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Introduction

This dissertation is centered around abelian varieties and their generalizations.
Abelian varieties are central objects in algebraic and arithmetic geometry: they
are projective varieties with a geometrically defined (commutative) group law.
The simplest examples of abelian varieties are elliptic curves. It has been known
for a long time that if one fixes a base point O on a smooth cubic in the projective
plane, one can use secant and tangent lines to define on its points an addition
law satisfying the axioms for abelian groups. This additional group structure has
a great influence on the geometry of the curve but also on its arithmetic. For
instance, if the equation of the curve has rational coefficients and the point O has
rational coordinates, then the rational points form a subgroup in the group of real
or complex points, and this subgroup is finitely generated by a famous theorem of
Mordell.

Abelian varieties are also naturally associated with curves of higher genus.
Over an algebraically closed field linear equivalence classes of degree zero divi-
sors on a smooth projective curve X correspond to points of an abelian variety
JX canonically attached to X , called the Jacobian of the curve. If we fix a point
O of X , sending a point P to the class of the divisor P−O defines a morphism
αO : X → JX which is an isomorphism in genus 1 and an embedding in higher
genus. It can also be characterized by a remarkable universal property: every
morphism from X to an abelian variety sending O to zero factors uniquely through
αO.

It turns out that an abelian variety AlbX satisfying the above universal property
exists for a variety X of arbitrary dimension. It is called the Albanese variety of X ;
the map αO : X →AlbX sending the distinguished point O to zero is the Albanese
map. Though not as intimately related to X as the Jacobian is to a curve, the
Albanese variety still captures a lot of geometric information.

On a higher-dimensional smooth variety divisors do not come from points any
more, but from codimension 1 subvarieties. However, there is still a connection
with abelian varieties. If X is a smooth projective variety over an algebraically
closed field, linear equivalence classes of divisors correspond to points of a (non-
connected) group scheme Pic X whose identity component Pic 0

X is an abelian va-
riety, the Picard variety of X . For X a curve this is of course the Jacobian; the
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6 INTRODUCTION

other components of Pic X correspond bijectively to nonzero integers indexed by
the degree. If A is an abelian variety, then Pic 0

A is called the dual abelian variety of
A and is usually denoted by A∗. One has a canonical isomorphism (A∗)∗ ∼= A; the
Jacobian of a curve is self-dual. For X arbitrary a theorem going back to Severi
states that the dual of the Picard variety Pic 0

X is none but the Albanese variety
AlbX .

Roughly speaking, the main theme of this dissertation is the extension of
known geometric and arithmetic results about abelian varieties to semi-abelian
varieties. A semi-abelian variety is a commutative group variety that is an exten-
sion of an abelian variety by an algebraic torus; the latter term means an affine
group variety that over the algebraic closure of the base field becomes a finite
product of copies of the multiplicative group. Semi-abelian varieties abound in
nature: for instance, the Jacobian of an open (affine) curve is a semi-abelian vari-
ety. Also, Serre [59] has shown that to every variety over an algebraically closed
field one can attach a generalized Albanese variety ÃlbX which is universal for
morphisms to semi-abelian varieties. These are interesting for open varieties: if
U is an open subvariety of a smooth projective variety X , then they have the same
Albanese variety in the classical sense, but in the generalized sense ÃlbX = AlbX

is the abelian variety quotient of ÃlbU which has a toric part in general.
When proving theorems about semi-abelian varieties the difficulty is that in

most cases one cannot reduce them to the extreme cases of abelian varieties and
tori; the additional difficulty is created by the fact that the extension of the abelian
variety by the torus is nontrivial in general. To put it in a more highbrow way, an
abelian variety (e.g. the Jacobian of a curve) is a basic example of a pure motive,
whereas a semi-abelian variety gives rise to a mixed motive. A further step of
generalization comes when one considers 1-motives in the sense of Deligne [16]:
these are not group schemes any more but certain 2-term complexes of such. They
arise naturally when one wants to generalize the construction of the dual abelian
variety to the semi-abelian case. In a certain sense they yield the simplest category
of mixed motives with good properties.

In this dissertation we focus on three different, though interrelated, questions
concerning the geometry and arithmetic of semi-abelian varieties and 1-motives.

1. Serre’s generalized Albanese map. We study the generalized Albanese map of
Serre [59] on smooth quasi-projective varieties. The main result is a generalization
of a famous theorem of Roitman [55] to open subvarieties of smooth projective
varieties. Our method also yields a new conceptual proof of the result of Roitman
and has inspired subsequent research on the Albanese functor.
2. Arithmetic duality theorems for 1-motives. We consider Galois hypercohomol-
ogy groups of 1-motives defined over number fields and their completions and
prove several duality theorems about them. These theorems constitute a sym-
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0.1 ON THE ALBANESE MAP AND SUSLIN HOMOLOGY 7

metric common generalization of classical results by Cassels [11], Tate [70] and
Tate–Nakayama [68] on the cohomology of abelian varieties and tori and thus
unify the basic cohomological results on connected commutative group varieties
over number fields.

3. Rational points on principal homogeneous spaces of semi-abelian varieties. A
central topic in Diophantine geometry is the study of local-global principles for
rational points on varieties defined over number fields. We investigate this ques-
tion for principal homogeneous spaces (a.k.a torsors) under semi-abelian varieties
and prove a common generalization of results by Manin [42] and Sansuc [57],
thereby settling a long-standing open question in the field. Our proof relies on
the duality theorems of part 2 and also on a construction from part 1. This the-
orem was something of a ‘missing link’ in the arithmetic of torsors under group
varieties and had a considerable impact on further research.

In the following three sections, which correspond to the three chapters of the
main text, we give a more detailed discussion of the three topics above, including
precise statements of the main results and some indications about methods and
applications.

0.1 On the Albanese map and Suslin homology

We begin by explaining the classical theorem of A. A. Roitman [55]. Consider a
variety X over an algebraically closed field k. Fixing a base point O gives rise to
an Albanese map αO : X → AlbX that is by its very definition universal for mor-
phisms of X to abelian varieties that send O to the zero point. One can make this
map independent of the base point O as follows. Consider the group Z (X)0 of
formal Z-linear combinations ΣniPi of points of X satisfying ∑ni = 0. Extending
the map αO to Z (X)0 yields a map αX : Z (X)0 → AlbX that does not depend
on 0 any more. This map is known to factor through rational equivalence: two
elements of Z (X)0 are called rationally equivalent if their difference comes from
divisors on normalizations of curves on X . The quotient of Z (X)0 modulo ratio-
nal equivalence is usually denoted by CH0(X)0; it is the degree zero part of the
Chow group of zero-cycles. Roitman’s theorem can now be stated as follows.

Theorem 0.1.1 For X smooth and projective the Albanese map

αX : CH0(X)0→ AlbX

induces an isomorphism on torsion elements of order prime to the characteristic
of k.
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8 INTRODUCTION

Roitman’s result was later completed by Milne [45] in the case of characteris-
tic p > 0: he showed that the isomorphism also holds on the subgroup of elements
of p-power order. As a consequence of these results one obtains that the n-torsion
subgroup of CH0(X)0 is finite for each n > 0; indeed, this is known to hold for an
abelian variety.

Notice that for X a smooth projective curve the Albanese variety is none but
the Jacobian of X and CH0(X)0 is the degree zero part of the Picard group, so
the map αX itself is an isomorphism. However, already for surfaces examples of
Mumford show that the Albanese map can have uncountable kernel. Therefore it
is quite remarkable that it at least detects torsion classes in the Chow group.

Jointly with M. Spieß we have proven in [65] the following generalization to
semi-abelian varieties. Assume that X is smooth and projective, and U ⊂ X is an
open subvariety. Then one can consider the generalized Albanese map U→ ÃlbU
of Serre [59]; by definition it is the universal map for morphisms of U to semi-
abelian varieties that send some fixed base point to zero. As above, it induces a
canonical map Z (U)0→ ÃlbU .

Next, as a generalization of CH0(X)0 to the open case we consider a quotient
h0(U)0 of Z (U)0 called the degree zero part of the 0-th algebraic singular ho-
mology (or Suslin homology) group. In the paper [66] it was introduced in a more
general framework, but here is an elementary description. The group h0(U) can be
defined as the quotient of Z (U) (the free abelian group generated by the closed
points of U) by the subgroup generated by elements of the form i∗0(Z)− i∗1(Z),
where iν : U → U ×A1 (ν = 0,1) stand for the inclusions x 7→ (x,ν) and Z
runs through all closed irreducible subvarieties of U ×A1 such that the projec-
tion Z → A1 is finite and surjective. There is a natural degree map Z (U)→ Z
given by the formula

∑
i

niPi 7→∑
i

ni.

Using the fact that the projections Z→A1 are finite and flat it is not hard to check
that the degree map factors through h0(U), and we define h0(U)0 as the kernel of
the induced map. This definition gives back CH0(X)0 in the case U = X .

It can be shown that the map Z (U)0→ ÃlbU factors through h0(U)0, so we
can finally state:

Theorem 0.1.2 (= Theorem 1.1.1) For U an open subvariety of a smooth projec-
tive variety defined over an algebraically closed field k the generalized Albanese
map

h0(U)0→ ÃlbU

induces an isomorphism on torsion elements of order prime to the characteristic
of k.
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0.1 ON THE ALBANESE MAP AND SUSLIN HOMOLOGY 9

An attractive feature of the above generalization of Roitman’s theorem is that
the proof is new even in the case U = X and is very conceptual. In fact, its basic
idea can be simply summarized in the following commutative diagram:

h1(U,Z/n) −−−→ nh0(U)0

∼=
y y

Hom(H1
ét(U,Z/n),Z/n) −−−→ nÃlbU(k).

In this diagram the right vertical map is our generalized Albanese map restricted to
the n-torsion subgroup of h0(U)0, where n is an integer prime to the characteristic
of k. The left vertical map is a basic comparison isomorphism, proven in [66],
relating the first Suslin homology group with finite coefficients to the first étale
cohomology of U (over k = C the latter is just the usual singular cohomology
group). The upper map is a boundary map coming from a long exact homology
sequence and the bottom map expresses a more-or-less well-known relation of the
generalized Albanese variety to the first étale cohomology; it is a generalization
of the classical fact that on a curve H1-classes with finite coefficients come from
torsion points of the Jacobian.

Now the proof is just this: the diagram commutes, the upper map is surjective
and the bottom map is an isomorphism after passing to the direct limit over powers
of n. Hence so is the right vertical map. Of course, checking the commutativity
of the diagram is the hard part. It involves, among other things, an interpretation
of the Albanese map in Voevodsky’s derived category [71] of motivic complexes,
which has proven to be fruitful in later research.

By contrast, previous proofs of Roitman’s theorem (the original one, but also
that of S. Bloch [5]) involved several ad hoc arguments, whereas our proof re-
duces the statement to a basic cohomological comparison isomorphism. It later
inspired Barberi-Viale and Kahn [2] to put the theory into an even more general
framework which allows them to remove the assumption that U admits a smooth
compactification (namely X). This of course improves the result only in positive
characteristic where resolution of singularities is not known at present.

We have also proven the following complement (which was in fact the starting
point of the research project).

Theorem 0.1.3 (= Theorem 1.1.2) Let k be the algebraic closure of a finite field,
and U an open subvariety of a smooth projective variety defined over k. Then the
generalized Albanese map

h0(U)0→ ÃlbU

induces an isomorphism of torsion groups.
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10 INTRODUCTION

Of course, the prime-to-the-characteristic part follows from the generalized
Roitman theorem above once we know the elementary fact that the group h0(U)0

is torsion over the algebraic closure of a finite field. However, the p-part is not
covered by the previous theorem.

The method of proof is completely different, and relies on a result of arithmetic
nature: class field theory for tame coverings of varieties over finite fields [58].
Recently, this result was reproven in an elementary way by the late G. Wiesend;
see our report [67].

0.2 Arithmetic duality theorems for 1-motives

Duality theorems for the Galois cohomology of commutative group schemes over
local and global fields are among the most fundamental results in arithmetic. Let
us briefly and informally recall some of the most famous ones.

Perhaps the earliest such result is the following. Consider a p-adic field K (i.e.
a finite extension of Qp for some prime p) and an algebraic torus T defined over
K; this is a commutative group scheme that over the algebraic closure becomes
isomorphic to a finite direct power of the multiplicative group Gm. Denote by Y ∗

the character group of T . Consider the Galois cohomology groups H i(K,T ) and
H2−i(K,Y ∗) of these group schemes for i = 0,1,2 (see e.g. [23], [62]), related by
the cup-product

H i(K,T )×H2−i(K,Y ∗)→ H2(K,Gm)

coming from the pairing T ×Y ∗→ Gm. Here H2(K,Gm) is none but the Brauer
group of the p-adic field K which is isomorphic to Q/Z by a famous theorem of
Hasse. Therefore we get canonical pairings

H i(K,T )×H2−i(K,Y ∗)→Q/Z

for i = 0,1,2. The Tate-Nakayama duality theorem (whose original form can be
found in [68]) asserts that these pairings become perfect if in the cases i 6= 1 we
replace the groups H0 by their profinite completions. This theorem subsumes the
reciprocity isomorphism of local class field theory which is equivalent to the case
i = 0, T = Gm.

Next, in his influential Bourbaki exposé [69], Tate observed that given an
abelian variety A over K, the Poincaré pairing between A and its dual A∗ together
with the isomorphism H2(K,Gm)∼=Q/Z enables one to construct similar pairings

H i(K,A)×H1−i(K,A∗)→Q/Z

for i = 0,1, and he proved that these pairings are also perfect.
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0.2 ARITHMETIC DUALITY THEOREMS FOR 1-MOTIVES 11

The last result we recall is also due to Tate. Consider now an abelian variety
A over a number field k, and denote by X1(A) its Tate-Shafarevich group. By
definition, this group consists of those classes in the Galois cohomology group
H1(k,A) that become trivial when restricted to each completion of k. According
to a widely believed conjecture (which has been verified in some cases) this is a
finite abelian group.

Now Tate constructed a duality pairing

X1(A)×X1(A∗)→Q/Z

(generalizing earlier work of Cassels [11] on elliptic curves) and announced in
[70] that this pairing is nondegenerate modulo divisible subgroups. If one assumes
the finiteness of X1(A), divisible subgroups are trivial and one obtains a perfect
pairing of finite abelian groups. A detailed proof of this duality theorem first
appeared in Milne’s book [47]. Similar results for tori are attributed to Kottwitz
in the literature; indeed, the references [38] and [39] contain such statements, but
without (complete) proofs. The monographs [47] and [49] contain proofs in some
cases.

In the joint work [30] with D. Harari we established common generalizations
of the results mentioned above for 1-motives in the sense of Deligne [16]. We
recall the definition: a 1-motive over a field F is a two-term complex M of F-group
schemes [Y → G] (placed in degrees -1 and 0), where Y is the F-group scheme
associated to a finitely generated free abelian group equipped with a continuous
Gal(F)-action and G is a semi-abelian variety over F , i.e. an extension of an
abelian variety A by a torus T . Every 1-motive M as above has a Cartier dual
M∗ = [Y ∗→ G∗] generalizing the duals seen above in the cases M = [0→ T ] and
M = [0→ A]. A key example is the Cartier dual of a 1-motive of the form [0→G],
where G is a semi-abelian variety with toric part T and abelian quotient A. In this
case the Cartier dual is a 1-motive of the form [Y ∗→A∗], where Y ∗ is the character
group of T and A∗ the dual abelian variety of A. There is no intelligent way of
defining the dual of G as a group scheme.

The above duality construction together with arithmetic results enable one to
construct duality pairings relating the cohomology of M and M∗ over local and
global fields. However, one has to use Galois hypercohomology as we are dealing
with complexes of group schemes and not group schemes any more.

Let us now state the main results concerning these. Over local fields, we prove:

Theorem 0.2.1 (= Theorem 2.1.1) Let K be a local field, and let M = [Y → G] be
a 1-motive over K. For i =−1,0,1,2 there are canonical pairings

Hi(K,M)×H1−i(K,M∗)→Q/Z

inducing perfect pairings between
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12 INTRODUCTION

1. the profinite group H−1
∧ (K,M) and the discrete group H2(K,M∗);

2. the profinite group H0(K,M)∧ and the discrete group H1(K,M∗).

Here the groups H0(K,M)∧ and H−1
∧ (K,M) are obtained from the correspond-

ing hypercohomology groups by certain completion procedures. We also have a
generalization of the above theorem to 1-motives over so-called henselian local
fields of mixed characteristic, and a result showing that in the duality pairing the
unramified parts of the cohomology are exact annihilators of each other.

Now let M be a 1-motive over a number field k. For all i ≥ 0 define the Tate-
Shafarevich groups

Xi(M) = Ker [Hi(k,M)→∏
v

Hi(kv,M)]

where the product is taken over completions of k at all (finite and infinite) places
of k. Our main result can then be summarized as follows.

Theorem 0.2.2 (= Theorem 2.1.2) Let k be a number field and M a 1-motive over
k. There exist canonical pairings

Xi(M)×X2−i(M∗)→Q/Z

for i = 0,1.
For i = 1 the pairing is non-degenerate modulo maximal divisible subgroups.
For i = 0 it is a perfect pairing between a compact and a discrete topological

group, provided that we replace X0(M) by a certain modification X0
∧(M), and

assume the finiteness of X1(A) for the abelian quotient A.

See the beginning of Section 2.6 for the definition of X0
∧(M). If one accepts

the conjecture that the (usual) Tate-Shafarevich group of an abelian variety is fi-
nite, it can be shown that for i = 1 the pairing above is a perfect pairing of finite
groups.

The proof of the theorem is rather technical. In the most important case i = 1
it proceeds by constructing first some pairings in étale cohomology and proving
duality theorems for these. They are then shown to induce duality results on Galois
cohomology. As the definition of the pairings is rather abstract, the following
proposition is by no means obvious.

Proposition 0.2.3 (= Proposition 2.7.1) In the case i = 1 and M = [0→ A] with
A an abelian variety the pairing above coincides with the classical Cassels–Tate
pairing used in [11] and [70].
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0.2 ARITHMETIC DUALITY THEOREMS FOR 1-MOTIVES 13

In case the reader is willing to digest more cohomological theorems, here are
two more of them. They are generalizations of classical results known as the
Poitou–Tate and the Cassels–Tate exact sequences, respectively.

Theorem 0.2.4 (= Theorem 2.6.6) Let M be a 1-motive over a number field k.
Assume that X1(A) and X1(A∗) are finite, where A is the abelian variety corre-
sponding to M. Then there is a twelve-term exact sequence of topological abelian
groups

0 −−−→ H−1(k,M)∧
γ2

D

−−−→ ∏v∈Ωk
H2(kv,M∗k )

D β2
D

−−−→ H2(k,M∗)Dy
H1(k,M∗)D γ0←−−− P0(M)∧

β0←−−− H0(k,M)∧y
H1(k,M)

β1−−−→ P1(M)tors
γ1−−−→ (H0(k,M∗)D)torsy

0 ←−−− H−1(k,M∗)D γ2←−−−
⊕

v∈Ωk
H2(kv,M)

β2←−−− H2(k,M)

where the groups Pi are certain restricted topological products of hypercohomol-
ogy groups, the maps βi are restriction maps, the maps γi are induced by local
duality and the unnamed maps by the global duality results above.

Theorem 0.2.5 (= Theorem 3.1.2) Under the assumptions of the previous theo-
rem there is an exact sequence of topological abelian groups

0→H0(k,M)→∏
v∈Ω

H0(kv,M)→X1
ω(M

∗)D→X1(M)→ 0.

Here H0(k,M) denotes the closure of the diagonal image of H0(k,M) in the topo-
logical product of the H0(kv,M), and AD := Hom(A,Q/Z) for a discrete abelian
group A. (By convention, for v archimedean we take here the modified (Tate) hy-
percohomology groups instead of the usual ones.) Finally, the group X1

ω(M
∗)

consists of those classes in the Galois hypercohomology group H1(k,M∗) that
become trivial when restricted to all but finitely many completions of k.

There has been a fair amount of later research developing the results in this
section. C. González-Avilés [24] has extended the main results to the function
field case. For the function field of a curve defined over a finite field of char-
acteristic p our proofs carry over to treat the prime-to-p torsion part of the co-
homology groups involved. González-Avilés was able to prove an analogue of
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14 INTRODUCTION

the i = 1 case of Theorem 0.2.2 for the p-primary torsion part. In their paper
[25] González-Avilés and Tan have also extended the Poitou–Tate exact sequence
(Theorem 0.2.4) and the Cassels–Tate dual exact sequence (Theorem 0.2.5) to
positive characteristic. They have moreover constructed a variant of the latter se-
quence that does not rest upon a finiteness assumption on Tate–Shafarevich groups
(but is maybe less suitable for applications).

Another kind of generalization was proven by Peter Jossen in his thesis [34]
written under my supervision. He defined a 1-motive with torsion to be a mor-
phism Y → G, where Y is an extension of a lattice by a finite flat group scheme
and G is an extension of an abelian scheme by a group scheme X that is itself
an extension of a finite flat group scheme by a torus. Jossen extended the theory
of Deligne 1-motives to 1-motives with torsion, including Cartier duality and `-
adic realizations. He was then able to prove the analogue of Theorem 0.2.2 for
1-motives with torsion. This theorem yields a common generalization of all pre-
viously known duality results over number fields, including Poitou–Tate duality
for finite group schemes which was not covered by Theorem 0.2.2.

0.3 Local-global principles for 1-motives

The duality theorems of the previous section have stimulated a fair amount of
subsequent research besides those already mentioned. We now present a ma-
jor application, again based on a joint paper [31] with D. Harari. It concerns
local-global principles for points on torsors under semi-abelian varieties. A tor-
sor, or a principal homogeneous space, under a k-group variety G is a k-variety
X equipped with an action of G that becomes simply transitive over the algebraic
closure; in particular, over the algebraic closure X becomes isomorphic to G as
a variety. Basic examples are curves of genus 1 over non-algebraically closed
fields: if they have a point, they are elliptic curves and hence abelian varieties; if
not, they are torsors under their Jacobians which are elliptic curves. There exist
classical examples of curves of genus 1 over a number field k that have points over
all completions but not over k (e.g. the plane curve with homogeneous equation
3x3+4y3+5z3 = 0). Such curves are usually referred to as counterexamples to the
Hasse principle (which holds if the existence of local points implies the existence
of a global point).

Here we study the failure of the Hasse principle for rational points on torsors
under general semi-abelian varieties over a number field k. There is a general
method going back to the 1970 ICM lecture of Manin [42] that justifies the exis-
tence of counterexamples in many (though not all) cases. To explain it, we need
to introduce two more notions. One is the set X(Ak) of adelic points of a variety
X ; its elements are sequences of points (Pv) of X over each completion kv such
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0.3 LOCAL-GLOBAL PRINCIPLES FOR 1-MOTIVES 15

that for all but finitely many finite places v the point Pv is actually a v-integral
point. The other is the notion of the Brauer group BrX of a scheme S. We shall
not give the definition here, but for our purposes it suffices to know that S 7→ BrS
is a contravariant functor on the category of schemes which sends the spectrum of
a field F to the Brauer group BrF of F . Recall that for a completion kv of k at a
finite place we have an isomorphism Brkv ∼= Q/Z by local class field theory; for
kv = R we have BrR ∼= Z/2Z which we may view as a subgroup of Q/Z. Now
for a smooth k-variety X Manin defines a pairing

X(Ak)×BrX →Q/Z, [(Pv),α] 7→∑α(Pv)

where the evaluation map α 7→ α(Pv) is induced by contravariant functoriality of
BrX and the sum is taken inside Q/Z (it is known to be finite). If the sequence
(Pv) is the diagonal image of a k-rational point, then the pairing with any α ∈BrX
gives zero by the global reciprocity law of class field theory. So denoting by
X(Ak)

Br the left kernel of the above pairing we have the implication X(Ak)
Br =

/0⇒ X(k) = /0. This is the Manin obstruction to the Hasse principle. It is said to
be the only obstruction if the converse implication holds.

It is often interesting to restrict the Manin pairing to subquotients of BrX .
We shall be interested in the subquotient B(X) defined as follows. Consider the
natural maps Brk π→ BrX

ρ→ Br(X ×k k̄) and set Br aX := ker(ρ)/im(π). Then
take B(X)⊂ Br a(X) to be the subgroup of locally trivial elements. As the image
of Brk in BrX pairs trivially with adelic points (again by the global reciprocity
law), the Manin pairing induces a pairing with Br aX and finally with B(X). We
still have of course X(Ak)

B = /0⇒ X(k) = /0, with X(Ak)
B defined similarly as

X(Ak)
Br . The group B(X) is often more interesting than BrX because if one

assumes that the Tate-Shafarevich group of the Albanese variety of X is finite, it
is also finite, and in some cases even explicitly computable. This gives a practical
way for verifying the failure of the Hasse principle in the cases where the Manin
obstruction coming from B(X) is the only one.

The main theorem of [31] now states:

Theorem 0.3.1 (= Theorem 3.1.1) Given a torsor X under a semi-abelian variety
G over a number field whose abelian quotient has finite Tate–Shafarevich group,
we have X(Ak)

B 6= /0⇒ X(k) 6= /0, i.e. the Manin obstruction associated with
B(X) is the only obstruction to the Hasse principle.

This result was known for G = A an abelian variety (Manin himself) or G a
torus (Sansuc [57]) but the general case is considerably harder. It was in fact, a
long-standing open question; see e.g. Skorobogatov’s book ([63], p. 133).

The main idea of the proof is (as already in Manin’s case) to relate the Manin
pairing

X(Ak)×B(X)→Q/Z (0.1)
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to the Cassels–Tate type pairing

X(M)×X(M∗)→Q/Z (0.2)

for the 1–motive M = [0→ G] and to use the non-degeneracy of the latter pairing
proven in Theorem 0.2.2. More precisely, denote by 〈 , 〉M the first pairing and by
〈 , 〉CT the second. The method is to construct a map ι : X(M∗)→B(X) such
that for all adelic points (Pv) of X and all α ∈B(X) the formula

〈(Pv), ι(α)〉M = 〈[X ],α〉CT (0.3)

holds. To understand the formula, note first that the torsor X is known to have
a cohomology class [X ] in the group H1(k,G) = H1(k,M); it is a trivial class if
and only if X has a k-point (see e.g. [63], pp. 18–19). Hence the assumption
X(Ak) 6= /0 implies that [X ] ∈X1(M). The left hand side does not depend on
the choice of (Pv) because elements of B(X) are ‘locally constant’ by definition.
Now assume that the map ι exists and formula (0.3) holds. Then the assumption
X(Ak)

B 6= /0 together with (0.3) implies that [X ] is orthogonal to the whole of
X1(M∗) under the pairing 〈 , 〉CT . Thus [X ] = 0 by Theorem 0.2.2, i.e. X(k) 6= /0.

It took us considerable time to figure out the right way to define the map ι .
We finally discovered that the key was given by the duality between generalized
Albanese and Picard varieties which was already used in the proof of Theorem
0.1.2. We also needed a new cohomological interpretation of the Manin pairing
〈 , 〉M which has found other applications since.

We have also proven a similar result for weak approximation of adelic points
by rational points. The question is whether the set X(k) of rational points are
dense in X(Ak) for the restricted product topology. To study it, one works with a
modified version of the Manin pairing, namely with the induced pairing

X(kΩ)×Brnr X →Q/Z,

where kΩ is the topological direct product of all completions of k, and Brnr X is
the unramified Brauer group of X ; it can be defined as the Brauer group of any
smooth compactification of X . One may also work with subgroups of Brnr X , such
as Brnr 1 X := ker(Brnr X → Brnr (X ×k k̄)). Finally, for a smooth k-group scheme
G there is yet another variant, which is the one we shall use:

∏
v∈Ω

G(kv)×Brnr 1 G→Q/Z. (0.4)

Here we have taken the same convention at the archimedean places as in Theorem
0.2.5 above. Concerning this pairing one has the following result:
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0.3 LOCAL-GLOBAL PRINCIPLES FOR 1-MOTIVES 17

Theorem 0.3.2 (= Theorem 3.6.1) Let G be a semi-abelian variety defined over
k. Assuming that the abelian quotient has finite Tate–Shafarevich group, the left
kernel of the pairing (0.4) is contained in the closure of the diagonal image of
G(k).

Actually, this theorem was first proven in [29]. However, the techniques used
in the proof of Theorem 0.3.1 together with exact sequence 0.2.5 enabled us to
give another, shorter proof.

Theorem 0.3.1 gave rise to several applications by other mathematicians. Boro-
voi, Colliot-Thélène and Skorobogatov [8] have generalized it to homogeneous
spaces under an arbitrary connected algebraic group. The precise statement is the
same as in Theorem 0.3.1, except that G is a connected algebraic group, and X
is a homogeneous space of G whose geometric points have connected stabilizers.
There is, however, an additional restriction on the number field k: it must be to-
tally imaginary. In fact, the same paper contains a quite surprising example ([8],
Proposition 3.16) of a connected non-commutative and non-linear algebraic group
over Q for which the statement fails. This shows that over arbitrary number fields
general connected algebraic groups behave differently from commutative or linear
ones.

The proof uses techniques going back to Borovoi’s papers [6] and [7] to reduce
to the case of a torsor under a semi-abelian variety, where our Theorem 0.3.1 can
be applied.

In fact, Borovoi, Colliot-Thélène and Skorobogatov formulated their result in
a different but equivalent way, in terms of the elementary obstruction of Colliot-
Thélène and Sansuc [15]. By definition, this obstruction is the extension class
ob(X) of Gal(k̄|k)-modules

0→ k̄×→ k̄(X)×→ k̄(X)×/k̄×→ 0 (0.5)

where k is a perfect field, X is an arbitrary smooth geometrically integral k-variety
and k̄(X)× is the group of invertible rational functions on X ×k k̄. An easy argu-
ment in Galois cohomology (see e.g. [63], p. 27) shows that a k-rational point
induces a Galois-equivariant splitting of the above extension. Thus nontriviality
of ob(X) is an obstruction to the existence of a k-point.

For varieties over a number field possessing an adelic point the triviality of
ob(X) is equivalent to the triviality of the pairing (0.1) under the assumption that
the Tate–Shafarevich group of the Albanese variety of X is finite (which conjec-
turally is the case). This was shown in Wittenberg’s paper [72]. We go into some
details as the argument uses Albanese maps and Theorem 0.3.1. We have seen in
section 1 that in the case when k is algebraically closed there exists a semi-abelian
variety ÃlbX attached to X which is universal for morphisms of X to semi-abelian

               dc_101_10



18 INTRODUCTION

varieties. Over a general k the generalized Albanese variety ÃlbX still exists: it is
a semi-abelian variety over k that comes equipped with a canonical k-torsor Alb1

X
which is universal for morphisms of X to torsors under semi-abelian varieties. The
main geometric result of [72] is the proof that the triviality of the torsor Alb1

U for
all Zariski dense open subsets U ⊂ X implies the triviality of ob(X). By a short
argument due to Colliot-Thélène, this in turn implies the triviality of the pairing
(0.1) if k is a number field and the said Tate–Shafarevich group is finite. Assuming
conversely that (0.1) is trivial, one easily shows using Theorem 0.3.1 as well as
the fact ([18], Lemma 3.4) that for each U as above the map B(X)→B(U) is an
isomorphism that Alb1

U is trivial for all dense open subsets U .
We thus see that the results of Sections 2 and 3 imply interesting arithmetic

properties of general varieties via the generalized Albanese map.
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Chapter 1

On the Albanese map and Suslin homology

1.1 Introduction

This chapter is an almost identical reproduction of my joint paper [65] with Michael
Spieß. I have made a correction communicated to me by the late J. van Hamel
shortly before his untimely death and added Remark 1.5.6 addressing a subse-
quent improvement of the main theorem.

Consider an algebraically closed field k of characteristic p ≥ 0 and a smooth
connected quasi-projective k-variety X . When X is in fact projective, a famous
theorem due to A. A. Roitman ([55], see also [5]) asserts that the Albanese map

albX : CH0(X)0−→AlbX(k) (1.1)

from the Chow group of zero-cycles of degree 0 on X to the group of k-points
of the Albanese variety induces an isomorphism on prime-to-p torsion subgroups
(later J. S. Milne proved that the isomorphism holds for p-primary torsion sub-
groups as well, cf. [45]). As a well-known counter-example of Mumford shows,
in dimensions greater than one the map albX itself is not an isomorphism in gen-
eral. Still, Kato and Saito ([37], Section 10) have established the bijectivity of
albX in the case when k is the algebraic closure of a finite field (in fact, in this
case both groups are torsion). Moreover, bijectivity over k = Q has been con-
jectured by Bloch and Beilinson, as a consequence of some expected standard
features of the conjectural category of mixed motives over Q.

In this chapter we present a new conceptual approach to the theorem of Roit-
man which at the same time yields a generalization to the case when X is not
necessarily projective but admits a smooth compactification. Here the natural tar-
get for the Albanese map is the generalized Albanese variety introduced by Serre
[59]. If X is a curve, this variety is a generalized Jacobian in the sense of Rosen-
licht [56] and for X proper it is the usual Albanese. In general, it is a semi-abelian
variety universal for morphisms of X into semi-abelian varieties; it is related to
the Picard variety by a duality theorem (see sections 1.3 and 1.4 for more details).

19
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20 CHAPTER 1. ON THE ALBANESE MAP AND SUSLIN HOMOLOGY

The generalization of albX to this context is a map

albX : h0(X)0−→AlbX(k) (1.2)

where the group on the left is the degree zero part of Suslin’s 0-th algebraic singu-
lar homology group defined in [66]; it coincides with CH0(X)0 when X is proper
(see section 1.2 for the precise definition). The map (1.2) first appeared in the
1998 preprint version of N. Ramachandran’s paper [53]; we give a simple proof
for the “reciprocity law” implying its existence in Section 1.3.

Now we can state our main result.

Theorem 1.1.1 Let k be an algebraically closed field of characteristic p≥ 0 and
let X be a smooth connected quasi-projective variety over k. Assume that there
exists a smooth projective connected k-variety X containing X as an open sub-
scheme. Then the Albanese map (1.2) induces an isomorphism on prime-to-p
torsion subgroups.

Note that the required smooth compactification X exists if k is of characteristic
0 or if X is of dimension≤ 3 and p≥ 5, by virtue of the desingularization theorems
of Hironaka and Abhyankar.

Our method for proving Theorem 1.1.1 is new even in the proper case and is
(at least to our feeling) more conceptual than the previous ones. The proof exploits
the comparison maps hi(X ,Z/nZ)→H i

ét(X ,Z/nZ) relating algebraic singular co-
homology to étale cohomology according to Suslin and Voevodsky [66] for any
n prime to p; by the main result of loc. cit. these maps are isomorphisms. We
reduce the proof of our theorem to the case i = 1 of this fundamental result by
showing that, in that case, taking the dual of the inverse map for all n and passing
to the direct limit one obtains the restriction of the map (1.2) to the prime-to-p
torsion subgroup of h0(X). One of the basic observations for proving this identi-
fication, which may be of independent interest, is that thanks to its functoriality
and homotopy invariance properties, the (generalized) Albanese variety can be
regarded as an object of Voevodsky’s triangulated category of effective motivic
complexes DMe f f

− (k) and in fact for smooth varieties the Albanese map can be
interpreted as a morphism in this category.

Over the algebraic closure of a finite field we can prove somewhat more:

Theorem 1.1.2 We keep the hypotheses of Theorem 1.1.1 and assume moreover
that k is the algebraic closure of a finite field. Then (1.2) is an isomorphism of
torsion groups.

The proof of this theorem is more traditional: in fact, it is a direct generaliza-
tion of the argument given in ([37], section 10), using the “tamely ramified class
field theory” developed in [58].
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Finally it should be mentioned that during recent years fruitful efforts have
been made for generalising Roitman’s theorem to singular complex projective va-
rieties (see [4] and the references quoted there). Our generalization seems to be
unrelated to this theory except perhaps in the case when X is the complement of
the singular locus of a complex projective variety.

A word on notation: For an abelian group A and a nonzero integer n we denote
by nA the n-torsion subgroup of A and we write A/n as a shorthand for A/nA. For
a prime number ` we let A{`} be the `-primary component of the torsion subgroup
of A.

1.2 Review of algebraic singular homology

This section and the next are devoted to the definition of the map (1.2) and the
groups involved. We begin by recalling the definition of the algebraic singular
homology groups introduced in [66]. In this section k may stand for an arbitrary
perfect field.

For an integer n≥ 1 consider the algebraic n-simplex

∆
n = Speck[T0, . . . ,Tn]/(T0 + . . .+Tn−1).

If X is a k-variety (i.e. an integral separated scheme of finite type over k), denote by
Cn(X) the free abelian group generated by those integral closed subschemes Z of
X×∆n for which the projection Z→∆n is finite and surjective. Any nondecreasing
map α : {0,1, . . . ,m} → {0,1, . . . ,n} induces a morphism ∆m → ∆n and thus a
homomorphism α∗ : Cn(X)→Cm(X) via pull-back of cycles. These maps endow
the set of the Cn(X) with the structure of a simplicial abelian group; we denote
by C•(X) the associated chain complex. For an abelian group A the n-th algebraic
singular homology group hn(X ,A) of X with coefficients in A is defined as the n-th
homology of the complex C•(X)⊗A and the n-th algebraic singular cohomology
hn(X ,A) as the n-th cohomology of Hom(C•(X ,Z),A). For A = Z we shall simply
write hn(X) for hn(X ,Z) etc.

The group h0(X) has the following concrete description. Let Z (X) be the
free abelian group with basis the set X0 of closed points of X . Then h0(X) is
the quotient of Z (X) by the submodule R generated by i∗0(Z)− i∗1(Z), where
iν : X → X×A1 (ν = 0,1) stand for the inclusions x 7→ (x,ν) and Z runs through
all closed integral subschemes of X×A1 such that the projection Z→A1 is finite
and surjective. There is a natural degree map Z (X)−→Z given by the formula

∑
i

niPi 7→∑
i

ni[k(Pi) : k],
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of which we denote the kernel by Z (X)0. Using the fact that the projections Z→
A1 are finite and flat, one checks that Z (X)0 contains R; the quotient Z (X)0/R
will be denoted by h0(X)0.

For the proofs we shall also need a sheafified version of the above construction.
For this, denote by Sm/k the category of smooth schemes of finite type over k. Let
F be an abelian presheaf on Sm/k, i.e. a contravariant functor from Sm/k to the
category of abelian groups. For any m ≥ 0 we may define a presheaf Fm by the
rule Fm(X) =F (X×∆m). Together with the operations induced from the cosim-
plicial scheme ∆• these presheaves assemble to form a simplicial presheaf whose
associated chain complex we denote by C•(F ). If F is homotopy invariant, i.e.
if the natural map F (X)→F (X×A1) is an isomorphism for all X ∈ Sm/k, then
the augmentation map C•(F )→F given by the identity in degree 0 is a map of
complexes and in fact a quasi-isomorphism (here we view F as a complex con-
centrated in degree 0). Indeed, in view of the canonical isomorphism ∆n ∼= An

in this case C•(F ) is none but the complex associated to the constant simplicial
presheaf defined by F .

We also recall the notion of presheaves with transfers from Section 2 of [71].
These are contravariant additive functors with values in abelian groups from the
category SmCor(k) whose objects are smooth schemes of finite type over k and
where a morphism from an object X to an object Y is a finite correspondence, i.e.
an element of the free abelian group c(X ,Y ) generated by those integral closed
subschemes Z of X×Y for which the projection Z→X is finite and surjective over
a component of X . (Note: This definition of presheaves with transfers differs from
the one in the earlier paper [66] whose results we shall use in the sequel, but the
two definitions are equivalent.) Now the link with the algebraic singular complex
is the following. For a separated k-scheme X the rule U 7→ c(U,X) defines a
presheaf with transfers on which we denote by Ztr(X); actually it is a sheaf for
the étale topology on SmCor(k). Then by definition C•(Ztr(X))(k) =C•(X).

1.3 The generalized Albanese map

In this section we explain the construction of the generalized Albanese maps on
two levels of generality: first, in order to keep technicalities to a minimum, we
construct the map (1.2) over an algebraically closed k as stated in the introduction,
and then we explain a sheafified version over an arbitrary perfect field.

So we begin by working over an algebraically closed field k and recalling the
notion of the generalized Albanese variety AlbX of a variety X , as introduced in
[59]. It is a semiabelian variety satisfying the following universal property: for
every k-point P of X there is a morphism ιP : X → AlbX such that ιP(P) = 0 and
if (B, f ) is a pair consisting of a semiabelian variety B and a morphism f : X → B
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mapping P to 0B there is a unique morphism g : AlbX → B of group schemes with
g◦ ιP = f . Note that the maps ιP satisfy the formula

ιP(Q) = ιP(R)+ ιR(Q) (1.3)

for any k-points P,Q,R of X .
If X is proper, then AlbX is the Albanese variety in the classical sense. If X

is a curve, it coincides with Rosenlicht’s generalized Jacobian for the modulus
defined by the sum of points at infinity.

The assignment X 7→ AlbX is a covariant functor for arbitrary morphisms of
varieties. Moreover, there is also a contravariant functoriality of AlbX with respect
to finite flat morphisms f : X → Y which we now briefly explain. Mapping a
closed point Q of Y to the pull-back zero-cycle f ∗(Q) defines a morphism of
Y into the d-fold symmetric product Symd(X), where d is the degree of f . On
the other hand, for a fixed k-point P of Y the zero-cycle f ∗(P) = P1 + · · ·+Pd
defines a morphism Symd(X)→ AlbX via the sum of the maps ιPi (1 ≤ i ≤ d).
The composite of these two maps sends P to 0 in AlbX , hence by definition of
AlbY factors as the composite of ιP with a morphism f ∗ : AlbY → AlbX . Using
formula (1.3) one checks that f ∗ is independent of the choice of P; it is the map
we were looking for.

We denote by
aX : Z (X)0−→AlbX(k)

the homomorphism
∑

i
niPi 7→∑

i
ni(ιP(Pi))

for some P ∈ X(k); again the map is independent of the choice of P by formula
(1.3). For a morphism f : X → Y of varieties the diagram

Z (X)0 aX−−−→ AlbX(k)y f∗

y f∗

Z (Y )0 aY−−−→ AlbY (k)

(1.4)

commutes where the vertical maps are induced by f through covariant functorial-
ity. Similarly, for a finite flat f : X → Y the diagram

Z (Y )0 aY−−−→ AlbY (k)y f ∗
y f ∗

Z (X)0 aX−−−→ AlbX(k)

(1.5)

commutes.
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Using these functoriality properties we can give an easy proof of the following
“reciprocity law” which immediately yields the existence of the map albX as in
(1.2).

Lemma 1.3.1 With notations as above, the subgroup R ⊂Z (X)0 is contained in
the kernel of the map aX .

Proof. Let Z⊆X ×A1 be a closed integral subscheme such that the projection
q : Z→A1 is finite and surjective (hence also flat, its target being a regular integral
scheme of dimension 1) and denote by p : Z → X the other projection. By the
commutativity of (1.4) and (1.5) we have

aX(i∗0(Z)− i∗1(Z)) = aX(p∗(q∗((0)− (1)))) = p∗(q∗(aA1((0)− (1)))).

Since the generalized Albanese of A1 is trivial (any map of A1 into a semi-abelian
variety being constant), it follows that the left hand side is 0.

Now we treat the sheafification of the above construction, over an arbitrary
perfect base field k. For this purpose it is convenient to replace AlbX by the
“Albanese scheme” ÃlbX considered in [53] (where it is denoted by AX ; for the
following facts, see his Definition 1.5 and the subsequent discussion). For ge-
ometrically connected X it is a smooth commutative group scheme which is an

extension of the constant group scheme Z by a semi-abelian variety Ãlb
0
X . Any k-

point of X (if exists) defines a splitting, i.e. an isomorphism Z×Ãlb
0
X
∼= ÃlbX . For

k algebraically closed, the variety Ãlb
0
X is none but our AlbX considered above.

The scheme ÃlbX comes equipped with a canonical morphism ι : X → ÃlbX sat-
isfying an appropriate universal property.

Now for simplicity we restrict to the case when X is smooth, which is sufficient
for the applications we have in mind. Consider the abelian presheaf on Sm/k
represented by the group scheme ÃlbX which we also denote by ÃlbX . It is a
sheaf for the étale (even the f pp f ) topology.

Lemma 1.3.2 The étale sheaf ÃlbX is a homotopy invariant presheaf with trans-
fers.

Proof. Homotopy invariance is again a consequence of the fact that there is no
non-constant map A1 → ÃlbX . To construct transfer maps, we can work more
generally with an arbitrary commutative group scheme G. Take X ,Y ∈ Sm/k and
let Z ⊂ X ×Y be a closed integral subscheme finite and surjective over a com-
ponent of X . As explained before Theorem 6.8 of [66], to X one can associate a
canonical map αZ : X→ Symd(Y ), where d is the degree of the projection Z→ X .
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Now given a map Y → G, it induces a map Symd(Y )→ Symd(G), whence we
obtain the required map X → G by composing by αZ on the left and by the sum-
mation map on the right.

The lemma implies that there is a unique map of presheaves

Ztr(X)→ ÃlbX (1.6)

which maps the correspondence associated to the identity map id : X → X to
the Albanese map ι ∈ ÃlbX(X). By applying the functor C•( ) we get a map
C•(Ztr(X))→ C•(ÃlbX). Composing it with the augmentation map on the right
(existing by homotopy invariance of ÃlbX ; see the previous section) yields the
map of complexes of étale sheaves with transfers

C•(Ztr(X))−→ ÃlbX . (1.7)

Here we again consider ÃlbX as a complex concentrated in degree 0. Since
this is a morphism of complexes, it factors through the 0-th homology presheaf
H0(C•(Ztr(X))); as ÃlbX is an étale sheaf, it even factors through the associ-
ated étale sheaf H0(C•(Ztr(X)))ét. We remark for later use that the map (1.6)
can be obtained as a composite of (1.7) with the natural morphism of complexes
Ztr(X)→C•(Ztr(X)) (again with Ztr(X) placed in degree 0 on the left).

Passing to sections over k and taking homology, we get a map h0(X) →
ÃlbX(k), and, in the presence of a k-point, a map as in (1.2) which agrees with the
previous one for k algebraically closed. In other words, the existence of the map
(1.7) subsumes a sheafified version of the reciprocity law (perceptive readers have
already noted the similarity of the argument with the proof of Lemma 1.3.1). The
existence of the map (1.2) over a perfect base field, as demonstrated here, will be
used in the proof of Theorem 1.1.2.

Remark 1.3.3 In the terminology of [71], Lemma 1.3.2 states that the sheaf ÃlbX

defines an object in the category DMe f f
− (k) of effective motivic complexes; on the

other hand, C•(Ztr(X)) is precisely the motivic complex that Voevodsky asso-
ciates to the smooth variety X . Therefore the map (1.7), which was shown above
to be a morphism in DMe f f

− (k), can be regarded as the “motivic interpretation” of
the Albanese map.

1.4 Relation to tame abelian covers

Assume now we are in the situation of Theorem 1.1.1. In this case AlbX has been
described by Serre in his exposé [60] as an extension of the abelian variety AlbX
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by a torus T whose rank is equal to the rank of the subgroup BX of divisors on
X which are algebraically equivalent to zero and whose support is contained in
X−X . As a consequence of this result one gets for any n prime to p, just as in the
proper case (see [35], Lemma 5 or [45], p. 273), an injection of the dual group of
nAlbX(k) into H1

ét(X ,Z/n) with a finite cokernel of order bounded independently
of n.

The construction of this injection is completely analogous to the proper case,
only technically a bit more involved. Consider the group CX of irreducible divisors
of X supported in X\X . Composing the projection Pic(X)→NS(X) to the Néron-
Severi group by the natural map

CX → Pic(X) (1.8)

associating to a divisor its class one gets an exact sequence

0→ BX →CX → S′→ 0

with the appropriate subgroup S′ of NS(X). Denote by M∗(X) the complex of
smooth commutative group schemes (concentrated in degrees 0 and 1) associated
to (1.8). By restriction to BX we get another complex [BX → Pic 0(X)] which we
denote by M1(X). The above considerations give a distinguished triangle in the
derived category of bounded complexes of smooth commutative group schemes

M1(X)−→M∗(X)−→S[−1]−→M1(X)[1].

where S is a finitely generated constant commutative group scheme. By taking
k-valued points (this is an exact functor since k is algebraically closed), tensoring
with Z/n in the derived sense and passing to cohomology we obtain the exact
sequence

0−→H0(M1(X)(k)⊗L Z/n)−→H0(M∗(X)(k)⊗L Z/n)−→Tor(S,Z/n)

−→H1(M1(X)(k)⊗L Z/n). (1.9)

Here the last term vanishes by the following easy lemma:

Lemma 1.4.1 Let k be an algebraically closed field and M a complex of commu-
tative k-group schemes concentrated in degrees 0 and 1 whose degree 1 term is
smooth and connected. Then H1(M(k)⊗L Z/n) = 0 for all integers n 6= 0.

Proof. This boils down to the divisibility of the group of rational points of a
smooth connected commutative group scheme over an algebraically closed field.
We leave the details to the reader.
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Now assume for a moment that X is proper or the complement of a divisor
in X. As remarked by Ramachandran (in (2-30) of the preprint version of [53]),
the same argument as that for curves given on p. 70 of [16] gives a canonical
isomorphism

H0(M∗(X)(k)⊗L Z/n)
∼=→H1

ét(X ,µn). (1.10)

For the convenience of the reader we recall the definition of (1.10). The target
can be identified with group of isomorphism classes of pairs (L ,ψ) consisting
of a line bundle L on X and an isomorphism ψ : L ⊗n → OX . On the other
H0(M∗(X)(k)⊗L Z/n) can be described as the group of equivalence classes of
pairs (L̄ ,D) where L̄ is a line bundle on X and D ∈ CX with L̄ ⊗n ∼= O(D),
two such pairs (L̄1,D1), (L̄2,D2) being equivalent if there exist D3 ∈ CX such
that L̄1⊗ L̄ −1

2
∼= O(D3) and D1−D2 = nD3. Given a pair (L̄ ,D) we choose an

isomorphism ψ̄ : L̄ ⊗n→ O(D). The map (1.10) is given by sending the class of
(L̄ ,D) to the isomorphism class of (L̄ |X , ψ̄ |X).

As explained by ([53], Theorem 2.3), the main result of [60] can be reinter-
preted by saying that the Cartier dual of the complex M1(X) regarded as a 1-
motive (cf. [16], Chapter 10 for this terminology) is the 1-motive [0→ AlbX ]; in
particular, the toric part T of AlbX has character group BX . Since the construction
of ([16], 10.2.5 and 10.2.11) puts into duality the “n-adic realizations” TZ/nZM
and TZ/nZM∨ of a 1-motive M and of its Cartier dual M∨ (this is a generalization
of the classical fact that the duality between an abelian variety and its dual induces
a duality on n-torsion points), as a consequence we get a canonical isomorphism

H0(M1(X)(k)⊗L Z/n)
∼=→Hom(nAlbX(k),µn). (1.11)

Hence we have almost proven

Proposition 1.4.2 Let X and X be as in Theorem 1.1.1. For every integer n prime
to p the above construction gives an exact sequence

0−→Hom(nAlbX(k),Z/n)−→H1
ét(X ,Z/n)−→Hom(µn,S)−→0. (1.12)

Proof. When X = X or the complement of a divisor, this follows from the above
considerations after twisting by µn. In the general case, we may find an open sub-
scheme X ′ of X containing X which is the complement of a divisor in X and such
that the codimension of X ′−X in X ′ is at least 2. Then we have canonical isomor-
phisms AlbX ∼= AlbX ′ (see [53], Corollary 2.4) and H1

ét(X ,Z/n)∼= H1
ét(X

′,Z/n) (a
consequence of Zariski-Nagata purity; see [28], exposé X for an exposition in the
language of étale covers) and therefore the construction of the exact sequence for
X reduces to that for X ′ using contravariant functoriality.
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Corollary 1.4.3 The dual of the first map of the proposition induces a canonical
isomorphism

Hom(H1
ét(X ,Z`),Q`/Z`)∼= AlbX(k){`}

for any prime number ` 6= p.

Proof. The group S being finitely generated, its Tate module is trivial. Therefore
passing to the inverse limit by making n run over powers of ` in (1.12) yields an
isomorphism between the limit of the first two terms. The corollary follows by
dualising.

In the remainder of this section, which will only be needed for the proof of
Theorem 1.1.2, we strengthen the result of the proposition to obtain a description
of the abelianized tame fundamental group π

t,ab
1 (X) of X . By definition, this group

classifies finite abelian Galois covers of X which are étale over X and tamely
ramified at codimension 1 points of X \X (i.e. the ramification index at such a
point is prime to p and the extension of its residue field is separable). One has a
direct sum decomposition

π
t,ab
1 (X)∼= π

ab
1 (X)(p′)⊕π

ab
1 (X)(p)

where the symbols (p′) and (p) stand for the maximal profinite prime-to-p (resp.
p) quotients of the groups in question. Indeed, any finite abelian Galois cover of X
of order prime to p extends to a tamely ramified cover of X by normalization; for
the p-part, notice that any abelian cover of X which is of p-power degree, étale
over X and tamely ramified in codimension 1 must be étale in codimension 1,
hence étale by Zariski-Nagata purity. Since the fundamental group is a birational
invariant of projective varieties, the above decomposition shows that π

t,ab
1 (X) de-

pends only on X but not on the compactification X. Needless to say, all these
notions and facts are valid more generally over any perfect base field in place of
k.

Proposition 1.4.4 Under the assumptions of the previous proposition, there is an
exact sequence

0−→T −→π
t,ab
1 (X)−→T (AlbX)−→0 (1.13)

where T (AlbX) denotes the full Tate module of AlbX and T is a finite abelian
group whose twisted dual can be described as follows: its prime-to-p part is iso-
morphic to that of the finite torsion subgroup of the group S considered above and
its p-part is isomorphic to the p-primary torsion subgroup of NS(X).

Proof. We use the decomposition of π
t,ab
1 (X) recalled above. The assertion for the

prime-to-p part follows from the previous proposition by dualising and passing to
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the limit. For the p-part we note that Tp(AlbX)∼= Tp(AlbX), the toric part of AlbX
having no p-primary torsion, so the result follows from the analogous statement
for X proven in ([35], Lemma 5).

1.5 The generalization of Roitman’s theorem

Keeping the assumptions of the previous section, we now prove Theorem 1.1.1.
The proof involves the verification of some delicate compatibilities (Proposition
1.5.1 and Lemma 1.5.3) which occupy much of this section. We therefore offer
alternative arguments in Remarks 1.5.4 and 1.5.5. In the first of these we explain
how Lemma 1.5.3 can be avoided by using a counting argument. In Remark 1.5.5
we give a second shorter proof of the theorem – based on a hypersurface section
argument – which circumvents the use of both 1.5.1 and 1.5.3. We note, however,
our firm belief that from the conceptual point of view the optimal proof passes
through the checking of compatibilities and not through the shortcuts.

We begin with some preliminary observations. For any positive integer n
prime to p the long exact sequence

. . .−→hi(X)
n−→ hi(X)−→hi(X ,Z/n)−→hi−1(X)

n−→ . . .

yields a surjection
h1(X ,Z/n)−→nh0(X). (1.14)

On the other hand, we have a chain of isomorphisms

h1(X ,Z/n)∼= Hom(h1(X ,Z/n),Z/n)∼= Hom(H1
ét(X ,Z/n),Z/n), (1.15)

the first by the very definition of the groups in question (note that Z/n is injec-
tive as a Z/n-module) and the second by the comparison theorem of Suslin and
Voevodsky (see [66], Corollary 7.8 for the argument in characteristic 0; for the
modifications in positive characteristic using de Jong’s work on alterations, cp.
[22], Theorem 3.2).

Let
Hom(nAlbX(k),Z/n)→ H1

ét(X ,Z/n) (1.16)

be the map given by “pulling back covers from AlbX to X”. Indeed, each φ :
nAlbX(k)→ Z/n gives an étale Z/n-cover of AlbX by pushing out the extension

0→ nAlbX → AlbX
n−→ AlbX → 0

via the map of group schemes associated to φ , hence defines a class in the group
H1

ét(AlbX ,Z/n). Whence a map Hom(nAlbX ,Z/n)→ H1
ét(AlbX ,Z/n), which by

composition with the map induced on cohomology by a canonical map X→AlbX
yields the map (1.16).

Now we can state the key result:
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Proposition 1.5.1 For any positive integer n prime to p we have a commutative
diagram

h1(X ,Z/n) −−−→ nh0(X)

∼=
y yalbX

Hom(H1
ét(X ,Z/n),Z/n) −−−→ nAlbX(k)

(1.17)

where the upper horizontal, left vertical and bottom horizontal maps are respec-
tively (1.14), (1.15) and the dual of (1.16).

For the proof of the proposition we need the following technical statements
about abelian groups whose formal proof will be left to the reader.

Lemma 1.5.2

1. For any abelian group A and integer n> 0 there is a canonical isomorphism

Hom(nA,Z/n)∼= Ext1(A,Z/n).

2. Let (C•,d) be a homological complex of free abelian groups concentrated
in nonnegative degrees. Then the natural map

H1(C•⊗Z/n)→ nH0(C•)

coming from tensoring by the exact sequence 0→ Z→ Z→ Z/n→ 0 can
be identified with the natural map

H1(C•⊗Z/n)→ Tor(H0(C•),Z/n) (1.18)

coming from computing the Tor-group using the free resolution d(C1)→C0
of H0(C•).

3. With the previous notations, the natural map

Ext1(H0(C•),Z/n)→ Ext1(C•,Z/n)

induced by the truncation map C•→ H0(C•) can be identified (using state-
ment 1. and the self-injectivity of the ring Z/n) with the image of the map
(1.18) under the functor Hom( ,Z/n).

Proof of Proposition 1.5.1. We prove the commutativity of the dual diagram

Hom(nAlbX(k),Z/n) −−−→ H1
ét(X ,Z/n)y y∼=

Hom(nh0(X),Z/n) −−−→ h1(X ,Z/n)
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which, using Lemma 1.5.2 (1), can be rewritten as

Ext1(ÃlbX(k),Z/n) −−−→ H1
ét(X ,Z/n)y y∼=

Ext1(h0(X),Z/n) −−−→ Ext1(C•(X),Z/n)

where the Ext-groups are taken with respect to the category of abelian groups
(there was no harm in replacing AlbX by ÃlbX since Z is torsion-free). Using
Lemma 1.5.2 the bottom horizontal map can then be identified as coming from the
natural truncation map. Now we apply the rigidity theorem of Suslin-Voevodsky
([66], Theorem 4.5) to the three Ext-groups and a standard comparison theorem
to the fourth group to obtain a diagram

Ext1ét(ÃlbX ,Z/n) −−−→ Ext1ét(Z(X),Z/n)y y∼=
Ext1ét(H0(C•(Ztr(X)))ét,Z/n) −−−→ Ext1ét(C•(Ztr(X)),Z/n)

(1.19)

where the Ext-groups are now taken on the étale site of Sm/k, the subscript ét
means sheafification for the étale topology and Z(X) is the étale sheaf whose
sections over a smooth k-scheme Y are given by the free abelian group with basis
Hom(Y,X). Note that the rigidity theorem was applicable to the upper left group
by virtue of Lemma 1.3.2 and to the two lower ones by ([66], Corollary 7.5). Now
to finish the proof, we claim that the above diagram is induced by applying the
functor Ext1ét( ,Z/n) to the commutative diagram of complexes of sheaves

C•(Ztr(X)) −−−→ H0(C•(Ztr(X)))étx y
Ztr(X) −−−→ ÃlbX

whose existence was established in Section 3 (the map on the left inducing the
inverse of the isomorphism marked in (1.19)) .

The identification of the bottom horizontal and left vertical arrows in (1.19)
follows from the functoriality of the rigidity isomorphism. As for the upper hor-
izontal map, note first that it is well known to be induced by the map of étale
sheaves Z(X)→ ÃlbX which factors through the natural inclusion Z(X)→Ztr(X)
by Lemma 1.3.2. Now by ([66], Corollary 10.10) the natural map

Ext1ét(Ztr(X),Z/n)→ Ext1ét(Z(X),Z/n)

can be identified with the map

Ext1q f h(Ztr(X)q f h,Z/n)→ Ext1q f h(Z(X)q f h,Z/n),
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where the subscript q f h denotes sheafification for the so-called q f h-topology in-
troduced in loc. cit. , which is finer than the étale topology. But the latter map is
an isomorphism, for by ([66], Theorem 6.7) Ztr(X) can be identified, after local-
ization by the characteristic p, with Z(X)q f h. This finishes the identification of
the upper horizontal map, and for the right vertical map one first uses the same
argument to pass from Z(X) to Ztr(X), whereupon the result follows from the
construction of the isomorphism h1(X ,Z/n)→ H1

ét(X ,Z/n) in the proof of Theo-
rem 7.5 in [66] (from which one sees that it can be identified with the map induced
by Ztr(X)→C∗(Ztr(X)) on Ext1-groups).

Proof of Theorem 1.1.1. It is enough to consider `-primary torsion for a prime
` 6= p. It then suffices to see that by making n vary among powers of ` and passing
to the direct limit we get a diagram whose bottom horizontal map is an isomor-
phism. Indeed, since the left vertical map is also an isomorphism and the upper
horizontal map is surjective, by commutativity all maps in the diagram (1.17) must
become isomorphisms in the limit.

The most natural way to prove that the bottom horizontal map induces an
isomorphism in the limit is to identify it with the map between the first two terms
of exact sequence (1.12) and apply Corollary 1.4.3. This identification is well
known in the proper case and we give now a detailed sketch of checking it in
general. Alternatively, one can avoid checking this compatibility by arguing as in
Remark 1.5.4 below.

Lemma 1.5.3 The map (1.16) coincides with the map between the first two terms
in (1.12) given in the last section.

Proof. We may again assume that X is proper or the complement of a di-
visor and argue about the map (1.16) twisted by µn. The map (1.16) associates
to φ ∈ Hom(nAlbX(k),µn) an extension of the group scheme AlbX by µn and
hence also an extension E of AlbX by Gm, corresponding to a line bundle L
with an isomorphism ψ : L ⊗n → OAlbX (the latter is a consequence of the fact
that the n-fold sum of the extension 0→ Gm → E → AlbX → 0 is canonically
isomorphic to the trivial extension). Pulling back L and ψ to X we get a pair
(LX ,ψX) which defines an element ξ of H1(X ,µn), the image of φ by (1.16).
Now since the natural map Ext1(AlbX,Gm)→ Ext1(AlbX ,Gm) is surjective (the
toric part T of AlbX having no non-trivial extensions by Gm), there is some ex-
tension Ē of AlbX by Gm (defining a line bundle L̄ ) of which E is the pull-
back to AlbX . Since Ext1(AlbX,Gm) ∼= Pic0(AlbX), the isomorphism class of
the pullback L̄X of L̄ to X lies in Pic0(X) and hence L̄ ⊗n

X
∼= OX(D) with

some D ∈ BX . As in the previous section, the pair (L̄X,D) defines an element
of H0(M1(X)(k)⊗L Z/n) ⊂ H0(M∗(X)(k)⊗L Z/n) which, by construction, is
mapped to ξ under (1.10). On the other hand, one sees by going through Serre’s
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duality construction that the element of H0(M1(X)(k)⊗L Z/n) represented by
(L̄X,D) is exactly the image of φ under (1.11). This completes the proof of the
lemma and thereby that of Theorem 1.1.1.

Remark 1.5.4 Alternatively, one may prove that the bottom horizontal map in
(1.17) induces an isomorphism in the limit as follows. Consider the dual map
πab

1 (X)/n→ nAlbX which is known to be surjective by ([59], Théorème 10). For
n = `m this is none but the surjection πab

1 (X)(`) → T`AlbX tensored by Z/`m

(where (`) denotes the maximal pro-` quotient). This latter surjection must have
finite kernel for by Corollary 1.4.3 its domain and target are finitely generated Z`-
modules of the same rank. Hence the modulo n map has a finite kernel of order
bounded independently of n, from which we conclude by the same argument as in
Corollary 1.4.3.

Remark 1.5.5 One can give a quicker, albeit less conceptual proof of Theorem
1.1.1 which avoids the verification of commutativity in (1.17), in the spirit of the
simplified version of Bloch’s approach to Roitman’s theorem given in [12]. In-
deed, using the horizontal and left vertical maps in (1.17) and passing to the limit
one gets a surjection AlbX(k){`} → h0(X){`}. Since AlbX is a semiabelian vari-
ety, both groups here must be isomorphic to some finite direct power of Q`/Z`,
so that for any m > 0 the groups `mAlbX(k) and `mh0(X) are finite and the order
of the second one doesn’t exceed that of the first. So by comparing orders, we
are done once we show the surjectivity of albX on `m-torsion. This is achieved by
induction on dimension starting from the case of curves treated in [41] and ([66],
Theorem 3.1). For the inductive step, taking into account the covariant functori-
ality of albX , it suffices to prove the surjectivity of `mAlbY (k)→ `mAlbX(k) for an
appropriate smooth closed subvariety Y ( X , or else, using the injectivity part of
Proposition 1.4.2, the injectivity of H1

ét(X ,Z/`m)→ H1
ét(Y,Z/`m). To choose Y ,

we may assume as before that the complement Z of X in X is empty or has pure
codimension one. Then by the Bertini theorems we may find a smooth connected
hyperplane section Y of X that cuts each component of Z smoothly and away
from the intersections. Putting Y =Y∩X and W =Y∩Z, the claim then follows
from the injectivity of the first and third vertical maps in the commutative diagram

0 −−−→ H1
ét(X,Z/`m) −−−→ H1

ét(X ,Z/`m) −−−→ H0
ét(Z,Z/`m(−1))y y y

0 −−−→ H1
ét(Y,Z/`m) −−−→ H1

ét(Y,Z/`m) −−−→ H0
ét(W,Z/`m(−1))

whose exact rows are Gysin sequences. Indeed, the injectivity of the first arrow is
classical (it follows e.g. by Poincaré duality from the weak Lefschetz Theorem),
and that of the third follows from the choice of Y, each component of Z containing
at least one component of W .
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Remark 1.5.6 Some years following the publication of the paper [65] L. Barbieri-
Viale and B. Kahn [2] made an improvement of Theorem 1.1.1: they could prove it
for an arbitrary smooth variety without assuming that it is quasi-projective and has
a smooth compactification. What made this possible is their theory of Albanese
and Picard 1–motives to which they could also associate objects in Voevodsky’s
derived category of motivic complexes. Thereby they had at their disposal a vast
generalization of Serre’s duality statement between the generalized Albanese va-
riety and the 1-motive M1(X). Also, by working directly in the motivic category
they could avoid checking the necessary identifications between maps coming
from different theories. The argument of the proof itself is basically the same but
their version is much more streamlined.

1.6 Proof of Theorem 1.1.2

Assume now that k is the algebraic closure of a finite field F and denote by G
the Galois group Gal(k|F). Before embarking on the proof of Theorem 1.1.2,
we remark that, as the perceptive reader has surely noticed, in this case one can
immediately show by reduction to the case of curves that the groups whose iso-
morphism we are to establish are both torsion. Hence in this case the prime-to-p
part of Theorem 1.1.2 is equivalent to Theorem 1.1.1. But in the proof below we
shall use a different method (and thus give another proof of Theorem 1.1.1 in this
special case which works also for the p-part) originating in an argument of [37].

By extending F if necessary we may assume that there are varieties XF ⊂ XF
defined over F such that XF has an F-rational point and XF×F k∼= X , XF× k∼=X.
Similarly to section 10 of [37], the key to the proof of Theorem 1.1.2 is the exact
sequence (1.13) which in this case is in fact an exact sequence of G-modules.

Recall from Section 4 that the abelianized tame fundamental group can be de-
fined for XF as well. Moreover, there is a natural projection π

t,ab
1 (XF)→ G ∼= Ẑ

whose kernel π
t,ab
1 (XF)

0 can be identified with the coinvariants of π
t,ab
1 (X) un-

der the action of G. Therefore taking coinvariants under Frobenius in the exact
sequence (1.13) yields the sequence

0→ TG−→π
t,ab
1 (XF)

0−→AlbXF(F)−→0 (1.20)

(for exactness note that a semi-abelian variety over a finite field has only finitely
many rational points and therefore the Frobenius acting on its Tate module has no
eigenvalue 1). There are similar exact sequences over each finite extension F′ of
F which naturally form a direct system. (One way to see this is that coinvariants
under Frobenius form the first Galois cohomology group over a finite field, so the
maps in the direct system are just the restriction maps.) The direct limit of the
finite groups TGal(k|F′) is trivial (this is a general fact for the first cohomology of
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a finite Galois module over any field; over a sufficiently large extension such a
module becomes isomorphic to a sum of Z/m’s and one may conclude e.g. by
using Kummer and Artin-Schreier theory).

Now by the main result of [58] the middle group in (1.20) is isomorphic to
h0(XF)

0 by means of a reciprocity map h0(XF)
0 → π

t,ab
1 (XF) which sends the

class of a closed point of X to the class of its Frobenius. Using this isomorphism
and taking the direct limit over finite extensions of F as above we thus get an
isomorphism h0(X)0 ∼= AlbX(k).

It remains to see that it is induced by the Albanese map. For this it suffices
to consider the image of the class of a zero-cycle of the form P1− P2 and we
may replace k by the finite extension of F over which both P1 and P2 are defined.
Moreover, by using the covariant functoriality of the Albanese map and of the
reciprocity map we may assume that P1 and P2 both lie on some smooth curve C
and check the required compatibility for C, but this is a well-known property of
Lang’s class field theory (see [61]).

Finally we note that the above proof has the following interesting by-product,
generalising the similar statement proved in [37] for the proper case:

Corollary 1.6.1 With notations as above, the natural map h0(XF)→ h0(X) has a
finite kernel isomorphic to the group T introduced in Proposition 1.4.4.

               dc_101_10



36 CHAPTER 1. ON THE ALBANESE MAP AND SUSLIN HOMOLOGY

               dc_101_10



Chapter 2

Arithmetic duality theorems for 1-motives

2.1 Introduction

Duality theorems for the Galois cohomology of commutative group schemes over
local and global fields are among the most fundamental results in arithmetic. Let
us briefly and informally recall some of the most famous ones.

Perhaps the earliest such result is the following. Given an algebraic torus T
with character group Y ∗ defined over a p-adic field K, cup-products together with
the isomorphism Br(K) = H2(K,Gm) ∼= Q/Z given by the invariant map of the
Brauer group of K define canonical pairings

H i(K,T )×H2−i(K,Y ∗)→Q/Z

for i = 0,1,2. The Tate-Nakayama duality theorem (whose original form can be
found in [68]) then asserts that these pairings become perfect if in the cases i 6= 1
we replace the groups H0 by their profinite completions. Note that this theorem
subsumes the reciprocity isomorphism of local class field theory which is the case
i = 0, T = Gm.

Next, in his influential exposé [69], Tate observed that given an abelian variety
A, the Poincaré pairing between A and its dual A∗ enables one to construct similar
pairings

H i(K,A)×H1−i(K,A∗)→Q/Z
for i = 0,1 and he proved that these pairings are also perfect.

The last result we recall is also due to Tate. Consider now an abelian variety A
over a number field k, and denote by X1(A) the Tate-Shafarevich group formed
by isomorphism classes of torsors under A that split over each completion of k.
Then Tate constructed a duality pairing

X1(A)×X1(A∗)→Q/Z

(generalising earlier work of Cassels on elliptic curves) and announced in [70] that
this pairing is nondegenerate modulo divisible subgroups or else, if one believes

37
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the widely known conjecture on the finiteness of X1(A), it is a perfect pairing of
finite abelian groups. Similar results for tori are attributed to Kottwitz in the lit-
erature; indeed, the references [38] and [39] contain such statements, but without
(complete) proofs.

In this chapter we establish common generalizations of the results mentioned
above for 1-motives. Recall that according to Deligne, a 1-motive over a field F
is a two-term complex M of F-group schemes [Y → G] (placed in degrees -1 and
0), where Y is the F-group scheme associated to a finitely generated free abelian
group equipped with a continuous Gal(F)-action and G is a semi-abelian variety
over F , i.e. an extension of an abelian variety A by a torus T . As we shall recall in
the next section, every 1-motive M as above has a Cartier dual M∗ = [Y ∗→ G∗]
equipped with a canonical (derived) pairing M⊗L M∗→ Gm[1] generalising the
ones used above in the cases M = [0→ T ] and M = [0→ A]. This enables one to
construct duality pairings for the Galois hypercohomology groups of M and M∗

over local and global fields.
Let us now state the main results. In Section 2.3, we shall prove:

Theorem 2.1.1 Let K be a local field and let M = [Y →G] be a 1-motive over K.
For i =−1,0,1,2 there are canonical pairings

Hi(K,M)×H1−i(K,M∗)→Q/Z

inducing perfect pairings between

1. the profinite group H−1
∧ (K,M) and the discrete group H2(K,M∗);

2. the profinite group H0(K,M)∧ and the discrete group H1(K,M∗).

Here the groups H0(K,M)∧ and H−1
∧ (K,M) are obtained from the correspond-

ing hypercohomology groups by certain completion procedures explained in Sec-
tion 2.3. We shall also prove there a generalization of the above theorem to 1-
motives over henselian local fields of mixed characteristic and show that in the
duality pairing the unramified parts of the cohomology are exact annihilators of
each other.

Now let M be a 1-motive over a number field k. For all i ≥ 0 define the Tate-
Shafarevich groups

Xi(M) = Ker [Hi(k,M)→∏
v

Hi(k̂v,M)]

where the product is taken over completions of k at all (finite and infinite) places
of k. Our most important result can then be summarized as follows.
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Theorem 2.1.2 Let k be a number field and M a 1-motive over k. There exist
canonical pairings

Xi(M)×X2−i(M∗)→Q/Z

for i = 0,1.
For i = 1 the pairing is non-degenerate modulo maximal divisible subgroups.
For i = 0 it is a perfect pairing between a compact and a discrete topological

group, provided that we replace X0(M) by a certain modification X0
∧(M), and

assume the finiteness of X1(A) for the abelian quotient A.

See the beginning of Section 2.6 for the definition of X0
∧(M). Assuming the

finiteness of the (usual) Tate-Shafarevich group of an abelian variety one derives
that for i = 1 the pairing is a perfect pairing of finite groups.

The pairings used here can be defined purely in terms of Galois cohomology
(see Section 2.7); however, to prove the duality isomorphisms we first construct
pairings using étale cohomology in Sections 2.4 and 2.5, and then in the sec-
tion 2.7 we compare them to the Galois-cohomological one which in the case of
abelian varieties gives back the classical construction of Tate.

Finally, in Section 2.6 we establish a twelve-term Poitou-Tate type exact se-
quence similar to the one for finite modules, assuming the finiteness of the Tate-
Shafarevich group. The reader is invited to look up the precise statement there.

Since the chapter title contains the word “motive”, it is appropriate to explain
our motivations for establishing the generalizations offered here. The first of these
should be clear from the above: working in the context of 1-motives gives a unified
and symmetric point of view on the classical duality theorems cited above and
gives more complete results than those known before. As an example, we may
cite the duality between Xi(T ) and X3−i(Y ∗) (i = 1,2) for an algebraic torus
T with character group Y ∗ which is a special case of Theorem 2.1.2 above (see
Section 2.5); it is puzzling to note that the reference [49] only contains the case
i = 1, whereas [47] only the case i = 2. Another obvious reason is that due to
recent spectacular progress in the theory of mixed motives there has been a regain
of interest in 1-motives as well; indeed, the category of 1-motives over a field
(with obvious morphisms) is equivalent, up to torsion, to the subcategory of the
triangulated category of mixed motives (as defined, e.g., by Voevodsky) generated
by motives of varieties of dimension at most 1.

But there is a motivation coming solely from the arithmetic duality theory. In
fact, if one tries to generalize the classical duality theorems of Tate to a semi-
abelian variety G, one is already confronted to the fact that the only reasonable
definition for the dual of G is the dual [Y ∗→ A∗] of the 1-motive [0→ G], where
actually A∗ is the dual of the abelian quotient of G and Y ∗ is the character group of
its toric part. Duality results of this type are needed for the study of the arithmetic
of G over local and global fields.
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This chapter is based on my joint paper [30] with David Harari. The original
version unfortunately contained some inaccuracies and gaps – this seems to be a
plague affecting almost all publications on the subject. The present text therefore
incorporates the corrections published in the 2009 corrigendum to [30]; it also
contains a last section reviewing subsequent developments.

Some notation and conventions
Let B be an abelian group. For each integer n > 0, B[n] stands for the n-

torsion subgroup of B and Btors for the whole torsion subgroup of B. We shall
often abbreviate the quotient B/nB by B/n. For any prime number `, we denote
by B{`} the `-primary torsion subgroup of B and by B̄{`} the quotient of B{`} by
its maximal divisible subgroup. Also, we denote by B(`) the `-adic completion of
B, i.e. the projective limit lim←− B/`nB.

For a topological group B, we denote by B∧ the completion of B with respect
to open subgroups of finite index (in the discrete case this is the usual profinite
completion of B). We set BD for the group of continuous homomorphisms B→
Q/Z (in the discrete case these are just all homomorphisms). We equip BD with
the compact-open topology. The topological group B is compactly generated if B
contains a compact subset K such that K generates B as a group. A continuous
morphism f : B→C of topological groups is strict if the image of any open subset
of B is an open subset of Im f for the topology induced by C.

2.2 Preliminaries on 1-motives

Let S be a scheme. Denote by FS the category of fppf sheaves of abelian groups
over S (when S = SpecK is the spectrum of a field, we shall write FK for FS).
Write C b(FS) for the category of bounded complexes of fppf sheaves over S and
Db(FS) for the associated derived category. Recall (e.g. from [54]) that a 1-
motive M over S consists of the following data :

• An S-group scheme Y which is étale locally isomorphic to Zr for some
r ≥ 0.

• A commutative S-group scheme G fitting into an exact sequence of S-groups

0→ T → G
p→ A→ 0

where T is an S-torus and A an abelian scheme over S.

• An S-homomorphism u : Y → G.
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The 1-motive M can be viewed as a complex of fppf S-sheaves [Y u→ G], with
Y put in degree -1 and G in degree 0, and also as an object of the derived category
Db(FS). It is equipped with a 3-term weight filtration: Wi(M) = 0 for i ≤ −3,
W−2(M) = [0→ T ], W−1(M) = [0→ G] and Wi(M) = M for i ≥ 0. From this

we shall only need the 1-motive M/W−2(M), i.e. the complex [Y h→ A], where
h = p◦u. By [54], Proposition 2.3.1, we can identify morphisms of 1-motives in
C b(FS) and Db(FS).

To each 1-motive M one can associate a Cartier dual M∗ by the following
construction which we briefly recall. Denote by Y ∗ the group of characters of T ,
by A∗ the abelian scheme dual to A, and by T ∗ the S-torus with character group Y .
According to the generalized Barsotti-Weil formula ([51], III.18), A∗ represents
the functor S′ 7→ ExtS′(A,Gm) on FS. Writing M′ = M/W−2M, one deduces from
this that the functor S′ 7→ExtS′(M′,Gm) on C b(FS) is representable by an S-group
scheme G∗ which is an extension of A∗ by T ∗. One calls the 1-motive [0→ G∗]
the (Cartier) dual of M′. Pulling back the Poincaré biextension ([47], p. 395) on
A×A∗ to A×G∗ one gets a biextension P ′ of the 1-motives M′ and [0→ G∗] by
Gm, which is a Gm-torsor over A×G∗ whose pullback to Y ×G∗ by the natural
map Y ×G∗→ A×G∗ is trivial (cf. [16], 10.2.1 for this definition).

To treat the general case, consider M as an extension of M′ by T . Any element
of Y ∗ = HomS(T,Gm) then induces by pushout an extension of M′ by Gm, i.e.
an element of G∗. Whence a map Y ∗ → G∗ which is in fact a map of S-group
schemes; we call the associated 1-motive M∗ the (Cartier) dual of M. The pull-
back P of the biextension P ′ from A×G∗ to G×G∗ becomes trivial over G×Y ∗

when pulled back by the map G×Y ∗→G×G∗, hence defines a biextension of M
and M∗ by Gm (again in the sense of [16]).

According to the formula

BiextS(M,M∗,Gm)∼= HomDb(FS)
(M⊗L M∗,Gm[1])

of ([16], 10.2.1), the biextension P defines a map

ΦM : M⊗L M∗→Gm[1] (2.1)

in Db(FS), whence pairings

Hi(S,M)×H j(S,M∗)→ H i+ j+1(S,Gm) (2.2)

for each i, j ≥ 0.
(Except when explicitly specified, the cohomology groups in this paper are

relative to the étale topology; here we can work with either the étale or the fppf
topology because G is smooth over S and Y is étale locally constant).
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Remark 2.2.1 Two special cases of this construction are classical :

• Y = A = 0, M = [0 → T ], M∗ = Y ∗[1]. Then the pairing (2.2) is just
the cup-product Hr(S,T )×Hs+1(S,Y ∗)→ Hr+s+1(S,Gm). (Similarly for
T = A = 0, M = Y [1], M∗ = T ∗.)

• Y = T = 0, M = [0→ A], M∗ = [0→ A∗]. Then (2.2) is the well-known
pairing in the cohomology of abelian varieties coming from the generalized
Barsotti-Weil formula (compare [47], p. 243 and Chapter III, Appendix C).

Recall finally ([16], 10.1.5 and 10.1.10) that for any integer n invertible on S
and 1-motive M one has an “n-adic realization”, namely the finite sheaf (or group
scheme) defined by

TZ/nZ(M) = H0(M[−1]⊗L Z/nZ),

which can be explicitly calculated using the flat resolution [Z n→Z] of Z/nZ. The
pairing (2.1) then induces a perfect pairing

TZ/nZ(M)⊗TZ/nZ(M
∗)→ µn (2.3)

where µn is the sheaf of n-th roots of unity. The classical case is when M is of
the form [0→ A] with A an abelian variety, where we find the well-known Weil
pairing.

We finish this section by introducing some notation: for each prime number `
invertible on S, we denote by T (M){`} the direct limit of the TZ/`nZ(M) over all
n > 0 and by T`(M) their inverse limit. The piece of notation T (M)tors stands for
the direct sum (taken over all primes ` invertible on S) of the groups TZ/`nZ(M).

2.3 Local results

In this section S is the spectrum of a field K, complete with respect to a dis-
crete valuation and with finite residue field. In particular K is a p-adic field
if charK = 0, and is isomorphic to the field Fq((t)) for some finite field Fq if
charK > 0. We let OK denote the ring of integers of K and F its residue field.

Lemma 2.3.1 For a 1-motive M = [Y → G] over K, we have

• H−1(K,M)∼= Ker [H0(K,Y )→ H0(K,G)], a finitely generated free abelian
group;

• H2(K,M)∼= Coker [H2(K,Y )→ H2(K,G)];

• Hi(K,M) = 0 i 6=−1,0,1,2.
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Proof: The field K has strict Galois cohomological dimension 2 ([47], I.1.12).
Since G is smooth, H i(K,G) = 0 for any i > 2; by [47], I.2.1, we also have
H i(K,Y ) = 0 for i > 2, whence the last equality. For the first two, use moreover
the distinguished triangle

Y → G→M→ Y [1] (2.4)

in C b(FK).

Using the trace isomorphism H2(K,Gm)∼= Q/Z of local class field theory, the
pairing (2.2) of the previous section induces bilinear pairings

Hi(K,M)×H1−i(K,M∗)→Q/Z (2.5)

for all integers i (by the previous lemma, they are trivial for i 6=−1,0,1,2).

For i =−1,1,2, we endow the group Hi(K,M) with the discrete topology. To
topologize H0(K,M) we proceed as follows. The exact triangle (2.4) yields an
exact sequence of abelian groups

0→ L→ G(K)→H0(K,M)→ H1(K,Y )→ H1(K,G) (2.6)

where L := H0(K,Y )/H−1(K,M) is a discrete abelian group of finite type. We
equip I = G(K)/Im(L) with the quotient topology (note that in general it is not
Hausdorff). The cokernel of the map G(K)→H0(K,M) being finite (as H1(K,Y )
itself is finite by [62], II.5.8 iii)), we can define a natural topology on H0(K,M)
by taking as a basis of open neighbourhoods of zero the open neighbourhoods of
zero in I (this makes I an open subgroup of finite index of H0(K,M)).

Already in the classical duality theorem for tori over local fields one has to
take the profinite completion on H0 in order to obtain a perfect pairing. However,
for the generalizations we have in mind a nuisance arises from the fact that the
completion functor is not always left exact, even if one works only with discrete
lattices and p-adic Lie groups. As a simple example, consider K = Qp (p ≥ 3)
and the injection Z ↪→ Q×p given by sending 1 to 1+ p. Here the induced map
on completions Ẑ→ (Q×p )∧ is not injective (because Q×p ' Z×F×p ×Zp and the
image of Z lands in the Zp-component).

Bearing this in mind, for a 1-motive M = [Y → G] we denote by H−1
∧ (K,M)

the kernel of the map H0(K,Y )∧ → H0(K,G)∧ coming from Y → G. There is
always a surjection H−1(K,M)∧ → H−1

∧ (K,M) but it is not an isomorphism in
general; the previous example comes from the 1-motive [Z→Gm].

However, we shall also encounter a case where the completion functor behaves
well.
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Lemma 2.3.2 Let G be a semi-abelian variety over the local field K, with abelian
quotient A and toric part T . Then the natural sequence

0→ T (K)∧→ G(K)∧→ A(K)∧→ H1(K,T )∧

is exact. Moreover, G(K) ↪→ G(K)∧ and (G(K)∧)D = G(K)D.

Here in fact we have A(K)∧ = A(K) (the group A(K) being compact and com-
pletely disconnected, hence profinite) and H1(K,T )∧ = H1(K,T ) by finiteness of
H1(K,T ) ([47], I.2.3).

Proof: To begin with, the maps between completions are well defined because
the maps T (K)→G(K), G(K)→A(K), and A(K)→H1(K,T ) are continuous (by
[43], I.2.1.3, T (K) is closed in G(K) and the image of G(K) is open in A(K) by
the implicit function theorem). The theory of Lie groups over a local field shows
that G(K) is locally compact, completely disconnected, and compactly generated;
we conclude with the third part of the proposition proven in the appendix.

Now we can state the main result of this section.

Theorem 2.3.3 Let M = [Y →G] be a 1-motive over the local field K. The pairing
(2.5) induces a perfect pairing between

1. the profinite group H−1
∧ (K,M) and the discrete group H2(K,M∗);

2. the profinite group H0(K,M)∧ and the discrete group H1(K,M∗).

In the special cases M = [0→ T ] or M = [Y → 0] we recover Tate-Nakayama
duality for tori over K ([62], II.5.8 and [47], I.2.3 for the positive characteristic
case) and in the case M = [0→ A] we recover Tate’s p-adic duality theorem for
abelian varieties and its generalization to the positive characteristic case due to
Milne ([69], [47], Cor. I.3.4, and Theorem III.7.8).

Proof: For the first statement, set M′ := M/W−2M. The dual of M′ is of the
form [0→ G∗], where G∗ is an extension of A∗ by T ∗. Via the pairing (2.5) for
i =−1,0, we obtain a commutative diagram

0 −−−→ H−1
∧ (K,M′) −−−→ H0(K,Y )∧ −−−→ H0(K,A)∧y y y

0 −−−→ H2(K,G∗)D −−−→ H2(K,T ∗)D −−−→ H1(K,A∗)D

The first line of this diagram is exact by definition, and the second one is ex-
act because it is the dual of an exact sequence of discrete groups (recall that
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H2(K,A∗) = 0 by [62], II.5.3, Prop. 16 and [47], III.7.8). By Tate duality for
abelian varieties and Tate-Nakayama duality for tori, the last two vertical maps
are isomorphisms, hence the same holds for the first one.

Now using Lemma 2.3.2 we get that the map H0(K,Y )→ H0(K,G) induces
a map H−1

∧ (K,M′)→ T (K)∧ with kernel H−1
∧ (K,M). ¿From the definition of M′

we get a commutative diagram with exact rows

0 −−−→ H−1
∧ (K,M) −−−→ H−1

∧ (K,M′) −−−→ H0(K,T )∧y y y
0 −−−→ H2(K,M∗)D −−−→ H2(K,G∗)D −−−→ H2(K,Y ∗)D

whence we conclude as above that the left vertical map is an isomorphism, by the
first part and Tate-Nakayama duality. Then H2(K,M∗) ∼= H−1

∧ (K,M)D follows
by dualising, using the isomorphism H2(K,M∗)DD ∼= H2(K,M∗) for the discrete
torsion group H2(K,M∗).

For the second statement, we also begin by working with M′. Using the pair-
ings (2.5) and Lemma 2.3.2 (applied to G∗), we get a commutative diagram with
exact rows:

0 −−−→ T ∗(K)∧ −−−→ G∗(K)∧ −−−→ A∗(K)∧ −−−→ H1(K,T ∗)∧y y y y
0 −−−→ H2(K,Y )D −−−→ H1(K,M′)D −−−→ H1(K,A)D −−−→ H1(K,Y )D

Using the local dualities for (A,A∗) and (Y,T ∗), this implies that the map G∗(K)∧→
H1(K,M′)D is an isomorphism.

Now the distinguished triangle T →M→M′→ T [1] in C b(FK) induces the
following commutative diagram with exact rows:

H0(K,Y ∗)∧ −−−−→ G∗(K)∧ −−−−→ H0(K,M∗)∧ −−−−→ H1(K,Y ∗) −−−−→ H1(K,G∗)y y y y y
H2(K,T )D −−−−→ H1(K,M′)D −−−−→ H1(K,M)D −−−−→ H1(K,T )D −−−−→ H0(K,M′)D

Here the exactness of the rows needs some justification. The upper row is exact
without completing the first three terms. Completion in the third term is possible
by finiteness of the fourth, and completion in the first two terms is possible be-
cause the map G∗(K)→ H0(K,M∗) is open with finite cokernel by definition of
the topology on the target. In the lower row dualization behaves well because the
first four terms are duals of discrete torsion groups.
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By Tate-Nakayama duality for tori and what we have already proven, the first,
second and fourth vertical maps are isomorphisms. To derive an isomorphism in
the middle it remains to prove the injectivity of the fifth map.

This in turn follows from the commutative diagram with exact rows (where
again we have used the finiteness of H1(K,T ∗) and of H1(K,Y )):

A∗(K) −−−→ H1(K,T ∗) −−−→ H1(K,G∗) −−−→ H1(K,A∗)y y y y
H1(K,A)D −−−→ H1(K,Y )D −−−→ H0(K,M′)D −−−→ A(K)D

Here the first, second and fourth vertical maps are isomorphisms by local duality
for tori and abelian varieties. Again, exactness at the third term of the lower
row follows from the definition of the topology on H0(K,M′). Finally the map
H0(K,M∗)∧→ H1(K,M)D is an isomorphism and applying this statement to M∗

instead of M, we obtain the theorem.

Remark 2.3.4 If K is of characteristic zero, any subgroup of finite index of T (K)
is open (cf. [47], p.32). It is easy to see that in this case H0(K,M)∧ is just the
profinite completion of H0(K,M).

Next we state a version of Theorem 2.3.3 for henselian fields that will be needed
for the global theory.

Theorem 2.3.5 Let F be the field of fractions of a henselian discrete valuation
ring R with finite residue field and let M be a 1-motive over F. Assume that F is
of characteristic zero. Then the pairing (2.5) induces perfect pairings

H−1
∧ (F,M)×H2(F,M∗)→Q/Z

H0(F,M)∧×H1(F,M∗)→Q/Z

where H−1
∧ (F,M) := Ker [H0(F,Y )∧→G(F)∧] and ∧ means profinite completion.

Remarks 2.3.6

1. Denoting by K the completion of F , the group H0(F,M) injects into H0(K,M)
by the lemma below, hence it is natural to equip H0(F,M) with the topology
induced by H0(K,M). But we shall also show that H0(F,M) and H0(K,M)
have the same profinite completion, hence by Remark 2.3.4 the profinite
completion of H0(F,M) coincides with its completion with respect to open
subgroups of finite index. Therefore there is no incoherence in the notation.

               dc_101_10



2.3 LOCAL RESULTS 47

2. In characteristic p > 0, the analogue of Theorem 2.3.5 is not clear because
of the p-part of the groups. Compare [47], III.6.13.

Taking the first remark into account, Theorem 2.3.5 immediately results from
Theorem 2.3.3 via the following lemma.

Lemma 2.3.7 Keeping the assumptions of the theorem, denote by K the comple-
tion of F. Then the natural map Hi(F,M)→ Hi(K,M) is an injection for i = 0
inducing an isomorphism H0(F,M)∧→ H0(K,M)∧ on completions, and an iso-
morphism for i≥ 1.

Proof: For any n > 0, the canonical map G(F)/n→ G(K)/n is surjective, for
G(F) is dense in G(K) by Greenberg’s approximation theorem [26], and nG(K)
is an open subgroup in G(K). But this map is also injective, for any point P in
G(K) with nP ∈ G(F) is locally given by coordinates algebraic over F , but F is
algebraically closed in K (apply e.g. [48], Theorem 4.11.11 and note that F is of
characteristic 0), hence P∈G(F). Since Y is locally constant in the étale topology
over SpecF , we have H i(F,Y ) = H i(K,Y ) for each i ≥ 0. The case i = 0 of the
lemma follows from these facts by dévissage.

To treat the cases i > 0, recall first that multiplication by n on G is surjective
in the étale topology. Therefore

H i(F,G)[n] = coker [H i−1(F,G)/n→ H i(F,G[n])]

for i ≥ 1, and similarly for H i(K,G). Moreover, H i(F,G[n]) = H i(K,G[n]) be-
cause G[n] is locally constant in the étale topology (note that F and K have the
same absolute Galois group). Starting from the isomorphism G(F)/n ∼= G(K)/n
already proven, we thus obtain isomorphisms of torsion abelian groups H i(F,G)'
H i(K,G) for any i≥ 1 by induction on i, which together with the similar isomor-
phisms for Y mentioned above yield the statement by dévissage.

We shall also need the following slightly finer statement.

Proposition 2.3.8 Keeping the notations above, equip H0(F,M∗) with the topol-
ogy induced by H0(K,M∗). Then H0(F,M∗) and H0(F,M∗)∧ have the same con-
tinuous dual. Moreover, the pairing (2.5) yields an isomorphism

H1(F,M)∼= H0(F,M∗)D.
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Proof: We use the exact sequence

H0(F,Y ∗)→ G∗(F)→H0(F,M∗)→ H1(F,Y ∗)→ H1(F,G∗)

and similarly for K instead of F . Since G∗(F) is a dense subgroup of G∗(K)∧,
they have the same dual. Similarly, we see that the map H0(F,Y ∗)→ H0(K,Y ∗)∧

induces an isomorphism on duals using the fact that H0(K,Y ∗) is of finite type.
Thus the first statement follows from the exact sequence using the finiteness of
the groups in H1(F,Y ∗) ↪→ H1(K,Y ∗) and Lemma 2.3.7. The second statement
now follows from Theorem 2.3.3, again using Lemma 2.3.7.

For the global case, we shall also need a statement for the real case. Consider a
1-motive MR over the spectrum of the field R of real numbers. As in the classical
cases, the duality results in the previous section extend in a straightforward fash-
ion to this situation, provided that we replace usual Galois cohomology groups
by Tate modified groups. Denote by ΓR = Gal(C/R) ' Z/2 the Galois group
of R. Let F • be a bounded complex of R-groups. For each i ∈ Z, the modified
hypercohomology groups Ĥi(R,F •) are defined in the usual way: for each term
F i of F , we take the standard Tate complex associated to the ΓR-module F i(C)
(cf. [47], pp. 2–3); then we obtain Tate hypercohomology groups via the complex
associated to the arising double complex. From the corresponding well-known re-
sults in Galois cohomology, it is easy to see that Ĥi(R,F •) =Hi(R,F •) for i≥ 1
if F • is concentrated in nonpositive degrees, and that Ĥi(R,F •) is isomorphic to
Ĥi+2(R,F •) for any i ∈ Z. Recall also that the Brauer group BrR is isomorphic
to Z/2Z⊂Q/Z via the local invariant.

Now we have the following analogue of Theorem 2.3.3:

Proposition 2.3.9 Let MR = [YR → GR] be a 1-motive over R. Then the cup-
product pairing induces a perfect pairing of finite 2-torsion groups

Ĥ0(R,MR)× Ĥ1(R,M∗R)→ Z/2Z

Proof: Let TR (resp. AR) be the torus (resp. the abelian variety) correspond-
ing to GR. In the special cases MR = TR, MR = AR, MR = YR[1], the result is
known ([47], I.2.13 and I.3.7). Now the proof by devissage consists exactly of the
same steps as in Theorem 2.3.3, except that we don’t have to take any profinite
completions, all occurring groups being finite.

In Section 5 we shall need the fact that when M is a 1-motive over a lo-
cal field K which extends to a 1-motive over SpecOK , the unramified parts of
the cohomology are exact annihilators of each other in the local duality pair-
ing for i = 1 (see [62], II.5.5, [49], Theorem 7.2.15 and [47], III.1.4 for ana-
logues for finite modules). More precisely, let M = [Y → G ] be a 1-motive over
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SpecOK and M = [Y → G] the restriction of M to SpecK. Denote by H0
nr(K,M)

and H1
nr(K,M∗) the respective images of the maps H0(OK,M )→H0(K,M) and

H1(OK,M ∗)→H1(K,M∗). To make the notation simpler, we still let H0
nr(K,M)∧

denote the image of H0
nr(K,M)∧ in H0(K,M)∧. (We work with complete fields

since this is what will be needed later; the henselian case is similar in mixed char-
acteristic.)

Theorem 2.3.10 In the above situation, H0
nr(K,M)∧ and H1

nr(K,M∗) are the exact
annihilators of each other in the pairing

H0(K,M)∧×H1(K,M∗)→Q/Z

induced by (2.5).

Proof: The restriction of the local pairing to H0
nr(K,M)×H1

nr(K,M∗) is zero
because H2(OK,Gm) ∼= H2(F,Gm) = 0. Thus it is sufficient to show that the
maps

H0(K,M)∧/H0
nr(K,M)∧→H1

nr(K,M∗)D,

H1(K,M∗)/H1
nr(K,M∗)→H0

nr(K,M)D

are injective, where we have equipped H1
nr(K,M∗) with the discrete topology and

H0
nr(K,M) with the topology induced by that on H0(K,M).

Denote by T (resp. T ) the torus and by A (resp. A) the abelian scheme (resp.
abelian variety) corresponding to G (resp. G). We need the following lemma
presumably well known to the experts.

Lemma 2.3.11 In the Tate-Nakayama pairing

H2(K,Y )×H0(K,T ∗)→Q/Z,

the exact annihilator of H0
nr(K,T ∗) is H2

nr(K,Y ).

Proof: Let n > 0. We work in flat cohomology. The exact sequence of fppf
sheaves

0→T [n]→T →T → 0

and the cup-product pairings induce a commutative diagram with exact rows:

H1
f pp f (OK,Y /nY ) −−−→ H2

f pp f (OK,Y )[n]y y
H1

f pp f (K,Y/nY ) −−−→ H2
f pp f (K,Y )[n] −−−→ 0y y

0 −−−→ H1
f pp f (OK,T ∗[n])D −−−→ H0(OK,T ∗)D
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where all groups are given the discrete topology. The zero at lower left comes
from the vanishing H1

f pp f (OK,T ∗)∼= H1
f pp f (F, T̃

∗) = 0 (where T̃ ∗ stands for the
special fibre of T ∗), which is a consequence of Lang’s theorem ([40], Theorem 2
and [46], III.3.11).
Now by [47], III.1.4. and III.7.2., the left column is exact. Therefore the right col-
umn is exact as well. To see that this implies the statement it remains to note that
since Y is a smooth group scheme over SpecOK , its étale and flat cohomology
groups are the same and moreover they are all torsion in positive degrees.

We resume the proof of Theorem 2.3.10. The weight filtration on M, the cup-
product pairings and the inclusion OK ⊂ K induce a commutative diagram with
exact rows (here the groups in the lower row are given the discrete topology)

H1(OK ,M ) −−−−→ H2(OK ,Y ) −−−−→ 0y y
H1(K,G) −−−−→ H1(K,M) −−−−→ H2(K,Y )y y y

0 −−−−→ H0(OK , [Y ∗→A ∗])D −−−−→ H0(OK ,M ∗)D −−−−→ H0(OK ,T ∗)D

(2.7)

where the two zeros come from the vanishing of the groups H1(OK,T ∗) and
H2(OK,G ) = H2(F, G̃); the second vanishing follows from the fact that G̃(F̄) is
torsion and F is of cohomological dimension 1.

Next, observe that the map H0(OK, [Y ∗ → A ∗])→ H0(K, [Y ∗ → A∗]) is an
isomorphism. Indeed, by dévissage this reduces to showing that the natural maps
H0(OK,A ) → H0(K,A) and H1(OK,Y ) → H1(K,Y ) are isomorphisms. The
first isomorphism follows from the properness of the abelian scheme A . For the
second, denote by Onr

K the strict henselization of OK and by Knr its fraction field.
Then the Hochschild-Serre spectral sequence induces a commutative diagram with
exact rows:

0 −−−→ H1(F,H0(Onr
K ,Y )) −−−→ H1(OK,Y ) −−−→ H0(F,H1(Onr

K ,Y ))y y y
0 −−−→ H1(F,H0(Knr,Y )) −−−→ H1(K,Y ) −−−→ H0(F,H1(Knr,Y ))

Here the group at top right vanishes because Onr
K is acyclic for étale cohomology.

Also, since Onr
K is simply connected for the étale topology, the sheaf Y is iso-

morphic to a (torsion free) constant sheaf Zr, whence the vanishing of the group
at bottom right. For the same reason, both groups on the left are isomorphic to
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H1(Gal(F′/F),H0(Onr
K ,Y )), where F′ is a finite extension trivialising the action

of Gal(F̄ |F) on H0(Onr
K ,Y ), whence the claim.

This being said, we conclude from Proposition 2.3.8 (which also holds in pos-
itive characteristic over complete fields) that the left vertical map in diagram (2.7)
is injective. On the other hand the right column is exact by Lemma 2.3.11. Hence
the middle column, i.e. the sequence

H1(OK,M)→H1(K,M)→H0(OK,M
∗)D

is exact. Since the map H1(K,M) → H0(OK,M ∗)D factors through the map
H1(K,M)→ (H0

nr(K,M∗)∧)D, the sequence

H1(OK,M)→H1(K,M)→ (H0
nr(K,M∗)∧)D

(of which we knew before that it is a complex) is exact as well. Dualising this ex-
act sequence of discrete groups, we obtain from Theorem 2.3.3 that the sequence

H0
nr(K,M∗)∧→H0(K,M)∧→H1(OK,M)D

is exact and the theorem is proven.

2.4 Global results : étale cohomology

Let k be a number field with ring of integers Ok. Denote by Ωk the set of places
of k and Ω∞

k ⊂Ωk the subset of real places. Let kv be the completion of k at v if v
is archimedean, and the field of fractions of the henselization of the local ring of
SpecOk at v if v is finite. In the latter case, the piece of notation k̂v stands for the
completion of k at v. We denote by U an open subscheme of SpecOk and by Σ f
the set of finite places coming from closed points outside U .

In this section and the next, every abelian group is equipped with the dis-
crete topology; in particular B∧ denotes the profinite completion of B and BD :=
Hom(B,Q/Z) (even if B has a natural nondiscrete topology).

We need the notion of ‘cohomology groups with compact support’ Hi
c(U,F •)

for cohomologically bounded complexes of abelian sheaves F • on U . For k to-
tally imaginary, these satisfy Hi

c(U,F •) = Hi(SpecOk, j!F •), where j : U →
SpecOk is the inclusion map. In the general case this equality holds up to a fi-
nite 2-group. More precisely, there exists a long exact sequence (infinite in both
directions)

· · ·→Hi
c(U,F •)→Hi(U,F •)→

⊕
v∈Σ f

Hi(kv,F
•)⊕

⊕
v∈Ω∞

k

Ĥi(kv,F
•)→Hi+1

c (U,F •)→ . . .

(2.8)
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where for v ∈Ω∞
k the notation Ĥi(kv,F •) stands for Tate (modified) cohomology

groups of the group Gal(k̄v/kv) ∼= Z/2Z and where we have abused notation in
denoting the pullbacks of F • under the maps Speckv → SpecOk by the same
symbol.

In the literature, two constructions for the groups Hi
c(U,F •) have been pro-

posed, by Kato [36] and by Milne [47], respectively. The two definitions are
equivalent (though we could not find an appropriate reference for this fact). We
shall use Kato’s construction which we find more natural and which we now copy
from [36] for the convenience of the reader.

First, for an abelian sheaf G on the big étale site of SpecZ, one defines a com-
plex Ĝ • as follows. Denote by a : SpecC→ SpecZ the canonical morphism and
by σ : a∗a∗G → a∗a∗G the canonical action of the complex conjugation viewed
as an element of Gal(C/R). Now put Ĝ 0 = G ⊕ a∗a∗G and Ĝ i = a∗a∗G for
i ∈ Z\{0}. One defines the differentials di of the complex Ĝ • as follows:

d−1(x) = (0,(σ − id)(x)); d0(x,y) = b(x)+(σ + id)(y),

where b : G → a∗a∗G is the adjunction map; otherwise, set di = σ + id for i even
and di = σ − id for i odd. This definition extends to bounded complexes G • on
the big étale site of SpecZ in the usual way: construct the complex Ĝ i for each
term G i of the complex and then take the complex associated to the arising double
complex. Finally for U and F • as above, one sets

Hi
c(U,F •) := Hi(SpecZ, R̂ f!F •),

where f : U → SpecZ is the canonical morphism. From this definition one infers
that for an open immersion jV : V →U and a complex F •

V of sheaves on V one
has Hi

c(V,F
•
V )
∼= Hi

c(U, jV !F
•
V ); therefore, setting F •

V = j∗V F • one obtains a
canonical map

Hi
c(V,F

•
V )→Hi

c(U,F •)

coming from the morphism of complexes jV ! j∗V F •→F •. This covariant func-
toriality for open immersions will be crucial for the arguments in the next section.

Finally, we remark that for cohomologically bounded complexes F • and G •

of étale sheaves on U , one has a cup-product pairing

Hi(U,F •)×H j
c(U,G •)→Hi+ j+1

c (U,F •⊗L G •). (2.9)

Indeed, for f as above (which is quasi-finite by definition), one knows from
general theorems of étale cohomology that the complexes R f∗F • and R f!F

•

are cohomologically bounded (and similarly for G •, F •⊗L G •), and that there
exists a canonical pairing R f∗F •⊗L R f!G

•→ R f!(F
•⊗L G •). One then uses

the simple remark that any derived pairing A •⊗L B•→ C • of cohomologically
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bounded complexes of étale sheaves on SpecZ induces a pairing A •⊗L B̂• →
Ĉ •.

Remark 2.4.1 In [73], Zink defines modified cohomology groups Ĥ i(U,F ) which
take the real places into account and satisfy a localization sequence for cohomol-
ogy. He applies this to prove the Artin-Verdier duality theorem for finite sheaves
in the case U = SpecOk (where cohomology and compact support cohomology
coincide). For general U , however, one needs the groups H i

c(U,F ) which are the
same as the groups Ĥ i(SpecOk, j!F ) in his notation.

This being said, we return to 1-motives.

Lemma 2.4.2 Let M be a 1-motive over U.

1. The groups Hi(U,M) are torsion for i≥ 1 and so are the groups Hi
c(U,M)

for i≥ 2.

2. For any ` invertible on U, the groups Hi(U,M){`} (i ≥ 1) are of finite co-
type. Same assertion for the groups Hi

c(U,M){`} (i≥ 2).

3. The group H0(U,M) is of finite type.

Proof: For the first part of (1) note that, with the notation of Section 2.2, the
group H i(U,A) is torsion ([47], II.5.1), and so are H i(U,T ) and H i+1(U,Y ) by
[47], II.2.9. The second part then follows from exact sequence (2.8) and the local
facts.

By this last argument, for (2) it is again enough to prove the first statement.
To do so, observe that H i(U,A){l} is of finite cotype ([47], II.5.2) and for each
positive integer n, there are surjective maps

H i(U,Y/lnY )→ H i+1(U,Y )[ln], H i(U,T [ln])→ H i(U,T )[ln]

whose sources are finite by [47], II.3.1.
To prove (3), one first uses for each n > 0 the surjective map from the finite

group H0(U,Y/nY ) onto H1(U,Y )[n]. It shows that the finiteness of H1(U,Y )
follows if we know that H1(U,Y ) = H1(U,Y )[n] for some n. Using a standard
restriction-corestriction argument, this follows from the fact that H1(V,Z) = 0
for any normal integral scheme V ([1], IX.3.6 (ii)). It remains to note that the
groups H0(U,A) = H0(k,A) and H0(U,T ) are of finite type, by the Mordell-Weil
Theorem and Dirichlet’s Unit Theorem, respectively (for the latter observe that
H0(U,T ) injects into H0(V,T ) ∼= (H0(V,Gm))

r, where V/U is an étale covering
trivialising T ).
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Remark 2.4.3 The structure of the group H1
c(U,M) is a bit more complicated:

it is an extension of a torsion group (whose `-part is of finite cotype for all `
invertible on U) by a quotient of a profinite group.

Now, as explained on p. 159 of [36], combining a piece of the long exact
sequence (2.8) for F • = Gm with the main results of global class field theory
yields a canonical (trace) isomorphism

H3
c (U,Gm)∼= Q/Z.

Also, we have a natural compact support version

Hi(U,M)×H j
c(U,M∗)→Hi+ j+1

c (U,Gm)

of the pairing (2.2), constructed using the pairing (2.9) above. Combining the two,
we get canonical pairings

Hi(U,M)×H2−i
c (U,M∗)→Q/Z

defined for −1 ≤ i≤ 3. For any prime number ` invertible on U , restricting to `-
primary torsion and modding out by divisible elements (recall the notations from
the beginning of the paper) induces pairings

Hi(U,M){`}×H2−i
c (U,M∗){`}→Q/Z. (2.10)

Theorem 2.4.4 For any 1-motive M and any ` invertible on U, the pairing (2.10)
is non-degenerate for 0≤ i≤ 2.

Note that the two groups occurring in the pairing (2.10) are finite by Lemma
2.4.2 (2).

Proof: This is basically the argument of ([47], II.5.2 (b)). Let n be a power of `.
Tensoring the exact sequence

0→ Z→ Z→ Z/nZ→ 0

by M in the derived sense and passing to étale cohomology over U induces exact
sequences

0→Hi−1(U,M)⊗Z/nZ→Hi−1(U,M⊗L Z/nZ)→Hi(U,M)[n]→ 0

Now M⊗L Z/nZ viewed as a complex of étale sheaves has trivial cohomology
in degrees other than −1; indeed, with the notation of Section 1, the group Y is
torsion free and multiplication by n on the group scheme G is surjective in the
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étale topology. Therefore, using the notation of Section 1, we may rewrite the
previous sequence as

0→Hi−1(U,M)⊗Z/nZ→ H i(U,TZ/nZ(M))→Hi(U,M)[n]→ 0. (2.11)

Write T (M){`} for the direct limit of the groups TZ/nZ(M) as n runs through
powers of ` and T`(M) for their inverse limit. For each r ≥ 0, Hr(U,T`(M))
stands for the inverse limit of Hr(U,TZ/nZ(M)) (n running through powers of
l), and similarly for compact support cohomology. Passing to the direct limit in
the above sequence then induces an isomorphism

H i(U,T (M){`})∼= Hi(U,M){`}.

Now by Artin-Verdier duality for finite sheaves ([73], [47], II.3; see also [44] in
the totally imaginary case) the first group here is isomorphic (via a pairing induced
by (2.10)) to the dual of the group H3−i

c (U,T`(M∗)){`}.
Working with the analogue of exact sequence (2.11) for compact support co-

homology and passing to the inverse limit over n using the finiteness of the groups
H3−i

c (U,TZ/nZ(M∗)), we get isomorphisms

H2−i
c (U,M∗)(`){`} ∼= H3−i

c (U,T`(M∗)){`}

using the torsion freeness of the `-adic Tate module of the group H3−i
c (U,M∗).

Finally, we have H2−i
c (U,M∗){`} ∼= H2−i

c (U,M∗)(`){`} by the results in Lemma
2.4.2 and Remark 2.4.3.

From now on, we shall make the convention (to ease notation) that for any
archimedean place v and each i∈Z, Hi(kv,M) means the modified group Ĥi(kv,M)
(In particular it is zero if v is complex, and it is a finite 2-torsion group if v is real).

Following [47], II.5, we define for i≥ 0

Di(U,M) = Ker [Hi(U,M)→∏
v∈Σ

Hi(kv,M)]

where the finite subset Σ=Σ f ∪Ω∞⊂Ωk consists of the real places and the primes
of Ok which do not correspond to a closed point of U . For i≥ 0 we also have

Di(U,M) = Im [Hi
c(U,M)→Hi(U,M)]

by the definition of compact support cohomology. By Lemma 2.4.2, D1(U,M) is
a torsion group and D1(U,M){`} is of finite cotype. Now Theorem 2.4.4 has the
following consequence:
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Corollary 2.4.5 Under the notation and assumptions of Theorem 2.4.4, there is a
pairing

D1(U,M){`}×D1(U,M∗){`}→Q/Z (2.12)

whose left and right kernels are respectively the divisible subgroups of the two
groups.

Proof: As in the proof of [47], Corollary II.5.3, we use the commutative diagram

0 −−−→ D1(U,M){`} −−−→ H1(U,M){`} −−−→
⊕

v∈Σ H1(kv,M)y y
0 −−−→ D1(U,M∗)D −−−→ H1

c(U,M∗)D −−−→
⊕

v∈Σ H0(kv,M∗)D

whose exact rows come from the definition of the group D1 and whose vertical
maps are induced by the pairings (2.10) and (2.5).

The diagram defines a map D1(U,M){`} → D1(U,M∗)D. The right vertical
map is injective by Proposition 2.3.9 and the second statement in Proposition 2.3.8
(indeed for v finite, H0(kv,M∗) is now equipped with the discrete topology, which
is finer than the topology defined in Proposition 2.3.8). Given an element in the
kernel of the map D1(U,M){`} → D1(U,M∗)D, its image in H1(U,M){`} lies in
the kernel of H1(U,M){`} → (H1

c(U,M∗){`})D which is divisible by Theorem
2.4.4. To finish the proof of the corollary it thus suffices to prove the proposition
below.

Proposition 2.4.6 If n is a power of `, and a is an element of D1(U,M) that is
n-divisible in H1(U,M) and orthogonal to D1(U,M∗)[n], then a is n-divisible in
D1(U,M).

To prove the proposition we need an analogue of [47], I.6.15.

Lemma 2.4.7 Let n be an integer invertible on U, and Sn(U,M) the kernel of
the map H1(U,TZ/nZ(M)) → ⊕v∈ΣH1(kv,M). If a is an element of the direct
sum ⊕v∈ΣH1(kv,TZ/nZ(M)) orthogonal to the image of Sn(U,M∗) in the group
⊕v∈ΣH1(kv,TZ/nZ(M∗)), then a is the sum of the coboundary of an element in
⊕v∈SH0(kv,M) and of the restriction of an element in H1(U,TZ/nZ(M)).

The proof of the lemma is an application of Poitou–Tate duality for finite mod-
ules and runs as in loc. cit., except that the dual of H1(kv,M) is the profinite
completion of H0(kv,M), but the image of both the completed and uncompleted
groups in the finite group ⊕v∈ΣH1(kv,TZ/nZ(M)) is the same. Also, in place
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of the map γ1 there it is more convenient to use the composite of the cobound-
ary map ⊕v∈ΣH1(kv,TZ/nZ(M))→ H2

c (U,TZ/nZ(M)) in the localization exact se-
quence for compact support cohomology with the Artin–Verdier isomorphism
H2

c (U,TZ/nZ(M))∼= H1(U,TZ/nZ(M∗))D.

Proof of Proposition 2.4.7: Consider the commutative exact diagram

H1
c (U,M) −−−−→ H1(U,M)yn

yn⊕
v∈Σ H0(kv,M) −−−−→ H1

c (U,M) −−−−→ H1(U,M)y y y⊕
v∈Σ H1(kv,TZ/nZ(M)) −−−−→ H2

c (U,TZ/nZ(M)) −−−−→ H2(U,TZ/nZ(M))

Let a be an element of D1(U,M) = im(H1
c(U,M)→H1(U,M)) arising as a= na1

with a1 ∈ H1(U,M). By definition a comes from some ã in H1
c (U,M) whose

image in H2
c (U,TZ/nZ(M)) will be denoted by a2. By functoriality, given a′ ∈

D1(U,M∗)[n], the value 〈a,a′〉 of the Cassels–Tate pairing equals that of the Artin–
Verdier pairing [a2,b′], where b′ ∈ H1(U,TZ/nZ(M∗)) is a preimage of a′. A di-
agram chasing now shows that a2 comes from (cv) ∈ ⊕v∈ΣH1(kv,TZ/nZ(M)). It
follows that [a2,b′] equals the sum of the local pairings 〈cv,b′v〉v for v ∈ S, where
b′v is the image of b′ in H1(kv,TZ/nZ(M∗)).

Our assumption that 〈a,a′〉 = 0 for all a′ ∈ D1(U,M∗)[n] thus implies that
(cv) satisfies the assumptions of the lemma, and hence up to modifying it by an
element of ⊕v∈ΣH0(kv,M) (which does not change a), we may assume that (cv)
comes from H1(U,TZ/nZ(M)), and hence ã maps to 0 in H2

c (U,TZ/nZ(M)). By
the diagram this means that ã is divisible by n in H1

c (U,M), and hence so is a in
D1(U,M).

We can make Corollary 2.4.7 more precise under an additional assumption.
Let Ak denote the generic fibre of A and

X1(Ak) := Ker [H1(k,Ak)→ ∏
v∈Ωk

H1(k̂v,Ak)]

its Tate-Shafarevich group. According to a well-known conjecture this group
should be finite.

Proposition 2.4.8 Let M be a 1-motive over U and ` a prime number invertible
on U. Assume that X1(Ak){`} and X1(A∗k){`} are finite. Then the pairing

D1(U,M){`}×D1(U,M∗){`}→Q/Z

of Corollary 2.4.5 is a perfect pairing of finite groups.
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Proof: Using Corollary 2.4.5, it is sufficient to prove that D1(U,M){`} is finite.
We have a commutative diagram with exact rows:

H1(U,Y ) −−−−→ H1(U,G) −−−−→ H1(U,M) −−−−→ H2(U,Y )y y y y⊕
v∈Σ H1(kv,Y ) −−−−→

⊕
v∈Σ H1(kv,G) −−−−→

⊕
v∈Σ H1(kv,M) −−−−→

⊕
v∈Σ H2(kv,Y )

An inspection of the diagram reveals that for the finiteness of D1(U,M){`} it suf-
fices to show (using finiteness of Σ) the finiteness of the torsion groups D1(U,G){`},
H1(kv,Y ) and D2(U,Y ), respectively.
For the first, note that the assumption on X1(Ak) implies that D1(U,A){`} is fi-
nite by [47], II.5.5, whence the required finiteness follows from the finiteness of
H1(U,T ) ([47], II.4.6). We have seen the second finiteness several times when
discussing local duality. The finiteness of D2(U,Y ) follows from that of H2

c (U,Y )
which is is dual to the finite group H1(U,T ) by a result of Deninger ([47], II.4.6).
(One can also prove the finiteness of D2(U,Y ) by the following more direct rea-
soning: using a restriction-corestriction argument, one reduces to the case Y = Z.
Then D2(U,Z) = D1(U,Q/Z) is the dual of the Galois group of the maximal
abelian extension of k unramified over U and totally split at the places outside U ,
and hence is finite by global class field theory.)

Remark 2.4.9 The same argument shows that the finiteness of X1(Ak) implies
the finiteness of D1(U,M).

For i = 0 we have the following consequence of Theorem 2.4.4. Set

D0
∧(U,M) := ker(H0(U,M)→

⊕
v∈Σ

H0(kv,M)∧).

Corollary 2.4.10 Under the notation and assumptions of Theorem 2.4.4, there is
a pairing

D0
∧(U,M){`}×D2(U,M∗){`}→Q/Z (2.13)

whose left and right kernels are respectively the divisible subgroups of the two
groups.

Proof: Consider the commutative exact diagram

0 −−−−→ D0
∧(U,M){`} −−−−→ H0(U,M){`} −−−−→

⊕
v∈Σ H0(kv,M)(l)y y y

0 −−−−→ D2(U,M∗){`}D −−−−→ H2
c(U,M∗){`}D −−−−→

⊕
v∈Σ H1(kv,M∗){`}D
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In the lower row the notation as in Theorem 2.4.4; its exactness comes from the
fact that the groups being of finite cotype, we have

D2(U,M∗){`}= D2(U,M∗){`}/`N , H2
c(U,M∗){`}= H2

c(U,M∗){`}/`N

for N large enough. Now by Theorem 2.4.4 the middle vertical map is an isomor-
phism (recall that H0(U,M){`} is finite by Lemma 2.4.2 (3)), and by Theorem
2.3 the right vertical map is injective.

Remark 2.4.11 In the case M = [0→ T ], the two corollaries above give back
(part of) [47], Corollary II.4.7, itself based on the main result of Deninger [17]
(which we do not use here).

2.5 Global results: relation to Galois cohomology

The notation and assumptions are the same as in the previous section. In particular
U is an affine open subset of SpecOk and Σ ⊂ Ωk consists of the real places and
the finite places of SpecOk \U . Fix an algebraic closure k̄ of k (corresponding to
a geometric point η̄ of U). Let ΓΣ = π1(U, η̄) be the Galois group of the maximal
subfield kΣ of k̄ such that the extension kΣ/k is unramified outside Σ. When Gk
is the restriction of a U-group scheme G to Speck, we shall write H i(ΓΣ,Gk) for
H i(ΓΣ,Gk(kΣ)).

We begin with the following analogue of [47], II.2.9:

Proposition 2.5.1 Let M = [Y → G] be a 1-motive over U and Mk its restriction
to Speck. Let ` be a prime number invertible on U. Then:

1. The natural map Hi(U,M){`}→Hi(ΓΣ,Mk){`} is an isomorphism for i > 1.
For i = 1 it is an isomorphism for U sufficiently small.

2. The natural map H1(U,M){`} → H1(k,Mk){`} is injective for U suffi-
ciently small.

3. The natural map H0(U,M)→H0(k,Mk) is injective.

Proof: To prove (1) in the case i > 1, pass to the direct limit over powers of
` in exact sequence (2.11). Then Lemma 2.4.2 (1) implies that it is sufficient
to prove the statement for M replaced by T (M){`}, which follows from [47],
II.2.9 by passing to the limit. In the case i = 1 one unscrews M using the weight
filtration reduces the statement to the case where M = [0→ T ] is a torus using
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[47], II.2.9, II.5.5. as well as the fact that A(k) = H0(U,A) = H0(ΓΣ,Ak) for the
abelian scheme A with generic fibre Ak.

To handle the case i = 1 for a torus, one first observes that the statement holds
for a norm torus RK|kGm for some finite extension K|k, because H1(U,RK|kGm) =
Pic(U×k K) is zero for U sufficiently small. The statement then follows for quasi-
trivial tori, i.e. finite products of norm tori. Now let T be arbitrary. By Ono’s
lemma ([50], Theorem 1.5.1), there exist m > 0 and a quasi-trivial k-torus Rk such
that T m

k ×Rk is isogenous to a quasi-trivial torus. As the statements to be proven
are compatible with products and we have just shown them for Rk, we may replace
Tk by T m

k ×Rk and therefore assume that there is an exact sequence

0→ F → R→ T → 0

with F finite étale over U and Rk quasi-trivial. Now the result follows from the
associated long exact sequence using the case i = 2, the case of a quasi-trivial
torus, and [47], II.2.9.
For (2), it is sufficient by (1) to show that the canonical map H1(ΓΣ,Mk) →
H1(k,Mk) is injective. Again using the weight filtration on M, one reduces this
to the injectivity of H1(ΓΣ,Gk) → H1(k,Gk), the injectivity of H2(ΓΣ,Yk) →
H2(k,Yk) and the surjectivity of H1(ΓΣ,Yk)→H1(k,Yk) (Note that Yk(k̄) =Yk(kΣ)
because there exists a finite étale covering Ũ/U such that Y ×U Ũ is constant).
The two injectivities are consequences of the restriction-inflation sequence for H1

in Galois cohomology, noting the isomorphisms

H2(ΓΣ,Yk)∼= H1(ΓΣ,Yk(k̄)⊗Q/Z) and H2(k,Yk)∼= H1(k,Yk(k̄)⊗Q/Z)

for the lattice Yk(k̄) = Yk(kΣ). The surjectivity follows from the triviality of the
abelian group H1(Gal(k̄/kΣ),Yk(k̄))=Homcont(Gal(k̄/kΣ),Yk(k̄)), the Galois group
Gal(k̄/kΣ) being profinite and Yk(k̄) torsion-free.
Statement (3) is obvious for M = [0→G] (a morphism from U to G is trivial if and
only if it is trivial at the generic point). Using the weight filtration, it is sufficient
to prove that the map H0(U,Y )→H0(k,Yk) is surjective and the map H1(U,Y )→
H1(k,Yk) is injective. Actually we have isomorphisms H0(U,Y ) ∼= H0(k,Yk) and
H0(U,Y/nY ) ∼= H0(k,Yk/nYk) for each n > 0 because Y and Y/nY are locally
constant in the étale topology. The injectivity of the map H1(U,Y )→ H1(k,Yk)
now follows from the commutative exact diagram

H0(U,Y ) −−−→ H0(U,Y/nY ) −−−→ H1(U,Y )[n] −−−→ 0y y y
H0(k,Yk) −−−→ H0(k,Yk/nYk) −−−→ H1(k,Yk)[n] −−−→ 0.
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For a 1-motive Mk over k and i≥ 0, define the Tate-Shafarevich groups

Xi(Mk) = Ker [Hi(k,Mk)→ ∏
v∈Ωk

Hi(k̂v,Mk)]

If Mk is the restriction of a 1-motive M defined over U , we also define

Xi
Σ(Mk) := Ker [Hi(ΓΣ,Mk)→∏

v∈Σ

Hi(k̂v,Mk)]

Remark 2.5.2 By Lemma 2.3.7, we can replace k̂v by kv in the definition of Xi

for i≥ 0.

In the remaining of this section, we prove Theorem 2.1.2. As in ([47], II.6),
the idea is to identify the Tate-Shafarevich groups with the groups Di(U,M) con-
sidered in the previous section for U sufficiently small. But a difficulty is that
when Y is not trivial, the restriction of Di(U,M) to Hi(V,M) for V ⊂U need not
be a subset of Di(V,M), as the following example shows.

Example 2.5.3 Let k be a totally imaginary number field with PicOk 6= 0 and
M :=Z[1]. Then for U = SpecOk we have D1(U,M) =H1(U,Q/Z) 6= 0 by global
class field theory. Let α 6= 0 in H1(U,Q/Z). Then there is a finite place v coming
from a closed point of U such that the restriction of α to H1(kv,Q/Z) is nonzero,
for otherwise we would get α = 0 by Chebotarev’s density theorem. Therefore
the restriction of α to H1(V,M) does not belong to D1(V,M) for V =U−{v}.

Thus the identification of X1(Mk) with some D1(U,M) for suitable U is not
straightforward, in contrast to the case of abelian varieties. The following propo-
sition takes care of this problem.

Note that by Proposition 2.5.1, any D1(U,M){`} is naturally a subgroup of
H1(k,Mk) for ` invertible on U .

Proposition 2.5.4 Let M = [Y →G] be a 1-motive over U and ` a prime invertible
on U. There exists an open subset U0 ⊂U such that for any open subset U1 ⊂U0,
the group D1(U1,M){`} as a subgroup of H1(k,Mk) is contained in X1(Mk){`}.

For the proof of this proposition we need two preliminary lemmas.

Lemma 2.5.5 Let v be a finite place of U and Ov the henselization of the local
ring of U at v. Then the natural map H2(Ov,Y )→ H2(kv,Y ) is injective when
restricted to `-primary torsion.

Note that the groups occurring in the lemma are torsion groups (for the first
one, this follows from Lemma 2.4.2 (1) applied to M = Y [1] and passing to the
limit).
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Proof: By the localization sequence for the pair Speckv ⊂ SpecOv it is enough
to prove triviality of the group H2

v (Ov,Y )[`n] for any n. This group is a quotient
of H1

v (Ov,Y/`nY ) which, according to [47], II.1.10 (a), is a finite group dual to
H2(Ov,Hom(Y/`nY,Gm)). But for any finite sheaf F over Ov of order prime to
the characteristic of the residue field κ(v) of v, we have H2(Ov,F) = 0 because
H2(Ov,F) = H2(κ(v), F̃) by [46], III.3.11 a) (where F̃ is the restriction of F to
Specκ(v)), and κ(v) is of cohomological dimension 1.

Lemma 2.5.6 There exists an open subset U0 ⊂U such that for any open subset
U1 ⊂U0, the group X2(Yk){`} contains D2(U1,Y ){`}.

Note that according to Proposition 2.5.1, for any open subset V ⊂U the group
D2(V,Y ){`}= D1(V,Y [1]){`} identifies with a subgroup of H2(k,Y ).

Proof: By definition we have X2(Yk){`} ⊃
⋂

V⊂U D2(V,Y ){`}. The group
D2(V,Y ) is finite for each open subset V ⊂ U (cf. proof of Proposition 2.4.8).
Therefore there exist finitely many open subsets V1, ...,Vr of U such that

X2(Yk){`} ⊃
r⋂

i=1

D2(Vi,Y ){`}.

Let U0 be the intersection
⋂r

i=1Vi. As the H2
c ( ,Y ) are covariantly functorial for

open immersions U1 ⊂U2 (see the previous section), for i = 1, ...,r there are nat-
ural maps H2

c (U0,Y )→ H2
c (Vi,Y )→ H2(k,Y ) which factor through D2(U0,Y ),

so that we get inclusions D2(U0,Y ) ↪→ D2(Vi,Y ) and finally D2(U0,Y ){`} ↪→
X2(k,Y ){`}. The above of course holds for any U1 ⊂U0 instead of U0.

Proof of Proposition 2.5.4: Choose U0 as in the previous lemma and take U1 ⊂U0.
It suffices to show that for each closed point v ∈U1 the group D1(U1,M){`}maps
to 0 by the restriction map H1(U1,M)→H1(kv,M). Now there is a commutative
diagram with exact rows

H1(U1,G) −−−→ H1(U1,M) −−−→ H2(U1,Y )y y y
H1(Ov,G) −−−→ H1(Ov,M)

α−−−→ H2(Ov,Y )y y yβ

H1(kv,G) −−−→ H1(kv,M)
γ−−−→ H2(kv,Y )

Here the group H1(Ov,G) is zero because G is smooth and connected over U1,
hence H1(Ov,G) = H1(Fv, G̃) (cf. [46], III.3.11 a)) is trivial by Lang’s Theorem.
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So the map α in the diagram is injective, but when restricted to `-primary tor-
sion, the map β is injective as well, by Lemma 2.5.5. Therefore the image of the
map D1(U1,M){`} → H1(kv,M) injects into H2(kv,Y ) by γ , so we reduce to the
triviality of the composite map D1(U1,M){`} → H2(kv,Y ). This in turn follows
from Lemma 2.5.6 as the map factors through D2(U1,Y ){`} by the right half of
the diagram.

We are now able to prove one half of Theorem 2.1.2:

Theorem 2.5.7 Let Mk be a 1-motive over k. Then there exists a canonical pairing

X1(Mk)×X1(M∗k )→Q/Z

whose kernels are the maximal divisible subgroups of each group.

Proof: We construct the pairing separately for each prime `. Let U be an open
subset of SpecOk such that Mk is the restriction of a 1-motive M defined over U
and ` is invertible on U . Take a subset U0 as in Proposition 2.5.4. We contend that
the inclusion D1(U0,M){`} ⊂X1(Mk){`} furnished by the proposition is in fact
an equality, from which the theorem will follow by Corollary 2.4.5. Indeed, any
element of X1(Mk){`} is contained in some D1(V,M){`}, where we may assume
V ⊂U0. But D1(V,M){`} ⊂ D1(U0,M){`} ⊂X1(Mk), by the same argument as
in the end of the proof of Lemma 2.5.6.

Corollary 2.5.8 Let Mk be a 1-motive over k. If X1(Ak) and X1(A∗k) are finite,
then there is a perfect pairing of finite groups

X1(Mk)×X1(M∗k )→Q/Z

Proof: Apply Theorem 2.5.7, Proposition 2.4.8, and Remark 2.4.9.

Remark 2.5.9 In the case Mk = [0→ Tk], we recover the duality between X1(Tk)
and X2(Y ∗k ), where Y ∗k is the module of characters of the torus Tk. See [68] and
[49], VIII.6.8.

2.6 The Poitou-Tate exact sequence

We keep notation from the previous sections. In particular, k is a number field,
Mk is a 1-motive over k, and U is an open subset of SpecOk such that Mk ex-
tends to a 1-motive M over U . For each finite place v of k, we denote by Ôv the
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ring of integers of the completion k̂v. The groups Hi(k,Mk) (−1 ≤ i ≤ 2) and
Hi(k̂v,Mk) for i ≥ 1 (v ∈ Ωk) are equipped with the discrete topology. For i ≥ 0,
we define Pi(Mk) as the restricted product over v ∈ Ωk of the Hi(k̂v,Mk), with
respect to the images of Hi(Ôv,M) for finite places v of U . The groups Pi(Fk)
are defined similarly for any étale sheaf Fk over Speck. Clearly all these groups
are independent of the choice of U . We equip them with their restricted prod-
uct topology. Note that P2(Mk) is the direct sum of the groups H2(k̂v,Mk) for all
places v: indeed, for each finite place v of U , we have H2(Ôv,M) = H2(Fv,M̃),
and we have already seen that this last group vanishes. We have natural restriction
maps βi : Hi(k,Mk)→ Pi(Mk) for i = 1,2; their kernels are precisely the groups
Xi(Mk).

In this section we establish a Poitou-Tate type exact sequence for Mk. A tech-
nical complication for our considerations to come arises from the fact that one
is forced to work with two kinds of completions: the first one is what we have
used up till now, i.e. the inverse limit A∧ of all open subgroups of finite index of
a topological abelian group A, and the second is the inverse limit A∧ of the quo-
tients A/n for all n > 0. These are not the same in general (indeed, the latter is not
necessarily profinite). But it is easy to see that (A∧)∧ is naturally isomorphic to
A∧; in particular, we have a natural map A∧→ A∧.

The natural map H0(k,Mk)→ P0(k,Mk) therefore gives rise to a commutative
diagram between the two different kinds of completions:

H0(k,Mk)∧
θ0−−−→ P0(k,Mk)∧y y

H0(k,Mk)
∧ β0−−−→ P0(k,Mk)

∧.

(2.14)

Denote by X0
∧(Mk) the kernel of the above map θ0. We first prove the fol-

lowing duality result analogous to [47], I.6.13 (b).

Proposition 2.6.1 Let Mk = [Yk→Gk] be a 1-motive over k. Assume that X1(Ak)
is finite. Then there is a perfect pairing

X0
∧(Mk)×X2(M∗k )→Q/Z

where the first group is compact and the second is discrete.

Remarks 2.6.2

1. The special case Mk = Yk[1] corresponds to the duality between the groups
X1(Yk) and X2(T ∗k ), where T ∗k is the torus with character module Yk; com-
pare [47], I.4.20 (a). Indeed, in this case the groups H0(k,Mk) and P0(k,Mk)
are finite, so X0

∧(Mk)∼=X1(Yk).
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2. The proof below will show that if one only assumes the finiteness of the `-
primary torsion part of X1(Ak), then one gets a similar duality between the
`-primary torsion part of X2(M∗k ) and a group X0

(`)(Mk) defined similarly

to X0
∧(Mk) but taking only `-adic completions.

3. In the paper [30] we guessed that X2(Mk) is finite, as it is finite for Mk = Tk
and even trivial for Mk = Ak and Mk = Yk[1]. This finiteness was proven in
important mixed cases in the thesis of P. Jossen [34], among them 1-motives
of the form [Yk → Ak], with Ak a geometrically simple abelian variety. He
also proved that in these cases there is a perfect pairing

X0(Mk)×X2(M∗k )→Q/Z

of finite groups (in fact, the finiteness of X0(Mk) can be proven to hold
in general). However, he recently produced an example where X2(Mk) is
infinite!

For the proof of the proposition we first show a lemma.

Lemma 2.6.3 For any n > 0, the natural map

P0(Mk)/n→∏
v

H0(k̂v,Mk)/n

is injective and its image is the restricted product of the groups H0(k̂v,Mk)/n with
respect to the subgroups H0(Ôv,Mk)/n.

Proof: Take an element x = (xv) ∈ P0(Mk) and assume xv is in nH0(k̂v,M) for
all v. For almost all v, it also comes from H0(Ôv,M), hence in fact it comes from
nH0(Ôv,M), for in the exact commutative diagram

H0(Ôv,M)
n−−−→ H0(Ôv,M) −−−→ H1(Ôv,TZ/nZ(M))y y y

H0(k̂v,Mk)
n−−−→ H0(k̂v,Mk) −−−→ H1(k̂v,TZ/nZ(Mk))

the third vertical map is injective, H1
v (Ôv,TZ/nZ(M)) being trivial by the same

argument as in the proof of Lemma 2.5.5. But this means x ∈ nP0(Mk). The
second statement is obvious.

Proof of Proposition 2.6.1: Using exact sequence (2.11) we get a commutative
diagram with exact rows for each n > 0:
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0 −−−→ H0(k,Mk)/n −−−→ H1(k,TZ/nZ(Mk)) −−−→ H1(k,Mk)[n] −−−→ 0y y y
0 −−−→ H0(k̂v,M)/n −−−→ H1(k̂v,TZ/nZ(Mk)) −−−→ H1(k̂v,Mk)[n] −−−→ 0

and a similar exact diagram holds with Ôv instead of k̂v. Taking restricted
products and using the above lemma, we get a commutative exact diagram:

0 −−−→ H0(k,Mk)/n −−−→ H1(k,TZ/nZ(Mk)) −−−→ H1(k,Mk)[n] −−−→ 0y y y
0 −−−→ P0(Mk)/n −−−→ P1(TZ/nZ(Mk)) −−−→ P1(Mk)[n] −−−→ 0

If we pass to the inverse limit over all n, the two lines remain left exact, whence
a commutative exact diagram

0 −−−→ H0(k,Mk)∧ −−−→ H1(k,T (Mk)) −−−→ I1 −−−→ 0yθ0

yθ

yβ1

0 −−−→ P0(Mk)∧ −−−→ P1(T (Mk)) −−−→ I2 −−−→ 0

(2.15)

where we define P1(T (Mk)) (resp. H1(k,T (Mk))) as the inverse limit of the
groups P1(TZ/nZ(Mk)) (resp. H1(k,TZ/nZ(Mk))). Here I1, I2 are respectively
subgroups of the full Tate modules T (H1(k,Mk)) and T (P1(Mk)). In particular,
Kerβ1 is a subgroup of T (X1(Mk)) because the inverse limit functor is left exact.

But T (X1(Mk)) is zero thanks to the finiteness assumption on X1(Ak) (which
implies the finiteness of X1(Mk) as in Corollary 2.5.8).

Therefore we obtain that X0
∧(Mk)=Kerθ0 is isomorphic to Kerθ . By Poitou-

Tate duality for finite modules ([49], VIII.6.8), there is a perfect pairing between
the latter group and X2(T (M∗k )tors).

We conclude by observing that X2(T (M∗k )tors) is also X2(M∗k )tors by the
same argument as in [47], I.6.8 (use the analogue of the exact sequence (2.11) for
Mk over Speck with i = 2 and pass to the limit).

We now return to diagram (2.14) and prove:

Proposition 2.6.4 Keep the finiteness assumption on X1(Ak). Then, with nota-
tions as in diagram (2.14), the natural map kerθ0→ kerβ0 is an isomorphism.
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By virtue of the proposition, we may employ the notation X0
∧(Mk) for kerβ0

as well and use the resulting duality. The finiteness assumption on X1(Ak) is
presumably superfluous here but we did not succeed in removing it (and use it
elsewhere anyway).

For the proof we need a lemma about abelian groups.

Lemma 2.6.5 Let A be a discrete abelian group of finite exponent n. Then the
intersection of the finite index subroups of A is trivial.

Proof: Consider the profinite group AD = Hom(A,Z/n). As ADD = A, the state-
ment is equivalent to saying that any character of AD vanishing on all finite sub-
groups of AD is trivial. This holds because all finitely generated subgroups of AD

are finite.

Proof of Proposition 2.6.4: We begin by showing that the vertical maps in dia-
gram (2.14) above are injective, whence the injectivity of the map kerθ0→ kerβ0.
For the left one, note that the topology on H0(k,M) being discrete, injectivity
means that any element of H0(k,M) which is nontrivial modulo n for some n
gives a nonzero element in some finite quotient – this holds by the lemma above.

For injectivity of the map P0(k,M)∧→ P0(k,M)∧, take an element x = (xv)
in P0(Mk) not lying in nP0(Mk). We have to find an open subgroup of finite
index avoiding x. By Lemma 2.6.3, there is a local component xv not lying in
nH0(k̂v,M). We thus get that for some v, our x is not contained in the inverse
image in P0(Mk) of the subgroup nH0(k̂v,M)⊂H0(k̂v,M), which is open of finite
index, by definition of the topology on H0(k̂v,M).

For the surjectivity of the map kerθ0 → kerβ0, remark first that kerθ0 is a
profinite group, being dual to the torsion group X2(Mk) by the previous proposi-
tion.

Therefore (kerθ0)
∧ = kerθ0, so by completing the exact sequence

0→ kerθ0→H0(k,Mk)∧→ imθ0→ 0 (2.16)

we get an exact sequence kerθ0→H0(k,Mk)
∧→ (imθ0)

∧→ 0.
To conclude, it is thus enough to show the injectivity of the natural map

(imθ0)
∧→ P0(Mk)

∧. By the above considerations, P0(Mk)∧ injects into its com-
pletion P0(Mk)

∧, so the completion of the subgroup imθ0 is simply its closure
in P0(Mk)

∧, whence the claim. But there is a subtle point here: in this ar-
gument, imθ0 is equipped with the subspace topology inherited from P0(Mk)∧,
whereas in exact sequence (2.16) it carried the quotient topology from H0(Mk)∧;
we have to check that the two topologies are the same, or in other words that the
morphism θ0 is strict. For every n > 0, the groups H0(k,Mk)/n and P0(Mk)/n
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are locally compact (the latter thanks to Lemma 2.6.3). Moreover, the mor-
phism fn : H0(k,Mk)/n→ P0(Mk)/n is strict for every n > 0. Indeed, the mor-
phisms H0(k,Mk)/n → H1(k,TZ/nZ(Mk)) and P0(Mk)/n → P1(TZ/nZ(Mk)) are
strict (thanks to [33], Theorem 5.29 and to diagram (2.15)), hence the image of
H0(k,Mk)/n in P0(Mk)/n identifies with a subspace of the image of the group
H1(k,TZ/nZ(Mk)) in P1(TZ/nZ(Mk)), which is discrete. Using the Poitou-Tate ex-
act sequence for finite modules ([49], VIII.6.13) we get that this image is a closed
subset of P1(TZ/nZ(Mk)), hence the morphism H1(k,TZ/nZ(Mk))→P1(TZ/nZ(Mk))
is strict (again by [33], Theorem 5.29). Now θ0 is obtained as the projective limit
of the strict morphisms fn with ker fn finite and H0(k,Mk)/n discrete; it is not
difficult to check that this implies that θ0 is strict.

We can now state the main result of this section.

Theorem 2.6.6 (Poitou-Tate exact sequence) Let Mk be a 1-motive over k. As-
sume that X1(Ak) and X1(A∗k) are finite, where Ak is the abelian variety corre-
sponding to Mk. Then there is a twelve term exact sequence of topological groups

0 −−−→ H−1(k,Mk)
∧ γ2

D

−−−→ ∏v∈Ωk
H2(k̂v,M∗k )

D β2
D

−−−→ H2(k,M∗k )
Dy

H1(k,M∗k )
D γ0←−−− P0(Mk)

∧ β0←−−− H0(k,Mk)
∧y

H1(k,Mk)
β1−−−→ P1(Mk)tors

γ1−−−→ (H0(k,M∗k )
D)torsy

0 ←−−− H−1(k,M∗k )
D γ2←−−−

⊕
v∈Ωk

H2(k̂v,Mk)
β2←−−− H2(k,Mk)

(2.17)
where the maps βi are the restriction maps defined at the beginning of this sec-
tion, the maps γi are induced by the local duality theorem of Section 2, and the
unnamed maps come from the global duality results of Proposition 2.6.1 (com-
pleted by Proposition 2.6.4) and Corollary 2.5.8.

Remarks 2.6.7

1. In the above sequence the group P1(Mk)tors is equipped with the discrete
topology, and not the subspace topology from P1(Mk).

2. The sequence (2.17) is completely symmetric in the sense that if we replace
Mk by M∗k and dualize, we obtain exactly the same sequence.

               dc_101_10



2.6 THE POITOU-TATE EXACT SEQUENCE 69

3. If we only assume the finiteness of X1(Ak){`} and X1(A∗k){`} for some
prime number `, then the analogue of the exact sequence (2.17) still holds,
with profinite completions replaced by `-adic completions and the torsion
groups involved by their `-primary part.

4. Some special cases of the theorem are worth noting. For Mk = [0→ Ak]
we get the ten-term exact sequence of [47], I.6.14. For Mk = [0→ Tk] one
can show (see proof of Proposition 2.6.9 below) that β D

2 is an isomorphism,
hence we obtain a classical (?) nine-term exact sequence; the case Mk =
Yk[1] is symmetric (compare [47], I.4.20).

The proof will use the following lemma.

Lemma 2.6.8 Let Mk be a 1-motive over k. Then H0(k,Mk)tors is finite.

Proof: Let M′k = Mk/W−2(Mk) = [Yk→ Ak]. From the exact sequence

H0(k,Yk)→ H0(k,Ak)→H0(k,M′k)→ H1(k,Yk)

we deduce that H0(k,M′k) is of finite type because H0(k,Ak) is of finite type
(Mordell-Weil theorem) and H1(k,Yk) is finite (because Yk(k̄) is a lattice). There
is also an exact sequence

H−1(k,M′k)→ H0(k,Tk)→H0(k,Mk)→H0(k,M′k)

where Tk is the torus corresponding to Mk. It is therefore sufficient to show that
the torsion subgroup of the group B := Tk(k)/imH−1(k,M′k) is finite. Choose
generators a1, ...,ar of the lattice H−1(k,M′k), and let b1, ...,br be their images
in Tk(k). We can find an open subset U of SpecOk such that Tk extends to
a torus T over U , and bi ∈ H0(U,T ) for any i ∈ {1, ...,r}. In this way, each
x ∈ Btors is the image in B of an element y ∈ Tk(k) for which yn ∈ H0(U,T ) for
some n > 0. Let V/U be an étale covering such that T splits over V , i.e. it
becomes isomorphic to some power GN

m. If L denotes the fraction field of V ,
we have Tk(L)/H0(V,T ) ∼= (L×/H0(V,Gm))

N which is naturally a subgroup of
the free abelian group Div(V )N ; in particular, it has no torsion. Therefore, since
yn ∈H0(V,T ) via the inclusion H0(U,T )→H0(V,T ) we get that y ∈H0(V,T ) =
H0(V,Gm)

N . Let H be the subgroup of H0(V,T ) generated by the y’s; since
H0(V,Gm) is of finite type by Dirichlet’s Unit Theorem, so is H. We thus get
a surjection from the finitely generated group H to the torsion group Btors, whence
the claim.

Proof of Theorem 2.6.6: The first line is dual to the last one, so for its exactness
it is enough to show the exactness of the latter. We proceed as in [47], I.6.13 (b).
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For each n > 0, we have an exact commutative diagram (using the exact sequence
(2.11) and the Poitou-Tate sequence for the finite module TZ/nZ(Mk)):

0y
H0(k,M∗k )[n]

Dy
H2(k,TZ/nZ(Mk)) −−−−→

⊕
v∈Ωk

H2(k̂v,TZ/nZ(Mk)) −−−−→ H0(k,TZ/nZ(M∗k ))
D −−−−→ 0y y y

H2(k,Mk)[n] −−−−→
⊕

v∈Ωk
H2(k̂v,Mk)[n] −−−−→ (H−1(k,M∗k )/n)Dy

0

By Lemma 2.6.8, the full Tate module T (H0(k,M∗k )) is trivial. Therefore taking
the inductive limit over all n, we obtain the exact commutative diagram, where the
right vertical map is an isomorphism:

H2(k,T (Mk)) −−−→
⊕

v∈Ωk
H2(k̂v,T (Mk)) −−−→ H0(k,T (M∗k ))

D −−−→ 0y y y
H2(k,Mk) −−−→

⊕
v∈Ωk

H2(k̂v,Mk) −−−→ (H−1(k,M∗k )
∧
)

D
−−−→ 0

We remark that the first two vertical maps are also isomorphisms by the same
argument as at the end of the proof of Proposition 2.6.1. Since the first row is exact
by the Poitou-Tate sequence for finite modules ([49], VIII.6.13), so is the second
one. Therefore the exactness of the last line of (2.17) (and hence that of the first)
follows noting that the dual of the profinite completion of the lattice H−1(k,M∗k )
is the same as the dual of H−1(k,M∗k ) itself.

To prove exactness of the second line, note first that it is none but the profinite
completion of the sequence

H0(k,Mk)∧
θ0→ P0(Mk)∧

γ ′0→ H1(k,M∗k )
D, (2.18)

where the map γ ′0 is induced by local duality, taking Lemma 2.6.3 into account.
First we show that this latter sequence is a complex. The map γ ′0 has the fol-
lowing concrete description at a finite level: for α = (αv) ∈ P0(Mk)/n and β ∈
H1(k,M∗k )[n], denote by βv the image of β in H1(k̂v,M∗k )[n]. Then [γ ′0(α)](β ) is
the sum over all v of the elements jv(αv∪βv), where (αv∪βv) ∈ H2(k̂v,µn) via
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the pairing M×M∗→ Gm[1], and jv is the local invariant. (The sum is finite by
virtue of the property H2(Ôv,µn) = 0 because the elements αv and βv are unrami-
fied for almost all v.) Then γ ′0 ◦θ0 = 0 follows (after passing to the limit) from the
reciprocity law of global class field theory, according to which the sequence

0→ H2(k,µn)→
⊕
v∈Ωk

H2(k̂v,µn)
∑ jv→ Z/n→ 0 (2.19)

is a complex.
For the exactness of the sequence (2.18) recall that, as remarked at the end of

the proof of Proposition 2.6.4, diagram (2.15) and the Poitou-Tate sequence for
finite modules imply that imθ0 is the kernel of the composed map

P0(Mk)∧→ P1((T (Mk))→ H1(k,T (M∗k )tors)
D.

The claimed exactness then follows from the commutative diagram

P0(Mk)∧ −−−→ P1(T (Mk))yγ ′0

y
H1(k,M∗k )

D −−−→ H1(k,T (M∗k )tors)
D

whose commutativity arises from the compatibility of the duality pairings for 1-
motives and their “n-adic” realizations via the Kummer map.

Now we show that the profinite completion of sequence (2.18), i.e. the second
row of diagram (2.17) remains exact. This follows by an argument similar to the
one at the end of the proof of Proposition 2.6.4, once having checked that imγ ′0 is
closed in H1(k,M∗k )

D and (imγ ′0)
∧ = imγ ′0. To see this, note that by applying the

snake lemma to diagram (2.15) we get that Cokerθ0 (with the quotient topology)
injects as a closed subgroup into Cokerθ . But one sees using the Poitou-Tate
sequence for finite modules that the latter group is profinite, hence so is imγ ′0; in
particular, it is compact and hence closed in H1(k,M∗k )

D.
Next, remark that by definition of the restricted product topology and Theo-

rem 2.3.10, the dual of the group P0(Mk) (equipped with the restricted product
topology) is P1(M∗k ). Thus the dual of P0(Mk)

∧ is P1(M∗k )tors. Therefore we ob-
tain the third line by dualizing the second one (and exchanging the roles of M and
M∗), which consists of profinite groups.

Finally, the exactness of the sequence (2.17) at the “corners” follows imme-
diately, in the first two rows, from the dualities X0

∧(Mk)∼=X2(M∗k )
D (Proposi-

tion 2.6.1 combined with Proposition 2.6.4) and X1(Mk) ∼= X1(M∗k )
D (Corol-

lary 2.5.8), respectively; the remaining corner is dual to the first one.

We conclude with the following complement.
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Proposition 2.6.9 Let Mk be a 1-motive over k. Then the natural map Hi(k,Mk)→⊕
v∈Ω∞

Hi(kv,Mk) is an isomorphism for i≥ 3.

Proof: When M = [0→ G], this follows immediately by devissage from [47],
I.4.21, and I.6.13 (c). To deal with the general case, it is sufficient to show that
the map fi : H i(k,Yk)→

⊕
v∈ΩR H i(kv,Yk) is an isomorphism for i≥ 3. Using the

exact sequence

0→ H i(k,Yk)/n→ H i(k,Yk/nYk)→ H i+1(k,Yk)[n]→ 0

for each n > 0, we reduce to the case i = 3. The last line of the Poitou-Tate exact
sequence for Mk =Yk[1] yields the surjectivity of f3 because k̂v is of strict cohomo-
logical dimension 2 for v finite. On the other hand, we remark that H3(k,Z) = 0
([47], I.4.17), hence H3(k,Yk) = H3(k,Yk)[n] for some n > 0 by a restriction-
corestriction argument. In particular the divisible subgroup of H3(k,Yk) is zero.
The injectivity of f3 now follows from Proposition 2.6.1 applied to Mk = T ∗k ,
where T ∗k is the torus with module of characters Yk.

2.7 Comparison with the Cassels-Tate pairing

In this section, we give a definition of the pairing of Theorem 2.1.2 purely in
terms of Galois cohomology and show that in the case M = [0→ A] it reduces to
the classical Cassels-Tate pairing for abelian varieties.

The idea is to use the diminished cup-product construction discovered by Poo-
nen and Stoll (see [52], pp. 1117–1118). One could present it in a general cate-
gorical setting but for the ease of exposition we stick to the special situation we
have. So assume given three exact sequences

0→M1→M2→M3→ 0,

0→ N1→ N2→ N3→ 0,

0→ P1→ P2→ P3→ 0

where the Mi, Ni, Pi are complexes of abelian étale sheaves over some scheme S.
Assume further given a pairing M2⊗L N2→ P2 in the derived category that maps
M1⊗L N1 to P1. Then one has a pairing

Ker [Hi(S,M1)→Hi(S,M2)]×Ker [H j(S,N1)→H j(S,N2)]→Hi+ j−1(S,P3)

defined as follows. Any element a of ker[Hi(S,M1)→Hi(S,M2)] comes from an
element b of Hi−1(S,M3). Since the above pairing induces a pairing M3⊗L N1→
P3, our b can be cupped with a′ ∈ ker[H j(S,N1)→ H j(S,N2)] to get an element
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in Hi+ j−1(S,P3). It follows from the fact that a′ maps to 0 in H j(S,N2) that this
definition does not depend on the choice of b.

Now apply this in the following situation. Let Ak be the adèle ring of the
number field k, S = Speck and Mk a 1-motive over k. Consider étale sheaves over
Speck as Gal(k)-modules and put M1 = Mk(k̄), M2 = Mk(k̄⊗k Ak), N1 = M∗k (k̄),
N2 = M∗k (k̄⊗k Ak), P1 = Gm(k̄)[1], P2 = Gm(k̄⊗k Ak)[1] and define M3, N3, P3
to make the above sequences exact. The pairing Mk⊗L M∗k → Gm[1] induces the
pairing M2⊗L N2→ P2 required in the above situation. Note that we have

Xi(Mk) = Ker [Hi(k,M1)→Hi(k,M2)],

X j(M∗k ) = Ker [H j(k,N1)→H j(k,N2)].

Finally, class field theory tells us that the cokernel of the map H2(k,Gm) →
H2(k,Gm(k̄⊗k Ak)) is isomorphic to Q/Z; indeed, one has

H2(k,Gm(k̄⊗k Ak)) =
⊕

v
H2(kv,Gm)

by Shapiro’s lemma (and the isomorphisms H2(kv,Gm)∼=H2(k̂v,Gm), cf. Lemma
2.3.7), so the claim follows from the exactness of the sequence (2.19) ([49], The-
orem 8.1.17) in view of the vanishing of H3(k,Gm) ([49], 8.3.10 (iv)).

Putting all this together, we get that the diminished cup-product construction
yields for i = j = 1 pairings

X1(Mk)×X1(Mk)→Q/Z (2.20)

for i = j = 1.

Proposition 2.7.1 The above pairing coincides with those constructed in Section
2.5.

Proof: Assume Mk extends to a 1-motive M over an open subset U ⊂ Speck; let
Σ denote the finite set of places of k which are real or coming from closed points
of SpecOk outside U . Apply the diminished cup-product construction for S =U ,
M1 = M, M2 = p∗p∗M, N1 = M∗, N2 = p∗p∗M∗, P1 = Gm[1], P2 = p∗p∗Gm[1],
where p : ⊕v∈ΣSpeckv→U is the canonical morphism (here we use the conven-
tions of Section 2.4 for kv). Note that, in the notation of Section 2.4,

Di(U,M) = ker[Hi(U,M1)→Hi(U,M2)]

and
D j(U,M∗) = ker[H j(U,N1)→H j(U,N2)].
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Moreover, one has

coker [H2(U,Gm)→ H2(U, p∗p∗Gm)]∼= H3
c (U,Gm)∼= Q/Z

where the first isomorphism comes from Shapiro’s lemma in the étale setting and
the second from class field theory, both combined with the fundamental long exact
sequence of compact support cohomology (the second isomorphism was already
used to construct the pairings of Section 2.4). For i = j = 1 one thus gets a pairing

D1(U,M)×D1(U,M)→Q/Z

which is manifestly the same as that of Corollary 2.4.5. Moreover, over a suffi-
ciently small U these are by construction compatible with the above definition of
the pairing (2.20).

Proposition 2.7.2 For Mk = [0→ Ak] the above pairing reduces to the classical
Cassels-Tate pairing.

Proof: This was basically proven in [52]. There one finds four equivalent defi-
nitions of the Cassels-Tate pairing, two of them using the diminished cup-product
construction for explicitly defined pairings Ak(k̄)×A∗k(k̄)→Gm[1]. For instance,
one of them (called the Albanese-Picard pairing by [52]) is given as follows: re-
place Ak(k̄) with the quasi-isomorphic complex C1 = [Y (A)→ Z(A)], where Z(A)
is the group of zero-cycles on Ak̄ = Ak×k k̄ and Y (A) is the kernel of the natural
summation map Z(A)→ A(k̄), and replace A∗k(k̄) by the complex

C2 = [k̄(Ak̄)
×
/k̄×→ Div0(Ak̄)],

where Div0 stands for divisors algebraically equivalent to 0. Now define a map
C1⊗C2→Gm(k̄)[1] using the partially defined pairings

Z(A)× [k̄(Ak̄)
×
/k̄×]→ k̄×

and
Div0(Ak̄)×Y (A)→ k̄×

where the first is defined on ([52], p. 1116) using the Poincaré divisor on A×A∗

and the second by evaluation. The resulting pairing Ak(k̄)×A∗k(k̄)→ Gm[1] is
one of the classical definitions of the duality pairing for abelian varieties over an
algebraically closed field.

Remark 2.7.3 Similarly, one verifies that in the case Mk = [0→ Tk] one gets the
usual pairing between the Tate-Shafarevich groups of the torus Tk and its character
module.
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Remark 2.7.4 In [20], Flach defines a Cassels-Tate pairing for finite dimensional
continuous `-adic representations of the Galois group of a number field k that
stabilize some lattice. Comparing the above construction with his shows that in
the case when the representation comes from the `-adic realization of a 1-motive
Mk the two pairings are compatible. In the special cases Mk = [Z→ 0] and Mk =
[0→ Ak] this is already pointed out in Flach’s paper (see also [21] for the latter
case). So our result can be interpreted as a “motivic version” of Flach’s pairing
for motives of dimension one.

2.8 Further developments

Cristian González-Avilés has extended the main results of this chapter to the func-
tion field case. For a function field of characteristic p our proofs carry over to treat
the prime-to-p torsion part of the cohomology groups involved. Concerning the p-
part, González-Avilés proved the following analogue of the i = 1 case of Theorem
2.1.2:

Theorem 2.8.1 (González-Avilés [24], Theorem 2.3) Let k be a global function
field of characteristic p > 0, and M a 1-motive over k. There exists a canonical
pairing

X1(M){p}×X1(M∗){p}→Q/Z
which is non-degenerate modulo maximal divisible subgroups.

Here Tate–Shafarevich groups are defined in the same way as above, but us-
ing flat cohomology instead of étale cohomology. The proof follows a similar
overall pattern to ours, but several technical modifications are needed to adapt the
argument to flat cohomology.

In their paper [25] González-Avilés and Tan have also extended the Poitou–
Tate exact sequence (Theorem 2.6.6) and the Cassels–Tate dual exact sequence
(Theorem 3.1.2 in the next chapter) to positive characteristic. They have moreover
constructed a variant of the latter sequence that does not rest upon a finiteness as-
sumption on Tate–Shafarevich groups (but is maybe less suitable for applications).

Another kind of generalization was proven by Peter Jossen in his thesis writ-
ten under my supervision. He generalized our duality theorems to 1-motives with
torsion. He defined a 1-motive with torsion to be a morphism Y → G, where Y
is an extension of a lattice by a finite flat group scheme and G is an extension
of an abelian scheme by a group scheme X that is itself an extension of a finite
flat group scheme by a torus. There is a natural weight filtration on such objects
and morphisms are required to preserve it. Jossen extended the theory of Deligne
1-motives to 1-motives with torsion, including Cartier duality and `-adic realiza-
tions. His main result is:
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Theorem 2.8.2 (Jossen [34], Chapter 4) Let k be a number field, and M = [Y → G]
a 1-motive with torsion over k. There exist canonical pairings

X1(M)×X1(M∗)→Q/Z

which are non-degenerate modulo maximal divisible subgroups.

This theorem yields a common generalization of all previously known duality
results over number fields, including Poitou–Tate duality for finite group schemes
which was not covered by Theorem 2.1.2.

As mentioned briefly in Remark 2.6.2 (3), Jossen has also made important
progress concerning the finiteness of X2(M) for a 1-motive M (with or without
torsion). He has recently found a surprising example where this group is infinite.
However, he had previously also proven that finiteness holds in the cases where G
is a geometrically simple abelian variety or a 1-dimensional torus. As the finite-
ness of X0(M∗) is easy to prove in general, in these cases one obtains a perfect
pairing X0(M∗)×X2(M)→ Q/Z of finite groups. This finiteness result also
has interesting ‘concrete’ consequences for the arithmetic of abelian varieties.

Appendix : Completion of topological abelian groups

In this appendix we collect some (probably well-known) results that we needed
in the paper.

Proposition Let 0→ A i→ B
p→ C→ 0 be an exact sequence in the category of

topological abelian groups.

1. If i is strict with open image, then the map BD→ AD is surjective.

2. Assume that the map p : B→C is open. Then the sequences

A∧→ B∧→C∧→ 0

0→CD→ BD→ AD

are exact.

3. Assume that p is open and i is strict with closed image. Suppose further that
B is Hausdorff, locally compact, completely disconnected, and compactly
generated. Then the sequences

0→ A∧→ B∧→C∧→ 0

0→CD→ BD→ AD→ 0

are exact, the map B→ B∧ is injective, and (B∧)D = BD.
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Proof: 1. If i is strict and i(A) is open in B, then any continuous homomorphism
A→ Q/Z induces a continuous homomorphism s : i(A)→ Q/Z which in par-
ticular has open kernel. By divisibility of Q/Z this extends to a homomorphism
s̄ : B→ Q/Z. Since i(A) is open in B, Ker s̄ is also open in B being a union of
cosets of Kers, whence the continuity of s̄.

2. To get the first exact sequence, the only nontrivial point consists of proving
that an element b ∈ B∧ whose image in C∧ is trivial comes from A∧. Let B′ ⊂ B
be an open subgroup of finite index. Then p(B′)⊂C is of finite index and is open
because p is open. Since i is continuous, (A∩B′)⊂ A is open and of finite index
as well. Now we use the exact sequence

0→ A/(A∩B′)→ B/B′→C/p(B′)→ 0

where B′ runs over the finite index open subgroups of B.
The second exact sequence follows immediately from the fact that the group

C ' B/i(A) is equipped with the quotient topology (p being an open map).
3. Let us show the left exactness of the first sequence. Since i is strict with

closed image, we can assume that A is a closed subgroup of B with the induced
topology. We have to show that if A′ ⊂ A is open and of finite index, then there
exists an open subgroup of finite index B′ ⊂ B such that B′ ∩A ⊂ A′. Replacing
A and B by A/A′ and B/A′ (equipped with the quotient topology), we reduce to
the case when A is a finite subgroup and we must show that B contains a finite
index open subgroup B′ with B′ ∩A = {0}. To do so, it is sufficient (using the
finiteness of A) to prove that the intersection of all finite index open subgroups of
B is zero, that is B ↪→B∧. By [33], II.9.8. (in the special case when B is completely
disconnected), B is topologically isomorphic to a product Zb×K with K compact
(hence profinite), thus B ↪→ B∧ = Ẑb×K.

This also shows that (B∧)D =BD. The projection L of A on Zb⊂B is a discrete
lattice and A is topologically isomorphic to L× (A∩K), hence (A∧)D = AD. This
proves the exactness of the second sequence.
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Chapter 3

Local-global principles for 1-motives

3.1 Introduction

In this chapter we use the duality theorems of the previous chapter to prove some
results related to 1-motives over number fields. The main object of study is the
Manin obstruction to the Hasse principle and weak approximation on torsors un-
der a semi-abelian variety over a number field k (i.e. a commutative k-group
scheme which is an extension of an abelian variety by a torus).

We briefly recall the basic idea of the Manin obstruction; see the Introduc-
tion for more details. Given a smooth, geometrically integral variety X over our
number field k, one considers the ring of adeles Ak of k, and defines a pairing

X(Ak)×Br X →Q/Z (3.1)

by evaluating elements of the cohomological Brauer group Br X := H2
ét(X ,Gm) at

each component and then taking the sum of local invariants (which is known to
be finite; see e.g. [63], p. 101). By global class field theory, the diagonal image
of X(k) in X(Ak) is contained in the subset X(Ak)

Br of adeles annihilated by the
above pairing. Consequently, the emptiness of X(Ak)

Br is an obstruction to the
Hasse principle if X(Ak) itself is nonempty.

In our case, a special role is played by a subquotient B(X) of BrX defined as
follows. Fix an algebraic closure k̄ of k. First one defines the subgroup Br 1 X ⊂
BrX as the kernel of the natural map BrX → Br(X ×k k̄), and then defines Br a X
as the quotient of Br 1 X modulo the image of the map Br k→ Br X . Finally one
puts

B(X) := Ker(Br a X →∏
v∈Ω

Br a(X×k kv)),

where Ω denotes the set of all places of k. (Note that some authors use the notation
B(X) for the preimage of our B(X) in Br X .) The pairing (3.1) manifestly factors
through the image of Br k in BrX , and hence induces a pairing

X(Ak)×B(X)→Q/Z. (3.2)

79
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Our first main result in this chapter concerns a semi-abelian variety G over
k, i.e. an extension of an abelian variety A by a torus T . Recall that the Tate-
Shafarevich group of A is defined as the kernel

X(A) := ker(H1(k,A)→∏
v∈Ω

H1(kv,A))

of the natural restriction map in Galois cohomology.

Theorem 3.1.1 Let G be a semi-abelian variety defined over k, and let X be a
k-torsor under G. Assume that the Tate-Shafarevich group of the abelian quotient
A of G is finite. If there is an adelic point of X annihilated by all elements of B(X)
under the pairing (3.2), then X has a k-rational point.

The theorem answers positively a question raised by Skorobogatov in [63] (p. 133,
question 1) for semi-abelian varieties. The analogous result for connected linear
algebraic groups has been known for a long time (see [57]).

A reason why it is more interesting to work with the subquotient B(X) instead
of the whole group Br X is that under the assumptions of the theorem it is finite
(see Remark 3.4.7 below). In this respect Theorem 3.1.1 improves the main result
of [29] that shows that a statement as in Theorem 3.1.1 holds even for arbitrary
connected algebraic groups, provided that one replaces B(X) with the unramified
part of Br 1X , which is a much bigger group.

Though Theorem 3.1.1 has been known for quite some time in the extreme
cases G = A (Manin [42]) and G = T (Sansuc [57]), the general case does not
follow from these, and is substantially more difficult. Our approach is based on a
strategy similar to the proofs in the extreme cases, but it is more conceptual and
avoids some rather involved cocycle calculations that made earlier texts hard to
follow (at least for us). Among new ingredients we use the theory of generalised
Albanese varieties and 1-motives, and a new interpretation of the pairing (3.2) as
a cup-product in étale hypercohomology. The latter fact is valid for an arbitrary
smooth variety and is of independent interest (see Section 3.3).

To state the second main result of the chapter, let M = [Y → G] be a 1-motive
over k (i.e. a complex of k-group schemes placed in degrees (−1,0) with Y étale
locally isomorphic to Zr for some r ≥ 0 and G a semiabelian variety). Denote the
dual 1-motive ([16], 10.2.1) by M∗= [Y ∗→G∗]. For each positive integer i denote
by Xi(M) (resp. Xi

ω(M)) the subgroup of Hi(k,M) consisting of those elements
whose restriction to Hi(kv,M) is zero for all places (resp. for all but finitely many
places) of k. In Section 3.5 we shall prove the following generalisation of the
classical Cassels-Tate dual exact sequence to 1-motives.
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Theorem 3.1.2 Assume that the Tate-Shafarevich group X(A) of the abelian
quotient of G is finite. Then there is an exact sequence of abelian groups

0→H0(k,M)→∏
v∈Ω

H0(kv,M)→X1
ω(M

∗)D→X1(M)→ 0,

where H0(k,M) denotes the closure of the diagonal image of H0(k,M) in the topo-
logical product of the H0(kv,M), and AD := Hom(A,Q/Z) for a discrete abelian
group A. By convention, for v archimedean we take here the modified (Tate) hy-
percohomology groups instead of the usual ones.

The third (resp. fourth) maps in the above sequence are induced by the local
(resp. global) duality pairings of Chapter 2 (see Section 3.5 for more details),
and the topology on H0(kv,M) was defined in §2 of the same reference. A sim-
ilar statement for connected linear algebraic groups was proven by Sansuc ([57],
Theorem 8.12). Our method yields a new proof of his result in the case of tori.

The case M = [0→ G] of this exact sequence allows us to give a new short
proof of the weak approximation part of the main result of [29] in the crucial case
of a semi-abelian variety. For the precise statement, see Section 3.6.

The bulk of this chapter is a slightly modified version of [31]. In the last
section we review further progress based on the main results of that paper.

3.2 Preliminaries on the Brauer group

As a preparation for the proof of Theorem 3.1.1, we collect here some auxiliary
statements concerning the Brauer group. Statements 3.2.2–3.2.4 will not serve
until Section 3.4.

We investigate the exact sequence of complexes of Gal(k̄|k)-modules

0→ [k̄×→ 0]→ [k̄(X)×→ DivX ]→ [k̄(X)×/k̄×→ DivX ]→ 0 (3.3)

for an arbitrary smooth geometrically integral variety X over a field k. Here, as
usual, X stands for X ×k k̄, DivX for the group of divisors on X and k̄(X) for
its function field. In accordance with our conventions for 1-motives, the above
complexes are placed in degrees −1 and 0.

Lemma 3.2.1 There are canonical isomorphisms

H1(k, [k̄(X)×→ DivX ])∼= Br 1 X

and, assuming H3(k, k̄×) = 0,

H1(k, [k̄(X)×/k̄×→ DivX ])∼= Br a X .
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Proof: For the first isomorphism we use the long exact hypercohomology se-
quence associated with the distinguished triangle

k̄(X)×→ DivX → [k̄(X)×→ DivX ]→ k̄(X)×[1]

and the fact that the permutation module DivX has trivial H1 to obtain

H1(k, [k̄(X)×→ DivX ])∼= ker
(
H2(k, k̄(X)×)→ H2(k,DivX)

)
.

The latter group is identified in [63] with Br 1X : see the second column of the
exact diagram (4.17) on p. 72. The injectivity of the map

Br 1 X → ker
(
H2(k, k̄(X)×)→ H2(k,DivX)

)
constructed there follows again from the vanishing of H1(k,DivX), and the as-
sumption k̄[X ]× = k̄× made in the reference is not used at this point.

Another (?) argument is to use the quasi-isomorphism of Galois modules

[k̄(X)×→ DivX ]
∼→ τ≤1Rπ∗Gm[1]

constructed in [9], Lemma 2.3, where π : X → Spec k̄ is the natural projection.
It yields an isomorphism of H1(k, [k̄(X)×→ DivX ]) with H2(k,τ≤1Rπ∗Gm), in
turn isomorphic to ker(H2(X ,Gm)→ H0(k,H2(X ,Gm)) by a Hochschild-Serre
argument.

The second isomorphism of the lemma follows from the first one in view of
the long exact cohomology sequence associated with (3.3) and the assumption
H3(k, k̄×) = 0.

The complex of Galois modules [k̄(X)×/k̄×→ DivX ] was considered in sev-
eral recent papers, in particular in Borovoi and van Hamel [9] and Colliot-Thélène
[14]. The following property seems to have been observed by all of us:

Lemma 3.2.2 Assume that X has a smooth compactification Xc over k. Then
there is a natural Galois-equivariant quasi-isomorphism of complexes

[k̄(X)×/k̄×→ DivX ]' [Div∞ Xc→ Pic Xc
],

where Div∞ Xc denotes the group of divisors on Xc := Xc×k k̄ supported in Xc\X,
and the maps in both complexes are divisor maps.
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Proof: We consider the map of two-term complexes

[k̄(X)×/k̄× −−−→ DivX ]y y
[Div∞ Xc −−−→ Pic Xc

]

(3.4)

where the right vertical map is induced by sending a codimension 1 point on X to
the class of the corresponding point of Xc with a minus sign. This sign convention
implies that we indeed have a map of complexes, and it is a quasi-isomorphism
by construction.

A combination of the two previous lemmas yields:

Corollary 3.2.3 If moreover k satisfies H3(k, k̄×) = 0, we have a natural isomor-
phism

Br a X ∼= H1(k, [Div∞ Xc→ Pic Xc
]).

If k is of characteristic 0, the smooth compactification Xc always exists thanks
to Hironaka’s theorem on resolution of singularities. In particular, the statement
of the corollary holds over number fields and their completions, since they are of
characteristic 0 and satisfy the cohomological condition.

Remarks 3.2.4

1. Note that when X is proper, the isomorphism of the corollary is just the well-
known identification Br a X ∼=H1(k,Pic X) induced by the Hochschild-Serre
spectral sequence.

2. We shall also need a sheafified version of Lemma 3.2.2 over sufficiently
small nonvoid open subsets of U ⊂ SpecOk, where Ok denotes the ring of
integers of k, as usual. For U sufficiently small the k-varieties X and Xc

extend to smooth U-schemes X and X c, with X c projective over U , and
X open in X c. We shall work on the big étale site of U restricted to
the subcategory Sm/U of smooth U-schemes of finite type. Consider the
étale sheaf DivX c/U associated with the presheaf S 7→ Div(X c×U S/S)
of relative Cartier divisors on this site (see e.g. [10] pp. 212–213, for a
discussion of relative effective Cartier divisors, and then take group com-
pletion). It contains as subsheaves the sheaf DivX /U of relative divisors on
X ×U S/S and the sheaf Div∞

X c/U of relative divisors on X c×U S/S with
support in (X c \X )×U S. There is also the sheaf PicX c/U given by the
relative Picard functor. Finally, denote by K ×

X the étale sheaf on Sm/U
associated with the presheaf sending S to the group of rational functions on
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X ×U S that are regular and invertible on a dense open subset of each fibre
of the projection onto S. It contains as a subsheaf the pullbacks of invert-
ible functions on S; we identify it with the sheaf Gm on the big étale site
of Sm/U . We contend that we may lift the quasi-isomorphism (3.4) to a
quasi-isomorphism

[K ×
X /Gm −−−→ DivX /U ]y y

[Div∞

X c/U −−−→ PicX c/U ]

of complexes of étale sheaves on Sm/U . The definition of the morphism is
as above (one works with the inclusion X ×U S⊂X c×U S for each object
S of Sm/U). To check that it is a quasi-isomorphism, we may restrict to
the small étale site of each S, and then look at stalks at geometric points.
The statement to be checked then becomes a variant of Lemma 3.2.2 over a
strictly henselian base, which is proven in the same way.

3.3 Reinterpretations of the Brauer-Manin pairing

In this section we use exact sequence (3.3) and Lemma 3.2.1 to give other formu-
lations of the Brauer-Manin pairing

X(Ak)×B(X)→Q/Z.

Our X is still an arbitrary smooth geometrically integral variety over a number
field k, and we assume X(Ak) 6= /0.

We start with a couple of well-known observations. Since the elements of
B(X) are locally constant by definition, the maps

b : B(X)→Q/Z (3.5)

given by evaluation on an adelic point (Pv) do not depend on the choice of (Pv), so
defining the pairing is equivalent to defining the map b. There is a commutative
diagram with exact rows

0 −−−→ Br k −−−→ Br 1 X −−−→ Br a X −−−→ 0y y y
0 −−−→

⊕
v∈Ω Br kv −−−→

⊕
v∈Ω Br 1 Xv −−−→

⊕
v∈Ω Br a Xv −−−→ 0

(3.6)
where Xv := X ×k kv, and the first map in the bottom row is injective because
our assumption that X(Ak) 6= /0 implies that each map Br kv→ Br 1(X×k kv) is
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injective. The first map in the top row is then injective because so is the left
vertical map, by the Hasse principle for Brauer groups. Applying the snake lemma
to the diagram we thus have a map

B(X) = ker(Br a X →
⊕
v∈Ω

Br a Xv)→ coker(Br k→
⊕
v∈Ω

Br kv)∼= Q/Z.

Lemma 3.3.1 The above map equals the map b : B(X)→Q/Z.

Proof: For α ∈B(X) the value b(α) is defined by lifting first α to α ′ ∈ Br 1 X ,
then sending α ′ to an element of ⊕vBr kv via a family of local sections (sv :
Br 1X → Br kv) determined by an adelic point of X , and finally taking the sum
of local invariants. Since each sv factors through Br 1(X ×k kv), this yields the
same element as the snake lemma construction.

Now observe that in view of Lemma 3.2.1 one may also obtain the diagram
(3.6) by taking the long exact hypercohomology sequence coming from the dia-
gram

0→ [k̄×→ 0]→ [k̄(X)×→ DivX ] → [k̄(X)×/k̄×→ DivX ]→ 0

↓ ↓ ↓

0→
⊕
v∈Ω

[k̄×v → 0]→
⊕
v∈Ω

[k̄v(X)×→ DivXv]→
⊕
v∈Ω

[k̄v(Xv)
×/k̄×v → DivXv]→ 0,

where Xv := X ×k k̄v. The zeros on the right in (3.6) come from the fact that the
groups H3(k,Gm) and H3(kv,Gm) all vanish.

Remark 3.3.2 Note in passing that the sections sv used in the above proof come
from Galois-equivariant splittings

[k̄v(X)×→ Div(X×k k̄v)]→ [k̄×v → 0] (3.7)

of the base change of the extension (3.3) to k̄v. As maps of complexes, the latter
are given in degree −1 by a natural splitting of the inclusion map k̄×v → k̄v(X)×

coming from Pv as constructed e.g. in ([63], Theorem 2.3.4 (b)), and in degree 0
by the zero map. In particular, the extension (3.3) is locally split.

As in Remark 3.2.4 (2), we now pass to sheaves over the étale site of Sm/U ,
where U ⊂ SpecOk is a suitable open subset. We can then extend the upper row
of the last diagram to an exact sequence

0→Gm[1]→K D(X )→K D ′(X )→ 0 (3.8)
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of complexes of étale sheaves on Sm/U , where

K D(X ) := [K ×
X → DivX /U ]

and
K D ′(X ) := [K ×

X /Gm→ DivX /U ].

By Lemma 3.2.2 we have Br a X ∼= H1(k, [k̄(X)×/k̄×→ DivX ]), so each element
of Br a X comes from an element in H1(U,K D ′(X )). Now assume moreover
α ∈ Br a X is locally trivial, i.e. lies in B(X). For a finite place v of k we have
H1(kh

v , jh∗
v K D ′(X )) ∼= H1(kv, j∗vK D ′(X )), where kh

v is the henselisation of k
at v, and jh

v : Speckh
v →U as well as jv : Speckv→U are the natural maps. This is

shown using the quasi-isomorphism of Lemma 3.2.2, and then reasoning as in the
proof of ([30], Lemma 2.7). Next recall that in the case when k is totally imagi-
nary the arithmetic compact support hypercohomology H1

c(U,F ) of a complex of
sheaves F is defined by Hi

c(SpecOk, j!F ), where j : U → SpecOk is the natural
inclusion. It fits into a long exact sequence

· · · →H1
c(U,F )→H1(U,F )→

⊕
v∈SpecOk\U

H1(kh
v , jh∗

v F )→ . . .

In the general case there are corrective terms coming from the real places; see
the discussion at the beginning of §3 in [30] (but note the misprint in formula (8)
there: the k̂v should be kv in that paper’s notation). It then follows from the above
discussion that we may lift α ∈B(X) to an element αU ∈ H1

c(U,K D ′(X )) for
sufficiently small U .

There is a cup-product pairing

∪ : Ext1Sm/U(K D ′(X ),Gm[1])×H1
c(U,K D ′(X ))→ H3

c (U,Gm)∼= Q/Z,

where the Ext-group is taken in the category of étale sheaves on Sm/U , and the
last isomorphism comes from global class field theory (see [47], p. 159). We shall
be interested in the class EX ∪αU , where EX is the class of the sequence (3.8 )in
Ext1Sm/U(K D ′(X ),Gm[1]). Note that there is a commutative diagram

Ext1Sm/U(K D ′(X ),Gm[1])×H1
c(U,K D ′(X ))→ H3

c (U,Gm)∼= Q/Z,

↓ ↓∼= ↓ id

Ext1U(g∗K D ′(X ),Gm[1])×H1
c(U,g∗K D ′(X ))→ H3

c (U,Gm)∼= Q/Z,
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where g∗ is the natural pushforward (or restriction) map from the étale site of
Sm/U to the small étale site of U , and the Ext-group in the bottom row is an Ext-
group for étale sheaves on U . The left vertical map exists because the functor g∗
is exact (and Gm as an étale sheaf on U is the pushforward by g of the Gm on
Sm/U). The middle isomorphism comes from the fact that the hypercohomology
of complexes of sheaves on the big étale site of U equals the hypercohomology
on the small étale site. So instead of EX we may work with its image g∗EX in
Ext1U(g∗K D ′(X ),Gm[1]), and omit the g∗ from the notation when no confusion
is possible. Note that the generic stalk of g∗EX is the class of the extension (3.3)
in the group Ext1k([k̄(X)×/k̄×→ DivX ], k̄×[1]).

Proposition 3.3.3 With notations as above, we have

EX ∪αU = b(α).

Before starting the proof, note that though one has several choices for αU , the
cup-product depends only on α . Indeed two choices of αU differ by an element
of the direct sum of the groups H0(kh

v ,K D ′(X )), and the cup-product of each
such group with Ext1U(K D ′(X ),Gm[1]) factors through the cup-product with
Ext1kh

v
( j∗vK D ′(X ),Gm[1]). But the image of the class g∗EX in these groups is 0,

because the extension is locally split (Remark 3.3.2).

Proof: In order to avoid complicated notation, we do the verification in the case
when U is totally imaginary and the simpler definition of compact support co-
homology is available, and leave the general case to anxious readers. We may
work over the small étale site of U by the previous observations; in particular, we
identify the complexes K D(X ) and K D ′(X ) with their images under g∗.

The cup-product EX ∪αU is none but the image of α by the boundary map
H1

c(U,K D ′(X ))→ H3
c (U,Gm) coming from the long exact hypercohomology

sequence associated with (3.8). Now consider the commutative exact diagram

0 → Gm[1] → K D(X ) → K D ′(X ) → 0

↓ ↓ ↓

0→
⊕
v/∈U

jv∗ j∗vGm[1]→
⊕
v/∈U

jv∗ j∗vK D(X )→
⊕
v/∈U

jv∗ j∗vK D ′(X )→ 0
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of complexes of étale sheaves on U , and denote the cones of the vertical maps by
C , CK and C ′K , respectively. The group H1(U,C ′K [−1]) may be identified with
H1

c(U,K D ′(X )) (apply, for instance, [47], Lemma II.2.4 and its proof with our
U as V and our SpecOk as U), so we may view αU as an element of the former
group. The cup-product EX ∪αU maps to a class in H2(U,C [−1]) = H1(U,C ).
But when one makes U smaller and smaller and passes to the limit, this class
yields an element in the cokernel of the map Br k→⊕vBr kh

v which (noting the
isomorphism Br kh

v
∼= Br kv) is precisely the one obtained by the snake-lemma

construction at the beginning of this section. It remains to apply Lemma 3.3.1.

3.4 Proof of Theorem 1

We now prove Theorem 3.1.1, of which we take up the notation and assumptions.
As in the case of abelian varieties, the idea is to relate the Brauer-Manin pairing
for a torsor X under a semi-abelian variety G to a Cassels-Tate type pairing. In
our case it is the generalised pairing for 1-motives

〈 , 〉 : X(M)×X(M∗)→Q/Z

defined in [30], where X(M∗) is the Tate-Shafarevich group attached to the dual
1-motive M∗ = [T̂ → A∗] of M = [0→ G]. For the various generalities about
1-motives used here and in the sequel, we refer to the first section of [30].

To relate the two pairings, we shall construct a map

ι : X(M∗)→B(X)

and prove that the equality

〈[X ],β 〉= b(ι(β )) (3.9)

holds for all β ∈X(M∗) up to a sign. Theorem 3.1.1 will then follow from the
non-degeneracy of the Cassels-Tate pairing proven in [30].

To construct the map ι we proceed as follows. Recall that for a smooth quasi-
projective variety V over a field of characteristic 0 there exists a generalised Al-
banese variety AlbV introduced in [59] over an algebraically closed field, and in
[53] in general. It is a semi-abelian variety, and according to a result of Severi
generalised by Serre [60] and amplified in [53] the Cartier dual of the 1-motive
[0→AlbV ] is [Div∞,alg

V c → Pic 0
V c ]. Here V c is a smooth compactification of V , and

the term Div∞,alg
V c is the group of divisors on V c algebraically equivalent to 0 and

supported in V c \V viewed as an étale locally constant group scheme. In the case
V = X we have AlbV = G by definition, and therefore

M∗ = [Div∞,alg
Xc → Pic 0

Xc ]. (3.10)
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Since there is a natural map of complexes of k-group schemes

[Div∞,alg
Xc → Pic 0

Xc ]→ [Div∞
Xc → Pic Xc ], (3.11)

passing to hypercohomology yields a map

H1(k,M∗)→H1(k,DP(Xc))

with the notation
DP(Xc) := [Div∞

Xc → Pic Xc ].

Over a number field k the group H1(k,DP(Xc)) is isomorphic to Br a X by Corol-
lary 3.2.3, and the same holds over the completions of k. Since the above map
is manifestly functorial for field extensions, we obtain the required map ι by re-
stricting to locally constant elements.

We can thus rewrite the map ι as

ι : X(M∗)→X(DP(Xc)).

The previous construction also yields a dual map

H1(k,Hom(DP(Xc),Gm[1]))→H1(k,M) (3.12)

by applying the functor Hom( ,Gm[1]) to the map (3.11) and taking hypercoho-
mology (recall that M ∼= Hom(M∗,Gm[1]); see the remark below). Restricting to
locally trivial elements yields a map

ι
D : X(Hom(DP(Xc),Gm[1]))→X(M).

Remark 3.4.1 The Hom-functor used in the above formulas is the internal Hom-
functor in the bounded derived category of sheaves on the big étale site of Speck
restricted to the full subcategory Sm/k of smooth k-schemes. It may also be
viewed as H0 of RHom, the total derived functor of the internal Hom in the cate-
gory of sheaves on the said site. The other H i’s are the higher Ext i’s coming from
this internal Hom.

The Barsotti-Weil formula A∗ ∼= Ext1(A,Gm) for abelian schemes holds in
this context, because (as O. Wittenberg kindly explained to us) the proof of [51],
Corollary 17.5 carries over from the fpqc site to the big étale site in the case of
smooth group schemes. Hence so does the isomorphism M ∼= Hom(M∗,Gm[1])
used above. Note here that since the duality between M and M∗ comes from the
derived pairing M⊗L M∗→Gm[1], one a priori only has M ∼= RHom(M∗,Gm[1]),
but the higher Ext i’s vanish (see the end of the proof of Lemma 3.4.4 below).
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We shall also need versions of the maps constructed above over a suitable U ⊂
SpecOk. Over U sufficiently small the complex DP(Xc), viewed as a complex of
étale sheaves on Sm/k, extends to a complex

DP(X c) := [Div∞

X c/U → PicX c/U ],

where we have used the notations of Remark 3.2.4 (2). Shrinking U if necessary,
we can also extend the 1-motive M to a 1-motive M over U . The main point is
then:

Lemma 3.4.2 The dual 1-motive M ∗ = [Y →A ∗] is isomorphic to the 1-motive
[Div∞,alg

X c/U → Pic 0
X c/U ] over sufficiently small U, where Div∞,alg

X c/U is the inverse

image of Pic 0
X c/U in Div∞

X c/U .

Here Pic 0
X c/U ⊂ PicX c/U is the subsheaf of elements whose restriction to

each fibre of the map X c→U lies in Pic 0 of the fibre.

Proof: This should be part of a duality theory of Albanese and Picard 1-motives
for smooth quasi-projective schemes over U . Since we do not know an adequate
reference for this, we have chosen to circumvent the problem as follows. The
group schemes Pic 0

X c/U and A ∗ are both smooth group schemes of finite type

over U , whereas Div∞,alg
X c/U and Y are both character groups of U-tori, so maps

defined between their generic fibres extend to maps over suitable U .

Corollary 3.4.3 Over suitable U ⊂ SpecOk the map ι lifts to a map

ιU : H1
c(U,M ∗)→H1

c(U,DP(X c)),

and the map (3.12) extends to

ι
D
U : H1(U,Hom(DP(X c),Gm[1]))→H1(U,M ).

Proof: The map (3.11) extends to a map of complexes

[Div∞,alg
X c/U → Pic 0

X c/U ]→DP(X c),

so by the lemma we dispose of a map M ∗→ DP(X c). The required maps are
obtained by passing to cohomology.

In the previous section we worked with a certain extension class EX in the
group Ext1Sm/U(K D ′(X ),Gm[1]). According to Remark 3.2.4 (2) the Ext-group
here is isomorphic to Ext1Sm/U(DP(X c),Gm[1]). The next lemma will imply
that over sufficiently small U we may identify EX with a class E ′X in the group
H1(U,Hom(DP(X c),Gm[1]).
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Lemma 3.4.4 There are canonical isomorphisms

Ext j
Sm/k(DP(Xc),Gm[1])∼= H j(k,Hom(DP(Xc),Gm[1]))

for all j > 0.

Proof: We start with the isomorphism

Ext j
Sm/k(DP(Xc),Gm[1])∼= H j(k,RHomSm/k(DP(Xc),Gm[1])) (3.13)

coming from the derived category analogue of the spectral sequence for composite
functors; the functor RHom was explained in Remark 3.4.1. It shows that the
lemma follows if we prove that the restrictions of the sheaves

Ext i−1
Sm/k(DP(Xc),Gm[1]) = Ext i

Sm/k(DP(Xc),Gm)

to the small étale site of Spec(k) are trivial for i> 1 and i= 0. We are thus reduced
to checking the triviality of the Galois modules ExtiSm/k̄(DP(Xc)k̄,Gm) = 0 for
i > 1 and i = 0. We drop the subscripts in the rest of the proof.

Observe first that the cokernel of the map of complexes (3.11) is quasi-iso-
morphic to the complex [0→ B(Xc)], where B(Xc) is the quotient of the Néron-
Severi-group of Xc modulo the subgroup of classes coming from divisors at infin-
ity; in particular, its k̄-points form a finitely generated abelian group. Hence the
group Exti(B(Xc),Gm) is trivial for i > 0 (see [63], Sublemma 2.3.8). Therefore
the distinguished triangle coming from (3.11) shows that it is enough to prove
Exti([Div∞,alg

Xc → Pic 0
Xc],Gm) = 0 for i > 1 and i = 0, which is the same as proving

Exti(M∗,Gm) = 0 by the isomorphism (3.10). The case i = 0 then follows from
the fact that every morphism from A∗ to Gm is trivial. For the case i> 1 we remark
that the stupid filtration on M∗ = [T̂ → A∗] induces an exact sequence

Exti(A∗,Gm)→ Exti(M∗,Gm)→ Exti−1(T̂ ,Gm).

Here the terms at the two extremities are trivial for i > 1 (the left one by [51],
Prop. 12.3), hence so is the middle one.

Remarks 3.4.5
1. Here it was crucial to work with extensions over the big étale site; over the
small étale site of k̄ the group Exti(A∗,Gm) is trivial even for i = 1.
2. In the course of the proof we also established canonical isomorphisms

Ext j
Sm/k(M

∗,Gm[1])∼= H j(k,Hom(M∗,Gm[1]))

for all j > 0.
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Now denote by EX the image of the class EX of the previous section in the
group Ext j

Sm/k(DP(Xc),Gm[1]). Via the isomorphism of the lemma it corresponds

to a class E ′X in H1(k,HomSm/k(DP(Xc),Gm[1])). We may extend the latter to a
class in H1(U,HomSm/U(DP(X c),Gm[1]) over a sufficiently small U ⊂ Spec(k).
There is a natural map

H1(U,HomSm/U(DP(X c),Gm[1])→ Ext1Sm/U(DP(X c),Gm[1])

coming from the analogue of (3.13) over U . By shrinking U if necessary we may
assume that the image of E ′X by this map is EX , since the two classes coincide at
the generic point.

Applying the map ιD
U to E ′X we obtain a class in H1(U,M ). Over the generic

point ιD
U (E ′X) restricts to the image of E ′X by the map (3.12). We can identify the

latter as follows.

Lemma 3.4.6 The image of E ′X by the map (3.12) equals (up to a sign) the class
of X in H1(k,G) = H1(k,M).

The lemma should be true over an arbitrary field of characteristic 0. It is known
in the two extreme cases G = A and G = T (see references in the proof below);
we leave the general case to the reader as a challenge. The following proof, which
is sufficient for our purposes, works under the assumptions of Theorem 3.1.1 (i.e.
over a number field, assuming X(Ak) 6= /0 and the finiteness of X(A)). Also, as
O. Wittenberg pointed out to us, Corollary 4.2.4 of [72] implies that E ′X maps to 0
in H1(k,G) if and only if [X ] = 0, which is also sufficient for the proof of Theorem
3.1.1 given below.

Proof of Lemma 3.4.6. Thanks to Proposition 2.1 of [64] the case G = A is known,
and we may complete the proof of Theorem 3.1.1 given below in this special case.
Thus we are allowed to apply Theorem 3.1.1 to the pushforward torsor p∗X under
A (here of course p : G→ A is the natural projection map), and conclude that it is
trivial. The exact sequence

H1(k,T ) i∗→ H1(k,G)
p∗→ H1(k,A)

then implies that X = i∗Y for some k-torsor Y under T , where i : T → G is the
natural inclusion.

The map (3.12) factors through H1(k,Hom(M∗,Gm[1])) by construction, and
by Remark 3.4.5 (2) we may identify the image of E ′X in the latter group with a
class E0

X ∈ Ext1(M∗,Gm[1]). By performing the same construction for the torsor Y
we obtain a class E0

Y ∈Ext1(T̂ [1],Gm[1]). According to [72], Proposition 4.1.4 ap-
plied with V =Y and W = X we have E0

X = i∗E0
Y , where i∗ : Ext1(T̂ [1],Gm[1])→
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Ext1(M∗,Gm[1]) is the natural map induced by the projection M∗→ T̂ [1]. (Note
that this equality is not completely obvious, because the map Y → X is not domi-
nating.) But for G = T the lemma is known over an arbitrary field ([63], Lemma
2.4.3), so the image of E0

Y in H1(k,T ) is [Y ] up to a sign. The image of [Y ] in
H1(k,G) is [X ], so the lemma in the general case follows from the commutativity
of the diagram

H1(k,T ) −−−→ H1(k,G)x x
Ext1(T̂ [1],Gm[1]) −−−→ Ext1(M∗,Gm[1]).

Proof of Theorem 3.1.1. As already remarked at the beginning of this section, for
the proof of the theorem it will suffice to verify formula (3.9) for the class of X
in X(M), i.e. the equality 〈[X ],β 〉 = b(ι(β )) up to a sign for all β ∈X(M∗).
Indeed, our assumption that X has an adelic point orthogonal to B(X) implies
the triviality of the map b, so the right hand side of the formula is 0 for all β in
X(M∗). But under the finiteness assumption on X(A) the Cassels-Tate pairing
〈 , 〉 is non-degenerate ([30], Corollary 4.9), so [X ] = 0, i.e. X has a k-rational
point.

We now verify formula (3.9). Consider the cup-product pairing

H1(U,Hom(DP(Xc),Gm[1]))×H1
c(U,DP(Xc))→ H3

c (U,Gm)

and recall that we have defined above a class E ′X in H1(U,Hom(DP(Xc),Gm[1])).
By construction, taking the product of E ′X with some αU ∈H1

c(U,DP(Xc)) under
this pairing is the same as the element EX ∪αU considered in Proposition 3.3.3.
So applying the proposition we obtain the equality E ′X ∪αU = b(α) in the case
when αU maps to a locally trivial element in H1(k,DP(Xc)).

Moreover, using the maps constructed in Corollary 3.4.3 we have a diagram

H1(U,M ) × H1
c(U,M ∗) → H3

c (U,Gm)

ι
D
U ↑ ↓ ιU ↓ id

H1(U,Hom(DP(Xc),Gm[1]))×H1
c(U,DP(Xc))→ H3

c (U,Gm)

where the horizontal maps are cup-product pairings. The diagram commutes by
construction, and the image ιD(E ′X) of the element ιD

U (E ′X) in H1(k,M)=H1(k,G)
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is the class [X ] up to a sign by the previous lemma. By Corollary 4.3 of [30]
each element β ∈X(M∗) comes from some β ′ ∈ H1

c(U,M ∗) for U sufficiently
small, and moreover the value of the upper pairing on (ιD

U (E ′X),β
′) equals the

value of the Cassels-Tate pairing on (ιD(E ′X),β ), i.e. on ([X ],β ) up to a sign.
The commutativity of the diagram together with the arguments of the previous
paragraph implies that this value equals b(ι(β )). This proves formula (3.9), and
thereby the theorem.

Remark 3.4.7 As a complement to the theorem, we justify here a claim made in
the introduction, namely that the group B(X) is finite. In [8], Proposition 2.14
the finiteness of B(V ) is verified for a smooth proper V such that X(Pic 0V ) is
finite. To deduce the statement for our X , apply this result with V = Xc, a smooth
compactification of X . The condition on the Tate-Shafarevich group holds because
Pic 0(V ) is the Picard variety of the Albanese variety of V (theorem of Severi),
and the latter is none but A (see [59], [60] for these facts). It remains to add that
B(V )∼=B(X) in view of [57], (6.1.4).

To conclude this section we mention a variant of Theorem 3.1.1 that deals with
points of X over the direct product kΩ of all completions of k instead of Ak. In
this situation we look at a modified version of the Brauer-Manin pairing, namely
the induced pairing

X(kΩ)× (Brnr X/Br k)→Q/Z, (3.14)

where Brnr X is the unramified Brauer group of X , which may be defined as the
Brauer group of a smooth compactification V of X . Since B(X)∼=B(V ) as in the
remark above, the group B(X) is contained in Brnr X/Br k.

Corollary 3.4.8 Let G be a semi-abelian variety defined over k, and let X be a
k-torsor under G. Assume that the Tate-Shafarevich group of the abelian quotient
of G is finite. If there is a point of X(kΩ) annihilated by all elements of B(X)
under the pairing (3.14), then X has a k-rational point.

The corollary immediately follows from Theorem 3.1.1 and the following
lemma:

Lemma 3.4.9 Let X be a smooth geometrically integral variety defined over k. If
there is a point of X(kΩ) orthogonal to B(X) under the pairing (3.14), then there
is also an adelic point on X orthogonal to B(X) under the pairing (3.2).
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Proof: From Chow’s lemma we know that X contains a quasi-projective open
subset U . Choose a finite set S of places of k such that the pair U ⊂ X extends to a
pair of smooth schemes U ⊂X over Spec(Ok,S) with U quasi-projective, where
Ok,S is the ring of S-integers of k. From the Lang–Weil estimates and Hensel’s
lemma we know that by enlarging S if necessary we have U (Ov) 6= /0 for v 6∈ S,
and hence the same holds for X . Now if (Pv) ∈ X(kΩ) is orthogonal to B(X),
we replace Pv by an Ov-point P′v of X for v /∈ S. Then (P′v) is an adelic point of
X , and this adelic point remains orthogonal to B(X) because elements of B(X)
induce constant elements of Br(X×k kv) for every place v.

3.5 The Cassels-Tate dual exact sequence for 1-motives

In this section we prove Theorem 3.1.2, of which we take up the notation. Recall
that by convention for an archimedean place v of k the notation H0(kv,M) stands
for the Tate group Ĥ0(kv,M), which is a 2-torsion finite group. Also, recall from
([30], §2) that the group H0(kv,M) is equipped with a natural topology. In the case
M = G and v finite, this is just the usual v-adic topology on H0(kv,G) = G(kv),
but in general the topology on H0(kv,M) is not Hausdorff.

We denote by H0(k,M) the closure of the diagonal image of H0(k,M) in the
topological direct product of the H0(kv,M). The local pairings ( , )v of ([30], §2)
induce a map

θ : ∏
v∈Ω

H0(kv,M)→X1
ω(M

∗)D

defined by
θ((mv))(α) = ∑

v∈Ω

(mv,αv)v,

where αv is the image of α ∈X1
ω(M

∗) in H1(kv,M) (the sum is finite by defi-
nition of X1

ω(M
∗)). On the other hand, the analogue of Cassels-Tate pairing for

1-motives ([30], Theorem 4.8) and the inclusion X1(M∗) ⊂X1
ω(M

∗) induce a
map

p : X1
ω(M

∗)D→X1(M)

We have thus defined all maps in the sequence

0→H0(k,M)→∏
v∈Ω

H0(kv,M)
θ→X1

ω(M
∗)D p→X1(M)→ 0

and our task is to prove its exactness.
We shall need several intermediate results. The first one is the following well-

known lemma, for which we give a proof by lack of a reference.
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Lemma 3.5.1 Let Y be a k-group scheme étale locally isomorphic to Zr for some
r > 0. Then the group X2

ω(Y ) is finite.

Here by definition X2
ω(Y ) :=X1

ω([Y → 0]), with the notation of the intro-
duction.

Proof: Let L be a finite Galois extension of k that splits Y . Since X2
ω(Z) =

X1
ω(Q/Z) is zero by Chebotarev’s density theorem, we obtain that X2

ω(Y ) is a
subgroup of H2(Gal(L|k),Y ), which is a torsion group annihilated by n = [L : k].
The boundary map

H1(Gal(L|k),Y/nY )→ H2(Gal(L|k),Y )

obtained from the exact sequence of Gal(L|k)-modules

0→ Y → Y → Y/nY → 0

is therefore surjective. Since Gal(L|k) and Y/nY are finite, the lemma follows.

Now return to the situation above, and recall from [30], Theorem 2.3 and
Remark 2.4 that the local pairings ( , )v used in the definition of θ actually factor
through the profinite completion H0(kv,M)∧ of H0(kv,M), hence θ extends to
H0(kv,M)∧. Technical complications will arise from the fact that the topology on
H0(kv,M) is in general finer than the topology induced by the profinite topology
of H0(kv,M)∧. For instance, this is the case for M = [0→ T ] with T a torus.

Lemma 3.5.2 The groups ∏v∈Ω H0(kv,M)∧ and ∏v∈Ω H0(kv,M) have the same
image by θ .

Proof: For v archimedean, the group H0(kv,M) is finite, hence it is the same as
its profinite completion, so we can concentrate on the finite places. We proceed by
dévissage, starting with the case M = [0→ G]. Let v be a finite place of k. Since
A is proper, we have H0(kv,A) = A(kv) = H0(kv,A)∧. Using the exact sequences

0→ T (kv)→ G(kv)→ A(kv)→ H1(kv,T )

0→ T (kv)
∧→ G(kv)

∧→ A(kv)→ H1(kv,T )

(cf. [30], Lemma 2.2), we obtain that

∏
v∈Ω

H0(kv,G)∧ =

{
g+ t : g ∈ im

(
∏
v∈Ω

H0(kv,G)

)
, t ∈∏

v∈Ω

H0(kv,T )∧
}
.
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Therefore it is sufficient to prove the statement for G = T . But this follows from
the facts that X1

ω(M
∗) = X2

ω(Y
∗) is finite (by the previous lemma), and each

H0(kv,T ) is dense in H0(kv,T )∧.

The same method reduces the general case to the case M = [0→G], using the
exact sequences ([30], p. 101):

H0(kv,G)→H0(kv,M)→ H1(kv,Y )→ H1(kv,G)

H0(kv,G)∧→H0(kv,M)∧→ H1(kv,Y )→ H1(kv,G)

Denote by X1
S(M

∗) the kernel of the diagonal map

H1(k,M∗)→∏
v6∈S

H1(kv,M∗).

As above, the local pairings induce maps

θS : ∏
v∈S

H0(kv,M)→X1
S(M

∗)D

and
θ̂S : ∏

v∈S
H0(kv,M)∧→X1

S(M
∗)D.

Proposition 3.5.3 Let S be a finite set of places of k. Assume that the Tate-
Shafarevich group X(A) of the abelian quotient of G is finite.

1. The sequence

H0(k,M)∧→∏
v∈S

H0(kv,M)∧
θ̂S→X1

S(M
∗)D (3.15)

is exact.

2. Denote by H0(k,M)S the closure of the diagonal image of H0(k,M) in
∏v∈S H0(kv,M). Then the sequence

0→H0(k,M)S→∏
v∈S

H0(kv,M)
θS→X1

S(M
∗)D (3.16)

is exact.
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Proof: 1. Let P1(M∗) be the restricted product of the H1(kv,M∗) (cf. [30], §5).
By the Poitou-Tate exact sequence for 1-motives ([30], Th. 5.6), there is an exact
sequence

H1(k,M∗)→ P1(M∗)tors→ (H0(k,M)D)tors.

(Recall that this uses the finiteness of the Tate-Shafarevich group of A∗, which
is equivalent to that of A by [47], Remark I.6.14(c)). Sending an element of
∏v∈S H1(kv,M∗) to P1(M∗)tors via the map

(mv)v∈S 7→ ((mv),0,0, ...)

yields an exact sequence of discrete torsion groups

X1
S(M

∗)→∏
v∈S

H1(kv,M∗)→ (H0(k,M)D)tors.

We claim that the required exact sequence is the dual of the above. Indeed, the
dual of the discrete torsion group H1(kv,M∗) is the profinite group H0(kv,M)∧

by the local duality theorem ([30], Th. 2.3), and the dual of the discrete torsion
group (H0(k,M)D)tors is the profinite completion H0(k,M)∧ of H0(k,M), because
(H0(k,M)D)tors is nothing but the direct limit (over the subgroups I ⊂ H0(k,M)
of finite index) of the groups Hom(H0(k,M)/I,Q/Z).

2. Consider the commutative diagram

H0(k,M)
j−−−→ ∏v∈S H0(kv,M)

θS−−−→ X1
S(M

∗)Dy y yid

H0(k,M)∧
j∧−−−→ ∏v∈S H0(kv,M)∧

θ̂S−−−→ X1
S(M

∗)D

(3.17)

The second line is exact by what we have just proven, so the first line is a complex.
Hence so is the sequence (3.16) by continuity of θ̂S. Denote by J the closure of
the image of j in the above diagram. Set

C := ∏
v∈S

H0(kv,M)/J,

and equip C with the quotient topology. In particular, C is a Hausdorff topological
group (because J is closed).

Consider now the commutative diagram

0 −−−→ J −−−→ ∏v∈S H0(kv,M) −−−→ Cy y y
J∧ −−−→ ∏v∈S H0(kv,M)∧ −−−→ C∧.

(3.18)
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Assume for the moment that the right vertical map here is injective. We can
then derive the exactness of sequence (3.15) as follows. The first line of diagram
(3.18) is exact by definition, and the second line is a complex because it is the
completion of an exact sequence. Since the second line of diagram (3.17) is exact,
the image of an element x ∈ ker(θS) in ker(θ̂S) comes from H0(k,M)∧, hence
from J∧. A diagram chase in (3.18) then shows x ∈ J, which is what we wanted
to prove.

Now the injectivity of the right vertical map in (3.18) follows from statement
(3) of the Appendix to [30], of which we have to check the assumptions. The
last horizontal map above is an open mapping because it is a quotient map. The
group C is Hausdorff, locally compact and totally disconnected by construction;
it remains to check that it is also compactly generated (i.e. it is generated as a
group by the elements of a compact subset). This is because by §2 of [30] the
group H0(kv,M) has a finite index open subgroup that is a topological quotient
of H0(kv,G), so C has a finite index open subgroup C′ that is a quotient of the
product of the H0(kv,G) for v ∈ S. Since each H0(kv,G) is compactly generated
(this follows from the theory of p-adic Lie groups) and C′ is Hausdorff, we obtain
that C′, and hence C, are compactly generated.

Proof of Theorem 3.1.2. Let us start by proving the exactness of the sequence

∏
v∈Ω

H0(kv,M)→X1
ω(M

∗)D→X1(M)→ 0. (3.19)

The sequence

0→X1(M∗)→X1
ω(M

∗)→
⊕
v∈Ω

H1(kv,M∗) (3.20)

is exact by definition. By the local duality theorem for 1-motives ([30], Theorem
2.3 and Proposition 2.9), the dual of each group H1(kv,M∗) is H0(kv,M)∧, and by
the global duality theorem ([30], Corollary 4.9), the dual of X1(M∗) is X1(M)
under our finiteness assumption on Tate-Shafarevich groups. Therefore the dual
of (3.20) is the exact sequence

∏
v∈Ω

H0(kv,M)∧→X1
ω(M

∗)D→X1(M)→ 0,

and Lemma 3.5.2 gives the exactness of (3.19).
It remains to prove the exactness of the sequence

0→H0(k,M)→∏
v∈Ω

H0(kv,M)→X1
ω(M

∗)D.
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But this sequence is obtained by applying the (left exact) inverse limit functor
(over all finite subsets S ⊂ Ω) to the exact sequences (3.16). Indeed, by defini-
tion of the direct product topology the inverse limit of the groups H0(k,M)S is
H0(k,M), and the inverse limit of the groups X1

S(M
∗)D is the dual of the direct

limit of the discrete torsion groups X1
S(M

∗), i.e. the dual of X1
ω(M

∗).

3.6 Obstruction to weak approximation

In the study of weak approximation on a variety X one works with a modified
version of the Brauer-Manin pairing, namely with the induced pairing

X(kΩ)×Brnr X →Q/Z,

already encountered at the end of Section 3.4, where kΩ is the topological direct
product of all completions of k, and Brnr X is the unramified Brauer group of
X . One may also work with subgroups of Brnr X , such as Brnr 1 X := ker(Brnr X→
Brnr (X×k k̄)). Finally, for a smooth k-group scheme G there is yet another variant,
which is the one we shall use:

∏
v∈Ω

H0(kv,G)×Brnr 1 G→Q/Z. (3.21)

Here we have taken the same convention at the archimedean places as in Theorem
3.1.2 proven above. Concerning this pairing one has the following result, first
proven in [29]:

Theorem 3.6.1 Let G be a semi-abelian variety defined over k. Assuming that the
abelian quotient has finite Tate-Shafarevich group, the left kernel of the pairing
(3.21) is contained in the closure of the diagonal image of G(k).

This result was proven in loc. cit. for arbitrary connected algebraic groups,
but the key case is that of a semi-abelian variety. We now show that the statement
can be easily derived from Theorem 3.1.2 as follows. The Brauer-Manin pairing
induces a map

∏
v∈Ω

H0(kv,G)→ (Brnr 1G/Br k)D.

Going through the construction of the map ι at the beginning of Section 3.4 with
Xω in place of X we obtain a map ιω : X1

ω(M
∗)→Bω(G), where Bω(G)⊂

Br a G is the subgroup of elements that are locally trivial for almost all places for
k. Using the inclusion Bω(X)⊂ Brnr X/Br k resulting from ([57], 6.1.4) we thus
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obtain a map r : X1
ω(M

∗)→ Brnr 1 G/Br k, whence a diagram

(Brnr 1G/Br k)D

G(k) ∏
v∈Ω

H0(kv,Gv) X1
ω(M

∗)D
?

ιD
ω

- -

�
�
�
�
�
�3

where Gv :=G×k kv. If we prove that the triangle commutes, the theorem follows,
since the bottom row is exact by Theorem 3.1.2.

We shall prove the commutativity of the dualized diagram

X1
ω(M

∗) H0(kv,Gv)
D

Brnr 1G/Br k
?

ιω

-

�
�
�
�
�
�3

(3.22)

for all places v. Here the horizontal map is induced by local duality, so it is in fact
enough to consider the finitely many nonzero images of an element in X1

ω(M
∗)

by the restriction maps X1
ω(M

∗)→ H1(kv,M∗) and show that the diagram

H1(kv,M∗) H0(kv,Gv)
D

Br a Gv

?

-

�
�
�
�
�
��3

commutes, where the diagonal map is induced by the evaluation pairing

G(kv)×Br Gv→ Br kv ∼= Q/Z, (3.23)

and we view Br a Gv as a subgroup of Br Gv thanks to the splitting of the map
Br kv→ Br Gv coming from the zero section of Gv.

To do so, return to the beginning of Section 3.3 and observe that in the case
X = G the maps (3.7) actually assemble to a pairing of complexes of Galois mod-
ules

[0→ G(k̄v)] ⊗Z [k̄v(G)×→ Div(G×k k̄v)]→ [k̄×v → 0].
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The sections k̄v(G)×→ k̄×v used in this construction are not canonical, but the pair-
ing becomes canonical at the level of the derived category, again by the argument
in ([63], Theorem 2.3.4 (b)). We thus obtain a cup-product pairing

H0(kv,G)×H1(kv, [k̄v(G)×→ Div(G×k k̄v)])→ Br kv

that identifies via Lemma 3.2.1 with the restriction of the local pairing (3.23) to
Br 1 Gv by the argument at the beginning of Section 3.3. On the other hand, we
may lift the map H1(kv,M∗)→ Br a Gv to a map H1(kv,M∗)→ Br 1 Gv via the
zero section as above, and then the claim follows from the commutativity of the
diagram of cup-product pairings

H0(kv,M)×H1(kv,M∗)→ Br kv

id ↓ ↓ ↓ id

H0(kv,G) × Br 1 Gv → Br kv.

3.7 Further developments

Borovoi, Colliot-Thélène and Skorobogatov have generalized Theorem 3.1.1 to
homogeneous spaces under an arbitrary connected algebraic group. The precise
statement is the following.

Theorem 3.7.1 ([8], Theorem 3.14) Let G be a connected linear algebraic group
defined over a totally imaginary number field k, and let X be a homogeneous
space of G whose geometric points have connected stabilisers. Assume that the
Tate-Shafarevich group of the abelian quotient A of G is finite. If there is an adelic
point of X annihilated by all elements of B(X) under the pairing (3.2), then X has
a k-rational point.

The proof uses techniques going back to Borovoi’s papers [6] and [7] to reduce
to the case of a torsor under a semi-abelian variety, where our Theorem 3.1.1 can
be applied. Note, however, the additional assumption that k is totally imaginary.
In fact, the same paper contains a quite surprising example ([8], Proposition 3.16)
of a connected non-commutative and non-linear algebraic group over Q for which
the statement fails. This shows that over arbitrary number fields general connected
algebraic groups behave differently from commutative or linear ones.

In fact, Borovoi, Colliot-Thélène and Skorobogatov formulated their result in
a different but equivalent way, in terms of the elementary obstruction of Colliot-
Thélène and Sansuc [15]. By definition, this obstruction is the extension class
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ob(X) of Gal(k̄|k)-modules

0→ k̄×→ k̄(X)×→ k̄(X)×/k̄×→ 0 (3.24)

where k is a perfect field, X is an arbitrary smooth geometrically integral k-variety
and k̄(X)× is the group of invertible rational functions on X ×k k̄. An easy argu-
ment in Galois cohomology (see e.g. [63], p. 27) shows that a k-rational point
induces a Galois-equivariant splitting of the above extension. Thus nontriviality
of ob(X) is an obstruction to the existence of a k-point.

In fact, the triviality of ob(X) is equivalent to the triviality of the pairing (3.2),
under a finiteness assumption on the appropriate Tate–Shafarevich group. This is
shown in Wittenberg’s paper [72] by relating both properties to a third one con-
cerning the periods of open subsets of X . We now explain the concepts involved
in some detail. We have seen in Chapter 1 that in the case when k is algebraically
closed there exists a semi-abelian variety AlbX attached to X which is universal
for morphisms of X to semi-abelian varieties. Over a general k the generalized
Albanese variety AlbX still exists: it is a semi-abelian variety over k that comes
equipped with a canonical k-torsor Alb1

X which is universal for morphisms of X
to torsors under semi-abelian varieties. The existence of AlbX follows from the
statement over algebraically closed fields by Galois descent and some additional
arguments in positive characteristic (see [18] and the appendix to [72]). The order
of the class of the torsor Alb1

X in the group H1(k,AlbX) is called the period of X .
If X has a k-point, then so does Alb1

X via the map X → Alb1
X , so the period is 1.

This gives a necessary condition for the existence of a k-point. One can show us-
ing an elementary moving lemma argument as in ([13], p. 599) that the existence
of a k-point on X in fact implies that the period of every dense open subset U ⊂ X
is 1.

Now we can state:

Theorem 3.7.2 ([72], Theorem 3.3.2) Let X be a smooth geometrically integral
variety over a number field k with X(Ak) 6= /0. Assume that the Tate-Shafarevich
group of the Albanese variety of X is finite. Then the following are equivalent.

(1) There is a point in X(Ak) annihilated by the pairing (3.2).

(2) The sequence (3.24) splits, i.e. ob(X) is trivial.

(3) The period of every dense open subset U ⊂ X is 1.

In fact, the implication (3)⇒ (2) holds over arbitrary fields, without the arith-
metic assumptions of the theorem; this is one of the main results of Wittenberg’s
paper [72]. The other two implications are of arithmetic nature. That (2) implies
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(1) was proven in ([8], Theorem 2.12); the proof is short and is based on the global
reciprocity law of class field theory.

The implication (1)⇒ (3) is essentially Theorem 1.1 of [18]. As its proof
rests on Theorem 3.1.1, we give a sketch. One first uses the fact that X(Ak) 6= /0
implies U(Ak) 6= /0 for every Zariski open subset U ⊂ X . Indeed, there is an étale
map λ : X → V onto an open subset V of affine space; over each completion kv
this map is an isomorphism in a v-adic analytic neighbourhood of a kv-point of
X by the inverse function theorem, but such a neighbourhood meets every Zariski
open U ⊂ X . Next one shows ([18], Lemma 3.4) that for each U as above the
map B(X)→B(U) is an isomorphism. Since the elements of B(X) are locally
constant, it follows that U inherits condition (1) from X . But then using the map
U→Alb1

U we see that Alb1
U also satisfies (1). By Theorem 3.1.1 there is a k-point

on Alb1
U , i.e. U has period 1.

In their recent paper [19] Esnault and Wittenberg establish the equivalence
of yet another condition with the above three. It concerns the exact sequence of
absolute Galois groups

1→ Gal(k(X)|k̄(X))→ Gal(k(X)|k(X))→ Gal(k̄|k)→ 1.

Taking the pushout by projection Gal(k(X)|k̄(X))→ Gal(k(X)|k̄(X))ab onto the
maximal abelian profinite quotient one obtains an exact sequence of profinite
groups

1→ Gal(k(X)|k̄(X))ab→ Γ→ Gal(k̄|k)→ 1. (3.25)

Theorem 3.7.3 Under the assumptions of Theorem 3.7.2, conditions (1)–(3) are
equivalent to

(4) The extension (3.25) of profinite groups splits.

Here implication (4)⇒ (3) is proven by an argument inspired by the proofs of
the implications (2)⇒ (1)⇒ (3) above; in particular, the final step is again given
by Theorem 3.1.1. The authors prove (2)⇒ (4) by a general argument in Galois
cohomology valid over an arbitrary field.

Remark 3.7.4 In Section 4 of [32] David Harari and I have proven that for an
arbitrary field k and an arbitrary smooth geometrically integral k-variety the van-
ishing of ob(X) implies the splitting of the exact sequence

1→ π
ab
1 (X×k k̄)→Π→ Gal(k̄|k)→ 1 (3.26)

obtained as above by pushout via an abelianization map from the exact sequence
of profinite groups

1→ π1(X×k k̄)→ π1(X)→ Gal(k̄|k)→ 1. (3.27)
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Here π1(X) denotes Grothendieck’s algebraic fundamental group introduced in
[27] (with respect to a fixed geometric base point which we omitted from the
notation). As π1(X) is a quotient of Gal(k(X)|k(X)), this statement also follows
from the general form of implication (2)⇒ (4) above. However, we were more in-
terested in fundamental groups as π1(X×k k̄) is known to be topologically finitely
generated over a field of characteristic 0, whereas Gal(k(X)|k(X)) is huge.

Finally, we note that the splitting of (3.26) does not imply the vanishing of
ob(X); there are examples of simply connected varieties with nontrivial elemen-
tary obstruction.
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255, 1999.

[40] S. Lang, Algebraic groups over finite fields, Amer. J. Math. 78 (1956), 555–
563.

               dc_101_10



110 BIBLIOGRAPHY

[41] S. Lichtenbaum, Suslin homology and Deligne 1-motives, in: Algebraic
K-Theory and Algebraic Topology (P. G. Goerss and J. F. Jardine, eds.).
NATO ASI Series (1993), 189–197.

[42] Yu. Manin, Le groupe de Brauer–Grothendieck en géométrie diophanti-
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