
DESIGN AND ANALYSIS TECHNIQUES
FOR PRECISE MODEL TRANSFORMATIONS

IN MODEL-DRIVEN DEVELOPMENT

DISSERTATION FOR THE DOCTORAL DEGREE OF

THE HUNGARIAN ACADEMY OF SCIENCES

DÁNIEL VARRÓ

BUDAPEST, 2011

 dc_244_11

 dc_244_11

PRECÍZ MODELLTRANSZFORMÁCIÓK
TERVEZÉSE ÉS ANALÍZISE

A MODELLVEZÉRELT FEJLESZTÉSBEN

MTA DOKTORI ÉRTEKEZÉS

VARRÓ DÁNIEL

BUDAPEST, 2011

 dc_244_11

 dc_244_11

SUMMARY

Model-driven design (MDD) of complex IT systems has become a popular software engineer-
ing paradigm in the last decade, especially for the development of critical dependable systems
where formal mathematical proofs are necessitated to assure that the system under design is
free of conceptual flaws. Model transformation is a key technology in MDD for the automated
bidirectional synchronization of high-level system models and low-level formal models as well
as for code generation starting from engineering models of proven quality.

This dissertation presents novel methods and techniques for mathematically precise yet
intuitive specification, design, implementation and formal analysis of model transformations
aligned with the best practices of model driven software engineering. (1) Based upon an in-
novative combination of graph transformation and abstract state machines, I define a generic
model transformation language to specify model transformations within and between model-
ing languages. (2) I introduce the “model transformation by example” approach for the semi-
automated synthesis of model transformation rules. (3) I proposed novel execution principles,
strategies and architectures for model transformations such as model-specific search plans, in-
cremental transformations and compiled transformation plugins. (4) Finally, I elaborate a for-
mal termination analysis technique for model transformations captured by means of graph trans-
formation rules, which is based on the algebraic analysis of a Petri net abstraction.

These techniques enable the systematic design of a wide range of model transformations
for model driven engineering of critical dependable systems by automating early model-based
analysis and subsequent code generation. The exploitation of the results was primarily carried
out in the scope of the VIATRA2 model transformation framework.

ÖSSZEFOGLALÁS

A modellvezérelt tervezés napjainkra egy széleskörűen elterjedt paradigma különösen kritikus
beágyazott és szolgáltatás-orientált szoftverrendszerek fejlesztésékor, ahol formális matema-
tikai bizonyítások felhasználásával kell garantálnunk a tervezés alatt álló rendszer hibamentes
voltát. Kutatásaim középpontjában az automatikus modelltranszformációk álltak, amelyek töb-
bek között a modellvezérelt tervezés során előállított magas szintű rendszermodellek és a veri-
fikációs és validáció során használt formális modellek közötti kétirányú átalakításokat végzik.

Disszertációmban új módszereket dolgoztam ki a modelltranszformációk matematikailag
precíz, intuitív és a modellvezérelt szoftvertervezés létező mérnöki gyakorlatához illeszkedő
specifikációjára, tervezésére, végrehajtására és formális analízisére. (1) Kidolgoztam egy, a
gráftranszformáció és absztrakt állapotgépek újszerű kombinációjára épülő generikus modell-
transzformációs nyelvet a modellezési nyelveken belüli és modellezési nyelvek közötti transz-
formációk definiálására. (2) Elsőként definiáltam a modelltranszformáció-példák-alapján meg-
közelítést a modelltranszformációs szabályok fél-automatikus származtatására. (3) Hatékony
modelltranszformációs végrehajtási stratégiákat, architektúrákat és elveket javasoltam (modell-
specifikus keresési tervek, inkrementális modelltranszformációk és lefordított transzformációs
programok). (4) Továbbá kidolgoztam egy Petri hálós absztrakción alapuló formális analízis
módszert a gráftranszformációs szabályokkal specifikált modelltranszformációk terminálásá-
nak vizsgálatára.

E technikák lehetővé teszik a modelltranszformációk egy széles körének szisztematikus ter-
vezhetőségét a kritikus rendszerek modellvezérelt tervezése területén, automatizálva elsődlege-
sen a korai formális modellanalízis és a kódgenerálás lépéseit. E kutatási eredmények gyakorlati
hasznosulását a VIATRA2 modelltranszformációs szoftverrendszer (mint mérnöki alkotás) tette
lehetővé, amelynek alapítója és kutatási vezetője vagyok.

i

 dc_244_11

ACKNOWLEDGEMENTS

My research results could not have been achieved without the support of numerous people to
whom I am deeply indebted.

First, I am grateful to Prof. András Pataricza introducing me the topic of model transforma-
tions back in 1999, then guiding me through the troubled waters of my PhD studies (from 2000
to 2004), and integrating me to the Fault Tolerant Systems Research Group by continuously
offering new scientific and non-scientific challenges.

Right next comes the core VIATRA team, which consists of adventurous young researchers
and PhD students including István Ráth, Ákos Horváth, Gábor Bergmann, Ábel Hegedüs and
Zoltán Ujhelyi, who dared to select a young and inexperienced supervisor (like me) to guide
their scientific activities. Throughout the VIATRA project, they really acted as a team helping
each other at numerous occasions - also reducing my own supervisory duties. An important
role is played by those colleagues (namely, András Balogh, László Gönczy) where I acted as
a co-tutor of their PhD studies. Furthermore, I would like to say thank you to several col-
leagues (including István Majzik, Gergely Pintér, Zoltán Micskei, Balázs Polgár , Dániel Tóth
and many more) at the Department of Measurement and Information Systems whom I actively
collaborated in different research projects.

I would like to express my grateful attitude to numerous highly respected international col-
laborators who provided scientific as well as moral support during the years. I would like
to name Hartmut Ehrig (Berlin), Gregor Engels (Paderborn), Reiko Heckel (Paderborn / Le-
icester), Arend Rensink (Univ. Twente), Juan de Lara (Madrid), John Rushby (SRI Interna-
tional), Andy Schürr (Darmstadt) and Gabi Taentzer (Berlin / Marburg) and many of their
close colleagues. This list should transitively include all collaborators in joint European re-
search projects, especially SENSORIA (led by Martin Wirsing), DIANA (by Tobias Schoofs),
SecureChange (run by Fabio Massacci) which resulted in some really fruitful long-term collab-
orations.

Last but not least, in my case, a really unique contribution comes from various members
of my family. I started to work on model transformations with my brother, Gergely Varró in
1999 which lasts until today. The Family Research Corporation also includes my wife, Szil-
via Varró-Gyapay with whom I spent memorable research visits in Berlin in 2004 and 2005
working together in the field of graph transformation. Her support is also invaluable in run-
ning our family and taking care of our boys, Balázs and Csaba while I was writing some more
“silly papers” - just like that of my parents, Győző and Mária, who were always available as a
substitution whenever needed.

ii

 dc_244_11

Contents

Contents iii

1 Introduction 1
1.1 An Introduction to Critical Systems and Services Design 1
1.2 Model Transformations in Model Driven Development 3
1.3 Research Challenges and Objectives . 4
1.4 Towards Novel Scientific Results . 6
1.5 Structure of the Thesis . 10

2 Preliminaries 11
2.1 Domain Specific Modeling Languages and Metamodeling 11
2.2 Model Transformations by Graph Transformation 15
2.3 An Overview of Inductive Logic Programming 20
2.4 An Introduction to Petri Nets . 21
2.5 Summary . 22

3 Specification of Model Transformations 23
3.1 Introduction . 23
3.2 Metamodeling Language . 23
3.3 The Pattern Language . 26
3.4 The Transformation Language . 28
3.5 Generic Transformations . 33
3.6 Formal Semantics of Graph Patterns in VTCL 35
3.7 Related Work . 39
3.8 Conclusions . 40

4 Model Transformation by Example 41
4.1 Introduction . 41
4.2 Model Transformation by Example (MTBE) 42
4.3 Inputs of Model Transformation by Example 44
4.4 Automating Model Transformation by Example 46
4.5 Known Limitations . 56
4.6 Prototype Tool Support . 58
4.7 Related Work . 59
4.8 Conclusions . 60

iii

 dc_244_11

CONTENTS

5 Efficient Execution Strategies for Model Transformations 61
5.1 Introduction . 61
5.2 Model-Specific Search Plans . 61
5.3 Incremental Pattern Matching . 68
5.4 Incremental Graph Pattern Matching by the RETE Algorithm 69
5.5 Model Transformation Plugins . 78
5.6 Conclusions . 81

6 Termination Analysis of Model Transformations 83
6.1 Introduction . 83
6.2 A Petri Net Abstraction of Graph Transformation 84
6.3 Termination Analysis of Graph Transformation 88
6.4 Related Work . 93
6.5 Conclusion . 93

7 Conclusions 95
7.1 Summary of Scientific Results . 95
7.2 Utilization of Scientific Results . 98

A Appendix 101
A.1 Case Study: A UML-to-Racer Mapping . 101
A.2 Experimental Evaluation of Incremental Graph Pattern Matching 105

Bibliography 109

iv

 dc_244_11

Chapter 1

Introduction

1.1 AN INTRODUCTION TO CRITICAL SYSTEMS AND SERVICES DESIGN

The critical systems and services design is still a major challenge in software engineering.
Whole enterprises depend on business-critical services, and a malfunction of such services fre-
quently results in heavy financial losses. Moreover, these services need to be robust and adaptive
to frequent changes in the business environment. In case of safety-critical systems, the failure
of a critical component may result in severe damages or even casualties. As a consequence, one
has to demonstrate that the system under design is free of design and implementation flaws by
rigorous verification and validation techniques during a certification process.

1.1.1 Certification artifacts in critical systems design
During a certification process, various software-related certification artifacts are designed and
validated. Here, we provide a brief overview of the main certification artifacts by extracting
relevant parts from related standards and industrial recommendations [97, 120].

High-Level Requirements (HLR) are software requirements developed from analysis of
system requirements, safety-related requirements, and system architecture [120]. This defi-
nition implies a black-box view of the software, i.e., the high-level requirements are created
primarily from system considerations and are not dependent on and do not define the software
architecture. HLRs are still most frequently captured textually in a natural language [97].

Derived Requirements are additional requirements resulting from the software develop-
ment process, which may not be directly traceable to higher level requirements [120]. Derived
requirements are introduced during the software development process as the result of design
decisions. They modify or further constrain the externally visible behavior of the system or
they have safety implications [97].

Low-Level Requirements (LLR) are software requirements derived from high-level re-
quirements, derived requirements, and design constraints from which source code can be di-
rectly implemented without further information [120]. Low-level requirements can also be
specified in a model that specify structure and behavior on a high-level of abstraction [97].

Software Architecture (SA) refers to the structure of the software selected to implement
the software requirements [120]. The software architecture defines what software components
are to exist, the interfaces to those components, how components are scheduled and invoked,
and how information flows between the components [97]. Partitioning of data and control is
also a function of the software architecture. The software architecture typically corresponds to
models being specific to the execution platform, which, for instance, already incorporate design
decisions for optimization steps.

1

 dc_244_11

1. INTRODUCTION

Source Code (SC) is the code written in source languages, such as assembly language
and/or high level language, in a machine readable form for input to an assembler or compiler
[120]. Currently, most development environments produce traditional source code such as C or
Ada as part of the translation process [97].

The final Executable Object Code (EOC) is ob-

Figure 1.1: Certification artifacts

tained by traditional compilers, which compilation
step is outside the scope of the current thesis, and the
Executable Object Code can be loaded into the target
hardware and executed without further problems.

The certification process requires that all outputs
of the software requirements, design and coding pro-
cess are verifiable, conformant to standards, trace-
able, accurate and consistent, and compliant with ar-
tifacts on higher-levels of abstraction. More specifi-
cally, (1) LLRs should be consistent with HLRs, (2)
the selected software architecture (SA) should be in
conformance with HLRs, (3) the software architec-
ture is aligned with LLRs, (4) source code (SC) com-
plies with both the LLRs and software architecture

(SA). An overview of these verification and validation tasks between certification artifacts is
presented in Fig. 1.1.

1.1.2 Verification and validation techniques in certification

In most of the cases, compliance is assured by using testing and/or formal methods.

Testing. Traditionally, verifying the compliance of the implementation with respect to require-
ments (HLR and LLR) are carried out by testing. The certification process should guarantee
that (i) test cases exist for each software requirement, (ii) appropriate test coverage is achieved
by these test cases, and (iii) regular tests are complemented with robustness tests to investigate
abnormal inputs and conditions [97, 120].

Test procedures are still frequently created manually and this objective is satisfied by a re-
view of the test procedures to make sure they were correctly developed. In certain cases, it may
be possible to automatically generate test cases and test procedures from the requirements [97].
Since the requirements-based test cases may not have completely exercised the code structure,
structural coverage analysis (and potentially additional testing) is performed to provide struc-
tural coverage in accordance with the required software criticality level.

Formal methods. As the main alternative, verification and validation activities in a certification
process are carried out by using formal methods (such as Petri nets, transition systems, process
algebra, etc.). In such a case, a formal proof is constructed that the software under design is
free of flaws. Primary means of verification and validation include theorem proving, model
checking or static analysis techniques. Model checking automatically investigates the validity
of a requirement by systematically traversing all possible trajectories (execution paths) of a
system model. In case of theorem proving, properties are aimed to be proved for all possible
models by semi-automated deductive reasoning techniques. Finally, static analysis directly
investigates the source code (and the operational semantics of the program or the model) to
reveal inconsistencies without the execution of the code.

2

 dc_244_11

1.2. MODEL TRANSFORMATIONS IN MODEL DRIVEN DEVELOPMENT

1.2 MODEL TRANSFORMATIONS IN MODEL DRIVEN DEVELOPMENT

1.2.1 Model-driven development in services and systems engineering
Model-driven development (MDD) (and closely related concepts, like Model Driven Archi-
tecture – MDA [94] or Model Integrated Computing – MIC [132]) has recently become a key
technique in critical software and systems engineering. MDD facilitates the extensive and sys-
tematic use of models from the very early phase of the design cycle, as illustrated in Fig. 1.2.
System requirements and design are captured by high-level, visual engineering models (using
popular and standardized modeling languages like UML [106], SysML [109], AADL [121]).
Early systematic formal analysis of design models can be carried out by generating appropriate
mathematical models by automated model transformations (MT). Formal analysis retrieves
a list of problems, which can be back-annotated to the high-level engineering models to allow
system designer to make corrections prior to investing in manual coding for implementation.
This way, formal methods are hidden by automated model transformations which project sys-
tem models into various mathematical domains [24, 133]. High-level system models can also
be a basis of additional optimization steps [76, 92]. Finally, the source code of the target sys-
tem is derived by automatic code generation from the provenly correct and optimized system
model. Moreover, additional model transformations may also automate the generation of run-
time monitors and deployment descriptors for the target reliable platforms (like AUTOSAR [15]
for the automotive or ARINC653 [7] for the avionics domain) or control the system under op-
eration [127].

Figure 1.2: Model-driven development for critical systems

1.2.2 Advantages of model-driven development
Recent reports demonstrated significant increase both in productivity and quality using a model-
driven development with automated code generators (like SCADE in the avionics domain or
IBM Websphere Business Modeler used for business process modeling). For instance, devel-
opment costs of avionics systems were reduced by 50%, while testing costs were reduced by

3

 dc_244_11

1. INTRODUCTION

10-30% [98, 111] thanks to the automatic generation of safe, production quality source code
compliant with DO-178B Level A certification standard [120]. Altogether, the total certifica-
tion costs have been reduced by more than a factor of two by partly eliminating manual coding,
code reviews, and providing unquestionable traceability between requirements and various de-
sign artifacts. Similar figures have been reported in the service-oriented domain by using a
combination of precise business process modeling and formal analysis [56].

Automated model transformations can provide an efficient method to integrate and trans-
fer theoretical results of formal model analysis, code and configuration generation into prac-
tice [29, 56, 122]. Such transformations have also been intensively investigated in various Eu-
ropean research projects (like TOPCASED, DECOS, ASSERT, or DIANA in the safety-critical
domain, and DEGAS, DEPLOY or SENSORIA in the service-oriented domain).

1.2.3 Overview of Model Transformations

Conceptually, all translations from one (or more) source modeling language to one (or more)
target language are commonly regarded as model transformations [40], which are thus key
factors in a successful adoption of MDD [64]. The main concepts of model transformations are
summarized in Fig. 1.3.

First the source and target language of the

Figure 1.3: Model transformation concepts

transformation needs to be defined by their
respective metamodels. At design time, a
model transformation is defined by a set of
transformation rules. At execution time, in
a model transformation run, transformation
rules are executed by a model transforma-
tion engine to generate a target model (as
output) from a given source model (as in-
put). Since native source and target models
of third party tools are frequently provided
as some textual files, source models are fre-
quently obtained by using model importers,
while target models are post-processed by mo-
del exporters.

1.3 RESEARCH CHALLENGES AND OBJECTIVES

Several industrial and academic usage scenarios have demonstrated that a precise software en-
gineering approach is necessitated to cover the entire life-cycle for model transformation devel-
opment including their specification, design, execution and validation.

1.3.1 Specification of Model Transformations?

Despite the availability of various model transformation tools, in the de facto industrial prac-
tice, many model transformations are still written manually in as a regular piece of software in
a rather ad hoc way. This is partly due to the fact that the specification languages of existing
model transformations are either precise but not intuitive (which prevent widespread industrial
application), or intuitive but not precise (which is necessitated in the critical systems and ser-
vices domain). Furthermore, unlike popular development environments, model transformation
frameworks rarely offer a library of generic and reusable transformation components.

4

 dc_244_11

1.3. RESEARCH CHALLENGES AND OBJECTIVES

The evolution trend of model transformation languages is characterized by gradually in-
creasing the abstraction level of such languages to declarative, rule-based formalisms as pro-
moted by the QVT (Queries, Views and Transformations) [108] standard, which unfortunately,
lacks a precise formal underpinning, leading into various, incompatible execution semantics
[67]. Now the first challenge of the thesis is formulated as follows.

Challenge 1 (Specification of Model Transformations) Model transformations require a math-
ematically precise yet intuitive specification language, which offers to construct generic, reusable
model transformation components.

1.3.2 Design of Model Transformations?
The efficient design of automated model transformations between modeling languages has be-
come a major challenge to model-driven development. Many highly expressive transforma-
tion languages have emerged to provide support (like ATL [77], ATOM3 [42], AGG [54], EP-
SILON [118], FUJABA [103], GReAT [16], GrGEN.NET [63], Henshin [10], MOFLON [9],
MOLA [81], Tefkat [87], VIATRA2 [J14, K9], VMTS [90]).

However, a common deficiency of all these languages is that their transformation language
is substantially different from the source and target models they transform. As a consequence,
transformation designers need to understand not only the transformation problem, i.e. how to
map source models to target models, but significant expertise is required in the transforma-
tion language itself to formalize the solution. Unfortunately, many domain experts, who are
specialized in the source and target languages, lack such skills in underlying transformation
technologies. As a consequence, the second challenge of the current thesis is the following.

Challenge 2 (Design of Model Transformations) Model transformations require powerful de-
sign techniques, which enable domain experts without expertise in the underlying transforma-
tion technology to develop model transformations by themselves.

1.3.3 Execution of Model Transformations?
In complex industrial scenarios, model transformations need to query and manipulate models
with hundred thousands or millions of model elements. Well-known examples are AUTOSAR
models [15] in the automotive domain, and various SysML models in avionics. Unfortunately,
most model transformation tools fail to handle models of extreme size, which significantly
limit their applicability. Existing transformation tools of the Eclipse M2M framework failed to
demonstrate their scalability for handling models over 100 000 model elements.

In addition to this performance issue, model transformations rules can typically be executed
within a complex transformation framework, which prevents to embed the actual transforma-
tions themselves in third party tools. For instance, if a model transformation aims at providing a
bridge between two database schemas, then it would be advantageous to embed the model trans-
formations to database technology, e.g. in the form of SQL scripts, or native Java programs.
In other terms, individual model transformations should be integrated easily into designated
third-party (back-end) tools without integrating the model transformation tools them.

Due to these issues, model transformations tools in the Eclipse-based development tools are
limited to carry out small to medium scale transformations despite the conceptual clarity of the
transformation approach. Therefore, the third challenge can be formulated as follows:

Challenge 3 Model transformations require efficient execution techniques, which handle mod-
els with millions of elements, and enable the low-cost integration of model transformations in
popular development frameworks and third-party tools.

5

 dc_244_11

1. INTRODUCTION

1.3.4 Correctness of Model Transformations?
Unfortunately, even automated model transformations can be erroneous, which would invalidate
the results of a thorough mathematical analysis [82, K24]. Therefore, one has to guarantee the
model transformations themselves are free of design errors, thus no design flaws have been
introduced to the target model during the model transformation process. Otherwise, when some
problems are reported during mathematical analysis, it is impossible to distinguish whether it is
due to erroneous system design or a flaw in the model transformation.

Existing research results for the verification and validation of model transformations are in
a very early stage: they address ad hoc challenges, and no scalable techniques are available for
industrial use. Moreover, existing validation techniques of model transformations are incom-
patible with the artifacts required by a certification process of critical systems. As a result, all
target models generated by a transformation has to be treated as if it were created manually by
a designer, and a time consuming revalidation is necessitated.

Challenge 4 Model transformation necessitate mathematically well-founded verification and
validation techniques to provide formal assurance for their correctness.

1.3.5 Objectives
In this thesis, I elaborate novel techniques for the precise specification, design, ex-
ecution and formal analysis of model transformations. These techniques enable
the systematic engineering of a wide range of model transformations in a model-
driven design of critical systems to automate early model-based analysis as well as
code generation.

1.4 TOWARDS NOVEL SCIENTIFIC RESULTS

Now I briefly summarize the research method related to addressing each scientific challenge.

1.4.1 Specification Techniques for Model Transformations
Research Method. Critical systems frequently require to carry out a thorough certification pro-
cess to justify that the system under design meets its (formal) specification. In critical systems,
the semantics of the domain-specific languages used during various phases of the development
process is precisely captured by formal specification techniques to avoid incomplete and am-
biguous specification of the system under design. Since critical systems serve as a main appli-
cation domain for model transformations, the same level of scrutiny is thus necessitated for the
specification of model transformations themselves.

Nowadays, model transformations are typically designed by software engineers having ex-
pert knowledge in both the source and target languages of the transformation. However, unlike
in case of the majority of programming languages, most model transformations are data driven.
As a consequence, a declarative transformation language would be advantageous. On the other
hand, software engineers are more familiar with conventional (procedural or object-oriented)
programming languages, which hinders the easy adoption of a fully declarative model transfor-
mation language.

As a result, the specification of model transformations in a critical systems context necessi-
tates the use of mathematically precise, yet intuitive formalisms.

In order to address genericity and reusability, two major ideas are investigated. First, generic
transformations like transitive closure are independent of the application domain (i.e. source
and target languages of the transformation), thus the specification of transformations may allow

6

 dc_244_11

1.4. TOWARDS NOVEL SCIENTIFIC RESULTS

the use of type parameters or type variables. This is in close correspondence with the generics
(templates) of object-oriented programming languages (like Java or C++).

As a consequence, model transformation formalisms should be general enough to provide
reusable transformation components or libraries, which can be easily tailored to various trans-
formation problems.

After investigating the use of two popular formal specification techniques, namely, graph
transformation [51] and abstract state machines [70], I found that (i) graph transformation rules
offer an intuitive and declarative way for capturing elementary transformation rules, but com-
plex transformation programs are difficult to be assembled in a purely declarative paradigm.
Moreover, (ii) abstract state machines can straightforwardly describe arbitrary algorithms [70],
but the algebraic representation of complex (graph-like) model structures becomes complicated.

Novel Results. As Contribution 1 (in Chapter 3), I propose an innovative adaptation of graph
transformation and abstract state machines as a hybrid and generic model transformation lan-
guage to combine the advantages of a declarative and a procedural paradigm also supporting to
assemble reusable model transformation libraries.

Validation of Results. As a practical validation of the language, we developed the VIATRA2
model transformation framework [J14], in order to support model transformations applied in
various phases of MDD investigated in numerous research and industrial projects. VIATRA2 as
a software system is also one of the major engineering result related to the current thesis.

1.4.2 Design Techniques for Model Transformations

Research Method. In order to assist domain experts in creating model transformations, I in-
vestigated alternate ways for synthesizing rule-based knowledge representations. Interestingly,
several “by-example” approaches have been proposed in different fields of software engineering
to synthesize knowledge by interacting with domain experts who supply prototypical examples
as primary input.

In advanced XML transformer tools, XSLT rules are generated automatically after relating
simple source and target XML documents [55, 88, 110, 140]. Query-by-example [141] aims at
proposing a language for querying relational data constructed from sample tables filled with
example rows and constraints. Programming by example [39, 116], where the programmer (of-
ten the end-user) demonstrates actions on example data, and the computer records and possibly
generalizes these actions, has also proven quite successful.

When taking a by-example approach in the context of model transformations, the primary
goal is to automate the derivation of model transformation rules. However, as existing results of
by-example in other research fields indicated, full automation is rarely possible, thus an iterative
interaction with the transformation designers will be necessitated.

As the formal specification of models and transformations can be easily represented in a
logic programming language, my attention turned to various logic programming approaches,
especially, inductive logic programming (ILP) [101]. The latter provides a mathematically
well-founded way for infer rules of Prolog programs as a hypothesis derived from a knowledge
base and a set of positive and negative examples.

Novel Results. As Contribution 2 (in Chapter 4), I propose a novel way of automating the
construction of transformation rules taking a by-example approach in the context of model-
driven development.

7

 dc_244_11

1. INTRODUCTION

Validation of Results. The practical validation of the results were carried out by developing a
prototype tool (another major engineering result of the current thesis). Using the tool, we carried
out three complex model transformation problems taken from various application scenarios.

1.4.3 Efficient Execution Techniques for Model Transformations
Research Method. In practical applications of model transformations, the size of source and
target models frequently exceeds one million model elements. In order to manage this com-
plexity, well-founded, efficient techniques are required to query and manipulate the underlying
models.

Existing model transformation frameworks (in the beginning of the current line of research,
back in 2004) (1) offered a batch-oriented approach for model transformations, when source
models are transformed into their target equivalents upon explicit user request. However, such a
batch model transformation approach is ill-suited for various industrial scenarios like incremen-
tal synchronization between various models for tool integration [85], model migration [118] or
rule-based model simulation of discrete event-based systems.

This way, I elaborated the concepts of incremental model transformations based upon the
paradigm of graph transformation. In case of incremental model transformations, one main
problem is to identify which parts of a transformation need too be re-executed in response to
changes of the source model. Since a specific model transformation rule is typically matched
by a relatively low number of source model elements (compared to the size of the models
themselves), the explicit storage of transformation rule matches seemed to be viable approach.

Moreover, in existing transformation frameworks, (2) the execution of model transformation
rules only incorporated metamodel-level knowledge for navigating and querying models in the
pattern matching phase. However, a model transformation rule can be executed in different
ways according to different execution strategies (aka search plans), and the actual structure of
the model under transformation may have a significant impact on the effectiveness of a specific
search plan. For instance, a search plan needs to make an important decision on where to start
a query, e.g. to obtain an initial set of model elements according their type or the containment
hierarchy. This way, I focused my investigations how (cheaply maintained) model-specific
information can improve the execution strategy of local-search based transformation rules.

Finally, (3) model transformation tools only provided a closed technology, thus the integra-
tion of actual model transformations into off-the-shelf frameworks was problematic. Further-
more, this causes severe problems in the certification of model transformations and the qualifi-
cation of model transformation tools as well. Therefore, I investigated how the architecture of a
model transformation framework can be modified in order to separate the design and execution
phases of model transformations.

Novel Results. As Contribution 3 (in Chapter 5), I elaborate a novel execution architecture and
various efficient execution strategies for model transformations.

Validation of Results. In case of the novel execution strategies, numerous benchmark mea-
surements have been carried out (e.g. in [J2, J18, J19, J21, K3, K4, K6, K28]) to validate our
conceptual results by experimental evaluation. In fact, we were first to propose benchmark
problems [K28] for performance evaluation of graph-based transformation tools. The novel ex-
ecution architecture was validated by respective prototype implementations for two platforms.

1.4.4 Termination Analysis for Model Transformations
Context. Various correctness criteria have been defined for model transformations [K24]. The
minimal requirement is to assure syntactic correctness, i.e., to guarantee that the generated

8

 dc_244_11

1.4. TOWARDS NOVEL SCIENTIFIC RESULTS

model is a syntactically well–formed instance of the target language. An additional require-
ment called syntactic completeness is to completely cover the source language by transforma-
tion rules, i.e., to prove that there exists a corresponding element in the target model for each
construct in the source language.

However, in order to assure a higher quality of model transformations, at least the following
semantic requirements should also be addressed.

• Termination: An essential criterion that needs to be guaranteed is a model transformation
will terminate. This is a very general, and modeling language independent semantic
criterion for model transformations.

• Uniqueness (Determinism, confluence, functionality): As non-determinism is frequently
used in the specification of model transformations (as in the case of graph transformation
based approaches) we must also guarantee that the transformation yields a deterministic
result. Again, this is a language independent criterion.

• Semantic correctness (Property preservation): In theory, a straightforward correctness
criterion would require to prove the semantic equivalence of source and target models.
However, as model transformations may also define a projection from the source language
to the target language (with deliberate loss of information), semantic equivalence between
models cannot always be proved. Instead, we define correctness properties (which are
typically transformation specific) that should be preserved by the transformation.

The syntactic and semantic correctness of transformations are investigated in many papers
[13,89,B5,J12, J13,K21,K24]. The current thesis exclusively focuses on the termination
problem of model transformations.

Research Method. The formal analysis of model transformations captured by graph transfor-
mation rules is a complicated task, as it allows to query and manipulate complex, graph-like
models. In order to come up with efficient analysis techniques powerful abstractions need to
be defined. Petri nets are widely used to formally capture the dynamic semantics of concur-
rent systems due to their easy-to-understand visual notation and the wide range of available
analysis tools (including static analyzers and model checkers). As a result, Petri nets served
as a prime candidate as an abstract formal analysis domain for termination analysis of model
transformation rules.

Such a Petri net abstraction needs to be correct in the sense that each run of the original graph
transformation system needs to have a corresponding run in the Petri net. On contrary, a run of
the Petri net may correspond to multiple execution traces in the original graph transformation
system, thus an abstraction is necessarily not complete. In such a case, the Petri net simulates
the graph transformation system.

My method was to reuse well known results and analysis techniques (e.g. invariants) of
Petri net theory for the correctness analysis model transformations. Due to the information loss
during abstraction, such an approach will provide a sufficient termination criterion, i.e. it may
prove that the original graph transformation system is terminating, or provide a “do not know”
(uncertain) answer otherwise.

Novel Results. As Contribution 4 (in Chapter 6), I provide a sufficient termination criterion
for model transformations by defining a powerful abstraction of graph transformation rules to
Petri nets.

9

 dc_244_11

1. INTRODUCTION

Validation of Results. As this result is primarily of theoretical nature, a formal proof of the
related theorems is carried out.

1.5 STRUCTURE OF THE THESIS

The rest of the thesis is structured as follows:

• Chapter 2 provides foundations for modeling languages (based upon metamodeling) and
model transformations (by graph transformation). In addition, this chapter also overview
some formal methods (namely, Petri nets and inductive logic programming) used in sub-
sequent chapters.

• Chapter 3 introduces a specification language for model transformations obtained by an
innovative combination of two formal modeling paradigms. Since 2005, this language
serves as the transformation language of the VIATRA2 model transformation framework.

• Chapter 4 presents a novel approach, called model transformation by example, which
specifies model transformations by pairs of prototype models, and then derives transfor-
mation rules semi-automatically using inductive logic programming.

• Chapter 5 discusses high-level strategies for the efficient execution of model transfor-
mations, such as model-specific search plans, incremental model transformations, and
standalone model transformation plugins.

• Chapter 6 investigates the termination problem for model transformations formally cap-
tured by means of graph transformation systems, and introduces an analysis technique
based on a Petri net abstraction.

• Finally, Chapter 7 summarizes the novel contributions of the thesis, and provides a brief
outlook to various applications and utilizations of the conceptual contributions.

• As an appendix to complement the main results of the thesis, a case study of the VIATRA2
transformation language and recent benchmark evaluations are presented.

Related work is assessed individually for the four major conceptual chapters. Note, however,
that related work is assessed in full depth up to the publication date of the respective results (and
not as of today). This way, the main added value of my results can be better assessed. However,
some follow-up results in the specific areas will also be briefly presented at various places.

Since this thesis is a composure of results in the field of software engineering and formal
methods, this duality is reflected in the style of the thesis to follow the style of academic papers
in the respective fields. Therefore, a more formal style is used for discussing semantics and
correctness issues, while a more informal style is used for presenting software engineering
related aspects (like e.g. languages, execution strategies).

10

 dc_244_11

Chapter 2

Preliminaries

This chapter provides an overview on some main concepts of models and model transformations
as well as the formal underpinning of various techniques used throughout this thesis. We first
introduce domain-specific modeling languages and metamodeling (Sec. 2.1.1) followed by a
summary on model transformation specified by graph transformation techniques (Sec. 2.2).
Then we overview the concepts of inductive logic programming (Sec. 2.3), which serves as
the foundation of model transformation by example to be presented in Chapter 4. Finally, we
provide an introduction to Petri nets (Sec. 2.4), which is intensively used later in Chapter 6.

2.1 DOMAIN SPECIFIC MODELING LANGUAGES AND METAMODELING

Metamodeling is a fundamental part of model transformation design as it allows the structural
definition (i.e. abstract syntax) of the source and target modeling languages of the transforma-
tions. Then a model transformation is operating on models, which are instances of the meta-
model. Taking an analogy with traditional formal languages, a metamodel may correspond to
the grammar of a formal language, while a model is a sentence of the language.

2.1.1 Domain-specific modeling languages

Aspects of a domain-specific modeling language. From a language engineering perspective, a
domain-specific modeling language (DSML) consists of the precise definition of

• the abstract syntax of the language metamodel, i.e. the core concepts in the language
and their relations captured by a metamodel;

• the concrete syntax of the language of the language to describe the graphical or textual
appearance of the language constructs;

• the well-formedness constraints (or static semantics) of the language to capture further
restrictions and constraints on valid model instances of the language;

• the behavioral semantics (or dynamic semantics) of the language to specify the valid
steps or evolution paths for the models of the language; and

• mappings to other languages

The concepts of DSMLs incorporate traditional high-level modeling languages used by soft-
ware, systems or service engineers (like UML, SysML, BPMN, AADL, etc.) as well as popular

11

 dc_244_11

2. PRELIMINARIES

formal modeling notations (like Petri nets, transition systems, process algebra, etc.) or pro-
gramming languages (with existing metamodels for languages like C++, Java and many more).

It is worth pointing out that from a DSML viewpoint, the abstract syntax of the language is
the core design artifact. This abstract syntax can be complemented by multiple concrete syntax
representations (which may potentially include an alternate graphical and textual representation
of the same language like in case of AADL [121]).

Metamodeling frameworks. Metamodels are represented in a metamodeling language, which
is another modeling language for capturing metamodels. Currently, most widely used metamod-
eling languages (e.g. Eclipse Modeling Framework (EMF) [48]) are derived with slight varia-
tions from the Meta Object Facility (MOF) [105] metamodeling standard issued by the OMG.
However, as stated in [J15], the MOF standard fails to support multi-level metamodeling [14],
which is typically a critical aspect for integrating different technological spaces [23] where dif-
ferent metamodeling paradigms are used. There are various initiatives like KM3 [78], or VPM
(Visual and Precise Metamodeling) [J15] to provide a uniform representation of models, meta-
models and transformations. VPM (used in the VIATRA2 model transformation framework)
introduces the concept of a model space using explicit and generalized instance-of relations.
Most contributions in the current thesis are general in the sense that they are independent of the
underlying metamodeling framework.

2.1.2 Metamodels of dynamic modeling languages
Obviously, a DSML does not necessarily contain all previous five aspects. For instance, UML
class diagrams are a static DSML (without dynamic semantics), while statecharts or Petri nets
provide an example for a dynamic modeling language. In case of a dynamic modeling lan-
guage (DML), various metamodels are usually defined, which are exemplified together with
main relationships in Fig. 2.1.

Figure 2.1: Metamodels and instances of a dynamic model

First, a static metamodelMM stat defines the static structure of a language including possi-
ble types of model elements, their main attributes and relations with other model elements. An
instance of this metamodel is called the static model (M stat), e.g. a concrete Petri net structure.

Next, a dynamic metamodel MMdyn uses and extends the static metamodel MM stat for
storing information related to dynamic behavior (e.g. current state, value, configuration) of a
structural element. The dynamic model (Mdyn) is an instance of the MMdyn, e.g. the current
marking of a given Petri net place.

Finally, an execution trace metamodel (MM trc) is defined for the language to represent
runs of the Mdyn. The MM trc uses the MMdyn for recording how the dynamic model changed

12

 dc_244_11

2.1. DOMAIN SPECIFIC MODELING LANGUAGES AND METAMODELING

and the MM stat for describing which static element is concerned. An execution trace model
(M trc) is an instance of the MM trc, e.g. the sequence of fired transitions of a Petri net. The
M trc describes the changes of Mdyn, therefore it is represented as a change model in terms
of [J4].

2.1.3 Mapping (traceability) metamodels
In many model transformation approaches, source and target metamodels are complemented
with another metamodel, which specifies the interconnections allowed between elements of the
source and target languages. This metamodel has various names. In triple graph grammars
[124], it is called a correspondence metamodel, while it is also called a weaving metamodel
in [22, 46]. In previous works of the authors, the term reference metamodel was used [K23],
which unfortunately coincides with reference models introduced in [78]. The same concept is
also frequently called as traceability metamodel.

In order to avoid unintended clashes in terminology, in the current thesis, we refer to this
metamodel as mapping metamodel (or traceability metamodel if we aim to emphasize its
traceability role). Instances of this metamodel are called mapping models (or traceability
models).

We require that all edges in the mapping metamodel (i.e. those associations that lead out
from classes of the mapping metamodel) have an at most one multiplicity.As a consequence,
each mapping node in a model uniquely identifies all the interconnected elements in the source
and target models.

Note that a traceability (or mapping) model records the interconnections between models of
different modeling languages while an execution trace model records the execution trace of a
single (dynamic) model.

2.1.4 Formalizing models and metamodels
The metamodels of different modeling languages and their instance models are frequently for-
malized as type graphs and instance graphs are typed over this type graph [37]. The traditional
instance-of relationship between metamodels and models is captured formally by a typing mor-
phism.

Definition 2.1 (Graph) A graph G = (N,E, src, trg) is a 4-tuple with a set N of nodes, a set
E of edges, a source and a target function src, trg : E → N .

Definition 2.2 (Type and instance graphs) A type graph TG is an ordinary graph. An in-
stance graph G is typed over TG by a typing morphism type : G→ TG.

Definition 2.3 (Cardinality) Let card(G, x) denote the cardinality (i.e. the number of graph
objects) of a type x ∈ TG in graphG. Formally, card(G, x) = |{n | n ∈ N ∪ E ∧ type(n) = x}|.

For the current thesis, we assume that there is a unique edge of a certain type between two
nodes, i.e., if src(e1) = src(e2) ∧ trg(e1) = trg(e2) ∧ type(e1) = type(t2)⇒ e1 = e2, which
simplifies the proofs of our theorems.

2.1.5 Example: Metamodels of the Object-Relational Mapping (ORM)
As the running example of the current thesis, we map (simplified) UML class diagrams into
relational database tables by using one of the standard solutions [113,131]. This transformation
problem (with several variations) is frequently used as a model transformation benchmark of
high practical relevance [5].

13

 dc_244_11

2. PRELIMINARIES

Source and target metamodels

The source and target languages (UML and relational databases, respectively) are captured by
their respective metamodels in Fig. 2.2. To avoid mixing the notions of UML class diagrams
and metamodels, we will refer to the concepts of the metamodel using nodes and edges (more
precisely, node types and edge types) for classes and associations, respectively. Since model
transformation rules will be formalized by graph transformation [119] (Sec. 2.2.2), this termi-
nology is compliant with the notions of the model transformation domain.

Figure 2.2: Source and target metamodels of the example

UML class diagrams consist of class nodes arranged into an inheritance hierarchy (repre-
sented by parent edges). Classes contain attribute nodes (attrs), which are typed over classes
(type). Associations (graphically depicted by directed edges) are leading from a source (src)
class to a destination (dst) class.

Relational databases consist of table nodes, which are composed of column nodes by tcols
edges. Each table has a single primary key column (pkey). Foreign key (FKey) constraints can
be assigned to tables (fkeys). Such a key refers to columns (cref) of another table, and it is
related to the columns of local referring table by kcols edges.

Mapping metamodels of the ORM

In our running example (see Fig. 2.3), three types of mapping nodes are defined, namely,
Cls2Tab, Asc2Tab, Attr2Col , which pair classes to tables, associations to tables and attributes
to columns, respectively. In addition, various typed edges interconnect these mapping nodes to
elements in the source and target metamodels.

• In case of Cls2Tab, edge class points to a Class in the source language, edge tab links
to the corresponding Table, edge pkey marks the primary key Column in the database
model, while kind denotes the Column storing the type information for the instances. As
a notational shorthand, we may only depict the tab edge on the target side of Cls2Tab in
various figures.

• In case of Asc2Tab, an edge assoc points to an Association, and a tab edge denotes the
Table derived as main corresponding target element. In addition, a pair of edges (prefixed
with src and trg, respectively) are used to mark the Columns storing the identifiers of
classes and foreign key FKey restrictions (as denoted by edges srccol , srckey , trgcol and
trgkey). As a notational shorthand, we may only depict the tab edge on the target side of
Asc2Tab in various figures.

14

 dc_244_11

2.2. MODEL TRANSFORMATIONS BY GRAPH TRANSFORMATION

Figure 2.3: Mapping metamodel

• Finally, in case of Attr2Col , an edge attr links a source Attribute with a corresponding
target Column. As a shorthand, we may only keep the col edge on the target side of
Attr2Col in various figures.

For the sake of convenience, we assume that these (outgoing) edges of the mapping meta-
model can be (totally) ordered for each type of mapping nodes and edges pointing to source
elements precede edges leading to target elements. For instance, we can assume that the edges
of the Cls2Tab node are ordered in the following way: class, tab, pkey and kind .

Definition 2.4 (Traceability relations) Traceability relations enable to represent (model-level)
mapping structures as tuples

ref(ri, src1, . . . , srcn, trg1, . . . , trgm)

where ref corresponds to the type of the mapping node, ri is the unique identifier of the node,
src1, . . . , srcn are nodes of the source model (defined by the order of mapping edges), while
trg1, . . . , trgm are nodes of the target model linked by appropriate mapping edges.

2.2 MODEL TRANSFORMATIONS BY GRAPH TRANSFORMATION

We first overview the main concepts of model transformations, and then summarize the formal
paradigm of graph transformation, which is frequently used as a means to precisely capture
model transformations.

2.2.1 Overview of Model Transformations

Classification of model transformations

Model transformations can be categorized [40] as in-place transformations versus inter-model
transformations, where the former involves transformations over a single modeling language,
while the latter carries out transformations from one (or more) source language to one (or more)
target language.

A model transformation can be unidirectional or bidirectional. A unidirectional trans-
formation can be executed only in one way (i.e. to generate the target equivalent of a source

15

 dc_244_11

2. PRELIMINARIES

model), while a bidirectional transformation is executable in both forward and backward direc-
tions (from source to target and also from target to source, respectively). Most model trans-
formations between dynamic modeling languages carry out powerful abstractions, therefore,
they are unidirectional by nature. This way, the primary focus of the thesis is on unidirectional
transformations.

A source incremental model transformation aims to avoid unnecessary model traversal,
and only reads those parts of the model which are relevant for change detection and propagation.
The design goal of source incrementality is to minimize the query overhead, since the execution
of model queries is computationally expensive. A target incremental model transformation
does not re-generate the target model from scratch, but updates the models instead.

Operational semantics and traces for dynamic models

The simulation / execution of a DML is performed in accordance with the operational seman-
tics of the language defined by simulation rules. In our framework we assume that simulation
rules are defined as in-place model transformations illustrated in Fig. 2.4 (see also [43,52,K19]).

Figure 2.4: Model transformations for operational semantics and execution trace generation

The execution of a transformation rule MT sym : (M stat,Mdyn)→ ∆Mdyn
′ modifies the

Mdyn by also taking into accountM stat and results in a newMdyn
′. During a simulation run, the

changes of the dynamic model are recorded as a sequence of micro steps as part of the derived
trace model M trc.

An alternate approach is to provide semantics to a DML in a denotational way, which is
investigated in depth by the semantic anchoring approach proposed in [31, 32].

Forward model transformation

A unidirectional forward model transformation MT src2trg (see Fig. 2.5) generates a static target
model M trg

stat from a given static source model M src
stat. This MT is also responsible for deriving

the initial state of M trg
dyn from the initial state of M src

dyn in case of a DML.

Figure 2.5: Forward model transformation and back-annotation

16

 dc_244_11

2.2. MODEL TRANSFORMATIONS BY GRAPH TRANSFORMATION

This transformation also generates the mapping (traceability) models (TR) between the
source and target models in order to record the structural correspondence between the model
elements. These traceability models can be used efficiently in various scenarios including in-
cremental model synchronization, back-annotation, etc. as well as for certification purposes.

Forward unidirectional model transformations frequently automate the mapping from high-
level design models into different analysis models in order to carry out formal verification and
validation (V&V) by back-end analysis tools. Since formal analysis models are derived by
automated model transformations, and the target analysis tools are also typically fully auto-
mated, systems and services engineers obtain a push-button technique for formally analyzing
their high-level design models.

Back-annotation

Back-annotation aims at automatically mapping back the results of V&V tools to the original
design model in order to highlight the real source of the flaw. In case of transformation between
static modeling languages, back-annotation should simply identify the origins of a target model
element in the source model.

The back-annotation of a target DML to a source DML is defined as a transformation
CDT trg2src which is able to generate the M src

trc from an arbitrary M trg
trc if such source trace

exists. The CDT trg2src makes use of the TR to identify corresponding elements in source
and target models. As the traces contain model changes, in [K13], we proposed to define the
CDT trg2src as a change driven model transformation [J4, K20].

2.2.2 Graph transformation
Definition of a graph transformation rule

Graph transformation (GT) [38, 51, 119] offers a rule and pattern based formal paradigm for
precisely capturing the transformation of graph-based models.

Definition 2.5 (Graph transformation rule) A graph transformation rule r = (L
l←− K

r−→
R) typed over a type graph TG is given by triple where L (left-hand side, LHS), K (context)
and R (right-hand side, RHS) graphs are typed over TG and graph morphisms l, r are injective
and assumed to be type preserving. Graphs L and R are frequently called as graph patterns.

Definition 2.6 The negative application conditions (NACs) of a GT rule are a (potentially
empty) set of pairs (N, n) with N being a graph also typed over TG and n : L → N being
an injective graph morphism. A GT rule with NACs is denoted shortly as r = (L

l←− K
r−→

R, {L ni−→ N i}) (i = 1 . . . k). Moreover, we assume that no rules exist where all L and N are
empty.

The L and the N graphs are together called the precondition PRE of the rule.

Application of a graph transformation rule.

Next we describe how a graph transformation rule can be applied (executed, fired) in order to
transform a graph G into a result graph H .

Definition 2.7 (Application of a GT rule) The application of a GT rule to a host model graph
G alters the model graph by replacing the pattern defined by L with the pattern defined by R.

This is performed by

1. finding an injective match m : L→ G of the L pattern in the model graph G;

17

 dc_244_11

2. PRELIMINARIES

2. checking the negative application conditions N which prohibit the presence of certain
model elements, i.e. for each NAC n : L → N of a rule no injective graph morphism
q : N → G exists with m = q ◦ n;

3. removing a part of the model graph M that can be mapped to L but not to R yielding an
intermediate graph D;

4. adding new elements to the intermediate graph D which exist in R but not in L yielding
the derived graph H .

Steps 1 and 2 above are called graph pattern matching.
A GT step is denoted formally as G

r,m
=⇒ H , where r and m denote the applied rule and the

match along which the rule was applied, respectively.

Definition 2.8 (Double Pushout Approach) The Double Pushout Approach [38] conserva-
tively refines the above semantics of graph transformation rules by introducing the dangling
condition to claim that a node cannot be deleted if it has connected edges which are not explic-
itly deleted by the rule. Furthermore, the identification condition states that only rule objects in
L prescribing deletion (i.e. in L but not in K) need to be matched injectively.

Definition 2.9 (Single Pushout Approach) The Single Pushout Approach [53] greedily re-
moves all the dangling edges, i.e. the removal of a node implicitly removes all the related
edges.

Example 2.10 A sample graph transformation rule calculating the transitive closure of the par-
ent relation is depicted in the top rule (parentClosureR) of Fig. 2.6. The rule prescribes that if
class CP is parent of class CM (i.e. there is a parent edges between them), and CM is a parent
of class CC, but there is no parent edge from CC to CP, then such an edge should be created.

For a more compact presentation of the rules, we abbreviate the L, N and R graphs of a rule
into one, and we only mark the (images of) graph elements to be removed (del), or created
(new). We assume that all elements in R marked as new are implicitly present in the negative
application condition N as well. In case of rule class2TableR we use crossed lines to denote
the second negative application condition (that is not part of R).

State space of a graph grammar

Definition 2.11 (Graph transformation system) A graph transformation system GTS =
(R, TG) consists of a type graph TG and a finite set R of graph transformation rules typed over
TG.

Definition 2.12 (Graph grammar) A graph grammar GG = (GTS,G0) consists of a graph
transformation system GTS = (R, TG) and a so-called start (model) graph G0 typed over TG.

Definition 2.13 (State space of a graph grammar) The state space Sem(GG) generated by
a graph grammar GG = (GTS,G0) is defined as a graph where nodes are model graphs, and
edges are graph transformation stepsG

r,m
=⇒ H such that the source and target nodes of the edge

are graphs G and H , respectively. Starting from G0 the state space (i.e. the reachable model
graphs) of the GG is represented taking into account all applicable rules from a given model
graph for all possible matches.

18

 dc_244_11

2.2. MODEL TRANSFORMATIONS BY GRAPH TRANSFORMATION

Figure 2.6: Model transformation from UML to relational databases

Definition 2.14 (Termination) A graph grammar GG = (G0, GTS) is terminating if there
are no infinite sequences of rule applications starting from G0. A graph transformation system
GTS = (R, TG) is called terminating if for all G0, the corresponding graph grammar GG =
(G0, GTS) is terminating.

2.2.3 Example: The Object-Relational Mapping as a model transformation problem
The object-relational mapping as a model transformation problem can be summarized as fol-
lows:

• Each top-level UML class (i.e. a top-most class in the inheritance tree) is projected into a
database table. Two additional columns are derived automatically for each top-level class:
one for storing a unique identifier (primary key), and one for storing the type information
of instances.

• Each attribute of a UML class will appear as columns in the table related to the top-level
ancestor of the class. For the sake of simplicity, the type of an attribute is restricted to
user-defined classes. The structural consistency of valid object instances in columns is
maintained by foreign key constraints.

19

 dc_244_11

2. PRELIMINARIES

• Each UML association is projected into a table with two columns pointing to the tables
related to the source and the target classes of the association by foreign key constraints.

The object-relational mapping is captured by the set of graph transformation rules in Fig. 2.6.
The entire transformation starts with a preprocessing phase when the transitive closure of par-
ent relations is calculated (parentClosureR), and then all attributes and associations are lifted
up to the top-level classes in the inheritance (parent) hierarchy (rules liftXYZ). Then the main
model transformation (Fig. 2.6) proceeds by transforming classes into tables (class2tableR),
associations into tables (assoc2tableR), attributes into columns (attr2columnR), attribute types
and destination class of associations into foreign key constraints (attr2fkeyR and assoc2fkeyR).

From a pure functional point of view, this solution appropriately addresses the object-
relational mapping as a model transformation problem. However, the transformation has side
effects on the source UML model by lifting parent , type, src and trg edges. In many model
transformation scenarios, such side effects are disallowed. The core graph transformation for-
malism does not support more advanced graph queries, which could be used to prevent this
issue. The graph pattern based query language to be introduced in Chapter 3 will address this
problem.

2.3 AN OVERVIEW OF INDUCTIVE LOGIC PROGRAMMING

Inductive logic programming [101] (ILP) aims at inductively constructing first-order clausal
hypotheses from examples and background knowledge. In case of ILP, induction is typically
interpreted as abduction combined with justification. Abduction is the process of hypothesis
formation from some facts while justification (or confirmation) denotes the degree of belief in
a certain hypothesis given a certain amount of evidence. Formally, the problem of inductive
inference can be defined as follows [101].

Definition 2.15 (Inductive inference) Given some (a priori) background knowledgeB together
with a set of positive factsE+ and negative factsE−, find a hypothesisH such that the following
conditions hold:

Prior Satisfiability. All e ∈ E− are false in M+(B) where M+(B) denotes the minimal Her-
brand model of B (denoted as B ∧ E− 6|= >).

Posterior Satisfiability (Consistency). All e ∈ E− are false in M+(B ∧H) (denoted as B ∧
H ∧ E− 6|= >).

Prior Necessity. E+ is not a consequence ofB, i.e. some e ∈ E+ are false in M+(B) (denoted
as B 6|= E+).

Posterior Sufficiency (Completeness). E+ is a consequence of B and H , i.e. all e ∈ E− are
true in M+(B ∧H) (denoted as B ∧H |= E+).

A generic ILP algorithm [101] keeps track of a queue of candidate hypotheses. It repeatedly
selects (and removes) a hypothesis from the queue, and expands that hypothesis using inference
rules. The expanded hypothesis is then added to the candidate queue, which may be pruned to
discard unpromising hypotheses from further consideration.

Many existing ILP implementations like Aleph [3] that we used for our experiments are
closely related to Prolog, and the following restrictions are quite typical:

20

 dc_244_11

2.4. AN INTRODUCTION TO PETRI NETS

• B is restricted to definite clauses where the conjunction of (positive or negative) body
clauses implies the head, formally

Head : −Body1, Body2, . . . Bodyn

• E+ and E− are restricted to ground facts.

Further language and search restrictions can be defined in Aleph by using mode, type and
determination declarations. Moreover, we can also ask in Aleph to find all negative constraints,
i.e. Prolog clauses of the form false :- Body1, Body2,. . . ,Bodyn, More details on negative con-
straints will be given in Sec. 4.4.3.

Example 2.16 As a demonstrative example, let us consider some traditional family relation-
ship. The background knowledge B may contain the following clauses:
grandparent(X,Y) :- father(X,Z), parent(Z,Y).
father(george,mary).
mother(mary,daniel).
mother(mary,greg).

Some positive examples E+ can be given as follows:
grandfather(george,daniel).
grandfather(george,greg).

Finally, some negative facts E− are also listed:
grandfather(daniel,george).
grandfather(mary,daniel).

Believing B, and faced with the facts E+ and E−, Aleph is able to set up the following
hypothesis H by default.
grandfather(X,Y) :- father(X,Z), mother(Z,Y).

By default settings, Aleph will set up a hypothesis only for clauses used in the positive and
negative examples. However, there is some (limited) support for abductive learning [6] when
Aleph will be able to derive hypothesis not only for the clause covered by positive and negative
examples:
parent(X,Y) :- mother(X,Y).

The model transformation by example approach to be presented in Chapter 4 relies upon
Aleph, which is considered to be a powerful inductive logic programming engine.

2.4 AN INTRODUCTION TO PETRI NETS

In the current section we give a short introduction into the theory of Place/Transition nets based
on [102].

Definition 2.17 (Place/Transition (P/T) Net) A Place/Transition net (or shortly P/T net or
Petri net) is a 4-tuple PN = (P, T,E,w) where P is a set of places (represented graphically as
circles), T is a set of transitions (represented as horizontal bars), E ⊆ (P × T) ∪ (T × P) is
the set of arcs (where no arcs connect two places or two transitions), and the weight function
w : E → N+ maps arcs to positive integers.

Places may contain tokens. The distribution of tokens at different places is called a marking
M : P → N, which maps places to non-negative integers. The initial marking is denoted as
M0.

21

 dc_244_11

2. PRELIMINARIES

Definition 2.18 (Firing a transition) The token distribution can be changed in the net by firing
transitions. A transition t is enabled (i.e. it may fire), if each of its input places contain at least
as many tokens as it is specified by the weight function. The firing of an enabled transition
t removes a w(p, t) amount of tokens from the input places, and w(t, p) tokens are produced
on each output place p. As a result, the marking M changes to M ′ (denoted as M t

=⇒ M ′)
according to ∀p ∈ P : M ′(p) = M(p)− w(p, t) + w(t, p).

Definition 2.19 (Incidence matrix) The incidence matrix W of a (finite) net describes the
net token flow (of the P/T net) when firing a transition. Mathematically, W is a |P | × |T |–
dimensional matrix of non-negative integers N such that wij = w(tj, pi) − w(pi, tj), where
1 ≤ i ≤ |P |, 1 ≤ j ≤ |T |.

After firing a transition t in marking M , the result marking M ′ can be computed with the
incidence matrix: M ′ = M + W · et, where et is a |T |-dimensional unit vector, where the t-th
component is 1 and the others are 0.

Definition 2.20 (firing sequence) A (transition) firing sequence s = 〈t1, t2, . . . , 〉 is a se-
quence of transition firings starting from state M0 such that M0

t1=⇒ M1,
t2=⇒ . . . , i.e. for all

1 ≤ j tj is enabled in Mj−1 and Mj is yielded by the firing of tj in Mj−1.

Definition 2.21 (Transition occurrence vector) The marking of the net after executing the
first k steps of the firing sequence s can be calculated by the state equation: Mk = M0 +W · σ,
where σ is the transition occurrence vector or Parikh–vector of the trajectory s counting the
number of occurrences of individual transitions in the firing sequence.

2.5 SUMMARY

In this chapter, we introduced the core software engineering concepts of domain-specific mod-
eling languages, metamodels and model transformations by using the formal paradigm of typed
graphs and graph transformations. These concepts will be used intensively in all upcoming
chapters of the current thesis. Furthermore, inductive logic programming will be exploited in
Chapter 4, while Petri nets will be used in Chapter 6.

22

 dc_244_11

Chapter 3

Specification of Model
Transformations

3.1 INTRODUCTION

The crucial role of model transformation (MT) languages and tools for the overall success of
model-driven system development has been revealed in many surveys and papers during the re-
cent years. To provide a standardized support for capturing queries, views and transformations
between modeling languages defined by their standard MOF metamodels, the Object Manage-
ment Group (OMG) has recently issued the QVT standard [108].

QVT provides an intuitive, pattern-based, bidirectional model transformation language,
which is especially useful for synchronization kind of transformations between semantically
equivalent modeling languages. Unfortunately, QVT is not a mathematically precise language,
several semantic gaps and choice points have been identified in [67].

Model transformations used for model validation [24] simultaneously necessitate a specifi-
cation language with intuitive syntax and formal semantics. Therefore, we have chosen to in-
tegrate two intuitive, and mathematically precise rule-based specification formalisms, namely,
graph transformation (GT) [51] and abstract state machines (ASM) [25] to manipulate graph
based models. This forms the specification language of the VIATRA2 framework.

VIATRA2 also facilitates the separation of transformation design (and validation) and ex-
ecution time. During design time, the VIATRA2 interpreter takes such MT descriptions and
executes them on selected models as experimentation. Then final model transformation rules
can be compiled into efficient, platform-specific transformer plugins for optimal execution [K2]
(see later in Chapter 5).

In the current chapter, we present the VIATRA2 transformation language which is composed
of three sublanguages for metamodeling (Sec. 3.2), pattern specification (Sec. 3.3), and rule-
based model transformations (Sec. 3.4). The current chapter includes a detailed description
of the ASM control language (Sec. 3.4.3) and the formal semantics of the major VIATRA2
constructs (Sec. 3.4.2 and Sec. 3.6). Reusability is also addressed by introducing generic rules
in Sec. 3.5.1. Finally, Sec. 4.7 discusses related work to justify that VIATRA2 was first to
introduce recursive graph patterns with arbitrary negation depth, and generic transformations.

3.2 METAMODELING LANGUAGE

Metamodeling is a fundamental part of model transformation design as it allows the structural
definition (i.e. abstract syntax) of modeling languages. Metamodels are represented in a meta-

23

 dc_244_11

3. SPECIFICATION OF MODEL TRANSFORMATIONS

modeling language, which is another modeling language for capturing metamodels.
In the current chapter, we build upon the VPM metamodeling framework [J15] for model

representation and management. As only an abstract syntax was defined for VPM in [J15], we
developed a textual concrete syntax for the metamodeling environment called VTML (Viatra
Textual Metamodeling Language) for specifying metamodels and models. The syntax of the
VTML language has a certain Prolog flavor, but it offers support for well-founded typing and
hierarchical model libraries. Our experience showed that this textual format was more usable in
case of large, or automatically generated metamodels compared to a graphical language.

Standard metamodeling paradigms and languages can be integrated into VIATRA2 by im-
port plugins and exporters defined by code generation transformations. So far, models from
very different technological spaces such as XML, EMF, semantic web and modeling languages
of high practical relevance like BPEL, UML (and various domain-specific languages in the de-
pendable embedded, telecommunication, and service-oriented domain) have been successfully
integrated into VIATRA2 . While VIATRA2 offers the VTML language for constructing mod-
els and metamodels, the main usage scenario is to bridge heterogeneous off-the-shelf tools by
flexible model imports and exports.

3.2.1 Metamodeling concepts in VTML
Entities and relations. As shown in the metamodel of Fig. 3.1, the VPM model space consists
of two basic elements: the entity (a generalization of MOF package, class, or object) and the
relation (a generalization of MOF association end, attribute, link end, slot). Entities represent
basic concepts of a (modeling) domain, while relations represent the relationships between
model elements. Furthermore, entities may also have an associated string value which contains
application-specific data. Most typically, relations lead between two entities to impose a di-
rected graph structure on VPM models, but the source and/or the target end of relations can also
be relations, thus hypergraphs can also be represented as VPM models.

Figure 3.1: The metamodel of the VPM model space

Relations have additional properties. (i) Property isAggregation tells whether the given re-
lation represents an aggregation in the metamodel, when an instance of the relation implies that
the target element of the relation instance also contains the source element. (ii) The inverse
relation points to the inverse of the relation (if any). In a UML analogy, a relation can be con-
sidered as an association end, and thus the inverse of a relation denotes the other association end
along an association. (iii) Multiplicities impose restrictions on the model structure. Allowed
multiplicities in VPM are one-to-one, one-to-many , many-to-one, and many-to-many .

In VTML, an entity can be declared in the form type(name), where type is the type of the
entity and name is a fresh (unused) name for the new entity. A relation definition takes the

24

 dc_244_11

3.2. METAMODELING LANGUAGE

form: type(name, source, target), where source and target are either existing elements in the
model space, or they are defined (or to be defined) in the same VTML file. Type declarations
are mandatory for all model elements with the basic VPM entity and relation model elements in
the top of the type hierarchy.

Containment hierarchy and namespace imports. Model elements are arranged into a strict
containment hierarchy. Within a container entity, each contained model element has a unique
local name. In addition, a globally unique identifier called a fully qualified name (FQN) is
defined for each model element. An FQN is derived by concatenation along the containment
hierarchy of local names using dots (“.”) as separators. Relations are automatically assigned to
their source model element within this containment hierarchy, which corresponds to the design
decision in many modeling tools. For example, the FQN of the entity Association in Fig. 3.3 is
UML.Association, while the FQN of the relation src is UML.Association.src.

VTML also allows to import namespaces from the model space for the given VTML file
so that model elements in the imported namespaces can be referred to using their local names
instead of their FQNs.

Inheritance and instantiation. There are two special relationships between model elements
(i.e. either between two entities or two relations): the supertypeOf (inheritance, generaliza-
tion) relation represents binary superclass-subclass relationships (like the UML generalization
concept), while the instanceOf relation represents type-instance relationships (between meta-
levels). By using explicit instanceOf relationship, metamodels and models can be stored in the
same model space in a compact way. Note that both multiple inheritance and multiple typing
are allowed.

Finally, it is worth pointing out that many advanced modeling concepts of MOF 2.0 can
be easily modeled in VPM. For instance, ordered properties can be represented as (ordering)
relations leading between relations, while the subset property can be modeled by supertypeOf
relationship between the two relations representing the properties.

3.2.2 Demonstrating example

The technicalities of VTML are demonstrated in Fig. 3.2 using the metamodels of a model
transformation from UML class diagrams to description logic. This transformation was imple-
mented in the context of the DECOS European IP [73, 122] to carry out semantic validation
of domain-specific modeling languages and models in the dependable embedded domain using
the Racer reasoner [114]. Extracts from this transformation (with a simplified UML metamodel
and a subset of rules) will be used in this chapter for demonstration purposes.

The UML dialect used in this chapter contains Classes, which may have attributes typed by
a Classifier which is either a PrimitiveDataType or by other user defined Classes. Furthermore,
Associations may lead from a source (src) class to a target (dst) class.

The metamodel of the Racer tool consists of Concepts, which can be interrelated through
several Roles (as indicated by domain and range). Each concept is allowed to have several
attributes (Attribute) denoted by attr . Inheritance between concepts (similar to UML) can be
defined using Implication elements. A child concept (denoted by impl) implicates its super
concept (subject).

Finally, the source and target metamodels are interrelated by using the constructs of a map-
ping metamodel (denoted as Ref). This mapping metamodel declares that a UML class may
be related to a Racer concept (as cls2concept), a UML association may also be connected to

25

 dc_244_11

3. SPECIFICATION OF MODEL TRANSFORMATIONS

Figure 3.2: Sample UML and Racer metamodels

a Racer concept (as asc2concept), and UML attributes can be related to Racer attributes (see
att2attr). The VTML representation of the metamodels is listed in Fig. 3.3.

entity(UML)
{
entity(Classifier);
entity(PrimitiveDataType);
supertypeOf(Classifier,

PrimitiveDataType);

entity(Class);
supertypeOf(Classifier,Class);
relation(parent,Class,Class);

entity(Association);
relation(src,Association,Class);
relation(dst,Association,Class);

entity(Attribute);
relation(type,Attribute,

Classifier);
relation(attrs,Class,Attribute);

multiplicity(attrs,many-to-many);
isAggregation(attrs, true);

}

entity(racer)
{
entity(concept);
relation(attr,concept,attribute);
relation(impl,concept,implication);

entity(role);
relation(domain,role,concept);
relation(range,role,concept);

entity(attribute);
relation(type,attribute,concept);

entity(implication);
relation(subject,implication,concept);

}
entity(Ref) {
entity(class2concept);
relation(uml,class2concept,Class);
relation(racer,class2concept,concept);

entity(assoc2concept);
relation(uml,assoc2concept,Association);
relation(racer,assoc2concept,concept);

entity(attr2attr);
relation(uml,attr2attr,Attribute);
relation(racer,attr2attr,attribute);

}

Figure 3.3: Sample VTML metamodels: UML and Racer

3.3 THE PATTERN LANGUAGE

Graph patterns (GP) are the atomic units in VIATRA2 for capturing well-formedness rules of a
modeling language and, especially, for specifying common patterns used in model transforma-
tion rules. Graph patterns are integral part of the Viatra Textual Command Language (VTCL),
which is the main textual language in VIATRA2 to specify model transformations.

3.3.1 Graph patterns
Graph patterns represent conditions (or constraints) that have to be fulfilled by a part of the
model space in order to execute some manipulation steps on the model. A model (i.e. part of

26

 dc_244_11

3.3. THE PATTERN LANGUAGE

the model space) satisfies a graph pattern, if the pattern can be matched to a subgraph of the
model using graph pattern matching. In this section, we present an informal introduction to
graph patterns in VTCL, while their formal semantics will be discussed in Sec. 3.6.

Simple patterns, negative patterns

Patterns are close to predicates in Prolog, as they have a name, a parameter list, and a body.
The body of a simple pattern contains model element and relationship definitions using VTML
language constructs.

In the left column of Fig. 3.4, a simple pattern can be fulfilled by a class which has an
attribute with a user-defined type. Here Class(C) declares a variable C to store an entity of type
Class while Class.attrs(X,C,A) denotes a relation of type Class.attrs, which has an identifier X ,
and leads from class C to attribute A. Note that these predicates can be listed in an arbitrary order
(unlike in Prolog), i.e. the transformation engine is responsible for the appropriate ordering of
predicates by using sophisticated algorithms for search plan generation [J20].

import UML;

/*C is a UML class with an
attribute A; A is of type T*/

pattern isClassAttribute(C, A) =
{
Class(C);

//X is the relation between C and A
//it is an internal variable, it is
//not present in the interface
Class.attrs(X,C,A);
Attribute(A);
Attribute.type(Y,A,T);
Classifier(T);

}

import UML;
/* C is a class without parents

and with non-empty name */
pattern isTopClass(C, M) =
{
Class(C) below M;

neg pattern negCondition(C) =
{

Class(C);
Class.parent(P,C,CP);
Class(CP);

}

check (name(C)!="")
}

Figure 3.4: Basic patterns and negative patterns

The keyword neg denotes if a subpattern serves as a negative condition for another pattern.
The negative pattern in the right column of Fig. 3.4 can be satisfied if there is a class (CP) for the
class in the parameter (C) that is the parent of C as indicated by relation P of type Class.parent .
If this condition can be satisfied, the outer (positive) pattern matching will fail. Thus the pattern
matches to top-most classes in the parent hierarchy.

Each entity in a pattern may be scoped by using the in or below keywords by a container
entity. This means that the corresponding pattern element should be matched to a model el-
ement which resides directly inside (in) or somewhere below (below) its scope entity in the
containment hierarchy of the model space. Additional Boolean constraints can be expressed by
the check condition, which also need to be fulfilled for successful pattern matching. Our sample
pattern isTopClass can be matched to classes with non-empty names.

A VTCL pattern language allows that negative conditions can be embedded into each other
in an arbitrary depth (e.g. negations of negations) when the expressiveness of such patterns
converges to first order logic [115].

Pattern calls, OR-patterns, recursive patterns

In VTCL, a pattern may call another pattern using the find keyword. This feature enables the
reuse of existing patterns as a part of a new (more complex) one. The semantics of this reference

27

 dc_244_11

3. SPECIFICATION OF MODEL TRANSFORMATIONS

is similar to that of Prolog clauses: the caller pattern can be fulfilled only if their local constructs
can be matched, and if the called (or referenced) pattern is also fulfilled.

Alternate bodies can be defined for a pattern by simply creating multiple blocks after the
pattern name and parameter definition, and connecting them with the or keyword. The OR-
pattern is fulfilled if at least one of its bodies can be fulfilled. As OR-patterns can be called
from other patterns, thus, allowing disjunction only on the top-level is not a real limitation.

Pattern calls and alternate (OR) bodies can be used together for the definition of recursive
patterns. In a typical recursive pattern, the first body (or bodies) define the halt condition for
the recursion, while subsequent bodies contain a recursive call to itself. However, VIATRA2
supports general recursion, i.e. multiple recursive calls are allowed from a pattern. Note that
general recursion is not supported by any of the existing graph transformation tools up to now.
The following example in Fig. 3.5 illustrates the usage of recursion.

// Parent is an ancestor (transitive parent) of Child
pattern ancestorOf(Parent,Child) =
{

Class(Parent);
Class.parent(X,Child,Parent);
Class(Child);

}
or
{

Class(Parent);
Class.parent(X,C,Parent);
Class(C);
find ancestorOf(C,Child);
Class(Child);

}

Figure 3.5: Recursive patterns

A class Parent is the ancestor of an other class Child , if Child is a direct child of classes
Parent , or Parent has a direct child (C), which is the parent of the child class (second body). The
pattern uses recursion for traversing multi-level parent-child relationships, and uses multiple
bodies to create a halt condition (base case) for the recursion.

3.4 THE TRANSFORMATION LANGUAGE

Transformation descriptions in VIATRA2 consist of several constructs that together form an
expressive language for developing both model to model transformations and code generators.
Graph transformation (GT) [51] rules support the definition of elementary model manipula-
tions, while abstract state machine (ASM) [25] rules can be used for the description of control
structures.

3.4.1 Graph transformation rules

While graph patterns define logical conditions (formulas) on models, the manipulation of mod-
els is defined by graph transformation rules [51], which heavily rely on graph patterns for defin-
ing the application criteria of transformation steps. The application of a GT rule on a given
model replaces an image of its left-hand side (LHS) pattern with an image of its right-hand side
(RHS) pattern. The VTCL language allows different notations for defining graph transformation
rules using the gtrule keyword.

28

 dc_244_11

3.4. THE TRANSFORMATION LANGUAGE

The sample graph transformation rule in Fig. 3.6 defines a refactoring step of lifting an
attribute from child to parent classes (repeated from Fig. 2.6). This means that if the child class
has an attribute, it will be lifted to the parent.

(a) Traditional notation (b) Compact notation

Figure 3.6: Sample graph transformation rule

The first syntax of a GT rule corresponds to the traditional notation (see the graphical no-
tation in Fig. 3.6(a) and the textual one in Fig. 3.7). It contains a precondition pattern for the
LHS, and a postcondition pattern that defines the RHS of the rule. In general, elements that are
present only in (the image of) the LHS are deleted, elements that are present only in RHS are
created, and other model elements remain unchanged. Moreover, further actions can be initiated
by calling any ASM rules within the action part of a GT rule, e.g. to report debug information
or to generate code. This action part is executed after the model manipulation part is carried
out according to the difference of the precondition and postcondition part.

import UML;
gtrule liftAttrsR(inout CP, inout CS, inout A) =
{

precondition pattern lhs(CP,CS,A,Par,Attr) =
{

Class(CP);
Class.parent(Par,CS,CP);
Class(CS);
Class.attrs(Attr,CS,A);
Attribute(A);

}
postcondition pattern rhs(CP,CS,A,Par,Attr,Attr2) =
{

Class(CP);
Class.parent(Par,CS,CP);
Class(CS);
Class.attrs(Attr2,CP,A);
Attribute(A);

}
action {

print("Rule liftAttrR is applied on attribute " + name(A));
}

}

Figure 3.7: Graph transformation rule in traditional notation

Negative conditions are also commonly used in precondition patterns, especially, for model
transformations between modeling languages in order to prevent the application of a GT rule
twice on the same match. Examples for negative application conditions will be given in the case
study of Sec. A.1.

29

 dc_244_11

3. SPECIFICATION OF MODEL TRANSFORMATIONS

3.4.2 Informal semantics of graph transformation rules
Parameter passing. A main difference with the traditional GT notation is related to the use
of parameter passing between preconditions and postconditions. More precisely, matches of
the precondition pattern are passed to the postcondition via pattern parameters, which act as an
explicit interface between the precondition and the postcondition.

• A parameter of the postcondition is treated as an input parameter if (i) it is also a precon-
dition parameter or (ii) it is passed to the entire GT rule as an input parameter. Note that a
simple lexical match decides if a precondition parameter also appears as a postcondition
parameter regardless of the order of parameters. These parameters are already bound be-
fore calculating the effects of the postcondition. In our example, input parameters of the
postcondition are CP, CS, A, Par and Attr .

• Additional parameters of the postcondition are output parameters, which will be bound
as the direct effect of the postcondition. The single output parameter of the postcondition
of our example is Attr2.

On the one hand, we can reduce the size of the patterns with respect to traditional GT rules
by information hiding. For instance, precondition elements which are left unchanged by the
rule does not need to be passed to the postcondition, which is very convenient for large patterns.

The negative side of this solution is that the execution mechanism of a GT rule becomes
slightly more complex than in case of traditional GT rules. More specifically, the postcondition
of a GT rule may prescribe three different operations on the model space.

• Preservation. If an input parameter of the postcondition appears in the pattern body, then
the matching model element is preserved. The elements matched by variables CP, CS,
and A are thus preserved above.

• Deletion. If an input parameter of the postcondition does not appear in the body of the
postcondition pattern then the corresponding model element is deleted. For instance,
element matched by variable Attr is deleted.

• Creation. If a variable which appears in the body of the postcondition pattern is not an
input parameter of the postcondition, then a new model element is created, and the vari-
able is bound to this new model element. In our example above, variable Attr2 is not an
input parameter of the postcondition, thus it prescribes the creation of a new attrs relation
between class CP and attribute A. This Attr2 is an output parameter of the postcondition
but not passed back to the GT rule itself.

This way, rule liftAttrsR can be further compacted by simply omitting the parent relation
from the postcondition and the pattern parameter lists.

Pattern calls in GT rules. In order to reduce the size and to support the modular creation
of GT rules, pattern calls (aka. pattern composition using the find construct) are allowed in
both the precondition and postcondition pattern. Its use in the precondition pattern was already
discussed in Sec. 3.3.1.

However, pattern calls in the postcondition (RHS) of GT rules is a unique feature compared
to other GT tools. Currently, VIATRA2 handles non-recursive and non-negative calls in the
postcondition pattern, which allows a macro-like substitution of the called pattern in the body

30

 dc_244_11

3.4. THE TRANSFORMATION LANGUAGE

of the postcondition. This way, repetitive parts of a postcondition can be modularized into
predefined patterns, which can be used in various GT rules afterwards. More examples of
pattern calls will be provided in the case study of Sec. A.1.

Invoking graph transformation rules

The basic invocation of a graph transformation rule is initiated using the apply keyword within
a choose or a forall construct (further details on these constructs are given in Sec. 3.4.3). In
each case, the actual parameter list of the transformation has to contain a valid value for all
input parameters, and an unbound variable for all output parameters.

A rule can be executed for all possible matches (in a single, pseudo-parallel step) by quan-
tifying some of the parameters using the forall construct. Finally, a GT rule can be applied as
long as possible by combining the iterate and the choose constructs. The example in Fig. 3.8
illustrates some possible invocations of our sample rule liftAttrsR.

//execution of a GT rule for one attribute of a class
//variables Class1 and Class2 must be bound
choose A apply liftAttrsR(Class1,Class2,A);

//calling the rule for all attributes of a class
//variables Class1 and Class2 must be bound
forall A do apply liftAttrsR(Class1,Class2,A);

//calling the rule for all possible matches in parallel
forall C1, C2, A do apply liftAttrsR(C1,C2,A);
//Apply a GT rule as long as possible for the entire model space
iterate choose C1, C2, A apply liftAttrsR(C1,C2,A)

Figure 3.8: Calling GT rules from ASM programs

Note the difference between the as long as possible and the forall execution modes: the
former applies the rule once and only then does it select a next match as long as a match exists,
while the latter collects all matches first, and then it applies the rule (one by one) for each of
them in a single compound step.

3.4.3 Control Structure

To control the execution order and mode of graph transformations, VTCL includes language
constructs that support the definition of complex control flow. As one of the main goals of the
development of VTCL was to create a precise formal language, we included the basic set of
Abstract State Machine (ASM) language constructs [25] that correspond to the constructs of
conventional programming languages.

The basic elements of an ASM program are the rules (that are analogous with methods
in OO languages), variables, and ASM functions. ASM functions are special mathematical
functions, which store values in associative arrays (dictionaries). These values can be updated
by ASM rules.

In VTCL, a special class of functions, called native functions, is also defined. Native func-
tions are user-defined Java methods that can be called from the transformations. These methods
can access any Java library (including database access, network functions, and so on), and also
the VIATRA model space. This allows the implementation of complex calculations during the
execution of model transformations.

ASMs provide complex model transformations with commonly used control structures in
the form of built-in ASM rules, which are overviewed in Fig. 3.9. As a summary, ASMs provide

31

 dc_244_11

3. SPECIFICATION OF MODEL TRANSFORMATIONS

// variable definition
let X = 1 in ruleA
// variable (and ASM function) updates
update X = X + 1;
// print and log rules print a term to standard output or into the log
print("Print X: " + X + "\n");
log(info, "Log X: " + X);
// conditional branching by a logical condition or by pattern matching
if (X>1) ruleA else ruleB
if (find myPattern(X)) ruleA else ruleB
// exception handling: rule2 is executed only if rule1 fails
try rule1 else rule2
// calls the user defined ASM rule myRule with actual parameter X
call myRule(X)
// the sequencing operator: executes its subrules in the given order;
seq { rule1; rule2; }
// executes a non-deterministically selected rule from a set of rules
random { rule1; rule2; }
// iterative execution by applying rule1 as long as possible
iterate rule1;
//executes rule1 for a (non-deterministic) substitution of variable X
//which satisfies the pattern (or location) condition with X
choose X below M with (myAsmFun(X) > 0) do rule1
choose X below M with find myPattern(X) do rule1
//pseudo-parallel execution of rule1 for all substitution of variable X
//which satisfies the pattern (or location) condition with X
forall X below M with (myAsmFun(X) > 0) do rule1
forall X below M with find myPattern(X) do rule1

Figure 3.9: Overview of built-in ASM rules in VIATRA2

control structures including the sequencing operator (seq), rule calls to other ASM rules (call),
variable declarations and updates (let and update constructs) and if-then-else structures, non-
deterministically selected (random) and executed rules (choose), iterative execution (applying
a rule as long as possible iterate), and the deterministic parallel rule application at all possible
matches (locations) satisfying a condition (forall).

In addition to these core ASM rules, the VIATRA2 dialect of ASMs also includes built-in
rules for manipulating the model space. As a result, elementary model transformation steps
can be specified either in a declarative way (by graph transformation rules) or in an imperative
way by built-in model manipulation rules. Main model manipulation rules are summarized in
Fig. 3.10.

Most of these rules are rather straightforward, we only give more insight into the copy and
move rules. The copy rule aims at copying an entity and all the recursive contents (i.e. the
subtree of the entity) to a new parent. VIATRA2 provides two kinds of semantics for that copy
operation: keep_edges and drop_edges. In the first case, all relations leading out from or into
an entity placed anywhere below the copied entity are copied as well. In the latter case, only
those relations are copied where both the source and the target entity are below the copied entity.
In case of the move rule, an entity is moved (by force) to a new container by decoupling it from
its old container. While this step may break the invariants of the old container, this problem is
not as critical as in case of EMF as our constraints are checked at the end of the transformation.

These basic built-in ASM rules, combined with graph patterns and graph transformation
rules, form an expressive, easy-to-use, yet mathematically precise language where the seman-
tics of graph transformation rules can be given as ASM programs (see [J13]). The following
example (in Fig. 3.11) demonstrates some of the main control structures.

32

 dc_244_11

3.5. GENERIC TRANSFORMATIONS

// create a new entity C of type class and place it inside M
// the local name of C is automatically generated
new (class(C) in M);
// rename class C to "Product"
rename(C, "Product");
// create a new relation Attr of type attrs between C and A
// Attr is placed under its source C
new(attrs(Attr, C, A));
// Explicitly moves entity C (and all of its contents) to NewContainer
move(C, NewContainer);
// Retargets relation Attr to A1
setTo(Attr, A1);
// copy entity C and all of its contents directly under Container with
// ALL incoming and outgoing relations; the entity is accessed by CNew
copy(C, Container, CNew, keep_edges);
// copy entity C and all of its contents directly under Container but
// only copy relations between entities of the containment subtree of C
copy(C, Container, CNew, drop_edges);
// removes model element M together with its contents
delete(M);

Figure 3.10: Overview of model manipulation rules in VIATRA2

// An ASM rule is defined using the ’rule’ keyword
rule main(in Model) =
// Conversion from strings to model elements
let M = ref(Model) in seq {

//Print out some text
print("The transformation of model " + M + " has started...\n");
//Find all top-level classes below M and call rule printTopLevel
forall Cl below M with find isTopClass(Cl) do

call printTopLevel(Cl);
//Apply a GT rule as long as possible for the entire model space
iterate

choose C1, C2, A apply liftAttrsR(C1,C2,A) do
print("Attribute "+ name(A) + " is lifted from class " +

C1 + " to class " + C2 +"\n");
//Write to log
log(info,"Transformation terminated successfully.");

}
rule printTopLevel(in C) =
{

print("Class " + name(C) + " is a top-level class.\n");
}

Figure 3.11: A sample ASM program driving a model transformation

3.5 GENERIC TRANSFORMATIONS

3.5.1 An overview on generic transformations

Generic (or higher-order) transformations contain transformation rules where the types of cer-
tain objects are variables. An analogy can be made between general transformations and generic
(or template) classes used in various object-oriented languages. However, while the parameters
of generic classes are bound at design time, type variables in generic transformation rules are
only substituted at transformation-time (run-time).

The advantages and drawbacks of higher-order transformations also show certain similari-
ties with traditional logic frameworks. Higher-order logic is a very powerful description mech-
anism but it raises decidability (and performance) problems concerning automated reasoning

33

 dc_244_11

3. SPECIFICATION OF MODEL TRANSFORMATIONS

when compared with traditional first-order logic. Still, several powerful (higher-order) theorem
provers have been applied for a large scale of practical verification problems.

Analogously, generic transformation rules offer a very high level of generality and com-
pactness when compared to other (first-order) model transformation frameworks (especially,
for higher-level transformations). A single generic rule can handle several situations where
essentially the same rule pattern should be applied on objects of different types. On the other
hand, the foundations of their type system (metamodeling framework) require some precautions
to avoid certain well-known problems (see [14]). Furthermore, degradation in performance has
been experienced in rewriting logic systems like Maude [35] when working with the meta-
representations of large models.

To overcome these problems, we will build on VPM [J15], which is a dynamic metamodel-
ing framework with fluid meta-levels. Moreover, generic transformation rules can also be turned
into traditional first-order ones by meta-transformations [K25] to tackle performance problems.

3.5.2 Generic transformations in VIATRA2

To provide algorithm-level reuse for common transformation algorithms independent of a cer-
tain metamodel, VIATRA2 supports generic and meta-transformations, which are built on ex-
plicit instance-of relations of the VPM metamodeling framework. For instance, we may gen-
eralize rule liftAttrsR (of Fig. 3.7) as lifting something (e.g. an Attribute) one level up along a
certain relation (e.g. parent). The generic example of Fig. 3.12 generalizes the previous GT rule
(of Fig. 3.7) parameterized by types taken from arbitrary metamodels during execution time.

gtrule liftUp(inout CP, inout CS, inout A, inout ClsE, inout AttE,
inout ParR, inout AttR) = {

precondition pattern transCloseLHS(CP,CS,A, ClsE, AttE, ParR, AttR, Attr) =
{

// Pattern on the meta-level
entity(ClsE);
entity(AttE);
relation(ParR,ClsE,ClsE);
relation(AttR,ClsE,AttE);
// Pattern on the model-level
entity(CP);
// Dynamic type checking
instanceOf(CP,ClsE);
entity(CS);
instanceOf(CS,ClsE);
entity(A);
instanceOf(A,AttE);
relation(Par,CS,CP);
instanceOf(Par,ParR);
relation(Attr,CS,A);
instanceOf(Attr,AttR);

}
action {

delete (relation(Attr,CS,A));
delete (instanceOf(Attr,AttR));
new (relation(Attr2,CP,A))s;
new (instanceOf(Attr2,AttR));

}
}

Figure 3.12: Generic transformation rules

Compared to liftAttrsR, this generic rule liftUp has four additional input parameters: (i) ClsE
for the type of the nodes containing the thing to be lifted (Class previously), (ii) AttE for the type

34

 dc_244_11

3.6. FORMAL SEMANTICS OF GRAPH PATTERNS IN VTCL

of nodes to be lifted (Attribute previously), and (iii) ParR (ex-parent) and (iv) AttR (ex-attrs)
for the edge types.

When interpreting this generic pattern, the VIATRA2 engine first binds the type variables
(ClsE , ParR, etc.) to types in the metamodel of a modeling language and then queries the
instances of these types. Internally, this is carried out by treating subtype-of and instance-of
relationships as special edges in the model space, which enables the easy generalization of
traditional graph pattern matching algorithms.

Note that while other GT tools may also store metamodels and models uniformly in a com-
mon graph structure, only PROGRES [125] supports type parameters in rules, while none of
them supports manipulation of (existing) type-instance relationship like the dynamic reclassifi-
cation (retyping) of objects as in VIATRA2 .

In our solution, generic algorithms (e.g. transitive closure, graph traversals, fault modeling
etc.) can be reused without changes in different metamodels. As a result, predefined general
model transformation libraries can be assembled (like built-in libraries for traditional program-
ming languages) to speed up transformation development.

As a conclusion, generic model transformation rules provide a compact and powerful spec-
ification mechanism to enhance reusability across model transformation problems.

3.6 FORMAL SEMANTICS OF GRAPH PATTERNS IN VTCL

As the main conceptual novelties of the VIATRA2 framework are related to the rich pattern
language with recursive (and non-recursive) pattern calls, and arbitrary depth of negation, below
we provide a formalization of the semantics of this crucial part. In order to avoid lengthy
formal descriptions, we omit the formalization of other elements of the language, like ASM
or GT rules. These already have a rich theoretical background, and VIATRA2 ’s contribution
is less significant. For instance, a formal semantics of ASMs is given in [25], while an ASM
formalization of GT rules is listed in [J13].

3.6.1 Formal representation of VPM models
A formal logic representation can be easily derived for VPM models. The vocabulary (signa-
ture) of VPM models can be derived directly from the Prolog-like syntax to include (i) pred-
icates (i.e. boolean function symbols) entity/1, relation/3, supertypeOf/2, instanceOf/2, in/2,
below/2, and (ii) traditional boolean and arithmetic function symbols. A state of the model
space (denoted byA) can be defined by an evaluation of these predicates and function symbols.

• Entity. A predicate entity(v) is evaluated to true in state A (denoted by Jentity(v)KA), if
an entity exists in the model space in state A uniquely identified by v. Otherwise the
predicate is evaluated to false: J¬entity(v)KA.

• Relation. A predicate relation(v, s, t) is true (denoted by Jrelation(v, s, t)KA), if the rela-
tion identified by v exists in the model space in state A, and it leads from model element
s to model element t. Otherwise, J¬relation(v, s, t)KA.

• SupertypeOf A predicate supertypeOf(sup, sub) is evaluated as true (denoted by
JsupertypeOf(sup, sub)KA), if sup is a supertype of sub in the model space in state A.
Otherwise, J¬supertypeOf(sup, sub)KA.

• InstanceOf A predicate instanceOf(ins, typ) is evaluated as true (denoted by
JinstanceOf(ins, typ)KA), if ins is an instance of typ in the model space in state A. Oth-
erwise, J¬instanceOf(ins, typ)KA.

35

 dc_244_11

3. SPECIFICATION OF MODEL TRANSFORMATIONS

• In A predicate in(chi, par) is evaluated as true (denoted by Jin(chi, par)KA), if chi is
directly contained by par in the model space in state A. Otherwise, J¬in(chi, par)KA.
Furthermore, we define predicate below(chi, anc) as the reflexive and transitive closure
of in.

Entities predicates of the form type(id) are treated as a conjunction of three predicates while
typed relations are handled accordingly: entity(type) ∧ entity(name) ∧ instanceOf(id, type) .
Furthermore, we assume the existence of (an infinite pool) of fresh object identifiers, which will
be assigned to newly created model elements.

3.6.2 Semantics of graph pattern matching

The formal semantics of graph patterns in VTCL will be defined as the set of all matches of a
given pattern in a model space (see Table 3.1). For this purpose, VTCL patterns are first trans-
lated into a logic program (i.e. Prolog-like predicates). Then the semantics of this logic program
will be defined as all the solutions which will be derived using standard relation database op-
erations such as selection (σ), projection (π), inner join (1), and left outer join (n). Below we
assume the reader’s familiarity with these elementary relational operations.

Parameter passing. The semantics of a pattern is defined with respect to a given model space
A and a set of input parameters passed to the pattern, which is encoded as a selection criterion
F0 =

∧
iXi = vi.

Elementary predicates. First of all (Rows 1-3 in Table 3.1, the semantics of elementary VPM
predicates (i.e. entity, relation, etc.) is simply the set of all corresponding tuples of the model
space filtered by the selection σ fulfilling criterion F to restrict the result to the input parameters.

Simple patterns. Then a simple pattern (Row 4) is represented as a conjunction of VPM pred-
icates. The semantics of a simple pattern is defined as the inner join (1) of matches retrieved by
each predicate. In order to resolve name clashes of variables prior to the inner join operation,
we rename all conflicting variable names by introducing new variables and extending the selec-
tion criterion F with corresponding equality constraints of (previously clashing) variables. For
instance, if variable X is clashing, and thus it is renamed to variable Y , an equality constraint
X = Y is added to F .

Non-recursive calls. In case of non-recursive pattern calls (Row 5), we simply derive the
inner join of each (non-recursive) pattern call by appropriate variable renaming as above.

Negative pattern calls. Negative pattern calls (Rows 6-7) are syntactically very close to or-
dinary pattern calls, however, their semantic treatment is essentially different. We assume that
there are no recursive calls alternating between negative and positive patterns. That is, if the
positive patterns transitively called by a pattern p are denoted by P while patterns transitively
called by a negative pattern of p is denoted by N then P ∪N = ∅.

After that the left outer join (n) of the positive pattern poscall and the negative patterns
is calculated. Successful matches of the pattern are identified as rows where all non-shared
variables of the negative patterns negj (i.e. non-shared with the positive pattern poscall) take
the NULL value (Yk,ns = ε).

36

 dc_244_11

3.6. FORMAL SEMANTICS OF GRAPH PATTERNS IN VTCL

V
T

C
L

gr
am

m
ar

(s
im

pl
ifi

ed
)

D
er

iv
ed

pr
ed

ic
at

es
Se

m
an

tic
s

1
f
a
ct

=
en

tit
y(

V
)

(o
rr

el
at

io
n(

V,
S,

T
))

f
a
ct
(V

)
←

en
tit

y(
V
)

f
a
ct
(V
,S
,T

)
←

re
la

tio
n(
V
,S
,T

)
Jf
a
ct
(V

)K
A F

d
ef =
σ
F
({
v
|Je

nt
ity
(v
)K
A
})

Jf
a
ct
(V
,S
,T

)K
A F

d
ef =
σ
F
({
(v
,s
,t
)|J

re
la

tio
n(
v
,s
,t
)K
A
})

2
f
a
ct

=
su

pe
rt

yp
eO

f(
A

,B
)

(o
ri

ns
ta

nc
eO

f(
A

,B
))

f
a
ct
(A
,B

)
←

su
pe

rt
yp

eO
f(
A
,B

)
(o

r
in

-
st

an
ce

O
f(

A
,B

))

Jf
a
ct
(A
,B

)K
A F

d
ef =

σ
F
({
(a
,b
)|J

su
pe

rt
yp

eO
f(
a
,b
)K
A
})

(o
ri

ns
ta

nc
eO

f(
a,

b)
)

3
f
a
ct

=
in

(A
,B

)(
or

be
lo

w
(A

,B
))

f
a
ct
(A
,B

)
←

in
(A
,B

)
(o

rb
el

ow
(A

,B
))

Jf
a
ct
(A
,B

)K
A F

d
ef =
σ
F
({
(a
,b
)|J

in
(a
,b
)K
A
})

(o
rb

el
ow

(a
,b

))

4
si
m
p
le

=
f
a
ct

1
;.
..
f
a
ct

n
;

si
m
p
le
(X

)
←

f
a
ct

1
(X

1
)
∧
··
·∧

f
a
ct

1
(X

n
)

Js
im
p
le
(X

)K
A F

d
ef =

F
1 1
l(

Jf
a
ct

l(
Y
l)

KA F
1
)

w
he

re
F
1
=
F
∧
∧ k

X
i,
k
=
Y
j,
k

fo
re

ac
h

va
ri

ab
le

re
na

m
in

g.

5
p
os
ca
ll

=
si
m
p
le

fin
d

(b
a
se

1
);

..
.

fin
d

(b
a
se

n
);

p
os
ca
ll
(X

)
←

si
m
p
le
(X

0
)
∧
∧ j

ba
se

j
(X

j
)

Jp
os
ca
ll
(X

)K
A F

d
ef =

Js
im
p
le
(Y

0
)K
A F
1

F
1 1

Jb
a
se

j
(Y

j
)K
A F
1

w
ith

F
1
=
F
∧
∧ k

(X
k
=
Y
k
)

fo
re

ac
h

va
rr

en
am

in
g.

6
n
eg

=
ne

g
fin

d
({
ba
se
|r
ec
u
r}

);
n
eg
(X

)
←
ba
se
(X

)
Jn
eg
(X

)K
A F

d
ef =

Jb
a
se
(X

)K
A F

7
ba
se

=
p
os
ca
ll
n
eg

1
,.
..
,n
eg

n
ba
se
(X

)
←

p
os
ca
ll
(X

0
)
∧

∧ j
(¬
n
eg

j
(X

j
))

Jb
a
se
(X

)K
A F

d
ef =

σ
F
2
(J
p
os
ca
ll
(Y

0
)K
A F
1

F
1 n

(F
1 n

Jn
eg

j
(Y

j
)K
A F
1
))

w
he

re
F
1

=
F
∧
∧ k

X
k

=
Y
k

fo
r

ea
ch

va
ri

ab
le

re
na

m
in

g,
an

d
F
2

=
F
1
∧
∧ Y k

,n
s
=
ε

fo
r

no
n-

sh
ar

ed
va

ri
ab

le
s

of
pa

tte
rn

s
n
eg

j
an

d
p
os
ca
ll

.

8
re
cu
r

=
ba
se

fin
d

(r
ec
u
r 1

);
..

.
fin

d
(r
ec
u
r n

);
re
cu
r(
X
)

←
ba
se
(X

0
)
∧

re
cu
r 1
(X

1
)
∧
··
·∧

re
cu
r n
(X

n
)

Jr
ec
u
r(
X
)K
A F

d
ef =

lf
p
(J
ba
se
(Y

0
)K
A F
1

F
1 1

Jr
ec
u
r 1
(Y

1
)K
A F
1

F
1 1

..
.

F
1 1

Jr
ec
u
r n
(Y

n
)K
A F
1
)

w
he

re
F
1
=
F
∧
∧ k

X
k
=
Y
k

fo
re

ac
h

va
ri

ab
le

re
na

m
in

g

9
bo
d
y

=
re
cu
r

(c
he

ck
co
n
d

)?
bo
d
y
(X

)
←
re
cu
r(
X
)∧
ch
ec
k
(X

)
Jb
od
y
(X

)K
A F

d
ef =

Jr
ec
u
r(
X
)K
A F
1

w
he

re
F
1
=
F
∧
ch
ec
k
(X

)

10
pa

tt
er

n
p
a
tt

=
{
bo
d
1

}
or

{
bo
d
2

}
p
a
tt
(X

)
←
bo
d
1
(X

)
∨
bo
d
2
(X

)
Jp
a
tt
(X

)K
A F

d
ef =

Jb
od

1
(X

)K
A F
∪

Jb
od

2
(X

)K
A F

Table 3.1: Deriving predicates for VTCL patterns

37

 dc_244_11

3. SPECIFICATION OF MODEL TRANSFORMATIONS

Recursive pattern calls. In VTCL, arbitrary recursive pattern calls are allowed (as long as
recursion and negation are not alternating), which is a rich functionality. Obviously, we require
the presence of a base pattern which is a simple pattern extended with non-recursive calls and
negative patterns. The semantics of recursive calls is defined in a bottom up way as the least
fix point of the inner join operation JbaseKAF

F1
1 Jrecur1KAF

F1
1 . . .

F1
1 JrecurnKAF). Initially,

Jrecur(0)i KAF = ∅ for all i. Then in the first iteration, it collects all matches derived by the
base cases of recursive patterns, i.e. Jrecur(1)i KAF = JbaseiKAF (i.e. its own base case). In all

upcoming iterations, Jrecur(i+ 1)KAF is defined as JbaseKAF
F1
1 Jrecur(i)1 KAF

F1
1 . . .

F1
1 Jrecur(i)n KAF

with the appropriate variable renaming. This step is executed until a fixpoint is reached, which
might cause non-termination for ill-formed programs.

Check condition and OR patterns. Check conditions (Row 9) in a pattern simply extend the
selection criteria F , while the result of OR-patterns (Row 10) is defined as the union of the
results for each pattern body.

3.6.3 Semantics of calling graph patterns from ASMs
In case of model transformations, graph patterns are called from ASM programs by (i) supplying
input parameters, and (ii) defining whether pattern matching should be initiated in choose or
forall mode by quantifying free variables of the pattern. Note that the same pattern can be called
with different variable binding, e.g., a pattern parameter can be an input parameter at a place,
while it can be quantified by forall at a different location.

When using the choose construct to initiate pattern matching, the free variables will be
substituted by existential quantification, i.e. only one (non-deterministically selected) match
will be retrieved from the result set of the pattern.

However, if the pattern is called using the forall construct, this means universal quantifica-
tion for the pattern parameters (head variables), thus all possible values of the head variables
that satisfy the pattern will be retrieved, and the ASM body of the forall rule will be executed
on each pattern one by one.

Finally, patterns may also contain internal variables which appear in the body but not in
the formal parameter list (head), which variables are quantified existentially. Note that univer-
sally quantified variables take precedence over existentially quantified ones, i.e. we try to find
one substitution of existentially quantified variables for each valid substitution of universally
quantified ones.

Formalization. In order to formalize this behavior, let X = X in∪Xf ∪Xb denote all the vari-
ables in the body of a pattern patt where X in is supplied as input parameters (with assignments
X in

i = vi that constitute the initial filtering condition F), Xf denote the free variables in the
pattern head, while Xb denote the variables appearing only in the pattern body.

Then the semantics (i.e. result set) retrieved by each construct is defined by projecting the
result set to the columns of pattern variables only. As a consequence, variables of the body Xb

are always evaluated in an existential way, no matter how many matches they have.

• Jchoose Xfwith find patt(X in ∪Xf)KAF
def
= any v ∈ π

Xin∪Xf (Jpatt(X)KAF), i.e. any
value in the result set projected to columns of the pattern variables only. If Jpatt(X)KAF =
∅, then the choose construct becomes inconsistent to cause backtracking in ASM.

• Jforall Xfwith find patt(X in ∪Xf)KAF
def
= π

Xin∪Xf (Jpatt(X)KAF), i.e. the (possibly
empty) result set projected to the columns of pattern variables only.

38

 dc_244_11

3.7. RELATED WORK

Finally, note that while a forall rule collects all the matches for a pattern in a single step, its
body is executed sequentially one by one on the matches. For the moment, only partial checks
are carried out during run-time to detect conflicts in the execution of different bodies in a forall
rule.

3.7 RELATED WORK

Since VIATRA2 can also be regarded as a graph transformation tool, we now compare the
advanced language constructs to similar constructs available in the most popular graph transfor-
mation tools, namely, AGG [54], ATOM3 [42], FUJABA [103], GReAT [16], PROGRES [125],
VMTS [90] and VIATRA2 citeVIATRA2. In addition, we also include ATL [77] in our com-
parison as an advanced model transformation language that is not built on graph transformation
principles.

More specifically, we compare in Fig. 3.13 the advanced constructs for specifying patterns
(such as negative application conditions, multi-objects, path expressions, constraints), control
structures (such as iterative and parallel rule applications, or parameter passing between rules),
and general transformation features (bidirectional transformations, template based code gen-
eration or generic transformations). Obviously, the corresponding ATL constructs are only
approximately “equivalent” due to the differences between the graph-centric and object-centric
paradigms of these transformation languages.

Figure 3.13: Comparison of advanced language constructs in model transformation tools

We would like to point out that VIATRA2 provides a more general support than any of these
graph transformation tools in the following areas:

• Pattern calls in VIATRA2 facilitate the reusability of elementary patterns to construct
complex patterns and rules. Fully declarative pattern calls in both LHS and RHS of GT
rules are a novel feature compared to other GT tools. In practice, it turns out to be a very
powerful technique to decompose complex model transformations into reusable pieces.

• VIATRA2 allows negative conditions with arbitrary depth of negation. This way, negative
patterns are not allowed to have negative patterns in turn. Other GT tools offer negative
conditions with a single depth of negation.

• Graph patterns in VTCL allow for full recursion. The best existing solution for recursion
(used in PROGRES and FUJABA) is called path expressions, which are basically regular

39

 dc_244_11

3. SPECIFICATION OF MODEL TRANSFORMATIONS

expressions over edges. This case structural recursion appears only on a single path of
edges.

• Only the transformation language of VIATRA2 supports generic transformations (trans-
formation rules having metamodel-level type parameters and dynamic retyping of model
elements) and meta transformations (rules manipulating other rules). This allows to cre-
ate highly reusable libraries for generic algorithms which are applicable to different meta-
models.

On the other hand, bidirectional transformations (provided by triple graph grammars [124]
in FUJABA and ATOM3) are not supported in VIATRA2 . For all other language features,
the VIATRA2 solution is (at least) comparable to some existing approaches available in graph
transformation tools. Finally, the approach of integrating graph transformation and ASMs is
quite novel.

For other related model transformation tools, it is worth mentioning MT [134], which uses
a powerful pattern language with multiplicities for pattern objects. On the one hand, such
multiplicities in MT provide a finer control over matching of a single object, i.e. to have exactly
five matches for an element. On the other hand, recursive patterns in VTCL provide more
general recursion.

Similar structuring concepts (like rules, patterns templates) are proposed in Tefkat [87].
On the one hand, only simple recursion is supported, and generic patterns are out of scope
for Tefkat. On the other hand, the extend and supersede constructs in Tefkat are powerful
mechanisms for reusability.

3.8 CONCLUSIONS

We presented the model transformation language of the VIATRA2 framework, which provides
a rule and pattern-based transformation language for manipulating graph models by combining
graph transformation and abstract state machines into a single paradigm. In addition, powerful
language constructs are provided for multi-level metamodeling to design modeling languages.

After a comparison with the transformation language of leading graph transformation tools,
we can conclude that the transformation language of VIATRA2 offers advanced constructs for
querying (e.g. recursive graph patterns) and manipulating models (e.g. generic and meta-
transformation rules) in unidirectional transformations which are frequently used in formal
model analysis to carry out abstractions.

40

 dc_244_11

Chapter 4

Model Transformation by Example

4.1 INTRODUCTION

The efficient design of automated model transformations between modeling languages has be-
come a major challenge to model-driven engineering (MDE) by now. Many highly expressive
transformation languages and efficient model transformation tools are emerging to support this
problem. The evolution trend of model transformation languages is characterized by gradu-
ally increasing the abstraction level of such languages to declarative, rule-based formalisms as
promoted by the QVT (Queries, Views and Transformations) [108] standard of the OMG.

However, a common deficiency of all these languages and tools is that their transformation
language is substantially different from the source and target models they transform. As a con-
sequence, transformation designers need to understand not only the transformation problem, i.e.
how to map source models to target models, but significant knowledge is required in the trans-
formation language itself to formalize the solution. Unfortunately, many domain experts, who
are specialized in the source and target languages, lack such skills in underlying transformation
technologies.

Model transformation by example (MTBE) is a novel approach (first introduced in [K22])
to bridge this conceptual gap in transformation design. The essence of the approach is to de-
rive model transformation rules from an initial prototypical set of interrelated source and target
models, which describe critical cases of the model transformation problem in a purely declara-
tive way. A main advantage of the approach is that transformation designers use the concepts of
the source and target modeling languages for the specification of the transformation, while the
implementation, i.e. the actual model transformation rules are generated (semi-)automatically.
In our context, (semi-)automatic rule generation means that transformation designers give hints
how source and target models can potentially be interconnected in the form of a mapping meta-
model. Then the actual contextual conditions used in the transformation rules are derived auto-
matically based upon the prototypical source and target model pairs.

The current chapter proposes the use of inductive logic programming [101] (ILP) to auto-
mate the model transformation by example approach. ILP can be defined as an intersection of
inductive learning and logic programming as it aims at the inductive construction of first-order
clausal theories from examples and background knowledge, thus using induction instead of de-
duction as the basic mode of inference. As the main practical advantage of this interpretation,
we demonstrate that by using existing ILP tools, we can achieve a high level of automation for
MTBE using relatively small examples.

The rest of this chapter (which is primarily based on [J1]) is structured as follows. Sec-

41

 dc_244_11

4. MODEL TRANSFORMATION BY EXAMPLE

tion 4.2 gives an overview of the core concepts of the MTBE approach. Section 4.3 summarizes
the inputs required for MTBE. In Section 4.4, which is the central part of the current chapter,
we give a detailed presentation on how to automate MTBE using inductive logic programming.
In Section 4.5, we collected some known limitations of our approach, while Sec. 4.6 sketches
a prototypical tool chain that we used for carrying out our case studies. Finally, Section 4.7
discusses related work and Section 5.2.5 concludes our chapter.

4.2 MODEL TRANSFORMATION BY EXAMPLE (MTBE)

4.2.1 Overview of Model Transformation By Example
Model transformations by example (MTBE) [K22] is defined as a highly iterative and interactive
process as illustrated in Fig. 4.1.

Figure 4.1: Model Transformation By Example: Process Overview

Step 1: Set-up of prototype mapping models. The transformation designer assembles an ini-
tial set of interrelated source and target model pairs, which are called prototype mapping
models in the rest of the chapter. These prototype mapping models typically capture criti-
cal situations of the transformation problem by showing how the source and target model
elements should be interrelated by appropriate mapping constructs.

Step 2: Automated derivation of rules. Based on the prototype mapping models, the MTBE
framework should synthesize a set of model transformation rules, which correctly trans-
form as many prototypical source models into their target equivalents as possible.

Step 3: Manual refinement of rules. The transformation designer can refine the rules manu-
ally at any time by adding attribute conditions or providing generalizations of existing
rules.

Step 4: Automated execution of rules. The transformation designer validates the correctness
of the synthesized rules by executing them on additional source-target model pairs as test
cases, which will serve as additional prototype mapping models. Then the development
process is started all over again.

The main vision of the “model transformations by example” approach is that the transforma-
tion designer mainly uses the concepts of the source and target languages as the “transformation
language”, which is very intuitive. He or she does not need to learn a new formalism for cap-
turing model transformations.

While the current chapter focuses on automating the “model transformation by example” ap-
proach, we still regard MTBE as a highly iterative and interactive process. Our experience also
shows that it is very rare that the final set of transformation rules is derived right from the initial

42

 dc_244_11

4.2. MODEL TRANSFORMATION BY EXAMPLE (MTBE)

set of prototype models. Furthermore, transformation designer can overrule the automatically
generated rules at any time, especially, when certain critical abstractions or generalizations are
not detected automatically.

Concerning correctness issues, one would expect as a minimum requirement that the de-
rived model transformation rules should correctly transform all prototypical source models into
their target equivalent. However, this is not always practical, since overspecification or incorrect
specification in prototype mapping models may decrease the chance of deriving a meaningful
set of model transformation rules. Since MTBE takes prototype mapping models as specifica-
tions, (unintended) omissions in them might easily result in incorrect rules. Therefore, MTBE
approaches should ideally tolerate a certain amount of “noise” when processing prototype map-
ping models.

4.2.2 Steps of automation

From a technical point of view, the process of model transformation by example can be split
into the following phases to support the semi-automatic generation of transformation rules:

1. Set up an initial prototype mapping model. In the first step, an initial prototype mapping
model is set up manually from scratch or by using existing source and target models.

2. Context analysis. Then we identify (positive and negative) constraints in the source and
target models for the presence of each mapping node. For instance, only top-level classes
are related to database tables or a table related to a class always contains a primary key
column. For this purpose, we first examine the contexts of all mapped source and target
nodes.

3. Connectivity analysis. For each edge in the target metamodel, we identify contextual
conditions (in the source and mapping models) for the existence of that target edge.

4. Derive transformation rules for target nodes. Then we derive transformation rules for
all (types of) mapping nodes that derive only target nodes using the information derived
during context analysis. Informally, the context of source nodes will identify the precon-
dition of the derived model transformation rules, while the context of target nodes will
define the postcondition of model transformation rules. As a result, we create target nodes
from source nodes interconnected by a mapping structure (of some type).

5. Derive transformation rules for target edges. Finally, we derive transformation rules for
each target edge based upon the information gained during connectivity analysis of source
and target elements.

6. Iterative refinement. The derived rules can be refined at any time by extending the proto-
type mapping model or manually generalizing the automatically generated rules.

In the current chapter, we discuss how the MTBE approach can be automated by using in-
ductive logic programming [101] as an underlying framework. Our goal is to show that it is
possible to construct relatively small prototype mapping models for practical problems from
which the complete set of model transformation rules can be derived semi-automatically. Fur-
thermore, we also identify critical transformation problems where our approach failed to derive
a complete solution.

43

 dc_244_11

4. MODEL TRANSFORMATION BY EXAMPLE

4.3 INPUTS OF MODEL TRANSFORMATION BY EXAMPLE

Model transformation by example takes a set of prototypical interconnected source and target
model pairs as inputs. These interconnections are described by mapping metamodels (Sec. 2.1.3)
and prototype mapping models (Sec. 4.3.1), which are prototypical instances of the mapping
metamodel to capture semantic cornercases of the model transformation problem as pairs of
(interconnected) models. We also collect our assumptions for the structure of prototype map-
ping models that we rely upon for automation (Sec. 4.3.2). The specificities of our approach
will be demonstrated using the object-relational mapping as a running example (Sec. 2.2.3.

Assumptions on mapping metamodel. It is worth pointing out that we assume that transforma-
tion designers provide the mapping metamodel as input to model transformation by example.
This metamodel already contains certain hints from the transformation designer on the actual
transformation rules. For instance, we learn from the metamodel that classes are expected to be
transformed to tables and columns.

However, the mapping metamodel does not specify (i) under what condition a class is trans-
formed into a table, (ii) if the same class can be mapped to different tables, (iii) if two classes
are mapped into the same tables, or (iv) if classes are ever transformed to columns at all. These
contextual conditions will be defined below implicitly by prototype mapping models. The au-
tomation discussed in this chapter will exclusively focus on automating the derivation of model
transformation rules to precisely capture contextual conditions with respect to its inputs, namely,
the mapping metamodel and prototype mapping models.

Finally, we regard the derivation of mapping metamodel as a separate automation problem,
which is subject to future work. First results for (semi-)automating this step were reported
in [47].

4.3.1 Prototype mapping models
Prototype mapping models can be obtained by interrelating any pair of existing (real) source
and target models. However, prototype mapping models are preferably small, thus they are
rather created by hand to incorporate critical situations of the transformation problem. These
prototype mapping models can also serve as test cases later on.

Example 4.1 A sample prototype mapping model is depicted in Fig. 4.2 for illustration pur-
poses. This prototype mapping model contains three UML classes (Employee, Manager and
Clerk where the first is the parent of the other two), an attribute boss of type Manager belong-
ing to class Clerk and an attribute favourite of type Clerk belonging to the class Manager .

The prototype mapping model captures that two relational database tables are present in the
target model (tMngr and tClerk). Both tables have three columns:

• The columns of tMngr : idMngr for the unique identifier, kindMngr for storing the kind
of instance, and favouriteClerk which is the target equivalent of the favourite attribute
together with a foreign key fkeyFavourClerk

• The columns of tClerk : idClerk , kindClerk and clerkBoss, where the latter is the target
equivalent of the boss attribute together with a corresponding foreign key fkeyClerkBoss.

It is worth pointing out that not all source nodes are necessarily linked to a mapping node.
In such a case, the corresponding source element does not have an equivalent in the target model
(see the prototype mapping model of Fig. 4.3 for an example). However, each target element
is required to be linked to exactly one mapping node, otherwise, their existence is not causally
dependent on the source model, which will be one of our assumptions.

44

 dc_244_11

4.3. INPUTS OF MODEL TRANSFORMATION BY EXAMPLE

Figure 4.2: A prototype mapping model

4.3.2 Assumptions

For this derivation process we make the following assumptions for the structure of the prototype
mapping models:

Assumption 1: Each mapping node is connected to all the source nodes on which it is causally
dependent. This requirement guarantees that prototype mapping models describe exactly
the intent of the transformation designers, thus they can be used as a specification for the
automation step.

Assumption 2: Each mapping node is connected to all the target nodes which cannot exist
without each other (i.e. belong to the same component). For instance, in our mapping,
a table generated from a class always has a primary key column, thus both are linked to
the same mapping node. Note that this is a major syntactic difference compared to [K22],
however, it fully corresponds to the idea of weaving models [22] where complex mapping
structures are used.

Assumption 3: Each target node is linked to exactly one mapping node. For instance, a table
and its primary key column will be linked to the same mapping node. This requirement
prescribes that the transformation is deterministic in a sense that the creation of each
target node is uniquely identified by a mapping node and a corresponding mapping edge,
and no merging of target nodes is required.

Assumption 4: The existence of a node in the target model depends only on the existence of
a certain mapping node, i.e. source and target models are dependent on each other only
indirectly via mapping structures.

45

 dc_244_11

4. MODEL TRANSFORMATION BY EXAMPLE

Assumption 5: The existence of an edge in the target model depends only on contextual con-
ditions of the source model and the existence of certain structure (but does not directly
depend on the target model itself).

While these assumptions seem to cover a large set of practical model transformations, we
will also discuss certain transformation problems in Sec. 4.5 where some of these conditions do
not hold, and we ran into problems when automating MTBE.

4.4 AUTOMATING MODEL TRANSFORMATION BY EXAMPLE

We now discuss how inductive logic programming can be used to automate the model trans-
formation by example approach. First we sketch how prototype mapping models can be con-
structed and mapped into corresponding Prolog clauses (Sec. 4.4.1). Then, we discuss one by
one how to automate each phase of MTBE (Sec. 4.4.2-4.4.5).

4.4.1 From prototype mapping models to Prolog clauses
Source and target models are mapped into corresponding Prolog clauses following a straight-
forward representation where each node type in the source or target metamodel is mapped into
a unary predicate, and each edge type in the metamodel is transformed into a binary predicate.
In order to avoid name clashes, the name of the source node type is generated as a prefix for
binary predicates for edges.

• On the one hand, (source or target) model nodes correspond to a ground predicate (over
the unique identifier which represents the object), which predicate defines the type of that
node.

• On the other hand, (source or target) edges have no unique identifiers in our representa-
tion, the corresponding binary predicate defines the source and target nodes, respectively.

Note that this is not a conceptual limitation of our approach: this mapping to Prolog clauses
could be easily refined to incorporate identifiers of edges. Unsurprisingly, there is a penalty in
the performance of the underlying ILP engine to incorporate this change.

Example 4.2 For instance, in the UML part of the prototype mapping model of Fig. 4.2, a class
Clerk with an attribute boss of type class Manager can be represented by the following Prolog
clauses (provided that clerk , manager and boss are unique identifiers this time).
% Clauses for source model
class(clerk).
class(manager).
attribute(boss).
attribute(favourite).
class_attrs(manager,favourite).
class_attrs(clerk,boss).
attribute_type(boss,manager).
attribute_type(favourite,clerk).

The representation of its corresponding target model (see Fig. 4.2) is the following.
% Clauses for target model
table(tMngr).
column(idMngr).
column(kindMngr).
column(favouriteClerk).
table_tcols(tMngr,idMngr).
table_tcols(tMngr,kindMngr).

46

 dc_244_11

4.4. AUTOMATING MODEL TRANSFORMATION BY EXAMPLE

table_tcols(tMngr,favouriteClerk).
table_pkey(tMngr,idMngr).
fkey(fkeyFavourClerk).
table_fkey(tMngr,fkeyFavourClerk).
fkey_cref(fkeyFavourClerk,idClerk).
fkey_kcols(fkeyFavourClerk,favouriteClerk).

table(tClerk).
column(idClerk).
column(kindClerk).
column(clerkBoss).
table_tcols(tClerk,idClerk).
table_tcols(tClerk,kindClerk).
table_tcols(tClerk,clerkBoss).
table_pkey(tClerk,idClerk).
fkey(fkeyClerkBoss).
table_fkey(tClerk,fkeyClerkBoss).
fkey_cref(fkeyClerkBoss,idMngr).
fkey_kcols(fkeyClerkBoss,clerkBoss).

Representation of mapping models

Mapping (weaving) models are represented in a slightly different way in order to improve the
performance of the ILP engine. In Sec. 2.1.3, we made an assumption on the structure of
mapping models, namely, that each mapping node and its outgoing edges can be represented by
a tuple

ref(ri, src1, . . . , srcn, trg1, . . . , trgm).

As a consequence a straightforward representation of mapping models is the following:
% Clauses for mapping model
cls2tab(r1,manager,tMngr,idMngr,kindMngr).
cls2tab(r2,clerk,tClerk,idClerk,kindClerk).
attr2col(r3,boss,clerkBoss,fkeyClerkBoss).
attr2col(r4,favourite,favouriteClerk,fkeyFavourClerk).

Furthermore, each mapping node is uniquely identified by (ordered) source nodes and (or-
dered) target nodes (src1, . . . , srcn and trg1, . . . , trgm, respectively). Therefore, the identifier
ri can be omitted from the tuple, moreover, the tuple can be projected to the source and target
elements without changing its truth value, i.e.

ref(ri, src1, . . . , srcn, trg1, . . . , trgm) ⇐⇒
ref(src1, . . . , srcn) ⇐⇒
ref(trg1, . . . , trgm).

As a consequence, we can interchangeably use the following clauses in the different phases
of MTBE:
% Alternative clauses for mapping models
cls2tab(r1,manager,tMngr,idMngr,kindMngr).
cls2tab(manager).
cls2tab(tMngr,idMngr,kindMngr).

Inheritance and helper edges

While the simplified metamodels of Fig. 2.2 do not contain generalization, we emphasize that
the inheritance hierarchy of metamodel nodes and edges (i.e. the generalization of classes and
the refinement of association ends as in MOF 2.0) can be mapped into Prolog clauses of the
form

superclass(X) :- subclass(X)

47

 dc_244_11

4. MODEL TRANSFORMATION BY EXAMPLE

when superclass is a generalization of subclass in some metamodel. Such clauses will be part
of our background knowledge.

Various model transformation approaches introduce the concept of helper (derived) edges
in order to reduce the complexity of individual transformation rules. When the actual model
transformation rules are derived, we assume that such helper edges of the source language are
already part of our background knowledge. As a result, helper edges enable the ILP engine to
derive more general hypothesis as an output.

Background knowledge on helper edges can be obtained in two different ways.

• We allow domain experts to directly add helper information to the knowledge base.

• However, we can also use ILP to derive such helper information automatically in a pre-
processing phase carried out on the source and target languages separately.

Example 4.3 In our running example, the background knowledge may contain the following
definitions defined by some domain expert (currently on the Prolog level).
ancestor(X,Y) :- class_parent(X,Y).
ancestor(X,Y) :- class_parent(Z,Y), ancestor(X,Z).

This definition of the ancestor relation can also be taught in a preprocessing phase by the
ILP engine with an appropriate set of positive and negative examples (i.e. using the same
technique as described below). In such a case, the domain expert only gives a hint that the
ancestor relation may be important (by adding it to the metamodel as a derived element), and
supplies an appropriate set of examples. In the sequel, we assume the presence of such helper
relations in the background knowledge, which were derived by analyzing the source and target
models prior to the model transformation itself.

Moreover, by using abductive learning [6, 100] techniques, Aleph can also synthesize the
ancestor relation on demand, i.e. when learning other predicates. In this case, we only need to
assume that our background knowledge contains sound but not necessarily complete informa-
tion on helper edges like ancestor , i.e. the domain expert needs to give some positive examples
for the ancestor edge.

Furthermore, there is intensive research on predicate learning [44] in the field of inductive
logic programming when absolutely no hint is required from domain experts on helper edges,
i.e. not even the existence of ancestor edge is required to be given as a hint. However, Aleph
unfortunately does not yet support this feature.

4.4.2 Context analysis
In this phase, we identify constraints in the source and target models for the presence of each
mapping node.

Context analysis for the source model

In case of context analysis of the source model, our background knowledge B will consist of
all the facts derived from the source model (by taking the source projection of the prototype
mapping model), and the positive and negative facts (E+ and E−) will consist of tuples on the
mapping node in question. This way, a separate ILP problem will be derived for each mapping
node.

When deriving negative facts from a prototype mapping model, we currently build on closed
world assumption as a frame condition, i.e. negative facts are derived for all identifiers part of
the source model and not listed in positive facts. However, this is not the only possibility, and

48

 dc_244_11

4.4. AUTOMATING MODEL TRANSFORMATION BY EXAMPLE

one can explicitly ask the user to provide (an incomplete) list of negative examples. While this
latter approach seems to be more cumbersome, in many case the ILP engine can better tolerate
noise, i.e. when transformation designers unintendedly include (or exclude) certain elements
from the prototype mapping model.

Example 4.4 For instance, we will identify contextual conditions in the source model when a
mapping node of type attr2col should appear. For this purpose, we construct B from Fig. 4.2 to
obtain the facts listed above. For positive facts, we have attr2col(boss), and attr2col(favourite)
and for negative facts, we can state attr2col(manager), attr2col(employee) and attr2col(clerk). In
Aleph, all these specifications need to be listed in separate files, but for presentation purposes,
we will list them together.
% Background knowledge
class(clerk).
class_attrs(clerk,boss).
attribute(boss).
class(manager).
class_attrs(manager,favourite).
attribute_type(boss,manager).
attribute_type(favourite,clerk).
% Positive facts
attr2col(boss).
attr2col(favourite).
% Negative facts
attr2col(clerk).
attr2col(manager).
attr2col(employee).

Aleph will automatically derive the following rule as hypothesis by using core inductive
logic programming algorithms:
attr2col(X) :- attribute(X).

Note that this result fulfills our expectations provided that only well-formed models are
considered when language-specific constraints are checked separately.

However, we might want to specify that attributes are required to be attached to classes, and
that each attribute is required to have a type in order to be transformed into a corresponding
column. Since ILP derives the most general solution, these constraints are not incorporated in
the solution by default. Therefore, we enrich our background knowledge and negative facts
with fictitious model elements.

Example 4.5 Let us revisit the previous example by enriching background knowledge
% Background knowledge
% ... as before +
attribute(notype).
attribute(noattrs).
class_attrs(notype,manager).
class_attrs(noattribute,clerk).
attribute_type(noattrs,manager).
attrs(noattribute,manager).
% Negative facts
% ... as before
% Negative facts
% ... as before +
attr2col(noattrs).
attr2col(notype).
attr2col(noattribute).

As a result, the ILP engine will derive the following rule:
attr2col(A) :- attribute(A), class_attrs(B,A),

attribute_type(A,C).

49

 dc_244_11

4. MODEL TRANSFORMATION BY EXAMPLE

This rule will properly handle incomplete model as well. The price we paid for that is that
both the background knowledgeB and the negative facts E− need to be extended with carefully
selected cases, which can be cumbersome. Fortunately, if a sufficient number of real source and
target model pairs are available, they might already cover cases to handle such incomplete
models. Anyhow, it is a subject of future research to incorporate language constraints into
automatically generated transformation rules.

In the general case, the ILP engine might derive multiple rules as a hypothesis, which means
a disjunction of the different bodies. This is normal for the context analysis of the source model,
since the same type of mapping nodes can be used with different source contexts.

Context analysis for the target model

As for the context analysis of the target model, the ILP engine needs to identify trivial hy-
potheses due to Assumption 3 (discussed in Sec. 4.3.2), which prescribes causal dependency of
target nodes on the mapping structure. Therefore, we reverse the direction of our investigations,
and use predicates corresponding to mapping structures as background knowledge, predicates
corresponding to the nodes of the target model as positive and negative examples.

Example 4.6 Below we present an example for identifying the target context for FKeys.
% Background knowledge
attr2col(favouriteClerk,fkeyFavourClerk).
attr2col(clerkBoss,fkeyClerkBoss).
cls2tab(tMngr,idMngr,kindMngr).
cls2tab(tClerk,idClerk,kindClerk).
% Positive facts
fkey(fkeyClerkBoss).
% Negative facts
fkey(clerkBoss).
fkey(tMngr).
fkey(idMngr).
fkey(kindMngr).
fkey(tClerk).
fkey(idClerk).
fkey(kindClerk).

As a result, the ILP engine will derive the following hypothesis for the target model, which
states that a mapping node of type attr2col should always be connected to an FKey in the target
model.

fkey(A) :- attr2col(B,A).

In contrast to the context analysis of the source model, it is an error now if the ILP engine
derives multiple rules for the target model as Assumption 3 would be violated.

In addition to this context analysis, one could also carry out context analysis with reverse
roles, which can help constructing reverse transformations, but this step is out of scope for the
current chapter.

4.4.3 Learning negative constraints
In a typical model transformation, the existence of a certain mapping structure may depend on
the non-existence of certain structures in the source model. ILP systems frequently contain
support to identify such negative constraints by means of constraint learning. The technique of
constraint learning aims at identifying negative constraints of the form false :- b1, b2, ... , bn.,
i.e. the conjunction of the bodies should never happen.

Learning of negative constraints will be demonstrated on the intuitive mapping rule that
only top-level classes should be transformed into database tables. For this purpose, we use an
additional prototype mapping model, which is illustrated in Fig. 4.3.

50

 dc_244_11

4.4. AUTOMATING MODEL TRANSFORMATION BY EXAMPLE

Figure 4.3: Prototype mapping model with unmapped source elements

In case of constraint learning, we only need to construct the background knowledge without
positive and negative facts from the source model and the mapping structures.

Example 4.7 Let us continue our running example to handle negative constraints:
% Background knowledge
class(animal).
class(dog).
class_parent(dog,animal).
class_attrs(dog,chase).
attribute(chase).
class(cat).
attribute_type(chase,animal).
cls2tab(animal).

With appropriate Aleph settings, the following constraints will be induced automatically
(which are specific to the mapping node cls2tab):
false :- cls2tab(A), class_parent(A,A).
false :- cls2tab(A), class_parent(B,A).

The first constraint is, in fact, a language restriction of UML (i.e. no class is a parent of
itself), while the second derived constraint is a negative constraint of the transformation itself.

A practical problem of the Aleph system we needed to face is that all synthesized constraints
are listed instead of listing only the most general ones. Therefore, we need to prune the enu-
merated list of constraints according to clause entailment in order to keep only the most general
constraints.

Example 4.8 For instance, the following constraint is derived by Aleph, but should be filtered
out as presenting redundant knowledge with respect to the previous results:
false :- cls2tab(A), class_parent(A,A),

class_parent(B,A).

We carry out this pruning by submitting the derived constraints to the Prover9 first-order
theorem prover [1]. For this purpose, we present the identified constraints as assumptions to
the theorem prover, and the prover tries to construct a formal proof that the more complex
constraint implies any of the more simple ones. As for the example above, our assumptions are
the following:

51

 dc_244_11

4. MODEL TRANSFORMATION BY EXAMPLE

∀A¬(cls2tab(A) ∧ class_parent(A,A)) (4.1)
∀A∀B¬(cls2tab(A) ∧ class_parent(B,A)) (4.2)

∀A∀B¬(cls2tab(A) ∧ class_parent(A,A) ∧ class_parent(B,A)) (4.3)

As a theorem we aim to prove that

∀A∀B(cls2tab(A) ∧ class_parent(A,A) ∧ class_parent(B,A)) →
(cls2tab(A) ∧ class_parent(A,A) ∨ cls2tab(A) ∧ class_parent(B,A))

Prior to submitting similar problems to the theorem prover, the constraints are ordered ac-
cording to their length. All (non-filtered) constraints up to length n − 1 can be used when
proving the entailment of a constraint of length n. Fortunately, such theorems are proved im-
mediately by Prover9, therefore, the effort related to the use of sophisticated theorem provers is
negligible.

4.4.4 Connectivity analysis
In case of connectivity analysis, we derive different kind of ILP problems for each edge in the
target metamodel. The background knowledge B now contains all elements from the source
model and all mapping structures as well. This time, the tuple of the mapping structure contains
both source and target mappings as follows:

ref(src1, . . . , srcn, trg1, . . . , trgm).

Positive and negative facts (E+ and E−) are derived this time from an edge in the target meta-
model by deriving a separate ILP problem from each edge type.

Example 4.9 As a demonstration, we carry out the connectivity analysis for target edge cref ,
which is performed (from an ILP perspective) in a similar way as context analysis.
% Background knowledge
% Source model
class(employee).
class(clerk).
class_parent(clerk,employee).
class_attrs(clerk,boss).
attribute(boss).
class(manager).
class_parent(manager,employee).
class_attrs(manager,favourite).
attribute_type(boss,manager).
attribute_type(favourite,clerk).
% Mapping model
attr2col(favourite,favouriteClerk,fkeyFavourClerk).
attr2col(boss,clerkBoss,fkeyClerkBoss).
cls2tab(manager,tMngr,idMngr,kindMngr).
cls2tab(clerk,tClerk,idClerk,kindClerk).
% Helper edges
ancestor(X,Y) :- class_parent(X,Y).
ancestor(X,Y) :- class_parent(Z,Y), ancestor(X,Z).

% Positive facts
cref(fkeyClerkBoss,idMngr).
cref(fkeyFavourClerk,idClerk).
% Negative facts = all type consistent pairs
% which are not in positive facts

52

 dc_244_11

4.4. AUTOMATING MODEL TRANSFORMATION BY EXAMPLE

cref(fkeyClerkBoss,kindMngr).
cref(fkeyClerkBoss,idClerk).
cref(fkeyClerkBoss,kindClerk).
cref(fkeyClerkBoss,clerkBoss).
cref(fkeyClerkBoss,favouriteClerk).
cref(fkeyFavourClerk,kindMngr).
cref(fkeyFavourClerk,idMngr).
cref(fkeyFavourClerk,kindClerk).
cref(fkeyFavourClerk,clerkBoss).
cref(fkeyFavourClerk,favouriteClerk).

Further explanation is needed to understand how negative facts are derived this time. Here,
we enumerate all FKey and Column pairs in the model which are not connected by a cref edge.
In this step, we impose closed world assumption on our model, thus the set of (type-conforming)
object identifiers are exactly those that can be found in the model.

Example 4.10 The Aleph ILP system will derive the following hypothesis for this prototype
mapping model.
cref(A,B) :- cls2tab(C, D, B, E), attr2col(F, G, A),

attribute_type(F, C).

This rule states that a target node A (of type FKey) is connected to a target node B (of type
Column) with an edge of type cref , if class C which belongs to the table D containing B as its
primary key is the type of attribute F , which is the source equivalent of the foreign key A.

During a validation phase, domain experts might reveal that this is only a partial solution
since type edges may lead into a subclass (descendant) of class E , and not necessarily into
E itself. Therefore, if we incrementally refine our knowledge base by adding the prototype
mapping model of Fig. 4.3.

Example 4.11 Based upon Fig. 4.3, a new Prolog inference rule is derived in addition to the
previous one, which fully corresponds to our expectations:
cref(A,B) :- attr2col(C,A,D), attribute_type(C,E),

ancestor(E,F), cls2tab(F,G,B,H).

This rule extends the previous one by stating that maybe an ancestor F of the class E
(which is the type of attribute C) has the corresponding table which stores the mapped primary
key column B.

With appropriate additional training for associations, Aleph will derive six rules which “gen-
erates” a cref edge (using src and dst instead of type, and asc2tab instead of attr2col).

4.4.5 Generation of model transformation rules
Now we discuss how to derive model transformation rules based upon the inference rules de-
rived by the ILP engine during context analysis and connectivity rules. We use graph trans-
formation rules [51] (Sec. 2.2.2) as the underlying transformation language, which provides
a pattern and rule based manipulation technique for graph models frequently used in various
model transformation tools. Each rule application transforms a graph by replacing a part of it
with another graph. We derive a different set of rules for generating target nodes and edges.

Rules for generating target nodes

The first kind of GT rules that we derive are required for generating all the target nodes. For this
purpose, we combine the source and the target context of a certain mapping node as discussed
in Alg. 1.

53

 dc_244_11

4. MODEL TRANSFORMATION BY EXAMPLE

Algorithm 1 An algorithm for generating graph transformation rules to derive target nodes
RN : a node from the mapping metamodel
pRN : a node predicate derived from the mapping metamodel
SrcCtx: list of inference rules derived as the source context for RN
TrgCtx: list of inference rules derived as the target context for RN
NegConstr: negative constraints derived for RN

fun generate_GT_rule_for_nodes(RN , SrcCtx, TrgCtx, NegConstr)=
1: for all inference rule psrcRN :- a1, a2, an in SrcCtx do
2: create an empty GT rule R = (LHS,RHS,NAC)

// Creating the LHS
3: add a node for each variable appearing in the body a1, a2, an
4: infer types for the nodes based on the metamodels
5: add an edge to the LHS for each predicate of the body a1,a2,an

// Creating the RHS
6: copy LHS to RHS
7: add a mapping node r1 for pRN

8: add edges to interconnect r1 with all source nodes identified by psrcRN

9: for all inference rule ptrgRN :- b1 in TrgCtx do
10: add a target node nb1 to RHS for the body b1
11: add an edge to interconnect r1 with the new target node nb1

12: end for
// Creating NACs based on constraints

13: for all negative constraint false :- n1, nk in NegConstr do
14: add the graph corresponding to the body of the constraint as a new NAC
15: end for

// NAC to prevent applying a rule twice on a match
16: add a mapping node r2 node to a new NAC
17: add edges to all the source nodes a1, a2, an from r2
18: end for

• The LHS of the rule is constructed for each source context of a mapping node (Lines 2-5).

• The RHS of the rule contains a copy of the LHS and the entire target context of the same
mapping node interconnected by an appropriate mapping structure (Lines 6-12).

• A separate NAC is derived for each negative constraint containing a mapping node of a
certain type (Lines 13-15).

• Finally, the mapping structure generated by the RHS is added to prevent applying the rule
twice on the same source object.

Example 4.12 As a demonstration, we list the graph transformation rule derived from mapping
node cls2tab in Fig. 4.4. The rule expresses that for each class C without a child superclass
CP, a table T is generated with two columns Id and Kind (which are, in fact, attached to table T
later on by transformation rules generating edges).

54

 dc_244_11

4.4. AUTOMATING MODEL TRANSFORMATION BY EXAMPLE

Figure 4.4: GT rule to derive target nodes

Rules for generating target edges

A second set of graph transformation rules aims at interconnecting previously generated target
nodes with appropriate edges. For this purpose, we need to combine the Prolog rules derived
during connectivity analysis with target contexts. During connectivity analysis, we identify
what conditions are required in the source language in order to generate a target edge of a
certain type (see Alg. 2).

Algorithm 2 An algorithm for generating graph transformation rules to derive target edges
RE: an edge from the target metamodel
pRE(A,B): an edge predicate derived from the target metamodel
Connect: list of inference rules derived connectivity analysis for RE

fun generate_GT_rule_for_edges(RE, SrcCtx, TrgCtx, NegConstr)=
1: for all inference rule pRE(A,B) :- a1, a2, an in Connect do
2: create an empty GT rule R = (LHS,RHS,NAC)

// Creating the LHS
3: add a node for each variable appearing in the body a1, a2, an
4: infer types for the nodes based on the metamodels
5: add an edge to the LHS for each predicate of the body a1,a2,an

// Creating the RHS
6: copy LHS to RHS
7: add a target edge e1 of type RE leading from node A to node B

// Creating NAC
8: add the same edge as a NAC as well
9: end for

• The LHS of such GT rule is constituted from the inference rules derived by connectivity
analysis. These inference rules only identify source edges and interconnecting mapping
structures, thus the types of the related nodes need to be inferred. (Lines 2-5)

• The RHS is simply a copy of the LHS extended with the corresponding target edge. (Lines
6-7)

• The same edge is added as a NAC is derived to prevent multiple application of the rule on
the same match. (Line 8)

Example 4.13 As a demonstration, we present one GT rule (out of the six) derived for gener-
ating cref edges in Fig. 4.5.

55

 dc_244_11

4. MODEL TRANSFORMATION BY EXAMPLE

Figure 4.5: A GT rule to derive target cref edges

In the current chapter, we systematically separated graph transformation rules into node
creation rules and edge creation rules for separation of transformation concerns. It is subject to
future research to merge these automatically generated rules in order to obtain a more compact
set of transformation rules.

Helper edges can be treated in two ways. A first solution is when each helper edge is added
explicitly to the metamodel, thus they are ordinary edges. These edges are then derived by ordi-
nary graph transformation rules. Alternatively, a helper edge can be represented as a recursive
graph pattern [J14] (Sec. 3.3.1) which is supported by model transformation frameworks like
VIATRA2 or TEFKAT.

Practical assessment of MTBE for the object-relational mapping

As an initial case study for our approach, we implemented the object-relational mapping with
MTBE. The source model used in the prototype mapping models contained altogether 10 classes,
3 attributes and 4 associations. Its target equivalent contained 8 tables with 2 or 3 columns for
each, and 11 primary key constraints.

Using this relatively small prototype mapping model, we were able to automatically gener-
ate 20 graph transformation rules (3 for deriving target nodes and 17 for deriving target edges)
by using MTBE, which turned out to be the complete transformation.

Obviously, this prototype mapping model was not created directly from scratch, but it was
a result of three iterations. However, all rules have been derived automatically, which exceeded
our expectations expressed in [K22].

4.5 KNOWN LIMITATIONS

In order to assess the conceptual and practical limitations of our approach, we have chosen
a complex model transformation problem as another case study, where a large abstraction gap
needs to be bridged between the source and target languages. The transformation was originally
defined in [75], and it aims to derive a Petri net representation of UML statecharts for model
analysis purposes.

On the one hand, most of the transformation rules have been generated automatically even
for this complex case study. However, two conceptual limitations of the current MTBE ap-
proach using ILP techniques have also been revealed. These limitations do not violate our
assumptions (see Sec. 4.3.2), but since they arise from practical problems, they demonstrate
that these assumptions might be too restrictive for certain model transformation problems.

56

 dc_244_11

4.5. KNOWN LIMITATIONS

In order to avoid the presentation of the complex transformation itself, we have taken these
problems out of their context and present an analogy in the context of the object-relational
mapping.

4.5.1 Non-deterministic transformations
Let us assume that our object-relation transformation requires that each UML class can only be
processed if all its parents have already been processed. Thus, we need to define a total order
between the classes as an output, which can be denoted by a chain of next edges, for instance.
Thus the goal is to derive transformation rules for generating this total order using some sample
chains as prototype mapping models.

Figure 4.6 depicts one class hierarchy where class c1 is the parent of class c2 and c3, while
class c4 is not in a parent relation with any of the previous classes. One possible ordering of
these classes is c1,c2,c3,c4, but c1,c4,c3,c2 is also a possible ordering.

Figure 4.6: A sample class hierarchy for ordering classes

In this case, the transformation has a non-deterministic result, i.e. any total order respecting
the partial order imposed by the parent relation is a valid result. However, the main problem
is that this transformation has two consecutive phases: GT rules generating the first next edge
are different from GT rules generating subsequent next edges. However, these phases were not
revealed by the ILP engine.

On the other hand, when the transformation rules are successfully derived, their confluence
can be investigated by well-known techniques of graph transformation (such as critical pair
analysis [72]).

4.5.2 Counting in transformations
The second problem is related to counting during model transformations. Let us assume that
each table in the target database model should have an attribute counting the number of classes
it represents. For instance, when a top-level class is transformed into a table, this attribute of
the table should count the number of descendants of that class.

When transforming the class hierarchy presented in Fig. 4.6, two tables corresponding to
classes c1 and c4 are generated. The counter for the corresponding table of c1 should be set to
3, while the counter related to c4 is set to 1.

Here the problem is that such a counting is only possible if (i) we use higher-order logic
where one can refer to the number of matches for a certain predicate, or (ii) processing the
matches sequentially as long as an unprocessed match is found.

4.5.3 Practical limitations
One complexity aspect of the model transformation [75] is that one source node is related to
many target nodes due to the abstraction gap between high-level UML models and low-level
Petri nets.

57

 dc_244_11

4. MODEL TRANSFORMATION BY EXAMPLE

As a consequence, both the number of variables (i) and the clause length (clauselength) of
the hypothesis (which are the most important parameters of the ILP engine concerning perfor-
mance) had to be kept at a relatively large numbers (above 10). Thus, we experienced cases
when the generation of inference rules was not instantaneous (but still completed within 5-10
seconds).

However, more critical performance would be experienced when the source model have the
same complexity, i.e. when the derivation of a target edge depends on a large source context
with a large number of edges. While our experience shows that this is not so common in a
typical model transformation problem, these issues should be kept in mind as potential practical
limitations of using an ILP engine for the model transformation by example approach.

It is worth pointing out that Aleph requires at least two positive examples in order to carry
out generalization, otherwise only the facts themselves will be retrieved instead of inference
rules.

4.6 PROTOTYPE TOOL SUPPORT

We have implemented a prototypical tool chain (illustrated in Fig. 4.7) to automate MTBE by
integrating an off-the-shelf model transformation tool with an ILP engine using Eclipse as the
underlying tool framework.

Figure 4.7: A prototype tool chain for automating MTBE

• Source and target metamodels and models as well as prototype mapping models are con-
structed and stored as ordinary models in the VIATRA2 model space.

• Then a first transformation takes prototype mapping models and generates a set of ILP
problems in the way discussed in Sec. 4.4.

• These models are fed into the Aleph ILP engine to induce inference rules (for context
analysis or connectivity analysis) or learn negative constraints. Obviously, this step is
hidden from the user, as Aleph runs in the background.

58

 dc_244_11

4.7. RELATED WORK

• Ongoing work aims at integrating the Prover9 theorem prover in order to filter redundant
constraints as described in Sec. 4.4.3.

• Based upon the discovered inference rules, transformation rules are synthesized in the
graph transformation based language of the VIATRA2 framework [K1].

• These transformation rules are then executed as ordinary transformations within VIA-
TRA2 to complete the lifecycle of our model transformation by example approach.

This initial tool chain was already a great help for us in carrying out our experiments. Since
a different ILP problem is submitted to Aleph for each type of mapping node or target edge,
their manual derivation was already infeasible in practice.

However, additional future work should be carried out to improve the usability of the tool
chain. Probably the most critical issue is that prototype mapping models need to be defined
using the abstract syntax of the language, which is frequently too complex notation for domain
experts. Ideally, mappings could be defined using the concrete syntax of source and target
languages.

4.7 RELATED WORK

While the current chapter is based on [J1, K22, K23], Strommer et al. independently presented
a very similar approach for model transformation by example in [138]. As the main conceptual
difference between the two approaches is that [138] presents an object-based approach which
finally derives ATL [79] rules for model transformation, while [K22] is graph-based and derives
graph transformation rules.

In a recent paper of Strommer [129], their MTBE approach is applied to a model trans-
formation problem in the business process modeling domain and several new MTBE operators
used on the concrete syntax were identified. Disregarding the string manipulation (which is
obviously out of scope for the current chapter), all the rest can be incorporated in our approach.
In this sense, our limitations in Sec. 4.5 only arise in significantly more complex model trans-
formation problems.

Naturally, the model transformation by example approach show correspondence to various
“by-example” approaches. Query-by-example [141] aims at proposing a language for querying
relational data constructed from sample tables filled with example rows and constraints. A
related topic in the field of databases is semantic query optimization [91, 126], which aims
at learning a semantically equivalent query which yields a more efficient execution plan that
satisfy the integrity constraints and dependencies.

The by-example approach has also been proposed in the XML world to derive XML schema
transformers [55,88,110,140], which generate XSLT code to carry out transformations between
XML documents. Advanced XSLT tools are also capable of generating XSLT scripts from
schema-level (like MapForce from Altova [8]) or document (instance-)level mappings (such as
the pioneering XSLerator from IBM Alphaworks, or the more recent StylisStudio [2]).

Programming by example [39, 116], where the programmer (often the end-user) demon-
strates actions on example data, and the computer records and possibly generalizes these ac-
tions, has also proven quite successful.

While the current chapter heavily uses advanced tools in inductive logic programming [101],
other fields of logic programming has also been popular in various model transformation ap-
proaches like answer set programming for approximating change propagation in [34] or F-Logic
as a transformation language in [64].

59

 dc_244_11

4. MODEL TRANSFORMATION BY EXAMPLE

The derivation of executable graph transformation rules from declarative triple graph gram-
mar (TGG) rules is investigated in [85]. While TGG rules are quite close to the source and target
modeling languages themselves, they are still created manually by the transformation designer.

Inspired by the current results, in the recent years, several groups have started research to
come up with new model transformation by example approaches, such as [47, 57, 61, 83, 117,
129, 130].

4.8 CONCLUSIONS

In the current chapter, we proposed to use inductive logic programming tools to automate the
model transformation by example approach where model transformation rules are derived from
an initial prototypical set of interrelated source and target models. We believe that the use of
inductive logic programming is a significant novelty in the field of model transformations.

Let us briefly summarize our experience in using ILP and Aleph. Our experiments car-
ried out on the object relational mapping and a complex model analysis transformation [75]
demonstrated that ILP (and Aleph) is a very promising way for implementing MTBE due to the
following reasons.

• Partly to our own surprise, we were able to derive all the transformation rules of the
object-relational mapping automatically with Aleph, which exceeded our expectations
in [K22].

• For rule training, we used relatively small prototype mapping models.

• We used default Aleph settings almost everywhere (only the number of new variables and
clauses were set manually). Determination and mode settings were derived systematically
when using Aleph for MTBE.

Of course, we experienced certain limitations as well, which were presented in Sec. 4.5.
Therefore, our main intentions for future work is to resolve these limitations.

• Non-deterministic transformations were problematic, especially, when an edge of a cer-
tain type needs to be generated in a certain order.

• We failed to implement counting in transformation rules, when a target attribute contains
the number of matches of a source pattern. This way, handling of attributes values is
subject to future work. We expect that data mining techniques could be usable to resolve
this issue.

Despite these limitations, the model transformation by example approach has a strong po-
tential, and inductive logic programming turns out to be a powerful tool when implementing
it.

60

 dc_244_11

Chapter 5

Efficient Execution Strategies for
Model Transformations

5.1 INTRODUCTION

This chapter focuses on how to provide efficient execution strategies for model transformations.
Three high-level strategies will be discussed, namely, model-specific search plans (Sec. 5.2),
incremental graph pattern matching (Sec. 5.3) by adapting RETE networks (Sec. 5.4) of expert
systems, and dedicated model transformation plugins (Sec. 5.5).

These techniques present several lines of research carried out within the scope of the VIA-
TRA2 project under my scientific leadership. As my contribution primarily lies in the strategies
and not in the details, the the current chapter is less detailed compared to other technical chap-
ters of the thesis.

5.2 MODEL-SPECIFIC SEARCH PLANS

5.2.1 Introduction

Model transformation tools based on the visual, rule and pattern-based formal paradigm of
graph transformation (GT) [51, 119] already integrate research results of several decades.

A survey [K28] assessing the performance of graph transformation tools following essen-
tially different approaches on various benchmark examples revealed that approaches (such as
Fujaba [58], PROGRES [125] or GReAT [16]) compiling transformation rules into native exe-
cutable code (Java, C, C++) are powerful for model transformation purposes. The performance
of the executable code is optimized at compile time by evaluating and optimizing different
search plans [142] for the traversal of the LHS pattern, which typically exploits the multiplicity
and type restrictions imposed by the metamodel of the problem domain.

While in many cases, types and multiplicities provide a powerful heuristics to prune the
search space, in practical model transformation problems, one has further domain-specific
knowledge on the potential structure of instance models of the domain, which is typically not
used in these approaches. Furthermore, in case of intensive changes during the evolution of
models, the characteristic structure of a model may change as well, therefore a search plan
generated a priori at compile time might not be flexible and powerful enough.

In the current section, we introduce model-sensitive search plan generation for graph pat-
tern traversal (as an extension to traditional multiplicity and type considerations of existing
tools) by estimating the expected performance of search plans on typical instance models that

61

 dc_244_11

5. EFFICIENT EXECUTION STRATEGIES FOR MODEL TRANSFORMATIONS

are available at transformation design time. It is worth emphasizing that this technique is di-
rectly applicable to furtherly fine-tune the performance of the above mentioned compiler-based
GT approaches as well.

Model-specific search plans can be further enhanced with adaptivity [J20] where the opti-
mal search plan can be selected from previously generated search plans at run-time based on
statistical data collected from the current instance model under transformation.

5.2.2 Overview of the Approach
The proposed workflow of using these techniques is summarized in Fig. 5.1.

Figure 5.1: Overview of the Approach

Optim First, typical models of the domain are collected (from transformation designers, end
users, etc.) from which the optimizer generates one search plan with the best average
performance for each typical model.

Cdgen Still at transformation design time, executable (object-oriented) code is generated as
the implementation of each search plan.

Adapt At execution time, statistical data is collected on-the-fly from the current model under
transformation. Based on this data, a pattern matching strategy (i.e. the implementation
of a search plan) can be selected on demand, which yields the best expected performance
cost. It is important to ensure that model statistics causes little memory overhead, and the
cost of each pre-compiled search plan can also be estimated rapidly.

Exec Finally, the transformation rule is applied on the instance model using the selected pattern
matching strategy.

This section focuses exclusively on step Optim. Step Adapt is detailed in [135, J20], while
the detailed discussion of step Cdgen is provided in [K2], for instance.

5.2.3 Search plan generation
It is well-known that the most critical step for the performance of graph transformation is the
graph pattern matching phase. As pattern matching is determined by only the precondition of a
graph transformation rule, we restrict our current investigations only on this part of GT rules.

For this purpose, the generation of search plans is a frequently used and efficient strategy.
Informally, a search plan defines the order of traversal (a search sequence) for the nodes of the
instance model to check whether the pattern can be matched.

The search space traversed according to a specific search plan is represented as a search
space tree (SST) which contains all the decisions that can be made at a certain point during

62

 dc_244_11

5.2. MODEL-SPECIFIC SEARCH PLANS

pattern matching. The root node of a SST represents a partial match as provided by fixing the
input parameter nodes of rules. Each path of a SST starting from the root node extends this
partial match by matching a fresh (unmatched) node in the pattern.

Below, we present a model-specific search plan generation technique in the following way.

1. First, we introduce the concept of search graphs to obtain an easy to manage representa-
tion of GT rule preconditions.

2. Based on the statistics of typical models, model-specific search graphs are prepared by
adding numerical weights on the edges of search graphs.

3. The concept of search plans is defined together with a cost function that helps estimate
the performance of search plans and formulating when a search plan is optimal.

4. Finally, two algorithms are presented that implement the generation of low cost search
plans for model-specific search graphs.

Note that the current section only presents the core ideas of model-specific search plans.
This technique has been successfully been extended in [J9, K27] to handle all constructs of the
VIATRA2 transformation language (presented in Chapter 3).

Search graphs

In the first phase of the search plan generation process, a search graph is created for each pattern.
A search graph is a directed graph with the following structure. Each node of the graph

pattern is mapped to a node in the search graph. We also add a starting node to the graph.

1. Directed edges connect the starting node to every other search graph nodes. When such
an edge is selected in the search graph for a certain search plan, then the graph pattern
matching engine executing this search plan needs to iterate over all objects in the model
of the corresponding type.

2. Each edge of the pattern is mapped to a pair of edges in the search graph that connect the
corresponding end nodes in both directions expressing bidirectional navigability.1 Such
an edge can be selected by the pattern matching engine only when the source pattern
node is already matched. In this case, the selection of such a search graph edge means a
navigation along the corresponding pattern edge to reach the unmatched (target) pattern
node.

Search graphs for negative application conditions can be handled similarly. In this case,
all the matched nodes (i.e. the ones that are shared with LHS graphs) have to be considered as
starting nodes. Negative application conditions are typically checked after a complete match has
been found for the LHS, but simple checks (e.g. like testing whether edges leaving the shared
nodes in the NAC has zero cardinality) can be immediately performed as soon as shared nodes
are processed during the traversal of LHS. A more detailed handling of negative application
conditions is discussed in [J9].

Example 5.1 A graph transformation rule and its corresponding search graph are depicted in
Fig. 5.2(a) and 5.2(b), respectively. The rule itself is taken from an alternate version of the
object-relational mapping (Sec. 2.2.3) where each class is transformed into a separate table,

63

 dc_244_11

5. EFFICIENT EXECUTION STRATEGIES FOR MODEL TRANSFORMATIONS

(a) GeneralizationRule

G

C1 C2

T1 T2

P1 P2

Col1 Col2

(b) Search graph for Generaliza-
tionRule

Figure 5.2: A sample graph transformation rule and its corresponding search graph

and generalization (inheritance) is reflected in foreign key constraints as defined in the CWM
standard [113].

Nodes and edges of the pattern with add annotation have no corresponding elements in the
search graph as they denote nodes and edges to be added in the updating phase. Dashed edges
in the rule abbreviate the elements of the mapping (traceability) model.

Model-specific search graphs

The initial step for search plan generation takes typical models from the problem domain, e.g.
typical UML class diagrams and corresponding database schemas in our case. Node and edge
statistics of these typical models are also available, so weights can be defined for the edges of
the search graph based on the statistical data collected from a model.

A weighted search graph is a search graph with numeric weights on its edges. (Weights
are depicted as labels of edges in Figs. 5.3(c) and 5.3(d).) Informally, the weight of an edge can
be considered as an average branching factor of a possible SST at the level, when the pattern
matching engine selects the given pattern edge for navigation. Such a choice for edge weights
provides an easy to calculate cost function that estimates the size of the search space.

Example 5.2 Two models and their corresponding weighted search graphs are depicted in
Fig. 5.3. The weight calculation rule is demonstrated on the edge of Fig. 5.3(c) (denoted by
a dashed line), which corresponds to the traversal of pattern edge r2 of type Ref in the Class-
to-Table direction. According to our statistics, Model1 contains 5 Classes (since a Table is a
Class in CWM) and 1 reference edge between Classes and Tables, respectively. As a conse-
quence, if the pattern matching engine matches a Class to the pattern node C2 at some time
during the execution, then the probability to find a valid Table for pattern node T2 by navigating
along a reference (Ref) edge is 0.2 derived by the formula #Ref(Class,Table)/#Class. In case of
navigation in the opposite direction, the formula can be expressed as #Ref(Class,Table)/#Table,
thus the corresponding weight is 1.

1In case of navigability restrictions, only the navigable direction is generated.

64

 dc_244_11

5.2. MODEL-SPECIFIC SEARCH PLANS

(a) Model1 (b) Model2

G

C1 C2

T1 T2

P1 P2

Col1 Col2

2

5
5

1 1

1

1

1

1 1

1

0.4

5

16

0.4

0.2

1

4

0.2
7

1

1
1 1

1

1

1 3 1
8

1

1

2 1 1
1

9

(c) Weighted search graph generated for the General-
izationRule from the statistics of Model1 and a pos-
sible search plan

G

C1 C2

T1 T2

P1 P2

Col1 Col2

2

18
8

4 4

4 4

4 4

1

2

0.25 14

0.25

0.5

31 0.5
5

1

1
1 1

1

16

1 1
8

1

1
1

7

1
1

9

(d) Weighted search graph generated for the General-
izationRule from the statistics of Model2 and a pos-
sible search plan

Figure 5.3: Sample instance models and corresponding search plans

Search trees and plans

At this point, a weighted search graph is available for each typical model selected by the do-
main engineer. In this section, first, we introduce the concept of search trees and search plans
based on weighted search graphs. Then a cost function is defined for search plans to predict its
performance.

A search tree is a spanning tree of the weighted search graph. As the starting node has
no incoming edges, all other nodes should be reachable on a directed path from the starting
node. Edges of a search tree are denoted by thick lines in Figs. 5.3(c) and 5.3(d).The search
tree concept can be generalized to handle the completion of partially matched patterns. The
generalized concept allows several starting nodes. In this case, a search tree is a forest rooted at
starting nodes and they should ensure reachability for all other nodes on edges of trees.

A search plan is one possible traversal of a search tree. A traversal defines a sequence in
which edges are traversed. The position of a given edge in this sequence is marked by increasing
integer numbers written on the thick edges in Figs. 5.3(c) and 5.3(d). Two sample search plans
(with their corresponding search trees) are shown in Fig. 5.3(c) and 5.3(d).

The cost of a search plan (denoted by w(P)) is the estimated number of traversed nodes
in the corresponding search space tree (SST). The number of nodes at the ith depth-level of the
SST is the product of branching factors of edges up to the level i in the search plan, which is∏i

j=1wj , where wj is the weight of the jth edge according to the order defined by the search
plan. The total number of nodes can be calculated by summing the nodes of the SST on a
level-by-level basis, which yields to a formula w(P) =

∑n
i=1

∏i
j=1wj .

65

 dc_244_11

5. EFFICIENT EXECUTION STRATEGIES FOR MODEL TRANSFORMATIONS

Example 5.3 By using this cost function for the search plan of Fig. 5.3(c) on the model of
Fig. 5.3(a) and for the search plan of Fig. 5.3(d) on the model of Fig. 5.3(b), we get cost values
5.04 and 8.5, respectively.

As weights denote branching factors, the minimization of a search plan with such a cost
function results in a SST that is expected to be optimal in size. Moreover, such a search plan
fulfills the first-fail principle criteria as it represents a SST that is narrow at the levels near to its
root.

Algorithms for appropriate optimal search plans

Two traditional greedy algorithms are adapted to solve the problems of finding (i) a low cost
search tree for a given weighted search graph and (ii) a low cost search plan for a given search
tree. Note that traditional algorithms use a different cost function (i.e. the sum of weights) for
determining the cost of a spanning tree, which means that their solutions are not necessarily
optimal in our case.

For finding a minimum search tree in a weighted search graph, the Chu-Liu / Edmonds
algorithm [33, 50] is used. This algorithm searches for a spanning tree in a directed graph that
has the smallest cost according to a cost function defined as the sum of weights. This algorithm
can be outlined in Alg. 3.

Algorithm 3 Finding a minimum search tree in a weighted search graph
Input: Given a weighted search graph with a starting node:

1: Discard the edges entering the starting node.
2: For each other node, select the incoming edge with the smallest weight. Let the selected
n− 1 edges be the set S.

3: If there are no cycles formed by the edges of S, then the selected edges constitute a min-
imum spanning tree of the graph and the algorithm terminates. Otherwise the algorithm
continues.

4: For each cycle formed, contract the nodes in the cycle into a pseudo-node k, and modify
the weight of each edge entering node j in the cycle from some node i outside the cycle
according to the following equation.

c(i, k) = c(i, j)− (c(x(j), j)−minl{c(x(l), l)})

5: For each pseudo-node, select the entering edge, which has the smallest modified weight.
Replace the edge, which enters the same real node in S by the new selected edge.

6: Go to Step 3 with the contracted graph.

In case of finding a low cost search plan in a given search tree, a simple greedy algorithm
is used, which is sketched in Alg. 4.

We do not state that these simple algorithms provide optimal solutions also for our cost
model, but best engineering practice suggests that if edges with weights giving the minimum
sum are selected, then the search tree and the search plan consisting of the same edges also
have low cost when our special cost function is employed. Simplicity and speed are further
arguments in favour of the successful application of such algorithms. Another possibility is to
use the only the last element sum [62], which is frequently the dominant factor in the overall
cost.

66

 dc_244_11

5.2. MODEL-SPECIFIC SEARCH PLANS

Algorithm 4 Finding a low-cost search plan in a search tree
Ensure: Given a search tree with a starting node.

1: Set the counter to 1 and let S be the set consisting of the starting node.
2: Select the smallest tree edge e that goes out from S.
3: Set the label of e to the value of the counter.
4: Increment the counter by 1 and add the target node of e to S.
5: If the search tree still has a node that is not in S, then go back to Line 2.

5.2.4 Related work

All graph transformation based tools use some clever strategies for pattern matching. Since an
intensive research has been focused to graph transformation for a couple of decades, several
powerful methods have already been developed.

While many graph transformation approaches (such as [86] in AGG [54], VIATRA [J16])
use algorithms based on constraint satisfaction, here we focus on the three most advanced
compiled approaches with local searches using search plans.

Fujaba [84] performs local search starting from the node selected by the system designer
and extending the match step-by-step by neighbouring nodes and edges. Fujaba fixes a single,
breadth-first traversal strategy at compile-time (i.e. when the pattern matching code is gener-
ated) for each rule. Fujaba uses simple rules of thumb for generating search plans. A sample
rule is that navigation along an edge with an at most one multiplicity constraint precedes navi-
gations along edges with arbitrary multiplicity.

PROGRES [142] uses a very sophisticated cost model for defining costs of basic operations
(like enumeration of nodes of a type and navigation along edges). These costs are not domain-
specific in the sense that they are based on assumptions about a typical problem domain on
which the tool is intended to be used. Operation graphs of PROGRES, which are similar to
search graphs in the current paper, additionally support the handling of path expressions and
attribute conditions. The compiled version of PROGRES generates search plan at compile-time
by a greedy algorithm, which is based on the a priori costs of basic operations.

The pattern matching engine of GReAT [137] uses a breadth-first traversal strategy starting
from a set of nodes that are initially matched. This initial binding is referred to as pivoted pattern
matching in GReAT terms. This tool uses the Strategy design pattern for the purpose of future
extensions and not for supporting different pattern matching strategies like in our approach.

Object-oriented database management systems also use efficient algorithms [128] for query
optimization, but their strategy significantly differs as queries are formulated as object algebra
expressions, which are later transformed to trees of special object manager operations during
the query optimization process.

Similar concepts of model-specific search plans have been also investigated and exploited
by the GrGen.NET tool [62] independently from our line of research (but one year later in
2006).

5.2.5 Conclusions

In the current section, we proposed a model-sensitive approach for generating search plans for
compiled graph transformation approaches. The essence of the technique is to use a priori
knowledge obtained from typical designer models. A weighted search graph is derived from
statistical data taken from these models. Low cost search plans are defined by tailoring well-
known greedy algorithms for the cost function of a traversal.

67

 dc_244_11

5. EFFICIENT EXECUTION STRATEGIES FOR MODEL TRANSFORMATIONS

Model-specific search plans have been implemented in the VIATRA2 and GrGEN.NET [63]
graph transformation tools. As VIATRA2 provides a generic model representation (using VPM
metamodels), obtaining statistics on model instances turned out to be a complicated practical
issues, which had a significant negative effect on the performance of local-search based pattern
matching in VIATRA2 . Nevertheless, GrGEN.NET efficiently exploited essentially the same
strategy in various tool contests (using a simplified model management framework), which
shows the true potential for model-specific search plans.

5.3 INCREMENTAL PATTERN MATCHING

5.3.1 Introduction
The core idea of incremental pattern matching is to make the occurrences of a graph pattern
readily available at any time, and they are incrementally updated whenever changes are made.
As pattern occurrences are stored, they can be retrieved in constant time (excluding the linear
cost induced by the size of the result set itself), which makes pattern matching a very efficient
process. Besides memory consumption, the potential drawback is that these stored result sets
have to be continuously maintained, imposing an overhead on update operations.

In graph transformation frameworks, pattern matching is required to find the occurrences
of left-hand side (LHS) patterns. Since pattern matching can be an important complexity fac-
tor in graph transformations, an incremental approach may lead to better performance, espe-
cially when transformations are matching-intensive instead of being manipulation-intensive. In
this thesis, we provide details for the incremental pattern matcher component of the VIATRA2
framework. It is based on the RETE algorithm, which is a well-known technique in the field of
rule-based systems.

5.3.2 Workflow
Initializing an incremental pattern matching engine involves the following conceptual steps:

1. The transformation designer defines various patterns and transformation rules.

2. An incremental pattern matcher (in our case, a RETE network) is constructed based on
the pattern definitions.

3. The underlying model is loaded into the incremental pattern matcher as the initial set of
matches.

Typically Step 2 and 3 are carried out in incremental pattern matcher as a single, interleav-
ing process. A graph transformation engine with a RETE-based incremental pattern matcher
necessitates the repeated execution of the following steps (see Fig. 5.4 for illustration):

1. Match LHS and other patterns in constant time;

2. Calculate the difference of the RHS and LHS (and potentially perform more actions);

3. Update the underlying model and notify the incremental pattern matcher of the changes;

4. Propagate the updates within the RETE network to refresh the set of matches.

The initialization of the incremental pattern matcher is not necessarily complete; the pattern
matcher RETE network can be freely extended on demand with additional patterns at a later
phase. Furthermore, it is worth pointing out that a RETE-based incremental pattern matcher
can be integrated with any a graph transformation engine or any other underlying model manip-
ulation library.

68

 dc_244_11

5.4. INCREMENTAL GRAPH PATTERN MATCHING BY THE RETE ALGORITHM

Figure 5.4: Incremental pattern matching information flow

5.3.3 Alternative incremental graph pattern matching approaches

In addition to the RETE-based incremental pattern matcher, we investigated alternative ap-
proaches and frameworks for incremental graph pattern matching, which are briefly summa-
rized below.

• Incremental pattern matching over relational databases. When models are persisted
in a traditional relational database, a straightforward idea is to use database query and
manipulation languages to implement graph pattern matching. Relational database man-
agement systems offer the concept of triggers to support incrementality, which was inves-
tigated [J19] to implement incremental graph pattern matching over relational databases
where different database tables and views are notified about changes in other tables.

• Dedicated incremental pattern matching techniques. An incremental pattern matching
algorithm was proposed in [J21], which introduces specific data structures and notifica-
tion chains in the presence of both positive and negative patterns, which turned out to be
beneficial (compared to local search based techniques) when the patterns became com-
plex.

• Combination of pattern matching strategies. In a recent line of our research [J2, K4],
we proposed to combine local search (LS) based and incremental graph pattern matching
techniques in order to overcome memory limitations of the latter. In this setup, the trans-
formation designers can individually control whether a certain pattern should be matched
using incremental or LS-based techniques. Furthermore, when the incremental matching
of a pattern runs out of (a dedicated amount of) memory, it can switch to a LS-based mode
accelerated by using the partial matches calculated by the incremental matcher.

• Incremental query evaluation over EMF models. Our most recent results [K5, K6,
K8] aim at porting incremental pattern matching techniques to evaluate complex model
queries over large, industry standard EMF models. A new open-source software tool
called EMF-INCQUERY was also developed for this purpose.

5.4 INCREMENTAL GRAPH PATTERN MATCHING BY THE RETE ALGORITHM

The RETE algorithm, introduced in [59], has a wide range of interpretations and implementa-
tions. This section describes how we adapted the concepts of RETE networks to implement the
rich language features the VIATRA2 graph transformation framework.

69

 dc_244_11

5. EFFICIENT EXECUTION STRATEGIES FOR MODEL TRANSFORMATIONS

In this section, we will gradually construct a RETE-based pattern matcher capable of match-
ing the pattern isTransitionFireable, which is the LHS of the Petri net firing rule depicted in
Fig. 5.5 and Listing 5.1.

pattern isTransitionFireable(Transition) =
{
transition(Transition);
neg pattern notFireable_flattened(Transition) =
{
place(Place);
outArc(OutArc, Place, Transition);
neg pattern placeToken(Place) =
{

token(Token);
tokens(X, Place, Token);

}
}
or
{
place(Place);
inhibitorArc(OutArc, Place, Transition);
token(Token);
tokens(X, Place, Token);

}
}

Listing 5.1: VIATRA source code for the isTransitionFireable pattern

Figure 5.5: Petri-net firing condition

5.4.1 Tuples and Nodes

Partial or complete matches of patterns are stored as tuples in the RETE net. Each node in the
RETE net is associated with a (partial) pattern and stores the set of tuples matching the pattern.

The input nodes of the RETE serve as the knowledge base representing the underlying
model. There is a separate input node for each entity type (class), containing unary tuples
representing the instances that conform to the type. Similarly, there is an input node for each
relation type, containing ternary tuples with source and target in addition to the identifier of the

70

 dc_244_11

5.4. INCREMENTAL GRAPH PATTERN MATCHING BY THE RETE ALGORITHM

edge instance. Miscellaneous input nodes represent containment, generic type information, and
other relationship between model elements.

Intermediate nodes store partial matches of patterns. Finally, production nodes represent
the complete pattern itself. Production nodes also perform supplementary tasks such as filtering
those elements of the tuples that do not correspond to symbolic parameters of the pattern (in
analogy with the projection operation of relational algebra) in order to provide a more efficient
storage of models.

5.4.2 Joining
The join node of a RETE performs a natural join operation on the relations represented by its
two parent nodes (linked to the join node by appropriate RETE edges).

Figure 5.6 shows a pattern matcher built for the sourcePlace pattern illustrating the use of
join nodes. By joining three input nodes, this sample RETE net enforces two entity type con-
straints and an edge (connectivity) constraint, to find pairs of Places and Transitions connected
by an out-arc.

pattern sourcePlace(T, P) =
{
transition(T);
place(P);
outArc(A, P, T);

}

Listing 5.2: VIATRA source code for the sourcePlace pattern

INPUTINPUT

INPUT

JOIN

JOIN

PRODUCTION
sourcePlace

Figure 5.6: RETE matcher for the sourcePlace pattern

5.4.3 Updates after model changes
The primary goal of the RETE net is to provide incremental pattern matching. To achieve
this, input nodes receive notifications about model changes, regardless whether the model was

71

 dc_244_11

5. EFFICIENT EXECUTION STRATEGIES FOR MODEL TRANSFORMATIONS

changed programmatically (i.e. by executing a transformation) or by user interface events.
Whenever a new entity or relation is created or deleted, the input node of the appropriate

type will release an update token on each of its outgoing edges. To reflect type hierarchy, input
nodes also notify the input nodes corresponding to the supertype(s). Positive update tokens
reflect newly added tuples, and negative updates refer to tuples being removed from the set.

Each RETE node is prepared to receive updates on incoming edges, assess the new situation,
determine whether and how the set of stored tuples will change, and release update tokens of its
own to signal these changes to its child nodes. This way, the effects of an update will propagate
through the network, eventually influencing the result sets stored in production nodes.

INPUTINPUT

p → tp

p
p → t

JOIN
112

3

(a) Phase I.

p
p → t

JOIN

PRODUCTION
sourcePlace

INPUT

11

2

t

p
p → t

3

t

(b) Phase II.

Figure 5.7: Update propagation

Figure 5.7(a) shows how the network in Fig. 5.6 reacts to a newly inserted out-arc. The input
node for the relation type representing the arc releases an update token. The join node receives
this token, and uses an index structure to check whether matching tuples (in this case: places)
from the other parent node exist. In such a case, a new token is propagated on the outgoing edge
for each of them, representing a new instance of the partial pattern “place with outgoing arc”.
Fig. 5.7(b) shows the update reaching the second update node, which matches the new tuple
against those contained by the other parent (in this case: transitions). If matches are found, they
are propagated further to the production node.

5.4.4 Pattern Call

An important feature of the RETE algorithm is that parts of the net can be shared between
patterns, thus reducing space and time complexity. The identification of common subpatterns
subject to optimization is not yet automated in VIATRA2 , but the transformation designer can
assist by decomposing patterns into smaller, reusable parts calling each other (also called pattern
composition).

When a pattern calls another pattern, it can simply use the appropriate production node to
obtain the set of tuples conforming to the other pattern. Naturally, the production node may
have children attached like any other nodes. It is even possible to define recursive patterns that

72

 dc_244_11

5.4. INCREMENTAL GRAPH PATTERN MATCHING BY THE RETE ALGORITHM

call themselves; in such cases, the production node of the pattern will have an edge leading back
to one of the previous nodes. It is the designer’s responsibility to ensure that the recursion is
well-founded and that there is always exactly one fixpoint as result.

Figure 5.8(a) shows the matcher for pattern isInhibited provided that the simple patterns
placeNonEmpty and sourcePlaceInhibitor already have their respective matchers constructed.
The matcher selects tuples where the corresponding transition is inhibited by the place for whom
the place inhibits the transition, and the place has at least one token.

pattern isInhibited(T) = {
find sourcePlaceInhibitor(T,P);
find placeNonEmpty(P);

}

pattern notEnabled(T) =
{
find sourcePlace(T,P);
neg find placeNonEmpty(P);

}

Listing 5.3: VIATRA source code for the isInhibited and notEnabled patterns

PRODUCTION
sourcePlaceInhibitor

PRODUCTION
placeNonEmpty

JOIN

PRODUCTION
isInhibited

(a) isInhibited

PRODUCTION
sourcePlace

PRODUCTION
placeNonEmpty

MINUS

PRODUCTION
notEnabled

(b) notEnabled

Figure 5.8: Positive and negative pattern calls

5.4.5 Negative Application Conditions
The pattern language of VIATRA2 allows to embed patterns into each other as negative appli-
cation conditions, thus allowing negation at arbitrary depth. To support such negative pattern
calls, the existing mechanism for pattern calls can be used, but the production node has to be
connected to a negative node instead of a join node. A negative node (in the RETE network) has
two distinct parents: primary and secondary inputs, respectively. The negative node contains
the set of tuples that are also contained by the primary input, but do not match any tuple from
the secondary input (which corresponds to antijoins in relational databases, see a similar idea
with left outer joins e.g. in [J18]).

Figure 5.8(b) shows the matcher for pattern notEnabled, provided that the simple patterns
placeNonEmpty and sourcePlace already have their respective matchers constructed. The
matcher selects the transitions with source places that do not have any tokens.

73

 dc_244_11

5. EFFICIENT EXECUTION STRATEGIES FOR MODEL TRANSFORMATIONS

5.4.6 Disjunction

OR-Patterns (containing the ’or’ keyword) are treated as a disjunction of independent pattern
bodies. A separate matcher can be constructed for each body, sharing the production node,
which will perform a true union operation on the sets of tuples conforming to each pattern
body.

pattern isTransitionFireable(T) =
{
transition(T);
neg pattern notFireable(T) =
{

find notEnabled(T);
} or
{

find isInhibited(T);
}

}

Listing 5.4: Source code for isTransitionFireable pattern

PRODUCTION
notEnabled

INPUT PRODUCTION
isInhibited

PRODUCTION
notFireable

MINUS

PRODUCTION
isTransitionFireable

Figure 5.9: RETE matcher for the isTransitionFireable pattern

Figure 5.9 shows the matcher for pattern isTransitionFireable (see Listing 5.4), containing
an inline negative pattern with two bodies. In this case, each body is a simple reference to a
previously constructed pattern, connected to a single production node for the inline pattern.

5.4.7 Term Evaluation

In addition to graph-based structural constraints, the VIATRA2 framework supports the use of
attribute conditions to restrict the names and values of model elements. Various arithmetical and
logical functions, or even user-provided arbitrary Java code can be applied to model elements
to check the validity of a pattern.

The term evaluator node propagates only those tuples that pass a given test. Furthermore, it
registers the affected elements of incoming tuples (regardless whether they had passed the filter

74

 dc_244_11

5.4. INCREMENTAL GRAPH PATTERN MATCHING BY THE RETE ALGORITHM

or not), so that whenever one of these elements experience change, the tuples containing it can
be re-evaluated. If the result changes, the appropriate update tokens will be propagated. The
node will monitor changes influencing a tuple until that tuple is finally removed by a negative
update received from the parent node.

5.4.8 Experimental evaluation of incremental graph pattern matching

We carried out a series of experiments to evaluate the performance of incremental graph pattern
matching in various model transformation scenarios in model driven engineering.

• In our first systematic measurement in [K3], we investigated Petri net simulation and the
model synchronization scenario for the ORM problem using incremental graph pattern
matching.

• In [J2], the Ant World simulation problem taken from the GRABATS 2008 Transforma-
tion Tool Contest was used as a benchmark case study for evaluation. In this setup, we
measured the efficiency of combining LS-based and incremental pattern matching strate-
gies.

• In our latest experiments in [K6], we focused on incrementally checking consistency con-
straints over large AUTOSAR models, which are standard EMF-based model representa-
tions of the automotive industry. The actual constraints we evaluated in an incremental
way were also taken from the AUTOSAR standard itself.

In Appendix A.2, further details are provided for this last experiment, which is the most
recent experimental investigation of ours.

Summary of experiments

All these experiments demonstrated that incremental pattern matching is a very efficient ap-
proach even for handling large domain-specific models when (1) model changes are small (e.g.
a single transaction does not introduces 1000 model changes), and (2) transactions are not ex-
tremely frequent (e.g. transactions do not occur in every 10 ms).

In such a context, the incremental pattern matcher was able to handle queries over models
with well over 1 million model elements within fractions of a second as long as the storage of
models and the incremental cache fits into memory. In practical problems, memory consump-
tion increased linearly with model size, while incremental query evaluation took constant time.
Most importantly, performance is mostly influenced by the size of the change (i.e. the delta
between the models), and not the sheer size of the model itself.

In our practical experiments, performance degradation was only experienced when the mem-
ory consumption of the incremental cache exceeded the available memory of the executing en-
vironment, or when the number of matches for a pattern are highly superlinear compared to the
size of the model.

As all of our experiments were carried out on average desktop computers, we strongly expect
that with the use of strong server machines, one could very likely handle models well over 10
million elements using the same incremental evaluation technique, thus the first issue can be
partially resolved by using a more powerful hardware. For the second issue, we investigated a
combined use of local search based and incremental techniques [J2].

Further in-depth analysis using profiler tools revealed that future research efforts should be
dedicated to improve model storage and manipulation rather than incremental pattern matching
techniques.

75

 dc_244_11

5. EFFICIENT EXECUTION STRATEGIES FOR MODEL TRANSFORMATIONS

5.4.9 Related work

Incremental updating techniques have been widely used in different fields of computer science.
Now we give a brief overview on incremental techniques that are used in the context of graph
and model transformation.

Incrementality in graph transformation tools

Attribute updates. The PROGRES [123] graph transformation tool supports an incremental
technique called attribute updates [74]. At compile-time, an evaluation order of pattern variables
is fixed by a dependency graph. At run-time, a bit vector is maintained for each model node
expressing whether it can be bound to the nodes of the LHS. When model nodes are deleted,
some validity bits are set to false, which might invalidate partial matches immediately. On the
other hand, new partial matches are only lazily computed.

View updates. In relational databases, materialized views, which explicitly store their content
on the disk, can be updated by incremental techniques like Counting and DRed algorithms [69].
As reported in [J17], these incremental techniques are also applicable for views that have been
defined for graph pattern matching by the database queries of [J18]. Later, this approach was
extended to incorporate incrementality by triggers on the database level in [J19].

Notification arrays. The paper [J21] proposes a graph pattern matching technique, which con-
structs and stores a tree for partial matches of a pattern, and incrementally updates it, when the
model changes. As a novelty, notification arrays are introduced for speeding up the identifica-
tion of such partial matches that should be incrementally modified. The main advantage of this
solution is that only matches, which appear as leaves of the tree, have to be physically stored,
which possibly saves a significant amount of memory. The memory saving technique of [J21] is
orthogonal to the structure of the underlying RETE network, and, thus, it can expectedly be used
for our approach as well, but the exact integration requires further research and implementation
tasks.

RETE networks used for graph transformation.. RETE networks [59], which stem from rule-
based expert systems, have already been used as an incremental graph pattern matching tech-
nique in several application scenarios including the recognition of structures in images [28],
and the co-operative guidance of multiple uninhabited aerial vehicles in assistant systems as
suggested by [93]. Our contribution extends this approach by supporting a more expressive and
complex pattern language.

Incrementality in constraint evaluation

Incremental OCL evaluation approaches. OCL [107] is a standardized navigation-based query
language, applicable over a range of modeling formalisms. Taking advantage of the expressive
features and wide-spread adoption of OCL, the project MDT OCL [49] provides a powerful
query interface that evaluates OCL expressions over EMF models. However, backwards naviga-
tion along references can still have low performance, and there is no support for incrementality.

Cabot et al. [30] present an advanced three step optimization algorithm for incremental run-
time validation of OCL constraints that ensures that constraints are reevaluated only if changes
may induce their violation and only on elements that caused this violation. The approach uses
promising optimizations, however, it works only on boolean constraints, therefore it is less
expressive than our technique.

76

 dc_244_11

5.4. INCREMENTAL GRAPH PATTERN MATCHING BY THE RETE ALGORITHM

An interesting model validator over UML models [68] incrementally re-evaluates constraint
instances (defined in OCL or by an arbitrary validator program) whenever they are affected by
changes. During evaluation of the constraint instance, each model access is recorded, triggering
a re-evaluation when the recorded parts are changed. This is also an important weakness: the
approach is only applicable in environments where read-only access to the model can be easily
recorded, unlike EMF. Additionally, the approach is tailored for model validation, and only
permits constraints that have a single free variable; therefore general-purpose model querying
is not viable.

Incremental Model Transformation approaches

The model transformation tool TefKat includes an incremental transformation engine [71] that
also achieves incremental pattern matching over the factbase-like model representation of the
system. The algorithm constructs and preserves a Prolog-like resolution tree for patterns, which
is incrementally maintained upon model changes and pattern (rule) changes as well.

As a new effort for the EMF-based model transformation framework ATL [80], incremental
transformation execution is supported, including a version of incremental pattern matching that
incrementally re-evaluates OCL expressions whose dependencies have been affected by the
changes. The approach specifically focuses on transformations, and provides no incremental
query interface as of now.

VMTS [95, 96] uses an off-line optimization technique to define (partially) overlapping
graph patterns that can share result sets (with caching) during transformation execution. Com-
pared to our approach, it focuses on simple caching of matching result with a small overhead
rather than complete caching of patterns.

Giese et al. [65] present a triple graph grammar (TGG) based model synchronization ap-
proach, which incrementally updates reference (correspondence) nodes of TGG rules, based on
notifications triggered by modified model elements. Their approach share similarities with our
RETE based algorithm, in terms of notification observing, however, it does not provide support
for explicit querying of (triple) graph patterns.

Other rule-based production systems

Improvements and alternatives of the RETE algorithm are now shortly surveyed. In the first two
cases, the main goal is to reduce the high memory consumption of the RETE network.

TREAT [99] aims at minimizing memory usage while retaining the incremental property of
pattern matching and instant accessibility of conflict sets. Only the input model elements and
the (complete) matches are stored, but no memories are used for partial patterns. TREAT is
considered faster in certain conditions but less flexible than RETE.

RETE* [139] is a generalization of RETE that attempts to strike a balance between memory
size and performance by keeping beta memories stored for frequently used nodes and generating
them on-the-fly for the rest. The two extreme cases for the memory retention policy correspond
to TREAT and RETE, respectively.

The LEAPS algorithm [20] is claimed to be substantially better than RETE or TREAT at
both time and space complexity. The approach can be characterized by lazy evaluation to avoid
manifesting tuples unnecessarily, by depth-first firing, and by the introduction of timestamps to
set up temporal constraints, which can be used for handling deletion efficiently.

77

 dc_244_11

5. EFFICIENT EXECUTION STRATEGIES FOR MODEL TRANSFORMATIONS

5.5 MODEL TRANSFORMATION PLUGINS

5.5.1 An introduction
As model transformation is becoming a software engineering discipline, conceptual and tool
support is necessitated for the entire life-cycle, i.e. the specification, design, execution, valida-
tion and maintenance of transformations. However, different phases of transformation design
frequently set up conflicting requirements, and it is difficult to find the best compromise. For
instance, the main driver in the execution phase is performance, therefore, a compiled MT ap-
proach (where a transformation is compiled directly into native source code) is advantageous.
On the other hand, interpreted MT approaches (where transformations are available as models)
have a clear advantage during the validation (e.g. by interactive simulation) or the maintenance
phase due to their flexibility.

Ideally, advanced model transformation tools should support both interpreted and compiled
approaches to separate the design (validation, maintenance) of a transformation from its ex-
ecution. Interpreter-based platform-independent transformations (PIT) [23, K25] ease the
development (and testing, debugging, validation) of model transformations within a single
transformation framework without relying on a highly optimized target transformation technol-
ogy. Platform-specific transformers (PST) are compiled (in a complex model transformation
and/or code generation step) from an already validated MT specification into various underlying
tools or platform-dependent transformation technologies (e.g. Java, XSLT, etc.) and integrated
into off-the-shelf CASE tools as stand-alone model transformation plugins.

The concepts of platform-independent transformations and platform-specific transforma-
tions are first illustrated in the context of In the VIATRA2 framework (see Fig. 5.10).

Figure 5.10: Architectural overview of model transformation plugins

Platform-Independent Transformations.. A source user model (which is a structured textual
representation such as an XMI description of a UML model exported from a CASE tools) is
imported into the VPM model space. Then, platform-independent transformation specifications

78

 dc_244_11

5.5. MODEL TRANSFORMATION PLUGINS

can be constructed using model transformation rules (see Chap. 3). The rules are then executed
on the source model by the general-purpose VIATRA2 rule interpreter in order to yield the target
model. Finally, the target model can be serialized into an appropriate textual representation
specific to back-end tools. This way, the transformation is kept within a single transformation
framework in order to ease the testing, debugging and validation of model transformations
without relying on the highly optimized target transformation technology.

Platform-Specific Transformations.. The VIATRA2 framework also enables the design of meta-
transformations that take an already validated transformation specification as the input and yield
a platform-specific transformer (e.g., a Java program, or XSLT script) as the output. In other
terms, the functionality of a transformation program is compiled into a more efficient (but less
general) target transformation technology. In this respect, the transformation from a specific
source model to its target equivalent can be performed outside the VIATRA2 framework. This
is especially important for integrating complex transformations into off-the-shelf CASE tools
which, normally, have their own, tool-dependent way for writing transformation add-ons.

The main advantage of this architecture is that the design of model transformations is clearly
separated from the execution of model transformations, thus certification of model transforma-
tions can be carried out without certifying the complex interpreter itself.

These principles are now instantiated in the business-critical domain. We show how trans-
formation plugins can be implemented for business-critical services built upon the Enterprise
Java Beans (EJB3) technology [131]. In addition, the same principles have successfully been
applied to generate standalone model transformation plugins for relational databases as under-
lying host technology in [J17, J18].

5.5.2 Generating model transformation plugins for EJB3
An overview of generating EJB3-specific stand-alone transformer plugins from VIATRA2 trans-
formation descriptions is provided in Fig. 5.11. The general flow of developing and executing
model transformations by the VIATRA2 interpreter is the following.

Figure 5.11: Overview of the plugin generation approach

1. Metamodel design. Metamodels of the source and target modeling languages (or do-
mains) are designed and stored according to the VPM approach [J15].

2. Develop importers. VIATRA2 accepts arbitrary textual source files by offering a flexible
way to write model importers.

79

 dc_244_11

5. EFFICIENT EXECUTION STRATEGIES FOR MODEL TRANSFORMATIONS

3. Model import. These importers build up an internal VPM representation of the source
model which corresponds to its metamodel.

4. Transformation design. Model transformations between source and target metamodels
are captured by a seamless integration of GT and ASM rules (Chap. 3) [J14].

5. Transformation execution. These transformations are executed on the source model by
a transformation engine to derive the target model.

6. Model export. Finally, the target model can be post-processed by special code generation
transformations and code formatters in order to be printed in the required output format.

Standalone model transformation plugins can be generated from VIATRA2 models and
transformations for the underlying EJB3 execution platform as follows.

• Compiling EJB3 models. EJB3 entity bean classes will be generated from the source
and target metamodels including the reference objects representing the mapping between
them. The persistent storage of EJB3 entity beans will then be handled by the EJB3
application server.

• Compiling EJB3 transformations. EJB3 session beans will be generated from the MT
specification in the form of fully functional EJB business methods. Transaction handling
will be provided by the JBoss execution environment to prevent complex transformations
from introducing conflicts when manipulating the model in parallel.

• Reuse of model importers and exporters. Our experience shows that the development
of a model importer also requires significant work. As a consequence, the reuse of VIA-
TRA2 importers (exporters) implemented for building up (extracting) an internal (VPM)
model representation from (to) a textual source (target) file in the EJB3-specific transfor-
mation plugin is also an important goal. This can be achieved by providing an alternative,
EJB3-specific implementation of the VIATRA2 model manipulation which redirects and
translates VIATRA2 specific calls to EJB3-specific calls.

A detailed description of the derivation process is out of scope for the current thesis, the
interested reader is referred to [K2]. Moreover, the graph pattern matching part in EJB3 plugins
were further optimized in [136].

5.5.3 Related Work
While there is already a large set of model transformation tools available in the literature using
graph rewriting, below we focus on providing a brief comparison with the most popular com-
piled approaches that show conceptual similarities with our work. A more detailed comparison
on the difference in the applied graph transformation strategies can be found in [J2, J20, K4].

Fujaba [103] compiles visual specifications of transformations [58] into executable Java
code based on an optimization technique using search graphs with a breadth-first traversal strat-
egy penalizing many-to-many multiplicity constraints. Our approach is different from Fujaba in
the use of EJB3 beans instead of pure Java classes and the model-sensitive generation of search
plans (see [J20] for details).

PROGRES [125] supports both interpreted and compiled execution (generating C code) of
programmed graph transformation systems. It uses a sophisticated cost model for defining a
priori costs of basic operations (like the enumeration of nodes of a type and navigation along

80

 dc_244_11

5.6. CONCLUSIONS

edges) for generating search plans. Our solution was, in fact, influenced by PROGRES; how-
ever, our model-specific cost function provides a dynamic (transformation-time) estimation for
the complexity of matching graph transformation rules.

The pattern matching engine of compiled GReAT [137] (generating C++ code) uses a
breadth-first traversal strategy starting from a set of nodes that are initially matched. Such a C++
solution typically provides an efficient solution for compiled transformations when integrated
into embedded systems. In contrast, our transformation plugins primarily target web-based
target platforms and achieve high performance as being deployed on application servers.

OPTIMIX [11] is a tool for generating algorithms in C or Java which construct and transform
directed relational graphs with a special focus on tasks in program compilation and optimiza-
tion. OPTIMIX supports edge addition rewrite systems (EARS) and exhaustive graph rewrite
systems (XGRS) using an input language equivalent to a subset of Datalog.

The idea of separating transformation design from transformation execution also appears
in the MOLA environment [81] by providing an Eclipse EMF-based execution environment.
While EMF-based models and EJB3 models show conceptual similarities concerning their
structure, EJB3 provides additional support for important dynamic features such as e.g. trans-
action handling.

5.6 CONCLUSIONS

The main goal of the current chapter was to provide efficient execution strategies for model
transformation techniques.

Model-specific search plans exploited the fact that the traversal order of graph patterns can
be tailored to the structure of the underlying model using model-level statistical information. In
our experiments, we found that this technique is most efficient when combined with adaptivity,
i.e. when the actual search plan is selected at execution time. Obviously, this techniques relies
upon the cheap retrieval of statistical information on the actual model, which may or may not
be provided by state-of-the-art model management and DSML frameworks.

Incremental graph pattern matching aimed at caching the matches of graph patterns, and
then maintaining these caches as the underlying model changes. Incremental graph pattern
matching accelerates model transformations by orders of magnitude when the match set is rel-
atively small compared to the size of the underlying model and the size of the change. This is
typical in many model simulation and model synchronization scenarios of MDD. Performance
issues can be experienced mainly by increased memory consumption when the match set of a
pattern is large, e.g. when calculating transitive closure, for instance.

Model transformation plugins allow to embed the model transformations into industrial con-
text by separating transformation design from transformation execution. As a consequence,
model transformations can be executed in third party tools (without the presence of the trans-
formation development framework, like VIATRA2), which is a significant practical advantage.
However, developing a new model transformation plugin is still a high effort task, thus future
research should investigate how this effort can be reduced by increasing reusability on different
levels.

81

 dc_244_11

 dc_244_11

Chapter 6

Termination Analysis of
Model Transformations

6.1 INTRODUCTION

Many researchers and practitioners have recently revealed that model driven software develop-
ment relies not only on the precise definition of modeling languages taken from different do-
mains, but also on the unambiguous specification of transformations between these languages.
Graph transformation (GT) [38, 119] has been applied successfully to many model transfor-
mation (MT) problems. Many success stories were in the field of model analysis which aim
at projecting high-level UML models into mathematical domains by model transformations to
carry out formal analysis.

A core problem of model driven engineering is related to the correctness of model transfor-
mations, namely, to guarantee that certain semantic properties hold for a trusted model transfor-
mations. For instance, when transforming UML models into mathematical domains, the results
of a formal analysis can be invalidated by erroneous model transformations as the systems engi-
neers cannot distinguish whether an error is in the design or in the transformation. It is possible
that transformation rules interfere with each other and thus they may cause semantic problems,
which is not acceptable for trusted model transformations.

Most typical correctness properties of a trusted model transformation are termination, unique-
ness (confluence) and behaviour preservation. In the current chapter, we provide a Petri Net
based technique for the termination analysis of model transformations specified by GTSs. As
termination is undecidable for graph grammars in general [112], we propose a sufficient crite-
rion, which either proves that a GTS is terminating, or it yields a “maybe nonterminating” (do
not know) answer.

The essence of our technique is to derive a simple Petri net which simulates the original GTS
by abstracting from the structure of instance models (graphs) and only counting the number of
elements of a certain type. If we manage to prove by algebraic techniques that the Petri net
runs out of tokens in finitely many steps regardless of the initial marking, then we can conclude
that the original GTS is terminating due to simulation. In order to handle graph transformation
systems with negative application conditions as well, we introduce the notions of forbidden
and permission patterns, and overapproximate how different rules influence each other when
generating permissions.

As the derived Petri net model is of managable size (comparable to the number of elements
in the metamodels), our technique can yield positive results for judging the termination of vari-

83

 dc_244_11

6. TERMINATION ANALYSIS OF MODEL TRANSFORMATIONS

ous model transformation problems captured by graph transformation techniques.
The rest of the chapter is organized as follows. Based upon the preliminaries of graph trans-

formation systems (Sec. 2.2.2) and Petri nets (Sec. 2.4), Sec. 6.2 proposes a P/T net abstraction
of GTS with rules having negative application conditions (NAC). Sec. 6.3 presents sufficient
conditions for termination of GTSs by solving algebraic inequalities. Our approach will be
exemplified using the GTS of the object-relational mapping (see Sec. 2.2.3). Finally, Sec. 6.4
discusses related work and Sec. 6.5 presents our conclusions and proposals for future work.

6.2 A PETRI NET ABSTRACTION OF GRAPH TRANSFORMATION

6.2.1 Definition of the core abstraction
First we map a graph transformation system without negative application conditions into a Petri
net (which is called cardinality (P/T) net in the sequel) by only keeping track of the number of
objects in the model graph (separately for each node and edge in the type graph) but abstracting
from the structure of the model graph.

Informally speaking, since the LHS of a GT rule requires the presence of nodes and edges of
certain types, the derived transition removes tokens from all the places storing the instances of
the corresponding types. Furthermore, the RHS of a GT rule guarantees the presence of nodes
and edges of certain types, thus the derived transition generates tokens for the places storing the
instances of such types. Later we show that this is a proper abstraction, i.e. the derived P/T net
simulates the original GTS, i.e. when a GT rule is applicable, the corresponding transition in
the P/T net can be fired as well.

Definition 6.1 (Mapping from GTS to P/T nets) The mappingF(GTS) = (FTG,FG,FR)→
PN (where GTS = (R, TG) and PN = (P, T,E,w) with initial marking M0) is formally de-
fined as follows:

• FTG : TG→ P : Types into places. For each node and edge y ∈ NTG ∪ ETG in the type
graph TG, a corresponding place py = F(y) is defined in the cardinality P/T net.

• FG : G → M0: Instances into tokens. For each node and edge x ∈ NG ∪ EG in
an instance graph G with type y = type(x), a token is generated in the corresponding
marking MG = F(G) of the target P/T net. Formally, for all places py = F(y), the
marking of the net is defined as MG(py) = card(G, y).

• FR : R → (T,E,w): Rules into transitions. For each rule r in the graph transformation
system GTS, a transition tr = F(r) is generated in the cardinality P/T net such that

– Left-hand side: If there is a graph object x in L with y = type(x), then an incoming
arc (py, tr) is generated in the P/T net where py = F(y) and the weight of the arc
w(py, tr) is equal to the number of graph objects inL of the same type y. Formally, if
∀x, y : x ∈ L∧ y = type(x)∧F(y) = py ⇒ (py, tr) ∈ E ∧w(py, tr) = card(L, y).

– Right-hand side: If there is a graph object x inRwith y = type(x), then an outgoing
arc (tr, p) is generated in the P/T net where py = F(y) and the weight of the arc
w(tr, py) is equal to the number of graph objects inR of the same type y. Formally, if
∀x, y : x ∈ R∧y = type(x)∧F(y) = py ⇒ (tr, py) ∈ E∧w(tr, py) = card(R, y).

Example 6.2 In Fig. 6.1 rule liftAssocDstR of the example in Fig. 2.6 is shown on the left
together with the corresponding transition liftAssocDstR (on the right) of the P/T net abstraction
of the example. Note that indices of F() will be omitted for simplicity.

84

 dc_244_11

6.2. A PETRI NET ABSTRACTION OF GRAPH TRANSFORMATION

Figure 6.1: Transition corresponding to rule liftAssocDstR

As the GT rule liftAssocDstR contains two Class nodes, one Association node, one parent
edge and one dst edge, the corresponding transition is enabled if the corresponding type places
(with identical labels) contain at least 2, 1, 1, and 1 tokens, respectively. Since the application
of the rule preserves all items and creates one dst edge, the firing of transition liftAssocDstR
puts 2, 1, 1, and 2 tokens to these places, respectively.

Note, however, that the transition of Fig. 6.1 is always enabled and thus, it would directly
cause non-termination. Therefore, we now extend our abstraction technique to handle graph
transformation rules with negative application conditions as well, which are frequently used in
model transformation problems.

6.2.2 Extensions for negative conditions
Permission places. In order to cope with NACs, the P/T net is extended with permission places
to restrict the firing of a transition. We add one permission place for each NAC in the GTS, and
the idea of a permission place is to count how many times the GT rule can be applied to the
current instance graph (such that the corresponding NAC does not violate these matches).

• Start graph. The initial marking of permission places shall enable the firing of a transition
as many times as the corresponding GT rule is applicable to the start graph by giving a
permission token.

• Removing permissions. If a new match of some NAC Ni of a GT rule r is generated
or an existing match of the LHS of the same rule r is destroyed by the application of
some GT rule r′ then one or more tokens should be removed from the permission place
corresponding to N i

r.

• Creating permissions. If an existing match of the NAC of a GT rule r is destroyed or a
new match of the LHS of the same rule r is generated by the application of some GT rule
r′ then one or more tokens should be generated to the permission place related to N i

r.

Unfortunately, the exact number of tokens created for or removed from a permission place
depends on the actual graph structure. Therefore, we cannot derive a constant weight a priori
for the corresponding arcs in the P/T net; instead we write w(G) on such arcs to denote that
the weight of the arc is dependent on graph G. However, we know that such an arc weight
w(G) is finite, i.e. we can only generate and remove a finite number of new permissions for any
permission place.

Overapproximation for permissions. Therefore, we need to define an overapproximation of
the potential number of rule applications, which still simulates the GTS, yet it is precise enough
to detect termination for a certain class of model transformation problems.

85

 dc_244_11

6. TERMINATION ANALYSIS OF MODEL TRANSFORMATIONS

(a) Rule liftAssocDstR (b) Rule attr2fkeyR

Figure 6.2: Forbidden and permission patterns

• In our proposal, we only remove one token from a permission place when it is absolutely
guaranteed (by analyzing the original GT rule) that a permission should be destroyed each
time the rule is applied. In case of GT rules with NAC, such a situation is when a GT rule
cannot be applied on the same match twice due to a NAC.

• In case of generating a permission, we should consider all possible values for the arc
weight wi(G), thus we create a new variable ci which runs over positive integers.

Permission and forbidden patterns. An initial idea for granting permissions is to consider
the causalities of GT rules, i.e. when a rule generates a new match for another rule, a new
permission is generated as well. However, this solution is unable to handle cases when GT
rules are generating a bounded number of new matches for themselves (i.e., when a rule is
causally dependent on itself).

For instance, each application of rule liftAssocDstR (in Fig. 6.1) generates a new dst , thus a
new match for itself, which seems to be a direct cause for non-termination. On the other hand, if
the meaning of a permission is related to the number of Class-Association pairs not connected
by a dst edge, we notice that this number is strictly decreasing, thus no new permission is
granted by GT rule liftAssocDstR for itself. This insight is captured formally by forbidden and
permission patterns.

Definition 6.3 (Forbidden and permission pattern) Let GTS = (R, TG) be a graph trans-
formation system. A forbidden pattern fpir is defined for each NAC N i

r of rule r as the
smallest subgraph of N i

r that contains N i
r \ Lr (also called as the context of ni : Lr → N i

r).
The permission pattern ppir (of the same NAC N i

r) is defined as smallest subgraph of fpir
that contains N i

r \ Lr (also called as the boundary of ni
r : Lr → N i

r), which is defined formally
as fpir \ (N i

r \ Lr).

Informally, the permission pattern can be interpreted as an LHS pattern having a NAC with
the forbidden pattern. The exact number of permissions for a rule is calculated as the number
of matches of the permission pattern having the forbidden pattern as a NAC.

Example 6.4 The concepts of forbidden and permission patterns are demonstrated in Fig. 6.2(a).
The forbidden pattern (FP) of rule liftAssocDstR contains a dst edge leading from Association
A to Class CP. Here N \ L contains the single dst edge while the two nodes are added to guar-
antee that the forbidden pattern forms a graph. In order to obtain the permission pattern (PP),
we simply remove this dst edge from the forbidden pattern.

86

 dc_244_11

6.2. A PETRI NET ABSTRACTION OF GRAPH TRANSFORMATION

Definition of cardinality P/T with permission places. We now formally define cardinality P/T
nets with permission places.

Definition 6.5 (Cardinality P/T net with permission places) The cardinality P/T net with
permission places of GTS is a PN = (P, T,E,w) derived by the mapping Fpp(GTS) by
extending F(GTS) in the following way:

• Variables as weight functions. We extend the weight function of a P/T net to w : E →
N+ ∪ V where V is a set of variables ranging over N+.

• NACs into permission places. For each NAC N i of a rule r a corresponding permission
place prNi

= Fpp(rN i) is defined in the cardinality net.

• Matches of permission patterns into tokens (initial marking). For each NAC N i of a rule
r as many tokens are generated in the corresponding permission place as the number of
injective matches m of permission pattern ppir in the instance graph G which satisfies the
derived NAC ppir → fpir, (i.e., there is no injective match of the forbidden pattern fpir to
G along m).

• NACs into pre arcs. For each rule r with NACs N1, . . . , Nk, if there is an injective
morphism ki : N i → R compatible with r for some NAC N i (informally, everything
included in the NAC N i exists or it is created by the RHS), an incoming arc (prNi

, tr) is
generated in the P/T net with weight 1.

• Rule actions into post arcs. For each pair of rules r = (Lr
l←− Kr

r−→ Rr) with NACs
N1, . . . , Nk and r′ = (L′r

l←− K ′r
r−→ R′r), an outgoing arc (tr′ , prNi

) (i : 1 ≤ i ≤ k) is
generated in the P/T net (i.e. from the transition of rule r′ to the permission place of rN i)
with a variable arc weight vr′,rNi

if

1. at least one graph object o is deleted by r′ (from the forbidden pattern fpir of r) such
that there exists a graph object o′ ∈ N i \ Lr, and type(o) = type(o′) or

2. at least one graph object o is created by r′ such that there exists a graph object
o′ ∈ ppir, and type(o) = type(o′).

Informally, instead of regarding the causality between two rules based upon the RHS of rule
r′ and the LHS of r, we define causality between the effects of a rule r′ and the permission
pattern of r.

Furthermore, in order to overapproximate the graph dependent arc weights w(G), we intro-
duce variables as weights for such arcs. As a consequence, for each step of the P/T net, we can
substitute the variables with proper values to simulate the original GTS in a step-wise way. In
order to prove termination later in Sec. 6.3, we will show that any substitution of these variables
fulfill certain algebraic properties.

The incidence matrix of the P/T net abstraction of GTS with NACs is denoted as W (v),
which notation emphasizes that W contains variables at locations where new permissions are
generated for a rule.

Example 6.6 The incidence matrix of the GTS for the object-relational mapping (see Sec. 2.2.3)
is given in Fig. 6.3. The places (columns) refer to the type places corresponding to the type
graphs of Fig. 2.2 and Fig. 2.3, while transitions (rows) refer to corresponding rules of Fig. 2.6.
The right-most columns of the matrix denote permission places.

87

 dc_244_11

6. TERMINATION ANALYSIS OF MODEL TRANSFORMATIONS

Figure 6.3: Incidence matrix of the P/T net abstraction

Note that the incidence matrix is independent of the initial marking of the cardinality P/T
net, thus our termination result is valid for any initial marking. It is worth pointing out that
the proposed abstraction highly relies on the fact that a RHS contains at least one of its NACs.
Note that this is typical for model transformation problems where NACs are frequently used to
prevent the application of a rule multiple times on the same match.

Example 6.7 (Cardinality P/T net with permission patterns) Rule parentClosureR (see Fig. 2.6)
generates new parent edges, which are required for the match of rule liftAssocDstR (see Fig. 2.6),
thus the two rules are causally dependent. However, no new permissions are generated for the
latter, since rule parentClosureR should remove a dst edge (see the forbidden pattern) or cre-
ate new Class or Association nodes (see the permission pattern) for a new permission to be
generated (see the permission and forbidden patterns in Fig. 6.2(a)).

On the other hand, rule class2tableR generates new permissions for rule attr2fkeyR, since
the tables created by the former are present in the permission pattern of the latter (which consists
of tables T , TT and columns C1 and C2, see Fig. 6.2(b)). Consequently, a variable v1 is used as
the weight of the corresponding arc leading from the transition of class2table to the permission
place of attr2fkeyR.

6.3 TERMINATION ANALYSIS OF GRAPH TRANSFORMATION

Now we propose a termination analysis for GTS using a generalization of non-repetitiveness
results from P/T nets [102].

A P/T net is partially repetitive if there exists a marking M0 and a firing sequence s from
M0 such that some transition occurs infinitely many times in s. Furthermore, a main result from
P/T net theory states that a P/T net with the incidence matrix W is partially repetitive if and
only if there exists a Parikh–vector σ ≥ 0, σ 6= 0 such that W T · σ ≥ 0. As a consequence,
if a P/T net is not partially repetitive (i.e., no Parikh–vector σ ≥ 0, σ 6= 0 exists that satisfies
W T · σ ≥ 0), then only finite firing sequences exist from any intial marking M0, which proves
termination.

Our generalization lies in the fact we do not require the existence of the incidence matrixW .
Instead we state that if sequences of state vectors fulfill the condition that at least one component
of the state vector is decreasing (wrt. each previous state vector in the sequence) in each step it
guarantees that the 0 state is reached in finite steps. Our reason for this generalization is that W
may contain variables at permission places.

88

 dc_244_11

6.3. TERMINATION ANALYSIS OF GRAPH TRANSFORMATION

Lemma 6.8 If for all infinite sequences {Mi} = M0,M1, . . . of n-dimensional (state) vectors
of nonnegative integer values with Mj −Mj−1 <∞ for all j

(1) ∀i, ∀j : j > i,Mi 6≡ 0⇒ ∃k : Mj[k]−Mi[k] < 0, and

(2) ∀i,∀j : j > i,Mi ≡ 0⇒Mj ≡ 0

then M ≡ 0 in finitely many steps, i.e. ∃s : Ms ≡ 0 (where Mj[k] denote component k in
vector Mj).

PROOF In the following we use the following indices: i, j ∈ N to refer to the elements of the
sequence, and k, l ∈ {1..n} to refer to the components of a vector in the sequence.

• First, observe, that if the properties (1) and (2) hold for an infinite sequence then the
properties hold also for any subsequence of this sequence.

• In this case, we state that there should exist an infinite subsequence My0 ,My1 , . . . (of
M0,M1, . . .) with My0 [k] = My1 [k] = My2 [k] = . . . for some component k ∈ {1..n}, i.e.
the subsequence at component k is constant.

To prove this, let us construct this subsequence.

Step 1. Let us define the following nonnegative difference–vector for all i, j:

M[i,j][k] =

{
Mi[k]−Mj[k], if Mi[k]−Mj[k] ≥ 0
0, else

Step 2. Then let us examine the infinite sequence {M[0,i]} of difference–vectors, i.e. the
above defined difference of all vectors from M0.

Step 3. Since all components ofM0 are finite, there exists an upper boundK = max{M0[k]}
that is also an upper bound for the components of the difference vectors according to
the definition. Thus there may exist at most Kn different difference-vectors. Since
we have an infinite sequence of difference-vectors, there exists (by the Pigeonhole
Principle) an infinite subsequence of difference-vectors M[0,y0],M[0,y1], . . . such that
M[0,y0] = M[0,yi] for all i, where y0 is a finite index.

Step 4. According to property (1) of {Mi}, difference-vector M[0,y0] has at least one com-
ponent l1 which is positive, i.e., M[0,y0][l1] > 0 (otherwise Mi ≡ 0 is reached).
From Step 3, we know thatM[0,y0][l1] = M[0,yi][l1] for all i. SinceM[0,y0][l1] > 0 and
M0[l1]−My0 [l1] = M[0,y0][l1] = M[0,yi][l1] = M0[l1]−Myi [l1], therefore My0 [l1] =
Myi [l1] for all i. Thus the infinite subsequence {Myi} is constant at component l1.

• Then we state that M ≡ 0 in finitely many steps, i.e. ∃s : Ms ≡ 0.

1. If My0 ≡ 0 then y0 is an appropriate choice for s.

2. Now let us suppose that My0 6= 0.
Since the sequence Myi [l1] is constant at component l1, and properties (1) and (2)
hold also for this subsequence, thus, we can find another infinite subsequence {Mvj}
of {Myi} such that {Mvj} is constant at some component l2 6= l1 using Steps 1-4
with {Myi} as {Mi} and {Mvj} as {Myi}. As a consequence, the infinite subse-
quence {Mvj} is constant at both components l1 and l2 (with l1 6= l2).

89

 dc_244_11

6. TERMINATION ANALYSIS OF MODEL TRANSFORMATIONS

Since the number of components is equal to n and n is finite, in the same way we
can construct an infinite subsequence Mxi

such that Mx0 [lk] = Mxi
[lk] for all i, k,

and x0 is finite. However, according to properties (1) and (2) it is possible only if
Mxi
≡ 0 for all i. Then choosing s = x0 the theorem is proved. �

Then, we claim that mapping F() is a proper abstraction in the sense that the derived P/T
net without permission places simulates the original GTS . In other terms, whenever a rewriting
step is executed in the GTS on an instance graph, then the corresponding transition can always
be fired in the corresponding marking in the P/T net, furthermore, the result marking is an
abstraction of the result graph.

Theorem 6.9 (Cardinality P/T net simulates GTS) Let GTS = (R, TG) be a graph
transformation system and PN = (P, T,E,w) be a cardinality P/T net derived by the
mapping F(GTS). Furthermore, let G,H be instance graphs typed over TG. Then PN
simulates GTS, formally

∀G,H, r, o : (G
r,o

=⇒ H)⇒ (MG
tr=⇒MH),

where F(G) = MG, F(H) = MH , and F(r) = tr.

PROOF We need to prove that the following diagram commutes for any match o of rule r with
the corresponding transition tr = F(r). Our notation used in the proof is summarized by the
diagram below.

MG
tr=F(r)−−−−→ MH

F
x F

x
G

r,o−−−→ H

Essentially, the proof can be divided into showing that

Step 1: when r is enabled by match o in a graph G of the GTS then tr is also enabled by the
corresponding marking MG, and

Step 2: the result marking MH when firing transition tr is equal to the abstraction F(H) of the
result graph H of the GT step that executes r.

1. Proof of Step 1:

• We assume by contradiction that r is enabled by o in G but tr is disabled in MG.

• Since o is an injective match that enables r, there is a subgraph Go of G which is
isomorphic with LHS.

• As a consequence, there are at least as many objects of a certain type y in G as in
the LHS, thus card(LHS, y) ≤ card(G, y) for all graph object y in TG.

• By definition of F(), w(p, tr) = card(LHS, y) for all p = F(y).

90

 dc_244_11

6.3. TERMINATION ANALYSIS OF GRAPH TRANSFORMATION

• However, since tr is disabled (according to our indirect assumption) then for at least
one input place p1 (with (p1, tr) ∈ E) we have MG(p1) < w(p1, tr) due to the
enabledness condition of P/T nets.

• For this place p1, we have MG(p1) < w(p1, tr) = card(LHS, y1) ≤ card(G, y1) =
MG(p1) for some y1 with F(y1) = p1 which is a contradiction.

2. Proof of Step 2:

• We now assume that r is enabled in GTS and tr is enabled in the corresponding
PN .

• Since we follow the double pushout approach, exactly those elements are removed
from an instance modelGwhen applying a GT rule r which are matched inLHS\K
(as potential dangling edges prohibit the application of the rule).

• Similarly, an isomorphic image of the RHS is created as a result of the rule appli-
cation implying the creation of elements corresponding to RHS \K.

• When counting only the number of elements, we can first “remove” and then “add”
the image of the context graphK. As a consequence, for all type y in TG, card(H, y) =
card(G, y)− card(LHS, y) + card(RHS, y).

• Due to the definition of F(), for all py we have MH(p) = MG(py) − w(py, tr) +
w(tr, py), which exactly corresponds to the definition of firing a transition of a P/T
net. �

Finally, as a termination “oracle”, we solve quadratic inequalities based on the incidence
matrix of the P/T net with variables as defined in Sec. 6.2.1-6.2.2. If there are no solutions for
the inequality for any evaluation of variables in the incidence matrix, we state that the original
GTS is terminating.

Theorem 6.10 (Termination) Let W (v) be the incidence matrix of a cardinality P/T net
PN = Fpp(GTS) derived as the abstraction of a GTS.

If ∃σ∃v W (v) · σ ≥ 0 has no solutions with v ≥ 1, σ ≥ 0, σ 6= 0 (thus ∀σ∀v ∃k :
(W (v) · σ)[k] < 0), then GTS is terminating.

PROOF 1. Let GTseq = G0
r1=⇒ G1

r2=⇒ . . . be a transformation sequence (i.e. a sequence
of GT steps) as shown in the diagram below.

G0
o1, r1 - G1

o2, r2 - . . .
on, rn - Gn

M(G0)

Fpp()

?
.........................
W (G0) · σr1- M(G1)

Fpp()

?
.........................
W (G1) · σr2-

W (Gn−1) · σrn- M(Gn)

Fpp()

?

This sequence implies a sequence of incidence matrices {W (Gi)} depending on Gi. In
other words, we can calculate the W (Gi) for each GT step Gi

ri+1
=⇒ Gi+1 simulating the

exact change of tokens at the permission places according to the abstraction Fpp() (like
in the case of the initial graph).

91

 dc_244_11

6. TERMINATION ANALYSIS OF MODEL TRANSFORMATIONS

2. For each GT stepGj−1
r′,o′
=⇒ Gj , we examine that if the occurrences of permission patterns

have changed in a certain way for a NAC, how the number of tokens would have changed
according to the derived incidence matrix W (v) of the cardinality P/T net.

a) Rule application r′, o′ generates new occurrences for the permission pattern ppir of
a NAC N i of rule r. In such a case, the corresponding element w(tr′ , prNi

) in the
incidence matrix W is a variable v′ regardless of o′ due to the construction of W .
Otherwise there are two further possibilities:

b) Rule application r′, o′ disables one or more occurrence of the permission pattern
ppir of a NAC N i of rule r. In this case, if r = r′ then the corresponding element
w(tr′ , prNi

) in the incidence matrix W is either −1 or 0, If the structure of rule r′

guarantees that everything included in the NACN i exists or it is created by the RHS,
then w(tr′ , prNi

) = −1 regardless of match o′, otherwise it is 0.
Finally, if r 6= r′ then w(tr′ , prNi

) = 0 regardless of match o′.

c) Rule application r′, o′ does not influence the occurrence of the permission pattern
ppir of a NAC N i of rule r. In this case, the corresponding element w(tr′ , prNi

) in
the incidence matrix W is either 0 or a variable v′.

Theorem 6.9 guarantees that we exactly know in other locations of W (belonging to type
places) how the number of tokens changes at a GT step.

As a summary, we notice that the token flow defined by the derived incidence matrix
overapproximates the one derived by stepwise abstraction from the GTS.

3. Let σri
be a |T |–dimensional unit vector having exactly one non–zero element 1 at the

corresponding transition of rule ri.

M(Gj) = M(Gi) +W (Gi) · σri
+ · · ·+W (Gj−1) · σrj−1

M(Gj)−M(Gi) = W (Gi) · σri
+ · · ·+W (Gj−1) · σrj−1

≤ W (v := ci) · σri
+ · · ·+W (v := cj−1) · σrj−1

by substituting some non-negative constants ci, . . . , cj into vi, . . . , vj

≤ W (c) ·
j−1∑
k=1

σk where c[l] = max{ci[l]}

= W (c) · σ

As a summary, we have M(Gj)−M(Gi) ≤ W (c) · σ. However due to our assumptions,
there exists k : M(Gj)[k]−M(Gi)[k] ≤ (W (c) · σ)[k] < 0.

4. As a consequence, Lemma 6.8 can be applied thus we have M(Gn) ≡ 0 in finite steps.

5. Since M(Gi) is derived as a step-wise abstraction from the GT sequence, no GT rules are
applicable in GN (as either some graph elements or some permissions are required by a
rule, neither of which are present in GN). �

Tool support. In order to show that the quadratic inequality W (v) · σ ≥ 0 has no solutions
for proving the termination of GTSs with negative application conditions in our example, we
used a symbolic optimization toolkit (GAMS [60]) which supports mixed integer non-linear
programming.

92

 dc_244_11

6.4. RELATED WORK

6.4 RELATED WORK

Relation of graph transformation and Petri nets. The main idea of this paper is to analyze graph
transformation systems via Petri nets. In fact, there is a long tradition concerning the relation-
ship of both areas. The basic observation is that a P/T net is essentially a rewriting system on
multisets, which allows to encode the firing of P/T nets as a direct graph transformation in the
Double Pushout approach using discrete graphs and empty interfaces for the productions only
(see [36]). Taking into account general graphs and nonempty interfaces graph transformation
systems are closer to some generalizations of Petri nets, like contextual nets. This relationship
has been used in [17] to model concurrent computations of graph grammars.

Vice versa the existence of powerful analysis techniques for P/T nets motivates to simulate
graph transformation by P/T nets [18], which allows to conclude correctness properties of graph
grammars from properties of corresponding P/T nets. The main novelty of this paper wrt. [18]
(and subsequent papers of the authors) is that (i) we take into account also negative application
conditions of graph transformations and (ii) the size of the derived P/T is dependent on the type
graph and not to the instance graph. The price we have to pay for a more efficient termination
analysis is that our P/T net can be too abstract to verify all the safety properties investigated
in [18].

Termination of graph transformation systems. Termination of graph transformation systems
is undecidable in general [112], but several approaches have been considered to restrict a graph
transformation system such that termination can be shown. The classical approach of proving
termination is to construct a monotone function that measures graph properties, and to show that
the value of such a function decreases with every rule application. Concrete criteria such as the
number of nodes and edges of certain types have been considered by Aßman in [12]. However,
he sticks to these concrete criteria, while Bottoni et.al. [26] developed a general approach to
termination based on measurement functions.

With respect to termination for graph transformation systems, the current work generalizes
and formalizes the work begun at [41]. This, in fact, is an extension of the layering conditions
for deleting grammars proposed in [27], which were used for parsing. A main advantage of our
approach with respect to the termination requirements of this parsing algorithm is that we do
not require to partition the rules (and the alphabet) into layers.

As pointed out already in the introduction, we have presented termination criteria for graph
transformation systems in [K10], which allow to prove termination of several practical rele-
vant model transformations. However these criteria are not applicable to model transformations
where rules are causally dependent on themselves (e.g. transitive closure) like our motivating
example. Since each layer of [K10] can be treated separately by our current techniques, fur-
thermore, the termination criteria proposed in [K10] imposes a special structure on the derived
incidence matrix of the P/T net, it is possible to show that our termination analysis technique
based on P/T nets subsumes our former results in [K10].

6.5 CONCLUSION

In this paper, we have presented a termination analysis technique for model transformations
expressed as graph transformation systems using an abstraction into Petri nets. This way, the
termination problem of (a special class of) graph transformation systems can be proved by its
Petri net abstraction using algebraic techniques. Since the termination of graph transformation
systems is undecidable in general, our approach yields a sufficient criterion: either it proves that
a GTS is terminating, or gives a “do not know” answer.

93

 dc_244_11

6. TERMINATION ANALYSIS OF MODEL TRANSFORMATIONS

We believe that our results can also be useful for proving the termination of QVT-based
model transformations, which also uses a very limited set of control structure. For instance,
triple graph grammars (TGG) [124] provide a declarative means to specify model transforma-
tions, and show a strong conceptual correspondence with bidirectional QVT mappings. More-
over, a pair of traditional (operational) graph transformations can be easily derived for each
TGG rule, and then our termination criteria become directly applicable.

Although not mentioned explicitly, the termination criteria presented can also be used for
graph transformation with node type inheritance, since a flattening to graph transformation
without inheritance is available in [19]. Thus, the termination analysis can always be done and
need not be translated back.

94

 dc_244_11

Chapter 7

Conclusions

In this last main chapter, I summarize my scientific contributions, and provide a brief overview
on the practical relevance and utilization of these results.

7.1 SUMMARY OF SCIENTIFIC RESULTS

7.1.1 Specification Techniques for Model Transformations

Contribution 1 I proposed a general, formal specification language for defining intra-
model (endogeneous) and inter-model (exogeneous) model transformations [B3,B6,J5,J11,
J14, K1, K6, K8, K11, K25, K27].

1/1 Graph Patterns as Query Language. I introduced graph patterns with general recur-
sion and arbitrary depth of negation as a constraint and query language in the context
of model transformations.

1/2 A Hybrid Model Transformations Language. I proposed the combination of ab-
stract state machines and graph transformation to serve as a hybrid formal language
for precisely specifying model transformations.

1/3 Generic Transformations. I proposed generic, higher-order transformations to pro-
vide a compact description for various transformation problems.

The core graph pattern formalism and the hybrid language of the VIATRA2 framework was used
by Gergely Varró and Ákos Horváth to support efficient matching of recursive patterns and by
András Balogh to improve pattern composition and code generation in their PhD dissertations.
Generic and meta-transformations were developed in collaboration with Prof. András Pataricza,
were my contribution is primarily related to generic (higher-order) transformations.

Practical relevance. The hybrid formal language combining the paradigm of abstract state
machines and graph transformation offers a precise, well-founded yet easy to understand no-
tation for capturing model transformations within and between modeling languages. It has
become the transformation language of the VIATRA2 framework, and used in various industrial

95

 dc_244_11

7. CONCLUSIONS

and research projects at our research group including collaborative European projects such as
DECOS, DIANA, SENSORIA, SecureChange or MOGENTES.

7.1.2 Design Techniques for Model Transformations

Contribution 2 I defined the concepts of model transformation by example (MTBE)
[B2, J1, K22, K23], which is an iterative and semi-automated approach to derive model
transformation rules from a prototypical set of interrelated source and target models, which
describe critical cases of the model transformation problem in a purely declarative way.

2/1 Iterative process for MTBE. I defined a semi-automated, iterative process for
MTBE,which includes (1) the manual creation of prototype mapping models, (2) the
automated derivation of transformation rules, (3) the manual refinement of transfor-
mation rules by transformation engineer, and (4) the automated execution of transfor-
mation rules.

2/2 Novel MTBE concepts: context and connectivity analysis. I defined the concepts
of context analysis and connectivity analysis for both source and target models in
order to identify the required contextual model elements enabling the derivation of
model transformation rules.

2/3 Automation by inductive logic programming. I proposed the use of inductive logic
programming (ILP) to automatically derive model transformation rules for the MTBE
approach.

Practical relevance. A main advantage of the MTBE approach is that transformation designers
use the concepts of the source and target modeling languages for the specification of the trans-
formation, while the implementation, i.e. the actual model transformation rules are generated
(semi-)automatically. In our context, (semi-)automatic rule generation means that transforma-
tion designers give hints how source and target models can potentially be interconnected in the
form of a mapping metamodel. Then the actual contextual conditions used in the transformation
rules are derived automatically based upon the prototypical source and target model pairs.

Model transformation by example has become a hot research topic in the recent years in the
MDD community. As many as seven independent groups has started research in that direction
in order to propose alternate approaches like [47, 57, 61, 83, 117, 129, 130] yielding more than
90 citations to related papers [J1, K22, K23].

7.1.3 Efficient Execution Techniques for Model Transformations

Contribution 3 I developed efficient execution strategies and concepts for model transfor-
mations such as model-specific search plans, incremental model transformations, and com-
piled transformation plugins [J2–J4,J9,J11,J17–J19,J19–J21,K2–K7,K18–K20,K25,K27].

3/1 Model-specific search plans. I proposed the concepts of model-specific search plans,
which maintain instance-level statistics to exploit the actual structure of the model for

96

 dc_244_11

7.1. SUMMARY OF SCIENTIFIC RESULTS

improving the performance of local-search based execution of graph transformations
rules.

3/2 Incremental graph transformations. I developed the concept of incremental graph
transformation which explicitly store matches of graph transformation rules, and in-
crementally update these match sets upon changes of the underlying model graph.

3/3 Compiled model transformation plugins. I defined a unified architecture for com-
piled model transformation plugins which allows to embed model transformation
rules into native target environments.

This line of research was carried out in close collaboration with several PhD students including
István Ráth, Ákos Horváth, Gábor Bergmann (under my formal supervision), András Balogh
and Gergely Varró (with my informal co-tutoring). My own contribution lies in proposing
general, high-level strategies and concepts for efficient model transformations, which were then
refined and elaborated into detailed algorithms by these PhD students.

Practical relevance. These results have been implemented as part of the VIATRA2 model
transformation framework. Our benchmark investigations [J2,K3,K6] indicated that our model
transformations are scalable for models with several million model elements.

Incremental model transformations have been exploited in different ways. Change-driven
model transformations produce or consume a persisted change model capturing the modifi-
cations of a transaction carried out on the source or the target model [J4, K20]. Further-
more, incremental transformation has also been used for model-driven design-space explo-
ration [J7, J8, K14, K15]. Finally, incremental model synchronization between abstract and
concrete syntax of domain-specific models [J11] and tool integration [B1] has also been carried
out on that basis.

7.1.4 Termination Analysis for Model Transformations

Contribution 4 I elaborated a formal analysis technique for proving the termination of
model transformations formally captured by graph transformation systems. The approach
first derives a Place/Transition (P/T) net abstraction of graph transformation systems, and
then calculates the fulfillment of a sufficient termination criteria by algebraic techniques
[J7, J8, J22, K10, K14, K15, K26].

4/1 Petri net abstration of graph transformation systems. I defined a mapping from
graph transformation sytems with negative application conditions and numerical costs
of rules to cardinality P/T nets by abstracting from the graph structure.

4/2 Proof of simulation. I proved that target cardinality P/T net simulates the source
graph transformation system, which guarantees that each run of the source formalism
has an equivalent run in the target formalism.

4/3 Sufficient termination criteria. I defined a sufficient termination criteria for graph
transformation systems based upon the algebraic analysis of the P/T net abstraction.

97

 dc_244_11

7. CONCLUSIONS

Practical relevance. While this contribution primarily of theoretical relevance, the Petri net
abstraction technique was recently used as a search strategy for solving design space exploration
problems [J7, J8, K14, K15]. Furthermore, the same abstraction was extended by Szilvia Varró-
Gyapay for the simultaneous optimization and verification of graph transformation systems
in [J22].

7.2 UTILIZATION OF SCIENTIFIC RESULTS

Finally, a brief overview is provided on the utilization of the novel scientific results of the thesis.
First, a brief overview is given to the VIATRA2 transformation framework, which is an Eclipse
based model transformation tool. Then some main usage of the VIATRA2 framework will be
provided in the field of service-oriented applications and critical embedded systems.

7.2.1 The VIATRA2 Model Transformation Framework
The main objective of the VIATRA2 (VIsual Automated model TRAnsformations) framework
is to provide a general-purpose support for the entire life-cycle of engineering model transfor-
mations including the specification, design, execution, validation and maintenance of transfor-
mations within and between various modeling languages and domains.

VIATRA2 primarily aims at designing model transformations to support the precise model-
based systems development with the help of invisible formal methods. Invisible formal methods
are hidden by automated model transformations projecting system models into various mathe-
matical domains (and, preferably, vice versa). The VIATRA2 model transformation framework
is available as an official (open source) Eclipse Generative Modeling Tools (GMT) subpro-
ject [4].

VIATRA2 complements other model transformation tools in providing

• a model space for hierarchical and uniform representation of large models and metamod-
els

• transformation language with both declarative and imperative features based upon popular
formal mathematical techniques of graph transformation (GT) and abstract state machines
(ASM)

• a high performance transformation engine supporting (1) incremental model transforma-
tions, (2) event-driven live transformations where complex model changes may trigger
execution of transformations, and (3) handling well over 1,000,000 model elements

• with main target application domains in model transformations for model-based tool in-
tegration and model-based analysis

I am the principal investigator of the VIATRA2 framework, which has been developed col-
laboratively by a powerful team of young researchers, PhD students and MSc students working
at the Fault Tolerant Systems Research Group since 2004 in collaboration with employees of
OptXware Research and Development Ltd including

• Chief technologists: András Balogh, István Ráth

• Graph transformation and pattern matching experts: Gergely Varró, Ákos Horváth, Gá-
bor Bergmann;

• Model space experts: Zoltán Balogh, András Ökrös, András Schmidt, Balázs Grill;

98

 dc_244_11

7.2. UTILIZATION OF SCIENTIFIC RESULTS

• Editors and visualization: Dávid Vágó, Zoltán Ujhelyi, Ábel Hegedüs

Many insightful comments and ideas from Prof. András Pataricza were also very useful during
the development and highly appreciated hereby. I am also indepted to many more researchers
and students, who were active users of the VIATRA2 framework, and provided valuable feed-
back to the development team.

End users. The VIATRA2 framework currently served as the underlying model transforma-
tion technology of many European projects in the field of dependable embedded systems and
service-oriented applications. In this way, academic and industrial partners in these projects
became the first end users of the framework, and provided noticeable international visibility to
VIATRA2 . Regular usage of the framework has been reported at ARCS and TU Vienna (Aus-
tria), University of Leicester (UK), LMU Munich, TU Kaiserslautern (Germany), University of
Trento, University of Pisa (Italy), Georgia University of Technology (USA) and University of
Waterloo (Canada).

The VIATRA2 framework also serves as the foundation of an industrial design toolkit for
automotive systems developed at OptXware Ltd. for the AUTOSAR architecture. For instance,
the validity of design constraints are detected incremental by graph pattern and potential viola-
tions are reported immediately to the systems engineers.

7.2.2 Model Transformations for Service-Oriented Applications
The SENSORIA European project developed a comprehensive, model-driven approach for ser-
vice engineering including (1) novel languages for service modeling, (2) qualitative and quan-
titative techniques for service analysis, (3) automated mechanisms for model-driven service
deployment and (4) transformations for legacy service re-engineering. Model transformation
served as a key technology for model-driven service engineering by bridging different lan-
guages and tools in the context of service-oriented applications. Various model transformations
were developed in the scope of the project:

• Automated formal analysis of BPEL processes. The consistency of business processes
captured using the standard BPEL notation [104] were formally analyzed by the SAL
model checker [21], which exhaustively investigates all potential execution paths of a
dynamic behavioral model to decide if a designated property (requirement) holds or not.
SAL models were automatically derived [J10,K16] by a complex VIATRA2 model trans-
formation.

• Back-annotation of model checking results to BPEL processes. As the reverse trans-
formation problem, back-annotation of model checking results retrieved by the SAL
model checker to the BPEL model of service engineers was carried out [K13] by a map-
ping between traces captured by change-driven transformations [K20].

• Model-driven performability analysis. Performability is a non-functional system-level
parameter, which aims to assess the cost of using fault-tolerant techniques in terms of per-
formance. We developed a model-driven performability analysis approach [K12] by map-
ping UML-based service models to formal process model for the PEPA framework [66].
The system level performability model was assembled from a library of core performa-
bility components driven by the UML component diagrams of the entire system.

• Model-driven service deployment. The derivation of configuration descriptors required
for service deployment was automated by a chain of generic model transformations. This

99

 dc_244_11

7. CONCLUSIONS

approach was successfully adapted to a number of standard service platforms as reported
in [B4, J5, K17].

These results were achieved in collaboration with László Gönczy, Ábel Hegedüs, Gábor
Bergmann, István Ráth, András Kövi, Máté Kovács, Zsolt Déri, Tibor Somodi and Tibor Bende
under my scientific supervision.

7.2.3 Model Transformations for Critical Embedded Systems
The VIATRA2 model transformation framework has been intensively used for providing tool
support for developing and verifying critical embedded systems in the scope of the DECOS,
DIANA, MOGENTES, SENSORIA and SecureChange European research projects, and also as
part of the INDEXYS project within the industry-driven ARTEMIS platform.

• Model-driven tool integration. Model transformations served a key role in tool integra-
tion scenarios to bridge a variety of industrial off-the-shelf development tools where the
tool integration scenarios were driven by the underlying development process [73,B1,J6].

• Model-driven development tools Interactive, user-guided model transformations serve
as the foundation for model-driven tools in the automotive and avionics domain aiming
to support the development of configuration tables and allocation descriptors [B1].

• Transformations for ontology-based consistency analysis. Consistency analysis of
domain-specific modeling languages and design models was carried out by following
an ontology-based approach. Here model transformations automated the generation of
ontological descriptions (e.g. OWL documents) from high-level SysML and UML mod-
els.

Key conceptual strategies were outlined by István Majzik, András Pataricza and myself,
while additional contributors include Andás Balogh, László Gönczy, Ákos Horváth, Benedek
Izsó, Balázs Polgár and István Ráth and Szilvia Varró-Gyapay.

100

 dc_244_11

Appendix A

Appendix

A.1 CASE STUDY: A UML-TO-RACER MAPPING

We present a case study in this section to illustrate the usage of language constructs introduced
earlier. We selected a real-life transformation that is used in the European IP DECOS [45]. The
transformation maps UML structure models (class diagrams) into ontologies for the Racer rea-
soner, which can verify the static completeness and consistency of the input model. This trans-
formation is used in the project to validate embedded system models designed using domain-
specific metamodels.

The goal of the transformation is the creation of an ontology for a given class structure. The
transformation can be described by the following informal rules:

• Each class is mapped to a concept in the Racer model. If the class has a superclass, an
implication (representing the inheritance) is created between the two. If the class is a
top-level class, an implication is created for the common root class (TOPC). The latter is
needed to ensure a single inheritance tree.

• Each (binary) association is mapped into the following structure: each association end is
mapped to a concept that has two roles; one for each end of the association. This enables
a more complex analysis of associations. The concepts created from association ends are
inherited from the common root concept TOPA.

• Each attribute from the classes is mapped to an attribute for the corresponding concept.
An attribute of basic type is mapped to a Racer datatype. This part of the transformation
is omitted from the current chapter due to its technical nature.

A.1.1 Graph patterns

We defined several generic graph patterns in Fig. A.1 that can be reused by graph transformation
rules. The UML-related ones are grouped into a separate UML pattern library, that can be
reused in several transformations, and can be exchanged with libraries designed for other UML
versions. The separation of generic, reusable graph patterns for a given modeling language
(UML, Racer, etc.) results in an improved maintainability of the transformations.

• Pattern isUmlClassWithSuperClass matches UML classes that have superclasses, and
isUmlClassWithoutSuperClass matches top-level classes.

101

 dc_244_11

A. APPENDIX

pattern isUmlAssocEndAtClass (AssocEnd, Class) =
{
Association(Assoc);
Association.connection(CAA1,Assoc,AssocEndA);
AssociationEnd(AssocEnd);
AssociationEnd.type(TAC1,AssocEndA,ClassA);
Class(Class);

}
pattern isUmlClassWithSuperClass(Class)=
{
Class(SuperClass);
Generalization.supertype(SpGG,UmlGen,SuperClass);
Generalization(UmlGen);
Generalization.subtype(SbGG,UmlGen,UmlClass);
Class(UmlClass);

}
pattern isUmlClassWithoutSuperClass(UmlClass) =
{
Class(UmlClass);
neg find isUmlClassWithSuperClass(UmlClass);

}
pattern isUmlClassWithAttr(Class, Attr) =
{
Class(Class);
Attribute(Attr);
Classifier.feature(FE,Class,Attr);

}
pattern isUmlAttrOfType(Attr, Type) =
{
Attribute(Attr);
DataType(Type);
StructuralFeature.type(TSC,Attr,Type);

}
pattern isClassWithConcept(Cls,Concept,Ref)=
{
Class(Cls);
class2concept.uml(X1,CC,Cls);
class2concept(CC) in Ref;
class2concept.racer(X2,CC,Concept);
concept(Concept);

}
pattern isAssocWithConcept(AscEnd,Conc,Ref)=
{

AssociationEnd(AscEnd);
assoc2concept.uml(X1,A2R,AscEnd);
assoc2concept(A2R) in Ref;
assoc2concept.racer(X2,A2R,Conc);
concept(Conc);

}
pattern conceptRole(Role,Domain,Range,Trg) =
{

concept(Domain);
role.domain(X1,Role,Domain);
role(Role) in Trg;
role.range(X2,Role,Range);
concept(Domain);

}
pattern conceptImplication(Concept,Subject,Trg) =
{
concept(Concept);
concept.impl(IM1,Concept,Impl1);
implication(Impl1) in Trg;
implication.subject(IM2,Impl1,Subject);
concept(Subject);

}

Figure A.1: Graph patterns of the case study

102

 dc_244_11

A.1. CASE STUDY: A UML-TO-RACER MAPPING

• Pattern isUmlAssocWithEndsBetweenClasses selects associations with their association
ends and connecting classes that can be transformed into Racer.

• Pattern isUmlClassWithAttr matches class attributes, and isUmlAttrOfType matches at-
tribute data types; both are used for attribute transformation.

• Transformation-specific patterns are isClassWithConcept that matches transformed classes
together with their associated Racer concepts, and conceptImplication which is used for
the concept hierarchy.

A.1.2 Graph transformation rules

The rules of the UML-to-Racer mapping are listed in Fig. A.2 and A.3.

// Mapping each class to a concept
gtrule class2concept(in Cls, in Trg, in Ref) = {
precondition pattern pre(Cls, Ref) = {

Class(Cls);
find isUmlClass(Cls);
neg find isClassWithConcept(Cls,CC, Ref);

}
postcondition pattern post(Cls,Trg,Ref,Concept) = {

concept(Concept) in Trg;
find isClassWithConcept(Cls,Concept,Ref);
Class(Cls);

}
action {
rename(Concept,name(Cls));

}
}
// Mapping top-level classes to an implication
gtrule topClassImplication (in UmlClass, in TopConcept, in Trg, in Ref) = {
precondition pattern pre(UmlClass,Concept,Ref) =
{

Class(UmlClass);
find isUmlClassWithoutSuperClass(UmlClass);
find isClassWithConcept(UmlClass,Concept,Ref);
concept(Concept);

}
postcondition find conceptImplication(Concept,TopConcept,Trg);

}
// Matching classes with supertypes to an implication
gtrule classImplication (in UmlClass, in UmlSuperClass, in Trg, in Ref) =
{
precondition pattern pre(UmlClass, UmlSuperClass,Concept,SuperConcept, Ref) =
{

Class(UmlClass);
find isUmlClassAndSuperClass(UmlClass,UmlSuperClass);
Class(UmlSuperClass);
find isClassWithConcept(UmlSuperClass,SuperConcept,Ref);
concept(SuperConcept);
find isClassWithConcept(UmlClass,Concept,Ref);
concept(Concept);
neg find conceptImplication(Concept,SuperConcept);

}
postcondition find conceptImplication(Concept,TopConcept,Trg);

}

Figure A.2: Rules for classes in the UML-to-Racer transformation:

Rule class2concept (Fig. A.2) maps classes to Racer concepts. Before mapping it ensures
that the class is not already mapped (negative condition). It also creates the reference model

103

 dc_244_11

A. APPENDIX

gtrule assoc2role(in UmlAssocEnd, in Trg, in Ref, in TopConcept) = {
precondition pattern pre(UmlAssocEnd,UmlClass,ConceptClass,Ref) = {
AssociationEnd(UmlAssocEnd);
neg find isAssocWithConcept(UMLAssocEnd,Conc,Ref);
find isUmlAssocEndAtClass (AssocEnd, UmlClass);
Class(UmlClass);
find isClassWithConcept(UmlClass,ConceptClass);
concept(ConceptClass);

}
postcondition pattern post(UmlAssocEnd,ConceptClass,
Conc,RoleA1,RoleA2,Ref,Trg,TopConcept) =

{
// Precondition elements to be preserved
AssociationEnd(UmlAssocEnd);
concept(TopConcept);
concept(ConceptClass);

// Reference model: created
find isAssocWithConcept(UMLAssocEnd,Conc,Ref);

// Target model
// Concepts and implications: created
concept(Conc) in Trg;
find conceptImplication(Conc,TopConcept,Trg);

// Roles
role(RoleA1) in Trg;
find conceptRole(RoleA1,ConceptClass,Conc,Trg);
role(RoleA2) in Trg;
find conceptRole(RoleA2,Conc,ConceptClass,Trg);
role.inv(I1,RoleA1,RoleA2);

}
action
{
rename(Conc,"Assoc_"+name(UmlClass)+"_"+name(UmlAssocEnd));
rename(RoleA1,name(UmlClass)+"_"+name(UmlAssocEnd)+"_to");
rename(RoleA2,name(UmlClass)+"_"+name(UmlAssocEnd)+"_from");

}
}

Figure A.3: Rules for associations in the UML-to-Racer transformation

elements together with the concept objects. The find construct in the postcondition of the rule
denotes that the contents of the called pattern are simply copied to the postcondition pattern
(and merged appropriately with existing objects like Class(C)).

Rules topClassImplication and classImplication (Fig. A.2) create the implication (inheri-
tance) relations between the concepts. The first connects the top classes (without superclass) to
the special root concept TOPC, the second one connects the concepts related to child classes to
the concepts of their parents.

Rule assoc2roles (Fig. A.3) maps associations ends to Racer model elements. The associ-
ation ends are mapped to concepts, and they are connected to the associated classes by roles.
The created concepts are children of the TOPA root concept. The action part of the rule sets the
names of the newly created model elements for better readability.

The main ASM rule is the entry point of the UML-to-Racer transformation (Fig. A.4). It
takes the source, reference and target models as as input, creates the top-level concepts for
classes and associations in the Racer model, and calls each graph transformation rule in forall
in the given sequence.

104

 dc_244_11

A.2. EXPERIMENTAL EVALUATION OF INCREMENTAL GRAPH PATTERN
MATCHING

// Main rule: Uml, Ref and Racer are model containers
rule main(in UmlM, in RefM, in RacerM) = seq {
//create top-most concepts
new(concept(Topc) in RacerM);
rename(Topc,"TOPC");
new(concept(Topa) in RacerM);
rename(Topa,"TOPA");
//creating concepts representing UML classes
forall Class below UmlM with apply class2concept(Class,Racer,Ref);
//creating concepts and roles representing UML association ends
forall AssocEnd below UmlM with apply assoc2roles(AssocEnd,Racer,Ref,Topa);
//creating class hierarchy: top-level classes
forall Class below UmlM with apply topClassImplication(Class,Topc,Racer,Ref);
//creating class hierarchy: other classes
forall Class below UmlM, SuperClass below UmlM with

apply classImplication(Class,SuperClass,Racer,Ref);
}

}

Figure A.4: ASM control structures

A.2 EXPERIMENTAL EVALUATION OF INCREMENTAL GRAPH PATTERN MATCHING

A.2.1 Checking consistency constraints for AUTOSAR

The benchmark simulates the typical scenario of model validation. The user is working with a
large model, the modifications are small and local, but the result of the validation needs to be
computed as fast as possible. To emulate this, the benchmark sequence consists of the following
sequence of operations:

1. First, the model is loaded into memory. In the case of EMF-INCQUERY, most of the
overhead is expected to be registered in this phase, as the pattern matching cache needs
to be constructed. Note however, that this is a one-time penalty, meaning that the cache
will be maintained incrementally as long as the model is kept in memory. To highlight
this effect, we recorded the times for the loading phase separately.

2. Next, in the first query phase, the entire matching set of the constraints is queried. This
means that a complete validation is performed on the model, looking for all elements for
which the constraint is violated.

3. After the first query, model manipulations are executed. These operations only affect a
small fixed subset of elements, and change the validity of the constraints.

4. Finally, in the second query phase, the complete validation is performed again, to check
the net effect of the manipulation operations on the model.

In addition to our EMF-INCQUERY-based implementation, we created two separate pro-
totypes: a plain Java variant and an OCL variant that uses MDT-OCL [49]. The exact ver-
sions of EMF and MDT-OCL were 2.5.0 and 1.2.0 respectively, running on Eclipse Galileo
SR1 20090920-1017. We ran the benchmarks on an Intel Core2 E8400-based PC clocked at
3.00GHz with 3.25GBs of RAM on Windows XP SP3 (32 bit), using the Sun JDK version
1.6.0_17 (with a maximum heap size of 1536 MBs). Execution times were recorded using the
java.lang.System class, while memory usage data has been recorded in separate runs us-
ing the java.lang.Runtime class (with several garbage collector invocations to minimize

105

 dc_244_11

A. APPENDIX

Figure A.5: Results overview

the transient effects of Java memory management). The data shown in the results correspond to
the averages of 10 runs each.

All implementations share the same Java code for model manipulation, thus they differ only
in the query phases:

• The EMF-INCQUERY variant uses our API for reading the matching set of the graph
patterns corresponding to constraints. These operations are only dependent on the size of
the graph pattern and the size of the matching set itself (this is empirically confirmed by
the results, see below). To better reflect memory consumption, the RETE nets for three
constraints were built in each case.

• The plain Java variant performs model traversal using the generated model API of EMF.
This approach is not naive, but intuitively manually optimized based on the constraint
itself (but not on the actual structure of the model [K4]).

• The OCL variant has been created by systematically mapping the contents of the graph
patterns to OCL concepts, to ensure equivalence. We did not perform any OCL-specific
optimization.

To ensure the correctness of the Java implementation, we created a set of small test models
and verified the results manually. The rest of the implementations have been checked against
the Java variant as the reference, by comparing the number of valid and invalid matches found
in each round.

A.2.2 Analysis of the AUTOSAR case study

Based on the results (Fig. A.5), we have made the following observations:

106

 dc_244_11

A.2. EXPERIMENTAL EVALUATION OF INCREMENTAL GRAPH PATTERN
MATCHING

1. As expected, query operations with EMF-INCQUERY are nearly instantaneous, they are
only measurable for larger models (where the matching set itself is large). In contrast,
both Java and OCL variants exhibit a polynomially increasing characteristic, with respect
to model size. The optimized Java implementation outperforms OCL, but only by a con-
stant multiplier.

2. Although not shown in Fig. A.5, the times for model manipulation operations were also
measured for all variants, and found to be uniformly negligible. This is expected since
very few elements are affected by these operations, therefore the update overhead induced
by the RETE network is negligible.

3. The major overhead of EMF-INCQUERY is registered in the resource loading times
(shown in the Res column in Fig. A.5). It is important to note that the loading times
for EMF itself is included in the values for EMF-INCQUERY. By looking at the values
for loading times and their trends, it can be concluded that EMF-INCQUERY exhibits a
linear time increase in both benchmark types, with a factor of approximately 2 compared
to the pure EMF implementation. MDT-OCL does not cause a significant increase.

4. The memory overhead also grows linearly with the model size, but depends on the com-
plexity of the constraint too. More precisely, it depends on the size of the match sets
of patterns and that of some sub-patterns depending on the structure of the constructed
RETE network. (Actually, the memory overhead is sub-linear with respect to patterns,
due to a varying degree of RETE node-sharing.)

It has to be emphasized that in practical operations, the resource loading time increase may
not be important as it occurs only once, in an initialization phase during a model editing session.
So, as long as there is enough memory, EMF-INCQUERY provides nearly instantaneous query
performance, independently of the complexity of the query and the contents of the model. In
certain cases, like for the SSG and ISignal benchmarks, EMF-INCQUERY is the only variant
where the query can be executed in the acceptable time range for large models above 500000
elements, even when we take the combined times for resource loading and query execution
into consideration. The performance advantage is less apparent for simple queries, as indicated
by the figures for the Channel benchmark, where the difference remains in the range of a few
seconds even for large models.

Overall, EMF-INCQUERY suits application scenarios with complex queries, which are in-
voked many times, with relatively small model manipulations in-between. Even though the
memory consumption overhead is acceptable even for large models on today’s PCs, the opti-
mization techniques (based on combining various pattern matching techniques [K4]) previously
presented for VIATRA2 apply to EMF-INCQUERY too.

107

 dc_244_11

 dc_244_11

Bibliography

Related Publications

— Books and Book Chapters —

[B1] A. Balogh, G. Bergmann, G. Csertán, L. Gönczy, Á. Horváth, I. Majzik, A. Pataricza,
B. Polgár, I. Ráth, D. Varró, and G. Varró. Workflow-driven tool integration using model
transformations. In G. Engels, C. Lewerentz, W. Schäfer, A. Schürr, and B. Westfechtel,
editors, Graph Transformations and Model-Driven Engineering - Essays Dedicated to
Manfred Nagl on the Occasion of his 65th Birthday, volume 5765 of LNCS, pages 224–
248. Springer, 2010.

[B2] G. Bergmann, A. Boronat, R. Heckel, P. Torrini, I. Ráth, and D. Varró. Advances in
model transformation by graph transformations: Specification, analysis and execution. In
M. Wirsing and M. Hölzl, editors, Rigorous Software Engineering for Service-Oriented
Systems, volume 6582 of LNCS. Springer, 2011.

[B3] L. Gönczy, Á. Hegedüs, and D. Varró. Methodologies for model-driven development
and deployment: an overview. In M. Wirsing and M. Hölzl, editors, Rigorous Software
Engineering for Service-Oriented Systems, volume 6582 of LNCS. Springer, 2011.

[B4] L. Gönczy and D. Varró. Design and Deployment of Service Oriented Applications with
Non-Functional Requirements, chapter Design and Deployment of Service Oriented Ap-
plications with Non-Functional Requirements, pages 315–340. IGI, New York, 2011.

[B5] L. Grunske, L. Geiger, A. Zündorf, N. Van Eetvelde, P. Van Gorp, and D. Varró. Model
Driven Software Engineering, chapter Using Graph Transformation for Practical Model
Driven Software Engineering, pages 91–118. Springer, 2005.

[B6] A. Pataricza and D. Varró. Formal Methods in Computing, chapter Metamodeling and
Model Transformations, pages 357–425. Akadémiai Kiadó, 2005.

— Peer-reviewed Journals —

[J1] Z. Balogh and D. Varró. Model transformation by example using inductive logic pro-
gramming. Software and Systems Modeling, 8(3):347–364, 2009. IF: 1.533.

109

 dc_244_11

BIBLIOGRAPHY

[J2] G. Bergmann, Á. Horváth, I. Ráth, and D. Varró. Experimental assessment of combining
pattern matching strategies with VIATRA2. Software Tools for Technology Transfer, 12
(3-4):211–230, 2010.

[J3] G. Bergmann, I. Ráth, and D. Varró. Parallelization of graph transformation based on
incremental pattern matching. Electronic Communications of EASST, 18, 2009.

[J4] G. Bergmann, I. Ráth, G. Varró, and D. Varró. Change-driven model transformations:
Change (in) the rule to rule the change. Software and Systems Modeling, 2011. IF: 1.27.

[J5] S. Gilmore, L. Gönczy, N. Koch, P. Mayer, M. Tribastone, and D. Varró. Non-functional
properties in the model-driven development of service-oriented systems. Software and
Systems Modeling, 10(3):287–311, 2011. IF: 1.27.

[J6] L. Gönczy, I. Majzik, Á. Horváth, D. Varró, A. Balogh, Z. Micskei, and A. Pataricza.
Tool support for engineering certifiable software. Electr. Notes Theor. Comput. Sci., 238
(4):79–85, 2009.

[J7] Á. Hegedüs, A. Horváth, and D. Varró. Towards guided trajectory exploration of graph
transformation systems. Electronic Communications of the EASST, 40:1–20, 2011.

[J8] A. Horváth and D. Varró. Dynamic constraint satisfaction problems over models. Soft-
ware and Systems Modeling, 2011. IF: 1.27.

[J9] Á. Horváth, D. Varró, and G. Varró. Generic search plans for matching advanced graph
patterns. Electronic Communications of the EASST, 6, 2007.

[J10] M. Kovács, L. Gönczy, and D. Varró. Formal analysis of BPEL workflows with com-
pensation by model checking. Int. Journal of Computer Systems and Engineering, 23(5),
2008. IF: 0.277.

[J11] I. Ráth, A. Ökrös, and D. Varró. Synchronization of abstract and concrete syntax in
domain-specific modeling languages. Software and Systems Modeling, 9(4):453–471,
2010. IF: 1.533.

[J12] D. Varró. Towards symbolic analysis of visual modelling languages. Electronic Notes in
Theoretical Computer Science, 72(3):51–64, 2003.

[J13] D. Varró. Automated formal verification of visual modeling languages by model check-
ing. Software and Systems Modeling, 3(2):85–113, May 2004.

[J14] D. Varró and A. Balogh. The model transformation language of the VIATRA2 frame-
work. Science of Computer Programming, 68(3):214–234, October 2007. IF: 0.832.

[J15] D. Varró and A. Pataricza. VPM: A visual, precise and multilevel metamodeling frame-
work for describing mathematical domains and UML. Software and Systems Modeling,
2(3):187–210, October 2003.

[J16] D. Varró, G. Varró, and A. Pataricza. Designing the automatic transformation of visual
languages. Science of Computer Programming, 44(2):205–227, August 2002. IF: 0.796.

[J17] G. Varró, K. Friedl, and D. Varró. Graph transformation in relational databases. Elec-
tronic Notes in Theoretical Computer Science, 127(1):167–180, 2005.

110

 dc_244_11

BIBLIOGRAPHY

[J18] G. Varró, K. Friedl, and D. Varró. Implementing a graph transformation engine in rela-
tional databases. Software and Systems Modelling, 5(3):313–341, September 2006.

[J19] G. Varró and D. Varró. Graph transformation with incremental updates. Electronic Notes
in Theoretical Computer Science, 109:71–83, 2004.

[J20] G. Varró, D. Varró, and K. Friedl. Adaptive graph pattern matching for model transfor-
mations using model-sensitive search plans. Electronic Notes in Theoretical Computer
Science, 152:191–205, 2006.

[J21] G. Varró, D. Varró, and A. Schürr. Incremental graph pattern matching: Data structures
and initial experiments. Electronic Communications of the EASST, 4, 2006.

[J22] S. Varró-Gyapay and D. Varró. Optimization in graph transformation systems using Petri
net based techniques. Electronic Communications of the EASST, 2, 2006.

— Conference Papers —

[K1] A. Balogh and D. Varró. Advanced model transformation language constructs in the
VIATRA2 framework. In ACM Symposium on Applied Computing — Model Transfor-
mation Track (SAC 2006), pages 1280–1287, Dijon, France, April 2006. ACM Press.
Acc. rate = 32%.

[K2] A. Balogh, G. Varró, D. Varró, and A. Pataricza. Compiling model transformations to
EJB3-specific transformer plugins. In ACM Symposium on Applied Computing — Model
Transformation Track (SAC 2006), pages 1288–1295, Dijon, France, April 2006. ACM
Press. Acc. rate = 32%.

[K3] G. Bergmann, Á. Horváth, I. Ráth, and D. Varró. A benchmark evaluation of incremental
pattern matching in graph transformation. In H. Ehrig, R. Heckel, G. Rozenberg, and
G. Taentzer, editors, Proc. 4th Int. Conf. on Graph Transformations, ICGT 2008, volume
5214 of LNCS, pages 396–410. Springer, 2008. Acc. rate = 4̃0%.

[K4] G. Bergmann, Á. Horváth, I. Ráth, and D. Varró. Efficient model transformations by
combining pattern matching strategies. In R. F. Paige, editor, Theory and Practice of
Model Transformations, Second Int. Conf., ICMT 2009. Proceedings, volume 5563 of
LNCS, pages 20–34. Springer, 2009. Acc. rate = 22%.

[K5] G. Bergmann, Á. Horváth, I. Ráth, and D. Varró. Incremental evaluation of model queries
over EMF models: A tutorial on EMF-IncQuery. In R. B. France, J. M. Küster, B. Bor-
dbar, and R. F. Paige, editors, Proc. ECMFA 2011: Modelling Foundations and Appli-
cations - 7th European Conference, volume 6698 of LNCS, pages 389–390. Springer,
2011.

[K6] G. Bergmann, Á. Horváth, I. Ráth, D. Varró, A. Balogh, Z. Balogh, and A. Ökrös. In-
cremental evaluation of model queries over EMF models. In D. C. Petriu, N. Rouquette,
and Ø. Haugen, editors, Model Driven Engineering Languages and Systems - 13th Int.
Conf., MODELS 2010, Oslo, Norway, October 3-8, 2010, Proceedings, Part I, volume
6394 of LNCS, pages 76–90. Springer, 2010. Acc. rate: 21%.

[K7] G. Bergmann, A. Ökrös, I. Ráth, D. Varró, and G. Varró. Incremental pattern matching in
the VIATRA model transformation system. In G. Karsai and G. Taentzer, editors, Proc.
Graph and Model Transformations (GRAMOT 2008). ACM, 2008.

111

 dc_244_11

BIBLIOGRAPHY

[K8] G. Bergmann, Z. Ujhelyi, I. Ráth, and D. Varró. A graph query language for EMF
models. In J. Cabot and E. Visser, editors, Proc. Int. Conf. on Model Transformation,
volume 6707 of LNCS, pages 167–182. Springer, 2011. Acc. rate = 27%.

[K9] G. Csertán, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varró. VIATRA: Visual
automated transformations for formal verification and validation of UML models. In
J. Richardson, W. Emmerich, and D. Wile, editors, Proc. ASE 2002: 17th IEEE Int.
Conf. on Automated Software Engineering, pages 267–270, Edinburgh, UK, September
23–27 2002. IEEE Press. Acc. rate = 20%.

[K10] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, and S. Varró-Gyapay. Termination
criteria for model transformation. In M. Cerioli, editor, Proc. FASE 2005: Int. Conf. on
Fundamental Approaches to Software Engineering, volume 3442 of LNCS, pages 49–63,
Edinburgh, UK„ April 2005. Springer. Acc. rate = 22%.

[K11] K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovszky, U. Prange, G. Taentzer,
D. Varró, and S. Varró-Gyapay. Model transformation by graph transformation: A com-
parative study. In MTiP 2005, Int. Workshop on Model Transformations in Practice
(Satellite Event of MoDELS 2005), 2005.

[K12] L. Gönczy, Z. Déri, and D. Varró. Model transformations for performability analysis
of service configurations. In M. R. V. Chaudron, editor, Models in Software Engineer-
ing, Workshops and Symposia at MODELS 2008. Reports and Revised Selected Papers,
volume 5421 of LNCS, pages 153–166. Springer, 2008.

[K13] Á. Hegedüs, G. Bergmann, I. Ráth, and D. Varró. Back-annotation of simulation traces
with change-driven model transformations. In Proceedings of the Eighth Int. Conf. on
Software Engineering and Formal Methods (SEFM 2010), pages 145–155, Pisa, 09/2010
2010. IEEE Computer Society. Acc. rate: 22%.

[K14] Á. Hegedüs, A. Horváth, and D. Varró. A model-driven framework for guided design
space exploration. In Proc. ASE 2011: 26th IEEE/ACM Int. Conf. On Automated Soft-
ware Engineering, pages 173–182. IEEE Computer Society, November 2011. Acc. rate
= 16%, ACM Distinguished Paper Award.

[K15] Á. Horváth and D. Varró. CSP(M): Constraint Satisfaction Problem over Models. In
A. Schürr and B. Selic, editors, Model Driven Engineering Languages and Systems, 12th
Int. Conf., MODELS 2009, Denver, CO, USA, October 4-9, 2009. Proceedings, volume
5795 of LNCS, pages 107–121. Springer, 2009. Acc. rate: 18%.

[K16] M. Kovács, L. Gönczy, and D. Varró. Formal modeling of BPEL workflows including
fault and compensation handling. In EFTS ’07: Proceedings of the 2007 Workshop on
Engineering Fault Tolerant Systems, page 1, New York, NY, USA, 2007. ACM.

[K17] A. Kövi and D. Varró. An Eclipse-based framework for AIS service configurations.
In M. Malek, M. Reitenspieß, and A. P. A. van Moorsel, editors, Proc. 4th Int. Service
Availability Symposium, ISAS 2007, Durham, NH, USA, May 21-22, 2007, volume 4526
of LNCS, pages 110–126. Springer, 2007.

[K18] I. Ráth, G. Bergmann, A. Ökrös, and D. Varró. Live model transformations driven
by incremental pattern matching. In A. Vallecillo, J. Gray, and A. Pierantonio, editors,

112

 dc_244_11

BIBLIOGRAPHY

Proc. First Int. Conf. on the Theory and Practice of Model Transformations (ICMT 2008),
volume 5063 of LNCS, pages 107–121. Springer, 2008. Acc. rate = 31%.

[K19] I. Ráth, D. Vago, and D. Varró. Design-time simulation of domain-specific models by
incremental pattern matching. In IEEE Symposium on Visual Languages and Human-
Centric Computing, VL/HCC 2008, Herrsching am Ammersee, Germany, 15-19 Septem-
ber 2008, Proceedings, pages 219–222. IEEE, 2008. Acc. rate = 29%.

[K20] I. Ráth, G. Varró, and D. Varró. Change-driven model transformations. In A. Schürr
and B. Selic, editors, Proc. Model Driven Engineering Languages and Systems, 12th Int.
Conf., MODELS 2009, volume 5795 of LNCS, pages 342–356. Springer, 2009. Acc. rate:
18%, Springer Best Paper Award and ACM Distinguished Paper Award.

[K21] A. Rensink, Á. Schmidt, and D. Varró. Model checking graph transformations: A com-
parison of two approaches. In Proc. ICGT 2004: Second Int. Conf. on Graph Transfor-
mation, volume 3256 of LNCS, pages 226–241, Rome, Italy, 2004. Springer.

[K22] D. Varró. Model transformation by example. In Proc. Model Driven Engineering Lan-
guages and Systems (MODELS 2006), volume 4199 of LNCS, pages 410–424, Genova,
Italy, 2006. Springer. Acc. rate = 29%.

[K23] D. Varró and Z. Balogh. Automating model transformation by example using inductive
logic programming. In Y. Cho, R. L. Wainwright, H. Haddad, S. Y. Shin, and Y. W. Koo,
editors, Proceedings of the 2007 ACM Symposium on Applied Computing (SAC 2007),
Seoul, Korea, March 11-15, 2007, pages 978–984. ACM Press, 2007. Acc. rate = 32%.

[K24] D. Varró and A. Pataricza. Automated formal verification of model transformations. In
J. Jürjens, B. Rumpe, R. France, and E. B. Fernandez, editors, CSDUML 2003: Critical
Systems Development in UML; Proceedings of the UML’03 Workshop, number TUM-
I0323 in Technical Report, pages 63–78. TU München, September 2003.

[K25] D. Varró and A. Pataricza. Generic and meta-transformations for model transformation
engineering. In T. Baar, A. Strohmeier, A. Moreira, and S. Mellor, editors, Proc. UML
2004: 7th Int. Conf. on the Unified Modeling Language, volume 3273 of LNCS, pages
290–304, Lisbon, Portugal, October 10–15 2004. Springer. Acc. rate = 22%.

[K26] D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and G. Taentzer. Termination analysis of
model transformations by Petri nets. In A. Corradini, H. Ehrig, U. Montanari, L. Ribeiro,
and G. Rozenberg, editors, Proc. Third Int. Conf. on Graph Transformation (ICGT 2006),
volume 4178 of LNCS, pages 260–274, Natal, Brazil, 2006. Springer. Acc. rate = 45%.

[K27] G. Varró, Á. Horváth, and D. Varró. Recursive graph pattern matching: With magic sets
and global search plans. In A. Schürr, M. Nagl, and A. Zündorf, editors, Proc. Third
Int. Workshop and Symposium on Applications of Graph Transormation with Industrial
Relevance (AGTIVE 2007), volume 5088 of LNCS. Springer, 2008.

[K28] G. Varró, A. Schürr, and D. Varró. Benchmarking for graph transformation. In Proc.
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC 05),
pages 79–88, Dallas, Texas, USA, September 2005. IEEE Press. Acc. rate = 31%.

113

 dc_244_11

BIBLIOGRAPHY

External References

[1] Prover9: Automated Theorem Prover. http://www.cs.unm.edu/\~mccune/
prover9/.

[2] StylisStudio. http://www.stylusstudio.com.

[3] The Aleph Manual. http://web.comlab.ox.ac.uk/oucl/research/
areas/machlearn/Aleph/.

[4] VIATRA2 Framework. An Eclipse GMT Subproject (http://www.eclipse.org/
gmt/VIATRA2).

[5] Model transformations in practice workshop, 2005. http://sosym.dcs.kcl.ac.
uk/events/mtip/.

[6] H. Ade and M. Denecker. AILP: Abductive inductive logic programming. In IJCAI,
pages 1201–1209, 1995.

[7] Aeronautical Radio, Incorporated (ARINC). ARINC 653: Avionics Application Stan-
dard Software Interface, 2006. Supplement 2: http://www.arinc.com.

[8] Altova:. MapForce 2006. http://www.altova.com/features_xml2xml_
mapforce.html.

[9] C. Amelunxen, A. Königs, T. Rötschke, and A. Schürr. MOFLON: A standard-compliant
metamodeling framework with graph transformations. In A. Rensink and J. Warmer,
editors, Model Driven Architecture - Foundations and Applications, Second European
Conference, ECMDA-FA 2006, volume 4066 of LNCS, pages 361–375. Springer, 2006.

[10] T. Arendt, E. Biermann, S. Jurack, C. Krause, and G. Taentzer. Henshin: Advanced con-
cepts and tools for in-place EMF model transformations. In D. C. Petriu, N. Rouquette,
and Ø. Haugen, editors, Model Driven Engineering Languages and Systems - 13th Inter-
national Conference, MODELS 2010, Proceedings, Part I, volume 6394 of LNCS, pages
121–135. Springer, 2010.

[11] U. Assmann. In [51], chapter OPTIMIX: A Tool for Rewriting and Optimizing Programs,
pages 307–318. World Scientific, 1999.

[12] U. Aßmann. Graph rewrite systems for program optimization. ACM TOPLAS, 22(4):
583–637, 2000.

[13] M. Asztalos, L. Lengyel, and T. Levendovszky. Towards automated, formal verification
of model transformations. In Proc. 3rd International Conference on Software Testing,
Verification and Validation (ICST 2010), pages 15–24. IEEE Computer Society, 2010.

[14] C. Atkinson and T. Kühne. The essence of multilevel metamodelling. In M. Gogolla
and C. Kobryn, editors, Proc. UML 2001 – The Unified Modeling Language. Modeling
Languages, Concepts and Tools, volume 2185 of LNCS, pages 19–33. Springer, 2001.

[15] AUTOSAR Consortium. The AUTOSAR Standard. http://www.autosar.org/.

114

 dc_244_11

BIBLIOGRAPHY

[16] D. Balasubramanian, A. Narayanan, C. P. van Buskirk, and G. Karsai. The graph rewrit-
ing and transformation language: Great. ECEASST, 1, 2006.

[17] P. Baldan. Modelling Concurrent Computations: From Contextual Petri Nets to Graph
Grammars. PhD thesis, University of Pisa, 2000.

[18] P. Baldan, A. Corradini, and B. König. A static analysis technique for graph transforma-
tion systems. In K. G. Larsen and M. Nielsen, editors, CONCUR 2001 - Concurrency
Theory, 12th International Conference, volume 2154 of LNCS, pages 381–395, Aalborg,
Denmark, August 20-25 2001. Springer.

[19] R. Bardohl, H. Ehrig, J. de Lara, and G. Taentzer. Integrating meta modelling with graph
transformation for efficient visual language definition and model manipulation. In Proc.
FASE’04: Fundamental Approaches to Software Engineering, volume 2984 of LNCS,
pages 214–228. Springer, 2004.

[20] D. Batory. The LEAPS algorithm. Technical Report CS-TR-94-28, 1, 1994.

[21] S. Bensalem, V. Ganesh, Y. Lakhnech, C. Munoz, S. Owre, H. Rueß, J. Rushby, V. Rusu,
H. Saïdi, N. Shankar, E. Singerman, and A. Tiwari. An overview of SAL. In C. M.
Holloway, editor, LFM 2000: Fifth NASA Langley Formal Methods Workshop, pages
187–196, 2000.

[22] J. Bézivin. On the unification power of models. Software and Systems Modelling, 4(2):
171–188, 2005.

[23] J. Bézivin, N. Farcet, J.-M. Jézéquel, B. Langlois, and D. Pollet. Reflective model driven
engineering. In P. Stevens, J. Whittle, and G. Booch, editors, Proc. UML 2003: 6th
International Conference on the Unified Modeling Language, volume 2863 of LNCS,
pages 175–189, San Francisco, CA, USA, October 20-24 2003. Springer.

[24] A. Bondavalli, M. Dal Cin, D. Latella, I. Majzik, A. Pataricza, and G. Savoia. Depend-
ability analysis in the early phases of UML based system design. International Journal
of Computer Systems - Science & Engineering, 16(5):265–275, 2001.

[25] E. Börger and R. Stärk. Abstract State Machines. A method for High-Level System Design
and Analysis. Springer-Verlag, 2003.

[26] P. Bottoni, M. Koch, F. Parisi-Presicce, and G. Taentzer. Termination of high-level re-
placement units with application to model transformation. ENTCS, 127(4), 2005.

[27] P. Bottoni, G. Taentzer, and A. Schürr. Efficient parsing of visual languages based on
critical pair analysis and contextual layered graph transformation. In Proc. Visual Lan-
guages 2000, pages 59–60. IEEE Computer Society, 2000.

[28] H. Bunke, T. Glauser, and T.-H. Tran. An efficient implementation of graph grammar
based on the RETE-matching algorithm. In Proc. Graph Grammars and Their Applica-
tion to Computer Science and Biology, volume 532 of LNCS, pages 174–189, 1991.

[29] S. Burmester, H. Giese, M. Hirsch, D. Schilling, and M. Tichy. The Fujaba Real-Time
tool suite: model-driven development of safety-critical, real-time systems. In G.-C.
Roman, W. G. Griswold, and B. Nuseibeh, editors, 27th International Conference on
Software Engineering (ICSE 2005), 15-21 May 2005, St. Louis, Missouri, USA, pages
670–671. ACM, 2005.

115

 dc_244_11

BIBLIOGRAPHY

[30] J. Cabot and E. Teniente. Incremental integrity checking of UML/OCL conceptual
schemas. J. Syst. Softw., 82(9):1459–1478, 2009.

[31] K. Chen, J. Sztipanovits, S. Abdelwahed, and E. K. Jackson. Semantic anchoring with
model transformations. In ECMDA-FA, pages 115–129, 2005.

[32] K. Chen, J. Sztipanovits, and S. Neema. Toward a semantic anchoring infrastructure
for domain-specific modeling languages. In W. Wolf, editor, EMSOFT 2005, September
18-22, 2005, Jersey City, NJ, USA, 5th ACM International Conference On Embedded
Software, Proceedings, pages 35–43. ACM, 2005.

[33] Y. J. Chu and T. H. Liu. On the shortest arborescence of a directed graph. Science Sinica,
14:1396–1400, 1965.

[34] A. Cicchetti, D. di Ruscio, and R. Eramo. Towards propagation of changes by model ap-
proximations. In In Proc. of the 10th International Enterprise Distributed Object Com-
puting Conference Workshops (EDOC 2006), page 24. IEEE Computer Society, 2006.
Workshop on Models of Enterprise Computing.

[35] M. Clavel. Reflection in Rewriting Logic: Metalogical Foundations and Metaprogram-
ming. CSLI Publications, Stanford University, 2000.

[36] A. Corradini. Concurrent graph and term graph rewriting. In Proc. CONCUR’96, volume
1119 of LNCS, pages 438–464. Springer, 1996.

[37] A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Informaticae,
26(3/4):241–265, 1996.

[38] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. In [119],
chapter Algebraic Approaches to Graph Transformation — Part I: Basic Concepts and
Double Pushout Approach, pages 163–245. World Scientific, 1997.

[39] A. Cypher, editor. Watch What I Do: Programming by Demonstration. The MIT Press,
1993.

[40] K. Czarnecki and S. Helsen. Feature-based survey of model transformation approaches.
IBM Systems Journal, 45(3):621–646, 2006.

[41] J. de Lara and G. Taentzer. Automated model transformation and its validation with
atom3 and agg. In Proc. DIAGRAMS’2004 (Cambridge, UK), volume 2980 of LNAI,
pages 182–198. Springer, 2004.

[42] J. de Lara and H. Vangheluwe. AToM3: A tool for multi-formalism and meta-modelling.
In R.-D. Kutsche and H. Weber, editors, 5th International Conference, FASE 2002: Fun-
damental Approaches to Software Engineering, Grenoble, France, April 8-12, 2002, Pro-
ceedings, volume 2306 of LNCS, pages 174–188. Springer, 2002.

[43] J. de Lara and H. Vangheluwe. Translating model simulators to analysis models. In Proc.
FASE 2008, pages 77–92, 2008.

[44] L. De Raedt and N. Lavrač. Multiple predicate learning in two inductive logig prgram-
ming settings. Journal on Pure and Applied Logic, 4(2):227–254, 1996.

116

 dc_244_11

BIBLIOGRAPHY

[45] DECOS. Dependable Components and Systems. an FP6 Integrated Project. http:
//www.decos.at.

[46] M. Didonet Del Fabro, J. Bézivin, F. Jouault, and P. Valduriez. Applying generic model
management to data mapping. In Journées Bases de Données Avancés (BDA), pages
343–355, 2005.

[47] M. Didonet Del Fabro and P. Valduriez. Towards the efficient development of model
transformations using model weaving and matching transformations. Software and Sys-
tem Modeling, 8(3):305–324, 2009.

[48] Eclipse Foundation. Eclipse Modeling Framework (EMF). http://eclipse.org/
modeling/emf/.

[49] The Eclipse Project. MDT OCL. http://www.eclipse.org/modeling/mdt/
?project=ocl.

[50] J. Edmonds. Optimum branchings. Journal Research of the National Bureau of Stan-
dards, 71(B):233–240, 1967.

[51] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook on Graph
Grammars and Computing by Graph Transformation, volume 2: Applications, Lan-
guages and Tools. World Scientific, 1999.

[52] H. Ehrig and C. Ermel. Semantical correctness and completeness of model transforma-
tions using graph and rule transformation. In Proc. ICGT 2008, pages 194–210, 2008.

[53] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and A. Corradini.
In [119], chapter Algebraic Approaches to Graph Transformation — Part II: Single
pushout approach and comparison with double pushout approach, pages 247–312. World
Scientific, 1997.

[54] C. Ermel, M. Rudolf, and G. Taentzer. In [51], chapter The AGG-Approach: Language
and Tool Environment, pages 551–603. World Scientific, 1999.

[55] M. Erwig. Toward the automatic derivation of XML transformations. In 1st Int. Workshop
on XML Schema and Data Management (XSDM’03), volume 2814 of LNCS, pages 342–
354. Springer, 2003.

[56] D. Fahland, C. Favre, J. Koehler, N. Lohmann, H. Völzer, and K. Wolf. Analysis on
demand: Instantaneous soundness checking of industrial business process models. Data
Knowl. Eng., 70(5):448–466, 2011.

[57] J.-R. Falleri, M. Huchard, M. Lafourcade, and C. Nebut. Metamodel matching for auto-
matic model transformation generation. In K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl,
and M. Völter, editors, Model Driven Engineering Languages and Systems, 11th Inter-
national Conference, MoDELS 2008, Toulouse, France, September 28 - October 3, 2008.
Proceedings, volume 5301 of LNCS, pages 326–340. Springer, 2008.

[58] T. Fischer, J. Niere, L. Torunski, and A. Zündorf. Story diagrams: A new graph trans-
formation language based on UML and Java. In H. Ehrig, G. Engels, H.-J. Kreowski,
and G. Rozenberg, editors, Proc. Theory and Application to Graph Transformations
(TAGT’98), volume 1764 of LNCS. Springer, 2000. ISBN 3-540-67203-6.

117

 dc_244_11

BIBLIOGRAPHY

[59] C. L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19(1):17–37, September 1982.

[60] GAMS: General Algebraic Modeling System. http://www.gams.com.

[61] I. García-Magarino, J. J. Gómez-Sanz, and R. Fuentes-Fernández. Model transformation
by-example: An algorithm for generating many-to-many transformation rules in several
model transformation languages. In ICMT ’09: Proceedings of the 2nd International
Conference on Theory and Practice of Model Transformations, pages 52–66, Berlin,
Heidelberg, 2009. Springer-Verlag. ISBN 978-3-642-02407-8.

[62] R. Geiß, V. Batz, D. Grund, S. Hack, and A. M. Szalkowski. GrGen: A fast SPO-based
graph rewriting tool. In Proc. of the 3rd International Conference on Graph Transforma-
tion, volume 4178 of LNCS, pages 383–397, Natal, Brazil, September 2006. Springer.

[63] R. Geiß and M. Kroll. GrGen.NET: A fast, expressive, and general purpose graph rewrite
tool. In Applications of Graph Transformations with Industrial Relevance, Third Inter-
national Symposium, AGTIVE 2007, Kassel, Germany, October 10-12, 2007, Revised
Selected and Invited Papers, volume 5088 of LNCS, pages 568–569. Springer, 2007.

[64] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood. Transformation: The missing
link of MDA. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors, Proc.
ICGT 2002: Firs International Conference on Graph Transformation, volume 2505 of
LNCS, pages 90–105, Barcelona, Spain, October 7–12 2002. Springer-Verlag.

[65] H. Giese and R. Wagner. From model transformation to incremental bidirectional model
synchronization. Software and Systems Modeling (SoSyM), 8(1), 3 2009.

[66] S. Gilmore and J. Hillston. The PEPA Workbench: A tool to support a process algebra-
based approach to performance modelling. In G. Haring and G. Kotsis, editors, Computer
Performance Evaluation, Modeling Techniques and Tools, 7th International Conference,
Vienna, Austria, May 3-6, 1994, Proceedings, volume 794 of LNCS, pages 353–368.
Springer, 1994.

[67] J. Greenyer and E. Kindler. Comparing relational model transformation technologies:
implementing query/view/transformation with triple graph grammars. Software and Sys-
tem Modeling, 9(1):21–46, 2010.

[68] I. Groher, A. Reder, and A. Egyed. Incremental consistency checking of dynamic con-
straints. In Fundamental Approaches to Software Engineering (FASE 2009), volume
6013 of LNCS, pages 203–217. Springer, 2010.

[69] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally. In
ACM SIGMOD Proceedings, pages 157–166, Washington, D.C., USA, 1993.

[70] Y. Gurevich. The sequential ASM thesis. Bulletin of the European Association for The-
oretical Computer Science, 67:93–124, 1999.

[71] D. Hearnden, M. Lawley, and K. Raymond. Incremental model transformation for the
evolution of model-driven systems. In O. Nierstrasz, J. Whittle, D. Harel, and G. Reg-
gio, editors, Proc. of the 9th International Conference on Model Driven Engineering
Languages and Systems, volume 4199 of LNCS, pages 321–335, Genova, Italy, 2006.

118

 dc_244_11

BIBLIOGRAPHY

[72] R. Heckel, J. M. Küster, and G. Taentzer. Confluence of typed attributed graph transfor-
mation systems. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors,
Proc. ICGT 2002: First International Conference on Graph Transformation, volume
2505 of LNCS, pages 161–176, Barcelona, Spain, October 7–12 2002. Springer.

[73] W. Herzner, B. Huber, G. Csertán, and A. Balogh. The DECOS tool-chain: Model-based
development of distibuted embedded safety-critical real-time systems. In Proc. of the
DECOS/ERCIM Workshop at SAFECOMP 2006, pages 22–24. ERCIM, 2006.

[74] S. E. Hudson. Incremental attribute evaluation: an algorithm for lazy evaluation in
graphs. Technical Report 87-20, University of Arizona, 1987.

[75] G. Huszerl, I. Majzik, A. Pataricza, K. Kosmidis, and M. Dal Cin. Quantitative analysis
of UML Statechart models of dependable systems. The Computer Journal, 45(3):260–
277, May 2002.

[76] S. Islam, N. Suri, A. Balogh, G. Csertán, and A. Pataricza. An optimization based design
for integrated dependable real-time embedded systems. Design Autom. for Emb. Sys., 13
(4):245–285, 2009.

[77] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A model transformation tool. Sci.
Comput. Program., 72(1-2):31–39, 2008.

[78] F. Jouault and J. Bézivin. KM3: A DSL for Metamodel Specification. In Proc. FMOODS
2006: Formal Methods For Open Object-Based Distributed Systems, volume 4037 of
LNCS, pages 171–185. Springer, 2006.

[79] F. Jouault and I. Kurtev. Transforming models with ATL. In Model Transformations in
Practice Workshop at MODELS 2005, volume 3844 of LNCS, pages 128–138. Springer,
2005.

[80] F. Jouault and M. Tisi. Towards incremental execution of ATL transformations. In Proc.
of ICMT’10, 3rd Intl. Conference on Model Transformation, volume 6142 of LNCS,
pages 123–137. Springer, 2010.

[81] A. Kalnins, J. Barzdins, and E. Celms. Model transformation language MOLA. In
U. Aßmann, M. Aksit, and A. Rensink, editors, Model Driven Architecture, European
MDA Workshops: Foundations and Applications, MDAFA 2003 and MDAFA 2004, Re-
vised Selected Papers, volume 3599 of LNCS, pages 62–76, Linköping, Sweden, 2005.
Springer.

[82] G. Karsai and A. Narayanan. On the correctness of model transformations in the de-
velopment of embedded systems. In F. Kordon and O. Sokolsky, editors, Composition
of Embedded Systems. Scientific and Industrial Issues, 13th Monterey Workshop 2006,
Paris, France, October 16-18, 2006, Revised Selected Papers, volume 4888 of LNCS,
pages 1–18. Springer, 2007.

[83] M. Kessentini, H. A. Sahraoui, and M. Boukadoum. Model transformation as an opti-
mization problem. In K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and M. Völter, edi-
tors, Model Driven Engineering Languages and Systems, 11th International Conference,
MoDELS 2008, Toulouse, France, September 28 - October 3, 2008. Proceedings, volume
5301 of LNCS, pages 159–173. Springer, 2008.

119

 dc_244_11

BIBLIOGRAPHY

[84] T. Klein, U. Nickel, J. Niere, and A. Zündorf. From UML to Java and back again.
Technical report, University of Paderborn, 2000.

[85] A. Königs and A. Schürr. MDI - a rule-based multi-document and tool integration ap-
proach. Software and Systems Modelling, 5(4):349–368, 2006.

[86] J. Larrosa and G. Valiente. Graph pattern matching using constraint satisfaction. In
H. Ehrig and G. Taentzer, editors, GRATRA 2000 Joint APPLIGRAPH and GETGRATS
Workshop on Graph Transformation Systems, Berlin, Germany, March 25–27 2000.

[87] M. Lawley and J. Steel. Practical declarative model transformation with tefkat. In J.-M.
Bruel, editor, Satellite Events at the MoDELS 2005 Conference, MoDELS 2005 Inter-
national Workshops, Revised Selected Papers, volume 3844 of LNCS, pages 139–150.
Springer, 2006.

[88] S. Lechner and M. Schrefl. Defining web schema transformers by example. In V. Marik,
W. Retschitzegger, and O. Stepankova, editors, DEXA, volume 2736 of LNCS, pages
46–56. Springer, 2003.

[89] L. Lengyel, T. Levendovszky, and H. Charaf. Validated model transformation-driven
software development. IJCAT, 31(1/2):106–119, 2008.

[90] T. Levendovszky, L. Lengyel, G. Mezei, and H. Charaf. A systematic approach to meta-
modeling environments and model transformation systems in VMTS. In Electr. Notes
Theor. Comput. Sci., volume 127, pages 65–75. Elsevier, 2005. Proc. GraBaTs 2004:
International Workshop on Graph Based Tools.

[91] B. G. T. Lowden and J. Robinson. Constructing inter-relational rules for semantic query
optimisation. In A. Hameurlain, R. Cicchetti, and R. Traunmüller, editors, Proceedings
of Database and Expert Systems Applications, 13th International Conference, DEXA
2002, Aix-en-Provence, France, September 2-6,, volume 2453 of LNCS, pages 587–596.
Springer, 2002.

[92] Z. Á. Mann, A. Orbán, and P. Arató. Finding optimal hardware/software partitions.
Formal Methods in System Design, 31:241–273, 2007.

[93] A. Matzner, M. Minas, and A. Schulte. Efficient graph matching with application to
cognitive automation. In M. Nagl and A. Schürr, editors, Proc. of the 3rd International
Workshop and Symposium on Applications of Graph Transformation with Industrial Rel-
evance, pages 293–308, Kassel, Germany, October 2007.

[94] S. J. Mellor. MDA Distilled: Principles of Model-Driven Architecture. Addison-Wesley,
2004.

[95] T. Mészáros. Supporting Model Animation Methods with Graph Transformation. PhD
thesis, Budapest University of Technology and Economics, 2011.

[96] T. Mészáros and et al. Manual and automated performance optimization of model trans-
formation systems. Software Tools for Technology Transfer, 12(3-4):231–243, 2010.

[97] S. P. Miller. Certification issues in model based development. Technical report, Advanced
Technology Center, Rockwell Collins, 2006.

120

 dc_244_11

BIBLIOGRAPHY

[98] S. P. Miller, A. C. Tribble, M. W. Whalen, and M. P. E. Heimdahl. Proving the shalls.
STTT, 8(4-5):303–319, 2006.

[99] D. P. Miranker and B. J. Lofaso. The organization and performance of a TREAT-based
production system compiler. IEEE Transactions on Knowledge and Data Engineering, 3
(1):3–10, 1991.

[100] S. Moyle. Using theory completion to learn a navigation control program. In S. Matwin
and C. Sammut, editors, Proc. Twelfth International Conference on ILP (ILP 2002), vol-
ume LNAI, pages 182–197. Springer, 2003.

[101] S. Muggleton and L. de Raedt. Inductive logic programming: Theory and methods.
Journal of Logic Programming, 19-20:629–679, 1994.

[102] T. Murata. Petri nets: Properties, analysis and applications. Proc. of the IEEE, 77(4):
541–580, 1989.

[103] U. Nickel, J. Niere, and A. Zündorf. Tool demonstration: The FUJABA environment. In
The 22nd International Conference on Software Engineering (ICSE), Limerick, Ireland,
2000. ACM Press.

[104] OASIS. Web Services Business Process Execution Language Version 2.0 (OASIS Stan-
dard), 2007. "http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.
0.html".

[105] Object Management Group. Meta Object Facility Version 2.0, 2003. http://www.
omg.org.

[106] Object Management Group. UML Semantics Version 2.0, May 2003. http://www.
omg.org.

[107] Object Management Group. Object Constraint Language Specification (Version 2.0),
May 2006. http://www.omg.org.

[108] Object Management Group. QVT: MOF 2.0 Query / View / Transformation, 2008.
http://www.omg.org/spec/QVT/1.0/.

[109] Object Management Group. SysML: Systems Modeling Language, June 2010. http:
//www.sysml.org.

[110] K. Ono, T. Koyanagi, M. Abe, and M. Hori. XSLT stylesheet generation by example with
WYSIWYG editing. In Proceedings of the 2002 Symposium on Applications and the
Internet (SAINT 2002), pages 150–161, Washington, DC, USA, 2002. IEEE Computer
Society.

[111] A. Pataricza. Model-based dependability analysis, 2008. DSc thesis, Hungarian
Academy of Sciences.

[112] D. Plump. Termination of graph rewriting is undecidable. Fundamenta Informaticae, 33
(2):201–209, 1998.

[113] J. Poole, D. Chang, D. Tolbert, and D. Mellor. Common Warehouse Metamodel. John
Wiley & Sons, Inc., 2002.

121

 dc_244_11

BIBLIOGRAPHY

[114] Racer Systems Gmbh. Racerpro. http://www.racer-systems.com.

[115] A. Rensink. Representing first-order logic using graphs. In H. Ehrig, G. Engels,
F. Parisi-Presicce, and G. Rozenberg, editors, Proc. 2nd International Conference on
Graph Transformation (ICGT 2004), Rome, Italy, volume 3256 of LNCS, pages 319–
335. Springer, 2004.

[116] A. Repenning and C. Perrone. Programming by example: programming by analogous
examples. Communications of the ACM, 43(3):90–97, 2000.

[117] R. Robbes and M. Lanza. Example-based program transformation. In K. Czarnecki,
I. Ober, J.-M. Bruel, A. Uhl, and M. Völter, editors, Model Driven Engineering Lan-
guages and Systems, 11th International Conference, MoDELS 2008, Toulouse, France,
September 28 - October 3, 2008. Proceedings, volume 5301 of LNCS, pages 174–188.
Springer, 2008.

[118] L. M. Rose, D. S. Kolovos, R. F. Paige, and F. A. C. Polack. Model migration with
epsilon flock. In ICMT, pages 184–198, 2010.

[119] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Trans-
formations: Foundations. World Scientific, 1997.

[120] RTCA. Software Considerations in Airborne Systems and Equipment Certification (DO-
178B), 1992.

[121] SAE. Architecture Analysis and Design Language (AADL). http://www.aadl.
info/.

[122] E. Schoitsch, E. Althammer, H. Eriksson, J. Vinter, L. Gönczy, A. Pataricza, and
G. Csertán. Validation and certification of safety-critical embedded systems - The DE-
COS Test Bench. In J. Górski, editor, Computer Safety, Reliability, and Security, 25th
International Conference, SAFECOMP 2006, Gdansk, Poland, September 27-29, 2006,
Proceedings, volume 4166 of LNCS, pages 372–385. Springer, 2006.

[123] A. Schürr. Introduction to PROGRES, an attributed graph grammar based specification
language. In M. Nagl, editor, Graph–Theoretic Concepts in Computer Science, volume
411 of LNCS, pages 151–165, Berlin, 1990. Springer.

[124] A. Schürr. Specification of graph translators with triple graph grammars. In B. Tinhofer,
editor, Proc. WG94: International Workshop on Graph-Theoretic Concepts in Computer
Science, number 903 in LNCS, pages 151–163. Springer, 1994.

[125] A. Schürr, A. J. Winter, and A. Zündorf. In [51], chapter The PROGRES Approach:
Language and Environment, pages 487–550. World Scientific, 1999.

[126] S. Shekhar, B. Hamidzadeh, A. Kohli, and M. Coyle. Learning transformation rules for
semantic query optimization: A data-driven approach. IEEE Trans. Knowl. Data Eng., 5
(6):950–964, 1993.

[127] G. Simon, G. Karsai, G. Biswas, S. Abdelwahed, N. Mahadevan, T. Szemethy, G. Péceli,
and T. Kovácsházy. Model-based fault-adaptive control of complex dynamic systems. In
Proceedings of the 20th IEEE Instrumentation and Measurement Technology Conference,
IMTC/2003, pages 176–181. IEEE, 2003.

122

 dc_244_11

BIBLIOGRAPHY

[128] D. D. Straube and M. T. Özsu. Query optimization and execution plan generation in
object-oriented data management systems. Knowledge and Data Engineering, 7(2):210–
227, 1995.

[129] M. Strommer, M. Murzek, and M. Wimmer. Applying Model Transformation By-
Example on Business Process Modeling languages. In Proc. 3rd International Work-
shop on Foundations and Practices of UML (ER 2007), volume 4802 of LNCS, pages
116–125. Springer, 2007.

[130] Y. Sun, J. White, and J. Gray. Model transformation by demonstration. In MODELS ’09:
Proceedings of the 12th International Conference on Model Driven Engineering Lan-
guages and Systems, pages 712–726, Berlin, Heidelberg, 2009. Springer-Verlag. ISBN
978-3-642-04424-3.

[131] Sun Microsystems. Enterprise Java Beans 3.0.

[132] J. Sztipanovits and G. Karsai. Model-integrated computing. IEEE Computer, 30(4):
110–111, 1997.

[133] A. Tiwari, N. Shankar, and J. M. Rushby. Invisible formal methods for embedded control
systems. Proceedings of the IEEE, 91(1):29–39, 2003.

[134] L. Tratt. The MT model transformation language. In Proceedings of the 2006 ACM
Symposium on Applied Computing (SAC), Dijon, France, pages 1296–1303. ACM, 2006.

[135] G. Varró. Advanced Techniques for the Implementation of Model Transformation Sys-
tems. PhD thesis, Budapest University of Technology and Economics, 2008.

[136] G. Varró. Implementing an EJB3-specific graph transformation plugin by using database
independent queries. Electr. Notes Theor. Comput. Sci., 211:121–132, 2008.

[137] A. Vizhanyo, A. Agrawal, and F. Shi. Towards generation of efficient transformations. In
G. Karsai and E. Visser, editors, Proc. of 3rd Int. Conf. on Generative Programming and
Component Engineering (GPCE 2004), volume 3286 of LNCS, pages 298–316, Vancou-
ver, Canada, October 2004. Springer-Verlag.

[138] M. Wimmer, M. Strommer, H. Kargl, and G. Kramler. Towards model transformation
generation by-example. In Proc. of HICSS-40 Hawaii International Conference on Sys-
tem Sciences, page 285, Hawaii, USA., January 2007. IEEE Computer Society.

[139] I. Wright and J. Marshall. The execution kernel of RC++: RETE*, a faster RETE with
TREAT as a special case. International Journal of Intelligent Games and Simulation, 2
(1):36–48, February 2003.

[140] L. L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data-driven understanding and re-
finement of schema mappings. In Proc. ACM SIGMOD Conference on Management of
Data, pages 485–496, 2001.

[141] M. M. Zloof. Query-by-example: the invocation and definition of tables and forms. In
D. S. Kerr, editor, VLDB, pages 1–24. ACM, 1975.

[142] A. Zündorf. Graph pattern-matching in PROGRES. In Proc. 5th Int. Workshop on Graph
Grammars and their Application to Computer Science, volume 1073 of LNCS, pages
454–468. Springer-Verlag, 1996.

123

 dc_244_11

