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FOREWORD 3

0 Foreword

A most efficient way of investigating combinatorially defined point sets in
spaces over finite fields is associating polynomials to them. This technique
was first used by Rédei, Jamison, Lovasz, Schrijver and Bruen, then, followed
by several people, became a standard method; nowadays, the contours of a
growing theory can be seen already:.

The polynomials we use should reflect the combinatorial properties of the
point set, then we have to be equipped with enough means to handle our
polynomials and get an algebraic description about them; finally, we have to
translate the information gained back to the original, geometric language.

The first investigations in this field examined the coefficients of the poly-
nomials, and this idea proved to be very efficient. Then the derivatives of
the polynomials came into the play and solving (differential) equations over
finite fields; a third branch of results considered the polynomials as algebraic
curves. The idea of associating algebraic curves to point sets goes back to
Segre, recently a bunch of new applications have shown the strength of this
method. Finally, dimension arguments on polynomial spaces have become
fruitful.

We focus on combinatorially defined (point)sets of projective geometries.
They are defined by their intersection numbers with lines (or other subspaces)
typically, like arcs, blocking sets, nuclei, caps, ovoids, flocks, etc.

This work starts with a collection of definitions, methods and results we
are going to use later. It is an incomplete overview from the basic facts to
some theory of polynomials over finite fields; proofs are only provided when
they are either very short or not available in the usual literature, and if they
are interesting for our purposes. A reader, being familiar with the topic, may
skip Sections 1-8 and possibly return later when the text refers back here.
We provide slightly more information than the essential background for the
later parts.

After the basic facts (Sections 1-4) we introduce our main tool, the Rédei
polynomial associated to point sets (5). There is a brief section on the
univariate representation as well (6). The coefficients of Rédei polynomials
are elementary symmetric polynomials themselves, what we need to know
about them and other invariants of subsets of fields is collected in Section 7.
The multivariate polynomials associated to point sets can be considered as
algebraic varieties, so we can use some basic facts of algebraic geometry (8).
Then, in Section 9 some explanatory background needed for stability results
is presented. Already Sections 1-8 contain some new results, some of them
are interesting themselves, some others can be understood in the applications
in the following sections.
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The second (and main) part contains results of finite Galois geometry,
where polynomials play a main role. We start with results on intersection
numbers of planar point sets (10). Section 10 contains the classification of
small and large super-Vandermonde sets, too. A strong result about sets
with intersection numbers having a nontrivial common divisor is presented
here, this theorem implies the famous result on the non-existence of maximal
planar arcs in odd characteristic as well. In Section 11 we show how the
method of using algebraic curves for blocking sets (started by Szényi) could
be developed further, implying a strong characterization result. Then in
sections 12, 14 and 15 we deal with different aspects of directions. In Section
12 we examine the linear point sets, which became important because of the
linear blocking sets we had dealt with in the previous section. Also here
we describe Rédei-type k-blocking sets. Then (13), with a compact stability
result on flocks of cones we show the classical way of proving extendibility,
which was anticipated in Section 9 already. After it, the contrast can be
seen when we present a new method for the stability problem of direction
sets in Section 14. Finally, Section 15 contains a difficult extension of the
classical direction problem, also a slight improvement (with a new proof) of
a nice result of Gacs. The dissertation ends with a Glossary of concepts and
Notation, and then concludes with the references.
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1 Introduction

In this work we will not give a complete introduction to finite geometries,
finite fields nor polynomials. There are very good books of these kinds avail-
able, e.g. Ball-Weiner [19] for a smooth and fascinating introduction to the
concepts of finite geometries, the three volumes of Hirschfeld and Hirschfeld-
Thas [65, 66, 67] as handbooks and Lidl-Niederreiter [79] for finite fields.
Still, the interested reader, even with a little background, may find all the
definitions and basic information here (the Glossary of concepts at the end of
the volume can also help) to enjoy this interdisciplinary field in the overlap
of geometry, combinatorics and algebra. To read this work the prerequisits
are just linear algebra and geometry.

We would like to use a common terminology.

In 1991, Bruen and Fisher called the polynomial technique as “the Jami-
son method” and summarized it in performing three steps: (1) Rephrase the
theorem to be proved as a relationship involving sets of points in a(n affine)
space. (2) Formulate the theorem in terms of polynomials over a finite field.
(3) Calculate. (Obviously, step 3 carries most of the difficulties in general.)
In some sense it is still “the method”, we will show several ways how to
perform steps 1-3.

We have to mention the book of Laszlé Rédei [91] from 1970, which
inspired a new series of results on blocking sets and directions in the 1990’s.
There are a few survey papers on the polynomial methods as well, for instance
by Blokhuis [26, 27], Szényi [102], Ball [5].

The typical theories in this field have the following character. Define
a class of (point)sets (of a geometry) in a combinatorial way (which, typ-
ically, means restrictions on the intersections with subspaces); examine its
numerical parameters (usually the spectrum of sizes in the class); find the
minimal/maximal values of the spectrum; characterize the extremal entities
of the class; finally show that the extremal (or other interesting) ones are
“stable” in the sense that there are no entities of the class being “close” to
the extremal ones.

There are some fundamental concepts and ideas that we feel worth to put
into light all along this dissertation:

e an algebraic curve or surface whose points correspond to the “deviant”

¢

or “interesting” lines or subspaces meeting a certain point set;
e cxamination of (lacunary) coefficients of polynomials;

e considering subspaces of the linear space of polynomials.
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This work has a large overlap with my book Polynomials in finite ge-
ometry [SzPpolybk|, which is in preparation and available on the webpage
http://www.cs.elte.hu/ sziklai/poly.html ; most of the topics consid-
ered here are described there in a more detailed way.
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3 Definitions, basic notation

We will not be very strict and consistent in the notation (but at least we’ll
try to be). However, here we give a short description of the typical notation
we are going to use.

If not specified differently, ¢ = p” is a prime power, p is a prime. The n-
dimensional vectorspace over the finite (Galois) field GF(q) (of g elements)
will be denoted by V(n, q) or simply by GF(q)".

The most we work in the Desarguesian affine space AG(n, q) coordina-
tized by GF(q) and so imagined as GF(¢q)™ ~ V(n, ¢); or in the Desarguesian
projective space PG(n,q) coordinatized by GF(¢) in homogeneous way, as
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GF(¢)"™ ~ V(n + 1,q), and the projective subspaces of (projective) dimen-
sion k are identified with the linear subspaces of rank (k + 1) of the related
V(n+1,q). In this representation dimension will be meant projectively while
vector space dimension will be called rank (so rank=dim+1). A field, which
is not necessarily finite will be denoted by F.

In general capital letters X, Y, Z T, ... (or X, Xy,...) will denote inde-
pendent variables, while z,y, 2, ¢,... will typically be elements of a field. A
pair or triple of variables or elements in any pair of brackets can be meant
homogeneously, hopefully it will be always clear from the context and the
actual setting.

We write X or V = (X, Y, Z,...,T) meaning as many variables as needed;
V= (X1Y9, 79, ...). As over a finite field of order ¢ for each x € GF(q)
x? = z holds, two different polynomials, f and g, in one or more variables,
can have coinciding values “everywhere” over GF(g). But in the literature
f = g is used in the sense “f and g are equal as polynomials”, we will use
it in the same sense; also simply f = g and f(X) = ¢g(X) may denote the
same, and we will state it explicitly if two polynomials are equal everywhere
over GF(q), i.e. they define the same function GF(q) — GF(q).

Throughout this work we mostly use the usual representation of PG(n, q).
This means that the points have homogeneous coordinates (z,v,z,...,t)
where z,y, z, ..., t are elements of GF(¢). The hyperplane [a, b, ¢, ..., d] of the
space have equation aX 4+ 0Y +cZ + ... +dT = 0.

For AG(n,q) we can use the big field representation as well: roughly
speaking AG(n,q) ~ V(n,q) ~ GF(¢)" ~ GF(¢™), so the points correspond
to elements of GF(¢™). The geometric structure is defined by the following
relation: three distinct points A, B, C' are collinear if and only for the cor-
responding field elements (a — ¢)?~! = (b — ¢)97! holds. This way the ideal
points (directions) correspond to (a separate set of) (¢ — 1)-th powers, i.e.
%—th roots of unity.

When PG(n, q) is considered as AG(n, q) plus the hyperplane at infinity,
then we will use the notation H,, for that (‘ideal’) hyperplane. If n = 2 then
H is called the line at infinity /.. The points of H,, or /., are often called
directions or ideal points.

According to the standard terminology, a line meeting a point set in one
point will be called a tangent and a line intersecting it in r points is an r-
secant (or a line of length r). Most of this work is about combinatorially
defined (point)sets of (mainly projective or affine) finite geometries. They
are defined by their intersection numbers with lines (or other subspaces)
typically. The most important definitions and basic information are collected
in the Glossary of concepts at the end of this work.
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4 Finite fields and polynomials

4.1 Some basic facts

Here the basic facts about finite fields are collected. For more see [79].

For any prime p and any positive integer h there exists a unique finite
field (or Galois field) GF(q) of size ¢ = p". The prime p is the characteristic
of it, meaning a + a + ... + a = 0 for any a € GF(g) whenever the number of
a’s in the sum is (divisible by) p. The additive group of GF(q) is elementary
abelian, i.e. (Z,, +)" while the non-zero elements form a cyclic multiplicative
group GF(q)* ~ Z,_1, any generating element (often denoted by w) of it is
called a primitive element of the field.

For any a € GF(q) a? = a holds, so the field elements are precisely
the roots of X7 — X, also if a # 0 then a? ! = 1 and X97! — 1 is the root
polynomial of GF(¢)*. (Lucas’ theorem implies, see below, that) we have
(a +b)P = aP 4 b* for any a,b € GF(q), so x — aP is a field automorphism.
GF(g) has a (unique) subfield GF(p’) for each ¢|h; GF(g) is an “-dimensional
vectorspace over its subfield GF(p'). The (Frobenius-) automorphisms of
GF(q) are x +— a7 for i = 0,1,...,h — 1, forming the complete, cyclic auto-
morphism group of order h. Hence z — a7 fixes the subfield GF (psed®h))
pointwise (and all the subfields setwise!); equivalently, (X?" — X)|(X9 — X)
iff ¢|h.

One can see that for any k not divisible by (¢—1), >, ccr () a® = 0. From

this, if f: GF(¢) — GF(q) is a bijective function then }_ _cr(, f(x)* =0 for
all k=1,...,qg — 2. See also Dickson’s theorem.

We often use Lucas’ theorem when calculating binomial coefficients (Z) in
finite characteristic, so “modulo p”: let n = ng +nip +nap® + ... +npt, k =
ko + kip + kop® + ... + kyp', with 0 < ny, k; < p—1, then (Z) = (Zg) (Zi)(’;ﬁ)
(mod p). In particular, in most cases we are interested in those values of k
when (}) is non-zero in GF(g), so modulo p. By Lucas’ theorem, they are
precisely the elements of M,, = {k = ko+kip+kop?*+...+ k' : 0 < k; < ny}.

We define the trace and norm functions on GF(¢") as Tryn_,(X) = X +
X4 X% 4+ .+ X9 and Normgn _,(X) = XXX X7 50 the sum and
the product of all conjugates of the argument. Both maps GF(¢"™) onto GF(q),
the trace function is GF(g)-linear while the norm function is multiplicative.

Result 4.1. Both Tr and Norm are in some sense unique, i.e. any GF(q)-
linear function mapping GF(q") onto GF(q) can be written in the form
Tryn_y(aX) with a suitable a € GF(¢™) and any multiplicative function map-
ping GF(q") onto GF(q) can be written in the form Normg_,(X*) with a
suitable integer a.
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4.2 Polynomials

Here we summarize some properties of polynomials over finite fields. Given
a field F, a polynomial f(X;, Xs,..., X}) is a finite sum of monomial terms
ailiQ.A.ikXilX; . -X,i’“, where each Xj is a free variable, a;,4,. ., , the coefficient
of the term, is an element of F. The (total) degree of a monomial is iy + iy +
... + iy if the coefficient is nonzero and —oo otherwise. The (total) degree of
f, denoted by deg f or f°, is the maximum of the degrees of its terms. These
polynomials form the ring F[X;, X5, ..., Xi]. A polynomial is homogeneous
if all terms have the same total degree. If f is not homogeneous then one
can homogenize it, i.e. transform it to the following homogeneous form:
Zdesf . f(%, %, . %), which is a polynomial again (Z is an additional free
variable).

Given f(X1,...., Xn) = Y ag.5, X' Xi» € F[X,...,X,], and the el-
ements xi,...,x, € F then one may substitute them into f: f(xy,...,x,)
= ay,. 5,2 - xn € (24, ..., 2,) is a root of fif f(x1,...,2,) = 0.

A polynomial f may be written as a product of other polynomials, if
not (except in a trivial way) then f is irreducible. If we consider f over
F, the algebraic closure of F, and it still cannot be written as a product of
polynomials over IF then f is absolutely irreducible. E.g. X?+1 € GF(3)[X] is
irreducible but not absolutely irreducible, it splits to (X +4)(X —i) over GF(3)
where 7> = —1. But, for instance, X? + Y2 + 1 € GF(3)[X, Y] is absolutely
irreducible. Over the algebraic closure every univariate polynomial splits
into linear factors.

In particular, x is a root of f(X) (of multiplicity m) if f(X) can be
written as f(X) = (X —2)™ - g(X) for some polynomial ¢g(X), m > 1, with
g(x) # 0.

Over a field any polynomial can be written as a product of irreducible
polynomials (factors) in an essentially unique way (so apart from constants
and rearrangement).

Let f: GF(q) — GF(q) be a function. Then it can be represented by the
linear combination

Vo € GF(q) f(o) = D f(a)ua(x),

a€GF(q)

where
Ha(X) = 1= (X —a)!

is the characteristic function of the set {a}, this is Lagrange interpolation. In
other terms it means that any function can be given as a polynomial of degree
< g — 1. As both the number of functions GF(¢) — GF(g) and polynomials
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in GF(q)[X] of degree < ¢ — 1 is ¢4, this representation is unique as they are
both a vectorspace of dim = ¢ over GF(q).

Let now f € GF(¢)[X]. Then f, as a function, can be represented by a
polynomial f of degree at most ¢ — 1, this is called the reduced form of f.
(The multiplicity of a root may change when reducing f.) The degree of f
will be called the reduced degree of f.

Proposition 4.2. For any (reduced) polynomial f(X) = c, 1 X7+ ...+ ¢o,

S @) = iy

2€GF(q)

where k =t(q — 1) + ko, 0 < ko < ¢ — 2. In particular, Y, f(z)= —c4-1.
z€GF(q)

Result 4.3. If f is bijective (permutation polynomial) then the reduced degree
of f¥ is at most ¢ —2 fork=1,...,q — 2.
We note that (i) if p /t |{t : f(t) = 0}| then the converse is true;

(ii) it is enough to assume it for the values k # 0 (mod p).

Let’s examine GF(¢)[X] as a vector space over GF(q).

Result 4.4. Gécs [61] For any subspace V' of GF(q)[X], dim(V') = |{deg(f) :
feVvil

In several situations we will be interested in the zeros of (uni- or multi-
variate) polynomials. Let a = (ay, as, ..., a,) be in GF(q)™. We shall refer to a
as a point in the n-dimensional vector space V(n, q) or affine space AG(n, q).
Consider an f in GF(q)[X1, ..., Xo], f =3 Qiyig.in XJ1 -+ X0,

We want to define the multiplicity of f at a. It is easy if a = 0 =
(0,0,...,0). Let m be the largest integer such that for every 0 < iy,..., 7y,
with multiplicity m.

For general a one can consider the suitable “translate” of f, i.e.
fa(Y1,...Y) = f(Y1 +a1,Ys + ag, ..., Y, + a,), and we say that f has a zero
at a with multiplicity m if and only if f, has a zero at 0 with multiplicity m.

4.3 Differentiating polynomials

Given a polynomial f(X) = > a; X', one can define its derivative
Oxf = fx = [ in the following way: f'(X) = Y.I ,ia;X""*. Note that
if the characteristic p divides ¢ then the term ia; X*~! vanishes; in particular
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deg f' < deg f — 1 may occur. Multiple differentiation is denoted by 9% f or
FOor f7, " ete. If a is a root of f with multiplicity m then a will be a root
of f" with multiplicity at least m — 1, and of multiplicity at least m iff p|m.
Also if k < p then a is root of f with multiplicity at least k iff f@(a) = 0 for
i=0,1,..k—1.

We will use the differential operator V = (0dx, dy, 9z) (when we have three
variables) and maybe V' = (9%, 05, %) and probably Vi, = (Hk, Hi, HY),
where H* stands for the i-th Hasse-derivation operator (see 5.3). The only
properties we need are that H? X* = (l;)X k=7 if k > j (otherwise 0); H’ is
a linear operator; H/(fg) = S0 H'f H/~'g; a is root of f with multiplicity
at least k iff Hf(a) = 0 for i = 0,1,...,k — 1; and finally H'H/ = ("H/)H!*+.

We are going to use the following differential equation:
V.-VF =X0xF+Y0F+ Z0zF =0,

where F' = F(X,Y,Z) is a homogeneous polynomial in three variables, of
total degree n. Let F'(X,Y,Z,\) = F(AX,\Y,\Z) = \"F(X,Y, Z), then

nALE(X,Y, Z) = (06 F)(X,Y, Z,\) = (XOx F+Y 0y F+Z0,F)(AX, \Y, AZ).

It means that if we consider V - VF = 0 as a polynomial equation then
(OzF)(X,Y, Z,\) = 0 identically, which holds if and only if p divides n =
deg(F).

If we consider our equation as (V - VF)(z,y,z) = 0 for all (z,y,2) €
GF(q)®, and deg(F) is not divisible by p, then the condition is that
F(z,y,z) = 0 for every choice of (z,y,z2), ie. F € (YIZ —-YZ9,7X —
ZX1, XY — XY1), see later.

5 The Rédei polynomial and its derivatives

5.1 The Rédei polynomial

Generally speaking, a Rédei polynomial is just a (usually multivariate) poly-
nomial which splits into linear factors. We use the name Rédei polynomial to
emphasize that these are not only fully reducible polynomials, but each linear
factor corresponds to a geometric object, usually a point or a hyperplane of
an affine or projective space.

Let S be a point set of PG(n,q), S = {P; = (a;, b;,...,d;) : i =1, ..., |S|}.

The (Rédei-)factor corresponding to a point P; = (a;, b;, ..., d;) is P,V =
a; X + b)Y + ...+ d;T. This is simply the equation of hyperplanes passing
through P;. When we decide to examine our point set with polynomials,
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and if there is no special, distinguished point in S, it is quite natural to use
symmetric polynomials of the Rédei-factors. The most popular one of these
symmetric polynomials is the Rédei-polynomial, which is the product of the
Rédei-factors, and the power sum polynomial, which is the (¢ — 1)-th power
sum of them.

Definition 5.1. The Rédei-polynomial of the point set S is defined as
follows:

E E
RY(X,Y,...T) = R(X)Y,..T) = [[(aX +biY + ..+ &T) = [[P:- V.
1=1

i=1

The points (z,y,...,t) of R, i.e. the roots R(x,y,...,t) = 0, correspond
to hyperplanes (with the same (n + 1)-tuple of coordinates) of the space.
The multiplicity of a point (z,y,...,t) on R is m if and only if the
corresponding hyperplane [z, v, ..., t] intersects S in m points exactly.

Given two point sets S7 and Sy, for their intersection

RY™(XY,..,T) = gcd<Rsl(X, Y,..,T), R®(X, YMT)>

holds, while for their union, if we allow multiple points or if S} NSy = 0, we
have
RYMY2(X)Y,...T)=R*X,Y,...T) - R®(X,Y,..,T).

Definition 5.2. The power sum polynomial of S is

Kl
GI(X,Y,..,T) =G(X,Y,.T) ==Y (a; X +bY + ... + d;T)"".

i=1

If a hyperplane [z, vy, ..., t] intersects S in m points then the corresponding
m terms will vanish, hence G(z,y, ...,t) = |S| —m modulo the characteristic;
(in other words, all m-secant hyperplanes will be solutions of G(X,Y, ..., T) —
|S|+m =0).

The advantage of the power sum polynomial (compared to the Rédei-
polynomial) is that it is of lower degree if |S| > ¢. The disadvantage is
that while the Rédei-polynomial contains the complete information of the
point set (S can be reconstructed from it), the power sum polynomial of two
different point sets may coincide. This is a hard task in general to classify
all the point sets belonging to one given power sum polynomial.

The power sum polynomial of the intersection of two point sets does not
seem to be easy to calculate; the power sum polynomial of the union of two
point sets is the sum of their power sum polynomials.
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The next question is what happens if we transform S. Let M € GL(n
1,q) be a linear transformation. Then

IS| IS|
RMS(V) = [[(MPy) -V = H P, - (M'"V)=R(M"V).
i=1
For a field automorphism o, ) (V) = (R%)(®)(V), which is the polynomial
R? but all coefficients are changed for their image under o.
Similarly GM)(V) = G¥(MTV) and G°) (V) = (G5 (V).
The following statement establishes a further connection between the
Rédei polynomial and the power sum polynomial.

Lemma 5.3. (Géacs) For any set S,
RS- (G® —|9|) = (X1 = X)Ox R+ (YT = Y)OyR® + ... + (T* — T)Or R,

In particular, R%(G® —|S|) is zero for every substitution |x,y, ..., t].

Next we shall deal with Rédei-polynomials in the planar case n = 2. This
case is already complicated enough, it has some historical reason, and there
are many strong results based on algebraic curves coming from this planar
case. Most of the properties of “Rédei-surfaces” in higher dimensions can
be proved in a very similar way, but it is much more difficult to gain useful
information from them.

Let S be a point set of PG(2,q). Let Lx = [1,0,0] be the line {(0,vy, 2) :
y,z € GF(q),(y,2) # (0,0)}; Ly = [0,1,0] and Ly = [0,0,1]. Let Nx =
|S N Lx| and Ny, Nz are defined similarly. Let S = {P; = (a;,b;,¢;) : i =
1.5}

Definition 5.4. The Rédei-polynomial of S is defined as follows:

R(X,Y,Z) =

S| S|

[T(a; X +bY +¢;Z) = [[Pi- V=ro(Y, Z2) XI5 41 (Y, Z)XISI7L 4

i=1 =1
78| (Y, Z).

For each j =0, ..., |S], 7;(Y, Z) is a homogeneous polynomial in two vari-
ables, either of total degree j precisely, or (for example when 0 < j < Nx—1)
r; is identically zero. If R(X,Y, Z) is considered for a fixed (Y, Z) = (y, 2) as
a polynomial of X, then we write R, ,(X) (or just R(X,y,2)). We will say
that R is a curve in the dual plane, the points of which correspond to lines
(with the same triple of coordinates) of the original plane. The multiplicity
of a point (z,y,2z) on R is m if and only if the corresponding line
[z,y, z] intersects S in m points exactly.
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Remark 5.5. Note that if m = 1, i.e. [x,y,z]| is a tangent line at some
(ag, b, c) € S, then R is smooth at (x,y, z) and its tangent at (x,y,z) coin-
cides with the only linear factor containing (x,y, z), which is a; X +bY + ¢, Z.

As an example we mention the following.

Result 5.6. Let S be the point set of the conic X? —Y Z in PG(2,q). Then
GS(X,Y,Z) = XtV if q is even and GS(X,Y,Z) = (X2 —4Y 2)'% if q is
odd. One can read out the geometrical behaviour of the conic with respect
to lines, and the difference between the even and the odd case.

I found the following formula amazing.

Result 5.7. Let S be the point set of the conic X* —Y Z in PG(2,q). Then

RX,Y.Z)=Y [] (X +&Y +2)=Y(Z'+Y"'Z ~ CaY'T 27 —
teGF(q)
O XY 2 Cus XY 2 - OLXY 22— Gy X9 2),
2 2
where Cy, = k%l(%f) are the famous Catalan numbers.

Remark. If there exists a line skew to S then w.l.o.g. we can suppose that
LxNS =0 and all a; = 1. If now the lines through (0, 0, 1) are not interesting
for some reason, we can substitute Z = 1 and now R is of form

Kl
RX,Y) = [[(X +bY +¢) = X5 4 (V)X 44 (Y).

i=1

This is the affine Rédei polynomial. Its coefficient-polynomials are
r;(Y) = o;({biY +¢ i =1,...,]5]}), elementary symmetric polynomials
of the linear terms b;Y" + ¢;, each belonging to an ‘affine’ point (b;,¢;). In
fact, substituting y € GF(q), by + ¢; just defines the point (1,0, b,y + ¢;),
which is the projection of (1, b;,¢;) € S from the center ‘at infinity’ (0, —1,y)
to the line (axis) [0, 1, 0].

5.2 “Differentiation” in general

Here we want to introduce some general way of “differentiation”. Give each
point P; the weight u(P;) = u; for i = 1,...,|S|. Define the curve

51
R(X,Y,Z)
(XY 2 =Y L .
R,(X.Y, Z) WX T 0,Y + 62 (+)

=1
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If Vu; = a; then R, (X,Y, Z) = OxR(X,Y, Z), and similarly, Vi; = b; means
OJy R and Yu; = ¢; means 0z R.

Theorem 5.8. Suppose that [v,y,z] is an m-secant with S N [x,y,z] =
{Pti(atia btmcti) . Z = 1, ,m}

(a) If m > 2 then R (v,y,z) = 0. Moreover, (z,y,z) is a point of the
curve R, of multiplicity at least m — 1.

(b) (x,y,2) is a point of the curve R, of multiplicity at least m if and only
if for all the Py, € SN [x,y, 2] we have y;; = 0.

(c) Let [x,y,z] be an m-secant with |x,y,z] N[1,0,0] ¢ S. Consider the

line [0, —z,y| of the dual plane. If it intersects R/ (X Z) at (z,y,2)

with intersection multiplicity > m then Z;n:l Zt = 0.

Proof: (a) Suppose w.lo.g. that (z,y,z) = (0,0,1) (so every ¢;, = 0).

Substituting Z = 1 we have R/ (X,Y,1). In the sum (*) each term of
R(X,Y,1)

Zi¢{t1 ,,,,, tm} M@ X 10,V 10

after expanding it, there is no term with (total) degree less than m (in X

will contain m linear factors through (0,0,1), so

and Y).
Consider the other terms contained in
Z M.R(X,Y, 1)  R(X,Y,1) z’”: RSO0 (X YV, 1)
"aX +bY RSN0OI(X Y1) ag X +0.Y
1€{t1,....tm } j=1 J J
Here W%@m is non-zero in (0,0,1). Each term BERONXYD contains

ar, X b, Y
at least m — 1 linear factors through (0,0, 1), so, after expanding it, there is
no term with (total) degree less than (m — 1) (in X and Y). So R, (X,Y,1)
cannot have such a term either.

(b) As Rﬁm[o,o,u ,(X ,Y, 1) is a homogeneous polynomial in X and Y, of
total degree (m — 1), (0,0, 1) is of multiplicity exactly (m —1) on R(X,Y,1),
SN(0,0,1] ,(X .Y, Z) happens to vanish identically.

RSﬁ[O,O,l] (X,Y,l)
at; X+btj Y

nomials in X and Y, of total degree (m —1). Form an m x m matrix M from
the coefficients. If we suppose that a;, = 1 for all P,, € SN [0,0,1] then the

. 1 . RSﬁ[0,0,l] XY1 .
coefficient of X 17*Y* in atTI(nY)’ s0 My, is 04 ({byy , ..., by, } \ {by, }) for
J J

j=1,....,mand k=0,....,m — 1. So M is the elementary symmetric matrix
(see in Section 7 on symmetric polynomials) and [det M| = [,_; (b, — b)),
so if the points are all distinct then det M # 0. Hence the only way of
RPN (X Y1) = 0 is when V) gy, = 0.

unless R,

Consider the polynomials . They are m homogeneous poly-
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In order to prove (c), consider the line [0, —z,y] in the dual plane. To
calculate its intersection multiplicity with R, (X,Y,Z) at (z,y,2) we have
to look at R (X,y,2) and find out the multiplicity of the root X = z. As

X
before, for each term of 3 ., o ui—a?ibi’fc,z

for the other terms we have

this multiplicity is m, while

Z R(X,y,Z) _ R<X7y7 Z) i RSﬂ[m,y,z](X’yyz)

Hi a; X +by+c, RSNevi(X,y, z) 4 K ay, X + by + ez

ie{tl,...,tm} 7=1

Here W%% is non-zero at X = x. Now R5Mv2(X y 2) =
m
[T2) a, X + by + ¢y 2.
RSN (X y,2)
at; X+btj y+ctj z
that the d £ gy B (X2)
a ¢ degree o Zj:l Ht; ar; X+bi;y+er,z
cally zero), as the intersection multiplicity is at least m — 1. So if we want
intersection multiplicity > m then it must vanish, in particular its leading
coefficient

Each term is of (X-)degree at most m — 1. We do know

is at least (m — 1) (or it is identi-

Remark. If Vu; = a;, i.e. we have the partial derivative w.r.t X, then each

% are equal to 1. The multiplicity in question remains (at least) m if and
J

only if on the corresponding m-secant [z, y, z] the number of “affine” points

(i.e. points different from (0, —z,y)) is divisible by the characteristic p.

In particular, we may look at the case when all u(P) = 1.
Consider

RIX.Y.Z
R - beib Y+>b ~ = o (X + 1Y + 557 b€ BY).
beB 1 2 3

For any > 2-secant [x,y, z] we have Ry(x,y,z) = 0. It does not have a linear
component if |B| < 2¢ and B is minimal, as it would mean that all the lines
through a point are > 2-secants. Somehow this is the “prototype” of “all
the derivatives” of R. E.g. if we coordinatize s.t. each b, is either 1 or 0,
then xR = 3" pi 1y %, which is a bit weaker in the sense that it
contains the linear factors corresponding to pencils centered at the points in
BN Lyx. Substituting a tangent line [x,y, 2], with BN [z,y, z] = {a}, into R,
we get Ri(z,y,2) = [[pep o) (012 + bay + b32), which is non-zero. It means
that Ry contains precisely the > 2-secants of B. In fact an m-secant will
be a singular point of Ry, with multiplicity at least m — 1.
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5.3 Hasse derivatives of the Rédei polynomial

The next theorem is about Hasse derivatives of R(X,Y, Z). (For its proper-
ties see Section 4.3.)

Theorem 5.9. (1) Suppose [x,y, 2] is an r-secant line of S with [x,y, z] N
S ={(as, by, cs,) : l=1,...,r}. Then (H\yH,H, "™ R)(z,y,2) =

R(z,y,z) - E sy Qs +-Osi, Osiy D Comiy o -Com s

mi<mg<...<m;

mi+1<4.4<mi+]~

mi+j+1<~»<’mr
{my,emr}={1,2,...,7}

where R(x,y,2) = Hl¢{51
independent from i and j.

ST}(alx + by + ¢z), a non-zero element,

.....

(2) From this we also have

S (HHHy ™ R) (@, y,2) XY 2 = Rla,y,2) [ X5, Y +6,2),

0<i+j<r 1=1
constant times the Rédei polynomial belonging to [x,y,z] N S.
(3) If [x,y,2] is a (> r + 1)-secant, then (HxHLH, " R)(x,y,2) = 0.

(4) If for all the derivatives (HyxHLH,, " R)(x,y,2) = 0 then [r,y, 2] is

not an r-secant.

(5) Moreover, [z,y,2] is a (> r+1)-secant iff for all i, 1a,1i3,0 < iy + iy +
iz <1 the derivatives (HyHyHS R)(z,y,z) = 0.

(6) The polynomial

ST (MM R)(XY, 2)X 2

0<i+j<r
vanishes for each |x,y, z] (> r)-secant lines.

(7) In particular, when [x,y,z] is a tangent line to S with [x,y,z] NS =
{(as, b, )}, then

(VR)(ZL‘,y,Z) = ( (axR)(ZL‘,y, 2)7 (8yR)(x,y,z), (azR)(ZE,y,Z) ) = (at7btvct)'

If [x,y, 2] is a (> 2)-secant, then (VR)(x,y,z) = 0. Moreover, [z,y, 2|
is a (> 2)-secant iff (VR)(z,y,z) = 0.
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Proof: (1) comes from the definition of Hasse derivation and from a,x +
bs,y + 5,2 =0;1=1,...,r. In general (HyHYHS R)(X,Y,Z) =

E Ay Q- Qmg Oy Oy oo Cona i 1 "'Cmn+i2+z‘3| IaiX—i—biY—i—ciZ).
m)<mg<..<my, AZ{M1, M g tig b
My 1 <o <My g
mi1+i2+1<‘“<mi1+i2+i3
[{m1,..., mi1+i2+i3}\:i1+i2+i3

(2) follows from (1). For (3) observe that after the “r-th derivation” of R
still remains a term ag,x + b,y + ¢5,2 = 0 in each of the products. Suppose
that for some r-secant line [z, y, 2] all the r-th derivatives are zero, then from
(2) we get that [[,_;(as, X +bsY + ¢, Z) is the zero polynomial, a nonsense,
so (4) holds. Now (5) and (7) are proved as well. For (6) one has to realise
that if [z, y, 2] is an r-secant, still [],_,(as,z + bs,y + ¢5,2) = 0.

Or: in the case of a tangent line

S| S|

VR=>Y V(@®; - V)[[P:- V=) P, ][®:- V). .

i =1 i#j

6 Univariate representations

Here we describe the analogue of the Rédei polynomial for the big field rep-
resentations.

6.1 The affine polynomial and its derivatives

After the identification AG(n,q) < GF(¢"), described in Section 3, for a
subset S C AG(n, q) one can define the root polynomial

Bs(X) = BX) = [[(X — 8) = S (- 1o x5+

seS k

and the direction polynomial

P(T,X)=[[(T = (X = 9)7") = > (-1, T19*.

seS k

Here o, and ¢, denote the k-th elementary symmetric polynomial of the set
S and {(X — s)97! : s € S}, respectively. The roots of B are just the points
of S while F(x,t) = 0 iff the direction ¢ is determined by x and a point of .S,
orifx e Sandt=0.
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If F(T,x) is viewed as a polynomial in T, its zeros are the 6,,_;-th roots
of unity, moreover, (z — s1)7! = (x — s9)97 ! if and only if x,s; and sy are
collinear.

In the special case when S = L, is a k-dimensional affine subspace, one
may think that B, will have a special shape.

We know that all the field automorphisms of GF(¢") are Frobenius-
automorphisms x +— 29" for i = 0,1,....,n — 1, and each of them induces a
linear transformation of AG(n,q). Any linear combination of them, with co-
efficients from GF(¢™), can be written as a polynomial over GF(¢"), of degree
at most ¢"~!. These are called linearized polynomials. Each linearized poly-
nomial f(X) induces a linear transformation z — f(x) of AG(n,q). What’s
more, the converse is also true: all linear transformations of AG(n, ¢) arise this
way. Namely, distinct linearized polynomials yield distinct transformations
as their difference has degree < ¢"~! so cannot vanish everywhere unless they
were equal. Finally, both the number of n x n matrices over GF(¢q) and lin-
earized polynomials of form coX +¢; X9+ X 4+ .. 4+ ¢,_1 X7 ¢; € GF(¢")
is (¢")".

Proposition 6.1. (i) The root polynomial of a k-dimensional subspace of
AG(n,q) containing the origin, is a linearized polynomial of degree q;

(i) the root polynomial of a k-dimensional subspace of AG(n,q) is a lin-
earized polynomial of degree ¢* plus a constant term.

Now we examine the derivative(s) of the affine root polynomial (written
up with a slight modification). Let S C GF(¢") and consider the root and
direction polynomials of St = {1/s: s € S}:

B(X) =] -sXx)=> (-1)for X"

seS k

F(T,X) =[] = (1 =sX)'T) =) (-1)* 6, T".

SES k

For the characteristic function x of SI™1 we have |S| — x(X) = > co(1 —
sX)?" "' Then, as B'(X) = B(X)Y . g —x, We have (X — X7")B’
B(|S]| = Yo,es(l — sX)9" 1) = By, after derivation B’ + (X — X7")B" =

B'x + BY/, so B' = (Bx)' and (as Bx = 0) we have BB’ = B%y'.
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7 Symmetric polynomials

7.1 The Newton formulae

In this section we recall some classical results on symmetric polynomials. For
more information and the proofs of the results mentioned here, we refer to
[111].

The multivariate polynomial f(X, ..., X;) is symmetric, if f( X1, ..., X}) =
F( Xz, -, Xr) for any permutation 7 of the indices 1,...,¢. Symmetric
polynomials form a (sub)ring (or submodule over F) of F[Xq,..., X;]. The
most famous particular types of symmetric polynomials are the following
two:

Definition 7.1. The k-th elementary symmetric polynomial of the variables
X1, ..., Xy is defined as

on(X1, .., X,) = > X, X, X,

0 is defined to be 1 and for j > ¢ o; = 0, identically.

Given a (multi)set A = {ay, as, ..., a; } from any field, it is uniquely deter-
mined by its elementary symmetric polynomials, as

t t

Y a(AHXT =T](X +a).

i=0 j=1

Definition 7.2. The k-th power sum of the variables X7, ..., X; is defined as
t
(X1, Xy) =) XF
i=1

The power sums determine the (multi)set a “bit less” than the elementary
symmetric polynomials. For any fixed s we have

; (f) m(A) X = z;(x +ay)*

but in general it is not enough to gain back the set {as,...,a;}. Note also
that in the previous formula the binomial coefficient may vanish, and in this
case it “hides” m; as well.
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One may feel that if a (multi)set of field elements is interesting in some
sense then its elementary symmetric polynomials or its power sums can be
interesting as well. E.g.

A =GF(q): 0j(A) =m;(A) = { _(1): ii _ ;’E’i:”q 2

If A is an additive subgroup of GF(q) of size p*: 7;(A) = 0 whenever
p fj < q—1holds. Also 7;(A) =0 for j =1,...,p" — 2, p".

If A is a multiplicative subgroup of GF(q) of size d|(q — 1): 0;(A) =
mj(A)=0forj=1,...,d—1.

The fundamental theorem of symmetric polynomials: Every symmet-
ric polynomial can be expressed as a polynomial in the elementary symmetric
polynomials. ]

According to the fundamental theorem, also the power sums can be ex-
pressed in terms of the elementary symmetric polynomials. The Newton
formulae are equations with which one can find successively the relations in
question. Essentially there are two types of them:

ko = mop_1 — To0p—g + ... + (=1) 'mop_i + ... + (=D 'm0y (N1
and
Ttk — Mak—101 + ...+ (—1)i7Tt+k_i0'i + ...+ (—1)t7l'k0't = 0. (N2)

In the former case 1 < k < t, in the latter £ > 0 arbitrary. Note that if we
define o; = 0 for any ¢ < 0 or ¢ > t, and, for a fixed k > 0, 79 = k, then the
following equation generalizes the previous two:

K
> (—1)mop; = 0. (N3)

i=0
One may prove the Newton identities by differentiating

S|

B(X)=][1+sX)=> X",

ses

Symmetric polynomials play an important role when we use Rédei poly-
nomials, as e.g. expanding the affine Rédei polynomial [[,(X + a;Y +b;) by
X, the coefficient polynomials will be of the form oy ({a;Y + b; : i}).
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Result 7.3. Ezpanding the Rédei-polynomaial

[T X -ay—fa) =) r(y)x*

a€GF(q) k=0

fork=1,..,q—2 we get degy (rx) < k — 1; equality holds iff c,— # 0.

Xk ok

There are some determinant formulae being intimately connected to sym-
metric polynomials. Given S = {x1, 29, ..., z,}, the following determinant is

called the Vandermonde-determinant of S:

1 1 1
x1 X2 Tn
x? 2 .. x2
VAM (@2 omn) = | e = [ =)
. 1<j
it pnt an=t

1'12 1‘22 n2 n
P P P
MRDP(LCl,...,I'n) = 7 Ty T, _ H Z}\sz
(AL, An)EPG(n—1,P) i=1

Pn—l Pn—l
5 T

Note that this formula gives the value of the determinant up to a non-zero

constant only, but usually we ask whether det = 0 or not.
The elementary symmetric determinant of S is

1 1 1
oS\ {m}) oS\ {r2)) o or(S\ {ea))
oS\ n)) oS\ ) - S\ ) | = [ - 1)

: i<j
on-1(S\{z1}) on1(S\{z2}) ... on1(S\{zn})
One may give a unified proof for the determinant formulae, consider-

ing xi,...,z, as free variables. Note that (a) VdM (zy,xz,...,x,) # 0 iff
{z1, ..., x, } are pairwise distinct; (b) M RDpe (21, T2, ..., x,) # 0 iff {21, ..., 2, }

are independent over GF(p°).
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Result 7.4. The following general form of the elementary symmetric deter-
minant can be defined: Given S = {x1,Za, ..., Tp, Tpi1, oy T},

1 1 1
o1(S\{z1}) o1 (S\{z2}) ...  o1(S\{zn})
o2(S\{z1})  o2(S\{z2}) .. o2AS\{zn}) | = H (z; — z;),

1<i<j<n

on-1(S\{z1}) on1(S\{z2}) . on-1(S\{zn})
so somehow the elements x, 11, ..., X, “do not count”.

Result 7.5. We have (folklore, Ball)

H (T4 M X1+ XoXo+ o+ A1 X + M) =

AEGF(q)™
T Xl X2 X"_l 1

T X{ X3 .oX!' |1 X1 Xo . Xp 1

n— q q q
Tq2 Xif ng Xgil 1 le2 X22 an)_l 1
= . / X x$ XY, 1
’ n n " an_l Xg"_l Xq"‘l1 1

T X Xx$ L X1 n-

8 Basic facts about algebraic curves

In the applications we need bounds on the common points of two curves, and
bounds on the number of points on a single curve.

Theorem 8.1. (Bézout) If f and g has no common component then the
number of their common points, counted with intersection multiplicities, is
at most deg(f)deg(g). Over the algebraic closure F always equality holds. g

Now let F = GF(q). How many points can a curve f € GF(q)[X,Y, Z] of
degree n have over GF(¢)? Denote this number by N, = N,(f).

Theorem 8.2. Hasse-Weil, Serre For an absolutely irreducible non-
singular algebraic curve f € GF(q)[X,Y, Z] of degree n we have

[No(f) = (¢ + 1) <g[2Vg] < (n=1)(n = 2)/g.
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In the theorem g denotes the genus of f, we do not define it here. Note
that N, counts the points of f with multiplicities, also that for GF(q) C
GF(¢q1) we have Ny (f) < Ny, (f).

It happens that some absolutely irreducible component of f cannot be
defined over GF(q) (but it still has some GF(g)-rational points, i.e. points in
PG(2,q)). Then the following bound can be used:

Result 8.3. For an absolutely irreducible algebraic curve f € GF(q)[X,Y, Z]
of degree n, that cannot be defined over GF(q), we have Ny(f) < n?.

In some cases the Hasse-Weil bound can be changed for a better one, for
example when g = p is a prime number.

Theorem 8.4. Stéhr-Voloch [100] For an irreducible algebraic curve f €
GF(¢)[X,Y,Z], ¢ = p", of degree n with N, rational points over GF(q) we
have

(1) if n > 1, not every point is an inflexion and p # 2 then N, < %n(q—l—n—l);
(i1) if n > 2, not every point is an inflexion and p = 2 then N, < %n(q +
2n —4);

(iii) if ¢ = p and n > 2 then N, < 2n(n — 2) + 2np;

(w)ifg=p, 3<n< %p and f has s double points then N, < %n(5(n —-2)+
p) — 4s.

In (i) the condition is automatically satisfied if ¢ = p is a prime.
As an illustration one can prove the following statement easily.

Result 8.5. Let f(X) be a polynomial of degree at most /q, (q odd), which
assumes square elements of GF(q) only. Then f = g for a suitable polyno-
mial g(X).

8.1 Conditions implying linear (or low-degree) compo-
nents

In the applications it is typical that after associating a curve to a certain
set (in principle), the possible linear components of the curve have a very
special meaning for the original problem. Quite often it more or less solves the
problem if one can prove that the curve splits into linear factors, or at least
contains a linear factor. Here some propositions ensuring the existence of
linear factors are gathered. The usual statement below considers the number
of points (in PG(2,¢)) of a curve. We will use two numbers: for a curve C,
defined by the homogeneous polynomial f(X,Y, Z), M, denotes the number
of solutions (i.e. points (z,y,2) € PG(2,q)) for f(z,y,2) = 0, while N,
counts each solution with its multiplicity on C. (Hence M, < N,.)
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Result 8.6. Barlotti-bound If a curve of degree n has no linear factors
over GF(q) then N, < (n—1)g+n. In fact, if a point set of PG(2, q) intersects
every line in at most n points then it has at most (n — 1)q + n points.

Proposition 8.7. [SzPnopts] A curve of degree n defined over GF(q), with-
out linear components, has always N, < (n — 1)q + 5 points in PG(2,q).

Sketch of the proof: let £ be maximal such that every tangent of the curve

contains at least k& points of the the curve (counting without multiplicity, in
PG(2,q)). Easy to see that (i) N, < (n—1)g+k; (ii)) N, < (n—1)g+(n—Fk)a

In [SzPnopts| I conjectured the following, which was later called by Kim
and Homma “the Sziklai Conjecture”:

-GCeonjeeture 8.8. [SzPnopts|: We conjecture that a curve of degree n defined
over GF(q), without linear components, has always N, < (n —1)q+ 1 points
in PG(2,q).

I also mentioned that for n = 2,,/¢ + 1, — 1 it would be sharp as the
curves X2 —Y Z, XVItl 4 YyVa+l 4 7vVat! and o X971+ Y9! — (o + 3) 297!
(where o, 5,0 + 3 # 0) show. It can be called the Lunelli-Sce bound for
curves, for some histrorical reason.

Note that it is very easy to prove the conjecture in the following cases:

(i) if there exists a line skew to the curve and (¢,n) = 1;

(ii) if n < /g +1then ¢+ 14 (n—1)(n —2)\/q < ng — g+ 1 proves it by
Weil’s bound Theorem 8.2;

(iii) if the curve has a singular point in PG(2, ¢);
(iv) if n > ¢+ 2.

The statement (ii) can be proved by induction: if C' has more points then
it cannot be irreducible, so it splits to the irreducible components C; U Cy U
... U Cy with degrees ny, ..., ng; if each C; had < (n; — 1)q + 1 points then in
total C' would have < Zle(niq —q+1)=nqg—k(g—1) < ng—q+1 points.
So at least one of them, C; say, has more than n;q — ¢+ 1 points. By Result
8.3 C; can be defined over GF(q) and Weil does its job again.
For (iii) the Barlotti-bound, recounted looking around from a singular point,
will work. 1

In a series of three papers, recently Homma and Kim proved the conjec-
ture ([72, 73, 74]), except for the case ¢ = 4, f = X'+ Y* + Z4 + X?Y? +
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Y222+ Z2X? + XY Z + XY?Z + XY Z? = 0 for which it is false (i.e. this
is the unique counterexample, it has 14 GF(4)-rational points). They also
found out, what neither me, nor other experts of the field had known, that
Proposition 8.7 had been known by Segre many years before (see [94].).

The following lemma is a generalization of a result by Szonyi. For d =1
it can be found in Sziklai [SzPdpow], which is a variant of a lemma by Sz6nyi
[104].

Lemma 8.9. Let C,, 1 < d < n be a curve of order n defined over GF(q), not
containing a component defined over GF(q) of degree < d. Denote by N the

number of points of C,, in PG(2,q). Choose a constant ﬁ + % < a.
Assume that n < a,/q — é +1. Then N <n(q+ 1)a.

It works also with a > ﬁvt%_&ﬁ, n < a,/q—d+2, N < anq. Here

a = can be written (that is often needed) when d < /3.
Proof: Suppose first that C,, is absolutely irreducible. Then Weil’s theorem
([113], [65]) gives N < g+ 1+ (n—1)(n —2)/g < n(qg + 1)a. (The latter
inequality, being quadratic in n, has to be checked for n = d + 1 and n =
a q—é—kl only.)

If C,, is not absolutely irreducible, then it can be written as C, = D;, U
... UD;,, where D;; is an absolutely irreducible component of order #;, so
> i—1%; = n. If D;; can not be defined over GF(g), then it has at most
N, < (i;)* < ij(¢ + 1)a points in PG(2,q) (see Ex. 8.3). If D;, is defined
over GF(g), then the Weil-bound implies again that N;; <i;(q+ 1)a. Hence

N:ZNZ-J. SZij(q+1)a:n(q+1)a. ]
j=1 j=1
For applications see Section 9, Theorem 13.1, Theorem 13.2 and Theorem

13.7.

Result 8.10. If ¢ = p is prime and o > % then in the theorem above n <
(3o — %)p + 2 is enough for N < n(p+ 1)a.

9 Finding the missing factors, removing the
surplus factors

Here we treat a very general situation, with several applications in future.
Given A = {ay,...,a,-} C GF(g), all distinct, let F(X) =[] (X — a;)

i=1
be their root polynomial. We would like to find the “missing elements”
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{ag-c+1, -, aq} = GF(q) \ A, or, equivalently, G*(X) = [[, ., (X — a).

Obviously, G*(X) = %, so F(X)G*(X) = X?— X. Expanding this, and
introducing the elementary symmetric polynomials

0 = 0;(A), o; = or(GF(g) \ A),

we get X9 — X =

(X172 — o X 4 0 X972 — L+ o, o1 X Fo, o)X —of X +
osX T2 — .+ o X Fol),

from which ¢} can be calculated recursively from the oy-s, as the coef-
ficient of X777, 5 =1,..,¢ —21is 0 = 0] + 0;_y01 + ... + 0701 + 0y; for
example

0f = —01; 03 =00 —0y 05 =—0)+ 20109 — 03; etc. (1)

Note that we do not need to use all the coefficients/equations, it is enough

to do it for j = 1,...,e. (The further equations can be used as consequences

of the fact that the a;-s are pairwise distinct, there are results making profit
from it.)

The moral of it is that the coefficients of G*(X') can be determined from

the coefficients of F/(X) in a “nice way”.
* * %

Let now B = {by,...,by+} O GF(g) be a multiset of elements of GF(q),

and let F(X) = [[Z7(X — b;) be their root polynomial. We would like

to find the “surplus elements” {by,,....,br.} = B\ GF(gq), or, equivalently,
G(X) = T, (X = by,). Obviously, G(X) = £%0 5o F(X) = (X9 —

r Xa—X
X)G(X). Suppose that € < g — 2. Expanding this equation and introducing

the elementary symmetric polynomials

o; =0;(B), or=o0k(B\ GF(q)),

we get X9 — g X9t f gy X9e2 - Lo X 30, X4 .
o e 1 X Foue = (X1=X)( X -1 X 40X 72— .. £0. 1 X Fa.) =

= X9 g X 5, X2 45, X 165, X9+ terms of lower degree.
From this 7; can be calculated even more easily then in the previous case:
op=opforallk=1,... ¢. (2)

Note that if € > ¢ — 1 then it’s slightly more complicated.
X k%
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In both case suppose now that instead of the “elements” {a;} or {b;} we
have (for example) linear polynomials ¢;Y + d; and a set S C GF(g) such
that for each y € S the set A, = {¢;y +d; : i} consists of pairwise distinct
elements of GF(q), or, similarly, the multiset B, = {¢;y + d; : i} contains
GF(q). Then the oy-s in the reasonings above become polynomials in Y,
with degy (o) < k. Now one cannot speak about polynomials o} (Y") (or
a,(Y), resp.) as there is no guarantee that the missing values (or the surplus
values) for different y-s can be found on ¢ lines. So first we define o (y) (or
k(y), resp.), meaning the coefficient of X*7* in Gy (X) or G;(X), so the
elementary symmetric function of the missing (or surplus) elements when
substituting Y = y € S. However, the equations for the o}-s or o;-s are still

valid. So one may define the polynomials analogously to (1):
def def

oi(Y) = —ou(Y); 03(Y) = of(Y) — oa(Y);
oL (V)Y —o3(Y) + 201(YV) o2 (V) — 03(Y); ete.
or analogously to (2):

(V) op (V) forall k=1,....¢

with the help of them. Note that from the defining equations it is obvious
that
degy 0, (Y) < k and degy 74 (Y) < k.

Now we can define the algebraic curve

GX V)Y X (VX 4o (VX2 — ot (V)X Foi(Y)

or in the other case

GX,Y)E X - (V)X 4+ 5 (YV)XT2— . 5., (V)X Fa.(Y).

As before, for each y € S we have that the roots of G(X,y) are just the
missing (or the surplus) elements of A, or B, resp. Our aim is to factorize
G*(X,Y) or G(X,Y) into linear factors X — (oY + f3;). To do so, observe
that G*(X,Y) has many points in GF(q) x GF(q): for any y € S we have ¢
solutions of G*(X,y) = 0, i.e. the € missing values after substituting ¥ =y
in the linear polynomials ¢;Y + d;, so after determining the sets A,. So
G*(X,Y) has at least ¢|S| points.

A similar reasoning is valid for G(X,Y). If it splits into irreducible com-
ponents G = G1G5---G,, with deg G; = degy G; = &;, > &; = ¢, then for
any y € S, the line Y = y intersects G; in ¢; points, counted with intersection
multiplicity. So the number of points on G; is at least ¢;|S| —¢&;(e; — 1), where
the second term stands for the intersection points of G; and 0xG;, where the
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intersection multiplicity with the line Y = y is higher than the multiplicity
of that point on G;. So, unless some G; has zero partial derivative w.r.t. X,
we have that G has at least > &;|S| — &;(e; — 1) > ¢|S| — e(e — 1) points.
Now we can use Lemma 8.9 (or any similar result) repeatedly, with d = 1,
it will factorize G(X,Y’) into linear factors of the form X — (a;Y + §;) if
deg G(X,Y), which is at most ¢ in our case, is small enough, i.e. if ¢ < /g

and |S| > max{a_lx;%%,% (¢ + 1) in the first and |S| > max{#,% ,
(g +1)+¢e—1 in the second case.

It means, that one can add e linear polynomials o;Y 4 ; in the first
case such that for any y € S, the values {¢;y + d;} U {ojy + 3;} = GF(q).
In the second case we have a weaker corollary: for any y € S, the values
{ciy + d;} \ {ajy + B;} = GF(q), which means that adding the new lines
;Y 4+ (; “with multiplicity= —1” then S x GF(q) is covered exactly once.
(What we do not know in general, that these lines were among the given
q + ¢ lines, so whether we could remove them.)

Finally, these lines (or similar objects), covering S x GF(gq) usually have
some concrete meaning when applying this technique; this work contains
some applications, see Theorem 13.4, Section 14, etc.

The arguments above are easy to modify when we change some of the
conditions, for example when a; or b; is allowed to be some low degree (but
non-linear) polynomial of Y.

Result 9.1. Using the second (“surplus”) case above one can prove (Szényi)
that a blocking set B C PG(2,q) with |B N AG(2,q)| = ¢+ 1 affine points
always contains a(n affine) point that is unnecessary (i.e. it can be deleted
without violating the blocking property).

Result 9.2. Let fi(T), i = 1,...,q — € be polynomials of degree at most d,
and suppose that their graphs {(t, f;(t)) : t € GF(q)} are pairwise distinct.
Easy to prove that if ¢ < c\/q then one can find fo_ci1(T), ..., fo(T), each
of degree at most d such that the graphs of these q polynomials partition the
affine plane.

Result 9.3. Let f;(T), i = 1,...,q—e be polynomials, each from a subspace U
of GF(q)[T] with 1 € U, and suppose that their graphs {(t, f;(t)) : t € GF(¢)}
are pairwise distinct. One can prove that if € is small enough then one
can find fo_ci1(T), ..., fo(T), each from U, such that the graphs of these q
polynomials partition the affine plane.
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10 Prescribing the intersection numbers with
lines

Suppose that a function m : £ — N is given, where L is the set of lines
of PG(2,q). The problem is to find conditions, necessary and/or sufficient,
under which we can find a point set S such that |[SN¢| =m({) for all ¢ € L.

Note that one can pose the similar question for any hypergraph.

If A denotes the incidence matrix of the plane PG(2,q), m =
(m(l), m(l),....,m(lpziq41)) is the weight-vector, then the problem is re-
duced to finding a (“characteristic vector”) v such that Av = m. It is
quite natural to write A in a symmetric form (i.e. indexing the rows and
columns with homogeneous triples from GF(g) in the same order). As A is
non-singular, we have v.= A~'m. Now one can turn the question around: for
which m will v be of the required type, for example a non-negative, integer
or 0-1 vector?

It is easy to compute that

1 1 1 1
At = AT~ J=A———  Jand JA= (¢+1)J, so A2 —J—qI = 0.
q q(q+1) ¢ g+ (@+1)J, 50 !

Hence we also know that the eigenvalues of A are ¢ + 1, \/q and —,/q.

In most cases m is not given, we know some of its properties only. It
means that a certain set M of weight-vectors is given (for example, the set
of all vectors with each coordinate from a small fixed set of integers, say
{0,1,2}); and we want to know some property (for example, the possible
Hamming-weight, i.e. the number of nonzero coordinates) of (0-1) vectors v
satisfying Av € M.

10.1 Sets with constant intersection numbers mod p

In [25, 31] the following is proved:

Proposition 10.1. Let S be a point set in AG(2,q), suppose that every line
intersects S in 1 (mod p) points, or is completely disjoint from S. Then
S| <gq—-p+1.

Proof: Counting the points of S on the lines through some fixed point
s € S we have |S| =1 (mod p). After the AG(2,q) < GF(¢?) identification
define
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it is not identically zero as the coefficient of X9~ ! is 1. Note that for x €
GF(q¢*) the value of (x — s)7~! depends on the direction of the line joining
x and s. If € § then every direction will occur with multiplicity divisible
by p, hence all the points of S are roots of f, which is of degree ¢ — 1. The
biggest value = 1 mod p below g is ¢ —p + 1. ]

There are examples of sets like in the statement above, e.g. some
(1 mod p) collinear points, or a projective subplane of order < /g com-
pletely contained in AG(2, q).

Note that in Proposition 10.1 it does not make any difference if S is
allowed to be a multiset.

We remark that the projective case is totally different: there are very big
point sets in PG(2, ¢) with 1 (mod p) -secants only, e.g. the plane itself, or a
unital, etc.

Result 10.2. (Blokhuis) The following generalization is true as well. Let S
be a point set in AG(n, q), n > 1, and suppose that every hyperplane intersects
S in 1 (mod p) points, or is completely disjoint from S. Then |S| < g—p+1.

The situation is different if we consider the projective plane.

Theorem 10.3. Given a point set S = {(a;,bi,¢;) : i = 1,...,s} =
{(a;,b;,1) i =1,...,51} U{(a;,0;,0) : 7 = s1+1,....,s} C PG(2,q), the
following are equivalent:

(i) S intersects each line in v mod p points for some fized r;

(i) G(X,Y, Z) = YW (0, X + b)Y + ¢,2)17 = 0;
iii) for all0 < k+1< q—1, (") # 0 mod p, we have |.i| ad 1Rkl —
k i=1" )
0 (here 0° =1).

w) for al0<k+1<q—2, (V" 0 mod p, we have S ;1. afbl = 0
k =1 "1 71
and for all0 <m < q—1, S af 7" = 0.

i=1""

Proof: Note that if each line intersects S in r mod p points then |S| = r
(mod p). (Count |S| from a point not in S) So let r be defined by |S| = r
(mod p). If each line [x,y, z] intersects S in r mod p points then (mod p)
|S|—r = 0 terms (a;z+biy+c;2)9 will be 1 in G(x,y, z) hence G(z,y, z) = 0.
As deg G < ¢— 1 we have (i)=-(ii). One can turn it around: if G(z,y,z) =0
then the number of terms (a;x + by + ¢;2)9~! with nonzero (i.e. =1) value
should be zero mod p, so (ii)=(i).
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For the rest consider the coefficient of X4 1=*%=1yk 7l in G (for 0 < k41 <
qg—1), it is
S|

q—1 k+1 q—1-k—l1k 1
| pred —
(k+l>( k );a i =0
if (ii) holds and vice versa. Finally (iii)<(iv) is obvious. ]

Many interesting point sets (small blocking sets, unitals, maximal arcs,
even point sets, in particular (0, 2, t)-arcs and hyperovals) have constant mod-
ulo p intersection numbers with lines; we may give the name (generalized)
Vandermonde set to such sets. (We refer here to Section 10.2, where this
property is defined and examined, see Definition 10.4.)

Take the “affine” part of a Vandermonde-set, i.e. points with ¢; # 0 (the
rest does not count in the power sum) and suppose that all its points are
written as (a;, b;,1). After the AG(2,q) < GF(q?) identification this point
becomes a; + byw for some generator w of GF(g?). Substituting (1,w, Z) into
G we get

0=G(lw Z)= Y ((ai+bw)+2) "+ > (a;+bw)" "=
(ai,bi,l)eS (aj,bj,O)ES

-2

£ZFN T (gt bw) ) (a4 bw)!

0 (as,bi,1)€S (as,bici)€S

yQ

e
Il

which means that the affine part of a (generalized) Vandermonde set,
considered as a set in GF(¢?), has power sums equal to zero for exponents
1,...,q — 2. (The last, constant term is just G(1,w,0) = 0.)

10.2 Vandermonde and super-Vandermonde sets

After Theorem 10.3 it is quite natural to examine sets with many vanishing
power sums.

Definition 10.4. Let 1 <t < q. We say that T = {y1,...,y:} C GF(q) is a
Vandermonde-set, if 7, = ), yf =0forall1 <k<t-—2.

Vandermonde-sets were first defined and studied in [62]. This part is a
generalization from [SzPvdm].

Here we do not allow multiple elements in 7. Observe that the power sums
do not change if the zero element is added to (or removed from) T". Note that
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in general the Vandermonde property is invariant under the transformations
y — ay+b (a # 0) if and only if p|t; if p Jt then a “constant term” tb* occurs
in the power sums. (It may help in some situations: we can “translate” T' to
a set with m; = 0 if needed.)

In general, for a multiset S from a field, w = wg denotes the smallest

positive integer k for which the power sum 7, = > s* # 0 if such k exists,
sES
otherwise w = 0o. We note that there exist sets for which the value w can

be oo, however in that case the set has to contain multiple elements, in fact
we have w = oo < all the multiplicities are divisible by the characteristic
p. Hence the Vandermonde (and the forthcoming super-Vandermonde) sets
are extremal with respect to the value of w.

If p|t then a t-set cannot have more than ¢t —2 zero power sums (so in this
case Vandermondeness means w = wyp =t — 1). This is an easy consequence
of the fact that a Vandermonde-determinant of distinct elements cannot be
zero: consider the product

1 1 1 1

:’!% y% yé 1
Y7 Y3 Yt 1
)
to1 t—1 t—1 1
Y1 Yo e Y

it cannot result in the zero vector.

The proof above, with slight modifications, shows that in general a t-set
cannot have more than ¢ — 1 zero power sums (so for a Vandermonde-set wr
is either t — 1 or t). If the zero element does not occur in T then consider
the product

yé y% yg 1

Y1 Ys Yi 1

R 1

. 7
ytfl ytfl ytfl :

1 : 2t t + 1

Y1 Yo Yi

it cannot result in the zero vector as the determinant is still non-zero. If
0 € T then remove it and we are again in the zero-free situation.

If for a set T" of cardinality ¢ we have that mx(T) =0 for k =1,...,t — 1,
so wr = t then such a set can be called a super-Vandermonde set. Note that
the zero element is never contained in a super-Vandermonde set (removing
it, for the other ¢ — 1 elements all the first ¢ — 1 power sums would be zero,
which is impossible). The same argument gives the first examples of super-
Vandermonde sets:

Example 10.5. IfT is a Vandermonde set, containing the zero element, then
T\ {0} is a super-Vandermonde set. In particular, if T is a Vandermonde
set and |T| =t is divisible by the characteristic p, then for any a € T, the
translate T'— a is a Vandermonde set, containing the zero element.
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In the next proposition the Vandermonde-property is characterized.

Proposition 10.6. Let T = {y1,...,u:} € GF(q). The following are equiva-
lent

(i) T is a Vandermonde set, i.e. wp =t —1;

(ii) the polynomial f(Y) = [I'_ (Y —v:) is of the form Y¥g(Y)? +aY +b
(where 0 <t <p—1,t =1 mod p);

(iii) for the polynomial x(Y) = —>S_0_ (Y —y;)7 L, tY 9 4 x(Y) has degree
q — t; moreover

(iv) for some Q = p°, t < Q, the polynomial tY9 1 — 3! (Y — ;)9 has
degree () — t.

Proof: The coefficients of x are the power sums of the set T, so (i) and
(iii) are clearly equivalent. (i) <(iv) is similar. The equivalence of (i) and
(ii) is an easy consequence of the Newton formulae relating power sums and
elementary symmetric polynomials. ]

Note that for the function x in (iii), t+ x(Y) is the characteristic function
of T, that is it is 1 on 7" and 0 everywhere else. (i) means that a Vandermonde
set is equivalent to a fully reducible polynomial of form ¢g?(Y)+Y*+¢Y. (In
the important case when p|t we have ¢g?(Y) +Y.)

And now we characterize the super-Vandermonde-property.

Proposition 10.7. Let T = {y1,...,y:} € GF(q). The following are equiva-
lent

(1) T is a super-Vandermonde set, i.e. wp =1t;

i) the polynomial f(Y) =1II'_, (Y —v;) is of the form Y* g(Y)? + ¢ (where
=1
0<t'<p—1,t=t modp);

(iii) for the polynomial x(Y) = — > i_ (Y —y;)7 L, tY 9" 4 x(Y) has degree
q—1—1; moreover

(iv) for some Q = p°, t < Q, the polynomial tye-1 _ 25:1(3/ _ yi)Qfl has
degree () —t — 1.

Proof: Very similar to the Vandermonde one above. ]

Here come some really motivating examples for Vandermonde sets, mostly
from [62].
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Example 10.8. Let g be a prime power.
(i) Any additive subgroup of GF(q) is a Vandermonde set.
(11) Any multiplicative subgroup of GF(q) is a (super-)Vandermonde set.

(iii) For q even, consider the points of AG(2,q) as elements of GF(q*). Any
q-set corresponding to the affine part of a hyperoval with two infinite
points is a Vandermonde set in GF(q?).

(iv) Let q be odd and consider the points of AG(2,q) as elements of GF(q?)
and a g+ 1-set A = {aq,...,ag11} in it, intersecting every line in at
most two points (i.e. an oval or (q+ 1)-arc). Suppose that it is in a

normalized position, i.e. Y a; = 0. Then A is a super-Vandermonde
set in GF(q?).

Proof: (i) Suppose T is an additive subgroup of size ¢ in GF(gq). We want
to prove that Proposition 10.6 (ii) is satisfied, that is f(Y) = Hyer (Y — y)
has only terms of degree divisible by p, except for the term Y. If we prove
that f is additive, hence GF(p)-linear, then this implies that f has only terms
of degree a power of p.

Consider the polynomial in two variables FI(X,Y) = f(X)+f(Y)—f(X+
Y'). First of all note that it has full degree at most ¢ and that the coefficient
of Xt and Y is zero. Considering F' as a polynomial in X, we have

FX,Y)=riMX" 4 ry(W) X2 4o (Y),

where r;(Y) (i = 1,...t) is a polynomial in Y of degree at most i (and
deg(r;) <t—1). Now F(X,y) =0 for any y € T (as a polynomial of X), so
all r;-s have at least t roots. Since their degree is smaller than this number,
they are zero identically, so we have F'(X,Y) = 0, hence f is additive.

(ii) Suppose T' is a multiplicative subgroup of size ¢ in GF(¢). Then the
polynomial f(Y) = II'_,(Y — y;) is of the form Y* — 1 so Proposition 10.7
(i) is satisfied, we are done.

(iii) Let {z1,...,z,} € GF(¢?) correspond to the affine part of the hyperoval
H and €, and &5 be (¢ + 1)-st roots of unity corresponding to the two infinite
points. Consider the polynomial x(X) = Y7 (X — 2;)7"'. For any point
x out of the hyperoval every line through x meets H in an even number of
points, and since (x — ;)7 represents the slope of the line joining the affine
points = and x;, we have that x(z) = 1 + &, for any x ¢ {z1,...,2,}. There
are ¢> — q different choices for such an z, while the degree of y is at most
q— 2, 50 X(X) = €1 + e identically (that is, all coefficients of x are zero
except for the constant term), so by Proposition 10.6 (iv), we are done.
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(iv) A short proof is that by Segre’s theorem such a point set is a conic if ¢ is
odd, so affine equivalent to the “unit circle” {a € GF(¢?) : 4! = 1}, which
is a multiplicative subgroup. 1

For a multiplicative subgroup H = (a) < (GF(q)*, ), |H| = t, its root
polynomial is [, ., (Y —h) =YY" — 1.

Note that Proposition 10.6 (iv) implies that if T C GF(q;) < GF(g2) then
T is a Vandermonde-set in GF(q) if and only if it is a Vandermonde-set in

GF(Q2)-

Result 10.9. Let B C PG(2,q) be a point set, |B| = q+ k, with every inter-
section number being 1 mod p and suppose that B N {ly = k. One can see
that B\ ls C AG(2,q), considered as a subset of GF(q?*), is a Vandermonde-
set.

We note that much more is true if £ < %1: such a set, which is a blocking
set of Rédei type, is always a (translate of a) subspace of GF(¢?), considered as
a vectorspace over a suitable subfield (hence an additive subgroup of GF(¢?));
see Theorem 11.5.

There are other interesting examples as well.

Example 10.10. Let ¢ = ¢& %, then in GF(q) T = {1}U{w% : i =0, ...,t—2}

for some element w € GF(q)* satisfying Try ., (W*) = =1 forallk =1,...,t —
1.

Proof:
t—2 ) t—2 )
3 (@) = (W) = Try g (WF) = 1.
=0 =0

Note that such w exists for several triples (t, qo, q), here I enlist some values;
7.7 means that such w does not exist, while ”x” means that the only element
with the property above is 1€ GF(gj™"):

Got|34|5|6[7[8[9]10|11 12|13 |14 |15]16 17|18
3 X X X - X | - X X
4 X X X X X x | 7

5 - x - x| - ?

7 - - - | x - ?

8 X X X X x | ?

9 X -l x| - X - x| ?

Result 10.11. Let T = {y1,...,y:} be a super-Vandermonde set. Then

(B (G- () -
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Proof: Consider

11—t 1 1 1 0

yi y% yg 1 0

i Y3 Yi 1 _ 0
- . ’

t—1 t—1 t—1 1 A

Yy Yo S Yy 1 0

hence the determinant should be zero:
VdM(yh Y2, .-y yt) - ty2y3 e ytVdM(y27 Y3y ey yt) = 0. SO

_ VdM (y1,y2,...,yt) _ (—y2)(y1—y3)--(y1—yr)
y2y3--yt VAM (y2,y3,..-,yt) Y23yt ’

Note that it is easy check the previous condition for a multiplicative
subgroup; also that any element of T' can play the role of y;, so in fact we
have t conditions.

10.3 Small and large super-Vandermonde sets

If in Proposition 10.7(ii) we write Y f (%) then we get a polynomial of degree
t and its roots are {i :y € T'}. Hence a super-Vandermonde set is equivalent
to a fully reducible polynomial of form ¢?(Y) +Y*' ¢ > p-degg.

Let’s explore this situation. Firstly, if ¢ = p is a prime then the only
possibility is f(Y) = Y + ¢, i.e. a transform of the multiplicative group
{y : y' = 1}, if it exists (so iff t|g — 1).

If f(Y)=gP(Y)+Y"is a fully reducible polynomial without multiple
roots then we can write it as Y7 —Y = f(Y)h(Y'). Now we may use the trick
I have learnt from Gacs: differentiating this equation one gets

—1=tY"'h(Y) + fF(Y)N(Y).
=1
tyi_1
t > 4, then h(Y) = —1Y7"" holds for more values than its degree hence it
is a polynomial identity implying a contradiction unless ¢ —t =1. Ast =1
is impossible (it would imply p = 2 and f would be a power), we have that
either t = ¢ — 1 (and then h(Y) =Y so f(Y)=Y9 ' —1)or t < &2

For describing small and large super-Vandermonde sets we need to ex-
amine the coefficients of the original equation Y9 —Y = f(Y)h(Y') carefully.
What does small and large mean? We know that any additive subgroup of
GF(g) forms a Vandermonde set, so removing the zero element from it one
gets a super-Vandermonde set. The smallest and largest non-trivial additive
subgroups are of cardinality p and ¢/p, respectively. Note that the super-
Vandermonde set, derived from an additive subgroup of size p, is a transform
of a multiplicative subgroup. This motivates that, for our purposes small
and large will mean “of size < p” and “of size > ¢/p”, resp.

Substituting a root y; of f we get h(y;) = = —%y‘f_t. Suppose that
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Theorem 10.12. [SzPvdm] Suppose that T C GF(q) is a super-
Vandermonde set of size |T| < p. Then T is a (transform of a) multiplicative
subgroup.

Proof: Since t < p the polynomial f(Y) is of the form f(Y) =Y"* —b,. As
f(Y) is a fully reducible polynomial without multiple roots, it implies that by
has precisely ¢ distinct ¢-th roots, t|g — 1 and T is a coset of a multiplicative
subgroup. ]

Theorem 10.13. [SzPvdm] Suppose that T C GF(q) is a super-
Vandermonde set of size |T| > q/p. Then T is a (transform of a) multi-
plicative subgroup.

Proof: It requires a rather lengthy calculation. Let us write Y? — Y =
FY)R(Y), where f(Y) = Y+ by Y™ + b1y, Y ™ VP + 4+ b,YP + by and
h(Y) = Yq—t + aq_t_qu_t_l + ...+ a2Y2 + a1Y.
Consider the coefficient of Y, Y2, ..., Y7 in this equation. We get

Yi:—1=ab

Yiia;=0if2<j<tandj#1 (mod p)

Yiiaj=0ift+1<j<2tandj+#1,t+1 (mod p)

Y7:ia; =0if2t+1<j<3tand j#1,t+1,2t+ 1 (mod p) and so on,
generally

Yiia;=0ifkt+1<j<(k+1)tandj#1,¢t+1,..,kt+1 (mod p).

Yp+1 . ap+1b0 + albp =0

Y2p+1 . a2p+1b0 + (Zp+1bp + &1b2p =0
generally

YR apiabo + age—1)pr1bp + oo+ apiabi—1yp + arby, = 0, for k =
1,2,...,m.

Yt+1 tay + bgatH + bpat_pH + bgpat_ng + ...+ bmpat_mp+1 =0
The indices of coefficients a are of the form t — kp+ 1. Sincet —kp+1 <t
and t —kp+1# 1 (mod p) (because t # 0 (mod p) is true) these coefficients
are 0.
So the equation is of the form

YL ap + byags, = 0.

Y+ s apq + boagesr + bpaot—pi1 + ...+ binpQot—mpi1 = 0
The indices j of coefficients a; are t < j < 2t. These coefficients are 0 if
j#1,t+1 (mod p). It means 2t + 1 # 1 (mod p) so 2t # 0 (mod p) which
means p # 2. The other condition 2t + 1 # t+ 1 (mod p) is satisfied by any
t. Hence

Y4 apq + boageyr = 0 if p # 2.
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Similarly
Y3t+1 A2t + boa3t+1 + bpagt_p+1 + ...+ bmpagt_mp+1 =0.

The indices are between 2t and 3t here. The coefficients are 0 if 3t + 1 #

1,t4+1,2t+1 (mod p). It gives only one new condition: 3t+1 # 1 (mod p) so

3t # 0 (mod p) which means p # 3. The two other conditions has occurred

earlier: p # 2 and ¢t # 0 (mod p).

Y3+ agpq + boaseir = 01 p # 2, 3.

Generally
Yyl a@-1y+1 + b1 + bpai—pr1 + oo+ bip@ip—mpr1 = 0, for [ =
1,2,...n—1.

The indices are of the form ¢t — kp + 1 and they are between (I — 1)t and [t.
Hence the coefficients a are 0 if it +1# 1,t+1,...,({ = 1)t + 1 (mod p). It
gives (I — 1)t conditions:

It+1+#1 (mod p) sop#1;

lt+1#t+1 (modp)sop#(l—1);

It+1+#2t+1 (mod p) sop# (Il —2);
and so on

It+1# (l—2)t+1 (mod p) so p # 2; finally

lt+1+#(l—1)t+1 (mod p) so t # 0, which is true.
Hence generally we get

Ylt+1 . a(l_l)tH + boalt_H =0 lfp 7é 1, 27 couy {.
In particular, substituting [ = n — 1 into this equation we get

y (=Dt An—-2)t+1 + boam-1ye41 = 0if p # 1,2, ...,n — 1.
The greatest index of a coefficient a can be ¢ —t — 1.
(n— 1)t < g—1and nt > q— 1 because of the definition of n.
It means that (n — 1)t >¢—t—1so (n—1)t+1>q—t.
It implies that a(,—1):41 (which occurred in the previous equation) does not
exist.
So we have two possibilities:
Case 1. (n—1)t+1=g—t,s0t= %" and the equation is of the form

y (n=Dt+ A(n-2)t+1+bo = 0. (Hence we can write 1 instead of a(,—1)i11-)
Case 2. (n— 1)t+ 1> g —t, so the equation is of the form

YDl g o = 0if p £ 1,2,...,n — 1. We will now prove that it
leads to a contradiction.
Substituting a(,—2)+1 = 0 into the equation

YD gyt + boa(r_ayrr = 0, we get ag,_g)er1 = 0.
We can substitute this again into the equation

Y=L a0 i1 4 boagn—s)er1 = 0, and we get g1 = 0.
Substituting this in a decreasing order we get

Yt ay + boary = 0so a; = 0.
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Hence —1 = aybg, so a; # 0, Case 2 implied a contradiction. It means that
Case 1 will occur, so t = % if p#£1,2,....,n— 1. In other words t|qg — 1 if
p#1,2,...n—1.
Hereafter, we can write 1 instead of a; if j = (n — 1)t + 1, and 0 if j >
(n—1)t+ 1.

y (n=1t+1 A(n—-2)t+1 T by = 0 so A(n—2)t+1 = —by.
Substituting this into the equation

YD g, g1 4 D@2y = 0, we get

Y2 g a0 4 boby = 080 an-g)i1 = bo”-
Substituting this in a decreasing order we get

Y gty = (=bo)" " for l=n—1,n—2,..,1. Finally

Vi ay = (—=bo)" L.
Substituting this into —1 = a1by, we get —1 = (—bg)" by so 1 = (—by)™.

We are going to examine the equation that belongs to Y+l First we
write up

y (n=btdptl A(n—2)t4+p+1 T bp + b2pa(n_1)t4ps1 + ... = 0
We have already seen that the coefficients a occurring in this equation are 0,
because these are the same as in the equation of Y =D+l §q

YD s g ) par + by = 0.
Similarly

y (n=Dt+2p+1 A(n—2)t+2p+1 + D2p = 0, generally

y (n=Dt+kp+1 A(n—2)t+kpt1 T bip =0 for K =1,2,....m.
On the other hand

YL a0 1yeipi1 + boQuspir + bpasr =0, for 1 =1,2,.,n — 1.
Generally we get

YR g yeikprt + Dot kpr1 + Opiet (e—1)pr1 + - + bipuy1 = 0 for
l=1,2,...,n—1land k=1,2,...,m.
In particular, if [ = 1 the equation is of the form

t+kp+1 . _
YR ag 1+ Doygipr + bpQug(h—1)ps1 + -+ brpyr = 0.

Lemma 10.14. b, = byp, = ... = by, = 0.

Proof: We prove it by induction.

Step 1. First we prove that b, = 0. Consider the equation

Yy (n=2)t+p+1 . A(n—3)t+p+1 T b0G(n—2)t1pt1 + bpa(n—2)t41 = 0. (*)

We have seen that
y (n=1)t+p+1
y (n=1)t+1

D A(n—2)t4p+1 T bp = 080 a(n_2)4p+1 = —b, and
D A(n—2)t+1 = —bo.

Substituting these into the equation (x), we get

YODEH g gy — boby — boby — b = 050 ag-gyapr1 = 2bobp.

Generally we can write
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Ylt+p+1 . a(l—l)t—f—p-i—l + boalt+p+1 + prth_H =0forl=n-— 1, n— 2, ey 1(**)
Substituting

Yy g = (=) (n — 1= )by 2, and

Y DL g, = (—b)" ! into the equation (%x), we get

YU ag pipn = (1) n = Dby, for l=n—1,n—2,..., 1. If
[ =0 it means

Yp+1 . ap+1b0 + albp = 0. (* * *)
Substituting

YiHPtL g = (—=1)" L (n — 1)by %, and

Y i ap = (—bp)" ! into (x * %), we get

YPH s (=1)nby b, = 0.
In this equation —1 # 0 (mod p), n # 0 (mod p) and by # 0 (mod p) (from
the equation a;by = —1). It means that b, = 0.
Step 2. Suppose b, = by, = ... = bi_1), = 0. We show that b,, = 0.
Consider

y (n=2)ttsptl A(n—3)t+sp+1 T bOa(an)tJrserl + bspa(an)tJrl = 0. (*)
We have seen that

Y(n—l)t+sp+1 “a

Y(n—l)t+1 “a

(n—2)t+sp+1 + bsp =0so0 A(n—2)t4sp+1 = _bsp and
(n-2)t+1 = —bo.
Substituting these into the equation (*), we get

y (n=2)ttsptl A(n—3)t+spr1 — Dobsp — bobsp = 0 80 A(n—3)t4sptr1 = 200Dsp.

Generally we can write

YIFPEL s a0 1yihspa1 + bourspr1 + Dspuesr =0 ()
for l =n — 1,71—2,...,1.
Substituting

y ksl g oo = (1) (n — 1 — 1)by "%, and

Y DL g = (—be)" ! into the equation (xx), we get

VISP a0 1yppspi1 = (—1)"Hn — Dbg o, for l=n—1,n—2,..., 1.
If | =0 it means

Y ag, 100 + arbs, = 0. (5 * %)
Substituting

Yttt g0 = (—=1)""H(n — 1)b) 2b,, and

Y ap = (—bg)" ! into (x x ), we get

YsrrL s (=1 Inbl b, = 0.
In this equation —1 # 0 (mod p), n # 0 (mod p) and b # 0 (mod p) (from
the equation ajby = —1). It means that by, = 0. 1

So we have got b, = by, = ... = by, = 0. It means that f(Y) is of the form
f(Y) =YY"+ by, and that t|g—1sot = % and (—bg)"™ = 1. Hence
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FY) =Y + b, where (—bp)" = 1if p # 1,2,...,n — 1 (mod p). So
the roots of f(Y') are the elements of a coset of a multiplicative subgroup of
order . |

10.4 Sets with intersection numbers 0 mod r

Here we continue the examination of sets of PG(2, ¢) intersecting every line
in a constant number of points mod p. This section is based on [SzPcomd].
For the more general k-dimensional case see the paper itself. The proofs
are similar (although in higher dimensions it is more complicated) and are
streamlined and then generalised versions of the proof in [12].

Theorem 10.15. Let 1 < r < q = p". A point set S C PG(2,q) which is
incident with 0 mod r points of every line has |S| > (r—1)q+ (p— 1)r points
and r must divide q.

Proof: Let us first see that r divides ¢. By counting the points of S on
lines through a point not in S we have that |S| = 0 mod r. By counting
points of S on lines through a point in S we have |S| = 1+ (—1)(¢+ 1) mod
r and combining these two equalities we see that ¢ = 0 mod r.

Assuming |S| < (¢ + 1) (for if not the theorem is proved) there is an
external line to S, so we can view S as a subset of GF(¢?) ~ AG(2,¢) and
consider the polynomial

5]
RXY)=]][X+ ¥ =0)"") =) o;(¥)XI,
besS 7=0

For all y, b and ¢ € GF(¢?) the corresponding points of AG(2, q) are collinear
if and only if (y —b)9"! = (y—¢)?~! and each factor X + (y — )77 of R(X,y)
divides X! — 1 whenever y # b.

For y € S we have

R(X,y) = X(XT — 1) g (X)",

and for y & S
R(X,y) = g2(X)".

In both cases 0;(y) = 0 for 0 < j < ¢ and r does not divide j. The degree
of o; is at most j(¢ — 1) and there are ¢* elements in GF(¢?), hence o; = 0
when 0 < j < ¢ and r does not divide j. So

R(X,Y) = XPl4o, XI5 450, XI5172r | 45, X150 46 XISF 4 ).
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For all y € GF(¢?) we have

OR —(y—b)*?
oy (Xov) = (Z“ (y_b)q_1> R(X,y).

beS

In all terms the denominator is a divisor of X9t — 1 so multiplying this
equality by X9 — 1 we get an equality of polynomials and we see that

OR

e+1 1\ 94t
R(X,) | (X = D) 32 (X,),
or even better
OR
R(X,y)Gy(X) = (X7 — 1>8_Y(X’ y) =

(XP DX 4, X2 g X0 g X ) (o

Here G = G, is a polynomial in X of degree at most ¢ +1 — r. The term of
highest degree on the right-hand side of (%) that has degree not 1 mod r is
of degree |S| and has coefficient o7 ,,, where  is differentiation with respect
to Y.

First examine y ¢ S. As R(X,y) is an r-th power, any non-constant
term in G, with degree not 1 mod r would give a term on the right-hand
side of degree > |S| and not 1 mod r, but such a term does not exist. Hence
every term in G has degree 1 mod r except for the constant term which has
coefficient oy, ;.

For any natural number x and 7 = 1,...,r — 2 the coefficient of the term
of degree |S| —i(q+ 1) — kr (which is not 0 or 1 mod r) on the right-hand
side of (%) is

~ i)k T Tl 1) (g 1) ar
and must be zero. However if (r —1)(¢+1) +xr > [S] then o _1)g+1)4wr =0
and we have o’ =0foralls =1,...,7—2. Now consider the coefficient

i(q+1)+kr
of the term of degree |S|—xr. On the right hand side of (x) this has coefficient

/

—o,, (since o7y, = 0). The only term of degree zero mod 7 in G is the

constant term which is o7, ;. The coefficient of the term of degree |S| — xr
in R(X,y) is o,,. Hence

OprOgyy = —0y, forally &S (%)

If y € S then o,41(y) =1 and if y & S then o,41(y) = 0. Let

) =11 —y.

yeSs
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Then fo, = (YO — Y)g(Y) for some g € GF(¢?)[Y] of degree at most
|S| — 1 (the degree of 0,41 is at most ¢> — 1). Differentiate and substitute
for a y € S and we have f'(y) = —g(y). Since the degree of f’ and g are less
than |S| we have g = —f’. Now differentiate and substitute for a y ¢ S and
we get o, f = f'.

Thus for y ¢ S we have o, f'/f = —ol, and so (fo.) (y) = 0. The
polynomial (fo,)" has degree at most xkr(q — 1) + |S| — 2, which is less than
q*—|S]if kr < g—2r. So from now on let |S| = (r—1)g+rr. The polynomial
(fo.) =0 and so fo., is a p-th power. Hence fP~! divides o,

If k <p—2then (p—1)(r—1)g+kr(p—1) > kr(¢—1) and so o, = 0.
However the polynomial whose terms are the terms of highest degree in
R(X,Y) is (X + Y9 1)I5I which has a term X~ D1y ® (@1 gince (I°) = 1.
Thus o,, has a term Y*" (@1 which is a contradiction. Therefore x > p—1. 1

Corollary 10.16. A code of dimension 3 whose weights and length have a
common divisor r and whose dual minimum distance is at least 3 has length
at least (r — 1)g+ (p — 1)r. 1

A mazimal arc in a projective plane is a set of points S with the property
that every line is incident with 0 or r points of S. Apart from the trivial
examples of a point, an affine plane and the whole plane, that is where r = 1,
q or q + 1 respectively, there are examples known for every r dividing ¢ for ¢
even, see e.g. Denniston [55].

Corollary 10.17. There are no non-trivial mazimal arcs in PG(2,q) when
q s odd.

Proof: A maximal arc has (r — 1)¢ + r points, see the Barlotti-bound in
Result 8.6. M

11 Blocking sets

A blocking set with respect to k-dimensional subspaces is a point set meeting
every k-subspace. As a blocking set plus a point is still a blocking set, we are
interested in minimal ones (with respect to set-theoretical inclusion) only.
Note that in a (projective) plane the only interesting case is k = 1.

In any projective plane of order ¢ the smallest blocking set is a line (of
size ¢ + 1). In PG(2,q) there exist minimal blocking sets of size ~ %q; the
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projective triangle of size 3(¢+1)/2 if ¢ is odd and the projective triad (which
is a linear point set in fact) of size 3q/2+1 if ¢ is even. In general, in PG(n, ) it
is easy to construct a blocking set with respect to k-dimensional subspaces;
it is straightforward to prove that the smallest example is a subspace of
. . L n—k+1_q k- . .
dimension n — k (so consisting of 2 T~ a points), this example is
called trivial. Another easy one is a cone, with a planar blocking set as a
base and an (n — k — 2)-dimensional subspace as vertex; if the base was of
size ~ %q then the blocking set will be of size ~ %q”_k roughly. A blocking
set with respect to k-dimensional subspaces of PG(n,q) is said to be small
if it is smaller than %(q"*k + 1), in particular in the plane it means that
|1B| <3(¢g+1)/2.

We remark that there is another terminology as well: a k-blocking set
is a blocking set with respect to (n — k)-dimensional subspaces (so here the
smallest and trivial examples are k-dimensional projective subspaces, this is
where the name comes from). It may lead to some confusion, but sometimes
this is the more natural name, see e.g. Section 12.

A most interesting question of the theory of blocking sets is to classify the
small ones. A natural construction (blocking the k-subspaces of PG(n,q)) is
a subgeometry PG(h(n — k)/e, p®), if it exists (recall ¢ = p", s0 1 < e < h
and e|h).

It is one of the earliest results concerning blocking sets, due to Bruen
[40], that a nontrivial blocking set of a projective plane of order ¢ is of size
> ¢+ +/q + 1, and equality holds if and only if it is a Baer subplane (i.e. a
subgeometry of order ,/q).

It is easy to see that the projection of a blocking set, w.r.t. k-subspaces,
from a vertex V onto an r-dimensional subspace of PG(n, ¢), is again a block-
ing set, w.r.t. the (k + r — n)-dimensional subspaces of PG(r,¢q) (where
dim(V) =n —r — 1 and V is disjoint from the blocking set).

A blocking set of PG(r,q), which is a projection of a subgeometry of
PG(n,q), is called linear. (Note that the trivial blocking sets are linear as
well.) Linear blocking sets were defined by Lunardon, and they were first
studied by Lunardon, Polito and Polverino [82], [85].

Conjecture 11.1. The Linearity Conjecture. In PG(n,q) every small
blocking set, with respect to k-dimensional subspaces, is linear.

There are some cases of the Conjecture that are proved already (this list
is not complete).

Theorem 11.2. For ¢ = p", every small minimal non-trivial blocking set
w.r.t. k-dimensional subspaces is linear, if

(a) n=2, k=1 (so we are in the plane) and
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(i) (Blokhuis [24]) h = 1 (i.e. there is no small non-trivial blocking
set at all);

(11) (Szényi [103]) h = 2 (the only non-trivial example is a Baer sub-
plane with p* +p + 1 points);

(iii) (Polverino [86]) h = 3 (there are two examples, one with p*+p*+1
and another with p* + p*> +p + 1 points);

(iv) (Blokhuis, Ball, Brouwer, Storme, Szényi [33], Ball [7]) if p > 2
and there exists a line { intersecting B in |BN{| = |B| — q points
(so a blocking set of Rédei type);

(b) for general k:

(1) (Sz6ényi and Weiner) [109] if h(n — k) < n, p > 2 and B is not
contained in an (h(n — k) — 1)-dimensional subspace;

(11) (Storme-Weiner [99] (for k = n — 1), Bokler and Weiner [114])
h =2, q>16;

(111) (Storme-Sziklai [SzPkblock]) if p > 2 and there exists a hyperplane
H intersecting B in |BNH| = |B|— ¢ points (so a blocking set
of Rédei type);

(iv) (Sziklai-Van de Voorde[SzPVdV]) if k =n —1, p > 5h — 11 and
B is not contained in an (h — 2)-dimensional subspace.

There is an even more general version of the Conjecture. A t-fold blocking
set w.r.t. k-subspaces is a point set which intersects each k-subspace in at
least ¢t points. Multiple points may be allowed as well.

Conjecture 11.3. The Linearity Conjecture for multiple blocking
sets: In PG(n,q) any t-fold blocking set B, with respect to k-dimensional
subspaces, is the union of some (not necessarily disjoint) linear point sets
By, ..., Bs, where B; is a t;-fold blocking set w.r.t. k-dimensional subspaces
and ty + ... +ts = t; provided that t and |B| are small enough (t < T(n,q,k)
and |B| < S(n,q, k) for two suitable functions T and S).

Note that there exists a (/g4 1)-fold blocking set in PG(2, ¢), constructed
by Ball, Blokhuis and Lavrauw [15], which is not the union of smaller blocking
sets. (This multiple blocking set is a linear point set.)

First we study 1-fold blocking sets of PG(2, ¢), with respect to lines.

As an appetizer, we present here Blokhuis’ theorem, which was a real
breakthrough at 1994. It was conjectured by Jane di Paola in the late 1960’s.

Theorem 11.4. (Blokhuis [24]) In PG(2,p), p prime, the size of a non-trivial
blocking set is at least 3(p + 1)/2.
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The following theorem of Blokhuis, Ball, Brouwer, Storme and Sz6nyi
[33], which was refined and turned to its current beautiful form by Ball [7],
classifies the so-called small blocking sets of Rédei type (for the definition and
further information compare to Theorem 11.2(iv), and see e.g. Section 12):

Theorem 11.5. Let |U| = ¢ be a pointset in AG(2,q), ¢ = p", p prime, and
let N be the number of directions determined by U. Let s = p° be mazimal
such that every line intersects U in a multiple of s points. Then one of the
following holds:

(i) s=1and B2 < N < q+1;

(ii) GF(s) is a subfield of GF(q) and £ 4+1 < N < =1

(iii) s = q and N = 1.
Moreover, if s > 3 then U is a GF(s)-linear pointset.

In other words, it means that (if p > 2) a small blocking set of Rédei type
15 always a linear pointset.

One can formulate the chase for minimal (nontrivial) blocking sets (in
PG(2,¢)) in an algebraic way as follows. Consider the polynomial ring
GF(¢)[X,Y, Z] and its subset GF(q)[X,Y, Z]nom, the homogeneous polyno-
mials of any degree. The fully reducible polynomials form the multiplicative
sub-semigroups R and Ry, in them. (R stands for reducible and Rédei as
well.) Let GF(q)[X,Y, Z]o and GF(q)[X,Y, Z]nom,o denote the sets (ideals) of
polynomials vanishing everywhere in GF(q) x GF(q) x GF(q).

Both GF(q)[X,Y, Z]o and GF(q)[X,Y, Z]homo, as ideals, can be gen-
erated by three polynomials from R (and Rpem, resp.), for example
GF(q)[X, Y, Z]o = (X7 — X); (Y7 — Y); (21 — Z)) and GF(q)[X, Y, Z]jomo =
(Y1Z — YZ9);(ZX — ZX7);(XY — XY?)). Note also that for any
a,b, c € GF(q) the polynomial a(Y1Z—Y Z9)+b(Z1X —ZX9)+c( XY —XY)
is still totally reducible. (It is the Rédei polynomial of the point set consisting
of the points of the line [a, b, c].)

The blocking set problem is now equivalent to finding minimal polyno-
mials, w.r.t. divisibility, as partial order, in

(Rhom N GF(Q) [XJ Y7 Z]hom,O)'

The trivial blocking sets, as we have seen, correspond to the minimal poly-
nomials a(Y1Z — Y Z%) + b(Z1X — ZX?) + ¢(XY — XY1).
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11.1 One curve

So let |B| = ¢ + k be our blocking set. We often suppose that |B| < 2q.
Recall the Rédei polynomial of B:

q+k
(aisbici)€B §=0

Definition 11.6. ([37], [103]) Let C be the curve of degree k defined by
(XY, 2) =ro(Y, 2) X"+ 7 (Y, Z) X 4 (Y, 2).

Note that as deg(r;) = j (or r; = 0), the polynomial f(X,Y,Z) is homo-
geneous of degree k indeed.

Lemma 11.7. If the line Lx([1,0,0] contains the points {(0,b;;,c;;) : j =
1,....,Nx} then

Nx
rvy (V. 2) = (][ a) T0,Y +¢,2) | R(X,Y, 2);
as7#0 7j=1

TNX(K Z) | f(X7Y>Z>;

so f can be written in the form f = ry. f, where f(X,Y, Z) is a homogeneous
polynomial of total degree = X-degree = k — Nx. In particular, if Lx is a

Rédei line then f = ry,. One can write R(X,Y,Z) = rn, (Y, Z)R(X,Y, Z)

as well.

Proof: obvious from the definitions: 7y, |r; Vi. Indeed, ry, contains the
X-free factors of R; Nx is the smallest index j for which r; is not identically
zero. As, by definition, r; is gained from R = [[(@; X + ;Y +¢;Z) by adding
up all the partial products consisting of all but 7 (b;Y + ¢;Z) factors and j
non-zero a; factors, each of these products will contain all the factors of 7y,
SO TNy |15 VJ. ]

Note that the curve ry, consists of Nx lines on the dual plane, all passing
through [1, 0, 0].
On the other hand if k£ < ¢ then

f=HiR= Y agay..a, ][ (X+bY +¢2).
{51752 7777 Sq} j€{51752 7777 Sq}

Obviously it is enough to sum for subsets {P,,,P,,,...,P, .} € B\ Lx.

829 *
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If one coordinatizes B such that each a; is either 0 or 1, then

f=rvef=rne D J[X+bY +¢2).
JC{1,2,...,q+k} jEJ
[Jl=k—Nx
a;#0 Vi€
Also
TNy = H??'“*NXR = H’;(_NX I

The next proposition summarizes some important properties of the Rédei
polynomial and of this curve.

Theorem 11.8. ([103])

(1.1) For a fized (y, z) (where (0,—z,y) & B), the element x is an r-fold root
of R, .(X) = R(X,y, 2) if and only if the line with equation x X +yY +

27 = 0 intersects B in exactly r points.

(1.2) Suppose R,.(X) = 0, i.e. (0,—2,y) € B. Then the element x is
an (r — 1)-fold root of R(X,y,z) if and only if the line with equation
xX +yY + 27 = 0 intersects B in exactly r points.

(2.1) For a fized (0,—z,y) ¢ B the polynomial (X9 — X) divides R, .(X).
Moreover, if k < ¢ — 1 then R, .(X) = (X9 — X)f(X,y,2) for every
(0,—z,y) & B; and f(X,y,z) splits into linear factors over GF(q) for
these fized (y, z)’s.

(2.2) If the line [0, —z,y] (where (0, —z,y) € B) meets f(X,Y,Z) at (x,y, 2)
with multiplicity m, then the line with equation xX + yY + z2Z = 0
meets B in exactly m + 1 points.

This theorem shows that the curve f has a lot of GF(g)-rational points
and helps us to translate geometric properties of B into properties of f.
Proof: (1.1) and (1.2) are straightforward from the definition of the Rédei
polynomial. The multiplicity of a root X = z is the number linear factors
in the product defining R(X,Y, Z) that vanish at (x,y, z), which is just the
number of points of B lying on the line [z, y, z]. The first part of (2.1) follows
from (1.1) and the well-known fact that [[,cqr(X —2) = X? — X. The
rest of (2.1) is obvious.

To prove (2.2) note that if the intersection multiplicity is m, then x is an
(m + 1)-fold root of R, .(X). Now the assertion follows from (1.1). ]

The facts given in Theorem 11.8 will be used frequently without further
reference.
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The next lemma shows that the linear components of f (or the curve C
defined by f = 0) correspond to points of B which are not essential.

Lemma 11.9. ([103])
(1.1) If a point P(a,b,c) € B\ Lx is not essential, then aX +bY +cZ divides

f(X,Y,Z) (as polynomials in three variables).

(1.2) Conversely, if Nx < q+ 2 —k and aX + bY + cZ divides f(X,Y,Z),
then (a,b,c) € B\ Lx and (a,b,c) is not essential.

(2.1) If a point P(0,b,c) € BN Ly is not essential, then X7 — X divides
R(X,—c,b) (as polynomials in three variables).

(2.2) Conversely, if X1 — X divides R(X,—c,b), then (0,b,c) cannot be an

essential point of B.

Proof: (1.1): Take a point Q(0, —zo,y0) ¢ B. For this Q(0, —zo,yo) there
are at least two points of B on the line PQ), hence (aX + byy + cz) divides
f(X, 90, 20). In other words, the line L : aX +bY +¢Z and C have a common
point for (Y, Z) = (yo, 20). This happens for ¢ + 1 — Ny values of (o, 20), so
Bézout’s theorem implies that L is a component of C.

(1.2): Conversely, if aX + bY + c¢Z divides f(X,Y,Z), then for every
Q(0,—20,y0) € B the line through @ and (a,b,c) intersects B in at least
two points. If (a,b,¢) ¢ B, then |B| > 2(q + 1 — Nx) + Nx. Putting
|B| = q + k gives a contradiction. Hence (a,b,c) € B. Since every line
through (0, —zo, y0) € B, contains at least two points of B, the point (a, b, ¢)
cannot be essential.

(2.1) and (2.2) can be proved in a similar way as (1.1) and (1.2). ]

If the line [1,0,0] is a tangent, or if B is a small blocking set, then the
previous lemma simply says that there are no linear components of f if
|B| < 2q. Note that also in Segre’s theory there is a lemma corresponding to
this one (see [65], Lemmas 10.3.2 and 10.4.), and it plays an important role
in proving the incompleteness of arcs.

Recall also a lower bound on the number of GF(g)-rational points of cer-
tain components of f, see Blokhuis, Pellikaan, Szényi [37].

Lemma 11.10. ([37]) (1) The sum of the intersection multiplicities I(P, f N
(p) over all GF(q)-rational points of f is at least deg(f)(q+ 1) — deg(f)Nx,
where {p denotes the line through P and (1,0,0) (the “horizontal line”). If g

is a component of f, then the corresponding sum for g is at least deg(g)(q +
1) — deg(g)(Nx), where go = g.c.d.(g,7ny) and g = gog.
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(2) Let g(X,Y,Z) be a component of f(X,Y,Z) and suppose that it
has neither multiple components nor components with zero partial derivative
w.r.t. X. Then the number of GF(q)-rational points of g is at least

deg(g)(q + 1) — deg(g)(Nx + deg(g) — 1)

Proof: Let g = gog, where gy contains the product of some linear compo-
nents (hence go|ry, ) and g has no linear component; s = deg(g), s = deg(g).
First note that the linear components of ry, all go through (1,0,0) while
f does not. For any fixed (Y,Z) = (y,z), for which (0,—z,y) ¢ B, the
polynomial f(X,y, z) is the product of linear factors over GF(q), hence the
same is true for every divisor g of f. So the number of points, counted with
the intersection multiplicity of g and the horizontal line at that point, is at
least 5(¢+1— Nx)+deg(go)(g+1). To count the number of points without
this multiplicity we have to subtract the number of intersections of g and
g (see [37]); Bézout’s theorem then gives the result. Note also that in this
counting the common points of g and g’y are counted once if the intersection
multiplicity I(P;g N £p) is not divisible by p, and the points with intersec-
tion multiplicity divisible by p are not counted at all. Hence we have at least
5(g+1—Nx)+ (s—35)(g+1) — 5(s — 1) points of g. 1

These elementary observations already yield interesting results on block-
ing sets. We mention without a proof that Lemma 11.10, combined with the
Weil-estimate on the number of rational points of a curve gives the result of
Bruen |B| > ¢+ /g + 1.

We repeat a lemma of Blokhuis and Brouwer.

Proposition 11.11. ([34]) There are at most k* — k + 1 lines that meet B
i at least two points.

Proof: First we prove that there are at least 2¢ + 1 — | B| tangents through
any essential point P of any blocking set B. Indeed, if P € B is essential with
t tangents through it then choose the coordinate system so that P € {,, and
(s is a tangent to B. Putting one point on each tangent except ¢, results
in an affine blocking set of size |B| — 1 +t — 1, which is, by the theorem of
Jamison, at least 2¢ — 1, hence t > 2¢q+ 1 — |B]|.

Now, with |B| = ¢ + k, gives that the total number of tangents is at
least (¢ + k)(¢ + 1 — k), which means that there are at most k* — k + 1 lines
intersecting B in at least two points. 1

Now we are ready to prove Blokhuis’ theorem 11.4 in the prime case.
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Theorem 11.12. (Blokhuis [24]) In PG(2,p), p prime, the size of a non-
trivial blocking set is at least 3(p + 1) /2.

Proof: Take a component g = g (of degree s) of f. Since p is prime, it
cannot have zero partial derivative with respect to X. Therefore it has at
least s(p+1)—s(Nx+s—1) points by Lemma 11.10. On the other hand, again
since p is prime, it cannot be non-classical with respect to lines. Therefore,
by the Stohr-Voloch theorem 8.4, it has at most s(p+s—1)/2 GF(p)-rational
points. This implies

s(p+1)—s(Nx +s—1)<s(p+s—1)/2,

which means s > (p+ 5 — 2Nx)/3. In particular, if |B| <p+1+2(p+3)/3
and we choose Lx to be a tangent, then the curve f must be (absolutely)
irreducible. Now Lemma 11.10 can be applied to f itself and it says that f
has at least (k —1)(p+ 1) — (kK — 1)(k — 1) points. On the other hand, the
previous lemma shows that it can have at most k% — k + 1 points over GF(p).
Solving the inequality pk — k(k — 1) < k* — k + 1 implies k > (p+ 2)/2. 1

11.2 Three new curves

In this subsection we introduce three nice curves. We use the notation V =
(X,Y,Z); Ve = (X0, V9,29 and & = V x V¢ = (Y97 — Y Z9), (29X —
ZX9),(X?7Y — XY19)). Let B be a minimal blocking set of PG(2, ¢). Since
R(X,Y, Z) vanishes for all homogeneous (x,y, z) € GF(q) x GF(q) x GF(q),
we can write it as

R(X,)Y,Z) =W .g=det(V,Vig) =

(Y9Z-Y Z) (XY, Z2)+(ZX - ZX) go(X,Y, Z)+(XTY —XY) g5(X, Y, Z),

where g1, g2, g3 are homogeneous polynomials of degree k—1 in three variables
and g = (g1, g2, g3). Note that g is not determined uniquely, it can be changed
by g’ = g+goV for any homogeneous polynomial gy € GF(¢)[X,Y, Z] of total
degree k—2, if k < ¢; and for g’ = g+ g9V +goo V? for arbitrary homogeneous
polynomials gy of degree k — 2 and ggp of degree k — q — 1.

Why is this a most natural setting? For example observe that if B is the
line [a, b, ¢] then R = (a,b,c) - .

Now one can define f = Vxg. Then f-(VI—V) = f1(X9—X)+ fo(Y7—
Y)+ f3(Z9— Z) = R, and fi, fo, f3 are homogeneous polynomials of degree
k. If k < g then, by this “decomposition” of R, f is determined uniquely.
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Conversely, if for some g’ also f = V x g’ holds then g’ = g + ¢V for some
homogeneous polynomial g of degree k — 2.

We also remark that, as V- (V x g) = 0, we have Vf = 0. For another
proof see 11.17.

If £ > g then f is not necessarily unique in the decompositon of R. But if
we choose f =V X g for some g then 11.17 remains valid (otherwise it may
happen that V - f is not the zero polynomial).

The following lemma summarizes some fundamental properties of g.

Proposition 11.13. (1.1) If a point P(a,b,c) € B is not essential, then
there exists an equivalent g = g+ goV (org =g+ g0V +gooV?) of g
such that aX +bY + cZ divides ¢,(X,Y, Z), i = 1,2,3 (as polynomials
in three variables).

(1.2) Conversely, if Nx < q+ 2 — k and aX + bY + ¢Z divides each
9:(X,Y, Z), i =1,2,3, then (a,b,c) € B and (a,b, c) is not essential.

(2) If B is minimal then g1, 9> and gs have no common factor.

Proof: (1.1) In this case Ry = R/(aX +bY +cZ) still vanishes everywhere,
so it can be written in the form Ry = goW¥, so W (go(aX +bY +cZ)—g) = 0.
(1.2) Now aX + bY + ¢Z divides R as well, so (a,b,c) € B. Deleting

. o . . . XY.Z
it, the Rédei polynomial of the new point set is (Y97 — Y Z9) % +

(79X — 7X7) 2XYD | (xay _ Xya) BEYD) o it remains a blocking

aX+bY +cZ aX+bY +cZ?
set.
(2) Such a factor would divide R as well, which splits into linear factors.
Then for a linear factor see (1.2). 1

We want to “evaluate” R along a line [a, b, c| of the dual plane (so we
examine the lines through (a, b, ¢) of the original plane). We use the notation

(XY, 2) = ¢(bZ — Y, eX — aZ,aY — bX).

la,b,c]

In general f(X,Y, Z)‘[ ] = f(=bY —cZ,aY,aZ) = f(bX,—aX —cZ,bZ) =
a,b,c

fleX,cY, —aX —bY), where e.g. f(=bY —cZ,aY,aZ) can be used if a # 0
ete.

Theorem 11.14. (1)

R

+ bgo + cgs

[a,b,c

[ }) ((qu — 797)
a,b,c

= ag )
[a,b,c] < ! [a,b,c] [a,b,]
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(the last factor should be changed for (XZ? — X17) ifa =0 and

la,b,c]
b# 0 and for (Y X9 — YqX)‘[ } ifa=b=0 and c # 0, “normally”
a,b,c

these factors are identical when restricting to aX +bY +cZ =0).

(2) (a,b,c) € B if and only if ag [ ]+bg2 " " = 0. It means
a,b,c a,b,c a,b,c

that if one considers this equation as an equation in the variables a, b, c
then the points of B are exactly the solutions of it.

+ cgs

(3) If (a,b,c) € B then consider

+ cgs

+ bgg
[a,b,c]

la,b,c]

R
aX +bY +cZ

<a<91
[a,b,c] (CLX + bY + CZ)

[a,b,c})

((ZYq—ZqY)

[a,b,c]>

la,b,c]

(4) Suppose (a,b,c) & B then if a line [x,y,z] through (a,b,c) is an r-

+ bgo + cgs3
[a,b,] c

secant of B, then (x,y,z) is a root of ag b
a,b,

la,b,c]
with multiplicity r — 1.

Proof: Easy calculations. For instance to prove (2) we simply need

R

+ bgg

= ag: =0. [

+ cgs
[a,b,]

[a,b,] [a,b,c] [a,b,]
See Example 11.4 for showing the use of (2) above: there we get that the

equation of the “canonical” Baer subplane is
Gape(X,Y, Z) = XV cVb—cbV?)+YVI(aVib—abV?)+ZVi(aVic—acV?) = 0,

meaning that the Baer subplane is just {(a, b, ¢) € PG(2,q) : Gupo(X,Y,Z) =
0}.

The map [‘T7 Y, Z] = [gl(xv Y, Z)a 92(37, Y, Z)a 93(xa Y, Z)]v aCting on the hnes)
is a remarkable one.

Proposition 11.15. Let [x,y,z| be a tangent line to B at the point
(ag, by, e) € B. Then [g1(x,y, 2), g2(2, Y, 2), g3(x, y, 2)] is also a line through
(ag, by, ¢y), different from [z,y, z].

If [x,y, 2] is a secant line then [¢1(x,y, 2), g2(x,y, 2), g3(x, y, 2)] is either
[x,y, 2] or meaningless (i.e. [0,0,0]).
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Obviously, if g(z,y, z) = [0, 0, 0] then [x,y, z] is a > 2-secant as the < 1-st
derivatives are 0.
Proof: Recall Theorem 5.9, here we have

(at>bt7ct> = ((8XR)(x,y,z), (aYR)(xa%Z)v (8ZR)(x,y,z) ) =

( _yg3(xay7z>+292(xvyvz)v J,’gg(l',y,Z)—Zgl(l',y, 2)7 ygl(l‘aya z)—xgg(x,y,z) )

Now the scalar product with (¢1(z, v, 2), g2(x, vy, 2), g3(x, y, z)) vanishes.
or:

(atvbt?ct)'g(mayaz) = (VR)(:IZ‘,y, z)-g(x,y,z) = ((xayvz>xg(x7ya Z))'g(xvy?z) =0.

Here (z,vy, 2z) # g(x,y, z) as their cross product is (ay, by, ¢;).
If [z, vy, 2] is a secant line then there are more than one components of R
going through (x,y, z) (see Theorem 5.9) hence

0= (VR)(z,y,2) = (v,y,2) x g(,y,2).

or: we can use Theorem 11.14.

We also calculate VR for future use: VR = ¥(Vog)+ Vi xg.
The following is true as well. We will see (Theorem 11.28, Corollary
11.32) that if B is small, then R can be written in the form

X' Ygxy +Zgxz) + Y Xgyx + Zgvz) + ZU(Xgzx +Ygzy),

where the polynomials gxy,...,gzy contain only exponents divisible by p.
Surprisingly or not, gxy = —gyvx,9xz = —9zx,9zv = —9vz, as 0 = X fi +
Yfo+Zfs=XY(gxy +9vx)+YZ(gvz+92v) + ZX(92x + gxz). One can
take Oxdy, 0y 0z, 070x of both sides.

Now g = (9vz, 9zx, gxy ), which is a kind of “natural choice” for g.

11.3 Three old curves

In this section we will present the method using three old algebraic curves.
As an application we show Sz6nyi’s result [103] that blocking sets of size less
than 3(q + 1)/2 intersect every line in 1 modulo p points. This immediately
implies Blokhuis’ theorem for blocking sets in PG(2, p).

Let now B be a minimal blocking set of PG(2,¢q). Since R(X,Y, Z) van-
ishes for all (z,y,2) € GF(q) x GF(q) x GF(gq), we can write it as

R(X.Y,Z)=(X"—X) (XY, 2)+(YI=Y) [o(X,Y, 2)+(29= Z) f5(X,Y, Z)=W £,
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where f = (f1, f2, f3) and deg(f;) < k as polynomials in three variables. Note
that fi here is the same as the polynomial f defined in Definition 11.6 and
examined in Section 11.1; while f, and f3 behave very similarly.

Proposition 11.16. (Lovéasz, Szényi) Let [x,y, z] be a tangent line to B at
the point (a;, by, ¢) € B. Then

f($, Y, Z) = (fl(l’, Y, Z)J f2(x7 Y, Z)? f3(x7 Y, Z)) = (atu bt7 Ct)
as homogeneous triples.

Proof: Recall Theorem 5.9, here we have

((8XR)(x,y, Z)v (8YR)(:c,y, Z), (82R>($L’,y, Z)) = _(fl(x7y7 Z)7f2(x7y72)7f3<x7y7z>>

Or:

(at7bt7ct) = (VR)(I7y7 Z) = (V(Wf))(l’,y,Z) = ((VOW)f—f—(vOf)W)(ZE,y,Z) =
—If(z,y,2)+0=—f(x,y,2). 1

Lemma 11.17. Ifk < qg—1then V-f = Xfi+ Y fo + Zf3 = 0. (Hence
R =V as well).

Proof: 1If [x,y, 2] is a tangent then by 11.16 V - f vanishes, and by the end
of Theorem 5.9 it also vanishes if [z, y, z] is at least a 2-secant. As the degree
is less than ¢ we are done. Or: it is just Theorem 5.9 (6) with r = 1. ]

Note also that f = V] R; and —f = (Vo f)V.

From Theorem 5.9 (5) one can see that each of the curves fi, fo, f3 go
through the point (z,¥, z) of the dual plane corresponding to a secant line
[,y,z]. Where are the other (extra) points of e.g. fi7 They are exactly the
points of ry, of Lemma 11.7, so points on factors corresponding to points
with a; = 0.

If one fixes (Y, Z) = (y,z) then R(X,y,z) is divisible by (X9 — X). If
R(X,y,z) # 0,s0if (0,y,2) ¢ BN Ly then for an (z,y, 2) € GF(q) x GF(q) x
GF(gq) if the line with equation z X +yY 4 2Z = 0 intersects B in at least two
points (cf. Proposition 11.8 (2.2)) then fi(z,y,2) = 0. One can repeat the
same reasoning for f,, f3 and this immediately gives the following lemma:

Lemma 11.18. ([103]) The curves f; have almost the same set of GF(q)-
rational points. The exceptional points correspond to lines intersecting
Lx,Ly or Lz in a point of B.
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Proof: Since this observation is crucial, a direct proof is also included.
Consider the Rédei polynomial R(X,Y,Z). For an element (z,y,z) €
GF(q) x GF(q) x GF(q) we get —fi(x,y,2) = OxR(z,y,z) and similarly
—fa(z,y,2) = OyR(x,y,z). Since R is a product of linear factors and
R(z,y,z) = 0, OxR(z,y,z) = 0 if and only if there are two linear factors
vanishing at (z,y, z), or if R(X,y,2) =0 (i.e. (0,—z,y) € B). The similar
statement holds for dy R, hence the two derivatives are zero for the same
values (z,y, z), except in the cases described in the statement. 1

Lemma 11.19. ([103]) If k < g—1 then the polynomials fi, fo and f3 cannot
have a common factor. Moreover, e.q. f1 and fy have a common factor g iff
(0,0,1) e B and g= Z.

Proof: Such a common factor must divide R(X,Y,Z), hence it must be
divisible by a;X + b;Y + ¢;Z for some i. Lemma 11.9 (2) gives (N = 1,
k < q — 2) that the point (a;,b;, ¢;) can be deleted, a contradiction.
Suppose that g is a common factor of f; and f,, then from X f; + Y fo +
Z f3 = 0 we have g|Z fs. 1

Therefore, (f1, f2, f3) is a triple of polynomials (curves) having no com-
mon factor (component), but they pass through almost the same set of GF(q)-
rational points. Using Bézout’s theorem it immediately gives Lemma 11.11

back.

11.4 Examples

In this section we compute the polynomials (curves) for some well-known
point sets. The computations are also used to illustrate several results and
ideas of this dissertation. In the cases when the point set is a blocking set,
we use the notation f = (f1, fa, f3) and g = (g1, g2, g3) for the curves defined
above. Werecall R =f-(X,Y, 7)) =g (Y1 Z-Y 79 71X -7ZX9, XY - XY1).

Example 11.20.

The line [a, b, ¢]. Its Rédei polynomial is a(Y1Z —Y Z9)+b(Z1X —ZX )+
(XY — XY9).

Example 11.21.

A conic. For the Rédei polynomial of the parabola X? — Y Z see Result
5.7.
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Example 11.22.

The projective triangle. Let ¢ be odd, B = {(1,0,0);(0,1,0);(0,0,1)} U
{(a%,0,1); (1,—a?,0);(0,1,a?) : a € GF(¢)*}. Then

X)XT V)T -2 =
1+( q_Y

q—

R(X,Y,Z) = XYZ((-2)"7 —
(X' = X)YZ[2"5 —(-Y)"7] )XZ|(=X)'7 =27 |+
(Z1— 2)XY[(-Y)'T — (-X)"T ]| =
(XY —XY)Z[Z'T —(=Y)'T —(=X)"T |+ (Y1 Z-Y Z9)X[(-X)"T 27 —
(V)5 + (29X — ZXO)Y[(-Y)5 — 2% — (- X)F].

Note that g = 0 iff [z,y, 2] = [@?,1,0] or [1,0, —a?] or [0, —a?, 1], so for the
2-secants.

Example 11.23.

The sporadic almost-Rédei blocking set. The affine plane of order 3 can be
embedded into PG(2, 7) as the points of inflexion of a non-singular cubic. The
12 lines of this plane cover each point of PG(2,7), so in the dual plane they
form a blocking set of size 12 = 3(7 + 1)/2, but its maximal line-intersection
is only 4 = (12 — 7) — 1. A characterization of it can be found in [SzPnuc2].

A representation of this blocking set is the following: its affine part is
U= {(x,—2%+323+1,1) : € GF(7)} U {(0,—1,1)}, the infinite part is
D = {(1,0,0),(1,1,0),(1,2,0),(1,4,0)}. Now

R(X,Y,Z) = X10y2 - X1072 _ X7y —2X"Y372 + 3X"Y Z* — X*Y® +
XAZ8 + XYY 4 XYO922 4 4XY" 74 + XY3 278

from which we get f =

(X3Y?2 — X372 — Y5 —2Y37% + 3YZ4, —X'Y + XY* + XY27?% +
4X74 X7 + XY327)

and g = (XY?%Z, X3Z +2Y3Z, X3Y —Y*+32%).

Note that g(z,y,2) = (0,0,0) iff (z,y,2) € {[1,0,0];[1,2,0];[1,4,0]} and
all three are 2-secants.

Example 11.24.

The Baer-subplane.
In PG(2, ¢) the standard embedding of a Baer subplane is {(a,b,1) : a,b €

GF(\/g)} U {(m,1,0) : m € GF(,/g)} U {(1,0,0)}.

Now its Rédei polynomial is

RX,Y,Z2)= [ (x+ww+2) J] (aX+Y)X =
a,be€GF(,/q) a€GF(,/q)
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(X1=X)[Y ZVI-YVIZ|+(YI-Y)[XVIZ-XZVI4+(Z29—-Z2) [ XY VI-XVIY] =
(Y12 - YZNXVI 4+ (29X — ZX)Y Vi + (XY — XY ZV4.

Here the equation of the blocking set is

XVA(eVih — cbVT) 4 Y VI(aVh — abV?) + ZV(aVie — acV?) = 0.

Example 11.25.

In PG(2,¢°) let U = {(z,z + 29 + 2°,1) : 2 € GF(¢*)}, and D the
directions determined by them, |D| = ¢* + 1.
Now for B =U U D we get

f=(XCZ4XCYIZ_XCY 204YC 7Y 79 XC 74 XC~H 794 X 79
_X@H _ xPy — xC-atlyd _ Xy4© )
and g= (X9 XT 4 XCYILYyT XCaZ94 79 )
Example 11.26.

In PG(2,¢%) let U = {(z,29,1) : © € GF(¢®)}, and D the directions
determined by them, D = {(1,a97*,0) : a € GF(¢*)*}, |[D| = ¢* +q+ 1.

Then, after the linear transformation (1,a?!,0) — (1—a?! a?' —3,0),
where (3 is a (¢ — 1)-st power, we have

r, = (X = BY)EH — (X — )Tt

Example 11.27.

The Hermitian curve. In PG(2, q), the Hermitian curve, which is a unital,
{(z,y,2) : oVITL 4 V@t 4+ V@ = (0} in PG(2, ¢) has the following Rédei
polynomial:

R(X.Y,Z) = (XYt g yVatl g Zvarhyamvatl _ xa/etl _ y o/l _ zavatt

11.5 Small blocking sets

Lemmas 11.18 and 11.19 can also be used to show that all the components
of f have identically zero partial derivative with respect to X. Note that for
any component h of f the total degree of h is the same as its degree in X.
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Theorem 11.28. ([103]) If k < (¢+1)/2 and g(X,Y,Z) is an irreducible

polynomial that divides f1(X,Y, Z), then ¢’ = 0.

Proof: Suppose to the contrary that ¢ is a component of f; with nonzero
partial X-derivative, denote its degree by deg(g) = s. By Lemma 11.10 the
number of GF(g)-rational points on ¢ is at least s(¢ +2 — Nx — s). Since
these points are also on f,, Bézout’s theorem gives s(¢ +2 — Nx — s) < sk,
since by Lemma 11.19, if f; and ¢g has a common component (i.e. g itself)
then it cannot be a component of f3 and one can use Bézout for g and f3
instead. This immediately implies ¢+ 2 < k+ Nx + 5 and from Nx +5 < k
it follows that k£ > (¢ + 2)/2, a contradiction. 1

Note that it implies that all the X-exponents appearing in f; are divisible
by p (as ry, does not involve X); and a similar statement holds for the Y-
exponents of f, and for the Z-exponents of f5. Let’s define e, the (algebraic)
exponent of B, as the greatest integer such that f; € GF(q)[X*",Y,Z], f» €
GF(q)[X,Y?", Z] and f3 € GF(q)[X,Y, ZF"]. By the Theorem e > 1.

Proposition 11.29. If ¢ = p is a prime and |B| < p + M, then the
curve fy is irreducible (and similarly for fs, f3).

Proof: Suppose to the contrary that e.g. fi is not irreducible, and let g
be a component of f; of degree at most (k — Nx)/2. The proof of Theorem
11.28 gives p+2 < k+ Ny +deg(g) < 3k/2+ Ny /2, that is 222N < kg

The following corollary, due to Szényi, generalizes the similar result of
Rédei on blocking sets of Rédei type.

Corollary 11.30. ([103]) If B is a blocking set of size less than 3(q+1)/2,
then each line intersects it in 1 modulo p points.

Proof: Take a line ¢ and coordinatise such that N Lx N B = (. If ¢ =
[z,y, z] then rn (y, 2) # 0. Since all the components of f; contain only terms
of exponent (in X) divisible by p, for any fixed (Y, Z) = (y, z) the polynomial
f1(X,y,2) = ray (¥, 2) fi(X, y, 2) itself is the p-th power of a polynomial.
This means that at the point P(x,y, z) the “horizontal line” (i.e. through P
and (1,0,0)) intersects f1(X,Y, Z) with multiplicity divisible by p (and the
same is true for f;), so by Theorem 11.8 the line [z,y, 2| intersects B in 1
modulo p points. 1

Note that now we have |B| = 1 (mod p). Of course, this theorem also
implies Blokhuis’ theorem in the prime case.
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Corollary 11.31. (Blokhuis [24]) If g = p is a prime, then |B| > 3(q¢+1)/2
for the size of a non-trivial blocking set. ]

The next corollary is a crucial one.

Corollary 11.32. If B is a blocking set of size less than 3(q +
1)/2, then the X-exponents in fi, the Y-exponents in fo and the Z-

exponents in fsz are 0 (mod p®); moreover all the exponents appearing in
R(X,Y,Z), f1, fo, f3;rne (Y, Z2), vy (X, Z), rn, (X, Y), are 0 or 1 (mod pf).

Proof: The first statement is just Theorem 11.28. From this the similar
statement follows for f;: the X-exponents in f;, the Y-exponents in fy and
the Z-exponents in f3 are 0 (mod p®).

Consider a term a X P 1Y B Z7 of X f; in the identity X f1+Y fo+Z f3 = 0.
It should be cancelled by Y f and Z f3, which means that it should appear
in either one or both of them as well with some coefficient. It cannot appear
in both of them, as it would imply exponents like XP* 1Y P +1 77'P+1 Hyy
the exponents must add up to k£ + 1, which is 2 mod p°, a contradiction. So
this term is cancelled by its negative, for example contained in Y f5, then it
looks like —a X P T1YFP*+1 77 where the exponents, again, add up to k+ 1,
which is 2 mod p®, hence v = 0 (mod p°), so the original term of f; was of
form a X 0P Y#P 1 Z7'p"

For ry, (Y, Z), rny (X, Z) and 7y, (X,Y") recall that they are also homo-
geneous polynomials of total degree 1 (mod p°) and for instance f; = ry, fi
and deg fi = degy f1, so in f; the terms of maximal X-degree have 0 or 1
mod p°¢ exponents (as terms of fi), on the other hand they together form

T’NXXk_NX .
Finally R = X9f; + Y9f; + Z9f5 so R has also 0 or 1 mod p® exponents
only. ]

Note that in f; other exponents can occur as well. Comparing the ex-
ponents one can find Yoy fi + Z0zf1 = XOxfir + Yoy fr + Z0,f1 = 0 as
well.

The (geometric) exponent ep of the point P can be defined as the largest
integer for which each line through P intersects B in 1 mod p°? point. It can
be proved (e.g. [30]) that the minimum of the (geometric) exponents of the
points in B is equal to e defined above.

Theorem 11.33. [SzPblin] Let B be a blocking set with exponent e. If for a
certain line |¢ N B| = p® + 1 then GF(p®) is a subfield of GF(q) and £ N B is
GF(p°)-linear.
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Proof: Choose the frame such that ¢ = Ly and (0,0,1);(0,1,0);(0,1,1) €
¢N B. Consider f = fi, now ry,(Y,Z) is a homogeneous polynomial of
(total) degree p® + 1, with exponents 0, 1,p¢ or p¢ + 1, so of form aY P+ +
BY ZP" + AYP Z + 627 As rn (0,1) = 1n, (1,0) = 7y, (1,—1) = 0 we
have ry, =Y Z =Y Z7 =T p)epopm (@Y +02). "

Now we can disclose one of our main goal: to get as close as we can to
the proof of the conjecture that every small blocking set is linear.

By the following proposition, a blocking set with exponent e has a lot of
(p® + 1)-secants (so “nice substructures”). Similar arguments can be found
in [28].

Proposition 11.34. Let P be any point of B with exponent ep.

(1) (Blokhuis) There are at least (¢ — k + 1)/p°" + 1 secant lines through
P.

(2) Through P there are at most 2(k — 1)/p®® — 1 long secant lines, i.e.
lines containing more than p°f +1 points of B (so at least q/p®F —3(k—
1)/p°F +2 (p°F + 1)-secants).

(3) There are at most 4k — 2p°? — 4 points Q) € B\ {P} such that PQ is
a long secant.

(4) There are at least ¢ — 3k + 2p°® + 4 points in B with (point-)exponent e.

Proof: (1) was proved by Blokhuis using lacunary polynomials. To prove
(2) denote by s the number of (p®? + 1)-secants through P and let r be the
number of (> 2p? + 1)-secants through P. Now sp®? + 2rp® +1 < q + k.
From (1) s+r > (¢q—k+1)/p* +1,s0 q/p* —(k—1)/pP +r+1 < s+2r <
q/p*" + (k—1)/p* hence r < 2(k—1)/p* —1 and s > q/p** — (k—1)/p +
1—r>q/p™ —3(k—1)/p" +2.

For proving (3) subtract the number of points on (p°f +1)-secants through
P from |B|, it is < g+ k—(q/p® —3(k—1)/p°P 4+ 2)pF — 1 = 4k — 2p°F — 4.
There is at least one point P € B for which ep = e. On the p® + 1-secants
through it (by (2)) we find at least 1+p°(¢/p® —3(k—1)/p°®+2) points, each
of exponent e, it proves (4). 1

Recall that there are at least ¢ + 1 — k£ tangent lines through P, so at
most k secants. We also know from Szényi [103] that ¢/p® +1 < k <
q/p°+q/p*+2q/p*+... Now “almost all” line-intersections of B are GF(p®)-
linear (in fact they are isomorphic to PG(1, p®) in the non-tangent case).
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Corollary 11.35. [SzPblin] For the exponent e of the blocking set, e|h (where
h
q=p")

Proof: By Proposition 11.34 B has a lot of short secants. By Theorem
11.33 these intersections are all isomorphic to PG(1, p¢), so GF(p°) is a subfield

of GF(p") = GF(q). 1

Now we can give a very short proof for Theorem 11.5 in the case when
p¢ > 13.

Corollary 11.36. [SzPblin] Small blocking sets of Rédei type, with p¢ > 13,
are linear.

Proof: Suppose Lz is the Rédei-line, O = (0,0,1) € B, ep = e, and take
any P € B\ Lz, with ep = ¢, and any a € GF(p®). Claim: «aP (affine
point!) is also in B. If OP is a short secant then it is obvious.

Consider the short secants through P, there are at least ¢/p°—3(k—1)/p°+
2. Most of them, at least ¢/p® — 3(k —1)/p° + 2 — 4’“;3# >4 - We%_’“{pe,
say {{; : i € I}, contain at least two points @1, Qs € B, such that OQ; and
0OQ)» are short secants.

For any of them, say ¢;, take a/;, it contains aP. If all of {a/; : i € I} were
long secants then they would contain at least 2p®( z% — %_]f{pe) > q+k points
of B, contradiction if p¢ > 13. Say a/ is a short secant, then aP € B N af
and e,p = e as well.

Let Uy be the set of affine points of B with exponent e. Now we have
that Uy is invariant for magnifications from any center in Uy and with any
scale o € GF(p®), so it forms a vectorspace over GF(p®). As its size is ¢ —
3k +2p° +4 < |Up| < g we have |Uy| = ¢ and it contains all the affine points
of B. 1

Consequences

The bounds for the sizes of small blocking sets are now the following.

Corollary 11.37. Let B be a minimal blocking set of PG(2,q), ¢ = p", of
size |B| < 3(q + 1)/2. Then there exists an integer e, called the exponent of
B, such that

1 <elh,

and

g+ 1+ p (U4 < Bl < L+ (p"+1) (1) =/ (e +1) (a4 1) 2~ 4(p*+ 1) (a*+a+1)

e 3 .

pe+1
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If | B| lies in the interval belonging to e and p© # 4 then each line intersects
B in 1 modulo p® points. Most of the secants are (p° + 1)-secants, they
intersect B in a point set isomorphic to PG(1,p°).

These bounds are due to Blokhuis, Polverino and Szényi, see [86, 103],
and asymptotically they give q—l—}%—pge +p§e —..<|B| < q—f—l%—l—pge —|—2p§e +...
. We note that for ¢ = p?* and ¢ = p®*, where s is a prime, the lower bound
is sharp: |B| > ¢+ q/p® + 1 and |B| > q + q/p* + 1, resp.

The 1 mod p® property was established by Sz6ényi; our Theorem 11.35
shows that only a very few of the intervals of Szényi, Blokhuis, Polverino
contain values from the spectrum of blocking sets, i.e. only those with e|h.
The linearity of short secants is Theorem 11.33, on their number see Propo-
sition 11.34.

Let S(g) denote the set of possible sizes of small minimal blocking sets in
PG(2,q).

Corollary 11.38. Let B be a minimal blocking set of PG(n,q), ¢ = p", with
respect to k-dimensional subspaces, of size |B| < 3(¢" % 4+ 1), and of size
|B| < v2¢" % if p=2. Then

o Bl € S(¢"™");

o if p>2then ((|B] = 1)(¢" *)" > +1) € S((¢"*)").
If p > 2 then there exists an integer e, called the exponent of B, such that
1 <elh,

for which every subspace that intersects B, intersects it in 1 modulo p® points.
Also |B| lies in an interval belonging to some € < e, €'|h. Most of the k-
dimensional subspaces intersecting B in more than one point, intersect it in
(p® + 1) points precisely, and each of these (p® + 1)-sets is a collinear point
set isomorphic to PG(1, p°).

Proof: (Sketch.) Most of this was proved by Szényi and Weiner in [109].
Consider the line determined by any two points in a (p® + 1)-secant k-
subspace, this line should contain p® + 1 points. Then the technique of
[109] can be used to derive a planar minimal blocking set (in a plane of or-
der ¢"~*) with the same exponent e: firstly embed PG(n, ¢) into PG(n, ¢" %)
where the original blocking set B becomes a blocking set w.r.t. hyperplanes,
then choose an (n — 3)-dimensional subspace II C PG(n,¢" %) not meeting
any of the secant lines of B and project B from II onto a plane PG(2, ¢" %) to
obtain a planar minimal blocking set, for which Theorem 11.33 and Propo-
sition 11.34 can be applied, implying e|h(n — k).
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Now in PG(n + 1, q) D PG(n,q) build a cone B* with base B and vertex
V € PG(n+1,q) \ PG(n, q); then B* will be a (small, minimal) blocking set
in PG(n + 1,¢) w.r.t. k-dimensional subspaces. The argument above gives
elh(n+1—k),soe|gcd.(h(n—k),h(n+1—k))=h. ]

We remark that one may go on with building the theory for multiple
blocking set. For instance, when B C PG(2,q) is a double blocking set of
size 2q + k then

R(X,Y,Z) = WF(X,Y,Z) W7,

where F(X,Y,Z) = (fi;(X,Y, Z))3x3. We will not meet this challenge now,
for details see Blokhuis, Lovéasz, Storme, Szényi [28], [SzPmult1], [SzPmult2].

12 Linear point sets and Rédei type k-
blocking sets in PG(n,q)

In this section, k-blocking sets in PG(n,q), being of Rédei type, are inves-
tigated. In this section we do not use polynomials, but this provides the
geometrical background for the parts about (i) blocking sets; (ii) directions;
(iii) linear point sets, so it seemed reasonable to include it here.

A standard method to construct Rédei type k-blocking sets in PG(n, q) is
to construct a cone having as base a Rédei type k’-blocking set in a subspace
of PG(n,q). But also other Rédei type k-blocking sets in PG(n,q), which
are not cones, exist. We give in this section a condition on the parameters
of a Rédei type k-blocking set of PG(n,q = p"), p a prime power, which
guarantees that the Rédei type k-blocking set is a cone. This condition is
sharp.

12.1 Introduction

There is a continuously growing theory on Rédei type blocking sets and
their applications, also on the set of directions determined by the graph of a
function or (as over a finite field every function is) a polynomial; the intimate
connection of these two topics is obvious.

Let’s recall some notation briefly. As usual, we consider PG(n, q) as the
union of AG(n, ¢) and the ‘hyperplane at infinity’ H.,. A point set in PG(n, q)
is called affine if it lies in AG(n, ¢), while a subspace of PG(n, q) is called affine
if it is not contained in H.,. So in tP}s sense an affine line has one infinite

|

point on it. Let 0, = [PG(n,q)| = © 1 = ¢" + ¢t g+ L
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A k-blocking set B C PG(n,q) is a set of points intersecting every (n —
k)-dimensional subspace, it is called trivial if it contains a k-dimensional
subspace. A point b € B is essential if B\ {b} is no longer a k-blocking set
(so there is an (n — k)-subspace L intersecting B in b only, such an (n — k)-
subspace can be called a tangent); B is minimal if all its points are essential.
Note that for n = 2 and k = 1 we get the classical planar blocking sets.

Definition 12.1. We say that a set of points U C AG(n, q) determines the
direction d € H., if there is an affine line through d meeting U in at least two
points. Denote by D the set of determined directions. Finally, let N = |D|,
the number of determined directions.

We will always suppose that |U| = ¢*.

between directions and blocking sets:

Now we show the connection

Proposition 12.2. If U C AG(n, q), |U| = ¢*, then U together with the infi-
nite points corresponding to directions in D form a k-blocking set in PG(n, q).
If the set D does not form a k-blocking set of H., then all the points of U
are essential.

Proof: Any infinite (n — k)-subspace H,,_, C H is blocked by D: there
are ¢*~! (disjoint) affine (n— k+1)-spaces through H,,_, and in any of them,
which has at least two points in U, a determined direction of D N H,,_; is
found.

Let H, 1 C Hy and consider the affine (n — k)-subspaces through it.
If DN H,_;_1 # 0 then they are all blocked. If H,_;_; does not contain any
point of D, then every affine (n— k)-subspace through it must contain exactly
one point of U (as if one contained at least two then the direction determined
by them would fall into D N H,,_x_1), so they are blocked again. So U U D
blocks all affine (n — k)-subspaces and all the points of U are essential when
D does not form a k-blocking set in H.. 1

Unfortunately in general it may happen that some points of D are non-
essential. If D is not too big (i.e. |D| < ¢*, similarly to planar blocking sets)
then it is never the case.

Proposition 12.3. If |D| < q,‘f:—iil, then all the points of D are essential.

Proof: Take any point P € D. The number of (n — k — 1)-subspaces
through P in H is ; On20ns 0 Any other Q € D\ {P} blocks at most

n—k—20n_k_3...01-1"
O 3.0,

On_k—3...01-1
infinite (n — k — 1)-subspaces containing P only, will be a tangent at P. g

of them. So some affine (n — k)-subspace through one of those



dc_637_12

12. LINEAR POINT SETS, REDEI TYPE K-BLOCKING SETS 69

The k-blocking set B arising in this way has the property that it meets
a hyperplane in | B| — ¢* points. On the other hand, if a minimal k-blocking
set of size < 2¢* meets a hyperplane in |B| — ¢* points then, after deleting
this hyperplane, we find a set of points in the affine space determining these
|B| — ¢" directions, so the following notion is more or less equivalent to a
point set plus its directions: a k-blocking set B is of Rédei type if it meets a
hyperplane in |B|—¢* points. We remark that the theory developed by Rédei
in his book [91] is highly related to these blocking sets. Minimal k-blocking
sets of Rédei type are in a sense extremal examples, as for any (non-trivial)
minimal Ak-blocking set B and hyperplane H, where H intersects B in a set
H N B which is not a k-blocking set in H, |B\ H| > ¢* holds.

Since the arising k-blocking set has size ¢* + | D], in order to find small
k-blocking sets we will have to look for sets determining a small number of
directions.

Hence the main problem is to classify sets determining few directions,
which is equivalent to classifying small k-blocking sets of Rédei type. A strong
motivation for the investigations is, that in the planar case, A. Blokhuis, S.
Ball, A. Brouwer, L. Storme and T. Sz6nyi classified blocking sets of Rédei
type, with size < g + %3, see Theorem 11.5

We call a Rédei k-blocking set B of PG(n,q) small when |B| < ¢* +
LBkl 4 b2 4+ ¢*=3 + ... 4+ g. These small Rédei k-blocking sets will be
studied in detail in the next sections.

It is our goal to study the following problem. A small Rédei k-blocking
set in PG(n, ¢) can be obtained by constructing a cone with vertex a (k — 2)-
dimensional subspace II;_ in PG(n, ¢) and with base a small Rédei blocking
set in a plane IT}, skew to II;_s.

However, these are not the only examples of small k-blocking sets in
PG(n,q). For instance, the subgeometry PG(2k,q) of PG(n = 2k,q?) is a
small k-blocking set of PG(2k, ¢%), and this is not a cone.

We give a condition (Theorem 12.15) on the parameters of the small Rédei
k-blocking set in PG(n, ¢) which guarantees that this small Rédei k-blocking
set is a cone; so that the exact description of this k-blocking set is reduced
to that of the base of the cone.

This condition is also sharp since the k-blocking set PG(2k,q) in
PG(2k, ¢*) can be used to show that the conditions imposed on n,k and
h in Theorem 12.15 cannot be weakened.

Our results also contribute to the study of linear k-blocking sets in
PG(n, q) discussed by Lunardon [82].

Warning: In the remaining part of this section we always suppose that the
conditions of the “moreover” part of Theorem 11.5 are fulfilled.
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12.2 k-Blocking sets of Rédei type

Proposition 12.4. Let U C AG(n,q), |U| = ¢*, and let D C H, be the set
of directions determined by U. Then for any point d € D one can find an
(n — 2)-dimensional subspace W C Hy,, d € W, such that D N W blocks all
the (n — k — 1)-dimensional subspaces of W.

The proposition can be formulated equivalently in this way: D is a union
of some By, ..., By, each one of them being a (k—1)-blocking set of a projective
subspace Wh, ..., Wy resp., of dimension n — 2, all contained in H.

Proof: The proof goes by induction; for any point d € D we find a series
of subspaces S; C Sy C ... C S,_1 C AG(n,q), dim(S,) = r such that s, =
IS, NU| > ¢* ™ + 1 and d is the direction determined by S;. Then, using
the pigeon hole principle, after the r-th step we know that all the (n —k—1)-
dimensional subspaces of S, N H,, are blocked by the directions determined
by points in S,, as there are ¢*~"*" disjoint affine (n — k)-subspaces through
any of them in S, so at least one of them contains 2 points of U N S,..

For r = 1 it is obvious as d is determined by at least 2 = ¢°+1 > ¢" "+ 41
points of some line S;. Then for r 4+ 1 consider the qn_:l_ L subspaces of
dimension r 4 1 through S5, then at least one of them contains at least

k+1—n+r

k _ _ k—n4r n—r __
87‘ + qn—r,ir = qk‘—i-l—n—l-’r + (ST q — )(q Q)
q g —1
q—1

>q

points of U. ]

Corollary 12.5. For k = n—1 it follows that D is the union of some (n—2)-
dimensional subspaces of H. 1

This corollary became important in the applications. E.g. in the nice
paper Alderson-Gécs[1], this became a key lemma for proving that if a linear
code is extendible then it is extendible in a linear way as well.

Observation 12.6. A projective triangle in PG(2,q), ¢ odd, is a block-
ing set of size 3(¢ + 1)/2 projectively equivalent to the set of points
{(1,0,0),(0,1,0),(0,0,1),(0,1,a9),(1,0,a1), (—ag, 1,0)}, where ag, as, as are
non-zero squares [65, Lemma 13.6]. The sides of the triangle defined by
(1,0,0),(0,1,0),(0,0,1) all contain (¢ + 3)/2 points of the projective trian-
gle, so it is a Rédei blocking set.

A cone, with a (k — 2)-dimensional vertex at H., and with the ¢ points of
a planar projective triangle, not lying on one of those sides of the triangle, as
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a base, has ¢”* affine points and it determines %qu_l +q" 243 g+l
directions.

Lemma 12.7. Let U C AG(n,q), |[U] = ¢"!, and let D C H,, be the set
of directions determined by U. If H, C Hy s a k-dimensional subspace
not completely contained in D then each of the affine (k + 1)-dimensional
subspaces through it intersects U in ezactly ¢* points.

Proof: There are ¢"~'~* mutually disjoint affine (k + 1)-dimensional sub-
spaces through Hj. If one contained less than ¢* points from U then some
other would contain more than ¢* points (as the average is just ¢*), which
would imply by the pigeon hole principle that Hy C D, contradiction. 1

Theorem 12.8. Let U C AG(n, q), |U| = ¢" ', and let D C H,, be the set of
directions determined by U. Suppose |D| < L2q"= 24" 3 +¢" 4. +¢*+¢.
Then for any affine line € either (i) |[UNL| =1 (iff { N Hs & D), or (ii)
[UN L =0 (mod p®) for some e = eg|h.

(7ii) Moreover, in the second case the point set U N{ is GF(p®)-linear, so
if we consider the point at infinity p of £; two other affine points py and
p1 of UNYL, with p1 = po + Poo, then all points py + xps, with x € GF(p°),
belong to U N L.

Proof: (i) A direction is not determined iff each affine line through it con-
tains exactly one point of U. (ii) Let |[UN¥| > 2, d = { N Hy. Then, from
Corollary 12.5, there exists an (n — 2)-dimensional subspace H C D, d € H.
There are ¢"2 lines through d in Hy, \ H, so at least one of them has at
most g+l n-—2

- |D| — |H| s -1 _g+1 1

- qn—2 - qn—2 2 qn—2

points of D, different from d. In the plane spanned by this line and ¢ we
have exactly ¢ points of U, determining less than %3 directions. So we can

use Theorem 11.5 for (ii) and (iii). ]

Corollary 12.9. Under the hypothesis of the previous theorem, U 1is a
GF(p®)-linear set for some e|h.

Proof: Take the greatest common divisor of the values e, appearing in the
theorem for each affine line ¢ with more than one point in U. ]
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The preceding result also means that for any set of affine points (‘vec-
tors’) {ai,as,...,a;} in U, and ¢1,¢9,...,¢; € GF(p°), 22:1 ¢; = 1, we have
Z’;ﬁ:l cia; € U as well. This is true for ¢ = 2 by the corollary, and for ¢ > 2
we can combine them two by two, using induction, like

c1aq1 + ... + cap =

(cr+ -+ 1) = bAoA — 4 ) +aa,
€L+t G CLt -+ G

where ¢; + ... + ¢, = 1.

Theorem 12.10. Let U C AG(n,q), |U| = ¢*, and let D C H,, be the set
of directions determined by U. If |D| < %qkil +q¢" 2+ ...+ q¢* +q, then
any line ¢ intersects U either in one point, or [UNE| =0 (mod p®), for some
e = e¢|h. Moreover, the set U N{ is GF(p®)-linear.

Proof: If k = n — 1, then the previous theorem does the job, so suppose
k < n—2. Take a line ¢ intersecting U in at least 2 points. There are at most
q" — 2 planes joining ¢ to the other points of U not on ¢; and their infinite
points together with D cover at most ¢"+! + %qk + ... points of H,, so they do
not form a (k+1)-blocking set in H.,. Take any (n—k—2)-dimensional space
H,,_;_5 not meeting any of them, then the projection 7 of UUD from H,,_;_»
to any ‘affine’ (k4 1)-subspace Sk is one-to-one between U and 7(U); (D)
is the set of directions determined by 7(U), and the line 7(¢) contains the
images of U N/ only (as H,,_x_» is disjoint from the planes spanned by ¢ and
the other points of U not on ¢). The projection is a small Rédei k-blocking
set in Sk41, so, using the previous theorem, 7(UNY¥) is GF(p®)-linear for some
elh. But then, as the projection preserves the cross-ratios of quadruples of
points, the same is true for U N /. ]

Corollary 12.11. Under the hypothesis of the previous theorem, U 1is a
GF(p®)-linear set for some e|h.

Proof: Let e be the greatest common divisor of the values e, appearing in
the preceding theorem for each affine line with more than one point in U. g

12.3 Linear point sets in AG(n, q)

First we generalize Lemma 12.7.
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Proposition 12.12. Let U C AG(n,q), |U| = ¢*, and let D C H,, be the set
of directions determined by U. If H, C Hy, is an r-dimensional subspace,
and H. N D does not block every (n — k — 1)-subspace of H, then each of
the affine (r + 1)-dimensional subspaces through H, intersects U in exactly
¢RI points.

n—1l—r

Proof: There are g mutually disjoint affine (r + 1)-dimensional sub-
spaces through H,. If one contained less than ¢"+t**1=" points from U then
some other would contain more than ¢"t 17" points (as the average is just
q"t*+1=) which would imply by the pigeon hole principle that H, N D would
block all the (n — k — 1)-dimensional subspaces of H,, contradiction. ]

Lemma 12.13. Let U C AG(n,p"), p > 2, be a GF(p)-linear set of points. If
U contains a complete affine line ¢ with infinite point v, then U is the union
of complete affine lines through v (so it is a cone with infinite vertezx, hence
a cylinder).

Proof: Take any line ¢ joining v and a point " € U \ ¢, we prove that
any R' € ¢ is in U. Take any point @) € £, let m be the line Q'Q, and take
a point Qg € U N'm (any affine combination of ) and @’ over GF(p); see
paragraph after the proof of Corollary 12.9). Now the cross-ratio of Qy, @', Q
(and the infinite point of m) is in GF(p). Let R := (N QyR', so R € U. As
the cross-ratio of QQy, R/, R, and the point at infinity of the line R'R, is still
in GF(p), it follows that R € U. Hence ¢’ C U. ]

Lemma 12.14. Let U C AG(n,p") be a GF(p)-linear set of points. If |U| >
p""=Y then U contains a line.

Proof: The proof goes by double induction (the ‘outer’ for n, the ‘inner’
for r). The statement is true for n = 1. First we prove that for every
0 < r <n —1, there exists an affine subspace S,, dim S, = r, such that it
contains at least |S, N U| = s, > p"~"*2 points. For r = 0, let Sy be any
point of U. For any r > 1, suppose that each r-dimensional affine subspace
through S,_; contains at most p""~"*! points of U, then

phn _ ph(r—l)

hn—n-+1
p < |U‘ < phr _ph(r—l)

(phrfnJrl - Srfl) + Sr—1 S

hn _ h(r—1)
p p hr—n+1 h(r—1)—n+2 h(r—1)—n+2
< phr _ ph(r—l) -p ) +p :

(p
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But this is false, contradiction.

So in particular for r = n—1, there exists an affine subspace .S, containing
at least |S, N U| > p""=D=+2 points of U. But then, from the (n — 1)-st
(‘outer’) case we know that S,,_; N U contains a line. ]

Now we state the main theorem of this section. We assume p > 3 to be
sure that Theorem 11.5 can be applied.

Theorem 12.15. Let U C AG(n,q), n > 3, |U| = ¢*. Suppose U determines
|D| < #qk_l + ¢ 2+ ¢F 3 + .+ ¢ + q directions and suppose that U is a
GF(p)-linear set of points, where ¢ = p", p > 3.

Ifn—1> (n—k)h, then U is a cone with an (n—1—h(n—k))-dimensional
vertex at Ho, and with base a GF(p)-linear point set Ug,_pn of size gRh=1)
contained in some affine (n — k)h-dimensional subspace of AG(n, q).

Proof: It follows from the previous lemma (as in this case |U| = p'* >
p”(h*1)+1) that U = U, is a cone with some vertex V) = vy € H,. The base
U,,—1 of the cone, which is the intersection with any hyperplane disjoint from
the vertex Vp, is also a GF(p)-linear set, of size ¢*~1. Since U is a cone with
vertex Vy € Hy, the set of directions determined by U is also a cone with
vertex Vg in H,,. Thus, if U determines N directions, then U, _; determines
at most (N —1)/q < %qki? +¢" 3 4+ ¢"* + ...+ ¢® + q directions. So if

(n—1)—1
LN oy

some GF(p)-linear base U,,_3, so in fact U is a cone with a one-dimensional
vertex V; = (vg,v1) C Hy and an (n — 2)-dimensional base U,,_s, and so on;
before the r-th step we have V,_; as vertex and U,,_,, a base in an (n — r)-
dimensional space, of the current cone (we started “with the 0-th step”).
Then if h < %, then we can find a line in U,,_, and its infinite point
with V,_; will generate V, and a U, _;_, can be chosen as well. When there
is equality in h < %, so when 7 = n — (n — k)h — 1, then the final
step results in Ug,—g)n, and Vi1 _pn—r)- 1

then U,,_; is also a cone with some vertex v; € H,, and with

The previous result is sharp as the following proposition shows.

Proposition 12.16. In AG(n,q = p"), for n < (n — k)h, there exist GF(p)-
linear sets U of size ¢° containing no affine line.

Proof: For instance, AG(2k, p) in AG(2k, p?) for which n = 2k = (n—k)h =
(2k — k)2.

More generally, write hk = d; +do+...+d,, 1 <d; < h—1 (i=1,....,n)
in any way. Let U; be a GF(p)-linear set contained in the i-th coordinate



dc_637_12

13. STABILITY I0)

axis, O € Uy, |Us| =p% (i =1,...,n). Then U = U; x Uy X ... x U, is a proper
choice for U. 1

13 Stability

We start with a result of [SzPdpow], which is a generalization of the main
result of [104]. Let D be a set of directions in AG(2,q). A set U C AG(2,q)
is called a D-set if U determines precisely the directions belonging to D.

Theorem 13.1. Let U be a D-set of AG(2, q) consisting of q—e points, where
e<ay/qand |D| < (qg+1)(1—-a),1/2<a <1. Then U is incomplete, i.ec.
it can be extended to a D-set' Y with |Y| = q.

The proof is based on Lemma 8.9, we omit the details here.

Comparing this to Theorem 11.5 one can see that if U C AG(2, q) deter-
mines N < q;r—l directions and U is of size ¢ — ¢, with € small then still we
know the structure of U.

The analogue of Theorem 13.1 is the following version of the results of
[SzPnuc2, 37]:

Theorem 13.2. Let U C AG(2,q) be a point set of size |U| = q + ¢, where
e<a/q—1and %—l—ﬁa < a < 1. Suppose that there are more than a(q+1)
points on L, through which every affine line contains at least one point of
U (kind of “nuclei” at infinity); let the complement of this point set on ls
be called D. Then one can find € points of U, such that deleting them the

remaining q points will still block all the affine lines through the points of
lo \ D.

Proof: Let U = {(a;,b;) : i =1,...,q + €}, suppose (o) € D. Define the
Rédei polynomial of U as

q+e g+e
R(X,)Y) = H(X +aY —b) = er(Y>Xq+s—j'
i=1 =

Then deg(r;) < j. Let R, (X) = R(X,y), then (X9 — X)|R, if and only if
GF(q) C A(y) = {—ay+0b; : i =1,...,q + €} for the multiset A(y), that is,
when (y) ¢ D. Similarly, let A(Y) = {—a;Y +b; : i =1,...,q + ¢}, a set
of linear polynomials. In this case let o; = 0;(A(y)) be the j-th elementary
symmetric polynomial of the elements in A(y), and 6; = 7,;(A(y)) = 0;(A(y)\
GF(q)) be the j-th elementary symmetric polynomial of the “extra” elements.
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Note that o; = (—1)’r;, and like in Section 9, we have ; = ¢;, and we can
define

7,(Y) € oY) = (=1)ry(Y).
Define the polynomial f(X,Y) = X¢ — 5, X! + 5, X2 — +... + (—1)%G..
Here f is of total degree € and if (yo) € D then R(X,yo) = (X7—X) f(X, yo).
For such yy-s, we have

fXw) = I x-n),

BEAy,\GF(q)

so the curve F defined by f(X,Y) = 0 has precisely ¢ distinct simple points
(x,90). So F has at least

N> (¢g+1—|D))e> (¢+ 1ae

simple points in PG(2, q).

Now, using Lemma 8.9 with the same «, we have that F has a linear
component X +aY —b over GF(¢). Then —ay+b has multiplicity at least two
in A(y) if (y) ¢ D. Now (X9—X)(X +ay—>b) divides R(X,y) for all (y) € D,
as R(X,y) = (X— X)f(X,y) and (X +aY —b)|f(X,Y). Suppose that the
point (a,b) € U. Then counting the points of U on the lines connecting (a, b)
to the points of £, \ D, we find at least 2|(,, \ D| > g+ 1+ ¢ points (at least
2 on each), a contradiction. Hence (a,b) € U, and one can delete (a,b) from
U. Repeating this procedure we end up with a set consisting of ¢ points and
still not determining any direction in £, \ D. ]

Usually it is difficult to prove that, when one finds the “surplus” ele-
ment(s), then they can be removed, i.e. they were there in the original set.
Here the “meaning” of a non-essential point (i.e. each line through it is an
> 2-secant) helped.

k ok ok

We finish this subsection with a general statement on the stability of

point sets. (Compare this to the beginning of Section 10.)

Result 13.3. If 51,52 C PG(2,q) are two point sets, with characteristic
vectors vg,, Vs, and weight (or line-intersection) vectors mg, = Avg,, mg, =
Avsg,, (where A is the incidence matriz of the plane) then

[Ims, —mg,||* = (|S1] = [Sa2)* +q - [S1 A 5
where ||x|| = /Y. x? and A denotes symmetric difference.

Note that it means that the (Euclidean) distance of the line-intersection
vectors of any two point sets is at least /g, so in this sense every point set
is “stable”.
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13.1 Partial flocks of the quadratic cone in PG(3,¢)

A flock of the quadratic cone of PG(3, ¢) is a partition of the points of the cone
different from the vertex into ¢ irreducible conics. Associated with flocks are
some elation generalised quadrangles of order (¢2, ¢), line spreads of PG(3, q)
and, when ¢ is even, families of ovals in PG(2, ¢), called herds. In [98] Storme
and Thas remark that this idea can be applied to partial flocks, obtaining a
correspondence between partial flocks of order &k and (k + 2)-arcs of PG(2, ¢),
and constructing herds of (k + 2)-arcs. Using this correspondence, they can
prove that, for ¢ > 2 even, a partial flock of size > g —,/q — 1 if ¢ is a square
and > q — \/5\/6 if ¢ is a nonsquare, is extendable to a unique flock.

Applying this last result, Storme and Thas could give new and shorter
proofs of some known theorems, e.g., they can show directly that if the planes
of the flock have a common point, then the flock is linear (this originally was
proved by Thas relying on a theorem by D. G. Glynn on inversive planes,
and is false if ¢ is odd).

Here we prove the following

Theorem 13.4. [SzPflock] Assume that the planes E;,i = 1, ..., q—¢ intersect
the quadratic cone C' C PG(3,q) in disjoint irreducible conics. If ¢ < }1(1 —
qul)\/@ then one can find additional € planes (in a unique way), which extend
the set {E;} to a flock.

Proof: Let C be the quadratic cone C = {(1,t,t%,2) : t,z € GF(¢q)} U
{(0,0,1,2) : z € GF(¢)} U {(0,0,0,1)} and C* = C'\ {(0,0,0,1)}. Suppose
that the planes F; intersect C* in disjoint conics, and E; has the equation
Xy=a; X1 +b;Xo+¢; X3, fori=1,2,...,qg — ¢.

Define f;(T) = a; + bT + ¢;T?, then E; N C* = {(1,t,t, fi(t)) : t €
GF(q)}U{(0,0,1,¢;)}. Let 0 (T) = o ({fi(T) : i =1, ...,q—¢}) denote the i-
th elementary symmetric polynomial of the polynomials f;, then deg (o)) <
2k. As for any fixed T' =t € GF(q) the values f;(t) are all distinct, we would
like to find

X1—-X
[L(X = fi(t)’
the roots of which are the missing values GF(q) \ {fi(t) :i=1,...,q — €}.

We are going to use the technique of Section 9. In order to do so, we define
the elementary symmetric polynomials o7 (t) of the “missing elements” with
the following formula:

X1—X =

(X7 a1 () X1 Uy (1) X152 o, (1) (X0 ()X o3 ()X 20 (1)
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from which o7 (t) can be calculated recursively from the oy (t)-s, as the coeffi-
cient of X977, j=1,..,q =2is 0 = o} (t) + 07, (t)o1(t) + ... + o7 (t)oj_1(t) +
0;(t); for example

o1 (t) = —o1(t); o3(t) = o1 (t)* —0oa(t); 03(t) = —01 ()’ +201(t)o2(t) —o3(t);

etc. Note that we do not need to use all the coefficients/equations, it is
enough to do it for j =1, ... €.

Using the same formulae, obtained from the coefficients of X977, j =
1,...,&, one can define the polynomials

01(T)=~01(T); 03(T) = 01(T)*~03(T); 05(T) = —01 (T)3+201(T)02(TP03((T))%

up to o7. Note that degy(07) < 2j. From the definition
<Xq_5—01(T)Xq_a_l—l—...ioq_g(T)> (Xs—a;‘(T)Xs—1+a; (T)X€—2—...ia;(T))

is a polynomial, which is X7 — X for any substitution 7" =t € GF(q), so it is
X?— X+ (T9—=T)(...). Now define

G(X,T) = X° — o (T)X*" + o3(T) X2 — ... £ o7(T), 2)

from the recursive formulae it is a polynomial in X and T, of total degree
< 2e and X-degree €.

For any T' =t € GF(q) the polynomial G(X,t) has ¢ roots in GF(q) (i.e.
the missing elements GF(q) \ {f:(t) : i =1,...,¢ — €}), so the algebraic curve
G(X,T) has at least N > eq distinct points in GF(q) x GF(q). Suppose that
G has no component (defined over GF(q)) of degree < 2. Let’s apply the

Lemma with d =2 and a < (1 — qul); (as 2¢ < ay/q) we have

eq < N <2(q+1)a,

which is false, so G = G1G5, where GGy is an irreducible factor over GF(q)
of degree at most 2. If degy G = 2 then degy G2 = ¢ — 2, which means
that G; has at most ¢ + 1 and G2 has at most (¢ — 2)q¢ distinct points in
GF(gq) x GF(q) (at most ¢ — 2 for each T' =t € GF(q)), contradiction (as G
has at least £¢).

Both Gy and Gs, expanded by the powers of X, are of leading coefficient
1. So Gy is of the form G{(X,T) = X — f,—c1(T), where f,—.1(T) =
Ag-ct1 + by—ey1T + cq—e1T?. Let the plane E, .1 be defined by X, =
Ag—er1X1 + bgcy1Xo + g1 X3.

The plane E, .1 intersects C* in {(1,¢,% f,—c11(t)) : t € GF(¢)} U
{(0,0,1,¢4—c4+1)}. Now we prove that for any ¢ € GF(q) the points
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{(1,t,¢2 fi(t)) i =1,...,q — e} and (1,¢,t?, fy—c11(t)), in other words, the
values fi(t), ..., fy—c(t); fq—et1(t) are all distinct. But this is obvious from
(Xq—s — o ()X oy () X j:aq,g(t)> (X - fq,gﬂ(t)) | X9- X.

Now one can repeat all this above and get f,_.19, ..., fg, sO we have

q

G(X.T)= [ (X = fi(1))

qe+1

and the values f;(t),i = 1,...,q are all distinct for any ¢ € GF(¢q). The only
remaining case is “t = 0c0”: we have to check whether the intersection points
E;NC* on the plane at infinity X; = 0, i.e. the values ¢y, ..., ¢q—c; Cg—ect1, .., Cq

~~ v~

T T
are all distinct (for I' we know it). (Note that if ¢ planes partition the affine
part of C* then this might be false for the infinite part of C*.) From (1),

considering the leading coefficients in each defining equality, we have
o1 (T*) =—01(T); 02(T*) = 01(I)*~02(T); 03(*) =—01(T)*+20,(T)oo(T)—o3(T);

etc., so
Xt - X = (XH — oy (T)X 75! 4 gy (T) X052 — ...aq_E(I‘)XXq*E -

o1 (T*) X977t g (TH) X572 — ...<7q_€(1”))7 which completes the proof. g

In the prime case one can prove a better bound:

Result 13.5. If ¢ = p is a prime then in Theorem 13.4 the condition € < ;11\/6
can be changed for the weaker € < %p + 1 (so the result is much stronger).
Using a similar method one can prove an “upper stability” result:

Result 13.6. Assume that the planes E;,i = 1, ..., q+¢ intersect the quadratic
cone C' C PG(3,q) in disjoint irreducible conics that cover the cone minus its
vertex. If e < i(l — q%)\/a then one can find € planes (in a unique way),
such that if you remove the points of the irreducible conics, in which these €
planes intersect C, from the multiset of the original cover then every point
of C (except the vertex) will be covered precisely once.

13.2 Partial flocks of cones of higher degree

Using the method above one can prove a more general theorem on flocks of
cylinders with base curve (1,7, T?). This is from [SzPflhigh].
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Theorem 13.7. For 2 < d < {/q consider the cone {(1,t,t% z2) : t,z €
GF(q)}U{(0,0,1,2) : 2 € GF(¢)} U{(0,0,0,1)} = C C PG(3,q) and let C* =
C'\{(0,0,0,1)}. Assume that the planes E;, i =1,...,q—¢, E; #(0,0,0,1),
intersect C* in pairwise disjoint curves. If ¢ < Ld%\/aj then one can find
additional € planes (in a unique way), which extend the set {E;} to a flock,
(i.e. q planes partitioning C* ).

The proof (see below) starts like in the quadratic case. We could have
indicated the modifications only; then the text would be one or two pages
shorter but possibly more complicated. We did not want to omit the original
(quadratic) proof either because of its compactness; we ask for the reader’s
understanding and mercy. Using elementary symmetric polynomials we find
an algebraic curve G(X,Y'), which “contains” the missing planes in some
sense. The difficulties are (i) to show that G splits into e factors, and (ii)
to show that each of these factors corresponds to a missing plane. For (i)
we use our Lemma 8.9. For (ii) we have to show that most of the possible
terms of such a factor do not occur, which needs a linear algebra argument
on a determinant with entries being elementary symmetric polynomials; this
matrix may be well-known but the author could not find a reference for it.
Proof of Theorem 13.7. Suppose that the plane E; has the equation
Xy =a; X1 +b0;Xo4+¢; X3, fori=1,2,....q — €.

Define fz(T) = ai‘i‘biT—i—Cde, then ElﬂC' = {(1,t, td, fz(t>> te GF((])}U
{(0,0,1,¢;)}. Let ox(T) = or({fi(T) : ¢ = 1,...,q — €}) denote the k-th
elementary symmetric polynomial of the polynomials f;, then deg, (o) < dk.

We proceed as in the quadratic case and so we define the polynomials

01(T)=~01(T); o3(T) = o1 (T)*~02(T); 0§(T)=—01(T)3+201(T)02(T)_‘(’i”f)T);

up to 0. Note that degr(o}) < dj. From the definition
(Xﬁ—al(T)Xq*€*1+...iaq_€(T)> (XE—UI(T)XE*IJra;‘ (T)XE*?-...ia;(T))

is a polynomial, which is X7 — X for any substitution 7" =t € GF(q), so it is
of the form X9 — X 4 (7% —T')(...). Now define

GX,T)=X—oi(T) X' +05(T) X%~ ... £ 0(T), (2)

from the recursive formulae it is a polynomial in X and 7', of total degree
< de and X-degree €.

For any T'=t € GF(q) the polynomial G(X,t) has ¢ roots in GF(q) (i.e.
the missing elements GF(q) \ {fi(t) : i =1,...,q — €}), so the algebraic curve
G(X,T) has at least N > eq distinct points in GF(q) x GF(¢q). Suppose that G
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has no component (defined over GF(q)) of degree < d. Let’s apply the Lemma
Withasuitabled%l—i-w <a< é,n:degngeg é\/_—d—kg,
we have

eq < N < deqa < eq,

which is false, so G = H1G1, where H; is an irreducible factor over GF(q) of
degree at most d. If degy H; = dx > 2 then degy GG; = € — dx, which means
that H; has at most ¢+ 1+ (dx —1)(dx —2),/q and G has at most (¢ —dx)q
distinct points in GF(q) x GF(q) (at most € — dx for each T' =t € GF(q)), so
in total G has

eg < N <(e—dx+1)g+ 1+ (dx —1)(dx — 2)\/q,

a contradiction if 2 < dy < /g + 1, so degy H; = 1.

One can suppose w.l.o.g. that both H; and G, expanded by the powers of
X, are of leading coefficient 1. So H; is of the form Hy(X,T) = X —f,—c1(T),
where

foeer1(T) = agcir + bye1 T + cqei1 T + 0g—e1(T),

where ,_.4+1(7) is an “error polynomial” with terms of degree between 2
and d — 1. At the end of the proof we will show that ¢,_.41 and other error
polynomials are zero.

Now one can repeat everything for G, which has at least (¢ —1)q distinct
points in GF(q) x GF(q) (as H; has exactly ¢ and H G has at least eq).
The similar reasoning gives G; = HyGa, where Hy(X,T) = X — fo_42(T)
with f,_co(T) = aqcy2 + bycroT + CqcroT? + 8y—cro(T). Going on we get
fo—et3s s fqg (Where for j = q—e+1,...,q we have f;(T) = a;+b;T +c¢; T+
0;(T"), where §;(T") contains terms of degree between 2 and (d — 1) only).

Hence
q

G(X.T) = ] (X = f(1)).

qg—e+1

For any t € GF(q) the values fi(¢), ..., f,(t) are all distinct, this is obvious
from

(X = X s (X k(1)) (X = Fymei (). (X
L)) = X1-X.
For j = ¢—e+1,...,q let the plane E; be defined by X, = a;X; +b; X5 +

¢; X3. We are going to prove that {E; : j =1, ...,¢q} is a flock.

First we check the case “t = o0”: we have to check whether the in-

tersection points E; N C on the plane at infinity X; = 0, i.e. the values
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Cly oo Cqe; Cqeetl, .- Cq are all distinet (for I' we know it). (Note that even

T T
if ¢ planes partition the affine part of C* then this might be false for the

infinite part of C*.) From (1%), considering the leading coefficients in each
defining equality, we have

o1(T*)=—01(D); 09(T*) = 01(I)*~05(T); o3(I'*) = —01(T)*20, (I oo (I )—o5(I);
etc., so

X1 X = (XH — (D)X 4 gp(D) X2 — . £ aq_g(r))(XE -
o1 (D)X g oo (T X2 .+ aq_g(r*)),

which we wanted to prove.

Now we want to get rid of the d,’s, i.e. we are going to prove that
dg—e41,--,04 = 0. Let s be the maximal T-exponent appearing in any of
Og—et1y -y 0gy 80 €ach 0;(T) =d;T*+ ... (for j=q—e+1,...,¢ also2 < s <
d — 1 and there exists a d; # 0). In the equation
GX,T)=X*—of(TX+o3(1N)X2— ... £02(T) =

€
H(X — Qg—eti — bq—s+iT - Cq—s+de - 5q—6+i (T)),
i=1
the coefficient of X*/T9U—1+s 4§ =1 . ¢ is zero on the left hand side (i.e.
the coefficient of T%U~D** in ¢* it can be seen by induction from (1*) for
instance), and it is

01T\ {egcr1 P dg—cv1 + 0jm1 (T N\{Cg—et2})dg—ci2 +..+ 01 (T \{cg})d,
on the right hand side. Hence we have a system of homogeneous linear

equations for dy_.41,...,d, with the elementary symmetric determinant

1 1 1
o (I \ {Cq—s-i-l}) o (I \ {Cq—6+2}) oo (T {Cq})
oo\ {cger1}) 02T \{cgera}) o (I \{c}) | =

Ot (I \{eg-et1}) o1 (T \{cgmcra}) o oea (T \ {c})
[Ti<icj<c(cg—cti — cg—ctj), which is non-zero as the ¢;’s are pairwise distinct.
Hence the unique solution is dy—c41,...,d; = 0 and f;(T) = a; + b;T + ¢;T°
for each 7 =1, ...,q.

Our final and the last missing argument we need is that for j = 1,....q
the plane F; intersects C' in {(1,¢,¢%, f;(t)) : t € GF(¢)} U {(0,0,1,¢;)}, so
these intersections are pairwise disjoint, E4, ..., B, is a flock of C. 1
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14 On the structure of non-determined direc-
tions

14.1 Introduction

This section is based on [SzPdirec]. Recall that given a point set U C
AG(n,q) C PG(n,q), a direction, i.e. a point t € Hy, = PG(n, q) \ AG(n, q) is
determined by U if there is an affine line through ¢ which contains at least 2
points of U. Note that if |U| > ¢"~! then every direction is determined.

Especially in the planar case, many results on extendability of affine point
sets not determining a given set of directions are known. Let’s recall the
following theorem from [104].

Theorem 14.1. Let U C AG(2,q) be a set of affine points of size q — ¢
with € < \/q/2, which does not determine a set D of more than (q + 1)/2
directions. Then U can be extended to a set of size q, not determining the
set D of directions.

An extendability result known for general dimension is the following.
Originally, it was proved in [50] for n = 3. A proof for general n can be
found in [9].

Theorem 14.2. Let g = p", p an odd prime and h > 1, and let U C AG(n, q),
n >3, be a set of affine points of size ¢" 1 — 2, which does not determine a
set D of at least p+ 2 directions. Then U can be extended to a set of size q,
not determining the set D of directions.

The natural question is whether Theorem 14.2 can be improved in the
sense that extendability of sets of size ¢"~! — ¢ is investigated, for ¢ > 2, pos-
sibly with stronger assumptions on the number of non-determined directions.
This general question seems to be hard for n > 3, and up to our knowledge,
no other result different from Theorem 14.2 is known for n > 3.

In this section, we investigate affine point sets of size ¢"~! —¢, for arbitrary
g, where the strongest results are obtained when ¢ is small. Instead of formu-
lating an extendability result in terms of the number of non-determined direc-
tions, we formulate it in terms of the structure of the set of non-determined
directions. Finally, we add a section with an application of the obtained
theorem.

14.2 The main result

As usual, a point of PG(n, q) is represented by a homogenous (n + 1)-tuple
(ag,as, ...,a,) # (0,0,...,0). A hyperplane is the set of points whose coor-
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dinates satisfy a linear equation
6L0X0+G1X1+"'+(lan:0

and so hyperplanes are represented by homogeneous (n + 1)-tuples
lag, a,...,a,] # [0,0,...,0]. Embed the affine space AG(n,q) in PG(n,q)
such that the hyperplane X, = 0, i.e. the hyperplane with coordinates
[1,0,...,0] is Hy, the hyperplane at infinity of AG(n, ¢). Then the points of
AG(n, q) will be coordinatized as (1, aq, as, ..., a,).

The map ¢ from the points of PG(n,q) to its hyperplanes, mapping a
point (ag, ai, az, ..., a,) to a hyperplane [ag, a1, ..., a,] is the standard duality
of PG(n, q).

Let U C AG(n,q) be an affine point set, |U| = ¢" ! —e. Let D C H,,
be the set of directions determined by U and put N = H, \ D the set of
non-determined directions.

Lemma 14.3. Let 0 < r < n—2. Let a = (0,a1,a3,0a3,...,a,) € N be
a non-determined direction. Then each of the affine subspaces of dimension
r+ 1 through o contain at most ¢" points of U.

Proof: We prove it by the pigeon hole principle. An affine subspace of
dimension r + 1 through « contains ¢" affine (disjoint) lines through «a, and
each line contains at most one point of U as « is a non-determined direction. g

Definition 14.4. If an affine subspace of dimension r +1 < n — 1 through
a € N contains less than q" points of U, then it is called a deficient subspace.
If it contains q" — t points of U, then its deficiency is t.

Corollary 14.5. Let T' C H., be a subspace of dimension r < n—2 contain-
ing o € N. Then there are precisely € deficient subspaces of dimension r + 1
(counted possibly with multiplicity) through T (a subspace with deficiency t
is counted with multiplicity t ).

In particular:

Corollary 14.6. There are precisely € affine lines through o not containing
any point of U (and ¢"~' — € lines with 1 point of U each,).

Now consider the set U = {(1,a%,db,a},...,a’):i=1,...,¢" ' —e}. We
define its Rédei polynomial as follows:

q"71—6

R(Xo, X1, Xa, ... Xo) = [ (Xo+ai X1 +abXo+ ... +a,X,,).

=1
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The intersection properties of the set U with hyperplanes of PG(n, ¢) are
translated into algebraic properties of the polynomial R as follows. Con-
sider x1,xs,...,x, € GF(q), then = € GF(q) is a root with multiplicity
m of the equation R(Xy,x1,2,...,2,) = 0 if and only if the hyperplane
[z, 1,29, ..., x,| contains m points of U.

Define the set S(Xi, Xy, ..., X,,) = {&'X; + a4Xo + ... + a' X, : i =
1,....,q" ' — ¢}, then R can be written as

qn—l_s

R(Xo, X1, X0, Xp) = D 0gpre (X1, Xa, 0, X)X,

J=0

where 0;(X7, Xo, ..., X;,) is the j-th elementary symmetric polynomial of the
set S(Xl, XQ, ceey Xn)

Consider the subspace Sy, 2,2, C Heo = [1,0,...,0] of dimension n — 2
which is the intersection of the hyperplanes [zg,x1, 2, ..., z,],z0 € GF(q).
Suppose that s;, ;, ., contains an undetermined direction then, by Lemma
14.3, each of the hyperplanes different from H,, through s;, ,, .., contains
at most ¢"~2 points of U. This implies that there are precisely e such hy-
perplanes (counted with multiplicity) through s, 4, ., containing less than
q" 2 points of U (a hyperplane with deficiency ¢ is counted with multiplic-
ity t). Algebraically, this means that for the (n — 2)-dimensional subspace

R(XOa L1y L2y .-y xn)f(XO) = (Xg - Xo)q”*2 (1)

where f(Xo) = X5+ > 1, fiXe7F is a fully reducible polynomial of de-
gree €. Comparing the two sides of equation (1), one gets linear equations
for the coefficients fj, of f in terms of the o;(zy,...,x,), and it is easy to
see that the solution for each fj is a polynomial expression in terms of the
oj(z1,...,2,), 3 = 1,...,k, use e.g. Cramer’s rule to solve the system of
equations, and notice that the determinant in the denominator equals 1. The
polynomial expression is independent from the elements xy, zs, ..., z, (still
under the assumption that s;, 4, . 5, does contain an undetermined direc-
tion), so we can change them for the variables Xy, Xy, ..., X,, which makes
the coefficients f; polynomials in these variables; then the total degree of
each fi(o;(Xy,...,X,) + j=1,...,n)is k.

Hence, using the polynomial expressions fi(o; : j), we can define the
polynomial

f(Xo X1 Xo) = X5+ Y filon, o) X5 (2)
k=1
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Clearly, f(Xo,Xi,...,X,) is a polynomial of total degree ¢, and, sub-
stituting X; = x;, ¢« = 1,...,n for which s;, . contains an undetermined
direction, yields the polynomial f(Xy,x1,...,x,) that splits completely into
e linear factors. Also, since f contains the term X§, the point (1,0,0,...,0)
is not a point of the hypersurface.

Suppose now that f = [[, ¢;, where the polynomials ¢;(X7,...,X,,) are
irreducible of degree €;, >, &; = €. Then each factor inherits the properties
that (i) whenever the subspace sy, 4, 2, C Hoo of dimension n—2 contains an
undetermined direction, then ¢;(Xo, 1, x2, ..., z,,) splits into ; linear factors;
and (ii) (1,0, ...,0) is not a point of ¢;. So from now on we will think of f as
an irreducible polynomial satisfying (i) and (ii).

f(Xo,X1,...,X,) = 0 is an algebraic hypersurface in the dual space
PG(n,q). Our aim is to prove that it splits into ¢ hyperplanes, or (equiva-
lently) that it contains a linear factor (i.e. a hyperplane; then we can decrease
e by one, etc.). Therefore, we state and prove a series of technical lemmas.

Lemma 14.7. Let T # H. be a deficient hyperplane through o =
(ap, ;. ..,a,) € N (so T contains less than q"2 points of U). Then in
the dual space PG(n,q), T corresponds to an intersection pointt of f and the
hyperplane [ag, aq, . . ., o).

Proof: IfT = [zg,,...,x,] is a deficient hyperplane, then zg is a solution
of the equation f(Xo,z1,xs,...,2,) = 0, hence, in the dual space PG(n, q),
t = (zg, x1,...,T,) is a point of f. If T contains a = (ap, y,...,q,) € N,
then ¢ is contained in the hyperplane [ag, aq, ag, . . ., ay). 1

Lemma 14.8. Let (a) € N be a non-determined direction. Then in the dual
space PG(n,q) the intersection of the hyperplane (o] and f is precisely the
union of € different subspaces of dimension n — 2.

Proof: First notice that

If (0,1, 9, ..., ) € Hyo = [1,0,...,0] is an undetermined direc-
tion, then for all the subspaces s;, 45,2, C Hoo of dimension n—2
through (0, ay, g, as, ..., ;) the polynomial f(Xo,z1,za, ..., x,)
has precisely € roots, counted with multiplicity.

translates to

In the hyperplane [0, aq,as,...,a,,] > (1,0,...,0), all the lines
through (1,0, ...,0) intersect the surface f(Xo,z1,22,...,2,) =0
in precisely € points, counted with intersection multiplicity.
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Define f as the surface of degree & < e, which is the intersection of f and the
hyperplane [0, aq, @, ..., a,]. We know that all the lines through (1,0, ...,0)
intersect f in precisely ¢ points (counted with intersection multiplicity). So
if f= 1L ¢;, where ¢; is irreducible of degree &; and > ;& = &, then we
have that all the lines through (1,0, ...,0) intersect ¢; in precisely & points
(counted with intersection multiplicity).

By Corollary 14.6 we know that there are precisely ¢ different affine lines
through the non-determined direction () not containing any point of U. In
the dual space PG(n,q) these lines correspond to e different subspaces of
dimension n — 2 contained in the hyperplane [«]. The deficient hyperplanes
through these € original lines correspond to the points of the subspaces in the
dual. Hence by Lemma 14.7, all points of these subspaces are in f, which
means that in [a] there are ¢ different subspaces of dimension n — 2 totally
contained in f. 1

Now we prove a lemma, which is interesting for its own sake as well.

Lemma 14.9. Let f(Xo,...,X,) be a homogeneous polynomial of degree
d < q. Suppose that there are n — 1 independent concurrent lines 1, ..., 4,1
through the point P in PG(n,q) totally contained in the hypersurface f = 0.
Then the hyperplane spanned by {1, ...,0,_1 is a tangent hyperplane of f.

Proof: Without loss of generality, let P = (1,0,0,...,0) and ¢; be the “axis”

(P, (1,0,0,0,0,1,0,...,0)), i =
hyperplane z, = 0, i.e. [0,...,0, 1]

Firstly, observe that dx,f(P)
f(P)=0.

Now we prove that dx,f(P) = 0 for all i = 1,....,n — 1. As f vanishes
on ¢; we have f(sX;,0,...,0,X;,0,...,0) = 0 for all substitutions to s and Xj.
As f(sX;,0,...,0, X;,0,...,0) = X2 fy(s) for some f, with deg fy < d < ¢, we
have fy = 0. In particular, fy has no term of degree d — 1, so f has no term
of type X&' X;. Hence dyx,f(1,0,0,...,0) = 0. 1

1,....,n — 1. We want to prove that the
is tangent to f at P.
= 0 as f has no term of type X¢ since

Corollary 14.10. Let f(Xo, ..., X;,) be a homogeneous polynomial of degree
d < q. Suppose that in PG(n,q) the intersection of a hyperplane H and the
hypersurface f = 0 contains two complete subspaces of dimension n—2. Then
H is a tangent hyperplane of f.

Proof: Choose a point P in the intersection of the two subspaces of di-
mension n — 2, the lines ¢y, ..., ¢,,_s through P in one of the subspaces and
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l,_1 through P in the other such that ¢4,...,¢,_1 be independent and apply
Lemma 14.9. 1

Corollary 14.11. If (a) = (0, a1, g, ..., ) € N C Hy is a non-determined
direction, then (in the dual space) the hyperplane [a] is a tangent hyperplane
of f. Note that [a] contains (1,0, ...,0).

Now we generalize Theorem 14.2.

Theorem 14.12. Let n > 3. Let U C AG(n,q) C PG(n,q), |U| = ¢"' — 2.
Let D C Hy, be the set of directions determined by U and put N = H\ D the
set of non-determined directions. Then U can be extended to a set UDU,
|U| = ¢"! determining the same directions only, or the points of N are
collinear and |N| < | 2], or the points of N are on a (planar) conic curve.

Proof: Let n > 3. The hypersurface f = 0 is a quadric in the projec-
tive space PG(n, ). We will investigate the hyperplanes through the point
(1,0,...,0) that meet f = 0 in exactly two (n — 2)-dimensional subspaces.
If the quadric f = 0 contains (n — 2)-dimensional subspaces, then either
n = 3 and the quadric is hyperbolic, or the quadric must be singular, since
|(n —1)/2] is an upper bound for the dimension of the generators. If f =0
contains 2 hyperplanes, then f = 0 is the product of two linear factors,
counted with multiplicity. But then, by our remark before Lemma 14.7, the
set U can be extended. Hence, if we suppose that the set U cannot be ex-
tended, the quadric f = 0 contains (n — 2)-dimensional subspaces, so it is a
cone with vertex an (n — 3)-dimensional subspace and base a (planar) conic,
or it is a cone with vertex an (n — 4)-dimensional subspace and base a hy-
perbolic quadric in a 3-space. (Note that the second one contains the case
when n = 3 and f is a hyperbolic quadric itself.) Denote in both cases the
vertex by V.

Firstly suppose that f = 0 has an (n — 3)-dimensional subspace V' as ver-
tex. A hyperplane [a] through (1,0, ...,0) containing two (n—2)-dimensional
subspaces must contain V' and meets the base conic in two points (counted
with multiplicity). Hence [a] is one of the (¢ 4+ 1) hyperplanes through the
span of ((1,0,...,0), V), so dually, the undetermined direction («) is a
point of the line, which is the intersection of the dual (plane) of V' and H..

When ¢ is odd, there are Z2, respectively # such hyperplanes meeting the

2
base conic, depending on whether the vertex V' is projected from the point
(1,0,...,0) onto an internal point, respectively, an external point of the base

conic. When ¢ is even, there are { such hyperplanes.



dc_637_12

14. ON THE STRUCTURE OF NON-DETERMINED DIRECTIONS 89

Secondly suppose that f = 0 has an (n — 4)-dimensional subspace V'
as vertex. Now a hyperplane [«] through (1,0,...,0) contains V and it
meets the base quadric in two lines, i.e. a tangent plane to this hyperbolic
quadric. Hence, [] is one of the ¢* + ¢ + 1 hyperplanes through the span of
((1,0,...,0), V), so dually, the undetermined direction («) is a point of the
plane, which is the intersection of the dual (3-space) of V' and H.

Among these hyperplanes only those count, which meet the base hyper-
bolic quadric in two lines, i.e. those which intersect the base 3-space in such
a tangent plane of the hyperbolic quadric, which goes through the projection
of V from the point (1,0,...,0). Dually these hyperplanes form a conic, so
(a) is a point of this conic. 1

We consider the case when U is extendible as the typical one: otherwise
N has a very restricted (strong) structure; although note that there exist
examples of maximal point sets U, of size ¢* — 2, ¢ € {3,5,7,11}, not deter-
mining the points of a conic at infinity. These examples occur in the theory
of maximal partial ovoids of generalized quadrangles, and were studied in
[56], [47], and [49]. Non-existence of such examples for ¢ = p", p an odd
prime, h > 1, was shown in [50].

Now we prove a general extendability theorem in the 3-space if € < p.

Theorem 14.13. Let U C AG(3,q) C PG(3,q), |U| = ¢* — ¢, where e < p.
Let D C Hy, be the set of directions determined by U and put N = Hy, \ D
the set of non-determined directions. Then N is contained in a plane curve
of degree e* — 23 + ¢ or U can be extended to a set U D U, |U| = ¢*.

Proof: We proceed as before: we define the Rédei polynomial of U, then
we calculate f(Xo, X1, Xo, X3) of degree «.

Finally we realize that for each triple («, 3,7), if (0,a, 3,7) € N C Hy is
an undetermined direction then the plane [0, o, 3, 7], which apparently goes
through the point (1,0,0,0), is a tangent plane of f.

The tangent planes of f are of the form

[8X0f<a7 b? G, d)? 0X1f(a’ bv &) d)v 8X2f(aa b7 ¢, d)7 6X3f<a7 ba ¢, d)]

where (a, b, c,d) is a smooth point of f, and there are some others going
through points of f where Ox,f = Ox, f = Ox,f = Ox,f = 0. For planes of
both type containing (1,0,0,0) we have Jx, f(a,b,c,d) = 0, so we get that
the triples («a, 3,7), with (0, o, 3,7) € Hs being an undetermined direction,
correspond to tangent planes [0, o, 3,7] of f in points (a, b, ¢, d) which belong
to the intersection of f and Jx, f, which is a space curve C of degree (¢ —1).
Projecting these tangent planes from (1,0, 0,0) (which all they contain) onto
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a (fixed) plane we get that in that plane the projected images [, 3,7] are
tangent lines of the projected image C, which is a plane curve of degree
e(e—1). So we get that the undetermined directions are contained in a plane

curve of degree (e — 1) (5(5 —-1)— 1) =t - 23 + e ]

To reach the total strength of this theory, we would like to use an argu-
ment stating that it is a “very rare” situation that in PG(n, ¢) a hypersurface
f =0 with d = deg f > 2 admits a hyperplane H such that the intersection
of H and the hypersurface splits into d linear factors, i.e. (n—2)-dimensional
subspaces (Totally Reducible Intersection, TRI hyperplane). We conjecture
the following.

Conjecture 14.14. Let f(Xy, X1, ..., X,,) be a homogeneous irreducible poly-
nomial of degree d > 2 and let F' be the hypersurface in PG(n,q) determined
by f = 0. Then the number of TRI hyperplanes to F' is “small” or F is a
cone with a low dimensional base.

By small we mean the existence of a function (upper bound) r(d,n),
which is independent from ¢; although we would not be surprised if even a
constant upper bound, for instance r(d,n) = 45 would hold in general. By a
low dimensional base of a cone we mean an at most 3-dimensional base.

We remark finally that such a result would immediately imply extend-
ability of direction sets U under very general conditions.

14.3 An application

A (finite) partial geometry, introduced by Bose [38], is an incidence structure
S = (P,B,1) in which P and B are disjoint non-empty sets of objects called
points and lines (respectively), and for which IC (P x B) U (B x P) is a
symmetric point-line incidence relation satisfying the following axioms:

(i) Each point is incident with 1 + ¢ lines (¢ > 1) and two distinct points
are incident with at most one line.

(ii) Each line is incident with 1 + s points (s > 1) and two distinct lines
are incident with at most one point.

(iii) There exists a fixed integer o > 0, such that if = is a point and L is a
line not incident with z, then there are exactly « pairs (y;, M;) € Px B
for which I M; T y; I L.
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The integers s, t and a are the parameters of S. The dual SP of a partial
geometry S = (P, B,I) is the incidence structure (B,P,I). It is a partial
geometry with parameters s =t, tP = 5, oP = a.

If S is a partial geometry with parameters s, ¢ and «, then |P| = (s +
1)@ and |B| = (¢t + 1)@ (see e.g. [H4]). A partial geometry with
parameters s,t, and a = 1, is a generalized quadrangle of order (s,t), [89].

To describe a class of partial geometries of our interest, we need special
pointsets in PG(2, ¢). An arc of degree d of a projective plane II of order s is
a set KC of points such that every line of II meets K in at most d points. If
K contains k points, than it is also called a {k, d}-arc. The size of an arc of
degree d can not exceed ds—s+d. A {k,d}-arc K for which k = ds—s+d, or
equivalently, such that every line that meets I, meets K in exactly d points,
is called mazimal. We call a {1, 1}-arc and a {s?, s}-arc trivial. The latter is
necessarily the set of s points of II not on a chosen line.

A typical example, in PG(2, ¢), is a conic, which is a {g+ 1, 2}-arc, which
is not maximal, and it is well known that if ¢ is even, a conic, together with its
nucleus, is a {¢+2, 2}-arc, which is maximal. We mention that a {¢g+1, 2}-arc
in PG(2, ) is also called an oval, and a {q+2,2}-arc in PG(2, q) is also called
a hyperoval. When ¢ is odd, all ovals are conics, and no {q + 2,2}-arcs exist
([93]). When ¢ is even, every oval has a nucleus, and so can be extended to
a hyperoval. Much more examples of hyperovals, different from a conic and
its nucleus, are known, see e.g. [53]. We mention the following two general
theorems on {k, d}-arcs.

Theorem 14.15 ([48]). Let K be a {ds — s+ d,d}-arc in a projective plane
of order s. Then the set of lines external to K is a {s(s —d+1)/d,s/d}-arc
in the dual plane.

As a consequence, d | s is a necessary condition for the existence of
maximal {k,d}-arcs in a projective plane of order s. The results for the
Desarguesian plane PG(2, ¢) are much stronger. Denniston [55] showed that
this condition is sufficient for the existence of maximal {k, d}-arcs in PG(2, q),
q even. Blokhuis, Ball and Mazzocca [11] showed that non-trivial maximal
{k,d}-arcs in PG(2,q) do not exist when ¢ is odd. Hence, the existence of
maximal arcs in PG(2,¢) can be summarized in the following theorem.

Theorem 14.16. Non-trivial mazimal {k,d}-arcs in PG(2,q) exist if and
only if q is even.

Several infinite families and constructions of maximal {k,d}-arcs of
PG(2,q), ¢ = 2" and d = 2°, 1 < e < h, are known. We refer to [53]
for an overview.
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Let ¢ be even and let K be a maximal {k, d}-arc of PG(2,¢). We define
the incidence structure Ty (KC) as follows. Embed PG(2,¢) as a hyperplane
H., in PG(3,q). The points of S are the points of PG(3, ¢) \ H. The lines of
S are the lines of PG(3, ¢) not contained in H,, and meeting H,, in a point of
KC. The incidence is the natural incidence of PG(3,¢). One can check easily,
using that K is a maximal {k,d}-arc, that T5 (k) is a partial geometry with
parameters s =q¢—1,t=k—1=(d—1)(¢+1),and a =d — 1.

An owoid of a partial geometry S = (P,B,1) is a set O of points of S,
such that every line of S meets O in exactly one point. Necessarily, an ovoid
contains Sat + 1 points. Different examples of partial geometries exist, and
some of them have no ovoids, see e.g. [52]. The partial geometry 75 (K) has
always an ovoid. Consider any plane m # H,, meeting H, in a line skew to
K. The plane 7 then contains % + 1 = ¢? points of S, and clearly every line
of § meets 7 in exactly one point.

It is a natural stability question to investigate extendability of point sets
of size slightly smaller than the size of an ovoid. In this case, the question
is whether a set of points B, with the property that every line meets B in
at most one point, can be extended to an ovoid if |B] = ¢*> — ¢, and ¢ is not
too big. Such a point set B is called a partial ovoid of deficiency ¢, and it is
called mazimal if it cannot be extended. The following theorem is from [89]
and deals with this question in general for GQs, i.e. for a = 1.

Theorem 14.17. Consider a GQ of order (s,t). Any partial ovoid of size
(st — p), with 0 < p < t/s is contained in a uniquely defined ovoid.

For some particular GQs, extendability beyond the given bound is known.
For other GQs, no better bound is known, or examples of maximal partial
ovoids reaching the upper bound, are known. For an overview, we refer to
[51].

Applied to the GQ T5(H), H a hyperoval of PG(2,¢q), Theorem 14.17
yields that a partial ovoid of Ty (H) of size ¢* —2 can always be extended. The
proof of Theorem 14.17 is of combinatorial nature, and can be generalized to
study partial ovoids of partial geometries. However, for the partial geometries
T5(K) with @ > 2, such an approach only yields extendability of partial
ovoids with deficiency one. In the context of this section, we can study
extendability of partial ovoids of the partial geometry 75 (KC) as a direction
problem. Indeed, if a set of points B is a (partial) ovoid, then no two points
of B determine a line of the partial geometry 75 (K). Hence the projective
line determined by two points of B, must not contain a point of K, in other
words, the set of points B is a set of affine points, not determining the points
of KC at infinity.



dc_637_12

15. DIRECTIONS DETERMINED BY A PAIR OF FUNCTIONS 93

Considering a partial ovoid B of size ¢> — 2, we can apply Theorem 14.12.
Clearly, the non-determined directions, which contain the points of I, do
not satisfy the conditions when B is not extendable. Hence, we immediately
have the following corollary.

Corollary 14.18. Let B be a partial ovoid of size ¢*> — 2 of the partial ge-
ometry Ty (KC), then B is always extendable to an ovoid.

This result is the same as Theorem 14.17 for the GQ Ty (H), H a hyperoval
of PG(2,q), ¢ > 2.

15 On the number of directions determined
by a pair of functions over a prime field

15.1 Introduction

Now we continue our investigations concerning directions in various contexts.
This section is based on [SzP2func]. Let ¢ = p" denote a prime power and
consider a set U = {(a;,b;) : i = 1,...,q} of ¢ points in the affine plane
AG(2,q). The classical direction problem looks for the size of the direction
set of U, defined as

Q5 — Gy

T i # 7} CFU{oo}.

D={

In the last twenty years or so this problem has received a lot of attention
mainly due to its connections with a variety of fields, for example, blocking
sets in PG(2, ¢) [33], permutation polynomials over a finite field [80] and the
factorisation of abelian groups [91].

Based on the initial work of Rédei [91] in 1970, the problem was com-
pletely solved, whenever the number of directions is at most %1, by Ball,
Blokhuis, Brouwer, Storme and Sz6nyi [33] and [7] (for small characteristics
and a shorter proof). The theorem also characterises the sets of points that
have a small number of directions.

The most natural way to formulate an analogous problem for higher di-
mensions is to take a set U of ¢"~! points in AG(n,q) and define D to be
the set of determined directions, that is, the set of infinite points which are
collinear with two points of U. As in the planar case the non-determined
directions are those infinite points through which every line contains exactly
1 point of U. This is what we did in the previous section, see also [8], [16]
and [SzPkblock].
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In this section we propose another analogue for the three-dimensional
case. This analogue can be formulated for any dimension, but the problem
turns out to be significantly harder in three dimensions so it is enough to
occupy us here. Apart from trivially applying the results for two and three
dimensions, the higher dimensional cases would appear to be, for the moment,
inaccessible.

Let U be a set of ¢ points in AG(3, ¢) and say that an infinite line ¢ is not
determined, if every affine plane through ¢ has exactly one point in common
with U.

Before stating the main result of the present section, we reformulate the
aforementioned problems in terms of functions over finite fields. Consider
first the planar case. Whenever the size of D is less than ¢+ 1 one can apply
an affine transformation so that U is the graph of a function. So we can

assume that U = {(z, f(z)) : « € F,} and

p_ W= f@

y—x
An element ¢ is not in D if and only if x — f(x) — cz is a bijective map of
F, to itself. A function which induces a bijective map on F, is often called
a permutation polynomial. (Note that over a finite field any function can be
written as a polynomial.)

Let M(f) be the number of elements of F, that are not elements of D.

The first analogue to the direction problem in higher dimensions men-
tioned before, in this terminology, considers the graph of a function from [y
to itself.

The analogue which we will consider in this section, in this terminology,
considers the graph of a pair of functions f and g over F,. A line not deter-
mined by the graph {(z, f(z),g(x)) | x € F,} corresponds to a pair (c,d) for
which f(z) + cg(z) + dx is a permutation polynomial. We will denote the
number of these pairs by M(f,g).

From now on we will only consider the ¢ = p prime case and use the
permutation polynomial terminology.

In [91] Rédei and Megyesi proved that if ¢ = p prime and M (f) > (p —
1)/2, then f(x) = cx + d for some ¢,d € F,. In other words, the set U is a
line.

This result can be used to prove that the only way to factorise the ele-
mentary abelian group with p? elements is to use a coset. This was Rédei’s
motivation to look at the direction problem for I,. For more applications of
this result to other combinatorial problems, see [80].

In [91] Megyesi provided an example with M (f) = d — 1, for each divisor
d of p — 1, which, when d = (p — 1)/2, shows this bound to be best possible.

|2,y € Fyy @ # y}.
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Namely, let H be a multiplicative subgroup of ), let x i be the characteristic
function of H and let f(z) = xy(x)z. ifd# 1,p—1 then M(f) =d — 1.

In [80] Lovasz and Schrijver proved that if M(f) = (p —1)/2 then f is
affinely equivalent to the example of Megyesi.

In [61] it is proved that if M(f) > 2[22]+1, then (f(z)— (cz+d))(f(z)—
(bx+e)) = 0 for some b, ¢, d, e € F; in other words, the graph of f is contained
in the union of two lines.

In [101] Sz6nyi proved that if the graph of f is contained in the union
of two lines and M (f) > 2, then the graph of f is affinely equivalent to a
generalised example of Megyesi detailed above. In the generalised Megyesi
example H can be replaced by a union of cosets of a multiplicative subgroup
of F,. In the generalised example the value of M (f) is again d — 1 for some
divisor d of p — 1.

Thus, the above results imply that, either M(f) < 2[21], f is affinely

equivalent to 2 or f is linear.

In [112] Wan, Mullen and Shiue obtain upper bounds on M (f) in terms
of the degree of the polynomial f.

Here we shall prove that if there are more than (2 fp%l} + D(p +
2[2:17)/2 ~ 2p*/9 pairs (c,d) € F? with the property that z — f(z) +
cg(x) + dz is a permutation of F, then there are elements a,b,e € [, such
that f(x) + ag(z) + bz + e = 0, for all z € F); in other words the graph of
(f.9), {(z, f(x),g(z)) | = € F,}, is contained in a plane. At the end of the
section we construct an example showing that for p congruent to 1 modulo
3 this is asymptotically sharp.

15.2 A slight improvement on the earlier result

For a polynomial f over F,,, p prime, define

1(f) = min{k+1 | 3 a*f(2) # 0},

z€Fp

In [61] it was proved that if M(f) > (p —1)/4 and I(f) > 2[221] + 2
then the graph of f is contained in the union of two lines.
Let
m(¥) = 3 (fl@) + 2V )

zelf,

It’s a simple matter to check, see [79, Lemma 7.3|, that if x — f(x) + ax
is a permutation then m(a) = 0 for all 0 < £ < p — 1. Since the polynomial
7:(Y) has degree at most k — 1 (the coefficient of Y* is Dk, ok =0) it is
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identically zero for all 0 < k —1 < M(f), unless M (f) = p—1 in which case
f is linear. Hence if f is not linear then I(f) — 1 > M(f).

Thus in [61] it was proved that if M(f) > 2[7%1] + 1, then the graph of
f is contained in the union of two lines.

To be able to prove the main result of this section we need something a
little stronger than [61]. We use the same method and essentially follow the
proof there but we have to modify the first part of the proof (Lemma 4.1),
we manage to avoid the step involving Lemma 4.2, Step 1 and Step 2 are the
same, we use a slightly different subspace to be able to reduce Step 3 and
Step 4 a little and Step 5 we use in the same way.

In this section we shall prove the following theorem.

Theorem 15.1. If M(f) > (p—1)/6 and I(f) > 2[22] + 2 then the graph
of f is contained in the union of two lines.

The values I(f) and M(f) are invariant under affine transformations and
inversion. Replacing f by its inverse is the transformation which switches
coordinates, in other words if we switch coordinates then the graph of f,
{(z, f(x)) | x € F,}, becomes the graph of f~!. Let E(f) denote the set of all
polynomials that can be obtained from f by applying affine transformations
and inversions.

Let (f%)° be the degree of the polynomial f* modulo z” —x. Unless stated
otherwise all equations are to be read modulo x? — z.

Note that for any polynomial g of degree less than p the sum

- gl

z€elF,
is equal to the coefficient of zP~! of g¢.
Lemma 15.2. If3 < f° < (p—1)/2 then I(f) < (p+1)/3.

Proof: Write p—1 = af° + b with 0 < b < f°. The degree of f(z)%’ is
p— 1, so we have I(f) < a+b.
If fo=3thena+b<(p—2)/3+1=(p+1)/3.
If(p+1)/3<f°<(p—1)/2thena+b=2+p—1—2f < (p+1)/3.
If(p+1)/4<f°<(p—1)/3thena+b=3+p—-1-3f°<3+p—1-—
3p+1)/4=(p+1)/4+1<(p+1)/3 for p > 11.
f4<fo<(p+1)/dthena+b<(p—b—1)/f°4+b<p/fo+(bf°—b—
1)/f° <p/f°+ f°—2. This is at most (p+ 1)/3 if and only if the quadratic
inequality 3(f°)? — (p+7)f° + 3p < 0 is satisfied. For p > 20, the inequality
is satisfied for both f° = 4 and f° = (p 4+ 1)/4, so it holds for all values
between 4 and (p + 1)/4. For p < 20 a case by case analysis suffices to show
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that a +b < (p+1)/3. |

Note that for f° = 2 we have I(f) = (p — 1)/2 and M(f) = 0 and for
fe=1wehave I(f)=p—1and M(f)=p—1.

Lemma 15.3. If f° = (p+1)/2 then either I(f) < (p+5)/4 or f is affinely
equivalent to e

Proof: After applying a suitable affine transformation we can suppose that
f(x) =25 + g(x) where g° < (p— 3)/2.

If ¢° < 1 then by applying another linear transformation we can subtract
g from f and hence f is affinely equivalent to .

Suppose ¢° > 2. Write (p — 3)/2 = ag® + b with 0 < b < ¢° and consider
the polynomial

f(x) izt = § (a N !

)1¢p;1+bg(x)a+l—@
1=0

]

We claim that the only term in the sum that has a term of degree zP~!
(modulo 2% — ) is g(z)%"> . Let r(z) = g(z)*1~'2'"> +* (modulo 27 — ),
a typical term in the sum (note that all the binomial coefficients are non-zero).
If i is even then 7(x) = g(x)*" 2" which has degree (a+1—1i)g°+b+i =
(p—3)/24¢°—(¢°—1)i < p—1. If i # 1is odd then r(z) = g(z) 1 ~iz"s +itb,
which has degree (a+1—14)g°+(p—1)/2+i+b=p—24+¢°—(¢°—1)i < p—1.

Hence f(x)** 12’ has degree p — 1 which implies I(f) < a+ 1+ b.

Finally, note that a+b < (p—3)/(2¢°)+¢° — 1, which is at most (p+1)/4
if2<¢g°<(p—3)/4. lfg°>(p—3)/4dthena=1land b= (p—3)/2—¢° <
(p—3)/4andsoa+b< (p+1)/4 1

Let s = [(p—1)/6].
We will assume from now on that I(f) > 2s + 2. By the definition of

I(f) the sum
> 2 (@)

z€elF,

has no term of degree zP~!, for all k = 0, 1,...,2s, and therefore the degree
of f is at most p — 2s — 2. By Lemma 15.2 and Lemma 15.3 the degree of f
is at least (p+ 3)/2.

Lemma 15.4. There is polynomial in h € E(f) with one of the following
properties. Fither
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(i) for alli such that 1 <i<2s, (h)° < h°+i—1 and (h*)°=h°+1, or
(ii) for alli such that 1 <i < 2s, (h*)° < (h?)°+i—2 and (h3)° = (h?)°+1,
and h has no root in IF),.

Proof:
Let '
d(f) = max{(f)° —i |1 <i<2s}

and let d = d(f;) be maximal over all polynomials in F(f). The fact that
f° > (p+3)/2 implies that d > (p +1)/2.

Let 7(Y) = mp_1-4(Y). The coefficient of YP~1=4=J in #(Y) is
(pﬁ*d) erle xP~1=9=7 fJ which, by the definition of d, is non-zero for at
least one j where 1 < j < 2s. Hence 7(Y') # 0.

If for all @ such that f(z) + ax is a permutation polynomial we have
n(a) = 7'(a) = 7"(a) = 0 then (Y — a)3 divides m(Y) and since M(f) >
(p —1)/6 the degree of 7, 7°* =p—1—d > 3M(f) > (p—1)/2 which isn’t
the case.

Since 0 < p—1—d < p— 1 we have already seen that 7(a) = 0, so either
7'(a) # 0 or 7”(a) # 0 for some a.

Let fa be the inverse of the function f(x) + ax.

If

0#7(a)=—(d+1) Z o(f + ax)P27¢
z€elF,
then >  p f2(2)2P7274 #£ 0 and so f3 > d + 1. By the maximality of d,
fs=d+1andso (fi)°—i < fg—1. If (f2)° < f5 then let f3 = fo+cx where
c is chosen so that (f%)° > fs + 1 and f3 is not a permutation polynomial.
Note that f2 = fZ + 2cxfy + *2?
If
0#7"(a) = (d+1)(d+2) Z 2 (f + ax)P—374
z€Fp

then 37 ¢ (f2(2))?2777% # 0 and so (f3)° > d + 2. By the maximality of
4, (f2)° = d+2 and so (f))° —i < (f2)° — 2. I (J3)° < (/2)° then let
f3 = fa + cx where ¢ is chosen so that (f3)° > (f3)° + 1 and f3 is not a
permutation polynomial.

Finally, let e be an element not in the image of f3 and let fy = f3 —e.
Then f4 has no root in F,,. 1

The dimension of a subspace of a finite dimensional vector space of poly-
nomials is equal to the number of degrees occurring amongst the elements



dc_637_12

15. DIRECTIONS DETERMINED BY A PAIR OF FUNCTIONS 99

of a subspace, see Result 4.4. This is easily seen if we take the canonical
basis {1, z, 2%, ..., 2'}. The matrix whose rows form a basis for the subspace
can be reduced to a matrix in row echelon form whose rows span the same
subspace and correspond to polynomials of different degrees.

Lemma 15.5. There is a polynomial in h € E(f) for which there exist
polynomials F', G and H, where H® — 2 = F° —1 = G° =r < 5 — 2,
(F,G) =1 and

Fh+Gh*=H.

Note that this implies that h satisfies the conditions of Lemma 15.4 (i).
Proof: Let h be a polynomial satisfying the conditions of Lemma 15.4.
Since I(h) > 2s+ 2 we have (h')° <p—2s—3+1.

Define subspaces of the vector space of polynomials of maximum degree
p—1

VY; ={Fh+Gh | F° <j, G°<j—1},
where j < s — 1. If there are polynomials F' and G such that Fh+ Gh%? =0
then since h has no root F' + Gh = 0 which is impossible since (hG)° is at
least 3s and at most 55 —3 < p — 1. Thus the dimension of ¥; is 2j + 1.

Since I(h) > 2s+1 and 2(j+1) < 2s, the sum over F,, of the evaluation of
the product of any two elements of 1); is zero, hence the sum of the degrees
of any two elements of 1,1 is not equal to p — 1. The maximum degree
of any element of ¥s_; is p — s — 3 and so only half of the degrees in the
interval [s +2,...,p — 1 — (s + 2)] can occur. But dimips_; = 2s — 1 >
(p—1—(s+2)—(s+1))/2 and so there is an element H of degree at most
s+ 11in Ys_q.

Let H be of minimal degree, so (F,G) = 1.

If I satisfies case (i) of Lemma 15.4 then (h?)° = h° +1 and r = G° =
F° — 1. Moreover Fh?+ Gh® = Hh and (h?’)O < h° + 2 implies H° < r + 2.

If h satisfies case (ii) of Lemma 15.4 then (h?)° = (h?)° +1 > h° + 2
and (h')° < (h?)° +2. Let F° = r + 1 and so G° < r. The equation
Fh3? + Gh* = Hh? implies H° <r +2. If G° <r —1 then Fh? 4+ Gh*® = Hh
implies 7+ 2+ h® > H°+h° =1+ 14 (h*)° and so (h?)° = h° + 1. But then
Fh+ Gh* = H implies G° = r.

Either way we have r = G° = F° — 1> H° — 2.

Let hy = h4+azx and F}, = F—2axG, Gy = G and H, = H —a*2*G +azF.
Then Fihy + G1h? = H, and we can choose a so that H; has degree r + 2.
Now when we look at ¥, for hy we find F}, G; and H; as required. Note
that (F,G) = 1 implies (Fy,G;) = 1.
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We wish to prove r = 0. So let us assume r > 1 and define i to be such
that (1 —2)r+1<s< (i—1)r+1 for r > 2 and i = s for r = 1. Note that
r <s—2implies i > 3 and that s+r —1<2s—14if 1 =3 or i = s and also
if bothi >4 and r > 2, sincer < (s—1)/2and i < (s —1)/2.

Lemma 15.6. There is a polynomial h € E(f) and a polynomial G, where
G° =r < s—2, such that for all j = 2,...,1, there is an F; and an H; with
the property that (F,G) =1,

FP<(j—1(r+1), H < (j—1)r+j and HY = (i — 1)r + 1.

Proof: Let h; satisfy the conditions of Lemma 15.5. We start by proving
that there is an h € FE(f) for which (h*=1)° > h® +4i — 2.

If (hi1)° < Ay + i — 3 then let h = hy + az. Choose a so that hi™! =
Z;;B (131) (ax)~~'h] has degree at least h° + i — 2 while at the same time
the degree of F' — 2axG is r + 1 and the degree of H — a?2*G + axF is v+ 2.

We will prove the lemma by induction. Lemma 15.5 implies that for j = 2
we can take Fy = F and Hy, = H.

Define F; = —(F;_1F+ H;_1G) and H; = —HF;_;. It can be checked by
induction, multiplying by Gh and using Gh? = H — Fh, that

Fih+ G~ 'h = H;.

The degrees satisfy F7 < (j—1)(r+1) and H; < (j—1)r+j and (F},G) =1,
since (F,G) =1 by Lemma 15.5 and (F;_;,G) = 1 by induction.

Now (h™1)° > h°+i—2 and the equation F;_1h+G*2h""! = H;_; implies
that F? ;> (i—2)(r+1) and so F? ; = (i—2)(r+1). Finally H; = —HF;
implies HY = (i — 1)r + 4. 1

Let h satisfy the conditions of Lemma 15.6. Note that this implies that
h satisfies the conditions of Lemma 15.5 and Lemma 15.4 (i). Define

¢;j ={Ah+ Bh' | A° <j, B°<j+1—i}.
Note that H; € ¢q_1yr1i—1 and that (i —1)r+i—1<s+r+i—-2<2s—1.

Lemma 15.7. For j < 2s — 1 all polynomials of ¢; have degree at least Hy
and those of degree at most p — 2 — h° are multiples of H;.

Proof: If Ah + Bh' = 0 then, since h has no root in F,, A+ Bh"! = 0.
The degree of Bh™! is at most p—4 and at least (p+3)/2 and so A = B = 0.
Thus the dimension of ¢; is 2j + 3 — 1.
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Suppose that ¢; contains a polynomial C' of degree n but no polynomial
of degree n + 1. Then ¢;;; contains a polynomial of degree n + 1, 2C' for
example, and a polynomial of degree one more than the maximum degree of
an element of ¢;. However dim¢;,; = dim¢,; + 2, so n is unique. Moreover,
the polynomials of degree n+1 in ¢, are multiples of a polynomial of degree
n in ¢;.

Since j < 2s — 1, ¢; contains no element of degree p — 1 — h°. Now
H; € ¢(i—1)r+i—1 and is a polynomial of degree less than p—1—h°. It is not a
multiple of any polynomial in ¢; for j < (i —1)r+i— 1, since if it were there
would be a non-constant polynomial K and polynomials A and B with the
property that (KA)h + (KB)R' € ¢(i—1)rti—1, with (KA)° < (i —1)r+i—1
and (KB)° < (i — 1)r, which would be a constant multiple of H;. This is
not possible since (F;, G) = 1. Thus all polynomials in ¢; of degree at most
p — 2 — h° are multiples of H; and in particular have degree at least H;.

The following lemma contradicts the previous one which implies that our
assumption that » > 1 was incorrect.

Lemma 15.8. There is a non-zero polynomial of degree less than H; in ¢;
for some j < 2s — 2.

Proof: Suppose r > 2 and so i < s. Let
A= {Ah+Byl®+.. .+ Bi1h' '+ Ch' | A° < s—1, B} <r—1, C° < s—i}.

Since I(h) > 2s + 1 the sum of the degrees of any two elements of A is
not equal to p — 1. The maximum degree of any element of A is p — s — 3
and so only half of the degrees in the interval [s+2,...,p—1— (s +2)] can
occur, in other words at most |[(p—4 —2s)/2] < 2s—2 of the degrees in this
interval occur. If dimA = (i — 2)r + 2s — i + 1 then there is a polynomial

E=Ah+ Boh®>+ ...+ B, 1h" ' + CK

in A of degree at most s+2—((i—2)r+2s—i+1—(25—-2)) = s—(i—2)r+i—1.

If dimA < (i—2)r+2s—i+1 then EF = 0 € A non-trivially. Either way there

is a polynomial £ € A with not all A, B;, C' zero where E° < s—(i—2)r+i—1.
Substituting G'~'h/ = H; — hF; we have

i—1
G'E =G ?Ah+ CG"™h' + > B;G"'I(H; — hFy)

j=2
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and rearranging

i—1 i—1
Gi—QE . Z BjGi—l—jHj _ (Gi—2A . Z Bj.FjGi_l_j)h + CGz—th

=2 j=2

Checking the degrees on the right-hand side we see that the left-hand side is
a polynomial in ¢; for some j < 2s — 2.

The degree of the left-hand side is at most max{s+i — 1,ir —r +1i — 2}
which is less than HY = (i — 1)r + 4.

If » = 1 then take i = s and define A as above. There is a polynomial
in A of degree at most s+ 1 and the degree of G'~2F is at most 2s — 1 which
is the degree of H,. If we have equality then by Lemma 15.7 the polynomial

s—1
(G*PA=>  BF;G" " I)h+ CG*°h?

Jj=2

is a constant multiple of Fyh + G*~'h® which implies CG*~? is a constant
multiple of G*~! which it is not since one has degree s — 2 and the other
s—1.

We can now prove Theorem 15.1.
Proof: By the previous lemmas there exist polynomials h € E(f) and F'
of degree 1 and H of degree 2 such that h? + Fh = H. Thus (h + F/2)* =
H + F?/4. All values of H + F?/4 are squares and so H + F?/4 = (ax + b)>.
Hence (h+ F/2 —ax — b)(h+ F/2+ ax + b) = 0 and the graph of h (and so
the graph of f too) is contained in the union of two lines. ]

15.3 Linear combinations of three permutation poly-
nomials

First let’s recall Theorem 8.4(i) for our further purposes:

Theorem 15.9. Let w(Y, Z) be an absolutely irreducible polynomial of degree
d with coefficients in ), such that 1 < d < p. The number of solutions N to
the equation (y, z) = 0 in F. satisfies

N <d(d+p—1)/2.
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Let M(f, g) be the number of pairs (a,b) € F2 for which f(z)+ag(z)+bx
is a permutation polynomial. Let

I(f,g) = minfk + 1 +m | 3 a*f(a)gla)" # 0},

Recall s = (’%1] Before we prove the main result of this section we need

the following lemma.

Lemma 15.10. If M(f,g9) > (25 + 1)(p + 25)/2 then I(f,g) > 25+ 2 or
there are elements c,d,e € F, such that f(z) + cg(z) + dx +e = 0 for all
z €,

Proof: Let m,(Y,Z) =3, cp (f(2) +g(2)Y + zZ)*.
By [79, Lemma 7.3], if f(z) + ag(z) + bz is a permutation polynomial
then m(a,b) =0 for all 0 < k < p — 1. Write

Tk = HO’j(Y, Z),

where each o; is absolutely irreducible. Then } 0% =7 < k.

Let N, be the number of solutions of ¢;(a,b) = 0 in F, for which f(z)+
ag(x) + bz is a permutation polynomial.

If Ao € F,[Y, Z], for some A in an extension of F,,, and ¢ > 2 then by
Theorem 15.9 N; < 05(p + 05 — 1)/2.

Suppose o5 = 1 and there are at least (p + 1)/2 pairs (a,b) for which
o;(a,b) = 0 and f(z) + ag(z) + bx is a permutation polynomial. Let o; =
aY + BZ 4+ ~. If o # 0 then there are (p + 1)/2 elements b € [, with the
property that af(z) — (6b+ v)g(x) + bax = af(x) —vg(x) + blax — ) is
a permutation polynomial. By Rédei and Megyesi’s theorem mentioned in
the introduction, this implies that af(x) — yg(z) is linear and hence there
are elements ¢, d, e € [F, such that f(z) + cg(z) + dx +e =0 for all x € .
If @ = 0 then there are (p + 1)/2 elements a € F, with the property that
Bf(x) — vz + afg(zx) is a permutation polynomial. The set of p points
{(Bf(z) — vz, Bg(x)) | x € F,} may not be the graph of a function but it is
a set of p points that does not determine at least (p + 1)/2 directions. Thus
it is affinely equivalent to a graph of a function that does not determine at
least (p—1)/2 directions and so by Rédei and Megyesi’s theorem, it is a line.
Hence, there are elements ¢, d and e with the property that ¢(Gf(z) —vx) +
dBg(z) +e =0 for all z € F,. Thus, either there are elements ¢, d,e € F,
such that f(z) +cg(z)+dr+e=0forallz € F,or N; < (p—1)/2.

Suppose Ao; & F,Y, Z] for any X in any extension of F,. The polyno-
mials 0; = Y Y Z™ and 6; = Y ab Y Z™ have at most (05)? zeros in
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common by Bezout’s theorem. However if (y, z) € F> and 0;(y, z) = 0 then
6(y,z) = 0. Hence

N; < (09 <oip+o;—1)/2,

whenever o5 < (p —1)/2,

Thus if 7 # 0 and & < (p—1)/2 then N(m), the number of solutions of
7k(y, 2) = 0 in F,, for which f(z) + ag(z) + bz is a permutation polynomial,
satisfies

N(m) <Y N; <> o5(p+o5 —1)/2 < k(p—1)/2 +%Z(0§-)2
<k(p—-1)/2+ = Za (p—1)+k%)/2.

By hypothesis m, = 0 or
(25 +1)(p+25)/2 < Np < (k(p— 1) + k%)/2,

which gives k > 2s + 2. Now

Yszxi()( V[ swiaor | vz

z€lF,

and so I(f,g) > 2s+ 2.

Theorem 15.11. If M(f,g) > (25 + 1)(p + 2s)/2 then there are elements
¢,d,e € F, such that f(z) + cg(x) +dr +e=0.

Proof: If p=3and M(f,g) > (2s+1)(p+2s)/2 = 15/2 then there is a ¢
such that f(z)+ cg(x)+ bz is a permutation polynomial for all b € F,, which
can only occur if there is a constant e such that f(z) + cg(x) +e = 0.

So suppose p > 5 and that there are no elements c,d,e € I, with the
property that f(x) + cg(z) + dx + e = 0.

Clearly I(f + ag) > I(f,g) for all a € F, and I(f,g) > 25+ 2 by
Lemma 15.10.

There is an a; € F, with the property that

M(f+arg) > M(f,9)/p> (p—1)/6.

By Theorem 15.1 there are constants ¢, d,c’,d € F, with the property that

(f+ag+cx+d)(f+ag+dr+d)=0
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so the graph of (f, g), the set of points {(z, f(x),g(x)) | * € F,}, is contained
in the union of two planes.

By Rédei and Megyesi’s theorem, since we have assumed that the graph
of f+ aig is not a line, M(f + a1g) < (p — 1)/2 and so there is an ay # a;
with the property that

M(f +asg) > (M(f,9)—(p—1)/2)/(p—1) > (p—1)/6.

Thus the graph of (f, g) is contained in the union of two other planes, different
from the ones before. The intersection of the two planes with the two planes
is four lines and so the graph of (f, g) is contained in the union of four lines.

Similarly, since (M(f,g) — (p—1))/(p —2) = (p—1)/6 and (M(f,g) —
3(p—1)/2)/(p—3) > (p—1)/6, there is an a3 and an a, with the property
that M (f +asg) > (p—1)/6 and M(f +asg) > (p—1)/6 and so the graph of
(f,g) is contained in two other distinct pairs of planes. The four lines span
three different pairs of planes and so the graph of (f,g) is contained in the
union of two lines and hence a plane, which is a contradiction. ]

There is an example when ¢ is an odd prime (power) congruent to 1 mod-
ulo 3 with M(f, g) = 2(¢g—1)?/9—1 where the graph of (f, g) is not contained
in a plane, which shows that the bound is the right order of magnitude.

Let £ = {e € F, | e« Y3 = 1} U {0}. Then the set S =
{(e,0,0), (0,e,0), (0,0,e) | e € E} is a set of g points. If 7, the plane
defined by

X1+ aXo+0X35=c,

is incident with (e, 0,0) for some e € E then ¢ € E. Likewise if it is incident
with (0,e,0) for some e € E then a/c € E and if it is incident with (0,0, e)
for some e € E then b/c € E.

If 7 is incident with two points of S then either a € E, b€ F or a/b € E.
Thus if a, b and a/b are not elements of F then 7 and all the planes parallel
to 7 are incident with exactly one point of S. There are 2(q —1)?/9 such sets
of parallel lines.

If we make a change of coordinates so that {X; = z | x € F,} is
one such set of parallel planes then there are functions f and g for which
S ={(z, f(z),g9(z)) | x € F,}. Each other set of parallel lines with the above
property corresponds to a pair (a, b) such that f(x)+ ag(x)+ bx is a permu-
tation polynomial. Thus M(f,g) = 2(¢ — 1)?/9 — 1. Explicitly the functions
f and g can be defined by f(x) = xg(z)x and g(x) = xen(x)x, where x g
is the characteristic function of H = {¢* | t € F,} and € is a primitive third
root of unity.
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16 Glossary of concepts

Here one can find the most important definitions.

An algebraic (hyper)surface in PG(n, ) is a set of homogeneous poly-
nomials {Af(Xi,...,Xn41) @ A € GF(q)}, where f is a polynomial with
coefficients from GF(gq). Geometrically, one may think about the points
(1, ..., xny1) € PG(n,q) for which f(xy,...,2p41) = 0. For more on the
multiplicity of a point of a surface, see Section 8.

When n = 2 then we use the name plane curve instead of surface. If the
polynomial f splits into factors over GF(q) then we call it reducible (otherwise
irreducible) and the factors are called components. If this does not happen

even over the algebraic closure GF(q) then f is absolutely irreducible.

A (k,n)-arc of PG(2,q) is a pointset of size k, meeting every line in at
most n points. An arc is a (k,2)-arc. A (k,n)-arc is complete if it is not
contained in a (k+1,n)-arc. A (k,n)-arc is maximal if every line intersects
it in either 0 or n points.

A blocking set (with respect to lines) is a pointset meeting every line. In
general, a blocking set in PG(n, ¢) w.r.t. k-dimensional subspaces (sometimes
it is called an (n — k)-blocking set) is a point set meeting every k-subspace.
Do not be confused, a k-blocking set is a blocking set meeting every
k-codimensional subspace.

A point P of the blocking set B is essential if B\ {P} is no longer
a blocking set, i.e. there is a 1-secant k-space through P. B is minimal
if every point of it is essential. A blocking set B of PG(2,q) is small if
|B] < 2(q+1), in general, a blocking set B in PG(n, ¢) w.r.t. k-dimensional
subspaces is small if [B| < 2¢"% 4 1.

A t-fold blocking set meets every k-subspace in at least ¢ points.

A blocking set B C PG(n, q), with respect to k-dimensional subspaces, is
of Rédei type, if it has precisely ¢"~* points in the affine part AG(n,q) =
PG(n,q) \ H.

A subgeometry of II = PG(n,q) is a copy of some II' = PG(n/,¢’)
embedded in it, so the points of IT" are points of IT and the k-dimensional
subspaces of IT" are just the intersections of some k-subspaces of II with the
pointset of II'. It follows that GF(¢’) must be a subfield of GF(q).

The type of a pointset of PG(2, q) is the set of its possible intersection
numbers with lines. In particular, an arc is a set of type (0,1,2), a set of
even type is a pointset with each intersection numbers being even, etc.
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A cone C has a base B in some subspace II C PG(n, ¢) and a vertex V/;
the vertex is a subspace disjoint from II. The cone is the union of all the
lines connecting points of B to V. In PG(3,¢q), a flock of the cone is the
partition of C \ V into ¢ disjoint plane sections, with planes not through V.
A flock is linear, if its planes all contain one fixed line (which does not meet

0).

17 Notation

V(n,FF) denotes the n-dimensional vector space with coordinates from the
field F. If F = GF(q) then we write V(n, ¢) instead.

AG(n,F) denotes the n-dimensional affine space with coordinates from
the field F. If F = GF(q) then we write AG(n, q) instead.

PG(n,F) denotes the n-dimensional projective space with coordinates
from the field F. If F = GF(q) then we write PG(n, ¢) instead.
(4] = (@*=D(q* ' =1)...¢* " -1)
q

b (¢"=1)(¢"~"=1)...(¢—1)
the number of b-dimensional linear subspaces of V(a, q)).

(the g-binomials or Gaussian binomials,

If the order ¢ of a plane or space is fixed we write

i il i i—
bi=[V], =% =d+a "+ +a+l

Trgnq(X) = X + X9+ X% 4 ..+ X9 is the trace function from GF(¢")
to GF(q).

Normgn_,(X) = XX9X9 X4
GF(q)-

Jy is the ideal {(X{—X)" (X —X5)2. (XI—X,)" ¢ 0 <ij+is+...+i, =
t) in GF(q)[X7, ..., X,,] of polynomials vanishing everywhere with multiplicity
at least t.

n—1

is the norm function from GF(¢") to

H is the hyperplane at infinity in the projective space PG(n, ¢) when an
“affine part” is fixed, i.e. Hy, = PG(n,q) \ AG(n,q). When n = 2, it is called
the “line at infinity” /..

M;: given the polynomial f € GF(q)[X], the number of elements a €
GF(q) for which f(X)+ aX is a permutation polynomial.

Dy: given the polynomial f € GF(q)[X], Dy = {%ﬁ(y) cx F oy €
GF(q)}, the set of directions determined by the graph of f.

Ny = |Dyl.

wy: for a polynomial f € GF(q)[X], wy = min{k : }_ ccr(y f(z)F +#£0}.
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