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Foreword 3

0 Foreword

A most efficient way of investigating combinatorially defined point sets in
spaces over finite fields is associating polynomials to them. This technique
was first used by Rédei, Jamison, Lovász, Schrijver and Bruen, then, followed
by several people, became a standard method; nowadays, the contours of a
growing theory can be seen already.

The polynomials we use should reflect the combinatorial properties of the
point set, then we have to be equipped with enough means to handle our
polynomials and get an algebraic description about them; finally, we have to
translate the information gained back to the original, geometric language.

The first investigations in this field examined the coefficients of the poly-
nomials, and this idea proved to be very efficient. Then the derivatives of
the polynomials came into the play and solving (differential) equations over
finite fields; a third branch of results considered the polynomials as algebraic
curves. The idea of associating algebraic curves to point sets goes back to
Segre, recently a bunch of new applications have shown the strength of this
method. Finally, dimension arguments on polynomial spaces have become
fruitful.

We focus on combinatorially defined (point)sets of projective geometries.
They are defined by their intersection numbers with lines (or other subspaces)
typically, like arcs, blocking sets, nuclei, caps, ovoids, flocks, etc.

This work starts with a collection of definitions, methods and results we
are going to use later. It is an incomplete overview from the basic facts to
some theory of polynomials over finite fields; proofs are only provided when
they are either very short or not available in the usual literature, and if they
are interesting for our purposes. A reader, being familiar with the topic, may
skip Sections 1-8 and possibly return later when the text refers back here.
We provide slightly more information than the essential background for the
later parts.

After the basic facts (Sections 1-4) we introduce our main tool, the Rédei
polynomial associated to point sets (5). There is a brief section on the
univariate representation as well (6). The coefficients of Rédei polynomials
are elementary symmetric polynomials themselves, what we need to know
about them and other invariants of subsets of fields is collected in Section 7.
The multivariate polynomials associated to point sets can be considered as
algebraic varieties, so we can use some basic facts of algebraic geometry (8).
Then, in Section 9 some explanatory background needed for stability results
is presented. Already Sections 1-8 contain some new results, some of them
are interesting themselves, some others can be understood in the applications
in the following sections.
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The second (and main) part contains results of finite Galois geometry,
where polynomials play a main role. We start with results on intersection
numbers of planar point sets (10). Section 10 contains the classification of
small and large super-Vandermonde sets, too. A strong result about sets
with intersection numbers having a nontrivial common divisor is presented
here, this theorem implies the famous result on the non-existence of maximal
planar arcs in odd characteristic as well. In Section 11 we show how the
method of using algebraic curves for blocking sets (started by Szőnyi) could
be developed further, implying a strong characterization result. Then in
sections 12, 14 and 15 we deal with different aspects of directions. In Section
12 we examine the linear point sets, which became important because of the
linear blocking sets we had dealt with in the previous section. Also here
we describe Rédei-type k-blocking sets. Then (13), with a compact stability
result on flocks of cones we show the classical way of proving extendibility,
which was anticipated in Section 9 already. After it, the contrast can be
seen when we present a new method for the stability problem of direction
sets in Section 14. Finally, Section 15 contains a difficult extension of the
classical direction problem, also a slight improvement (with a new proof) of
a nice result of Gács. The dissertation ends with a Glossary of concepts and
Notation, and then concludes with the references.
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1 Introduction

In this work we will not give a complete introduction to finite geometries,
finite fields nor polynomials. There are very good books of these kinds avail-
able, e.g. Ball-Weiner [19] for a smooth and fascinating introduction to the
concepts of finite geometries, the three volumes of Hirschfeld and Hirschfeld-
Thas [65, 66, 67] as handbooks and Lidl-Niederreiter [79] for finite fields.
Still, the interested reader, even with a little background, may find all the
definitions and basic information here (the Glossary of concepts at the end of
the volume can also help) to enjoy this interdisciplinary field in the overlap
of geometry, combinatorics and algebra. To read this work the prerequisits
are just linear algebra and geometry.

We would like to use a common terminology.

In 1991, Bruen and Fisher called the polynomial technique as “the Jami-
son method” and summarized it in performing three steps: (1) Rephrase the
theorem to be proved as a relationship involving sets of points in a(n affine)
space. (2) Formulate the theorem in terms of polynomials over a finite field.
(3) Calculate. (Obviously, step 3 carries most of the difficulties in general.)
In some sense it is still “the method”, we will show several ways how to
perform steps 1-3.

We have to mention the book of László Rédei [91] from 1970, which
inspired a new series of results on blocking sets and directions in the 1990’s.
There are a few survey papers on the polynomial methods as well, for instance
by Blokhuis [26, 27], Szőnyi [102], Ball [5].

The typical theories in this field have the following character. Define
a class of (point)sets (of a geometry) in a combinatorial way (which, typ-
ically, means restrictions on the intersections with subspaces); examine its
numerical parameters (usually the spectrum of sizes in the class); find the
minimal/maximal values of the spectrum; characterize the extremal entities
of the class; finally show that the extremal (or other interesting) ones are
“stable” in the sense that there are no entities of the class being “close” to
the extremal ones.

There are some fundamental concepts and ideas that we feel worth to put
into light all along this dissertation:

• an algebraic curve or surface whose points correspond to the “deviant”
or “interesting” lines or subspaces meeting a certain point set;

• examination of (lacunary) coefficients of polynomials;

• considering subspaces of the linear space of polynomials.
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This work has a large overlap with my book Polynomials in finite ge-
ometry [SzPpolybk], which is in preparation and available on the webpage
http://www.cs.elte.hu/˜sziklai/poly.html ; most of the topics consid-
ered here are described there in a more detailed way.

2 Acknowledgements
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Blokhuis, András Gács, Tamás Szőnyi and Zsuzsa Weiner. They, together
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results form an important part of this topic. Not least, I always enjoyed
their warm, joyful, inspirating and supporting company in various situations
in the last some years. I am grateful for all the joint work and for all the
suggestions they made to improve the quality of this work.

Above all I am deeply indebted to Tamás Szőnyi, from whom most of my
knowledge and most of my enthusiasm for finite geometries I have learned.

The early version of this work was just started when our close friend and
excellent colleague, András Gács died. We all miss his witty and amusing
company.

I would like to thank all my coauthors and all my students for the work
and time spent together: Leo Storme, Jan De Beule, Sandy Ferret, Jörg
Eisfeld, Geertrui Van de Voorde, Michelle Lavrauw, Yves Edel, Szabolcs L.
Fancsali, Marcella Takáts, and, working on other topics together: P.L. Erdős,
D. Torney, P. Ligeti, G. Kós, G. Bacsó, L. Héthelyi.

Last but not least I am grateful to all the colleagues and friends who
helped me in any sense in the last some years: researchers of Ghent, Potenza,
Naples, Caserta, Barcelona, Eindhoven and, of course, Budapest.

3 Definitions, basic notation

We will not be very strict and consistent in the notation (but at least we’ll
try to be). However, here we give a short description of the typical notation
we are going to use.

If not specified differently, q = ph is a prime power, p is a prime. The n-
dimensional vectorspace over the finite (Galois) field GF(q) (of q elements)
will be denoted by V(n, q) or simply by GF(q)n.

The most we work in the Desarguesian affine space AG(n, q) coordina-
tized by GF(q) and so imagined as GF(q)n ∼ V(n, q); or in the Desarguesian
projective space PG(n, q) coordinatized by GF(q) in homogeneous way, as
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3. DEFINITIONS, BASIC NOTATION 9

GF(q)n+1 ∼ V(n + 1, q), and the projective subspaces of (projective) dimen-
sion k are identified with the linear subspaces of rank (k + 1) of the related
V(n+1, q). In this representation dimension will be meant projectively while
vector space dimension will be called rank (so rank=dim+1). A field, which
is not necessarily finite will be denoted by F.

In general capital letters X, Y, Z, T, ... (or X1, X2, ...) will denote inde-
pendent variables, while x, y, z, t, ... will typically be elements of a field. A
pair or triple of variables or elements in any pair of brackets can be meant
homogeneously, hopefully it will be always clear from the context and the
actual setting.

We write X or V = (X, Y, Z, ..., T ) meaning as many variables as needed;
Vq = (Xq, Y q, Zq, ...). As over a finite field of order q for each x ∈ GF(q)
xq = x holds, two different polynomials, f and g, in one or more variables,
can have coinciding values “everywhere” over GF(q). But in the literature
f ≡ g is used in the sense “f and g are equal as polynomials”, we will use
it in the same sense; also simply f = g and f(X) = g(X) may denote the
same, and we will state it explicitly if two polynomials are equal everywhere
over GF(q), i.e. they define the same function GF(q) → GF(q).

Throughout this work we mostly use the usual representation of PG(n, q).
This means that the points have homogeneous coordinates (x, y, z, ..., t)
where x, y, z, ..., t are elements of GF(q). The hyperplane [a, b, c, ..., d] of the
space have equation aX + bY + cZ + ...+ dT = 0.

For AG(n, q) we can use the big field representation as well: roughly
speaking AG(n, q) ∼ V(n, q) ∼ GF(q)n ∼ GF(qn), so the points correspond
to elements of GF(qn). The geometric structure is defined by the following
relation: three distinct points A,B,C are collinear if and only for the cor-
responding field elements (a − c)q−1 = (b − c)q−1 holds. This way the ideal
points (directions) correspond to (a separate set of) (q − 1)-th powers, i.e.
qn−1
q−1

-th roots of unity.

When PG(n, q) is considered as AG(n, q) plus the hyperplane at infinity,
then we will use the notation H∞ for that (‘ideal’) hyperplane. If n = 2 then
H∞ is called the line at infinity `∞. The points of H∞ or `∞ are often called
directions or ideal points.

According to the standard terminology, a line meeting a point set in one
point will be called a tangent and a line intersecting it in r points is an r-
secant (or a line of length r). Most of this work is about combinatorially
defined (point)sets of (mainly projective or affine) finite geometries. They
are defined by their intersection numbers with lines (or other subspaces)
typically. The most important definitions and basic information are collected
in the Glossary of concepts at the end of this work.
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4 Finite fields and polynomials

4.1 Some basic facts

Here the basic facts about finite fields are collected. For more see [79].
For any prime p and any positive integer h there exists a unique finite

field (or Galois field) GF(q) of size q = ph. The prime p is the characteristic
of it, meaning a+ a+ ...+ a = 0 for any a ∈ GF(q) whenever the number of
a’s in the sum is (divisible by) p. The additive group of GF(q) is elementary
abelian, i.e. (Zp,+)h while the non-zero elements form a cyclic multiplicative
group GF(q)∗ ' Zq−1, any generating element (often denoted by ω) of it is
called a primitive element of the field.

For any a ∈ GF(q) aq = a holds, so the field elements are precisely
the roots of Xq − X, also if a 6= 0 then aq−1 = 1 and Xq−1 − 1 is the root
polynomial of GF(q)∗. (Lucas’ theorem implies, see below, that) we have
(a + b)p = ap + bp for any a, b ∈ GF(q), so x 7→ xp is a field automorphism.
GF(q) has a (unique) subfield GF(pt) for each t|h; GF(q) is an h

t
-dimensional

vectorspace over its subfield GF(pt). The (Frobenius-) automorphisms of
GF(q) are x 7→ xpi

for i = 0, 1, ..., h − 1, forming the complete, cyclic auto-
morphism group of order h. Hence x 7→ xpt

fixes the subfield GF(pgcd(t,h))
pointwise (and all the subfields setwise!); equivalently, (Xpt −X)|(Xq −X)
iff t|h.

One can see that for any k not divisible by (q−1),
∑

a∈GF(q) a
k = 0. From

this, if f : GF(q) → GF(q) is a bijective function then
∑

x∈GF(q) f(x)k = 0 for
all k = 1, ..., q − 2. See also Dickson’s theorem.

We often use Lucas’ theorem when calculating binomial coefficients
(

n
k

)
in

finite characteristic, so “modulo p”: let n = n0 + n1p+ n2p
2 + ...+ ntp

t, k =
k0 + k1p+ k2p

2 + ...+ ktp
t, with 0 ≤ ni, ki ≤ p− 1, then

(
n
k

)
≡
(

n0

k0

)(
n1

k1

)
...
(

nt

kt

)
(mod p). In particular, in most cases we are interested in those values of k
when

(
n
k

)
is non-zero in GF(q), so modulo p. By Lucas’ theorem, they are

precisely the elements of Mn = {k = k0 +k1p+k2p
2 + ...+ktp

t : 0 ≤ ki ≤ ni}.
We define the trace and norm functions on GF(qn) as Trqn→q(X) = X +

Xq +Xq2
+ ...+Xqn−1

and Normqn→q(X) = XXqXq2
...Xqn−1

, so the sum and
the product of all conjugates of the argument. Both maps GF(qn) onto GF(q),
the trace function is GF(q)-linear while the norm function is multiplicative.

Result 4.1. Both Tr and Norm are in some sense unique, i.e. any GF(q)-
linear function mapping GF(qn) onto GF(q) can be written in the form
Trqn→q(aX) with a suitable a ∈ GF(qn) and any multiplicative function map-
ping GF(qn) onto GF(q) can be written in the form Normqn→q(X

a) with a
suitable integer a.
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4. FINITE FIELDS AND POLYNOMIALS 11

4.2 Polynomials

Here we summarize some properties of polynomials over finite fields. Given
a field F, a polynomial f(X1, X2, ..., Xk) is a finite sum of monomial terms
ai1i2...ikX

i1
1 X

i2
2 · · ·X

ik
k , where each Xi is a free variable, ai1i2...ik , the coefficient

of the term, is an element of F. The (total) degree of a monomial is i1 + i2 +
...+ ik if the coefficient is nonzero and −∞ otherwise. The (total) degree of
f , denoted by deg f or f ◦, is the maximum of the degrees of its terms. These
polynomials form the ring F[X1, X2, ..., Xk]. A polynomial is homogeneous
if all terms have the same total degree. If f is not homogeneous then one
can homogenize it, i.e. transform it to the following homogeneous form:
Zdeg f · f(X1

Z
, X2

Z
, ..., Xk

Z
), which is a polynomial again (Z is an additional free

variable).
Given f(X1, ..., Xn) =

∑
ai1...inX

i1
1 · · ·X in

n ∈ F[X1, ..., Xn], and the el-
ements x1, ..., xn ∈ F then one may substitute them into f : f(x1, ..., xn)
=
∑
ai1...inx

i1
1 · · ·xin

n ∈ F; (x1, ..., xn) is a root of f if f(x1, ..., xn) = 0.
A polynomial f may be written as a product of other polynomials, if

not (except in a trivial way) then f is irreducible. If we consider f over
F̄, the algebraic closure of F, and it still cannot be written as a product of
polynomials over F̄ then f is absolutely irreducible. E.g. X2+1 ∈ GF(3)[X] is
irreducible but not absolutely irreducible, it splits to (X+i)(X−i) over GF(3)
where i2 = −1. But, for instance, X2 + Y 2 + 1 ∈ GF(3)[X, Y ] is absolutely
irreducible. Over the algebraic closure every univariate polynomial splits
into linear factors.

In particular, x is a root of f(X) (of multiplicity m) if f(X) can be
written as f(X) = (X − x)m · g(X) for some polynomial g(X), m ≥ 1, with
g(x) 6= 0.

Over a field any polynomial can be written as a product of irreducible
polynomials (factors) in an essentially unique way (so apart from constants
and rearrangement).

Let f : GF(q) → GF(q) be a function. Then it can be represented by the
linear combination

∀x ∈ GF(q) f(x) =
∑

a∈GF(q)

f(a)µa(x),

where

µa(X) = 1− (X − a)q−1

is the characteristic function of the set {a}, this is Lagrange interpolation. In
other terms it means that any function can be given as a polynomial of degree
≤ q − 1. As both the number of functions GF(q) → GF(q) and polynomials
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in GF(q)[X] of degree ≤ q − 1 is qq, this representation is unique as they are
both a vectorspace of dim = q over GF(q).

Let now f ∈ GF(q)[X]. Then f , as a function, can be represented by a
polynomial f̄ of degree at most q − 1, this is called the reduced form of f .
(The multiplicity of a root may change when reducing f .) The degree of f̄
will be called the reduced degree of f .

Proposition 4.2. For any (reduced) polynomial f(X) = cq−1X
q−1 + ...+ c0,∑

x∈GF(q)

xkf(x) = −cq−1−k0 ,

where k = t(q − 1) + k0, 0 ≤ k0 ≤ q − 2. In particular,
∑

x∈GF(q)

f(x) = −cq−1.

Result 4.3. If f is bijective (permutation polynomial) then the reduced degree
of fk is at most q − 2 for k = 1, ..., q − 2.

We note that (i) if p 6
∣∣∣ |{t : f(t) = 0}| then the converse is true;

(ii) it is enough to assume it for the values k 6≡ 0 (mod p).

Let’s examine GF(q)[X] as a vector space over GF(q).

Result 4.4. Gács [61] For any subspace V of GF(q)[X], dim(V ) = |{deg(f) :
f ∈ V }|.

In several situations we will be interested in the zeros of (uni- or multi-
variate) polynomials. Let a = (a1, a2, ..., an) be in GF(q)n. We shall refer to a
as a point in the n-dimensional vector space V(n, q) or affine space AG(n, q).
Consider an f in GF(q)[X1, ..., Xn], f =

∑
αi1,i2,...,inX

i1
1 · · ·X in

n .
We want to define the multiplicity of f at a. It is easy if a = 0 =

(0, 0, ..., 0). Let m be the largest integer such that for every 0 ≤ i1, ..., in,
i1 + ...+ in < m we have αi1,i2,...,in = 0. Then we say that f has a zero at 0
with multiplicity m.

For general a one can consider the suitable “translate” of f , i.e.
fa(Y1, ..., Yn) = f(Y1 + a1, Y2 + a2, ..., Yn + an), and we say that f has a zero
at a with multiplicity m if and only if fa has a zero at 0 with multiplicity m.

4.3 Differentiating polynomials

Given a polynomial f(X) =
∑n

i=0 aiX
i, one can define its derivative

∂Xf = f ′X = f ′ in the following way: f ′(X) =
∑n

i=0 iaiX
i−1. Note that

if the characteristic p divides i then the term iaiX
i−1 vanishes; in particular
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5. THE RÉDEI POLYNOMIAL AND ITS DERIVATIVES 13

deg f ′ < deg f − 1 may occur. Multiple differentiation is denoted by ∂i
Xf or

f (i) or f ′′, f ′′′ etc. If a is a root of f with multiplicity m then a will be a root
of f ′ with multiplicity at least m− 1, and of multiplicity at least m iff p|m.
Also if k ≤ p then a is root of f with multiplicity at least k iff f (i)(a) = 0 for
i = 0, 1, ..., k − 1.

We will use the differential operator∇ = (∂X , ∂Y , ∂Z) (when we have three
variables) and maybe ∇i = (∂i

X , ∂
i
Y , ∂

i
Z) and probably ∇i

H = (Hi
X ,Hi

Y ,Hi
Z),

where Hi stands for the i-th Hasse-derivation operator (see 5.3). The only
properties we need are that Hj Xk =

(
k
j

)
Xk−j if k ≥ j (otherwise 0); Hj is

a linear operator; Hj(fg) =
∑j

i=0Hif Hj−ig; a is root of f with multiplicity
at least k iff Hif(a) = 0 for i = 0, 1, ..., k − 1; and finally HiHj =

(
i+j
i

)
Hi+j.

We are going to use the following differential equation:

V · ∇F = X∂XF + Y ∂Y F + Z∂ZF = 0,

where F = F (X,Y, Z) is a homogeneous polynomial in three variables, of
total degree n. Let F̂ (X, Y, Z, λ) = F (λX, λY, λZ) = λnF (X, Y, Z), then

nλn−1F (X, Y, Z) = (∂λF̂ )(X, Y, Z, λ) = (X∂XF+Y ∂Y F+Z∂ZF )(λX, λY, λZ).

It means that if we consider V · ∇F = 0 as a polynomial equation then
(∂λF̂ )(X, Y, Z, λ) = 0 identically, which holds if and only if p divides n =
deg(F ).

If we consider our equation as (V · ∇F )(x, y, z) = 0 for all (x, y, z) ∈
GF(q)3, and deg(F ) is not divisible by p, then the condition is that
F (x, y, z) = 0 for every choice of (x, y, z), i.e. F ∈ 〈Y qZ − Y Zq, ZqX −
ZXq, XqY −XY q〉, see later.

5 The Rédei polynomial and its derivatives

5.1 The Rédei polynomial

Generally speaking, a Rédei polynomial is just a (usually multivariate) poly-
nomial which splits into linear factors. We use the name Rédei polynomial to
emphasize that these are not only fully reducible polynomials, but each linear
factor corresponds to a geometric object, usually a point or a hyperplane of
an affine or projective space.

Let S be a point set of PG(n, q), S = {Pi = (ai, bi, ..., di) : i = 1, ..., |S|}.
The (Rédei-)factor corresponding to a point Pi = (ai, bi, ..., di) is PiV =

aiX + biY + ... + diT . This is simply the equation of hyperplanes passing
through Pi. When we decide to examine our point set with polynomials,
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and if there is no special, distinguished point in S, it is quite natural to use
symmetric polynomials of the Rédei-factors. The most popular one of these
symmetric polynomials is the Rédei-polynomial, which is the product of the
Rédei-factors, and the power sum polynomial, which is the (q − 1)-th power
sum of them.

Definition 5.1. The Rédei-polynomial of the point set S is defined as
follows:

RS(X, Y, ..., T ) = R(X, Y, ..., T ) :=

|S|∏
i=1

(aiX + biY + ...+ diT ) =

|S|∏
i=1

Pi ·V.

The points (x, y, ..., t) of R, i.e. the roots R(x, y, ..., t) = 0, correspond
to hyperplanes (with the same (n + 1)-tuple of coordinates) of the space.
The multiplicity of a point (x, y, ..., t) on R is m if and only if the
corresponding hyperplane [x, y, ..., t] intersects S in m points exactly.

Given two point sets S1 and S2, for their intersection

RS1∩S2(X, Y, ..., T ) = gcd
(
RS1(X, Y, ..., T ) , RS2(X, Y, ..., T )

)
holds, while for their union, if we allow multiple points or if S1 ∩ S2 = ∅, we
have

RS1∪S2(X,Y, ..., T ) = RS1(X, Y, ..., T ) · RS2(X,Y, ..., T ).

Definition 5.2. The power sum polynomial of S is

GS(X, Y, ..., T ) = G(X,Y, ..., T ) :=

|S|∑
i=1

(aiX + biY + ...+ diT )q−1.

If a hyperplane [x, y, ..., t] intersects S in m points then the corresponding
m terms will vanish, hence G(x, y, ..., t) = |S|−m modulo the characteristic;
(in other words, all m-secant hyperplanes will be solutions of G(X, Y, ..., T )−
|S|+m = 0).

The advantage of the power sum polynomial (compared to the Rédei-
polynomial) is that it is of lower degree if |S| ≥ q. The disadvantage is
that while the Rédei-polynomial contains the complete information of the
point set (S can be reconstructed from it), the power sum polynomial of two
different point sets may coincide. This is a hard task in general to classify
all the point sets belonging to one given power sum polynomial.

The power sum polynomial of the intersection of two point sets does not
seem to be easy to calculate; the power sum polynomial of the union of two
point sets is the sum of their power sum polynomials.
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5. THE RÉDEI POLYNOMIAL AND ITS DERIVATIVES 15

The next question is what happens if we transform S. Let M ∈ GL(n +
1, q) be a linear transformation. Then

RM(S)(V) =

|S|∏
i=1

(MPi) ·V =

|S|∏
i=1

Pi · (M>V) = RS(M>V).

For a field automorphism σ, Rσ(S)(V) = (RS)(σ)(V), which is the polynomial
RS but all coefficients are changed for their image under σ.

Similarly GM(S)(V) = GS(M>V) and Gσ(S)(V) = (GS)(σ)(V).
The following statement establishes a further connection between the

Rédei polynomial and the power sum polynomial.

Lemma 5.3. (Gács) For any set S,

RS · (GS − |S|) = (Xq −X)∂XR
S + (Y q − Y )∂YR

S + ...+ (T q − T )∂TR
S.

In particular, RS(GS − |S|) is zero for every substitution [x, y, ..., t].

Next we shall deal with Rédei-polynomials in the planar case n = 2. This
case is already complicated enough, it has some historical reason, and there
are many strong results based on algebraic curves coming from this planar
case. Most of the properties of “Rédei-surfaces” in higher dimensions can
be proved in a very similar way, but it is much more difficult to gain useful
information from them.

Let S be a point set of PG(2, q). Let LX = [1, 0, 0] be the line {(0, y, z) :
y, z ∈ GF(q), (y, z) 6= (0, 0)}; LY = [0, 1, 0] and LZ = [0, 0, 1]. Let NX =
|S ∩ LX | and NY , NZ are defined similarly. Let S = {Pi = (ai, bi, ci) : i =
1, ..., |S|}.

Definition 5.4. The Rédei-polynomial of S is defined as follows:

R(X, Y, Z) =
|S|∏
i=1

(aiX + biY + ciZ) =
|S|∏
i=1

Pi ·V= r0(Y, Z)X |S| + r1(Y, Z)X |S|−1 + ... +

r|S|(Y, Z).

For each j = 0, ..., |S|, rj(Y, Z) is a homogeneous polynomial in two vari-
ables, either of total degree j precisely, or (for example when 0 ≤ j ≤ NX−1)
rj is identically zero. If R(X, Y, Z) is considered for a fixed (Y, Z) = (y, z) as
a polynomial of X, then we write Ry,z(X) (or just R(X, y, z)). We will say
that R is a curve in the dual plane, the points of which correspond to lines
(with the same triple of coordinates) of the original plane. The multiplicity
of a point (x, y, z) on R is m if and only if the corresponding line
[x, y, z] intersects S in m points exactly.
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Remark 5.5. Note that if m = 1, i.e. [x, y, z] is a tangent line at some
(at, bt, ct) ∈ S, then R is smooth at (x, y, z) and its tangent at (x, y, z) coin-
cides with the only linear factor containing (x, y, z), which is atX+btY +ctZ.

As an example we mention the following.

Result 5.6. Let S be the point set of the conic X2 − Y Z in PG(2, q). Then

GS(X, Y, Z) = Xq−1 if q is even and GS(X, Y, Z) = (X2 − 4Y Z)
q−1
2 if q is

odd. One can read out the geometrical behaviour of the conic with respect
to lines, and the difference between the even and the odd case.

I found the following formula amazing.

Result 5.7. Let S be the point set of the conic X2 − Y Z in PG(2, q). Then

RS(X, Y, Z) = Y
∏

t∈GF(q)

(tX + t2Y + Z) = Y (Zq + Y q−1Z − C q−1
2
Y

q−1
2 Z

q+1
2 −

−C q−3
2
X2Y

q−3
2 Z

q−1
2 − C q−5

2
X4Y

q−5
2 Z

q−3
2 − ...− C1X

q−3Y Z2 − C0X
q−1Z),

where Ck = 1
k+1

(
2k
k

)
are the famous Catalan numbers.

Remark. If there exists a line skew to S then w.l.o.g. we can suppose that
LX∩S = ∅ and all ai = 1. If now the lines through (0, 0, 1) are not interesting
for some reason, we can substitute Z = 1 and now R is of form

R(X, Y ) =

|S|∏
i=1

(X + biY + ci) = X |S| + r1(Y )X |S|−1 + ...+ r|S|(Y ).

This is the affine Rédei polynomial. Its coefficient-polynomials are
rj(Y ) = σj({biY + ci : i = 1, ..., |S|}), elementary symmetric polynomials
of the linear terms biY + ci, each belonging to an ‘affine’ point (bi, ci). In
fact, substituting y ∈ GF(q), biy + ci just defines the point (1, 0, biy + ci),
which is the projection of (1, bi, ci) ∈ S from the center ‘at infinity’ (0,−1, y)
to the line (axis) [0, 1, 0].

5.2 “Differentiation” in general

Here we want to introduce some general way of “differentiation”. Give each
point Pi the weight µ(Pi) = µi for i = 1, ..., |S|. Define the curve

R′
µ(X, Y, Z) =

|S|∑
i=1

µi
R(X,Y, Z)

aiX + biY + ciZ
. (∗)
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If ∀µi = ai then R′
µ(X, Y, Z) = ∂XR(X, Y, Z), and similarly, ∀µi = bi means

∂YR and ∀µi = ci means ∂ZR.

Theorem 5.8. Suppose that [x, y, z] is an m-secant with S ∩ [x, y, z] =
{Pti(ati , bti , cti) : i = 1, ...,m}.

(a) If m ≥ 2 then R′
µ(x, y, z) = 0. Moreover, (x, y, z) is a point of the

curve R′
µ of multiplicity at least m− 1.

(b) (x, y, z) is a point of the curve R′
µ of multiplicity at least m if and only

if for all the Ptj ∈ S ∩ [x, y, z] we have µtj = 0.

(c) Let [x, y, z] be an m-secant with [x, y, z] ∩ [1, 0, 0] 6∈ S. Consider the
line [0,−z, y] of the dual plane. If it intersects R′

µ(X,Y, Z) at (x, y, z)

with intersection multiplicity ≥ m then
∑m

j=1

µtj

atj
= 0.

Proof: (a) Suppose w.l.o.g. that (x, y, z) = (0, 0, 1) (so every ctj = 0).
Substituting Z = 1 we have R′

µ(X, Y, 1). In the sum (∗) each term of∑
i6∈{t1,...,tm} µi

R(X,Y,1)
aiX+biY +ci

will contain m linear factors through (0, 0, 1), so,

after expanding it, there is no term with (total) degree less than m (in X
and Y ).

Consider the other terms contained in∑
i∈{t1,...,tm}

µi
R(X, Y, 1)

aiX + biY
=

R(X, Y, 1)

RS∩[0,0,1](X, Y, 1)

m∑
j=1

µtj

RS∩[0,0,1](X, Y, 1)

atjX + btjY
.

Here R(X,Y,1)

RS∩[0,0,1](X,Y,1)
is non-zero in (0, 0, 1). Each term RS∩[0,0,1](X,Y,1)

atj X+btj Y
contains

at least m− 1 linear factors through (0, 0, 1), so, after expanding it, there is
no term with (total) degree less than (m− 1) (in X and Y ). So R′

µ(X, Y, 1)
cannot have such a term either.

(b) As R
S∩[0,0,1] ′
µ (X, Y, 1) is a homogeneous polynomial in X and Y , of

total degree (m− 1), (0, 0, 1) is of multiplicity exactly (m− 1) on R(X,Y, 1),

unless R
S∩[0,0,1] ′
µ (X, Y, Z) happens to vanish identically.

Consider the polynomials RS∩[0,0,1](X,Y,1)
atj X+btj Y

. They are m homogeneous poly-

nomials in X and Y , of total degree (m−1). Form an m×m matrix M from
the coefficients. If we suppose that atj = 1 for all Ptj ∈ S ∩ [0, 0, 1] then the

coefficient of Xm−1−kY k in RS∩[0,0,1](X,Y,1)
atj X+btj Y

, so mjk is σk({bt1 , ..., btm}\{btj}) for

j = 1, ...,m and k = 0, ...,m− 1. So M is the elementary symmetric matrix
(see in Section 7 on symmetric polynomials) and | detM | =

∏
i<j(bti − btj),

so if the points are all distinct then detM 6= 0. Hence the only way of

R
S∩[0,0,1] ′
µ (X, Y, 1) = 0 is when ∀j µtj = 0.
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In order to prove (c), consider the line [0,−z, y] in the dual plane. To
calculate its intersection multiplicity with R′

µ(X, Y, Z) at (x, y, z) we have
to look at R′

µ(X, y, z) and find out the multiplicity of the root X = x. As

before, for each term of
∑

i6∈{t1,...,tm} µi
R(X,y,z)

aiX+biy+ciz
this multiplicity is m, while

for the other terms we have∑
i∈{t1,...,tm}

µi
R(X, y, z)

aiX + biy + cz
=

R(X, y, z)

RS∩[x,y,z](X, y, z)

m∑
j=1

µtj

RS∩[x,y,z](X, y, z)

atjX + btjy + ctjz
.

Here R(X,y,z)

RS∩[x,y,z](X,y,z)
is non-zero at X = x. Now RS∩[x,y,z](X, y, z) =∏m

j=1 atjX + btjy + ctjz.

Each term RS∩[x,y,z](X,y,z)
atj X+btj y+ctj z

is of (X-)degree at most m − 1. We do know

that the degree of
∑m

j=1 µtj
RS∩[x,y,z](X,y,z)
atj X+btj y+ctj z

is at least (m − 1) (or it is identi-

cally zero), as the intersection multiplicity is at least m − 1. So if we want
intersection multiplicity ≥ m then it must vanish, in particular its leading
coefficient

(
m∏

j=1

atj)
m∑

j=1

µtj

atj

= 0.

Remark. If ∀µi = ai, i.e. we have the partial derivative w.r.t X, then each
µtj

atj
are equal to 1. The multiplicity in question remains (at least) m if and

only if on the corresponding m-secant [x, y, z] the number of “affine” points
(i.e. points different from (0,−z, y)) is divisible by the characteristic p.

In particular, we may look at the case when all µ(P) = 1.
Consider

R′
1 =

∑
b∈B

R(X, Y, Z)

b1X + b2Y + b3Z
= σ|B|−1({b1X + b2Y + b3Z : b ∈ B}).

For any ≥ 2-secant [x, y, z] we have R1(x, y, z) = 0. It does not have a linear
component if |B| < 2q and B is minimal, as it would mean that all the lines
through a point are ≥ 2-secants. Somehow this is the “prototype” of “all
the derivatives” of R. E.g. if we coordinatize s.t. each b1 is either 1 or 0,
then ∂1

XR =
∑

b∈B\LX

R(X,Y,Z)
b1X+b2Y +b3Z

, which is a bit weaker in the sense that it
contains the linear factors corresponding to pencils centered at the points in
B∩LX . Substituting a tangent line [x, y, z], with B∩ [x, y, z] = {a}, into R1

we get R1(x, y, z) =
∏

b∈B\{a}(b1x + b2y + b3z), which is non-zero. It means
that R1 contains precisely the ≥ 2-secants of B. In fact an m-secant will
be a singular point of R1, with multiplicity at least m− 1.
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5. THE RÉDEI POLYNOMIAL AND ITS DERIVATIVES 19

5.3 Hasse derivatives of the Rédei polynomial

The next theorem is about Hasse derivatives of R(X, Y, Z). (For its proper-
ties see Section 4.3.)

Theorem 5.9. (1) Suppose [x, y, z] is an r-secant line of S with [x, y, z]∩
S = {(asl

, bsl
, csl

) : l = 1, ..., r}. Then (Hi
XH

j
YH

r−i−j
Z R)(x, y, z) =

R̄(x, y, z) ·
∑

m1<m2<...<mi
mi+1<...<mi+j
mi+j+1<...<mr

{m1,...,mr}={1,2,...,r}

asm1
asm2

...asmi
bsmi+1

...bsmi+j
csmi+j+1

...csmr
,

where R̄(x, y, z) =
∏

l 6∈{s1,...,sr}(alx + bly + clz), a non-zero element,
independent from i and j.

(2) From this we also have

∑
0≤i+j≤r

(Hi
XH

j
YH

r−i−j
Z R)(x, y, z)X iY jZr−i−j = R̄(x, y, z)

r∏
l=1

(asl
X+bsl

Y+csl
Z),

constant times the Rédei polynomial belonging to [x, y, z] ∩ S.

(3) If [x, y, z] is a (≥ r + 1)-secant, then (Hi
XH

j
YH

r−i−j
Z R)(x, y, z) = 0.

(4) If for all the derivatives (Hi
XH

j
YH

r−i−j
Z R)(x, y, z) = 0 then [x, y, z] is

not an r-secant.

(5) Moreover, [x, y, z] is a (≥ r+ 1)-secant iff for all i1, i2, i3, 0 ≤ i1 + i2 +
i3 ≤ r the derivatives (Hi1

XH
i2
Y H

i3
Z R)(x, y, z) = 0.

(6) The polynomial∑
0≤i+j≤r

(Hi
XH

j
YH

r−i−j
Z R)(X, Y, Z)X iY jZr−i−j

vanishes for each [x, y, z] (≥ r)-secant lines.

(7) In particular, when [x, y, z] is a tangent line to S with [x, y, z] ∩ S =
{(at, bt, ct)}, then

(∇R)(x, y, z) = ( (∂XR)(x, y, z), (∂YR)(x, y, z), (∂ZR)(x, y, z) ) = (at, bt, ct).

If [x, y, z] is a (≥ 2)-secant, then (∇R)(x, y, z) = 0. Moreover, [x, y, z]
is a (≥ 2)-secant iff (∇R)(x, y, z) = 0.
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Proof: (1) comes from the definition of Hasse derivation and from asl
x +

bsl
y + csl

z = 0; l = 1, ..., r. In general (Hi1
XH

i2
Y H

i3
Z R)(X, Y, Z) =∑

m1<m2<...<mi1
mi1+1<...<mi1+i2

mi1+i2+1<...<mi1+i2+i3
|{m1,...,mi1+i2+i3

}|=i1+i2+i3

am1am2 ...ami1
bmi1+1

...bmi1+i2
cmi1+i2+1

...cmi1+i2+i3

∏
i6∈{m1,...,mi1+i2+i3

}

(aiX+biY+ciZ).

(2) follows from (1). For (3) observe that after the “r-th derivation” of R
still remains a term asi

x + bsi
y + csi

z = 0 in each of the products. Suppose
that for some r-secant line [x, y, z] all the r-th derivatives are zero, then from
(2) we get that

∏r
l=1(asl

X + bsl
Y + csl

Z) is the zero polynomial, a nonsense,
so (4) holds. Now (5) and (7) are proved as well. For (6) one has to realise
that if [x, y, z] is an r-secant, still

∏r
l=1(asl

x+ bsl
y + csl

z) = 0.
Or: in the case of a tangent line

∇R =

|S|∑
j=1

∇(Pj ·V)
∏
i6=j

Pi ·V =

|S|∑
j=1

Pj

∏
i6=j

(Pi ·V).

6 Univariate representations

Here we describe the analogue of the Rédei polynomial for the big field rep-
resentations.

6.1 The affine polynomial and its derivatives

After the identification AG(n, q) ↔ GF(qn), described in Section 3, for a
subset S ⊂ AG(n, q) one can define the root polynomial

BS(X) = B(X) =
∏
s∈S

(X − s) =
∑

k

(−1)kσkX
|S|−k;

and the direction polynomial

F (T,X) =
∏
s∈S

(T − (X − s)q−1) =
∑

k

(−1)kσ̂kT
|S|−k.

Here σk and σ̂k denote the k-th elementary symmetric polynomial of the set
S and {(X − s)q−1 : s ∈ S}, respectively. The roots of B are just the points
of S while F (x, t) = 0 iff the direction t is determined by x and a point of S,
or if x ∈ S and t = 0.
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If F (T, x) is viewed as a polynomial in T , its zeros are the θn−1-th roots
of unity, moreover, (x − s1)

q−1 = (x − s2)
q−1 if and only if x, s1 and s2 are

collinear.

In the special case when S = Lk is a k-dimensional affine subspace, one
may think that BLk

will have a special shape.

We know that all the field automorphisms of GF(qn) are Frobenius-
automorphisms x 7→ xqm

for i = 0, 1, ..., n − 1, and each of them induces a
linear transformation of AG(n, q). Any linear combination of them, with co-
efficients from GF(qn), can be written as a polynomial over GF(qn), of degree
at most qn−1. These are called linearized polynomials. Each linearized poly-
nomial f(X) induces a linear transformation x 7→ f(x) of AG(n, q). What’s
more, the converse is also true: all linear transformations of AG(n, q) arise this
way. Namely, distinct linearized polynomials yield distinct transformations
as their difference has degree ≤ qn−1 so cannot vanish everywhere unless they
were equal. Finally, both the number of n × n matrices over GF(q) and lin-
earized polynomials of form c0X+c1X

q +c2X
q2

+ ...+cn−1X
qn−1

, ci ∈ GF(qn)
is (qn)n.

Proposition 6.1. (i) The root polynomial of a k-dimensional subspace of
AG(n, q) containing the origin, is a linearized polynomial of degree qk;

(ii) the root polynomial of a k-dimensional subspace of AG(n, q) is a lin-
earized polynomial of degree qk plus a constant term.

Now we examine the derivative(s) of the affine root polynomial (written
up with a slight modification). Let S ⊂ GF(qn) and consider the root and
direction polynomials of S[−1] = {1/s : s ∈ S}:

B(X) =
∏
s∈S

(1− sX) =
∑

k

(−1)kσkX
k;

F (T,X) =
∏
s∈S

(1− (1− sX)q−1T ) =
∑

k

(−1)kσ̂kT
k.

For the characteristic function χ of S[−1] we have |S| − χ(X) =
∑

s∈S(1 −
sX)qn−1. Then, as B′(X) = B(X)

∑
s∈S

1
1−sX

, we have (X − Xqn
)B′ =

B(|S| −
∑

s∈S(1 − sX)qn−1) = Bχ, after derivation B′ + (X − Xqn
)B′′ =

B′χ+Bχ′, so B′ ≡ (Bχ)′ and (as Bχ ≡ 0) we have BB′ ≡ B2χ′.
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7 Symmetric polynomials

7.1 The Newton formulae

In this section we recall some classical results on symmetric polynomials. For
more information and the proofs of the results mentioned here, we refer to
[111].

The multivariate polynomial f(X1, ..., Xt) is symmetric, if f(X1, ..., Xt) =
f(Xπ(1), ..., Xπ(t)) for any permutation π of the indices 1, ..., t. Symmetric
polynomials form a (sub)ring (or submodule over F) of F[X1, ..., Xt]. The
most famous particular types of symmetric polynomials are the following
two:

Definition 7.1. The k-th elementary symmetric polynomial of the variables
X1, ..., Xt is defined as

σk(X1, ..., Xt) =
∑

{i1,...,ik}⊆{1,...,t}

Xi1Xi2 · · ·Xik .

σ0 is defined to be 1 and for j > t σj = 0, identically.

Given a (multi)set A = {a1, a2, ..., at} from any field, it is uniquely deter-
mined by its elementary symmetric polynomials, as

t∑
i=0

σi(A)X t−i =
t∏

j=1

(X + aj).

Definition 7.2. The k-th power sum of the variables X1, ..., Xt is defined as

πk(X1, ..., Xt) :=
t∑

i=1

Xk
i .

The power sums determine the (multi)set a “bit less” than the elementary
symmetric polynomials. For any fixed s we have

s∑
i=0

(
s

i

)
πi(A)Xs−i =

t∑
j=1

(X + aj)
s

but in general it is not enough to gain back the set {a1, ..., at}. Note also
that in the previous formula the binomial coefficient may vanish, and in this
case it “hides” πi as well.
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One may feel that if a (multi)set of field elements is interesting in some
sense then its elementary symmetric polynomials or its power sums can be
interesting as well. E.g.

A = GF(q): σj(A) = πj(A) =

{
0, if j = 1, 2, ..., q − 2, q ;

−1, if j = q − 1.

If A is an additive subgroup of GF(q) of size pk: σj(A) = 0 whenever
p 6 |j < q − 1 holds. Also πj(A) = 0 for j = 1, ..., pk − 2, pk.

If A is a multiplicative subgroup of GF(q) of size d|(q − 1): σj(A) =
πj(A) = 0 for j = 1, ..., d− 1.

The fundamental theorem of symmetric polynomials: Every symmet-
ric polynomial can be expressed as a polynomial in the elementary symmetric
polynomials.

According to the fundamental theorem, also the power sums can be ex-
pressed in terms of the elementary symmetric polynomials. The Newton
formulae are equations with which one can find successively the relations in
question. Essentially there are two types of them:

kσk = π1σk−1 − π2σk−2 + ...+ (−1)i−1πiσk−i + ...+ (−1)k−1πkσ0 (N1)

and

πt+k − πt+k−1σ1 + ...+ (−1)iπt+k−iσi + ...+ (−1)tπkσt = 0. (N2)

In the former case 1 ≤ k ≤ t, in the latter k ≥ 0 arbitrary. Note that if we
define σi = 0 for any i < 0 or i > t, and, for a fixed k ≥ 0, π0 = k, then the
following equation generalizes the previous two:

k∑
i=0

(−1)iπiσk−i = 0. (N3)

One may prove the Newton identities by differentiating

B(X) =
∏
s∈S

(1 + sX) =

|S|∑
i=0

σiX
i.

Symmetric polynomials play an important role when we use Rédei poly-
nomials, as e.g. expanding the affine Rédei polynomial

∏
i(X + aiY + bi) by

X, the coefficient polynomials will be of the form σk({aiY + bi : i}).
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Result 7.3. Expanding the Rédei-polynomial

∏
a∈GF(q)

(X − aY − f(a)) =

q∑
k=0

rk(Y )Xq−k,

for k = 1, ..., q − 2 we get degY (rk) ≤ k − 1; equality holds iff cq−k 6= 0.

* * *

There are some determinant formulae being intimately connected to sym-
metric polynomials. Given S = {x1, x2, ..., xn}, the following determinant is
called the Vandermonde-determinant of S:

V dM(x1, x2, ..., xn) =

∣∣∣∣∣∣∣∣∣
1 1 ... 1
x1 x2 ... xn

x2
1 x2

2 ... x2
n

...
xn−1

1 xn−1
2 ... xn−1

n

∣∣∣∣∣∣∣∣∣ =
∏
i<j

(xi − xj)

The P -adic (P = pe, p prime) Moore-determinant of S is

MRDP (x1, ..., xn) =

∣∣∣∣∣∣∣∣∣
x1 x2 ... xn

xP
1 xP

2 ... xP
n

xP 2

1 xP 2

2 ... xP 2

n
...

xP n−1

1 xP n−1

2 ... xP n−1

n

∣∣∣∣∣∣∣∣∣ =
∏

(λ1,...,λn)∈PG(n−1,P )

n∑
i=1

λixi

Note that this formula gives the value of the determinant up to a non-zero
constant only, but usually we ask whether det = 0 or not.

The elementary symmetric determinant of S is∣∣∣∣∣∣∣∣∣
1 1 ... 1

σ1(S \ {x1}) σ1(S \ {x2}) ... σ1(S \ {xn})
σ2(S \ {x1}) σ2(S \ {x2}) ... σ2(S \ {xn})

...
σn−1(S \ {x1}) σn−1(S \ {x2}) ... σn−1(S \ {xn})

∣∣∣∣∣∣∣∣∣ =
∏
i<j

(xi − xj)

One may give a unified proof for the determinant formulae, consider-
ing x1, ..., xn as free variables. Note that (a) V dM(x1, x2, ..., xn) 6= 0 iff
{x1, ..., xn} are pairwise distinct; (b) MRDpe(x1, x2, ..., xn) 6= 0 iff {x1, ..., xn}
are independent over GF(pe).
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Result 7.4. The following general form of the elementary symmetric deter-
minant can be defined: Given S = {x1, x2, ..., xn, xn+1, ..., xm},∣∣∣∣∣∣∣∣∣

1 1 ... 1
σ1(S \ {x1}) σ1(S \ {x2}) ... σ1(S \ {xn})
σ2(S \ {x1}) σ2(S \ {x2}) ... σ2(S \ {xn})

...
σn−1(S \ {x1}) σn−1(S \ {x2}) ... σn−1(S \ {xn})

∣∣∣∣∣∣∣∣∣ =
∏

1≤i<j≤n

(xi − xj),

so somehow the elements xn+1, ..., xm “do not count”.

Result 7.5. We have (folklore, Ball)∏
λ∈GF(q)n

(T + λ1X1 + λ2X2 + ...+ λn−1Xn−1 + λn) =

=

∣∣∣∣∣∣∣∣∣∣∣∣

T X1 X2 ... Xn−1 1
T q Xq

1 Xq
2 ... Xq

n−1 1
T q2

Xq2

1 Xq2

2 ... Xq2

n−1 1
...
...

T qn

Xqn

1 Xqn

2 ... Xqn

n−1 1

∣∣∣∣∣∣∣∣∣∣∣∣
/
∣∣∣∣∣∣∣∣∣∣

X1 X2 ... Xn−1 1
Xq

1 Xq
2 ... Xq

n−1 1
Xq2

1 Xq2

2 ... Xq2

n−1 1
...

Xqn−1

1 Xqn−1

2 ... Xqn−1

n−1 1

∣∣∣∣∣∣∣∣∣∣
.

8 Basic facts about algebraic curves

In the applications we need bounds on the common points of two curves, and
bounds on the number of points on a single curve.

Theorem 8.1. (Bézout) If f and g has no common component then the
number of their common points, counted with intersection multiplicities, is
at most deg(f) deg(g). Over the algebraic closure F̄ always equality holds.

Now let F = GF(q). How many points can a curve f ∈ GF(q)[X,Y, Z] of
degree n have over GF(q)? Denote this number by Nq = Nq(f).

Theorem 8.2. Hasse-Weil, Serre For an absolutely irreducible non-
singular algebraic curve f ∈ GF(q)[X, Y, Z] of degree n we have

|Nq(f)− (q + 1)| ≤ gb2√qc ≤ (n− 1)(n− 2)
√
q.
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In the theorem g denotes the genus of f , we do not define it here. Note
that Nq counts the points of f with multiplicities, also that for GF(q) ⊂
GF(q1) we have Nq(f) ≤ Nq1(f).

It happens that some absolutely irreducible component of f cannot be
defined over GF(q) (but it still has some GF(q)-rational points, i.e. points in
PG(2, q)). Then the following bound can be used:

Result 8.3. For an absolutely irreducible algebraic curve f ∈ GF(q)[X, Y, Z]
of degree n, that cannot be defined over GF(q), we have Nq(f) ≤ n2.

In some cases the Hasse-Weil bound can be changed for a better one, for
example when q = p is a prime number.

Theorem 8.4. Stöhr-Voloch [100] For an irreducible algebraic curve f ∈
GF(q)[X, Y, Z], q = ph, of degree n with Nq rational points over GF(q) we
have
(i) if n > 1, not every point is an inflexion and p 6= 2 then Nq ≤ 1

2
n(q+n−1);

(ii) if n > 2, not every point is an inflexion and p = 2 then Nq ≤ 1
2
n(q +

2n− 4);
(iii) if q = p and n > 2 then Np ≤ 2n(n− 2) + 2

5
np;

(iv) if q = p, 3 ≤ n ≤ 1
2
p and f has s double points then Np ≤ 2

5
n(5(n− 2)+

p)− 4s.

In (i) the condition is automatically satisfied if q = p is a prime.
As an illustration one can prove the following statement easily.

Result 8.5. Let f(X) be a polynomial of degree at most 4
√
q, (q odd), which

assumes square elements of GF(q) only. Then f = g2 for a suitable polyno-
mial g(X).

8.1 Conditions implying linear (or low-degree) compo-
nents

In the applications it is typical that after associating a curve to a certain
set (in principle), the possible linear components of the curve have a very
special meaning for the original problem. Quite often it more or less solves the
problem if one can prove that the curve splits into linear factors, or at least
contains a linear factor. Here some propositions ensuring the existence of
linear factors are gathered. The usual statement below considers the number
of points (in PG(2, q)) of a curve. We will use two numbers: for a curve C,
defined by the homogeneous polynomial f(X, Y, Z), Mq denotes the number
of solutions (i.e. points (x, y, z) ∈ PG(2, q)) for f(x, y, z) = 0, while Nq

counts each solution with its multiplicity on C. (Hence Mq ≤ Nq.)
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Result 8.6. Barlotti-bound If a curve of degree n has no linear factors
over GF(q) then Nq ≤ (n−1)q+n. In fact, if a point set of PG(2, q) intersects
every line in at most n points then it has at most (n− 1)q + n points.

Proposition 8.7. [SzPnopts] A curve of degree n defined over GF(q), with-
out linear components, has always Nq ≤ (n− 1)q + n

2
points in PG(2, q).

Sketch of the proof: let k be maximal such that every tangent of the curve
contains at least k points of the the curve (counting without multiplicity, in
PG(2, q)). Easy to see that (i) Nq ≤ (n−1)q+k; (ii) Nq ≤ (n−1)q+(n−k).

In [SzPnopts] I conjectured the following, which was later called by Kim
and Homma “the Sziklai Conjecture”:

Conjecture 8.8.————— [SzPnopts]: We conjecture that a curve of degree n defined
over GF(q), without linear components, has always Nq ≤ (n− 1)q+ 1 points
in PG(2, q).

I also mentioned that for n = 2,
√
q + 1, q − 1 it would be sharp as the

curves X2−Y Z,X
√

q+1 +Y
√

q+1 +Z
√

q+1 and αXq−1 +βY q−1− (α+β)Zq−1

(where α, β, α + β 6= 0) show. It can be called the Lunelli-Sce bound for
curves, for some histrorical reason.

Note that it is very easy to prove the conjecture in the following cases:

(i) if there exists a line skew to the curve and (q, n) = 1;

(ii) if n ≤ √
q + 1 then q + 1 + (n− 1)(n− 2)

√
q ≤ nq − q + 1 proves it by

Weil’s bound Theorem 8.2;

(iii) if the curve has a singular point in PG(2, q);

(iv) if n ≥ q + 2.

The statement (ii) can be proved by induction: if C has more points then
it cannot be irreducible, so it splits to the irreducible components C1 ∪C2 ∪
... ∪ Ck with degrees n1, ..., nk; if each Ci had ≤ (ni − 1)q + 1 points then in
total C would have ≤

∑k
i=1(niq− q+1) = nq− k(q− 1) < nq− q+1 points.

So at least one of them, Cj say, has more than njq− q+ 1 points. By Result
8.3 Cj can be defined over GF(q) and Weil does its job again.
For (iii) the Barlotti-bound, recounted looking around from a singular point,
will work.

In a series of three papers, recently Homma and Kim proved the conjec-
ture ([72, 73, 74]), except for the case q = 4, f = X4 + Y 4 + Z4 + X2Y 2 +
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Y 2Z2 + Z2X2 +X2Y Z +XY 2Z +XY Z2 = 0 for which it is false (i.e. this
is the unique counterexample, it has 14 GF(4)-rational points). They also
found out, what neither me, nor other experts of the field had known, that
Proposition 8.7 had been known by Segre many years before (see [94].).

The following lemma is a generalization of a result by Szőnyi. For d = 1
it can be found in Sziklai [SzPdpow], which is a variant of a lemma by Szőnyi
[104].

Lemma 8.9. Let Cn, 1 ≤ d < n be a curve of order n defined over GF(q), not
containing a component defined over GF(q) of degree ≤ d. Denote by N the

number of points of Cn in PG(2, q). Choose a constant 1
d+1

+
d(d−1)

√
q

(d+1)(q+1)
≤ α.

Assume that n ≤ α
√
q − 1

α
+ 1. Then N ≤ n(q + 1)α.

It works also with α > 1
d+1

+
1+d(d−1)

√
q

(d+1)q
, n < α

√
q−d+2, N < αnq. Here

α = 1
d

can be written (that is often needed) when d ≤ 6
√
q.

Proof: Suppose first that Cn is absolutely irreducible. Then Weil’s theorem
([113], [65]) gives N ≤ q + 1 + (n − 1)(n − 2)

√
q ≤ n(q + 1)α. (The latter

inequality, being quadratic in n, has to be checked for n = d + 1 and n =
α
√
q − 1

α
+ 1 only.)

If Cn is not absolutely irreducible, then it can be written as Cn = Di1 ∪
... ∪ Dis , where Dij is an absolutely irreducible component of order ij, so∑s

j=1 ij = n. If Dij can not be defined over GF(q), then it has at most

Nij ≤ (ij)
2 ≤ ij(q + 1)α points in PG(2, q) (see Ex. 8.3). If Dij is defined

over GF(q), then the Weil-bound implies again that Nij ≤ ij(q + 1)α. Hence

N =
s∑

j=1

Nij ≤
s∑

j=1

ij(q + 1)α = n(q + 1)α.

For applications see Section 9, Theorem 13.1, Theorem 13.2 and Theorem
13.7.

Result 8.10. If q = p is prime and α > 2
5

then in the theorem above n ≤
(1

2
α− 1

5
)p+ 2 is enough for N ≤ n(p+ 1)α.

9 Finding the missing factors, removing the

surplus factors

Here we treat a very general situation, with several applications in future.
Given A = {a1, ..., aq−ε} ⊂ GF(q), all distinct, let F (X) =

∏q−ε
i=1(X − ai)

be their root polynomial. We would like to find the “missing elements”
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{aq−ε+1, ..., aq} = GF(q) \ A, or, equivalently, G∗(X) =
∏q

i=q−ε+1(X − ai).

Obviously, G∗(X) = Xq−X
F (X)

, so F (X)G∗(X) = Xq −X. Expanding this, and
introducing the elementary symmetric polynomials

σj = σj(A), σ∗k = σk(GF(q) \ A),

we get Xq −X =
(Xq−ε − σ1X

q−ε−1 + σ2X
q−ε−2 − ...± σq−ε−1X ∓ σq−ε)(X

ε − σ∗1X
ε−1 +

σ∗2X
ε−2 −...± σ∗ε−1X ∓ σ∗ε),

from which σ∗j can be calculated recursively from the σk-s, as the coef-
ficient of Xq−j, j = 1, ..., q − 2 is 0 = σ∗j + σ∗j−1σ1 + ... + σ∗1σj−1 + σj; for
example

σ∗1 = −σ1; σ∗2 = σ2
1 − σ2; σ∗3 = −σ3

1 + 2σ1σ2 − σ3; etc. (1)

Note that we do not need to use all the coefficients/equations, it is enough
to do it for j = 1, ..., ε. (The further equations can be used as consequences
of the fact that the ai-s are pairwise distinct, there are results making profit
from it.)

The moral of it is that the coefficients of G∗(X) can be determined from
the coefficients of F (X) in a “nice way”.

* * *

Let now B = {b1, ..., bq+ε} ⊃ GF(q) be a multiset of elements of GF(q),
and let F (X) =

∏q+ε
i=1(X − bi) be their root polynomial. We would like

to find the “surplus elements” {bk1 , ..., bkε} = B \ GF(q), or, equivalently,

Ḡ(X) =
∏ε

i=1(X − bki
). Obviously, Ḡ(X) = F (X)

Xq−X
, so F (X) = (Xq −

X)Ḡ(X). Suppose that ε ≤ q− 2. Expanding this equation and introducing
the elementary symmetric polynomials

σj = σj(B), σ̄k = σk(B \ GF(q)),

we get Xq+ε − σ1X
q+ε−1 + σ2X

q+ε−2 − ...± σε−1X
q+1 ∓ σεX

q ± ...
...±σq+ε−1X∓σq+ε = (Xq−X)(Xε− σ̄1X

ε−1 + σ̄2X
ε−2− ...± σ̄ε−1X∓ σ̄ε) =

= Xq+ε−σ̄1X
q+ε−1+σ̄2X

q+ε−2−...±σ̄ε−1X
q+1∓σ̄εX

q+ terms of lower degree.

From this σ̄j can be calculated even more easily then in the previous case:

σ̄k = σk for all k = 1, ..., ε. (2)

Note that if ε ≥ q − 1 then it’s slightly more complicated.

* * *

               dc_637_12



30

In both case suppose now that instead of the “elements” {ai} or {bj} we
have (for example) linear polynomials ciY + di and a set S ⊆ GF(q) such
that for each y ∈ S the set Ay = {ciy + di : i} consists of pairwise distinct
elements of GF(q), or, similarly, the multiset By = {ciy + di : i} contains
GF(q). Then the σk-s in the reasonings above become polynomials in Y ,
with degY (σk) ≤ k. Now one cannot speak about polynomials σ∗k(Y ) (or
σ̄k(Y ), resp.) as there is no guarantee that the missing values (or the surplus
values) for different y-s can be found on ε lines. So first we define σ∗k(y) (or
σ̄k(y), resp.), meaning the coefficient of Xε−k in Ḡy(X) or G∗

y(X), so the
elementary symmetric function of the missing (or surplus) elements when
substituting Y = y ∈ S. However, the equations for the σ∗k-s or σ̄k-s are still
valid. So one may define the polynomials analogously to (1):

σ∗1(Y )
def
= −σ1(Y ); σ∗2(Y )

def
= σ2

1(Y )− σ2(Y );

σ∗3(Y )
def
= −σ3

1(Y ) + 2σ1(Y )σ2(Y )− σ3(Y ); etc.
or analogously to (2):

σ̄k(Y )
def
= σk(Y ) for all k = 1, ..., ε

with the help of them. Note that from the defining equations it is obvious
that

degY σ
∗
k(Y ) ≤ k and degY σ̄k(Y ) ≤ k.

Now we can define the algebraic curve

G∗(X, Y )
def
= Xε − σ∗1(Y )Xε−1 + σ∗2(Y )Xε−2 −...± σ∗ε−1(Y )X ∓ σ∗ε(Y )

or in the other case

Ḡ(X,Y )
def
= Xε − σ̄1(Y )Xε−1 + σ̄2(Y )Xε−2 − ...± σ̄ε−1(Y )X ∓ σ̄ε(Y ).

As before, for each y ∈ S we have that the roots of G(X, y) are just the
missing (or the surplus) elements of Ay or By, resp. Our aim is to factorize
G∗(X, Y ) or Ḡ(X, Y ) into linear factors X − (αiY + βi). To do so, observe
that G∗(X, Y ) has many points in GF(q) × GF(q): for any y ∈ S we have ε
solutions of G∗(X, y) = 0, i.e. the ε missing values after substituting Y = y
in the linear polynomials ciY + di, so after determining the sets Ay. So
G∗(X, Y ) has at least ε|S| points.

A similar reasoning is valid for Ḡ(X,Y ). If it splits into irreducible com-
ponents Ḡ = G1G2 · · ·Gr, with degGi = degX Gi = εi,

∑
εi = ε, then for

any y ∈ S, the line Y = y intersects Gi in εi points, counted with intersection
multiplicity. So the number of points on Gi is at least εi|S|−εi(εi−1), where
the second term stands for the intersection points of Gi and ∂XGi, where the
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intersection multiplicity with the line Y = y is higher than the multiplicity
of that point on Gi. So, unless some Gi has zero partial derivative w.r.t. X,
we have that Ḡ has at least

∑
εi|S| − εi(εi − 1) ≥ ε|S| − ε(ε− 1) points.

Now we can use Lemma 8.9 (or any similar result) repeatedly, with d = 1,
it will factorize G(X, Y ) into linear factors of the form X − (αjY + βj) if
degG(X, Y ), which is at most ε in our case, is small enough, i.e. if ε <

√
q

and |S| > max{ ε−1+ 4
√

q
√

q
, 1

2
} · (q + 1) in the first and |S| > max{ ε−1+ 4

√
q

√
q

, 1
2
} ·

(q + 1) + ε− 1 in the second case.

It means, that one can add ε linear polynomials αiY + βi in the first
case such that for any y ∈ S, the values {ciy + di} ∪ {αjy + βj} = GF(q).
In the second case we have a weaker corollary: for any y ∈ S, the values
{ciy + di} \ {αjy + βj} = GF(q), which means that adding the new lines
αjY + βj “with multiplicity= −1” then S × GF(q) is covered exactly once.
(What we do not know in general, that these lines were among the given
q + ε lines, so whether we could remove them.)

Finally, these lines (or similar objects), covering S × GF(q) usually have
some concrete meaning when applying this technique; this work contains
some applications, see Theorem 13.4, Section 14, etc.

The arguments above are easy to modify when we change some of the
conditions, for example when ai or bi is allowed to be some low degree (but
non-linear) polynomial of Y .

Result 9.1. Using the second (“surplus”) case above one can prove (Szőnyi)
that a blocking set B ⊂ PG(2, q) with |B ∩ AG(2, q)| = q + 1 affine points
always contains a(n affine) point that is unnecessary (i.e. it can be deleted
without violating the blocking property).

Result 9.2. Let fi(T ), i = 1, ..., q − ε be polynomials of degree at most d,
and suppose that their graphs {(t, fi(t)) : t ∈ GF(q)} are pairwise distinct.
Easy to prove that if ε < c

√
q then one can find fq−ε+1(T ), ..., fq(T ), each

of degree at most d such that the graphs of these q polynomials partition the
affine plane.

Result 9.3. Let fi(T ), i = 1, ..., q−ε be polynomials, each from a subspace U
of GF(q)[T ] with 1 ∈ U , and suppose that their graphs {(t, fi(t)) : t ∈ GF(q)}
are pairwise distinct. One can prove that if ε is small enough then one
can find fq−ε+1(T ), ..., fq(T ), each from U , such that the graphs of these q
polynomials partition the affine plane.
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10 Prescribing the intersection numbers with

lines

Suppose that a function m : L → N is given, where L is the set of lines
of PG(2, q). The problem is to find conditions, necessary and/or sufficient,
under which we can find a point set S such that |S ∩ `| = m(`) for all ` ∈ L.

Note that one can pose the similar question for any hypergraph.
If A denotes the incidence matrix of the plane PG(2, q), m =

(m(`1),m(`2), ...,m(`q2+q+1)) is the weight-vector, then the problem is re-
duced to finding a (“characteristic vector”) v such that Av = m. It is
quite natural to write A in a symmetric form (i.e. indexing the rows and
columns with homogeneous triples from GF(q) in the same order). As A is
non-singular, we have v = A−1m. Now one can turn the question around: for
which m will v be of the required type, for example a non-negative, integer
or 0-1 vector?

It is easy to compute that

A−1 =
1

q
AT− 1

q(q + 1)
J =

1

q
A− 1

q(q + 1)
J and JA = (q+1)J , so A2−J−qI = 0.

Hence we also know that the eigenvalues of A are q + 1,
√
q and −√q.

In most cases m is not given, we know some of its properties only. It
means that a certain set M of weight-vectors is given (for example, the set
of all vectors with each coordinate from a small fixed set of integers, say
{0, 1, 2}); and we want to know some property (for example, the possible
Hamming-weight, i.e. the number of nonzero coordinates) of (0-1) vectors v
satisfying Av ∈M .

10.1 Sets with constant intersection numbers mod p

In [25, 31] the following is proved:

Proposition 10.1. Let S be a point set in AG(2, q), suppose that every line
intersects S in 1 (mod p) points, or is completely disjoint from S. Then
|S| ≤ q − p+ 1.

Proof: Counting the points of S on the lines through some fixed point
s ∈ S we have |S| ≡ 1 (mod p). After the AG(2, q) ↔ GF(q2) identification
define

f(X) =
∑
s∈S

(X − s)q−1,
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it is not identically zero as the coefficient of Xq−1 is 1. Note that for x ∈
GF(q2) the value of (x − s)q−1 depends on the direction of the line joining
x and s. If x ∈ S then every direction will occur with multiplicity divisible
by p, hence all the points of S are roots of f , which is of degree q − 1. The
biggest value ≡ 1 mod p below q is q − p+ 1.

There are examples of sets like in the statement above, e.g. some
(1 mod p) collinear points, or a projective subplane of order <

√
q com-

pletely contained in AG(2, q).
Note that in Proposition 10.1 it does not make any difference if S is

allowed to be a multiset.
We remark that the projective case is totally different: there are very big

point sets in PG(2, q) with 1 (mod p) -secants only, e.g. the plane itself, or a
unital, etc.

Result 10.2. (Blokhuis) The following generalization is true as well. Let S
be a point set in AG(n, q), n ≥ 1, and suppose that every hyperplane intersects
S in 1 (mod p) points, or is completely disjoint from S. Then |S| ≤ q−p+1.

The situation is different if we consider the projective plane.

Theorem 10.3. Given a point set S = {(ai, bi, ci) : i = 1, ..., s} =
{(ai, bi, 1) : i = 1, ..., s1} ∪ {(aj, bj, 0) : j = s1 + 1, ..., s} ⊆ PG(2, q), the
following are equivalent:

(i) S intersects each line in r mod p points for some fixed r;

(ii) G(X, Y, Z) =
∑|S|

i=1(aiX + biY + ciZ)q−1 ≡ 0;

(iii) for all 0 ≤ k+l ≤ q−1,
(

k+l
k

)
6= 0 mod p, we have

∑|S|
i=1 a

q−1−k−l
i bki c

l
i =

0 (here 00 = 1).

(iv) for all 0 ≤ k + l ≤ q − 2,
(

k+l
k

)
6= 0 mod p, we have

∑s1

i=1 a
k
i b

l
i = 0

and for all 0 ≤ m ≤ q − 1,
∑s

i=1 a
q−1−m
i bmi = 0.

Proof: Note that if each line intersects S in r mod p points then |S| ≡ r
(mod p). (Count |S| from a point not in S) So let r be defined by |S| ≡ r
(mod p). If each line [x, y, z] intersects S in r mod p points then (mod p)
|S|−r ≡ 0 terms (aix+biy+ciz)

q−1 will be 1 inG(x, y, z) henceG(x, y, z) = 0.
As degG ≤ q− 1 we have (i)⇒(ii). One can turn it around: if G(x, y, z) = 0
then the number of terms (aix + biy + ciz)

q−1 with nonzero (i.e. =1) value
should be zero mod p, so (ii)⇒(i).
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For the rest consider the coefficient of Xq−1−k−lY kZ l in G (for 0 ≤ k+ l ≤
q − 1), it is (

q − 1

k + l

)(
k + l

k

) |S|∑
i=1

aq−1−k−l
i bki c

l
i = 0

if (ii) holds and vice versa. Finally (iii)⇔(iv) is obvious.

Many interesting point sets (small blocking sets, unitals, maximal arcs,
even point sets, in particular (0, 2, t)-arcs and hyperovals) have constant mod-
ulo p intersection numbers with lines; we may give the name (generalized)
Vandermonde set to such sets. (We refer here to Section 10.2, where this
property is defined and examined, see Definition 10.4.)

Take the “affine” part of a Vandermonde-set, i.e. points with ci 6= 0 (the
rest does not count in the power sum) and suppose that all its points are
written as (ai, bi, 1). After the AG(2, q) ↔ GF(q2) identification this point
becomes ai + biω for some generator ω of GF(q2). Substituting (1, ω, Z) into
G we get

0 = G(1, ω, Z) =
∑

(ai,bi,1)∈S

((ai + biω) + Z)q−1 +
∑

(aj ,bj ,0)∈S

(aj + bjω)q−1 =

q−2∑
k=0

±Zq−1−k
∑

(ai,bi,1)∈S

(ai + biω)k +
∑

(ai,bi,ci)∈S

(ai + biω)q−1

which means that the affine part of a (generalized) Vandermonde set,
considered as a set in GF(q2), has power sums equal to zero for exponents
1, ..., q − 2. (The last, constant term is just G(1, ω, 0) = 0.)

10.2 Vandermonde and super-Vandermonde sets

After Theorem 10.3 it is quite natural to examine sets with many vanishing
power sums.

Definition 10.4. Let 1 < t < q. We say that T = {y1, ..., yt} ⊆ GF(q) is a
Vandermonde-set, if πk =

∑
i y

k
i = 0 for all 1 ≤ k ≤ t− 2.

Vandermonde-sets were first defined and studied in [62]. This part is a
generalization from [SzPvdm].

Here we do not allow multiple elements in T . Observe that the power sums
do not change if the zero element is added to (or removed from) T . Note that
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in general the Vandermonde property is invariant under the transformations
y → ay+b (a 6= 0) if and only if p|t; if p 6 |t then a “constant term” tbk occurs
in the power sums. (It may help in some situations: we can “translate” T to
a set with π1 = 0 if needed.)

In general, for a multiset S from a field, w = wS denotes the smallest
positive integer k for which the power sum πk =

∑
s∈S

sk 6= 0 if such k exists,

otherwise w = ∞. We note that there exist sets for which the value w can
be ∞, however in that case the set has to contain multiple elements, in fact
we have w = ∞ ⇔ all the multiplicities are divisible by the characteristic
p. Hence the Vandermonde (and the forthcoming super-Vandermonde) sets
are extremal with respect to the value of w.

If p|t then a t-set cannot have more than t−2 zero power sums (so in this
case Vandermondeness means w = wT = t− 1). This is an easy consequence
of the fact that a Vandermonde-determinant of distinct elements cannot be
zero: consider the product 1 1 ... 1

y1 y2 ... yt

y2
1 y2

2 ... y2
t

.

.

.

yt−1
1 yt−1

2 ... yt−1
t

 1
1
1

.

.

.
1

 ,

it cannot result in the zero vector.
The proof above, with slight modifications, shows that in general a t-set

cannot have more than t− 1 zero power sums (so for a Vandermonde-set wT

is either t − 1 or t). If the zero element does not occur in T then consider
the product  y1 y2 ... yt

y2
1 y2

2 ... y2
t

.

.

.

yt−1
1 yt−1

2 ... yt−1
t

yt
1 yt

2 ... yt
t

 1
1
1

.

.

.
1

 ,

it cannot result in the zero vector as the determinant is still non-zero. If
0 ∈ T then remove it and we are again in the zero-free situation.

If for a set T of cardinality t we have that πk(T ) = 0 for k = 1, ..., t− 1,
so wT = t then such a set can be called a super-Vandermonde set. Note that
the zero element is never contained in a super-Vandermonde set (removing
it, for the other t− 1 elements all the first t− 1 power sums would be zero,
which is impossible). The same argument gives the first examples of super-
Vandermonde sets:

Example 10.5. If T is a Vandermonde set, containing the zero element, then
T \ {0} is a super-Vandermonde set. In particular, if T is a Vandermonde
set and |T | = t is divisible by the characteristic p, then for any a ∈ T , the
translate T − a is a Vandermonde set, containing the zero element.
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In the next proposition the Vandermonde-property is characterized.

Proposition 10.6. Let T = {y1, ..., yt} ⊆ GF(q). The following are equiva-
lent

(i) T is a Vandermonde set, i.e. wT = t− 1;

(ii) the polynomial f(Y ) =
∏t

i=1(Y − yi) is of the form Y t′g(Y )p + aY + b
(where 0 ≤ t′ ≤ p− 1, t′ ≡ t mod p);

(iii) for the polynomial χ(Y ) = −
∑t

i=1(Y −yi)
q−1, tY q−1 +χ(Y ) has degree

q − t; moreover

(iv) for some Q = ps, t < Q, the polynomial tY Q−1 −
∑t

i=1(Y − yi)
Q−1 has

degree Q− t.

Proof: The coefficients of χ are the power sums of the set T , so (i) and
(iii) are clearly equivalent. (i) ⇔(iv) is similar. The equivalence of (i) and
(ii) is an easy consequence of the Newton formulae relating power sums and
elementary symmetric polynomials.

Note that for the function χ in (iii), t+χ(Y ) is the characteristic function
of T , that is it is 1 on T and 0 everywhere else. (i) means that a Vandermonde
set is equivalent to a fully reducible polynomial of form gp(Y ) +Y t + cY . (In
the important case when p|t we have gp(Y ) + Y .)

And now we characterize the super-Vandermonde-property.

Proposition 10.7. Let T = {y1, ..., yt} ⊆ GF(q). The following are equiva-
lent

(i) T is a super-Vandermonde set, i.e. wT = t;

(ii) the polynomial f(Y ) = Πt
i=1(Y − yi) is of the form Y t′g(Y )p + c (where

0 ≤ t′ ≤ p− 1, t′ ≡ t mod p);

(iii) for the polynomial χ(Y ) = −
∑t

i=1(Y −yi)
q−1, tY q−1 +χ(Y ) has degree

q − t− 1; moreover

(iv) for some Q = ps, t < Q, the polynomial tY Q−1 −
∑t

i=1(Y − yi)
Q−1 has

degree Q− t− 1.

Proof: Very similar to the Vandermonde one above.

Here come some really motivating examples for Vandermonde sets, mostly
from [62].
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Example 10.8. Let q be a prime power.

(i) Any additive subgroup of GF(q) is a Vandermonde set.

(ii) Any multiplicative subgroup of GF(q) is a (super-)Vandermonde set.

(iii) For q even, consider the points of AG(2, q) as elements of GF(q2). Any
q-set corresponding to the affine part of a hyperoval with two infinite
points is a Vandermonde set in GF(q2).

(iv) Let q be odd and consider the points of AG(2, q) as elements of GF(q2)
and a q + 1-set A = {a1, ..., aq+1} in it, intersecting every line in at
most two points (i.e. an oval or (q + 1)-arc). Suppose that it is in a
normalized position, i.e.

∑
ai = 0. Then A is a super-Vandermonde

set in GF(q2).

Proof: (i) Suppose T is an additive subgroup of size t in GF(q). We want
to prove that Proposition 10.6 (ii) is satisfied, that is f(Y ) = Πy∈T (Y − y)
has only terms of degree divisible by p, except for the term Y . If we prove
that f is additive, hence GF(p)-linear, then this implies that f has only terms
of degree a power of p.

Consider the polynomial in two variables F (X, Y ) = f(X)+f(Y )−f(X+
Y ). First of all note that it has full degree at most t and that the coefficient
of X t and Y t is zero. Considering F as a polynomial in X, we have

F (X, Y ) = r1(Y )X t−1 + r2(Y )X t−2 + · · ·+ rt(Y ),

where ri(Y ) (i = 1, . . . t) is a polynomial in Y of degree at most i (and
deg(rt) ≤ t− 1). Now F (X, y) ≡ 0 for any y ∈ T (as a polynomial of X), so
all ri-s have at least t roots. Since their degree is smaller than this number,
they are zero identically, so we have F (X, Y ) ≡ 0, hence f is additive.
(ii) Suppose T is a multiplicative subgroup of size t in GF(q). Then the
polynomial f(Y ) = Πt

i=1(Y − yi) is of the form Y t − 1 so Proposition 10.7
(ii) is satisfied, we are done.
(iii) Let {x1, ..., xq} ⊆ GF(q2) correspond to the affine part of the hyperoval
H and ε1 and ε2 be (q+1)-st roots of unity corresponding to the two infinite
points. Consider the polynomial χ(X) =

∑q
i=1(X − xi)

q−1. For any point
x out of the hyperoval every line through x meets H in an even number of
points, and since (x−xi)

q−1 represents the slope of the line joining the affine
points x and xi, we have that χ(x) = ε1 + ε2 for any x /∈ {x1, ..., xq}. There
are q2 − q different choices for such an x, while the degree of χ is at most
q − 2, so χ(X) ≡ ε1 + ε2 identically (that is, all coefficients of χ are zero
except for the constant term), so by Proposition 10.6 (iv), we are done.

               dc_637_12



38

(iv) A short proof is that by Segre’s theorem such a point set is a conic if q is
odd, so affine equivalent to the “unit circle” {α ∈ GF(q2) : aq+1 = 1}, which
is a multiplicative subgroup.

For a multiplicative subgroup H = 〈α〉 ≤ (GF(q)∗, ·), |H| = t, its root
polynomial is

∏
h∈H(Y − h) = Y t − 1.

Note that Proposition 10.6 (iv) implies that if T ⊆ GF(q1) ≤ GF(q2) then
T is a Vandermonde-set in GF(q1) if and only if it is a Vandermonde-set in
GF(q2).

Result 10.9. Let B ⊂ PG(2, q) be a point set, |B| = q+ k, with every inter-
section number being 1 mod p and suppose that B ∩ `∞ = k. One can see
that B \ `∞ ⊂ AG(2, q), considered as a subset of GF(q2), is a Vandermonde-
set.

We note that much more is true if k ≤ q+1
2

: such a set, which is a blocking
set of Rédei type, is always a (translate of a) subspace of GF(q2), considered as
a vectorspace over a suitable subfield (hence an additive subgroup of GF(q2));
see Theorem 11.5.

There are other interesting examples as well.

Example 10.10. Let q = qt−1
0 , then in GF(q) T = {1}∪{ωqi

0 : i = 0, ..., t−2}
for some element ω ∈ GF(q)∗ satisfying Trq→q0(ω

k) = −1 for all k = 1, ..., t−
1.

Proof:
t−2∑
i=0

(ωqi
0)k =

t−2∑
i=0

(ωk)qi
0 = Trq→q0(ω

k) = −1.

Note that such ω exists for several triples (t, q0, q), here I enlist some values;
”-” means that such ω does not exist, while ”x” means that the only element
with the property above is 1 ∈ GF(qt−1

0 ):
q0 t 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
3 x x x - x - x x
4 x x x x x x ?
5 - x - x - ?
7 - - - x - ?
8 x x x x x ?
9 x - x - x - x ?

Result 10.11. Let T = {y1, ..., yt} be a super-Vandermonde set. Then(y1

y2

− 1
)(y1

y3

− 1
)
· · ·
(y1

yt

− 1
)

= t.
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Proof: Consider 1 − t 1 ... 1
y1 y2 ... yt

y2
1 y2

2 ... y2
t

.

.

.

yt−1
1 yt−1

2 ... yt−1
t

 1
1
1

.

.

.
1

 =

 0
0
0

.

.

.
0

 ,

hence the determinant should be zero:
V dM(y1, y2, ..., yt)− ty2y3 · · · ytV dM(y2, y3, ..., yt) = 0. So

t = V dM(y1,y2,...,yt)
y2y3···ytV dM(y2,y3,...,yt)

= (y1−y2)(y1−y3)···(y1−yt)
y2y3···yt

.

Note that it is easy check the previous condition for a multiplicative
subgroup; also that any element of T can play the role of y1, so in fact we
have t conditions.

10.3 Small and large super-Vandermonde sets

If in Proposition 10.7(ii) we write Y tf( 1
Y

) then we get a polynomial of degree
t and its roots are { 1

y
: y ∈ T}. Hence a super-Vandermonde set is equivalent

to a fully reducible polynomial of form gp(Y ) + Y t, t > p · deg g.
Let’s explore this situation. Firstly, if q = p is a prime then the only

possibility is f(Y ) = Y t + c, i.e. a transform of the multiplicative group
{y : yt = 1}, if it exists (so iff t|q − 1).

If f(Y ) = gp(Y ) + Y t is a fully reducible polynomial without multiple
roots then we can write it as Y q−Y = f(Y )h(Y ). Now we may use the trick
I have learnt from Gács: differentiating this equation one gets

−1 = tY t−1h(Y ) + f(Y )h′(Y ).

Substituting a root y1 of f we get h(y1) = −1
tyt−1

1

= −1
t
yq−t

1 . Suppose that

t > q
2
, then h(Y ) = −1

t
Y q−t holds for more values than its degree hence it

is a polynomial identity implying a contradiction unless q − t = 1. As t = q
2

is impossible (it would imply p = 2 and f would be a power), we have that
either t = q − 1 (and then h(Y ) = Y so f(Y ) = Y q−1 − 1) or t ≤ q−1

2
.

For describing small and large super-Vandermonde sets we need to ex-
amine the coefficients of the original equation Y q − Y = f(Y )h(Y ) carefully.
What does small and large mean? We know that any additive subgroup of
GF(q) forms a Vandermonde set, so removing the zero element from it one
gets a super-Vandermonde set. The smallest and largest non-trivial additive
subgroups are of cardinality p and q/p, respectively. Note that the super-
Vandermonde set, derived from an additive subgroup of size p, is a transform
of a multiplicative subgroup. This motivates that, for our purposes small
and large will mean “of size < p” and “of size > q/p”, resp.
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Theorem 10.12. [SzPvdm] Suppose that T ⊂ GF(q) is a super-
Vandermonde set of size |T | < p. Then T is a (transform of a) multiplicative
subgroup.

Proof: Since t < p the polynomial f(Y ) is of the form f(Y ) = Y t− b0. As
f(Y ) is a fully reducible polynomial without multiple roots, it implies that b0
has precisely t distinct t-th roots, t|q− 1 and T is a coset of a multiplicative
subgroup.

Theorem 10.13. [SzPvdm] Suppose that T ⊂ GF(q) is a super-
Vandermonde set of size |T | > q/p. Then T is a (transform of a) multi-
plicative subgroup.

Proof: It requires a rather lengthy calculation. Let us write Y q − Y =
f(Y )h(Y ), where f(Y ) = Y t + bmpY

mp + b(m−1)pY
(m−1)p + ...+ bpY

p + b0 and
h(Y ) = Y q−t + aq−t−1Y

q−t−1 + ...+ a2Y
2 + a1Y .

Consider the coefficient of Y 1, Y 2, ..., Y q in this equation. We get
Y 1 : −1 = a1b0
Y j : aj = 0 if 2 ≤ j ≤ t and j 6= 1 (mod p)
Y j : aj = 0 if t+ 1 ≤ j ≤ 2t and j 6= 1, t+ 1 (mod p)
Y j : aj = 0 if 2t+ 1 ≤ j ≤ 3t and j 6= 1, t+ 1, 2t+ 1 (mod p) and so on,

generally
Y j : aj = 0 if kt+ 1 ≤ j ≤ (k + 1)t and j 6= 1, t+ 1, ..., kt+ 1 (mod p).
Y p+1 : ap+1b0 + a1bp = 0
Y 2p+1 : a2p+1b0 + ap+1bp + a1b2p = 0

generally
Y kp+1 : akp+1b0 + a(k−1)p+1bp + ... + ap+1b(k−1)p + a1bkp = 0, for k =

1, 2, ...,m.
Y t+1 : a1 + b0at+1 + bpat−p+1 + b2pat−2p+1 + ...+ bmpat−mp+1 = 0

The indices of coefficients a are of the form t− kp+ 1. Since t− kp+ 1 < t
and t−kp+1 6= 1 (mod p) (because t 6= 0 (mod p) is true) these coefficients
are 0.
So the equation is of the form

Y t+1 : a1 + b0at+1 = 0.
Y 2t+1 : at+1 + b0a2t+1 + bpa2t−p+1 + ...+ bmpa2t−mp+1 = 0

The indices j of coefficients aj are t < j < 2t. These coefficients are 0 if
j 6= 1, t+ 1 (mod p). It means 2t+ 1 6= 1 (mod p) so 2t 6= 0 (mod p) which
means p 6= 2. The other condition 2t+ 1 6= t+ 1 (mod p) is satisfied by any
t. Hence

Y 2t+1 : at+1 + b0a2t+1 = 0 if p 6= 2.
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Similarly
Y 3t+1 : a2t+1 + b0a3t+1 + bpa3t−p+1 + ...+ bmpa3t−mp+1 = 0.

The indices are between 2t and 3t here. The coefficients are 0 if 3t + 1 6=
1, t+1, 2t+1 (mod p). It gives only one new condition: 3t+1 6= 1 (mod p) so
3t 6= 0 (mod p) which means p 6= 3. The two other conditions has occurred
earlier: p 6= 2 and t 6= 0 (mod p).

Y 3t+1 : a2t+1 + b0a3t+1 = 0 if p 6= 2, 3.
Generally

Y lt+1 : a(l−1)t+1 + b0alt+1 + bpalt−p+1 + ... + bmpalt−mp+1 = 0, for l =
1, 2, ..., n− 1.
The indices are of the form t− kp+ 1 and they are between (l − 1)t and lt.
Hence the coefficients a are 0 if lt + 1 6= 1, t + 1, ..., (l − 1)t + 1 (mod p). It
gives (l − 1)t conditions:

lt+ 1 6= 1 (mod p) so p 6= l;
lt+ 1 6= t+ 1 (mod p) so p 6= (l − 1);
lt+ 1 6= 2t+ 1 (mod p) so p 6= (l − 2);

and so on
lt+ 1 6= (l − 2)t+ 1 (mod p) so p 6= 2; finally
lt+ 1 6= (l − 1)t+ 1 (mod p) so t 6= 0, which is true.

Hence generally we get
Y lt+1 : a(l−1)t+1 + b0alt+1 = 0 if p 6= 1, 2, ..., l.

In particular, substituting l = n− 1 into this equation we get
Y (n−1)t+1 : a(n−2)t+1 + b0a(n−1)t+1 = 0 if p 6= 1, 2, ..., n− 1.

The greatest index of a coefficient a can be q − t− 1.
(n− 1)t < q − 1 and nt ≥ q − 1 because of the definition of n.
It means that (n− 1)t ≥ q − t− 1 so (n− 1)t+ 1 ≥ q − t.
It implies that a(n−1)t+1 (which occurred in the previous equation) does not
exist.
So we have two possibilities:
Case 1. (n− 1)t+ 1 = q − t, so t = q−1

n
and the equation is of the form

Y (n−1)t+1 : a(n−2)t+1 + b0 = 0. (Hence we can write 1 instead of a(n−1)t+1.)
Case 2. (n− 1)t+ 1 > q − t, so the equation is of the form

Y (n−1)t+1 : a(n−2)t+1 = 0 if p 6= 1, 2, ..., n − 1. We will now prove that it
leads to a contradiction.
Substituting a(n−2)t+1 = 0 into the equation

Y (n−2)t+1 : a(n−3)t+1 + b0a(n−2)t+1 = 0, we get a(n−3)t+1 = 0.
We can substitute this again into the equation

Y (n−3)t+1 : a(n−4)t+1 + b0a(n−3)t+1 = 0, and we get a(n−4)t+1 = 0.
Substituting this in a decreasing order we get

Y t+1 : a1 + b0at+1 = 0 so a1 = 0.
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Hence −1 = a1b0, so a1 6= 0, Case 2 implied a contradiction. It means that
Case 1 will occur, so t = q−1

n
if p 6= 1, 2, ..., n − 1. In other words t|q − 1 if

p 6= 1, 2, ..., n− 1.
Hereafter, we can write 1 instead of aj if j = (n − 1)t + 1, and 0 if j >
(n− 1)t+ 1.

Y (n−1)t+1 : a(n−2)t+1 + b0 = 0 so a(n−2)t+1 = −b0.
Substituting this into the equation

Y (n−2)t+1 : a(n−3)t+1 + b0a(n−2)t+1 = 0, we get
Y (n−2)t+1 : a(n−3)t+1 + b0b0 = 0 so a(n−3)t+1 = b0

2.
Substituting this in a decreasing order we get

Y lt+1 : a(l−1)t+1 = (−b0)n−l for l = n− 1, n− 2, ..., 1. Finally
Y t+1 : a1 = (−b0)n−1.

Substituting this into −1 = a1b0, we get −1 = (−b0)n−1b0 so 1 = (−b0)n.
We are going to examine the equation that belongs to Y lt+kp+1. First we

write up
Y (n−1)t+p+1 : a(n−2)t+p+1 + bp + b2pa(n−1)t+p+1 + ... = 0

We have already seen that the coefficients a occurring in this equation are 0,
because these are the same as in the equation of Y (n−1)t+1. So

Y (n−1)t+p+1 : a(n−2)t+p+1 + bp = 0.
Similarly

Y (n−1)t+2p+1 : a(n−2)t+2p+1 + b2p = 0, generally
Y (n−1)t+kp+1 : a(n−2)t+kp+1 + bkp = 0 for k = 1, 2, ...,m.

On the other hand
Y lt+p+1 : a(l−1)t+p+1 + b0alt+p+1 + bpalt+1 = 0, for l = 1, 2, ..., n− 1.

Generally we get
Y lt+kp+1 : a(l−1)t+kp+1 + b0alt+kp+1 + bpalt+(k−1)p+1 + ... + bkpalt+1 = 0 for

l = 1, 2, ..., n− 1 and k = 1, 2, ...,m.
In particular, if l = 1 the equation is of the form

Y t+kp+1 : akp+1 + b0at+kp+1 + bpat+(k−1)p+1 + ...+ bkpat+1 = 0.

Lemma 10.14. bp = b2p = ... = bmp = 0.

Proof: We prove it by induction.
Step 1. First we prove that bp = 0. Consider the equation

Y (n−2)t+p+1 : a(n−3)t+p+1 + b0a(n−2)t+p+1 + bpa(n−2)t+1 = 0. (∗)
We have seen that

Y (n−1)t+p+1 : a(n−2)t+p+1 + bp = 0 so a(n−2)t+p+1 = −bp and
Y (n−1)t+1 : a(n−2)t+1 = −b0.

Substituting these into the equation (∗), we get
Y (n−2)t+p+1 : a(n−3)t+p+1 − b0bp − b0bp − b0 = 0 so a(n−3)t+p+1 = 2b0bp.

Generally we can write
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Y lt+p+1 : a(l−1)t+p+1 + b0alt+p+1 + bpalt+1 = 0 for l = n− 1, n− 2, ..., 1.(∗∗)
Substituting

Y (l+1)t+p+1 : alt+p+1 = (−1)n−l−1(n− l − 1)bn−l−2
0 bp and

Y (l+1)t+1 : alt+1 = (−b0)n−l−1 into the equation (∗∗), we get

Y lt+p+1 : a(l−1)t+p+1 = (−1)n−l(n− l)bn−l−1
0 bp for l = n− 1, n− 2, ..., 1. If

l = 0 it means

Y p+1 : ap+1b0 + a1bp = 0. (∗ ∗ ∗)
Substituting

Y t+p+1 : ap+1 = (−1)n−1(n− 1)bn−2
0 bp and

Y t+1 : a1 = (−b0)n−1 into (∗ ∗ ∗), we get

Y p+1 : (−1)n−1nbn−1
0 bp = 0.

In this equation −1 6= 0 (mod p), n 6= 0 (mod p) and b0 6= 0 (mod p) (from
the equation a1b0 = −1). It means that bp = 0.

Step 2. Suppose bp = b2p = ... = b(s−1)p = 0. We show that bsp = 0.
Consider

Y (n−2)t+sp+1 : a(n−3)t+sp+1 + b0a(n−2)t+sp+1 + bspa(n−2)t+1 = 0. (?)

We have seen that

Y (n−1)t+sp+1 : a(n−2)t+sp+1 + bsp = 0 so a(n−2)t+sp+1 = −bsp and

Y (n−1)t+1 : a(n−2)t+1 = −b0.
Substituting these into the equation (?), we get

Y (n−2)t+sp+1 : a(n−3)t+sp+1 − b0bsp − b0bsp = 0 so a(n−3)t+sp+1 = 2b0bsp.

Generally we can write

Y lt+sp+1 : a(l−1)t+sp+1 + b0alt+sp+1 + bspalt+1 = 0 (??)
for l = n− 1, n− 2, ..., 1.

Substituting

Y (l+1)t+sp+1 : alt+sp+1 = (−1)n−l−1(n− l − 1)bn−l−2
0 bsp and

Y (l+1)t+1 : alt+1 = (−b0)n−l−1 into the equation (??), we get

Y lt+sp+1 : a(l−1)t+sp+1 = (−1)n−l(n− l)bn−l−1
0 bsp for l = n− 1, n− 2, ..., 1.

If l = 0 it means

Y sp+1 : asp+1b0 + a1bsp = 0. (? ? ?)

Substituting

Y t+sp+1 : asp+1 = (−1)n−1(n− 1)bn−2
0 bsp and

Y t+1 : a1 = (−b0)n−1 into (? ? ?), we get

Y sp+1 : (−1)n−1nbn−1
0 bsp = 0.

In this equation −1 6= 0 (mod p), n 6= 0 (mod p) and b 6= 0 (mod p) (from
the equation a1b0 = −1). It means that bsp = 0.

So we have got bp = b2p = ... = bmp = 0. It means that f(Y ) is of the form

f(Y ) = Y t + b0, and that t|q − 1 so t = q−1
n

and (−b0)n = 1. Hence
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f(Y ) = Y
q−1

n + b0, where (−b0)n = 1 if p 6= 1, 2, ..., n − 1 (mod p). So
the roots of f(Y ) are the elements of a coset of a multiplicative subgroup of
order t.

10.4 Sets with intersection numbers 0 mod r

Here we continue the examination of sets of PG(2, q) intersecting every line
in a constant number of points mod p. This section is based on [SzPcomd].
For the more general k-dimensional case see the paper itself. The proofs
are similar (although in higher dimensions it is more complicated) and are
streamlined and then generalised versions of the proof in [12].

Theorem 10.15. Let 1 < r < q = ph. A point set S ⊂ PG(2, q) which is
incident with 0 mod r points of every line has |S| ≥ (r−1)q+(p−1)r points
and r must divide q.

Proof: Let us first see that r divides q. By counting the points of S on
lines through a point not in S we have that |S| = 0 mod r. By counting
points of S on lines through a point in S we have |S| = 1 + (−1)(q+ 1) mod
r and combining these two equalities we see that q = 0 mod r.

Assuming |S| < r(q + 1) (for if not the theorem is proved) there is an
external line to S, so we can view S as a subset of GF(q2) ' AG(2, q) and
consider the polynomial

R(X,Y ) =
∏
b∈S

(X + (Y − b)q−1) =

|S|∑
j=0

σj(Y )X |S|−j.

For all y, b and c ∈ GF(q2) the corresponding points of AG(2, q) are collinear
if and only if (y−b)q−1 = (y−c)q−1 and each factor X+(y−b)q−1 of R(X, y)
divides Xq+1 − 1 whenever y 6= b.

For y ∈ S we have

R(X, y) = X(Xq+1 − 1)r−1g1(X)r,

and for y 6∈ S
R(X, y) = g2(X)r.

In both cases σj(y) = 0 for 0 < j < q and r does not divide j. The degree
of σj is at most j(q − 1) and there are q2 elements in GF(q2), hence σj ≡ 0
when 0 < j < q and r does not divide j. So

R(X, Y ) = X |S|+σrX
|S|−r+σ2rX

|S|−2r+...+σqX
|S|−q+σq+1X

|S|−q−1+...+σ|S|.
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For all y ∈ GF(q2) we have

∂R

∂Y
(X, y) =

(∑
b∈S

−(y − b)q−2

X + (y − b)q−1

)
R(X, y).

In all terms the denominator is a divisor of Xq+1 − 1 so multiplying this
equality by Xq+1 − 1 we get an equality of polynomials and we see that

R(X, y) | (Xq+1 − 1)
∂R

∂Y
(X, y),

or even better

R(X, y)Gy(X) = (Xq+1 − 1)
∂R

∂Y
(X, y) =

(Xq+1 − 1)(σ′rX
|S|−r + σ′2rX

|S|−2r + ...+ σ′qX
|S|−q + σ′q+1X

|S|−q−1 + ...). (∗)
Here G = Gy is a polynomial in X of degree at most q + 1− r. The term of
highest degree on the right-hand side of (∗) that has degree not 1 mod r is
of degree |S| and has coefficient σ′q+1, where ′ is differentiation with respect
to Y .

First examine y 6∈ S. As R(X, y) is an r-th power, any non-constant
term in G, with degree not 1 mod r would give a term on the right-hand
side of degree > |S| and not 1 mod r, but such a term does not exist. Hence
every term in G has degree 1 mod r except for the constant term which has
coefficient σ′q+1.

For any natural number κ and i = 1, . . . , r− 2 the coefficient of the term
of degree |S| − i(q + 1) − κr (which is not 0 or 1 mod r) on the right-hand
side of (∗) is

−σ′i(q+1)+kr + σ′(i+1)(q+1)+κr

and must be zero. However if (r−1)(q+1)+κr > |S| then σ(r−1)(q+1)+κr ≡ 0
and we have σ′i(q+1)+κr = 0 for all i = 1, . . . , r−2. Now consider the coefficient

of the term of degree |S|−κr. On the right hand side of (∗) this has coefficient
−σ′κr (since σ′q+1+κr = 0). The only term of degree zero mod r in G is the
constant term which is σ′q+1. The coefficient of the term of degree |S| − κr
in R(X, y) is σκr. Hence

σκrσ
′
q+1 = −σ′κr for all y 6∈ S. (∗∗)

If y ∈ S then σq+1(y) = 1 and if y 6∈ S then σq+1(y) = 0. Let

f(Y ) =
∏
y∈S

(Y − y).
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Then fσq+1 = (Y q2 − Y )g(Y ) for some g ∈ GF(q2)[Y ] of degree at most
|S| − 1 (the degree of σq+1 is at most q2 − 1). Differentiate and substitute
for a y ∈ S and we have f ′(y) = −g(y). Since the degree of f ′ and g are less
than |S| we have g ≡ −f ′. Now differentiate and substitute for a y 6∈ S and
we get σ′q+1f = f ′.

Thus for y 6∈ S we have σκrf
′/f = −σ′κr and so (fσκr)

′(y) = 0. The
polynomial (fσκr)

′ has degree at most κr(q− 1) + |S| − 2, which is less than
q2−|S| if κr ≤ q−2r. So from now on let |S| = (r−1)q+κr. The polynomial
(fσκr)

′ ≡ 0 and so fσκr is a p-th power. Hence fp−1 divides σκr.
If κ ≤ p− 2 then (p− 1)(r− 1)q + κr(p− 1) > κr(q − 1) and so σκr ≡ 0.

However the polynomial whose terms are the terms of highest degree in
R(X, Y ) is (X + Y q−1)|S| which has a term X(r−1)qY κr(q−1) since

(|S|
κr

)
= 1.

Thus σκr has a term Y κr(q−1) which is a contradiction. Therefore κ ≥ p−1.

Corollary 10.16. A code of dimension 3 whose weights and length have a
common divisor r and whose dual minimum distance is at least 3 has length
at least (r − 1)q + (p− 1)r.

A maximal arc in a projective plane is a set of points S with the property
that every line is incident with 0 or r points of S. Apart from the trivial
examples of a point, an affine plane and the whole plane, that is where r = 1,
q or q+ 1 respectively, there are examples known for every r dividing q for q
even, see e.g. Denniston [55].

Corollary 10.17. There are no non-trivial maximal arcs in PG(2, q) when
q is odd.

Proof: A maximal arc has (r − 1)q + r points, see the Barlotti-bound in
Result 8.6.

11 Blocking sets

A blocking set with respect to k-dimensional subspaces is a point set meeting
every k-subspace. As a blocking set plus a point is still a blocking set, we are
interested in minimal ones (with respect to set-theoretical inclusion) only.
Note that in a (projective) plane the only interesting case is k = 1.

In any projective plane of order q the smallest blocking set is a line (of
size q + 1). In PG(2, q) there exist minimal blocking sets of size ∼ 3

2
q; the
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projective triangle of size 3(q+1)/2 if q is odd and the projective triad (which
is a linear point set in fact) of size 3q/2+1 if q is even. In general, in PG(n, q) it
is easy to construct a blocking set with respect to k-dimensional subspaces;
it is straightforward to prove that the smallest example is a subspace of

dimension n − k (so consisting of qn−k+1−1
q−1

∼ qn−k points), this example is
called trivial. Another easy one is a cone, with a planar blocking set as a
base and an (n − k − 2)-dimensional subspace as vertex; if the base was of
size ∼ 3

2
q then the blocking set will be of size ∼ 3

2
qn−k roughly. A blocking

set with respect to k-dimensional subspaces of PG(n, q) is said to be small
if it is smaller than 3

2
(qn−k + 1), in particular in the plane it means that

|B| < 3(q + 1)/2.
We remark that there is another terminology as well: a k-blocking set

is a blocking set with respect to (n− k)-dimensional subspaces (so here the
smallest and trivial examples are k-dimensional projective subspaces, this is
where the name comes from). It may lead to some confusion, but sometimes
this is the more natural name, see e.g. Section 12.

A most interesting question of the theory of blocking sets is to classify the
small ones. A natural construction (blocking the k-subspaces of PG(n, q)) is
a subgeometry PG(h(n − k)/e, pe), if it exists (recall q = ph, so 1 ≤ e ≤ h
and e|h).

It is one of the earliest results concerning blocking sets, due to Bruen
[40], that a nontrivial blocking set of a projective plane of order q is of size
≥ q +

√
q + 1, and equality holds if and only if it is a Baer subplane (i.e. a

subgeometry of order
√
q).

It is easy to see that the projection of a blocking set, w.r.t. k-subspaces,
from a vertex V onto an r-dimensional subspace of PG(n, q), is again a block-
ing set, w.r.t. the (k + r − n)-dimensional subspaces of PG(r, q) (where
dim(V ) = n− r − 1 and V is disjoint from the blocking set).

A blocking set of PG(r, q), which is a projection of a subgeometry of
PG(n, q), is called linear. (Note that the trivial blocking sets are linear as
well.) Linear blocking sets were defined by Lunardon, and they were first
studied by Lunardon, Polito and Polverino [82], [85].

Conjecture 11.1. The Linearity Conjecture. In PG(n, q) every small
blocking set, with respect to k-dimensional subspaces, is linear.

There are some cases of the Conjecture that are proved already (this list
is not complete).

Theorem 11.2. For q = ph, every small minimal non-trivial blocking set
w.r.t. k-dimensional subspaces is linear, if

(a) n = 2, k = 1 (so we are in the plane) and
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(i) (Blokhuis [24]) h = 1 (i.e. there is no small non-trivial blocking
set at all);

(ii) (Szőnyi [103]) h = 2 (the only non-trivial example is a Baer sub-
plane with p2 + p+ 1 points);

(iii) (Polverino [86]) h = 3 (there are two examples, one with p3+p2+1
and another with p3 + p2 + p+ 1 points);

(iv) (Blokhuis, Ball, Brouwer, Storme, Szőnyi [33], Ball [7]) if p > 2
and there exists a line ` intersecting B in |B ∩ `| = |B| − q points
(so a blocking set of Rédei type);

(b) for general k:

(i) (Szőnyi and Weiner) [109] if h(n − k) ≤ n, p > 2 and B is not
contained in an (h(n− k)− 1)-dimensional subspace;

(ii) (Storme-Weiner [99] (for k = n − 1), Bokler and Weiner [114])
h = 2, q ≥ 16;

(iii) (Storme-Sziklai [SzPkblock]) if p > 2 and there exists a hyperplane
H intersecting B in |B∩H| = |B|− qn−k points (so a blocking set
of Rédei type);

(iv) (Sziklai-Van de Voorde[SzPVdV]) if k = n − 1, p ≥ 5h − 11 and
B is not contained in an (h− 2)-dimensional subspace.

There is an even more general version of the Conjecture. A t-fold blocking
set w.r.t. k-subspaces is a point set which intersects each k-subspace in at
least t points. Multiple points may be allowed as well.

Conjecture 11.3. The Linearity Conjecture for multiple blocking
sets: In PG(n, q) any t-fold blocking set B, with respect to k-dimensional
subspaces, is the union of some (not necessarily disjoint) linear point sets
B1, ..., Bs, where Bi is a ti-fold blocking set w.r.t. k-dimensional subspaces
and t1 + ...+ ts = t; provided that t and |B| are small enough (t ≤ T (n, q, k)
and |B| ≤ S(n, q, k) for two suitable functions T and S).

Note that there exists a ( 4
√
q+1)-fold blocking set in PG(2, q), constructed

by Ball, Blokhuis and Lavrauw [15], which is not the union of smaller blocking
sets. (This multiple blocking set is a linear point set.)

First we study 1-fold blocking sets of PG(2, q), with respect to lines.
As an appetizer, we present here Blokhuis’ theorem, which was a real

breakthrough at 1994. It was conjectured by Jane di Paola in the late 1960’s.

Theorem 11.4. (Blokhuis [24]) In PG(2, p), p prime, the size of a non-trivial
blocking set is at least 3(p+ 1)/2.
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The following theorem of Blokhuis, Ball, Brouwer, Storme and Szőnyi
[33], which was refined and turned to its current beautiful form by Ball [7],
classifies the so-called small blocking sets of Rédei type (for the definition and
further information compare to Theorem 11.2(iv), and see e.g. Section 12):

Theorem 11.5. Let |U | = q be a pointset in AG(2, q), q = ph, p prime, and
let N be the number of directions determined by U . Let s = pe be maximal
such that every line intersects U in a multiple of s points. Then one of the
following holds:

(i) s = 1 and q+3
2
≤ N ≤ q + 1;

(ii) GF(s) is a subfield of GF(q) and q
s

+ 1 ≤ N ≤ q−1
s−1

;

(iii) s = q and N = 1.

Moreover, if s ≥ 3 then U is a GF(s)-linear pointset.

In other words, it means that (if p > 2) a small blocking set of Rédei type
is always a linear pointset.

* * *

One can formulate the chase for minimal (nontrivial) blocking sets (in
PG(2, q)) in an algebraic way as follows. Consider the polynomial ring
GF(q)[X, Y, Z] and its subset GF(q)[X, Y, Z]hom, the homogeneous polyno-
mials of any degree. The fully reducible polynomials form the multiplicative
sub-semigroups R and Rhom in them. (R stands for reducible and Rédei as
well.) Let GF(q)[X, Y, Z]0 and GF(q)[X, Y, Z]hom,0 denote the sets (ideals) of
polynomials vanishing everywhere in GF(q)× GF(q)× GF(q).

Both GF(q)[X, Y, Z]0 and GF(q)[X,Y, Z]hom,0, as ideals, can be gen-
erated by three polynomials from R (and Rhom, resp.), for example
GF(q)[X, Y, Z]0 = 〈(Xq −X); (Y q − Y ); (Zq −Z)〉 and GF(q)[X, Y, Z]hom,0 =
〈(Y qZ − Y Zq); (ZqX − ZXq); (XqY − XY q)〉. Note also that for any
a, b, c ∈ GF(q) the polynomial a(Y qZ−Y Zq)+b(ZqX−ZXq)+c(XqY −XY q)
is still totally reducible. (It is the Rédei polynomial of the point set consisting
of the points of the line [a, b, c].)

The blocking set problem is now equivalent to finding minimal polyno-
mials, w.r.t. divisibility, as partial order, in

(Rhom ∩ GF(q)[X, Y, Z]hom,0).

The trivial blocking sets, as we have seen, correspond to the minimal poly-
nomials a(Y qZ − Y Zq) + b(ZqX − ZXq) + c(XqY −XY q).
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11.1 One curve

So let |B| = q + k be our blocking set. We often suppose that |B| < 2q.
Recall the Rédei polynomial of B:

R(X, Y, Z) =
∏

(ai,bi,ci)∈B

(aiX + biY + ciZ) =

q+k∑
j=0

rj(Y, Z)Xq+k−j.

Definition 11.6. ([37], [103]) Let C be the curve of degree k defined by

f(X, Y, Z) = r0(Y, Z)Xk + r1(Y, Z)Xk−1 + . . .+ rk(Y, Z).

Note that as deg(rj) = j (or rj = 0), the polynomial f(X, Y, Z) is homo-
geneous of degree k indeed.

Lemma 11.7. If the line LX [1, 0, 0] contains the points {(0, bij , cij) : j =
1, ..., NX} then

rNX
(Y, Z) = (

∏
as 6=0

as)

NX∏
j=1

(bijY + cijZ) | R(X, Y, Z);

rNX
(Y, Z) | f(X, Y, Z);

so f can be written in the form f = rNX
f̄ , where f̄(X, Y, Z) is a homogeneous

polynomial of total degree = X-degree = k − NX . In particular, if LX is a
Rédei line then f = rNX

. One can write R(X, Y, Z) = rNX
(Y, Z)R̄(X, Y, Z)

as well.

Proof: obvious from the definitions: rNX
|ri ∀i. Indeed, rNX

contains the
X-free factors of R; NX is the smallest index j for which rj is not identically
zero. As, by definition, rj is gained from R =

∏
(aiX + biY + ciZ) by adding

up all the partial products consisting of all but j (biY + ciZ) factors and j
non-zero ai factors, each of these products will contain all the factors of rNX

,
so rNX

|rj ∀j.

Note that the curve rNX
consists of NX lines on the dual plane, all passing

through [1, 0, 0].
On the other hand if k < q then

f = Hq
XR =

∑
{s1,s2,...,sq}

as1as2 ...asq

∏
j 6∈{s1,s2,...,sq}

(ajX + bjY + cjZ).

Obviously it is enough to sum for subsets {Ps1 ,Ps2 , ...,Psq} ⊆ B \ LX .
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If one coordinatizes B such that each ai is either 0 or 1, then

f = rNX
f̄ = rNX

∑
J⊆{1,2,...,q+k}
|J|=k−NX
ai 6=0 ∀i∈J

∏
j∈J

(X + bjY + cjZ).

Also
rNX

= Hq+k−NX

X R = Hk−NX
X f.

The next proposition summarizes some important properties of the Rédei
polynomial and of this curve.

Theorem 11.8. ([103])

(1.1) For a fixed (y, z) (where (0,−z, y) 6∈ B), the element x is an r-fold root
of Ry,z(X) = R(X, y, z) if and only if the line with equation xX+yY +
zZ = 0 intersects B in exactly r points.

(1.2) Suppose Ry,z(X) = 0, i.e. (0,−z, y) ∈ B. Then the element x is
an (r − 1)-fold root of R̄(X, y, z) if and only if the line with equation
xX + yY + zZ = 0 intersects B in exactly r points.

(2.1) For a fixed (0,−z, y) 6∈ B the polynomial (Xq − X) divides Ry,z(X).
Moreover, if k < q − 1 then Ry,z(X) = (Xq − X)f(X, y, z) for every
(0,−z, y) 6∈ B; and f(X, y, z) splits into linear factors over GF(q) for
these fixed (y, z)’s.

(2.2) If the line [0,−z, y] (where (0,−z, y) 6∈ B) meets f(X, Y, Z) at (x, y, z)
with multiplicity m, then the line with equation xX + yY + zZ = 0
meets B in exactly m+ 1 points.

This theorem shows that the curve f has a lot of GF(q)-rational points
and helps us to translate geometric properties of B into properties of f .
Proof: (1.1) and (1.2) are straightforward from the definition of the Rédei
polynomial. The multiplicity of a root X = x is the number linear factors
in the product defining R(X, Y, Z) that vanish at (x, y, z), which is just the
number of points of B lying on the line [x, y, z]. The first part of (2.1) follows
from (1.1) and the well-known fact that

∏
x∈GF(q)(X − x) = Xq − X. The

rest of (2.1) is obvious.
To prove (2.2) note that if the intersection multiplicity is m, then x is an

(m+ 1)-fold root of Ry,z(X). Now the assertion follows from (1.1).

The facts given in Theorem 11.8 will be used frequently without further
reference.
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The next lemma shows that the linear components of f̄ (or the curve C̄
defined by f̄ = 0) correspond to points of B which are not essential.

Lemma 11.9. ([103])

(1.1) If a point P (a, b, c) ∈ B\LX is not essential, then aX+bY +cZ divides
f̄(X, Y, Z) (as polynomials in three variables).

(1.2) Conversely, if NX < q + 2 − k and aX + bY + cZ divides f̄(X, Y, Z),
then (a, b, c) ∈ B \ LX and (a, b, c) is not essential.

(2.1) If a point P (0, b, c) ∈ B ∩ LX is not essential, then Xq − X divides
R̄(X,−c, b) (as polynomials in three variables).

(2.2) Conversely, if Xq − X divides R̄(X,−c, b), then (0, b, c) cannot be an
essential point of B.

Proof: (1.1): Take a point Q(0,−z0, y0) 6∈ B. For this Q(0,−z0, y0) there
are at least two points of B on the line PQ, hence (aX + by0 + cz0) divides
f̄(X, y0, z0). In other words, the line L : aX+bY +cZ and C̄ have a common
point for (Y, Z) = (y0, z0). This happens for q + 1−NX values of (y0, z0), so
Bézout’s theorem implies that L is a component of C̄.

(1.2): Conversely, if aX + bY + cZ divides f̄(X, Y, Z), then for every
Q(0,−z0, y0) 6∈ B the line through Q and (a, b, c) intersects B in at least
two points. If (a, b, c) /∈ B, then |B| ≥ 2(q + 1 − NX) + NX . Putting
|B| = q + k gives a contradiction. Hence (a, b, c) ∈ B. Since every line
through (0,−z0, y0) 6∈ B, contains at least two points of B, the point (a, b, c)
cannot be essential.

(2.1) and (2.2) can be proved in a similar way as (1.1) and (1.2).

If the line [1, 0, 0] is a tangent, or if B is a small blocking set, then the
previous lemma simply says that there are no linear components of f̄ if
|B| < 2q. Note that also in Segre’s theory there is a lemma corresponding to
this one (see [65], Lemmas 10.3.2 and 10.4.), and it plays an important role
in proving the incompleteness of arcs.

Recall also a lower bound on the number of GF(q)-rational points of cer-
tain components of f , see Blokhuis, Pellikaan, Szőnyi [37].

Lemma 11.10. ([37]) (1) The sum of the intersection multiplicities I(P, f ∩
`P ) over all GF(q)-rational points of f is at least deg(f)(q + 1)− deg(f̄)NX ,
where `P denotes the line through P and (1, 0, 0) (the “horizontal line”). If g
is a component of f , then the corresponding sum for g is at least deg(g)(q +
1)− deg(ḡ)(NX), where g0 = g.c.d.(g, rNX

) and g = g0ḡ.
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(2) Let g(X, Y, Z) be a component of f(X,Y, Z) and suppose that it
has neither multiple components nor components with zero partial derivative
w.r.t. X. Then the number of GF(q)-rational points of g is at least

deg(g)(q + 1)− deg(ḡ)(NX + deg(ḡ)− 1)

Proof: Let g = g0ḡ, where g0 contains the product of some linear compo-
nents (hence g0|rNX

) and ḡ has no linear component; s = deg(g), s̄ = deg(ḡ).
First note that the linear components of rNX

all go through (1, 0, 0) while
f̄ does not. For any fixed (Y, Z) = (y, z), for which (0,−z, y) 6∈ B, the
polynomial f(X, y, z) is the product of linear factors over GF(q), hence the
same is true for every divisor g of f . So the number of points, counted with
the intersection multiplicity of g and the horizontal line at that point, is at
least s̄(q+ 1−NX) + deg(g0)(q+ 1). To count the number of points without
this multiplicity we have to subtract the number of intersections of ḡ and
ḡ′X (see [37]); Bézout’s theorem then gives the result. Note also that in this
counting the common points of ḡ and ḡ′X are counted once if the intersection
multiplicity I(P ; ḡ ∩ `P ) is not divisible by p, and the points with intersec-
tion multiplicity divisible by p are not counted at all. Hence we have at least
s̄(q + 1−NX) + (s− s̄)(q + 1)− s̄(s̄− 1) points of g.

These elementary observations already yield interesting results on block-
ing sets. We mention without a proof that Lemma 11.10, combined with the
Weil-estimate on the number of rational points of a curve gives the result of
Bruen |B| ≥ q +

√
q + 1.

We repeat a lemma of Blokhuis and Brouwer.

Proposition 11.11. ([34]) There are at most k2 − k + 1 lines that meet B
in at least two points.

Proof: First we prove that there are at least 2q+1−|B| tangents through
any essential point P of any blocking set B. Indeed, if P ∈ B is essential with
t tangents through it then choose the coordinate system so that P ∈ `∞ and
`∞ is a tangent to B. Putting one point on each tangent except `∞ results
in an affine blocking set of size |B| − 1 + t − 1, which is, by the theorem of
Jamison, at least 2q − 1, hence t ≥ 2q + 1− |B|.

Now, with |B| = q + k, gives that the total number of tangents is at
least (q + k)(q + 1− k), which means that there are at most k2 − k + 1 lines
intersecting B in at least two points.

Now we are ready to prove Blokhuis’ theorem 11.4 in the prime case.
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Theorem 11.12. (Blokhuis [24]) In PG(2, p), p prime, the size of a non-
trivial blocking set is at least 3(p+ 1)/2.

Proof: Take a component g = ḡ (of degree s) of f̄ . Since p is prime, it
cannot have zero partial derivative with respect to X. Therefore it has at
least s(p+1)−s(NX+s−1) points by Lemma 11.10. On the other hand, again
since p is prime, it cannot be non-classical with respect to lines. Therefore,
by the Stöhr-Voloch theorem 8.4, it has at most s(p+s−1)/2 GF(p)-rational
points. This implies

s(p+ 1)− s(NX + s− 1) ≤ s(p+ s− 1)/2,

which means s ≥ (p+ 5− 2NX)/3. In particular, if |B| < p+ 1 + 2(p+ 3)/3
and we choose LX to be a tangent, then the curve f̄ must be (absolutely)
irreducible. Now Lemma 11.10 can be applied to f itself and it says that f̄
has at least (k − 1)(p + 1) − (k − 1)(k − 1) points. On the other hand, the
previous lemma shows that it can have at most k2− k+1 points over GF(p).
Solving the inequality pk − k(k − 1) ≤ k2 − k + 1 implies k ≥ (p+ 2)/2.

11.2 Three new curves

In this subsection we introduce three nice curves. We use the notation V =
(X, Y, Z);Vq = (Xq, Y q, Zq) and Ψ = V × Vq = ((Y qZ − Y Zq), (ZqX −
ZXq), (XqY − XY q)). Let B be a minimal blocking set of PG(2, q). Since
R(X, Y, Z) vanishes for all homogeneous (x, y, z) ∈ GF(q) × GF(q) × GF(q),
we can write it as

R(X, Y, Z) = Ψ · g = det(V,Vq,g) =

(Y qZ−Y Zq) g1(X,Y, Z)+(ZqX−ZXq) g2(X, Y, Z)+(XqY−XY q) g3(X, Y, Z),

where g1, g2, g3 are homogeneous polynomials of degree k−1 in three variables
and g = (g1, g2, g3). Note that g is not determined uniquely, it can be changed
by g′ = g+g0V for any homogeneous polynomial g0 ∈ GF(q)[X, Y, Z] of total
degree k−2, if k < q; and for g′ = g+g0V+g00V

q for arbitrary homogeneous
polynomials g0 of degree k − 2 and g00 of degree k − q − 1.

Why is this a most natural setting? For example observe that if B is the
line [a, b, c] then R = (a, b, c) ·Ψ.

Now one can define f = V×g. Then f ·(Vq−V) = f1(X
q−X)+f2(Y

q−
Y ) + f3(Z

q − Z) = R, and f1, f2, f3 are homogeneous polynomials of degree
k. If k < q then, by this “decomposition” of R, f is determined uniquely.
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Conversely, if for some g′ also f = V × g′ holds then g′ = g + gV for some
homogeneous polynomial g of degree k − 2.

We also remark that, as V · (V × g) = 0, we have Vf = 0. For another
proof see 11.17.

If k ≥ q then f is not necessarily unique in the decompositon of R. But if
we choose f = V × g for some g then 11.17 remains valid (otherwise it may
happen that V · f is not the zero polynomial).

The following lemma summarizes some fundamental properties of g.

Proposition 11.13. (1.1) If a point P (a, b, c) ∈ B is not essential, then
there exists an equivalent g′ = g + g0V (or g′ = g + g0V + g00V

q) of g
such that aX + bY + cZ divides g′i(X, Y, Z), i = 1, 2, 3 (as polynomials
in three variables).

(1.2) Conversely, if NX < q + 2 − k and aX + bY + cZ divides each
gi(X, Y, Z), i = 1, 2, 3, then (a, b, c) ∈ B and (a, b, c) is not essential.

(2) If B is minimal then g1, g2 and g3 have no common factor.

Proof: (1.1) In this case R0 = R/(aX+bY +cZ) still vanishes everywhere,
so it can be written in the form R0 = g0Ψ, so Ψ ·(g0(aX+bY +cZ)−g) = 0.

(1.2) Now aX + bY + cZ divides R as well, so (a, b, c) ∈ B. Deleting

it, the Rédei polynomial of the new point set is (Y qZ − Y Zq) g1(X,Y,Z)
aX+bY +cZ

+

(ZqX −ZXq) g2(X,Y,Z)
aX+bY +cZ

+ (XqY −XY q) g3(X,Y,Z)
aX+bY +cZ

, so it remains a blocking
set.

(2) Such a factor would divide R as well, which splits into linear factors.
Then for a linear factor see (1.2).

We want to “evaluate” R along a line [a, b, c] of the dual plane (so we
examine the lines through (a, b, c) of the original plane). We use the notation

φ(X, Y, Z)
∣∣∣
[a,b,c]

= φ(bZ − cY, cX − aZ, aY − bX).

In general f(X,Y, Z)
∣∣∣
[a,b,c]

= f(−bY − cZ, aY, aZ) = f(bX,−aX− cZ, bZ) =

f(cX, cY,−aX − bY ), where e.g. f(−bY − cZ, aY, aZ) can be used if a 6= 0
etc.

Theorem 11.14. (1)

R
∣∣∣
[a,b,c]

=
(
ag1

∣∣∣
[a,b,c]

+ bg2

∣∣∣
[a,b,c]

+ cg3

∣∣∣
[a,b,c]

)(
(ZY q − ZqY )

∣∣∣
[a,b,c]

)
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(the last factor should be changed for (XZq −XqZ)
∣∣∣
[a,b,c]

if a = 0 and

b 6= 0 and for (Y Xq − Y qX)
∣∣∣
[a,b,c]

if a = b = 0 and c 6= 0, “normally”

these factors are identical when restricting to aX + bY + cZ = 0).

(2) (a, b, c) ∈ B if and only if ag1

∣∣∣
[a,b,c]

+ bg2

∣∣∣
[a,b,c]

+ cg3

∣∣∣
[a,b,c]

= 0. It means

that if one considers this equation as an equation in the variables a, b, c
then the points of B are exactly the solutions of it.

(3) If (a, b, c) ∈ B then consider

R

aX + bY + cZ

∣∣∣∣∣
[a,b,c]

=

(
a(g1

∣∣∣
[a,b,c]

+ bg2

∣∣∣
[a,b,c]

+ cg3

∣∣∣
[a,b,c]

)
(aX + bY + cZ)

∣∣∣
[a,b,c]

(
(ZY q−ZqY )

∣∣∣
[a,b,c]

)

(4) Suppose (a, b, c) 6∈ B then if a line [x, y, z] through (a, b, c) is an r-

secant of B, then (x, y, z) is a root of ag1

∣∣∣
[a,b,c]

+ bg2

∣∣∣
[a,b,c]

+ cg3

∣∣∣
[a,b,c]

with multiplicity r − 1.

Proof: Easy calculations. For instance to prove (2) we simply need

R
∣∣∣
[a,b,c]

= ag1

∣∣∣
[a,b,c]

+ bg2

∣∣∣
[a,b,c]

+ cg3

∣∣∣
[a,b,c]

= 0.

See Example 11.4 for showing the use of (2) above: there we get that the
equation of the “canonical” Baer subplane is

Ga,b,c(X,Y, Z) = X
√

q(c
√

qb−cb
√

q)+Y
√

q(a
√

qb−ab
√

q)+Z
√

q(a
√

qc−ac
√

q) = 0,

meaning that the Baer subplane is just {(a, b, c) ∈ PG(2, q) : Ga,b,c(X, Y, Z) ≡
0}.

The map [x, y, z] 7→ [g1(x, y, z), g2(x, y, z), g3(x, y, z)], acting on the lines,
is a remarkable one.

Proposition 11.15. Let [x, y, z] be a tangent line to B at the point
(at, bt, ct) ∈ B. Then [g1(x, y, z), g2(x, y, z), g3(x, y, z)] is also a line through
(at, bt, ct), different from [x, y, z].

If [x, y, z] is a secant line then [g1(x, y, z), g2(x, y, z), g3(x, y, z)] is either
[x, y, z] or meaningless (i.e. [0, 0, 0]).
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Obviously, if g(x, y, z) = [0, 0, 0] then [x, y, z] is a ≥ 2-secant as the ≤ 1-st
derivatives are 0.
Proof: Recall Theorem 5.9, here we have

(at, bt, ct) = ( (∂XR)(x, y, z), (∂YR)(x, y, z), (∂ZR)(x, y, z) ) =

(−yg3(x, y, z)+zg2(x, y, z), xg3(x, y, z)−zg1(x, y, z), yg1(x, y, z)−xg2(x, y, z) ).

Now the scalar product with (g1(x, y, z), g2(x, y, z), g3(x, y, z)) vanishes.
or:

(at, bt, ct)·g(x, y, z) = (∇R)(x, y, z)·g(x, y, z) = ((x, y, z)×g(x, y, z))·g(x, y, z) = 0.

Here (x, y, z) 6= g(x, y, z) as their cross product is (at, bt, ct).
If [x, y, z] is a secant line then there are more than one components of R

going through (x, y, z) (see Theorem 5.9) hence

0 = (∇R)(x, y, z) = (x, y, z)× g(x, y, z).

or: we can use Theorem 11.14.
We also calculate ∇R for future use: ∇R = Ψ(∇ ◦ g) + Vq × g.

The following is true as well. We will see (Theorem 11.28, Corollary
11.32) that if B is small, then R can be written in the form

Xq(Y gXY + ZgXZ) + Y q(XgY X + ZgY Z) + Zq(XgZX + Y gZY ),

where the polynomials gXY , ..., gZY contain only exponents divisible by p.
Surprisingly or not, gXY = −gY X , gXZ = −gZX , gZY = −gY Z , as 0 = Xf1 +
Y f2 +Zf3 = XY (gXY + gY X) +Y Z(gY Z + gZY ) +ZX(gZX + gXZ). One can
take ∂X∂Y , ∂Y ∂Z , ∂Z∂X of both sides.

Now g = (gY Z , gZX , gXY ), which is a kind of “natural choice” for g.

11.3 Three old curves

In this section we will present the method using three old algebraic curves.
As an application we show Szőnyi’s result [103] that blocking sets of size less
than 3(q + 1)/2 intersect every line in 1 modulo p points. This immediately
implies Blokhuis’ theorem for blocking sets in PG(2, p).

Let now B be a minimal blocking set of PG(2, q). Since R(X, Y, Z) van-
ishes for all (x, y, z) ∈ GF(q)× GF(q)× GF(q), we can write it as

R(X, Y, Z)=(Xq−X)f1(X, Y, Z)+(Y q−Y )f2(X, Y, Z)+(Zq−Z)f3(X, Y, Z)=W·f ,
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where f = (f1, f2, f3) and deg(fi) ≤ k as polynomials in three variables. Note
that f1 here is the same as the polynomial f defined in Definition 11.6 and
examined in Section 11.1; while f2 and f3 behave very similarly.

Proposition 11.16. (Lovász, Szőnyi) Let [x, y, z] be a tangent line to B at
the point (at, bt, ct) ∈ B. Then

f(x, y, z) = (f1(x, y, z), f2(x, y, z), f3(x, y, z)) = (at, bt, ct)

as homogeneous triples.

Proof: Recall Theorem 5.9, here we have

((∂XR)(x, y, z), (∂YR)(x, y, z), (∂ZR)(x, y, z)) = −(f1(x, y, z), f2(x, y, z), f3(x, y, z))

Or:

(at, bt, ct) = (∇R)(x, y, z) = (∇(W·f))(x, y, z) = ((∇◦W)f+(∇◦f)W)(x, y, z) =

−I f(x, y, z) + 0 = −f(x, y, z).

Lemma 11.17. If k < q − 1 then V · f = Xf1 + Y f2 + Zf3 = 0. (Hence
R = Vqf as well).

Proof: If [x, y, z] is a tangent then by 11.16 V · f vanishes, and by the end
of Theorem 5.9 it also vanishes if [x, y, z] is at least a 2-secant. As the degree
is less than q we are done. Or: it is just Theorem 5.9 (6) with r = 1.

Note also that f = ∇q
HR; and −f = (∇ ◦ f)V.

From Theorem 5.9 (5) one can see that each of the curves f1, f2, f3 go
through the point (x, y, z) of the dual plane corresponding to a secant line
[x, y, z]. Where are the other (extra) points of e.g. f1? They are exactly the
points of rNX

of Lemma 11.7, so points on factors corresponding to points
with ai = 0.

If one fixes (Y, Z) = (y, z) then R(X, y, z) is divisible by (Xq − X). If
R(X, y, z) 6= 0, so if (0, y, z) 6∈ B∩LX then for an (x, y, z) ∈ GF(q)×GF(q)×
GF(q) if the line with equation xX+yY +zZ = 0 intersects B in at least two
points (cf. Proposition 11.8 (2.2)) then f1(x, y, z) = 0. One can repeat the
same reasoning for f2, f3 and this immediately gives the following lemma:

Lemma 11.18. ([103]) The curves fi have almost the same set of GF(q)-
rational points. The exceptional points correspond to lines intersecting
LX , LY or LZ in a point of B.
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Proof: Since this observation is crucial, a direct proof is also included.
Consider the Rédei polynomial R(X, Y, Z). For an element (x, y, z) ∈
GF(q) × GF(q) × GF(q) we get −f1(x, y, z) = ∂XR(x, y, z) and similarly
−f2(x, y, z) = ∂YR(x, y, z). Since R is a product of linear factors and
R(x, y, z) = 0, ∂XR(x, y, z) = 0 if and only if there are two linear factors
vanishing at (x, y, z), or if R(X, y, z) = 0 (i.e. (0,−z, y) ∈ B). The similar
statement holds for ∂YR, hence the two derivatives are zero for the same
values (x, y, z), except in the cases described in the statement.

Lemma 11.19. ([103]) If k < q−1 then the polynomials f1, f2 and f3 cannot
have a common factor. Moreover, e.g. f1 and f2 have a common factor g iff
(0, 0, 1) ∈ B and g = Z.

Proof: Such a common factor must divide R(X, Y, Z), hence it must be
divisible by aiX + biY + ciZ for some i. Lemma 11.9 (2) gives (N = 1,
k ≤ q − 2) that the point (ai, bi, ci) can be deleted, a contradiction.

Suppose that g is a common factor of f1 and f2, then from Xf1 + Y f2 +
Zf3 = 0 we have g|Zf3.

Therefore, (f1, f2, f3) is a triple of polynomials (curves) having no com-
mon factor (component), but they pass through almost the same set of GF(q)-
rational points. Using Bézout’s theorem it immediately gives Lemma 11.11
back.

11.4 Examples

In this section we compute the polynomials (curves) for some well-known
point sets. The computations are also used to illustrate several results and
ideas of this dissertation. In the cases when the point set is a blocking set,
we use the notation f = (f1, f2, f3) and g = (g1, g2, g3) for the curves defined
above. We recall R = f ·(X, Y, Z) = g·(Y qZ−Y Zq, ZqX−ZXq, XqY −XY q).

Example 11.20.

The line [a, b, c]. Its Rédei polynomial is a(Y qZ−Y Zq)+b(ZqX−ZXq)+
c(XqY −XY q).

Example 11.21.

A conic. For the Rédei polynomial of the parabola X2 − Y Z see Result
5.7.
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Example 11.22.

The projective triangle. Let q be odd, B = {(1, 0, 0); (0, 1, 0); (0, 0, 1)} ∪
{(a2, 0, 1); (1,−a2, 0); (0, 1, a2) : a ∈ GF(q)∗}. Then

R(X, Y, Z) = XY Z((−Z)
q−1
2 −X

q−1
2 )(X

q−1
2 − Y

q−1
2 )((−Y )

q−1
2 − Z

q−1
2 ) =

(Xq −X)Y Z[Z
q−1
2 − (−Y )

q−1
2 ] + (Y q − Y )XZ[(−X)

q−1
2 − Z

q−1
2 ]+

(Zq − Z)XY [(−Y )
q−1
2 − (−X)

q−1
2 ] =

(XqY−XY q)Z[Z
q−1
2 −(−Y )

q−1
2 −(−X)

q−1
2 ]+(Y qZ−Y Zq)X[(−X)

q−1
2 −Z

q−1
2 −

(−Y )
q−1
2 ] + (ZqX − ZXq)Y [(−Y )

q−1
2 − Z

q−1
2 − (−X)

q−1
2 ].

Note that g = 0 iff [x, y, z] = [α2, 1, 0] or [1, 0,−α2] or [0,−α2, 1], so for the
2-secants.

Example 11.23.

The sporadic almost-Rédei blocking set. The affine plane of order 3 can be
embedded into PG(2, 7) as the points of inflexion of a non-singular cubic. The
12 lines of this plane cover each point of PG(2, 7), so in the dual plane they
form a blocking set of size 12 = 3(7 + 1)/2, but its maximal line-intersection
is only 4 = (12− 7)− 1. A characterization of it can be found in [SzPnuc2].

A representation of this blocking set is the following: its affine part is
U = {(x,−x6 + 3x3 + 1, 1) : x ∈ GF(7)} ∪ {(0,−1, 1)}, the infinite part is
D = {(1, 0, 0), (1, 1, 0), (1, 2, 0), (1, 4, 0)}. Now

R(X, Y, Z) = X10Y 2 −X10Z2 −X7Y 5 − 2X7Y 3Z2 + 3X7Y Z4 −X4Y 8 +
X4Z8 +XY 11 +XY 9Z2 + 4XY 7Z4 +XY 3Z8

from which we get f =
(X3Y 2 − X3Z2 − Y 5 − 2Y 3Z2 + 3Y Z4, −X4Y + XY 4 + XY 2Z2 +

4XZ4, X4Z +XY 3Z)
and g = (XY 2Z, X3Z + 2Y 3Z, X3Y − Y 4 + 3Z4).
Note that g(x, y, z) = (0, 0, 0) iff (x, y, z) ∈ {[1, 0, 0]; [1, 2, 0]; [1, 4, 0]} and

all three are 2-secants.

Example 11.24.

The Baer-subplane.
In PG(2, q) the standard embedding of a Baer subplane is {(a, b, 1) : a, b ∈

GF(
√
q)} ∪ {(m, 1, 0) : m ∈ GF(

√
q)} ∪ {(1, 0, 0)}.

Now its Rédei polynomial is

R(X, Y, Z) =
∏

a,b∈GF(
√

q)

(aX + bY + Z)
∏

a∈GF(
√

q)

(aX + Y )X =
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(Xq−X)[Y Z
√

q−Y
√

qZ]+(Y q−Y )[X
√

qZ−XZ
√

q]+(Zq−Z)[XY
√

q−X
√

qY ] =

(Y qZ − Y Zq)X
√

q + (ZqX − ZXq)Y
√

q + (XqY −XY q)Z
√

q.

Here the equation of the blocking set is

X
√

q(c
√

qb− cb
√

q) + Y
√

q(a
√

qb− ab
√

q) + Z
√

q(a
√

qc− ac
√

q) = 0.

Example 11.25.

In PG(2, q3) let U = {(x, x + xq + xq2
, 1) : x ∈ GF(q3)}, and D the

directions determined by them, |D| = q2 + 1.
Now for B = U ∪D we get

f = (Xq2

Z+Xq2−qY qZ−Xq2−qY Zq+Y q2

Z−Y Zq2

, Xq2

Z+Xq2−q+1Zq+XZq2

,

−Xq2+1 −Xq2
Y −Xq2−q+1Y q −XY q2

)

and g = ( −Xq2

, Xq2

+Xq2−qY q + Y q2

, Xq2−qZq + Zq2

).

Example 11.26.

In PG(2, q3) let U = {(x, xq, 1) : x ∈ GF(q3)}, and D the directions
determined by them, D = {(1, aq−1, 0) : a ∈ GF(q3)∗}, |D| = q2 + q + 1.

Then, after the linear transformation (1, aq−1, 0) 7→ (1−aq−1, aq−1−β, 0),
where β is a (q − 1)-st power, we have

rNZ
= (X − βY )q2+q+1 − (X − Y )q2+q+1.

Example 11.27.

The Hermitian curve. In PG(2, q), the Hermitian curve, which is a unital,
{(x, y, z) : x

√
q+1 + y

√
q+1 + z

√
q+1 = 0} in PG(2, q) has the following Rédei

polynomial:

R(X, Y, Z) = (X
√

q+1 + Y
√

q+1 +Z
√

q+1)q−√q+1−Xq
√

q+1− Y q
√

q+1−Zq
√

q+1.

11.5 Small blocking sets

Lemmas 11.18 and 11.19 can also be used to show that all the components
of f have identically zero partial derivative with respect to X. Note that for
any component h of f the total degree of h is the same as its degree in X.
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Theorem 11.28. ([103]) If k ≤ (q + 1)/2 and g(X, Y, Z) is an irreducible
polynomial that divides f̄1(X, Y, Z), then g′X = 0.

Proof: Suppose to the contrary that g is a component of f̄1 with nonzero
partial X-derivative, denote its degree by deg(g) = s. By Lemma 11.10 the
number of GF(q)-rational points on g is at least s(q + 2 − NX − s). Since
these points are also on f2, Bézout’s theorem gives s(q + 2−NX − s) ≤ sk,
since by Lemma 11.19, if f2 and g has a common component (i.e. g itself)
then it cannot be a component of f3 and one can use Bézout for g and f3

instead. This immediately implies q + 2 ≤ k+NX + s̄ and from NX + s̄ ≤ k
it follows that k ≥ (q + 2)/2, a contradiction.

Note that it implies that all the X-exponents appearing in f1 are divisible
by p (as rNX

does not involve X); and a similar statement holds for the Y -
exponents of f2 and for the Z-exponents of f3. Let’s define e, the (algebraic)
exponent of B, as the greatest integer such that f1 ∈ GF(q)[Xpe

, Y, Z], f2 ∈
GF(q)[X,Y pe

, Z] and f3 ∈ GF(q)[X, Y, Zpe
]. By the Theorem e ≥ 1.

Proposition 11.29. If q = p is a prime and |B| < p + 2p+4−NX

3
, then the

curve f̄1 is irreducible (and similarly for f̄2, f̄3).

Proof: Suppose to the contrary that e.g. f̄1 is not irreducible, and let g
be a component of f̄1 of degree at most (k −NX)/2. The proof of Theorem

11.28 gives p+2 ≤ k+NX +deg(g) ≤ 3k/2+NX/2, that is 2(p+2)−NX

3
≤ k.

The following corollary, due to Szőnyi, generalizes the similar result of
Rédei on blocking sets of Rédei type.

Corollary 11.30. ([103]) If B is a blocking set of size less than 3(q + 1)/2,
then each line intersects it in 1 modulo p points.

Proof: Take a line ` and coordinatise such that ` ∩ LX ∩ B = ∅. If ` =
[x, y, z] then rNX

(y, z) 6= 0. Since all the components of f1 contain only terms
of exponent (in X) divisible by p, for any fixed (Y, Z) = (y, z) the polynomial
f1(X, y, z) = rNX

(y, z)f̄1(X, y, z) itself is the p-th power of a polynomial.
This means that at the point P (x, y, z) the “horizontal line” (i.e. through P
and (1, 0, 0)) intersects f̄1(X,Y, Z) with multiplicity divisible by p (and the
same is true for f1), so by Theorem 11.8 the line [x, y, z] intersects B in 1
modulo p points.

Note that now we have |B| ≡ 1 (mod p). Of course, this theorem also
implies Blokhuis’ theorem in the prime case.
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Corollary 11.31. (Blokhuis [24]) If q = p is a prime, then |B| ≥ 3(q+ 1)/2
for the size of a non-trivial blocking set.

The next corollary is a crucial one.

Corollary 11.32. If B is a blocking set of size less than 3(q +
1)/2, then the X-exponents in f̄1, the Y -exponents in f̄2 and the Z-
exponents in f̄3 are 0 (mod pe); moreover all the exponents appearing in
R(X, Y, Z), f1, f2, f3; rNX

(Y, Z), rNY
(X,Z), rNZ

(X, Y ), are 0 or 1 (mod pe).

Proof: The first statement is just Theorem 11.28. From this the similar
statement follows for fi: the X-exponents in f1, the Y -exponents in f2 and
the Z-exponents in f3 are 0 (mod pe).

Consider a term aXαpe+1Y βZγ ofXf1 in the identityXf1+Y f2+Zf3 ≡ 0.
It should be cancelled by Y f2 and Zf3, which means that it should appear
in either one or both of them as well with some coefficient. It cannot appear
in both of them, as it would imply exponents like Xαpe+1Y β′pe+1Zγ′pe+1, but
the exponents must add up to k + 1, which is 2 mod pe, a contradiction. So
this term is cancelled by its negative, for example contained in Y f2, then it
looks like −aXαpe+1Y β′pe+1Zγ, where the exponents, again, add up to k+ 1,
which is 2 mod pe, hence γ ≡ 0 (mod pe), so the original term of f1 was of
form aXαpe

Y β′pe+1Zγ′pe
.

For rNX
(Y, Z), rNY

(X,Z) and rNZ
(X, Y ) recall that they are also homo-

geneous polynomials of total degree 1 (mod pe) and for instance f1 = rNX
f̄1

and deg f̄1 = degX f̄1, so in f1 the terms of maximal X-degree have 0 or 1
mod pe exponents (as terms of f1), on the other hand they together form
rNX

Xk−NX .
Finally R = Xqf1 + Y qf2 + Zqf3 so R has also 0 or 1 mod pe exponents

only.

Note that in f̄i other exponents can occur as well. Comparing the ex-
ponents one can find Y ∂Y f̄1 + Z∂Z f̄1 = X∂X f̄1 + Y ∂Y f̄1 + Z∂Z f̄1 = 0 as
well.

The (geometric) exponent eP of the point P can be defined as the largest
integer for which each line through P intersects B in 1 mod peP point. It can
be proved (e.g. [30]) that the minimum of the (geometric) exponents of the
points in B is equal to e defined above.

Theorem 11.33. [SzPblin] Let B be a blocking set with exponent e. If for a
certain line |` ∩ B| = pe + 1 then GF(pe) is a subfield of GF(q) and ` ∩ B is
GF(pe)-linear.
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Proof: Choose the frame such that ` = LX and (0, 0, 1); (0, 1, 0); (0, 1, 1) ∈
` ∩ B. Consider f = f1, now rNX

(Y, Z) is a homogeneous polynomial of
(total) degree pe + 1, with exponents 0, 1, pe or pe + 1, so of form αY pe+1 +
βY Zpe

+ γY pe
Z + δZpe+1. As rNX

(0, 1) = rNX
(1, 0) = rNX

(1,−1) = 0 we
have rNX

= Y pe
Z − Y Zpe

=
∏

(a,b)∈PG(1,pe)(aY + bZ).

Now we can disclose one of our main goal: to get as close as we can to
the proof of the conjecture that every small blocking set is linear.

By the following proposition, a blocking set with exponent e has a lot of
(pe + 1)-secants (so “nice substructures”). Similar arguments can be found
in [28].

Proposition 11.34. Let P be any point of B with exponent eP .

(1) (Blokhuis) There are at least (q − k + 1)/peP + 1 secant lines through
P .

(2) Through P there are at most 2(k − 1)/peP − 1 long secant lines, i.e.
lines containing more than peP +1 points of B (so at least q/peP −3(k−
1)/peP + 2 (peP + 1)-secants).

(3) There are at most 4k − 2peP − 4 points Q ∈ B \ {P} such that PQ is
a long secant.

(4) There are at least q− 3k+ 2pe + 4 points in B with (point-)exponent e.

Proof: (1) was proved by Blokhuis using lacunary polynomials. To prove
(2) denote by s the number of (peP + 1)-secants through P and let r be the
number of (≥ 2peP + 1)-secants through P . Now speP + 2rpeP + 1 ≤ q + k.
From (1) s+r ≥ (q−k+1)/peP +1, so q/peP − (k−1)/peP +r+1 ≤ s+2r ≤
q/peP +(k−1)/peP hence r ≤ 2(k−1)/peP −1 and s ≥ q/peP − (k−1)/peP +
1− r ≥ q/peP − 3(k − 1)/peP + 2.

For proving (3) subtract the number of points on (peP +1)-secants through
P from |B|, it is ≤ q+ k− (q/peP − 3(k− 1)/peP +2)peP − 1 = 4k− 2peP − 4.
There is at least one point P ∈ B for which eP = e. On the pe + 1-secants
through it (by (2)) we find at least 1+pe(q/pe−3(k−1)/pe +2) points, each
of exponent e, it proves (4).

Recall that there are at least q + 1 − k tangent lines through P , so at
most k secants. We also know from Szőnyi [103] that q/pe + 1 ≤ k ≤
q/pe +q/p2e +2q/p3e + ... Now “almost all” line-intersections of B are GF(pe)-
linear (in fact they are isomorphic to PG(1, pe) in the non-tangent case).
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Corollary 11.35. [SzPblin] For the exponent e of the blocking set, e|h (where
q = ph).

Proof: By Proposition 11.34 B has a lot of short secants. By Theorem
11.33 these intersections are all isomorphic to PG(1, pe), so GF(pe) is a subfield
of GF(ph) = GF(q).

Now we can give a very short proof for Theorem 11.5 in the case when
pe > 13.

Corollary 11.36. [SzPblin] Small blocking sets of Rédei type, with pe > 13,
are linear.

Proof: Suppose LZ is the Rédei-line, O = (0, 0, 1) ∈ B, eO = e, and take
any P ∈ B \ LZ , with eP = e, and any α ∈ GF(pe). Claim: αP (affine
point!) is also in B. If OP is a short secant then it is obvious.

Consider the short secants through P , there are at least q/pe−3(k−1)/pe+

2. Most of them, at least q/pe − 3(k − 1)/pe + 2− 4k−2pe−4
pe−1

≥ q
pe − 7k−3k/pe

pe−1
,

say {`i : i ∈ I}, contain at least two points Q1, Q2 ∈ B, such that OQ1 and
OQ2 are short secants.

For any of them, say `i, take α`i, it contains αP . If all of {α`i : i ∈ I} were

long secants then they would contain at least 2pe( q
pe − 7k−3k/pe

pe−1
) > q+k points

of B, contradiction if pe > 13. Say α` is a short secant, then αP ∈ B ∩ α`
and eαP = e as well.

Let U0 be the set of affine points of B with exponent e. Now we have
that U0 is invariant for magnifications from any center in U0 and with any
scale α ∈ GF(pe), so it forms a vectorspace over GF(pe). As its size is q −
3k+ 2pe + 4 ≤ |U0| ≤ q we have |U0| = q and it contains all the affine points
of B.

Consequences

The bounds for the sizes of small blocking sets are now the following.

Corollary 11.37. Let B be a minimal blocking set of PG(2, q), q = ph, of
size |B| < 3(q + 1)/2. Then there exists an integer e, called the exponent of
B, such that

1 ≤ e|h,
and

q + 1 + ped q/pe+1
pe+1

e ≤ |B| ≤ 1+(pe+1)(q+1)−
√

(1+(pe+1)(q+1))2−4(pe+1)(q2+q+1)

2
.

               dc_637_12



66

If |B| lies in the interval belonging to e and pe 6= 4 then each line intersects
B in 1 modulo pe points. Most of the secants are (pe + 1)-secants, they
intersect B in a point set isomorphic to PG(1, pe).

These bounds are due to Blokhuis, Polverino and Szőnyi, see [86, 103],
and asymptotically they give q+ q

pe− q
p2e + q

p3e−... ≤ |B| ≤ q+ q
pe + q

p2e +2 q
p3e +...

. We note that for q = p2s and q = p3s, where s is a prime, the lower bound
is sharp: |B| ≥ q + q/ps + 1 and |B| ≥ q + q/p2s + 1, resp.

The 1 mod pe property was established by Szőnyi; our Theorem 11.35
shows that only a very few of the intervals of Szőnyi, Blokhuis, Polverino
contain values from the spectrum of blocking sets, i.e. only those with e|h.
The linearity of short secants is Theorem 11.33, on their number see Propo-
sition 11.34.

Let S(q) denote the set of possible sizes of small minimal blocking sets in
PG(2, q).

Corollary 11.38. Let B be a minimal blocking set of PG(n, q), q = ph, with
respect to k-dimensional subspaces, of size |B| < 3

2
(qn−k + 1), and of size

|B| <
√

2qn−k if p = 2. Then

• |B| ∈ S(qn−k);

• if p > 2 then ((|B| − 1)(qn−k)n−2 + 1) ∈ S((qn−k)n−1).

If p > 2 then there exists an integer e, called the exponent of B, such that

1 ≤ e|h,

for which every subspace that intersects B, intersects it in 1 modulo pe points.
Also |B| lies in an interval belonging to some e′ ≤ e, e′|h. Most of the k-
dimensional subspaces intersecting B in more than one point, intersect it in
(pe + 1) points precisely, and each of these (pe + 1)-sets is a collinear point
set isomorphic to PG(1, pe).

Proof: (Sketch.) Most of this was proved by Szőnyi and Weiner in [109].
Consider the line determined by any two points in a (pe + 1)-secant k-
subspace, this line should contain pe + 1 points. Then the technique of
[109] can be used to derive a planar minimal blocking set (in a plane of or-
der qn−k) with the same exponent e: firstly embed PG(n, q) into PG(n, qn−k)
where the original blocking set B becomes a blocking set w.r.t. hyperplanes,
then choose an (n − 3)-dimensional subspace Π ⊂ PG(n, qn−k) not meeting
any of the secant lines of B and project B from Π onto a plane PG(2, qn−k) to
obtain a planar minimal blocking set, for which Theorem 11.33 and Propo-
sition 11.34 can be applied, implying e|h(n− k).
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Now in PG(n+ 1, q) ⊇ PG(n, q) build a cone B∗ with base B and vertex
V ∈ PG(n+ 1, q) \ PG(n, q); then B∗ will be a (small, minimal) blocking set
in PG(n + 1, q) w.r.t. k-dimensional subspaces. The argument above gives
e|h(n+ 1− k), so e | g.c.d.(h(n− k), h(n+ 1− k)) = h.

We remark that one may go on with building the theory for multiple
blocking set. For instance, when B ⊂ PG(2, q) is a double blocking set of
size 2q + k then

R(X,Y, Z) = W F(X, Y, Z) WT ,

where F(X, Y, Z) = (fij(X,Y, Z))3×3. We will not meet this challenge now,
for details see Blokhuis, Lovász, Storme, Szőnyi [28], [SzPmult1], [SzPmult2].

12 Linear point sets and Rédei type k-

blocking sets in PG(n, q)

In this section, k-blocking sets in PG(n, q), being of Rédei type, are inves-
tigated. In this section we do not use polynomials, but this provides the
geometrical background for the parts about (i) blocking sets; (ii) directions;
(iii) linear point sets, so it seemed reasonable to include it here.

A standard method to construct Rédei type k-blocking sets in PG(n, q) is
to construct a cone having as base a Rédei type k′-blocking set in a subspace
of PG(n, q). But also other Rédei type k-blocking sets in PG(n, q), which
are not cones, exist. We give in this section a condition on the parameters
of a Rédei type k-blocking set of PG(n, q = ph), p a prime power, which
guarantees that the Rédei type k-blocking set is a cone. This condition is
sharp.

12.1 Introduction

There is a continuously growing theory on Rédei type blocking sets and
their applications, also on the set of directions determined by the graph of a
function or (as over a finite field every function is) a polynomial; the intimate
connection of these two topics is obvious.

Let’s recall some notation briefly. As usual, we consider PG(n, q) as the
union of AG(n, q) and the ‘hyperplane at infinity’ H∞. A point set in PG(n, q)
is called affine if it lies in AG(n, q), while a subspace of PG(n, q) is called affine
if it is not contained in H∞. So in this sense an affine line has one infinite
point on it. Let θn = |PG(n, q)| = qn+1−1

q−1
= qn + qn−1 + ...+ q + 1.
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A k-blocking set B ⊂ PG(n, q) is a set of points intersecting every (n −
k)-dimensional subspace, it is called trivial if it contains a k-dimensional
subspace. A point b ∈ B is essential if B \ {b} is no longer a k-blocking set
(so there is an (n− k)-subspace L intersecting B in b only, such an (n− k)-
subspace can be called a tangent); B is minimal if all its points are essential.
Note that for n = 2 and k = 1 we get the classical planar blocking sets.

Definition 12.1. We say that a set of points U ⊂ AG(n, q) determines the
direction d ∈ H∞, if there is an affine line through d meeting U in at least two
points. Denote by D the set of determined directions. Finally, let N = |D|,
the number of determined directions.

We will always suppose that |U | = qk. Now we show the connection
between directions and blocking sets:

Proposition 12.2. If U ⊆ AG(n, q), |U | = qk, then U together with the infi-
nite points corresponding to directions in D form a k-blocking set in PG(n, q).
If the set D does not form a k-blocking set of H∞ then all the points of U
are essential.

Proof: Any infinite (n − k)-subspace Hn−k ⊂ H∞ is blocked by D: there
are qk−1 (disjoint) affine (n−k+1)-spaces through Hn−k, and in any of them,
which has at least two points in U , a determined direction of D ∩ Hn−k is
found.

Let Hn−k−1 ⊂ H∞ and consider the affine (n − k)-subspaces through it.
If D∩Hn−k−1 6= ∅ then they are all blocked. If Hn−k−1 does not contain any
point of D, then every affine (n−k)-subspace through it must contain exactly
one point of U (as if one contained at least two then the direction determined
by them would fall into D ∩Hn−k−1), so they are blocked again. So U ∪D
blocks all affine (n− k)-subspaces and all the points of U are essential when
D does not form a k-blocking set in H∞.

Unfortunately in general it may happen that some points of D are non-
essential. If D is not too big (i.e. |D| ≤ qk, similarly to planar blocking sets)
then it is never the case.

Proposition 12.3. If |D| < qn−1−1
qn−k−1−1

, then all the points of D are essential.

Proof: Take any point P ∈ D. The number of (n − k − 1)-subspaces
through P in H∞ is θn−2θn−3...θk

θn−k−2θn−k−3...θ1·1 . Any other Q ∈ D \{P} blocks at most
θn−3...θk

θn−k−3...θ1·1 of them. So some affine (n − k)-subspace through one of those

infinite (n− k − 1)-subspaces containing P only, will be a tangent at P .

               dc_637_12
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The k-blocking set B arising in this way has the property that it meets
a hyperplane in |B| − qk points. On the other hand, if a minimal k-blocking
set of size ≤ 2qk meets a hyperplane in |B| − qk points then, after deleting
this hyperplane, we find a set of points in the affine space determining these
|B| − qk directions, so the following notion is more or less equivalent to a
point set plus its directions: a k-blocking set B is of Rédei type if it meets a
hyperplane in |B|−qk points. We remark that the theory developed by Rédei
in his book [91] is highly related to these blocking sets. Minimal k-blocking
sets of Rédei type are in a sense extremal examples, as for any (non-trivial)
minimal k-blocking set B and hyperplane H, where H intersects B in a set
H ∩B which is not a k-blocking set in H, |B \H| ≥ qk holds.

Since the arising k-blocking set has size qk + |D|, in order to find small
k-blocking sets we will have to look for sets determining a small number of
directions.

Hence the main problem is to classify sets determining few directions,
which is equivalent to classifying small k-blocking sets of Rédei type. A strong
motivation for the investigations is, that in the planar case, A. Blokhuis, S.
Ball, A. Brouwer, L. Storme and T. Szőnyi classified blocking sets of Rédei
type, with size < q + q+3

2
, see Theorem 11.5

We call a Rédei k-blocking set B of PG(n, q) small when |B| ≤ qk +
q+3
2
qk−1 + qk−2 + qk−3 + · · · + q. These small Rédei k-blocking sets will be

studied in detail in the next sections.
It is our goal to study the following problem. A small Rédei k-blocking

set in PG(n, q) can be obtained by constructing a cone with vertex a (k− 2)-
dimensional subspace Πk−2 in PG(n, q) and with base a small Rédei blocking
set in a plane Π′

2 skew to Πk−2.
However, these are not the only examples of small k-blocking sets in

PG(n, q). For instance, the subgeometry PG(2k, q) of PG(n = 2k, q2) is a
small k-blocking set of PG(2k, q2), and this is not a cone.

We give a condition (Theorem 12.15) on the parameters of the small Rédei
k-blocking set in PG(n, q) which guarantees that this small Rédei k-blocking
set is a cone; so that the exact description of this k-blocking set is reduced
to that of the base of the cone.

This condition is also sharp since the k-blocking set PG(2k, q) in
PG(2k, q2) can be used to show that the conditions imposed on n, k and
h in Theorem 12.15 cannot be weakened.

Our results also contribute to the study of linear k-blocking sets in
PG(n, q) discussed by Lunardon [82].

Warning: In the remaining part of this section we always suppose that the
conditions of the “moreover” part of Theorem 11.5 are fulfilled.
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12.2 k-Blocking sets of Rédei type

Proposition 12.4. Let U ⊂ AG(n, q), |U | = qk, and let D ⊆ H∞ be the set
of directions determined by U . Then for any point d ∈ D one can find an
(n− 2)-dimensional subspace W ⊆ H∞, d ∈ W , such that D ∩W blocks all
the (n− k − 1)-dimensional subspaces of W .

The proposition can be formulated equivalently in this way: D is a union
of some B1, ..., Bt, each one of them being a (k−1)-blocking set of a projective
subspace W1, ...,Wt resp., of dimension n− 2, all contained in H∞.

Proof: The proof goes by induction; for any point d ∈ D we find a series
of subspaces S1 ⊂ S2 ⊂ ... ⊂ Sn−1 ⊂ AG(n, q), dim(Sr) = r such that sr =
|Sr ∩ U | ≥ qk−n+r + 1 and d is the direction determined by S1. Then, using
the pigeon hole principle, after the r-th step we know that all the (n−k−1)-
dimensional subspaces of Sr ∩H∞ are blocked by the directions determined
by points in Sr, as there are qk−n+r disjoint affine (n− k)-subspaces through
any of them in Sr, so at least one of them contains 2 points of U ∩ Sr.

For r = 1 it is obvious as d is determined by at least 2 = q0+1 ≥ qk−n+1+1
points of some line S1. Then for r + 1 consider the qn−r−1

q−1
subspaces of

dimension r + 1 through Sr, then at least one of them contains at least

sr +
qk − sr

qn−r−1
q−1

= qk+1−n+r +
(sr − qk−n+r)(qn−r − q)

qn−r − 1
> qk+1−n+r

points of U .

Corollary 12.5. For k = n−1 it follows that D is the union of some (n−2)-
dimensional subspaces of H∞.

This corollary became important in the applications. E.g. in the nice
paper Alderson-Gács[1], this became a key lemma for proving that if a linear
code is extendible then it is extendible in a linear way as well.

Observation 12.6. A projective triangle in PG(2, q), q odd, is a block-
ing set of size 3(q + 1)/2 projectively equivalent to the set of points
{(1, 0, 0), (0, 1, 0), (0, 0, 1), (0, 1, a0), (1, 0, a1), (−a2, 1, 0)}, where a0, a1, a2 are
non-zero squares [65, Lemma 13.6]. The sides of the triangle defined by
(1, 0, 0), (0, 1, 0), (0, 0, 1) all contain (q + 3)/2 points of the projective trian-
gle, so it is a Rédei blocking set.

A cone, with a (k−2)-dimensional vertex at H∞ and with the q points of
a planar projective triangle, not lying on one of those sides of the triangle, as
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a base, has qk affine points and it determines q+3
2
qk−1+qk−2+qk−3+ ...+q+1

directions.

Lemma 12.7. Let U ⊂ AG(n, q), |U | = qn−1, and let D ⊆ H∞ be the set
of directions determined by U . If Hk ⊆ H∞ is a k-dimensional subspace
not completely contained in D then each of the affine (k + 1)-dimensional
subspaces through it intersects U in exactly qk points.

Proof: There are qn−1−k mutually disjoint affine (k + 1)-dimensional sub-
spaces through Hk. If one contained less than qk points from U then some
other would contain more than qk points (as the average is just qk), which
would imply by the pigeon hole principle that Hk ⊆ D, contradiction.

Theorem 12.8. Let U ⊂ AG(n, q), |U | = qn−1, and let D ⊆ H∞ be the set of
directions determined by U . Suppose |D| ≤ q+3

2
qn−2+qn−3+qn−4+...+q2+q.

Then for any affine line ` either (i) |U ∩ `| = 1 (iff ` ∩ H∞ 6∈ D), or (ii)
|U ∩ `| ≡ 0 (mod pe) for some e = e`|h.

(iii) Moreover, in the second case the point set U ∩ ` is GF(pe)-linear, so
if we consider the point at infinity p∞ of `; two other affine points p0 and
p1 of U ∩ `, with p1 = p0 + p∞, then all points p0 + xp∞, with x ∈ GF (pe),
belong to U ∩ `.

Proof: (i) A direction is not determined iff each affine line through it con-
tains exactly one point of U . (ii) Let |U ∩ `| ≥ 2, d = ` ∩H∞. Then, from
Corollary 12.5, there exists an (n− 2)-dimensional subspace H ⊂ D, d ∈ H.
There are qn−2 lines through d in H∞ \ H, so at least one of them has at
most

≤ |D| − |H|
qn−2

≤
q+1
2
qn−2 − 1

qn−2
=
q + 1

2
− 1

qn−2

points of D, different from d. In the plane spanned by this line and ` we
have exactly q points of U , determining less than q+3

2
directions. So we can

use Theorem 11.5 for (ii) and (iii).

Corollary 12.9. Under the hypothesis of the previous theorem, U is a
GF(pe)-linear set for some e|h.

Proof: Take the greatest common divisor of the values e` appearing in the
theorem for each affine line ` with more than one point in U .
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The preceding result also means that for any set of affine points (‘vec-
tors’) {a1, a2, ..., at} in U , and c1, c2, ..., ct ∈ GF (pe),

∑t
i=1 ci = 1, we have∑t

i=1 ciai ∈ U as well. This is true for t = 2 by the corollary, and for t > 2
we can combine them two by two, using induction, like

c1a1 + ...+ ctat =

(c1 + · · ·+ ct−1)

(
c1

c1 + · · ·+ ct−1

a1 + · · ·+ ct−1

c1 + · · ·+ ct−1

at−1

)
+ ctat,

where c1 + ...+ ct = 1.

Theorem 12.10. Let U ⊂ AG(n, q), |U | = qk, and let D ⊆ H∞ be the set
of directions determined by U . If |D| ≤ q+3

2
qk−1 + qk−2 + ... + q2 + q, then

any line ` intersects U either in one point, or |U ∩ `| ≡ 0 (mod pe), for some
e = e`|h. Moreover, the set U ∩ ` is GF(pe)-linear.

Proof: If k = n − 1, then the previous theorem does the job, so suppose
k ≤ n−2. Take a line ` intersecting U in at least 2 points. There are at most
qk − 2 planes joining ` to the other points of U not on `; and their infinite
points together with D cover at most qk+1+ 1

2
qk + ... points of H∞, so they do

not form a (k+1)-blocking set in H∞. Take any (n−k−2)-dimensional space
Hn−k−2 not meeting any of them, then the projection π of U∪D from Hn−k−2

to any ‘affine’ (k+1)-subspace Sk+1 is one-to-one between U and π(U); π(D)
is the set of directions determined by π(U), and the line π(`) contains the
images of U ∩ ` only (as Hn−k−2 is disjoint from the planes spanned by ` and
the other points of U not on `). The projection is a small Rédei k-blocking
set in Sk+1, so, using the previous theorem, π(U ∩`) is GF(pe)-linear for some
e|h. But then, as the projection preserves the cross-ratios of quadruples of
points, the same is true for U ∩ `.

Corollary 12.11. Under the hypothesis of the previous theorem, U is a
GF(pe)-linear set for some e|h.

Proof: Let e be the greatest common divisor of the values e` appearing in
the preceding theorem for each affine line with more than one point in U .

12.3 Linear point sets in AG(n, q)

First we generalize Lemma 12.7.
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12. LINEAR POINT SETS, RÉDEI TYPE K-BLOCKING SETS 73

Proposition 12.12. Let U ⊂ AG(n, q), |U | = qk, and let D ⊆ H∞ be the set
of directions determined by U . If Hr ⊆ H∞ is an r-dimensional subspace,
and Hr ∩ D does not block every (n − k − 1)-subspace of Hr then each of
the affine (r + 1)-dimensional subspaces through Hr intersects U in exactly
qr+k+1−n points.

Proof: There are qn−1−r mutually disjoint affine (r + 1)-dimensional sub-
spaces through Hr. If one contained less than qr+k+1−n points from U then
some other would contain more than qr+k+1−n points (as the average is just
qr+k+1−n), which would imply by the pigeon hole principle that Hr∩D would
block all the (n− k − 1)-dimensional subspaces of Hr, contradiction.

Lemma 12.13. Let U ⊆ AG(n, ph), p > 2, be a GF(p)-linear set of points. If
U contains a complete affine line ` with infinite point v, then U is the union
of complete affine lines through v (so it is a cone with infinite vertex, hence
a cylinder).

Proof: Take any line `′ joining v and a point Q′ ∈ U \ `, we prove that
any R′ ∈ `′ is in U . Take any point Q ∈ `, let m be the line Q′Q, and take
a point Q0 ∈ U ∩ m (any affine combination of Q and Q′ over GF(p); see
paragraph after the proof of Corollary 12.9). Now the cross-ratio of Q0, Q

′, Q
(and the infinite point of m) is in GF(p). Let R := ` ∩ Q0R

′, so R ∈ U . As
the cross-ratio of Q0, R

′, R, and the point at infinity of the line R′R, is still
in GF(p), it follows that R′ ∈ U . Hence `′ ⊂ U .

Lemma 12.14. Let U ⊆ AG(n, ph) be a GF(p)-linear set of points. If |U | >
pn(h−1) then U contains a line.

Proof: The proof goes by double induction (the ‘outer’ for n, the ‘inner’
for r). The statement is true for n = 1. First we prove that for every
0 ≤ r ≤ n − 1, there exists an affine subspace Sr, dimSr = r, such that it
contains at least |Sr ∩ U | = sr ≥ phr−n+2 points. For r = 0, let S0 be any
point of U . For any r ≥ 1, suppose that each r-dimensional affine subspace
through Sr−1 contains at most phr−n+1 points of U , then

phn−n+1 ≤ |U | ≤ phn − ph(r−1)

phr − ph(r−1)
(phr−n+1 − sr−1) + sr−1 ≤

≤ phn − ph(r−1)

phr − ph(r−1)
(phr−n+1 − ph(r−1)−n+2) + ph(r−1)−n+2.
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But this is false, contradiction.
So in particular for r = n−1, there exists an affine subspace Sr containing

at least |Sr ∩ U | ≥ ph(n−1)−n+2 points of U . But then, from the (n − 1)-st
(‘outer’) case we know that Sn−1 ∩ U contains a line.

Now we state the main theorem of this section. We assume p > 3 to be
sure that Theorem 11.5 can be applied.

Theorem 12.15. Let U ⊂ AG(n, q), n ≥ 3, |U | = qk. Suppose U determines
|D| ≤ q+3

2
qk−1 + qk−2 + qk−3 + ...+ q2 + q directions and suppose that U is a

GF(p)-linear set of points, where q = ph, p > 3.
If n−1 ≥ (n−k)h, then U is a cone with an (n−1−h(n−k))-dimensional

vertex at H∞ and with base a GF(p)-linear point set U(n−k)h of size q(n−k)(h−1),
contained in some affine (n− k)h-dimensional subspace of AG(n, q).

Proof: It follows from the previous lemma (as in this case |U | = phk ≥
pn(h−1)+1) that U = Un is a cone with some vertex V0 = v0 ∈ H∞. The base
Un−1 of the cone, which is the intersection with any hyperplane disjoint from
the vertex V0, is also a GF(p)-linear set, of size qk−1. Since U is a cone with
vertex V0 ∈ H∞, the set of directions determined by U is also a cone with
vertex V0 in H∞. Thus, if U determines N directions, then Un−1 determines
at most (N − 1)/q ≤ q+3

2
qk−2 + qk−3 + qk−4 + ... + q2 + q directions. So if

h ≤ (n−1)−1
(n−1)−(k−1)

then Un−1 is also a cone with some vertex v1 ∈ H∞ and with

some GF(p)-linear base Un−2, so in fact U is a cone with a one-dimensional
vertex V1 = 〈v0, v1〉 ⊂ H∞ and an (n− 2)-dimensional base Un−2, and so on;
before the r-th step we have Vr−1 as vertex and Un−r, a base in an (n − r)-
dimensional space, of the current cone (we started “with the 0-th step”).

Then if h ≤ (n−r)−1
(n−r)−(k−r)

, then we can find a line in Un−r and its infinite point
with Vr−1 will generate Vr and a Un−1−r can be chosen as well. When there
is equality in h ≤ (n−r)−1

(n−r)−(k−r)
, so when r = n − (n − k)h − 1, then the final

step results in U(n−k)h and Vn−1−h(n−k).

The previous result is sharp as the following proposition shows.

Proposition 12.16. In AG(n, q = ph), for n ≤ (n− k)h, there exist GF(p)-
linear sets U of size qk containing no affine line.

Proof: For instance, AG(2k, p) in AG(2k, p2) for which n = 2k = (n−k)h =
(2k − k)2.

More generally, write hk = d1 + d2 + ...+ dn, 1 ≤ di ≤ h− 1 (i = 1, ..., n)
in any way. Let Ui be a GF(p)-linear set contained in the i-th coordinate
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axis, O ∈ Ui, |Ui| = pdi (i = 1, ..., n). Then U = U1×U2× ...×Un is a proper
choice for U .

13 Stability

We start with a result of [SzPdpow], which is a generalization of the main
result of [104]. Let D be a set of directions in AG(2, q). A set U ⊂ AG(2, q)
is called a D-set if U determines precisely the directions belonging to D.

Theorem 13.1. Let U be a D-set of AG(2, q) consisting of q−ε points, where
ε ≤ α

√
q and |D| < (q + 1)(1− α), 1/2 ≤ α ≤ 1. Then U is incomplete, i.e.

it can be extended to a D-set Y with |Y | = q.

The proof is based on Lemma 8.9, we omit the details here.
Comparing this to Theorem 11.5 one can see that if U ⊂ AG(2, q) deter-

mines N ≤ q+1
2

directions and U is of size q − ε, with ε small then still we
know the structure of U .

The analogue of Theorem 13.1 is the following version of the results of
[SzPnuc2, 37]:

Theorem 13.2. Let U ⊂ AG(2, q) be a point set of size |U | = q + ε, where
ε ≤ α

√
q−1 and 1

2
+ 1

4
√

q
≤ α ≤ 1. Suppose that there are more than α(q+1)

points on `∞, through which every affine line contains at least one point of
U (kind of “nuclei” at infinity); let the complement of this point set on `∞
be called D. Then one can find ε points of U , such that deleting them the
remaining q points will still block all the affine lines through the points of
`∞ \D.

Proof: Let U = {(ai, bi) : i = 1, ..., q + ε}, suppose (∞) ∈ D. Define the
Rédei polynomial of U as

R(X, Y ) =

q+ε∏
i=1

(X + aiY − bi) =

q+ε∑
j=0

rj(Y )Xq+ε−j.

Then deg(rj) ≤ j. Let Ry(X) = R(X, y), then (Xq − X)|Ry if and only if
GF(q) ⊂ A(y) = {−aiy + bi : i = 1, ..., q + ε} for the multiset A(y), that is,
when (y) 6∈ D. Similarly, let A(Y ) = {−aiY + bi : i = 1, ..., q + ε}, a set
of linear polynomials. In this case let σj = σj(A(y)) be the j-th elementary
symmetric polynomial of the elements inA(y), and σ̄j = σ̄j(A(y)) = σj(A(y)\
GF(q)) be the j-th elementary symmetric polynomial of the “extra” elements.
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Note that σj = (−1)jrj, and like in Section 9, we have σ̄j = σj, and we can
define

σ̄j(Y )
def
= σj(Y ) = (−1)jrj(Y ).

Define the polynomial f(X, Y ) = Xε − σ̄1X
ε−1 + σ̄2X

ε−2 − +... + (−1)εσ̄ε.
Here f is of total degree ε and if (y0) 6∈ D then R(X, y0) = (Xq−X)f(X, y0).
For such y0-s, we have

f(X, y0) =
∏

β∈Ay0\GF(q)

(X − β),

so the curve F defined by f(X, Y ) = 0 has precisely ε distinct simple points
(x, y0). So F has at least

N ≥ (q + 1− |D|)ε > (q + 1)αε

simple points in PG(2, q).
Now, using Lemma 8.9 with the same α, we have that F has a linear

component X+aY −b over GF(q). Then −ay+b has multiplicity at least two
in A(y) if (y) 6∈ D. Now (Xq−X)(X+ay−b) divides R(X, y) for all (y) 6∈ D,
as R(X, y) = (Xq −X)f(X, y) and (X + aY − b)|f(X, Y ). Suppose that the
point (a, b) 6∈ U . Then counting the points of U on the lines connecting (a, b)
to the points of `∞ \D, we find at least 2|`∞ \D| ≥ q+1+ ε points (at least
2 on each), a contradiction. Hence (a, b) ∈ U , and one can delete (a, b) from
U . Repeating this procedure we end up with a set consisting of q points and
still not determining any direction in `∞ \D.

Usually it is difficult to prove that, when one finds the “surplus” ele-
ment(s), then they can be removed, i.e. they were there in the original set.
Here the “meaning” of a non-essential point (i.e. each line through it is an
≥ 2-secant) helped.

* * *
We finish this subsection with a general statement on the stability of

point sets. (Compare this to the beginning of Section 10.)

Result 13.3. If S1, S2 ⊆ PG(2, q) are two point sets, with characteristic
vectors vS1 ,vS2 and weight (or line-intersection) vectors mS1 = AvS1 ,mS2 =
AvS2, (where A is the incidence matrix of the plane) then

||mS1 −mS2||2 = (|S1| − |S2|)2 + q · |S1 4 S2|

where ||x|| =
√∑

x2
i and 4 denotes symmetric difference.

Note that it means that the (Euclidean) distance of the line-intersection
vectors of any two point sets is at least

√
q, so in this sense every point set

is “stable”.
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13.1 Partial flocks of the quadratic cone in PG(3, q)

A flock of the quadratic cone of PG(3, q) is a partition of the points of the cone
different from the vertex into q irreducible conics. Associated with flocks are
some elation generalised quadrangles of order (q2, q), line spreads of PG(3, q)
and, when q is even, families of ovals in PG(2, q), called herds. In [98] Storme
and Thas remark that this idea can be applied to partial flocks, obtaining a
correspondence between partial flocks of order k and (k+2)-arcs of PG(2, q),
and constructing herds of (k + 2)-arcs. Using this correspondence, they can
prove that, for q > 2 even, a partial flock of size > q−√q− 1 if q is a square

and > q −
√

2
√
q if q is a nonsquare, is extendable to a unique flock.

Applying this last result, Storme and Thas could give new and shorter
proofs of some known theorems, e.g., they can show directly that if the planes
of the flock have a common point, then the flock is linear (this originally was
proved by Thas relying on a theorem by D. G. Glynn on inversive planes,
and is false if q is odd).

Here we prove the following

Theorem 13.4. [SzPflock] Assume that the planes Ei, i = 1, ..., q−ε intersect
the quadratic cone C ⊂ PG(3, q) in disjoint irreducible conics. If ε < 1

4
(1 −

1
q+1

)
√
q then one can find additional ε planes (in a unique way), which extend

the set {Ei} to a flock.

Proof: Let C be the quadratic cone C = {(1, t, t2, z) : t, z ∈ GF(q)} ∪
{(0, 0, 1, z) : z ∈ GF(q)} ∪ {(0, 0, 0, 1)} and C∗ = C \ {(0, 0, 0, 1)}. Suppose
that the planes Ei intersect C∗ in disjoint conics, and Ei has the equation
X4 = aiX1 + biX2 + ciX3, for i = 1, 2, ..., q − ε.

Define fi(T ) = ai + biT + ciT
2, then Ei ∩ C∗ = {(1, t, t2, fi(t)) : t ∈

GF(q)}∪{(0, 0, 1, ci)}. Let σk(T ) = σk({fi(T ) : i = 1, ..., q−ε}) denote the i-
th elementary symmetric polynomial of the polynomials fi, then degT (σk) ≤
2k. As for any fixed T = t ∈ GF(q) the values fi(t) are all distinct, we would
like to find

Xq −X∏
i(X − fi(t))

,

the roots of which are the missing values GF(q) \ {fi(t) : i = 1, ..., q − ε}.
We are going to use the technique of Section 9. In order to do so, we define

the elementary symmetric polynomials σ∗j (t) of the “missing elements” with
the following formula:
Xq −X =(
Xq−ε−σ1(t)X

q−ε−1+σ2(t)X
q−ε−2−...±σq−ε(t)

)(
Xε−σ∗1(t)Xε−1+σ∗2(t)X

ε−2−...±σ∗ε(t)
)
;
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from which σ∗j (t) can be calculated recursively from the σk(t)-s, as the coeffi-
cient of Xq−j, j = 1, ..., q− 2 is 0 = σ∗j (t) + σ∗j−1(t)σ1(t) + ...+ σ∗1(t)σj−1(t) +
σj(t); for example

σ∗1(t) = −σ1(t); σ∗2(t) = σ1(t)
2−σ2(t); σ∗3(t) = −σ1(t)

3+2σ1(t)σ2(t)−σ3(t);

etc. Note that we do not need to use all the coefficients/equations, it is
enough to do it for j = 1, ..., ε.

Using the same formulae, obtained from the coefficients of Xq−j, j =
1, ..., ε, one can define the polynomials

σ∗1(T )=−σ1(T );σ∗2(T )=σ1(T )2−σ2(T );σ∗3(T )=−σ1(T )3+2σ1(T )σ2(T )−σ3(T );
(1)

up to σ∗ε . Note that degT (σ∗j ) ≤ 2j. From the definition(
Xq−ε−σ1(T )Xq−ε−1+...±σq−ε(T )

)(
Xε−σ∗1(T )Xε−1+σ∗2(T )Xε−2−...±σ∗ε(T )

)
is a polynomial, which is Xq −X for any substitution T = t ∈ GF(q), so it is
Xq −X + (T q − T )(...). Now define

G(X,T ) = Xε − σ∗1(T )Xε−1 + σ∗2(T )Xε−2 − ...± σ∗ε(T ), (2)

from the recursive formulae it is a polynomial in X and T , of total degree
≤ 2ε and X-degree ε.

For any T = t ∈ GF(q) the polynomial G(X, t) has ε roots in GF(q) (i.e.
the missing elements GF(q) \ {fi(t) : i = 1, ..., q − ε}), so the algebraic curve
G(X,T ) has at least N ≥ εq distinct points in GF(q)× GF(q). Suppose that
G has no component (defined over GF(q)) of degree ≤ 2. Let’s apply the
Lemma with d = 2 and α < 1

2
(1− 1

q+1
); (as 2ε ≤ α

√
q) we have

εq ≤ N ≤ 2ε(q + 1)α,

which is false, so G = G1G2, where G1 is an irreducible factor over GF(q)
of degree at most 2. If degX G1 = 2 then degX G2 = ε − 2, which means
that G1 has at most q + 1 and G2 has at most (ε − 2)q distinct points in
GF(q) × GF(q) (at most ε − 2 for each T = t ∈ GF(q)), contradiction (as G
has at least εq).

Both G1 and G2, expanded by the powers of X, are of leading coefficient
1. So G1 is of the form G1(X,T ) = X − fq−ε+1(T ), where fq−ε+1(T ) =
aq−ε+1 + bq−ε+1T + cq−ε+1T

2. Let the plane Eq−ε+1 be defined by X4 =
aq−ε+1X1 + bq−ε+1X2 + cq−ε+1X3.

The plane Eq−ε+1 intersects C∗ in {(1, t, t2, fq−ε+1(t)) : t ∈ GF(q)} ∪
{(0, 0, 1, cq−ε+1)}. Now we prove that for any t ∈ GF(q) the points
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{(1, t, t2, fi(t)) : i = 1, ..., q − ε} and (1, t, t2, fq−ε+1(t)), in other words, the
values f1(t), ..., fq−ε(t); fq−ε+1(t) are all distinct. But this is obvious from(
Xq−ε−σ1(t)X

q−ε−1 +σ2(t)X
q−ε−2− ...±σq−ε(t)

)(
X−fq−ε+1(t)

)
| Xq−X.

Now one can repeat all this above and get fq−ε+2, ..., fq, so we have

G(X,T ) =

q∏
qε+1

(X − fi(T ))

and the values fi(t), i = 1, ..., q are all distinct for any t ∈ GF(q). The only
remaining case is “t = ∞”: we have to check whether the intersection points
Ei∩C∗ on the plane at infinityX1 = 0, i.e. the values c1, ..., cq−ε︸ ︷︷ ︸

Γ

; cq−ε+1, ..., cq︸ ︷︷ ︸
Γ∗

are all distinct (for Γ we know it). (Note that if q planes partition the affine
part of C∗ then this might be false for the infinite part of C∗.) From (1),
considering the leading coefficients in each defining equality, we have

σ1(Γ
∗) =−σ1(Γ); σ2(Γ

∗) = σ1(Γ)2−σ2(Γ); σ3(Γ
∗) =−σ1(Γ)3+2σ1(Γ)σ2(Γ)−σ3(Γ);

etc., so

Xq − X =
(
Xq−ε − σ1(Γ)Xq−ε−1 + σ2(Γ)Xq−ε−2 − ...σq−ε(Γ)

)(
Xq−ε −

σ1(Γ
∗)Xq−ε−1+ σ2(Γ

∗)Xq−ε−2− ...σq−ε(Γ
∗)
)
, which completes the proof.

In the prime case one can prove a better bound:

Result 13.5. If q = p is a prime then in Theorem 13.4 the condition ε < 1
4

√
q

can be changed for the weaker ε < 1
40
p+ 1 (so the result is much stronger).

Using a similar method one can prove an “upper stability” result:

Result 13.6. Assume that the planes Ei, i = 1, ..., q+ε intersect the quadratic
cone C ⊂ PG(3, q) in disjoint irreducible conics that cover the cone minus its
vertex. If ε < 1

4
(1 − 1

q+1
)
√
q then one can find ε planes (in a unique way),

such that if you remove the points of the irreducible conics, in which these ε
planes intersect C, from the multiset of the original cover then every point
of C (except the vertex) will be covered precisely once.

13.2 Partial flocks of cones of higher degree

Using the method above one can prove a more general theorem on flocks of
cylinders with base curve (1, T, T d). This is from [SzPflhigh].
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Theorem 13.7. For 2 ≤ d ≤ 6
√
q consider the cone {(1, t, td, z) : t, z ∈

GF(q)}∪{(0, 0, 1, z) : z ∈ GF(q)}∪{(0, 0, 0, 1)} = C ⊂ PG(3, q) and let C∗ =
C \ {(0, 0, 0, 1)}. Assume that the planes Ei, i = 1, ..., q− ε, Ei 63 (0, 0, 0, 1),
intersect C∗ in pairwise disjoint curves. If ε < b 1

d2

√
qc then one can find

additional ε planes (in a unique way), which extend the set {Ei} to a flock,
(i.e. q planes partitioning C∗).

The proof (see below) starts like in the quadratic case. We could have
indicated the modifications only; then the text would be one or two pages
shorter but possibly more complicated. We did not want to omit the original
(quadratic) proof either because of its compactness; we ask for the reader’s
understanding and mercy. Using elementary symmetric polynomials we find
an algebraic curve G(X, Y ), which “contains” the missing planes in some
sense. The difficulties are (i) to show that G splits into ε factors, and (ii)
to show that each of these factors corresponds to a missing plane. For (i)
we use our Lemma 8.9. For (ii) we have to show that most of the possible
terms of such a factor do not occur, which needs a linear algebra argument
on a determinant with entries being elementary symmetric polynomials; this
matrix may be well-known but the author could not find a reference for it.
Proof of Theorem 13.7. Suppose that the plane Ei has the equation
X4 = aiX1 + biX2 + ciX3, for i = 1, 2, ..., q − ε.

Define fi(T ) = ai+biT+ciT
d, then Ei∩C = {(1, t, td, fi(t)) : t ∈ GF(q)}∪

{(0, 0, 1, ci)}. Let σk(T ) = σk({fi(T ) : i = 1, ..., q − ε}) denote the k-th
elementary symmetric polynomial of the polynomials fi, then degT (σk) ≤ dk.

We proceed as in the quadratic case and so we define the polynomials

σ∗1(T )=−σ1(T ); σ∗2(T )= σ1(T )2−σ2(T ); σ∗3(T )=−σ1(T )3+2σ1(T )σ2(T )−σ3(T ); ...
(1∗)

up to σ∗ε . Note that degT (σ∗j ) ≤ dj. From the definition(
Xq−ε−σ1(T )Xq−ε−1+...±σq−ε(T )

)(
Xε−σ∗1(T )Xε−1+σ∗2(T )Xε−2−...±σ∗ε(T )

)
is a polynomial, which is Xq −X for any substitution T = t ∈ GF(q), so it is
of the form Xq −X + (T q − T )(...). Now define

G(X,T ) = Xε − σ∗1(T )Xε−1 + σ∗2(T )Xε−2 − ...± σ∗ε(T ), (2)

from the recursive formulae it is a polynomial in X and T , of total degree
≤ dε and X-degree ε.

For any T = t ∈ GF(q) the polynomial G(X, t) has ε roots in GF(q) (i.e.
the missing elements GF(q) \ {fi(t) : i = 1, ..., q − ε}), so the algebraic curve
G(X,T ) has at least N ≥ εq distinct points in GF(q)×GF(q). Suppose that G
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has no component (defined over GF(q)) of degree ≤ d. Let’s apply the Lemma

with a suitable 1
d+1

+
1+d(d−1)

√
q

(d+1)q
≤ α < 1

d
, n = degG ≤ dε ≤ 1

d

√
q − d + 3

2
,

we have

εq ≤ N ≤ dεqα < εq,

which is false, so G = H1G1, where H1 is an irreducible factor over GF(q) of
degree at most d. If degX H1 = dX ≥ 2 then degX G1 = ε−dX , which means
that H1 has at most q+1+(dX−1)(dX−2)

√
q and G1 has at most (ε−dX)q

distinct points in GF(q)×GF(q) (at most ε− dX for each T = t ∈ GF(q)), so
in total G has

εq ≤ N ≤ (ε− dX + 1)q + 1 + (dX − 1)(dX − 2)
√
q,

a contradiction if 2 ≤ dX ≤ √
q + 1, so degX H1 = 1.

One can suppose w.l.o.g. that bothH1 and G1, expanded by the powers of
X, are of leading coefficient 1. SoH1 is of the formH1(X,T ) = X−fq−ε+1(T ),
where

fq−ε+1(T ) = aq−ε+1 + bq−ε+1T + cq−ε+1T
d + δq−ε+1(T ),

where δq−ε+1(T ) is an “error polynomial” with terms of degree between 2
and d− 1. At the end of the proof we will show that δq−ε+1 and other error
polynomials are zero.

Now one can repeat everything for G1, which has at least (ε−1)q distinct
points in GF(q) × GF(q) (as H1 has exactly q and H1G1 has at least εq).
The similar reasoning gives G1 = H2G2, where H2(X,T ) = X − fq−ε+2(T )
with fq−ε+2(T ) = aq−ε+2 + bq−ε+2T + cq−ε+2T

d + δq−ε+2(T ). Going on we get
fq−ε+3, ..., fq (where for j = q− ε+1, ..., q we have fj(T ) = aj + bjT + cjT

d +
δj(T ), where δj(T ) contains terms of degree between 2 and (d − 1) only).
Hence

G(X,T ) =

q∏
q−ε+1

(X − fi(T )).

For any t ∈ GF(q) the values f1(t), ..., fq(t) are all distinct, this is obvious
from(

Xq−ε−σ1(t)X
q−ε−1+σ2(t)X

q−ε−2− ...±σq−ε(t)
)(

(X−fq−ε+1(t))...(X−

fq(t))
)

= Xq −X.

For j = q− ε+1, ..., q let the plane Ej be defined by X4 = ajX1 + bjX2 +
cjX3. We are going to prove that {Ej : j = 1, ..., q} is a flock.

First we check the case “t = ∞”: we have to check whether the in-
tersection points Ei ∩ C on the plane at infinity X1 = 0, i.e. the values

               dc_637_12



82

c1, ..., cq−ε︸ ︷︷ ︸
Γ

; cq−ε+1, ..., cq︸ ︷︷ ︸
Γ∗

are all distinct (for Γ we know it). (Note that even

if q planes partition the affine part of C∗ then this might be false for the
infinite part of C∗.) From (1∗), considering the leading coefficients in each
defining equality, we have

σ1(Γ
∗)=−σ1(Γ); σ2(Γ

∗)= σ1(Γ)2−σ2(Γ); σ3(Γ
∗)=−σ1(Γ)3+2σ1(Γ)σ2(Γ)−σ3(Γ);

etc., so

Xq − X =
(
Xq−ε− σ1(Γ)Xq−ε−1 + σ2(Γ)Xq−ε−2− ... ± σq−ε(Γ)

)(
Xε−

σ1(Γ
∗)Xε−1+ σ2(Γ

∗)Xε−2− ...± σq−ε(Γ
∗)
)
,

which we wanted to prove.
Now we want to get rid of the δj’s, i.e. we are going to prove that

δq−ε+1, ..., δq = 0. Let s be the maximal T -exponent appearing in any of
δq−ε+1, ..., δq, so each δj(T ) = djT

s + ... (for j = q − ε+ 1, ..., q; also 2 ≤ s ≤
d− 1 and there exists a dj 6= 0). In the equation
G(X,T ) = Xε − σ∗1(T )Xε−1 + σ∗2(T )Xε−2 − ...± σ∗ε(T ) =

ε∏
i=1

(X − aq−ε+i − bq−ε+iT − cq−ε+iT
d − δq−ε+i(T )),

the coefficient of Xε−jT d(j−1)+s, j = 1, ..., ε is zero on the left hand side (i.e.
the coefficient of T d(j−1)+s in σ∗j , it can be seen by induction from (1∗) for
instance), and it is

σj−1(Γ
∗\{cq−ε+1})dq−ε+1 + σj−1(Γ

∗\{cq−ε+2})dq−ε+2 +...+ σj−1(Γ
∗\{cq})dq

on the right hand side. Hence we have a system of homogeneous linear
equations for dq−ε+1, ..., dq with the elementary symmetric determinant∣∣∣∣∣∣∣∣∣∣∣

1 1 ... 1
σ1(Γ

∗ \ {cq−ε+1}) σ1(Γ
∗ \ {cq−ε+2}) ... σ1(Γ

∗ \ {cq})
σ2(Γ

∗ \ {cq−ε+1}) σ2(Γ
∗ \ {cq−ε+2}) ... σ2(Γ

∗ \ {cq})
...

σε−1(Γ
∗ \ {cq−ε+1}) σε−1(Γ

∗ \ {cq−ε+2}) ... σε−1(Γ
∗ \ {cq})

∣∣∣∣∣∣∣∣∣∣∣
=

∏
1≤i<j≤ε(cq−ε+i− cq−ε+j), which is non-zero as the ci’s are pairwise distinct.

Hence the unique solution is dq−ε+1, ..., dq = 0 and fj(T ) = aj + bjT + cjT
d

for each j = 1, ..., q.
Our final and the last missing argument we need is that for j = 1, ..., q

the plane Ej intersects C in {(1, t, td, fj(t)) : t ∈ GF(q)} ∪ {(0, 0, 1, cj)}, so
these intersections are pairwise disjoint, E1, ..., Eq is a flock of C.
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14 On the structure of non-determined direc-

tions

14.1 Introduction

This section is based on [SzPdirec]. Recall that given a point set U ⊂
AG(n, q) ⊂ PG(n, q), a direction, i.e. a point t ∈ H∞ = PG(n, q) \AG(n, q) is
determined by U if there is an affine line through t which contains at least 2
points of U . Note that if |U | > qn−1 then every direction is determined.

Especially in the planar case, many results on extendability of affine point
sets not determining a given set of directions are known. Let’s recall the
following theorem from [104].

Theorem 14.1. Let U ⊆ AG(2, q) be a set of affine points of size q − ε
with ε <

√
q/2, which does not determine a set D of more than (q + 1)/2

directions. Then U can be extended to a set of size q, not determining the
set D of directions.

An extendability result known for general dimension is the following.
Originally, it was proved in [50] for n = 3. A proof for general n can be
found in [9].

Theorem 14.2. Let q = ph, p an odd prime and h > 1, and let U ⊆ AG(n, q),
n ≥ 3, be a set of affine points of size qn−1 − 2, which does not determine a
set D of at least p+ 2 directions. Then U can be extended to a set of size q,
not determining the set D of directions.

The natural question is whether Theorem 14.2 can be improved in the
sense that extendability of sets of size qn−1−ε is investigated, for ε > 2, pos-
sibly with stronger assumptions on the number of non-determined directions.
This general question seems to be hard for n ≥ 3, and up to our knowledge,
no other result different from Theorem 14.2 is known for n ≥ 3.

In this section, we investigate affine point sets of size qn−1−ε, for arbitrary
ε, where the strongest results are obtained when ε is small. Instead of formu-
lating an extendability result in terms of the number of non-determined direc-
tions, we formulate it in terms of the structure of the set of non-determined
directions. Finally, we add a section with an application of the obtained
theorem.

14.2 The main result

As usual, a point of PG(n, q) is represented by a homogenous (n + 1)-tuple
(a0, a1, ..., an) 6= (0, 0, . . . , 0). A hyperplane is the set of points whose coor-
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dinates satisfy a linear equation

a0X0 + a1X1 + · · ·+ anXn = 0

and so hyperplanes are represented by homogeneous (n + 1)-tuples
[a0, a1, ..., an] 6= [0, 0, . . . , 0]. Embed the affine space AG(n, q) in PG(n, q)
such that the hyperplane X0 = 0, i.e. the hyperplane with coordinates
[1, 0, . . . , 0] is H∞, the hyperplane at infinity of AG(n, q). Then the points of
AG(n, q) will be coordinatized as (1, a1, a2, ..., an).

The map δ from the points of PG(n, q) to its hyperplanes, mapping a
point (a0, a1, a2, ..., an) to a hyperplane [a0, a1, . . . , an] is the standard duality
of PG(n, q).

Let U ⊆ AG(n, q) be an affine point set, |U | = qn−1 − ε. Let D ⊆ H∞
be the set of directions determined by U and put N = H∞ \ D the set of
non-determined directions.

Lemma 14.3. Let 0 ≤ r ≤ n − 2. Let α = (0, α1, α2, α3, ..., αn) ∈ N be
a non-determined direction. Then each of the affine subspaces of dimension
r + 1 through α contain at most qr points of U .

Proof: We prove it by the pigeon hole principle. An affine subspace of
dimension r + 1 through α contains qr affine (disjoint) lines through α, and
each line contains at most one point of U as α is a non-determined direction.

Definition 14.4. If an affine subspace of dimension r + 1 ≤ n − 1 through
α ∈ N contains less than qr points of U , then it is called a deficient subspace.
If it contains qr − t points of U , then its deficiency is t.

Corollary 14.5. Let T ⊆ H∞ be a subspace of dimension r ≤ n−2 contain-
ing α ∈ N . Then there are precisely ε deficient subspaces of dimension r+ 1
(counted possibly with multiplicity) through T (a subspace with deficiency t
is counted with multiplicity t).

In particular:

Corollary 14.6. There are precisely ε affine lines through α not containing
any point of U (and qn−1 − ε lines with 1 point of U each).

Now consider the set U = {(1, ai
1, a

i
2, a

i
3, . . . , a

i
n) : i = 1, ..., qn−1 − ε}. We

define its Rédei polynomial as follows:

R(X0, X1, X2, ..., Xn) =

qn−1−ε∏
i=1

(X0 + ai
1X1 + ai

2X2 + ...+ ai
nXn).
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The intersection properties of the set U with hyperplanes of PG(n, q) are
translated into algebraic properties of the polynomial R as follows. Con-
sider x1, x2, . . . , xn ∈ GF(q), then x ∈ GF(q) is a root with multiplicity
m of the equation R(X0, x1, x2, . . . , xn) = 0 if and only if the hyperplane
[x, x1, x2, . . . , xn] contains m points of U .

Define the set S(X1, X2, ..., Xn) = {ai
1X1 + ai

2X2 + ... + ai
nXn : i =

1, ..., qn−1 − ε}, then R can be written as

R(X0, X1, X2, ..., Xn) =

qn−1−ε∑
j=0

σqn−1−ε−j(X1, X2, ..., Xn)Xj
0 ,

where σj(X1, X2, ..., Xn) is the j-th elementary symmetric polynomial of the
set S(X1, X2, ..., Xn).

Consider the subspace sx1,x2,...,xn ⊂ H∞ = [1, 0, ..., 0] of dimension n − 2
which is the intersection of the hyperplanes [x0, x1, x2, ..., xn], x0 ∈ GF(q).
Suppose that sx1,x2,...,xn contains an undetermined direction then, by Lemma
14.3, each of the hyperplanes different from H∞ through sx1,x2,...,xn , contains
at most qn−2 points of U . This implies that there are precisely ε such hy-
perplanes (counted with multiplicity) through sx1,x2,...,xn containing less than
qn−2 points of U (a hyperplane with deficiency t is counted with multiplic-
ity t). Algebraically, this means that for the (n − 2)-dimensional subspace
sx1,x2,...,xn ,

R(X0, x1, x2, ..., xn)f(X0) = (Xq
0 −X0)

qn−2

(1)

where f(X0) = Xε
0 +

∑ε
k=1 fkX

ε−k
0 is a fully reducible polynomial of de-

gree ε. Comparing the two sides of equation (1), one gets linear equations
for the coefficients fk of f in terms of the σj(x1, . . . , xn), and it is easy to
see that the solution for each fk is a polynomial expression in terms of the
σj(x1, . . . , xn), j = 1, . . . , k, use e.g. Cramer’s rule to solve the system of
equations, and notice that the determinant in the denominator equals 1. The
polynomial expression is independent from the elements x1, x2, . . . , xn (still
under the assumption that sx1,x2,...,xn does contain an undetermined direc-
tion), so we can change them for the variables X1, X2, . . . , Xn which makes
the coefficients fk polynomials in these variables; then the total degree of
each fk(σj(X1, . . . , Xn) : j = 1, . . . , n) is k.

Hence, using the polynomial expressions fk(σj : j), we can define the
polynomial

f(X0, X1, . . . , Xn) = Xε
0 +

ε∑
k=1

fk(σ1, . . . , σk)X
ε−k
0 (2)
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Clearly, f(X0, X1, . . . , Xn) is a polynomial of total degree ε, and, sub-
stituting Xi = xi, i = 1, . . . , n for which sx1,...,xn contains an undetermined
direction, yields the polynomial f(X0, x1, . . . , xn) that splits completely into
ε linear factors. Also, since f contains the term Xε

0 , the point (1, 0, 0, . . . , 0)
is not a point of the hypersurface.

Suppose now that f =
∏

i φi, where the polynomials φi(X1, . . . , Xn) are
irreducible of degree εi,

∑
i εi = ε. Then each factor inherits the properties

that (i) whenever the subspace sx1,x2,...,xn ⊂ H∞ of dimension n−2 contains an
undetermined direction, then φi(X0, x1, x2, ..., xn) splits into εi linear factors;
and (ii) (1, 0, ..., 0) is not a point of φi. So from now on we will think of f as
an irreducible polynomial satisfying (i) and (ii).

f(X0, X1, . . . , Xn) = 0 is an algebraic hypersurface in the dual space
PG(n, q). Our aim is to prove that it splits into ε hyperplanes, or (equiva-
lently) that it contains a linear factor (i.e. a hyperplane; then we can decrease
ε by one, etc.). Therefore, we state and prove a series of technical lemmas.

Lemma 14.7. Let T 6= H∞ be a deficient hyperplane through α =
(α0, α1, . . . , αn) ∈ N (so T contains less than qn−2 points of U). Then in
the dual space PG(n, q), T corresponds to an intersection point t of f and the
hyperplane [α0, α1, . . . , αn].

Proof: If T = [x0, x1, . . . , xn] is a deficient hyperplane, then x0 is a solution
of the equation f(X0, x1, x2, . . . , xn) = 0, hence, in the dual space PG(n, q),
t = (x0, x1, . . . , xn) is a point of f . If T contains α = (α0, α1, . . . , αn) ∈ N ,
then t is contained in the hyperplane [α0, α1, α2, . . . , αn].

Lemma 14.8. Let (α) ∈ N be a non-determined direction. Then in the dual
space PG(n, q) the intersection of the hyperplane [α] and f is precisely the
union of ε different subspaces of dimension n− 2.

Proof: First notice that

If (0, α1, α2, ..., αn) ∈ H∞ = [1, 0, ..., 0] is an undetermined direc-
tion, then for all the subspaces sx1,x2,...,xn ⊂ H∞ of dimension n−2
through (0, α1, α2, α3, ..., αn) the polynomial f(X0, x1, x2, ..., xn)
has precisely ε roots, counted with multiplicity.

translates to

In the hyperplane [0, α1, α2, ..., αn] 3 (1, 0, ..., 0), all the lines
through (1, 0, ..., 0) intersect the surface f(X0, x1, x2, ..., xn) = 0
in precisely ε points, counted with intersection multiplicity.
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Define f̄ as the surface of degree ε̄ ≤ ε, which is the intersection of f and the
hyperplane [0, α1, α2, ..., αn]. We know that all the lines through (1, 0, ..., 0)
intersect f̄ in precisely ε points (counted with intersection multiplicity). So
if f̄ =

∏
i φ̄i, where φ̄i is irreducible of degree ε̄i and

∑
i ε̄i = ε̄, then we

have that all the lines through (1, 0, ..., 0) intersect φ̄i in precisely ε̄i points
(counted with intersection multiplicity).

By Corollary 14.6 we know that there are precisely ε different affine lines
through the non-determined direction (α) not containing any point of U . In
the dual space PG(n, q) these lines correspond to ε different subspaces of
dimension n− 2 contained in the hyperplane [α]. The deficient hyperplanes
through these ε original lines correspond to the points of the subspaces in the
dual. Hence by Lemma 14.7, all points of these subspaces are in f , which
means that in [α] there are ε different subspaces of dimension n − 2 totally
contained in f .

Now we prove a lemma, which is interesting for its own sake as well.

Lemma 14.9. Let f(X0, ..., Xn) be a homogeneous polynomial of degree
d < q. Suppose that there are n− 1 independent concurrent lines `1, ..., `n−1

through the point P in PG(n, q) totally contained in the hypersurface f = 0.
Then the hyperplane spanned by `1, ..., `n−1 is a tangent hyperplane of f .

Proof: Without loss of generality, let P = (1, 0, 0, ..., 0) and `i be the “axis”

〈P, (
0

1,
1

0, 0, ..., 0,
i

1, 0, . . . ,
n

0)〉, i = 1, ..., n − 1. We want to prove that the
hyperplane xn = 0, i.e. [0, ..., 0, 1] is tangent to f at P .

Firstly, observe that ∂X0f(P ) = 0 as f has no term of type Xd
0 since

f(P ) = 0.
Now we prove that ∂Xi

f(P ) = 0 for all i = 1, ..., n − 1. As f vanishes
on `i we have f(sXi, 0, ..., 0, Xi, 0, ..., 0) = 0 for all substitutions to s and Xi.
As f(sXi, 0, ..., 0, Xi, 0, ..., 0) = Xd

i f0(s) for some f0 with deg f0 ≤ d < q, we
have f0 ≡ 0. In particular, f0 has no term of degree d− 1, so f has no term
of type Xd−1

0 Xi. Hence ∂Xi
f(1, 0, 0, ..., 0) = 0.

Corollary 14.10. Let f(X0, ..., Xn) be a homogeneous polynomial of degree
d < q. Suppose that in PG(n, q) the intersection of a hyperplane H and the
hypersurface f = 0 contains two complete subspaces of dimension n−2. Then
H is a tangent hyperplane of f .

Proof: Choose a point P in the intersection of the two subspaces of di-
mension n − 2, the lines `1, ..., `n−2 through P in one of the subspaces and
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`n−1 through P in the other such that `1, ..., `n−1 be independent and apply
Lemma 14.9.

Corollary 14.11. If (α) = (0, α1, α2, ..., αn) ∈ N ⊂ H∞ is a non-determined
direction, then (in the dual space) the hyperplane [α] is a tangent hyperplane
of f . Note that [α] contains (1, 0, ..., 0).

Now we generalize Theorem 14.2.

Theorem 14.12. Let n ≥ 3. Let U ⊂ AG(n, q) ⊂ PG(n, q), |U | = qn−1 − 2.
Let D ⊆ H∞ be the set of directions determined by U and put N = H∞\D the
set of non-determined directions. Then U can be extended to a set Ū ⊇ U ,
|Ū | = qn−1 determining the same directions only, or the points of N are
collinear and |N | ≤ b q+3

2
c, or the points of N are on a (planar) conic curve.

Proof: Let n ≥ 3. The hypersurface f = 0 is a quadric in the projec-
tive space PG(n, q). We will investigate the hyperplanes through the point
(1, 0, . . . , 0) that meet f = 0 in exactly two (n − 2)-dimensional subspaces.
If the quadric f = 0 contains (n − 2)-dimensional subspaces, then either
n = 3 and the quadric is hyperbolic, or the quadric must be singular, since
b(n− 1)/2c is an upper bound for the dimension of the generators. If f = 0
contains 2 hyperplanes, then f = 0 is the product of two linear factors,
counted with multiplicity. But then, by our remark before Lemma 14.7, the
set U can be extended. Hence, if we suppose that the set U cannot be ex-
tended, the quadric f = 0 contains (n− 2)-dimensional subspaces, so it is a
cone with vertex an (n− 3)-dimensional subspace and base a (planar) conic,
or it is a cone with vertex an (n − 4)-dimensional subspace and base a hy-
perbolic quadric in a 3-space. (Note that the second one contains the case
when n = 3 and f is a hyperbolic quadric itself.) Denote in both cases the
vertex by V .

Firstly suppose that f = 0 has an (n−3)-dimensional subspace V as ver-
tex. A hyperplane [α] through (1, 0, . . . , 0) containing two (n−2)-dimensional
subspaces must contain V and meets the base conic in two points (counted
with multiplicity). Hence [α] is one of the (q + 1) hyperplanes through the
span of 〈(1, 0, . . . , 0), V 〉, so dually, the undetermined direction (α) is a
point of the line, which is the intersection of the dual (plane) of V and H∞.
When q is odd, there are q+1

2
, respectively q+3

2
such hyperplanes meeting the

base conic, depending on whether the vertex V is projected from the point
(1, 0, . . . , 0) onto an internal point, respectively, an external point of the base
conic. When q is even, there are q

2
such hyperplanes.
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Secondly suppose that f = 0 has an (n − 4)-dimensional subspace V
as vertex. Now a hyperplane [α] through (1, 0, . . . , 0) contains V and it
meets the base quadric in two lines, i.e. a tangent plane to this hyperbolic
quadric. Hence, [α] is one of the q2 + q + 1 hyperplanes through the span of
〈(1, 0, . . . , 0), V 〉, so dually, the undetermined direction (α) is a point of the
plane, which is the intersection of the dual (3-space) of V and H∞.

Among these hyperplanes only those count, which meet the base hyper-
bolic quadric in two lines, i.e. those which intersect the base 3-space in such
a tangent plane of the hyperbolic quadric, which goes through the projection
of V from the point (1, 0, . . . , 0). Dually these hyperplanes form a conic, so
(α) is a point of this conic.

We consider the case when U is extendible as the typical one: otherwise
N has a very restricted (strong) structure; although note that there exist
examples of maximal point sets U , of size q2 − 2, q ∈ {3, 5, 7, 11}, not deter-
mining the points of a conic at infinity. These examples occur in the theory
of maximal partial ovoids of generalized quadrangles, and were studied in
[56], [47], and [49]. Non-existence of such examples for q = ph, p an odd
prime, h > 1, was shown in [50].

Now we prove a general extendability theorem in the 3-space if ε < p.

Theorem 14.13. Let U ⊂ AG(3, q) ⊂ PG(3, q), |U | = q2 − ε, where ε < p.
Let D ⊆ H∞ be the set of directions determined by U and put N = H∞ \D
the set of non-determined directions. Then N is contained in a plane curve
of degree ε4 − 2ε3 + ε or U can be extended to a set Ū ⊇ U , |Ū | = q2.

Proof: We proceed as before: we define the Rédei polynomial of U , then
we calculate f(X0, X1, X2, X3) of degree ε.

Finally we realize that for each triple (α, β, γ), if (0, α, β, γ) ∈ N ⊂ H∞ is
an undetermined direction then the plane [0, α, β, γ], which apparently goes
through the point (1, 0, 0, 0), is a tangent plane of f .

The tangent planes of f are of the form

[∂X0f(a, b, c, d), ∂X1f(a, b, c, d), ∂X2f(a, b, c, d), ∂X3f(a, b, c, d)]

where (a, b, c, d) is a smooth point of f , and there are some others going
through points of f where ∂X0f = ∂X1f = ∂X2f = ∂X3f = 0. For planes of
both type containing (1, 0, 0, 0) we have ∂X0f(a, b, c, d) = 0, so we get that
the triples (α, β, γ), with (0, α, β, γ) ∈ H∞ being an undetermined direction,
correspond to tangent planes [0, α, β, γ] of f in points (a, b, c, d) which belong
to the intersection of f and ∂X0f , which is a space curve C of degree ε(ε−1).
Projecting these tangent planes from (1, 0, 0, 0) (which all they contain) onto
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a (fixed) plane we get that in that plane the projected images [α, β, γ] are
tangent lines of the projected image Ĉ, which is a plane curve of degree
ε(ε−1). So we get that the undetermined directions are contained in a plane

curve of degree ε(ε− 1)
(
ε(ε− 1)− 1

)
= ε4 − 2ε3 + ε.

To reach the total strength of this theory, we would like to use an argu-
ment stating that it is a “very rare” situation that in PG(n, q) a hypersurface
f = 0 with d = deg f > 2 admits a hyperplane H such that the intersection
of H and the hypersurface splits into d linear factors, i.e. (n−2)-dimensional
subspaces (Totally Reducible Intersection, TRI hyperplane). We conjecture
the following.

Conjecture 14.14. Let f(X0, X1, ..., Xn) be a homogeneous irreducible poly-
nomial of degree d > 2 and let F be the hypersurface in PG(n, q) determined
by f = 0. Then the number of TRI hyperplanes to F is “small” or F is a
cone with a low dimensional base.

By small we mean the existence of a function (upper bound) r(d, n),
which is independent from q; although we would not be surprised if even a
constant upper bound, for instance r(d, n) = 45 would hold in general. By a
low dimensional base of a cone we mean an at most 3-dimensional base.

We remark finally that such a result would immediately imply extend-
ability of direction sets U under very general conditions.

14.3 An application

A (finite) partial geometry, introduced by Bose [38], is an incidence structure
S = (P ,B, I) in which P and B are disjoint non-empty sets of objects called
points and lines (respectively), and for which I⊆ (P × B) ∪ (B × P) is a
symmetric point-line incidence relation satisfying the following axioms:

(i) Each point is incident with 1 + t lines (t > 1) and two distinct points
are incident with at most one line.

(ii) Each line is incident with 1 + s points (s > 1) and two distinct lines
are incident with at most one point.

(iii) There exists a fixed integer α > 0, such that if x is a point and L is a
line not incident with x, then there are exactly α pairs (yi,Mi) ∈ P×B
for which x I Mi I yi I L.
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The integers s, t and α are the parameters of S. The dual SD of a partial
geometry S = (P ,B, I) is the incidence structure (B,P , I). It is a partial
geometry with parameters sD = t, tD = s, αD = α.

If S is a partial geometry with parameters s, t and α, then |P| = (s +

1) (st+α)
α

and |B| = (t + 1) (st+α)
α

. (see e.g. [54]). A partial geometry with
parameters s, t, and α = 1, is a generalized quadrangle of order (s, t), [89].

To describe a class of partial geometries of our interest, we need special
pointsets in PG(2, q). An arc of degree d of a projective plane Π of order s is
a set K of points such that every line of Π meets K in at most d points. If
K contains k points, than it is also called a {k, d}-arc. The size of an arc of
degree d can not exceed ds−s+d. A {k, d}-arc K for which k = ds−s+d, or
equivalently, such that every line that meets K, meets K in exactly d points,
is called maximal. We call a {1, 1}-arc and a {s2, s}-arc trivial. The latter is
necessarily the set of s2 points of Π not on a chosen line.

A typical example, in PG(2, q), is a conic, which is a {q+1, 2}-arc, which
is not maximal, and it is well known that if q is even, a conic, together with its
nucleus, is a {q+2, 2}-arc, which is maximal. We mention that a {q+1, 2}-arc
in PG(2, q) is also called an oval, and a {q+2, 2}-arc in PG(2, q) is also called
a hyperoval. When q is odd, all ovals are conics, and no {q + 2, 2}-arcs exist
([93]). When q is even, every oval has a nucleus, and so can be extended to
a hyperoval. Much more examples of hyperovals, different from a conic and
its nucleus, are known, see e.g. [53]. We mention the following two general
theorems on {k, d}-arcs.

Theorem 14.15 ([48]). Let K be a {ds− s+ d, d}-arc in a projective plane
of order s. Then the set of lines external to K is a {s(s− d+ 1)/d, s/d}-arc
in the dual plane.

As a consequence, d | s is a necessary condition for the existence of
maximal {k, d}-arcs in a projective plane of order s. The results for the
Desarguesian plane PG(2, q) are much stronger. Denniston [55] showed that
this condition is sufficient for the existence of maximal {k, d}-arcs in PG(2, q),
q even. Blokhuis, Ball and Mazzocca [11] showed that non-trivial maximal
{k, d}-arcs in PG(2, q) do not exist when q is odd. Hence, the existence of
maximal arcs in PG(2, q) can be summarized in the following theorem.

Theorem 14.16. Non-trivial maximal {k, d}-arcs in PG(2, q) exist if and
only if q is even.

Several infinite families and constructions of maximal {k, d}-arcs of
PG(2, q), q = 2h, and d = 2e, 1 ≤ e ≤ h, are known. We refer to [53]
for an overview.
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Let q be even and let K be a maximal {k, d}-arc of PG(2, q). We define
the incidence structure T ∗2 (K) as follows. Embed PG(2, q) as a hyperplane
H∞ in PG(3, q). The points of S are the points of PG(3, q)\H∞. The lines of
S are the lines of PG(3, q) not contained in H∞, and meeting H∞ in a point of
K. The incidence is the natural incidence of PG(3, q). One can check easily,
using that K is a maximal {k, d}-arc, that T ∗2 (K) is a partial geometry with
parameters s = q − 1, t = k − 1 = (d− 1)(q + 1), and α = d− 1.

An ovoid of a partial geometry S = (P ,B, I) is a set O of points of S,
such that every line of S meets O in exactly one point. Necessarily, an ovoid
contains st

α
+ 1 points. Different examples of partial geometries exist, and

some of them have no ovoids, see e.g. [52]. The partial geometry T ∗2 (K) has
always an ovoid. Consider any plane π 6= H∞ meeting H∞ in a line skew to
K. The plane π then contains st

α
+ 1 = q2 points of S, and clearly every line

of S meets π in exactly one point.

It is a natural stability question to investigate extendability of point sets
of size slightly smaller than the size of an ovoid. In this case, the question
is whether a set of points B, with the property that every line meets B in
at most one point, can be extended to an ovoid if |B| = q2 − ε, and ε is not
too big. Such a point set B is called a partial ovoid of deficiency ε, and it is
called maximal if it cannot be extended. The following theorem is from [89]
and deals with this question in general for GQs, i.e. for α = 1.

Theorem 14.17. Consider a GQ of order (s, t). Any partial ovoid of size
(st− ρ), with 0 ≤ ρ < t/s is contained in a uniquely defined ovoid.

For some particular GQs, extendability beyond the given bound is known.
For other GQs, no better bound is known, or examples of maximal partial
ovoids reaching the upper bound, are known. For an overview, we refer to
[51].

Applied to the GQ T ∗2 (H), H a hyperoval of PG(2, q), Theorem 14.17
yields that a partial ovoid of T ∗2 (H) of size q2−2 can always be extended. The
proof of Theorem 14.17 is of combinatorial nature, and can be generalized to
study partial ovoids of partial geometries. However, for the partial geometries
T ∗2 (K) with α ≥ 2, such an approach only yields extendability of partial
ovoids with deficiency one. In the context of this section, we can study
extendability of partial ovoids of the partial geometry T ∗2 (K) as a direction
problem. Indeed, if a set of points B is a (partial) ovoid, then no two points
of B determine a line of the partial geometry T ∗2 (K). Hence the projective
line determined by two points of B, must not contain a point of K, in other
words, the set of points B is a set of affine points, not determining the points
of K at infinity.
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Considering a partial ovoid B of size q2−2, we can apply Theorem 14.12.
Clearly, the non-determined directions, which contain the points of K, do
not satisfy the conditions when B is not extendable. Hence, we immediately
have the following corollary.

Corollary 14.18. Let B be a partial ovoid of size q2 − 2 of the partial ge-
ometry T ∗2 (K), then B is always extendable to an ovoid.

This result is the same as Theorem 14.17 for the GQ T ∗2 (H),H a hyperoval
of PG(2, q), q > 2.

15 On the number of directions determined

by a pair of functions over a prime field

15.1 Introduction

Now we continue our investigations concerning directions in various contexts.
This section is based on [SzP2func]. Let q = ph denote a prime power and
consider a set U = {(ai, bi) : i = 1, . . . , q} of q points in the affine plane
AG(2, q). The classical direction problem looks for the size of the direction
set of U , defined as

D = {ai − aj

bi − bj
: i 6= j} ⊆ Fq ∪ {∞}.

In the last twenty years or so this problem has received a lot of attention
mainly due to its connections with a variety of fields, for example, blocking
sets in PG(2, q) [33], permutation polynomials over a finite field [80] and the
factorisation of abelian groups [91].

Based on the initial work of Rédei [91] in 1970, the problem was com-
pletely solved, whenever the number of directions is at most q+1

2
, by Ball,

Blokhuis, Brouwer, Storme and Szőnyi [33] and [7] (for small characteristics
and a shorter proof). The theorem also characterises the sets of points that
have a small number of directions.

The most natural way to formulate an analogous problem for higher di-
mensions is to take a set U of qn−1 points in AG(n, q) and define D to be
the set of determined directions, that is, the set of infinite points which are
collinear with two points of U . As in the planar case the non-determined
directions are those infinite points through which every line contains exactly
1 point of U . This is what we did in the previous section, see also [8], [16]
and [SzPkblock].
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In this section we propose another analogue for the three-dimensional
case. This analogue can be formulated for any dimension, but the problem
turns out to be significantly harder in three dimensions so it is enough to
occupy us here. Apart from trivially applying the results for two and three
dimensions, the higher dimensional cases would appear to be, for the moment,
inaccessible.

Let U be a set of q points in AG(3, q) and say that an infinite line ` is not
determined, if every affine plane through ` has exactly one point in common
with U .

Before stating the main result of the present section, we reformulate the
aforementioned problems in terms of functions over finite fields. Consider
first the planar case. Whenever the size of D is less than q+1 one can apply
an affine transformation so that U is the graph of a function. So we can
assume that U = {(x, f(x)) : x ∈ Fq} and

D = {f(y)− f(x)

y − x
| x, y ∈ Fq, x 6= y}.

An element c is not in D if and only if x → f(x) − cx is a bijective map of
Fq to itself. A function which induces a bijective map on Fq is often called
a permutation polynomial. (Note that over a finite field any function can be
written as a polynomial.)

Let M(f) be the number of elements of Fq that are not elements of D.
The first analogue to the direction problem in higher dimensions men-

tioned before, in this terminology, considers the graph of a function from Fn
q

to itself.
The analogue which we will consider in this section, in this terminology,

considers the graph of a pair of functions f and g over Fq. A line not deter-
mined by the graph {(x, f(x), g(x)) | x ∈ Fq} corresponds to a pair (c, d) for
which f(x) + cg(x) + dx is a permutation polynomial. We will denote the
number of these pairs by M(f, g).

From now on we will only consider the q = p prime case and use the
permutation polynomial terminology.

In [91] Rédei and Megyesi proved that if q = p prime and M(f) ≥ (p −
1)/2, then f(x) = cx + d for some c, d ∈ Fp. In other words, the set U is a
line.

This result can be used to prove that the only way to factorise the ele-
mentary abelian group with p2 elements is to use a coset. This was Rédei’s
motivation to look at the direction problem for Fp. For more applications of
this result to other combinatorial problems, see [80].

In [91] Megyesi provided an example with M(f) = d− 1, for each divisor
d of p− 1, which, when d = (p− 1)/2, shows this bound to be best possible.
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Namely, let H be a multiplicative subgroup of Fp, let χH be the characteristic
function of H and let f(x) = χH(x)x. If d 6= 1, p− 1 then M(f) = d− 1.

In [80] Lovász and Schrijver proved that if M(f) = (p − 1)/2 then f is
affinely equivalent to the example of Megyesi.

In [61] it is proved that if M(f) ≥ 2dp−1
6
e+1, then (f(x)−(cx+d))(f(x)−

(bx+e)) = 0 for some b, c, d, e ∈ Fp; in other words, the graph of f is contained
in the union of two lines.

In [101] Szőnyi proved that if the graph of f is contained in the union
of two lines and M(f) ≥ 2, then the graph of f is affinely equivalent to a
generalised example of Megyesi detailed above. In the generalised Megyesi
example H can be replaced by a union of cosets of a multiplicative subgroup
of Fp. In the generalised example the value of M(f) is again d− 1 for some
divisor d of p− 1.

Thus, the above results imply that, either M(f) ≤ 2dp−1
6
e, f is affinely

equivalent to x
p+1
2 or f is linear.

In [112] Wan, Mullen and Shiue obtain upper bounds on M(f) in terms
of the degree of the polynomial f .

Here we shall prove that if there are more than (2dp−1
6
e + 1)(p +

2dp−1
6
e)/2 ≈ 2p2/9 pairs (c, d) ∈ F2

p with the property that x 7→ f(x) +
cg(x) + dx is a permutation of Fp then there are elements a, b, e ∈ Fp such
that f(x) + ag(x) + bx + e = 0, for all x ∈ Fp; in other words the graph of
(f, g), {(x, f(x), g(x)) | x ∈ Fp}, is contained in a plane. At the end of the
section we construct an example showing that for p congruent to 1 modulo
3 this is asymptotically sharp.

15.2 A slight improvement on the earlier result

For a polynomial f over Fp, p prime, define

I(f) = min{k + l |
∑
x∈Fp

xkf(x)l 6= 0}.

In [61] it was proved that if M(f) > (p − 1)/4 and I(f) ≥ 2dp−1
6
e + 2

then the graph of f is contained in the union of two lines.
Let

πk(Y ) =
∑
x∈Fp

(f(x) + xY )k.

It’s a simple matter to check, see [79, Lemma 7.3], that if x 7→ f(x) + ax
is a permutation then πk(a) = 0 for all 0 < k < p− 1. Since the polynomial
πk(Y ) has degree at most k − 1 (the coefficient of Y k is

∑
x∈Fp

xk = 0) it is

               dc_637_12



96

identically zero for all 0 ≤ k− 1 < M(f), unless M(f) = p− 1 in which case
f is linear. Hence if f is not linear then I(f)− 1 ≥M(f).

Thus in [61] it was proved that if M(f) ≥ 2dp−1
6
e+ 1, then the graph of

f is contained in the union of two lines.
To be able to prove the main result of this section we need something a

little stronger than [61]. We use the same method and essentially follow the
proof there but we have to modify the first part of the proof (Lemma 4.1),
we manage to avoid the step involving Lemma 4.2, Step 1 and Step 2 are the
same, we use a slightly different subspace to be able to reduce Step 3 and
Step 4 a little and Step 5 we use in the same way.

In this section we shall prove the following theorem.

Theorem 15.1. If M(f) ≥ (p− 1)/6 and I(f) ≥ 2dp−1
6
e+ 2 then the graph

of f is contained in the union of two lines.

The values I(f) and M(f) are invariant under affine transformations and
inversion. Replacing f by its inverse is the transformation which switches
coordinates, in other words if we switch coordinates then the graph of f ,
{(x, f(x)) | x ∈ Fp}, becomes the graph of f−1. Let E(f) denote the set of all
polynomials that can be obtained from f by applying affine transformations
and inversions.

Let (f i)◦ be the degree of the polynomial f i modulo xp−x. Unless stated
otherwise all equations are to be read modulo xp − x.

Note that for any polynomial g of degree less than p the sum

−
∑
x∈Fp

g(x)

is equal to the coefficient of xp−1 of g.

Lemma 15.2. If 3 ≤ f ◦ ≤ (p− 1)/2 then I(f) ≤ (p+ 1)/3.

Proof: Write p − 1 = af ◦ + b with 0 ≤ b < f ◦. The degree of f(x)axb is
p− 1, so we have I(f) ≤ a+ b.

If f ◦ = 3 then a+ b ≤ (p− 2)/3 + 1 = (p+ 1)/3.
If (p+ 1)/3 ≤ f ◦ ≤ (p− 1)/2 then a+ b = 2 + p− 1− 2f ◦ ≤ (p+ 1)/3.
If (p+ 1)/4 ≤ f ◦ ≤ (p− 1)/3 then a+ b = 3 + p− 1− 3f ◦ ≤ 3 + p− 1−

3(p+ 1)/4 = (p+ 1)/4 + 1 ≤ (p+ 1)/3 for p ≥ 11.
If 4 ≤ f ◦ ≤ (p+ 1)/4 then a+ b ≤ (p− b− 1)/f◦ + b ≤ p/f ◦ + (bf ◦− b−

1)/f◦ ≤ p/f ◦ + f ◦− 2. This is at most (p+ 1)/3 if and only if the quadratic
inequality 3(f ◦)2− (p+ 7)f ◦ + 3p ≤ 0 is satisfied. For p ≥ 20, the inequality
is satisfied for both f ◦ = 4 and f ◦ = (p + 1)/4, so it holds for all values
between 4 and (p+ 1)/4. For p < 20 a case by case analysis suffices to show
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that a+ b ≤ (p+ 1)/3.

Note that for f ◦ = 2 we have I(f) = (p − 1)/2 and M(f) = 0 and for
f ◦ = 1 we have I(f) = p− 1 and M(f) = p− 1.

Lemma 15.3. If f ◦ = (p+1)/2 then either I(f) ≤ (p+5)/4 or f is affinely

equivalent to x
p+1
2 .

Proof: After applying a suitable affine transformation we can suppose that
f(x) = x

p+1
2 + g(x) where g◦ ≤ (p− 3)/2.

If g◦ ≤ 1 then by applying another linear transformation we can subtract
g from f and hence f is affinely equivalent to x

p+1
2 .

Suppose g◦ ≥ 2. Write (p− 3)/2 = ag◦ + b with 0 ≤ b < g◦ and consider
the polynomial

f(x)a+1xb =
a+1∑
i=0

(
a+ 1

i

)
xi p+1

2
+bg(x)a+1−i.

We claim that the only term in the sum that has a term of degree xp−1

(modulo xp−x) is g(x)ax
p+1
2

+b. Let r(x) = g(x)a+1−ixi p+1
2

+b (modulo xp−x),
a typical term in the sum (note that all the binomial coefficients are non-zero).
If i is even then r(x) = g(x)a+1−ixb+i, which has degree (a+1− i)g◦+ b+ i =

(p−3)/2+g◦−(g◦−1)i < p−1. If i 6= 1 is odd then r(x) = g(x)a+1−ix
p−1
2

+i+b,
which has degree (a+1−i)g◦+(p−1)/2+i+b = p−2+g◦−(g◦−1)i < p−1.

Hence f(x)a+1xb has degree p− 1 which implies I(f) ≤ a+ 1 + b.
Finally, note that a+b ≤ (p−3)/(2g◦)+g◦−1, which is at most (p+1)/4

if 2 ≤ g◦ ≤ (p− 3)/4. If g◦ > (p− 3)/4 then a = 1 and b = (p− 3)/2− g◦ <
(p− 3)/4 and so a+ b < (p+ 1)/4.

Let s = d(p− 1)/6e.
We will assume from now on that I(f) ≥ 2s + 2. By the definition of

I(f) the sum ∑
x∈Fp

xkf(x)

has no term of degree xp−1, for all k = 0, 1, . . . , 2s, and therefore the degree
of f is at most p− 2s− 2. By Lemma 15.2 and Lemma 15.3 the degree of f
is at least (p+ 3)/2.

Lemma 15.4. There is polynomial in h ∈ E(f) with one of the following
properties. Either
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(i) for all i such that 1 ≤ i ≤ 2s, (hi)◦ ≤ h◦ + i− 1 and (h2)◦ = h◦ + 1, or

(ii) for all i such that 1 ≤ i ≤ 2s, (hi)◦ ≤ (h2)◦+i−2 and (h3)◦ = (h2)◦+1,

and h has no root in Fp.

Proof:
Let

d(f) = max{(f i)◦ − i | 1 ≤ i ≤ 2s}

and let d = d(f1) be maximal over all polynomials in E(f). The fact that
f ◦ ≥ (p+ 3)/2 implies that d ≥ (p+ 1)/2.

Let π(Y ) = πp−1−d(Y ). The coefficient of Y p−1−d−j in π(Y ) is(
p−1−d

j

)∑
x∈Fp

xp−1−d−jf j which, by the definition of d, is non-zero for at

least one j where 1 ≤ j ≤ 2s. Hence π(Y ) 6≡ 0.
If for all a such that f(x) + ax is a permutation polynomial we have

π(a) = π′(a) = π′′(a) = 0 then (Y − a)3 divides π(Y ) and since M(f) ≥
(p − 1)/6 the degree of π, π◦ = p − 1 − d ≥ 3M(f) ≥ (p − 1)/2 which isn’t
the case.

Since 0 < p− 1− d < p− 1 we have already seen that π(a) = 0, so either
π′(a) 6= 0 or π′′(a) 6= 0 for some a.

Let f2 be the inverse of the function f(x) + ax.
If

0 6= π′(a) = −(d+ 1)
∑
x∈Fp

x(f + ax)p−2−d

then
∑

z∈Fp
f2(z)z

p−2−d 6= 0 and so f ◦2 ≥ d + 1. By the maximality of d,

f ◦2 = d+1 and so (f i
2)
◦− i ≤ f ◦2 −1. If (f 2

2 )◦ ≤ f ◦2 then let f3 = f2 +cx where
c is chosen so that (f 2

3 )◦ ≥ f ◦3 + 1 and f3 is not a permutation polynomial.
Note that f 2

3 = f 2
2 + 2cxf2 + c2x2.

If
0 6= π′′(a) = (d+ 1)(d+ 2)

∑
x∈Fp

x2(f + ax)p−3−d

then
∑

z∈Fp
(f2(z))

2zp−3−d 6= 0 and so (f 2
2 )◦ ≥ d + 2. By the maximality of

d, (f 2
2 )◦ = d + 2 and so (f i

2)
◦ − i ≤ (f 2

2 )◦ − 2. If (f 3
2 )◦ ≤ (f 2

2 )◦ then let
f3 = f2 + cx where c is chosen so that (f 3

3 )◦ ≥ (f 2
3 )◦ + 1 and f3 is not a

permutation polynomial.
Finally, let e be an element not in the image of f3 and let f4 = f3 − e.

Then f4 has no root in Fp.

The dimension of a subspace of a finite dimensional vector space of poly-
nomials is equal to the number of degrees occurring amongst the elements
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of a subspace, see Result 4.4. This is easily seen if we take the canonical
basis {1, x, x2, . . . , xt}. The matrix whose rows form a basis for the subspace
can be reduced to a matrix in row echelon form whose rows span the same
subspace and correspond to polynomials of different degrees.

Lemma 15.5. There is a polynomial in h ∈ E(f) for which there exist
polynomials F , G and H, where H◦ − 2 = F ◦ − 1 = G◦ = r ≤ s − 2,
(F,G) = 1 and

Fh+Gh2 = H.

Note that this implies that h satisfies the conditions of Lemma 15.4 (i).
Proof: Let h be a polynomial satisfying the conditions of Lemma 15.4.
Since I(h) ≥ 2s+ 2 we have (hi)◦ ≤ p− 2s− 3 + i.

Define subspaces of the vector space of polynomials of maximum degree
p− 1

ψj = {Fh+Gh2 | F ◦ ≤ j, G◦ ≤ j − 1},

where j ≤ s− 1. If there are polynomials F and G such that Fh+Gh2 = 0
then since h has no root F + Gh = 0 which is impossible since (hG)◦ is at
least 3s and at most 5s− 3 < p− 1. Thus the dimension of ψj is 2j + 1.

Since I(h) ≥ 2s+1 and 2(j+1) ≤ 2s, the sum over Fp of the evaluation of
the product of any two elements of ψj is zero, hence the sum of the degrees
of any two elements of ψs−1 is not equal to p − 1. The maximum degree
of any element of ψs−1 is p − s − 3 and so only half of the degrees in the
interval [s + 2, . . . , p − 1 − (s + 2)] can occur. But dimψs−1 = 2s − 1 >
(p− 1− (s+ 2)− (s+ 1))/2 and so there is an element H of degree at most
s+ 1 in ψs−1.

Let H be of minimal degree, so (F,G) = 1.
If h satisfies case (i) of Lemma 15.4 then (h2)◦ = h◦ + 1 and r = G◦ =

F ◦ − 1. Moreover Fh2 +Gh3 = Hh and (h3)◦ ≤ h◦ + 2 implies H◦ ≤ r + 2.
If h satisfies case (ii) of Lemma 15.4 then (h3)◦ = (h2)◦ + 1 ≥ h◦ + 2

and (h4)◦ ≤ (h2)◦ + 2. Let F ◦ = r + 1 and so G◦ ≤ r. The equation
Fh3 +Gh4 = Hh2 implies H◦ ≤ r + 2. If G◦ ≤ r − 1 then Fh2 +Gh3 = Hh
implies r+ 2 +h◦ ≥ H◦ +h◦ = r+ 1 + (h2)◦ and so (h2)◦ = h◦ + 1. But then
Fh+Gh2 = H implies G◦ = r.

Either way we have r = G◦ = F ◦ − 1 ≥ H◦ − 2.
Let h1 = h+ax and F1 = F−2axG, G1 = G and H1 = H−a2x2G+axF .

Then F1h1 + G1h
2
1 = H1 and we can choose a so that H1 has degree r + 2.

Now when we look at ψr+1 for h1 we find F1, G1 and H1 as required. Note
that (F,G) = 1 implies (F1, G1) = 1.
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We wish to prove r = 0. So let us assume r ≥ 1 and define i to be such
that (i− 2)r + 1 ≤ s < (i− 1)r + 1 for r ≥ 2 and i = s for r = 1. Note that
r ≤ s− 2 implies i ≥ 3 and that s+ r − 1 ≤ 2s− i if i = 3 or i = s and also
if both i ≥ 4 and r ≥ 2, since r ≤ (s− 1)/2 and i ≤ (s− 1)/2.

Lemma 15.6. There is a polynomial h ∈ E(f) and a polynomial G, where
G◦ = r ≤ s− 2, such that for all j = 2, . . . , i, there is an Fj and an Hj with
the property that (Fj, G) = 1,

Fjh+Gj−1hj = Hj,

F ◦
j ≤ (j − 1)(r + 1), H◦

j ≤ (j − 1)r + j and H◦
i = (i− 1)r + i.

Proof: Let h1 satisfy the conditions of Lemma 15.5. We start by proving
that there is an h ∈ E(f) for which (hi−1)◦ ≥ h◦ + i− 2.

If (hi−1
1 )◦ ≤ h◦1 + i − 3 then let h = h1 + ax. Choose a so that hi−1 =∑i−1

j=0

(
i−1
j

)
(ax)i−j−1hj

1 has degree at least h◦ + i− 2 while at the same time

the degree of F − 2axG is r+ 1 and the degree of H − a2x2G+ axF is r+ 2.
We will prove the lemma by induction. Lemma 15.5 implies that for j = 2

we can take F2 = F and H2 = H.
Define Fj = −(Fj−1F +Hj−1G) and Hj = −HFj−1. It can be checked by

induction, multiplying by Gh and using Gh2 = H − Fh, that

Fjh+Gj−1hj = Hj.

The degrees satisfy F ◦
j ≤ (j−1)(r+1) and H◦

j ≤ (j−1)r+j and (Fj, G) = 1,
since (F,G) = 1 by Lemma 15.5 and (Fj−1, G) = 1 by induction.

Now (hi−1)◦ ≥ h◦+i−2 and the equation Fi−1h+Gi−2hi−1 = Hi−1 implies
that F ◦

i−1 ≥ (i− 2)(r+1) and so F ◦
i−1 = (i− 2)(r+1). Finally Hi = −HFi−1

implies H◦
i = (i− 1)r + i.

Let h satisfy the conditions of Lemma 15.6. Note that this implies that
h satisfies the conditions of Lemma 15.5 and Lemma 15.4 (i). Define

φj = {Ah+Bhi | A◦ ≤ j, B◦ ≤ j + 1− i}.

Note that Hi ∈ φ(i−1)r+i−1 and that (i− 1)r+ i− 1 ≤ s+ r+ i− 2 ≤ 2s− 1.

Lemma 15.7. For j ≤ 2s− 1 all polynomials of φj have degree at least H◦
i

and those of degree at most p− 2− h◦ are multiples of Hi.

Proof: If Ah + Bhi = 0 then, since h has no root in Fp, A + Bhi−1 = 0.
The degree of Bhi−1 is at most p−4 and at least (p+3)/2 and so A = B = 0.
Thus the dimension of φj is 2j + 3− i.
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Suppose that φj contains a polynomial C of degree n but no polynomial
of degree n + 1. Then φj+1 contains a polynomial of degree n + 1, xC for
example, and a polynomial of degree one more than the maximum degree of
an element of φj. However dimφj+1 = dimφj + 2, so n is unique. Moreover,
the polynomials of degree n+1 in φj+1 are multiples of a polynomial of degree
n in φj.

Since j ≤ 2s − 1, φj contains no element of degree p − 1 − h◦. Now
Hi ∈ φ(i−1)r+i−1 and is a polynomial of degree less than p−1−h◦. It is not a
multiple of any polynomial in φj for j < (i− 1)r+ i−1, since if it were there
would be a non-constant polynomial K and polynomials A and B with the
property that (KA)h+ (KB)hi ∈ φ(i−1)r+i−1, with (KA)◦ ≤ (i− 1)r + i− 1
and (KB)◦ ≤ (i − 1)r, which would be a constant multiple of Hi. This is
not possible since (Fi, G) = 1. Thus all polynomials in φj of degree at most
p− 2− h◦ are multiples of Hi and in particular have degree at least H◦

i .

The following lemma contradicts the previous one which implies that our
assumption that r ≥ 1 was incorrect.

Lemma 15.8. There is a non-zero polynomial of degree less than H◦
i in φj

for some j ≤ 2s− 2.

Proof: Suppose r ≥ 2 and so i ≤ s. Let

∆ = {Ah+B2h
2 + . . .+Bi−1h

i−1 +Chi | A◦ ≤ s−1, B◦
j ≤ r−1, C◦ ≤ s− i}.

Since I(h) ≥ 2s + 1 the sum of the degrees of any two elements of ∆ is
not equal to p − 1. The maximum degree of any element of ∆ is p − s − 3
and so only half of the degrees in the interval [s+ 2, . . . , p− 1− (s+ 2)] can
occur, in other words at most b(p− 4− 2s)/2c ≤ 2s− 2 of the degrees in this
interval occur. If dim∆ = (i− 2)r + 2s− i+ 1 then there is a polynomial

E = Ah+B2h
2 + . . .+Bi−1h

i−1 + Chi

in ∆ of degree at most s+2−((i−2)r+2s−i+1−(2s−2)) = s−(i−2)r+i−1.
If dim∆ < (i−2)r+2s−i+1 then E = 0 ∈ ∆ non-trivially. Either way there
is a polynomial E ∈ ∆ with not all A,Bj, C zero where E◦ ≤ s−(i−2)r+i−1.

Substituting Gj−1hj = Hj − hFj we have

Gi−2E = Gi−2Ah+ CGi−2hi +
i−1∑
j=2

BjG
i−1−j(Hj − hFj)
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and rearranging

Gi−2E −
i−1∑
j=2

BjG
i−1−jHj = (Gi−2A−

i−1∑
j=2

BjFjG
i−1−j)h+ CGi−2hi.

Checking the degrees on the right-hand side we see that the left-hand side is
a polynomial in φj for some j ≤ 2s− 2.

The degree of the left-hand side is at most max{s+ i− 1, ir− r + i− 2}
which is less than H◦

i = (i− 1)r + i.
If r = 1 then take i = s and define ∆ as above. There is a polynomial E

in ∆ of degree at most s+1 and the degree of Gi−2E is at most 2s−1 which
is the degree of Hs. If we have equality then by Lemma 15.7 the polynomial

(Gs−2A−
s−1∑
j=2

BjFjG
s−1−j)h+ CGs−2hs

is a constant multiple of Fsh + Gs−1hs which implies CGs−2 is a constant
multiple of Gs−1 which it is not since one has degree s − 2 and the other
s− 1.

We can now prove Theorem 15.1.
Proof: By the previous lemmas there exist polynomials h ∈ E(f) and F
of degree 1 and H of degree 2 such that h2 + Fh = H. Thus (h + F/2)2 =
H +F 2/4. All values of H +F 2/4 are squares and so H +F 2/4 = (ax+ b)2.
Hence (h+ F/2− ax− b)(h+ F/2 + ax+ b) = 0 and the graph of h (and so
the graph of f too) is contained in the union of two lines.

15.3 Linear combinations of three permutation poly-
nomials

First let’s recall Theorem 8.4(i) for our further purposes:

Theorem 15.9. Let π(Y, Z) be an absolutely irreducible polynomial of degree
d with coefficients in Fp such that 1 < d < p. The number of solutions N to
the equation π(y, z) = 0 in F2

p satisfies

N ≤ d(d+ p− 1)/2.

               dc_637_12



15. DIRECTIONS DETERMINED BY A PAIR OF FUNCTIONS 103

Let M(f, g) be the number of pairs (a, b) ∈ F2
p for which f(x)+ag(x)+bx

is a permutation polynomial. Let

I(f, g) = min{k + l +m |
∑
x∈Fp

xkf(x)lg(x)m 6= 0}.

Recall s = dp−1
6
e. Before we prove the main result of this section we need

the following lemma.

Lemma 15.10. If M(f, g) > (2s + 1)(p + 2s)/2 then I(f, g) ≥ 2s + 2 or
there are elements c, d, e ∈ Fp such that f(x) + cg(x) + dx + e = 0 for all
x ∈ Fp.

Proof: Let πk(Y, Z) =
∑

x∈Fp
(f(x) + g(x)Y + xZ)k.

By [79, Lemma 7.3], if f(x) + ag(x) + bx is a permutation polynomial
then πk(a, b) = 0 for all 0 < k < p− 1. Write

πk =
∏

σj(Y, Z),

where each σj is absolutely irreducible. Then
∑
σ◦j = π◦k ≤ k.

Let Nj be the number of solutions of σj(a, b) = 0 in Fp for which f(x) +
ag(x) + bx is a permutation polynomial.

If λσj ∈ Fp[Y, Z], for some λ in an extension of Fp, and σ◦j ≥ 2 then by
Theorem 15.9 Nj ≤ σ◦j (p+ σ◦j − 1)/2.

Suppose σ◦j = 1 and there are at least (p + 1)/2 pairs (a, b) for which
σj(a, b) = 0 and f(x) + ag(x) + bx is a permutation polynomial. Let σj =
αY + βZ + γ. If α 6= 0 then there are (p + 1)/2 elements b ∈ Fp with the
property that αf(x) − (βb + γ)g(x) + bαx = αf(x) − γg(x) + b(αx − β) is
a permutation polynomial. By Rédei and Megyesi’s theorem mentioned in
the introduction, this implies that αf(x) − γg(x) is linear and hence there
are elements c, d, e ∈ Fp such that f(x) + cg(x) + dx + e = 0 for all x ∈ Fp.
If α = 0 then there are (p + 1)/2 elements a ∈ Fp with the property that
βf(x) − γx + aβg(x) is a permutation polynomial. The set of p points
{(βf(x)− γx, βg(x)) | x ∈ Fp} may not be the graph of a function but it is
a set of p points that does not determine at least (p+ 1)/2 directions. Thus
it is affinely equivalent to a graph of a function that does not determine at
least (p−1)/2 directions and so by Rédei and Megyesi’s theorem, it is a line.
Hence, there are elements c, d and e with the property that c(βf(x)− γx) +
dβg(x) + e = 0 for all x ∈ Fp. Thus, either there are elements c, d, e ∈ Fp

such that f(x) + cg(x) + dx+ e = 0 for all x ∈ Fp or Nj ≤ (p− 1)/2.
Suppose λσj 6∈ Fp[Y, Z] for any λ in any extension of Fp. The polyno-

mials σj =
∑
αnmY

nZm and σ̂j =
∑
αp

nmY
nZm have at most (σ◦j )

2 zeros in
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common by Bezout’s theorem. However if (y, z) ∈ F2
p and σj(y, z) = 0 then

σ̂j(y, z) = 0. Hence

Nj ≤ (σ◦j )
2 ≤ σ◦j (p+ σ◦j − 1)/2,

whenever σ◦j ≤ (p− 1)/2.
Thus if πk 6≡ 0 and k ≤ (p− 1)/2 then N(πk), the number of solutions of

πk(y, z) = 0 in Fp for which f(x) + ag(x) + bx is a permutation polynomial,
satisfies

N(πk) ≤
∑

Nj ≤
∑

σ◦j (p+ σ◦j − 1)/2 ≤ k(p− 1)/2 +
1

2

∑
(σ◦j )

2

≤ k(p− 1)/2 +
1

2
(
∑

σ◦j )
2 = (k(p− 1) + k2)/2.

By hypothesis πk ≡ 0 or

(2s+ 1)(p+ 2s)/2 < Nk ≤ (k(p− 1) + k2)/2,

which gives k ≥ 2s+ 2. Now

πk(Y, Z) =
k∑

l=0

k−l∑
m=0

(
k

l

)(
k − l

m

)∑
x∈Fp

xk−l−mf(x)lg(x)m

Y mZk−l−m,

and so I(f, g) ≥ 2s+ 2.

Theorem 15.11. If M(f, g) > (2s + 1)(p + 2s)/2 then there are elements
c, d, e ∈ Fp such that f(x) + cg(x) + dx+ e = 0.

Proof: If p = 3 and M(f, g) > (2s+ 1)(p+ 2s)/2 = 15/2 then there is a c
such that f(x)+ cg(x)+ bx is a permutation polynomial for all b ∈ Fp, which
can only occur if there is a constant e such that f(x) + cg(x) + e = 0.

So suppose p ≥ 5 and that there are no elements c, d, e ∈ Fp with the
property that f(x) + cg(x) + dx+ e = 0.

Clearly I(f + ag) ≥ I(f, g) for all a ∈ Fp and I(f, g) ≥ 2s + 2 by
Lemma 15.10.

There is an a1 ∈ Fp with the property that

M(f + a1g) ≥M(f, g)/p ≥ (p− 1)/6.

By Theorem 15.1 there are constants c, d, c′, d′ ∈ Fp with the property that

(f + a1g + cx+ d)(f + a1g + c′x+ d′) = 0
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so the graph of (f, g), the set of points {(x, f(x), g(x)) | x ∈ Fp}, is contained
in the union of two planes.

By Rédei and Megyesi’s theorem, since we have assumed that the graph
of f + a1g is not a line, M(f + a1g) ≤ (p − 1)/2 and so there is an a2 6= a1

with the property that

M(f + a2g) ≥ (M(f, g)− (p− 1)/2)/(p− 1) ≥ (p− 1)/6.

Thus the graph of (f, g) is contained in the union of two other planes, different
from the ones before. The intersection of the two planes with the two planes
is four lines and so the graph of (f, g) is contained in the union of four lines.

Similarly, since (M(f, g) − (p − 1))/(p − 2) ≥ (p − 1)/6 and (M(f, g) −
3(p− 1)/2)/(p− 3) ≥ (p− 1)/6, there is an a3 and an a4 with the property
that M(f +a3g) ≥ (p−1)/6 and M(f +a4g) ≥ (p−1)/6 and so the graph of
(f, g) is contained in two other distinct pairs of planes. The four lines span
three different pairs of planes and so the graph of (f, g) is contained in the
union of two lines and hence a plane, which is a contradiction.

There is an example when q is an odd prime (power) congruent to 1 mod-
ulo 3 with M(f, g) = 2(q−1)2/9−1 where the graph of (f, g) is not contained
in a plane, which shows that the bound is the right order of magnitude.

Let E = {e ∈ Fq | e(q−1)/3 = 1} ∪ {0}. Then the set S =
{(e, 0, 0), (0, e, 0), (0, 0, e) | e ∈ E} is a set of q points. If π, the plane
defined by

X1 + aX2 + bX3 = c,

is incident with (e, 0, 0) for some e ∈ E then c ∈ E. Likewise if it is incident
with (0, e, 0) for some e ∈ E then a/c ∈ E and if it is incident with (0, 0, e)
for some e ∈ E then b/c ∈ E.

If π is incident with two points of S then either a ∈ E, b ∈ E or a/b ∈ E.
Thus if a, b and a/b are not elements of E then π and all the planes parallel
to π are incident with exactly one point of S. There are 2(q−1)2/9 such sets
of parallel lines.

If we make a change of coordinates so that {X1 = x | x ∈ Fq} is
one such set of parallel planes then there are functions f and g for which
S = {(x, f(x), g(x)) | x ∈ Fq}. Each other set of parallel lines with the above
property corresponds to a pair (a, b) such that f(x) + ag(x) + bx is a permu-
tation polynomial. Thus M(f, g) = 2(q− 1)2/9− 1. Explicitly the functions
f and g can be defined by f(x) = χH(x)x and g(x) = χεH(x)x, where χH

is the characteristic function of H = {t3 | t ∈ Fp} and ε is a primitive third
root of unity.
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16 Glossary of concepts

Here one can find the most important definitions.

An algebraic (hyper)surface in PG(n, q) is a set of homogeneous poly-
nomials {λf(X1, ..., Xn+1) : λ ∈ GF(q)}, where f is a polynomial with
coefficients from GF(q). Geometrically, one may think about the points
(x1, ..., xn+1) ∈ PG(n, q) for which f(x1, ..., xn+1) = 0. For more on the
multiplicity of a point of a surface, see Section 8.

When n = 2 then we use the name plane curve instead of surface. If the
polynomial f splits into factors over GF(q) then we call it reducible (otherwise
irreducible) and the factors are called components. If this does not happen
even over the algebraic closure ¯GF(q) then f is absolutely irreducible.

A (k, n)-arc of PG(2, q) is a pointset of size k, meeting every line in at
most n points. An arc is a (k, 2)-arc. A (k, n)-arc is complete if it is not
contained in a (k+1, n)-arc. A (k, n)-arc is maximal if every line intersects
it in either 0 or n points.

A blocking set (with respect to lines) is a pointset meeting every line. In
general, a blocking set in PG(n, q) w.r.t. k-dimensional subspaces (sometimes
it is called an (n− k)-blocking set) is a point set meeting every k-subspace.
Do not be confused, a k-blocking set is a blocking set meeting every
k-codimensional subspace.

A point P of the blocking set B is essential if B \ {P} is no longer
a blocking set, i.e. there is a 1-secant k-space through P . B is minimal
if every point of it is essential. A blocking set B of PG(2, q) is small if
|B| < 3

2
(q + 1), in general, a blocking set B in PG(n, q) w.r.t. k-dimensional

subspaces is small if |B| < 3
2
qn−k + 1.

A t-fold blocking set meets every k-subspace in at least t points.

A blocking set B ⊂ PG(n, q), with respect to k-dimensional subspaces, is
of Rédei type, if it has precisely qn−k points in the affine part AG(n, q) =
PG(n, q) \H∞.

A subgeometry of Π = PG(n, q) is a copy of some Π′ = PG(n′, q′)
embedded in it, so the points of Π′ are points of Π and the k-dimensional
subspaces of Π′ are just the intersections of some k-subspaces of Π with the
pointset of Π′. It follows that GF(q′) must be a subfield of GF(q).

The type of a pointset of PG(2, q) is the set of its possible intersection
numbers with lines. In particular, an arc is a set of type (0, 1, 2), a set of
even type is a pointset with each intersection numbers being even, etc.
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A cone C has a base B in some subspace Π ⊂ PG(n, q) and a vertex V ;
the vertex is a subspace disjoint from Π. The cone is the union of all the
lines connecting points of B to V . In PG(3, q), a flock of the cone is the
partition of C \ V into q disjoint plane sections, with planes not through V .
A flock is linear, if its planes all contain one fixed line (which does not meet
C).

17 Notation

V(n,F) denotes the n-dimensional vector space with coordinates from the
field F. If F = GF(q) then we write V(n, q) instead.

AG(n,F) denotes the n-dimensional affine space with coordinates from
the field F. If F = GF(q) then we write AG(n, q) instead.

PG(n,F) denotes the n-dimensional projective space with coordinates
from the field F. If F = GF(q) then we write PG(n, q) instead.[

a
b

]
q

= (qa−1)(qa−1−1)...(qa−b+1−1)
(qb−1)(qb−1−1)...(q−1)

(the q-binomials or Gaussian binomials,

the number of b-dimensional linear subspaces of V(a, q)).

If the order q of a plane or space is fixed we write
θi =

[
i+1
1

]
q

= qi+1−1
q−1

= qi + qi−1 + ...+ q + 1.

Trqn→q(X) = X+Xq +Xq2
+ ...+Xqn−1

is the trace function from GF(qn)
to GF(q).

Normqn→q(X) = XXqXq2
Xqn−1

is the norm function from GF(qn) to
GF(q).

Jt is the ideal 〈(Xq
1−X1)

i1(Xq
2−X2)

i2 ...(Xq
n−Xn)in : 0 ≤ i1+i2+...+in =

t〉 in GF(q)[X1, ..., Xn] of polynomials vanishing everywhere with multiplicity
at least t.

H∞ is the hyperplane at infinity in the projective space PG(n, q) when an
“affine part” is fixed, i.e. H∞ = PG(n, q) \AG(n, q). When n = 2, it is called
the “line at infinity” `∞.

Mf : given the polynomial f ∈ GF(q)[X], the number of elements a ∈
GF(q) for which f(X) + aX is a permutation polynomial.

Df : given the polynomial f ∈ GF(q)[X], Df = {f(x)−f(y)
x−y

: x 6= y ∈
GF(q)}, the set of directions determined by the graph of f .

Nf = |Df |.
wf : for a polynomial f ∈ GF(q)[X], wf = min{k :

∑
x∈GF(q) f(x)k 6= 0}.
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tions determined by less than q points, J. Algebr. Combin. 37
(2013), 27-37.

[SzPVdV] P. Sziklai, G. Van de Voorde, A small minimal blocking set
in PG(n, pt), spanning a (t − 1)-space, is linear, Designs, Codes,
Crypt., DOI 10.1007/s10623-012-9751-x.

[SzPpolybk] P. Sziklai, Polynomials in finite geometry,
http://www.cs.elte.hu/˜sziklai/poly.html , in prepa-
ration.

               dc_637_12



BIBLIOGRAPHY 111

[] References: []
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[60] A. Gács, On the size of the smallest non-classical blocking set of
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