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Chapter 1

Introduction

In this chapter we give a brief overview of the topics presented in this dis-
sertation. First we will introduce the models of computation we will study.
We start with the classical model of formal grammars and describe some of
their regulated variants. Next we move on to the field of grammar systems
dealing with networks of grammars which cooperate in jointly generating a
language, and then we introduce the non-classical notion of membrane sys-
tems, a chemical type of computing model dealing with the transformations
of multisets of objects. Finally we describe our understanding of the term
descriptional complexity, a field of research which we will be dealing with in
the rest of the chapters.

1.1 Formal grammars with regulation

First we deal with regulated grammars, that is, context-free grammars with
some additional control mechanism to regulate the use of the rules during
the derivations.

The need for rewriting devices which use rules of a simple form but still
have a considerable generative power is justified by the study of phenomena
occurring in different areas of mathematics, linguistics, or even developmental
biology. To study problems in these areas which cannot be described by
the capabilities of context-free languages, it is often desirable to construct
generative mechanisms which have as many context-free-like properties as
possible, but are also able to describe the non-context-free features of the
specific problem in question. See (Dassow and Păun, 1989) for a discussion
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about non-context-free phenomena in different areas, and also (Dassow et al.,
1997a) for regulated rewriting in general.

Tree controlled grammars were introduced in (Čulik II and Maurer, 1977)
as a pair (G,R) where G is a context-free grammar and R is a regular set,
called the control language. The control language contains words composed
of the terminal and nonterminal alphabets of G, and it is used to control the
work of G by restricting the set of derivations which G is allowed to make.
Only those words belong to the generated language of the tree controlled
grammar which can be generated by the context-free grammar G, and more-
over, which have a derivation tree where all the strings obtained by reading
from left to right the symbols labeling nodes which belong to the same level
of the tree (with the exception of the last level) are elements of the regular
set R.

As it was already shown in (Čulik II and Maurer, 1977), tree controlled
grammars are able to generate any recursively enumerable language. Variants
of the notion with control sets which are not regular but belong to different
classes from the Chomsky hierarchy were studied in (Păun, 1979), the power
of subregular control sets were examined in more detail in (Dassow et al.,
2010).

We also consider a different way of using the sentential form to control
the rule application. It is based on the presence/absence of certain symbols
or substrings in the sentential forms. One variant of this general idea is
realized by conditional grammars, sometimes also called grammars with reg-
ular restriction, see (Fřıs, 1968), (Salomaa, 1973). The derivations in these
mechanisms are controlled by regular languages associated to the context-
free rules: A rule can only be applied to the sentential form if it belongs to
the language associated to the given rule.

A weaker restriction is used in the generative mechanisms called semi-con-
ditional grammars, see (Kelemen, 1984), (Păun, 1985). These are context-
free grammars with a permitting and a forbidding condition associated to
each production. The conditions are given in the form of two words: a
permitting and a forbidding word. A production can only be used on a given
sentential form if the permitting word is a subword of the sentential form and
the forbidding word is not a subword of the sentential form. Note that semi-
conditional grammars are special cases of conditional grammars, since the
sets of those sentential forms which satisfy the conditions associated to the
rules are regular sets. Semi-conditional grammars are also known to generate
the class of recursively enumerable languages.
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The study of semi-conditional grammars continued with the introduction
of simple semi-conditional grammars in (Meduna and Gopalaratnam, 1994).
We speak of a simple semi-conditional grammar if each rule has at most one
nonempty condition, that is, no controlling context condition at all, or either
a permitting, or a forbidding one. Simple semi-conditional grammars were
introduced in (Meduna and Gopalaratnam, 1994) where they were also were
shown to be able to generate all recursively enumerable languages.

Finally, we will study scattered context grammars. Scattered context
grammars, introduced in (Greibach and Hopcroft, 1969), also represent a
class of generative devices which use the presence/absence of certain symbols
or substrings in their current sentential forms to achieve additional control
over the application of their rewriting rules.

The productions of these grammars are ordered sequences of context-free
rewriting rules which have to be applied in parallel on nonterminals appearing
in the sentential form in the same order as the nonterminals on the left-
hand sides of the rules appear in the production sequence. Scattered context
grammars are known to characterize recursively enumerable languages, see
(Gonczarowski and Warmuth, 1989), (Meduna, 1995b), (Meduna, 1995a),
and (Virkkunen, 1973).

1.2 Parallel communicating grammar systems

Due to their theoretical and practical importance, computational models
based on distributed problem solving systems have been in the focus of inter-
est for a long time. A challenging area of research concerning these systems is
to elaborate syntactic frameworks to describe the behavior of communities of
communicating agents which cooperate in solving a common problem, where
the framework is sufficiently sophisticated but relatively easy to handle. The
theory of grammar systems ((Dassow et al., 1997b), (Csuhaj-Varjú et al.,
1994)) offers several constructs for this purpose. One of them is the paral-
lel communicating (PC) grammar system (introduced in (Păun and Sântean,
1989)), a model for communities of cooperating problem solving agents which
communicate with each other by dynamically emerging requests.

In these systems, several grammars perform rewriting steps on their own
sentential forms in a synchronized manner until one or more query symbols,
that is, special nonterminals corresponding to the components, are intro-
duced in the strings. Then the rewriting process stops and one or more
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communication steps are performed by substituting all occurrences of the
query symbols with the current sentential forms of the component grammars
corresponding to the given symbols. Two types of PC grammar systems are
distinguished: In the case of returning systems, the queried component re-
turns to its start symbol after the communication and begins to generate a
new string. In non-returning systems the components continue the rewriting
of their current sentential forms. The language defined by the system is the
set of terminal words generated by a dedicated component grammar, the
master. In this framework, the grammars represent problem solving agents,
the nonterminals open problems to be solved, the query symbols correspond
to questions addressed to the agents, and the generated language represents
the problem solution. Non-returning systems describe the case when the
agent after communication preserves the information obtained so far, while
in the case of returning systems, the agent starts its work again from the
beginning after communicating information. The reader may notice that the
framework of PC grammar systems is also suitable for describing other types
of distributed systems, for example, networks with information providing
nodes.

The relationship between the class of languages generated by return-
ing and non-returning PC grammar systems have long been an important
open problem in the field of PC grammars. First in (Mihalache, 1994), non-
returning centralized PC grammar systems were simulated by returning but
non-centralized systems, then in (Dumitrescu, 1996) a simulation was pre-
sented also for the general non-centralized case.

The exact characterization of the generative power of PC grammar sys-
tems has been an open problem for about ten years, until in (Csuhaj-Varjú
and Vaszil, 1999) returning PC grammar systems were shown to characterize
the class of recursively enumerable languages. At the same time, (Mandache,
2000) showed that all recursively enumerable languages can also be generated
by non-returning systems, but the construction of the proof did not provide
an upper bound for the number of component grammars.

Returning to the original motivation, namely, to the description of the
behavior of communities of problem solving agents, several natural problems
arise. One of them is to study systems where clusters or teams of agents
represent themselves as separate units in the problem solving process. Notice
that this question is also justified by the area of computer-supported team
work or cluster computing. The idea of teams has already been introduced
in the theory of grammar systems for so-called cooperating distributed (CD)
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grammar systems and eco-grammar systems, with the meaning that a team
is a collection of components which act simultaneously (see (Kari et al.,
1995),(Păun and Rozenberg, 1994), (Mateescu et al., 9394), (ter Beek, 1996),
(ter Beek, 1997), (Csuhaj-Varjú and Mitrana, 2000), (Lázár et al., 2009)).

Inspired by these considerations, in (Csuhaj-Varjú et al., 2011) we intro-
duced the notion of a parallel communicating grammar system with clusters
of components (a clustered PC grammar system, in short) where instead of
individual components, each query symbol refers to a set of components, a
(predefined) cluster. Contrary to the original model where any addressee
of the issued query is precisely identified, i.e., any query symbol refers to
exactly one component, here a cluster is queried, and anyone of its compo-
nents is allowed to reply. This means that the clusters of components behave
as separate units, that is, the individual members of the clusters cannot be
distinguished at the systems’ level.

1.3 Membrane systems

Membrane systems, or P systems were introduced in (Păun, 2000) as com-
puting models inspired by the functioning of the living cell. Their main
components are membrane structures consisting of membranes hierarchically
embedded in the outermost skin membrane. Each membrane encloses a re-
gion containing a multiset of objects and possibly other membranes. Each
region has an associated set of operators working on the objects contained
by the region. These operators can be of different types, they can change the
objects present in the regions or they can provide the possibility of trans-
ferring the objects from one region to another one. The evolution of the
objects inside the membrane structure from an initial configuration to a
somehow specified end configuration correspond to a computation having a
result which is derived from some properties of the specific end configura-
tion. Several variants of the basic notion have been introduced and studied
proving the power of the framework, see the monograph (Păun, 2002) for a
comprehensive introduction, the recent handbook (Păun et al., 2010) for a
summary of notions and results of the area, and (Ciobanu et al., 2006) for
various applications.

One of the most interesting variants of the model was introduced in (Păun
and Păun, 2002) called P systems with symport/antiport. In these systems
the modification of the objects present in the regions is not possible, they
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may only move through the membranes from one region to another. The
movement is described by communication rules called symport/antiport rules
associated to the regions. (This phenomenon also has analogues in biology,
see (Alberts et al., 1994) for more details).

A symport rule specifies a multiset of objects that might travel through a
given membrane in a given direction, an antiport rule specifies two multisets
of objects which might simultaneously travel through a given membrane in
the opposite directions. The result can be read as the number of objects
present inside a previously given output membrane after the system reaches
a halting configuration, that is, a configuration when no application of any
rule in any region is possible.

Note the important role that the environment plays in the computations
of membrane systems which use only communication rules: the type and
number of objects inside the system can only be changed by sending out
some of them into the environment, and importing some others from the en-
vironment. Thus, we need to make assumptions also about the environment
in which the system is placed.

The situation is similar also in the case of P colonies, the other membrane
system variant we will discuss. They represent a class of membrane systems
similar to so-called colonies of simple formal grammars (Kelemen and Kele-
menová, 1992) (see also (Csuhaj-Varjú et al., 1994; Dassow et al., 1997b) for
basic elements of grammar systems and (Csuhaj-Varjú et al., 1997) for the
Artificial Life inspired eco-grammar systems).

1.4 Descriptional complexity - A brief over-

view of the following chapters

In this dissertation we understand the term descriptional complexity as an
area of theoretical computer science studying various measures of complexity
of grammars, automata, or related system (measuring the succintness of their
descriptions) and the relationships, trade-offs, between the different variants
of systems for a given measure, or the different variants of measures for a
given system.

Descriptional complexity aspects of systems (automata, grammars, rewrit-
ing systems, etc.) have been a subject of intensive research since the begin-
ning of computer science, but the field has also been actively studied in
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recent years. Examples of some early results of the type we are interested
in, appeared in (Gruska, 1969) about the size of context-free grammars, and
the size measures of the number of nonterminal symbols and the number
of productions were also introduced, see also (Kelemenová, 1982) for a sur-
vey of “grammatical complexity” of context-free grammars. The succintness
of representations of languages by different variants of automata were also
considered by several authors, see (Goldstine et al., 2002) and (Holzer and
Kutrib, 2011) for more details, and a survey of results in these areas.

It is clear that the fact that a system is able to simulate some universal
device implies that its size parameters can be bounded. This holds, since by
simulating the universal device, all computations are carried out by a fixed
(universal) system (having, therefore, fixed size parameters). On the other
hand, it is still interesting to look for the best possible values of the bounds,
or to study the relationship of certain size parameters with each other or
with other properties of the given system.

In Chapter 3 we consider some variants of regulated grammars. Natu-
ral measures of descriptional complexity for a formal grammar (regulated or
not) are the number of nonterminal symbols and the number of productions
(rewriting rules). In addition to measuring the complexity of the grammar,
studying measures which also take into account the complexity of the con-
trol mechanism is also of interest. Concerning tree controlled grammars we
will study the number of nonterminals of the underlying grammar plus the
minmal number of nonterminals necessary to generate the control language
which is used to regulate the derivations. In simple semi-conditional gram-
mars, we investigate the number of productions and the size of the context
conditions used for controlling the rule application. Finally, for scattered-
context grammars, we consider the number of nonterminal symbols and the
number of context sensing priductions.

In the Chapter 4 we deal with networks of cooperating grammars and
focus our attention on parallel communicating grammar systems. These are
systems of cooperating context-free grammars, so instead of the complexity
of the individual components, we would like to focus our attention on the
complexity of the system as described by its size, that is, the number of
components, and the complexity of the cooperation, that is, the communica-
tion protocol. Concerning the types of communication, we first describe the
relationship of the returning or non-returning variants, then we reduce the
complexity of the communication in the network by showing how to group
some of the individual components into clusters which are, in some sense,
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indistinguishable at the systems’ level.
In Chapter 5 we first investigate some descriptional complexity aspects of

symport/antiport P systems. We consider symport/antiport rules with min-
imal cooperation, that is, symport rules moving just one object and antiport
rules moving two objects, one in each direction. (These are in some sense
the “smallest” possible rules of this type.) We examine the number of mem-
branes necessary for systems having these simple rules to reach the maximal
power, that is, to generate recursively enumerable sets. In the second part of
the chapter we consider P colonies. First we show how to bound the number
of cells, the number of programs, or both of these measures simultaneously.
Then we further simplify the already very simple components of these sys-
tems by introducing insertion/deletion programs in such a way that some
cells are only able to export objects into the environment, while others are
only able to consume objects from the environment. Finally we restrict the
number of objects inside the cells of the P colony and study systems which
have only one object, the minimal possible amount, inside the cells.

10

               dc_640_12



Chapter 2

Some Preliminary Definitions
and Notation

In this chapter we present some general definitions and notation which will
be used in the subsequent parts of the text. The reader is assumed to be
familiar with the basic notions of formal languages and automata theory,
more details can be found in the handbook (Rozenberg and Salomaa, 1997),
or the monographs (Salomaa, 1973) and (Dassow and Păun, 1989).

2.1 Generative grammars

A finite set of symbols T is called an alphabet. The cardinality, that is, the
number of elements of T is denoted by |T |. The set of non-empty words over
the alphabet T is denoted by T+; the empty word is ε, and T ∗ = T+∪{ε}. A
set L ⊆ T ∗ is called a language over t. For a word w ∈ T ∗ and a set of symbols
A ⊆ T , we denote the length of w by |w|, and the number of occurrences of
symbols from A in w by |w|A. If A is a singleton set, i.e., A = {a}, then
we write |w|a instead of |w|{a}. The concatenation of two sets L1, L2 ⊆ V ∗,
denoted as L1L2, is defined as L1L2 = {w1w2 | w1 ∈ L1, w2 ∈ L2}.

A generative grammar G is a quadruple G = (N, T, S, P ) where N and
T are the disjoint sets of nonterminal and terminal symbols, S ∈ N is the
initial nonterminal, and P is a set of rewriting rules (or productions) of the
form α → β where α, β ∈ (N ∪ T )∗ with |α|N ≥ 1. A string v can be
derived from a string u, denoted as u ⇒ v for some u, v ∈ (N ∪ T )∗, if they
can be written as u = u1αu2, v = v1βv2 for a rewriting rule α → β ∈ P .
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The reflexive and transitive closure of the relation ⇒ is denoted by ⇒∗. The
language generated by the grammar G is the set of terminal strings which can
be derived from the initial nonterminal, that is, L(G) = {w ∈ T ∗ | S ⇒∗ w}.
It is known that any recursively enumerable language can be generated by a
generative grammar defined as above.

A generative grammar is context-free, if the rewriting rules α → β are
such, that α ∈ N . A context-free grammar is regular, if in addition to the
property that α ∈ N , it also holds, that β ∈ T ∗ ∪ T ∗N . The classes of
recursively enumerable, context-free, and regular grammars and languages
are denoted by RE, CF, REG, L(RE), L(CF), and L(REG), respectively.

2.2 Counter machines

An n-counter machine M = (T ∪ {Z,B}, E, R, q0, qF ), n ≥ 1, is an n + 1-
tape Turing machine where T is an alphabet, E is a set of internal states
with two distinct elements q0, qF ∈ E, and R is a set of transition rules. The
machine has a read-only input tape and n semi-infinite storage tapes (the
counters). The alphabet of the storage tapes contains only two symbols, Z
and B (blank), while the alphabet of the input tape is T ∪{B}. The symbol
Z is written on the first, leftmost cells of the storage tapes which are scanned
initially by the storage tape heads, and may never appear on any other cell.
An integer t can be stored by moving a tape head t cells to the right of Z. A
stored number can be incremented or decremented by moving the tape head
right or left. The machine is capable of checking whether a stored value is
zero or not by looking at the symbol scanned by the storage tape heads. If
the scanned symbol is Z, then the value stored in the corresponding counter
is zero (which cannot be decremented since the tape head cannot be moved
to the left of Z). We will sometimes refer to the number stored in the counter
as the contents of the counter, and we will call a counter empty when the
stored number is zero.

The rule set R contains transition rules of the form (q, x, c1, . . . , cn) →
(q′, e1, . . . , en) where x ∈ T ∪ {B} ∪ {ε} corresponds to the symbol scanned
on the input tape in state q ∈ E, and c1, . . . , cn ∈ {Z,B} correspond to
the symbols scanned on the storage tapes. By a rule of the above form, M
enters state q′ ∈ E, and the counters are modified according to e1, . . . , en ∈
{−1, 0,+1}. If x ∈ T ∪ {B}, then the machine scanned x on the input
tape, and the head moves one cell to the right; if x = ε, then the machine
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performs the transition irrespectively of the scanned input symbol, and the
reading head does not move.

A configuration of the n-counter machine M can be denoted by a (n+2)-
tuple (w, q, j1, . . . , jn) where w ∈ T ∗ is the unread part of the input word
written on the input tape, q ∈ Q is the state of the machine, and ji ∈
N, 1 ≤ i ≤ n, is the value stored on the ith counter tape of M . For two
configurations, C and C ′, we write C ⊢a C ′ if M is capable of changing the
configuration C = (aw, q, j1, . . . , jn) to C ′ = (w, q′, j′1, . . . , j

′
n) by reading a

symbol a ∈ T ∪ {ε} from the input tape and applying one of its transition
rules.

A word w ∈ T ∗ is accepted by the machine if starting in the initial
configuration (w, q0, 0, . . . , 0), the input head eventually reaches and reads
the rightmost non-blank symbol on the input tape, and M is in the accepting
state qF , that is, it reaches a configuration (ε, qF , j1, . . . , jn) for some ji ∈
N, 1 ≤ i ≤ n. The language accepted by M is denoted by L(M).

It is known that 2-counter machines (written from now on as two-counter
machines) are computationally complete; they are able to recognize any re-
cursively enumerable language (see (Fischer, 1966)). Obviously, n-counter
machines for any n > 2 are of the same accepting power.

We will also use a variant of the above notion from (Minsky, 1967), the
notion of a register machine. It consists of a given number of registers each
of which can hold an arbitrarily large non-negative integer number (we say
that the register is empty if it holds the value zero), and a set of labeled
instructions which specify how the numbers stored in registers can be ma-
nipulated.

Formally, a register machine is a construct M = (m,H, l0, lh, R), where
m is the number of registers, H is the set of instruction labels, l0 is the start
label, lh is the halting label, and R is the set of instructions; each label from
H labels only one instruction from R. There are several types of instructions
which can be used. For li, lj, lk ∈ H and r ∈ {1, . . . , m} we have

• li : (nADD(r), lj, lk) - nondeterministic add: Add 1 to register r and then
go to one of the instructions with labels lj or lk, nondeterministically
chosen.

• li : (ADD(r), lj) - deterministic add: Add 1 to register r and then go to
the instruction with label lj .

• li : (SUB(r), lj) - subtract: If register r is non-empty, then subtract one
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from it, otherwise leave it unchanged, and go to the instruction with
label lj in both cases.

• li : (CHECK(r), lj, lk) - zero check: If the value of register r is zero, go to
instruction lj , otherwise go to lk.

• lh : HALT - halt: Stop the machine.

A register machine M computes a set N(M) of numbers in the following
way: It starts with empty registers by executing the instruction with label l0
and proceeds by applying instructions as indicated by the labels (and made
possible by the contents of the registers). If the halt instruction is reached,
then the number stored at that time in register 1 is said to be computed
by M . Because of the nondeterminism in choosing the continuation of the
computation in the case of nADD instructions, N(M) can be an infinite set.

Note that register machines can be defined without the nADD instructions
as deterministic computing devices which compute some function of an input
value placed initially in an input register. It is known (see, e.g., (Minsky,
1967)) that in this way they can compute all functions which are Turing
computable. We added the nondeterministic add instruction in order to
obtain a device which generates sets of numbers starting from a unique initial
configuration. As any recursively enumerable set can be obtained as the range
of a Turing computable function on the set of non-negative integers, this way
we can generate any recursively enumerable set of numbers.

2.3 Multisets

We end this chapter by presenting the necessary notions and notions nec-
essary for the use of multisets. A multiset over an arbitrary (not neces-
sarily finite) set V is a mapping M : V → N which assigns to each ob-
ject a ∈ V its multiplicity M(a) in M . The support of M is the set
supp(M) = {a | M(a) ≥ 1}. If V is a finite set, then M is called a fi-
nite multiset. The set of all finite multisets over the finite set V is denoted
by V ∗. We say that a ∈ M if M(a) ≥ 1, the cardinality of M , card(M)
is defined as card(M) = Ta∈MM(a). For two multisets M1,M2 : V → N,
M1 ⊆ M2 holds, if for all a ∈ V , M1(a) ≤ M2(a). The union of M1 and M2

is defined as (M1 ∪M2) : V → N with (M1 ∪ M2)(a) = M1(a) + M2(a) for
all a ∈ V , the difference is defined for M2 ⊆ M1 as (M1 −M2) : V → N with
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(M1 −M2)(a) = M1(a)−M2(a) for all a ∈ V . A multiset M is empty if its
support is empty, supp(M) = ∅.

We will represent a finite multiset M over V by a string w over the
alphabet V with |w|a = M(a), a ∈ V , and ε will represent the empty multiset.
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Chapter 3

Grammars with Regulation

In this chapter we present results about computational models studied in the
area of regulated rewriting. These models are constructed by adding some
kind of a control mechanism to ordinary (usually context-free) grammars
which restricts the application of the rules in such a way that some of the
derivations which are possible in the usual derivation process are eliminated
from the controlled variant. This means that the set of words generated
by the controlled device is a subset of the original (context-free) language
generated without the control mechanism. As these generated subsets can be
non-context-free languages, these mechanisms are usually more powerful than
ordinary (context-free) grammars. See (Dassow and Păun, 1989) for more
details, and also (Dassow et al., 1997a) for regulated rewriting in general.

Since it has been always important to describe formal languages as con-
cisely and economically as possible, it is of interest to study these mecha-
nisms from the point of view of descriptional complexity. As the measures
of complexity of the descriptions, we will study the number of nonterminals,
the number of production rules, and the complexity of the added control
mechanism.

3.1 Preliminaries

In the next sections we will use normal form results from (Geffert, 1988)
stating that all recursively enumerable languages can be generated by gram-
mars in which there are only a few rules which are not context-free (linear
context-free, to be more precise). The idea of the normal forms is based on

16

               dc_640_12



the fact that for each L ∈ L(RE) there are two homomorphisms h1, h2, such
that w ∈ L, if and only if there is an α with h1(α) = h2(α)w. (This can be
shown similarly to the undecidability of the so called Post correspondence
problem.) Based on the above homomorphisms, one can construct a gram-
mar which generates words of the form wβ1β2 where β1 = h(h1(α)) and β2

is the reverse of h(h2(α)w) for some encoding h, and then generates w by
deleting β1β2 if and only if they are mirror images of each other.

These ideas were converted into normal form results by (Geffert, 1988)
as follows. If L ⊆ T ∗ is a recursively enumerable language, then L can be
generated by a grammar

G = (N, T, P ∪ {AB → ε, CD → ε}, S),

such that N = {S, S ′, A, B, C,D}, and P contains only context-free produc-
tions. Furthermore, the context-free rules of G are of the form

S → zSx, where z ∈ {A,C}∗, x ∈ T,
S → S ′,
S ′ → uS ′v, where u ∈ {A,C}∗, v ∈ {B,D}∗,
S ′ → ε.

Considering the rules above, we can distinguish three phases in the generation
of a terminal word x1 . . . xn, xi ∈ T, 1 ≤ i ≤ n.

1. S ⇒∗ zn . . . z1Sx1 . . . xn ⇒ zn . . . z1S
′x1 . . . xn,

where zi ∈ {A,C}∗, 1 ≤ i ≤ n.

2. zn . . . z1S
′x1 . . . xn ⇒∗ zn . . . z1um . . . u1S

′v1 . . . vmx1 . . . xn ⇒
zn . . . z1um . . . u1v1 . . . vmx1 . . . xn,

where uj ∈ {A,C}∗, vj ∈ {B,D}∗, 1 ≤ j ≤ m. Now the terminal string
x1 . . . xn is generated by G if and only if, using AB → ε and CD → ε the
substring zn . . . z1um . . . u1v1 . . . vm can be erased

3. zn . . . z1um . . . u1v1 . . . vmx1 . . . xn ⇒∗ x1 . . . xn.

This can be successful if and only if zn . . . z1um . . . u1 = g(v1 . . . vm)
R where

g : {B,D} → {A,C} is a morphism with g(B) = A and g(D) = C.
We will refer to the three stages of a derivation of a grammar in the

normal form above as the first, the second, and the third phase.
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It is not difficult to see that if we encode the nonterminal A to XY , the
nonterminal B to Z, the nonterminal C to X , and the nonterminal D to Y Z,
then one erasing rule of the form XY Z → ε is sufficient to have the same
effect as AB → ε and CD → ε together.

Thus, all recursively enumerable languages L ⊆ T ∗ can be generated by
a grammar

G = (N, T, P ∪ {ABC → ε}, S),

such that N = {S, S ′, A, B, C}, and P contains only context-free productions
of the form

S → zSx, where z ∈ {A,B}∗, x ∈ T,
S → S ′,
S ′ → uS ′v, where u ∈ {A,B}∗, v ∈ {B,C}∗,
S ′ → ε.

The three phases of the derivation can also be distinguished in this case. In
order to successfully generated a terminal word x1 . . . xn, xi ∈ T, 1 ≤ i ≤ n,
first we need to generate a sentential form with the terminal prefix x1 . . . xn,
then continue with the generation of the nonterminal suffix (these are the
first two phases), and finally (in the third phase) we need to erase all the
nonterminals.

Notice that the nonterminal S ′ and the rule S → S ′ can be eliminated in
both normal form variants above. The three derivational phases cannot be
“mixed” in any successful derivation even if only S is used instead of S and
S ′.

The number of nonterminals of a generative grammar G = (N, T, S, P )
is denoted by Var(G), that is, Var(G) = |N |. For a language L and a class
of grammars X ∈ {REG,CF}, we denote by VarX(L) the minimal number
of nonterminals necessary to generate L with a grammar of type X , that is,
VarX(L) = min{Var(G) | L = L(G) and G is of type X ∈ {REG,CF}}.

3.2 Tree controlled grammars - The number

of nonterminals and the complexity of the

control langauge

Investigations concerning the nonterminal complexity of tree controlled gram-
mars began in (Turaev et al., 2011b) where this measure was defined as the
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sum of the number of nonterminals of the context-free grammar and the
number of nonterminals which are necessary to generate the regular control
language. They showed that nine nonterminals altogether are sufficient to
generate any recursively enumerable language with a tree controlled gram-
mar. Then this bound was improved to seven in (Turaev et al., 2011a) by
simulating a phrase structure grammar being in the Geffert normal form (see
the second variant presented in Section 3.1 without the distinguished S and
S ′), that is, having four nonterminals and only linear context-free produc-
tions, together with one non-context-free production in addition which is able
to erase three neighboring nonterminals as it is of the form ABC → ε.

In this section we show how to improve the bound from seven to six using
a similar technique as in (Turaev et al., 2011a), but simulating a grammar
being in a different version of the Geffert normal form (see the first variant
presented in Section 3.1): Instead of the non-context-free production ABC →
ε, it has two non-context-free productions AB → ε, CD → ε. Since the
nonterminals, A,B,C,D, will be encoded in the simulating tree controlled
grammar by strings over just two symbols, it does not matter that instead
of the symbols A,B,C we need to simulate a grammar which uses more
symbols, A,B,C,D. On the other hand, the fact that instead of three,
only two neighboring symbols have to be deleted simultaneously, helps to
construct a simulating tree controlled grammar which uses one nonterminal
less than the one in (Turaev et al., 2011a), thus helps to reduce the bound
on the number of necessary nonterminals from seven to six.

For the introduction of tree controlled grammars, we need the notion
of the derivation tree. An ordered tree is a derivation tree of a context-
free grammar G = (N, T, S, P ) if its nodes are labeled with symbols from
N ∪T ∪{ε} in a way which satisfies the following properties: (a) The root is
labeled with S, (b) the leaves are labeled with symbols from T ∪{ε}, and (c)
every interior vertex is labeled from N in such a way that if a vertex has a
label A ∈ N and its children are labeled from left to right with x1, x2, . . . , xm,
xi ∈ N ∪ T ∪ {ε}, 1 ≤ i ≤ m, then there is a production A → x1x2 . . . xm

in P . A derivation tree corresponds to a terminal word w from L(G) if the
concatenation of the symbols labeling the leaves of the tree from left to right
coincide with w.

The distance of a vertex t from the root is the length of the shortest path
leading to t from the root node. The string corresponding to the ith level
of a derivation tree for some i ≥ 0 is the word obtained by concatenating
from left to right the symbols labeling those nodes of the tree which are at
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distance i from the root.

Definition 3.2.1. A tree controlled grammar is a pair G = (G′, R) where
G′ = (N, T, S, P ) is a context-free grammar and R is a regular language over
the alphabet N ∪ T . The language L(G) generated by the tree controlled
grammar G contains all words w ∈ T ∗ from L(G′) which have a derivation
tree where the strings corresponding to each different level, except the last
one, belong to the regular set R.

The nonterminal complexity of a tree controlled grammar G = (G′, R)
is the number of nonterminals of G′ plus the minimal number of nontermi-
nals that a regular grammar needs for generating the language R, that is,
Var(G) = Var(G′) + VarREG(R).

To illustrate the notion of tree controlled grammars, let us recall an ex-
ample from (Dassow and Păun, 1989).

Example 3.2.1. Let G = (G′, R) where G′ = ({S}, {a}, S, P ) with

P = {S → SS, S → a} and R = {S}∗.

As the control language R contains words which are sequences of the non-
terminal symbol S, all the nodes of every level (except the last one) of the
derivation tree of a word w ∈ L(G) are labeled by the symbol S. This means
that all the nonterminals, with the exception of the ones labeling the nodes
directly above the last level of the tree, are rewritten by the rule S → SS,
and the nonterminals of the level directly above the last one are rewritten by
S → a. Thus, the language generated by G is L(G) = {a2

n

| n ≥ 0}.

We will also need the notion of unique-sum sets which was introduced
in (Frisco, 2009) as follows. A set of nonnegative integers U = {u1, . . . , up}
having the sum σU = Σp

i=1ui is said to be a unique-sum set, if the equation
Σp

i=1ciui = σU for ci ∈ N has the only solution ci = 1, 1 ≤ i ≤ p. Examples of
unique-sum sets are {2, 3}, {4, 6, 7}, or {8, 12, 14, 15}, while the set {4, 5, 6}
is not unique-sum, as 4 + 5 + 6 = 15 = 5 + 5 + 5. It is clear that any subset
of a unique-sum set is unique-sum, and that the sum of any two numbers
from the set, σi,j = ui + uj, cannot be produced as the linear combination of
elements of the set in any other way.
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3.2.1 The number of nonterminals

Now we show that every recursively enumerable language can be generated
by a tree controlled grammar with six nonterminals.

Theorem 3.2.1. For any recursively enumerable language L, there exists a
tree controlled grammar G with L = L(G), such that Var(G) = 6.

Proof. Let L ⊆ T ∗ be a recursively enumerable language generated by the
Geffert normal form grammar G1 = ({S,A,B, C,D}, T, S, P ) where T =
{a1, a2, . . . , at} and P = {AB → ε, CD → ε, S → ε} ∪ {S → ziSai, S →
ujSvj | zi, uj ∈ {A,C}∗, vj ∈ {B,D}∗, 1 ≤ i ≤ t, 1 ≤ j ≤ s}.

Let us define the morphism h : {A,B,C,D}∗ → {0, $}∗ by h(A) = $06$,
h(B) = $010$, h(C) = $012$, h(D) = $013$ which encodes four of the non-
terminals of the grammar G1 as strings over two symbols. Notice that the
length of the coding sequences forms the unique-sum set {8, 12, 14, 15}.

Let us now construct the tree controlled grammar G = (G′, R) where
G′ = (N, T, S, P ′) with N = {S, S ′, $, 0,#},

P ′ = {S → h(z)Sa | S → zSa ∈ P, a ∈ T, z ∈ {A,C}∗} ∪

{S → S ′} ∪

{S ′ → h(u)S ′h(v) | S → uSv ∈ P, u ∈ {A,C}∗, v ∈ {B,D}∗} ∪

{S ′ → ε, $ → $, $ → #, 0 → 0, 0 → #,# → ε},

and

R = ({S, S ′} ∪ T ∪X1 ∪X2)
∗{#20,#29, ε},

where

X1 = {$06$, $010$, $012$, $013$}, (3.1)

X2 = {$06$, $010$}{#20,#29}{$012$, $013$}. (3.2)

First we show that any terminal derivation of G1 can be simulated by the
tree controlled grammar G, that is, L(G1) ⊆ L(G). Let w ∈ L(G1) and let

S ⇒∗ zSw ⇒∗ zuSvw ⇒ zuvw (3.3)

be the first and the second phases of a derivation of w in G1 where z, u ∈
{A,C}∗, v ∈ {B,D}∗. We can generate h(zuv)w, the encoded version of
zuvw with the rules of G as follows

S ⇒∗ h(z)Sw ⇒ h(z)S ′w ⇒∗ h(zu)S ′h(v)w ⇒ h(zuv)w, (3.4)
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h(zu) ∈ {$06$, $012$}∗, h(v) ∈ {$010$, $013$}∗. If we use the chain rules,
$ → $ and 0 → 0, we can make sure that the word corresponding to each
level of the derivation tree belongs to the regular set R, and moreover, that
h(zuv) is the string corresponding to the last level of the derivation tree
which belongs to the derivation (3.4) of G above simulating the first two
phases of the derivation of the word w in G1 depicted at (3.3).

Now w can be derived in G1 if zuv can be erased by using the rules AB →
ε and CD → ε. If AB or CD is a substring of zuv, then h(AB) = $06$$010$
or h(CD) = $012$$013$ is a substring of h(zuv), thus, one of the derivations

h(zuv) ⇒ h(zu′)#20h(v′)w ⇒ h(zu′v′)w,

or
h(zuv) ⇒ h(zu′)#29h(v′)w ⇒ h(zu′v′)w

can be executed in G using the chain rules as above, and the rules 0 →
#, $ → #, # → ε in such a way that h(zu′v′) is again the string which
corresponds to the last level of the derivation tree of h(zu′v′)w.

It is clear, that whenever zuv can be erased in G1, then h(zuv) can also be
erased in G, thus, w can also be generated by G which means that w ∈ L(G).

Now we show that L(G) ⊆ L(G1). To see this, we have to show that
any w ∈ L(G) can also be generated by G1. Consider the derivation tree
corresponding to a derivation of w ∈ L(G) in G and look at the words
corresponding to the different levels of the tree.

Notice the following: (A) There is no symbol # appearing in the levels as
long as S or S ′ is present. This statement holds because the words in R have a
special form: They are the concatenations of “complete” coding sequences of
A,B,C, or D, that is, each subword over {$, 0} is a concatenation of coding
strings of the form $0i$ (for some i ∈ {6, 10, 12, 13}). Thus, if # symbols
appear in a word corresponding to a level of the derivation tree, then either
all symbols of such a coding subword are rewritten to #, or no symbol of
such a coding subword is rewritten to #. Recall that the lengths of these
coding sequences form a unique-sum set, {8, 12, 14, 15}, thus, 20 and 29 can
only arise through some linear combination of the elements as 20 = 8 + 12,
and 29 = 14 + 15. This, together with the above considerations, means that
#20 or #29 can only be obtained by rewriting all symbols of $06$$010$ or
$012$$013$ to #. Notice that when S or S ′ is present, then no sequence
over {$06$, $012$} can be followed directly by a sequence over {$010$, $013$},
thus, when S or S ′ is present no neighboring code sequences of length 20 or
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29 can occur which means that the words cannot contain #20 or #29 as a
subsequence.

Statement (A) above implies that as long as S or S ′ is present in the words
corresponding to the levels of the derivation tree, the chain rules $ → $ and
0 → 0 have to be used on the symbols $, 0 when passing to the next level of
the derivation tree. This is also true for the word corresponding to the first
level in which S ′ disappears after using a rule of the form S ′ → h(u)h(v),
since uv 6= ε. Note that the part of the derivations of G with the presence
of S and the presence of S ′ corresponds to the first and the second phases of
the derivations of the Geffert normal form grammar G1, respectively.

Consider now the first such level of the derivation tree corresponding to a
derivation of w in G in which none of the symbols S or S ′ are present. From
the above considerations it follows that the string corresponding to this level
has the form h(zu)h(v) where h(zu) ∈ {$06$, $012$}∗, h(v) ∈ {$010$, $013$}∗,
and zuvw can also be derived in the grammar G1.

Note also: (B) There cannot be two distinct subsequences of the symbols
# in any of the words corresponding to any level of the derivation tree of
the word w ∈ L(G). To see this, consider the first level of the tree which is
without S and S ′, and denote the string corresponding to this level as h(zuv).
Recall that h(zuv) = α1α2 where α1 ∈ {$06$, $012$}∗, α2 ∈ {$010$, $013$}∗,
so subwords of the form {$06$, $012$}∗{#20,#29}{$010$, $013$}∗ can only be
present in the words corresponding to subsequent levels of the tree in such a
way that the sequence of # symbols is the result of rewriting a suffix of α1

and a prefix of α2 to #.
Property (B) above implies that in order to be in the control set R, a

word which corresponds to some level of the derivation tree and also contains
#, must be of the form {$06$, $012$}∗{#20,#29}{$010$, $013$}∗ where #20

or #29 is obtained from the word corresponding to the previous level of
the tree by rewriting each symbol in a substring $06$$010$ or $012$$013$ to
#, respectively. Therefore, the word corresponding to the previous level of
the tree is either α′

1$0
6$$010$α′

2 or α′
1$0

12$$013$α′
2 where α′

1 and α′
2 satisfy

either h−1(α′
1)AB h−1(α′

2) = zuv or h−1(α′
1)CD h−1(α′

2) = zuv provided
that α1α2 = h(zuv).

This means that the uncoded version of the word corresponding to the
next level of the derivation tree, where the # symbols are erased, can also
be derived in G1 by the rules AB → ε or CD → ε. More precisely, the word
corresponding to the next level of the derivation tree is either of the form
α′
1α

′
2 or α′′

1{#
20,#29}α′′

2, all of them corresponding to the sentential form
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h−1(α′
1)h

−1(α′
2)w which can also be derived in G1.

Continuing the above reasoning, we obtain that the word corresponding
to the level which is above the last one in the derivation tree of w ∈ L(G) is
of the form #20 or #29, corresponding to the sentential form ABw or CDw
in G1, thus, if w can be generated by the tree controlled grammar G with
the control set R, then w can also be generated by the Geffert normal form
grammar G1.

This means that L(G) ⊆ L(G1), and since we have already shown the that
the opposite inclusion holds, we have L(G) = L(G1). As the control set R can
be generated by the regular grammar G2 = ({A}, T ∪ {0, $,#, S, S ′}, A, P2)
with P2 = {A → xA,A → #20, A → #29, A → ε | x ∈ {S, S ′} ∪ T ∪X1 ∪X2

where X1 and X2 is defined as above at (3.1) and (3.2), respectively, and
this grammar has just one nonterminal, we have proved the statement of the
theorem.

3.2.2 Remarks

We have shown how to reduce the nonterminal complexity of tree controlled
grammars from seven to six. This result first appeared in (Vaszil, 2012). We
have used a similar technique as was used in (Turaev et al., 2011a), namely,
we have simulated phrase structure grammars in the Geffert normal. There
are two important differences, however, which have made it possible to realize
the simulation with six nonterminals which number is one less than needed
in (Turaev et al., 2011a) which contains the previously known best result.

First, instead of the normal form with the single erasing rule ABC → ε,
we have used the variant with two erasing rules AB → ε, CD → ε, thus
we needed to simulate the simultaneous erasing of only two nonterminals, as
opposed to the simultaneous erasing of the three symbols in ABC → ε. The
increase of the number of nonterminals (from A,B,C to A,B,C,D) does not
show up in the nonterminal complexity of the simulating grammar, since the
nonterminal symbols are coded as words over two nonterminals.

The second modification concerns the way of coding the four nontermi-
nals. We have used code words with lengths which form a unique-sum set.
This made the decoding possible with one less nonterminal than in (Turaev
et al., 2011a).

Other language classes were also examined from the point of view of non-
terminal complexity with respect to tree controlled grammars in (Turaev
et al., 2012). Regular, linear, and regular simple matrix languages are shown
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to be generated with three nonterminals which is an optimal bound, since
there are regular languages which cannot be generated with two nontermi-
nals. For context-free languages, on the other hand, four nonterminals are
sufficient, although it is not known whether this bound cannot be decreased to
three or not. In this paper it was also proved that any recursively enumerable
language can be generated by a tree controlled grammar with seven nonter-
minals, but at the time of writing this dissertation, the result presented in the
previous section is still the best result concerning the nonterminal complexity
of tree controlled grammars generating recursively enumerable languages.

3.3 Simple semi-conditional grammars - The

number of conditional productions and

the length of the context conditions

In the case of semi-conditional grammars, the complexity of productions is
measured by their degree, defined as the maximal length of the context con-
ditions as a pair of integers, (i, j), where i and j is the length of the longest
permitting and the longest forbidding word, respectively. In (Păun, 1985), re-
cursively enumerable languages were characterized by semi-conditional gram-
mars of degree (2, 1) or (1, 2), while grammars of degree (1, 1) without eras-
ing productions were shown to generate only a subclass of context-sensitive
languages. The investigation of the generative power of grammars having
only permitting or only forbidding conditions were also started, the language
classes generated by grammars of degree (1, 0) or (0, 1) without erasing pro-
ductions were shown to be strictly included in the class of context-sensitive
languages.

In simple semi-conditional grammars, each rule has at most one nonempty
condition, that is, no controlling context condition at all, or either a permit-
ting, or a forbidding one. In (Meduna and Gopalaratnam, 1994), simple
semi-conditional grammars of degree (1, 2) and (2, 1) were shown to be able
to generate all recursively enumerable languages, but the number of rules
necessary to obtain this power was unbounded.

The study of the number of productions necessary to obtain all recursively
enumerable languages has been started in (Meduna and Švec, 2002) where
the authors prove that the class of recursively enumerable languages can be
characterized by simple semi-conditional grammars of degree (2, 1) with only
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twelve conditional productions.
In this section we show how to improve the above mentioned bounds. We

prove that ten conditional productions are sufficient to generate all recur-
sively enumerable languages with grammars of degree (2, 1), or eight of them
are sufficient to generate all recursively enumerable languages with grammars
of degree (3, 1).

Definition 3.3.1. A semi-conditional grammar is a construct G = (N, T, P, S)
with nonterminal alphabet N , terminal alphabet T , a start symbol S ∈ N ,
and a set of productions of the form (X → α, u, v) with X ∈ N , α ∈ (N∪T )∗,
and u, v ∈ (N ∪ T )+ ∪ {0} where 0 6∈ (N ∪ T ) is a special symbol. If either
u 6= 0 or v 6= 0, then the production is said to be conditional.

A semi-conditional grammar G has degree (i, j) if for all productions
(X → α, u, v), u 6= 0 implies |u| ≤ i, and v 6= 0 implies |v| ≤ j.

We speak of a simple semi-conditional grammar if each production has
at most one nonempty condition, that is, if G = (N, T, P, S) is a simple
semi-conditional grammar, then (X → α, u, v) ∈ P implies 0 ∈ {u, v}.

We say that x ∈ (N ∪ T )+ directly derives y ∈ (N ∪ T )∗ according to the
rule (X → α, u, v) ∈ P , denoted by x ⇒ y, if x = x1Xx2, y = x1αx2 for
some x1, x2 ∈ (N ∪ T )∗, and furthermore, u 6= 0 implies that u ∈ sub(x) and
v 6= 0 implies that v 6∈ sub(x).

If we denote the reflexive and transitive closure of ⇒ by ⇒∗, then the
language generated by a semi-conditional grammar G is L(G) = {w ∈ T ∗ |
S ⇒∗ w}.

Now let us recall an example from (Meduna and Gopalaratnam, 1994).

Example 3.3.1. Let G = ({S,A,X,C, Y }, {a, b, c}, P, S) be a simple semi-
conditional grammar with

P = {(S → AC, 0, 0), A → aXb, Y, 0), (C → Y,A, 0), (Y → Cc, 0, A),

(A → ab, Y, 0), (Y → c, 0, A), (X → A,C, 0)}.

Note that G is a simple semi-conditional grammar of degree (1, 1), having six
conditional productions.

Derivations of G start with

S ⇒ AC ⇒ AY.
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Assume that a string of the form akAbkY ck, k ≥ 0, can be generated by G.
We show that either ak+1Abk+1Y ck+1 or ak+1bk+1ck+1 is generated by G, or
the derivation is blocked.

The context conditions only allow the use of one of the rules A → aXb
or A → ab. If the first one is chosen, then

akAbkY ck ⇒ ak+1Xbk+1Y ck

is obtained and then one of the rules Y → c or Y → Cc must be used. If
Y → c is chosen, the derivation can not continue because X can only be
rewritten in the presence of a symbol C, so we must have

ak+1Xbk+1Y ck ⇒ ak+1Xbk+1Cck+1 ⇒ ak+1Abk+1Cck+1 ⇒ ak+1Abk+1Y ck+1.

If having akAbkY ck we use the rule A → ab, we obtain

akAbkY ck ⇒ ak+1bk+1Y ck,

and the rule Y → Cc can not be used since C can only be rewritten in the
presence of an A. So we must have

ak+1bk+1Y ck ⇒ ak+1bk+1ck+1.

From these considerations we can see that G generates the non-context-free
language L(G) = {anbncn | n ≥ 1}.

3.3.1 The number of conditional productions

In (Meduna and Švec, 2002) the authors show that an erasing rule of the
form XY → ε (X and Y being two nonterminals) can be simulated by
six conditional productions of a simple semi-conditional grammar, thus, to
simulate a grammar in the Geffert normal form (see the first variant presented
in Section 3.1), simple semi-conditional grammars of degree (2, 1) with twelve
conditional productions are sufficient.

Now we show that any grammar being in the second variant of the Geffert
normal form, thus, having only one non-context-free rule of the form ABC →
ε, (see Section 3.1), can be simulated by simple semi-conditional grammars
of degree (2, 1) with ten conditional productions.

Theorem 3.3.1. Every recursively enumerable language can be generated
by a simple semi-conditional grammar of degree (2, 1) having ten conditional
productions.
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Proof. Let L ⊆ T ∗ be a recursively enumerable language generated by the
grammar

G = (N, T, P ∪ {ABC → ε}, S)

as above.
Now we construct G′, a simple semi-conditional grammar of degree (2, 1)

as follows. Let
G′ = (N ′, T, P ′, S)

where N ′ = {S, S ′, A, A′, B, B′, B′′, C, C ′, L, L′, R}, and

P ′ = {(X → α, 0, 0) | X → α ∈ P}

∪ {(A → LA′, 0, L), (B → B′, 0, B′), (C → C ′R, 0, R),

(A′ → ε, A′B′, 0), (C ′ → ε, B′C ′, 0), (B′ → B′′, LB′, 0),

(B′′ → ε, B′′R, 0), (L → L′, LR, 0), (R → ε, 0, L),

(L′ → ε, 0, R)}.

By observing the productions of P ′, we can see that the terminal words gen-
erated by G can also be generated by the simple semi-conditional grammar
G′. In the following, we show that G′ cannot generate words that are not
generated by G.

We will examine the possible derivations of G′ starting with S and lead-
ing to a terminal word. The first two phases of a derivation by G can
be reproduced using the non-conditional rules of P ′, the rules of the form
(X → α, 0, 0) where X → α ∈ P . Since the conditional rules do not involve
the symbols S and S ′ neither on the left or right sides, nor in the conditions,
if we can apply conditional rules before S and S ′ both disappeared, then we
can apply them in the same way also afterwards. According to this observa-
tion, we can assume that the first application of a conditional rule happens
when neither S, nor S ′ is present in the sentential form, that is, when the
generated word is of the form

zuvw, where z, u ∈ {A,B}∗, v ∈ {B,C}∗, w ∈ T ∗.

Now we show that the prefix zuv can be deleted by the conditional rules of
G′ if and only if it can be deleted by the rule ABC → ε of G.

By continuing the derivation, at most one application of each of the rules
(A → LA′, 0, L), (B → B′, 0, B′), or (C → C ′R, 0, R) can follow. If these
rules do not produce any of the subwords A′B′ or B′C ′, the derivation cannot
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continue, so if x = zu and y = v, it is sufficient to check derivation paths
starting from the strings

1. x1LA
′B′x2y1C

′Ry2w, where x = x1ABx2, y = y1Cy2, or

2. x1LA
′x2y1B

′C ′Ry2w, where x = x1Ax2, y = y1BCy2

because A can only occur in x, and C can only occur in y.
Now we show that if we continue the derivation, it either enters a blocking

configuration, or after deleting one occurrence of the substring ABC we
obtain a string which is either of one of the four types above or a terminal
string.

Let us follow the derivations starting with each of these strings. We first
assume that the substring LA′B′C ′R is not present in any of the above cases,
that is, x2y1 6= ε.

(1) From the first sentential form we obtain either

- x′
1B

′x′′
1LB

′′x2y1C
′Ry2w, where x′

1Bx′′
1 = x1,

- x1LB
′′α′B′α′′C ′Ry2w, where α′Bα′′ = x2y1, α

′′ 6= ε,

- x1LB
′′x2y

′
1B

′Ry2w, where y′1B = y1, or

- x1LB
′′x2y1C

′Ry′2B
′y′′2w, where y′2By′′2 = y2,

(2) from the second sentential form we obtain

- x1LA
′x2y1B

′Ry2w.

The derivation cannot continue from any of these sentential forms, thus, we
need to have a string of the following form

zuvw = xyw = x1LA
′B′C ′Ry2w,

where x = zu ∈ {A,B}∗, y = v ∈ {B,C}∗, and moreover, x1AB = x and
Cy2 = y, or x1A = x and BCy2 = y. In two derivation steps we might obtain
the following two strings:

x1LA
′B′C ′Ry2w ⇒2 x1LB

′′C ′Ry2w, or x1LA
′B′C ′Ry2w ⇒2 x1LB

′Ry2w.

The derivation from the first string cannot be continued, so let us consider the
second possibility, and follow each derivation path starting with this string.

29

               dc_640_12



First the rule (B′ → B′′, LB′, 0) must be used producing x1LB
′′Ry2w. Now

observe that independently of the substring LB′′R, there is the possibility of
rewriting one B to B′ in x1 or in y2, so let us denote by x̄1 and ȳ2 the strings
with g(x̄1ȳ2) = x1y2 and |x̄1ȳ2|B′ ≤ 1, where g(B′) = B and g(X) = X for
all X ∈ N ′ ∪ T , X 6= B. Then the possible derivations are the following:
x̄1LB

′′Rȳ2w ⇒ x̄1LRȳ2w ⇒ x̄1L
′Rȳ2w ⇒

1. x̄′
1LA

′x̄′′
1L

′Rȳ2w, where x̄′
1Ax̄

′′
1 = x̄1,

2. x̄1L
′ȳ2w ⇒

(a) x̄1L
′ȳ′2C

′Rȳ′′2w, where ȳ′2Cȳ′′2 = ȳ2,

(b) x̄′
1LA

′x̄′′
1L

′ȳ2w, where x̄′
1Ax̄

′′
1 = x̄1,

(c) x̄1ȳ2w.

Note that these cases do not distinguish between sentential forms with dif-
ferent x̄1 and ȳ2, as long as g(x̄1ȳ2) = x1y2.

The derivation cannot be continued from the sentential forms of case (1)
and of case (2)(a), so let us consider now the sentential form of case (2)(b). If
C ′R is introduced before L′ is deleted, the derivation is blocked. Otherwise,
by erasing L′ first, we can obtain a string that either does not contain any of
the substrings A′B′ or B′C ′ (in which case the derivation is blocked), or it is
of one of the two forms given at the beginning of our reasoning. The same
holds for the sentential form of case (2)(c). This word is either terminal, or
we can obtain from it a string of one of the two forms above, or the derivation
is blocked.

We have seen that the derivations starting with the sentential form zuvw,
as above, either enter a blocking configuration, or exactly one occurrence of
the substring ABC can be deleted by the rules of P ′. If we note that P ′

contains ten conditional productions and that the degree of G′ is (2, 1), then
the proof is complete.

Now we continue by investigating simple semi-conditional grammars hav-
ing a degree different from (2, 1). In the next theorem we show that the
number of conditional productions can be decreased further if we allow per-
mitting conditions of length three, that is, grammars of degree (3, 1).

Theorem 3.3.2. Every recursively enumerable language can be generated by
a simple semi-conditional grammar of degree (3, 1) having eight conditional
productions.

30

               dc_640_12



Proof. Let L ⊆ T ∗ be a recursively enumerable language generated by the
grammar

G = (N, T, P ∪ {ABC → ε}, S)

in the Geffert normal form.
Now we construct G′, a simple semi-conditional grammar of degree (3, 1)

as follows. Let
G′ = (N ′, T, P ′, S)

where N ′ = {S, S ′, A, A′, A′′, B, B′, B′′, C, C ′, C ′′}, and

P ′ = {(X → α, 0, 0) | X → α ∈ P}

∪ {(X → X ′, 0, X ′) | X ∈ {A,B,C}}

∪ {(C ′ → C ′′, A′B′C ′, 0), (A′ → A′′, A′B′C ′′, 0),

(B′ → B′′, A′′B′C ′′, 0), (A′′ → ε, 0, C ′′), (C ′′ → ε, 0, B′),

(B′′ → ε, 0, 0)}.

The first two phases of generating a terminal word with the grammar G
can be reproduced by G′ using the rules of P ′, the rules of the form (X →
α, 0, 0), X → α ∈ P . The third phase, the application of the erasing pro-
duction ABC → ε, is simulated by the additional rules. By observing these
additional rules, we can see that all words generated by G can also be gen-
erated by G′. In the following we show that G′ does not generate words that
cannot be generated by G.

Let us follow the possible paths of derivation of G′ generating a terminal
word. The derivations start with S. While the sentential form contains S
or S ′, it is of the form zSw or zuS ′vw, z, u, v ∈ {A,B,C,A′, B′, C ′}∗, w ∈
T ∗, where if g(X ′) = X for X ∈ {A,B,C} and g(X) = X for all other
symbols of N ∪ T , then g(zSw) or g(zuS ′vw) are valid sentential forms of
G. Furthermore, zu contains at most one occurrence of A′, v contains at
most one occurrence of C ′, and the whole sentential form, or to put it in an
other way, zuv contains at most one occurrence of B′. (To see this, note the
forbidding conditions on the rules (X → X ′, 0, X ′), X ∈ {A,B,C}.) After
the rule S ′ → ε is used, we get a sentential form zuvw with z, u, v, and w as
above, and g(zuvw) being a valid sentential form of G.

Now we show that zuv can be erased by G′ if and only if g(zuv) can be
erased by G. We do this by showing that if we start from a sentential form
zuvw containing single occurrences of each primed symbol A′, B′, C ′, then in
the next at most nine derivation steps, the derivation either enters a blocking
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configuration, or the three primed symbols formed a substring A′B′C ′ which
is erased, and nothing else is erased. (Thus, the conditional rules of P ′ really
simulate the rule ABC → ε of P .)

If we start with a sentential form zuvw containing single occurrences of
each primed symbol, then to be able to continue the derivation, these symbols
must form a substring A′B′C ′, so the sentential form must be of the form
zūA′B′C ′v̄, where either u = ūA′B′ and v = C ′v̄, or u = ūA′ and v = B′C ′v̄.

Until B′ does not disappear (or equivalently, until B′′ is not introduced),
none of the erasing productions can be applied, so after the first use of the
production (B′ → B′′, A′′B′C ′′, 0) we have a sentential form of one of the
following forms:

- zūA′′B′′C ′′v̄w,

- zu1A
′u2A

′′B′′C ′′v̄w, where u1Au2 = ū,

- zūA′′B′′C ′′v1C
′v2w, where v1Cv2 = v̄, or

- zu1A
′u2A

′′B′′C ′′v1C
′v2w, where u1Au2 = ū, v1Cv2 = v̄.

Now we denote by xA′′B′′C ′′yw one of the sentential forms above, and observe
all possible derivations.

The first step can be taken in four different ways:
xA′′B′′C ′′yw ⇒

1. x1B
′x2A

′′B′′C ′′yw ⇒ x1B
′x2A

′′C ′′yw, where x1Bx2 = x,

2. xA′′B′′C ′′y1B
′y2w ⇒ xA′′C ′′y1B

′y2w, where y1By2 = y,

3. xA′′C ′′yw, or

4. xA′′B′′yw.

In cases (1) and (2), the derivation cannot continue because B′ is present, so
no erasing production can be applied, and because it is impossible to have
A′B′C ′ or A′B′C ′′ as a substring. The derivation paths starting from (3) are
as follows:

3. xA′′C ′′yw ⇒

(a) x1B
′x2A

′′C ′′yw,
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(b) xA′′C ′′y1B
′y2w,

(c) xA′′yw ⇒

i. xyw ⇒

A. x1B
′x2yw,

B. xy1B
′y2w,

ii. x1B
′x2A

′′yw ⇒ x1B
′x2yw,

iii. xA′′y1B
′y2w ⇒ xy1B

′y2w,

where x1Bx2 = x and y1By2 = y. In cases (3)(a) and (3)(b), the derivation
cannot be continued, in the sentential forms of cases (3)(c)(i)(A), (3)(c)(i)(B),
(3)(c)(ii), and (3)(c)(iii), the substring A′′B′′C ′′ is removed, and they contain
at most one occurrence of A′, B′, and C ′.

Let us now consider the derivation paths starting from (4).

4. xA′′B′′yw ⇒

(a) xA′′yw ⇒

i. xyw ⇒

A. x1B
′x2yw,

B. xy1B
′y2w,

ii. x1B
′x2A

′′yw ⇒ x1B
′x2yw,

iii. xA′′y1B
′y2w ⇒ xy1B

′y2w,

(b) xB′′yw ⇒

i. xyw ⇒

A. x1B
′x2yw,

B. xy1B
′y2w,

ii. x1B
′x2B

′′yw ⇒ x1B
′x2yw,

iii. xB′′y1B
′y2w ⇒ xy1B

′y2w,

(c) x1B
′x2A

′′B′′yw ⇒

i. x1B
′x2B

′′yw ⇒ x1B
′x2yw,

ii. x1B
′x2A

′′yw ⇒ x1B
′x2yw,

(d) xA′′B′′y1B
′y2w ⇒

i. xB′′y1B
′y2w ⇒ xy1B

′y2w,
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ii. xA′′y1B
′y2w ⇒ xy1B

′y2w,

where x1Bx2 = x, and y1By2 = y. The substring A′′B′′C ′′ is erased from all
of the strings produced along these paths. These strings contain at most one
occurrence of the symbols A′, B′, and C ′.

To summarize the considerations above, we can say that until the dis-
appearance of all double primed symbols, A′′, B′′, and C ′′, only the erasing
rules and the rule (B → B′, 0, B′) can be applied. We can see that the
derivation either enters a blocking configuration, or the substring A′B′C ′,
and only this substring, is completely erased, while the resulting sentential
form again contains at most one occurrence of each primed symbol.

This means that the additional conditional productions and the produc-
tion (B′′ → ε, 0, 0) of P ′ correctly simulate the application of the erasing rule
ABC → ε. If we note that P ′ contains eight conditional productions and
that the degree of G′ is (3, 1), then the proof is complete.

3.3.2 Remarks

In Theorem 3.3.1 we have improved the result of (Meduna and Švec, 2002) by
showing that simple semi-conditional grammars of degree (2, 1) generate any
recursively enumerable language with not more than ten conditional produc-
tions. This theorem first appeared in (Vaszil, 2005a). Later, the number of
necessary conditional productions was reduced further in (Masopust, 2009a),
it was shown there that nine conditional productions are sufficient. That is
still the best known result at the time of writing of this dissertation.

Concerning grammars of degree (1, 1), it has been known, see (Păun,
1985), that semi-conditional grammars (and thus, also simple semi-conditional
grammars) of degree (1, 1) without erasing rules generate only a subclass of
context-sensitive languages, but the problem whether simple semi-conditional
grammars of degree (1, 1) with erasing rules are able to generate all recur-
sively enumerable languages has been open for a long time, until (Masopust,
2009a) settled the problem by showing that grammars of degree (1, 1) also
generate any recursively enumerable language. However, the number of con-
ditional productions can only be bounded if terminal symbols are allowed
to appear as context conditions. Thus, if we allow only nonterminals in the
context conditions, then the number of conditional productions can only be
bounded in the case of a grammar with degree at least (2, 1).
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In Theorem 3.3.2 we have also shown that allowing longer words as con-
text conditions may help to reduce the number of conditional productions,
namely, simple semi-conditional grammars of degree (3, 1) generate any re-
cursively enumerable language with not more than eight conditional produc-
tions. This result still represents the best bound on the necessary number
of conditional productions, although in (Okubo, 2009) a construction with
eight conditional productions but less nonterminals (nine instead of eleven)
is presented.

3.4 Scattered-context grammars - The num-

ber of context sensing productions and

the number of nonterminals

Scattered context grammars, introduced in (Greibach and Hopcroft, 1969),
are parallel rewriting devices having ordered sequences of context-free rewrit-
ing rules as productions. The rules of the sequences are applied simultane-
ously to nonterminals which appear in the sentential form in the same order
as the order of the nonterminals on the left-hand sides of the rules in the se-
quence. Scattered context grammars with erasing rules are able to generate
any recursively enumerable language, see for example (Meduna, 1995b). The
problem whether propagating scattered context grammars, i.e., grammars
without erasing rules, are able to generate all context sensitive languages, is
still open.

Definition 3.4.1. A scattered context grammar is a 4-tuple G = (N, T, P, S)
where N and T are the disjoint alphabets of nonterminals and terminals,
respectively, S ∈ N is the start symbol, and P is a set of productions of the
form p : (X1, . . . , Xn) → (α1, . . . , αn) where n ≥ 1, Xi ∈ N , αi ∈ (N ∪ T )∗,
1 ≤ i ≤ n. We say that p is the label (the productions are uniquely labeled),
and Xi → αi, 1 ≤ i ≤ n is the ith rule of the production. If n > 1, then p is
called a context sensing.

A sentential form x ∈ (N ∪T )+ directly derives y ∈ (N ∪T )∗ by applying
the production p : (X1, . . . , Xn) → (α1, . . . , αn) ∈ P , denoted by x ⇒ y, if x
can be written as x = x1X1x2 . . . xnXnxn+1 with xi ∈ (N∪T )∗, 1 ≤ i ≤ n+1,
and y = x1α1x2 . . . xnαnxn+1. The language generated by a scattered context
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grammar G is the set L(G) = {w ∈ T ∗ | S ⇒∗ w} where ⇒∗ denotes the
reflexive and transitive closure of ⇒.

Example 3.4.1. Let G = ({S,A}, {a, b}, P, S) be a scattered context gram-
mar with P being the set of productions

P = {S → AA, (A → aA,A → aA), (A → bA,A → bA), (A → ε, A → ε)}.

The derivations of G are of the form

S ⇒ AA ⇒ . . . uAuA ⇒ . . . ⇒ ww, u, w ∈ {a, b}∗,

thus, the generated language is L(G) = {ww | w ∈ {a, b}∗}.

3.4.1 The simultaneous reduction of the number of
context sensing productions and the number of

nonterminals

Scattered context grammars have been shown to generate all recursively enu-
merable languages with four nonterminals in (Meduna, 1997), with three
nonterminals in (Meduna, 2000a), and then with two context-sensing pro-
ductions in (Fernau and Meduna, 2003a). In (Fernau and Meduna, 2003b), a
simultaneous reduction of these measures is attempted, it is shown that any
recursively enumerable language can be generated by a scattered context
grammar having seven nonterminals and five context sensing productions, or
six nonterminals and six context sensing productions.

In this section we improve the results of (Fernau and Meduna, 2003b)
by showing that any recursively enumerable language can be generated with
scattered context grammars having two context sensing productions and five
nonterminals.

Theorem 3.4.1. Every recursively enumerable language can be generated by
a scattered context grammar with two context sensing productions and five
nonterminals.

Proof. Let L ⊆ T ∗ be a recursively enumerable language generated by the
grammar

G = (N, T, P ∪ {AB → ε, CD → ε}, S),
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in Geffert normal form (see Section 3.1), such that N = {S, S ′A,B,C,D}
and P contains only context-free productions. Let us construct a scattered
context grammar

G′ = (N ′, T, P ′, S)

where N ′ = {S, S ′, 0, 1, $}, and

P ′ = {(S) → (h(z)Sx) | S → zSx ∈ P, z ∈ {A,C}∗, x ∈ T}

∪ {(S) → (S ′)}

∪ {(S ′) → (h(u)S ′h(v)) | S ′ → uS ′v ∈ P, u ∈ {A,C}∗,

v ∈ {B,D}∗}

∪ {(S ′) → ($$), ($) → (ε)}

∪ {(0, $, $, 0) → ($, ε, ε, $), (1, $, $, 1)→ ($, ε, ε, $)},

and h : {A,B,C,D}∗ → {0, 1}∗ is a morphism defined as h(A) = h(B) =
101, h(C) = h(D) = 1001.

The idea behind this grammar is to generate encodings of the sentential
forms produced by the first two phases of the derivations in G, strings of
the form zuvw, zu ∈ {A,C}∗, v ∈ {B,D}∗, w ∈ T ∗ such that the substring
over {A,B,C,D} is encoded using the nonterminals 0 and 1 to the string
h(zu)$$h(v)w, and then to simulate the third phase of the derivation by
erasing h(zu)$$h(v) if and only if h(zu) is equal to the reverse of h(v), that
is, if and only if w ∈ L.

By observing the productions it is clear that the first two phases of the
derivation of G producing zuvw (z, u, v, w as above) can be simulated by
G′ producing the encoded string h(zu)$$h(v)w, and if h(zu) is equal to the
reverse of h(v), then h(zu)$$h(v) can be erased using the context sensing
rules (0, $, $, 0) → ($, ε, ε, $) and (1, $, $, 1) → ($, ε, ε, $) which also check
the equality of h(zu) and h(v)R, and then the rule ($) → (ε) to erase the
markers.

Now we show that G′ can only generate terminal strings which an also
be generated by G. Derivations of G′ start with

S ⇒∗ h(z)Sw ⇒ h(z)S ′w ⇒∗ h(zu)S ′h(v)w ⇒ h(zu)$$h(v)w

where zu ∈ {A,C}∗, v ∈ {B,D}∗, w ∈ T ∗.
Now the derivation can continue with the application of rules to delete

$, or one of the two context sensing erasing rules, (0, $, $, 0) → ($, ε, ε, $),
(1, $, $, 1) → ($, ε, ε, $). Note that if a $ marker is deleted when there are
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other nonterminals present, then the derivation cannot be successfully fin-
ished. Note also, that if a nonterminal 0 or 1 is placed between the two $
markers, then it cannot be eliminated, thus, the derivation cannot be suc-
cessfully finished. This means that the context sensing erasing productions
can only be applied to delete those two occurrences of 0s or 1s which appear
directly before and after the $$ markers.

By the considerations above, h(zu)$$h(v) can only be erased with the
context sensing productions if h(zu) is identical to the reverse of h(v), thus,
if and only if the string zuv can be erased with the rules AB → ε and
CD → ε of G, that is, if and only if w ∈ L.

3.4.2 Remarks

In Theorem 3.4.1, we have improved the result of (Fernau and Meduna,
2003b) by showing that scattered context grammars with two context sens-
ing productions and five nonterminals generate all recursively enumerable
languages. Our proof used a combination of techniques from (Fernau and
Meduna, 2003b) and (Meduna and Švec, 2002). This result is especially
interesting since reducing the nonterminal complexity usually increases the
necessary amount of “context sensitivity”, but two as the number of con-
text sensing productions is the best bound known so far, even conjectured
to be optimal in (Fernau and Meduna, 2003a). Theorem 3.4.1 first appeared
in (Vaszil, 2005a), and although the area has been investigated in several
papers, no better bound is known at the time of writing this dissertation.
In (Masopust, 2009a) the number of nonterminals is decreased to four, but
this increases the number of context sensing productions to three, while in
(Masopust, 2010) a construction is presented with three nonterminals, but
in this case the number of context sensing productions is even higher, five.

Concerning the bound only on the number of nonterminals (with an arbi-
trary number of context sensing productions), we present the optimal result
in the next section.

3.4.3 The optimal bound on the number of nontermi-

nals

Now we focus on the descriptional complexity of scattered context grammars
with erasing rules, namely, on the number of nonterminal symbols neces-
sary for generating any recursively enumerable language. It is known that
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scattered context grammars with three nonterminals characterize the class of
recursively enumerable languages, see (Meduna, 2000a). It is also shown in
(Meduna, 2000b) that scattered context grammars with just one nonterminal
are strictly weaker since they are not able to generate all context-sensitive
languages even if erasing productions are allowed. The precise characteriza-
tion of the class of languages generated by these grammars with two nonter-
minals, however, has been open for a long time. In the following we show
how to construct scattered context grammars which are able to generate any
recursively enumerable language with two nonterminals.

There are several techniques which can be used for presenting lower
bounds on the number of nonterminals of computationally complete string
rewriting mechanisms (grammars). Usually they are based on the simula-
tion of some computationally complete device which has some special form
or some other property enabling the reduction of the number of necessary
nonterminals of the simulating grammar.

In (Masopust, 2009b; Masopust and Meduna, 2009; Meduna, 2000a) the
authors limit the number of nonterminals of scattered context grammars by
simulating a general phrase structure grammar in the Geffert normal form
(see Section 3.1), where the number of nonterminals is bounded by a very
small constant. In (Fernau et al., 2007) the number of necessary nonterminals
of graph controlled, programmed, and matrix grammars to generate any re-
cursively enumerable language is reduced. This paper demonstrates another
common technique which can be used for the reduction of the number of non-
terminals. The proofs are based on creating encodings of the terminal strings
as numbers, that is, as words over a unary alphabet (containing one nonter-
minal), and then checking if the word belongs to the generated language by
simulating a register machine, a computationally complete Turing machine
variant which works with integers stored in counters (registers) instead of
words written on tapes (see Chapter 2 for more details). Since register ma-
chines are computationally complete with two registers, two nonterminals are
sufficient for keeping track of the values of the two integers. For programmed
and matrix grammars, the authors use one more nonterminal, a start sym-
bol, to produce an “initial” sentential form (the “starting configuration” of
the simulation process). In the case of graph controlled grammars, the two
nonterminals are sufficient to obtain computational completeness since it is
possible to designate certain productions as “initial” productions (these can
only be used in the first derivation step) eliminating this way the need for
the additional starting nonterminal.
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In the following, we also simulate a Turing machine variant working with
integers (a two-counter machine, see Chapter 2 for the definition), but we
use the two nonterminals differently: one of them keeps track of the contents
of both counters while the other just separates the different parts of the gen-
erated sentential form. Moreover, the simulating scattered context grammar
is constructed in such a way that there is no need for an additional starting
nonterminal.

Theorem 3.4.2. For any recursively enumerable language L ⊆ T ∗, there
exists a scattered context grammar G = (N, T, P, S) with |N | = 2 such that
L(G) = L.

Proof. Let L ⊆ T ∗, and let M = (T ∪ {Z,B}, Q,R, q1, q2) be a two-counter
machine such that L(M) = L. Let the elements of Q be denoted as Q =
{q1, q2, . . . , q|Q|} with q1 and q2 being the start state and the accepting state,
respectively. Without any loss of generality, we assume that for any s ∈ Q
and x ∈ T ∪ {B, ε}, the fact that (s, x, c1, c2) → (q2, e1, e2) ∈ R implies
c1 = c2 = Z and e1 = e2 = 0. This means that M enters the accepting state
q2 only with empty counters, and such a transition never changes the counter
contents, that is, the accepting configurations of M are of the form

(ε, q2, 0, 0). (3.5)

We construct a scattered context grammar G such that L(G) = L(M).
Let G = ({S,A}, T, P, S). For the sake of easier readability, we sometimes
write a scattered context production p : (A1, . . . , An) → (α1, . . . , αn) as
p : (A1 → α1, . . . , An → αn), or sometimes write some neighboring rules
Aj → αj , . . . , Aj+k → αj+k of p as Aj , . . . , Aj+k → αj, . . . , αj+k, 1 ≤ j <
j + k ≤ n. We might also compress the notation in the case of simultaneous
deletions: If a production p : (A1 → α1, . . . , An → αn) contains a k-tuple
of neighboring deleting rules, that is, for some 1 ≤ j < j + k ≤ n, we have
Ai → ε for all i with j ≤ i ≤ j + k, then we may also write p : (A1 →
α1, . . . , 〈w〉 → 〈ε〉, . . . , An → αn) where w = AjAj+1 . . . Aj+k. Moreover, a
rule Ai → αi of a scattered context production where Ai = S is called an
S-rule, if Ai = A, then we call it an A-rule.

Now let

P = P ′ ∪ {r(I) : (S → SAAAASSAASSAASSASS),

r(F ) : (〈SAAAAASSAASSAASSASSS〉 → 〈ε〉)},
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where P ′ is defined below. The two scattered context productions r(I) and
r(F ) are the initial and the final productions of any derivation. We define P
in such a way that a configuration

(w2, qi, j1, j2), w2 ∈ T ∗, qi ∈ Q, j1, j2 ∈ N,

of the two-counter machine M corresponds to a sentential form

w1SAAAA . . .A
︸ ︷︷ ︸

i

SSAAA . . .A
︸ ︷︷ ︸

j1

SSAAA . . .A
︸ ︷︷ ︸

j2

SSAS S . . . S
︸ ︷︷ ︸

k=i+j1+j2

(3.6)

of G. It starts with w1S where w1 ∈ T ∗ is the part of the input string
w = w1w2 which is already read, and then come three groups of As, each
followed by two occurrences of the symbol S. The first group of As encodes
the state of M while the second and the third groups encode the counter
contents. Then, after the symbols AS, a string of k occurrences of symbols
S follow where k ∈ N is such, that the sentential form contains an equal
number of symbols A and S, that is, k = i+ j1 + j2.

The production r(I) introduces the string corresponding to the initial
configuration of M , the production r(F ), on the other hand, deletes the non-
terminals of the string corresponding to the accepting configuration which is
of the form (3.5).

The transition changes are simulated by the productions of the set P ′

which is defined as follows. For each transition t ∈ R of the two-counter
machine M ,

t : (qm, x, ct,1, ct,2) → (qn, et,1, et,2),

we have a production of the form

(S → xSAAAAnS, 〈AAAAmS〉 → 〈ε〉,

r
(t,1)
1 , . . . , r

(t,1)
t1 , r

(t,2)
1 , . . . , r

(t,2)
t2 , S → S,A → A, S → S, r

(t)
1 , . . . , r

(t)
l ). (3.7)

The first rule, and the next m+ 4 rules of the production rewrite the group
of As containing m+ 3 symbols, corresponding to the current internal state
qm of M , to a group of As containing n + 3 symbols, corresponding to the
new internal state qn.

Now, if ct,i = Z for some i, 1 ≤ i ≤ 2, then ti = 4 and

r
(t,i)
1 : S → SAδt,iS, r

(t,i)
2 = r

(t,i)
3 : A → ε, r

(t,i)
4 : S → ε,
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with δt,i =

{
AA if et,i = +1,
A if et,i = 0.

These rules make sure that the number of As corresponding to the con-
tents of the ith counter (ji in the sentential form of (3.6)) is zero, and r

(t,i)
1

replaces the deleted two As with two or three new ones depending on whether
the number stored in the ith counter should be increased or not, that is,
whether the value of et,i is +1 or 0.

On the other hand, if ct,i = B for some i, 1 ≤ i ≤ 2, then ti = 5 and

r
(t,i)
1 = r

(t,i)
5 : S → S, r

(t,i)
2 = r

(t,i)
3 : A → A, r

(t,i)
4 : A → δt,i,

with δt,i =







AA if et,i = +1,
A if et,i = 0,
ε if et,i = −1.

In this case, the value stored in the ith counter should be non-zero, there-
fore, besides leaving the two Ss and the two As unchanged, one A is replaced
by rule r

(t,i)
4 by two, one, or zero As depending again on the value of et,i.

In both of the above cases, the rest of the rules is defined as follows. For
any transition t as above, let dt denote the difference between the sums of the
indices of the states and the counter contents before and after the transition
t, that is, let dt = |δt,1δt,2|A − 2 + n − m. This is the number of symbols
A added to the sentential form (or deleted, in the case when dt is negative)
by the already defined rules of the scattered context production simulating
transition t. Now, if dt ≥ 0, then let l = 1 (see (3.7) for the notation), and

r
(t)
1 : S → SSdt .

If dt < 0, then let l = −dt, and

r
(t)
i : S → ε, for all 1 ≤ i ≤ l.

These rules make sure that the same number of symbols S are added to, or
deleted from the sentential form, as the number of symbols A are added or
deleted by the rest of the rules of the scattered context production. Thus,
the relationship of the number of symbols S and A in the sentential form
remains the same after the application of the scattered context production
simulating the transition t as it was before the application of the production.

For an example of the above described construction, see Figure 3.1.
Now we show that the grammar G generates the language L(M) accepted

by the two-counter machine M .
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(S → aSAAAA1S, 〈AAAA3S〉 → 〈ε〉,

S → SAAAS, 〈AAS〉 → 〈ε〉, S → S,A → A,A → A,A → ε, S → S,

S → S,A → A, S → S, 〈S2〉 → 〈ε〉)

(a) The scattered context production corresponding to the transition t :
(a, q3, Z,B) → (q1,+1,−1) of the two-counter machine M . In this case,
m = 3, n = 1, t1 = 4, δt1 = AA, t2 = 5, δt,2 = ε, dt = −2, and l = 2.

w1SAAAAAA
︸ ︷︷ ︸

3

SSAASSAAA . . .A
︸ ︷︷ ︸

18

SSAS S . . . S
︸ ︷︷ ︸

18+3=21

=⇒

w1aSAAA A
︸︷︷︸

1

SSAA A
︸︷︷︸

1

SSAAA . . . A
︸ ︷︷ ︸

17

SSAS S . . . S
︸ ︷︷ ︸

21−2=19

(b) The application of the above production to a sentential form cor-
responding to the configuration (aw2, q3, 0, 18) results in a string corre-
sponding to the configuration (w2, q1, 1, 17).

Figure 3.1: An example for the construction in the proof of Theorem 3.4.2.

Starting with the initial nonterminal S, the only applicable production of
G is r(I) resulting in the sentential form SAAAASSAASSAASSASS which
is of the form (3.6) and, as we mentioned before, corresponds to the initial
configuration of M .

1. Note first that all productions from P − {r(I)} are defined in such a
way that they insert or delete an equal number of symbols S and A, which
means that if |α|A = |α|S and α ⇒ α′ by a production other than r(I), then
|α′|A = |α′|S also holds. Since the application of the production r(I) adds
eight S and nine A symbols to any sentential form, it follows that r(I) can
only be applied once, in the first rewriting step of any derivation (to the
sentential form S), otherwise the number of Ss and As will be different, and
since r(F ) also erases an equal number of symbols A and S, no terminal word
can be obtained.

Consider now a sentential form wα, w ∈ T ∗, α ∈ {S,A}∗ of the form
(3.6) corresponding to some configuration of M . Now we show that any
application of a production from P −{r(I)} during a successful derivation of
G leads either to a terminal word, or to a sentential form of the same form

43

               dc_640_12



corresponding to some other configuration of M .
2. Let p ∈ P − {r(I)} be a production applicable to wα. Note first that

the seven leftmost S symbols occurring in α must be rewritten by the seven
leftmost S-rules of p. This follows from the fact that all productions have a
rule with A on its lefthand side after the rules rewriting the seven leftmost
S symbols, but no sentential form of type (3.6) has any occurrences of A to
the right of the eighth S. This means that the seven leftmost S-rules in a
production are either applied to the seven leftmost occurrences of S in α, or
the last (rightmost) A-rule of p is not be applicable to any symbol of α.

3. Let us assume now that α = SAAAAiSSAAAj1SSAAAj2SSASSk

where k = i+j1+j2, and let left(p) = SAAAAīSSAAAj̄1SSAAAj̄2SSASS k̄

be the word composed of the concatenation of the symbols on the lefthand
sides of the rules of a production p.

3.a. First we argue that the applicability of p to α implies that ī ≤ i,
j̄1 ≤ j1, and j̄2 ≤ j2. To see this, consider that if ī > i, then the second
and the third S-rules cannot be applied to the second and third occurrences
of the symbol S in α, thus, according to point 2 above, production p is not
applicable. The same holds if j̄1 > j1 (or j̄2 > j2). In this case, the fourth
and the fifth S-rules (or the sixth and seventh S rules, respectively) cannot
be applied to the fourth and fifth (or the sixth and seventh) occurrences of
S in α, which means that the production p is not applicable.

3.b. We now show that j̄1 ≤ j1, j̄2 ≤ j2, and ī = i. If we assume
that j̄1 ≤ j1, j̄2 ≤ j2, and ī < i, then by applying the production p to
α = SAAAAiSSAAAj1SSAAAj2SSASSk, we obtain a sentential form α′ =
w′

1SA . . . ASAi−īSAA . . . SSAA . . . SSAS . . . S, that is, we have a substring
Ai−ī between the second and third occurrences of S in α′. Since there is
no production in P which contains an A-rule between the second and third
S-rules, then according to point 2, there is no way that this string of A
symbols can be rewritten or erased from the sentential form. Therefore,
after the application of such a production, G cannot derive a terminal word
any more.

This means that having a sentential form w1α with w1 ∈ T ∗, α as above,
and a configuration C = (aw2, qi, j1, j2) of M corresponding to this sentential
form, the following holds: If there exists a transition t : (qī, a, c1, c2) →
(ql, e1, e2) ∈ R, then the corresponding production p : (S → aSAAAAlS,
〈AAAAīS〉 → 〈ε〉, . . .) ∈ P is only applicable to w1α if ī = i, that is, if
the state on the lefthand side of transition t is the same as the state in the
configuration C of M corresponding to the sentential form w1α of G.
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4. Consider now the sentential form w1α corresponding to the configu-
ration C = (aw2, qi, j1, j2), the transition t = (qi, a, c1, c2) → (ql, e1, e2), as
above, and the production p corresponding to t, being of the form

(S → aSAAAAlS, 〈AAAAiS〉 → 〈ε〉, r
(t,1)
1 , . . . , r

(t,1)
t1 , r

(t,2)
1 , . . . , r

(t,2)
t2 ,

S → S, . . .).

We now show that p can only be applied to w1α in a successful derivation if
the following holds: cm = Z, m ∈ {1, 2}, if and only if jm = 0; and cm = B,
m ∈ {1, 2}, if and only if jm > 0.

4.a. Assume first, that t : (qi, a, c1, c2) → (ql, e1, e2) is such that cm = Z

for some m ∈ {1, 2}. In this case, tm = 4, r
(t,m)
1 : S → SAδt,mS, and the

neighboring productions r
(t,m)
2 , r

(t,m)
3 , r

(t,m)
4 can be written as 〈AAS〉 → 〈ε〉.

Thus, if there are more than two As after the third (if m = 1) or the fifth
(if m = 2) occurrences of symbols S in α, then the application of p results
in a word with the substrings Aj1 (or Aj2) between the fourth and fifth (or
the sixth and seventh) occurrences of the symbol S. Then, due to a similar
reasoning as in point 3.b, this substring of As can never be removed from
the sentential form, and G can never produce a terminal word this way. This
means that if cm = Z, m ∈ {1.2}, then the production p ∈ P corresponding
to transition t ∈ R can only be applied to a sentential form of G, if it
corresponds to a configuration C = (aw2, qi, j1, j2) of M with jm = 0, that
is, if t is also applicable in C.

4.b. Let us assume now, that t : (qi, a, c1, c2) → (ql, e1, e2) is such that
cm = B for some m ∈ {1, 2}. In this case, tm = 5, and the productions

r
(t,m)
j , 1 ≤ j ≤ 5, can be written as S,A,A,A, S → S,A,A, δt,m, S. Thus, if
there are less than three As after the third (if m = 1) or the fifth (if m = 2)
occurrence of the symbol S in α, then, according to the reasoning in point
2, the production p is not applicable to α. This means that if cm = B,
m ∈ {1, 2}, then the production p ∈ P corresponding to transition t ∈ R
can only be applied to a sentential form of G which corresponds to such a
configuration C = (aw2, qi, j1, j2) of M , where jm > 0, that is, if t is also
applicable in C.

From these considerations we can see that starting from a sentential form
wα corresponding to a configuration C of M as in (3.6), by applying a pro-
duction of G we either get a sentential form waα′ corresponding to a con-
figuration C ′ with C ⊢a C ′, or there are no terminal words which can be
derived from waα′. Therefore, since the first derivation step of G introduces
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the sentential form SAAAASSAASSAASSASS corresponding to an initial
configuration (w, q1, 0, 0) of M , the word w can be generated by G if and
only if it can be accepted by the two counter machine M . This concludes
our proof.

3.4.4 Remarks

We have shown that scattered context grammars with only two nonterminals
are sufficient to generate any recursively enumerable language. This result
first appeared in (Csuhaj-Varjú and Vaszil, 2010b). Our proof has been
based on the simulation of a two-counter machine and the possibility of the
elimination of a separate initial nonterminal in the simulating grammar. The
initial nonterminal can be eliminated by preventing the repeated application
of the initial production through maintaining the property of having an equal
number of symbols A and S in the sentential forms during any terminating
derivation. If the initial rule is used more than once, then the number of
As becomes larger than the number of Ss and no terminal string can be
produced. A similar idea already appeared in (Masopust and Meduna, 2009).

To prevent the repeated application of the initial production is a common
problem in the construction of grammars with a limited number of nonter-
minals, see for example the constructions involving programmed and matrix
grammars in (Fernau et al., 2007). The direct application of our technique,
however, is not possible in these rewriting mechanisms because it also takes
advantage of the fact that the rules of scattered productions have to be ap-
plied to nonterminals appearing in the same order as the rules themselves.
This property makes it possible that three different integers (corresponding
to the state and the counter contents of the two-counter machine) are en-
coded using two nonterminals: one for storing the actual values and another
one for separating the regions corresponding to the different types of infor-
mation. Since the number of occurrences of separator symbols carries no
information about the state of the simulated two-counter machine, it can be
used to “balance” the number of occurrences of the other nonterminal. In
rewriting mechanisms which do not take into account the order of appear-
ance of the rewritten nonterminals in the sentential forms, however, different
integers are usually encoded by using different nonterminals for each of them,
thus, the addition of a “balancing” symbol would increase the number of used
nonterminals in the same way as the addition of a separate start symbol.

Our result for scattered context grammars is optimal from the point of

46

               dc_640_12



view of the number of nonterminals, but the number of productions or the
number of simultaneously rewritten nonterminals is not bounded in our con-
struction: they depend on the structure of the language generated, or more
precisely, on the structure of the two-counter machine which is simulated by
the grammar.

The possibility of bounding the maximal number of rules in the scattered
context productions is shown for grammars with three nonterminals in (Ma-
sopust and Meduna, 2009), just as the possibility of bounding the number
of non-context-free productions (productions containing two or more rules to
be applied simultaneously) for scattered context grammars with four nonter-
minals is shown in (Masopust, 2009b).

These measures can also be bounded in our case if we consider the simu-
lation of a universal two-counter machine. Such a universal machine accepts
different languages (any recursively enumerable language) over a given alpha-
bet with the same state and transition sets if, instead of being started with
empty counters, one of the counters is initialized with a value corresponding
to the language in question. Thus, if we construct a grammar based on a uni-
versal machine U , then, for any recursively enumerable language L, we can
change the initial production r(I) in such a way that it introduces a sentential
form corresponding to the starting configuration of U where the counters are
also initialized with the values necessary to accept L. This way we can obtain
grammars for any language having the same number of productions, and the
same number of rules in those productions. (In fact, with the exception of
the production r(I), the grammars are identical.)
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Chapter 4

Networks of Cooperating
Grammars - The Number of
Components and Clusters

Parallel communicating grammar systems have been the objects of a detailed
study, which is confirmed by the considerable number of publications in the
area. The investigations mainly concentrated on their power and on exam-
ining how this power is influenced by changes in their basic characteristics:
the way of communication, the synchronization among the components, their
way of functioning.

In this chapter we first examine the relationship between returning and
non-returning systems, then focus our attention on the problem of reducing
the number of components of non-returning parallel communicating grammar
systems.

4.1 Preliminaries

First we recall the notion of parallel communicating grammar systems from
(Păun and Sântean, 1989), for more detailed information see the monograph
(Csuhaj-Varjú et al., 1994) or the handbook chapter (Dassow et al., 1997b).

Definition 4.1.1. A parallel communicating grammar system with n com-
ponents, where n ≥ 1, (a PC grammar system, in short), is an n + 3-tuple
Γ = (N, K, T, G1, . . . , Gn), where N is a nonterminal alphabet, T is a ter-
minal alphabet and K = {Q1, Q2, . . . , Qn} is an alphabet of query symbols.
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N, T, and K are pairwise disjoint sets, Gi = (N ∪K, T, Pi, Si), 1 ≤ i ≤ n,
called a component of Γ, is a (usually context-free) generative grammar with
nonterminal alphabet N ∪K, terminal alphabet T , a set of rewriting rules Pi

and an axiom or (a start symbol) Si. G1 is said to be the master (grammar)
of Γ.

An n-tuple (x1, . . . , xn), where xi ∈ (N ∪ T ∪K)∗, 1 ≤ i ≤ n, is called
a configuration of Γ. (S1, . . . , Sn) is said to be the initial configuration. PC
grammar systems change their configurations by performing direct derivation
steps.

Definition 4.1.2. Let Γ = (N, K, T,G1, . . . , Gn), n ≥ 1, be a PC grammar
system and let (x1, . . . , xn) and (y1, . . . , yn) be two configurations of Γ. We
say that (x1, . . . , xn) directly derives (y1, . . . , yn), denoted by (x1, . . . , xn) ⇒
(y1, . . . , yn), if one of the next two cases hold:

1. There is no xi which contains any query symbol, that is, xi ∈ (N ∪T )∗

for 1 ≤ i ≤ n. In this case xi ⇒Gi
yi. (For xi ∈ T ∗ we have xi = yi.)

2. There is some xi, 1 ≤ i ≤ n, which contains at least one occurrence
of query symbols. Let xi be of the form xi = z1Qi1z2Qi2 , . . . , ztQitzt+1,
where zj ∈ (N ∪ T )∗, 1 ≤ j ≤ t + 1 and Qil ∈ K, 1 ≤ l ≤ t. In this
case yi = z1xi1z2xi2 . . . ztxitzt+1 where xil , 1 ≤ l ≤ t does not contain any
query symbol. Furthermore, (a) in returning systems yil = Sil, while (b) in
non-returning systems yil = xil , 1 ≤ l ≤ t.

If some xil contains at least one occurrence of query symbols, then yi = xi.
For all i, 1 ≤ i ≤ n, for which yi is not specified above, yi = xi.

The first case is the description of a rewriting step: If no query symbols
are present in any of the sentential forms, then each component grammar
uses one of its rewriting rules except those which have already produced
a terminal string. The derivation is blocked if a sentential form is not a
terminal string, but no rule can be applied to it.

The second case describes a communication: If some query symbol, say
Qi, appears in a sentential form, then rewriting stops and a communication
step must be performed. This means that Qi must be replaced by the current
sentential form of component Gi, say xi, supposing that xi does not contain
any query symbol. (Only strings without query symbols can be communi-
cated.) If this sentential form also contains some query symbols, then first
these symbols must be replaced with the requested sentential forms. If this
condition cannot be fulfilled (a circular query appeared), then the derivation
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is blocked. Let ⇒rew and ⇒com denote a rewriting and a communication step
respectively.

If the sentential form of a component was communicated to an other, this
component can continue its own work in two ways: In so-called returning
systems, the component must return to its axiom and begin to generate a
new string. In non-returning systems the components do not return to their
axiom, but continue to process the current string.

A system is centralized if only the component G1 is allowed to introduce
query symbols, otherwise it is non-centralized.

The phrase communication step is used to denote the process of satisfying
the query symbols, which can be satisfied in “parallel”. For example the
communication prescribed by (Q2, Q3, α, Q3) takes two communication
steps to realize: first we get (Q2, α, S3, α), and then (α, S2, S3, α).
The two consecutive steps together will be referred to as a communication
sequence.

Let ⇒+ and ⇒∗ denote the transitive, and the reflexive, transitive closure
of ⇒.

Definition 4.1.3. The language generated by a PC grammar system Γ is
L(Γ) = {w ∈ T ∗ | (S1, . . . , Sn) ⇒

∗ (w, α2, . . . , αn)}.

Thus, the generated language consists of the terminal strings appearing
as sentential forms of the master grammar, G1.

Notation. Let PCnCF and NPCnCF denote the classes of returning and
non-returning PC grammar systems with at most n context-free components,
n ≥ 1. The classes of languages generated by such systems are denoted by
L(PCnCF) and L(NPCnCF), respectively.

Example 4.1.1. Let Γ = (N,K, T,G1, G2, G3) be a parallel communicating
system of regular grammars with components Gi = (N ∪ K, T, Pi, Si), 1 ≤
i ≤ 3, where

N = {S1, S2, S3},

K = {Q1, Q2, Q3},

T = {a, b, c},

and

P1 = {S1 → aS1, S1 → aQ2, S3 → ε},

P2 = {S2 → bS2, S2 → bQ3},

P3 = {S3 → cS3}.
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Starting from the initial configuration (S1, S2, S3), Γ can reach (aiS1, b
iS2, c

iS3)
after i rewriting steps for some i > 0. The derivation can only be finished
if both G1 and G2 introduce their query symbols in the same step, obtaining
(ai+1Q2, b

i+1Q3, c
i+1S3) ⇒com (ai+1bi+1ci+1S3, α, β) where α = S2, β = S3

in the case of returning communication, or α = bi+1ci+1S3, β = ci+1S3 in
the case of non-returning communication. In both cases, the derivation is
finished by using S3 → ε in G1 which produces a generated string of the form
ai+1bi+1ci+1. Thus, Γ generates

L(Γ) = {anbncn | n ≥ 1}

which is a context-sensitive, but not context-free language.

4.2 The number of components of non-return-

ing systems

Non-returning PC grammar systems are simulated in (Dumitrescu, 1996) by
returning systems. This simulation uses 4n2 − 3n + 1 components, where
n is the size (the number of components) of the simulated system, and one
rewriting step of the simulated system corresponds to about 2n simulating
rewriting steps.

Here we will briefly review a different method for the simulation of non-
returning context-free PC grammar systems with returning systems which
requires (n+ 1)2 simulating components in general, but this can be reduced
to 2n in the best case, if the components of the simulated system satisfy
certain properties which we will define later. Furthermore, one rewriting
step of the simulated system corresponds to only two simulating rewriting
steps.

4.2.1 Returning versus non-returning communication

After a communication is performed, not only the components which send
their current strings, but also those components which receive these strings
may finish the communication with different sentential forms in the returning
or non-returning modes. This is due to the fact, that all query symbols
occurring in one string must be rewritten in the same communication step.
This requirement makes it possible, that a query symbol Qi is replaced by
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some string α in the non-returning mode while in the returning mode it is
replaced by Si, since α may no longer be available when the replacement of
Qi becomes possible.

For example the query (Q2Q3, Q3, a) is satisfied in the non-returning
mode with the following two steps: (Q2Q3, Q3, a) ⇒com (Q2Q3, a, a) ⇒com

(aa, a, a), while in the returning mode it is satisfied with (Q2Q3, Q3, a) ⇒com

(Q2Q3, a, S3) ⇒com (aS3, S2, S3), producing a different sentential form in the
first component.

There are special cases, when the mode of communication does not make
any difference in the resulting sentential forms of those components which
only receive strings during a communication (Components like G1 in the
example above.) One of them is the following: If occurrences of only one
query symbol can be present in one sentential form at the same time, then
all the occurrences of a certain query symbol appearing in any sentential form
are replaced in the same communication step. It does not matter whether
the component which sends its string returns to the axiom or not, since after
the sentential form has been sent, there are no other communication symbols
present requesting this same string. In other words, all components send
their sentential forms at most once during a communication sequence.

Definition 4.2.1. Consider a PC grammar system (N, K, T, G1, . . . , Gn).
By the word query we refer to a sentential form containing at least one query
symbol. A query is satisfied through communication replacing the query
symbols with the requested sentential forms. This may be done in one or
more communication steps.

We call a query homogeneous, if all query symbols contained in the sen-
tential form request the same string, which means that it is of the form
α1Qiα2Qi . . . αt−1Qiαt, where 1 ≤ i ≤ n and 2 ≤ t. Otherwise a query is
non-homogeneous, then it is of the form α1Qi1α2Qi2 . . . αt−1Qit−1

αt where for
all 1 ≤ j ≤ t 1 ≤ ij ≤ n, 3 ≤ t and at least two query symbols are different,
there exists 1 ≤ j, k ≤ t for which Qij 6= Qik .

A component with non-homogeneous queries is a component grammar
Gi, 1 ≤ i ≤ n, which is capable of introducing non-homogeneous queries, it
has at least one rule of the form X → αQiβQjδ, where i 6= j.

Now we show how a non-returning communication sequence on n compo-
nents can be simulated by a returning communication sequence with n(n+2)
components.

52

               dc_640_12



Lemma 4.2.1. Consider the PC grammar system Γ = (N,K, T,G1, ..., Gn)
and the non-returning communication sequence in Γ:

(α1, .., αn) ⇒
+
com (β1, ..., βn), where αi, βi ∈ (N ∪ T ∪K)∗, 1 ≤ i ≤ n.

Let Γ′ = (N ′, K, T,G′
1, ..., G

′
n, G

′
n+1, ..., G

′
2n, G

′
1,1, ..., G

′
1,n, ...., G

′
n,1, ..., G

′
n,n)

and let

(Qn+1, ..., Q2n, α
′
1, ..., α

′
n, Qn+1, ..., Q2n, ...., Qn+1, ..., Q2n) ⇒

+
com

(γ1, ..., γn, Sn+1, ..., S2n, δ1,1, ..., δ1,n, ...., δn,1, ..., δn,n)

be a returning communication sequence in Γ′, where α′
i = αi if αi ∈ (N∪T )∗,

or α′
i = αi,1Qi,j1αi,2Qi,j2...αi,tQi,jtαi,t+1 if αi = αi,1Qj1αi,2Qj2 ...αi,tQjtαi,t+1,

αi,k ∈ (N ∪T )∗, 1 ≤ k ≤ t+1, 1 ≤ jl ≤ n, 1 ≤ l ≤ t. Then γi = βi, 1 ≤ i ≤
n.

Proof. If | αi |K= 0 then βi = αi. In this case α′
i = αi, γi = α′

i, so γi = βi. If
αi = αi,1Qj1αi,2Qj2 ...αi,tQjtαi,t+1, αi,k ∈ (N ∪ T )∗, 1 ≤ k ≤ t + 1 then βi =
αi,1βj1αi,2βj2 ...αi,tβjtαi,t+1. In this case α′

i = αi,1Qi,j1αi,2Qi,j2...αi,tQi,jtαi,t+1.
All queries of αi are redirected in α′

i to the i-th n-tuple of assistant grammars
G′

i,1, ..., G
′
i,n. When the sentential form of a component G′

n+i is available for
communication which means it contains no query symbols, it is sent to G′

i and
n copies of it appear as sentential forms of all G′

j,i 1 ≤ j ≤ n. These copies
are available for further requests by G′

n+1, ..., G
′
2n. From these considerations

it follows that γi = αi,1βj1αi,2βj2...αi,tβjtαi,t+1 = βi.

Now we show how to decrease the number of components in the simulating
returning communication sequence.

Lemma 4.2.2. Consider the PC grammar system Γ = (N,K, T,G1, ..., Gn)
and the non-returning communication sequence in Γ:

(α1, .., αn) ⇒
+
com (β1, ..., βn), where αi, βi ∈ (N ∪ T ∪K)∗, 1 ≤ i ≤ n,

and let i1, i2, . . . , ik, k ≤ n denote the indices of those sentential forms which
introduce non-homogeneous queries.

Let Γ′ = (N ′, K, T,G′
1, ..., G

′
n, G

′
n+1, ..., G

′
2n, G

′
i1,1

, ..., G′
i1,n

, ...., G′
ik,1

, ..., G′
ik,n

)
and let

(Qn+1, ..., Q2n, α
′
1, ..., α

′
n, Qn+1, ..., Q2n, ...., Qn+1, ..., Q2n) ⇒

+
com

(γ1, ..., γn, Sn+1, ..., S2n, δi1,1, ..., δi1,n, ...., δik,1, ..., δik,n)

be a returning communication sequence in Γ′, where α′
i = αi if αi ∈ (n∪T )∗,

or α′
i = αi,1Qn+jαi,2Qn+j . . . αi,tQn+jαi,t+1 if αi = αi,1Qjαi,2Qj . . . αi,tQjαi,t+1
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(i 6∈ {i1, i2, . . . , ik}) and α′
ij

= αij ,1Qij ,l1αij ,2Qij ,l2 ...αij ,tQij ,ltαij ,t+1 if αij =
αij ,1Ql1αij ,2Ql2 ...αij ,tQltαij ,t+1, αij ,m ∈ (N ∪ T )∗, 1 ≤ m ≤ t + 1, 1 ≤ lr ≤
n, 1 ≤ r ≤ t for all ij ∈ {i1, i2, ..., ik}, j ≤ k. Then γi = βi, 1 ≤ i ≤ n.

Proof. If i 6∈ {i1, i2, . . . , ik} then there are two possible cases: Either αi

does not contain a query at all or αi = αi,1Qjαi,2Qj ...αi,tQjαi,t+1, αi,m ∈
(N ∪ T )∗, 1 ≤ m ≤ t+ 1, the query of αi is homogeneous.

The statement now follows from Lemma 4.2.1 and from the fact that in
a homogeneous query all query symbols occurring in one sentential form are
replaced in one same step.

Now we recall a statement from (Vaszil, 1998). It shows that based
on the above described ideas, non-returning PC grammar systems with n
context-free components can be simulated by returning systems with (n+1)2

components but this number can be reduced if at least one of the simulated
components is not capable of introducing non-homogeneous queries. If none
of them introduces non-homogeneous queries, then 2n simulating components
are enough.

Theorem 4.2.3. If L ∈ L(NPCnCF) and Γ ∈ npcclass generating L, then
L = L(Γ′), where Γ′ ∈ PCn(k+2)+1CF and k ≤ n is the number of components
with non-homogeneous queries in Γ.

Notice, that 2n simulating components are enough also for centralized
systems, even if the queries are non-homogeneous. This is easy to see, if we
consider that communications in a centralized system can only consist of one
communication step, since every requested sentential form is always available
(only the master grammar can introduce queries), there is no need to save
the intermediate results of communications.

4.2.2 Reducing the number of components of non-re-
turning systems

In (Csuhaj-Varjú and Vaszil, 1999), recursively enumerable languages were
generated by returning PC grammar systems with 11 component grammars.
The necessary number of components was later improved in (Csuhaj-Varjú
et al., 2003) to five which is still the best known bound.

The above results inspired further investigations of the descriptional com-
plexity of returning context-free PC grammar systems. In (Csuhaj-Varjú and
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Vaszil, 2002) a trade-off between the number of rules or nonterminals and
the number of components is demonstrated: With no bound on the number
of components, seven rules and eight nonterminals in each of the component
grammars are sufficient to generate any recursively enumerable language,
while if the number of rules and nonterminals can be arbitrarily high, then the
number of components can be bounded by a constant. Possible restrictions
on the size of the rules have also been observed, in (Csuhaj-Varjú and Vaszil,
2001) normal form theorems were presented showing that all languages that
can be generated by context-free returning parallel communicating grammar
systems can also be generated by systems using rules of the form X → α,
where X is a nonterminal and α consists of at most two symbols. In addition,
if in a rule X → α, the string α contains a query symbol, then α is the query
symbol itself.

The result showing that arbitrary recursively enumerable languages can
also be generated by non-returning PC grammar systems first appeared in
(Mandache, 2000). The number of components, however, in the construction
of (Mandache, 2000) depends on the language to be generated, and in general,
it can be arbitrary high. The first construction to bound the number of
necessary components in the non-returning case was presented in (Vaszil,
2007) where all recursively enumerable languages were shown to be generated
with eight components.

In the following we show that any n-counter machine can be simulated
with non-returning PC grammar systems of n+4 components. As n-counter
machines are known to be computationally complete for n = 2, this also
implies that six components are sufficient to generate any recursively enu-
merable language with non-returning systems.

Theorem 4.2.4. For any n-counter machine M (n ≥ 1) over an alphabet T ,
a context-free non-returning PC grammar system Γ with n + 4 components
can be constructed such that the language L ⊆ T ∗ accepted by M is equal to
the language generated by Γ.

Proof. Let M = (T ∪ {Z,B}, E, R, q0, qF ) be an n-counter machine, and let
L ⊆ T ∗ be the language accepted by M . Without any loss of generality
we may assume that M always enters the final state with empty counters
and leaves them unchanged, i. e., for any q ∈ E with (q, x, c1, c2, . . . , cn) →
(qF , e1, e2, . . . , en) ∈ R, it holds that ci = Z and ei = 0, 1 ≤ i ≤ n.

To prove the statement, we construct a context-free non-returning PC
grammar system Γ having n + 4 components generating L and simulating
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the transitions of M . For the sake of easier readability, we will present the
simulating construction for n = 2, and describe the modifications for the
general case afterwards.

Let
Γ = (N,K, T,Gsel, Ggen, Gc1, Gc2, Gch1

, Gch2
),

where Ggen is the master grammar and Gγ = (N∪K, T, Pγ, S) is a component
grammar for γ ∈ {gen, sel, c1, c2, ch1, ch2}.

Let I = {[q, x, c1, c2, q
′, e1, e2] | (q, x, c1, c2) → (q′, e1, e2) ∈ R} and let

us introduce for any α = [q, x, c1, c2, q
′, e1, e2] ∈ I the following notations:

State(α) = q, Read(α) = x, NextState(α) = q′, and Store(α, i) = ci,
Action(α, i) = ei, where i = 1, 2. For technical reasons, we also define
I ′ ⊆ I, the set of symbols corresponding to transitions which require the zero
check of both counters simultaneously, that is, I ′ = {[q, x, Z, Z, q′, e1, e2] |
(q, x, Z, Z) → (q′, e1, e2) ∈ R}.

The simulation is based on representing the states and the transitions of
M with nonterminals from I and the values of the counters by strings of
nonterminals containing as many symbols A as the value stored in the given
counter. Every component is dedicated to simulating a certain type of activ-
ity of the two-counter machine: Gsel selects the transition to be simulated,
Gci, where 1 ≤ i ≤ 2, simulates the respective counter and the update of its
contents, Gchj

, where 1 ≤ j ≤ 2, assists the work of Gci, and Ggen generates
the word read (and possibly accepted) by M.

Let

N = {S,A, F, F ′, F ′′, F ′′′, C1, C2, C3,M0,M1,M2,M3, V } ∪

{Di,α, Ei,α, Hi,α, Hi,α,j, Xα | α ∈ I, 1 ≤ i ≤ 3, 1 ≤ j ≤ 2} ∪ I

and let the rules of the components be defined as follows.
Let

Psel = {S → α | α ∈ I, State(α) = q0} ∪

{α → D1,α, D1,α → D2,α, D2,α → D3,α | α ∈ I} ∪

{D3,α → β | α, β ∈ I, NextState(α) = State(β)} ∪

{D3,α → F | α ∈ I, NextState(α) = qF} ∪

{F → V, V → V }.

This component selects the transition of the two-counter machine to be
simulated. The axiom S is used to initialize the system by introducing one
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of the symbols from I denoting an initial transition, i. e., a symbol of the
form [q0, x, c1, c2, q

′, e1, e2] where q0 is the initial state. The other productions
are used for changing the transition into the next one to be performed. The
appearance of symbol F indicates that the simulation of the last transition
has been finished and the rules F → V, V → V can be used to continue
rewriting until the master component also finishes its work.

Let

Pgen = {S → Qsel, C1 → C2, C2 → C3, C3 → Qsel} ∪

{α → xC1 | α ∈ I, Read(α) = x} ∪

{H3,α → ε | α ∈ I} ∪ {H2,α,1 → ε | α ∈ I ′} ∪

{M1 → ε, F ′ → ε, F ′′ → ε, F → Qch1
Qc1}.

This component generates the string accepted by the counter machine
by adding the symbol x = Read(α) for each α ∈ I (chosen by the selector
component Gsel) using the rule α → xC1. The productions rewriting C1 to
C2, C2 to C3, and then C3 to Qsel are used for maintaining the synchroniza-
tion. The result of the computation is produced after the symbol F appears.
Using the rule F → Qch1

Qc1 , the sentential forms of components Gch1
, Gc1 ,

and Gc2 are transferred to Ggen (Gc2 is queried by Gch1
in the same step)

and it makes sure that these strings do not contain any nonterminal letter
which is different from H3,α, for α ∈ I, or H2,α,1, for α ∈ I ′, or from any
of M1, F

′, F ′′, since these are the only symbols which can be erased. (The
presence of symbols H3,α, or the symbols H2,α,1 and H3,α together, depending
on α ∈ I, and M1 indicate that the simulation of the checks and the updates
of the contents of the counters of the two counter machine were correct, F ′

and F ′′ are different variants of the symbol denoting the final transition.) If
the work of the component stops with a terminal word, then this string was
also accepted by M and the simulation was correct.

The following two components are for representing the contents of the
counters of M and for simulating the changes in the stored numbers. Let for
i ∈ {1, 2},

Pci = {S → Qsel, A → Qch2
, F → F ′, F ′ → F ′} ∪

{α → Xα, Xα → yi,α,1Qsel, D3,α → yi,α,2Qsel | α ∈ I,

Store(α, i)=B, yi,α,j=σ(Action(α, i), B, j), 1 ≤ j ≤ 2} ∪

{α → H1,α, H1,α → H2,α,i, H2,α,i → H3,α, H3,α → yi,α,1Qsel |

α ∈ I, Store(α, i) = Z, yi,α,1 = σ(Action(α, i), Z, 1)},
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where σ : {1, 0,−1}×{B,Z}×{1, 2} → {A, ε} is a partial mapping defined as
σ(1, B, 1) = A, σ(1, B, 2) = A, σ(0, B, 1) = A, σ(0, B, 2) = ε, σ(1, Z, 1) = A,
σ(1, Z, 2) = ε, and σ(−1, B, j) = σ(0, Z, j) = ε for 1 ≤ j ≤ 2.

These components are responsible for simulating the change in the con-
tents of the counters, which is represented by a string u consisting of as
many letters A as the actual stored number in the counter. By performing
rule A → Qch2

and the rules α → Xα, Xα → yi,α,1Qsel, D3,α → yi,α,2Qsel, the
components are able to check whether the string representing the respective
counter contents contains at least one occurrence of the letter A (if it is re-
quired by the transition represented by α), and then modify the contents of
the counters in the prescribed manner by introducing the necessary number
of new As as yi,α,1 and yi,α,2. If Store(α, i) = B, then the simulation is cor-
rect if and only if one occurrence of A is rewritten first and then productions
α → Xα, Xα → yi,α,1Qsel, D3,α → yi,α,2Qsel are applied in the given order,
i. e., after three rewriting steps the new string will contain one more occur-
rence of M1. Any other order of rule application results in introducing a
letter which cannot be erased from the sentential form anymore (D2,α if no A
was rewritten in the first two steps, or M2 if an A was rewritten in the second
step, or M3 if an A was rewritten in the third step). If Store(α, i) = Z, then
the rules α → H1,α, H1,α → H2,α,i, H2,α,i → H3,α, and H3,α → yi,α,1Qsel are
used. The simulation is successful if after applying the productions, H3,α

appears in the third step in the new sentential form and it has no occurrence
of the symbol A. The absence of A will be checked later by components Gch1

and Ggen.
Let

Pch1
= {S → Qsel, α → E1,α, E3,α → Qsel, E1,β → E2,β | α ∈ I,

β ∈ I − I ′} ∪

{E2,α → E3,α | α ∈ I, Store(α, j) = B, 1 ≤ j ≤ 2} ∪

{E2,α → Qc2E3,α | α ∈ I, Store(α, 1) = B, Store(α, 2) = Z} ∪

{E2,α → Qc1E3,α | α ∈ I, Store(α, 1) = Z, Store(α, 2) = B} ∪

{E1,α → Qc1E2,α, E2,α → Qc2E3,α | α ∈ I ′} ∪

{F → Qc2F
′′, F ′′ → F ′′′, F ′′′ → F ′′′}.

This component assists in checking whether the contents of the respective
counter is zero if it is required by the transition to be performed. This is done
by requesting the string of the component Gc1 and/or Gc2. If the string (or
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strings) communicated to this component contains (contain) an occurrence of
A, then this letter will never be removed since Pch1

has no rule for deleting A
and the component Ggen which will later issue a query to Gch1

, has no erasing
rule for A either. This means that the simulation is correct if the string or
strings communicated to Gch1

are free from A, but contains (contain) an
occurrence of H3,α, if α ∈ I − I ′, or both H2,α,1 and H3,α, if α ∈ I ′.

Finally, let

Pch2
= {S→M0,M0→M1,M1→M2,M2→M3,M3→M0}.

This component assists Gc1 and Gc2 in checking whether or not the string
representing the counter contents contains an occurrence of A. The simulated
counter stores a non-negative integer and the simulation is correct if and
only if Pch2

is queried in a step when the symbol M1 is communicated to the
respective component Gc1 or Gc2 .

In what follows, we discuss the work of Γ in details. After the first rewrit-
ing step, we obtain a configuration (S, S, S, S, S, S) ⇒ (α0, Qsel, Qsel, Qsel,
Qsel,M0) ⇒ (α0, α0, α0, α0, α0,M0) where α0 is a nonterminal denoting one
of the initial transitions of the two-counter machine, i. e., State(α0) = q0.
Notice that since both counters store zero at the beginning, the sentential
forms of components Gc1 and Gc2 do not contain any occurrence of A.

Now we demonstrate how the simulation works. Depending on c1 and c2
in α = [q, x, c1, c2, q

′, e1, e2], we discuss the cases separately.
Let α = [q, x, B, Z, q′, e1, e2] ∈ I, where x ∈ T ∪ {ε}, q, q′ ∈ E, and

we do not specify e1, e2 at this moment. Furthermore, let β ∈ I with
NextState(α) = State(β). Suppose that up to transition α the simula-
tion of the work of M was correct. Then the configuration of Γ is of the
form (α,wα, uα, vα, w̄α,M0) where w ∈ T ∗, u, v ∈ {A,M1}

∗, and w̄ ∈
({M1} ∪ {H3,α | α ∈ I} ∪ {H2,α,1 | α ∈ I ′})∗.

By the next rewriting step, α changes to D1,α at the first component, Psel,
then by the second rewriting step to D2,α, and by the third rewriting step to
D3,α. Similarly, wα at Pgen changes to wxC1, then to wxC2, and finally to
wxC3, where x = Read(α).

Let us examine now uα which represents the contents of the first counter.
Since, by the requirements of the simulated transition, the counter must store
a non-negative integer, u should have at least one occurrence of A. If this is
not the case, then the only rule which can be applied is α → Xα, and then in
the second step Xα → y1,α,1Qsel, which introduces D2,α in the string. Then
there are two cases: If y1,α,1 = ε, then the derivation gets blocked since there
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is no rule for rewriting D2,α. If y1,α,1 = A, then the derivation can continue,
but it will not produce any terminal word, since this sentential form as a
subword of some string will be sent to the master component in a latter
phase of the derivation where Pgen should remove all nonterminals, but the
rules of Pgen cannot erase D2,α.

If we suppose that u has at least one occurrence of A, then after three
rewriting steps performed on uα and the communication following them,
the next cases may hold: The new string contains M1 and D3,α (first an
occurrence of A, then α, and thenXα was rewritten) which corresponds to the
correct simulation. If an occurrence of A is rewritten in the second and/or in
the third step, then M2 and/or M3 are introduced and these symbols cannot
be erased in the further derivation steps from the string sent at the end of
the derivation to the master component, Ggen.

Therefore, after the fourth rewriting step from uα, we must have a string
of the form u1M1u2y1,α,1y1,α,2Qsel where u = u1Au2 and y1,α,j, 1 ≤ j ≤ 2
corresponds to e1 = Action(α, 1) for α = [q, x, B, Z, q′, e1, e2] as follows: Since
one A was removed from u, if e1 = −1 then y1,α,1 = y1,α,2 = ε, if e1 = 0 then
y1,α,1 = A and y1,α,2 = ε, if e1 = +1 then y1,α,1 = y1,α,2 = A.

Let us consider now vα, i. e., the string representing the contents of the
second counter. In this case v must not have an appearance of A (according
to α = [q, x, B, Z, q′, e1, e2]). If this is the case, that is, if |v|A = 0, then the
only rule which can be applied is α → H1,α, and the derivation continues
with applying H1,α → H2,α,i and H2,α,i → H3,α. After the third rewriting
step the new string will be of the form vH3,α which will be forwarded by
request to component Gch1

and stored there until the end of the derivation
when it is sent to the master component Ggen. The grammar Ggen is not
able to erase the nonterminal A, thus, terminal words can only be generated
if Gch1

received a string representing an empty counter.
Assume that v contains at least one copy of A. Then, after three rewriting

steps the following cases may appear: No occurrence of A is rewritten, thus
the obtained string, vH3,α, contains at least one A. In this case no terminal
word can be generated since, as we discussed before, the string is sent to
Gch1

and from now on A cannot be removed in the following phases of the
derivation. If at least one occurrence of A is rewritten, then at least one of
the symbols M2, M3, or H2,α,2 is introduced in the string. These letters can
never be removed, since the sentential form is forwarded to Gch1

and stored
there until the end of the derivation when it is sent to the master component
Ggen, but neither Gch1

, nor Ggen have rules for erasing these symbols. Notice

60

               dc_640_12



that H2,α,1 for α ∈ I ′ can be deleted at Ggen, but no other symbol H2,α,j for
j = 1, 2 and α ∈ (I − I ′) can be erased.

This means that to have a correct simulation, the new string obtained
from vα after the fourth rewriting step must be of the form vy2,α,1Qsel, where
v contains no occurrence of A and y2,α,1 is the string corresponding to e2 =
Action(α, 2). Since, in the case of a correct simulation, no A was deleted,
y2,α,1 = ε if e2 = 0, and y2,α,1 = A if e2 = +1 (the case e2 = −1 is not
applicable, since the counter stores zero, Store(α, 2) = Z).

Continuing the derivation, the prescribed communication step results in
the configuration (β, wxβ, u′β, v′β, w̄′β,M0) where β ∈ I is a transition with
NextState(α) = State(β), u′, v′ are strings representing the counters of
M following the transition described by α ∈ I, and w̄′ is a string over
{M1} ∪ {H3,α | α ∈ I} ∪ {H2,α,1 | α ∈ I ′}. Thus, we obtain a configuration
of the form we started from. Now, similarly as above, the simulation of the
transition corresponding to the symbol β ∈ I can be performed.

The reader may immediately notice that the case α = [q, x, Z, B, q′, e1, e2]
can be treated in the same way, with changing the discussion concerning com-
ponents Gc1 and Gc2 . If α = [q, x, B,B, q′, e1, e2], then the proof is also based
on analogous considerations: For the case of the component representing the
second counter of M , Pc2, we use the same reasoning as we did in the case
of Pc1 above.

It remains to discuss the case when α = [q, x, Z, Z, q′, e1, e2]. In this case,
the string obtained from uα after the second rewriting step and the string
obtained from vα after the third rewriting step are forwarded to component
Gch1

. The simulation is correct if and only if the strings obtained by Gch1

are of the form uH2,α,1 and vH3,α (notice that α ∈ I ′) with no occurrence of
A in u or in v. If the strings transferred to Gch1

have at least one occurrence
of A, then no terminal word can be derived in Γ by this derivation, based on
the arguments given above (Ggen has no rule for deleting A).

Suppose now that u has at least one occurrence of A which is rewritten
during the three rewriting steps. Then, at least one of the symbolsM2, M3, or
H1,α is introduced in the string which implies an unsuccessful termination,
since these symbols will appear in the sentential form at the end of the
derivation at component Ggen but they cannot be deleted. Analogously,
if v contains at least one occurrence of A and it is rewritten in these three
rewriting steps, then H3,α cannot be introduced, which also results in a string
containing at least one symbol which cannot be deleted in the latter phases
of the derivation.
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Now we discuss the terminating derivation phase. Suppose now that
NextState(α) = qF and Gsel decides to end the simulation of M , that is,
the nonterminal D3,α is changed to F . Then the obtained configuration is
(F,wxF, u′F, v′F, w̄′F,M0). Then we get (V, wxQch1

Qc1, u
′F ′, v′F ′, w̄′Qc2F

′′,
M1), and after then (V, wxw̄′v′F ′F ′′u′F ′, u′F ′, v′F ′, w̄′v′F ′F ′′,M1).

Since in the case of a correct simulation |w̄′|A = 0, therefore by applying
the erasing rules of Pgen to delete {H3,α | α ∈ (I−I ′), {H2,α,1, H3,α | α ∈ I ′},
M1, F

′, and F ′′, we either obtain a terminal word w′ = wx also accepted
by the two-counter machine M , or there are nonterminals in the sentential
form of Ggen which cannot be deleted. By the explanations above, it can be
seen that any word of L can be generated by Γ, and it does not generate any
other words, thus Γ characterizes the same language as M accepts.

Now we describe how to modify the above construction for any n ≥ 2. Let
Γ′ = (N,K ′, T, G′

sel, G
′
gen, G

′
c1
, . . . , G′

cn, G
′
ch1

, G′
ch2

), where G′
gen is the master

grammar and G′
γ = (N ∪ K ′, T, P ′

γ, S) is a component grammar for γ ∈
{gen, sel, c1, . . . , cn, ch1, ch2}.

Let us define P ′
sel = Psel and P ′

ch2
= Pch2

where Psel, Pch2
are the compo-

nents given above, and let also P ′
ci
be defined for all i, 1 ≤ i ≤ n, based on

Store(α, i) and Action(α, i) as above.
The other components are modified as follows. Let

P ′
gen = Pgen − ({H2,α,1 → ε | α ∈ I ′} ∪ {F → Qch1

Qc1})∪

{H3,α → ε | α ∈ I} ∪ {F → Qch1
Qc1 . . . Qcn},

and let

P ′
ch1

= {S → Qsel, α → E1,α, E1,α → E2,α, E3,α → Qsel | α ∈ I} ∪

{E2,α → E3,αKc1 · · ·Kcn | α ∈ I, Kci = ε for Store(α, i) = B,

Kci = Qci for Store(α, i) = Z} ∪

{F → F ′′, F ′′ → F ′′′, F ′′′ → F ′′′}.

The rules of Pch1
are modified in P ′

ch1
in such a way that even if the

emptiness of more than one counters is checked, that is, if more then one
components from Gci, 1 ≤ i ≤ n, are queried, then all the query symbols
are introduced in the same step. This allows simplifications also in P ′

gen

compared to Pgen where, in addition, also the rule F → Qch1
Qc1 is modified

to F → Qch1
Qc1 . . . Qcn .
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Observing the rules of Γ in the proof above, the reader may notice that Γ
has no rule with right-hand side longer than two. This fact implies that not
only returning but non-returning context-free PC grammar systems preserve
the well-known property of context-free grammars, i.e., that binary normal
form grammars obtain the generative power of the whole grammar class
without any restriction.

Definition 4.2.2. A context-free non-returning parallel communicating gram-
mar system Γ = (N,K, T,G1, . . . , Gn), where n ≥ 1, is said to be in binary
normal form, if any rule in any Gi, 1 ≤ i ≤ n, is of the form A → u where
|u| ≤ 2.

Moreover, as n-counter machines characterize the class of recursively enu-
merable languages already for n = 2, the above theorem implies that non-
returning PC grammar systems generate any recursively enumerable lan-
guage with six components.

Combining these two observations, we obtain the following corollary.

Corollary 4.2.5. Any recursively enumerable language can be generated by a
context-free non-returning parallel communicating grammar system in binary
normal form with six components.

4.2.3 Remarks

In the previous sections we have first examined the differences between the
nature of returning and non-returning communication in context-free PC
grammar systems, and also have shown how non-returning systems can be
directly simulated by returning ones. These results first appeared in (Vaszil,
1998). Next, we have shown that the computation of n-counter machines can
be simulated by context-free non-returning PC grammar systems having n+4
components, thus, any recursively enumerable language can be generated by
these system having six component grammars (even if these are in binary
normal form). These results first appeared in (Csuhaj-Varjú and Vaszil,
2010a). In the following we examine how these parameters can be further
reduced if we consider a kind of clustering of the components of PC grammar
systems.
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4.3 Clustering the components, further re-

duction of size parameters

Answering the natural question, whether or not the clustered organization
implies changes in the properties of PC grammar systems, we studied the gen-
erative power of non-returning clustered PC grammar systems. In (Csuhaj-
Varjú et al., 2011) it was shown that these constructs with only three clusters
and seven components are as powerful as Turing machines. Thus, although
the number of components does not increase significantly when compared to
the non-clustered case, the maximal power can also be obtained with queries
to groups of agents instead of queries to precisely identified individuals.

In this section we show that any recursively enumerable language can
be generated by a non-returning clustered PC grammar system with four
(predefined) clusters and five components, thus, there seems to be a trade-
off between the number of components and the number of clusters. Although
the start point of our argument is the same as in (Csuhaj-Varjú and Vaszil,
2009) (and (Csuhaj-Varjú et al., 2011)), namely, we simulate two-counter
machines, there is no direct tool for distinguishing the members of the clusters
during the work of the system, therefore, to select the configurations which
correspond steps of the correct simulation extra efforts are needed.

The results on clustered systems also imply the improvement of the bound
of the number of components necessary to obtain computational complete-
ness for standard nonreturning PC grammar systems from six to five, to the
same bound as needed in the case of returning systems.

In the second part of this section we follow another natural idea, namely,
we examine the case when the clusters are not fixed in advance, as in (Csuhaj-
Varjú et al., 2011), but formed dynamically in each configuration when query
symbols appear. This approach is also motivated by clustered problem solv-
ing systems where the clusters are formed according to the (actual) com-
petence levels of the agents. Furthermore, this concept is closely related
to the observation that the number of different query symbols which ap-
pear in the actual configurations of the system is a significant parameter. If
this number is one, then the query may represent a broadcast (any agent
who knows the answer may reply), if it is, say k, then k different questions
are distributed. Based on these considerations, we introduce the concept of
a dynamically clustered PC grammar system, where if the number of query
symbols in the actual configuration is k, then at least k+1 clusters are formed
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non-deterministically (at least the querying component should belong to a
cluster which is not queried).

We show that dynamically clustered non-returning PC grammar systems
are as powerful as Turing machines with six components and three clusters.
This means that the use of only two different query symbols is sufficient to
generate any recursively enumerable language. It is an open question whether
systems with only one query symbol are enough to obtain this computational
power.

We also deal with unary languages generated by non-returning clustered
PC grammar systems. In this case only the length of the string, no other
information on the structure of the word is given. We show that to gener-
ate a recursively enumerable language over a unary alphabet, non-returning
(clustered) PC grammar systems with four components (and four predefined
clusters) are sufficient. If dynamical clustering is considered, then five com-
ponents and three dynamical clusters, i.e., two query symbols are enough.

Now we present the notion of a parallel communicating grammar system
with (predefined) clusters of components (Csuhaj-Varjú et al., 2011), and
then we introduce the concept of a dynamically clustered PC grammar sys-
tem. Note that the original notion of a PC grammar system (see Section 4.1)
can be obtained as a special case of the variant with predefined clusters where
each component belongs to a different cluster having just one element.

Definition 4.3.1. A parallel communicating grammar system with m (pre-
defined) clusters and n components (a clustered PC grammar system) is an
(m + n + 3)-tuple Γ = (N,K, T,G1, . . . , Gn, C1, . . . , Cm), n,m ≥ 1, where
N and T is defined as usual, K = {Q1, . . . , Qm} is the alphabet of query
symbols, and the components are Gi = (N ∪ K, T, Pi, Si), 1 ≤ i ≤ n. The
set Cj ⊆ {Gi | 1 ≤ i ≤ n}, 1 ≤ j ≤ m, is a cluster of components. One of the
clusters, Ck, 1 ≤ k ≤ m, is distinguished and called the master cluster of Γ.

An n-tuple (x1, . . . , xn), where xi ∈ (N ∪ T ∪K)∗, 1 ≤ i ≤ n, is called a
configuration of Γ; (S1, . . . , Sn) is said to be the initial configuration.

Definition 4.3.2. We say that (x1, . . . , xn) directly derives (y1, . . . , yn), de-
noted by (x1, . . . , xn) ⇒ (y1, . . . , yn), if one of the following two cases holds:

1. There is no xi which contains any query symbol, that is, xi ∈ (N ∪T )∗

for all 1 ≤ i ≤ n. Then, for each i, 1 ≤ i ≤ n, xi ⇒Gi
yi (yi is obtained from

xi by a direct derivation step in Gi) for xi /∈ T ∗ and xi = yi for xi ∈ T ∗.
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2. There is some xi, 1 ≤ i ≤ n, which contains at least one occurrence
of a query symbol. Then, for each xi, 1 ≤ i ≤ n, with |xi|K 6= 0 we write
xi = z1Qi1z2Qi2 . . . ztQitzt+1, where zj ∈ (N ∪ T )∗, 1 ≤ j ≤ t+ 1, and Qil ∈
K, 1 ≤ l ≤ t. If for all l, 1 ≤ l ≤ t, and for every sentential form xk of Gk,
1 ≤ k ≤ n, Gk ∈ Cil , it holds that |xk|K = 0, then yi = z1xi1z2xi2 . . . ztxitzt+1

where xil ∈ {xk | Gk ∈ Cil}, that is, any one of the components in the
queried cluster is allowed to reply if none of the current sentential forms of
the components in the cluster contains a query symbol. Furthermore, (a) in
returning systems yil = Sil , while (b) in non-returning systems yil = xil , 1 ≤
l ≤ t. If on the other hand, for some l, 1 ≤ l ≤ t, there is a Gk ∈ Cil ,
1 ≤ k ≤ n, such that |xk|K 6= 0 then yil = xil . For all i′, 1 ≤ i′ ≤ n, for
which y′i is not specified above, y′i = x′

i.
Moreover, a clustered PC grammar system works in such a way that the

same (non-deterministically chosen) component in Cj replies to all queries
Qj ∈ K, 1 ≤ j ≤ m appearing in a given configuration, i.e., for Qih = Qig ,
1 ≤ g, h ≤ t, above, both Qih and Qig are replaced with xih , where |xih |K = 0
and xih is the sentential form of Gk ∈ Cih for some k, 1 ≤ k ≤ n.

For a fixed i, 1 ≤ i ≤ n, let the language L(Gi) generated by the
component Gi be defined as L(Gi) = {x ∈ T ∗ | (S1, . . . , Si, . . . , Sn) ⇒∗

(x1, . . . , xi, . . . , xn) for some x1, . . . , xn ∈ (N ∪ T ∪ K)∗ such that x = xi}
where ⇒∗ denote the reflexive and transitive closure of ⇒. The language
generated by Γ is

⋃

Gi∈Cj
L(Gi) where Cj is the master cluster of Γ for some

j, 1 ≤ j ≤ m.

Definition 4.3.3. A parallel communicating grammar system with dynamical
clusters and n components (a dynamically clustered PC grammar system)
is an (n + 3)-tuple Γ = (N,K, T,G1, . . . , Gn), n ≥ 1, where N , T , and
Gi, 1 ≤ i ≤ n are defined as above, the set of query symbols, however, is
K ⊆ {Q1, . . . , Qn}, and instead of a master cluster, a master component is
given.

The rewriting steps are also defined in the same way as above, but the
communication steps are performed differently. If k different query sym-
bols appear in a configuration, Q1, . . . , Qk, k ≥ 1, then the components
are grouped into l arbitrary clusters, C1, . . . , Cl, in such a way that l ≥ k,
and there is no component in Ci with Qi occurring in its sentential form for
any 1 ≤ i ≤ k. Then each cluster Ci corresponds to the query symbol Qi
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in the sense that Qi can be replaced by the sentential forms of one of the
components from the cluster Ci.

More formally, we say that a configuration c = (x1, . . . , xn) directly derives
the configuration c′ = (y1, . . . , yn) by a communication step, if there is some
xi, 1 ≤ i ≤ n, which contains at least one occurrence of a query symbol.

Definition 4.3.4. Let Kc = {Q ∈ K | |xi|Q ≥ 1, 1 ≤ i ≤ n}, and let
k = |Kc|, that is, let k be the number of different query symbols occurring
in the configuration c. Let also Cj ⊆ {G1, . . . , Gn}, 1 ≤ j ≤ l for some
l ≥ k, such that

⋃

1≤j≤l Cj = {G1, . . . , Gn} and for j1 6= j2, Cj1 ∩ Cj2 = ∅, and
moreover, for all 1 ≤ s ≤ n and Gs ∈ Cj it holds that |xs|Qj

= 0.
Then, we write xi = z1Qi1z2Qi2 . . . ztQitzt+1 for each xi, 1 ≤ i ≤ n, with

|xi|K 6= 0 where zj ∈ (N ∪ T )∗, 1 ≤ j ≤ t + 1, and Qim ∈ Kc, 1 ≤ m ≤ t.
If for all im, 1 ≤ m ≤ t, and for every sentential form xs of Gs ∈ Cim ,
1 ≤ s ≤ n, it holds that |xs|K = 0, then yi = z1xi1z2xi2 . . . ztxitzt+1 where
xil ∈ {xs | Gs ∈ Cim}, that is, each cluster is assigned to the corresponding
query symbol and any of the components in the assigned cluster is allowed to
reply if none of the current sentential forms of the components of the cluster
contains a query symbol.

Furthermore, (a) in returning systems yim = Sim , while (b) in non-
returning systems yim = xim , 1 ≤ m ≤ t. If on the other hand, for some
m, 1 ≤ m ≤ t, there is a Gs ∈ Cim , 1 ≤ s ≤ n, such that |xs|K 6= 0 then
yim = xim . For all i

′, 1 ≤ i′ ≤ n, for which y′i is not specified above, y′i = x′
i.

The h (homogeneous) communication mode is defined in the same way as in
the case of predefined clusters.

Again, the same (non-deterministically chosen) component in Cj replies
to all queries Qj ∈ K, 1 ≤ j ≤ n appearing in a given configuration, i.e., for
Qih = Qig , 1 ≤ g, h ≤ t, above, both Qih and Qig are replaced with xih , where
|xih|K = 0 and xih is the sentential form of Gk ∈ Cih for some k, 1 ≤ k ≤ n.

Unlike in the case of predefined (static) clustering, we require here that
the clusters are disjoint, otherwise any query symbol could always be replaced
by any query free sentential form.

The language generated by Γ is L(Gi) where Gi is the master component.

Notation. Let the class of languages generated by context-free returning and
non-returning PC grammar systems having at mostm predefined clusters and
n components, n ≥ m ≥ 1, be denoted by L(PCm/nCF) and L(NPCm/nCF),
respectively. If m = n then we put n in the subscript instead of n/n. Let
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also L(X∗CF) =
⋃

i,j≥1L(Xi/jCF), X ∈ {PC,NPC}. If the clusters are
formed dynamically, then we use DPC and DNPC instead of PC and NPC,
respectively.

Now we show that every recursively enumerable language can be gen-
erated by a context-free clustered non-returning PC grammar system with
five components and four predefined (static) clusters or six components with
three dynamical clusters, that is, with two different query symbols.

Theorem 4.3.1. L(NPC4/5CF) = L(RE) and L(DNPC3/6CF) = L(RE).

Proof. Let L ∈ L(RE) over an alphabet T , and let M = (T ∪{Z,B}, Q,R, q0,
qF ) be a two-counter machine with L(M) = L.

Without the loss of generality, we may assume for any (q, x, c1, c2) →
(qF , e1, e2) ∈ R that c1 = c2 = Z and e1 = e2 = 0. We also may as-
sume the following: For any transition rule (q, x, c1, c2) → (r, e1, e2) ∈ R,
if for some i ∈ {1, 2} it holds that ci = B and ei ∈ {0,+1}, then there
exists another transition (q, x, c′1, c

′
2) → (r, e1, e2) ∈ R such that c′i = Z. To

see this consider the following. If there is a transition rule (q, x, B, c2) →
(r, e1, e2) ∈ R with e1 ∈ {0,+1}, such that there is no (q, x, Z, c2) →
(r, e1, e2) ∈ R, then we can add the new states q′, q′′ to the state set,
modify the rule as (q, x, B, c2) → (q′,−1, 0), and add the new transition
rules (q′, ε, B, c2) → (q′′,+1, 0), (q′, ε, Z, c2) → (q′′,+1, 0), (q′′, ε, B, c2) →
(r, e1, e2), (q

′′, ε, Z, c2) → (r, e1, e2) to the set of transitions.
Let us define I = {[q, x, c1, c2, q

′, e1, e2] | (q, x, c1, c2) → (q′, e1, e2) ∈ R},
and let us introduce for any α = [q, x, c1, c2, q

′, e1, e2] ∈ I the following
notation: State(α) = q, Read(α) = x, NextState(α) = q′, and Store(α, i) =
ci, Action(α, i) = ei, where i = 1, 2. We also define for c′, c′′ ∈ {B,Z} subsets
of I as I(c′,c′′) = {α ∈ I | α = [q, x, c′, c′′, q′, e1, e2]}. We construct clustered
NPC grammar systems generating L by simulating the transitions of M .

For the first equality, let Γ = (N,K, T,Gsel, Gc1, Gc2, Gch, Ggen, C1, . . . , C4),
where Gγ = (N ∪K, T, Pγ, S), γ ∈ {sel, c1, c2, gen, ch} is a component gram-
mar, and C4 is the master cluster.

Let N = I ∪ {Di,α, Ei,α, Hi,α, Hi,α,j, Xi,α,j | α ∈ I, 1 ≤ i ≤ 3, 1 ≤ j ≤
2}∪{Fc,i,j, Fgen,j, Fch,j | 1 ≤ i ≤ 2, 1 ≤ j ≤ 5}∪{S,A, F, C1, C2, C3,W1,W2}.

The simulation is based on representing the states and the transitions of
M with nonterminals from I and the values of the counters by strings of
nonterminals containing as many symbols A as the value stored in the given
counter.
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Let the clusters and the rule sets of the components be defined as follows.
Let C1 = {Gsel}, and let

Psel = {S → α | α ∈ I, State(α) = q0} ∪ {F → Fsel, Fsel → Fsel} ∪

{α → D1,α, D1,α → D2,α, D2,α → D3,α | α ∈ I} ∪

{D3,α → β | α, β ∈ I, NextState(α) = State(β)} ∪

{D3,α → F | α ∈ I, NextState(α) = qF}.

This component selects the transition of M to be simulated. The ax-
iom, S, introduces a symbol denoting an initial transition, when symbol F
appears, then the simulation of the last transition has been finished.

Next we define C2 = {Gc1, Gc2}. Let for i ∈ {1, 2},

Pci = {S → Q1Wi, F → Fc,i,1, Fc,i,3 → Fc,i,3, Fc,i,j → Fc,i,j+1 |

1 ≤ j ≤ 2} ∪

(1, i) {α → X1,α,i, X1,α,i → X2,α,i, X2,α,i → yα,i, A → Q1 | α ∈ I,

Store(α, i)=B, yα,i=σ(Action(α, i), B)} ∪

(2, i) {α → H1,α,i, H1,α,i → H2,α,i, H2,α,i → H3,α,i, H3,α,i → yα,iQ1 |

α ∈ I, Store(α, i) = Z, yα,i = σ(Action(α, i), Z)},

where σ : {1, 0,−1} × {B,Z} → {ε, A,AA} is a partial mapping defined as
σ(1, B) = AA, σ(0, B) = σ(1, Z) = A, and σ(−1, B) = σ(0, Z) = ε.

These components simulate the change in the contents of the counters
which is represented by a string consisting of as many letters A as the actual
stored number in the counter. Let C3 = {Gch}, and let

Pch = {S → Q1} ∪

(3) {α → E1,α, E1,α → Q2, H2,α,1 → Q2, H3,α,2 → Q1 |

α ∈ I(Z,Z)} ∪

(4) {α → E1,α, E1,α → E2,α, E2,α → Q2, H3,α,1 → Q1 |

α ∈ I(Z,B)} ∪

(5) {α → E1,α, E1,α → E2,α, E2,α → Q2, H3,α,2 → Q1 |

α ∈ I(B,Z)} ∪

(6) {α → E1,α, E1,α → E2,α, E2,α → E3,α, E3,α → Q1 |

α ∈ I(B,B)} ∪

(7) {F → Fch,1, Fch,4 → Fch,4} ∪ {Fch,j → Fch,j+1 | 1 ≤ j ≤ 3}.
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This component assists in checking whether the respective counter is zero
if it is required by the transition to be performed. This is done by requesting
the string of component Gc1 and/or Gc2 from C2. If the obtained string
represents an empty counter, then it must not have an occurrence of A.

Finally, we define C4 = {Ggen}, and

Pgen = {S → Q1, C1 → C2, C2 → C3, C3 → Q1} ∪

{α → xC1 | α ∈ I, Read(α) = x} ∪

(8) {F → Q2, Fc,1,1 → Q2, Fc,2,2 → Q3, Fch,3 → ε,W1 → ε,

W2 → ε}.

This component generates the string accepted by the counter machine
by adding the symbol x = Read(α) for each α ∈ I (chosen by the selector
component Gsel) using the rule α → xC1.

Next we discuss the work of Γ in more detail. After the first rewriting step
and the following communication, we obtain a configuration (α, αW1, αW2, α,
α), where State(α) = q0, and then Γ simulates the transition corresponding
to α.

To see how the simulation is done, let us consider a configuration of
the form (α, u1αu2W1, v1αv2W2, z̄1αz̄2, wα) where u1u2, v1v2 ∈ {A}∗, z̄1z̄2 ∈
{W1,W2}

∗, and w ∈ T ∗. Suppose that up to transition α the simulation
of the work of M was correct, that is, State(α) corresponds to the state of
M , w corresponds to the string read by M , and u1u2, v1v2 contain the same
number of As as stored on the counter tapes of M . Depending on c1 and c2
in α = [q, x, c1, c2, q

′, e1, e2], we discuss the next steps of Γ separately.
Let α = [q, x, B, Z, q′, e1, e2] ∈ I, where x ∈ T ∪ {ε}, q, q′ ∈ Q, and

e1 ∈ {−1, 0,+1}, e2 ∈ {0,+1}. Furthermore, let β ∈ I with NextState(α) =
State(β).

In the next rewriting step, α changes to D1,α at component Gsel, then in
the second and third rewriting steps, D1,α to D2,α, D2,α to D3,α. Similarly,
wα at Ggen changes to wxC1, then to wxC2, and finally wxC3, where x =
Read(α).

Let us examine now u1αu2W1 which represents the contents of the first
counter. If e1 = −1, then due to the simulated transition, the counter must
store a non-negative integer, u1u2 should have at least one occurrence of A.
If this is not the case, then the rule A → Q1 in (1, 1) cannot be applied since
yα,1 = ε. Thus, after the third step, the derivation is blocked since there is
no rule to be applied.
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If e1 ∈ {0,+1}, then yα,1 ∈ {A,AA}, which means that the deriva-
tion can also continue in the case when u does not contain any symbol
A. The simulation remains correct, however, as we have assumed that
α = [q, x, B, Z, q′, e1, e2] for e1 ∈ {0,+1} implies that α′ = [q, x, Z, Z, q′, e1, e2]
is also a possible transition.

If the derivation is not blocked, then after three rewriting steps performed
on u1αu2W1 and the communication following them, the next cases may hold:
The only nonterminal in the new sentential form is W1 (rules α → X1,α,1,
X1,α,1 → X2,α,1, and X2,α,1 → yα,1 were applied) or an occurrence of Dj,α,
1 ≤ j ≤ 3, is in the new string (rule A → Q1 was applied). Since symbols
Dj,α cannot be erased in the further derivation steps from the string sent at
the end of the derivation to the component Ggen, Γ can generate a terminal
word only if no occurrence of A is rewritten in the first three steps. Therefore,
after the fourth rewriting step starting from u1αu2W1, we must have a string
of the form u′

1Q1u
′
2W1 where u′

1Au
′
2 = u1yα,1u2 and yα,1 corresponds to e1 =

Action(α, 1) for α = [q, x, B, Z, q′, e1, e2] as follows: if e1 = −1, then yα,1 = ε,
if e1 = 0, then yα,1 = A, if e1 = +1, then yα,1 = AA.

Let us consider now v1αv2W2, i. e., the string representing the contents
of the second counter. In this case, v1v2 must not have any occurrence of
A. If this is the case, then only the rules in (2, 2) can be applied. After the
third rewriting step, the new string will be of the form v1H3,α,2v2W2 which
will be forwarded to component Gch (this is guaranteed by the rules of Gch)
and stored there until the end of the derivation when it is sent to Ggen in the
master cluster C4. Since Ggen does not have rules for erasing As, terminal
words can only be generated if Gch received a string representing an empty
counter. Notice that Gc1 and Gc2 are in the same cluster, so Gch might receive
the sentential form of any of them. However, if a string not containing H3,α,2,
i.e., the string of Gc1 is forwarded to Gch, then the derivation is blocked, since
Gch cannot continue its work.

Assume now that v1v2 contains at least one copy of A. Then, after three
rewriting steps the following cases may appear: No occurrence of A is rewrit-
ten, thus the obtained string, v1H3,α,2v2W2, contains at least one A. In this
case no terminal word can be generated, as we discussed before. If at least one
occurrence of A is rewritten, then at least one of the symbols Dj,α, 1 ≤ j ≤ 3,
is introduced in the string. This case leads to a blocking situation, since the
string is sent to Gch which has no rule for continuing the rewriting.

Thus, the string obtained from v1αv2W2 after the fourth rewriting step
must be yα,2Q1W2, where yα,2 corresponds to e2 = Action(α, 2). Since no
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A could be deleted, yα,2 = ε if e2 = 0, and yα,2 = A if e2 = +1 (the case
e2 = −1 is not applicable, since the counter stores zero, Store(α, 2) = Z).

Continuing the derivation, the prescribed communication step results
in the configuration (β, u′

1βu
′
2W1, v

′βW2, z̄
′
1βz̄

′
2, w

′β) where u′
1u

′
2, v

′,∈ {A}∗,
z̄′1z̄

′
2 ∈ {W1,W2}

∗, w′ ∈ T ∗, and β ∈ I is a transition with NextState(α) =
State(β). Now, similarly as above, the simulation of the transition corre-
sponding to the symbol β ∈ I can be performed.

It is easy to see that the case α = [q, x, Z, B, q′, e1, e2] can be treated in
the same way, with changing the discussion concerning components Gc1 and
Gc2. If α = [q, x, B,B, q′, e1, e2], then we use the same reasoning for Gc2 as
we did for Gc1 above. The case α = [q, x, Z, Z, q′, e1, e2] can be obtained
similarly: The simulation can proceed if the sentential form of Gch contains
H2,α,1 after the second, and H3,α,2 after the third derivation step, and has no
occurrence of A.

Now we discuss how the derivation terminates. Suppose, NextState(α) =
qF and Gsel changes the nonterminal D3,α to F . Then, in the next four
derivation steps the sentential forms of Gc1 , Gc2, and Gch are forwarded to
component Ggen in this order, or the derivation is blocked. The simulation
is successful, if by erasing Fch,3 and applying rules W1 → ε and W2 → ε as
many times as necessary, Ggen obtains a terminal word.

Thus, we have shown that L(NPC4/5CF) ⊇ L(RE). Since due to the
Church thesis, L(NPC4/5CF) ⊆ L(RE) holds as well, we proved the result.

For the second equality, let Γ = (N,K, T,Gsel, Gc1, Gc2, Gch, Gass, Ggen),
where the components are Gγ = (N ∪ K, T, Pγ, S), γ ∈ {sel, c1, c2, ch, ass,
gen}, and Ggen is the master grammar. Let N = N ′ ∪ {Fass} where N ′

contains the same symbols as the nonterminals of the system above. Let
K = {Q1, Q2} and let us define the sets of productions Psel, Pc1, Pc2, Pch,
Pgen exactly as in the previous case. The rules of the newly added assistant
component are as follows.

Pass = {S → Q1, α → Q1, D1,α → Q1, D2,α → Q1, D3,α → Q1 |

α ∈ I} ∪ {F → Fass, Fass → Fass}.

The dynamically clustered non-returning PC grammar system Γ works
very similarly to the system with the predefined clusters. The newly added
component Gass has rewriting rules only for the sentential forms of Gsel, thus,
when it introduces in each rewriting step the query symbol Q1, it makes sure
that all occurring symbols Q1 have to be assigned to a dynamically formed
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cluster C1 which contains Gsel, and moreover, all occurring symbols Q1 have
to be replaced by the sentential form of Gsel. (Note that Γ works in the
homogeneous communication mode.)

It is left to the reader to check that this is sufficient to see that Γ also
simulates the work of the two-counter machine M and also to show that the
reverse inclusion, for the equality, holds.

As (static) clustered non-returning PC grammar systems are special cases
of non-clustered systems, that is, L(NPCnCF) = L(NPCn/nCF) by defini-
tion, Theorem 4.3.1 also implies that the necessary number of components
of standard (non-clustered) non-returning PC grammar systems to generate
any recursively enumerable language is five.

Corollary 4.3.2. L(NPC5CF) = L(RE).

Proof. Notice that for any n ≥ k, L(NPCk/nCF) ⊆ L(NPCn/nCF). To see
this, consider a clustered non-returning PC grammar system with n com-
ponents and k clusters where n > k, and consider a modified system with
n clusters which are formed from the n components and with each rule in-
troducing queries being replaced by several rules in the following way: if
Ci = {Gi1 , . . . , Gik} is a cluster, then any rule X → uQiv is replaced with
the rules X → uQi1v, . . . , X → uQikv. (If more than one query symbols are
present, then all possible combinations are added.)

We can also show that considering sets of integers (languages over the
unary alphabet), the bound on the necessary number of components can be
further decreased.

Let L(NRE) denote the class of recursively enumerable languages over
unary alphabets.

Theorem 4.3.3. L(NRE) ⊆ L(NPC4CF) and L(NRE) ⊆ L(DNPC3/5CF).

Proof. Let L ∈ L(NRE) over a unary alphabet T = {a}, and consider the
register machine M = (2, H, q0, qF , R) (see Chapter 2 for the definition) with
two registers and with L(M) = L. Let us define the set of symbols I as
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follows.

I = {[q, c1, c2; 0,+1, q′] | q : (ADD(2), q′), q : (nADD(2), q′, r) ∈ R, or

q : (nADD(2), r, q′) ∈ R, c1, c2 ∈ {B,Z}} ∪

{[q, c1, c2; +1, 0, q′] | q : (ADD(1), q′), q : (nADD(1), q′, r) ∈ R, or

q : (nADD(1), r, q′) ∈ R, c1, c2 ∈ {B,Z}} ∪

{[q, c1, B; 0,−1, q′] | q : (SUB(2), q′) ∈ R, c1 ∈ {B,Z}} ∪

{[q, B, c2;−1, 0, q′] | q : (SUB(1), q′) ∈ R, c2 ∈ {B,Z}} ∪

{[q, Z, c2; 0, 0, q
′] | q : (CHECK(1), q′) ∈ R, c2 ∈ {B,Z}} ∪

{[q, c1, Z; 0, 0, q
′] | q : (CHECK(2), q′) ∈ R, c1 ∈ {B,Z}}.

Analogously to the previous proof, we also introduce for any α ∈ I with
α = [q, c1, c2; e1, e2, q

′], the notations: State(α) = q, NextState(α) = q′,
Store(α, i) = ci, Action(α, i) = ei, where i = 1, 2, and we also define for
c′, c′′ ∈ {B,Z} subsets of I as I(c′,c′′) = {α ∈ I | α = [q, c′, c′′; , e1, e2, q

′]}. To
prove the first inclusion, we construct a clustered non-returning PC grammar
system generating L by simulating the transitions of M .

Let Γ = (N,K, T,Gsel, Gc1, Gc2, Gch, Csel, Cc1, Cc2 , Cch), where Gγ = (N ∪
K, T, Pγ, S), γ ∈ {sel, c1, c2, ch} are the component grammars, and Cγ =
{Gγ} are the clusters, Csel is the master cluster. The construction of Γ
is similar to the one found in the proof of Theorem 4.3.1. Let N = I ∪
{Di,α, Ei,α, Hi,α, Hi,α,j, Xi,α,j | α ∈ I, 1 ≤ i ≤ 3, 1 ≤ j ≤ 2} ∪ {S,A1, A2, F,
Fsel, Fc,1, Fch,W1,W2}.

The states and the transitions of M are represented with nonterminals
from I, the values of the counters by strings of nonterminals containing as
many symbols Ai, as the value stored in the counter ci, 1 ≤ i ≤ 2.

Let the components of Γ be defined as follows.

Psel = P ′
sel ∪ {Fsel → Qc2Qch,W1 → ε,W2 → ε, Fch → ε, Fc1 → ε}

where P ′
sel contains the same rules as the set Psel in the proof of Theo-

rem 4.3.1. Let
Pc1 = P ′

c1
∪ {F → Fc,1, Fc,1 → Fc,1},

Pc2 = P ′
c2 ∪ {F → Qc1 , A1 → a, Fc,1 → Fc,1}
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where for i ∈ {1, 2},

P ′
ci

= {α → X1,α,i, X1,α,i → X2,α,i, X2,α,i → yα,i, Ai → Qsel | α ∈ I,

Store(α, i)=B, yα,i=σ(Action(α, i), B, i)} ∪

{α → H1,α,i, H1,α,i → H2,α,i, H2,α,i → H3,α,i, H3,α,i → yα,iQsel |

α ∈ I, Store(α, i) = Z, yα,i = σ(Action(α, i), Z, i)} ∪

{S → QselWi},

with σ : {1, 0,−1} × {B,Z} × {1, 2} → {ε, A1, A2, A1A1, A2A2} is a par-
tial mapping defined as σ(1, B, i) = AiAi, σ(0, B, i) = σ(1, Z, i) = Ai, and
σ(−1, B, i) = σ(0, Z, i) = ε, i ∈ {1, 2}.

These components simulate the change in the contents of the counters
as in the case of the proof of Theorem 4.3.1, the only difference being that
for the representation of the two registers A1 and A2, they use two different
symbols, A1 and A2, respectively.

Let also Pch = P ′
ch ∪ {F → Fch, Fch → Fch} where P ′

ch contains the rules
of Pch from the proof of Theorem 4.3.1 with the exception of the rules (7).

The simulation of M is also done in a similar way. After the initial rewrit-
ing step and the following communication, a configuration (α0, α0W1, α0W2,
α0) is obtained where α0 ∈ I corresponds to a transition with State(α0) = q0.

Then a computation is simulated by executing the transitions correspond-
ing to the chosen symbols from I, and eventually (F, u1Fu2W1, v1Fv2W2, zF )
is reached, a configuration which corresponds to a final configuration of M ,
that is, if the simulation was correct, then u1u2 = Aj

1 for some j ≥ 0 stores
the value j computed by M , v1v2 = ε, and z ∈ {W1,W2}

∗. The checking of
the correctness of the simulation and the generation of the terminal string aj

is done by entering the configuration (Fsel, u1Fc,1u2W1, v1Qc1v2W2, zFch), and
after performing the communication (Fsel, u1Fc,1u2W1, v1u1Fc,1u2W1v2W2,
zFch). Now, the symbols A1 in u1u2 are changed to a by the rule of Pc2 , and
then the resulting string is transferred to Gsel together with the sentential
form of Gch. If erasing the nonterminals W1,W2, Fch, Fc,1 results in a terminal
string aj, then the simulation of M computing the value j was correct.

For the second inclusion, we modify this construction similarly to the sec-
ond part of the proof of Theorem 4.3.1. Let Γ = (N,K, T,Gsel, Gc1, Gc2, Gch,
Gass), where Gγ = (N ∪ K, T, Pγ, S), γ ∈ {sel, c1, c2, ch, ass} are the com-
ponent grammars, and Gsel is the master grammar. Let N = N ′ ∪ {Ft}
where N ′ contains the same symbols as the nonterminals of the system in
the previous part of the proof, and let K = {Q1, Q2}. The sets of produc-
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tions Psel, Pc1, Pc2, and Pch are defined as above, but replacing Qsel, Qc1, Qc2

in the rules by Q1, and Qch by Q2. The rule Fc1 → Fc1 of Pc1 is replaced by
Fc1 → Ft and Ft → Ft. The rules of the newly added assistant component
are as follows.

Pass = {S → Q1, α → Q1, D1,α → Q1, D2,α → Q1, D3,α → Q1 |

α ∈ I} ∪ {F → Q1, Fc1 → Ft, Ft → Ft}.

This dynamically clustered PC grammar system works very similarly to
the one in the second part of the proof of Theorem 4.3.1. The newly added
component Gass makes sure that all occurring symbols Q1 have to be assigned
to a dynamically formed cluster C1 which contains Gsel during the instruction
simulating phase, or Gc1 in the final phase of the simulation.

4.3.1 Remarks

In this section we have studied the bound for the number of components
needed to generate any recursively enumerable language by clustered and
standard non-returning PC grammar systems. We have shown that five
components and four clusters are sufficient for non-returning systems for
the generation of recursively enumerable languages. This result implies that
five components are also sufficient in the standard, non-clustered case, which
shows that non-returning systems are as efficient from this point of view as
returning ones (see (Csuhaj-Varjú et al., 2003) for the best result on the
returning case). We have also shown that this bound is even less if we con-
sider unary languages: four components are enough in that case. Then we
have introduced the concept of dynamical clustering, and shown that three
dynamical clusters, that is, two different query symbols and six component
grammars are sufficient to obtain all recursively enumerable languages with
dynamical clusters. The results of this section first appeared in (Csuhaj-
Varjú and Vaszil, 2011).
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Chapter 5

Membrane Systems - The
Breadth of Rules and the
Number of Regions

In this chapter we discuss descriptional complexity issues of two membrane
system variants: P systems with symport/antiport rules and P colonies. A
symport/antiport system uses communication rules only, thus, the direct
change of the objects is not possible, the rules only specify how the ob-
jects are exchanged between the different regions. P colonies consist of a
collection of cell-like agents placed in an environment which is, similarly to
symport/antiport systems, represented by a multiset of objects processed by
the agents during the computation. The processing rules associated to the
cells are very simple: they can change one object which is inside the cell,
or exchange one object which is inside with another one which is outside.
These rules are grouped into “programs” which are executed by the cell on
all objects inside of it in parallel.

In the following, we first deal with the descriptional complexity measures
of symport/antiport P systems, namely the complexity of the communication
rules (this is measured by their breadth, the size of the multisets handled by
the rule) and the complexity of the membrane structure (measured by the
number of membranes contained by the system). Then we also examine some
of the descriptional complexity aspects of P colonies: the number of cells in
the system, the number of programs associated to the cells, and the number
of objects inside the cells.
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5.1 Preliminaries

In the next section we will use the notion of an n-counter automaton. It
is a modification of what we called n-counter machine in Chapter 2. It can
be seen as the generative version of n-counter machines for unary alphabets,
where in addition, only one of the counters are changed in any computational
step. We present the definition in the form given, for example, in (Frisco,
2004).

Definition 5.1.1. A counter automaton is a construct M = (Q,C,R, q0, f)
where Q is a set of states, C = {c0, c1, . . . , cn} is a set of counters, c0 being
the output counter, R is a set of transitions of the form (r → s,X), for two
states r, s ∈ Q, and an instruction X ∈ {i+, i−, e, (i = 0) | 0 ≤ i ≤ n},
q0 ∈ Q is the initial state, and f ∈ Q is the final state.

If a transition (r → s,X) is an element of R, then the machine can pass
from state r to state s executing X . If X is i+ or i−, then it instructs the
machine to increase or decrease, respectively, the value of counter ci by one,
if it is e, then it instructs the machine to leave the counter values unchanged,
if it is i = 0, then the transition from r to s is only possible by having zero
as the contents of counter ci.

Definition 5.1.2. The configuration of a counter automaton M is given by
the (n + 2)-tuple (q, c0, c1, . . . , cn) where q ∈ Q is a state, and ci ∈ N, 0 ≤
i ≤ n, are the values stored in the counters, c0 being the value of the output
counter. The initial configuration is (q0, 0, 0, . . . , 0), a final configuration is
of the form (f, c0, c1, . . . , cn) where f is the final state of M .

Given a configuration (q, c0, c1, . . . , cn), the machine can pass to configu-
ration (q′, c′0, c

′
1, . . . , c

′
n), denoted as (q, c0, c1, . . . , cn) ⇒ (q′, c′0, c

′
1, . . . , c

′
n), if

(q → q′, X) ∈ R, and

• if X = j+, then c′j = cj + 1 and c′i = ci, 0 ≤ i ≤ n, i 6= j,

• if X = j−, then c′j = cj − 1 and c′i = ci, 0 ≤ i ≤ n, i 6= j,

• if X = e, then c′i = ci, 0 ≤ i ≤ n,

• if X = (j = 0), then c′i = ci, 0 ≤ i ≤ n, and cj = 0.

Let ⇒∗ denote the reflexive and transitive closure of ⇒.
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A computation is a sequence of such transitions leading from the initial
configuration to a final configuration, its result can be read from the output
counter.

Definition 5.1.3. The set of nonnegative integers generated by a counter
automaton M as above is the following.

N(M) = {c0 ∈ N | (q0, 0, 0, . . . , 0) ⇒
∗ (f, c0, c1, . . . , cn), where

q0 and f are the initial and the final states, respectively}.

It is clear that counter automata are able to generate any recursively
enumerable set of numbers if they have two or more counters beside the
output counter.

Notation. In the following, with NkRE for some k ∈ N, we denote the class
{k + L | L ∈ NRE} where k + L = {x + k | x ∈ L} and NRE denotes the
class of recursively enumerable sets of nonnegative integers.

5.2 P system with symport/antiport rules

Now we recall the definition of symport/antiport P systems from (Păun and
Păun, 2002). A symport rule consists of the description of a finite multiset
and a direction (“in” or “out”) specifying that in a certain computational
step the given multiset may enter from the parent region (in case of the
direction “in”) or leave to the parent region (in case of “out”). An antiport
rule specifies two multisets, one with the direction “in” and the other with the
direction “out”, which means that the objects of the corresponding multisets
may enter and leave the given region simultaneously in one computational
step. (Of course, such rules can only be applied if the necessary objects are
present in the corresponding regions in a sufficient amount.)

A P system is a structure of hierarchically embedded membranes, each
having a label and enclosing a region containing a multiset of objects and
possibly other membranes. The out-most membrane which is unique and
usually labeled with 1, is called the skin membrane. The membrane structure
is denoted by a sequence of matching parentheses where the matching pairs
have the same label as the membranes they represent. If x ∈ {[i, ]i | 1 ≤ i ≤
n}∗ is such a string of matching parentheses of length 2n, denoting a structure
where membrane i contains membrane j, then x = x1 [i x2 [j x3 ]j x4 ]i x5 for
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some xk ∈ {[l, ]l | 1 ≤ l ≤ n, l 6= i, j}∗, 1 ≤ k ≤ 5. If membrane i contains
membrane j, and there is no other membrane, k, such that k contains j and i
contains k (x2 and x4 above are strings of matching parentheses themselves),
then we say that membrane i is the parent membrane of j. A membrane m
is called elementary if it contains no membrane, in this case x = x1 [m ]m x2.

The evolution of the contents of the regions of a P system is described
by rules associated to the regions. Applying the rules synchronously in each
region, the system performs a computation by passing from one configuration
to another one. In the following we concentrate on communication rules
called symport or antiport rules.

A symport rule is of the form (x, in) or (x, out), x ∈ V ∗. If such a rule is
present in a region i, then the objects of the multiset x must enter from the
parent region or must leave to the parent region, respectively. An antiport
rule is of the form (x, in; y, out), x, y ∈ V ∗, in this case, objects of x enter
from the parent region and in the same step, objects of y leave to the parent
region.

The rules are applied in the maximal parallel manner, that is, as many
rules are applied in each region as possible. The end of the computation is
defined by halting: A P system halts when no more rules can be applied
in any of the regions, the result is the number of objects in an elementary
membrane labeled as output.

Definition 5.2.1. A P system with symport/antiport of degree n ≥ 1 is a
construct

Π = (V, µ, E, w1, . . . , wn, R1, . . . , Rn, out)

where

• V is an alphabet of objects,

• µ is a membrane structure of n membranes,

• E ⊆ V is a set of objects (the ones which can be found in the environ-
ment in an arbitrary number of copies),

• wi ∈ V ∗, 1 ≤ i ≤ n, are the initial contents of the n regions,

• Ri, 1 ≤ i ≤ n, are the sets of symport/antiport rules associated to the
regions,
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• out ∈ {1, . . . , n} is the label of an elementary membrane, the output
membrane.

To simplify the notations we denote both symport and antiport rules as
(x, in; y, out), x, y ∈ V ∗ where we also allow at most one of x, y to be the
empty multiset. If y = ε or x = ε, then the notation above denotes the sym-
port rule (x, in) or (y, out), respectively. Moreover, when no confusion arises,
we will enumerate the elements a1, . . . , an of a multiset as M = {a1, . . . , an},
similarly to the usual set notation.

The n + 1-tuple of finite multisets of objects present in finite number of
copies in the environment and in the n regions of the P system Π describes
a configuration of Π; (ε, w1, . . . , wn) ∈ (V ∗)n+1 is the initial configuration.

Definition 5.2.2. For a configuration (u0, . . . , un), the P system may enter
the new configuration (u′

0, . . . , u
′
n), denoted as (u0, . . . , un) ⇒ (u′

0, . . . , u
′
n), if

there exist rules as follows.
For all i, 1 ≤ i ≤ n, there is a multiset of rules Pi = {{ri,1, . . . , ri,mi

}},
where ri,j = (xi,j , in; yi,j, out) ∈ Ri satisfying the conditions below where
xi, yi denote the multisets

⋃

1≤j≤mi
xi,j and

⋃

1≤j≤mi
yi,j, respectively. Fur-

thermore, there is no r ∈ Rj , for any j, 1 ≤ j ≤ n, such that the rule
multisets P ′

i with P ′
i = Pi for i 6= j and P ′

j = {{r}} ∪ Pj, also satisfy the
conditions which are given as

x1 = x′
1 ∪ x′′

1 with supp(x′
1) ⊆ E, x′′

1 ⊆ u0, and
⋃

parent(j)=i

xj ∪ yi ⊆ ui, for 1 ≤ i ≤ n.

Then the new configuration is obtained by

u′
0 = u0 − x′′

1 ∪ y1, and

u′
i = ui ∪ xi − yi ∪

⋃

parent(j)=i

yj −
⋃

parent(j)=i

xj , for 1 ≤ i ≤ n.

The P system generates numbers as follows.

Definition 5.2.3. The set of numbers generated by a symport/antiport
P system as above, N(Π) ∈ NRE, is the following set.

N(Π) = {x = card(uout) | (ε, w1, . . . , wn) ⇒
∗ (u0, . . . , un),

where (u0, . . . , un) is a halting configuration}

and ⇒∗ denotes the reflexive and transitive closure of ⇒.
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Notation. Let NOPn(symr, antis) denote the class of sets of numbers gener-
ated by symport/antiport P systems of degree n where for all (x, in), (y, out),
(v, in; z, out) ∈ Ri, 1 ≤ i ≤ n, card(x) ≤ r, card(y) ≤ r, and card(v) ≤ s,
card(z) ≤ s.

5.2.1 Symport/antiport P systems with minimal coop-
eration

P systems with symport/antiport were shown to be able to generate any
recursively enumerable set of numbers already in (Păun and Păun, 2002).
This result was improved from the point of view of the number of necessary
membranes and the complexity of communication rules in (Frisco and Hooge-
boom, 2004; Mart́ın-Vide et al., 2002a; Mart́ın-Vide et al., 2002b). The study
of minimal symport/antiport, when the multisets in the rules contain at most
one object, started in (Bernardini and Gheorghe, 2003) where it was shown
that such systems with nine membranes generate any recursively enumerable
set of numbers. Then the number of necessary membranes were decreased to
six in (Kari et al., 2004), to five in (Bernardini and Păun, 2004), and then
to four in (Frisco, 2004).

In this section we present an improvement of the last result by showing
that three membranes are sufficient to generate any recursively enumerable
set of numbers with minimal symport/antiport.

Theorem 5.2.1. NOP3(sym1, anti1) = N5RE.

Proof. Consider the counter automaton M = (Q,C,R, q0, f) with counters
C = {c0, c1, . . . , cn}, c0 being the output counter, and let the transitions be
uniquely labeled by elements of the set lab(R). We construct a P system Π
generating the language L(Π) = {x+ 5 | x ∈ L(M)} as follows. Let

Π = (V, µ, E, w1, w2, w3, R1, R2, R3, 3)

where µ = [1 [2 [3 ]3 ]2 ]1, and

V = {I1, Ī1, I2, I3, I4, I5,∞1,∞2,∞3,∞4, C, f1, f
′
1, f2, f

′
2, f̄2, f3, f

′
3, f4}∪

{t, t′ | t ∈ lab(R)} ∪ {ci, 0i | 0 ≤ i ≤ n},

E = {t, t′ | t ∈ lab(R)} ∪ {I4, f1, f2, f̄2, f3, f4} ∪ {ci | 0 ≤ i ≤ n}.
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The initial region contents are

w1 = {{I1, Ī1, I2, I3,∞1,∞2,∞3,∞4,∞4, C}},

w2 = {{∞1,∞2}} ∪ {{0i | 0 ≤ i ≤ n}}, and

w3 = {{I5, f
′
1, f

′
2, f

′
3,∞3}}.

The work of the P system can be divided into three phases:

• Initialization,

• simulation of the counter automaton, and

• termination.

In the initialization phase an arbitrary number of counter symbols ci, 0 ≤ i ≤
n, are moved into region 1 and an arbitrary number of transition symbols t′

for some t ∈ lab(R) are moved into region 3.
In the simulation phase Π simulates M by modifying the number of

counter symbols present in region 2 according to the counter contents of
M as follows. First Π imports a transition symbol t1 for a possible transition
t1 : (q → r,X) ∈ R of M into region 1. Then this symbol travels to region 2
and then to region 3 where it remains until the termination phase, and from
where the primed version, t′1, is released to region 2 moving to region 1 where
it is sent out to the environment and at the same time an other transition
symbol t2 ∈ lab(R) is imported for an other valid transition t2 : (r → s, Y )
of M . While these transition symbols travel through the system to region 3
and back, the modifications on the number of counter symbols in region 2
are realized. If X = i−, then a copy of ci is removed from region 2 when t1
enters this region from region 1. If X = i+, then a copy of ci is imported
from region 1 to region 2 when t′1 moves from region 2 to region 1. For
X = (i = 0), through the aid of maximal parallel rule application, the
system allows the above described movement of the transition symbols only
in the case when region 2 does not contain any symbol ci.

In the termination phase, the counter symbols corresponding to the out-
put counter are moved to region three, then the possibly still present tran-
sition symbols of the form t, t′ for some t ∈ lab(R) are moved from region 3
to region 2. In case of an unsuccessful simulation, Π may never stop which
is ensured by an infinite loop: A pair of ∞1 symbols are present in region 1
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and 2, together with the rule (∞1, in;∞1, out) in region 2. This loop is “de-
stroyed” only in the termination phase after a successful simulation allowing
the computation to stop.

For the sake of easier readability we present the rules of Π in groups
corresponding to these phases Ri = Rini

i ∪ Rsim
i ∪ Rter

i , 1 ≤ i ≤ 3.
For j, 0 ≤ j ≤ n, and t ∈ lab(R),

(t′, in; I1, out), (I1, in), (I4, in; I1, out), (cj, in; Ī1, out), (Ī1, in) ∈ Rini
1 ,

(I2, in), (t
′, in; I2, out), (∞3, in; I2, out), (I3, in;∞2, out) ∈ Rini

2 ,

(I3, in), (t
′, in; I3, out) ∈ Rini

3 .

With the help of the initialization symbols I1, Ī1, I2, I3 ∈ w1, these rules
import an arbitrary number of transition symbols t′ with t ∈ lab(R) into
region 3 and counter symbols ci, 0 ≤ i ≤ n, into region 1. In the first step,
I1 and Ī1 are moved out of the system, I2 and I3 are moved to region 2. Since
there will be other rules in region 1 for I3, it is necessary to make sure that it
is moved to region 2 by sending out the symbol ∞2. If ∞2 is not sent out, an
infinite loop is formed which can not be later destroyed. By applying these
rules in succession, the imported transition symbols are moved to region 3,
the counter symbols remain in region 1. If for some reason, because of the
application of some other rule, a transition symbol can not be moved to
region 2 from region 1, then ∞3 is moved into region 2 instead, creating
an infinite loop. Another infinite loop involving the two ∞1 objects keeps
the system working until a correct simulation of a successful computation is
finished, then it is removed, otherwise if the simulation does not follow the
right track, the system will produce no result. These infinite loops need rules

(∞1, in;∞1, out), (∞2, in;∞2, out) ∈ Rini
2

(∞3, in;∞3, out) ∈ Rini
3

If once in region 1, instead of a transition symbol, I4 is imported, then the
initialization phase is finished using the following rules.

(I3, out) ∈ Rini
1

(I4, in; I3, out), (I1, in; I4, out), (∞4, in; I4, out), (Ī1, in; I5, out) ∈ Rini
2

(I1, in; I5, out), (I2, in; I1, out) ∈ Rini
3

First, the symbol I3 is moved out from region 2 to region 1 and at the same
time I4 is moved from region 1 to region 2. Then I3 leaves the system, and
I4 is sent back to region 1 while moving I1 to region 2. Since there are other
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rules for I1 in region 1, an infinite loop is created with the ∞4 symbols if
in this step I1 is not moved to region 2. Then I1 is transferred to region 3,
where it brings also I2 to region 3, and releases I5 which moves to region 1
while bringing Ī1 to region 2. The infinite loop needs the rule

(∞4, in;∞4, out) ∈ Rini
2 .

Thus, at the end of a successful initialization phase, the system ends up in a
configuration where u1, u2, u3 are the multisets contained by the three regions
as

u1 = {{ci1, . . . , cik | ij ∈ {0, . . . , n}, 1 ≤ j ≤ k}} ∪

{{I4, I5,∞2,∞2,∞3,∞4,∞4,∞1, C}},

u2 = {{I1, Ī1,∞1, 00, 01, . . . , 0n}}, and

u3 = {{t′1, . . . , t
′
m | tj ∈ lab(R), 1 ≤ j ≤ m}} ∪

{{I2, f
′
1, f

′
2, f

′
3,∞3}}.

The simulation of the counter automaton is realized with the following rules.

Rsim
1 = {(t0, in; I5, out), (t2, in; t

′
1, out) | t0, t1, t2 ∈ lab(R) with

t0 : (q0 → q,X), t1 : (q → r, Y ), t2 : (r → s, Z) for

some X, Y, Z},

Rsim
2 = {(t, in), (ci, in; t

′, out) | t : (r → s, i+) ∈ R} ∪

{(t, in; ci, out), (t
′, out) | t : (r → s, i−) ∈ R} ∪

{(t, in), (t′, out) | t : (r → s, e) ∈ R} ∪

{(t, in; 0i, out), (0i, in; ci, out), (0i, in; t
′, out) |

t : (r → s, i = 0) ∈ R},

Rsim
3 = {(t, in; t′, out) | t ∈ lab(R)}.

First I5 is sent out of the system and one transition symbol, denoting a tran-
sition from the initial state q0 is imported, then the transition corresponding
to the symbol is simulated. This is done by moving the transition symbol to
the third region, exchanging it to its primed version, and moving the primed
version back t region 1. While the transition symbol travels through the
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regions, it adds or subtracts a counter symbol to or from region 2 when nec-
essary. If the instruction corresponding to the simulated transition is i = 0,
then the above described movement of the transition symbol is only possible
if there are no ci counter symbols present in region 2.

If the system simulates a transition tf : (q → f,X) to the final state f , it
may enter the terminating phase. In this phase the following rules are used.

Rter
1 = {(f1, in; t

′
f , out), (f̄2, in; f

′
1, out), (f̄2, in; f̄2, out),

(f2, in; f̄2, out), (f3, in; f
′
2, out), (f4, in; f

′
3, out)},

Rter
2 = {(f1, in), (C, in; f

′
1, out), (f2, in; 00, out), (00, in; c0, out),

(00, in; f
′
2, out), (f3, in;C, out), (f

′
3, out), (f4, in;∞1, out)},

Rter
3 = {(f1, in; f

′
1, out), (C, in), (C, out), (c0, in;C, out),

(f2, in; f
′
2, out), (f3, in; f

′
3, out), (f4, in; rs

′out),

(f4, in; rs, out), (f4, out)}.

During the terminating phase, symbols f1, f2, f3, and f4 travel through the
system, each performing a specific task. First, after a transition symbol t′f
is present in region 1, f1 is imported into the system. It moves to region 3
where f ′

1 is released which moves to region 1 bringing C to region 2. The
task of C is to move all c0 counter symbols corresponding to the output
counter to region 3. This may take several steps, so f ′

1 is exchanged with f̄2
in region 1, and f̄2 can move in and out of the system for an arbitrary amount
of time. When f̄2 is exchanged with f2, the termination process continues.
The travel of f2 is only possible if there is no c0 present in region 2. In this
case, after f ′

2 leaves the system, f3 is imported. While f3 moves through the
system it removes C from region 2, so no further movement of possibly newly
appearing c0 will be allowed to region 3, then, when f ′

3 leaves the system, f4
is introduced. When f4 moves to region 2, it removes ∞1, thus removes the
infinite loop, and then it also removes the remaining transition symbols from
region 3. When all of these symbols are out of region 3, the system stops
working, having only the counter symbols plus five other symbols, f1, f2, f3,
∞3, and I2 in region 3, the output region, thus producing a result x ∈ N for
some (x− 5) ∈ L(M).
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5.2.2 Remarks

We have shown how to simulate counter automata using P systems with min-
imal symport/antiport and three membranes which improved the previously
known best result of (Frisco, 2004) stating that four membranes are suffi-
cient to reach this power. The above described simulation first appeared in
(Vaszil, 2005b), but the research in this area continued intensively also after
its publication. In (Alhazov et al., 2005a) the need for the five superfluous
symbols was eliminated (thus, NRE was characterized instead of N5RE), then
in (Alhazov et al., 2006) two membranes were shown to be sufficient. This
last result is optimal, since one membrane with minimal symport/antiport
only generates finite sets (see (Alhazov et al., 2005b)).

5.3 P colonies

P colonies were introduced in (Kelemen et al., 2004) as a class of very simple
membrane systems similar to the so-called colonies of simple formal gram-
mars, (Kelemen and Kelemenová, 1992).

Due to the inspiration from the cell structure and functioning, and from
the cell cooperation in tissues, P colonies model a population of cells, which
“live” together in a common shared environment, and process symbolic ob-
jects appearing in this environment. The objects correspond to (or in certain
extent model the) chemical compounds – ions, molecules, macromolecules –
dealt with in biochemistry.

In order to have as simple agents as possible, the complexity and the
capabilities of the cells are very restricted. Each cell is associated with a
multiset of objects (“chemicals”) present inside it, and with a set of rules
for processing these objects (“reactions”). In each moment, only a fixed
number of objects (two or three objects usually) are allowed to be inside any
cell. Moreover, the rules available to any cell are either of the form a → b,
specifying that an internal object a is transformed into an internal object b,
or of the form c ↔ d, specifying the fact that an internal object c is sent
out of the cell, to the environment, in exchange of the object d, which was
present in the environment and is now brought inside the cell (rules of the
latter type also correspond to the phenomenon of antiport already seen in
the previous section.

With each cell, we associate a set of programs composed of rules as above.

87

               dc_640_12



In the case of systems consisting of cells with only two objects inside, each
program has two rules; when considering cells with three objects inside, then
the programs have three rules. The rules of the program must be applied in
parallel to the objects in the cell. Thus, a cell containing the objects a, c will
contain the objects b, d after applying these rules.

The choice of these kinds of rules points to the observation that alive
cells/beings are continuously exchanging objects with their environment and,
at the same time, they evolve internally. P colonies use the simplest forms
of exchanges (object-to-object) and the simplest form of internal evolution
(one-object-transformation). The cells of a P colony execute a computation
by synchronously applying their programs to objects inside the cells and
outside in the environment. Communication between the cells is only possible
indirectly through the environment which is common to all of them. When a
halting configuration is reached, that is, when no more rules can be applied,
the result of the computation is read as the number of certain types of objects
present in the environment.

Now we recall the definition of a P colony from (Kelemen et al., 2004).

Definition 5.3.1. A P colony is a construct

Π = (V, e, of , IE, C1, . . . , Cn, k), n ≥ 1,

where V is an alphabet (its elements are called objects), e (the environmental
object) and of (the final object) are two distinguished objects of V , IE is a
multiset over V , containing the objects initially present in the environment,
C1, . . . , Cn are the cells of the colony, and k is the number of objects which
are allowed to be present in the cells.

Each cell Ci, 1 ≤ i ≤ n, is a pair Ci = (Oi, Pi), where Oi is a multiset
over {e} having the same cardinality card(Oi) = k for all i, 1 ≤ i ≤ n (the
initial state of the cell), and Pi is a finite set of programs; each program
being a set of rules of the forms a → b (internal point mutation), c ↔ d (one
object exchange with the environment), c ↔ d/c′ ↔ d′ (checking rule for
one object exchange with the environment), or c ↔ d/a → b (checking rule
for one object exchange with the environment or internal point mutation),
where a, b, c, d, c′, d′ ∈ V . The programs contain one rule for each element of
Oi, thus, the number of rules of a program coincides with k, the cardinality
of Oi, 1 ≤ i ≤ n.

Usually (as in (Csuhaj-Varjú et al., 2006a) and in (Kelemen et al., 2004)),
the multiset IE only contains an infinite supply of e objects which are present

88

               dc_640_12



in the environment, but sometimes (as in (Csuhaj-Varjú et al., 2006b) and
in the next section), we allow IE to contain other symbols as well, because
we would like to allow the initialization of the colony by also placing objects
different from e in the environment.

The programs of the cells are used in the non-deterministic maximally
parallel way usual in membrane computing: in each time unit, each cell which
can use one of its programs should use one. When using a program, each of
its rules must be applied to distinct objects of the cell. In this way, we get
transitions among the configurations of the colony. A sequence of transitions
is a computation. A computation is halting if it reaches a configuration
where no cell can use any program. The result of a halting computation
is the number of copies of the object of present in the environment in the
halting configuration. Initially, the environment contains IE, and the cells
also contain k copies of e inside.

Because of the non-determinism in choosing the programs, several com-
putations can be obtained from a given initial configuration, hence with a P
colony Π we can associate a set of numbers computed by all possible halting
computations of Π.

For a P colony Π = (V, e, of , IE , C1, . . . , Cn, k) as above, a configuration
can be formally written as an (n+ 1)-tuple

(w1, . . . , wn;wE),

where wi represents the multiset of objects from cell Ci, 1 ≤ i ≤ n (wi ∈
V k), and wE ∈ (V − {e})∗ represents the multiset of those objects in the
environment which are different from the “background” object e.

The initial configuration is (ek, . . . , ek; ĪE) where ĪE ∈ (V − {e})∗ is a
finite multiset containing the objects from IE which are different from e.

Let the programs of each Pi be labeled in a one-to-one manner by labels in
the set lab(Pi) in such a way that lab(Pi)∩lab(Pj) = ∅ for i 6= j, 1 ≤ i, j ≤ n.
For a rule r and a multiset w ∈ V ∗, let left(r, w) = a and right(r, w) = b
if a ∈ w and r is a point mutation rule r = (a → b) or a checking rule
r = (c ↔ d/a → b) and d 6∈ w, and let left(r, w) = right(r, w) = ε
otherwise. Let also, for a rule r and a multiset w ∈ V ∗ export(r, w) = c
and import(r, w) = d if d ∈ w and r is an exchange rule r = (c ↔ d)
or a checking rule r = (c ↔ d/c′ ↔ d′). If r is a checking rule as above
with d 6∈ w but d′ ∈ w, then let export(r, w) = c′, import(r, w) = d′. Let
export(r, w) = import(r, w) = ε in all other cases. For a program p and any
α ∈ {left, right, export, import}, let α(p, w) =

⋃

r∈p α(r).
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Definition 5.3.2. A transition from a configuration to another is denoted
as

(w1, . . . , wn;wE) ⇒ (w′
1, . . . , w

′
n;w

′
E)

where the following conditions are satisfied: There is a set of program la-
bels P with |P | ≤ n, such that p, p′ ∈ P , p 6= p′, p ∈ lab(Pj) implies
p′ 6∈ lab(Pj), and for each p ∈ P , p ∈ lab(Pj), left(p, wE) ∪ export(p, wE) =
wj, and

⋃

p∈P import(p, wE) ⊆ wE. Furthermore, the chosen set P is maxi-
mal, that is, if any other program r ∈

⋃

1≤i≤n lab(Pi), r 6∈ P , is added to P ,
then the conditions above are not satisfied.

Now, for each j, 1 ≤ j ≤ n, for which there exists a p ∈ P with p ∈
lab(Pj), let

w′
j = right(p, wE) ∪ import(p, wE).

If there is no p ∈ P with p ∈ lab(Pj) for some j, 1 ≤ j ≤ n, then let

w′
j = wj,

and moreover, let

w′
E = wE −

⋃

p∈P

import(p, wE) ∪
⋃

p∈P

export(p, wE).

A configuration is halting if the set of program labels P satisfying the
conditions above cannot be chosen to be other than the empty set, ∅.

Definition 5.3.3. The set of nonnegative integers computed by a P colony
Π is defined as

N(Π) = {|vE |of | (w1, . . . , wn, IE) ⇒
∗ (v1, . . . , vn, vE)}

where (w1, . . . , wn, IE) is the initial configuration, (v1, . . . , vn, vE) is a halting
configuration, and ⇒∗ denotes the reflexive and transitive closure of ⇒.

Notation. The family of all sets of numbers computed as above by P colonies
with k-objects (k = 2, 3) of degree at most n ≥ 1 having at most h ≥ 1
programs in the cells without using checking rules, and j programs altogether,
is denoted by PCOL(k, n, h, no-check). If checking rules are allowed, then
we write check instead of no-check; thus, for instance, PCOL(2, n, h, check)
will be the family of numbers computed by two-objects P colonies with at
most n cells, each having at most h programs where the use of checking rules
is allowed. If we need to express that the number of cells or the number of
programs is unbounded, we use ∗ instead of the respective parameter, n or
h.
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5.3.1 The number of cells and programs

It was shown in (Kelemen et al., 2004) and (Csuhaj-Varjú et al., 2006a) that
P colonies are able to compute any recursively enumerable set of numbers,
even in the situation when the starting configuration contains one certain
object only: an infinite number of copies of it in the environment, and two
or three copies of the same object inside the cells.

From (Csuhaj-Varjú et al., 2006a), we have that

PCOL(2, ∗, 4, check) = PCOL(3, ∗, 3, check) = NRE.

Even one cell is enough, if it may have an arbitrarily large number of pro-
grams, that is,

PCOL(2, 1, ∗, check) = NRE.

Similar results were also obtained without the use of checking rules. In
this case we have

PCOL(2, ∗, 8, no-check) = PCOL(3, ∗, 7, no-check) = NRE.

In this section we show that if the environment is initialized by a finite
multiset of objects before the computation begins, then P colonies generate
any recursively enumerable set of numbers in such a way that the number of
cells and the number of programs in each cell are simultaneously bounded.
The values of the bounds depend on the type of rules used and seem to
suggest a trade-off between the number of necessary cells and the number of
necessary programs in each cell. The results demonstrate that one cell with
a bounded, but fairly large amount of programs might possess the power
of Turing machines, which power can also be reached by several cells and a
significantly lower number of programs in each cell.

To achieve our goal, we will show how to simulate a universal register
machine, that is, a fixed machine which is able to mimic the computations
of any other register machine if it is given an appropriate program.

In (Korec, 1996) several results on small universal register machines are
presented. Those machines all have a small number of registers and a small
number of instructions, the exact numbers depending on the chosen set of
instructions and the chosen notion of universality. They compute functions
of non-negative integers by having the argument of the function in one of
the registers before the computation starts, and obtaining the result of the
function in an other register after a halting computation. The universal
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machines have eight registers, and they can simulate the computation of any
register machine M with the help of a “program”, an integer code(M) ∈ N

coding the particular machine M . If code(M) is placed in the second register
and an argument x ∈ N is placed in the third register, then the universal
machine simulates the computation of M by halting if and only if M halts,
and by producing the same result in its first register as M produces in its
output register after a halting computation.

Since these machines are defined to compute functions of non-negative
integers and work in such a way that the argument of the function is initially
present in the third register, we need to modify them in order to conform
to the number generating definition of register machines we have given in
Chapter 2. Thus, we add a new start label l′0 and a separate non-deterministic
add instruction, l′0 : (nADD(r3), l

′
0, l0), to produce an argument x ∈ N in the

third register before the actual computation begins, that is, to make the
resulting universal machine generate any value from the range of the function
computed by the simulated register machine. We summarize the results we
use from (Korec, 1996) in the following theorem.

Theorem 5.3.1. (Korec, 1996) Let M be the set of register machines. Then,
there is a register machine U32 with eight registers and a recursive function
g : M → N such that for each M ∈ M, N(M) = N(U32(g(M))), where
N(U32(g(M))) denotes the set of numbers computed by U32 with initially con-
taining g(M) in the second register.

The machine U32 has one HALT instruction labeled by lh, one instruction
of the type nADD labeled by l0, and 8 + 11 + 13 = 32 instructions of the types
ADD, SUB, and CHECK, respectively.

Moreover, the machine either halts using the HALT instruction and having
the result of the computation in the first register, or its computation goes on
infinitely.

In the following, we will simulate U32 to obtain bounds on the size pa-
rameters of universal P colonies. First, we present new register machine
instructions which can be obtained by combining elements of the basic in-
struction set defined above and which make the presentation of U32 more
efficient from our point of view.

• li : (DADD(r, s), lj) - double add: Add 1 to register r and register s, then
go to the instruction with label lj.
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Figure 5.1: The flowchart of the universal machine U32 from (Korec, 1996). A
rectangle shaped box containing RjP or RjM corresponds to the instruction
li : (ADD(j), lk) or li : (SUB(j), lk), respectively, where li is the label of the box
and the arrow leads to the instruction labeled with lk. A rhombus shaped
box containing Rj corresponds to li : (CHECK(j), lk, ll) where the rhombus is
labeled with li, the arrow marked with “z” leads to instruction lk, and the
unmarked arrow leads to the box ll.
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• li : (CHECKSUB(r), lj, lk) - zero check and subtract: If register r is non-
empty, then subtract 1 from it and go to the instruction with label lj ,
otherwise go to the instruction with label lk.

• li : (CHECKSUBADD1(r, s), lj, lk) - zero check, subtract, add, first variant:
If register r is non-empty, then subtract 1 from it, add 1 to register s,
and go to the instruction with label lj, otherwise go to the instruction
with label lk.

• li : (CHECKSUBADD2(r, s), lj , lk) - zero check, subtract, add, second vari-
ant: If register r is non-empty, then subtract 1 from it and go to the
instruction with label lj , otherwise add 1 to register s and go to the
instruction with label lk.

By looking at the flowchart on Figure 5.1, we might observe how the in-
structions above can be used to obtain the same functioning as U32. Thus,
as a direct consequence of Theorem 5.3.1, we present the register machine
U15 as follows. We use the name U15 to emphasize the fact that this ma-
chine has fifteen instructions (besides the nondeterministic add and the halt
instruction).

Observation 5.3.2. Let M be the set of register machines. Then, there is a
register machine U15 with eight registers and a recursive function g : M → N

such that for each M ∈ M, N(M) = N(U15(g(M))), where N(U15(g(M)))
denotes the set of numbers computed by U15 with initially containing g(M)
in the second register.

The machine U15 has one HALT instruction labeled by lh, one instruction
of the type nADD labeled by l0, and furthermore, one ADD instruction labeled
by l1, one CHECK instruction labeled by l2, six CHECKSUB instructions labeled
by li, 3 ≤ i ≤ 8, one DADD instruction labeled by l9, five CHECKSUBADD1

instructions labeled by li, 10 ≤ i ≤ 14, and one CHECKSUBADD2 instruction
labeled by l15.

Moreover, the machine either halts using the HALT instruction and having
the result of the computation in the first register, or its computation goes on
infinitely.

To see how the instructions of U32 can be combined to obtain U15, con-
sider the three instructions q1 : (CHECK(r1), q6, q2), q2 : (SUB(r1), q3), and
q3 : (ADD(r7), q1) from the flowchart in Figure 5.1. These are equivalent with
the combined instruction q1 : (CHECKSUBADD1(r1, r7), q6, q1).
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Definition 5.3.4. We call a two-object P colony restricted, if the programs
contain exactly one point mutation rule of the form a → b, and either one
exchange rule of the form c ↔ d, or one checking rule of the form c ↔ d/c′ ↔
d′.

Notation. The class of sets generated by two-objects P colonies with re-
stricted programs is denoted by PCOL(2R, n, h,X) where n and h denotes
the number of cells and programs and X ∈ {check, no-check}, as before.

First we consider restricted and non-restricted two object P colonies with
checking rules.

Theorem 5.3.3.

PCOL(2R, 16, 6, check) = PCOL(2, 16, 5, check) = NRE.

Proof. Let L ∈ NRE and let M be a register machine with L = N(M).
Consider the universal register machine U15 = (8, H, l0, lh, R) from Observa-
tion 5.3.2. By placing the code of M (which is the value of g(M)) in the
second register, it computes N(M), producing the result in its first register.
We show how to construct P colonies which simulate the computation of U15.

Consider a P colony (V, e, 1, IE, C1, . . . , Cn) where V contains the special
object e, two symbols l and l′ for each instruction label l ∈ H of the universal
machine, and one symbol j, 1 ≤ j ≤ 8, for each register. (For the sake of
simplicity, we denote the number j ∈ N and the object j ∈ V in the same
way.) The number of j symbols in the environment corresponds to the value
of register j. Thus, the initial contents of the environment, IE is g(M) copies
of the object 2 plus the label of the initial instruction l0, and the result of
the computation can be read as the number of 1 objects corresponding to
the value of the first register in a halting configuration.

The P colonies we are going to construct contains one cell for each in-
struction.

A nondeterministic add instruction li : (nADD(ri), lji, lki) is simulated by
increasing the number of objects corresponding to the value of register ri by
one and by changing the instruction label li present in the environment to
lji or lki. This can be done with five programs as follows.

Pi = {〈e → ri; e ↔ li〉, 〈li → lji; ri ↔ e〉, 〈e → e; lji ↔ e〉,

〈li → lki; ri ↔ e〉, 〈e → e; lki ↔ e〉}.
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An add instruction li : (ADD(ri), lji) is simulated by increasing the number of
objects corresponding to the value of register ri by one and by changing the
instruction label to lki .

Pi = {〈e → ri; e ↔ li〉, 〈li → lji; ri ↔ e〉, 〈e → e; lji ↔ e〉}.

An add instruction li : (DADD(ri, si), lji) is simulated by increasing the number
of objects corresponding to the values of registers si and si by one, and by
changing the instruction label to lji.

Pi = {〈e → ri; e ↔ li〉, 〈li → si; ri ↔ e〉, 〈e → lji; si ↔ e〉,

〈e → e; lji ↔ e〉}.

An instruction of type li : (CHECK(ri), lji, lki) is simulated by six restricted
programs as follows.

Pi = {〈e → e; e ↔ li〉, 〈li → l′ji; e ↔ ri/e ↔ e〉, 〈l′ji → lji; ri ↔ e〉,

〈e → e; lji ↔ e〉, 〈l′ji → lki; e ↔ e〉, 〈e → e; lki ↔ e〉}.

If we allow non-restricted programs, we can replace Pi with

P ′
i = {〈e → e; e ↔ li〉, 〈li → lji; e ↔ ri/e → lki〉, 〈lji ↔ e; ri ↔ e〉,

〈lji → e; lki ↔ e〉}

which achieve the same effect as Pi with four programs.
An instruction li : (CHEKSUB(ri), lji, lki) is simulated with five restricted

programs

Pi = {〈e → e; e ↔ li〉, 〈li → lji; e ↔ ri/e ↔ e〉, 〈ri → e; lji ↔ e〉,

〈lji → lki ; e ↔ e〉, 〈e → e; lki ↔ e〉},

or with four non-restricted programs

P ′
i = {〈e → e; e ↔ li〉, 〈li → lji; e ↔ ri/e → lki〉, 〈ri → e; lji ↔ e〉,

〈lji → e; lki;↔ e〉〉},

by exchanging the label li to lji and decreasing the number of ri objects by
one, or if the number of ri objects is zero, then exchanging li to lki .

An instruction of type li : (CHEKSUBADD1(ri, si), lji, lki) is simulated with
six restricted programs

Pi = {〈e → e; e ↔ li〉, 〈li → lji; e ↔ ri/e ↔ e〉, 〈ri → si; lji ↔ e〉,

〈e → e; si ↔ e〉, 〈lji → lki; e ↔ e〉, 〈e → e; lki ↔ e〉},
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or with five non-restricted programs

P ′
i = {〈e → si; e ↔ li〉, 〈li → lji; si ↔ ri/si → e〉, 〈ri → e; lji ↔ e〉,

〈lji → lki; e ↔ e〉, 〈e → e; lki ↔ e〉},

by exchanging the label li to lji and an ri object to si, or if the number of ri
objects is zero, then exchanging li to lki.

An instruction of type li : (CHEKSUBADD2(ri, si), lji, lki) is simulated with
six restricted programs

Pi = {〈e → e; e ↔ li〉, 〈li → lji; e ↔ ri/e ↔ e〉, 〈ri → e; lji ↔ e〉,

〈lji → si; e ↔ e〉, 〈e → lki; si ↔ e〉, 〈e → e; lki ↔ e〉, },

or with five non-restricted programs

P ′
i = {〈e → si; e ↔ li〉, 〈li → lji; si ↔ ri/si ↔ e〉, 〈ri → e; lji ↔ si〉,

〈lji → lki; e ↔ e〉, 〈e → e; lki ↔ e〉},

by exchanging the label li to lji and removing an object ri, or if the number
of ri objects is zero, then increasing the number of si objects and exchanging
li to lki.

There are no programs for the halting label lh, thus, its appearance ends
the computation which otherwise never stops.

For the simulation of U15 with restricted programs, consider the P colony
Π = (V, e, 1, IE, C0, . . . , C15) with V and IE as above, and one cell with the
programs P0 for the initial nADD instruction labeled with l0 which fills the
input register, one cell with P1, for the simulation of the ADD instruction, one
cell with P2 for the simulation of the CHECK instruction, six cells with Pi, 3 ≤
i ≤ 8, for the simulation of the CHECKSUB instructions, one cell with P9 for
the simulation of the double add DADD, five cells with Pi, 10 ≤ i ≤ 14, for
the simulation of the CHECKSUBADD1, and one cell with P15 for the simulation
of the CHECKSUBADD2 instruction. This gives us 1+1+1+6+1+5+1 = 16
cells with at most 6 programs, thus the first part of our statement is proved.

To simulate U15 with non-restricted programs, we can take the modified P
colony Π′ = (V, e, 1, IE, C0, C1, C

′
2, C

′
3, . . . , C

′
8, C9, C

′
10, . . . , C

′
15), where C ′

i =
(Oi, P

′
i ), i ∈ {2, 3, . . . , 8, 10, . . . , 15}, which gives us 16 cells with at most 5

programs.

Now we show that by increasing the number of programs, one cell is
sufficient to generate any set in NRE, even with restricted programs.
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Theorem 5.3.4.

PCOL(2R, 1, 114, check) = NRE.

Proof. Similarly to the proof of Theorem 5.3.3, we show how to construct
a P colony which simulates the computation of the universal register ma-
chine U15 from Observation 5.3.2.

Let the nADD instruction of U15 be labeled by l0, the ADD instruction by
l1, the CHECK instruction by l2, the six CHECKSUB instructions by l3, . . . , l8,
the DADD instruction by l9, the five CHECKSUBADD1 instructions by l10, . . . , l14,
and the CHECKSUBADD2 instruction by l15.

Let Π = (V, e, 1, IE, C) be a P colony where V contains the special objects
e, t; the symbol li for each instruction of U15, that is, for 0 ≤ i ≤ 15; the
symbols l′i for the nADD, ADD and DADD instructions, that is, for i ∈ {0, 1, 9};
the symbols l′′i for the CHECK, CHECKSUB, CHECKSUBADD1, and CHECKSUBADD2

instructions, that is, for i ∈ {3, . . . , 8, 10, . . . , 15}; and one symbol j for each
register j, 1 ≤ j ≤ 8. The initial contents of the environment, IE is a number
of copies of the object 2 for initializing the contents of the second register,
plus one copy of the symbols l′i for i ∈ {0, 1, 9}. The result of a computation
can be read in a halting configuration as the number of 1 objects in the
environment.

The computation starts by producing an arbitrary number of copies of
the double primed instruction labels l′′i , i ∈ {3, . . . , 8, 10, . . . , 15}, and the
introduction of the initial instruction label l0. This is achieved with the
following 25 programs.

Pini = {〈e → l′′3 ; e ↔ e〉, 〈e → l′′15; l
′′
15 ↔ e〉, 〈e → l0; l

′′
15 ↔ e〉} ∪

{〈e → l′′i ; l
′′
i ↔ e〉, 〈e → l′′i+1; l

′′
i ↔ e〉, |

i ∈ {3, . . . , 7, 10, . . . , 14}} ∪

{〈e → l′′8 ; l
′′
8 ↔ e〉, 〈e → l′′10; l

′′
8 ↔ e〉}.

Now, for the instruction l0 : (nADD(r0), li0, lj0), we have the following four
programs

P0 = {〈l0 → l′0; e ↔ e〉, 〈e → r0; l
′
0 ↔ l′0〉, 〈l′0 → li0; r0 ↔ e〉,

〈l′0 → lj0; r0 ↔ e〉}.

For the instruction l1 : (ADD(r1), li1), we have

P1 = {〈l1 → l′1; e ↔ e〉, 〈e → r1; l
′
1 ↔ l′1〉, 〈l′1 → li1; r1 ↔ e〉}.
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For the instruction l2 : (CHECK(r2), li2, lj2) we have

P2 = {〈l2 → l′2; e ↔ r2/e ↔ e〉, 〈r2 → r2; l
′
2 ↔ l′′2〉, 〈l

′′
2 → li2; r2 ↔ e〉,

〈l′2 → lj2; e ↔ e〉}.

For the instructions li : (CHECKSUB(ri), lji, lki), 3 ≤ i ≤ 8, we have the
programs

Pi = {〈li → l′i; e ↔ ri/e ↔ e〉, 〈ri → e; l′i ↔ l′′i 〉, 〈l
′′
i → lji; e ↔ e〉,

〈l′i → lki; e ↔ e〉}.

For the instruction l9 : (DADD(ri, si), li9), we have

P9 = {〈l9 → l′9; e ↔ e〉, 〈e → ri; l
′
9 ↔ l′9〉, 〈l′9 → l′9; ri ↔ e〉,

〈e → si; l
′
9 ↔ l′9〉, 〈l′9 → li9 ; si ↔ e〉}.

For the instructions li : (CHECKSUBADD1(ri, si), lji, lki), 10 ≤ i ≤ 14, we have
the programs

Pi = {〈li → l′i; e ↔ ri/e ↔ e〉, 〈ri → si; l
′
i ↔ l′′i 〉, 〈l

′′
i → lji; si ↔ e〉,

〈l′i → lki; e ↔ e〉},

and for the instruction l15 : (CHECKSUBADD2(r15, s15), li15 , lj15), we have the
programs

P15 = {〈l15 → l′15; e ↔ r15/e ↔ e〉, 〈r15 → e; l′15 ↔ l′′15〉,

〈l′′15 → li15 ; e ↔ e〉, 〈e → s15; l
′
15 ↔ l′15〉, 〈l

′
15 → lj15 ; s15 ↔ e〉}.

Moreover, in order to ensure that the cell exchanges primed objects from
inside with double primed objects from the environment, we also consider
the programs

Ptrap = {〈l′i → t; ri ↔ e〉, 〈t → t; e ↔ e〉 | i ∈ {3, . . . , 8, 10, . . . , 15} }

where t is a trap-object and ri corresponds, for 3 ≤ i ≤ 8, to the register
used by the CHECKSUB instructions labeled with li, and for 10 ≤ i ≤ 15, to
the register which is checked for zero by the CHECKSUBADD1 or CHECKSUBADD2
instructions labeled with li. If an exchange of the primed and double primed
labels cannot be realized during the simulation of these instructions because
the number of double primed symbols produced in the initial phase is insuf-
ficient, then the trap-object is introduced and the program 〈t → t; e ↔ e〉
provides an “infinite loop”, preventing the halting of the computation.

Considering the P colony above with C = (O,P ) where P =
⋃15

i=0 Pi ∪
Pini ∪Ptrap, we need 25 programs for the initial phase, four programs for the
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nADD instruction, three for the ADD instruction, four for the CHECK instruction,
6·4 = 24 for the CHECKSUB instructions, five for the DADD instruction, 5·4 = 20
for the CHECKSUBADD1 instructions, five for the CHECKSUBADD2 instruction, and
we have 2 · 12 = 24 programs in Ptrap. This gives us 25 + 4 + 3 + 4 + 24 +
5 + 20 + 5 + 24 = 114 programs in total, so our statement is proved.

Now we show how the use of checking rules can be avoided. First we
consider the case of two objects P colonies with restricted and with non-
restricted programs.

Theorem 5.3.5.

PCOL(2R, 16, 10, no-check) = PCOL(2, 16, 9, no-check) = NRE.

Proof. We show how the universal register machine U15 from Observation 5.3.2
can be simulated.

Consider Π = (V, e, 1, IE, C0, . . . , C15) from the proof of Theorem 5.3.3
and let Π′ = (V ′, e, 1, IE, C

′
0, . . . C

′
16) where V ′ = V ∪ {l′, l′′}. Now we con-

struct the cells C ′
i, 0 ≤ i ≤ 16, which achieve the same effect as the 16

cells of Π. The nADD, ADD, and DADD instructions are simulated in Π without
checking rules, thus we can take

C ′
i = Ci, for i ∈ {0, 1, 9},

without any change at all.
For the simulation of the other instructions, we need an additional cell,

C ′
16, with two programs

P ′
16 = {〈e → l′′; e ↔ l′〉, 〈l′ → e; l′′ ↔ e〉}.

This cell produces the symbol l′′ from the symbol l′ in two computational
steps.

For the instruction l2 : (CHECK(r2), li2 , lj2) we need the programs

P ′
2 = {〈e → l′; e ↔ l2〉, 〈l2 → l′2; l

′ ↔ e〉, 〈l′2 → l′′2 ; e ↔ r2〉,

〈l′′2 → li2 ; r2 ↔ e〉, 〈li2 → li2 ; e ↔ l′′〉, 〈l′2 → lj2; e ↔ l′′〉,

〈l′′ → e; li2 ↔ e〉, 〈l′′ → e; lj2 ↔ e〉},

having at most eight restricted programs. The interplay of these programs
and the programs in P ′

16 produces the desired checking effect, the symbol
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l2 is exchanged to li2 if there is at least one r2 symbol in the environment,
otherwise lj2 is released.

For the instructions li : (CHECKSUB(ri), lji, lki), 3 ≤ i ≤ 8, we also need
P ′
16, plus cells with at most nine programs as follows, for each i, 3 ≤ i ≤ 8,

P ′
i = {〈e → l′; e ↔ li〉, 〈li → l′i; l

′ ↔ e〉, 〈l′i → l′′i ; e ↔ ri〉,

〈l′′i → lji; ri ↔ e〉, 〈lji → lji; e ↔ l′′〉, 〈l′i → lki ; e ↔ l′′〉,

〈l′′ → e; lji ↔ ri〉, 〈ri → e, e ↔ e〉, 〈l′′ → e; lki ↔ e〉}.

These programs work together with P ′
16 very similarly to the ones above.

However, they not only check, but if possible, also decrease the number of
register symbols in the environment.

For the instructions li : (CHECKSUBADD1(ri, si), lji, lki), 10 ≤ i ≤ 14, we
also have cells with nine programs,

P ′
i = {〈e → l′; e ↔ li〉, 〈li → l′i; l

′ ↔ e〉, 〈l′i → l′′i ; e ↔ ri〉,

〈l′′i → lji; ri ↔ e〉, 〈lji → lji; e ↔ l′′〉, 〈l′i → lki ; e ↔ l′′〉,

〈l′′ → si; lji ↔ ri〉, 〈ri → e, si ↔ e〉, 〈l′′ → e; lki ↔ e〉},

and for the l15 : (CHECKSUBADD2(r15, s15), li15 , lj15), instruction we have

P ′
15 = {〈e → l′; e ↔ l15〉, 〈l15 → l′15; l

′ ↔ e〉, 〈l′15 → l′′15; e ↔ r15〉,

〈l′′15 → li15 ; r15 ↔ e〉, 〈li15 → li15 ; e ↔ l′′〉, 〈l′15 → s15; e ↔ l′′〉,

〈l′′ → e; li15 ↔ r15〉, 〈r15 → e; e ↔ e〉, 〈l′′ → lj15 ; s15 ↔ e〉,

〈e → e; lj15 ↔ e〉},

which is a set with ten programs.
Thus, if we have

C ′
i = (ee, P ′

i ), i ∈ {2, . . . , 8, 10, . . . , 16}

in Π′, then we can simulate U15 with 16 cells, each having at most 10 restricted
programs without checking rules, and altogether 131 programs.

If the use of non-restricted programs is allowed, we can decrease the
number of programs of certain cells.

The simulation of the li : (CHECKSUB(ri), lji, lki), 3 ≤ i ≤ 8, instructions
can be done with eight programs as follows.

P ′′
i = {〈e → l′; e ↔ li〉, 〈li → l′i; l

′ ↔ e〉, 〈l′i → l′′i ; e ↔ ri〉,

〈ri → e; l′′i → lji〉, 〈lji → lji; e ↔ l′′〉, 〈l′i → lki ; e ↔ l′′〉,

〈l′′ → e; lji ↔ e〉, 〈l′′ → e; lki ↔ e〉}.
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For the simulation of the instructions li : (CHECKSUBADD1(ri, si), lji, lki), 10 ≤
i ≤ 14, we can use the programs in

P ′′
i = {〈e → l′; e ↔ li〉, 〈li → l′i; l

′ ↔ e〉, 〈l′i → l′′i ; e ↔ ri〉,

〈ri → si; l
′′
i → lji〉, 〈lji → lji; si ↔ l′′〉, 〈l′i → lki; e ↔ l′′〉,

〈l′′ → e; lji ↔ e〉, 〈l′′ → e; lki ↔ e〉},

and for the simulation of the l15 : (CHECKSUBADD2(r15, s15), li15 , lj15), instruc-
tion,

P ′′
15 = {〈e → l′; e ↔ l15〉, 〈l15 → l′15; l

′ ↔ e〉, 〈l′15 → l′′15; e ↔ r15〉,

〈r15 → e; l′′15 → li15〉, 〈li15,1 → li15 ; e ↔ l′′〉, 〈l′15 → lj15; e ↔ l′′〉,

〈l′′ → e; li15 ↔ e〉, 〈l′′ → s15; lj15 → lj15〉, 〈s15 ↔ e; lj15 ↔ e〉}.

Now, if we have

C ′′
i =

{
(ee, P ′′

i ) for i ∈ {3, . . . , 8, 10, . . . , 16},
C ′

i otherwise,

then in Π′′ = (V ′, e, r1, IE, C
′′
0 , . . . C

′′
16) we can simulate U15 with 16 cells,

each having at most nine restricted program without checking rules, and
altogether with 116 programs.

The number of programs in the cells can be decreased if, instead of two, we
allow three objects in each cell, and thus, three instructions in each program.

Theorem 5.3.6.

PCOL(3, 16, 7, no-check) = NRE.

Proof. Consider Π′ = (V ′, e, 1, IE, C
′
0, . . . C

′
16) simulating U15 from Observa-

tion 5.3.2 as described in the of the proof of the previous theorem. Now
define C ′′

i = (eee, P ′′
i ), 0 ≤ i ≤ 16, where for i ∈ {0, 1, 9, 16}, P ′′

i is obtained
from P ′

i by adding a rule e → e to each program. The rest of the cells is
constructed as follows.

For l2 : (CHECK(r2), li2 , lj2), we have

P ′′
2 = {〈e → l′; e → l′i2; e ↔ l2〉, 〈l2 → e; l′ ↔ e; l′i2 → l′i2〉,

〈l′i2 → l′′i2 ; e ↔ r2; e ↔ e〉, 〈r2 → e; l′′i2 → li2 ; e ↔ l′′〉,

〈l′i2 → e; e ↔ l′′; e → lj2〉, 〈l′′ → e; li2 ↔ e, e → e〉,

〈l′′ → e; lj2 ↔ e; e → e〉}.
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For the rules li : (CHECKSUB(ri), lji, lki), 3 ≤ i ≤ 8, let

P ′′
i = {〈e → l′; e → l′ji; e ↔ li〉, 〈li → e; l′ ↔ e; l′ji → l′ji〉,

〈l′ji → l′′ji; e ↔ ri; e → e〉, 〈ri → e; l′′ji → lji; e ↔ l′′〉,

〈l′ji → e; e ↔ l′′; e → lji〉, 〈l′′ → e; lji ↔ e, e → e〉,

〈l′′ → e; lji ↔ e; e → e〉}.

For the instructions li : (CHECKSUBADD1(ri, si), lji, lki), 10 ≤ i ≤ 14, let

P ′′
i = {〈e → l′; e → l′ji; e ↔ li〉, 〈li → e; l′ ↔ e; l′ji → l′ji〉,

〈l′ji → l′′ji; e ↔ ri; e → si〉, 〈ri → e; l′′ji → lji; si ↔ l′′〉,

〈l′ji → e; e ↔ l′′; e → lki〉, 〈l′′ → e; lji ↔ e, e → e〉,

〈l′′ → e; lki ↔ e; e → e〉},

and for l15 : (CHECKSUBADD2(r15, s15), li15 , lj15), let

P ′′
15 = {〈e → l′; e → l′i15 ; e ↔ l15〉, 〈l15 → e; l′ ↔ e; l′i15 → l′i15〉,

〈l′i15 → l′′i15 ; e ↔ r15; e → e〉, 〈r15 → e; l′′i15 → li15 ; e ↔ l′′〉,

〈l′i15 → s15; e ↔ l′′; e → lj15〉, 〈l′′ → e; li15 ↔ e, e → e〉,

〈l′′ → e; li15 ↔ e; s15 ↔ e〉}.

Thus, if we have C ′′
i = (eee, P ′′

i ) for i ∈ {3, . . . , 8, 10, . . . , 16}, and consider
the P colony Π′′ = (V ′′, e, a1, IE , C

′′
0 , . . . C

′′
15) with V ′′ = V ′ ∪ {l′i, l

′′
i | i ∈

{2, . . . , 8, 10, . . . , 15} }, then we have a system with 16 cells, at most seven
programs in each cell, so our statement is proved.

5.3.2 Simplifying the programs: P colonies with inser-
tion/deletion

In this section we continue with the investigation of a possible simplification
of P colonies. We consider systems where the cells can only remove objects
from the environment or insert objects into the environment. We will use so
called insertion and deletion programs for this purpose.

Definition 5.3.5. P colonies with capacity of two may have

• deletion programs, these are of the form 〈a, in; bc → d〉 with a, b, c, d ∈
V , specifying that if bc is present inside the cell and a is present in the
environment, then the objects inside are changed to d and a is brought
in (a is “deleted” from the environment), or
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• insertion programs, these are of the form 〈a, out; b → cd〉 with a, b, c, d ∈
V , specifying that if ab is inside the cell, then a is sent out (a is “in-
serted” into the environment) and b is changed to cd.

Now we continue with the investigation of two object P colonies with
insertion-deletion programs. It is not too difficult to see that if we allow a
cell to contain both types of programs, then we can simulate the other types
of programs in two steps, thus, it is more interesting to consider P colonies
having cells which contain either insertion or deletion programs, but not both
types at the same time.

Definition 5.3.6. A two object P colony Π = (V, e, of , IE , C1, . . . , Cn, k)
with Ci = (Oi, Pi) is called a P colony with senders and consumers, if for
each i, 1 ≤ i ≤ n, Pi contains either insertion programs or deletion programs,
but not both. A sender is a cell with only insertion programs, a consumer is
a cell with only deletion programs.

Notation. Let us denote by PCOL(2, n, h, s-c) the class of sets of numbers
generated by P colonies with senders and consumers having at most n ≥ 1
cells with at most h ≥ 1 program each. We use ∗ in the notation if we need
to express that one of the parameters is unbounded.

Example 5.3.1.
(a) A P colony with one sender cell can generate the Parikh set of a

regular language L ⊆ T ∗. Let G = (N, T, P, S) be a regular grammar such
that L(G) = L.

For generating the Parikh vectors of the words in L, we use, for each
S → aB of P , the programs 〈e, out; e → eS〉, 〈e, out;S → aB〉 and then
〈x, out;A → aB〉, x ∈ T for every A → aB in P . Finally, for every rule of
the form A → a we need 〈x, out;A → aF 〉, x ∈ T, 〈a, out;F → FF 〉, where
F /∈ T ∪N .

(b) A P colony with one consumer cell can “consume” the Parikh set of
a regular language L. To see this, let M = (Q, T, δ, q0, F ) be a deterministic
finite automaton such that L(M) = L.

We need the program 〈e, in; ee → q0〉, and to every transition δ(qi, a) = qj
in M , we introduce 〈a, in; xqi → qj〉, x ∈ T ∪ {e}. If qj ∈ F in δ(qi, a) = qj
we have to add the programs 〈a, in; xqi → F 〉, x ∈ T, where F /∈ Q ∪ T .

Now we show that three cells, one sender and two consumers are sufficient
to generate all recursively enumerable sets of nonnegative integers. We will
simulate a register machine in the proof, but let us first consider the following.
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Remark 5.3.1. We can replace the instructions of type li : (CHECK(r), lj, lk)
and li : (SUB(r), lj) of a register machine M = (m,H, l0, lh, P ) (see Chapter 2
for the definition) with instructions of the type li : (CHECKSUB(r), lj, lk) in
such a way, that the modified machine generates the same language as M .
(The effect of the CHECKSUB instruction is the same as in the previous section:
if the value stored in register r is not zero, then it is decremented and the
machine continues with instruction lj , otherwise, if register r is empty, it is
left unchanged and the next instruction is lk.)

To see that the replacement is possible, notice that the effect of li :
(SUB(r), lj) can be obtained by li : (CHECKSUB(r), lj, lj), and that the effect of
li : (CHECKSUB(r), lj, lk) is the same as the effect of li : (CHECK(r), lk, l

′
j) and

l′j : (SUB(r), lj) (where l′l is a new label).

Theorem 5.3.7. PCOL(2, 3, ∗, s-c) = NRE.

Proof. Consider an m-register machine M = (m,H, l0, lh, P ), m ≥ 1 with
CHECKSUB instructions instead of CHECK and SUB. (see Remark 5.3.1). We
simulate M by representing the content of the register i by the number
of copies of a specific object ai in the environment. We construct the P colony
Π = (V, e, of , IE , C1, C2, C3) with

V = {e, l, l′, l′′, l′′′, liv, lv, l̄, ¯̄l | l ∈ H} ∪ {ai | 1 ≤ i ≤ m} ∪

{K, T1, T2, T3, T4, T5},

of = ai where register i is the output register,

Ci = (ee, Pi) for 1 ≤ i ≤ 3, and

IE contains only an infinite supply of the object e.
P colony Π starts its computation in the initial configuration (ee, ee, ee; ε).

We initialize the computation by generating the initial label l0 with a program
from P1, 〈e, out; e → l0l0〉 ∈ P1 obtaining (l0l0, ee, ee; ε).

The simulation of an instruction with label li starts from a configuration
(lili, ee, ee;w) where w ∈ V ∗, the multiset of objects in the environment,
represents the counter contents of M .

In the following, for easier readability, instead of listing all the programs
of a cell explicitly, we will present them in the form of several tables, each
table containing only some of the programs, those which are necessary for
the execution of a certain computational task.
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To simulate an nADD instruction, we use the programs of P1 and P3. For
each li, lj , lk ∈ H with li being the label of an instruction li : (nADD(r), lj, lk),
we have the following programs.

P1 P3

i1 : 〈li, out; li → arlj〉 i1 : 〈li, in; ee → T1〉
i2 : 〈li, out; li → arlk〉 i2 : 〈e, in; liT1 → e〉

i3 : 〈ar, out; lj → ljlj〉 i3 : 〈li, in;
¯̄liT5 → T1〉

i4 : 〈ar, out; lk → lklk〉

Using these programs, we obtain a sequence of configurations

(lili, ee, ee;w) ⇒ (arl, ee, ee; liw) ⇒ (ll, ee, liT1; arw)

where l is the label of the next instruction, that is, we either have (ljlj , ee, liT1;
arw), or the configuration (lklk, ee, liT1; arw). The contents of cell C3, liT1,
will change in the next step to ee independently of the several ways of the
continuation of the computation, as we shall see later.

The program labeled with i3 is used if the instruction simulated before
li was a CHECKSUB instruction (see below). In this case, the configuration in

which the simulation of li starts is (lili, ee, l̄iT4;
¯̄liw) and we need the steps

(lili, ee, l̄iT4;
¯̄liw) ⇒ (arl, ee,

¯̄liT5; liw) ⇒ (ll, ee, liT1; arw) and program i3 to
obtain the same configuration as before.

To simulate a deterministic ADD instruction li : (nADD(r), lj), we omit the
programs denoted with i2 and i4 from the set P1.

Now we show how to simulate a CHECKSUB instruction. For each lj, lk, ll ∈
H with lj being the label of an instruction lj : (CHECKSUB(r), lk, ll), and for
all labels ls ∈ H , we have the programs as seen in Figure 5.2.

To show how the programs of Figure 5.2 simulate the execution of the
given CHECKSUB instruction, we use tables where each row represents a con-
figuration of the system (with the columns corresponding to the contents of
the cells, the environment, and the programs which are applied) to obtain
the configuration of the next row of the table. To save space, we also use the
sign “/” to separate the different possible multisets which might appear in
the same column of a given table position.

First we consider the case when register r is not empty, that is, when there
is at least one object ar present in the environment. We see that starting
with a configuration where C1 contains the objects ljlj and the environment
contains ar, in six steps we obtain a configuration where the object ar is
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P1 P2 P3

j1 : 〈lj, out; lj → l′jl
′
j〉 j1 : 〈lj, in; ee → e〉 j1 : 〈l′j, in; ee → T1〉

j2 : 〈l
′
j, out; l

′
j → l′′j l

′′
j 〉 j2 : 〈ar, in; elj → e〉 j2 : 〈e, in; l′jT1 → T2〉

j3 : 〈l
′′
j , out; l

′′
j → l′′′j l

iv
j 〉 j3 : 〈l′′j , in; elj → e〉 j3 : 〈l′′j , in; eT2 → T3〉

j4 : 〈l
′′′
j , out; l

iv
j → l̄k l̄k〉 j4 : 〈l′′′j , in; are → e〉 j4,s : 〈l̄s, in; l

′′
jT3 → T4〉

j5 : 〈l
iv
j , out; l

′′′
j → l̄l l̄l〉 j5 : 〈e, in; l′′′j e → e〉 j5,s : 〈l̄s, in; eT2 → T4〉

j6 : 〈l̄k, out; l̄k →
¯̄lk
¯̄lk〉 j6 : 〈livj , in; are → K〉 j6,s : 〈¯̄ls, in; l̄sT4 → T5〉

j7 : 〈
¯̄lk, out;

¯̄lk → lklk〉 j7 : 〈e, in; livj K → K〉 j7,s : 〈e, in; ¯̄lsT5 → e〉

j8 : 〈l̄l, out; l̄l →
¯̄ll
¯̄ll〉 j8 : 〈e, in; eK → K〉

j9 : 〈
¯̄ll, out;

¯̄lk → llll〉 j9 : 〈l′′′j , in; l
′′
j e → K〉

j10 : 〈e, in; l′′′j K → K〉
j11 : 〈livj , in; l

′′
j e → e〉

j12 : 〈e, in; livj e → e〉

Figure 5.2: Programs to simulate an instruction lj : (CHECKSUB(r), lk, ll).

removed from the environment, and C1 either contains the label of the next
instruction lk, or because of the presence of program j8, in P2, the computa-
tion will never be able to halt.

configuration of Π programs to be applied
C1 C2 C3 Env P1 P2 P3

1. ljlj ee ? arw
′ j1 − ?

2. l′jl
′
j ee ? ljarw

′′ j2 j1 ?
3. l′′j l

′′
j lje ee l′jarw j3 j2 j1

4. l′′′j l
iv
j are l′jT1 l′′jw j4/j5 − j2

5. l̄k l̄k/l̄l l̄l are eT2 (l′′′j /l
iv
j )l

′′
jw j6/j8 j4/j6 j3

6. ¯̄lk
¯̄lk/

¯̄ll
¯̄ll l′′′j e/l

iv
j K l′′jT3 (l̄k/l̄l)w j7/j9 j5/j7 j4,k/j4,l

7. lklk/llll ee/eK (l̄k/l̄l)T4 (¯̄lk/
¯̄ll)w k1/l1 −/j8 j6,k/j6,l

8. l′kl
′
k/l

′
ll
′
l ee/eK (¯̄lk/

¯̄ll)T5 (lk/ll)w k2/l2 k1/j8 j7,k/j7,l
9. l′′kl

′′
k/l

′′
l l

′′
l (lk/ll)e/eK ee (l′k/l

′
l)w k3/l3 k2/j8 j1

Now we show the simulation of the lj : (CHECKSUB(r), lk, ll) instruction
when there is no object ar is present in the environment, that is, when
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register r is empty. In this case, similarly to the previous one, we either get
the objects lklk in the cell C1, or the computation will not be able to halt.

configuration of Π programs to be applied
C1 C2 C3 Env P1 P2 P3

1. ljlj ee ? w j1 − ?
2. l′jl

′
j ee ? ljw j2 j1 ?

3. l′′j l
′′
j lje ee l′jw j3 − j1

4. l′′′j l
iv
j lje l′jT1 l′′jw j4/j5 j3 j2

5. l̄k l̄k/l̄l l̄l l′′j e eT2 (l′′′j /l
iv
j )w j6/j8 j9/j11 −

6. ¯̄lk
¯̄lk/

¯̄ll
¯̄ll l′′′j K/livj e eT2 (l̄k/l̄l)w j7/j9 j10/j12 j5,k/j5,l

7. lklk/llll eK/ee (l̄k/l̄l)T4 (¯̄lk/
¯̄ll)w k1/l1 j8/− j6,k/j6,l

8. l′kl
′
k/l

′
ll
′
l eK/ee (¯̄lk/

¯̄ll)T5 (lk/ll)w k2/l2 j8/k1 j7,k/j7,l
9. l′′kl

′′
k/l

′′
l l

′′
l eK/(lk/ll)e ee (l′k/l

′
l)w k3/l3 j8/k2 j1

The programs to be applied and the objects contained by the cell C3 in
row 1. and row 2. of the tables above depend on the instruction li which
was simulated before lj. If li is an ADD instruction, then we have liT1 in the
first row, and applying the program i2 from P3 we get ee in the second row,
where no program is applied until the next step. Also, w = w′ = w′′ in this
case.

If li is a CHECKSUB instruction, then (as we can also see from row 7. and

row 8.) the contents of the cell C3 is l̄jT4 and
¯̄ljT5 in the first two rows where

the programs i6,j and i7,j are applied. In this case w′′ = ¯̄ljw, and w′ = w.
As we have seen above, the P colony successfully simulates each instruc-

tion of M and since there is no program to process lh, the label of the halt
instruction, it also halts when the computation of M is finished. It is also
easy to see that M and Π compute the same set of non-negative integers.

5.3.3 Simplifying the cells: The number of symbols

inside

Up to now we have studied P colonies with two or three objects inside the
cells. It is a natural question to ask whether the number of objects inside the
cells can be decreased from three or two to one without losing the computa-
tional power of the framework. In this section we show that this is indeed
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possible, that is, P colonies can generate any recursively enumerable set even
if checking rules are not allowed and the number of objects inside is the least
possible, just one.

Notation. We denote by PCOL(1, n, h, check) and PCOL(1, n, h, no-check)
the classes of sets of numbers generated by P colonies with at most n ≥ 1
cells of capacity one, having at most h ≥ 1 programs associated to a cell
which contain or do not contain checking rules, respectively. If a numerical
parameter is unbounded, we use ∗ in the notation.

In (Cienciala et al., 2007) it was shown that if checking rules are allowed to
be used, then all recursively enumerable sets of vectors can even be generated
by P colonies with capacity one, that is,

PCOL(1, 4, ∗, check) = NRE.

In the following we show that P colonies with six components generate
all recursively enumerable sets even if checking rules are not used.

Theorem 5.3.8. PCOL(1, 6, ∗, no-check) = NRE.

Proof. We construct a P colony simulating the computations of a register
machine. Let us consider an m-register machine M = (m,H, l0, lh, P ) with
CHEKSUB instructions (see Remark 5.3.1) and represent the content of the reg-
ister i by the number of copies of a specific object ai in the environment. We
construct the P colony Π = (V, e, of , IE , C1, . . . , C6) with:

V = {e, li, l
′
i, l

′′
i , l̄i, Ki, Li, L

′
i, L

′′
i , L

′′′
i , Ei, Fi, $i | for each li ∈ H} ∪

{ai, ai,j | 1 ≤ i ≤ m, 1 ≤ j ≤ |H|} ∪ {D,D′, T},

of = ai where register i is the output register,

Ci = (e, Pi), for 1 ≤ i ≤ 6, and

IE contains only an infinite supply of the object e.
Because initially there are only copies of e in the environment and inside

the cells, we have to initialize the simulation of the computation of M by
generating the initial the label l0, and an arbitrary number of l′i, l

′′
i for all

li ∈ H . These symbols are generated by C1 and C2 with the following
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programs:

P1 ⊃ {〈e → l′r〉, 〈l
′
r ↔ e〉, 〈e → l′′r 〉, 〈l

′′
r ↔ e〉 | lr ∈ H} ∪

{〈e ↔ D′〉, 〈D′ → l0〉, 〈l0 ↔ D〉},

P2 ⊃ {〈e → D′〉, 〈D′ → D′〉, 〈D′ ↔ l′1〉, 〈l
′
1 → D〉, 〈D ↔ l′′1〉}.

With these programs, from the configuration (e, e, e, e, e, e; ε), we obtain
(D, l′′1 , e, e, e, e; l0w) where the environment contains the label of the initial
instruction, l0, and w, a multiset of primed and double primed instruction
labels.

The rest of the programs will be presented through tables, in a similar
fashion to section 5.3.2, each table containing only some of the programs,
those which are necessary for the execution of the given computational task.

To simulate the instruction li : (nADD(r), lj, lk), cells C1 and C3 cooperate
to add one copy of object ar and object lj or lk to the environment.

P1 P3

i1 : 〈D ↔ ar,i〉 i6 : 〈Kk → lk〉 i1 : 〈e ↔ li〉 i6 : 〈l′i → Kk〉
i2 : 〈ar,i → ar〉 i7 : 〈lj ↔ D〉 i2 : 〈li → ar,i〉 i7 : 〈Kj ↔ e〉
i3 : 〈ar ↔ Kj〉 i8 : 〈lk ↔ D〉 i3 : 〈ar,i ↔ l′i〉 i8 : 〈Kk ↔ e〉
i4 : 〈ar ↔ Kk〉 i4 : 〈ar,i → t〉 i9 : 〈t → t〉
i5 : 〈Kj → lj〉 i5 : 〈l′i → Kj〉

It is not difficult to follow how the interplay of these two cells produce the
configuration (D, l′′1 , e, e, e, e; ljarw

′) or (D, l′′1 , e, e, e, e; lkarw
′) from a config-

uration (D, l′′1 , e, e, e, e; liw) where w,w′ are multisets of l′i, l
′′
i for li ∈ H and

ar, 1 ≤ r ≤ m. If there is no l′i present in the environment when the program
i3 of cell C3 should be used, then the programs i4 and i9 do not allow the
halting of the computation.

To simulate a deterministic ADD instruction li : (nADD(r), lj), we need to
omit the programs denoted with i4, i6, i8 from the set P1, and i6, i8 from
the set P3.

For each subtract instruction lf : (CHECKSUB(r), lg, ln) we have the pro-
grams in P1, P4, P5 and in P6 as indicated in Figure 5.3.

In the following table we show how a subtract instruction can be simulated
by the programs above. Since C2 and C3 cannot apply any of their rules in any
step of the following simulation, we omit them from the table. The multiset
of objects in the environment is denoted by [. . .], and for now we assume that
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P1 P4 P5 P6

f1 : 〈D ↔ Lf 〉 f1 : 〈e ↔ lf〉 f1 : 〈e ↔ L′
f 〉 f1 : 〈e ↔ L′′

f 〉
f2 : 〈Lf → Ef 〉 f2 : 〈lf → Lf 〉 f2 : 〈L′

f → l′f〉 f2 : 〈L′′
f → l′f〉

f3 : 〈Ef → Ff〉 f3 : 〈Lf ↔ l′f 〉 f3 : 〈l′f ↔ ar〉 f3 : 〈l′f ↔ $f〉
f4 : 〈Ff → $f〉 f4 : 〈l′f → L′

f 〉 f4 : 〈l′f ↔ $f〉 f4 : 〈$f → lg〉
f5 : 〈$f ↔ D〉 f5 : 〈L′

f ↔ l′′f 〉 f5 : 〈$f → l̄n〉 f5 : 〈lg ↔ e〉
f6 : 〈l′′f → L′′′

f 〉 f6 : 〈ar → e〉 f6 : 〈l′f ↔ l̄n〉
f7 : 〈L′′′

f → L′′
f〉 f7 : 〈l̄n ↔ e〉 f7 : 〈l̄n → ln〉

f8 : 〈L′′
f ↔ e〉 f8 : 〈ln ↔ e〉

f9 : 〈Lf → t〉
f10 : 〈L′

f → t〉
f11 : 〈t → t〉

Figure 5.3: Programs for the instruction lf : (CHECKSUB(r), lg, ln)

it always contains a sufficient amount of l′i, l
′′
i objects for any li ∈ H . First

we consider the case when there is at least one object ar in the environment,
that is, if the simulation starts in a configuration (D, l′′1 , e, e, e, e; lfar[. . .]).

configuration of Π programs to be applied
C1 C4 C5 C6 Env P1 P4 P5 P6

1. D e e e lfar[. . .] − f1 − −
2. D lf e e ar[. . .] − f2 − −
3. D Lf e e ar[. . .] − f3 − −
4. D l′f e e Lfar[. . .] f1 f4 − −
5. Lf L′

f e e Dar[. . .] f2 f5 − −
6. Ef l′′f e e L′

fDar[. . .] f3 f6 f1 −
7. Ff L′′′

f L′
f e Dar[. . .] f4 f7 f2 −

8. $f L′′
f l′f e Dar[. . .] f5 f8 f3 −

9. D e ar e $fL
′′
f [. . .] − − f6 f1

10. D e e L′′
f $f [. . .] − − − f2

11. D e e l′f $f [. . .] − − − f3
12. D e e $f [. . .] − − − f4
13. D e e lg [. . .] − − − f5
14. D e e e lg[. . .] − g1 − −

111

               dc_640_12



In 13 steps, from (D, l′′1 , e, e, e, e; lfar[. . .]) we obtain (D, l′′1 , e, e, e, e; lg[. . .])
where lg is the label of the instruction which should follow the successful de-
crease of the value of the nonempty register r, and the environment contains
a multiset of objects l′i, l

′′
i for li ∈ H .

Now we consider the case when register r, which is the register to be
decremented, stores zero, that is, if the simulation starts in a configuration
(D, l′′1 , e, e, e, e; lf [. . .]) where the environment does not contain any object ar.

configuration of Π programs to be applied
C1 C4 C5 C6 Env P1 P4 P5 P6

1. D e e e lf [. . .] − f1 − −
2. D lf e e [. . .] − f2 − −
3. D Lf e e [. . .] − f3 − −
4. D l′f e e Lf [. . .] f1 f4 − −
5. Lf L′

f e e D[. . .] f2 f5 − −
6. Ef l′′f e e L′

fD[. . .] f3 f6 f1 −
7. Ff L′′′

f L′
f e D[. . .] f4 f7 f2 −

8. $f L′′
f l′f e D[. . .] f5 f8 − −

9. D e l′f e $fL
′′
f [. . .] − − f4 f1

10. D e $f L′′
f [. . .] − − f5 f2

11. D e l̄n l′f [. . .] − − f7 −
12. D e e l′f l̄n[. . .] − − − f6
13. D e e l̄n [. . .] − − − f7
14. D e e ln [. . .] − − − f8
15. D e e e ln[. . .] − n1 − −

Similarly to the previous case, in 14 steps we obtain a configuration
(D, l′′1 , e, e, e, e; ln[. . .]) where ln is the label of the instruction which should
follow lf if register r is empty, that is, if the decrease of its value is not
possible.

Consider now what happens if there is an insufficient amount of objects
l′i, l

′′
i for li ∈ H is present in the environment. Notice that such symbols are

needed in step 3 and 5 by cell C4. If there is no more available (not enough
of them were produced in the initial phase by C1 and C2), then the programs
f9, f10, and f11 do not allow the halting of the computation.

From these considerations we can see that after the initialization phase,
all instructions of the register machine M can be simulated by the P colony.
If the label of the halt instruction, lh is produced, the computation halts since
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there is no program for processing the object lh. The reader can immediately
see that Π computes the same set of numbers as M.

5.3.4 Remarks

In section 5.3.1, we have shown that P colonies are able to simulate univer-
sal register machines, provided they are initialized as follows: besides the
environmental object, a finite number of objects are placed in the environ-
ment. Thus, P colonies are able to generate any recursively enumerable set
of nonnegative integers with a bounded number of cells, each containing a
bounded number of programs of a bounded length. These results represent
a first attempt to bound the number of cells and number of programs si-
multaneously, they appeared in (Csuhaj-Varjú et al., 2006b). The proofs
are based on techniques from (Csuhaj-Varjú et al., 2006a), and the fact that
there is an appropriate universal register machine with 15 instructions (Ob-
servation 5.3.2).

In sections 5.3.2 and 5.3.3 we have shown that the already very simple
model of P colony can be further simplified: First, insertion/deletion pro-
grams can be used in such a way that the cells can either only insert, or only
delete objects from the environment, and second, instead of two or three,
it is sufficient to have just one object inside each cell even if checking rules
are not allowed to be used. These last results first appeared in (Ciencialová
et al., 2009). The fact that one-symbol P colonies generate any recursively
enumerable language was known already from (Cienciala et al., 2007).
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