lead to a more accurate hexagonal lattice constant
than the LDA (Figure 8.12). Accordingly, all results from this section were obtained within the
GGA [15].

To assess the accuracy of the EMTO method for the crystal structure and elastic constants
of hcp random alloys, in Table 8.2 we compare the EMTO results obtained for the Ag0.3Zn0.7

random alloy with experimental data [255]. The deviation between the theoretical and exper-
imental equilibrium atomic radius and (c/a)0 are 2% and 0.2%, respectively. The calculated
elastic constants are somewhat small when compared with the measured values, but the rela-
tive magnitudes are well reproduced by the EMTO approach. The overall agreement between
theory and experiment in Table 8.2 is very satisfactory, especially if one notes that the total
energy minimum is very shallow in AgZn alloys, which makes the calculation of elastic properties
numerically difficult.

Figure 8.19 shows the theoretical (c/a)0 ratio for hcp Ag1−xZnx alloys in the whole range
of concentrations 0 ≤ x ≤ 1. Experimental data taken in the ε-phase [254, 255] and η-phase
[239], are also included. Where a comparison with experiments is possible there is an excellent
agreement between theory and experiment, which further testifies to the accuracy with which
the EMTO approach can describe structural properties of AgZn random alloys. In contrast to
the rapid changes in (c/a)0, the equilibrium atomic radii w0 follow, to a good approximation,
Vegard’s rule over the entire concentration range (insert in Figure 8.19).

In order to understand the conspicuous sharp upturn of (c/a)0 near the upper concentra-
tion limit of the ε phase, Magyari-Köpe et al. [242] calculated the volume dependence of c/a
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Figure 8.21: Calculated (EMTO-GGA) elastic constants of hcp AgZn alloys as a function of
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Figure 8.22: Theoretical (EMTO-GGA) Gibbs energy of formation for hcp AgZn random alloys
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for different concentrations. Figure 8.20 shows c/a as a function of the atomic radius w and
chemical composition in the concentration range of interest. An important feature in the volume
dependence of c/a is seen: for x ≤ 0.8 c/a slightly decreases with volume, whereas for x ≥ 0.8
it shows the behavior characteristic of pure Zn [256]. There is a narrow concentration range
around 82% Zn where the volume dependence of c/a is nearly flat. The parameter R, describing
the logarithmic volume derivative of c/a near the equilibrium structure, has an almost constant
value of −0.2 in the Ag-rich part of the ε-phase. However, at about 82% Zn there is a change
in the sign of R, followed by a marked increase. This variation in R imposes a transition in the
linear compressibility ratio K.2 For x ≤ 0.82 we have K < 1, i.e. the a axis is more compress-
ible than the c axis. For these compositions K shows weak concentration dependence, which
correlates well with the trend of the axial ratio from Figures 8.19 and 8.20. At concentrations
above ∼82% Zn, K becomes larger than 1 and increases rapidly with x. The hardening of a
axis relative to c axis causes the upturn in the (c/a)0 within the thermodynamic stability field
of the ε phase.

The variation of the total energy E(w, c/a) with c/a at a fixed volume, calculated around
the equilibrium (c/a)0, is described by the elastic constant cs [134]. In the lower panel of Figure
8.21 the concentration dependence of the theoretical cs is compared with the experimental data
[239, 255]. Although there is an almost constant shift between theoretical and experimental
values [255], the observed trend in cs(x) is well captured by the EMTO method. The pronounced
minimum in cs(x) around 88% Zn appears as a result of the noticeable variations of 2c33 and
4c13 terms from the expression of cs with concentration (see upper panel in Figure 8.21).

The calculated trend of the elastic constant cs(x) shows that the hcp AgZn random alloys
may have a mechanical instability, or be very close to such a behavior, at about 88% Zn. Using
our calculated total energies, we estimated the Gibbs energies of formation ∆G(x) of AgZn
random alloys at T = 0 and T = 300 K.3 This is shown in Figure 8.22. From the shape of
∆G(x) one can determine the stability limits of the ε and η phases by drawing a common
tangent to the Gibbs energies calculated for these phases. We find that the theoretical two-
phase-field region decreases from 0.77 ≤ x ≤ 1 at T = 0 K to 0.83 ≤ x ≤ 0.96 at T = 300 K,

2The ratio of the linear compressibilities parallel and perpendicular to the c axis is obtained as K ≡ K‖/K⊥ =
(c11 + c12 − 2c13)/(c33 − c13), where cij are the hexagonal elastic constants.

3Here the Gibbs energy of formation of Ag1−xZnx random alloy is approximated by ∆H − Sconf∆T , where
∆H denotes the enthalpy of formation and Sconf is the configurational entropy estimated using the mean-field
expression −kB [(1− x) ln(1− x) + x ln(x)].
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Figure 8.23: Theoretical (EMTO-GGA) heat of formation for hcp Fe0.95Mg0.05 solid solution.
The inset compares experimental (circles) and theoretical (solid line) pressure−volume depen-
dence for hcp-structured FeMg alloy. The experimental data were obtained for Fe-rich alloys
containing 4.1 At.-% Mg. ∆H < 0 indicates a tendency of the system towards alloying and
∆H > 0 represents a tendency towards phase segregation.

which is in qualitative agreement with the phase diagram information [241]. Thus, the softening
of the hexagonal phases along the c axis, i.e. cs(x) → 0, will occur inside the two-phase-field
region in the phase diagram, where in fact a single hcp phase is metastable and separates into
ε and η phases.

Finally, we discuss the question of the rapid decrease of (c/a)0 on adding Ag to η phase.
Magyari-Köpe et al. [242] have shown that the anomalous (c/a)0 ratio in Zn-rich η-phase has
the same electronic origin as the one reported in the case of pure Zn [257, 258, 259]. According
to that, in Zn the equilibrium (c/a)0 ratio minimizes the band energy contribution to the total
energy. With increasing Ag content, i.e. decreasing s electron density, the distortion-promoting
band energy maintains its dominant role, and a reduced axial ratio minimizes the total energy.

8.4 Binary Transition-metal Alloys

In this section, we quote a few applications of the EMTO method to binary transition-metal
alloys without a comprehensive description of the background and of the numerical calculations.
For these details, the reader is referred to the corresponding references.

8.4.1 Iron−Magnesium Alloys at High Pressure

Iron and magnesium are almost immiscible at ambient pressure. The low solubility of Mg in Fe is
due to very large size mismatch between the alloy components. However, the compressibility of
Mg is much higher than that of Fe, and therefore the difference in atomic sizes between elements
decreases dramatically with pressure. Dubrovinskaia et al. [260] have demonstrated in a series
of experiments that high pressure promotes solubility of magnesium in iron. They have shown
that at megabar pressure range more than 10 At.-% of Mg can dissolve in Fe which can then be
quenched to ambient conditions.

In Figure 8.23, we show some EMTO results for pure Fe0.95Mg0.05 alloys. The calculations
employed the GGA [15] for the exchange-correlation energy. The mixing enthalpy was calculated
at 0 K, and the non-magnetic hcp phase of Fe and the bcc phase of Mg were chosen as standard
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Figure 8.24: Calculated pressure dependence of the shear elastic moduli of bcc V [262].

states at all pressures. The reliability of the theoretical treatment is illustrated in the inset in
Figure 8.23, where we compare the theoretical pressure−volume relations for hcp Fe0.95Mg0.05

alloy with the experimental result obtained for Fe-rich alloys containing 4.1 At.-% Mg. The
excellent agreement between theory and experiment, seen in the figure, illuminates that theory
correctly describes the FeMg solid solution.

As is seen in Figure 8.23, at low pressure the mixing enthalpy for FeMg alloys is large and
positive, in agreement with the very low solubility of Mg in Fe. This is also in line with one
of the well-known Hume−Rothery rule for metallic alloys, which states that the formation of
disordered metallic alloys is very unlikely if atomic sizes of alloy constituents differ by more
than 15% [261]. However, compressibility of Mg is much higher than that of Fe, and therefore
the difference in atomic sizes between these two elements decreases dramatically with pressure.
This raises the possibility that alloying of iron and magnesium may be more favorable under
high-pressure conditions. Indeed, the EMTO calculations predict that the mixing enthalpy of
disordered Fe-rich hcp FeMg alloys changes sign at about 100 GPa. This means that already at
zero temperature there is a transition from the tendency towards phase separation between Fe
and Mg at low pressure to the tendency towards alloying at higher pressure. With increasing
temperature the tendency towards alloying increases further due to the entropy contribution.

8.4.2 Elastic Constants of Vanadium−Niobium Alloys

The vanadium-group transition metals (V,Nb and Ta) exhibit interesting and sometime anoma-
lous properties. For example, they possess the largest electron−phonon interaction parameters
among the transition metals [130] and Nb has the highest superconducting transition tempera-
ture among the elemental metals. Furthermore, in contrast to the normal decreasing behavior
displayed by most metals, the elastic constants of these solids show irregular temperature depen-
dence. Because of that, the V-group elements have been the subject of numerous experimental
and theoretical investigations [262, 263, 264].

In Table 8.3, we compare the EMTO single-crystal shear moduli of bcc V and Nb with
the available full-potential [195, 262] and experimental [196] data. The EMTO values were
calculated using the GGA for the energy functional. The agreement between different sets of
theoretical values is reasonable in the case of Nb, but large discrepancies can be seen for V.
Part of these deviations have been ascribed [195] to the strong LDA over-binding in V, which
is less pronounced for Nb (see Table 8.1). When compared to the experimental data, the FP-
LMTO calculation using the GGA functional [262] is found to give slightly more accurate elastic
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Table 8.3: Theoretical and experimental elastic constants of bcc V and Nb. The EMTO calcu-
lations were based on the GGA for the energy functional. The experimental values are given for
room temperature and 0 K (numbers in parenthesis) [196, 265].

Vanadium Niobium

EMTO FP-LMTO expt. EMTO FP-LMTO expt.

c′ 72.6 67.3a,37.5b 54.5(57) 68.8 63.9a,60b 56.0(60)

c44 29.7 37.4a,5b 42.6(46) 35.3 25.5a,27b 28.7(31)
a GGA [262], b LDA [195].
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Figure 8.25: Calculated pressure dependence of the shear elastic moduli of bcc Nb [262].

constants than the EMTO method. In this comparison, however, one should also take into
account that both c′ and c44 of V and Nb show strong anomalous temperature dependence
below the room temperature. The average differences between the EMTO and experimental
shear moduli for V and Nb are 32% and 23% at room temperature and 31% and 14% at 0
K, respectively. These are reasonable errors [195], especially if one takes into account that the
theoretical elastic constants depend sensitively on the details of the calculations.

Figures 8.24 and 8.25 show the calculated pressure dependence of the shear elastic moduli
of bcc V and Nb, respectively. There is a good parallelism between the EMTO and FP-LMTO
[262] data. In particular, both methods reveal a mechanical instability in c44 for V. The cor-
responding pressures are slightly different in EMTO (180−270 GPa) and FP-LMTO (150−250
GPa) calculations. For Nb, both methods give softening of c′ and c44 at pressures ∼ 50 GPa.
Except these critical pressures ranges, the tetragonal shear modulus for V and Nb and c44 for
Nb exhibit normal increasing behavior with pressure. The theoretically predicted structural
instability in bcc V is in line with the experimentally observed structural phase transition at 69
GPa [264].

Landa et al. [262] proposed that the above pressure-induced shear instability (softening) of
V (Nb) originates from the peculiar electronic structure. They have shown that substitution of
5 At.-% of V with Nb removes the instability of V with respect to trigonal distortions in the
vicinity of 200 GPa pressure, but still leaves the softening of c44 in this pressure region. The
pressure dependence of c44 for bcc V0.95Nb0.5 random alloy, calculated using the EMTO method
in combination with GGA, is shown in Figure 8.26. We can see that, apart from significant
softening around ∼ 200 GPa, in Nb-bearing V the stability criteria for a cubic crystal (Section
6.2) holds within the whole pressure range considered.

130



0 100 200 300
pressure (GPa)

0

50

100

150

c 44
 (

G
P

a)

V

bcc V0.95Nb0.05

bcc V
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8.4.3 Ferromagnetic Fe-based Binary Alloys

In order to demonstrate the performance of the EMTO approach for calculating the total energy
of ordered and random ferromagnetic alloys, Kissavos et al. [266] compared the mixing energies
of ferromagnetic FeCo, FeNi and FeCu systems calculated using the EMTO method and the full-
potential projected augmented wave (PAW) method [176]. The mixing energy reflects directly
the accuracy of the total energy calculations, and, therefore, it is an excellent quantity to
compare between different methods in order to test their relative accuracies. The PAW is
generally known to be among the most accurate methods for the electron structure calculations.
The mixing energies of the Fe-based systems in B2, L10, and random fcc phases are plotted in
Figure 8.27. The mixing energy is defined as the energy of the alloy minus the concentration
average energy of the standard states. For the latter, pure alloy components in the bcc or fcc
structure for B2 or L10 compounds, respectively, were used. For the random fcc alloys (upper
panel in Figure 8.27), the reference state is again fcc.

In EMTO calculations, the CPA is used to model the chemical disorder, whereas the PAW
modeling is based on the special quasirandom structures method [68, 266]. As can be seen in
Figure 8.27, PAW and EMTO results fall almost on top of each other, showing that the EMTO
method can be used with confidence for calculations of total energies for chemically ordered, as
well as disordered alloys.

8.4.4 Paramagnetic Fe-based Binary Alloys

Paramagnetic alloys are often treated as nonmagnetic systems in ab initio calculations. Accord-
ingly, the local magnetic moments are artificially suppressed on alloy components. However, for
a majority of the ferromagnetic alloys the local moments survive above the Curie temperature,
though the net magnetization indeed vanishes due to their random orientations. Iron-based
alloys are typical examples of such systems. On the other hand, the disordered local moment
(DLM) approach [267, 268] allows one to model the effect of the totally random magnetic mo-
ments. In practice, a binary A1−xBx alloy with a complete disorder of local magnetic moments
on site A is simulated as a three-component alloy A↑(1−x)/2A

↓
(1−x)/2Bx, where arrows represent

different spins. Similarly, a four-component alloy A↑(1−x)/2A
↓
(1−x)/2B

↑
x/2B

↓
x/2 is considered when

magnetic disorder is present on both sites. Treating a three- or four-component alloy instead of a
binary alloy is an easy task within the CPA, but it is practically impossible with any alternative
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Figure 8.27: Mixing energies for the B2 (lower panel), L10 (middle panel), and random fcc
(upper panel) phases in FeCo, FeNi, and FeCu systems, calculated with both the EMTO and
the PAW method [176].
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Figure 8.28: Mixing enthalpies for paramagnetic random fcc FeCo alloys calculated using the
EMTO method in combination with the DLM model and the GGA energy functional (squares)
and the corresponding experimental values (circles) [269].
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Figure 8.29: Mixing enthalpies for paramagnetic (solid line) and ferromagnetic (dashed line)
random bcc FeCr alloys calculated using the EMTO method in combination with the DLM
model and the GGA energy functional and the corresponding experimental values (circles) for
the paramagnetic bcc FeCr alloys [269].
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Figure 8.30: Mixing enthalpies for paramagnetic (solid line) and ferromagnetic (dashed line)
random bcc FeV alloys calculated using the EMTO method in combination with the DLM
model and the GGA energy functional and the corresponding experimental values (squares) for
the paramagnetic bcc FeV alloys [269].
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Figure 8.31: The tetragonal c/a axial ratio for the bct structure of Ce and Th as a function of
pressure. Experimental data for Ce [276] are marked with diamonds, and for Th [277, 278] with
squares. The theoretical results are connected by solid lines for Ce and dashed lines for Th. The
FP-LMTO results [281] are shown by triangles, and the EMTO results by circles. Horizontal
line marks the c/a corresponding to the fcc lattice.

approaches.

The EMTO mixing enthalpies for paramagnetic fcc FeCo, and bcc FeCr and FeV alloys
calculated using the GGA energy functional [266] are plotted in Figures 8.28−8.30. For these
systems experimental mixing enthalpies of the paramagnetic phases are available in the whole
concentration range [269]. The calculated results for the fcc FeCo alloys agree very well with the
experimental values, especially considering the very small absolute values of mixing enthalpy of
random fcc FeCo alloys. For bcc FeCr and FeV alloys, again, one can see good agreement between
the corresponding data sets. For FeCr, both the EMTO-DLM results and the experimental data
measured for the paramagnetic phase show nearly parabolic dependence on Fe concentration,
following the regular solid solution model. On the other hand, for FeV alloys there are strong
deviations from the regular sold solution behavior, with a spectacular change of sign of the
mixing enthalpy around the equiatomic composition. The EMTO method can capture this
remarkable feature.

To demonstrate the importance of magnetic disorder in FeCr and FeV systems, in Figures
8.29 and 8.30 the mixing enthalpies calculated for the ferromagnetic phases [266, 271] are also
shown (dashed lines). We observe substantial deviations between the ferromagnetic and the
DLM results. In particular, FeV alloys in the ferromagnetic phase have negative mixing enthalpy
within the entire concentration range, in contrast to the paramagnetic phase, where the Fe-rich
alloys are not stable. Different signs of the mixing enthalpies in different magnetic phases can
also be seen for the dilute Fe-rich FeCr alloys. According to the EMTO results from Figure 8.29,
at low Cr concentrations the ferromagnetic FeCr alloys are anomalously stable. This prominent
finding was confirmed by full-potential calculations based on the PAW method combined with
special quasirandom structures [272] as well as with the supercell technique [273]. Furthermore,
it has been suggested that the anomalous mixing between Fe and Cr below ∼ 10 At.-% Cr has
an electronic−magnetic origin [272, 274].
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Table 8.4: Theoretical and experimental equilibrium atomic volume (V0 in Bohr3) and bulk
modulus (B0 in GPa) for Ce, Th and Ce0.47Th0.53. Theoretical results were obtained using the
EMTO method and the FP-LMTO method [281]. For Ce, equilibrium volumes are given for
both α and γ (parenthesis) phases.

Ce Th Ce0.47Th0.53

EMTO FP-LMTO expt. EMTO FP-LMTO expt. EMTO expt.

V0 187.1 176.3 189.1a 224.9 200.0 222.2c 212.1 222.6d

(232.2b)

B0 38 49 29a 58 63 58c 46 28d

a expt. α−Ce [282], c expt. α−Th [283],
b expt. γ−Ce [284], d expt. [279, 280].

8.5 Cerium−Thorium Alloys

The structural stability of Ce, Th, and the CeTh system as a function of compression has been
investigated using the EMTO method [275]. At low pressure, Ce adopts the fcc crystal structure,
which transforms to orthorhombic or body centered monoclinic below 10 GPa. Above 12 GPa,
Ce is stabilized in a body-centered tetragonal (bct) structure. There are two iso-structural fcc
phases of Ce, namely γ-Ce and α-Ce. The γ → α transition occurs close to 1 GPa and is
associated with a Mott transition of the f electrons from a localized (γ-Ce) to a delocalized
(α-Ce) state. Thorium crystalizes in fcc structure at low pressures (α-Th), and transforms to
bct at about 60 GPa. At megabar pressures, both metals remain in a bct crystal [276, 277, 278]
with a c/a axial ratio close to 1.65. The crystal structure of the CeTh system shows a similar
behavior as a function of pressure [279, 280].

The theoretical equilibrium properties of α-Ce and α-Th are compared with the experimen-
tal data in Table 8.4. The theoretical equations of state were computed using the GGA for
the exchange-correlation energy. We notice that EMTO calculations give excellent equilibrium
properties of both Ce and Th. The somewhat larger deviation between EMTO and experimental
bulk properties of CeTh alloy can be understood if one takes into account that the CeTh system
is composed of γ-Ce and α-Th, whereas the EMTO calculations were performed on an alloy
created by α-Ce and α-Th [275].

The calculated tetragonal c/a axial ratios for bct Ce and Th together with experimental data
are shown in Figure 8.31. The bct structure is generated by distorting the fcc lattice along the
Bain path [285], so that c/a =

√
2 corresponds to the undistorted fcc structure. Restricting

the crystal structure optimization to the bct symmetry, from the EMTO calculations (shown by
circles) we find that Ce remains in high-symmetry fcc lattice up to ∼ 12 GPa, where a steep
fcc → bct transition can be monitored. The bct phase of Ce with c/a =1.65−1.68 remains stable
up to at least 60 GPa. These findings are in quantitative agreement with the experimental [276]
and also with former FP-LMTO [281] results.

A somewhat different behavior is found for Th (Figure 8.31). According to the EMTO
results, Th remains stable in its ambient pressure fcc phase up to ∼ 60 GPa. At higher
compression, it transforms continuously into the bct phase. Note that the transition pressure
is considerably higher in Th than in Ce. As in the case of Ce, the EMTO results for Th agree
well with those of previous FP-LMTO calculations [281] and experimental data [277, 278], also
shown in Figure 8.31.

The calculated and measured c/a axial ratio as a function of pressure for the Ce0.43Th0.57

disordered alloy is shown in Figure 8.32. The EMTO calculations confirm that the fcc → bct
phase transition occurs between 10 and 20 GPa, which is close to the corresponding transition in
Ce, but considerably lower than for Th. The fact that the transition pressure is a strongly non-
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Figure 8.32: The tetragonal c/a axial ratio for the bct structure of the Ce0.43Th0.57 disordered
alloy as a function of pressure. Experimental data [279, 280] are marked with squares. The
EMTO results are given by filled circles, and the results of FP-LMTO calculations for ordered
CeTh compound with B2 structure [286] are given by triangles. The horizontal line marks the
c/a corresponding to the fcc lattice.

linear function of Th concentration in the CeTh system is in line with experimental observation
[279, 280].

The structural behavior of CeTh alloy was previously modeled by an ordered (B2) CeTh
compound using the FP-LMTO method [286]. These earlier calculations predicted that the
tetragonal axial ratio first decreases with pressure and then suddenly jumps to a high value
closer to the measure value at a higher compression (shown by triangles in Figure 8.32). It
was suggested that the discrepancy with experiment was due to the failure of modeling the
disordered alloy with an ordered compound. The EMTO results from Figure 8.32 validate this
assumption, and demonstrate that the disorder needs to be properly accounted for to accurately
describe Ce0.43Th0.57.

8.6 Surface properties of random alloys

Surfaces form the fundamental interface for many physical and chemical interactions. In al-
loys, the surface chemistry may show significant alloying and temperature dependence. One
important example is the threshold behavior in stainless steels [287, 288]. It is a well known
fact that 13% or more Cr renders FeCr alloys an excellent corrosion resistance, but below this
threshold the system behaves much like pure iron. Several phenomenological models tried to de-
scribe this compositional threshold behavior. According to a thermodynamic-kinetic passivation
mechanism [289, 290], a stable Cr-rich oxide layer is formed on the surface of FeCr alloy, which
protects the system against various attacks in different chemical environments. It is clear that
the surface oxide composition is determined by the actual metal concentration in the surface
prior to oxidation. Motivated by this, the chemistry of FeCr surfaces have been the focus of
numerous experimental and theoretical investigations [291, 292, 293, 294].

Promoting or inhibiting certain surface phenomena requires full control of the surface prop-
erties. The simplest way to produce a surface having optimal properties for a specific task is
to exploit segregation at alloy surfaces. The most widely used theoretical approach for surface
segregation is based on Monte-Carlo technique [302]. In this approach, the equilibrium segre-
gation profile is determined by changing the surface configuration repeatedly until energetically
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Figure 8.33: Theoretical segregation profile calculated using the EMTO-LDA method for the
(111) surface of AgPd as a function of temperature and bulk Ag concentration. Symbols con-
nected by solid lines represent the top surface layer concentration of Ag, while symbols connected
by dashed lines correspond to Ag concentration in the subsurface layer. Solid lines are intention-
ally ended at the Pd-rich end, in order not to give an incorrect impression about the segregation
profile in dilute alloys.

the most favorable solution is obtained. Because the total energy of a particular configuration is
calculated from effective interactions, a Monte-Carlo method offers a simple and fast algorithm
for multilayer surface segregation studies. Unfortunately, its application is restricted to systems
with an ideal undistorted underlying lattice and where reliable effective interaction parameters
can be constructed. Based on the EMTO method, Ropo et al. [303, 304, 305] introduced an
alternative technique, which is suitable to determine the surface concentration profile in multi-
component random alloys with arbitrary crystal structure. This approach treats the surface
system as a grand canonical ensemble, allowing for an unconditional particle exchange between
the surface region and a bulk reservoir.

8.6.1 Surface concentration profile for palladium−silver alloys

The palladium−silver system represents a perfect case to illustrate the surface concentration
profile calculations, since these alloys have continuous solid solubility in the fcc crystallographic
structure. Figure 8.33 shows the top layer and the subsurface layer concentrations for the (111)
surface of Pd1−xAgx alloys calculated as a function of bulk concentration (x) and temperature
using the EMTO method and the LDA energy functional. The surface concentration profile
was obtained by minimizing the grand potential of the surface subsystem. The condition for
the minimum was expressed as the equilibrium between the surface and bulk effective chemical
potentials (ECP). Here, the ECP is the difference between the Ag and Pd chemical potentials
and is calculated from the energy change when a Pd atom was exchanged with Ag. At T = 0
K, the minimum requirement for the grand potential leads to the condition that the difference
between the effective chemical potentials for the surface and bulk subsystems should be equal to
the equilibrium segregation energy [304]. The latter vanishes for an equilibrium concentration
profile where all the alloy components have nonzero concentration. For calculations at T > 0
K, the entropy was approximated by the configurational entropy. For more details about the
thermodynamical model for metal surfaces, the reader is referred to the works by Ropo et al.
[303, 304, 305].

Figure 8.33 indicates that at 0 K the first surface layer is completely filled with Ag for the
whole bulk concentration interval. In the second layer, the Ag concentration is zero for x ≤ 0.4,
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Table 8.5: Theoretical (EMTO-LDA) and experimental surface concentration profile for AgPd
alloys as a function of bulk Ag concentration and temperature (T ). The three concentrations
refer to the Ag concentration in the bulk and in the 1st and 2nd surface layers, respectively.

method bulk 1st layer 2nd layer T (K)

EMTOa 30 88 21 600
“ 30 80 29 900

expt.b 33 95 - 820
“ <33 93 - 720
“ <33 91 - 770
“ <33 91 - 820
“ <33 90 - 920

EMTOa 50 90 34 600
“ 50 85 39 900

expt.c 50 70-99 - 673–873
expt.d 50 54-63 - 673–873
a [304], b [306],
c AES data without matrix correction [310],
d AES data with matrix correction [310].

and rapidly increases with increasing x for x > 0.4. In Ag-rich alloys, the subsurface Ag layer
concentration is close to (2x − 1). The stability of the pure Ag terminated surfaces at 0 K is
due to the lower surface energy of Ag compared to that of Pd [172].

With increasing temperature, the Ag concentration decreases in the top layer and increases
in the second layer. The entropy driven changes in the second layer are small for x < 0.2 and
x > 0.6, but they are important for intermediate x values. The top layer concentration shows
the largest variations with T in Pd-rich alloys. It is interesting that at T ≥ 600 K, the second
layer is almost bulk-like, whereas the top layer still contains a significant amount (> 60%) of
Ag.

In Table 8.5, we compare the EMTO equilibrium surface concentrations with the available
experimental data [306, 310]. Wouda et al. [306] measured the chemical composition in the
top layer of the (111) surface of Ag33Pd67 alloy using a scanning tunnelling microscopy tech-
nique. The reported surface concentrations of Ag are somewhat higher than the EMTO values.
Reniers [310] investigated the surface composition of Ag50Pd50 alloy using Auger electron spec-
troscopy (AES). In these experiments the surface composition was estimated from the Auger
current. Due to the approximate relation between current and concentration, there were signif-
icant uncertainties associated with these measurements. Within these uncertainties the EMTO
theoretical values are in reasonable agreement with the AES measurements.

8.6.2 Surface concentration profile for iron−chromium alloys

In FeCr alloys, the drastic decrease in the corrosion rate with chromium addition [287] occurs
within a narrow concentration interval (9-13% Cr) [288], making the transition from the iron-
type to the non-corrosive behavior quite abrupt. Alloys in the latter category form the basis
of the so called ferritic stainless steels. There are experimental evidences for Cr-enriched alloy
surfaces in the stainless regime at high temperatures [290, 292]. From the theoretical side, all
studies focussed on dilute alloys and most of them predicted the stability of Cr-free surfaces
[293, 294, 295]. Using the EMTO method in combination with the GGA functional, Ropo et al.
[296], have investigated the behavior of FeCr surfaces as a function of bulk composition within
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Figure 8.34: Theoretical surface and bulk properties of ferromagnetic Fe1−cCrc alloys as a func-
tion of bulk Cr concentration (in atomic percent). Left axis: Effective bulk (solid line) and
surface (symbols) chemical potentials (in eV) calculated for T = 0 K. The surface chemical po-
tentials are shown for 0% (circles), 10% (squares), 20% (diamond) and 30% (triangles) Cr in the
surface layer. All curves are plotted relative to the bulk chemical potential for the dilute alloy.
Right axis: The mixing enthalpy (in meV) of disordered FeCr alloy (dashed line). The standard
states are the ferromagnetic bcc Fe and antiferromagnetic B2 Cr. Note that the inflection point
in the mixing energy around 15% Cr corresponds to the minimum of the bulk effective chemical
potential.

an extended concentration range and have tried to reveal the mechanism which can stabilize the
Cr-containing surfaces in high-Cr alloys.

At ambient conditions, elemental Fe orders ferromagnetically while Cr has an incommen-
surable antiferromagnetic state, which can be approximated by a commensurable (B2 struc-
ture) antiferromagnetic state [297, 298]. The FeCr alloys, except the high temperature Fe-rich
γ−phase and the σ−phase observed around equimolar concentrations, adopt the body centered
cubic (bcc) structure of α−Fe [269]. Here we focus on the technologically important Fe1−cCrc

alloys with c < 0.25. At normal operating temperatures, these bcc alloys are ferromagnetic with
Curie temperatures around 900 − 1050 K [269]. For c < 0.1 and T > 600 K, the FeCr sys-
tem is fully miscible, whereas the nucleation or spinodal decomposition driven clustering occurs
at higher Cr concentrations [269]. Nevertheless, it has been shown [299, 271] that the ener-
getics of Fe1−cCrc alloys with c < 0.2 are well described using the substitutionally disordered
ferromagnetic bcc phase.

In Fe, Cr and FeCr, surface magnetism reduces the surface energy of open surfaces to the
extent that the usual anisotropy of the surface energy is reversed [297, 178, 300]. In particular,
the magnetic contribution to the surface energy of the (100) facet of pure Cr (Fe) is about
−50%(−41%) compared to −2%(−16%) obtained for the close-packed (110) facet [297]. Ac-
cordingly, the most stable surfaces for pure Cr and for Fe-rich FeCr alloys are the (100) crystal
facet of the B2 lattice and the (100) crystal facet of the bcc lattice, respectively.

Figure 8.34 shows the bulk (∆µB) and surface (∆µS) effective chemical potentials (ECP)
calculated at T = 0 K as a function of bulk composition. We find that the surface ECP follow a
monotonic trend, whereas ∆µB exhibits an anomalous behavior with a marked minimum near
15% Cr. We will return to explain this anomalous behavior later. With our convention, the
chromium-containing surfaces become stable in alloys where we have ∆µS > ∆µB, i.e. where
energetically it is more favorable to place a Cr atom to the surface layer than into the bulk. The
corresponding equilibrium surface concentrations of Cr are given in figure 8.35 (circles). The
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Figure 8.35: Theoretical surface concentration of chromium for ferromagnetic Fe1−cCrc alloys
as a function of bulk Cr concentration (in atomic percent). The Cr concentration profiles,
calculated for the thermodynamically stable (100) surface of the bcc lattice, are shown for 0 K
(circles), 300 K (squares), and 600 K (triangles).

profiles for T = 300 K (squares) and T = 600 K (triangles) were obtained by including terms
due to the configurational entropy as described in Ref. [304]. We point out that the entropy
has only a minor effect on the concentration profile in low-Cr alloys, but significantly enhances
the surface Cr-content at large bulk Cr concentrations.

In figure 8.35, we observe a sharp change in the surface Cr content for alloys encompassing
8-12% Cr. Accordingly, at low temperatures there is practically no Cr present at the surface for
c < 0.08. This means that thermodynamically the most stable surfaces are the Fe-terminated
surfaces. For alloys with bulk Cr concentration above 8-9%, the Cr-containing surfaces start to
become stable. The actual amount of Cr at the surface for c ≈ 0.1 − 0.2 is close to, or slightly
higher than the Cr concentration in the corresponding bulk alloy, reaching a maximum of 20-27%
(depending on temperature) for c ≈ 0.12− 0.15. The predicted stability of Cr-enriched surfaces
in the stainless region is fully supported by experiments [290, 292]. A quantitative comparison
shows that the present theoretical surface Cr contents are below the observed values of 45% for
c = 0.13 and 69% for c = 0.25 [292]. However, it is important to note that these experiments
were performed on samples heated to 973 K under ultra high vacuum. At this temperature, the
FeCr alloys are close to their magnetic transition, which are expected to have substantial effect
on the thermodynamics of bulk and surface alloys [299].

The demonstrated transition in the surface Cr concentration in FeCr alloys (figure 8.35)
clearly shows the characteristics of the experimentally observed compositional threshold [288]. In
particular, we emphasize that the calculated transition interval (8-12% Cr) from Cr-free surfaces
to surfaces with ”bulk”-like composition is in excellent agreement with the concentration range
within which the observed corrosion rate in FeCr alloys drops from 0.1 mm per year (near ∼ 9%
Cr) below the detectable limit (at ∼ 13% Cr) [288]. Note that the sharp increase in the surface
Cr content around the theoretical threshold in figure 8.35 can be traced back to the particular
stability of pure Fe-terminated surfaces in low-Cr alloys rather than to a considerable surface
segregation of Cr in high-Cr alloys.

To arrive at a coherent and clear interpretation of the results from figures 8.34 and 8.35,
Ropo et al. [296] examined the available theoretical data on surface and bulk FeCr alloys. It has
been demonstrated that from standard surface energy considerations the Cr-containing surfaces
should always be energetically less favorable compared to the Cr-free surfaces. Therefore, the
bulk itself could play a key role in the stability of Cr-containing surfaces. Bulk FeCr alloys have
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a broad and slightly skewed miscibility gap, allowing the solubility of small amount of Cr in Fe
but not vice versa [269]. In good agreement with other theoretical predictions [299, 273], we find
that at low Cr concentrations the ferromagnetic solid solutions have slightly negative mixing
enthalpies (figure 8.34, right axis) and therefore they are stable at all temperatures. It has been
demonstrated [291, 299, 273, 274, 272] that the limited solubility of chromium in iron is connected
to the complex magnetic interactions characteristic to solid solutions between antiferromagnetic
(Cr) and ferromagnetic (Fe) species. These interactions originate from magnetic frustrations
due to the strong anti-parallel coupling between Cr and Fe-matrix and also between different
Cr atoms [291].

The energetically unfavorable magnetic interactions can be avoided or minimized by forming
Cr-rich clusters [273] and simultaneously moving some of the Cr atoms to the alloy surface. The
latter phenomenon becomes clear if one compares the bulk effective chemical potential and the
mixing energy (figure 8.34). At low temperatures, apart from a constant shift and sign, the slope
of the mixing enthalpy gives to a good approximation the value of the bulk effective chemical
potential [291]. Similarly, the second order concentration derivative (curvature) of the mixing
enthalpy gives the slope of the bulk ECP. In particular, the large negative slope of the bulk
ECP for FeCr (figure 8.34, left axis) is related to the positive curvature of the mixing enthalpy
of alloys with Cr content below ∼ 15% (figure 8.34, right axis). When compared to the surface
ECP, one can see that the crossover between the bulk and surface chemical potentials is indeed
a consequence of the rapidly rising (convex) mixing enthalpy. On this grounds, we can conclude
that the magnetism-driven solubility of Cr in Fe [299, 273, 274] is in fact the main factor
responsible for the increasing stability of Cr-containing surfaces compared to Fe-terminated
surfaces. The above results clearly demonstrate the decisive role of magnetic interactions on the
surface chemical composition. Results from figures 8.34 and 8.35 give the first clear evidence for
the magnetic origin of the stability of Cr-enriched surfaces for bulk concentrations beyond the
threshold.

8.6.3 Surface energy and stress for palladium−silver alloys

The surface energy γ(T, x) (see Section 6.4) for the (111) surface of Pd1−xAgx alloys is plotted
in Figure 8.36 as a function of bulk composition and temperature. The EMTO surface energies
for pure Ag and Pd are 43 and 67 mRy/atom when expressed per surface atom, and 1.35 and
2.26 J/m2 when expressed per surface area. Note that these values are significantly larger than
0.96 and 1.64 J/m2 quoted in Section 7.1 from Ref. [79] . The ∼ 28% average difference is due
to the gradient correction in the GGA exchange-correlation functional compared to the LDA.

At 0 K, the surface energy is mainly determined by the pure Ag surface layer, which is
reflected by an almost flat γ(0K, x) ≈ γAg line for x ≥ 0.1. With increasing temperature, γ(T, x)
converges towards the value estimated using a linear interpolation between end members. Note
that the temperature dependence of γ is very similar to that of the surface Ag concentration from
Figure 8.33. Although, at intermediate concentrations, the concentration from the subsurface
layer shows strong temperature dependence, this effect is imperceptible in the surface energy.
Therefore, the variation of the surface energy of an alloy with temperature and bulk composition
is, to a large extent, governed by the surface layer, and the subsurface layers play only a secondary
role.

Next we discuss the thermodynamical stability of different crystallographic surfaces of al-
loys. It has been established that, except the bcc non-magnetic transition metals and some
alkaline metals, the surface energies of metals exhibit a strong orientation dependence [178, 44].
According to the simple broken-bond model, the close-packed surfaces, i.e. those with the low-
est roughness, should possess the lowest surface energy. This trend is well obeyed by the fcc
transition and noble metals [178]. The only striking anomalies that have been found so far are
in bcc Cr and Fe, where surface magnetism stabilizes the (100) facet instead of the close-packed
(110) facet [300, 297].

141



0 20 40 60 80 100
At.−% Ag (bulk)

40

50

60

70

su
rf

ac
e 

en
er

gy
 (

m
R

y/
at

om
)

 0 K
 600 K
 1200 K

2.26 J/m
2

1.35 J/m
2

Figure 8.36: Surface energy for the (111) surface of AgPd calculated using the EMTO-LDA
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Here we focus on the (111) and (100) surfaces of the fcc PdAg alloys. Figure 8.37 shows
the surface energy difference ∆γ ≡ γ100 − γ111 as a function of bulk Ag concentration. The
present surface energies for Pd and Ag are 2.37 and 1.42 J/m2 for the (111) surface, and 2.43
and 1.43 J/m2 for the (100) surface. Thus, for the end members, the (111) facet is found to be
the stable surface, in good agreement with former studies [178, 172, 175]. With Pd addition,
we find that the (100) facet is stabilized against the most close-packed (111) facet. Taking into
account our numerical uncertainties, we come to the unexpected conclusion that in Pd-rich PdAg
alloys the (100) facet is the thermodynamically most stable surface. This finding has important
consequences in surface physics. In terms of equilibrium crystal shape [178], for instance, the
surface energy anisotropy reversal means that in Pd-rich PdAg nano-crystals the relative weight
of the (100) facets, compared to that of the (111) facets, is significantly higher than in pure Pd
and Ag-rich PdAg particles.

In order to understand the origin of the anomalous surface stability in PdAg alloys, we have
investigate the role of lattice strain on the surface energy of pure fcc Ag [307]. It has been found
that in pure Ag, due to the lower compressibility of the close-packed crystallographic planes
compared to the less close-packed ones, the more open (100) surface becomes thermodynam-
ically stable with increasing pressure compared to the close-packed (111) surface. The above
mechanism has been predicted to be present in all late transition and noble metals, and it has
been shown that it is the main effect responsible for the stability of the (100) surface in Pd-rich
alloys.

Another fundamental surface parameter is the surface stress (τ) introduced in Section 6.4.
It plays a decisive role in a wide variety of surface phenomena [153]. In particular, the excess
surface stress (τ − γ) is identified as the driving force for the reconstruction in the microscopic
modeling [173]. According to the continuum model by Herring [308] and Cammarata [309], the
stability criterion for metal surfaces requires that the absolute value of the excess surface stress
should be at least one order of magnitude smaller than the elastic strain energy associated with
the surface reconstruction. Kwon et al. [175] presented a systematic theoretical study of the
surface energy and stress of 4d transition-metals. In good agreement with observations, the
calculated excess surface stresses for all the (111) and (100) fcc surfaces were found to be small,
predicting the stability of these 4d transition-metal surfaces.

The surface energy of a close-packed metal surface shows a weak layer relaxation dependence.
At the same time, the surface stress depends nearly linearly on the interlayer distance λij ,
which makes the geometry optimization an indispensable first step in stress calculation [175].
The EMTO top-layer relaxations, defined as δ12 ≡ (λs

12 − λb
12)/λb

12 with λs
12 and λb

12 being
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the equilibrium surface and bulk inter-layer distance, respectively, are displayed in the inset of
figure 8.37. The (111) surface shows small outward relaxations characteristic to the close-packed
surfaces of Pd and Ag [175], with a slight maximum near c = 0.1. The (100) surface exhibits a
more non-uniform behavior: it relaxes inward in pure Pd and Ag-rich PdAg alloys, but in Pd-
rich alloys we can see almost zero or slightly positive relaxation. The obtained trend for δ12(c) is
a direct consequence of the lattice mismatch strain. Due to the ∼ 4% difference between Pd and
Ag lattice constants, the pure Ag surface layer on PdAg substrate is subject of an increasing
strain as going from Ag end to Pd-rich end. In Pd-rich alloys, part of this strain can be released
by outward surface relaxation, which increases the average volume of the surface Ag atoms.

For the high-symmetry (111) and (100) surfaces, the surface stress was derived from the
scalar Shuttleworth equation 6.51. The calculated surface stresses are compared to the corre-
sponding surface energies in figure 8.38. For Pd and Ag, the present surface stress values are 3.44
and 1.83 J/m2 for the (111) facet, and 2.96 and 1.60 J/m2 for the (100) facet. These figures are
slightly larger than the former theoretical data [172] obtained using the same density functional
approximation. The deviation is due to the layer relaxation neglected in Ref. [172].

For both surfaces the excess surface stress reaches exceptionally large values in Pd-rich alloys.
In fact, similar high |τ − γ| has been obtained only for the (110) surface of fcc Rh (2.27 J/m2)
followed by that of Pd (1.37 J/m2) [79]. It is clear that the anomalously large surface stress in
PdAg alloys is due to the homogeneous lattice strain effect discussed above in connection with the
surface relaxation and surface energy. In order to see whether the obtained stress is sufficiently
large for the surface reconstruction to occur, we estimate the elastic stain energy associated
with surface reconstruction as [309]: Estrain(c) = G(c)b(c), where G is the shear modulus
and b = a

√
2/2 is the Burgers vector for Pd1−cAgc. For simplicity, we assume that the shear

modulus varies linearly with c between GPd = 50 GPa and GAg = 33 GPa. Using the theoretical
lattice constants [304, 307], for the elastic energy we get 14.0, 13.5, 13.1, 12.7 and 12.3 J/m2 for
c = 0.0, 0.1, 0.2, 0.3 and 0.4. Compared to the excess surface stress values from Figure 8.38, we
find that (τ − γ)/Estrain > 0.1 for 0 < c < 0.4. That is, according to the Cammarata model
[309], the present data indicates that in Pd-rich alloys both the thermodynamically unstable
(111) and the stable (100) surfaces show instability against reconstruction. This prediction is in
line with the c(2x2) patterns observed on the (100) surface of PdAg [306].

8.7 Numerical Details for Chapter 8

In impurity calculations (Section 8.1), the Brillouin zone of the 16-atoms supercell was sampled
using ∼ 100 k-points in the irreducible wedge.

For elastic constant calculations for cubic Al-based alloys, we used about 15000 uniformly
distributed k-points in the irreducible wedge of the orthorhombic and monoclinic Brillouin zones.
However, for small concentrations (below∼ 5%) a significantly higher number of k-points (∼ 105)
was needed to obtain well converged elastic constants.

For hexagonal AgZn alloys, in the irreducible wedge of the Brillouin zones 2500 − 7000
k-points were used, depending on the particular crystal symmetry.

For FeCr surface calculations, the EMTO basis set included s, p, d and f orbitals, the 3d and
4s electrons of Fe and Cr were treated as valence electrons and the core states were recalculated
after each iteration. Calculations were performed for bulk concentration c = 0.0 − 0.25 with a
step of 5%, except near the threshold (between 5 and 15%) where a more dense mesh was used.
For each concentration, the lattice constant was fixed to the theoretically determined bulk value.
The irreducible part of the 2D (3D) Brillouin zones was sampled using 230 (12000) k−vectors.

The FeCr surface segregation was modeled by considering two distinct subsystems: one with
surfaces (the so called surface subsystem) and one without surfaces (the bulk subsystem). The
two subsystems were allowed to exchange atoms with each other [304, 305]. The bulk subsystem
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acted as a reservoir for the surface enabling the change in the surface composition without
finite change in the bulk composition. The surface subsystem for FeCr alloys was described
by periodically repeated atomic slabs formed by eight (100) atomic layers and separated by
vacuum layers of thickness equivalent with four atomic layers. A similar slab geometry was
adopted for modeling the pure Fe and Cr surfaces. In the case of alloys, the concentration in
the top monolayer was allowed to relax and all the other layers had the bulk composition.

The surface concentrations for FeCr were obtained by minimizing for each temperature T the
grand canonical potential of the surface subsystem. At T = 0 K, this leads to the condition that
the difference between the effective chemical potentials for the surface (∆µS) and bulk (∆µB)
subsystems should be equal with the equilibrium segregation energy [304, 305]. The latter
vanishes for an equilibrium concentration profile, where all the alloy components have finite
concentrations. The effective chemical potentials were calculated as the energy change when a
Cr atom was exchanged with Fe. For calculations at T > 0 K, the entropy was approximated
by the configurational entropy Sconf. = −kB[(1− ci) ln(1− ci) + c ln(ci)], where ci stands for the
bulk or surface Cr concentration and kB is the Boltzmann constant. We note that in Fe-rich
alloys and for temperatures well below the magnetic transition temperature, the vibrational and
magnetic entropy terms are expected to have negligible effect on the equilibrium concentration
profile [301].

The two surfaces of PdAg alloys were modeled using slabs consisting of 8 atomic layers
parallel to the (111) and (100) crystallographic facets, respectively. The slabs were separated by
vacuum layers having a width equivalent with 4 atomic layers. First, the intra-layer and inter-
layer (λij , i and j are the layer indices) lattice constants were fixed to the corresponding bulk
values obtained from the theoretical cubic lattice constants. Then, the relaxed surface geometry
was determined by optimizing the distance between the top layer and the subsurface layer (λ12)
while keeping all the other positions unchanged. The EMTO calculations were performed for
pure Pd and Ag, and for Pd1−cAgc alloys with c = 0.1, 0.2, ..., 0.7. The concentrations of the 4
central layers from the slabs were fixed to the corresponding bulk value. For the concentrations
of the top layer (c1) and subsurface layer (c2) we used the previously determined low-temperature
values [304], which have been found to agree well with the experimental data [306].
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Chapter 9

Applications: Iron−chromium−nickel
Alloys

In Chapters 7 and 8, we demonstrated the application of the EMTO method to ordered systems
as well as to disordered binary alloys. In this chapter, we shall illustrate this in the case of
FeCrNi-based alloys, which form the basis of austenitic stainless steels. First, the atomistic
model of these important class of materials will be defined. In Section 9.2, we shall present the
theoretical calculation of the elastic constants of FeCrNi alloys. After establishing the accuracy
of the EMTO approach for this problem, we shall display the elastic property−chemical com-
position maps. The computed elastic properties will be used to determine the misfit parameters
for quaternary alloying additions M(=Al,Si,V,Cu,Nb,Mo,Re,Os and Ir). In Section 9.3, the ab
initio determination of the stacking fault energy of FeCrNi ternary alloys will be introduced.
In connection with the stacking faults, we shall discuss the role of magnetic fluctuations on
the mechanical properties of austenitic steels. A few important numerical details of the EMTO
calculations presented in this chapter are listed in Section 9.4.

9.1 Modeling the Alloy Steels

In addition to Fe and carbon, alloy steels contain several other elements in order to obtain specific
properties of the material. In particular, stainless steels are alloy steels containing more than
13% Cr, which makes these alloys resistant against corrosion in various chemical environments
[287, 288]. Stainless steels dominate both industrial and everyday applications of steels, where a
combination of good corrosion resistance with high strength, stiffness, and toughness is required.

Austenitic stainless steels, the largest sub-category of stainless steels, contain a significant
amount of substitutional Ni. The presence of Ni changes the crystal structure of steel at ambient
temperatures from the bcc structure of α-Fe (ferrite) to the fcc structure of γ-Fe (austenite)
[311]. The FeCrNi austenite possesses a rather unique combination of physical, mechanical, and
chemical properties that make austenitic stainless steels suitable for many specific applications.
The most common austenitic grades, belong to the AISI (American Iron and Steel Institute)
300 series. Some typical commercial stainless steel compositions from this series are listed in
Table 9.1.

The amount of interstitial carbon in austenitic stainless steels is usually below 0.4 At.-%,
but in some cases it could be as high as ∼ 1 At.-%. If Cr-rich carbides are formed (usually, at
grain boundaries), the alloy matrix becomes depleted of Cr and thereby its corrosion resistance is
drastically reduced. This causes various forms of localized corrosion attack, such as intergranular
corrosion, pitting corrosion, or stress-corrosion cracking. In order to prevent the formation of
Cr-rich carbides one needs to keep the C content in alloy steels at low levels. This is achieved
by additional alloying with strong carbide-forming elements like Mo, V, Nb, etc. The amount
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Table 9.1: Some typical commercial stainless steel compositions from the AISI 300 series. Con-
centrations are given in atomic as well as in weight (parenthesis) percent.

AISI C Mn P S Si Cr Ni Mo Fe

304 0.4 2 0.08 0.05 1.9 19−21 7−9 − balance
(0.08) (2) (0.045) (0.03) (1.0) (18−20) (8−10) − (balance)

310 1.1 2 0.08 0.05 2.9 25−27 17−20 − balance
(0.25) (2) (0.045) (0.03) (1.5) (24−26) (19−22) − (balance)

316 0.4 2 0.08 0.05 1.9 17−19 9−13 1−2 balance
(0.08) (2) (0.045) (0.03) (1.0) (16−18) (10−14) (2−3) (balance)

317 0.4 2 0.08 0.05 1.9 19−21 10−14 2 balance
(0.08) (2) (0.045) (0.03) (1.0) (18−20) (11−15) (3−4) (balance)

of impurities (e.g., S or P), which may cause similar problems with the resistance of steel to
localized forms of corrosion, is also kept at the lowest possible level [312].

The beneficial properties of austenitic stainless steels derive from the properties of the main
phase in these alloys. According to Table 9.1, to a good approximation the latter can be
considered as a solid solution formed mainly by Fe, Cr and Ni. This is a simplified atomistic
model for alloy steels, where the different species are randomly distributed on an fcc underlying
lattice and the interstitials are completely omitted.

The most common austenitic stainless steels have very low magnetic permeability. They
show almost no response to a magnet and hence are generally regarded as non-magnetic metals.
On the other hand, the main constituent transition metals are magnetic and have persistent dis-
ordered magnetic moments in their high temperature paramagnetic states [313, 314, 315, 316,
317, 318, 268, 319, 320, 321]. Actually, magnetic studies indicate that FeCrNi alloys also exhibit
a rich variety of magnetic phases. At low temperatures, their magnetic structure is antiferro-
magnetic, spin-glass or ferromagnetic, depending on the Ni content [311]. The susceptibility
of Fe0.8−nCr0.2Nin alloys with 0.14 < n < 0.21 was obtained to follow the Curie−Weiss law
at temperatures above 26−130 K with effective magnetic moments between 1.97 and 2.31µB

[322]. Furthermore, the magnetic transition temperature in alloys with Ni level less than ∼ 30%
was found to be below 150 K [311]. The above experimental evidence implies that at room
temperature the FeCrNi alloys are paramagnetic with sizable persisting disordered local mag-
netic moments. This is in contrast to the basic stainless steels made of Fe and Cr, which are
ferromagnetic at ambient condition with a Curie temperature of ∼900−1050 K [269].

In the theoretical description of alloy steels using the EMTO method, the paramagnetic
ternary Fe1−c−nCrcNin system is modeled by an fcc alloy with randomly distributed chemical
species and local magnetic moments, i.e. by a quasi-ternary random

Fe↑(1−c−n)/2Fe↓(1−c−n)/2Cr↑c/2Cr↓c/2Ni↑n/2Ni↓n/2

alloy. Here the arrows represent the two magnetic moments oriented up (↑) and down (↓). Often
this approximation is referred to as the disordered local moment (DLM) approach, which accu-
rately describes the effect of loss of the net magnetic moment above the transition temperature
[267, 268]. In fact, at T = 0 K, the local magnetic moments on Cr and Ni sites vanish, and
therefore the above expression reduces to

Fe↑(1−c−n)/2Fe↓(1−c−n)/2CrcNin

However, at finite temperature, the magnetic entropy induces magnetic fluctuations on Cr and
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Table 9.2: Theoretical (EMTO-GGA) and experimental equilibrium volume (V ), single-crystal
elastic constants (c11, c12, and c44), Zener elastic anisotropy constant (A), polycrystal bulk mod-
ulus (B), shear modulus (G) and B/G ratio for Fe0.72Cr0.20Ni0.08, corresponding approximately
to alloy steel AISI 304. The volume is in Bohr3 and the elastic moduli in GPa. The experimental
data are from [323] for the volume and [56] for the elastic constants. In the third row we give
the relative deviations (∆ in percent) between the EMTO and experimental data.

V c11 c12 c44 A B G B/G

EMTO 78.93 208.6 143.5 132.8 4.07 165.2 77.3 2.13
expt. 79.45 204.6 137.7 126.2 3.78 158.2 77.4 2.04
∆ -0.6 2.0 4.2 5.2 7.6 4.4 -0.1 4.4
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Figure 9.1: Comparison between EMTO and experimental [324, 325, 326] shear and bulk
moduli of alloy steels AISI 304: Fe0.714Cr0.197Ni0.089, 316: Fe0.692Cr0.186Ni0.122 and 310:
Fe0.544Cr0.262Ni0.194. The experimental values correspond to commercial stainless steels from
Table 9.1 but without Mo for steel 316.

Ni sites, which have to be accounted for by an accurate description of the energetics of FeCrNi
random alloys [270]. When a fourth alloying element M is introduced, the quasi-ternary alloy
becomes a quasi-quaternary random alloy, viz.

Fe↑(1−c−n−m)/2Fe↓(1−c−n−m)/2)Cr↑c/aCr↓c/aNi↑n/2Ni↓n/2M
↑
m/2M

↓
m/2

where m stands for the atomic fraction of M. Hence, for an adequate theoretical simulation of
alloy steels both the chemical and magnetic disorder should be treated simultaneously. This is
within the reach of the EMTO method. The special feature of this approach to correctly account
for anisotropic lattice distortions in multi-component random systems offers unique possibilities
for describing the alloy steels at quantum mechanical level.

9.2 Elastic Properties of Alloy Steels

9.2.1 Elastic Constants of FeCrNi Alloys

In Table 9.2, the calculated single-crystal elastic constants, the Zener elastic anisotropy ratio
and the poly-crystalline averaged engineering elastic moduli are compared with the available
experimental data for Fe0.72Cr0.20Ni0.08, corresponding approximately to stainless steel AISI

149



0.0 0.5 1.0 1.5
At.−% Mo

71

75

79

83

sh
ea

r 
m

od
ul

us
 (

G
P

a)

 EMTO
 expt.

fcc FeCrNi (316)

Figure 9.2: The effect of Mo addition on the shear modulus of austenitic stainless steel 316:
Fe0.692−mCr0.186Ni0.122Mom. The EMTO results are compared with the experimental data [324].

304 (see Table 9.1). It is found that the EMTO-GGA approach1 reproduces the experimental
equilibrium volume [323] within less than 1%. Note that this error is close to those obtained
for elemental Fe, Cr and Ni in conjunction with the GGA functional. The average deviation
between the EMTO and experimental elastic constants is about 4%, which is below the typical
errors obtained for elemental 3d transition metals [195]. It is also significant that the extremely
high elastic anisotropy of austenite is very well captured by the theory. The isotropic shear
modulus from Table 9.2 was derived from the single-crystal data using the Hershey averaging
method (Section 6.3.1). We find that the theoretical results for both B and G as well as for the
ratio between them are in excellent agreement with experiment. Therefore, one concludes that
the EMTO-GGA scheme can reproduce with high accuracy the individual bulk parameters of
the FeCrNi system.

Since there is no restriction regarding the number of alloy components and concentrations,
the EMTO method allows for the determination of the effect of alloying on the elastic proper-
ties. The theoretical polycrystalline elastic moduli for some selected FeCrNi alloys, for which
experimental data are available [324, 325, 326], are shown in Figure 9.1. The average deviation
between the theoretical and experimental shear and bulk moduli from figure are 1.0% and 5.1%,
respectively. In Figure 9.2, the effect of alloying with Mo on the shear modulus of grade 316 is
shown. Both theory and experiment predict a substantial decrease in G.

It is interesting to compare the effect of Mo addition on the shear modulus with the composi-
tion dependence of the stability of the austenitic (fcc) phase relative to the ferrite phase, which
has the bcc crystallographic structure. We recall that in the case of transition metals the cubic
elastic constant associated with the tetragonal distortion of the lattice, shows a proportionality
to the energy difference between the bcc and fcc structures [195]. In the case of alloy 316, it is
found that Mo strongly stabilizes the ferrite phase (∼ 0.22 mRy per At.-%), which correlates
well with the trend of the shear modulus.

9.2.2 Elastic Property Maps

The most significant conclusion from Table 9.2 and Figures 9.1 and 9.2 is that the EMTO method
accurately reproduces the observed trends of the elastic moduli of FeCrNi ternary alloys and
also the effect of additional alloying elements. Therefore, theoretical results calculated using this

1Since for the 3d metals the GGA functionals outperforms the other existing density functional approximations
(see Table 7.1), all the theoretical calculations for steels were performed within the GGA.
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Figure 9.3: Calculated (EMTO-GGA) bulk modulus of FeCrNi alloys as a function of Cr and
Ni contents (balance iron).

computational tool may be used for prediction of new data on steels. With this object, a series
of composition−elastic moduli maps of austenitic stainless steels have been created [107]. These
maps were constructed from the bulk and shear modulus of Fe1−c−nCrcNin alloys calculated as
a function of chemical composition for 0.135 < c < 0.255 and 0.08 < n < 0.24. Figures 9.3
and 9.4 give the chemical composition distribution of the bulk and shear modulus. Note the
difference between the orientations of the concentration (Cr and Ni) axis on these two figures.
The maps were generated for a concentration interval that includes the basic compositions of
the well-known commercial stainless steels (Table 9.1).

The bulk modulus of FeCrNi alloys (Figure 9.3) varies between a minimum value of 161
GPa, corresponding to Fe0.75Cr0.13Ni0.12, and a maximum value of 178 GPa, belonging to
Fe0.51Cr0.25Ni0.24. It follows from figure that both Cr and Ni enhance the bulk modulus of alloy
steel. In terms of the shear modulus (Figure 9.4) three families of alloys can be distinguished.
Compounds with large shear modulus correspond to low and intermediate Cr (< 20%) and low
Ni (< 15%) concentrations. Within this group of alloys G decreases monotonically with both Cr
and Ni from a pronounced maximum about 81 GPa (near Fe0.78Cr0.14Ni0.08) to approximately
77 GPa. The high Cr content alloys define the second family of austenites possessing the lowest
shear moduli (≤ 75 GPa) with a minimum around the composition Fe0.755Cr0.25Ni0.20. The third
family of austenites, with intermediate G values, is located at moderate Cr (< 20%) and high
Ni (> 15%) concentrations, where G shows no significant chemical composition dependence.

According to the equation of state (Section 6.1), lower atomic volume corresponds to larger
bulk modulus and vice versa. Tracing the alloying effects on the theoretical equilibrium volume
(Figure 9.5) we find that both Cr and Ni addition increase the average lattice constant of
paramagnetic FeCrNi alloys. This trend is just the opposite of the trend obeyed by the bulk
modulus from Figure 9.3, which indicates that the alloying effect on the bulk modulus of FeCrNi
alloys is determined first of all by the changes in the electronic structure.

The effect of Cr and Ni on G may be contrasted with the composition dependence of the
stability of the austenite (fcc) phase relative to the ferrite phase. EMTO total energy calcula-
tions carried out for the fcc and bcc phases show that Ni always stabilizes the austenitic phase
(with ∼ 0.07 mRy per At.-%). However, even so, except for large concentrations, it decreases
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Figure 9.4: Calculated (EMTO-GGA) shear modulus of FeCrNi alloys as a function of Cr and
Ni contents (balance iron).

the cubic and thus the polycrystalline elastic moduli. On the other hand, Cr is a strong ferrite
stabilizer (∼ 1.0 mRy per At.-%), which correlates reasonably well with the trend of the shear
modulus from Figure 9.4.

9.2.3 Quaternary FeCrNi-based Alloys

The effect of quaternary alloying additions has been investigated in the case of FeCrNi alloy
encompassing 18% Cr and 24% Ni [253, 327]. The EMTO calculations were performed for
Fe0.58−xCr0.18Ni0.24Mx alloys with x =0−0.05 At.-%. Here M denotes Al, Si, V, Cu, Nb, Mo,
Re, Os, or Ir. All of these elements are known to be useful alloying agents in commercial steels.

In Figures 9.6 and 9.7 we show the EMTO results for the average effects (per atomic percent)
of alloying additions on the equilibrium volume, phase stability and polycrystalline elastic moduli
of Fe0.58−xCr0.18Ni0.24Mx alloys. We find that all metallic alloying additions increase, while Si
slightly decreases the equilibrium volume of high-Ni austenite. The effect of Nb and Mo compares
well with the experimental observations [328, 329]. Among the 5d metals Os has the smallest
and Re the largest effect, which correlates with the equilibrium volumes of pure Re, Os and
Ir. However, the average increase in the lattice parameter in the case of 5d elements is ∼ 0.011
Bohr per At.-%, which is significantly larger than the one estimated from the Vegard’s rule.

We assess the effect of alloying on the phase stability of Fe0.58Cr0.18Ni0.24 alloy by comparing
the total energies calculated for ferrite and austenite phases. Except Cu, Os and Ir, all the other
elements from Figure 9.6 stabilize the bcc structure relative to the fcc structure. The energy
difference for Cu is close to zero, while Os and Ir are austenite stabilizers like Ni.

Figure 9.7 shows that all elements considered here enhance the bulk modulus of Fe0.58Cr0.18Ni0.24.
For example, Si increases B by 0.6 GPa per At.-%. Aluminum and copper have similar effects
on B. A somewhat more pronounced bulk modulus enhancement is observed in the case of 4d
transition metals. The effect of 5d metals is almost twice as large compared to that of the 4d
metals. The bulk modulus enhancing effect of the bcc transition metals (V, Nb and Mo) in the
case of commercial steel grades (e.g., in AISI 316) has been pointed out also in experiments
[324]. The physical origin of the variation of B with additional transition metals can be under-
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stood using the Friedel model of cohesion in d metals [330] and taking into account the bond
enhancement as going from the third-row metals to 4d and 5d metals [253].

The shear modulus of Fe0.58Cr0.18Ni0.24 shows no significant variation with Os and Ir con-
tents, and it is slightly diminished with Si, Cu and Re additions. At the same time, Al, V, Nb
and Mo decrease G significantly. Comparing the lower panels from Figures 9.7 and 9.6, one can
see that the variation of G correlates well with the variation of the structural energy difference
between the bcc and fcc phases. In particular, both Os and Ir stabilize the austenite phase and
also increase the shear modulus of alloy steel. The fact that the increase of G is relatively small
is due to the simultaneous increase of the average atomic volume upon alloying. The negative
volume derivative of the shear modulus diminishes the increase in G upon alloying with Os or
Ir.

The chemical composition dependence of G can be understood by investigating the nature of
the crystal bonds. The shear modulus represents the opposition of a bulk material against shear,
i.e. bond rotation. Hence, strongly anisotropic bonds correspond to larger shear modulus, while
isotropic crystals have lower shear modulus. The nature of bonding can be characterized, e.g., by
the anisotropy of the surface free energies [178]. In systems where the valence electron density
is distributed uniformly in the interstitial region, the surface energy shows week orientation
dependence. This kind of behavior is typical for the Ti and V group elements [178]. Directional
or covalent type of bonding, on the other hand, gives rise to strongly anisotropic surface energy,
which is the case of middle and late transition metals [178]. In particular, Re, Os and Ir
have been found to present the largest surface energy anisotropy amongst the d metals. The
directional bonding characters in Mo and Cu are similar to that observed in the case of Cr and
Ni, respectively.

9.2.4 Misfit Parameters of FeCrNiM Alloys

The size and elastic misfit parameters for solute M in alloy with composition Fe0.58Cr0.18Ni0.24

can be determined using the EMTO data plotted in Figures 9.6 (upper panel) and 9.7 (lower
panel). Figure 9.8 gives εb and εG for Al, Si, V, Cu, Nb, Mo, Re, Os and Ir. The two misfit
parameters are calculated according to Equation (6.61) and they are obtained by dividing the
data from Figures 9.6 and 9.7 by the equilibrium volume and shear modulus of Fe0.58Cr0.18Ni0.24,
respectively. The size misfit is negligible for Al, Si, V and Cu, but it has a sizable value (between
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Figure 9.9: Theoretical (EMTO-GGA) and experimental SFE energy of FeCrNi alloys as a
function of Ni content. References for experiments [157, 334, 156, 335, 336] are given in legend.
The numbers next to the symbols give the actual compositions used in experiments.

0.21 and 0.33) for the 4d and 5d dopants. It is found that Al, V, Nb and Mo give elastic misfit
parameters |εG| = 1.3, 1.9, 3.9 and 2.4, respectively, whereas |εG| < 1 for Si, Cu, Re, Os and Ir.

The Fleischer parameter εL is 5.4 for Nb, 4.1 for Mo, and ∼ 3.5 for the 5d elements. All the
other dopants give εL < 1.5. Hence, assuming that the Labusch−Nabarro model (see Section
6.6) is valid in the case of FeCrNi alloys encompassing a few percent of substitutional elements,
Nb and Mo are predicted to yield the largest solid solution hardening. However, one should
also take into account that the 4d metals, in contrast to the 5d metals, significantly decrease G.
Since the Peierls stress is approximately proportional to the shear modulus [150], the ∼ 2 − 3
GPa per At.-% decrease in G (Figure 9.7) in the case of Nb and Mo is expected to diminish the
corresponding Peierls stress as well. Therefore, the overall hardening effect, obtained as a sum
of the solid solution hardening and the Peierls term, might be somewhat different from the one
expressed merely via the Fleischer parameter.

9.3 Stacking Fault Energy of Alloy Steels

The stacking fault energy (SFE) is a key microscopic parameter of the austenitic phase. The
fact that the SFE can be subtly altered by alloying elements indicates that the mechanical
properties of stainless steels can be controlled by the chemical composition [331]. The stacking
fault energy in austenitic steels has been determined from experiment [157, 156, 332, 333, 334,
335, 336, 337] and semi empirical simulation [335, 338, 339, 340]. Using the so derived databases,
empirical relationships between SFE and chemical compositions have been established [156, 332,
337]. However, in most cases, these relationships fail to reproduce the nonlinear dependence
obtained, for instance, in high-Ni alloys [332, 270], or the alloying effects in hosts with different
compositions. The failure of such parameterizations is partially due to the fact that the SFE is
difficult to measure experimentally and usually large inaccuracies are associated with the values
quoted from the literature.

Using the EMTO method, we presented a theoretical database of the stacking fault energy (γ)
of FeCrNi random alloys [270, 341]. These calculations were carried out for the Fe1−c−nCrcNin
alloys, with 0.135 < c < 0.255 and 0.08 < n < 0.20. The SFE was computed according to
Equation (6.60). Because of the large magnetic fluctuations in these alloys [270], the local
magnetic moments have to be taken into account for all alloy components. To this end, for
each individual atom from the unit cell we introduced a local magnetic moment µi, where i
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stands for Fe, Cr and Ni. These moments were determined as a function of temperature (T )
from the minimum of the free energy F (T, µ) = E(T, µ)− T [Smag(µ) + Sel(T )], calculated as a
function of temperature and local magnetic moments. Here µ denotes the set of local atomic
moments µFe, µCr, etc. In actual calculations, the electronic energy E(T, µ) and electronic
entropy Sel(T ) = −2kB

∫ {f(ε) ln f(ε) + [1− f(ε)] ln[1− f(ε)]}D(ε)dε (where D(ε) is the density
of states) were obtained from spin-constrained EMTO calculations, using the finite-temperature
Fermi distribution f(ε). In fixed-spin calculations, we applied a constant splitting for all the
atoms from the unit cell. The theoretical equilibrium volume was calculated from the 0 K
electronic energy. The magnetic entropy Smag(µ) for atom i was estimated using the mean-field
expression kBlog(µi + 1) valid for completely disordered localized moments [314].

9.3.1 Theoretical Stacking Fault Energy versus Experimental Data

In Figures 9.9 and 9.10, we compare the room-temperature theoretical stacking fault energies for
Fe1−c−nCrcNin alloys with the available experimental data [157, 156, 335, 334, 336]. In figures,
the SFE is plotted as a function of n for alloys containing 17 and 19% Cr (Figures 9.9), and as a
function of c for alloys containing 14 and 16% Ni (Figures 9.10). The experimental values were
obtained for alloys containing small amounts of interstitial (e.g., C, N) and other substitutional
(e.g., Mo, Si, Mn) elements as well. Taking into account the relatively large error bars reported
in the measurements, the agreement between theory and experiment can be considered good.
We would like to point out how well the observed trends for γ(n) and γ(c) are captured by the
present theory.

It is found that, in alloys encompassing 14−16% Ni, Cr always decreases the stacking fault
energy. At the same time, in alloys with c =0.17−0.19, the stacking fault energy increases with
the amount of Ni. According to Equation (6.59), the SFE is approximately proportional with
the energy difference between the hcp and fcc phases. Hence, in terms of structural energy
differences, the trends from Figures 9.9 and 9.10 mean that in FeCrNi alloys Cr stabilizes and
Ni destabilizes the hcp phase relative to the fcc phase. These trends are partially due to
an electronic mechanism, and can be explained using the variation of the effective number of
d electrons (Nd) upon alloying. We recall that Cr substitution for Fe reduces Nd, while Ni
substitution for Fe increases Nd. According to the crystal structure theory of transition metals
[342], the structural energy difference approximately scales with the difference in the density
of states D(ε) near the Fermi level εF . EMTO calculations show that in fcc alloys Dfcc(ε) is
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Figure 9.11: Density of states for Fe0.8Cr0.18Ni0.12 random alloy calculated for fcc (solid line)
and hcp (dashed line) phases.

almost constant near εF (Figure 9.11), and, thus, alloying with Cr or Ni produces no significant
effect on Dfcc(εF ). At the same time, in hcp alloys Dhcp(ε) presents a pronounced minima
at energies slightly below εF . Therefore, a small amount of Ni (Cr) addition is expected to
destabilize (stabilize) the hcp structure. This explains the trends from Figures 9.9 and 9.10.

The calculated temperature dependence of the SFE for two compositions, close to those
considered in the experiments [343, 344, 345], is shown in Figure 9.12. The large (about 10
mJ/m2 per 100 K) SFE versus temperature slope obtained in the experiments is very well
reproduced by the EMTO method. For all data, ∂γ/∂T slightly decreases with T , showing a
tendency to saturate at high temperatures.

9.3.2 Magnetic Stacking Fault Energy

The electronic mechanism for the alloying effects on the SFE, described in Section 9.3.1, is
restricted to (i) compositions, where the magnetic contribution to the SFE is small, and (ii)
alloying elements, which leave unchanged the equilibrium volume of the host. However, in
a process where the magnetic structure and/or the volume is also modified, there are other
mechanisms which play important roles in the composition induced changes in the SFE. This is
in fact the situation in low-Cr and high-Ni alloys. In Figure 9.13, we show the calculated room-
temperature SFE of FeCrNi alloys as a function of the chemical composition. The observed
strongly nonlinear composition dependence is a consequence of the persisting local magnetic
moments in austenitic steels.

In order to understand this behavior we divide the stacking fault energy into a 0 K contri-
bution, γ0, plus the remaining part, γmag, viz. γ = γ0 + γmag. Because at room temperature the
Fermi function from the electronic energy and entropy is relatively insignificant, the dominant
temperature dependence of the free energy comes from the −TSmag term. Hence, we identify γ0

with the chemical, and γmag with the magnetic fluctuation [270] contribution to the SFE. The
local magnetic moments in the double hexagonal structure are calculated to be close to those in
the fcc structure. Therefore, according to Equation (6.59), the dominant part of γmag can be
expressed as −T(Shcp

mag−Sfcc
mag)/A2D. In other words, in alloys where the local magnetic moments

from the hcp (µhcp) and fcc (µfcc) phases differ significantly one can expect a large magnetic
contribution to the SFE.

Theoretical room-temperature data for γmag are shown in Figure 9.14. We find that the
magnetic SFE has the same order of magnitude as the total SFE from Figure 9.13, confirming the
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importance of the disordered local moments for the stability of steels. For the entire composition
interval considered here, the paramagnetic fcc alloys have large disordered local moments. At
0 K these moments are located on Fe atoms, and have magnitudes per Fe atom ranging from
1.35µB, near Fe67Cr25Ni8, to 1.75µB, near Fe67Cr13Ni20. At theoretical volumes, the low-Ni
hcp alloys are calculated to be non-magnetic with vanishing local magnetic moments. This
is illustrated in Figure 9.15. However, the low γmag values found for the low-Cr and high-Ni
corner of Figure 9.14, indicate that the alloys from this corner of the map have similar Smag

in the hcp and fcc phases. Indeed, we find that upon Ni addition the low-Cr alloys undergo a
transition from a non-magnetic to a paramagnetic phase (Figure 9.15) with non-vanishing local
moments. At high-Ni and low-Cr contents the hcp alloys possess disordered magnetic moments
of 0.95−1.50 µB per Fe atom. In contrast to Ni, calculations show that Cr addition always tends
to stabilize the zero local moment solution in the hexagonal phase. For instance, in hcp alloys
with n ≈0.18−0.20, the local moments disappear with c increasing from 0.135 to 0.255. This
magnetic transition explains the change obtained in the ∂γ/∂c slope from Figure 9.13.

The presence of disordered magnetic moments in FeCrNi alloys has important implications
for the alloying effects on the SFE of quaternary alloys. It has been shown [341] that as a result
of magnetic transition in the hcp phase, the same alloying element can cause totally opposite
changes in the SFE of alloys with different host composition. This indicates that no universal
composition equations for the stacking fault energy can be established.

9.4 Numerical Details for Chapter 9

For FeCrNi alloys, the single-electron equations were solved within the scalar-relativistic and
frozen-core approximations, i.e. the core states were fixed to the initial atomic states. The Green
function was calculated for 16 complex energy points, the EMTO basis set included s, p, d, f
orbitals, and in the one-center expansion of the full charge density we used lhmax = 10 (Section
5.2.2). The conventional Madelung energy was calculated for lmmax = 8. In the irreducible wedge
of the Brillouin zones we used 1000−1400 k-points, depending on the particular distortion.

For stacking fault energies, the Green function for the valence states was calculated for 52
complex energy points. In the irreducible wedge of the fcc, hcp and dhcp Brillouin zones we
used 1000−1500 uniformly distributed k-points.

The EMTO calculations for the elastic constants of FeCrNi alloys were carried out for qua-
ternary alloys, i.e. taking into account the disordered local magnetic moments only on Fe sites.
In the stacking fault energy calculations, on the other hand, the local magnetic moments on Cr
and Ni sites were considered as well.
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Chapter 10

Perspectives

In the first part of this thesis, we have introduced a new Density Functional technique based
on the Exact Muffin-Tin Orbitals theory. In Chapter 7, the EMTO method has been tested
on different system. The general good agreement between the present total energy results and
those obtained using more demanding full-potential techniques clearly demonstrates the high
accuracy of the EMTO method. In Chapters 8 and 9, applications to the case of concentrated
random alloys have been discussed and shown that the EMTO method can have a significant
impact within this field.

Today theoretical modeling of materials properties in materials science is undergoing a fun-
damental change. With the advent of Density Functional Theory and efficient tools for solving
its basic equations, the computational quantum-mechanics has reached a level where it already
can help engineers from different areas of metallurgy to search for novel materials. The present
thesis gives a few such examples obtained using the EMTO method.

It is now well established that the Density Functional Theory succeeds remarkably well in
predicting a wide range of physical, mechanical and chemical properties of many solid materials.
However, the existing theoretical design processes for alloys, and in particular for alloy steels,
still invoke numerous intermediate empirical or semi-empirical steps, that is in today’s quantum
computational alloy design the empirical data is still an indispensable input. Yet much theoret-
ical developments are needed to arrive at such a level, where ab initio investigations can fully
predict new materials of real practical use.
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[155] Heszler, P., Révész, K., Reimann, C. T., Mechler, A., Bor, Z.: Nanotechnology 11,
37 (2000)

[156] Schramm, R. E., Reed, R. P.: Met. Trans. A 6A, 1345 (1975)

[157] Miodownik, A. P.: Calphad 2, 207 (1978)

[158] Ozilins, V., Körling, M.: Phys. Rev. B 48, 18304 (1993)

[159] Kurth, S., Perdew, P. J., Blaha, P.: Int. J. Quantum Chem. 75, 889 (1999)

[160] Villars, P, Calvert, L. D.: Pearsons Handbook of Crystallographic Data for Inter-
metallic Phases. American Society for Metals, Metals Park, OH 44073 (1989)

[161] Akahama, Y., Fujihisa, H., Kawamura, H.: Phys. Rev. Lett. 94, 195503 (2005)

[162] Geiselmann, J.: J. Less-Common Met. 4, 362 (1962)

[163] Bercegeay, C., Bernard, S.: Phys. Rev. B 72, 214101 (2005)

[164] Landolt-Börnsteind, In: Numerical Data and Functional Relationships in Science and
Technology. New Series, Group III, Vol. 11, Springer-Verlag, Berlin (1979)

[165] Guo, G. Y., Wang, H. H.: Chinese Journal of Physics 38, 949 (2000)

[166] Gump, J., Xia, H., Chirita, M., Sooryakumar, R., Tomaz, M. A., Harp, G. R.: Journal
of Applied Physics 86, 6005 (1999)

[167] Kittel, C.: Introduction to Solid State Physics, 7th ed., Wiley, New York, (1996)

[168] Chetty, N., Weinert, M., Rahman, T. S., Davenport, J. W.: Phys. Rev. B 52, 6313
(1995)

[169] Turner, D. E., Zhu, Z. Z., Chan, C. T., Ho, K. M.: Phys. Rev. B 55, 13842 (1997)

[170] Hoshino, T., Papanikolaou, N., Zeller, R., Dederichs, P. H., Asato, M., Asada, T.,
Stefanou, N.: Comput. Mater. Sci. 14, 56, (1999)

[171] Ehrhart, P., Jung, P., Schulta, H., Ullmaier, H.: In: Ullmaier, H. (ed.) Atomic Defects
in Metals. Landolt-Bornstein, New Series Group III, Vol. 25 Springer-Verlag, Berlin
(1990)

[172] Kollár, J., Vitos, L., Osorio-Guillén, J. M., Ahuja, R.: Phys. Rev. B 68, 245417
(2003)

[173] Ibach, H.: Surf. Sci. Rep. 29, 193 (1997)
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